
Orbix 3.3.14

Programmer’s Guide C++ Edition

ii

Micro Focus
The Lawn
22-30 Old Bath Road
Newbury, Berkshire RG14 1QN
UK

http://www.microfocus.com
Copyright © Micro Focus 2017. All rights reserved.

MICRO FOCUS, the Micro Focus logo, and Micro Focus product names are
trademarks or registered trademarks of Micro Focus Development Limited
or its subsidiaries or affiliated companies in the United States, United
Kingdom, and other countries. All other marks are the property of their
respective owners.

2017-04-25

 Orbix Programmer’s Guide C++ Edition i i i

Contents

Preface.. vii
Audience ... vii
Organization of this Guide ... vii
Document Conventions .. viii

Part I Getting Started

Introduction to CORBA and Orbix ..3
CORBA and Distributed Object Programming ..3
The Object Management Architecture ..7
How Orbix Implements CORBA ...9
Orbix Components ...10
Orbix Architecture ..10

Developing Applications with Orbix.....................................15
Developing a Distributed Application ...15
Defining IDL Interfaces ...15
Compiling IDL Interfaces ...17
Implementing the IDL Interfaces ..19
Writing an Orbix Server Application ..21
Writing an Orbix Client Application ...25
Compiling the Client and Server ...28
Running the Application ..29
Summary of Programming Steps ..30

Part II Orbix C++ Programming

Introduction to CORBA IDL..33
IDL Modules and Scoping ..33
Defining IDL Interfaces ...34
Overview of the IDL Data Types ...39

The CORBA IDL to C++ Mapping..47
Overview of the Mapping ...47
Mapping for Modules and Scoping ...48
Mapping for Interfaces ..49
Mapping for IDL Data Types ..57
Mapping for Pseudo-Object Types ...75
Memory Management and _var Types ...75
Memory Management for Parameters ..78

Using and Implementing IDL Interfaces..............................87
Overview of an Example Application ...87
Overview of the Programming Steps ...88
Defining IDL Interfaces ...88

iv Orbix Programmer’s Guide C++ Edition

Implementing IDL Interfaces ...89
Developing a Server Program ...99
Developing a Client Program ..102
Registering the Server ..105
Execution Trace for the Example Application ..105
Comparing the TIE and BOAImpl Approaches ...109

Making Objects Available in Orbix..................................... 113
Identifying CORBA Objects ..113
Using the CORBA Naming Service ...116
Transferring Object References ..120
Binding to Orbix Objects ..122

Exception Handling in Orbix.. 125
An Example of Raising and Handling Exceptions ..125

Using Inheritance of IDL Interfaces.................................. 133
The IDL Interfaces ..133
Implementation Class Hierarchies ...134
The Implementation Classes ..135
Using Inheritance in a Client ..138
Multiple Inheritance of IDL Interfaces ..139

Orbix Connections and Events .. 141
Overview of the Direct API to Orbix ...141
Managing Orbix Connections and Events ..143

Advanced Programming Topics... 151
Developing Collocated Clients and Servers ...151
Determining Locality of Objects ..153
Determining Hierarchy of Objects ...154
Casting from Interface to Implementation Class155
Actions when Proxy Code is Unavailable ..156
Multiple Implementations of an Interface ...157
Multiple Interfaces per Implementation ...158
Passing Context Information to IDL Operations ...161
Receiving Diagnostic Messages from Orbix ...163

Part III Dynamic Orbix C++ Programming

The TypeCode Data Type... 167
Overview of the TypeCode Data Type ..167
Implementation of TypeCode in Orbix ...169
Examples of Using TypeCode ...170

The Any Data Type.. 173
Inserting Data into an Any with operator<<=() ..173
Interpreting an any with operator>>=() ..175
Other Ways to Construct and Interpret an Any ...177
Any Constructors, Destructor and Assignment ..182
Any as a Parameter or Return Value ...183

Orbix Programmer’s Guide C++ Edition v

Dynamic Invocation Interface ...185
Using the DII ... 185
The CORBA Approach to Using the DII .. 187
The Orbix-Specific Approach to Using the DII ... 194

Dynamic Skeleton Interface ..201
Uses of the DSI ... 201
Using the DSI .. 202
Example of Using the DSI ... 205

The Interface Repository...209
Configuring the Interface Repository ... 209
Runtime Information about IDL Definitions .. 209
The Structure of Interface Repository Data .. 210
Abstract Interfaces in the Interface Repository ... 213
Containment in the Interface Repository ... 215
Type Interfaces in the Interface Repository ... 222
Retrieving Information about IDL Definitions .. 225
Example of Using the Interface Repository .. 227
Repository IDs ... 228

Part IV Advanced Orbix C++ Programming

Filtering Operation Calls ..233
Introduction to Per-process Filters .. 234
Introduction to Per-Object Filters ... 237
Using Per-Process Filters ... 238
Using Per-Object Filters .. 244

Using Smart Proxy Classes ..247
A Simple Smart Proxy Example .. 250

Callbacks from Servers to Clients255
Implementing Callbacks in Orbix .. 255
Defining the IDL Interfaces ... 255
Implementing the IDL Interfaces .. 256
Writing the Client ... 259
Writing the Server .. 261
Preventing Deadlock in a Callback Model ... 262
Callbacks and Bidirectional Connections .. 265

Loading Objects at Runtime...267
Overview of Creating a Loader ... 267
Loaders and Object Naming ... 270
Loading Objects ... 271
Saving Objects .. 272
Writing a Loader .. 273
Example Loader ... 273

Using Opaque Types in IDL..283
Using Opaque Types ... 284

vi Orbix Programmer’s Guide C++ Edition

Transforming Requests... 291
Transforming Request Data ...291
An Example Transformer ...294

Using Threads with Orbix.. 297
Benefits of Multi-threaded Clients and Servers ..297
Thread Programming in Orbix ..300
Concurrency Control ...303
Models of Thread Support ..304
Changing Internal Orbix Thread Creation ...305

Service Contexts in Orbix.. 307
The Orbix Service Context API ...308
Using Service Contexts in Orbix Applications ..309
Service Context Handlers and Filter points ...315

Part V Appendix

Orbix IDL Compiler Options .. 319

Index.. 323

 Orbix Programmer’s Guide C++ Edition vii

Preface
Orbix is a standards-based programming environment for building
and integrating distributed applications. Orbix is a full
implementation of the Object Management Group’s (OMG)
Common Object Request Broker Architecture (CORBA).

Audience
This guide is intended for use by application programmers who
wish to familiarize themselves with distributed programming with
Orbix. This guide addresses all levels of Orbix programming, from
getting started to advanced topics. Users should be familiar with
the C++ programming language.

Organization of this Guide
The Orbix Programmer’s Guide C++ Edition is divided into
four parts as follows:

Part I, Getting Started
This part describes a simple example that enables you to get
started with Orbix programming. Read this part first to get a sense
of how the Orbix programming environment works.

Part II, Orbix C++ Programming
This part describes the core topics of Orbix programming that all
programmers need to know. Read this part to learn the main
programming techniques that most Orbix applications require.

Part III, Dynamic Orbix C++ Programming
This part describes a special subset of Orbix programming
components that allow you to write dynamic applications. The
concept of dynamic Orbix programming is described in this
section. Each chapter is dedicated to a single dynamic Orbix
component.

Part IV, Advanced Orbix C++ Programming
Orbix extends the CORBA specification by adding features that
allow you to write more flexible distributed applications. Each
chapter in this part describes an advanced Orbix feature. Browse
this part to discover the advanced features available in Orbix and
select the features that may be useful in your applications.

Part V, Appendix
This contains an appendix listing the command-line options to the
Orbix IDL compiler.

 viii Orbix Programmer’s Guide C++ Edition

Document Conventions
This guide uses the following typographical conventions:

This guide may use the following keying conventions:

Constant width Constant width in normal text represents portions
of code and literal names of items such as
classes, functions, variables, and data structures.
For example, text might refer to the
CORBA::Object class.
Constant width paragraphs represent code
examples or information a system displays on the
screen. For example:

#include <stdio.h>

Italic Italic words in normal text represent emphasis
and new terms.
Italic words or characters in code and commands
represent variable values you must supply, such
as arguments to commands or path names for
your particular system. For example:

% cd /users/your_name
Note: some command examples may use angle
brackets to represent variable values you must
supply. This is an older convention that is
replaced with italic words or characters.

No prompt When a command’s format is the same for
multiple platforms, no prompt is used.

% A percent sign represents the UNIX command
shell prompt for a command that does not
require root privileges.

A number sign represents the UNIX command
shell prompt for a command that requires root
privileges.

> The notation > represents the DOS, Windows
NT, or Windows 95 command prompt.

...

.

.

.

Horizontal or vertical ellipses in format and
syntax descriptions indicate that material has
been eliminated to simplify a discussion.

[] Brackets enclose optional items in format and
syntax descriptions.

{ } Braces enclose a list from which you must
choose an item in format and syntax
descriptions.

| A vertical bar separates items in a list of
choices enclosed in { } (braces) in format and
syntax descriptions.

Orbix Programmer’s Guide C++ Edition ix

Contacting Micro Focus
Our Web site gives up-to-date details of contact numbers and
addresses.

Further Information and Product
Support
Additional technical information or advice is available from several
sources.
The product support pages contain a considerable amount of
additional information, such as:
• The WebSync service, where you can download fixes and

documentation updates.
• The Knowledge Base, a large collection of product tips and

workarounds.
• Examples and Utilities, including demos and additional

product documentation.
To connect, enter http://www.microfocus.com in your browser to
go to the Micro Focus home page.
Note:
Some information may be available only to customers who have
maintenance agreements.
If you obtained this product directly from Micro Focus, contact us
as described on the Micro Focus Web site,
http://www.microfocus.com. If you obtained the product from
another source, such as an authorized distributor, contact them
for help first. If they are unable to help, contact us.

Information We Need
However you contact us, please try to include the information
below, if you have it. The more information you can give, the
better Micro Focus SupportLine can help you. But if you don't
know all the answers, or you think some are irrelevant to your
problem, please give whatever information you have.
• The name and version number of all products that you think

might be causing a problem.
• Your computer make and model.
• Your operating system version number and details of any

networking software you are using.
• The amount of memory in your computer.
• The relevant page reference or section in the documentation.
• Your serial number. To find out these numbers, look in the

subject line and body of your Electronic Product Delivery
Notice email that you received from Micro Focus.

http://www.microfocus.com
http://www.microfocus.com

 x Orbix Programmer’s Guide C++ Edition

Contact information
Our Web site gives up-to-date details of contact numbers and
addresses.
Additional technical information or advice is available from several
sources.
The product support pages contain considerable additional
information, including the WebSync service, where you can
download fixes and documentation updates. To connect, enter
http://www.microfocus.com in your browser to go to the Micro
Focus home page.
If you are a Micro Focus SupportLine customer, please see your
SupportLine Handbook for contact information. You can download
it from our Web site or order it in printed form from your sales
representative. Support from Micro Focus may be available only to
customers who have maintenance agreements.
You may want to check these URLs in particular:
• http://www.microfocus.com/products/corba/orbix/orbix-6.aspx (

trial software download and Micro Focus Community files)
• https://supportline.microfocus.com/productdoc.aspx.

(documentation updates and PDFs)
To subscribe to Micro Focus electronic newsletters, use the online
form at:

http://www.microfocus.com/Resources/Newsletters/infocus/n
ewsletter-subscription.asp

http://www.microfocus.com
http://www.microfocus.com/products/corba/orbix/orbix-6.aspx
https://supportline.microfocus.com/productdoc.aspx
http://www.microfocus.com/Resources/Newsletters/infocus/newsletter-subscription.asp

Part I
Getting Started

In this part
This part contains the following:

Introduction to CORBA and Orbix page 3

Developing Applications with Orbix page 15

 Orbix Programmer’s Guide C++ Edition 3

Introduction to CORBA
and Orbix
Orbix is a software environment that allows you to build and
integrate distributed applications. Orbix is a full implementation of
the Object Management Group’s (OMG) Common Object Request
Broker Architecture (CORBA) specification. This chapter introduces
CORBA and describes how Orbix implements this specification.

CORBA and Distributed Object Programming
The diversity of modern networks makes the task of network
programming very difficult. Distributed applications often consist
of several communicating programs written in different
programming languages and running on different operating
systems. Network programmers must consider all of these factors
when developing applications.
The Common Object Request Broker Architecture (CORBA) defines
a framework for developing object-oriented, distributed
applications. This architecture makes network programming much
easier by allowing you to create distributed applications that
interact as though they were implemented in a single
programming language on one computer.
CORBA also brings the advantages of object-oriented techniques
to a distributed environment. It allows you to design a distributed
application as a set of cooperating objects and to re-use existing
objects in new applications.

The Role of an Object Request Broker
CORBA defines a standard architecture for Object Request Brokers
(ORBs). An ORB is a software component that mediates the
transfer of messages from a program to an object located on a
remote network host. The role of the ORB is to hide the underlying
complexity of network communications from the programmer.
An ORB allows you to create standard software objects whose
member functions can be invoked by client programs located
anywhere in your network. A program that contains instances of
CORBA objects is often known as a server.
When a client invokes a member function on a CORBA object, the
ORB intercepts the function call. As shown in Figure 1, the ORB
redirects the function call across the network to the target object.
The ORB then collects results from the function call and returns
these to the client.

 4 Orbix Programmer’s Guide C++ Edition

Figure 1: The Object Request Broker

The Nature of Objects in CORBA
CORBA objects are just standard software objects implemented in
any supported programming language. CORBA supports several
languages, including C++, Java, and Smalltalk.
With a few calls to an ORB’s application programming interface
(API), you can make CORBA objects available to client programs
in your network. Clients can be written in any supported
programming language and can call the member functions of a
CORBA object using the normal programming language syntax.
Although CORBA objects are implemented using standard
programming languages, each CORBA object has a clearly-defined
interface, specified in the CORBA Interface Definition Language
(IDL). The interface definition specifies which member functions
are available to a client, without making any assumptions about
the implementation of the object.
To call member functions on a CORBA object, a client needs only
the object’s IDL definition. The client does not need to know
details such as the programming language used to implement the
object, the location of the object in the network, or the operating
system on which the object runs.
The separation between an object’s interface and its
implementation has several advantages. For example, it allows
you to change the programming language in which an object is
implemented without changing clients that access the object. It
also allows you to make existing objects available across a
network.

Object

Object Request Broker

Client

Client Host Server Host

Function
Call

Orbix Programmer’s Guide C++ Edition 5

The Structure of a CORBA Application
The first step in developing a CORBA application is use CORBA IDL
to define the interfaces to objects in your system. You then
compile these interfaces using an IDL compiler.
An IDL compiler generates C++ from IDL definitions. This C++
includes client stub code, which allows you to develop client
programs, and object skeleton code, which allows you to
implement CORBA objects.
As shown in Figure 2, when a client calls a member function on a
CORBA object, the call is transferred through the client stub code
to the ORB. If the client has not accessed the object before, the
ORB refers to a database, known as the Implementation
Repository, to determine exactly which object should receive the
function call. The ORB then passes the function call through the
object skeleton code to the target object.

Figure 2: Invoking on a CORBA Object

The Structure of a Dynamic CORBA Application
One difficulty with normal CORBA programming is that you have
to compile the IDL associated with your objects and use the
generated C++ code in your applications. This means that your
client programs can only call member functions on objects whose
interfaces are known at compile-time. If a client wishes to obtain
information about an object’s IDL interface at runtime, it needs an
alternative, dynamic approach to CORBA programming.
The CORBA Interface Repository is a database that stores
information about the IDL interfaces implemented by objects in
your network. A client program can query this database at runtime
to get information about those interfaces. The client can then call
member functions on objects using a component of the ORB called
the Dynamic Invocation Interface (DII), as shown in Figure 3 on
page 6.

Object

Function
Call

Object Request Broker

Client Host Server Host

Client

Client
Stub
Code

Object
Skeleton

Code

 6 Orbix Programmer’s Guide C++ Edition

Figure 3: Client Invoking a Function Using the DII

CORBA also supports dynamic server programming. A CORBA
program can receive function calls through IDL interfaces for
which no CORBA object exists. Using an ORB component called
the Dynamic Skeleton Interface (DSI), the server can then
examine the structure of these function calls and implement them
at runtime. Figure 4 on page 7 shows a dynamic client program
communicating with a dynamic server implementation.

Interoperability between Object Request Brokers
The components of an ORB make the distribution of programs
transparent to network programmers. To achieve this, the ORB
components must communicate with each other across the
network.
In many networks, several ORB implementations coexist and
programs developed with one ORB implementation must
communicate with those developed with another. To ensure that
this happens, CORBA specifies that ORB components must
communicate using a standard network protocol, called the
Internet Inter-ORB Protocol (IIOP).

Object

Function
Call

Object Request Broker

Client Host Server Host

Client

D11
Object

Skeleton
Code

Orbix Programmer’s Guide C++ Edition 7

Figure 4: Function Call Using the DII and DSI

The Object Management Architecture
An ORB is one component of the OMG’s Object Management
Architecture (OMA). This architecture defines a framework for
communications between distributed objects.
As shown in Figure 5 on page 8, the OMA includes four elements:
• Application objects.
• The ORB.
• The CORBAservices.
• The CORBAfacilities.
Application objects are objects that implement
programmer-defined IDL interfaces. These objects communicate
with each other, and with the CORBAservices and CORBAfacilities,
through the ORB. The CORBAservices and CORBAfacilities are sets
of objects that implement IDL interfaces defined by CORBA and
provide useful services for some distributed applications.
When writing Orbix applications, you may require one or more
CORBAservices or CORBAfacilities. This section provides a brief
overview of these components of the OMA.

Object

Function
Call

Object Request Broker

Client Host Server Host

Client

D11 DS1

 8 Orbix Programmer’s Guide C++ Edition

Figure 5: The Object Management Architecture

The CORBAservices
The CORBAservices define a set of low-level services that allow
application objects to communicate in a standard way. These
services include the following:
• The Naming Service. Before using a CORBA object, a client

program must get an identifier for the object, known as an
object reference. This service allows a client to locate object
references based on abstract, programmer-defined object
names.

• The Trader Service. This service allows a client to locate
object references based on the desired properties of an
object.

• The Security Service. This service allows CORBA programs to
interact using secure communications.

Orbix 3 implements several CORBAservices including all the
services listed above.

The CORBAfacilities
The CORBAfacilities define a set of high-level services that
applications frequently require when manipulating distributed
objects. The CORBAfacilities are divided into two categories:
• The horizontal CORBAfacilities.
• The vertical CORBAfacilities.
The horizontal CORBAfacilities consist of user interface,
information management, systems management, and task
management facilities. The vertical CORBAfacilities standardize
IDL specifications for market sectors such as healthcare and
telecommunications.

Application Objects

CORBAservices CORBAfacilities

Object Request Broker

Orbix Programmer’s Guide C++ Edition 9

How Orbix Implements CORBA
Orbix is an ORB that fully implements the CORBA 2 specification.
By default, all Orbix components and applications communicate
using the CORBA standard IIOP protocol.
The components of Orbix are as follows:
• The IDL compiler parses IDL definitions and produces C++

code that allows you to develop client and server programs.
• The Orbix library is linked against every Orbix program and

implements several components of the ORB, including the DII,
the DSI, and the core ORB functionality.

• The Orbix daemon is a process that runs on each server host
and implements several ORB components, including the
Implementation Repository.

• The Orbix Interface Repository server is a process that
implements the Interface Repository.

Orbix also includes several programming features that extend the
capabilities of the ORB.
In addition, Orbix is an enterprise ORB that combines the
functionality of the core CORBA standard with an integrated suite
of services including OrbixNames and OrbixSSL. This chapter
introduces the architecture of Orbix and briefly describes each of
these services.

Note: Only an overview of these components is given here. For more
detailed descriptions of functionality, refer to the individual
programming guides and reference guides that accompany each
component.

 10 Orbix Programmer’s Guide C++ Edition

Orbix Components
Table 1 gives a brief synopsis of the Orbix suite.

Orbix Architecture
The overall architecture of Orbix and its components is shown in
Figure 6. On the lower part of Figure 6, a number of CORBA
servers and clients are shown attached to an intranet and, on the
top left, a sample client is shown attached to the system via the
Internet. It is necessary to pencil in a number of server hosts in
this basic illustration because Orbix is an intrinsically distributed
system. In contrast to the star-shaped architecture of many
traditional systems, with clients attached to a central monolithic
server, the architecture of Orbix is based on a collection of
components cooperating across a number of hosts.
Some standard services, such as the CORBA Naming Service
(OrbixNames) are implemented as clearly identifiable processes
with an associated executable. There can be many instances of
these processes running on one or more machines.
Other services rely on cooperation between components. They
are, either wholly or partly, based on libraries linked with each
component. Services such as this are intrinsically distributed.
Since Orbix has an open, standards-based architecture it can
readily be extended to integrate with other CORBA-based
products. In particular, as Figure 6 shows, integration with a
mainframe is possible when Orbix is combined with an ORB
running on z/OS/.
For more information on Orbix, see the Orbix Programmer’s
Guide C++ Edition, Orbix Programmer’s Reference C++
Edition and Orbix Administrator’s Guide C++ Edition.
In the remainder of this section on Orbix architecture, each of the
components of Orbix will be presented with a brief description of
the main features.

Table 1: The Orbix Suite

Orbix The multithreaded Orbix Object Request Broker (ORB) is
at the heart of Orbix. This is a Micro Focus
implementation of the OMG (Object Management Group)
CORBA specification.

OrbixSSL OrbixSSL integrates Orbix with Secure Socket Layer
(SSL) security. Using OrbixSSL, distributed applications
can securely transfer confidential data across a network.
OrbixSSL offers CORBA level zero security.

OrbixNames OrbixNames maintains a repository of mappings that
associate objects with recognisable names. This is Micro
Focus’s implementation of the OMG CORBAservices
Naming Service.

Orbix Programmer’s Guide C++ Edition 11

Figure 6: The Orbix Architecture

OrbixNames—The Naming Service
OrbixNames is Micro Focus’s implementation of the CORBA
Naming Service. The role of OrbixNames is to allow a name to be
associated with an object and to allow that object to be found
using that name. A server that holds an object can register it with
OrbixNames, giving it a name that can be used by other
components of the system to subsequently find the object.
OrbixNames maintains a repository of mappings (bindings)
between names and object references. OrbixNames provides
operations to do the following:
• Resolve a name.
• Create new bindings.
• Delete existing bindings.
• List the bound names.
Using a Naming Service such as OrbixNames to locate objects
allows developers to hide a server application’s location details
from the client. This facilitates the invisible relocation of a service
to another host. The entire process is hidden from the client.

 12 Orbix Programmer’s Guide C++ Edition

Figure 7: The OrbixNames Architecture

Figure 7 summarizes the functionality of OrbixNames, which is as
follows:
1. A server registers object references in OrbixNames.

OrbixNames then maps these object references to names.
2. Clients resolve names in OrbixNames.
3. Clients remotely invoke on object references in the server.
OrbixNames, which runs as an Orbix server, has a number of
interfaces defined in IDL that allow the components of the system
to use its facilities. Other features of OrbixNames include an
enhanced GUI browser interface. OrbixNames can support clients
that use either IIOP or the Orbix protocol.
For more information on OrbixNames, see the OrbixNames
Programmer’s and Administrator’s Guide.

Security with OrbixSSL
OrbixSSL introduces Level 0 CORBA security, as specified by the
OMG, to the Orbix product suite. Level 0 corresponds to the
provision of authentication and session encryption, which maps
onto the functionality provided by the Secure Socket Layer (SSL)
library.
SSL is a protocol for providing data security for applications that
communicate across networks via TCP/IP. By default, Orbix
applications communicate using the standard CORBA Internet
Inter-ORB Protocol (IIOP). These application-level protocols are
layered above the transport-level protocol TCP/IP.
OrbixSSL provides authentication, privacy, and integrity for
communications across TCP/IP connections as follows:

Authentication Allows an application to verify the identity of
another application with which it
communicates.

Privacy Ensures that data transmitted between
applications can not be understood by a third
party.

Integrity Allows applications to detect whether data was
modified during transmission.

Orbix Programmer’s Guide C++ Edition 13

To initiate a TCP/IP connection, OrbixSSL provides a security
‘handshake’. This handshake results in the client and server
agreeing on an ‘on the wire’ encryption algorithm, and also fulfils
any authentication requirements for the connection. Thereafter,
OrbixSSL’s only role is to encrypt and decrypt the byte stream
between client and server.
The steps involved in establishing an OrbixSSL connection are as
follows:
1. The client initiates a connection by contacting the server.
2. The server sends an X.509 certificate to the client. This

certificate includes the server’s public encryption key.
3. The client authenticates the server’s certificate (for example,

an X.509 certificate, endorsed by an accredited certifying
authority).

4. The client sends the certificate to the server for
authentication.

5. The server generates a session encryption key and sends it to
the client encrypted using the client’s public key: the session
is now established.

Once the connection has been established, certain data is cached
so that in the event of a dropping and resumption of the dialogue,
the handshake is curtailed and connection re-establishment is
accelerated.
For more information on OrbixSSL, see OrbixSSL Programmer’s
and Administrator’s Guide C++ Edition.

 14 Orbix Programmer’s Guide C++ Edition

 Orbix Programmer’s Guide C++ Edition 15

Developing
Applications with Orbix
The chapter describes how to develop a distributed application
using Orbix. An example application illustrates the steps involved
in the development process. These include defining an IDL
interface, implementing this interface in C++, and developing a
C++ client application.
This chapter describes the basic programming steps required to
create Orbix objects, write server programs that expose those
objects, and write client programs that access those objects.
This chapter illustrates the programming steps using an example
named BankSimple. In this example, an Orbix server program
implements two types of objects: a single object implementing the
Bank interface, and multiple objects implementing the Account
interface. A client program uses these clearly-defined object
interfaces to create and find accounts, and to deposit and
withdraw money.
On both Windows and UNIX, the source code for the example
described in this chapter is available in the
demos\common\banksimple directory of your Orbix installation.

Developing a Distributed Application
To develop an Orbix application, you must perform the following
steps:
1. Identify the objects required in your system and define public

interfaces to those objects using CORBA Interface Definition
Language (IDL).

2. Compile the IDL interfaces.
3. Implement the IDL interfaces using C++ classes.
4. Write a server program that creates instances of the

implementation classes.
5. Write a client program that accesses the server object.
6. Compile the client and server.
7. Run the application

Defining IDL Interfaces
Defining IDL interfaces to your objects is the most important step
in developing an Orbix application. These interfaces define how
clients access objects regardless of the location of those objects
on the network.
An interface definition contains attributes and operations.
Attributes allow clients to get and set values on the object.
Operations are functions that clients can call on an object.
For example, the following IDL from the BankSimple example
defines two interfaces for objects representing a bank application.
The interfaces are defined inside an IDL module to prevent clashes
with similarly-named interfaces defined in subsequent examples.

 16 Orbix Programmer’s Guide C++ Edition

The interfaces to the BankSimple example are defined in IDL as
follows:

// IDL
// In file banksimple.idl

1 module BankSimple {

typedef float CashAmount;

2 interface Account;
3 interface Bank {

Account create_account (in string name);
Account find_account (in string name);

};

4 interface Account {
readonly attribute string name;
readonly attribute CashAmount balance;

5 void deposit (in CashAmount amount);
void withdraw (in CashAmount amount);

};
};

This code is explained as follows:
1. An IDL module is equivalent to a C++ namespace, and groups

the definitions into a common namespace. Using a module is
not mandatory, but is good practice.

2. This is a forward declaration to the Account interface. It allows
you to refer to Account in the Bank interface, before actually
defining Account.

3. The Bank interface contains two operations: create_account()
and find_account(), allowing a client to create and search for
an account.

4. The Account interface contains two attributes: name and
balance; both are readonly. This means that clients can get
the balance or name, but cannot directly set them. If the
readonly keyword is omitted, clients can also set these values.

5. The Account interface also contains two operations: deposit()
and withdraw(). The deposit() operation allows a client to
deposit money in the account. The withdraw() operation allows
a client to withdraw money from the account.

The parameters to these operations are labeled with the IDL
keyword in. This means that their values are passed from the
client to the object. Operation parameters can be labeled as in,
out (passed from the object to the client) or inout (passed in both
directions).

Orbix Programmer’s Guide C++ Edition 17

Compiling IDL Interfaces
You must compile IDL definitions using the Orbix IDL compiler.
Before running the IDL compiler, ensure that your configuration is
correct.

Setting Up Configuration for the IDL Compiler
You should ensure that the environment variable IT_CONFIG_PATH is
set to the location of iona.cfg, the root Orbix configuration file.

UNIX
On UNIX, if iona.cfg is in directory /local/microfocus/orbix33,
perform the following steps:
1. Under sh enter:

% IT_CONFIG_PATH=/local/microfocus/orbix33
% export IT_CONFIG_PATH

or under csh enter:
% setenv IT_CONFIG_PATH /local/microfocus/orbix33

2. Set the environment variable LD_LIBRARY_PATH to include the
location of the Orbix lib directory in a similar manner.

Windows
On Windows, if iona.config is in directory C:\Micro Focus\Orbix
3.3\config, enter the following at a command prompt:

set IT CONFIG PATH = C:\Micro Focus\Orbix 3.3\config

Running the IDL Compiler
The IDL compiler checks the validity of the specification and
generates C++ code that allows you to write client and server
programs.

Windows and UNIX
To compile the Bank and Account interfaces defined in file
banksimple.idl, run the IDL compiler as follows:

idl [options] banksimple.idl

The -B compiler option produces BOAImpl classes for the server.
Refer to “Orbix IDL Compiler Options” for a complete list of IDL
compiler options.

Output from the IDL Compiler
The IDL compiler produces three C++ files that communicate with
Orbix:
1. A common header file containing declarations used by both

client and server mode. This header file should be included in
all client and server programs.

2. A source file to be compiled and linked with servers (object
skeleton code).

3. A source file to be compiled and linked with clients (client stub
code).

 18 Orbix Programmer’s Guide C++ Edition

These source files contain C++ definitions that correspond to your
IDL definitions. These C++ definitions allow you to write C++
client and server programs.
By default, these files are named as follows:

The Client Stub Code
The files banksimple.hh and banksimple.client.cxx define the C++
code that a client uses to access a Bank object. This code is termed
the client stub code. For example, the banksimple.hh file for the
BankSimple IDL includes a class to represent Bank and Account
objects from a client’s point of view.
The IDL declarations for the Account interface include the C++
definitions in the following code extract:

// C++
// In file banksimple.hh

// Automatically generated by the IDL compiler.
class Account: public virtual CORBA::Object {
public:

// CORBA support functions and error handling are
// omitted here for clarity
virtual char* name ()

throw (CORBA::SystemException);
virtual CashAmount balance ()

throw (CORBA::SystemException);
virtual void deposit (CashAmount amount)

throw (CORBA::SystemException);
virtual void withdraw (CashAmount amount)

throw (CORBA::SystemException);
};

The environment argument (the last argument passed to each
method) is omitted here.
This class represents the IDL Account interface in C++ allowing
C++ clients to treat Account objects like any other C++ object.
The readonly name and balance attributes map to member functions
of the same name. The deposit() and withdraw() operations map
to C++ member functions with equivalent parameters.

File Windows UNIX
Header file banksimple.hh banksimple.hh

Client stub code banksimpleC.cpp banksimpleC.C

Server skeleton code banksimpleS.cpp banksimpleS.C

Orbix Programmer’s Guide C++ Edition 19

The Object Skeleton Code
The files banksimple.hh and banksimple.server.cxx define the C++
code that allows a server program to implement IDL interfaces
and accept operation calls from clients to objects. This code is
known as the object skeleton code. These server-side skeletons
receive CORBA calls and pass them onto application code. When
implementing a server using the BOAImpl approach, you inherit
from a BOAImpl class generated by the IDL compiler.
For the Account interface the BOAImpl class includes the following
C++ definitions:

// C++
// In file banksimple.hh

// Automatically generated by IDL compiler.
class AccountBOAImpl: public virtual Account {
public:

virtual char* name ()
throw (CORBA::SystemException) = 0;

virtual CashAmount balance ()
throw (CORBA::SystemException) = 0;

virtual void deposit (CashAmount amount)
throw (CORBA::SystemException) = 0;

virtual void withdraw(CashAmount amount)
throw (CORBA::SystemException) = 0;

};

To implement the Account interface, you must inherit from this
class and override the pure virtual functions that represent IDL
operations with application code.

Implementing the IDL Interfaces
This example uses the CORBA BOAImpl approach to implementing
an IDL interface. It uses two classes to implement the Bank and
Account IDL interfaces in C++: BankSimple_BankImpl and
BankSimple_AccountImpl. These classes inherit the IDL
compiler-generated BankSimple::BankBOAImpl and
BankSimple::AccountBOAImpl classes. These base classes provide all
the Orbix functionality. All that remains is to override the abstract
member functions that represent the IDL operations.
For example, the code for BankSimple_BankImpl is as follows:
// C++
// In file BankSimple\banksimple_bankimpl.h
// Implementation class for the Bank IDL interface.
...

1 class BankSimple_BankImpl : public virtual
 BankSimple::BankBOAImpl
{

public:
// Mapped IDL operations.

2 virtual BankSimple::Account_ptr
create_account(const char* name,

CORBA::Environment&);
virtual BankSimple::Account_ptr

find_account(const char* name,
CORBA::Environment&);

 20 Orbix Programmer’s Guide C++ Edition

// C++ constructor and destructor.
3 BankSimple_BankImpl();

virtual ~BankSimple_BankImpl();

protected:
static const int MAX_ACCOUNTS;

4 BankSimple::Account_var* m_accounts;
};

This code is explained as follows:
1. Inheriting from the BOAImpl class generated by the IDL

compiler provides Orbix functionality for the server objects.
2. Operations defined in IDL are implemented by corresponding

operations in C++. The IDL Account type is represented by an
Account_ptr.

3. The constructor and destructor are normal C++ functions that
can be called by server code. Only IDL functions can be called
remotely by clients.

4. The accounts created by the bank are stored in an array of
Account_var. These are like pointers; for more information on
Account_var, refer to “CORBA Object References”.

You can implement the member functions of BankSimple_BankImpl
as follows:
// C++
// In file banksimple_bankimpl.cxx

#include “banksimple_bankimpl.h”
#include “banksimple_accountimpl.h”

1 const int BankSimple_BankImpl::MAX_ACCOUNTS = 1000;
BankSimple_BankImpl::BankSimple_BankImpl() :
m_accounts(new BankSimple::Account_var[MAX_ACCOUNTS]) {
// Make sure all accounts are nil.

for (int i = 0; i < MAX_ACCOUNTS; ++i){
m_accounts[i] = BankSimple::Account::_nil();

}
}

BankSimple_BankImpl::~BankSimple_BankImpl() {
delete [] m_accounts;

}

// Add a new account.
BankSimple::Account_ptr BankSimple_BankImpl::create_account
(const char* name, CORBA::Environment&) {

int i = 0;
for (; i < MAX_ACCOUNTS && !CORBA::is_nil(m_accounts[i]);

 ++i)
{}
if (i < MAX_ACCOUNTS){

2 m_accounts[i] = new BankSimple_AccountImpl(name, 0.0);
cout << “create_account: Created account with name: ”

 << name << endl;
3 return BankSimple::Account::_duplicate(m_accounts[i]);

}
else{

cout << “create_account: failed, no space left!” << endl;

Orbix Programmer’s Guide C++ Edition 21

4 return BankSimple::Account::_nil();
}

}

// Find a named account.
BankSimple::Account_ptr BankSimple_BankImpl::find_account
(const char* name, CORBA::Environment&) {

int i = 0;
for (; i < MAX_ACCOUNTS &&(CORBA::is_nil(m_accounts[i]) ||

strcmp(name, m_accounts[i]->name()) != 0); ++i)
{ }

if (i < MAX_ACCOUNTS){
cout << “find_account: found account named” << name <<

endl;
return BankSimple::Account::_duplicate(m_accounts[i]);

}
else{

cout << “find_account: no account named” << name << endl;
return BankSimple::Account::_nil();

}
}

The code is explained as follows:
1. The maximum number of accounts that the bank can handle

in this simple implementation is set as a constant of 1000.
2. New accounts are created with a balance of zero.
3. When an Account reference is returned from create_account()

and find_account() operations, it must be duplicated.
According to CORBA memory management rules, this
reference is released by the caller.

4. If an account cannot be created, nil is returned.
Refer to the banksimple\demos directory of your Orbix installation
for the corresponding code for BankSimple_AccountImpl.

Writing an Orbix Server Application
To write a C++ program that acts as an Orbix server, perform the
following steps:
1. Initialize the server connection to the Orbix ORB, and to the

Basic Object Adapter (BOA).
2. Create an implementation object. This is done by creating

instances of the implementation classes.
3. Allow Orbix to receive and process incoming requests from

clients.
This section describes each of these programming steps in turn.

 22 Orbix Programmer’s Guide C++ Edition

Initializing the ORB
Because Orbix uses the standard OMG IDL to C++ mapping, all
servers and clients must call CORBA::ORB_init() to initialize the
ORB. This returns a reference to the ORB object. The ORB
methods defined by the standard can then be invoked on this
instance.

// C++
// In file server.cxx
...
try {

...
// Initialize the ORB.
CORBA::ORB_var orb = CORBA::ORB_init(argc,argv,“Orbix”);
...

}
catch (const CORBA::SystemException& e) {

cout << “Unexpected exception” << e << endl;
}

In this code sample, the argc parameter refers to the number of
arguments in argv. The argv parameter is a sequence of
configuration strings used if “Orbix” is a null string; the string
“Orbix” identifies the ORB. Refer to the Orbix Reference Guide for
more information on CORBA::ORB_init().
Orbix raises a C++ exception to indicate that a function call has
failed. All CORBA exceptions derive from CORBA::Exception. Many
Orbix functions (for example, ORB_init()) and all IDL operations
may raise a CORBA system exception, of type
CORBA::SystemException.
You must use C++ try/catch statements to handle exceptions, as
illustrated in the preceding code sample. In the remainder of this
chapter, try/catch statements are omitted for clarity.

Creating an Implementation Object
To create an implementation object, you must create an instance
of your implementation class in your server program. Typically a
server program creates a small number of objects in its main()
function, and these objects may in turn create further objects. In
the BankSimple example, the server creates a single bank object in
its main() function. This bank object then creates accounts when
create_account() is called by the client.
For example, to create an instance of BankSimple::Bank in your
server main() function, do the following:

// C++
// In file server.cxx

#include “banksimple_bankimpl.h”
int main (...) {
...
// Create a bank implementation object.
BankSimple::Bank_var my_bank = new BankSimple_BankImpl;

...
}

Orbix Programmer’s Guide C++ Edition 23

A server program can create any number of implementation
objects for any number of IDL interfaces.
Note that implementation object has a name that uniquely
identifies it to the server. This name is called the “marker”
(discussed more in “Making Objects Available in Orbix”). The
above code does not explicitly set the marker for the Bank
implementation object, hence the ORB picks an unused random
name. In general, you always need to explicitly set the marker
from your implementation objects (see “Making Objects Available
in Orbix”).

Receiving Client Requests
When a server instantiates an Orbix object (for example, one
inheriting from the BOAImpl class), it is automatically registered
with Orbix as a distributed object. To make objects available to
clients, the server must call the Orbix function
CORBA::BOA::impl_is_ready() to complete its initialization and to
process operation calls from clients.
You can code a complete server main() function as follows:
// C++
// In file server.cxx

#include “banksimple_bankImpl.h”
#include “banksimple_accountImpl.h”
#include <it_demo_nsw.h>

// Server mainline.
int main (int argc, char* argv[]) {

try {
// Use standard demo server options.

1 IT_Demo_ServerOptions
 serveropt(“IT_Demo/BankSimple/Bank”);
...

2 CORBA::ORB_var orb = CORBA::ORB_init(argc, argv,
 “Orbix”);

CORBA::BOA_var boa = orb->BOA_init(argc, argv,
“Orbix_BOA”);

// Set diagnostics.
orb->setDiagnostics(serveropt.diagnostics());

// Set server name.
3 orb->setServerName(serveropt.server_name());

4 // Indicate server should not quit while clients
// are connected.
boa->setNoHangup(1);
// Set up Naming Service Wrappers (NSW).

5 IT_Demo_NSW ns_wrapper;
6 ns_wrapper.setNamePrefix(serveropt.context());
7 const char* bank_name = “BankSimple.Bank”;

...
// Create a bank implementation object.

8 BankSimple::Bank_var my_bank = new BankSimple_BankImpl;

9 // Register server object with the Naming Service.

 24 Orbix Programmer’s Guide C++ Edition

if (serveropt.bindns()) {
cout << “Binding objects in the Naming Service”
 << endl;
ns_wrapper.registerObject(bank_name, my_bank);

}

// Server has completed initialization, wait for
// incoming requests.

10 boa->impl_is_ready((char*)serveropt.server_name(),
 serveropt.timeout());

// impl_is_ready() returns only when Orbix times-out
// an idle server.
cout << “server exiting” << endl;

}
catch (const CORBA::Exception& e) {

cerr << “Unexpected exception” << e << endl;
return 1;

}
return 0;

};

This code is explained as follows:
1. Create the standard server options for use throughout the

demonstration and set the server name to
IT_Demo/BankSimple/Bank. The Orbix demos\demolib directory
contains the standard server and client options used by the
Bank series examples in this book.

2. Initialize the ORB and BOA. The ORB object provides
functionality common to both clients and servers. The BOA
(Basic Object Adapter) object is derived from the ORB and
provides additional server-side functionality.
The ORB and the BOA are different views of the same ORB
API—this object is also available via the global variable
CORBA::Orbix. However, use of this variable is not
CORBA-defined and is discouraged.

3. Set the server name using
setServerName(serveropt.server_name()). This is required by
Orbix before exporting object references.

4. Create a Naming Service Wrapper (NSW) object. To simplify
the use of the Naming Service, a Naming Service Wrapper is
provided. This hides the low-level detail of the CORBA Naming
Service. Refer to “Using the Naming Service in Orbix Example
Applications” for details of the Naming Service wrapper
functions.

5. Define a name prefix that is used for subsequent operations.
6. BankSimple.Bank is the name that the bank object is known by

in the Naming Service.
7. The created BankSimple instance is my_bank. This object

implements an instance of the IDL interface Bank. This is called
directly from client applications using the CORBA standard
Internet Inter-ORB Protocol (IIOP).

8. The server now registers its objects in the Naming Service
using the Naming Service wrapper function registerObject().

9. The CORBA::BOA::impl_is_ready() operation is called to
complete server initialization. This takes a server name and a
timeout value as parameters. You can specify any name for

Orbix Programmer’s Guide C++ Edition 25

your server; however, the name should match the name used
to register the server in the Implementation Repository, and
the argument used to call setServerName().
The timeout value indicates the period of time, in
milliseconds, that the impl_is_ready() call should block for
while waiting for an operation call to arrive from a client. If no
call arrives in this period, impl_is_ready() returns. If a call
arrives, Orbix calls the appropriate member function on the
implementation object and the timeout counter starts again
from zero.

Writing an Orbix Client Application
To write a C++ client program to an Orbix object, you must
perform the following steps:
1. Initialize the client connection to the ORB.
2. Get a reference to an object.
3. Invoke attributes and operations defined in the object’s IDL

interface.
This section describes each of these steps in turn.

Initializing the ORB
All clients and servers must call CORBA::ORB_init() to initialize the
ORB. This returns a reference to the ORB object. The ORB
methods defined by the standard can then be invoked on this
instance.

CORBA Object References
A CORBA object reference identifies an object in your system.
When an object reference enters a client address space, Orbix
creates a proxy object that acts as a local representative for the
remote implementation object. Orbix forwards operation
invocations on the proxy object to corresponding functions in the
implementation object.
Consider an object reference as a pointer that can point to an
object in a remote server process. Object references to an object
of interface X are represented by a type X_ptr, which behaves like
a normal C++ pointer.
An object reference requires some memory in the client (the
memory needed by the proxy object), so you must release each
reference when finished by calling CORBA::release(). The
CORBA::release() method releases the client memory used by the
object reference—it does not affect the remote server object.
For interface X, the IDL compiler also generates a smart pointer
class called X_var that automates memory management. X_var
behaves just like X_ptr, except it releases the reference when it
goes out of scope, or if a new reference is assigned.

 26 Orbix Programmer’s Guide C++ Edition

Getting a Reference to an Object
The flexible CORBA-defined way to obtain object references is to
use the standard CORBA Naming Service. The CORBA Naming
Service allows a name to be bound to an object and allows that
object to be found subsequently by resolving that name within the
Naming Service.
A server that holds an object reference can register it with the
Naming Service, giving it a name that can be used by other
components of the system to find the object. The Naming Service
maintains a database of bindings between names and object
references. A binding is an association between a name and an
object reference. Clients can call the Naming Service to resolve a
name, and this returns the object reference bound to that name.
The Naming Service provides operations to resolve a name, to
create new bindings, to delete existing bindings, and to list the
bound names.
A name is always resolved within a given naming context. The
naming context objects in the system are organized into a graph,
which may form a naming hierarchy, much like that of a file
system. The following sample code shows how the client uses the
Naming Service wrapper functions to obtain an object reference:

// C++
// In file client.cxx
...
// Naming Service Setup.
// Create a Naming Service Wrapper object.

IT_Demo_NSW ns_wrapper;
1 ns_wrapper.setNamePrefix(clientopt.context());

// Get CORBA object.
// Specify the object name in the Naming Service.

2 const char* object_name = "BankSimple.Bank";

// Get a reference to the required object from the NSW.
3 CORBA::Object_var obj = ns_wrapper.resolveName(object_name);

// Narrow the object reference.
4 BankSimple::Bank_var bank = BankSimple::Bank::_narrow(obj);

if (CORBA::is_nil(bnk)) {
cerr << "Object \"" << object_name

<< "\"in the Naming Service" << endl
<< "\tis not of the expected type."<< endl;

return 1;
}

// Start client menu loop
5 BankMenu main_menu(bank);

main_menu.start);
}
...

}

This code is described as follows:
1. Define a name prefix used by the Naming Service wrapper

object for subsequent operations.

Orbix Programmer’s Guide C++ Edition 27

2. BankSimple.Bank is the name by which the bank object is
known in the Naming Service.

3. The method nswrapper::resolveName() retrieves the object
reference from the Naming Service placed there by servers.
The object_name parameter is the name of the object to
resolve. This must match the name used by the server when it
calls registerObject().

4. The return type from resolveName() is of type CORBA::Object.
You must call _narrow() to safely cast down from the base
class to the Bank IDL class, before you can make invocations
on remote Bank objects. The client stub code generated for
every IDL class contains the _narrow() function definition for
that class.

5. This creates and runs a main menu for Bank clients. This menu
enables you to find or create accounts by calling the
appropriate C++ member function on the object reference.

Invoking IDL Attributes and Operations
To access an attribute or an operation associated with an object,
call the appropriate C++ member function on the object
reference. The client-side proxy redirects this C++ call across the
network to the appropriate member function of the
implementation object.
The main BankSimple client program calls a simple interactive
menu. This enables you to call IDL operations on a Bank. The
following code extracts show the code called when you choose to
create or find an account:
// C++
// In file bankmenu.cxx

void BankMenu::do_create() throw(CORBA::SystemException) {

cout << “Enter account name: ” << flush;
CORBA::String_var name = IT_Demo_Menu::get_string();

1 BankSimple::Account_var account =
 m_bank->create_account(name);

// Start a sub-menu with the returned account ref.
AccountMenu sub_menu(account);
sub_menu.start();

}

// do_find -- calls find account and runs account menu.

void BankMenu::do_find throw (CORBA::SystemException) {

cout << “Enter account name: “ << flush;
2 CORBA::String_var name = IT_Demo_Menu::get_string();

BankSimple::Account_var account =
m_bank->find_account(name);

AccountMenu sub_menu(account)
sub_menu.start();

}

 28 Orbix Programmer’s Guide C++ Edition

This code is explained as follows:
1. m_bank is a Bank_var—a C++ helper class automatically

generated by the IDL compiler from the Bank interface. This is
used like a normal C++ pointer to call IDL operations just like
C++ operations.

2. The String_var name variable is used for the account name
entered. The caller is not responsible for releasing the
memory—String_var automatically does this when it goes out
of scope.

Use the C++ arrow operator (->) to access the operations defined
in IDL through a BankSimple::Bank_var object. Call those member
functions using normal C++ calls and test for errors using C++
exception handling.

Compiling the Client and Server
To build the client and server, you must compile and link the
relevant C++ files with the Orbix library. On UNIX, this is
liborbix; on Windows, this is ITMi.lib. These files are available in
the Orbix lib directory.

Note: For demonstration-specific functionality, you must also include
libdemo.a on UNIX and demolib.lib on Windows.

Compiling the Client
To build the client application, compile and link the following C++
files, and the Orbix library:

• banksimple.client.cxx

• client.cxx

• bankmenu.cxx

• accountmenu.cxx

client.cxx is the source file for the client main() function.

Orbix Programmer’s Guide C++ Edition 29

Compiling the Server
To build the server application, compile and link the following C++
files, and the Orbix library.

• banksimple.server.cxx

• banksimple_bankimpl.cxx

• banksimple_accountimpl.cxx

• server.cxx

server.cxx is the source file for the server main() function.
The Orbix demos/common/banksimple directory includes a makefile
that compiles and links the bank client and server demonstration
code.
To build the executables, type one of the following in the
demos\common\banksimple directory of your Orbix installation:

Running the Application
To run the application, do the following:
1. Run the Orbix daemon process (orbixd) on the server host.
2. Register the server in the Orbix Implementation Repository.
3. Run the client program.

Running the Orbix Daemon
Before a client can access a server, the server must be registered
with the Orbix daemon. Before running the Orbix daemon, ensure
that the environment variable IT_CONFIG_PATH is set as described in
“Setting Up Configuration for the IDL Compiler” on page 17.

Windows and UNIX
You can run the Orbix daemon on the server host by typing orbixd
at the command line or using the Start menu on Windows.

Registering the Server
The Implementation Repository is the component of Orbix that
stores information about servers available in the system. Before
running your application, you must register your server in the
Implementation Repository.

Windows and UNIX and OpenVMS
To register the server(s), use either the Server Manager GUI tool
or run the Orbix putit command on the server host as follows:

putit server_name server_executable

On all platforms, server_name is the name of your server passed to
impl_is_ready().

Windows >nmake

UNIX %make

 30 Orbix Programmer’s Guide C++ Edition

If a server binds names in the Naming Service, you may need to
run it once to allow it to set up the name bindings. Details of how
to do this depend on the server used. The demonstrations provide
a makefile that do the necessary server registration and set up
names in the Naming Service.
To register the server, type one of the following:

Running the Client
When a client binds to an object in a server registered in the
Implementation Repository, the Orbix daemon automatically
launches the server executable file. Consequently, you can run the
client without running the server in advance.
Before running the client, ensure that the environment variable
IT_CONFIG_PATH is set as described in “Setting Up Configuration for
the IDL Compiler” on page 17.

Windows and UNIX
Run the example client by entering client at the command-line
prompt. The client displays a text menu allowing you to choose
the actions you want to take, and then prompts you for the
necessary information. The server outputs messages when it
processes incoming calls. You can see these messages by looking
at the application shell window launched by the Orbix daemon.

Summary of Programming Steps
To develop a distributed application with Orbix, do the following:
1. Identify the objects required in your system and define the

public interfaces to those objects using the CORBA Interface
Definition Language (IDL).

2. Compile the IDL interfaces.
3. Implement the IDL interfaces with C++ classes.
4. Write a server program that creates instances of the

implementation classes. This involves:
i. Initializing the ORB.
ii. Creating initial implementation objects.
iii. Allowing Orbix to receive and process incoming requests

from clients.
5. Write a client program that accesses the server objects. This

involves:
i. Initializing the ORB.
ii. Getting a reference to an object.
iii. Invoking object attributes and operations.

6. Compile the client and server.
7. Run the application. This involves:

i. Running the Orbix daemon process.
ii. Registering the server in the Implementation Repository.
iii. Running the client.

Windows > nmake register
UNIX % make register

Part II
Orbix C++

Programming

In this part
This part contains the following:

Introduction to CORBA IDL page 33

The CORBA IDL to C++ Mapping page 47

Using and Implementing IDL Interfaces page 87

Making Objects Available in Orbix page 113

Exception Handling in Orbix page 125

Using Inheritance of IDL Interfaces page 133

Orbix Connections and Events page 141

Advanced Programming Topics page 151

 Orbix Programmer’s Guide C++ Edition 33

Introduction to CORBA
IDL
The CORBA Interface Definition Language (IDL) is used to define
interfaces to objects in your network. This chapter introduces the
features of CORBA IDL and illustrates the syntax used to describe
interfaces.
The first step in developing a CORBA application is to define the
interfaces to the objects required in your distributed system. To
define these interfaces, you use CORBA IDL.
IDL allows you to define interfaces to objects without specifying
the implementation of those interfaces. To implement an IDL
interface, you define a C++ class that can be accessed through
that interface and then you create objects of that class within an
Orbix server application.
In fact, you can implement IDL interfaces using any programming
language for which an IDL mapping is available. An IDL mapping
specifies how an interface defined in IDL corresponds to an
implementation defined in a programming language. CORBA
applications written in different programming languages are fully
interoperable.
CORBA defines standard mappings from IDL to several
programming languages, including C++, Java, and Smalltalk. The
Orbix IDL compiler converts IDL definitions to corresponding C++
definitions, in accordance with the standard IDL to C++ mapping.

IDL Modules and Scoping
An IDL module defines a naming scope for a set of IDL definitions.
Modules allow you to group interface and other IDL type
definitions in logical name spaces. When writing IDL definitions,
always use modules to avoid possible name clashes.
The following example illustrates the use of modules in IDL:

// IDL
module BankSimple {

interface Bank {
...
};

interface Account {
...
};

};

The interfaces Bank and Account are scoped within the module
BankSimple. IDL definitions are available directly within the scope
in which you define them. In other naming scopes, you must use
the scoping operator (::) to access these definitions. For example,
the fully scoped name of interfaces Bank and Account are
BankSimple::Bank and BankSimple::Account respectively.

 34 Orbix Programmer’s Guide C++ Edition

IDL modules can be reopened. For example, a module declaration
can appear several times in a single IDL specification if each
declaration contains different data types. In most IDL
specifications, this feature of modules is not required.

Defining IDL Interfaces
An IDL interface describes the functions that an object supports in
a distributed application. Interface definitions provide all of the
information that clients need to access the object across a
network.
Consider the example of an interface that describes objects which
implement bank accounts in a distributed application. The IDL
interface definition is as follows:

//IDL
module BankSimple {

// Define a named type to represent money.
typedef float CashAmount;

// Forward declaration of interface Account.
interface Account;

interface Bank {
...

};

interface Account {
// The account owner and balance.
readonly attribute string name;
readonly attribute CashAmount balance;

// Operations available on the account.
void deposit (in CashAmount amount);
void withdraw (in CashAmount amount);

};
};

The definition of interface Account includes both attributes and
operations. These are the main elements of any IDL interface
definition.

Attributes in IDL Interface Definitions
Conceptually, attributes correspond to variables that an object
implements. Attributes indicate that these variables are available
in an object and that clients can read or write their values.
In general, attributes map to a pair of functions in the
programming language used to implement the object. These
functions allow client applications to read or write the attribute
values. However, if an attribute is preceded by the keyword
readonly, then clients can only read the attribute value.
For example, the Account interface defines the attributes name and
balance. These attributes represent information about the account
which the object implementation can set, but which client
applications can only read.

Orbix Programmer’s Guide C++ Edition 35

Operations in IDL Interface Definitions
IDL operations define the format of functions, methods, or
operations that clients use to access the functionality of an object.
An IDL operation can take parameters and return a value, using
any of the available IDL data types.
For example, the Account interface defines the operations
deposit() and withdraw() as follows:

//IDL
module BankSimple {

typedef float CashAmount;
...

interface Account {
// Operations available on the account
void deposit(in CashAmount amount);
void withdraw(in CashAmount amount);
...

};
};

Each operation takes a parameter and has a void return type.
Each parameter definition must specify the direction in which the
parameter value is passed. The possible parameter passing modes
are as follows:

Parameter passing modes clarify operation definitions and allow
an IDL compiler to map operations accurately to a target
programming language.

Raising Exceptions in IDL Operations
IDL operations can raise exceptions to indicate the occurrence of
an error. CORBA defines two types of exceptions:

• System exceptions are a set of standard exceptions defined by
CORBA.

• User-defined exceptions are exceptions that you define in
your IDL specification.

Implicitly, all IDL operations can raise any of the CORBA system
exceptions. No reference to system exceptions appears in an IDL
specification.
To specify that an operation can raise a user-defined exception,
first define the exception structure and then add an IDL raises
clause to the operation definition.

in The parameter is passed from the caller of the
operation to the object.

out The parameter is passed from the object to the
caller.

inout The parameter is passed in both directions.

 36 Orbix Programmer’s Guide C++ Edition

For example, the operation withdraw() in interface Account could
raise an exception to indicate that the withdrawal has failed, as
follows:

// IDL
module BankExceptions {

typedef float CashAmount;
...

interface Account {
exception InsufficientFunds {

string reason;
};

void withdraw(in CashAmount amount)
raises(InsufficientFunds);

...
};

};

An IDL exception is a data structure that contains member fields.
In the preceding example, the exception InsufficientFunds
includes a single member of type string.
The raises clause follows the definition of operation withdraw() to
indicate that this operation can raise exception InsufficientFunds.
If an operation can raise more then one type of user-defined
exception, include each exception identifier in the raises clause
and separate the identifiers using commas.

Invocation Semantics for IDL Operations
By default, IDL operations calls are synchronous, that is a client
calls an operation and blocks until the object has processed the
operation call and returned a value. The IDL keyword oneway
allows you to modify these invocation semantics.
If you precede an operation definition with the keyword oneway, a
client that calls the operation will not block while the object
processes the call. For example, you could add a oneway
operation to interface Account that sends a notice to an Account
object, as follows:

module BankSimple {
...

interface Account {
oneway void notice(in string text);
...

};
};

Orbix does not guarantee that a oneway operation call will
succeed; so if a oneway operation fails, a client may never know.
There is only one circumstance in which Orbix indicates failure of a
oneway operation. If a oneway operation call fails before Orbix
transmits the call from the client address space, then Orbix raises
a system exception.
A oneway operation can not have any out or inout parameters and
can not return a value. In addition, a oneway operation can not
have an associated raises clause.

Orbix Programmer’s Guide C++ Edition 37

Passing Context Information to IDL Operations
CORBA context objects allow a client to map a set of identifiers to
a set of string values. When defining an IDL operation, you can
specify that the operation should receive the client mapping for
particular identifiers as an implicit part of the operation call. To do
this, add a context clause to the operation definition.
Consider the example of an Account object, where each client
maintains a set of identifiers, such as sys_time and sys_location
that map to information that the operation deposit() logs for each
deposit received. To ensure that this information is passed with
every operation call, extend the definition of deposit() as follows:

// IDL
module BankSimple {

typedef float CashAmount;
...

interface Account {
void deposit(in CashAmount amount)

context(“sys_time”, “sys_location”);
...

};
};

A context clause includes the identifiers for which the operation
expects to receive mappings.
Note that IDL contexts are rarely used in practice.

Inheritance of IDL Interfaces
IDL supports inheritance of interfaces. An IDL interface can inherit
all the elements of one or more other interfaces.
For example, the following IDL definition illustrates two interfaces,
called CheckingAccount and SavingsAccount, that inherit from
interface Account:

// IDL
module BankSimple{

interface Account {
...

};

interface CheckingAccount : Account {
readonly attribute overdraftLimit;
boolean orderChequeBook ();

};

interface SavingsAccount : Account {
float calculateInterest ();

};
};

Interfaces CheckingAccount and SavingsAccount implicitly include all
elements of interface Account.
An object that implements CheckingAccount can accept invocations
on any of the attributes and operations of this interface, and on
any of the elements of interface Account. However, a

 38 Orbix Programmer’s Guide C++ Edition

CheckingAccount object may provide different implementations of
the elements of interface Account to an object that implements
Account only.
The following IDL definition shows how to define an interface that
inherits both CheckingAccount and SavingsAccount:

// IDL
module BankSimple {

interface Account {
...

};

interface CheckingAccount : Account {
...

};

interface SavingsAccount : Account {
...

};

interface PremiumAccount :
CheckingAccount, SavingsAccount {
...

};
};

Interface PremiumAccount is an example of multiple inheritance in
IDL. Figure 8 on page 38 illustrates the inheritance hierarchy for
this interface.
If you define an interface that inherits from two interfaces which
contain a constant, type, or exception definition of the same
name, you must fully scope that name when using that constant,
type, or exception. An interface can not inherit from two interfaces
that include operations or attributes that have the same name.

Figure 8: Multiple Inheritance of IDL Interfaces

The Object Interface Type
IDL includes the pre-defined interface Object, which all
user-defined interfaces inherit implicitly. The operations defined in
this interface are described in the Orbix Programmer’s
Reference C++ Edition.

Account

SavingsAccountCheckingAccount

PremiumAccount

Orbix Programmer’s Guide C++ Edition 39

While interface Object is never defined explicitly in your IDL
specification, the operations of this interface are available through
all your interface types. In addition, you can use Object as an
attribute or operation parameter type to indicate that the attribute
or operation accepts any interface type, for example:

// IDL
interface ObjectLocator
{

void getAnyObject (out Object obj);
};

Note that it is not legal IDL syntax to inherit interface Object
explicitly.

Forward Declaration of IDL Interfaces
In an IDL definition, you must declare an IDL interface before you
reference it. A forward declaration declares the name of an
interface without defining it. This feature of IDL allows you to
define interfaces that mutually reference each other.
For example, IDL interface Bank includes an operation of IDL
interface type Account, to indicate that Bank stores a reference to
an Account object. If the definition of interface Account follows the
definition of interface Bank, you must forward declare Account as
follows:

// IDL
module BankSimple {

// Forward declaration of Account.
interface Account;

interface Bank {
Account create_account (in string name);
Account find_account (in string name);

};
// Full definition of Account.
interface Account {

...
};

};

The syntax for a forward declaration is the keyword interface
followed by the interface identifier.

Overview of the IDL Data Types
In addition to IDL module, interface, and exception types, there
are three general categories of data type in IDL:

• Basic types.
• Complex types.
• Pseudo object types.
This section examines each category of IDL types in turn and also
describes how you can define new data type names in IDL.

 40 Orbix Programmer’s Guide C++ Edition

IDL Basic Types
The following table lists the basic types supported in IDL.

The any data type allows you to specify that an attribute value, an
operation parameter, or an operation return value can contain an
arbitrary type of value to be determined at runtime. Type any is
described in detail in “The Any Data Type”.

IDL Type Range of Values
short -215...215-1 (16-bit)

unsigned short 0...216-1 (16-bit)

long –231...231-1 (32-bit)

unsigned long 0...232-1 (32-bit)

long long –263...263-1 (64-bit)

unsigned long long 0...-264 (64-bit)

float IEEE single-precision floating point numbers.
double IEEE double-precision floating point numbers.
char An 8-bit value.
boolean TRUE or FALSE.
octet An 8-bit value that is guaranteed not to

undergo any conversion during transmission.
any The any type allows the specification of values

that can express an arbitrary IDL type.

Orbix Programmer’s Guide C++ Edition 41

IDL Complex Types
This section describes the IDL data types enum, struct, union,
string, sequence, array, and fixed.

Enum
An enumerated type allows you to assign identifiers to the
members of a set of values, for example:

// IDL
module BankSimple {

enum Currency {pound, dollar, yen, franc};

interface Account {
readonly attribute CashAmount balance;
readonly attribute Currency

 balanceCurrency;
...

};
};

In this example, attribute balanceCurrency in interface Account can
take any one of the values pound, dollar, yen, or franc.

Struct
A struct data type allows you to package a set of named members
of various types, for example:
// IDL
module BankSimple{

struct CustomerDetails {
string name;
short age;

};

interface Bank {
CustomerDetails getCustomerDetails

(in string name);
...

};
};

In this example, the struct CustomerDetails has two members. The
operation getCustomerDetails() returns a struct of type
CustomerDetails that includes values for the customer name and
age.

Union
A union data type allows you to define a structure that can contain
only one of several alternative members at any given time. A
union saves space in memory, as the amount of storage required
for a union is the amount necessary to store its largest member.
All IDL unions are discriminated. A discriminated union associates
a label value with each member. The value of the label indicates
which member of the union currently stores a value.

 42 Orbix Programmer’s Guide C++ Edition

For example, consider the following IDL union definition:
// IDL
struct DateStructure {

short Day;
short Month;
short Year;

};

union Date switch (short) {
case 1: string stringFormat;
case 2: long digitalFormat;
default: DateStructure structFormat;

};

The union type Date is discriminated by a short value. For
example, if this short value is 1, then the union member
stringFormat stores a date value as an IDL string. The default label
associated with the member structFormat indicates that if the
short value is not 1 or 2, then the structFormat member stores a
date value as an IDL struct.
Note that the type specified in parentheses after the switch
keyword must be an integer, char, boolean or enum type and the
value of each case label must be compatible with this type.

String
An IDL string represents a character string, where each character
can take any value of the char basic type.
If the maximum length of an IDL string is specified in the string
declaration, then the string is bounded. Otherwise the string is
unbounded.
The following example shows how to declare bounded and
unbounded strings:
// IDL
module BankSimple {

interface Account {
// A bounded string with maximum length 10.
attribute string<10> sortCode;

// An unbounded string.
readonly attribute string name;
...

};
};

Sequence
In IDL, you can declare a sequence of any IDL data type. An IDL
sequence is similar to a one-dimensional array of elements.
An IDL sequence does not have a fixed length. If the sequence has
a fixed maximum length, then the sequence is bounded.
Otherwise, the sequence is unbounded.

Orbix Programmer’s Guide C++ Edition 43

For example, the following code shows how to declare bounded
and unbounded sequences as members of an IDL struct:

// IDL
module BankSimple {

interface Account {
...

};

struct LimitedAccounts {
string bankSortCode<10>;
// Maximum length of sequence is 50.
sequence<Account, 50> accounts;

};
struct UnlimitedAccounts {

string bankSortCode<10>;
// No maximum length of sequence.
sequence<Account> accounts;

};
};

A sequence must be named by an IDL typedef declaration before it
can be used as the type of an IDL attribute or operation
parameter. Refer to “Defining Data Type Names and Constants”
on page 45 for details. The following code illustrates this:

// IDL
module BankSimple {

typedef sequence<string> CustomerSeq;

interface Account {
void getCustomerList(out CustomerSeq names);
...

};
};

Arrays
In IDL, you can declare an array of any IDL data type. IDL arrays
can be multi-dimensional and always have a fixed size. For
example, you can define an IDL struct with an array member as
follows:

// IDL
module BankSimple {

...

interface Account {
...

};

struct CustomerAccountInfo {
string name;
Account accounts[3];

};

interface Bank {
getCustomerAccountInfo (in string name,

out CustomerAccountInfo accounts);
...

};
};

 44 Orbix Programmer’s Guide C++ Edition

In this example, struct CustomerAccountInfo provides access to an
array of Account objects for a bank customer, where each
customer can have a maximum of three accounts.
An array must be named by an IDL typedef declaration before it
can be used as the type of an IDL attribute or operation
parameter. The IDL typedef declaration allows you define an alias
for a data type, as described in “Defining Data Type Names and
Constants” on page 45.
The following code illustrates this:

// IDL
module BankSimple {

interface Account {
...

};

typedef Account AccountArray[100];

interface Bank {
readonly attribute AccountArray accounts;
...

};
};

Note that an array is a less flexible data type than an IDL
sequence, because an array always has a fixed length. An IDL
sequence always has a variable length, although it may have an
associated maximum length value.

Fixed
The fixed data type allows you to represent number in two parts:
a digit and a scale. The digit represents the length of the number,
and the scale is a non-negative integer that represents the
position of the decimal point in the number, relative to the
rightmost digit.

module BankSimple {
typedef fixed<10,4> ExchangeRate;

struct Rates {
ExchangeRate USRate;
ExchangeRate UKRate;
ExchangeRate IRRate;

};
};

In this case, the ExchangeRate type has a digit of size 10, and a
scale of 4. This means that it can represent numbers up to
(+/-)999999.9999.
The maximum value for the digits is 31, and scale cannot be
greater than digits. The maximum value that a fixed type can hold
is equal to the maximum value of a double.
Scale can also be a negative number. This means that the decimal
point is moved scale digits in a rightward direction, causing
trailing zeros to be added to the value of the fixed. For example,
fixed <3,-4> with a numeric value of 123 actually represents the
number 1230000. This provides a mechanism for storing numbers
with trailing zeros in an efficient manner.

Note: Fixed <3, -4> can also be represented as fixed <7, 0>.

Orbix Programmer’s Guide C++ Edition 45

Constant fixed types can also be declared in IDL. The digits and
scale are automatically calculated from the constant value. For
example:

module Circle {
const fixed pi = 3.142857;

};

This yields a fixed type with a digits value of 7, and a scale value
of 6.

IDL Pseudo Object Types
CORBA defines a set of pseudo object types that ORB
implementations use when mapping IDL to some programming
languages. These object types have interfaces defined in IDL but
do not have to follow the normal IDL mapping for interfaces and
are not generally available in your IDL specifications.
You can use only the following pseudo object types as attribute or
operation parameter types in an IDL specification:

CORBA::NamedValue
CORBA::Principal
CORBA::TypeCode

To use any of these three types in an IDL specification, include the
file orb.idl in the IDL file as follows:

// IDL
#include <orb.idl>
...

This statement indicates to the IDL compiler that types NamedValue,
Principal, and TypeCode may be used. The file orb.idl should not
actually exist in your system. Do not name any of your IDL files
orb.idl.

Defining Data Type Names and Constants
IDL allows you to define new data type names and constants. This
section describes how to use each of these features of IDL.

Data Type Names
The typedef keyword allows you define a meaningful or more
simple name for an IDL type. The following IDL provides a simple
example of using this keyword:

// IDL
module BankSimple {

interface Account {
...

};

typedef Account StandardAccount;
};

The identifier StandardAccount can act as an alias for type Account
in subsequent IDL definitions. Note that CORBA does not specify
whether the identifiers Account and StandardAccount represent
distinct IDL data types in this example.

 46 Orbix Programmer’s Guide C++ Edition

Constants
IDL allows you to specify constant data values using one of
several basic data types. To declare a constant, use the IDL
keyword const, for example:

// IDL
module BankSimple {

interface Bank {
const long MaxAccounts = 10000;
const float Factor = (10.0 - 6.5) * 3.91;
...

};
};

The value of an IDL constant cannot change. You can define a
constant at any level of scope in your IDL specification.

 Orbix Programmer’s Guide C++ Edition 47

The CORBA IDL to C++
Mapping
The CORBA Interface Definition Language (IDL) to C++ mapping
specifies how to write C++ programs that access or implement
IDL interfaces. This chapter describes this mapping in full.
CORBA separates the definition of an object’s interface from the
implementation of that interface. As described in “Introduction to
CORBA IDL” on page 33, IDL allows you to define interfaces to
objects. To implement and use those interfaces, you must use a
programming language such as C, C++, Java, Ada, or Smalltalk.
The Orbix IDL compiler allows you to implement and use IDL
interfaces in C++. The compiler does this by generating C++
constructs that correspond to your IDL definitions, in accordance
with the standard CORBA IDL to C++ mapping.
This chapter describes the CORBA IDL to C++ mapping, as
defined in the C++ mapping section of the OMG Common Object
Request Broker Architecture. The purpose of the chapter is to
explain the rules by which the Orbix IDL compiler converts IDL
definitions into C++ code and how to use the generated C++
constructs.
This chapter contains a lot of detailed technical information that
you require when developing Orbix applications. However, you
should not try to learn all the technical details at once. Instead,
read this chapter briefly to understand the mappings for the main
IDL constructs, such as modules, interfaces, and basic types, and
the C++ memory management rules associated with the mapping.
When writing applications, consult this chapter for detailed
information about mapping the specific IDL constructs you
require.

Overview of the Mapping
The major elements of the IDL to C++ mapping are:

• An IDL module maps to a C++ namespace of the same name.
Alternative mappings are provided for C++ compilers that do
not support the namespace construct.

• An IDL interface maps to a C++ class of the same name.
• An IDL operation maps to a C++ member function in the

corresponding C++ class.
• An IDL attribute maps to a pair of overloaded C++ member

functions in the corresponding C++ class. These functions
allow a client program to set and read the attribute value.

Note that IDL identifiers map directly to identifiers of the same
name in C++. However, if an IDL definition contains an identifier
that exactly matches a C++ keyword, the identifier is mapped to
the name of the identifier preceded by an underscore. An IDL
identifier cannot begin with an underscore.

 48 Orbix Programmer’s Guide C++ Edition

Mapping for Modules and Scoping
IDL modules map to C++ namespaces, where your C++ compiler
supports them. For example:

// IDL
module BankSimple {

struct Details {
...

};
};

This maps to:
// C++
namespace BankSimple {

struct Details {
...

};
};

Outside of namespace BankSimple, the struct Details can be
referred to as BankSimple::Details. Alternatively, a C++ using
directive allows you to refer to Details without explicit scoping:

// C++
using namespace BankSimple;
Details d;

Alternative Mappings for Modules
Since namespaces have only recently been added to the C++
language, few compilers support them. In the absence of support
for namespaces, IDL modules map to C++ classes that have no
member functions or data. This allows IDL scoped names to be
mapped directly onto C++ scoped names. For example:

// IDL
module BankSimple {

interface Bank {
...
struct Details {

...
};

};
};

This maps to:
// C++
class BankSimple {
public:

...
class Bank : public virtual CORBA::Object {

...
struct Details {

...
};

};
};

You can use struct Details in C++ as follows:
// C++
BankSimple::Bank::Details d;

Orbix Programmer’s Guide C++ Edition 49

Mapping for Interfaces
Each IDL interface maps to a C++ class that defines a client
programmer’s view of the interface. This class lists the C++
member functions that a client can call on objects that implement
the interface.
Each IDL interface also maps to other C++ classes that allow a
server programmer to implement the interface using either the
BOAImpl or TIE approach. However, this chapter describes only
the C++ class that describes the client view of the interface, as
this class is sufficient to illustrate the principles of the mapping for
interfaces.
Consider a simple interface to describe a bank account:

// IDL
...
typedef float CashAmount;
...

interface Account {
readonly attribute CashAmount balance;
void deposit (in CashAmount amount);
void withdraw (in CashAmount amount);

};

This maps to the following IDL C++ class:
// C++
class Account : public virtual CORBA::Object {
public:

virtual CashAmount balance();
virtual void deposit (in CashAmount amount);
virtual void withdraw (in CashAmount amount);

};

Implicitly, all IDL interfaces inherit from interface CORBA::Object.
Class Account inherits from the Orbix class CORBA::Object, which
maps the functionality of interface CORBA::Object.
Class Account defines the client view of the IDL interface Account.
Conceptually, instances of class Account allow a client to access
CORBA objects that implement interface Account. However, an
Orbix program should never create an instance of class Account
and should never use a pointer (Account*) or a reference
(Account&) to this class.
Instead, an Orbix program should access objects of type Account
through an interface helper type. Two helper types are generated
for each IDL interface: a _var type and a _ptr type. For example,
the helper types for interface Account are Account_var and
Account_ptr.
Conceptually, a _var type is a managed pointer that assumes
ownership of the data to which it points. This means that you can
use a _var type such as Account_var as a pointer to an object of
type Account, without ever deallocating the object memory. If a
_var type goes out of scope or is assigned a new value, Orbix
automatically manages the memory associated with the existing
value of the _var type.
A _ptr type is more primitive and has similar semantics to a C++
pointer. In fact, _ptr types in Orbix are currently implemented as
C++ pointers. However, it is important that you do not use this

 50 Orbix Programmer’s Guide C++ Edition

knowledge because this implementation may change. For
example, you should not attempt conversion to void*, arithmetic
operations and relational operations, including test for equality on
_ptr types.
The _var and _ptr types for an IDL interface allow a client to
access IDL attributes and operations defined by the interface.
Examples of how to use the _var and _ptr types are provided later
in this section.

Mapping for Attributes
Each attribute in an IDL interface maps to two member functions
in the corresponding C++ class. Both member functions have the
same name as the attribute: one function allows clients to set the
attribute’s value and the other allows clients to read the value. A
readonly attribute maps to a single member function that allows
clients to read the value.
Consider the following IDL interfaces:

// IDL
interface Account {

readonly attribute float balance;
attribute long accountnumber;
...

};

The following code illustrates the mapping for attributes balance
and accountNumber:

// C++
class Account : public virtual CORBA::Object {
public:

virtual CORBA::Float balance(CORBA::Environment&);
virtual CORBA::Long

accountNumber(CORBA::Environment&);
virtual void accountNumber

(Long accountNumber, CORBA::Environment&);
...
};

Note that the IDL type float maps to CORBA::Float, while type long
maps to CORBA::Long. “Mapping for Basic Types” on page 57
provides a detailed description of this mapping.
The following code illustrates how a client program could access
attributes balance and accountnumber of an Account object:

// C++
Account_var aVar;
CORBA::Float bal = 0;
CORBA::Long number = 99;
// Code to bind aVar to an Account object omitted.
...

try {
// Get value of balance.
bal = aVar->balance();
// Set and get value of accountNumber.
aVar->accountnumber(number);
number = aVar->accountnumber();

}

Orbix Programmer’s Guide C++ Edition 51

catch (const CORBA::SystemException& se) {
...

}

Mapping for Operations
Operations within an interface map to virtual member functions of
the corresponding C++ class. These member functions have the
same name as the relevant IDL operations. This mapping applies
to all operations, including those preceded by the IDL keyword
oneway.
Consider the following IDL interfaces:

// IDL
typedef float CashAmount;
....

interface Account {
void deposit(in CashAmount amount);
void withdraw(in CashAmount amount);
...

};

interface Bank {
Account create_account(in string name);

};

The following code illustrates the mapping for IDL operations:
// C++
class Account : public virtual CORBA::Object {
public:

virtual void deposit(CashAmount amount);
virtual void withdraw(CashAmount amount);
...

};

class Bank : public virtual CORBA::Object {
public:

virtual Account_ptr create_account
(const char* name);

};

The IDL operation create_account() has an object reference return
type; that is, it returns an Account object. In the corresponding
C++ code for create_account(), the IDL object reference return
type is mapped to the type Account_ptr. Note that you can assign
the return value of function create_account() to either an
Account_ptr or an Account_var value.
The following code illustrates how a client calls IDL operations on
Account and Bank objects:

// C++
Account_var aVar;
Bank_var bVar;

// Code to bind bVar to a Bank object omitted.
...

try {
aVar = bVar->create_account(“Chris”);

 52 Orbix Programmer’s Guide C++ Edition

aVar->deposit(100.00);
}
catch (const CORBA::SystemException& se) {

...
}

“Memory Management for Parameters” on page 78 provides more
information about the mapping for operation parameters.

Mapping for Exceptions
A user-defined IDL exception type maps to a C++ class that
derives from class CORBA::UserException and that contains the
exception’s data. For example, consider the following exception
definition:

// IDL
exception CannotCreate {

string reason;
short s;

};

This maps to the following C++:
// C++
class CannotCreate : public CORBA::UserException {
public:

CORBA::String_mgr reason;
CORBA::Short s;

CannotCreate(const char* _reason,
const CORBA::Short& _s);

CannotCreate();
CannotCreate(const CannotCreate&);
~CannotCreate();

CannotCreate()& operator = (const
CannotCreate&);

static CannotCreate*
_narrow(CORBA::Exception* e);

};

The mapping defines a constructor with one parameter for each
exception member; this constructor initializes the exception
member to the passed-in value. In the example, this constructor
has two parameters, one for each of the fields reason and s
defined in the exception.
You can throw an exception of type CannotCreate in an operation
implementation as follows:

// C++
// Server code.
throw CannotCreate(“My reason”, 13)

The default exception constructor performs no explicit member
initialization. The copy constructor, assignment operator, and
destructor automatically copy or free the storage associated with
the exception. Exceptions are mapped similarly to variable length
structs in that each member of the exception must be
self-managing.

Orbix Programmer’s Guide C++ Edition 53

Mapping for Contexts
An operation that specifies a context clause is mapped to a C++
member function in which an input parameter of type Context_ptr
follows all operation-specific arguments. For example:

// IDL
interface A {

void op(in unsigned long s)
context (“accuracy”, “base”);

};

This interface maps to:
// C++
class A : public virtual CORBA::Object {
public:

virtual void op(CORBA::ULong s,
CORBA::Context_ptr IT_c);

};

The Context_ptr parameter appears before the Environment
parameter. This order allows the Environment parameter to have a
default value.

Mapping for Inheritance of IDL Interfaces
This section describes the mapping for interfaces that inherit from
other interfaces. Consider the following example:

// IDL
interface CheckingAccount : Account {

void setOverdraftLimit(in float limit);
};

The corresponding C++ is:
// C++
class CheckingAccount : public virtual Account {
public:

virtual void setOverdraftLimit(
CORBA::Float limit);

};

A C++ client program that uses the CheckingAccount interface can
call the inherited deposit() function:

// C++
CheckingAccount_var checkingAc;

// Code for binding checkingAc omitted.
...

checkingAc->deposit(90.97);

Naturally, assignments from a derived to a base class object
reference are allowed, for example:

// C++
Account_ptr ac = checkingAc;

Note that you should not attempt to make normal or cast
assignments in the opposite direction—from a base class object
reference to a derived class object reference. To make such
assignments, you should use the Orbix narrow mechanism as
described in “Narrowing Object References” on page 54.

 54 Orbix Programmer’s Guide C++ Edition

Widening Object References
The C++ types generated for IDL interfaces support normal
inheritance conversions. For example, for the preceeding Account
and CheckingAccount classes defined the following conversions
from a derived class object reference to a base class reference,
known as widenings, are implicit:

• CheckingAccount_ptr to Account_ptr
• CheckingAccount_ptr to Object_ptr
• CheckingAccount_var to Account_ptr
• CheckingAccount_var to Object_ptr

Note: There is no implicit conversion between _var types. An attempt to
widen from one _var type to another causes a compile-time error.
Instead conversion between two _var types requires a call to
_duplicate().
Some widening examples are shown in the code below:

// C++
CheckingAccount_ptr cPtr =;

// Implicit widening:
Account_ptr aPtr = cPtr;

// Implicit widening:
Object_ptr objPtr = cPtr;

// Implicit widening:
objPtr = aPtr;

CheckingAccount_var cVar = cPtr;
// cVar assumes ownership of cPtr.
aPtr = cVar;

// Implicit widening, cVar retains ownership of cPtr.

objPtr = cVar;
// Implicit widening, cVar retains ownership of cPtr.

Account_var av = cVar;
// Illegal, compile-time error, cannot assign
// between _var variables of different types.

Account_var aVar = CheckingAccount::_duplicate(cVar);
// aVar and cVar both refer to cPtr.
// The reference count of cPtr is incremented.

Narrowing Object References
If a client program receives an object reference of type Account
that actually refers to an implementation object of type
CheckingAccount, the client can safely convert the Account
reference to a CheckingAccount reference. This conversion gives
the client access to the operations defined in the derived interface
CheckingAccount.
The process of converting an object reference for a base interface
to a reference for a derived interface is known as narrowing an
object reference. To narrow an object reference, you must use the
_narrow() function that is defined as a static member function for
each C++ class generated from an IDL interface.

Orbix Programmer’s Guide C++ Edition 55

For example, for interface T, the following C++ class is generated:
// C++
class T : public virtual CORBA::Object {

static T_ptr _narrow(CORBA::Object_ptr);
...

};

The following code shows how to narrow an Account reference to a
CheckingAccount reference:

// C++
Account_ptr aPtr;
CheckingAccount_ptr caPtr;

// Code to bind aPtr to an object that implements
// CheckingAccount omitted.
...

// Narrow aPtr to be a CheckingAccount.
if (caPtr = CheckingAccount::_narrow(aPtr))

...
else

// Deal with failure of _narrow().

If the parameter passed to T::_narrow() is not of class T or one of
its derived classes, T::_narrow() returns a nil object reference. The
_narrow() function can also raise a system exception, and you
should always check for this.
Each object reference in an address space has an associated
reference count. A successful call to _narrow() increases the
reference count of an object reference by one.

Object Reference Counts and Nil Object References
Each Orbix program may use a single object reference several
times. To determine whether an object reference is currently in
use in a program, Orbix associates a reference count with each
reference. This section describes the Orbix reference counting
mechanism and explains how to test for nil object references.

Object Reference Counts
In Orbix, the reference count of an object is the number of
pointers to the object that exist within the same address space.
Each object is initially created with a reference count of one.
You can explicitly increase the reference count of an object by
calling the object’s _duplicate() static member function. The
CORBA::release() function on a pointer to an object reduces the
object’s reference count by one, and destroys the object if the
reference count is then zero.
For example, consider the following server code:

// C++
// Create a new Bank object:
Bank_ptr bPtr = new Bank_i;
// The reference count of the new object is 1.

Bank::_duplicate(bPtr);
// The reference count of the object is 2.

 56 Orbix Programmer’s Guide C++ Edition

CORBA::release(bPtr);
// The reference count of the object is 1.

Both implementation objects in servers, and proxies in clients
have reference counts. Calls to _duplicate() and CORBA::release()
by a client do not affect the reference count of the target object in
the server. Instead, each proxy has its own reference count that
the client can manipulate by calling _duplicate() and
CORBA::release(). Deletion of a proxy (by a call to CORBA::release()
that causes the reference count to drop to zero) does not affect
the reference count of the target object.
A server can delete an object (by calling CORBA::release() an
appropriate number of times) even if one or more clients hold
proxies for this object. If this happens, subsequent invocations
through the proxy causes an CORBA::INV_OBJREF system exception
to be raised.
Some operations implicitly increase the reference count of an
object. For example, if a client obtains a reference to the same
object many times—for example, using the Naming Service—this
results in only one proxy being created in that client’s address
space. The reference count of this proxy is the number of
references obtained by the client.
To find the current reference count for an object, call the function
_refCount() on the object reference. This function is defined in
class CORBA::Object as follows:

// C++
// In class CORBA::Object.
CORBA::ULong _refCount();

You can call this function as follows:
// C++
T_ptr tPtr;
...
CORBA::ULong count = tPtr->_refCount();

Nil Object References
A nil object reference is a reference that does not refer to any
valid Orbix object. Each C++ class for an IDL interface defines a
static function _nil() that returns a nil object reference for that
interface type.
For example, an IDL interface T generates the following C++:

// C++
class T : public virtual CORBA::Object {

static T_ptr _nil(CORBA::Environment&);
...

};

To obtain a nil object reference for T, do the following:
// C++
// Obtain a nil object reference for T:
T_ptr tPtr = T::_nil();

The function is_nil(), defined in the CORBA namespace, determines
whether an object reference is nil. The function is_nil() is
declared as:

// C++
// In CORBA namespace.
Boolean is_nil(Object_ptr obj);

Orbix Programmer’s Guide C++ Edition 57

The following call is guaranteed to be true:
// C++
CORBA::Boolean result = CORBA::is_nil(T::_nil());

Note that calling is_nil() is the only CORBA-compliant way in
which you can check if an object reference is nil. Do not compare
object references using operator = = ().

Mapping for IDL Data Types
This section describes the mapping for each of the IDL basic types,
constructed types, and template types.

Mapping for Basic Types
The IDL basic data types have the mappings shown in the
following table:

Each IDL basic type maps to a typedef in the CORBA module; for
example, the IDL type short maps to CORBA::Short in C++. This is
because on different platforms, C++ types such as short and long
may have different representations.
The types CORBA::Short, CORBA::UShort, CORBA::Long, CORBA::ULong,
CORBA::LongLong, CORBA::ULongLong, CORBA::Float, and CORBA::Double
are implemented using distinguishable C++ types. This enables
these types to be used to distinguish between overloaded C++
functions and operators.
The IDL type boolean maps to CORBA::Boolean which is
implemented as a typedef to the C++ type unsigned char in Orbix.
The mapping of the IDL boolean type to C++ defines only the
values 1 (TRUE) and 0 (FALSE); other values produce undefined
behavior.
The mapping for type any is described in “The Any Data Type”.

IDL C++
short CORBA::Short

long CORBA::Long

long long CORBA::LongLong

unsigned short CORBA::UShort

unsigned long CORBA::ULong

unsigned long long CORBA::ULongLong

float CORBA::Float

double CORBA::Double

char CORBA::Char

boolean CORBA::Boolean

octet CORBA::Octet

any CORBA::Any

 58 Orbix Programmer’s Guide C++ Edition

Mapping for Complex Types
The remainder of this section describes the mapping for IDL types
enum, struct, union, string, sequence, fixed, and array. This
section also describes the mapping for IDL typedefs and
constants.
The mappings for IDL types struct, union, array, and sequence
depend on whether these types are fixed length or variable length.
A fixed length type is one whose size in bytes is known at compile
time. A variable length type is one in which the number of bytes
occupied by the type can only be calculated at runtime.
The following IDL types are considered to be variable length
types:

• A bounded or unbounded string.
• A bounded or unbounded sequence.
• An object reference.
• A struct or union that contains a member whose type is

variable length.
• An array with a variable length element type.
• A typedef to a variable length type.
• The type any.

Mapping for Enum
An IDL enum maps to a corresponding C++ enum. For example:

// IDL
enum Colour {blue, green};

This maps to:
// C++
enum Colour {blue, green,

IT__ENUM_Colour = CORBA_ULONG_MAX};

The additional constant IT__ENUM_Colour is generated in order to
force the C++ compiler to use exactly 32 bits for values declared
to be of the enumerated type.

Mapping for Struct
An IDL struct maps directly to a C++ struct. Each member of the
IDL struct maps to a corresponding member of the C++ struct.
The generated struct contains an empty default constructor, an
empty destructor, a copy constructor and an assignment operator.

Orbix Programmer’s Guide C++ Edition 59

Fixed Length Structs
Consider the following IDL fixed length struct:

// IDL
struct AStruct {

long l;
float f;

};

This maps to:
// C++
struct AStruct {

CORBA::Long l;
CORBA::Float f;

};

Variable Length structs
Consider the following IDL variable length struct:

// IDL
interface A {

...
};

struct VariableLengthStruct {
short i;
float f;
string str;
A a;

};

This maps to a C++ struct as follows:
// C++
struct VariableLengthStruct {

CORBA::Short i;
CORBA::Float f;
CORBA::String_mgr str;
A_mgr a;

};

Except for strings and object references, the type of the C++
struct member is the normal mapping of the IDL member’s type.
String and object reference members of a variable length struct
map to special manager classes. Note these manager (_mgr) types
are only used internally in Orbix. You should not write application
code that explicitly declares or names manager classes.
The behavior of manager types is the same as the normal
mapping (char* for string and A_ptr for an interface) except that
the manager type is responsible for managing the member’s
memory. In particular, the assignment operator releases the
storage for the existing member and the copy constructor copies
the member’s storage.

 60 Orbix Programmer’s Guide C++ Edition

The implications of this are that the following code, for example,
does not cause a memory leak:

// C++
VariableLengthStruct vls;
char* s1 = CORBA::string_alloc(5+1);
char* s2 = CORBA::string_alloc(6+1);
strcpy(s1, “first”);
strcpy(s2, “second”);
vls.str = s1;
vls.str = s2; // No memory leak, s1 is released.

Mapping for Union
An IDL union maps to a C++ struct. Consider the following IDL
declaration:

// IDL
typedef long vector[100];
struct S { ... };
interface A;

union U switch(long) {
case 1: float f;
case 2: vector v;
case 3: string s;
case 4: S st;
default: A obj;

};

This maps to the following C++ struct:
// C++
struct U {
public:

// The discriminant.
CORBA::Long _d() const; (1)

// Constructors, Destructor, and Assignment.
U(); (2)
U(const CORBA::Long); (2a)
U(const U&); (3)
~U(); (4)
U& operator = (const U&); (5)

// Accessor and modifier functions for members.
// Basic type member:
CORBA::Float f() const; (6)
void f(CORBA::Float IT_member); (7)

// Array member:
vector_slice* v() const; (8)
void v(vector_slice* IT_member); (9)

// String member:
const char* s() const; (10)
void s(char* IT_member); (11)
void s(CORBA::String_var IT_member); (12)
void s(const char* IT_member); (13)

Orbix Programmer’s Guide C++ Edition 61

// Struct member:
S& st(); (14)
const S& st() const; (15)
void st(const S& IT_member); (16)

// Object reference member:
A_ptr obj() const; (17)
void obj(A_ptr IT_member); (18)
...

};

The Discriminant
The value of the discriminant indicates the type of the value that
the union currently holds. This is the value specified in the IDL
union definition. The function _d() (1) returns the current value of
the discriminant.

Constructors, Destructor and Assignment
The default constructor (2) does not initialize the discriminant and
it does not initialize any union members. Therefore, it is an error
for an application to access a union before setting it and Orbix
does not detect this error. The Orbix IDL Compiler generates an
extra constructor (2a) that takes an argument of the same type as
the discriminant.
The copy constructor (3) and assignment operator (5) perform a
deep-copy of their parameters; the assignment operator releases
old storage if necessary and then performs a deep copy. The
destructor (4) releases all storage owned by the union.

Accessors and Modifiers
For each member of the union, an accessor function is generated
to read the value of the member and, depending on the type of
the member, one or more modifier functions are generated to
change the value of the member.
Setting the union value through a modifier function also sets the
discriminant and, depending on the type of the previous value,
may release storage associated with that value. An attempt to get
a value through an accessor function that does not match the
discriminant results in undefined behavior.
Only the accessor functions for struct, union, sequence, and any
return a reference to the appropriate type: thus, the value of this
type may be modified either by using the appropriate modifier
function or by directly modifying the return value of the accessor.
Because the memory associated with these types is owned by the
union, the return value of an accessor function should not be
assigned to a _var type. A _var type would attempt to assume
ownership of the memory.
For a union member whose type is an array, the accessor function
(8) returns a pointer to the array slice (refer to “Mapping for
Array” on page 73). The array slice return type allows for
read-write access for array members using operator[]() defined
for arrays.

 62 Orbix Programmer’s Guide C++ Edition

For string union members, the char* modifier function (11) first
frees old storage before taking ownership of the char* parameter;
that is, the parameter is not copied. The const char* modifier (13)
and the String_var modifier (12) both free old storage before the
parameter’s storage is copied.
Since the type of a string literal is char* rather than const char*,
the following code would result in a delete error:

// C++
{

U u;
u.s(“A String”);

// Calls char* version of s. The string is
// not copied.

} // Error: u destructor tries to delete
// the string literal “A String”.

Note: The string (char*) is managed by a CORBA::String_mgr whose
destructor calls delete. This results in undefined behavior which
the C++ compiler is not required to flag.
Thus, an explicit cast to const char* is required in the special case
where a string literal is passed to a string modifier function.
For object reference union members, the modifier function (18)
releases the old object reference and duplicates the new one. An
object reference return value from the accessor function (17) is
not duplicated, because the union retains ownership of the object
reference.

Orbix Programmer’s Guide C++ Edition 63

Example Program
A C++ program may access the elements of a union as follows:

// C++
U* u;

u = new U;
u->f(19.2);

// And later:
switch (u->_d()) {

case 1 : cout << “f = ” << u->f()
<< endl; break;

case 2 : cout << “v = ” << u->v()
<< endl; break;

case 3 : cout << “s = ” << u->s()
<< endl; break;

// Do not free the returned string.

case 4 : cout << “st = ” << “x = ” << u->st().x
 << “ ” << “y = ” << u->st().y

<< endl; break;

default: cout << “A = ” << u->obj() << endl; break;
// Do not release the returned object
// reference.

}

Mapping for String
IDL strings are mapped to character arrays that terminate with
‘\0’ (the ASCII NUL character). The length of the string is encoded
in the character array itself through the placement of the NUL
character.
In addition, the CORBA namespace defines a class String_var that
contains a char* value and automatically frees the memory
referenced by this pointer when a String_var object is deallocated,
for example, by going out of scope.
The String_var class provides operations to convert to and from
char* values, and operator[]() allows access to characters within
the string.
Consider the following IDL:

// IDL
typedef string<10> stringTen; // A bounded string.
typedef string stringInf; // An unbounded string.

The corresponding C++ is:
// C++
typedef char* stringTen;
typedef CORBA::String_var stringTen_var;
typedef char* stringInf;
typedef CORBA::String_var stringInf_var;

 64 Orbix Programmer’s Guide C++ Edition

You can define instances of these types in C++ as follows:
// C++
stringTen s1 = 0;
stringInf s2 = 0;

// Or using the _var type:
CORBA::stringTen_var sv1;
CORBA::stringInf_var sv2;

At all times, a bounded string pointer, such as stringTen, should
reference a storage area large enough to hold its type’s maximum
string length.

Dynamic Allocation of Strings
To allocate and free a string dynamically, you must use the
following functions from the CORBA namespace:

// C++
// In namespace CORBA.
char* string_alloc(CORBA::ULong len);
void string_free(char*);

Do not use the C++ new and delete operators to allocate memory
for strings passed to Orbix from a client or server. However, you
can use new and delete to allocate a string that is local to the
program and is never passed to Orbix.
The string_alloc() function dynamically allocates a string, or
returns a null pointer if it cannot perform the allocation. The
string_free() function deallocates a string that was allocated with
string_alloc(). For example:

// C++
{

char* s = CORBA::string_alloc(10+1);
strcpy(s, “0123456789”);
...
CORBA::string_free(s);

}

The function CORBA::string_dup() copies a string passed to it: as a
parameter

// C++
char* string_dup(const char*);

Space for the copy is allocated using string_alloc().
By using the CORBA::String_var types, you are relieved of the
responsibility of freeing the space for a string. For example:

// C++
{

CORBA::String_var sVar = CORBA::string_alloc(10+1);
strcpy(sVar, “0123456789”);
...

} // String held by sVar automatically freed here.

Bounds Checking of String Parameters
Although you can define bounded IDL string types, C++ does not
perform any bounds checking to prevent a string from exceeding
the bound. Since strings map to char*, they are effectively
unbounded.

Orbix Programmer’s Guide C++ Edition 65

Consequently, Orbix takes responsibility for checking the bounds
of strings passed as operation parameters. If you attempt to pass
a string to Orbix that exceeds the bound for the corresponding IDL
string type, Orbix detects this error and raises a system
exception.

General Mapping for Sequences
The IDL data type sequence is mapped to a C++ class that
behaves like an array with a current length and a maximum
length. A _var type is also generated for each sequence.
The maximum length for a bounded sequence is defined in the
sequence’s IDL type and cannot be explicitly controlled by the
programmer. Attempting to set the current length to a value
larger than the maximum length given in the IDL specification is
undefined. Orbix checks the length against maximum bound and,
if this is greater, does nothing.
For an unbounded sequence, the initial value of the maximum
length can be specified in the sequence constructor to allow
control over the size of the initial buffer allocation. The
programmer may always explicitly modify the current length of
any sequence.
If the length of an unbounded sequence is set to a larger value
than the current length, the sequence data may be reallocated.
Reallocation is conceptually equivalent to creating a new sequence
of the desired new length, copying the old sequence elements into
the new sequence, releasing the original elements, and then
assigning the old sequence to be the same as the new sequence.
Setting the length to a smaller value than the current length does
not result in any reallocation. The current length is set to the new
value and the maximum remains the same.

 66 Orbix Programmer’s Guide C++ Edition

Mapping for Unbounded Sequences
Consider the following IDL declaration:

// IDL
typedef sequence<long> unbounded;

The IDL compiler generates the following class definition:
// C++
class unbounded {
public:

unbounded(); (1)
unbounded(const unbounded&); (2)

// This constructor uses existing space.
unbounded((3)

CORBA::ULong max,
CORBA::ULong length,
CORBA::Long* data,
CORBA::Boolean release = 0);

// This constructor allocates space.
unbounded(CORBA::ULong max); (4)

~unbounded(); (5)
unbounded& operator = (const unbounded&); (6)

static CORBA::Long* allocbuf((7)
CORBA::ULong nelems);

static void freebuf(CORBA::Long* data); (8)

CORBA::ULong maximum() const; (9)

CORBA::ULong length() const; (10)
void length(CORBA::ULong len); (11)

CORBA::Long& operator[]((12)
CORBA::ULong IT_i);

const CORBA::Long& operator[]((13)
CORBA::ULong IT_i) const;

};

Constructors, Destructor and Assignment
The default constructor (1) sets the sequence length to 0 and sets
the maximum length to 0.
The copy constructor (2) creates a new sequence with the same
maximum and length as the given sequence, and copies each of
its current elements.
Constructor (3) allows the buffer space for a sequence to be
allocated externally to the definition of the sequence itself.
Normally sequences manage their own memory. However, this
constructor allows ownership of the buffer to be determined by the
release parameter: 0 (false) means the caller owns the storage,
while 1 (true) means that the sequence assumes ownership of the
storage. If release is true, the buffer must have been allocated
using the sequence allocbuf() function, and the sequence passes

Orbix Programmer’s Guide C++ Edition 67

it to freebuf() when finished with it. In general, constructor (3)
particularly with the release parameter set to 0, should be used
with caution and only when absolutely necessary.
For constructor (3), the type of the data parameter for strings and
object references is char* and A_ptr (for interface A) respectively.
In other words, string buffers are passed as char** and object
reference buffers are passed as A_ptr*.
Constructor (4) allows only the initial value of the maximum
length to be set. This allows applications to control how much
buffer space is initially allocated by the sequence. This constructor
also sets the length to 0.
The destructor (5) automatically frees the allocated storage
containing the sequence’s elements, unless the sequence was
created using constructor (3) with the release parameter set to
false. For sequences of strings, CORBA::string_free() is called on
each string; for sequences of object references, CORBA::release()
is called on each object reference.

Sequence Buffer Management: allocbuf() and freebuf()
The static member functions, allocbuf() (7) and freebuf() (8)
control memory allocation for sequence buffers when constructor
(3) is used.
The function allocbuf() dynamically allocates a buffer of elements
that can be passed to constructor (3) in its data parameter; it
returns a null pointer if it cannot perform the allocation.
The freebuf() function deallocates a buffer that was allocated with
allocbuf(). The freebuf() function ignores null pointers passed to
it. For sequences of array types, the return type of allocbuf() and
the argument type of freebuf() are pointers to array slices (refer
to “Mapping for Array” on page 73).
When the release flag is set to true and the sequence element
type is either a string or an object reference, the sequence
individually frees each element before freeing the buffer. It frees
strings using string_free(), and it frees object references using
release().

Other Functions
The function maximum() (9) returns the total amount of buffer
space currently available. This allows applications to know how
many items they can insert into an unbounded sequence without
causing a reallocation to occur.
The overloaded operators operator[]() (12, 13) return the
element of the sequence at the given index. They may not be used
to access or modify any element beyond the current sequence
length. Before operator[]() is used on a sequence, the length of
the sequence must first be set using the modifier function length()
(11) function, unless the sequence was constructed using
constructor (3).
For strings and object references, operator[]() for a sequence
returns a type with the same semantics as the types used for the
string and object reference members of structs and arrays, so
that assignment to the string or object reference sequence
member releases old storage when appropriate.

 68 Orbix Programmer’s Guide C++ Edition

Unbounded Sequences Example
This section shows how to create the unbounded sequence defined
in the following IDL:

// IDL
typedef sequence<long> unbounded;

You can create an instance of this sequence in any of the following
ways:

• Using the default constructor:
// C++
unbounded x;

The sequence length is set to 0 and the maximum length is set
to 0. This does not allocate any space for the buffer elements.

• By specifying the initial value for the maximum length of the
sequence:
// C++
unbounded y(10);

The initial buffer allocation for this sequence is enough to hold
ten elements. The sequence length is set to 0, the maximum
is set to 10.

• Using the copy constructor:
// C++
unbounded c = y;

This copies y’s state into c. The buffer is copied, not shared.
• Dynamically allocating the sequence using the C++ new

operator:
// C++
unbounded* s1 = new unbounded;
unbounded* s2 = new unbounded(10);
...
delete s1;
delete s2

By defining a _var type, you do not have to explicitly free the
sequence when you are finished with it. Like the mapped
class, the _var type for a sequence provides the operator[]().
// C++
unbounded_var uVar = new unbounded;

uVar->length(10);
CORBA::Long i;
for (i = 0; i<10; i++)

uVar[i] = i;
...
// Do not call ‘delete uVar’.

Orbix Programmer’s Guide C++ Edition 69

• Allocating the buffer space externally to the definition of the
sequence itself.
// C++
CORBA::Long* data = unbounded::allocbuf(10);
unbounded z(10, 10, data, 1);
CORBA::Long i;
// You can initialize the sequence as follows:
for (i = 0; i<10; i++)

z[i] = i;
...
z::freebuf(data);

In this example, the last parameter to z’s constructor is 1. This
indicates that sequence assumes ownership of the buffer. The
data buffer is freed automatically when z goes out of scope.
If the last parameter were 0, the data buffer would have to be
freed by calling unbounded::freebuf(data).
It is not often necessary to use this form of sequence
construction.

Mapping for Bounded Sequences
This section describes the mapping for bounded sequences. For
example, consider the following IDL:

// IDL
typedef sequence<long, 10> bounded;

The corresponding C++ code is as follows:
// C++
class bounded {
public:

bounded(); (1)
bounded(const bounded&); (2)
bounded(CORBA::ULong length, (3)

CORBA::Long* data,
CORBA::Boolean release = 0);

~bounded(); (4)

bounded& operator = (const bounded&); (5)

static CORBA::Long* allocbuf((6)
CORBA::ULong nelems);

static void freebuf(CORBA::Long* data); (7)

CORBA::ULong maximum() const; (8)
CORBA::ULong length() const; (9)
void length(CORBA::ULong len); (10)

CORBA::Long& operator[]((11)
CORBA::ULong IT_i);

const CORBA::Long& operator[]((12)
CORBA::ULong IT_i) const;

};

The mapping is as described for unbounded sequences except for
the differences indicated in the following paragraphs.
The maximum length is part of the type and cannot be set or
modified.

 70 Orbix Programmer’s Guide C++ Edition

The maximum() function (8) always returns the bound of the
sequence as given in its IDL type declaration.

Bounded Sequence Examples
Consider the following IDL declaration:

// IDL
typedef sequence<long, 10> boundedTen;

You can declare an instance of boundedTen in a variety of ways:

• Using the default constructor:
// C++
boundedTen x;

The length of the sequence is set to 0 and the maximum
length is set to 10. Space is allocated in the buffer for 10
elements.

• Using the copy constructor:
// C++
boundedTen c = x;

This copies x’s state into c. The buffer is copied, not shared.
• By dynamically allocating the sequence:

// C++
boundedTen* w = new boundedTen;

CORBA::Long i;
w->length(10);
for (i = 0; i<10; i++)

(*w)[i] = i;
...
delete w;

By defining a _var type, you do not have to explicitly free the
sequence when you are finished with it. Like the mapped
class, the _var type for a sequence provides the operator[]().
For example:
// C++
boundedTen_var wVar = new boundedTen;

CORBA::Long i;
for (i = 0; i<10; i++)

wVar[i] = i;
...
// Do not call ‘delete wVar’.

• Using constructor (3) as follows:
// C++
CORBA::Long* data = boundedTen::allocbuf(10);
CORBA::Long i;

boundedTen z(10, data, 1); // 1 for true.

// You can initialize the sequence as follows
// using the overloaded operator[]():
for (i = 0; i<10; i++)

z[i] = i;

As for unbounded sequences, avoid this form of sequence
construction whenever possible. In this example, the release

Orbix Programmer’s Guide C++ Edition 71

parameter is set to 1 (true) to indicate that sequence z is to
responsible for releasing the buffer, data.

Mapping for Fixed
The fixed type maps to a C++ template class, as shown in the
following example:

// IDL
typedef fixed <10, 6> ExchangeRate;
const fixed pi = 3.1415926;

// C++
typedef CORBA_Fixed<10, 6> ExchangeRate;
static const CORBA_Fixed

<(unsigned short)7, (short)6> pi = 3.1415926;

The fixed template class is defined as follows:
template<unsigned short d, short s> class CORBA_Fixed

{
public:

CORBA_Fixed(const int val = 0);
CORBA_Fixed(const long double val);
CORBA_Fixed(const CORBA_Fixed<d, s>& val);
~CORBA_Fixed();

operator CORBA_Fixed<d, s> () const;
operator double() const;

CORBA_Fixed<d, s>& operator= (const CORBA_Fixed<d, s>& val);
CORBA_Fixed<d, s>& operator++();
const CORBA_Fixed<d, s> operator++(int);
CORBA_Fixed<d, s>& operator--();
const CORBA_Fixed<d, s> operator--(int);
CORBA_Fixed<d, s>& operator+() const;
CORBA_Fixed<d, s>& operator-() const;
int operator!() const;
CORBA_Fixed<d, s>& operator+= (const CORBA_Fixed<d, s>& val1);
CORBA_Fixed<d, s>& operator-= (const CORBA_Fixed<d, s>& val1);
CORBA_Fixed<d, s>& operator*= (const CORBA_Fixed<d, s>& val1);
CORBA_Fixed<d, s>& operator/= (const CORBA_Fixed<d, s>& val1);
const unsigned short Fixed_Digits() const;
const short Fixed_Scale() const;

The class mainly consists of conversion and arithmetic operators
to all the fixed types. These types are for use as native numeric
types and allow assignment from and to other numeric types.

// C++
double rate = 1.4234;
ExchangeRate USRate(rate);

USRate + = 0.1;
cout << “US Exchange Rate = ” << USRate << endl;

// outputs 0001.523400

The Fixed_Digits() and Fixed_Scale() operations return the digits
and scale of the fixed type.
A set of global operators for the fixed type is also provided.

 72 Orbix Programmer’s Guide C++ Edition

Streaming Operators
The streaming operators for fixed are as follows:
 ostream& operator<<(ostream& os, const Fixed<d, s>& val);
 istream& operator<<(istream& is, Fixed<d, s>& val);

These operators allow native streaming to ostreams and input from
istreams. This output is padded:

// C++
ExchangeRate USRate(1.40);
cout << “US Exchange Rate = ” << USRate << endl;

// outputs 0001.400000

Arithmetic Operators
The arithmethic operators for fixed are as follows:

CORBA_Fixed<d, s> operator+ (const CORBA_Fixed<d, s>& val1,
const CORBA_Fixed<d, s>& val2);

CORBA_Fixed<d, s> operator- (const CORBA_Fixed<d, s>& val1,
const CORBA_Fixed<d, s>& val2);

CORBA_Fixed<d, s> operator* (const CORBA_Fixed<d, s>& val1,
const CORBA_Fixed<d, s>& val2);

CORBA_Fixed<d, s> operator/ (const CORBA_Fixed<d, s>& val1,
const CORBA_Fixed<d, s>& val2);

These operations allow binary arithmetic operations between fixed
types. For example:

// C++
ExchangeRate USRate(1.453);
ExchangeRate UKRate(0.84);
ExchangeRate diff;

diff = USRate - UKRate;
cout << “difference between US rate and UK rate is ”

<< diff << endl;
// outputs 0000.613000;

Logical Operators
The logical operators for fixed are as follows:

int operator> (const Fixed<d1, s1>& val1,
const Fixed<d2, s2>& val2);

int operator< (const Fixed<d1, s1>& val1,
const Fixed<d2, s2>& val2);

int operator>= (const Fixed<d1, s1>& val1,
const Fixed<d2, s2>& val2);

int operator>= (const Fixed<d1, s1>& val1,
const Fixed<d2, s2>& val2);

int operator== (const Fixed<d1, s1>& val1,
const Fixed<d2, s2>& val2);

int operator!= (const Fixed<d1, s1>& val1,
const Fixed<d2, s2>& val2);

These operators provide logical arithmetic on fixed types. For
example:

// C++
ExchangeRate USRate(1.453);
ExchangeRate UKRate(0.84);

Orbix Programmer’s Guide C++ Edition 73

if (USRate<= UKRate)
{

// Do stuff...
};

Mapping for Array
An IDL array maps to a corresponding C++ array definition. A _var
type for the array and a _forany type, which allows the array to be
inserted into and extracted from an any, are also generated.
All array indices in IDL and C++ run from 0 to <size-1>. If the
array element is a string or an object reference, the mapping to
C++ uses the same rule as for structure members, that is,
assignment to an array element releases the storage associated
with the old value.

Arrays as Out Parameters and Return Values
Arrays as out parameters and return values are handled via a
pointer to an array slice. An array slice is an array with all the
dimensions of the original specified except the first one; for
example, a slice of a 2-dimensional array is a 1-dimensional array,
a slice of a 1-dimensional array is the element type.
The CORBA IDL to C++ mapping provides a typedef for each array
slice type. For example, consider the following IDL:

// IDL
typedef long arrayLong[10];
typedef float arrayFloat[5][3];

This generates the following array and array slice typedefs:
// C++
typedef long arrayLong[10];
typedef long arrayLong_slice;

typedef float arrayFloat[5][3];
typedef float arrayFloat_slice[3];

Dynamic Allocation of Arrays
To allocate an array dynamically, you must use functions which
are defined at the same scope as the array type. For array T,
these functions are defined as:

// C++
T_slice* T_alloc();
void T_free (T_slice*);

The function T_alloc() dynamically allocates an array, or returns a
null pointer if it cannot perform the allocation. The T_free()
function deallocates an array that was allocated with T_alloc().
For example, consider the following array definition:

// IDL
typedef long vector[10];

 74 Orbix Programmer’s Guide C++ Edition

You can use the functions vector_alloc() and vector_free() as
follows:

// C++
vector_slice* aVector = vector_alloc();
// The size of the array is as specified
// in the IDL definition. It allocates a 10
// element array of CORBA::Long.
...
vector_free(aVector);

Mapping for Typedef
A typedef definition maps to corresponding C++ typedef
definitions. For example, consider the following typedef:

// IDL
typedef long CustomerId;

This generates the following C++ typedef:
// C++
typedef CORBA::Long CustomerId;

Mapping for Constants

Consider a global, file level, IDL constant such as:
// IDL
const long MaxLen = 4;

This maps to a file level C++ static const:
// C++
static const CORBA::Long MaxLen = 4;

An IDL constant in an interface or module maps to a C++ static
const member of the corresponding C++ class. For example:

// IDL
interface CheckingAccount : Account {

const float MaxOverdraft = 1000.00;
};

This maps to the following C++:
// C++
class CheckingAccount : public virtual Account {
public:

static const CORBA::Float MaxOverdraft;
};

The following definition is also generated for the value of this
constant, and is placed in the client stub implementation file:

// C++
const CORBA::Float

CheckingAccount::MaxOverdraft = 1000.00;

Orbix Programmer’s Guide C++ Edition 75

Mapping for Pseudo-Object Types
For most pseudo-object types, the CORBA specification defines an
operation to create a pseudo-object. For example, the
pseudo-interface ORB defines the operations create_list() and
create_operation_list() to create an NVList (an NVList describes
the arguments of an IDL operation) and operation
create_environment() to create an Environment.
To provide a consistent way to create pseudo-objects, in
particular, for those pseudo-object types for which the CORBA
specification does not provide a creation operation, Orbix provides
static IT_create() function(s) for all pseudo-object types in the
corresponding C++ class. These functions provide an
Orbix-specific means to create and obtain a pseudo-object
reference. An overloaded version of IT_create() is provided that
corresponds to each C++ constructor defined on the class.
IT_create() should be used in preference to C++ operator new but
only where there is no suitable compliant way to obtain a
pseudo-object reference. Use of IT_create() in preference to new
ensures memory management consistency.
The Orbix Programmer’s Reference C++ Edition gives details
of the IT_create() functions available for each pseudo-interface.
The entry for IT_create() also indicates the compliant way, if any,
of obtaining an object reference to a pseudo-object.

Memory Management and _var Types
This section describes the _var types that help you to manage
memory deallocation for some IDL types. The Orbix IDL compiler
generates _var types for the following:

• Each interface type.
• Type string.
• All variable length complex data types; for example, an array

or sequence of strings, and structs of variable data length.
• All fixed length complex data types, for consistency with

variable length types.
Conceptually, a_var type can be considered as an abstract pointer
that assumes ownership of the data to which it points.
For example, consider the following interface definition:

// IDL
interface A {

void op();
};

The following C++ code illustrates the functionality of a _var type
for this interface:

// C++
{

// Set aPtr to refer to an object:
A_ptr aPtr = ...
A_var aVar = aPtr;

// Here, aVar assumes ownership of aPtr.
// The object reference is not duplicated.

 76 Orbix Programmer’s Guide C++ Edition

aVar->op();
...

}
// Here, aVar is released (its
// reference count decremented).

The general form of the _var class for IDL type T is:
// C++
class T_var {
public:

T_var(); (1)
T_var(T_ptr IT_p); (2)
T_var(const T_var& IT_s); (3)
T_var& operator = (T_ptr IT_p); (4)
T_var& operator = (const T_var& IT_s); (5)
~T_var(); (6)
T* operator->(); (7)

};

Constructors and Destructor
The default constructor (1) creates a T_var containing a null
pointer to its data or a nil object reference as appropriate. A T_var
initialized using the default constructor can always legally be
passed as an out parameter.
Constructor (2) creates a T_var that, when destroyed, frees the
storage pointed to by its parameter. The parameter to this
constructor should never be a null pointer. Orbix does not detect
null pointers passed to this constructor.
The copy constructor (3) deep-copies any data pointed to by the
T_var constructor parameter. This copy is freed when the T_var is
destroyed or when a new value is assigned to it.
The destructor frees any data pointed to by the T_var strings and
array types are deallocated using the CORBA::string_free() and
S_free() (for array of type S) deallocation functions respectively;
object references are released.
The following code illustrates some of these points:

// C++
{

A_var aVar = ...
String_var sVar = string_alloc(10);
...
aVar->op();
...

} // Here, aVar is released,
 // sVar is freed.

Assignment Operators
The assignment operator (4) results in any old data pointed to by
the T_var being freed before assuming ownership of the T* (or
T_ptr) parameter. For example:

// C++
// Set aVar to refer to an object reference.
A_var aVar = ...

// Set aPtr to refer to an object reference.
A_ptr aPtr = ...

Orbix Programmer’s Guide C++ Edition 77

// The following assignment causes the _ptr
// owned by aVar to be released before aVar
// assumes ownership of aPtr.
aVar = aPtr;

The normal assignment operator (5) deep-copies any data pointed
to by the T_var assignment parameter. This copy is destroyed
when the T_var is destroyed or when a new value is assigned to it.

// C++
{

T_var t1Var = ...
T_var t2Var = ...

// The following assignment frees t1Var and
// deep copies t2Var, duplicating its
// object reference.
t1Var = t2Var;

}

// Here, t1Var and t2Var are released. They both ///
refer to the same object so the reference count
// of the object is decremented twice.

Assignment between _var types is only allowed between _vars of
the same type. In particular, no widening or narrowing is allowed.
Thus the following assignments are illegal:

// C++
// B is a derived interface of A.
A_var aVar = ...
B_var bVar = ...
aVar = bVar; // ILLEGAL.
bVar = aVar; // ILLEGAL.

You cannot create a T_var from a const T*, or assign a const T* to
a T_var. Recall that a T_var assumes ownership of the pointers
passed to it and frees this pointer when the T_var goes out of
scope or is otherwise freed. This deletion cannot be done on a
const T*. To allow construction from a const T* or assignment to a
T_var, the T_var would have to copy the const object. This copy is
forbidden by the standard C++ mapping, allowing the application
programmer to decide if a copy is really wanted or not. Explicit
copying of const T* objects into T_var types can be achieved via
the copy constructor for T, as shown below:

// C++
const T* t = ...;
T_var tVar = new T(*t);

operator->()
The overloaded operator->() (7) returns the T* or T_ptr held by
the T_var, but retains ownership of it. You should not call this
function unless the T_var has been initialized with a valid T* or
T_var.

 78 Orbix Programmer’s Guide C++ Edition

For example:
// C++
A_var aVar;
// First initialize aVar.
aVar = ... // Perhaps an object reference
 // returned from the Naming Service.
// You can now call member functions.
aVar->op();

The following are some examples of illegal code:
// C++
A_var aVar;
aVar->op(); // ILLEGAL! Attempt to call function
 // on uninitialized _var.
A_ptr aPtr;
aPtr = aVar; // ILLEGAL! Attempt to convert
 // uninitialized _var. Orbix does
 // not detect this error.

The second example above is illegal because an uninitialized _var
contains no pointer, and thus cannot be converted to a _ptr type.

Memory Management for Parameters
When passing operation parameters between clients and objects
in a distributed application, you must ensure that memory leakage
does not occur. Since main memory pointers cannot be
meaningfully passed between hosts in a distributed system, the
transmission of a pointer to a block of memory requires the block
to be transmitted by value and re-constructed in the receiver’s
address space. You must take care not to cause memory leakage
for the original or the new copy.
This section explains the mapping for parameters and return
values and explains the memory management rules that clients
and servers must follow to ensure that memory is not leaked in
their address spaces.
Passing basic types, enums, and fixed length structs as
parameters is quite straightforward in Orbix. However, you must
be careful when passing strings and other variable length data
types, including object references.

in Parameters
When passing an in parameter, a client programmer allocates the
necessary storage and provides a data value. Orbix does not
automatically free this storage on the client side.
For example, consider the following IDL operation:

// IDL
interface A {

...
};

interface B {
void op(in float f, in string s, in A a);

};

Orbix Programmer’s Guide C++ Edition 79

A client can call operation op() as follows:
// C++
{

CORBA::Float f = 12.0;
char* s = CORBA::string_alloc(4);
strcpy(s, “Two”);
A_ptr aPtr = ...
B_ptr bPtr = ...
bPtr->op(f, s, aPtr);
...
CORBA::string_free(s);
CORBA::release(aPtr);
CORBA::release(bPtr);

}

On the server side, the parameter is passed to the function that
implements the IDL operation. Orbix frees the parameter upon
completion of the function call in order to avoid a memory leak. If
you wish to keep a copy of the parameter in the server, you must
copy it before the implementation function returns.
This is illustrated in the following implementation function for
operation op():

// C++
void B_i::op(CORBA::Float f, const char* s,

A_ptr a, CORBA::Environment&) {
...
// Retain in parameters.
// Copy the string and maybe assign it to
// member data:
char* copy = CORBA::string_alloc(strlen(s));
strcpy(copy, s);
...

// Duplicate the object reference:
A::_duplicate(a);

}

Note: A client program should not pass a NULL or uninitialized pointer
for an in parameter type that maps to a pointer (*) or a reference
to a pointer (*&).

inout Parameters
In the case of inout parameters, a value is both passed from the
client to the server and vice versa. Thus, it is the responsibility of
the client programmer to allocate memory for a value to be
passed in.
In the case of variable length types, the value being passed back
out from the server is potentially longer than the value which was
passed in. This leads to memory management rules that you must
examine on a type-by-type basis.

 80 Orbix Programmer’s Guide C++ Edition

Object Reference inout Parameters
On the client side, the programmer must ensure that the
parameter is a valid object reference that actually refers to an
object. In particular, when passing a T_var as an inout parameter,
where T is an interface type, the T_var should be initialized to refer
to some object.
If the client wishes to continue to use the object reference being
passed in as an inout parameter, it must first duplicate the
reference. This is because the server can modify the object
reference to refer to something else when the operation is
invoked. If this were to happen, the object reference for the
existing object would be automatically released.
On the server side, the object reference is made available to the
programmer for the duration of the function call. The object
referenced is automatically released at the end of the function call.
If the server wishes to keep this reference, it must duplicate it.
The server programmer is free to modify the object reference to
refer to another object. To do so, you must first release the
existing object reference using CORBA::release(). Alternatively,
you can release the existing object reference by assigning it to a
local _var variable, for example:

// C++
// Server code.
void B_i::opInout(CORBA::Float& f,

char*& s, A_ptr& a,
CORBA::Environment&) {

A_var aTempVar = a;
a = ... // New object reference.
...

}

Any previous value held in the _var variable is properly deallocated
at the end of the function call.

String inout Parameters
On the client side, you must ensure that the parameter is a valid
NUL-terminated char*. It is your responsibility to allocate storage
for the passed char*. This storage must be allocated via
string_alloc().
After the operation has been invoked, the char* may point to a
different area of memory, since the server is free to deallocate the
input string and reassign the char* to point to new storage. It is
your responsibility to free the storage when it is no longer needed.
On the server side, the string pointed to by the char* which is
passed in may be modified before being implicitly returned to the
client, or the char* itself may be modified. In the latter case, it is
your responsibility to free the memory pointed to by the char*
before reassigning the parameter. In both cases, the storage is
automatically freed at the end of the function call. If the server
wishes to keep a copy of the string, it must take an explicit copy of
it.

Orbix Programmer’s Guide C++ Edition 81

An alternative way to ensure that the storage for an inout string
parameter is released is to assign it to a local _var variable, for
example:

// C++
// Server code.
void B_i::opInout(CORBA::Float& f,

char*& s, A_ptr& a,
CORBA::Environment&) {

String_var sTempVar = s;
s = ... // New string.
...

}

Any previous value held in the _var variable is properly deallocated
at the end of the function call.
For unbounded strings, the server programmer is free to pass a
string back to the client that is longer than the string which was
passed in. Doing so would, of course, cause an automatic
reallocation of memory at the client side to accommodate the new
string.

Sequence inout Parameters
On the client side, you must ensure that the parameter is a valid
sequence of the appropriate type. Recall that this sequence may
have been created with either ‘release = 0’ (false) semantics or
‘release = 1’ (true) semantics. In the former case, the sequence is
not responsible for managing its own memory. In the latter case,
the sequence frees its storage when it is destroyed, or when a new
value is assigned into the sequence.
In all cases, it is the responsibility of the client programmer to
release the storage associated with a sequence passed back from
a server as an inout parameter.
On the server side, Orbix is unaware of whether the incoming
sequence parameter was created with release = 0 or release = 1
semantics, since this information is not transmitted as part of a
sequence. Orbix must assume that release is set to 1, since failure
to release the memory could result in a memory leak.
The sequence is made available to the server for the duration of
the function call, and is freed automatically upon completion of the
call. If the server programmer wishes to use the sequence after
the call is complete, the sequence must be copied.
A server programmer is free to modify the contents of the
sequence received as an inout parameter. In particular, the length
of the sequence that is passed back to the client is not constrained
by the length of the sequence that was passed in.
Where possible, use only sequences created with release = 1 as
inout parameters.

 82 Orbix Programmer’s Guide C++ Edition

Type any inout Parameters
The memory management rules for inout parameters of type any
are the same as those for sequence parameters as described
above.
There is a constructor for type CORBA::Any which has a release
parameter, analogous to that of the sequence constructors (refer
to the chapter “The Any Data Type” on page 173). However, the
warning provided above in relation to inout sequence parameters
does not apply to type any.

Other inout Parameters
For all other types, including variable length unions, arrays and
structs, the rules are the same.
The client must make sure that a valid value of the correct type is
passed to the server. The client must allocate any necessary
storage for this value, except that which is encapsulated and
managed within the parameter itself. The client is responsible for
freeing any storage associated with the value passed back from
the server in the inout parameter, except that which is managed
by the parameter itself. This client responsibility is alleviated by
the use of _var types, where appropriate.
The server is free to change any value which is passed to it as an
inout parameter. The value is made available to the server for the
duration of the function call. If the server wishes to continue to
use the memory associated with the parameter, it must take a
copy of this memory.

out Parameters
A client program passes an out parameter as a pointer. A client
may pass a reference to a pointer with a null value for out
parameters because the server does not examine the value but
instead just overwrites it.
The client programmer is responsible for freeing storage returned
to it via a variable length out parameter. The memory associated
with a variable length parameter is properly freed if a _var variable
is passed to the operation.
For example, consider the following IDL:

// IDL
struct VariableLengthStruct {

string aString;
};

struct FixedLengthStruct {
float aFloat;

};

interface A {
void opOut(out float f,

out FixedLengthStruct fs,
out VariableLengthStruct vs);

};

Orbix Programmer’s Guide C++ Edition 83

The operation opOut() is implemented by the following C++
function:

// C++
A_i::opOut(

CORBA::Float& f,
FixedLengthStruct& fs,
VariableLengthStruct*& vs,
CORBA::Environment&) {
...

}

A client calls this operation as follows:
// C++
{

FixedLengthStruct_var fs;
VariableLengthStruct_var vs;
A_var aVar = ...;
aVar->opOut(fs, vs);
aVar->opOut(fs, vs); // 1st results freed.

} // 2nd results freed.

The client must explicitly free memory if _var types are not used.
A fixed-length struct out parameter maps to a struct reference
parameter. A variable-length struct out parameter maps to a
reference to a pointer to a struct. Since the _var type contains
conversion operators to both of these types, the difference in the
mapping for out parameters for fixed length and variable length
structs is hidden. If _var types are not used, you must use a
different syntax when passing fixed and variable length structs.
For example:

// C++
{

//You must allocate memory for a fixed
//length struct
FixedLengthStruct fs;

//No need to initialize memory for a variable
//length struct
VariableLengthStruct* vs_p;
aVar->opOut(fs, vs_p)

// Use fs and vs_p.
...

// Free pointer vs_p before passing it to
// A_i::opOut() again.
delete vs_p;
aVar->opOut(*fs, vs_p);

// Use fs and vs_p.
...

// Delete memory pointed to by vs_p
delete vs_p;

}

 84 Orbix Programmer’s Guide C++ Edition

On the server side, the storage associated with out parameters is
freed by Orbix when the function call completes. The programmer
must retain a copy (or duplicate an object reference) to retain the
value. For example:

// C++
A_i::opOut(

CORBA::Float& f,
FixedLengthStruct& fs,
VariableLengthStruct*& vs,
CORBA::Environment&) {

// To retain the variable length struct:
VariableLengthStruct* myVs =

new VariableLengthStruct(*vs);
...

}

In this example, you take a copy of the struct parameter by using
the default C++ copy constructor.
A server may not return a null pointer for an out parameter
returned as a T* or T*&—that is, for a variable length struct or
union, a sequence, a variable length or fixed length array, a string
or any.
In all cases, the client is responsible for releasing the storage
associated with the out parameter when the value is no longer
required. This responsibility can be eased by associating the
storage with a _var type, where appropriate, which assumes
responsibility for its management.

Return Values
The rules for managing the memory of return values are the same
as those for managing the memory of out parameters, with the
exception of fixed-length arrays. A fixed-length array out
parameter maps to a C++ array parameter, whereas a
fixed-length array return value maps to a pointer to an array slice.
The server should set the pointer to a valid instance of the array.
This cannot be a null pointer. It is the responsibility of the client to
release the storage associated with the return value when the
value is no longer required.

An Example of Applying the Rules for Object References
An important example of the parameter passing rules arises in the
case of object references. Consider the following IDL definitions:

// IDL
interface I1 {
};
interface I2 {

I1 op(in I1 par);
};

The following implementation of operation I2::op() is incorrect:
// C++
I1_ptr I2::op(I1_ptr par) {

return par;
}

Orbix Programmer’s Guide C++ Edition 85

If the object referenced by the parameter par does not exist in the
server process’s address space before the call, Orbix creates a
proxy for this object within that address space. This object initially
has a reference count of one. At the end of the call to I2::op(),
this count is decremented twice—once because par is an in
parameter, and once because it is also a return value. The code
therefore tries to return a reference that is found by attempting to
access a proxy that no longer exists—with undefined results.
A similar error in reference counts results if the object (or its
proxy) referenced by the parameter par already exists in the
server process’s address space.
The correct coding of I2::op() is:

// C++
I1_ptr I2::op(I1_ptr par) {

return I1::_duplicate(par);
}

 86 Orbix Programmer’s Guide C++ Edition

 Orbix Programmer’s Guide C++ Edition 87

Using and
Implementing IDL
Interfaces
This chapter describes how servers create objects that implement
IDL interfaces, and shows how clients access these objects
through IDL interfaces. This chapter shows how to use and
implement CORBA objects through a detailed description of the
banking application introduced in “Getting Started With Orbix”.

Overview of an Example Application
In the BankSimple example, an Orbix server creates a single
distributed object that represents a bank. This object manages
other distributed objects that represent customer accounts at the
bank.
A client contacts the server by getting a reference to the bank
object. This client then calls operations on the bank object,
instructing the bank to create new accounts for specified
customers. The bank object creates account objects in response to
these requests and returns them to the client. The client can then
call operations on these new account objects.
This application design, where one type of distributed object acts
as a factory for creating another type of distributed object, is very
common in CORBA.
The source code for the example described in this chapter is
available in the demos\common\banksimple directory of your Orbix
installation.

 88 Orbix Programmer’s Guide C++ Edition

Overview of the Programming Steps
1. Define IDL interfaces to your application objects.
2. Compile the IDL interfaces.
3. Implement the IDL interfaces with C++ classes.
4. Write a server program that creates instances of the

implementation classes. This involves:
i. Initializing the ORB.
ii. Creating initial implementation objects.
iii. Allowing Orbix to receive and process incoming requests

from clients.
5. Write a client program that accesses the server objects. This

involves:
i. Initializing the ORB.
ii. Getting a reference to an object.
iii. Invoking object attributes and operations.

6. Compile the client and server.
7. Run the application. This involves:

i. Running the Orbix daemon process.
ii. Registering the server in the Implementation Repository.
iii. Running the client.

Defining IDL Interfaces
This example uses two IDL interfaces: an interface for the bank
object created by the server and an interface that allows clients to
access the account objects created by the bank.
The IDL interfaces are called Bank and Account, defined as follows:

// IDL
// In banksimple.idl

module BankSimple {

typedef float CashAmount;
interface Account;

// A factory for bank accounts.
interface Bank {

// Create new account with specified name.
Account create_account(in string name);
// Find the specified named account.
Account find_account(in string name);

};

interface Account {
readonly attribute string name;
readonly attribute CashAmount balance;

void deposit(in CashAmount amount);
void withdraw(in CashAmount amount);

};
};

Orbix Programmer’s Guide C++ Edition 89

The server creates a Bank object that accepts operation calls such
as create_account() from clients. The operation create_account()
instructs the Bank object to create a new Account object in the
server. The operation find_account() instructs the Bank object to
find an existing Account object.
In this example, all of the objects (both Bank and Account objects)
are created in a single server process. A real system could use
several different servers and many server processes.
For details on how to compile your IDL interfaces, refer to
“Compiling IDL Interfaces”.

Implementing IDL Interfaces
This section describes in detail the mechanisms enabling you to
define C++ classes to implement IDL interfaces. To implement an
IDL interface, you must provide a C++ class that includes member
functions corresponding to the operations and attributes of the
IDL interface. Orbix supports two mechanisms for relating an
implementation class to its IDL interface:

• The BOAImpl approach.
• The TIE approach.
Most server programmers use one of these approaches
exclusively, but you can use both in the same server. Client
programmers do not need to be concerned with which of these
mechanisms is used.

 90 Orbix Programmer’s Guide C++ Edition

The BOAImpl Approach to Implementing Interfaces
For each IDL interface, Orbix generates a C++ class with the same
name. Orbix also generates a second C++ class for each IDL
interface, taking the name of the interface with BOAImpl appended.
For example, it generates the class AccountBOAImpl for the IDL
interface Account, and the class BankBOAImpl for the IDL interface
Bank. To indicate that a C++ class implements a given IDL
interface, that class should inherit from the corresponding
BOAImpl-class.
Each BOAImpl class inherits from a corresponding IDL
Compiler-generated C++ class; for example, AccountBOAImpl
inherits from Account. BOAImpl classes inherit from each other in
the same way that the corresponding IDL interfaces do.

Figure 9: The BOAImpl Approach to Defining a C++ Implementation Class

The BOAImpl approach is shown in Figure 9 for the Account IDL
interface. For simplicity, the fully-scoped name
(BankSimple::Account) is not used.
The Orbix IDL compiler produces the C++ classes Account and
AccountBOAImpl. You define a new class, AccountImpl, that
implements the functions defined in the IDL interface. In addition
to functions that correspond to IDL operations and attributes,
class AccountImpl can contain user-defined constructors, a
destructor, and private and protected members.

Note: This guide uses the convention that interface A is implemented by
class AImpl. It is not necessary to follow this naming scheme. In
any case, some applications might need to implement interface A
several times.

IDL Compiler

Account (IDL interface)

Account (IDL C++ class)

AccountBOAImpl

(C++ class that you write to
implement the interface

AccountImpl

Orbix Programmer’s Guide C++ Edition 91

The TIE Approach to Implementing Interfaces
Using the TIE approach, you can implement the IDL operations
and attributes in a class that does not inherit from the BOAImpl
class. In this case, you must indicate to Orbix that the class
implements a particular IDL interface by using a C++ macro to tie
together your class and the IDL interface.
To use the TIE mechanism, the server programmer indicates that
a particular class implements a given IDL C++ class by calling a
DEF_TIE macro, which has the general form:

DEF_TIE_IDL C++ class name (implementation class name)
Each call to this macro defines a TIE class. This class records that
a particular IDL C++ class is implemented by a particular
implementation class. Consider the macro call:

DEF_TIE_Account(AccountImpl)

This generates a class named TIE_Account(AccountImpl). Figure 10
shows the TIE approach. For simplicity, the fully scoped name,
BankSimple::Account, is not used.

Figure 10: The TIE Approach to Implementing Interfaces

DEF_TIE macros also work when interfaces are defined in IDL
modules. For example, if interface I is defined in module M, the
macros take the following form:

DEF_TIE_M_Impl (implementation class name)
TIE_M_Impl (implementation class name)

For example, interface Account is defined in module BankSimple and
implemented by C++ class AccountImpl. The macros thus take the
following form:

• DEF_TIE_BankSimple_Account(BankSimple_AccountImpl)

This macro is called in the implementation header file (in this
case, banksimple_accountimpl.h).

• TIE_BankSimple_Account(BankSimple_AccountImpl)

This macro is called in the implementation file (in this case,
banksimple_bankimpl.cxx).

Refer to “Using the TIE Approach” on page 95 for more details.

Account (IDL interface)

Account (IDL C++ class)

AccountImpl

IDL compiler

TIE_Account(AccountImpl)

(C++ class that you write to
implement the interface

 92 Orbix Programmer’s Guide C++ Edition

Defining Implementation Classes for IDL Interfaces
This section illustrates both the BOAImpl and TIE approaches. Two
implementation classes are required:

Note: You can automatically generate a skeleton version of the class and
function definitions for BankSimple::BankImpl and
BankSimple::AccountImpl by specifying the -S switch to the IDL
compiler.
The -S switch produces two files. If the IDL definitions are in the
file banksimple.idl, the skeleton definitions are placed in the
following files:

You can edit both files to provide a full implementation class. You
must add member variables, constructors, and destructors. Other
member functions can be added if required. You can use either the
BOAImpl or the TIE approach to relate the implementation classes
to your IDL C++ classes.

Using the BOAImpl Approach
Using this approach, you should indicate that a class implements a
specific IDL interface by inheriting from the corresponding
BOAImpl-class generated by the IDL compiler:
// C++
// In file banksimple_accountimpl.h

#define BANKSIMPLE_ACCOUNTIMPL_H_
#include “banksimple.hh”

// The Account implementation class.
class BankSimple_AccountImpl :

public virtual BankSimple::AccountBOAImpl {
public:

// IDL operations
virtual void deposit

(BankSimple::CashAmount amount,
CORBA::Environment&);

virtual void withdraw
(BankSimple::CashAmount amount,

CORBA::Environment&);

// IDL attributes
virtual char* name(CORBA::Environment&);
virtual void name

(const char* _new_value, CORBA::Environment&);

BankSimple_BankImpl Implements the Bank interface.
BankSimple_AccountImpl Implements the Account

interface.

banksimple_ih This is the class header file that defines
the class. This file declares the member
functions that you must implement. It
can be renamed to banksimple_bankimpl.h.

banksimple.ic This is the code file. It gives an empty
body for each member function and can
be renamed to banksimple_bankimpl.cxx.

Orbix Programmer’s Guide C++ Edition 93

virtual BankSimple::CashAmount balance
(CORBA::Environment&);

// C++ operations
BankSimple_AccountImpl

(const char* name, BankSimple::CashAmount
balance);

virtual ~BankSimple_AccountImpl();

protected:
CORBA::String_var m_name;
BankSimple::CashAmount m_balance;
...

};

// C++
// In file banksimple_bankimpl.h.

#define BANKSIMPLE_BANKIMPL_H_
#include <banksimple.hh>

// The Bank implementation class.
class BankSimple_BankImpl : public virtual

BankSimple::BankBOAImpl {
public:

// IDL operations.
virtual BankSimple::Account_ptr
create_account(const char* name,

CORBA::Environment&);
virtual BankSimple::Account_ptr
find_account(const char* name,

CORBA::Environment&);

// C++ operations.
BankSimple_BankImpl();
virtual ~BankSimple_BankImpl();

protected:
// This bank stores account in an array in memory.
static const int MAX_ACCOUNTS;
BankSimple::Account_var* m_accounts;
....

};

Note: The BOAImpl class is produced only if the -B switch is specified to
the IDL compiler.
Classes BankSimple_BankImpl and BankSimple_AccountImpl redefine
each of the functions inherited from their respective BOAImpl
classes. They can also add constructors, destructors, member
functions and member variables. Virtual inheritance is not strictly
necessary in the code shown; it is used in case C++ multiple
inheritance is required later. Any function inherited from the
BOAImpl class is virtual because it is defined as virtual in the
BOAImpl class. Therefore, it is not strictly necessary to explicitly
mark them as virtual in an implementation class (for example,
BankSimple_AccountImpl).
The accounts managed by a bank are stored in a array with
members of type BankSimple::Account_var.

 94 Orbix Programmer’s Guide C++ Edition

Outline of the Bank Implementation (BOAImpl Approach)
First, in BankSimple_BankImpl::create_account(), you should
construct a new BankSimple::Bank object. The function
create_account() corresponds to an IDL operation, and its return
value is of type BankSimple::Account_ptr:
// C++
// In file banksimple_bankimpl.cxx.

// Add a new account.
BaBankSimple::Account_ptr
BankSimple_AccountImpl::create_account

(const char* name, CORBA::Environment&) {

int i = 0;
for (; i < MAX_ACCOUNTS& !CORBA::is_nil(m_accounts[i]);

++i)
{ }

if (i < MAX_ACCOUNTS){
// Create an account with zero balance.
m_accounts[i]=new BankSimple_AccountImpl(name, 0.0);
cout << “create_account: Created with name:” << name <<

endl;
return BankSimple::Account::_duplicate(m_accounts[i]);

}
else {

// Cannot create an account, return nil.
cout << “create_account: failed, no space left!” << endl;
return BankSimple::Account::_nil();

}
}

You must call BankSimple::Account::_duplicate() because Orbix
calls CORBA::release() on any object returned as an out/inout
parameter or as a return value. The reference count on the new
object is initially one, and subsequently calling CORBA::release()
without first calling BankSimple::Account::_duplicate() results in
deletion of the object.
Using the BOAImpl approach, the Bank implementation code is as
follows:
// C++
// In file bankSimple_bankImpl.cxx.

// Implementation of the BankSimple::Bank interface.
#include “banksimple_bankimpl.h”
#include “banksimple_accountimpl.h”

// Maximum number of accounts handled by the bank.
const int BankSimple_BankImpl::MAX_ACCOUNTS = 1000;

// BankSimple_BankImpl constructor.
BankSimple_BankImpl::BankSimple_BankImpl():

m_accounts(new BankSimple::Account_var[MAX_ACCOUNTS]) {

// Make sure all accounts are nil.
for (int i = 0; i < MAX_ACCOUNTS; ++i) {

m_accounts[i] = BankSimple::Account::_nil();
}

Orbix Programmer’s Guide C++ Edition 95

// BankSimple_BankImpl destructor.
BankSimple_BankImpl::~BankSimple_BankImpl() {

delete [] m_accounts;
}

// Add a new account.
BankSimple::Account_ptr
BankSimple_AccountImpl::create_account

(const char* name, CORBA::Environment&) {
...
}

// Find a named account
BankSimple::Account_ptr
BankSimple_BankImpl::find_account

(const char* name, CORBA::Environment&) {
...
}

}

In this example, the possibility of making the server objects
persistent is ignored. You can do this by storing the account and
bank data in files or in a database. Refer to the chapter “Loading
Objects at Runtime” on page 267 for more details.

Using the TIE Approach
Using the TIE Approach, an implementation class does not have to
inherit from any particular base class. Instead, a class implements
a specific IDL interface by using the DEF_TIE macro.

The DEF_TIE Macro
A version of the DEF_TIE macro is available for each IDL C++
class. The macro takes one parameter—the name of a C++ class
implementing this interface:

// C++
// In file banksimple_accountimpl.h
class BankSimple_AccountImpl {
... // As before.
};

// DEF_TIE Macro call.
DEF_TIE_BankSimple_Account(BankSimple_AccountImpl)

This macro call defines a TIE class that indicates that class
BankSimple_AccountImpl implements interface BankSimple::Account.

// C++
// In file banksimple_bankimpl.h

class BankSimple_BankImpl {
. . . // As before.

};

// DEF_TIE Macro call.
DEF_TIE_BankSimple_Bank(BankSimple_BankImpl)

This macro call defines a TIE class which indicates that class
BankSimple_BankImpl implements interface BankSimple::Bank.

 96 Orbix Programmer’s Guide C++ Edition

The TIE Class
The TIE_BankSimple_Account(BankSimple_AccountImpl) construct is a
preprocessor macro call that expands to the name of a C++ class
representing the relationship between the BankSimple::Account and
BankSimple_AccountImpl classes. This class is defined by the macro
call DEF_TIE_BankSimple_Account(BankSimple_AccountImpl). Its
constructor takes a pointer to a BankSimple_AccountImpl object as a
parameter.
The C++ class generated by calling the macro
TIE_BankSimple_Account(BankSimple_AccountImpl) has a name that
is a legal C++ identifier, but you do not need to use its actual
name. You should use the macro call
TIE_BankSimple_Account(BankSimple_AccountImpl) when you wish to
use this class.
The TIE approach gives a complete separation of the class
hierarchies for the IDL Compiler-generated C++ classes and the
class hierarchies of the C++ classes used to implement the IDL
interfaces.
Consider an IDL operation that returns a reference to an Account
object; for example, BankSimple::Bank::create_account(). In the
IDL C++ class, this is translated into a function returning an
BankSimple::Account_ptr.
However, using the TIE approach, the actual object to which a
reference is returned is of type BankSimple_AccountImpl. This is not
a derived class of BankSimple::Account. Therefore, the server
should create an object of type
TIE_BankSimple_Account(BankSimple_AccountImpl). This TIE object
references the BankSimple_AccountImpl object, and a reference to
the TIE object should be returned by the function. This is because
the class TIE_BankSimple_Account(BankSimple_AccountImpl) is a
derived class of class BankSimple::Account. All invocations on the
TIE object are automatically forwarded by it to the associated
BankSimple_AccountImpl object.
When you code the server you create the BankSimple_AccountImpl
object and a TIE object. The server should then use the TIE object,
rather than the BankSimple_AccountImpl object directly. A bank’s
linked list of accounts, for example, should then point to TIE
objects, rather than directly pointing to the BankSimple_AccountImpl
objects.
A TIE object automatically delegates all incoming operation calls to
its corresponding implementation object. For example, all
invocations on a TIE_Account(BankSimple_AccountImpl) object are
automatically passed to the BankSimple_AccountImpl object to
which the TIE object holds a pointer.

Note: By default, calling CORBA::release() on a TIE object with a
reference count of one also deletes the referenced object. The TIE
object’s destructor calls the delete operator on the
implementation object pointer it holds. This is usually the desired
behavior; however, you can use CORBA::BOA::propagateTIEdelete()
to specify whether the TIE object should be deleted. Refer to the
Orbix Programmer’s Reference C++ Edition for more details.

Orbix Programmer’s Guide C++ Edition 97

Using the TIE approach, the bank service header file might look as
follows:
// C++
// In file banksimple_bankimpl.h

#define BANKSIMPLE_BANKIMPL_H_
#include <banksimple.hh>

class BankSimple_BankImpl {
public:

// IDL-defined operations.
virtual BankSimple::Account_ptr
create_account(const char* name, CORBA::Environment&);

virtual BankSimple::Account_ptr
find_account(const char* name, CORBA::Environment&);
// C++ operations.
BankSimple_BankImpl();
virtual ~BankSimple_BankImpl();

protected:
// This bank steored accounts in an array of Account_var.
static const int MAX_ACCOUNTS;
BankSimple::Account_var* m_accounts;

};

// Indicate that BankSimple_BankImp implements
// IDL interface BankSimple::Account.
DEF_TIE_BankSimple_Account(BankSimple_BankImpl)

Outline of the Bank Implementation (TIE Approach)
An outline of the code for BankSimple_BankImpl::create_account() is
shown below:
// C++
// In file banksimple_bankimpl.cxx

BankSimple::Account_ptr BankSimple_BankImpl::create_account
(const char* name, CORBA::Environment&) {

// Ensure that a valid account name is found.
int i = 0;
for (; i < MAX_ACCOUNTS& & CORBA::is_nil(m_accounts[i])

++i) {
...

}

if (i < MAX_ACCOUNTS) {
// Create an account with zero balance.
m_accounts[i] =

 new TIE_BankSimple_Account(BankSimple_AccountImpl)
(new BankSimple_AccountImpl(name, 0.0));

...
}
else {

... // Cannot create account, return nil.
}

};

The BankSimple::Account_ptr is initialized to reference a TIE object
that points in turn to the new BankSimple_AccountImpl object.

 98 Orbix Programmer’s Guide C++ Edition

Note: The object that a TIE object points to must be dynamically
allocated using C++ operator new. By default, when a TIE object is
destroyed, it deletes the object that it points to. The object must
therefore be dynamically allocated.
Using the TIE approach, the Bank implementation class code is:
// C++
// In file banksimple_bankimpl.cxx

// Implementation of the BankSimple::Bank interface.
#include “banksimple_bankimpl.h”
#include “banksimple_bccountimpl.h”

const int BankSimple_BankImpl::MAX_ACCOUNTS = 1000;

// Constructor.
BankSimple_BankImpl::BankSimple_BankImpl():

m_accounts(new BankSimple::Account_var[MAX_ACCOUNTS]) {

// Make sure all accounts are nil.
for (int i = 0; i < MAX_ACCOUNTS; ++i) {

m_accounts[i] = BankSimple::Account::_nil();
}

}

// Destructor.
BankSimple_BankImpl::~BankSimple_BankImpl() {

delete [] m_accounts;
}
// Add a new account.
BankSimple::Account_ptr

BankSimple_AccountImpl::create_account(const char*name,
CORBA::Enviroment&) {

int i = 0;
for (; i < MAX_ACCOUNTS& !CORBA::is_nil(m_accounts[i]);

 ++i)
{ }

if (i < MAX_ACCOUNTS) {
m_accounts[i]=

new TIE_BankSimple_Account(BankSimple_AccountImpl)
(new BankSimple_AccountImpl(name, 0.0));

cout << “create_account: Created with name:” << name
 << endl;

return BankSimple::Account::_duplicate(m_accounts[i]);
}
else {

cout << “create_account: failed, no space left!” << endl;
return BankSimple::Account::_nil();

}
}

// Find a named account
BankSimple::Account_ptr

BankSimple_BankImpl::find_account (const char* name,
CORBA::Enviroment&) {

... // Same as for BOAImpl approach.
}

};

Orbix Programmer’s Guide C++ Edition 99

Developing a Server Program
To develop a server program, you must do the following:

• Create initial implementation objects for these interfaces.
• Make these objects available to clients, by allowing Orbix to

receive and process incoming requests from clients.
This section describes how you can write a server main() function
that creates a Bank implementation object and makes this object
available to clients.

Writing a Server main() Function
This section shows the main() function of the banking application,
using both the BOAImpl and the TIE approaches. In this example,
the server main() function creates an implementation object of
type Bank.

Using the BOAImpl Approach
The main() function for the server shows the creation of a Bank
object. You could write this as follows:

// C++
// In file server.cxx.

#include <it_demo_nsw.h>
#include “banksimple_bankimpl.h”
#inlcude “banksimple_accountimpl.h”

int main(int argc, char* argv[])) {
try {

// Process command line arguments and server options.
....

// initialize the ORB and BOA (CORBA-defined).
CORBA::ORB_var orb = CORBA::Orb_init (argc, argv, “Orbix”);
CORBA::BOA_var boa = orb->BOA_init(argc, argv, “Orbix_BOA”);

// Set diagnostics as specified on the command line.
orb->setDiagnostics(serveropt.diagnostics());

// Set server name (required to export object references).
orb->setServerName(serveropt.server_name());

// Indicate server should not quit when clients are connected.
boa->setNoHangup(1);

// For correct IOR generation, you must call
// impl_is_ready() before objects are created.
boa->impl_is_ready((char*)serveropt.server_name(), 0);

// Create a new Bank implementation object.
BankSimple::Bank_var my_bank = new BankSimple_BankImpl;
// To simplify the use of the naming service, a Naming
// Service Wrapper (NSW) is provided. Refer to
// DemoLib/IT_DEMO_NSW* for further details.

// Define a NSW object and define a name prefix to be
// used for subsequent operations.

 100 Orbix Programmer’s Guide C++ Edition

IT_Demo_NSW ns_wrapper:
ns_wrapper.setNamePrefix(serveropt.context());

// Specify the name that the bank object is known as in
// the naming service.
const char* bank_name - “BankSimple.Bank”;

// Create missing contexts and overwrite existing entries in
// the naming serivce.
ns_wrapper.setBehaviourOptions

(IT_Demo_NSW::createMissingContexts);
ns_wrapper.setBehaviourOption

(IT_Demo_NSW::overwriteExistingObject)

// If unbind option is specified, unbind the server’s
// objects from the naming service and exit.
if (server.opt.unbindns()) {

cout << “Un-binding objects from the Naming Service”
<< endl;

ns_wrapper.removeObject(bank_name);
cout << “exiting...” << endl;
return 0;

}

// If the bind option is specified on the command line,
// register the server’s object with the naming service.
if (serveropt.bindns()) {

cout << “Binding objects in the Naming Service”
<< endl;

ns_wrapper.registerObject(bank_name, my_bank);
}

// Server has completed initialization, and waits for
// incoming requests.
boa->impl_is_ready((char*)serveropt.server_name(),

 serveropt.timeout());

// impl_is_ready() returns only when Orbix times-out an
// idle server.
cout << “server exiting” << endl;

}
catch (const CORBA::Exception& e) {

cerr <<“Unexpected exception” << e << endl;
return 1;

}
return 0;

}

This server initializes a BankSimple::Bank_var object reference with
a new BankSimple_BankImpl object. The BankSimple_BankImpl object
is created using a default constructor.
Before creating the Bank object, the server initializes the ORB and
BOA. The server then calls impl_is_ready() to indicate that it has
completed initialization and is ready to receive operation requests
on its objects.

Orbix Programmer’s Guide C++ Edition 101

Using the TIE Approach
The implementation of the server main() function is similar in the
TIE approach. The difference is that the server creates a TIE
object in addition to a BankSimple_BankImpl object:

// C++
// In file server.cxx.

#include <BankSimple_BankImpl.h>
#inlcude <BankSimple_AccountImpl.h>
#include <IT_Demo_NSW.h>

int main(int argc, char* argv[])) {
....

// Create a new Bank implementation object.
BankSimple::Bank_var my_bank =

new TIE_BankSimple_Bank(BankSimple_BankImpl)
(new BankSimple_BankImpl);

....
// Wait for imcoming requests.
boa->impl_is_ready((char*)serveropt.server_name(),

 serveropt.timeout());
cout << “server exiting” << endl;

...
}

This server main() initializes a BankSimple::Bank_var object
reference with a new TIE object. The BankSimple_BankImpl object is
created using a default constructor. The accounts managed by a
bank are stored in a list with members of type
BankSimple::Account_ptr. In this case, therefore, the linked list is
composed of TIE objects.

Initializing the Server
A server is normally coded so that it initializes itself and creates an
initial set of objects. It then calls boa->impl_is_ready() to indicate
that it has completed its initialization and is ready to receive
operation requests on its objects.

impl_is_ready()
The impl_is_ready() function normally does not return
immediately. It blocks the server until an event occurs, handles
the event, and re-blocks the server to wait for another event. A
server must call impl_is_ready(); however, a client must not call
this function.
The impl_is_ready() function is declared as follows:

// C++
// In class CORBA::BOA.
void impl_is_ready (

const char* server_name = “ ”,
CORBA::ULong timeOut =

CORBA::ORB::DEFAULT_TIMEOUT,
CORBA::Environment& IT_env =

CORBA::IT_chooseDefaultEnv());

When a server is launched by Orbix, the server name is already
known to Orbix and therefore does not need to be passed to
impl_is_ready(). However, when a server is launched manually or
externally to Orbix, the server name must be communicated to
Orbix before any Orbix services are used.

 102 Orbix Programmer’s Guide C++ Edition

The normal way to do this is as the first parameter to
impl_is_ready(). To allow a server to be launched either
automatically or manually, you should specify the server_name
parameter.
By default, servers must be registered with Orbix, using the putit
command. If an unknown server name is passed to
impl_is_ready(), the call is rejected. However, you can configure
the Orbix daemon (orbixd) to allow unregistered servers to be run
manually. Refer to the Orbix C++ Edition Administrator’s
Guide for details.
If you do not want to specify the server_name, but want to specify a
non-default timeOut or Environment, you should pass a zero length
string (“”) for the value of the server_name parameter.
The impl_is_ready() function returns only when a timeout occurs
or an exception occurs while waiting for or processing an event.
The timeout parameter indicates the number of milliseconds to
wait between events.
A timeout occurs if Orbix has to wait longer than the specified
timeout for the next event. A timeout of zero indicates that
impl_is_ready() should time out and return immediately without
checking for any pending event. A timeout does not cause
impl_is_ready() to raise an exception.

Note: A server can time out either because it has no clients for the
timeout duration, or because none of its clients uses it for that
period.
The default timeout can be passed explicitly as
CORBA::ORB::DEFAULT_TIMEOUT. You can specify an infinite timeout
by passing CORBA::ORB::INFINITE_TIMEOUT.

Developing a Client Program
From the point of view of the client, the functionality provided by
the BankSimple example is defined by the IDL interface definitions.
A typical client program locates a remote object, gets a reference
to the object and then invokes operations on the object.
These three concepts, object location, getting an object reference,
and remote invocations, are important concepts in distributed
systems:

• Object location involves searching for an object in the
available nodes.

• Getting a reference to an object—establishes the facilities
required to make remote invocations possible. In Orbix this
involves the implicit creation of a proxy—a reference to the
proxy is then returned to the client.

• Remote invocations in Orbix occur when normal C++ function
calls are made on proxies.

These concepts are illustrated in this section. This client uses the
Naming Service Wrappers to find and get a reference to a Bank
object. Remote function invocations can then be made on the
object. Alternatives to using the Naming Service are discussed
later in this section.

Orbix Programmer’s Guide C++ Edition 103

You should refer to the chapter “Making Objects Available in
Orbix” for a detailed discussion.
The main BankSimple client program performs initialization and
then starts a simple interactive menu, enabling you to call IDL
operations on a Bank. The client uses the following files to make
remote invocations:

• bankmenu.cxx
This calls operations on the Bank IDL interface.

• accountmenu.cxx

This calls operations on the Account IDL interface.
The code for the client is as follows:

// C++
// In file client.cxx

#include <it_demo_streams.h>
#include <it_demo_clientoptions.h>
#include <it_demo_nsw.h>
#include "bankmenu.h"

// Connects to bank object, and runs a simple menu loop
// to call operations on bank or accounts.

int main (int argc,char* argv[]) {
...
// ORB Setup - initialize the ORB.
CORBA::ORB_var orb = CORBA::ORB_init(argc, argv, "Orbix");

// Set the diagnostic level from the options
orb->setDiagnostics(clientopt.diagnostics());

// Naming Service Setup
IT_Demo_NSW ns_wrapper;
ns_wrapper.setNamePrefix(clientopt.context());

// Get CORBA object.
// Specify the object name in the naming service.
const char* object_name = "BankSimple.Bank";

// Get a reference to the required object from the NSW.
CORBA::Object_var obj = ns_wrapper.resolveName(object_name);

// Narrow the object reference.
BankSimple::Bank_var bank = BankSimple::Bank::_narrow(obj);
if (CORBA::is_nil(bank)) {

cerr << "Object \"" << object_name
<< "\"in the naming service" << endl
<< "\tis not of the expected type."<< endl;

return 1;
}

// Start client menu loop
BankMenu main_menu(bank);
main_menu.start();

}
...

}

 104 Orbix Programmer’s Guide C++ Edition

Alternatives to the Naming Service
Using the Naming Service is the CORBA-defined way to establish
communications with a particular object. There are three other
ways that a client can obtain a reference to an object it needs to
communicate with:

• Using a return value or an out parameter to an IDL operation
call.

• Using the Orbix-specific _bind() mechanism, although this is a
deprecated feature.

• Use resolve_initial_references()

Using a Return Value or an Out Parameter
A client can also receive an object reference as a return value or
as an out parameter to an IDL operation call. This results in the
creation of a proxy in the client’s address space. Operation
create_account(), for example, returns a reference to an Account
object, and a client that calls this operation can then make
operation calls on the new object.

Using _bind()
The following code sample shows how a client could obtain a
reference to a Bank object using the Orbix-specific _bind()
operation:
try {

CORBA::ORB_var orb =
CORBA::ORB_init(argc, argv, “Orbix”);
const char* host = ...;

BankSimple::Bank_var bank =
BankSimple::Bank::_bind

(“BankMarker:IT_demo/BankSimple/Bank”, host);
...

}
catch (const CORBA::Exception& e) {

cout << “Unexpected exception” << e << endl;
}

The bind mechanism is implemented by the static member
function _bind() of C++ class BankSimple::Bank. This function takes
several parameters that uniquely identify the location of the
specified implementation object in the system. Orbix chooses the
named implementation object within the named server on the
named host. The value returned by BankSimple::Bank::_bind() is a
remote object reference. This is a pointer to a proxy object in the
client address space. Refer to “Tabular Summary of Parameters to
_bind()” on page 124 for further information.

Note: The anonymous bind feature, which allowed the Orbix runtime to
choose any random implementation object in the named server, is
no longer a feature of Orbix.
In general, a process must use the Naming Service, call _bind(),
or call resolve_initial_references() at least once in order to
communicate with objects outside of its address space. However,
it should not overuse either these features. For many applications
it is better for a server to make its objects known to its clients
through IDL interfaces provided by other objects.

Orbix Programmer’s Guide C++ Edition 105

Where possible, you should use a combination of the Naming
Service, resolve_initial_references(), and object references
returned through IDL operations to make objects available to
clients in your Orbix applications. The Orbix _bind() function is
convenient, but is not defined in the CORBA standard.

Registering the Server
The last step in developing and installing your application is to
register the server with the Implementation Repository.
The Orbix Implementation Repository records each server name
and executable filename. Registering a server enables the Orbix
daemon (orbixd) to launch a server that is not running when one
of its objects is used. If the Orbix daemon is configured to allow
unregistered servers, server registration is optional, and server
that is not known to Orbix can then be run manually. Its call to
CORBA::BOA::impl_is_ready() must specify its server name. In
addition, the server must call to impl_is_ready() before any other
calls to Orbix.
Every node in a network that runs servers must have access to an
Implementation Repository. Repositories can be shared using a
network file system.
You can register a server using either the Server Manager GUI tool
or run the Orbix putit command on the server host as follows:

putit server name server path [server command line arguments]

For example, on UNIX, the Bank server might be registered as
follows:

% putit Bank /usr/users/joe/banker

The executable file /usr/users/joe/banker is then registered as the
implementation code of the server named Bank at the current host.
The putit command does not run the executable; you can execute
this explicitly from the shell. Alternatively, it is launched
automatically by Orbix in response to an incoming operation
invocation.
For more information on registration and activation of servers,
refer to the Orbix C++ Edition Administrator’s Guide.

Execution Trace for the Example Application
This section considers the events that occur when the Bank server
and client are run. The TIE approach is used to show the initial
trace, and then the BOAImpl approach is discussed.
First a server with the name “Bank” is registered in the
Implementation Repository. Then, when an invocation arrives
from a client, Orbix launches the server using the specified
executable file; for example, /usr/users/joe/banker.
The server process creates a new TIE (of class TIE_Bank(BankImpl))
for an object of class BankSimple_BankImpl, and waits on
CORBA::BOA::impl_is_ready():

// C++
// In file server.cxx.

#include “banksimple_bankimpl.h”

 106 Orbix Programmer’s Guide C++ Edition

#inlcude “banksimple_accountimpl.h”
#include “IT_Demo_NSW.h”

int main(int argc, char* argv[])) {
....
// Create a new Bank implementation object.
BankSimple::Bank_var my_bank =

new TIE_BankSimple_Bank(BankSimple_BankImpl)
(new BankSimple_BankImpl);

....
// Wait for imcoming requests.
boa->impl_is_ready((char*)serveropt.server_name(),

 serveropt.timeout());
cout << “server exiting” << endl;

...
}

The state of the server, at the time of the impl_is_ready() call, is
shown in Figure 11. The server is now waiting for incoming
requests. If impl_is_ready() times out, the server terminates.

Figure 11: State of the Server at Launch

Now consider the client: it first binds to a Bank object, using the
Naming Service; for example:

// C++
// In file client.cxx
...
int main (int argc,char* argv[]) {

...
// Naming Service Setup
IT_Demo_NSW ns_wrapper;
ns_wrapper.setNamePrefix(clientopt.context());

// Get CORBA object.
// Specify the object name in the naming service.
const char* object_name = "BankSimple.Bank";

// Get a reference to the Bank object from the NSW.
CORBA::Object_var obj = ns_wrapper.resolveName(object_name);

// Narrow the object reference.
BankSimple::Bank_var bank = BankSimple::Bank::_narrow(obj);

BankSimple::Bank_var my_bank

BankSimple_BankImpl

Server Process

Orbix Library Code

Bank TIE

Orbix Programmer’s Guide C++ Edition 107

The result is an automatically generated proxy object in the client,
which acts as a stand-in for the remote BankSimple_BankImpl object
in the server. The object reference bank within the client is now a
remote object reference as shown in Figure 12.
The client programmer is not aware of the TIE object.
Nevertheless, all remote operation invocations on our
BankSimple_BankImpl object go via the TIE.

Figure 12: Client Binds to Bank Object (TIE Approach)

The client program proceeds by using the client menu to ask the
bank to open a new account:

// C++
// In file bankmenu.cxx
...
BankSimple::Account_var account

= m_bank->create_account(name);

When the m_bank->create_account() call is made, the function
BankSimple::BankImpl::create_account() is called (via the TIE)
within the bank server. This generates a new
BankSimple_AccountImpl object and associated TIE object. The TIE
object is linked into the BankSimple_BankImpl object’s list of
Accounts.

BankSimple::Bank_var m_bank BankSimple::Bank_var my_bank

Client Process Server Process

Orbix Library CodeOrbix Library Code

Bank TIE

Bank
proxy

BankSimple_BankImpl

object

 108 Orbix Programmer’s Guide C++ Edition

Finally, create_account() returns the Account reference back to the
client. At the client side, a new proxy is created for the Account
object, and this is referenced by the m_account variable
(Figure 13).

Figure 13: Client Accesses Account Object (TIE Approach)

Using the BOAImpl approach, the final diagram is as shown in
Figure 14.

Figure 14: Client Accesses Account Object (BOAImpl Approach)

BankSimple::Account_var

BankSimple::Bank_var m_bank

Client Process Server Process

Bank
proxy

Account
proxy

BankSimple::Bank_var
my_bank

Bank TIE account TIE

object

BankSimple_AccountImpl

object

BankSimple_BankImpl

Orbix Library CodeOrbix Library Code

m_account

BankSimple::Account_var

Orbix Library Code Orbix Library Code

BankSimple::Bank_var m_bank

Client Process Server Process

Bank
proxy

Account
proxy

BankSimple::Bank_var my_bank

object

BankSimple_AccountImpl

object

BankSimple_BankImpl

m_account

Orbix Programmer’s Guide C++ Edition 109

Comparing the TIE and BOAImpl Approaches
This section highlights further ways you can use the TIE and
BOAImpl approaches to provide implementation classes, and
compares both approaches.

Wrapping Existing Code
Orbix provides a mechanism to achieve application integration for
both new and existing applications. An application can allow other
code to use its services by providing a number of IDL interfaces
and making these available to the overall system. This allows you
to write new applications by combining the facilities of existing
applications. Because the components of the system are objects
whose internals are hidden from their clients, these objects can
provide the basis for integrating with legacy systems. Over time,
legacy systems can be replaced with newer systems which
nevertheless provide the same CORBA interfaces. One aspect of
this wrapping of existing code is the ability to implement an IDL
interface using existing C++ classes.

Using the TIE Approach
The TIE approach is clear on whether or not it supports wrapping
existing code. If the existing C++ class has exactly the correct
member functions (each function has exactly the correct name
and correct parameter types), you must call the appropriate
DEF_TIE macro. In addition, you must also add the
CORBA::Environment parameter to the member functions because
existing code would not have this parameter. The existing code
may have other functions that do not correspond to IDL attributes
or operations in the IDL interface in question. However, if the
existing C++ code does not have exactly the correct member
functions, the TIE approach cannot be used.

Using the BOAImpl Approach
To use the BOAImpl approach for existing code, you must use
C++ multiple inheritance to specify the relationship between the
IDL C++ class and the previously written implementation class.
Instances of the derived class are then valid implementations of
the IDL interface. Figure 15 on page 110 shows how you can use
the BOAImpl approach to allow a pre-existing class to implement
an IDL interface. The programmer has already implemented a
class, BankAccount, which provides an implementation of each of
the functions of the IDL interface. To indicate that this class
implements the IDL interface, a class BankSimple_AccountImpl has
been defined that inherits from both the BOAImpl-class and the
class, BankAccount, which provides the functions. Class
BankSimple_AccountImpl is the class which is said to implement the
IDL interface.
This is more difficult to code than the corresponding code for the
TIE approach, where a call to the appropriate DEF_TIE macro may
be all that is required. However, the BOAImpl approach is
significantly more flexible in its use of existing code. In particular,
the code for class BankSimple_AccountImpl can manipulate any call
that it receives before passing it on to the code for class

 110 Orbix Programmer’s Guide C++ Edition

BankAccount. This manipulation can compensate for differences in
function names and parameters, and differences in function
semantics.

Figure 15: BOAImpl Approach to Allow an Existing Class to Implement an IDL
Interface

Providing Different Implementations of the Same Interface
Both the BOAImpl and TIE approaches allow you to provide a
number of different implementations of the same IDL interface—to
provide more than one implementation class for a given IDL
interface. This is an important feature, especially in a large
heterogeneous distributed system. An object can then be created
as an instance of any one of the implementation classes. Client
programmers need not be aware of which class has been chosen.

Providing Different Interfaces to the Same Implementation
You can have a C++ implementation class that implements more
than one IDL interface. This class must declare all of the
operations defined in all of the interfaces it implements. In the TIE
approach, this common class is tied to different IDL interfaces
using multiple DEF_TIE macro calls.
In the BOAImpl approach, this usually requires an IDL interface
that derives from all of the IDL interfaces in question.

IDL compiler

BankSimple::Account (IDL interface)

BankSimple::Account (IDL C++ class)

BankSimple::AccountBOAImpl BankSimple::BankAccount (C++ class
already
written to
implement the
interface)

BankSimple::AccountImpl

(C++ class defined using
multiple inheritance from the
implementation class and the
BOAImpl-class)

Orbix Programmer’s Guide C++ Edition 111

Comparison of the BOAImpl and TIE Approaches
This section briefly compares the BOAImpl and TIE approaches to
implementing IDL interfaces in C++. In real terms, these do not
differ greatly in their power, and it is frequently a matter of
personal taste which one is preferred. The TIE and BOAImpl
approaches can be freely mixed within the same server.
The TIE approach has a small advantage in that it allows an
advanced feature known as “per-object” filtering to be used. This
allows you to specify additional code that is to be executed when
an invocation is made on a particular object; from the same or a
different address space. Both the BOAImpl and the TIE approach
enable you to specify additional code to be executed when an
attribute or operation invocation is made across an address space
boundary; from a client/server to a client/server on the same or a
different host.
Refer to “Filtering Operation Calls” for more information on using
filters with Orbix.

 112 Orbix Programmer’s Guide C++ Edition

 Orbix Programmer’s Guide C++ Edition 113

Making Objects
Available in Orbix
A central requirement in a distributed object system is for clients
to be able to locate the objects they wish to use. This chapter
describes how you can make objects available in servers and
locate those objects in clients.
Before using a CORBA object, a client must establish contact with
it. To do this, the client must get an object reference for the
required object. An object reference is a unique value that tells an
ORB where an object is and how to communicate with it.
A problem for every CORBA application is how servers can make
object references available to clients and how clients can retrieve
these references to establish contact with objects. This chapter
describes three solutions to this problem:

• Using the CORBA Naming Service.
• Using a basic protocol to transfer object references between

servers and clients.
• Using the Orbix _bind() function.
These solutions are presented after a brief introduction to how
object references work in CORBA.

Identifying CORBA Objects
Every CORBA object is identified by an object reference—a unique
value that includes all the information an ORB requires to locate
and communicate with the object. When a client gets a reference
to an object, the ORB creates a proxy in the client’s address
space. When the client calls an operation on the proxy, the ORB
transmits the request to the target object.
Orbix supports two protocols for communications between clients
and servers:

• The CORBA standard Internet Inter-ORB Protocol (IIOP),
which is the default protocol.

• The Orbix protocol.
Each of these communication protocols has its own object
reference format.

Interoperable Object References
An object that is accessible using IIOP is identified by a CORBA
interoperable object reference (IOR). An IOR encodes various
pieces of information about an object, including:

• The Internet address of the object’s host.
• A port number used to communicate with the object.
• An object reference, in the format of the native ORB protocol.
For example, an IOR for an Orbix object includes the object’s full
Orbix object reference.

 114 Orbix Programmer’s Guide C++ Edition

IORs are managed internally by the ORB. It is not necessary for
you to know the detailed structure of an IOR. However, you may
wish to publish IORs in their string format, as described in
“Transferring Object Reference Strings” on page 121.

Orbix Object References
Every object created in an Orbix application has an associated
Orbix object reference. This object reference includes the
following information:

• An object name that is unique within the object’s server. This
name is known as the object’s marker.

• The object’s server name.
• The server’s host name.
For example, the object reference for a bank account would
include the object’s marker name, the name of the server that
manages the account, and the name of the server’s host. The
bank server could, if necessary, create and name different bank
objects with different names, all managed by the same server.
In more detail, an Orbix object reference is fully specified by the
following fields:

• Object marker.
• Server name.
• Server host name.
• IDL interface type of the object.
• Interface Repository (IFR) server in which the interface

definition is stored.
• IFR server host.
All Orbix objects inherit the C++ class CORBA::Object. This
interface supplies several methods common to all object
references, including _object_to_string(). Given an Orbix object
reference, this function produces a string that has the following
format:

:\host:server_name:marker:IFR_host:IFR_server:IDL_interface

Orbix Programmer’s Guide C++ Edition 115

Class CORBA::Object also provides access to the individual fields of
an object reference string through this set of accessor functions:
// C++
// in class CORBA::Object.
const char* _host(CORBA::Environment& IT_env =

CORBA::IT_chooseDefaultEnv()) const;
const char* _implementation(CORBA::Environment& IT_env =

CORBA::IT_chooseDefaultEnv()) const;
const char* _marker(CORBA::Environment& IT_env =

CORBA::IT_chooseDefaultEnv()) const;
const char* _interfaceHost(CORBA::Environment& IT_env =

CORBA::IT_chooseDefaultEnv()) const;
const char* _interfaceImplementation(CORBA::Environment&

IT_env = CORBA::IT_chooseDefaultEnv()) const;
const char* _interfaceMarker(CORBA::Environment& IT_env =

CORBA::IT_chooseDefaultEnv()) const;

In general, the IFR host name (interfaceHost) and IFR server
(interfaceImplementation) fields are set to default values. Orbix
automatically assigns the server host, server name, and IDL
interface fields on object creation, and it is not generally
necessary to update these values. Orbix also assigns a marker
value to each object, but you can choose alternative marker
values in order to name Orbix objects explicitly.

Assigning Markers to Orbix Objects
There are two ways to specify a marker for an object: by setting
the marker when creating the object or by calling the modifier
function CORBA::Object::_marker(). If you do not specify a marker
for an object, Orbix automatically sets the marker value.
The method of assigning a marker when creating an object
depends on the approach used to implement the IDL interface:

• If you use the TIE approach, pass a marker name to the
second parameter (of type const char*) of a TIE constructor.
For example:
// C++
BankSimple::Bank_var bVar = new TIE_Bank
(BankSimple_BankImpl)

(new BankSimple_BankImpl, "College_Green");

• If you use the BOAImpl approach, pass a marker name to the
first parameter (of type const char*) of a BOAImpl
constructor. For example:
// C++
class BankSimple_BankImpl : public virtual BankBOAImpl
{
public:

BankSimple_BankImpl (const char* marker);
...

};

BankSimple_BankImpl::BankSimple_BankImpl
(const char* marker) : BankBOAImpl (marker) {

}

 116 Orbix Programmer’s Guide C++ Edition

Choosing Marker Names
A marker name chosen by Orbix consists of a string composed
entirely of numeric characters. You can ensure that your markers
are different from those chosen by Orbix by not using strings that
consist entirely of numeric characters. Marker names cannot
contain the character ‘:’ or the null character.
An object’s interface name together with its marker name must be
unique within a server. If a chosen marker is already in use when
an object is named, Orbix silently assigns a different marker to the
object. The object with the original marker will be unaffected.
There are two ways to test for this, depending on how a marker is
assigned to an object:

• If _marker(const char*) is used, you can test for a false return
value; this indicates a name clash.

• If the marker is assigned when creating a TIE or when calling
a BOAImpl class constructor, you can test for a name clash by
calling the parameterless accessor function _marker() on the
new object and comparing the marker with the one you tried
to assign. This approach is necessary because the return
value from the new operator is non-zero if there is a name
clash.

Using the CORBA Naming Service
The Naming Service allows you to associate abstract names with
CORBA objects and allows clients to find those objects by looking
up the corresponding names. A server that holds a CORBA object
binds a name to the object by contacting the Naming Service. To
obtain a reference to the object, a client contacts the Naming
Service and resolves the specified name.
Most CORBA applications make some use of the Naming Service.
Each copy of Orbix includes a copy of OrbixNames, the Orbix
implementation of the Naming Service, so you can use the Naming
Service in any of your applications.
This section provides an overview of the Naming Service and
briefly describes how you use the standard interface to the
Naming Service. Before using this service, see the OrbixNames
Programmer’s and Administrator’s Guide for more detailed
information.

The Interface to the Naming Service
The programming interface to the Naming Service is defined in
IDL. A standard set of IDL interfaces allow you to access all the
Naming Service features. OrbixNames, for example, is a normal
Orbix server that contains objects implementing these interfaces.
The Naming Service interfaces are defined in the IDL module
CosNaming:

// IDL
module CosNaming {

// Naming Service IDL definitions.
...

};

Orbix Programmer’s Guide C++ Edition 117

Format of Names in the Naming Service
The Naming Service maintains a database of names and the
objects associated with them. In the Naming Service, names can
be associated with two types of objects: a naming context or an
application object. A naming context is an object in the Naming
Service within which you can resolve the names of other objects.
The full name of an object, including all the associated naming
contexts, is known as a compound name. The first component of a
compound name gives the name of a naming context, in which the
second component is accessed. This process continues until the
last component of the compound name has been reached.
A name component is defined as an IDL structure, of type
CosNaming::NameComponent, that holds two strings:

// IDL
// In module CosNaming.
typedef string Istring;

struct NameComponent {
Istring id;
Istring kind;

};

A name is a sequence of these structures:
typedef sequence<NameComponent> Name;

The id member of a NameComponent is a simple identifier for the
object; the kind member is a secondary way to differentiate
objects and is intended to be used by the application layer. Both
the id and kind members of a NameComponent are used to
differentiate names.

Making Initial Contact with the Naming Service
The IDL interface NamingContext, defined in module CosNaming,
provides access to most features of the Naming Service. The first
step in using the Naming Service is to get a reference to an object
of this type.
Each Naming Service contains a special CosNaming::NamingContext
object, called the root naming context, that acts as an entry point
to the service. The root naming context allows you to create new
naming contexts, bind names to objects, resolve object names,
and browse existing names.
To get a reference to the root naming context, pass the string
NameService to the following C++ function call on the ORB (the
CORBA::Orbix object):

// C++
// In class CORBA::ORB.
Object_ptr resolve_initial_references(

const char* identifier)

You can then narrow the returned object reference using the
function CosNaming::NamingContext::_narrow(). Some configuration
is required for this to work, as described in the OrbixNames
Programmer’s and Administrator’s Guide.

 118 Orbix Programmer’s Guide C++ Edition

Associating Names with Objects
Once you have a reference to the root naming context, you can
begin to associate names with objects. The operation
CosNaming::NamingContext::bind() enables you to bind a name to
an object in your application. This operation is defined as:

void bind (in Name n, in Object o)
raises (NotFound, CannotProceed,
 InvalidName, AlreadyBound);

To use this operation, you first create a CosNaming::Name structure
containing the name you want to bind to your object. You then
pass this structure and the corresponding object reference as
parameters to bind().

Using Names to Find Objects
Given an abstract name for an object, you can retrieve a reference
to the object by calling CosNaming::NamingContext::resolve(). This
operation is defined as:

Object resolve (in Name n)
raises (NotFound, CannotProceed, InvalidName);

When you call resolve(), the Naming Service retrieves the object
reference associated with the specified CosNaming::Name value and
returns it to your application.

Associating a Compound Name with an Object
If you want to use compound names for your objects, you must
first create naming contexts. For example, consider the compound
name shown in Figure 16.

To create this compound name:
1. Create a naming context and bind a name with identifier

company (and no kind value) to it.
2. Create another naming context, in the scope of the company

context, and bind the name staff to it.
3. Bind the name james to your application object in the scope of

the staff context.

Figure 16: An Example Compound Name

james

staff

company

Orbix Programmer’s Guide C++ Edition 119

The operation CosNaming::NamingContext::bind_new_context()
enables you to create naming contexts:

NamingContext bind_new_context (in Name n)
raises (NotFound, CannotProceed,
 InvalidName, AlreadyBound);

To create a new naming context and bind a name to it, create a
CosNaming::Name structure for the context name and pass it to
bind_new_context(). If the call is successful, the operation returns
a reference to your newly-created naming context.

Using the Naming Service in Orbix Example Applications
The code examples presented in other chapters of this guide use
the Naming Service. To simplify the code, these examples access
the Naming Service through a set of wrapper functions. These
functions then communicate with the Naming Service using the
standard IDL interfaces.
The wrapper functions are defined in the class IT_Demo_nsw. You
can find the declaration of this class in the file IT_Demo_nsw.h in the
demos directory of your Orbix installation.
The functions are:

The functions registerObject(), resolveName(), and removeObject()
take object names as parameters. To avoid the creation of
CosNaming::Name structures directly in sample code, these functions
take name parameters in the string format described in the
OrbixNames Programmer’s and Administrator’s Guide. This
is a convenient way to format names and is also used by the
OrbixNames command-line utilities.

registerObject() This function takes two parameters: a string
format name and an object reference. It
converts the string to a CosNaming::Name
structure and then binds this name to the
specified object. If you specify a compound
name, the naming contexts must already exist.

resolveName() This function takes a string format name,
converts it to an equivalent CosNaming::Name
structure and attempts to resolve this name in
the Naming Service. It returns a reference to the
object associated with the name.

removeObject() This function removes the association between a
name and an object in the Naming Service.

setNamePrefix() Function setNamePrefix() allows you to shorten
the name parameters passed to
registerObject(), resolveName(), and
removeObject(). The specified string prefix is
added to the name parameter passed to each
subsequent call to these operations.

clearNamePrefix() This function clears the string prefix added to
each name parameter by setNamePrefix().

 120 Orbix Programmer’s Guide C++ Edition

Transferring Object References
There are two ways to pass object references directly between a
server and a client:

• Using IDL operation parameters.
• Using the string format of object references.
This section examines each in turn.

Passing Object References as Operation Parameters
IDL operations can return object references as parameters or
return values; for example:

// IDL
interface Account;

interface Bank {
// Create a new account.
Account create_account (in string name);
// Find an existing account.
Account find_account (in string name);

};

interface Account {

...
};

An object that implements interface Bank acts as a factory for the
creation of Account objects. The operations create_account() and
find_account() pass object references to clients as return values.
Of course, to receive an object reference from an operation, a
client must first be able to call the operation. This implies that the
client already has a reference to some object in the server. A
common strategy in CORBA applications is to make one or more
server objects available through the Naming Service, or some
similar mechanism, and let these act as entry points to other
server objects.
In fact, the Naming Service itself uses this strategy. A standard
function call, resolve_initial_references() returns the root
naming context and this object acts as an entry point to all other
objects in the service.

Orbix Programmer’s Guide C++ Edition 121

Transferring Object Reference Strings
One way to pass an object reference from a server to a client
without establishing communications first, is to use object
reference strings. As described in “Identifying CORBA Objects” on
page 113, you can get the string form of an object reference by
calling the function CORBA::ORB::object_to_string(). Given the
string form of an object reference, an Orbix client can create a
proxy for that object by passing the string to the function
CORBA::ORB::string_to_object().
One simple protocol for passing an object reference from a server
to a client is as follows:
1. The server calls CORBA::ORB::object_to_string() to get the

string format of an object reference.
2. The server writes this string to a location, for example a file,

accessible by both client and server.
3. The client reads the object reference string.
4. The client calls CORBA::ORB::string_to_object() to create a

proxy.
For example, given an object reference string that identifies a
BankSimple::Bank object, a client can create a proxy as follows:

// C++
// Assign object reference string to bankString.
String_var bankString = ... ;

// Create proxy.
BankSimple::Bank_var bVar =

CORBA::Orbix.string_to_object(bankString);

The function string_to_object() is overloaded to allow the
individual fields of a stringified object reference to be specified.
See the entries for CORBA::ORB::string_to_object() in the Orbix
Programmer’s Reference C++ Edition for more details.

 122 Orbix Programmer’s Guide C++ Edition

Binding to Orbix Objects
The Orbix _bind() function finds a particular object using specific
information about the object’s location in a distributed system. For
example, when calling _bind() you can specify the exact object
you require in a particular server on a particular host.

Overview of the _bind() Function
The _bind() function is a static member function automatically
generated by the IDL compiler for each IDL C++ class. For
interface BankSimple::Bank, the full declaration of _bind() is:

// C++
static BankSimple::Bank_ptr _bind

(const char* markerServer, const char* host, const
CORBA::Context&, CORBA::Environment& IT_env =
CORBA::IT_chooseDefaultEnv());

Combining default parameters and overloading, _bind() can take
the following sets of parameters:

• markerServer, host, Context, Environment (the last is defaulted).
• markerServer, host, Environment (the last is defaulted).
• markerServer, host.
• A full object reference as returned by the function

CORBA::ORB::object_to_string().
The _bind() function that supported polymorphic binds has been
deprecated and is now removed from Orbix.

The markerServer Parameter to _bind()
The markerServer parameter denotes a specific server name and
object within that server. It can be a string of the form:

marker:server_name
The marker identifies a specific object within the server. The
server name is the name with which the server is registered in the
Implementation Repository.
The server name must be supplied in all cases except if
CORBA::collocated is true, indicating that the _bind is to be a local
object not a remote object. In the collocated case, the name of
the server in which the bind is being performed, can be null. If the
server name is supplied, it should be the name of the calling
process. (See “Developing Collocated Clients and Servers”.)
The marker must be supplied in all cases. Anonymous bind (not
supplying the marker) is deprecated in Orbix 3.3. Clients built with
previous versions of Orbix can still use anonymous bind even with
Orbix 3.3 servers.
If the string does not contain a ‘:’ character, the string is
understood to be a marker with no explicit server name. Since
colon (‘:’) is used as a separator, it is illegal for a marker or a
server name to include a ‘:’ character.
The _bind() function first looks for the object in the caller’s
address space if the server name and host name are that of the
caller.

Orbix Programmer’s Guide C++ Edition 123

Examples of the markerServer parameter that could be used in a
call to BankSimple::Bank::_bind() are:

Finally, if the markerServer parameter has at least two ‘:’
characters within it, it is not treated as a marker:server-name
pair, but it is assumed to be the string form of a full object
reference. A full object reference string is returned by the function
CORBA::ORB::object_to_string(), to which you can pass any Orbix
object as a parameter. A call to _bind() with a full object reference
string is similar to a call to the function
CORBA::ORB::string_to_object().

The host Parameter to _bind()
The host parameter to _bind() specifies the Internet host name or
the Internet address of a node on which to find the server. An
Internet address is assumed to be a string of the form
xxx.xxx.xxx.xxx, where x is a decimal digit. In the collocated case,
the host name can be null. (See “Developing Collocated Clients
and Servers”.)

Example calls to _bind()
This section shows a selection of sample calls to _bind().

// C++

// Bind to the "College_Green" object at the "AIB"
// server at node beta, in the internet domain
// "mc.ie". That object should implement the Bank
// IDL interface.

BankSimple::Bank_var bVar =
BankSimple::Bank::_bind ("College_Green:AIB",

 "beta.mc.ie");

// Bind to the College_Green" object in this
// local process.

CORBA::collocated(true);
BankSimple::Bank_var bVar =
BankSimple::Bank::_bind("College_Green");

"College_Green:AIB" The College_Green object at the AIB server.
"College_Green" Local process; only legal if object

collocation is turned on.
"College_Green:" Local process; only legal if object

collocation is turned on.
"College_Green:myBank" The College_Green object at the myBank

server.

 124 Orbix Programmer’s Guide C++ Edition

Tabular Summary of Parameters to _bind()
The following table summarizes the rules for a general-form call to
_bind() :

Binding and Exceptions
_bind() raises a BAD_PARAM System Exception if the rules
regarding supplying a marker, server name and host name are not
followed.
By default, _bind() raises an exception if the desired object is
unknown to Orbix. Doing so requires Orbix to ping that desired
object in order to check its availability. The ping causes the target
server process to be activated if necessary, and it confirms that
this server recognizes the target object.
(The ping operation is defined by Orbix and it has no effect on the
target object. For the Orbix protocol, it is defined by Orbix; for
IIOP, it is a LocateRequest.)
You can improve efficiency by reducing the number of remote
invocations. To do this, call the function pingDuringBind() to
disable the ping operation:

// C++
// In class CORBA::ORB.
CORBA::Orbix.pingDuringBind(0); // 0 for false.

The previous setting is returned. The Orbix Programmer’s
Reference C++ Edition provides more details about this
function.
When ping is disabled, binding to an unavailable object does not
raise an exception at that time unless the parameter rules are
violated. Instead, an exception is raised when the proxy object is
first used. It is not until the proxy object is used the first time that
the marker and interface of the remote object is verified in the
specified server.
A program should always check for exceptions when calling
_bind(), whether or not pinging is enabled.

// C++
T1_var tVar;
tVar = T2::_bind("M:S", "H");

T1 T1 must be the same or a base type of T2.

T2 T2 is an IDL interface name. It is not the name of a
server, unless a server is explicitly registered with the
same name as an interface. The object that is found
must implement interface T2.

M M is a marker name—the name of an object within the
specified server.

S S is a server name—a name used previously to register a
server in the Implementation Repository.

H H is an Internet host name or (if the string is in the
format xxx.xxx.xxx.xxx, where x is a decimal digit) an
Internet address. H can only be blank when collocated
binds are being performed.

 Orbix Programmer’s Guide C++ Edition 125

Exception Handling in
Orbix
The implementation of an IDL operation or attribute can throw an
exception to indicate that a processing error has occurred. This
chapter describes Orbix exception handling in detail, using an
example named BankExceptions. This example builds on the
concepts illustrated in the BankSimple example in “Getting Started
With Orbix” and “Using and Implementing IDL Interfaces”.
There are two types of exceptions that an IDL operation can
throw:

• User-defined exceptions.
These exceptions are defined explicitly in your IDL definitions,
and can only be thrown by operations.

• System exceptions.
These are pre-defined exceptions that all operations and
attributes can throw.

This chapter describes user-defined exceptions and system
exceptions in turn and shows how to throw and catch these
exceptions.
The examples in this chapter, and throughout this guide, assume
that your C++ compiler supports C++ exception handling. Orbix
no longer supports compilers without native C++ exception
handling. The macro support (TRY, CATCH) for non-native C++
exception is eliminated.

An Example of Raising and Handling Exceptions
This chapter extends the BankSimple example so that the
create_account() operation can raise an exception if the bank
cannot create an Account object. The source code for the example
described in this chapter is available in the
demos\common\bankexceptions directory of your Orbix installation.
The exception CannotCreate is defined within the Bank interface.
This defines a string member that indicates the reason that the
Bank rejected the request:

// IDL
// In file bankexceptions.idl

module BankExceptions {
typedef float CashAmount;
interface Account;

interface Bank {
1 // User-defined exceptions.

exception CannotCreate { string reason; };
exception NoSuchAccount { string name; };

Account create_account (in string name)
2 raises (CannotCreate);

Account find_account (in string name)
raises (NoSuchAccount);

 126 Orbix Programmer’s Guide C++ Edition

};

interface Account {
// User-defined exception.

3 exception InsufficientFunds { };

readonly attribute string name;
readonly attribute CashAmount balance;

void deposit (in CashAmount amount);
void withdraw (in CashAmount amount)

raises (InsufficientFunds);
};

};

This IDL is explained as follows:
1. CannotCreate and NoSuchAccount are user-defined exceptions

defined for the Bank IDL interface.
2. Operation BankExceptions::Bank::create_account() can raise

the BankExceptions::Bank::CannotCreate exception. It can only
raise listed user-defined exceptions. It can raise any
system-defined exception.

3. An exception does not need to have any data members.

Note: Read or write access to any IDL attribute can also raise any
system-defined exception.

The Generated C++ Code for User-Defined Exceptions
The IDL compiler generates the following C++ definition for the
CannotCreate user-defined exception from the Bank IDL definition:

// C++
// In file bankexceptions.hh

class CannotCreate : public CORBA::UserException {
...

public:
static const char* _ex;
CORBA::String_mgr reason;

virtual CORBA::Exception* copy() const;
CannotCreate (const char* _reason);
virtual void _throwit ();
static CannotCreate* CALL_SPEC _narrow

(CORBA::Exception* e);
CannotCreate(const CannotCreate&);
CannotCreate();
virtual ~CannotCreate();
CannotCreate& operator= (const CannotCreate&);

};

Exception BankExceptions::Bank::CannotCreate is translated into a
C++ class with the same name. Each C++ class corresponding to
an IDL exception has a constructor that takes a parameter for
each member of the exception. Because the CannotCreate
exception has one member (reason, of type string), class
BankExceptions::Bank::CannotCreate has a constructor that allows
that single member to be initialized.

Orbix Programmer’s Guide C++ Edition 127

Handling Exceptions in a Client
A client (or server) calling an operation that can raise a user
exception should handle that exception using an appropriate C++
catch clause. All clients should also catch system exceptions. The
BankSimple client calls the create_account() operation as follows:
// C++
// In file bankmenu.cxx

BankMenu::BankMenu(BankExceptions::Bank_ptr bank)
throw() : m_bank (BankExceptions::Bank::_duplicate(bank))

{ }
...

// do_create -- calls create_account and runs an account menu
void BankMenu::do_create() throw(CORBA::SystemException) {

cout << “Enter account name: ” << flush;
CORBA::String_var name = IT_Demo_Menu::get_string();

try {
BankExceptions::Account_var account =

m_bank->create_account(name);

// Start a sub-menu with the returned account reference
AccountMenu sub_menu(account);
sub_menu.start();

}
catch (const BankExceptions::Bank::CannotCreate& cant_create)

{
cout << “Cannot create an account, reason:”

<< cant_create.reason << endl;
}

}

The handler for the BankExceptions::Bank::CannotCreate exception
outputs an error message and exits the program. The parameter
to the catch clause is passed by reference.
The operator<<() function defined on class SystemException outputs
a text description of the individual system exception raised. This
text is read from a standard file, and can be modified for individual
installations. Refer to the Orbix Programmer’s Reference C++
Edition for more details.
If the handler for the BankExceptions::Bank::CannotCreate
exception does not exit the program, you must be careful about
the value of the variable m_bank. In particular, if an exception
occurs in create_account(), the return value of this operation call
would be undefined, and hence m_bank would be undefined (as
specified by the C++ exception model. The C++ exception model
also specifies that the values of out and inout parameters are
undefined if an operation raises an exception).

 128 Orbix Programmer’s Guide C++ Edition

A simple way to address this is shown in the following code
segment, where the nil object reference value is assigned to
m_bank, and this value is tested for before m_bank is used after the
catch clauses:

// C++
// In file bankmenu.cxx

// Ensure the bank reference is valid.
if (CORBA::is_nil(m_bank)) {

cout << “Cannot proceed - bank reference is nil”;
}
else {

// Loop printing the menu and executing selections
...
try {

...
}
catch (const CORBA::SystemException& e) {

cout << “Unexpected exception:” << e << endl;
}

}
}

The is_nil() function determines whether the object reference is
nil. A nil object reference is one that does not refer to any valid
Orbix object. The is_nil() function, defined in the CORBA
namespace, is the only CORBA-compliant way of ascertaining
whether an object reference is nil.

Handling Specific System Exceptions
A client may also provide a handler for a specific system
exception. For example, to explicitly handle a CORBA::COMM_FAILURE
exception that might be raised from a call to create_account(), the
client could write code as follows:

// C++

#define EXCEPTIONS
#include “BankMenu.h”
#include <IT_Demo_Menu.h>

BankMenu::BankMenu(BankExceptions::Bank_ptr bank)
throw() : m_bank (BankExceptions::Bank::_duplicate(bank)) { }

...

void BankMenu::do_create() throw(CORBA::SystemException) {

cout << “Enter account name:” << flush;
CORBA::String_var name = IT_Demo_Menu::get_string();

try {
BankExceptions::Account_var account =

m_bank->create_account(name);

// Start a sub-menu with the returned account reference
AccountMenu sub_menu(account);
sub_menu.start();

}

Orbix Programmer’s Guide C++ Edition 129

catch (const CORBA::COMM_FAILURE& se) {
cout << “Communications failure exception”

<< endl <<& se << endl;
}
catch (const CORBA::SystemException& se) {

cout << “Unexpected system exception”
<< endl <<& se << endl;

}
catch(const BankExceptions::Bank::CannotCreate& cant_create) {

cout << “Cannot create an account, reason:”
<< cant_create.reason << endl;

}
}

The handler for a specific system exception must appear before
the handler for CORBA::SystemException. In C++, catch clauses are
attempted in the order specified, and the first matching handler is
called. Because of implicit casting, a handler for
CORBA::SystemException matches all system exceptions (because all
system exception classes are derived from class
CORBA::SystemException). Therefore it should normally appear after
all handlers for specific system exceptions. Refer to the Orbix
Programmer’s Reference C++ Edition for a list of system
exceptions.
You can use the message output by the operator<<() function on
class CORBA::SystemException to determine the type of system
exception that occurred. A handler for an individual system
exception is only required when specific action is to be taken if
that exception occurs.

Throwing Exceptions in a Server
This section shows how to extend the definition of the function
BankExceptions_BankImpl::create_account() to raise an exception,
using the normal C++ throw statement. The function newAccount()
can be coded as follows:

// C++
// In file bankexceptions_bankimpl.cxx

BankExceptions::Account_ptr
BankExceptions_BankImpl::create_account (const char* name,

CORBA::Environment&) throw(BankExceptions::Bank::CannotCreate)
{

int empty = -1;
int exists = -1;
int i = 0;
for (; i < MAX_ACCOUNTS; ++i) {

if (CORBA::is_nil(m_accounts[i])) {
empty = i;

}
else if (strcmp(m_accounts[i]->name(), name) == 0) {

exists = i;
break;

}
}
// Test for errors and throw an exception if a problem occurs.
if (exists != -1) {

cout << “create_account: failed because name exists” << endl;
throw BankExceptions::Bank::CannotCreate

 130 Orbix Programmer’s Guide C++ Edition

(“Account with same name already exists.”);
}
else if (empty == -1) {

cout <<“create_account: failed because no more space”<<endl;
throw BankExceptions::Bank::CannotCreate

(“No more space for new accounts.”);
}

// No errors - create an account with zero balance.
m_accounts[empty] = new BankExceptions_AccountImpl(name, 0.0);
cout << “create_account: Created account with name:”

<< name << endl;

// Duplicate the returned reference.
return BankExceptions::Account::_duplicate(m_accounts[empty]);

}

This code uses the automatically-generated constructor of class
BankExceptions::Bank::CannotCreate to initialize the exception’s
reason member with the strings “Account with name already exists”
and “No more space for new accounts”.

Information Available in System Exceptions
System exceptions have two member functions that you can use
in some applications:

• completed()

• minor()

completed()
The completed() function returns an enum type that indicates how
far the operation or attribute call ed before the exception was
raised. The values are:

minor()
The minor() function returns an unsigned long value to give more
details of the particular system exception raised. For example, if
the COMM_FAILURE system exception is caught by a client, it can
access the minor field of the system exception to determine why
this occurred. Each system exception has a set of minor values
associated with it, and those for COMM_FAILURE include TIMEOUT and
STRING_TOO_BIG.

COMPLETED_NO The system exception was raised before the
operation or attribute call began to execute.

COMPLETED_YES The system exception was raised after the
operation or attribute call completed its
execution.

COMPLETED_MAYBE It is uncertain whether or not the operation or
attribute call started execution, and, if it did,
whether or not it completed. For example, the
status will be COMPLETED_MAYBE if a client’s host
receives no indication of success or failure after
transmitting a request to a target object on
another host.

Orbix Programmer’s Guide C++ Edition 131

Throwing a System Exception
In some circumstances you may need to throw a system
exception. You can specify the system exception’s minor field and
completion status using the constructor:

// C++
SystemException(ULong minor_id,

CompletionStatus completed_status);

The following line of code illustrates the use of this constructor by
throwing a COMM_FAILURE exception with minor code TIMEOUT and
completion status COMPLETED_NO:

// C++
throw CORBA::COMM_FAILURE(TIMEOUT, COMPLETED_NO);

 132 Orbix Programmer’s Guide C++ Edition

 Orbix Programmer’s Guide C++ Edition 133

Using Inheritance of
IDL Interfaces
This chapter describes how to implement inheritance of IDL
interfaces, using an example named BankInherit. This example
builds on the concepts illustrated in the BankSimple and
BankExceptions examples in “Using and Implementing IDL
Interfaces” and “Exception Handling in Orbix”, respectively.
You can define a new IDL interface that uses functionality
provided by an existing interface. The new interface inherits or
derives from the base interface. IDL also supports multiple
inheritance, allowing an interface to have several immediate base
interfaces. This chapter shows how to use inheritance in Orbix
using the BankInherit example.
A version of the source code for the example described in this
chapter is available in the demos\common\bankinherit directory of
your Orbix installation.

The IDL Interfaces
The IDL for the BankInherit example demonstrates the use of
single inheritance of IDL interfaces:
// IDL
// In file bankinherit.idl

#include "bankexceptions.idl"

module BankInherit {
interface CheckingAccount; // forward reference

// BetterBank manufactures checking accounts.
1 interface BetterBank : BankExceptions::Bank {
2 // New operation to create new checking accounts.

CheckingAccount create_checking (in string name,
in BankExceptions::CashAmount overdraft)
raises(CannotCreate);

};

// New CheckingAccount interface.
3 interface CheckingAccount : BankExceptions::Account {

readonly attribute BankExceptions::CashAmount overdraft;
};

};

This IDL can be explained as follows:
1. BetterBank inherits the operations of BankExceptions::Bank and

adds a new operation to create checking accounts. You do not
need to list the account operations from BankExceptions::Bank
because these are now inherited.

2. The new create_checking()operation added to interface
BetterBank manufactures CheckingAccounts.

 134 Orbix Programmer’s Guide C++ Edition

3. The new interface CheckingAccount derived from interface
BankExceptions::Account. CheckingAccount has an overdraft
limit, and the implementation allows the balance to become
negative.

The Generated C++ Code
The IDL compiler produces the following IDL C++ classes for the
BankInherit IDL interface:

// C++
// The file bankinherit.hh
...
#include <CORBA.h>
...
class CheckingAccount: public virtual

BankExceptions::Account {
// Various details for Orbix.
public:
// Various details for Orbix.
virtual BankExceptions::CashAmount overdraft

(CORBA::Environment& IT_env =
 CORBA::IT_chooseDefaultEnv());

};
...
class BetterBank: public virtual BankExceptions::Bank{

// Various details for Orbix.
public:
// Various details for Orbix.

...
virtual BankInherit::CheckingAccount_ptr

create_checking(
 const char* name, BankExceptions::CashAmount

overdraft, CORBA::Environment& IT_env =
CORBA::IT_chooseDefaultEnv());

};

Implementation Class Hierarchies
The class hierarchy for IDL C++ classes produced by the IDL
compiler directly corresponds to the interface hierarchy given in
the IDL source files. Figure 17 shows the inheritance hierarchy,
using the BOAImpl approach. For simplicity, this diagram omits
some details (for example, an implementation class also inherits
from its corresponding IDL C++ class).

Figure 17: IDL and Corresponding C++ Class Hierarchies

IDL Interfaces IDL C++ Classes Implementation Classes

Account Account Account

CheckingAccount CheckingAccount CheckingAccount_im

Orbix Programmer’s Guide C++ Edition 135

The Implementation Classes
You can code the CheckingAccount interface using the BOAImpl or
the TIE approach.

The BOAImpl Approach
Using the BOAImpl approach, you can implement the
CheckingAccount IDL interface as follows:
// C++
// In file bankinherit_accountimpl.h
...
#include "bankinherit.hh"
#include "bankexceptions_accountimpl.h"

class BankInherit_CheckingAccountImpl : public virtual
BankExceptions_AccountImpl, public virtual
BankInherit::CheckingAccountBOAImpl {

public:
// IDL operation
virtual void withdraw(
BankExceptions::CashAmount amount, CORBA::Environment&)
throw (BankExceptions::Account::InsufficientFunds);

// IDL attributes
virtual BankExceptions::CashAmount
overdraft(CORBA::Environment&)
throw();

// C++ operations
BankInherit_CheckingAccountImpl(
const char* name,
BankExceptions::CashAmount balance,
BankExceptions::CashAmount overdraft)
throw ();

virtual ~BankInherit_CheckingAccountImpl() throw();
protected:

BankExceptions::CashAmount m_overdraft;
...

};

BankInherit_CheckingAccountImpl is the application implementation
class. Using the BOAImpl approach, this class inherits from the
IDL-generated BOAImpl class.
You can implement the BetterBank IDL interface as follows:
// C++.
// In file bankinherit_bankimpl.h

#include "bankinherit.hh"
#include "bankexceptions_bankimpl.h"

class BankInherit_BetterBankImpl : public virtual
BankExceptions_BankImpl, public virtual
BankInherit::BetterBankBOAImpl {

public:
// IDL operations
virtual BankInherit::CheckingAccount_ptr create_checking(

const char* name, BankExceptions::CashAmount overdraft,
CORBA::Environment&)

 136 Orbix Programmer’s Guide C++ Edition

throw(BankExceptions::Bank::CannotCreate);

// C++ operations
BankInherit_BetterBankImpl() throw();
virtual ~BankInherit_BetterBankImpl() throw();
...

};

BankInherit_BetterBankImpl is the application implementation
class. Using the BOAImpl approach, this class inherits from the
IDL-generated BOAImpl class.

The create_checking() operation is implemented as follows:
// C++
// In file bankinherit.bankimpl.cxx
...
#include "bankinherit_bankimpl.h"
#include "bankinherit_accountimpl.h"

BankInherit::CheckingAccount_ptr
BankInherit_BetterBankImpl::create_checking (

const char* name, BankExceptions::CashAmount overdraft,

CORBA::Environment&)throw(BankExceptions::Bank::CannotCreate)
{
...
// Create an account with 0 balance using the BOAImpl

approach.
BankInherit::CheckingAccount_var

newly_created_checkingaccount;
newly_created_checkingaccount

= new BankInherit_CheckingAccountImpl(name, 0.0,
overdraft);
m_accounts[empty]

= BankInherit::CheckingAccount::_duplicate(
newly_created_checkingaccount);

...
// Duplicate the returned reference.
return BankInherit::CheckingAccount::_duplicate(

newly_created_checkingaccount);
}

The return statement is slightly different in create_checking() than
for create_account(). This is because you cannot call _duplicate()
on a CheckingAccount object stored in the Account array. The
temporary variable newly_created_checkingaccount is used to get
around this problem.

Orbix Programmer’s Guide C++ Edition 137

The TIE Approach
Using the TIE approach, the CheckingAccount IDL interface could be
implemented as follows:
// C++
...

1 class BankInherit_CheckingAccountImpl :
public virtual BankExceptions_AccountImpl {

public:
// Same as for BOAImpl.
...

}

// DEF_TIE macro call.
2 DEF_TIE_BankInherit_CheckingAccount(BankInherit_CheckingAccountImpl)

This code is explained as follows:
1. The class BankInherit_CheckingAccountImpl inherits from

BankExceptions_AccountImpl only. It does not need to inherit
from the IDL-generated BOAImpl class.

2. Indicates that BankInherit_CheckingAccountImpl implements
BankInherit::CheckingAccount. This generates a TIE class
TIE_CheckingAccount(BankSimple_CheckingAccountImpl).

The BetterBank IDL interface can therefore be implemented as
follows:
// C++
...
class BankInherit_BetterBankImpl :

public virtual BankExceptions_BankImpl {
public:

// Same as for BOAImpl.
...

}

// DEF_TIE macro call.
DEF_TIE__BankInherit_BetterBank(BankInherit_BetterBankImpl);

Using the TIE approach, you can implement the create_checking()
operation as follows:
// C++
...
BankInherit::CheckingAccount_ptr
BankInherit_BetterBankImpl::create_checking (

const char* name, BankExceptions::CashAmount overdraft,
CORBA::Environment&)throw(BankExceptions::Bank::CannotCreate)
{

...
// Create an account with zero balance using TIE approach.
BankInherit::CheckingAccount_var

newly_created_checkingaccount;
newly_created_checkingaccount

= new TIE_BankInherit_CheckingAccount(
BankInherit_CheckingAccountImpl)
(new BankInherit_CheckingAccountImpl(name, 0.0,

 overdraft));
...

}

 138 Orbix Programmer’s Guide C++ Edition

Using Inheritance in a Client
A client can proceed to manipulate CheckingAccounts in a similar
way to Accounts in, “Handling Exceptions in a Client” on page 127:

// C++
// In file BankMenu.cxx

#include "bankmenu.h"
#include <it_demo_menu.h>

// BankMenu constructor, takes a Bank reference.
BankMenu::BankMenu(BankInherit::BetterBank_ptr bank)

throw() : m_betterbank(BankInherit::BetterBank::_duplicate(bank))
{}

// BankMenu destructor.
BankMenu::~BankMenu() throw(){
// Nothing to do - Bank_var automatically releases reference
}

// Start main menu loop.
void
BankMenu::start() throw() {

// Ensure the bank reference is valid.
if (CORBA::is_nil(m_betterbank)) {

cout << "Cannot proceed - bank reference is nil";
}
else {
// Loop printing the menu and executing selections
...

}
...
// Calls create_checking and runs an account menu.
void BankMenu::do_create_checking() throw(CORBA::SystemException){

cout << "Enter account name: " << flush;
CORBA::String_var name = IT_Demo_Menu::get_string();
...
try {

BankInherit::CheckingAccount_var checkingaccount =
m_betterbank->create_checking(name, 100);

// Start a sub-menu with the returned account reference
AccountMenu sub_menu(checkingaccount);
sub_menu.start();

}
catch (const BankExceptions::Bank::CannotCreate&cant_create) {

cout << "Cannot create an account, reason: "
<< cant_create.reason << endl;

}
}

// Calls find_account and runs an account menu.
void BankMenu::do_find() throw(CORBA::SystemException) {

// Same as for BankExceptions.
...
}

The client implementation is not affected by the approach used to
implement the server—either TIE or BOAImpl.

Orbix Programmer’s Guide C++ Edition 139

Multiple Inheritance of IDL Interfaces
IDL supports multiple inheritance as shown in the following
example:
// IDL
module BankSimple {

typedef float CashAmount;
interface Account;

interface Bank {
...

};

interface Account {
readonly attribute string name;
readonly attribue CashAmount balance;

void deposit(in CashAmount amount);
void withdraw(in CashAmount amount);

};

// Derived from interface Account.
interface CheckingAccount : BankSimple::Account {

readonly attribute CashAmount overdraftLimit;
};

// Derived from interface Account.
interface DepositAccount : BankSimple::Account {

};

// Indirectly derived from interface Account.
interface PremiumAccount : CheckingAccount, DepositAccount {
};

}

The corresponding IDL C++ classes use multiple inheritance:
// C++
// The file "bank.hh".
#include <CORBA.h>

class BankSimple::Account :
public virtual CORBA::Object {
// As before.

};

class CheckingAccount :
public virtual BankSimple::Account {
// As before.

};

class DepositAccount :
public virtual BankSimple::Account {
// ...

};

 140 Orbix Programmer’s Guide C++ Edition

class PremiumAccount :
public virtual CheckingAccount,

public virtual DepositAccount {
// ...

};

IDL forbids any ambiguity arising due to name clashes of
operations and attributes when two or more direct base interfaces
are combined. This means that an IDL interface cannot inherit
from two or more interfaces with the same operation or attribute
name. You can, however, inherit two or more constants, types or
exceptions with the same name from more than one interface.
However, these must be qualified with the name of the interface
(an IDL-scoped name must be used).

 Orbix Programmer’s Guide C++ Edition 141

Orbix Connections and
Events
Orbix applications need to control how Orbix processes events
such as operation calls and establishing connections between
clients and servers. To do this, applications communicate with the
ORB through a direct API that allows them to configure the
behavior of Orbix. This chapter outlines this API and describes
how you can use it to adapt the Orbix connection establishment
and event processing models.
This chapter acts as a guide to the main connection and event
management functions in Orbix. You should read this chapter for
an overview of these functions and refer to the Orbix
Programmer’s Reference C++ Edition for details of particular
functions required in your applications.

Overview of the Direct API to Orbix
On the client-side, the interface to Orbix is presented via the class
CORBA::ORB. On the server, the class CORBA::BOA (a derived class of
CORBA::ORB) specifies the interface to Orbix, as shown in Figure 18.

Figure 18: Interfaces to Orbix on Client and Server

The acronym BOA stands for Basic Object Adapter. An Object
Adapter is the CORBA term given to the environment in which
server applications run. An object adapter provides services such
as:

• Registration of servers.
• Instantiation of objects at runtime and creation and

management of object references.
• Handling of incoming client calls.
• Dispatching of client requests to server objects.
The BOA or Basic Object Adapter is an object adapter specified by
CORBA that must be provided by every ORB. An ORB may
optionally provide other object adapters and a server may support
a number of object adapters to serve different types of requests.
Refer to the Orbix Programmer’s Reference C++ Edition for
the full interface to CORBA::ORB and CORBA::BOA.

CORBA::ORB
(Client interface to Orbix)

CORBA::BOA
(Server interface to Orbix)

 142 Orbix Programmer’s Guide C++ Edition

Initializing a Connection to the ORB
The CORBA standard defines how a client or server can obtain a
reference to the ORB so that they can communicate with it. The
function defined for this purpose is CORBA::ORB_init(), which you
can use as follows:

// C++
...
CORBA::ORB_ptr orb = CORBA::ORB_init(argc, argv, “Orbix”);

ORB_init() initializes a client or server’s connection to the ORB. It
should not be viewed as initializing the ORB itself because the ORB
is pervasive rather than just existing within the client or server.
You can call any function defined on class CORBA::ORB (for example,
string_to_object()) by using the pointer returned from the
ORB_init() call.
Servers should carry out a further step, to obtain a reference to
the Object Adapter, and in particular to the BOA:

// C++
CORBA::BOA_ptr boa = orb->BOA_init(argc, argv, “Orbix_BOA”);

CORBA::ORB::BOA_init() initializes a server’s connection to the BOA.
An ORB may also provide other object adapters—in this case, it
should provide a function to initialize a connection to each.
Functions such as impl_is_ready() defined on class CORBA::BOA can
be called using the object reference returned from the BOA_init()
call. On the client-side, you do not need to perform these steps
although, for compliance to the CORBA standard, you may wish to
add them.

Obtaining Initial Object References
Some object services and, in particular, the Interface Repository
and the CORBAservices, can only be used by first obtaining a
reference to an initial service object. The Naming Service provides
a general purpose facility for doing this. When using the Naming
Service, you need some way to obtain a reference to an initial
Naming Service object.

Orbix Programmer’s Guide C++ Edition 143

CORBA addresses this difficulty by providing two operations in
interface ORB. These provide the facilities of a simplified Naming
Service, in which (flat, rather than hierarchical) names can be
resolved to obtain initial references to important objects in the
system:

module CORBA {
interface ORB {

...
typedef string ObjectId;
typedef sequence <ObjectId> ObjectIdList;

exception InvalidName {};

ObjectIdList list_initial_services();

Object resolve_initial_references
(in ObjectId identifier)
raises (InvalidName);

};
};

Only a small group of names are understood by
resolve_initial_references(), and these are listed by
list_initial_services(). Currently only strings “NameService”
and “InterfaceRepository” are supported. The function
resolve_initial_references() returns an object reference, which
must be narrowed to the correct object type.

Managing Orbix Connections and Events
When an Orbix client first contacts a server, a single
communication channel is established between the client-server
pair. This connection is then used for all subsequent operation
calls from the client to the server. The connection is closed only
when either the client or the server exits.
If the server makes operation calls, known as callbacks, to objects
that exist in the client, the connection usage depends on which
communications protocol you are using. If your applications
communicate over the Orbix protocol, all communications in both
directions use a single client-server connection. However, if your
applications use the CORBA Internet Inter-ORB Protocol (IIOP),
Orbix opens a second connection from the server to the client
when the server attempts its first callback operation. By default,
all IIOP operation calls are only transmitted in one direction across
a client-server connection as specified by CORBA. Refer to the
chapter “Callbacks from Servers to Clients” for more information
on using callbacks in Orbix.
When a connection has been established between a client and
server, you must instruct Orbix to process incoming operation
calls. Orbix does this by monitoring the file descriptor associated
with each client-server connection and responding to events on
the file descriptor.
This section highlights some of the Orbix functions that allow you
to manage Orbix connection establishment and event processing.

 144 Orbix Programmer’s Guide C++ Edition

Establishing Connections between Clients and Servers
This section describes the following issues associated with
establishing a connection between a client and a server:

• Setting a timeout on a connection attempt.
• Specifying the number of connection attempt retries.
• Filtering bad connection attempts in servers.
• Reconnecting to a server that has crashed and restarted.
• Receiving callbacks from Orbix to application code when

connections are opened or closed.

Setting a Timeout on a Connection Attempt
By default, there is a timeout of 30 seconds for establishing
connection from a client to a server to confirm that both are
operational. This timeout can be changed using the function
CORBA::ORB::connectionTimeout().
Under some circumstances, CORBA::ORB::connectionTimeout() has
no effect. For example, if the server’s host is known but is down or
unreachable, a TCP/IP connect can block for a considerable time
depending on the target operating system. In these
circumstances, you can use the function
CORBA::ORB::abortSlowConnects() to abort connection attempts that
exceed the value specified in connectionTimeout().

Specifying Connection Attempt Retries
If a connection cannot be made on the first attempt because the
server cannot be contacted, Orbix retries the attempt every two
seconds until either the call can be made or until there have been
too many retries. You can use the function
CORBA::ORB::maxConnectRetries() to set the maximum number of
retries that should be attempted. The default number is 10.

Filtering Bad Connection Attempts
By default, an exception is raised if a bad connection is made to a
server waiting on the event handling functions
(CORBA::BOA::impl_is_ready(), CORBA::BOA::obj_is_ready(),
CORBA::BOA::processEvents()). Such bad connections can be
caused by, for example, a server that cannot interpret the data
that it accesses.
You may wish to allow Orbix to handle such attempts without
raising an exception. Refer to the Orbix Programmer’s
Reference C++ Edition entry for
CORBA::BOA::filterBadConnectAttempts() for details.

Reconnecting to a Failed Server
When a server exits while a client is still connected, the next
invocation by the client raises a system exception of type
CORBA::COMM_FAILURE. If the client attempts another invocation,
Orbix automatically tries to re-establish the connection.
This default behavior can be changed by passing the value 1 (true)
to the function CORBA::ORB::noReconnectOnFailure(). Then, all client
attempts to contact a server subsequent to closure of the
communications channel raises a CORBA::COMM_FAILURE system
exception.

Orbix Programmer’s Guide C++ Edition 145

Receiving Callbacks for New or Closed Connections, and FD
Handling Events
Orbix allows a client or server to receive a callback for certain
connection and file descriptor (FD) events. Callbacks exist for
opening and closing a connection to another Orbix program.
Callbacks exist for when the number of FDs used by Orbix reaches
soft and hard limits set by the user.
To receive such callbacks, first define a class that inherits from the
Orbix class CORBA::IT_IOCallback. Class CORBA::IT_IOCallback is
defined as follows:

class IT_IOCallback
{

public:

// The following functions are called when an Orbix file
// descriptor opens or closes.
virtual void OrbixFDOpen(int fd) {};
virtual void OrbixFDClose(int fd) {};

// The following functions are called when activity is
// detected on a foreign fd.

// A registered foreign fd is ready for reading.
virtual void ForeignFDRead(int fd) {};

// A registered foreign fd is ready for writing.
virtual void ForeignFDWrite(int fd) {};

// A registered foreign fd has fired for exceptions.
virtual void ForeignFDExcept(int fd) {};

// The following functions are called when the number of FDs
// used by Orbix hits a soft or hard limit set by the user.

// The low-watermark (soft limit) of FDs has been consumed
virtual void AtOrbixFDLowLimit (int numFDsUsed);

// The hard limit of FDs has been consumed, so Orbix is no
// longer listening for new connections (which would consume
// another FD).
virtual void StopListeningAtFDHigh (int numFDsUsed);

// Orbix has resumed listening after number of FDs has gone
// below the hard limit
virtual void ResumeListeningBelowFDHigh (int numFDsUsed);

};

Your sub-class of CORBA::IT_IOCallback should override one or
more of the IT_IOCallback member functions. For example, if you
override OrbixFDOpen(), this function is called each time a
connection to your application is opened. Similarly, if you override
OrbixFDClose(), this function is called each time a connection to
your application is closed. Both OrbixFDOpen() and OrbixFDClose()
receive the file descriptor associated with the relevant Orbix
connection as a parameter.

 146 Orbix Programmer’s Guide C++ Edition

When you implement a derived class of CORBA::IT_IOCallback,
create an instance of this class and register this object with Orbix
by calling CORBA::ORB::registerIOCallbackObject() on the ORB.
This function is described in the Orbix Programmer’s Reference
C++ Edition.
The functions ForeignFDRead(), ForeignFDWrite(), and
ForeignFDExcept() allow you to integrate Orbix event processing
with foreign event processing as described in “Integrating the
Orbix Event Loop with Foreign Events” on page 146.
The functions AtOrbixFDLowLimit(), StopListeningAtFDHigh(), and
ResumeListeningBelowFDHigh(), combined with the configuration
variables IT_FD_WARNING_NUMBER and IT_FD_STOP_LISTENING_POINT,
give users the ability to monitor consumption of FDs. Note that
FDs are shared by the process and are needed not only by Orbix,
but also for database connections and file i/o that the user's code
may use. When the number of Orbix FDs reaches
IT_FD_WARNING_NUMBER, either on the way up or the way down,
AtOrbixFDLowLimit() is called. When the number of Orbix FDs
reaches IT_FD_STOP_LISTENING_POINT, then StopListeningAtFDHigh()
is called. Once an Orbix FD is freed up or the number of FDs made
available to Orbix is increased, then ResumeListeningBelowFDHigh()
is called.

Event Processing in Orbix
This section describes the following issues associated with
processing Orbix events:

• Orbix event processing functions.
• Integrating the Orbix event loop with foreign events.
• Ensuring that servers process events while clients are

connected.
• Setting timeouts on operation calls from clients.

Orbix Event Processing Functions
The function impl_is_ready(), defined on class CORBA::BOA, allows
you to initialize a server and start processing incoming connection
attempts and operation calls on existing connections. Class
CORBA::BOA also provides several other event processing functions
that allow you to handle incoming events in a client or in a server
that has already been initialized.
The relevant functions are CORBA::BOA::processNextEvent(),
CORBA::BOA::processEvents() and CORBA::BOA::obj_is_ready(). You
can also test whether or not there is an outstanding event using
CORBA::BOA::isEventPending(). Refer to the relevant entries in class
CORBA::BOA of the Orbix Programmer’s Reference C++ Edition
for details.

Integrating the Orbix Event Loop with Foreign Events
When you call an Orbix event processing function, Orbix monitors
all file descriptors associated with its event loop. This file
descriptor set includes each file descriptor associated with an open
connection from another Orbix program.

Orbix Programmer’s Guide C++ Edition 147

If you wish to integrate Orbix with another system that has an
event processing loop, you can do this by adding the file
descriptors for the foreign system to the Orbix event loop.
To add foreign file descriptors to the Orbix event loop, call one of
the following functions defined in class CORBA::ORB:

void addForeignFD
(const int fd, unsigned char aState);

void addForeignFDSet
(fd_set& theFDset, unsigned char aState);

To remove foreign file descriptors from the Orbix event loop, call
one of the following functions:

void removeForeignFD
(const int fd, unsigned char aState);

void removeForeignFDSet
(fd_set& theFDset, unsigned char aState);

There are three sets of foreign file descriptors registered with the
Orbix event loop: one set is monitored for reads, another for
writes, and the third for exceptions. You can register a file
descriptor in one or more of these sets. To do this, specify the
values FD_READ, FD_WRITE, FD_EXCEPTION (or any logical combination
of these values) in the aState parameter, passed each of the
registration functions.
When Orbix detects an event on a foreign file descriptor, it
attempts to call a function in your application code. To receive this
callback, implement the class CORBA::IT_IOCallback, as described
in “Receiving Callbacks for New or Closed Connections, and FD
Handling Events” on page 145 and override one of the functions
ForeignFDRead(), ForeignFDWrite(), and ForeignFDExcept().

Processing Events while Clients are Still Connected
By default, the event processing functions impl_is_ready(),
obj_is_ready(), processEvents() and processNextEvent(), (defined
in class CORBA::BOA) time out when a user-defined or defaulted
period has elapsed between
events; for example, an incoming operation call, or a connection
or disconnection by a client.
Consequently, impl_is_ready() can time out when its clients are
idle for a period. A server may prefer to remain active while there
are clients connected, active or not. Then the server should make
the following call:

// C++
CORBA::Orbix.setNoHangup(1); // 1 for true.

Refer to the entry for CORBA::BOA::setNoHangup() in the Orbix
Programmer’s Reference C++ Edition for full details.

Setting Timeouts on Operation Calls
An operation call that is not defined as oneway can be given a
timeout specified in milliseconds. If a reply is not received within
the given timeout interval, the invocation fails with a
CORBA::COMM_FAILURE exception.
The timeout for a call can be given by setting a value in an
Environment, using the following function:

// C++
// In class CORBA::Environment.
void timeout(CORBA::Long);

 148 Orbix Programmer’s Guide C++ Edition

For example:
// C++
CORBA::Environment& env;
CORBA::Long timeoutValue = ...;
Account_var aVar = ...;
try {

env.timeout(timeoutValue);
aVar->deposit(12.00, env);

}
catch (const CORBA::COMM_FAILURE&) {

cout << “---Timed out after” << timeoutValue
 << “msecs...” << endl;

}

catch (const CORBA::SystemException& se) {
cout << “Unexpected exception:” << endl

<<& se;
}

The value set by the CORBA::Environment::timeout() function
remains active until reset for the environment for which it was set.
A timeout can also be specified in a _bind() call:

// C++
CORBA::Environment& env;
CORBA::Long timeoutValue = ...;
Bank_var bVar;
try {

env.timeout(timeoutValue);
bVar = Bank::_bind(“:AIB”,“”,env);

}
catch (const CORBA::COMM_FAILURE&) {

cout << “--- Timed out after ” << timeoutValue
<< “msecs...” << endl;

}

In this case, the timeout applies to the implicit ping call attempted
during binding.
The timeout, if any, in an Environment variable can be read using
the parameterless function:

// C++
// In class CORBA::Environment.
CORBA::Long timeout()

As an alternative, timeouts can be set for all remote calls by
calling the following function on the ORB object:

//C++
// In class CORBA::ORB.
unsigned long defaultTxTimeout

(CORBA::ULong val, CORBA::Environment& IT_env =
CORBA::IT_chooseDefaultEnv())

This function returns the previous value. The value set by this
function is then used for all remote calls. However, if a timeout is
set in an Environment, it supersedes any value set globally in the
ORB. By default, no call has a timeout, that is, the default timeout
is infinite.
If a remote call establishes a connection between the client and
server, then there is a separate timeout on connection
establishment that can be controlled by the connectionTimeout()

Orbix Programmer’s Guide C++ Edition 149

function defined in class CORBA::ORB. The timeouts specified by
CORBA::ORB::defaultTxTimeout() or CORBA::Environment::timeout()
become effective once a connection is established.

 150 Orbix Programmer’s Guide C++ Edition

 Orbix Programmer’s Guide C++ Edition 151

Advanced
Programming Topics
This chapter presents a number of advanced topics that have not
been covered in previous chapters.
The topics covered in this chapter are:

• How to write applications where the client and server are
collocated—that is, within the same address space.

• How to determine whether a specific object is local or remote.
• How to obtain a pointer to an implementation class.
• How to raise an exception if the correct proxy code is not

available in a client.
• How multiple implementations can be provided for the same

IDL interface.
• How an implementation class may implement multiple

interfaces.
• How to use the CORBA type Context.
• How to modify the level of diagnostic messages displayed by

Orbix.

Developing Collocated Clients and Servers
For some applications, it is useful to use IDL to define the
interfaces between objects, even if these objects are not
distributed. Further, the objects in some applications may or may
not be distributed, depending on how the application is configured
by its installer. It is useful to be able to write application code that
can work efficiently in all these cases.
To address these issues, Orbix supports the collocation of client
and server objects within the same address space. When a bind
call is made by a client or server, Orbix will first look for the object
in the caller’s address space, unless the bind call specifies a
remote host. If the target object is found in that address space,
subsequent calls on the object are very efficient. This is because
direct C++ function calls are used from the client to the server
application code, and the Orbix runtime is bypassed.
Collocation can be enforced by calling the following function:

// C++
// In class CORBA::ORB.
orb->collocated(1);

This call controls the lookup mechanism: it prevents binding to
objects outside the current process’s address space. This function
returns the previous setting as a CORBA::Boolean.
If the target object cannot be found within the application’s
address space, Orbix normally tries to locate the object in the
same or a different node. However, if collocation is set, Orbix
never tries to bind to an object outside of the caller’s address
space. If an object is not found in the caller’s address space,
_bind() raises a CORBA::INV_OBJREF system exception.

 152 Orbix Programmer’s Guide C++ Edition

Calls to collocated(1) are normally made during the initialization
of a combined client/server. However, collocation can be unset
(thereby reinstating remote binding) at any time by calling
collocated(0).

Testing for the Presence of Collocation
A program can test whether or not collocation is currently set by
making the function call:

// C++
// In class CORBA::ORB.
CORBA::Boolean isOn = orb->collocated();

This returns a CORBA::Boolean value 1 (true) if collocation is set,
and returns 0 (false) otherwise.
A program may wish to use this so that it can create local objects
if collocation is set, but not create these objects otherwise; in the
latter case, it expects these objects to be created and managed by
a remote server.

Writing Code for both Collocation and Distribution
The following code works in both the collocated and the
distributed case. Either of these two cases can be selected at
runtime, perhaps from a command-line switch. The general
strategy for a collocated application is to write a mainline that first
conducts the usual server-side initialization (and in particular
creates target Orbix objects for the server application—here just
the Bank object), and then continues with the mainline of the client
application. In the distributed case, some server, which is not
shown here, is instead responsible for creating the target objects.
// C++

// Only the TIE approach is shown.
// The BOAImpl approach is very similar.
// Assume we have DEF_TIE_Bank(BankImpl);
...
main(int argc, char** argv) {

Bank_var localBankVar, remoteBankVar;
Account_var aVar;

// Use, for example, the command line arguments
// to decide whether or not to make this call:
if (...) {

orb->collocated(1); // true
localBankVar =

new TIE_Bank(BankImpl)(new BankImpl());
}
try {

// The bind to ‘srv’ is done locally
// if collocated; else remote bind:
// Note: In general S for the local process
// should be different than S for the remote
// process.
remoteBankVar = Bank::_bind(“M:S”, “H”);
aVar = p->newAccount(“jack”);
aVar->makeLodgement(100.00);

Orbix Programmer’s Guide C++ Edition 153

cout << “balance is ”
<< aVar->balance() << endl;

}
catch (const CORBA::SystemException& se) {

cout << “Unexpected exception:” << endl
<< se;

}
catch (...) {
}

}

Note: The example code shown here assumes that a remote server is
responsible for creating the target objects if collocation is not set.
Otherwise, it would be necessary to call impl_is_ready().

Determining Locality of Objects
You can use the CORBA::Object::_isRemote() function to determine
whether or not a reference to an IDL C++ class is remote—that is,
whether or not the object it references is in a different address
space on the same or a different host). An example of its use is
shown below:

// C++
// Bank server mainline.
main() {

Bank_var bVar; // IDL C++ class.

// The BOAImpl approach.
bVar = new BankImpl;
bVar->_marker(“College_Green”);

// The TIE approach.
// bVar = new TIE_Bank(BankImpl)
// (new BankImpl(), “College_Green”);

if (!bVar->_isRemote())
cout << “Object is local (as expected!)”);

// else - IMPOSSIBLE: object *IS* local.
}

// C++
// Client mainline.
main() {

// Bind to *any* Bank service.
Bank_var bVar = Bank::_bind(“M:S”, “H”);

if (bVar->_isRemote())
cout << “Object is remote (as expected!)”

<< endl;
// else object is local (or non-existent).

}

 154 Orbix Programmer’s Guide C++ Edition

Determining Hierarchy of Objects
When a reference to a remote object enters a client' s (or server's)
address space, Orbix constructs a proxy for that object. This proxy
(a normal C++ object) is constructed to execute the proxy code
corresponding to the actual interface of the true object it
represents.
Consider the base IDL interface:

// IDL
interface Account {
 ...
};

and the derived IDL interfaces:
interface CurrentAccount : Account {
 ...
};

and
interface PremiumAccount : CurrentAccount {
 ...
};

Consider if a CORBA process was linked with the IDL compiler
generated proxy code for the CurrentAccount object but not with
the generated proxy code for the PremiumAccount object.
If a server object within this process has an operation of the form:

// IDL
// In some interface.
void bankOp(in Account_ptr petal);

and a reference to a PremiumAccount object (the derived interface
of CurrentAccount) is passed as a parameter to this operation,
Orbix sets up a proxy for an Account interface in the local address
space.
Orbix knows that PremiumAccount must be a derived type of
Account, otherwise the client’s invocation of the operation BankOp()
using a PremiumAccount object would not have been allowed.
Now, if the application itself knows of the complete relationship
shown above, that is, that a PremiumAccount object is also a derived
instance of CurrentAccount, it is free to attempt a call to
CurrentAccount::_narrow() on the Account proxy object to obtain a
CurrentAccount proxy object.
However, as it has not been linked with the proxy code for the
PremiumAccount interface, Orbix does not know of the complete
relationship between the types Account, CurrentAccount and
PremiumAccount.
If useRemoteIsACalls is enabled, Orbix invokes the _is_a()
operation on the remote object to determine if PremiumAccount type
is in fact a derived type of the CurrentAccount type.
The remote process, knowing the complete relationship between
Account, CurrentAccount, and PremiumAccount then returns TRUE to
indicate that a PremiumAccount object is in fact a derived object of
the CurrentAccount interface.
Orbix can then narrow the Account proxy object to a
CurrentAccount proxy object using the generated proxy code for
the CurrentAccount interface.

Orbix Programmer’s Guide C++ Edition 155

If this is not acceptable, you should call useRemoteIsACalls() on
the CORBA::Orbix object, passing 0 (FALSE) for the first parameter.
The default setting is 1 (TRUE).
Setting the value to 0 (FALSE) means that Orbix raises an
exception if the local process has not been linked with the proxy
code for all required interfaces.
Note: It is not possible to narrow the local Account object to a
PremiumAccount object as the local process has not been linked with
the generated proxy code for the PremiumAccount object.

Casting from Interface to Implementation Class
This section describes how to cast, when using the BOAImpl
approach, from an interface class to an implementation class
written by a programmer. Although this is not frequently required,
it can be useful in some cases.
Consider interface Account, and the C++ implementation class
AccountImpl defined as follows:

// C++
class AccountImpl : public virtual AccountBOAImpl {

...
};

The overall class hierarchy is shown in Figure 19.

Figure 19: Casting From Interface Class to Implementation Class Using the BOAImpl
Approach

If you have an object reference for an Account, there is a difficulty
casting this to a pointer to an AccountImpl. C++ prohibits this cast
because the inheritance between AccountBOAImpl and Account is
virtual.
Casts from interface to implementation class are not frequently
required, because invoking a function on the Account object
reference is sufficient. However, you can add an extra member
function (not defined in the IDL interface) to the implementation
class, and this is only available for use if you have a pointer to the
implementation class.

IDL Compiler

Account (IDL interface)

Account (IDL C++ class)

AccountBOAImpl

(C++ class written by you to
implement the interface
Account)

AccountImpl

 156 Orbix Programmer’s Guide C++ Edition

Orbix provides a DEREF() macro that, when called on a TIE object,
returns a pointer to an implementation object. This macro
implicitly calls the function CORBA::Object::_deref(). To cast from
an interface to an implementation class using the BOAImpl
approach, you should first redefine CORBA::Object:: _deref()
function in the implementation class:

// C++
class AccountImpl : public virtual AccountBOAImpl{

....
virtual void* _deref() { return this; }

};

You can then use the DEREF() macro to achieve the cast as follows:
// C++
Account_ptr aPtr =;
AccountImpl* p_i = (AccountImpl*) DEREF(aPtr);

If _deref() is not redefined by AccountImpl, then it inherits an
implementation that returns a pointer to the BOAImpl class.
Naturally, the need for the cast could be removed by defining the
extra functions as IDL operations in the IDL interface. However,
this would make these operations available to remote processes,
possibly against the requirements of the application. In addition,
some C++ functions cannot be translated into IDL in a
straightforward way.

Actions when Proxy Code is Unavailable
When a reference to a remote object enters a client or server
address space, Orbix constructs a proxy for that object. This proxy
(a normal C++ object) is constructed to execute the proxy code
corresponding to the actual interface of the true object it
represents.
Hence, if a server object has an operation of the form:

// IDL
// In some interface.
void op(in Account a);

and if a reference to a remote CurrentAccount (a derived interface
of Account) is passed as a parameter to this operation, Orbix tries
to set up a proxy for a CurrentAccount in the server address space.
If the server was not linked with the IDL-compiler generated
proxy code for CurrentAccount, Orbix instead creates a proxy for
an Account in the server address space. This means that, Orbix
uses the static rather than the dynamic type of the parameter.
The same applies when an object reference enters a client.
If resorting to the static type is unacceptable, call the following
function on the ORB object, passing a false value for the first
parameter:
// C++
// In class CORBA::ORB.
unsigned char resortToStatic(CORBA::Boolean,

CORBA::Environment& IT_env = CORBA::IT_chooseDefaultEnv())

This function returns the previous setting; the default setting is
true. Setting the value to false means that Orbix raises an
exception if the server or client is not linked with the actual proxy
code.

Orbix Programmer’s Guide C++ Edition 157

Multiple Implementations of an Interface
There may be more than one implementation of the same IDL
interface:

• In the BOAImpl approach, you can define multiple classes
which inherit from the same BOAImpl-class.

• In the TIE approach, you can declare further relationships
using a DEF_TIE macro.

For example, in the BOAImpl approach, the following provides a
second implementation class of the Bank interface:

// C++
class BuildingSocietyImpl :

public virtual BankBOAImpl {
public:

BuildingSocietyImpl();
virtual ~BuildingSocietyImpl();

// Functions for IDL operations.
Account_ptr newAccount(const char* name,

CORBA::Environment& IT_env =
CORBA::IT_chooseDefaultEnv());

void deleteAccount(Account_ptr a,
CORBA::Environment& IT_env =
CORBA::IT_chooseDefaultEnv());

};

In the TIE approach, the following can be used:
// C++

class BuildingSocietyImpl {
public:

BuildingSocietyImpl();
virtual ~BuildingSociety_i();

// Functions for IDL operations.
Account_ptr newAccount(const char* name,

CORBA::Environment& IT_env =
CORBA::IT_chooseDefaultEnv());

void deleteAccount(Account_ptr a,
CORBA::Environment& IT_env =
CORBA::IT_chooseDefaultEnv());

};

DEF_TIE_Bank(BuildingSocietyImpl)
// A class TIE_Bank(BuildingSocietyImpl).

Both of the TIE classes, TIE_Bank(BankImpl) and
TIE_Bank(BuildingSocietyImpl), are now derived classes of the IDL
C++ class Bank.

 158 Orbix Programmer’s Guide C++ Edition

The argument to the constructor of TIE_Bank(BankImpl) must be a
BankImpl*, and that of TIE_Bank(BuildingSocietyImpl) must be a
BuildingSocietyImpl*:

// C++
Bank_ptr b1Ptr = new TIE_Bank(BankImpl)

(new BankImpl);
Bank_ptr b2Ptr = new TIE_Bank(BuildingSocietyImpl)

(new BuildingSocietyImpl);

Because the two TIE classes are derived classes of (the IDL C++
class) Bank, the pointers b1Ptr and b2Ptr can both refer to either of
these two TIE objects:

// C++
b1Ptr = b2Ptr; // OK, b1Ptr now points to a

// BuildingSocietyImpl TIE.

Multiple Interfaces per Implementation
In addition to being able to implement the same IDL interface
using two or more different implementation classes, the same
implementation class can implement two or more IDL interfaces,
even if these IDL interfaces are not themselves related by
inheritance. Consider the following two interfaces:

// IDL
// An IDL factory for bank accounts.
interface Bank {

exception Reject { string reason; };

Account newAccount(in string name)
raises (reject);

void deleteAccount(in Account a);
};
// An IDL management interface for accounts.
interface Manager {

Account firstAccount();
Account nextAccount();
void deleteAccount(in Account a);

};

Here, Bank does not inherit from Manager, nor vice versa. The next
two sections show how the two interfaces Bank and Manager can be
implemented by the same C++ class, using the TIE approach and
the BOAImpl approach, respectively.

Orbix Programmer’s Guide C++ Edition 159

Using the TIE Approach
Using multiple interfaces for an implementation is more
straightforward in the TIE approach. First you should write a class
that provides all of the functions in the two interfaces:

// C++
class BigBankImpl {
public:

BigBankImpl();
virtual ~BigBankImpl();

// Functions for IDL operations:
Account_ptr newAccount(const char* name,

CORBA::Environment& IT_env =
CORBA::IT_chooseDefaultEnv());

void deleteAccount(Account_ptr a,
CORBA::Environment& IT_env =
CORBA::IT_chooseDefaultEnv());

Account_ptr firstAccount
(CORBA::Environment& IT_env=
CORBA::IT_chooseDefaultEnv());

Account_ptr nextAccount
(CORBA::Environment& IT_env =
CORBA::IT_chooseDefaultEnv());

};

Now class BigBankImpl can implement the IDL interfaces Bank and
Manager as follows:

// C++
// Indicate that Bank is implemented by BigBankImpl.
DEF_TIE_Bank(BigBankImpl)
// You now have a class TIE_Bank(BigBankImpl).

// Indicate that Manager is implemented by BigBankImpl.
DEF_TIE_Manager(BigBankImpl)
// You now have a class TIE_Manager(BigBankImpl).

An instance of BigBankImpl acts as an object of type Bank when it is
accessed through a TIE of class TIE_Bank(BigBankImpl). An instance
of BigBankImpl acts as an object of type Manager when it is accessed
through a TIE of class TIE_Manager(BigBankImpl).
In addition, note that the same object can provide both of these
interfaces:

// C++
// Use the same object to implement
// both Bank and Manager.

// The TIE approach.
Bank_ptr bPtr = new

TIE_Bank(BigBankImpl)(new BigBankImpl);
Manager_ptr mPtr = new TIE_Manager(BigBankImpl)

((BigBankImpl*)DEREF(bPtr));

The DEREF() macro is applied to a reference to an IDL C++ class;
and an explicit type cast is required. If the reference denotes a
local object, DEREF() returns a reference to that object. If the
reference is remote, DEREF() returns a reference to the proxy.
You can determine whether or not a reference is remote by using
the function CORBA::Object::_isRemote().

 160 Orbix Programmer’s Guide C++ Edition

Using the BOAImpl Approach
Using the BOAImpl approach, BigBankImpl should not be defined as
follows:

// C++
// Incorrect approach:
class BigBankImpl : public virtual BankBOAImpl,

public virtual ManagerBOAImpl {
 ...
};

If this definition is used, it would not be possible to determine
whether an object of type BigBankImpl was of type BankBOAImpl or
ManagerBOAImpl. This is important if the two interfaces are not
related by inheritance.
The natural solution is to define a new IDL interface that inherits
from both Bank and Manager, and for the C++ implementation class
to inherit from the BOAImpl class corresponding to that new
interface.
If it is not possible to introduce the new IDL interface, you can
proceed as follows. Class BigBankImpl can inherit from one of the
BOAImpl classes, for example BankBOAImpl, but it should include
functions to implement all of the functions in Bank and Manager:

// C++
class BigBankImpl : public virtual BankBOAImpl {
public:

BigBankImpl();
~BigBankImpl();

// Functions for Bank IDL operations:
Account_ptr newAccount(const char* name,

CORBA::Environment& IT_env =
CORBA::IT_chooseDefaultEnv());

void deleteAccount(Account_ptr a,
CORBA::Environment& IT_env =
CORBA::IT_chooseDefaultEnv());

// Functions for Manager IDL operations:
Account_ptr firstAccount

(CORBA::Environment& IT_env =
CORBA::IT_chooseDefaultEnv());

Account_ptr nextAccount
(CORBA::Environment& IT_env =
CORBA::IT_chooseDefaultEnv());

};

Calls on the Bank interface can go directly to an object of type
BigBankImpl. However, you need a second object to handle the
Manager aspects. This object should forward all function invocations
to its corresponding BigBankImpl object, which implements both
the Bank and the Manager functions. It is clear, therefore, that the
TIE approach is easier to use when a single object needs to have
more than one unrelated interface.

Orbix Programmer’s Guide C++ Edition 161

Passing Context Information to IDL Operations
A context is a two-dimensional table that maps identifier strings to
value strings. A context may be defined in IDL as part of an
operation specification. An operation that specifies a context
clause is mapped to a C++ member function that takes an extra
parameter (just before the Environment parameter). For example,
the following interface:

// IDL
interface A {

void op(in unsigned long s)
context (“accuracy”, “base”);

};

maps to:
// C++
class A {
public:

virtual void op(CORBA::ULong s,
CORBA::Context_ptr IT_c,
CORBA::Environment& IT_env =
CORBA::IT_chooseDefaultEnv());

};

Instances of CORBA::Context are pseudo-objects. A client can
create a Context as follows:

// C++
CORBA::Context_ptr cPtr =

CORBA::Context::create_context();

This creates an initially empty Context object, to which
identifier:string mappings can be added, and that can be passed
to a function that takes a Context parameter.
On the server side, Orbix constructs a new Context from the value
received in the incoming operation request and calls the target
object’s operation. Orbix releases the context when the call
returns. If the server requires that the context be retained after
the call, you should use _duplicate() to increase the reference
count of the context argument passed in the call.
You can obtain the default context for a process by calling
get_default_context():

// C++
// In class CORBA::ORB::get_default_context().
CORBA::Context_ptr defC;
orb->get_default_context(defC);

You must free the Context allocated in defC.
The default context provides a useful mechanism for sharing
context changes between different parts of a program. This
context is initially empty.

 162 Orbix Programmer’s Guide C++ Edition

Context Hierarchies
Context objects can be nested in context hierarchies by specifying
the parent parameter when creating a child Context, or by using
the create_child() function. Figure 20 on page 162 illustrates an
example context hierarchy.

Figure 20: Hierarchy of Contexts

A hierarchy may be set up by specifying the parent context in the
constructor; a name can also be given to a context:

// C++
Context_ptr c1 =

CORBA::Context::IT_create(“high”);
Context_ptr c2 =

CORBA::Context::IT_create(“middle”, c1);
Context_ptr c3 =

CORBA::Context::IT_create(“low”, c2);

You must free the Context pseudo-object reference returned from
the call to IT_create(), or alternatively, assign it to a
CORBA::Context_var variable for automatic management.

CORBA::Context::get_values()
CORBA::Context provides a function get_values() to retrieve the
property values in a Context; it is defined as:

// C++
// In class CORBA::Context.
CORBA::Status get_values(

const char* start_scope;
const Flags op_flags;
const char* prop_name;
CORBA::NVList_ptr& values;
CORBA::Environment& IT_env =
CORBA::IT_chooseDefaultEnv());

You can use the start_scope parameter to get_values() to specify
that the search for the values requested is to be made in a (direct
or indirect) parent context of the context on which the call is
made. The call searches backwards for a context with the specified
name. If this is found, it searches for the specified Identifiers in
that context.

c1 high

c2 middle

c3 low

Orbix Programmer’s Guide C++ Edition 163

For example, the following code specifies that the search for
identifiers beginning with “sys_” should begin in the context
named middle:

// C++

CORBA::NVList_ptr listPtr =
CORBA::NVList::IT_create();

if (!(c3->get_values(“middle”,
0, “sys_*”, listPtr)))

// Handle the error.
else {

// Iterate through the NVList pointed
// to by listPtr:

}

Alternatively, you could code this example to detect an exception
raised by get_values() if no entry is found.
If zero is passed as the first parameter to get_values(), the search
begins in the context that is the target of the call. If no matching
identifiers are found, get_values() returns zero (false).
CORBA::Context::get_values() has a parameter of type Flags. When
the null (zero) flag is passed to get_values(), searching of
identifiers propagates upwards to parent contexts. If the Flags
parameter passed to get_values() is CORBA::CTX_RESTRICT_SCOPE,
searching is restricted to the specified start scope or target
Context object. Refer to the entry for class CORBA::Flags in the
Orbix Programmer’s Reference C++ Edition for more details.

Receiving Diagnostic Messages from Orbix
Orbix enables you to control the output of runtime diagnostic
messages on both the client and server. You can set three levels
of diagnostics as follows:

Refer to the entry for CORBA::ORB::setDiagnostics() in the Orbix
Programmer’s Reference C++ Edition for more details.

Level Output

0 No diagnostics
1 Simple diagnostics (this is the default)
2 Full diagnostics

 164 Orbix Programmer’s Guide C++ Edition

Part III
 Dynamic Orbix C++

Programming

In this part
This part contains the following:

The TypeCode Data Type page 167

The Any Data Type page 173

Dynamic Invocation Interface page 185

Dynamic Skeleton Interface page 201

The Interface Repository page 209

 Orbix Programmer’s Guide C++ Edition 167

The TypeCode Data
Type
The IDL pseudo-object type TypeCode is used in CORBA to
describe arbitrary complex IDL types at runtime. This chapter
describes how you can manipulate TypeCode values.
The IDL data type TypeCode is used for two main purposes in
CORBA systems:

• To describe the contents of an IDL value of type any. The
TypeCode data type forms an important part of the mapping
from IDL type any to C++ type CORBA::Any. This is described in
detail in “The Any Data Type” on page 173.

• As a parameter from some of the operations of the Interface
Repository. This is described in “The Interface Repository” on
page 209.

In an IDL specification, you can use a TypeCode as an attribute type
or as the type of a parameter or return value to an operation. To
make the TypeCode data type available, your IDL must include the
following directive:

#include <orb.idl>

The IDL type TypeCode maps to a CORBA::TypeCode_ptr parameter in
the C++ generated from your IDL definitions. The IDL TypeCode
interface is implemented by the Orbix C++ class CORBA::TypeCode.

Overview of the TypeCode Data Type
This section describes the standard IDL interface CORBA::TypeCode,
as well as the C++ class CORBA::TypeCode.
Each TypeCode consists of the following:

• A kind.
The kind specifies the overall classification of the TypeCode: for
example, whether it is a basic type, a struct, a sequence, and
so on.

• A sequence of parameters.
The parameters give the details of the type definition and are
of type CORBA::Any. For example, the IDL type
sequence<long,20> has the kind tk_sequence and has two
parameters—the first parameter is a CORBA::Any that contains
a TypeCode for long, the second parameter is a CORBA::Any that
contains the value 20.

 168 Orbix Programmer’s Guide C++ Edition

The IDL interface for TypeCode is shown below. Refer to the Orbix
Programmer’s Reference C++ Edition for a full description of
this interface. It includes an operation kind() to query the kind of
a TypeCode and an operation parameter() to access individual
parameters of a TypeCode.

// IDL
// In module CORBA.
enum TCKind {

tk_null, tk_void, tk_short, tk_long, tk_ushort,
tk_ulong, tk_float, tk_double, tk_boolean,
tk_octet, tk_any, tk_TypeCode, tk_Principal,
tk_char, tk_objref, tk_struct, tk_union,
tk_enum, tk_string, tk_sequence, tk_array,
tk_alias, tk_except, tk_longlong, tk_ulonglong,
tk_longdouble, tk_wchar,tk_wstring, tk_fixed,
tk_opaque

}
exception Bounds {};

pseudo interface TypeCode {
TCKind kind();
long param_count();
any parameter(in long index) raises(Bounds);
boolean equal(in TypeCode tc);

};

The C++ signatures of these IDL operations are as follows:
// C++
TCKind kind(CORBA::Environment& IT_env =

CORBA::IT_chooseDefaultEnv()) const;
CORBA::Any parameter(CORBA::Long index,

CORBA::Environment& IT_env =
CORBA::IT_chooseDefaultEnv()) const;

The parameter() operation raises the exception Bounds if an
attempt is made to access a non-existent parameter. The number
of parameters that a TypeCode has varies with the kind of the
TypeCode. This number is returned by the param_count() operation
of the TypeCode interface. The generated signature of this
operation is as follows:

// C++
CORBA::Long param_count(CORBA::Environment&

IT_env = CORBA::IT_chooseDefaultEnv()) const;

The parameters of each kind of TypeCode are listed in detail in the
entry for CORBA::TypeCode in the Orbix Programmer’s Reference
C++ Edition. Some examples are as follows:

• A TypeCode of kind tk_struct has one parameter giving the
struct name and then two parameters for each member of the
struct: the first giving the member’s name and the second
giving its TypeCode. A struct with N members has 2N+1
parameters. Each parameter is contained in a CORBA::Any.

• A TypeCode of kind tk_string has one parameter—an integer
giving the maximum length of the string. A zero length
indicates an unbounded string. The parameter is contained in
a CORBA::Any.

Orbix Programmer’s Guide C++ Edition 169

Implementation of TypeCode in Orbix
The IDL type TypeCode is implemented by the C++ class
CORBA::TypeCode. An IDL operation with a parameter of type
TypeCode is translated into a C++ member function with a
parameter of type CORBA::TypeCode_ptr. A declaration for the
object that it references can be generated by the IDL compiler
from named type definitions that appear in an IDL file—that is,
from the following types:

interface
typedef
struct
union
enum

CORBA::TypeCode_ptr Constants
For each user-defined type that appears in an IDL file, a
CORBA::TypeCode_ptr can be generated. The TypeCode_ptr points to
a TypeCode constant generated by the IDL compiler. These
constants have names of the form _tc_<type> where <type> is the
user-defined type. For example, consider the following IDL
specification:

interface Interesting {
typedef long longType;
struct Useful {

longType l;
};

};

The following CORBA::TypeCode_ptr constants are generated for this
definition:

_tc_Interesting
_tc_longType
_tc_Useful

Note: These definitions are only generated if you specify the -A switch to
the Orbix IDL compiler.
A number of predefined CORBA::TypeCode object reference
constants are always available to allow the user to access
TypeCodes for standard types. Refer to the entry for
CORBA::TypeCode in the Orbix Programmer’s Reference C++
Edition for a complete list. The following are some examples:

CORBA::_tc_float is an object reference for a float TypeCode.
CORBA::_tc_string is an object reference for a string TypeCode.
CORBA::_tc_TypeCode is an object reference for a TypeCode TypeCode.

TypeCode Public Members
The C++ class CORBA::TypeCode defines the following public
members:

• Constructors:
CORBA::TypeCode();
CORBA::TypeCode()(const CORBA::TypeCode&);

• A destructor.

 170 Orbix Programmer’s Guide C++ Edition

• operator=(), which allows assignment of objects of type
CORBA::TypeCode.

• Function equal(), which allows comparison of objects of type
CORBA::TypeCode.

• operator==() and operator!=, which make it easier to compare
objects. These operators are specific to the Orbix
implementation of TypeCode.

• Function kind(), which returns a value of the enumerate type
TCKind.

• Function param_count(), which returns the number of
parameters of the CORBA::TypeCode.

• Function parameter(), which returns an individual parameter.
This takes the parameter index (the first parameter is at index
-1).

CORBA::TypeCode::IT_create()
In addition to the public members listed above, the following
function is provided in the public interface to class
CORBA::TypeCode:

static CORBA::TypeCode_ptr IT_create(
const TypeCode_ptr& tc,
CORBA::Environment& IT_env =
CORBA::IT_chooseDefaultEnv());

IT_create() is provided by Orbix to initialize a TypeCode
pseudo-object reference, because the CORBA standard does not
specify a way to obtain a TypeCode pseudo-object reference. Use of
IT_create() is recommended in preference to C++ operator new()
in order to ensure memory management consistency.

Examples of Using TypeCode
This section explains the following examples of using TypeCode in
Orbix:

• Use of TypeCode in type CORBA::Any.
• Use of TypeCode when querying the Interface Repository.

Use of TypeCode in Type CORBA::Any
Consider an example IDL definition:

// IDL
struct Example {

long l;
};

If you compile this definition with the IDL compiler -A switch, the
CORBA::TypeCode_ptr constant _tc_Example is generated.
Assume the following IDL operation:

// IDL
interface Bar {

void op(in any a);
};

Orbix Programmer’s Guide C++ Edition 171

A client program invokes the IDL operation op() as follows:
// C++
// Client code.
Bar_var bVar;
...
CORBA::Any a ;
// Initialize a. (Not shown in this chapter.)
...
bVar->op(a);

On the server-side, you can query the actual type of the
parameter to op(). For example:

// C++
// Server code.
void Bar_i::op(const CORBA::Any& a,

CORBA::Environment&) {
CORBA::TypeCode_ptr t = a.type();
if(t->equal(_tc_Example)) {

cerr << "Don’t like struct Example!"
<< endl;

}
else... // Continue processing here.

}

This is one of the most common uses of TypeCodes—namely, the
runtime querying of type information from a CORBA::Any.

Use of TypeCode when Querying the Interface Repository
The Orbix Interface Repository maintains information about IDL
type definitions, allowing information about definitions to be
determined at runtime. The kind() and parameter() member
functions of class CORBA::TypeCode can be used to query the
Interface Repository.
For example, when querying information about an operation of an
interface, the number of its arguments can be found, and then the
TypeCode of each argument can be determined. You can use the
functions kind() and parameter() on each TypeCode to determine
the details of the type of each argument. The chapter “The
Interface Repository” on page 209 describes the use of the
Interface Repository in detail, including examples of using
TypeCode.

 172 Orbix Programmer’s Guide C++ Edition

 Orbix Programmer’s Guide C++ Edition 173

The Any Data Type
This chapter explains the IDL type any and the corresponding
C++ class CORBA::Any, using an example. IDL type any
indicates that a value of an arbitrary type can be passed as a
parameter or a return value.
This chapter discusses different means of constructing and
interpreting an any. It first discusses the use of operator<<=
(left-shift assign operator) and operator >>= (right-shift assign
operator). This approach is CORBA-defined, and is both the
simplest to use and the most type-safe. However, there are
situations where these operators cannot be used. This chapter
also describes alternative mechanisms for constructing and
interpreting an any.
Consider the following interface:

// IDL

interface AnyDemo {
void passSomethingIn (in any any_type_parameter);
...

}

A client can construct an any to contain a type that can be
specified in IDL, and then pass this in a call to operation
passSomethingIn(). An application receiving an any must
determine the type of value stored by the any and then extract
the value.
The IDL type any maps to the C++ class CORBA::Any. Refer to the
Orbix Programmer’s Reference C++ Edition for the full
specification of this class. This class contains some private
member data, accessible via public accessor functions, that store
both the type of the any and its value. The type is stored as a
CORBA::TypeCode, and the value is stored as a void*.

Inserting Data into an Any with operator<<=()
The C++ class CORBA::Any contains a number of left-shift assign
operators (<<=) that enable you to assign a value to an any. An
overloaded version of operator<<=() is provided for each of the
basic IDL types such as long, unsigned long, float, double, string
and so on. In addition, the Orbix IDL compiler can generate such
an operator for each user-defined type that appears in an IDL
specification.

Note: Operators for user-defined type are generated only if the -A switch
is passed to the IDL compiler. Refer to “Orbix IDL Compiler
Options” on page 319 for more details.

 174 Orbix Programmer’s Guide C++ Edition

The IDL definition for the example used in this chapter is as
follows:
// IDL
// In file anydemo.idl

// Illustrates user-defined types and anys.
typedef sequence<long> LongSequence;
...
interface AnyDemo {

// Takes in any type that can be specified in IDL.
void passSomethingIn (in any any_type_parameter);

// Passes out any type specified in IDL.
void getSomethingOut (out any any_type_parameter);

// Passes in an any type and passes out an any
// containing a different type.
void passSomethingInOut (

inout any any_type_parameter);
};

A version of the code for the example described in this chapter is
available in demos\common\anydemo directory of your Orbix
installation.

Inserting a Basic Type
Orbix provides a pre-defined overloaded version of operator<<=()
for basic IDL types such as long, unsigned long, float, double
string and so on.
Assume that a client programmer wishes to pass an any containing
an IDL short (or, in C++, a CORBA::Short) as the parameter to the
passSomethingIn() operation. The client can use the following
operator, which is a standard member of the class CORBA::Any:

void operator<<=(CORBA::Short s);

Inserting a User-Defined Type
If the client wishes to pass a more complex user-defined type,
such as LongSequence (in file anydemo.idl), it can use the following
generated operators:

void operator<<=(CORBA::Any& a,
const LongSequence& t);

Using this operator, you can write the following code:
// C++
// In file anydemo_menu.cxx.

// Builds an any containing a sequence of type
// LongSequence and then calls passSomethingIn.
void AnyDemoMenu::do_send_sequence() {

try {
CORBA::Any a;

// Build a sequence of length 2.
LongSequence sequence_to_insert(2);

Orbix Programmer’s Guide C++ Edition 175

sequence_to_insert.length(2);

// Insert a value into the sequence.
sequence_to_insert[0] = 1;
sequence_to_insert[1] = 2;

// Use operator<<=() to insert the sequence
// into the any.
a<<=sequence_to_insert;

// Print out the contents of the sequence.
cout << "Call passSomethingIn with sequence

contents:" << sequence_to_insert[0]
<< " "

<< sequence_to_insert[1] << endl
<< endl;

// Now invoke passSomethingIn.
m_any_demo->passSomethingIn (a);

}
catch (const CORBA::SystemException& se) {
...
}

}

These operators provide a type-safe mechanism for inserting data
into an any. The correct operator is called based on the type of the
value being inserted. Furthermore, if an attempt is made to insert
a value that has no corresponding IDL type, this results in a
compile-time error.
Using the left-shift assign operator to insert a value into an any
sets both the value of the CORBA::Any and the CORBA::TypeCode
property for the CORBA::Any.
Each left-shift assign operator makes a copy of the value being
inserted; for example, in the case of object references,
_duplicate() is used. The CORBA::Any is then responsible for the
memory management of the copy. Previous values held by the
CORBA::Any are properly deallocated; for example, using
CORBA::release() in the case of object references.
Refer to “Other Ways to Construct and Interpret an Any” for
details of how to insert boolean, char, array and octet values.

Interpreting an any with operator>>=()
The C++ class CORBA::Any contains several right-shift assign
operators (>>=) that enable you to extract the value stored in an
any. These operators correspond to the basic IDL types such as
long, unsigned long, float, double, string and so on. As with
operator<<=(), the IDL compiler can generate an operator>>=() for
each user-defined type that appears in an IDL specification. These
additional operators are only generated if the -A switch is specified
to the IDL compiler.

 176 Orbix Programmer’s Guide C++ Edition

Interpreting a Basic Type
The following example illustrates the use of the right-shift assign
operators to extract the value stored in an any. Each operator>>=()
returns a CORBA::Boolean value to indicate whether or not a value
of the required type can be extracted from the any. Each
operator>>=() returns 1 if the any contains a value whose
CORBA::TypeCode matches the type of the right-hand parameter;
and returns 0 otherwise. You can extract a value as follows:

// C++
// In file anydemo_menu.cxx.

// Shows how an any is passed as an out parameter.
void AnyDemoMenu::do_get_any() {

1 CORBA::Any* any_type_parameter;

cout << "Call getSomethingOut" << endl;
m_any_demo->getSomethingOut(any_type_parameter);

// Assumes that the server passes a string.
char* extracted_string = 0;

2 if (*any_type_parameter >>= extracted_string) {

// Print out the string.
cout << "any out parameter contains a string with
value :" << extracted_string << endl << endl;
}
else {
// Error message.
cout << "unexpected value contained in any"
<< endl;
}

}

This code is explained as follows:
1. The CORBA::Any variable retains ownership of the memory it

returns when operator>>=() is called. Because the memory is
managed by the CORBA::Any type there is no need for you to
manage the memory.

2. The function operator>>=() is used to interpret the contents
of the any parameter. If successful, the operator causes the
extracted pointer to point to the memory storage managed by
the any.

Orbix Programmer’s Guide C++ Edition 177

Interpreting a User-Defined Type
More complex, user-defined types can also be extracted using the
right-shift operators generated by the IDL compiler. For example,
the LongSequence IDL type from “Inserting a User-Defined Type”:

// IDL
typedef sequence<long> LongSequence;

You can extract a LongSequence from a CORBA::Any as follows:
void AnyDemoMenu::do_get_any() {

CORBA::Any* any_type_parameter;

cout << "Call getSomethingOut" << endl;

m_any_demo->getSomethingOut(any_type_parameter);

LongSequence* extracted_sequence = 0

if (*any_type_parameter>>= extracted_sequence) {
cout << "any out parameter contains a sequence
with value :" << extracted_sequence << endl
<< endl;

}
else {

cout << "unexpected value contained in any"
<< endl;

}
}

The generated right-shift operator for user-defined types takes a
pointer to the generated type as the right-hand parameter. If the
call to the operator is successful, this pointer points to the
memory managed by the CORBA::Any.
No attempt should be made to delete or otherwise free the
memory managed by the CORBA::Any. Extraction into a _var
variable violates this rule, because the _var variable attempts to
assume ownership of the memory. Furthermore, it is an error to
attempt to access the storage associated with a CORBA::Any after
the CORBA::Any variable has been deallocated.

Other Ways to Construct and Interpret an Any
This section presents a number of other ways to construct and
interpret an any. You should use the >>= and <<= operators
wherever possible, but there are occasions when you must use a
more complex approach.

Inserting Values at Construction Time
Instead of creating a CORBA::Any variable using the default
constructor, and then inserting a value using operator<<=(), an
application can specify the value and its type when the CORBA::Any
is being constructed. This alternative constructor has the following
signature:

// C++
Any(CORBA::TypeCode_ptr tc, void* value,

CORBA::Boolean release = 0);

 178 Orbix Programmer’s Guide C++ Edition

This is not used normally, because it is more difficult to use than
operator<<=(), and because it is not type-safe. Specifically, the
type of the value passed to the value parameter may not match
the type passed in parameter tc. A mismatch is not detected
because the value parameter is of type void* and this leads to
subsequent errors.
However, there are some types that must be inserted in this way,
for example bounded strings. Both bounded and unbounded IDL
strings map to char* in C++, and hence both cannot be inserted
using operator<<=(). This operator is used to insert unbounded
strings only. A CORBA::Any containing a bounded string must be
created using a specific constructor. You can use the function
CORBA::Any::replace() to make assignments. Refer to “Low Level
Access to a CORBA::Any” on page 179 for more details.
For example, you can construct a CORBA::Any variable to contain a
bounded string as follows:

// C++
// In file anydemo_menu.cxx.

// Insert a bounded string into an any using the
// constructor.
void AnyDemoMenu::do_send_bounded_string() {

try {
// Allocate the correct memory for the string.

1 char* string_to_insert =
CORBA::string_alloc(string_length);
strcpy(string_to_insert,"Making Software

Work Together (TM)");

// Call to constructor.
2 CORBA::Any a(_tc_BoundedString,&

 string_to_insert, 1);

// Invoke passSomethingIn as normal.
cout << "Call passSomethingIn with string

value :"
 << string_to_insert << endl << endl;

m_any_demo->passSomethingIn (a);
}
catch (const CORBA::SystemException& se) {

cerr << "System exception: Call
passSomethingIn

with a string failed" << endl;
cerr <<& sysEx;

}
catch (const CORBA::Exception& se) {

cerr << "Exception: Call passSomethingIn
 with a string failed" << endl;
cerr <<& sysEx;

}
catch (...) {

cerr << "Unexpected exception: Call
passSomethingIn with a string failed"

<< endl;
}

}

Orbix Programmer’s Guide C++ Edition 179

This code is explained as follows:
1. Because this example uses a bounded string, you must ensure

that the string is allocated the appropriate amount of
memory. The constant string_length is defined in anydemo.idl.

2. The first parameter to the CORBA::Any constructor is a
pseudo-object reference for a CORBA::TypeCode. In this case,
the constant _tc_BoundedString is passed. This constant is
generated by the IDL compiler.
The second parameter is a pointer to the value to be inserted
into the CORBA::Any; in this case string_to_insert. This value
should be of the type specified by the CORBA::TypeCode_ptr
parameter. The behavior is undefined if the
CORBA::TypeCode_ptr and the value parameters do not agree.
When constructing CORBA::Anys for string types, the second
parameter is of type char**.
The third parameter, release, specifies which code assumes
ownership of the memory occupied by the value in the
CORBA::Any variable (string_to_insert). If this is 1 (true), the
CORBA::Any assumes ownership of the storage pointed to by
the value parameter. If this parameter is 0 (false), the caller
must manage the memory associated with the value. The
default is zero.
In this example, the CORBA::Any assumes ownership of the
memory associated with the variable string_to_insert: the
application code is not required to free this memory.

Low Level Access to a CORBA::Any
Class CORBA::Any provides three type-unsafe functions enabling
low level access to an Any. These are defined as follows:

// C++
void replace(CORBA::TypeCode_ptr, void* value,

CORBA::Boolean release = 0);

CORBA::TypeCode_ptr type() const;

const void* value() const;

replace()
The replace() function is only intended for use with types that
cannot use the type-safe operator interface. It can be used at any
time after construction of a CORBA::Any to replace the existing
CORBA::TypeCode and value. Like the various <<= operators, it
releases the previous CORBA::TypeCode and if necessary,
deallocates the storage previously associated with the value. The
release parameter has the same semantics as the release
parameter of the CORBA::Any constructor described in “Inserting
Values at Construction Time” on page 177.

type()
The type() function returns an object reference for a
CORBA::TypeCode that describes the type of the CORBA::Any. As with
all object references, the caller must release the reference when it
is no longer needed, or assign it to a CORBA::TypeCode_var variable
for automatic management.

 180 Orbix Programmer’s Guide C++ Edition

value()
The value() function returns a pointer to the data stored in the
CORBA::Any, or, if no value is stored, it returns the null pointer. This
value may be cast to the appropriate C++ type depending on the
CORBA::TypeCode of the CORBA::Any. The rules for the actual C++
type returned for each different IDL type are listed in the entry for
CORBA::Any in the Orbix Programmer’s Reference C++ Edition.
If the CORBA::Any contains an object reference for an object whose
type is unknown at compile time, the type() function returns a
reference for a CORBA::TypeCode object that is equal to the
_tc_object typecode constant. The value() function returns a void*
that can be cast to a CORBA::Object_ptr*.

Example of Using type() and value()
The following example determines the type of an any by
comparing the contents of the any with the typecode constant for
a bounded string:
// C++
// In file anydemo_impl.cxx.

void AnyDemoImpl::passSomethingIn(
const CORBA::Any& any_type_parameter,
CORBA::Environment&)
throw(CORBA::SystemException) {
...

CORBA::TypeCode_ptr type= any_type_parameter.type();

// Checks if the any contains a bounded string.
if (type->equal(_tc_BoundedString)) {

// Returns a void pointer to the bounded string.
char** any_contents =

(char**)any_type_parameter.value();
const char* bounded_string = *any_contents;

// Print out the contents.
cout << "passSomethingIn extracted a bounded

string of length " << strlen(bounded_string)
<< " and value " << bounded_string << endl
<< endl;

}
else {

// Error message.
cout << "passSomethingIn: unexpected value"
<< endl;

}
}

Orbix defines a typecode constant for each built-in type, and you
can instruct the IDL compiler to generate typecode constants for
each user-defined type. This is discussed in more detail in “The
TypeCode Data Type” on page 167.
Refer to the Orbix Programmer’s Reference C++ Edition for
more details on the replace(), type() and value() functions.

Orbix Programmer’s Guide C++ Edition 181

Inserting and Extracting Array Types
Recall that IDL arrays are mapped to regular C++ arrays. This
presents a problem for the type-safe operator interface to
CORBA::Any. C++ array parameters decompose to a pointer to their
first element, so you cannot use the operators to insert or extract
arrays of different lengths.
Nevertheless, arrays can be inserted and extracted using the
operators, because a distinct C++ type is generated for each IDL
array—specifically to help with insertion and extraction into or out
of CORBA::Any variables. The name of this type is the name of the
array followed by the suffix “_forany”.
The following example shows type-safe manipulation of arrays and
CORBA::Anys:

// IDL
typedef long longArray[2][2];

// C++
longArray_forany m_array = { {14, 15}, {24, 25} };

// Insertion:
CORBA::Any a;
if (a <<= m_array) {

cout << “Success!” << endl;
}

// Extraction:
longArray_forany extractedValue;
if (a >>= extractedValue) {

cout << “Element [1][2] is ”
<< extractedValue[1][2] << endl;

}

These types, like the array _var types, provide an operator[]() to
access the array members, but the _forany types do not delete
any storage associated with the array when they are themselves
destroyed. This is a good match for the semantics of
operator>>=(). The CORBA::Any retains ownership of the memory
returned by the operator. There is therefore no memory leak in
this code sample.

Inserting and Extracting boolean, octet and char
The standard CORBA IDL to C++ mapping does not require that
the IDL types boolean, octet and char map to distinct C++ types.
Therefore, it is not possible to insert and extract each of these
using operator<<=() and operator>>=(). Remember that the
overloaded right-shift and left-shift assignment operators are
distinguished based on the type of the right-hand argument.
In Orbix, the types boolean and octet map to the same underlying
C++ type (unsigned char). Type char maps to a different type
(C++ char), so a separate operator could have been provided for
it, but this would not be CORBA compliant.
The distinction is achieved by using helper types that are nested
within the C++ class CORBA::Any. These helper types are structs;
refer to the entry for CORBA::Any in the Orbix Programmer’s

 182 Orbix Programmer’s Guide C++ Edition

Reference C++ Edition for details on their syntax. Left-shift and
right-shift assignment operators are provided for each of these
helper types.
These helper classes can be used as follows:

// C++
CORBA::Any a;

// Insert a boolean into the CORBA::Any a:
CORBA::Boolean b = 1;
a<<=CORBA::Any::from_boolean(b);

// Extract the boolean.
CORBA::Boolean extractedValue;
if (a>>=CORBA::Any::to_boolean(extractedValue)){

cout<<“Success!”<<endl;
}
// Insert an octet into the CORBA::Any a:
CORBA::Octet o = 1;
a<<=CORBA::Any::from_octet(o);

// Extract the octet from a:
CORBA::Octet extractedValue;
if (a>>=CORBA::Any::to_octet(extractedValue)) {

cout<<“Success!”<<endl;
}

// Insert a char into the CORBA::Any a:
CORBA::Char c=‘b’;
a<<=CORBA::Any::from_char(c);

// Extract the char from a:
CORBA::Char extractedValue;
if (a>>=CORBA::Any::to_char(extractedValue)) {

cout<<“Success!”<<endl;
}

Any Constructors, Destructor and Assignment
In addition to the functionality already described, the C++ class
CORBA::Any also contains the following:

• A default constructor.
This creates a CORBA::Any with a CORBA::TypeCode of kind
tk_null and no value.

• A copy constructor.
This calls _duplicate() on the CORBA::TypeCode_ptr of its
CORBA::Any parameter and deep copies the parameter’s value.

• A constructor for setting the type and value of an CORBA::Any
for untyped values.
This is described in “Inserting Values at Construction Time” on
page 177.

Orbix Programmer’s Guide C++ Edition 183

• An assignment operator.
This releases its own CORBA::TypeCode_ptr and deallocates the
memory associated with its current value, if any. It then
duplicates the CORBA::TypeCode_ptr of its CORBA::Any parameter
and deep copies the parameter’s value.

• A destructor.
This calls CORBA::release() on the CORBA::TypeCode_ptr and
deallocates the memory associated with the value, if any.

Any as a Parameter or Return Value
The mappings for IDL any operation parameters and return value
are illustrated by the following IDL operation:

// IDL
any op(in any a1, out any a2, inout any a3);

This maps to:
// C++
CORBA::Any* op(const CORBA::Any& a1,

CORBA::Any*& a2, CORBA::Any& a3);

Because both return values and out parameters map to pointers to
CORBA::Any, a CORBA::Any_var class is provided that manages the
memory associated with this pointer. The CORBA::Any_var class
calls the C++ operator delete on its associated CORBA::Any* when
it is itself destroyed; for example, by going out of scope.

 184 Orbix Programmer’s Guide C++ Edition

 Orbix Programmer’s Guide C++ Edition 185

Dynamic Invocation
Interface
In a normal Orbix client program, the IDL interfaces that the client
can access are determined when the client is compiled. The
Dynamic Invocation Interface (DII) allows a client to call
operations on IDL interfaces that were unknown when the client
was compiled.
IDL is used to describe interfaces to CORBA objects, and the Orbix
IDL compiler generates the necessary support to enable clients to
make calls to remote objects. Specifically, the IDL compiler
automatically builds the appropriate code to manage proxies, to
dispatch incoming requests within a server, and to manage the
underlying Orbix services.
Using this approach, the IDL interfaces that a client program can
use are determined when the client program is compiled.
Unfortunately, this is too limiting for a small but important subset
of applications. These application programs and tools require that
they can use an indeterminate range of interfaces: interfaces that
perhaps were not even conceived at the time the applications
were developed. Examples include browsers, gateways,
management support tools and distributed debuggers.
Orbix supports the CORBA Dynamic Invocation Interface (DII),
this allows an application to issue requests for any interface, even
if that interface was unknown when the application was compiled.
The DII allows invocations to be constructed at runtime by
specifying the target object reference, the operation or attribute
name and the parameters to be passed. A server receiving an
incoming invocation request does not know whether the client that
sent the request used the normal, static approach or the dynamic
approach to compose the request.

Using the DII
This chapter uses a banking example to demonstrate the use of
the DII. This example has the following IDL definitions:

// IDL
interface Account {

readonly attribute float balance;

void makeDeposit(in float f);
void makeWithdrawal(in float f);

};

interface Bank {
exception Reject {

string reason;
};

// Create an account.
Account newAccount(in string owner,

inout float initialBalance) raises (Reject);

 186 Orbix Programmer’s Guide C++ Edition

// Delete an account.
void deleteAccount(in Account a);

};

To help illustrate the use of the DII the operation
Bank::newAccount() has been extended to take an inout parameter
denoting the initial balance.
The examples that follow show how you can make dynamic
invocations by constructing a Request object and then causing the
specified operation or attribute call to be made. The examples
make the equivalent of the following call to operation
newAccount():

// C++
Bank_var bankVar = ...
CORBA::Float initialBalance = 1000.00;
bankVar->newAccount("Chris", initialBalance);

Programming Steps in Using the DII
To make an invocation using the DII, do the following:
1. Get a reference to the target object.
2. Construct a Request object.
3. Populate the Request object with information about the

invocation, including the object reference, the name of the
operation or attribute to be called, and the parameters to the
operation.

4. Invoke the request.
5. Retrieve the results of the operation.
There are two ways to use the DII:

• Using CORBA-defined functions
• Using the Orbix stream-like interface
The Orbix stream-like interface to the DII is easier to use than the
CORBA-defined functions, but this interface is not
CORBA-compliant.
There are two common types of client program that use the DII:

• A client interacts with the Interface Repository to determine a
target object’s interface, including the name and parameters
of one or all of its operations and then uses this information to
construct DII requests.

• A client, such as a gateway, receives the details of a request
to be made. In the case of a gateway, this may arrive as part
of a network package. The gateway can then translate this
into a DII call, without checking the details with the Interface
Repository. If there is any mismatch, the gateway will receive
an exception from Orbix, and can report an error to the caller.

Some client programs also use the DII to call an operation with
deferred synchronous semantics, which is not possible using
normal static operation calls. Deferred synchronous calls are
described in “Invoking a Deferred Synchronous Request” on
page 192.

Orbix Programmer’s Guide C++ Edition 187

The CORBA Approach to Using the DII
The first step in using the DII is to obtain a reference to the target
object for the request. You can do this using any of the standard
methods described in “Making Objects Available in Orbix”.

Note: All IDL interfaces inherit from type CORBA::Object, so every object
reference can be represented using type CORBA::Object_ptr. Some
client programs may use a user-defined object reference type, but
most clients that use the DII use the most-general type,
CORBA::Object_ptr.
The remainder of this section describes how you create and invoke
a request with the CORBA-compliant approach to using the DII.

Setting up a Request
There are two CORBA-compliant ways to construct a Request
object:
1. Using the function _request() defined in class CORBA::Object.

This is declared as:
// C++
typedef char* Identifier;

CORBA::Request_ptr _request(Identifier
 operation, CORBA::Environment& IT_env =

 CORBA::IT_chooseDefaultEnv());

A program that uses the function _request() must be linked
with the Interface Repository client library, as described in
“The Interface Repository”.

2. Using the function _create_request() also defined in class
CORBA::Object. This is declared as:

// C++
CORBA::Status _create_request(

CORBA::Context_ptr ctx,
const char* operation,
CORBA::NVList_ptr arg_list,
CORBA::NamedValue_ptr& result,
CORBA::Request_ptr& request,
CORBA::Flags req_flags,
CORBA::Environment& IT_env =
CORBA::IT_chooseDefaultEnv());

Setting up a Request Using _request()
You can set up a request by invoking _request() on the target
object and specifying the name of the operation that is to be
invoked. You can then populate the Request object with the
parameters to the call.

 188 Orbix Programmer’s Guide C++ Edition

Creating the Request Object
To create a Request object, first obtain an object reference to the
target object. Call _request() on the target object as follows:

// C++
// Get object reference.
CORBA::Object_var target =

CORBA::Orbix::string_to_object(refStr);

// Create a Request object
// for operation newAccount().
CORBA::Request_var request =

target->_request("newAccount");

The function _request() takes the name of the target operation or
attribute as a parameter. If you wish to call a get or set function
for an attribute, then prefix the attribute name with _get_ or _set_
as required.

Adding the Parameters to the Request Object
There are two steps in adding the parameters to the Request
object:
1. Call the function CORBA::Request::arguments() to get an empty

list of name-value pairs corresponding to the parameters of
the operation to be called. This list is of type CORBA::NVList,
which is a list of CORBA::NamedValue objects.

2. Add a CORBA::NamedValue object to the list for each operation
parameter value. The CORBA::NamedValue object stores the
name of the parameter and the corresponding value,
represented as type CORBA::Any.

You can get the empty parameter list for a request and create a
CORBA::NamedValue object for each parameter as follows:

// C++
CORBA::NamedValue_ptr ownerArg;
CORBA::NamedValue_ptr balanceArg;

ownerArg = req->arguments()->add(CORBA::ARG_IN);
balanceArg = req->arguments()->add(CORBA::ARG_INOUT);

The function CORBA::NVList::add() creates a CORBA::NamedValue and
adds it to the operation parameter list. It returns a
CORBA::NamedValue_ptr for the newly created object. This object
does not yet contain the required parameter value.
You must specify the parameter passing mode when creating each
of the CORBA::NamedValue objects. Specify these modes in the order
in which the parameters appear in the IDL definition for the
operation.
The parameter passing modes are as follows:

To set the parameter values, get a pointer to the CORBA::Any in
each CORBA::NamedValue object in the parameter list and update it
with the corresponding value. To get the CORBA::Any value, use the
CORBA::NamedValue::value() function.

CORBA::ARG_IN Input parameters (IDL in).
CORBA::ARG_OUT Output parameters (IDL out).
CORBA::ARG_INOUT Input/output parameters (IDL inout).

Orbix Programmer’s Guide C++ Edition 189

For example, to update the first parameter to the operation
newAccount() do the following:

CORBA::Any* ownerValue = ownerArg->value();

// Insert the parameter value:
*ownerValue <<= "Chris";

To update the second parameter do the following:
CORBA::Any* balanceValue = balanceArg->value();

// Insert the parameter value:
*balanceValue <<= 1000.00;

At this point, the request has been constructed and is ready to be
invoked.

Adding a Context Parameter to the Request
If the IDL operation has an associated IDL context clause, then
you can add a Context object can to the request. To do this, use
the operation ctx() defined on class Request. This function is
described in the entry for class Request in the Orbix
Programmer’s Reference C++ Edition.

Setting up a Request Using _create_request()
Another way to set up a request is to first create a list object, of
type CORBA::NVList, containing the values of the operation
parameters and then invoke _create_request() on the target
object, passing the request details to this function.

Creating a List of Parameter Values
There are two steps in creating a list of parameter values:
1. Create an empty list of name-value pairs to contain the

parameters. This list is of type CORBA::NVList, which is a list of
CORBA::NamedValue objects.

2. Add a CORBA::NamedValue object to the list for each operation
parameter value. The CORBA::NamedValue object stores the
name of the parameter and the corresponding value,
represented as type CORBA::Any.

Create a CORBA::NVList and prepare the list to hold the parameter
values as follows:

// C++
CORBA::NVList_ptr argList;
CORBA::NamedValue_ptr ownerArg;
CORBA::NamedValue_ptr balanceArg;

if (CORBA::Orbix.create_list(2, arglist) {
ownerArg = argList->add(CORBA::ARG_IN);
balanceArg = argList->add(CORBA::ARG_INOUT);

}

The function CORBA::NVList::add() is described in “Adding the
Parameters to the Request Object” on page 188.
The CORBA::NVList object assumes ownership of the memory for
each CORBA::NamedValue object in the list. You should not release
the CORBA::NamedValue_ptr returned from CORBA::NVList::add() and
you should not assign the result to an _var variable.

 190 Orbix Programmer’s Guide C++ Edition

To set the parameter values, insert each value into the CORBA::Any
associated with the corresponding CORBA::NamedValue object, as
described in “Adding the Parameters to the Request Object” on
page 188:

CORBA::Any* ownerValue = ownerArg->value();
CORBA::Any* balanceValue = balanceArg->value();

// Insert the parameter values.
*ownerValue <<= "Chris";
*balanceValue <<= 1000.00;

Creating the Request Object
The function _create_request() is defined in class CORBA::Object as
follows:

// C++
CORBA::Status _create_request(

CORBA::Context_ptr ctx,
const char* operation,
CORBA::NVList_ptr arg_list,
CORBA::NamedValue_ptr& result,
CORBA::Request_ptr& request,
CORBA::Flags req_flags,
CORBA::Environment& IT_env =

CORBA::IT_chooseDefaultEnv());

The parameters to this function are as follows:

The return type Status is a typedef for CORBA::ULong. Function
_create_request() returns a non-zero value to indicate success and
a zero value to indicate failure.
When calling _create_request(), you initialize parameters ctx,
operation, arg_list, and req_flags in advance. You do not need to
initialize parameters result or request.
Once you call _create_request(), you must specify the TypeCode of
the operation return value. To do this, call
CORBA::Request::set_return_type() on the Request object, passing
the TypeCode constant associated with the return type.

ctx A pointer to the Context object to be sent in the
request, if the operation has an associated IDL
context clause.

operation The name of the operation to be called. If you
wish to call a get or set function for an attribute,
specify the name of the attribute preceded by
the string _get_ or _set_.

arg_list The parameters to the operation.
result The location for the return value.
request The pointer to the new Request object to be

created.
req_flags The flags for the request.
env The Environment parameter for exception

handling.

Orbix Programmer’s Guide C++ Edition 191

The example shown below constructs a Request for operation
newAccount():

// C++
CORBA::Request_ptr request;
CORBA::NVList_ptr argList;
CORBA::NamedValue_ptr result;

// Add parameter values to argList.
...

// Construct the Request object.
if(target->_create_request(

CORBA::Context::_nil(), "newAccount", argList,
result, request, 0)) {

request->set_return_type(_tc_Account);

// Invoke the request.
...

}

Using the Interface Repository when Setting Up a Request
Both CORBA-compliant methods of setting up a Request object
require that you create a CORBA::NVList object containing the
values of the operation parameters. If you have obtained a
description of an operation from the Orbix Interface Repository, as
described in “The Interface Repository”, an alternative way to
create the CORBA::NVList object is available.
An operation is described in the Interface Repository by an object
of type CORBA::OperationDef. The function
CORBA::ORB::create_operation_list() is defined as follows:

// C++
CORBA::Status create_operation_list(

CORBA::OperationDef_ptr operation,
CORBA::NVList_ptr& new_list,
CORBA::Environment& IT_env =

 CORBA::IT_chooseDefaultEnv());

Call this function on the CORBA::Orbix object, passing a
CORBA::OperationDef object that describes the target operation and
an empty CORBA::NVList object. This function updates the
CORBA::NVList object with one element for each argument. Each
element is initialized with the correct parameter passing mode,
the name of the argument, and an initial value of type CORBA::Any.
The value of the CORBA::Any is not initialized.
To call CORBA::ORB::create_operation_list(), a client must be
linked against the Interface Repository client library, as described
in “The Interface Repository”.

 192 Orbix Programmer’s Guide C++ Edition

Invoking a Request
Once the parameters are inserted, you can invoke a request as
follows:

// C++
try {

if (request->invoke())
// Call to invoke() succeeded.

else
// Call to invoke() failed.

}
catch (const CORBA::SystemException& se) {

cout << "Unexpected Exception" <<& se << endl;
}

Exceptions are handled in the same manner as for static function
invocations. However, user-defined exceptions are not currently
supported.

Invoking a Request for a Oneway Operation
The function CORBA::Request::invoke() calls the target operation
and blocks the client until the operation returns. You can not use
invoke to call a oneway operation. Instead, you must use the
function CORBA::Request::send_oneway().
For example, if the Request object request was set up for a oneway
operation call, then you could invoke send_oneway() as follows:

// C++
try {

request->send_oneway();
}
catch (const CORBA::SystemException& se) {

cout << "Unexpected Exception" <<& se << endl; }

Note: You can also use send_oneway() to invoke a normal, non-oneway,
operation. The effect of this is that the client is not blocked while
the operation call is being processed, but all return values, out,
and inout parameters are discarded. This functionality is rarely
required.

Invoking a Deferred Synchronous Request
The DII allows you to make operation calls using deferred
synchronous semantics. Using these semantics, a client can call an
operation, continue processing in parallel with the operation, and
then retrieve the operation results when required.
To use this method of invoking a request, do the following:
1. Invoke the request by calling

CORBA::Request::send_deferred().
2. Continue processing in parallel with the operation.
3. If you wish to check if the result of the operation is available,

call the function CORBA::Request::poll_response() on the
Request object. This function returns a non-zero value if a
response has been received.

4. To get the result of the operation, call
CORBA::Request::get_response() on the Request object.

Orbix Programmer’s Guide C++ Edition 193

For more details on the functions CORBA::Request::send_deferred(),
CORBA::Request::poll_response(), and
CORBA::Request::get_response(), see the entry for class
CORBA::Request in the Orbix Programmer’s Reference C++
Edition.

Invoking Multiple Requests Simultaneously
Two functions defined on class CORBA::ORB allow you to invoke
multiple DII requests simultaneously. To call multiple oneway
operations simultaneously, invoke the function
CORBA::ORB::send_multiple_requests_oneway() on the CORBA::Orbix
object. To call multiple deferred synchronous operations, call
CORBA::ORB::send_multiple_requests_deferred() on the same
object. These functions are described in the entry for class
CORBA::ORB in the Orbix Programmer’s Reference C++ Edition.

Retrieving the Results of a Request
When you invoke a request, the values of the out and inout
parameters are automatically modified within the CORBA::NVList
that contains the parameter values. The function
CORBA::Request::arguments() returns this list. To get the parameter
values, do the following:
1. Call arguments() on the Request object to get the parameter

list. This function returns a CORBA::NVList_ptr.
2. Use the function CORBA::NVList::item() to return an element

at a particular index in the list and get the CORBA::NamedValue
objects associated with the out and inout parameters.

3. Call CORBA::NamedValue::value() to get a pointer to the
CORBA::Any value for each parameter.

4. Extract the parameter values from the CORBA::Any.
The function CORBA::NVList::item() is described in the entry for
class CORBA::NVList in the Orbix Programmer’s Reference C++
Edition.
To get the return value of the operation, call the function result()
on the Request object. This function is defined in class
CORBA::Request as follows:

// C++
CORBA::NamedValue_ptr result(CORBA::Environment&

IT_env = CORBA::IT_chooseDefaultEnv());

This function returns a reference to a CORBA::NamedValue. Before
calling this function, you must create the CORBA::NamedValue object
as follows:

CORBA::NamedValue_ptr nv =
CORBA::NamedValue::IT_create();

Use the value() function defined on CORBA::NamedValue to extract
the CORBA::Any containing the return value of the operation, as for
out and inout parameters.

 194 Orbix Programmer’s Guide C++ Edition

Getting Information About a Request Object
Given a Request object, you can get the operation name and the
target object reference using the functions
CORBA::Request::operation() and CORBA::Request::target(),
respectively. “Filtering Operation Calls” provides an example in
which these functions are required.

The Orbix-Specific Approach to Using the DII
As in the CORBA-compliant approach to using the DII, the first
step in using the Orbix-specific approach is to obtain a reference
to the target object for the request. You can do this using any of
the standard methods described in “Making Objects Available in
Orbix”.
The remainder of this section describes how you create and invoke
a request with the Orbix stream-like interface to the DII.

Setting Up a Request
Orbix allows you to instantiate a Request object using the normal
C++ mechanisms. For example, you can create a Request object
as follows:

// C++
CORBA::Object_ptr target;
// Get a reference for the target object.
...

CORBA::Request request(target);

The Request constructor used in this example takes the target
object reference as a parameter.
The next step is to set the target operation name. To do this, call
the function CORBA::Request::setOperation() on the Request object,
for example:

// C++
request.setOperation("newAccount");

Once you set the operation name, you must specify the TypeCode
of the operation return value. To do this, call
CORBA::Request::set_return_type() on the Request object, passing
the TypeCode constant associated with the return type. For
example, to set the return type to Account, call
CORBA::Request::set_return_type() as follows:

//C++
request.set_return_type(_tc_Account);

You can then insert the values of the operation parameters into
the request. Orbix allows you to do this as if Request object were
an I/O stream. Class CORBA::Request supports operator<<() for all
of the IDL basic types, except octet.

Orbix Programmer’s Guide C++ Edition 195

For example, to insert the parameters for operation newAccount(),
do the following:

// C++
CORBA::Float initialBalance = 1000.00

request << "Chris";
request << CORBA::inoutMode << initialBalance;

The parameters must be inserted in the correct order. Orbix
dynamically type-checks the values when the request arrives at
the remote object.
The default parameter passing mode is in. You can specify the
parameter passing mode using one of the following manipulators:

Using a manipulator changes the parameter attribute mode for all
subsequent parameters for this Request object or until another
manipulator is used.

Adding a Context Parameter to the Request
You can also use operator<<() to specify a Context object to be
passed in a request. Use this operator to pass the Context object
as the last parameter to the request, as if the Context object were
an IDL in parameter.

Invoking a Request
Once you insert the operation parameters, you can invoke the
request as described in “Invoking a Request” on page 192. For
example, the most common way to invoke a request is to call
CORBA::Request::invoke() as follows:

// C++
try {

if (request->invoke())
// Call to invoke() succeeded.

else
// Call to invoke() failed.

}
catch (const CORBA::SystemException& se) {

cout << "Unexpected Exception" <<& se << endl;
}

Resetting a Request Object
If you wish to invoke several DII requests in a single program, you
can use several Request variables, using the appropriate operation
settings for each. Alternatively, you can use a single Request
variable and reset this variable for each request.

CORBA::inMode Input parameters (IDL in).
CORBA::outMode Output parameters (IDL out).
CORBA::inoutMode Input/output parameters (IDL inout).

 196 Orbix Programmer’s Guide C++ Edition

To reset an existing Request object, call CORBA::Request::reset().
You can then set new values for the target object, for example as
follows:

// C++
request.reset();
request.setTarget(aPtr);
request.setOperation("makeDeposit");

You can also do this as follows:
// C++
request.reset(aPtr, "makeDeposit");

You can then insert new operation parameters into the request.
You should also set the request return type, as described in
“Creating the Request Object” on page 190.

Retrieving the Results of a Request
When the operation returns, you can examine the return value
and output parameters. If there are any out and inout parameters,
these are modified by the call and no special action is required to
access their values. For example, after calling invoke() on a
request to operation newAccount(), the actual parameter
initialBalance is updated automatically.
To get the operation return value, use the extraction operator,
operator>>(), as follows:

// C++
Account_ptr aPtr;
CORBA::Object_ptr oPtr;

try {
// Call newAccount() using Request request.
...

// Extract the return value.
request >> oPtr;
if (aPtr = Account::_narrow(oPtr)) {

// Use the returned Account object reference.
...

}
}
catch (const CORBA::SystemException& se) {

cout << "Unexpected System Exception"
<< se << endl;

}
catch (...) {

cout << "Unexpected exception << endl;
...

}

Note: operator>>() is used to extract just the return value from the
request and not to extract the output parameters.

Orbix Programmer’s Guide C++ Edition 197

Additional Information About operator<<()
As a further example of operator<<(), consider the following IDL
operation:

// IDL
long op(in long i, inout float f, out char c);

You can insert the parameters for this operation as follows:
// C++
CORBA::Request request;
CORBA::Long i = 4L;
CORBA::Float f1 = 8.9;
CORBA::Char ch;

request << i
 << CORBA::inoutMode << f1
 << CORBA::outMode << ch;

Note that parameters to operator<<() are passed by reference, so
you must write:

<< f1

rather than:
<< &f1

Input (in) parameters are not copied into the request argument
list; so if the values of the variables are changed between their
insertion and invocation, the new values are transmitted. In other
words, operator<<() uses “call by reference” semantics. Care must
be taken to ensure that the parameters remain in existence and
have the desired values when the invocation of the Request is
actually made. An example of such an error would be to insert a
local variable within a function and to return from the function
before the Request invocation is made.
Parameters inserted using operator<<() are, by default, nameless.
However, you can explicitly give the parameter a name, using
CORBA::arg():

// C++
// Insert parameter "height".
request << CORBA::arg("height") << 65;

The naming of parameters does not remove the requirement that
parameters must be inserted in the proper order. However, if the
same parameter name is used again, its previous value is replaced
with the new value.

Note: arg affects only a single use of operator<<(). The manipulators
inMode, outMode, and inoutMode affect all subsequent uses of
operator<<() on a given Request object until the next mode
change.

Inserting and Extracting Octets
An octet cannot be inserted into or extracted from a Request using
operators << and >>.
This restriction arises because both IDL octet and boolean map to
the same underlying C++ type. Since the type boolean is used
more frequently than octet, operator<<(unsigned char) and
operator>>(unsigned char) assume that their parameter is a

 198 Orbix Programmer’s Guide C++ Edition

boolean; and this assumption may lead to conversion errors
between heterogeneous machines if the parameter is in fact an
octet.
To insert an octet into a Request, use the function
CORBA::Request::insertOctet():

// C++
CORBA::octet o = 0xA2;
request.insertOctet(o);

Use the function CORBA::Request::extractOctet(octet&) to extract
an octet return value.

Inserting and Extracting User-Defined Types
Two manipulators, CORBA::insert and CORBA::extract, allow you to
insert and extract user-defined IDL types into and out of a Request
object.
The use of these manipulators for structs is illustrated in the code
segment below:

// IDL
struct Example {

long m1;
char m2;

};

// C++
CORBA::Request request;
Example e;
e.m1 = 27;
e.m2 = 'c';
request << CORBA::insert(

_tc_Example, &e, CORBA::inMode);

CORBA::insert uses the CORBA::TypeCode constant generated by the
IDL compiler for each user-defined type. In this case, _tc_Example
is the TypeCode for the IDL struct Example. Refer to “The TypeCode
Data Type” for a full explanation of TypeCodes.
User-defined IDL types can be extracted from a Request using the
CORBA::extract manipulator:

// C++
CORBA::Request request;
st s1;
request >> CORBA::extract(_tc_Example, &s1);

The CORBA::insert and CORBA::extract manipulators also work for
primitive types.

Inserting and Extracting Arrays
To insert an array of basic types into a Request, one of the
following functions should be called on the Request object:

Each is defined in class CORBA::Request and takes a pointer to the
first element of the array, and the array length (as a
CORBA::ULong).

encodeCharArray() encodeOctetArray()

encodeShortArray() encodeUShortArray()

encodeLongArray() encodeULongArray()

encodeFloatArray() encodeBooleanArray()

Orbix Programmer’s Guide C++ Edition 199

To extract an array, one of the following functions should be called
on the Request object:

Each takes a pointer which is updated to point to the first element
of the array, and a reference to a CORBA::ULong which is updated to
hold the length of the array.

Restrictions on Some Compilers
On most compilers, a CORBA::Float can be inserted as follows:

// C++
CORBA::Float f =;
r << f;

However, for some compilers, it is necessary to cast the
CORBA::Float as it is being inserted:

// C++
r << (CORBA::Float)f;

Otherwise it may be implicitly cast to a C++ double.
The latter form needs to be used when writing portable code.
Similarly, some compilers require an explicit cast to insert object
references:

// C++
CORBA::Object_ptr o = ...
r << (CORBA::Object_ptr)o;

decodeCharArray() decodeOctetArray()

decodeShortArray() decodeUShortArray()

decodeLongArray() decodeULongArray()

decodeFloatArray() decodeBooleanArray()

 200 Orbix Programmer’s Guide C++ Edition

 Orbix Programmer’s Guide C++ Edition 201

Dynamic Skeleton
Interface
The Dynamic Skeleton Interface (DSI) is the server-side equivalent
of the DII. It allows a server to receive an operation or attribute
invocation on any object, even one with an IDL interface that is
unknown at compile time. The server does not need to be linked
with the skeleton code for an interface to accept operation
invocations on that interface.

Instead, a server can define a function that is informed of an
incoming operation or attribute invocation. That function
determines the identity of the object being invoked. The name of
the operation and the types and values of each argument must be
provided by the user. The function can then carry out the task that
is being requested by the client, and construct and return the
result.
Just as use of the DII is significantly less common than use of the
normal static invocations, use of the DSI is significantly less
common than use of the static interface implementations. A client
is not aware that a server is, in fact, implemented using the DSI;
it simply makes IDL calls as normal.
To process incoming operation or attribute invocations using the
DSI, a server must make a call to the ORB to indicate that it
wishes to use the DSI for a specified IDL interface. The same
server can use the static interface implementations to handle
operation or attribute invocations on other interfaces: however, it
cannot use the DSI and static implementation on the same
interface.

Uses of the DSI
The DSI has been explicitly designed to help programmers write
gateways. Using the DSI, a gateway can accept operation or
attribute invocations on any specified set of interfaces and pass
them to another system. A gateway can be written to interface
between CORBA and some non-CORBA systems. The gateway
would need to know the protocol rules of non-CORBA system but it
would be the only part of the CORBA system that would require
this knowledge. The rest of the CORBA system would continue to
make IDL calls as usual.
The IIOP protocol allows an object in one ORB to invoke on an
object in another ORB. Non-CORBA systems do not need to
support this protocol. One way to interface CORBA to such
systems is to construct a gateway using the DSI. This gateway
would appear as a CORBA server that contains many CORBA
objects. In reality, the server would use the DSI to trap the
incoming invocations and translate them into calls to the
non-CORBA system. A combination of the DSI and DII allows a
process to be a bidirectional gateway. The process can receive
messages from the non-CORBA system and use the DII to make

 202 Orbix Programmer’s Guide C++ Edition

CORBA calls. It can use the DSI to receive requests from the
CORBA system and translate these into messages in the
non-CORBA system.
Other uses of the DSI are also possible. For example, a server can
contain a very large number of non-CORBA objects that it wishes
to make available to its clients. One way to achieve this is to
provide an individual CORBA object to act as a front-end for each
non-CORBA object. However, in some cases this multiplicity of
objects may cause too much overhead.
Another way is to provide a single front-end object that can be
used to invoke on any of the objects, probably by adding a
parameter to each call that specifies which non-CORBA object is to
be manipulated. This would of course change the client’s view
because the client would not be able to invoke on each object
individually, treating it as a proper CORBA object.
The DSI can be used to achieve the same space saving as
achieved when using a single front-end object, but clients can be
given the view that there is one CORBA object for each underlying
object. The server would indicate that it wished to accept
invocations on the IDL interface using the DSI, and, when
informed of such an invocation, it would identify the target object,
the operation or attribute being called, and the parameters (if
any). It would then make the call on the underlying non-CORBA
object, receive the result, and return it to the calling client.

Using the DSI
To use the DSI, you must perform the following steps in your
server program:
1. Create one or more objects that have the

CORBA::DynamicImplementation interface, and register these
with Orbix.

2. Register each of these objects to handle requests for a
specified IDL interface.

Creating CORBA::DynamicImplementation Objects
The IDL interface CORBA::DynamicImplementation is defined as
follows:

// Pseudo IDL
// In module CORBA.
pseudo interface DynamicImplementation {

void invoke(inout ServerRequest request,
 inout Environment env);

};

The single operation, invoke(), is informed of incoming operation
and attribute requests. It can use the ServerRequest parameter to
determine what operation or attribute is being invoked and on
what object. This parameter is also used to obtain in and inout
parameters, and to return out and inout parameters and the
return value to the caller. It can also be used to return an
exception to the caller. An implementation of invoke() is known as
a Dynamic Implementation Routine (DIR).

Orbix Programmer’s Guide C++ Edition 203

Interface DynamicImplementation is invisible to clients. In particular,
the interfaces that they use do not inherit from it. If they were to
inherit from DynamicImplementation, then the fact that the DSI is
used at the server-side would not be transparent to the clients.

Registering CORBA::DynamicImplementation Objects
Once an instance of DynamicImplementation has been created, it
must be registered to handle requests of a specified interface by
calling the setImpl() operation on the CORBA::Orbix object:

// IDL
// In module CORBA.
interface BOA {

...
void setImpl(in ImplementationDef implDef,

in DynamicImplementation impl);
...

};

The ServerRequest object that is passed to
DynamicImplementation::invoke() is created by Orbix once it
receives an incoming request and recognizes it as one that is to be
handled by the DSI. This means that an instance of
DynamicImplementation has been registered to handle the target
interface.

The ServerRequest Data Type
The ServerRequest type is defined in IDL as follows:

// Pesudo IDL
// In module CORBA.
pseudo interface ServerRequest {

Identifier op_name();
Context ctx();
any result();
void params(inout NVList parms);

// The following are Orbix specific.
readonly attribute Object target;
readonly attribute Identifier operation;

// operation is the same as op_name()
attribute NVList arguments;

// arguments is closely related to params()
attribute any exception;
attribute Environment env;

};

Instances of this interface are pseudo-objects; this means that
references to them cannot be transmitted through IDL interfaces.
Because this is a recent addition to the CORBA standard, it was
necessary to make Orbix-specific extensions to it to address some
inconsistencies in the standard, and also to provide compatibility
between type Request and ServerRequest.

 204 Orbix Programmer’s Guide C++ Edition

The attributes and operations of ServerRequest have the following
meanings:

There are some special rules determining how you can call these
attributes and operations:

The other attributes, target, operation and env, can be used at any
time, and any number of times.

target This is an object reference to the target object.
Naturally, the target object will not actually exist as a
normal CORBA object, so this is actually an object (of
a derived type of CORBA::Object) that is created by
Orbix temporarily for the duration of the call. The
operations on this object can be used to determine
the marker of the target object, and its interface
name.

operation /
op_name()

This attribute or operation gives the name of the
operation being invoked.

arguments /

params()

This attribute or operation allows the invoke()
operation to specify the types of incoming
arguments. The attribute arguments is explained in
detail later in this section.

result This allows the invoke() operation to return the result
of an operation or attribute call to the caller. In C++,
the result is given as a pointer to a CORBA::Any that
holds the value to be returned to the caller.

exception This allows the invoke() operation to return an
exception to the caller. In C++, the exception is
given as a pointer to a CORBA::Any that holds the
exception to be returned to the caller.

env This returns the environment parameter (of type
CORBA::Environment) associated with the call.

ctx This returns the context associated with the call.

operation /
op_name()

This attribute/operation must be called at least once
in each execution of the invoke() function.

arguments /
params()

This attribute/operation must be called exactly once
in each execution of the invoke() function.

result This must be called once for operations with non-void
return types and not at all for operations with void
return types. If it is called, the exception attribute
cannot be used.

exception This can be called at most once. If it is called, the
result attribute cannot be used.

ctx This can be called at most once. If it is called, it must
be called before the arguments/params()
attribute/operation is called.

Orbix Programmer’s Guide C++ Edition 205

Example of Using the DSI
To implement the Dynamic Implementation Routine, invoke(), you
should first declare a class that inherits from
CORBA::DynamicImplementation; for example:

// C++
class myDSI :

public CORBA::DynamicImplementation {
public:

virtual void invoke(CORBA::ServerRequest&);
};

You must create an instance of this and register it using
CORBA::BOA::setImpl().

// C++
{

myDSI myDSIinstance;
CORBA::Orbix.setImpl(“interfaceName”,

 myDSIinstance);
...

}

The following pseudo-code gives an outline of how to implement a
simple version of invoke(). It explicitly tests for operations called
“firstOp” and “secondOp”. An outline of the code for “firstOp” is
shown:

// C++
void myDSI::invoke(CORBA::ServerRequest& rSrvReq,

CORBA::Environment& env,
CORBA::Environment& IT_env =

CORBA::IT_chooseDefault_Env())
{

CORBA::Object_ptr theTarget = rSrvReq.target();
// Use _marker() to determine the marker of the
// target object.

const char* pOpName = rSrvReq.op_name();1

try {
if (strcmp(pOpName,“firstOp”) == 0) {

// Access the in and inout parameters and
// set up variables that will hold the
// out parameters. Both steps are achieved
// using params(), explained later.

// Carry out the required actions.
// If anything goes wrong, use exception()
// to pass an exception back to the caller.

// Prepare to send the reply to the caller.
// First construct a CORBA::Any object to
// hold the value.
CORBA::Any* pResult = new CORBA::Any;
// Secondly, insert the value into pResult,
// using operator<<=().
pResult <<= 24;

1. OpName then holds the name of the invoked operation; if an attribute, say attr, is called, the name will be
“_set_attr” or “_get_attr”.

 206 Orbix Programmer’s Guide C++ Edition

// Then use result() to give the result back:
rSrvReq.result(pResult);

}
else if (strcmp(pOpName, “secondOp”) == 0) {

// Similar code as before.
}

}
catch (...) {

// Use exception() to pass an exception
// back to the caller.
// Note that CORBA forbids invoke()
// raising an exception.

}
}

Some real implementations of invoke() may not have a set of
strings to compare using strcmp(), but instead may need to look
up some configuration table, or determine how to proceed in some
other way.

Orbix Programmer’s Guide C++ Edition 207

Example of Using params()
In the first example of using params(), it is assumed that there are
two arguments to the operation called, both in parameters of type
short, and named “n” and “m”, respectively. There is also a return
value of type long.
The code to call params() and result() can then be as follows:

// C++
// Build the argument list.
CORBA::NVList_ptr pArgList;

if (CORBA::Orbix.create_list(2, pArglist) {

CORBA::Short valueOf_n = 0;
CORBA::Short valueOf_m = 0;
CORBA::Any* pFirstAny = new CORBA::Any

(CORBA::_tc_short, &valueOf_n, 0);
CORBA::Any pSecondAny = new CORBA::Any

(CORBA::_tc_short, &valueOf_m, 0);
pArgList->add_value(“n”, *pFirstAny,

CORBA::DSI_ARG_IN);
pArgList->add_value(“m”, *pSecondAny,

CORBA::DSI_ARG_IN);

// Give the prepared arg. list to the ServerRequest.
rSrvReq.params(pArgList);

// Now, valueOf_n contains the value or parameter n.
// And valueOf_m contains the value of parameter m.

// Prepare the space for the reply:
CORBA::Long pValue;
// Then execute the required code for the operation
// that the client has called. Put the final value
// in pValue.

// Create the result.
CORBA::Any* pResult = new CORBA::Any;
pResult <<= pValue;
rSrvReq.result(pResult, IT_env);
...

}

 208 Orbix Programmer’s Guide C++ Edition

In the second example of using params(), it is assumed that there
are two arguments to the operation that has been called, the first,
named “n”, is an out parameters of type short, and the second,
named “m”, is an inout parameter of type long. There is no return
value. The code to call params() can then be as follows:

// C++
// Build the argument list.
CORBA::NVList_ptr pArgList;

if (CORBA::Orbix.create_list(2, pArglist) {
CORBA::Short valueOf_n = 0;
CORBA::Long valueOf_m = 0;
CORBA::Any* pFirstAny = new CORBA::Any

(CORBA::_tc_short, &valueOf_n, 0);
CORBA::Any* pSecondAny = new CORBA::Any

(CORBA::_tc_long, &valueOf_m, 0);
pArgList->add_value

(“n”, *pFirstAny, CORBA::DSI_ARG_OUT);
pArgList->add_value

(“m”, *pSecondAny, CORBA::DSI_ARG_INOUT);

// Give the prepared arg. list to the ServerRequest:
rSrvReq.params(pArgList);
...

}

Once this code has been executed, the proper action of invoke()
can be carried out. During that time, the incoming value of the
second parameter, m, is available in valueOf_m. The values that
valueOf_n and valueOf_m have at the end of the function call will be
passed back to the caller (as the out and inout parameters, n and
m, respectively).

 Orbix Programmer’s Guide C++ Edition 209

The Interface
Repository
This chapter describes the Interface Repository, the component of
Orbix that provides persistent storage of IDL modules, interfaces
and other IDL types. Orbix programs can query the Interface
Repository at runtime to obtain information about IDL definitions.

There are several ways to use the Interface Repository in your
Orbix applications. For example, you can iterate through the
Interface Repository to browse or list its contents. Alternatively,
given an object reference, the object’s type and all information
about that type can be determined at runtime by calling functions
defined by the Interface Repository.
Such facilities are important for some tools, such as:

• Browsers that allow you to determine that types that have
been defined in the system, and to list the details of chosen
types.

• CASE tools that aid software design, writing and debugging.
• Application level code that uses the Dynamic Invocation

Interface (DII) to invoke on objects whose types were
unknown at compile time. This code may need to determine
the details of the object being invoked in order to construct
the request using the DII.

• A gateway that requires runtime type information about the
type of an object being invoked.

The Interface Repository provides a set of IDL interfaces to
browse and list its contents, and to determine the type
information for a given object.

Configuring the Interface Repository
Before writing applications to read the contents of the Interface
Repository, you must first install and configure the repository as
described in the Orbix C++ Edition Administrator’s Guide.
Orbix implements the Interface Repository using a standard Orbix
server named IFR. To install the Interface Repository, you must
run the Orbix daemon process and register this server.
Orbix provides a command-line utility, called putidl, that allows
you to add IDL definitions to the Interface Repository. The Orbix
GUI tools also includes graphical interface to the Interface
Repository. Refer to the Orbix C++ Edition Administrator’s
Guide for more details.

Runtime Information about IDL Definitions
The Interface Repository maintains full information about the IDL
definitions that have been passed to it. A program can use the
Interface Repository to browse through the set of modules and
interfaces, determining the name of each module, the name of
each interface and the full definition of that interface. A program

 210 Orbix Programmer’s Guide C++ Edition

can also find a full IDL definition if given the name of a module,
interface, attribute, operation, struct, union, enum, typedef,
constant or exception.
For example, given any object reference, you can use the
Interface Repository to determine all of the information about that
interface. In particular, you can determine:

• The module in which the interface was defined, if any.
• The name of the interface.
• The interface’s attributes, and their definitions.
• The interface’s operations, and their full definition, including

parameter, context and exception definitions.
• The interface’s base interfaces.
A short example at the end of this chapter demonstrates the use
of the Interface Repository.

The Structure of Interface Repository Data
The data in the Interface Repository is best viewed as a set of
CORBA objects where one object is stored in the repository for
each IDL type definition. Objects in the Interface Repository
support one of the following IDL interface types, reflecting the IDL
constructs they describe:

Repository The type of the repository itself, in which all of its
other objects are nested.

ModuleDef The interface for a ModuleDef definition. Each
module has a name and can contain definitions of
any type (except Repository).

InterfaceDef The interface for an InterfaceDef definition. Each
interface has a name, a possible inheritance
declaration, and can contain definitions of type
attribute, operation, exception, typedef and
constant.

AttributeDef The interface for an AttributeDef definition. Each
attribute has a name and a type, and a mode that
determines whether or not it is readonly.

OperationDef The interface for an OperationDef definition. Each
operation has a name, a return value, a set of
parameters and, optionally, raises and context
clauses.

ConstantDef The interface for a ConstantDef definition. Each
constant has a name, a type and a value.

ExceptionDef The interface for an ExceptionDef definition. Each
exception has a name and a set of member
definitions.

StructDef The interface for a StructDef definition. Each struct
has a name, and also holds the definition of each of
its members.

UnionDef The interface for a UnionDef definition. Each union
has a name, and also holds a discriminator type and
the definition of each of its members.

Orbix Programmer’s Guide C++ Edition 211

In addition, the following abstract types (types without direct
instances) are defined:

IRObject
IDLType
TypedefDef
Contained
Container

Understanding these types is the key to understanding how to use
the Interface Repository.

Containment Relationships
You can interrogate any object of these types to determine their
definitions. They are organized in a natural manner according to
the IDL interface. For example, each InterfaceDef object is said to
contain objects representing the interface’s constant, type,
exceptions, attribute, and operation definitions. The outermost
object is of type Repository.
The containment relationships between the Interface Repository
types are as follows:
A Repository can contain:

ConstantDef
TypedefDef
ExceptionDef

EmumDef The interface for an EnumDef definition. Each enum
has a name, and also holds its list of member
identifiers.

AliasDef The interface for a typedef statement in IDL. Each
alias has a name and a type that it maps to.

PrimitiveDef The interface for primitive IDL types. Objects of this
type correspond to a type such as short and long,
and are pre-defined within the Interface Repository.

StringDef The interface for a string type. Each string type
records its bound. Objects of this type do not have
a name. If they have been defined using an IDL
typedef statement, then they will have an
associated AliasDef object. (Objects of this type
correspond to bounded strings.)

SequenceDef The interface for a sequence type. Each sequence
type records its bound (a value of zero indicates an
unbounded sequence type) and its element type.
Objects of this type do not have a name. If they
have been defined using an IDL typedef statement,
then they will have an associated AliasDef object.

ArrayDef The interface for an array type. Each array type
records its length and its element type. Objects of
this type do not have a name. If they have been
defined using an IDL typedef statement, then they
will have an associated AliasDef object. Each
ArrayDef object represents one dimension; multiple
ArrayDef objects are required to represent a
multi-dimensional array type.

 212 Orbix Programmer’s Guide C++ Edition

InterfaceDef
ModuleDef

A ModuleDef can contain:
ConstantDef
TypedefDef
ExceptionDef
ModuleDef
InterfaceDef

An InterfaceDef can contain:
ConstantDef
TypedefDef
ExceptionDef
AttributeDef
OperationDef

Objects of type ModuleDef, InterfaceDef, ConstantDef, ExceptionDef,
and TypedefDef can also appear outside of any module, directly
within a repository.
You can determine the full interface definition given any object of
the Interface Repository types. For example, InterfaceDef defines
operations or attributes to determine an interface’s name, its
inheritance hierarchy, and the description of each operation and
each attribute.
Refer to “Containment interface types” for more information.

Simple Types
The Interface Repository defines the following simple IDL
definitions:

// IDL
// In module CORBA.
typedef string Identifier;
typedef string ScopedName;
typedef string RepositoryId;
typedef string VersionSpec;

enum DefinitionKind {
dk_none, dk_all,
dk_Attribute, dk_Constant,
dk_Exception, dk_Interface,
dk_Module, dk_Operation, dk_Typedef,
dk_Alias, dk_Struct, dk_Union, dk_Enum,
dk_Primitive, dk_String, dk_Sequence, dk_Array,
dk_Repository

};

An Identifier is a simple name that identifies modules, interfaces,
constants, typedefs, exceptions, attributes, and operations.
A ScopedName gives an entity’s name relative to a scope. A
ScopedName that begins with “::” is an absolute scoped name. This
is a name that uniquely identifies an entity within a repository. For
example, the name ::Finance::Account::withdraw. A ScopedName
that does not begin with “::” is a relative scoped name. This is a
name that identifies an entity relative to some other entity. For
example, withdraw within the entity with the absolute scoped
name ::Finance::Account.

Orbix Programmer’s Guide C++ Edition 213

A RepositoryId is a string that uniquely identifies an object within a
repository, or globally within a set of repositories if more than one
is being used. The object can be a constant, exception, attribute,
operation, structure, union, enumeration, alias, interface or
module.
Type VersionSpec is used to indicate the version number of an
Interface Repository object. This means that it allows the
Interface Repository to distinguish two or more versions of a
definition, each with the same name but with details that evolve
over time. However, the Interface Repository is not required to
support such versioning. It is not required to store more than one
definition with any given name. The Orbix Interface Repository
currently does not support versioning.
Each Interface Repository object has an attribute (called def_kind)
of type DefinitionKind that records the kind of the Interface
Repository object. For example, the def_kind attribute of an
interfaceDef object is dk_interface. The enumerate constants
dk_none and dk_all have special meanings when searching for
objects in a repository.

Abstract Interfaces in the Interface Repository
There are five abstract interfaces defined for the Interface
Repository, as follows:

• IRObject

• IDLType

• TypedefDef

• Contained

• Container

These are of key importance in understanding the basic structure
of the Interface Repository, and provide basic functionality for
each of the concrete interface types.

 214 Orbix Programmer’s Guide C++ Edition

Class Hierarchy and Abstract Base Interfaces
The Interface Repository defines five abstract base interfaces
(interfaces that cannot have direct instances). These are used to
define the other Interface Repository types:

The interface hierarchy for all of the Interface Repository
interfaces is shown in Figure 21 on page 216.

The Interface IRObject
The interface IRObject is defined as follows:

// IDL
// In module CORBA.
interface IRObject {

// read interface
readonly attribute DefinitionKind def_kind;

// write interface
void destroy ();

};

This is the base interface of all Interface Repository types. The
attribute def_kind is useful because it provides a simple way of
determining the type of an Interface Repository object. Other than
defining an attribute and operation, and acting as the base
interface of other interfaces, IRObject plays no further role in the
Interface Repository.
You can delete an Interface Repository object by calling its
destroy() operation. This also deletes any objects contained in the
target object. It is an error to call destroy() on a Repository or a
PrimitiveDef object.

IRObject This is the base interface of all Interface Repository
objects. Its only attribute defines the kind of an
Interface Repository object.

IDLType All Interface Repository interfaces that hold the
definition of a type directly or indirectly inherit from this
interface.

TypedefDef This is the base interface for all Interface Repository
types that can have names (except interfaces):
structures, unions, enumerations and aliases (results of
IDL typedef definitions).

Contained Many Interface Repository objects can be contained in
others and these all inherit from Contained. The exact
meaning of containment is explained later.

Container Some Interface Repository interfaces, such as
Repository, ModuleDef and InterfaceDef, can contain
other Interface Repository objects. These interfaces
inherit from Container.

Orbix Programmer’s Guide C++ Edition 215

Containment in the Interface Repository
Definitions in the IDL language have a nested structure. For
example, a module can contain definitions of interfaces, and the
interfaces themselves can contain definitions of attributes,
operations and many others. Consider the following fragment of
IDL:

// IDL
module Finance {

interface Account {
readonly attribute float balance;
void deposit(in float amount);
void withdraw(in float amount);

};
interface Bank {

Account create_account();
};

};

In this example the module Finance (represented in the Interface
Repository as a ModuleDef object) contains the two interface
definitions Bank and Account (each represented by an individual
InterfaceDef object). These two interfaces contain further
definitions. For example, the interface Account contains a single
attribute and two operations.

 216 Orbix Programmer’s Guide C++ Edition

Figure 21: The Hierarchy for Interface Repository Interfaces

The notion of containment is basic to the structure of the IDL
definitions, and the Interface Repository specification abstracts
the properties of containment. For example, an Interface
Repository object (such as a ModuleDef or InterfaceDef object) that
can contain further definitions also needs a function to list its
contents. Similarly an Interface Repository object that can be
contained within another Interface Repository object may want to
know the identity of the object it is contained in. This leads
naturally to the definition of two abstract base interfaces Container
and Contained, which group together common operations and
attributes. Most of the objects in the repository are derived from
one or both of Container or Contained (the exceptions are instances
of PrimitiveDef, StringDef, SequenceDef, and ArrayDef).
You can access a considerable part of the structure of the
Interface Repository by using the operations and attributes of
Container and Contained. Understanding containment is crucial to
understanding most of the Interface Repository functionality.

IRObject

TypedefDef

Repository

Contained

ModuleDef

Container

PrimitiveDef
StringDef
SequenceDef
ArrayDef

ConstantDef
ExceptionDef
AttributeDef
OperationDef

StructDef InterfaceDef
UnionDef
EnumDef
AliasDef

attribute identifier name...

readonly attribute DefinitionKind def_kind

readonly attribute TypeCode type;

// Abstract

// Abstract

// Abstract// Abstract

// Abstract

// Base interface

Set of unnamed types.Set of named types.

// of all named
// types (except
// interfaces)

IDL Type

Orbix Programmer’s Guide C++ Edition 217

Containment interface types
The interfaces that use containment are of three different types:

• Interfaces that inherit only from Container.
• Interfaces that inherit from both Container and Contained.
• Interfaces that inherit only from Contained.
These are as follows:

The Repository itself is the only interface that can be a pure
Container. There is only one Repository object per Interface
Repository server and it has all of the other definitions nested
inside it.
Objects of type ModuleDef and InterfaceDef can create additional
layers of nesting and therefore they derive from both Container
and Contained.
The remaining types of objects have a simpler structure and
derive just from Contained. The last interface, TypedefDef, is unique
in that it is an abstract interface.

The Contained Interface
This section is limited to a discussion of the basic attributes and
operations of interface Contained. An outline of the Contained
interface is as follows:

//IDL
typedef Identifier string;

interface Contained : IRObject {
// Incomplete list of operations and attributes...
...
attribute Identifier name;
...
readonly attribute Container defined_in;
...
struct Description {

DefinitionKind kind;
any value;

};
Description describe();

};

A basic attribute of any contained object is its name. The attribute
name has the type Identifier that is just a typedef for a string. For
example, the module Finance is represented in the repository by a
ModuleDef object. The inherited ModuleDef::name attribute resolves
to the string “Finance”. Similarly, an OperationDef object

Inheriting From Interface
Container Repository

Container and Contained ModuleDef, InterfaceDef
Contained ConstantDef, ExceptionDef,

AttributeDef, OperationDef, StructDef,
UnionDef, EnumDef, AliasDef, TypedefDef

 218 Orbix Programmer’s Guide C++ Edition

representing withdraw has an OperationDef::name that resolves to
“withdraw”. The Repository object itself evidently has no name,
because it does not inherit from Contained.
Another basic attribute is Contained::defined_in that stores an
object reference to the Container in which the object is defined.
This attribute is all that is needed to express the idea of
containment for a Contained object. The attribute defined_in stores
a uniquely defined Container reference because a given definition
appears only once in IDL. However, because of the possibility of
inheritance between interfaces, a given object may be contained
in more than one interface. In the following example, interface
CurrentAccount is derived from interface Account:

//IDL
// in module Finance
interface CurrentAccount : Account {

readonly attribute overDraftLimit;
};

The attribute balance is contained in interface Account and also
contained in interface CurrentAccount. However, the result of
querying AttributeDef::defined_in() for the balance attribute will
always return an object for Account. This is because the definition
of attribute balance appears in the base interface Account.
A Contained object may include more than just containment
information. For example, an OperationDef object has a list of
parameters associated with it and details of the return type. The
operation Contained::describe() provides access to these details
by returning a generic Description structure (discussed later).

The Container Interface
Some of the basic definitions for interface Container are as
follows:

//IDL
typedef sequence<Contained> ContainedSeq;
enum DefinitionKind {dk_name, dk_all,

dk_Attribute, dk_Constant, dk_Exception,
dk_Interface, dk_Module, dk_Operation,
dk_Typedef, dk_Alias, dk_Struct, dk_Union,
dk_Enum, dk_Primitive, dk_String, dk_Sequence,
dk_Array, dk_Repository};

interface Container : IRObject {
// Incomplete list of operations and attributes
...
ContainedSeq contents(

in DefinitionKind limit_type,
in boolean exclude_inherited);

...
};

Container::contents()
The contents() operation is the most basic operation associated
with a Container. It returns a sequence of Contained objects that
belong to the Container. By using contents(), it is possible to
browse a Container and descend nested layers of containment.
Once the appropriate Contained object has been found, the details

Orbix Programmer’s Guide C++ Edition 219

of its definition can be found by invoking Contained::describe() to
obtain a detailed Description of the object. The use of
Container::contents() coupled with Contained::describe() provides
a basic way of browsing the Interface Repository. However, there
are a number of approaches to browsing the Interface Repository
that can be more efficient. These more sophisticated search
operations are discussed in “Retrieving Information about IDL
Definitions” on page 225.
The arguments to operation contents() make use of
DefinitionKind. This is an enum type that is used to tag the
different kinds of repository objects. In addition to the interfaces
for concrete repository objects there are three additional tags:
The tag dk_none matches no repository object, the tag dk_all
matches any repository object, and the tag dk_Typedef matches
any one of dk_Alias, dk_Struct, dk_Union, or dk_Enum. The
arguments to contents() can be described as follows:

The returned value is then a sequence of Contained objects that
match the given criteria.
There are a number of additional operations of the interface
Container that enable efficient searching of the repository. Refer to
the Orbix Programmer’s Reference C++ Edition for details.

Containment Descriptions
The containment framework reveals which definitions are made
within which interface or module. However, each repository
object, besides the possible property of being a Contained or
Container, also retains the details of an IDL definition. Calling
describe() on a Contained object returns a Description struct
holding these details.
Both interfaces Contained and Container define their own version of
a Description struct which are, respectively,
Contained::Description and Container::Description. The
Container::Description structure differs slightly from the
Contained::Description.

limit_type A tag of type DefinitionKind that can be used
to limit the list of contents to certain kinds of
repository objects. A value of dk_all lists all
objects.

exclude_inherited This argument is only relevant if the Container
happens to be an InterfaceDef object. In the
case of an InterfaceDef, it determines whether
or not inherited definitions should be included
in the contents listing. TRUE indicates they
should be excluded while FALSE indicates they
should be included.

 220 Orbix Programmer’s Guide C++ Edition

Consider the following fragment of the IDL interface for Container:
//IDL
interface Container : IRObject {

// Incomplete listing of interface
...
struct Description {

Contained contained_object;
DefinitionKind kind;
any value;

};
typedef sequence<Description> DescriptionSeq;
DescriptionSeq describe_contents(

in DefinitionKind limit_type,
in boolean exclude_inherited,
in long max_returned objects);

...
};

Note the extra member contained_object appearing in this
Description structure.

Container::describe_contents()
The Container::Description is used by describe_contents(). This
operation effectively combines calling contents() on the Container
plus calling describe() on each of the returned objects.
The arguments to describe_contents() are as follows:

The describe_contents() operation returns a sequence of
Description structures, one for each of the Contained objects
found.
The Description structure itself serves as a wrapper for the
detailed description that is specific to a repository object. For
example, the interface OperationDef inherits the operation
OperationDef::describe.

limit_type A tag of type DefinitionKind which may be
used to limit the list of contents to certain
kinds of repository objects. A value of dk_all
lists all objects.

exclude_inherited This argument is only relevant if the
Container happens to be an InterfaceDef
object. For the case of an InterfaceDef it
determines whether or not inherited
definitions should be included in the
contents listing. TRUE indicates they should
be excluded while FALSE indicates they
should be included.

max_returned_objects Specifies the maximum length of the
sequence returned.

Orbix Programmer’s Guide C++ Edition 221

OperationDesription
Associated with the OperationDef interface is the struct
OperationDescription. This has the following structure:

// IDL
struct OperationDescription {

Identifier name;
RepositoryId id;
RepositoryId defined_in;
VersionSpec version;
TypeCode result;
OperationMode mode;
ContextIdSeq contexts;
ParDescriptionSeq parameters;
ExcDescriptionSeq exceptions;

};

This structure is not returned directly by the operation
OperationDef::describe(). Initially it returns a
Contained::Description wrapper. The first layer is tagged by
Description::kind, which equals dk_Operation, and the substance
of the Description is in the Description::value. The second layer is
given by the value, which is an any. Inside the any there is a
TypeCode _tc_OperationDescription and the value of the any is the
OperationDescription structure itself.
The various members of the OperationDescription structure have
the following meaning:

name The name of the operation as it appears in the
definition. For example, the operation
Account::makeWithdrawal would have the name
“makeWithdrawal”.

id The id is just a RepositoryId for the OperationDef
object. A RepositoryId is basically a particular way of
naming repository objects.

defined_in The member defined_in gives the RepositoryId for
the parent Container of the OperationDef object.

version The version of type VersionSpec is used to indicate
the version number of an Interface Repository
object. This would allow the Interface Repository to
distinguish two or more versions of a definition which
have the same name but with details that evolve
over time. The Orbix Interface Repository currently
does not support versioning.

result The TypeCode of the result returned by the defined
operation.

mode The mode specifies whether the operation is normal
(OP_NORMAL) or oneway (OP_ONEWAY).

contexts The member contexts is of type ContextIdSeq that is a
typedef for a sequence of strings. The sequence lists
the context identifiers specified in the context clause
of the operation.

parameters The member parameters is a sequence of
ParameterDescription structures that give details of
each parameter to the operation.

 222 Orbix Programmer’s Guide C++ Edition

The OperationDescription provides all of the information present in
the original definition of the operation. As is the case with many
aspects of the Interface Repository, the CORBA specification
provides for more than one way of accessing this information. The
interface OperationDef also defines a number of attributes that
allow direct access to the members of the above structure.
Frequently, in a distributed environment it is more convenient to
obtain the complete description in a single step. This is why the
OperationDescription structure is provided.
Only those repository interfaces that inherit from Contained have
an associated description structure, and of those, not all have a
unique description structure. Specifically, the interfaces EnumDef,
UnionDef, AliasDef, and StructDef all use a similar sort of
description called TypeDescription.
The interface InterfaceDef is a special case because there is an
extra description structure associated with it called
FullInterfaceDescription. This structure is provided in the light of
the special importance of InterfaceDef objects. It enables a full
description of the interface plus all its contents to be obtained in
one step. The description is given as the return value of the
special operation InterfaceDef::describe_interface().

Type Interfaces in the Interface Repository
A number of repository interfaces are used to represent definitions
of types in the Interface Repository. These are the following
interfaces:

• StructDef

• UnionDef

• EnumDef

• AliasDef

• InterfaceDef

• PrimitiveDef

• StringDef

• SequenceDef

• ArrayDef

This property is independent of and overlaps with the properties of
containment. It is useful to represent this property by having
those objects inherit from an abstract base interface which is
called IDLType and is defined as follows:

// IDL
// In module CORBA.
interface IDLType : IRObject {

readonly attribute TypeCode type;
};

exceptions The member exceptions is a sequence of
ExceptionDescription structures giving details of the
exceptions specified in the raises clause of the
operation.

Orbix Programmer’s Guide C++ Edition 223

This base interface defines just a single attribute that gives the
TypeCode of the defined type. It is also useful for referring to the
type interfaces collectively.
The type interfaces can be classified as either named or unnamed
types.

Named Types
The named type interfaces are as follows:

• StructDef
• UnionDef

• EnumDef

• AliasDef

• InterfaceDef.
For example, consider the following IDL definition:

// IDL
enum UD {UP, DOWN};

This effectively defines a new type, UD, which may be used
wherever an ordinary type might appear. It is represented by an
EnumDef object. More obviously, the following IDL definition gives
rise to the new type AccountName:
typedef string AccountName;

These two interfaces are examples of named types. That is, the
definitions give rise to a new type identifier, such as “UD” or
“AccountName”, which may be reused throughout the IDL file.
A further distinction is made between InterfaceDef and the other
named types. The named types StructDef, UnionDef, EnumDef, and
AliasDef are grouped together by deriving from the abstract base
interface TypedefDef. It is important to note that interface
TypedefDef does not directly represent an IDL typedef. The
interface AliasDef (which derives from TypedefDef) is the interface
representing an IDL typedef. The abstract interface TypedefDef is
defined as follows:

// IDL
// In module CORBA.
interface TypedefDef : Contained, IDLType {
};

The definition of TypedefDef is trivial and causes the four named
interfaces to derive from Contained in addition to IDLType. The
interfaces inherit the attribute Contained::name. This gives the
name of the type, and the operation Contained::describe().
For example, the definition of enum UD gives rise to an EnumDef
object which has an EnumDef::name of “UD”. Calling
EnumDef::describe() gives access to a description of type
TypeDescription. The type member of the TypeDescription gives the
TypeCode of the enum. The TypedefDef interfaces all share the same
description structure, TypeDescription.

 224 Orbix Programmer’s Guide C++ Edition

The interface InterfaceDef is also a named type but it is a special
case. Its inheritance is given as follows:

// IDL
// In module CORBA.
interface InterfaceDef : Contained, Container, IDLType
{

...
};

Interface InterfaceDef has three base interfaces. Since IDL object
references can be used in just the same way as any ordinary type,
IntefaceDef inherits from IDLType. For example, the definition
interface Account {...}; gives rise to an InterfaceDef object. This
object has an InterfaceDef::name which is “Account” and this name
may be reused as a type.

Unnamed Types
The unnamed type interfaces are as follows:

• PrimitiveDef

• StringDef

• SequenceDef

• ArrayDef
These interfaces are not strictly necessary but offer an approach
to querying the types in the repository that operates in parallel to
the use of TypeCodes.
Therefore there are two independent approaches to querying
types in the repository. The traditional approach is to provide
TypeCode attributes whenever necessary so that all the types
defined in the repository can be determined. However, the
Interface Repository also provides a complete object-oriented
approach for querying the types.
Consider the following example where the return type of
getLongAddress needs to be determined:

// IDL
interface Mailer {

sequence<string> getLongAddress();
};

The definition of getLongAddress() maps to an object of type
OperationDef in the repository. One way of querying the return
type is to call OperationDef::result_def() that returns an object
reference of type IDLType. The type of object returned by
result_def() can be determined by getting the attribute
OperationDef::def_kind that is inherited from IRObject.
In this example the object reference is of type SequenceDef
corresponding to the sequence<string> return type. The returned
SequenceDef object may be further queried by getting the attribute
SequenceDef::element_type_def. This returns an IDLType which is a
PrimitiveDef object. This PrimitiveDef object, in turn, has an
attribute PrimitiveDef::kind that has a value of pk_string. At this
stage the return type has been fully determined to be a
sequence<string>.

Orbix Programmer’s Guide C++ Edition 225

The alternative approach is to obtain the TypeCode at the outset.
This retrieves the complete type information in a single step. For
example, the OperationDef object associated with getLongAddress
has an attribute OperationDef::result, which gives the TypeCode of
sequence<string>.

Retrieving Information about IDL Definitions
There are three ways to retrieve information from the Interface
Repository:
1. Given an object reference, its corresponding InterfaceDef

object can be found. From this, all of the details of the object’s
interface definition can be determined.

2. Obtain an object reference to a Repository, after which the full
contents can then be navigated.

3. Given a RepositoryId, a reference to the corresponding object
in the Interface Repository can be obtained and interrogated.

These are explained in more detail in the following three
subsections.

CORBA::Object::_get_interface()
Given an object reference to any CORBA object, say objVar, an
object reference to an InterfaceDef object can be acquired as
follows:

// C++
// Must include <ifr.hh>
CORBA::InterfaceDef_var ifVar =

objVar->_get_interface();

The member function _get_interface() returns a reference to an
object within the Interface Repository.

Browsing or Listing a Repository
Once a reference to a Repository object is obtained, the contents
of that repository can be browsed or listed. There are two ways to
obtain such an object reference.
Firstly, the resolve_initial_references() operation can be called
on the ORB (of type CORBA::ORB), passing the string
“InterfaceRepository” as a parameter. This returns an object
reference of type CORBA::Object, which can then be narrowed to a
CORBA::Repository reference.
Alternatively, the Orbix _bind() function can be used, as follows:

// C++
Repository_var repVar =

Repository::_bind(
“IDL\\:abigbank.com/Repository:IFR”, “host”);

The operations that enable browsing of the Repository are
provided by the abstract interface Container. There are four
provided, as follows:

• contents()

• describe_contents()

 226 Orbix Programmer’s Guide C++ Edition

• lookup()

• lookup_name()

The last two are particularly useful because they provide a facility
for searching the Repository.
The IDL for the search operations is as follows:

// IDL
// In module CORBA.
interface Container : IRObject {

...
Contained lookup(in ScopedName search_name);
...
ContainedSeq lookup_name(

in Identifier search_name,
in long levels_to_search,
in DefinitionKind limit_type,
in boolean exclude_inherited);

...
};

Container::lookup()
The operation lookup() provides a simple search facility based on
a ScopedName. For example, consider the case where Container is a
ModuleDef object representing Finance. Passing the string
“Account::balance” to ModuleDef::lookup() then retrieves a
reference to an AttributeDef object representing balance. This is
an example of using a relative ScopedName. However, lookup() is
not restricted to just searching a specific Container. By passing an
absolute ScopedName as an argument it is possible to search the
whole repository given any Container as a starting point. For
example, given the InterfaceDef for Account it is possible to pass
the string “::Finance::Bank::newAccount” to InterfaceDef::lookup
to find the newAccount operation lying within the scope of the
interface Bank.

Container::lookup_name()
The operation lookup_name() provides a different approach to
searching a Container. Instead of the ScopedName it specifies only a
simple name to search for within the Container. Because more
than one match is possible with a given simple name, the lookup()
operation can return a sequence of Contained objects.
The parameters to lookup_name() are as follows:

search_name Specifies the simple name of the object to
search for. The Orbix implementation also
allows the use of “*” which matches any simple
name.

levels_to_search Specifies the number of levels of nesting to be
included in the search. If set to 1, the search is
restricted to the current object. If set to -1, the
search is unrestricted.

limit_type Limits the objects that are returned. If it is set
to dk_all, all objects are returned. If set to the
DefinitionKind for a particular Interface
Repository kind, only objects of that kind are
returned. For example, if operations are of
interest, limit_type can be set to dk_operation.

Orbix Programmer’s Guide C++ Edition 227

Note: You cannot use the lookup_name() operation to search outside of
the given Container.

Finding an Object Using its Repository ID
A Repository ID (of type CORBA::RepositoryId) can be passed as a
parameter to the lookup_id() operation of an object reference for
a repository (of type CORBA::Repository). This returns a reference
to an object of type Contained, and this can be narrowed to the
correct object reference type.

Example of Using the Interface Repository
This section presents some sample code that uses the Interface
Repository.The following code prints the list of operation names
and attribute names defined on the interface of a given object:

// C++
// The following two lines must appear near
// the top of the file:
//
#include <ifr.hh>
#include <IT_ifr.hh>

int i;
Repository_var rVar;
Contained_var cVar;
InterfaceDef_var interfaceVar;
InterfaceDef::FullInterfaceDescription_var full;

try {
// Bind to the IFR server:
rVar = Repository::_bind(“IDL\\:abigbank.com/

Repository:IFR”, “host”);

// Get the interface definition:
cVar = lookup(“grid”);
interfaceVar = InterfaceDef::_narrow(cVar);

// Get a full interface description:
full = interfaceVar->describe_interface();
// Now print out the operation names:
cout << “The operation names are:” << endl;
for (i=0; i < full->operations.length(); i++)

cout << full->operations[i].name << endl;
// Now print out the attribute names:
cout << “The attribute names are:” << endl;
for (i=0; i < full->attributes.length(); i++)

cout << full->attributes[i].name << endl;
}
catch (...) {

...
}

exclude_inherited If set to TRUE, inherited objects are not
returned. If set to FALSE, all objects, including
those inherited, are returned.

 228 Orbix Programmer’s Guide C++ Edition

All applications that use the Interface Repository must include the
file ifr.hh. This file is available in the include directory of your
Orbix installation. In addition, you must link these applications
against the Orbix library. This is available in the lib directory of
your Orbix installation.
The example can be extended by finding the OperationDef object
for an operation called doit(). The Container::lookup_name() can
be used as follows:

// C++
ContainedSeq_var opSeq;
OperationDef_var doitOpVar;

try {
cout << “Looking up operation doit()”

<< endl;
opSeq = interfaceVar->lookup_name(

“doit”, 1, dk_Operation, 0);
if (opSeq->length() != 1) {

cout << “Incorrect result for lookup_name()”;
exit(1);

} else {
// Narrow the result to be an OperationDef.
doitOpVar =

OperationDef::_narrow(opSeq[0]))
}
...

}
catch (...) {

...
}

Repository IDs
Each Interface Repository object that describes an IDL definition
has a Repository ID. A Repository ID globally identifies an IDL
module, interface, constant, typedef, exception, attribute, or
operation definition. A Repository ID is simply a string that
identifies the IDL definition.
Three formats for Repository IDs are defined by CORBA. However,
Repository IDs are not, in general, required to be in one of these
formats. The formats defined by CORBA are described next.

OMG IDL Format
This format is derived from the IDL definition’s scoped name. It
contains three components which are separated by colons (:) as
follows:

IDL:<identifier/identifier/
identifier/...>:<version number>

• The first component identifies the Repository ID format as the
OMG IDL format.

• The second component consists of a list of identifiers. These
identifiers are derived from the scoped name by substituting
“/” instead of “::”.

Orbix Programmer’s Guide C++ Edition 229

• The third component contains a version number with the
following format:
<major>.<minor>

Consider the following IDL definitions:
// IDL
interface Account {

attribute float balance;
void deposit(in float amount);

};

The following is an IDL format Repository ID for the attribute
Account::balance based on these definitions:

IDL:Account/balance:1.0

This is the format of the Repository ID that is used by default in
Orbix.

DCE UUID Format
The DCE UUID format is the following:

DCE:<UUID>:<minor version number>

LOCAL Format
Local format IDs are for local use within an Interface Repository
and are not intended to be known outside that repository. They
have the following format:

LOCAL:<ID>

Local format Repository IDs may be useful in a development
environment as a way to avoid conflicts with Repository IDs using
other formats.

Pragma Directives
You can control Repository IDs using pragma directives in an IDL
source file. These pragmas enable you to control the format of a
Repository ID for IDL definitions. At present Orbix supports the
use of all three pragma directives: ID, prefix and version.

ID Pragma
An ID pragma directive takes the format:

#pragma ID <name> “<id>”

The <name> can be a fully scoped name or an identifier whose
scope is interpreted relative to the scope in which the pragma
directive is included. The <id> is the repository ID string which is
to be associated with the <name>.

Prefix Pragma
A Prefix pragma directive takes the format:

#pragma prefix “<string>”

The <string> sets the current prefix used in generating repository
IDs. The specified prefix applies to repository IDs generated after
the pragma until the end of the current scope is reached or
another prefix pragma is encountered.

 230 Orbix Programmer’s Guide C++ Edition

Version Pragma
You can specify a version number for an IDL definition’s
Repository ID (IDL format) by using a version pragma. The
version pragma directive takes the format:

#pragma version <name> <major>.<minor>

The <name> can be a fully scoped name or an identifier whose
scope is interpreted relative to the scope in which the pragma
directive is included. Where no version pragma is specified for an
IDL definition, the version number for the definition defaults to
1.0.
For example, consider the following:

// IDL
module Engineering {

interface component {
};
#pragma ID component

“IDL:abigbank.com/component:1.0”
};

#pragma prefix “FirstTrust”
module Finance {

module Banking {
#pragma prefix “CorporateBanking”

interface Account {
};

};
module Stockmarket {

interface invest {
};

};
#pragma version Banking::Account 2.7

};

These definitions yield the following Repository IDs:
::Engineering::component IDL:abigbank.com/component:1.0
::Finance::Banking::Account IDL:CorporateBanking/Account:2.7
::Finance::Stockmarket::invest IDL:FirstTrust/Finance/Stockmarket/invest:1.0

It is important to realize that pragma directives do not only affect
Repository IDs. If pragma directives are used to set the version of
an interface, the version number also becomes embedded in the
string format of an object reference. A client must bind to a server
object whose interface has a matching version number. If the IDL
interface on the server side has no version, _bind() does not
require matching versions. In the present implementation of the
Interface Repository, you should use only one version number per
Interface Repository.

Part IV
Advanced Orbix C++

Programming

In this part
This part contains the following:

Filtering Operation Calls page 233

Using Smart Proxy Classes page 247

Callbacks from Servers to Clients page 255

Loading Objects at Runtime page 267

Using Opaque Types in IDL page 283

Transforming Requests page 291

Using Threads with Orbix page 297

Service Contexts in Orbix page 307

 Orbix Programmer’s Guide C++ Edition 233

Filtering Operation
Calls
Orbix allows you to specify that additional code is to be executed
before or after the normal operation or attribute code. This support
is provided by allowing applications to create filters that can perform
security checks, provide debugging traps or information, maintain
an audit trail, and so on. Filters are an Orbix-specific feature.

There are two forms of filters:

• per-process filters
Per-process filters see all operation and attribute calls leaving
or entering a client’s or server’s address space, irrespective of
the target object.

• per-object filters
Per-object filters apply to individual objects.

Both of these filter types are illustrated in Figure 22. The sections
“Introduction to Per-process Filters” and “Introduction to
Per-Object Filters”, respectively, give a brief introduction to each.
The remainder of the chapter then describes each in detail.
Use of the Dynamic Invocation Interface does not by-pass the
filtering mechanism. Calls made using the DII result in the use of
all appropriate outgoing and incoming filters.

Note: Because of the Orbix-specific nature of filters, you can only use
filters with Orbix.

Figure 22: Per-process and Per-object Filtering

Objects

Client or Server Process

o1 o2 o3

per-object filter
attached to object o2

chain of per-process
filters

 234 Orbix Programmer’s Guide C++ Edition

Introduction to Per-process Filters
Per-process filters monitor all incoming and outgoing operation
and attribute requests to and from an address space. Each
process can have a chain of such filters, with each element of the
chain performing its own actions. You can add a new element to
the chain by carrying out the following two steps:

• Define a class that inherits from class CORBA::Filter.
• Create a single instance of the new class.
Each filter of the chain can monitor ten individual points during the
transmission and reception of an operation or attribute request.
Refer to Figure 23 on page 236.

Pre-marshalling Filter Points
The four most commonly used filter points are as follows:

• out request pre-marshal (in the caller’s address space)
This filter monitors the point before an operation or attribute
request is transmitted from the filter’s address space to any
object in another address space. Specifically, it monitors the
point before the operation’s parameters have been added to
the request packet.

• in request pre-marshal (in the target object’s address space)
This filter monitors the point where an operation or attribute
request has arrived at the filter’s address space, but before it
has been processed. Specifically, it monitors the point before
the operation has been sent to the target object and before
the operation’s parameters have been removed from the
request packet.

• out reply pre-marshal (in the target object’s address space)
This filter monitors the point after the operation or attribute
request has been processed by the target object, but before
the result has been transmitted to the caller’s address space.
Specifically, it monitors the point before an operation’s out
parameters and return value have been added to the reply
packet.

• in reply pre-marshal (in the caller’s address space)
This filter monitors the point after the result of an operation or
attribute request has arrived at the filter’s address space, but
before the result has been processed. Specifically, it monitors
the point before an operation’s return parameters and return
value have been removed from the reply packet.

Orbix Programmer’s Guide C++ Edition 235

Post-marshalling Filter Points
There are four similar post-marshalling monitor points:

• out request post-marshal (in the caller’s address space)
This filter operates the same way as ‘out request pre-marshal’
but after the operation’s parameters have been added to the
request packet.

• in request post-marshal (in the target object’s address space)
This filter operates the same way as ‘in request pre-marshal’
but after the operation’s parameters have been removed from
the request packet.

• out reply post-marshal (in the target object’s address space)
This filter operates the same way as ‘out reply pre-marshal’
but after the operation’s out parameters and return value
have been added to the reply packet.

• in reply post-marshal (in the caller’s address space)
This operates the same as ‘in reply pre-marshal’ but after the
operation’s out parameters and return value have been
removed from the reply packet.

Failure Points
Two additional monitor points deal with exceptional conditions:

• out reply failure (in the target object’s address space)
This is called if the target object raises an exception or if any
preceding filter point (‘in request’ or ‘out reply’) raises an
exception or uses its return value to indicate that the call
should not be processed any further.

• in reply failure (in the caller’s address space)
This is called if the target object raises an exception or if any
preceding filter point (‘out request’, ‘in request’, ‘out reply’ or
‘in reply’) raises an exception or uses its return value to
indicate that the call should not be processed any further.

Once an exception is raised or a filter point uses its return value to
indicate that the call should not be processed further, no further
monitor points (other than the two failure monitor points) are
called. If this occurs in the caller’s address space, in reply failure is
called. If it occurs in the target object’s address space, out reply
failure and in reply failure are both called (in the target object’s
and the caller’s address spaces respectively).

 236 Orbix Programmer’s Guide C++ Edition

All monitor points (eight marshalling points and two failure points)
are shown in Figure 23.

Figure 23: Per-process Monitor Points

A particular filter on the per-process filter chain may perform
actions for any number of these filter points, although it is
common to handle four filter points, for example:

• out request pre-marshal
• out reply pre-marshal
• in request pre-marshal
• in reply pre-marshal
In addition to monitoring incoming and outgoing requests, a filter
on the client side and a filter on the server side can co-operate to
pass data between them, in addition to the normal parameters of
an operation (or attribute) call. For example, the ‘out’ filter points
of a filter in the client can be used to insert extra data into the
request package (for example, in ‘out request pre-marshal’); and
the ‘in’ filter points of a filter in the server can be used to extract
this data (for example, in ‘in request pre-marshal’).
Each filter point must indicate how the handling of the request
should be continued once the filter point itself has completed. In
particular, a filter point can determine whether or not Orbix is to
continue to process the request or to return an exception to the
caller.
Because per-process filters are applied only when an invocation
leaves or arrives at an address space, they are not informed of
invocations between collocated objects.

request

reply

outRequestPreMarshal

outRequestPostMarshal

inReplyPostMarshal

inReplyPreMarshal

outReplyPostMarshal

inRequestPreMarshal
inRequestPostMarshal

outReplyPreMarshal

target

outReplyFailure

object

inReplyFailure

Client Process Server Process

Orbix Programmer’s Guide C++ Edition 237

Example Usages of Per-Process Filter
In addition, there are two special forms of per-process filters, each
with its own special use:

Introduction to Per-Object Filters
Per-object filters are associated with a particular object, rather
than with all objects in an address space as in per-process
filtering. Unlike per-process filters, per-object filters apply even
for intra-process operation requests.
The following filtering points are supported:

• per-object pre
This filter applies to operation invocations on a particular
object—before they are passed to the target object.

• per-object post
This filter applies to operation invocations on a particular
object—after they have been processed by the target object.

A per-object pre-filter can indicate, by raising an exception, that
the actual operation call should not be passed to the target object.
Per-object filters are created by carrying out the following three
steps:
1. Define a new class that implements all of the IDL operations

and attributes for the target object.
2. Create an instance of this new class. This instance behaves as

a per-object filter when it is installed.
3. Install this filter object as either a pre-filter or as a post-filter

to a particular target object.
It is important to realize that a per-object filter is either a
pre-filter or a post-filter. In contrast, a single per-process filter
can perform actions for any or all of its eight monitor points.
An object can have a chain of pre-filters and/or a chain of
post-filters. For example, a chain of pre-filters can be constructed
by attaching a pre-filter to the object, then attaching a pre-filter to
that filter, and so on.

Authentication
filter

A filter that passes authentication information
from a client to a server. The ability to verify
the identify of the caller is a fundamental
requirement for security. Authentication filters
are discussed in “Defining an Authentication
Filter” on page 244.

Thread filter A filter that (optionally) creates lightweight
threads when an operation invocation arrives
at a server. The filter point
inRequestPreMarshal() actually creates the
thread. These filters are available in Orbix-MT
only, refer to “Using Threads with Orbix” for
details.

 238 Orbix Programmer’s Guide C++ Edition

Note that per-object filtering can only be used if:

• The TIE approach has been used to associate the target
object’s class with its IDL C++ class.

• Per-object filtering was enabled when the corresponding IDL
interface was compiled by the IDL compiler (see “IDL
Compiler Switch to Enable Object Filtering” on page 246).

The parameters to an IDL operation request are readily available
for both pre and post per-object filters. Any in and inout
parameters are valid for pre filters; in, out and inout parameters
and return values are valid for post filters. In contrast, for
per-process filters, parameters to the operation request are not in
general available.
The per-process ‘in request’ (both pre and post-marshal) filters
are applied before any per-object pre-filter. The per-object
post-filters are applied before any per-process ‘out reply’ (both
pre and post-marshal) filters.

Using Per-Process Filters
A per-process filter is installed by defining a derived class of class
CORBA::Filter, and re-defining one or more of its member
functions:

outRequestPreMarshal() Operates in the caller’s filter before
outgoing requests (before
marshalling).

outRequestPostMarshal() Operates in the caller’s filter before
outgoing requests (after marshalling).

inRequestPreMarshal() Operates in the receiver’s filter before
incoming requests (before
marshalling).

inRequestPostMarshal() Operates in the receiver’s filter before
incoming requests (after marshalling).

outReplyPreMarshal() Operates in the receiver’s filter before
outgoing replies (before marshalling).

outReplyPostMarshal() Operates in the receiver’s filter before
outgoing replies (after marshalling).

inReplyPreMarshal() Operates in the caller’s filter before
incoming replies (before marshalling).

inReplyPostMarshal() Operates in the caller’s filter before
incoming replies (after marshalling).

outReplyFailure() Operates in the receiver’s filter if a
preceding filter point raises an
exception or indicates that the call
should not be processed further or if
the target object raises an exception.

inReplyFailure() Operates in the caller’s address space
if the target object raises an exception
or a preceding filter point raises an
exception or indicates that the call
should not be processed further.

Orbix Programmer’s Guide C++ Edition 239

Each of these member functions takes two parameters; the
marshalling member functions (the functions not concerned with
failure) return a CORBA::Boolean value to indicate whether or not
Orbix should continue to make the request. (inRequestPreMarshal()
returns an int value.)
For example:

CORBA::Boolean
outRequestPreMarshal(CORBA::Request& r,

CORBA::Environment&);

The failure functions, outReplyFailure() and inReplyFailure(),
have a void return type.
You can obtain the details of the request being made by calling
member functions on the CORBA::Request parameter. Examples of
this are shown in “An Example Per-Process Filter” on page 240.
The CORBA::Environment variable can be used to raise an exception
if the C++ compiler does not support native exceptions. Refer to
the Orbix Programmer’s Reference C++ Edition for full details
of these functions.
The constructor of class Filter adds the newly created filter object
into the per-process filter chain. Direct instances of Filter cannot
be created (the constructor is protected to enforce this). Derived
classes of Filter normally have public constructors.

Note: Each function (except the two failure functions) returns a value to
indicate how the call should continue. Redefinitions of these
functions in a derived class should retain the same semantics for
the return value as specified in the relevant entries in the Orbix
Programmer’s Reference C++ Edition.
You should define derived classes of Filter and redefine some
subset of the member functions to carry out the required filtering.
If any of the non-failure monitoring functions is not redefined in a
derived class of CORBA::Filter, then the following implementation
is inherited in all cases:

// C++
{ return 1; } // Continue the call.

The failure filter functions inherit the following implementation:
// C++
{ return; }

Note that the two ‘out reply’ marshalling filter points are used only
if the operation request is issued to the target object. The two ‘in
reply’ marshalling filter points are used only if the operation
request is sent out of the caller’s address space.

 240 Orbix Programmer’s Guide C++ Edition

An Example Per-Process Filter
Consider the following simple example of a per-process filter:

// C++
#include <CORBA.h>
#include <iostream.h>

class ProcessFilter :
public virtual CORBA::Filter {

public:
CORBA::Boolean
outRequestPreMarshal(CORBA::Request& r,

CORBA::Environment&) {
CORBA::String_var s;
s = (r.target())->_object_to_string();
cout << endl << “Request out-going to ”
 << s << “ with operation name ”
 << r.operation() << endl;
return 1; // Continue the call.

}
int inRequestPreMarshal(CORBA::Request& r,

CORBA::Environment&) {
CORBA::String_var s;
s = (r.target())->_object_to_string();
cout << endl << “Request incoming to ”
 << s << “ with operation name ”
 << r.operation() << endl;
return 1; // Continue the call.

}

CORBA::Boolean outReplyPreMarshal(
CORBA::Request& r,
CORBA::Environment&) {

cout << “ Incoming operation ”
 << r.operation()
 << “ finished. ” << endl << endl;
return 1; // Continue the call.

}

CORBA::Boolean inReplyPreMarshal(
CORBA::Request& r,
CORBA::Environment&) {

cout << “Outgoing ” << r.operation()
 << “finished.” << endl << endl;
return 1; // Continue the call.

}

void outReplyFailure(
CORBA::Request& r,
CORBA::Environment&) {

cout << “Operation” << r.operation()
 << “raised exception.” << endl << endl;
return;

}

void inReplyFailure(
CORBA::Request& r,
CORBA::Environment&) {

cout << “Operation” << r.operation()

Orbix Programmer’s Guide C++ Edition 241

 << “raised exception.” << endl << endl;
return;

}
};

Filter classes can have any name; but they must inherit from
CORBA::Filter. CORBA::Filter has a protected default constructor;
ProcessFilter is given a default (no parameter) public constructor
by C++.
The function target() can be applied to a Request to find the object
reference of the target object; and the function
_object_to_string() can be applied to an object reference to get a
string form of an object reference. The function operation() can be
applied to a Request to find the name of the operation being called.

Installing a Per-Process Filter
To install this per-process filter, you need only create an instance
of it, usually at the file level:

// C++
ProcessFilter myFilter;

This object automatically adds itself to the per-process filter chain.

Raising an Exception in a Filter
Any of the per-process filter points can raise an exception in the
normal manner. For example, the inRequestPostMarshal() filter
point can be changed to raise a NO_PERMISSION system exception:

// C++
CORBA::Boolean
ProcessFilter::inRequestPostMarshal(

CORBA::Request& r,
CORBA::Environment& env) {

if (.....) {
throw CORBA::NO_PERMISSION(

CORBA::INVOKE_DENIED,
CORBA::COMPLETED_NO);

// The NO_PERMISSION system exception
// has been raised here, with a minor
// code of INVOKE_DENIED, and a
// completion status of COMPLETED_NO.

}
...

}

Rules for Raising an Exception
The following rules apply when a filter point raises an exception:

• Per-process filters can raise only system exceptions. Any such
exception is propagated by Orbix back to the caller. However,
raising an exception in an inReplyPostMarshal() filter point
does not cause the exception to be propagated: at that stage,
the invocation is essentially already completed and it is too
late to raise an exception.

 242 Orbix Programmer’s Guide C++ Edition

• If any filter point raises an exception, then no further filter
points are processed for that invocation, except for one or
both of the failure filter points, outReplyFailure() and
inReplyFailure().

• If one of the following filter points:
outRequestPreMarshal()
outRequestPostMarshal()
inRequestPreMarshal()
inRequestPostMarshal()

raises an exception then the actual function call is not
forwarded to the target application object.

• If the operation implementation raises a user exception and
one of the filter points

outReplyFailure()
inReplyFailure()

raises a system exception, the system exception is raised in
the calling client (that is, the user exception is overwritten).
You may wish to test whether an exception has already been
raised before raising one in the filter. You can do this by
testing the environment formal variable, for example env, as
follows:

// C++
if (env.exception()) {

// Have exception already.
}

• If the operation implementation raises a system exception, no
further filter points, except one or both of outReplyFailure()
and inReplyFailure() are called for this invocation.

Piggybacking Extra Data to the Request Buffer
One of the outRequest filter points in a client can add extra
piggybacked data to an outgoing request buffer—and this data is
then made available to the corresponding inRequest filter point on
the server side. In addition, one of the ‘out reply’ marshalling filter
points on a server can add data to an outgoing reply. This data is
then made available to the corresponding inReply filter point on
the client-side.
At each of the four ‘out’ marshalling monitor points, you can add
data by using operator<<() on the Request parameter, for example:

// C++
CORBA::Long l = 27L;
// . . .
r << l;

This is the same operator<<() that is used in the DII. Refer to the
chapter “Dynamic Invocation Interface” on page 185 for details.
At each of the ‘in’ marshalling monitor points, data can be
extracted using operator>>(), for example,

// C++
CORBA::Long j;
// . . .
r >> j;

Orbix Programmer’s Guide C++ Edition 243

This is a fundamental difference from the normal use of
operator>>() for the Dynamic Invocation Interface, as described in
“Dynamic Invocation Interface”. In the dynamic invocation
interface, operator>>() is only used to determine the return value
of an invocation. In particular, inout and out parameters are not
obtained using operator>>(), but their values are instead
established using the outMode and inoutMode stream manipulators.
In contrast here, operator>>() can be used to extract piggybacked
data from an incoming request (or reply).

Matching Insertion and Extraction Points

You must ensure that the insertion and extraction points match correctly,
as follows:

For example, a value inserted by outRequestPreMarshal() must be
extracted by inRequestPreMarshal(). Unmatched insertions and
extractions corrupt the request buffer and potentially cause a
program crash.
When only one filter is being used, its outRequestPostMarshal()
function can add piggybacked data that the corresponding
inRequestPostMarshal() function, on the called side, does not
remove. However, this would cause problems if more than one
filter is used.

Ensuring that Unexpected Extra Data is not Passed
When coding a filter that adds extra data to the request, care
should be taken not to include this data when communicating with
a server that does not expect it. Frequently, a filter should add
extra data only if the target object is in one of an expected set of
servers.
For example, it is necessary to include the following code in
outRequestPreMarshal() and outRequestPostMarshal() (assuming the
Request parameter is r):

// C++
// First find the server name.
CORBA::ImplementationDef_ptr impl;
impl = (r.target())->get_implementation();

if (strcmp(impl, “some_server”) == 0) {
// Can add extra data.

}
else {

// Do not add any extra data.
}

The function CORBA::Object::_get_implementation() returns the
server name of an object reference (in this case, of the target
object).

Insertion Point Extraction Point
outRequestPreMarshal() inRequestPreMarshal()

outReplyPreMarshal() inReplyPreMarshal()

outRequestPostMarshal() inRequestPostMarshal()

outReplyPostMarshal() inReplyPostMarshal()

 244 Orbix Programmer’s Guide C++ Edition

You should be particularly careful not to add data when
communicating with the Orbix daemon, IT_daemon. The Orbix
library communicates with the daemon process, and you should
ensure that you do not pass extra data to the daemon.

Defining an Authentication Filter
Verification of the identity of the caller of an operation is a
fundamental component of a protection system. Orbix supports
this by installing an authentication filter in every process’s filter
chain. This default implementation transmits the name of the
principal (user name) to the server when the channel between the
client and the server is first established and adds it to all requests
at the server side. A server object can obtain the user name of the
caller by calling the function:

// C++
// In class CORBA::BOA.
char* get_principal(Object_ptr,

CORBA::Environment& IT_env =
CORBA::IT_chooseDefaultEnv());

on the CORBA::Orbix object. The first parameter, of type
Object_ptr, is not used.
The default authentication filter can be overridden by declaring a
derived class of CORBA::AuthenticationFilter and creating an
instance of this class. For example, an alternative authentication
filter may use a ticket-based authentication system rather than
passing the caller’s user name.

Using Per-Object Filters
You can attach a pre and/or a post per-object filter to an individual
object of a given IDL C++ class. Consider the following IDL
interface:

// IDL
interface Inc {

unsigned long increment(in unsigned long vin);
};

This maps to the following C++ class:
// C++
class Inc : public virtual CORBA::Object {

virtual CORBA::ULong increment(
CORBA::ULong vin,
CORBA::Environment& IT_env =

CORBA::IT_chooseDefaultEnv());
};

You can implement interface Inc as follows:
// C++
class IncImpl {

virtual CORBA::ULong increment(
CORBA::ULong vin,
CORBA::Environment&)

{ return (vin+1); }
};

DEF_TIE_Inc(IncImpl);

Orbix Programmer’s Guide C++ Edition 245

Note: To facilitate object-level filtering, you must use the TIE approach.
If you have two objects of this type created, as follows:

// C++
Inc_ptr i1 = new TIE_Inc(IncImpl) (new IncImpl());
Inc_ptr i2 = new TIE_Inc(IncImpl) (new IncImpl());

you may wish to have pre and/or post-filtering on; for example,
the specific object referenced by i1. To achieve this, you must
define one or more additional classes and additional TIE classes.
To perform pre-filtering, you could define a class (for example,
FilterPre) to have the same functions and parameters as a
normal implementation class of the corresponding IDL C++ class:

// C++
class FilterPre {
public:

virtual CORBA::ULong increment(
CORBA::ULong vin,
CORBA::Environment&) {

cout << “*** PRE call with parameter ”
 << vin << endl;
return 0; // Here any value will do.

}
};

Similarly, to perform post-filtering, you could define a class (for
example, FilterPost) as follows:

// C++
class FilterPost {
public:

virtual CORBA::ULong increment(
CORBA::ULong vin,
CORBA::Environment&) {

cout << “*** POST call with parameter ”
 << vin << endl;
return 0; // Any value will do.

}
};

In the examples shown here, a per-object filter cannot access the
object it is filtering. A filter can however do this by having a
member variable that points to the object it is filtering. You can
set up this member using a constructor parameter for the filter.
You need to create TIE classes for these filters:

// C++
DEF_TIE_Inc(FilterPre)
DEF_TIE_Inc(FilterPost)

To apply filters to a specific object, do the following:
// C++
// Create two filter objects.
Inc_ptr serverPre = new TIE_Inc(FilterPre)

(new FilterPre());
Inc_ptr serverPost = new TIE_Inc(FilterPost)

(new FilterPost());

// Attach the two filter objects to
// the target object pointed to by i1.
i1->_attachPre(serverPre);
i1->_attachPost(serverPost);

 246 Orbix Programmer’s Guide C++ Edition

It is not always necessary to attach both a pre and a post-filter to
an object.
Attaching a pre-filter to an object that already has a pre-filter
causes the old filter to be removed and the new one to be
attached. The same applies to a post filter.
The functions _attachPre() and _attachPost() return, respectively,
the previous pre-filter and post-filter, if any, attached to the
object. The functions _getPre() and _getPost() return a pointer to
an object’s pre-filter and post-filter, respectively.
To attach a chain of per-object pre-filters to an object,
_attachPre() can be used to attach the first pre-filter, and then it
can be used again to attach a pre-filter to the first pre-filter, and
so on. The same applies to post-filters.
If a per-object pre-filter raises an exception in the normal way,
the actual operation call is not made. Normally, this exception is
returned to the client to indicate the outcome of the invocation.
However, if the pre-filter raises the exception
CORBA::FILTER_SUPPRESS, no exception is returned to the caller—
the caller cannot tell that the operation call has not been
processed as normal.
You can raise a FILTER_SUPPRESS exception as follows:

// C++
throw CORBA::FILTER_SUPPRESS(

CORBA::FILTER_SUPPRESS_IND,
CORBA::COMPLETED_NO);

In the preceding example, the same filter objects (those pointed
to by serverPre and serverPost) could be used to filter invocations
to many objects. Other filters, for example a filter holding a
pointer to the object it is filtering, can only be used to filter one
object.

IDL Compiler Switch to Enable Object Filtering
Per-object filtering can be applied to an IDL interface only if it has
been compiled with the -F switch to the IDL compiler. By default,
-F is not set, so object level filtering is not enabled.

 Orbix Programmer’s Guide C++ Edition 247

Using Smart Proxy
Classes
Smart Proxies are an Orbix-specific feature that allow you to
implement proxy classes manually, thereby enabling optimization
of client interaction with remote services. This chapter describes
how proxy objects are generated, and the general steps involved in
implementing smart proxy support for a given interface. It also
describes how to build a simple smart proxy, using an example that
builds on the BankSimple example from the chapters “Developing
Applications with Orbix” and “Using and Implementing IDL
Interfaces”.

It is sometimes beneficial to be able to implement proxy classes
manually. Although it is not expected that you do this if you are a
client programmer calling a remote interface; it is a useful option
if you are implementing an interface. You can provide smart proxy
code, for example, to optimize how your clients use the services
provided.
A typical example would be to use a smart proxy to examine client
requests bound for server objects. The smart proxy forwards
requests only if certain criteria are met. The example used in this
chapter uses a smart proxy to check if there is sufficient funds in
the account before forwarding the request to the server.
This involves constructing a smart proxy for the Account interface.
You can do this by manually programming a class derived from
the IDL C++ class Account (generated by the IDL compiler). This
inheritance is best considered in terms of inheriting from the
default proxy class generated by the IDL compiler.
In fact, the IDL C++ class and the default proxy class are the
same class, created for every application that you write. The
member functions of class Account package requests for the target
object; the member functions of a derived class can provide
optimized application specific coding.
You can then link client programs with this smart proxy code, but
you do not have to change them in any other way. When a proxy
is created in a client’s address space, a smart proxy is created
rather than a default one.

Note: Use of the Dynamic Invocation Interface currently bypasses the
smart proxy mechanism. Calls made using the DII do not result in
invocations on smart proxies.
This chapter first considers the details of how proxy objects are
actually generated, and the general steps needed to implement
smart proxy support for a given interface. It then describes how to
build a simple smart proxy using an example.
The source code for the example described in this chapter is
available in the demos\common\banksmartproxy directory of your
Orbix installation.

 248 Orbix Programmer’s Guide C++ Edition

Management of Proxies by Proxy Factories
This section begins describing how Orbix manages proxies. The
Orbix IDL compiler generates the following classes for each IDL
interface:

• An IDL C++ class—this is also the default proxy class.
• A default proxy factory class for that class.

The Default Proxy Class
The default proxy class gives the code for standard proxies for
that IDL interface. This proxy transmits requests to its real object
and returns the results it receives to the caller.

The Default Proxy Factory Class
The proxy factory class produced by the IDL compiler creates
these standard proxies for its class, and there is a single global
instance of this class linked into the client code. This instance
constructs a new standard proxy for its IDL interface when
requested by Orbix. The proxy factory class is termed the default
proxy factory class.
For example, the IDL compiler generates the following classes for
IDL interface BankSimple::Account:

• BankSimple::Account

This is the IDL C++ class—it also acts as the default proxy
class.

• BankSimple::AccountProxyFactoryClass
This is the default proxy factory class for interface Account.

• BankSimple::AccountProxyFactory
This is the single global instance of AccountProxyFactoryClass.

Generating Smart Proxies
To provide smart proxies for an IDL interface you must:
1. Define the smart proxy class.

This must inherit from its IDL C++ class.
2. Define a proxy factory class.

This creates instances of the smart proxy class on request
using
its New() member function.

3. Create a single instance of the proxy factory class.
Client programs must be linked with the smart proxy class and the
proxy factory class, and must create the instance of the proxy
factory class. You should normally provide a header file and a
corresponding object file to carry out all of these steps. This
involves very minimal changes for clients—their normal operation
invocation code remains unchanged.

Orbix Programmer’s Guide C++ Edition 249

When these steps are carried out, Orbix communicates with the
factory whenever it needs to create a proxy of that interface as
follows:

• When a reference to an object of that interface is passed back
as an out or inout parameter or a return value, or when a
reference to a remote object enters an address space via an
in parameter.

• When the interface’s _bind() function is called.
• When CORBA::Orbix.string_to_object() is called with a

stringified object reference for a proxy of that interface.

Creating a Smart Proxy
The following steps describe in more detail the steps you must
perform to create a smart proxy:
1. Declare and implement the smart proxy class, derived from its

IDL C++ class. The constructor of this class is used by the
smart proxy factory, in step 2.

2. Declare and implement a new proxy factory class, derived
from the default proxy factory class.
Orbix calls a proxy factory’s New() member function when it
wishes to create a proxy for a particular interface. The a new
proxy factory class should redefine the New() function to
create new smart proxy objects from the class in step 1.
Alternatively, it should return zero to indicate that it is not
willing to create a smart proxy.

3. Declare a global object of this new class.
The constructor of the base class automatically registers this
new proxy factory object with the factory manager in Orbix.

Smart Proxy Factory Chains
You can define more than one smart proxy class (and associated
smart proxy factory class) for a given IDL interface. Orbix
maintains a linked list of all of the proxy factories for a given IDL
interface.
A chain of smart proxy factories is allowed for an IDL interface
because the same IDL interface might be provided by a number of
different servers in the system. It may be useful to have different
smart proxy code to handle each server, or set of servers.
Each factory in turn can examine the marker and server name of
the target object for which the proxy is to be created, and decide
whether to create a smart proxy for it or to defer the request to
the next proxy factory in the chain. Initially, there is a single entry
in this list—the default proxy factory class.
When a new proxy is required, Orbix calls all of the registered
proxy factories for the class until one of them successfully builds a
new proxy. The only guarantee on the order of use of smart proxy
factories is that the factory manager ensures that an interface’s
default proxy factory object is the last factory on the chain. Thus if
no other proxy factory is willing to manufacture a new proxy, a
standard proxy is constructed.

 250 Orbix Programmer’s Guide C++ Edition

The factory manager requests each proxy factory to manufacture
a new proxy via its New() member function. The first parameter to
this function is the full object reference of the target object:

// C++
// Returns a pointer to the new smart proxy:
void* New(const char*, CORBA::Environment&)

The code for this function may need to extract the target object’s
marker. One way to extract the target object’s marker and server
name is by constructing a direct occurrence of CORBA::Object,
passing the full object reference string as a constructor
parameter, and then calling _marker() and _implementation() on
that temporary object.
The New() function can raise an exception, in the normal way. If
the function returns zero, but does not raise an exception, Orbix
tries the next smart proxy factory in the chain.

A Simple Smart Proxy Example
This section describes a simple smart proxy class for interface
Account, based on the BankSimple example.

The Account IDL Interface
The BankSimple IDL interface for Account is as follows:

// IDL
// In file banksimple.idl

...
module BankSimple {

typedef float CashAmount;
...
interface Account {

readonly attribute string name;
readonly attribute CashAmount balance;
void deposit(in float f);
void withdraw(in float f);

}
};

Orbix Programmer’s Guide C++ Edition 251

Defining a New Proxy Class
This section defines a smart proxy class, named SmartAccount, for
class Account. SmartAccount objects check if the client has sufficient
funds before the withdraw() operation reaches the server:

// C++
// In file banksimple_smartaccount.h

#include "banksimple.hh"

1 class SmartAccount : public virtual
BankSimple::Account {

public:

// The required constructor:
2 SmartAccount(const char*);

// Functions for IDL operations and attributes.
// List only those which require a different
// implementation in the smart proxy class:

3 virtual void withdraw(
BankSimple::CashAmountamount,
CORBA::Environment& IT_env =
CORBA::IT_chooseDefaultEnv());

};

This code is described as follows:
1. Class SmartAccount inherits from the default proxy code (the

IDL C++ class) generated by the IDL compiler. It therefore
inherits all of the code required to make a remote invocation.
Each SmartAccount function can call its base class function to
make a remote call. Virtual inheritance is not strictly
necessary in the previous code sample. It is used in case C++
multiple inheritance is required later.

2. The constructor for the smart proxy class takes a full object
reference string as a parameter. It must pass this to the
constructor of its default proxy class.

3. The withdraw() function is overridden because of the extra
check performed by the smart proxy to see if there are
sufficient funds in the account.

The corresponding implementation of the withdraw() function is as
follows:

// C++
// In file banksimple_smartaccount.cxx

#include "banksimple_smartaccount.h"
#include <iostream.h>

// Constructor.
SmartAccount::SmartAccount(const char* OR)

: BankSimple::Account(OR){}

// Implementation of the withdraw() function.
void SmartAccount::withdraw(

BankSimple::CashAmount amount, CORBA::Environment&)
{

float balance;
...

 252 Orbix Programmer’s Guide C++ Edition

// Check the account balance.
balance = BankSimple::Account::balance();
...
if ((balance-amount) < 0) {

cout <<"Smart Proxy detected insufficient funds
for withdraw operation."<<endl;

cout <<"Withdraw operation not called"<<endl;
return;

}
...
BankSimple::Account::withdraw(amount);
...

}

The SmartAccount() constructor calls the constructor of the IDL
C++ class for which it implements proxies (Account), passing it the
string form of the object reference for the remote object. This call
is necessary because the constructor of Account in turn calls the
constructor of its base class CORBA::Object, registering the proxy in
the object table. The object table registers all objects in an
address space. Refer to CORBA::ORB::resizeObjectTable() in the
Orbix Programmer’s Reference C++ Edition for more details.
The functions inherited from Account are used to make remote
calls.

Defining a New Proxy Factory Class
The next step is to define a new proxy factory to generate smart
proxies when required. The default proxy factory produced by the
IDL compiler for interface Account is AccountProxyFactoryClass—
you should derive from this class, as the following code shows:

// C++
// In file banksimple_smartaccount.h

#include "banksimple.hh"
...
class SmartAccountFactoryClass : public virtual

BankSimple::AccountProxyFactoryClass {

public:
// Constructor:
SmartAccountFactoryClass() : CORBA::ProxyFactory(

BankSimple_Account_IR) {}

// The New() member function is called when a
// proxy is required.
virtual void* New (

const char* OR,
CORBA::Environment&) {
// Create and return a new smart proxy.
return(BankSimple::Account_ptr)

new SmartAccount(OR);
}

};

The member initialization list of the constructor of class
SmartAccountFactoryClass makes a call to the constructor of class
ProxyFactory (the base class of AccountProxyFactoryClass). The
parameter passed is BankSimple_Account_IR, an
automatically-defined macro.

Orbix Programmer’s Guide C++ Edition 253

Each default proxy factory class has a default constructor without
any parameters. The constructor of SmartAccountFactoryClass
therefore does not need to be concerned with calling the
constructor of AccountProxyFactoryClass; however, it must call the
ProxyFactory constructor. Figure 24 shows the various class
hierarchies involved.

Figure 24: Class Hierarchy for Smart Proxy Class

The SmartAccountFactoryClass::New() function is called by Orbix to
signal that a smart proxy is to be created. Orbix passes it the
object reference of the object for which the proxy is required. The
New() function dynamically constructs the smart proxy, passing it
the object reference. Orbix also passes any other constructor
parameters agreed on by the smart proxy and the smart proxy
factory.

Note: A member variable, m_next, is defined in the default proxy factory
class for each interface. This is automatically maintained by Orbix
and should not be modified by any factory.
If an Account smart proxy factory needs to test whether or not it
should create a smart proxy, its New() function should do the
following:

// C++
if (...) // Test condition omitted here.

// The target object is one that you should
// create a smart proxy for.
return (BankSimple::Account_ptr)

new SmartAccount(OR);
else

// Pass on the object reference parameter to the
// next factory in the factory chain.
return 0;

The factory can use the stringified object reference parameter to
determine whether it should create a smart proxy: it might
determine this from the server name of the object reference, or
perhaps by communicating with the object’s server. If the request
is propagated as far as the default factory, it will create a standard
proxy.
In the code for SmartProxyFactoryClass above, all account proxies
are built as smart proxies. We could re-implement
SmartAccountFactoryClass::New() to build smart proxies only for
particular remote servers. To do this,
SmartAccountFactoryClass::New() should find the server name of
the target object to decide whether it should create a smart proxy,

ProxyFactory

AccountProxyFactoryClass

SmartAccountFactoryClass

CORBA::Object

Account

SmartAccount

 254 Orbix Programmer’s Guide C++ Edition

or pass the request to the next factory in the linked list (and
finally to the default proxy factory class that constructs a standard
proxy).

Declaring a New Proxy Factory Class Instance
Finally, you need to declare a single instance of this new class:

// C++
// In file banksimple_smartaccount.cxx
SmartAccountFactoryClass SmartAccountFactory;

The constructor of the base class then registers this new factory—
entering it into the linked list of factories for interface Account.

 Orbix Programmer’s Guide C++ Edition 255

Callbacks from Servers
to Clients
Orbix clients usually invoke operations on objects in Orbix servers.
However, Orbix clients can also implement some of the functionality
associated with servers, and all servers can act as clients. This
flexibility increases the range of client-server architectures that you
can implement with Orbix. This chapter describes a common
approach to implementing callbacks in an Orbix application,
illustrated by a stock-trading example.

A callback is an operation invocation made from a server to an
object implemented in a client. Callbacks allow servers to send
information to clients without forcing clients to explicitly request
the information.

Implementing Callbacks in Orbix
This chapter introduces a simple model for implementing callbacks
in a distributed system. It describes the following steps:
1. Defining the IDL interfaces for the system.
2. Implementing the IDL Interfaces.
3. Writing the client.
4. Writing the server.

Defining the IDL Interfaces
In the stock-trading example, the client invokes operations on the
server and the server invokes operations on the client. You must
therefore define IDL interfaces that allow each application to
access the other. In the simplest case, this involves two
interfaces, for example:

// IDL
// In file stock.idl

// Implemented by the client.
interface StockInfoCB {

...
};

// Implemented by the server.
interface RegStockInfo {

...
};

In this example, the client application supplies an implementation
of type StockInfoCB, while the server implements RegStockInfo.
The server in this example cannot bind to the client
implementation object, because clients are not registered in the
Orbix Implementation Repository. Instead, the IDL definition
provides a Register() operation that allows the client to explicitly
pass an implementation object reference to the server.

 256 Orbix Programmer’s Guide C++ Edition

The full IDL for the stock-trading example is as follows:
// IDL
// In file stock.idl

1 interface StockInfoCB {
oneway void NotifyPriceChange

(in string stockname, in float newprice);
};

2 interface RegStockInfo {
void Register (in StockInfoCB obj);
void Deregister (in StockInfoCB obj);

3 void Notify (in float newprice);
};

This IDL is described as follows:
1. StockInfoCB is the callback interface implemented by the

client. Its NotifyPriceChange() operation is invoked by the
server when a stock price changes.
NotifyPriceChange() is a oneway operation. This means that
the server calling this operation does not block while the client
object processes the call. Orbix does not guarantee that a
oneway operation call will succeed; if a oneway operation
fails, the client may not know. Refer to “Preventing Deadlock
in a Callback Model” for more details.

2. RegStockInfo is the register interface implemented by the
server. Its Register() and Deregister()operations enable
clients that wish to receive stock price callbacks to register or
deregister for a given stock.

3. The Notify() operation is used by the server to notify clients
of a stock price change. Notify() calls the
NotifyPriceChange() operation.

The source code for the example described in this chapter is
available in the Orbix demos\common\callback directory.

Implementing the IDL Interfaces
You can use the BOAImpl or TIE approach to implementing IDL
interfaces. Using the BOAImpl approach, the implementation class
for type RegStockInfo is as follows:

// C++
// In file stock_impl.h

#include <it_demo_streams.h>
#include "stock.hh"

// Implementation class
class RegStockInfoImpl : public RegStockInfoBOAImpl {
public:

// C++ operations
RegStockInfoImpl(char* initialname);
~RegStockInfoImpl();

// IDL operations
void Register (

StockInfoCB_ptr obj,

Orbix Programmer’s Guide C++ Edition 257

CORBA::Environment& env)
throw (CORBA::SystemException);

void Deregister (
StockInfoCB_ptr obj,
CORBA::Environment& env)
throw (CORBA::SystemException);

void Notify (
CORBA::Float newprice,
CORBA::Environment& env)
throw (CORBA::SystemException);

protected:
// A list of all the objects to callback.
StockInfoCB_ptr clientlist[20];

CORBA::Long number_clients;
int max_number_clients;
char* stockname;

};

The implementation of the Register() function for the RegStockInfo
interface requires special attention:

// C++
// In file stock_impl.cxx

// Called by a client wishing to receive
// stock price callbacks.
void RegStockInfoImpl::Register (StockInfoCB_ptr obj,

CORBA::Environment&) throw
(CORBA::SystemException) {

if(number_clients > max_number_clients) {
cout << "All server connections used for
callback purposes"
<<endl;
return;

}
cout << "Registering client for stockname "

<< stockname << endl;
clientlist[number_clients] =

StockInfoCB::_duplicate(obj);
number_clients++;

}

This Register() function receives an object reference from the
client. When this object reference enters the server address
space, a proxy for the client’s StockInfoCB object is created, as
shown in Figure 25 The server uses this proxy to call back to the
client. The implementation of Register() stores the reference to
the proxy for later use.

 258 Orbix Programmer’s Guide C++ Edition

Figure 25: Client Passes Implementation Object Reference to Server

Once the server creates the proxy in its address space, it can
invoke NotifyPriceChange() (using its Notify() operation) to
respond to a change in a stock price.
The implementation of the Notify() function that calls
NotifyPriceChange() is as follows:

// C++
// In file stock_impl.cxx

// Called by the server when sending stock price
// updates (callbacks) to the client.
void RegStockInfoImpl::Notify(

CORBA::Float newprice,
CORBA::Environment&)
throw (CORBA::SystemException) {
if(number_clients>0) {

for (int i=0; i < number_clients; i++) {
try {

clientlist[i]>NotifyPriceChange(
"IONAY",newprice);

}
catch (const CORBA::Exception& e) {

cerr << "Unexpected exception: "
<< e << endl;

}
}

}
}

The NotifyPriceChange() invocation on the StockInfoCB proxy is
routed to the client implementation object as shown in Figure 26
on page 259.
The transmission of requests from server to client is possible
because Orbix maintains an open communications channel
between client and server while both processes are alive. The
server can send the callback invocation directly to the client and
does not need to route it through an Orbix daemon. Therefore, the
client can process the callback event without being registered in
the Orbix Implementation Repository and without being given a
server name.

Implementation
object for type
StockInfoCB

Proxy of type
RegStockInfo

Orbix Client

Proxy of type
StockInfoCB

Implementation
object for type
RegStockInfo

Orbix Server

Register()

return

Orbix Programmer’s Guide C++ Edition 259

Figure 26: Server Invoking Operation on Client Callback Object

Writing the Client
The code for the client main() function is as follows:

// C++
// In file client.cxx.
...
#include "stock.hh"
#include "callback.h"

int main (int argc, char* argv[]) {
try {

// Basic Setup. Process command-line arguments.
...
// ORB Setup - initialize the ORB.
CORBA::ORB_var orb = CORBA::ORB_init(argc, argv, "Orbix");
CORBA::BOA_var boa = orb->BOA_init(argc, argv, "Orbix_BOA");

// Set the diagnostic level from the options
orb->setDiagnostics(clientopt.diagnostics());
// Naming Service Setup
// Resolve an object using a Naming Service Wrapper (NSW).
// See demolib/it_demo_nsw.* for details.
...

// Create a Naming Service Wrapper object and define a name
// prefix used for subsequent operations.
IT_Demo_NSW ns_wrapper;
ns_wrapper.setNamePrefix(clientopt.context());

// Get CORBA object.
// Provide the object's name in the Naming Service.
const char* object_name = "CallBack.CallBack";

// Use the NSW to obtain a reference to the required object.
CORBA::Object_var obj = ns_wrapper.resolveName(object_name);

// Narrow the object reference.
RegStockInfo_var stock = RegStockInfo::_narrow(obj);
if (CORBA::is_nil(obj)) {

Implementation
 for type

StockInfoCB

Proxy of type
RegStockInfo

Orbix Client

Proxy of type
StockInfoCB

Implementation
for type

RegStockInfo

Orbix Server
NotifyPriceChange()

routed to client
implementation object

return

 260 Orbix Programmer’s Guide C++ Edition

cerr << "Object in naming service is not of expected
type"<< endl;

}

// Perform demo-specific operations on the CORBA object.
StockInfoCB_var cbobj = new StockInfoCBImpl();
cout << "Sending request for IONAY stock prices"<<endl;
stock->Register(cbobj);

// Client is coded to receive ten callbacks.
for (int i=0; i < 10; i++) {

boa->processNextEvent();
}
cout << "Sending request deregister from IONAY stock price
callbacks "<<endl;
stock->Deregister(cbobj);

}
catch (const CORBA::Exception& e) {

cerr << "Unexpected exception" << e << endl;
cerr << "Demo failed" << endl;
exit(1);

}
cout << "Demo finished" << endl;
return 0;

}

This client creates an implementation object of type
StockInfoCBImpl. It then invokes the Register() function and
connects to an object of type RegStockInfo in the server. At this
point, the client holds an implementation object of type
StockInfoCB and a proxy for an object of type RegStockInfo, as
shown in Figure 27.
To allow the server to invoke operations on the StockInfoCB
implementation object, the client must pass this object reference
to the server. Consequently, the client then calls the operation
Register() on the RegStockInfo proxy object, as shown in
Figure 27.

Figure 27: Client-Server Callback Interaction

Implementation
 for type

StockInfoCB

Proxy of type
RegStockInfo

Orbix Client

Proxy of type
StockInfoCB

Implementation
for type

RegStockInfo

Orbix Server

NotifyPriceChange()

return

return

Register()

Orbix Programmer’s Guide C++ Edition 261

Writing the Server
The code for the server main() function is as follows:
// C++
// In file server.cxx
...
#include "stock_impl.h"

int main(int argc, char* argv[]) {
try {

...

// ORB and BOA setup.
// Initialize the ORB and BOA
CORBA::ORB_var orb = CORBA::ORB_init

(argc, argv, "Orbix");
CORBA::BOA_var boa = orb->BOA_init

(argc, argv, "Orbix_BOA");

// Set diagnostics and server name.
...

// Server should not quit while clients
// are connected.
boa->setNoHangup(1);

boa->impl_is_ready
((char*)serveropt.server_name(), 0);

// Create an implementation object.
RegStockInfo_var symbol

= new RegStockInfoImpl("IONAY");

// Naming Service setup as normal.
...

// ORB/BOA event processing
// Server completed its initialization,
// and waiting for incoming requests.
boa->impl_is_ready

((char*)serveropt.server_name(), 0);
// Set share price.
float shareprice = 18.5;

if (!serveropt.bindns()) {
for (int i=0; i<100;i++) {

if (boa->isEventPending()) {
boa->processNextEvent();

}
// Calculate a new stock price
symbol->Notify(shareprice);

// Share price increases by 25 cents
// on each iteration.
shareprice += .25;
...
// Sleep for 3 seconds.
Sleep(3000);

}

 262 Orbix Programmer’s Guide C++ Edition

}
cout << "server exiting" << endl;

}
catch (const CORBA::Exception& e) {

cerr << "Unexpected exception: " << e << endl;
return 1;

}
return 0;

}

This server creates an implementation object of type RegStockInfo,
and registers this object in the Naming Service using a Naming
Service Wrapper. It then sets the share price and notifies the
client of share price changes using the Notify() operation. This
calls the NotifyPriceChange() operation, which calls back to the
client.
The call to processNextEvent() is made in case a client wishes to
register or deregister. This call has a zero timeout value. This
means that the server is not blocked; the call returns immediatelly
if there is no pending event.
The server main thread must either sleep or do other processing
to avoid exiting.

Note: You should only invoke setServerName() from the server. If a client
invokes setServerName(), server operations on its callback object
will fail to connect.

Preventing Deadlock in a Callback Model
When an application invokes an IDL operation on an Orbix object,
by default, the caller is blocked until the operation returns.
Deadlock can occur in a single-threaded system where
applications can both invoke and implement operations.
For example, in the stock trading application, a simple deadlock
can occur if the server attempts to call back to the client in the
implementation of the function Register(). In this case, the client
is blocked on the call to Register() when the server invokes
NotifyPriceChange(). The NotifyPriceChange() call blocks the
server until the client reaches an event processing call and
handles the server request. Each application is blocked, pending
the return of the other, as shown in Figure 28 on page 263.
Unfortunately, it is not always possible to design a callback
architecture where simultaneous invocations between groups of
processes are guaranteed never to occur. However, there are
alternative approaches to preventing deadlock in an Orbix system.
The two primary approaches to preventing deadlock are as
follows:

• Using non-blocking operation invocations.
• Using a multi-threaded event processing model.
These approaches are discussed in the two subsections that
follow.

Orbix Programmer’s Guide C++ Edition 263

Using Non-Blocking Operation Invocations
There are two ways to invoke an IDL operation in an Orbix
application without blocking the caller:

• Declaring an IDL operation as oneway.
• Invoking the operation using the deferred synchronous

approach supported by the Dynamic Invocation Interface
(DII).

Figure 28: Deadlock in a Callback Model

Declaring an IDL Operation as Oneway
You can declare an IDL operation oneway only if it has no out, or
inout parameters and no return value. A oneway operation can only
raise an exception if a local error occurs before a call is
transmitted. Consequently, the delivery semantics for a oneway
request are “best-effort” only. This means that a caller can invoke
a oneway request and continue processing immediately, but is not
guaranteed that the request arrives at the server.
You can avoid deadlock, as shown in Figure 28, by declaring either
Register() or NotifyPriceChange() as a oneway operation. The IDL
for the stock trading example is as follows:

// IDL
interface StockInfoCB {

oneway void NotifyPriceChange (in String message);
};

interface RegStockInfo {
void Register (in StockInfoCB objRef);

};

In this case, the client’s call to NotifyPriceChange() returns
immediately, without waiting for the server’s implementation
function call to return. This allows the client to enter the Orbix
event processing call. At this point, the callback invocation from
the server is processed and routed to the client’s implementation
of Register(). When this function call returns, the server no longer
blocks and both applications wait again for incoming events.

Implementation
 for type

StockInfoCB

Proxy of type
RegStockInfo

Orbix Client

Proxy of type
StockInfoCB

Implementation
for type

RegStockInfo

Orbix Server

1.)

2.) Server blocked in

pending return of
Register()

NotifyPriceChange()

Client blocked
pending return of
Register()

 264 Orbix Programmer’s Guide C++ Edition

Note: Using oneway operations does not prevent deadlock in SSL-enabled
callback applications because establishing SSL connections
requires a response from the client. This problem does not occur
for multi-threaded SSL-enabled application. Refer to the
OrbixSSL C++ Programmer’s and Administrator’s Guide for
details.

Using the Deferred Synchronous Approach
You can achieve a similar functionality by using the Orbix DII
deferred synchronous approach to invoking operations. As
described in the chapter “Dynamic Invocation Interface”, the DII
allows an application to dynamically construct a function
invocation at runtime, by creating a CORBA::Request object. You
can then send the invocation to the target object using one of a
set of functions supported by the DII.
The chapter “Dynamic Skeleton Interface” describes how to call
the following functions on an orb to invoke an operation without
blocking the caller. If any of the following functions are used, the
caller can continue to process in parallel with the target
implementation function:

CORBA::Request::send_deferred()
CORBA::Request::send_oneway()
CORBA::ORB::send_multiple_requests_deferred()
CORBA::ORB::send_multiple_requests_oneway()

Operation results can be retrieved at a later point in the caller’s
processing, and avoid deadlock as if the operation call is a oneway
invocation.

Using Multiple Threads of Execution
An Orbix application can create multiple threads of execution. To
prevent deadlock, it can be useful to create a separate thread
dedicated to handling Orbix events. Refer to “Using Threads with
Orbix” for details of how to create threads using Orbix.
If another thread in this application becomes blocked while
invoking an operation on a remote object, the event processing
continues in parallel. The remote operation can then safely call
back to the multi-threaded application without causing deadlock.

Event Processing Functions
Orbix applications can use event processing functions that do not
implicitly initialize the application server name. The client can
safely call either the function processEvents() or the function
processNextEvent() on the ORB object.
These event processing functions are defined on Orbix class BOA. If
the client is to receive callbacks, the client’s ORB object must be
initialized as type BOA. The client call, for example, to,
processEvents() blocks while waiting for incoming Orbix events. If
the server invokes an operation on the StockInfoCB object
reference forwarded by the client, this call is processed by
processEvents() and routed to the correct function in the client's
implementation object.

Orbix Programmer’s Guide C++ Edition 265

Callbacks and Bidirectional Connections
If you use the Orbix protocol, the server sends its callbacks on the
same connection that the client initiated and used to make
requests on the server. This means that the client does not need
to accept an incoming connection.
Standard IIOP, on the other hand, requires that the client accept a
connection from the server to allow the callbacks to be sent. Orbix
introduces an optional extension to IIOP to allow the protocol to
use bidirectional connections. Bidirectional connections allow
clients to receive requests from servers on the connection that the
client originated to the server.
To configure your client to use bidirectional connections, call
CORBA::ORB::supportBidirectionalIIOP() with the on parameter set
to true. This is defined as follows:

CORBA::Boolean supportBidirectionalIIOP(
CORBA::Boolean on,
CORBA::Environment& IT_env =

CORBA::IT_chooseDefaultEnv());

By default, bidirectional IIOP is disabled. Refer to the Orbix
Progammer’s Reference C++ for more details on
supportBidirectionalIIOP().

 266 Orbix Programmer’s Guide C++ Edition

 Orbix Programmer’s Guide C++ Edition 267

Loading Objects at
Runtime
If a client invokes an IDL operation on an object that does not exist
in a server, Orbix returns an exception to the client. However, Orbix
also allows server programmers to create loaders that are
responsible for instantiating objects in response to client requests.
This chapter explains how to use loaders in Orbix, using an example
named BankPersistent. This example is based on the
BankExceptions example and builds on concepts already
introduced.

When an operation invocation arrives at a process, Orbix searches
for the target object in the object table for that process. By
default, if the object is not found, Orbix returns an exception to
the caller. However, if one or more loader objects are installed in
the process, these are informed about the object fault and allowed
to load the target object and resume the invocation transparently
to the caller. The loaders are C++ objects maintained in a chain,
and are tried in turn until one can load the object. If no loader can
load the object, an exception is returned to the caller.
Loaders are not just called when a “missing object” is the target of
a request; they are also called when an object reference enters an
address space. This can arise in the following ways:

• When a call to either _bind() or
CORBA::Orbix.string_to_object() is made from within a
process.

• For a server, as an in parameter.
• For a client (or a server making a function call), as an out or

inout parameter, or a return value.
The loaders are given an opportunity to respond to such object
faults by loading the target object of the reference into the
process address space. If no loader can load the referenced
object, Orbix constructs a proxy for the object.
Loaders can provide support for persistent objects. These are
long-lived objects stored on disk in the file system or in a
database.

Overview of Creating a Loader
To create a loader, first define a derived class of
CORBA::LoaderClass. You can then install a loader by creating a
(dynamic) instance of that new class.
CORBA::LoaderClass provides the following functions:

• load()

Orbix uses this function to inform a loader of an object fault.
The loader is given the marker of the missing object so that it
can identify the object to load.

 268 Orbix Programmer’s Guide C++ Edition

• save()

When a process terminates, its loader(s) can save the objects
in its address space. To enable this, Orbix makes an individual
call to save() for each object managed by that loader. The
save() function is also called when an object is destroyed.
You can also explicitly call save() using the
CORBA::Object::_save() function, defined on all Orbix objects.

• record() and rename()
These functions are used to enable naming of objects when
using loaders. Refer to “Loaders and Object Naming” on
page 270 for more details.

For full details of class CORBA::LoaderClass, refer to the Orbix
Programmer’s Reference C++ Edition.

Installing a Loader
You should remember three important points when creating a
loader object:

• A loader must be created dynamically using new() and should
not be deleted explicitly by application code. Otherwise an
error occurs when Orbix tries to delete the loader as the
process terminates.
Static creation of loaders is not supported because of the
possibility that C++ may destroy a loader before Orbix calls
that loader’s save() function. This would affect each of the
objects it controls.

• If a loader’s constructor uses either of the functions
CORBA::ORB::isBaseInterfaceOf() or
CORBA::ORB::baseInterfacesOf(), that loader must not be
created before the first line of the main function. This means
that the loader cannot be created directly at the file level or in
the constructor of an object created at the file level. Attempts
to break this rule could lead to calls on these functions before
their underlying data structures are initialized. This depends
on the C++ compiler used.

• The constructor of CORBA::LoaderClass (the base class of all
loaders) takes a CORBA::Boolean parameter that must be
non-zero if the new loader’s load() function is to be called by
Orbix. The default value of this parameter is false.

Specifying a Loader for an Object
Each object is associated with a loader object that is informed
when the object is named or renamed and when the object is to
be saved. If no loader is explicitly specified for an object, it is
associated with a default loader, implemented by Orbix. This
loader does not support persistence.
An object’s loader can be specified as the object is being created,
using either the TIE or the BOAImpl approach.

Orbix Programmer’s Guide C++ Edition 269

Using the BOAImpl Approach
In the BOAImpl approach, you can specify a loader for an object
by declaring the implementation class constructor to take a
pointer to the loader as a parameter. You should then call this
constructor, passing on this pointer as a parameter to set the
loader for the object. For example:

// C++
// In file bankexceptions_bankimpl.h

class BankExceptions_BankImpl : public virtual
BankExceptions::BankBOAImpl {
public:

// Constructor.
BankExceptions_BankImpl(

CORBA::LoaderClass* loader) throw();
...

}

// In file bankexceptions_bankimpl.cxx

// BankExceptions_BankImpl constructor call
BankExceptions_BankImpl::BankExceptions_BankImpl(CORBA:
:LoaderClass* loader) throw() :

m_accounts(
new BankExceptions::Account_var[MAX_ACCOUNTS]),
account_loader(loader)

...

You can obtain a pointer to an object’s loader by calling:
// C++
// In class CORBA::Object.
CORBA::LoaderClass* _loader(

CORBA::Environment& IT_env =
CORBA::IT_chooseDefaultEnv());

Using the TIE Approach
In the TIE approach, you can specify a loader for an object by
passing a pointer to the loader as a parameter to the TIE
constructor. For example,

// C++
// myLoader is a pointer to a loader object.
bank= new TIE_BankExceptions_Bank(

BankExceptions_BankImpl) (
new BankExceptions_BankImpl(),// Object pointer
myLoader); // Loader pointer

 270 Orbix Programmer’s Guide C++ Edition

Loaders and Object Naming
When supporting persistent objects, it is often important to control
the markers that are assigned to them. For example, you often
need to use an object’s marker as a key to search for its persistent
data. The format of these keys depend on how the loader
implements the persistence. Therefore, it is common for loaders to
choose object markers, or at least to be allowed to accept or
reject markers chosen by application level code.

Naming Objects
The two main ways to name objects when using loaders are as
follows:

• Using the constructor.
• Using _marker().

Naming Objects Using the Constructor
Using the BOAImpl approach, you can pass the marker name to
the BOAImpl constructor, for example:

// C++
// In file bankexceptions_accountimpl.cxx

// BankExceptions_AccountImpl constructor
BankExceptions_AccountImpl::BankExceptions_AccountImpl(

const char* name,
BankExceptions::CashAmount balance,
const char* marker,
CORBA::LoaderClass* loader) throw() :

BankExceptions::AccountBOAImpl(marker, loader),
m_balance(balance), m_name(name) {}

...

This constructor sets the marker as the account name and sets
the loader for the account object.

Naming Objects Using _marker()
CORBA::Object::_marker(const char*) sets the target object’s
marker name; for example:

bank->_marker(“mybank”);

Refer to the chapter “Making Objects Available in Orbix” for more
details on naming objects in Orbix.

record() and rename()
Regardless of whether _marker() or the constructor is used, Orbix
calls the object’s loader to confirm the chosen name, thereby
allowing the loader to override the choice. When using the
constructor, Orbix calls record(). When using _marker() Orbix calls
rename() because the object already exists.

Orbix Programmer’s Guide C++ Edition 271

Orbix executes the following algorithm when an object is created,
or an object’s existing marker is changed:

• If the specified marker (char* pointer) is not null, Orbix checks
whether the name is already in use within the process. If it is
not in use, the name is suggested to the loader (by calling
record() or rename()). The loader can accept the name by not
changing it. Alternatively, the loader can reject it by changing
it to a new name. If the loader changes the name, Orbix again
checks that the new name is not already in use within the
current process; if it is already in use, the object will not be
correctly registered.

• If no name is specified or if the specified name is already in
use within the current process, Orbix passes a nil char*
pointer to the loader (by calling record() or rename()) which
must then choose a name. Orbix then checks the chosen
name; the object will not be correctly registered if this chosen
name is already in use.

If necessary, both record() and rename() can raise an exception.
The implementations of rename() and record() in
CORBA::LoaderClass both return without changing the suggested
name. The implementation of load() and save() perform no
actions.

The Default Loader
The default loader is associated with all objects that are not
explicitly associated with a loader. This is an instance of
CORBA::NullLoaderClass, a derived class of CORBA::LoaderClass. This
class inherits load(), save() and rename() from CORBA::LoaderClass.
It implements record() so that if no marker name is suggested it
chooses one that is a string of decimal digits, different to any
already generated in the current process. The default loader does
not support persistence.

Loading Objects
When an object fault occurs, the load() function is called on each
loader in the chain until one successfully returns the address of
the object, or until they all return zero. Orbix cannot call the
correct loader directly, because the object does not yet exist in the
address space.
The load() function performs the following tasks:

• It determines if the required object is to be loaded by the
current loader.

• If the required object is to be loaded, it recreates the object
and assigns it the correct marker.

The load() function is passed the following information:

• The interface name.
• The target object’s marker.

 272 Orbix Programmer’s Guide C++ Edition

• A CORBA::Boolean value, set as follows depending on why the
object fault occurred:

• An Environment parameter.
The interface name of the missing object is determined as follows:

• If an object fault occurs because of the following call:
p = I1::_bind(<parameters>);

the interface name in load() is “I1”.
If the first parameter to the _bind() is a full object reference
string, Orbix returns an exception if the reference’s Interface
field is not I1 or a derived interface of I1.
Refer to the entry for CORBA::ORB::object_to_string() in the
Orbix Programmer’s Reference C++ Edition for details on
the string format of Orbix object references.

• If an object fault occurs during the following call:
p = CORBA::Orbix.string_to_object

(<full object reference string>);

the interface name in load() is extracted from the full object
reference string.

• If a loader is called because of a reference entering an
address space (as an in, out or inout parameter, a return
value, or as the target object of an operation call), the
interface name in load() is the interface name extracted from
the object reference.

Saving Objects
When a process terminates, Orbix iterates through all the objects
in its object table and calls the save() function on the loader
associated with each object. A loader may save the object to
persistent storage (either by calling a function on the object, or by
accessing the object’s data and writing this data itself).
The save() function is also called on the loader associated with an
object when that object is destroyed. You can also explicitly call an
object’s _save() function. The _save() function simply calls the
save() function on the object’s loader. You must call _save() in the
same address space as the target object—calling it in a client
process on a proxy has no effect.

1 Because of a call to _bind() or
CORBA::Orbix.string_to_object() by the process that
contains the loader.

0 Because of an object fault on the target object of an
incoming operation invocation, or on an in, out or
inout parameter or return value.

Orbix Programmer’s Guide C++ Edition 273

The reason parameter to save() indicates why this function has
been called. Its possible values are as follows:

If the reason is objectDeletion, you would normally code a
loader’s save() function to delete the persistent representation of
the object, as follows:

// C++
if (reason == CORBA::objectDeletion)

// Delete the persistent representation

On process termination, Orbix does not delete the objects
themselves as it iterates through its object table. Instead Orbix
calls save() on each object’s loader. It does, however, destroy the
loader objects after they have been used.

Writing a Loader
If you are writing a loader for a specific interface, you would
typically perform the following actions:

• Redefine the load() function to do the main work of the
loader—to load the object on demand. The object’s marker is
normally used to find the object in the persistent store.

• Redefine the save() function so that it saves its objects on
process termination, and also if _save() is called. This
normally deletes an object’s persistent storage if the save
reason is objectDeletion.

• Redefine the record() and rename() functions. Often, record()
chooses the marker for a new object; and rename() is written
to prevent an object’s marker being changed. However,
record() and rename() are sometimes not redefined in a simple
application, where the code that chooses markers at the
application level can be trusted to choose correct values.

Example Loader
This section presents a simple loader example named
BankPersistent. This example builds on the BankExceptions
example introduced in the chapter “Exception Handling in Orbix”.
The code used in this example is available in the
demos\common\bankpersistent directory of your Orbix installation.

processTermination The process is about to exit.
explicitCall The object’s _save() function has been

called.
objectDeletion CORBA::release() has been called on the

object, which previously had a reference
count of 1.

 274 Orbix Programmer’s Guide C++ Edition

The IDL Interface
This example uses the BankExceptions IDL, as follows:

// IDL
// In file bankexceptions.idl

module BankExceptions {
typedef float CashAmount;
interface Account;

interface Bank {
// User-defined exceptions.
exception CannotCreate { string reason; };
exception NoSuchAccount { string name; };

Account create_account (in string name)
raises (CannotCreate);

Account find_account (in string name)
raises (NoSuchAccount);

};

interface Account {
// User-defined exception.
exception InsufficientFunds { };

readonly attribute string name;
readonly attribute CashAmount balance;

void deposit (in CashAmount amount);
void withdraw (in CashAmount amount)

raises (InsufficientFunds);
};

};

Implementing the IDL
This example uses the BOAImpl approach. Interfaces Account and
Bank are implemented by classes BankExceptions_AccountImpl and
BankExceptions_BankImpl, respectively.
Instances of class BankExceptions_AccountImpl are made
persistent using a class named Loader inheriting from
CORBA::LoaderClass. A simple persistence mechanism is used, with
one file per account object. This section shows the implementation
of classes AccountImpl and BankImpl. The implementation of class
Loader is shown in “Coding the Loader” on page 278.

Orbix Programmer’s Guide C++ Edition 275

Class AccountImpl
Class AccountImpl is implemented as follows:

// C++
// In file bankexceptions_accountimpl.h
...
#include "bankexceptions.hh"

1 class BankExceptions_AccountImpl : public virtual
 BankExceptions::AccountBOAImpl

{
public:

// IDL operations
virtual void deposit(BankExceptions::CashAmount amount,

CORBA::Environment&) throw();

virtual void withdraw(BankExceptions::CashAmount amount,
CORBA::Environment&)

throw (BankExceptions::Account::InsufficientFunds);

// IDL attributes
virtual char* name(CORBA::Environment&) throw();

virtual void
name(const char* _new_value, CORBA::Environment&)
throw();

virtual BankExceptions::CashAmount
balance(CORBA::Environment&) throw();

// C++ operations
2 BankExceptions_AccountImpl (

const char* name,
BankExceptions::CashAmount balance,
const char* marker,
CORBA::LoaderClass* loader) throw ();

virtual ~BankExceptions_AccountImpl() throw();

3 static BankExceptions::Account_ptr LoadObject(
const char* marker, CORBA::LoaderClass*)
throw();

4 virtual void SaveObject(char* file_name) throw();

5 virtual void* _deref() { return this;}

protected:
CORBA::String_var m_name;
BankExceptions::CashAmount m_balance;

// The following are not implemented:
BankExceptions_AccountImpl(const

BankExceptions_AccountImpl&);
BankExceptions_AccountImpl& operator=(const

BankExceptions_AccountImpl&);
};

 276 Orbix Programmer’s Guide C++ Edition

This code is explained as follows:
1. BankExceptions_AccountImpl is the application implementation

class, inheriting from the IDL-generated BOAImpl class.
2. The BankExceptions_AccountImpl constructor sets the marker

as the account name and sets the loader for the account
object.

3. The LoadObject() function is called from the load() function of
the loader. This is passed the name of the file to load the
account from.

4. The SaveObject() function writes the member variables of an
account to a specified file.

5. The _deref() function casts from the Account interface class to
the implementation class. A reference to the implementation
class is required because you cannot call non-IDL operations
(in this case, SaveObject()) from an interface class. Refer to
“Casting from Interface to Implementation Class” on page 155
for more details.

LoadObject()
The LoadObject() function is called from the load() function of the
loader. This loads an Account object from a specified file.
LoadObject() can be coded as follows:

// C++
// In file bankexceptions_accountimpl.cxx

1 BankExceptions::Account_ptr
 BankExceptions_AccountImpl::LoadObject(

const char* marker, CORBA::LoaderClass* loader
) throw() {

char file_name[260];

2 char* envvar = getenv("IT_DEMO_ACCOUNTS_DIR");
if (envvar == NULL) {

envvar = "";
}
strcpy(file_name, envvar);
strcat(file_name, marker);
strcat(file_name, ".ser");

ifstream account_file(file_name);
if (account_file) {

char loaded_account_name[100];
float loaded_account_balance;
account_file >> loaded_account_name

 >> loaded_account_balance;

// Now recreate the object
BankExceptions::Account_var loaded_account

= new BankExceptions_AccountImpl(
loaded_account_name,
loaded_account_balance,

marker, loader);
return
BankExceptions::Account::_duplicate(loaded_account);

}

Orbix Programmer’s Guide C++ Edition 277

else {
cerr << "Error loading file "<< file_name

<< endl;
return 0;

}
}

This code is described as follows:
1. Loader::load() must call LoadObject() because load() does not

have access to the Account private data members.
2. Save the file to <IT_DEMO_ACCOUNTS_DIR><marker>.ser. By default

during make register, the makefile sets the
IT_DEMO_ACCOUNTS_DIR environment variable to the
bankpersistent demonstration directory.

SaveObject()
The SaveObject() function is called from the save() function of the
loader. This saves an Account object to a given file name when the
server exits. SaveObject() can be coded as follows:

// C++
// In file bankexceptions_bankimpl.cxx

void BankExceptions_AccountImpl::SaveObject(
char* file_name) throw()

{
ofstream account_file(file_name);
if (!account_file) {

cerr << "Cannot open file " << file_name
<< "for writing"<< endl;

cerr << "Object not saved" <<endl;
}

account_file << m_name << endl << m_balance
<< endl;

if (!account_file) {
cerr << "Cannot write to file " << file_name
<< endl;
cerr << "Object not saved" <<endl;

}
}

Loader::save() must call SaveObject() because save() does not
have access to the Account private data members

Class BankImpl
Class BankImpl is implemented as follows:

// C++
#include "bankexceptions.hh"
#include "it_demo_nsw.h"

class BankExceptions_BankImpl : public virtual
BankExceptions::BankBOAImpl
{
public:

// IDL operations
virtual BankExceptions::Account_ptr
create_account(const char* name,

CORBA::Environment&)
throw(BankExceptions::Bank::CannotCreate);

 278 Orbix Programmer’s Guide C++ Edition

virtual BankExceptions::Account_ptr
find_account(const char* name,

 CORBA::Environment&)
throw(BankExceptions::Bank::NoSuchAccount);

// C++ operations
BankExceptions_BankImpl(CORBA::LoaderClass* loader)
throw();
virtual ~BankExceptions_BankImpl() throw();

protected:
// Size of m_accounts array storing accounts.
static const int MAX_ACCOUNTS;
// An array of Account_var
BankExceptions::Account_var* m_accounts;
CORBA::LoaderClass* account_loader;

// The following are not implemented
BankExceptions_BankImpl(

const BankExceptions_BankImpl&);
BankExceptions_BankImpl& operator=(const

BankExceptions_BankImpl&);
};

Coding the Loader
A single loader object, of class Loader, is created in the server
main() function, and each Account object created is assigned this
loader. Each BankExceptions_BankImpl object holds a pointer to
the loader object to associate with each Account object when it is
created. Accounts are assigned an account name that acts as a
marker for the object. The ability to choose markers is an
important feature for persistence.
Bank objects are not associated with an application level loader.
These are implicitly associated with the Orbix default loader. The
server mainline creates a loader and a bank as follows:

// C++
// In file server.cxx.

// Loaders must be created dynamically.
Loader* accountloader = new Loader();
BankExceptions::Bank_var my_bank

= new BankExceptions_BankImpl(accountloader);

Orbix Programmer’s Guide C++ Edition 279

Class Loader
Class Loader is the loader class for Account objects. This inherits
from CORBA::LoaderClass. You can implement class Loader as
follows:

// C++
// In file bankpersistent_loader.h

class Loader : public CORBA::LoaderClass {

public:
Loader();
virtual ~Loader();

// Load object with given interface and marker.
virtual CORBA::Object_ptr load (

const char* object_interface,
const char* marker,
CORBA::Boolean isBind,
CORBA::Environment&);

// Save object.
virtual void save (

CORBA::Object*,
CORBA::saveReason reason,
CORBA::Environment&);

};

Class Loader redefines the load() and save() functions and inherits
rename() and record() from CORBA::LoaderClass.
The Loader member functions can be implemented as follows:

// C++
// In file bankpersistent_loader.cxx

// The Loader constructor registers the loader
// object as a loader.

1 Loader::Loader ()
: CORBA::LoaderClass(1)

{}

// Loader destructor
Loader::~Loader() {
}

2 // Loader::load()
CORBA::Object_ptr Loader::load (

const char* object_interface,
const char* marker,
CORBA::Boolean, CORBA::Environment&)

{
cout << "Loading object ... " <<endl

<< "interface: " << object_interface
<< endl << "marker: " << marker <<endl ;

return BankExceptions_AccountImpl::LoadObject(
marker, this);

}

 280 Orbix Programmer’s Guide C++ Edition

3 // Loader::save()
void Loader::save (

CORBA::Object_ptr obj,
CORBA::saveReason reason,
CORBA::Environment&)

{
if (reason == CORBA::explicitCall) {

char* file_name = new char[260];

cout<< "Saving object ... " <<endl
<< "marker/filename: "
<< obj->_marker () <<endl ;

BankExceptions::Account_var accountvar =
BankExceptions::Account::_narrow(obj);

4 BankExceptions_AccountImpl* account_to_save =
(BankExceptions_AccountImpl*)
 accountvar->_deref();

5 strcpy(file_name, getenv("IT_DEMO_ACCOUNTS_DIR"));
strcat(file_name, obj->_marker ());
strcat(file_name, ".ser");
account_to_save->SaveObject (file_name);

6 IT_Demo_NSW ns_wrapper;

// Set up object_name of the form
// BankPersistent.<accountname>
char object_name [100];
strcpy(object_name , "IT_Demo.BankPersistent.");
strcat(object_name, obj->_marker ());

ns_wrapper.setBehaviourOption(
IT_Demo_NSW::createMissingContexts);

ns_wrapper.setBehaviourOption(
IT_Demo_NSW::overwriteExistingObject);

try{
ns_wrapper.registerObject(

object_name, accountvar);
}
catch (const CORBA::Exception& e) {
cout << "Unexpected exception" << e << endl;

throw;
}

CORBA::release(obj);
delete [] file_name;
return;

}
}

This code is explained as follows:
1. The CORBA::LoaderClass() constructor takes a parameter

indicating whether the loader being created should be
included in the list of loaders tried when an object fault
occurs. By default, this value is false. The Loader() constructor
passes a value of 1 to the constructor. This indicates that
instances of Loader should be added to this list.

Orbix Programmer’s Guide C++ Edition 281

2. Orbix calls the Loader::load() function when an object fault
occurs on an account object associated with this loader. This
in turn calls BankExceptions_AccountImpl::LoadObject().
The AccountImpl::LoadObject() function assigns the correct
marker to the newly-created object. If it fails to do this,
subsequent calls on the same object result in further object
faults and calls to the Loader::load() function.
You could use the Loader::load() function to read the data
itself, rather than calling the static function
AccountImpl::LoadObject(). However, to construct the object,
load() would be dependent on there being a constructor on
class AccountImpl that takes all of an account’s state as
parameters. Because this is not the case for all classes, it is
safer to introduce a function such as LoadObject().
Equally, Loader::save() could access the account’s data and
write it out, rather than calling AccountImpl::SaveObject().
However, it would then be dependent on AccountImpl providing
access to all of its state.
In addition, defining LoadObject() and SaveObject() within
class AccountImpl provides a useful split of functionality
between the application level class, AccountImpl, and the
loader class.

3. Orbix calls the save() function after the _save() is called on the
Account object by the bankexceptions_bankimpl destructor. The
Account object is passed in the first parameter. This example
only handles the explicit call saveReason.

4. You must convert from CORBA::Object_ptr to an
implementation object because the SaveObject() function is
not an IDL operation.

5. Save the file to <IT_DEMO_ACCOUNTS_DIR> <marker>.ser. The
environment variable IT_DEMO_ACCOUNTS_DIR is set by the
makefile when make register is executed.

6. Bind the object in the Naming Service. The Account object
bound is not used by the client. Instead, it is used by future
server executions to check if an account exists in persistent
storage.

Loaders are Transparent to Clients
When using loaders, clients can make invocations in the normal
way. For example, a client that wishes to create a specific account
can execute the following:

// C++
// In file bankmenu.cxx

// Call create_account() and run an account menu
void BankMenu::do_create()

throw(CORBA::SystemException)
{

cout << "Enter account name: " << flush;
CORBA::String_var name =

IT_Demo_Menu::get_string();

try
{

 282 Orbix Programmer’s Guide C++ Edition

BankExceptions::Account_var account =
m_bank->create_account(name);

// Start a sub-menu with the returned account
// reference
AccountMenu sub_menu(account);
sub_menu.start();

}
catch (const BankExceptions::Bank::CannotCreate&

cant_create) {
cout << "Cannot create an account, reason: "

<< cant_create.reason << endl;
}

}

The load() function of the loader object is called if the target
account is not already present in the server. If the loader
recognizes the object, it handles the object fault by recreating the
object from the saved data. If the load request cannot be handled
by that loader, the default loader is tried next and this always
indicates that it cannot load the object. This finally results in a
CORBA::INV_OBJREF exception being returned to the caller.

 Orbix Programmer’s Guide C++ Edition 283

Using Opaque Types in
IDL
Orbix provides an extension to IDL that allows you to define opaque
data types. You can pass opaque data types by value through an
IDL definition without any interference from Orbix. This chapter
describes how to use these Orbix-specific data types.

In accordance with the CORBA standard, Orbix objects are passed
to and from IDL operations by reference. All such objects are
described by an interface defined in IDL. Objects supporting an
IDL interface are created in a server and object references rather
than actual copies of the objects are passed to clients.
This model is appropriate to the majority of applications that use
an ORB. However, in some circumstances, you may wish to pass
objects across a CORBA IDL interface by value rather than by
reference. Passing an object by value means that the internal
state of the object is included in an operation parameter or return
value and a copy of the object is constructed in the receiving
process.
In addition, there has been demand for a mechanism that allows
existing C++ objects to be passed across an IDL interface without
the necessity to retrospectively define IDL interfaces for these
objects. Such a mechanism allows the integration of IDL types
with non-IDL data types within a CORBA environment.
The opaque types mechanism described in this chapter addresses
both of these issues. A data type may be identified in IDL as
opaque by the introduction of a new keyword, opaque. This means
that nothing (except that it is a valid IDL type) is known at the IDL
level. A type defined to be opaque behaves like an interface type.
It can therefore be passed as a parameter or return value to an
IDL operation, or used as an attribute type or as a member of a
struct or exception. An opaque type is always passed to and from
IDL operations by value, and you must supply a C++ class which
implements the type. You must also provide marshalling functions
that define how the object’s state is packaged for transmission
across the network and unmarshalling functions that define how
the object’s state can be extracted by the receiving process.

Note: Because of the Orbix-specific nature of opaque data types, you
can only use opaque data types with Orbix.

Possible Alternative Solutions
 Software’s approach to passing objects between client and server
processes by value is to introduce a new type constructor at the
IDL level.
You can achieve similar results without extending the IDL
language. One solution to transmitting an object by value is to
define its state in an IDL struct definition. This solution is
unsatisfactory for two reasons: first, you must separate state
information from interface information; second, in the IDL
definitions, you should make explicit information that properly
belongs to the implementation.

 284 Orbix Programmer’s Guide C++ Edition

A second solution is to pass an object’s state information in binary
form as a sequence<octet>. This mechanism does not make explicit
the type of the information transmitted, so it does not violate the
object’s privacy. However, no marshalling or unmarshalling is
performed on a sequence<octet>, so byte-swapping and other
data-conversion becomes your responsibility. Furthermore, in
stripping the interface of type information, the ORB assumes the
role of an RPC package.

Using Opaque Types
This section demonstrates how to use the opaque mechanism to
pass a user-defined type by value in IDL operations.

IDL Definitions
The example used defines an IDL interface Calendar that makes
use of the opaque type Date. The IDL definitions are as follows:

// IDL
// In, for example, file calendar.idl.
opaque Date;

interface Calendar {
// Today’s date:
readonly attribute Date today;

// How long from the given date until today ?
unsigned long daysSince(in Date d);

};

The opaque data type is introduced by the keyword opaque. An
opaque type can be defined at file-level scope or within a module,
at the same level as an interface definition. Like a typedef
definition, opaque introduces a new IDL type. In the example, the
new Date type is used as an attribute type and as an in parameter.
You can define the IDL definitions as follows:

idl -K calendar.idl

opaque is not a keyword in CORBA IDL, so the -K IDL compiler
switch is used to indicate that support for opaque types is
required.

Mapping of Opaque Types to C++
An opaque type declaration maps to an include directive in the
C++ header file generated by the IDL compiler. For example, the
declaration:

// IDL
// In calender.idl.
opaque Date;

maps to:
// C++
// In calender.hh.
#include <calenderO.h>;

Orbix Programmer’s Guide C++ Edition 285

In addition, the IDL compiler generates three operator prototypes
for the opaque data type as follows:

// C++
// In calender.hh.
CORBA::Request& operator<<(

CORBA::Request&, const Date*);
CORBA::Request& operator<<(

CORBA::Request&, Date*&);
CORBA::Request& operator>>(

CORBA::Request&, Date*&);

To use the opaque type Date, you must define a C++ class Date in
file calenderO.h and implement these operators. The operator
implementations specify how to marshal and unmarshal the
opaque type. These specify how to stream the opaque object’s
state into and out of a CORBA::Request object so that an object
defined to be opaque can be transmitted over a network. Thus,
the mapping to C++ for the IDL definitions described in “IDL
Definitions” on page 284 is as follows:

// C++
// In calender.hh.
#include <calenderO.h>;

// This operator is now deprecated refer to page 288.
CORBA::Request& operator<<(

CORBA::Request&, const Date*);
CORBA::Request& operator<<(

CORBA::Request&, Date*&);
CORBA::Request& operator>>(

CORBA::Request&, Date*&);
...
class Calendar: public virtual CORBA::Object {
public:

...
// Details omitted.
virtual Date* today(

CORBA::Environment& IT_env =
CORBA::IT_chooseDefaultEnv());

virtual CORBA::ULong daysSince(
const Date* d,
CORBA::Environment& IT_env =

CORBA::IT_chooseDefaultEnv());
};

Mapping for Operation Parameters
The mapping for opaque types used as operation parameters and
return values is shown in the following table:

IDL in out inout return
T T* T*& T*& T*

 286 Orbix Programmer’s Guide C++ Edition

Memory Management Rules
The memory management rules for opaque types follow a strict
pattern of their own to allow as flexible use of opaques as
possible. These rules are outlined as follows:

in parameters

inout parameters

out parameters and return values

Client side You need to allocate storage and provide an
appropriate value.
You should not pass an uninitialized pointer.
You must free the storage when it is no longer
required, using the C++ delete operator.

Server side Orbix makes the parameter available for the duration
of the operation call.
You must copy the parameter if it is to be retained
beyond the lifetime of the operation call.

Client side You must allocate storage and provide an appropriate
value.
You should not pass an uninitialized pointer.
You must free the storage when it is no longer
required, using the C++ delete operator.

Server side Orbix makes the parameter available for the duration
of the operation call.
You can change the value passed in. If the value
passed in is changed, the old value must be freed.
The value is not deallocated automatically by Orbix
when the operation completes.

Client side In line with the rules for CORBA types, you cannot
modify the value passed back in an out parameter. A
copy of the value passed back can, of course, be
modified.
You must free the storage associated with an out
parameter, when it is no longer required, using the
C++ delete operator.

Server side You must allocate storage and perform initialization.
The value is not deallocated automatically by Orbix
when the operation completes.
You should not return an uninitialized pointer.

Orbix Programmer’s Guide C++ Edition 287

Implementing an Opaque Type
You must provide an implementation class for the opaque type.
This class must be defined in the file included in the generated.hh
file.
A simple class definition for the Date class is as follows:

// C++
// In file calenderO.h.
#include <iostream.h>
...

class Date {
friend CORBA::Request& operator<<(

CORBA::Request&, const Date*);
friend CORBA::Request& operator<<(

CORBA::Request&, Date*&);
friend CORBA::Request& operator>>(

CORBA::Request&, Date*&);
protected:

short day, month, year;
public:

Date();
Date(short d, short m, short y);
void print();

};

This class could be implemented as follows:
// C++
// In, for example, date.cc.
#include <iostream.h>
#include “calendar.hh”
#include “date.h”
...

Date::Date() {
// Construct an object containing today’s date
// (code not shown).

}

Date::Date(short d, short m, short yr) {
day = d;
month = m;
year = yr;

}

void Date::print() {
cout << day << “/” << month << “/” << year;

}

To complete the implementation, you must implement the
marhsalling operators as follows:

• The insertion operator, operator<<(), marshals the opaque
object’s state into a CORBA::Request for transmission to a
remote process.
(Class CORBA::Request is used to package an operation request
and to return out and inout parameters and results. For more
details, see the chapter “Dynamic Invocation Interface” in this

 288 Orbix Programmer’s Guide C++ Edition

guide, and the entry for CORBA::Request in the Orbix
Programmer’s Reference C++ Edition.)
On the client side, the const version of this operator is used to
marshal in parameters and the non-const version is used to
marshal inout parameters. On the server side, the (non-const
version of the) operator is used to marshal inout and out
parameters and operation results.

• The extraction operator, operator>>(), unmarshals an opaque
object that is received from a remote process in a
CORBA::Request.
On the client side, this operator is used to unmarshal inout
and out parameters and results. On the server side, it is used
to unmarshal in and inout parameters.

Note: Recent revisions in the operator prototypes for opaques have
deprecated this operator. These revisions add more flexibility in
terms of memory management. However, this operator is still
used here for backwards compatibility.
The following is an implementation of these operators for the Date
class:

// C++
// Marshalling operator for (client side)
// in parameters.
CORBA::Request& operator<<(

CORBA::Request& r, const Date* d) {
if (d) {

r << d->day;
r << d->month;
r << d->year;

} else {
r << 0;
r << 0;
r << 0;

}
return r;

}

// Marshalling operator for (client and
// server side) inout parameters and (server
// side) out parameters.
CORBA::Request& operator<<(

CORBA::Request& r, Date*& d) {
if (d) {

r << d->day;
r << d->month;
r << d->year;

} else {
r << 0;
r << 0;
r << 0;

}
// To avoid memory leak of inout and out
// parameters:
delete d;

return r;
}

Orbix Programmer’s Guide C++ Edition 289

// Unmarshalling operator for (client side) inout
// and out parameters and results and for (server
// side) in and inout parameters.
CORBA::Request& operator>>(

CORBA::Request& r, Date*& d) {
d = new Date;
r >> d->day;
r >> d->month;
r >> d->year;
return r;

}
The order in which class Date’s members are inserted into the
CORBA::Request is irrelevant. However, the unmarshalling operator
must extract the members in the same order as the order in which
they are inserted.
Because a nil (zero) pointer might be passed in a parameter
expecting an opaque type, the insertion operators should ensure
that appropriate zero values for each member are inserted into
the CORBA::Request. If required to handle marshalling errors, the
insertion and extraction operators for an opaque type may raise a
CORBA::MARSHAL system exception.

Note: The non-const version of the marshalling operator, operator<<(),
should free the memory allocated to the opaque object (allocated
in operator>>()) in order to avoid a memory leak for inout and out
parameters on the server side.

 290 Orbix Programmer’s Guide C++ Edition

Implementing an Interface that uses an Opaque Type
The implementation of the Calendar interface is straightforward;
the code is shown below.

// C++
#include “calendar.hh”
#include “date.h”

class CalendarImpl : public CalendarBOAImpl {
protected:

Date* day;
public:

CalendarImpl();
virtual Date* today(

CORBA::Environment& IT_env =
CORBA::IT_chooseDefaultEnv());

virtual CORBA::ULong daysSince(
const Date* d,
CORBA::Environment& IT_env =

CORBA::IT_chooseDefaultEnv());
};

CalendarImpl::CalendarImpl() {
day = 0;

}

Date* CalendarImpl::today(
CORBA::Environment&) {

Date* d = new Date;
return d;

}

CORBA::ULong CalendarImpl::daysSince(
const Date* d, CORBA::Environment&){

// Calculate number of days between this
// date and date in d (code not shown).

}

 Orbix Programmer’s Guide C++ Edition 291

Transforming Requests
This chapter describes how you can use transformers to modify data
buffers containing Orbix operation call information, immediately
before and after transmission across the network. Transformers are
an Orbix-specific feature.

In Orbix, an operation invocation or an operation reply is
transmitted between a client and a server in a CORBA::Request
object. Using the Dynamic Invocation Interface, a CORBA::Request
is explicitly created while a static invocation results in the implicit
creation of a CORBA::Request object.
This chapter describes how you can modify a CORBA::Request’s data
buffer, allowing a client or server process to specify what
modifications to the buffer should occur when requests or replies
are transmitted to other processes. The ability to modify this data
directly preceding its transmission, or directly subsequent to its
reception means that you can add additional information to the
data stream; for example, information identifying the participants
in the communication. The data stream may be encrypted for
security purposes and so on. The process of modifying a
CORBA::Request’s data buffer is known as transforming the data
buffer.
The functionality provided by Request transformation is at a lower
level than that provided by filters, as described in the chapter
“Filtering Operation Calls” on page 233. Transforming requests
allows access to the actual data buffer transmitted in a Request.

Note: Because of the Orbix-specific nature of transformers, you can only
use transformers with Orbix.

Transforming Request Data
Transformation of a CORBA::Request’s data buffer is performed by a
transformer object. To obtain a new transformer object do the
following:
1. Define a class that inherits from the class

CORBA::IT_reqTransformer.
2. Create an instance of this class.
3. Register this instance with Orbix.

You can register the transformer object so that it performs
transformations on all communications to and from the
process that contains the transformer object. Alternatively,
you can register the transformer so that transformations are
performed only on communications to and from a particular
server on a particular host that contains the transformer.

Because transformations are applied when an operation invocation
leaves or arrives at an address space, no transformations are
applied when the caller and invoked object are collocated.

 292 Orbix Programmer’s Guide C++ Edition

The IT_reqTransformer Class
The CORBA::IT_reqTransformer class defines the interface to
transformer objects. This class is defined as follows:

// C++
// In class CORBA.
class IT_reqTransformer {
protected:

const char* m_remote_host;
public:

virtual CORBA::Boolean transform(
CORBA::Octet*& data,
CORBA::ULong& actual_sz,
CORBA::ULong& allocd_sz,
CORBA::Boolean send,
CORBA::Boolean is_first);

virtual void free_buf(
unsigned char* data,
CORBA::ULong actual_sz,
CORBA::ULong allocd_sz);

virtual const char* transform_error();

void setRemoteHost(const char* c);
};

A class derived from IT_reqTransformer can access a
CORBA::Request’s data and can therefore manipulate or transform
the data as required. The derived class must, at least, override the
transform() function. Refer to the Orbix Programmer’s
Reference C++ Edition for full details on the IT_reqTransformer
class.
The transform() function is called by Orbix immediately before
transmitting the data in a Request from an address space and
immediately subsequent to receiving a Request from another
address space. The derived class can allocate new storage to
handle any alteration in the data size caused by the
transformation. If the derived class alters the method by which
the data is stored in buffers, you may also need to override the
default free_buf() operation to handle the release of this data.
Before calling the transform() function, Orbix records the name of
the host that initiates a request in the member m_remote_host.
The transform() function may indicate that a TRANSFORM_ERR system
exception should be raised by Orbix by returning 0 (false) from
transform().
A derived class may implement the transform_error() function to
return a string containing suitable error text. The string returned
by this function forms part of the error string output by the
operator:

// C++
friend ostream& operator<<(

ostream&, CORBA::SystemException*);

when the TRANSFORM_ERR exception is caught. You must free the
string returned by transform_error(), using CORBA::string_free().

Orbix Programmer’s Guide C++ Edition 293

Registering a Transformer
Orbix provides two functions to register a transformer object (an
instance of CORBA::IT_reqTransformer). You can call both on the
CORBA::Orbix object.
1. The function:

// C++
// In class CORBA::ORB.
CORBA::IT_reqTransformer* setMyReqTransformer(

CORBA::IT_reqTransformer* transformer,
CORBA::Environment& IT_env =

CORBA::IT_chooseDefaultEnv())

registers a transformer object as the default transformer for
all Requests entering and leaving an address space.

2. The function:
// C++
// In class CORBA::ORB.
void setReqTransformer(

CORBA::IT_reqTransformer* transformer,
const char* server,
const char* host = 0,
CORBA::Environment& IT_env =

CORBA::IT_chooseDefaultEnv())

registers a transformer object for all Requests destined for a
specific server and host and for all Requests received from a
specific server and host. This function can be called more than
once to register different server/host pairs.

A transformer registered using setReqTransformer() overrides any
default transformer registered with setMyReqTransformer().

Note: At most one transformation is applied to any Request—the default
transformation registered with setMyReqTransformer() or overriding
specific transformation registered with setReqTransformer().

 294 Orbix Programmer’s Guide C++ Edition

An Example Transformer
This section presents a simple example of a transformer that adds
the name of the sending host to a Request’s buffer when sending a
Request out of a process. It also removes the host name from a
Request’s buffer when the process receives a Request object that
contains a operation reply.
The transformer is implemented by class Transformer defined as
follows:

// C++
#include <CORBA.h>
#include <iostream.h>

#define ERR_STR “Transformer: bad transformation”

class Transformer :
public CORBA::IT_reqTransformer {

public:
virtual CORBA::Boolean transform(

CORBA::Octet*& data,
CORBA::ULong& actual_sz,
CORBA::ULong& allocd_sz,
CORBA::Boolean send,
CORBA::Boolean first);

virtual const char* transform_error();
};

extern Transformer* transformer;

The Transform class overrides the functions transform() and
transform_error() only. These are implemented as follows.
// C++
...
unsigned char Transformer::transform(

CORBA::Octet*& data,
CORBA::ULong& actual_sz,
CORBA::ULong& allocd_sz,
CORBA::Boolean send,
CORBA::Boolean first) {

if (!first)
return 1;

unsigned long i;
// m_remote_host is set by Orbix prior
// to invoking transform().
if (send) { // Sending.

unsigned long shift = strlen(m_remote_host);
unsigned char* old_data = data;

if ((shift + actual_sz) > allocd_sz) {
data = new unsigned char [shift + actual_sz];

}

for (i = shift + actual_sz -1; (i >= shift); i--)
data [i] = old_data [i - shift];

Orbix Programmer’s Guide C++ Edition 295

for (i = 0; i < shift; i++)
data [i] = m_remote_host [i];

actual_sz += shift;

if (data != old_data)
delete[] old_data;

}
else {

unsigned long shift =
strlen(CORBA::Orbix.myHost());

char* this_host = new char[shift];
this_host = strdup(CORBA::Orbix.myHost());
for (i = 0; i < shift; i++)

if (data [i] != this_host [i])
return 0;

for (i = 0; i < actual_sz - shift ; i++)
data [i] = data [i + shift];

actual_sz -= shift;
delete this_host;

}

cout << "---USER Transform returning"
<< " actual_sz: " << actual_sz
<< " allocd_sz: " << allocd_sz
<< " send: " << (int)send << endl;

return 1;

const char* Transformer::transform_error() {
return ERR_STR;

}

// Create a Transformer:
Transformer* transformer = new Transformer;

The first parameter to the function transform() indicates whether
the buffer in data is the first in a sequence of buffers. In Orbix, a
Request object being sent from an address space can contain more
than one data buffer while a Request object received into an
address space always contains just one buffer. In this example,
the first buffer is the only one modified by transform(). The send
parameter indicates whether the Request is incoming or outgoing.
The transform() function uses the send parameter to determine
whether to add or remove the host name to the Request’s buffer.

Registering the Transformer
Calling the following on the ORB registers this transformer as the
default transformer for a client or server process:

setMyReqTransformer(transformer);

To register a transformer that acts on Requests going to or
received from a specific server on a specific host, make the
following call on the ORB:

setReqTransformer(
transformer, “myServer”, “alpha”);

 296 Orbix Programmer’s Guide C++ Edition

 Orbix Programmer’s Guide C++ Edition 297

Using Threads with
Orbix
This chapter presents details and explains the benefits of
multi-threaded clients and servers, and the mechanisms available
for multi-threaded programming.

Normally, Orbix client and server programs contain one thread
that starts executing at the beginning of the program and
continues until the program terminates. Many modern operating
systems allow a process to create lightweight threads, with each
thread having its own set of CPU registers and its own stack. Each
thread is independently scheduled by the operating system, so it
can run in parallel with the other threads in its process. The
mechanisms for creating and controlling threads differ between
operating systems, but the underlying concepts are common. The
POSIX standard is supported by most UNIX and OpenVMS
systems.
The programming steps required to create threads in Orbix are
straightforward. In addition, you can program many different
models of thread support.
The example code in this chapter uses POSIX-compliant threads to
illustrate these concepts. The Orbix3.0\demo directory of your Orbix
installation provides analogous examples for the threads package
available on your operating system.

Benefits of Multi-threaded Clients and Servers
Both clients and servers can benefit from multi-threading.
However, the advantages of multi-threading are more apparent
for servers than for clients.

Multi-threaded Servers
For some servers, it is satisfactory to accept one request at a time
and to process each request to completion before accepting the
next. Where parallelism is not required by an application, there is
little point in making such a server multi-threaded. However,
some servers would offer a better service to their clients if they
processed a number of requests in parallel. Parallelism of such
requests may be possible because a set of clients can concurrently
use different objects in the same server, or because some of the
objects in the server can be used concurrently by a number of
clients.
Some operations can take a significant amount of time to execute,
because they are compute-bound, because they perform a large
number of I/O operations, or because they make invocations on
remote objects. If a server can execute only one such operation at
a time, clients suffer because of long latencies before their
requests can be started. The main benefits of multi-threading are
that the latency of requests can be reduced, and the number of

 298 Orbix Programmer’s Guide C++ Edition

requests that a server can handle over a given period of time can
be higher. Multi-threading also enables you to take advantage of
multi-processor machines.
The simplest threading model is where a thread is created
automatically for each incoming operation/attribute request. Each
thread executes the code for the operation/attribute being called,
executes the low level code that sends the reply to the caller, and
then terminates. Any number of such threads can run concurrently
in a server, and they can use normal concurrency control
techniques to prevent corruption of the server’s data. You must
program this protection at two levels: the underlying ORB library
must be thread-safe so that concurrent threads do not corrupt
internal variables and tables; and the application level must be
made thread- safe by the programmer.
Threads are not without their costs, however. Firstly, it may be
more efficient to avoid creating a thread to execute a very simple
operation. The overhead of creating a thread may be greater than
the potential benefit of parallelism. Secondly, you must ensure
that the application code is thread-safe.
Specifically, Solaris, Windows NT and POSIX threads are
pre-emptive. This means that they can be interrupted at any time
and delayed while other threads execute. Nevertheless, the
benefits frequently outweigh the costs and multi-threaded servers
are considered essential for many applications.
A benefit of using Orbix is that the actual creation of threads in a
server is very simple, and therefore adds little or no cost for the
programmer.
You can also explicitly create threads in servers, using the
threading facilities of the underlying operating system. You can do
this so that a remote call can be made without blocking the server.
You can also do this within the code that implements an operation
or attribute, so that some complex algorithm can be parallelized
and performed by a number of threads. These threads can be in
addition to those created implicitly to handle each request.

Multi-threaded Clients
Multi-threaded clients can also be useful. A client can create a
thread that makes a remote operation call, rather than making
that remote call directly. The result is that the thread that makes
the call blocks until the operation call has completed, but the rest
of the client can continue in parallel. “Comparison with
Non-Blocking Calls” on page 299 compares this approach with the
use of non-blocking calls made by single-threaded clients. Another
advantage of a multi-threaded client is that it can receive
incoming operation requests to its objects without having to poll
for communication events; for example, it can receive callbacks
from a server.
Clients must create threads explicitly, using the threading facilities
of the underlying operating system; this is not difficult to perform.
Naturally, you must code multi-threaded clients to ensure they are
thread-safe, using some concurrency control mechanism. For

Orbix Programmer’s Guide C++ Edition 299

servers, the difficulty of doing this depends on the complexity of
the data, the complexity of the concurrency control rules, and the
form of concurrency control mechanism being used.

Comparison with Non-Blocking Calls
You can gain some of the benefits of using multiple threads by
making operation calls that do not block the caller. IDL oneway calls
do not block their caller, and you can make normal calls without
blocking by using the DII and the send_deferred() function on a
Request. Non-blocking calls can be made within a client or a
server.
However, there is little to recommend in using non-blocking calls.
Using threads is easier and more powerful than using non-blocking
calls:

• Easier
Threads provide an easier means of gaining concurrency.
Consider a client that wishes to carry out a number of actions,
each requiring a number of two-way operation requests. One
way to do this is to make the first two-way operation call
associated with each action without blocking, and to process
the results in whatever order they arrive. In this way, at any
time, there is one outstanding (non-blocking) operation call
for each action. Once a reply arrives for the current operation
call for an action, the next call for that action can be made.
The difficulty here is that the client must loop to accept each
reply, and it must maintain a table to indicate the next
request to make for each action. This is complex and
error-prone.
In contrast, the equivalent coding using threads is very
simple. A thread can be created for each action, and that
action can make normal blocking calls for each request that is
to be made in turn.

• More powerful
The real benefit of multi-threaded servers is the ability to
handle calls from a number of clients concurrently. This
cannot be gained using non-blocking calls.
Consider an attempt to do so. A single-threaded server can
accept an incoming operation request, and during the
processing of this request it can use a non-blocking call to
make a request on a remote object. Naturally, the server does
not block while the remote object is processing the call, but it
cannot accept another incoming operation request from the
same or another client.

The only way that it can accept another operation call is to
complete the first call, the call on whose behalf it has made
the non-blocking remote call (do this by exiting the C++
member function that implements the operation). The server
cannot accept another call until it has completed the current
one.

Nevertheless, non-blocking calls can sometimes be useful. Firstly,
some operating systems do not support threads; and secondly,
although threads may be available, it might not be possible to use

 300 Orbix Programmer’s Guide C++ Edition

them because an application is using a library that is not
thread-safe. Finally, for very simple uses in clients, the complexity
of using non-blocking calls is no greater than that of using
threads. Nevertheless, the real benefits of multi-threaded servers
is the ability to handle calls from different clients concurrently.
This cannot be gained using non-blocking calls.

Thread Programming in Orbix
Orbix provides a thread-safe version of the Orbix libraries for use
with the underlying operating system’s threads package. At
appropriate points within the Orbix libraries, locking code has
been added to ensure that the Orbix internal data structures are
correctly managed in a pre-emptive threading environment. The
Orbix libraries are thread-safe.
In addition to the locking code, the client and server library both
create and use threads internally. These threads are not exposed
to application programmers, and execute code within the library
only.

Note: All existing application code written for the non-threaded Orbix
libraries continues to execute correctly if linked with the threaded
Orbix libraries. In addition, an Orbix programmer can choose to
ignore threads.
Although the threaded Orbix libraries create some threads
internally, by default there is only one thread to handle incoming
requests: for example, a server only handles one call at a time. To
create a thread per incoming request, you must install a filter that
creates these threads. Refer to the chapter “Filtering Operation
Calls” for details. This code is supplied, and can be used without
modification. It should be viewed as code that extends the ORB,
rather than as application level code.
You can use application level threads within a client application, or
within a server application, or within both. A non-threaded client
can interact with a threaded server, and vice-versa. Naturally,
applications written using the standard (non thread-safe) Orbix
product can also interact with threaded applications. Server
applications can choose when to create threads, including in
response to incoming operation requests.

Compiling Orbix Applications
This section describes the compilation switches required when
building Orbix applications on Windows and UNIX platforms.

Windows Platforms
The Orbix libraries are built with the /MD switch, which links them
with the MSVCRT multi-threaded runtime libraries. You should
also build your applications using the /MD switch.

UNIX Platforms
To build an application using the thread-safe version of the Orbix
libraries, it is important to compile with -D_REENTRANT. In fact, this
is true for most threaded applications. It ensures that the C++
compiler generates re-entrant code correctly, and also selects the
correct header file options:

Orbix Programmer’s Guide C++ Edition 301

% CC -D_REENTRANT foo.cc

Your link line should link with the mt form of the Orbix libraries,
and with the appropriate library for the threads package used. The
details vary depending on the particular platform, so you should
consult a Makefile provided in the Orbix3.0/demos directory for
exact details.
UNIX examples are as follows:

Solaris
% CC -D_REENTRANT -o foo foo.cc \

-lorbixmt -mt -lnsl -lsocket

POSIX-Compliant
% CC -D_REENTRANT -o foo foo.cc \

-lorbixmt -threads -lrt

Operating System Support for Creating Threads
Before discussing the filter code that creates threads, this section
shows the code that is required on some operating systems to
create a thread.

Windows
// C++
#include <process.h>
HANDLE CreateThread(

LPSECURITY_ATTRIBUTES lpsa,
DWORD cbStack,
LPTHREAD_START_ROUTINE lpStartAddr,
LPVOID lpbThreadParm,
DWORD fdwCreate,
LPDWORD lpIDThread);

Solaris
// C++
#include <thread.h>
thr_create (void* stack_base, size_t stack_size,

void*(start_routine)(void*), void* arg,
long flags, thread_t* new_thread)

POSIX-Compliant
// C++
#include <pthread.h>
int pthread_create(pthread_t* tid,

pthread_attr_t*,
void*(start_routine)(void*), void* arg);

If a client or server creates a thread to make a remote request, it
can wait for that thread to terminate using one of the following
calls:

Windows WaitForSingleObject()

Solaris thr_join()

POSIX pthread_join()

 302 Orbix Programmer’s Guide C++ Edition

Creating a Thread to Handle a Request
As explained in the chapter “Filtering Operation Calls”, a
per-process filter’s inRequestPreMarshal() function can create a
thread to handle an incoming request. The inRequestPreMarshal()
function should use an underlying threads package—for example,
the Solaris threads package—to create a thread, and the thread
should then handle the request, usually by instructing Orbix to
send the invocation to the target object.
The inRequestPreMarshal() function should return -1 to Orbix to
indicate that it has created a thread that handles the call. Unlike
the other filter points, inRequestPreMarshal() has a return type int.
This allows it to return 1 to indicate that the request is accepted
and should be processed as normal; return 0 to indicate that the
request should be rejected; or return -1 to indicate that the call is
being handled by a separate thread.
The new filter class should inherit from CORBA::ThreadFilter, which
in turn derives from CORBA::Filter. The code below is the example
thread filter that creates a thread per request. The version shown
uses the Solaris threading facility.

// C++
class CreatesThread : public CORBA::ThreadFilter {
public:

// Only consider one monitor point here.
virtual int inRequestPreMarshal

(CORBA::Request&,
 CORBA::Environment&);

};

// Create the required single instance.
CreatesThread threadDispatcher;

// Define start function for new thread
static void* startThread(void* vp) {

// Tell Orbix to resume processing a request.
CORBA::Orbix.continueThreadDispatch

(*(CORBA::Request*)vp);
return 0;

}

// Implementation of inRequestPreMarshal().
int CreatesThread::inRequestPreMarshal

(CORBA::Request& r,
 CORBA::Environment&) {

// Create a thread using the threads-package:
// The thread entry point is ‘startThread’
thread_t tid;
thr_create(NULL, 0, startThread, (void*)&r,
 THR_DETATCHED,&

tid);
// Indicate to Orbix that a thread was created.
return -1;

}

Orbix Programmer’s Guide C++ Edition 303

CreatesThread::inRequestPreMarshal() is the first part of this code
to execute. It uses the Solaris function thr_create() to create the
new thread, specifying that the new thread is to execute the
function startThread(). The value -1 is returned to inform Orbix
that a new thread has been created.
The role of startThread() is to instruct Orbix to continue to process
the operation or attribute request within the new thread. It does
this by calling the low-level Orbix function
continueThreadDispatch(), passing it the Request variable that
represents the request being made. The request is passed to
startThread() as parameter vp, which although declared to be of
type void*, is actually of type CORBA::Request*. The rules of the
Solaris threading package dictate that the function that a thread is
to execute (startThread() in this case) must take a void*
parameter—passed as the fourth parameter to thr_create().

Concurrency Control
Although Orbix contains sufficient locks to ensure the
thread-safety of its internal variables and tables, and the low-level
variables associated with each Orbix object, you must add
appropriate synchronization code to the shared data structures
and objects created in an application. Refer to the appropriate
system programmer’s manual to understand how to do this for a
particular threads package.

Note: Orbix does not synchronize access to application level objects and
application data structures.
Thus, for example, if a server programmer creates a thread filter
as described in “Creating a Thread to Handle a Request” on
page 302, it is possible that several application level threads may
try to access the same application object in the server. In
particular, if clients simultaneously request the server to invoke
IDL operations on the same target object within the server, that
object will be subject to concurrent access. You must thus take
care that access to the state of the target application object is
synchronized as appropriate, by using locking code built using the
underlying threads package. For example:

// C++
class Foo {

short m_counter; // Some state.
mutex_t* m_lock; // Mutex lock for state.

public:
Foo() {

m_counter = 0;
mutex_init(&m_lock, USYNC_THREAD, NULL);

}
void increment() {

mutex_lock(&m_lock);
m_counter++;
mutex_unlock(&m_lock);

}
};

Each CORBA::Object in Orbix includes an internal read/write lock
used by Orbix to synchronize concurrent access to the
Orbix-specific state of that object.

 304 Orbix Programmer’s Guide C++ Edition

A read lock is acquired, for example, if a thread calls the
CORBA::Object::_refCount() member function. Similarly, a write
lock is acquired for the duration of the _duplicate() static member
function on each IDL C++ class. However this read/write lock is
not acquired when any application specific state of that object is
accessed. For example, if an implementation class derives from a
BOAImpl class that in turn derives indirectly from CORBA::Object
adds member variables, or if a smart proxy does likewise, this
additional state is not protected by the internal CORBA::Object
read/write lock.
In principle, the internal CORBA::Object read/write lock could be
made available to derived BOAImpl classes. In practice, however,
there is a possibility that deadlock situations might occur because
of interactions between the internal use of this lock in Orbix, and
the use made by a programmer in a derived class. For this reason,
access to the internal lock is discouraged.

Models of Thread Support
In addition to the thread per request model described in “Creating
a Thread to Handle a Request” on page 302, a derived class of
ThreadFilter can be used to program other models, such as the
following:

Pool of Threads
In this model, a pool of threads is created to handle incoming
requests. The size of the pool puts some limit on the server’s use
of resources, and in some cases that is better than the unbounded
nature of the thread per request model. Each thread waits for an
incoming request, and handles it before looping to repeat this
sequence.This can provide the best balance between concurrency
and resource usage.

Thread Per Client
In this model, a thread is created for each client process that is
currently connected to a server. Each thread handles the requests
from one client process, and ignores other requests. This may be
useful if thread creation is too expensive to have a thread created
for each request; but of course it does give the potential of having
idle threads corresponding to clients that are currently not making
requests to objects in the server. One particularly important use of
this model is for DBMS integration, where in some cases it is
important to run all of a client’s requests in the same thread. This
is normally because it is necessary to run consecutive requests
from the same client in the same transaction.

Thread Per Object
In this model, a thread is created for each object (actually, for a
subset of the objects in the server). Each of these threads accept
requests for one object only, and ignores all others. This can be an
important model in real-time processing, where the threads
associated with some objects need to be given higher priorities
that those associated with others.

Orbix Programmer’s Guide C++ Edition 305

Implementing Models of Thread Support
This section gives a brief outline of how you can implement these
models.

Implementing Pool of Threads
To implement this model, you should create a pool of threads, and
each thread should wait on a shared semaphore. When a request
arrives, the inRequestPreMarshal() function of the ThreadFilter
should place a pointer to the Request in an agreed variable, and
signal the semaphore. Alternatively, a queue can be used. One of
the threads will awaken, and should call continueThreadDispatch()
before looping to repeat the sequence.

Implementing Thread Per Client
There are two variations on how this should be implemented,
depending on whether or not a single client can make concurrent
calls on objects in a server. If a client can only make one call at a
time, then the inRequestPreMarshal() function should determine
the identity of the caller, perhaps finding the file descriptor on the
server that the call was made through. It should then use this to
locate the corresponding thread. Specifically, a synchronization
variable (a mutex or semaphore) is located; and this is signaled so
that the thread will awaken. The inRequestPreMarshal() function
should pass (a pointer to) the Request object to the thread, so that
it can call continueThreadDispatch().
If a client can make concurrent calls to the objects in the server,
inRequestPreMarshal() should use a queue to communicate with
the chosen thread. It should add the Request to the correct
thread’s queue, and signal a semaphore to mark the fact that
there is one more entry in the queue. There should be one
semaphore and one queue per thread, and each thread should
wait on its own semaphore.

Implementing Thread Per Object
To implement this model, you should create a thread for each (or
a subset of) the objects in the server. Each thread should have it’s
own semaphore and queue of requests, and it should wait on its
own semaphore.
The inRequestPreMarshal() function should add the Request to the
correct queue of requests, and signal the correct semaphore.
When the thread awakens, it should call continueThreadDispatch()
to process the topmost request, and then loop to await the next
one.

Changing Internal Orbix Thread Creation
When you run an Orbix application, Orbix starts a number of
internal threads in a thread pool. These threads work together to
listen for incoming connection attempts from clients and read
requests from the network. For a request event, ultimately an
application thread is used to process the request using a thread
model written by the user, such as the models described above.
The internal network threads use a leader-follower design. This
means that one thread in the pool is doing the low-level TCP/IP
select(), and when activity occurs, this thread processes it.

 306 Orbix Programmer’s Guide C++ Edition

Simultaneously another thread is dispatched from the pool to
perform the low-level TCP/IP select(). When a thread is done with
whatever activity it needs to perform, it is returned to the pool.
The size of the internal network thread pool is controlled by the
configuration parameter IT_DEF_NUM_NW_THREADS. The value defaults
to 1. The user can change this default if a larger initial internal
network thread pool is needed, and this can be an effective tuning
parameter. Additionally, the user can use the method
CORBA::ORB::add_nw_threads() to increase the number of threads in
the pool at any time.
The function is defined as follows:

// C++
// In class CORBA::ORB
CORBA::Boolean add_nw_threads(CORBA::ULong num_threads)

The installed default number of network threads (1) is the best
setting for most applications. The network threads are responsible
for a small amount of work to read the network buffers and
deposit the message on an event queue, which is processed by
the application model. Some larger applications that have many
clients may want to increase the number of network threads in the
server processes.

Note: As with any threading issue, the benefits of the additional threads
depends greatly on the underlying hardware/OS architecture.
The network threads are also responsible for recomposing a full
IIOP message from any IIOP fragments. However, IIOP fragment
messages are rarely used in most CORBA systems (Orbix 3.x can
receive fragments, but does not generate fragments). For tuning,
the number of network threads should only be increased if the
TCP/IP buffers are over filling. Having two or more network
threads allows the TCP/IP buffers to be processed while messages
are being processed in application threads.

 Orbix Programmer’s Guide C++ Edition 307

Service Contexts in
Orbix
This chapter introduces service contexts in Orbix applications.
Service contexts are a CORBA-defined way of implicitly passing
service- specific information in IIOP requests and replies. This
chapter describes the Orbix APIs that enable you to supply and
consume context information.

Service contexts provide a mechanism for passing service-specific
information as hidden parameters in Internet Inter-ORB Protocol
(IIOP) message headers. The CORBA interoperability specification
defines service contexts as a sequence of octets with an
associated identity number. For example:

module IIOP {
typedef unsigned long ServiceId;

struct ServiceContext {
1 ServiceId context_id;
2 sequence<octet> context_data;

};
typedef sequence <ServiceContext> ServiceContextList;

const ServiceId TransactionService = 0;
const ServiceId CodeSets = 1;

};

The code is explained as follows:
1. The context_id is the means by which a particular service

context is recognized.
2. The context_data or octet sequence is the data part of the

context.
According to the General Inter-ORB Protocol (GIOP) specification,
service contexts are transmitted between clients and servers in
GIOP RequestHeaders and ReplyHeaders.
The RequestHeader_1_1 struct is defined in IDL as follows:

module GIOP {

// GIOP 1.1
struct RequestHeader_1_1 {

IOP::ServiceContextList service_context;
 unsigned long request_id;

 boolean response_expected;
octet reserved[3];

 sequence<octet> object_key;
 string operation;
 Principal requesting_principal;

};

 308 Orbix Programmer’s Guide C++ Edition

The Orbix Service Context API
The CORBA-compliant API for service contexts in Orbix comprises
the following external interfaces:

• The ServiceContextHandler class.
• The ORB interfaces.
• The ServiceContextList.

ServiceContextHandler Class
The ServiceContextHandler class is the base class used to define
handlers for a particular ServiceContext ID you want to deal with.
There is a handler registered on the client and the server for each
ServiceContext you wish to handle. The handlers are recognized by
their ID, which corresponds to the ID of the ServiceContext they
are handling.
The ServiceContextHandler class is defined as follows:
class ServiceContextHandler {

public:
CORBA(Ulong) m_serviceContextId;

ServiceContextHandler
(CORBA::Ulong SrvCntxtId, CORBA::Environment& env));

~ServiceContextHandler();

CORBA::Boolean incomingRequest
(CORBA::Request& req, CORBA::Environment& IT_env =

CORBA::IT_chooseDefaultEnv());
CORBA::Boolean outboundRequest
(CORBA::Request& req, CORBA::Environment& IT_env =

CORBA::IT_chooseDefaultEnv());
CORBA::Boolean incomingReply
(CORBA::Request& req, CORBA::Environment& IT_env =

CORBA::IT_chooseDefaultEnv());
CORBA::Boolean outboundReplyHandler
(CORBA::Request& req, CORBA::Environment& IT_env =

CORBA::IT_chooseDefaultEnv());
};

Orbix Programmer’s Guide C++ Edition 309

ORB Interfaces
ORB APIs are provided to allow services to supply and consume
context information at appropriate points in the process of sending
and receiving requests and replies.
Examples of ORB APIs are as follows:
CORBA::ORB::registerPerRequestServiceContext

(ServiceContextHandler* CtxHandler, CORBA::Environment&
IT_env = CORBA::IT_chooseDefaultEnv());

CORBA::ORB::unregisterPerRequestServiceContext
(CORBA::Ulong& CtxHandlerId, CORBA::Environment&

IT_env = CORBA::IT_chooseDefaultEnv());
CORBA::ORB::registerPerObjectServiceContext

(ServiceContextHandler* CtxHandler,
 CORBA::Object* handledObject, CORBA::Environment&

IT_env = CORBA::IT_chooseDefaultEnv());
CORBA::ORB::unregisterPerObjectServiceContext

(CORBA::Ulong& CtxHandlerId,
 CORBA::Object* HandledObject, CORBA::Environment&

IT_env = CORBA::IT_chooseDefaultEnv());

ServiceContextList
The ServiceContextList is a field in an IIOP message header
containing all the service context data associated with a particular
request or reply. The ServiceContextList is implemented as a
sequence of ServiceContexts.

class ServiceContextList {
public:
// Includes all of the normal sequence operators.
...
friend PerObjectServiceContextHandler;
friend PerRequestServiceContextHandler;

};

Using Service Contexts in Orbix Applications
The API for service contexts in Orbix is based on two usage
models:

• ServiceContext per request.
This is where service contexts are handled on all requests and
replies entering and leaving a process.

• ServiceContext per object.
This is where only service context information is handled for
requests and replies going to or coming from a particular
object.

The mechanism whereby a particular service context per request
can be implemented is discussed in detail here. An overview of the
implementation of a particular service context per object is also
given.

 310 Orbix Programmer’s Guide C++ Edition

ServiceContext Per-Request Model
Consider the following overview of implementing service contexts
per request in Orbix applications.

Client Side
To add service context information to all requests leaving a client,
do the following:
1. Call the useServiceContext() method to switch on

ServiceContexts.
2. In the user code, derive some classes from the base class

ServiceContextHandler—for example, myHandler.
3. Create an instance of this class within the client passing it

ServiceContext_id.
4. Register this handler instance with the ORB using

CORBA::ORB::registerPerRequestServiceContextHandler
(myHandler,env).

5. This registration means that if any out-going requests now
leave the client, the method
ServiceContextHandler::outboundRequest() is called. As a
parameter, this method is passed a reference to the request
that caused the invocation.

6. Depending on what the application wants to do, the request is
interrogated by the user handler class. For example, the
user-handler class may indicate that the operation name is
foobar and trigger another process to be performed.

7. In the user code of myHandler::outboundRequest(), create a
new instance of ServiceContext. Populate the context_data part
of the ServiceContext with information and add it to the
ServiceContextList.
This ServiceContextList is marshaled with the request
message and is passed across the wire to the server. Once the
handler method has completed, the ORB possesses a copy of
this newly-allocated memory. This copy is deleted after the
request has been marshaled.

Orbix Programmer’s Guide C++ Edition 311

.

Figure 29: Service Contexts Per Request: Client Side

Figure 29 illustrates the operation of the service context
per-request model on the client side.
The design is similar on the server side in that it creates and
registers handlers, and re-implements the methods from the
ServiceContextHandler class.

Server Side
To receive service context information from all requests entering a
server, do the following:
1. Call the useServiceContext() method to switch on service

contexts.
2. In the user code, derive some classes from the base class

ServiceContextHandler—for example, myHandler().
3. Create an instance of this class within the server, passing it

the ServiceContext_id. You can use the same code on both the
server and client sides.

4. Register this handler instance with the ORB using
CORBA::ORB::registerPerRequestServiceContextHandler
(myHandler env).

5. This registration means that when a request comes into the
server address space, the ServiceContextList in the request’s
header is unmarshalled and the incoming request methods
are called on the relevant handlers.

6. Using the incomingRequest() method, take a copy of the
ServiceContext required, extract whatever information is
needed from it, and call whatever code is necessary.

7. After the handler has returned, and all other ServiceContext
handlers have completed, the request continues as normal.

Request

Client

myHandler()

Register myHandler(Id);

Calls outboundRequest()
for each Handler

ORB

SCL SC

Request Message

SCL

List of registered

SCL gets marshalled with
the request on the wire

handlers

 312 Orbix Programmer’s Guide C++ Edition

Note: Replies are treated the same as requests. They activate the
outboundReply() and incomingReply() handlers in the same
manner.
Figure 30 illustrates the operation of the service context
per-request model on the server side.

Figure 30: Service Contexts Per Request: Server Side

ServiceContext Per-Object Model
Consider the following overview of implementing service contexts
per object in Orbix applications.

Client Side
Adding ServiceContexts to requests leaving the client for a
particular object involves creating and registering handlers. In
particular, this involves the following:
1. Calling the registerPerObjectServiceContextHandler() method.

This method passes over the handler and object reference.
2. Converting the object reference to a stringified object

reference. After a hashing algorithm is performed on it, it is
inserted into a hash table.

3. Each entry in the hash table is made up of a key (stringified
object reference) and a value (list of handlers).

4. Calling the outboundRequest() method for each object
reference where any service context ID corresponds to a
registered handler.

5. Each ServiceContext in the ServiceContextList has the same
ID as one of the handlers registered for that object.

6. With each request, only one ServiceContextList gets
marshaled and sent across on the wire.

Figure 31 illustrates the operation of the service context
per-object model on the client side.

Request

Server

myHandler()

Calls IncomingRequest()
for each handler

ORB

Request Message

SCL

List of registered
handlers

Wire (unmarshalling)

Orbix Programmer’s Guide C++ Edition 313

Figure 31: Service Contexts Per-Object: Client Side

Server Side
Receiving ServiceContexts from requests entering the server for a
particular object also involves creating and registering handlers.
In particular, this involves the following:
1. Obtaining an object reference and converting it into a

stringified object reference.
2. Performing a hashing algorithm on the stringified object

reference and searching for it in a populated list of handlers.
3. Calling the incomingRequest() method for any service context

ID that corresponds to a registered handler.

Request

Client

myHandler()

Calls outBoundRequest()
for each handler

ORB

Request Message

SCL

List of
handlers

Hash
table

Hash(ObjRef)

SCL
SC

Register
myHandler(Id);

SCL gets marshalled with the Request on the wire

 314 Orbix Programmer’s Guide C++ Edition

Figure 32 illustrates the operation of the service context
per-object model on the server side.

Figure 32: Service Contexts Per Object: Server Side

Main Components of the Service Context Model
The ServiceContext per-request and ServiceContext per-object
models comprise a number of components. This section defines
each of the components and explains how they fit together.

ServiceContextHandler
This base class is for users to define their own handlers for a
particular ServiceContext ID that they want to deal with. For each
ServiceContext you wish to handle, there is a handler registered on
the client and the server. The handlers are recognized by their ID
which corresponds to the ID of the ServiceContext they are
handling.

PerRequestServiceContextHandler
This is a ServiceContextHandler that has been registered as a
handler for all requests on the client or server side. The user
derives from the base class, registers the handler, and the handler
is recognized by its ID—which corresponds to the ID of the
ServiceContext that it handles.

PerObjectServiceContextHandler
This is a ServiceContextHandler that has been registered as a
handler for all requests to a particular object on the client or
server side. The user derives from the base class, registers the
handler, and the handler is recognized by its ID—which
corresponds to the ID of the ServiceContext that it handles.

Note: The code in the handler describes what you would do with the
service context data in the service context.

Request

Server

myHandler()

Calls IncomingRequest()
for each handler that has been

ORB

Request Message

SCL

List of

Wire (unmarshalling)

registered for this object

handlers
Hash
table

Hash(ObjRef)

Orbix Programmer’s Guide C++ Edition 315

PerRequestServiceContextHandlerList
This is a list of service context handlers. For all requests or replies
leaving an address space, all the outbound methods in all handlers
are called. This is because you do not know which ServiceContext
to add to each request.

PerObjectServiceContextHandlerList
This works the same way as PerRequestServiceContextHandlerList
except that only requests and replies pertaining to a particular
object are tagged and their ServiceContext information
investigated. This is actually a list indexed by both the context ID
and the CORBA::Object that it references.

Service Context Handlers and Filter points
Service context handlers interact with Orbix filter points. In Orbix,
there are 10 filter points including the in reply and out reply failure
filter points. Refer to “Filtering Operation Calls” for more details.
The service context mechanism provides four more points for
interaction with requests and replies in a typical invocation.
Figure 33 on page 315 shows the location of the
ServiceContextHandlers in an invocation, the subsequent reply, and
the order in which they are called.
You should note the following:

• If an exception is thrown in any of the outRequest() pre or
post- marshall filter points on the client side, the
incomingReplyHandler() is not called.

• One-way calls do not return anything. Thus they do not call
the client side inboundReplyHandler.

Figure 33: Service Context Handlers and Filter Points

For an example of using service contexts, refer to the
demos\common\servicecontext directory of your Orbix installation.

incomingRequestHandler

inRequestPreMarshall

inRequestPostMarshall

outboundReplyHandler

outRequestPostMarshall

outRequestPreMarshall

outboundRequestHandler

inReplyPostMarshall

incomingReplyHandler

inReplyPreMarshall

inReplyFailure

outReplyFailure

outReplyPostMarshall

outReplyPreMarshall

 316 Orbix Programmer’s Guide C++ Edition

Part V
Appendix

In this part
This part contains the following:

Orbix IDL Compiler Options page 319

 Orbix Programmer’s Guide C++ Edition 319

Orbix IDL Compiler
Options
This appendix describes the command-line switches to the Orbix
IDL compiler. The IDL compiler command is idl. This command
accepts the following switches:

IDL Compiler
Switch

Description

-A Required if the IDL file contains the definition of a
struct, union, sequence, or object reference, an
instance of which can be contained directly in an
any—that is, returned by CORBA::Any::value(). The
structs defined by the Interface Repository can be
passed as a component of a parameter of type
any without specifying the -A switch.

-B Required if you use the BOAImpl approach to
implement the interfaces in the IDL file. The -B
switch requests the generation of BOAImpl
classes for each interface. You can use the TIE
approach to implement any of the interfaces in
the IDL file whether or not the -B switch has been
specified.
Clients are not affected by whether or not -B is
specified.

-Bonly The -Bonly switch has the same effect as the -B
flag, but it also represses the generation of TIE
code.

-bound_seq_check Generate additional index-checking code to
identify the location of an out-of-bounds error in
a bounded sequence. By default this is not
enabled.

-c <extension> Specifies the file extension to be used when
generating the client source file from the IDL file.
The default is C.C, C.cc or C.cpp depending on the
target C++ compiler.

-D <name> Predefine <name> as a macro with definition.

-E Only run the Orbix IDL pre-processor. Do not
pass the output of the pre-processor to the Orbix
IDL compiler, but output the pre-processed file to
the standard output. By default, the output of the
Orbix IDL pre-processor is sent to the Orbix IDL
compiler.

 320 Orbix Programmer’s Guide C++ Edition

-f Do not suppress code generation for
sequence<octet> and sequence<string> types.
These are normally suppressed because their
code is included in <CORBA.h>, and generation
would lead to duplicate definitions. This switch is
rarely needed. You should also refer to the -i
switch.

-F Generate per-object filtering code.

-flags Display option information.

-h <extension> Specifies the file extension to be used when
generating the header file for the IDL file. This is
.hh by default.

-i Force insertion of
sequence<octet>/sequence<string> types into the
IDL parse tree. This switch is normally be used in
conjunction with the -f switch. However, it is
rarely needed because CORBA.h provides such
support.

-I Specify #include search path.

-K Required if the IDL file uses the opaque type
specifier.

-k23 Do not allow use of CORBA 2.3 IDL keywords as
identifiers.

-l Language mapping = C++, Java, Ada.

-L Legacy orbix_release_no = 121

-M <filename> Required if more than one IDL file in an
application uses IDL sequences of the same type.
The function definitions for sequences are then
output to the specified file. This file must be
compiled and then linked into the client and
server. Each run of the IDL compiler appends to
the end of the specified file, so this file should be
deleted when the directory is cleaned up. (This
switch is useful where sequences of the same
type are generated from multiple idl sources.)

-N Specifies that the IDL compiler is to compile and
produce code for included files (files included
using the #include directive). Without the -N
switch, included files are compiled but no code is
output.

-O Generates a makefile rule, describing the
dependencies.

-oc <path> Specify the target directory for the client stubs.
This flag overrides the -out switch.

IDL Compiler
Switch

Description

Orbix Programmer’s Guide C++ Edition 321

-os <path> Specify the target directory for the server stubs.
This flag overrides the -out switch.

-out <path> Specify the target directory for the client and
server stubs. The -oc and -os flags override the
-out flag.

-P <filename> Allows the statements specified in <filename> to
be executed before the standard proxy code. Its
effect is to insert a include directive at the
appropriate place in the proxy code. <filename>
can be any string acceptable to the include
directive. A filename enclosed in angle brackets
(for example, <file.h>) denotes a standard
include file; while a filename enclosed in quotes
(for example, “../../file.h”) denotes a file
elsewhere. In some cases, this can be an
alternative to writing smart proxies.

-pragma Display fully scoped IDL type identifiers with their
repository IDs.

-Q <dbIntegration> Provides support for integration with database
management systems. Valid values for
<dbIntegration> depend on the database
management system as specified in the relevant
documentation provided with the database
adapter.

-S Specifies that the compiler is to produce files with
the initial coding of the implementation classes
for the IDL interfaces in the file. Two output files
are produced as follows:
<filenamePrefix>.ih
This gives the definition of the class and the
declaration of its member functions. The name of
the class is the name of the IDL interface with
“==” appended. This name must be changed
before the file compiles.
<filenamePrefix>.ic
This gives the definition of the member
functions—each with a blank body. Once again,
the name of the class needs to be changed. The
.ih file #includes the normal header file (by
default .hh) produced by the compiler. The .ic file
includes its corresponding .ih header file.

-s <extension> Specify the file extension to be used when
generating the server source file from the IDL
file. The default is S.C, S.cc or S.cpp depending on
the target C++ compiler.

-silent Stop output of the IDL compiler filename.

IDL Compiler
Switch

Description

 322 Orbix Programmer’s Guide C++ Edition

-two_arg_def_tie Generate two argument version of the
DEF_TIE_XXX macros. This flag is required to
associate scoped classes with your TIE classes.

-typeCode Used with the -A switch to indicate that legacy
TypeCodes should be generated.

-U <name> Undefine the macro name. If -U is specified for a
macro name, that macro name is not defined
even if -D is used to define it.

-v Output version information for the IDL compiler
and the version number of the C++ compiler
supported.

-z Display parse tree only.

IDL Compiler
Switch

Description

Orbix Programmer’s Guide C++ Edition 323

Index

A
abortSlowConnects() 144
activation of servers 105
addForeignFD() 147
addForeignFDSet 147
Advanced Orbix C++ Programming 231
allocbuf() 66
any 167, 173

constructing 173
inout parameters 82
interpreting 175
mapping for 57
parameter 183

AnyDemo example 173
architecture 10
ARG_IN 188, 195
ARG_INOUT 188, 195
ARG_OUT 188, 195
arrays 43, 73

dynamic allocation 73
slices 73

_attachPost() 245
_attachPre() 246
AttributeDef 212
attributes 15, 34

readonly 16
authentication filters 237, 244

B
BankExceptions example 125
BankInherit example 133
BankPersistent example 273
BankSimple example 15, 87
Basic Object Adapter 141
basic types, in IDL 40, 57

mapping for 49
binding 104

and smart proxies 249
examples 123
host parameter to _bind() 123
markerServer parameter to _bind() 122
timeouts 148

BOAImpl approach 92
compared to TIE approach 109
multiple interfaces per
implementation 160

BOA_init() 142
bounded sequences 69

C
callbacks

avoiding deadlock 262
connection 145

examples 255
from servers to clients 255
implementing 255

casting
from interface to implementation
class 155

object references 54
clients 3

example 102
example using inheritance 138
handling exceptions 127
multi-threaded 297
server timing out 147

collocation 151
compiler, IDL

switches 319
compiling

IDL 17
multi-threaded programs 300

complex types, in IDL 41
components 117
compound name 117
concurrency control 303
connections 141

management in Orbix 143
connection threads 305
connectionTimeout() 144
ConstantDef 211
constants 46, 74
containment 215
contexts 37, 53, 161, 189
conversions

object references 54
CORBA

introduction to 3
CORBA::

ARG_IN 188, 195
ARG_INOUT 188, 195
ARG_OUT 188, 195
IT_reqTransformer 292
ORB_init() 142
release() 55, 67
string_alloc() 64
string_free() 64
String_mgr 59

CORBA::Any
constructing 173
interpreting 175
low-level access 179
parameter 183
replace() 179
type() 179
value() 180

CORBA::BOA 141

 324 Orbix Programmer’s Guide C++ Edition

CORBA::BOA::
filterBadConnectAttempts() 144
impl_is_ready() 144
isEventPending() 146
obj_is_ready() 144, 146
processEvents() 144, 146
processNextEvent() 146
setNoHangup() 147

CORBA::Context 53
CORBA::Context::

IT_create() 161
CORBA::DynamicImplementation 202
CORBA::Environment::

timeout() 147
CORBA::Filter 234, 239
CORBA::Filter::

_attachPost() 245
inReplyFailure() 238
inReplyPostMarshal() 238
inReplyPreMarshal() 238
inRequestPostMarshal() 238
inRequestPreMarshal() 238
outReplyFailure() 238
outReplyPostMarshal() 238
outReplyPreMarshal() 238
outRequestPostMarshal() 238
outRequestPreMarshal() 238

CORBA::Flags 163
CORBA::is_nil() 56
CORBA::LoaderClass::

load() 271
CORBA::NamedValue 189
CORBA::NVList 189
CORBA::Object::

_attachPre() 246
_create_request() 187
_deref() 156
_get_implementation() 243
_implementation() 250
_isRemote() 153
_loader() 269
_marker() 250
_narrow() 54
_object_to_string() 240, 241

CORBA::Object::_get_interface() 225
CORBA::ORB 141
CORBA::ORB::

abortSlowConnects() 144
addForeignFD() 147
addForeignFDSet() 147
BOA_init() 142
connectionTimeOut() 144
create_list() 189
create_operation_list() 191
defaultTxTimeout() 148
get_default_context() 161
impl_is_ready() 101
list_initial_references() 143
maxConnectRetries() 144
noReconnectOnFailure() 144
removeForeignFD() 147
removeForeignFDSet() 147

resolve_initial_references() 143
resortToStatic() 156
setMyReqTransformer() 293
setReqTransformer() 293
string_to_object() 121, 267

CORBA::Request::
decodeBooleanArray() 199
decodeCharArray() 199
decodeFloatArray() 199
decodeLongArray() 199
decodeOctetArray() 199
decodeShortArray() 199
decodeULongArray() 199
decodeUShortArray() 199
encodeBooleanArray() 198
encodeCharArray() 198
encodeFloatArray() 198
encodeLongArray() 198
encodeOctetArray() 198
encodeShortArray() 198
encodeULongArray() 198
encodeUShortArray() 198
getOperation() 194
invoke() 192, 195
reset() 196
setOperation() 194, 196
setTarget() 196
target() 194, 241

CORBA::ServerRequest 203
CORBA::TypeCode::

IT_create() 170
kind() 168
param_count() 168
parameter() 168

CORBA::UserException 52
CORBAfacilities 7, 8
CORBAservices 7, 8
create_context() 161
create_list() 189
create-operation_list() 191
_create_request() 187

D
daemon 9, 105
deadlock

avoiding in callback models 262
decodeBooleanArray() 199
decodeCharArray() 199
decodeFloatArray() 199
decodeLongArray() 199
decodeOctetArray() 199
decodeShortArray() 199
decodeULongArray() 199
decodeUShortArray() 199
default loader 268–271
defaultTxTimeout() 148
deferred synchronous invocations 264
deferred synchronous operations 192
DEF_TIE() 91
_deref() 156
diagnostics 163

Orbix Programmer’s Guide C++ Edition 325

DII 5, 185–199, 233, 243
invoking multiple requests 193
using with the Interface Repository 191

documentation
.pdf format x
updates on the web x

DSI 6, 201–208
dynamic allocation of

arrays 73
strings 64

dynamic CORBA programming 5
DynamicImplementation 202
Dynamic Invocation Interface. See DII
Dynamic Skeleton Interface. See DSI

E
encodeBooleanArray() 198
encodeCharArray() 198
encodeFloatArray() 198
encodeLongArray() 198
encodeOctetArray() 198
encodeShortArray() 198
encodeULongArray() 198
encodeUShortArray() 198
enums 41
error messages 163
event processing

in threads 264
events 141, 143

integrating with foreign event loops 146
processing in Orbix 146

examples
AnyDemo 173
BankExceptions 125
BankInherit 133
BankPersistent 273
BankSimple 15, 87
stock-trading 255

ExceptionDef 211, 212
exceptions 35, 125

generated code 126
handling in clients 127
throwing 129

explicitCall 273
extracting structs, unions and sequences
using DII 198

F
faults, object 267
filterBadConnectAttempts() 144
filters 233–246

adding data 236
and service contexts 315
authentication 237
IT_daemon 243
per-object 244

chain 234
post 237
pre 237

per-process 238
chain 239

example 240
in reply 234, 235
in reply failure 235
in request 235
out reply 235
out reply failure 235
out request 235

relationship to DII 233
thread 237

FILTER_SUPPRESS 246
fixed data types 44, 71
fixed-length structs 59
Flags 163
forward declarations, in IDL 39
freebuf() 67
FullInterfaceDescription 227
function 55

G
get_default_context() 161
_get_implementation() 243
_get_interface() 225
getOperation() 194

H
host parameter

to _bind() 123

I
IDL 15, 30, 33–46

compiler 5, 9, 17
options 319

implementing interfaces 19
opaque 284

IIOP 6, 9, 12, 143
_implementation() 250
implementation classes 21, 92
Implementation Repository 5, 105
implementing interfaces

comparison of approaches 109
impl_is_ready() 24, 101, 144
inheritance 37, 133–140

multiple inheritance 139
usage from a client 138
writing implementation classes 135

initialisation 142
initial references

obtaining 142
inout parameters 79

any 82
mapping for 79
memory management 79
object references 80
sequences 81
strings 80

in parameters 78
mapping for 78
memory management 78

inReplyFailure() 238
inReplyPostMarshal() 238
inReplyPreMarshal() 238

 326 Orbix Programmer’s Guide C++ Edition

inRequestPostMarshal() 238
inRequestPreMarshal() 238, 302
InterfaceDef 212
Interface Repository 5, 9, 167, 186, 209–230

class hierarchy 214
configuring 209
containment 215
getting initial reference to 142
use of TypeCode 171
using with the DII 191

interfaces 34–39
implementing

steps involved 88
inheritance of 37
inheritance of type Object 38
mapping for 49

Internet Inter-ORB Protocol. See IIOP
invocation semantics, for operations 36
invoke() 192, 195
INVOKE_DENIED 241
isEventPending() 146
is_nil() 56
_isRemote() 153
IT_CONFIG_PATH 17
IT_create() 75, 170
IT_daemon 243
IT_IOCallback 145
ITMi.lib 28
IT_reqTransformer 292

K
kind() 168

L
liborbix 28
library

thread-safe 300
library, Orbix 9
listener threads 305
list_initial_references() 143
load() 271
_loader() 269
LoaderClass 267
loaders 267–282

default 268–271
dynamically creating 267
installing 268
object naming 270

locality of objects 153
locks 303

M
macros

DEF_TIE() 91
DEREF() 156

manager classes 59
mapping 47–85

overview 47
_marker() 250
markerServer parameter to _bind() 122
marshalling 283

maxConnectRetries() 144
ModuleDef 212
modules 33, 48

alternative mapping for 48
multiple implementations 157
multiple inheritance 139
multiple requests, invoking 193

N
NamedValue 45, 189
NameService 117
Naming Service 8

getting initial reference to 142
wrapper functions 119

_narrow() 54, 55
narrowing object references 54
NO_PERMISSION 241
noReconnectOnFailure() 144
NVList 189

O
Object 38
object adapters 141
objectDeletion 273
object faults 267
Object Management Architecture 7
_ObjectRef 114

methods
_object_to_string() 114

objects
creating 22
in CORBA 4
making available to clients 23
references to 25

inout parameters 80
narrowing 54
widening 54

_object_to_string() 114, 240, 241
obj_is_ready() 144, 146
OMA 7
oneway operations 36, 263

calling with the DII 192
opaque types, in IDL 283–290

memory management 286
operation() 240, 241
OperationDef 212
operations 15, 35

invocation semantics 36
non-blocking operations 263
oneway operations 263
timeouts for 147

orb.idl 45, 167
ORB_init() 142
Orbix 10, 297

components
OrbixNames 11
OrbixSSL 12

suite of products 10
orbixd 9, 105
Orbix library 28
OrbixNames 10

Orbix Programmer’s Guide C++ Edition 327

functionality overview 12
Orbix protocol 12
OrbixSSL 10, 12

authentication 12
establishing a connection 13
integrity 12
privacy 12

out parameters
mapping for 82
memory management 82

output, from Orbix 163
outReplyFailure() 238
outReplyPostMarshal() 238
outReplyPreMarshal() 238
outRequestPostMarshal() 238, 243
outRequestPreMarshal() 238, 243

P
param_count() 168
parameter() 168
parameters 78

any 183
in TypeCode 167
passing modes in IDL 16, 35

piggybacked data 242
pingDuringBind() 124
pinging 124
pragma directives 229
Principal 45
processEvents() 144, 146
processNextEvent() 146
processTermination 273
proxy 25, 104

code unavailable 156
proxy factories 248
pseudo object types, in IDL 45
putit 105

R
readonly attributes 16
record() 270, 271
references, object 25, 54
registering

a request transformer 293
registerPerObjectServiceContext 309
registerPerRequestServiceContext 309
release 55
release() 67
removeForeignFD() 147
removeForeignFDSet() 147
rename() 270, 271
replace() 179
Repository IDs 227
Request 241, 242

adding data to 242
creating 187
retrieving results 193
transforming request data 291

_request() 187
reset() 196
resolve_initial_references() 117, 143

resortToStatic() 156
retry attempts 144
return value

any 183
return values 84

memory management 84

S
save() 271, 272, 273
saving objects 272
scoping, in IDL 33
security 237

‘handshake’ 13
SSL 12

authentication 12
integrity 12
privacy 12

Security Service 8
sequences 42

bounded 69
buffers 67
inout parameters 81

ServerRequest 203
servers 3

activation 105
example 99
initialisation 101
multi-threaded 297
throwing exceptions 129
timing out 147

ServiceContextHandler 308
service contexts 307

and filter points 315
per-object 312
per-request 310

setMyReqTransformer() 293
setNoHangup() 147
setOperation() 194, 196
setReqTransformer() 293
setTarget() 196
skeleton code 5
slices, array 73
smart proxies

binding 249
generating 248

stock-trading example 255
String_mgr 59
strings 42, 63

bounds checking 64
dynamic allocation 64
inout parameters 80
manager classes 59

string_to_object() 267, 272
String_var 63
structs 41

mapping for 59
stub code 5
system exceptions 128

throwing 131

 328 Orbix Programmer’s Guide C++ Edition

T
target() 194, 241
tc 169
threads 297

creating 300, 301
event processing in 264
implementing 305
internal Orbix-MT threads 305
models of thread support 304
pool of threads 304
thread per object 304
threads per client 304

throwing exceptions 129
TIE approach 91, 95

compared to BOAImpl approach 109
multiple interfaces per
implementation 159

timeout() 147
timeouts

for connections 144
for operation calls 147

Trader Service 8
transformers

implementing 292
registering 293

transforming request data 291
type() 179
TypeCode 45, 167, 198
TypeDef 211
typedefs 45, 74

U
unbounded sequences 66
unions 41, 60
unmarshalling 283
unregisterPerObjectServiceContext 309
unregisterPerRequestServiceContext 309
user-defined exceptions 126
UserException 52

V
value() 180
variable-length structs 59

W
widening object references 54
wrapping legacy code 109

Z
z/OS/ 10

	Preface
	Audience
	Organization of this Guide
	Document Conventions
	Contacting Micro Focus

	Getting Started
	Introduction to CORBA and Orbix
	CORBA and Distributed Object Programming
	The Role of an Object Request Broker
	The Structure of a CORBA Application
	The Structure of a Dynamic CORBA Application
	Interoperability between Object Request Brokers

	The Object Management Architecture
	The CORBAservices
	The CORBAfacilities

	How Orbix Implements CORBA
	Orbix Components
	Orbix Architecture
	OrbixNames—The Naming Service
	Security with OrbixSSL

	Developing Applications with Orbix
	Developing a Distributed Application
	Defining IDL Interfaces
	Compiling IDL Interfaces
	Setting Up Configuration for the IDL Compiler
	Running the IDL Compiler
	Output from the IDL Compiler
	The Client Stub Code
	The Object Skeleton Code

	Implementing the IDL Interfaces
	Writing an Orbix Server Application
	Initializing the ORB
	Creating an Implementation Object
	Receiving Client Requests

	Writing an Orbix Client Application
	Initializing the ORB
	CORBA Object References
	Getting a Reference to an Object
	Invoking IDL Attributes and Operations

	Compiling the Client and Server
	Compiling the Client
	Compiling the Server

	Running the Application
	Running the Orbix Daemon
	Registering the Server
	Running the Client

	Summary of Programming Steps

	Orbix C++ Programming
	Introduction to CORBA IDL
	IDL Modules and Scoping
	Defining IDL Interfaces
	Attributes in IDL Interface Definitions
	Operations in IDL Interface Definitions
	Inheritance of IDL Interfaces
	Forward Declaration of IDL Interfaces

	Overview of the IDL Data Types
	IDL Basic Types
	IDL Complex Types
	IDL Pseudo Object Types
	Defining Data Type Names and Constants

	The CORBA IDL to C++ Mapping
	Overview of the Mapping
	Mapping for Modules and Scoping
	Alternative Mappings for Modules

	Mapping for Interfaces
	Mapping for Attributes
	Mapping for Operations
	Mapping for Inheritance of IDL Interfaces
	Object Reference Counts and Nil Object References

	Mapping for IDL Data Types
	Mapping for Basic Types
	Mapping for Complex Types
	Mapping for Enum
	Mapping for Struct
	Mapping for Union
	Mapping for String
	General Mapping for Sequences
	Mapping for Unbounded Sequences
	Mapping for Bounded Sequences
	Bounded Sequence Examples
	Mapping for Fixed
	Mapping for Array
	Mapping for Typedef

	Mapping for Pseudo-Object Types
	Memory Management and _var Types
	Memory Management for Parameters
	in Parameters
	inout Parameters
	out Parameters
	Return Values
	An Example of Applying the Rules for Object References

	Using and Implementing IDL Interfaces
	Overview of an Example Application
	Overview of the Programming Steps
	Defining IDL Interfaces
	Implementing IDL Interfaces
	Defining Implementation Classes for IDL Interfaces

	Developing a Server Program
	Writing a Server main() Function

	Developing a Client Program
	Alternatives to the Naming Service

	Registering the Server
	Execution Trace for the Example Application
	Comparing the TIE and BOAImpl Approaches
	Wrapping Existing Code
	Providing Different Implementations of the Same Interface
	Providing Different Interfaces to the Same Implementation
	Comparison of the BOAImpl and TIE Approaches

	Making Objects Available in Orbix
	Identifying CORBA Objects
	Interoperable Object References
	Orbix Object References
	Assigning Markers to Orbix Objects

	Using the CORBA Naming Service
	The Interface to the Naming Service
	Format of Names in the Naming Service
	Making Initial Contact with the Naming Service
	Associating Names with Objects
	Using Names to Find Objects
	Associating a Compound Name with an Object
	Using the Naming Service in Orbix Example Applications

	Transferring Object References
	Passing Object References as Operation Parameters
	Transferring Object Reference Strings

	Binding to Orbix Objects

	Exception Handling in Orbix
	An Example of Raising and Handling Exceptions
	The Generated C++ Code for User-Defined Exceptions
	Handling Exceptions in a Client
	Handling Specific System Exceptions
	Information Available in System Exceptions
	Throwing a System Exception

	Using Inheritance of IDL Interfaces
	The IDL Interfaces
	The Generated C++ Code

	Implementation Class Hierarchies
	The Implementation Classes
	Using Inheritance in a Client
	Multiple Inheritance of IDL Interfaces

	Orbix Connections and Events
	Overview of the Direct API to Orbix
	Initializing a Connection to the ORB
	Obtaining Initial Object References

	Managing Orbix Connections and Events
	Establishing Connections between Clients and Servers
	Event Processing in Orbix

	Advanced Programming Topics
	Developing Collocated Clients and Servers
	Testing for the Presence of Collocation
	Writing Code for both Collocation and Distribution

	Determining Locality of Objects
	Determining Hierarchy of Objects
	Casting from Interface to Implementation Class
	Actions when Proxy Code is Unavailable
	Multiple Implementations of an Interface
	Multiple Interfaces per Implementation
	Using the TIE Approach
	Using the BOAImpl Approach

	Passing Context Information to IDL Operations
	Receiving Diagnostic Messages from Orbix

	Dynamic Orbix C++ Programming
	The TypeCode Data Type
	Overview of the TypeCode Data Type
	Implementation of TypeCode in Orbix
	CORBA::TypeCode_ptr Constants
	TypeCode Public Members
	CORBA::TypeCode::IT_create()

	Examples of Using TypeCode
	Use of TypeCode in Type CORBA::Any
	Use of TypeCode when Querying the Interface Repository

	The Any Data Type
	Inserting Data into an Any with operator<<=()
	Inserting a Basic Type
	Inserting a User-Defined Type

	Interpreting an any with operator>>=()
	Interpreting a Basic Type
	Interpreting a User-Defined Type

	Other Ways to Construct and Interpret an Any
	Inserting Values at Construction Time
	Low Level Access to a CORBA::Any
	Inserting and Extracting Array Types
	Inserting and Extracting boolean, octet and char

	Any Constructors, Destructor and Assignment
	Any as a Parameter or Return Value

	Dynamic Invocation Interface
	Using the DII
	Programming Steps in Using the DII

	The CORBA Approach to Using the DII
	Setting up a Request
	Setting up a Request Using _request()
	Setting up a Request Using _create_request()
	Using the Interface Repository when Setting Up a Request
	Invoking a Request
	Retrieving the Results of a Request
	Getting Information About a Request Object

	The Orbix-Specific Approach to Using the DII
	Setting Up a Request
	Invoking a Request
	Retrieving the Results of a Request
	Additional Information About operator<<()

	Dynamic Skeleton Interface
	Uses of the DSI
	Using the DSI
	Creating CORBA::DynamicImplementation Objects
	Registering CORBA::DynamicImplementation Objects

	Example of Using the DSI
	Example of Using params()

	The Interface Repository
	Configuring the Interface Repository
	Runtime Information about IDL Definitions
	The Structure of Interface Repository Data
	Containment Relationships
	Simple Types

	Abstract Interfaces in the Interface Repository
	Class Hierarchy and Abstract Base Interfaces
	The Interface IRObject

	Containment in the Interface Repository
	Containment interface types
	The Contained Interface
	The Container Interface
	Containment Descriptions

	Type Interfaces in the Interface Repository
	Named Types
	Unnamed Types

	Retrieving Information about IDL Definitions
	CORBA::Object::_get_interface()
	Browsing or Listing a Repository
	Finding an Object Using its Repository ID

	Example of Using the Interface Repository
	Repository IDs
	Pragma Directives

	Advanced Orbix C++ Programming
	Filtering Operation Calls
	Introduction to Per-process Filters
	Pre-marshalling Filter Points
	Post-marshalling Filter Points
	Failure Points

	Introduction to Per-Object Filters
	Using Per-Process Filters
	An Example Per-Process Filter
	Installing a Per-Process Filter
	Raising an Exception in a Filter
	Piggybacking Extra Data to the Request Buffer
	Defining an Authentication Filter

	Using Per-Object Filters
	IDL Compiler Switch to Enable Object Filtering

	Using Smart Proxy Classes
	Management of Proxies by Proxy Factories
	Generating Smart Proxies
	A Simple Smart Proxy Example
	The Account IDL Interface
	Defining a New Proxy Class

	Callbacks from Servers to Clients
	Implementing Callbacks in Orbix
	Defining the IDL Interfaces
	Implementing the IDL Interfaces
	Writing the Client
	Writing the Server
	Preventing Deadlock in a Callback Model
	Using Non-Blocking Operation Invocations
	Using Multiple Threads of Execution

	Callbacks and Bidirectional Connections

	Loading Objects at Runtime
	Overview of Creating a Loader
	Installing a Loader
	Specifying a Loader for an Object

	Loaders and Object Naming
	Naming Objects

	Loading Objects
	Saving Objects
	Writing a Loader
	Example Loader
	The IDL Interface
	Implementing the IDL
	Coding the Loader
	Loaders are Transparent to Clients

	Using Opaque Types in IDL
	Using Opaque Types
	IDL Definitions
	Mapping of Opaque Types to C++
	Memory Management Rules
	Implementing an Opaque Type
	Implementing an Interface that uses an Opaque Type

	Transforming Requests
	Transforming Request Data
	The IT_reqTransformer Class
	Registering a Transformer

	An Example Transformer

	Using Threads with Orbix
	Benefits of Multi-threaded Clients and Servers
	Multi-threaded Servers
	Multi-threaded Clients
	Comparison with Non-Blocking Calls

	Thread Programming in Orbix
	Compiling Orbix Applications
	Operating System Support for Creating Threads
	Creating a Thread to Handle a Request

	Concurrency Control
	Models of Thread Support
	Implementing Models of Thread Support

	Changing Internal Orbix Thread Creation

	Service Contexts in Orbix
	The Orbix Service Context API
	ServiceContextHandler Class
	ORB Interfaces
	ServiceContextList

	Using Service Contexts in Orbix Applications
	ServiceContext Per-Request Model
	ServiceContext Per-Object Model
	Main Components of the Service Context Model

	Service Context Handlers and Filter points

	Appendix
	Orbix IDL Compiler Options

	Index

