
First Northern Bank Developer’s
Introduction

Version 6.1, December 2003

IONA, IONA Technologies, the IONA logo, Orbix, Orbix/E, Orbacus, Artix, Orchestrator,
Mobile Orchestrator, Enterprise Integrator, Adaptive Runtime Technology, Transparent
Enterprise Deployment, and Total Business Integration are trademarks or registered
trademarks of IONA Technologies PLC and/or its subsidiaries.
Java and J2EE are trademarks or registered trademarks of Sun Microsystems, Inc. in the
United States and other countries.
CORBA is a trademark or registered trademark of the Object Management Group, Inc. in
the United States and other countries. All other trademarks that appear herein are the
property of their respective owners.
While the information in this publication is believed to be accurate, IONA Technologies PLC makes no warranty of
any kind to this material including, but not limited to, the implied warranties of merchantability and fitness for a
particular purpose. IONA Technologies PLC shall not be liable for errors contained herein, or for incidental or
consequential damages in connection with the furnishing, performance or use of this material.

COPYRIGHT NOTICE
No part of this publication may be reproduced, stored in a retrieval system or transmitted, in any form or by any
means, photocopying, recording or otherwise, without prior written consent of IONA Technologies PLC. No third
party intellectual property right liability is assumed with respect to the use of the information contained herein.
IONA Technologies PLC assumes no responsibility for errors or omissions contained in this book. This publication
and features described herein are subject to change without notice.

Copyright © 2001–2003 IONA Technologies PLC. All rights reserved.

All products or services mentioned in this manual are covered by the trademarks, service marks, or product
names as designated by the companies who market those products.

Updated: 13-Feb-2004

M 3 1 2 5

Contents

List of Figures vii

Preface ix

Part I CORBA Bank Application

Chapter 1 Back-End CORBA Server 3
Design of the Back-End Server 4
IDL for the Back-End Server 7
Architecture 13
Designing the POA Hierarchy 14
Implementing the Account Interfaces 17

Implementing Interfaces Using the Delegation Approach 18
Implementation of the Account Interface 21
Persistence Mechanism for Account Objects 30

Lifecycle of Account Objects 32
Implementing the AccountMgr Interface 36

Implementing Interfaces Using the Inheritance Approach 37
Implementation of the AccountMgr Interface 39

Publishing the AccountMgr Object Reference 43

Chapter 2 Middle-Tier CORBA Server 47
Design of the Middle-Tier Server 48
IDL for the Middle-Tier Server 51
Designing the POA Hierarchy 55
Resolving the AccountMgr Object Reference 57
Implementing the BusinessSession Interfaces 60

Chapter 3 Java CORBA Client 63
Design of the CORBA Client 64

The Open Account Dialog 66
iii

CONTENTS
The New Account Dialog 67
The Lodge Funds Dialog 69
The Withdraw Funds Dialog 70
The Transfer Funds Dialog 71

Using Forte for Java and NetBeans 72
Resolving the BusinessSessionManager Object Reference 77
Implementation of the Java CORBA Client 81
Implementation of the Open Account Dialog 83

Part II J2EE Internet Banking

Chapter 4 J2EE AllDayBanking Application 89
Architecture of the J2EE Application 90
Overview of the J2EE Development Cycle 92
Source Code Organization (EARSCO) 94
Building and Packaging the J2EE Application 98

Directory Structure in an EAR File 100
Directory Structure in an EJB Module JAR File 102
Directory Structure in a Web Module WAR File 105

Chapter 5 Accessing the CORBA Back-End 109
Overview of the EJB to CORBA Link 110
Using Orbix Connect and JBoss 112
Creating the IDL Stub JAR File 119
Accessing the Stub JARs from EJB 121

Chapter 6 EJB Middle-Tier 123
The InetAccount Session Bean 124

Anatomy of a Session Bean 125
EJB Session Bean Life Cycle Methods 128
Session Bean Configuration 131

The User Entity Bean 135
Anatomy of an Entity Bean 136
EJB Entity Bean Life Cycle Methods 139
Entity Bean Configuration 142
Container-Managed Persistence in JBoss 145
 iv

CONTENTS
Chapter 7 J2EE Presentation Layer 149
Overview of the Presentation Layer 150
Worker Beans 154

The CustomerSession Bean 155
The NewRegSession Bean 158
The WebHelper Class 160

Using a JSP to Process a Web Form 161
The Login Web Form 163
The New User Registration Web Form 167

Using a JSP to Access an Enterprise Bean 173

Part III COMet and .NET Clients

Chapter 8 Visual Basic COMet Client 177
Overview of the Visual Basic Client 178
Implementation of the Visual Basic Client 182

Starting the ATM Session 183
Showing Account Details 186
Withdrawing Cash 188

Chapter 9 C# .NET Client 191
Overview of the C# Client 192
Implementation of the C# Client 196

Importing .NET Metadata 197
Initializing the Online Purchasing Manager Client 198

Index 201
v

CONTENTS
 vi

List of Figures

Figure 1: Inheritance Hierarchy for Account Types 5

Figure 2: POA Hierarchy for the Back-End Server 15

Figure 3: Relationship Between a Tie Object and its Delegate 18

Figure 4: Classes and Interfaces Needed for the Delegation Approach 19

Figure 5: Java Inheritance Hierarchy for Account Types 21

Figure 6: Lifecycle of an Account Object 32

Figure 7: Creating an Account Object 33

Figure 8: Opening an Account Object 34

Figure 9: Updating an Account Object 35

Figure 10: Classes Needed for the Inheritance Approach 38

Figure 11: Publishing an Object Reference in the CORBA Naming Service 44

Figure 12: Inheritance Hierarchy for BusinessSession Types 48

Figure 13: POA Hierarchy for the Middle-Tier Server 55

Figure 14: Resolving the AccountMgr Object Reference 57

Figure 15: Java Inheritance Hierarchy for the Delegate Objects 60

Figure 16: The Main Screen of the Java CORBA Client 65

Figure 17: The Open Account Dialog Window 66

Figure 18: The New Account Dialog Window 67

Figure 19: The Lodge Funds Dialog Window 69

Figure 20: The Withdraw Funds Dialog Window 70

Figure 21: The Transfer Funds Dialog Window 71

Figure 22: Editing the Transfer Funds Dialog within the Forte for Java IDE 73

Figure 23: Viewing the transferFunds.java file in the Source Editor 75

Figure 24: Establishing a Connection to the Middle-Tier Server 77

Figure 25: Relationship Between the Main Screen and a Dialog Window 81

Figure 26: Architecture of the J2EE AllDayBanking Application 90
vii

LIST OF FIGURES
Figure 27: The J2EE Development Cycle 92

Figure 28: The Enterprise Application Archive Source Code Organization 95

Figure 29: Standard Layout of an EAR File 100

Figure 30: Layout of an EJB Module JAR File 102

Figure 31: Standard Layout of a Web Module WAR File 105

Figure 32: The EJB Middle-Tier Accesses the CORBA Back-End 110

Figure 33: EJB to CORBA Connectivity Using Orbix Connect and JBoss 113

Figure 34: Structure of the InetAccountBean Session Bean Class 126

Figure 35: Structure of the UserBean Entity Bean Class 137

Figure 36: Overview of Container-Managed Persistence 145

Figure 37: Overview of the J2EE Presentation Layer for AllDayBanking 150

Figure 38: Processing Web Form Data Using a JSP 161

Figure 39: The Login Page of the AllDayBanking Application 163

Figure 40: The New User Registration Page of the AllDayBanking Application 168

Figure 41: Architecture of the Visual Basic ATM Client Application 178

Figure 42: The ATM Client Welcome Screen 180

Figure 43: Architecture of the C# Online Purchasing Client Application 192

Figure 44: The Online Purchasing Manager C# Client 195
 viii

Preface
This document provides developers with a compact overview of the
technologies supported by Orbix product. The CORBA, J2EE, COMet, and
.NET connector technologies are introduced and discussed in the context of
the First Northern Bank demonstration, which provides a source of
examples throughout. Detailed discussions of the topics introduced in this
document can be found in the relevant Orbix developer guides.

Audience This book is aimed at the following developers:

• CORBA developers—who want to develop server or client applications
in Java. The prerequisites are a good knowledge of Java and familiarity
with basic CORBA concepts.

• J2EE developers—who want to develop Enterprise JavaBean servers
and Web applications. The prerequisites are a good knowledge of Java
and a basic knowledge of XML.

• Visual Basic developers—who want to write an application that
communicates with a CORBA server through IONA’s COMet bridge.

• C# developers—who want to write an application that communicates
with a CORBA server through IONA’s .NET Connector.
ix

PREFACE
Organization of this guide This guide is divided as follows:

Part I “CORBA Bank Application”

This part discusses the CORBA components of the First Northern Bank
demonstration. The CORBA bank application has three tiers: CORBA
back-end, CORBA middle-tier, and Java CORBA client.

Part II “J2EE Internet Banking”

This part begins with an overview of the J2EE development cycle and then
discusses the J2EE components of the First Northern Bank demonstration.
The J2EE Internet banking application has three tiers: CORBA back-end,
EJB middle-tier, and Web presentation layer.

Part III “COMet and .NET Clients”

This part provides a brief introduction to developing Visual Basic COMet
clients and C# .NET clients.

Related documentation The following documents also discuss the FNB demonstration:

• First Northern Bank Business Case

• First Northern Bank Tutorial

The following documents complement this guide by providing a more
detailed discussion of the concepts introduced here:

• CORBA Programmer’s Guide

• J2EE Technology Developer’s Guide

The latest updates to the Orbix documentation can be found at http://
www.iona.com/support/docs.

Additional resources The IONA knowledge base (http://www.iona.com/support/knowledge_base/
index.xml) contains helpful articles, written by IONA experts, about the
Orbix and other products. You can access the knowledge base at the
following location:

The IONA update center (http://www.iona.com/support/updates/index.xml)
contains the latest releases and patches for IONA products:

If you need help with this or any other IONA products, contact IONA at
support@iona.com. Comments on IONA documentation can be sent to

.

 x

http://www.iona.com/support/docs
http://www.iona.com/support/docs
mailto:support@iona.com
http://www.iona.com/support/knowledge_base/index.xml
http://www.iona.com/support/updates/index.xml

PREFACE
Typographical conventions This guide uses the following typographical conventions:

Constant width Constant width (courier font) in normal text
represents portions of code and literal names of items
such as classes, functions, variables, and data
structures. For example, text might refer to the
CORBA::Object class.

Constant width paragraphs represent code examples
or information a system displays on the screen. For
example:

#include <stdio.h>

Italic Italic words in normal text represent emphasis and
new terms.

Italic words or characters in code and commands
represent variable values you must supply, such as
arguments to commands or path names for your
particular system. For example:

% cd /users/your_name

Note: Some command examples may use angle
brackets to represent variable values you must
supply. This is an older convention that is replaced
with italic words or characters.
xi

PREFACE
Keying conventions This guide may use the following keying conventions:

No prompt When a command’s format is the same for multiple
platforms, a prompt is not used.

% A percent sign represents the UNIX command shell
prompt for a command that does not require root
privileges.

A number sign represents the UNIX command shell
prompt for a command that requires root privileges.

> The notation > represents the DOS or Windows
command prompt.

...

.

.

.

Horizontal or vertical ellipses in format and syntax
descriptions indicate that material has been
eliminated to simplify a discussion.

[] Brackets enclose optional items in format and syntax
descriptions.

{ } Braces enclose a list from which you must choose an
item in format and syntax descriptions.

| A vertical bar separates items in a list of choices
enclosed in { } (braces) in format and syntax
descriptions.
 xii

Part I
CORBA Bank Application

In this part This part contains the following chapters:

Back-End CORBA Server page 3

Middle-Tier CORBA Server page 47

Java CORBA Client page 63

CHAPTER 1

Back-End CORBA
Server
This chapter discusses the design and implementation of the
back-end CORBA server. Starting from a high-level design, the
object interfaces are defined in the OMG interface definition
language (IDL) and then implemented in Java.

In this chapter This chapter discusses the following topics:

Design of the Back-End Server page 4

IDL for the Back-End Server page 7

Architecture page 13

Designing the POA Hierarchy page 14

Implementing the Account Interfaces page 17

Lifecycle of Account Objects page 32

Implementing the AccountMgr Interface page 36

Publishing the AccountMgr Object Reference page 43
3

CHAPTER 1 | Back-End CORBA Server
Design of the Back-End Server

Purpose of the back-end server The purpose of the back-end server is to provide the basic business objects
for the bank application—in this demonstration, Account objects. The
back-end server has the following general characteristics:

• Provides close integration with persistent storage—the CORBA
back-end server consists of a wrapper around a database that stores
the business data.

• Provides an implementation of Account CORBA objects—the account
data thus becomes accessible to other distributed applications.

• Ignores presentation requirements—the back-end server is not
concerned with the way in which clients access and use the Account
objects. This is left to other parts of the distributed application.

Object-oriented design and
CORBA

CORBA fits in well with object-oriented design methodologies. For example,
a formal design specified in UML (Unified Modelling Language) can be used
as the basis for defining the interfaces for CORBA objects.

The use of distributed technology does have an impact on the formal design,
however. For example, for a class that will be implemented as a CORBA
type, it is advisable to modify the design to minimize the number of remote
invocations that are required to use the class.
 4

Design of the Back-End Server
CORBA object types Figure 1 shows the inheritance hierarchy for the object types implemented
in the back-end server.

AccountMgr Type A single object of AccountMgr type is created to manage and provide access
to the Account objects. Methods defined on the AccountMgr type follow the
pattern for a factory/finder type. Because constructor methods cannot be
exposed to remote clients, a factory object such as AccountMgr is needed in
order to:

• Create new Account objects.

• Find existing Account objects—two alternative search methods are
supported:

♦ lookup by account number, and

♦ listing all accounts of a particular type.

Account Type The Account class is an abstract base class for the other account types. A
number of attributes are defined on the Account class:

• Account number.

• Owner details (name and address).

• A list of recent transactions.

Methods are also defined on the Account class, as follows:

• Deposit and withdraw cash.

• Transfer money in or out of the account.

Figure 1: Inheritance Hierarchy for Account Types

CreditCardAccount

Account

CurrentAccount SavingsAccount

AccountMgr
5

CHAPTER 1 | Back-End CORBA Server
CurrentAccount Type The CurrentAccount type inherits from Account. The following attribute is
added:

• overdraftlimit—a readonly attribrute that returns the current
overdraft limit.

The following method is added:

• approveNewOverdraft()—request approval for a new overdraft limit.
The method returns TRUE if the new limit is approved.

CreditCardAccount Type The CreditCardAccount type inherits from Account. The following attributes
are added:

• Credit limit.

• Interest rate on overdue payments.

The following methods are added:

• Authorize an amount of money to be spent.

• Make a purchase, based on an authorization code.

• Calculate the interest due on late payments.

SavingsAccount Type The SavingsAccount type inherits from Account, adding no new attributes or
methods.
 6

IDL for the Back-End Server
IDL for the Back-End Server

OMG interface definition language The OMG interface definition language (IDL) is a purely declarative
language, with a syntax similar to C++ and Java, that is used to define the
interfaces for CORBA objects. The most important entities that can be
defined in IDL are IDL interfaces, which are analogous to C++ abstract
classes or Java interfaces.

Language neutrality of IDL The advantage of OMG IDL is that it enables you to define distributed
interfaces in a language-neutral manner.

A server developer can use IDL to define the service provided to clients,
irrespective of the language or platform used on the server side. Conversely,
a client programmer can use IDL as a blueprint for accessing the service,
irrespective of the language or platform used on the client side.

The IDL compiler To access the definitions expressed in IDL, it is necessary to compile the IDL
into a target language such as C++ or Java. This is accomplished using the
IDL compiler, which takes an IDL file as input and generates stub files and
skeleton files as output.

Orbix provides the IDL compiler as a command line tool, idl.

Account IDL The code listing in Example 1 shows the main IDL file used by the back-end
server, idl/Account.idl. This IDL file defines all of the CORBA interfaces
implemented by the back-end server.

Example 1: The Account IDL File

// IDL
1 #ifndef ACCOUNT_IDL

#define ACCOUNT_IDL

// Exceptions raised in this file

2 module bankobjects {
3 typedef long accountNum;
4 typedef sequence<accountNum> accountNumList;
7

CHAPTER 1 | Back-End CORBA Server
5 exception INSUFFICIENT_FUNDS {};
 exception CANNOT_CLOSE_ACCOUNT {};
 exception ACCOUNT_DOESNT_EXIST {};
 exception FAILED_TO_AUTHORIZE {};

6 struct address {
 string address_1;
 string address_2;
 string address_3;
 };

 // Stucture to hold information on what a customer
 // is doing with the bank
 struct BankTransaction {
 short id;
 string date;
 string record_type;
 string value;
 };

7 typedef sequence<BankTransaction> AccountTransactions;
8 interface Account;

9 interface AccountMgr {
10 Account openAccount (in accountNum accountNumber)

 raises (ACCOUNT_DOESNT_EXIST);
 Account newAccount (in string accountType);
 void closeAccount (in accountNum accountNumber)
 raises (CANNOT_CLOSE_ACCOUNT);

 accountNumList getCurrentAccountList ();
 accountNumList getCreditCardList ();
 };

 interface Account {
11 readonly attribute accountNum accountnumber;

 readonly attribute address addr;
 readonly attribute string accountType;

12 attribute string firstname;
 attribute string lastname;

 readonly attribute float accountBalance;

Example 1: The Account IDL File
 8

IDL for the Back-End Server
 readonly attribute AccountTransactions
 recentTransactions;

 // Update methods
 boolean makeLodgement (in float amount);
 boolean withdrawFunds (in float amount)
 raises (INSUFFICIENT_FUNDS);
 boolean updateAddress (in address newAddress);

 void transferFundsIn (in float amount);
 void transferFundsOut (in float amount)
 raises (INSUFFICIENT_FUNDS);

 // Admin stuff
 void sendStatement ();
 };

13 interface CurrentAccount : Account {
 readonly attribute float overdraftLimit;

 // Account maintenace routines
 boolean approveNewOverdraft (in float amount);
 };

 interface SavingsAccount : Account {
 };

 typedef short authorizationCode;

 interface CreditCardAccount : Account {
 attribute float limit;
 attribute float interest_rate;

 // Calculate how much interest is owed on this account
 float calculateInterest ();

 // Basic operations on a credit card
 authorizationCode authoriseAmount (in float amount)
 raises (FAILED_TO_AUTHORIZE);
 boolean makePurchase (in string vendor, in float amount,
 in authorizationCode auth_code);
 };

}; // Module
#endif //ACCOUNT_IDL

Example 1: The Account IDL File
9

CHAPTER 1 | Back-End CORBA Server
The preceding code can be explained as follows:

1. An IDL file can contain preprocessor macros, similar to the C and C++
languages. The start of a macro is signalled by a # character at the
beginning of a line.

In this example, the #ifndef, #define, and #endif preprocessor
macros guard against multiple inclusion of this file into other IDL files.

2. The definitions in this file are enclosed within the bankobjects
module. An IDL module is a scooping mechanism for IDL (conceptually
similar to a namespace in C++ or a package in Java).

All of the entities defined in the scope of the bankobjects module gain
bankobjects:: as a prefix. For example, bankobjects::Account is the
fully scoped identifier for the Account interface.

3. The typedef construction is grammatically similar to typedef in C and
C++. In this example, accountNum becomes a synonym for the IDL
long type (32-bit signed integer).

4. This line defines a sequence type, accountNumList, defined as an
unbounded sequence of integers, accountNum. A sequence is similar to
a one-dimensional array except that its length can be arbitrary.

For example, the IDL-to-Java mapping specifies that the IDL sequence
type, accountNumList, maps to a Java array, accountNum[], where the
size of the Java array can be chosen arbitrarily.

5. This line and the following lines define some IDL user exception types.
The syntax for declaring an IDL user exception is similar to the syntax
of a C++ struct, except that the struct keyword is replaced by the
exception keyword. The exception definitions shown here have an
empty body, {}, because there is no data associated with these
exceptions.

6. The syntax for declaring an IDL struct is similar to the syntax of a
C++ struct. The closest Java analogy is a class that declares only
member variables.

For example, the address struct type contains three strings
corresponding to the three fields of an address, address_1, address_2,
and address_3.
 10

IDL for the Back-End Server
7. The typedef declares an unbounded sequence, AccountTransactions,
that holds a list of BankTransaction structs. A sequence should always
be declared using a typedef construction.

8. This is an example of a forward declaration of an interface, Account.
This enables the Account type to be referenced before it is defined. The
actual definition of the Account interface appears further on.

9. This line introduces the definition of an IDL interface, AccountMgr.
Interfaces are the most important sort of definition in IDL. An IDL
interface defines the attributes and operations for CORBA objects of a
particular type.

10. This line shows an example of an IDL operation, openAccount(). The
syntax for declaring an IDL operation is similar to the definition of a
member function in C++ or a method in Java. A raises() clause
introduces the list of user exceptions that can be thrown by this
operation.

11. Declaring a readonly attribute in an interface specifies that the
interface implementation will include an accessor method that enables
you to retrieve the attribute value.

For example, when the accountnumber readonly attribute is mapped to
Java, the following method appears in the Account implementation
class:

12. Declaring a plain attribute in an interface specifies that the interface
implementation will include both an accessor and a modifier method
that enables you both to retrieve and to update the attribute’s value.

// Java
 ...
 // In the scope of the Account implementation class:
 int accountnumber() {
 // return the value of the account number
 ...
 };
11

CHAPTER 1 | Back-End CORBA Server
For example, when the firstname attribute is mapped to Java, the
following pair of methods appear in the Account implementation class:

13. The CurrentAccount interface inherits from Account. IDL inheritance is
indicated using : (colon). Multiple inheritance is supported in IDL.

// Java
 ...
 // In the scope of the Account implementation class:
 string firstname() {
 // return the firstname string
 ...
 };
 void firstname(string s) {
 // update the firstname string value
 ...
 };
 12

Architecture
Architecture

Overview After defining the application IDL, a range of architectural choices remain
open for the implementation of the back-end server. The following aspects
of the implementation architecture can be decided at this point:

• Programming language.

• Code generation.

• Persistence mechanism.

• Services.

Programming language Because of the OMG IDL’s language neutrality, you can choose between a
range of programming languages. COBOL, PL/I, Java, C, and C++
mappings have all been standardized by the OMG.

Code generation Orbix provides a CORBA Code Generation Toolkit (CCGT) for developing
CORBA applications in C++ and Java. The CCGT takes an IDL file as input
and generates an outline C++ or Java application based on the IDL.

Code generation can be particularly beneficial in the context of large-scale
projects using a lot of IDL. Customization of the CCGT is possible (and
recommended) if you have some expertise in TCL (Tool Command
Language) programming.

Persistence mechanism You can use any standard persistence mechanism, such as a commercial
database, file-based storage, or serialized objects. CORBA does not
constrain your choice in any way, but it does provide an extra option: the
CORBA Persistent State Service (PSS), which is a persistence layer that is
closely integrated with CORBA technology.

Services Orbix provides a range of integrated services, including the following:

• Security with SSL/TLS.

• Transaction support with OTS-Lite or full OTS.

• Session management, using the session management plug-in.
13

CHAPTER 1 | Back-End CORBA Server
Designing the POA Hierarchy

Role of the POA The role of the Portable Object Adapter (POA) is to manage a collection of
CORBA objects in a specific way. There can be more than one POA in an
application, with each POA instance configured to manage different
collections of CORBA objects in different ways.

The main responsibilities of the POA are the following:

• Activating CORBA objects—A CORBA object cannot receive CORBA
invocations until it is activated. The POA then becomes responsible for
routing invocations to the CORBA object.

• Managing the lifecycle of CORBA objects—a POA instance can be
configured to manage the object lifecycle in one of several different
ways:

♦ Some POA configurations are designed to manage CORBA objects
that are created and activated once.

♦ Other POA configurations are designed to load and unload
CORBA objects dynamically, in response to demand. See also
“Lifecycle of Account Objects” on page 32.

• Defining the threading policy—a POA instance can be configured to
be either single or multi-threaded:

♦ In a single-threaded POA, a CORBA object is guaranteed to
receive invocations sequentially.

♦ In a multi-threaded POA, a CORBA object can receive invocations
concurrently.
 14

Designing the POA Hierarchy
Activation Activation is a crucial step that makes a CORBA object accessible to remote
clients.

Activation affects a CORBA object as follows:

• Associates the CORBA object with a particular POA instance—the
POA is then responsible for routing invocations to the object
implementation.

• Gives an identity to the CORBA object—by associating an object ID
with the object. An object ID is an array of bytes that, together with the
associated POA name, uniquely identifies the CORBA object.

POA hierarchy for the back-end
server

Figure 2 shows the POA hierarchy used for the back-end server. The root
POA (which is present at the root of every POA hierarchy) has two children:

• A POA for managing AccountMgr objects (named AccountManager),

• A POA for managing Account objects (named BankObjects).

Figure 2: POA Hierarchy for the Back-End Server

"AccountManager"
POA

"BankObjects" POA

root POA

AccountMgr ObjectAccount Objects
15

CHAPTER 1 | Back-End CORBA Server
POA policies A POA instance is configured by setting its POA policies, which can only be
set at the time the POA instance is created.

For example, the following policy types are often customized when a POA is
created:

• The LifespanPolicy—object life spans are either bounded by a single
run of the application (TRANSIENT), or they are unbounded and valid for
many runs of the application (PERSISTENT).

• The IdAssignmentPolicy—object IDs can be assigned explicitly by the
developer (USER_ID), or generated automatically by the ORB
(SYSTEM_ID).

• The ThreadPolicy—can be either single threaded
(SINGLE_THREAD_MODEL), or multi-threaded (ORB_CTRL_MODEL).

AccountManager POA The AccountManager POA is created to manage the AccountMgr object (only
one object of AccountMgr type is ever created). The AccountMgr object is
created and activated when the application starts up and remains active for
as long as the application is running.

Because the lifecycle of the AccountMgr object is very simple, there are no
special requirements on the AccountManager POA which, therefore, uses
mostly default POA policies.

BankObjects POA The BankObjects POA is created to manage Account objects. The number of
Account objects is potentially very large and it is not practical to store all of
the objects in memory at the same time. The back-end server adopts the
strategy of loading Account objects into memory only when they are needed
(that is, in response to bankserver::AccountMgr::openAccount() operation
invocations).

Because of the special requirements for managing the lifecycle of Account
objects, the BankObjects POA is specially configured to use a servant
locator. See “Lifecycle of Account Objects” on page 32 for details.
 16

Implementing the Account Interfaces
Implementing the Account Interfaces

Overview One the server developer’s main tasks is to implement the back-end IDL
interfaces. This section describes the general approach to implementing the
Account interfaces for the back-end server (Account, CurrentAccount, and
CreditCardAccount), focusing mainly on the CORBA aspects.

In this section This section contains the following subsections:

Implementing Interfaces Using the Delegation Approach page 18

Implementation of the Account Interface page 21

Persistence Mechanism for Account Objects page 30
17

CHAPTER 1 | Back-End CORBA Server
Implementing Interfaces Using the Delegation Approach

Overview There are two alternative approaches to implementing an IDL interface in
Java:

• The delegation (or TIE) approach—as described in this subsection.

• The inheritance approach—as described in “Implementing Interfaces
Using the Inheritance Approach” on page 37.

In Java, the delegation approach predominates because it gets around the
Java limitations on multiple inheritance. By contrast, the inheritance
approach runs into difficulties as soon as the IDL interface to be
implemented inherits from just one other IDL interface.

The delegation approach With the delegation approach, a single CORBA object is implemented using
two Java objects: a tie object, of InterfaceNamePOATie type, and a delegate
object, conventionally of InterfaceNameDelegate type. Figure 3 shows the
relationship between a tie object and its delegate.

Together, the tie object and its delegate cooperate to provide the
implementation of the IDL attributes and operations, as follows:

• The delegate object has the code that implements the IDL attributes
and operations.

The InterfaceNameDelegate class is written by the application
developer.

• The tie object caches a reference to the delegate object and uses the
cached reference to forward method invocations to the delegate. The
tie object is a servant (in Java, it inherits from the
org.omg.PortableServer.Servant interface).

Figure 3: Relationship Between a Tie Object and its Delegate

InterfaceNamePOATie InterfaceNameDelegate

Tie Object
Delegate

Object
 18

Implementing the Account Interfaces
The InterfaceNamePOATie class is generated automatically by the IDL
compiler.

Servants A servant is an object that provides the implementation code for an IDL
interface. It is incorrect, however, to regard a servant as a CORBA object. A
CORBA object is composed of a servant and an identity (object ID), a
composition created by activating the CORBA object. A servant on its own
has no identity.

In the delegation approach the tie object is effectively the servant object,
because it inherits from the servant base class. However, there is a sense in
which both the tie object and the delegate object together constitute the
servant because it is the combination of these two objects that provides the
implementation code.

Instantiating a TIE servant A tie servant for the CurrentAccount type is instantiated as follows:

Classes and interfaces needed for
the delegation approach

Figure 4 shows some of the Java classes and interfaces needed for the
delegation approach.

// Java
package bankobjects;
...
 // Step 1: Create the delegate object.
 CurrentAccountDelegate deleg = new CurrentAccountDelegate();

 // Step 2: Create the TIE object.
 org.omg.PortableServer.Servant tie_servant
 = new CurrentAccountPOATie(deleg);

Figure 4: Classes and Interfaces Needed for the Delegation Approach

InterfaceNamePOA

InterfaceNamePOATie InterfaceNameDelegate

InterfaceNameOperations

Generated
Classes

Generated Java
Interface
19

CHAPTER 1 | Back-End CORBA Server
The InterfaceNameDelegate class must implement the
InterfaceNameOperations Java interface. This ensures that all of the
InterfaceName operations and attributes are actually implemented by the
delegate class.

The InterfaceNamePOATie class inherits from the InterfaceNamePOA class,
which ensures that it is the correct type of servant for the InterfaceName
IDL interface.

Implementing the delegate class There are two possible starting points for implementing the delegate class:

• Use the CORBA Code Generation Toolkit—the code generation toolkit
can create the outline of a working application based on an IDL file.

For example, by generating code from the Account.idl file using the
java_poa_genie.tcl code generation genie you can obtain an initial
version of the Account delegate class (you will need to specify the -tie
option to the genie). See the CORBA Programmer’s Guide for details of
this approach.

• Use a stub file as a template for the delegate class—one of the steps
involved in building a CORBA application is to compile your IDL using
the IDL compiler. This produces stub files in your target programming
language (for example C++ or Java).

Some of the stub files have a form that is similar to the form required
for a delegate class. These stub files can be copied and modified
appropriately to provide the initial versions of your delegate classes.

Note: This approach (stub file as a template) is recommended only
for advanced CORBA developers.
 20

Implementing the Account Interfaces
Implementation of the Account Interface

Overview The Account IDL interface is implemented using the delegation approach
(see “Implementing Interfaces Using the Delegation Approach” on page 18).
The main task for the developer is to implement the delegate class,
AccountDelegate, which has corresponding methods for all of the Account
operations and attributes.

Java inheritance hierarchy Usually, the most convenient way to implement an IDL inheritance
hierarchy (see Figure 1 on page 5) is to implement a Java inheritance
hierarchy amongst the delegate classes that parallels the IDL one. Figure 5
shows the resulting Java inheritance hierarchy for the Account types.

The AccountDelegate class is the base class for all of the other account
types. It is never instantiated directly, but it provides common code and
state for the subclasses.

The AccountDelegate class Example 2 shows an outline of the code for the AccountDelegate class.

Figure 5: Java Inheritance Hierarchy for Account Types

CreditCardAccountDelegate

AccountDelegate

CurrentAccountDelegate SavingsAccountDelegate

Example 2: The AccountDelegate Class (Sheet 1 of 7)

// Java
1 package bankobjects;

import org.omg.CORBA.*;
import org.omg.CORBA.portable.*;
import org.omg.PortableServer.POA.*;
import org.omg.PortableServer.*;
import org.omg.PortableServer.ServantLocatorPackage.*;
import org.omg.PortableServer.POAPackage.*;
21

CHAPTER 1 | Back-End CORBA Server
import java.io.*;
import java.util.*;
import java.text.*;

import org.omg.CosNaming.*;
import org.omg.CosNaming.NamingContextPackage.*;

2 public class AccountDelegate
 implements AccountOperations, Serializable
{

 // Private data
 private int m_accountNumber;
 private address m_address;

 private String m_lastname;
 private String m_firstname;

 // Transaction Data, hold the last 50 transactions
 protected BankTransaction[] m_translist = new

BankTransaction[50];
 protected int next_trans_location = 0;
 protected short next_id_num = 100;
 protected String m_accountType;

 // Balance Information
 protected float m_balance;
 public String m_filename;

3 public AccountDelegate ()
 {
 m_translist[next_trans_location] = new BankTransaction();

 m_translist[next_trans_location].id = 0;
 // get the date
 Calendar cal = Calendar.getInstance();
 DateFormat df = DateFormat.getInstance ();

 m_translist[next_trans_location].date =

df.format(cal.getTime());
 m_translist[next_trans_location].record_type = "Opened";
 m_translist[next_trans_location].value = "0.00";

 next_trans_location++;

Example 2: The AccountDelegate Class (Sheet 2 of 7)
 22

Implementing the Account Interfaces
import java.io.*;
import java.util.*;
import java.text.*;

import org.omg.CosNaming.*;
import org.omg.CosNaming.NamingContextPackage.*;

2 public class AccountDelegate
 implements AccountOperations, Serializable
{

 // Private data
 private int m_accountNumber;
 private address m_address;

 private String m_lastname;
 private String m_firstname;

 // Transaction Data, hold the last 50 transactions
 protected BankTransaction[] m_translist = new

BankTransaction[50];
 protected int next_trans_location = 0;
 protected short next_id_num = 100;
 protected String m_accountType;

 // Balance Information
 protected float m_balance;
 public String m_filename;

3 public AccountDelegate ()
 {
 m_translist[next_trans_location] = new BankTransaction();

 m_translist[next_trans_location].id = 0;
 // get the date
 Calendar cal = Calendar.getInstance();
 DateFormat df = DateFormat.getInstance ();

 m_translist[next_trans_location].date =

df.format(cal.getTime());
 m_translist[next_trans_location].record_type = "Opened";
 m_translist[next_trans_location].value = "0.00";

 next_trans_location++;

Example 2: The AccountDelegate Class (Sheet 2 of 7)
23

CHAPTER 1 | Back-End CORBA Server
 }

 // Attributes that are defined on the IDL Interface

4 public int accountnumber ()
 {
 return m_accountNumber;
 }

 public String accountType ()
 {
 return m_accountType;
 }

 public address addr ()
 {
 return m_address;
 }

 public String lastname ()
 {
 return m_lastname;
 }

 public void lastname (String lname)
 {
 m_lastname = lname;
 return;
 }

 public String firstname ()
 {
 return m_firstname;
 }

 public void firstname (String fname)
 {
 m_firstname = fname;
 return;
 }

 public BankTransaction[] recentTransactions ()
 {
 if (m_translist == null) {

Example 2: The AccountDelegate Class (Sheet 3 of 7)
 24

Implementing the Account Interfaces
 System.err.println ("m_translist is null!!!");

 } // end of if ()

 int tlen =0;
 while (m_translist[tlen] != null) {
 tlen++;
 }

 BankTransaction[] tt = new BankTransaction [tlen];
 for (int j = 0; j < tlen; j++) {

 tt[j] = m_translist[j];
 } // end of for ()

 return tt;
 }

 public float accountBalance ()
 {
 return m_balance;
 }

 // Operations that are defined on the IDL Interface

5 public boolean makeLodgement (float amnt)
 {
 m_balance += amnt;

 /* 2 decimal places */
 java.text.DecimalFormat df2
 = new java.text.DecimalFormat("#######0.00");
 String g = df2.format(amnt);

 this.addTransaction ("Lodgement", g);

 return true;
 }

 public void transferFundsIn (float amnt)
 {

 System.out.println ("in transferFundsIn with " + amnt);

Example 2: The AccountDelegate Class (Sheet 4 of 7)
25

CHAPTER 1 | Back-End CORBA Server
 m_balance += amnt;

 /* 2 decimal places */
 java.text.DecimalFormat df2
 = new java.text.DecimalFormat("#######0.00");
 String g = df2.format(amnt);

 this.addTransaction ("Transfer In", g);

 return;
 }

 public boolean withdrawFunds (float amnt)
 throws INSUFFICIENT_FUNDS
 {
 if (m_balance < amnt) {
 throw new INSUFFICIENT_FUNDS ();
 } // end of if ()

 m_balance -= amnt;

 /* 2 decimal places */
 java.text.DecimalFormat df2
 = new java.text.DecimalFormat("#######0.00");
 String g = df2.format(amnt);

 this.addTransaction ("Withdrawal", g);

 return true;
 }

 public void transferFundsOut (float amnt)
 throws INSUFFICIENT_FUNDS
 {
 if (m_balance < amnt) {
 throw new INSUFFICIENT_FUNDS ();
 } // end of if ()

 m_balance -= amnt;

 /* 2 decimal places */
 java.text.DecimalFormat df2
 = new java.text.DecimalFormat("#######0.00");
 String g = df2.format(amnt);

Example 2: The AccountDelegate Class (Sheet 5 of 7)
 26

Implementing the Account Interfaces
 this.addTransaction ("Transfer Out", g);

 return;
 }

 public boolean updateAddress (address addr)
 {
 m_address = addr;
 return true;
 }

 public void sendStatement ()
 {
 System.out.println ("Sending a statement....");
 return;
 }

 // Routines just needed by this class and its sub-classes, not

exposed via
 // IDL, so they cannot be used by any CORBA clients.

6 public void setAccountNumber (int accountNum)
 {
 m_accountNumber = accountNum;
 }

 protected void addTransaction (String type, String value)
 {
 // Make sure that we don't exceed more than 50

transactions...
 if (next_trans_location == 50)
 {
 next_trans_location = 0;
 }

 if (m_translist[next_trans_location] == null) {
 m_translist[next_trans_location] = new BankTransaction ();
 }

 m_translist[next_trans_location].id = next_id_num;
 next_id_num++;

 // get the date
 Calendar cal = Calendar.getInstance();
 DateFormat df = DateFormat.getInstance ();

Example 2: The AccountDelegate Class (Sheet 6 of 7)
27

CHAPTER 1 | Back-End CORBA Server
The preceding code can be explained as follows:

1. The AccountDelegate class is placed in the bankobjects Java
package, which corresponds to the bankobjects IDL module. There is
no requirement, however, to place your implementation classes in the
same package as the other CORBA classes. You could place the
AccountDelegate class in a completely different package if you prefer.

2. The AccountDelegate class implements the following Java interfaces:

♦ bankobjects.AccountOperations—required. The
AccountOperations Java interface declares methods for all the
attributes and operations in the Account IDL interface.

♦ java.io.Serializable—optional. Inheriting from the
Serializable class makes it possible to persist an Account object
using the Java serialization technique. See “Persistence
Mechanism for Account Objects” on page 30.

3. The AccountDelegate() constructor is never called directly because
the AccountDelegate class is intended to be used as a base class only
(the subclass constructors call this constructor). You can define as
many constructors as you like for the AccountDelegate class, but none
of them will be accessible to remote CORBA clients.

4. From this line onward, plain attributes and readonly attributes are
implemented: two overloaded Java methods for each plain attribute
(get and set), and one Java method for each readonly attribute (get).

5. From this line onward, each of the IDL operations are implemented.

 m_translist[next_trans_location].date =
df.format(cal.getTime());

 m_translist[next_trans_location].record_type = type;
 m_translist[next_trans_location].value = value;

 next_trans_location++;

 return;
 }
}

Example 2: The AccountDelegate Class (Sheet 7 of 7)
 28

Implementing the Account Interfaces
6. The methods from this line onward are designed for internal use by this
class and its subclasses. They are not defined in IDL and are not
accessible to remote CORBA clients.
29

CHAPTER 1 | Back-End CORBA Server
Persistence Mechanism for Account Objects

Overview The back-end server uses the standard Java serialization mechanism to
make Account objects persistent.

Making the delegate classes
serializable

To make a delegate class serializable, have it inherit from the
java.io.Serializable interface either directly or indirectly. For example,
the AccountDelegate class is declared as follows:

Writing a serializable class to disk A serializable object can be written to persistent storage (for example, a file
on disk) by invoking writeObject() on a Java output stream. For example,
the AccountServantLocatorImpl class defines the following method for
writing Account objects to disk:

// Java
public class AccountDelegate
 implements AccountOperations, Serializable
{
 ...
}

// Java
 ...
 void writeObject (String filename, java.lang.Object obj)
 throws IOException
 {
 ObjectOutputStream out_str = null;
 try {
 out_str = new ObjectOutputStream (
 new FileOutputStream (filename)
);
 }
 catch (IOException e) {
 // Handle exception (not shown) ...
 }

 try {
 out_str.writeObject (obj);
 }
 catch (IOException e) {
 // Handle exception (not shown) ...
 30

Implementing the Account Interfaces
 } finally {
 // Flush and close the output stream (not shown) ...
 }
 return;
 }
31

CHAPTER 1 | Back-End CORBA Server
Lifecycle of Account Objects

An Account lifecycle Figure 6 shows the lifecycle of an Account object as time evolves from left to
right across the diagram.

Figure 6 distinguishes between the different aspects of the Account object,
as follows:

• CORBA object—is created by making a record of the account state in
persistent storage. The CORBA object endures as long as the
corresponding account record exists in persistent storage.

• Delegate object—is the Java object that provides the implementation
of the Account object. It is created by reading the account state from
persistent storage (whenever AccountMgr::openAccount() is called)
and it exists until the server shuts down.

• Activation state—is managed by the ServantLocator. The Account
object is activated when a client invokes an operation on the Account
and deactivated directly afterwards.

Figure 6: Lifecycle of an Account Object

CORBA
Object

Persistent
Storage

Create
Account

Delegate
Object

Activation
State

Read
record

activate deactivate activate deactivate

Client invokes
an operation

Update
record

Update
record

Client invokes
an operation

Server shuts
down
 32

Lifecycle of Account Objects
Role of the AccountMgr and
ServantLocator objects

The AccountMgr object and the ServantLocator object (implemented as
AccountServantLocatorImpl) are together responsible for managing the
lifecycle of the Account objects.

The main responsibilities of the AccountMgr object are as follows:

• Create an account—the AccountMgr creates a delegate object for the
new account and stores the account state in a new persistent record.

• Open an account—the AccountMgr reads the state of the specified
account from persistent storage and creates a delegate object for it.

The main responsibilities of the ServantLocator object are, as follows:

• Keep a hash table with references to all of the existing delegate
objects.

• Whenever a client makes an invocation on a particular Account object,
activate the Account object for the duration of the invocation.

• At the end of an invocation, deactivate the Account object and update
the state of the account in persistent storage.

Creating an Account object Figure 7 shows how the AccountMgr object and the ServantLocator object
are involved in the creation of an Account object.

Figure 7: Creating an Account Object

addObjImpl()
Create

AccountDelegate
object

Servant
Locator

AccountMgr
Instance

1
3

Store Account record2
33

CHAPTER 1 | Back-End CORBA Server
In response to an invocation of newAccount(), a new Account is created as
follows:

1. An AccountDelegate object (or one of its subclasses) is created and
initialized with the data provided in the arguments to newAccount().

2. The new account state is stored in persistent storage (the
AccountDelegate object is serialized to disk).

3. The AccountMgr calls addObjImpl() on the servant locator to store the
AccountDelegate object in the servant locator’s hash table.

Opening an Account object Figure 8 shows how the AccountMgr object and the ServantLocator object
are involved in the opening of an Account object.

In response to an invocation of openAccount(), an Account is loaded into
memory as follows:

1. The AccountMgr reads the state of the specified account from
persistent storage.

2. An AccountDelegate object is created from the account state
(deserialized from disk).

3. The AccountMgr calls addObjImpl() on the servant locator to store the
AccountDelegate object in the servant locator’s hash table.

Figure 8: Opening an Account Object

addObjImpl()
Create

AccountDelegate
object

Servant
Locator

AccountMgr
Instance

2
3

Load Account record1
 34

Lifecycle of Account Objects
Updating an Account object Figure 9 shows how the ServantLocator object updates the state of an
account.

Whenever an operation invocation is made on a particular Account object,
the servant locator reacts as follows:

1. Just prior to the operation invocation, the BankObjects POA
automatically calls the servant locator’s preinvoke() method.

2. The preinvoke() method searches for the specified AccountDelegate
object in the servant locator’s hash table and then activates the
Account CORBA object.

3. The operation is invoked on the Account object.

4. Just after the operation invocation, the BankObjects POA automatically
calls the servant locator’s postinvoke() method.

5. The postinvoke() method updates the account state in persistent
storage and then deactivates the Account object.

Figure 9: Updating an Account Object

Activate Account
servant

Servant
Locator

2

4

1 preinvoke()

postinvoke()

Update Account record5

3 Operation
invocation
35

CHAPTER 1 | Back-End CORBA Server
Implementing the AccountMgr Interface

Overview The AccountMgr object is responsible for managing the lifecycle of Account
objects (creating and finding). This section describes how the AccountMgr
interface is implemented in Java, focusing mainly on the CORBA aspects of
the implementation.

In this section This section contains the following subsections:

Implementing Interfaces Using the Inheritance Approach page 37

Implementation of the AccountMgr Interface page 39
 36

Implementing the AccountMgr Interface
Implementing Interfaces Using the Inheritance Approach

Overview This section discusses how to implement IDL interfaces using the
inheritance approach (the alternative, delegation approach, is discussed in
“Implementing Interfaces Using the Delegation Approach” on page 18).

The inheritance approach is convenient to use, as long as the IDL interface
you are implementing does not inherit from any other IDL interface (the term
inheritance approach refers to the use of Java inheritance, not IDL
inheritance).

The inheritance approach In the inheritance approach, the servant for an IDL interface,
InterfaceName, is represented by a single object, conventionally of
InterfaceNameImpl type. The key feature of the inheritance approach is that
the implementation class, InterfaceNameImpl, inherits directly from the
generated class, InterfaceNamePOA.

For example, the AccountMgrImpl class is declared as follows:

Instantiating a servant in the
inheritance approach

In the inheritance approach, a servant is instantiated in a single step. For
example, the AccountMgrImpl servant is instantiated as follows:

// Java
public class AccountMgrImpl
 extends AccountMgrPOA
 implements Serializable
{
 ...
}

// Java
package bankobjects;
...
 // Step 1: Create the AccountMgrImpl servant object.
 org.omg.PortableServer.Servant serv = new AccountMgrImpl(
 ... /* Reference to the servant locator instance */,
 ... /* Reference to the "BankObjects" POA instance */
);
37

CHAPTER 1 | Back-End CORBA Server
Classes and interfaces needed for
the inheritance approach

Figure 10 shows some of the Java classes and interfaces needed for the
inheritance approach.

The InterfaceNameImpl class must extend the InterfaceNamePOA Java
class. This ensures that InterfaceNameImpl class can be identified as the
servant class that implements the InterfaceName IDL interface.

Implementing using the
inheritance approach

There are two possible starting points for the implementation class:

• Use the CORBA Code Generation Toolkit—the code generation toolkit
creates an outline of a working application based on an IDL file.

For example, by generating code from the Account.idl file using the
java_poa_genie.tcl code generation genie you can obtain an initial
version of the AccountImpl class. See the CORBA Programmer’s Guide
for details of this approach.

• Use a stub file as a template for the inheritance class—some of the
stub files have a form that is similar to the form required for an
inheritance class. These stub files can be copied and modified
appropriately to provide the initial versions of your implementation
classes.

Figure 10: Classes Needed for the Inheritance Approach

InterfaceNamePOA

InterfaceNameImpl

Generated
Class

Note: This approach (stub file as a template) is recommended only
for advanced CORBA developers.
 38

Implementing the AccountMgr Interface
Implementation of the AccountMgr Interface

Overview The AccountMgr IDL interface exposes operations for managing all of the
different Account types. In particular, an AccountMgr object is used mainly
for creating new accounts or accessing existing accounts.

The implementation of AccountMgr illustrates the inheritance approach—
see “Implementing Interfaces Using the Inheritance Approach” on page 37.

Outline of AccountMgr
implementation

Example 3 shows an outline of the AccountMgrImpl class, which
implements the AccountMgr IDL interface.

Example 3: Outline of the AccountMgrImpl Class (Sheet 1 of 2)

// Java
package bankobjects;

import org.omg.CORBA.*;
...

1 public class AccountMgrImpl
 extends AccountMgrPOA
 implements Serializable
{
 ...

2 AccountMgrImpl (AccountServantLocatorImpl obj, POA poa)
 {
 m_locatorObj = obj;
 m_poa = poa;
 }

 // Methods that are defined on the IDL interface
3 public Account openAccount (int accountNumber)

 throws ACCOUNT_DOESNT_EXIST
 {
 ...
 }

 public Account newAccount (String accountType)
 {
 ...
 }

 public void closeAccount (int accountNumber)
39

CHAPTER 1 | Back-End CORBA Server
The preceding code can be explained as follows:

1. The AccountMgrImpl class extends the following Java class:

♦ bankobjects.AccountMgrPOA—required. The AccountMgrPOA
Java class declares methods for all the attributes and operations
in the AccountMgr IDL interface.

The AccountMgrImpl class implements the following Java interface:

♦ java.io.Serializable—optional. Inheriting from the
Serializable class makes it possible to persist an AccountMgr
object using the Java serialization technique.

2. The AccountMgrImpl constructor caches references to the servant
locator and to the BankObjects POA instance.

3. From this line onwards, all of the AccountMgr operations and attributes
are defined. If you use the CORBA Code Generation Toolkit to generate
the AccountMgrImpl class, the method signatures are generated for you
and you must only fill in the method bodies.

4. You can also define additional methods, for internal use.

 throws CANNOT_CLOSE_ACCOUNT
 {
 ...
 }

 public int[] getCurrentAccountList()
 {
 ...
 }

 public int[] getCreditCardList()
 {
 ...
 }

4 // Non-IDL, private declarations and methods (not shown)
 ...
}

Example 3: Outline of the AccountMgrImpl Class (Sheet 2 of 2)

Note: The cached BankObjects POA instance is used to activate
Account objects, not the AccountMgrImpl object itself.
 40

Implementing the AccountMgr Interface
Algorithm for the newAccount()
method

To create a new account, the AccountMgr::newAccount() method proceeds
as follows:

Stage Description

1 An account number is generated for the new account. The
account number is then used as the object ID for the
corresponding CORBA object.

2 The account delegate object is created and initialized (for
example, a CurrentAccountDelegate or a
CreditCardAccountDelegate object, depending on the
specified account type).

3 The account state is saved to persistent storage (that is, the
delegate object is serialized to disk).

4 The account delegate object is registered with the servant
locator. This implies that the delegate object is stored in the
servant locator’s hash table and indexed by the account
number.

5 An object reference is generated for the return value of
newAccount(). An object reference is an object that
encapsulates a CORBA object’s location and gives remote
clients access to the CORBA object.
41

CHAPTER 1 | Back-End CORBA Server
Algorithm for the openAccount()
method

To open an existing account, the AccountMgr::openAccount() method
proceeds as follows:

Stage Description

1 The method checks whether the account is already in memory
by searching the servant locator’s hash table.

2 If the account is not found in the hash table, the method
searches persistent storage (for example, the file system) to
find a record for this account.

3 When the account record is found, the method loads it into
memory and creates an account delegate object (that is,
deserializes the delegate object from disk).

4 The method registers the account delegate object with the
servant locator.

5 The method creates an object reference for the account, which
is then passed back to the caller.
 42

Publishing the AccountMgr Object Reference
Publishing the AccountMgr Object Reference

Object reference An object reference is an object that encapsulates the location and other
properties of a CORBA object. It encapsulates all of the information that a
CORBA client needs to find and use a CORBA object.

Creating an object reference The following code listing shows one of the ways to create an object
reference for an AccountMgr object, using the
PortableServer::POA::create_reference_with_id() operation.

In general, the following items are needed to create an object reference:

• A reference to a POA instance—a CORBA object must be associated
with a POA. In this example, accountMgrPOA references the
AccountManager POA instance.

• An object ID—together, the POA name and object ID identify the
CORBA object uniquely. In this example, the object ID is the string,
AccountMgrImpl_obj, converted to an array of bytes.

• A repository ID—identifies the object’s type. In this example, the value
returned by AccountMgrHelper.id() is the string,
IDL:bankobjects/AccountMgr:1.0.

CORBA Naming Service The back-end server makes the AccountMgr object accessible to CORBA
clients by publishing the AccountMgr object reference to the CORBA Naming
Service. The CORBA Naming Service is a basic service that stores name,
object reference associations.

// Java
byte [] oid = "AccountMgrImpl_obj".getBytes();

org.omg.CORBA.Object tmp_ref =
 accountMgrPOA.create_reference_with_id (
 oid, // Object ID
 AccountMgrHelper.id() // Repository (or type) ID
);
43

CHAPTER 1 | Back-End CORBA Server
Figure 11 shows how the back-end server publishes object references to the
naming service, thereby making them available to CORBA clients.

Figure 11 shows the following stages of publishing an object reference:

Example The back-end server defines a publish_reference() method in the
bankobjects.server class which is used to publish object references to the
naming service. Example 4 shows the code for the publish_reference()
method.

Figure 11: Publishing an Object Reference in the CORBA Naming Service

CORBA Naming Service

Publish AccountMgr
object reference

1

3

2

Back-End
Server

Middle-Tier
Server

Resolve name

Invoke operation

Stage Description

1 The back-end server publishes the AccountMgr object reference
under the name, BankObjects_AccountMgr.

2 A client looks up the name, BankObjects_AccountMgr, in the
naming service and receives the AccountMgr object reference in
return.

3 The client can now use the AccountMgr object reference to
make remote invocations on the AccountMgr CORBA object.

Example 4: The publish_reference() Method

// Java
1 import org.omg.CosNaming.*;

import org.omg.CosNaming.NamingContextPackage.*

 ...
 44

Publishing the AccountMgr Object Reference
The preceding code can be explained as follows:

1. The naming service definitions are contained in the scope of
org.omg.CosNaming. The org.omg.CosNaming.NamingContextPackage
subscope contains the definitions of naming service exceptions.

2. The publish_reference() method takes two arguments: the object
reference to be published, ref, and the name under which the object
reference will be published, refName.

3. Technically, a name in the naming service is an IDL sequence of name
components (of org.omg.CosNaming.NameComponent[] type in Java).
For simplicity, this example creates an array with just a single name
component, tmpName.

4. An initial reference to the naming service is obtained from the ORB by
calling resolve_initial_references() with the string argument,
NameService. This is the standard way of connecting to the naming
service.

 // In the scope of the ’bankobjects.server’ class
 //

2 static void publish_reference(
 org.omg.CORBA.Object ref,
 String refName
)
 {
 org.omg.CORBA.Object objref = null;

3 NameComponent[] tmpName = new NameComponent[1];

 try
 {

4 objref = orb.resolve_initial_references("NameService");
5 rootContextExt = NamingContextExtHelper.narrow(objref);

6 tmpName[0] = new NameComponent(refName, "");
7 rootContextExt.rebind(tmpName, ref);

 }
 catch (CannotProceed ex) { ... }
 // Catch all relevant exceptions (not shown) ...
 ...
 }

Example 4: The publish_reference() Method
45

CHAPTER 1 | Back-End CORBA Server
5. The reference returned from resolve_initial_references(), of
org.omg.CORBA.Object type, is cast to the type,
org.omg.CosNaming.NamingContextExt. The NamingContextExt
object, rootContextExt, provides access to the naming service
functionality.

6. The name component array, tmpName, is initialized using the refName
string.

7. Invoking rebind() on the root naming context creates a name, object
reference association between tmpName and ref in the naming service.
 46

CHAPTER 2

Middle-Tier
CORBA Server
This chapter discusses the design and implementation of the
middle-tier CORBA server. Starting from a high-level design,
the business session interfaces are defined in the OMG
interface definition language (IDL) and then implemented in
Java.

In this chapter This chapter discusses the following topics:

Design of the Middle-Tier Server page 48

IDL for the Middle-Tier Server page 51

Designing the POA Hierarchy page 55

Resolving the AccountMgr Object Reference page 57

Implementing the BusinessSession Interfaces page 60
47

CHAPTER 2 | Middle-Tier CORBA Server
Design of the Middle-Tier Server

Purpose of the middle-tier server The purpose of the middle-tier server is to mediate between the back-end
server and a variety of different client types. The middle-tier server provides
support for session management and imposes constraints on what clients
can and cannot do.

CORBA object types Figure 12 shows the inheritance hierarchy for the object types implemented
in the middle-tier server.

BusinessSessionManager type A single object of BusinessSessionManager type is provided to open and
close client sessions. Because client sessions are represented here by
BusinessSession objects, the BusinessSessionManager acts as a factory for
BusinessSession objects. The following operations are provided:

• openSession()—open a new client session of the specified type and
return a reference to a BusinessSession object.

• closeSession()—close the specified client session, releasing all of the
associated resources.

Figure 12: Inheritance Hierarchy for BusinessSession Types

InetSession

BusinessSession

ATMSession TellerSession

BusinessSessionManager OnlinePurchasing
 48

Design of the Middle-Tier Server
BuesinessSession type The BusinessSession type is an abstract base class for the other session
types. One attribute is defined on the BusinessSession class:

• Session ID.

Some methods are also defined on the BusinessSession class, as follows:

• Resolve account—finds a specified account and associates it with the
current session.

• Get information on the account currently associated with the session.

• Get a list of accounts of a particular type.

ATMSession type The ATMSession type inherits from BusinessSession and adds methods to
support the following functionality:

• Validate the customer’s PIN against the currently active account.

• Check the daily limit on withdrawal amounts.

• Give the ATM authorization to dispense the cash.

• Receive confirmation that cash was dispensed.

InetSession type The InetSession type inherits from BusinessSession and adds no methods
or attributes.

TellerSession type The TellerSession type inherits from BusinessSession and adds methods
to support the following functionality:

• Create a new account and associate the account with the current client
session.

• Access an existing account and associate the account with the current
client session.

• Deposit and withdraw cash.

• Transfer money in or out of the account.

• Check the balance on the account.
49

CHAPTER 2 | Middle-Tier CORBA Server
OnlinePurchasing type The OnlinePurchasing interface is designed to support retailers, or
merchants, who sell goods over the Internet. Registered merchants are
allowed to debit credit cards, transferring money from a customer’s credit
card account into the merchant’s own account. In this way, merchants can
sell goods over the Internet which are paid for by credit card.

The following operations are provided:

• registerMerchant()—the merchant uses this operation to log on to
the online purchasing system, receiving a merchant ID in return.

• makePurchase()—this operation is called when a customer purchases
an item from the merchant. An amount of money is debited from the
customer’s account (identified by the credit card details) and credited
to the merchant’s account (identified by the merchant ID).

• listMerchants()—returns a list of all of the merchants that are
currently registered.

• lookupMerchant()—returns the account details for a particular
merchant ID.
 50

IDL for the Middle-Tier Server
IDL for the Middle-Tier Server

BusinessSessionManager IDL The code listing in Example 5 shows the IDL for the middle-tier server,
idl/BusinessSessionManager.idl.

Example 5: The BusinessSessionManager.idl File (Sheet 1 of 4)

// IDL
#ifndef BUSINESSSESSIONMANAGER_IDL
#define BUSINESSSESSIONMANAGER_IDL

1 #include "Account.idl"

module fnbba {
 // Exceptions
 exception AUTHORIZE_FAILED {} ;
 exception NO_RESOURCES {};
 exception ACCOUNT_DOESNT_EXIST {};
 exception NO_OPEN_SESSION {};
 exception NO_SUCH_ACCOUNT {};
 exception NO_SUCH_MERCHANT {};
 exception INSUFFICIENT_FUNDS {};

 // Structures
 struct SessionInfo_s {
 string username;
 string password;
 string session_type;
 string client_id;
 };

2 enum transtype {
 LODGEMENT,
 WITHDRAWAL,
 TRANSFER_IN,
 TRANSFER_OUT,
 ACCOUNT_OPENED,
 PURCHASE,
 OTHER
 };

 // A structure to associate a transaction and a description
 struct transaction_s {
51

CHAPTER 2 | Middle-Tier CORBA Server
 string date;
 string description;
 transtype transactionType;
 string value;
 };

 // A sequence of transaction details
 typedef sequence<transaction_s> transList;

 struct AccountInfo_s
 {
 string lname;
 string fname;
 string accType;
 string addr1;
 string addr2;
 string addr3;
 float limit;

 transList transactions;
 };

 // Typedefs
 typedef SessionInfo_s SessionInfo;
 typedef AccountInfo_s AccountInfo;

 interface BusinessSession {
 readonly attribute short session_id;

3 bankobjects::Account resolveAccount (in accountNum acct)
 raises (NO_SUCH_ACCOUNT);
 AccountInfo_s getAccountInfo ();
 accountNumList getAccountList (in string accountType);
 };

 interface BusinessSessionManager {
4 BusinessSession openSession (inout SessionInfo usi)

 raises(NO_RESOURCES);
 void closeSession (in BusinessSession bs);
 };

 interface ATMSession : BusinessSession {
 void validateCard (in short pin)
 raises(AUTHORIZE_FAILED);
 void checkLimits (

Example 5: The BusinessSessionManager.idl File (Sheet 2 of 4)
 52

IDL for the Middle-Tier Server
 out short dailyLimit,
 out short alreadyWithdrawn
);
 boolean okToDispense (in short amount);
 void dispensedCash (in short amount);
 };

 interface InetSession : BusinessSession {
 };

 interface TellerSession: BusinessSession {
 accountNum newAccount (in AccountInfo accDetails);
 void openAccount (in accountNum acctNum)
 raises (NO_SUCH_ACCOUNT);
 boolean lodgeFunds (in float amnt);
 boolean withdrawFunds (in float amnt)
 raises (INSUFFICIENT_FUNDS);
 boolean transferFunds (in float amnt, in accountNum acct)
 raises (NO_SUCH_ACCOUNT, INSUFFICIENT_FUNDS);

 float accBalance ();
 };

 typedef string MerchantIdentifier;

 struct Merchant {
 bankobjects::accountNum acct;
 MerchantIdentifier merchantID;
 };

 typedef sequence<Merchant> Merchants;

 interface OnlinePurchasing {
 MerchantIdentifier registerMerchant(
 in bankobjects::accountNum acct
) raises (NO_SUCH_ACCOUNT);
 string makePurchase(
 in MerchantIdentifier merchantID,
 in string cardNum, in string expiryDate,
 in string securityCode,
 in float amount
) raises (NO_SUCH_MERCHANT, INSUFFICIENT_FUNDS);
 Merchants listMerchants();
 bankobjects::Account lookupMerchant(
 in MerchantIdentifier merchantID

Example 5: The BusinessSessionManager.idl File (Sheet 3 of 4)
53

CHAPTER 2 | Middle-Tier CORBA Server
The preceding code can be explained as follows:

1. The #include directive brings in all of the definitions from
Account.idl. See Example 1 on page 7.

2. The IDL enum type is similar to the C and C++ enum type, except that
you cannot assign integer values to the enum labels. In Java, an IDL
enum maps to a Java class with constant members defined for each
label.

For example, in Java the fnbba::transtype::LODGEMENT IDL value is
mapped to an fnbba.transtype.LODGEMENT constant (of
fnbba.transtype type), and an fnbba.transtype._LODGEMENT
constant (of int type).

3. Because the Account type is defined outside the scope of the fnbba
module, it is necessary to use the fully-scoped name here,
bankobjects::Account.

4. The SessionInfo parameter of openSession() is declared to be an
inout parameter. During an operation invocation, the inout parameter
travels in both directions: from client to server, and back from server to
client. It is possible for the server to modify the inout parameter before
sending it back to the client.

)
 raises (NO_SUCH_MERCHANT);
 };
}; // Module fnbba

#endif //BUSINESSSESSIONMANAGER_IDL

Example 5: The BusinessSessionManager.idl File (Sheet 4 of 4)
 54

Designing the POA Hierarchy
Designing the POA Hierarchy

Overview This section describes the POA hierarchy for the middle-tier server and how
it affects the life cycle of the various CORBA objects. For more details about
the POA, see “Designing the POA Hierarchy” on page 14 and the CORBA
Programmer’s Guide.

POA hierarchy for the back-end
server

Figure 13 shows the POA hierarchy used for the middle-tier server. The root
POA has two children:

• A POA for managing BusinessSessionManager objects (named
BusinessSessionManager), and

• A POA for managing BusinessSession objects (named
BusinessSession).

Figure 13: POA Hierarchy for the Middle-Tier Server

"BusinessSessionManager"
POA

"BusinessSession"
POA

root POA

BusinessSessionManager
Object

BusinessSession
Objects

OnlinePurchasing Object
55

CHAPTER 2 | Middle-Tier CORBA Server
BusinessSessionManager POA The BusinessSessionManager POA is created to manage the
BusinessSessionManager object (only one object of
BusinessSessionManager type is ever created). The
BusinessSessionManager object is created and activated when the
application starts up and remains active for as long as the application is
running.

Because the life cycle of the BusinessSessionManager object is fairly
simple, the associated POA has straightforward policies. Some of the
policies that are explicitly set on the BusinessSessionManager POA are the
following:

• The LifespanPolicy—is defined to be PERSISTENT.

• The ThreadPolicy—is defined to be single threaded,
SINGLE_THREAD_MODEL.

BusinessSession POA The BusinessSession POA is created to manage BusinessSession objects.
The POA is created with the default POA policies.

In a highly-scalable system, you would probably require a more
sophisticated way of managing the session life cycle than the approach used
in this demonstration. For example, you might want to impose a time-out on
client sessions, so that a session is automatically deleted if it remains idle
for a specified period of time. This sort of functionality is supported by the
CORBA Session Management Plug-In. See the CORBA Session
Management Guide for details.
 56

Resolving the AccountMgr Object Reference
Resolving the AccountMgr Object Reference

Overview The middle-tier server initially gains access to the back-end server by
retrieving an AccountMgr object reference from the naming service. The
AccountMgr object in the back-end is thus the initial point of contact for the
middle-tier.

CORBA Naming Service The middle-tier server resolves the name of the AccountMgr object reference
previously published to the CORBA Naming Service by the back-end server
(see “Publishing the AccountMgr Object Reference” on page 43). The return
value of the resolve operation is an AccountMgr object reference.

Figure 14 shows how the middle-tier server resolves a published
AccountMgr object reference.

Figure 14: Resolving the AccountMgr Object Reference

CORBA Naming Service

2

1

Back-End
Server

Middle-Tier
Server

Resolve
AccountMgr object

reference

Invoke operation

AccountMgr object
reference
57

CHAPTER 2 | Middle-Tier CORBA Server
Example The middle-tier server defines a resolveObject() method in the
fnbba.server class which is used to resolve object references from the
naming service. Example 6 shows the code for the resolveObject()
method.

The preceding code can be explained as follows:

1. The resolveObject() method takes a string name, refName, as an
argument and returns the corresponding object reference that it finds in
the naming service.

2. A name in the naming service is an IDL sequence of name components
(of org.omg.CosNaming.NameComponent[] type in Java). For simplicity,
this example creates an array with just a single name component,
tmpName.

3. An initial reference to the naming service is obtained from the ORB by
calling resolve_initial_references() with the string argument,
NameService. This is the standard way of connecting to the naming
service.

Example 6: The resolveObject() Method

// Java
1 public static org.omg.CORBA.Object resolveObject(

 String refName
)
 throws Exception
 {
 org.omg.CORBA.Object tmpObj1 = null;

2 NameComponent[] tmpName = new NameComponent[1];
 try
 {

3 objref = orb.resolve_initial_references("NameService");
4 rootContextExt = NamingContextExtHelper.narrow(objref);
5 tmpName[0] = new NameComponent(refName, "");
6 tmpObj1 = rootContextExt.resolve(tmpName);

 }
 catch (CannotProceed ex) { ... }
 // Catch all the different exceptions (not shown) ...
 ...
 return tmpObj1;
 }
 58

Resolving the AccountMgr Object Reference
4. The reference returned from resolve_initial_references(), of
org.omg.CORBA.Object type, is cast to the type,
org.omg.CosNaming.NamingContextExt. The NamingContextExt
object, rootContextExt, provides access to the naming service
functionality.

5. The name component array, tmpName, is initialized using the refName
string.

6. This line invokes resolve() on the root naming context, thereby
looking up the name, tmpName, in the naming service to get an object
reference, tmpObj1, in return.
59

CHAPTER 2 | Middle-Tier CORBA Server
Implementing the BusinessSession Interfaces

Overview The BusinessSession interfaces are all implemented using the delegate (or
TIE) approach—see “Implementing Interfaces Using the Delegation
Approach” on page 18. The session interfaces are implemented as follows:

• BusinessSession—implemented by BusinessSessionDelegate.

• ATMSession—implemented by ATMSessionDelegate.

• TellerSession—implemented by TellerSessionDelegate.

Inheritance hierarchy for the
implementation classes

Figure 15 shows the inheritance hierarchy for the delegate objects that
implement the various session types.

The BusinessSessionDelegate
Class

Example 7 shows an outline of the BusinessSessionDelegate class, which
implements the BusinessSession IDL interface.

Figure 15: Java Inheritance Hierarchy for the Delegate Objects

BusinessSessionDelegate

ATMSessionDelegate TellerSessionDelegate

Example 7: Outline of the BusinessSessionDelegate Class

// Java
package fnbba;

1 class BusinessSessionDelegate
 implements BusinessSessionOperations
{
 protected bankobjects.AccountMgr myMgr = null;
 protected bankobjects.Account myAccount = null;

 60

Implementing the BusinessSession Interfaces
The preceding code can be explained as follows:

1. The BusinessSessionDelegate class implements the following Java
interface:

♦ fnbba.BusinessSessionOperations—required. The
BusinessSessionOperations Java interface declares methods for
all the attributes and operations in the BusinessSession IDL
interface.

2 public BusinessSessionDelegate ()
 {
 // Initialize the myMgr member variable by resolving
 // the ’AccountMgr’ object in the naming service.
 ...
 }

3 // IDL Operation Implementations
 public short session_id ()
 {
 ...
 }

 public bankobjects.Account resolveAccount (int accountNum)
 throws NO_SUCH_ACCOUNT
 {
 ...
 }

 public float accBalance ()
 {
 ...
 }

 public AccountInfo_s getAccountInfo ()
 {
 ...
 }

 public int [] getAccountList (String accountType)
 {
 ...
 }
}

Example 7: Outline of the BusinessSessionDelegate Class
61

CHAPTER 2 | Middle-Tier CORBA Server
2. The constructor uses the naming service to get an object reference for
the back-end server’s AccountMgr object, which is then cached in the
myMgr member variable.

3. From this line onward, each of the IDL operations are implemented.
 62

CHAPTER 3

Java CORBA
Client
The Java CORBA client is implemented as a graphical user
interface (GUI). This chapter presents the design of the CORBA
client and describes how the client accesses the business logic
in the middle-tier using CORBA remote operation invocations.

In this chapter This chapter discusses the following topics:

Design of the CORBA Client page 64

Using Forte for Java and NetBeans page 72

Resolving the BusinessSessionManager Object Reference page 77

Implementation of the Java CORBA Client page 81

Implementation of the Open Account Dialog page 83
63

CHAPTER 3 | Java CORBA Client
Design of the CORBA Client

Purpose of the client The CORBA client is implemented as a graphical user interface (GUI) that
provides the banking services you would normally expect from a human
bank teller. For example, the CORBA client might used by a bank teller
when dealing with customers at the counter.

The following banking services are supported by the CORBA client:

• Creating a new account.

• Accessing an existing account to check the balance and view recent
transactions.

• Performing a variety of transactions: lodging funds, withdrawing
money, and transferring funds from one account to another.

Organization of screens The client GUI is organized as a set of screens that support different
functions:

• Main screen—this is the initial screen for the client application.

From the main screen, you can access a set of dialog windows:

• Open account dialog.

• New account dialog.

• Lodge funds dialog.

• Withdraw funds dialog.

• Transfer funds dialog.
 64

Design of the CORBA Client
Main screen The main screen displays the details for the currently open account (only
one account can be open at a time). The Account menu on the main screen
provides access to each of the dialog windows, as shown in Figure 16.

In this section This section describes each of the dialog windows:

Figure 16: The Main Screen of the Java CORBA Client

The Open Account Dialog page 66

The New Account Dialog page 67

The Lodge Funds Dialog page 69

The Withdraw Funds Dialog page 70

The Transfer Funds Dialog page 71
65

CHAPTER 3 | Java CORBA Client
The Open Account Dialog

Dialog window The teller uses the open account dialog window, Figure 17, to set the
currently active account. The details of this account are then displayed in
the main screen.

Data required to initialize the
dialog

The following data is required to initialize the open account dialog:

• A list of account numbers for all the accounts stored in the back-end
server—the list is displayed when the user clicks on the Choose A/C
Num drop-down menu.

Data returned by the dialog The data returned by the open account dialog depends on the event that
closes the dialog window:

• Click on OK—the selected account number is returned.

• Click on Cancel—no data is returned.

Associated files The following files are associated with the open account dialog
implementation:

gui/openAccount.java
gui/openAccount.form

Figure 17: The Open Account Dialog Window
 66

Design of the CORBA Client
The New Account Dialog

Dialog window The teller uses the new account dialog window, Figure 18, to create a new
account. The details of this account are then displayed in the main screen.

Data required to initialize the
dialog

No data is required to initialize the new account dialog.

Figure 18: The New Account Dialog Window
67

CHAPTER 3 | Java CORBA Client
Data returned by the dialog The data returned by the new account dialog depends on the event that
closes the dialog window:

• Click on OK, with Current Account selected—the following data is
returned:

♦ The Lastname and Firstname of the new account owner.

♦ The account owner’s address, in the Address #1, Address #2,
and Address #3 fields.

♦ The amount of the Overdraft Limit on the current account.

• Click on OK, with Credit Card selected—the following data is returned:

♦ The Lastname and Firstname of the new account owner.

♦ The account owner’s address, in the Address #1, Address #2,
and Address #3 fields.

♦ The amount of the Credit Limit on the credit card.

• Click on Cancel—no data is returned.

Associated files The following files are associated with the new account dialog
implementation:

gui/newAccount.java
gui/newAccount.form
 68

Design of the CORBA Client
The Lodge Funds Dialog

Dialog window The teller uses the lodge funds dialog window, Figure 19, to lodge an
amount of money into the currently active account.

Data required to initialize the
dialog

No data is required to initialize the lodge funds dialog.

Data returned by the dialog The data returned by the lodge funds dialog depends on the event that
closes the dialog window:

• Click on OK—the lodgement amount is returned.

• Click on Cancel—no data is returned.

Associated files The following files are associated with the lodge funds dialog
implementation:

gui/lodgeFunds.java
gui/lodgeFunds.form

Figure 19: The Lodge Funds Dialog Window
69

CHAPTER 3 | Java CORBA Client
The Withdraw Funds Dialog

Dialog window The teller uses the withdraw funds dialog window, Figure 20, to withdraw
cash from the currently active account.

Data required to initialize the
dialog

No data is required to initialize the withdraw funds dialog.

Data returned by the dialog The data returned by the withdraw funds dialog depends on the event that
closes the dialog window:

• Click on OK—the withdrawal amount is returned.

• Click on Cancel—no data is returned.

Associated files The following files are associated with the withdraw funds dialog
implementation:

gui/withdrawFunds.java
gui/withdrawFunds.form

Figure 20: The Withdraw Funds Dialog Window
 70

Design of the CORBA Client
The Transfer Funds Dialog

Dialog window The teller uses the transfer funds dialog window, Figure 21, to transfer
money from the currently active account to another account.

Data required to initialize the
dialog

The following data is required to initialize the transfer funds dialog:

• A list of account numbers for all the accounts stored in the back-end
server—the list is displayed when the user clicks on the Choose A/C
Num drop-down menu.

Data returned by the dialog The data returned by the transfer funds dialog depends on the event that
closes the dialog window:

• Click on Transfer—the transfer amount and the selected account
number are returned.

• Click on Cancel—no data is returned.

Associated files The following files are associated with the transfer funds dialog
implementation:

gui/transferFunds.java
gui/transferFunds.form

Figure 21: The Transfer Funds Dialog Window
71

CHAPTER 3 | Java CORBA Client
Using Forte for Java and NetBeans

Overview The graphical elements of the Java CORBA client are implemented using
Sun’s Forte for Java.

NetBeans NetBeans is an open source integrated development environment (IDE) for
building client-side and server-side applications. Because the NetBeans IDE
is based on an extensible, modular framework, third parties can also provide
customized distributions of NetBeans based on the NetBeans Tools
Platform. Hence, the following varieties of NetBeans-based products are
available:

• NetBeans IDE—the original open source IDE, which can be
downloaded directly from the NetBeans web site,
http://www.netbeans.org.

• Third-party IDEs, based on the NetBeans Tools Platform—other
organizations and vendors can add their own modules to the NetBeans
core and then release enhanced versions of the IDE. Sun’s Forte for
Java is an example of such a third-party IDE.

Forte for Java Forte for Java is Sun’s extensible, integrated development environment (IDE)
for Java Technology developers. It is based on the NetBeans Tools Platform
and is integrated with the Sun Open Net Environment (ONE).
 72

http://www.netbeans.org

Using Forte for Java and NetBeans
Opening a Java source file using
Forte for Java

If you have Forte for Java installed, you can use it to view the CORBA client
source files. Start up the Forte for Java IDE, and then use the File|Open
menu option to open one of the Java source files.

For example, Figure 22 shows the screen layout of the Forte for Java IDE
after opening the transferFunds.java file.

Figure 22: Editing the Transfer Funds Dialog within the Forte for Java IDE
73

CHAPTER 3 | Java CORBA Client
Forte for Java screen layout As soon as you open the source file for a GUI form, the Forte for Java editor
automatically switches to the GUI Editing view, as in Figure 22. In this
view, the following windows are visible:

• The main Forte for Java window (top).

• The Explorer window (midway up the left-hand side)—provides a view
of the file system.

• The Form window (bottom left)—shows the layout of the form that is
currently being edited.

• The Source Editor window (midway up the right-hand side)—shows
the Java source code for the form.

• The Component Inspector window (center)—shows the properties of
the component currently selected in the Form window. The selected
component is highlighted by a blue-colored border.
 74

Using Forte for Java and NetBeans
Forte for Java generated code Figure 23 shows part of the code listing from the transferFunds.java file,
as viewed in the Forte for Java Source Editor window.

The source editor window makes it easy to distinguish between the
generated code, on a shaded background, and the hand-written code, on a
white background.

In particular, the initComponents() method, shown in Figure 23, is
responsible for initializing the layout of the window and is wholly generated
by the IDE.

Figure 23: Viewing the transferFunds.java file in the Source Editor
75

CHAPTER 3 | Java CORBA Client
References For more details about the NetBeans IDE, see the following page:

http://www.netbeans.org/intro.html

For more details about the Forte for Java IDE, see the following page:

http://www.sun.com/forte/ffj/
 76

http://www.netbeans.org/intro.html
http://www.sun.com/forte/ffj/

Resolving the BusinessSessionManager Object Reference
Resolving the BusinessSessionManager
Object Reference

Overview The Java CORBA client gains access to the middle-tier server by retrieving a
BusinessSessionManager object reference from the naming service. The
client can then open a business session by calling the openSession()
operation on the BusinessSessionManager object.

The middle-tier server provides all of the services needed by the client; the
client does not contact the back-end directly.

CORBA Naming Service Figure 24 shows how the CORBA client resolves the
BusinessSessionManager object reference from the naming service.

Figure 24: Establishing a Connection to the Middle-Tier Server

Publish
BusinessSessionManager

object reference

CORBA Naming Service

3

1

Middle-Tier
Server

Java
CORBA
Client openSession()

BusinessSessionManager
object reference

Resolve
BusinessSessionManager

object reference

2

77

CHAPTER 3 | Java CORBA Client
The connection between the Java CORBA client and the middle-tier is
established as follows:

Example The Java CORBA client defines a resolveServer() method (in the
gui.mainScreen class) which resolves the middle-tier
BusinessSessionManager object reference. Example 8 shows the code for
the resolveServer() method.

Stage Description

1 The middle-tier server publishes the BusinessSessionManager
object reference under the name,
FNBBA_BusinessSessionManager.

2 The Java CORBA client looks up the name,
FNBBA_BusinessSessionManager, in the naming service and
receives the BusinessSessionManager object reference in
return.

3 The client can now invoke the openSession() operation on the
BusinessSessionManager object reference to open a new
business session.

Example 8: The resolveServer() Method

// Java
...
 // In the ’mainScreen’ Class
 //
 public static void resolveServer (String[] args)
 {
 org.omg.CORBA.Object objref = null;

 try {
 global_orb = ORB.init(args, null);

1 objref = global_orb.resolve_initial_references (
 "NameService"
);

2 rootContextExt = NamingContextExtHelper.narrow (objref);
 }
 catch (...) { ... }
 // Handle all exceptions (not shown)...
 78

Resolving the BusinessSessionManager Object Reference
The preceding code can be explained as follows:

1. An initial reference to the naming service is obtained from the ORB by
calling resolve_initial_references() with the string argument,
NameService. This is the standard way of connecting to the naming
service.

2. The reference returned from resolve_initial_references(), of
org.omg.CORBA.Object type, is cast to the type,
org.omg.CosNaming.NamingContextExt. The NamingContextExt
object, rootContextExt, provides access to the naming service
functionality.

3. Create a name, tmpName, with just a single name component (of
org.omg.CosNaming.NameComponent[1] type).

4. The name component array, tmpName, is initialized with the string,
FNBBA_BusinessSessionManager.

5. This line invokes resolve() on the root naming context, thereby
looking up the name, tmpName, in the naming service to get an object
reference, tmpObj1, in return.

 org.omg.CORBA.Object tmpObj1 = null;
3 NameComponent[] tmpName = new NameComponent[1];

 try {
4 tmpName[0] = new NameComponent(

 "FNBBA_BusinessSessionManager", ""
);

5 tmpObj1 = rootContextExt.resolve(tmpName);
6 sessionMgr = fnbba.BusinessSessionManagerHelper.narrow (

 tmpObj1
);
 }
 catch (...) { ... }
 // Handle all exceptions (not shown)...

 return;
 }

Example 8: The resolveServer() Method
79

CHAPTER 3 | Java CORBA Client
6. The reference returned from resolve() is cast to the type,
fnbba.BusinessSessionManager, using a narrow() method. The
narrow() method defined on BusinessSessionManagerHelper provides
a type-safe way of down-casting the returned object reference to the
BusinessSessionManager type.
 80

Implementation of the Java CORBA Client
Implementation of the Java CORBA Client

Overview The client is implemented using six classes: one for the main screen,
gui.mainScreen, and one for each of the five dialog windows. Since most of
the CORBA code is contained in mainScreen.java, this section focuses on
the implementation of the mainScreen class.

Organization of the client code Figure 25 illustrates the relationship between the main screen and a dialog
window. Each of the dialog windows is treated as a black box that returns
information from a user.

The general pattern of interaction between the mainScreen class and a
dialog window is as follows:

Figure 25: Relationship Between the Main Screen and a Dialog Window

Create

Main Screen

Dialog
Window

3

1

dlg.show()

Dialog Window closes

2

Stage Description

1 The mainScreen class creates a dialog object, dlg, and passes
initial data to the dialog.

2 The mainScreen class passes control to the dialog object by
calling dlg.show().

3 When the dialog window closes, the mainScreen class extracts
the information from the dialog that was set by the user.
81

CHAPTER 3 | Java CORBA Client
Implementation of the
mainScreen class

Because the mainScreen class is created using the Forte for Java IDE, there
are chunks of generated code in the listing that are not meant to be edited
by the developer. In particular, you can ignore the initComponents()
method.

The following methods of the mainScreen class are of interest here:

• main()—the entry point for the client application.

• resolveServer()—bootstraps a connection to the middle-tier server by
retrieving a BusinessSessionManager object reference from the naming
service (see “Resolving the BusinessSessionManager Object Reference”
on page 77). Called from main().

• openAccountActionPerformed()—launches the Open Account dialog
window and opens an account.

• newAccountActionPerformed()—launches the New Account dialog
window and creates a new account.

• lodgeFundsActionPerformed()—launches the Lodge Funds dialog
window and lodges an amount into the currently active account.

• withdrawFundsActionPerformed()—launches the Withdraw Funds
dialog window and withdraws an amount from the currently active
account.

• transferFundsActionPerformed()—launches the Transfer Funds
dialog window and transfers an amount from the currently active
account to a specified account.
 82

Implementation of the Open Account Dialog
Implementation of the Open Account Dialog

Overview To illustrate how the dialog screens work, this section describes how the
mainScreen class interacts with the Open Account dialog. The mainScreen
class uses the data from the dialog to open a session with an account object
in the back-end.

From the main screen there are two ways of initiating the open account
dialog:

• Select Account|Open Account—this calls the
openAccountActionPerformed() method.

• Click the Open Account button—this calls the
openAccountButtonActionPerformed() method.

This section describes the openAccountActionPerformed() method. The
openAccountButtonActionPerformed() method has an essentially identical
implementation.

Code for
openAccountActionPerformed()

Example 9 shows the Java code for the openAccountActionPerformed()
method.

Example 9: The openAccountActionPerformed() Method (Sheet 1 of 3)

// Java
 ...

1 private void
openAccountActionPerformed(java.awt.event.ActionEvent evt)

 {//GEN-FIRST:event_openAccountActionPerformed
2 genericOpenAccount (evt);

 lodgeFunds.setEnabled(true);
 withdrawFunds.setEnabled (true);
 transferFunds.setEnabled(true);
 }//GEN-LAST:event_openAccountActionPerformed
 ...

3 private void genericOpenAccount (
 java.awt.event.ActionEvent evt
)
 {
83

CHAPTER 3 | Java CORBA Client
 // Get a session back from the FNB Core
4 fnbba.SessionInfo_s sessionInfo = new fnbba.SessionInfo_s ();

 // Hardcoded values for now...
 sessionInfo.username = new String ("Adrian");
 sessionInfo.password = new String ("pass001");
 sessionInfo.session_type = new String ("Teller");
 sessionInfo.client_id = new String ("Teller-012");

 fnbba.SessionInfo_sHolder sesHold
 = new fnbba.SessionInfo_sHolder(sessionInfo);
 fnbba.BusinessSession sess = null;
 try {

5 sess = sessionMgr.openSession (sesHold);
 }
 catch (...) { ... }
 // Handle all exceptions (not shown)...

 fnbba.TellerSession tSession
 = fnbba.TellerSessionHelper.narrow (sess);

6 int currentAccList [] = tSession.getAccountList ("Current");
 int creditcardList [] = tSession.getAccountList (
 "Credit Card"
);
 int accList[] = new int[currentAccList.length +
 creditcardList.length];
 System.arraycopy(
 currentAccList, 0, accList, 0, currentAccList.length
);
 System.arraycopy(creditcardList, 0, accList,

currentAccList.length, creditcardList.length);

7 openAccount dlg = new openAccount (this, true);
 dlg.setAccList (accList);
 dlg.show();

 // Check to see if the user didn't cancel the operation
8 if (dlg.exit_status == 1)

 {
 return;
 }

 presentAccountNumber = dlg.accountNum;
 try {

Example 9: The openAccountActionPerformed() Method (Sheet 2 of 3)
 84

Implementation of the Open Account Dialog
The preceding code can be explained as follows:

1. The openAccountActionPerformed() method is called when the user
selects the Account|Open Account menu option from the main screen.

2. Most of the work of the openAccountActionPerformed() method is
delegated to the genericOpenAccount() method.

3. The genericOpenAccount() method is called by both the
openAccountActionPerformed() and the
openAccountButtonActionPerformed() methods.

4. This line and the following lines initialize an fnbba.SessionInfo_s
object with default session login details. For the IDL definition of the
SessionInfo_s struct, see “IDL for the Middle-Tier Server” on page 51.

9 tSession.openAccount (dlg.accountNum);
 }
 catch (...) { ... }
 // Handle all exceptions (not shown)...

 fnbba.AccountInfo_s accInfo = null;
 try {

10 accInfo = tSession.getAccountInfo ();
 }
 catch (...) { ... }
 // Handle all exceptions (not shown)...

 // OK, let's get the information back from the dialog box

11 nameText.setText(accInfo.lname + ", " + accInfo.fname);
 accTypeText.setText(accInfo.accType);

 addrText1.setText(accInfo.addr1);
 addrText2.setText (accInfo.addr2);
 addrText3.setText (accInfo.addr3);
 accountNumText.setText(
 String.valueOf(presentAccountNumber)
);

 accBalance = tSession.accBalance ();
 refreshTransList (accInfo.transactions);
 }

Example 9: The openAccountActionPerformed() Method (Sheet 3 of 3)
85

CHAPTER 3 | Java CORBA Client
5. The openSession() operation is invoked on the remote
BusinessSessionManager object, with the SessionInfo_s struct being
passed as an inout argument.

6. The getAccounts() operation is invoked on the session object
reference, tsession, to get a list of all Current accounts and Credit
Card accounts.

7. The Open Account dialog window is created, dlg, and the combined
list of accounts is passed to the dialog as initial data.

The call to dlg.show() passes control to the dialog window.

8. The dialog exit_status is checked to see if the user clicked Cancel.

9. Otherwise the user must have clicked OK, in which case the account is
opened with the user-selected account number, dlg.accountNum.

10. The details for the currently active account, accInfo, are retrieved from
the business session, tsession.

11. The account information extracted from accInfo is displayed in the
main screen.
 86

Part II
J2EE Internet Banking

In this part This part contains the following chapters:

J2EE AllDayBanking Application page 89

Accessing the CORBA Back-End page 109

EJB Middle-Tier page 123

J2EE Presentation Layer page 149

CHAPTER 4

J2EE
AllDayBanking
Application
This chapter gives an overview of the J2EE AllDayBanking
application and of the tools and utilities that are provided for
building, packaging, and deploying J2EE applications.

In this chapter This chapter discusses the following topics:

Architecture of the J2EE Application page 90

Overview of the J2EE Development Cycle page 92

Source Code Organization (EARSCO) page 94

Building and Packaging the J2EE Application page 98
89

CHAPTER 4 | J2EE AllDayBanking Application
Architecture of the J2EE Application

Overview Figure 26 shows the architecture of the J2EE AllDayBanking application.
Both the presentation layer and the middle tier of the application are
implemented using J2EE technology, while the back-end is implemented
using CORBA technology.

CORBA back-end The CORBA back-end server provides access to the persistent account data
stored in the back-end database—see “Back-End CORBA Server” on page 3
for details. A link to the back-end server can be established by retrieving an
AccountMgr object reference from the CORBA Naming Service.

Communication with the CORBA back-end uses the OMG’s Internet
inter-ORB protocol (IIOP).

JCA layer The Java Connector Architecture (JCA) layer is used to bootstrap
connections between the EJB middle tier and the CORBA backend.The JCA
is a Java standard that describes how to integrate J2EE applications with
external third-party resources.

Figure 26: Architecture of the J2EE AllDayBanking Application

CORBA Naming
Service

Back-End Server

EJB ModuleWeb Module

Web
Browser

Presentation Layer EJB Middle-Tier CORBA Back-End

JCA
 90

Architecture of the J2EE Application
EJB middle-tier The middle tier is based on the J2EE Enterprise Java Beans (EJB)
technology. This layer implements the application business logic using a
collection of enterprise beans. See “EJB Middle-Tier” on page 123 for
details of the bean implementations.

Presentation layer The J2EE presentation layer is designed to be integrated with a Web server.
It consists of two parts:

• HTML pages and Java Server Pages (JSP)—the content that is served
up to Web clients by the Orbix Application Server (the application
server is also a Web server).

• Worker beans—are helper classes that cooperate with JSP pages to
simplify the presentation logic.

Web client The Web client is an ordinary Web browser, such as Internet Explorer or
Netscape.

After the J2EE application has been deployed on the Orbix Application
Server, a Web client can access the J2EE AllDayBanking application by
going to the following URL:

http://AppServerHost:8080/AllDayBanking

Assuming you are running the application on the JBoss platform, where
AppServerHost is the host on which the J2EE application server is running.

Note: You could also run the application on another implementation of
the J2EE platform—for example, WebSphere or WebLogic.
91

CHAPTER 4 | J2EE AllDayBanking Application
Overview of the J2EE Development Cycle

Development cycle Figure 27 shows an overview of the J2EE development cycle. Orbix provides
a comprehensive set of utilities for simplifying each stage of the cycle.

Source code organization Historically, the Orbix E2A ASP 6.0 product (and earlier versions) used a
specific directory structure, EARSCO, to store the source files from a J2EE
application. Orbix no longer provides special tools to manage this directory
structure, but this directory structure is still used for the FNB AllDayBanking
demonstration.

The source code organization is described in “Source Code Organization
(EARSCO)” on page 94.

Building and packaging The rules for building and packaging the AllDayBanking J2EE application
are encapsulated in the ibank/build.xml ant build file. The output from the
build step is an Enterprise Application Archive (EAR) file—for example,
AllDayBanking.ear—which contains a deployable J2EE application.

The building and packaging of the AllDayBanking application is described in
“Building and Packaging the J2EE Application” on page 98.

Figure 27: The J2EE Development Cycle

Source Code in
EARSCO

EAR File

Build and package
 92

Overview of the J2EE Development Cycle
Configuring the container The details of container configuration are proprietary. Hence, different J2EE
application servers would have different configuration requirements for their
EJB containers and Web containers.

For example, the JBoss J2EE application server configures an EJB container
using a jboss.xml file (located in
ibank/AllDayBanking/src/WebStuff.jar/etc), which has a proprietary
format. It is only at this point that the proprietary details of the application
server come into play. Abstract security and persistence properties are
mapped onto specific security mechanisms and database details.

For more details about the jboss.xml file, see “jboss.xml file” on page 133.
93

CHAPTER 4 | J2EE AllDayBanking Application
Source Code Organization (EARSCO)

EAR files An Enterprise Application Archive (EAR) file is a compressed archive (in
standard zip file format) containing all of the EJB, Web, and client
components that constitute a single J2EE application. The purpose of the
EAR file format is to simplify deployment of J2EE applications by bundling
all of the required files into a single archive.

The contents of an EAR file have a standard directory layout, the details of
which are described in “Directory Structure in an EAR File” on page 100.

Source code organization Although the J2EE standard defines a standard layout for storing all of your
compiled code and configuration files within an EAR file, there is no
equivalent layout defined by J2EE for organizing your source code files.

EARSCO Historically, the Enterprise Application Archive Source Code Organization
(EARSC0) was used to organize J2EE source code for the Orbix E2A ASP
product. IONA’s J2EE application server is no longer part of the Orbix
product, but the same EARSCO directory structure is still used to hold the
source code for the AllDayBanking demonstration.

The ibank/build.xml ant build file is designed to be compatible with the
EARSCO directory structure, enabling you to build and package the
AllDayBanking demonstration in a single step—see “Building and Packaging
the J2EE Application” on page 98.
 94

Source Code Organization (EARSCO)
EARSCO overview Figure 28 gives a general overview of the EARSCO.

application.xml file The application.xml file is a standard J2EE configuration file that specifies
which modules are in the J2EE application—see also “Directory Structure in
an EAR File” on page 100.

Figure 28: The Enterprise Application Archive Source Code Organization

ProjectName

src/

tmp/

etc/ application.xml

EJBModule.jar/

etc/

MANIFEST.MF

ejb-jar.xml

src/ PackagePath/ *.java

WebModule.war/

etc/

lib/

src/

web/

web.xml

PackagePath/ *.java

(extra JAR files)

(public Web files)
*.html
*.jsp
images/*.gif, *.jpg

ExtraJAR.jar

jboss.xml
95

CHAPTER 4 | J2EE AllDayBanking Application
EJB modules An EJB module is a collection of enterprise Java beans that cooperate to
provide a certain unit of functionality.

For every EJB module, EJBModule, a ProjectName/src/EJBModule.jar
directory contains the following standard elements:

• EJBModule.jar/etc/ejb-jar.xml—the ejb-jar.xml file is a standard
J2EE file that specifies the basic configuration for the enterprise beans
in the EJB module.

• EJBModule.jar/etc/MANIFEST.MF—the MANIFEST.MF is an optional
file that can be used to specify additional meta-information for the EJB
module—see “MANIFEST.MF file” on page 104. For example, you can
use the MANIFEST.MF file to specify a class path for the EJB module—
see “Accessing the Stub JARs from EJB” on page 121.

• EJBModule.jar/src/—the src/ subdirectory is the root of all the Java
source code for the enterprise beans in the EJB module.

And, if you are deploying the application to JBoss, one additional
non-standard element:

• EJBModule.jar/etc/jboss.xml—the jboss.xml file is a non-standard
file that JBoss uses to map abstract EJB references to concrete
resources in the EJB container.

Web modules A Web module contains all of the files that are needed for the presentation
layer of a J2EE application. This typically includes HTML files, Java server
pages, and ordinary Java beans.

For every Web module, WebModule, a ProjectName/src/WebModule.jar
directory contains the following standard elements:

• WebModule.jar/etc/web.xml—the web.xml file is a standard J2EE
file that specifies the basic configuration of the Web module.

• WebModule.jar/etc/MANIFEST.MF—the MANIFEST.MF is an optional
file that can be used to specify additional meta-information for the Web
module. See “MANIFEST.MF file” on page 104.

• WebModule.jar/lib/—the lib/ subdirectory can hold JAR files used
by the Web module. The JAR files in this directory are automatically
made accessible to the Web module without needing to be added to
the class path.
 96

Source Code Organization (EARSCO)
• WebModule.jar/src/—the src/ subdirectory is the root of all the
Java source code in the Web module.

• WebModule.jar/web/—the web/ subdirectory contains all of the Web
module’s public files (that is, files that can be downloaded through a
Web server). This directory typically contains HTML files, JSP files,
and graphics files (*.gif, *.jpg and so on).

Extra JAR files You can place extra JAR files directly into the ProjectName/src directory.
To make the extra JAR files accessible to an EJB module, use the Java
extension mechanism—see “Accessing the Stub JARs from EJB” on
page 121.

tmp directory The ProjectName/tmp directory is used to hold intermediate files created in
the course of building and packaging the J2EE application.
97

CHAPTER 4 | J2EE AllDayBanking Application
Building and Packaging the J2EE Application

The ant build file Complete rules for building and packaging the AllDayBanking demonstration
are encapsulated in the relevant ant build file, ibank/build.xml. Hence,
you can build and package the J2EE demonstration by entering the
following at a command prompt:

cd FNBHome/ibank/
itant build

The itant utility is a wrapper for the standard ant build utility from apache.
By default, the itant utility reads the build rules from a file called
build.xml in the current directory. For more details, see:

http://jakarta.apache.org/ant/

What happens when you build the
application?

When you invoke itant build in the ibank directory, the ant utility builds
and packages the J2EE application, performing the following tasks:

1. Compiles the J2EE application code.

2. Places all of the intermediate build files into the
ibank/AllDayBanking/tmp directory.

3. Packages the compiled J2EE application into an EAR file,
ibank/AllDayBanking/AllDayBanking.ear.

Files generated The itant build (or ant build) command generates the following files
under the ibank/AllDayBanking directory:

• Files under the tmp/ directory—intermediate build files.

• ProjectName.ear—the complete J2EE application packaged as an
Enterprise Application Archive.

The Enterprise Application
Archive file format

The EAR file is basically a zip file, except that the file suffix is .ear. It’s
contents can be viewed using the Java jar utility or any other standard zip
file utility. The directories and files in the EAR file conform to a standard
layout, which is described in this section.
 98

http://jakarta.apache.org/ant/

Building and Packaging the J2EE Application
In this section This section contains the following subsections:

Directory Structure in an EAR File page 100

Directory Structure in an EJB Module JAR File page 102

Directory Structure in a Web Module WAR File page 105
99

CHAPTER 4 | J2EE AllDayBanking Application
Directory Structure in an EAR File

Overview Figure 29 shows the standard directory structure and layout of an EAR file.

META-INF/ directory The META-INF/ directory can contain the following files:

• META-INF/application.xml—a standard J2EE configuration file that
specifies which modules are in the J2EE application.

• META-INF/MANIFEST.MF—an optional file that can be used to specify
additional meta-information for the EAR. See “MANIFEST.MF file” on
page 104.

Figure 29: Standard Layout of an EAR File

ProjectName.ear
EJBModule.jar

WebModule.war

ExtraJAR.jar

META-INF/

MANIFEST.MF

application.xml
 100

Building and Packaging the J2EE Application
application.xml file The application.xml file is a standard XML file that specifies the modules
to include in a J2EE application. For example, the AllDayBanking
demonstration defines the following application.xml file:

EJB module JAR files Each EJB module is packaged in a JAR file—see “Directory Structure in an
EJB Module JAR File” on page 102.

Web module JAR files Each Web module is packaged in a JAR file—see “Directory Structure in a
Web Module WAR File” on page 105.

Extra JAR files Extra JAR files are JAR files that are referenced by the J2EE application but
are not modules in their own right. Some extra configuration is required to
make them accessible to an EJB module—see “Accessing the Stub JARs
from EJB” on page 121 for details.

<!DOCTYPE application PUBLIC '-//Sun Microsystems, Inc.//DTD
J2EE Application 1.2//EN'
'http://java.sun.com/j2ee/dtds/application_1_2.dtd'>

<application>
 <display-name>AllDayBanking</display-name>
 <module>
 <ejb>WebStuff.jar</ejb>
 </module>
 <module>
 <web>
 <web-uri>WebStuff.war</web-uri>
 <context-root>AllDayBanking</context-root>
 </web>
 </module>
</application>
101

CHAPTER 4 | J2EE AllDayBanking Application
Directory Structure in an EJB Module JAR File

Overview Figure 30 shows the standard directory structure and layout of an EJB
module JAR file including an additional, proprietary, jboss.xml file.

META-INF/ directory The META-INF/ directory can contain the following standard files:

• META-INF/ejb-jar.xml—the EJB deployment descriptor for this EJB
module.

• META-INF/MANIFEST.MF—an optional file that can be used to specify
additional meta-information for the JAR. See “MANIFEST.MF file” on
page 104. For example, MANIFEST.MF can be used to extend the
CLASSPATH used by the EJB module—see “Accessing the Stub JARs
from EJB” on page 121.

And the following non-standard file for JBoss deployments:

• META-INF/jboss.xml—a file that maps abstract EJB references to
concrete container resources.

Figure 30: Layout of an EJB Module JAR File

EJBModule.jar
META-INF/

MANIFEST.MF

ejb-jar.xml

PackagePath/ *.class

jboss.xml
 102

Building and Packaging the J2EE Application
ejb-jar.xml file The purpose of the EJB deployment descriptor, ejb-jar.xml, is to describe
the enterprise beans in the EJB module to the application container.
Example 10 shows the partial contents of the ejb-jar.xml file from the
WebStuff EJB module in the AllDayBanking application.

In Example 10, two types of element are nested directly within the
<ejb-jar> element, as follows:

<enterprise-beans>

This element contains a basic description of every session and entity
bean in the EJB module, using nested <session> and <entity>
elements.

<assembly-descriptor>

This optional element describes how the beans are used in conjunction
with standard J2EE services. For example, the assembly descriptor can

Example 10:Part of the ejb-jar.xml File from the EJB Module in the
AllDayBanking Application

<!DOCTYPE ejb-jar PUBLIC '-//Sun Microsystems, Inc.//DTD
Enterprise JavaBeans 1.1//EN'
'http://java.sun.com/j2ee/dtds/ejb-jar_1_1.dtd'>

<ejb-jar>
 ...
 <display-name>EJB Modules</display-name>
 <enterprise-beans>
 <session>
 <display-name>InetAccount</display-name>
 <ejb-name>InetAccount</ejb-name>
 ...
 </session>
 <entity>
 <display-name>User</display-name>
 <ejb-name>User</ejb-name>
 ...
 </entity>
 </enterprise-beans>

 <assembly-descriptor>
 ...
 </assembly-descriptor>
</ejb-jar>
103

CHAPTER 4 | J2EE AllDayBanking Application
be used to assign security roles to beans, and to describe transactional
behavior.

MANIFEST.MF file A MANIFEST.MF file is a standard component of a JAR file. Historically, it was
introduced to support packaging options for Java applets (such as, for
example, the addition of a digital signature). Manifest files are now used for
J2EE archives as well, where they can store various kinds of
meta-information about an archive.

For a tutorial introduction to manifest files, see the following URL:

http://java.sun.com/docs/books/tutorial/jar/basics/manifest.html

For a detailed specification of the manifest file format, see:

http://java.sun.com/j2se/1.4/docs/guide/jar/jar.html

jboss.xml file The jboss.xml file is a proprietary file that needs to be included in the
EJBModule.jar file, only if you deploy the EJB module to a JBoss J2EE
application server.

For more details, see “jboss.xml file” on page 133.

Class files The EJB module JAR file also contains the module’s class files. The class
files are arranged within the standard directory structure produced by the
Java compiler, javac.

Note: When editing a MANIFEST.MF file, be sure to include a carriage
return at the end of the file.
 104

http://java.sun.com/docs/books/tutorial/jar/basics/manifest.html
http://java.sun.com/j2se/1.4/docs/guide/jar/jar.html

Building and Packaging the J2EE Application
Directory Structure in a Web Module WAR File

Overview Figure 31 shows the standard directory structure and layout of a Web
module WAR file.

META-INF/ directory The META-INF/ directory can contain the following file:

• META-INF/MANIFEST.MF—an optional file that can be used to specify
additional meta-information for the WAR. See “MANIFEST.MF file” on
page 104.

WEB-INF/ directory The WEB-INF/ directory contains a Web archive’s private files and
directories. That is, when the Web archive is deployed, the files and
directories under the WEB-INF/ directory cannot be accessed directly by Web
clients.

The WEB-INF/ directory can contain the following files and directories:

• WEB-INF/web.xml

• WEB-INF/lib/

• WEB-INF/classes/

Figure 31: Standard Layout of a Web Module WAR File

WebModule.war

META-INF/ MANIFEST.MF

WEB-INF/ lib/

web.xml

classes/

(public Web files)
*.html
*.jsp
images/*.gif, *.jpg
105

CHAPTER 4 | J2EE AllDayBanking Application
WEB-INF/web.xml file The WEB-INF/web.xml file is a Web deployment descriptor, a standard J2EE
file that specifies the basic configuration of the Web module.

Example 11 shows an extract from the AllDayBanking Web deployment
descriptor, web.xml. In this example, the Web deployment descriptor is used
primarily to specify references to enterprise beans.

WEB-INF/lib/ directory The WEB-INF/lib/ subdirectory can store JAR files used by the Web
module. The JAR files in this directory are automatically accessible to the
Web module without needing to be added to the class path.

WEB-INF/classes/ directory The WEB-INF/classes/ subdirectory contains the compiled Java code for the
Web module.

Example 11:Extract from the AllDayBanking Web Deployment Descriptor

<!DOCTYPE web-app PUBLIC '-//Sun Microsystems, Inc.//DTD Web
Application 2.2//EN'
'http://java.sun.com/j2ee/dtds/web-app_2.2.dtd'>

<web-app>
 <display-name>Web Modules</display-name>
 <session-config>
 <session-timeout>5</session-timeout>
 </session-config>
 <welcome-file-list>
 <welcome-file>/index.html</welcome-file>
 </welcome-file-list>
 ...
 <ejb-ref>
 <ejb-ref-name>alldaybanking/InetAccount</ejb-ref-name>
 <ejb-ref-type>Session</ejb-ref-type>
 <home>alldaybanking.session.InetAccountHome</home>
 <remote>alldaybanking.session.InetAccount</remote>
 <ejb-link>InetAccount</ejb-link>
 </ejb-ref>
 ...
</web-app>
 106

Building and Packaging the J2EE Application
Public files and directories All of the files and directories not stored under the special WEB-INF directory
are public. After the Web archive is deployed, public files and directories
can be accessed directly by Web clients.

Public files typically include the following:

• HTML files.

• JSP files.

• Image files and other multimedia files—it is a common convention to
store image files in an images subdirectory.

References For an example of how a Web archive is used in practice, see “J2EE
Presentation Layer” on page 149.
107

CHAPTER 4 | J2EE AllDayBanking Application
 108

CHAPTER 5

Accessing the
CORBA Back-End
The AllDayBanking EJB middle-tier functions both as a CORBA
client and as an EJB server. This chapter discusses how to
configure and package the EJB application so that it can gain
access to the CORBA back-end.

In this chapter This chapter discusses the following topics:

Overview of the EJB to CORBA Link page 110

Using Orbix Connect and JBoss page 112

Creating the IDL Stub JAR File page 119

Accessing the Stub JARs from EJB page 121
109

CHAPTER 5 | Accessing the CORBA Back-End
Overview of the EJB to CORBA Link

Overview Figure 32 shows an overview of the link between the EJB middle-tier and
the CORBA back-end server. In this architecture, the InetAccount session
bean acts as a CORBA client of the back-end server. The EJB middle-tier,
therefore, uses a mixture of J2EE and CORBA technologies.

CORBA back-end The back-end registers a bankobjects::AccountMgr object with the CORBA
naming service. This makes the AccountMgr object accessible to
applications that can use the IIOP protocol.

JCA layer The Java Connectivity Architecture (JCA) layer acts as a bridge between the
EJB middle tier and the CORBA back-end. The main purpose of the JCA
layer is to bootstrap connections between J2EE and CORBA. JCA provides a
simplified programming interface, which J2EE applications use for looking
up CORBA objects in the CORBA naming service.

Figure 32: The EJB Middle-Tier Accesses the CORBA Back-End

CORBA Naming Service

Back-End Server

EJB Module

EJB Middle-Tier CORBA Back-End

Back-End
Stubs

JCA
Stubs

User bean

inetAccount bean

JCA
Layer
 110

Overview of the EJB to CORBA Link
EJB module The EJB module uses the JCA programming interface to gain access to
CORBA objects in the CORBA back-end. With the help of the JCA layer, an
EJB bean can obtain a CORBA object reference using just a few lines of
code.

To gain access to the CORBA back-end, the EJB module needs some
additional JAR libraries, as follows:

• JCA stub code.

• Back-end stub code.

JCA stub code The JCA stub code provides access to the JCA programming interface. The
EJB middle tier uses the JCA API to lookup CORBA object references.

Back-end stub code The IDL stub code enables the EJB middle-tier to invoke operations on the
CORBA objects in the back-end server. The application IDL stub code (that
is, the stub code derived from the Account.idl and
BusinessSessionManager.idl files) must be explicitly included in the EJB
module.

Note: The JCA stub JAR is not part of the Orbix product. You can get the
JCA stub from a JCA implementation—for example, Orbix Connect.
111

CHAPTER 5 | Accessing the CORBA Back-End
Using Orbix Connect and JBoss

Overview The AllDayBanking demonstration uses the Orbix product only for the
back-end. The middle-tier and the presentation layer require third-party
J2EE application server software in order to run. Hence, to complete the
AllDayBanking demonstration, you should install the following additional
products:

• Orbix Connect.

• JBoss.

Orbix Connect Orbix Connect (http://www.iona.com/products/orbix_connect.htm) is IONA’s
implementation of the J2EE Connector Architecture (JCA). The purpose of
JCA is to provide a standardized way for J2EE applications to link to external
resources. In particular, Orbix Connect provides a way of linking J2EE
applications to CORBA servers.

JBoss JBoss (www.jboss.org) is an open source, J2EE-based application server.
The JBoss application server is free software, distributed under the Lesser
Gnu Public Licence (LPGL). You can download a free copy of the JBoss
application server from the following URL:

http://www.jboss.org/downloads
 112

www.jboss.org
http://www.jboss.org/downloads
http://www.iona.com/products/orbix_connect.htm

Using Orbix Connect and JBoss
Orbix Connect and JBoss scenario Figure 33 shows an example of a specific scenario where the EJB middle
tier (JBoss) connects to the CORBA back-end (Orbix), using a JCA connector
layer (Orbix Connect).

Orbix Connect JCA layer The Orbix Connect JCA layer is used to bootstrap connections between the
EJB middle-tier and the CORBA back-end. To perform this bootstrapping
role, the JCA layer relies on the CORBA naming service in the back-end. The
JCA layer provides a simple API that enables J2EE applications to retrieve
CORBA object references from the CORBA naming service.

The Orbix Connect JCA layer consists of the following files:

• corbaconn.rar file

• corbaconn-ds.xml file

corbaconn.rar file The corbaconn.rar file is the Resource Adapter aRchive (RAR) file for the
Orbix Connect product. The RAR file contains all of the code and
configuration details required for a client ORB, as well as the code that
implements the JCA programming interface.

To deploy the Orbix Connect RAR file, you can copy the following file:

OrbixConnectHome/lib/corbaconn.rar

Figure 33: EJB to CORBA Connectivity Using Orbix Connect and JBoss

CORBA Naming Service

Back-End Server

EJB Module

EJB Middle-Tier CORBA Back-End

Back-End
Stubs

JCA
Stubs

User bean

inetAccount bean

JCA Layer

corbaconn.rar

corbaconn-ds.xmljboss.xml
113

CHAPTER 5 | Accessing the CORBA Back-End
to the JBoss deploy directory (OrbixConnectHome is the directory where
Orbix Connect is installed).

corbaconn-ds.xml file The corbaconn-ds.xml file contains the configuration settings that initialize
the Orbix Connect JCA adapter. In this example, the main purpose of the
corbaconn-ds.xml file is to provide the JCA adapter with the location of the
CORBA naming service. The corbaconn-ds.xml file must be copied into the
JBoss deploy directory.

The file naming convention, AdapterName-ds.xml, and the format of the
*-ds.xml files are specific to the JBoss J2EE application server. JBoss uses
*-ds.xml data source files to configure adapters to third-party resources.
When a JBoss J2EE application server starts up, it reads all of the *-ds.xml
files in the deployment directory and imports the configuration data from
these files, making the data available through the Java Naming and
Directory Interface (JNDI).

In this example, the Orbix Connect JCA configuration data is made available
through the following JNDI name:

java:/CORBAConnector

Configuration Based on an Orbix Configuration Domain

The FNB demonstration features two alternatives for the corbaconn-ds.xml
file. The first alternative (configuration based on an Orbix configuration
domain) is shown in Example 12.

The JCA configuration shown in Example 12 assumes, as a prerequisite,
that the IT_CONFIG_DOMAINS_DIR and the IT_DOMAIN_NAME variables are set
in your system environment—that is, you must have initialized an Orbix
configuration domain. When you run itant jboss_deploy, the

Example 12: JCA Configuration Based on an Orbix Configuration Domain

<?xml version="1.0" encoding="UTF-8"?>
<connection-factories>
 <no-tx-connection-factory>
 <jndi-name>CORBAConnector</jndi-name>
 <adapter-display-name>CORBAConnector</adapter-display-name>
 <config-property name="ORBConfig" type="java.lang.String">
 file://@IT_CONFIG_DOMAINS_DIR@/@IT_DOMAIN_NAME@.cfg
 </config-property>
 </no-tx-connection-factory>
</connection-factories>
 114

Using Orbix Connect and JBoss
@IT_CONFIG_DOMAINS_DIR@ and @IT_DOMAIN_NAME@ macros from Example 12
are substituted with literal values and the corbaconn-ds.xml file is copied
into the JBoss deployment directory.

The <jndi-name> tag specifies that the configuration data is stored under
the java:/CORBAConnector JNDI name.

Configuration Based on a corbaloc URL

The second alternative (configuration based on a corbaloc URL) is shown in
Example 13.

The JCA configuration shown in Example 13 can be used, if an Orbix
configuration domain is not available. In fact, this configuration could be
used to integrate Orbix Connect with any back-end ORB that supports IIOP.
It might be necessary to edit the corbaloc: URL, however. See the Orbix
Connect User’s Guide for more details.

The <jndi-name> tag specifies that the configuration data is stored under
the java:/CORBAConnector JNDI name.

JBoss EJB module The JBoss EJB module requires the following files in order to integrate with
the JCA layer and the CORBA back-end:

• Stub JARs.

• jboss.xml file.

• ejb-jar.xml.

Example 13: JCA Configuration Based on a corbaloc URL

<?xml version="1.0" encoding="UTF-8"?>
<connection-factories>
 <no-tx-connection-factory>
 <jndi-name>CORBAConnector</jndi-name>
 <adapter-display-name>CORBAConnector</adapter-display-name>
 <config-property name="NameServiceReference"

type="java.lang.String">
 corbaloc:iiop:1.2@localhost:3075/NameService
 </config-property>
 </no-tx-connection-factory>
</connection-factories>
115

CHAPTER 5 | Accessing the CORBA Back-End
Stub JARs It is necessary to bundle some stub JAR files with the EJB module, as
follows:

• api.jar—contains the public API for the Orbix Connect JCA adapter
(copied from OrbixConnectHome/lib/corbaconn/api/1.0).

• idlstubs.jar—contains the IDL stubs for the CORBA back-end.

For full details about how to include these stub JARs in a J2EE application,
see “Accessing the Stub JARs from EJB” on page 121.

jboss.xml file The jboss.xml file is used, in addition to the standard ejb-jar.xml file, to
configure the JBoss EJB container. Some special XML tags must be added
to the jboss.xml file to make the JCA adapter available to an EJB bean.

For example, the InetAccount session bean is configured by the jboss.xml
file shown in Example 14:

The configuration shown in Example 14 on page 116 specifies that the
Orbix Connect JCA adapter can be accessed by resolving the
java:comp/env/eis/CorbaConn JNDI name. For more details about the
jboss.xml file, see “jboss.xml file” on page 133.

Example 14: jboss.xml Configuration File

<?xml version="1.0" encoding="UTF-8"?>
...
<jboss>
 <enterprise-beans>
 <session>
 <ejb-name>InetAccount</ejb-name>
 <resource-ref>
 <res-ref-name>eis/CorbaConn</res-ref-name>
<res-type>com.iona.j2ee.resourceadapter.CorbaConnection</res-typ

e>
 <jndi-name>java:/CORBAConnector</jndi-name>
 </resource-ref>

 </session>
 ...
 </enterprise-beans>
</jboss>
 116

Using Orbix Connect and JBoss
ejb-jar.xml The JCA connector must also be declared as a resource within the
ejb-jar.xml file. For the AllDayBanking application, the JCA connector
must be declared as a resource for the InetAccount and the
ValidateCreditCard session beans. Example 15 shows how the JCA
resource is declared for the InetAccount bean.

Example 15:ejb-jar.xml Configuration File

<?xml version="1.0" encoding="UTF-8"?>
...
<ejb-jar>
 ...
 <enterprise-beans>
 ...
 <session>
 <display-name>InetAccount</display-name>
 <ejb-name>InetAccount</ejb-name>
 <home>alldaybanking.session.InetAccountHome</home>
 <remote>alldaybanking.session.InetAccount</remote>

<ejb-class>alldaybanking.session.InetAccountBean</ejb-class>
 <session-type>Stateless</session-type>
 <transaction-type>Container</transaction-type>
 <resource-ref>
 <res-ref-name>eis/CorbaConn</res-ref-name>
<res-type>com.iona.j2ee.resourceadapter.CorbaConnection</res-typ

e>
 <res-auth>Container</res-auth>
 </resource-ref>
 </session>
 ...
 </enterprise-beans>

 <assembly-descriptor>
 ...
 </assembly-descriptor>
</ejb-jar>
117

CHAPTER 5 | Accessing the CORBA Back-End
Establishing an EJB to CORBA
link

Using the configuration settings shown in this section, an EJB bean (such as
InetAccount) can bootstrap a connection to the CORBA back-end using the
API provided by the JCA layer.

Your EJB code can obtain a reference to the JCA adapter by resolving the
the java:comp/env/eis/CorbaConn JNDI name. With the help of the JCA
adapter, it takes just a few lines of code to establish a link to the CORBA
server.

For a complete code example, see “Implementation of ejbCreate()” on
page 129.
 118

Creating the IDL Stub JAR File
Creating the IDL Stub JAR File

Overview This section provides an overview of the steps required to create the IDL
stub JAR file, idlstubs.jar.

Steps to create the idlstubs.jar file From the AllDayBanking directory, you can recreate the idlstubs.jar file
with the following steps:

Note: There is no need to perform these steps for the AllDayBanking
application, however, because the idlstubs.jar file is already provided in
the AllDayBanking/lib/ directory.

Step Action

1 Compile the IDL files.

Invoke the CORBA IDL compiler, idl, as follows:

idl -jbase=-OAllDayBanking/classes/idl_java
-jpoa=-OAllDayBanking/classes/idl_java
AllDayBanking/idl/BusinessSessionManager.idl
AllDayBanking/idl/Account.idl

The generated output includes both client stub code (generated
by the -jbase option) and server skeleton code (generated by
the -jpoa option). The output is put into the
AllDayBanking/classes/idl_java directory.

2 Compile the Java code.

Use the Java compiler, javac, to compile all of the source files
in the AllDayBanking/classes/idl_java directory and place
the output file in the AllDayBanking/classes/idl_classes
directory.

While compiling, make sure that you use the correct CLASSPATH
for your Orbix configuration domain. For a particular domain,
DomainName, the CLASSPATH is normally initialized when you
run the DomainName_env.bat (Windows) or
DomainName_env.sh (UNIX) script.

119

CHAPTER 5 | Accessing the CORBA Back-End
3 Create the JAR file.

Use the standard Java utility, jar, to package the compiled
stub code into a JAR file, idlstubs.jar, as follows:

jar cf AllDayBanking/lib/idlstubs.jar
AllDayBanking/classes/idl_classes

Step Action
 120

Accessing the Stub JARs from EJB
Accessing the Stub JARs from EJB

Overview To make a stub JAR file (for example, idlstubs.jar and api.jar)
accessible to an EJB module, you must:

• Include the stub JAR file in the application EAR file, and

• Use the Java extension mechanism to add the stub JAR to the EJB
module’s class path.

Including the stub JAR files The IDL stub JAR file, idlstubs.jar, and the JCA stub JAR file, api.jar,
must be included somewhere in the application EAR file. For example, the
top-level directory inside the AllDayBanking.ear file contains the following
files and directories:

META-INF/
api.jar
idlstubs.jar
WebStuff.jar
WebStuff.war

For example, to add the idlstubs.jar file to the application EAR file, put
idlstubs.jar into the ibank/AllDayBanking/src/ directory of the FNB
directory structure (see Figure 28 on page 95) and run the itant build
command from the ibank directory to regenerate the EAR file.

The Java extension mechanism The Java extension mechanism allows you to reference additional packages
from within a JAR file. In the context of an EAR file, it enables you to extend
the classpath of a specific EJB module to access another JAR file in the
Enterprise Archive.

Within the FNB directory structure, you should edit the MANIFEST.MF file in
the ibank/AllDayBanking/WebStuff.jar/etc/ directory and add a
Class-Path: entry of the following form:

For example, the ibank/AllDayBanking/WebStuff.jar/etc/MANIFEST.MF
file contains the following text:

Class-Path: PathToExtraPackage1.jar PathToExtraPackage2.jar ...

Class-Path: idlstubs.jar api.jar
121

CHAPTER 5 | Accessing the CORBA Back-End
Reference For further details on the Java extension mechanism, see:

http://java.sun.com/j2se/1.3/docs/guide/extensions/index.html
 122

http://java.sun.com/j2se/1.3/docs/guide/extensions/index.html

CHAPTER 6

EJB Middle-Tier
The EJB middle-tier implements the business logic for the
AllDayBanking application. This chapter describes the
implementation and configuration of a session bean and an
entity bean from the AllDayBanking EJB middle-tier.

In this chapter This chapter discusses the following topics:

The InetAccount Session Bean page 124

The User Entity Bean page 135
123

CHAPTER 6 | EJB Middle-Tier
The InetAccount Session Bean

Overview The purpose of the InetAccount session bean is to provide clients with
temporary access to an Account object in the CORBA back-end.

Because the InetAccount session bean is effectively a wrapper for an
Account CORBA object, the methods defined on the InetAccount bean offer
similar functionality to the Account IDL interface.

One of the differences between InetAccount and Account is that the
InetAccount bean defines a resolveAccount() method to associate an
InetAccount bean with a particular Account object. After the association is
established, subsequent method calls on InetAccount are delegated to that
Account object. The association can be switched to a different Account
object, however, by making a subsequent call to resolveAccount().

In this section This section contains the following subsections:

Anatomy of a Session Bean page 125

EJB Session Bean Life Cycle Methods page 128

Session Bean Configuration page 131
 124

The InetAccount Session Bean
Anatomy of a Session Bean

What is a session bean? A session bean is a remotely accessible bean that exists in the J2EE
Application Server for as long as a client session is active. When the client
has finished using the EJB application, the session bean can be discarded.

You can think of a session bean as a kind of client proxy. The session bean
is an object in the EJB middle-tier that does work on behalf of a particular
client.

Parts of a session bean Three elements are needed to implement the InetAccount session bean, as
follows:

• InetAccount—the remote interface of the InetAccount session bean.
This Java interface declares the methods that are made available to
remote clients.

• InetAccountHome—the home interface of the InetAccount session
bean. This Java interface declares methods for creating InetAccount
session beans.

• InetAccountBean—the bean class provides the implementation of the
InetAccount session bean.
125

CHAPTER 6 | EJB Middle-Tier
Structure of the InetAccountBean
class

The InetAccountBean class is the most important part of the InetAccount
session bean because it provides the actual implementation of the bean.
Figure 34 gives an overview of the structure of the InetAccountBean class.

Session bean base class A session bean class always extends the following standard base class:

javax.ejb.SessionBean

Bean methods All of the methods declared in the remote interface, InetAccount, are also
defined in the InetAccountBean class. The method signatures in the
InetAccountBean class are the same as in the InetAccount remote interface
except that the throws java.rmi.RemoteException clause is omitted.

Figure 34: Structure of the InetAccountBean Session Bean Class

public class inetAccountBean implements javax.ejb.SessionBean
{
 //--------------------
 // Constructor
 //--------------------
 public inetAccountBean () {}

 //--------------------
 // Bean methods
 //--------------------
 ...

 //--------------------
 // Bean attribute methods
 //--------------------
 public float getBalance (int accNum) { ... }
 ...

 //--------------------
 // Standard session bean methods
 //--------------------
 public void ejbCreate() throws CreateException
 {
 ...
 }
 public void ejbActivate() {}
 public void ejbRemove() {}
 public void ejbPassivate() {}
 public void setSessionContext(SessionContext ctx) {}

 //--------------------
 // Private methods
 //--------------------
 ...
}

Session bean base class

Bean methods

Bean attribute methods

Session bean callbacks

Private methods
 126

The InetAccount Session Bean
Bean attribute methods Bean methods that conform to either of the following patterns are treated
specially:

Type getAttributeName();
void setAttributeName(Type x);

where AttributeName is an attribute of Type type. The JavaBeans
specification mandates that these methods are recognized as accessor and
modifier methods for bean attributes. Various tools and utilities can then use
Java reflection to identify the bean attributes automatically.

Session bean callbacks The following public methods are standard session bean methods that must
be defined on every session bean:

// Java
public void ejbCreate() throws javax.ejb.CreateException { }
public void ejbRemove() {}
public void ejbActivate() {}
public void ejbPassivate() {}
public void setSessionContext(javax.ejb.SessionContext ctx) {}

See “EJB Session Bean Life Cycle Methods” on page 128.

Private methods Additional, private methods can be defined for bean-internal use.
127

CHAPTER 6 | EJB Middle-Tier
EJB Session Bean Life Cycle Methods

Overview The EJB session bean life cycle methods are called by the EJB container to
notify a session bean instance when specific life cycle events occur. The
session bean class (for example, InetAccountBean) must provide an
implementation for each of the life cycle methods, although the
implementation of these methods is often trivial or even empty.

ejbCreate() method The ejbCreate() method has the following signature:

public void ejbCreate() throws javax.ejb.CreateException

Called just after the session bean instance is created, in response to a
client calling create() on the bean’s home interface.

ejbRemove() method The ejbRemove() method has the following signature:

public void ejbRemove()

Called just before a session bean instance is permanently destroyed, in
response to a client calling remove() on the bean’s remote interface or
on the bean’s home interface.

ejbPassivate() method The ejbPassivate() method has the following signature:

public void ejbPassivate()

Called just before the container passivates the bean by storing the
bean data (typically serializing the bean) and removing the bean
instance from memory. The container passivates a bean in order to
conserve memory and other resources. The container is prepared,
however, to reactivate the bean automatically as soon as it is needed
again.

ejbActivate() method The ejbActivate() method has the following signature:

public void ejbActivate()

Called just after the container has reactivated a bean that was
previously passivated.
 128

The InetAccount Session Bean
Implementation of ejbCreate() Example 16 shows the implementation of the ejbCreate() method for the
InetAccountBean class. The ejbCreate() method is called by the J2EE
container just after an InetAccountBean object is created. This is where you
can do any once-off initialization for the new InetAccountBean object.

Example 16:The InetAccountBean.ejbCreate() Method

// Java
import bankobjects.AccountMgr;
import com.iona.corbaconn.CorbaConnectionFactory;
...
public class InetAccountBean implements javax.ejb.SessionBean {

1 private static String EIS_JNDI_NAME =
"java:comp/env/eis/CorbaConn";

 private CorbaConnectionFactory corbaFact = null;
 private bankobjects.AccountMgr myMgr = null;
 private bankobjects.Account myAccount = null;
 ...
 public void ejbCreate() throws CreateException {
 try {

2 javax.naming.Context ctx =
 new javax.naming.InitialContext();

3 corbaFact = (CorbaConnectionFactory)
 ctx.lookup(EIS_JNDI_NAME);
 } catch (javax.naming.NamingException ne) {
 System.err.println(
 "Trouble finding CORBA JCA Connector in JNDI"
);
 ne.printStackTrace();
 }

 System.out.println("BEAN>In ejbcreate....");

 if (myMgr == null) {
 try {

4 myMgr = (AccountMgr) corbaFact.getConnection(
 AccountMgr.class,
 "Mainframe/BankObjects_AccountMgr"
);
 } catch (ResourceException re) {
 System.err.println("Failure location CORBA Object " +

re);
 }
 }
 }
129

CHAPTER 6 | EJB Middle-Tier
The preceding code can be explained as follows:

1. The java:comp/env/eis/CorbaConn URL is a Java Naming and
Directory Interface (JNDI) name. This name can be analyzed as
follows:

i. The first part of the name, java:comp/env, is a standard prefix
used to access J2EE environment variables.

ii. The second part of the name, eis/CorbaConn, is mapped to a
connection factory resource by an XML configuration file (in the
case of JBoss, this file is jboss.xml).

See “jboss.xml file” on page 133 and “Using Orbix Connect and JBoss”
on page 112 for more details.

2. The javax.naming.InitialContext() static method creates a new
JNDI context, which accesses the default JNDI service provided by the
J2EE application container. This is the standard way of accessing JNDI
from within an EJB bean.

3. A reference to a com.iona.corbaconn.CorbaConnectionFactory object
is obtained by looking up the java:comp/env/eis/CorbaConn URL in
the JNDI service. The CORBA connection factory object is used to get
references to remote CORBA objects.

4. The getConnection() method is invoked on the CORBA connection
factory to obtain a reference to the bankobjects.AccountMgr CORBA
object. The getConnection() method takes the following arguments:

♦ ClassName.class—the type of object reference.

♦ CORBA name in string format—the string provided here is
resolved in the CORBA naming service relative to the root naming
context.

The value returned by getConnection() must be cast to the
appropriate type, that is bankobjects.AccountMgr.

The bankobjects.AccountMgr instance, myMgr, provides direct access
to the back-end CORBA server.

Reference For more details about JNDI, and how it is used within J2EE, see:

• http://java.sun.com/developer/technicalArticles/Programming/jndi/index.ht
ml
 130

http://java.sun.com/developer/technicalArticles/Programming/jndi/index.html
http://java.sun.com/developer/technicalArticles/Programming/jndi/index.html

The InetAccount Session Bean
Session Bean Configuration

Overview A session bean has two layers of configuration.

The first layer is configured by the following file:

The second layer is configured by a proprietary container configuration file,
which is specific to the particular J2EE deployment platform you are using:

ejb-jar.xml file The EJB deployment descriptor, ejb-jar.xml, is a standard J2EE file that
conforms to the EJB 1.1 Document Type Definition (DTD). The purpose of
this file is to describe the enterprise beans in an EJB module to the EJB
container.

For example, the XML code in Example 17 is an incomplete extract from the
AllDayBanking deployment descriptor that shows the configuration of the
InetAccount session bean:

ejb-jar.xml The EJB deployment descriptor.

jboss.xml The JBoss container configuration.

Example 17:ejb-jar.xml Extract Showing InetAccount Bean Configuration

<!DOCTYPE ejb-jar PUBLIC '-//Sun Microsystems, Inc.//DTD
Enterprise JavaBeans 1.1//EN'
'http://java.sun.com/j2ee/dtds/ejb-jar_1_1.dtd'>

<ejb-jar>
 <display-name>EJB Modules</display-name>
 <enterprise-beans>
 ...
 <session>
 <display-name>InetAccount</display-name>
 <ejb-name>InetAccount</ejb-name>
 <home>alldaybanking.session.InetAccountHome</home>
 <remote>alldaybanking.session.InetAccount</remote>
 <ejb-class>alldaybanking.session.InetAccountBean</ejb-class>
 <session-type>Stateless</session-type>
 <transaction-type>Container</transaction-type>
 </session>
 ...
 </enterprise-beans>
131

CHAPTER 6 | EJB Middle-Tier
In Example 17, the following elements contain detailed information about
the InetAccount session bean:

<session>

This element provides a basic description of the InetAccount session
bean. For example, the <ejb-name> element gives the name of the
session bean; the <home>, <remote>, and <ejb-class> elements
identify, respectively, the home, remote, and bean implementation
classes.

<container-transaction>

This element specifies the transaction properties for all the beans and
bean methods in the EJB module. The configuration in Example 17
specifies that every method in InetAccount has the Required
transaction attribute. The Required transaction attribute implies that
the methods can be called either by a transactional or by a
non-transactional client. In the case of a non-transactional client, the
container creates the transactional context for the call and
automatically commits the transaction at the end of the method call.

 <assembly-descriptor>
 <container-transaction>
 ...
 <method>
 <ejb-name>InetAccount</ejb-name>
 <method-name>*</method-name>
 </method>
 <trans-attribute>Required</trans-attribute>
 </container-transaction>
 </assembly-descriptor>

</ejb-jar>

Example 17:ejb-jar.xml Extract Showing InetAccount Bean Configuration
 132

The InetAccount Session Bean
jboss.xml file The JBoss container configuration, jboss.xml, is an IONA proprietary file.
The purpose of this file is to map abstract bean properties onto specific
container resources and services.

For example, the XML code in Example 18 is an extract from the
AllDayBanking container configuration that shows the configuration of the
InetAccount session bean and the validateCreditCard session bean:

Example 18: jboss.xml Configuration File

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE jboss PUBLIC
 "-//JBoss//DTD JBOSS 3.0//EN"
 "http://www.jboss.org/j2ee/dtd/jboss_3_0.dtd">

<jboss>
 <enterprise-beans>
 <session>
 <ejb-name>InetAccount</ejb-name>
 <resource-ref>
 <res-ref-name>eis/CorbaConn</res-ref-name>

<res-type>com.iona.j2ee.resourceadapter.CorbaConnection</res-
type>

 <jndi-name>java:/CORBAConnector</jndi-name>
 </resource-ref>
 </session>

 <session>
 <ejb-name>ValidateCreditCard</ejb-name>
 <resource-ref>
 <res-ref-name>eis/CorbaConn</res-ref-name>

<res-type>com.iona.j2ee.resourceadapter.CorbaConnection</res-
type>

 <jndi-name>java:/CORBAConnector</jndi-name>
 </resource-ref>
 </session>
 </enterprise-beans>
</jboss>
133

CHAPTER 6 | EJB Middle-Tier
The <resource-ref> tag contains the following sub-tags:

<res-ref-name>

Specifies the name of a J2EE environment variable that is made
accessible through JNDI. For example, the eis/CorbaConn resource
reference name can be accessed using the
java:comp/env/eis/CorbaConn JNDI name.

<res-type>

Specifies the type of object stored under the
java:comp/env/eis/CorbaConn JNDI name. The type specified here,
com.iona.j2ee.resourceadapter.CorbaConnection, is implemented
by the Orbix Connect RAR, orbixconn.rar.

<jndi-name>

This JNDI name, java:/CORBAConnector, refers to an entry in a JBoss
datasource file. The JBoss datasource file is used to store configuration
properties for the CORBA connector. For more details, see
“corbaconn-ds.xml file” on page 114.
 134

The User Entity Bean
The User Entity Bean

Overview The purpose of the User entity bean is to store a user’s registration details
persistently. These registration details are provided when the user registers
to use the AllDayBanking Internet application for the first time—see “The
New User Registration Web Form” on page 167.

Persistence of the User entity beans is provided by the J2EE Application
Server (working together with a specified database resource), using the
container-managed persistence mechanism.

In this section This section contains the following subsections:

Anatomy of an Entity Bean page 136

EJB Entity Bean Life Cycle Methods page 139

Entity Bean Configuration page 142

Container-Managed Persistence in JBoss page 145
135

CHAPTER 6 | EJB Middle-Tier
Anatomy of an Entity Bean

What is an entity bean? An entity bean is a remotely accessible bean whose state is stored
persistently. The entity bean continues to exist across multiple runs of the
J2EE Application Server until it is explicitly destroyed.

You can think of an entity bean as the object-oriented representation of a
database record (and, typically, that is exactly how it is stored).

Parts of an entity bean Three elements are needed to implement the User entity bean, as follows:

• User—the remote interface of the User entity bean. This Java interface
declares the methods that are made available to remote clients.

• UserHome—the home interface of the User entity bean. This Java
interface declares methods for creating and finding User entity beans.

• UserBean—the bean class provides the implementation of the User
entity bean.
 136

The User Entity Bean
Structure of the UserBean class The UserBean class is the most important part of the User entity bean
because it provides the implementation of the bean. Figure 35 gives an
overview of the structure of the UserBean class.

User bean base class An entity bean class always extends the following standard base class:

javax.ejb.EntityBean

Bean methods All of the methods declared in the remote interface, User, are also defined in
the UserBean class. The method signatures in the UserBean class are the
same as in the User interface except that the throws
java.rmi.RemoteException clause is omitted.

Figure 35: Structure of the UserBean Entity Bean Class

public class UserBean implements javax.ejb.EntityBean
{
 //--------------------
 // Constructor
 //--------------------
 public UserBean () {}

 //--------------------
 // Bean methods
 //--------------------
 ...

 //--------------------
 // Bean attribute methods
 //--------------------
 public String getLname () { ... }
 ...

 //--------------------
 // Standard entity bean methods
 //--------------------
 public KeyType ejbCreate(...) throws CreateException { ... }
 public void ejbPostCreate(...) { ... }
 public void ejbRemove() {}
 public void ejbActivate() { ... }
 public void ejbPassivate() {}
 public void ejbLoad() {}
 public void ejbStore() {}
 public void setSessionContext(SessionContext ctx) {}
 public void unsetEntityContext() { ... }

 //--------------------
 // Private methods
 //--------------------
 ...
}

Entity bean base class

Bean methods

Bean attribute methods

Entity bean callbacks

Private methods
137

CHAPTER 6 | EJB Middle-Tier
Bean attribute methods Bean methods that conform to either of the following patterns are treated
specially:

Type getAttributeName();
void setAttributeName(Type x);

where AttributeName is an attribute of Type type. The JavaBeans
specification mandates that these methods are recognized as accessor and
modifier methods for bean attributes. Various tools and utilities can then use
Java reflection to identify the bean attributes automatically.

Standard entity bean methods The following public methods are standard entity bean methods that must
be defined on every entity bean:

// Java
public PrimaryKeyType ejbCreate(InitialData)

throws javax.ejb.CreateException
public void ejbPostCreate(InitialData)
public void ejbRemove()
public void ejbPassivate()
public void ejbActivate()
public void ejbLoad()
public void ejbStore()
public void setSessionContext(javax.ejb.SessionContext ctx)
public void unsetEntityContext()

Where PrimaryKeyType is a type that is used to identify the bean (and, by
implication, also identifies an associated record in a database). The
InitialData is an arbitrary list of parameters that is used to initialize the
entity bean.

If the entity bean uses bean-managed persistence, you also have to define
one or more finder methods, ejbFindSuffix().

See “EJB Entity Bean Life Cycle Methods” on page 139.

Private methods Additional, private methods can be defined for bean-internal use.
 138

The User Entity Bean
EJB Entity Bean Life Cycle Methods

Overview The EJB entity bean life cycle methods are called by the EJB container to
notify an entity bean instance when specific life cycle events occur. The
entity bean class (for example, UserBean) must provide an implementation
for each of the life cycle methods.

ejbCreate() methods There can be several overloaded ejbCreate() methods defined on the bean
class, one for every create() method defined on the home interface. An
entity bean ejbCreate() method has the following signature:

public PrimaryKeyType ejbCreate(InitialData)
throws javax.ejb.CreateException

Called just after the entity bean instance is created, in response to a
client calling create(InitialData) on the bean’s home interface. The
return value from ejbCreate(), of PrimaryKeyType type, depends on
the kind of persistence that is used:

♦ Container-Managed Persistence—returns null.

♦ Bean-Managed Persistence—returns the primary key for this
bean instance.

ejbPostCreate() methods For each ejbCreate() method, there is a matching ejbPostCreate(). An
ejbPostCreate() method has the following signature:

public void ejbPostCreate(InitialData)
throws javax.ejb.CreateException

Called after the entity bean is fully initialized. For example, at this
stage both the bean data and the primary key are initialized
irrespective of whether container-managed or bean-managed
persistence is used.

ejbRemove() method The ejbRemove() method has the following signature:

public void ejbRemove()

Called just before an entity bean instance is permanently destroyed, in
response to a client calling remove() on the bean’s remote interface or
on the bean’s home interface.
139

CHAPTER 6 | EJB Middle-Tier
ejbPassivate() method The ejbPassivate() method has the following signature:

public void ejbPassivate()

Called just before the container passivates the bean by storing the
bean data (typically serializing the bean) and removing the bean
instance from memory. The container passivates a bean in order to
conserve memory and other resources. The container is prepared,
however, to reactivate the bean automatically as soon as it is needed
again.

ejbActivate() method The ejbActivate() method has the following signature:

public void ejbActivate()

Called just after the container has reactivated a bean that was
previously passivated.

ejbLoad() method The ejbLoad() method has the following signature:

public void ejbLoad()

Load the entity bean state from the database. Typically, the container
calls this method at the start of a transaction to ensure that the state of
the bean in memory is synchronized with the state in the database.

ejbStore() method The ejbStore() method has the following signature:

public void ejbStore()

Store the entity bean state in the database. Typically, the container
calls this method at the end of a transaction to update the bean state
in the database.

ejbFind() methods The ejbFind() methods need only be defined on the entity bean class if you
are using bean-managed persistence. There are no ejbFind() methods
defined on the UserBean entity bean class because the User bean is
implemented with container-managed persistence.
 140

The User Entity Bean
Implementation of ejbCreate() Example 19 shows the implementation of the ejbCreate() method for the
UserBean class. The ejbCreate() method is called by the J2EE container
just after a UserBean object is created. In this example, the ejbCreate()
method simply initializes the member variables of the UserBean instance.

The ejbCreate() method returns null because the User bean is
implemented with container-managed persistence.

Example 19:The User.ejbCreate() Method

// Java
 ...
 public Integer ejbCreate(
 String userid, String lname, String fname,
 int accnum, int ccnum, String accpwd, String emailaddr
)
 throws CreateException
 {
 this.lname = lname;
 this.fname = fname;
 this.userid = userid ;
 this.emailaddr = emailaddr;
 this.accnum = accnum;
 this.ccnum = ccnum;
 this.accpwd = accpwd ;

 return null;
 }
141

CHAPTER 6 | EJB Middle-Tier
Entity Bean Configuration

Overview An entity bean has two layers of configuration, which correspond to the
following XML files:

ejb-jar.xml file The EJB deployment descriptor, ejb-jar.xml, is a standard J2EE file that
conforms to the EJB 1.1 Document Type Definition (DTD). The purpose of
this file is to describe the enterprise beans in an EJB module to the EJB
container.

For example, the XML code in Example 20 is an incomplete extract from the
AllDayBanking deployment descriptor that shows the configuration of the
User entity bean:

ejb-jar.xml The EJB deployment descriptor.

jboss.xml The JBoss container configuration.

Example 20:ejb-jar.xml Extract Showing User Bean Configuration

<!DOCTYPE ejb-jar PUBLIC '-//Sun Microsystems, Inc.//DTD
Enterprise JavaBeans 1.1//EN'
'http://java.sun.com/j2ee/dtds/ejb-jar_1_1.dtd'>

<ejb-jar>
 <display-name>EJB Modules</display-name>
 <enterprise-beans>
 ...
 <entity>
 <description>
 Entity bean represent a user of the online bank
 </description>
 <display-name>User</display-name>
 <ejb-name>User</ejb-name>
 <home>alldaybanking.entity.UserHome</home>
 <remote>alldaybanking.entity.User</remote>
 <ejb-class>alldaybanking.entity.UserBean</ejb-class>
 <persistence-type>Container</persistence-type>
 <prim-key-class>java.lang.String</prim-key-class>
 <reentrant>True</reentrant>
 <cmp-field>
 <field-name>userid</field-name>
 </cmp-field>
 142

The User Entity Bean
In Example 20, the following elements contain detailed information about
the User entity bean:

<entity>

This element provides a basic description of the User entity bean. For
example, the <ejb-name> element gives the name of the session bean;
the <home>, <remote>, and <ejb-class> elements identify,
respectively, the home, remote, and bean implementation classes.

 <cmp-field>
 <field-name>lname</field-name>
 </cmp-field>
 <cmp-field>
 <field-name>fname</field-name>
 </cmp-field>
 <cmp-field>
 <field-name>accnum</field-name>
 </cmp-field>
 <cmp-field>
 <field-name>ccnum</field-name>
 </cmp-field>
 <cmp-field>
 <field-name>accpwd</field-name>
 </cmp-field>
 <cmp-field>
 <field-name>emailaddr</field-name>
 </cmp-field>
 <primkey-field>userid</primkey-field>
 </entity>
 </enterprise-beans>

 <assembly-descriptor>
 <container-transaction>
 <method>
 <ejb-name>User</ejb-name>
 <method-name>*</method-name>
 </method>
 ...
 <trans-attribute>Required</trans-attribute>
 </container-transaction>
 </assembly-descriptor>
</ejb-jar>

Example 20:ejb-jar.xml Extract Showing User Bean Configuration
143

CHAPTER 6 | EJB Middle-Tier
Various other elements nested within the <entity> element are used to
configure the User bean for container-managed persistence. The
<persistence-type> element has the value Container, which
specifies that container-managed persistence is selected. The
<cmp-field> elements specify which of member variables in the
UserBean class are to be made persistent. One of the UserBean
member variables, userid, is designated as the primary key by
enclosing it in the <primkey-field> element.

<assembly-descriptor> and <container-transaction>

In Example 20, the <assembly-desciptor> element contains a single
nested element, <container-transaction>. The
<container-transaction> element specifies that every method in the
User bean has the Required transaction attribute. The Required
transaction attribute implies that the methods can be called either by a
transactional or by a non-transactional client. In the case of a
non-transactional client, the container creates the transactional context
for the call and automatically commits the transaction at the end of the
method call.

jboss.xml file The JBoss container configuration file, jboss.xml, can be used for the
following purposes:

• Declaring references to other EJB beans.

• Declaring resources (for example, if the entity bean needed to access a
JCA connector resource).

In the case of the UserBean entity bean, however, no declarations need to be
made in the jboss.xml file.
 144

The User Entity Bean
Container-Managed Persistence in JBoss

Overview Figure 36 gives an overview of container-managed persistence for the User
entity bean, showing the elements involved in providing the
container-managed persistence in JBoss.

The UserBean class All of the UserBean public member variables are made persistent using
container-managed persistence. For example, this includes the userid,
lname, and fname member variables.

Container-managed persistence imposes a particular implementation
pattern on the entity bean developer. For example, the entity bean is not
responsible for reading its state from a database or writing its state to the
database. This is looked after automatically by the container. Consequently,
the entity bean life cycle methods tend to be rather simple for an entity bean
using container-managed persistence—see “EJB Entity Bean Life Cycle
Methods” on page 139.

Figure 36: Overview of Container-Managed Persistence

UserBean
Class

ejb-jar.xml

public String lname;
public String fname;
public String userid;
...

lname

fname

userid

JBoss Built-In Database

FIRSTNAMELASTNAME ...USERID
......
......
......
......
......

USERTABLE
145

CHAPTER 6 | EJB Middle-Tier
ejb-jar.xml file The ejb-jar.xml file is responsible for specifying which of the UserBean
member variables should be made persistent through container-managed
persistence.

In the <entity> element that describes the User entity bean, a sequence of
<cmp-field> elements specify the persistent member variables. For
example, the following extract from the AllDayBanking ejb-jar.xml file
specifies that userid, lname, and fname are persistent variables:

In the preceding extract from ejb-jar.xml, the <primkey-field> element
specifies that the userid member variable is the primary key for the User
bean.

...
<ejb-jar>
 ...
 <enterprise-beans>
 ...
 <entity>
 ...
 <cmp-field>
 <field-name>userid</field-name>
 </cmp-field>
 <cmp-field>
 <field-name>lname</field-name>
 </cmp-field>
 <cmp-field>
 <field-name>fname</field-name>
 </cmp-field>
 ...
 <primkey-field>userid</primkey-field>
 </entity>
 </enterprise-beans>
 ...
</ejb-jar>
 146

The User Entity Bean
JBoss built-in database JBoss has a built-in SQL database, implemented in Java, which it uses for
container-managed persistence by default. There is no need to start up the
built-in database explicitly; it is launched at the same time as the JBoss
Web server.

Default container-managed
persistence

JBoss implements a default container-managed persistence, which requires
no special configuration by the user. The default container-managed
persistence has the following features:

• Persistence is managed by the JBoss JAWS (Just Another Web
Storage) package, which implements object-relational mapping to
generate database tables automatically from Java classes.

• Container-managed persistence is defined by the ejb-jar.xml file. No
additional configuration is necessary.

• JAWS automatically creates a table to hold the container-managed
persistence data (using the built-in SQL database).

• Table fields are created with default sizes. For example, a string field
would automatically be allocated 256 bytes.

Customizing container-managed
persistence

You can, optionally, customize container-managed persistence by providing
a jaws.xml file with the EJB application. For example, the jaws.xml file
allows you to specify the sizes of table fields and to use databases other
than the JBoss built-in database.

For more details, consult the JAWS documentation from JBoss.
147

CHAPTER 6 | EJB Middle-Tier
 148

CHAPTER 7

J2EE Presentation
Layer
The J2EE presentation layer is the front-end of an Internet
application. It consists of web pages, Java server pages, worker
beans, and miscellaneous supporting files (such as images
and style sheets), all packaged within a single Web archive
file.

In this chapter This chapter discusses the following topics:

Overview of the Presentation Layer page 150

Worker Beans page 154

Using a JSP to Process a Web Form page 161

Using a JSP to Access an Enterprise Bean page 173
149

CHAPTER 7 | J2EE Presentation Layer
Overview of the Presentation Layer

Overview Figure 37 shows an overview of the presentation layer for the AllDayBanking
application. The presentation layer consists of a client, which is a Web
browser, and the components on the server side that are directly responsible
for generating Web pages. In particular, the J2EE presentation layer usually
makes extensive use of Java Server Pages (JSP) technology.

Web module A Web module contains all of the server-side components needed for the
J2EE presentation layer. When a Web module, WebModule, is ready for
deployment, the files in the module are usually zipped into a Web archive,
WebModule.war—see “Directory Structure in a Web Module WAR File” on
page 105. The Web archive itself can also be included in an EAR file—see
“Directory Structure in an EAR File” on page 100.

The main components of a Web module are the following:

• Worker beans.

• Web pages and JSPs.

Figure 37: Overview of the J2EE Presentation Layer for AllDayBanking

Web pages and JSPs

EJB Module

Web ModuleWeb
Browser

Presentation Layer EJB Middle-Tier

Worker beans

NewRegSession

CustomerSession

WebHelper

*.html

*.jsp

*.css

images/
 150

Overview of the Presentation Layer
Worker beans The worker beans in a Web module are ordinary Java beans (not enterprise
Java beans) that are used in conjunction with JSPs to encapsulate part of
the presentation logic.

The following directories are associated with worker beans:

Web pages and JSPs Web pages and JSPs are placed in the public part of a Web archive, which
makes them directly accessible to client Web browsers.

The following directories are associated with Web pages and JSPs:

WebModule.war/src/ EARSCO directory containing the
worker bean source code.

WEB-INF/classes/ Directory in a Web archive containing
the compiled worker bean code.

WebModule.war/web/ EARSCO directory containing the
public Web files and directories.

Web archive top-level directory The directory tree under the
WebModule.war/web/ EARSCO
directory is copied to the Web
archive’s top-level directory.
151

CHAPTER 7 | J2EE Presentation Layer
Web browser Files that are placed in the public part of a Web archive (that is, anything
not under the WEB-INF directory) are directly accessible to client Web
browsers.

The URL that clients use to access the public files is determined by the
<context-root> element in the application.xml file. For example, the
AllDayBanking application.xml file sets the <context-root> as follows:

With this setting, a client would use the following URL to access the
index.html located in the Web archive’s top-level directory:

http://HostName:8080/AllDayBanking/index.html

Where HostName is the name of the host where the J2EE application server
is running (could be localhost if you run the client Web browser on the
same host as the application server) and 8080 is the default IP port on
which the JBoss J2EE application server is configured to run.

The J2EE application server also supports the standard Web server
convention whereby the index.html can be omitted from the end of the
URL. A client Web browser can then use the following shortened URL to
access the index.html file:

http://HostName:8080/AllDayBanking

<!DOCTYPE application PUBLIC '-//Sun Microsystems, Inc.//DTD
J2EE Application 1.2//EN'
'http://java.sun.com/j2ee/dtds/application_1_2.dtd'>

<application>
 ...
 <module>
 <web>
 <web-uri>WebStuff.war</web-uri>
 <context-root>AllDayBanking</context-root>
 </web>
 </module>
</application>
 152

Overview of the Presentation Layer
The file that is accessed by this shortened URL can be specified explicitly
using the <welcome-file-list> element in the web.xml file. For example,
the AllDayBanking WebStuff.war/web.xml file sets the
<welcome-file-list> as follows:

...
<web-app>
 ...
 <welcome-file-list>
 <welcome-file>index.html</welcome-file>
 </welcome-file-list>
 ...
</web-app>
153

CHAPTER 7 | J2EE Presentation Layer
Worker Beans

Overview The AllDayBanking application provides the following worker beans, which
cooperate with the JSPs to provide the presentation logic:

• alldaybanking.web.CustomerSession

• alldaybanking.web.NewRegSession

• alldaybanking.web.WebHelper

Using worker beans in conjunction with JSPs enables you to write simpler,
more maintainable JSPs. Any lengthy bits of presentation logic can be put
into a worker bean and then called from a JSP scriptlet. This enables the
scriptlets inside a JSP to be kept relatively short and simple.

Bean attributes Ordinary beans have the following noteworthy feature. Bean methods that
conform to either of the following patterns are treated specially:

Type getAttributeName();
void setAttributeName(Type x);

where AttributeName is an attribute of Type type. The JavaBeans
specification mandates that these methods are recognized as accessor and
modifier methods for bean attributes. Various tools and utilities can then use
Java reflection to identify the bean attributes automatically.

In this section This section discusses the following Java classes:

The CustomerSession Bean page 155

The NewRegSession Bean page 158

The WebHelper Class page 160
 154

Worker Beans
The CustomerSession Bean

Overview The purpose of the CustomerSession bean is to provide support for user
login over the Internet. The CustomerSession bean stores the user login
details, user ID and password, and then validates the user identity by
obtaining the user’s details from a User entity bean in the EJB middle tier.

At subsequent stages during the user interaction with the AllDayBanking
application, a JSP can check with the CustomerSession to confirm that the
session remains valid.

Outline of the CustomerSession
bean class

Example 21 gives an extract from the CustomerSession bean class, showing
the bean attributes and method signatures, without the implementation
code. The CustomerSession bean has several attributes, as represented by
the methods of the form setAttributeName() and getAttributeName().

The bean attributes for the user ID and password, as represented by
setUserid(), getUserid(), and setAccpwd(), are set automatically by a
HTML form—see “The Login Web Form” on page 163 for details.

Example 21:Extract from the CustomerSession Bean Class

// Java
package alldaybanking.web;
...

public class CustomerSession implements java.io.Serializable {
 private String userid;
 private String accountPassword;
 private boolean isValid = false;
 private float ccamount;

 private alldaybanking.entity.User myUserBean;
 Exception exception;

 // Null constructor as required for a bean
 public CustomerSession () {
 }

 //--------------------
 // Bean attributes
 //--------------------
155

CHAPTER 7 | J2EE Presentation Layer
Validating the user identity The main functionality offered by the CustomerSession bean is to validate
the user identity, that is to check that the user-supplied ID and password
are valid. Example 22 shows the implementation of the validateUser()
method, which is responsible for validating the user’s identity.

The implementation of validateUser() contacts the EJB middle-tier and
searches for a User entity bean that matches the user-supplied ID, userid.
The implementation then checks that the user-supplied password,
accountPassword, matches the password from the User entity bean.

 public void setUserid (String webuserid) { ... }
 public String getUserid () { ... }

 public void setAccpwd (String webAccountPassword) { ... }
 // No getAccpwd(), that would create a bit of a security hole!

 public void setAmount (float amount) { ... }
 public float getAmount () { ... }

 public int getAccNum () {
 // Delegate this call to the User entity bean (not shown)
 ...
 }

 public int getCcNum ()
 {
 // Delegate this call to the User entity bean (not shown)
 ...
 }

 //--------------------
 // Other bean methods
 //--------------------
 public boolean validateUser () { ... }

 public void isValidSession() throws SessionOverExceptio
 { ... }

 public void logout () { ... }
};

Example 21:Extract from the CustomerSession Bean Class
 156

Worker Beans
Example 22:The validateUser() Method

// Java
public class CustomerSession implements java.io.Serializable {
 ...
 public boolean validateUser () {
 try {
 InitialContext ctx = new InitialContext();
 UserHome uhome = (UserHome) PortableRemoteObject.narrow(
 ctx.lookup("java:comp/env/alldaybanking/User"),
 UserHome.class
);
 myUserBean = uhome.findByPrimaryKey(userid);
 } catch (Exception ex) {
 exception = ex;
 return false;
 }

 String dbpwd;

 // Retrieve the password from the database
 try {
 dbpwd = myUserBean.getAccpwd ();
 } catch (Exception e) {
 System.out.println ("Exception " + e);
 return false;
 }

 // Let's just make sure the passowrd is ok by comparing it
 // with what the user has supplied
 if (accountPassword.equals(dbpwd)) {
 isValid = true;
 return true;
 } // end of if ()

 return false;
 }
 ...
};
157

CHAPTER 7 | J2EE Presentation Layer
The NewRegSession Bean

Overview The purpose of the NewRegSession bean is to enable new users to register
with the AllDayBanking application. The NewRegSession bean receives the
user’s registration details from a HTML form and then registers the user by
creating a new User entity bean in the EJB middle tier.

Outline of the NewRegSession
bean class

Example 23 gives an extract from the NewRegSession bean class, showing
the bean attributes and method signatures, without the implementation
code. The NewRegSession bean has several attributeName attributes, as
represented by the methods of the form setAttributeName() and
getAttributeName().

All of the NewRegSession bean attributes are set automatically by the New
User Registration Web form—see “The New User Registration Web Form”
on page 167 for details.

Example 23:Extract from the NewRegSession Bean Class

// Java
package alldaybanking.web;
...

public class NewRegSession implements Serializable {
 private String lastname;
 private String firstname;
 private String userid;
 private int accountNumber;
 private int creditcardNumber;
 private String passwordOne;
 private String passwordTwo;
 private String emailAddress;

 //--------------------
 // Bean attributes (set by Web form)
 //--------------------
 public void setFname (String fn) { ... }
 public String getFname () { ... }

 public void setLname (String ln) { ... }
 public String getLname () { ... }
 158

Worker Beans
Adding the user to the database The NewRegSession.addUser() method is responsible for registering a new
user by creating a new User entity bean in the EJB middle tier to represent
the registered user. The implementation of this method is not shown here.

For an example of how a worker bean can contact the EJB middle tier, see
the implementation of the CustomerSession.validateUser() method in
“Validating the user identity” on page 156.

 public void setUserid (String id) { ... }
 public String getUserid () { ... }

 public void setAccnum (int accnum) { ... }
 public int getAccnum () { ... }

 public void setCcnum (int ccnum) { ... }
 public int getCcnum () { ... }

 public void setEmailaddr (String addr) { ... }
 public String getEmailaddr () { ... }

 public void setAccpwdone (String pwd) { ... }
 public String getAccpwdone () { ... }

 public void setAccpwdtwo (String pwd) { ... }
 public String getAccpwdtwo () { ... }

 // Null constructor as required for a bean
 public NewRegSession () {
 }

 //--------------------
 // Other bean methods
 //--------------------
 public void addUser () throws UserAlreadyExistsException,

AccountValidationException
 { ... }
}

Example 23:Extract from the NewRegSession Bean Class
159

CHAPTER 7 | J2EE Presentation Layer
The WebHelper Class

Overview The WebHelper class declares static methods that return references from
beans in the EJB middle tier. This provides JSPs with a quick and easy way
of accessing enterprise beans in the EJB middle tier.

Getting a reference to an
InetAccount enterprise bean

Example 24 gives the implementation of the WebHelper.getInetAccount()
static method, which creates and returns a reference to an InetAccount
session bean from the middle tier.

Example 24: Implementation of the getInetAccount() Method

// Java
package alldaybanking.web;
...

public class WebHelper implements Serializable {

 ...
 public static InetAccount getInetAccount ()
 {
 InetAccount InetAccountObject = null;

 try {
 InitialContext ctx = new InitialContext();
 InetAccountHome vhome
 = (InetAccountHome) PortableRemoteObject.narrow (
 ctx.lookup("java:comp/env/alldaybanking/InetAccount"),
 InetAccountHome.class
);
 InetAccountObject = vhome.create();
 } catch (Exception ex) {
 exception = ex;
 }
 return InetAccountObject;
 }

}

 160

Using a JSP to Process a Web Form
Using a JSP to Process a Web Form

Overview One of the common uses for a JSP is to process the data from a HTML Web
form and generate an appropriate response. This section presents two
examples from the AllDayBanking application, the login Web form and the
new user registration Web form, that show how to process a Web forms
using JSP.

Overview of Web form processing Figure 38 shows the typical interaction between a Web form, JSP, and a
worker bean as the JSP processes the Web form data.

Figure 38: Processing Web Form Data Using a JSP

Use the bean

setAttr2()

setAttr1()

JSP generates a response

Set attributes

User clicks Submit1

2

4

Web Form JSP Worker Bean

Submit Clear

3

161

CHAPTER 7 | J2EE Presentation Layer
Stages of Web form processing The stages shown in Figure 38 can be explained as follows:

In this section This section describes how the following Web forms are processed:

Stage Description

1 When a user clicks the Submit button on the Web form, the
form data is sent to a particular JSP using the HTTP protocol.

2 The JSP uses the <jsp:useBean> and <jsp:setProperty> tags
to send the form data to the worker bean. See “Processing the
form action” on page 165 for more details.

3 The JSP uses methods defined on the worker bean to help it
process the form data.

4 Based on the results of processing the form data, the JSP
generates a response (either generating HTML directly or
forwarding to a different page).

The Login Web Form page 163

The New User Registration Web Form page 167
 162

Using a JSP to Process a Web Form
The Login Web Form

Overview When a user initially connects to the AllDayBanking application (by linking
to http://HostName:8080/AllDayBanking/), the user is presented with a
login form. After the user clicks the Submit button, the form is processed by
the main.jsp JSP working in conjunction with the CustomerSession worker
bean.

The Login page Figure 39 shows the first page of the AllDayBanking application, which
consists of a HTML Web form that prompts the user for the following login
data:

• FNB UserID

• FNB Online Password

Figure 39: The Login Page of the AllDayBanking Application
163

CHAPTER 7 | J2EE Presentation Layer
The form HTML source Example 25, which is an extract from the AllDayBanking index.html file,
gives the HTML source for the Login Web form depicted in Figure 39 on
page 163.

The form defines two input fields, userid and accpwd, and specifies the
form action to be main.jsp.

Example 25:Web Form from the AllDayBanking index.html File

<html>
...
<FORM ACTION="main.jsp" METHOD="post">
<P>

 Enter your account number / password to log on:

<P>

<TABLE BORDER="0">
 <TR>
 <TD>FNB UserID:</TD>
 <TD ALIGN="left">
 <INPUT TYPE="text" SIZE="25" NAME="userid">
 </TD>
 </TR>
 <TR>
 <TD>FNB Online Password:</TD>
 <TD ALIGN="left">
 <INPUT TYPE="password" SIZE="25" NAME="accpwd" >
 </TD>
 </TR>
</TABLE>

 <P>I'm a new user, Sign me up for an
account please.

 </P> <P>
 <INPUT TYPE="submit" VALUE="Login">
 <INPUT TYPE="reset" VALUE="Clear">
 </P>
</FORM>
...
</html>
 164

Using a JSP to Process a Web Form
Processing the form action When the user clicks Submit on the Web form, the form data, userid and
accpwd, is posted to main.jsp (the specified action for the form).
Example 26 shows the JSP script from the main.jsp file, which is
responsible for processing the form data.

Example 26:The AllDayBanking main.jsp File

<!-- JSP -->

<%@ page info = "Validating user details..." %>
<%@ page language = "java" %>

<%@ page import = "alldaybanking.web.WebHelper" %>
<%@ page import = "alldaybanking.session.validate" %>

1 <jsp:useBean
 id = "inetSession"
 class = "alldaybanking.web.CustomerSession"
 scope = "session">
</jsp:useBean>

2 <jsp:setProperty name="inetSession" property="*"/>

<HTML>
 <HEAD>
 <TITLE>Welcome to FNB's All Day Banking</TITLE>
 </HEAD>

<%
 // Right, before anything happens, we need to validate that

this userid
 // password combination is valid

3 if (inetSession.validateUser() == false) {
4 response.sendRedirect ("NotRegistered.html");

 } else { %>
5 <jsp:forward page="Ledger.jsp"/>;

 <%
 }
%>
</HTML>
165

CHAPTER 7 | J2EE Presentation Layer
The preceding JSP script can be explained as follows:

1. The <jsp:useBean> tag establishes a reference to a CustomerSession
worker bean. The CustomerSession bean instance can be accessed
throughout this script using the inetSession handle.

2. The <jsp:setProperty> tag sends all of the form data to the
CustomerSession bean (identified by its handle, inetSession). This
tag uses Java reflection to match the userid and accpwd form
properties to the corresponding setUserid() and setAccpwd()
attribute methods defined on CustomerSession.

3. The JSP calls validateUser() on the CustomerSession bean
(represented as inetSession) to verify that the user ID and password
are correct.

4. The response object is the
javax.servlet.http.HttpServletResponse object that is associated
with this page. The response identifier is implicitly defined for every
JSP.

5. The <jsp:forward> action enables the HTTP request to be forwarded
to another HTML page, JSP, or servlet.
 166

Using a JSP to Process a Web Form
The New User Registration Web Form

Overview If a user is about to use the AllDayBanking application for the first time, the
user can follow the new user link on the AllDayBanking home page (see
Figure 39 on page 163) to arrive at the New User Registration Web form.

After the user fills in the registration details and clicks the Submit button,
the form is processed by the register.jsp JSP working in conjunction with
the NewRegSession worker bean.

The New User Registration page Figure 40 shows the New User Registration page of the AllDayBanking
application, which consists of a HTML Web form that prompts the user for
the following registration data:

• Last Name

• First Name

• Your Preferred UserID

• Email Address

• Account Number

• Credit Card Number

• Online Password

• Online Password (Repeated)
167

CHAPTER 7 | J2EE Presentation Layer
Figure 40: The New User Registration Page of the AllDayBanking
Application
 168

Using a JSP to Process a Web Form
The form HTML source Example 27, which is an extract from the AllDayBanking NewUser.jsp file,
gives the HTML source for the New User Registration Web form depicted in
Figure 40 on page 168.

The form defines several input fields containing registration data and
specifies the form action to be register.jsp.

Example 27:Web Form from the AllDayBanking NewUser.jsp File

<html>
...
<FORM ACTION="register.jsp" METHOD="post">

<h1>New User Registration</h1>
<p>In order to use FNB's All Day Banking Service, please complete
the following details and then hit the <i>submit</i> button to
complete the registration cycle.</p>

<TABLE BORDER="0">
 <TR>
 <TD>Last Name</TD>
 <TD ALIGN="left">
 <INPUT TYPE="text" SIZE="25" NAME="lname">
 </TD>
 </TR>
 <TR>
 <TD>First Name</TD>
 <TD ALIGN="left">
 <INPUT TYPE="text" SIZE="25" NAME="fname" >
 </TD>
 </TR>
 <TR>
 <TD>Your Preferred User ID</TD>
 <TD ALIGN="left">
 <INPUT TYPE="text" SIZE="25" NAME="userid" >
 </TD>
 </TR>
 <TR>
 <TD>Email Address</TD>
 <TD ALIGN="left">
 <INPUT TYPE="text" SIZE="25" NAME="emailaddr" >
 </TD>
 </TR>
 <TR>
 <TD>Account Number</TD>
 <TD ALIGN="left">
169

CHAPTER 7 | J2EE Presentation Layer
 <INPUT TYPE="text" SIZE="25" NAME="accnum" >
 </TD>
 </TR>
 <TR>
 <TD>Credit Card Number</TD>
 <TD ALIGN="left">
 <INPUT TYPE="text" SIZE="25" NAME="ccnum" >
 </TD>
 </TR>
 <TR>
 <TD>Online Password</TD>
 <TD ALIGN="left">
 <INPUT TYPE="password" SIZE="25" NAME="accpwdone" >
 </TD>
 </TR>
 <TR>
 <TD>Online Password (Repeated)</TD>
 <TD ALIGN="left"> <INPUT TYPE="password" SIZE="25"

NAME="accpwdtwo" >
 </TD>
 </TR>
</TABLE>

<INPUT TYPE="submit" VALUE="Submit">
<INPUT TYPE="reset" VALUE="Clear">

</FORM>
...
</html>

Example 27:Web Form from the AllDayBanking NewUser.jsp File
 170

Using a JSP to Process a Web Form
Processing the form action When the user clicks Submit on the Web form, the form data is posted to
register.jsp (the specified action for the form). Example 28 shows the
JSP script from the register.jsp file, which is responsible for processing
the form data.

Example 28:The AllDayBanking register.jsp File

<%@page contentType="text/html"%>
<html>
<head><title>New User Registration Details</title></head>
<body>

1 <jsp:useBean
 id = "regSession"
 class = "alldaybanking.web.NewRegSession"
 scope = "session">
</jsp:useBean>

2 <jsp:setProperty name="regSession" property="*"/>

<%

try {
3 regSession.addUser() ;

 } catch (alldaybanking.web.UserAlreadyExistsException uae) {
 %>
 <H1>Sorry</H1>
 <P>Your account was not created.</P>
 <P>This user ID already exists.</P>
 <P>Please try

again.</P>
 <%
 return;
 } catch (alldaybanking.web.AccountValidationException ex) {
 %>
 <H1>Sorry</H1>
 <P>Your account was not created.</P>
 <P><%=ex%></P>
 <P>Please try

again.</P>
 <%
 return;
 } %>

 <H1>Welcome</H1>
171

CHAPTER 7 | J2EE Presentation Layer
The preceding JSP script can be explained as follows:

1. The <jsp:useBean> tag establishes a reference to a NewRegSession
worker bean. The NewRegSession bean instance can be accessed
throughout this script using the regSession handle.

2. The <jsp:setProperty> tag sends all of the form data to the
NewRegSession bean (identified by its handle, regSession). This tag
uses Java reflection to match each of the form properties to the
corresponding attribute set methods defined on NewRegSession (see
“The NewRegSession Bean” on page 158).

3. The JSP calls addUser() on the NewRegSession bean to create a new
User entity bean in the EJB middle tier for this user.

 <P>Your account has been created.</P>
 <P>Please log in at <A href="/AllDayBanking"

target="_top">AllDayBanking. </P>
</body>
</html>

Example 28:The AllDayBanking register.jsp File
 172

Using a JSP to Access an Enterprise Bean
Using a JSP to Access an Enterprise Bean

Overview In addition to accessing worker beans, a JSP can also access enterprise
beans in the EJB middle tier directly. For example, this section describes the
AllDayBanking PayBill.jsp script which accesses an InetAccount session
bean.

The PayBill JSP After a user has logged in and gained access to an account, the
AllDayBanking application presents the user with a menu of actions to
perform. One of the available actions is to pay a credit card bill out of funds
from the user’s account. The PayBill.jsp script implements the first step of
this action.

Accessing the InetAccount
enterprise bean

Example 29 shows the JSP script from the PayBill.jsp file, which checks
the balance remaining in the user’s account and presents the user with a
simple form to fill in.

Example 29:The AllDayBanking PayBill.jsp File

<!-- JSP -->
<%@ page language = "java" %>

<%@ page import = "alldaybanking.web.WebHelper" %>
<%@ page import = "alldaybanking.session.validate" %>
<%@ page import = "alldaybanking.session.InetAccount" %>

<jsp:useBean
 id = "inetSession"
 class = "alldaybanking.web.CustomerSession"
 scope = "session">
</jsp:useBean>

<HTML>
 <HEAD>
 <link rel="STYLESHEET" type="text/css" href="layout.css"/>
 </HEAD>

 <%
 try {
 inetSession.isValidSession ();
173

CHAPTER 7 | J2EE Presentation Layer
The preceding JSP script can be explained as follows:

1. The alldaybanking.web.WebHelper class defines a static method,
getInetAccount(), that creates a new InetAccount session bean in
the EJB middle tier and returns a remote reference, iacc. See “The
WebHelper Class” on page 160.

2. The getBalance() method is invoked on the remote InetAccount
session bean to obtain the balance on the user’s account.

 } catch (alldaybanking.web.SessionOverException ex) { %>
 <jsp:forward page="SessionExpired.html"/>
 <%}
 java.text.DecimalFormat df2
 = new java.text.DecimalFormat("###,###,##0.00");

1 InetAccount iacc = WebHelper.getInetAccount ();
 %>
<BODY>
 <H3>Credit Card Bill Payment:</H3>
 <P>How much do you want to pay onto your Credit Card? </P>

 <FORM ACTION="ConfirmPay.jsp" METHOD="post">
 <INPUT TYPE="text" SIZE="25" NAME="amount"> </TD>

2 <P>Max. value you can clear is <%=
 df2.format(iacc.getBalance(inetSession.getAccNum()))
 %> </P>

 <INPUT TYPE="submit" VALUE="Pay Bill">
 </FORM>

 </BODY>
</HTML>

Example 29:The AllDayBanking PayBill.jsp File
 174

Part III
COMet and .NET Clients

In this part This part contains the following chapters:

Visual Basic COMet Client page 177

C# .NET Client page 191

CHAPTER 8

Visual Basic
COMet Client
The FNB demonstration includes a simulation of an Automated
Teller Machine (ATM), which is implemented in Visual Basic.
The ATM client is implemented using DCOM automation and
access to CORBA servers is provided through COMet (IONA’s
implementation of a COM/CORBA bridge).

In this chapter This chapter discusses the following topics:

Overview of the Visual Basic Client page 178

Implementation of the Visual Basic Client page 182
177

CHAPTER 8 | Visual Basic COMet Client
Overview of the Visual Basic Client

Overview Figure 41 shows the architecture of the Visual Basic ATM client application.
The Visual Basic client communicates with the CORBA mid-tier server and
the CORBA back-end server, using IONA’s COMet to bridge between DCOM
and CORBA.

Visual Basic Client The ATM demonstration is implemented as a Visual Basic client, which is
augmented by the COMet libraries and interfaces. IONA’s COMet acts as a
bridge between the Visual Basic client and the CORBA servers in the
mid-tier and back-end. The Visual Basic automation client accesses the
CORBA servers with the help of the type information cached in the COMet
typestore.

Figure 41: Architecture of the Visual Basic ATM Client Application

Visual Basic
Client

Presentation Layer CORBA Layers

Back-End Server

CORBA Naming
Service

Mid-Tier Server

CORBA Interface
Repository

COMet Typestore
 178

Overview of the Visual Basic Client
COMet typestore The COMet typestore must be populated by the types obtained from the
fnbba and bankobjects OMG IDL modules. The automation client cannot
bind to the FNB CORBA servers or use any of the CORBA data types unless
the COMet typestore is populated.

For a particular Orbix configuration domain, Domain, the files that comprise
the COMet typestore are located in the following directory:

OrbixInstallDir\var\Domain\dbs\COMet

If an automation client cannot find the types it needs in the COMet
typestore, the COMet typestore automatically attempts to load the required
types from the CORBA interface repository (IFR).

CORBA interface repository The IFR is a CORBA-specific type repository. In general, you can populate
the IFR using the Orbix idl compiler utility. For example:

idl -R IDLFile.idl

The fnb\build.xml ant build file provides a populate_ifr target to register
the demonstration IDL files.

CORBA naming service Visual Basic clients can use the COMet API to look up CORBA object
references in the naming service. For example, in this demonstration the
ATM client looks up the FNBBA_BusinessSessionManager name in order to
bind to the fnbba::BusinessSessionManager object in the mid-tier server.

Starting the ATM demonstration You can run the ATM client demonstration as follows:

1. Make sure that the basic Orbix services, FNB back-end (itant
start_backend) and FNB mid-tier (itant start_fnbba) are all
running.

2. If the COMet typestore is not already primed, you need to populate the
IFR with the relevant IDL interfaces. Do this by invoking the following
ant target from the OrbixInstallDir\asp\6.1\demos\fnb directory:

itant populate_ifr
179

CHAPTER 8 | Visual Basic COMet Client
3. Run the ATM Visual Basic client as follows:

cd OrbixInstallDir\asp\6.1\demos\common\fnb\atm
atm.exe

ATM demonstration session A typical ATM client session consists of the following steps:

1. Start the ATM session—when you run atm.exe, the welcome screen
appears as shown in Figure 42.

Normally, if you were using a real ATM, the machine would know
which account you want to access as soon as you insert your card. The
ATM client simulates this behavior by picking an account implicitly
(the first in the list), instead of asking you for an account number.

2. Validate the PIN—you must enter a four-digit PIN before you can
proceed. In this demonstration, the PIN is not checked, but it must be
four digits long.

Figure 42: The ATM Client Welcome Screen
 180

Overview of the Visual Basic Client
3. Show account details—the ATM client contacts the back-end server to
retrieve the account balance and the list of recent transactions for this
account.

4. Withdraw cash—the ATM client debits the specified amount from the
customer’s account in the back-end.
181

CHAPTER 8 | Visual Basic COMet Client
Implementation of the Visual Basic Client

Overview This section presents some code extracts from the ATMForm.frm file,
discussing aspects of the code that are relevant to CORBA programming in
Visual Basic.

Location of the demonstration
code

The ATM Visual Basic client code is located in the following directory:

OrbixInstallDir\asp\Version\demos\common\fnb\atm

In this section This section contains the following subsections:

Starting the ATM Session page 183

Showing Account Details page 186

Withdrawing Cash page 188
 182

Implementation of the Visual Basic Client
Starting the ATM Session

Overview This section describes the Visual Basic subroutine, Form_Load(), that runs
during start-up to initialize the ATM client application.

This example shows you how to use the COMet API to bind to remote
CORBA objects—for example, by looking up object references in the CORBA
naming service. Also, this example shows you how to narrow a base OMG
IDL interface type to a derived interface type.

Form_Load subroutine The Form_Load() subroutine from the ATMForm.frm file is defined in
Example 30.

Example 30:The ATM Form_Load() Subroutine

Private Sub Form_Load()

 ' Set up the ORB

1 Set objORB = CreateObject("CORBA.ORB.2")
2 Set objFact = CreateObject("CORBA.Factory")

 If RunningInIde Then
3 objORB.RunningInIde

 End If
4 Dim objSessMgr As Object, objSessType As Object
5 Set objSessMgr =

objFact.GetObject("fnbba/BusinessSessionManager:NAME_SERVICE:
FNBBA_BusinessSessionManager")

 ' Get an ATM session

6 Set objSessType = objFact.createtype(
 Nothing,
 "fnbba/SessionInfo_s"
)
 objSessType.username = "ATMUser"
 objSessType.password = "kj8yhj"
 objSessType.session_type = "ATM"
 objSessType.client_id = "ATM" & Rnd(200)

7 Set objSess = objSessMgr.openSession(objSessType)

 ' It returns a generic session so convert it into the ATM

Session object
183

CHAPTER 8 | Visual Basic COMet Client
The preceding Visual Basic subroutine can be explained as follows:

1. This line creates a CORBA::ORB object (defined by the
DIOrbixORBObject automation interface), which the client application
can use to control certain properties of the ORB. CORBA.ORB.2 is the
standard Automation/CORBA-compliant ProgID for the local ORB
object.

2. This line creates a new CORBA factory object (defined by the
DICORBAFactory and DICORBAFactoryEx automation interfaces). The
CORBA factory object is used to create new object references that bind
to remote CORBA objects. CORBA.Factory is the standard
Automation/CORBA-compliant ProgID for the CORBA factory.

3. The RunningInIDE method changes the internal shutdown policy, so
COMet can run in the Visual Basic studio debugger.

4. This line allocates space for two CORBA objects references, as follows:

♦ objSessMgr—a session manager object, which is an instance of
the fnbba::BusinessSessionManager OMG IDL interface.

♦ objSessType—a structure data type, which is an instance of the
fnbba::SessionInfo_s OMG IDL data type.

5. This line contacts the CORBA naming service to obtain a reference to a
business session manager object. The string argument to GetObject()
has the following format:

 Dim ior As String

8 ior = objORB.objecttostring(objSess)
9 Set objSess = objFact.GetObject("fnbba/ATMSession:" & ior)

 ' Simulate the swiping of a card by picking the first
 ' current account listed
 Dim accts
 accts = objSess.getAccountList("Current")
 accNo = accts(0)

 ' Ask for the PIN

 showPINFrame
End Sub

Example 30:The ATM Form_Load() Subroutine
 184

Implementation of the Visual Basic Client
CORBATypeID:NAME_SERVICE:ObjectName
Where CORBATypeID is the scoped name of the IDL type, using /
instead of :: as the scope separator; NAME_SERVICE indicates that you
want to look up the object in the CORBA naming service; and
ObjectName is the name of the object in the naming service.

6. The CreateType() method is used to create an instance of an OMG
IDL complex type.

The first parameter indicates the scope with respect to which the
second parameter is interpreted. Global scope is indicated by passing
the Nothing parameter. The second parameter is the scoped name of
the IDL type, using / instead of :: as the scope separator

7. This line calls the fnbba::BusinessSessionManager::openSession()
IDL operation to create a new user session on the middle-tier server.
The return value, objSess, is a session object of
fnbba::BusinessSession type, which is the base type for a user
session.

8. Before you can use the session object, objSess, it must be narrowed
(or cast) to the type, fnbba::ATMSession, which derives from the
fnbba::BusinessSession IDL interface.

The first step is to convert objSess into a stringified Interoperable
Object Reference (IOR), by calling the ObjectToString() method on
the ORB with objSess as the argument.

9. The user session is now converted to an object of fnbba::ATMSession
type by calling the GetObject() method on the CORBA factory. The
argument to GetObject() has the following form:

DerivedCORBATypeID:StringifiedIOR
Where DerivedCORBATypeID is the type ID of the derived type that
you want to narrow to. The StringifiedIOR consists of IOR: followed by
a long sequence of two-digit hexadecimal numbers (essentially, a hex
dump of the IOR’s contents).
185

CHAPTER 8 | Visual Basic COMet Client
Showing Account Details

Overview This section describes the Visual Basic subroutine, showDetsFrame(), that
retrieves a customer’s account transaction history from the CORBA
back-end server.

This example illustrates how a complex OMG IDL type maps to Visual Basic.
The transaction list is represented as an array of structures in Visual Basic.

showDetsFrame subroutine The showDetsFrame() subroutine from the ATMForm.frm file is defined in
Example 31.

The preceding Visual Basic subroutine can be explained as follows:

1. This line allocates an object, txns, which will be used to hold the
complex CORBA type, bankobjects::AccountTransactions.

2. This line invokes the remote bankobjects::Account::accountBalance
attribute on the CORBA back-end server.

3. This line invokes the remote
bankobjects::Account::recentTransactions() operation, with a
return value of bankobjects::AccountTransactions type (an IDL
sequence).

Example 31:The ATM showDetsFrame() Subroutine

Private Sub showDetsFrame()
1 Dim txns

 Dim txno As Integer
 FramePIN.Visible = False
 FrameAction.Visible = False
 FrameDets.Visible = True
 FrameWithdraw.Visible = False

2 txtBal.Text = acc.accountbalance
 lstTxn.Clear

3 txns = acc.recentTransactions
4 For txno = UBound(txns) To 0 Step -1

 lstTxn.AddItem txns(txno).Date & " - " &
txns(txno).record_type + " - " & txns(txno).Value

 Next txno
End Sub
 186

Implementation of the Visual Basic Client
4. The txns object is an array of structures in Visual Basic. It is derived
from the AccountTransactions OMG IDL type, defined as follows:

// IDL
...
module bankobjects {
 ...
 struct BankTransaction {
 short id;
 string date;
 string record_type;
 string value;
 };

 typedef sequence<BankTransaction> AccountTransactions;
 ...
};
187

CHAPTER 8 | Visual Basic COMet Client
Withdrawing Cash

Overview This section describes the Visual Basic subroutine, withdraw(), that
implements withdrawing cash from a customer’s current account.

This example illustrates how to handle exceptions raised by a remote
CORBA server.

withdraw subroutine The withdraw() subroutine from the ATMForm.frm file is defined as
Example 32.

The preceding Visual Basic subroutine can be explained as follows:

1. Because the remote operation is liable to throw an exception, this line
instructs the application to catch the error locally.

2. Invoke the remote IDL operation, withdrawFunds(), on the
bankobjects::Account IDL interface. This operation will throw an
exception, if the amount to withdraw exceeds the customer’s overdraft
limit.

3. This line checks for a CORBA user exception. The Err.Description
string for CORBA user exceptions has the following format:

"CORBA User Exception :[ScopedExceptionName]"

Example 32:The ATM withdraw() Subroutine

Private Sub withdraw(amount As Integer)
1 On Error Resume Next
2 acc.withdrawfunds (amount)

 ' check if there was an error
3 If Err.Description = "CORBA User Exception

:[bankobjects::INSUFFICIENT_FUNDS]" Then
 MsgBox "Insufficient funds to withdraw"
 Exit Sub
 End If
 If Err.Number = 0 Then
 MsgBox "Please take your cash"
 Else
 MsgBox "Communication error"
 End If
 showActionFrame
End Sub
 188

Implementation of the Visual Basic Client
Where ScopedExceptionName is the scoped exception name in OMG
IDL syntax (that is, using :: as the scope separator).
189

CHAPTER 8 | Visual Basic COMet Client
 190

CHAPTER 9

C# .NET Client
The FNB demonstration includes a Web services application
that simulates making credit card purchases online.
Complimentary to this, FNB provides a simple C# client
implemented using .NET technology that allows an
administrator to monitor the list of registered merchants using
the service.

In this chapter This chapter discusses the following topics:

Overview of the C# Client page 192

Implementation of the C# Client page 196
191

CHAPTER 9 | C# .NET Client
Overview of the C# Client

Overview Figure 43 shows the architecture of the C# online purchasing client
application. The interface to e-commerce clients is exposed as a Web
service over SOAP/HTTP. Merchants use this Web interface to register
themselves and transact online purchases. The C# client is a monitoring
utility that lists merchant details and is intended as an aid for Web site
administrators.

Figure 43: Architecture of the C# Online Purchasing Client Application

C# Client

.NET Client CORBA Layers

Back-End Server

CORBA Naming
Service

Mid-Tier Server

CORBA Interface
Repository

Web Services
Container

WS Client

Web Services Client

.NET
Metadata

HTTP IIOP

IIOP
 192

Overview of the C# Client
Web services client The Web services client is a browser-based client that can be used to
register merchants and make purchases online. The online purchasing Web
service is intended to be used by e-commerce companies (that is,
merchants) that sell goods online by debiting a customer’s credit card.

For complete details of how to build and run the Web services application,
see the First Northern Bank Tutorial.

C# .NET client The C# .NET client is a simple utility that lists details of the merchant
accounts currently registered with the online purchasing manager. The Orbix
.NET connector technology is used to bridge between the C# .NET client
and the mid-tier CORBA server.

CORBA interface repository The interface repository (IFR) is a CORBA-specific type repository. In
general, you can populate the IFR using the Orbix idl compiler utility. For
example:

.NET metadata The .NET metadata must be populated by the types obtained from the
fnbba and bankobjects OMG IDL modules. The .NET client cannot bind to
the FNBBA server or use any of the CORBA data types unless the .NET
metadata is populated.

For example, you can populate the .NET metadata with the types from the
fnbba and bankobjects modules as follows:

The first command populates the CORBA interface repository with the fnbba
and bankobjects type definitions. The second command populates the .NET
metadata with all of the type definitions from the CORBA interface
repository, producing a single DLL file:

fnbba.dll

This file is called a .NET metadata assembly. It is packaged in the form of a
DLL file and contains the MSIL type definitions derived from the fnbba and
bankobjects OMG IDL modules.

idl -R IDLFile.idl

idl -R BusinessSessionManager.idl Account.idl
itts2il fnbba bankobjects
193

CHAPTER 9 | C# .NET Client
CORBA naming service The C# .NET client uses the .NET remoting API to look up CORBA object
references in the naming service. For example, in this demonstration the
.NET client looks up the FNBBA_BusinessSessionManager name in order to
bind to the fnbba::BusinessSessionManager object in the mid-tier server.

Prerequisites for developing If you are planning to develop C# .NET applications, you need at least the
Microsoft .NET Framework 1.1 and Microsoft Visual Studio .NET 2003
installed on your machine.

Running the C# .NET client In order to run the C# .NET client executable, the following prerequisites
must be satisfied:

• You have the Microsoft .NET Framework 1.1 installed on your machine
(available from http://windowsupdate.microsoft.com/).

• The .NET metadata has been primed with the types mapped from the
fnbba IDL module.

• The requisite .NET metadata assemblies are on your path:

♦ fnbba.dll

♦ Orbix.Remoting.dll

• The following Visual C++ runtime DLLs must be on your path:

♦ msvcr71.dll

♦ msvcp71.dll

You can then run the C# .NET client from the
\fnb\onlinepurchasingmanager\onlinepurchasingmanager\bin\Release
directory, as follows:

onlinepurchasing.exe
 194

http://windowsupdate.microsoft.com/

Overview of the C# Client
Assuming that you have already registered a few merchant accounts using
the Web services client, you will see a GUI window similar to Figure 44.

Figure 44: The Online Purchasing Manager C# Client
195

CHAPTER 9 | C# .NET Client
Implementation of the C# Client

Overview This section describe the basic steps required to develop a C# client that
uses the Orbix .NET connector technology. The code extracts in this section
are taken from the Form1.cs file.

Location of the demonstration
code

The online purchasing manager client code is located in the following
directory:

OrbixInstallDir\asp\Version\demos\common\fnb\onlinepurchasingmanager
\onlinepurchasingmanager\

In this section This section contains the following subsections:

Importing .NET Metadata page 197

Initializing the Online Purchasing Manager Client page 198
 196

Implementation of the C# Client
Importing .NET Metadata

Overview A basic prerequisite for accessing CORBA servers from a .NET application is
that all of the OMG IDL data types be converted into .NET metadata. The
.NET metadata enables .NET applications to access CORBA objects and
data using C# syntax.

Orbix remoting .NET metadata To integrate a .NET application with Orbix, you must import the Orbix
remoting .NET metadata from the following file:

OrbixInstallDir\bin\Orbix.Remoting.dll

Generating .NET metadata For each OMG IDL module that you want to access, you need to generate a
.NET metadata assembly.

For example, to produce a .NET metadata assembly for the fnbba and
bankobjects OMG IDL modules:

This command produces the following DLL file:

fnbba.dll

Importing .NET metadata To import the .NET metadata assemblies into your .NET project, use the
Visual Studio .NET Project|Add References dialog.

itts2il fnbba bankobjects
197

CHAPTER 9 | C# .NET Client
Initializing the Online Purchasing Manager Client

Overview This section describes the C# subroutine, Form1_Load(), that runs during
start-up to initialize the online purchasing manager client.

This example shows you how to use Orbix .NET connector to look up a
CORBA object reference in the CORBA naming service and invoke
operations on the object reference.

Form1_Load function The Form1_Load() subroutine from the Form1.cs file is defined in
Example 33.

Example 33:The Online Purchasing Form1_Load Function

// C#
...

1 using System.Runtime.Remoting.Channels;
using System.Runtime.Remoting.Messaging;
using IONA.Remoting;
using fnbba;
using bankobjects;
...
namespace onlinepurchasingmanager
{
 public class Form1 : System.Windows.Forms.Form
 {
 private Random r = new Random();
 private OnlinePurchasing op;
 private BusinessSession sess;
 ...

 private void Form1_Load(
 object sender,
 System.EventArgs e
)
 {

2 ChannelServices.RegisterChannel(
 new OrbixClientChannel()
);

3 op=(OnlinePurchasing) Activator.GetObject(
 typeof(OnlinePurchasing),
 "NS:FNBBA_OnlinePurchasing"
);
 198

Implementation of the C# Client
The preceding C# code can be explained as follows:

1. The using statements indicate that the client is using the .NET
remoting interfaces, System.Runtime.Remoting, the Orbix .NET
connector interfaces, IONA.Remoting, and the fnbba .NET metadata,
fnbba.

2. The call to RegisterChannel() initializes the Orbix .NET connector,
making it available through the .NET remoting API.

3. This line, invoking GetObject(), shows you how to get a reference to
an fnbba::OnlinePurchasing CORBA object by looking up the CORBA
naming service. The first parameter is the C# type of the object. The
second parameter consists of NS: followed by the name of the object as
registered in the CORBA naming service.

4. This line shows you how to get a reference to an
fnbba::BusinessSessionManager CORBA object by looking up the
CORBA naming service.

4 BusinessSessionManager
 bsm = (BusinessSessionManager)
 Activator.GetObject(
 typeof(BusinessSessionManager),
 "NS:FNBBA_BusinessSessionManager"
);

5 SessionInfo_s sis=new SessionInfo_s();
 sis.session_type="Business";
 sis.client_id="onlinepurch" +
 r.Next(10000);
 sis.username="aidan";
 sis.password="foo";

6 sess = bsm.openSession(ref sis);
 }
 ...

Example 33:The Online Purchasing Form1_Load Function
199

CHAPTER 9 | C# .NET Client
5. The SessionInfo_s C# type is based on the following OMG IDL type:

The fnbba::SessionInfo_s OMG IDL struct type maps to the
SessionInfo_s C# struct type.

6. This line invokes the openSession() operation on the remote
fnbba::BusinessSessionManager object to initiate a client session on
the mid-tier server.

// IDL
module fnbba {
 ...
 struct SessionInfo_s {
 string username;
 string password;
 string session_type;
 string client_id;
 };
 ...
};
 200

Index

Symbols
#include preprocessor directive 54
<assembly-descriptor> element 103, 144
<cmp-field> element 144, 146
<container-transaction> element 132, 144
<context-root> element 152
<ejb-class> element 132
<ejb-jar> element 103
<ejb-name> element 132
<enterprise-beans> element 103
<entity> element 103, 143
<home> element 132
<jsp:forward> tag 166
<jsp:setProperty> tag 162, 166, 172
<jsp:useBean> tag 162, 166, 172
<persistence-type> element 144
<primkey-field> element 144
<remote> element 132
<session> element 103, 132
<welcome-file-list> element 153

A
accessor methods 127, 138
AccountDelegate class 28
Account interface

implementation 21
AccountManager POA 16
AccountMgr interface

implementation 39
AccountMgr object

lifecycle responsibilities 33
AccountMgr type 5
accountNumList 10
Account objects

creating 33, 41
lifecycle 32
opening 34

Account type
description of design 5
inheritance hierarchy 5

activation
and servants 19
description 15
of a session bean 128
of CORBA objects 14

addUser() method 159
AllDayBanking application

overview 90
application.xml file

<context-root> element 152
and EAR file 100
and EARSCO 95

architecture
of CORBA bank application 13

ATMSessionDelegate class 60
ATMSession type 49
attributes

in IDL 11
readonly 11

B
back-end server

purpose 4
BankObjects POA 16
bean attributes 127, 138
bean class

for entity bean 136
for session bean 125

bean-managed persistence
and ejbFind() methods 140

BusinessSessionDelegate class 60
BusinessSessionManager.idl file 51
BusinessSessionManager POA 56
BusinessSessionManager type

design 48
BusinessSession POA 56
BusinessSession type

design 49
inheritance hierarchy 48

C
CCGT 13
class files

in Web module WAR file 106
Class-Path: entry 121
201

INDEX
code generation
C++ or Java 13

container configuration file 133
container-managed persistence

and deployment descriptor 144
overview 145

Container persistence type 144
CORBA back-end

in a J2EE application 90
CORBA client

GUI organization 64
implementation 81
purpose 64

CORBA Code Generation Toolkit 13, 20, 38
CORBA middle-tier server

IDL for 51
purpose 48

CORBA naming service 43
and name resolution 57
rebind() operation 46
resolve() operation 59

CORBA objects
activation 14
and object ID 15
lifecycle of Account 32

CORBA Persistent State Service 13
CORBA Session Management Plug-In 56
CORBA user exceptions 10
CosNaming package 45
CreateException type 138
create_reference_with_id() operation 43
CreditCardAccount type 5, 6
CurrentAccount type 5, 6
CustomerSession bean 166

methods 155
purpose 155

D
delegate class, serializing 30
delegate object, lifecycle of Account 32
delegation approach 18

and BusinessSession interfaces 60
base classes 61
classes and interfaces for 19
constructor 62

deployment descriptor
for entity beans 142
for session beans 131
Web 106
 202
E
EAR file

and J2EE development cycle 92
application.xml file 100
definition 94
directory layout 100
MANIFEST.MF file 100
META-INF directory 100

EARSCO
and J2EE development cycle 92
directory layout 95
ejb-jar.xml file 96
EJB module layout 96
jboss.xml file 96
MANIFEST.MF file 96
purpose 94
tmp directory 97
web.xml file 96
Web module layout 96

ejbActivate() method
in entity bean 140
in session bean 128

ejbCreate() method
implementation for entity bean 141
implementation for session bean 129
in a session bean 128

ejbCreate() methods
in an entity bean 139

EJB deployment descriptor
for entity beans 142

ejbFind() methods 138
in an entity bean 140

ejb-jar.xml file
<assembly-descriptor> element 103, 144
<cmp-field> element 144, 146
<container-transaction> element 132, 144
<ejb-name> element 132
<enterprise-beans> element 103
<entity> element 143
<home> element 132
<persistence-type> element 144
<primkey-field> element 144
<remote> element 132
<session> element 132
and container-managed persistence 146
and EARSCO 96
and entity bean configuration 142
in EJB module JAR 102
session bean configuration 131

INDEX
ejb-jar file
<ejb-class> element 132

ejbLoad() method
in entity bean 140

EJB module
and EARSCO 96
class files 104
directory layout 102
META-INF directory 102
referencing extra JAR files 97

ejbPassivate() method
in entity bean 140
in session bean 128

ejbPostCreate() methods
in entity bean 139

ejbRemove() method
in entity bean 139
in session bean 128

EJB session bean 124
ejbStore() method

in entity bean 140
EJB to CORBA link 110
enterprise application archive 94
enterprise application archive source code

organization 94
EntityBean base class 137
entity beans

base class 137
bean class 136
configuration 142
definition 136
ejbActivate() method 140
ejbCreate() methods 139
ejbFind() methods 140
ejbLoad() method 140
ejbPassivate() method 140
ejbPostCreate() methods 139
ejbRemove() method 139
home interface 136
lifecycle methods 139
remote interface 136

enum type 54
exceptions, raises() clause 11

F
file suffix, for EAR file 98
finder methods 138
Forte for Java 72

IDE screen layout 73
Source Editor window 75
forward declaration, of IDL interface 11

G
getInetAccount() method

calling from a JSP 174
implementation 160

GUI client
lodge funds dialog 69
main screen 65
new account dialog 67
open account dialog 66
transfer funds dialog 71
withdraw funds dialog 70

GUI organization 64

H
home interface

for entity beans 136
for session beans 125

HttpServletResponse class 166

I
IdAssignmentPolicy type 16
IDL

compiling 7
definition of 7
inout parameters 54
interface 11
language mappings 13
language neutrality of 7
modules 10
operations 11
preprocessor macros 10
readonly attribute 11
scoping of identifiers 54
sequence type 10, 11
struct type 10
typedef 10
user exceptions 10

IDL attributes 11
IDL compiler 7

-jbase option 119
-jpoa option 119

IDL inheritance 12
idlstubs.jar file 119
index.html file 164
inetAccountBean class
203

INDEX
structure 126
inetAccount session bean

as CORBA client 110
purpose 124

InetSession type 49
inheritance

hierarchy for Account 5
in IDL 12

inheritance approach
base classes 40
classes and interfaces 38
constructor 40
overview 37

inheritance hierarchy
of Account types 21
of BusinessSession types 48

initialization service 45
inout parameters 54
integrated development environments

Forte for Java 72
NetBeans 72

interface
in IDL 11

interface, forward declaration 11
interfaces

implementing using delegation 18

J
J2EE development cycle 92
J2EE presentation layer

overview 150
JAR files

creating idlstubs.jar 120
referencing from EJB module 97, 121
referencing from Web module 106

Java compiler 119
Java extension mechanism 97, 121
java_poa_genie.tcl genie 38
-jbase option, of IDL compiler 119
jboss.xml file

and EARSCO 96
in session bean 133

-jpoa option, of IDL compiler 119
JSP

<jsp:forward> tag 166
<jsp:setProperty> tag 162, 166, 172
<jsp:useBean> tag 162, 166, 172
and processing Web forms 161
index.html file 164
 204
in the J2EE presentation layer 150
main.jsp file 165
NewUser.jsp file 169
PayBill.jsp file 173
register.jsp file 171
response object 166

L
lifecycle, of Account objects 32
lifecycle methods

for a session bean 128
for entity beans 139

LifespanPolicy type 16
and BusinessSessionManager POA 56

lodgeFunds.form file 69
lodgeFunds.java file 69
lodge funds dialog

description 69
login form 163

M
main.jsp file 165
main screen 65

and dialog windows 81
MANIFEST.MF

in EJB module JAR file 102
in Web module WAR file 105

MANIFEST.MF file
and EAR file 100
and EARSCO 96
and Java extension mechanism 121

META-INF directory
and EAR files 100
in EJB module JAR 102
in Web module WAR file 105

modifier methods 127, 138
multi-threaded POA 14
multi-threading, and CORBA 14

N
NameComponent type 45, 58
NameService object identifier 45
NamingContextExt interface 46, 59
NamingContextPackage package 45
NetBeans 72
newAccount() method 41
newAccount.form file 68
newAccount.java file 68

INDEX
new account dialog 67
NewRegSession bean

attributes and methods 158
purpose 158

NewUser.jsp file 169
New User Registration Web form 167

O
object ID

and activation 15
and object references 43
and servants 19

object-oriented design 4
object references

and the naming service 57
creating 43
definition 43
publishing 44
resolving 77

openAccount() method 42
openAccount.form file 66
openAccount.java file 66
openAccountActionPerformed() method

implementation 83
open account dialog

description 66
implementation 83

operations, in IDL 11
Operations, Java interface suffix 20
ORB_CTRL_MODEL policy value 16

P
passivation

of an entity bean 140
of a session bean 128

PayBill.jsp file 173
persistence

and CORBA 13
serializing AccountDelegate 30

PERSISTENT policy value 16
POA

and object references 43
hierarchy for back-end server 15
hierarchy for CORBA middle-tier 55
role of 14
threading 14

POA policies 16
POATie class 19
policies
and the POA 16
IdAssignmentPolicy type 16
LifespanPolicy type 16
ORB_CTRL_MODEL value 16
PERSISTENT value 16
SINGLE_THREAD_MODEL value 16
SYSTEM_ID value 16
threading 14
ThreadPolicy type 16
TRANSIENT value 16
USER_ID value 16

portable object adapter, role of 14
postinvoke() method 35
preinvoke() method 35
preprocessor

#include directive 54
and IDL 10

presentation layer
overview 91, 150

primary keys
and ejbCreate() 138
and EJB deployment descriptor 144

programming languages supported by CORBA 13
PSS 13
public files

in a Web archive 151
in Web module WAR file 107

R
readonly attribute 11
rebind() operation

and CORBA naming 46
register.jsp file 171
registration of a new user 159
RemoteException type 126, 137
remote interface

for entity bean 136
for session bean 125

repository ID, and object references 43
Required transaction attribute 132, 144
resolution

of BusinessSessionManager object reference 77
resolution of names 57
resolve() operation 59
resolveAccount() method 124
resolve_initial_references() operation 45
response object, in a JSP 166
root POA 55
205

INDEX
S
SavingsAccount type 5, 6
scoping

in IDL 10
of IDL identifiers 54

sequence type
AccountTransactions type 11
and the naming service 45
IDL example 10

Serializable Java interface 28
serializing, writeObject() method 30
Servant Java interface 18
servant locator

and activation state 32
and updating Account objects 35
lifecycle responsibilities 33

servant objects
and the tie approach 18
definition 19

services
CORBA naming 43
full OTS 13
initialization 45, 58
OTS-Lite 13
session management 13
SSL/TLS 13

SessionBean base class 126
session beans

base class 126
bean class 125
callback methods 127
definition 125
ejbActivate() method 128
ejbCreate() method 128, 129
EJB deployment descriptor 131
ejbPassivate() method 128
ejbRemove() method 128
home interface 125
jboss.xml file 133
lifecycle methods 128
overview 124
remote interface 125

single-threaded POA 14
SINGLE_THREAD_MODEL policy value 16
skeleton code 119
skeleton files, and the IDL compiler 7
struct type in IDL 10
stub code

creating for application 119
 206
for CORBA back-end 111
stub files

and IDL compiler 7
as template for implementation 38

SYSTEM_ID policy value 16

T
TellerSessionDelegate class 60
TellerSession type 49
ThreadPolicy type

and BusinessSessionManager POA 56
overview 16

TIE approach
generated TIE class 19
overview 18

tmp directory
and EARSCO 97

tools
idl 7

transactions
Required attribute 132, 144

transferFunds.form file 71
transferFunds.java file 71
transfer funds dialog

description 71
TRANSIENT policy value 16
typedef, and IDL 10

U
UML 4
URL

for J2EE AllDayBanking application 91
to access AllDayBanking application 152

UserBean class, structure 137
User entity bean, purpose 135
user exceptions, in IDL 10
USER_ID policy value 16

V
validateUser() method, in CustomerSession 156
validation of user identity 156

W
WAR file 105
web.xml file

<welcome-file-list> element 153
and EARSCO 96

INDEX
example 106
in Web module WAR file 106

Web client
in a J2EE application 91

Web deployment descriptor 106
Web form, processing with a JSP 161
WebHelper class

overview 160
using in a JSP 174

WEB-INF directory, in Web module WAR file 105
Web module

and EARSCO 96
public files 97, 151
referencing JAR files 106
source code 97

Web module WAR file
directory layout 105
WEB-INF directory 105

withdrawFunds.form file 70
withdrawFunds.java file 70
withdraw funds dialog, description 70
worker beans

description 151
purpose 154

writeObject() method 30
207

INDEX
 208

INDEX
209

INDEX
 210

	FNB Developer's Introduction
	List of Figures
	Preface
	Part I CORBA Bank Application
	1 Back-End CORBA Server
	Design of the Back-End Server
	IDL for the Back-End Server
	Architecture
	Designing the POA Hierarchy
	Implementing the Account Interfaces
	Implementing Interfaces Using the Delegation Approach
	Implementation of the Account Interface
	Persistence Mechanism for Account Objects

	Lifecycle of Account Objects
	Implementing the AccountMgr Interface
	Implementing Interfaces Using the Inheritance Approach
	Implementation of the AccountMgr Interface

	Publishing the AccountMgr Object Reference

	2 Middle-Tier CORBA Server
	Design of the Middle-Tier Server
	IDL for the Middle-Tier Server
	Designing the POA Hierarchy
	Resolving the AccountMgr Object Reference
	Implementing the BusinessSession Interfaces

	3 Java CORBA Client
	Design of the CORBA Client
	The Open Account Dialog
	The New Account Dialog
	The Lodge Funds Dialog
	The Withdraw Funds Dialog
	The Transfer Funds Dialog

	Using Forte for Java and NetBeans
	Resolving the BusinessSessionManager Object Reference
	Implementation of the Java CORBA Client
	Implementation of the Open Account Dialog

	Part II J2EE Internet Banking
	4 J2EE AllDayBanking Application
	Architecture of the J2EE Application
	Overview of the J2EE Development Cycle
	Source Code Organization (EARSCO)
	Building and Packaging the J2EE Application
	Directory Structure in an EAR File
	Directory Structure in an EJB Module JAR File
	Directory Structure in a Web Module WAR File

	5 Accessing the CORBA Back-End
	Overview of the EJB to CORBA Link
	Using Orbix Connect and JBoss
	Creating the IDL Stub JAR File
	Accessing the Stub JARs from EJB

	6 EJB Middle-Tier
	The InetAccount Session Bean
	Anatomy of a Session Bean
	EJB Session Bean Life Cycle Methods
	Session Bean Configuration

	The User Entity Bean
	Anatomy of an Entity Bean
	EJB Entity Bean Life Cycle Methods
	Entity Bean Configuration
	Container-Managed Persistence in JBoss

	7 J2EE Presentation Layer
	Overview of the Presentation Layer
	Worker Beans
	The CustomerSession Bean
	The NewRegSession Bean
	The WebHelper Class

	Using a JSP to Process a Web Form
	The Login Web Form
	The New User Registration Web Form

	Using a JSP to Access an Enterprise Bean

	Part III COMet and .NET Clients
	8 Visual Basic COMet Client
	Overview of the Visual Basic Client
	Implementation of the Visual Basic Client
	Starting the ATM Session
	Showing Account Details
	Withdrawing Cash

	9 C# .NET Client
	Overview of the C# Client
	Implementation of the C# Client
	Importing .NET Metadata
	Initializing the Online Purchasing Manager Client

	Index

