IONA

fﬁl Orbix®

First Northern Bank Developer's

Infroduction
Version 6.1, December 2003

Making Software Work Together™

IONA, IONA Technologies, the IONA logo, Orbix, Orbix/E, Orbacus, Artix, Orchestrator,
Mobile Orchestrator, Enterprise Integrator, Adaptive Runtime Technology, Transparent
Enterprise Deployment, and Total Business Integration are trademarks or registered
trademarks of IONA Technologies PLC and/or its subsidiaries.

Java and J2EE are trademarks or registered trademarks of Sun Microsystems, Inc. in the
United States and other countries.

CORBA is a trademark or registered trademark of the Object Management Group, Inc. in
the United States and other countries. All other trademarks that appear herein are the
property of their respective owners.

While the information in this publication is believed to be accurate, IONA Technologies PLC makes no warranty of
any kind to this material including, but not limited to, the implied warranties of merchantability and fitness for a
particular purpose. IONA Technologies PLC shall not be liable for errors contained herein, or for incidental or
consequential damages in connection with the furnishing, performance or use of this material.

COPYRIGHT NOTICE

No part of this publication may be reproduced, stored in a retrieval system or transmitted, in any form or by any
means, photocopying, recording or otherwise, without prior written consent of IONA Technologies PLC. No third

party intellectual property right liability is assumed with respect to the use of the information contained herein.
IONA Technologies PLC assumes no responsibility for errors or omissions contained in this book. This publication
and features described herein are subject to change without notice.

Copyright © 2001-2003 IONA Technologies PLC. All rights reserved.

All products or services mentioned in this manual are covered by the trademarks, service marks, or product
names as designated by the companies who market those products.

Updated: 13-Feb-2004

M3125

Contents

List of Figures

Preface

Part | CORBA Bank Application

Chapter 1 Back-End CORBA Server

Design of the Back-End Server

IDL for the Back-End Server

Architecture

Designing the POA Hierarchy

Implementing the Account Interfaces
Implementing Interfaces Using the Delegation Approach
Implementation of the Account Interface
Persistence Mechanism for Account Objects

Lifecycle of Account Objects

Implementing the AccountMgr Interface
Implementing Interfaces Using the Inheritance Approach
Implementation of the AccountMgr Interface

Publishing the AccountMgr Object Reference

Chapter 2 Middle-Tier CORBA Server
Design of the Middle-Tier Server
IDL for the Middle-Tier Server
Designing the POA Hierarchy
Resolving the AccountMgr Object Reference
Implementing the BusinessSession Interfaces

Chapter 3 Java CORBA Client
Design of the CORBA Client
The Open Account Dialog

vii

13
14
17
18
21
30
32
36
37
39
43

47
48
51
55
57
60

63
64
66

CONTENTS

The New Account Dialog

The Lodge Funds Dialog

The Withdraw Funds Dialog

The Transfer Funds Dialog
Using Forte for Java and NetBeans
Resolving the BusinessSessionManager Object Reference
Implementation of the Java CORBA Client
Implementation of the Open Account Dialog

Part II J2EE Internet Banking

Chapter 4 J2EE AliDayBanking Application

Architecture of the J2EE Application

Overview of the J2EE Development Cycle

Source Code Organization (EARSCO)

Building and Packaging the J2EE Application
Directory Structure in an EAR File
Directory Structure in an EJB Module JAR File
Directory Structure in a Web Module WAR File

Chapter 5 Accessing the CORBA Back-End

Overview of the EJB to CORBA Link
Using Orbix Connect and JBoss
Creating the IDL Stub JAR File
Accessing the Stub JARs from EJB

Chapter 6 EJB Middle-Tier

The InetAccount Session Bean
Anatomy of a Session Bean
EJB Session Bean Life Cycle Methods
Session Bean Configuration

The User Entity Bean
Anatomy of an Entity Bean
EJB Entity Bean Life Cycle Methods
Entity Bean Configuration
Container-Managed Persistence in JBoss

67
69
70
71
72
77
81
83

89
90
92
94
98

100
102
105

109
110
112
119
121

123
124
125
128
131
135
136
139
142
145

Chapter 7 J2EE Presentation Layer
Overview of the Presentation Layer
Worker Beans
The CustomerSession Bean
The NewRegSession Bean
The WebHelper Class
Using a JSP to Process a Web Form
The Login Web Form
The New User Registration Web Form
Using a JSP to Access an Enterprise Bean

Part [Il COMet and .NET Clients

Chapter 8 Visual Basic COMet Client
Overview of the Visual Basic Client
Implementation of the Visual Basic Client

Starting the ATM Session
Showing Account Details
Withdrawing Cash

Chapter 9 C# .NET Client
Overview of the C# Client
Implementation of the C# Client
Importing .NET Metadata
Initializing the Online Purchasing Manager Client

Index

CONTENTS

149
150
154
155
158
160
161
163
167
173

177
178
182
183
186
188

191
192
196
197
198

201

CONTENTS

vi

List of Figures

Figure 1:
Figure 2:
Figure 3:
Figure 4.
Figure b:
Figure 6:
Figure 7:
Figure 8:
Figure 9:

Inheritance Hierarchy for Account Types

POA Hierarchy for the Back-End Server

Relationship Between a Tie Object and its Delegate
Classes and Interfaces Needed for the Delegation Approach
Java Inheritance Hierarchy for Account Types

Lifecycle of an Account Object

Creating an Account Object

Opening an Account Object

Updating an Account Object

Figure 10: Classes Needed for the Inheritance Approach

Figure 11: Publishing an Object Reference in the CORBA Naming Service

Figure 12: Inheritance Hierarchy for BusinessSession Types
Figure 13: POA Hierarchy for the Middle-Tier Server
Figure 14: Resolving the AccountMgr Object Reference

Figure 15: Java Inheritance Hierarchy for the Delegate Objects
Figure 16: The Main Screen of the Java CORBA Client
Figure 17: The Open Account Dialog Window

Figure 18: The New Account Dialog Window
Figure 19: The Lodge Funds Dialog Window
Figure 20: The Withdraw Funds Dialog Window
Figure 21: The Transfer Funds Dialog Window

Figure 22: Editing the Transfer Funds Dialog within the Forte for Java IDE

Figure 23: Viewing the transferFunds.java file in the Source Editor

Figure 24: Establishing a Connection to the Middle-Tier Server

Figure 25: Relationship Between the Main Screen and a Dialog Window
Figure 26: Architecture of the J2EE AllDayBanking Application

15
18
19
21
32
33
34
35
38
44
48
55
57
60
65
66
67
69
70
71
73
75
77
81
90

vii

LIST OF FIGURES

Figure 27:
Figure 28:
Figure 29:
Figure 30:
Figure 31:
Figure 32:
Figure 33:
Figure 34:
Figure 35:
Figure 36:
Figure 37:
Figure 38:
Figure 39:
Figure 40:
Figure 41:
Figure 42:
Figure 43:
Figure 44

viii

The J2EE Development Cycle

The Enterprise Application Archive Source Code Organization
Standard Layout of an EAR File

Layout of an EJB Module JAR File

Standard Layout of a Web Module WAR File

The EJB Middle-Tier Accesses the CORBA Back-End

EJB to CORBA Connectivity Using Orbix Connect and JBoss
Structure of the InetAccountBean Session Bean Class
Structure of the UserBean Entity Bean Class

Overview of Container-Managed Persistence

Overview of the J2EE Presentation Layer for AllDayBanking
Processing Web Form Data Using a JSP

The Login Page of the AllDayBanking Application

The New User Registration Page of the AllDayBanking Application

Architecture of the Visual Basic ATM Client Application
The ATM Client Welcome Screen

Architecture of the C# Online Purchasing Client Application
The Online Purchasing Manager C# Client

92

95
100
102
105
110
113
126
137
145
150
161
163
168
178
180
192
195

Audience

Preface

This document provides developers with a compact overview of the
technologies supported by Orbix product. The CORBA, J2EE, COMet, and
.NET connector technologies are introduced and discussed in the context of
the First Northern Bank demonstration, which provides a source of
examples throughout. Detailed discussions of the topics introduced in this
document can be found in the relevant Orbix developer guides.

This book is aimed at the following developers:

® CORBA developers—who want to develop server or client applications
in Java. The prerequisites are a good knowledge of Java and familiarity
with basic CORBA concepts.

® J2EE developers—who want to develop Enterprise JavaBean servers
and Web applications. The prerequisites are a good knowledge of Java
and a basic knowledge of XML.

® Visual Basic developers—who want to write an application that
communicates with a CORBA server through IONA’s COMet bridge.

® C# developers—who want to write an application that communicates
with a CORBA server through IONA’s .NET Connector.

PREFACE

Organization of this guide

Related documentation

Additional resources

This guide is divided as follows:

Part | “CORBA Bank Application”

This part discusses the CORBA components of the First Northern Bank
demonstration. The CORBA bank application has three tiers: CORBA
back-end, CORBA middle-tier, and Java CORBA client.

Part 1l “J2EE Internet Banking”

This part begins with an overview of the J2EE development cycle and then
discusses the J2EE components of the First Northern Bank demonstration.
The J2EE Internet banking application has three tiers: CORBA back-end,
EJB middle-tier, and Web presentation layer.

Part Ill “COMet and .NET Clients”

This part provides a brief introduction to developing Visual Basic COMet
clients and C# .NET clients.

The following documents also discuss the FNB demonstration:
® First Northern Bank Business Case
® First Northern Bank Tutorial

The following documents complement this guide by providing a more
detailed discussion of the concepts introduced here:

® CORBA Programmer’s Guide

® J2EE Technology Developer’s Guide

The latest updates to the Orbix documentation can be found at http://
www.iona.com/support/docs.

The IONA knowledge base (http://www.iona.com/support/knowledge base/
index.xml) contains helpful articles, written by IONA experts, about the
Orbix and other products. You can access the knowledge base at the
following location:

The IONA update center (http://www.iona.com/support/updates/index.xml)
contains the latest releases and patches for IONA products:

If you need help with this or any other IONA products, contact IONA at
suppor t @ona. com Comments on IONA documentation can be sent to
docs-support@iona.com .

http://www.iona.com/support/docs
http://www.iona.com/support/docs
mailto:support@iona.com
http://www.iona.com/support/knowledge_base/index.xml
http://www.iona.com/support/updates/index.xml

PREFACE

Typographical conventions

Constant wi dth

[talic

This guide uses the following typographical conventions:

Constant width (courier font) in normal text
represents portions of code and literal names of items
such as classes, functions, variables, and data
structures. For example, text might refer to the
QORBA: : (bj ect class.

Constant width paragraphs represent code examples
or information a system displays on the screen. For
example:

#i ncl ude <stdio. h>

[talic words in normal text represent emphasis and
new terms.

Italic words or characters in code and commands
represent variable values you must supply, such as
arguments to commands or path names for your
particular system. For example:

% cd /users/your_name

Note: Some command examples may use angle
brackets to represent variable values you must
supply. This is an older convention that is replaced
with italic words or characters.

Xi

PREFACE

Keying conventions This guide may use the following keying conventions:

No prompt When a command’s format is the same for multiple
platforms, a prompt is not used.

% A percent sign represents the UNIX command shell
prompt for a command that does not require root
privileges.

A number sign represents the UNIX command shell

prompt for a command that requires root privileges.

> The notation > represents the DOS or Windows
command prompt.

Horizontal or vertical ellipses in format and syntax
descriptions indicate that material has been
eliminated to simplify a discussion.

[] Brackets enclose optional items in format and syntax
descriptions.

{} Braces enclose a list from which you must choose an
item in format and syntax descriptions.

| A vertical bar separates items in a list of choices
enclosed in { } (braces) in format and syntax
descriptions.

Xii

Part |
CORBA Bank Application

In this part This part contains the following chapters:
Back-End CORBA Server page 3
Middle-Tier CORBA Server page 47

Java CORBA Client page 63

In this chapter

CHAPTER 1

Back-End CORBA
Server

This chapter discusses the design and implementation of the
back-end CORBA server. Starting from a high-level design, the
object interfaces are defined in the OMG interface definition
language (IDL) and then implemented in Java.

This chapter discusses the following topics:

Design of the Back-End Server page 4

IDL for the Back-End Server page 7

Architecture page 13
Designing the POA Hierarchy page 14
Implementing the Account Interfaces page 17
Lifecycle of Account Objects page 32
Implementing the AccountMgr Interface page 36
Publishing the AccountMgr Object Reference page 43

CHAPTER 1 | Back-End CORBA Server

Design of the Back-End Server

Purpose of the back-end server

Object-oriented design and
CORBA

The purpose of the back-end server is to provide the basic business objects

for the bank application—in this demonstration, Account objects. The

back-end server has the following general characteristics:

® Provides close integration with persistent storage—the CORBA
back-end server consists of a wrapper around a database that stores
the business data.

® Provides an implementation of Account CORBA objects—the account
data thus becomes accessible to other distributed applications.

® Ignores presentation requirements—the back-end server is not
concerned with the way in which clients access and use the Account
objects. This is left to other parts of the distributed application.

CORBA fits in well with object-oriented design methodologies. For example,
a formal design specified in UML (Unified Modelling Language) can be used
as the basis for defining the interfaces for CORBA objects.

The use of distributed technology does have an impact on the formal design,
however. For example, for a class that will be implemented as a CORBA
type, it is advisable to modify the design to minimize the number of remote
invocations that are required to use the class.

CORBA object types

AccountMgr Type

Account Type

Design of the Back-End Server

Figure 1 shows the inheritance hierarchy for the object types implemented
in the back-end server.

Account Myr
Account
Curr ent Account Savi ngsAccount Cr edi t Car dAccount

Figure 1: Inheritance Hierarchy for Account Types

A single object of Account Myr type is created to manage and provide access
to the Account objects. Methods defined on the Account Myr type follow the
pattern for a factory/finder type. Because constructor methods cannot be
exposed to remote clients, a factory object such as Account Myr is needed in
order to:

® Create new Account objects.

® Find existing Account objects—two alternative search methods are
supported:

. lookup by account number, and

. listing all accounts of a particular type.

The Account class is an abstract base class for the other account types. A
number of attributes are defined on the Account class:

® Account number.

® Owner details (name and address).

® Alist of recent transactions.

Methods are also defined on the Account class, as follows:
® Deposit and withdraw cash.

® Transfer money in or out of the account.

CHAPTER 1 | Back-End CORBA Server

CurrentAccount Type

CreditCardAccount Type

SavingsAccount Type

The Qurrent Account type inherits from Account . The following attribute is
added:

® overdraftlimt—a readonly attribrute that returns the current
overdraft limit.

The following method is added:

® approveNewOver dr af t () —request approval for a new overdraft limit.
The method returns TRUE if the new limit is approved.

The O edi t Car dAccount type inherits from Account . The following attributes
are added:

® Credit limit.

® |Interest rate on overdue payments.

The following methods are added:

® Authorize an amount of money to be spent.

® Make a purchase, based on an authorization code.
® Calculate the interest due on late payments.

The Savi ngsAccount type inherits from Account , adding no new attributes or
methods.

IDL for the Back-End Server

IDL for the Back-End Server

OMG interface definition language

Language neutrality of IDL

The IDL compiler

Account IDL

HAwWN

The OMG interface definition language (IDL) is a purely declarative
language, with a syntax similar to C++ and Java, that is used to define the
interfaces for CORBA objects. The most important entities that can be
defined in IDL are IDL interfaces, which are analogous to C+ + abstract
classes or Java interfaces.

The advantage of OMG IDL is that it enables you to define distributed
interfaces in a language-neutral manner.

A server developer can use IDL to define the service provided to clients,
irrespective of the language or platform used on the server side. Conversely,
a client programmer can use IDL as a blueprint for accessing the service,
irrespective of the language or platform used on the client side.

To access the definitions expressed in IDL, it is necessary to compile the IDL
into a target language such as C++ or Java. This is accomplished using the
IDL compiler, which takes an IDL file as input and generates stub files and
skeleton files as output.

Orbix provides the IDL compiler as a command line tool, i dl .

The code listing in Example 1 shows the main IDL file used by the back-end
server, i dl / Account . i dl . This IDL file defines all of the CORBA interfaces
implemented by the back-end server.

Example 1: The Account IDL File

/1 1DL

#i f ndef AGCOOUNT_| DL

#def i ne ACCOUNT_| DL

/|l Exceptions raised in this file
nmodul e bankobj ects {

typedef | ong account Num
t ypedef sequence<account Nun» account Nunli st ;

CHAPTER 1 | Back-End CORBA Server

Example 1: The Account IDL File

5 exception | NSUFFI A ENT_FUNDS {};
exception CANNOT_CLCSE _ACCOUNT {};
exception ACOOUNT_DCESNT_EXI ST {};
exception FAILED TO AUTHORI ZE {};

6 struct address {
string address_1,;
string address_2;
string address_3;

}s

// Stucture to hold informati on on what a custoner
[/l is doing with the bank
struct BankTransaction {

short id;

string date;

string record_type;

string val ue;

}s

7 typedef sequence<BankTransaction> Account Tr ansacti ons;
8 i nterface Account;

9 interface Account Myr {
10 Account openAccount (in account Num account Nunber)
rai ses (ACCOUNT_DCESNT_EXI ST) ;
Account newAccount (in string account Type);
voi d cl oseAccount (in account Num account Nunber)
rai ses (CANNOT_CLOSE_AGOOUNT) ;

account Nunki st get Qurrent Account List ();
account Nunii st getOreditCardList ();

};

interface Account {
11 readonly attribute account Num account nunber ;
readonly attribute address addr;
readonly attribute string account Type;

12 attribute string firstnane;
attribute string |astnane;

readonly attribute float accountBal ance;

IDL for the Back-End Server

Example 1: The Account IDL File

readonly attribute Account Transactions
recent Transact i ons;

/1 Updat e net hods
bool ean nmakeLodgenent (in float amount);
bool ean wi t hdrawFunds (in float anount)
rai ses (| NSUFFI A ENT_FUNDS) ;
bool ean updat eAddress (in address newAddress);

voi d transferFundsin (in float anount);
voi d transferFundsQut (in float amount)
rai ses (1 NSUFFI A ENT_FUNDS) ;

// Admn stuff
voi d sendStatenent ();

}s

interface Qurrent Account : Account {
readonly attribute float overdraftLimt;

/1 Account naintenace routines
bool ean approveNewOverdraft (in float anount);

}s

i nterface Savi ngsAccount : Account {

IE
typedef short authori zati onCode;

interface O editCardAccount : Account {
attribute float limt;
attribute float interest_rate;

// Cal culate how much interest is owed on this account
float calculatelnterest ();

// Basic operations on a credit card
aut hori zati onCode aut hori seAnount (in float anount)
rai ses (FA LED TO AUTHOR ZE);
bool ean makePurchase (in string vendor, in float armount,
i n aut hori zati onCode aut h_code);

}s

}; // Modul e
#endi f // ACCOUNT_| DL

CHAPTER 1 | Back-End CORBA Server

10

The preceding code can be explained as follows:

1.

An IDL file can contain preprocessor macros, similar to the C and C++
languages. The start of a macro is signalled by a # character at the
beginning of a line.

In this example, the #i f ndef , #def i ne, and #endi f preprocessor
macros guard against multiple inclusion of this file into other IDL files.

The definitions in this file are enclosed within the bankobj ect s
module. An IDL module is a scooping mechanism for IDL (conceptually
similar to a namespace in C++ or a package in Java).

All of the entities defined in the scope of the bankobj ect s module gain
bankobj ect s: : as a prefix. For example, bankobj ect s: : Account is the
fully scoped identifier for the Account interface.

The t ypedef construction is grammatically similar to t ypedef in C and
C++. In this example, account Numbecomes a synonym for the IDL

I ong type (32-bit signed integer).

This line defines a sequence type, account Nunii st , defined as an
unbounded sequence of integers, account Num A sequence is similar to
a one-dimensional array except that its length can be arbitrary.

For example, the IDL-to-Java mapping specifies that the IDL sequence
type, account NunLi st , maps to a Java array, account Nunf], where the
size of the Java array can be chosen arbitrarily.

This line and the following lines define some IDL user exception types.
The syntax for declaring an IDL user exception is similar to the syntax
of a C++ struct, except that the struct keyword is replaced by the
excepti on keyword. The exception definitions shown here have an
empty body, {}, because there is no data associated with these
exceptions.

The syntax for declaring an IDL st ruct is similar to the syntax of a
C++ struct. The closest Java analogy is a class that declares only
member variables.

For example, the addr ess struct type contains three strings
corresponding to the three fields of an address, address_1, address_2,
and address_3.

10.

11.

12.

IDL for the Back-End Server

The typedef declares an unbounded sequence, Account Transact i ons,
that holds a list of BankTr ansact i on structs. A sequence should always
be declared using a t ypedef construction.

This is an example of a forward declaration of an interface, Account .
This enables the Account type to be referenced before it is defined. The
actual definition of the Account interface appears further on.

This line introduces the definition of an IDL interface, Account Myr .
Interfaces are the most important sort of definition in IDL. An IDL
interface defines the attributes and operations for CORBA objects of a
particular type.

This line shows an example of an /DL operation, openAccount (). The
syntax for declaring an IDL operation is similar to the definition of a
member function in C++ or a method in Java. A rai ses() clause
introduces the list of user exceptions that can be thrown by this
operation.

Declaring a readonly attribute in an interface specifies that the
interface implementation will include an accessor method that enables
you to retrieve the attribute value.

For example, when the account nunber readonly attribute is mapped to
Java, the following method appears in the Account implementation
class:

/1 Java
/1l In the scope of the Account inplenentation class:
i nt account nunber () {
I/ return the value of the account nunber

1

Declaring a plain attribute in an interface specifies that the interface
implementation will include both an accessor and a modifier method
that enables you both to retrieve and to update the attribute’s value.

11

CHAPTER 1 | Back-End CORBA Server

For example, when the fi r st nane attribute is mapped to Java, the
following pair of methods appear in the Account implementation class:

/] Java
/1 In the scope of the Account inplenentation class:

string firstname() {
Il return the firstnane string

IE
void firstname(string s) {
/] update the firstnane string val ue

}

13. The Qurrent Account interface inherits from Account . IDL inheritance is
indicated using : (colon). Multiple inheritance is supported in IDL.

12

Architecture

Architecture

Overview

Programming language

Code generation

Persistence mechanism

Services

After defining the application IDL, a range of architectural choices remain
open for the implementation of the back-end server. The following aspects
of the implementation architecture can be decided at this point:

® Programming language.
® Code generation.

® Persistence mechanism.
® Services.

Because of the OMG IDL’s language neutrality, you can choose between a
range of programming languages. COBOL, PL/I, Java, C, and C++
mappings have all been standardized by the OMG.

Orbix provides a CORBA Code Generation Toolkit (CCGT) for developing
CORBA applications in C++ and Java. The CCGT takes an IDL file as input
and generates an outline C+ + or Java application based on the IDL.

Code generation can be particularly beneficial in the context of large-scale
projects using a lot of IDL. Customization of the CCGT is possible (and
recommended) if you have some expertise in TCL (Tool Command
Language) programming.

You can use any standard persistence mechanism, such as a commercial
database, file-based storage, or serialized objects. CORBA does not
constrain your choice in any way, but it does provide an extra option: the
CORBA Persistent State Service (PSS), which is a persistence layer that is
closely integrated with CORBA technology.

Orbix provides a range of integrated services, including the following:
® Security with SSL/TLS.

® Transaction support with OTS-Lite or full OTS.

® Session management, using the session management plug-in.

13

CHAPTER 1 | Back-End CORBA Server

Designing the POA Hierarchy

Role of the POA The role of the Portable Object Adapter (POA) is to manage a collection of
CORBA objects in a specific way. There can be more than one POA in an
application, with each POA instance configured to manage different
collections of CORBA objects in different ways.

The main responsibilities of the POA are the following:

® Activating CORBA objects—A CORBA object cannot receive CORBA
invocations until it is activated. The POA then becomes responsible for
routing invocations to the CORBA object.

® Managing the lifecycle of CORBA objects—a POA instance can be
configured to manage the object lifecycle in one of several different
ways:

+ Some POA configurations are designed to manage CORBA objects
that are created and activated once.

+ Other POA configurations are designed to load and unload
CORBA objects dynamically, in response to demand. See also
“Lifecycle of Account Objects” on page 32.

® Defining the threading policy—a POA instance can be configured to
be either single or multi-threaded:

. In a single-threaded POA, a CORBA object is guaranteed to
receive invocations sequentially.

. In a multi-threaded POA, a CORBA object can receive invocations
concurrently.

14

Activation

POA hierarchy for the back-end
server

Designing the POA Hierarchy

Activation is a crucial step that makes a CORBA object accessible to remote
clients.

Activation affects a CORBA object as follows:

® Associates the CORBA object with a particular POA instance—the
POA is then responsible for routing invocations to the object
implementation.

® Gives an identity to the CORBA object—Dby associating an object ID
with the object. An object ID is an array of bytes that, together with the
associated POA name, uniquely identifies the CORBA object.

Figure 2 shows the POA hierarchy used for the back-end server. The root
POA (which is present at the root of every POA hierarchy) has two children:

® A POA for managing Account Myr objects (named Account Manager),
® A POA for managing Account objects (named Bank(bj ect s).

root POA

AN

"BankQbj ects” POA Account Manager

Account Objects i E i
T
000 | |

Figure 2: POA Hierarchy for the Back-End Server

15

CHAPTER 1 | Back-End CORBA Server

POA policies

AccountManager POA

BankObjects POA

16

A POA instance is configured by setting its POA policies, which can only be
set at the time the POA instance is created.

For example, the following policy types are often customized when a POA is

created:

® The Lif espanPol i cy—object life spans are either bounded by a single
run of the application (TRANSI ENT), or they are unbounded and valid for
many runs of the application (PERSI STENT).

® The I dAssi gnnent Pol i cy—object IDs can be assigned explicitly by the
developer (USER | D), or generated automatically by the ORB
(SYSTEM | D).

® The ThreadPol i cy—can be either single threaded
(SI NGLE_THREAD MXDEL), or multi-threaded (CRB_CTRL_MODEL).

The Account Manager POA is created to manage the Account Myr object (only
one object of Account Myr type is ever created). The Account Myr object is
created and activated when the application starts up and remains active for
as long as the application is running.

Because the lifecycle of the Account Myr object is very simple, there are no
special requirements on the Account Manager POA which, therefore, uses
mostly default POA policies.

The Bank(bj ect s POA is created to manage Account objects. The number of
Account objects is potentially very large and it is not practical to store all of
the objects in memory at the same time. The back-end server adopts the
strategy of loading Account objects into memory only when they are needed
(that is, in response to bankser ver : : Account Myr : : openAccount () operation
invocations).

Because of the special requirements for managing the lifecycle of Account
objects, the BankObjects POA is specially configured to use a servant
locator. See “Lifecycle of Account Objects” on page 32 for details.

Implementing the Account Interfaces

Implementing the Account Interfaces

Overview One the server developer's main tasks is to implement the back-end IDL
interfaces. This section describes the general approach to implementing the
Account interfaces for the back-end server (Account , Qurrent Account , and
O edi t CardAccount), focusing mainly on the CORBA aspects.

In this section This section contains the following subsections:

Implementing Interfaces Using the Delegation Approach page 18

Implementation of the Account Interface page 21

Persistence Mechanism for Account Objects page 30

17

CHAPTER 1 | Back-End CORBA Server

Implementing Interfaces Using the Delegation Approach

Overview

The delegation approach

18

There are two alternative approaches to implementing an IDL interface in

Java:

® The delegation (or TIE) approach—as described in this subsection.

® The inheritance approach—as described in “Implementing Interfaces
Using the Inheritance Approach” on page 37.

In Java, the delegation approach predominates because it gets around the

Java limitations on multiple inheritance. By contrast, the inheritance

approach runs into difficulties as soon as the IDL interface to be
implemented inherits from just one other IDL interface.

With the delegation approach, a single CORBA object is implemented using
two Java objects: a tie object, of InterfaceNamePQATi e type, and a delegate
object, conventionally of InterfaceNameDel egat e type. Figure 3 shows the
relationship between a tie object and its delegate.

InterfaceNamePOATI e InterfaceNameDel egat e
) . Delegate
Tie Object E Object

Figure 3: Relationship Between a Tie Object and its Delegate

Together, the tie object and its delegate cooperate to provide the

implementation of the IDL attributes and operations, as follows:

® The delegate object has the code that implements the IDL attributes
and operations.
The InterfaceNameDel egat e class is written by the application
developer.

®* The tie object caches a reference to the delegate object and uses the
cached reference to forward method invocations to the delegate. The
tie object is a servant (in Java, it inherits from the
or g. ong. Por t abl eSer ver . Servant interface).

Implementing the Account Interfaces

The InterfaceNamePQATi e class is generated automatically by the IDL
compiler.

Servants A servant is an object that provides the implementation code for an IDL
interface. It is incorrect, however, to regard a servant as a CORBA object. A
CORBA object is composed of a servant and an identity (object ID), a
composition created by activating the CORBA object. A servant on its own
has no identity.

In the delegation approach the tie object is effectively the servant object,
because it inherits from the servant base class. However, there is a sense in
which both the tie object and the delegate object together constitute the
servant because it is the combination of these two objects that provides the
implementation code.

Instantiating a TIE servant A tie servant for the Qurrent Account type is instantiated as follows:

/1l Java
package bankobj ect s;

/1 Step 1: Ceate the del egate object.
Current Account Del egat e del eg = new Qur rent Account Del egat e() ;

/] Step 2: OGreate the TIE obj ect.
org. ony. Port abl eServer. Servant tie_servant
= new CQurr ent Account PQATIi e(del eg) ;

Classes and interfaces needed for Figure 4 shows some of the Java classes and interfaces needed for the

the delegation approach delegation approach.
Generated Java
Interface \
[|
InterfaceNamePOA | InterfaceNameQper at i ons !
N |
Generated .A
Classes !
InterfaceNamePOATi e —————<C InterfaceNameDel egat e

Figure 4: Classes and Interfaces Needed for the Delegation Approach

19

CHAPTER 1 | Back-End CORBA Server

Implementing the delegate class

20

The InterfaceNameDel egat e class must implement the
InterfaceNameQper at i ons Java interface. This ensures that all of the
InterfaceName operations and attributes are actually implemented by the
delegate class.

The InterfaceNamePQATi e class inherits from the /nterfaceNamePA class,
which ensures that it is the correct type of servant for the InterfaceName
IDL interface.

There are two possible starting points for implementing the delegate class:

® Use the CORBA Code Generation Toolkit—the code generation toolkit
can create the outline of a working application based on an IDL file.

For example, by generating code from the Account . i dl file using the

j ava_poa_geni e. tcl code generation genie you can obtain an initial
version of the Account delegate class (you will need to specify the -ti e
option to the genie). See the CORBA Programmer’s Guide for details of
this approach.

® Use a stub file as a template for the delegate class—one of the steps
involved in building a CORBA application is to compile your IDL using
the IDL compiler. This produces stub files in your target programming
language (for example C++ or Java).

Some of the stub files have a form that is similar to the form required
for a delegate class. These stub files can be copied and modified
appropriately to provide the initial versions of your delegate classes.

Note: This approach (stub file as a template) is recommended only
for advanced CORBA developers.

Implementing the Account Interfaces

Implementation of the Account Interface

Overview The Account IDL interface is implemented using the delegation approach
(see “Implementing Interfaces Using the Delegation Approach” on page 18).
The main task for the developer is to implement the delegate class,
Account Del egat e, which has corresponding methods for all of the Account
operations and attributes.

Java inheritance hierarchy Usually, the most convenient way to implement an IDL inheritance
hierarchy (see Figure 1 on page 5) is to implement a Java inheritance
hierarchy amongst the delegate classes that parallels the IDL one. Figure 5
shows the resulting Java inheritance hierarchy for the Account types.

Account Del egat e
A A A

Curr ent Account Del egat e Savi ngsAccount Del egat e

’ Cr edi t Car dAccount Del egat e

Figure 5: Java Inheritance Hierarchy for Account Types

The Account Del egat e class is the base class for all of the other account
types. It is never instantiated directly, but it provides common code and
state for the subclasses.

The AccountDelegate class Example 2 shows an outline of the code for the Account Del egat e class.
Example 2: The AccountDelegate Class (Sheet 1 of 7)

Il Java
1 package bankobj ects;

import org.ong. CORBA *;

i nport org. ong. CCRBA port abl e. *;

inport org.ong. Portabl eServer. POA *;

i mport org.ong. Port abl eServer. *;

i nport org. ong. Port abl eServer. Servant Locat or Package. *;
i nport org. ong. Port abl eServer. PQAPackage. *;

21

CHAPTER 1 | Back-End CORBA Server

Example 2: The AccountDelegate Class (Sheet 2 of 7)

inport java.io.*;
inport java.util.*;
inport java.text.*;

i nport org. ong. CosNani ng. *;
i mport org. ong. CosNam ng. Nam ngCont ext Package. *;

2 public class AccountDel egat e
i npl ement s Account Qper ati ons, Serializable

{

/1 Private data
private int maccount Nunber;
private address m address;

private String ml astnane;
private String mfirstname;

// Transaction Data, hold the I ast 50 transactions

protected BankTransaction[] mtranslist = new
BankTr ansact i on[50] ;

protected int next_trans_|location = 0;

protected short next_i d_num = 100;

protected String maccount Type;

// Bal ance | nfornation
protected fl oat m bal ance;
public String mfil enane;

3 publ i ¢ Account Del egate ()
{

mtranslist[next_trans_| ocati on] = new BankTransaction();

mtranslist[next_trans_|location].id = 0;
Il get the date

Cal endar cal = Cal endar. get | nstance();

Dat eFor mat df = DateFormat. getlnstance ();

mtranslist[next_trans_|ocation].date =

df . format (cal . getTime());
mtranslist[next_trans_| ocation].record_type = "Qpened";
mtranslist[next_trans_|ocation].value = "0.00";

next _trans_| ocati on++;

22

Implementing the Account Interfaces

Example 2: The AccountDelegate Class (Sheet 2 of 7)

inport java.io.*;
inport java.util.*;
inport java.text.*;

i nport org. ong. CosNani ng. *;
i mport org. ong. CosNam ng. Nam ngCont ext Package. *;

publ i c class Account Del egat e

{

i npl ement s Account Qper ati ons, Serializable

/1 Private data
private int maccount Nunber;
private address m address;

private String ml astnane;
private String mfirstname;

// Transaction Data, hold the I ast 50 transactions

protected BankTransaction[] mtranslist = new
BankTr ansact i on[50] ;

protected int next_trans_|location = 0;

protected short next_i d_num = 100;

protected String maccount Type;

// Bal ance | nfornation
protected fl oat m bal ance;
public String mfil enane;

publ i ¢ Account Del egate ()
{

mtranslist[next_trans_| ocati on] = new BankTransaction();

mtranslist[next_trans_|location].id = 0;
Il get the date

Cal endar cal = Cal endar. get | nstance();

Dat eFor mat df = DateFormat. getlnstance ();

mtranslist[next_trans_|ocation].date =

df . format (cal . getTime());
mtranslist[next_trans_| ocation].record_type = "Qpened";
mtranslist[next_trans_|ocation].value = "0.00";

next _trans_| ocati on++;

23

CHAPTER 1 | Back-End CORBA Server

Example 2: The AccountDelegate Class (Sheet 3 of 7)

}

/] Attributes that are defined on the IDL Interface

4 public int accountnunber ()
{
return maccount Nunber ;
}
public String account Type ()
{
return maccount Type;
}
publ i c address addr ()
{
return maddress;
}
public String |astnane ()
{
return ml ast nane;
}
public void | astname (String | name)
{
m | ast nane = | nane;
return;
}
public String firstnane ()
{
return mfirstnane;
}
public void firstname (String fname)
{
mfirstnane = fnane;
return;
}

publ i ¢ BankTransaction[] recent Transactions ()

{

if (mtranslist == null) {

24

Implementing the Account Interfaces

Example 2: The AccountDelegate Class (Sheet 4 of 7)

Systemerr.println ("mtranslist is null!!l!");

} /1 end of if ()

int tlen =0;
while (mtranslist[tlen] !'=null) {
tlent++;

}

BankTransaction[] tt = new BankTransaction [tlen];
for (int j =0; j <tlen; j++) {

tt[j] = mtranslist[j];
} // end of for ()

return tt;
}
public float accountBal ance ()
{
return mbal ance;
}

I/l Cperations that are defined on the IDL Interface
publ i ¢ bool ean makeLodgenent (float amnt)
{

m bal ance += ammt ;

/* 2 decimal places */

java.text. Deci mal For mat df 2

= new j ava. t ext . Deci nal For mat (" ##H#######0. 00") ;
String g = df2. fornat (ammt) ;

thi s. addTransacti on ("Lodgenent", g);

return true;

public void transferFundsin (float amt)

{

Systemout.println ("in transferFundsin with " + amt);

25

CHAPTER 1 | Back-End CORBA Server

Example 2: The AccountDelegate Class (Sheet 5 of 7)
m bal ance += ammt ;

/* 2 decimal places */
java. text . Deci mal For mat df 2

= new j ava. t ext . Deci nal For mat (" ##H#####0. 00") ;
String g = df2. fornat (ammt) ;

this.addTransaction ("Transfer In", g);

return;

}

publ i ¢ bool ean wit hdrawFunds (float amt)
throws | NSUFFI O ENT_FUNDS
{
if (mbalance < amt) {
t hrow new | NSUFFI O ENT_FUNDS () ;
} /1 end of if ()

m bal ance -= amnt;

/* 2 decinal places */
j ava. t ext . Deci nal For mat df 2

= new j ava. t ext . Deci nal For mat (" ##H#####0. 00") ;
String g = df2. format (amt) ;

this.addTransaction ("Wthdrawal ", Qg);

return true;

}

public void transferFundsQut (float amt)
throws | NSUFFI G ENT_FUNDS
{
if (mbalance < amt) {
t hrow new | NSUFFI Cl ENT_FUNDS () ;
} /Il end of if ()

m bal ance -= amnt;
/* 2 decimal places */
j ava. t ext . Deci nal For mat df 2

= new j ava. t ext . Deci mal For mat (" #H###H#0. 00") ;
String g = df2. fornat (ammt) ;

26

Implementing the Account Interfaces

Example 2: The AccountDelegate Class (Sheet 6 of 7)

this.addTransaction ("Transfer Qut", Qg);

return;

}

publ i ¢ bool ean updat eAddr ess (address addr)

{

m address = addr;
return true;

}

public void sendStaterment ()

{
Systemout.println ("Sending a statenment....");
return;

}

// Routines just needed by this class and its sub-cl asses, not
exposed vi a

// 1DL, so they cannot be used by any OCRBA clients.

public voi d set Account Number (int account Num)

{

m account Nunber = account Num

}

protected void addTransaction (String type, String val ue)

{

/] Make sure that we don't exceed nore than 50
transactions. ..

if (next_trans_|location == 50)
{
next _trans_l ocation = 0;
}
if (mtranslist[next_trans_|location] == null) {

mtranslist[next_trans_| ocati on] = new BankTransaction ();

}

mtranslist[next_trans_|l ocation].id = next_i d_num
next _i d_numt+;

I/l get the date

Cal endar cal = Cal endar. get | nstance();
Dat eFor mat df = DateFormat. getlnstance ();

27

CHAPTER 1 | Back-End CORBA Server

Example 2: The AccountDelegate Class (Sheet 7 of 7)

mtranslist[next_trans_|ocation].date =

df . format (cal . getTine());
mtranslist[next_trans_| ocation].record_type = type;
mtranslist[next_trans_|location].val ue = val ue;

next _trans_| ocati on++;

return;

}
}

The preceding code can be explained as follows:

1. The Account Del egat e class is placed in the bankobj ects Java
package, which corresponds to the bankobj ects IDL module. There is
no requirement, however, to place your implementation classes in the
same package as the other CORBA classes. You could place the
Account Del egat e class in a completely different package if you prefer.
2. The Account Del egat e class implements the following Java interfaces:
. bankobj ect s. Account Qper at i ons—required. The
Account Qper at i ons Java interface declares methods for all the
attributes and operations in the Account IDL interface.

¢+ java.io. Serializabl e—optional. Inheriting from the
Seri al i zabl e class makes it possible to persist an Account object
using the Java serialization technique. See “Persistence
Mechanism for Account Objects” on page 30.

3. The Account Del egat e() constructor is never called directly because
the Account Del egat e class is intended to be used as a base class only
(the subclass constructors call this constructor). You can define as
many constructors as you like for the Account Del egat e class, but none
of them will be accessible to remote CORBA clients.

4. From this line onward, plain attributes and readonly attributes are
implemented: two overloaded Java methods for each plain attribute
(get and set), and one Java method for each readonly attribute (get).

5. From this line onward, each of the IDL operations are implemented.

28

Implementing the Account Interfaces

6. The methods from this line onward are designed for internal use by this
class and its subclasses. They are not defined in IDL and are not
accessible to remote CORBA clients.

29

CHAPTER 1 | Back-End CORBA Server

Persistence Mechanism for Account Objects

Overview The back-end server uses the standard Java serialization mechanism to
make Account objects persistent.

Making the delegate classes To make a delegate class serializable, have it inherit from the
serializable java.io. Serializabl e interface either directly or indirectly. For example,
the Account Del egat e class is declared as follows:

Il Java
public class Account Del egat e
i npl ements Account Qperations, Serializable

{
}

Writing a serializable class to disk A serializable object can be written to persistent storage (for example, a file
on disk) by invoking wri t eCbj ect () on a Java output stream. For example,
the Account Servant Locat or I npl class defines the following method for
writing Account objects to disk:

/1 Java

void witeChject (String filenanme, java.lang. (bject obj)
throws | CException

{
oj ect Qut put Streamout _str = nul | ;
try {
out _str = new (bj ect Qut put St ream (
new Fi | eQut put Stream (fil enane)
JE
}

catch (I CException e) {
/1 Handl e exception (not shown) ...

}

try {
out_str.witeChject (obj);

}
catch (I CException e) {
// Handl e exception (not shown) ...

30

Implementing the Account Interfaces

} finally {
/1 Hush and cl ose the output stream (not shown) ...

}

return;

}

31

CHAPTER 1 | Back-End CORBA Server

Lifecycle of Account Objects

An Account lifecycle Figure 6 shows the lifecycle of an Account object as time evolves from left to
right across the diagram.

Client invokes Client invokes

an operation an operation
o l Server shuts
Activation - o down
State 4\ ‘ /P ‘
activate deactivate activate deactivate \L
Delegate a ‘ b4
Object 4'\ | |
Read Update Update
record record
record
Persistent | d/ \b 777777777
Storage
CORBA -
Object 1'\
Create
Account

Figure 6: Lifecycle of an Account Object

Figure 6 distinguishes between the different aspects of the Account object,

as follows:

® CORBA object—is created by making a record of the account state in
persistent storage. The CORBA object endures as long as the
corresponding account record exists in persistent storage.

® Delegate object—is the Java object that provides the implementation
of the Account object. It is created by reading the account state from
persistent storage (whenever Account Myr : : openAccount () is called)
and it exists until the server shuts down.

® Activation state—is managed by the Servant Locat or . The Account
object is activated when a client invokes an operation on the Account
and deactivated directly afterwards.

32

Lifecycle of Account Objects

Role of the AccountMgr and The Account Myr object and the Servant Locat or object (implemented as
ServantLocator objects Account Ser vant Locat or | npl) are together responsible for managing the
lifecycle of the Account objects.
The main responsibilities of the Account Myr object are as follows:
® Create an account—the Account Myr creates a delegate object for the
new account and stores the account state in a new persistent record.
® Open an account—the Account Myr reads the state of the specified
account from persistent storage and creates a delegate object for it.
The main responsibilities of the Servant Locat or object are, as follows:
® Keep a hash table with references to all of the existing delegate
objects.
® Whenever a client makes an invocation on a particular Account object,
activate the Account object for the duration of the invocation.
® Atthe end of an invocation, deactivate the Account object and update
the state of the account in persistent storage.

Creating an Account object Figure 7 shows how the Account Myr object and the Ser vant Locat or object
are involved in the creation of an Account object.

Create

@ addbj | npl () O AccountDelegate
/_ object

Servant AccountMgr
Locator Instance

@ Store Account record

v

-

Figure 7: Creating an Account Object

33

CHAPTER 1 | Back-End CORBA Server

Opening an Account object

34

In response to an invocation of newAccount (), a new Account is created as

follows:
1. An Account Del egat e object (or one of its subclasses) is created and
initialized with the data provided in the arguments to newAccount () .
2. The new account state is stored in persistent storage (the
Account Del egat e object is serialized to disk).
3. The Account Myr calls addQoj | npl () on the servant locator to store the

Account Del egat e object in the servant locator’s hash table.

Figure 8 shows how the Account Myr object and the Servant Locat or object
are involved in the opening of an Account object.

. Create
@ addObj | npl () AccountDelegate
/ object
Servant AccountMgr
Locator Instance

@ Load Account record

-

Figure 8: Opening an Account Object

In response to an invocation of openAccount (), an Account is loaded into
memory as follows:

1.

The Account Myr reads the state of the specified account from
persistent storage.

An Account Del egat e object is created from the account state
(deserialized from disk).

The Account Myr calls addQoj | npl () on the servant locator to store the
Account Del egat e object in the servant locator’s hash table.

Lifecycle of Account Objects

Updating an Account object Figure 9 shows how the Servant Locat or object updates the state of an
account.

@ Operation

N’“
@ Activate Account
Servant/>
@ pr ei nvoke()

_—

Servant
Locator

_—

@ posti nvoke()
@ Update Account record

]

Figure 9: Updating an Account Object

Whenever an operation invocation is made on a particular Account object,
the servant locator reacts as follows:

1. Just prior to the operation invocation, the BankQbj ect s POA
automatically calls the servant locator's prei nvoke() method.

2. The preinvoke() method searches for the specified Account Del egat e
object in the servant locator’s hash table and then activates the
Account CORBA object.

3. The operation is invoked on the Account object.

Just after the operation invocation, the Bankoj ect s POA automatically
calls the servant locator's posti nvoke() method.

5. The postinvoke() method updates the account state in persistent
storage and then deactivates the Account object.

35

CHAPTER 1 | Back-End CORBA Server

Implementing the AccountMgr Interface

Overview The Account Myr object is responsible for managing the lifecycle of Account
objects (creating and finding). This section describes how the Account Myr

interface is implemented in Java, focusing mainly on the CORBA aspects of
the implementation.

In this section This section contains the following subsections:

Implementing Interfaces Using the Inheritance Approach page 37

Implementation of the AccountMgr Interface page 39

36

Implementing the AccountMgr Interface

Implementing Interfaces Using the Inheritance Approach

Overview This section discusses how to implement IDL interfaces using the
inheritance approach (the alternative, delegation approach, is discussed in
“Implementing Interfaces Using the Delegation Approach” on page 18).

The inheritance approach is convenient to use, as long as the IDL interface
you are implementing does not inherit from any other IDL interface (the term
inheritance approach refers to the use of Java inheritance, not IDL
inheritance).

The inheritance approach In the inheritance approach, the servant for an IDL interface,
InterfaceName, is represented by a single object, conventionally of
InterfaceNamel npl type. The key feature of the inheritance approach is that
the implementation class, InterfaceNamel npl , inherits directly from the
generated class, InterfaceNamePQA.

For example, the Account Myr I npl class is declared as follows:

/1 Java

publ i c class Account Myr | npl
ext ends Account Myr PQA
inplements Serializable

{

}
Instantiating a servant in the In the inheritance approach, a servant is instantiated in a single step. For
inheritance approach example, the Account Myr I npl servant is instantiated as follows:

/1l Java

package bankobj ect s;

/1 Step 1: Ceate the Account Myrlnpl servant object.

org. ony. Port abl eServer. Servant serv = new Account Myr | npl (
. |I* Reference to the servant |ocator instance */,
. I* Reference to the "Bank(hjects" PQA instance */

JE

37

CHAPTER 1 | Back-End CORBA Server

Classes and interfaces needed for Figure 10 shows some of the Java classes and interfaces needed for the
the inheritance approach inheritance approach.

Generated
Class

\

InterfaceNamePQA

i

InterfaceNamel npl

Figure 10: Classes Needed for the Inheritance Approach

The InterfaceNamel npl class must extend the InterfaceNamePQA Java
class. This ensures that InterfaceNamel npl class can be identified as the
servant class that implements the InterfaceName IDL interface.

Implementing using the There are two possible starting points for the implementation class:

inheritance approach ® Use the CORBA Code Generation Toolkit—the code generation toolkit
creates an outline of a working application based on an IDL file.

For example, by generating code from the Account . i dl file using the
j ava_poa_geni e. tcl code generation genie you can obtain an initial
version of the Account I npl class. See the CORBA Programmer’s Guide
for details of this approach.

® Use a stub file as a template for the inheritance class—some of the
stub files have a form that is similar to the form required for an
inheritance class. These stub files can be copied and modified
appropriately to provide the initial versions of your implementation
classes.

Note: This approach (stub file as a template) is recommended only
for advanced CORBA developers.

38

Implementing the AccountMgr Interface

Implementation of the AccountMgr Interface

Overview

Outline of AccountMgr
implementation

The Account Myr IDL interface exposes operations for managing all of the
different Account types. In particular, an Account Myr object is used mainly
for creating new accounts or accessing existing accounts.

The implementation of Account Myr illustrates the inheritance approach—
see “Implementing Interfaces Using the Inheritance Approach” on page 37.

Example 3 shows an outline of the Account Myr I npl class, which
implements the Account Myr IDL interface.

Example 3: Outline of the AccountMgrimpl Class (Sheet 1 of 2)

Il Java
package bankobj ects;

import org.ong. CORBA *;

publ i c class Account Myr | npl
ext ends Account Myr POA
inpl ements Serializable

{

Account Myr I npl (Account Servant Locat or I npl obj, PQA poa)
{
m | ocat or Cbj = obj ;
m poa = poa;
}
/1 Methods that are defined on the IDL interface
publi ¢ Account openAccount (int account Nunber)
t hr ows ACCOUNT_DCESNT_EXI ST
{
}

publi ¢ Account newAccount (String account Type)
{

}

public void cl oseAccount (int account Nunber)

39

CHAPTER 1 | Back-End CORBA Server

Example 3: Outline of the AccountMgrimpl Class (Sheet 2 of 2)

thr ows CANNOT._CLOSE_ACOOUNT
{

}

public int[] getCQurrentAccountList()
{

}

public int[] getOeditCardList()
{

}

4 /1 Non-1DL, private declarations and nethods (not shown)

}

The preceding code can be explained as follows:
1. The Account Myr I npl class extends the following Java class:
. bankobj ect s. Account Myr POA—required. The Account Myr PQA

Java class declares methods for all the attributes and operations
in the Account Myr IDL interface.

The Account Myr I npl class implements the following Java interface:

¢ java.io. Serializabl e—optional. Inheriting from the
Seri al i zabl e class makes it possible to persist an Account Myr
object using the Java serialization technique.

2. The Account Myr I npl constructor caches references to the servant
locator and to the Banknj ect s POA instance.

Note: The cached BankQbj ect s POA instance is used to activate
Account objects, not the Account Myr | npl object itself.

3. From this line onwards, all of the Account Myr operations and attributes
are defined. If you use the CORBA Code Generation Toolkit to generate
the Account Myr I npl class, the method signatures are generated for you
and you must only fill in the method bodies.

4. You can also define additional methods, for internal use.

40

Algorithm for the newAccount()
method

Implementing the AccountMgr Interface

To create a new account, the Account Myr : : newAccount () method proceeds
as follows:

Stage Description

1 | An account number is generated for the new account. The
account number is then used as the object ID for the
corresponding CORBA object.

2 | The account delegate object is created and initialized (for
example, a Qurrent Account Del egate or a

O edi t Car dAccount Del egat e object, depending on the
specified account type).

3 | The account state is saved to persistent storage (that is, the
delegate object is serialized to disk).

4 | The account delegate object is registered with the servant
locator. This implies that the delegate object is stored in the
servant locator’'s hash table and indexed by the account
number.

5 | An object reference is generated for the return value of
newAccount () . An object reference is an object that
encapsulates a CORBA object’s location and gives remote
clients access to the CORBA object.

41

CHAPTER 1 | Back-End CORBA Server

Algorithm for the openAccount() To open an existing account, the Account Myr : : openAccount () method
method proceeds as follows:

Stage Description

1 | The method checks whether the account is already in memory
by searching the servant locator's hash table.

2 | If the account is not found in the hash table, the method
searches persistent storage (for example, the file system) to
find a record for this account.

3 | When the account record is found, the method loads it into
memory and creates an account delegate object (that is,
deserializes the delegate object from disk).

4 | The method registers the account delegate object with the
servant locator.

5 | The method creates an object reference for the account, which
is then passed back to the caller.

42

Publishing the AccountMgr Object Reference

Publishing the AccountMgr Object Reference

Object reference

Creating an object reference

CORBA Naming Service

An object reference is an object that encapsulates the location and other
properties of a CORBA object. It encapsulates all of the information that a
CORBA client needs to find and use a CORBA object.

The following code listing shows one of the ways to create an object
reference for an Account Myr object, using the
Port abl eServer:: POA : create_reference_with_id() operation.

/1 Java
byte [] oid = "Account Myrlnpl _obj".getBytes();

org. ong. CORBA. (hj ect tnp_ref =
account Myr POA create reference_with_id (
oi d, /1l Cbject ID
Account Myr Hel per . id() /1l Repository (or type) ID

In general, the following items are needed to create an object reference:

® Areference to a POA instance—a CORBA object must be associated
with a POA. In this example, account Myr PQA references the
Account Manager POA instance.

® An object ID—together, the POA name and object ID identify the
CORBA object uniquely. In this example, the object ID is the string,
Account Myr | npl _obj , converted to an array of bytes.

®* Arepository ID—identifies the object’s type. In this example, the value
returned by Account Myr Hel per . i d() is the string,
| DL: bankobj ect s/ Account Myr: 1. 0.

The back-end server makes the Account Myr object accessible to CORBA
clients by publishing the Account Myr object reference to the CORBA Naming
Service. The CORBA Naming Service is a basic service that stores name,
object reference associations.

43

CHAPTER 1 | Back-End CORBA Server

Figure 11 shows how the back-end server publishes object references to the
naming service, thereby making them available to CORBA clients.

CORBA Naming Service

\ Publish AccountMgr
Resolve name .
object reference

\4 !

Middle-Tier @ O Back-End
Server @ Invoke operation Server

Figure 11: Publishing an Object Reference in the CORBA Naming Service

Figure 11 shows the following stages of publishing an object reference:

Stage Description

1 | The back-end server publishes the Account Myr object reference
under the name, BankCbj ect s_Account Myr .

2 | Aclient looks up the name, BankChj ect s_Account Myr, in the

naming service and receives the Account Myr object reference in
return.

3 | The client can now use the Account Myr object reference to
make remote invocations on the Account Myr CORBA object.

Example The back-end server defines a publ i sh_ref erence() method in the

bankobj ect s. server class which is used to publish object references to the

naming service. Example 4 shows the code for the publ i sh_r ef er ence()
method.

Example 4: The publish_reference() Method
/1l Java

1 inport org.omy. CosNam ng. *;
i mport org. ong. CosNam ng. Nam ngCont ext Package. *

44

(S0

Publishing the AccountMgr Object Reference

Example 4: The publish_reference() Method

/1
11l

In the scope of the 'bankobjects.server’ class

static void publish_reference(

org. ong. CORBA. (hj ect ref,
String ref Nane

)

org. omg. CORBA (hj ect objref = null;
NanmeConponent [] tnpName = new NameConponent [1] ;

try

{
objref = orb.resolve_ initial_references("NameService");
root Cont ext Ext = Nam ngCont ext Ext Hel per . narr ow(obj ref);

t rpNane[0] = new NaneConponent (ref Nane, "");
r oot Cont ext Ext . r ebi nd(t npNare, ref);
}
catch (CannotProceed ex) { ... }
// Catch all relevant exceptions (not shown) ...

}

The preceding code can be explained as follows:

1.

The naming service definitions are contained in the scope of
or g. ong. CosNami ng. The or g. ong. CosNam ng. Nani ngCont ext Package
subscope contains the definitions of naming service exceptions.

The publish_reference() method takes two arguments: the object
reference to be published, ref, and the name under which the object
reference will be published, r ef Nare.

Technically, a name in the naming service is an IDL sequence of name
components (of or g. omy. CosNami ng. NameConponent [] type in Java).
For simplicity, this example creates an array with just a single name
component, t npNane.

An initial reference to the naming service is obtained from the ORB by
calling resol ve_initial _references() with the string argument,
NarreSer vi ce. This is the standard way of connecting to the naming
service.

45

CHAPTER 1 | Back-End CORBA Server

46

The reference returned from resol ve_ini ti al _references(), of

org. ony. CORBA. (bj ect type, is cast to the type,

or g. ony. CosNani ng. Nam ngCont ext Ext . The Nani ngCont ext Ext

object, r oot Cont ext Ext , provides access to the naming service
functionality.

The name component array, t npNane, is initialized using the r ef Nane
string.

Invoking r ebi nd() on the root naming context creates a name, object
reference association between t npNane and ref in the naming service.

In this chapter

Middle-Tier

CHAPTER 2

CORBA Server

This chapter discusses the design and implementation of the
middle-tier CORBA server. Starting from a high-level design,
the business session interfaces are defined in the OMG
interface definition language (IDL) and then implemented in

Java.

This chapter discusses the following topics:

Design of the Middle-Tier Server page 48
IDL for the Middle-Tier Server page 51
Designing the POA Hierarchy page 55
Resolving the AccountMgr Object Reference page 57
Implementing the BusinessSession Interfaces page 60

47

CHAPTER 2 | Middle-Tier CORBA Server

Design of the Middle-Tier Server

Purpose of the middle-tier server

CORBA object types

BusinessSessionManager type

48

The purpose of the middle-tier server is to mediate between the back-end
server and a variety of different client types. The middle-tier server provides
support for session management and imposes constraints on what clients
can and cannot do.

Figure 12 shows the inheritance hierarchy for the object types implemented
in the middle-tier server.

Busi nessSessi onManager Onl i nePur chasi ng

Busi nessSessi on

I B

ATMBessi on Tel | er Sessi on | net Sessi on

Figure 12: Inheritance Hierarchy for BusinessSession Types

A single object of Busi nessSessi onManager type is provided to open and
close client sessions. Because client sessions are represented here by

Busi nessSessi on objects, the Busi nessSessi onManager acts as a factory for
Busi nessSessi on objects. The following operations are provided:

® openSessi on() —open a new client session of the specified type and

return a reference to a Busi nessSessi on object.

® ¢l oseSessi on() —close the specified client session, releasing all of the

associated resources.

BuesinessSession type

ATMSession type

InetSession type

TellerSession type

Design of the Middle-Tier Server

The Busi nessSessi on type is an abstract base class for the other session
types. One attribute is defined on the Busi nessSessi on class:

® Session ID.
Some methods are also defined on the Busi nessSessi on class, as follows:

® Resolve account—finds a specified account and associates it with the
current session.

® Get information on the account currently associated with the session.

® QGet a list of accounts of a particular type.

The ATMBessi on type inherits from Busi nessSessi on and adds methods to
support the following functionality:

® Validate the customer’s PIN against the currently active account.

® Check the daily limit on withdrawal amounts.

® Give the ATM authorization to dispense the cash.

® Receive confirmation that cash was dispensed.

The I net Sessi on type inherits from Busi nessSessi on and adds no methods
or attributes.

The Tel | er Sessi on type inherits from Busi nessSessi on and adds methods
to support the following functionality:

® (Create a new account and associate the account with the current client
session.

® Access an existing account and associate the account with the current
client session.

® Deposit and withdraw cash.
® Transfer money in or out of the account.
® Check the balance on the account.

49

CHAPTER 2 | Middle-Tier CORBA Server

OnlinePurchasing type

50

The Onl i nePur chasi ng interface is designed to support retailers, or
merchants, who sell goods over the Internet. Registered merchants are
allowed to debit credit cards, transferring money from a customer’s credit
card account into the merchant’s own account. In this way, merchants can
sell goods over the Internet which are paid for by credit card.

The following operations are provided:

® regi sterMrchant () —the merchant uses this operation to log on to
the online purchasing system, receiving a merchant ID in return.

® nmakePur chase() —this operation is called when a customer purchases
an item from the merchant. An amount of money is debited from the
customer’s account (identified by the credit card details) and credited
to the merchant’s account (identified by the merchant ID).

® |istMerchants()—returns a list of all of the merchants that are
currently registered.

® | ookupMer chant () —returns the account details for a particular
merchant ID.

IDL for the Middle-Tier Server

IDL for the Middle-Tier Server

BusinessSessionManager IDL

The code listing in Example 5 shows the IDL for the middle-tier server,
i dl / Busi nessSessi onManager . i dl .

Example 5: The BusinessSessionManager.idl File (Sheet 1 of 4)

/1 1DL
#i f ndef BUSI NESSSESS| ONVANAGER | DL
#def i ne BUSI NESSSESS| ONVANAGER | DL

#i ncl ude "Account.idl"

nodul e fnbba {
/| Exceptions
exception AUTHCR ZE FAl LED {} ;
excepti on NO RESOURCES {};
excepti on ACOOUNT_DCESNT_EXI ST {};
exception NO CPEN SESSI ON {};
exception NO SUCH ACOOUNT {};
exception NO SUCH MERCHANT {};
exception | NSUFFI G ENT_FUNDS {};

/] Structures

struct Sessionlnfo_s {
string usernang;
string passwor d;
string session_type;
string client_id;

}

enum transtype {
LODGEMENT,
W THDRAWAL,
TRANSFER | N,
TRANSFER QUT,
ACCOUNT_CPENED,
PURCHASE,
OTHER

h

/] A structure to associate a transaction and a description
struct transaction_s {

51

CHAPTER 2 | Middle-Tier CORBA Server

Example 5: The BusinessSessionManager.idl File (Sheet 2 of 4)

string date;

string description;
transtype transactionType;
string val ue;

};

/1 A sequence of transaction details
typedef sequence<transaction_s> translLi st;

struct Accountlnfo_s

{
string | nane;
string fnane;
string accType;
string addri;
string addr2;
string addr3;
float limt;

transLi st transacti ons;

};

/1 Typedefs
typedef Sessionlnfo_s Sessi onl nfo;
typedef Accountlnfo_s Accountl nfo;

i nterface Busi nessSession {
readonly attribute short session_id;

3 bankobj ect s: : Account resol veAccount (in account Num acct)
rai ses (NO_SUCH ACCOUNT) ;
Account I nfo_s get Accountinfo ();
account Nunii st get AccountLi st (in string account Type);

}s

i nterface Busi nessSessi onvanager {
4 Busi nessSessi on openSessi on (i nout Sessionlnfo usi)
rai ses(NO RESOURCES);
voi d cl oseSessi on (in Busi nessSession bs);

}s

interface ATMBession : Busi nessSession {
void validateCard (in short pin)
rai ses(AUTHOR ZE FAI LED);
voi d checkLimts (

52

IDL for the Middle-Tier Server

Example 5: The BusinessSessionManager.idl File (Sheet 3 of 4)

out short dailyLimt,

out short al readyWt hdr awn
E
bool ean okToD spense (in short amount);
voi d di spensedCash (in short amount);

}s

interface |netSession : BusinessSession {

}s

interface Tell erSessi on: Busi nessSession {

account Num newAccount (in Accountlnfo accDetails);

voi d openAccount (i n account Num acct Num
rai ses (NO_SUCH ACCOUNT);

bool ean | odgeFunds (in float amt);

bool ean wi t hdrawFunds (in float amt)
rai ses (1 NSUFFI A ENT_FUNDS) ;

bool ean transferFunds (in float amt, in account Numacct)
rai ses (NO_SUCH ACCOUNT, | NSUFFI G ENT_FUNDS) ;

fl oat accBal ance ();

h
typedef string Merchant!dentifier;

struct Merchant {
bankobj ect s: : account Num acct ;
Mer chant I denti fier merchant!| D

IE
t ypedef sequence<Mer chant > Mer chant s;

interface OnlinePurchasing {
Mer chant | denti fi er regi sterMerchant (
i n bankobj ect s: : account N\um acct
) raises (NO_SUCH ACOQOUNT);
string makePur chase(
in Merchantldentifier merchantl D,
in string card\Num in string expiryDate,
in string securityCode,
in float anmount
) raises (NO SUCH MERCHANT, | NSUFFI G ENT_FUNDS);
Mer chants |istMerchants();
bankobj ect s: : Account | ookupMer chant (
in Merchantldentifier merchantlD

53

CHAPTER 2 | Middle-Tier CORBA Server

54

Example 5: The BusinessSessionManager.idl File (Sheet 4 of 4)

I

)

rai ses (NO_SUCH MERCHANT) ;
IE
/1 Modul e fnbba

#endi f // BUSI NESSSESS| ONVANAGER | DL

The preceding code can be explained as follows:

1.

The #include directive brings in all of the definitions from
Account . i dl . See Example 1 on page 7.

The IDL enumtype is similar to the C and C++ enumtype, except that
you cannot assign integer values to the enumlabels. In Java, an IDL
enummaps to a Java class with constant members defined for each
label.

For example, in Java the f nbba: : t ranst ype: : LOCDGEMENT IDL value is
mapped to an f nbba. t r anst ype. LODGEMENT constant (of

fnbba. t r anst ype type), and an f nbba. t r anst ype. _LCDGEMENT
constant (of i nt type).

Because the Account type is defined outside the scope of the f nbba
module, it is necessary to use the fully-scoped name here,
bankobj ect s: : Account .

The Sessi onl nf o parameter of openSessi on() is declared to be an

i nout parameter. During an operation invocation, the i nout parameter
travels in both directions: from client to server, and back from server to
client. It is possible for the server to modify the i nout parameter before
sending it back to the client.

Designing the POA Hierarchy

Designing the POA Hierarchy

Overview This section describes the POA hierarchy for the middle-tier server and how
it affects the life cycle of the various CORBA objects. For more details about
the POA, see “Designing the POA Hierarchy” on page 14 and the CORBA
Programmer’s Guide.

POA hierarchy for the back-end Figure 13 shows the POA hierarchy used for the middle-tier server. The root
server POA has two children:
® A POA for managing Busi nessSessi onManager objects (named
Busi nessSessi onManager), and
® A POA for managing Busi nessSessi on objects (named
Busi nessSessi on).

root POA
" Busi nessSessi on" " Busi nessSessi onManager "
POA POA

Busi nessSession | Busi nessSessi onManager
Objects Object

oo i T

Figure 13: POA Hierarchy for the Middle-Tier Server

55

CHAPTER 2 | Middle-Tier CORBA Server

BusinessSessionManager POA

BusinessSession POA

56

The Busi nessSessi onManager POA is created to manage the

Busi nessSessi onManager object (only one object of

Busi nessSessi onManager type is ever created). The

Busi nessSessi onManager object is created and activated when the
application starts up and remains active for as long as the application is
running.

Because the life cycle of the Busi nessSessi onManager object is fairly
simple, the associated POA has straightforward policies. Some of the
policies that are explicitly set on the Busi nessSessi onManager POA are the
following:
® The Li f espanPol i cy—is defined to be PERSI STENT.
® The ThreadPol i cy—is defined to be single threaded,

SI NGLE_THREAD MCDEL.

The Busi nessSessi on POA is created to manage Busi nessSessi on objects.
The POA is created with the default POA policies.

In a highly-scalable system, you would probably require a more
sophisticated way of managing the session life cycle than the approach used
in this demonstration. For example, you might want to impose a time-out on
client sessions, so that a session is automatically deleted if it remains idle
for a specified period of time. This sort of functionality is supported by the
CORBA Session Management Plug-In. See the CORBA Session
Management Guide for details.

Resolving the AccountMgr Object Reference

Resolving the AccountMgr Object Reference

Overview The middle-tier server initially gains access to the back-end server by
retrieving an Account Myr object reference from the naming service. The

Account Myr object in the back-end is thus the initial point of contact for the
middle-tier.

CORBA Naming Service The middle-tier server resolves the name of the Account Myr object reference
previously published to the CORBA Naming Service by the back-end server
(see “Publishing the AccountMgr Object Reference” on page 43). The return
value of the resolve operation is an Account Myr object reference.

Figure 14 shows how the middle-tier server resolves a published
Account Myr object reference.

CORBA Naming Service

Resolve Z
AccountMgr object
reference

\

Middle-Tier @ Q Back-End
Server @ Invoke operation Server

AccountMgr object
reference

Figure 14: Resolving the AccountMgr Object Reference

57

CHAPTER 2 | Middle-Tier CORBA Server

Example The middle-tier server defines a r esol vehj ect () method in the
f nbba. server class which is used to resolve object references from the
naming service. Example 6 shows the code for the r esol veoj ect ()
method.

Example 6: The resolveObject() Method
/1l Java

1 public static org. ong. CORBA (bj ect resol vej ect (
String ref Nane

)
throws Exception
{

or g. ong. CORBA (hj ect tnmpoj 1 = nul | ;
2 NanmeConponent [] tnpName = new NameConponent [1] ;

try

{
3 objref = orb.resolve_initial_references("NaneService");
4 r oot Cont ext Ext = Nam ngCont ext Ext Hel per. narrow(obj ref);
5 t rpNarre[0] = new NanmeConponent (r ef Nane, "");
6 tnpChj 1 = root Cont ext Ext . resol ve(t npNane) ;

}

catch (CannotProceed ex) { ... }

[/l Catch all the different exceptions (not shown) ...

return tnmpQhj 1;
}

The preceding code can be explained as follows:

1. Theresol ve(bj ect () method takes a string name, r ef Nare, as an
argument and returns the corresponding object reference that it finds in
the naming service.

2. A name in the naming service is an IDL sequence of name components
(of org. ong. CosNami ng. NameConponent [] type in Java). For simplicity,
this example creates an array with just a single name component,

t npNarre.

3. Aninitial reference to the naming service is obtained from the ORB by
calling resol ve_ini tial _references() with the string argument,
NareSer vi ce. This is the standard way of connecting to the naming
service.

58

Resolving the AccountMgr Object Reference

The reference returned from resol ve_initial _references(), of
org. ony. CCRBA (bj ect type, is cast to the type,

or g. ony. CosNani ng. Nam ngCont ext Ext . The Nani ngCont ext Ext
object, r oot Cont ext Ext , provides access to the naming service
functionality.

The name component array, t npNanre, is initialized using the r ef Nare
string.

This line invokes r esol ve() on the root naming context, thereby
looking up the name, t npNane, in the naming service to get an object
reference, t mpQoj 1, in return.

59

CHAPTER 2 | Middle-Tier CORBA Server

Implementing the BusinessSession Interfaces

Overview

Inheritance hierarchy for the
implementation classes

The BusinessSessionDelegate
Class

60

The Busi nessSessi on interfaces are all implemented using the delegate (or
TIE) approach—see “Implementing Interfaces Using the Delegation

Approach” on page 18. The session interfaces are implemented as follows:

® BusinessSessi on—implemented by Busi nessSessi onDel egat e.

ATMBessi on—implemented by ATMBessi onDel egat e.
Tel | er Sessi on—implemented by Tel | er Sessi onDel egat e.

Figure 15 shows the inheritance hierarchy for the delegate objects that
implement the various session types.

Busi nessSessi onDel egat e

ATMSessi onDel egat e Tel | er Sessi onDel egat e

Figure 15: Java Inheritance Hierarchy for the Delegate Objects

Example 7 shows an outline of the Busi nessSessi onDel egat e class, which
implements the Busi nessSessi on IDL interface.

Example 7: Outline of the BusinessSessionDelegate Class

/1 Java
package fnbba;

cl ass Busi nessSessi onDel egat e
i mpl ements Busi nessSessi onQper ati ons
{

prot ect ed bankobj ects. Account Myr nyMyr = nul | ;
prot ect ed bankobj ects. Account nyAccount = nul|;

Implementing the BusinessSession Interfaces

Example 7: Outline of the BusinessSessionDelegate Class

publ i ¢ Busi nessSessi onDel egate ()
{

// Initialize the nyMyr nenber variable by resol ving
/] the '"Account Myr’ object in the nam ng service.

}

// 1DL Qperation |nplenentations
public short session_id ()

{
}

publ i ¢ bankobj ects. Account resol veAccount (int account Num)
t hrows NO_SUCH ACCOUNT

{
}

public float accBal ance ()

{
-

publ i c Accountlnfo_s getAccountinfo ()

{
-

public int [] getAccountList (String account Type)
{

}
}

The preceding code can be explained as follows:

1. The Busi nessSessi onDel egat e class implements the following Java
interface:
. f nbba. Busi nessSessi onQper at i ons—required. The
Busi nessSessi onQper at i ons Java interface declares methods for
all the attributes and operations in the Busi nessSessi on IDL
interface.

61

CHAPTER 2 | Middle-Tier CORBA Server

62

The constructor uses the naming service to get an object reference for
the back-end server's Account Myr object, which is then cached in the
nyMyr member variable.

From this line onward, each of the IDL operations are implemented.

In this chapter

CHAPTER 3

Java CORBA
Client

The Java CORBA client is implemented as a graphical user

interface (GUI). This chapter presents the design of the CORBA
client and describes how the client accesses the business logic
in the middle-tier using CORBA remote operation invocations.

This chapter discusses the following topics:

Design of the CORBA Client page 64

Using Forte for Java and NetBeans page 72

Resolving the BusinessSessionManager Object Reference page 77

Implementation of the Java CORBA Client page 81

Implementation of the Open Account Dialog page 83

63

CHAPTER 3 | Java CORBA Client

Design of the CORBA Client

Purpose of the client The CORBA client is implemented as a graphical user interface (GUI) that
provides the banking services you would normally expect from a human
bank teller. For example, the CORBA client might used by a bank teller
when dealing with customers at the counter.

The following banking services are supported by the CORBA client:

® (Creating a new account.

® Accessing an existing account to check the balance and view recent
transactions.

® Performing a variety of transactions: lodging funds, withdrawing
money, and transferring funds from one account to another.

Organization of screens The client GUI is organized as a set of screens that support different
functions:

® Main screen—this is the initial screen for the client application.
From the main screen, you can access a set of dialog windows:

® Open account dialog.

® New account dialog.

® |odge funds dialog.

® Withdraw funds dialog.

® Transfer funds dialog.

64

Design of the CORBA Client

Main screen The main screen displays the details for the currently open account (only
one account can be open at a time). The Account menu on the main screen
provides access to each of the dialog windows, as shown in Figure 16.

Eg_;’%FNB Teller Application ;lglil
File | Account | Help

Hamg Open Account

No O New Account Description Cradit Balance F N B
e Lodge Funds H

______ Withdraw Funds
Transfer Funds

Open Account " Exit |

Figure 16: The Main Screen of the Java CORBA Client

In this section This section describes each of the dialog windows:
The Open Account Dialog page 66
The New Account Dialog page 67
The Lodge Funds Dialog page 69
The Withdraw Funds Dialog page 70
The Transfer Funds Dialog page 71

65

CHAPTER 3 | Java CORBA Client

The Open Account Dialog

Dialog window The teller uses the open account dialog window, Figure 17, to set the
currently active account. The details of this account are then displayed in
the main screen.

Account Number
Choose A)C Hum

OK Cancel

Figure 17: The Open Account Dialog Window

Data required to initialize the The following data is required to initialize the open account dialog:
dialog ® Alist of account numbers for all the accounts stored in the back-end
server—the list is displayed when the user clicks on the Choose A/C

Num drop-down menu.

Data returned by the dialog The data returned by the open account dialog depends on the event that
closes the dialog window:

® (Click on OK—the selected account number is returned.
® (Click on Cancel—no data is returned.

Associated files The following files are associated with the open account dialog
implementation:

gui / openAccount . j ava
gui / openAccount . form

66

Design of the CORBA Client

The New Account Dialog

Dialog window The teller uses the new account dialog window, Figure 18, to create a new
account. The details of this account are then displayed in the main screen.

Mew Account Details : x|
~ Type of Account to Open
i Credit Card @ Current Account

~Customer Details —Current AJC Details
Lastnarne | || | Overdraft Limit
First

(stame | | credit Card Details
Address#1 | |
Address#2 | || credit Limit]
Address #3 | |

| oK | | Reset | | Cancel |

Figure 18: The New Account Dialog Window

Data required to initialize the No data is required to initialize the new account dialog.
dialog

67

CHAPTER 3 | Java CORBA Client

Data returned by the dialog

Associated files

68

The data returned by the new account dialog depends on the event that
closes the dialog window:

® Click on OK, with Current Account selected—the following data is
returned:

. The Lastname and Firstname of the new account owner.

. The account owner’s address, in the Address #1, Address #2,
and Address #3 fields.

. The amount of the Overdraft Limit on the current account.
® Click on OK, with Credit Card selected—the following data is returned:
. The Lastname and Firstname of the new account owner.

. The account owner’s address, in the Address #1, Address #2,
and Address #3 fields.

. The amount of the Credit Limit on the credit card.
® (Click on Cancel—no data is returned.

The following files are associated with the new account dialog
implementation:

gui / newAccount . j ava
gui / newAccount . form

Design of the CORBA Client

The Lodge Funds Dialog

Dialog window

Data required to initialize the
dialog

Data returned by the dialog

Associated files

The teller uses the lodge funds dialog window, Figure 19, to lodge an
amount of money into the currently active account.

Figure 19: The Lodge Funds Dialog Window

No data is required to initialize the lodge funds dialog.

The data returned by the lodge funds dialog depends on the event that
closes the dialog window:

® Click on OK—the lodgement amount is returned.
® (Click on Cancel—no data is returned.

The following files are associated with the lodge funds dialog
implementation:

gui /| odgeFunds. j ava
gui /| odgeFunds. f orm

69

CHAPTER 3 | Java CORBA Client

The Withdraw Funds Dialog

Dialog window The teller uses the withdraw funds dialog window, Figure 20, to withdraw
cash from the currently active account.

Figure 20: The Withdraw Funds Dialog Window

Data required to initialize the No data is required to initialize the withdraw funds dialog.
dialog
Data returned by the dialog The data returned by the withdraw funds dialog depends on the event that

closes the dialog window:
® (Click on OK—the withdrawal amount is returned.
® (Click on Cancel—no data is returned.

Associated files The following files are associated with the withdraw funds dialog
implementation:

gui / wi t hdr awFunds. j ava
gui / wi t hdr awFunds. f orm

70

Design of the CORBA Client

The Transfer Funds Dialog

Dialog window

Data required to initialize the
dialog

Data returned by the dialog

Associated files

The teller uses the transfer funds dialog window, Figure 21, to transfer
money from the currently active account to another account.

E‘-g’,j'Transfer Funds x|

Amount to Transfer

To Account Number

| Choose AC Num - |

| Transfer ” Cancel |

Figure 21: The Transfer Funds Dialog Window

The following data is required to initialize the transfer funds dialog:

® Alist of account numbers for all the accounts stored in the back-end
server—the list is displayed when the user clicks on the Choose A/C
Num drop-down menu.

The data returned by the transfer funds dialog depends on the event that

closes the dialog window:

® (Click on Transfer—the transfer amount and the selected account
number are returned.

® (Click on Cancel—no data is returned.

The following files are associated with the transfer funds dialog
implementation:

gui / transf er Funds. j ava
gui / transf er Funds. f orm

71

CHAPTER 3 | Java CORBA Client

Using Forte for Java and NetBeans

Overview The graphical elements of the Java CORBA client are implemented using
Sun’s Forte for Java.

NetBeans NetBeans is an open source integrated development environment (IDE) for
building client-side and server-side applications. Because the NetBeans IDE
is based on an extensible, modular framework, third parties can also provide
customized distributions of NetBeans based on the NetBeans Tools
Platform. Hence, the following varieties of NetBeans-based products are
available:
® NetBeans IDE—the original open source IDE, which can be
downloaded directly from the NetBeans web site,
http://www.netbeans.org.

® Third-party IDEs, based on the NetBeans Tools Platform—other
organizations and vendors can add their own modules to the NetBeans
core and then release enhanced versions of the IDE. Sun’s Forte for
Java is an example of such a third-party IDE.

Forte for Java Forte for Java is Sun's extensible, integrated development environment (IDE)
for Java Technology developers. It is based on the NetBeans Tools Platform
and is integrated with the Sun Open Net Environment (ONE).

72

http://www.netbeans.org

Opening a Java source file using

Forte for Java

Using Forte for Java and NetBeans

If you have Forte for Java installed, you can use it to view the CORBA client

source files. Start up the Forte for Java IDE, and then use the File| Open
menu option to open one of the Java source files.

For example, Figure 22 shows the screen layout of the Forte for Java IDE
after opening the transf er Funds. j ava file.

@IForte for Java, Community Edition v. 3.0 (Build 010817) [Project Default]

Edt View Project Buld Debug Versioning Tools Window Help

;@@@a\\iwbnmae

mes

Ppeib|recaam

% Selection Mode

& ® B=]=] [

Swing

=[=EEEEEEOE=ECEE |

GUI Edting

B Explorer [Filesystems]

D Fiesystems

@ @ Cnetbesnsprojectsisampledic

@ 3@ CWProjectsFNB_updatsigui
@ [T images

3% mainscreen
messages

) withdrawFunds
O @ CProjectsFME_updatelibankiAlDayBanking
O @ CProjectsiZEE

5 Form [transferFunds]

Amount to Transfer

To Account Number

-

| Component Inspector [EFans

Nonvisusl Componerts
GridBagl ayout
[Lakett [JLabel]
< jLakel2 [JLabel]
iTextField! [JTextFisl]

background

calumns 0
document Hane
ediable True

tfard

Dialog 12 Plain

Properties

¥4 Source Editor [transferFunds *1

14 =
2+ tramsferFunds. java

3 #

4+ Created on July 16, 2001, §:d1 BN
5

6

7 package gqui;

8

2 import javax.swing.*;

10 import java.suwt.®;

14 * @author askehill

15 # gversion

16

17 public class transferfunds extends javax.swing. dDia

18 public int exit_stamus:
public int accountlum;

Figure 22: Editing the Transfer Funds Dialog within the Forte for Java IDE

73

CHAPTER 3 | Java CORBA Client

Forte for Java screen layout

74

As soon as you open the source file for a GUI form, the Forte for Java editor
automatically switches to the GUI Editing view, as in Figure 22. In this
view, the following windows are visible:

The main Forte for Java window (top).

The Explorer window (midway up the left-hand side)—provides a view
of the file system.

The Form window (bottom left)—shows the layout of the form that is
currently being edited.

The Source Editor window (midway up the right-hand side)—shows
the Java source code for the form.

The Component Inspector window (center)—shows the properties of
the component currently selected in the Form window. The selected
component is highlighted by a blue-colored border.

Using Forte for Java and NetBeans

Forte for Java generated code Figure 23 shows part of the code listing from the t r ansf er Funds. j ava file,
as viewed in the Forte for Java Source Editor window.

Ef Source Editor [transferFunds *] =10 =l
48 =
48 jComboEox]l.addItem (Integer.toString (accLi=zt|
50 VoSS end of for ()

51 H

La B3
53

5 F#% This method 1s called from within the constd
55 # initialize the form.

1 # WARNING: Do NOT modify this code. The contend
57 # glways regenerdted by the FormEditor.

5B £

a0 jLabell =
Gl jLabelz =
B2 jTextFieldl =
&3 jComboEoxl
God jPanell = new
65 jPanelZ = new
=1} jParel3 = new
&7 jPaneld = new

58 private void initComponents() !

new Jjawvax.swing.dLabel() ;

new javax.swing.dLabel () ;

new javax.swing.JTextField():
= new javax.swing.JComboBoxi() ;

Jawax
Jawax
Jawvax
Jawvax

swing.dPanel () ;
Swing.JPanel () ;
Lewing.JPanel () ;
swing.JPanel () ;

Kl

[l

| ¥

1:1 IIHSI

Figure 23: Viewing the transferFunds.java file in the Source Editor

The source editor window makes it easy to distinguish between the
generated code, on a shaded background, and the hand-written code, on a

white background.

In particular, the i ni t Conponent s() method, shown in Figure 23, is
responsible for initializing the layout of the window and is wholly generated

by the IDE.

75

CHAPTER 3 | Java CORBA Client

References For more details about the NetBeans IDE, see the following page:
http://www.netbeans.org/intro.html
For more details about the Forte for Java IDE, see the following page:

http://www.sun.com/forte/ffj/

76

http://www.netbeans.org/intro.html
http://www.sun.com/forte/ffj/

Resolving the BusinessSessionManager Object Reference

Resolving the BusinessSessionManager
Object Reference

Overview The Java CORBA client gains access to the middle-tier server by retrieving a
Busi nessSessi onManager object reference from the naming service. The
client can then open a business session by calling the openSessi on()
operation on the Busi nessSessi onManager object.

The middle-tier server provides all of the services needed by the client; the
client does not contact the back-end directly.

CORBA Naming Service Figure 24 shows how the CORBA client resolves the
Busi nessSessi onManager object reference from the naming service.

CORBA Naming Service

@ Resolve @ Publish
BusinessSessionManager BusinessSessionManager
object reference / \ object reference

V !
Java . .
Swn 7)) () Mt
Client @ openSessi on()

BusinessSessionManager
object reference

Figure 24: Establishing a Connection to the Middle-Tier Server

77

CHAPTER 3 | Java CORBA Client

The connection between the Java CORBA client and the middle-tier is
established as follows:

Stage Description

1 | The middle-tier server publishes the Busi nessSessi onManager
object reference under the name,
FNBBA Busi nessSessi onManager .

2 | The Java CORBA client looks up the name,

FNBBA Busi nessSessi onManager , in the naming service and
receives the Busi nessSessi onManager object reference in
return.

3 | The client can now invoke the openSessi on() operation on the
Busi nessSessi onManager object reference to open a new
business session.

Example The Java CORBA client defines a r esol veSer ver () method (in the
gui . mai nScreen class) which resolves the middle-tier
Busi nessSessi onManager object reference. Example 8 shows the code for
the resol veServer () method.

Example 8: The resolveServer() Method
/1l Java

// In the 'mai nScreen’ d ass

/1l
public static void resol veServer (String[] args)
{
org. ong. CORBA. (hj ect objref = null;
try {
global _orb = CRB.init(args, null)
1 objref = global _orb.resolve_initial_references (
"NaneSer vi ce"
)
2 r oot Cont ext Ext = Nam ngCont ext Ext Hel per . narr ow (obj ref)
}
catch (...) { ... }

// Handle all exceptions (not shown)..

78

Resolving the BusinessSessionManager Object Reference

Example 8: The resolveServer() Method

org. ong. CORBA. (hject tnpChj 1 = nul | ;
NaneConponent [] tnpName = new NameConponent [1] ;
try {
t rpNarre[0] = new NameConponent (
" FNBBA Busi nessSessi onManager ",
DB
tmpChj 1 = root Cont ext Ext . resol ve(t npNare) ;
sessi onMyr = f nbba. Busi nessSessi onManager Hel per . narrow (
t mpQhj 1
)i
}
catch (...) { ... }
// Handl e all exceptions (not shown)...

return;

}

The preceding code can be explained as follows:

1.

An initial reference to the naming service is obtained from the ORB by
calling resol ve_ini ti al _references() with the string argument,
NareSer vi ce. This is the standard way of connecting to the naming
service.

The reference returned from resol ve_ini tial _references(), of
or g. ony. CCRBA. (bj ect type, is cast to the type,

or g. ong. CosNami ng. Nam ngCont ext Ext . The Nami ngCont ext Ext
object, r oot Cont ext Ext , provides access to the naming service
functionality.

Create a name, t npNane, with just a single name component (of

or g. ony. CosNani ng. NaneConponent [1] type).

The name component array, t npNane, is initialized with the string,
FNBBA Busi nessSessi onManager .

This line invokes resol ve() on the root naming context, thereby
looking up the name, t npNane, in the naming service to get an object
reference, t npQoj 1, in return.

79

CHAPTER 3 | Java CORBA Client

80

The reference returned from resol ve() is cast to the type,

f nbba. Busi nessSessi onManager , using a narrow() method. The
narrow() method defined on Busi nessSessi onManager Hel per provides
a type-safe way of down-casting the returned object reference to the
Busi nessSessi onManager type.

Implementation of the Java CORBA Client

Implementation of the Java CORBA Client

Overview The client is implemented using six classes: one for the main screen,
gui . mai nScr een, and one for each of the five dialog windows. Since most of
the CORBA code is contained in mai nScreen. j ava, this section focuses on
the implementation of the mai nScr een class.

Organization of the client code Figure 25 illustrates the relationship between the main screen and a dialog
window. Each of the dialog windows is treated as a black box that returns
information from a user.

Dialog
Main Screen @ dig.show() Window
I

@ Dialog Window closes

Figure 25: Relationship Between the Main Screen and a Dialog Window

The general pattern of interaction between the mai nScreen class and a
dialog window is as follows:

Stage Description

1 | The mai nScreen class creates a dialog object, dl g, and passes
initial data to the dialog.

2 | The mai nScreen class passes control to the dialog object by
calling di g. show() .

3 | When the dialog window closes, the mai nScr een class extracts
the information from the dialog that was set by the user.

81

CHAPTER 3 | Java CORBA Client

Implementation of the Because the mai nScr een class is created using the Forte for Java IDE, there

mainScreen class are chunks of generated code in the listing that are not meant to be edited
by the developer. In particular, you can ignore the i ni t Conponent s()
method.

The following methods of the nai nScreen class are of interest here:

® min()—the entry point for the client application.

® resol veServer () —bootstraps a connection to the middle-tier server by
retrieving a Busi nessSessi onManager object reference from the naming
service (see “Resolving the BusinessSessionManager Object Reference”
on page 77). Called from mai n() .

® openAccount Act i onPer f or med() —launches the Open Account dialog
window and opens an account.

® newAccount Act i onPer f or med() —launches the New Account dialog
window and creates a new account.

® | odgeFundsAct i onPer f or ned() —launches the Lodge Funds dialog
window and lodges an amount into the currently active account.

® withdrawFundsAct i onPer f or med() —launches the Withdraw Funds
dialog window and withdraws an amount from the currently active
account.

® transferFundsActi onPer f or med() —launches the Transfer Funds
dialog window and transfers an amount from the currently active
account to a specified account.

82

Implementation of the Open Account Dialog

Implementation of the Open Account Dialog

Overview

Code for
openAccountActionPerformed()

To illustrate how the dialog screens work, this section describes how the
mai nScr een class interacts with the Open Account dialog. The mai nScreen
class uses the data from the dialog to open a session with an account object
in the back-end.
From the main screen there are two ways of initiating the open account
dialog:
® Select Account|Open Account—this calls the

openAccount Act i onPer f or med() method.
® Click the Open Account button—this calls the

openAccount But t onAct i onPer f or ned() method.
This section describes the openAccount Act i onPer f or ned() method. The

openAccount But t onAct i onPer f or med() method has an essentially identical
implementation.

Example 9 shows the Java code for the openAccount Act i onPer f or ned()
method.

Example 9: The openAccountActionPerformed() Method (Sheet 1 of 3)
/1l Java

1 private void
openAccount Act i onPer f or ned(j ava. awt . event . Acti onEvent evt)
{/ | GEN FI RST: event _openAccount Act i onPer f or ned
2 generi cQpenAccount (evt);

| odgeFunds. set Enabl ed(true) ;
wi t hdr awFunds. set Enabl ed (true);
t ransf er Funds. set Enabl ed(true);
}/ | GEN LAST: event _openAccount Act i onPer f or ned

3 private voi d generi cQpenAccount (
java. awt . event . Acti onEvent evt

)
{

83

CHAPTER 3 | Java CORBA Client

Example 9: The openAccountActionPerformed() Method (Sheet 2 of 3)

/] Get a session back fromthe FNB Core
4 f nbba. Sessi onl nfo_s sessionlnfo = new f nbba. Sessi onlnfo_s ();

/1 Hardcoded values for now. ..

sessi onl nfo. usernane = new String ("Adrian");
sessi onl nfo. password = new String ("pass001");
sessi onl nfo. session_type = new String ("Teller");
sessioninfo.client_id = new String ("Teller-012");

f nbba. Sessi onl nf o_sHol der sesHol d
= new f nbba. Sessi onl nf o_sHol der (sessi onl nf o) ;
f nbba. Busi nessSessi on sess = nul |l ;
try {
5 sess = sessi onMyr. openSession (sesHold);
}
catch (...) { ... }
/!l Handl e all exceptions (not shown)...

f nbba. Tel | er Sessi on t Sessi on
= fnbba. Tel | er Sessi onHel per. narrow (sess);

6 int currentAccList [] = tSession.getAccountList ("Qurrent");
int creditcardList [] = tSession.getAccountList (
"Cedit Card"
)i

int accList[] = new int[currentAccList.length +
creditcardList.|ength];
Syst em ar raycopy/(
current AccList, 0, accList, 0, currentAccList.length
)i
System arraycopy(creditcardLi st, 0, acclist,
current AccLi st. |l ength, creditcardList.|ength);

7 openAccount dl g = new openAccount (this, true);

dl g. set AccLi st (accList);

dl g. show();

Il Check to see if the user didn't cancel the operation
8 if (dg.exit_status ==1)

{

return;
}

pr esent Account Nunber = dl g. account Num
try {

84

10

11

Implementation of the Open Account Dialog

Example 9: The openAccountActionPerformed() Method (Sheet 3 of 3)

}

t Sessi on. openAccount (dl g. account Nunj ;
}
catch (...) { ... }
// Handl e all exceptions (not shown)...

f nbba. AccountInfo_s acclnfo = null;
try {
accl nfo = t Sessi on. get Accountinfo ();
}
catch (...) { ... }
// Handl e all exceptions (not shown)...

/]l K let's get the information back fromthe dial og box
nanmeText . set Text (accl nfo.lnane + ", " + accl nfo. f nane) ;
accTypeText . set Text (accl nf 0. accType) ;

addr Text 1. set Text (accl nf 0. addr 1) ;
addr Text 2. set Text (accl nf 0. addr 2) ;
addr Text 3. set Text (accl nfo. addr 3);
account NunText . set Text (

String. val ued (pr esent Account Nunber)
JE

accBal ance = t Sessi on. accBal ance ();
refreshTransLi st (acclnfo. transactions);

The preceding code can be explained as follows:

1.

The openAccount Act i onPer f or med() method is called when the user
selects the Account|Open Account menu option from the main screen.
Most of the work of the openAccount Act i onPer f or med() method is
delegated to the generi cQpenAccount () method.

The generi cQpenAccount () method is called by both the

openAccount Act i onPer f or med() and the

openAccount But t onAct i onPer f or med() methods.

This line and the following lines initialize an f nbba. Sessi onl nfo_s
object with default session login details. For the IDL definition of the
Sessi onl nf o_s struct, see “IDL for the Middle-Tier Server” on page 51.

85

CHAPTER 3 | Java CORBA Client

86

10.

11.

The openSessi on() operation is invoked on the remote

Busi nessSessi onManager object, with the Sessi onl nf o_s struct being
passed as an i nout argument.

The get Account s() operation is invoked on the session object
reference, t sessi on, to get a list of all Qurrent accounts and O edi t
Card accounts.

The Open Account dialog window is created, dl g, and the combined
list of accounts is passed to the dialog as initial data.

The call to dl g. show() passes control to the dialog window.

The dialog exit _st at us is checked to see if the user clicked Cancel.
Otherwise the user must have clicked OK, in which case the account is
opened with the user-selected account number, dl g. account Num

The details for the currently active account, accl nf o, are retrieved from
the business session, t sessi on.

The account information extracted from accl nf o is displayed in the
main screen.

Part ||

J2EE Internet Banking

In this part This part contains the following chapters:
J2EE AllDayBanking Application page 89
Accessing the CORBA Back-End page 109
EJB Middle-Tier page 123
J2EE Presentation Layer page 149

In this chapter

CHAPTER 4

J2EE

A
A

|
D

DayBanking
nlication

This chapter gives an overview of the J2EE AllDayBanking
application and of the tools and utilities that are provided for
building, packaging, and deploying J2EE applications.

This chapter discusses the following topics:

Architecture of the J2EE Application page 90
Overview of the J2EE Development Cycle page 92
Source Code Organization (EARSCO) page 94
Building and Packaging the J2EE Application page 98

89

CHAPTER 4 | J2EE AliDayBanking Application

Architecture of the J2EE Application

Overview Figure 26 shows the architecture of the J2EE AliDayBanking application.
Both the presentation layer and the middle tier of the application are
implemented using J2EE technology, while the back-end is implemented
using CORBA technology.

e Presentation Layer --------- N EJB Middle-Tier -------- .- CORBA Back-End -
E Web P | i [CORBANaming | !
' | Browser o RN Service |
| »| Web Module ', EJB Module MICA| | ! |
i Do ! i Back-End Server | |

CORBA back-end

JCA layer

90

Figure 26: Architecture of the J2EE AllDayBanking Application

The CORBA back-end server provides access to the persistent account data
stored in the back-end database—see “Back-End CORBA Server” on page 3
for details. A link to the back-end server can be established by retrieving an
Account Myr object reference from the CORBA Naming Service.

Communication with the CORBA back-end uses the OMG'’s Internet
inter-ORB protocol (I10P).

The Java Connector Architecture (JCA) layer is used to bootstrap
connections between the EJB middle tier and the CORBA backend.The JCA
is a Java standard that describes how to integrate J2EE applications with
external third-party resources.

EJB middle-tier

Presentation layer

Web client

Architecture of the J2EE Application

The middle tier is based on the J2EE Enterprise Java Beans (EJB)
technology. This layer implements the application business logic using a
collection of enterprise beans. See “EJB Middle-Tier” on page 123 for
details of the bean implementations.

The J2EE presentation layer is designed to be integrated with a Web server.

It consists of two parts:

® HTML pages and Java Server Pages (JSP)—the content that is served
up to Web clients by the Orbix Application Server (the application
server is also a Web server).

® Worker beans—are helper classes that cooperate with JSP pages to
simplify the presentation logic.

The Web client is an ordinary Web browser, such as Internet Explorer or
Netscape.

After the J2EE application has been deployed on the Orbix Application
Server, a Web client can access the J2EE AllDayBanking application by
going to the following URL:

http://AppServerHost:8080/AllDayBanking

Assuming you are running the application on the JBoss platform, where
AppServerHost is the host on which the J2EE application server is running.

Note: You could also run the application on another implementation of
the J2EE platform—for example, WebSphere or WebLogic.

91

CHAPTER 4 | J2EE AliDayBanking Application

Overview of the J2EE Development Cycle

Development cycle

Source code organization

Building and packaging

92

Figure 27 shows an overview of the J2EE development cycle. Orbix provides
a comprehensive set of utilities for simplifying each stage of the cycle.

Source Code in
EARSCO

Build and package

.

EAR File

Figure 27: The J2EE Development Cycle

Historically, the Orbix E2A ASP 6.0 product (and earlier versions) used a
specific directory structure, EARSCO, to store the source files from a J2EE
application. Orbix no longer provides special tools to manage this directory
structure, but this directory structure is still used for the FNB AllDayBanking
demonstration.

The source code organization is described in “Source Code Organization
(EARSCO)” on page 94.

The rules for building and packaging the AllDayBanking J2EE application
are encapsulated in the i bank/ bui | d. xm ant build file. The output from the
build step is an Enterprise Application Archive (EAR) file—for example,

Al | DayBanki ng. ear —which contains a deployable J2EE application.

The building and packaging of the AllDayBanking application is described in
“Building and Packaging the J2EE Application” on page 98.

Configuring the container

Overview of the J2EE Development Cycle

The details of container configuration are proprietary. Hence, different J2EE
application servers would have different configuration requirements for their
EJB containers and Web containers.

For example, the JBoss J2EE application server configures an EJB container
using a j boss. xni file (located in

i bank/ Al | DayBanki ng/ src/ WbSt uf f. j ar/ et ¢), which has a proprietary
format. It is only at this point that the proprietary details of the application
server come into play. Abstract security and persistence properties are
mapped onto specific security mechanisms and database details.

For more details about the j boss. xni file, see “jboss.xml file” on page 133.

93

CHAPTER 4 | J2EE AllDayBanking Application

Source Code Organization (EARSCO)

EAR files

Source code organization

EARSCO

94

An Enterprise Application Archive (EAR) file is a compressed archive (in
standard zip file format) containing all of the EJB, Web, and client
components that constitute a single J2EE application. The purpose of the
EAR file format is to simplify deployment of J2EE applications by bundling
all of the required files into a single archive.

The contents of an EAR file have a standard directory layout, the details of
which are described in “Directory Structure in an EAR File” on page 100.

Although the J2EE standard defines a standard layout for storing all of your
compiled code and configuration files within an EAR file, there is no
equivalent layout defined by J2EE for organizing your source code files.

Historically, the Enterprise Application Archive Source Code Organization
(EARSCO) was used to organize J2EE source code for the Orbix E2A ASP
product. IONA's J2EE application server is no longer part of the Orbix
product, but the same EARSCO directory structure is still used to hold the
source code for the AllDayBanking demonstration.

The i bank/ bui | d. xmi ant build file is designed to be compatible with the
EARSCO directory structure, enabling you to build and package the
AllDayBanking demonstration in a single step—see “Building and Packaging
the J2EE Application” on page 98.

EARSCO overview

application.xml file

Source Code Organization (EARSCO)

Figure 28 gives a general overview of the EARSCO.

ProjectName
src/—y—etc/— application. xm
tnmp/ — EJBModule. j ar/
MANI FEST. MF
— etc/ ej b-jar.xm
j boss. xm

Figure 28: The Enterprise Application Archive Source Code Organization

— src/ PackagePath/ — *. j ava

— WebModule. war /

— etc/ web. xm
—1ib/ (extra JAR files)
— src/ PackagePath/ — *. j ava
— web/ —— (public Web files)
* htm
*.jsp

images/*.gif, *.jpg

— ExtraJAR. j ar

The appl i cation. xm file is a standard J2EE configuration file that specifies
which modules are in the J2EE application—see also “Directory Structure in

an EAR File” on page 100.

95

CHAPTER 4 | J2EE AllDayBanking Application

EJB modules

Web modules

96

An EJB module is a collection of enterprise Java beans that cooperate to

provide a certain unit of functionality.

For every EJB module, EJBModule, a ProjectNamel src/ EJBModule. j ar

directory contains the following standard elements:

® EJBModule.jar/etclejb-jar.xm —the ej b-jar. xn file is a standard
J2EE file that specifies the basic configuration for the enterprise beans
in the EJB module.

® [EJBModule.j ar/ et c/ MAN FEST. MV—the MANI FEST. MF is an optional
file that can be used to specify additional meta-information for the EJB
module—see “MANIFEST.MF file” on page 104. For example, you can
use the MAN FEST. M file to specify a class path for the EJB module—
see “Accessing the Stub JARs from EJB” on page 121.

® EJBModule.jar/src/—the src/ subdirectory is the root of all the Java
source code for the enterprise beans in the EJB module.

And, if you are deploying the application to JBoss, one additional

non-standard element:

® EJBModule.jar/etcljboss. xm —the j boss. xm file is a non-standard
file that JBoss uses to map abstract EJB references to concrete
resources in the EJB container.

A Web module contains all of the files that are needed for the presentation
layer of a J2EE application. This typically includes HTML files, Java server
pages, and ordinary Java beans.

For every Web module, WebModule, a ProjectNamel src/ WebModule. j ar

directory contains the following standard elements:

® WebModule.jar/ et c/web. xmi —the web. xn file is a standard J2EE
file that specifies the basic configuration of the Web module.

® WebModule.jar/ et c/ MANI FEST. M—the MANI FEST. MF is an optional
file that can be used to specify additional meta-information for the Web
module. See “MANIFEST.MF file” on page 104.

® WebModule.jar/lib/—thelib/ subdirectory can hold JAR files used
by the Web module. The JAR files in this directory are automatically
made accessible to the Web module without needing to be added to
the class path.

Extra JAR files

tmp directory

Source Code Organization (EARSCO)

® WebModule.jar/src/—the src/ subdirectory is the root of all the
Java source code in the Web module.

® WebModule.j ar/ web/ —the web/ subdirectory contains all of the Web
module’s public files (that is, files that can be downloaded through a
Web server). This directory typically contains HTML files, JSP files,
and graphics files (*. gi f, *.j pg and so on).

You can place extra JAR files directly into the ProjectNamel src directory.
To make the extra JAR files accessible to an EJB module, use the Java
extension mechanism—see “Accessing the Stub JARs from EJB” on

page 121.

The ProjectNamel t np directory is used to hold intermediate files created in
the course of building and packaging the J2EE application.

97

CHAPTER 4 | J2EE AllDayBanking Application

Building and Packaging the J2EE Application

The ant build file

What happens when you build the
application?

Files generated

The Enterprise Application
Archive file format

98

Complete rules for building and packaging the AllDayBanking demonstration
are encapsulated in the relevant ant build file, i bank/ bui | d. xm . Hence,
you can build and package the J2EE demonstration by entering the
following at a command prompt:

cd FNBHomel i bank/

itant build

Theitant utility is a wrapper for the standard ant build utility from apache.
By default, the i t ant utility reads the build rules from a file called

bui I d. xm in the current directory. For more details, see:

http://jakarta.apache.org/ant/

When you invoke i tant buil d in the i bank directory, the ant utility builds
and packages the J2EE application, performing the following tasks:

1. Compiles the J2EE application code.

2. Places all of the intermediate build files into the
i bank/ Al | DayBanki ng/ t np directory.

3. Packages the compiled J2EE application into an EAR file,
i bank/ Al | DayBanki ng/ Al | DayBanki ng. ear .

Theitant build (orant build) command generates the following files
under the i bank/ Al | DayBanki ng directory:

® Files under the t np/ directory—intermediate build files.
® ProjectName. ear—the complete J2EE application packaged as an
Enterprise Application Archive.

The EAR file is basically a zip file, except that the file suffix is . ear. It's
contents can be viewed using the Java j ar utility or any other standard zip
file utility. The directories and files in the EAR file conform to a standard
layout, which is described in this section.

http://jakarta.apache.org/ant/

In this section

Building and Packaging the J2EE Application

This section contains the following subsections:

Directory Structure in an EAR File page 100
Directory Structure in an EJB Module JAR File page 102
Directory Structure in a Web Module WAR File page 105

99

CHAPTER 4 | J2EE AllDayBanking Application

Directory Structure in an EAR File

Overview Figure 29 shows the standard directory structure and layout of an EAR file.

1

| MANI FEST. MF

| VETA- | NF/{

1 appl i cation. xm
|

1

1

1

|

1

|

ProjectName. ear ----- 7 EJBModule. j ar i
WebModule. war i

ExtraJAR. j ar i

Figure 29: Standard Layout of an EAR File

META-INF/ directory The META-I NF/ directory can contain the following files:
® META-I NF/ appl i cati on. xm —a standard J2EE configuration file that
specifies which modules are in the J2EE application.

® META-| NF/ MAN FEST. M—an optional file that can be used to specify
additional meta-information for the EAR. See “MANIFEST.MF file” on
page 104.

100

Building and Packaging the J2EE Application

application.xml file The appl i cation. xn file is a standard XML file that specifies the modules
to include in a J2EE application. For example, the AllDayBanking
demonstration defines the following appl i cati on. xni file:

<! DOCTYPE appl i cation PUBLIC '-//Sun M crosystens, Inc.//DID
J2EE Application 1.2//EN
"http://java. sun. conlj 2ee/ dtds/ appl i cation_1_2.dtd"' >

<appl i cati on>
<di spl ay- name>Al | DayBanki ng</ di spl ay- name>
<nodul e>
<ej b>WebSt uf f. j ar </ ej b>
</ modul e>
<nodul e>
<web>
<web- uri >\¥bSt uf f . war </ web- uri >
<cont ext - r oot >Al | DayBanki ng</ cont ext - r oot >
</ web>
</ modul e>
</ appl i cati on>

EJB module JAR files Each EJB module is packaged in a JAR file—see “Directory Structure in an
EJB Module JAR File” on page 102.

Web module JAR files Each Web module is packaged in a JAR file—see “Directory Structure in a
Web Module WAR File” on page 105.

Extra JAR files Extra JAR files are JAR files that are referenced by the J2EE application but
are not modules in their own right. Some extra configuration is required to
make them accessible to an EJB module—see “Accessing the Stub JARs
from EJB” on page 121 for details.

101

CHAPTER 4 | J2EE AllDayBanking Application

Directory Structure in an EJB Module JAR File

Overview Figure 30 shows the standard directory structure and layout of an EJB
module JAR file including an additional, proprietary, j boss. xni file.

MANI FEST. MF

EJBModule. j ar ----- o META-| NF/ ej b-jar.xm

j boss. xnl

PackagePath/ — *. cl ass

Figure 30: Layout of an EJB Module JAR File

META-INF/ directory The META-I NF/ directory can contain the following standard files:
® META-INF/ €] b-j ar. xni —the EJB deployment descriptor for this EJB
module.

® META-| NF/ MAN FEST. M—an optional file that can be used to specify
additional meta-information for the JAR. See “MANIFEST.MF file” on
page 104. For example, MANI FEST. MF can be used to extend the
CLASSPATH used by the EJB module—see “Accessing the Stub JARs
from EJB” on page 121.

And the following non-standard file for JBoss deployments:

® META- I NF/j boss. xmi —a file that maps abstract EJB references to
concrete container resources.

102

Building and Packaging the J2EE Application

ejb-jar.xml file The purpose of the EJB deployment descriptor, e]j b-j ar. xni , is to describe
the enterprise beans in the EJB module to the application container.
Example 10 shows the partial contents of the ej b-j ar. xm file from the
WebStuff EJB module in the AllDayBanking application.

Example 10: Part of the ejb-jar.xml File from the EJB Module in the
AllDayBanking Application

<! DOCTYPE ej b-jar PUBLIC '-//Sun M crosystens, |nc.//DID
Enterpri se JavaBeans 1.1//EN
"http://java.sun.conj2ee/dtds/ejb-jar_1 1.dtd >

<ej b-jar>

<di spl ay- nane>EJB Mbdul es</ di spl ay- nane>
<ent er pri se- beans>
<sessi on>
<di spl ay- name>l net Account </ di spl ay- nane>
<ej b- nane>l net Account </ ej b- name>

</ sessi on>

<entity>
<di spl ay- nane>User </ di spl ay- nane>
<ej b- nane>User </ ej b- name>

</entity>
</ ent er pri se- beans>

<assenbl y- descri pt or >

</ assenbl y- descri pt or >
</ ej b-jar>

In Example 10, two types of element are nested directly within the

<ej b-j ar > element, as follows:

<ent er pri se- beans>
This element contains a basic description of every session and entity
bean in the EJB module, using nested <sessi on> and <enti ty>
elements.

<assenbl y- descri pt or>
This optional element describes how the beans are used in conjunction
with standard J2EE services. For example, the assembly descriptor can

103

CHAPTER 4 | J2EE AllDayBanking Application

MANIFEST.MF file

jboss.xml file

Class files

104

be used to assign security roles to beans, and to describe transactional
behavior.

A MAN FEST. MFfile is a standard component of a JAR file. Historically, it was
introduced to support packaging options for Java applets (such as, for
example, the addition of a digital signature). Manifest files are now used for
J2EE archives as well, where they can store various kinds of
meta-information about an archive.

For a tutorial introduction to manifest files, see the following URL:
http://java.sun.com/docs/books/tutorial/jar/basics/manifest.html
For a detailed specification of the manifest file format, see:
http://java.sun.com/j2se/1.4/docs/guide/jar/jar.html

Note: When editing a MANI FEST. MF file, be sure to include a carriage
return at the end of the file.

The j boss. xm file is a proprietary file that needs to be included in the
EJBModule. j ar file, only if you deploy the EJB module to a JBoss J2EE
application server.

For more details, see “jboss.xml file” on page 133.

The EJB module JAR file also contains the module’s class files. The class
files are arranged within the standard directory structure produced by the
Java compiler, j avac.

http://java.sun.com/docs/books/tutorial/jar/basics/manifest.html
http://java.sun.com/j2se/1.4/docs/guide/jar/jar.html

Building and Packaging the J2EE Application

Directory Structure in a Web Module WAR File

Overview Figure 31 shows the standard directory structure and layout of a Web
module WAR file.

imges/*.gif, *.jpg

] [}
| META- | NF/—— MANI FEST. MF i
1
1 1
1 1
i\ VEB- | NF/ i b/ E
WebModule. war ------ E !
! cl asses/ i
1
! !
, web. xm |
1
! (public Web files) !
L htnd :
. *.isp |
1 1
1 1
1 1

Figure 31: Standard Layout of a Web Module WAR File

META-INF/ directory The META-I NF/ directory can contain the following file:

® META-| NF/ MAN FEST. M—an optional file that can be used to specify
additional meta-information for the WAR. See “MANIFEST.MF file” on
page 104.

WEB-INF/ directory The WEB- | NF/ directory contains a Web archive's private files and
directories. That is, when the Web archive is deployed, the files and
directories under the WEB- I NF/ directory cannot be accessed directly by Web
clients.

The WEB- I NF/ directory can contain the following files and directories:
® WEB-| NF/ web. xn

® WEB-INHIib/

® \WEB- I NF/ cl asses/

105

CHAPTER 4 | J2EE AllDayBanking Application

WEB-INF/web.xml file

WEB-INF/lib/ directory

WEB-INF/classes/ directory

106

The WEB- | NF/ web. xmi file is a Web deployment descriptor, a standard J2EE
file that specifies the basic configuration of the Web module.

Example 11 shows an extract from the AllDayBanking Web deployment
descriptor, web. xmi . In this example, the Web deployment descriptor is used
primarily to specify references to enterprise beans.

Example 11: Extract from the AllDayBanking Web Deployment Descriptor

<! DOCTYPE web-app PUBLIC '-//Sun M crosystens, Inc.//DID Wb
Application 2.2//EN
"http://java. sun. com j 2ee/ dt ds/ web-app_2. 2. dtd' >

<web- app>
<di spl ay- name>\Wb Mbdul es</ di spl ay- nane>
<sessi on-confi g>
<sessi on-ti meout >5</ sessi on-ti neout >
</ sessi on- confi g>
<wel come-file-list>
<wel come-fil e>/i ndex. ht m </ wel corre-fil e>
</ wel cone-file-list>

<ej b-ref>
<ej b-r ef - name>al | daybanki ng/ | net Account </ ej b- r ef - nane>
<ej b-ref -t ype>Sessi on</ g b-ref -t ype>
<hone>al | daybanki ng. sessi on. | net Account Horre</ home>
<r enot e>al | daybanki ng. sessi on. | net Account </ r enot e>
<ej b-1i nk>l net Account </ g b-1i nk>
</ ej b-ref>

</ web- app>

The WEB- I NF/ 1 i b/ subdirectory can store JAR files used by the Web
module. The JAR files in this directory are automatically accessible to the
Web module without needing to be added to the class path.

The WEB- | NF/ ¢l asses/ subdirectory contains the compiled Java code for the
Web module.

Public files and directories

References

Building and Packaging the J2EE Application

All of the files and directories not stored under the special VEB- | NF directory
are public. After the Web archive is deployed, public files and directories
can be accessed directly by Web clients.

Public files typically include the following:

® HTML files.

® JSP files.

® Image files and other multimedia files—it is a common convention to

store image files in an i mages subdirectory.

For an example of how a Web archive is used in practice, see “J2EE
Presentation Layer” on page 149.

107

CHAPTER 4 | J2EE AliDayBanking Application

108

In this chapter

CHAPTER 5

Accessing the
CORBA Back-End

The AllDayBanking EJB middle-tier functions both as a CORBA
client and as an EJB server. This chapter discusses how to
configure and package the EJB application so that it can gain
access to the CORBA back-end.

This chapter discusses the following topics:

Overview of the EJB to CORBA Link page 110
Using Orbix Connect and JBoss page 112
Creating the IDL Stub JAR File page 119
Accessing the Stub JARs from EJB page 121

109

CHAPTER 5 | Accessing the CORBA Back-End

Overview of the EJB to CORBA Link

Overview

CORBA back-end

JCA layer

110

Figure 32 shows an overview of the link between the EJB middle-tier and
the CORBA back-end server. In this architecture, the I net Account session
bean acts as a CORBA client of the back-end server. The EJB middle-tier,
therefore, uses a mixture of J2EE and CORBA technologies.

---- CORBA Back-End ----

i net Account bean

EJB Module JCA CORBA Naming Service

Back-End Server

Back-End JCA

Stubs Stubs

;
1
1
1
!
1
Layer |
— /
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

Figure 32: The EJB Middle-Tier Accesses the CORBA Back-End

The back-end registers a bankobj ect s: : Account Myr object with the CORBA
naming service. This makes the Account Myr object accessible to
applications that can use the [IOP protocol.

The Java Connectivity Architecture (JCA) layer acts as a bridge between the
EJB middle tier and the CORBA back-end. The main purpose of the JCA
layer is to bootstrap connections between J2EE and CORBA. JCA provides a
simplified programming interface, which J2EE applications use for looking
up CORBA objects in the CORBA naming service.

EJB module

JCA stub code

Back-end stub code

Overview of the EJB to CORBA Link

The EJB module uses the JCA programming interface to gain access to
CORBA objects in the CORBA back-end. With the help of the JCA layer, an
EJB bean can obtain a CORBA object reference using just a few lines of
code.

To gain access to the CORBA back-end, the EJB module needs some
additional JAR libraries, as follows:

® JCA stub code.

® Back-end stub code.

The JCA stub code provides access to the JCA programming interface. The
EJB middle tier uses the JCA API to lookup CORBA object references.

Note: The JCA stub JAR is not part of the Orbix product. You can get the
JCA stub from a JCA implementation—for example, Orbix Connect.

The IDL stub code enables the EJB middle-tier to invoke operations on the
CORBA objects in the back-end server. The application IDL stub code (that
is, the stub code derived from the Account.idl and

Busi nessSessi onManager . i dI files) must be explicitly included in the EJB

module.

111

CHAPTER 5 | Accessing the CORBA Back-End

Using Orbix Connect and JBoss

Overview

Orbix Connect

JBoss

112

The AllDayBanking demonstration uses the Orbix product only for the
back-end. The middle-tier and the presentation layer require third-party
J2EE application server software in order to run. Hence, to complete the
AllDayBanking demonstration, you should install the following additional
products:

® Orbix Connect.
® JBoss.

Orbix Connect (http://www.iona.com/products/orbix_connect.htm) is IONA’s
implementation of the J2EE Connector Architecture (JCA). The purpose of
JCA is to provide a standardized way for J2EE applications to link to external
resources. In particular, Orbix Connect provides a way of linking J2EE
applications to CORBA servers.

JBoss (www.jboss.org) is an open source, J2EE-based application server.
The JBoss application server is free software, distributed under the Lesser
Gnu Public Licence (LPGL). You can download a free copy of the JBoss
application server from the following URL:

http://www.jboss.org/downloads

www.jboss.org
http://www.jboss.org/downloads
http://www.iona.com/products/orbix_connect.htm

Orbix Connect and JBoss scenario

Using Orbix Connect and JBoss

Figure 33 shows an example of a specific scenario where the EJB middle

tier (JBoss) connects to the CORBA back-end (Orbix), using a JCA connector

layer (Orbix Connect).

CORBA Back-End ----

1
i
1
EJB Module JCA Layer i
i

PR
—>| corbaconn. rar |/

CORBA Naming Service

i net Account bean

j boss. xm | cor baconn-ds. xm |

Back-End JCA
Stubs Stubs

Orbix Connect JCA layer

corbaconn.rar file

Back-End Server

Figure 33: £JB to CORBA Connectivity Using Orbix Connect and JBoss

The Orbix Connect JCA layer is used to bootstrap connections between the

EJB middle-tier and the CORBA back-end. To perform this bootstrapping
role, the JCA layer relies on the CORBA naming service in the back-end. The
JCA layer provides a simple API that enables J2EE applications to retrieve

CORBA object references from the CORBA naming service.

The Orbix Connect JCA layer consists of the following files:

® corbaconn.rar file
® corbaconn-ds.xml file

The corbaconn. rar file is the Resource Adapter aRchive (RAR) file for the

Orbix Connect product. The RAR file contains all

of the code and

configuration details required for a client ORB, as well as the code that

implements the JCA programming interface.

To deploy the Orbix Connect RAR file, you can copy the following file:

OrbixConnectHome/ | i b/ cor baconn. r ar

113

CHAPTER 5 | Accessing the CORBA Back-End

corbaconn-ds.xml file

114

to the JBoss deploy directory (OrbixConnectHome is the directory where
Orbix Connect is installed).

The corbaconn-ds. xm file contains the configuration settings that initialize
the Orbix Connect JCA adapter. In this example, the main purpose of the
cor baconn-ds. xm file is to provide the JCA adapter with the location of the
CORBA naming service. The cor baconn-ds. xn file must be copied into the
JBoss deploy directory.

The file naming convention, AdapterName- ds. xm , and the format of the
*-ds. xm files are specific to the JBoss J2EE application server. JBoss uses
*-ds. xm data source files to configure adapters to third-party resources.
When a JBoss J2EE application server starts up, it reads all of the *- ds. xm
files in the deployment directory and imports the configuration data from
these files, making the data available through the Java Naming and
Directory Interface (JNDI).

In this example, the Orbix Connect JCA configuration data is made available
through the following JNDI name:

j ava: / CORBAConnect or

Configuration Based on an Orbix Configuration Domain

The FNB demonstration features two alternatives for the cor baconn- ds. xm
file. The first alternative (configuration based on an Orbix configuration
domain) is shown in Example 12.

Example 12: JCA Configuration Based on an Orbix Configuration Domain

<?xm version="1.0" encodi ng="UTF- 8" ?>
<connecti on-factori es>
<no- t x- connect i on- f act or y>
<j ndi - name>CORBAConnect or </ j ndi - nane>
<adapt er - di spl ay- name>CCRBAConnect or </ adapt er - di spl ay- name>
<confi g-property name="CRBConfi g" type="java.lang. String">
file://@T_CONFI G DOVAINS D R@ @T_DOVAI N NAME@cf g
</ confi g- property>
</ no-t x- connect i on-f act or y>
</ connect i on-factori es>

The JCA configuration shown in Example 12 assumes, as a prerequisite,
that the | T_CONFI G DOVAI NS _Di Rand the | T_DOVAI N_NAME variables are set
in your system environment—that is, you must have initialized an Orbix
configuration domain. When you runitant jboss_depl oy, the

JBoss EJB module

Using Orbix Connect and JBoss

@T_CONFI G DOVAI NS_Dl R@and @ T_DAVAI N_NAME@macros from Example 12
are substituted with literal values and the cor baconn-ds. xn file is copied
into the JBoss deployment directory.

The <j ndi - nane> tag specifies that the configuration data is stored under
the j ava: / CCRBAConnect or JNDI name.

Configuration Based on a corbaloc URL

The second alternative (configuration based on a cor bal oc URL) is shown in
Example 13.

Example 13:JCA Configuration Based on a corbaloc URL

<?xm versi on="1.0" encodi ng="UTF-8" 2>
<connection-factori es>
<no-t x- connect i on- f act ory>
<j ndi - name>CORBAConnect or </ j ndi - nane>
<adapt er - di spl ay- name>CORBAConnect or </ adapt er - di spl ay- nanme>
<confi g-property name="NanmeServi ceRef er ence"
type="j ava. |l ang. Stri ng">
corbal oc:iiop: 1. 2@ocal host : 3075/ NaneSer vi ce
</ confi g- property>
</ no-t x- connect i on-f act ory>
</ connecti on-f actori es>

The JCA configuration shown in Example 13 can be used, if an Orbix
configuration domain is not available. In fact, this configuration could be
used to integrate Orbix Connect with any back-end ORB that supports [IOP.
It might be necessary to edit the corbal oc: URL, however. See the Orbix
Connect User’s Guide for more details.

The <j ndi - nanme> tag specifies that the configuration data is stored under
the j ava: / CCRBAConnect or JNDI name.

The JBoss EJB module requires the following files in order to integrate with
the JCA layer and the CORBA back-end:

® Stub JARs.
® jboss.xml file.
® ejb-jar.xml.

115

CHAPTER 5 | Accessing the CORBA Back-End

Stub JARs It is necessary to bundle some stub JAR files with the EJB module, as
follows:
® api.jar—contains the public API for the Orbix Connect JCA adapter
(copied from OrbixConnectHomel | i b/ cor baconn/ api / 1. 0).
® idlstubs.]jar—contains the IDL stubs for the CORBA back-end.

For full details about how to include these stub JARs in a J2EE application,
see “Accessing the Stub JARs from EJB” on page 121.

jboss.xml file The j boss. xm file is used, in addition to the standard ej b-j ar. xni file, to
configure the JBoss EJB container. Some special XML tags must be added
to the j boss. xm file to make the JCA adapter available to an EJB bean.

For example, the | net Account session bean is configured by the j boss. xni
file shown in Example 14:

Example 14:jboss.xm/ Configuration File
<?xm version="1.0" encodi ng="UTF- 8" ?>

<j boss>
<ent er pri se- beans>
<sessi on>
<ej b- nane>l net Account </ ej b- name>
<r esour ce-ref >
<r es-r ef - name>ei s/ Cor baConn</ r es- r ef - nane>
<res-type>com i ona. j 2ee. r esour ceadapt er . Cor baConnect i on</res-typ
e>
<j ndi - nane>j ava: / CCRBAConnect or </ j ndi - nane>
</resource-ref>

</ sessi on>

</ enterpri se-beans>
</ j boss>

The configuration shown in Example 14 on page 116 specifies that the
Orbix Connect JCA adapter can be accessed by resolving the

j ava: conp/ env/ ei s/ Cor baConn JNDI name. For more details about the
j boss. xnt file, see “jboss.xml file” on page 133.

116

Using Orbix Connect and JBoss

ejb-jar.xml The JCA connector must also be declared as a resource within the
ej b-jar.xn file. For the AllDayBanking application, the JCA connector
must be declared as a resource for the I net Account and the
Val i dat eCr edi t Car d session beans. Example 15 shows how the JCA
resource is declared for the I net Account bean.

Example 15:ejb-jar.xml Configuration File
<?xm versi on="1.0" encodi ng="UTF-8" 2>
<ej b-jar>

.<;e;1t erpri se- beans>

<sessi on>
<di spl ay- name>| net Account </ di spl ay- nane>
<ej b- nane>l net Account </ ej b- nanme>
<hone>al | daybanki ng. sessi on. | net Account Horre</ honme>
<r enot e>al | daybanki ng. sessi on. | net Account </ r enot e>

<ej b- cl ass>al | daybanki ng. sessi on. | net Account Bean</ ej b- cl ass>
<sessi on-t ype>St at el ess</ sessi on-type>
<transacti on-type>Cont ai ner </ t ransact i on-t ype>
<r esour ce-ref >
<r es-r ef - nanme>ei s/ Cor baConn</ r es- r ef - nane>
<res-type>com i ona. j 2ee. r esour ceadapt er . Cor baConnect i on</res-typ
e>
<r es- aut h>Cont ai ner </ r es- aut h>
</resource-ref>
</ sessi on>

</ ent erpri se-beans>
<assenbl y- descri pt or >

</ assenbl y- descri pt or>
</ejb-jar>

117

CHAPTER 5 | Accessing the CORBA Back-End

Establishing an EJB to CORBA
link

118

Using the configuration settings shown in this section, an EJB bean (such as
I net Account) can bootstrap a connection to the CORBA back-end using the
API provided by the JCA layer.

Your EJB code can obtain a reference to the JCA adapter by resolving the
the j ava: conp/ env/ ei s/ Cor baConn JNDI name. With the help of the JCA
adapter, it takes just a few lines of code to establish a link to the CORBA
server.

For a complete code example, see “Implementation of ejbCreate()” on
page 129.

Creating the IDL Stub JAR File

Creating the IDL Stub JAR File

Overview This section provides an overview of the steps required to create the IDL
stub JAR file, i dl st ubs. j ar.

Note: There is no need to perform these steps for the AllDayBanking
application, however, because the i di st ubs. j ar file is already provided in
the Al | DayBanki ng/ | i b/ directory.

Steps to create the idlIstubs.jar file From the Al | DayBanki ng directory, you can recreate the i di st ubs. j ar file
with the following steps:

Step

Action

1

Compile the IDL files.
Invoke the CORBA IDL compiler, i dl, as follows:

idl -jbase=-QAl | DayBanki ng/ cl asses/idl _java
-j poa=- QAl | DayBanki ng/ cl asses/i dl _java
Al | DayBanki ng/ i dl / Busi nessSessi onManager . i dl
Al | DayBanki ng/ i dl / Account . i dl

The generated output includes both client stub code (generated
by the -j base option) and server skeleton code (generated by
the -j poa option). The output is put into the

Al | DayBanki ng/ cl asses/ i dl _j ava directory.

Compile the Java code.

Use the Java compiler, j avac, to compile all of the source files
in the Al | DayBanki ng/ cl asses/ i dl _j ava directory and place
the output file in the Al | DayBanki ng/ cl asses/ i dl _cl asses
directory.

While compiling, make sure that you use the correct CLASSPATH
for your Orbix configuration domain. For a particular domain,
DomainName, the CLASSPATH is normally initialized when you
run the DomainName_env. bat (Windows) or
DomainName_env. sh (UNIX) script.

119

CHAPTER 5 | Accessing the CORBA Back-End

120

Step

Action

Create the JAR file.

Use the standard Java utility, j ar, to package the compiled
stub code into a JAR file, i dl stubs. j ar, as follows:

jar cf Al DayBanking/lib/idlstubs.jar
Al | DayBanki ng/ cl asses/ i dl _cl asses

Accessing the Stub JARs from EJB

Accessing the Stub JARs from EJB

Overview

Including the stub JAR files

The Java extension mechanism

To make a stub JAR file (for example, i dl st ubs. jar and api . jar)

accessible to an EJB module, you must:

® Include the stub JAR file in the application EAR file, and

® Use the Java extension mechanism to add the stub JAR to the EJB
module’s class path.

The IDL stub JAR file, i dl stubs. j ar, and the JCA stub JAR file, api . j ar,
must be included somewhere in the application EAR file. For example, the
top-level directory inside the Al | DayBanki ng. ear file contains the following
files and directories:

META- | NF/

apt.jar

idl stubs.jar

WebStuff.jar

VebSt uf f . war

For example, to add the i dI st ubs. j ar file to the application EAR file, put
i dl stubs.jar into the i bank/ Al | DayBanki ng/ src/ directory of the FNB
directory structure (see Figure 28 on page 95) and run the itant build
command from the i bank directory to regenerate the EAR file.

The Java extension mechanism allows you to reference additional packages
from within a JAR file. In the context of an EAR file, it enables you to extend
the classpath of a specific EJB module to access another JAR file in the
Enterprise Archive.

Within the FNB directory structure, you should edit the MANI FEST. MF file in
the i bank/ Al | DayBanki ng/ VbSt uf f. j ar/ et ¢/ directory and add a
A ass- Pat h: entry of the following form:

O ass- Pat h: PathToExtraPackagel.jar PathToExtraPackage2.jar ...

For example, the i bank/ Al | DayBanki ng/ VebSt uf f . j ar/ et ¢/ MANI FEST. MF
file contains the following text:

d ass-Path: idlstubs.jar api.jar

121

CHAPTER 5 | Accessing the CORBA Back-End

Reference For further details on the Java extension mechanism, see:

http://java.sun.com/j2se/1.3/docs/guide/extensions/index.html

122

http://java.sun.com/j2se/1.3/docs/guide/extensions/index.html

CHAPTER 6

EJB Middle-Tier

The EJB middle-tier implements the business logic for the
AllDayBanking application. This chapter describes the
implementation and configuration of a session bean and an
entity bean from the AllDayBanking EJB middle-tier.

In this chapter This chapter discusses the following topics:
The InetAccount Session Bean page 124
The User Entity Bean page 135

123

CHAPTER 6 | EJB Middle-Tier

The InetAccount Session Bean

Overview The purpose of the I net Account session bean is to provide clients with
temporary access to an Account object in the CORBA back-end.

Because the I net Account session bean is effectively a wrapper for an
Account CORBA object, the methods defined on the I net Account bean offer
similar functionality to the Account IDL interface.

One of the differences between I net Account and Account is that the

I net Account bean defines a resol veAccount () method to associate an

I net Account bean with a particular Account object. After the association is
established, subsequent method calls on I net Account are delegated to that
Account object. The association can be switched to a different Account
object, however, by making a subsequent call to resol veAccount () .

In this section This section contains the following subsections:
Anatomy of a Session Bean page 125
EJB Session Bean Life Cycle Methods page 128
Session Bean Configuration page 131

124

The InetAccount Session Bean

Anatomy of a Session Bean

What is a session bean?

Parts of a session bean

A session bean is a remotely accessible bean that exists in the J2EE
Application Server for as long as a client session is active. When the client
has finished using the EJB application, the session bean can be discarded.

You can think of a session bean as a kind of client proxy. The session bean
is an object in the EJB middle-tier that does work on behalf of a particular
client.

Three elements are needed to implement the I net Account session bean, as

follows:

® Inet Account —the remote interface of the | net Account session bean.
This Java interface declares the methods that are made available to
remote clients.

® I net Account Hme—the home interface of the I net Account session
bean. This Java interface declares methods for creating | net Account
session beans.

® | net Account Bean—the bean class provides the implementation of the
I net Account session bean.

125

CHAPTER 6 | EJB Middle-Tier

Structure of the InetAccountBean
class

Session bean base class

Bean methods

126

The I net Account Bean class is the most important part of the I net Account
session bean because it provides the actual implementation of the bean.
Figure 34 gives an overview of the structure of the I net Account Bean class.

Session bean base class

public class inetAccountBean inplements javax.ejb. Sessi onBean

Bean methods
T | e

Bean attribute methods
—_— | .

Session bean callbacks

public void ejbCreate() throws CreateException

}

public void ejbActivate() {}
public void ej bRenove() {}
public void ejbPassivate() {}
. public void setSessionCont ext (SessionContext ctx) {}
Private methods —

i R REEEEERPEPEP R

Figure 34: Structure of the InetAccountBean Session Bean Class

A session bean class always extends the following standard base class:

j avax. ej b. Sessi onBean

All of the methods declared in the remote interface, | net Account , are also
defined in the I net Account Bean class. The method signatures in the

I net Account Bean class are the same as in the | net Account remote interface
except that the t hrows j ava. rni . Renot eExcept i on clause is omitted.

Bean attribute methods

Session bean callbacks

Private methods

The InetAccount Session Bean

Bean methods that conform to either of the following patterns are treated
specially:

Type get AttributeName() ;

voi d set AttributeName(Type x);

where AttributeName is an attribute of Type type. The JavaBeans
specification mandates that these methods are recognized as accessor and
modifier methods for bean attributes. Various tools and utilities can then use
Java reflection to identify the bean attributes automatically.

The following public methods are standard session bean methods that must
be defined on every session bean:

/1 Java

public void ej bCreate() throws javax.ejb. CreateException { }
public void ej bRemove() {}

public void ej bActivate() {}

public void ej bPassivate() {}

public void set Sessi onCont ext (j avax. ej b. Sessi onContext ctx) {}

See “EJB Session Bean Life Cycle Methods” on page 128.

Additional, private methods can be defined for bean-internal use.

127

CHAPTER 6 | EJB Middle-Tier

EJB Session Bean Life Cycle Methods

Overview The EJB session bean life cycle methods are called by the EJB container to
notify a session bean instance when specific life cycle events occur. The
session bean class (for example, | net Account Bean) must provide an
implementation for each of the life cycle methods, although the
implementation of these methods is often trivial or even empty.

ejbCreate() method The ej bOreat e() method has the following signature:
public void ejbOreate() throws javax.ejb. O eat eException
Called just after the session bean instance is created, in response to a
client calling create() on the bean’s home interface.

ejbRemove() method The ej bRenove() method has the following signature:
public void ej bRermove()
Called just before a session bean instance is permanently destroyed, in
response 1o a client calling renove() on the bean’s remote interface or
on the bean’s home interface.

ejbPassivate() method The €] bPassi vat e() method has the following signature:
public void ejbPassivate()

Called just before the container passivates the bean by storing the
bean data (typically serializing the bean) and removing the bean
instance from memory. The container passivates a bean in order to
conserve memory and other resources. The container is prepared,
however, to reactivate the bean automatically as soon as it is needed
again.

ejbActivate() method The ej bActi vat e() method has the following signature:

public void ejbActivate()
Called just after the container has reactivated a bean that was
previously passivated.

128

Implementation of ejbCreate()

1

The InetAccount Session Bean

Example 16 shows the implementation of the ej bCr eat e() method for the
| net Account Bean class. The ej bQreat e() method is called by the J2EE
container just after an I net Account Bean object is created. This is where you
can do any once-off initialization for the new I net Account Bean object.

Example 16: The InetAccountBean.ejbCreate() Method

/1l Java
i nport bankobj ects. Account Myr;
i mport com i ona. cor baconn. Cor baConnect i onFact ory;

publ i c class | netAccountBean inpl enents j avax. ej b. Sessi onBean {
private static String EIS JND _NAMVE =
"j ava: conp/ env/ ei s/ Cor baConn";
private CorbaConnecti onFactory corbaFact = null;
private bankobjects. Account Mygr nyMyr = nul | ;
private bankobj ects. Account nyAccount = null;

public void ej bOreate() throws O eateException {

try {

j avax. nam ng. Context ctx =

new j avax. nam ng. I ni tial Cont ext ();
corbaFact = (Cor baConnect i onFact ory)
ctx. | ookup(El S_JNDI _NAVE) ;

} catch (javax. nam ng. Nam ngExcepti on ne) {

Systemerr. println(

"Troubl e finding CORBA JCA Connector in JND"
IE
ne. print St ackTrace();

}
Systemout. println("BEAN>I n ej bcreate....");

if (nyMyr == null) {
try {
nyMyr = (Account Myr) corbaFact. get Connecti on(
Account Myr . cl ass,
" Mai nf r ane/ BankQbj ect s_Account Myr "
)
} catch (ResourceException re) {

Systemerr.println("Failure |location CORBA (bject " +
re);
}
}
}

129

CHAPTER 6 | EJB Middle-Tier

Reference

130

The preceding code can be explained as follows:

1.

The j ava: conp/ env/ ei s/ Cor baConn URL is a Java Naming and
Directory Interface (JNDI) name. This name can be analyzed as
follows:

i. The first part of the name, j ava: conp/ env, is a standard prefix
used to access J2EE environment variables.

ii. The second part of the name, ei s/ Cor baConn, is mapped to a
connection factory resource by an XML configuration file (in the
case of JBoss, this file is j boss. xm).

See “jboss.xml file” on page 133 and “Using Orbix Connect and JBoss”
on page 112 for more details.

The j avax. nani ng. I ni ti al Cont ext () static method creates a new
JNDI context, which accesses the default JNDI service provided by the
J2EE application container. This is the standard way of accessing JNDI
from within an EJB bean.

A reference to a com i ona. cor baconn. Cor baConnect i onFact or y object

is obtained by looking up the j ava: conp/ env/ ei s/ Cor baConn URL in

the JNDI service. The CORBA connection factory object is used to get
references to remote CORBA objects.

The get Connect i on() method is invoked on the CORBA connection

factory to obtain a reference to the bankobj ect s. Account Myr CORBA

object. The get Connecti on() method takes the following arguments:

+ ClassName. cl ass—the type of object reference.

+ CORBA name in string format—the string provided here is
resolved in the CORBA naming service relative to the root naming
context.

The value returned by get Connect i on() must be cast to the

appropriate type, that is bankobj ect s. Account Myr .

The bankobj ect s. Account Myr instance, nyMyr, provides direct access

to the back-end CORBA server.

For more details about JNDI, and how it is used within J2EE, see:

http://java.sun.com/developer/technicalArticles/Programming/jndi/index.ht
ml

http://java.sun.com/developer/technicalArticles/Programming/jndi/index.html
http://java.sun.com/developer/technicalArticles/Programming/jndi/index.html

The InetAccount Session Bean

Session Bean Configuration

Overview A session bean has two layers of configuration.

The first layer is configured by the following file:

ej b-jar. xn The EJB deployment descriptor.

The second layer is configured by a proprietary container configuration file,
which is specific to the particular J2EE deployment platform you are using:

j boss. xm The JBoss container configuration.

ejb-jar.xml file The EJB deployment descriptor, ej b-j ar. xm , is a standard J2EE file that
conforms to the EJB 1.1 Document Type Definition (DTD). The purpose of
this file is to describe the enterprise beans in an EJB module to the EJB
container.

For example, the XML code in Example 17 is an incomplete extract from the
AllDayBanking deployment descriptor that shows the configuration of the
I net Account session bean:

Example 17:ejb-jar.xml Extract Showing InetAccount Bean Configuration

<! DOCTYPE ej b-jar PUBLIC '-//Sun M crosystens, |nc.//DID
Enterpri se JavaBeans 1.1//EN
"http://java.sun.conj2ee/dtds/ejb-jar_1 1.dtd >

<ej b-jar>
<di spl ay- nane>EJB Moddul es</ di spl ay- name>
<ent er pri se- beans>

<sessi on>
<di spl ay- nanme>l net Account </ di spl ay- nane>
<ej b- nane>l net Account </ ej b- nanme>
<hone>al | daybanki ng. sessi on. | net Account Horre</ home>
<r enot e>al | daybanki ng. sessi on. | net Account </ r enot e>
<ej b- cl ass>al | daybanki ng. sessi on. | net Account Bean</ ej b- cl ass>
<sessi on-t ype>St at el ess</ sessi on-t ype>
<t ransact i on-t ype>Cont ai ner </ t ransact i on-t ype>
</ sessi on>

</ ent erpri se- beans>

131

CHAPTER 6 | EJB Middle-Tier

Example 17:¢ejb-jar.xml Extract Showing InetAccount Bean Configuration

<assenbl y- descri pt or >
<cont ai ner-transacti on>

<met hod>
<ej b- nane>| net Account </ ej b- nane>
<net hod- nane>* </ net hod- narme>
</ met hod>
<trans-attribute>Required</trans-attribute>
</ cont ai ner - tr ansact i on>
</ assenbl y- descri pt or >

</ejb-jar>

In Example 17, the following elements contain detailed information about

the I net Account session bean:

<sessi on>
This element provides a basic description of the I net Account session
bean. For example, the <ej b- name> element gives the name of the
session bean; the <hone>, <r enot e>, and <ej b- ¢l ass> elements
identify, respectively, the home, remote, and bean implementation
classes.

<cont ai ner-transacti on>
This element specifies the transaction properties for all the beans and
bean methods in the EJB module. The configuration in Example 17
specifies that every method in I net Account has the Required
transaction attribute. The Requi r ed transaction attribute implies that
the methods can be called either by a transactional or by a
non-transactional client. In the case of a non-transactional client, the
container creates the transactional context for the call and
automatically commits the transaction at the end of the method call.

132

The InetAccount Session Bean

jboss.xml file The JBoss container configuration, j boss. xni , is an IONA proprietary file.

The purpose of this file is to map abstract bean properties onto specific
container resources and services.

For example, the XML code in Example 18 is an extract from the
Al | DayBanki ng container configuration that shows the configuration of the
I net Account session bean and the val i dat eCr edi t Car d session bean:

Example 18:jboss.xm/ Configuration File

<?xm version="1.0" encodi ng="UTF- 8" ?>
<! DOCTYPE j boss PUBLI C
"-//JBoss//DID JBCSS 3.0/ /EN'
"http://ww. jboss. org/j2ee/ dtd/jboss 3 0.dtd">

<j boss>
<ent er pri se- beans>
<sessi on>
<ej b- nane>l net Account </ ej b- name>
<resour ce-ref >
<r es- r ef - name>ei s/ Cor baConn</ r es- r ef - nane>

<res-type>com i ona. j 2ee. r esour ceadapt er . Cor baConnect i on</ r es-
type>
<j ndi - name>j ava: / CORBAConnect or </ j ndi - nane>
</resource-ref>
</ sessi on>

<sessi on>
<ej b- nane>Val i dat eCr edi t Car d</] b- nane>
<r esour ce-ref >
<r es- r ef - nane>ei s/ Cor baConn</ r es- r ef - nane>

<res-type>com i ona. j 2ee. r esour ceadapt er . Cor baConnect i on</ r es-
type>
<j ndi - nane>j ava: / CCRBAConnect or </ j ndi - nane>
</resource-ref>
</ sessi on>
</ ent er pri se- beans>
</ j boss>

133

CHAPTER 6 | EJB Middle-Tier

The <resour ce-r ef > tag contains the following sub-tags:

<r es-ref - name>
Specifies the name of a J2EE environment variable that is made
accessible through JNDI. For example, the ei s/ Cor baConn resource
reference name can be accessed using the
j ava: conp/ env/ ei s/ Cor baConn JNDI name.

<res-type>
Specifies the type of object stored under the
j ava: conp/ env/ ei s/ Cor baConn JNDI name. The type specified here,
comi ona. j 2ee. r esour ceadapt er . Cor baConnect i on, is implemented
by the Orbix Connect RAR, or bi xconn. rar.

<j ndi - nane>
This JNDI name, j ava: / GCCRBAConnect or , refers to an entry in a JBoss
datasource file. The JBoss datasource file is used to store configuration
properties for the CORBA connector. For more details, see
“corbaconn-ds.xml file” on page 114.

134

The User Entity Bean

The User Entity Bean

Overview

In this section

The purpose of the User entity bean is to store a user’s registration details
persistently. These registration details are provided when the user registers
to use the AllDayBanking Internet application for the first time—see “The
New User Registration Web Form” on page 167.

Persistence of the User entity beans is provided by the J2EE Application
Server (working together with a specified database resource), using the
container-managed persistence mechanism.

This section contains the following subsections:

Anatomy of an Entity Bean page 136
EJB Entity Bean Life Cycle Methods page 139
Entity Bean Configuration page 142
Container-Managed Persistence in JBoss page 145

135

CHAPTER 6 | EJB Middle-Tier

Anatomy of an Entity Bean

What is an entity bean?

Parts of an entity bean

136

An entity bean is a remotely accessible bean whose state is stored
persistently. The entity bean continues to exist across multiple runs of the
J2EE Application Server until it is explicitly destroyed.

You can think of an entity bean as the object-oriented representation of a
database record (and, typically, that is exactly how it is stored).

Three elements are needed to implement the User entity bean, as follows:

® Wser—the remote interface of the User entity bean. This Java interface
declares the methods that are made available to remote clients.

® UWser Home—the home interface of the User entity bean. This Java
interface declares methods for creating and finding User entity beans.

® UWser Bean—the bean class provides the implementation of the User
entity bean.

Structure of the UserBean class

User bean base class

Bean methods

The User Entity Bean

The User Bean class is the most important part of the User entity bean
because it provides the implementation of the bean. Figure 35 gives an
overview of the structure of the User Bean class.

Entity bean base class

public class UserBean inplenents javax.ejb. EntityBean

Bean methods
\

Bean attribute methods

\// ,,,,,,,,,,,,,,,,,,,,

public String getLname () { ... }
Entity bean callbacks o

public KeyType ejbCreate(...) throws CreateException { ... }
public void ejbPostCreate(...) { ... }

public void ejbRemove() {}

public void ejbActivate() { ... }

public void ejbPassivate() {}

public void ejbLoad() {}

public void ejbStore() {}

. public void setSessionContext (SessionContext ctx) {}
Private methods public void unsetEntityContext() { ... }

e Ry

Figure 35: Structure of the UserBean Entity Bean Class

An entity bean class always extends the following standard base class:
javax.ejb. EntityBean

All of the methods declared in the remote interface, User, are also defined in
the User Bean class. The method signatures in the User Bean class are the
same as in the User interface except that the t hr ows

j ava. rni . Renot eExcept i on clause is omitted.

137

CHAPTER 6 | EJB Middle-Tier

Bean attribute methods

Standard entity bean methods

Private methods

138

Bean methods that conform to either of the following patterns are treated
specially:

Type get AttributeName();

voi d set AttributeName(Type x);

where AttributeName is an attribute of Type type. The JavaBeans
specification mandates that these methods are recognized as accessor and
modifier methods for bean attributes. Various tools and utilities can then use
Java reflection to identify the bean attributes automatically.

The following public methods are standard entity bean methods that must
be defined on every entity bean:
/1 Java
publ i c PrimaryKeyType ej bQreat e(/nitialData)

throws javax. ej b. O eat eExcepti on
public voi d ej bPost O eat e(/nitialData)
public voi d ej bRenove()
public void ejbPassivate()
public void ejbActivate()
public void ej bLoad()
public void ejbStore()
public voi d set Sessi onCont ext (j avax. ej b. Sessi onCont ext ct x)
public void unsetEntityContext ()
Where PrimaryKeyType is a type that is used to identify the bean (and, by
implication, also identifies an associated record in a database). The
InitialData is an arbitrary list of parameters that is used to initialize the
entity bean.

If the entity bean uses bean-managed persistence, you also have to define
one or more finder methods, ej bFi ndSuffix() .

See “EJB Entity Bean Life Cycle Methods” on page 139.

Additional, private methods can be defined for bean-internal use.

The User Entity Bean

EJB Entity Bean Life Cycle Methods

Overview

ejbCreate() methods

ejbPostCreate() methods

ejbRemove() method

The EJB entity bean life cycle methods are called by the EJB container to
notify an entity bean instance when specific life cycle events occur. The
entity bean class (for example, User Bean) must provide an implementation
for each of the life cycle methods.

There can be several overloaded ej bOr eat e() methods defined on the bean
class, one for every creat e() method defined on the home interface. An
entity bean ej bQreat e() method has the following signature:

public PrimaryKeyType ej bQreat e(/nitialData)
throws javax. ej b. O eat eExcepti on

Called just after the entity bean instance is created, in response to a
client calling cr eat e(InitialData) on the bean’s home interface. The
return value from ej bQreat e() , of PrimaryKeyType type, depends on
the kind of persistence that is used:

. Container-Managed Persistence—returns nul | .

¢+ Bean-Managed Persistence—returns the primary key for this
bean instance.

For each ej bQreat e() method, there is a matching ej bPost Oreat e() . An
ej bPost Oreat e() method has the following signature:

publ i c voi d ej bPost Or eat e(/nitialData)
throws javax. ej b. Or eat eExcepti on

Called after the entity bean is fully initialized. For example, at this
stage both the bean data and the primary key are initialized
irrespective of whether container-managed or bean-managed
persistence is used.

The ej bRemove() method has the following signature:

public void ej bRenmove()
Called just before an entity bean instance is permanently destroyed, in
response 1o a client calling renove() on the bean’s remote interface or
on the bean’s home interface.

139

CHAPTER 6 | EJB Middle-Tier

ejbPassivate() method The €] bPassi vat e() method has the following signature:
public void ejbPassivate()

Called just before the container passivates the bean by storing the
bean data (typically serializing the bean) and removing the bean
instance from memory. The container passivates a bean in order to
conserve memory and other resources. The container is prepared,
however, to reactivate the bean automatically as soon as it is needed
again.

ejbActivate() method The ej bActi vat e() method has the following signature:
public void ejbActivate()
Called just after the container has reactivated a bean that was
previously passivated.

ejbLoad() method The ej bLoad() method has the following signature:
public void ejbLoad()
Load the entity bean state from the database. Typically, the container
calls this method at the start of a transaction to ensure that the state of
the bean in memory is synchronized with the state in the database.

ejbStore() method The e bStore() method has the following signature:
public void ejbStore()
Store the entity bean state in the database. Typically, the container
calls this method at the end of a transaction to update the bean state
in the database.

ejbFind() methods The €j bFi nd() methods need only be defined on the entity bean class if you
are using bean-managed persistence. There are no ej bFi nd() methods
defined on the User Bean entity bean class because the User bean is
implemented with container-managed persistence.

140

The User Entity Bean

Implementation of ejbCreate() Example 19 shows the implementation of the ej bCreat e() method for the
User Bean class. The ej bQreat e() method is called by the J2EE container
just after a User Bean object is created. In this example, the ej bCreat e()
method simply initializes the member variables of the User Bean instance.

The ej bOreat e() method returns nul | because the User bean is
implemented with container-managed persistence.

Example 19: The User.ejbCreate() Method
/1 Java

public Integer ej bCreate(
String userid, String | name, String fnane,
int accnum int ccnum String accpwd, String enail addr
)
throws O eat eException
{
this. | nane = | nane;
thi s. fnane = fnane;
this.userid = userid ;
this.emil addr = enail addr;
t hi s. accnum = accnum
this.ccnum = ccnum
this.accpwd = accpwd ;

return null;

141

CHAPTER 6 | EJB Middle-Tier

Entity Bean Configuration

Overview

ejb-jar.xml file

142

An entity bean has two layers of configuration, which correspond to the
following XML files:

ej b-jar. xn The EJB deployment descriptor.
j boss. xn The JBoss container configuration.

The EJB deployment descriptor, ej b-j ar. xm , is a standard J2EE file that
conforms to the EJB 1.1 Document Type Definition (DTD). The purpose of
this file is to describe the enterprise beans in an EJB module to the EJB
container.

For example, the XML code in Example 20 is an incomplete extract from the
AllDayBanking deployment descriptor that shows the configuration of the
User entity bean:

Example 20: ejb-jar.xml Extract Showing User Bean Configuration

<! DOCTYPE ej b-jar PUBLIC'-//Sun M crosystens, |nc.//DID
Enterpri se JavaBeans 1.1//EN
"http://java. sun.conj2ee/dtds/ejb-jar_1 1.dtd" >

<ej b-jar>
<di spl ay- name>EJB Mbdul es</ di spl ay- nanme>
<ent er pri se- beans>
<entity>
<descri pti on>
Entity bean represent a user of the online bank
</ descri ption>
<di spl ay- nanme>User </ di spl ay- name>
<ej b- nane>User </ ej b- nane>
<hone>al | daybanki ng. entity. User Home</ hone>
<r enot e>al | daybanki ng. enti ty. User </ r enot e>
<ej b- cl ass>al | daybanki ng. enti ty. User Bean</ ej b- cl ass>
<per si st ence-t ype>Cont ai ner </ per si st ence-t ype>
<pri mkey-cl ass>j ava. | ang. Stri ng</ pri m key- cl ass>
<reent rant >Tr ue</reentrant >
<cnp-fiel d>
<fi el d- name>useri d</fi el d- name>

</cnp-field>

The User Entity Bean

Example 20: ejb-jar.xml Extract Showing User Bean Configuration

<cnp-fiel d>

<fi el d- nane>l name</fi el d- name>
</cnp-field>
<cnp-fiel d>

<fi el d- nane>f name</fi el d- name>
</cnp-field>
<cnp-fiel d>

<fi el d- nane>accnunx/ fi el d- nane>
</cnp-field>
<cnp-fiel d>

<fi el d- nane>ccnunx/ fi el d- name>
</cnp-field>
<cnp-fiel d>

<fi el d- nane>accpwd</ fi el d- nane>
</cnp-field>
<cnp-fiel d>

<fi el d- nane>emai | addr </ fi el d- nane>
</cnp-field>
<pri nkey-fiel d>userid</prinkey-fiel d>

</entity>
</ ent er pri se- beans>

<assenbl y- descri pt or >
<cont ai ner-transacti on>
<met hod>
<ej b- name>User </ ej b- nane>
<net hod- nane>* </ net hod- nane>
</ met hod>

<trans-attribute>Requi red</trans-attribute>
</ cont ai ner-transact i on>
</ assenbl y- descri pt or>
</ejb-jar>

In Example 20, the following elements contain detailed information about

the User entity bean:

<entity>
This element provides a basic description of the User entity bean. For
example, the <ej b- name> element gives the name of the session bean;
the <home>, <r enot e>, and <ej b- cl ass> elements identify,
respectively, the home, remote, and bean implementation classes.

143

CHAPTER 6 | EJB Middle-Tier

Various other elements nested within the <ent i t y> element are used to
configure the User bean for container-managed persistence. The
<per si st ence-t ype> element has the value Cont ai ner, which
specifies that container-managed persistence is selected. The

<cnp- fi el d> elements specify which of member variables in the

User Bean class are to be made persistent. One of the User Bean
member variables, useri d, is designated as the primary key by
enclosing it in the <pri nkey- fi el d> element.

<assenbl y- descri pt or > and <cont ai ner -t ransact i on>

In Example 20, the <assenbl y- desci pt or > element contains a single
nested element, <cont ai ner -t ransacti on>. The

<cont ai ner - t ransact i on> element specifies that every method in the
User bean has the Requi r ed transaction attribute. The Requi red
transaction attribute implies that the methods can be called either by a
transactional or by a non-transactional client. In the case of a
non-transactional client, the container creates the transactional context
for the call and automatically commits the transaction at the end of the
method call.

jboss.xml file The JBoss container configuration file, j boss. xni , can be used for the
following purposes:

® Declaring references to other EJB beans.
® Declaring resources (for example, if the entity bean needed to access a
JCA connector resource).

In the case of the User Bean entity bean, however, no declarations need to be
made in the j boss. xm file.

144

The User Entity Bean

Container-Managed Persistence in JBoss

Overview

Figure 36 gives an overview of container-managed persistence for the User
entity bean, showing the elements involved in providing the

container-managed persistence in JBoss.

JBoss Built-In Database

UserBean
Class

public String | nane; —

public String fnane;
public String userid;—

The UserBean class

Figure 36: Overview of Container-Managed Persistence

— T

ejb-jar.xml — OO —
USERTABLE
| —— Inanme LASTNAME |FI RSTNAME| USERI D
fname . . o
= userid
p/

All of the User Bean public member variables are made persistent using
container-managed persistence. For example, this includes the useri d,

| nane, and f nane member variables.

Container-managed persistence imposes a particular implementation

pattern on the entity bean developer. For example, the entity bean is not
responsible for reading its state from a database or writing its state to the
database. This is looked after automatically by the container. Consequently,
the entity bean life cycle methods tend to be rather simple for an entity bean

using container-managed persistence—see “EJB Entity Bean Life Cycle

Methods” on page 139.

145

CHAPTER 6 | EJB Middle-Tier

ejb-jar.xml file The ej b-jar.xni file is responsible for specifying which of the User Bean
member variables should be made persistent through container-managed
persistence.

In the <enti ty> element that describes the User entity bean, a sequence of
<cnp-fi el d> elements specify the persistent member variables. For
example, the following extract from the AllDayBanking ej b-j ar. xni file
specifies that useri d, | name, and f nane are persistent variables:

<ej b-jar>
<ent er pri se- beans>
<entity>
<cnp-fi el d>
<fi el d- name>useri d</fi el d- name>
</cnp-field>
<cnp-fi el d>
<fi el d- name>| nane</fi el d- name>
</cnp-field>
<cnp-fi el d>

<fi el d- name>f name</ fi el d- nane>
</cnp-field>

<pri nkey-fiel d>useri d</ pri nkey-fi el d>
</entity>
</ enterpri se-beans>
</ejb-jar>
In the preceding extract from ej b-j ar. xni , the <pri nkey-fi el d> element

specifies that the useri d member variable is the primary key for the User
bean.

146

JBoss built-in database

Default container-managed
persistence

Customizing container-managed
persistence

The User Entity Bean

JBoss has a built-in SQL database, implemented in Java, which it uses for
container-managed persistence by default. There is no need to start up the
built-in database explicitly; it is launched at the same time as the JBoss
Web server.

JBoss implements a default container-managed persistence, which requires

no special configuration by the user. The default container-managed

persistence has the following features:

® Persistence is managed by the JBoss JAWS (Just Another Web
Storage) package, which implements object-relational mapping to
generate database tables automatically from Java classes.

® Container-managed persistence is defined by the ej b-j ar. xm file. No
additional configuration is necessary.

® JAWS automatically creates a table to hold the container-managed
persistence data (using the built-in SQL database).

® Table fields are created with default sizes. For example, a string field
would automatically be allocated 256 bytes.

You can, optionally, customize container-managed persistence by providing
ajaws. xn file with the EJB application. For example, the j ans. xni file
allows you to specify the sizes of table fields and to use databases other
than the JBoss built-in database.

For more details, consult the JAWS documentation from JBoss.

147

CHAPTER 6 | EJB Middle-Tier

148

In this chapter

CHAPTER 7

J2EE Presentation

Layer

The J2EE presentation layer is the front-end of an Internet
application. It consists of web pages, Java server pages, worker
beans, and miscellaneous supporting files (such as images
and style sheets), all packaged within a single Web archive

file.

This chapter discusses the following topics:

Overview of the Presentation Layer page 150
Worker Beans page 154
Using a JSP to Process a Web Form page 161
Using a JSP to Access an Enterprise Bean page 173

149

CHAPTER 7 | J2EE Presentation Layer

Overview of the Presentation Layer

Overview Figure 37 shows an overview of the presentation layer for the AllDayBanking
application. The presentation layer consists of a client, which is a Web
browser, and the components on the server side that are directly responsible
for generating Web pages. In particular, the J2EE presentation layer usually
makes extensive use of Java Server Pages (JSP) technology.

e hhh bbb Presentation Layer ----------------5 --- EJB Middle-Tier --;
I Web Web Module o |
' Browser [i
! Web pages and JSPs Worker beans i 1 |
| *ht ni Cust omer Sessi b i
: R stoner SSi on : : > EJB MOdUle :
i *.jsp NewRegSessi on . !
E *. CSs VébHel per E , |
i "o i
! i mges/ E ! !
Figure 37: Overview of the J2EE Presentation Layer for AllDayBanking
Web module A Web module contains all of the server-side components needed for the

J2EE presentation layer. When a Web module, WebModule, is ready for
deployment, the files in the module are usually zipped into a Web archive,
WebModule. war —see “Directory Structure in a Web Module WAR File” on
page 105. The Web archive itself can also be included in an EAR file—see
“Directory Structure in an EAR File” on page 100.

The main components of a Web module are the following:

® Worker beans.

® Web pages and JSPs.

150

Worker beans

Web pages and JSPs

Overview of the Presentation Layer

The worker beans in a Web module are ordinary Java beans (not enterprise
Java beans) that are used in conjunction with JSPs to encapsulate part of
the presentation logic.

The following directories are associated with worker beans:
WebModule. war / src/ EARSCO directory containing the
worker bean source code.

VEEB- | NF/ cl asses/ Directory in a Web archive containing
the compiled worker bean code.

Web pages and JSPs are placed in the public part of a Web archive, which
makes them directly accessible to client Web browsers.

The following directories are associated with Web pages and JSPs:
WebModule. war | web/ EARSCO directory containing the
public Web files and directories.

Web archive top-level directory The directory tree under the
WebModule. var / web/ EARSCO
directory is copied to the Web
archive’s top-level directory.

151

CHAPTER 7 | J2EE Presentation Layer

Web browser

152

Files that are placed in the public part of a Web archive (that is, anything
not under the WEB- I NF directory) are directly accessible to client Web
browsers.

The URL that clients use to access the public files is determined by the
<cont ext - r oot > element in the appl i cati on. xm file. For example, the
AllDayBanking appl i cati on. xn file sets the <cont ext - r oot > as follows:

<! DOCTYPE application PUBLIC '-//Sun M crosystens, Inc.//DID
J2EE Application 1.2//EN
"http://java. sun.comi j 2ee/ dtds/application_ 1 2.dtd" >

<appl i cati on>

<nodul e>
<web>
<web- uri >WebSt uf f . war </ web- uri >
<cont ext - r oot >Al | DayBanki ng</ cont ext - r oot >
</ web>
</ nodul e>
</ appl i cati on>

With this setting, a client would use the following URL to access the

i ndex. ht M located in the Web archive’s top-level directory:

htt p: // HostName: 8080/ Al | DayBanki ng/ i ndex. ht m

Where HostName is the name of the host where the J2EE application server
is running (could be I ocal host if you run the client Web browser on the
same host as the application server) and 8080 is the default IP port on
which the JBoss J2EE application server is configured to run.

The J2EE application server also supports the standard Web server
convention whereby the i ndex. ht i can be omitted from the end of the
URL. A client Web browser can then use the following shortened URL to
access the i ndex. ht m file:

htt p: // HostName: 8080/ Al | DayBanki ng

Overview of the Presentation Layer

The file that is accessed by this shortened URL can be specified explicitly
using the <wel conme-fil e-1ist> element in the web. xni file. For example,
the AllDayBanking Vebst uf f. war/ web. xni file sets the

<wel core-file-1ist>as follows:

<web- app>
<wel cone-file-list>
<wel come-fil e>i ndex. ht m </ wel cone-fil e>
</ wel cone-file-list>

</ web- app>

153

CHAPTER 7 | J2EE Presentation Layer

Worker Beans

Overview

Bean attributes

In this section

154

The AllDayBanking application provides the following worker beans, which
cooperate with the JSPs to provide the presentation logic:

d al | daybanki ng. web. Qust orer Sessi on

® all daybanki ng. web. NewRegSessi on

® all daybanki ng. web. V¢bHel per

Using worker beans in conjunction with JSPs enables you to write simpler,
more maintainable JSPs. Any lengthy bits of presentation logic can be put

into a worker bean and then called from a JSP scriptlet. This enables the
scriptlets inside a JSP to be kept relatively short and simple.

Ordinary beans have the following noteworthy feature. Bean methods that
conform to either of the following patterns are treated specially:

Type get AttributeName();

voi d set AttributeName(Type x);

where AttributeName is an attribute of Type type. The JavaBeans
specification mandates that these methods are recognized as accessor and
modifier methods for bean attributes. Various tools and utilities can then use
Java reflection to identify the bean attributes automatically.

This section discusses the following Java classes:

The CustomerSession Bean page 155
The NewRegSession Bean page 158
The WebHelper Class page 160

Worker Beans

The CustomerSession Bean

Overview The purpose of the Qust oner Sessi on bean is to provide support for user
login over the Internet. The Qust oner Sessi on bean stores the user login
details, user ID and password, and then validates the user identity by
obtaining the user's details from a User entity bean in the EJB middle tier.

At subsequent stages during the user interaction with the AllDayBanking
application, a JSP can check with the Qust oner Sessi on to confirm that the
session remains valid.

Outline of the CustomerSession Example 21 gives an extract from the Qust oner Sessi on bean class, showing

bean class the bean attributes and method signatures, without the implementation
code. The Cust oner Sessi on bean has several attributes, as represented by
the methods of the form set AttributeName() and get AttributeName() .

The bean attributes for the user ID and password, as represented by
set Useri d(), get Userid(), and set Accpwd() , are set automatically by a
HTML form—see “The Login Web Form” on page 163 for details.

Example 21: Extract from the CustomerSession Bean Class

/1l Java
package al | daybanki ng. web;

public class Qustomer Session inplenents java.io. Serializable {
private String userid;
private String account Passwor d;
private bool ean isValid = fal se;
private float ccanount;

private all daybanking. entity. User nyUser Bean;
Excepti on exception;

/1 Nul'l constructor as required for a bean
publ i ¢ QustonerSession () {

155

CHAPTER 7 | J2EE Presentation Layer

Example 21: Extract from the CustomerSession Bean Class

public void setUserid (String webuserid) { ... }

public String getUserid () { ... }

public void setAccpwd (String webAccount Password) { ... }
/1 No getAccpwd(), that would create a bit of a security hol e!
public void setAmunt (float amount) { ... }

public float getAmount () { ... }

public int getAccNum() {
/| Delegate this call to the Wser entity bean (not shown)

}

public int get GcNum ()
{

/] Delegate this call to the Wser entity bean (not shown)

}

I LR

/1 G her bean nethods

I LR

public bool ean validateUser () { ... }

public void isValidSession() throws Sessi onOverExceptio

{ ...}
public void logout () { ... }
ik
Validating the user identity The main functionality offered by the Qust omer Sessi on bean is to validate

the user identity, that is to check that the user-supplied ID and password
are valid. Example 22 shows the implementation of the val i dat eUser ()
method, which is responsible for validating the user's identity.

The implementation of val i dat eUser () contacts the EJB middle-tier and
searches for a User entity bean that matches the user-supplied ID, useri d.
The implementation then checks that the user-supplied password,

account Passwor d, matches the password from the User entity bean.

156

Worker Beans

Example 22: The validateUser() Method

Il Java
public class CQustonerSession inplenents java.io. Serializable {

publ i ¢ bool ean val i dateUser () {
try {

Initial Context ctx = new Initial Context();

User Hone uhore = (User Hone) Port abl eRenot eChj ect . nar r ow(
ct x. | ookup("j ava: conp/ env/ al | daybanki ng/ User "),
User Hone. cl ass

)i

nyUser Bean = uhore. fi ndByPri naryKey(useri d);

} catch (Exception ex) {
exception = ex;

return fal se;

}
String dbpwd;

// Retrieve the password fromthe database
try {
dbpwd = nyUser Bean. get Accpwd ();
} catch (Exception e) {
Systemout.println ("Exception " + e);
return fal se;

}

/l Let's just make sure the passowd is ok by conparing it
/1 with what the user has supplied
i f (account Password. equal s(dbpwd)) {
isValid = true;
return true;
} /1 end of if ()

return fal se;

157

CHAPTER 7 | J2EE Presentation Layer

The NewRegSession Bean

Overview

Outline of the NewRegSession
bean class

158

The purpose of the NewRegSessi on bean is to enable new users to register
with the AllDayBanking application. The NewRegSessi on bean receives the
user's registration details from a HTML form and then registers the user by
creating a new User entity bean in the EJB middle tier.

Example 23 gives an extract from the NewRegSessi on bean class, showing
the bean attributes and method signatures, without the implementation
code. The NewRegSessi on bean has several attributeName attributes, as
represented by the methods of the form set AttributeName() and

get AttributeName() .

All of the NewRegSessi on bean attributes are set automatically by the New
User Registration Web form—see “The New User Registration Web Form”
on page 167 for details.

Example 23: Extract from the NewRegSession Bean Class

Il Java
package al | daybanki ng. web;

public class NewRegSessi on inpl enents Serializable {
private String | astnane;
private String firstnane;
private String userid;
private int account Nunber ;
private int creditcardNunber;
private String password(ne;
private String passwordTwo;
private String enail Address;

I L

/] Bean attributes (set by Wb form

I L

public void setFnane (String fn) { ... }
public String getFnane () { ... }

public void setlLnane (String In) { ... }
public String getLnane () { ... }

Adding the user to the database

Worker Beans

Example 23: Extract from the NewRegSession Bean Class

public void setWserid (Stringid) { ... }
public String getUserid () { ... }

public void setAccnum (int accnunm) { ... }
public int getAccnum () { ... }

public void setCcnum(int ccnum) { ... }
public int getCnum () { ... }

public void setBEmiladdr (String addr) { ... }
public String getEmailaddr () { ... }

public void setAccpwdone (String pwd) { ... }
public String getAccpwdone () { ... }

public void setAccpwdtwo (String pwd) { ... }
public String get Accpwdtwo () { ... }

/1 Nul'l constructor as required for a bean
publi c NewRegSession () {

public void addUser () throws UserA readyExi st SExcepti on,
Account Val i dat i onExcepti on
{...}
}

The NewRegSessi on. addUser () method is responsible for registering a new
user by creating a new User entity bean in the EJB middle tier to represent
the registered user. The implementation of this method is not shown here.

For an example of how a worker bean can contact the EJB middle tier, see
the implementation of the Qust oner Sessi on. val i dat eUser () method in
“Validating the user identity” on page 156.

159

CHAPTER 7 | J2EE Presentation Layer

The WebHelper Class

Overview The WebHel per class declares static methods that return references from
beans in the EJB middle tier. This provides JSPs with a quick and easy way
of accessing enterprise beans in the EJB middle tier.

Getting a reference to an Example 24 gives the implementation of the VebHel per. get I net Account ()
InetAccount enterprise bean static method, which creates and returns a reference to an I net Account
session bean from the middle tier.

Example 24: /mplementation of the getinetAccount() Method

/1l Java
package al | daybanki ng. web;

public class VWbHel per inplements Serializable {

public static |netAccount getlnetAccount ()

{

I net Account | net Account Cbj ect = null;

try {
Initial Context ctx = new Initial Context();
| net Account Hone vhone
= (I net Account Hone) Port abl eRenot eChj ect . nar row (
ct x. | ookup("j ava: conp/ env/ al | daybanki ng/ | net Account "),
| net Account Hone. cl ass
JE
| net Account (bj ect = vhore. creat e();
} catch (Exception ex) {
exception = ex;
}

return | net Account Cbj ect ;

160

Using a JSP to Process a Web Form

Using a JSP to Process a Web Form

Overview

Overview of Web form processing

One of the common uses for a JSP is to process the data from a HTML Web
form and generate an appropriate response. This section presents two
examples from the AllDayBanking application, the /ogin Web form and the
new user registration Web form, that show how to process a Web forms

using JSP.

worker bean as the JSP processes the Web form data.

@ User clicks Submit

Web Form
| I—
| I—

JSP

Figure 38 shows the typical interaction between a Web form, JSP, and a

Set attributes |

Use the bean_|

<
<

@ JSP generates a response

Worker Bean

setAttrl()
setAttr2()

3
.
*

Figure 38: Processing Web Form Data Using a JSP

161

CHAPTER 7 | J2EE Presentation Layer

Stages of Web form processing

In this section

162

The stages shown in Figure 38 can be explained as follows:

Stage Description

1 | When a user clicks the Submit button on the Web form, the
form data is sent to a particular JSP using the HTTP protocol.

2 | The JSP uses the <j sp: useBean> and <j sp: set Property> tags
to send the form data to the worker bean. See “Processing the
form action” on page 165 for more details.

3 | The JSP uses methods defined on the worker bean to help it
process the form data.

4 | Based on the results of processing the form data, the JSP

generates a response (either generating HTML directly or
forwarding to a different page).

This section describes how the following Web forms are processed:

The Login Web Form page 163

The New User Registration Web Form page 167

Using a JSP to Process a Web Form

The Login Web Form

Overview When a user initially connects to the AllDayBanking application (by linking
to htt p: // HostName: 8080/ Al | DayBanki ng/), the user is presented with a
login form. After the user clicks the Submit button, the form is processed by
the mai n. j sp JSP working in conjunction with the Qust oner Sessi on worker
bean.

The Login page Figure 39 shows the first page of the AllDayBanking application, which
consists of a HTML Web form that prompts the user for the following login
data:

® FNB UserlD
® FNB Online Password

/3 Welcome to FNB's ALL Day Banking - Microsoft Internek Explore: =181 x|
J File Edit Wiew Favorites Tools Help | T
J 4=EBack ~ = - @ ot | @Search (] Favarites @History ||%v = |JLinks »
J Address I@ C:\Projects\FNE_updatelibankialDayBankingsrciweb SEUfF warywebiindes:, html j (“PGD

First Northern Bank T

Enter your account humber / password to log on:

FNE UserlD: |

FHB Online Password: |

I'm a new user, Sign me up for an account please,

Login | Clearl
sl

|@ l_ l_ |@‘ [y Compuker 5

Figure 39: The Login Page of the AllDayBanking Application

163

CHAPTER 7 | J2EE Presentation Layer

The form HTML source Example 25, which is an extract from the AllDayBanking i ndex. ht ni file,
gives the HTML source for the Login Web form depicted in Figure 39 on
page 163.

The form defines two input fields, useri d and accpwd, and specifies the
form action to be nain. j sp.

Example 25: Web Form from the AllDayBanking index.html File

<ht m >

<FCORM ACTI ON="nai n. j sp" METHOD=" post ">

<P>

<FCNT S| ZE="3">
Enter your account nunber / password to |og on: </ B>
</ FCNT>

<P>

<TABLE BORDER="0">
<TR>
<TD>FNB Wser | D </ TD>
<TD ALI G\="l eft">
<I NPUT TYPE="text" S| ZE="25" NAME="userid">
</ TD>
</ TR>
<TR>
<TD>FNB Onl i ne Passwor d: </ TD>
<TD ALI G\="l eft">
<I NPUT TYPE="password" Sl ZE="25" NAME="accpwd" >
</ TD>
</ TR>
</ TABLE>

<P>I'ma new user Sign nme up for an
account pl ease.
</ P> <P>
<I NPUT TYPE="submit" VALUE="Login">
<I NPUT TYPE="reset" VALUE="O ear">
</ P>
</ FCRW

</htm >

164

Using a JSP to Process a Web Form

Processing the form action When the user clicks Submit on the Web form, the form data, useri d and
accpwd, is posted to mai n. j sp (the specified action for the form).
Example 26 shows the JSP script from the mai n. j sp file, which is
responsible for processing the form data.

Example 26: The AllDayBanking main.jsp File

<l-- JSP -->
<Yg@page info = "Validating user details..." %
<Y@page | anguage = "java' %

<Yg@page i nport = "al | daybanki ng. web. \ébHel per" %
<@ page i nport = "al | daybanki ng. sessi on. val i date" %

1 <j sp:useBean
id = "inet Session"
cl ass = "al | daybanki ng. web. Qust oner Sessi on"
scope = "session">
</ j sp: useBean>

2 <jsp:setProperty name="i net Sessi on" property="*"/>

<HTM_>
<HEAD>
<TI TLE>W¢| cone to FNB's Al Day Banki ng</ Tl TLE>
</ HEAD>

<%
/1l R ght, before anything happens, we need to validate that
this userid
/] password conbination is valid

3 if (inetSession.validateUser() == false) {
4 response. sendRedi rect (" Not Regi stered. htm");
} else { %
5 <j sp: forward page="Ledger.jsp"/>;
<%
}
%
</ HTM_>

165

CHAPTER 7 | J2EE Presentation Layer

166

The preceding JSP script can be explained as follows:

1.

The <j sp: useBean> tag establishes a reference to a Qust oner Sessi on
worker bean. The Qust oner Sessi on bean instance can be accessed
throughout this script using the i net Sessi on handle.

The <j sp: set Propert y> tag sends all of the form data to the

Qust oner Sessi on bean (identified by its handle, i net Sessi on). This
tag uses Java reflection to match the useri d and accpwd form
properties to the corresponding set Useri d() and set Accpwd()
attribute methods defined on Cust oner Sessi on.

The JSP calls val i dat eUser () on the Qust oner Sessi on bean
(represented as i net Sessi on) to verify that the user ID and password
are correct.

The r esponse object is the

javax.servlet. http. HtpServl et Response object that is associated
with this page. The r esponse identifier is implicitly defined for every
JSP.

The <j sp: f or war d> action enables the HTTP request to be forwarded
to another HTML page, JSP, or servlet.

Using a JSP to Process a Web Form

The New User Registration Web Form

Overview

The New User Registration page

If a user is about to use the AllDayBanking application for the first time, the
user can follow the new user link on the AllDayBanking home page (see
Figure 39 on page 163) to arrive at the New User Registration Web form.

After the user fills in the registration details and clicks the Submit button,
the form is processed by the regi ster. j sp JSP working in conjunction with
the NewRegSessi on worker bean.

Figure 40 shows the New User Registration page of the AllDayBanking
application, which consists of a HTML Web form that prompts the user for
the following registration data:

Last Name

First Name

Your Preferred UserID
Email Address

Account Number

Credit Card Number

Online Password

Online Password (Repeated)

167

CHAPTER 7 | J2EE Presentation Layer

168

/3 New User Details - Microsoft Internet Explorer yon T-Online z =1ax]
J File Edit View Favorites Tools Help | T
J 4=Eack - = - &) 7t | Qhsearch [Favorites £ 8 Histary ||%v = i |JLinks e
J Address I@ C:\Projects\FHE_updatelibankialDayBankingsrolwebStuff wariwebitewlser, html j ﬁGo

- —

First Northern Bank [T

New User Registration

In order to use FNE's A1l Dlay Banking Service, please complete the following details and then
hit the submif button to complete the registration cyele.

Last Mame

First Mame

Your Preferred User ID

Account Number

Credit Card Mumber

Online Password

|
|
|
Email 4 ddress |
|
|
|
|

Online Password (Repeated)

Submnit | Clearl

l_ l_ |@l My Compuker

Figure 40: The New User Registration Page of the AllDayBanking
Application

The form HTML source

Using a JSP to Process a Web Form

Example 27, which is an extract from the AllDayBanking NewUser . j sp file,
gives the HTML source for the New User Registration Web form depicted in
Figure 40 on page 168.

The form defines several input fields containing registration data and
specifies the form action to be regi ster. j sp.

Example 27: Web Form from the AllDayBanking NewUser.jsp File

<ht m >
<FCRM ACTI ON="regi ster. jsp" METHCD="post" >

<h1>New Wser Regi stration</hl>

<p>ln order to use FNB's All Day Banki ng Service, please conplete
the followi ng details and then hit the <i>submt</i> button to
conpl ete the registration cycle. </ p>

<TABLE BCRDER="0">
<TR>
<TD>Last Nane</ TD>
<TD ALI G\="1 ef t">
<I NPUT TYPE="text" SIZE="25" NAME="| nane" >
</ TD>
</ TR>
<TR>
<TD>Fi rst Nane</ TD>
<TD ALI G\="1 ef t">
<I NPUT TYPE="text" S| ZE="25" NAME="f nane" >
</ TD>
</ TR>
<TR>
<TD>>Your Preferred Wser |D</ TD>
<TD ALI G\="1 ef t">
<INPUT TYPE="text" Sl ZE="25" NAME="userid" >
</ TD>
</ TR>
<TR>
<TD>Enai | Address</ TD>
<TD ALI G\="1 ef t">
<I NPUT TYPE="text" SIZE="25" NAME="enail addr" >
</ TD>
</ TR>
<TR>
<TD>Account Nunber </ TD>
<TD ALI G\="l ef t">

169

CHAPTER 7 | J2EE Presentation Layer

Example 27: Web Form from the AllDayBanking NewUser.jsp File

<INPUT TYPE="text" SIZE="25" NAME="accnuni >
</ TD>
</ TR>
<TR>
<TD>Credit Card Nunber </ TD>
<TD ALI G\="l ef t" >
<INPUT TYPE="text" Sl ZE="25" NAME="ccnuni >
</ TD>
</ TR>
<TR>
<TD>nl i ne Passwor d</ TD>
<TD ALI G\="l ef t" >
<I NPUT TYPE="password" Sl ZE="25" NAME="accpwdone" >
</ TD>
</ TR>
<TR>
<TD>nl i ne Password (Repeat ed) </ TD>
<TD ALI G\="l ef t"> <I NPUT TYPE="password" S| ZE="25"
NAME=" accpwdt wo" >
</ TD>
</ TR>
</ TABLE>

<I NPUT TYPE="submt" VALUE="Submt">
<INPUT TYPE="reset" VALUE="O ear">

</ FCRV®

</htm >

170

Processing the form action

3

Using a JSP to Process a Web Form

When the user clicks Submit on the Web form, the form data is posted to
regi ster.jsp (the specified action for the form). Example 28 shows the
JSP script from the regi ster. j sp file, which is responsible for processing
the form data.

Example 28: The AllDayBanking register.jsp File

<Y%Page content Type="text/htm "%

<ht m >

<head><titl e>New User Registration Details</title></head>
<body>

<j sp: useBean
id = "regSession"
class = "al | daybanki ng. web. NewRegSessi on"
scope = "session">

</ j sp: useBean>

<j sp: set Property name="regSessi on" property="*"/>
<%

try {
regSessi on. addUser () ;
} catch (alldaybanki ng. web. User Al r eadyExi st sExcepti on uae) {
%
<HL>Sor ry</ H1>
<P>Your account was not created. </ P>
<P>Thi s user ID al ready exists.</P>
<P>Pl ease try
agai n</ A>. </ P>
<%
return;
} catch (alldaybanki ng. web. Account Val i dati onExcepti on ex) {
%
<HL>Sor ry</ H1>
<P>Your account was not created. </ P>
<P><%ex%</ P>
<P>Pl ease try
agai n</ A>. </ P>
<%
return;
} %

<HL>Wé| come</ H1>

171

CHAPTER 7 | J2EE Presentation Layer

Example 28: The AllDayBanking register.jsp File

<P>Your account has been created. </ P>
<P>Pl ease log in at <A href="/A | DayBanki ng"
target ="_t op">Al | DayBanki ng</ A>. </ P>
</ body>
</htm >

The preceding JSP script can be explained as follows:

1. The <j sp: useBean> tag establishes a reference to a NewRegSessi on
worker bean. The NewRegSessi on bean instance can be accessed
throughout this script using the r egSessi on handle.

2. The <j sp: set Propert y> tag sends all of the form data to the
NewRegSessi on bean (identified by its handle, regSessi on). This tag
uses Java reflection to match each of the form properties to the
corresponding attribute set methods defined on NewRegSessi on (see
“The NewRegSession Bean” on page 158).

3. The JSP calls addUser () on the NewRegSessi on bean to create a new
Wser entity bean in the EJB middle tier for this user.

172

Using a JSP to Access an Enterprise Bean

Using a JSP to Access an Enterprise Bean

Overview

The PayBill JSP

Accessing the InetAccount
enterprise bean

In addition to accessing worker beans, a JSP can also access enterprise
beans in the EJB middle tier directly. For example, this section describes the
AllDayBanking PayBi | | . j sp script which accesses an I net Account session
bean.

After a user has logged in and gained access to an account, the
AllDayBanking application presents the user with a menu of actions to
perform. One of the available actions is to pay a credit card bill out of funds
from the user's account. The PayBi | | . j sp script implements the first step of
this action.

Example 29 shows the JSP script from the PayBi | | . sp file, which checks
the balance remaining in the user’s account and presents the user with a
simple form to fill in.

Example 29: The AllDayBanking PayBill.jsp File

<l-- JSP -->
<% page | anguage = "j ava" %

"al | daybanki ng. web. \bHel per" %
"al | daybanki ng. sessi on. val i date" %
"al | daybanki ng. sessi on. | net Account" %

<% page i nport
<% page i nport
<% page i nport

<j sp: useBean
id = "inetSession"
cl ass = "al | daybanki ng. web. Qust oner Sessi on"
scope = "session">

</ j sp: useBean>

<HTM_>
<HEAD>
<link rel ="STYLESHEET" type="text/css" href="|ayout.css"/>
</ HEAD>

<%

try {
i net Sessi on. i sVal i dSession ();

173

CHAPTER 7 | J2EE Presentation Layer

Example 29: The AllDayBanking PayBill.jsp File

} catch (al |l daybanki ng. web. Sessi onOver Exception ex) { %
<j sp: forward page="Sessi onExpired. htm"/>
<%
java. text . Deci mal For mat df 2
= new j ava. t ext . Deci mal For mat (" ###, ###, ##0. 00") ;
1 I net Account iacc = WWbHel per. get | net Account ();
%
<BODY>
<H3>Credit Card Bill Paynent: </ H3>
<P>How nuch do you want to pay onto your Credit Card? </ P>

<FCRM ACTI O\E" Conf i r iPay. j sp” METHOD=" post " >
<INPUT TYPE="text" SlZE="25" NAVE="amount"> </ TD>

2 <P>Max. val ue you can clear is <%
df 2. f or mat (i acc. get Bal ance(i net Sessi on. get AccNun()))
% </ P>

<INPUT TYPE="submt" VALUE="Pay Bill">
</ FORV>

</ BCDY>
</ HTM_>

The preceding JSP script can be explained as follows:

1. The al | daybanki ng. web. WebHel per class defines a static method,
get I net Account (), that creates a new | net Account session bean in
the EJB middle tier and returns a remote reference, i acc. See “The
WebHelper Class” on page 160.

2. The getBal ance() method is invoked on the remote I net Account
session bean to obtain the balance on the user’s account.

174

Part IlI

COMet and .NET Clients

In this part This part contains the following chapters:

Visual Basic COMet Client page 177

C# .NET Client page 191

In this chapter

CHAPTER 8

Visual Basic
COMet Client

The FNB demonstration includes a simulation of an Automated
Teller Machine (ATM), which is implemented in Visual Basic.
The ATM client is implemented using DCOM automation and
access to CORBA servers is provided through COMet (IONA’s
implementation of a COM/CORBA bridge).

This chapter discusses the following topics:

Overview of the Visual Basic Client page 178

Implementation of the Visual Basic Client page 182

177

CHAPTER 8 | Visual Basic COMet Client

Overview of the Visual Basic Client

Overview Figure 41 shows the architecture of the Visual Basic ATM client application.
The Visual Basic client communicates with the CORBA mid-tier server and
the CORBA back-end server, using IONA’s COMet to bridge between DCOM

and CORBA.
oo Presentation Layer ---------) pommmmmmmee- CORBA Layers ~~"""======73
i i E Mid-Tier Server Back-End Server i
| 1 ! o !
; P i
' |Visual Basic oo |
i Client i ! !
: COMet Typestore) | CORBA Interface CORBA Namlng |
! Repository Service '
: o |
e A
Figure 41: Architecture of the Visual Basic ATM Client Application
Visual Basic Client The ATM demonstration is implemented as a Visual Basic client, which is

augmented by the COMet libraries and interfaces. IONA’s COMet acts as a
bridge between the Visual Basic client and the CORBA servers in the
mid-tier and back-end. The Visual Basic automation client accesses the
CORBA servers with the help of the type information cached in the COMet
typestore.

178

COMet typestore

CORBA interface repository

CORBA naming service

Starting the ATM demonstration

Overview of the Visual Basic Client

The COMet typestore must be populated by the types obtained from the

f nbba and bankobj ect s OMG IDL modules. The automation client cannot
bind to the FNB CORBA servers or use any of the CORBA data types unless
the COMet typestore is populated.

For a particular Orbix configuration domain, Domain, the files that comprise
the COMet typestore are located in the following directory:
OrbixInstallDir\ var\ Domain\ dbs\ COVet

If an automation client cannot find the types it needs in the COMet
typestore, the COMet typestore automatically attempts to load the required
types from the CORBA interface repository (IFR).

The IFR is a CORBA-specific type repository. In general, you can populate
the IFR using the Orbix i dI compiler utility. For example:
idl -RIDLFile.idl

The fnb\ bui | d. xni ant build file provides a popul ate_i fr target to register
the demonstration IDL files.

Visual Basic clients can use the COMet API to look up CORBA object
references in the naming service. For example, in this demonstration the
ATM client looks up the FNBBA Busi nessSessi onManager name in order to
bind to the f nbba: : Busi nessSessi onManager object in the mid-tier server.

You can run the ATM client demonstration as follows:

1. Make sure that the basic Orbix services, FNB back-end (i t ant
start _backend) and FNB mid-tier (i tant start_fnbba) are all
running.

2. If the COMet typestore is not already primed, you need to populate the
IFR with the relevant IDL interfaces. Do this by invoking the following
ant target from the OrbixInstallDin asp\ 6. 1\ denos\ f nb directory:

itant populate_ ifr

179

CHAPTER 8 | Visual Basic COMet Client

3. Run the ATM Visual Basic client as follows:

cd OrbixinstallDir\ asp\ 6. 1\ deros\ common\ f nb\ at m
at m exe

=101 |

~Welcome to FNB

Enter your PIN
Ii
ok |

oK

Figure 42: The ATM Client Welcome Screen

ATM demonstration session A typical ATM client session consists of the following steps:

1. Start the ATM session—when you run at m exe, the welcome screen
appears as shown in Figure 42.
Normally, if you were using a real ATM, the machine would know
which account you want to access as soon as you insert your card. The
ATM client simulates this behavior by picking an account implicitly
(the first in the list), instead of asking you for an account number.

2. Validate the PIN—you must enter a four-digit PIN before you can
proceed. In this demonstration, the PIN is not checked, but it must be
four digits long.

180

Overview of the Visual Basic Client

Show account details—the ATM client contacts the back-end server to
retrieve the account balance and the list of recent transactions for this
account.

Withdraw cash—the ATM client debits the specified amount from the
customer’s account in the back-end.

181

CHAPTER 8 | Visual Basic COMet Client

Implementation of the Visual Basic Client

Overview This section presents some code extracts from the ATMFor m f r mfile,
discussing aspects of the code that are relevant to CORBA programming in
Visual Basic.
Location of the demonstration The ATM Visual Basic client code is located in the following directory:
code OrbixInstallDin asp\ Version\ denos\ cormon\ f nb\ at m
In this section This section contains the following subsections:
Starting the ATM Session page 183
Showing Account Details page 186
Withdrawing Cash page 188

182

Implementation of the Visual Basic Client

Starting the ATM Session

Overview

Form_Load subroutine

(S0

This section describes the Visual Basic subroutine, For m Load(), that runs
during start-up to initialize the ATM client application.

This example shows you how to use the COMet API to bind to remote
CORBA objects—for example, by looking up object references in the CORBA
naming service. Also, this example shows you how to narrow a base OMG
IDL interface type to a derived interface type.

The Form Load() subroutine from the ATMFor m fr mfile is defined in
Example 30.

Example 30: The ATM Form_Load() Subroutine

Private Sub Form Load()
Set up the CRB

Set obj ORB = Creat e(hj ect (" CORBA CRB. 2")
Set obj Fact = Oreatej ect (" OCORBA Factory")
I'f Runni ngl nl de Then
obj CRB. Runni ngl nl de
End | f
D m obj SessMyr As (bj ect, obj SessType As (bj ect
Set obj SessMyr =
obj Fact . Get (bj ect (" f nbba/ Busi nessSessi onMVanager : NAVE_SERVI CE:
FNBBA Busi nessSessi onManager ")

Get an ATM sessi on

Set obj SessType = obj Fact . cr eat et ype(

Not hi ng,

"f nbba/ Sessi onl nfo_s"

)

obj SessType. user nane = "ATMker"
obj SessType. password = "kj 8yhj "
obj SessType. sessi on_type = "ATM
obj SessType.client_id = "ATM & Rnd(200)
Set obj Sess = obj SessMyr. openSessi on(obj SessType)

It returns a generic session so convert it into the ATM
Sessi on obj ect

183

CHAPTER 8 | Visual Basic COMet Client

Example 30: The ATM Form_Load() Subroutine

Dmior As String
i or = obj ORB. obj ecttostri ng(obj Sess)
Set obj Sess = obj Fact . Get (bj ect (" f nbba/ ATiMBessi on: " & i or)

O

Simul ate the sw ping of a card by picking the first
current account |isted

D m accts
accts = obj Sess. get Account Li st ("CQurrent")
accNo = accts(0)

' Ask for the PIN

showPl NFr arme
End Sub

The preceding Visual Basic subroutine can be explained as follows:

1. This line creates a CORBA : ORB object (defined by the
DI O bi xORBbj ect automation interface), which the client application
can use to control certain properties of the ORB. CORBA. ORB. 2 is the
standard Automation/CORBA-compliant ProglD for the local ORB
object.

2. This line creates a new CORBA factory object (defined by the
DI QORBAFact ory and DI OORBAFact or yEx automation interfaces). The
CORBA factory object is used to create new object references that bind
to remote CORBA objects. OORBA. Fact ory is the standard
Automation/CORBA-compliant ProglD for the CORBA factory.

3. The Runni ngl nl DE method changes the internal shutdown policy, so
COMet can run in the Visual Basic studio debugger.

4. This line allocates space for two CORBA objects references, as follows:
. obj SessMyr —a session manager object, which is an instance of
the f nbba: : Busi nessSessi onManager OMG IDL interface.
. obj SessType—a structure data type, which is an instance of the
f nbba: : Sessi onl nf o_s OMG IDL data type.
5. This line contacts the CORBA naming service to obtain a reference to a
business session manager object. The string argument to Get Qoj ect ()
has the following format:

184

Implementation of the Visual Basic Client

CORBATypelD: NAME_SERVI CE: ObjectName

Where CORBATypelD is the scoped name of the IDL type, using /
instead of : : as the scope separator; NAME_SERVI CE indicates that you
want to look up the object in the CORBA naming service; and
ObjectName is the name of the object in the naming service.

The O eat eType() method is used to create an instance of an OMG
IDL complex type.

The first parameter indicates the scope with respect to which the
second parameter is interpreted. Global scope is indicated by passing
the Not hi ng parameter. The second parameter is the scoped name of
the IDL type, using / instead of : : as the scope separator

This line calls the f nbba: : Busi nessSessi onManager : : openSessi on()
IDL operation to create a new user session on the middle-tier server.
The return value, obj Sess, is a session object of

f nbba: : Busi nessSessi on type, which is the base type for a user
session.

Before you can use the session object, obj Sess, it must be narrowed
(or cast) to the type, f nbba: : ATMsessi on, which derives from the

f nbba: : Busi nessSessi on IDL interface.

The first step is to convert obj Sess into a stringified Interoperable
Object Reference (IOR), by calling the Qoj ect ToSt ri ng() method on
the ORB with obj Sess as the argument.

The user session is now converted to an object of f nbba: : ATMsessi on
type by calling the Get bj ect () method on the CORBA factory. The
argument to Get vj ect () has the following form:
DerivedCORBATypelD: Stringified/OR

Where DerivedCORBATypelD is the type ID of the derived type that
you want to narrow to. The Stringified/OR consists of | R followed by
a long sequence of two-digit hexadecimal numbers (essentially, a hex
dump of the IOR’s contents).

185

CHAPTER 8 | Visual Basic COMet Client

Showing Account Details

Overview This section describes the Visual Basic subroutine, showbet sFrane(), that
retrieves a customer’s account transaction history from the CORBA
back-end server.

This example illustrates how a complex OMG IDL type maps to Visual Basic.
The transaction list is represented as an array of structures in Visual Basic.

showDetsFrame subroutine The showDet sFrane() subroutine from the ATMFor m f r mfile is defined in
Example 31.

Example 31: The ATM showDetsFrame() Subroutine

Private Sub showbDet sFrane()
1 D mtxns
D mtxno As |nteger
FramePI N Vi si bl e = Fal se
FrameAction. Vi si bl e = Fal se
FrameDets. Visible = True
FrameWt hdraw. Vi si bl e = Fal se
2 t xt Bal . Text = acc. account bal ance
| st Txn. d ear
3 txns = acc. recent Transacti ons
4 For txno = WBound(txns) To O Step -1
| st Txn. Addl tem t xns(txno) . Date & " - " &
txns(txno).record_type + " - " & txns(txno). Val ue
Next txno
End Sub

The preceding Visual Basic subroutine can be explained as follows:

1. This line allocates an object, t xns, which will be used to hold the
complex CORBA type, bankobj ect s: : Account Transact i ons.

2. This line invokes the remote bankobj ect s: : Account : : account Bal ance
attribute on the CORBA back-end server.

3. This line invokes the remote
bankobj ect s: : Account : : recent Transact i ons() operation, with a
return value of bankobj ect s: : Account Transact i ons type (an IDL
sequence).

186

Implementation of the Visual Basic Client

The t xns object is an array of structures in Visual Basic. It is derived
from the Account Transact i ons OMG IDL type, defined as follows:

/] 1DL
nodul e bankobj ects {
struct BankTransacti on {
short id;
string date;
string record_type;
string val ue;
ik

t ypedef sequence<BankTransacti on> Account Tr ansact i ons;

B

187

CHAPTER 8 | Visual Basic COMet Client

Withdrawing Cash

Overview This section describes the Visual Basic subroutine, wi t hdraw() , that
implements withdrawing cash from a customer’s current account.

This example illustrates how to handle exceptions raised by a remote
CORBA server.

withdraw subroutine The wi t hdraw() subroutine from the ATMFor m fr mfile is defined as
Example 32.

Example 32: The ATM withdraw() Subroutine

Private Sub wit hdraw(amount As | nteger)
1 On Error Resune Next

2 acc. wi t hdrawf unds (anount)
check if there was an error
3 If Err.Description = "OCRBA Wser Exception

: [bankobj ect s: : | NSUFFI O ENT_FUNDS] " Then
MsgBox "I nsufficient funds to wthdraw
Exit Sub

End | f
If Err.Number = O Then
MsgBox " Pl ease take your cash"

E se
MsgBox " Communi cation error"
End | f
showAct i onFr ane
End Sub

The preceding Visual Basic subroutine can be explained as follows:
1. Because the remote operation is liable to throw an exception, this line
instructs the application to catch the error locally.

2. Invoke the remote IDL operation, wi t hdr awFunds() , on the
bankobj ect s: : Account IDL interface. This operation will throw an
exception, if the amount to withdraw exceeds the customer’s overdraft
limit.

3. This line checks for a CORBA user exception. The Err. Descri pti on
string for CORBA user exceptions has the following format:
"QORBA User Exception :[ScopedExceptionName]"

188

Implementation of the Visual Basic Client

Where ScopedExceptionName is the scoped exception name in OMG
IDL syntax (that is, using : : as the scope separator).

189

CHAPTER 8 | Visual Basic COMet Client

190

In this chapter

CHAPTER 9

C# .NET Client

The FNB demonstration includes a Web services application
that simulates making credit card purchases online.
Complimentary to this, FNB provides a simple C# client
implemented using .NET technology that allows an
administrator to monitor the list of registered merchants using
the service.

This chapter discusses the following topics:

Overview of the C# Client page 192

Implementation of the C# Client page 196

191

CHAPTER 9 | C# .NET Client

Overview of the C# Client

Overview

themselves and transact online purchases. The C# client is a monitoring
utility that lists merchant details and is intended as an aid for Web site

Figure 43 shows the architecture of the C# online purchasing client
application. The interface to e-commerce clients is exposed as a Web
service over SOAP/HTTP. Merchants use this Web interface to register

administrators.

WS Client

HTTP

C# Client

» Container

1IOP

i
1
1
1
1
1
1
1
1
E
1
Web Services |
|
i
1
1
1
1
1
1
1
1
1
1

1IOP

"""""" - CORBA Layers

A 4

Mid-Tier Server

.NET
Metadata

192

Back-End Server

CORBA Interface

Repository

Figure 43: Architecture of the C# Online Purchasing Client Application

CORBA Naming
Service

Web services client

C# .NET client

CORBA interface repository

.NET metadata

Overview of the C# Client

The Web services client is a browser-based client that can be used to
register merchants and make purchases online. The online purchasing Web
service is intended to be used by e-commerce companies (that is,
merchants) that sell goods online by debiting a customer’s credit card.

For complete details of how to build and run the Web services application,
see the First Northern Bank Tutorial.

The C# .NET client is a simple utility that lists details of the merchant
accounts currently registered with the online purchasing manager. The Orbix
.NET connector technology is used to bridge between the C# .NET client
and the mid-tier CORBA server.

The interface repository (IFR) is a CORBA-specific type repository. In
general, you can populate the IFR using the Orbix i dI compiler utility. For
example:

idl -R/DLFile.id

The .NET metadata must be populated by the types obtained from the

f nbba and bankobj ect s OMG IDL modules. The .NET client cannot bind to
the FNBBA server or use any of the CORBA data types unless the .NET
metadata is populated.

For example, you can populate the .NET metadata with the types from the
f nbba and bankobj ect s modules as follows:

idl -R BusinessSessi onManager.id Account.idl
itts2il fnbba bankobjects

The first command populates the CORBA interface repository with the f nbba
and bankobj ect s type definitions. The second command populates the .NET
metadata with all of the type definitions from the CORBA interface
repository, producing a single DLL file:

fnbba. dl |

This file is called a . NET metadata assembly. It is packaged in the form of a
DLL file and contains the MSIL type definitions derived from the f nbba and
bankobj ect s OMG IDL modules.

193

CHAPTER 9 | C# .NET Client

CORBA naming service

Prerequisites for developing

Running the C# .NET client

194

The C# .NET client uses the .NET remoting API to look up CORBA object
references in the naming service. For example, in this demonstration the

.NET client looks up the FNBBA Busi nessSessi onManager name in order to
bind to the f nbba: : Busi nessSessi onManager object in the mid-tier server.

If you are planning to develop C# .NET applications, you need at least the
Microsoft .NET Framework 1.1 and Microsoft Visual Studio .NET 2003
installed on your machine.

In order to run the C# .NET client executable, the following prerequisites
must be satisfied:

® You have the Microsoft .NET Framework 1.1 installed on your machine
(available from http://windowsupdate.microsoft.com/).

® The .NET metadata has been primed with the types mapped from the
fnbba IDL module.

® The requisite .NET metadata assemblies are on your path:
. f nbba. dl |
. O bi x. Rermoti ng. dl |

® The following Visual C++ runtime DLLs must be on your path:
. nsver 71. dl |
. msvep7l. di |

You can then run the C# .NET client from the
\ f nb\ onl i nepur chasi ngnanager\ onl i nepur chasi ngmanager \ bi n\ Rel ease
directory, as follows:

onl i nepur chasi ng. exe

http://windowsupdate.microsoft.com/

Overview of the C# Client

Assuming that you have already registered a few merchant accounts using
the Web services client, you will see a GUI window similar to Figure 44.

ﬂgFNB Online Purchasing Manager - |EI|1|

350 —Account Details

389

388 Account Mo. I41 43

386 Ace Type IEurrent

385

ggg Firzt Name I
Last Name ISpannerM art
Balance I??3.5

List
Merchants

Figure 44: The Online Purchasing Manager C# Client

195

CHAPTER 9 | C# .NET Client

Implementation of the C# Client

Overview

Location of the demonstration
code

In this section

196

This section describe the basic steps required to develop a C# client that
uses the Orbix .NET connector technology. The code extracts in this section
are taken from the For nt. cs file.

The online purchasing manager client code is located in the following
directory:

OrbixInstallDin asp\ Version\ denos\ common\ f nb\ onl i nepur chasi ngnanager
\ onl i nepur chasi ngmanager \

This section contains the following subsections:

Importing .NET Metadata page 197

Initializing the Online Purchasing Manager Client page 198

Implementation of the C# Client

Importing .NET Metadata

Overview

Orbix remoting .NET metadata

Generating .NET metadata

Importing .NET metadata

A basic prerequisite for accessing CORBA servers from a .NET application is
that all of the OMG IDL data types be converted into .NET metadata. The
.NET metadata enables .NET applications to access CORBA objects and
data using C# syntax.

To integrate a .NET application with Orbix, you must import the Orbix
remoting .NET metadata from the following file:

OrbixInstallDin\ bi n\ Or bi x. Renot i ng. dI |

For each OMG IDL module that you want to access, you need to generate a
.NET metadata assembly.

For example, to produce a .NET metadata assembly for the f nbba and
bankobj ect s OMG IDL modules:

itts2il fnbba bankobjects

This command produces the following DLL file:
fnbba. dl |

To import the .NET metadata assemblies into your .NET project, use the
Visual Studio .NET Project|Add References dialog.

197

CHAPTER 9 | C# .NET Client

Initializing the Online Purchasing Manager Client

Overview This section describes the C# subroutine, For ml_Load(), that runs during
start-up to initialize the online purchasing manager client.
This example shows you how to use Orbix .NET connector to look up a

CORBA object reference in the CORBA naming service and invoke
operations on the object reference.

Form1_Load function The Forml_Load() subroutine from the For ni. cs file is defined in
Example 33.

Example 33: The Online Purchasing Form1 Load Function

/1 C#

1 using System Runti ne. Renmot i ng. Channel s;
usi ng System Runti me. Renot i ng. Messagi ng;
usi ng | ONA Renot i ng;
usi ng f nbba;
usi ng bankobj ect s;

namespace onl i nepur chasi ngnanager
{
public class Fornml : System W ndows. For ns. Form
{
private Randomr = new Randon();
private OnlinePurchasing op;
private Busi nessSessi on sess;

private void Fornl_Load(
obj ect sender,
System Event Args e

2 Channel Servi ces. Regi st er Channel (
new O bi xd i ent Channel ()
JE
3 op=(nl i nePur chasi ng) Acti vator. Get (bj ect (
t ypeof (nl i nePur chasi ng) ,
"NS: FNBBA Onl i nePur chasi ng"

198

Implementation of the C# Client

Example 33: The Online Purchasing Form1 Load Function

Busi nessSessi onianager
bsm = (Busi nessSessi onManager)
Acti vat or. Get bj ect (
t ypeof (Busi nessSessi onManager) ,
"NS: FNBBA Busi nessSessi onManager "
DB
Sessi onlnfo_s si s=new Sessionlnfo_s();
si s. sessi on_t ype="Busi ness";
sis.client_id="onlinepurch" +
r. Next (10000) ;
si s. user nane="ai dan";
si s. passwor d="f 00" ;

sess = bsm openSessi on(ref sis);

The preceding C# code can be explained as follows:

1. The using statements indicate that the client is using the .NET
remoting interfaces, Syst em Runti me. Renot i ng, the Orbix .NET
connector interfaces, | ONA Renot i ng, and the f nbba .NET metadata,

f nbba.

2. The call to Regi st er Channel () initializes the Orbix .NET connector,
making it available through the .NET remoting API.

3. This line, invoking Get oj ect (), shows you how to get a reference to
an f nbba: : Onl i nePur chasi ng CORBA object by looking up the CORBA
naming service. The first parameter is the C# type of the object. The
second parameter consists of NS: followed by the name of the object as
registered in the CORBA naming service.

4. This line shows you how to get a reference to an
f nbba: : Busi nessSessi onManager CORBA object by looking up the
CORBA naming service.

199

CHAPTER 9 | C# .NET Client

5. The Sessi onl nf o_s C# type is based on the following OMG IDL type:

/] 1DL
nodul e fnbba {

struct Sessionlnfo_s {
string usernane;
string password;
string session_type;
string client_id;

IE
};...

The f nbba: : Sessi onl nfo_s OMG IDL struct type maps to the
Sessi onl nfo_s C# struct type.

6. This line invokes the openSessi on() operation on the remote
f nbba: : Busi nessSessi onManager object to initiate a client session on
the mid-tier server.

200

Index

Symbols

#include preprocessor directive 54
<assembly-descriptor> element 103, 144
<cmp-field> element 144, 146
<container-transaction> element 132, 144
<context-root> element 152

<ejb-class> element 132

<ejb-jar> element 103

<ejb-name> element 132
<enterprise-beans> element 103
<entity> element 103, 143

<home> element 132

<jsp:forward> tag 166
<jsp:setProperty> tag 162, 166, 172
<jsp:useBean> tag 162, 166, 172
<persistence-type> element 144
<primkey-field> element 144

<remote> element 132

<session> element 103, 132
<welcome-file-list> element 153

A

accessor methods 127, 138
AccountDelegate class 28
Account interface

implementation 21
AccountManager POA 16
AccountMgr interface

implementation 39
AccountMgr object

lifecycle responsibilities 33
AccountMgr type 5
accountNumList 10
Account objects

creating 33, 41

lifecycle 32

opening 34
Account type

description of design 5

inheritance hierarchy 5
activation

and servants 19

description 15

of a session bean 128

of CORBA objects 14
addUser() method 159
AllDayBanking application

overview 90
application.xml file

<context-root> element 152

and EAR file 100

and EARSCO 95
architecture

of CORBA bank application 13
ATMSessionDelegate class 60
ATMSession type 49
attributes

inIDL 11

readonly 11

B

back-end server

purpose 4
BankObjects POA 16
bean attributes 127, 138
bean class

for entity bean 136

for session bean 125
bean-managed persistence

and ejbFind() methods 140
BusinessSessionDelegate class 60
BusinessSessionManager.idl file 51
BusinessSessionManager POA 56
BusinessSessionManager type

design 48
BusinessSession POA 56
BusinessSession type

design 49

inheritance hierarchy 48

C
CCGT 13
class files
in Web module WAR file 106
Class-Path: entry 121

201

INDEX

code generation

C++ orJava 13
container configuration file 133
container-managed persistence

and deployment descriptor 144

overview 145
Container persistence type 144
CORBA back-end

in a J2EE application 90
CORBA client

GUI organization 64

implementation 81

purpose 64
CORBA Code Generation Toolkit 13, 20, 38
CORBA middle-tier server

IDL for 51

purpose 48
CORBA naming service 43

and name resolution 57

rebind() operation 46

resolve() operation 59
CORBA objects

activation 14

and object ID 15

lifecycle of Account 32
CORBA Persistent State Service 13
CORBA Session Management Plug-In 56
CORBA user exceptions 10
CosNaming package 45
CreateException type 138
create_reference_with_id() operation 43
CreditCardAccount type 5, 6
CurrentAccount type 5, 6
CustomerSession bean 166

methods 155

purpose 155

D

delegate class, serializing 30
delegate object, lifecycle of Account 32
delegation approach 18
and BusinessSession interfaces 60
base classes 61
classes and interfaces for 19
constructor 62
deployment descriptor
for entity beans 142
for session beans 131
Web 106

202

E

EAR file
and J2EE development cycle 92
application.xml file 100
definition 94
directory layout 100
MANIFEST.MF file 100
META-INF directory 100

EARSCO
and J2EE development cycle 92
directory layout 95
ejb-jar.xml file 96
EJB module layout 96
jboss.xml file 96
MANIFEST.MF file 96
purpose 94
tmp directory 97
web.xml file 96
Web module layout 96

ejbActivate() method
in entity bean 140
in session bean 128

ejbCreate() method
implementation for entity bean 141
implementation for session bean 129
in a session bean 128

ejbCreate() methods
in an entity bean 139

EJB deployment descriptor
for entity beans 142

ejbFind() methods 138
in an entity bean 140

ejb-jar.xml file
<assembly-descriptor> element 103, 144
<cmp-field> element 144, 146
<container-transaction> element 132, 144
<ejb-name> element 132
<enterprise-beans> element 103
<entity> element 143
<home> element 132
<persistence-type> element 144
<primkey-field> element 144
<remote> element 132
<session> element 132
and container-managed persistence 146
and EARSCO 96
and entity bean configuration 142
in EJB module JAR 102
session bean configuration 131

ejb-jar file

<ejb-class> element 132
ejbLoad() method

in entity bean 140
EJB module

and EARSCO 96

class files 104

directory layout 102

META-INF directory 102

referencing extra JAR files 97
ejbPassivate() method

in entity bean 140

in session bean 128
ejbPostCreate() methods

in entity bean 139
ejbRemove() method

in entity bean 139

in session bean 128
EJB session bean 124
ejbStore() method

in entity bean 140
EJB to CORBA link 110
enterprise application archive 94

enterprise application archive source code

organization 94
EntityBean base class 137
entity beans
base class 137
bean class 136
configuration 142
definition 136
ejbActivate() method 140
ejbCreate() methods 139
ejbFind() methods 140
ejbLoad() method 140
ejbPassivate() method 140
ejbPostCreate() methods 139
ejbRemove() method 139
home interface 136
lifecycle methods 139
remote interface 136

enum type 54

exceptions, raises() clause 11

F
file suffix, for EAR file 98
finder methods 138
Forte for Java 72

IDE screen layout 73

Source Editor window 75

forward declaration, of IDL interface 11

G
getlnetAccount() method
calling from a JSP 174
implementation 160
GUI client
lodge funds dialog 69
main screen 65
new account dialog 67
open account dialog 66
transfer funds dialog 71
withdraw funds dialog 70
GUI organization 64

H

home interface
for entity beans 136
for session beans 125

HttpServletResponse class 166

|
IdAssignmentPolicy type 16
IDL
compiling 7
definition of 7
inout parameters 54
interface 11
language mappings 13
language neutrality of 7
modules 10
operations 11
preprocessor macros 10
readonly attribute 11
scoping of identifiers 54
sequence type 10, 11
struct type 10
typedef 10
user exceptions 10
IDL attributes 11
IDL compiler 7
-jbase option 119
-jpoa option 119
IDL inheritance 12
idIstubs.jar file 119
index.html file 164
inetAccountBean class

INDEX

203

INDEX

structure 126
inetAccount session bean
as CORBA client 110
purpose 124
InetSession type 49
inheritance
hierarchy for Account 5
inIDL 12
inheritance approach
base classes 40
classes and interfaces 38
constructor 40
overview 37
inheritance hierarchy
of Account types 21
of BusinessSession types 48
initialization service 45
inout parameters 54
integrated development environments
Forte for Java 72
NetBeans 72
interface
inIDL 11
interface, forward declaration 11
interfaces
implementing using delegation 18

J
J2EE development cycle 92
J2EE presentation layer
overview 150
JAR files
creating idIstubs.jar 120
referencing from EJB module 97, 121
referencing from Web module 106
Java compiler 119
Java extension mechanism 97, 121
java_poa_genie.tcl genie 38
-jbase option, of IDL compiler 119
jboss.xml file
and EARSCO 96
in session bean 133
-jpoa option, of IDL compiler 119
JSP
<jsp:forward> tag 166
<jsp:setProperty> tag 162, 166, 172
<jsp:useBean> tag 162, 166, 172
and processing Web forms 161
index.html file 164

204

in the J2EE presentation layer 150
main.jsp file 165

NewUser.jsp file 169

PayBill.jsp file 173

register.jsp file 171

response object 166

L

lifecycle, of Account objects 32
lifecycle methods

for a session bean 128

for entity beans 139
LifespanPolicy type 16

and BusinessSessionManager POA 56
lodgeFunds.form file 69
lodgeFunds.java file 69
lodge funds dialog

description 69
login form 163

M
main.jsp file 165
main screen 65

and dialog windows 81
MANIFEST.MF

in EJB module JAR file 102

in Web module WAR file 105
MANIFEST.MF file

and EAR file 100

and EARSCO 96

and Java extension mechanism 121
META-INF directory

and EAR files 100

in EJB module JAR 102

in Web module WAR file 105
modifier methods 127, 138
multi-threaded POA 14
multi-threading, and CORBA 14

N

NameComponent type 45, 58
NameService object identifier 45
NamingContextExt interface 46, 59
NamingContextPackage package 45
NetBeans 72

newAccount() method 41
newAccount.form file 68
newAccount.java file 68

new account dialog 67
NewRegSession bean
attributes and methods 158
purpose 158
NewUser.jsp file 169
New User Registration Web form 167

o
object ID
and activation 15
and object references 43
and servants 19
object-oriented design 4
object references
and the naming service 57
creating 43
definition 43
publishing 44
resolving 77
openAccount() method 42
openAccount.form file 66
openAccount.java file 66
openAccountActionPerformed() method
implementation 83
open account dialog
description 66
implementation 83
operations, in IDL 11
Operations, Java interface suffix 20
ORB_CTRL_MODEL policy value 16

P

passivation
of an entity bean 140
of a session bean 128
PayBill.jsp file 173
persistence
and CORBA 13
serializing AccountDelegate 30
PERSISTENT policy value 16
POA
and object references 43
hierarchy for back-end server 15
hierarchy for CORBA middle-tier 55
role of 14
threading 14
POA policies 16
POATie class 19

INDEX

policies
and the POA 16
IdAssignmentPolicy type 16
LifespanPolicy type 16
ORB_CTRL_MODEL value 16
PERSISTENT value 16
SINGLE_THREAD_ MODEL value 16
SYSTEM_ID value 16
threading 14
ThreadPolicy type 16
TRANSIENT value 16
USER_ID value 16
portable object adapter, role of 14
postinvoke() method 35
preinvoke() method 35
preprocessor
#include directive 54
and IDL 10
presentation layer
overview 91, 150
primary keys
and ejbCreate() 138
and EJB deployment descriptor 144
programming languages supported by CORBA 13
PSS 13
public files
in a Web archive 151
in Web module WAR file 107

R

readonly attribute 11
rebind() operation

and CORBA naming 46
register.jsp file 171
registration of a new user 159
RemoteException type 126, 137
remote interface

for entity bean 136

for session bean 125
repository 1D, and object references 43
Required transaction attribute 132, 144
resolution

of BusinessSessionManager object reference 77
resolution of names 57
resolve() operation 59
resolveAccount() method 124
resolve_initial_references() operation 45
response object, in a JSP 166
root POA 55

205

INDEX

S

SavingsAccount type 5, 6
scoping
inIDL 10
of IDL identifiers 54
sequence type
AccountTransactions type 11
and the naming service 45
IDL example 10
Serializable Java interface 28
serializing, writeObject() method 30
Servant Java interface 18
servant locator
and activation state 32
and updating Account objects 35
lifecycle responsibilities 33
servant objects
and the tie approach 18
definition 19
services
CORBA naming 43
full OTS 13
initialization 45, 58
OTS-Lite 13
session management 13
SSUTLS 13
SessionBean base class 126
session beans
base class 126
bean class 125
callback methods 127
definition 125
ejbActivate() method 128
ejbCreate() method 128, 129
EJB deployment descriptor 131
ejbPassivate() method 128
ejbRemove() method 128
home interface 125
jboss.xml file 133
lifecycle methods 128
overview 124
remote interface 125
single-threaded POA 14

SINGLE_THREAD_MODEL policy value 16

skeleton code 119

skeleton files, and the IDL compiler 7

struct type in IDL 10
stub code
creating for application 119

206

for CORBA back-end 111
stub files

and IDL compiler 7

as template for implementation 38
SYSTEM_ID policy value 16

I

TellerSessionDelegate class 60
TellerSession type 49
ThreadPolicy type
and BusinessSessionManager POA 56
overview 16
TIE approach
generated TIE class 19
overview 18
tmp directory
and EARSCO 97
tools
idl 7
transactions
Required attribute 132, 144
transferFunds.form file 71
transferFunds.java file 71
transfer funds dialog
description 71
TRANSIENT policy value 16
typedef, and IDL 10

U

UML 4

URL
for J2EE AllDayBanking application 91
to access AllDayBanking application 152

UserBean class, structure 137

User entity bean, purpose 135

user exceptions, in IDL 10

USER_ID policy value 16

\'

validateUser() method, in CustomerSession 156
validation of user identity 156

w
WAR file 105
web.xml file

<welcome-file-list> element 153
and EARSCO 96

INDEX

example 106

in Web module WAR file 106
Web client

in a J2EE application 91
Web deployment descriptor 106
Web form, processing with a JSP 161
WebHelper class

overview 160

using in a JSP 174
WEB-INF directory, in Web module WAR file 105
Web module

and EARSCO 96

public files 97, 151

referencing JAR files 106

source code 97
Web module WAR file

directory layout 105

WEB-INF directory 105
withdrawFunds.form file 70
withdrawFunds.java file 70
withdraw funds dialog, description 70
worker beans

description 151

purpose 154
writeObject() method 30

207

INDEX

208

INDEX

209

INDEX

210

	FNB Developer's Introduction
	List of Figures
	Preface
	Part I CORBA Bank Application
	1 Back-End CORBA Server
	Design of the Back-End Server
	IDL for the Back-End Server
	Architecture
	Designing the POA Hierarchy
	Implementing the Account Interfaces
	Implementing Interfaces Using the Delegation Approach
	Implementation of the Account Interface
	Persistence Mechanism for Account Objects

	Lifecycle of Account Objects
	Implementing the AccountMgr Interface
	Implementing Interfaces Using the Inheritance Approach
	Implementation of the AccountMgr Interface

	Publishing the AccountMgr Object Reference

	2 Middle-Tier CORBA Server
	Design of the Middle-Tier Server
	IDL for the Middle-Tier Server
	Designing the POA Hierarchy
	Resolving the AccountMgr Object Reference
	Implementing the BusinessSession Interfaces

	3 Java CORBA Client
	Design of the CORBA Client
	The Open Account Dialog
	The New Account Dialog
	The Lodge Funds Dialog
	The Withdraw Funds Dialog
	The Transfer Funds Dialog

	Using Forte for Java and NetBeans
	Resolving the BusinessSessionManager Object Reference
	Implementation of the Java CORBA Client
	Implementation of the Open Account Dialog

	Part II J2EE Internet Banking
	4 J2EE AllDayBanking Application
	Architecture of the J2EE Application
	Overview of the J2EE Development Cycle
	Source Code Organization (EARSCO)
	Building and Packaging the J2EE Application
	Directory Structure in an EAR File
	Directory Structure in an EJB Module JAR File
	Directory Structure in a Web Module WAR File

	5 Accessing the CORBA Back-End
	Overview of the EJB to CORBA Link
	Using Orbix Connect and JBoss
	Creating the IDL Stub JAR File
	Accessing the Stub JARs from EJB

	6 EJB Middle-Tier
	The InetAccount Session Bean
	Anatomy of a Session Bean
	EJB Session Bean Life Cycle Methods
	Session Bean Configuration

	The User Entity Bean
	Anatomy of an Entity Bean
	EJB Entity Bean Life Cycle Methods
	Entity Bean Configuration
	Container-Managed Persistence in JBoss

	7 J2EE Presentation Layer
	Overview of the Presentation Layer
	Worker Beans
	The CustomerSession Bean
	The NewRegSession Bean
	The WebHelper Class

	Using a JSP to Process a Web Form
	The Login Web Form
	The New User Registration Web Form

	Using a JSP to Access an Enterprise Bean

	Part III COMet and .NET Clients
	8 Visual Basic COMet Client
	Overview of the Visual Basic Client
	Implementation of the Visual Basic Client
	Starting the ATM Session
	Showing Account Details
	Withdrawing Cash

	9 C# .NET Client
	Overview of the C# Client
	Implementation of the C# Client
	Importing .NET Metadata
	Initializing the Online Purchasing Manager Client

	Index

