IONA

fﬁ; Orbix®

CORBA Session Management
Guide, C++

Version 6.1, December 2003

Making Software Work Together™

IONA, IONA Technologies, the IONA logo, Orbix, Orbix/E, Orbacus, Artix, Orchestrator,
Mobile Orchestrator, Enterprise Integrator, Adaptive Runtime Technology, Transparent
Enterprise Deployment, and Total Business Integration are trademarks or registered
trademarks of IONA Technologies PLC and/or its subsidiaries.

Java and J2EE are trademarks or registered trademarks of Sun Microsystems, Inc. in the
United States and other countries.

CORBA is a trademark or registered trademark of the Object Management Group, Inc. in
the United States and other countries. All other trademarks that appear herein are the
property of their respective owners.

While the information in this publication is believed to be accurate, IONA Technologies PLC makes no warranty
of any kind to this material including, but not limited to, the implied warranties of merchantability and fitness for
a particular purpose. IONA Technologies PLC shall not be liable for errors contained herein, or for incidental or
consequential damages in connection with the furnishing, performance or use of this material.

COPYRIGHT NOTICE

No part of this publication may be reproduced, stored in a retrieval system or transmitted, in any form or by any
means, photocopying, recording or otherwise, without prior written consent of IONA Technologies PLC. No third
party intellectual property right liability is assumed with respect to the use of the information contained herein.
IONA Technologies PLC assumes no responsibility for errors or omissions contained in this book. This publica-
tion and features described herein are subject to change without notice.

Copyright © 2001-2003 IONA Technologies PLC. All rights reserved.

All products or services mentioned in this manual are covered by the trademarks, service marks, or product
names as designated by the companies who market those products.

Updated: 23-0ct-2003

M3156

Contents

Preface

Chapter 1 Using the Leasing Plug-In

The Leasing Framework

A Sample Leasing Application

Using the Leasing Plug-In on the Client Side

Using the Leasing Plug-In on the Server Side
Implement the LeaseCallback Interface
Use IT_Leasing::Current to Track Client Sessions
Advertise the Lease
Configure the Server-Side Plug-In

Appendix A Leasing Plug-In Configuration Variables
Common Variables
Server-Side Variables

Appendix B Sample Leasing Plug-In Configuration
Appendix C Leasing IDL Interfaces

Index

31

35

CONTENTS

Audience

Additional resources

Preface

This book describes the Orbix session management capability, which is
based on the Orbix leasing plug-in.

This guide is aimed at developers of Orbix applications. Before reading this
guide, you should be familiar with the Object Management Group IDL and
the C++ language.

The IONA knowledge base (http://www.iona.com/support/knowledge base/
index.xml) contains helpful articles, written by IONA experts, about the
Orbix and other products. You can access the knowledge base at the
following location:

The IONA update center (http://www.iona.com/support/updates/index.xml)
contains the latest releases and patches for IONA products:

If you need help with this or any other IONA products, contact IONA at
suppor t @ona. com Comments on IONA documentation can be sent to
docs-support@iona.com .

mailto:support@iona.com
http://www.iona.com/support/knowledge_base/index.xml
http://www.iona.com/support/updates/index.xml

PREFACE

Typographical conventions This guide uses the following typographical conventions:

Constant width Constant width (courier font) in normal text
represents portions of code and literal names of items
such as classes, functions, variables, and data
structures. For example, text might refer to the
QORBA: : (hj ect class.

Constant width paragraphs represent code examples
or information a system displays on the screen. For
example:

#i ncl ude <stdio. h>

Italic Italic words in normal text represent emphasis and
new terms.

Italic words or characters in code and commands
represent variable values you must supply, such as
arguments to commands or path names for your
particular system. For example:

% cd /users/your_name

Note: Some command examples may use angle
brackets to represent variable values you must
supply. This is an older convention that is replaced
with italic words or characters.

vi

PREFACE

Keying conventions This guide may use the following keying conventions:

No prompt

%

{3}

When a command’s format is the same for multiple
platforms, a prompt is not used.

A percent sign represents the UNIX command shell
prompt for a command that does not require root
privileges.

A number sign represents the UNIX command shell
prompt for a command that requires root privileges.

The notation > represents the DOS or Windows
command prompt.

Horizontal or vertical ellipses in format and syntax
descriptions indicate that material has been
eliminated to simplify a discussion.

Brackets enclose optional items in format and syntax
descriptions.

Braces enclose a list from which you must choose an
item in format and syntax descriptions.

A vertical bar separates items in a list of choices
enclosed in { } (braces) in format and syntax
descriptions.

vii

PREFACE

viii

In this chapter

CHAPTER 1

Using the Leasing
Plug-1n

This chapter describes what the leasing plug-in does and how
to use the leasing plug-in on the client-side and the server-side
of your application.

The following topics are discussed in this chapter:

The Leasing Framework page 2
A Sample Leasing Application page 6
Using the Leasing Plug-In on the Client Side page 8
Using the Leasing Plug-In on the Server Side page 10

CHAPTER 1 | Using the Leasing Plug-In

The Leasing Framework

Overview

What is session management?

Features

Server side behavior

The leasing plug-in is an add-on feature for Orbix that manages server-side
resources by detecting when client processes have ceased using a server.
This is done using a leasing framework. When a client starts up, it can
acquire a lease for a particular server, renewing it periodically. When the
client terminates, it automatically releases the lease. If the client crashes,
the server later detects that the lease has expired. In this manner, both
graceful and ungraceful client process terminations are detected.

It is a common requirement in many CORBA systems to know when a client
process terminates, in order to clean up resources that are used only by that
client. On the server side, session-based applications allocate resources to
cater for client requests. To prevent servers from bloating, it is necessary to
detect when clients are finished dealing with the server. CORBA does not
provide a native solution to this problem.

The leasing framework has the following features:

® Zero impact on client application code.

® Zero impact on existing application IDL interfaces.
® Easy to implement.

® CORBA compliant.

® Completely configurable.

On the server side, the leasing framework operates as follows:

Stage Description

1 When a server starts up, it automatically loads the leasing
plug-in.

2 During initialization, the server advertises the lease, which
causes a LeaseCal | back object to be bound in the naming
service.

Client side behavior

The Leasing Framework

Stage

Description

Whenever the server exports object references (IORs), the
plug-in automatically adds leasing information to the IOR in a
CORBA-compliant manner.

On the client side, the leasing framework operates as follows:

Stage Description

1 When the client starts up, it automatically loads the leasing
plug-in.

2 If the plug-in detects that the client is going to invoke on an
object using an IOR containing leasing details, the plug-in
automatically initiates a session with the target server by
acquiring a lease.

3 The plug-in automatically renews the lease when needed.

4 Upon client shut down:

® |[f the client shuts down gracefully, the plug-in
automatically releases the lease with the server.

® |[f the client crashes, the server side plug-in later realizes
that the client has not recently renewed the lease. The
lease expires, allowing the server to clean up
appropriately.

CHAPTER 1 | Using the Leasing Plug-In

Lease acquisition A client initiates a session by acquiring a lease from a leasing server, as
shown in Figure 1.

CORBA Naming Service

VAN

Wl

%ow ve

Client

oz

Lease Callback
Object

Lease Plug-In

Figure 1:

@ acquire_lease ()

The Client Acquires a Lease

Lease Plug-In

O
Server

The client session is initiated by the leasing plug-in, as follows:

1. The client’s leasing plug-in obtains an | T_Leasi ng: : LeaseCal | back
object reference by resolving a name in the CORBA naming service.

2. The client’s leasing plug-in initiates a session by calling

acqui re_l ease() on the LeaseCal | back object.

Lease renewal After acquiring a lease, the client renews the lease at regular intervals, as
shown in Figure 2

Client

Lease Callback
Object

Lease Plug-In

renew_lease ()

Figure 2: The Client Renews the Lease

Lease Plug-In

= O
Server

The period between lease renewals is specified by the
pl ugi ns: | ease: | ease_pi ng_t i me configuration variable.

The Leasing Framework

Client shutdown

Graceful Client Shutdown

Client

When the client shuts down, the lease is released as shown in Figure 3

Lease Callback
Object

Lease Plug-In

Client Cras

N

hes

yd

~N

Client y

d

P

Qase Plug-In

7

N

lease_release()

Lease Plug-In

=0
Server

leas

e_expired()

e

Lease Plug-In

Server

Figure 3: The Lease is Released When the Client Shuts Down

The following shutdown scenarios can occur:

Graceful client shutdown—if the client shuts down gracefully, the
plug-in automatically calls | ease_rel ease() to end the session.

Client crashes—if the client crashes, the server-side plug-in calls
| ease_expi red() on the LeaseCal | back object after a period of time
specified by the pl ugi ns: | ease: | ease_reap_t i me configuration

variab

le.

CHAPTER 1 | Using the Leasing Plug-In

A Sample Leasing Application

Location Source code and build instructions for a sample leasing application are
located in the asp/ 6. 1/ denos/ cor ba/ st andar d/ sessi on_nanagenent
directory of your Orbix installation.

The LeaseTest IDL module The sample leasing application is based on a server that supports a simple
factory pattern for creating transient Per son objects:

/11DL
nmodul e LeaseTest {
exception PersonAl readyExists { };

interface Person {
string nanme();

}

interface PersonFactory {
Person create_person(in string name)
rai ses (PersonAl readyExists);

}

Purpose The purpose of this example is to show that no matter how many clients
create Per son objects, and no matter how those client processes terminate,
the server is notified when it can safely clean up the objects. Therefore, the
server is able to keep its memory usage down.

Client-server interaction Clients interact with the LeaseTest server as follows:
Stage Description
1 A client creates new Per son objects by calling the
creat e_person() operation, with unique nane arguments for
each Person.

A Sample Leasing Application

Stage

Description

When a client terminates, the Per son objects it created no
longer need to be held inside the server memory and are
deleted.

CHAPTER 1 | Using the Leasing Plug-In

Using the Leasing Plug-In on the Client Side

Prerequisites The client plug-in makes periodic r esol ve() calls to the Naming Service
during its lifetime. Therefore, your Orbix domain should have a properly
configured locator, activator, and naming service ready before running a
leasing client.

How to use the plug-in The only thing that needs to be changed in a client deployment that uses the
leasing framework is its configuration. Specifically, the plug-in must be
added to the list of ORB plug-ins and be configured to participate in
bindings.

Configuration variables The following basic configuration variables are needed to configure and
activate the client-side plug-in:

Table 1: Configuration Variables Used on the Client Side

Configuration Variable Purpose

pl ugi ns: | ease: shl i b_nane Identifies the shared library that
contains the plug-in code.

orb_pl ugi ns The ORB plug-in list is modified to
ensure that the lease plug-in is
automatically loaded when the
client ORB is initialized.

bi ndi ng: cl i ent _bi ndi ng_l i st The client binding list is modified
to ensure that the plug-in can
participate in request processing.

The complete set of leasing plug-in configuration variables is given in
“Leasing Plug-In Configuration Variables” on page 23.

Configuring for colocated CORBA In the client _bindi ng_list, a binding description containing the

objects PQA ol oc interceptor name must appear before the first binding description
that contains a LEASE interceptor name. This is to ensure that a leasing
application does not attempt to lease a colocated CORBA object.

Using the Leasing Plug-In on the Client Side

Example configuration In an Orbix file-based configuration, the client-side plug-in might be
configured as follows:

Qbix Configuration File

pl ugi ns: | ease: shlib _nane = "it_| ease";

orb_plugins = ["local _|og_streant, "lease", "iiop_profile",
"giop", "iiop"];

bi ndi ng: client_binding_list = ["PQA Col oc", "LEASE+Q CP+l | CP",
"ACPH I CP'];

CHAPTER 1 | Using the Leasing Plug-In

Using the Leasing Plug-In on the Server Side

The IT_Leasing module Servers wishing to act as leasing servers interact with the plug-in to
advertise leases. The interfaces used by leasing servers are declared in the
| T_Leasi ng module, which is defined in the | easi ng. i dl file:

/11DL
nmodul e | T_Leasi ng
{
interface LeaseCal | back
{
Leasel D acqui re_| ease()
rai ses (Coul dNot Acqui reLease);
voi d | ease_expired(in LeaselD |l ease_id);
voi d | ease_rel eased(in Leasel D | ease_id);
voi d renew | ease(in Leasel D |ease_id)
rai ses (LeaseHasExpired);
I
| ocal interface ServerlLeaseAgent
{
voi d adverti se_| ease(
in LeaseCal | back | ease_cal | back
) raises (Coul d\Not Adverti selLease);
Leasel D manuf act ure_| ease_i d();
voi d wi thdraw | ease();
voi d | ease_acquired(in Leasel D | ease_id);
voi d | ease_rel eased(in Leasel D | ease_id);
IE
local interface Qurrent : OORBA : Qurrent
{
exception NoContext {};
Leasel D get _| ease_i d() raises (NoContext);

}
b

The complete listing for the I T_Leasi ng module is in “Leasing IDL
Interfaces” on page 31.

10

The LeaseCallback interface

The server lease agent interface

The Current interface

Implementing the server

Using the Leasing Plug-In on the Server Side

Your server must provide an implementation of the

| T_Leasi ng: : LeaseCal | back interface to receive notifications of
lease-related events from the leasing plug-in. For example, when leases
expire, the plug-in calls | T_Leasi ng: : LeaseCal | back: : | ease_expi red().

The implementation of the Ser ver LeaseAgent interface is provided by the
leasing plug-in. Your server communicates with the leasing plug-in by
calling the operations defined on this interface. For example, the server can
initialize the leasing plug-in by calling

| T_Leasi ng: : Server LeaseAgent : : advertise_| ease() .

For a leasing server to react correctly to the ending of a lease, it must know
which resources are relevant to that lease. In other words, the server must

maintain an association between the resources that it has created and the

clients that are currently using them.

This problem is solved as follows. When your server needs to figure out
which leasing client invoked a particular operation, you can extract lease
information from an object of I T_Leasi ng: : Qurrent type, which is derived
from QORBA: : Qurrent, an interface specifically used for retrieving
meta-information about CORBA invocations. Once the

I T_Leasi ng: : Qurrent object is obtained, you can call get _| ease_i d() on it
to find the lease ID relevant to that call.

If the call is made from a non-leasing client (or a non-Orbix client), the
I T_Leasi ng: : Qurrent:: NoCont ext user exception is thrown.

To use the plug-in on the server side, perform the following steps:

Step Action

1 | Implement the LeaseCallback Interface.

Use IT_Leasing::Current to Track Client Sessions.

Advertise the Lease.

| W

Configure the Server-Side Plug-In.

11

CHAPTER 1 | Using the Leasing Plug-In

Implement the LeaseCallback Interface

Overview You must implement the LeaseCal | back interface to receive notification of
leasing events from the plug-in.

The following example shows a code extract from the LeaseTest
demonstration, where the LeaseCal | back interface is implemented by the
LeaseCal | backl npl class.

Object instances The following two object instances are used by the LeaseCal | backl npl

class:

Table 2: Object Instances Used in the LeaseCallbackimpl Class

Object Instance

Description

| easehj

An | T_Leasi ng: : Server LeaseAgent object
reference. This object is used to communicate with
the leasing plug-in.

m factory

A pointer to a Per sonFact or yl npl object. This object
is used to create new instances of Per son CORBA
objects.

12

Using the Leasing Plug-In on the Server Side

Implementation code The 1 T_Leasi ng: : LeaseCal | back interface is implemented by the
LeaseCal | backl npl C++ class, as shown in Example 1.

Example 1: The LeaseCallbackimpl Class

/] C++
char*
1 LeaseCal | backl npl :: acquire_| ease()
| T_THRON DECL((CORBA: : Syst enExcept i on,
| T_Leasi ng: : Coul dNot Acqui r eLease))
{
QORBA: : String_var new | ease =
| easehj - >manuf acture_l ease_i d();
/l informthe plugin that it should nmonitor the |ifecycle
// and status of this new | ease
| ease(vj - >l ease_acqui red(new | ease) ;
return new | ease. retn();
}
2 void LeaseCal | backl npl : : | ease_expi red(const char* |ease_id)
| T_THRON DECQL((CORBA: : Syst enExcept i on))
{
m f act or y- >owner _has_gone_away(| ease_i d);
}
3 void LeaseCal | backl npl :: | ease _rel eased(const char* |ease_id)
I T_THRON DECL((OORBA: : Syst enExcept i on))
{
| ease(hj - >l ease_rel eased(| ease_i d);
m f act or y- >owner _has_gone_away(| ease_i d) ;
}
4 void LeaseCal | backl npl :: renew | ease(const char* |ease_id)
| T_THRON DECL((GORBA: : Syst enExcept i on,
| T_Leasi ng: : LeaseHasExpi r ed))
{
// Nothing to do, since the plugin has already intercepted
I/ this request and knows that the | ease has been renewed.

}

The code can be explained as follows:

1. The LeaseCal | backl npl : : acqui re_l ease() function is called by client
lease plug-ins when they need to acquire a lease with your server. The
sample implementation asks the lease plug-in for a new unique lease
ID, and then informs the plug-in that it has accepted the lease
acquisition request by calling | ease_acqui red() on the

13

CHAPTER 1 | Using the Leasing Plug-In

14

Server LeaseAgent object. You could also create the lease ID
yourself—however, you are then required to ensure its uniqueness
within the server process.

The LeaseCal | backl npl : : | ease_expi red() function is called by the
plug-in when a particular lease has expired—that is, if the lease has
not been renewed within the configured reap time (see “Leasing
Plug-In Configuration Variables” on page 23). This can occur if the
client crashes or if the network link is lost between the client and the
server.

The sample implementation informs the Per son factory that a
particular owner of Per son objects has disappeared, by calling

owner _has_gone_away() . The Per son factory is then free to remove any
Per son objects belonging to that client. The sample Per sonFact ory
deletes the Per son objects completely at this point. Alternatively, a
server could evict the transient objects by persisting their data before
physically deleting them from memory.

The LeaseCal | backl npl : : | ease_rel eased() function is called by
client lease plug-ins when the client shuts down gracefully. The
implementation of this method is typically almost identical to the
implementation of | ease_expi red(), because they are both caused by
client terminations. The sample code delegates to the Per sonFact ory
servant, informing it that a particular client has shut down.

There is one important difference between | ease_r el eased() and

| ease_expi red(), however. When | ease_rel eased() is invoked, you
should inform the plug-in of the event, so that it stops managing that
particular lease and checking for its expiration. Do this by calling
Server LeaseAgent : : | ease_r el eased(), as in the example code.

The LeaseCal | back! npl : : renew | ease() function is the ping method
that the client plug-ins call periodically to renew their leases. You can
leave this function body empty. By virtue of the call reaching this point,
it has already been intercepted and examined by the server side
plug-in. During the interception, the lease is timestamped with the
current time as its /ast renewed time. You might want to perform some
logging here.

Using the Leasing Plug-In on the Server Side

Use IT_Leasing::Current to Track Client Sessions

Overview

Implementation code

The server has to track the resources associated with each client and this is
done with the help of the | T_Leasi ng: : Qurrent interface. In the LeaseTest
example, the associated resources are Per son objects. Whenever a Per son

object is created (using the LeaseTest : : Per sonFact ory interface) the server
associates the new Per son object with the current client session.

The current client session is identified by the current lease ID, which is
obtained from the I T_Leasi ng: : Qurrent interface.

The LeaseTest : : PersonFact ory interface is implemented by the
Per sonFact oryl npl C++ class as shown in Example 2.

Example 2: The PersonFactorylmpl Class (Sheet 1 of 3)

/] C++
LeaseTest : : Person_ptr

Per sonFact oryl npl : : creat e_per son(const char* nane)

| T_THRON DECL((CORBA: : Syst enExcept i on,

LeaseTest : : Per sonAl r eadyExi st s))

LeaseTest:: Person_var result = LeaseTest::Person:: _nil();
try
{
QORBA: : String_var owner = OCRBA: : string_dup("<unknown>");
try
{
CORBA: : (hj ect _var objref =
gl obal _orb->resol ve_initial _references(
"LeaseQurrent"
)
if ('!OORBA :is_nil(objref))
{
I T Leasing:: Qurrent _var current =
I T Leasing::Qurrent::_narrow objref);
if (!CORBA :is_nil(current))
{

15

CHAPTER 1 | Using the Leasing Plug-In

Example 2: The Personfactorylmpl! Class (Sheet 2 of 3)

3 owner = current->get | ease_id();
}
}
}
catch (1T _Leasing::Qurrent:: NoContext &)
{

cerr << "Couldn't find the relevant "
<< "Servi ceContext data." << endl;

}
catch (...)
{
cerr << "An unknown exception occurred while "
<< "getting ServiceContext data." << endl;
}
/] Oreate a new Person servant and activate it
Per sonl npl * newPer sonSer vant ;
Port abl eServer: : Cbjectld_var oid;
CORBA: : hj ect _var tnp_ref;

/1l Assume that we have al ready checked that the
/'l person does not exist, so it is created and
[/l stored with the others, indexed by its nane
/1

4 newPer sonSer vant = new Per sonl npl (nane, owner);
oi d = m poa- >act i vat e_obj ect (newPer sonSer vant) ;
tnmp_ref = mpoa->id_to_reference(oid);
result = LeaseTest::Person::_narrow(tnp_ref);
assert (! GORBA :is_nil(result));
/] Store the new servant with the others
I T_String tenp_string(name);

5 m Peopl e[t enp_string] = newPersonServant;
dunp_peopl e_to_screen();

}
catch (const COCORBA: : SystenExcepti on &se)
{
cerr << se << endl;
}
catch (...)
{
cerr << "Unknown exception w thin create_person()"
<< endl ;
}
6 return result. _retn();

16

7

10

Using the Leasing Plug-In on the Server Side

Example 2: The Personfactorylmpl Class (Sheet 3 of 3)

voi d PersonFact oryl npl : : owner _has_gone_away(const char* owner)

{

/1 lterate through the people map and evict any peopl e
/1 who were created by 'owner'.

/1l

I T_Locker <IT_Mitex> | ock(mmtex);

I T_String current_nane;

Peopl e: :iterator thelter = mPeopl e. begin();

while (thelter !'= mPeople.end())

{
current _nane = (*thelter).second->owner();
if (current_name == owner)
{
// deactivate the servant before deleting it
Portabl eServer:: Chjectld var oid =
m poa- >servant _to_id((*thelter).second);
// deactivate the servant wth the correspondi ng
[/ id on the PQA
m poa- >deact i vat e_obj ect (0i d) ;
cout << "Deleting: " << (*thelter).first << endl;
delete (*thelter). second;
m Peopl e. erase(thel ter);
thelter = mPeople.begin(); //iterator is invalidated
conti nue;
}
thel ter ++;
}

dunp_peopl e_to_screen();

The code can be explained as follows:

1.

If the factory cannot figure out the relevant lease ID, it assigns a default
ID of <unknown> as the owner of the object. This happens if a
non-leasing client (either a non-Orbix client or an Orbix client that did
not load the plug-in) invokes the factory.

The factory checks to see if it can contact the LeaseQurrent object.

If a reference to a LeaseQurrent object can be obtained, the
get | ease_i d() function is called to get the lease ID (of string type) for
this invocation.

17

CHAPTER 1 | Using the Leasing Plug-In

18

10.

A new Per son object is created and activated. The resul t variable is
set equal to the corresponding Per son object reference.

The factory stores the new Person object in its own internal table of
Per son objects, m Peopl e, using the lease ID, tenp_string, as a key.

The Per son object reference, resul t, is returned to the calling code.

The owner _has_gone_away() function is called by

LeaseCal | back: : | ease_expi red() or

LeaseCal | back: : | ease_rel eased() to clean up the resources (Person
objects) associated with a client session identified by the owner string.
The code iterates over all of the entries in the m Per son table,
searching for entries associated with the owner session.

String comparison between current _nane and owner can be performed
using == because current _nane is declared to be of I T_Stri ng type,
which has similar properties to the st d: : stri ng type from the C++
standard template library.

Before deleting a Per son object, the corresponding servant must be
deactivated by calling Port abl eServer: : POAX : deact i vat e_obj ect ().
The servant object and its corresponding m Peopl e entry are deleted in
this and the following lines of code.

Using the Leasing Plug-In on the Server Side

Advertise the Lease

Prerequisites

Where to advertise

Implementation code

Advertising the lease causes the LeaseCal | back object reference to be
bound into the naming service. Therefore, you must have your Orbix locator,
node daemon, and naming service properly configured and ready to run.

Lease advertisement is an initialization step that is performed in the server
mai n() function. This should be done before the server starts to process
incoming CORBA requests (that is, before the server calls GRB: : run() or
CRB: : per formwor k()).

The code shown in Example 3 should be added to your server's mai n()
function to advertise the lease:

Example 3: Advertising the Lease in the main() Function (Sheet 1 of 2)
Il C++

int

mai n(int argc, char **argv)

{
/1 Assune that we have already created and activated a
/| LeaseCal | back servant and created a reference for it
/1 called theLeaseCal | backQhj .

/] Contact the |ease plugin and advertise a | ease
try
{
OCRBA: : (hj ect _var tnp_ref =
gl obal _orb->resol ve_initial _references("|T_ServerLeaseAgent");
| easeChj =
I T _Leasi ng: : Server LeaseAgent:: _narrowtnp_ref);

19

CHAPTER 1 | Using the Leasing Plug-In

Example 3: Advertising the Lease in the main() Function (Sheet 2 of 2)

2 | ease(hj - >advertise | ease(t heLeaseCal | backhj);
}
catch (I T_Leasing: : Coul dNot Adverti seLease &ex)
{
I/ process the exception
}
catch (CORBA: : Exception &e)
{
/...
}
ik

The code can be explained as follows:

1. The server obtains an initial reference to a Server LeaseAgent object,
which is created by the leasing plug-in.

2. The leasing plug-in is initialized by calling adverti se_| ease() on the
Server LeaseAgent object. The adverti se_| ease() operation takes a
single parameter, t heLeaseCal | backQvj , which causes the
LeaseCal | back object to be registered with the plug-in.

20

Using the Leasing Plug-In on the Server Side

Configure the Server-Side Plug-In

Overview

Configuration variables

Example configuration

Server-side configuration variables are used to initialize the server-side
plug-in and to customize the behavior of the leasing plug-in. Some of these
configuration variables are communicated to clients by inserting the
information into IORs generated by the server.

In addition to the client-side configuration variables, the following basic
configuration variables are needed to configure the server-side plug-in:

Table 3: Configuration Variables Used on the Client Side

Configuration Variable

Purpose

bi ndi ng: server _bi nding_| i st

The server binding list is modified,
instructing the ORB to insert LEASE
interceptors into server-side
bindings.

pl ugi ns: | ease:
| ease_nane_to_advertise

The name under which the
LeaseCal | back object is bound in
the naming service. This name
must be unique per server.

pl ugi ns: | ease: | ease_pi ng_ti me

The time interval (in milliseconds)
between successive ping messages
sent by client-side plug-ins to
renew the lease.

pl ugi ns: | ease: | ease_reap_time

If a particular client’s lease is not
pinged within | ease_reap_ti ne,
the server resources associated
with the client are released.

The complete set of leasing plug-in configuration variables is given in
“Leasing Plug-In Configuration Variables” on page 23.

For a complete example of a client-side and server-side configuration, see
“Sample Leasing Plug-In Configuration” on page 27.

21

CHAPTER 1 | Using the Leasing Plug-In

22

In this appendix

APPENDIX A

Leasing Plug-In
Configuration
Variables

The following list describes the leasing plug-in configuration
variables and their allowed values, ranges, and defaults.

This appendix contains the following sections:

Common Variables page 24

page 25

Server-Side Variables

23

CHAPTER A | Leasing Plug-In Configuration Variables

Common Variables

List of variables

24

The following configuration variables apply to both clients and servers:

event_log:filters Specifies a list of logging filters. You can configure the
plug-in to write to a log stream by appending the plug-in log stream to the
list of filters (see the CORBA Administrator’s Guide for more information on
log stream configuration). The plug-ins log stream object is | T_LEASE. For
example, to get full diagnostic output from the plug-in, set the variable
event_log:filters equalto["IT_LEASE=*"].

plugins:lease:lease_ns_context Identifies the naming service

Nam ngCont ext where the leasing plug-in registers the LeaseCal | back
object. The name should be a valid Nan ngCont ext id (see the CORBA
Naming Service specification). Since both leasing clients and leasing servers
use this value, it should be set to the same value across your entire domain.
The default is | T_Leases.

plugins:lease:shlib_name I|dentifies the base name of the leasing plug-in
shared library. The shl i b_nane variable should be set to it _| ease.

Server-Side Variables

Server-Side Variables

List of Variables

The following configuration variables apply only to servers:

plugins:lease:allow_advertisement_overwrites Determines whether the
server can re-advertise the same lease when it comes back up after a crash
or disorderly shutdown. Internally, the plug-in uses

Nam ngCont ext : : rebi nd() if set to t rue, or Nami ngCont ext : : bi nd() if set
to fal se, when binding the LeaseCal | back object in the naming service.

The default is f al se, but in a real deployment scenario the recommended
setting is tr ue.

plugins:lease:lease_name_to_advertise Determines the lease name used
when registering the LeaseCal | back object in the naming service. This
name should be configured to be unique among all your leasing servers. The
name should be a valid Nani ngCont ext id (see the CORBA naming service
specification). The default value is def aul t _| ease_nane.

plugins:lease:lease_ping_time Determines the value inserted into

TAG | ONA_LEASE IOR components for the lease ping time. Leasing clients
using that IOR automatically renew the lease by pinging every Nms, where N
is the value specified in this variable. The default value is 900,000 ms (15
minutes). Legal values are unsigned longs > 1. In addition, if the ping time
is specified to be greater than the reap time, | ease_reap_tine, it is
automatically changed to half the reap time.

plugins:lease:lease_reap_time Determines how often the server-side plug-in
checks whether leases have expired. The value is specified in ms. If a
particular lease has not been renewed (pinged) by its client in this amount
of time, the lease expires. Legal values are unsigned longs > 2. The default
value is 1,800,000 ms (30 minutes).

25

CHAPTER A | Leasing Plug-In Configuration Variables

26

APPENDIX B

Sample Leasing
Plug-1n
Configuration

This appendix shows the leasing plug-in configuration used in
the session management demonstration.

27

CHAPTER B | Sample Leasing Plug-In Configuration

Configuration file extract The following listing is a sample valid configuration for a set of applications,
Server 1, Server 2, and clients, using the leasing plug-in. This configuration
is included in generated Orbix domains,

OrbixInstallDirl et ¢/ domai ns/ domain_name. cf g, where domain_name is
the name of your domain.
Example 4: Configuration File Extract for Leasing Plug-In
Obix Configuration File
denos {
sessi on_nanagenent
{
pl ugi ns: | ease: shlib_name = "it_| ease";
pl ugi ns: | ease: d assNanme =
"com i ona. cor ba. pl ugi n. | ease. LeasePl ugl n";
orb_plugins = ["local _| og_streant, "lease",
"iiop_profile", "giop", "iiop"];
bi ndi ng: cli ent _binding_list = ["PQA Col oc",
"LEASE+A CP+l | CP',
"Q P+ I CP'] ;
bi ndi ng: server_binding_list = ["LEASE', ""];
pl ugi ns: | ease: al | ow_adverti sement _overwites = "true";
default is fal se
event _log:filters = ["| T_LEASE=*"];
serverl {
client must ping every 10 seconds
pl ugi ns: | ease: | ease_ping_ tinme = "10000";
leases will expire after 20 seconds of inactivity
pl ugi ns: | ease: | ease_reap_time = "20000";
pl ugi ns: | ease: | ease_nane_to_adverti se
= "PersonFact orySrvi1";
h
server?2 {
client nust ping every 20 seconds
pl ugi ns: | ease: | ease_ping_time = "20000";
leases will expire after 40 seconds of inactivity
pl ugi ns: | ease: | ease_reap_time = "40000";
pl ugi ns: | ease: | ease_nane_t o_adverti se
= "PersonFact orySrv2";

28

29

CHAPTER B | Sample Leasing Plug-In Configuration

30

The IT_Leasing IDL module

APPENDIX C

Leasing DL
Interfaces

The complete IDL for the leasing plug-in.

The IT_Leasing module is defined as follows:

Example 5: The IT Leasing IDL Module (Sheet 1 of 3)

//1DL

#ifndef _ | T _LEASING | DL_
#define | T _LEASING | DL_
/1

/| @opyright (c) 2000 | ONA Technol ogies PLC. All R ghts
/] Reserved.

#i ncl ude <ong/orb.idl >
#i ncl ude <ong/ | CP.idl >
#pragma prefix "iona. cont
nodul e | T_Leasi ng
{
/1 Type definitions
typedef string Leasel D

/] Possible error conditions
exception LeaseHasExpired {};

31

CHAPTER C | Leasing IDL Interfaces

Example 5: The IT Leasing IDL Module (Sheet 2 of 3)

enum LeaseAdverti sement Error {
NAM NG SERVI CE_UNREACHABLE,
LEASE ALREADY_ADVERTI SED,
LEASE ALREADY BOUND | N NS,
UNKNOWN_ERRCR

B
exception Coul dNot Adverti selLease
{
LeaseAdverti senent Error reason;
IE

exception Coul dNot Acqui reLease {};

/1 This is the maxi num anount of tine that a client |easing
/] plugin will wait before automatically renew ng a

/l particular |ease. The value is set in the server plugins
/1 configuration.

typedef unsigned long |dl eTi meBeforePing; // mlliseconds
/1 This interface nust be inplemented by servers that

/1 wish to advertise | eases.

interface LeaseCal | back

{
/1 Inforns the server that a client wants a new | ease.
Leasel D acqui re_| ease()
rai ses (Coul dNot Acqui reLease) ;
/1 Inforns the server that a | ease not been renewed
/1 (usually because the client has gone away)
voi d | ease_expi red(

in Leasel D |ease_ id

)i
/1l Inforns the server that a client has explicitly
/'l released a | ease
voi d | ease_rel eased(in Leasel D |ease_ id);
/1l renew | ease() is called by |easing plugins on the
/1l client side to renew | eases after sone idle tine.
/1l This is semantically equivalent to a 'keepalive'
/] or 'heartbeat' nethod.
voi d renew | ease(in Leasel D |ease_id)
rai ses (LeaseHasExpired);

B

/1l This is the interface that |easing plugins wll

/1 expose on the server side. Server programrers nust
[/ interact with this interface to advertise |eases.
I ocal interface ServerlLeaseAgent

{

32

Example 5: The IT Leasing IDL Module (Sheet 3 of 3)

¥

|l advertise |ease() is called by the server
Il to start the | ease advertisement. The ping time
/1 and Server|D val ues for the | ease are obtai ned
/1 from configuration.
voi d advertise_|l ease(i n LeaseCal | back | ease_cal | back)
rai ses (Coul dNot Adverti selLease);
/1l Hel per function that generates a system defi ned
Il lease id, in case the server does not need to attach
/1 any specific neaning to i ncom ng | eases.
Leasel D nanuf acture_| ease_i d();
// You may call this nmethod at any time to withdraw your
Il lease, but note that the plugin will autonatically
/1 withdraw your |ease at CRB shutdown tine, so you
Il typically never need to call this nethod.
voi d withdraw | ease();
/] Call this nethod if you wish the plugin to
// detect that a particular |ease has expired (usually
// due to non-graceful client ternination).
// The typical place to call this is fromyour
/1 inplenentation of LeaseCall back::acquire_| ease().
voi d | ease_acquired(in LeaselD | ease_id);
// Call this nethod when you wi sh the plugin to stop
// detecting that a particular | ease has expired, usually
Il because a client has ternminated gracefully and
Il rel eased the | ease thensel ves.
Il The typical place to call this is fromyour
/1 inplenentation of LeaseCallback:: | ease_rel eased().
voi d | ease_rel eased(in Leasel D | ease_i d);
h
/1l This interface represents the | ease details that wll
/1 be added to requests by leasing clients. The information
/1 will be added as a Servi ceContext and be avail able within
[/ the servant inplenentations through the Current interface.
local interface Qurrent :
CCRBA : Qurrent

{
exception NoContext {};
Leasel D get _| ease_i d()
rai ses (NoContext);

IE

const | CP:: Serviceld SERVI CE_| D = 0x49545F43;

#endif /* | T _LEASING |DL_*/

33

CHAPTER C | Leasing IDL Interfaces

34

Index

Symbols

<unknown> lease ID 17

A

acquire_lease() 13

advertise_lease() 11, 20
allow_advertisement_overwrites variable 25

C
callbacks 12
client_binding_list 8
colocation, and the leasing plug-in 8
configuration

of leasing client 9

of leasing plug-in 24, 28

of leasing server 21
CORBA::Current 11
Current interface

in IT_Leasing module 11

using IT_Leasing::Current 15

D
deactivate_object() 18

E

event_log:filters variable 24

F

filters variable 24

G
get_lease id() 11, 17

|

initial references 20
IT_Leasing module 10, 31
IT_ServerLeaseAgent 20
IT String type 18

L

lease, advertising 19
lease_acquired() 13
LeaseCallbackimpl class 13
LeaseCallback interface 11, 12
lease_expired() 18

and client shut down 5

implementing 14
lease ID 15,17
lease_name_to_advertise 21
lease_name_to_advertise variable 25
lease_ns_context variable 24
lease_ping_time variable 4, 21, 25
lease_reap_time variable 5, 21, 25
lease_release() 5
lease_released() 14, 18
LeaseTest module 6
leasing demonstration 6
leasing plug-in

client configuration 8

client-side behavior 3

client-side usage 8

colocated CORBA objects 8

common variables 24

configuration example 28

features 2

framework 2

implementing the server 11

lease acquisition 4

lease renewal 4

prerequisites 8

server-side behavior 2

server-side configuration 21

server-side variables 25

shutdown 5

tracking client sessions 15
logging filters 24

N

naming service
and advertising a lease 19
and lease_ns_context variable 24
and the leasing plug-in 8

35

INDEX

NoContext user exception 11

o

orb_plugins variable 8
owner_has_gone_away() 18

P
PersonFactorylmpl class 15
plugins:lease:allow_advertisement_overwrites

variable 25
plugins:lease:lease_name_to_advertise variable 25
plugins:lease:lease _ns_context variable 24
plugins:lease:lease_ping_time variable 25
plugins:lease:lease_reap_time variable 25
POA_Coloc interceptor 8

R

renew_lease() 14

S

server_binding_list 21

ServerLeaseAgent interface 11

session management
demonstration location 6
overview 2

shlib_name 8

standard template library 18

std::string 18

T
TAG_IONA_LEASE tag 25

36

INDEX

37

INDEX

38

	CORBA Session Management, C++
	Preface
	1 Using the Leasing Plug-In
	The Leasing Framework
	A Sample Leasing Application
	Using the Leasing Plug-In on the Client Side
	Using the Leasing Plug-In on the Server Side
	Implement the LeaseCallback Interface
	Use IT_Leasing::Current to Track Client�Sessions
	Advertise the Lease
	Configure the Server-Side Plug-In

	Appendix A Leasing Plug-In Configuration Variables
	Common Variables
	Server-Side Variables

	Appendix B Sample Leasing Plug-In Configuration
	Appendix C Leasing IDL Interfaces
	Index

