IONA

fﬁ; Orbix®

Web Services Development

Tools
Version 6.1, December 2003

Making Software Work Together™

IONA, IONA Technologies, the IONA logo, Orbix, Orbix/E, Orbacus, Artix, Orchestrator,
Mobile Orchestrator, Enterprise Integrator, Adaptive Runtime Technology, Transparent
Enterprise Deployment, and Total Business Integration are trademarks or registered
trademarks of IONA Technologies PLC and/or its subsidiaries.

Java and J2EE are trademarks or registered trademarks of Sun Microsystems, Inc. in the
United States and other countries.

CORBA is a trademark or registered trademark of the Object Management Group, Inc. in
the United States and other countries. All other trademarks that appear herein are the
property of their respective owners.

While the information in this publication is believed to be accurate, IONA Technologies PLC makes no warranty
of any kind to this material including, but not limited to, the implied warranties of merchantability and fitness for
a particular purpose. IONA Technologies PLC shall not be liable for errors contained herein, or for incidental or
consequential damages in connection with the furnishing, performance or use of this material.

COPYRIGHT NOTICE

No part of this publication may be reproduced, stored in a retrieval system or transmitted, in any form or by any
means, photocopying, recording or otherwise, without prior written consent of IONA Technologies PLC. No third
party intellectual property right liability is assumed with respect to the use of the information contained herein.
IONA Technologies PLC assumes no responsibility for errors or omissions contained in this book. This publica-
tion and features described herein are subject to change without notice.

Copyright © 2001-2003 IONA Technologies PLC. All rights reserved.

All products or services mentioned in this manual are covered by the trademarks, service marks, or product
names as designated by the companies who market those products.

Updated: 15-Dec-2003

M3140

Contents

List of Tables
Preface

Chapter 1 Building Web Services and Clients
Web Service Development
Starting the Web Service Builder
Client Development

Chapter 2 Listing Web Services
Starting Web Services Manager
Listing Deployed Services
Listing Web Service Endpoints
Listing Web Services in WSIL
Listing Web Services in DISCO
Integration with Visual Studio.NET

Chapter 3 Testing Web Service Methods
Starting Web Services Test Client
Testing Method Calls

Chapter 4 Monitoring and Testing SOAP Messages

Starting the SOAP Message Test Client
Obtaining and Verifying an Endpoint URL
Sending Test SOAP Messages

SOAP Message Logging

Chapter 5 Using the Registry Manager
Connecting to a Registry
Browsing a Registry
Listing Object Details
Updating a Registry

vii

ahbL N

11
12
14
15
16

17
18
20

23
24
25
26
29

31
33
34
36
38

CONTENTS

Implementing Registry Clients
Using Orbix Web Service APIs
Using UDDI4J APIs
Using JAXR RI
Support for UDDI APIs
Current Limitations

Chapter 6 Command-line Tools

Creating and Modifying XARs
xmlbus.AddResourcesToXAR
xmlbus.CORBAToXAR
xmlbus.JavaToXAR
xmlbus.SchemaToXAR
xmlbus.TransformToXAR
xmlbus. XMLToXAR

Deploying Web Services
xmlbus.Deploy
xmlbus.Undeploy

Generating Code from WSDL
xmlbus.WSDLTolnterface
xmlbus.WSDLToJ2MEClient
xmlbus.WSDLToJ2SEDemo
xmlbus.WSDLToSkeleton

Index

43
44
48
50
52
54

55
56
57
58
61
63
65
67
68
69
70
71
72
74
75
76

79

List of Tables

Table 1: Web Service Development Scenarios
Table 2: Inquiry operations
Table 3: Publishing operations

52
52

LIST OF TABLES

Vi

Audience

Updated documentation

Additional resources

Typographical conventions

Preface

This guide is aimed at developers who wish to construct Web services. Java
or other programming experience is assumed. Little prior knowledge of Web
services and related technologies is required.

The latest documentation updates can be found at http: //ww i ona. cond
docs/ .

The IONA knowledge base contains helpful articles, written by IONA
experts, about IONA products. You can access the knowledge base at the
following location:

ht t p: // wawv. i ona. cond suppor t / kb/

The IONA update center contains the latest releases and patches for IONA
products:

http: // waw. i ona. cond support/ updat e/

This guide uses the following typographical conventions:

Constant wi dt h Constant width (courier font) in normal text represents
portions of code and literal names of items such as
classes, functions, variables, and data structures. For
example, text might refer to the CORBA: : (vj ect class.

Constant width paragraphs represent code examples
or information a system displays on the screen. For
example:

#i ncl ude <stdio. h>

vii

http://www.iona.com/docs/
http://www.iona.com/docs/
http://www.iona.com/support/kb/
http://www.iona.com/support/update/

PREFACE

[talic

Italic words in normal text represent emphasis and
new terms.

Italic words or characters in code and commands
represent variable values you must supply, such as
arguments to commands or path names for your
particular system. For example:

% cd /users/your_name

Note: Some command examples may use angle
brackets to represent variable values you must supply.
This is an older convention that is replaced with italic
words or characters.

Keying conventions This guide may use the following keying conventions:

No prompt

%

[]

{}

viii

When a command’s format is the same for multiple
platforms, a prompt is not used.

A percent sign represents the UNIX command shell
prompt for a command that does not require root
privileges.

A number sign represents the UNIX command shell
prompt for a command that requires root privileges.

The notation > represents the DOS, Windows NT,
Windows 95, or Windows 98 command prompt.

Horizontal or vertical ellipses in format and syntax
descriptions indicate that material has been
eliminated to simplify a discussion.

Brackets enclose optional items in format and syntax
descriptions.

Braces enclose a list from which you must choose an
item in format and syntax descriptions.

A vertical bar separates items in a list of choices
enclosed in { } (braces) in format and syntax
descriptions.

In this chapter

CHAPTER 1

Building Web
Services and
Clients

With the Web Service Builder GUI tool, you can build and
deploy Web services and Web service clients. This chapter
gives an overview of how to use Web Service Builder.

This chapter discusses the following topics:

Web Service Development page 2
Starting the Web Service Builder page 4
Client Development page 5

CHAPTER 1 | Building Web Services and Clients

Web Service Development

Overview

You can use Web Service Builder to generate Web services from many types
of existing applications. For example, you can automatically generate Web

services from Java classes and CORBA resources. Table 1 summarizes the

various options that are available for generating a Web service.

Table 1: Web Service Development Scenarios

Basis for Web Description
Service
Java Class Transform a Java implementation of an existing
application into a Web service. The Java class can
be on the classpath or stored in an archive file, of
types XAR, ZIP, or JAR.
CORBA Transform a CORBA object into a Web service.

Operation Flow

Graphically create operation flows that combine
input and output from various methods and data to
create the desired Web service functionality. Web
Service Builder can then automatically generate a
Web service from the operation flow.

Schema

Create a Web service from an existing schema

(. xsd). This service enables client and server
applications to exchange documents that use the
same XML schema. The service uses a DOM
handler, which processes the input document.

Schema Map

Graphically create associations between the
elements of different XML schemas to produce a
mapping. This schema map can then be use to
produce a Web service, whose schema mapping
enables clients and servers that use different
schemas to exchange documents.

Web Service Development

Table 1: Web Service Development Scenarios

Basis for Web
Service

Description

WSDL

Create a Web service from any existing Web
service’s WSDL. This lets you refactor an existing
Web service into your own implementation of a new
Web service.

Input and output for Web Service To create a Web service, one of the input file types is always required, and a
Builder XAR file is always produced. Web Service Builder can produce the other
kinds of output listed after the Web service is created, if desired.

CHAPTER 1 | Building Web Services and Clients

Starting the Web Service Builder

Overview

Project hierarchy

Data Entries

Java Classes

Inherited Methods

Interoperability

Start Web Service Builder in one of the following ways:
® Launch the Web Service Builder from the IONA central toolbar, or
® From the command line, run the i tws_bui | der[. bat] script.

Note: Some Web Service Builder features are enabled only if the Web
services container is running.

Web service application information is organized into a hierarchical tree of
projects. Double-click a project to display its applications. Double-click an
application to display the services within each application. Continue
double-clicking lower-level tree items to display more information about
each Web service. The work area displays information about the item
selected in the projects area.

Only ASCII text should be used in text fields of Web Service Builder because
the WSDL generated and the resulting URLs produced should remain
human-readable.

When a Web service is generated from a Java class, the generated Web
service interface is based on the public methods defined on the target Java
class.

When building a Web service from Java classes or CORBA objects, inherited
methods can also be included in the Web service.

When you build a Web service using Web Service Builder, the result is
standards-compliant and interoperable. Interoperability is verified against
Microsoft's .NET toolkit and MS SOAP. Thus, a SOAP client built using
Microsoft tools can access XMLBus Web services just like any other Web
service.

Client Development

Client Development

Generate clients and servers The Web Service Builder can also generate client code for accessing a Web
service and Java skeleton code that you can use to write your own Web
service implementation.

CHAPTER 1 | Building Web Services and Clients

In this chapter

Listing in other formats

CHAPTER 2

Listing Web
Services

The Web Services Manager tool lists deployed Web services,
obtains Web service URLs, and displays the WSDL of Web
services.

This chapter discusses the following topics:

Starting Web Services Manager page 9

Listing Deployed Services page 11
Listing Web Service Endpoints page 12
Listing Web Services in WSIL page 14
Listing Web Services in DISCO page 15
Integration with Visual Studio.NET page 16

The Web services container can dynamically generate lists of deployed Web
services and the locations of the WSDL documents that describe them,
using either the standard Web Service Inspection Language (WSIL) or the
older Microsoft-specific DISCO language. Integrated development

CHAPTER 2 | Listing Web Services

environments (IDEs) that are WSIL and DISCO-aware (such as Visual
Studio) can use these dynamically-generated lists to make it easier to build
Web service clients.

Starting Web Services Manager

Starting Web Services Manager

Overview

Start Web Services Manager

Web Services Manager is a graphical tool that shows a server’s deployed
Web services. You can use Web Services Manager to list and undeploy Web
services. You can also use Web Services Manager to manage the availability
of any deployed Web service by activating or deactivating the Web service’s
endpoints.

Note: In order to run Web Services Manager, the Web services container
must also be running.

Start Web Services Manager in one of the following ways:
® Launch the Web Services Manager from the IONA Central Toolbar, or
® Enter the following URL into a Web browser:

http://1 ocal host: 53205/ xm bus/ cont ai ner ?adm n=t r ue
® In a secure domain, enter the following URL into a Web browser:
ht t ps: // HostName: 53206/ xm bus/ cont ai ner ?adm n=t r ue

http://localhost:53205/xmlbus/container?admin=true

CHAPTER 2 | Listing Web Services

10

When Web Services Manager starts, the following window displays:

Service Manager - Microsoft Internet Explorer =101 x|

File Edit Wiew Favorites Tools Help ﬁ
dmbock - = - @ (2] 4| Quoearch GFavorkes Pmeda (B S EIE B D

Address [&] http:fmkronind:53205 xmibus | @
Google - [7| Epsearchweb @oearchsie | @news | PR Epage ot - Fup + ook

Web =

IONA. [eND 2 AvvwieRe SCIVICES Oyrbyiy EDA | APPLICATION SERVER PLATFORM™
Manager

Select an Application

AttachmentApp
Broker
CarShopFlowApp
Chainapp
Converter
DeliveryConfirmation
Deploy
DomesticCalculator
Electricity
EmployeeDatabase
FarmsAndRegal
Finance
IONACreditBureau
IOMASupplier
IOMAWarehouse
InteropTest
InteropTest1999
KnowledgeBase
LiveEjh
UDDIRegistry
*MLBusYersion

List Services

& [| |E# rocalintranet 4

Web Services Manager shows the list of deployed Web service applications.

Listing Deployed Services

Listing Deployed Services

Follow these steps:

1.

Start Web Services Manager.

All applications that are deployed into the Web services container
display under Select an Application.

Note: Refresh your browser to update the list if applications have
been recently deployed or undeployed.

Select an application from the list.

Click List Services. The Web service or services that the application
supports are displayed.

11

CHAPTER 2 | Listing Web Services

Listing Web Service Endpoints

Overview A port name identifies the interface to your Web service and is an address to
a particular Web service implementation where SOAP messages or XML
documents are sent. In WSDL, this is also known as an endpoint, which is a
binding to a specific network transport protocol and represents a set of
operations that use a particular message format. A Web service can have
more than one endpoint representing different services within the Web
service, or different running invocations of the same Web service.

List endpoints Follow these steps to list Web service endpoints.
1. Start Web Services Manager.
2. Select an application.
3. Click List Services to display the Web services the application
supports.
4. From Select a Service, choose a Web service.

12

Listing Web Service Endpoints

5. Click List Endpoints. The endpoint data is displayed as follows:

Select an Application

Anaconda
Attachmentipp
Broker
CarShopFlowipp
Chaindpp

Converter
DeliveryConfirmation
Deploy
DomesticCalculator
Electricity
EmployeeDatabase

Farrm SAndReiaI

IONACreditBureau
IONASupplier
ION&AWarehouse
InteropTest
InteropTest1999
KnowledgeBase
LiveEjh

Transform
UDDIRegistry
*MLBusVersion

List Services |

Endpoint data

Select a Service

List Endpaoints !

Service Info

hitp/localhost: 208 0mlbusFinanceFinanceService. wadl

‘WSDL(S)

http:/localhost: 2080 mlbusFnanceFinanceService/FinanceF ort!

Endpoint Information

[WSDL |nttp:/flocalhost 8080fzmibus/Finance/FinanceService/FinancePort!

[TEST |FinancePort

The data under Endpoint Information offers the following data and links:

® WSDL URL: Each endpoint has its WSDL's URL listed under
Endpoint Information.You can view the endpoint’'s WSDL by clicking
on the URL. You can also copy the URL for other tool input, scripts,
and so on.

® Test endpoint methods: You can try out the methods of a Web service
by clicking on the endpoint name next to Test. This starts Web
Services Test Client.

13

CHAPTER 2 | Listing Web Services

Listing Web Services in WSIL

Overview The Web Service Inspection Language (WSIL) is a language for identifying a
set of Web Service endpoints and where to find the Web Service Description
Language (WSDL) documents that describe each endpoint. WSIL is useful
because it lets you find Web services without having to know the exact
URLs for the WSDL definitions. A WSIL document is generated for each
Web services container.

Generating WSIL To generate WSIL, enter the following URL in your browser (assuming that
the Web services container is running on port 53205 on your local host):

http://1ocal host: 53205/ xm bus/ i nspect i on. wsi |

After entering the appropriate URL, your browser displays XML that lists the
location of all deployed Web services.

=7xml version="1.0" encoding="UTF-8" 7=
- «inspection smins="http://schemas.xmlsoap.org/ws/2001/10/inspection/"
amins: wsilwsdl="http://schemas.xmlsoap.org/ws/2001/10/inspection/wsdl /">
- <services
- =description location="http:/ flocalhost:8080/xmlbus/InteropTest1999/InteropTest1999Service .wsdl"
referencedMamespace="http://schemas.xmlsoap.org/wsdl/">
- =wsilwsdlireference endpointPresent="true"=
<wsilwsdl:referencedService
amins:ns1="http://soapinterop.org/">ns1l:InteropTest1999PortBinding</wsilwsdl: referencedService>
</wsilwsdl references
</description=
</services
- <services
- =description location="http:/ flocalhost:8080/xmlbus/InteropTest1999/InteropTest19998ervice /InteropTest1999Port/
referencedMamespace="http://schemas.xmlsoap.org/wsdl/">
- =wsilwsdlireference endpointPresent="true"=
<wsilwsdl:referencedService
amins:ns1="http://soapinterop.org/">ns1l:InteropTest1999PortBinding</wsilwsdl: referencedService>
</wsilwsdl references
</description=
</services

URL for WSIL-aware tools Web Services Manager's default web page also contains a meta tag that can
automatically redirect WSIL-aware client tools to the full WSIL URL.

14

Listing Web Services in DISCO

Listing Web Services in DISCO

Overview

Generating DISCO

URL for DISCO-aware tools

XMLBus supports the generation of DISCO documents on a per-container
basis to make integration with .NET clients easier. DISCO is a proprietary
language used only by Microsoft .NET tools, which supports Web service
inspection. While WSIL will eventually supersede DISCO as the industry
standard, Microsoft .NET tools currently produce and consume DISCO
documents.

This section discusses the following topics:
® Generating DISCO
® URL for DISCO-aware tools

To generate DISCO documents, enter the following URL in your browser
(assuming that the Web services container is running on port 53205 on
your local host):

http://1 ocal host : 53205/ xn bus/ def aul t . di sco

After entering the appropriate URL, your browser displays DISCO-formatted
XML that lists the location of all deployed Web services.

The DISCO URL is also available via an implicit link in the Web Services
Manager's default web page. The Web Services Manager's default web page
can automatically redirect DISCO-aware client tools to the full DISCO URL.

15

CHAPTER 2 | Listing Web Services

Integration with Visual Studio.NET

Overview

Add Web Reference

16

If you use Microsoft's Visual Studio.NET development environment to build a
client for an XMLBus Web service, you must add a reference to the service's
WSDL file. This is done through the Add Web Reference dialog box, which
is accessible from the Visual Studio.NET Project menu.

The Add Web Reference dialog is a simple Web browser that recognizes
WSDL and DISCO files. If you type in the URL for the Web services
container, the dialog box downloads the implicitly referenced DISCO file and
presents a list of all the Web services currently deployed in the Web services
container. When you select a service from the list, Visual Studio.NET asks
XMLBus for the service's WSDL document, and uses it to generate client
proxy code.

See also “Listing Web Services in DISCO” on page 15.

Limitations

In this chapter

CHAPTER 3

Testing Web
Service Methods

Web Services Test Client is a browser-based graphical tool
that you can use to dynamically test active Web services.

You provide Web Services Test Client with the URL location of the WSDL
file that describes the Web service. When the Web service’s methods are
displayed, you can select a method, enter input values, and invoke the
method.

The following restrictions apply:
® Processing the document style of interaction is not supported.
® Processing the literal style of encoding is not supported.

This chapter discusses the following topics:

Starting Web Services Test Client page 18

Testing Method Calls page 20

17

CHAPTER 3 | Testing Web Service Methods

Starting Web Services Test Client

Overview Start Web Services Test Client in one of the following ways:

® Launch the Web Services Test Client from the IONA Central Toolbar, or
® Enter the following URL into a Web browser:

http://1 ocal host : 53205/ WBDLA i ent
® In a secure domain, enter the following URL into a Web browser:

ht t ps: / / HostName: 53206/ WsDLA i ent
The following window displays:

J File Edit View Favorites Tools Help |

| Address | @] http:/flocalhost:8080{WSDLClientfindex: html ~| @ao

WSDL -

IONA | END 2 ANYWHERE™ Dynam IC OrixE2A | wes SERVICES INTEGRATION PLATFORM™
— - XMLBus Edition
Test Client

Knowledge Base Finance Web Service Interop Test Service

Electricity Web Service

WSDL SOURCE URL: I PROCESS WSDL |

=

Note: The Web services container must be running to use Web Services
Test Client.

Display Web Services Test Client shows the following information:
® A brief explanation of the tool.
® Alist of links to some sample Web services that come with XMLBus.

18

http://localhost:53205/WSDLClient

Starting Web Services Test Client

® Aform in which to input a URL that represents the location of any Web
service's WSDL.

Selecting a Web service Select one of the sample Web services displayed, or enter into the form a
URL such as the following:

http://1 ocal host : port/ xm bus/ Fi nance/ Fi nanceSer vi ce. wsdl

19

CHAPTER 3 | Testing Web Service Methods

Testing Method Calls

Overview Web Services Test Client shows the Web service’s methods in a Web page
where you can select a method, enter appropriate input values for the
method, then invoke the method. Web Services Test Client shows the
results of the executed method call, along with any relevant SOAP
messages.

The SOAP messages are useful as an aid in debugging. For example, the
messages can indicate an invalid input or the possibility that the Web
service is no longer active to receive messages.

Steps Follow these steps to test a Web service:
1. Start Web Services Test Client.
2. Enter a WSDL URL into the WSDL SOURCE URL form. For example:

& form for 2

DL file then click on one of the sample links.

KEnowledqe Base Finance Web Service Interop Test Service

Electricity Web Service

WSDL SOURCE URL: }:Bﬂﬂl]hlmIbus.l'FinanceJFinanceSeruiceJFinancePnrtI | PROCESS WSDL I

There are several ways to obtain a WSDL URL:

. Select one of the sample Web services displayed with Web
Services Test Client.

. Run Web Services Manager and copy the WSDL file’'s URL (see
page 13).

20

Testing Method Calls

. Enter a URL of any known WSDL.

3. Click PROCESS WSDL to produce the list of methods available for the
Web service:

WSDL SOURCE URL: [:8080/xmlbus Finance FinanceService FinancePort/ PROCESS WsDL

OPERATIONS DERIVED FROM WSDL FILE

calculate APR(double, int }

calculateFutureValue(double, double, int, int)
calculateRate(double, int)

calculateRate ToDouble(double)

calculate TimeToDouble{ double)
paymentMortgage(double, double, int }
calculateRate ToDoubleUsingRuleOf72(int)
showTaxRate(int, float)

calculate TimeToDoubleUsingRuleOfT2(double)
periodMortgage(double, double, double)

| GET TEST FORM ,\k
l"\‘

4, Select one of the methods and click Get Test Form. The
METHOD INPUT PARAMETERS dialog is displayed:

METHOD INPUT PARAMETERS

PORT HAME FinancePaort
OPERATION HAME calculsteAPR

Hame Type Value
InterestRate double [101
compound_period int |1 2

Mime Encoding

| INVOKE OPERATION |§|

5. Enter a value for each method parameter. In this example, a doubl e
value of 10.1 and an i nt value of 12 are entered.

21

CHAPTER 3 | Testing Web Service Methods

22

6. The default MIME encoding is UTF-8. If your internationalization needs
require it, select a different MIME encoding type from the drop-down
list.

7. Click INVOKE OPERATION to invoke the method with the specified
parameter values. The RESULTS FROM METHOD CALL dialog
displays the results:

RESULTS FROM METHOD CALL
Return Value
0.10580914877825542

Soap Request

<?xml wersion="1 0" encoding="U=-AZC|"?= <SOAP-ENY:Envelope xmins: SOAP-

ENY'="hitp: Mzchemas xmlsoap orgfsoapienvelope xmins xsd="htp: M e 3 orgl2001 ML Schema"

wimins: = si="http: ey w3 orgl2001 SMLSchema-instance"> <S0AP-ENY: Body SOAP-

ENY: encodingStyle="http: ischemas xmlzoap orgizoapiencoding™= =m1:calculate APR zmins: mi ="urn:target-finance-service"=
<IrterestRate xsitype="%sd double">101=lrterestRate= =compound_period xsitype="xadint"=1 2=/compound_period=
=im:calculate APR= =fSOAR-ENY: Body= =fS0AP-ENY: Envelope=

Soap Response

<?xml wersion="1 0" encoding="U=-AZC|"?= <SOAP-ENY:Envelope xmins: SOAP-

ENY'="hitp: Mzchemas xmlsoap orgfsoapienvelope xmins xsd="htp: M e 3 orgl2001 ML Schema"

wimins: = si="http: ey w3 orgl2001 SMLSchema-instance"> <S0AP-ENY: Body SOAP-

ENY: encodingStyle="http: Mschemas xmlzoap orgizoapiencoding™= <=m1:calculste APRResponse xmins:md ="urn:target-finance-
service"s <return zsitype="xsd double"-0 1053031 457752584 2=ureturn= </m1:calculate APRResponse= </S0OAP-ENY:Body =
<S0AP-ENY: Envelope:=

In this chapter

CHAPTER 4

Monitoring and
Testing SOAP
Messages

Most Web service clients and servers communicate using the
SOAP and HTTP protocols. It is sometimes useful for
debugging Web services to know exactly what was sent to and
received from the Web service. XMLBus provides the SOAP
Message Test Client graphical tool for monitoring SOAP
messages to and from servers at specified endpoints. With this
tool, you can enter specific SOAP messages, send them to
servers, and view the responses. XMLBus also provides a SOAP
message logging facility on the server.

This chapter discusses the following topics:

Starting the SOAP Message Test Client page 24
Obtaining and Verifying an Endpoint URL page 25
Sending Test SOAP Messages page 26
SOAP Message Logging page 29

23

24

CHAPTER 4 | Monitoring and Testing SOAP Messages

Starting the SOAP Message Test Client

Note: The Web services container must be running to use the SOAP
Message Test Client.

Start the SOAP Message Test Client in one of the following ways:

® lLaunch the Test Client from the IONA central toolbar, or

From the bi n directory, run the script i tws_nsgtestclient][. bat]
The following dialog displays:

SOAP Message Test Client

=1
Endpoint URL

hitp:fMacalhost 8080

|| VerifyURL | |INVALID

Obtaining and Verifying an Endpoint URL

Obtaining and Verifying an Endpoint URL

Follow these steps to obtain and verify a URL.

1. Obtain the endpoint URL for the Web service from an appropriate
source, such as from Web Services Manager.

2. Paste the URL into the Endpoint URL of the SOAP Message Test
Client:

' SDAP Message Test Client 101 =l

Endpoint URL

http:I.flucaIhust:8DBDI}{mIbusIFinanceIFinanceSer\riceIFinanceF‘um| | MerifyURLl I\L | INVALID |
b

!Verifying URL 2ty

Verifying URL ,ﬁ

3. Click Verify URL. If the URL is for a valid, running Web service, VALID
is displayed.

25

CHAPTER 4 | Monitoring and Testing SOAP Messages

Sending Test SOAP Messages

Overview You can enter any SOAP messages into the SOAP Message Test Client and
observe the responses. If you are very familiar with SOAP request message
formats, you can type a message into the SOAP Message Test Client
directly, or you can copy a SOAP request message from some other source,
such as Web Services Test Client. See “Testing Method Calls” on page 20
for how to use Web Services Test Client.

Steps Follow these steps to test a SOAP message.
1. Obtain a SOAP message to test.

For this example, copy a SOAP request message from the
RESULTS FROM METHOD CALL panel of Web Services Test Client:

RESULTS FROM METHOD CALL
Return Value

0.1055091 487 7525842

Soap Request

N Envelope=

26

Sending Test SOAP Messages

2. Enter a SOAP message into the SOAP Request To Send to Container

panel. In the following example, the SOAP message is copied from

Web Services Test Client and pasted into the SOAP request message:

SOAP Reguest to Send to Container

<#xm]l wersion="1.0" encoding="UTF-8"7> <504AP-ENV:Enwelope
xmlns: 304P-ENV="http: //schemas.xnlsoap.org/s0ap/envelopes""
xunlnsixsd="http: / wnr, w3, org,/ 2001 ML chena™
xmlns:ixsi="http: /wnr. w3, org /2001 SAMLAchema-instance™> <50AP-ENV:EBody
S0AP-ENV:encodingityle="http: //schenas.xnlsoap.org/soap/encoding /"=
<ml:calculatedPR xmlns:iml="urn: target-finance-service™> <InterestRate
¥al:type="xad:double">10.1<{/InterestRate> <compound period
iitvme="xzdiint">1 comtound periods ml:calculatedPR-

1]

Send

Clear

T

SOAP Response

S0APTURL:

r

Soaplction:

SoapEnvelope:

<2xml wersion="1.0" encoding="UTF-58"7> <30AP-ENV:Enwvelope

1]

- | Clear

http: //localhost: 3080/ xnlbus/container/Finance /Financel3ervice /FinancePor |28

3. Click Send.

27

CHAPTER 4 | Monitoring and Testing SOAP Messages

28

Observe the complete request-response streams in the
SOAP Response panel. For this example, the complete information is
as follows:

SOAPLRL:
http://1 ocal host: 8080/ xm bus/ cont ai ner/ Fi nance/ Fi nanceSer vi ce
/ Fi nancePor t
SoapAct i on:
SoapEnvel ope:
<?xm version="1.0" encodi ng="UTF-8"?> <SOAP- ENV: Envel ope
xm ns: SOAP- ENV="ht t p: / / schenas. xnl soap. or g/ soap/ envel ope/ "
xm ns: xsd="ht t p: / / waw. wW8. or g/ 2001/ XM_Schena"
xm ns: xsi ="htt p: // www wW3. or g/ 2001/ XM_Schena- i nst ance" >
<SQAP- ENV: Body
SQOAP- ENV: encodi ngStyl e="ht t p: / / schemas. xm soap. or g/ soap/ encod
ing/"> <nl: cal cul at eAPR
xm ns: ml="ur n: t arget - fi nance- servi ce"> <l nterestRate
xsi : type="xsd: doubl e">10. 1</ | nt er est Rat e> <conpound_peri od
xsi : type="xsd: i nt">12</ conpound_peri od> </ mnd: cal cul at eAPR>
</ SQAP- ENV: Body> </ SOAP- ENV: Envel ope>
Response:
<?xm version="1.0" encodi ng="UTF-8"?>
<SQAP- ENV: Envel ope
xm ns: SOAP- ENV="ht t p: / / schenas. xn soap. or g/ soap/ envel ope/ "
xm ns: xsd="ht t p: / / wan. W3. or g/ 2001/ XM_Schena"
xm ns: xsi ="htt p: // www W3. or g/ 2001/ XM_Schena- i nst ance" ><SQAP- E
NV: Body
SQOAP- ENV: encodi ngStyl e="ht t p: // schemas. xni soap. or g/ soap/ encod
i ng/ " ><ni: cal cul at eAPRResponse
xm ns: ml="ur n: t ar get - fi nance- servi ce"><return
xsi : type="xsd: doubl e">0. 10580914877825842</ r et ur n></ n.: cal cul
at eAPRResponse></ SOAP- ENV: Body></ SQAP- ENV: Envel ope>

4. You can easily edit the SOAP request message, click Send again, and

observe the new results.

5. Click Clear to clear the associated SOAP message panel in preparation

for another message.

SOAP Message Logging

SOAP Message Logging

Overview

Server-side SOAP Message logging is a mechanism that logs the SOAP
requests that come to the Web services container and the SOAP responses
sent by the container. The SOAP messages are redirected to a specified file.
You can control the logging by using the IONA Administrator tool:

F3 10NA Administrator Console 1.2 (User: Administrator)

Domains MNavigate Users Control Help

=10l x|

«es | BF 0%

43 Domains > EY
: ; g
E-€8) £¥ ¥mibus-domain MLBus Server SOAF Logging
i BF ¥MLBUS. Server
Ja. P Logging
& ¥MLBus Repositary "Genetic Managed Entity"
& SOAP Logging
¥mlbus-domaintype=Logging hame=S0AF Logging, Server=iPAS. Server. Default
Attributes Set Reset
Logall:| FALSE w |:boolean
LogFileMame: || IRL~1. USALOCALS~1TempWS0APMsg.log| : string
Endpaoints: || { }
Operations
startlogging: (string) : void
stoplogaging: | Invoke | dvoid) : void
stoplogaging: | Invoke | dvoid) : void
4| | »
Ready...

The IONA Administrator shows the SOAPLoggi ng bean which has the

following attributes:

LogAl | (on/off) Enable or disable logging for all endpoints.
LogFi | eName(String fil enane) Set the name of log file.

29

CHAPTER 4 | Monitoring and Testing SOAP Messages

30

The SOAPLoggi ng bean has the following operations:

startLoggi ng(String endpoi nt Nane) Start logging for specified endpoint

name.

stopLoggi ng(String endpoi nt Name) Turn off logging for specified
endpoint.

get Endpoi nt s() List endpoints for which logging is

currently on.
st opLoggi ng() Stop logging for all endpoints.

What is a Web services registry?

Starting

CHAPTER 5

Using the Registry
Manager

IONA’s Web Services Registry Manager lets you build and
browse Web service UDDI version 2 registries.

The Registry Manager implements Sun Microsystem’s Java API for XML
Registries (JAXR) specification, which provides a superset of interfaces to
UDDI and ebXML. This implementation is aimed at users who are already
familiar with UDDI and JAXR.

Like SOAP and WSDL, JAXR/UDDI provide specifications for a core Web
service technology. A Web services registry contains categorized information
about businesses and the services that they offer, and associates those
services with the Web service's WSDL description. Users can query the
registry to find desired services and their WSDL descriptions.

The Registry Manager provides a browser that lets you query your own or
third-party registries. You can also use the manager to add, update, and
delete registry entries.

Each installation provides a private registry, which you can populate with
your own service entries, for internal and external use.

Start the Registry Manager from the command line as follows:

i tws_regi strymanager[. bat]

31

CHAPTER 5 | Using the Registry Manager

In this chapter

32

This chapter is divided into the following sections:

Connecting to a Registry page 33
Browsing a Registry page 34
Listing Object Details page 36
Updating a Registry page 38
Implementing Registry Clients page 43

Connecting to a Registry

Connecting to a Registry

Overview

Connection requirements

You can connect to the installed private registry; you can also connect to a
public registry. For example, the following companies currently maintain
public registries:

* |BM
® Microsoft
® Systinet

In order to connect to a registry, the following fields require valid entries:

Registry User/Password: Required in order to publish to a registry. User
names and passwords are set in the XML file

et ¢/ domai ns/ Domain/ securityl nfo.xm . In order to access public
registries, you must obtain the required credentials. For more information
about securing access to your own registries, see the Securing Web Services
section in the Security Guide.

Query URL: The URL for browser connections.
Publish URL: The URL for connections to registries where you can add new

entries and edit existing data. In the current release, you can only edit
instances of IONA registries.

After you supply the required data, click Connect.

33

CHAPTER 5 | Using the Registry Manager

Browsing a Registry

Overview

“® Orbix EZA Business Registry Manager for JAXR/UDDI¥2 VYersion 5.4 Build #20020809-1537 | il

File

Current Registry: 1BM Test UDDI v2

Select Registry Registry Listings Wiews Organization
Search Registry by Qrganization Narme (% is wildcard) Qrganization 1Bl EDAXML DEMO
=]
Search

Search Results

418G MewStarts

4 181 EDAXML DEMO

4 1B

Wl=1]

1 18BN Advanced Internet Technology
% 1BM BIS Sector Finance

& 1B Clocks

4 |BM Content Management for e-business
4 |BM Financial Transaction Services
% 1BM Financial Transaction Services
% 1BM Financial Transaction Services
4 1BM Financial Transaction Services
4 |BM Financial Transaction Services
4 |BM Financial Transaction Services
4 1BM Financial Transaction Services
% 1BM Financial Transaction Services
% 1BM Financial Transaction Services
4 |BM Free Downloads

4 |BM Haifa Labs

4 BN Hospital Web services Tutarial
4 1BM Korea Web Services Demo

1 |BM Korea Weh Services Demo - ATS Computer Parts Association
L 18N Labor Boehlingen

4 |BM Learning Services Denmark

4 1BM Lunar UDDI Test

4 1BM Paris Lab

4 1BM SITT - TEST

1 18BN Software Enterprise Integration
4 BN Software Region Morth

4 1BM Solution Installer Toolkit

4 1BM Video Central

4 1BMWS4B Testhrea

After you connect to a registry, you can browse its contents. To do so, create
a selection set of registered business entities. Specify the set by entering a
query in the Search field, and pressing Search. The following figure shows
the results of a query for all business entities that begin with I B:

Tasks Help

IO DO ink Camicae

e

(e R L e B R e - B lm- o 00 & e r | e e @

34

Note: Queries are case-insensitive.

Browsing a Registry

Wildcards Some registries also support wildcard queries. For example, the Microsoft
UDDI registry allows the wildcard % Thus, querying this registry with
% r anspor t %finds all business entities whose names include the string
transport:

©® Orbix E2A Business Registry Manager for JAXR/UDDI¥Z ¥ersion 5.4 Build #20020809-1537 =10 x|
File Tasks Help
Current Registry: Microsoft UDDI v2

Select Registry Registry Listings Wiew Organization
Search Registry by Organization Name (% s wildcard) Organization
Stranspon

Search

Search Results:
&l Architectural and Transportation Barriers Compliance Board (Access Boa

Assistant Secretary for Transporation Policy

2\ Bombardier Transportation

't Bureau of Transportation Statistics (BTS)

4 Classic Transporation

Department of Transportation

 Division of Chemical & Transport Systems

', Grand Champion Horse Transportation

Y, John A Volpe National Transportation Systems Center

4, Mational Transportation Library

4, Mational Transportation Safety Board

4 Office of Commercial Space Transpotation (AST)

oy Office of Emergency Transportation Management

4y Office of High Speed Ground Transportation (HGST)

', Office of International Transportation and Trade

4 Gweensland Transport

Surface Transporation Board

4, Tow One Transport, Corp

4, Transport

|, transportation

o, Transportation Administrative Service Center (TASC)

2\ Transportation Afairs (EBITRA)

4 TRANSPORTES CALDERON 2000, 5.L.

oy Transportieb

4 LS. Transportation Command, Scott Air Force Base, IL

35

CHAPTER 5 | Using the Registry Manager

Listing Object Details

Each registered business typically has one or more services associated with
it. Services are listed as subentries under the business, and are accessible
by double-clicking on the business entry. Similarly, service bindings are
listed under the service, and are accessible by double-clicking on the service
entry. To collapse an entry’s subentries, double-click on it again:

Select Registry Redistry Listings
Search Redistry by Organization MName (% is wildcard)
=1

Search
Search Results:

— 18 hd

— =10

— 1BM Advanced Internet Technology

— 1BM BIS Sector Finance

— 1BM Clocks

— 1BM Content Managerment for e-business
— 1B Financial Transaction Services

IBM Financial Transaction Services
TS 1dentityService

s CantractService

s MeterService

1BM Financial Transaction Services
1IBM Financial Transaction Services

1BM Financial Transaction Services
IDhd Cimmmeinl Trameae Himm S

36

Listing Object Details

When you select any entry, its details display in the right-hand View
Organization panel. For example, when you select a service binding, the
following details display, including the URL of the service’s WSDL:

B Orbix E2A Business Reqgistry Manager for JAXR/UDDI¥2 Version 5.4 Build #20020809-1537
File

=10l x|

Tasks Help

Current Registry: IBM Test UDDI w2

Select Registry Redisty Listings Senvice Binding View | Edjl SericeHinding

Search Registry by Organization Name (% is wildcard) | Service Binding

181

Jearch
Search Results:
=104
1am
18M Advanced Interet Technology
IBM BIS Gector Finance
1BM Clocks
18M Content Managerment for e-business
1B Financial Transaction Services
1) MeteredStockQunteService
hita:iocalhost 8080/s0apsenetimor
1, 180 Financial Transaction Senices
4 18M Financial Transaction Senices
4 1BM Financial Transaction Senices
I, 1B8M Financial Transaction Senices
4, 1BM Financial Transaction Senices
4, 18M Financial Transaction Senices
4 1BM Financial Transaction Senvices
1, 18M Financial Transaction Senices
4 18M Free Downloads

Descrption

AccessUR! http:#ocalhost: 8080/s0ap/servetrperouter

Specification Links

Concept Natre
Description
External Links
Description

Extemal URY

http:/focalhost BOS0/metered

htty: /e getquate comiMeteredstockQuoteSenvice-interface

tockouote services/sos-interface wsdl

Classifications
Nae, Valve Stock market trading services : 84121801
GSchette Naae

Name, Valuee

types : wsdlSpec

Cocheme Name

4 1B Haifa Laks

1, 180 Hospital Web senvices Tutorial

1, 18M Korea Web Senvices Demo

A 1BV Korea YWeb Services Demo - ATS Comput
1 B0 Lahor Bogblingen

L 1BM Learning Services Denmark

4 1BM Lunar UDDI Test

11BN Paris Lab

L 1B SIT1 - TEST

Usage Parameters

paameter >

[

After listing a Web service's details, you can perform several tasks,

including:

® Select a service URL to view the WSDL code. The WSDL displays in a
browser window.

Copy the Web service's URL for use in other tools such as the Web
Services Test Client (see page 17).

37

CHAPTER 5 | Using the Registry Manager

Updating a Registry

Overview

Add new entries

38

You can update the data in any Web services registry that is accessible to

you. The local IONA registry is always accessible. Third-party registries are
accessible only to users with login privileges.

You can perform these tasks:

® Add new entries.
Edit registry data.

® Delete entities.

If a registry is available for publishing and updating services, you can add a
new business service data as follows:

1. Select Tasks | New Organization.

Updating a Registry

The Edit Organization dialog is displayed:

©® Orbix E2A Business Registry Manager for JAXR/UDDIv2 VYersion 5.4 Build #20020820-1619

Mew: Organization

=

2. Enter the business data.

3. Define a service for this business entity by choosing New.

Note: Choosing New implicitly accepts the current data. Apply saves
the current data; Cancel removes all changes and restores the data
last applied to this entity.

39

CHAPTER 5 | Using the Registry Manager

40

The Edit Service dialog is displayed:

©# Orbix EZA Business Registry Manager for JAXR/UDDI¥Z ¥ersion 5.4 Build #20020820-1619

T Mew Service

T B N S SR

4. Enter the service data.

5. Define a service binding for this service entity by choosing New.

Updating a Registry

The Edit ServiceBinding dialog is displayed:

©® Orbix E2A Business Registry Manager for JAXR/UDDI¥2 ¥ersion 5.4 Build #20020820-1619

@ I[[J Takeout order service

6. Enter the service binding data.

41

CHAPTER 5 | Using the Registry Manager

Edit registry data You can edit the data of any registry entity by selecting that entity and
choosing its Edit tab. For example, the following Edit ServiceBinding dialog
lets you access the editable data for TransformService’s service binding:

% @ «MLBug
@ I Anaconda Sewice
@ I InteropTest Senice
@ I DeployService
@ I ¥MLBusVersionSenvice
@ I TransformSenice
SOAP hinding for TransformSenice
@) BrokerSenvice
@ I FinanceService
@ I ElectricityService
@I KnowledgeBaseSenice
@ I ChainService
@ I LiveEjhSenice
@ I InteropTest! 9998ervice
@ I AttachmentAppSerdce
@ 1) FarmsAndRegalService
@ I DeliveryCaonfirmationService
@ I UDDIRegistrySemice
@ I DomesticCaloulatorSenvice
@ Iy CarShopFlowSenice

hitp:fflocalhost8080MxmIbusiTransformMransformSenicelTransformPort
hitp-fMocalhost8080&mIbusiTransformMransformBenicelTransformP o

ooy | can | oo | =

Delete entities To delete an entity:
1. Select the entity.
2. Choose the entity’s Edit tab.
3. From the entity’s Edit dialog, click Delete.

42

Implementing Registry Clients

Implementing Registry Clients

Overview

In this section

If you implement your own registry client, you can enable it to query and

update an Orbix registry in the following ways:

® Use Orbix Web service APIs.

® Use supported third-party APIs. The Orbix registry currently supports
IBM’s UDDI for Java (UDDI4J), and Sun Microsystem’s Java API for
XML Registries Reference Implementation (JAXR RI).

This section contains information about using three sets of APIs that enable
access to an Orbix registry:

Using Orbix Web Service APls page 44
Using UDDI4J APIs page 48
Using JAXR RI page 50
Support for UDDI APIs page 52
Current Limitations page 54

43

CHAPTER 5 | Using the Registry Manager

Using Orbix Web Service APIs

Overview

Software requirements

Querying an IONA Web services
registry

44

A set of client proxy classes in com i ona. uddi . v2. i nf or nodel is generated
from WSDL. You can use these proxy classes to interact with any UDDI
registry.

Two classes are especially important:

® comiona. uddi.v2.infornodel . | nquiryl nterface is a proxy to query
UDDI registry services. Its methods map to UDDI inquiry API
specification.

® comiona. uddi. v2.infornodel . Publishi ngl nterface is a proxy to
update a UDDI registry. Its methods map to UDDI publishing API
specification.

For more information about these classes, refer to the distribution’s JavaDoc

descriptions.

You must have JDK 1.3.1_02 or higher. Also, the class path must include
the following jars, located off the installation directory:

asp/ Version/ 1i b/ webser vi ces/ j axm api . j ar

asp/ Version/ 1 i b/ webser vi ces/ soap_client.jar
asp/ Version/ 1 i b/ webser vi ces/ wor kbench. j ar
asp/ Version/ 1i b/ webser vi ces/ xer ces. j ar

|'i b/ apache/j akarta-10g4j/1.2.6/10g4j.jar
lib/common/ifc/l.1/ifc.jar
lib/sun/mail/1.2/mail.jar

I'i b/ xm bus/ wor kbench/ 5. 4. 1/ i onawor kbench. j ar
lib/xmbus/jaxn5.4.1/it_jaxmjar

l'i b/ xm bus/registry_tool/5. 4.1/ uddi stub.jar

In order to query an IONA Web services registry, follow these steps:

1.

2.

Implementing Registry Clients

Call get Proxy() on a WebServiceProxy object to bind the Inquiry

interface. For example:

import comi ona. uddi . v2.infonodel . *;
/...
public Inquirylnterface getlnquiryProxy(
String wsdl Path, String url, bool ean debug)
throws Exception {
try {
(hj ect proxy =
WbSer vi cePr oxy. get Pr oxy(
"UDDl Regi st ryServi ce",
"I nquiryPort",
I nqui ryl nterface. cl ass,
wsdl Pat h,
debug,
url,
null);

MessageSettings nsettings =

\bSer vi cePr oxy. get MessageSet t i ngs(proxy) ;

nsettings. set AddXSl Type(fal se);
nsetti ngs. set UseDef aul t Nanespaces(true);
nset tings. set SoapEnvel opePrefi x("soap");
return (Inquirylnterface) proxy;
} catch (Exception ex) {
throw ex;

}

/...

Call 1 nqui ryl nt er f ace operations to query the UDDI registry. For
example:

String nanes[] = null;

find_busi ness fb = new find_busi ness();

nane uddi nane = new nane();

uddi nane. _si npl eTypeVal ue = " X% ;

f b. set nane(new narre[] { uddi narre}) ;

fb.generic = "2.0";

fb. maxRows = new | nt eger (50) ;

busi nessList bl = null;

String inquiryURL="http://| ocal host: 8080/ xni bus/
UDDI Regi st ry/ UDDl Regi stryServi ce/ | nqui ryPort/";

bool ean debug=t r ue;

45

CHAPTER 5 | Using the Registry Manager

try {
I nqui ryl nterface inquiryProxy =
get | nqui ryProxy(i nqui ryURL, nul | , debug) ;
bl = inquiryProxy. find_busi ness(fb);
client.printBusi nessLi st (bl);
} catch (Exception e) {
e. print StackTrace();

}

Updating an IONA registry In order to update an IONA registry, follow these steps:
1. Call get Proxy() on the WebServiceProxy object in order to bind the
Publ i sh interface. For example:

publ i ¢ Publi shi ngl nterface getPublishProxy(String wsdl Pat h,
String url, bool ean debug) throws Exception {
try {
Chj ect proxy = VbSer vi ceProxy. get Proxy(
" UDDI Regi st ryServi ce",
" Publ i shi ngPort",
Publ i shi ngl nt er f ace. cl ass,
wsdl Pat h,
debug,
url,
nul l);

MessageSettings nsettings =
WbSer vi cePr oxy. get MessageSet t i ngs(pr oxy) ;
nsettings. set AdXS| Type(fal se);
nsettings. set UseDef aul t Namespaces(true);
nset tings. set SoapEnvel opePr ef i x(" soap") ;

return (Publi shinglnterface) proxy;
} catch (Exception ex) {
throw ex;

}

46

Implementing Registry Clients

2. Obtain authorization from the registry. For example:

get _aut hToken get Aut hToken = new get _aut hToken();
get Aut hToken. user | D = "adm n";
get Aut hToken. cred = "adnmi n";

aut hToken t oken =
publ i shi ngl nt er f ace. get _aut hToken(get Aut hToken) ;

String authlnfo = token. getauthlnfo();

3. Call operations on the Publ i shi ngl nt er f ace object in order to update
the registry. For example:

Publ i shi ngl nterface proxy =
get Publ i shPr oxy(

“http://1ocal host: 8080/ xm bus/ UDDl Regi st ry/ UDDI Regi stryS
ervice/lnquiryPort/",
null, true);

/...
busi nessEntity be = new busi nessEntity();
be. busi nesskey = "";

/
nane uddi nane = new nane();
uddi nane. _si npl eTypeVal ue = "busi ness entity nane";

be. set nane(new nane[] { uddi nane}) ;

description desc = new description();
desc. _si npl eTypeVal ue = " Business Entity description";
be. set descri pti on(new descri ption[]{desc});

busi nessEnti ty[] busi nessEntities = new busi nessEntity[1];
busi nessEntities [0] = be;

/...

save_busi ness sb = new save_busi ness();

sb. generic = "2.0";

sb. set aut hl nf o(t oken) ;

if (businessEntities != null &% businessEntities.length > 0)

{
}

pr oxy. save_busi ness(sb);

sb. set busi nessEnti t y(busi nessEntities);

47

CHAPTER 5 | Using the Registry Manager

Using UDDI4J APIs

Overview

Software requirements

Steps

48

UDDI4J is an open-source Java implementation for interacting with a UDDI
registry, originally developed by IBM. The latest code is now at the
developerWorks open source site
http://www-136.ibm.com/developerworks/opensource.

The following requirements apply:

UDDI4J version 2. The uddidj.jar is available at
http://www-124.ibm.com/developerworks/oss/uddi4j/.
Apache SOAP jar, available at http://xml.apache.org/soap/
JDK 1.3.1_02+ with JSSE

The following describes the basic steps required in order to enable a UDDI4j
client to query and update an Orbix registry:

1.

Configure the org. uddi 4j . cl i ent . UDDI Proxy class to connect to an
Orbix Web services registry.

String ional nqui ryURL =
"http://1ocal host: 8080/ xm bus/ UDDl Regi st ry/ UDDl Regi stryS
ervicel/l nquiryPort/";

String ionaPublishURL =
"http://1ocal host: 8080/ xm bus/ UDDl Regi st ry/ UDDl Regi stryS
ervi ce/ Publ i shingPort/";

UDDI Proxy proxy = new UDD Proxy();
proxy. set | nqui r yURL(i onal nqui ryURL) ;
proxy. set Publ i shURL(i onaPubl i shURL) ;

Configure the UDDI4j SOAP transport:

Syst em set Propert y(Tr anspor t Fact or y. PROPERTY_NAME,
"org. uddi 4j . transport. ApacheSQAPTr ansport")

Syst em set Property("j ava. protocol . handl er. pkgs",
"com sun. net . ssl . i nternal . ww. protocol ");

java. security. Security.addProvider ((java. security. Provider)
d ass. forName("comsun. net.ssl.internal.ssl.Provider").n
ewl nstance());

http://www-136.ibm.com/developerworks/opensource
http://www-124.ibm.com/developerworks/oss/uddi4j
http://xml.apache.org/soap/

Implementing Registry Clients

3. Obtain authorization from the registry. For example:
String uid = "admn";

String pwd = "adm n");
Aut hToken t oken = uddi Proxy. get _aut hToken(ui d, pwd);

49

CHAPTER 5 | Using the Registry Manager

Using JAXR RI

Software requirements

Steps

50

The following requirements apply:

Java SDK: Use version 1.3.1 or 1.4.0_01 of the J2SE SDK instead of
version 1.4. If you install the Java XML Pack on version 1.3.1 or
1.4.0_01, the Java XML Pack includes a fixed version of the JSSE
library.

Java API for XML Registries (JAXR) 1.0_01: JAXR reference is
included in Java Web Service Developer Pack 1.0, at
http://java.sun.com/webservices/downloads/webservicespack.html.

The following describes the basic steps that a JAXR client must follow in
order to query and update an Orbix registry:

1.

Create a connection to the registry service: To create a connection, a
client first creates a set of properties that specify the URL of each
registry to access, as follows:

Properties props = new Properties();

props. set Property("javax. xm . regi stry. quer yManager URL",
http://1 ocal host : 8080/ xm bus/ UDDl Regi st ry/ UDDI Regi strySe
rvice/ I nquiryPort/");

props. set Property("javax. xm .registry.|ifeCycl eManager URL",
"http://1ocal host: 8080/ xm bus/ UDDl Regi st ry/ UDDl Regi stryS
ervi ce/ Publ i shingPort/");

props. set Property("javax. xm . regi stry. uddi . maxRows" ,

"100");
props. set Property("javax. xm . regi stry. Connect i onFact oryd as
s", "com sun. xn . registry. uddi . Connecti onFact oryl npl ") ;

Gonnect i onFact ory connectionFactory =
Connect i onFact ory. newl nst ance() ;
connect i onFact ory. set Properti es(props);
connecti on = connecti onFact ory. cr eat eConnecti on();

http://java.sun.com/webservices/downloads/webservicespack.html

Known issues

Implementing Registry Clients

2. Specify the HTTP proxy host and port. If the registry to access is inside
a firewall, the client must also specify proxy host and port information
for the network on which it is running:

props. set Property("com sun. xm .registry. http. proxyHost",
"host . domai n"");

props. set Property("com sun. xn .registry. http. proxyHost",
"host Port");

props. set Property("com sun. xnm .registry. https. proxyHost",
"host . domai n") ;

props. set Property("com sun. xm .registry. https. proxyPort",
"host Port");

3. Specify to use Apache SOAP:

props. put ("com sun. xnt . regi stry. useSQAP', "true");
4. Obtain authorization from the registry. For example:

String usernanme="adm n";

String password="adm n";

Passwor dAut hent i cati on passwdAuth = new
Passwor dAut hent i cat i on(user nane,
password. t oChar Array());

Set creds = new HashSet ();

cr eds. add(passwdAut h) ;

connecti on. set O edenti al s(creds);

The name element in business, service and binding is null. The current
release of the JAXR reference implementation requires xm : | ang attribute in
the name element. JAXR RI converts the element to nul | if the language
attribute is not included.

51

CHAPTER 5 | Using the Registry Manager

Support for UDDI APIs

Overview IONA’s Web services registry supports all programming APIs in UDDI
version 2 except assertion and advanced search. The following tables show
which operations are implemented (Y), partially implemented (P), and not
implemented (N):

Table 2: Inquiry operations

Operation Status

find_bi ndi ng()

find_busi ness()

find_rel at edBusi nesses()

find_service()

fi ndTModel ()

get _bi ndi ngDtail ()

get _busi nessDet ai | ()

get _busi nessDet ai | Ext ()

get _servi ceDetail ()

<l =<|lz|<|=<|=<|=<|z|=<|=<

get _t Model Detail ()

Table 3: Publishing operations

Operation Status

add_publ i sher Assertions()

del et e_bi ndi ng()

del et e_busi ness()

del et e_publ i sher Assertions()

<|lz|<|=<|=z

del et e_servi ce()

52

Implementing Registry Clients

Table 3: Publishing operations

Operation Status

del et e_t Model ()

di scard_aut hToken()

get _assertionStat usReport ()

get _aut hToken()

get _publ i sher Assertions()

get _regi steredlnfo()

save_bi ndi ng()

save_busi ness()

save_service()

save_t Model ()

zl<|<|=<|=<|z|lz|=<|=z]|<]|<

set_assertions()

53

CHAPTER 5 | Using the Registry Manager

Current Limitations

The following limitations currently apply:
® Orbix supports version 2 UDDI registries but not version 2 errata.
® Orbix registry does not support the asserti on interface.

54

CLASSPATH requirements

User tools API

CHAPTER 6

Command-line
Tools

Command-line tools let you perform many of the operations available in
Web Service Builder. You can perform the following tasks:

® Create and modify XAR files

® Deploy Web services

® Generate code from WSDL

To use command-line tools, your CLASSPATH must include the following files:

® asp/ Version/ i b/ webser vi ces/ wor kbench. j ar
® asp/ Version/ i b/ webservi ces/ soap_client.jar

A user-tools API is also available for writing your own applications to
perform most of these same tasks. See the

com i ona. webser vi ces. user t ool s package in the IONA Web Services API
Reference.

55

CHAPTER 6 | Command-line Tools

Creating and Modifying XARs

The following command-line tools are available for creating and modifying
XARs:

® xni bus. AddResour cesToXAR
® xni bus. CORBATOXAR

® xni bus. JavaToXAR

® xni bus. SchemaToXAR

® xni bus. Tr ansf or nToXAR

® xni bus. XM.ToXAR

56

Creating and Modifying XARs

xmlbus.AddResourcesToXAR

Description

Options

See also

j ava xm bus. AddResour cesTOXAR - x XAR- nane
[-r resource_by_reference]...[-i include_resource]...
[-s Wb-service-nane] [-v] [-license] [-7?]

Adds resources to an existing XAR file. Types of resources can be any resources
needed by the XAR including:

® class implementation files

® interface files

® other resources

The following options are available:

-? Display the tool's usage and options.

-i include_resource Embed the specified resource into the XAR. You
can use this option multiple times in a
command.

-license Display the current license.

-r resource_by_reference Include a reference to the resource into the
XAR. You can use this option multiple times in

a command.

-s \eb- servi ce- name The name of the Web service in the XAR to
which the resources are added.

-V Display the version of the command.

-X XAR- name The XAR file to which the resources are added.

Note: This parameter is required.
xm bus. JavaToXAR

xm bus. CORBATOXAR
xm bus. XMLTOXAR

57

CHAPTER 6 | Command-line Tools

xmlbus.CORBAToXAR

java xm bus. CCRBATOXAR - x XAR- nane
{ -ior object-reference | -targetName target-name | -bind...}
-repl D repository-1D
[-oc ORB-cl ass-nane] [-os CRB-singl eton-cl ass]
[- ORB ar gurent - nane ar gunent -val ue]. ..
[-w WBDL-file-name] [-u base-URL] [-a SQOAP-action]
[-n nanespace] [-d data-nanespace] [-| application-nane]
[-s VWeb-service-name] [-e endpoint-name]
[-doc] [-literal] [-override] [-1999]
[-v] [-license] [-7?]

Description Creates a XAR file from a CORBA object.
Options The following options are available:
-? Display the tool's usage and options.
-1999 Use the 1999 XML Schema specification. The

default is to use most recent schema
specification supported.

-a SOAP-action The SOAP action, if any, for the Web service
implementation.

-bind ... The bind semantics of Orbix servers used to build
the object reference of the CORBA object.

Note: This parameter is required unless the
-target Nane or -i or parameter is used.

For more details, see page 59.

-d dat a- namespace The namespace to use for the Web service's
data.
- doc Set the XARs methods to use the XML document

style of interaction. The default interaction style
is to use the RPC style of interaction.

- e endpoi nt - nane The endpoint name to use for the Web service in
the generated XAR WSDL.

-ior object-reference The object reference for the CORBA object.

Note: This parameter is required unless the
-t ar get Nane or - bi nd parameter is used.

-1 appl i cati on- nane The name to use for the Web service application
being generated.

58

-bind option details

-license

-literal

- N namespace

-oc ORB-cl ass- name

- CRB ar gurrent - nane
ar gunent - val ue. . .

-0s ORB-singl eton-cl ass

-override

-repl D repository-1D

-s \Wb- servi ce- nane

-target Nane target-nane

-u base- URL
B

-w WBDL-fi | e- name

-X XAR- nane

Creating and Modifying XARs

Display the current license.

Set the XARs methods to use literal encoding.
The default is to use SOAP encoding.

The namespace to use in the generated XAR
WSDL that uniquely identifies the Web service’s
properties.

The object request broker (ORB) class name of
the CORBA resource that represents the
implemented Web service. This option is
required.

The name-value pair arguments that are to be
passed to the initializing ORB. These are the
CRBi ni t () parameters.

The object request broker (ORB) singleton class
for the CORBA resource. This option is required.

Override the existing XAR file information in
XAR- nane. The default is to add the information
to the existing XAR.

The identifier of the interface repository.
Note: This parameter is required.

The name of the Web service for the XAR being
created.

The target name of the CORBA object.

Note: This parameter is required unless the
-ior or-hind parameter is used.

The URL of the Web Service Container.
Display the version of the command.

The name for the Web service's WSDL file
generated.

The XAR file that specifies the Web service.
Note: This parameter is required.

The - bi nd option specifies the bind semantics of Orbix servers, which is
used to build the object reference of the CORBA object. This option is
required unless the -tar get Nane or -i or parameter is used.

The semantics are as follows:

59

CHAPTER 6 | Command-line Tools

See also

60

java xni bus. CCRBATOXAR . . .

-bi nd servernane: server-nane interface: fully-scoped-interface
[host: host nane] [port: server-1istening-port]
[marker: obj ect -marker] [iiopVersion: || CP-version]

servername:server-name The name of the server on which the CORBA
object resides.

interface:fully-scoped-interface The CORBA object’s interface name. The
following formats are valid:

® Orbix-style format: PragmaPrefi x- Modul e- | nt er f ace

® C++ style scoping: PragmaPrefi x: : Mdul e: : I nterface

® TYPE ID notation: PragmaPr ef i x/ Modul e/ I nter f ace

host:hostname The name of the host on which the server is running. The
default value is | ocal host .

port:server-listening-port The port on which the server is listening, or the
Orbix daemon port. If not specified, the default is 1570, the well-known
Orbix daemon port.

marker:object-marker The CORBA object’s marker. The default value is an
empty marker (").

iiopVersion:110P-version The IIOP version supported by the server. Valid
values are either 1. 0 (default) or 1. 1.

xn bus. AddResour cesToXAR
xm bus. JavaToXAR
xm bus. XMLToXAR

xmlbus.JavaToXAR

Description

Options

Creating and Modifying XARs

java xm bus. JavaToXAR -x XAR- nane
[-] Java-nane]...
[-w WBDL-file-name] [-u base-URL] [-a SQOAP-action]
[-n nanespace] [-d data-nanespace] [-| application-nane]
[-s VWeb-service-name] [-e endpoint-nane]
[-doc] [-literal] [-override] [-1999]
[-v] [-license] [-7?]

Creates a XAR file from a Java class.

The following options are available:

-? Display the tool’s usage and options.

-1999 Use the 1999 XML Schema specification. The
default is to use most recent schema specification
supported.

-a SOAP-action The SOAP action, if any, for the Web service

implementation.

-c cl ass-nane The name of the Java target class in the JAR that
represents the implemented Web service.

Note: This parameter is required.
-d dat a- namespace The namespace to use for the Web service's data.

-doc Set the XARs methods to use the XML document
style of interaction. The default interaction style is
to use the RPC style of interaction.

- e endpoi nt - nane The endpoint name to use for the Web service in
the generated XAR WSDL.

-j Java-nane... Java classes referenced by the main
implementation class. More than one of this option
is allowed.

-1 application-nane The name to use for the Web service application
being generated.

-license Display the current license.

-literal Set the XARs methods to use literal encoding. The
default is to use SOAP encoding.

61

CHAPTER 6 | Command-line Tools

See also

62

- N namespace

-override

-s Wb- servi ce- nane

-u base- URL
-V

-w WBDL-fi | e- name

-X XAR-nane

The namespace to use in the generated XAR
WSDL that uniquely identifies the Web service’s
properties.

Override the existing XAR file information in
XAR- nare. The default is to add the information to
the existing XAR.

The name of the Web service for the XAR being
created.

The URL of the Web Service Container.
Display the version of the command.

The name for the Web service’s WSDL file
generated.

The XAR file that specifies the Web service.
Note: This parameter is required.

xm bus. AddResour cesToXAR

xm bus. CORBATOXAR
xm bus. XMLToXAR

xmlbus.SchemaToXAR

java xm bus. xm bus. SchemaToXAR -x XAR nane
-sc schenma-nane -dh dom handl er
{-pt part-name::uri::elenment-nane::{inlout|inout} }...

Description

Options

[-op operati on- nane]
[-w WBDL- il e- nane]

Creating and Modifying XARs

[-u base-URL] [-a SOAP-action]

[-n nanespace] [-d data-nanespace] [-| application-nane]
[-s Wb-service-name] [-e endpoint-nane]

[-override]

[-v] [-license] [-7]

Creates a Web service from a schema and DOM handler. The specified schema
determines the structure of the XML document to be processed, while the
DOM handler class provides the mechanism that processes the document

data.

Generates a schema-based Web service.

The following options are available:

-2

-a SOAP-action

-d dat a- nanespace

-dh dom handl er

- e endpoi nt - name

-1 application-name

-1icense

- N nanespace

-op operati on- name

-override

Display the tool's usage and options.

The SOAP action, if any, for the Web
service implementation.

The namespace to use for the Web
service's data.

The DOM handler class.

The endpoint name to use for the Web
service in the generated XAR WSDL.
The name to use for the Web service
application being generated.

Display the current license.

The namespace to use in the generated
XAR WSDL that uniquely identifies the Web
service's properties.

The name of the operation to call when
invoking on this service

Override the existing XAR file information in
XAR- name. The default is to add the
information to the existing XAR.

63

CHAPTER 6 | Command-line Tools

64

_pt

Specifies a root element in the service's

part-nane: :uri:: el enent - name jnput or output XML documents, where uri

::{in|out]inout}

-s \b- servi ce- nane

-sc schema- nanme

-u base- URL
-V

-w file-name

-X XAR- nane

is a schema namespace for el enent - nane,
and el enent - nane is a schema root
element.

The name of the Web service for the XAR
being created.

The schema for documents received by this
service.

The URL of the Web service container.
Display the version of the command.

Generate this Web service’s WSDL and
output it to fi | e-nane.

The XAR file that specifies the Web service.

After creating the Web service from the mapping specification, use
xm bus. AddResour cesToXAR to add all dependent resources to the XAR

including:

® The DOM handler

® Schema files
® Java resources

xmlbus.TransformToXAR

Description

Options

Creating and Modifying XARs

java xm bus. Tr ansf or nToXAR - m mappi ng- speci fi cation -x XAR- nane

[-w WBDL- fi | e- nane]

[-u base-URL] [-a SOAP-action]

[-n nanespace] [-d data-nanespace] [-| application-nane]
[-s Wb-service-name] [-e endpoint-nane]
[-override] [-v] [-license] [-7?]

Creates a Web service from a schema map. A schema map is a specification
of how to transform information from one or more source XML documents to

a target XML document.

The following options are available:

-2

-a SQOAP-action

-d dat a- nanespace

- e endpoi nt - name

-1 application-name

-license

- m mappi ng- speci fication

- N namespace

-override

-s \WWb- servi ce- nane

-u base- URL
-V

-w WBDL-fi | e- nanme

Display the tool's usage and options.

The SOAP action, if any, for the Web
service implementation.

The namespace to use for the Web
service’s data.

The endpoint name to use for the Web
service in the generated XAR WSDL.

The name to use for the Web service
application being generated.

Display the current license.
The schema mapping specification to use.
Note: This parameter is required.

The namespace to use in the generated
XAR WSDL that uniquely identifies the
Web service’s properties.

Override the existing XAR file information
in XAR- nane. The default is to add the
information to the existing XAR.

The name of the Web service for the XAR
being created.

The URL of the Web Service Container.
Display the version of the command.

The name for the Web service’s WSDL file
generated.

65

CHAPTER 6 | Command-line Tools

See also

66

-X XAR-name The XAR file that specifies the Web

service.
Note: This parameter is required.

After creating the Web service from the mapping specification, use

xn bus. AddResour cesToXAR to add all dependent resources to the XAR
including:

® The mapping specification file used with this command

® Schema files

® Java resources

xm bus. AddResour cesToXAR

Creating and Modifying XARs

xmlbus.XMLToXAR

java xm bus. XML.TOXAR -x XAR-nane -f project-file-nane
[-r] [-v] [-license] [-7]
script. xm

Description Builds or modifies a XAR based on a “script” of properties in an XML file. For
more on properties, see the Web Services Programmer’s Reference.

Options The following options are available:

-? Display the tool’s usage and options.
-f project-file-name Web Service Builder project file name.

Note: This parameter is required.

-1icense Display the current license.

-r Force a complete rebuild of the XAR.
-v Display the version of the command.
-X XAR- name The XAR file that is modified.

Note: This parameter is required.
See also xni bus. AddResour cesToXAR

xm bus. JavaToXAR
xm bus. CORBATOXAR

67

68

CHAPTER 6 | Command-line Tools

Deploying Web Services

The following command-line tools are available for deploying and
undeploying Web services:

® xni bus. Depl oy

® xni bus. Undepl oy

xmlbus.Deploy

Description

Options

See also

Deploying Web Services

java xm bus. Depl oy -x XAR-nanme -u depl oynent - servi ce- URL
[-debug] [-usernane username -password password]

[-v] [-license] [-7]

Deploys a Web service application to the Web services container.

The following options are available:

-2

- debug

-1icense

- passwor d password

-u depl oynent - servi ce- URL

- user name user nanme

-X XAR- nane

xm bus. Undepl oy

Display the tool's usage and options.

Produce debugging information. The default
is no debugging.
Display the current license.

A password to use if the Web service has
been made secure. If this is needed, the
- user nane option is also required.

The URL representing the deployment
service application, the XMLBus service that
performs the actual deployment.

Note: This parameter is required.
For example:

http:/ /1 ocal host: 9000/ xm bus/ Depl oy/ De
pl oySer vi ce/ Depl oyPor t

Be sure to set the host and port number to
match your installation.

A user name to use if the Web service has
been made secure. If this is needed, the
- passwor d option is also required.

Display the version of the command.

The XAR file that specifies the Web service
to deploy to the Web services container.

Note: This parameter is required.

69

CHAPTER 6 | Command-line Tools

xmlbus.Undeploy

Description

Options

70

java xm bus. Undepl oy { -app application-name | -x XAR nare }

-u depl oynent - servi ce- URL

[-debug] [-usernane usernanme -password passwor d]

[-v] [-license] [-7]

Undeploys a Web service application from the Web services container.

The following options are available:

-2

-app appl i cati on-name

- debug

-license

- password password

-u depl oynent - servi ce- URL

- usernane user nane

-X XAR- nane

Display the tool's usage and options.

The name of the Web service application
within the XAR file.

Note: This option or the - x option is
required.

Produce debugging information. The
default is no debugging.

Display the current license.

A password to use if the Web service has
been made secure. If this is required, the
- user nane option is also required.

The URL representing the deployment
service application, the XMLBus service
that performs the actual undeployment.

Note: This parameter is required.

A user name to use if the Web service has
been made secure. If this is required, the
- passwor d option is also required.

Display the version of the command.

The XAR file that specifies the Web
services to undeploy from the Web
services container.

Note: This or the - app option is required.

Generating Code from WSDL

Generating Code from WSDL

The following command-line tools are available for generating code from
WSDL:

® xnl bus. WEDLTol nt er f ace

xm bus. WBDLToJ2MEQ i ent
xm bus. WEDLToJ2SEDeno
xm bus. WBDLToSkel et on

71

CHAPTER 6 | Command-line Tools

xmlbus.WSDLTolnterface

java xm bus. WeDLTol nterface { -w WDL-URL | -x XARfile }
[-e Wb-service-nanme] [-t port] [-b binding-narre]
[-d output-directory] [-p Java- package]
[-v] [-license] [-7]

Description Generates a Java interface class and proxy code from the Web service WSDL
input. The interface can then be called from custom client code to access the
Web service via the generated proxy.

Options The following options are available:

-2

-b bi ndi ng- narme

-d output-directory

-e \\b- servi ce- nane

-license

-p Java- package

-t port

-w WEDL- URL

-X XAR- nane

72

Display the tool's usage and options.

Specify the binding to use if the service and port
are not specified and there is more than one
binding.

The directory in which the code is placed. The
default is to use the current directory, if this option
is not specified.

The name of the Web service in the WSDL file
being processed. The default is to use the first
Web service in the WSDL file, if this option is not
specified.

Display the current license.

The Java package name to use for the generated
code.

The WSDL port name or endpoint name. This
port, combined with the Web service name
identifies the Web service. The default is to use
the port of the first Web service, if this option is
not specified.

Display the version of the command.

A URL of the WSDL file to use.

Note: This or the - x option is required.

A XAR file that contains the Web service’s WSDL
specification.

Note: This or the -woption is required.

Generating Code from WSDL

See also xm bus. WBDLToJ2MEQ i ent
xm bus. WBDLToJ2SEDeno
xm bus. WBDLToSkel et on

73

CHAPTER 6 | Command-line Tools

xmlbus.WSDLToJ2MECIient

java xm bus. WBDLToJ2MEQ ient { -w WBDL-URL | -x XAR-file }
[-e Wb-service-nanme] [-t port] [-b binding-narre]
[-d output-directory] [-p Java- package]
[-v] [-license] [-7]

Description Generates J2ME client code from the Web service WSDL input.
Options The following options are available:
-2

-b bi ndi ng- nane

-d output-directory

-e \b- servi ce- nane

-license

-p Java- package

-t port

-w WEDL- URL

-X XAR- nane

See also xm bus. VDL ToJ2SEDeno
xm bus. WBDLToSkel et on

74

Display the tool's usage and options.

Specify the binding to use if the service and port
are not specified and there is more than one
binding.

The directory in which the code is placed. The
default is to use the current directory, if this option
is not specified.

The name of the Web service in the WSDL file
being processed. The default is to use the first
Web service in the WSDL file, if this option is not
specified.

Display the current license.

The Java package name to use for the generated
code.

The WSDL port name or endpoint name. This
port, combined with the Web service name
identifies the Web service. The default is to use
the port of the first Web service, if this option is
not specified.

Display the version of the command.
A URL of the WSDL file to use.
Note: This or the -x option is required.

A XAR file that contains the Web service’'s WSDL
specification.

Note: This or the -woption is required.

xmlbus.WSDLToJ2SEDemo

Generating Code from WSDL

java xm bus. WBDLToJ2SEDeno { -w WBDL-URL | -x XARfile }
[-e Wb-service-name] [-t port] [-b bindi ng- name]
[-d output-directory] [-p Java- package]
[-v] [-license] [-7]

Description Generates a Java client application for the Web service described by the
WSDL.

Options The following options are available:
-2

-b bi ndi ng- nane

-d output-directory

-e \b- servi ce- nane

-1icense

-p Java- package

-t port

-w WEDL- URL

-X XAR- nane

See also xm bus. VBDLToJ2MEQ i ent
xm bus. WBDLToSkel et on

Display the tool's usage and options.

Specify the binding to use if the service and port
are not specified and there is more than one
binding.

The directory in which the code is placed. The
default is to use the current directory, if this
option is not specified.

The name of the Web service in the WSDL file
being processed. The default is to use the first
Web service in the WSDL file, if this option is not
specified.

Display the current license.

The Java package name to use for the generated
code.

The WSDL port name or endpoint name. This
port, combined with the Web service name
identifies the Web service. The default is to use
the port of the first Web service, if this option is
not specified.

Display the version of the command.
A URL of the WSDL file to use.
Note: This or the - x option is required.

A XAR file that contains the Web service’s WSDL
specification.

Note: This or the - woption is required.

75

CHAPTER 6 | Command-line Tools

xmlbus.WSDLToSkeleton

java xm bus. WBDLToSkel eton { -w WBDL-URL | -x XAR-file }
[-e Wb-service-name] [-t port] [-b bindi ng-nane]
[-d output-directory] [-delagate] [-p Java- package]
[-v] [-license] [-7]

Description Generates Java skeleton code from the Web service WSDL input, to be used
as a basis to write a Web service Implementation.

Options The following options are available:

-? Display the tool’s usage and options.

- bi ndi ng bi ndi ng- nane Specify the binding to use if the service and port are
not specified and there is more than one binding.

-d output-directory The directory in which the code is placed. The
default is to use the current directory, if this option
is not specified.

- del agat e Delegates all calls in the skeleton to an object that
implements the Web service's interface.

-e Wb-service-nane The name of the Web service in the WSDL file
being processed. The default is to use the first Web
service in the WSDL file, if this option is not

specified.

-license Display the current license.

-p Java- package The Java package name to use for the generated
code.

-t port The WSDL port name or endpoint name. This port,

combined with the Web service name identifies the
Web service. The default is to use the port of the
first Web service, if this option is not specified.

-V Display the version of the command.
-w WBDL- URL A URL of the WSDL file to use.
Note: This or the - x option is required.
-X XAR-nanme A XAR file that contains the Web service’s WSDL

specification.

Note: This or the -woption is required.

76

Generating Code from WSDL

See also xm bus. VBDLToJ2MEQ i ent
xm bus. WBDLToJ2SEDeno

77

CHAPTER 6 | Command-line Tools

78

Index

A
AddResourcesToXAR tool 57
API for user tools 55

B
business, listing in UDDI 36
businesses registered in UDDI 33

Cc

CLASSPATH 55
Command-line tools 55
CORBATO0XAR tool 58

D
Deploy tool 69

E
endpoints, listing 12

J
JavaToXAR tool 61

M

messages, sending SOAP 26
messages, SOAP 23

S

SOAP
messages 23
messages, sending 26

T
TransformToXAR tool 65

U

UDDI Browser, starting 31

UDDI-registered business, listing details 36
Undeploy tool 70

User tools API 55

W
Web Service

listing 11
Web Service Builder, starting 4
Web Service Manager, starting 9
Web Services Test Client, starting 18
WSDLTolnterface tool 71
WSDLToJ2MEClIient tool 74
WSDLToJ2SEDemo tool 75
WSDLToSkeleton tool 76

X
XMLTOXAR tool 67

79

INDEX

80

INDEX

81

INDEX

82

INDEX

83

INDEX

84

	Web Services Development Tools
	List of Tables
	Preface
	1 Building Web Services and Clients
	Web Service Development
	Starting the Web Service Builder
	Client Development

	2 Listing Web Services
	Starting Web Services Manager
	Listing Deployed Services
	Listing Web Service Endpoints
	Listing Web Services in WSIL
	Listing Web Services in DISCO
	Integration with Visual Studio.NET

	3 Testing Web Service Methods
	Starting Web Services Test Client
	Testing Method Calls

	4 Monitoring and Testing SOAP Messages
	Starting the SOAP Message Test Client
	Obtaining and Verifying an Endpoint URL
	Sending Test SOAP Messages
	SOAP Message Logging

	5 Using the Registry Manager
	Connecting to a Registry
	Browsing a Registry
	Listing Object Details
	Updating a Registry
	Implementing Registry Clients
	Using Orbix Web Service APIs
	Using UDDI4J APIs
	Using JAXR RI
	Support for UDDI APIs
	Current Limitations

	6 Command-line Tools
	Creating and Modifying XARs
	xmlbus.AddResourcesToXAR
	xmlbus.CORBAToXAR
	xmlbus.JavaToXAR
	xmlbus.SchemaToXAR
	xmlbus.TransformToXAR
	xmlbus.XMLToXAR

	Deploying Web Services
	xmlbus.Deploy
	xmlbus.Undeploy

	Generating Code from WSDL
	xmlbus.WSDLToInterface
	xmlbus.WSDLToJ2MEClient
	xmlbus.WSDLToJ2SEDemo
	xmlbus.WSDLToSkeleton

	Index

