
Web Services Development
Tools

Version 6.1, December 2003

IONA, IONA Technologies, the IONA logo, Orbix, Orbix/E, Orbacus, Artix, Orchestrator,
Mobile Orchestrator, Enterprise Integrator, Adaptive Runtime Technology, Transparent
Enterprise Deployment, and Total Business Integration are trademarks or registered
trademarks of IONA Technologies PLC and/or its subsidiaries.
Java and J2EE are trademarks or registered trademarks of Sun Microsystems, Inc. in the
United States and other countries.
CORBA is a trademark or registered trademark of the Object Management Group, Inc. in
the United States and other countries. All other trademarks that appear herein are the
property of their respective owners.
While the information in this publication is believed to be accurate, IONA Technologies PLC makes no warranty
of any kind to this material including, but not limited to, the implied warranties of merchantability and fitness for
a particular purpose. IONA Technologies PLC shall not be liable for errors contained herein, or for incidental or
consequential damages in connection with the furnishing, performance or use of this material.

COPYRIGHT NOTICE
No part of this publication may be reproduced, stored in a retrieval system or transmitted, in any form or by any
means, photocopying, recording or otherwise, without prior written consent of IONA Technologies PLC. No third
party intellectual property right liability is assumed with respect to the use of the information contained herein.
IONA Technologies PLC assumes no responsibility for errors or omissions contained in this book. This publica-
tion and features described herein are subject to change without notice.

Copyright © 2001–2003 IONA Technologies PLC. All rights reserved.

All products or services mentioned in this manual are covered by the trademarks, service marks, or product
names as designated by the companies who market those products.

Updated: 15-Dec-2003

M 3 1 4 0

Contents

List of Tables v

Preface vii

Chapter 1 Building Web Services and Clients 1
Web Service Development 2
Starting the Web Service Builder 4
Client Development 5

Chapter 2 Listing Web Services 7
Starting Web Services Manager 9
Listing Deployed Services 11
Listing Web Service Endpoints 12
Listing Web Services in WSIL 14
Listing Web Services in DISCO 15
Integration with Visual Studio.NET 16

Chapter 3 Testing Web Service Methods 17
Starting Web Services Test Client 18
Testing Method Calls 20

Chapter 4 Monitoring and Testing SOAP Messages 23
Starting the SOAP Message Test Client 24
Obtaining and Verifying an Endpoint URL 25
Sending Test SOAP Messages 26
SOAP Message Logging 29

Chapter 5 Using the Registry Manager 31
Connecting to a Registry 33
Browsing a Registry 34
Listing Object Details 36
Updating a Registry 38
iii

CONTENTS
Implementing Registry Clients 43
Using Orbix Web Service APIs 44
Using UDDI4J APIs 48
Using JAXR RI 50
Support for UDDI APIs 52
Current Limitations 54

Chapter 6 Command-line Tools 55
Creating and Modifying XARs 56

xmlbus.AddResourcesToXAR 57
xmlbus.CORBAToXAR 58
xmlbus.JavaToXAR 61
xmlbus.SchemaToXAR 63
xmlbus.TransformToXAR 65
xmlbus.XMLToXAR 67

Deploying Web Services 68
xmlbus.Deploy 69
xmlbus.Undeploy 70

Generating Code from WSDL 71
xmlbus.WSDLToInterface 72
xmlbus.WSDLToJ2MEClient 74
xmlbus.WSDLToJ2SEDemo 75
xmlbus.WSDLToSkeleton 76

Index 79
 iv

List of Tables

Table 1: Web Service Development Scenarios 2

Table 2: Inquiry operations 52

Table 3: Publishing operations 52
v

LIST OF TABLES
 vi

Preface
Audience This guide is aimed at developers who wish to construct Web services. Java

or other programming experience is assumed. Little prior knowledge of Web
services and related technologies is required.

Updated documentation The latest documentation updates can be found at http://www.iona.com/
docs/.

Additional resources The IONA knowledge base contains helpful articles, written by IONA
experts, about IONA products. You can access the knowledge base at the
following location:

http://www.iona.com/support/kb/

The IONA update center contains the latest releases and patches for IONA
products:

http://www.iona.com/support/update/

Typographical conventions This guide uses the following typographical conventions:

Constant width Constant width (courier font) in normal text represents
portions of code and literal names of items such as
classes, functions, variables, and data structures. For
example, text might refer to the CORBA::Object class.

Constant width paragraphs represent code examples
or information a system displays on the screen. For
example:

#include <stdio.h>
vii

http://www.iona.com/docs/
http://www.iona.com/docs/
http://www.iona.com/support/kb/
http://www.iona.com/support/update/

PREFACE
Keying conventions This guide may use the following keying conventions:

Italic Italic words in normal text represent emphasis and
new terms.

Italic words or characters in code and commands
represent variable values you must supply, such as
arguments to commands or path names for your
particular system. For example:

% cd /users/your_name

Note: Some command examples may use angle
brackets to represent variable values you must supply.
This is an older convention that is replaced with italic
words or characters.

No prompt When a command’s format is the same for multiple
platforms, a prompt is not used.

% A percent sign represents the UNIX command shell
prompt for a command that does not require root
privileges.

A number sign represents the UNIX command shell
prompt for a command that requires root privileges.

> The notation > represents the DOS, Windows NT,
Windows 95, or Windows 98 command prompt.

...

.

.

.

Horizontal or vertical ellipses in format and syntax
descriptions indicate that material has been
eliminated to simplify a discussion.

[] Brackets enclose optional items in format and syntax
descriptions.

{ } Braces enclose a list from which you must choose an
item in format and syntax descriptions.

| A vertical bar separates items in a list of choices
enclosed in { } (braces) in format and syntax
descriptions.
 viii

CHAPTER 1

Building Web
Services and
Clients
With the Web Service Builder GUI tool, you can build and
deploy Web services and Web service clients. This chapter
gives an overview of how to use Web Service Builder.

In this chapter This chapter discusses the following topics:

Web Service Development page 2

Starting the Web Service Builder page 4

Client Development page 5
1

CHAPTER 1 | Building Web Services and Clients
Web Service Development

Overview You can use Web Service Builder to generate Web services from many types
of existing applications. For example, you can automatically generate Web
services from Java classes and CORBA resources. Table 1 summarizes the
various options that are available for generating a Web service.

Table 1: Web Service Development Scenarios

Basis for Web
Service

Description

Java Class Transform a Java implementation of an existing
application into a Web service. The Java class can
be on the classpath or stored in an archive file, of
types XAR, ZIP, or JAR.

CORBA Transform a CORBA object into a Web service.

Operation Flow Graphically create operation flows that combine
input and output from various methods and data to
create the desired Web service functionality. Web
Service Builder can then automatically generate a
Web service from the operation flow.

Schema Create a Web service from an existing schema
(.xsd). This service enables client and server
applications to exchange documents that use the
same XML schema. The service uses a DOM
handler, which processes the input document.

Schema Map Graphically create associations between the
elements of different XML schemas to produce a
mapping. This schema map can then be use to
produce a Web service, whose schema mapping
enables clients and servers that use different
schemas to exchange documents.
 2

Web Service Development
Input and output for Web Service
Builder

To create a Web service, one of the input file types is always required, and a
XAR file is always produced. Web Service Builder can produce the other
kinds of output listed after the Web service is created, if desired.

WSDL Create a Web service from any existing Web
service’s WSDL. This lets you refactor an existing
Web service into your own implementation of a new
Web service.

Table 1: Web Service Development Scenarios

Basis for Web
Service

Description
3

CHAPTER 1 | Building Web Services and Clients
Starting the Web Service Builder

Overview Start Web Service Builder in one of the following ways:

• Launch the Web Service Builder from the IONA central toolbar, or

• From the command line, run the itws_builder[.bat] script.

Project hierarchy Web service application information is organized into a hierarchical tree of
projects. Double-click a project to display its applications. Double-click an
application to display the services within each application. Continue
double-clicking lower-level tree items to display more information about
each Web service. The work area displays information about the item
selected in the projects area.

Data Entries Only ASCII text should be used in text fields of Web Service Builder because
the WSDL generated and the resulting URLs produced should remain
human-readable.

Java Classes When a Web service is generated from a Java class, the generated Web
service interface is based on the public methods defined on the target Java
class.

Inherited Methods When building a Web service from Java classes or CORBA objects, inherited
methods can also be included in the Web service.

Interoperability When you build a Web service using Web Service Builder, the result is
standards-compliant and interoperable. Interoperability is verified against
Microsoft’s .NET toolkit and MS SOAP. Thus, a SOAP client built using
Microsoft tools can access XMLBus Web services just like any other Web
service.

Note: Some Web Service Builder features are enabled only if the Web
services container is running.
 4

Client Development
Client Development

Generate clients and servers The Web Service Builder can also generate client code for accessing a Web
service and Java skeleton code that you can use to write your own Web
service implementation.
5

CHAPTER 1 | Building Web Services and Clients
 6

CHAPTER 2

Listing Web
Services
The Web Services Manager tool lists deployed Web services,
obtains Web service URLs, and displays the WSDL of Web
services.

In this chapter This chapter discusses the following topics:

Listing in other formats The Web services container can dynamically generate lists of deployed Web
services and the locations of the WSDL documents that describe them,
using either the standard Web Service Inspection Language (WSIL) or the
older Microsoft-specific DISCO language. Integrated development

Starting Web Services Manager page 9

Listing Deployed Services page 11

Listing Web Service Endpoints page 12

Listing Web Services in WSIL page 14

Listing Web Services in DISCO page 15

Integration with Visual Studio.NET page 16
7

CHAPTER 2 | Listing Web Services
environments (IDEs) that are WSIL and DISCO-aware (such as Visual
Studio) can use these dynamically-generated lists to make it easier to build
Web service clients.
 8

Starting Web Services Manager
Starting Web Services Manager

Overview Web Services Manager is a graphical tool that shows a server’s deployed
Web services. You can use Web Services Manager to list and undeploy Web
services. You can also use Web Services Manager to manage the availability
of any deployed Web service by activating or deactivating the Web service’s
endpoints.

Start Web Services Manager Start Web Services Manager in one of the following ways:

• Launch the Web Services Manager from the IONA Central Toolbar, or

• Enter the following URL into a Web browser:
http://localhost:53205/xmlbus/container?admin=true

• In a secure domain, enter the following URL into a Web browser:
https://HostName:53206/xmlbus/container?admin=true

Note: In order to run Web Services Manager, the Web services container
must also be running.
9

http://localhost:53205/xmlbus/container?admin=true

CHAPTER 2 | Listing Web Services
When Web Services Manager starts, the following window displays:

Web Services Manager shows the list of deployed Web service applications.
 10

Listing Deployed Services
Listing Deployed Services
Follow these steps:

1. Start Web Services Manager.

All applications that are deployed into the Web services container
display under Select an Application.

2. Select an application from the list.

3. Click List Services. The Web service or services that the application
supports are displayed.

Note: Refresh your browser to update the list if applications have
been recently deployed or undeployed.
11

CHAPTER 2 | Listing Web Services
Listing Web Service Endpoints

Overview A port name identifies the interface to your Web service and is an address to
a particular Web service implementation where SOAP messages or XML
documents are sent. In WSDL, this is also known as an endpoint, which is a
binding to a specific network transport protocol and represents a set of
operations that use a particular message format. A Web service can have
more than one endpoint representing different services within the Web
service, or different running invocations of the same Web service.

List endpoints Follow these steps to list Web service endpoints.

1. Start Web Services Manager.

2. Select an application.

3. Click List Services to display the Web services the application
supports.

4. From Select a Service, choose a Web service.
 12

Listing Web Service Endpoints
5. Click List Endpoints. The endpoint data is displayed as follows:

Endpoint data The data under Endpoint Information offers the following data and links:

• WSDL URL: Each endpoint has its WSDL’s URL listed under
Endpoint Information.You can view the endpoint’s WSDL by clicking
on the URL. You can also copy the URL for other tool input, scripts,
and so on.

• Test endpoint methods: You can try out the methods of a Web service
by clicking on the endpoint name next to Test. This starts Web
Services Test Client.
13

CHAPTER 2 | Listing Web Services
Listing Web Services in WSIL

Overview The Web Service Inspection Language (WSIL) is a language for identifying a
set of Web Service endpoints and where to find the Web Service Description
Language (WSDL) documents that describe each endpoint. WSIL is useful
because it lets you find Web services without having to know the exact
URLs for the WSDL definitions. A WSIL document is generated for each
Web services container.

Generating WSIL To generate WSIL, enter the following URL in your browser (assuming that
the Web services container is running on port 53205 on your local host):

http://localhost:53205/xmlbus/inspection.wsil

After entering the appropriate URL, your browser displays XML that lists the
location of all deployed Web services.

URL for WSIL-aware tools Web Services Manager’s default web page also contains a meta tag that can
automatically redirect WSIL-aware client tools to the full WSIL URL.
 14

Listing Web Services in DISCO
Listing Web Services in DISCO

Overview XMLBus supports the generation of DISCO documents on a per-container
basis to make integration with .NET clients easier. DISCO is a proprietary
language used only by Microsoft .NET tools, which supports Web service
inspection. While WSIL will eventually supersede DISCO as the industry
standard, Microsoft .NET tools currently produce and consume DISCO
documents.

This section discusses the following topics:

• Generating DISCO

• URL for DISCO-aware tools

Generating DISCO To generate DISCO documents, enter the following URL in your browser
(assuming that the Web services container is running on port 53205 on
your local host):

http://localhost:53205/xmlbus/default.disco

After entering the appropriate URL, your browser displays DISCO-formatted
XML that lists the location of all deployed Web services.

URL for DISCO-aware tools The DISCO URL is also available via an implicit link in the Web Services
Manager’s default web page. The Web Services Manager’s default web page
can automatically redirect DISCO-aware client tools to the full DISCO URL.
15

CHAPTER 2 | Listing Web Services
Integration with Visual Studio.NET

Overview If you use Microsoft's Visual Studio.NET development environment to build a
client for an XMLBus Web service, you must add a reference to the service's
WSDL file. This is done through the Add Web Reference dialog box, which
is accessible from the Visual Studio.NET Project menu.

Add Web Reference The Add Web Reference dialog is a simple Web browser that recognizes
WSDL and DISCO files. If you type in the URL for the Web services
container, the dialog box downloads the implicitly referenced DISCO file and
presents a list of all the Web services currently deployed in the Web services
container. When you select a service from the list, Visual Studio.NET asks
XMLBus for the service's WSDL document, and uses it to generate client
proxy code.

See also “Listing Web Services in DISCO” on page 15.
 16

CHAPTER 3

Testing Web
Service Methods
Web Services Test Client is a browser-based graphical tool
that you can use to dynamically test active Web services.

You provide Web Services Test Client with the URL location of the WSDL
file that describes the Web service. When the Web service’s methods are
displayed, you can select a method, enter input values, and invoke the
method.

Limitations The following restrictions apply:

• Processing the document style of interaction is not supported.

• Processing the literal style of encoding is not supported.

In this chapter This chapter discusses the following topics:

Starting Web Services Test Client page 18

Testing Method Calls page 20
17

CHAPTER 3 | Testing Web Service Methods
Starting Web Services Test Client

Overview Start Web Services Test Client in one of the following ways:

• Launch the Web Services Test Client from the IONA Central Toolbar, or

• Enter the following URL into a Web browser:
http://localhost:53205/WSDLClient

• In a secure domain, enter the following URL into a Web browser:
https://HostName:53206/WSDLClient

The following window displays:

Display Web Services Test Client shows the following information:

• A brief explanation of the tool.

• A list of links to some sample Web services that come with XMLBus.

Note: The Web services container must be running to use Web Services
Test Client.
 18

http://localhost:53205/WSDLClient

Starting Web Services Test Client
• A form in which to input a URL that represents the location of any Web
service’s WSDL.

Selecting a Web service Select one of the sample Web services displayed, or enter into the form a
URL such as the following:

http://localhost:port/xmlbus/Finance/FinanceService.wsdl
19

CHAPTER 3 | Testing Web Service Methods
Testing Method Calls

Overview Web Services Test Client shows the Web service’s methods in a Web page
where you can select a method, enter appropriate input values for the
method, then invoke the method. Web Services Test Client shows the
results of the executed method call, along with any relevant SOAP
messages.

The SOAP messages are useful as an aid in debugging. For example, the
messages can indicate an invalid input or the possibility that the Web
service is no longer active to receive messages.

Steps Follow these steps to test a Web service:

1. Start Web Services Test Client.

2. Enter a WSDL URL into the WSDL SOURCE URL form. For example:

There are several ways to obtain a WSDL URL:

♦ Select one of the sample Web services displayed with Web
Services Test Client.

♦ Run Web Services Manager and copy the WSDL file’s URL (see
page 13).
 20

Testing Method Calls
♦ Enter a URL of any known WSDL.

3. Click PROCESS WSDL to produce the list of methods available for the
Web service:

4. Select one of the methods and click Get Test Form. The
METHOD INPUT PARAMETERS dialog is displayed:

5. Enter a value for each method parameter. In this example, a double
value of 10.1 and an int value of 12 are entered.
21

CHAPTER 3 | Testing Web Service Methods
6. The default MIME encoding is UTF-8. If your internationalization needs
require it, select a different MIME encoding type from the drop-down
list.

7. Click INVOKE OPERATION to invoke the method with the specified
parameter values. The RESULTS FROM METHOD CALL dialog
displays the results:
 22

CHAPTER 4

Monitoring and
Testing SOAP
Messages
Most Web service clients and servers communicate using the
SOAP and HTTP protocols. It is sometimes useful for
debugging Web services to know exactly what was sent to and
received from the Web service. XMLBus provides the SOAP
Message Test Client graphical tool for monitoring SOAP
messages to and from servers at specified endpoints. With this
tool, you can enter specific SOAP messages, send them to
servers, and view the responses. XMLBus also provides a SOAP
message logging facility on the server.

In this chapter This chapter discusses the following topics:

Starting the SOAP Message Test Client page 24

Obtaining and Verifying an Endpoint URL page 25

Sending Test SOAP Messages page 26

SOAP Message Logging page 29
23

CHAPTER 4 | Monitoring and Testing SOAP Messages
Starting the SOAP Message Test Client

Start the SOAP Message Test Client in one of the following ways:

• Launch the Test Client from the IONA central toolbar, or

• From the bin directory, run the script itws_msgtestclient[.bat].

The following dialog displays:

Note: The Web services container must be running to use the SOAP
Message Test Client.
 24

Obtaining and Verifying an Endpoint URL
Obtaining and Verifying an Endpoint URL
Follow these steps to obtain and verify a URL.

1. Obtain the endpoint URL for the Web service from an appropriate
source, such as from Web Services Manager.

2. Paste the URL into the Endpoint URL of the SOAP Message Test
Client:

3. Click Verify URL. If the URL is for a valid, running Web service, VALID
is displayed.
25

CHAPTER 4 | Monitoring and Testing SOAP Messages
Sending Test SOAP Messages

Overview You can enter any SOAP messages into the SOAP Message Test Client and
observe the responses. If you are very familiar with SOAP request message
formats, you can type a message into the SOAP Message Test Client
directly, or you can copy a SOAP request message from some other source,
such as Web Services Test Client. See “Testing Method Calls” on page 20
for how to use Web Services Test Client.

Steps Follow these steps to test a SOAP message.

1. Obtain a SOAP message to test.

For this example, copy a SOAP request message from the
RESULTS FROM METHOD CALL panel of Web Services Test Client:
 26

Sending Test SOAP Messages
2. Enter a SOAP message into the SOAP Request To Send to Container
panel. In the following example, the SOAP message is copied from
Web Services Test Client and pasted into the SOAP request message:

3. Click Send.
27

CHAPTER 4 | Monitoring and Testing SOAP Messages
Observe the complete request-response streams in the
SOAP Response panel. For this example, the complete information is
as follows:

4. You can easily edit the SOAP request message, click Send again, and
observe the new results.

5. Click Clear to clear the associated SOAP message panel in preparation
for another message.

SOAPURL:
http://localhost:8080/xmlbus/container/Finance/FinanceService
/FinancePort

SoapAction:
SoapEnvelope:
<?xml version="1.0" encoding="UTF-8"?> <SOAP-ENV:Envelope

xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:xsd="http://www.w3.org/2001/XMLSchema"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
<SOAP-ENV:Body
SOAP-ENV:encodingStyle="http://schemas.xmlsoap.org/soap/encod
ing/"> <m1:calculateAPR
xmlns:m1="urn:target-finance-service"> <InterestRate
xsi:type="xsd:double">10.1</InterestRate> <compound_period
xsi:type="xsd:int">12</compound_period> </m1:calculateAPR>
</SOAP-ENV:Body> </SOAP-ENV:Envelope>

Response:
<?xml version="1.0" encoding="UTF-8"?>
<SOAP-ENV:Envelope

xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:xsd="http://www.w3.org/2001/XMLSchema"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"><SOAP-E
NV:Body
SOAP-ENV:encodingStyle="http://schemas.xmlsoap.org/soap/encod
ing/"><m1:calculateAPRResponse
xmlns:m1="urn:target-finance-service"><return
xsi:type="xsd:double">0.10580914877825842</return></m1:calcul
ateAPRResponse></SOAP-ENV:Body></SOAP-ENV:Envelope>
 28

SOAP Message Logging
SOAP Message Logging

Overview Server-side SOAP Message logging is a mechanism that logs the SOAP
requests that come to the Web services container and the SOAP responses
sent by the container. The SOAP messages are redirected to a specified file.
You can control the logging by using the IONA Administrator tool:

The IONA Administrator shows the SOAPLogging bean which has the
following attributes:

LogAll (on/off) Enable or disable logging for all endpoints.

LogFileName(String filename) Set the name of log file.
29

CHAPTER 4 | Monitoring and Testing SOAP Messages
The SOAPLogging bean has the following operations:

startLogging(String endpointName) Start logging for specified endpoint
name.

stopLogging(String endpointName) Turn off logging for specified
endpoint.

getEndpoints() List endpoints for which logging is
currently on.

stopLogging() Stop logging for all endpoints.
 30

CHAPTER 5

Using the Registry
Manager
IONA’s Web Services Registry Manager lets you build and
browse Web service UDDI version 2 registries.

The Registry Manager implements Sun Microsystem’s Java API for XML
Registries (JAXR) specification, which provides a superset of interfaces to
UDDI and ebXML. This implementation is aimed at users who are already
familiar with UDDI and JAXR.

What is a Web services registry? Like SOAP and WSDL, JAXR/UDDI provide specifications for a core Web
service technology. A Web services registry contains categorized information
about businesses and the services that they offer, and associates those
services with the Web service’s WSDL description. Users can query the
registry to find desired services and their WSDL descriptions.

The Registry Manager provides a browser that lets you query your own or
third-party registries. You can also use the manager to add, update, and
delete registry entries.

Each installation provides a private registry, which you can populate with
your own service entries, for internal and external use.

Starting Start the Registry Manager from the command line as follows:

itws_registrymanager[.bat]
31

CHAPTER 5 | Using the Registry Manager
In this chapter This chapter is divided into the following sections:

Connecting to a Registry page 33

Browsing a Registry page 34

Listing Object Details page 36

Updating a Registry page 38

Implementing Registry Clients page 43
 32

Connecting to a Registry
Connecting to a Registry

Overview You can connect to the installed private registry; you can also connect to a
public registry. For example, the following companies currently maintain
public registries:

• IBM

• Microsoft

• Systinet

Connection requirements In order to connect to a registry, the following fields require valid entries:

Registry User/Password: Required in order to publish to a registry. User
names and passwords are set in the XML file
etc/domains/Domain/securityInfo.xml. In order to access public
registries, you must obtain the required credentials. For more information
about securing access to your own registries, see the Securing Web Services
section in the Security Guide.

Query URL: The URL for browser connections.

Publish URL: The URL for connections to registries where you can add new
entries and edit existing data. In the current release, you can only edit
instances of IONA registries.

After you supply the required data, click Connect.
33

CHAPTER 5 | Using the Registry Manager
Browsing a Registry

Overview After you connect to a registry, you can browse its contents. To do so, create
a selection set of registered business entities. Specify the set by entering a
query in the Search field, and pressing Search. The following figure shows
the results of a query for all business entities that begin with IB:

Note: Queries are case-insensitive.
 34

Browsing a Registry
Wildcards Some registries also support wildcard queries. For example, the Microsoft
UDDI registry allows the wildcard %. Thus, querying this registry with
%transport% finds all business entities whose names include the string
transport:
35

CHAPTER 5 | Using the Registry Manager
Listing Object Details
Each registered business typically has one or more services associated with
it. Services are listed as subentries under the business, and are accessible
by double-clicking on the business entry. Similarly, service bindings are
listed under the service, and are accessible by double-clicking on the service
entry. To collapse an entry’s subentries, double-click on it again:
 36

Listing Object Details
When you select any entry, its details display in the right-hand View
Organization panel. For example, when you select a service binding, the
following details display, including the URL of the service’s WSDL:

After listing a Web service’s details, you can perform several tasks,
including:

• Select a service URL to view the WSDL code. The WSDL displays in a
browser window.

• Copy the Web service’s URL for use in other tools such as the Web
Services Test Client (see page 17).
37

CHAPTER 5 | Using the Registry Manager
Updating a Registry

Overview You can update the data in any Web services registry that is accessible to
you. The local IONA registry is always accessible. Third-party registries are
accessible only to users with login privileges.

You can perform these tasks:

• Add new entries.

• Edit registry data.

• Delete entities.

Add new entries If a registry is available for publishing and updating services, you can add a
new business service data as follows:

1. Select Tasks | New Organization.
 38

Updating a Registry
The Edit Organization dialog is displayed:

2. Enter the business data.

3. Define a service for this business entity by choosing New.

Note: Choosing New implicitly accepts the current data. Apply saves
the current data; Cancel removes all changes and restores the data
last applied to this entity.
39

CHAPTER 5 | Using the Registry Manager
The Edit Service dialog is displayed:

4. Enter the service data.

5. Define a service binding for this service entity by choosing New.
 40

Updating a Registry
The Edit ServiceBinding dialog is displayed:

6. Enter the service binding data.
41

CHAPTER 5 | Using the Registry Manager
Edit registry data You can edit the data of any registry entity by selecting that entity and
choosing its Edit tab. For example, the following Edit ServiceBinding dialog
lets you access the editable data for TransformService’s service binding:

Delete entities To delete an entity:

1. Select the entity.

2. Choose the entity’s Edit tab.

3. From the entity’s Edit dialog, click Delete.
 42

Implementing Registry Clients
Implementing Registry Clients

Overview If you implement your own registry client, you can enable it to query and
update an Orbix registry in the following ways:

• Use Orbix Web service APIs.

• Use supported third-party APIs. The Orbix registry currently supports
IBM’s UDDI for Java (UDDI4J), and Sun Microsystem’s Java API for
XML Registries Reference Implementation (JAXR RI).

In this section This section contains information about using three sets of APIs that enable
access to an Orbix registry:

Using Orbix Web Service APIs page 44

Using UDDI4J APIs page 48

Using JAXR RI page 50

Support for UDDI APIs page 52

Current Limitations page 54
43

CHAPTER 5 | Using the Registry Manager
Using Orbix Web Service APIs

Overview A set of client proxy classes in com.iona.uddi.v2.informodel is generated
from WSDL. You can use these proxy classes to interact with any UDDI
registry.

Two classes are especially important:

• com.iona.uddi.v2.informodel.InquiryInterface is a proxy to query
UDDI registry services. Its methods map to UDDI inquiry API
specification.

• com.iona.uddi.v2.informodel.PublishingInterface is a proxy to
update a UDDI registry. Its methods map to UDDI publishing API
specification.

For more information about these classes, refer to the distribution’s JavaDoc
descriptions.

 Software requirements You must have JDK 1.3.1_02 or higher. Also, the class path must include
the following jars, located off the installation directory:

asp/Version/lib/webservices/jaxm-api.jar
asp/Version/lib/webservices/soap_client.jar
asp/Version/lib/webservices/workbench.jar
asp/Version/lib/webservices/xerces.jar
lib/apache/jakarta-log4j/1.2.6/log4j.jar
lib/common/ifc/1.1/ifc.jar
lib/sun/mail/1.2/mail.jar
lib/xmlbus/workbench/5.4.1/ionaworkbench.jar
lib/xmlbus/jaxm/5.4.1/it_jaxm.jar
lib/xmlbus/registry_tool/5.4.1/uddistub.jar

Querying an IONA Web services
registry

In order to query an IONA Web services registry, follow these steps:
 44

Implementing Registry Clients
1. Call getProxy() on a WebServiceProxy object to bind the Inquiry
interface. For example:

2. Call InquiryInterface operations to query the UDDI registry. For
example:

import com.iona.uddi.v2.infomodel.*;
//...
public InquiryInterface getInquiryProxy(

String wsdlPath, String url, boolean debug)
throws Exception {

try {
Object proxy =
WebServiceProxy.getProxy(

"UDDIRegistryService",
"InquiryPort",
InquiryInterface.class,
wsdlPath,
debug,
url,
null);

MessageSettings msettings =
WebServiceProxy.getMessageSettings(proxy);

msettings.setAddXSIType(false);
msettings.setUseDefaultNamespaces(true);
msettings.setSoapEnvelopePrefix("soap");
return (InquiryInterface) proxy;

} catch (Exception ex) {
throw ex;
}

}
//...

String names[] = null;
find_business fb = new find_business();
name uddiname = new name();
uddiname._simpleTypeValue = "X%";
fb.setname(new name[]{uddiname});
fb.generic = "2.0";
fb.maxRows = new Integer(50);
businessList bl = null;
String inquiryURL="http://localhost:8080/xmlbus/

UDDIRegistry/UDDIRegistryService/InquiryPort/";
boolean debug=true;
45

CHAPTER 5 | Using the Registry Manager
Updating an IONA registry In order to update an IONA registry, follow these steps:

1. Call getProxy() on the WebServiceProxy object in order to bind the
Publish interface. For example:

try {
InquiryInterface inquiryProxy =

getInquiryProxy(inquiryURL,null,debug);
bl = inquiryProxy.find_business(fb);
client.printBusinessList(bl);

} catch (Exception e) {
e.printStackTrace();

}

public PublishingInterface getPublishProxy(String wsdlPath,
String url, boolean debug) throws Exception {

try {
Object proxy = WebServiceProxy.getProxy(

"UDDIRegistryService",
"PublishingPort",
PublishingInterface.class,
wsdlPath,
debug,
url,
null);

MessageSettings msettings =
WebServiceProxy.getMessageSettings(proxy);

msettings.setAddXSIType(false);
msettings.setUseDefaultNamespaces(true);
msettings.setSoapEnvelopePrefix("soap");

return (PublishingInterface) proxy;
} catch (Exception ex) {

throw ex;
}

}

 46

Implementing Registry Clients
2. Obtain authorization from the registry. For example:

3. Call operations on the PublishingInterface object in order to update
the registry. For example:

get_authToken getAuthToken = new get_authToken();
getAuthToken.userID = "admin";
getAuthToken.cred = "admin";

authToken token =
publishingInterface.get_authToken(getAuthToken);

String authInfo = token.getauthInfo();

PublishingInterface proxy =
getPublishProxy(

"http://localhost:8080/xmlbus/UDDIRegistry/UDDIRegistryS
ervice/InquiryPort/",
null, true);

//...
businessEntity be = new businessEntity();
be.businessKey = "";
/
name uddiname = new name();
uddiname._simpleTypeValue = "business entity name";
be.setname(new name[]{uddiname});

description desc = new description();
desc._simpleTypeValue = " Business Entity description";
be.setdescription(new description[]{desc});

businessEntity[] businessEntities = new businessEntity[1];
businessEntities [0] = be;

// ...
save_business sb = new save_business();
sb.generic = "2.0";
sb.setauthInfo(token);
if (businessEntities != null && businessEntities.length > 0)

{
sb.setbusinessEntity(businessEntities);

}
proxy.save_business(sb);
47

CHAPTER 5 | Using the Registry Manager
Using UDDI4J APIs

Overview UDDI4J is an open-source Java implementation for interacting with a UDDI
registry, originally developed by IBM. The latest code is now at the
developerWorks open source site
http://www-136.ibm.com/developerworks/opensource.

Software requirements The following requirements apply:

• UDDI4J version 2. The uddi4j.jar is available at
http://www-124.ibm.com/developerworks/oss/uddi4j/.

• Apache SOAP jar, available at http://xml.apache.org/soap/

• JDK 1.3.1_02+ with JSSE

Steps The following describes the basic steps required in order to enable a UDDI4j
client to query and update an Orbix registry:

1. Configure the org.uddi4j.client.UDDIProxy class to connect to an
Orbix Web services registry.

2. Configure the UDDI4j SOAP transport:

String ionaInquiryURL =
"http://localhost:8080/xmlbus/UDDIRegistry/UDDIRegistryS
ervice/InquiryPort/";

String ionaPublishURL =
"http://localhost:8080/xmlbus/UDDIRegistry/UDDIRegistryS
ervice/PublishingPort/";

UDDIProxy proxy = new UDDIProxy();
proxy.setInquiryURL(ionaInquiryURL);
proxy.setPublishURL(ionaPublishURL);

System.setProperty(TransportFactory.PROPERTY_NAME,
"org.uddi4j.transport.ApacheSOAPTransport")

System.setProperty("java.protocol.handler.pkgs",
"com.sun.net.ssl.internal.www.protocol");

java.security.Security.addProvider((java.security.Provider)
Class.forName("com.sun.net.ssl.internal.ssl.Provider").n
ewInstance());
 48

http://www-136.ibm.com/developerworks/opensource
http://www-124.ibm.com/developerworks/oss/uddi4j
http://xml.apache.org/soap/

Implementing Registry Clients
3. Obtain authorization from the registry. For example:

String uid = "admin";
String pwd = "admin");
AuthToken token = uddiProxy.get_authToken(uid, pwd);
49

CHAPTER 5 | Using the Registry Manager
Using JAXR RI

Software requirements The following requirements apply:

• Java SDK: Use version 1.3.1 or 1.4.0_01 of the J2SE SDK instead of
version 1.4. If you install the Java XML Pack on version 1.3.1 or
1.4.0_01, the Java XML Pack includes a fixed version of the JSSE
library.

• Java API for XML Registries (JAXR) 1.0_01: JAXR reference is
included in Java Web Service Developer Pack 1.0, at
http://java.sun.com/webservices/downloads/webservicespack.html.

Steps The following describes the basic steps that a JAXR client must follow in
order to query and update an Orbix registry:

1. Create a connection to the registry service: To create a connection, a
client first creates a set of properties that specify the URL of each
registry to access, as follows:

Properties props = new Properties();
props.setProperty("javax.xml.registry.queryManagerURL",

http://localhost:8080/xmlbus/UDDIRegistry/UDDIRegistrySe
rvice/InquiryPort/");

props.setProperty("javax.xml.registry.lifeCycleManagerURL",
"http://localhost:8080/xmlbus/UDDIRegistry/UDDIRegistryS
ervice/PublishingPort/");

props.setProperty("javax.xml.registry.uddi.maxRows",
"100");

props.setProperty("javax.xml.registry.ConnectionFactoryClas
s", "com.sun.xml.registry.uddi.ConnectionFactoryImpl");

ConnectionFactory connectionFactory =
ConnectionFactory.newInstance();

connectionFactory.setProperties(props);
connection = connectionFactory.createConnection();
 50

http://java.sun.com/webservices/downloads/webservicespack.html

Implementing Registry Clients
2. Specify the HTTP proxy host and port. If the registry to access is inside
a firewall, the client must also specify proxy host and port information
for the network on which it is running:

3. Specify to use Apache SOAP:

props.put("com.sun.xml.registry.useSOAP", "true");

4. Obtain authorization from the registry. For example:

Known issues The name element in business, service and binding is null. The current
release of the JAXR reference implementation requires xml:lang attribute in
the name element. JAXR RI converts the element to null if the language
attribute is not included.

props.setProperty("com.sun.xml.registry.http.proxyHost",
"host.domain"");

props.setProperty("com.sun.xml.registry.http.proxyHost",
"hostPort");

props.setProperty("com.sun.xml.registry.https.proxyHost",
"host.domain");

props.setProperty("com.sun.xml.registry.https.proxyPort",
"hostPort");

String username="admin";
String password="admin";
PasswordAuthentication passwdAuth = new

PasswordAuthentication(username,
password.toCharArray());

Set creds = new HashSet();
creds.add(passwdAuth);
connection.setCredentials(creds);
51

CHAPTER 5 | Using the Registry Manager
Support for UDDI APIs

Overview IONA’s Web services registry supports all programming APIs in UDDI
version 2 except assertion and advanced search. The following tables show
which operations are implemented (Y), partially implemented (P), and not
implemented (N):

Table 2: Inquiry operations

Operation Status

find_binding() Y

find_business() Y

find_relatedBusinesses() N

find_service() Y

findTModel() Y

get_bindingDtail() Y

get_businessDetail() Y

get_businessDetailExt() N

get_serviceDetail() Y

get_tModelDetail() Y

Table 3: Publishing operations

Operation Status

add_publisherAssertions() N

delete_binding() Y

delete_business() Y

delete_publisherAssertions() N

delete_service() Y
 52

Implementing Registry Clients
delete_tModel() Y

discard_authToken() Y

get_assertionStatusReport() N

get_authToken() Y

get_publisherAssertions() N

get_registeredInfo() N

save_binding() Y

save_business() Y

save_service() Y

save_tModel() Y

set_assertions() N

Table 3: Publishing operations

Operation Status
53

CHAPTER 5 | Using the Registry Manager
Current Limitations
The following limitations currently apply:

• Orbix supports version 2 UDDI registries but not version 2 errata.

• Orbix registry does not support the assertion interface.
 54

CHAPTER 6

Command-line
Tools
Command-line tools let you perform many of the operations available in
Web Service Builder. You can perform the following tasks:

• Create and modify XAR files

• Deploy Web services

• Generate code from WSDL

CLASSPATH requirements To use command-line tools, your CLASSPATH must include the following files:

• asp/Version/lib/webservices/workbench.jar
• asp/Version/lib/webservices/soap_client.jar

User tools API A user-tools API is also available for writing your own applications to
perform most of these same tasks. See the
com.iona.webservices.usertools package in the IONA Web Services API
Reference.
55

CHAPTER 6 | Command-line Tools
Creating and Modifying XARs
The following command-line tools are available for creating and modifying
XARs:

• xmlbus.AddResourcesToXAR

• xmlbus.CORBAToXAR

• xmlbus.JavaToXAR

• xmlbus.SchemaToXAR

• xmlbus.TransformToXAR

• xmlbus.XMLToXAR
 56

Creating and Modifying XARs
xmlbus.AddResourcesToXAR
java xmlbus.AddResourcesToXAR -x XAR-name

[-r resource_by_reference]...[-i include_resource]...
[-s Web-service-name] [-v] [-license] [-?]

Description Adds resources to an existing XAR file. Types of resources can be any resources
needed by the XAR including:

• class implementation files

• interface files

• other resources

Options The following options are available:

See also xmlbus.JavaToXAR
xmlbus.CORBAToXAR
xmlbus.XMLToXAR

-? Display the tool’s usage and options.

-i include_resource Embed the specified resource into the XAR. You
can use this option multiple times in a
command.

-license Display the current license.

-r resource_by_reference Include a reference to the resource into the
XAR. You can use this option multiple times in
a command.

-s Web-service-name The name of the Web service in the XAR to
which the resources are added.

-v Display the version of the command.

-x XAR-name The XAR file to which the resources are added.

Note: This parameter is required.
57

CHAPTER 6 | Command-line Tools
xmlbus.CORBAToXAR
java xmlbus.CORBAToXAR -x XAR-name

{ -ior object-reference | -targetName target-name | -bind...}
-repID repository-ID
[-oc ORB-class-name] [-os ORB-singleton-class]
[-ORB argument-name argument-value]...
[-w WSDL-file-name] [-u base-URL] [-a SOAP-action]
[-n namespace] [-d data-namespace] [-l application-name]
[-s Web-service-name] [-e endpoint-name]
[-doc] [-literal] [-override] [-1999]
[-v] [-license] [-?]

Description Creates a XAR file from a CORBA object.

Options The following options are available:

-? Display the tool’s usage and options.

-1999 Use the 1999 XML Schema specification. The
default is to use most recent schema
specification supported.

-a SOAP-action The SOAP action, if any, for the Web service
implementation.

-bind ... The bind semantics of Orbix servers used to build
the object reference of the CORBA object.

Note: This parameter is required unless the
-targetName or -ior parameter is used.

For more details, see page 59.

-d data-namespace The namespace to use for the Web service’s
data.

-doc Set the XARs methods to use the XML document
style of interaction. The default interaction style
is to use the RPC style of interaction.

-e endpoint-name The endpoint name to use for the Web service in
the generated XAR WSDL.

-ior object-reference The object reference for the CORBA object.

Note: This parameter is required unless the
-targetName or -bind parameter is used.

-l application-name The name to use for the Web service application
being generated.
 58

Creating and Modifying XARs
-bind option details The -bind option specifies the bind semantics of Orbix servers, which is
used to build the object reference of the CORBA object. This option is
required unless the -targetName or -ior parameter is used.

The semantics are as follows:

-license Display the current license.

-literal Set the XARs methods to use literal encoding.
The default is to use SOAP encoding.

-n namespace The namespace to use in the generated XAR
WSDL that uniquely identifies the Web service’s
properties.

-oc ORB-class-name The object request broker (ORB) class name of
the CORBA resource that represents the
implemented Web service. This option is
required.

-ORB argument-name
argument-value...

The name-value pair arguments that are to be
passed to the initializing ORB. These are the
ORBinit() parameters.

-os ORB-singleton-class The object request broker (ORB) singleton class
for the CORBA resource. This option is required.

-override Override the existing XAR file information in
XAR-name. The default is to add the information
to the existing XAR.

-repID repository-ID The identifier of the interface repository.

Note: This parameter is required.

-s Web-service-name The name of the Web service for the XAR being
created.

-targetName target-name The target name of the CORBA object.

Note: This parameter is required unless the
-ior or -bind parameter is used.

-u base-URL The URL of the Web Service Container.

-v Display the version of the command.

-w WSDL-file-name The name for the Web service’s WSDL file
generated.

-x XAR-name The XAR file that specifies the Web service.

Note: This parameter is required.
59

CHAPTER 6 | Command-line Tools
java xmlbus.CORBAToXAR ...
-bind servername:server-name interface:fully-scoped-interface

[host:hostname] [port:server-listening-port]
[marker:object-marker] [iiopVersion:IIOP-version]

...

servername:server-name The name of the server on which the CORBA
object resides.

interface:fully-scoped-interface The CORBA object’s interface name. The
following formats are valid:

• Orbix-style format: PragmaPrefix-Module-Interface

• C++ style scoping: PragmaPrefix::Module::Interface

• TYPE ID notation: PragmaPrefix/Module/Interface

host:hostname The name of the host on which the server is running. The
default value is localhost.

port:server-listening-port The port on which the server is listening, or the
Orbix daemon port. If not specified, the default is 1570, the well-known
Orbix daemon port.

marker:object-marker The CORBA object’s marker. The default value is an
empty marker ("").

iiopVersion:IIOP-version The IIOP version supported by the server. Valid
values are either 1.0 (default) or 1.1.

See also xmlbus.AddResourcesToXAR
xmlbus.JavaToXAR
xmlbus.XMLToXAR
 60

Creating and Modifying XARs
xmlbus.JavaToXAR
java xmlbus.JavaToXAR -x XAR-name

[-j Java-name]...
[-w WSDL-file-name] [-u base-URL] [-a SOAP-action]
[-n namespace] [-d data-namespace] [-l application-name]
[-s Web-service-name] [-e endpoint-name]
[-doc] [-literal] [-override] [-1999]
[-v] [-license] [-?]

Description Creates a XAR file from a Java class.

Options The following options are available:

-? Display the tool’s usage and options.

-1999 Use the 1999 XML Schema specification. The
default is to use most recent schema specification
supported.

-a SOAP-action The SOAP action, if any, for the Web service
implementation.

-c class-name The name of the Java target class in the JAR that
represents the implemented Web service.

Note: This parameter is required.

-d data-namespace The namespace to use for the Web service’s data.

-doc Set the XARs methods to use the XML document
style of interaction. The default interaction style is
to use the RPC style of interaction.

-e endpoint-name The endpoint name to use for the Web service in
the generated XAR WSDL.

-j Java-name... Java classes referenced by the main
implementation class. More than one of this option
is allowed.

-l application-name The name to use for the Web service application
being generated.

-license Display the current license.

-literal Set the XARs methods to use literal encoding. The
default is to use SOAP encoding.
61

CHAPTER 6 | Command-line Tools
See also xmlbus.AddResourcesToXAR
xmlbus.CORBAToXAR
xmlbus.XMLToXAR

-n namespace The namespace to use in the generated XAR
WSDL that uniquely identifies the Web service’s
properties.

-override Override the existing XAR file information in
XAR-name. The default is to add the information to
the existing XAR.

-s Web-service-name The name of the Web service for the XAR being
created.

-u base-URL The URL of the Web Service Container.

-v Display the version of the command.

-w WSDL-file-name The name for the Web service’s WSDL file
generated.

-x XAR-name The XAR file that specifies the Web service.

Note: This parameter is required.
 62

Creating and Modifying XARs
xmlbus.SchemaToXAR
java xmlbus.xmlbus.SchemaToXAR -x XAR-name

-sc schema-name -dh dom-handler
{-pt part-name::uri::element-name::{in|out|inout} }...
[-op operation-name]
[-w WSDL-file-name] [-u base-URL] [-a SOAP-action]
[-n namespace] [-d data-namespace] [-l application-name]
[-s Web-service-name] [-e endpoint-name]
[-override]
[-v] [-license] [-?]

Description Creates a Web service from a schema and DOM handler. The specified schema
determines the structure of the XML document to be processed, while the
DOM handler class provides the mechanism that processes the document
data.

Generates a schema-based Web service.

Options The following options are available:

-? Display the tool’s usage and options.

-a SOAP-action The SOAP action, if any, for the Web
service implementation.

-d data-namespace The namespace to use for the Web
service’s data.

-dh dom-handler The DOM handler class.

-e endpoint-name The endpoint name to use for the Web
service in the generated XAR WSDL.

-l application-name The name to use for the Web service
application being generated.

-license Display the current license.

-n namespace The namespace to use in the generated
XAR WSDL that uniquely identifies the Web
service’s properties.

-op operation-name The name of the operation to call when
invoking on this service

-override Override the existing XAR file information in
XAR-name. The default is to add the
information to the existing XAR.
63

CHAPTER 6 | Command-line Tools
After creating the Web service from the mapping specification, use
xmlbus.AddResourcesToXAR to add all dependent resources to the XAR
including:

• The DOM handler

• Schema files

• Java resources

-pt
part-name::uri::element-name
::{in|out|inout}

Specifies a root element in the service’s
input or output XML documents, where uri
is a schema namespace for element-name,
and element-name is a schema root
element.

-s Web-service-name The name of the Web service for the XAR
being created.

-sc schema-name The schema for documents received by this
service.

-u base-URL The URL of the Web service container.

-v Display the version of the command.

-w file-name Generate this Web service’s WSDL and
output it to file-name.

-x XAR-name The XAR file that specifies the Web service.
 64

Creating and Modifying XARs
xmlbus.TransformToXAR
java xmlbus.TransformToXAR -m mapping-specification -x XAR-name

[-w WSDL-file-name] [-u base-URL] [-a SOAP-action]
[-n namespace] [-d data-namespace] [-l application-name]
[-s Web-service-name] [-e endpoint-name]
[-override] [-v] [-license] [-?]

Description Creates a Web service from a schema map. A schema map is a specification
of how to transform information from one or more source XML documents to
a target XML document.

Options The following options are available:

-? Display the tool’s usage and options.

-a SOAP-action The SOAP action, if any, for the Web
service implementation.

-d data-namespace The namespace to use for the Web
service’s data.

-e endpoint-name The endpoint name to use for the Web
service in the generated XAR WSDL.

-l application-name The name to use for the Web service
application being generated.

-license Display the current license.

-m mapping-specification The schema mapping specification to use.

Note: This parameter is required.

-n namespace The namespace to use in the generated
XAR WSDL that uniquely identifies the
Web service’s properties.

-override Override the existing XAR file information
in XAR-name. The default is to add the
information to the existing XAR.

-s Web-service-name The name of the Web service for the XAR
being created.

-u base-URL The URL of the Web Service Container.

-v Display the version of the command.

-w WSDL-file-name The name for the Web service’s WSDL file
generated.
65

CHAPTER 6 | Command-line Tools
After creating the Web service from the mapping specification, use
xmlbus.AddResourcesToXAR to add all dependent resources to the XAR
including:

• The mapping specification file used with this command

• Schema files

• Java resources

See also xmlbus.AddResourcesToXAR.

-x XAR-name The XAR file that specifies the Web
service.

Note: This parameter is required.
 66

Creating and Modifying XARs
xmlbus.XMLToXAR
java xmlbus.XMLToXAR -x XAR-name -f project-file-name

[-r] [-v] [-license] [-?]
script.xml

Description Builds or modifies a XAR based on a “script” of properties in an XML file. For
more on properties, see the Web Services Programmer’s Reference.

Options The following options are available:

See also xmlbus.AddResourcesToXAR
xmlbus.JavaToXAR
xmlbus.CORBAToXAR

-? Display the tool’s usage and options.

-f project-file-name Web Service Builder project file name.

Note: This parameter is required.

-license Display the current license.

-r Force a complete rebuild of the XAR.

-v Display the version of the command.

-x XAR-name The XAR file that is modified.

Note: This parameter is required.
67

CHAPTER 6 | Command-line Tools
Deploying Web Services
The following command-line tools are available for deploying and
undeploying Web services:

• xmlbus.Deploy

• xmlbus.Undeploy
 68

Deploying Web Services
xmlbus.Deploy
java xmlbus.Deploy -x XAR-name -u deployment-service-URL

[-debug] [-username username -password password]
[-v] [-license] [-?]

Description Deploys a Web service application to the Web services container.

Options The following options are available:

See also xmlbus.Undeploy

-? Display the tool’s usage and options.

-debug Produce debugging information. The default
is no debugging.

-license Display the current license.

-password password A password to use if the Web service has
been made secure. If this is needed, the
-username option is also required.

-u deployment-service-URL The URL representing the deployment
service application, the XMLBus service that
performs the actual deployment.

Note: This parameter is required.

For example:

http://localhost:9000/xmlbus/Deploy/De
ployService/DeployPort

Be sure to set the host and port number to
match your installation.

-username username A user name to use if the Web service has
been made secure. If this is needed, the
-password option is also required.

-v Display the version of the command.

-x XAR-name The XAR file that specifies the Web service
to deploy to the Web services container.

Note: This parameter is required.
69

CHAPTER 6 | Command-line Tools
xmlbus.Undeploy
java xmlbus.Undeploy { -app application-name | -x XAR-name }

-u deployment-service-URL
[-debug] [-username username -password password]
[-v] [-license] [-?]

Description Undeploys a Web service application from the Web services container.

Options The following options are available:

-? Display the tool’s usage and options.

-app application-name The name of the Web service application
within the XAR file.

Note: This option or the -x option is
required.

-debug Produce debugging information. The
default is no debugging.

-license Display the current license.

-password password A password to use if the Web service has
been made secure. If this is required, the
-username option is also required.

-u deployment-service-URL The URL representing the deployment
service application, the XMLBus service
that performs the actual undeployment.

Note: This parameter is required.

-username username A user name to use if the Web service has
been made secure. If this is required, the
-password option is also required.

-v Display the version of the command.

-x XAR-name The XAR file that specifies the Web
services to undeploy from the Web
services container.

Note: This or the -app option is required.
 70

Generating Code from WSDL
Generating Code from WSDL
The following command-line tools are available for generating code from
WSDL:

• xmlbus.WSDLToInterface

• xmlbus.WSDLToJ2MEClient

• xmlbus.WSDLToJ2SEDemo

• xmlbus.WSDLToSkeleton
71

CHAPTER 6 | Command-line Tools
xmlbus.WSDLToInterface
java xmlbus.WSDLToInterface { -w WSDL-URL | -x XAR-file }

[-e Web-service-name] [-t port] [-b binding-name]
[-d output-directory] [-p Java-package]
[-v] [-license] [-?]

Description Generates a Java interface class and proxy code from the Web service WSDL
input. The interface can then be called from custom client code to access the
Web service via the generated proxy.

Options The following options are available:

-? Display the tool’s usage and options.

-b binding-name Specify the binding to use if the service and port
are not specified and there is more than one
binding.

-d output-directory The directory in which the code is placed. The
default is to use the current directory, if this option
is not specified.

-e Web-service-name The name of the Web service in the WSDL file
being processed. The default is to use the first
Web service in the WSDL file, if this option is not
specified.

-license Display the current license.

-p Java-package The Java package name to use for the generated
code.

-t port The WSDL port name or endpoint name. This
port, combined with the Web service name
identifies the Web service. The default is to use
the port of the first Web service, if this option is
not specified.

-v Display the version of the command.

-w WSDL-URL A URL of the WSDL file to use.

Note: This or the -x option is required.

-x XAR-name A XAR file that contains the Web service’s WSDL
specification.

Note: This or the -w option is required.
 72

Generating Code from WSDL
See also xmlbus.WSDLToJ2MEClient
xmlbus.WSDLToJ2SEDemo
xmlbus.WSDLToSkeleton
73

CHAPTER 6 | Command-line Tools
xmlbus.WSDLToJ2MEClient
java xmlbus.WSDLToJ2MEClient { -w WSDL-URL | -x XAR-file }

[-e Web-service-name] [-t port] [-b binding-name]
[-d output-directory] [-p Java-package]
[-v] [-license] [-?]

Description Generates J2ME client code from the Web service WSDL input.

Options The following options are available:

See also xmlbus.WSDLToJ2SEDemo
xmlbus.WSDLToSkeleton

-? Display the tool’s usage and options.

-b binding-name Specify the binding to use if the service and port
are not specified and there is more than one
binding.

-d output-directory The directory in which the code is placed. The
default is to use the current directory, if this option
is not specified.

-e Web-service-name The name of the Web service in the WSDL file
being processed. The default is to use the first
Web service in the WSDL file, if this option is not
specified.

-license Display the current license.

-p Java-package The Java package name to use for the generated
code.

-t port The WSDL port name or endpoint name. This
port, combined with the Web service name
identifies the Web service. The default is to use
the port of the first Web service, if this option is
not specified.

-v Display the version of the command.

-w WSDL-URL A URL of the WSDL file to use.

Note: This or the -x option is required.

-x XAR-name A XAR file that contains the Web service’s WSDL
specification.

Note: This or the -w option is required.
 74

Generating Code from WSDL
xmlbus.WSDLToJ2SEDemo
java xmlbus.WSDLToJ2SEDemo { -w WSDL-URL | -x XAR-file }

[-e Web-service-name] [-t port] [-b binding-name]
[-d output-directory] [-p Java-package]
[-v] [-license] [-?]

Description Generates a Java client application for the Web service described by the
WSDL.

Options The following options are available:

See also xmlbus.WSDLToJ2MEClient
xmlbus.WSDLToSkeleton

-? Display the tool’s usage and options.

-b binding-name Specify the binding to use if the service and port
are not specified and there is more than one
binding.

-d output-directory The directory in which the code is placed. The
default is to use the current directory, if this
option is not specified.

-e Web-service-name The name of the Web service in the WSDL file
being processed. The default is to use the first
Web service in the WSDL file, if this option is not
specified.

-license Display the current license.

-p Java-package The Java package name to use for the generated
code.

-t port The WSDL port name or endpoint name. This
port, combined with the Web service name
identifies the Web service. The default is to use
the port of the first Web service, if this option is
not specified.

-v Display the version of the command.

-w WSDL-URL A URL of the WSDL file to use.

Note: This or the -x option is required.

-x XAR-name A XAR file that contains the Web service’s WSDL
specification.

Note: This or the -w option is required.
75

CHAPTER 6 | Command-line Tools
xmlbus.WSDLToSkeleton
java xmlbus.WSDLToSkeleton { -w WSDL-URL | -x XAR-file }

[-e Web-service-name] [-t port] [-b binding-name]
[-d output-directory] [-delagate] [-p Java-package]
[-v] [-license] [-?]

Description Generates Java skeleton code from the Web service WSDL input, to be used
as a basis to write a Web service Implementation.

Options The following options are available:

-? Display the tool’s usage and options.

-binding binding-nameSpecify the binding to use if the service and port are
not specified and there is more than one binding.

-d output-directory The directory in which the code is placed. The
default is to use the current directory, if this option
is not specified.

-delagate Delegates all calls in the skeleton to an object that
implements the Web service’s interface.

-e Web-service-name The name of the Web service in the WSDL file
being processed. The default is to use the first Web
service in the WSDL file, if this option is not
specified.

-license Display the current license.

-p Java-package The Java package name to use for the generated
code.

-t port The WSDL port name or endpoint name. This port,
combined with the Web service name identifies the
Web service. The default is to use the port of the
first Web service, if this option is not specified.

-v Display the version of the command.

-w WSDL-URL A URL of the WSDL file to use.

Note: This or the -x option is required.

-x XAR-name A XAR file that contains the Web service’s WSDL
specification.

Note: This or the -w option is required.
 76

Generating Code from WSDL
See also xmlbus.WSDLToJ2MEClient
xmlbus.WSDLToJ2SEDemo
77

CHAPTER 6 | Command-line Tools
 78

Index

A
AddResourcesToXAR tool 57
API for user tools 55

B
business, listing in UDDI 36
businesses registered in UDDI 33

C
CLASSPATH 55
Command-line tools 55
CORBAToXAR tool 58

D
Deploy tool 69

E
endpoints, listing 12

J
JavaToXAR tool 61

M
messages, sending SOAP 26
messages, SOAP 23

S
SOAP

messages 23
messages, sending 26

T
TransformToXAR tool 65

U
UDDI Browser, starting 31
UDDI-registered business, listing details 36
Undeploy tool 70
User tools API 55
W
Web Service

listing 11
Web Service Builder, starting 4
Web Service Manager, starting 9
Web Services Test Client, starting 18
WSDLToInterface tool 71
WSDLToJ2MEClient tool 74
WSDLToJ2SEDemo tool 75
WSDLToSkeleton tool 76

X
XMLToXAR tool 67
79

INDEX
 80

INDEX
81

INDEX
 82

INDEX
83

INDEX
 84

	Web Services Development Tools
	List of Tables
	Preface
	1 Building Web Services and Clients
	Web Service Development
	Starting the Web Service Builder
	Client Development

	2 Listing Web Services
	Starting Web Services Manager
	Listing Deployed Services
	Listing Web Service Endpoints
	Listing Web Services in WSIL
	Listing Web Services in DISCO
	Integration with Visual Studio.NET

	3 Testing Web Service Methods
	Starting Web Services Test Client
	Testing Method Calls

	4 Monitoring and Testing SOAP Messages
	Starting the SOAP Message Test Client
	Obtaining and Verifying an Endpoint URL
	Sending Test SOAP Messages
	SOAP Message Logging

	5 Using the Registry Manager
	Connecting to a Registry
	Browsing a Registry
	Listing Object Details
	Updating a Registry
	Implementing Registry Clients
	Using Orbix Web Service APIs
	Using UDDI4J APIs
	Using JAXR RI
	Support for UDDI APIs
	Current Limitations

	6 Command-line Tools
	Creating and Modifying XARs
	xmlbus.AddResourcesToXAR
	xmlbus.CORBAToXAR
	xmlbus.JavaToXAR
	xmlbus.SchemaToXAR
	xmlbus.TransformToXAR
	xmlbus.XMLToXAR

	Deploying Web Services
	xmlbus.Deploy
	xmlbus.Undeploy

	Generating Code from WSDL
	xmlbus.WSDLToInterface
	xmlbus.WSDLToJ2MEClient
	xmlbus.WSDLToJ2SEDemo
	xmlbus.WSDLToSkeleton

	Index

