IONA

fﬁl Orbix®

CORBA Tutorial C++

Version 6.1, December 2003

Making Software Work Together™

IONA, IONA Technologies, the IONA logo, Orbix, Orbix/E, Orbacus, Artix, Orchestrator,
Mobile Orchestrator, Enterprise Integrator, Adaptive Runtime Technology, Transparent
Enterprise Deployment, and Total Business Integration are trademarks or registered
trademarks of IONA Technologies PLC and/or its subsidiaries.

Java and J2EE are trademarks or registered trademarks of Sun Microsystems, Inc. in the
United States and other countries.

CORBA is a trademark or registered trademark of the Object Management Group, Inc. in
the United States and other countries. All other trademarks that appear herein are the
property of their respective owners.

While the information in this publication is believed to be accurate, IONA Technologies PLC makes no warranty
of any kind to this material including, but not limited to, the implied warranties of merchantability and fitness for
a particular purpose. IONA Technologies PLC shall not be liable for errors contained herein, or for incidental or
consequential damages in connection with the furnishing, performance or use of this material.

COPYRIGHT NOTICE

No part of this publication may be reproduced, stored in a retrieval system or transmitted, in any form or by any
means, photocopying, recording or otherwise, without prior written consent of IONA Technologies PLC. No third
party intellectual property right liability is assumed with respect to the use of the information contained herein.
IONA Technologies PLC assumes no responsibility for errors or omissions contained in this book. This publica-
tion and features described herein are subject to change without notice.

Copyright © 2001-2003 IONA Technologies PLC. All rights reserved.

All products or services mentioned in this manual are covered by the trademarks, service marks, or product
names as designated by the companies who market those products.

Updated: 26-Apr-2004

M3141

Contents

Chapter 1 Getting Started with Orbix
Creating a Configuration Domain
Setting the Orbix Environment
Hello World Example
Development Using the Client/Server Wizard
Development from the Command Line

Index

CONTENTS

In this chapter

CHAPTER 1

Getting Started

with Orbix

You can use the CORBA Code Generation Toolkit to develop

an Orbix application quickly.

Given a user-defined IDL interface, the toolkit generates the bulk of the
client and server application code, including makefiles. You then complete
the distributed application by filling in the missing business logic.

This chapter contains the following sections:

Creating a Configuration Domain page 2
Setting the Orbix Environment page 9
Hello World Example page 10
Development Using the Client/Server Wizard page 12
Development from the Command Line page 23

CHAPTER 1 | Getting Started with Orbix

Creating a Configuration Domain

Overview This section describes how to create a simple configuration domain, si npl e,
which is required for running basic demonstrations. This domain deploys a
minimal set of Orbix services.

Prerequisites Before creating a configuration domain, the following prerequisites must be
satisfied:

® Orbix is installed.

® Some basic system variables are set up (in particular, the
I T_PRCDUCT_DI R, | T_LI CENSE_FI LE, and PATH variables).

Fore more details, please consult the Installation Guide.

Licensing The location of the license file, 1 i censes. t xt, is specified by the
| T_LI CENSE_FI LE system variable. If this system variable is not already set
in your environment, you can set it now.

Steps To create a configuration domain, si npl e, perform the following steps:
Run itconfigure.

Specify the license location.

Choose expert mode and specify domain settings.

Specify services settings.

Review the summary window.

ook wN

Finish configuration.

Creating a Configuration Domain

Run itconfigure To begin creating a new configuration domain, enter it configure at a
command prompt. An Introduction window appears, as shown in Figure 1.

" = Orbix Configuration

Steps Introduction

1. Introduction

Orbix Configuration

Welcome ta the Crhix configuration tool.

4 Create Create a configuration domain based on the defaults.
1- Connect Connectto a configuration domain on another host.
% Ceploy Deploy a configuration domain's services/replicas on this host.

& License Install and use a new license file.

'Expert Use the advanced configuration wizard.

=Back H MNext=

l Finish l" Cancel |.|

Figure 1: The itconfigure Introduction Window

CHAPTER 1 | Getting Started with Orbix

Specify the license location

If you have not already specified the license location by setting the

| T_LI CENSE_FI LE environment variable (see “Licensing” on page 2), specify
the location now by clicking the License button on the Introduction window
(Figure 1 on page 3).

A License dialog box appears, as shown in Figure 2. Enter the license file
location in the License File text field or use the Browse button to select the
license file, then click OK.

" ¥ License il

You are currently configured to use the license file located at

‘tOrhix_fA1_Galicenses bd'

You can update this license file by specifying a new location below:. [fyou want
to use alicense file from a different location without installing it, set the
IT_LICEMSE_FILE erviranment variable, and run this toal again.

Install a new license file from ...

License File: || | | Browse
| OK | Cancel

Figure 2: The License Dialog Box

Creating a Configuration Domain

Choose expert mode and specify ~ From the Introduction window (Figure 1 on page 3), click Expert to begin
domain settings creating a configuration domain in expert mode. A Domain Settings window
appears, as shown in Figure 3.

In the Domain Name text field, type si npl e. Select the File Based Domain
option.

Make sure that the Allow Insecure Communication option is selected and
the Allow Secure Communication option is unselected.

Click Next> to continue.

" v Orbix Configuration x|

Steps Domain Settings

rDomain Details

1. Introduction

. Domain Settings Darmain Name: |simp|e |

Location Darmain: [simple.location |

@ File Based Domain [# Allow Insecure Communication

() Configuration Repository Domain [Allow Secure Communication

[Launch damain on machine startup fas system semvices).

[] Generate EMS Configuration Files

Address Made Policy for Ohject References: Shart tungualified) hostname E]|

~Storage Location

Configuration Files Directory: |c:1.0rbix_61_GA1.etc |
Configuration Datahase Directory: |c:1.0rbi}{_61_GAwar |

[Defaults][Load][Localize]

[=Back][M ent=

l Finish ” Cancel]

Figure 3: The itconfigure Domain Settings Window

CHAPTER 1 | Getting Started with Orbix

Specify services settings

" = Orbix Configuration

Steps

. Introduction

2. Doma

. Services Settings
. Summ

. Complete

A Services Settings window appears, as shown in Figure 4.

In the Services Settings window, select the following services and
components for inclusion in the configuration domain: Location, Node
daemon, Management, Distributed Transaction, CORBA Interface
Repository, CORBA Naming, and Demos.

Click Next> to continue.

x|
Services Settings

-Infrastructure ~Web Services

] Lacation [Iteh Services Container|
[Mode daeman Edit || -Messaging

[Management] CORBA Motification
[¥] Distributed Transaction [corBa Events

[Cconfiguration [J JMS (Java Messaging Service)

Directory [] ImSitotification Bridge

[¥] CORBA Interface Repository Edit rSecurity

[CORBA Maming [Firewall Proxy

(] CORBA Trader O] 10MA Security
~CORBA Telco Logging ~Components

[Basic Logging gdit ||| Demos

[] Event Logaing Edit

[Motify Logging

[Clear All][Check All]

=

=Back ” Next=

[Finizh H Cancel]

Figure 4: The itconfigure Services Settings Window

Creating a Configuration Domain

Review the summary window You now have the opportunity to review the configuration settings in the

Summary window, Figure 5. If necessary, you can use the <Back button to
make corrections.

Click Next> to create the configuration domain and progress to the next

window.
" v Orbix Configuration
Steps Summary
1. Introduction The following configuration settings will he deployed.

Damain Marme: simple
File Based Domain
Configuration Files Directory = cA\Orbix_B1_GAletc
Configuration Database Directory = cACrhix_B1_GAwar
Configuration included far demoaos
Location Service
Manual Activation
Host=1baltan
IIOF Paort= 3075
Mode daemon Service
Manual Activation
Host=fbaltan
IOF Part= 53078
CORBA Interface Repositary Senice
Automatic Activation
Host=1baltan
NOF Part Enabled
CORBA Maming Service
Automatic Activation
Host=fbaltan
NOF Part Enabled
Management Service

bA |0 cdivacdi

Save ...

| <Back || Met || Finisn || cancel |

Figure 5: The itconfigure Summary Window

CHAPTER 1 | Getting Started with Orbix

Finish configuration The i tconfi gur e utility now creates and deploys the si npl e configuration
domain, writing files into the OrbixInstallDir/ et c/ bi n,
OrbixInstallDirl et c/ domai n, OrbixInstallDirl et c/ 1 og, and
OrbixInstallDirl var directories.

If the configuration domain is created successfully, you should see a
Complete window with a message similar to that shown in Figure 6.

Click Finish to quit the i t confi gur e utility.

" = Orbix Configuration

Steps Complete

Configuration is now complete, see details helow.
Configuration completed successiully.
You can wiew the log in ‘cACrhix_B1_GAletolog”

1. Introduction

Ta setyvaur environment far this configuration damain run;
= cA0rbix_B1_GAetc\binisimple_env.bat

4. Summary
. Complete To start the services in this configuration domain run:
cAOrhix_61_GAetibintstart_simple_senices. hat

To stop the services in this configuration domain run:
cACrhix_B1_GAleteibimstop_simple_sernices hat

[=Back ” MNext=

[Finish H Cancel l

Figure 6: Finishing Configuration

Setting the Orbix Environment

Setting the Orbix Environment

Prerequisites

Setting the Domain

Before proceeding with the demonstration in this chapter you need to
ensure:

® The CORBA developer’s kit is installed on your host.
® Orbix is configured to run on your host platform.

The Administrator’s Guide contains more information on Orbix
configuration, and details of Orbix command line utilities.

Note: 0S/390, both native and UNIX system services, do not support the
code generation toolkit and distributed genies. For information about
building applications in a native 0S/390 environment, see the readme files
and JCL that are supplied in the DEMD data sets of your iPortal 0S/390
Server product installation.

The scripts that set the Orbix environment are associated with a particular
domain, which is the basic unit of Orbix configuration. Consult the
Installation Guide, and the Administrator’s Guide for further details on
configuring your environment.

To set the Orbix environment associated with the donai n- nane domain,
enter:

Windows

> confi g-dir\etc\bin\ donai n- name_env. bat
UNIX

% . config-dir/etc/bin/domai n- nane_env

confi g-dir is the root directory where the Appliation Server Platform stores
its configuration information. You specify this directory while configuring
your domain. donmai n- nane is the name of a configuration domain.

CHAPTER 1 | Getting Started with Orbix

Hello World Example

This chapter shows how to create, build, and run a complete client/server
demonstration with the help of the CORBA code generation toolkit. The
architecture of this example system is shown in Figure 7.

Client Machine Server Machine

Server Application

Client Application
ORB i ORE

Operation Call ;

Object

Code Result Code/' e

IDL Interface

A

Figure 7: Client makes a single operation call on a server

The client and server applications communicate with each other using the
Internet Inter-ORB Protocol (II0P), which sits on top of TCP/IP. When a
client invokes a remote operation, a request message is sent from the client
to the server. When the operation returns, a reply message containing its
return values is sent back to the client. This completes a single remote
CORBA invocation.

All interaction between the client and server is mediated via a set of IDL
declarations. The IDL for the Hello World! application is:

/11DL
interface Hello {
string getGeeting();

Ik

The IDL declares a single Hel | o interface, which exposes a single operation
get @ eeting() . This declaration provides a language neutral interface to
CORBA objects of type Hel | o.

10

Hello World Example

The concrete implementation of the Hel | o CORBA object is written in C++
and is provided by the server application. The server could create multiple
instances of Hel | o objects if required. However, the generated code
generates only one Hel | o object.

The client application has to locate the Hel I o object—it does this by reading
a stringified object reference from the file Hel | 0. ref . There is one operation
get @ eeting() defined on the Hel | o interface. The client invokes this
operation and exits.

11

CHAPTER 1 | Getting Started with Orbix

Development Using the Client/Server Wizard

Overview On the Windows NT platform, Orbix provides a wizard add-on to the
Microsoft Visual Studio integrated development environment (IDE) that
enables you to generate starting point code for CORBA applications.

If you are not working on a Windows platform or if you prefer to use a
command line approach to development, see “Development from the
Command Line” on page 23.

Installing the client/server wizard Ordinarily, the client/server wizard is installed at the same time as Orbix. If
the wizard is not on your system, however, consult the Installation Guide for
instructions on how to install it.

Prerequisites You must ensure that the Orbix include and library directories are added to
the Microsoft Visual Studio configuration. Start up the Microsoft Visual C+ +
6.0 IDE, select Tools|Options... from the menu bar, and click on the
Directories tab. Use this dialog box to add the following Orbix directories to
the Visual Studio configuration:

Orbix Include Directory
Orbixinstall\ asp\ 6. 1\i ncl ude

Orbix Library Directory
Orbixinstall\ asp\ 6. 1\ li b

Steps to implement Hello World You implement the Hel | o Wor | d! application with the following steps:
1. Define the IDL interface, Hel | o.
2. Generate the server.

3. Complete the server program by implementing the single IDL
get G eet i ng() operation.

4. Build the server program.
5. Generate the client.

6. Complete the client program by inserting a line of code to invoke the
get @ eet i ng() operation.

12

Define the IDL interface

Generate the server

Development Using the Client/Server Wizard

7. Build the client program.
8. Run the demonstration.

Create the IDL file for the Hello World! application. First of all, make a
directory to hold the example code:

> nkdir C\ QOGN Hel | oExanpl e

Create an IDL file C'\ QOGN Hel | oExanpl e\ hel | 0. i dl using a text editor.
Enter the following text into the hel 1 o.i dI file:

//1DL
interface Hello {

string get Geeting();
b

This interface mediates the interaction between the client and the server
halves of the distributed application.

Generate files for the server application using the CORBA Code Generation
Toolkit.

To create a server project using the IONA Orbix client/server wizard:

1. Open the Microsoft Visual C++ 6.0 integrated development
environment (IDE).

From the Visual C++ menus, select File| New

In the New dialog, click on the Projects tab.

13

CHAPTER 1 | Getting Started with Orbix

14

4.

In the Projects tab, perform these actions:
. Select IONA Orbix v6.1 Client/Server Wizard
. In the Project name text box, enter server

. Under the Location text box, enter
C.\ OCGI\ Hel | oExanpl e\ server

Filez Projects ‘Work spaces | Other Documents |

] ATL COM Apphwizard @ Win32 Dynamic-L
¢ Cluster Resource Type \Wizard E Win32 Static Libre
#%| Custom Appiaizard

|

21|

Froject name:

|server|

Location:
IE:\D CGTYHelokE samplehzerver J

' Create new workspace
" add to curent workspace
I~ Dependency of:

I clignt j

FPlatforms:
IWin32

Cancel |

5.

Click OK.

The client/server wizard dialog displays.

Development Using the Client/Server Wizard

6. Answer two questions as follows:

+ What CORBA IDL file would you like to use for this project?

Enter the location of hel I 0. i dI .

. Would you like to generate a working client or server?

Select Server

IONA Orbix E2A v6.1 'Server Wizard - Step 1 of 2

‘what CORBA DL file would you like to use for this project?
CAOCGTSHelloE xamplehello.idl

1 | i

Wiew | Bemove |

‘wiould you like to generate a working client or server?
" Clisnt
& Server

‘what object reference distribution method would you like to
use?

' Shingified Object Feferences

" Naming Service

< Back | Mest » | FEinigh | Cancel | Help

7. Advance to the next screen by clicking Next.

15

CHAPTER 1 | Getting Started with Orbix

16

8. The server wizard displays the following dialog:

IONA Orbix E2A ¥6.1 Client/Server Wizard - Step 2 of 2

— PO& Server Generation O ptions

¥ Servant inhertance matches IDL inheritance

[T Create a multithreaded server

— Servant Implementation Approach
% |nheritance from POA base classes
" TIE [Delegation)

— Servant banagement Strategy

' Create and activate servants in mainling
" Servanthotivator creates servants on demand
" ServantLocator creates servants per-invocation

" Use a single default servant for many obiscts

<Back | e | Einish |

Cancel |

Help |

9. Accept the default settings and click Finish to generate the server.
10. The New Project Information scrollbox tells you about the generated

files. Browse the information and select OK.

11. The server workspace is generated with the following source files:

Client
Developer

IDL Compiler

‘ IDL Compiler

Server
Developer

\ Client Program '

Client Side

Skeleton
Code

Server Side

12. Read the text file ReadneQr bi xServer. t xt .

i

Complete the server program

Build the server program

Generate the client

Development Using the Client/Server Wizard

Complete the implementation class, Hel | ol npl by providing the definition of
get G eeting(). This method implements the IDL operation
Hel l o:: get Geeting().

Delete the generated boilerplate code that occupies the body of
Hel | ol npl : : get @ eet i ng() and replace it with the highlighted line of code:

/] G+
char *
Hel | ol npl : : get G eet i ng()
{
char* result;

_result = CORBA :string_dup("Hello Wrld!");

return _result;

The function QORBA: : stri ng_dup() allocates a copy of the string on the free
store. This is needed to be consistent with the style of memory management
used in CORBA programming.

From within the Visual C++ IDE select Build | Build server.exe to compile
and link the server.

By default, the project builds with debug settings and the server executable
is stored in C \ QOGN Hel | oExanpl e\ ser ver\ Debug\ ser ver . exe.

Close the server workspace by selecting File | Close Workspace

Generate files for the client application using the Orbix code generation
toolkit.

To create a client project using the IONA Orbix client/server wizard:
1. Open the Microsoft Visual C++ 6.0 IDE.
2. From the Visual C++ menus, select File| New

3. Inthe New dialog, click on the Projects tab.

17

CHAPTER 1 | Getting Started with Orbix

18

4.

In the Projects tab, perform the following actions:
. Select IONA Orbix v6.1 Client/Server Wizard
. In the Project name text box, enter cl i ent

. Under the Location text box, enter
C \ OCGNI Hel | oExanpl e\ cl i ent

21|

Filez Projects ‘Work spaces | Other Documents |
] ATL COM Apphwizard

7| Cluster Resource Type Wizard E win32 Static Libre IC“ENﬂ
#%| Custom Appiaizard

{5 Database Project

%] Win32 DynamicL Projest name:

Location:
IEI:\DEGT\HeIIoExampIe\cIient J

' Create new workspace
" add to curent workspace
I~ Dependency of:

I FeMver j

FPlatforms:
IWin32

|

Cancel |

5.
6.

Click OK.
The client/server wizard displays.

7.

L4

Development Using the Client/Server Wizard

Answer two questions as follows:
What CORBA IDL file would you like to use for this project?

Enter the location of hel I o. i dI

Would you like to generate a working client or server?

Select Client

IONA Orbix E2A ¥6.1 Client/Server Wizard - Step 1 ol

|
< Back |

‘what CORBA DL file would you like to use for this project?
| CAOCGTSHelloE xamplehello.idl

1 | i

Wiew | Bemove |

‘wiould you like to generate a working client or server?
' Clisnt
" Semver

‘what object reference distribution method would you like to
use?

' Shingified Object Feferences

" Naming Service

Tewt > | FEinigh | Cancel | Help

10.

To generate the client project, click Finish

The New Project Information scrollbox tells you about the generated

files. Browse the information and select OK

The client workspace is generated with the following source files:

B

E_@Sou

L_print_funcs, cus
t_random_funcs. cux
(2 Header Files

(2 Resource Files
ReadmelrbizE 24 Client tet

B Classhiew | FiIeViewI

11.

Read the text file ReadmeQr bi xQ i ent . t xt

19

CHAPTER 1 | Getting Started with Orbix

Complete the client program

Build the client program

20

Complete the implementation of the client mai n() function in the
client.cxx file. You must add a couple of lines of code to make a remote
invocation of the operation get G eeti ng() on the Hel | o object.

Search for the line where the cal | _Hel | o_get G eeti ng() function is called.
Delete this line and replace it with the two lines of code highlighted in bold
font below:

/| G-+
/IFile: ‘client.cxx

if (CCRBA :is_nil(Hellol))

{

cerr << "Could not narrow reference to interface "
<< "Hell 0" << endl;

}

el se

{
OORBA: : String_var strV = Hel |l 01->get G eeting();
cout << "Qeeting is: " << strV << endl;

}

The object reference Hel | o1 refers to an instance of a Hel | o object in the
server application. It is already initialized for you.

A remote invocation is made by invoking get G eeti ng() on the Hell ol
object reference. The ORB automatically establishes a network connection
and sends packets across the network to invoke the

Hel | ol npl : : get @ eet i ng() function in the server application.

The returned string is put into a C++ object, strV, of the type
QOCRBA : String_var. The destructor of this object will delete the returned
string so that there is no memory leak in the above code.

From within the Visual C++ IDE select Build | Build client.exe to compile
and link the client.

By default, the project will build with debug settings and the client
executable will be stored in
C:\ OOGI Hel | oExanpl e\ cl i ent\ Debug\ cl i ent . exe.

Close the client workspace by selecting File |Close Workspace.

Development Using the Client/Server Wizard

Run the demonstration Run the application as follows:

1.

Run the Orbix services (if required).
If you have configured Orbix to use file-based configuration, no services
need to run for this demonstration. Proceed to step 2.

If you have configured Orbix to use configuration repository based
configuration, start up the basic Orbix services.

> start_domai n- nane_ser vi ces. bat

Where domai n- nane is the name of your configuration domain.

Set the Appliation Server Platform’s environment.
> donai n- name_env. bat
Run the server program.

> cd C\ OCGI Hel | oExanpl e\ ser ver\ Debug
> server. exe

The server outputs the following lines to the screen:

Initializing the CRB
Witing stringified object reference to Hello.ref
Wi ting for requests...

The server performs the following steps when it is launched:
. It instantiates and activates a single Hel | o CORBA object.

+ The stringified object reference for the Hel | o0 object is written to
the file C\tenp\ Hel l 0. ref.

+ The server opens an IP port and begins listening on the port for
connection attempts by CORBA clients.

Run the client program.
Open a new MS-DOS prompt.

> cd C\ OOGI\ Hel | oExanpl e\ cl i ent \ Debug
> client.exe

21

CHAPTER 1 | Getting Started with Orbix

22

The client outputs the following lines to the screen:

dient using random seed 0
Readi ng stringified object reference fromHell o.ref
Qeeting is: Hello Wrld!

The client performs the following steps when it is run:

. It reads the stringified object reference for the Hel | o object from
the C\tenp\ Hel | o. ref file.

. It converts the stringified object reference into an object reference.

. It calls the remote Hel | o: : get G eeting() operation by invoking
on the object reference. This causes a connection to be
established with the server and the remote invocation to be
performed.

When you are finished, terminate all processes.

+ The server can be shut down by typing G rl - Cin the window
where it is running.

Stop the Orbix services (if they are running).

From a DOS prompt enter:

> st op_donai n- nane_ser vi ces

Development from the Command Line

Development from the Command Line

Starting point code for CORBA client and server applications can also be
generated using the i dl gen command line utility, which offers equivalent
functionality to the client/server wizard presented in the previous section.

Define the IDL interface

The i dl gen utility can be used on Windows and UNIX platforms.

You implement the Hel | o Wor | d!' application with the following steps:

1.
2.
3.

Define the IDL interface, Hel | o.
Generate starting point code.

Complete the server program by implementing the single IDL
get Q eeting() operation.

Complete the client program by inserting a line of code to invoke the
get G eet i ng() operation.

Build the demonstration.
Run the demonstration.

Create the IDL file for the Hel I o Ver | d! application. First of all, make a
directory to hold the example code:

Windows

> nkdir C\ QOGN Hel | oExanpl e

UNIX

% nkdir -p OCGI/ Hel | oExanpl e

Create an IDL file G\ OGN\ Hel | oExanpl e\ hel 1 0. i dl (Windows) or
QOGT/ Hel | oExanpl e/ hel 1 o.idl (UNIX) using a text editor.

Enter the following text into the file hel 1 o.i dl :

//1DL
interface Hello {

IE

string get Geeting();

23

CHAPTER 1 | Getting Started with Orbix

Generate starting point code

Complete the server program

24

This interface mediates the interaction between the client and the server
halves of the distributed application.

Generate files for the server and client application using the CORBA Code
Generation Toolkit.

In the directory C:\ QOGN Hel | oExanpl e (Windows) or QOGT/ Hel | oExanpl e
(UNIX) enter the following command:

idl gen cpp_poa_genie.tcl -all hello.idl

This command logs the following output to the screen while it is generating
the files:

hel lo.idl:

cpp_poa genie.tcl: creating it_servant_base overrides. h
cpp_poa _genie.tcl: creating it_servant_base overrides. cxx
cpp_poa_geni e.tcl: creating Hellolnpl.h

cpp_poa_geni e.tcl: creating Hell ol npl . cxx

cpp_poa _genie.tcl: creating server.cxx

cpp_poa_geni e.tcl: creating client.cxx

cpp_poa_geni e.tcl: creating call_funcs. h

cpp_poa _genie.tcl: creating call_funcs. cxx
cpp_poa_genie.tcl: creating it_print_funcs.h
cpp_poa_genie.tcl: creating it_print_funcs. cxx

cpp_poa _genie.tcl: creating it_random funcs. h
cpp_poa_geni e.tcl: creating it_random funcs. cxx
cpp_poa_geni e.tcl: creating Makefile

You can edit the following files to customize client and server applications:

Client:
client.cxx

Server:

Server. cxx
Hel I ol npl . h
Hel | ol npl . cxx

Complete the implementation class, Hel | ol npl , by providing the definition
of the Hel I ol npl : : get G eeting() function . This C++ function provides
the concrete realization of the Hel | o: : get G eeti ng() IDL operation.

Complete the client program

Development from the Command Line

Edit the Hel | ol npl . cxx file, and delete most of the generated boilerplate
code occupying the body of the Hel | ol npl : : get G eeti ng() function.
Replace it with the line of code highlighted in bold font below:

/] C++

//File 'Hellolnpl.cxx

char *

Hel | ol npl : : get G eeti ng() throw
OCRBA: : Syst enExcepti on

)

{
char * _result;
_result = OORBA :string_dup("Hello Wrld!");
return _result;

The function GORBA: : string_dup() allocates a copy of the "Hel 1o Wrid!"
string on the free store. It would be an error to return a string literal directly
from the CORBA operation because the ORB automatically deletes the
return value after the function has completed. It would also be an error to
create a copy of the string using the C+ + new operator.

Complete the implementation of the client mai n() function in the
client.cxx file. You must add a couple of lines of code to make a remote
invocation of the get G eet i ng() operation on the Hel | o object.

25

CHAPTER 1 | Getting Started with Orbix

Build the demonstration

26

Edit the client.cxx file and search for the line where the
cal | _Hell o_getQeeting() function is called. Delete this line and replace
it with the two lines of code highlighted in bold font below:

/| G+
/IFile: ‘client.cxx

if (OORBA :is_nil(Hellol))

{

cerr << "Could not narrow reference to interface "
<< "Hell 0" << endl;

}

el se

{
OORBA: : String_var strV = Hel |l ol->get G eeting();
cout << "Qeeting is: " << strV << endl;

}

The object reference Hel | ol refers to an instance of a Hel | o object in the
server application. It is already initialized for you.

A remote invocation is made by invoking get G eeting() on the Hel | ol
object reference. The ORB automatically establishes a network connection
and sends packets across the network to invoke the

Hel | ol npl : : get @ eet i ng() function in the server application.

The returned string is put into a C++ object, strV, of the type
OCRBA : String_var. The destructor of this object will delete the returned
string so that there is no memory leak in the above code.

The Makef i | e generated by the code generation toolkit has a complete set of
rules for building both the client and server applications.

To build the client and server complete the following steps:
1. Open acommand line window.

2. Gotothe../Q0GT/ Hel | oExanpl e directory.

3. Enter:

Windows

> nmake

Development from the Command Line

UNIX

% make -e

Run the demonstration Run the application as follows:

1.

Run the Orbix services (if required).
If you have configured Orbix to use file-based configuration, no services
need to run for this demonstration. Proceed to step 2.

If you have configured Orbix to use configuration repository based
configuration, start up the basic Orbix services.

Open a DOS prompt in Windows, or xt ermin UNIX. Enter:
st art _domai n- nane_ser vi ces

Where donai n- nane is the name of the configuration domain.

Set the Appliation Server Platform’s environment.
> donai n- name_env

Run the server program.

Open a DOS prompt, or xt er mwindow (UNIX). From the

C \ QOGN Hel | oExanpl e directory enter the name of the executable
file—ser ver . exe (Windows) or server (UNIX).The server outputs the
following lines to the screen:

Initializing the CRB
Witing stringified object reference to Hello.ref
Wi ting for requests...

The server performs the following steps when it is launched:
. It instantiates and activates a single Hel | o CORBA object.

+ The stringified object reference for the Hel | o object is written to
the local Hel 1 o. ref file.

+ The server opens an IP port and begins listening on the port for
connection attempts by CORBA clients.

Run the client program.

27

CHAPTER 1 | Getting Started with Orbix

28

Open a new DOS prompt, or xt ermwindow (UNIX). From the
C \ OOGT\ Hel | oExanpl e directory enter the name of the executable
file—cl i ent . exe (Windows) or cl i ent (UNIX).

The client outputs the following lines to the screen:
dient using random seed 0

Readi ng stringified object reference fromHell o.ref
Qeeting is: Hello Wrld!

The client performs the following steps when it is run:

. It reads the stringified object reference for the Hel | o object from
the Hel I o. ref file.

. It converts the stringified object reference into an object reference.
. It calls the remote Hel | o: : get G eeti ng() operation by invoking
on the object reference. This causes a connection to be
established with the server and the remote invocation to be
performed.
5. When you are finished, terminate all processes.
Shut down the server by typing arl - Cin the window where it is
running.
6. Stop the Orbix services (if they are running).

From a DOS prompt in Windows, or xt er min UNIX, enter:
st op_donai n- nane_ser vi ces

The passing of the object reference from the server to the client in this way
is suitable only for simple demonstrations. Realistic server applications use
the CORBA naming service to export their object references instead (see
Chapter 17).

Index

A

Application
running 21, 26

C
Client
building 20
generating 17, 24
implementing 20, 25
Code generation toolkit
idlgen utility 24
wizard 12
cpp_poa_genie.tcl 24

H
Hello World! example 10

M

Memory management
string type 25

0

Object reference
passing as a string 11

S
Server
building 17
generating 13, 24
implementing 17, 24
Services 21, 22, 27, 28
string_dup() 25
String_var 26

w
Wizard
for code generation 12

29

INDEX

30

	CORBA Tutorial C++
	Getting Started with Orbix
	Creating a Configuration Domain
	Setting the Orbix Environment
	Hello World Example
	Development Using the Client/Server Wizard
	Development from the Command Line

	Index

