IONA

fﬁ; Orbix®

Web Services Programmer’s

Reference
Version 6.1, December 2003

Making Software Work Together™

IONA, IONA Technologies, the IONA logo, Orbix, Orbix/E, Orbacus, Artix, Orchestrator,
Mobile Orchestrator, Enterprise Integrator, Adaptive Runtime Technology, Transparent
Enterprise Deployment, and Total Business Integration are trademarks or registered
trademarks of IONA Technologies PLC and/or its subsidiaries.

Java and J2EE are trademarks or registered trademarks of Sun Microsystems, Inc. in the
United States and other countries.

CORBA is a trademark or registered trademark of the Object Management Group, Inc. in
the United States and other countries. All other trademarks that appear herein are the
property of their respective owners.

While the information in this publication is believed to be accurate, IONA Technologies PLC makes no warranty of
any kind to this material including, but not limited to, the implied warranties of merchantability and fitness for a
particular purpose. IONA Technologies PLC shall not be liable for errors contained herein, or for incidental or
consequential damages in connection with the furnishing, performance or use of this material.

COPYRIGHT NOTICE

No part of this publication may be reproduced, stored in a retrieval system or transmitted, in any form or by any
means, photocopying, recording or otherwise, without prior written consent of IONA Technologies PLC. No third
party intellectual property right liability is assumed with respect to the use of the information contained herein.
IONA Technologies PLC assumes no responsibility for errors or omissions contained in this book. This publication
and features described herein are subject to change without notice.

Copyright © 2001-2003 IONA Technologies PLC. All rights reserved.

All products or services mentioned in this manual are covered by the trademarks, service marks, or product
names as designated by the companies who market those products.

Updated: 18-Dec-2003

M3174

Contents

List of Tables
List of Figures
Preface

Chapter 1 Developing Web Service Clients

Generating Client Code

J2SE Client
J2SE Client Architecture
Generating J2SE Client Code
Using the J2SE Client Demo
Using the Web Service Interface in Custom Code
Controlling Client I/O Settings
Controlling SOAP Message Processing
Handling Web Service Exceptions

J2ME Client
J2ME Protocol Options
Generating a J2ME Client

Chapter 2 Customizing SOAP Faults
Controlling SOAP Faults
Mapping Exceptions to SOAP Faults

Chapter 3 Adding Handlers
About Handlers
Implementing Handlers
Stream Handlers
Message Handlers
Invocation Handlers
Adding Handlers to a Web Service
Adding Handlers to a Web Service Client

25
26
27

29
32
36
37
40
42
43
45

CONTENTS

Chaining Handlers

Writing a Data Content Handler for SOAP Attachments

Chapter 4 Supported Data Types

Mapping from Java to WSDL
Supported Java Objects
Primitive Java Types
Common Java Classes
Java Arrays and Sequences
Java Structures
Java Exceptions
Mapping from CORBA IDL to WSDL
Primitive CORBA IDL Types
CORBA IDL Arrays and Sequences
CORBA IDL Structures
CORBA IDL Enumeration
CORBA IDL Unions
CORBA Exceptions
Mapping from WSDL to Java
Supported Primitive XML Schema Types
Supported Derived XML Schema Types
Other WSDL Type Mappings
Links to the XML Schema Specifications

Chapter 5 XAR Properties

<chain>
<chainSequence>
<complexType>
<dependencies>
<endpoint>
<handler>
<include>
<operation>
<param>
<part>
<reference>
<resource>
<schema>

46
47

51
52
53
54
55
56
57
59
61
62
64
65
66
67
68
71
72
74
76
81

83
86
87
88
920
91
92
93
94
95
96
98
99

100

CONTENTS

<schemas> 101
<service> 102
<soapproperties> 103
<source> 105

Index 107

CONTENTS

Vi

List of Tables

Table 1: Command-line Options for a J2SE Client Demo

Table 2: J2ME Client Limitations

Table 3: SOAPFaultException Constructors

Table 4: ServerExceptionHandler Methods

Table 5: InputStreamHandler Methods

Table 6: OutputStreamHandler Methods

Table 7: MessageHandler Methods

Table 8: Key Methods of the DataContentHandler Interface

Table 9: Supported Java Types and the WSDL Mapping

Table 10: Supported Common Java Classes and the WSDL Mapping
Table 11: Supported CORBA IDL Types and the WSDL Mapping

Table 12: Supported Primitive XML Schema Types and the Java Mapping
Table 13: Supported Derived XML Schema Types and the Java Mapping

18
26
27
37
39
40
49
54
55
62
72
74

vii

LIST OF TABLES

viii

List of Figures

Figure 1: Interaction of J2SE client code with a Web service

Figure 2: J2ME Wireless Toolkit GUI

Figure 3: Create J2ME Client from WSDL

Figure 4: J2ME Wireless Toolkit Phone Simulator

Figure 5: Handler interfaces and classes

Figure 6: Client-side handlers

Figure 7: Message handler chains

Figure 8: Server-side handlers

Figure 9: Message handlers

Figure 10: A SOAP message and a SOAP with attachments message

20
21
23
30
32
33
34
35
48

LIST OF FIGURES

Audience

Updated documentation

Additional resources

Additional resources

Preface

This guide is aimed at developers who are developing Web services. Java or
other programming experience is assumed.

The latest updates to the documentation can be found at this URL: http: //
ww. i ona. cond docs/ .

The IONA knowledge base contains helpful articles, written by IONA
experts. You can access the knowledge base at the following location:

ht t p: // wawv. i ona. cond suppor t / kb/

The IONA update center contains the latest releases and patches for IONA
products:

htt p: // waw. i ona. cond suppor t/ updat e/

The IONA knowledge base (http://www.iona.com/support/knowledge base/
index.xml) contains helpful articles, written by IONA experts, about the
Orbix and other products. You can access the knowledge base at the
following location:

The IONA update center (http://www.iona.com/support/updates/index.xml)
contains the latest releases and patches for IONA products:

If you need help with this or any other IONA products, contact IONA at
support @ona. com Comments on IONA documentation can be sent to
docs-support@iona.com .

Xi

http://www.iona.com/docs/
http://www.iona.com/docs/
mailto:support@iona.com
http://www.iona.com/support/kb/
http://www.iona.com/support/update/
http://www.iona.com/support/knowledge_base/index.xml
http://www.iona.com/support/updates/index.xml

PREFACE

Typographical conventions This guide uses the following typographical conventions:

Constant width Constant width (courier font) in normal text
represents portions of code and literal names of items
such as classes, functions, variables, and data
structures. For example, text might refer to the
QORBA: : (hj ect class.

Constant width paragraphs represent code examples
or information a system displays on the screen. For
example:

#i ncl ude <stdio. h>

Italic Italic words in normal text represent emphasis and
new terms.

Italic words or characters in code and commands
represent variable values you must supply, such as
arguments to commands or path names for your
particular system. For example:

% cd /users/your_name

Note: Some command examples may use angle
brackets to represent variable values you must
supply. This is an older convention that is replaced
with italic words or characters.

Xii

PREFACE

Keying conventions This guide may use the following keying conventions:

No prompt

%

{3}

When a command’s format is the same for multiple
platforms, a prompt is not used.

A percent sign represents the UNIX command shell
prompt for a command that does not require root
privileges.

A number sign represents the UNIX command shell
prompt for a command that requires root privileges.

The notation > represents the DOS or Windows
command prompt.

Horizontal or vertical ellipses in format and syntax
descriptions indicate that material has been
eliminated to simplify a discussion.

Brackets enclose optional items in format and syntax
descriptions.

Braces enclose a list from which you must choose an
item in format and syntax descriptions.

A vertical bar separates items in a list of choices
enclosed in { } (braces) in format and syntax
descriptions.

xiii

PREFACE

Xiv

Types of Web service clients

.NET interoperability

CHAPTER 1

Developing Web
Service Clients

Clients developed in Web Service Builder provide all the Web
service access usually needed. You can also use the generated
code as the basis for creating custom applications.

In either case, all low-level programming issues including SOAP, XML, and
WSDL technologies are hidden, so you can concentrate on getting Web
services working quickly.

Web Service Builder (and equivalent command-line tools) can help you
develop several types of client applications:

J2ME Client: A lightweight client that runs in the Java 2 Micro Edition
(J2ME) environment.

J2SE Client: A client that uses the Java 2 Platform, Standard Edition (J2SE)
interface. A J2SE client can have either RPC- or document-style interaction
with a Web service.s

The clients that you generate with Web Service Builder or equivalent
command-line tools are standards-compliant. Interoperability is verified
against Microsoft's.NET toolkit and MS SOAP. The SOAP client that you
build can access Web services that are constructed with Microsoft tools, just
like any other Web service.

CHAPTER 1 | Developing Web Service Clients

In this chapter This chapter contains the following sections:
Generating Client Code page 3
J2SE Client page 4
J2ME Client page 18

Generating Client Code

Generating Client Code

Client types

Client code sources

After deploying a Web service, you need a way to access it. Web service
builder can generate the following client types:

J2SE client: You can generate a J2SE DOM or RPC client. Either client
consists of an interface class that is created at compile time, along with an
implementation class that is created and instantiated at runtime based on
the Java 1.3 proxy scheme.

You can also generate a J2SE client with command-line tools
xm bus. WBDLTol nt er f ace and xm bus. WsDLToJ2SEDeno

J2ME client: Web Service Builder can generate code for a working J2ME
client that can access the Web service. You can compile and run the J2ME
client application to access the Web service’s methods from devices like a
WAP-enabled phone or a palmtop computer.

You can also generate a J2ME client with the command-line tool
xm bus. WBDLToJ2MEQ i ent .

In general, client code can be generated from two sources:
® The XAR file for Web service that is created in Web Service Builder
® The WSDL of any Web service.

CHAPTER 1 | Developing Web Service Clients

J2SE Client

Overview

In this section

You can build J2SE clients that access a Web service with Web Service
Builder or command-line tools. A J2SE client consists of a Web service
interface class that is created at compile time, with an implementation

proxy class that is created and instantiated at runtime, based on the Java

1.3 proxy scheme.

This section contains the following topics:

J2SE Client Architecture page 5
Generating J2SE Client Code page 7
Using the J2SE Client Demo page 8
Using the Web Service Interface in Custom Code page 10
Controlling Client I/O Settings page 13
Controlling SOAP Message Processing page 14
Handling Web Service Exceptions page 15

J2SE Client

J2SE Client Architecture

Key features A J2SE client include the following features:

Web service Java interface: A Java interface that represents the Web
service's WSDL information. Client code such as the J2SE client demo or
your custom client code calls this proxy code to access the Web service.

J2SE client demo: A simple demonstration client that tests the Web service
from the command line. This code calls the Web service Java interface.

WebServiceProxy object: A proxy object created at runtime that
implements the Web service Java interface and accesses the Web service.
The WebSer vi cePr oxy object is instantiated in client code such as the J2SE
client demo or your custom client code.

How it works The following figure shows how the various pieces of code interact:
Client System Server System
Custom J2SE
client client WSDL
code demo
Calls to
interface
Web service [\
Java interface virtual
communication
Calls to proxy A Wil e
implementation
+ P 4 p
WebServiceProxy SOAP message
communication
| Message |/ N J

Figure 1: Interaction of J2SE client code with a Web service

CHAPTER 1 | Developing Web Service Clients

At runtime, the WebServiceProxy and Message objects are created. The
WebServiceProxy implements the interface on the client side. When the
client code—J2SE client demo or custom code—calls a method on the Web
service interface, the WebServiceProxy object provides the mapping to the
methods defined in the WSDL. Finally, the Message object communicates
the information from the WebServiceProxy to the actual Web service on the
server side.

Note: The generating tool uses the WSDL to create the Web service Java
interface and the J2SE client demo.

If you already have the Web service's Java interface class, you can use it
directly. For example, if you generate the Web service from your
application’s interface, you can use the original interface in the client code,
provided the methods on the interface correspond to the Web services
WSDL.

If you lack interface code for a deployed Web service, use a URL to the
Web service's WSDL to generate the Web service Java interface class

J2SE Client

Generating J2SE Client Code

Steps Follow these steps to generate J2SE client code:

1.

Use Web Service Builder to generate the Web service Java interface
and J2SE client demo (see “Generating Client Code” on page 3). You
can also generate the code with the command-line tools

xni bus. WBDLTol nt er f ace and xm bus. WsDLToJ2SEDeno.

For this example, use the Finance application provided with your
installation.

Set the environment for compiling and running J2SE clients by running
itws_clientenv. bat (Windows) or by sourcingitws_clientenv
(UNIX) from your installation’s / asp/ Version/ bi n subdirectory.
Compile the Web service interface class for the J2SE client. For
example:

javac Fi nancel nterface.java

CHAPTER 1 | Developing Web Service Clients

Using the J2SE Client Demo

Overview

Steps

The J2SE client demo is a ready-made client that accesses the Web service
from which it was built. When the tester is invoked, the user specifies the
URL of a WSDL and the method call. A J2SE client demo lets you try Web
service operations (that use parameters of simple types) and modify some
features of the WSDL.

To use the J2SE client demo, perform the following steps:

1.

Set the client environment by running i tws_cl i entenv. bat (Windows)
or by sourcing i tws_cl i ent env (UNIX) from your installation’s

/ asp/ Version/ bi n subdirectory .

If you generated a J2SE DOM client, edit the following line of code:

or g. w3c. dom Docurent doc = nul | ;

Replace nul I ; as follows:

com i ona. webservi ces. util.DOMXi | s. creat eDocunent Fr onBt r eam
(new Fil el nput Strean(args[1]));

Compile the J2SE client demo’s generated code, including the
demonstration client code. For example:

javac Financel nterface.java F nanceProxyDeno. j ava

If you run the J2SE client demo without arguments, it shows usage
options and a list of the available Web service methods. For example:

set cl asspat h=. ; %l asspat h%
j ava Fi nancePr oxyDeno
Syntax is: Fi nanceProxyDeno [-debug] [-url soapurl] [-wsdl

wsdl | ocation] operation [args...]
operation is one of:

cal cul at eFut ur eVal ue

showTaxRat e

paynent Mor t gage

per i odMor t gage

cal cul at eAPR

cal cul at eRat e

cal cul at eTi neToDoubl eUsi ngRul eCf 72
cal cul at eRat eToDoubl eUsi ngRul eCf 72
cal cul at eTi meToDoubl e

cal cul at eRat eToDoubl e

J2SE Client

The command-line options available for a J2SE client demo are
described in Table 1.

Table 1: Command-line Options for a J2SE Client Demo

Option Description

- debug Causes the display of SOAP messages when the
client tester runs.

-url soapurl Overrides the URL in the client. This is useful if
you want to use a different server
implementation of the Web service.

-wsdl wsdl | ocati on Overrides the location of the WSDL file, so you
can specify a different implementation. Use this
option if you want to use the client for a
different Web service other than the one for
which the client was generated.

Note: You might also need to change the client
code for WebSer vi cePr oxy. get Proxy() :

Cbj ect proxy = VebServi ceProxy. get Proxy(
", //Set to null
"t //Set to null
xwar | nterf ace. cl ass,
wsdl Pat h,
debug,
url,
user Def i nedDat aCont ent Handl er

)

operation[args...] Causes execution of an operation for the Web
service with its appropriate arguments.

5. The following example shows how to execute the J2SE client demo
with an operation and argument. This example shows the monthly
payment on a loan of 100000 with an interest rate of 8% over a period
of 30 years.

% j ava Fi nanceProxyDeno paynent Mortgage 100000 8.0 30
% 733. 7645738793778

CHAPTER 1 | Developing Web Service Clients

Using the Web Service Interface in Custom Code

Overview With a few simple steps, you can use the Web service Java interface class in
custom code to interact with the Web service. The result is that local
method calls give your client access to the remote Web service.

Code example Example 1 is taken from the generated J2SE client demo, which you can
use as a guide for your own code.

Example 1: Custom Client Code

i nport com i ona. webser vi ces. soap. pr oxy. *;
i nport com i ona. webservi ces. client.*;
inport comiona. webservices.client.j2se.*;
i nport com i ona. webservi ces. handl ers. *;

/**

* Fi nanceServi ce
*/

2 (bject proxy = WebServi ceProxy. get Proxy(
"Fi nanceServi ce",
"Fi nancePort",
Fi nancel nt er f ace. cl ass,
wsdl Pat h,
debug,
url,
user Def i nedDat aCont ent Handl er) ;

Fi nancel nterface inpl = (Fi nancel nt erface) proxy;

3 if ("paynent Mortgage". equal s(args[0])) {
doubl e result = inpl.payment Mortgage(
J2SEWi | s. par seDoubl e(args[1]),
J2SEWi | s. par seDoubl e(args[2]),
I nteger. parselnt (args[3]));
Systemout. println(J2SEWi | s. doubl eToString(result));
foundQ = true;

10

Code explanation

Usage guidelines

J2SE Client

This code executes as follows:

1. Imports the classes required by the client implementation—in this
example, the WebSer vi cePr oxy class and handlers.

2. Calls the WbSer vi cePr oxy object’s get Proxy() method to bind the
interface with the corresponding WSDL, with the following arguments:

Fi nanceSer vi ce The name of the Web service.
Fi nancePor t The name of the Web service's endpoint

Fi nanceSer vi cel nt er f a The interface class for the Web service.
ce.cl ass

wsdl Pat h The WSDL file. The default is set to the path
used when the code is generated. You can
reset this value when running the J2SE client
demo using the -wsdl option. (See Table 1 on
page 9.)

debug An optional bool ean argument for displaying
debugging information. The default is set to
fal se. You can reset this value when running
the J2SE client demo using the - debug option
(see Table 1 on page 9).

url An optional String argument. The default is
set to nul 1. You can reset this value when
running the J2SE client demo using the -url
option. (See Table 1 on page 9.)

user Def i nedDat aCont en An optional Hashivap object.
t Handl er

3. Using the Web service is as simple as making Java method calls. For
this example, the mortgage payment is calculated using the three input
arguments as input, as follows:

i npl . payment Mor t gage(
J2SEU i | s. par seDoubl e(args[1]),

J2SEWUi | s. par seDoubl e(args[2]),
I nteger. parselnt(args[3]));

Keep the following considerations in mind when working with J2SE clients:

11

CHAPTER 1 | Developing Web Service Clients

12

A client side runtime library, SoapQient.j ar, is required. See the

i tws_clientenv script in “Generating J2SE Client Code” on page 7.
The reflective nature of the coding presents a minor performance
reduction.

SOAP messages and connections are created at runtime and cannot be
modified.

You should maintain the interface class for each service.

Some changes to the WSDL require you to regenerate the Web service
interface. These include changes to methods, including added or
removed methods, changes to the number of parameters to methods,
and changes to data types.

J2SE Client

Controlling Client I/0 Settings

The com i ona. webser vi ces. soap. client.io. QientlOSettings interface
provides methods that let you control how a client performs it's 10
operations. These include:

® The endpoint URL that the client contacts

® Content handlers that convert MIME streams to objects
® /O listeners that are useful for debugging.

® Socket layer properties such as timeouts and keepalives.
To obtain a handle to these settings, call:

dientl CSettings io = WbServi ceProxy. getdientl| Csettings(proxy);

13

CHAPTER 1 | Developing Web Service Clients

Controlling SOAP Message Processing

14

The MessageSet ti ngs interface
(com i ona. webser vi ces. soap. cl i ent . message. MessageSet t i ngs)

provides methods that let you control how a client creates and processes
SOAP messages. These include:

® Setting the charset encoding that is used (default is UTF-8).

® Specifying whether to add and validate xsi : t ype attributes.

® Default namespace prefixes.

Many of these settings can help clients interoperate with other servers and
improve performance. For example, turning off addition and validation of

xsi : type attributes can increase performance, but at the expense of
validation.

To obtain a handle to these settings, call:
MessageSettings ns = \ebServi ceProxy. get MessageSet t i ngs(pr oxy);

J2SE Client

Handling Web Service Exceptions

Catching
RemoteSoapFaultException

Writing client exception handlers

When a Web service returns a SOAP fault, a J2SE client can handle it in two
ways:
® The generated ProxyDemo client catches any
Renot eSoapFaul t Except i on that the Web service throws. The
exception members—f aul t Act or, f aul t code, faul t Stri ng, and
Det ai | —are accessible to the client code, as shown in Example 2.
® Exception handlers that implement the A i ent Except i onHandl er
interface can be registered with the ClientChain, as shown in
Example 3.

For example, the following ProxyDemo code is generated for a J2SE client:

Example 2: Catching RemoteSOAPFaultException in a ProxyDemo

} catch (Renot eSQAPFaul t Excepti on sfx) {
String faul t Code = sfx. get Faul t Code();
String faul t Actor = sfx.getFaul t Actor();
String faultString = sfx.getFaul tString();
Detail detail = sfx.getDetail();
Systemerr. println("Faul t Code: "+faul t Code);
Systemerr. println("Faul t Actor: "+faultActor);
Systemerr.println("Faul tString: "+faultString);

Catching the RemoteSOAPFaultException can be supplemented or
supplanted by one or more exception handlers that you write. These
handlers must be registered with the client’s handler chain with

addd i ent Except i onHandl er () (see “Chaining Handlers” on page 46).

The following example shows how you might write a client exception
handler for SOAP message faults:

15

CHAPTER 1 | Developing Web Service Clients

Example 3: Client Exception Handler for SOAP Faults

import java.io.*;

inmport java.util.*;

i mport com i ona. webservi ces. handl ers. *;

i mport com i ona. webser vi ces. handl ers. excepti on. *;
i mport com i ona. webser vi ces. handl ers. message. *;
import javax.xni.soap.*;

i nport com i ona. webser vi ces. j axm soap. Messagel npl ;

public class ExHandl erl i npl ements dient ExceptionHandl er {

public void init(Handl er Context ctx) {
}

public voi d destroy() {
}

publ i ¢ voi d handl eExcepti on(MessageCont ext ctx, Throwable th, SOAPMessage fault)
throws MessageHand! er Excepti on {

try {
if (fault.get SOAPPart (). get Envel ope(). get Body(). hasFaul t ()) {
SOAPFaul t sf = faul t. get SOAPPart (). get Envel ope() . get Body(). get Faul t () ;
String fstr = sf.getFaul tString();
Iterator iter = sf.getDetail().getDetail Entries();
String trace = "";

if (iter.hasNext()) {

Detail Entry entry = (Detail Entry)iter.next();

trace = entry. get Val ue();

//entry. get Bl enent Narre() . get Local Nane(). start sWt h(" StackTrace"));

}
Systemout. println("code=" + sf.getFaultCode() + ", str="

+ sf.getFaultString() + ", actor=" + sf.getFaultActor());
Systemout. println("trace=" + trace);

if (fstr.startsWth("java_i o_Fi |l eNot FoundException")) {

th = new java.io. Fi | eNot FoundExcepti on(trace);
Systemout . println("create Fi | eNX FoundException");

16

J2SE Client

Example 3: Client Exception Handler for SOAP Faults

} else {
Systemout. printl n("create SOAPFaul t Exception");
t hr ow new SQAPFaul t Exception("Invalid nsg",
“I'nval i dFaul t Stri ng",
"Inval i dFaul t Actor");

/*
if (th instanceof FileNot FoundException) {
String nsg = ((Fi | eNot FoundExcepti on)th). get Message();
if ("no file".equal s(nsg)) {
t hr ow new SQAPFaul t Excepti on("2SFCode", "2SFString", "2SFActor");
} else {
t hr ow new SQAPFaul t Exception("Invalid nsg " + nsg,
"l nval i dFaul t String",
"I nval i dFaul t Actor");

}
p

} catch (SOAPException ex) {

t hr ow new MessageHand! er Excepti on(ex) ;

}

17

CHAPTER 1 | Developing Web Service Clients

J2ME Client

Overview

Functional constraints

18

J2ME client run in the Java 2 Micro Edition (J2ME) environment. The
generated code consists of:

® Aclient that can be embedded in any J2ME application

® Asample Mobile Information Device applet (MIDlet) that shows how to

use the client.

J2ME clients are not as full-featured as J2SE clients (see page 4). The
following restrictions apply:

Table 2: J2ME Client Limitations

Disallowed Notes
Floating pointdata | float and doubl e data types in the Web service's
types WSDL are represented as Stri ng type.

SOAP attachments

Multi-reference
SOAP encoding

Disallowed if a value can be referenced by more
than one accessor

Arrays and
structures

Document or literal encoding is limited to simple
types.

HTTPS support

If not supported by the Mobile Information Device
Profile (MIDP) emulator. For example, the JavaSoft
emulator does not support HTTPS.

J2SE-specific
interfaces

The following interfaces are not supported:

dientChain
dientSecurity
MessageSet ti ngs
dientlCsettings

J2ME Client

J2ME Protocol Options

Streamed HTTP

Native HTTP

A J2ME client can communicate with servers in two ways.
® Streamed HTTP over a raw socket
® Native HTTP provided by the J2ME device

By default, clients try to use streamed HTTP over a raw socket with the
J2ME socket protocol handler. This works best for most servers. However,
not all J2ME devices support the use of raw sockets. Also, this method does
not support HTTPS.

All servers support streamed HTTP.

Alternatively, clients can communicate through the J2ME device’s native
HTTP connection support (H t pConnect i on). This built-in HTTP connection
support normally chunks the data.

Native HTTP is not supported by the following servers:
® |ONA Orbix E2A Application Server
® BEA Weblogic Server

To use native HTTP support, change the protocol portion of the URL in the
generated client from socket to http.

19

CHAPTER 1 | Developing Web Service Clients

Generating a J2ME Client

The following procedure assumes usage of Sun Microsystem’s J2ME

Wireless Toolkit

(http://java. sun. cond pr oduct s/ j 2mewt ool ki t / downl oad. ht ni).

Steps Follow these steps to generate and use a J2ME client demo:
1. Start J2ME Wireless Toolkit:

52 12ME wireless Toolkit
File Edit Froject Halp

] S

TG NewFroect. 1| @B openProject . | geiie

Sp U

g Clear Console

gevice:IDefauItGra\,rPhane 'l

Create a new project or open an existing one

Figure 2: J2ME Wireless Toolkit GUI

2. Click New Project.
3. Set the following values:

Project Name: A project name that you assign.

MiDlet Class Name: The name of the MIDlet class to be generated in Web
Service Builder, as follows: proj ect - nameM Dl et .For example, in order to
create a J2ME client from the project Finance, enter Fi nanceM Dl et .

4. Click Create Project. J2ME Wireless Toolkit creates a directory with

the project name as follows:

j 2meTooki t -i nstal | / apps/ pr oj ect - nane

20

http://java.sun.com/products/j2mewtoolkit/download.html

J2ME Client

For example:
C \ WIK104\ apps\ Fi nance

5. In Web Service Builder, select the desired project and choose
Generate | J2ME Client. In the Output Directory Selection, specify the
J2ME project’s source directory as follows:

j 2meTooki t-i nstal | / apps/ pr oj ect - nane/ src

For example:

Create J2ME Client from WSDL: 1 OF 2

COUNTE DdappsiFinancensrd

Figure 3: Create J2ME Client from WSDL

21

CHAPTER 1 | Developing Web Service Clients

6. Copy the following files from
install-root/asp/ Version/ i b/ webser vi ces/

j2meclient.jar

kxm . zi p

Put these files in j 2neTooki t-i nst al | / apps/ pr o ect - nane/ | i b.
7. In J2ME Wireless Toolkit:

. Click Build

. Choose the desired device and click Run

22

J2ME Client

J2ME Wireless Toolkit runs the service on the selected device:

(CicalculateFuturey’
alue
(CicalculateRate

Exit

paks [l STUYV |

Figure 4: J2ME Wireless Toolkit Phone Simulator

23

CHAPTER 1 | Developing Web Service Clients

24

Overview

In this chapter

CHAPTER 2

Customizing SOAP
Faults

This chapter shows how to writes code that customizes SOAP
faults.

SOAP faults are messages returned to a client in the case of an error.
Normally, the Orbix container returns a SOAP fault whenever a Web service
implementation raises an exception. However, the default contents of these
SOAP faults might not be appropriate for certain applications.

Orbix provides the following ways for an application to customize the
contents of SOAP faults returned to clients:

Controlling SOAP Faults page 26

Mapping Exceptions to SOAP Faults page 27

25

CHAPTER 2 | Customizing SOAP Faults

Controlling SOAP Faults

Overview

Constructors

An application that wants to return a SOAP fault with specific contents can
raise a com i ona. webser vi ces. handl er s. message. SOAPFaul t Except i on.
When raising this exception, an application can specifically set the

<faul t code>, <f aul t stri ng>, <actor>, and fault <det ai | s> that are
returned to the application.

There are four constructors for this exception:

Table 3: SOAPFaultException Constructors

Constructor

Description

SQAPFaul t Except i on(
String faul t Code,
String faultString,
String actor,

javax. xm . soap. Det ai |

)

det ai |

Creates a SOAPFaul t Except i on with specific f aul t code, faul t string,
and act or tags, and with a detail element represented as a SAAJ

Det ai | object. The detail element can be created using the SAAJ APIs
provided by Orbix.

SQOAPFaul t Except i on(
String faul t Code,
String faul tString,
String actor

)

Creates a SOAPFaul t Except i on with specific faul t code, faul t string,
and act or tags, but without any detail information.

SCQAPFaul t Except i on(
String faul t Code,
String faultString,
String actor,
Exception ex

)

Creates a SOAPFaul t Except i on with specific f aul t code, faul t string,
and act or tags, and whose detail tag contains a stack trace for the
provided exception.

SQOAPFaul t Except i on(
String faul t Code,
Exception ex

Creates a SOAPFaul t Except i on with a specific f aul t code tag, whose
faul t string tag contains the message of the provided exception, and
whose detail tag contains a stack trace for the provided exception.

26

More information on SOAPFaul t Except i on can be found in the Web
Services JavaDoc.

Mapping Exceptions to SOAP Faults

Mapping Exceptions to SOAP Faults

Overview

ServerExceptionHandler interface

Orbix offers a Server Except i onHandl er interface which provides you with
flexibility in mapping exceptions raised by the Web service implementation
with SOAP faults returned to the client. This section discusses the following
topics:

® ServerExceptionHandler interface

® Using custom exception handlers

® Chaining exception handlers

The Server Except i onHandl er interface provides a way to convert
exceptions raised during the processing of a message into a specific SOAP
response. By writing a Ser ver Except i onHandl er, you can customize the
way in which server-side exceptions are reported to clients. For example,
you might write a Server Except i onHandl er to convert an
application-specific message (such as Logi nFai | ed) into a SOAP fault with
a specific <f aul t code> or <f aul t st ri ng>.

To create a custom server exception handler, you must implement the
interface Ser ver Except i onHandl er with the following methods

Table 4: ServerExceptionHandler Methods

Method

Description

public void init(
Handl er Cont ext cont ext

)

Initializes the handler. This method is called when a server
exception handler is first created. This method can be empty.

27

CHAPTER 2 | Customizing SOAP Faults

Table 4: ServerExceptionHandler Methods

Method

Description

MessageCont ext cont ext,
Throwabl e th,

public SOAPMessage handl eException(| Called when an exception occurs during the processing of a SOAP

message. This method takes three parameters:

MessageHand! er Except i on mex ® The context of the message causing the exception.

® The original exception thrown by the Web service
implementation.

® The MessageHandl er Excepti on raised during the processing
of exceptions.

The Ser ver Except i onHandl er returns a SOAPMessage indicating

the response it wants to return to the client, or null to indicate that
it does not want to customize the response.

public void destroy()

Called to destroy the handler; This method can be empty.

Using custom exception handlers

Chaining exception handlers

28

After you've implemented your custom exception handler, it needs to be
placed into the Web service. A custom exception handler is a special type of
message handler which is made part of a Web service in three steps:

1. Compile the custom exception handler
2. Insert the custom exception handler into a Web service
3. Add the handler to an endpoint’s handler chain

These steps are described in detail in “Adding Handlers to a Web Service
Client” on page 45.

A single Web service can be configured with more than one

Ser ver Except i onHandl er . This lets you write simpler handlers that process
only a single exception, instead of requiring you to handle all possible
exceptions with a single Ser ver Except i onHandl er . When an exception
occurs during the processing of a SOAP message, the container calls the
exception handlers in the order in which they are specified in the XAR. The
engine stops when one of the handlers returns a non-null value from

handl eExcept i on.

In this chapter

CHAPTER 3

Adding Handlers

Web service handlers let you intercept SOAP messages at
various points in their life-cycle and customize message
processing.

For example, you can use handlers to incorporate compression, encoding,
and logging logic into a Web service. With Web Service Builder, you can
easily add one or more message handlers to a Web service.

This chapter discusses the following topics:

About Handlers page 32
Implementing Handlers page 36
Adding Handlers to a Web Service page 43
Adding Handlers to a Web Service Client page 45
Chaining Handlers page 46
Writing a Data Content Handler for SOAP Attachments page 47

29

CHAPTER 3 | Adding Handlers

Message handling API

Figure 5 shows the Java interfaces and classes that are provided for
implementing handlers for Web service applications and clients:

i|r_1|tae T?algzre HandlerContext
interface
InputStreamHandler MessageHandler OutputStreamHandler MessageContext
interface interface interface interface
RPCHandler DOMHandler ClientChain
class class interface

30

Figure 5: Handler interfaces and classes

Interfaces I nput St reanHandl er, Qut put St r eantandl er, and
MessageHand! er extend the Handl er interface to provide control and
access to various points in the SOAP message life cycle. See
“Implementing Handlers” on page 36.

Classes RPCHandl er and DOVHandl er implement the MessageHandl er
interface to provide custom tasks for SOAP messages that are
RPC-based and document-based, respectively. See “Adding Handlers
to a Web Service” on page 43

Interface Handl er Cont ext initializes handlers, and provides repository
information. Interface MessageCont ext provides handlers with
information to process a SOAP request received, such as endpoint
information.

Interface A i ent Chai n provides a mechanism for adding message and
stream handlers to clients. See “Adding Handlers to a Web Service
Client” on page 45.

SOAP message manipulation API

An implementation of the j avax. xm . soap package is provided, for
manipulating SOAP message objects in custom Web service applications.
See http://java. sun. coni xm / saaj /i ndex. ht ni_for the complete SAAJ
documentation.

31

http://java.sun.com/xml/jaxm/index.html

CHAPTER 3 | Adding Handlers

About Handlers

Overview

Series of handlers process
messages

32

This section includes the following topics:

Series of handlers process messages

Handler chains

Server-side handlers

Server-side message handlers

Synchronizing server-side and client-side handlers

Figure 6 shows how a client's SOAP message passes through a series of
handlers for both the output message and the returning input message.

Java method invocation

Outgoing
message

WSDL
Interface

Returned input
message

Figure 6: Client-side handlers

About Handlers

Handler chains Handlers can be grouped into chains. Each handler chain addresses a
distinct part of the SOAP message lifecycle. Chain types include stream and
message handlers:

Java

method Message Chains
invocation y\

*

WSDL
Interface

Figure 7: Message handler chains

Stream handlers are used to manipulate the raw streamed data of a SOAP

message. There are two types of stream handlers:

® Input stream handlers process the message data stream immediately
after it arrives off the network—for example, for decryption and
decompression.

® Qutput stream handlers process the message data stream just before it
goes out to the network—for example, encryption and compression.

33

CHAPTER 3 | Adding Handlers

Server-side handlers

WSDL
Interface

Server-side message handlers

34

In Figure 8, the server has several handler chains that process the incoming
message, and others that process it before it returns to the client:

Receiver's input message

Application
processing

Receiver's returned output message

Figure 8: Server-side handlers

Server-side message handlers perform application-specific processing with
implementations of the RPCHandl er and DOvHandl er classes. These handlers
access the code for the various types of Web services you have built,

About Handlers

including those based on Java classes, EJBs, CORBA resources, operation
flows, Java DOM objects, and schema maps. Other internal handlers deal
with issues such as security and routing.

/ Basic Security
Security

Java Class

RPCHandler | = EJB

CORBA Resource

Routing
Operation Flow
DOMHandler | > JaaDOM
\ Schema Map
Transformation
Figure 9: Message handlers
Synchronizing server-side and Because the WSDL does not contain any information about handlers, it is
client-side handlers important for client-side and server-side developers to understand and

synchronize their respective handlers. For example, a Web service might
have stream handlers that decrypt incoming SOAP messages and encrypt
the SOAP messages before they are returned to the client. In this case, the
client must have corresponding encryption and decryption handlers.

35

CHAPTER 3 | Adding Handlers

Implementing Handlers

Overview

In this section

36

Provided handler interfaces let you write custom handlers for several points
in the SOAP message life-cycle. These include:

1. The raw SOAP message as it comes off the wire, which is handled by
the I nput St reantandl er interface.

The message itself, which is handled by the MessageHandl er interface.
The implementation’s method invocation which is handled by the
RPCHandl er interface.

4. The raw SOAP message immediately prior to being placed in the wire,
which is handled by the Qut put StreanHandl er interface.

This section discusses the following topics:

Stream Handlers page 37
Message Handlers page 40
Invocation Handlers page 42

Implementing Handlers

Stream Handlers

Overview

Input stream handlers

Input and output stream handlers are implementations of interfaces

I nput St reanHandl er and Qut put St reanHandl er, respectively. Both are
extensions of interface Handl er, in com i ona. webser vi ces. handl ers. These
handlers enable access to the raw bytes of SOAP messages immediately
above the network transport layer.

Input streams are manipulated via handlers that implement interface

I nput St reantandl er . Input stream handlers let a Web service client or
service process raw SOAP messages as they come off the wire. For example,
an input stream handler can decompress or decrypt SOAP messages, or log
incoming requests.

The life cycle of an input stream handler is managed by the Web services
container, which calls the following methods in this order:

® createStrean)

® begi nRead()

® endRead()

As it receives SOAP messages off the wire, the Web services container calls
read() on the I nput Streamreturned from creat eStrean() after it calls
begi nRead() . After the container returns from read(), the Web services
container calls endRead() .

Table 5 shows the methods that an input stream handler implements:

Table 5: InputStreamHandler Methods

Method

Description

init()

public void init(Handl er Context context)
Initializes the handler. This method is called when a message handler is first
created. This method can be empty.

37

CHAPTER 3 | Adding Handlers

Table 5: InputStreamHandler Methods

Method

Description

createStrean()

I nput Stream creat eStrean(| nput Streamis, MessageCont ext context)
throws | nput St reantandl er Excepti on

Processes the passed input stream and creates a new I nput St reamto hold
the processed data. This method returns a reference to the new input
stream. The input stream created by this method is used by the Web
services container to process the raw SOAP message before converting it
into a SAAJ message object. This is the first method the Web services
container calls on a registered input stream handler.

begi nRead()

publ i ¢ voi d begi nRead(| nput Streamis, MessageContext context)
throws | nput Streantandl er Excepti on

The Web services container calls this method before reading the input
stream returned by createStrean() . The input stream passed to

begi nRead() is the input stream returned from creat eStrean() . This
method can be empty.

endRead()

public void endRead(l nput Streamis, MessageContext context)
throws | nput Streantandl er Excepti on

The Web services container calls this method when it returns from reading
the input stream. The input stream passed to endRead() is the input stream
returned from creat eSt rean() . This method can be empty.

destroy()

public void destroy()
Destroys the handler. This method can be empty.

Output stream handlers

38

Output stream handlers implement interface Qut put St r eantHandl er . Output
stream handlers let a Web service client or service process raw SOAP
messages just before they are put on the wire. For example, an output
stream handler can be used to build a logging facility.

The life cycle of an output stream handler is managed by the Web services
container, which calls the following methods in this order:

® createStrean()

® beginWite()

® endwite()

Implementing Handlers

The Web services container calls wi t () on the Qut put St reamreturned
from creat eSt rean() after it calls begi nWite(). After it returns from
wite(), the Web services container calls endwite().

Table 6 shows the methods that an output stream handler implements:

Table 6: OutputStreamHandler Methods

Method

Description

init()

public void init(Handl er Context context)
Initializes the handler. This method is called when a message handler is first
created. This method can be empty.

createStrean()

Qut put St ream creat eSt r ean(Qut put St ream os, MessageCont ext cont ext)
throws Qut put StreantHandl er Excepti on

Processes the passed output stream and creates a new output stream to hold
the processed stream. This method returns a reference to the new output
stream. The output stream created by this method is used by the Web
services container to process the raw SOAP message before sending it to the
network transport layer. This is the first method the Web services container
calls on a registered output stream handler.

begi nWite()

public void begi nWite(QutputStreamis, MessageContext context)
throws Qut put StreantHandl er Excepti on

The Web services container calls this method prior to writing the output
stream returned by creat eStrean() . The output stream passed to

begi nRead() is the output stream returned from creat eStrean() . This
method can be empty.

endWite()

public void endWite(QutputStreamis, MessageContext context)
throws Qut put StreantHandl er Excepti on

The Web services container calls this method when it returns from writing
the output stream. The output stream passed to endRead() is the output
stream returned from creat eStrean() . This method can be empty.

destroy()

public void destroy()
Destroys the handler. This method can be empty.

39

CHAPTER 3 | Adding Handlers

Message Handlers

Overview

MessageHandler interface

MessageHandler methods

After the SOAP request is processed by a chain of input stream handlers, the
Web services container turns the SOAP message into a SAAJ message
object. The SAAJ message is an object representation of a SOAP message.
This object model is based upon the SAAJ specification.

All the handlers are cached so there is only one instance of handler for all
the calls. When you redeploy the Web service, the handlers are reset and
reinitialized when they receive the first call.

This section discusses the following topics:

® MessageHandler interface

® MessageHandler methods

The MessageHand! er interface provides access to the elements of the SOAP
message. It uses the SAAJ interfaces to provide access to the object
representation of the original SOAP message. Using this interface, you can
write message handlers to process specific parts of the SOAP message. For
example, you might build a handler to report the information in a message’s
header element.

To create a custom message handler, you must implement the
MessageHand! er interface. Table 7 shows the methods to implement:

Table 7: MessageHandler Methods

Method

Description

init() public void init(Handl er Context context)

Initializes the handler. This method is called when a message handler is first created.
Handlers are created when the associated web service endpoint receives the first call.

This method can be empty.

pr ocessMessage() publ i c SCAPMessage processMessage(SOAPMessage message, MessageCont ext

cont ext)
throws MessageHandl er Excepti on

Processes the SOAP message using the methods provided in the SAAJ API. The method
returns the processed message.

40

Implementing Handlers

Table 7: MessageHandler Methods

Method

Description

destroy()

public void destroy()
Destroys the handler. Also, when you undeploy a Web service, destroy() is
automatically called on each handler.

This method can be empty.

41

CHAPTER 3 | Adding Handlers

Invocation Handlers

Overview

Implement invoke()

42

The RPCHandl er interface is a special case of the MessageHand! er interface.
It provides methods to invoke RPC calls. When using the RPCHand| er
interface, you do not have to worry about disassembling the SAAJ message.
Implementations are provided for processing the SOAP message, validating
it against the WSDL, and handling the serialization and deserialization.

Note that there can be only one invocation handler in a message handler
chain because the SOAP message is consumed with the request.

In order to write a custom invocation handler, you must implement the

i nvoke() method, which accepts a set of objects that are the result of the
deserialization of the SOAP elements, and returns a set of objects that are
the result of some type of invocation.

i nvoke() has two possible signatures:

(bj ect i nvoke(Met hod nmet hod, hject[] parans,
MessageCont ext cont ext)

abstract Chject[] invoke(String nethodNane, d ass[] paranTypes,

(bj ect[] objs, MessageContext context)
Through the context information and the initialization of the handler, the
interface obtains access to XAR-related information. Using this collective
information, you can choose to process an RPC call in any fashion you
choose, such as with CORBA-oriented code.

Adding Handlers to a Web Service

Adding Handlers to a Web Service

Overview

Compile the handler

Insert a handler into a Web service

Add a handler to an endpoint’s
handler chain

After you implement a handler, you insert it into a Web service in the
following steps:

1. Compile the handler
2. Insert a handler into a Web service
3. Add a handler to an endpoint’s handler chain

To compile a handler:

1. Ensure the correct classes are in your CLASSPATH. From the
installation’s / asp/ Version/ bi n subdirectory, run (Windows) or source
(UNIX) the scriptitws_clientenv[.bat].

2. Compile the Java file:
javac nyHandl er.java

3. You can break down the compiled JAR file into classes as follows:

jar -cvf nyHandler.jar classes

Follow these steps to insert a handler into a Web service through Web
Service Builder.

1. Start Web Service Builder.

2. From the Projects list, select the Web service where you wish to insert
the handler.

Select the Handlers tab on the bottom of the work area.

Click Add, and enter the handler's name and class name.

Select the Classes tab, then click Add a Supporting Class.

Locate the file that contains the class for your handler and include it.

No ok~ w

Repeat steps 5-6 for any classes on which your handler has
dependencies.

After you add a handler to a Web service, you place it in an endpoint’s
processing chain:

43

CHAPTER 3 | Adding Handlers

44

Start Web Service Builder.

From the Projects list, select the target endpoint.

Note: Endpoints can only use message handlers that are included by
their parent Web service.

Select Handler Sequence.

Select the type of handler you wish to add from the Types of Handlers
panel.

The list of handlers available to the Web service will appear in the
Available Handlers panel. These handlers are not currently being used
by the endpoint. Select the handler you want to add to the endpoint’s
handler chain and use the right arrow between the Available Handlers
panel and the Chained Handlers panel. The handler should move to
the Chained Handlers panel.

To change the order handlers in the chain are called, select the handler
you want to move and use the up and down arrows next to the
Chained Handlers panel to move it around.

Adding Handlers to a Web Service Client

Adding Handlers to a Web Service Client

Overview

d i ent Chai n interface

Handlers are added to Web service clients with the A i ent Chai n interface
defined in the package com i ona. webser vi ces. soap. cl i ent . chai n.

This interface includes the following methods for adding handlers to each
point in a message's life-cycle.

® adddi ent Excepti onHandl er ()

® addl nput MessageHandl er ()

® addl nput St reantHandl er ()

® addQut put MessageHandl er ()

® addQut put StreantHandl er ()

Other methods are also available to determine the size of the message
handler chain and to remove handlers from chains, among other things. For

details of all methods for the A i ent Chai n interface, see Web Services
JavaDoc.

45

CHAPTER 3 | Adding Handlers

Chaining Handlers

Overview

Handler chain on a Web service

Handler chain on a client

46

Handlers can be chained together to increase flexibility and functionality. A
Web service has the following types of handler chains:

® Input stream chain

® Message object chain

® Qutput stream chain

® SOAP fault exception chain

Handlers in a chain are called in sequence, so the first handler in the chain
completes its processing and passes the result to the next handler in the
chain. Each handler can be independent of all other handlers. This gives you
greater flexibility in developing Web service handlers, and makes handlers
reusable.

However, handler independence also requires you to chain handlers
together in the correct sequence. For example, if a Web service receives an
encrypted request in a compressed file, and its input stream handler chain
puts the decryption handler ahead of the decompression handler, the
request will fail or produce unpredictable results. Or, if a Web service
packages a response to include a number of records field in the SOAP
header and the Web services client does not have a handler to process it,
the client may not function correctly.

Using Web Service Builder, you can easily add handlers to a Web service’s
endpoint handler chain and reorder them using the Handler Sequence tab
for an end point. See “Add a handler to an endpoint’s handler chain” on
page 43 for more information.

Client handler chains are built programatically with interface Qi ent Chai n,
defined in the package com i ona. webser vi ces. soap. cl i ent . chai n. See
“Adding Handlers to a Web Service Client” on page 45 or the Web Services
JavaDoc for more information.

Writing a Data Content Handler for SOAP Attachments

Writing a Data Content Handler for SOAP

Attachments

Overview

Your installation provides data content handlers for processing SOAP
attachments of several common data types, including plain text, XML, JPEG
images, and octet streams. These default content handlers can be
supplemented or replaced by custom content handlers. Custom content
handlers let you manipulate the way a Web service handles default data or
define specific data types for a Web service to process. For example, a Web
service that handles purchasing requests might require that a purchase
order be in a particular format.

This section discusses the following topics:

Structure of SOAP messages
Data content handlers

Default content handlers

JAMX API

DataContentHandler interface
Registering data content handlers

47

CHAPTER 3 | Adding Handlers

Structure of SOAP messages

Figure 10 shows the structure of a SOAP 1.1 message and the structure of a
SOAP 1.1 message with attachments. SOAP with attachments uses the
Multipurpose Internet Mail Extensions (MIME) specification.

SOAP 1.1 Message

SOAP 1.1 with Attachements Evelope

SOAP Part

SOAP Envelope

SOAP Envelope

SOAP Header

SOAP Header

Header 1 ‘ ’ Header 1 ‘

SOAP Body

SOAP Body

Body Eleement |

| Call Element |

’ Attachment Part ‘

Data content handlers

Default content handlers

48

’ Attacment Part ‘

Figure 10: A SOAP message and a SOAP with attachments message

Data content handlers convert raw SOAP attachments into java objects that
a Web service, or back-end application server, works with. Each handler
corresponds to a particular MIME type and is responsible for converting the
raw data stream into the proper java object and converting the java object
back into a raw data stream.

Note: As with message handlers, it is critical that both the server and the
client are in agreement on the types of objects that will be communicated.

Default data content handlers are provided for many basic MIME types
including, text/pl ain, text/htm , i mage/ gi f, and i mage/ j peg. While these
are sufficient for simple Web service implementations, a more robust Web
service may utilize a custom built purchase order form or another data
object model.

JAMX API

DataContentHandler interface

Writing a Data Content Handler for SOAP Attachments

Using JAMX with the Java Activation Framework, a set of APIs are exposed
that let you build custom data content handlers, and register them with the
Web services container.

To create a data content handler, you must implement the

Dat aCont ent Handl er interface defined in j avax. acti vati on. While the
interface contains several operations, only two must be fully implemented in
a data content handler:

Table 8: Key Methods of the DataContentHandler Interface

Method Description

get Content () publ i c (oj ect get Cont ent (Dat aSour ce ds)
throws | CException
Takes in the raw data and returns the contents as the desired Java object.
The returned object will need to be cast into the proper data type.

witeTo() public void witeTo(Chject obj, String m nmeType, QutputStream os)
throws | CException
Takes a Java Object and writes it to the output stream as raw byte data.

Registering data content handlers

After a data content handler has been developed, it must be compiled and
registered with the Web service. To register a data content handler with a
Web service using Web Service Builder perform the following steps.

1. Start Web Service Builder.

2. Select the service for which you want to use your handler from the
projects list and open its Content Handlers tab.

3. On the Content Handlers tab, click Add.

4. Fill in the name of the handler, the MIME type it filters, and the Java
class that implements it. Press OK.

5. Select the Class tab and add any classes that the content handler
requires.

49

CHAPTER 3 | Adding Handlers

50

In this chapter

Unsupported

CHAPTER 4

Supported Data
Types

Applications that are to be transformed to Web services must
use supported method data types. This requirement avoids the
generation of invalid code. This chapter shows the data types
supported and the type mapping used when mapping between
programming languages and WSDL.

This chapter consists of the following sections:

Mapping from Java to WSDL page 52
Mapping from CORBA IDL to WSDL page 61
Mapping from WSDL to Java page 71

Data types that are not yet supported include:

® Any class which cannot get or set values.

® Vector, List, and Hashtable types.

® Missing application parts. If the class cannot be loaded, then it cannot
be supported.

® CORBA IDL Vval ue types and object references.

51

CHAPTER 4 | Supported Data Types

Mapping from Java to WSDL

In this section This section discusses the following topics:
Supported Java Objects page 53
Primitive Java Types page 54
Common Java Classes page 55
Java Arrays and Sequences page 56
Java Structures page 57
Java Exceptions page 59

52

Mapping from Java to WSDL

Supported Java Objects

Overview

JavaBeans

Parameters and return value objects other than simple types require:
® A public, default (no arguments) constructor.

® Aget() method for all data members.

® Aset() method for all data members.

JavaBean type classes (also known as structures) are supported. These data
members can be the basic Java types (primitive and common class types),
arrays of basic types, or arrays of structures. This means that you can create
a complex Java object to serialize over the wire.

53

CHAPTER 4 | Supported Data Types

Primitive Java Types

Overview Table 9 shows the Java types for application method parameters and return
values supported when creating a Web service. The table also shows the
associated WSDL type mapping.

Table 9: Supported Java Types and the WSDL Mapping
Java Type WSDL Type Mapping
bool ean xsd: bool ean
byte xsd: byt e
char xsd: string (length=1)
char[] Array of xsd:string(length=1)
byt e[] xsd: base64Bi nary
doubl e xsd: doubl e
f1 oat xsd: fl oat
int xsd: i nt
| ong xsd: | ong
short xsd: short
Examples Examples include the following:

public voi d nyMet hod(int count){}
public int nyMethod(char letter){ return 10; }
publ i ¢ bool ean i sM/Met hod(void){ return true; }

Java code containing char[] results in WSDL with the following types:

<si npl eType nanme="char" >
<restriction base="xsd:string">
<l ength val ue="1"/>
</restriction>
</ si npl eType>
<conpl exType nanme="ArrayCf char">
<conpl exCont ent >
<restriction base="SQOAP- ENC Array">
<attribute ref="SOAP- ENC arrayType"
wsdl : arrayType="xsdl: char[]"/>
</restriction>
</ conpl exCont ent >
</ conpl exType>

54

Mapping from Java to WSDL

Common Java Classes

Overview

java.lang.Object not supported

Examples

Table 10 shows the Java classes for application method parameters and
return values supported when creating a Web service. The table also shows
the associated WSDL type mapping.

Table 10: Supported Common Java Classes and the WSDL Mapping

Supported Java Class WSDL Type Mapping
j ava. | ang. Bool ean xsd: bool ean
java. l ang. Byte xsd: byt e
j ava. l ang. Char act er xsd: string (length=1)
j ava. |l ang. Doubl e xsd: doubl e
j ava. | ang. Fl oat xsd: f| oat
java. l ang. | nt eger xsd: i nt
j ava. | ang. Long xsd: | ong
j ava. | ang. Short xsd: short
java.lang. String xsd: string
j ava. mat h. Bi gDeci nal xsd: deci nal
j ava. nat h. Bi gl nt eger xsd: i nt eger
java. util. Cal endar xsd: dat eTi me
java.util.Date xsd: dat eTi me

No direct support is provided for j ava. | ang. (bj ect because the actual class
of the object must be known. Since vj ect is untyped, there is not sufficient
information to build the WSDL at design time and to properly encode and
decode the object at runtime. This is an example of missing metadata. The
problem affects Java, EJB, and CORBA-based Web services. As a work
around, you can manually build a wrapper class, or facade, that uses a
concrete type. This wrapper effectively adds the type information that is
otherwise missing.

Examples include the following:
public voi d nyMet hod(I nt eger count){}

public int countlLetters(String essay){ return essay.length();}
public Integer getSize(String s){ return s.length(); }

55

CHAPTER 4 | Supported Data Types

Java Arrays and Sequences

Overview Arrays and sequences are mapped into the <conpl exType> XML schema
type similar to the following:

<conpl exType name = ArrayCfstring' >
<conpl exCont ent >
<restriction base=' SOAP-ENC Array' >
<attribute ref=" SOAP- ENC arrayType'
wsdl : arrayType=" xsd: string[]'/>
</restriction>
</ conpl exCont ent >
</ conpl exType>

56

Mapping from Java to WSDL

Java Structures

Overview Structures are mapped into the <al | > XML schema type within the
<conpl exType>.

Examples For example, a structure with three properties (anint, afloat, and a
string) is mapped to the code shown in Example 4:

Example 4: WSDL Mapping for a Java Structure

<conpl exType nane="SOAPSt ruct ">
<al | >
<el ement nanme="varlnt" type="xsd:int"/>
<el enent name="var Fl oat" type="xsd:float"/>
<el enent name="var String" type="xsd:string"/>
</all>
</ conpl exType>

Example 5 shows the Java code that maps to Example 4.
Example 5: Java Structure Mapping Example

public class SOAPStruct {
int mvarlnt = 0;
float mvarFl oat = 0.0f;
String mvarString = "";
public SOAPStruct () {
}

public void setvarint(int v) {
mvarint = v;

}

public int getvarlnt() {
return mvarlnt;

}

public void setvarFloat (float v) {
mvarFl oat = v;

public float getvarFloat() {
return mvarFl oat;

}

57

CHAPTER 4 | Supported Data Types

Example 5: Java Structure Mapping Example

public void setvarString(String v) {
mvarString = v;

public String getvarString() {

return mvarString;

}

58

Mapping from Java to WSDL

Java Exceptions

Overview

Examples

A Java class can declare service-specific exceptions in a method signature.
Only checked exceptions are mapped to WSDL faults. A checked exception
means it must extend j ava. | ang. Except i on either directly or indirectly.
Unchecked exceptions are runtime exceptions

(j ava. I ang. Runt i meExcept i on) which cannot be mapped to WSDL.

For example, note the following Java code:

/1 Java
package com exanpl e;
public class StockQuot eProvi der extends java.rm.Renote {
float getlLastTradePrice(String tickerSynbol)
throws Renot eExcepti on,

com exanpl e. | nval i dTi cker Except i on;
/...

}

public class InvalidTi cker Excepti on extends java.|ang. Excepti on
{
public InvalidTicker Exception(String tickersynbol) { ... }
public String getTickerSynbol () { ... }

}

The checked exception is | nval i dTi cker Except i on because its class

extends j ava. | ang. Excepti on. This code results in the WSDL as shown in
Example 6:

59

CHAPTER 4 | Supported Data Types

Example 6: WSDL Mapping for Java Exceptions

<types>
<schenma ...>
<l-- Exception definitions -->
<conpl exType name="Inval i dTi cker Excepti on">
<sequence>

<el enent name="ti cker Synbol " type="xsd: string"/>
</ sequence>
</ conpl exType>

</ schema>
</ types>
<nessage nanme="I|nval i dTi cker Excepti on" >

<part name="|nval i dTi cker Excepti on"

type="xsd1: | nval i dTi cker Excepti on"/>

</ message>
<port Type nane="St ockQuot eProvi der" >
<oper ati on nane="get Last TradePrice" ...>

<i nput nessage="t ns: get Last Tr adePri ce"/>

<out put message="t ns: get Last Tr adePri ceResponse"/ >

<faul t nane="I nval i dTi cker Excepti on"
message="t ns: | nval i dTi cker Excepti on"/>
</ oper at i on>
</ port Type>

60

Mapping from CORBA IDL to WSDL

Mapping from CORBA IDL to WSDL

In this section This section discusses the following topics:
Primitive CORBA IDL Types page 62
CORBA IDL Arrays and Sequences page 64
CORBA IDL Structures page 65
CORBA IDL Enumeration page 66
CORBA IDL Unions page 67
CORBA Exceptions page 68

61

CHAPTER 4 | Supported Data Types

Primitive CORBA IDL Types

Overview Table 11 shows the CORBA IDL types for application method parameters
and return values that supported when creating a Web service. The table
also shows the associated WSDL type mapping.

Table 11: Supported CORBA IDL Types and the WSDL Mapping
CORBA IDL Type WSDL Type Mapping
any see note?
bool ean xsd: bool ean
char xsd: string (length=1)
char[] Array of xsd:string(l ength=1)
doubl e xsd: doubl e
fixed not supported
f1 oat xsd: f1 oat
| ong xsd: i nt
I ong doubl e not supported
I ong | ong xsd: 1 ong
oj ect not supported
oct et xsd: byt e
short xsd: short
unsi gned | ong xsd: unsi gnedl! nt
unsi gned | ong | ong xsd: unsi gnedLong
unsi gned short xsd: unsi gnedShor t
string xsd: string
wchar xsd: string (length=1)
wstring xsd: string
a. When you create a Web service that includes CORBA Any data, Web
Service Builder asks to indicate the Any's data’s type code. This
information is used to map the Any to a concrete WSDL type.
char[] example IDL code containing char[] results in WSDL with the following types:

<si npl eType nanme="char" >
<restriction base="xsd:string">
<l ength val ue="1"/>
</restriction>
</ si npl eType>

62

Mapping from CORBA IDL to WSDL

<conpl exType nane="ArrayCfchar" >
<conpl exCont ent >
<restriction base="SOAP-ENC Array">
<attribute ref="SOAP-ENC arrayType"
wsdl : arrayType="xsdl: char[]"/>
</restriction>
</ conpl exCont ent >
</ conpl exType>

63

CHAPTER 4 | Supported Data Types

CORBA IDL Arrays and Sequences

Overview Arrays and sequences are mapped into the <conpl exType> XML schema
type similar to the following:

<conpl exType name = ArrayCfstring' >
<conpl exCont ent >
<restriction base=' SOAP-ENC Array' >
<attribute ref=" SOAP- ENC arrayType'
wsdl : arrayType=" xsd: string[]'/>
</restriction>
</ conpl exCont ent >
</ conpl exType>

sequence<octet> A sequence<oct et > maps to xsd: base64Bi nary.

64

Mapping from CORBA IDL to WSDL

CORBA IDL Structures

Overview

Example

IDL structures are mapped into the WSDL <al | > XML schema type within
the <conpl exType>.

For example, assume an IDL structure with the following three properties:

struct SQOAPStruct

{
long varlint;
float varFl oat;
string varString;
ik

This IDL structure maps to the WSDL shown in Example 7:
Example 7: WSDL Mapping for a CORBA Structure

<conpl exType name="SOAPStruct" >
<all >
<el enent name="varlnt" type="xsd:int"/>
<el ement nanme="var Fl oat" type="xsd:float"/>
<el enent name="var String" type="xsd:string"/>
</all>
</ conpl exType>

65

CHAPTER 4 | Supported Data Types

CORBA IDL Enumeration

Overview IDL enumeration is mapped to an XSchema <si npl eType> with enumeration
restrictions.

Example For example, assume the following IDL enumeration:

enum Beer {
Wieat, Lanbic, Bitter, Stout, Porter
Ih

This IDL enumeration results in the WSDL shown in Example 8.
Example 8: WSDL Mapping for CORBA IDL Enumeration

<si npl eType nane="Beer">
<restriction base="xsd: string">
<enuner ati on val ue="Weat"/>
<enuner ati on val ue="Lanbi c"/>
<enuneration value="Bitter"/>
<enuner ati on val ue="Stout"/>
<enuner ati on val ue="Porter"/>
</restriction>
</ si npl eType>

66

Mapping from CORBA IDL to WSDL

CORBA IDL Unions

Overview IDL unions are mapped to a <choi ce> complex type with the discriminator
mapped to either an attribute for literal endpoints, or to an optional element
for encoded endpoints.

Example For example, assume the following IDL union:

uni on LongUni on swi tch (I ong)
{
case 101: |ong foo;
case 102: string bar;

|
This IDL union results in the WSDL shown in Example 9.
Example 9: WSDL Mapping for a CORBA IDL Union

<conpl exType nane="LongUni on">
<sequence>
<el ement maxCccurs="1" m nCQccurs="0" name="di scri m nat or"
type="xsd:int"/>
<choi ce>
<el enent name="foo" type="xsd:int"/>
<el enent name="bar" type="xsd:string"/>
</ choi ce>
</ sequence>
</ conpl exType>

67

CHAPTER 4 | Supported Data Types

CORBA Exceptions

Overview

Example

68

IDL exceptions are mapped in WSDL as constructed types, such as
structures. A fault message (<f aul t >) is generated for each exception in a
rai ses clause of an IDL operation. Note that in IDL, exceptions can only be
used in rai ses clauses and not as operation parameters.

For example, assume the following IDL:

/l 1D
nmodul e Exanpl e {
exception UnknownError {};
exception BadRecord {
string why;
Ih
exception RottenAppl e {
| ong nunber O \Wr ns;
Ih
interface Sonelnterface {
long bar(in float pi) raises (BadRecord, WnknownError);
I
H

This code results in the WSDL as shown in Example 10:
Example 10: WSDL Mapping for CORBA IDL Exceptions

<?xm version="1.0"?>
<defini ti ons nane="anExanpl e" ...

<!-- Exception definitions -->
<xsd: conpl exType name="BadRecor d">
<xsd: sequence>
<xsd: el ement nane="why" type="xsd:string" maxCccurs="1"
m nCQccurs="1"/>
</ xsd: sequence>
</ xsd: conpl exType>

Mapping from CORBA IDL to WSDL

Example 10: WSDL Mapping for CORBA IDL Exceptions

<xsd: conpl exType name="Rot t enAppl e" >
<xsd: sequence>
<xsd: el ement nane="nunber f Wr ns" type="xsd:int"
maxQccur s="1" m nCccurs="1"/>
</ xsd: sequence>
</ xsd: conpl exType>
<xsd: conpl exType nane="UnknownError ">
<xsd: sequence>
</ xsd: sequence>
</ xsd: conpl exType>

<si npl eType nanme="conpl eti on_st at us">
<restriction base="xsd:string">
<enuner ati on val ue="COWLETED YES'/ >
<enuner ati on val ue="COMPLETED NO'/ >
<enuner ati on val ue=" COWLETED_MAYBE'/ >
</restriction>
</ si npl eType>
<conpl exType nane="Syst enExcepti on">
<sequence>
<el enent nane="conpl et ed"
type="xsd1: conpl eti on_st at us"/>
<el ement name="ninor" type="xsd: unsi gnedl nt"/>
</ sequence>
</ conpl exType>
<l-- Messages related to port: Sonelnterface -->

<l-- port for Exanple. Sorelnterface -->
<port Type nane="Sorel nt erface">
<operation name="bar" paraneterOrder="_target pi">
<i nput nessage="tns: bar"/>
<out put message="t ns: bar Response" />
<fault nane="BadRecord" message="BadRecord"/>
<faul t name="UnknownError" message="UnknownError"/>
<faul t nane="SystenException"
message="t ns: Syst enExcepti on"/ >
</ oper ati on>
</ por t Type>
</ defi ni ti ons>

These fault messages are named after the fully qualified exception name,
and consist of a single element, named excepti on, which is of the same
type as the mapped complex type corresponding to the exception definition.

69

CHAPTER 4 | Supported Data Types

Note that when creating a Web service from CORBA IDL, a

Syst enExcept i on fault is added to every operation. This is added even if the
IDL does not specifically declare a system exception, because CORBA
system exceptions are widely used for debugging and conveying other
important information.

70

Mapping from WSDL to Java

Mapping from WSDL to Java

Overview When the Web service tools map from WSDL to Java, the supported types
are from the XML Schema specifications of 2001, 2000, and 1999.

In this section This section discusses the following topics:
Supported Primitive XML Schema Types page 72
Supported Derived XML Schema Types page 74
Other WSDL Type Mappings page 76
Links to the XML Schema Specifications page 81

71

CHAPTER 4 | Supported Data Types

Supported Primitive XML Schema Types

Overview Table 12 shows the primitive XML Schema data types that are supported.
Bold indicates supported types. If no Java mapping is shown, the type is not
supported. The table includes indicators as to which XML Schema
specifications the type applies.

Table 12: Supported Primitive XML Schema Types and the Java Mapping

XML Schema Type Java Mapping 2001 2000 | 1999

anyUR X

base64Bi nary byte[] X

bool ean bool ean X X X

bi nary X X

date

dat eTi ne java.util.Date

deci nal j ava. mat h. Bi gDeci nal

doubl e doubl e

duration

X | X | X | X | X
>
>

ENTI TY X

fl oat f1 oat

glay

ghont h

ghont hDay

gYear

gYear Mont h

X | X | X | X | X | X| X

hexBi nary byte[]

72

Mapping from WSDL to Java

Table 12: Supported Primitive XML Schema Types and the Java Mapping

XML Schema Type Java Mapping 2001 2000 | 1999
ID X

| DREF X

NOTATI ON X

Qrane X X
recurringl nst ant X
string java.lang. String X X X
time X

ti nel nst ant java.util.Date X
tinmeDuration X X
uri X
uri Ref erence X

73

CHAPTER 4 | Supported Data Types

Supported Derived XML Schema Types

Overview Table 13 shows the derived XML Schema data types that are supported.
Bold indicates supported types. If no Java mapping is shown, the type is not
supported. The table includes indicators as to which XML Schema
specifications the type applies.

Table 13: Supported Derived XML Schema Types and the Java Mapping

XML Schema Type Java Mapping 2001 2000 | 1999

byt e byt e X

CDATA

century

date java.util.Date

X | X | X | x| X

ENTI TI ES

ENTI TY

ID

| DREF

| DREFS

X | X | X | X| X| X

int int

i nt eger j ava. mat h. Bi gl nt eger

| anguage

X | X | X | X | X | X| X| X| X

| ong | ong

nmont h

Narre X

NONane X

X | X | X | X | X | X| X| X| X

negat i vel nt eger j ava. mat h. Bi gl nt eger X

74

Mapping from WSDL to Java

Table 13: Supported Derived XML Schema Types and the Java Mapping

XML Schema Type Java Mapping 2001 2000 | 1999
NMIOKEN X X X
NMIOKENS X X X
nonNegat i vel nt eger j ava. mat h. Bi gl nt eger X X X
nonPosi ti vel nt eger j ava. mat h. Bi gl nt eger X X X
nornal i zedString java.lang. String X
posi ti vel nt eger j ava. mat h. Bi gl nt eger X X X
NOTATI ON X X
Qane X
recurringDate X
recurri ngDay X
short short X X
tine X X
ti nel nst ant java.util.Date X
timePeri od X
t oken X X
unsi gnedByt e short X X
unsi gned! nt | ong X X
unsi gnedLong j ava. mat h. Bi gl nt eger X X
unsi gnedshor t int X X
year X

75

CHAPTER 4 | Supported Data Types

Other WSDL Type Mappings

In this section

<choice>

76

This section describes the WSDL to Java mapping that is used for the
following WSDL types:

° <choice>
° <enumeration>
4 <fault>

The mapping for the <choi ce> WSDL type is a class as shown in the
following examples.

Note: CORBA IDL union is mapped to the <choi ce> WSDL type. See
“CORBA IDL Unions” on page 67.

Assume the following WSDL <Conpl exType> with the <choi ce> element:

<conpl exType nanme="LongUni on">
<sequence>
<el ement maxCccurs="1" m nCccur s="0" nane="di scri m nat or"
type="xsd:int"/>
<choi ce>
<el enent nanme="foo" type="xsd:int"/>
<el ement nanme="bar" type="xsd:string"/>
</ choi ce>
</ sequence>
</ conpl exType>

This maps to the following Java class:
public class LongUnion {
public static final String XM.BUS VERSION = .. .;

public static final String TARGET NAMESPACE =
"http://xm bus. com CORBAApp/ xsd";

private String _ discrimnator;

Mapping from WSDL to Java

public Integer discrimnator;
private int foo;
private String bar;

public int getfoo() {
return foo;

}

public void setfoo(int _v) {
this.foo = _v;
__discrimnator = "foo";

}

public String getbar() {
return bar;

}

public void setbar(String _v) {
this.bar = _v;
__discrimnator = "bar";

}

publ i c voi d set ToNoMenber () {
__discrimnator = null;

}

public String _getD scrimnator() {
return __discrimnator;

}

public String toString() {
StringBuffer buffer = new StringBuffer();
buf f er. append("di scri m nat or:
"+discrimnator.toString()+"'\n");
buf f er. append("“foo: "+l nteger.toString(foo)+"\n");
buf f er. append("bar: "+bar+"\n");
return buffer.toString();

77

CHAPTER 4 | Supported Data Types

<enumeration> The mapping for the <enuner ati on> WSDL type matches the JAX-RPC
mapping for a schema enumeration. For example, assume the following
WSDL:

<si npl eType nane="Beer">
<restriction base="xsd:string">
<enuner ati on val ue="Weat"/>
<enuner ati on val ue="Lanbi c"/>
<enuner ation val ue="Bitter"/>
<enuner ati on val ue="Stout"/>
<enuner ati on val ue="Porter"/>
</restriction>
</ si npl eType>

This maps to the following Java class:

public class Beer {
public static final String XM.BUS VERSION = .. .;

public static final String TARGET NAMESPACE =
"http://xm bus. coml QORBAApp/ xsd";

private final String _val;

public static final String Weat = "Weat";
public static final Beer Weat = new Beer(_Weat);

public static final String _Lanbic = "Lanbic";
public static final Beer Lanbic = new Beer(_Lanbic);

public static final String Bitter = "Bitter";
public static final Beer Bitter = new Beer(_Bitter);

public static final String _Stout = "Stout"”;
public static final Beer Stout = new Beer(_Stout);

public static final String Porter = "Porter";
public static final Beer Porter = new Beer(_Porter);

protected Beer(String val ue) {

_val = val ue;

}

78

<fault>

Mapping from WSDL to Java

public String getVal ue() {
return _val;

}

public static Beer fronVal ue(String value) {
if (value.equal s("Weat")) {
return Weat;

if (value.equal s("Lanbic")) {
return Lanbic;

}

if (value.equals("Bitter")) {
return Bitter;

}

if (value.equals("Stout")) {
return Stout;

if (value.equals("“Porter")) {
return Porter;
}
throw new I || egal Argunent Exception("lnvalid enuneration
val ue: "+val ue);

}

public String toString() {
return ""+ val;

}

The WSDL <f aul t > element specifies the abstract message format for error
messages that might be output as a result of a remote operation. According
to the WSDL specification, a fault message must have a single part.

A <faul t > is mapped to one of the following:

® Ajava.rm . Renot eException or its subclass

® A service-specific Java exception

® Ajavax.xnl.rpc. soap. SOAPFaul t Excepti on

Service-Specific Exceptions

A service-specific Java exception extends the class j ava. | ang. Except i on
directly or indirectly. The single message part in the WSDL <nessage>
(which is referenced from the <f aul t > element) can be a simple XML type
or an xsd: conpl exType type.

79

CHAPTER 4 | Supported Data Types

80

Example

The following WSDL shows an example of the mapping of a WSDL <f aul t >
to a service-specific Java exception. The WSDL <nessage> has a single part
of type xsd: stri ng:

<l-- WBDL sni ppet -->
<message name="I nval i dTi cker Excepti on”>
<part name="ti cker Synbol ” type="xsd:string”/>
</ message>
<port Type nane="St ockQuot eProvi der” >
<oper ati on name="get Last TradePrice” ...>
<i nput nessage="tns: get Last Tr adePri ce”/>
<out put message="t ns: get Last Tr adePri ceResponse” />
<fault nane="Inval i dTi cker Excepti on”
message="t ns: | nval i dTi cker Exception”/>
</ oper ati on>
</ port Type>

This maps to the following Java interface shown in Example 11. Note that
get Last TradePri ce() throws the I nval i dTi cker Excepti on based on the
mapping of the corresponding <f aul t >:

Example 11: WSDL <fault> Element Mapped to Java Exception

package com exanpl e;
public interface StockQuoteProvider extends java.rm.Renote {
float getlLastTradePrice(String tickerSynbol)
throws java.rm .RenoteException,
com exanpl e. I nval i dTi cker Except i on;

}

public class InvalidTicker Exception extends java. | ang. Excepti on
{
public InvalidTi cker Exception(String tickerSynbol) { ... }
public getTickerSynmbol () { ... }

Mapping from WSDL to Java

Links to the XML Schema Specifications

2001 XML Schema The 2001 XML Schema specification is located at
http://www.w3.org/TR/xmlschema-2/.

The Schema’s URL is located at http://www.w3c.org/2001/XMLSchema.

2000 XML Schema The 2000 XML Schema specification is located at
http://www.w3.0rg/TR/2000/CR-xmlschema-2-20001024/.

The Schema’s URL is located at
http://www.w3c.org/2000/10/XMLSchema.

1999 XML Schema The 1999 XML Schema specification is located at
http://www.w3.0rg/TR/1999/WD-xmischema-2-19991217/.

The Schema'’s URL is located at http://www.w3c.org/1999/XMLSchema.

81

http://www.w3.org/TR/xmlschema-2/
http://www.w3c.org/2001/XMLSchema
http://www.w3.org/TR/2000/CR-xmlschema-2-20001024/
http://www.w3c.org/2000/10/XMLSchema
http://www.w3.org/TR/1999/WD-xmlschema-2-19991217/
http://www.w3c.org/1999/XMLSchema

CHAPTER 4 | Supported Data Types

82

CHAPTER 5

XAR Properties

XARs contain an XML document that describes the properties
of the XAR and the Web services it encapsulates.

Overview The file properties. xn is a sample XAR properties document. Each
element in the document specifies certain properties of the XAR and its
contents. Using these elements, you can reconstruct the WSDL for all of the
services encapsulated by the XAR.

XAR hierarchy The following example shows the hierarchy of a XARs elements.

<xar >
<dependenci es>
<i ncl ude>. ..
<reference>. ..
<resource>. ..
</ dependenci es>
<servi ce>
<schemas>
<schema>
</ schenas>
<dependenci es>
<r esour ce>
<soapproperties>
<t ar get nanmespace>. . .
<schemananespace>. . .
</ soappr operti es>
<handl er >

83

CHAPTER 5 | XAR Properties

84

<endpoi nt >
<soapproperties>
<style>. ..
<transport>. ..
</ soappr operti es>
<sour ce>
<par an®. ..
</ sour ce>
<chai nSequence>
<chai n>
</ chai nSequence>
<oper at i on>
<soappr operti es>
<soapacti on>
<i nput >

<encodi ngstyl e>. . .

<use>. ..
</i nput >
<out put >

<encodi ngstyl e>. . .

<use>. ..
</ out put >
<style>. ..
</ soappr operti es>
<net hod>. . .
<di spl ay>. ..
<part>
<type>
<wsdl type>. . .
<m net ype>. . .
<attachabl e>. ..
</ part>

</ oper at i on>
</ endpoi nt >
</ servi ce>

</ xar >

Top-level XAR elements The following example shows the top-level elements of properties. xm :

1 <xar application="MApplication">

2 <dependenci es>
</ dependenci es>
3 <servi ce name="MAppl i cationService">
</ servi ce>
<servi ce name="Service2">
</ servi ce>

</ xar >

1. \<xar>is the top level element of the properties.xml file. It takes one
attribute, appl i cati on, which contains the string entered for the XAR
Application Name in Web Service Builder.

2. <dependencies> lists all the classes that the web services contained
in the XAR are dependent on. It contains two sub-elements: <i ncl ude>
and <ref er ence>.

3. <service> describes a Web service. It has sub-elements describing its

endpoints, operations, and SOAP messages. It has one attribute, nane,
which specifies the Web service’s name. properti es. xm has one
<service> element for each Web service encapsulated by the XAR.

85

CHAPTER 5 | XAR Properties

<chain>

Contained in

Attributes

86

Lists the handlers for each stage in the SOAP lifecycle.

<xar >
<servi ce>
<endpoi nt >
<chai nSequence>
<chai n>

handl er Sequence Lists the handlers in the chain. The handler names used
must match the name attribute specified in one of the
service level <handl er > elements. The handlers are listed
in the order they are executed.

type Specifies at what stage in the SOAP lifecycle the chain is
for. The valid values consist of the following:

® Input Streantandl er
® QutputStreanHand er
® MessageHandl er

<chainSequence>

<chainSequence>

Contained in

Contains

Lists the message handlers used by the Web service.

<xar >
<service>
<endpoi nt >
<chai nSequence>

Up to three <chai n> elements, one for each point in the SOAP message
lifecycle.

87

CHAPTER 5 | XAR Properties

<complexType>

Describes a complex datatype or an array.

Contained in <xar >
<servi ce>
<schemas>
<schema>
<conpl exType>
Attributes nane is the fully qualified name of the datatype.
Contains

<conpl exCont ent > If the datatype being described is an array, the
<conpl exType> element contains a <conpl exCont ent >
element, which in turn contains a <restri cti on>
element. The <restri cti on> element takes one attribute,
base, which specifies the SOAP encoding type for the
array. The <restri cti on>element encapsulates an
<attri but e> element. The <attri but e> element takes
two attributes:

® ref - Specifies the SOAP encoding type for the array
elements.

® wsdl: arrayType - Specifies the XSchema type for
the array elements.

<all > If the datatype being describes is a structure, the

<conpl exType> element encapsulates an <al | > element.

The <al | > element contains one <el enent > element for

each component of the structure being described. The

<el enent > element takes two attributes:

® nane - Specifies the name given to the compenent.

® type - Specifies the XSchema datatype of the
component.

88

<complexType>

Examples The following code sample shows a <conpl exType> element describing an
array:

<conpl exType nane="Array(fstring">
<conpl exCont ent >
<restriction base="SQOAP- ENC Array">
<attribute ref="S0OAP- ENC arrayType"
wsdl : arrayType="xsd: string[]" />
</restriction>
</ conpl exCont ent >
</ conpl exType>

The following code sample shows a <conpl exType> element describing a
structure:

<conpl exType name="Li nel ten{ >
<al | >
<el enent nanme="Suppl i er Nane" type="xsd:string" />
<el enent name="Uhi tPrice" type="xsd:float" />
<el enent name="Total Price" type="xsd:float" />
<el enent name="Quantity" type="xsd:float" />
<el enent name="Pr oduct Nane" type="xsd:string" />
</all>
</ conpl exType>

89

CHAPTER 5 | XAR Properties

<dependencies>

Contained in

Contains

Examples

90

Specifies which classes are included in the XAR’s CLASSPATHand which files
are directly included.

A XAR can either include a reference to a Java class by having it listed in its
CLASSPATH, or it can directly include a copy of the class.

<xar >
<dependenci es>
<servi ce>
<dependenci es>
This element appears in two places in properties. xni :

® The <xar > element includes a <dependenci es> element which specifies

the java classes that all of the Web services encapsulated in the XAR
have access to.

Each <servi ce> element also includes a <dependenci es> element
which specifies Java classes that only the specific service can access.

<include> <reference> <resource>

<dependenci es>
<include>C \jdkl.3.1\jre\lib\rt.jar</incl ude>
<reference>C \jdkl.3.1\lib\tool s.jar</reference>
</ dependenci es>

<endpoint>

<endpoint>

Describes a Web service endpoint. There is one endpoi nt element for each
endpoint in the Web service.

Contained in
<xar >
<servi ce>
<endpoi nt >
Attributes nane is the port name entered into Web Service Builder when the service was
created.
Contains
<soappr oper ti es> Specifies the style of the SOAP message and the
transport used to send and receive SOAP messages.
<sour ce> Specifies any parameters that the Web service need to
run. This can include command line parameters.
<chai nSequence> Lists the message handlers used by the Web service.
<oper at i on> Describes an endpoint operation There is one
description for each operation the endpoint supports.
Examples

<endpoi nt nane="M/Appl i cati onPort">
<soappr operti es>
<styl e>rpc</styl e>
<transport>htt p://schemas. xm soap. or g/ soap/ htt p</transport >
</ soappr operti es>
<sour ce>
</ sour ce>
<chai nSequence>
</ chai nSequence>
<operati on name="toString">

</ oper at i on>
<oper ati on name="parseShort">

</ oper at i on>

</ endpoi nt >

91

CHAPTER 5 | XAR Properties

<handler>

Listed for each message handler the Web service can use.

Contained in
<xar >
<servi ce>
<handl er >
Attributes
cl ass Specifies the fully qualified name of the Java class which
implements the handler.
name Specifies the name of the handler. This value can be any string.

92

<include>

<include>

Specifies the classes that are directly included in the XAR
listed in the same element and separated by semicolons.

Contained in
<xar >
<dependenci es>
<i ncl ude>
<servi ce>
<dependenci es>
<i ncl ude>

. Multiple files are

93

CHAPTER 5 | XAR Properties

<operation>

Contained in

Attributes

Contains

Examples

94

Describes the interface to the implementation the Web service is using.

<xar >
<servi ce>
<endpoi nt >
<oper at i on>

nane identifies the operation.

Information about the data elements passed to and from the method and the
method'’s signature, stored in the following sub-elements:

<soappr oper t i es>Specifies how the incoming and outgoing SOAP messages
will be formatted.

<net hod> Specifies the fully qualified signature of the method
implementing the Web service operation.

<di spl ay> Specifies the name that is displayed in Web Service
Builder.

<part> Describes the data representation of input and output

parameters to the operation. There is one <part > element
for each parameter to the operation and one for the return
value.

<oper ati on name="parseShort">
<soappr operti es>

</ soapproperti es>

<net hod>par seShort </ net hod>

<di spl ay>publ i ¢ static short parseShort(java.lang. String)
throws java. | ang. Nunber For mat Except i on</ di spl ay>

<part name="paran®" type="in">

</ part>
<part nane="return" type="out">

</ part>
</ oper ati on>

<param>

<param>

Contained in

Attributes

Specifies a parameter required by a Web service. The value of the element is
passed to the Web service as the value of the parameter named.

<xar >
<servi ce>
<endpoi nt >
<sour ce>
<par an»

nane identifies the parameter.

95

CHAPTER 5 | XAR Properties

<part>

Contained in

Attributes

Contains

96

The data of the Web service operation that is passed in as parameters and
that which is passed out as a return value is described in a <part > element.

<xar >
<servi ce>
<endpoi nt >
<oper at i on>
<part>
name Specifies the name of the parameter that appears in Web
Service Builder and is derived from the method implementing
the Web service operation.
type Specifies the type of parameter. Valid values consist of the
following:
® in
The i n values are passed by value and cannot be changed
by the operation.
® out
The out value represent the return value of the method
implementing the Web service operation.
<type> Specifies the datatype of the parameter. It take a
single attribute, cl ass, which specifies the fully
qualified class name that implements the datatype.
<wsdl t ype> Specifies the XSchema type that represents the
data.
<m net ype> Specifies the MIME type that represents the data.

<at t achabl e>

This information is used to determine which Data
Content Handler will be used to decode the data.

Specifies if the data can be made a SOAP
attachment. Valid values are true and f al se.

<part>

<mandat or yAt t achnent > Specifies if the data must be passed as an
attachment. Valid values are true and f al se.

Examples
<part nanme="paran®" type="in">
<type cl ass="j ava.l ang. String" />
<wsdl t ype>xsd: base64Bi nar y</ wsdl t ype>
<m net ype>t ext / pl ai n</ m et ype>
<at t achabl e>t r ue</ at t achabl e>
</ part>

97

CHAPTER 5 | XAR Properties

<reference>

Specifies the entries to include in the CLASSPATH. The entries are valid file
names for the system the classes are stored on. Separate entries are placed
in the same element and separated by semicolons.

Contained in
<xar >
<dependenci es>
<r ef erence>
<servi ce>
<dependenci es>
<r ef erence>

98

<resource>

<resource>

Contained in

Contains

Attributes

XARs can have included within them resources such as classes, zip files,
archive files, image files, and any other file needed by the XAR’s Web
service implementations. The resource file details are maintained at the XAR
level. If a service is going to use a resource, the service level refers to the
named resource at the XAR level.

<xar >
<dependenci es>
<r esour ce>
<service>
<dependenci es>
<r esour ce>

The <r esour ce> element contains the following elements at the XAR level
under the <dependenci es> element:

<descri pti on> A text description of the resource.

<type> The type of resource stored. Resources can be
almost any kind of file needed by the service, but
they are typically the following types:

® archive
® class
® image

® properties

® schema map

® miscellaneous

For details of the resources a specific XAR contains,

see also the specific XAR file of the properties.xml
file you are viewing.

<pat h> The original load path of the resource when
available.

nare at the XAR level names the resources. At the service level, nane refers
to a resource name defined at the XAR level.

99

CHAPTER 5 | XAR Properties

<schema>

Specifies the XML namespaces used to define the data used by the Web
service.

Note: The attributes for this element should not be edited.

Contained in
<xar >
<servi ce>
<schenas>
<scherma>
Contains The <schema> element encapsulates a number for <conpl exType> elements.

There is one <conpl exType> element for each complex datatype or array used
by the Web service.

100

<schemas>

<schemas>

Describes the representations of any arrays and complex datatypes used by
the Web service.

Contained in
<xar >
<servi ce>
<schenmas>
Contains A single <schema> element.

101

CHAPTER 5 | XAR Properties

<service>

Contained in

Contains

Examples

102

Describes a Web service so that its WSDL can be recreated. It has a single
attribute, nare, that specifies the Web service’s name. This is the Service
Name entered into Web Service Builder when the service was created.

<xar >
<servi ce>

<schemas> Specifies the XML schemas representing arrays and
complex datatypes used by the Web service.

<dependenci es> Lists all the classes that implement the Web service.

<soappr oper t i es>Specifies the namespaces entered into Web Service
Builder for Schema Namespace and Target Namespace.

<handl er > Specifies the message handlers that the Web service can
use to process SOAP messages.

<endpoi nt > Describes an endpoint in the Web service.

<servi ce name="MAppl i cati onService">
<schenas>
</ schenmas>
<dependenci es />
<soappr operti es>

</ soapproperti es>

<handl er
cl ass="com i ona. webser vi ces. handl er s. nessage. i nvocati on. rpc. J
avaHandl er" nanme="defaul t" />

<endpoi nt nanme="MAppl i cationPort">

</ endpoi nt >
</ servi ce>

<soapproperties>

<soapproperties>

Specifies SOAP properties. The properties depend on the element in which
the <soappr operti es> element is in.

Contained in
<xar >
<servi ce>

<soapproperties>

<endpoi nt >
<soapproperti es>
<oper at i on>

<soappr operti es>

Within <oper at i on>, the <soappr oper ti es> element specifies the encoding
method for the operation’s incoming and outgoing SOAP messages. The
messages can be either encoded or literal and use either RPC or Document
styles.

Contains Within <oper at i on>, <soappr oper ti es> uses the following sub-elements to
describe the SOAP encoding style to use:

<soapact i on>

<i nput > Specifies how the incoming SOAP message will be encoded.

The <i nput > element takes two sub-elements:

® <encodi ngstyl e>
Specifies the XSchema namespace to decode the
message.

® <use>
Specifies what encoding method the message is in.
Valid values are encoded or literal .

<out put > Specifies how the outgoing SOAP message will be encoded.
It takes the same sub-elements as <i nput >.

<styl e> Specifies the encoding style to use. Valid values consist of
the following:
® rpc
® doc

103

CHAPTER 5 | XAR Properties

Examples The code sample below shows an example of a <saoppr ot perti es> element
within an <operation> element:

<soapproperti es>
<soapaction />
<i nput >
<encodi ngst yl e>
htt p: // schemas. xm soap. or g/ soap/ encodi ng/
</ encodi ngst yl e>
<use>encoded</ use>
</i nput >
<out put >
<encodi ngst yl e>
htt p: // schemas. xm soap. or g/ soap/ encodi ng/
</ encodi ngst yl e>
<use>encoded</ use>
</ out put >
<styl e>rpc</styl e>
</ soappr operti es>

See also <servi ce> <endpoi nt > <oper ati on>

104

<source>

<source>

Contained in

Examples

Specifies parameters that the Web service needs to run. These include
command line parameters, class names, and archive or executable
locations, among other things. The parameters listed depend on the type of
Web service being implemented. For example, a Web service implementing
a CORBA object will have its | C(Rand CRBi nit parameters listed as
parameters.

<xar >
<servi ce>
<endpoi nt >
<sour ce>

The following code shows a <source> element for a Web service that
implements an EJB:

<sour ce>
<par am nanme="cl ass" >j ava. | ang. Short </ par an>
<par am nane="cl assar chi ve" >none</ par am>
<par am nane="cl asssour ce" >cl asspat h</ par an>
<par am nanme="appl i cati onser ver " >none</ par an»
<par am nanme="j ndi narme" >none</ par an>

</ sour ce>

Each parameter needed by the Web service is listed under the <sour ce>
element in a <par an» element.

105

CHAPTER 5 | XAR Properties

106

Index

Numerics
1999-2001 XML Schema Specification 81

A

anyURI 72

APl interfaces
ClientChain 45
DataContentHandler 49
MessageHandler 40
RPCHandler 42

B

base64Binary 72
binary 72
boolean 54, 72
byte 54, 74

C
CDATA 74
century 74
char 54
CLASSPATH 43, 90
ClientChain 45
Client Code
J2SE client 3
clients 1
CORBA IDL types supported 62

D

DataContentHandler 49

date 72, 74

dateTime 72

debug option for J2SE client 9

decimal 72

derived XML Schema types supported 74
double 54, 72

duration 72

E
ENTITIES 74
ENTITY 72, 74

F
float 54, 72

G
gDay 72
generating
J2SE Client interface 7
getContent() 49
getProxy() 11
gMonth 72
gMonthDay 72
gYear 72
gYearMonth 72

H

Handlers
Chaining 46
Invocations 42
Messages 40

hexBinary 72

|

ID 73,74
IDREF 73, 74
IDREFS 74
int 54, 74
integer 74

J
J2ME Client
using 18
J2SE Client 3
in custom code 10
using 4
J2SE Client coding with getProxy() 11
J2SE Client interface, generating 7
J2SE Client tester 8
java.lang 55
java.math 55
java.util b5
Java to WSDL mapping 51

107

INDEX

Java types supported 54 T
javax.activation 49 time 73, 75
timeDuration 73
L timelnstant 73, 75
language 74 timePeriod 75
long 54, 74 token 75
type mapping between Java and WSDL 51
M Types of clients 1
mapping between Java and WSDL 51
mapping from WSDL to Java 71 U]
MessageHandler 40 uns!gnedByte 75
Message Object 40 unsignedint 75
month 74 unsignedlLong 75
unsignedShort 75
N uri 73
Name 74 uriReference 73
NCName 74 url option for J2SE client 9
negativelnteger 74
NMTOKEN 75 W _
NMTOKENS 75 Web Service
nonNegativelnteger 75 cllgnts 1
nonPositivelnteger 75 using 1 _
normalizedString 75 Web Service Clients
NOTATION 73, 75 Adding a Handler 45
writeTo() 49
P wsdl option for J2SE client 9
positivelnteger 75 WSDL to Java mapping 51, 71
primitive XML Schema types 72 X
Q XML
Schema specifications, links to 81
Qe 75 ol 5055
Y
R year 75

recurringDate 75
recurringDay 75
recurringlnstant 73
RPCHandler 42

S

schema specifications 71

Schema specifications, links to 81

short 54, 75

string 73

supported derived XML Schema types 74
supported primitive XML Schema types 72

108

INDEX

109

INDEX

110

	Web Services Programmer's Reference
	List of Tables
	List of Figures
	Preface
	1 Developing Web Service Clients
	Generating Client Code
	J2SE Client
	J2SE Client Architecture
	Generating J2SE Client Code
	Using the J2SE Client Demo
	Using the Web Service Interface in Custom Code
	Controlling Client I/O Settings
	Controlling SOAP Message Processing
	Handling Web Service Exceptions

	J2ME Client
	J2ME Protocol Options
	Generating a J2ME Client

	2 Customizing SOAP Faults
	Controlling SOAP Faults
	Mapping Exceptions to SOAP Faults

	3 Adding Handlers
	About Handlers
	Implementing Handlers
	Stream Handlers
	Message Handlers
	Invocation Handlers

	Adding Handlers to a Web Service
	Adding Handlers to a Web Service Client
	Chaining Handlers
	Writing a Data Content Handler for SOAP Attachments

	4 Supported Data Types
	Mapping from Java to WSDL
	Supported Java Objects
	Primitive Java Types
	Common Java Classes
	Java Arrays and Sequences
	Java Structures
	Java Exceptions

	Mapping from CORBA IDL to WSDL
	Primitive CORBA IDL Types
	CORBA IDL Arrays and Sequences
	CORBA IDL Structures
	CORBA IDL Enumeration
	CORBA IDL Unions
	CORBA Exceptions

	Mapping from WSDL to Java
	Supported Primitive XML Schema Types
	Supported Derived XML Schema Types
	Other WSDL Type Mappings
	Links to the XML Schema Specifications

	5 XAR Properties
	<chain>
	<chainSequence>
	<complexType>
	<dependencies>
	<endpoint>
	<handler>
	<include>
	<operation>
	<param>
	<part>
	<reference>
	<resource>
	<schema>
	<schemas>
	<service>
	<soapproperties>
	<source>

	Index

