IONA

fﬁl Orbix®

CORBA Programmer's

Reference Java
Version 6.2, December 2004

Making Software Work Together™

IONA, IONA Technologies, the IONA logo, Orbix, Orbix/E, Orbacus, Artix, Orchestrator,
Mobile Orchestrator, Enterprise Integrator, Adaptive Runtime Technology, Transparent
Enterprise Deployment, and Total Business Integration are trademarks or registered
trademarks of IONA Technologies PLC and/or its subsidiaries.

Java and J2EE are trademarks or registered trademarks of Sun Microsystems, Inc. in the
United States and other countries.

CORBA is a trademark or registered trademark of the Object Management Group, Inc. in
the United States and other countries. All other trademarks that appear herein are the
property of their respective owners.

While the information in this publication is believed to be accurate, IONA Technologies PLC makes no warranty of
any kind to this material including, but not limited to, the implied warranties of merchantability and fitness for a
particular purpose. IONA Technologies PLC shall not be liable for errors contained herein, or for incidental or
consequential damages in connection with the furnishing, performance or use of this material.

COPYRIGHT NOTICE

No part of this publication may be reproduced, stored in a retrieval system or transmitted, in any form or by any
means, photocopying, recording or otherwise, without prior written consent of IONA Technologies PLC. No third

party intellectual property right liability is assumed with respect to the use of the information contained herein.
IONA Technologies PLC assumes no responsibility for errors or omissions contained in this book. This publication
and features described herein are subject to change without notice.

Copyright © 2001-2004 IONA Technologies PLC. All rights reserved.

All products or services mentioned in this manual are covered by the trademarks, service marks, or product
names as designated by the companies who market those products.

Updated: 03-Dec-2004

Contents

List of Tables

Preface
Audience
Organization of this Reference
Related Documentation
Document Conventions

Introduction
Interface Repository Quick Reference
DIl and DSI Quick Reference
Value Type Quick Reference
About Sequences

CORBA Overview

Common CORBA Data Types
CORBA::AbstractinterfaceDef Interface
CORBA::AliasDef Interface
CORBA::Any Class

CORBA::ArrayDef Interface
CORBA::AttributeDef Interface

CORBA::ConstantDef Interface

XXV

XXVii
XXvii
XXvii

XXviii

Xxviii

apbhphbNDOH=

~N

27

29

31

41

43

47

CONTENTS

CORBA::ConstructionPolicy Interface
CORBA::Contained Interface
CORBA::Container Interface
CORBA::Context Class
CORBA::ContextList Class
CORBA::Current Interface
CORBA::CustomMarshal Value Type
CORBA::DatalnputStream Value Type
CORBA::DataOutputStream Value Type
CORBA::DomainManager Interface
CORBA::EnumDef Interface
CORBA::Environment Class
CORBA::Exception Class
CORBA::ExceptionDef Interface
CORBA::ExceptionList Class
CORBA::FixedDef Interface

CORBA.InterfaceDefPackage.FulllnterfaceDescription Class

51

53

59

79

85

87

89

93

109

125

127

129

131

133

135

137

139

CORBA::IDLType Interface
CORBA::InterfaceDef Interface
CORBA::IRObject Interface
CORBA::ModuleDef Interface
CORBA::NamedValue Class
CORBA::NativeDef Interface
CORBA::NVList Class
CORBA::Object Class
CORBA::OperationDef Interface
CORBA::ORB Class

CORBA::Policy Interface
Quality of Service Framework
Policy Methods

CORBA::PolicyCurrent Class
CORBA::PolicyManager Class
CORBA::PrimitiveDef Interface
CORBA::Repository Interface

CORBA::Request Class

CONTENTS

141

143

149

151

153

155

157

161

171

175

205
206
208

211

213

215

217

225

CONTENTS

CORBA::

CORBA::

CORBA::

CORBA::

CORBA::

CORBA::

CORBA::

CORBA::

CORBA::

CORBA::

CORBA::

CORBA::

SequenceDef Interface
ServerRequest Class
String_var Class
StringDef Interface
StructDef Interface
TypeCode Class
TypedefDef Interface
UnionDef Interface
ValueBase Class
ValueBoxDef Interface
ValueDef Interface

ValueFactory

CORBA::ValueFactory Type

CORBA::

CORBA::

CORBA::

ValueMemberDef Interface
WString_var Class

WstringDef Interface

CosEventChannelAdmin Module

CosEventChannelAdmin Exceptions

Vi

233

235

241

245

247

249

261

263

265

269

271

281
281

283

285

289

291
291

CONTENTS

CosEventChannelAdmin::ConsumerAdmin Interface 293

CosEventChannelAdmin::EventChannel Interface 295
CosEventChannelAdmin::ProxyPullConsumer Interface 297
CosEventChannelAdmin::ProxyPullSupplier Interface 299
CosEventChannelAdmin::ProxyPushConsumer Interface 301
CosEventChannelAdmin::ProxyPushSupplier Interface 303
CosEventChannelAdmin::SupplierAdmin Interface 305
CosEventComm Module 307

CosEventComm Exceptions 307
CosEventComm::PullConsumer Interface 309
CosEventComm::PullSupplier Interface 311
CosEventComm::PushConsumer Interface 313
CosEventComm::PushSupplier Interface 315
CosNaming Overview 317
CosNaming::Bindinglterator Interface 321
CosNaming::NamingContext Interface 323

CosNaming::NamingContextExt Interface 337

vii

CONTENTS

CosNotification Module

CosNotification Data Types

QoS and Administrative

Constant Declarations

QoS and Admin Data Types
QoS and Admin Exceptions

CosNotification::AdminPropertiesAdmin Interface

CosNotification::QoSAdmin Interface

CosNotifyChannelAdmin Module

CosNotifyChannelAdmin
CosNotifyChannelAdmin

CosNotifyChannelAdmin::
CosNotifyChannelAdmin::
CosNotifyChannelAdmin::
CosNotifyChannelAdmin::
CosNotifyChannelAdmin::
CosNotifyChannelAdmin::
CosNotifyChannelAdmin:
CosNotifyChannelAdmin:
CosNotifyChannelAdmin::

CosNotifyChannelAdmin:

viii

Data Types
Exceptions

ConsumerAdmin Interface
EventChannel Interface
EventChannelFactory Interface
ProxyConsumer Interface
ProxyPullConsumer Interface

ProxyPullSupplier Interface

:ProxyPushConsumer Interface

:ProxyPushSupplier Interface

ProxySupplier Interface

:SequenceProxyPullConsumer Interface

341
341
342
343
346

349

351

355
355
359

361

369

375

379

383

385

387

389

393

397

CosNotifyChannelAdmin:
CosNotifyChannelAdmin:
CosNotifyChannelAdmin:
CosNotifyChannelAdmin:
CosNotifyChannelAdmin:
CosNotifyChannelAdmin:
CosNotifyChannelAdmin:

CosNotifyChannelAdmin:

CosNotifyComm Module

:SequenceProxyPushConsumer Interface
:SequenceProxyPullSupplier Interface
:SequenceProxyPushSupplier Interface
:StructuredProxyPullConsumer Interface
:StructuredProxyPullSupplier Interface
:StructuredProxyPushConsumer Interface
:StructuredProxyPushSupplier Interface

:SupplierAdmin Interface

CosNotifyComm Exceptions

CosNotifyComm::NotifyPublish Interface

CosNotifyComm::NotifySubscribe Interface

CosNotifyComm::PullConsumer Interface

CosNotifyComm::PullSupplier Interface

CosNotifyComm::PushConsumer Interface

CosNotifyComm::PushSupplier Interface

CosNotifyComm::SequencePullConsumer Interface

CONTENTS

399

401

403

407

409

411

413

417

425
425

427

429

431

433

435

437

439

CONTENTS

CosNotifyComm:
CosNotifyComm:
CosNotifyComm:
CosNotifyComm:
CosNotifyComm:
CosNotifyComm:

CosNotifyComm:

:SequencePullSupplier Interface
:SequencePushConsumer Interface
:SequencePushSupplier Interface
:StructuredPullConsumer Interface
:StructuredPullSupplier Interface
:StructuredPushConsumer Interface

:StructuredPushSupplier Interface

CosNotifyFilter Module
CosNotifyFilter Data Types
CosNotifyFilter Exceptions

CosNotifyFilter::Filter Interface

CosNotifyFilter::FilterAdmin Interface

CosNotifyFilter::FilterFactory Interface

CosNotifyFilter::MappingFilter Interface

CosTrading Module
CosTrading Data Types
CosTrading Exceptions

CosTrading::Admin Interface

CosTrading::ImportAttributes Interface

441

445

447

449

451

453

455

457
457
460

463

471

475

477

487
487
492

497

505

CosTrading

::Link Interface

CosTrading::Link Exceptions

CosTrading::
CosTrading::
CosTrading:
CosTrading:
CosTrading::
CosTrading::
CosTrading:

CosTrading:

CosTrading
CosTrading
CosTrading

CosTrading

LinkAttributes Interface
Lookup Interface
:Offerldlterator Interface
:Offerlterator Interface

Proxy Interface

Register Interface
:SupportAttributes Interface
:TraderComponents Interface
::Dynamic Module
Dynamic::DynamicPropEval Interface
Repos Module

Repos::ServiceTypeRepository Interface

CosTransactions Overview
Overview of Classes
General Exceptions
General Data Types

CosTransactions::Control Class

CONTENTS

509
510

515

517

525

527

529

535

543

545

547

549

551

553

563
563
564
568

575

Xi

CONTENTS

CosTransactions:

CosTransactions:

CosTransactions:

CosTransactions::

CosTransactions:

CosTransactions:

CosTransactions:

CosTransactions:

CosTransactions:

:Coordinator Class
:Current Class

:RecoveryCoordinator Class

Resource Class

:SubtransactionAwareResource Class
:Synchronization Class

:Terminator Class
:TransactionalObject Class

:TransactionFactory Class

CosTypedEventChannelAdmin Module
CosTypedEventChannelAdmin Exceptions
CosTypedEventChannelAdmin Data Types

CosTypedEventChannelAdmin::TypedConsumerAdmin Interface

CosTypedEventChannelAdmin::TypedEventChannel Interface

CosTypedEventChannelAdmin::TypedProxyPushConsumer Interface

CosTypedEventChannelAdmin::TypedSupplierAdmin Interface

CosTypedEventComm Module

CosTypedEventComm::TypedPushConsumer Interface

Xii

577

589

595

597

601

603

605

607

609

611
611
612

613

615

617

619

621

623

CONTENTS

CSI Overview 625

CSIIOP Overview 629
DsEventLogAdmin Module 635
DsEventLogAdmin::EventLog Interface 637
DsEventLogAdmin::EventLogFactory Interface 639
DsLogAdmin Module 641

DsLogAdmin Exceptions 641

DsLogAdmin Constants 644

DsLogAdmin Datatypes 645
DsLogAdmin::BasicLog Interface 653
DsLogAdmin::BasicLogFactory Interface 655
DsLogAdmin::lterator Interface 657
DsLogAdmin::Log Interface 659
DsLogAdmin::LogMgr Interface 675
DsLogNotification Module 677
DsNotifyLogAdmin Module 683
DsNotifyLogAdmin::NotifyLog Interface 685
DsNotifyLogAdmin::NotifyLogFactory Interface 687

Dynamic Module 691

xiii

CONTENTS

DynamicAny Overview 693

DynamicAny::DynAny Class 697
DynamicAny::DynAnyFactory Class 733
DynamicAny::DynArray Class 737
DynamicAny::DynEnum Class 741
DynamicAny::DynFixed Class 745
DynamicAny::DynSequence Class 747
DynamicAny::DynStruct Class 753
DynamicAny::DynUnion Class 759
DynamicAny::DynValue Class 765
GSSUP Overview 771
The IT_Buffer Module 773

IT_Buffer 774

IT_Buffer::Storage 775

IT_Buffer::Segment 777

IT_Buffer::Buffer 779

IT_Buffer::BufferManager 784
IT_Certificate Overview 787
IT Certificate::AVA Interface 789

IT Certificate::AVAList Interface 793

Xiv

IT_Certificate::Certificate Interface

IT Certificate::Extension Interface
IT_Certificate::ExtensionList Interface
IT_Certificate::X509Cert Interface
IT_Certificate::X509CertificateFactory Interface
IT_Config Overview

IT_Config::Configuration Interface
IT_Config::Listener Interface

IT_CORBA Overview
IT_CORBA::RefCountedLocalObject Class
IT_CORBA::RefCountedLocalObjectNC Class
IT_CORBA::WellKnownAddressingPolicy Class

The IT_CORBASEC Module
IT_CORBASEC
IT_CORBASEC::ExtendedReceivedCredentials

IT_CosTransactions Module
IT_CosTransactions::Current Class

IT_CSI Overview

CONTENTS

797

799

801

805

807

811

815

821

827

829

831

833

835
836
839

841

843

845

XV

CONTENTS

IT_CSI::AttributeServicePolicy Interface
IT_CSI::AuthenticateGSSUPCredentials Interface
IT_CSI::AuthenticationServicePolicy Interface
IT_CSI::CSlICredentials Interface
IT_CSI::CSICurrent Interface
IT_CSI::CSICurrent2 Interface
IT_CSI::CSIReceivedCredentials Interface

IT_EventChannelAdmin Module

IT_EventChannelAdmin Data Types
IT_EventChannelAdmin Exceptions

IT_EventChannelAdmin::EventChannelFactory Interface
IT_FPS Module
IT_FPS::InterdictionPolicy Interface

The IT_GIOP Module
IT_GIOP
IT_GIOP::ClientVersionConstraintsPolicy
IT_GIOP::ClientCodeSetConstraintsPolicy
IT_GIOP::Current
IT_GIOP::Current2

IT_LoadBalancing Overview

IT_LoadBalancing::ObjectGroup Interface

XVi

853

857

863

867

869

871

875

879
879
880

881

885

887

889
890
891
892
893
897

901

905

IT_LoadBalancing::ObjectGroupFactory Interface
IT_Logging Overview

IT_Logging::EventLog Interface
IT_Logging::LogStream Interface
IT_MessagingAdmin Module
IT_MessagingAdmin::Manager Interface
IT_MessagingBridge Module
IT_MessagingBridge::Endpoint Interface
IT_MessagingBridge::SinkEndpoint Interface
IT_MessagingBridge::SourceEndpoint Interface
IT_MessagingBridge::EndpointAdmin Interface
IT_MessagingBridgeAdmin Module
IT_MessagingBridgeAdmin::Bridge Interface
IT_MessagingBridgeAdmin::BridgeAdmin Interface
IT_NotifyBridge Module
IT_NotifyBridge::SinkEndpoint Interface

The IT_NamedKey Module

CONTENTS

911

915

923

929

933

935

937

941

944

945

946

951

954

956

959

960

961

xvii

CONTENTS

IT_NamedKey

IT_NamedKey::NamedKeyRegistry
IT_Naming Module
IT_Naming::IT_NamingContextExt Interface
IT_NotifyChannelAdmin Module
IT_NotifyChannelAdmin::GroupProxyPushSupplier Interface
IT_NotifyChannelAdmin:GroupSequenceProxyPushSupplier Interface
IT_NotifyChannelAdmin::GroupStructuredProxyPushSupplier Interface
IT_NotifyComm Module
IT_NotifyComm::GroupNotifyPublish Interface
IT_NotifyComm::GroupPushConsumer Interface
IT_NotifyComm::GroupSequencePushConsumer Interface
IT_NotifyComm::GroupStructuredPushConsumer Interface
IT_NotifyLogAdmin Module
IT_NotifyLogAdmin::NotifyLog Interface
IT_NotifyLogAdmin::NotifyLogFactory Interface

The IT_PlainTextKey Module
IT_PlainTextKey
IT_PlainTextKey::Forwarder

xviii

962
963

967

969

971

973

977

981

985

987

989

991

993

995

997

999

1001
1002
1003

IT_PortableServer Overview

IT_PortableServer::DispatchWorkQueuePolicy Interface
IT_PortableServer::ObjectDeactivationPolicy Class

IT_PortableServer::PersistenceModePolicy Class

IT_TLS Overview

IT_TLS::CertValidator Interface

IT_TLS_API Overview

IT_TLS_API:
IT_TLS_API:
IT_TLS_API::
IT_TLS_API:
IT_TLS_API::
IT_TLS_API:
IT_TLS_API:
IT_TLS_API:

IT_TLS_API::

:CertConstraintsPolicy Interface

:CertValidatorPolicy Interface

MaxChainLengthPolicy Interface

:SessionCachingPolicy Interface

TLS Interface

:TLSCredentials Interface
:TLSReceivedCredentials Interface

:TLSTargetCredentials Interface

TrustedCAListPolicy Interface

IT_TypedEventChannelAdmin Module

CONTENTS

1005

1009

1011

1013

1015

1021

1023

1027

1029

1031

1033

1035

1037

1039

1041

1043

1045

Xix

CONTENTS

IT_TypedEventChannelAdmin Data Types

IT_TypedEventChannelAdmin::TypedEventChannelFactory Interface

IT_WorkQueue Module

IT_WorkQueue:
IT_WorkQueue:
IT_WorkQueue::
IT_WorkQueue::
IT_WorkQueue:
IT_WorkQueue:

IT_WorkQueue:

:AutomaticWorkQueue Interface

:AutomaticWorkQueueFactory Interface

ManualWorkQueue Interface

ManualWorkQueueFactory Interface

:Workltem Interface
:WorkQueue Interface

:WorkQueuePolicy Interface

The IT_ZIOP Module
IT _ZIOP
IT_ZIOP::Compressor
IT_ZIOP::CompressorFactory
IT_ZIOP::CompressionManager
IT_ZIOP::CompressionComponent
IT_ZIOP::CompressionComponentFactory
IT_ZIOP::CompressionEnablingPolicy
IT_ZIOP::CompressorldPolicy

Messaging Overview

Messaging::ExceptionHolder Value Type

Messaging::RebindPolicy Class

XX

1045

1047

1051

1053

1055

1057

1059

1061

1063

1067

1069
1070
1072
1074
1076
1079
1080
1081
1082

1083

1089

1095

Messaging::ReplyHandler Base Class
Messaging::RoutingPolicy Class
Messaging::SyncScopePolicy Class
OrbixEventsAdmin Module
OrbixEventsAdmin::ChannelManager
Portablelnterceptor Module
Portablelnterceptor::ClientRequestinfo Interface
Portablelnterceptor::ClientRequestinterceptor Interface
Portablelnterceptor::Current Interface
Portablelnterceptor::Interceptor Interface
Portablelnterceptor::10RInfo Interface
Portablelnterceptor::10RInterceptor Interface
Portablelnterceptor::ORBlnitializer Interface
Portablelnterceptor::ORBInitInfo Interface
Portablelnterceptor::PolicyFactory Interface
Portablelnterceptor::Requestinfo Interface

Portablelnterceptor::ServerRequestinfo Interface

CONTENTS

1097

1099

1101

1103

1105

1109

1111

1119

1125

1127

1129

1133

1135

1137

1145

1147

1155

XXi

CONTENTS

Portablelnterceptor::ServerRequestinterceptor Interface

PortableServer Overview
PortableServer Data Types, Constants, and Exceptions

PortableServer:

PortableServer:

PortableServer::

PortableServer::

PortableServer::

PortableServer:

PortableServer:

PortableServer::

PortableServer::

PortableServer::

PortableServer:

PortableServer:

PortableServer:

PortableServer:

XXii

AdapterActivator Interface

:Current Interface

Dynamiclmplementation Class
IdAssignmentPolicy Interface

IdUniquenessPolicy Interface

:ImplicitActivationPolicy Interface

:LifespanPolicy Interface

POA Interface
POAManager Interface

RequestProcessingPolicy Interface

:ServantActivator Interface
:ServantBase
:ServantLocator Interface

:ServantManager Interface

1159

1165
1166

1173

1177

1179

1181

1183

1185

1187

1189

1213

1219

1221

1225

1227

1231

PortableServer:

:ServantRetentionPolicy Interface

PortableServer::ThreadPolicy Interface

Security Overview

SecurityLevell Overview

SecurityLevell:

:Current Interface

SecurityLevel2 Overview

SecurityLevel2:
SecurityLevel2:
SecurityLevel2::
SecurityLevel2::
SecurityLevel2::
SecurityLevel2::
SecurityLevel2:
SecurityLevel2::
SecurityLevel2:

SecurityLevel2:

:Credentials Interface

:Current Interface

EstablishTrustPolicy Interface
InvocationCredentialsPolicy Interface
MechanismPolicy Interface

PrincipalAuthenticator Interface

:QOPPolicy Interface

ReceivedCredentials Interface

:SecurityManager Interface

:TargetCredentials Interface

System Exceptions

CONTENTS

1233

1235

1237

1249

1251

1253

1255

1261

1263

1265

1267

1269

1273

1275

1277

1281

1283

XXiii

CONTENTS

Index 1289

XXiv

List of Tables

Table 1:
Table 2:
Table 3:
Table 4:
Table 5:
Table 6:
Table 7:
Table 8:
Table 9:

Table 10:
Table 11:
Table 12:
Table 13:
Table 15:
Table 16:
Table 17:
Table 18:
Table 19:
Table 20:
Table 21:
Table 22:
Table 23:
Table 24

Interface Repository API

DIl and DSI API

PolicyErrorCode Constants

Methods of the Object Class

Methods and Types of the ORB Class

Policies

Operations of the Repository Interface

OTS Exceptions

System Exceptions

Log operational states

DynAny Methods

Return Values for DynAny::component_count()

Default Values When Using create_dyn_any from_type code()
IT LoadBalancing Common Data Types and Exceptions
IT_Logging Common Data Types, Methods, and Macros
EndpointTypes and the associated messaging objects
InvalidEndpoint return codes and their explanation
Authentication Method Constants and Authentication Structures
The Messaging Module

ClientRequestinfo Validity

PortableServer Common Types

Policy Defaults for POAs

Corresponding Policies for Servant Managers

18
16l
175
205
217
565
567
651
697
704
735
901
915
938
939

1024
1083
1112
1166
1198
1231

XXV

LIST OF TABLES

XXvi

Preface

Orbix is a software environment for building and integrating distributed
object-oriented applications. Orbix is a full implementation of the Common
Object Request Broker Architecture (CORBA) from the Object Management
Group (OMG). Orbix fully supports CORBA version 2.3.

This document is based on the CORBA 2.3 standard with some additional
features and Orbix-specific enhancements. If you need help with this or any
other IONA products, contact IONA at support @ona. com Comments on
IONA documentation can be sent to doc- support @ona. com

For the latest online versions of Orbix documentation, see the IONA website:

http://ww i ona. com docs

Audience

The reader is expected to understand the fundamentals of writing a
distributed application with Orbix. Familiarity with Java is required.

Organization of this Reference

This reference presents core-product modules in alphabetical order,
disregarding IT_ prefixes in order to keep together related OMG-compliant
and Orbix-proprietary modules. For example, modules OORBA and | T_CORBA
are listed in sequence.

Modules that are specific to a service are also grouped together under the
service's name—for example, modules CosPersi stent State, | T_PSS, and
I T_PSS DB are listed under Persistent State Service.

XXVii

Related Documentation

This document is part of a set that comes with the Orbix product. Other
books in this set include:

* Orbix Administrator’s Guide
® CORBA Programmer’s Guide
®* CORBA Code Generation Toolkit Guide

Document Conventions

XXviii

This guide uses the following typographical conventions:

Constant w dth

Italic

Constant width (courier font) in normal text represents
portions of code and literal names of items such as
classes, methods, variables, and data structures. For
example, text might refer to the CORBA: : (bj ect class.

Constant width paragraphs represent code examples or
information a system displays on the screen. For exam-
ple:

#i ncl ude <stdi o. h>

Italic words in normal text represent emphasis and new
terms.

Italic words or characters in code and commands repre-
sent variable values you must supply, such as arguments
to commands or path names for your particular system.
For example:

% cd / users/your_name

Note: some command examples may use angle brackets
to represent variable values you must supply. This is an
older convention that is replaced with italic words or char-
acters.

Document Conventions

This guide may use the following keying conventions:

No prompt

%

{}

When a command’s format is the same for multiple plat-
forms, a prompt is not used.

A percent sign represents the UNIX command shell
prompt for a command that does not require root privi-
leges.

A number sign represents the UNIX command shell
prompt for a command that requires root privileges.

The notation > represents the DOS, WindowsNT,
Windows95, or Windows98 command prompt.

Horizontal or vertical ellipses in format and syntax
descriptions indicate that material has been eliminated to
simplify a discussion.

Brackets enclose optional items in format and syntax
descriptions.

Braces enclose a list from which you must choose an item
in format and syntax descriptions.

A vertical bar separates items in a list of choices enclosed
in { } (braces) in format and syntax descriptions.

XXiX

XXX

Introduction

This describes all of the standard programmer’s APl for CORBA and Orbix.
This introduction contains the following topics:

* ‘“Interface Repository Quick Reference”
* “Dll and DSI Quick Reference”

* “Value Type Quick Reference”

* “About Sequences”

The rest of the CORBA Programmer’s Reference contains the following mod-
ules and appendix:

CCRBA Port abl el nt er cept or
CosNam ng Por t abl eSer ver
CosTr ansacti ons
Dynani cAny

| T Gonfig

| T CCRBA

| T_Loggi ng
| T Port abl eServer

“System Exceptions”

Interface Repository Quick Reference

The interface repository (IFR) is the component of Orbix that provides persis-
tent storage of IDL definitions. Programs use the following API to query the
IFR at runtime to obtain information about IDL definitions:

Table 1: Interface Repository API

CORBA Structures CORBA Enumerated Types
AttributeDescription Attri but eMode

Const ant Descri ption Defi ni ti onKi nd

Excepti onDescri ption Qper at i onvbde
Initializer Par anet er Mode

I nterfaceDescription PrimtiveKi nd

Modul eDescri ption TCKi nd

Qper ati onDescri pti on
Par anet er Descri ption

St ruct Menber
TypeDescri ption
Uni onMenber

Val ueDescri pti on
Val ueMenber

Interface Repository Quick Reference

Table 1:

Interface Repository AP/

CORBA Classes and Interfaces

Typecode Methods in CORBA::ORB

Al i asDef

Ar r ayDef
Attri but eDef
Const ant Def
Cont ai ned
Cont ai ner
EnunbDef
Except i onDef
Envi r onnent
Fi xedDef

| DLType
| nt er f aceDef

| ROpj ect
Modul eDef
Nat i veDef
Oper at i onDef
PrimtiveDef
Reposi tory
SequenceDef
St ri ngDef

St r uct Def
TypeCode

Typedef Def
Uni onDef

Val ueBoxDef
Val ueDef

Val ueMenber Def

Vét ri ngDef

create abstract interface tc()
create alias tc()
create array tc()
create enumtc()
create_exception_tc()
create fixed tc()
create interface tc()
create native tc()
create recursive tc()
create_sequence_tc()
create string_tc()
create struct _tc()
create union tc()
create val ue box tc()
create val ue tc()
create wstring tc()

DIl and DSI Quick Reference

The client-side dynamic invocation interface (DII) provides for the dynamic
creation and invocation of requests for objects. The server-side counterpart to
the DIl is the dynamic Skeleton interface (DSI) which dynamically handles
object invocations. This dynamic system uses the following data structures,
interfaces, and classes:

Table 2: DI/ and DS/ AP/

DIl Classes DSI Classes

QCRBA: : Excepti onLi st QCRBA: : Ser ver Request

OCRBA: : Request Por t abl eSer ver: : Dynani cl npl enent ati on
OCRBA: : TypeCode

Key Data Types DlI-Related Methods

QCRBA: : Any OCRBA: : (hj ect:: _create_request ()
QORBA: : Fl ags OORBA : CRB: :create_list()

CCRBA: : NanedVal ue OCRBA: : CRB: : create_operation_|list()
OCRBA: : NWLi st OCRBA: : CRB: : get _def aul t _cont ext ()

Value Type Quick Reference

A value type is the mechanism by which objects can be passed by value in
CORBA operations. Value types use the following data structures, methods,
and value types from the CORBA module:

Types
Val ueFact ory

Value Types and Classes

Qust onivar shal
Dat al nput St ream
Dat aQut put St ream

Val ueFact ory

About Sequences

Val ueDef

About Sequences

An IDL sequence maps to a class of the same name. For example, an IDL
sequence named TypeSeq which is made up of a sequence of Type IDL data
types, has the class TypeSeq implemented.

/1 1D
t ypedef sequence<Type> TypeSeq;

CORBA Overview

The CORBA namespace implements the IDL CORBA module. Additional
introductory chapters describe the common methods and definitions found in
the scope of the CORBA namespace.

* “Common CORBA Data Types”

All classes or interfaces defined in the CORBA namespace are described in
the following alphabetically ordered chapters:

Al i asDef Except i onDef Reposi tory
Any Except i onLi st Request
Ar r ayDef Fi xedDef SequenceDef
At tri but eDef | DLType Ser ver Request
Const ant Def I nt er f aceDef St ri ngDef
Cont ai ned | Rpj ect St ruct Def
Cont ai ner Modul eDef TypeCode
Qurrent NanedVal ue Typedef Def
Cust onivar shal Nat i veDef Uni onDef
Dat al nput St r eam NWVLI st Val ueBoxDef
Dat aQut put St ream hj ect Val ueDef
Donai nivanager Qper at i onDef Val ueFact ory
EnunDef CRB Val ueMenber Def
Envi r onment Pol i cy Vet ri ngDef

Pol i cyQurrent

Pol i cyManager

PrimtiveDef

Some standard system exceptions are also defined in the CORBA module.
However, these exceptions are described in Appendix A.

Common CORBA Data Types

This chapter contains details of all common CORBA data types. The following
alphabetically ordered list contains a link to the details of each data type:

AttributeDescription

I nval i dPol i ci es

Set Overri deType

Attri but eMbde Modul eDescri ption St ruct Menber
Const ant Descri ption Qper ati onDescription TCKi nd
Defi ni ti onKi nd Qper at i onvbde TypeDescri ption
ExceptionDescription ParaneterDescription Ui onMenber
Initializer Par anet er Mode Val ueDescri pti on
InterfaceDescription PolicyError Val ueMenber

Pol i cyErr or Code

Pol i cyLi st

Pol i cyType

Primtiveki nd
Reposi toryld
Reposi t oryl dSeq

CORBA::AttributeDescription Structure

/1 1D

struct AttributeDescription {

| dentifier name;
Repositoryld id;

Reposi toryld defined_in;
Ver si onSpec versi on;

TypeCode type;

At tri but eMode node;

}

The description of an interface attribute in the interface repository.

nane

The name of the attribute.

id The identifier of the attribute.

See Also

See Also

defined_in The identifier of the interface in which the attribute is defined.

ver si on The version of the attribute.
t ype The data type of the attribute.
node The mode of the attribute.

QCRBA: : At tri but eDef

CORBA::AttributeMode Enumeration

/1 1D
enum At tri but eMbde {ATTR NCRVAL, ATTR READONLY};

The mode of an attribute in the interface repository.

ATTR NCRVAL ~ Mode is read and write.
ATTR_READONLY Mode is read-only.

QCRBA: : At tri but eDef

CORBA::ConstantDescription Structure

/1 1Dl

struct Constant Description {
| dentifier nane;
Repositoryld id;
Repositoryl d defined_in;
Ver si onSpec ver si on;
TypeCode type;
any val ue;

b
The description of a constant in the interface repository.
nane The name of the constant.

id The identifier of the constant.
defined_in The identifier of the interface in which the constant is defined.

See Also

See Also

10

ver si on The version of the constant.
type The data type of the constant.
val ue The value of the constant.

QCRBA: : Const ant Def

CORBA::DefinitionKind Enumeration

/1 1D
enum Defini tionKind {
dk_none, dk_all,

dk_Attribute, dk_Constant, dk_Exception, dk_Interface,
dk_Modul e, dk_Qperation, dk_Typedef,

dk_Aias, dk_Struct, dk_Union, dk_Enum

dk_Prinmtive, dk_String, dk_Sequence, dk_Array,
dk_Repository,

dk_Wtring, dk_Fixed,

dk_Val ue, dk_Val ueBox, dk_Val ueMenber,

dk_Native

Identifies the type of an interface repository object.

Each interface repository object has an attribute (CORBA: : | RObj ect : :

def ki nd) of the type Defi ni ti onKi nd that records the kind of the IFR
object. For example, the def ki nd attribute of an I nt er f aceDef object is
dk_i nt er f ace. The enumeration constants dk_none and dk_al | have special

meanings when searching for an object in a repository.
QOORBA: : | RObj ect: : def ki nd

QOCRBA: : Cont ai ned
CCRBA: : Cont ai ner

CORBA::ExceptionDescription

/1 Java

publ i c Excepti onDescri ption(
java.lang. String narre,
java.lang. String id,

java.lang. String defined_in,
java.lang. String version,
or g. ong. GCRBA. TypeCode type

)

The description of an exception in the interface repository.

name The name of the exception.

id The identifier of the exception.

defined_in The identifier of the interface in which the exception is
defined.

ver si on The version of the exception.

type The data type of the exception.

CORBA::Initializer Structure

/1 1DL
struct Initializer {
St ruct Menber Seq nenber s;
Identifier nane;
b
/1 Java
package org. ongy. CORBA;
public final class Initializer
i npl enents org.ony. CORBA portable. | DLEntity {
public org.ong. GORBA Struct Menber[] nenbers;
public Initializer() {}
public Initializer(org.ong. CORBA Struct Menber[] nenbers
{ this.nenbers = menbers; }

}
An initializer structure for a sequence in the interface repository.

menber s The sequence of structure members.

CORBA::InterfaceDescription Structure
/1 100

)

11

12

struct InterfaceDescription {
I dentifier nane;
Repositoryld id;
Reposi toryl d defined_in;
Ver si onSpec versi on;
Reposi t oryl dSeq base_i nt erf aces;
bool ean is_abstract;
b
/1 Java
package org. ong. CORBA;
public final class InterfaceDescription
i npl enents org.ong. OORBA portable. IDLEntity
{
public java.lang. String narre;
public java.lang. String id;
public java.lang. String defined_in;
public java.lang. String version;
public java.lang. String[] base_interfaces;
public bool ean i s_abstract;
public InterfaceDescription() {}
public InterfaceDescription(
java.lang. String nane,
java.lang. String id,
java.lang. String defined_in,
java.lang. String version,
java.lang. String[] base_interfaces,
bool ean i s_abstract)

A description of an interface in the interface repository. This structure is
returned by the inherited descri be() method in the I nt er f aceDef interface.
The structure members consist of the following:

nane The name of the interface.

id The identifier of the interface.

defined_in The identifier of where the interface is defined.
ver si on The version of the interface.

base_i nterfaces The sequence of base interfaces from which this

interface is derived.

i s_abstract A true value if the interface is an abstract one, a false
value otherwise.

See Also

OCORBA: : I nter faceDef : : descri be()

CORBA::InvalidPolicies Exception

/1 1D
exception InvalidPolicies {

sequence <unsi gned short > indi ces;

}s

/1 Java
package org. ong. CORBA;
public final class InvalidPolicies
ext ends org. ong. CORBA User Exception

{
public short[] indices;
public InvalidPolicies()
{
super (I nval i dPol i ci esHel per.id());
}
public InvalidPolicies(short[] indices)
{
super (I nval i dPol i ci esHel per.id());
this.indices = indices;
}
public InvalidPolicies(String _reason, short[] indices)
{
super (I nvalidPoliciesHel per.id() +" " + _reason);
this.indices = indices;
}
}

This exception is thrown by operations that are passed a bad policy. The
indicated policies, although valid in some circumstances, are not valid in
conjunction with other policies requested or already overridden at this scope.

CORBA::ModuleDescription Structure

/1 1D
struct Modul eDescription {
I dentifier nane;

13

Repositoryld id;
Reposi toryld defined_in;
Ver si onSpec versi on;

}

[/ Java
package org. ong. CCRBA;
public final class Mdul eDescription
i npl enents org.ony. CORBA portable. | DLEntity

{
public java.lang. String narre;
public java.lang. String id;
public java.lang. String defined_in;
public java.lang. String version;
publ i c Mddul eDescription() {}
publ i ¢ Mddul eDescri pti on(
java.lang. String nane,
java.lang. String id,
java.lang. String defined_in,
java.lang. String version
)
{
thi s. name = nane;
this.id =id;
this.defined_in = defined_in;
this.version = version;
}
}

The description of an IDL module in the interface repository. The structure
members consist of the following:

nane The name of the module.
id The identifier of the module.
defined_in The identifier of where the module is defined.
ver si on The version of the module.
See Also QCRBA: : Modul eDef

14

CORBA::OperationDescription Structure

/1 1DL

struct QperationDescription {
Identifier nane;
Reposi toryld id;
Reposi toryl d defined_in;
Ver si onSpec versi on
TypeCode result;
Qper at i onMbde node;
Cont ext | dSeq cont ext s;
Par Descri pti onSeq par aneters;
ExcDescri pti onSeq excepti ons;

}s

This structure describes an IDL operation in the interface repository. The
structure members consist of the following:

narme

id
defined_in
version

resul t

node

contexts

paraneters

excepti ons

The name of the IDL operation.

The identifier of the IDL operation.

The identifier of where the IDL operation is defined.
The version of the IDL operation.

The TypeCode of the result returned by the defined IDL
operation.

Specifies whether the IDL operation’s mode is normal
(CP_NORVAL) or one-way (CP_ONEVAY).

The sequence of context identifiers specified in the context
clause of the IDL operation.

The sequence of structures that give details of each
parameter of the IDL operation.

The sequence of structures containing details of exceptions
specified in the rai ses clause of the IDL operation.

15

16

CORBA::OperationMode Enumeration

enum Qper at i onMbde {CP_NCRVAL, CP_ONBEWAY};

The mode of an IDL operation in the interface repository. An operation’s mode
indicates its invocation semantics.

CP_NCRVAL The IDL operation’s invocation mode is normal.

CP_ONBEVAY The IDL operation’s invocation mode is oneway which means
the operation is invoked only once with no guarantee that the
call is delivered.

CORBA::ORBid Type

/1 1D
typedef string ORBid;

The name that identifies an ORB. CRBi d strings uniquely identify each ORB

used within the same address space in a multi-ORB application. CRBi d strings
(except the empty string) are not managed by the OMG but are allocated by
ORB administrators who must ensure that the names are unambiguous.

CORBA::ParameterDescription Structure

/1 1DL
struct ParaneterDescription {
| dentifier name;
TypeCode type;
| DLType type_def;
Par armet er Mode node;

}

This structure describes an IDL operation’s parameter in the interface reposi-
tory. The structure members consist of the following:

nane The name of the parameter.
type The TypeCode of the parameter.
type_def Identifies the definition of the type for the parameter.

See Also

node Specifies whether the parameter is an in input, output, or
input and output parameter.

CORBA::ParameterMode Enumeration

enum Par anet er Mode { PARAM I N, PARAM QUT, PARAM | NQUT};
The mode of an IDL operation’s parameter in the interface repository.

PARAM | N The parameter is passed as input only.
PARAM QUT The parameter is passed as output only.
PARAM | NOUT The parameter is passed as both input and output.

CORBA::PolicyError Exception

/1 1D
exception PolicyError {

Pol i cyError Code reason;

h

The Pol i cyError exception is thrown to indicate problems with parameter
values passed to GRB: : creat e_pol i cy() . Possible reasons are described in
the Pol i cyError Code.

OCRBA: : CRB: : creat e_policy()
CCORBA: : Pol i cyError Code

CORBA::PolicyErrorCode Type
typedef short PolicyErrorCode;

17

See Also

See Also

18

A value representing an error when creating a new Pol i cy. The following

constants are defined to represent
might be invalid:

Table 3: PolicyErrorCode Constants

the reasons a request to create a Pol i cy

Constant

Explanation

BAD PCLI CY

UNSUPPCRTED _PCLI CY

BAD PCLI CY_TYPE

BAD PCLI CY_VALUE

UNSUPPCRTED_PCLI CY_VALUE

The requested Pol i cy is not understood
by the ORB.

The requested Pol i cy is understood to be
valid by the ORB, but is not currently
supported.

The type of the value requested for the
Pol i cy is not valid for that Pol i cyType.

The value requested for the Pol i cy is of a
valid type but is not within the valid range
for that type.

The value requested for the Pol i cy is of a
valid type and within the valid range for
that type, but this valid value is not
currently supported.

QCRBA: : CRB: : create_policy()

CORBA::PolicyList Sequence

A list of Pol i cy objects. Policies a

CCRBA: : Polic
QOCRBA: : (hj ect: : set_pol i cy_ove

ffect an ORB’s behavior.

rrides()

Port abl eServer: : POA : POA creat e PQA()

“About Sequences”

See Also

See Also

CORBA::PolicyType Type
Defines the type of Pol i cy object.

The CORBA module defines the following constant Pol i cyType:

/1 1D
const PolicyType SecConstruction = 11;

Other valid constant values for a Pol i cyType are described with the definition
of the corresponding Pol i cy object. There are standard OMG values and
IONA-specific values.

CCRBA: : Pol i cy

OCRBA: : Pol i cyTypeSeq

OCRBA: : CRB: : creat e_policy()

CORBA: : (oj ect:: _get _policy()

CCORBA: : Donai nvanager : : get _domai n_poli cy()

// 1D0L

t ypedef sequence<Pol i cyType> Pol i cyTypeSeq;

A sequence of Pol i cyType data types.
OCRBA: : (hj ect:: get_policy_overrides()

CORBA: : Pol i cyManager: : get _policy_overrides()

CORBA::PrimitiveKind Enumeration

/1 1D

enumPrimtiveKi nd {
pk_null, pk_void, pk_short, pk_long, pk_ushort, pk_ul ong,
pk_float, pk_doubl e, pk_bool ean, pk_char, pk_octet,
pk_any, pk_TypeCode, pk_Principal, pk_string, pk_objref,
pk_l ongl ong, pk_ul ongl ong, pk_| ongdoubl e,
pk_wchar, pk_wstring, pk_val ue_base

H

typedef PrimtiveKi nd& PrimtiveKi nd out;

Indicates the kind of primitive type a Pri m ti veDef object represents in the
interface repository.

Most kinds are self explanatory with the exception of the following:

® Thereare no PrintiveDef objects with the kind pk_nul I .
®* The kind pk_stri ng represents an unbounded string.

19

See Also

See Also

See Also

20

®* The kind pk_obj ref represents the IDL type bj ect .

OORBA: : PrimtiveDef
OORBA: : Reposi tory

CORBA::Repositoryld Type

A string that uniquely identifies, in the interface repository, an IDL module,
interface, constant, typedef, exception, attribute, value type, value member,
value box, native type, or operation.

The format of Reposi t oryl d types is a short format name followed by a colon
followed by characters, as follows:

format _nane: string

The most common format encountered is the OMG IDL format. For example:
IDL:Pre/B/C 5.3

This format contains three components separated by colons:

| DL The first component is the format name, | DL.

Pre/B/C The second component is a list of identifiers separated by '/’
characters that uniguely identify a repository item and its scope.
These identifiers can contain other characters including
underscores (_), hyphens (-), and dots (.).

5.3 The third component contains major and minor version humbers
separated by a dot (.).

QOORBA: : Reposi tory: : | ookup_id()

CORBA::RepositoryldSeq Sequence

A sequence of Reposi t oryl d strings in the interface repository.
OCORBA: : Repositoryld

“About Sequences”

CORBA::SetOverrideType Enumeration

/1 1D
enum Set Overri deType {SET_OVERR DE, ADD OVERR DE};

The type of override to use in the set _pol i cy_overri des() method when
setting new policies for an object reference. Possible types consist of:

SET_OVERR DE Indicates that new policies are to be associated with
an object reference.

ADD OVERRI DE Indicates that new policies are to be added to the
existing set of policies and overrides for an object
reference.

CORBA::StructMember()

/1 Java
public Struct Menber (

java.lang. String nane,
or g. ong. GORBA. TypeCode t ype,
org. ong. GORBA. | DLType type_def

)

This describes an IDL structure member in the interface repository. The
structure members consist of the following:

nane The name of the member.
type The TypeCode for the member.
type_def Identifies the definition of the type for the member.

CORBA::TCKind Enumeration

/1 1D
enum TCKi nd {

tk_null, tk_void,

tk_short, tk_long, tk ushort, tk_ul ong,

tk_float, tk_double, tk_bool ean, tk_char,

tk_octet, tk_any, tk_TypeCode, tk_Principal, tk_objref,
tk_struct, tk_union, tk_enum tk_string,

21

tk_sequence, tk_array, tk_ alias, tk_except,
tk_Ionglong, tk_ulonglong, tk_|ongdouble,
tk_wchar, tk wstring, tk fixed,

tk_val ue, tk_val ue_box,

tk_native,

tk_abstract _interface

}

A TCKi nd value indicates the kind of data type for a TypeCode. A TypeCode is
a value that represent an invocation argument type or attribute type, such as
that found in the interface repository or with a dynamic any type.

See Also QORBA: : TypeQCode: : ki nd()
Dynam cAny: : DynStruct: : current _nmenber ki nd()
Dynam cAny: : DynUni on: : di scri m nat or _ki nd()
Dynani cAny: : DynUni on: : menber _ki nd()
Dynani cAny: : DynVal ue: : current _menber _ki nd()

CORBA:: TypeDescription Structure

/1 1DL

struct TypeDescription {
| dentifier name;
Repositoryld id;
Reposi toryld defined_in;
Ver si onSpec versi on;
TypeCode type;

b

This structure describes an IDL data type in the interface repository. The
structure members consist of the following:

nane The name of the data type.

id The identifier for the data type.

defined_in The identifier of where the data type is defined.
versi on The version of the data type.

type The TypeCode of the data type.

22

CORBA::UnionMember Structure

/1 1DL

struct Uni onMenber {
Identifier nane;
any | abel ;
TypeCode type;
| DLType type_def;

H

This structure describes an IDL union member in the interface repository. The
structure members consist of the following:

nane The name of the union member.

| abel The label of the union member.

type The TypeCode of the union member.

t ype_def The IDL data type of the union member.

CORBA::ValueDescription Structure

/1 1DL
struct Val ueDescription {
Identifier nane;
Reposi toryld id;
bool ean i s_abstract;
bool ean i s_cust om
Reposi toryl d defined_in;
Ver si onSpec ver si on;
Reposi toryl dSeq supported_int erfaces;
Reposi toryl dSeq abstract _base_val ues;
bool ean i s_truncat abl e;
Reposi toryl d base_val ue;

}s

The description of an IDL value type in the interface repository. Value types
enable the passing of objects by value rather than just passing by reference.
The structure members consist of the following:

name The name of the value type.
id The identifier of the value type.

23

See Also

24

i s_abstract True of the value type is abstract. False if the value
type is not abstract.

i s_custom True of the value type is custom. False if the value
type is not custom.

defined_in The identifier of where the value type is defined.

ver si on The version of the value type.

supported_i nterfaces
abstract _base_val ues
i s_truncatabl e

base_val ue

OCORBA: : Val ueDef : : descri be()

CORBA::ValueMember Structure

/1 1DL

struct Val ueMenber {
I dentifier nane;
Repositoryld id;
Reposi toryl d defined_in;
Ver si onSpec versi on;
TypeCode type;
| DLType type_def;
Visibility access;

}

This structure describes an IDL value type member in the interface repository.
The structure members consist of the following:

nane The name of the value type member.

id The identifier of the value type member.

defined_ in The identifier of where the value type member is defined.
ver si on The version of the value type member.

type The TypeCode of the value type member.

t ype_def The type definition of the value type member.

access

The accessibility of the value type member (public or
private).

25

26

CORBA::AbstractinterfaceDef
Interface

Abst ract | nt er f aceDef describes an abstract IDL interface in the interface
repository. It inherits from the | nt er f aceDef interface.

// 1D

interface AbstractInterfaceDef : InterfaceDef
{

b

27

28

CORBA::AliasDef Interface

The Ali asDef interface describes an IDL typedef that aliases another
definition in the interface repository. It is used to represent an IDL t ypedef .
// 1DL in nmodul e CCRBA

interface AliasDef : Typedef Def {

attribute | DLType origi nal _type_def;
b

/1 Java
package org. ongy. CORBA;

public interface A iasDef
extends AliasDef (perati ons,
or g. ong. GORBA. Typedef Def

The following items are described for this interface:

® The descri be() IDL operation
® Theoriginal type def attribute

See Also QORBA: : Cont ai ned
OORBA: : Contai ner: :create_alias()

AliasDef::describe()

/1 1D
Description describe();

Inherited from Cont ai ned (which is inherited by Typedef Def). The

Def i ni tionKi nd for the ki nd member is dk_Al i as. The value member is an
any whose TypeCode is _tc_Al i asDescri pti on and whose value is a structure
of type TypeDescri pti on.

See Also OORBA: : Typedef Def : : descri be()

29

See Also

30

AliasDef::original_type def Attribute

/1 1DL
attribute | DLType original _type_def;

/1 Java

org. ong. CORBA | DLType origi nal _type_def ();

voi d original _type_def(org.ong. CORBA. | DLType _val);

Identifies the type being aliased. Modifying the ori gi nal _type_def attribute
will automatically update the t ype attribute (the t ype attribute is inherited

from Typedef Def which in turn inherits it from | D_LType). Both attributes
contain the same information.

OCRBA: : | DLType: : type

CORBA::Any Class

The class Any implements the IDL basic type any, which allows the
specification of values that can express an arbitrary IDL type. This allows a
program to handle values whose types are not known at compile time. The
IDL type any is most often used in code that uses the interface repository or
the dynamic invocation interface (DII) or with CORBA services in general.

Consider the following interface:

I/ 1D
i nterface Exanpl e {

voi d op(in any val ue);
b
A client can construct an any to contain an arbitrary type of value and then
pass this in a call to op(). A process receiving an any must determine what
type of value it stores and then extract the value (using the TypeCode). Refer
to the CORBA Programmer’s Guide for more details.

Methods are as follows:

create_i nput _streant)
creat e_out put _strean()
equal ()

extract _TypeCode()
extract _ul ong()
extract _ul ongl ong()

i nsert_Qvj ect ()
i nsert_octet()
i nsert_short ()

extract _any()
extract _bool ean()
extract _char ()
extract _doubl e()
extract _fixed()
extract _float()
extract _| ong()
extract _| ongl ong()
extract _(hj ect ()
extract _octet ()
extract _short ()
extract _Streamabl e()
extract _string()

/1 Java

extract _ushort ()
extract _Val ue()
extract _wchar ()
extract _wstring()
i nsert_any()

i nsert_bhool ean()

i nsert_char ()

i nsert_doubl e()
insert_fixed()

i nsert_fixed()
insert_float()

i nsert_| ong()

i nsert_| ongl ong()

i nsert_Streanabl e()
insert_string()

i nsert_TypeCode()
i nsert_ul ong()

i nsert _ul ongl ong()
i nsert_ushort ()

i nsert_Val ue()

i nsert_Val ue()

i nsert_wchar ()

i nsert_wstring()
read_val ue(

type()

wite_val ue()

31

package org. ong. CCRBA;

abstract public class Any inplenments
org.ony. CORBA portable. | DLEntity {
abstract public bool ean equal (org. omg. CCRBA Any a);

// type code accessors
abstract public org.ong. CORBA TypeCode type();
abstract public void type(org. omy. CCRBA TypeCode t);

// read and wite values to/fromstreans
/1 throw exception when typecode inconsistent with val ue
abstract public void read_val ue(
org. ong. GCRBA. portabl e. I nput Streamii s,
org. ong. GCRBA. TypeCode t) throws org. ony. CORBA MARSHAL;
abstract public void
write_val ue(org. omg. CCRBA port abl e. Qut put Stream os) ;
abstract public org.ong. CORBA portabl e. Qut put Stream
create_output_strean();
abstract public org.ong. CORBA portabl e. | nput Stream
create_i nput_stream();
abstract public short extract_short()
throws org. ong. CORBA BAD CPERATI Q\;
abstract public void insert_short(short s);
abstract public int extract_long()
throws org. ong. CORBA BAD CPERATI Q\;
abstract public void insert_long(int i);
abstract public |ong extract_I ongl ong()
throws org. ong. CORBA BAD CPERATI Q\;
abstract public void insert_longlong(long I);
abstract public short extract_ushort ()
throws org. ong. CCRBA BAD_CPERATI Q\;
abstract public void insert_ushort(short s);
abstract public int extract_ul ong()
throws org. ong. CORBA BAD CPERATI Q\;
abstract public void insert_ulong(int i);
abstract public |ong extract_ul ongl ong()
throws org. ong. CORBA BAD CPERATI Q\;
abstract public void insert_ulonglong(long I);
abstract public float extract_float()
throws org. ong. CORBA BAD CPERATI Q\;
abstract public void insert_float(float f);
abstract public doubl e extract_doubl e()

t hrows org. ony. CCRBA. BAD CPERATI O\
abstract public void insert_doubl e(doubl e d);
abstract public bool ean extract _bool ean()
t hrows org. omg. CCRBA. BAD CPERATI O\
abstract public void insert_bool ean(bool ean b);
abstract public char extract_char()
t hrows org. onyg. CCRBA. BAD CPERATI O\
abstract public void insert_char(char c)
t hrows org. omy. CCRBA. DATA CONVERSI ON
abstract public char extract_wchar ()
t hrows org. omg. CCRBA. BAD CPERATI O\
abstract public void insert_wchar(char c);
abstract public byte extract_octet()
t hrows org. ong. CCRBA. BAD CPERATI O\
abstract public void insert_octet(byte b);
abstract public org.ong. GCORBA Any extract_any()
t hrows org. omg. CCRBA. BAD CPERATI O\
abstract public void insert_any(org.ong. CORBA Any a);
abstract public org.ong. CORBA (hj ect extract _(hject()
t hrows org. ony. CCRBA. BAD CPERATI O\
abstract public void insert_Qhject(org. omy. CCRBA (hj ect obj);
abstract public java.io. Serializable extract_Val ue()
t hrows org. onmg. CCRBA. BAD CPERATI O\
abstract public void insert_Value(java.io.Serializable v);
abstract public void insert_Val ug(
java.io. Serializable v,
or g. ong. CORBA. TypeCode t)
t hrows org. omy. CCRBA. MARSHAL;

/1 throw exception when typecode inconsistent wth val ue
abstract public void insert_Qhject(
or g. ony. CORBA. (hj ect obj,
or g. ong. CORBA. TypeCode t)
t hrows org. omg. CCRBA. BAD PARAM
abstract public String extract_string()
t hrows org. omg. CCRBA. BAD CPERATI O\
abstract public void insert_string(String s)
t hrows org. ony. CCRBA. DATA OONVERSI ON
or g. ony. CCRBA. NARSHAL ;
abstract public String extract_wstring()
t hrows org. omg. CCRBA. BAD CPERATI O\
abstract public void insert_wstring(String s)
throws org. ony. CCRBA. MARSHAL;

33

Parameters

34

I/ insert and extract typecode

abstract public org.ong. CORBA TypeCode extract_TypeCode()
throws org. ong. CORBA BAD CPERATI Q\;

abstract public voidinsert_TypeCode(or g. ong. CORBA. TypeCode t);

// insert and extract non-primtive IDL types

// BAD INV_CRDER if any doesn’t hold a streanabl e

public org.ong. CORBA portabl e. Streamabl e extract _Streanabl e()
throws org. onmg. CCRBA BAD | NV_CRDER {

}

public void insert_Streamabl e(
org. ong. GCRBA. port abl e. Streanmabl e s) {
}

// insert and extract fixed
public java. math. Bi gDeci mal extract_fixed() {

t hrow or g. ong. CORBA. NO_| MPLEMENT() ;
}
public void insert_fixed(java. math. Bi gDeci nal val ue) {
}
public void insert_fixed(

j ava. mat h. Bi gDeci mal val ue,

or g. ong. GCRBA. TypeCode type)

throws org. ong. CCRBA. BAD | N\V_CRDER {

Any::create_input_stream()
abstract public org.ong. CORBA portabl e. | nput Stream

create_i nput_strean();

This method creates an or g. ong. GORBA. port abl e. | nput St r eamobject for this
Any, so that the data contained within the Any can be accessed through the

read() methods defined on I nput St r eamrather than the ext ract () methods
defined on Any.

| nput St r eam The I nput St reamrepresenting the Any.

Parameters

Parameters

Any:create_output_stream()

abstract public org.ong. CORBA portabl e. Qut put Stream
create_output_strean();

This method creates an or g. ong. CCRBA. port abl e. Qut put St r eamobject for
this Any. This object allows the Any to be populated by calling the wri te()
methods declared on Qut put St r eaminstead of using the i nsert () methods
of the Any.

Qut put St ream The Qut put St r eamrepresenting the Any

Any::equal()
abstract public bool ean equal (org. onmg. OCRBA Any a);

This method compares the type and value of this Any with that of the Any
passed in as a parameter and returns true if the Anys are equal.

a The Any to compare against.

Any::extract_type()

abstract public short extract_short()
throws org. ong. CORBA BAD CPERATI Q\;

abstract public int extract_|ong()
throws org. ong. CORBA BAD CPERATI Q\;

abstract public long extract_I| ongl ong()
throws org. ong. CORBA BAD CPERATI O\,

abstract public short extract_ushort ()
throws org. ong. CCRBA BAD CPERATI Q\;

abstract public int extract_ul ong()
throws org. ong. CCRBA BAD CPERATI Q\;

abstract public long extract_ul ongl ong()
throws org. ong. CORBA BAD CPERATI Q\;

35

36

abstract public float extract_float()
t hrows org. ong. CORBA BAD CPERATI O\

abstract public doubl e extract_doubl e()
t hrows org. ong. CCRBA BAD _CPERATI O\

abstract public bool ean extract_bool ean()
t hrows org. ong. CORBA BAD CPERATI O\

abstract public char extract_char()
t hrows org. ong. CORBA BAD CPERATI O\

abstract public char extract_wchar()
t hrows org. ong. CORBA BAD_CPERATI O\

abstract public byte extract_octet()
t hrows org. ong. CORBA BAD CPERATI O\

abstract public org.ong. CORBA Any extract _any()
t hrows org. ong. CORBA BAD CPERATI O\

abstract public org.ong. CORBA (hj ect extract_(hj ect ()
t hrows org. ong. CCRBA BAD_CPERATI O\

abstract public java.io.Serializable extract_Val ue()
t hrows org. ong. CORBA BAD CPERATI O\

abstract public String extract_string()
t hrows org. ong. CORBA BAD CPERATI O\

abstract public String extract_wstring()
t hrows org. ong. CCRBA BAD_CPERATI O\

abstract public org.ong. CORBA TypeCode extract _TypeCode()
t hrows org. ong. CORBA BAD CPERATI O\

public org. ong. CORBA portabl e. Streanabl e extract _Streanabl e()
t hrows org. ong. CORBA BAD | NV_CRDER {

t hrow new or g. ong. CORBA. NO | MPLEMENT() ; }

public java.nath. Bi gDeci nal extract _fixed() {
t hrow or g. ong. CORBA NO_| MPLEMENT(); }

Extracts the value of the indicated type from the Any. You can determine the
type of the Any using the or g. ong. GORBA. Any. t ype() method. You can extract
the value using the appropriate extraction method. To extract a user defined
type, you can also use the Helper classes, for example:

org.ong. CCRBA. Any a = /1 get the any from sonewhere
/1l for exanple, through the DI,
/1 fromone of the OCORBA services.
oj ect val ;

switch(a.type().kind()){
case org.ong. OORBA TCKi nd. _tc_short:
val = new Short(a. extract_short());
br eak;

/letc. for other basic types
defaul t :

if(a type().equal (AStructHel per.type()){
val = AStruct Hel per.extract(a);

}

}

/1 el se some other user defined types
br eak;

You can also obtain the same kind of result by using the class
or g. ong. GORBA. portabl e. | nput Stream

Any::insert_type()

abstract public void insert_short(short s);
abstract public void insert_long(int i);
abstract public void insert_longlong(long I);
abstract public void insert_ushort(short s);
abstract public void insert_ulong(int i);
abstract public void insert_ulonglong(long I);
abstract public void insert_float(float f);
abstract public void insert_doubl e(doubl e d);
abstract public void insert_bool ean(bool ean b);
abstract public void insert_char(char c)

throws org. ong. CCRBA DATA CONVERS| ON

37

abstract public void insert_wchar(char c);

abstract public void insert_octet(byte b);

abstract public void insert_any(org.ong. CORBA Any a);

abstract public void insert_Cbject(org. onmy. GCORBA (hj ect obj);
abstract public void insert_TypeGCode(org. ong. CCRBA TypeCode t);
abstract public void insert_Val ue(java.io.Serializable v);

abstract public void insert_Val ug(
java.io. Serializable v,

or g. ong. CCRBA. TypeCode t
) throws org. ony. CORBA. MARSHAL;

abstract public void insert_Qhject(
or g. ong. CORBA. (hj ect obj,
or g. ong. CCRBA. TypeCode t

) throws org. ong. CORBA. BAD PARAM

abstract public void insert_string(String s)
t hr owns

or g. ong. CCRBA. DATA CONVERSI CN,
org. ongy. CORBA. MARSHAL;

abstract public void insert_wstring(String s)
t hrows org. ong. CORBA MARSHAL;

public void insert_fixed(java. math. Bi gDeci mal val ue)
{ throw new org. ong. CCRBA. NO | MPLEMENT() ;

public void insert_fixed(
j ava. nat h. Bi gDeci nal val ue,

or g. ong. CCRBA. TypeCode type

t hrows org. ong. CORBA BAD | NV_CRDER {
t hrow new or g. ong. CCRBA NO_| MPLEMENTY() ;

}

public void insert_Streanabl e(
org.ony. CORBA portabl e. Streamabl e s) {

t hrow new or g. ong. CORBA. NO | MPLEMENT() ; }

Insert a value of the indicated type into the Any. Previous values held in the
Any are discarded and each insertion method takes a copy of the value inserted.

Parameters

Parameters

first parameter The actual value to insert into the Any.
tc The TypeCode of the value being inserted.

You can use the naneHel per class to insert a user-defined type. For example,

given the following IDL:

/11D
struct AStruct{
string str;

fl oat nunber;

}s

Use the i nsert () method generated on the ASt r uct Hel per class:

/1 Java
org. ong. CORBA Any a = new or g. ormg. CCRBA Any();

Astruct s = new Astruct (“String”, 1.0f);

try {
Astruct Hel per.insert(a,s);
}

cat ch(org. onmg. OCRBA Syst enExcepti on) {
/1 do sonet hi ng here

}
The same result can be achieved using the Qut put St ream

Any::read_value()

abstract public void read_val ue(
org. ong. GCRBA. portabl e. I nput Streamii s,

or g. ong. GCRBA. TypeCode t
) throws org. ong. CORBA. MARSHAL;

Reads an object from an I nput St r eamfor the current Any.

is The I nput St reamto read the data from.

t The TypeCode of the object to be read from
the stream.

39

Any::type()
abstract public org.ong. CORBA TypeCode type();
Returns the Typecode of the oj ect encapsulated within the Any.

abstract public void type(org. ony. OCCRBA TypeCode t);
Sets the Typecode of the Qbj ect encapsulated within the Any.

Parameters

t The TypeCode of the object.

Any::write_value()

abstract public void wite_val ue(

or g. ong. CORBA. port abl e. Qut put St ream os

)

Writes the object contained within the Any into the specified Qut put St ream
Parameters

0s The Qut put St reamto write the data to.

40

CORBA::ArrayDef Interface

See Also

See Also

The ArrayDef interface represents a one-dimensional array in an interface
repository. A multi-dimensional array is represented by an ArrayDef with an
element type that is another array definition. The final element type
represents the type of element contained in the array. An instance of
interface ArrayDef can be created using create_array().

// 1DL in nmodul e CCRBA

interface ArrayDef : | DLType {
attribute unsigned | ong | ength;
readonly attribute TypeCode el enent _type;
attribute | DLType el enent type def;

}s

OCRBA: : | DLType

CORBA: : ArrayDef: : el enent _type def
CORBA: : Repository::create_array()

ArrayDef::element_type Attribute

/1 1D
readonly attribute TypeCode el enent _type;

/1 Java
or g. ong. CCRBA. TypeCode el enent _type();

Identifies the type of the element contained in the array. This contains the
same information as in the el enent _t ype_def attribute.

OCORBA: : ArrayDef: : el enent _type_def

ArrayDef::element_type def Attribute

/1 1D
attribute | DLType el ement _type_def;

41

/1 Java
org. ong. OCCRBA. | DLType el enent _type_def();

Describes the type of the element contained within the array. This contains
the same information as in the attribute el enent _t ype attribute.

The type of elements contained in the array can be changed by changing this
attribute. Changing this attribute also changes the el ement _t ype attribute.

See Also OCORBA: : ArrayDef: : el enent _t ype

ArrayDef::length Attribute

/1 1D
attribute unsigned |ong | ength;

/1 Java
int length();

Returns the number of elements in the array.
void length(int _val);

Specifies the number of elements in the array.

42

CORBA::AttributeDef Interface

The At tri but eDef interface describes an attribute of an interface in the
interface repository.

// 1DL in nmodul e CCRBA

interface AttributeDef : Contained {
readonly attribute TypeCode type;
attribute | DLType type def;
attribute Attribut eMbde node;

}s

The inherited descri be() method is also described.

See Also CORBA: : Cont ai ned
OCORBA: :InterfaceDef::create attribute()

AttributeDef::describe()

/1 1D
Description describe();

Inherited from Cont ai ned. The Defi ni ti onKi nd for the ki nd member of this
structure is dk_Attri but e. The value member is an any whose TypeCode is
_tc_AttributeDescription. The value is a structure of type

Attribut eDescription.

See Also OORBA: : Cont ai ned: : descri be()

AttributeDef::mode Attribute

/1 1D
attribute AttributeMde node;

/1 Java
org. ong. CORBA. Attri but eMbde node();

Returns the mode of the attribute.

43

/1 Java
voi d node(

org. onyg. CORBA Attri but eMbde _val
)s

Specifies whether the attribute is read and write (ATTR_ NCRVAL) or read-only
(ATTR_READONLY). T

AttributeDef::type Attribute

/1 1DL
readonly attribute TypeCode type;

[/ Java
or g. ong. CCRBA. TypeCode type();

Returns the type of this attribute. The same information is contained in the
type_def attribute.

See Also QORBA: : TypeCode
OORBA: : AttributeDef::type def

AttributeDef::type def Attribute

/1 1D
attribute | DLType type_def;

/1 Java
org. ong. CCRBA. | DLType type_def();

Returns the type of this attribute.

[/ Java
voi d type_def (

org. ong. CCRBA. | DLType _val
)

44

See Also

Describes the type for this attribute. The same information is contained in the
t ype attribute. Changing the t ype_def attribute automatically changes the

t ype attribute.

CCRBA: : | DLType
(IPBA:N.trlEuteDef::type

45

46

CORBA::ConstantDef Interface

See Also

See Also

Interface Const ant Def describes an IDL constant in the interface repository.
The name of the constant is inherited from Cont ai ned.

/1 1DL

/1 in modul e CCRBA

interface ConstantDef : Contained {
readonly attribute TypeCode type;
attribute | DLType type_def;
attribute any val ue;

}s

/1 Java

public interface Constant Def
ext ends Const ant Def Qper at i ons,
or g. ong. GORBA. Cont ai ned

{

}

The inherited operation descri be() is also described.

CCORBA: : Cont ai ned
OORBA: : Cont ai ner: : create_constant ()

ConstantDef::describe()

/1 1D
Description describe();

Inherited from Cont ai ned, descri be() returns a structure of type Cont ai ned:
: Descri ption.

The ki nd member is dk_Const ant .

The val ue member is an any whose TypeCode is _t c_Const ant Descri pti on
and whose value is a structure of type Const ant Descri pti on.

OCORBA: : Cont ai ned: : descri be()

47

Orbix 2000 Programmer’s Reference Java Edition

See Also

See Also

48

ConstantDef::type Attribute

/1 1DL
readonly attribute TypeCode type;

/1 Java
or g. ong. CCRBA. TypeCode type();

Identifies the type of this constant. The type must be a TypeCGode for one of the
simple types (such as | ong, short, fl oat, char, string, doubl e, bool ean,
unsi gned | ong, and unsi gned short). The same information is contained in
the type_def attribute.

OCORBA: : Const ant Def : : t ype def

ConstantDef::type def Attribute

/1 1DL
attribute | DLType type_def;

[/ Java
org. ong. CCRBA. | DLType type_def();

Returns the type of this constant.
voi d type_def (org. ong. CCRBA | DLType _val);

Identifies the type of the constant. The same information is contained in the
t ype attribute.

The type of a constant can be changed by changing its t ype_def attribute.
This also changes its t ype attribute.

QOORBA: : Const ant Def : : type

ConstantDef::value Attribute

/] 1DL
attribute any val ue;

[/ Java
or g. ong. CCRBA. Any val ue();

Returns the value of this attribute.

voi d val ue(org. onmg. CCRBA Any _val);

See Also

Contains the value for this constant. When changing the val ue attribute, the
TypeCode of the any must be the same as the t ype attribute.

CCRBA: : TypeCode

49

Orbix 2000 Programmer’s Reference Java Edition

50

CORBA::ConstructionPolicy Interface

When new object references are created, the Const r ucti onPol i cy object
allows the caller to specify that the instance should be automatically
assigned membership in a newly created policy domain. When a policy
domain is created, it also has a Domai nManager object associated with it. The
Const ructi onPol i cy object provides a single operation that makes the

Donai nManager object.

// 1DL in CORBA Modul e
interface ConstructionPolicy: Policy {
voi d nmake _donai n_nmanager (
in OORBA : I nterfaceDef object_type,
i n bool ean constr_policy

)
}s

ConstructionPolicy::make_domain_manager()

/1 1DL
voi d nake_domai n_nmanager (
in QORBA :InterfaceDef object _type,
i n bool ean constr_policy
)
[/ Java
voi d nake_domai n_nmanager (
org. ong. GCRBA. I nter f aceDef obj ect _type,
bool ean constr_policy

)

This operation sets the construction policy that is to be in effect in the policy
domain for which this Const ructi onPol i cy object is associated.

51

Parameters

See Also

52

obj ect _type

constr_policy

The type of the objects for which domain managers will be
created. If this is nil, the policy applies to all objects in the
policy domain.

A value of true indicates to the ORB that new object
references of the specified obj ect _t ype are to be associated
with their own separate policy domains (and associated
domain manager). Once such a construction policy is set, it
can be reversed by invoking nake domai n_nmanager () again
with the value of false.

A value of false indicates the construction policy is set to
associate the newly created object with the policy domain of
the creator or a default policy domain.

You can obtain a reference to the newly created domain manager by calling
get domai n_nanager s() on the newly created object reference.

QCRBA: : Dormai nManager
OORBA: : (hj ect : : _get _donai n_nanager s()

CORBA::Contained Interface

Interface Cont ai ned is an abstract interface that describes interface
repository objects that can be contained in a module, interface, or repository.
It is a base interface for the following interfaces:

Modul eDef
| nt er f aceDef
Const ant Def

Typedef Def
Except i onDef
At tri but eDef
Qper at i onDef
St r uct Def
Enunief

Uni onDef

Al'i asDef

Val ueDef

The complete interface is shown here:

/1 1D
/1 1n modul e CCRBA
interface Contained : | RMject {

/1 read/wite interface
attribute Repositoryld id;
attribute ldentifier name;
attribute VersionSpec version;

// read interface
readonly attribute Container defined_in;
readonly attribute ScopedName absol ut e nane;
readonly attribute Repository containing repository;
struct Description {

Definitionki nd ki nd;

any val ue;

}s

Descri ption describe();

53

/1 wite interface

voi d nove(
in Contai ner new _contai ner,
in ldentifier new nane,
i n Versi onSpec new version

)

See Also QCRBA: : Cont ai ner
OORBA: : R(bj ect

Contained::absolute_name Attribute

/11D
readonly attribute ScopedNane absol ut e_nane;

// Java
java.lang. String absol ute_nane();

Gives the absolute scoped name of an object.

Contained::containing_repository Attribute

/1 1D
readonly attribute Repository containing_repository;

[/ Java
or g. ong. OCRBA Repository contai ni ng_repository();

Gives the Reposi t ory within which the object is contained.

Contained::defined_in Attribute

/] 1DL
attribute Container defined_in;

[/ Java
or g. ong. OCRBA. Cont ai ner defined_in();

Specifies the Container for the interface repository object in which the object
is contained.

54

See Also

See Also

An IFR object is said to be contained by the IFR object in which it is defined.
For example, an | nt er f aceDef object is contained by the Modul eDef in which
it is defined.

A second notion of contained applies to objects of type Attri but eDef or
Qper at i onDef . These objects may also be said to be contained in an

I nt erf aceDef object if they are inherited into that interface. Note that
inheritance of operations and attributes across the boundaries of different
modules is also allowed.

CCRBA: : Cont ai ner: : contents()

Contained::describe()

/1 1D
Description describe();

/1 Java
or g. ong. CORBA. Cont ai nedPackage. Descri ption descri be();

Returns a structure of type Description.

The ki nd field of the Descri pti on structure contains the same value as the
def ki nd attribute that Cont ai ned inherits from | RObj ect .

OCRBA: : Cont ai ner: : descri be _contents()
CCORBA: : DefinitionKind

Contained::Description Structure

/1 1D
struct Description {

DefinitionKi nd ki nd;
any val ue;

}s

This is a generic form of description which is used as a wrapper for another
structure stored in the val ue field.

Depending on the type of the Cont ai ned object, the val ue field will contain a
corresponding description structure:

Const ant Descri pti on
Excepti onDescri ption

55

Attribut eDescription
Qper ati onDescri ption
Modul eDescri ption

I nterfaceDescription
TypeDescri ption

The last of these, TypeDescri pti on is used for objects of type Struct Def,
Uni onDef , EnunDef , and Al i asDef (it is associated with interface Typedef Def
from which these four listed interfaces inherit).

Contained::id Attribute

/1 1DL
attribute Repositoryld id;

/1 Java
java.lang. String id();
void id(java.lang. String _val);

A Reposi toryl d provides an alternative method of naming an object.

In order to be CORBA compliant the naming conventions specified for
CORBA Reposi t oryl ds should be followed. Changing the i d attribute
changes the global identity of the contained object. It is an error to change
the i d to a value that currently exists in the contained object’s Reposi t ory.

Contained::move()

/1 1D
voi d rmove(

i n Contai ner new _contai ner,
in ldentifier new nane,
i n Versi onSpec new versi on
)
/1 Java
voi d nmove(
or g. ong. GORBA. Cont ai ner new_cont ai ner,
java.lang. String new _nare,
java.lang. String new version

)

See Also

See Also

Removes this object from its container, and adds it to the container specified

by new cont ai ner. The new container must:

® Bein the same repository.

®* Be capable of containing an object of this type.

* Not contain an object of the same name (unless multiple versions are
supported).

The name attribute of the object being moved is changed to that specified by
the new nane parameter. The ver si on attribute is changed to that specified
by the new ver si on parameter.

CQCRBA: : Cont ai ner

Contained::name Attribute

/1 1D
attribute ldentifier nane;

/1 Java
java.lang. String name();

void name(java.lang. String _val);

Return or set the name of the object within its scope. For example, in the
following definition:

/1 1DL

interface Exanpl e {
voi d op();

h

the names are Exanpl e and op. A nane must be unique within its scope but is
not necessarily unique within an interface repository. The nane attribute can
be changed but it is an error to change it to a value that is currently in use
within the object’s Cont ai ner .

QCRBA: : Cont ai ned: :id

Contained::version Attribute

/1 1D
attribute VersionSpec version;

57

58

/1 Java
java.lang. String version();

void version(java.lang. String _val);

Return or set the version number for this object. Each interface object is
identified by a version which distinguishes it from other versioned objects of
the same name.

CORBA::Container Interface

Interface Cont ai ner describes objects that can contain other objects in the
interface repository. A Cont ai ner can contain any number of objects derived
from the Cont ai ned interface. Such objects include:

At tri but eDef
Const ant Def
Except i onDef
| nt er f aceDef
Modul eDef

Qper at i onDef

Typedef Def
Val ueDef

Val ueMenber Def
The interface is shown here:

/11D
// 1'n CORBA Mdul e
interface Container : | RMject {
/1 read interface
Cont ai ned | ookup(
i n ScopedNane sear ch_nane) ;

Cont ai nedSeq cont ent s(
inDefinitionKind limt_type,
i n bool ean excl ude_i nheri t ed

)

Cont ai nedSeq | ookup_narre(
in ldentifier search_nane,

inlong | evel s_to_search,
inDefinitionKind limt_type,
i n bool ean excl ude_i nheri t ed

Descri ptionSeq descri be_cont ent s(
inDefinitionKind limt_type,

59

i n bool ean excl ude_i nheri t ed,
in long nmax_returned_objs

)

/1l wite interface

Modul eDef creat e_nodul e(
in Repositoryld id,
in ldentifier nane,
i n Versi onSpec version

)

Const ant Def creat e_const ant (
in Repositoryldid,
in Identifier nane,
i n Versi onSpec version,
in | DLType type,
in any val ue

)

Struct Def create struct(
in Repositoryldid,
in ldentifier nane,
i n VersionSpec version,
in Struct Menber Seq nenber s

)

Uni onDef create_uni on(
in Repositoryld id,
in ldentifier nane,
i n VersionSpec version,
in | DLType discrininator_type,
i n Uni onMenber Seq nenber s
)

EnunDef create_enun(
in Repositoryld id,
in ldentifier nane,
i n Versi onSpec version,
i n EnunmiMenber Seq nenber s

)

AliasDef create alias(
in Repositoryldid,

in ldentifier nane,

i n Versi onSpec versi on,

in | DLType original _type
)

InterfaceDef create interface(
in Repositoryld id,
in ldentifier nare,
i n Versi onSpec versi on,
in I nterfaceDef Seq base_interfaces
i n bool ean i s_abstract

)

Val ueDef create val ue(

in Repositoryldid,

I dentifier nane,

Ver si onSpec ver si on,

bool ean i s_cust om

bool ean i s_abstract,

Val ueDef base_val ue,

bool ean i s_truncatabl e,

Val ueDef Seq abstract _base_val ues,
I nt erfaceDef supported_interface,
InitializerSeq initializers

D 3 O3 O3 3 303 535 5

)

Val ueBoxDef create val ue box(
in Repositoryld id,
in ldentifier nane,
i n Versi onSpec ver si on,
in | DLType origi nal _type_def

)

Except i onDef create_exception(
in Repositoryld id,
in ldentifier nane,
i n Versi onSpec versi on,
in Struct Menber Seq nenber s

)

Nat i veDef create native(
in Repositoryld id,
in ldentifier nare,

61

See Also

Parameters

See Also

62

i n Versi onSpec version,
)
}; // End Interface Container

OORBA: : | R(pj ect

Container::contents()

/1 1D
Cont ai nedSeq cont ent s(

inDefinitionKind lint_type,
i n bool ean excl ude_i nherited

)

/1 Java
org. ong. CCRBA. (ont ai ned[] cont ent s(

org.ony. CORBA DefinitionKind Iimt_type,

bool ean excl ude_i nherited
)s
Returns a sequence of Cont ai ned objects that are directly contained in (defined
in or inherited into) the target object. This operation can be used to navigate
through the hierarchy of definitions—starting, for example, at a Reposi tory.

limt_type If set to dk_al |, all of the contained interface reposi-
tory objects are returned. If set to the
Defi ni ti onKi nd for a specific interface type, it
returns only interfaces of that type. For example, if
set to, dk_Qperati on, then it returns contained oper-
ations only.

exclude_inherited Applies only to interfaces. If true, no inherited objects
are returned. If false, objects are returned even if they
are inherited.

OCRBA: : Cont ai ner: : descri be_content s()
QCRBA: : Defi ni tionKi nd

Parameters

Exceptions

Container::create_alias()

/1 1D
AliasDef create_alias(

in Repositoryld id,
in ldentifier nane,
i n Versi onSpec ver si on,
in | DLType original _type
)
/1l Java
org.ony. CORBA Al i asDef create_alias(
java.lang. String id,
java.lang. String nane,
java.lang. String version,
org. ong. GCRBA. | DLType ori gi nal _type
)

Creates a new Al i asDef object within the target Cont ai ner. The defined in
attribute is set to the target Cont ai ner . The cont ai ni ng_r eposi t ory attribute
is set to the Reposi t ory in which the new Al i asDef object is defined.

id The repository ID for the new Al i asDef object. An excep-
tion is raised if an interface repository object with the same
I Dalready exists within the object’s repository.

name The name for the new Al i asDef object. It is an error to
specify a name that already exists within the object’s
Cont ai ner when multiple versions are not supported.

ver si on A version for the new Al i asDef .
original _type The original type that is being aliased.

BAD PARAM An object with the specified i d already exists in the reposi-
minor code 2tory.

BAD_PARAM The specified nane already exists within this Cont ai ner and
minor code 3 multiple versions are not supported.

BAD_PARAM The created object is not allowed by the Cont ai ner. Certain
minor code 4 interfaces derived from Cont ai ner may restrict the types of
definitions that they may contain.

63

See Also

Parameters

64

QCRBA: : Al i asDef

Container::create_constant()

/1 1D
Const ant Def creat e_const ant (

in Repositoryld id,
in ldentifier nane,
i n VersionSpec version,
in | DLType type,
in any val ue

)s

/1 Java

or g. ong. OCRBA. Const ant Def creat e_const ant (
java.lang. String id,
java.lang. String narre,
java.lang. String version,
org. onyg. CCRBA. | DLType type,
or g. ong. CCRBA. Any val ue

)s

Creates a Const ant Def object within the target Cont ai ner . The defi ned_i n
attribute is set to the target Cont ai ner. The cont ai ni ng_r eposi t ory attribute
is set to the Reposi t ory in which the new Const ant Def object is defined.

id The repository ID of the new Const ant Def object. It is an error to
specify an ID that already exists within the object’s repository.

nane The name of the new Const ant Def object. It is an error to specify a
name that already exists within the object’s Cont ai ner when multi-
ple versions are not supported.

version The version number of the new Const ant Def object.

type The type of the defined constant. This must be one of the simple
types (I ong, short, ul ong, ushort, fl oat, doubl e, char, string,
bool ean).

val ue The value of the defined constant.

Exceptions

See Also

Parameters

BAD PARAM An object with the specified i d already exists in the reposi-
minor code 2tory.

BAD_PARAM The specified nane already exists within this Cont ai ner and
minor code 3 multiple versions are not supported.

BAD_PARAM The created object is not allowed by the Cont ai ner . Certain
minor code 4 interfaces derived from Cont ai ner may restrict the types of
definitions that they may contain.

QCRBA: : Const ant Def

Container::create_enum()

/1 1D
EnunDef creat e_enun(

in Repositoryld id,
in ldentifier nare,
i n Versi onSpec ver si on,
i n EnumMenber Seq nenber s
)
/1 Java
or g. ong. CCRBA. EnunDef creat e_enun{
java.lang. String id,
java.lang. String nane,
java.lang. String version,
java.lang. String[] nenbers
)
Creates a new Enunief object within the target Cont ai ner. The defined_in
attribute is set to Cont ai ner. The cont ai ni ng_reposi t ory attribute is set to
the Reposi t ory in which the new EnunbDef object is defined.

id The repository ID of the new EnunDef object. It is an error to spec-
ify an ID that already exists within the Reposi tory.

name The name of the EnunDef object. It is an error to specify a name
that already exists within the object’s Cont ai ner when multiple
versions are not supported.

65

Exceptions

See Also

66

version The version number of the new Enunbef object.

menbers A sequence of structures that describes the members of the new
EnunDef object.

BAD PARAM An object with the specified i d already exists in the reposi-
minor code 2tory.

BAD_PARAM The specified nane already exists within this Cont ai ner and
minor code 3 multiple versions are not supported.

BAD_PARAM The created object is not allowed by the Cont ai ner. Certain
minor code 4 interfaces derived from Cont ai ner may restrict the types of
definitions that they may contain.

QCORBA: : Enunief

Container::create_exception()

/1 1D
Excepti onDef create_exception(

in Repositoryld id,
in ldentifier nane,
i n VersionSpec version,
in Struct Menber Seq nenber s
)s
/1 Java
or g. ong. OORBA. Excepti onDef create_exception(
java.lang. String id,
java.lang. String nare,
java.lang. String version,
or g. ong. CORBA. Struct Menber[] menbers

)
Creates a new Excepti onDef object within the target Cont ai ner. The

defined i n attribute is set to Cont ai ner. The cont ai ni ng_reposi tory at-
tribute is set to the Reposi t or y in which new Except i onDef object is defined.

Parameters

Exceptions

See Also

id The repository ID of the new Except i onDef object. It is an error to
specify an ID that already exists within the object’s repository.

name The name of the new Excepti onDef object. It is an error to spec-
ify a name that already exists within the object’s Cont ai ner when
multiple versions are not supported.

version A version humber for the new Excepti onDef object.

nmenbers A sequence of Struct Menber structures that describes the mem-
bers of the new Except i onDef object.

BAD PARAM An object with the specified i d already exists in the reposi-
minor code 2tory.

BAD_PARAM The specified nane already exists within this Cont ai ner and
minor code 3 multiple versions are not supported.

BAD_PARAM The created object is not allowed by the Cont ai ner. Certain
minor code 4 interfaces derived from Cont ai ner may restrict the types of
definitions that they may contain.

CORBA: : Except i onDef

Container::create_interface()

/1 1D
InterfaceDef create_interface(

in Repositoryld id,
in ldentifier nane,
i n Versi onSpec ver si on,
in InterfaceDef Seq base_interfaces
in bool ean i s_abstract
)
/1 Java
org.ony. CCRBA. InterfaceDef create_interface(
java.lang. String id,
java.lang. String nane,
java.lang. String version,
org. ong. GCRBA. I nterfaceDef[] base_interfaces

67

Parameters

Exceptions

See Also

68

)

Creates a new empty I nt er f aceDef object within the target Container. The
defi ned_i n attribute is set to Cont ai ner. The cont ai ni ng repository at-
tribute is set to the Reposi t ory in which the new I nt er f aceDef object is
defined.

id The repository ID of the new | nt er f aceDef object. It is
an error to specify an ID that already exists within the
object’s repository.

nane The name of the new I nt er f aceDef object. It is an error
to specify a name that already exists within the object’s
Cont ai ner when multiple versions are not supported.

ver si on A version for the new | nt er f aceDef object.

base_interfaces A sequence of I nterfaceDef objects from which the
new interface inherits.

i s_abstract If true the interface is abstract.

BAD PARAM An object with the specified i d already exists in the reposi-
minor code 2tory.

BAD_PARAM The specified nane already exists within this Cont ai ner and
minor code 3 multiple versions are not supported.

BAD_PARAM The created object is not allowed by the Cont ai ner. Certain
minor code 4 interfaces derived from Cont ai ner may restrict the types of
definitions that they may contain.

QCORBA: : | nt er f aceDef

Container::create_module()

/1 1D
Modul eDef create_nodul e (

in Repositoryld id,
in ldentifier nane,
i n VersionSpec version

Parameters

Exceptions

/1 Java
or g. ong. CORBA. Mbdul eDef creat e_rmodul e(

java.lang. String id,
java.lang. String nane,
java.lang. String version

)

Creates an empty Modul eDef object within the target Cont ai ner. The
defined i n attribute is set to Cont ai ner. The cont ai ni ng_reposi tory at-
tribute is set to the repository in which the newly created Modul eDef object is
defined.

id The repository ID of the new Mdul eDef object. It is an error to
specify an ID that already exists within the object’s repository.

name The name of the new Mddul eDef object. It is an error to specify a
name that already exists within the object’s Cont ai ner when mul-
tiple versions are not supported.

version A version for the Modul eDef object to be created.

BAD PARAM An object with the specified i d already exists in the reposi-
minor code 2tory.

BAD_PARAM The specified nane already exists within this Cont ai ner and
minor code 3 multiple versions are not supported.

BAD_PARAM The created object is not allowed by the Cont ai ner. Certain
minor code 4 interfaces derived from Cont ai ner may restrict the types of
definitions that they may contain.

Container::create_native()

/1 1D
Nat i veDef create_native(

in Repositoryld id,
in ldentifier nane,
i n Versi onSpec ver si on,

69

Parameters

Exceptions

70

/1 Java
org. ony. OCRBA Nati veDef create_native(

java.lang. String id,
java.lang. String narre,
java.lang. String version

)

Creates a Nat i veDef object within the target Cont ai ner. The defi ned_in
attribute is set to Cont ai ner. The cont ai ni ng_reposi t ory attribute is set to
the repository in which the newly created Nati veDef object is defined.

id The repository ID of the new Nat i veDef object. It is an error to
specify an ID that already exists within the object’s repository.

nane The name of the new Nat i veDef object. It is an error to specify a
name that already exists within the object’s Cont ai ner when mul-
tiple versions are not supported.

version A version for the Nati veDef object to be created.

BAD PARAM An object with the specified i d already exists in the reposi-
minor code 2tory.

BAD_PARAM The specified nane already exists within this Cont ai ner and
minor code 3 multiple versions are not supported.

BAD_PARAM The created object is not allowed by the Cont ai ner. Certain
minor code 4 interfaces derived from Cont ai ner may restrict the types of
definitions that they may contain.

Container::create_struct()

/1 1DL
Struct Def create_struct(

in Repositoryld id,

in ldentifier nane,

i n VersionSpec version,

in Struct Menber Seq menber s

Parameters

Exceptions

See Also

/1 Java
org. ong. CORBA Struct Def create_struct (

java.lang. String id,

java.lang. String nane,

java.lang. String version,

org. ong. GCRBA. Struct Menber[] nenbers
)

Creates a new Struct Def object within the target Cont ai ner. The defi ned_i n
attribute is set to Cont ai ner. The cont ai ni ng_reposi t ory attribute is set to
the repository in which the new Struct Def object is defined.

id The repository ID of the new St ruct Def object. It is an error to
specify an ID that already exists within the object’s repository.

name The name of the new Struct Def object. It is an error to specify a
name that already exists within the object’s Cont ai ner when mul-
tiple versions are not supported.

version A version for the new Struct Def object.

nmenbers A sequence of Struct Menber structures that describes the mem-
bers of the new Struct Def object.

BAD PARAM An object with the specified i d already exists in the reposi-
minor code 2tory.

BAD_PARAM The specified nane already exists within this Cont ai ner and
minor code 3 multiple versions are not supported.

BAD_PARAM The created object is not allowed by the Cont ai ner. Certain
minor code 4 interfaces derived from Cont ai ner may restrict the types of
definitions that they may contain.

CCORBA: : Struct Def

Container::create_union()

/1 1D
Uni onDef creat e_uni on(

in Repositoryld id,

71

Parameters

Exceptions

72

in ldentifier nane,

i n VersionSpec version,

in | DLType discrim nator_type,
i n Uni onMenber Seq menber s

)

/1 Java

or g. ong. GCRBA. Uni onDef creat e_uni on(
java.lang. String id,
java.lang. String narre,
java.lang. String version,
org. ong. CORBA. | DLType di scri m nat or _t ype,
or g. ong. GCRBA. Uni onMenber[] nenbers

)

Creates a new Uni onDef object within the target Cont ai ner . The defined_in
attribute is set to the target Cont ai ner. The cont ai ni ng_r eposi t ory attribute
is set to the repository in which the new Uni onDef object is defined.

nane

versi on
di scriminator_type

nenber s

The repository ID of the new Uni onDef object. It is
an error to specify an ID that already exists within
the object’s repository.

The name of the new Uni onDef object. It is an error
to specify a name that already exists within the
object’'s Cont ai ner when multiple versions are not
supported.

A version for the new Uni onDef object.
The type of the union discriminator.

A sequence of Uni onMenber structures that
describes the members of the new Uni onDef object.

BAD PARAM An object with the specified i d already exists in the reposi-

minor code 2tory.

BAD_PARAM The specified nare already exists within this Cont ai ner and
minor code 3 multiple versions are not supported.

BAD_PARAM The created object is not allowed by the Cont ai ner. Certain
minor code 4 interfaces derived from Cont ai ner may restrict the types of
definitions that they may contain.

See Also COCRBA: : Uni onDef

Container::create_value()

/1 1DL
Val ueDef create_val ue(
in Repositoryld id,
in ldentifier nane,
i n VersionSpec ver si on,
i n bool ean i s_cust om
in bool ean is_abstract,
in Val uelDef base_val ue,
in bool ean is_truncatabl e,
i n Val ueDef Seq abst ract _base_val ues,
in InterfaceDef supported_interfaces,
inlnitializerSeq initializers
)
/1l Java
or g. ong. CORBA. Val ueDef creat e_val ue(
java.lang. String id,
java.lang. String nane,
java.lang. String version,
bool ean i s_cust om
bool ean i s_abstract,
byte fl ags,
or g. ong. GORBA. Val ueDef base_val ue,
bool ean has_saf e_base,
org. ong. GCRBA. Val ueDef[] abstract _base_val ues,
org. ong. GCRBA. I nter f aceDef supported_interfaces,
org.ong. CCRBA. Initializer[] initializers

73

Parameters

Exceptions

74

Creates a new empty Val ueDef object within the target Cont ai ner. The
defi ned_i n attribute is set to Cont ai ner. The cont ai ni ng repository at-
tribute is set to the repository in which the new Val ueDef object is defined.

id The repository ID of the new Val ueDef object. It is
an error to specify an ID that already exists within
the object’s repository.

nane The name of the new Val ueDef object. It is an error
to specify a name that already exists within the
object’s Cont ai ner when multiple versions are not

supported.
ver si on A version for the new Val ueDef object.
i s_custom If true the value type is custom.
i s_abstract If true the value type is abstract.
base val ue The base value for this value type.
i s_truncatabl e if true the value type is truncatable.

abstract _base_val ues A sequence of Val ueDef structures that describes the
base values of the new Val ueDef object.

supported_i nterfaces The interface the value type supports.

initializers A sequence of initializers for the new Val ueDef
object.

BAD PARAM An object with the specified i d already exists in the reposi-
minor code 2tory.

BAD_PARAM The specified nare already exists within this Cont ai ner and
minor code 3 multiple versions are not supported.

BAD_PARAM The created object is not allowed by the Cont ai ner. Certain
minor code 4 interfaces derived from Cont ai ner may restrict the types of
definitions that they may contain.

Parameters

Exceptions

Container::create_value_box()

/1 1D
Val ueBoxDef creat e_val ue_box(

in Repositoryldid,
in ldentifier nane,
i n VersionSpec ver si on,
in | DLType origi nal _type_def
)
/1l Java
or g. ong. CORBA. Val ueBoxDef creat e_val ue_box(
java.lang. String id,
java.lang. String nane,
java.lang. String version,
org. ong. GCRBA. | DLType ori gi nal _type_def
)

Creates a new empty Val ueBoxDef object within the target Cont ai ner. The
defi ned i n attribute is set to Cont ai ner. The cont ai ni ng_reposi tory at-
tribute is set to the repository in which the new Val ueBoxDef object is defined.

id The repository ID of the new Val ueBoxDef object. It
is an error to specify an ID that already exists within
the object’s repository.

name The name of the new Val ueBoxDef object. It is an
error to specify a name that already exists within the
object’s Cont ai ner when multiple versions are not
supported.

version A version for the new Val ueBoxDef object.
original _type_ def The IDL data type of the value box.

BAD PARAM An object with the specified i d already exists in the reposi-
minor code 2tory.

75

Parameters

76

BAD_PARAM The specified nane already exists within this Cont ai ner and
minor code 3 multiple versions are not supported.

BAD_PARAM The created object is not allowed by the Cont ai ner. Certain
minor code 4 interfaces derived from Cont ai ner may restrict the types of
definitions that they may contain.

Container::describe_contents()

/1 1D
Descri ptionSeq descri be_content s(

inDefinitionKind lint_type,
i n bool ean excl ude_i nheri t ed,
in long max_returned_objs
)s
/1 Java
or g. ong. OCRBA. Cont ai ner Package. Descri ption[] describe_cont ent s(
org.ony. CORBA. DefinitionKind limt_type,
bool ean excl ude_i nheri t ed,
int max_returned_objs

)

Returns a sequence of structures of type Cont ai ner: : Descri pti on.
descri be_content s() isacombination of operations Cont ai ned: : descri be()
and Cont ai ner: : contents().

limt_type If this is set to dk_al I, then all of the contained inter-
face repository objects are returned. If set to the
Def i ni ti onKi nd for a particular interface repository
kind, it returns only objects of that kind. For example,
if set to dk_Qper at i on, then it returns contained oper-
ations only.

exclude_inherited Applies only to interfaces. If true, no inherited objects
are returned. If false, objects are returned even if they
are inherited.

max_returned_objs The number of objects that can be returned in the call.
Setting a value of - 1 means return all contained
objects.

See Also

Parameters

See Also

OCORBA: : Cont ai ner : : cont ent s()
CCORBA: : Cont ai ned: : descri be()

Container::lookup()

/1 1D
Cont ai ned | ookup(

i n ScopedNane sear ch_nane
)
/1l Java
or g. ong. CCRBA. Cont ai ned | ookup(
java.lang. String search_nare
)
Locates an object name within the target container. The objects can be directly
or indirectly defined in or inherited into the target container.

search_name The nane of the object to search for relative to the target con-
tainer. If a relative name is given, the object is looked up rel-
ative to the target container. If search_nane is an absolute
scoped name (prefixed by “:: "), the object is located relative
to the containing Reposi tory.

OCORBA: : Cont ai ner : : | ookup_nane()

Container::lookup_name()

/1 1D
Cont ai nedSeq | ookup_nane (

in ldentifier search_nane,
inlong |l evel s_to_search,
inDefinitionKind limt_type,
i n bool ean excl ude_i nherited

)

/1 Java

org. ong. CORBA. Cont ai ned[] | ookup_narre(
java.lang. String search_narre,
int |evels_to_search,

77

Parameters

See Also

78

org.ony. CORBA. DefinitionKind limt_type,
bool ean excl ude_i nherited

)

Locates an object or objects by name within the target container and returns
asequence of contained objects. The named objects can be directly or indirectly
defined in or inherited into the target container. (More than one object, having
the same simple name can exist within a nested scope structure.)

sear ch_nane

|l evel s_to_search

limt_type

excl ude_i nherited

The simple name of the object to search for.

Defines whether the search is confined to the current
object or should include all interface repository
objects contained by the object. If set to -1, the cur-
rent object and all contained interface repository
objects are searched. If set to 1, only the current
object is searched.

If this is set to dk_al I, then all of the contained inter-
face repository objects are returned. If set to the

Defi ni ti onKi nd for a particular interface repository
kind, it returns only objects of that kind. For example,
if set to dk_Qper at i on, then it returns contained oper-
ations only.

Applies only to interfaces. If true, no inherited objects
are returned. If false, objects are returned even if they
are inherited.

QOCRBA: : DefinitionKi nd

CORBA::Context Class

Class OORBA: : Cont ext implements the OMG pseudo-interface Cont ext . A
context is intended to represent information about the client that is
inconvenient to pass via parameters. An IDL operation can specify that it is
to be provided with the client’s mapping for particular identifiers (properties).
It does this by listing these identifiers following the operation declaration in a
context clause.

A client can optionally maintain one or more CORBA Cont ext objects, that
provide a mapping from identifiers (string names) to string values. A Cont ext
object contains a list of properties; each property consists of a name and a
string value associated with that name and can be passed to a method that
takes a Cont ext parameter.

You can arrange Cont ext objects in a hierarchy by specifying parent-child
relationships among them. Then, a child passed to an operation also
includes the identifiers of its parent(s). The called method can decide
whether to use just the context actually passed, or the hierarchy above it.

The Cont ext class is as follows:

/1 1D
pseudo interface Context {
readonly attribute ldentifier context_nane;
readonly attribute Context parent;
Context create_child(in ldentifier child_ctx_nane);
voi d set_one_value(in ldentifier propnane, in any propval ue);
voi d set _val ues(in NvLi st val ues);
voi d del ete_values(in ldentifier propnane);
NVLi st get_val ues(in ldentifier start_scope,
in Flags op_fl ags,
inldentifier pattern);

}

[/ Java
package org. ongy. CORBA;
public abstract class Context {
public abstract String context nane();

79

public abstract Context parent();

public abstract Context create chil d(
String child_ctx_name

)

public abstract void set_one val ue(
String propnane,
Any propval ue

)

public abstract void set val ues(
NWLi st val ues

)

public abstract void del ete val ues(
String propnane

)

public abstract NwList get_val ues(
String start_scpe,
int op_flags,
String pattern

Context::context_name()

/1 Java
abstract public java.lang. String context_name();

Returns the name of the Cont ext object. Ownership of the returned value is
maintained by the Cont ext and must not be freed by the caller.

See Also QOORBA: : Cont ext: : create child()

Context::create_child()

/1 Java
abstract public org.ong. CORBA Context create_chil d(

java.lang. String child_ctx_nane
)s

Creates a child context of the current context. When a child context is passed
as a parameter to an operation, any searches (using CORBA: : Cont ext : :

80

Parameters

See Also

Parameters

Exceptions

get _val ues()) look in parent contexts if necessary to find matching property
names.

chi | d_ctx_nare The newly created context.

CORBA: : (ont ext : : get _val ues()

Context::delete_values()

/1 Java
abstract public void del ete_val ues(

java.lang. String propnamne
);

Deletes the specified property value(s) from the context. The search scope is
limited to the Cont ext object on which the invocation is made.

pr opnane The property name to be deleted. If prop_nare has a trailing
asterisk (*), all matching properties are deleted.

An exception is raised if no matching property is found.

Context::get values()

/1 Java
abstract public org.ong. CORBA NVLi st get_val ues(

java.lang. String start_scope,
int op_flags,
java.lang. String pattern

)
Retrieves the specified context property values.

81

Parameters

See Also

Parameters

See Also

82

start_scope The context in which the search for the values requested
should be started. The name of a direct or indirect parent

context may be specified to this parameter. If O is passed in,

the search begins in the context which is the target of the
call.

op_fl ags By default, searching of identifiers propagates upwards to
parent contexts; if the value CORBA: : CTX_RESTR CT_SCCPE is
specified, then searching is limited to the specified search
scope or context object.

val ues An NVLi st to contain the returned property values.
Context::parent()
/1 Java

abstract public org.ong. CORBA Context parent();

Returns the parent of the Cont ext object. Ownership of the return value is
maintained by the Cont ext and must not be freed by the caller.

OCRBA: : Context: :create _child()

Context::set_one_value()

[/ Java
abstract public void set_one_val ue(

java.lang. String propnarre,
or g. ong. CORBA. Any propval ue

)

Adds a property name and value to the Cont ext . Although the value member
is of type Any, the type of the Any must be a string.

pr opnane The name of the property to add.
pr opval ue The value of the property to add.

OORBA: : Cont ext : : set_val ues()

Parameters

See Also

Context::set_values()

/1 Java
abstract public void set_val ues(

or g. ong. GCRBA. NVLi st val ues
)
Sets one or more property values in the Cont ext . The previous value of a
property, if any, is discarded.

val ues An NVLi st containing the property_nane: val ues to add or
change. In the NWLi st , the flags field must be set to zero, and
the TypeCode associated with an attribute value must be
OORBA:: _tc_string.

CORBA: : Cont ext: : set_one _val ue()

83

84

CORBA::ContextList Class

See Also

Parameters

A Cont ext Li st allows an application to provide a list of Cont ext strings that
must be supplied when a dynamic invocation Request is invoked.

The Cont ext is where the actual values are obtained by the ORB. The

Cont ext Li st supplies only the context strings whose values are to be looked
up and sent with the request invocation. The serverless Cont ext Li st object
allows the application to specify context information in a way that avoids
potentially expensive interface repository lookups for the information by the
ORB during a request.

/1 1D
pseudo interface ContextlList {
readonly attribute unsigned | ong count;
void add(in string ctx);
string iten(in unsigned |ong index) raises (CORBA: :Bounds);
voi d renove(i n unsigned | ong index) rai ses (CCRBA: :Bounds);

}s

c
CORBA: : (hj ect:: _create_request()
CCRBA: : Request : : cont ext s

OCRBA : CRB: :create_context |ist()

ContextList::add()

/1 Java
abstract public void add(

java.lang. String ctxt
)
Adds a context string to the context list.

ctx A string representing context information.

85

CORBA::ContextList Class

Parameters

86

ContextList::count()

[/ Java
abstract public int count();

Returns the number of context strings in the context list.

ContextList::item()

/1 Java
abstract public java.lang. String iten(

i nt index
) throws org. ong. CORBA Bounds;

Returns the context item at the indexed location of the list. This return value
must not be released by the caller because ownership of the return value is
maintained by the Cont ext Li st .

i ndex The indexed location of the desired context item.

ContextList::remove()

[/ Java
abstract public void remove(
int index

) throws org. ong. CORBA Bounds;

Removes from the context list the context item at the indexed location.

CORBA::Current Interface

See Also

The Qurrent interface is the base interface for providing information about
the current thread of execution. Each ORB or CORBA service that needs its
own context derives an interface from Qurrent to provide information that is
associated with the thread of execution in which the ORB or CORBA service
is running. Interfaces that derives from Qurrent include:

Port abl eServer:: Qurrent

Your application can obtain an instance of the appropriate Qurrent interface
by invoking resol ve initial references().

Operations on interfaces derived from Qurrent access the state associated
with the thread in which they are invoked, not the state associated with the
thread from which the Qurrent was obtained.

The IDL interface follows:

/11D

nodul e GORBA {

I/ interface for the Qurrent object
interface Qurrent {

}s
}s
/1 Java

package org. ony. CORBA
public interface Qurrent extends org. ong. CCRBA (bj ect {}

Port abl eServer:: Qurrent
CORBA: : CRB::resol ve initial references()

87

88

CORBA::CustomMarshal Value Type

Custom value types can override the default marshaling/unmarshaling
mechanism and provide their own way to encode/decode their state. If an
application’s value type is marked as custom, you use custom marshaling to
facilitate integration of such mechanisms as existing class libraries and other
legacy systems. Custom marshaling is not to be used as the standard
marshaling mechanism.

Cust onMar shal is an abstract value type that is meant to be implemented by
the application programmer and used by the ORB. For example, if an
application’s value type needs to use custom marshaling, the IDL declares it
explicitly as follows:

/1 Application-specific IDL
cust om val uetype type {
/1 optional state definition

b

When implementing a custom value type such as this, you must provide a
concrete implementation of the Qust onivar shal operations so that the ORB is
able to marshal and unmarshal the value type. Each custom marshaled value
type needs its own implementation.

You can use the skeletons generated by the IDL compiler as the basis for
your implementation. These operations provide the streams for marshaling.
Your implemented Qust onvar shal code encapsulates the application code
that can marshal and unmarshal instances of the value type over a stream
using the CDR encoding. It is the responsibility of your implementation to
marshal the value type’s state of all of its base types (if it has any).

The implementation requirements of the streaming mechanism require that
the implementations must be local because local memory addresses such as
those for the marshal buffers have to be manipulated by the ORB.

Semantically, Qust onMar shal is treated as a custom value type’s implicit
base class, although the custom value type does not actually inherit it in IDL.
While nothing prevents you from writing IDL that inherits from

89

Parameters

See Also

Parameters

920

Qust onMar shal , doing so will not in itself make the type custom, nor will it
cause the ORB to treat it as a custom value type. You must implement these
Qust onar shal operations.

Implement the following IDL operations for a custom value type:

/1 1DL in nmodul e CORBA
abstract val uetype Qustoniarshal {
voi d mar shal (
i n Dat aQut put St ream os

)
voi d unnar shal (
in DatalnputStreamis
)
b

CustomMarshal::marshal()
voi d mar shal (org. ong. CORBA. Dat aCut put Stream 0s) ;

The operation you implement so that the ORB can marshal a custom value type.

0s A handle to the output stream the ORB uses to marshal the
custom value type.

Use the operations of the Dat aQut put St r eamin your implementation to write
the custom value type’s data to the stream as appropriate.

CCRBA: : Dat aQut put St ream

CustomMarshal::unmarshal()
voi d unnar shal (org. omg. CCRBA Dat al nput Stream i s) ;

The operation you implement so that the ORB can unmarshal a custom value
type.

is A handle to the input stream the ORB uses to unmarshal the
custom value type.

See Also

Use the operations of the Dat al nput St r eamin your implementation to read
the custom value type’s data from the stream as appropriate.

CCRBA: : Dat al nput St ream

91

92

CORBA::DatalnputStream Value Type

The Dat al nput St reamvalue type is a stream used by unnar shal () for
unmarshaling an application’s custom value type. You use the

Dat al nput St r eamoperations in your implementation of unmar shal () to read
specific types of data from the stream, as defined in the custom value type.
The stream takes care of breaking the data into chunks if necessary. The IDL
code is as follows:

// 1DL in nmodul e CCORBA
abstract val uetype Datal nput Stream {
any read_any();
bool ean read _bool ean();
char read _char();
wchar read wchar();
octet read octet();
short read short();
unsi gned short read ushort();
I ong read_| ong();
unsi gned | ong read_ul ong();

unsi gned | ong | ong read_ul ongl ong();
float read float();

doubl e read doubl e();

| ong doubl e read_| ongdoubl e();
string read_string();

wstring read_wstring();

oj ect read_(hj ect();

Abstract Base read_Abstract ();
Val ueBase read Val ue();

TypeCode read_TypeCode();

voi d read_any_array(
i nout AnySeq seq,
i n unsigned | ong of f set,
in unsigned | ong | ength

voi d read_bool ean_array(
i nout Bool eanSeq seq,
i n unsigned | ong of fset,

93

94

in unsigned long | ength
)
voi d read char_array(
i nout Char Seq seq,
i n unsigned | ong of f set,
in unsigned | ong | ength

)

voi d read wchar _array(
i nout Whar Seq seq,
i n unsigned | ong of f set,
in unsigned | ong | ength

)

voi d read octet array(
i nout C(ctetSeq seq,
i n unsigned | ong of f set,
in unsigned | ong | ength

)

voi d read _short _array(
i nout Short Seq seq,
i n unsigned | ong of f set,
in unsigned long | ength

)

voi d read ushort _array(
i nout Ushort Seq seq,
i n unsigned | ong of f set,
in unsigned long | ength

void read | ong_array(
i nout LongSeq seq,
i n unsigned | ong of f set,
in unsigned long | ength

)

voi d read ul ong_array(
i nout WongSeq seq,
i n unsigned | ong of f set,
in unsigned | ong | ength

)

voi d read ul ongl ong_array(
i nout WonglLongSeq seq,
i n unsigned | ong of f set,
in unsigned | ong | ength

)

voi d read | ongl ong_array(

Exceptions

See Also

i nout LonglLongSeq seq,
in unsigned | ong of fset,
in unsigned long | ength
)
voi d read float_array(
i nout Fl oat Seq seq,
in unsigned | ong of fset,
in unsigned long | ength

voi d read doubl e_array(
i nout Doubl eSeq seq,
in unsigned | ong of fset,
in unsigned long | ength

MARSHAL An inconsistency is detected for any operations.

CCRBA: : Qust onivar shal
CCORBA: : Dat aQut put St ream

DatalnputStream::read_any()

/1 1D
any read_any();

/1 Java
org. ong. CORBA. Any read_any();

Returns an any data type from the stream.

DatalnputStream::read_any array()

/1 1D
voi d read_any_array(

i nout AnySeq seq,
i n unsigned | ong of f set,
in unsigned long | ength

95

/1 Java
voi d read_any_array(

or g. ong. CCRBA. AnySeqghbl der seq,
int offset,
int length);

Reads an array of any data from the stream.

Parameters
seq The sequence into which the data is placed.
of f set The starting index from which to read from the sequence.
| engt h The number of items to read from the array.

DatalnputStream::read_boolean()

/1 1D
bool ean read_bool ean();

[/ Java
bool ean read_bool ean() ;

Returns a bool ean data type from the stream.

DatalnputStream::read_boolean_array()

/1 1D
voi d read_bool ean_array(

i nout Bool eanSeq seq,
i n unsi gned | ong of f set,
in unsigned long | ength
);
[/ Java
voi d read_bool ean_array(
or g. ong. GORBA. Bool eanSeqHol der seq,
int offset,
int length);

Reads an array of bool ean data from the stream.

96

Parameters

Parameters

seq The sequence into which the data is placed.
of f set The starting index from which to read from the sequence.
| ength The number of items to read from the array.

DatalnputStream::read_char()

/1 1DL
char read char();

/1 Java
char read_char();

Returns a char data type from the stream.

DatalnputStream::read_char_array()

/1 1D
voi d read_char _array(

i nout Char Seq seq,
i n unsigned | ong of f set,
in unsigned | ong | ength
)
/1 Java
voi d read_char_array(
or g. ong. GORBA. Char Seqghbl der seq,
int of fset,
int length);

Reads an array of char data from the stream.

seq The sequence into which the data is placed.
of f set The starting index from which to read from the sequence.
| ength The number of items to read from the array.

97

DatalnputStream::read_double()

/1 1DL
doubl e read_doubl e();

/1 Java
doubl e read_doubl e();

Returns a doubl e data type from the stream.

DatalnputStream::read_double_array()

/1 1DL
voi d read_doubl e_array(

i nout Doubl eSeq seq,
i n unsi gned | ong of f set,
in unsigned I ong | ength
)s
/1 Java
voi d read_doubl e_array(
or g. ong. CORBA. Doubl eSeqHol der seq,
int offset,
int length);

Reads an array of doubl e data from the stream.

Parameters
seq The sequence into which the data is placed.
of f set The starting index from which to read from the sequence.
I engt h The number of items to read from the array.

DatalnputStream::read_float()

/1 1D
float read float();

/1 Java
float read float();

Returns a f1 oat data type from the stream.

98

Parameters

DatalnputStream::read_float_array()

/1 1D
void read _float_array(

i nout Fl oat Seq seq,
i n unsigned | ong of f set,
in unsigned | ong | ength
)
/1 Java
void read_fl oat _array(
or g. ong. GORBA. Fl oat SeqHbl der seq,
int offset,
int length);

Reads an array of f| oat data from the stream.

seq The sequence into which the data is placed.
of f set The starting index from which to read from the sequence.
| engt h The number of items to read from the array.

DatalnputStream::read_long()

/1 1D
I ong read_l ong();

/1 Java
int read_| ong();

Returns a | ong data type from the stream.

DatalnputStream::read _long_array()

/1 1D
voi d read_| ong_array(

i nout LongSeq seq,
i n unsigned | ong of f set,
in unsigned long | ength

99

/1 Java
voi d read_| ong_array(

or g. ong. CORBA. LongSeqgHol der seq,
int offset,
int length);

Reads an array of | ong data from the stream.

Parameters
seq The sequence into which the data is placed.
of f set The starting index from which to read from the sequence.
| engt h The number of items to read from the array.

DatalnputStream::read_longdouble()

/1 1D
| ong doubl e read_| ongdoubl e();

/1 Java

Unsupported.

DatalnputStream::read_longlong_array()

/1 1D
voi d read_| ongl ong_array(

i nout LongLongSeq seq,
i n unsi gned | ong of f set,
in unsigned long | ength
)s
/1 Java
voi d read_| ongl ong_array(
or g. ong. GCRBA. LongLongSeqghbl der seq,
int offset,
int length);

Reads an array of | ong | ong data from the stream.

100

Parameters

seq The sequence into which the data is placed.
of f set The starting index from which to read from the sequence.
| ength The number of items to read from the array.

DatalnputStream::read_Object()

/1l DL
bj ect read_(hj ect ();

/1 Java
org. ong. CORBA (hj ect read_objref();

Returns an Qoj ect (object reference) data type from the stream.

DatalnputStream::read_octet()

/1 1D
octet read octet();

[/ Java
byte read octet();

Returns an oct et data type from the stream.

DatalnputStream::read octet_array()

/1 1D
voi d read_octet _array(

i nout QctetSeq seq,
i n unsigned | ong of f set,
in unsigned long | ength
)
[/ Java
voi d read_octet _array(
or g. ong. GORBA. (ct et SeqHol der seq,
int offset,

101

int length);
Reads an array of oct et data from the stream.
Parameters
seq The sequence into which the data is placed.
of f set The starting index from which to read from the sequence.
| engt h The number of items to read from the array.

DatalnputStream::read_short()

/1 1DL
short read_short();

/1 Java
short read_short();

Returns a short data type from the stream.

DatalnputStream::read_short_array()

/1 1D
voi d read_short_array(

i nout Short Seq seq,
i n unsi gned | ong of f set,
in unsigned long | ength

)

[/ Java
voi d read_short _array(

or g. ong. GORBA. Short SeqHol der seq,
int offset,
int length);

Reads an array of short data from the stream.
Parameters

seq The sequence into which the data is placed.

102

of f set The starting index from which to read from the sequence.
| engt h The number of items to read from the array.

DatalnputStream::read_string()

/1 1D
string read_string();

/1 Java
java.lang. String read_string();

Returns a stri ng data type from the stream.

DatalnputStream::read_TypeCode()

/1 1D
TypeCode read TypeCode();

/1 Java
or g. ong. CCRBA. TypeCode read_TypeCode() ;

Returns a TypeCode data type from the stream.

DatalnputStream::read_ulong()

/1 1D
unsi gned | ong read_ul ong();

/1 Java
int read_ul ong();

Returns an unsi gned | ong data type from the stream.

DatalnputStream::read_ulong_array()

/1 1D
voi d read_ul ong_array(

i nout UongSeq seq,
i n unsigned | ong of f set,

103

in unsigned long | ength
)s
/1 Java
voi d read_ul ong_array(
or g. ong. GORBA. ULongSeqHol der seq,
int offset,
int length);

Reads an array of unsi gned | ong data from the stream.

Parameters
seq The sequence into which the data is placed.
of f set The starting index from which to read from the sequence.
| engt h The number of items to read from the array.

DatalnputStream::read_ulonglong()

/1 1D
unsi gned | ong | ong read_ul ongl ong();

/1 Java
I ong read_ul ongl ong() ;

Returns an unsi gned | ong | ong data type from the stream.

DatalnputStream::read_ulonglong_array()

/1 1DL
voi d read_ul ongl ong_array(

i nout ULongLongSeq seq,
i n unsi gned | ong of fset,
in unsigned I ong | ength
)s
/1 Java
voi d read_ul ongl ong_array(
or g. ong. CORBA. ULongLongSeqHbl der seq,
int offset,
int length);

104

Parameters

Parameters

Reads an array of unsi gned | ong | ong data from the stream.

seq The sequence into which the data is placed.
of f set The starting index from which to read from the sequence.
| engt h The number of items to read from the array.

DatalnputStream::read_ushort()

/1 1D
unsi gned short read_ushort();

/1 Java
short read ushort();

Returns an unsigned short data type from the stream.

DatalnputStream::read_ushort_array()

/1 1D
voi d read_ushort_array(

i nout UShort Seq seq,
i n unsigned | ong of f set,
in unsigned long | ength
)
/1l Java
voi d read_ushort_array(
or g. ong. GCRBA. Ushor t SeqHol der seq,
int offset,
int length);

Reads an array of unsi gned short data from the stream.

seq The sequence into which the data is placed.
of f set The starting index from which to read from the sequence.
| ength The number of items to read from the array.

105

DatalnputStream::read_Value()

/1 1DL
Val ueBase read_Val ue();

/1 Java
java.io. Serializable read_val ue();

Returns a value type from the stream.

DatalnputStream::read_wchar()

/1 1DL
wchar read wchar () ;

/1 Java
char read wchar();

Returns a wchar data type from the stream.

DatalnputStream::read_wchar_array()

/1 1D
voi d read_wchar_array(

i nout Whar Seq seq,
i n unsi gned | ong of f set,
in unsigned long | ength
)s
/1 Java
voi d read_wchar_array(
or g. ong. GORBA. Whar SeqHol der seq,
int offset,
int length);

Reads an array of wchar data from the stream.

Parameters
seq The sequence into which the data is placed.
of f set The starting index from which to read from the sequence.
| engt h The number of items to read from the array.

106

DatalnputStream::read_wstring()

/1 1D
wstring read_wstring();

/1 Java
java.lang. String read_wstring();

Returns a wst ri ng data type from the stream.

107

108

CORBA::DataOutputStream Value

Type

The Dat aQut put Streamvalue type is a stream used by nar shal () for
marshaling an application’s custom value type. You use the

Dat aQut put St r eamoperations in your implementation of nar shal () to write
specific types of data to the stream, as defined in the custom value type. The
stream takes care of breaking the data into chunks if necessary. The IDL
code is as follows:

//1DL in nmodul e CORBA
abstract val uetype Dat aQut put Stream {
void wite any(in any value);
void wite bool ean(in bool ean val ue);
void wite char(in char value);
void wite wchar(in whar val ue);
void wite octet(in octet value);
void wite short(in short value);
void wite ushort(in unsigned short value);
void wite_ long(in long value);
void wite_ulong(in unsigned |ong value);
void wite longlong(in long |ong val ue);
voi d wite ulonglong(in unsigned |ong |ong val ue);
void wite float(in float value);
void wite double(in double value);
void wite string(in string value);
void wite wstring(in wstring value);
void wite hject(in Cbject value);
void wite Value(in Val ueBase val ue);
void wite TypeCode(in TypeCode val ue);
void wite any array(
in AnySeq seq,
i n unsigned | ong of f set,
in unsigned long length);
void wite bool ean_array(
i n Bool eanSeq seq,
in unsigned | ong of fset,

109

110

in unsigned long length);
void wite char_array(

in CharSeq seq,

i n unsigned | ong of f set,

in unsigned long length);
void wite wchar _array(

in Whar Seq seq,

i n unsigned | ong of f set,

in unsigned long length);
void wite octet array(

in Cctet Seq seq,

i n unsigned | ong of f set,

in unsigned long length);
void wite short array(

in ShortSeq seq,

i n unsigned | ong of f set,

in unsigned long length);
void wite ushort array(

in UShort Seq seq,

i n unsigned | ong of f set,

in unsigned long length);
void wite | ong array(

in LongSeq seq,

i n unsigned | ong of f set,

in unsigned long length);
void wite ulong array(

in WongSeq seq,

i n unsigned | ong of f set,

in unsigned long length);
void wite ul ongl ong array(

i n UonglLongSeq seq,

i n unsigned | ong of f set,

in unsigned long length);
void wite | onglong array(

i n LongLongSeq seq,

i n unsigned | ong of f set,

in unsigned long length);
void wite float array(

in Float Seq seq,

i n unsigned | ong of f set,

in unsigned long length);
void wite doubl e array(

i n Doubl eSeq seq,

Exceptions

See Also

Parameters

in unsigned | ong of fset,
in unsigned long length);

MARSHAL An inconsistency is detected for any operations.

CORBA: : Qust omivar shal
CCRBA: : Dat al nput St r eam

DataOutputStream::write_any()

/1 1D
void wite_any(
in any val ue

)

/1 Java
void wite_any(org.omy. CCRBA Any val);

Writes an any data type to the stream.

val ue The value written to the stream.

DataOutputStream::write_any_array()

/1 1DL
void wite_any_array(
in AnySeq seq,

i n unsigned | ong of f set,
in unsigned | ong | ength

)

/1 Java
void wite_ any array(org.ong. CORBA Any[] buf,

int offset, int len);

Writes an array of any data to the stream.

111

Parameters

Parameters

Parameters

112

seq The sequence of data to write to the stream.
of f set The offset in seq from which to start writing data.
I engt h The number of data items to write.

DataOutputStream::write_boolean()

/1 1DL
voi d wite_bool ean(

i n bool ean val ue
)
[/ Java
voi d wite_bool ean(bool ean val);

Writes a bool ean data type to the stream.

val ue The value written to the stream.

DataOutputStream::write_boolean_array()

/1 1DL
voi d wite_bool ean_array(

i n Bool eanSeq seq,
i n unsi gned | ong of fset,
in unsigned I ong | ength

)

[/ Java
void wite_bool ean_array(boolean[] buf, int offset, int len);

Writes an array of bool ean data to the stream.

seq The sequence of data to write to the stream.
of f set The offset in seq from which to start writing data.
| engt h The number of data items to write.

Parameters

Parameters

DataOutputStream::write_char()

/1 1D
void wite_char(

in char val ue
)

/1 Java
void wite_char(char val);

Writes a char data type to the stream.

val ue The value written to the stream.

DataOutputStream::write_char_array()

/1 1D
void wite_char_array(
in CharSeq seq,

i n unsigned | ong of f set,
in unsigned | ong | ength

)

/1 Java

void wite _char_array(char[] buf, int offset, int len);

Writes an array of char data to the stream.

seq The sequence of data to write to the stream.
of f set The offset in seq from which to start writing data.
| ength The number of data items to write.

DataOutputStream::write_double()

/1 1D
void wite_doubl e(

i n doubl e val ue

)

113

Parameters

Parameters

114

/1 Java
void wite_doubl e(double val);

Writes a doubl e data type to the stream.

val ue The value written to the stream.

DataOutputStream::write_double_array()

/1 1DL
void wite_doubl e_array(

i n Doubl eSeq seq,
i n unsi gned | ong of f set,
in unsigned I ong | ength
)s
/1 Java
void wite_doubl e_array(double[] buf, int offset, int len);

Writes an array of doubl e data to the stream.

seq The sequence of data to write to the stream.
of f set The offset in seq from which to start writing data.
| engt h The number of data items to write.

DataOutputStream::write_float()

/1 1DL
void wite_float(

in float val ue
)

[/ Java
void wite float(float val);

Writes a f1 oat data type to the stream.

Parameters

Parameters

Parameters

val ue The value written to the stream.

DataOutputStream::write_float_array()

/1 1D
void wite float_array(

in Fl oat Seq seq,
i n unsigned | ong of f set,
in unsigned long | ength

)

/1 Java
void wite float_array(float[] buf, int offset, int len);

Writes an array of fl oat data to the stream.

seq The sequence of data to write to the stream.
of f set The offset in seq from which to start writing data.
| engt h The number of data items to write.

DataOutputStream::write_long()

/1 1D
void wite_| ong(
in long val ue

)

/1 Java
void wite_ long(int val);

Writes a | ong data type to the stream.

val ue The value written to the stream.

115

DataOutputStream::write_long_array()

/1 1DL
void wite_|ong_array(

i n LongSeq seq,
i n unsigned | ong of f set,
in unsigned I ong | ength

)

/1 Java
void wite_long_array(int[] buf, int offset, int len);

Writes an array of | ong data to the stream.

Parameters
seq The sequence of data to write to the stream.
of f set The offset in seq from which to start writing data.
| engt h The number of data items to write.
DataOutputStream::write_longlong()
/] 1DL
voi d wite_l ongl ong(
inlong | ong val ue
)
[/ Java
void wite_longlong(long val);
Writes a | ong | ong data type to the stream.
Parameters

val ue The value written to the stream.

DataOutputStream::write_longlong_array()

/1 1D
void wite_|l ongl ong_array(

i n LongLongSeq seq,
i n unsi gned | ong of fset,

116

Parameters

Parameters

in unsigned long | ength
)

/1 Java
void wite_longlong_array(long[] buf, int offset, int len);

Writes an array of | ong | ong data to the stream.

seq The sequence of data to write to the stream.
of f set The offset in seq from which to start writing data.
| engt h The number of data items to write.

DataOutputStream::write_Object()

/] DL

void wite (bject(
in (oject val ue

)

/1 Java
void wite_objref(org.ong. CCRBA (hj ect val);

Writes an bj ect data type (object reference) to the stream.

val ue The value written to the stream.

DataOutputStream::write_octet()

/1 1D
void wite_octet(

in octet value
)

/1 Java
void wite octet(byte val);

Writes an oct et data type to the stream.

117

Parameters

val ue The value written to the stream.

DataOutputStream::write octet_array()

/1 1D
void wite_octet_array(

in CctetSeq seq,
i n unsi gned | ong of f set,
in unsigned long | ength

)

/1 Java
void wite_ octet_array(byte[] buf, int offset, int len);

Writes an array of oct et data to the stream.
Parameters
seq The sequence of data to write to the stream.

of f set The offset in seq from which to start writing data.
| engt h The number of data items to write.

DataOutputStream::write_short()

/] 1DL
void wite_short (
in short val ue

)

[/ Java
void wite_short(short val);

Writes a short data type to the stream.

Parameters

val ue The value written to the stream.

118

Parameters

Parameters

DataOutputStream::write_short_array()

/1 1D
void wite_short_array(

in Short Seq seq,
i n unsigned | ong of f set,
in unsigned | ong | ength

)

/1 Java
void wite_short_array(short[] buf, int offset, int len);

Writes an array of short data to the stream.

seq The sequence of data to write to the stream.
of f set The offset in seq from which to start writing data.
| engt h The number of data items to write.

DataOutputStream::write_string()

/1 1D
void wite_string(
in string val ue

)

/1 Java
void wite_string(java.lang. String val);

Writes a st ri ng data type to the stream.

val ue The value written to the stream.

DataOutputStream::write_ TypeCode()

/1 1D
void wite_TypeCode(

i n TypeCode val ue
)

119

/1 Java
void wite_TypeCode(org.ong. CORBA TypeCode val);

Writes a TypeCode data type to the stream.
Parameters

val ue The value written to the stream.

DataOutputStream::write_ulong()

/1 1DL
voi d wite_ul ong(

i n unsi gned | ong val ue

[/ Java
void wite_ulong(int val);

Writes an unsi gned | ong data type to the stream.

Parameters

val ue The value written to the stream.

DataOutputStream::write_ulong_array()

/1 1DL
void wite_ul ong_array(

in UongSeq seq,
i n unsi gned | ong of f set,
in unsigned I ong | ength

)

/1 Java
void wite_ulong_array(int[] buf, int offset, int len);

Writes an array of unsi gned | ong data to the stream.

Parameters

seq The sequence of data to write to the stream.

120

of f set The offset in seq from which to start writing data.
| engt h The number of data items to write.

DataOutputStream::write_ulonglong()

/1 1D
void wite_ul ongl ong(

i n unsigned | ong | ong val ue
);

/1 Java
void wite_ulonglong(|ong val);

Writes an unsi gned | ong | ong data type to the stream.
Parameters

val ue The value written to the stream.

DataOutputStream::write_ulonglong_array()

/1 1D
void wite_ul ongl ong_array(

i n ULongLongSeq seq,
i n unsigned | ong of f set,
in unsigned | ong | ength

)

/1 Java
void wite ulonglong_array(long[] buf, int offset, int len);

Writes an array of unsi gned | ong | ong data to the stream.
Parameters
seq The sequence of data to write to the stream.

of f set The offset in seq from which to start writing data.
| ength The number of data items to write.

121

Parameters

Parameters

122

DataOutputStream::write_ushort()

/1 1DL
void wite_ushort (

i n unsi gned short val ue
);
!/ Java
void wite_ushort(short val);

Writes an unsi gned short data type to the stream.

val ue The value written to the stream.

DataOutputStream::write_ushort_array()

/1 1DL
void wite_ushort_array(

i n UShort Seq seq,
i n unsi gned | ong of fset,
in unsigned long | ength
);
/1 Java
void wite_ushort_array(short[] buf, int offset, int len);

Writes an array of unsi gned short data to the stream.

seq The sequence of data to write to the stream.
of f set The offset in seq from which to start writing data.
| engt h The number of data items to write.

DataOutputStream::write_Value()

/1 1D
void wite_Val ue(

i n Val ueBase val ue

)

/1 Java
void wite value(java.io.Serializable vb);

Writes a value type to the stream.
Parameters

val ue The value written to the stream.

DataOutputStream::write_wchar()

/] DL
void wite_wchar(
in wchar val ue

)

/1 Java
void wite wchar(char val);

Writes a wchar data type to the stream.

Parameters

val ue The value written to the stream.

DataOutputStream::write_wchar_array()

/1 1D
void wite wchar_array(

i n Whar Seq seq,
i n unsigned | ong of f set,
in unsigned | ong | ength

)

/1 Java
void wite wchar_array(char[] buf, int offset, int len);

Writes an array of wchar data to the stream.

Parameters

seq The sequence of data to write to the stream.

123

of f set The offset in seq from which to start writing data.
| engt h The number of data items to write.

DataOutputStream::write_wstring()

/1 1D
void wite wstring(
inwstring val ue

)

/1 Java
void wite wstring(java.lang. String val);

Writes a wst ri ng data type to the stream.
Parameters

val ue The value written to the stream.

124

CORBA::DomainManager Interface

The Domai nManager interface provides an operation to find the Pol i cy
objects associated with a policy domain. Each policy domain includes one
policy domain manager object (Domai nManager). The Domai nManager has
associated with it the policy objects for that domain and it records the
membership of the domain.

// 1DL in CORBA Modul e
i nterface Domai nManager {
Pol i cy get _donai n_pol i cy(
in PolicyType policy_type

)
}s

A policy domain is a set of objects with an associated set of policies. These
objects are the policy domain members. The policies represent the rules and
criteria that constrain activities of the objects of the policy domain. Policy
domains provide a higher granularity for policy management than an
individual object instance provides.

When a new object reference is created, the ORB implicitly associates the
object reference (and hence the object that it is associated with) with one or
more policy domains, thus defining all the policies to which the object is
subject. If an object is simultaneously a member of more than one policy
domain, it is governed by all policies of all of its domains.

The Domai nManager does not include operations to manage domain
membership, structure of domains, or to manage which policies are
associated with domains. However, because a Domai nManager is a CORBA
object, it has access to the GORBA: : (hj ect interface, which is available to all
CORBA objects. The (j ect interface includes the following related
operations:

_get _donai n_nanager s() allows your applications to retrieve the
domain managers and hence the security and other policies applicable
to individual objects that are members of the policy domain.

You can also obtain an object’s policy using _get _policy().

125

Parameters

Exceptions

See Also

126

DomainManager::get_domain_policy()

Pol i cy get _donai n_policy (
in PolicyType policy_type
)s

/1 Java
org. ong. OCRBA. Pol i cy get _domai n_pol i cy(
int policy_ type
)s
Returns a reference to the policy object of the specified policy type for objects
in this policy domain.

policy_type The type of policy for objects in the domain which the
application wants to administer.

There may be several policies associated with a domain, with a policy object
for each. There is at most one policy of each type associated with a policy
domain. The policy objects are thus shared between objects in the domain,
rather than being associated with individual objects. Consequently, if an
object needs to have an individual policy, then it must be a singleton member
of a policy domain.

I N\V_PQLI CY The value of policy type is not valid either because the speci-
fied type is not supported by this ORB or because a policy
object of that type is not associated with this object.

QCRBA: : Pol i cy

OORBA: : (hj ect : : _get _donai n_nanager s()

OORBA: : (hj ect: : _get_policy()

CORBA::EnumDef Interface

See Also

Interface EnunDef describes an IDL enumeration definition in the interface
repository.

// 1Dl in nodul e CORBA
i nterface EnunDef : Typedef Def {
attribute EnumMenber Seq nenbers;

}s

The inherited operation descri be() is also described.

EnumDef::describe()

/1 1D
Description describe();

Inherited from Cont ai ned (which Typedef Def inherits), descri be() returns a
Descri ption. The Defi ni ti onKi nd for the description’s ki nd member is
dk_Enum The value member is an any whose TypeCode is

_tc_TypeDescri pti on and whose value is a structure of type

TypeDescri ption. The type field of the struct gives the TypeCode of the
defined enumeration.

OCORBA: : Typedef Def : : descri be()

EnumDef::members Attribute

/1 1D
attribute EnumMenber Seq menbers;

/1 Java
java.lang. String[] nenbers();

voi d menbers(java.lang. String[] _val);

Returns or changes the enumeration’s list of identifiers (its set of enumerated
constants).

127

128

CORBA::Environment Class

See Also

See Also

The Envi ronnent class provides a way to handle exceptions in situations
where true exception-handling mechanisms are unavailable or undesirable.

For example, in the DIl exceptions raised by remote invocation are stored in
an Envi ronnment member variable in the Request object after the invocation
returns. DIl clients should test the value of this Envi ronnent variable by
calling the env() method on the Request object. If the returned

j ava. | ang. Excepti on is nul | , no exception was raised. If it is not nul | , the
returned exception should be examined and acted on in an appropriate
manner.

/1 1Dl

pseudo interface Environnent {
attribute exception exception;
void clear();

b

/1 Java

package org. ongy. CORBA

abstract public class Environnent {
abstract public void clear();
public abstract void exception(

java. |l ang. Exception except);

public abstract java.lang.Exception exception();

}
OCRBA: : CRB: : creat e_envi ronnent ()

Environment::clear()

/1 Java
abstract public void clear();

Deletes the Exception, if any, contained in the Envi r onnent . This is equivalent
to passing zero to excepti on() . It is not an error to call cl ear () on an
Envi ronnment that holds no exception.

CCORBA: : Envi ronnent : : excepti on()

129

Parameters

See Also

130

Environment::exception()

/1 Java
public abstract java.lang. Exception exception();

Extracts the exception contained in the Envi r onnent object.

/1 Java
public abstract void exception(java.lang.Exception except);

Sets the exception member variable in the Envi ronment object to except.

except The Except i on assigned to the Envi ronnment The
Envi ronnent does not copy the parameter but it assumes
ownership of it. The Excepti on must be dynamically
allocated.

OORBA: : Environnent: : cl ear ()

CORBA::Exception Class

Details of this class can be found in the CORBA specification. The C++
Language Mapping document provides the following explanation of the
QOCRBA: : Except i on class:

/] G+
cl ass Exception
{

public:

virtual ~Exception();

virtual void _raise() const = 0;

virtual const char * _nane() const;

virtual const char * rep_id() const;
b
The Excepti on base class is abstract and may not be instantiated except as
part of an instance of a derived class. It supplies one pure virtual function to
the exception hierarchy: the rai se() function. This function can be used to
tell an exception instance to throw itself so that a catch clause can catch it
by a more derived type.

Each class derived from Excepti on implements _rai se() as follows:

Il G+
voi d SoneDeri vedException:: _raise() const

{

}

For environments that do not support exception handling, please refer to
Section 1.42.2, "Without Exception Handling," on page 1-169 of the CORBA
specification for information about the _rai se() function.

throw *this;

The _nane() function returns the unqualified (unscoped) name of the
exception. The _rep_i d() function returns the repository ID of the exception.

131

132

CORBA::ExceptionDef Interface

See Also

See Also

Interface Excepti onDef describes an IDL exception in the interface
repository. It inherits from interface Cont ai ned and Cont ai ner .

// 1Dl in nodul e CORBA

i nterface ExceptionDef : Contained, Container {
readonly attribute TypeCode type;
attribute Struct Menber Seq nenbers;

}s

The inherited operation descri be() is also described.

QCRBA: : Cont ai ned
CORBA: : Cont ai ner

ExceptionDef::describe()

/1 1D
Description describe();

Inherited from Cont ai ned, descri be() returns a Descri pti on.

The Defini tionki nd for the ki nd member of this structure is dk_Except i on.
The val ue member is an any whose TypeCode is _t c_Except i onDescri ption
and whose value is a structure of type Excepti onDescri pti on.

The t ype field of the Except i onDescri pti on structure gives the TypeCode of
the defined exception.

CCORBA: : Cont ai ned: : descri be()
OORBA: : TypeCode

ExceptionDef::members Attribute

/1 1D
attribute Struct Menber Seq nenbers;

133

See Also

See Also

134

/1 Java
org. ong. OCRBA. Struct Menber [] nenbers();

voi d menber s(org. ong. CORBA. Struct Menber[] _val);

In a sequence of St r uct Menber structures, the nenber s attribute describes the
exception’s members.

The nenber s attribute can be modified to change the structure’s members.

QCRBA: : St ruct Def
OORBA: : Excepti onDef : : type

ExceptionDef::type Attribute

/1 1DL
readonly attribute TypeCode type;

/1 Java
or g. ong. CCRBA. TypeCode type();

The type of the exception (from which the definition of the exception can be
understood). The TypeCode kind for an exception is t k_except .

QCRBA: : TypeCode
OORBA: : Except i onDef : : menber s

CORBA::ExceptionList Class

See Also

Parameters

An Except i onLi st object allows an application to provide a list of TypeCodes
for all application-specific (user-defined) exceptions that may result when a
dynamic invocation Request is invoked. This server-less Except i onLi st
object allows the ORB to avoid potentially expensive interface repository
lookups for the exception information during a request.

/1 PIDOL
pseudo interface ExceptionList {
readonly attribute unsigned | ong count;
voi d add(i n TypeCode exc);
TypeCode iten(in unsigned | ong index) raises(Bounds);
voi d renove(i n unsigned | ong index) rai ses(Bounds);
h
OCRBA: : (hj ect: : _create request ()
CCORBA: : Request : : except i ons
OCRBA: : CRB: : creat e_exception_list()

ExceptionList::add()

/1 Java
abstract public void add(org. ong. CORBA TypeCode exc);

Adds a TypeCode to the exception list.

exc The TypeCode to be added to the list. Should be a TypeCode
for an exception.

ExceptionList::count()

/1 Java
abstract public int count();

Returns the number of items in the exception list.

135

Parameters

Parameters

136

ExceptionList::item()

[/ Java
abstract public org.ong. CORBA TypeCode iten{int index)

t hrows org. ong. OCRBA Bounds;

Returns the exception item at the indexed location of the list. This return value
must not be released by the caller because ownership of the return value is
maintained by the Excepti onLi st .

i ndex The indexed location of the desired item.

ExceptionList::remove()

/1 Java
abstract public void remove(int index)

t hrows org. ong. CCRBA Bounds;

Removes from the exception list the item at the indexed location.

i ndex The indexed location of the desired item.

CORBA::FixedDef Interface

See Also

The FixedDef interface describes an IDL fixed-point type in the interface
repository. A fixed-point decimal literal consists of an integer part, a decimal
point, a fraction part, and a d or D.

// 1Dl in nodul e CORBA

interface Fi xedDef : | DLType {
attribute unsigned short digits;
attribute short scal g

b
The inherited | DLType attribute is a tk_fixed TypeCode, which describes a
fixed-point decimal number.

OCORBA: : Repository: : create_fixed()

FixedDef::digits Attribute

/1 1D
attribute unsigned short digits;

[/ Java
short digits();
void digits(short _val);

The di gi t s attribute specifies the total number of decimal digits in the
fixed-point number, and must be in the range of 1 to 31, inclusive.

FixedDef::scale Attribute

/1 1D
attribute short scale;

/1 Java
short scal e();

voi d scal e(short _val);

The scal e attribute specifies the position of the decimal point.

137

138

CORBA.

InterfaceDefPackage.Fulllnter

faceDescription Class

InterfaceDefPackage.FulllnterfaceDescription.FulllnterfaceDes
cription()

/1 1D
struct FulllnterfaceDescription {

}s

/1

Identifier nane;

Repositoryld id;

Reposi toryl d defined_in;

Ver si onSpec ver si on;

pDescri pti onSeq operati ons;
AttrDescriptionSeq attri butes;
Reposi toryl dSeq base_i nt erf aces;
TypeCode type;

bool ean i s_abstract;

Java

public FulllnterfaceDescription(

)

java.lang. String nane,

java.lang. String id,

java.lang. String defined_in,

java.lang. String version,

org. ong. GORBA. (per ati onDescri ption[] operations,
org.ony. CORBA. AttributeDescription[] attributes,
java.lang. String[] base_interfaces,

or g. ong. GCRBA. TypeCode type,

bool ean i s_abstract

Describes an interface including its operations and attributes.

nane The name of the interface.

id

An identifier of the interface.

139

See Also

140

defined_in
versi on

oper ati ons
attributes

base_i nterfaces

type
i s_abstract

CCRBA: : | nt er f aceDef :

The identifier where the interface is defined.
The version of the interface.

A sequence of interface operations.

A sequence of interface attributes.

A sequence of base interfaces from which this
interface is derived.

The type of the interface.

True if the interface is an abstract one, false
otherwise.

:describe interface()

CORBA::IDLType Interface

The abstract base interface | DLType describes interface repository objects
that represent IDL types. These types include interfaces, type definitions,
structures, unions, enumerations, and others. Thus, the | DLType is a base
interface for the following interfaces:

Arr ay Def
Al i asDef

Enunbef

Fi xedDef

| nt er f aceDef
Nat i veDef
PrimtiveDef
SequenceDef
Stri ngDef

St r uct Def
Typedef Def
Uni onDef

Val ueBoxDef
Val ueDef

Vét ri ngDef
The | DLType provides access to the TypeCode describing the type, and is

used in defining other interfaces wherever definitions of IDL types must be
referenced.

// 1DL in rmodul e CCRBA
interface | DLType : | RMject {
readonly attribute TypeCode type;

}s
See Also QOCRBA: : | Rbj ect

CCORBA: : TypeCode
OCORBA: : Typedef Def

141

IDLType::type Attribute

/11D
readonly attribute TypeCode type;

/1 Java
or g. ong. CCRBA. TypeCode type();

Encodes the type information of an interface repository object. Most type

information can also be extracted using operations and attributes defined for
derived types of the | DLType.

See Also QORBA: : TypeCode

142

CORBA::InterfaceDef Interface

I nt er faceDef describes an IDL interface definition in the interface
repository. It may contain lists of constants, typedefs, exceptions, operations,
and attributes. it inherits from the interfaces Cont ai ner, Cont ai ned, and

| DLType.

Calling _get _interface() on a reference to an object returns a reference to
the I nterfaceDef object that defines the CORBA object’s interface.

// DL in nodul e OORBA

interface InterfaceDef : Container, Contained, |DLType {
/l read/wite interface
attribute InterfaceDef Seq base_interfaces;

// read interface
bool ean is_a(
in Repositoryld interface_id

)

struct FulllnterfaceDescription {
I dentifier nane;
Repositoryld id;
Reposi toryld defined_in;
Ver si onSpec ver si on;
pDescri pti onSeq operati ons;
AttrDescriptionSeq attributes;
Reposi t oryl dSeq base_i nt erf aces;
TypeCode type;

}s

Ful I I nterfaceDescription describe interface();

/1 wite interface
AttributeDef create attribute(
in Repositoryld id,
in ldentifier nane,
i n VersionSpec versi on,
in | DLType type,
in AttributeMbde node

143

)

Qper ati onDef create operation(
in Repositoryld id,
in ldentifier nane,
i n VersionSpec version,
in |DLType result,
i n Qperati onMbde node,
i n ParDescriptionSeq parans,
i n ExceptionDef Seq excepti ons,
in ContextldSeq contexts

)
}; /1 End interface InterfaceDef

The inherited operation descri be() is also described.
See Also QORBA: : Cont ai ned

OCRBA: : Cont ai ner
OORBA: : (hj ect:: _get interface()

InterfaceDef::base_interfaces Attribute

/1 1D
attribute InterfaceDefSeq base_interfaces;

[/ Java
voi d base_interfaces(org.ong. OCORBA InterfaceDef[] _val);

The base_i nterf aces attribute lists in a sequence of I nter f aceDef objects
the interfaces from which this interface inherits.

The inheritance specification of an I nt er f aceDef object can be changed by
changing its base_i nt er f aces attribute.

Exceptions
BAD PARAM The nane of any definition contained in the interface conflicts
minor code 5 with the name of a definition in any of the base interfaces.
See Also OORBA: : (oj ect:: _get interface()

144

Parameters

Exceptions

See Also

InterfaceDef::create_attribute()

/1 1DL

AttributeDef create_attribute(
in Repositoryld id,
in ldentifier nane,
i n Versi onSpec ver si on,
in | DLType type,
in Attribut eMbde node

)

/1 Java

org.ony. CORBA Attribut eDef create_attribute(
java.lang. String id,
java.lang. String nane,
java.lang. String version,
org. ong. CCRBA. | DLType type,
org. ong. GORBA. At tri but eMbde node

)

Creates a new At t ri but eDef within the target I nt erf aceDef . The defined in
attribute of the new At tri but eDef is set to the target I nt er f aceDef .

id The identifier of the new attribute. It is an error to specify anid
that already exists within the target object’s repository.

name The name of the attribute. It is an error to specify a nane that
already exists within this I nt er f aceDef .

version A version for this attribute.

type The | DLType for this attribute.
mode Specifies whether the attribute is read only (ATTR_ READON\LY) or

read/write (ATTR NORVAL).

BAD_PARAM
minor code 2

BAD PARAM
minor code 3

An object with the specified i d already exists in the reposi-
tory.

An object with the same nane already exists in this
I nt erfaceDef .

QCRBA: : Attri but eDef

145

Parameters

146

InterfaceDef::create_operation()

/1 1DL

Qper ati onDef create_operation(
in Repositoryld id,

n ldentifier nane,

Ver si onSpec ver si on,

| DLType result,

Qper at i onMbde node,
Par Descri pti onSeq par ans,

Except i onDef Seq excepti ons,

i
i
i
i
i
i
i
i n ContextldSeq contexts

5 3 3 3 3 5

)s

/1 Java

or g. ong. OORBA. (per ati onDef create_operati on(
java.lang. String id,
java.lang. String narre,
java.lang. String version,
org. ong. CORBA. | DLType resul t,
or g. ong. CORBA. (per at i onMbde node,
or g. ong. CCRBA. Par anet er Description[] parans,
or g. ong. CORBA. ExceptionDef[] exceptions,
java.lang. String[] contexts

)

Creates a new Qper at i onDef within the target I nt erf aceDef . The defined_in
attribute of the new Qper at i onDef is set to the target I nt er f aceDef .

id The identifier of the new attribute. It is an error to specify an
i d that already exists within the target object’s repository.

nane The name of the attribute. It is an error to specify a nane that
already exists within this I nt er f aceDef .

ver si on A version number for this operation.

resul t The return type for this operation.

node Specifies whether this operation is normal (CP_NCRVAL) or
oneway (CP_ONEWAY).

par ans A sequence of Par anet er Descri pti on structures that

describes the parameters to this operation.

See Also

See Also

See Also

except i ons A sequence of Except i onDef objects that describes the
exceptions this operation can raise.

contexts A sequence of context identifiers for this operation.

QOCRBA: : Oper at i onDef
CCRBA: : Excepti onDe

InterfaceDef::describe()

/1 1D
Descri ption describe();

Inherited from Cont ai ned, descri be() returns a Descri ption. The

Def i ni ti onKi nd for the ki nd member is dk_I nt er f ace. The value member is
an any whose TypeCode is _tc_| nterf aceDescri pti on and whose value is a
structure of type I nt er f aceDescri pti on.

CCRBA: : Cont ai ned: : descri be()

InterfaceDef::describe_interface()

/1 1D
Ful I I nt erfaceDescri pti on describe_interface();

/1 Java
or g. ong. CCRBA | nt er f aceDef Package. Ful | I nt er f aceDescri ption

descri be_interface();

Returns a description of the interface, including its operations, attributes, and
base interfaces in a Ful | | nt er f aceDescri ption.

Details of exceptions and contexts can be determined via the returned
sequence of Qper ati onDescri pti on structures.

CORBA: : (per ati onDef : : descri be()
OCRBA: : Attri but eDef: : describe()

InterfaceDef::FulllnterfaceDescription
See the “CORBA.InterfaceDefPackage.FullinterfaceDescription Class”.

147

Parameters

148

InterfaceDef::is_a()

/1 1DL
bool ean is_a(

in Repositoryld interface_id
);
[/ Java
bool ean is_a(java.lang. String interface_id);

Returns TRUE if the interface is either identical to or inherits (directly or
indirectly) from the interface represented by i nt er f ace_i d. Otherwise the
operation returns FALSE.

interface_id The repository ID of another I nt er f aceDef object.

CORBA::IRObject Interface

See Also

Exceptions

The interface | RObj ect is the base interface from which all interface
repository interfaces are derived.

// 1DL in nodul e CCORBA

interface | Rbject {
readonly attribute Definitionki nd def kind;

voi d destroy();
b

IRObject::def_kind Attribute

/1 1D
readonly attribute DefinitionKi nd def ki nd;

/1 Java
org. ong. CORBA. Defini ti onKi nd def ki nd();

Identifies the kind of an IFR object. For example, an Qper ati onDef object,
describing an IDL operation, has the kind dk_Cper ati on.

CCORBA: : Defi niti onki nd

IRObject::destroy()

/1 1D
voi d destroy();

/1 Java
voi d destroy();

Deletes an IFR object. This also deletes any objects contained within the target
object.

BAD | NV_CRDER with a minor value of:

2 destroy() is invoked on a Repository or on a Pri niti veDef

object.

149

1 An attempt is made to destroy an object that would leave the
repository in an incoherent state.

150

CORBA::ModuleDef Interface

See Also

The interface Mbdul eDef describes an IDL module in the interface repository.
It inherits from the interfaces Cont ai ner and Cont ai ned.

// 1Dl in nodul e CORBA
i nterface Modul eDef : Container, Contained { };

The inherited operation descri be() is also described.

ModuleDef::describe()

/1 1D
Descri ption describe();

Inherited from Cont ai ned, descri be() returns a Descri pti on.

The ki nd member is dk_Modul e. The value member is an any whose
TypeCode is _t c_Modul eDescri pti on and whose value is a structure of type
Modul eDescr i pti on.

OORBA: : Cont ai ned: : descri be()

151

152

CORBA::NamedValue Class

A NanedVal ue object describes an argument to a request or a return value,
especially in the DII, and is used as an element of an NVLi st object. A
NanmedVal ue object maintains an any value, parameter-passing mode flags,
and an (optional) name.

/1 1DL

pseudo interface NanedVal ue {
readonly attribute Identifier nane;
readonly attribute any val ue;
readonly attribute Fl ags fl ags;

}s
See Also OCRBA: : NVLi st

OCRBA: : CRB: : creat e_naned_val ue()

CORBA: : Request : :resul t ()
CORBA: : (hj ect:: _create_request ()

NamedValue::flags()

/1 Java
abstract public int flags();

Returns the flags associated with the NanedVal ue. Flags identify the parameter
passing mode for arguments of an NwLi st.

NamedValue::name()

/1 Java
abstract public java.lang. String name();

Returns the (optional) name associated with the NamedValue. This is the name
of a parameter or argument to a request.

153

NamedValue::value()

[/ Java
abstract public org.ong. CORBA Any val ue();

Returns a reference to the or g. ong. CCRBA. Any object contained in the
NarredVal ue.

154

CORBA::NativeDef Interface

See Also

The interface Nati veDef describes an IDL native type in the interface
repository. It inherits from the interface Typedef Def . The inherited type
attribute is a t k_nat i ve TypeCode that describes the native type.

// 1DL in nodul e CCRBA
interface NativeDef : TypedefDef {};

CORBA: : Contai ner: : create native()

155

156

CORBA::NVList Class

See Also

An NWLi st is a pseudo-object used for constructing parameter lists. It is a list
of NanedVal ue elements where each NanedVal ue describes an argument to a
request.

The NanedVal ue and NVLi st types are used mostly in the DIl in the request
operations to describe arguments and return values. They are also used in

the context object routines to pass lists of property names and values. The

NVLi st is also used in the DSI operation Ser ver Request : : ar gunent s() .

The NvLi st class is partially opaque and may only be created by using G=B: :
create_list(). The NvLi st class is as follows:

/1 1D
pseudo interface NWList {
readonly attribute unsigned | ong count;
NarredVal ue add(in Flags flags);
NarmedVal ue add_iten{in ldentifier itemname, in Flags flags);
NanedVal ue add_val ue(in Identifier itemnane,
inany val, in Flags flags);
NanedVal ue iten{in unsigned | ong i ndex) rai ses(Bounds);
voi d renove(i n unsigned | ong index) rai ses(Bounds);

CCRBA: : NarredVal ue
OORBA : (RB: create_list()
CORBA: : (hj ect:: _create_request()

NVList::count()

abstract public int count();

Returns the number of elements in the list.

157

Parameters

See Also

Parameters

See Also

158

NVList::add()

[/ Java
abstract public org.ong. CORBA NanedVal ue add(int flgs);

Creates an unnamed value, initializes only the flags, and adds it to the list.
The new NanedVal ue is returned.

flags

The reference count of the returned NanedVal ue pseudo object is not
incremented. Therefore, the caller should not release the returned reference
when no longer needed.

OORBA: : NVLi st:: add_item()

OORBA: : NVLi st : : add_val ue()

NVList::add_item()

[/ Java
abstract public org.ong. CORBA NanedVal ue add_iten{

java.lang. String itemname, int flgs);

Creates and returns a NanedVal ue with name and flags initialized, and adds it
to the list.

i t em nane Name of item.
flgs
The reference count of the returned NanedVal ue pseudo object is not

incremented. Therefore, the caller should not release the returned reference
when no longer needed.

QCRBA: : NVLi st : : add()
OORBA: : NVLI st : : add_val ue()

NVList::add_value()

[/ Java
abstract public org.ong. CORBA NanedVal ue add_val ue(

Parameters

See Also

Parameters

java.lang. String i tem nane,
org.ong. CCRBA. Any val, int flgs);

Creates and returns a NanedVval ue with name, value, and flags initialized and
adds it to the list.

i tem nane Name of item.
val ue Value of item.
flags

The reference count of the returned NanedVal ue pseudo object is not
incremented. Therefore, the caller should not release the returned reference
when no longer needed.

OCRBA: : NVLi st : : add()
CORBA: : NVLi st::add_iten()

NVList::item()

/1 Java
abstract public org.ong. CORBA NanedVal ue iten{ int index)

t hrows org. ong. CCRBA. Bounds;

Returns the NanedVal ue list item at the given index. The first item is at index
0. This method can be used to access existing elements in the list.

i ndex Index of item.
NVList::remove()
/1 Java

abstract public void renove(int index)
throws org. ong. CCRBA Bounds;

Removes the item at the given index. The first item is at index O.

159

Parameters

i ndex Index of item

160

CORBA::Object Class

The Quj ect class is the base class for all normal CORBA objects. This class
has some common methods that operate on any CORBA object. These
operations are implemented directly by the ORB, not passed on to your
object’s implementation.

On the client side, the methods of this class are called on a proxy (unless
collocation is set). On the server side, they are called on the real object.

Table 4 shows the methods provided by the GORBA: : (hj ect class:

Table 4: Methods of the Object Class

Manage Object References Create Requests for the DIl
_duplicate() _create _request ()

_hash() _request ()

ﬁ%i val ent () Access Information in the IFR
:PEFEZZLS(t} ent () _get _interface()

Manage Policies and Domains

_get _domai n_nanager s()

_get_policy()
/1 1D

interface ject {
boolean is_nil();
oj ect duplicate();
voi d rel ease();
| npl ement at i onDef get _i npl enent ati on();
InterfaceDef get_interface();
boolean is_a(in string logical _type_ id);
bool ean non_exi stent ();

161

bool ean i s_equival ent (i n Cbj ect other_object);
unsi gned | ong hash(i n unsi gned | ong naxi nunj;
voi d create_request (
in Context ctx,
in ldentifier operation,
in NVList arg_list,
in NamedVal ue result,
out Request request,
in Flags req_fl ags
)
voi d create_request 2(
in Context ctx,
in ldentifier operation,
in NVList arg_|ist,
in NamedVal ue result,
in ExceptionList exclist,
in ContextList ctxtlist,
out Request request,
in Flags req_fl ags
)
Policy_ptr get_policy(in PolicyType policy_type);
Dorrai nManager Li st get _donai n_nanager s() ;
bj ect set_policy_overrides(
in PolicyList policies,
in SetQverrideType set_or_add
)

// 1DL Additions from CORBA Messagi ng
Pol i cy get_policy(
in PolicyType type
)
Policy get_client_policy(
in PolicyType type
)
(bj ect set_policy_overrides(
in PolicyList policies,
in SetQverrideType set_add
)
rai ses (lnvalidPolicies);
Pol i cyLi st get_policy_overrides(
in PolicyTypeSeq types
)

bool ean val i dat e_connecti on(

162

out PolicyList inconsistent_policies
E
b
[/ Java
package org. ongy. CORBA;
public interface (bject {
boolean _is_a(String ldentifier);
bool ean _is_equival ent (Chj ect that);
bool ean _non_exi stent();
int _hash(int maximn;
org. ong. CORBA. (hj ect _duplicate();
void _rel ease();
org. ong. CORBA. (hject _get _interface_def();
Request _request(String s);
Request _create_request (Context ctx,
String operati on,
NWLi st arg_list,
NarredVal ue result);
Request _create_request (Context ctx,
String operation,
NVLi st arg_list,
NanmedVal ue resul t,
ExceptionLi st exclist,
Cont ext Li st ctxlist);
Policy _get _policy(int policy_type);
Donmai nManager[] _get _donmai n_nanager s() ;
org. ong. OCRBA. (hj ect _set _policy_overri de(
Policy[] policies,
Set Overri deType set_add);

Object::_create_request()

/1 Java
Request _create_request (Context ctx,

String operation,
NVLi st arg_list,
NarredVal ue result);

Request _create_request (Context ctx,
String operation,
NVLi st arg_list,

163

Exceptions

See Also

164

NanedVal ue resul t,
Excepti onLi st excli st,
Context List ctxlist);

These construct a GORBA : Request object. These methods are part of the DIl
and create an ORB request on an object by constructing one of the object’s
operations.

See _request () for a simpler alternative way to create a Request .

The only implicit object reference operations allowed with the
_create_request () call include:

non_exi st ent ()
is_a()

get _interface()

BAD PARAM The name of an implicit operation that is not allowed is
passed to creat e request () —forexample, i s_equi val ent
is passed to _create request () as the operati on parameter.

OORBA: : (hj ect: : _request ()
OCRBA: : Request

OORBA: : Request : : ar gunent s()
OORBA: : Request : : ct x()
OORBA: : NWLi st

OCORBA: : NanedVal ue

Object:: _duplicate()

[/ Java
org. ong. CORBA. (hj ect _duplicate();

Returns a new reference to obj and increments the reference count of the
object. Because object references are opague and ORB-dependent, it is not
possible for your application to allocate storage for them. Therefore, if more
than one copy of an object reference is needed, use this method to create a
duplicate.

See Also

See Also

Parameters

Object:: get domain_managers()

Dormai nVanager [] _get _dormai n_manager s() ;

Returns the list of immediately enclosing domain managers of this object. At
least one domain manager is always returned in the list since by default each
object is associated with at least one domain manager at creation.

The _get _domai n_nanager s() method allows applications such as
administration services to retrieve the domain managers and hence the
security and other policies applicable to individual objects that are members
of the domain.

CCRBA: : Domai nManager

Object:: get interface()

/1 Java
InterfaceDef _get_interface();

Returns a reference to an object in the interface repository that describes this
object’s interface.

CQCRBA:: I nt er f aceDef

Object:: get policy()

/1l Java

Policy _get_policy(int policy_type);

Returns a reference to the Pol i cy object of the type specified by the
pol i cy_type parameter.

policy_type The type of policy to get.

_get_policy() returns the effective policy which is the one that would be
used if a request were made. Note that the effective policy may change from
invocation to invocation due to transparent rebinding. Invoking

_non_exi stent () on an object reference prior to _get _pol i cy() ensures the
accuracy of the returned effective policy.

165

Exceptions

See Also

Parameters

See Also

166

Quality of Service (see “Quality of Service Framework”) is managed on a
per-object reference basis with _get _policy().

I N\V_PQLI CY The value of pol i cy_type is not valid either because the
specified type is not supported by this ORB or because a pol-
icy object of that type is not associated with this object.

OORBA: : (hj ect:: _non_existent ()

Object:: hash()

/1 Java
int _hash(int naxinun;

Returns a hashed value for the object reference in the range 0...maxi num

maxi mum The maximum value that is to be returned from the hash
method.

Use _hash() to quickly guarantee that objects references refer to different
objects. For example, if _hash() returns the same hash number for two
object references, the objects might or might not be the same, however, if the
method returns different numbers for object references, these object
references are guaranteed to be for different objects.

In order to efficiently manage large numbers of object references, some
applications need to support a notion of object reference identity. Object
references are associated with internal identifiers that you can access
indirectly by using _hash(). The value of this internal identifier does not
change during the lifetime of the object reference.

You can use _hash() and _i s_equi val ent () to support efficient
maintenance and search of tables keyed by object references. _hash() allows
you to partition the space of object references into sub-spaces of potentially
equivalent object references. For example, setting nmaxi numto 7 partitions the
object reference space into a maximum of 8 sub-spaces (0 - 7).

OORBA: : (hj ect:: _is_equival ent()

Parameters

Exceptions

See Also

Parameters

Object::_is_a()

/1 Java
boolean _is_a(String Identifier);
Returns 1 (true) if the target object is either an instance of the type specified

inl ogi cal _type_idorofaderived type of the type in | ogi cal _type_i d. If the
target object is neither, it returns O (false).

Identifier The fully scoped name of the IDL interface. This is a string
denoting a shared type identifier (Reposi t oryl d). Use an
underscore (‘') rather than a scope operator (::) to
delimit the scope.

The ORB maintains type-safety for object references over the scope of an
ORB, but you can use this method to help maintaining type-safety when
working in environments that do not have compile time type checking to
explicitly maintain type safety.

If is_a() cannot make a reliable determination of type compatibility due to
failure, it raises an exception in the calling application code. This enables the
application to distinguish among the true, false, and indeterminate cases.

CORBA: : (oj ect:: _non_exi stent ()

Object:: _is_equivalent()

/1 Java
bool ean _is_equival ent ((bj ect that);

Returns 1 (true) if the object references definitely refer to the same object. A
return value of O (false) does not necessarily mean that the object references
are not equivalent, only that the ORB cannot confirm that they reference the
same object. Two objects are equivalent if they have the same object reference,
or they both refer to the same object.

ot her _obj ect An object reference of other object.

167

See Also

168

A typical application use of _i s_equi val ent () is to match object references
in a hash table. Bridges could use the method to shorten the lengths of
chains of proxy object references. Externalization services could use it to
flatten graphs that represent cyclical relationships between objects.

OORBA: : hject::_is_a()

OORBA: : o ect : : _hash()

Object::_non_existent()

[/ Java
bool ean _non_exi stent();

Returns 1 (true) if the object does not exist or returns O (false) otherwise.

Normally you might invoke this method on a proxy to determine whether the
real object still exists. This method may be used to test whether an object
has been destroyed because the method does not raise an exception if the
object does not exist.

Applications that maintain state that includes object references, (such as
bridges, event channels, and base relationship services) might use this
method to sift through object tables for objects that no longer exist, deleting
them as they go, as a form of garbage collection.

Object:: release()

/1 Java
void _release();

Signals that the caller is done using this object reference, so internal ORB
resources associated with this object reference can be released. Note that the
object implementation is not involved in this operation, and other references
to the same object are not affected.

Parameters

See Also

Parameters

Exceptions

Object:: _request()
Request _request (String operation);

Returns a reference to a constructed . Request on the target object. This is the
simpler form of _create request ().

operation The name of the operation.

You can add arguments and contexts after construction using Request : :
argunent s() and Request :: ctx().

OORBA: : (hj ect:: _create_request()

CCORBA: : Request : : ar gunent s()
CORBA: : Request : : ct x()

Returns true if the current effective policies for the object will allow an
invocation to be made. Returns false if the current effective policies would
cause an invocation to raise the system exception | N\Vv_PCLI Cy.

i nconsi stent_pol i ci es [If the current effective policies are incompatible,
This parameter contains those policies causing the
incompatibility. This returned list of policies is not
guaranteed to be exhaustive.

If the object reference is not yet bound, a binding will occur as part of this
operation. If the object reference is already bound, but current policy
overrides have changed or for any other reason the binding is no longer valid,
a rebind will be attempted regardless of the setting of any Rebi ndPol i cy
override. This method is the only way to force such a rebind when implicit
rebinds are disallowed by the current effective Rebi ndPol i cy.

The appropriate system exception is raised if the binding fails due to some
reason unrelated to policy overrides.

169

170

CORBA::OperationDef Interface

Interface Qper ati onDef describes an IDL operation that is defined in an IDL
interface stored in the interface repository.

One way you can use the Qperati onDef is to construct an NVLi st for a
specific operation for use in the Dynamic Invocation Interface. For details see
CRB: :create operation_|list().

// 1DL in nodul e CORBA

interface (perationDef : Contained {
readonly attribute TypeCode result;
attribute I DLType result def;
attribute ParDescriptionSeq parans;
attribute Qperati onMde node;
attribute ContextldSeq contexts;
attribute ExceptionDef Seq excepti ons;

b
The inherited operation descri be() is also described.
See Also QORBA: : Cont ai ned

OORBA: : CRB: : creat e operation_list()

CORBA: :ﬁepti onDef

OperationDef::contexts Attribute

/1 1D
attribute ContextldSeq contexts;

/1 Java
java.lang. String[] contexts();

void contexts(java.lang.String[] _val);

The list of context identifiers specified in the context clause of the operation.

171

See Also

See Also

172

OperationDef::exceptions Attribute

/1 1DL
attribute ExceptionDefSeq exceptions;

/1 Java
or g. ong. OCRBA. Excepti onDef [] exceptions();

voi d exceptions(org.ong. CORBA ExceptionDef[] _val);
The list of exceptions that the operation can raise.
QORBA: : Except i onDef

OperationDef::describe()

/1 1DL
Description describe();

Inherited from Cont ai ned, descri be() returns a Descri pti on.

The Defi ni tionkKi nd for the ki nd member of this structure is dk_Qper ati on.
The value member is an any whose TypeCode is _t c_Cper ati onDescri pti on
and whose value is a structure of type Qper ati onDescri pti on.

OCORBA: : Cont ai ned: : descri be()
QOORBA: : Except i onDef

OperationDef::mode Attribute

/] 1DL
attri bute QperationMde node;
/1 Java

or g. ong. CORBA. (per at i onMbde node() ;
voi d node(org. ong. OCRBA (per ati onMode _val);

Specifies whether the operation is normal (CP_NCRMVAL) or oneway (CP_CNEWAY).

OperationDef::params Attribute

/1 1D
attribute ParDescriptionSeq parans;

See Also

See Also

/1 Java
or g. ong. CORBA. Par anet er Description[] parans();

voi d parans(org. ong. CORBA ParaneterDescription[] _val);

Specifies the parameters for this operation. It is a sequence of structures of
type Par aret er Descri pti on.

The nane member of the Par anet er Descri pti on structure provides the name
for the parameter. The t ype member identifies the TypeCode for the
parameter. The type_def member identifies the definition of the type for the
parameter. The node specifies whether the parameter is an i n (PARAM I N), an
out (PARAM QUT) or an i nout (PARAM | NOUT) parameter. The order of the

Par anet er Descri pti ons is significant.

CCRBA: : TypeCode

CCORBA: : | DLType

OperationDef::result Attribute

/1 1D
readonly attribute TypeCode resul t;

/1 Java
or g. ong. CORBA. TypeCode resul t();

The return type of this operation. The attribute resul t _def contains the same
information.

CCRBA: : TypeCode
CORBA: : (perati onDef: :resul t _def

OperationDef::result_def Attribute

/1 1D
attribute | DLType result_def;

/1 Java
org. ong. CORBA. | DLType resul t_def ();

void result_def(org.ong. CORBA | DLType _val);

Describes the return type for this operation. The attribute resul t contains the
same information.

Setting the resul t _def attribute also updates the resul t attribute.

173

See Also CCRBA: : | DLType
OORBA: : Oper ati onDef: :resul t

174

CORBA::ORB Class

The CRBclass provides a set of methods and data types that control the ORB
from both the client and the server. See Table 5:

Table 5: Methods and Types of the ORB Class

Object Reference Manipulation

ORB Operation and Threads

dupl i cate()

list initial services()
nil()

Qpj ectld type

Qpj ect | dLi st sequence
obj ect to string()

resolve initial references()
string to object()

destroy()
per f orm wor k()

run()

shut down()
wor k_pendi ng()

ORB Policies and Services

create

policy()

Dynamic Invocation Interface (DII)

TypeCode Creation Methods

create_environnent ()

create _exception list()

create |ist()

create_naned_val ue()

create operation list()

get _next _response()

pol | _next response()

send nul tiple requests deferred()

send nul tipl e requests_oneway()

Value Type Factory Methods

| ookup_val ue factory()
regi ster_value factory()
unr egi ster _val ue factory()

create

abstract _interface tc()

create

alias tc()

create

array tc()

Create

enumtc()

Create

exception_tc()

Create

fixed tc()

create

interface tc()

create

native tc()

create

recursive tc()

Create

sequence _tc()

Create

string tc()

Create

struct _tc()

Create

uni on_tc()

create

val ue_bhox tc()

create

val ue tc()

create

wstring tc()

There are also methods to manage dynamic any data types.

175

You initialize the ORB using GRB.ini t ().
The CRB class is defined as follows:

/11D

pseudo interface CRB {
typedef string (pjectld;
typedef sequence <Cbjectld> CbjectldList;
exception I nconsi st ent TypeCode {};
exception InvalidNanme {};
string object to string (in Chject obj);
Chj ect string_to object (in string str);

/1 Dynanmic Invocation rel ated operations
void create list (in long count, out NVList newlist);
void create operation list (

in QperationDef oper,

out NVList newlist);
void get default context (out Context ctx);
void send multiple requests _oneway(in RequestSeq req);
void send multiple requests deferred(in Request Seq req);
bool ean pol | next response();
voi d get _next response(out Request req);

/1 Service information operations
bool ean get _service infornation (

in ServiceType service_type,

out Servicelnformation service_information);
ChjectldList list initial services ();

/1l Initial reference operation
Chject resolve initial references (
in (hjectld identifier
) raises (InvalidNane);

/1 Type code creation operations
TypeCode create struct _tc (

in Repositoryld id,

in ldentifier nare,

in Struct Menber Seq nenbers);
TypeCode create union tc (

in Repositoryld id,

in ldentifier nane,

176

i n TypeCode di scrim nator_type,

i n Uni onMenber Seq nmenbers);
TypeCode create enumtc (

in Repositoryld id,

in ldentifier nane,

i n Enunienber Seq nenbers);
TypeCode create alias tc (

in Repositoryld id,

in ldentifier nane,

in TypeCode original _type);
TypeCode create _exception tc (

in Repositoryld id,

in ldentifier nane,

in Struct Menber Seq nenbers);
TypeCode create interface tc (

in Repositoryld id,

in ldentifier name);
TypeCode create string tc (in unsigned | ong bound);
TypeCode create wstring tc (in unsigned |ong bound);
TypeCode create fixed tc (

in unsigned short digits,

in short scale);
TypeCode create_sequence tc (

i n unsi gned | ong bound,

in TypeCode el emrent type);
TypeCode create recursive sequence tc (// deprecated

i n unsi gned | ong bound,

in unsigned | ong offset);
TypeCode create array tc (

i n unsigned | ong | ength,

in TypeCode el ement _type);
TypeCode create value tc (

in Repositoryld id,

in ldentifier nane,

in Val ueModi fier type_modifier,

i n TypeCode concr et e_base,

i n Val ueMenber Seq nmenbers);
TypeCode create val ue box tc (

in Repositoryld id,

in ldentifier name,

i n TypeCode boxed_type);
TypeCode create native tc (

in Repositoryld id,

177

inldentifier nane);
TypeCode create recursive tc (
in Repositoryldid);
TypeCode create abstract interface tc (
in Repositoryld id,
in ldentifier nane);

/1 Thread rel ated operations

bool ean wor k_pendi ng();

voi d performwork();

void run();

voi d shutdown(in bool ean wait_for_conpletion);

voi d destroy();

/1 Policy rel ated operations
Policy create_policy(
in PolicyType type,
inany val) raises (PolicyError);

/1 Dynanmic Any rel ated operations deprecated and renoved
// fromprinary |ist of CRB operations
/1 Value factory operations
Val ueFact ory regi ster_val ue factory(
in Repositoryld id,
in Val ueFactory factory);
voi d unregi ster value factory(in Repositoryld id);
Val ueFact ory | ookup val ue factory(in Repositoryld id);

// Additional operations that only appear in the Java mappi ng
TypeCode get _primtive tc(in TCK nd tcKind);

ExceptionLi st create exception list();

Context Li st create context list();

Envi ronnment create environnent();

Qurrent get_current();

Any create_any();
CQut put Stream create_out put_streamn();

voi d connect ((hj ect obj);

voi d di sconnect (Coj ect obj);

Cbj ect get_value _def (in String repid);
voi d (Chj ect wapper);

// additional methods for CRB initialization go here, but only
// appear in the mapped Java (seeSection 1.21.9, “CRB

178

// Initialization) Java signatures

// public static CRBinit(Strings[] args, Properties props);

// public static CRBinit(Applet app, Properties props);

// public static GRBinit();

// abstract protected void set_paraneters(String[] args,

// java.util.Properties props);

/] abstract protected void set_paraneters(java. appl et. Appl et app,
I/ java.util.Properties props);

}s

[/ Java
package org. ong. CORBA;
public abstract class CRB {
public abstract org.ong. CORBA (hj ect
string_to object(String str);
public abstract String
obj ect _to_string(org.ong. CORBA (bj ect obj);

/1 Dynami c Invocation rel ated operations
public abstract NVList create_|ist(int count);

public NwList create operation_list(
or g. ong. CORBA. (bj ect oper);

/1 oper nust really be an Qperati onDef

publi c abstract NanmedVal ue create_naned_val ue(
String nane, Any value, int flags);

public abstract ExceptionList create_exception_list();

public abstract ContextList create_context_list();

public abstract Context get default context();

public abstract Environnment create_environment();

public abstract void send_nultipl e_requests_oneway(
Request[] req);

public abstract void send_multiple_requests_deferred(
Request[] req);

publ i c abstract bool ean pol | _next _response();

public abstract Request get next_response() throws
or g. ong. CCRBA. WongTr ansacti on;

/1 Service infornation operations

publ i c bool ean get _servi ce_i nformati on(
short service_type,
Servi cel nf or mat i onHol der servi ce_info) {

179

t hr ow new or g. ong. CORBA. NO | MPLEMENT() ;
public abstract String[] list_initial_services();

/1l Initial reference operation
public abstract org.ong. CORBA (bj ect
resolve_initial _references(String object_nane)

t hrows org. ong. OCRBA CRBPackage. | nval i dNang;

/1l typecode creation
public abstract TypeCode create_struct _tc(
String id, String name, StructMenber[] menbers);
public abstract TypeCode create_union_tc(
String id,
String nane,
TypeCode di scri nminat or _type,
Uni onMenber [] menbers);
public abstract TypeCode create_enumtc(
String id,
String nane,
String[] nenbers);
public abstract TypeCode create alias_tc(
String id,
String nane,
TypeCode original _type);
publ i c abstract TypeCode create_exception_tc(
String id,
String nane,
Struct Menber[] menbers);
public abstract TypeCode create_interface_tc(
String id, String nane);
public abstract TypeCode create_string_tc(int bound);
public abstract TypeCode create wstring_tc(int bound);
publ i c TypeCode create_fixed_tc(
short digits,
short scale) {
t hr ow new or g. ong. CORBA NO | MPLEMENT(); }
public abstract TypeCode create_sequence_tc(
i nt bound, TypeCode el enent _type);

public abstract TypeCode create array_tc(

int length, TypeCode el enent _type);
publ i ¢ TypeCode create_val ue_tc(

180

String id,

String nane,

short type_nodifier,

TypeCode concr et e_base,

Val ueMenber[] menbers) {

t hrow new or g. ong. CORBA. NO | MPLEMENT(); }
publ i ¢ TypeCode create_val ue_box_tc(

String id,

String nane,

TypeCode boxed_type) {

t hrow new or g. ong. CORBA. NO | MPLEMENT(); }
publ i c TypeCode create_native_tc(

String id,

String nane) {

t hrow new or g. ong. CORBA NO | MPLEMENT(); }
publ i c TypeCode create_recursive_tc(

String id) {

t hrow new or g. ong. CORBA. NO | MPLEMENT(); }
publ i ¢ TypeCode create_abstract _interface_tc(

String id,

String nane) {

throw org. ong. CORBA. NO_| MPLEMENT(); }

// Thread rel ated operations
publ i ¢ bool ean wor k_pendi ng() {
t hrow new or g. ong. CORBA NO_| MPLEMENT() ;

public void performwork() {

t hrow new or g. ong. CORBA. NO | MPLEMENT() ; }
public void run() {

t hrow new or g. ong. CORBA NO | MPLEMENT(); }
public voi d shutdown(bool ean wait_for_conpl etion) {

t hrow new or g. ong. CORBA NO | MPLEMENT(); }
public void destroy() {

t hrow new or g. ong. CORBA. NO | MPLEMENT(); }

/1 Policy rel ated operations

public Policy create_policy(short policy_type, Any val)
throws org. ong. CCRBA. Pol i cyError {
t hrow new or g. ong. CORBA. NO | MPLEMENT(); }

/] additional methods for |DL/Java nappi ng
public abstract TypeCode get prinmtive_tc(TCKi nd tcKind);

181

182

public abstract Any create_any();
public abstract org.ong. CORBA portabl e. Qut put Stream
create_output_strean();

// additional static methods for CRB initialization
public static CRB init(
Strings[] args,
Properties props);
public static CRBinit(
Appl et app,
Properties props);
public static CGRBinit();
abstract protected void set_paramet ers(
String[] args,
java. util.Properties props);
abstract protected void set_paramnet ers(
java. appl et. Appl et app,
java.util.Properties props);

}

package org. ong. CCRBA 2_3;
public abstract class CRB extends org.ong. CORBA CRB {
/1 always return a Val ueDef or throw BAD PARAM i f
/1l repid not of a val ue
publi c org. ongy. CORBA (hj ect get_val ue_def (
String repid)
t hrows org. ong. CCRBA BAD PARAM {
t hr ow new or g. ong. CORBA NO | MPLEMENT(); }

/1 Value factory operations
publi c org. ong. GORBA portabl e. Val ueFact ory
regi ster_val ue_factory(
String id,
or g. ong. CORBA. port abl e. Val ueFactory factory){
t hr ow new or g. ong. CORBA NO | MPLEMENT(); }
public void unregister_value factory(String id) {
t hr ow new or g. ong. CORBA NO | MPLEMENT(); }
public org. ong. GORBA portabl e. Val ueFact ory
| ookup_val ue_factory(String id) {
t hr ow new or g. ong. CORBA NO | MPLEMENT(); }
public void set_del egat e(j ava. | ang. (bj ect wrapper) {
t hr ow new or g. ong. CORBA. NO | MPLEMENT() ; }

Parameters

See Also

Parameters

See Also

ORB::create_abstract_interface_tc()

Returns a pointer to a new TypeCode of kind t k_abst ract _i nterf ace repre-
senting an IDL abstract interface.

id The repository ID that globally identifies the TypeCode object.
name The simple name identifying the TypeCode object within its

enclosing scope.

OCRBA: : TypeCode
OCORBAI: TQKI nd

ORB::create_alias_tc()

/1 Java
public abstract TypeCode create alias_tc(
String id,

String nane,
TypeCode origi nal _type
)

Returns a pointer to a new TypeCode of kind t k_al i as representingan IDL alias.

id The repository ID that globally identifies the TypeCode object.
name The simple name identifying the TypeGode object within its

enclosing scope.
original _type A pointer to the actual TypeGode object this alias represents.

CCRBA: : TypeCode
QOCORBAI: TCKI nd

183

Parameters

See Also

Parameters

See Also

184

ORB.create_any()

[/ Java
public abstract Any create_any();

Creates a new empty Any.

ORB::create_array tc()

/1 Java
public abstract TypeCode create_array_tc(
int |ength,

TypeCode el enent _t ype
)s

Returns a pointer to a new TypeCode of kind t k_array representing an IDL
array.

| engt h The length of the array.
el enent _type The data type for the elements of the array.

QCORBA:: TypeCode
OCRBAIITCKI n

ORB::create_context_list()

void create_context _|ist(ContextList out list);

Creates an empty Cont ext Li st object for use with a DIl request. You can add
context strings to the list using Cont ext Li st : : add() and then pass the list as
a parameter to Goj ect:: _create request().

list A reference to the new Cont ext Li st .

QCRBA: : Cont ext Li st
OORBA: : (hj ect:: _create_request ()

Parameters

See Also

See Also

See Also

ORB::create_enum_tc()

/1 Java
public abstract TypeCode create_enumtc(
String id,

String nane,

Enumvenber [] nenbers
)
Returns a pointer to a new TypeCode of kind t k_enumrepresenting an IDL
enumeration.

id The repository ID that globally identifies the TypeCode object.
name The simple name identifying the TypeCode object within its

enclosing scope.
menber s The sequence of enumeration members.

CCRBA: : TypeCode
CORBAI:TCKI n

ORB::create_environment()

/1 Java
public abstract Environnment create_environment();

Gets a newly created Envi ronnent object.
CCRBA: : Envi ronnent

ORB::create_exception_list()

/1 Java
public abstract ExceptionList create_exception_list();

Creates an empty Excepti onLi st object for use with a DIl request. You can
add user-defined exceptions to the list using Excepti onLi st : : add() and then
pass the list as a parameter to Cbj ect:: create request().

OCRBA: : Excepti onlLi st
CORBA: : (hj ect:: _create_request ()

185

Parameters

See Also

Parameters

See Also

186

ORB::create_exception_tc()

[/ Java
public abstract TypeCode create_exception_tc(
String id,

String nane,
St ruct Menber[] menbers
)s

Returns a pointer to a new TypeCode of kind t k_except representing an IDL
exception.

id The repository ID that globally identifies the TypeCode object.

nane The simple name identifying the TypeCode object within its
enclosing scope.

menber s The sequence of members.

CORBA:: TypeCode
QCRBA:: TCKI nd

ORB::create_fixed_tc()

Returns a pointer to a new TypeCode of kind t k_fi xed representing an IDL
fixed point type.

digits The number of digits for the fixed point type.
scal e The scale of the fixed point type.

QCRBA:: TypeCode
QORBA:: TCK nd

ORB::create _interface tc()

/1 Java
public abstract TypeCode create_interface_tc(

String id, String nane
)s

Parameters

See Also

Parameters

See Also

Returns a pointer to a new TypeCode representing an IDL interface.

id The repository ID that globally identifies the TypeCode object.
name The simple name identifying the TypeCode object within its

enclosing scope.

CCRBA: : TypeCode
QOCORBAI: TQKI nd

ORB::create _list()

/1 Java
public abstract NVList create_list(int count);

Allocates space for an empty NVLi st of the size specified by count to contain
NanedVal ue objects. A list of NanedVal ue object can be used to describe
arguments to a request when using the Dynamic Invocation Interface. You can
add NanedVal ue items to list using the NVLi st: : add iten{) routine.

count Number of elements anticipated for the new NvLi st. This is a
hint to help with storage allocation.

OORBA::NWL st

CORBA: :NanedVal ue

OCRBA::CRB::create operation_|ist()

QOCRBA: :Request ()

ORB::create_named_value()

/1 Java

public abstract NamedVal ue create_naned_val ue(
String nane,
Any val ue,
int flags

)

Creates NanedVal ue objects you can use as return value parameters in the
(hj ect ::_create request () method.

187

Parameters

See Also

Parameters

See Also

Parameters

188

val ue A pointer to the NanedVal ue object created. You must
release the reference when it is no longer needed, or assign
it to a NanedVal ue var variable for automatic management.

COCORBA::NVWLI st

QOCRBA: :NanedVal ue

QORBA: : Any

CQCRBAI:CRB::create_|ist()

ORB::create_native tc()

Returns a pointer to a new TypeCode of kind t k_nat i ve representing an IDL
native type.

id The repository ID that globally identifies the TypeCode object.
nare The simple name identifying the TypeCode object within its

enclosing scope.

QCRBA:: TypeCode
QORBA:: TCK nd

ORB::create_operation_list()

[/ Java
public abstract NVLi st create_operation_list(

Qper ati onDef operation
);
Creates an NvLi st initialized with the argument descriptions for the operation
specified in oper at i on.

operation A pointer to the interface repository object describing the
operation.

See Also

Parameters

See Also

Each element in the list is of type NanedVal ue whose val ue member (of type
CORBA::Any) has a valid type that denotes the type of the argument. The
value of the argument is not filled in.

Use of this method requires that the relevant IDL file be compiled with the -R
option.

OORBA::NWL st

CORBA::NanedVal ue

OORBA: : Any

OCRBAI:CRB::create |ist()

ORB::create_output_stream()

/1 Java
public abstract

or g. ong. CCRBA. port abl e. Qut put Stream creat e_out put _strean();

Creates a new org.omg.CORBA.portable.OutputStream into which IDL method
parameters can be marshalled during method invocation.

ORB::create_policy()

Returns a reference to a newly created Pol i cy object.

type The Pol i cyType of the Pol i cy object to be created.
val ue The value for the initial state of the Pol i cy object created.
CCORBA: : Polic

CCRBA : Pol i cyType
CCORBA: : Pol i cyError Code

ORB::create_recursive tc()

Returns a pointer to a recursive TypeCode, which serves as a place holder for
a concrete TypeCode during the process of creating type codes that contain
recursion. After the recursive TypeCode has been properly embedded in the

189

Parameters

Examples

See Also

Parameters

See Also

190

enclosing TypeCode, which corresponds to the specified repository i d, it will
act as a normal TypeCode.

id The repository ID of the enclosing type for which the recursive
TypeCode is serving as a place holder.

Invoking operations on the recursive TypeCode before it has been embedded
in the enclosing TypeCode will result in undefined behavior.

The following IDL type declarations contains TypeCode recursion:

/1 1D
struct foo {
| ong val ue;

sequence<f 00> chai n;

}

val uetype V {
public V nenber;

b
CORBA:: TypeCode

ORB::create_sequence_tc()

[/ Java
public abstract TypeCode create_sequence_t ¢(
int bound,

TypeCode el enent _t ype
);

Returns a pointer to a new TypeCode of kind t k_sequence representing an IDL
sequence.

bound The upper bound of the sequence.
el enent _type The data type for the elements of the sequence.

QCRBA:: TypeCode
QORBA:: TCK nd

Parameters

See Also

Parameters

See Also

ORB::create_string_tc()

/1 Java
public abstract TypeCode create string_tc(int bound);

Returns a pointer to a new TypeCGode of kind t k_st ri ng representing an IDL
string.

bound The upper bound of the string.

OCRBA: : TypeCode
QOCORBAI: TQKI nd

ORB::create_struct_tc()

/1 Java
public abstract TypeCode create_struct_tc(
String id,

String nane,

Struct Menber[] menbers
)
Returns a pointer to a new TypeCode of kind t k_struct representing an IDL
structure.

id The repository ID that globally identifies the TypeCode object.
name The simple name identifying the TypeCode object within its

enclosing scope.
menber s The sequence of structure members.

OCRBA: : TypeCode
QOCORBAI: TQKI nd

ORB::create_union_tc()

/1 Java
public abstract TypeCode create_union_tc(
String id,

191

String nane,
TypeCode di scrininator_type,
Uni onMenber[] nenbers
)
Returns a pointer to a TypeCode of kind t k_uni on representing an IDL union.
Parameters
id The repository ID that globally identifies the
TypeCode object.

nane The simple name identifying the TypeCode object
within its enclosing scope.

discrimnator_type The union discriminator type.
menber s The sequence of union members.

See Also QCRBA:: TypeCode
QORBA:: TCK nd

ORB::create_value_box_tc()

Returns a pointer to a new TypeCode of kind t k_val ue_box representing an
IDL boxed value.

Parameters

id The repository ID that globally identifies the TypeCode object.

nane The simple name identifying the TypeCode object within its
enclosing scope.

original _type A pointer to the original TypeCode object this boxed value
represents.

See Also QCRBA:: TypeCode
QORBA:: TCK nd

ORB::create value_tc()

Returns a pointer to a TypeCode of kind t k_val ue representing an IDL value
type.

192

Parameters

See Also

Parameters

See Also

id The repository ID that globally identifies the TypeCode
object.
name The simple name identifying the TypeCode object within its

enclosing scope.
type_nodifier A value type modifier.

concrete_base A TypeCode for the immediate concrete value type base of
the value type for which the TypeCode is being created. If
the value type does not have a concrete base, use a nil
TypeCode reference.

menber s The sequence of value type members.

CCRBA: : TypeCode
CCRBAI:TCKI n

ORB::create_wstring_tc()

/1 Java
public abstract TypeCode create wstring_tc(int bound);

Returns a pointer to a new TypeCode of kind t k_wst ri ng representing an IDL
wide string.

bound The upper bound of the string.

CIZRBA::TX(gerde
OCORBA : TXKi n

ORB::destroy()

voi d destroy();

This thread operation destroys the ORB so that its resources can be reclaimed
by the application.

193

Exceptions

See Also

Parameters

194

If destroy() is called on an ORB that has not been shut down (see

shut down()) it will start the shut down process and block until the ORB has
shut down before it destroys the ORB. For maximum portability and to avoid
resource leaks, applications should always call shut down() and dest roy()
on all ORB instances before exiting.

After an ORB is destroyed, another call to GRB_i ni t () with the same ORB ID
will return a reference to a newly constructed ORB.

BAD | NV_CRDER, An application calls destroy() in a thread that is currently
minor code 3 servicing an invocation because blocking would result in a
deadlock.

CBJECT_NOT_EXI An operation is invoked on a destroyed ORB reference.
ST

The exception is raise if
QCORBA : CRB: : run

OCRBA: : CRB: : shut down

ORB::_duplicate()

Returns a new reference to obj and increments the reference count of the
object. Because object references are opaque and ORB-dependent, it is not
possible for your application to allocate storage for them. Therefore, if more
than one copy of an object reference is needed, use this method to create a
duplicate.

ORB::get_default_context()

[/ Java
public abstract Context get_default_context();

Obtains a OORBA::Cont ext object representing the default context of the
process.

cont ext The default context of the process.

See Also

Exceptions

See Also

CCORBA: : Cont ext
COCRBA: :NVLI st

ORB::get_next_response()

/1 Java
public abstract Request get_next_response();

Gets the next response for a request that has been sent.

You can call get _next _response() successively to determine the outcomes
of the individual requests from send mul ti pl e requests deferred() calls.
The order in which responses are returned is not necessarily related to the
order in which the requests are completed.

WongTransacti The thread invoking this method has a non-null transaction
on context that differs from that of the request and the request
has an associated transaction context.

OCRBA::ORB::send_nul ti pl e_requests_def erred()
CORBA::Request ::iget _response()

CORBA::Request ::isend_def erred()
OCRBAI:ORB::pol | _next _response()

ORB::get_primitive_tc()

/1 Java
public abstract TypeCode get prinitive tc(TCKi nd tcKind);

Retrieves the TypeCode object that represents the given primitive IDL type.

ORB.init()

public static CRBinit(Strings[] args, Properties props);
Creates a new ORB instance for a standalone application.

public static CRBinit(Applet app, Properties props);
Creates a new ORB instance for an applet.

195

See Also

Parameters

See Also

196

public static CRBinit();
Returns the ORB singleton object.

ORB::list_initial_services()
public abstract String[] list_initial_services();

Returns a sequence of bj ect | d strings, each of which names a service
provided by Orbix. This method allows your application to determine which
objects have references available. Before you can use some services such as
the naming service in your application you have to first obtain an object
reference to the service.

The oj ect | dLi st may include the following names:

DynAnyFact ory

I T Configuration

I nterfaceRepository
NaneSer vi ce

CRBPol i cyManager
PQACur r ent

PSS

Root PQA

Securi tyQurrent

Tr adi ngSer vi ce
Transact i onCurr ent

OORBA: : ORB: :resolve initial references()

ORB::lookup value_factory()

Returns a pointer to the factory method.

id A repository ID that identifies a value type factory method.

Your application assumes ownership of the returned reference to the factory.
When you are done with the factory, invoke Val ueFact or yBase: :

_renove_ref () once on that factory.

OCORBA: : Val ueFact ory
QCRBA: : CRB: :regi ster_val ue_factory()

Parameters

See Also

OCRBA: : CRB: : unr egi steer _val ue_factory()

ORB::object_to_string()

public abstract String object_to_string(
or g. ong. GCRBA. (hj ect obj

)

Returns a string representation of an object reference. An object reference can
be translated into a string by this method and the resulting value stored or
communicated in whatever ways strings are manipulated.

obj Object reference to be translated to a string.

Use string to object() to translate the string back to the corresponding
object reference.

A string representation of an object reference has the prefix | CR followed by
a series of hexadecimal octets. The hexadecimal strings are generated by first
turning an object reference into an interoperable object reference (IOR), and
then encapsulating the IOR using the encoding rules of common data
representation (CDR). The content of the encapsulated IOR is then turned into
hexadecimal digit pairs, starting with the first octet in the encapsulation and
going until the end. The high four bits of each octet are encoded as a
hexadecimal digit, then the low four bits are encoded.

Note: Because an object reference is opaque and may differ from ORB to
ORB, the object reference itself is not a convenient value for storing
references to objects in persistent storage or communicating references by
means other than invocation.

CCORBA::ORB::string_to_object()

197

Exceptions

See Also

See Also

198

ORB::perform_work()

voi d performwork();

Athread function that provides execution resources to your application if called
by the main thread. This function does nothing if called by any other thread.
You can use per f or mwor k() and wor k %endi nE() for a simple polling loop
that multiplexes the main thread among the and other activities. Such a
loop would most likely be used in a single-threaded server. A multi-threaded

server would need a polling loop only if there were both ORB and other code
that required use of the main thread.
OQORBA: : CRB: :run()

QCRBA: : GRB: : wor k_pendi ng()

ORB::poll_next_response()

publ i c abstract bool ean pol | _next _response();

Returns 1 (true) if any request has completed or returns O (false) if none have
completed. This method returns immediately, whether any request has com-
pleted or not.

You can call this method successively to determine whether the individual
requests specified in a send_mul ti pl e requests oneway() or
send nul tiple requests deferred() call have completed successfully.

Alternatively you can call Request : : pol | _response() on the individual
Request objects in the sequence of requests passed to

send nmul tipl e requests oneway() or

send nultiple requests deferred().

OORBA: : ORB: : get _next _response()

QCRBA: : CRB: : send_mul ti pl e requests_oneway()

QCRBA: : CRB: :send_mmul ti pl e requests_def erred()
OCRBA: : Request : : pol | _response()

ORB::register_value_factory()

Registers a value type factory method with the ORB for a particular value type.
The method returns a null pointer if no previous factory was registered for the
type. If a factory is already registered for the value type, the method replaces

Parameters

See Also

the factory and returns a pointer to the previous factory for which the caller
assumes ownership.

id A repository ID that identifies the factory.

factory The application-specific factory method that the ORB calls
whenever it needs to create the value type during the
unmarshaling of value instances.

When a value type factory is registered with the ORB, the ORB invokes
Val ueFact oryBase: : _add ref () once on the factory before returning from
regi ster_val ue_factory(). When the ORB is done using that factory, the
reference count is decremented once with Val ueFact or yBase: :

remove_r ef (). This can occur in any of the following circumstances:

* |fthe factory is explicitly unregistered via unregi ster val ue factory(),
the ORB invokes Val ueFact or yBase: : _renove_ref () once on the
factory.

* |f the factory is implicitly unregistered due to a call to shut down(), the
ORB invokes Val ueFact or yBase: : renove ref() once on each
registered factory.

* |fyou replace a factory by calling this regi st er _val ue_factory() again,
you should invoke Val ueFact or yBase: : _renove ref () once on the
previous factory.

CCRBA: : Val ueFact or
OCRBA: : ORB: : T ookup _val ue factory()

CORBA: :@: sunregi ster_val ue factory()

ORB::resolve _initial_references()

public abstract org.ong. CORBA (hj ect
resolve_initial _references(String object_name)

throws org. ong. CCRBA. CRBPackage. | nval i dN\ane;

Returns an object reference for a desired service.

199

Parameters

See Also

See Also

200

id The name of the desired service. Use
list initial services() to obtain the list of services
supported.

Applications require a portable means by which to obtain some initial object
references such as the root POA, the interface repository, and various object
services instances. The functionality of resol ve_initial _references() and
list initial services() is like a simplified, local version of the naming
service that has only a small set of objects in a flattened single-level name
space.

The object reference returned must be narrowed to the correct object type.

For example, the object reference returned from resolving the i d name
I nt er f aceReposi t ory must be narrowed to the type OORBA: : Reposi tory.

QCRBA: : CRB: : list_initial _services()

ORB::run()

void run();
A thread method that enables the ORB to perform work using the main thread.

If called by any thread other than the main thread, this method simply waits
until the ORB has shut down.

This method provides execution resources to the ORB so that it can perform
its internal functions. Single threaded ORB implementations, and some
multi-threaded ORB implementations need to use the main thread. For
maximum portability, your applications should call either run() or

per f orm wor k() on the main thread.

run() returns after the ORB has completed the shutdown process, initiated
when some thread calls shut down() .

QCRBA: : CRB: : per f or m wor k()
QCRBA: : GRB: : wor k_pendi ng()

QCRBA: : CRB: : shut down()
OORBA: : CRB: : destroy()

Parameters

See Also

Parameters

See Also

ORB::send_multiple_requests_deferred()

public abstract void send_multiple_requests_deferred(
Request[] req
)

Initiates a number of requests in parallel.

req A sequence of requests.

The method does not wait for the requests to finish before returning to the
caller. The caller can use get _next response() or Request ::

get _response() to determine the outcome of the requests. Memory leakage
will result if one of these methods is not called for a request issued with
send mul tiple requests oneway() or Request::send _deferred().

OCRBA: : CRB: : send_nmul ti pl e request s_oneway()
OORBA: : Request : : get _response()
OCRBA: : Request : : send_def erred()

OCRBA: : CRB: : get _next _r esponse()

ORB::send_multiple_requests_oneway()

public abstract void send_multiple_requests_oneway(Request[] req);

Initiates a number of requests in parallel. It does not wait for the requests to
finish before returning to the caller.

req A sequence of requests. The operations in this sequence do
not have to be IDL oneway operations. The caller does not
expect a response, nor does it expect out or inout parameters
to be updated.

CCRBA: : Request : : send_oneway()
OCRBA : CRB: :send_mul t1 pl e request s_def erred()

201

Parameters

Exceptions

See Also

202

ORB::shutdown()

voi d shut down(
bool ean wait_for_conpl eti on
)s

This thread method instructs the ORB to shut down in preparation for ORB
destruction.

wai t _for_conpl etion Designates whether or not to wait for completion
before continuing.

If the value is 1 (true), this method blocks until all
ORB processing has completed, including request
processing and object deactivation or other methods
associated with object adapters.

If the value is O (false), then shut down may not have
completed upon return of the method.

While the ORB is in the process of shutting down, the ORB operates as
normal, servicing incoming and outgoing requests until all requests have
been completed. Shutting down the ORB causes all object adapters to be
shut down because they cannot exist without an ORB.

An application may also invoke CRB: : dest roy() on the ORB itself. Invoking
any other method raises exception BAD | N\V_CRDER system with the OMG
minor code 4.

BAD | N\V_CRDER, An application calls this method in a thread that is currently
mnor code servicing an invocation because blocking would result in a
3 deadlock.

CORBA: : ORB: : run()
OORBA: : ORB: : destroy()

Parameters

See Also

Parameters

See Also

Exceptions

See Also

ORB::string_to_object()
public abstract org.ong. CORBA (bj ect string_to _object(String str);

Returns an object reference by converting a string representation of an object
reference.

obj _ref _string String representation of an object reference to be converted.

To guarantee that an ORB will understand the string form of an object
reference, the string must have been produced by a call to
object _to string().

OCRBA: :ORB::obj ect _to_string()

ORB::unregister_value factory()
Unregisters a value type factory method from the ORB.

A repository ID that identifies a value type factory method.

id
QOCRBA: : Val ueFact ory

OCRBA: : CRB: : | ookup_val ue_factory()
QCRBA

. CORB: :register_val ue factory()

ORB::work_pending()

bool ean wor k_pendi ng() ;

This thread method returns an indication of whether the ORB needs the main
thread to perform some work. A return value of 1 (true) indicates that the ORB
needs the main thread to perform some work and a return value of O (false)
indicates that the ORB does not need the main thread.

BAD | N\V_CRDER, The method is called after the ORB has shutdown.
minor code 4

CORBA: : CRB: : run()

OCRBA: : CRB: : per f orm wor k()

203

204

CORBA::Policy Interface

An ORB or CORBA service may choose to allow access to certain choices
that affect its operation. This information is accessed in a structured manner
using interfaces derived from the Pol i cy interface defined in the CORBA
module. A CORBA service is not required to use this method of accessing
operating options, but may choose to do so.

This chapter is divided into the following sections:

® “Quality of Service Framework”
* “Policy Methods”

The following policies are available. These are classes that inherit from the
QOCRBA: : Pol i cy class:

Table 6: Policies

Category Policy
CORBA and | T_QCRBA: : Vel | KnownAddr essi ngPol i cy
IT_ CORBA

PortableServerand Portabl eServer: : ThreadPol i cy
IT PortableServer Port abl eSer ver: : Li f espanPol i cy
- Port abl eSer ver: : | duni quenessPol i cy

Port abl eSer ver: : | dAssi gnnent Pol i cy
Portabl eServer:: I nplicitActivationPolicy
Port abl eSer ver: : Servant Ret enti onPol i cy
Port abl eSer ver: : Request Processi ngPol i cy
I T_Port abl eServer: : (hj ect Deacti vati onPol i cy
| T_Port abl eSer ver : : Per si st enceMddePol i cy

You create instances of a policy by calling CCRBA: : CRB: : create_policy().

205

Quality of Service Framework

A Pol i cy is the key component for a standard Quality of Service framework
(QoS). In this framework, all qualities are defined as interfaces derived from
QORBA: : Pol i cy. This framework is how all service-specific qualities are
defined. The components of the framework include:

Pol i cy This base interface from which all QoS objects derive.

Pol i cyLi st A sequence of Pol i cy objects.

Pol i cyManager An interface with operations for querying and
overriding QoS policy settings.

Policy Transport Mechanisms for transporting policy values as part of

Mechanisms interoperable object references and within requests.

These include:

® TAG PQLI A ES - A Profile Component containing
the sequence of QoS policies exported with the
object reference by an object adapter.

®* | NVOCATI ON PCLI O ES - A Service Context
containing a sequence of QoS policies in effect
for the invocation.

Most policies are appropriate only for management at either the server or
client, but not both. Server-side policies are associated with a POA.
Client-side policies are divided into ORB-level, thread-level, and object-level
policies. At the thread and ORB levels, use the Pol i cyManager interface to
query the current set of policies and override these settings.

POA Policies for Servers

206

Server-side policy management is handled by associating QoS Pol i cy objects
with a POA. Since all QoS are derived from interface Pol i cy, those that are
applicable to server-side behavior can be passed as arguments to PQA :
creat e PQA(). Any such policies that affect the behavior of requests (and
therefore must be accessible by the ORB at the client side) are exported
within the object references that the POA creates. It is clearly noted in a POA
policy definition when that policy is of interest to the client. For those policies

Quality of Service Framework

that can be exported within an object reference, the absence of a value for
that policy type implies that the target supports any legal value of that
Pol i cyType.

ORB-level Policies for Clients

You obtained the ORB's locality-constrained Pol i cyManager through an
invocation of GORBA: : GRB: i resol ve_i ni tial _references(), specifying an
identifier of ORBPol i cyManager . This Pol i cyManager has operations through
which a set of policies can be applied and the current overriding policy
settings can be obtained. Policies applied at the ORB level override any
system defaults.

Thread-level Policies for Clients

You obtained a thread’s locality-constrained Pol i cyQurrent through an
invocation of GORBA: : GRB: i resol ve_i ni tial _references(), specifying an
identifier of Pol i cyQurrent . Policies applied at the thread-level override any
system defaults or values set at the ORB level. When accessed from a newly
spawned thread, the Pol i cyQurrent initially has no overridden policies. The
Pol i cyQurrent also has no overridden values when a POA with

Thr eadPol i cy of CRB_OONTROL_MODEL dispatches an invocation to a servant.
Each time an invocation is dispatched through a SI NALE_ THREAD MCDEL PQA,
the thread-level overrides are reset to have no overridden values.

Object-level Policies for Clients

Operations are defined on the base vj ect interface through which a set of
policies can be applied. Policies applied at the object level override any
system defaults or values set at the ORB or thread levels. In addition,
accessors are defined for querying the current overriding policies set at the
object level, and for obtaining the current effective client-side policy of a
given Pol i cyType. The effective client-side policy is the value of a

Pol i cyType that would be in effect if a request were made. This is
determined by checking for overrides at the object level, then at the thread
level, and finally at the ORB level. If no overriding policies are set at any

207

level, the system-dependent default value is returned. Portable applications
are expected to override the ORB-level policies since default values are not
specified in most cases.

Policy Methods

208

The Pol i cy interface is as follows:

/1 1DL in nodul e CCRBA

interface Policy {
readonly attribute PolicyType policy type;
Policy copy();
voi d destroy();

Policy::policy type Attribute

/1 1D
readonly attribute PolicyType policy_type;
/1 Java

public int policy_type();

This read-only attribute returns the constant value of type Pol i cyType that
corresponds to the type of the Pol i cy object.

Policy::copy()

/1 1DL
Pol i cy copy();
[/ Java

or g. ony. OCRBA Pol i cy copy();

This operation copies the Pol i cy object. The copy does not retain any
relationships that the original policy had with any domain, or object.

Policy Methods

Enhancement

Exceptions

Policy::destroy()

/1 1D
voi d destroy();

/1 Java
public void destroy();

This operation destroys the Pol i cy object. It is the responsibility of the Pol i cy
object to determine whether it can be destroyed.

Orbix guarantees to always destroy all local objects it creates when the last
reference to them is released so you do not have to call dest roy() . However,
code that relies on this feature is not strictly CORBA compliant and may leak
resources with other ORBs.

NO_PERM SSI ON The policy object determines that it cannot be destroyed.

209

210

CORBA::PolicyCurrent Class

The Pol i cyQurrent interface allows access to policy settings at the current
programming context level. Within a client, you obtain a Pol i cyQurrent
object reference to set the quality of service for all invocations in the current
thread. You obtain a reference to this interface by invoking G=B: :

resolve initial references().

The Pol i cyQurrent interface is derived from the Pol i cyManager and the
Qurrent interfaces. The Pol i cyManager interface allows you to change the
policies for each invocation and the Qurrent interface allows control from the
current thread.

Policies applied at the thread level override any system defaults or values set
at the ORB level. When accessed from a newly spawned thread, the

Pol i cyQurrent initially has no overridden policies. The Pol i cyQurrent also
has no overridden values when a POA with ThreadPol i cy of
ORB_OONTROL_MDEL dispatches an invocation to a servant. Each time an
invocation is dispatched through a POA of the SI NGLE THREAD MDEL, the
thread-level overrides are reset to have no overridden values.

/1 Java

package org. ongy. CORBA

public interface PolicyQurrent extends
or g. ong. GORBA. Pol i cyManager ,
org.ong. CORBA. Qurrent {}

211

212

CORBA::PolicyManager Class

Parameters

Parameters

See Also

Pol i cyManager is an interface with operations for querying and overriding
QoS policy settings. It includes mechanisms for obtaining policy override
management operations at each relevant application scope. You obtain the
ORB'’s PolicyManager by invoking CRB: : resol ve_i ni tial _references()
with the bj ect | d CRBPol i cyManager .

You use a QCRBA: : Pol i cyQurrent object, derived from OCRBA: : Qurrent , for
managing the thread’s QoS policies. You obtain a reference to this interface
by invoking ORB: : resol ve_initial _references() with the Objectld

Pol i cyCurrent.

® Accessor operations on OORBA: : (j ect allow querying and overriding of
QoS at the object reference scope.

®* The application of QoS on a POA is done through the currently existing
mechanism of passing a Pol i cyLi st to POA : create_PQA().

PolicyManager::get_policy overrides()

/1 Java
org.ony. CORBA Policy[] get_policy_overrides(int[] ts);

Returns a list containing the overridden polices for the requested policy types.
This returns only those policy overrides that have been set at the specific scope
corresponding to the target Pol i cyManager (no evaluation is done with respect
to overrides at other scopes). If none of the requested policy types are
overridden at the target Pol i cyManager , an empty sequence is returned.

ts A sequence of policy types to get. If the specified sequence is
empty, the method returns all policy overrides at this scope.

OCORBA: : Pol i cyManager: : set_policy_overrides()

213

Parameters

Exceptions

214

PolicyManager::set_policy_overrides()

[/ Java
voi d set_policy_overrides(

org. ong. CORBA Policy[] policies,
or g. ong. CCRBA. Set Overri deType set _add
) throws org.ong. CCRBA | nval i dPol i ci es;

Modifies the current set of overrides with the requested list of policy overrides.

policies A sequence of references to policy objects.

set _add Indicates whether the policies in the pol i ci es parameter
should be added to existing overrides in the Pol i cyManager or
used to replace existing overrides:

* Use ADD OVERRI DE to add policies onto any other
overrides that already exist in the Pol i cyManager .

®* Use SET OVERRI DE to create a clean Pol i cyManager free
of any other overrides.

Invoking the method with an empty sequence of policies and a mode of
SET OVERR DE removes all overrides from a Pol i cyManager .

There is no evaluation of compatibility with policies set within other policy
managers.

NO _PERM SSI QN Only certain policies that pertain to the invocation of an oper-
ation at the client end can be overridden using this operation.
This exception is raised if you attempt to override any other
policy.

I nval i dPol i ci e The request would put the set of overriding policies for the

d target Pol i cyManager in an inconsistent state. No policies are
changed or added.

CORBA::PrimitiveDef Interface

Interface Prim tiveDef represents an IDL primitive type such as short,
| ong, and others. Pri i tiveDef objects are anonymous (unnamed) and
owned by the interface repository.

Objects of type Priniti veDef cannot be created directly. You can obtain a
reference to a PrimtiveDef by calling Repository::get primtive().

// 1DL in nodul e CORBA
interface PrimtiveDef: |DLType {
readonly attribute PrimtiveKi nd Kind;

}s

See Also CORBA : Pri ni ti veKi nd
OCRBA: : [DLType
CORBA: : Repository::get _prinmtive()

PrimitiveDef::kind Attribute

/1 1D
readonly attribute PrimtiveKi nd kind;

/1 Java
org.onyg. CORBA PrimtiveKind kind();

Identifies which of the IDL primitive types is represented by this Pri m ti veDef .

A PrinmtiveDef with a ki nd of type pk_stri ng represents an unbounded
string, a bounded string is represented by the interface Stri ngDef . A
PrimtiveDef with a ki nd of type pk_obj ref represents the IDL type Qbj ect .

See Also CORBA : | DLType

CORBA: : (] ect
CORBA: : Stri ngDef

215

216

CORBA::Repository Interface

The interface repository itself is a container for IDL type definitions. Each
interface repository is represented by a global root Reposi t ory object.

The Reposi t ory interface describes the top-level object for a repository name
space. It contains definitions of constants, typedefs, exceptions, interfaces,
value types, value boxes, native types, and modules.

You can use the Reposi t ory operations to look up any IDL definition, by
either name or identity, that is defined in the global name space, in a
module, or in an interface. You can also use other Reposi t ory operations to
create information for the interface repository. See Table 7:

Table 7: Operations of the Repository Interface

Read Operations Write Operations
get _canoni cal _typecode() create_array()
get_primtive() create_fixed()

| ookup_id create_sequence()

create string()
create wstring()

The five creat e_t ype operations create new interface repository objects
defining anonymous types. Each anonymous type definition must be used in
defining exactly one other object. Because the interfaces for these
anonymous types are not derived from Cont ai ned, it is your responsibility to
invoke in your application destroy() on the returned object if it is not
successfully used in creating a definition that is derived from Cont ai ned.

The Reposi t ory interface is as follows:

// 1DL in nodul e CORBA
interface Repository : Container {

Cont ai ned | ookup_i d(
in Repositoryld search_id
);

TypeCode get _canoni cal _t ypecode(
in TypeCode tc

217

See Also

218

}

)

PrimtiveDef get_primtive(
in PrimtiveKind kind

)

StringDef create string(
i n unsigned | ong bound
)

Vgt ringDef create wstring(
i n unsigned | ong bound
)

SequenceDef creat e_sequence(
i n unsigned | ong bound,
in | DLType el enent _type

)
ArrayDef create_array(
i n unsigned | ong | engt h,
in | DLType el enent _type
)
Fi xedDef create fixed(
in unsigned short digits,
in short scale

)

Note that although a Reposi t ory does not have a Reposi t oryl d associated

with it (because it derives only from Cont ai ner and not from Cont ai ned) you
can assume that its default Reposi t oryl d. is an empty string. This allows a

value to be assigned to the defi ned_i n field of each description structure for
Modul eDef , I nt er f aceDef , Val ueDef , Val ueBoxDef , Typedef Def ,

Excepti onDef and Const ant Def that may be contained immediately within a

Reposi t ory object.
QCRBA: : Cont ai ner

Repository::create_array()

/1 1D
ArrayDef create_array(

i n unsi gned | ong | ength,
in |DLType el enent _type

Parameters

See Also

/1 Java
org. ong. CORBA. ArrayDef create_array(

int length,
org. ong. GORBA. | DLType el enent _t ype
)

Returns a new array object defining an anonymous (unnamed) type. The new
array object must be used in the definition of exactly one other object. It is
deleted when the object it is contained in is deleted. If the created object is
not successfully used in the definition of a Cont ai ned object, it is your
application’s responsibility to delete it.

| engt h The number of elements in the array.
el emrent _type The type of element that the array will contain.

CORBA: : Arr ayDef
OORBA: : R(hj ect

Repository::create_fixed()

/1 1D
Fi xedDef create_fixed (

in unsigned short digits,
in short scale

)

/1l Java

or g. ong. CORBA. Fi xedDef create_fixed(
short digits,
short scale

)

Returns a new fixed-point object defining an anonymous (unnamed) type. The
new object must be used in the definition of exactly one other object. It is
deleted when the object it is contained in is deleted. If the created object is
not successfully used in the definition of a Cont ai ned object, it is your
application’s responsibility to delete it.

219

Parameters

Parameters

See Also

220

digits The number of digits in the fixed-point number. Valid values
must be between 1 and 31, inclusive.

scal e The scale.

Repository::create_sequence()

/1 1D
Sequencelef create_sequence (

i n unsi gned | ong bound,
in |DLType el enent _type
)s

[/ Java
or g. ong. OCRBA. SequenceDef creat e_sequence(
i nt bound,

org. ong. CCRBA. | DLType el enent _type
)s
Returns a new sequence object defining an anonymous (unnamed) type. The
new sequence object must be used in the definition of exactly one other object.
It is deleted when the object it is contained in is deleted. If the created object
is not successfully used in the definition of a Cont ai ned object, it is your
application’s responsibility to delete it.

bound The number of elements in the sequence. A bound of 0 indi-
cates an unbounded sequence.

el enent _type The type of element that the sequence will contain.

QORBA: : SequenceDef

Repository::create_string()

/1 1DL
StringDef create_string(

i n unsi gned | ong bound
)s

Parameters

See Also

Parameters

See Also

/1 Java
org.ony. CORBA StringDef create_string(int bound);

Returns a new string object defining an anonymous (unnamed) type. The new
string object must be used in the definition of exactly one other object. It is
deleted when the object it is contained in is deleted. If the created object is
not successfully used in the definition of a Cont ai ned object, it is your
application’s responsibility to delete it.

bound The maximum number of characters in the string. (This
cannot be 0.)

Use get _prinitive() to create unbounded strings.

OCRBA: : St ri ngDef
OCORBA: : Repository::get_printive()

Repository::create_wstring()

/1 1D
StringDef create_wstring (

i n unsigned | ong bound
)

/1 Java
org. ong. CORBA VétringDef create wstring(int bound);

Returns a new wide string object defining an anonymous (unnamed) type. The
new wide string object must be used in the definition of exactly one other
object. It is deleted when the object it is contained in is deleted. If the created
object is not successfully used in the definition of a Cont ai ned object, it is your
application’s responsibility to delete it.

bound The maximum number of characters in the string. (This
cannot be 0.)
Use get_primtive() to create unbounded strings.

OCRBA: : Wt ri ngDef
OCRBA: : Repository::get _primtive()

221

Parameters

Parameters

222

Repository::get_canonical_typecode()

/1 1DL
TypeCode get_canoni cal _t ypecode(

in TypeCode tc

)s

[/ Java

or g. ong. OCRBA TypeCode get _canoni cal _t ypecode(
or g. ong. CORBA. TypeCode tc

)
Returns a TypeCode that is equivalent to t ¢ that also includes all repository
ids, names, and member names.

tc The TypeCode to lookup.

If the top level TypeCode does not contain a Reposi t oryl d (such as array and
sequence type codes or type codes from older ORBSs) or if it contains a
Reposi t oryl d that is not found in the target Reposi t ory, then a new
TypeCode is constructed by recursively calling get _canoni cal _t ypecode() on
each member TypeCode of the original TypeCode.

Repository::get primitive()

/1 1D

PrimtiveDef get _printive(
inPrimtiveKi nd kind

)s

/1 Java

org.ony. CCRBA PrinitiveDef get_primtive(
org.ony. CORBA PrimtiveKi nd ki nd

)s

Returns a reference to a Pri niti veDef of the specified Pri niti veki nd. All
PrimtiveDef objects are owned by the Reposi t ory, one primitive object per
primitive type (for example, short, | ong, unsi gned short, unsi gned | ong and
so on).

ki nd The kind of primitive to get.

See Also OCRBA: : Pri ni ti veDef

Repository::lookup _id()
/1 100
Cont ai ned | ookup_i d(

in Repositoryld search_id
)
/1l Java
org. ong. CORBA. Cont ai ned | ookup_id(java.lang. String search_id);

Returns an object reference to a Cont ai ned object within the repository given
its Reposi t oryl d. If the repository does not contain a definition for the given
ID, a nil object reference is returned.

Parameters
search_id The Reposi t oryl d of the IDL definition to lookup.
See Also COCRBA: : Cont ai ned

223

224

CORBA::Request Class

See Also

See Also

See Also

This class is the key support class for the Dynamic Invocation Interface (Dll),
whereby an application may issue a request for any interface, even if that
interface was unknown at the time the application was compiled.

Orbix allows invocations, that are instances of class Request, to be
constructed by specifying at runtime the target object reference, the
operation name and the parameters. Such calls are termed dynamic because
the IDL interfaces used by a program do not have to be statically determined
at the time the program is designed and implemented.

You create a request using methods oj ect:: _create request () or Qbj ect :
:_request ().

OORBA: : (hj ect: : _request ()
CORBA: : (hj ect:: _create_request ()

Request::add_in_arg()

/1 Java
public abstract Any add_in_arg();

Returns an any value for the input argument that is added.
OORBA: : Request : : ar gunent s()

OCORBA: : Request : : add i nout _arg()
OCRBA: : Request : : add_out _arg()

Request::add_inout_arg()

/1 Java
public abstract Any add_i nout _arg();

Returns an any value for the in/out argument that is added.

CORBA: : Request : : ar gunent s()
OCRBA: : Request : :add_i n_arg()
OCRBA: : Request : : add_out _arg()

225

See Also

See Also

226

Request::add_named _in_arg()

[/ Java
public abstract Any add naned in arg(String nare);

Request:add_named_inout_arg()

/1 Java
public abstract Any add _named_inout arg(String nane);

Request::add _named_out_arg()

/1 Java
public abstract Any add named out arg(String nane);

Request::add_out_arg()

[/ Java
public abstract Any add out_arg();

Returns an any value for the output argument that is added.
OCORBA: : Request : : ar gunent s()

OORBA: : Request ::add in _arg()
OORBA: : Request : : add i nout arg()

Request::arguments()

/1 Java
public abstract NvList argunents();

Returns the arguments to the requested operation in an NVLi st . Ownership of
the return value is maintained by the Request and must not be freed by the
caller. You can add additional arguments to the request using the add_*_arg()
helper methods.

QOORBA: : NVLI st

OORBA: : Request : :add_in_arg()
OCORBA: : Request : : add i nout arg()
OORBA: : Request : : add _out arg()

Parameters

See Also

Request::contexts()

/1 Java
public abstract ContextList contexts();

Returns a pointer to a list of contexts for the request. Ownership of the return
value is maintained by the Request and must not be freed by the caller.

Request::ctx()

/1 Java
public abstract Context ctx();

Returns the Cont ext associated with a request. Ownership of the return value
is maintained by the Request and must not be freed by the caller.

/1 Java
public abstract void ctx(Context c);

Inserts a Cont ext into a request.

c The context to insert with the request.
Request::env()
I/ Java

public abstract Environment env();

Returns the Envi ronment associated with the request from which exceptions
raised in DIl calls can be accessed. Ownership of the return value is maintained
by the Request and must not be freed by the caller.

QCRBA: : Envi r onnent

Request::exceptions()

/1 Java
public abstract ExceptionList exceptions();

227

See Also

See Also

See Also

228

Returns a pointer to list of possible application-specific exceptions for the
request. Ownership of the return value is maintained by the Request and must
not be freed by the caller.

OCORBA: : Excepti onLi st

Request::get_response()

[/ Java
public abstract void get_response();

Determines whether a request has completed successfully. It returns only when
the request, invoked previously using send_def erred(), has completed.

OORBA: : Request : :resul t ()
OORBA: : Request : : send_def erred()

Request::invoke()

/1 Java
public abstract void invoke();

Instructs the ORB to make a request. The parameters to the request must
already be set up. The caller is blocked until the request has been processed
by the target object or an exception occurs.

To make a non-blocking request, see send def erred() and send _oneway() .

OORBA: : Request : : send_oneway()

OORBA: : Request : : send_def erred()
OORBA: : Request ::resul t()

Request::operation()

[/ Java
public abstract String operation();

Returns the operation name of the request. Ownership of the return value is
maintained by the Request and must not be freed by the caller.

See Also

Request::poll_response()

/1 Java
public abstract bool ean pol | _response();

Returns 1 (true) if the operation has completed successfully and indicates that
the return value and out and inout parameters in the request are valid. Returns
0O (false) otherwise. The method returns immediately.

If your application makes an operation request using send_def erred(), it can
call pol | _response() to determine whether the operation has completed. If
the operation has completed, you can get the result by calling Request : :

result().

OCRBA: : Request : : send_def erred()
OORBA: : Request : : get _response()
CORBA: : Request : :resul t ()

Request::result()

/1 Java
public abstract NanmedVal ue result();

Returns the result of the operation request in a NanedVal ue. Ownership of the
return value is maintained by the Request and must not be freed by the caller.

Request::return_value()

/1 Java
public abstract Any return_val ue();

Returns an any value for the returned value of the operation.

Request::send_deferred()

/1 Java
public abstract void send deferred();

Instructs the ORB to make the request. The arguments to the request must
already be set up. The caller is not blocked, and thus may continue in parallel
with the processing of the call by the target object.

229

See Also

See Also

Parameters

230

To make a blocking request, use i nvoke() . You can use pol | _response() to
determine whether the operation completed.

OORBA: : Request : : send_oneway()
QCRBA: : CRB: :send_mul t1 pl e requests_def erred()

OCORBA: : Request : : i nvoke()
OORBA: : Request : : pol | _response()
OORBA: : Request : : get _response()

Request::send_oneway()

/1 Java
public abstract void send_oneway();

Instructs Orbix to make the oneway request. The arguments to the request
must already be set up. The caller is not blocked, and thus may continue in
parallel with the processing of the call by the target object.

You can use this method even if the operation has not been defined to be
oneway in its IDL definition, however, do not expect any output or inout
parameters to be updated.

To make a blocking request, use i nvoke() .

OCRBA: : Request : : send_def erred()
QCRBA: : CRB: :send_mul t i pl e requests_oneway()

OORBA: : Request : : i nvoke()
OCORBA: : Request : : pol | _response()
OCORBA: : Request : : get _response()

Request::set_return_type()

/1 Java
public abstract void set _return_type(TypeCode tc);

Sets the TypeCode associated with a Request object. When using the DIl with
the Internet Inter-ORB Protocol (IIOP), you must set the return type of a request
before invoking the request.

tc The TypeCode for the return type of the operation associated
with the Request object.

Request::target()

/1 Java
public abstract Cbject target();

Gets the target object of the Request . Ownership of the return value is
maintained by the Request and must not be freed by the caller.

231

232

CORBA::SequenceDef Interface

Interface SequenceDef represents an IDL sequence definition in the interface
repository. It inherits from the interface | DLType.

// 1DL in nmodul e CCRBA

i nterface SequenceDef : |DLType {
attribute unsigned | ong bound;
readonly attribute TypeCode el enent _type;
attribute | DLType el enent type def;

}s

The inherited t ype attribute is also described.

See Also CCRBA: : | DLType
CORBA: : Reposi tory:: create_sequence()

SequenceDef::bound Attribute

/1 1D
attribute unsigned | ong bound;

/1 Java
i nt bound();

void bound(int _val);

The maximum number of elements in the sequence. A bound of 0 indicates an
unbounded sequence.

Changing the bound attribute will also update the inherited t ype attribute.
See Also QORBA: : SequenceDef : : type

SequenceDef::element_type Attribute

/1 1D
readonly attribute TypeCode el enent _type;

/1 Java
or g. ong. CORBA. TypeCode el enent _type();

233

See Also

See Also

See Also

234

The type of element contained within this sequence. The attribute
el enent _t ype_def contains the same information.

OCORBA: : SequenceDef : : el ement _type def

SequenceDef::element_type_def Attribute

/1 1DL
attribute | DLType el ement _type_def;

/1 Java
org. ong. CCRBA. | DLType el enent _type_def();

voi d el erent _type_def (org. omg. CCRBA | DLType _val);

Describes the type of element contained within this sequence. The attribute
el enent _t ype contains the same information. Setting the el ement _t ype_def
attribute also updates the el enent _t ype and | DLType: : t ype attributes.

OCORBA: : SequenceDef : : el ement _t ype
CCRBA: : | DLType: : type

SequenceDef::type Attribute

/1 1DL
readonly attribute TypeCode type;

The type attribute is inherited from interface | DLType. This attribute is a
t k_sequence TypeCode that describes the sequence. It is updated automati-
cally whenever the attributes bound or el enent _t ype def are changed.

OCORBA: : SequenceDef : : el ement _type def
OORBA: : SequenceDef : : bound

CORBA::ServerRequest Class

Parameters

See Also

The object adapter dispatches an invocation to a DSI-based object
implementation by calling i nvoke() on an object of the

Dynam cl npl ent ati on class. The parameter passed to this method is a
Server Request object. This Server Request object contains the state of an
incoming invocation for the DSI. This can be compared to how the Request
class object is used in the DIl approach for clients.

The following code is the complete class definition:

ServerRequest::arguments()

/1 Java
public voi d argunent s(org. ong. GCORBA NVLi st args)

Allows a redefinition of the following method to specify the values of incoming
arguments:

Por t abl eSer ver: : Dynani cl npl enent ati on: : i nvoke()

args Obtains output and input arguments.

This method must be called exactly once in each execution of i nvoke() .

OORBA: : Server Request : : par ans()
Port abl eSer ver: : Dynani cl npl enent ati on: : i nvoke()

ServerRequest::ctx()

/1 Java
public abstract Context ctx();

Returns the Cont ext associated with the call.

If no Context was sent then this method returns nul I .

235

Parameters

See Also

Parameters

See Also

236

ServerRequest::except()
public abstract void except(Any a);

The D Rmay call except () at any time to return an exception to the client.

a An Any containing the exception to be returned
to the client.

The Any value passed to except () must contain either a system exception or
one of the user exceptions specified in the rai ses expression of the invoked
operation’s IDL definition.

“Syst em Excepti ons”
CCRBA. Any
QCRBA. Syst enExcepti on

ServerRequest::operation()

[/ Java
public String operation()

Returns the name of the operation being invoked.

This method must be called at least once in each execution of the dynamic
implementation routine, that is, in each redefinition of the method:

Port abl eSer ver: : Dynani cl npl enent ati on: : i nvoke()

QORBA: : Server Request : : op_nane()
Port abl eSer ver: : Dynani cl npl enent ati on: : i nvoke()

ServerRequest::op_name()

public abstract String op_nane();
Returns the name of the operation being invoked.

Parameters

ServerRequest::params()
public abstract void parans(NVLi st parns);

This method marshals the parameters from the incoming ServerRequest into
the supplied par ns NVLi st .

par ns An NWLi st describing the parameter types for the
operation in the order in which they appear in the IDL
specification (left to right).

It is up to the programmer to ensure that the TypeCode and flags
(ARG IN ARG QUJT or ARG I NaUT) of each of the parameters are correct.

The Dynamic Implementation Routine (DIR) must call par ans with par s
containing TypeCodes and Fl ags describing the parameter types expected for
the method.

After invoking par ans() the programmer uses the unmarshaled “i n” and
“i nout " values as parameters to the method invocation.

When the invocation completes the programmer must insert the values for
any out and i nout parameters into the parns NWLi st before returning.

If the operation has a return value you must also call “resul t ()" .
For example:

// inport org.ongy. CORBA *;
/1
// simulate the set operation on the grid interface with
/1l the DS
public void i nvoke(Server Request _req) {
String _opName = _req.op_name() ;
Any ret = CRB.init().create_any();
NVLi st _nvl = null;
long [][]nma_a = // create new array;

i f(_opNane. equal s("set"))

{
_nvl = CRB.init().create_list(3);

// create a new any

237

Any row = CRB.init().create_any();

/1 insert the TypeCode (tk_short) into the new Any
row type(CRB.init().get_primtive_tc(TCKind.tk_short)) ;

/] insert this Any into the NVList and set the Flag to in
_nvl.add_value(null, row, ARG IN val ue);

/]l create new Any, set TypeCode to short, insert into NVList
/1 with flag set to in

Any col = CRB.init().create_any();
col.type(CRB.init().get_primtive tc(TOK nd.tk_short));
_nvl.add_value(null, col, ARGIN value);

/1 create new Any, set TypeCode to long, insert into NVLi st
/1 with flag set to in

Any data = CRB.init().create_any();
data. type(ORB.init().get_primtive tc(TCKind.tk _long));
_nvl.add_val ue(nul |, data, ARG IN val ue);

/1 get parans() nmethod to marshal data into _nvl
_req. params(_nvl);

/1 get the value of row col from Any row, col
// and set this elenent in the array to the val ue
ma[row extract_short()][col.extract_short()] =

data. extract _| ong() ;
return;

}
See Also CORBA. NVLi st cl ass

ServerRequest.result()

public abstract void result(Any a);

Use the resul t () method to specify the return value for the call.

238

Parameters

res An Any containing the return value and type
for the operation.

If the operation has a voi d result type, resul t () should be set to an Any
whose type is _tc_voi d.

See Also CORBA. Any Cl ass

ServerRequest::set_exception()

/1 Java
public void set_exception(Any any)

Allows (a redefinition of) Port abl eSer ver: : Dynani cl npl ement at i on: :
i nvoke() to return an exception to the caller.

Parameters
val ue A pointer to an Any, which holds the
exception returned to the caller.
See Also QCRBA: : Envi ronnent ()
Port abl eSer ver: : Dynani cl npl enent ati on: : i nvoke()
ServerRequest::set_result()
/1 Java
public void set_result(org.ong. CORBA Any any)
Allows Port abl eSer ver : : Dynani cl npl enent at i on: : i nvoke() to return the
result of an operation request in an Any.
Parameters
val ue A pointer to a Any, which holds the result
returned to the caller.
This method must be called once for operations with non-voi d return types
and not at all for operations with voi d return types. If it is called, then
set _exception() cannot be used.
See Also OORBA: : Server Request : : set_excepti on()

239

240

CORBA::String_var Class

See Also

See Also

See Also

The class String_var implements the _var type for IDL strings required by
the standard C++ mapping. The String_var class contains a char * value
and ensures that this is properly freed when a String_var object is deallo-
cated, for example when exectution goes out of scope.

String_var::char*()

Converts a String_var object to a char*.

OCORBA: : String _var:: operator=()

String_var::in()
Returns the proper string for use as an input parameter.

OORBA: : String var::out()
QCRBA: : String_var::inout()
OORBA: : String var:: retn()

String_var::inout()

Returns the proper string for use as an inout parameter.
OORBA: : String var::in()

QCRBA: : String_var::out()

QCRBA : String_var:: _retn()

String_var::operator=() Assignment Operators

Assignment operators allow you to assign values to a Stri ng_var from a char *
or from another String_var type.

241

Orbix 2000 Programmer’s Reference Guide C+ + Edition

Parameters

See Also

Parameters

See Also

Parameters

See Also

242

p A character string to assign to the String_var.
s A String_var to assign to the String_var.

OORBA: : String var::char*()

String_var::operator[l() Subscript Operators

Return the character at the given location of the string. Subscript operators

allow access to the individual characters in the string.

i ndex The index location in the string.

String_var::out()

Returns the proper string for use as an output parameter.
OORBA: : String var::in()

QCRBA: : String_var::inout()

CCRBA: :String var:: _retn()

String_var::String_var() Constructors
The default constructor.
Constructors that convert from a char* to a String_var.

The copy constructor.

p The character string to convert to a String_var. The
String_var assumes ownership of the parameter.

s The original String_var that is copied.

CCRBA: :String var::~String_var()

See Also

See Also

String_var::~String_var() Destructor

The destructor.
OORBA: : String var::String var()

String_var::_retn()

Returns the proper string for use as a method’s return value.

QORBA: : String var::inout()
OORBA: : String var::in()
OCORBA: : String var::out()

243

Orbix 2000 Programmer’s Reference Guide C+ + Edition

244

CORBA::StringDef Interface

See Also

See Also

Interface StringDef represents an IDL bounded string type in the interface
repository. A StringDef object is anonymous, which means it is unnamed.

Use Reposi tory::create string() to obtain a new Stri ngbef. Use
Reposi tory::get_primtive() for unbounded strings.

/1 DL in nodul e CORBA
interface StringDef : IDLType {
attribute unsigned | ong bound;

}s

The inherited t ype attribute is also described.

OCRBA: : | DLType
OCORBA: : Repository::create string()

StringDef::bound Attribute

/1 1D
attribute unsigned | ong bound;

/1 Java
i nt bound();

void bound(int _val);

Specifies the maximum number of characters in the string. This cannot be zero.

StringDef::type Attribute

/1 1D
readonly attribute TypeCode type;

The t ype attribute is inherited from interface | DLType. This attribute is a
t k_string TypeCode that describes the string.

CCRBA: : | DLType: : type

245

246

CORBA::StructDef Interface

See Also

See Also

Interface Struct Def describes an IDL structure in the interface repository.

// 1Dl in nodul e CORBA

interface StructDef : TypedefDef, Container {
attribute Struct Menber Seq nenbers;

b

The inherited operation descri be() is also described.

QGCRBA: : Cont ai ned
CCORBA: : Contai ner: :create_struct()

StructDef::describe()

/1 1D
Descri ption describe();

descri be(returns a Cont ai ned: : Descri pti on structure. descri be() is inher-
ited from Cont ai ned (which Typedef Def inherits).

The Defi ni ti onki nd for the ki nd member is dk_Struct . The val ue member
is an any whose TypeCode is _t c_TypeDescri pti on and whose value is a
structure of type TypeDescri pti on.

CCORBA: : Typedef Def : : descri be()

StructDef::members Attribute

/1 Java
org. ong. CCRBA. Struct Menber[] nenbers();

voi d nmenbers(org.ong. CORBA Struct Menber[] _val);

Describes the members of the structure.

247

You can modify this attribute to change the members of a structure. Only the
nane and t ype_def fields of each Struct Menber should be set (the t ype field
should be set to _tc_voi d and it will be set automatically to the TypeCode of
the type_def field).

See Also QORBA: : Typedef Def

248

CORBA::TypeCode Class

See Also

The class TypeCode is used to describe IDL type structures at runtime. A
TypeCode is a value that represents an IDL invocation argument type or an
IDL attribute type. A TypeCode is typically used as follows:

® |nthe dynamic invocation interface (DII) to indicate the type of an actual
argument.

® By the interface repository to represent the type specification that is part
of an OMG IDL declaration.

® To describe the data held by an any type.
A TypeCode consists of a kind that classifies the TypeCode as to whether it is

a basic type, a structure, a sequence and so on. See the data type TQki nd for
all possible kinds of TypeCode objects.

A TypeCode may also include a sequence of parameters. The parameters give
the details of the type definition. For example, the IDL type

sequence<l ong, 20> has the kind t k_sequence and has parameters | ong
and 20.

You typically obtain a TypeCode from the interface repository or it may be
generated by the IDL compiler. You do not normally create a TypeCode in
your code so the class contains no constructors, only methods to decompose
the components of an existing TypeCode. However, if your application does
require that you create a TypeCode, see the set of create_Type tc()
methods in the GRB class.

The class TypeCode contains the following methods:
CCRBA: : TCKi nd

TypeCode::BadKind Exception

/1 Java
cl ass CCRBA TypeCodePackage. BadKi nd

The BadKi nd exception is raised if a TypeCode member method is invoked for
a kind that is not appropriate.

249

See Also

Exceptions

250

TypeCode::Bounds Exception

[/ Java
cl ass OCRBA. TypeCodePackage. Bounds

The Bounds exception is raised if an attempt is made to use an index for a
type’'s member that is greater than or equal to the number of members for the

type.

The type of IDL constructs that have members include enumerations,
structures, unions, value types, and exceptions. Some of the TypeCode
methods return information about specific members of these IDL constructs.
The first member has index value O, the second has index value 1, and so on
up to n-1 where n is the count of the total number of members.

The order in which members are presented in the interface repository is the
same as the order in which they appeared in the IDL specification.

This exception is not the same as the CORBA: : Bounds exception.

QORBA: : TypeCode: : menber _count ()
OORBA: : TypeCode: : nenber _| abel ()

QCRBA: : TypeCode: : nenber _nane()
QORBA: : TypeQode: : nenber _t ype()
QORBA: : TypeCode: : nenber _visibility()

TypeCode::concrete base type()

/1 Java
publ i c TypeCode concrete_base_type() throws BadKi nd {

t hrow new or g. ong. CORBA NO | MPLEMVENT() ;
}
Returns a TypeCode for the concrete base if the value type represented by this
TypeCode has a concrete base value type. Otherwise it returns a nil TypeCode
reference. This method is valid to use only if the kind of TypeCode has a TCki nd
value of tk_val ue.

BadKi nd The kind of TypeCode is not valid for this method.

Exceptions

Exceptions

See Also

TypeCode::content_type()

/1 Java
public abstract TypeCode content type() throws BadKi nd

For sequences and arrays this method returns a reference to the element
type. For aliases it returns a reference to the original type. For a boxed value
type it returns a reference to the boxed type. This method is valid to use if the
kind of TypeCode is one of the following TCKi nd values:

tk_alias
tk_array

t k_sequence
t k_val ue_box

BadKi nd The kind of TypeCode is not valid for this method.

TypeCode::default_index()

/1 Java
public abstract int default_index() throws BadKi nd;

Returns the index of the default union member, or -1 if there is no default
member. This method is valid to use only if the kind of TypeCode has a TCki nd
value of t k_uni on.

BadKi nd The kind of TypeCode is not valid for this method.
CCORBA: : TypeCode: : nenber _| abel ()

TypeCode::discriminator_type()

/1 Java
public abstract TypeCode discrimnator_type() throws BadKi nd,;

Returns a TypeCode for the union discriminator type. This method is valid to
use only if the kind of TypeCode has a TCKi nd value of t k_uni on.

251

Exceptions

See Also

Parameters

See Also

Parameters

See Also

252

BadKi nd The kind of TypeCode is not valid for this method.

OCRBA: : TypeCode: : def aul t _i ndex()
QCRBA: : TypeCode: : nenber _[abel ()

TypeCode::equal()

/1 Java
public abstract bool ean equal (TypeCode tc);

Returns 1 (true) if this TypeCode and the t ¢ parameter are equal. Returns O
(false) otherwise. Two type codes are equal if the set of legal operations is the
same and invoking an operation from one set returns the same results as
invoking the operation from the other set.

tc The TypeCode to compare.
QORBA: : TypeQode: : equi val ent ()

TypeCode::equivalent()

/1 Java
publ i ¢ bool ean equi val ent (TypeCode tc) {

t hrow new or g. ong. CORBA. NO | MPLEMENT() ; }

Returns 1 (true) if this TypeCode and the t ¢ parameter are equivalent. Returns
0O (false) otherwise.

tc The TypeCode to compare.

equi val ent () is typically used by the ORB to determine type equivalence for
values stored in an IDL any. You can use equal () to compare type codes in
your application. equi val ent () would return true if used to compare a type
and an alias of that type while equal () would return false.

QORBA: : TypeQode: : equal ()

Exceptions

See Also

Exceptions

See Also

TypeCode::fixed_digits()

/1 Java
public short fixed digits() throws BadKi nd {

t hrow new or g. ong. CORBA NO_| MPLEMENT() ;
}

Returns the number of digits in the fixed point type. This method is valid to
use only if the kind of TypeCode has a TCKi nd value of tk_fi xed.

BadKi nd The kind of TypeCode is not valid for this method.
CCORBA: : TypeCode: : fi xed_scal e()

TypeCode::fixed_scale()

/1 Java
public short fixed scale() throws BadKind {

t hrow new or g. ong. CORBA NO_| MPLEMENTY() ;
}

Returns the scale of the fixed point type. This method is valid to use only if the
kind of TypeCode has a TQKi nd value of tk_fi xed.

BadKi nd The kind of TypeCode is not valid for this method.
OCORBA: : TypeCode: : fi xed_di gi ts()

TypeCode::get_compact_typecode()

/1 Java
publi c TypeCode get conpact _typecode() {

t hrow new or g. ong. CORBA NO_| MPLEMENT() ;
}

Removes all optional name and member name fields from the TypeCode and
returns a reference to the compact TypeCode. This method leaves all alias type
codes intact.

253

Exceptions

See Also

254

TypeCode::id()

[/ Java
public abstract String id() throws BadKi nd;

Returns the Reposi t oryl d that globally identifies the type.

Type codes that always have a Reposi t oryl d. include object references,
value types, boxed value types, native, and exceptions. Other type codes that
also always have a Reposi t oryl d and are obtained from the interface
repository or CRB: : create operation |ist() include structures, unions,
enumerations, and aliases. In other cases i d() could return an empty string.

The TypeCode object maintains the memory of the return value; this return
value must not be freed by the caller.

This method is valid to use if the kind of TypeCode has a TCKi nd value of one
of the following:

tk_abstract _interface
tk_alias

tk_enum

t k_except

tk_native

t k_obj ref

tk_struct

tk_uni on

tk_val ue

t k_val ue_box

BadKi nd The kind of TypeCode is not valid for this method.
TypeCode::kind()
/1 Java

public abstract TCKi nd kind();

Returns the kind of the TypeCode which is an enumerated value of type TCKi nd.
You can use ki nd() on any TypeCode to help determine which other TypeCode
methods can be invoked on the TypeCode.

QCRBA: : TCKi nd

Exceptions

Exceptions

TypeCode::length()

/1 Java
public abstract int length() throw BadKi nd;

For strings, wide strings, and sequences, | engt h() returns the bound, with
zero indicating an unbounded string or sequence. For arrays, | engt h() returns
the number of elements in the array. This method is valid to use if the kind of
TypeCode has a TCKi nd value of one of the following:

tk_array

t k_sequence
tk_string
tk_wstring

BadKi nd The kind of TypeCode is not valid for this method.

TypeCode::member_count()

/1 Java
public abstract int nenber_count () throws BadKi nd;

Returns the number of members in the type. This method is valid to use if the
kind of TypeCode has a TQKi nd value of one of the following:

t k_enum

t k_except
tk_struct
t k_uni on
t k_val ue

BadKi nd The kind of TypeCode is not valid for this method.

TypeCode::member_label()

/1 Java
public abstract Any nenber_| abel (int index)

throws BadKi nd, org. ong. CCRBA TypeCodePackage. Bounds;

255

Parameters

Exceptions

See Also

Parameters

256

Returns the label of the union member. For the default member, the label is
the zero octet. This method is valid to use only if the kind of TypeCode has a
TCKi nd value of t k_uni on.

i ndex The index indicating which union member you want.
BadKi nd The kind of TypeCode is not valid for this method.
Bounds The i ndex parameter is greater than or equal to the number

of members for the type.

QCRBA: : TypeCode: : def aul t _i ndex()
OORBA: : TypeCode: : nenber _count ()

TypeCode::member_name()

[/ Java
public abstract String nenber_nane(int index)

t hrows BadKi nd, org. ong. QCRBA TypeCodePackage. Bounds;

Returns the simple name of the member. Because names are local to a
repository, the name returned from a TypeCode may not match the name of
the member in any particular repository, and may even be an empty string.

i ndex The index indicating which member to use.

This method is valid to use if the kind of TypeCode has a TCKi nd value of one
of the following:

tk_enum

t k_except
tk_struct
tk_uni on
tk_val ue

The TypeCode object maintains the memory of the return value; this return
value must not be freed by the caller.

Exceptions

See Also

Parameters

Exceptions

See Also

BadKi nd The kind of TypeCode is not valid for this method.

Bounds The i ndex parameter is greater than or equal to the number
of members for the type.

OORBA: : TypeCode: : menber _count ()

TypeCode::member_type()

/1 Java
public abstract TypeCode nenber _type(int index)

throws BadKi nd, org. ong. OCRBA TypeCodePackage. Bounds;

Returns a reference to the TypeCode of the member identified by i ndex.

i ndex The index indicating which member you want.

This method is valid to use if the kind of TypeCode has a TCKi nd value of one
of the following:

t k_except
tk_struct
tk_uni on
t k_val ue

BadKi nd The kind of TypeCode is not valid for this method.

Bounds The i ndex parameter is greater than or equal to the number
of members for the type.

OORBA: : TypeCode: : menber _count ()

TypeCode::member visibility()

/1 Java
public short nenber_visibility(int index) throws BadKi nd, Bounds {

t hrow new or g. ong. CORBA NO_| MPLEMENTY() ;
}

257

Parameters

Exceptions

See Also

Exceptions

258

Returns the visibility of a value type member. This method is valid to use only
if the kind of TypeCode has a TQKi nd value of tk_val ue.

i ndex The index indicating which value type member you want.
BadKi nd The kind of TypeCode is not valid for this method.
Bounds The i ndex parameter is greater than or equal to the number

of members for the type.

QORBA: : TypeCode: : menber _count ()

TypeCode::name()

/1 Java
public abstract String nane() throws BadKi nd,;

Returns the simple name identifying the type within its enclosing scope.
Because names are local to a repository, the name returned from a TypeCode
may not match the name of the type in any particular repository, and may even
be an empty string.

The TypeCode object maintains the memory of the return value; this return
value must not be freed by the caller.

This method is valid to use if the kind of TypeCode has a TCKi nd value of one
of the following:

tk_abstract _interface
tk_alias

tk_enum

t k_except

tk_native

t k_obj ref

tk_struct

tk_uni on

tk_val ue

t k_val ue_hox

BadKi nd The kind of TypeCode is not valid for this method.

TypeCode::type_modifier()

/1 Java
public short type_nodifier() throws BadKi nd {

t hrow new or g. ong. CORBA NO_| MPLEMENT() ;
}

Returns the value modifier that applies to the value type represented by this
TypeCode. This method is valid to use only if the kind of TypeCode has a TCKi nd
value of t k_val ue.

Exceptions

BadKi nd The kind of TypeCode is not valid for this method.

259

260

CORBA:: TypedefDef Interface

See Also

The abstract interface Typedef Def is simply a base interface for interface
repository interfaces that define named types. Named types are types for
which a name must appear in their definition such as structures, unions, and
so on. Interfaces that inherit from typedefDef include:

* AiasDef
® Enunbef

* NativeDef
® Struct Def
¢ Uni onDef

® Val ueBoxDef

Anonymous types such as PrinitiveDef, StringDef, SequenceDef and
ArrayDef do not inherit from Typedef Def .

/11DL in nmodul e CCRBA
i nterface Typedef Def : Contained, |DLType {};

The inherited operation descri be() is described here.

TypedefDef::describe()

/11DL
Description describe();

Inherited from Cont ai ned, descri be() returns a structure of type Cont ai ned:
: Descri pti on.

The DefinitionKi nd type for the ki nd member is dk_Typedef . The value
member is an any whose TypeCode is _t c_TypeDescri pti on and whose
value is a structure of type TypeDescri pti on.

CCORBA: : Cont ai ned: : descri be()

OCRBA: : Cont ai ned: : Descri ption

OORBA: : TypeDescri ption

261

262

CORBA::UnionDef Interface

See Also

See Also

Interface Uni onDef represents an IDL union in the interface repository.

// 1Dl in nodul e CORBA

i nterface UnionDef : Typedef Def {
readonly attribute TypeCode discrininator_type;
attribute | DLType discrininator_type def;
attribute Uni onMenber Seq nenbers;

}
The inherited operation descri be() is also described.
CCRBA: : Cont ai ned

CCORBA: : Typedef Def
CCORBA: : Cont ai ner: : create_uni on()

UnionDef::describe()

/1 1D
Description describe();

Inherited from Cont ai ned (which Typedef Def inherits), descri be() returns a
structure of type Cont ai ned: : Descri pti on.

The Defi ni ti onki nd for the ki nd member is dk_Uni on. The value member is
an any whose TypeCode is _t c_TypeDescri pti on and whose value is a
structure of type TypeDescri pti on.

CCORBA: : Typedef Def : : descri be()

UnionDef::discriminator_type Attribute

/1 1D
readonly attribute TypeCode discrininator_type;

/1 Java
or g. ong. CCRBA. TypeCode di scrimnator_type();

263

See Also

See Also

See Also

264

Describes the discriminator type for this union. For example, if the union
currently contains a | ong, the di scri m nator _typeis _tc_| ong. The attribute
di scrimnator type def contains the same information.

OCORBA: : TypeCode

UnionDef::discriminator_type def Attribute

/1 1D
attribute | DLType discrininator_type def;

/1 Java
org. ong. OCRBA. | DLType di scrim nator_type def();

voi d discrimnator_type_def(org.ong. CORBA | DLType _val);

Describes the discriminator type for this union. The attribute
di scri m nat or_type contains the same information.

Changing this attribute will automatically update the di scri m nat or _t ype
attribute and the | DLType: : t ype attribute.

QOCRBA: : | DLType: : type
OORBA: : Uni onDef : : di scri m nator_type

UnionDef::members Attribute

[/ Java
or g. ong. GCRBA. Uni onMenber[] nenbers();

voi d nmenbers(org. ong. CORBA Uni onMenber[] _val);

Contains a description of each union member: its name, label, and type (t ype
and type_def contain the same information).

The menber s attribute can be modified to change the union’s members. Only
the nane, | abel and type_def fields of each Uni onMenber should be set (the
t ype field should be set to _t c_voi d, and it will be set automatically to the
TypeCode of the type_def field).

QORBA: : Typedef Def

CORBA::ValueBase Class

See Also

See Also

See Also

All value types have a conventional base type called Val ueBase. Val ueBase
serves a similar role for value types that the (bj ect class serves for inter-
faces. Val ueBase serves as an abstract base class for all value type classes.
You must implement concrete value type classes that inherit from Val ueBase.
Val ueBase provides several pure virtual reference counting methods inherited
by all value type classes.

The names of these methods begin with an underscore to keep them from
clashing with your application-specific methods in derived value type classes.

QOCRBA: : Val ueFact ory

ValueBase:: _add_ref()

Increments the reference count of a value type instance and returns a pointer
to this value type.

CCORBA: : Val ueBase: : _renove ref ()

ValueBase:: _copy_value()

Makes a deep copy of the value type instance and returns a pointer to the copy.
The copy has no connections with the original instance and has a lifetime
independent of that of the original.

Portable applications should not assume covariant return types but should
use downcasting to regain the most derived type of a copied value type. A
covariant return type means that a class derived from Val ueBase can override
_copy_val ue() to return a pointer to the derived class rather than the base
class, Val ueBase*.

OORBA: : Val ueBase: : _downcast ()

265

Parameters

See Also

See Also

See Also

266

ValueBase::_downcast()

Returns a pointer to the base type for a derived value type class.

vt Pointer to the value type class to be downcast.

ValueBase::_refcount_value()

Returns the current value of the reference count for this value type instance.

QCRBA: : Val ueBase: : _add_ref ()
OORBA: : Val ueBase: : _renove _ref ()

ValueBase:: _remove_ref()

Decrements the reference count of a value type instance and deletes the
instance when the reference count drops to zero.

If you use del et e() to destroy instances, you must use the new operator to
allocate all value type instances.

OCORBA: : Val ueBase: : _add_ref()

ValueBase:: ~ValueBase() Destructor
The default destructor.

The destructor is protected to prevent direct deletion of instances of classes
derived from Val ueBase.

QOCORBA: : Val ueBase: : Val ueBase()

ValueBase::ValueBase() Constructors
The default constructor.

The copy constructor. Creates a new object that is a copy of vt.

The copy constructor is protected to disallow copy construction of derived
value type instances except from within derived class methods.

Parameters
vt The original value type from which a copy is made.

See Also OCRBA: : Val ueBase: : ~Val ueBase()

267

268

CORBA::ValueBoxDef Interface

See Also

See Also

See Also

The Val ueBoxDef interface describes an IDL value box type in the interface
repository. A value box is a value type with no inheritance or operations and
with a single state member. A value box is a shorthand IDL notation used to
simplify the use of value types for simple containment. It behaves like an
additional namespace that contains only one name.

// 1DL in nmodul e CCRBA
i nterface Val ueBoxDef : |DLType {
attribute | DLType original type def;

}s
The inherited t ype attribute is also described.

CORBA: : (ont ai ner: : creat e val ue_box()

ValueBoxDef::original type def Attribute

/1 1D
attribute | DLType origi nal _type_def;

/1 Java
org. ony. CCRBA. | DLType origi nal _type_def();
voi d original _type def(org.ong. CCRBA | DLType _val);

Identifies the IDL type_def that is being “boxed”. Setting the
original _type_def attribute also updates the type attribute.

CORBA: : Val ueBoxDef : : t ype

ValueBoxDef::type Attribute

/1 1D
readonly attribute TypeCode type;

Inherited from | DLType, this attribute is a t k_val ue_box TypeCode describing
the value box.

CCRBA: : | DLType: : type

269

270

CORBA::ValueDef Interface

A Val ueDef object represents an IDL value type definition in the interface
repository. It can contain constants, types, exceptions, operations, and
attributes.

A Val ueDef used as a Cont ai ner may only contain Typedef Def , (including
definitions derived from Typedef Def), Const ant Def , and Except i onDef
definitions.

/1 1DL in nodul e CORBA
interface Val ueDef : Container, Contained, |DLType {

/l read/wite interface

attribute InterfaceDef supported interfaces;
attribute InitializerSeq initializers;
attribute Val ueDef base val ue;

attribute Val ueDef Seq abstract base val ues;
attribute boolean is abstract;

attribute bool ean i s _custom

// read interface
bool ean is_a(
in Repositoryld id

E
struct Ful | Val ueDescription {
I dentifier nane;
Repositoryld id;
bool ean is_abstract;
bool ean i s_custom
Reposi toryld defined_in;
Ver si onSpec ver si on;
pDescri pti onSeq operati ons;
AttrDescriptionSeq attributes;
Val ueMenber Seq nenbers;
InitializerSeq initializers;
Reposi toryl dSeq supported_interfaces;
Reposi toryl dSeq abstract _base_val ues;
Reposi toryl d base_val ue;
TypeCode type;

271

See Also

272

}s

Ful | Val ueDescri ption descri be val ue();
Val ueMenber Def creat e val ue_nenber (

)

in Repositoryld id,

in ldentifier nane,

i n VersionSpec version,
in | DLType type,
inVisibility access

AttributeDef create attribute(

)

in Repositoryld id,

in ldentifier nane,

i n Versi onSpec version,
in | DLType type,

in AttributeMbde node

Qper ati onDef create _operation(

) .

in Repositoryld id,

in ldentifier nane,

i n Versi onSpec version,

in |DLType result,

in QperationMde node,

i n ParDescriptionSeq parans,

i n ExceptionDef Seq excepti ons,
in ContextldSeq contexts

}; /1 End Val ueDef Interface

The inherited descri be() and cont ent s() operations are also described.

QOCORBA: : Cont ai ner: : create val ue()

ValueDef::abstract_base values Attribute

[/ Java

or g. ong. OCRBA Val ueDef[] abstract _base_val ues();
voi d abstract_base_val ues(org. onmg. CCRBA Val ueDef[] _val);

The abst ract _base_val ues attribute lists the abstract value types from which
this value inherits.

Exceptions

Parameters

BAD PARAM The name attribute of any object contained by this Vval ueDef
minor code 5 conflicts with the name attribute of any object contained by
any of the specified bases.

ValueDef::base value Attribute

/1 Java
or g. ong. CORBA. Val ueDef base_val ue();

voi d base_val ue(org.ong. CORBA Val ueDef _val);

The base_val ue attribute describes the value type from which this value
inherits.

BAD PARAM The nane attribute of any object contained by the minor code

minor code 5 5 is raised if the nane attribute of any object contained by this
Val ueDef conflicts with the nane attribute of any object con-
tained by any of the specified bases.

ValueDef::contents()

/1 1D
Cont ai nedSeq cont ent s(

inDefinitionKind limt_type,
i n bool ean excl ude_i nherited

)

Inherited from Cont ai ner, cont ent s() returns the list of constants, types, and
exceptions defined in this Val ueDef and the list of attributes, operations, and
members either defined or inherited in this Val ueDef .

273

Parameters

See Also

Parameters

274

limt_type If set to dk_al I, all of the contained objects in the
Val ueDef are returned. If set to the Defi ni ti onKi nd
for a specific interface type, it returns only interfaces
of that type. For example, if set to, dk_(perat i on,
then it returns contained operations only.

exclude_inherited Applies only to interfaces. If true, only attributes,
operations and members defined within this value
type are returned. If false, all attributes, operations
and members are returned.

OCORBA: : Cont ai ner: : contents()

ValueDef::create_attribute()

/1 Java
org.ony. OCCRBA AttributeDef create_attribute(

java.lang. String id,

java.lang. String narre,

java.lang. String version,

org. onyg. CCRBA. | DLType type,

org. ong. CORBA. Attri but eMbde node
);

Returns a new At tri but eDef object contained in the Val ueDef on which it is
invoked.

id The repository ID to use for the new Attri but eDef. An
At tribut eDef inherits the i d attribute from Cont ai ned.
name The nane to use for the new Attri but eDef. An At tri but eDef
inherits the nane attribute from Cont ai ned.
versi on The ver si on to use for the new At tri but eDef. An
At tri but eDef inherits the ver si on attribute from Cont ai ned.
type The IDL data type for the new Attri but eDef . Both the

type_def and t ype attributes are set for At tri but eDef .
node The read or read/write node to use for the new At tri but eDef .

The def i ned_i n attribute (which the At t ri but eDef inherits from Cont ai ned)
is initialized to identify the containing Val ueDef .

Exceptions
BAD PARAM The nane attribute of any object contained by minor code 2 is
minor code 5 raised if an object with the specified i d already exists in the
repository.
BAD PARAM An object with the same nane already exists in this Val ueDef .
minor code 3
See Also CCRBA : At tri but eDef
CCORBA: : Cont ai ned
ValueDef::create_operation()
/1 Java
or g. ong. CORBA. (per ati onDef create_operation(
java.lang. String id,
java.lang. String nane,
java.lang. String version,
org. ong. GORBA. | DLType resul t,
or g. ong. GORBA. (per at i onhvbde node,
or g. ong. QCRBA. Par anet er Descri ption[] parans,
or g. ong. GCRBA. ExceptionDef[] excepti ons,
java.lang. String[] contexts
)
Returns a new Qper at i onDef object contained in the Val ueDef on which it is
invoked.
Parameters
id The repository ID to use for the new Qper ati onDef . An
Qper ati onDef inherits the i d attribute from Cont ai ned.
name The nane to use for the new Qper at i onDef . An Qper at i onDef
inherits the name attribute from Cont ai ned.
versi on The ver si on to use for the new Qper ati onDef . An

Qper ati onDef inherits the ver si on attribute from Cont ai ned.

275

resul t The IDL data type of the return value for the new
Qoer at i onDef . Both the resul t_def and resul t attributes

are set for the Qper at i onDef .

node The node to use for the new Qper at i onDef . Specifies whether
the operation is normal (CP_NCRVAL) or oneway (CP_ONEWAY).
par ans The parameters for this Qper at i onDef .

exceptions The list of exceptions to use for the Qper ati onDef . These are
exceptions the operation can raise.

cont ext s The list of context identifiers to use for the Qper at i onDef . These
represent the context clause of the operation.

The def i ned_i n attribute (which the Qper ati onDef inherits from Cont ai ned)
is initialized to identify the containing Val ueDef .

Exceptions
BAD PARAM The nane attribute of any object contained by minor code 2 is
minor code 5 raised if an object with the specified i d already exists in the
repository.
BAD PARAM An object with the same nane already exists in this Val ueDef .
minor code 3
See Also QCRBA: : Qper at i onDef

QCORBA: : Cont ai ned

ValueDef::create_value_member()

[/ Java
or g. ong. OCRBA. Val ueMenber Def creat e_val ue_nenber (

java.lang. String id,
java.lang. String nare,
java.lang. String version,
org. onyg. CCRBA. | DLType type,
short access

)

Returns a new Val ueMenber Def contained in the Val ueDef on which it is
invoked.

276

Parameters

Exceptions

See Also

See Also

nane

ver si on

type

access

The repository ID to use for the new Val ueMenber Def . An
Val ueMenber Def inherits the i d attribute from Cont ai ned.

The nane to use for the new Val ueMenber Def . An
Val ueMenber Def inherits the nane attribute from Cont ai ned.

The versi on to use for the new Val ueMenber Def . An
Val ueMenber Def inherits the ver si on attribute from
Cont ai ned.

The IDL data type for the new Val ueMenber Def . Both the
type_def and type attributes are set for Val ueMenber Def .

The visibility to use for the new Val ueMenber Def . IDL value
types can have state members that are either public or
private.

The def i ned_i n attribute (which the Val ueMenber Def inherits from
Cont ai ned) is initialized to identify the containing Val ueDef .

BAD_PARAM
minor code 5

A BAD PARAV,
minor code 3

The nane attribute of any object contained by minor code 2 is
raised if an object with the specified i d already exists in the
repository.

An object with the same nane already exists in this Val ueDef .

QCRBA: : Val ueMenber Def
CORBA: : Cont ai ned

ValueDef::describe()

/1 1DL

Val ueDescri ption describe();

Inherited from Cont ai ned, descri be() for a Val ueDef returns a
Val ueDescri pti on object. Use descri be_val ue() for a full description of the

value.

CORBA: : Val ueDescri ption

OCRBA: : Cont ai ned: : descri be()

OCRBA: : Val ueDef : : descri be_val ue()

277

See Also

278

ValueDef::describe_value()

[/ Java
or g. ong. OCRBA. Val ueDef Package. Ful | Val ueDescri ption

descri be_val ue();

Returns a Ful | Val ueDescri pti on object describing the value, including its
operations and attributes.

OCORBA: : Ful | Val ueDescri ption
QOORBA: : Val ueDef : : descri be()

ValueDefPackage.FullValueDescription.FullValueDescription()

/1 Java
public Ful | Val ueDescri pti on(

java.lang. String narre,

java.lang. String id,

bool ean is_abstract,

bool ean i s_custom

byte fl ags,

java.lang. String defined_in,

java.lang. String version,

org. ong. CORBA. (per ati onDescription[] operations,
org.ony. CORBA AttributeDescription[] attributes,
or g. ong. CCRBA. Val ueMenber[] menbers,

org.ong. CORBA Initializer[] initializers,
java.lang. String supported_interface,

java.lang. String[] abstract_base val ues,

bool ean has_saf e_base,

java.lang. String base_val ue,

or g. ong. CORBA. TypeCode type

)

A full description of a value type in the interface repository.

nane The name of the value type.

id The repository ID of the value type.

i s_abstract Has a value of 1 (true) if the value is an abstract

value type. A value of O is false.

See Also

i s_custom

defined_in

version

oper ati ons
attributes

nmenber s

initializers
supported_i nterfaces

abstract _base_val ues

base_val ue

type

Has a value of 1 (true) if the value uses custom
marshalling. A value of O is false.

The repository ID that identifies where this value
type is defined.

The version of the value type.

A list of operations that the value type supports.
A list of attributes that the value type supports.
A list of value type members.

A list of initializer values for the value type.

A list of interfaces this value type supports.

A list of repository IDs that identify abstract base
values.

A repository ID that identifies a base value.
The IDL type of the value type.

CORBA: : Val ueDef: : descri be_val ue()

ValueDef::initializers Attribute

/1 Java

org.ong. CCRBA. Initializer[] initializers();
void initializers(org.ong. CORBA Initializer[] _val);

Lists the initializers this value type supports.

ValueDef::is_a()

/1 Java

boolean is_a(java.lang. String value_id);

Returns 1 (true) if this value type is either identical to or inherits, directly or
indirectly, from the interface or value identified by the i d parameter. Otherwise

it returns O (false).

279

Parameters

Exceptions

280

id The repository ID of the value type or interface to compare
with this value type.

ValueDef::is_abstract Attribute

/1 Java
bool ean is_abstract ();

void is_abstract(boolean _val);

Returns 1 (true) if this value type is an abstract value type. Otherwise it returns
0O (false).

ValueDef::is_custom Attribute

/1 Java
bool ean is_custon();

void is_custom(boolean _val);

Returns 1 (true) if this value type uses custom marshalling. Otherwise it returns
0O (false).

ValueDef::supported_interfaces Attribute

/1 1DL
attribute I nterfaceDef supported._interfaces;

Lists the interfaces that this value type supports.

[/ Java
org. ong. OCRBA. I nterfaceDef supported_interface();

voi d supported_interface(org.ong. CCRBA InterfaceDef _val);

BAD PARAM The nane attribute of any object contained by the minor code

minor code 5 5 is raised if the nane attribute of any object contained by this
Val ueDef conflicts with the nane attribute of any object con-
tained by any of the specified bases.

CORBA::ValueFactory

This describes the mapping of the IDL native type OORBA: : Val ueFact ory. For
native IDL types, each language mapping specifies how repository IDs are
used to find the appropriate factory for an instance of a value type so that it
may be created as it is unmarshaled off the wire.

// DL in nodul e CCRBA
native Val ueFactory;

Recall that value types allow objects to be passed by value which implies
that the ORB must be able to create instances of your value type classes dur-
ing unmarshaling. However, because the ORB cannot know about all poten-
tial value type classes, you must implement factory classes for those types
and register them with the ORB so the ORB can create value instances when
necessary.

If the ORB is unable to locate and use the appropriate factory, then a
MARSHAL exception with a minor code is raised.

CORBA::ValueFactory Type

QCORBA: : CRB: : | ookup_val ue_factory()
OCRBA: : CRB: : regi ster_val ue_factory()

QCRBA: : CRB: : unregi ster _val ue_factory()

281

Orbix 2000 Programmer’s Reference Java Edition

282

CORBA::ValueMemberDef Interface

The Val ueMenber Def interface provides the definition of a value type member
in the interface repository.

// 1Dl in nodul e CORBA

i nterface Val ueMenber Def : Contai ned {
readonly attribute TypeCode type;
attribute | DLType type def;
attribute Visibility access;

}s

ValueMemberDef::access Attribute

/1 Java
short access();

voi d access(short _val);

Contains an indicator of the visibility of an IDL value type state member. IDL
value types can have state members that are either public or private.

ValueMemberDef::type Attribute

/1 Java
or g. ong. CORBA. TypeCode type();

Describes the type of this Val ueMenber Def .
See Also CCRBA: : Val ueMenber Def : : t ype_def

ValueMemberDef::type def Attribute

/1 Java
org. ong. CORBA. | DLType type_def();
voi d type_def (org.onmg. CCRBA. | DLType _val);

283

Identifies the object that defines the IDL type of this Val ueMenber Def . The
same information is contained in the t ype attribute.

You can change the type of a Val ueMenber Def by changing its t ype_def
attribute. This also changes its t ype attribute.

See Also QCRBA: : Val ueMenber Def : : t ype

284

CORBA::WString var Class

See Also

See Also

See Also

The class Wat ri ng_var implements the _var type for IDL wide strings
required by the standard C++ mapping. The Wt ri ng_var class contains a
char* value and ensures that this is properly freed when a W&t ri ng_var
object is deallocated, for example when exectution goes out of scope.

WString_var::char*()

Converts a Wat ri ng_var object to a char*.
CORBA: : WAt ri ng_var : : oper at or =()

WString_var::in()
Returns the proper string for use as an input parameter.

CORBA: : WAt ring var::out ()
QCRBA: : WAt ring_var: :inout ()
OORBA: : WAt ring var:: retn()

WString_var::inout()

Returns the proper string for use as an inout parameter.
CORBA: : WAt ring var::in()

QCRBA: : WAt ring_var: :out ()

QCRBA - Watring_ var:: retn()

WString_var::operator=() Assignment Operators

Assignment operators allow you to assign values to a Watri ng_var from a
char* or from another W&t ri ng_var type.

285

Orbix 2000 Programmer’s Reference Guide C+ + Edition

Parameters

See Also

Parameters

See Also

Parameters

See Also

286

p A character string to assign to the Wt ri ng_var .
s AWt ring_var to assign to the Wt ri ng_var.

OCORBA: : WAt ri ng_var: : char*()

WString_var::operator[l() Subscript Operators

Return the character at the given location of the string. Subscript operators

allow access to the individual characters in the string.

i ndex The index location in the string.

WString_var::out()

Returns the proper string for use as an output parameter.
OORBA: : WAt ring var::in()

QCRBA: : WAt ring_var: :inout ()

CCRBA: :Whtring_var:: _retn()

WString_var::WString_var() Constructors
The default constructor.
Constructors that convert from a char* to a Wstri ng_var.

The copy constructor.

p The character string to convert to a Wat ri ng_var. The
WAt ri ng_var assumes ownership of the parameter.

s The original Wt ri ng_var that is copied.

CCRBA: : Whtring_var:: ~Wstring_var()

See Also

See Also

WString_var:: ~WString_var() Destructor

The destructor.
CORBA: : WAt ring var::Wstring var()

WString_var::_retn()

Returns the proper string for use as a method’s return value.

OORBA: : Wt ring var::inout()
OCORBA: :WBtring var::in()

CORBA: : WAt ring var::out ()

287

Orbix 2000 Programmer’s Reference Guide C+ + Edition

288

CORBA::WstringDef Interface

Interface Wt ri ngDef represents a bounded IDL wide string type in the
interface repository. A Wt ri ngDef object is anonymous, which means it is
unnamed. Use Reposi tory::create _wstring() to obtain a new

Wst ri ngDef object.

Unbounded strings are primitive types represented with the Pri m ti veDef
interface. Use Repository::get prinitive() to obtain unbounded wide
strings.

/1 1DL in nodul e CORBA
interface WtringDef : | DLType {
attribute unsigned | ong bound;

}s
The inherited t ype attribute is also described.
See Also CORBA : | DLType

OORBA: : Repository::create wstring()
OCRBA: : Prim tiveDef
CORBA: : Stri ngDef

WstringDef::bound Attribute

/1 1D
attribute unsigned | ong bound;

/1 Java
i nt bound();

void bound(int _val);

Specifies the maximum number of characters in the wide string. This cannot
be zero.

WstringDef::type Attribute

/1 1D
readonly attribute TypeCode type;

289

The type attribute is inherited from interface | DLType. This attribute is a
tk_wst ri ng TypeCode that describes the wide string.

See Also QOCORBA: : | DLType: : t ype

290

CosEventChannelAdmin Module

The CosEvent Channel Adni n module specifies the interfaces and exceptions
for connecting suppliers and consumers to an event channel. It also provides
the methods for managing these connections.

It contains the following interfaces:

® CosEventChannelAdmin::ProxyPushConsumer Interface
® CosEventChannelAdmin::ProxyPushSupplier Interface
® CosEventChannelAdmin::ProxyPullConsumer Interface
® CosEventChannelAdmin::ProxyPullSupplier Interface

® CosEventChannelAdmin::ConsumerAdmin Interface

® CosEventChannelAdmin::SupplierAdmin Interface

® CosEventChannelAdmin::EventChannel Interface

CosEventChannelAdmin Exceptions

exception AlreadyConnected {};

An Al r eadyConnect ed exception is raised when an attempt is made to connect
an object to the event channel when that object is already connected to the
channel.

exception TypeError {};

The TypeError exception is raised when a proxy object trys to connect an
object that does not support the proper typed interface.

291

292

CosEventChannelAdmin::
ConsumerAdmin Interface

Once a consumer has obtained a reference to a Consuner Admi n object (by
calling Event Channel : : for _consuner s()), they can use this interface to
obtain a proxy supplier. This is necessary in order to connect to the event
channel.

i nterface Consurer Adm n

{
Pr oxyPushSuppl i er obtai n_push_supplier();
ProxyPul | Suppl i er obtain_pul | _supplier();

};

ConsumerAdmin::obtain_push_supplier()

/11DL
Pr oxyPushSuppl i er obtai n_push_supplier();

Returns a ProxyPushSuppl i er object. The consumer can then use this object
to connect to the event channel as a push-style consumer.

ConsumerAdmin::obtain_pull_supplier()

/11D
Pr oxyPushSuppl i er obtai n_pul | _supplier();

Returns a ProxyPul | Suppl i er object. The consumer can then use this object
to connect to the event channel as a pull-style consumer.

293

294

CosEventChannelAdmin::
EventChannel Interface

The EventChannel interface lets consumers and suppliers establish a logical
connection to the event channel.

i nterface Event Channel

{
Consuner Adm n for_consuners();
Suppl i er Admin for_suppliers();
voi d destroy();

h

EventChannel::for_consumers()

/11DL
Consuner Adnmi n for_consuners();

Used by a consumer to obtain an object reference that supports the
Consuner Admi n interface.

EventChannel::for_suppliers()

/11D
Suppl i er Admi n for_suppliers()

Used by a supplier to obtain an object reference that supports the
Suppl i er Admi n interface.

EventChannel::destroy()

/11DL
voi d destroy();

295

Destroys the event channel. All events that are not yet delivered, as well as all
administrative objects created by the channel, are also destroyed. Connected
pull consumers and push suppliers are notified when their channel is destroyed.

296

CosEventChannelAdmin::
ProxyPullConsumer Interface

Parameters

After a supplier has obtained a reference to a proxy consumer using the
Suppl i er Admi n interface, they use the ProxyPul | Consuner interface to
connect to the event channel.

i nterface ProxyPul | Consuner : CosEvent Conm : PushConsuner
{
voi d connect _pul | _suppl i er (
i n CosEvent Comm : Pul | Supplier pull_supplier)
rai ses (A readyConnected, TypeError);

};

ProxyPullConsumer::connect_pull_supplier()

/11DL
voi d connect _pul | _suppl i er(

i n CosEvent Conm : Pul | Supplier pull_supplier)
rai ses (A readyConnected, TypeError);

This operation connects the supplier to the event channel.

If the proxy pull consumer is already connected to a PushSuppl i er, then the
Al r eadyConnect ed exception is raised. The TypeError exception is raised
when supplier that is being connected does not support the proper typed event
structure.

pul | _supplier The supplier that is trying to connect to the event channel.

297

298

CosEventChannelAdmin::
ProxyPullSupplier Interface

Parameters

After a consumer has obtained a proxy supplier using the Consumer Adm n
interface, they use the ProxyPul | Suppl i er interface to connect to the event
channel.

interface ProxyPul | Supplier : CosEvent Comm : Pul | Suppl i er
{
voi d connect _pul | _consuner (
i n CosEvent Comm : Pul | Consurrer pul | _consuner)
rai ses (A readyConnected);

};

ProxyPullSupplier::connect_pull_consumer()

/11DL
voi d connect _pul | _consuner (

i n CosEvent Conm : Pul | Consurrer pul | _consuner)
rai ses (A readyConnect ed);

This operation connects the consumer to the event channel. If the consumer
passes a nil object reference, the proxy pull supplier will not notify the
consumer when it is about to be disconnected.

If the proxy pull supplier is already connected to the Pul | Consuner, then the
Al readyConnect ed exception is raised.

pul | _consurer The consumer that is trying to connect to the event channel

299

300

CosEventChannelAdmin::
ProxyPushConsumer Interface

Parameters

After a supplier has obtained a reference to a proxy consumer using the
Suppl i er Admi n interface, they use the ProxyPushConsuner interface to
connect to the event channel.

/1 1D
i nterface ProxyPushConsuner : CosEvent Conm : PushConsuner
{
voi d connect _push_suppl i er (
i n CosEvent Comm : PushSuppl i er push_suppli er)
rai ses (A readyConnected);

b

ProxyPushConsumer::connect_push_supplier()

/11DL
voi d connect _push_suppl i er (

i n CosEvent Conm : PushSuppl i er push_suppli er)
rai ses (A readyConnect ed);

This operation connects the supplier to the event channel. If the supplier passes
a nil object reference, the proxy push consumer will not notify the supplier
when it is about to be disconnected.

If the proxy push consumer is already connected to the PushSuppli er, then
the Al r eadyConnect ed exception is raised.

push_supplier The supplier that is trying to connect to the event channel

301

302

CosEventChannelAdmin::
ProxyPushSupplier Interface

Parameters

After a consumer has obtained a proxy supplier using the Consumer Adm n
interface, they use the ProxyPushSuppl i er interface to connect to the event
channel.

i nterface ProxyPushSupplier : CosEvent Comm : PushSuppl i er
{
voi d connect _push_consuner (
i n CosEvent Comm : PushConsurrer push_consuner)
rai ses (A readyConnected, TypeError);

};

ProxyPushSupplier::connect_push_consumer()

/11DL
voi d connect _push_consuner (

i n CosEvent Conm : PushConsuner push_consuner)
rai ses (A readyConnected, TypeError);

This operation connects the consumer to the event channel.

If the proxy push supplier is already connected to the PushConsuner , then the
Al r eadyConnect ed exception is raised. The TypeError exception is when the
consumer that is being connected does not support the proper typed event
structure.

push_consurer The consumer that is trying to connect to the event channel

303

304

CosEventChannelAdmin::
SupplierAdmin Interface

Once a supplier has obtained a reference to a Suppl i er Adni n object (by
calling Event Channel : : for _suppl i ers()), they can use this interface to
obtain a proxy consumer. This is necessary in order to connect to the event
channel.

i nterface SupplierAdmn

{
Pr oxyPushConsuner obt ai n_push_consuner () ;
ProxyPul | Consurrer obt ai n_pul | _consuner () ;

};

SupplierAdmin::obtain_push_consumer()

/11DL
Pr oxyPushConsurrer obt ai n_push_consuner () ;

Returns a Pr oxyPushConsuner object. The supplier can then use this object to
connect to the event channel as a push-style supplier.

SupplierAdmin::obtain_pull_consumer()

/11D
Pr oxyPushConsurrer obt ai n_pul | _consurrer () ;

Returns a ProxyPul | Consuner object. The supplier can then use this object to
connect to the event channel as a pull-style supplier.

305

306

CosEventComm Module

The CosEvent Coommodule specifies the interfaces which define the event
service consumers and suppliers.

CosEventComm Exceptions

CosEventComm::Disconnected

excepti on D sconnected {};

D sconnect ed is raised when an attempt is made to contact a proxy that has
not been connected to an event channel.

307

308

CosEventComm::PullConsumer
Interface

A pull-style consumer supports the Pul | Consuner interface.

i nterface Pul | Consuner

{
}s

voi d di sconnect _pul | _consuner () ;

PullConsumer::disconnect_pull_consumer()

/11D
voi d di sconnect _pul | _consurer () ;

Lets the supplier terminate event communication. This operation releases
resources used at the consumer to support the event communication. The
Pul | Consuner object reference is discarded.

309

310

CosEventComm::PullSupplier
Interface

A pull-style supplier supports the Pul | Suppl i er interface to transmit event
data. A consumer requests event data from the supplier by invoking either
the pul | () operation or the try_pul | () operation.

i nterface Pul |l Supplier

{
any pull () raises (D sconnected);
any try_pull (out bool ean has_event) raises (D sconnected);
voi d di sconnect _pul | _supplier();

h

PullSupplier::pull()

/11DL
any pull () raises (D sconnected);

The consumer requests event data by calling this operation. The operation
blocks until the event data is available, in which case it returns the event data
to the consumer. Otherwise an exception is raised. If the event communication
has already been disconnected, the GBJIECT _NOT_EXI ST exception is raised.

PullSupplier::try_puli()

/11DL
any try_pull (out bool ean has_event) raises (D sconnected);

Unlike the t ry operation, this operation does not block. If the event data is
available, it returns the event data and sets the has_event parameter to true.
If the event is not available, it sets the has_event parameter to false and the
event data is returned with an undefined value. If the event communication
has already been disconnected, the GBJIECT_NOT_EXI ST exception is raised.

311

Parameters

312

has_event Indicates whether event data is available to the try_pul |
operation

PullSupplier::disconnect_pull_supplier()

/11D
voi d di sconnect _pul | _supplier();

Lets the consumer terminate event communication. This operation releases
resources used at the supplier to support the event communication. The
Pul | Suppl i er object reference is discarded.

CosEventComm::PushConsumer
Interface

Parameters

A push-style consumer supports the PushConsuner interface to receive event
data.

i nterface PushConsuner

{
voi d push(in any data) rai ses(D sconnected);
voi d di sconnect _push_consurer () ;

}s

PushConsumer::push()

/11DL
voi d push(in any data) rai ses(D sconnected);

Used by a supplier to communicate event data to the consumer. The supplier
passes the event data as a parameter of type any. If the event communication
has already been disconnected, the CBIECT_NOT_EXI ST exception is raised.

dat a The event data, of type any.

PushConsumer::disconnect_push_consumer()

/11DL
voi d di sconnect _push_consuner () ;

Lets the supplier terminate event communication. This operation releases
resources used at the consumer to support the event communication. The
PushConsuner object reference is discarded.

313

314

CosEventComm::PushSupplier
Interface

A push-style supplier supports the PushSuppl i er interface.

i nterface PushSuppli er
{

}s

voi d di sconnect _push_supplier();

PushSupplier::disconnect_push_supplier()

/11D
voi d di sconnect _push_supplier();

Lets the consumer terminate event communication. This operation releases
resources used at the supplier to support the event communication. The
PushSuppl i er object reference is discarded.

315

316

CosNaming Overview

See Also

The CosNam ng module contains all IDL definitions for the CORBA naming
service. The interfaces consist of:

® “CosNaming::Bindinglterator Interface”

* “CosNaming::NamingContext Interface”

® “CosNaming::NamingContextExt Interface”

Use the Nani ngCont ext and Bi ndi ngl t er at or interfaces to access standard

naming service functionality. Use the Nani ngCont ext Ext interface to use
URLs and string representations of names.

The rest of this chapter describes data types common to the CosNani ng
module that are defined directly within its scope.

CosNaming::Binding Structure

/1 1D
struct Binding {

Nare bi ndi ng_nane;

Bi ndi ngType bi ndi ng_t ype;
b
A Binding structure represents a single binding in a naming context. A Bi ndi ng
structure indicates the name and type of the binding:

bi ndi ng_nane The full compound name of the binding.

bi ndi ng_t ype The binding type, indicating whether the name is bound
to an application object or a naming context.

When browsing a naming graph in the naming service, an application can list
the contents of a given naming context, and determine the name and type of
each binding in it. To do this, the application calls the

Nani ngCont ext . | i st () method on the target Nam ngCont ext object. This
method returns a list of Bi ndi ng structures.

CosNanmi ng: : Bi ndi ngLi st

CosNani ng: : Bi ndi ngType

317

See Also

318

Nani ngContext ::list()

CosNaming::BindingList Sequence

/1 1DL
t ypedef sequence<Bi ndi ng> Bi ndi ngLi st ;

A sequence containing a set of Bi ndi ng structures, each of which represents
a single name binding.

An application can list the bindings in a given naming context using the
Nani ngCont ext : : | i st () method. An output parameter of this method
returns a value of type Bi ndi ngLi st .

CosNam ng: : Bi ndi ng

CosNani ng: : Bi ndi ngType

Nam ngCont ext : : i st ()

“About Sequences”

CosNaming::BindingType Enumeration

/1 1DL
enum Bi ndi ngType {nobj ect, ncontext};

The enumerated type Bi ndi ngType represents these two forms of name
bindings:

nobj ect Describes a name bound to an application object.

ncont ext Describes a name bound to a naming context in the
naming service.

There are two types of name binding in the CORBA naming service: names
bound to application objects, and names bound to naming contexts. Names
bound to application objects cannot be used in a compound name, except as
the last element in that name. Names bound to naming contexts can be used
as any component of a compound name and allow you to construct a naming
graph in the naming service.

Name bindings created using Nam ngCont ext : : bi nd() or Nami ngCont ext : :
rebi nd() are nobj ect bindings.

See Also

See Also

Name bindings created using the operations Nani ngCont ext : :

bi nd_cont ext () or Nam ngCont ext: : rebi nd_cont ext () are ncont ext
bindings.

CosNani ng: : Bi ndi ng

CosNani ng: : Bi ndi ngLi st

CosNaming::Istring Data Type

/1 1D
typedef string Istring;

Type I'string is a place holder for an internationalized string format.

CosNaming::Name Sequence

/1 1D
typedef sequence<NameConponent > Nare;

A Nane represents the name of an object in the naming service. If the object
name is defined within the scope of one or more naming contexts, the name
is a compound name. For this reason, type Nane is defined as a sequence of
name components.

Two names that differ only in the contents of the ki nd field of one
NaneConponent structure are considered to be different names.

Names with no components, that is sequences of length zero, are illegal.
CosNani ng: : NaneConponent
“About Sequences”

CosNaming::NameComponent Structure

I/l 10

struct NameConponent {
Istring id;
I string kind;

b

319

See Also

320

A NanmeConponent structure represents a single component of a name that is
associated with an object in the naming service. The members consist of:

id The identifier that corresponds to the name of the component.

ki nd The element that adds secondary type information to the
component name.

The i d field is intended for use purely as an identifier. The semantics of the
ki nd field are application-specific and the naming service makes no attempt
to interpret this value.

A name component is uniquely identified by the combination of both i d and
ki nd fields. Two name components that differ only in the contents of the
ki nd field are considered to be different components.

CosNani ng: : Nane

CosNaming::Bindinglterator Interface

See Also

A CosNani ng. Bi ndi ngl t er at or object stores a list of name bindings and
allows application to access the elements of this list.

The Nami ngCont ext . | i st () method obtains a list of bindings in a naming
context. This method allows applications to specify a maximum number of
bindings to be returned. To provide access to all other bindings in the naming
context, the method returns an object of type CosNam ng. Bi ndi ngl t er at or .

/1 1Dl
// 1'n nmodul e CosNam ng
interface Bindinglterator {
bool ean next one(
out Binding b

)
bool ean next n(
i n unsi gned | ong how _nany,
out Bindi ngLi st bl
)
voi d destroy();
b
CosNami ng: : Nam ngCont ext : : li st ()

Bindinglterator: : destroy()

/1 1D
voi d destroy();

Deletes the CosNanmi ng: : Bi ndi ngl t er at or object on which it is called.

Bindinglterator::next_n()

/1 1DL
bool ean next _n(
i n unsi gned | ong how _nany,

out Bindi ngLi st bl

321

Parameters

See Also

Parameters

See Also

322

)s

Gets the next how many elements in the list of bindings, subsequent to the
last element obtained by a call to next _n() or next _one() . If the number of
elements in the list is less than the value of how nmany, all the remaining
elements are obtained.

Returns t r ue if one or more bindings are obtained, but returns f al se if no more
bindings remain.

how_nany The maximum number of bindings to be obtained in param-
eter bl .
bl The list of name bindings.

CosNani ng: : Bi ndi ngl terator:: next _one()
GosNani ng: : Bi ndi ngLi st

Bindinglterator::next_one()

/1 1DL
bool ean next _one(

out Binding b
)
Gets the next element in the list of bindings, subsequent to the last element
obtained by a call to next _n() or next_one().

Returns true if a binding is obtained, but returns f al se if no more bindings
remain.

b The name binding.

CosNaning: : Bindi nglterator::next n()
GCosNani ng: : Bi ndi ng

CosNaming::NamingContext Interface

The interface CosNan ng: : Nam ngCont ext provides operations to access the
main features of the CORBA naming service, such as binding and resolving
names. Name bindings are the associations the naming service maintains
between an object reference and a useful name for that reference.

/1 1D
// 1'n nmodul e CosNam ng
i nterface Nam ngCont ext {
enum Not FoundReason {ni ssi ng_node, not_context, not_obj ect};

exception Not Found {
Not FoundReason why;
Narre rest _of _nang;

b

excepti on Cannot Proceed {
Nam ngCont ext cxt;
Narre rest _of _nane;

h

exception InvalidNanme {};

exception A readyBound {};

exception Not Enpty {};

voi d bi nd(
in Nane n,
in Chj ect obj
)

rai ses (Not Found, Cannot Proceed, |nvalidNare,
Al r eadyBound) ;

voi d rebi nd(
in Nane n,
in Chj ect obj
)

rai ses (Not Found, CannotProceed, InvalidNare);

voi d bi nd_cont ext (
in Nane n,

323

i n Nam ngCont ext nc

)
rai ses (Not Found, Cannot Proceed, |nvalidNare,
Al readyBound) ;

voi d rebi nd_cont ext (
in Nane n,
i n Nanm ngQont ext nc

rai ses (Not Found, Cannot Proceed, |nvalidNane);

bj ect resol ve(
in Namre n

)

rai ses (Not Found, Cannot Proceed, |nvalidNane);

voi d unbi nd(
in Nane n

)
rai ses (Not Found, Cannot Proceed, |nvalidNane);

Nam ngCont ext new cont ext () ;

Nam ngCont ext bi nd_new cont ext (
in Name n

)
rai ses (Not Found, Cannot Proceed, |nvalidNare,
Al readyBound) ;

voi d destroy() raises (NotEnpty);

void |ist(
i n unsi gned | ong how _nany,
out BindingList bl,
out Bindinglterator bi
)
b

324

Parameters

Exceptions

NamingContext::AlreadyBound Exception

/1 1D
excepti on A readyBound {};

If an application calls a method that attempts to bind a name to an object or
naming context, but the specified name has already been bound, the method
throws an exception of type Al r eadyBound.

The following methods can throw this exception:
bi nd()
bi nd_cont ext ()

bi nd_new cont ext ()

NamingContext::bind()

/1 1D

voi d bi nd(
in Nane n,
in Chj ect obj

rai ses (Not Found, Cannot Proceed, |nvalidName, Al readyBound);

Creates a name binding, relative to the target naming context, between a name
and an object.

n The name to be bound to the target object, relative to the
naming context on which the method is called.

obj The application object to be associated with the specified
name.

If the name passed to this method is a compound name with more than one
component, all except the last component are used to find the sub-context in
which to add the name binding.

The method can throw these exceptions:

Not Found
Cannot Pr oceed
| nval i dNane

Al r eadyBound

325

See Also

Parameters

Exceptions

326

The contexts associated with the components must already exist, otherwise
the method throws a Not Found exception.

GosNani ng: : Nani ngQGont ext : : r ebi nd()
CosNani ng: : Nani ngCont ext : : resol ve()

NamingContext::bind_context()

/1 1DL
voi d bi nd_cont ext (
in Nane n,

i n Nam ngCont ext nc

rai ses (Not Found, Cannot Proceed, |nvalidNare, A readyBound);

Creates a binding, relative to the target naming context, between a name and
another, specified naming context.

n The name to be bound to the target naming context, relative
to the naming context on which the method is called. All but
the final naming context specified in parameter n must
already exist.

nc The Nani ngCont ext object to be associated with the specified
name. This object must already exist. To create a new
Nam ngCont ext object, call Nani ngCont ext : : new _cont ext () .
The entries in naming context nc can be resolved using com-
pound names.

This new binding can be used in any subsequent name resolutions. The
naming graph built using bi nd_cont ext () is not restricted to being a tree: it
can be a general naming graph in which any naming context can appear in
any other naming context.

The method can throw these exceptions:

Not Found
Cannot Pr oceed
| nval i dNane

Al r eadyBound

See Also

Parameters

Exceptions

This method throws an Al r eadyBound exception if the name specified by n is
already in use.

CosNani ng. Nam ngCont ext . bi nd_new cont ext ()
CosNani ng. Nam ngCont ext . new_cont ext ()

CosNani ng. Nam ngCont ext . r ebi nd_cont ext ()
CosNani ng. Nam ngCont ext . r esol ve()

NamingContext::bind_new_context()

/1 1DL
Nam ngCont ext bi nd_new _cont ext (
in Name n

)
rai ses (Not Found, Cannot Proceed, |nvalidName, Al readyBound);

Creates a new Nam ngCont ext object in the naming service and binds the
specified name to it, relative to the naming context on which the method is
called. The method returns a reference to the newly created Nam ngCont ext
object.

n The name to be bound to the newly created naming context,
relative to the naming context on which the method is called.
All but the final naming context specified in parameter n must
already exist.

This method has the same effect as a call to Nani ngCont ext : :
new _cont ext () followed by a call to Nam ngCont ext : : bi nd_cont ext () .

The new name binding created by this method can be used in any
subsequent name resolutions: the entries in the returned naming context can
be resolved using compound names.

The method can throw these exceptions:

Not Found
Cannot Pr oceed
| nval i dNane

Al r eadyBound

This method throws an Al r eadyBound exception if the name specified by n is
already in use.

327

See Also

See Also

328

GCosNani ng: : Nani ngQont ext : : bi nd_cont ext ()
GCosNani ng: : Nani ngGont ext : : new_cont ext ()

NamingContext::CannotProceed Exception

/1 1D
excepti on Cannot Proceed {

Nanm ngCont ext cxt ;
Nare rest_of _nang;

}

If a naming service method fails due to an internal error, the method throws a
Cannot Pr oceed exception.

A Cannot Proceed exception consists of two member fields:

cxt The Nam ngCont ext object associated with the com-
ponent at which the method failed.

rest_of nane The remainder of the compound name, after the bind-
ing for the component at which the method failed.

The application might be able to use the information returned in this
exception to complete the method later. For example, if you use a naming
service federated across several hosts and one of these hosts is currently
unavailable, a naming service method might fail until that host is available
again.

The following methods can throw this exception:

bi nd()
bi nd_cont ext ()

bi nd_new cont ext ()

r ebi nd()

rebi nd_cont ext ()
resol ve()
unbi nd()

GCosNani ng: : Nane

CosNani ng: : Nani ngCont ext

Exceptions

See Also

NamingContext::destroy()

/1 1D
voi d destroy()

rai ses (Not Enpty);

Deletes the Nani ngCont ext object on which it is called. Before deleting a
Nani ngCont ext in this way, ensure that it contains no bindings.

To avoid leaving name bindings with no associated objects in the naming
service, call Nam ngCont ext . unbi nd() to unbind the context name before
calling destroy() . See resol ve() for information about the result of
resolving names of context objects that no longer exist.

Nanm ngCont ext : dest roy() is called on a Nam ngCont ext that contains exist-
"NotEnpty ing bindings.

CosNani ng: : Nani ngGont ext : : resol ve()
CosNani ng: : Nam ngCont ext : : unbi nd()

NamingContext::InvalidName Exception

// 1D0L
exception InvalidNane {};

If a method receives an i n parameter of type CosNam ng. Narre for which the
sequence length is zero, the method throws an I nval i dNane exception.

The following methods can throw this exception:

bi nd()
bi nd_cont ext ()

bi nd_new cont ext ()

r ebi nd()

rebi nd_cont ext ()

resol ve()
unbi nd()

329

Parameters

See Also

330

NamingContext::list()

/1 1DL
void list(
i n unsi gned | ong how nany,

out Bindi ngList bl,
out Bindinglterator bi

)

Gets a list of the name bindings in the naming context on which the method
is called.

how _many The maximum number of bindings to be obtained in the
Bi ndi ngLi st parameter, bl .
bl The list of bindings contained in the naming context on which

the method is called.

bi A Bi ndi ngl t er at or object that provides access to all remain-
ing bindings contained in the naming context on which the
method is called.

If the naming context contains more than the requested num-
ber of bindings, the Bi ndi ngl t er at or contains the remaining
bindings. If the naming context does not contain any addi-
tional bindings, the parameter bi is a nil object reference.

CosNani ng: : Bi ndi ngl t er at or
GosNani ng: : Bi ndi ngLi st

NamingContext::new_context()

/1 1D
Nam ngCont ext new cont ext () ;

Creates a new Nam ngCont ext object in the naming service, without binding a
name to it. The method returns a reference to the newly created Nam ngCont ext
object.

After creating a naming context with this method, your application can bind a
name to it by calling Nam ngCont ext : : bi nd_cont ext (). There is no
relationship between this object and the Nani ngCont ext object on which the
application call the method.

See Also

CosNani ng: : Nam ngCont ext : : bi nd_cont ext ()
CosNani ng: : Nam ngGont ext : : bi nd_new cont ext ()

NamingContext::NotEmpty Exception

[/l 1D
exception NotEnpty {};

An application can call the Nam ngCont ext : : dest roy() method to delete a
naming context object in the naming service. For this method to succeed, the
naming context must contain no bindings. If bindings exist in the naming
context, the method throws a Not Enpt y exception.

NamingContext::NotFound Exception

/1 1D
excepti on Not Found {

Not FoundReason why;
Nane rest_of _nane;

}

Several methods in the interface CosNam ng: : Nanmi ngCont ext require an exist-
ing name binding to be passed as an input parameter. If such an method
receives a name binding that it determines is invalid, the method throws a
Not Found exception. This exception contains two member fields:

why The reason why the name binding is invalid.

rest_of nane The remainder of the compound name following the invalid
portion of the name that the method determined to be
invalid.

The following methods can throw this exception:

bi nd()
bi nd_cont ext ()

bi nd_new cont ext ()

r ebi nd()

rebi nd_cont ext ()

resol ve()
unbi nd()

331

See Also

See Also

332

GosNani ng: : Nani ngQont ext : : Not FoundReason

NamingContext::NotFoundReason Enumeration

/1 1D
enum Not FoundReason { ni ssi ng_node, not_context, not_object};

If an method throws a Not Found exception, a value of enumerated type
Not FoundReason indicates the reason why the exception was thrown. The
reasons consists of:

m ssi ng_node The component of the name passed to the method
did not exist in the naming service.

not _cont ext The method expected to receive a name that is bound
to a naming context, for example using
Nam ngCont ext : : bi nd_cont ext (), but the name
received did not satisfy this requirement.

not _obj ect The method expected to receive a name that is bound
to an application object, for example using
Nam ngCont ext : : bi nd() , but the name received did
not satisfy this requirement.

GCosNani ng: : Nani ngCont ext : : Not Found

NamingContext::rebind()

/1 1DL

voi d rebi nd(
in Nane n,
in Cbj ect obj

rai ses (Not Found, Cannot Proceed, |nvalidNane);

Creates a binding between an object and a name that is already bound in the
target naming context. The previous name is unbound and the new binding is
created in its place.

Parameters

Exceptions

See Also

Parameters

Exceptions

n The name to be bound to the specified object, relative to the
naming context on which the method is called.

obj The application object to be associated with the specified
name.

As is the case with Nani ngCont ext : : bi nd(), all but the last component of a
compound name must exist, relative to the naming context on which you call
the method.

The method can throw these exceptions:

Not Found
Cannot Pr oceed
| nval i dNane

CosNani ng: : Nani ngGont ext : : bi nd()
CosNani ng: : Nanmi ngGont ext : : resol ve()

NamingContext::rebind_context()

/1 1D
voi d rebi nd_cont ext (
in Nane n,

i n Nam ngCont ext nc

rai ses (Not Found, Cannot Proceed, |nvalidNane);

The rebi nd_cont ext () method creates a binding between a naming context
and a name that is already bound in the context on which the method is called.
The previous name is unbound and the new binding is made in its place.

n The name to be bound to the specified haming context, rela-
tive to the naming context on which the method is called.

nc The naming context to be associated with the specified name.

As is the case for Nani ngCont ext : : bi nd_cont ext (), all but the last
component of a compound name must name an existing Nani ngCont ext .

The method can throw these exceptions:

333

See Also

Parameters

Exceptions

See Also

334

Not Found
Cannot Pr oceed
| nval i dNane

CosNani ng: : Nani ngGont ext : : bi nd_cont ext ()
GosNani ng: : Nanmi ngQont ext : : resol ve()

NamingContext::resolve()

// 1DL

(bj ect resol ve(
in Name n

)

rai ses (Not Found, CannotProceed, |nvalidNane);

Returns the object reference that is bound to the specified name, relative to
the naming context on which the method was called. The first component of
the specified name is resolved in the target naming context.

n The name to be resolved, relative to the naming context on
which the method is called.

The method can throw these exceptions:

Not Found
Cannot Pr oceed
I nval i dNane

If the name n refers to a naming context, it is possible that the corresponding
Nam ngCont ext object no longer exists in the naming service. For example,
this could happen if you call Nam ngCont ext : : dest roy() to destroy a context
without first unbinding the context name. In this case, resol ve() throws a
CORBA system exception.

GCosNani ng: : Nani ngCont ext : : Cannot Pr oceed

CosNani ng: : Nani ngCont ext : : [nval i dNane

CosNani ng: : Nani ngCont ext : : Not Found

NamingContext::unbind()

/1 1D
voi d unbi nd(
in Name n

)

rai ses (Not Found, Cannot Proceed, |nvali dNare);

Removes the binding between a specified name and the object associated with
it.

Parameters

n The name to be unbound in the naming service, relative to
the naming context on which the method is called.

Unbinding a name does not delete the application object or naming context
object associated with the name. For example, if you want to remove a
naming context completely from the naming service, you should first unbind
the corresponding name, then delete the Nani ngCont ext object by calling
Nam ngCont ext : : destroy().

Exceptions The method can throw these exceptions:

Not Found
Cannot Pr oceed
| nval i dNane

See Also CosNani ng: : Nani ngGont ext : : Cannot Pr oceed
CosNani ng: : Nanmi ngGont ext : : destroy()

CosNani ng: : Nani ngCont ext : : | nval i dNarre
CosNani ng: : Nani ngCont ext : : Not Found

335

336

CosNaming::NamingContextExt
Interface

The Nam ngCont ext Ext interface, derived from Nani ngCont ext , provides the
capability for applications to use strings and Uniform Resource Locator
(URL) strings to access names in the naming service.

/1 1D
// 1'n nmodul e CosNam ng
i nterface Nam ngCont ext Ext: Nam ngCont ext {

typedef string StringNane;
typedef string Address;

typedef string URLString;

StringNane to_string(
in Nane n
)

rai ses(lnval i d\ane);
Nane t o _nang(

in StringNane sn
)

rai ses(|lnval i d\ane);
exception |nvalidAddress {};
URLString to url (

in Address addr,

in StringName sn

rai ses(lnval i dAddress, |nvalidNane);

(bj ect resol ve_str(
in StringNane n

)
rai ses(Not Found, Cannot Proceed, |nvali dN\ane,
Al readyBound) ;

}s

337

See Also

Parameters

Exceptions

338

NameContextExt::Address Data Type

/1 1DL
typedef string Address;

A URL address component is a host nhame optionally followed by a port
number (delimited by a colon). Examples include the following:

ny_backup_host . 555xyz. com 900
nyhost . xyz. com
nyhost . 555xyz. com

NameContextExt::InvalidAddress Exception

/1 1DL
exception InvalidAddress {};

The to_url () method throws an I nval i dAddr ess exception when an invalid
URL address component is passed to it.

CosNani ng: : Nani ngGont ext Ext: :to_url ()

NameContextExt::resolve_str()

/1 1DL
(bj ect resol ve_str(
in StringNarme sn
)
rai ses(Not Found, Cannot Proceed, |nvalidNanme, A readyBound);

Resolves a naming service name to the object it represents in the same manner
as Nani ngQont ext : : resol ve() . This method accepts a string representation
of a name as an argument instead of a Nane data type.

sn String representation of a name to be resolved to an object
reference.

The method can throw these exceptions:

Not Found
Cannot Pr oceed
| nval i dNane

See Also

Parameters

Exceptions

Al r eadyBound

NameContextExt::StringName Data Type

/1 1D
typedef string StringNane;

A string representation of an object’s name in the naming service.
CosNani ng: : Nane

NameContextExt::to_name()

/1 1D
Narme t o_name(

in StringNarme sn
)

rai ses(lnval i d\Nane);

Returns a naming service Nane given a string representation of it.

sn String representation of a name in the naming service to be
converted to a Nane data type.

InvalidNane The string name is syntactically malformed or violates an
implementation limit.

NameContextExt::to_string()

/1 1DL

StringNane to_string(
in Name n

)

rai ses(l nval i d\Nane);

Returns a string representation of a naming service Nare data type.

339

Parameters

Exceptions

Parameters

Exceptions

340

n The naming service Nane to be converted to a string.

I nval i dNane Nane is invalid.

NameContextExt::to_url()

/1 1DL

URLString to_url (
in Address addr,

in StringNarme sn

rai ses(lnval i dAddress, |nvalidNane);

Returns a fully formed URL string, given a URL address component and a string
representation of a name. It adds the necessary escape sequences to create a

valid URLStri ng.

addr The URL address component. An empty address means the
local host.
sn The string representation of a naming service name. An

empty string is allowed.

The method can throw these exceptions:

| nval i dAddr ess
I nval i dNane

NameContextExt::URLString Data Type

/1 1DL
typedef string URLString;

A valid Uniform Resource Locator (URL) string. URL strings describe the
location of a resource that is accessible via the Internet.

CosNotification Module

The CosNoti fi cati on module defines the structured event data type, and a
data type used for transmitting sequences of structured events. In addition,
this module provides constant declarations for each of the standard quality of
service (QoS) and administrative properties supported by the notification
service. Some properties also have associated constant declarations to
indicate their possible settings. Finally, administrative interfaces are defined
for managing sets of QoS and administrative properties.

CosNotification Data Types

CosNotification::StructuredEvent Data Structure

/11D

struct Event Type {
string domai n_nane;
string type_nane;

}s

struct Fi xedEvent Header {
Event Type event _type;
string event_nane;

}s

struct Event Header {
Fi xedBEvent Header fixed_header;
pt i onal Header Fi el ds vari abl e_header ;

H
struct StructuredBEvent {
Event Header header ;

Fil terabl eEvent Body filterabl e_dat a;
any renai nder _of _body;

341

}; /1 StructuredEvent

The Struct uredEvent data structure defines the fields which make up a
structured event. A detailed description of structured events is provided in the
CORBA Notification Service Guide.

CosNotification::EventTypeSeq Type

/11D
struct Event Type {
string domai n_narre;
string type_nane;
b
typedef sequence <Event Type> Event TypeSeq

CosNotification::EventBatch Type

The CosNot i fi cati on module defines the Event Bat ch data type as a
sequence of structured events. The CosNot i f yConmmodule defines interfaces
supporting the transmission and receipt the Event Bat ch data type.

QoS and Administrative Constant Declarations

342

The CosNot i fi cati on module declares several constants related to QoS
properties, and the administrative properties of event channels.

// 1DL in CosNotification nodul e

const string EventReliability = "EventReliability";
const short BestEffort = O;

const short Persistent = 1;

const string CGonnectionReliability = "ConnectionReliability";
// Can take on the same values as EventReliability

const string Priority = "Priority";
const short LowestPriority = -32767;
const short HghestPriority = 32767;
const short DefaultPriority = O;

QoS and Admin Data Types

QoS and

const string StartTinme = "StartTi ne";
/] StartTinme takes a val ue of type TinmeBase::WcT

const string StopTime = "StopTime";
/] StopTime takes a val ue of type TineBase::WcT

const string Tinmeout = "Tineout";
// Timeout takes on a value of type TineBase:: TinmeT

const string OrderPolicy = "QOderPolicy";
const short AnyQder = 0;

const short FifoQrder = 1;

const short PriorityQder = 2;

const short DeadlineQder = 3;

const string D scardPolicy = "D scardPolicy";
// DiscardPolicy takes on the sane val ues as QderPolicy, plus
const short LifoOrder = 4;

const string Maxi nunBat chSi ze = "Maxi nunBat chS ze";
/1 Maxi munBat chSi ze takes on a val ue of type | ong

const string Pacinglnterval = "Pacinglnterval";
/ Pacinglnterval takes on a value of type TineBase::Ti neT

const string StartTi nmeSupported = "Start Ti neSupported”;
// StartTi meSupported takes on a bool ean val ue

const string StopTi meSupported = "StopTi meSupported”;
/1 StopTi meSupported takes on a bool ean val ue

const string MaxEvent sPer Consuner = "MaxEvent sPer Consuner";
/| MaxEvent sPer Consuner takes on a val ue of type |ong

Admin Data Types

The CosNot i fi cati on module defines several data types related to QoS
properties, and the administrative properties of event channels.

343

Members

344

CosNotification::PropertyName Type
typedef string PropertyNane;

PropertyNane is a stri ng holding the name of a QoS or an Admin property.

CosNotification::PropertyValue Type
typedef any PropertyVal ue;
Propert yVal ue is an any holding the setting of QoS or Admin properties.

CosNotification::PropertySeq Type

//1DL in CosNotification nodul e
struct Property

{

Pr oper t yNane nane;
PropertyVal ue val ue;
b
typedef sequence <Property> PropertySeq;

PropertySeq is a set of name-value pairs that encapsulate QoS or Admin
properties and their values.

nane A string identifying the QoS or Admin property.
val ue An Any containing the setting of the QoS or Admin property.

CosNotification::QoSProperties Type

typedef PropertySeq QoSProperties;

QoSProperti es is a name-value pair of PropertySeq used to specify QoS
properties.

QoS and Admin Data Types

CosNotification::AdminProperties Type
typedef PropertySeq AdninProperti es;

Admi nProperti es is a name-value pair of Propert ySeq used to specify Admin
properties.

CosNotification::QoSError_code Enum

enum QSErr or _code

{
UNSUPPCRTED PRCPERTY,
UNAVAI LABLE _PRCPERTY,
UNSUPPCRTED VAL LE,
UNAVAI LABLE VALLE,
BAD PRCPERTY,
BAD TYPE,
BAD VALUE

b

QoSEr r or _code specifies the error codes for Unsuppor t edQS and
Unsuppor t edAdni n exceptions. The return codes are:

UNSUPPCRTED_PRCPERTYOrbix does not support the property for this type of
object

UNAVAI LABLE_PRCPERTYThis property cannot be combined with existing QoS
properties.

UNSUPPCRTED VALLE The value specified for this property is invalid for the
target object.

UNAVAI LABLE VALLE The value specified for this property is invalid in the
context of other QoS properties currently in force.

BAD PROPERTY The property name is unknown.

BAD TYPE The type supplied for the value of this property is
incorrect.

BAD VALUE The value specified for this property is illegal.

345

CosNotification::PropertyErrorSeq Type

// 1DL from CosNoti fication nodul e
struct PropertyRange
{
PropertyVal ue | ow val ;
PropertyVal ue hi gh_val ;
H

struct PropertyError
{
QoSError _code code;
Pr oper t yNane nane;
Propert yRange avail abl e_r ange;
H
typedef sequence <PropertyError> PropertyError Seq;

A PropertyError Seq is returned when Unsuppor t edQoS or Unsuppor t edAdmi n
is raised. It specifies a sequence containing the reason for the exception, the
property that caused it, and a range of valid settings for the property.

CosNotification::NamedPropertyRangeSeq Type

struct NanedPropert yRange

{

Propert yNane nane;
Pr opert yRange range;

h
typedef sequence <NamedPropertyRange> NamedPr opert yRangeSeq;

Specifies a range of values for the named property.

QoS and Admin Exceptions

The CosNoti fi cati on module defines two exceptions related to QoS
properties, and the administrative properties of event channels.

346

QoS and Admin Exceptions

CosNotification::UnsupprtedQoS
excepti on Unsupported@sS { PropertyErrorSeq qos_err; };

Raised when setting QoS properties on notification channel objects, or when
validating QoS properties. It returns with a Propert yEr r or Seq specifying the
reason for the exception, which property was invalid, and a list of valid settings
for the QoS property.

CosNotification::UnsupportedAdmin

exception UnsupportedAdmn { PropertyErrorSeq admn_err; };

Raised when setting Admin properties on notification channels. It returns with
a Proper t yErr or Seq specifying the reason for the exception, which property
was invalid, and a list of valid settings for the property.

347

348

CosNotification::
AdminPropertiesAdmin Interface

/11D
i nterface Adm nPropertiesAdmn {
Adni nProperites get_adnin();
voi d set_admn (in Adm nProperites adm n)
rai ses (UnsupportedAdm n);

b

The Adni nProperti esAdm n interface defines operations enabling clients to
manage the values of administrative properties. This interface is an
abstract interface which is inherited by the Event Channel interfaces
defined in the CosNot i f yChannel Adni n module.

AdminPropertiesAdmin::get_admin()

Adm nProperites get_admn();

Returns a sequence of name-value pairs encapsulating the current
administrative settings for the target channel.

AdminPropertiesAdmin::set_admin()

voi d set_adnin (in Adm nProperites adm n)
rai ses (Unsupport edAdm n);

Sets the specified administrative properties on the target object.

Parameters

admin A sequence of name-value pairs encapsu-
lating administrative property settings.

349

Exceptions

Unsuppor t edAdm n Raised if If any of the requested settings cannot be satis-
fied by the target object.

350

CosNotification::QoSAdmin Interface

/11D
interface QSAdm n {
QoSProperties get_gos();
void set_qgos (in QoSProperties qos)
rai ses (UnsupportedQosS);
voi d val i date_gos (

in QoSProperites required_qos,
out NamedPropertyRangeSeq avai |l abl e_qos)

rai ses (UnsupportedQsS);

The QoSAdm n interface defines operations enabling clients to manage the
values of QoS properties. It also defines an operation to verify whether or not
a set of requested QoS property settings can be satisfied, along with returning
information about the range of possible settings for additional QoS properties.
QoSAdni n is an abstract interface which is inherited by the proxy, admin, and
event channel interfaces defined in the CosNot i f yChannel Adni n module.

QoSAdmin::get_qos()

QoSProperites get_gos();

Returns a sequence of name-value pairs encapsulating the current quality of
service settings for the target object (which could be an event channel,
admin, or proxy object).

QoSAdmin::set_qos()

voi d set_qgos (in QoSProperites qos)
rai ses (UnsupportedQsS);

Sets the specified QoS properties on the target object (which could be an
event channel, admin, or proxy object).

351

Parameters

Exceptions

Parameters

352

gos A sequence of name-value pairs encapsu-
lating quality of service property settings

Wnsuppor t edQ@SThe implementation of the target object is incapable of sup-
porting some of the requested quality of service settings, or
one of the requested settings are in conflict with a QoS prop-
erty defined at a higher level of the object hierarchy.

QoSAdmin::validate_qos()

voi d validate_gos (

in QoSProperites required _gos,
out NanedPropertyRangeSeq avail abl e_gos)

rai ses (UnsupportedQsS);

Enables a client to discover if the target object is capable of supporting a set
of QoS settings. If all requested QoS property value settings can be satisfied
by the target object, the operation returns successfully (without actually
setting the QoS properties on the target object).

requi red_gos A sequence of QoS property name-value
pairs specifying a set of QoS settings.

avai | abl e_qos An output parameter that contains a
sequence of NanedPr opert yRange. Each
element in this sequence includes the name
of a an additional QoS property supported
by the target object which could have been
included on the input list and resulted in a
successful return from the operation, along
with the range of values that would have
been acceptable for each such property.

Exceptions

Unsuppor t edQSRaised if If any of the requested settings cannot be satisfied
by the target object.

353

354

CosNotifyChannelAdmin Module

The CosNot i f yChannel Adm n module specifies the interfaces, exceptions,
and data types for connecting suppliers and consumers to an event channel.
It also provides the methods for managing these connections.

CosNotifyChannelAdmin Data Types

CosNot i f yChannel Admi n specifies data types that facilitate the connection of
clients to an event channel. The data types specify the proxy type used by a
client, the type of events a client can send or recieve, and how the clients
recieve subscription information. Several data types identify the client and
the event channel objets responsible for managing it.

CosNotifyChannelAdmin::ProxyType Enum

// 1DL in CosNotifyChannel Adnin

enum Pr oxyType

{
PUSH_ANY,
PULL_ANY,
PUSH_STRUCTURED,
PULL_STRUCTURED,
PUSH_SEQUENCE,
PULL_ SEQUENCE,
PUSH TYPED,
PULL_TYPED

}

Specifies the type of proxy used by a client to connect to an event channel.
The type of proxy must match the type of client it connects to the channel. For
example, a structured push consumer must use a PUSH_STRUCTURED proxy.

355

356

CosNotifyChannelAdmin::ObtaininfoMode Enum

// 1DL in CosNotifyChannel Adnm n Mdul e
enum (bt ai nl nf ovbde

{
ALL_NON UPDATES_ON,
ALL_NOW UPDATES CFF,
NCONE_NOW UPDATES ON,
NCONE_NOW UPDATES _CFF
}

Specifies how the client wishes to be notified of changes in subscription/
publication information. The values have the following meanings:

ALL_NOW UPDATES ON Returns the current subscription/publication informa-
tion and enables automatic updates.

ALL_NOW UPDATES _CFFReturns the current subscription/publication informa-
tion and disables automatic updates.

NONE_NOW UPDATES_ONEnables automatic updates of subscription/publication
information without returning the current information.

NON_NON UPDATES_CFFDisables automatic updates of subscription/publication
information without returning the current information.

CosNotifyChannelAdmin::ProxylD Type
typedef |ong Proxyl D

Specifies the ID of a proxy in an event channel.

CosNotifyChannelAdmin::ProxylDSeq Type
typedef sequence <Proxyl D> Proxyl DSeq

Contains a list of Proxyl Dvalues.

CosNotifyChannelAdmin::ClientType Enum
// 1DL in CosNotifyChannel Admn

CosNotifyChannelAdmin Data Types

enum d i ent Type

{
ANY_EVENT,
STRUCTURED EVENT,
SEQUENCE_EVENT

}

Specifies the type of messages a client handles. The values have the following
meanings:

ANY_EVENT The client sends or receives messages as an Any. Con-
sumers set with ANY_EVENT can receive structured mes-
sages, but the consumer is responsible for decoding it.

STRUCTURED_EVENT The client sends or receives messages as a
CosNot i fi cation::StructuredEvent .

SEQUENCE_EVENT The client sends or receives messages as a
CosNot i fi cati on::Event Bat ch.

CosNotifyChannelAdmin::InterFilterGroupOperator Enum

// 1DL in CosNotifyChannel Adnin
enum I nter Fi | t er G oupQper at or

{
AND CP,
R CP
}

Specifies the relationship between filters set on an admin object and the filters
set on its associated filter objects. The values have the following meanings:

AND CP Events must pass at least one filter in both the proxy and the
admin in order to be forwarded along the delivery path.

R CP Events must pass at least one filter in either the proxy or the
admin in order to be forwarded along the delivery path.

CosNotifyChannelAdmin::AdminID Type
typedef |ong Adm nl D

357

Specifies the ID of an admin object in an event channel.

CosNotifyChannelAdmin::AdminlDSeq
t ypedef sequence <Adm nl D> Adm nl DSeq;

Contains a list of IDs for admin objects in an event channel.

CosNotifyChannelAdmin::AdminLimit Type

//1DL in CosNotifyChannel Adnin

struct Adm nLimt

{
CosNoti fi cation:: PropertyNane nane;
CosNoti fi cation:: PropertyVal ue val ue;

}

Specifies the administration property whose limit is exceeded and the value of
that property. It is returned by an CosNot i f yChannel Adni n::
Adni nLi ni t Exceeded exception.

Members

nane Name of the admin property that caused the exception.
val ue The current value of the property.

CosNotifyChannelAdmin::ChannellD Type
typedef |ong Channel | D,

Specifies an event channel in the notification service.

CosNotifyChannelAdmin::ChannellDSeq Type
typedef sequence <Channel | D> Channel | DSeq;

Contains a list of IDs for event channels in the notification service.

358

CosNotifyChannelAdmin Exceptions

CosNotifyChannelAdmin Exceptions

The CosNot i f yChannel Adm n module defines exceptions to handle errors
generated while managing client connections to an event channel.

CosNotifyChannelAdmin::ConnectionAlreadyActive Exception
excepti on Connecti onAl readyActive{};

Raised when attempting to resume an already active connection between a
client and an event channel.

CosNotifyChannelAdmin::ConnetionAlreadylnactive Exception
excepti on Connecti onAl readyl nacti ve{};

Raised when attempting to suspend a connection between a client and an
event channel while it is suspended.

CosNotifyChannelAdmin::NotConnected Exception
excepti on Not Cennect ed{};

Raised when attempting to suspend or resume a connection between a client
and an event channel when the client is not connected to the channel.

CosNotifyChannelAdmin::AdminNotFound Exception
excepti on Adm nNot Found{};

Raised when the specified Admin ID cannot be resolved.

CosNotifyChannelAdmin::ProxyNotFound Exception
excepti on ProxyNot Found{};

359

360

Raised when the specified proxy ID cannot be resolved.

CosNotifyChannelAdmin::AdminLimitExceeded Exception
excepti on Adm nLi nit Exceeded{ Adm nLinit adm n_property err };

Raised when an attempt to obtain a proxy and the new connection will put the
event channel over the limit set by its MaxConsuner s or MaxSuppl i er s setting.

The returned Adni nLi nit specifies which property caused the exception and
the current setting of the property.

CosNotifyChannelAdmin::ChannelNotFound Exception
excepti on Channel Not Found{};

Raised when the specified channel ID cannot be resolved.

CosNotifyChannelAdmin::
ConsumerAdmin Interface

/11D

interface Consurer Admn :
CosNot i fi cati on: : Q@SAdmi n,
GCosNot i f yComm : Noti f ySubscri be,
CosNotifyFilter::FilterAdnin,
CosEvent Channel Adm n: : Consuner Adm n

readonly attribute Admnl D M/ D,
readonly attribute Event Channel M/Channel ;

readonly attribute InterFilterQoupQperator M/Cperator;

attribute CosNotifyFilter:: MappingFilter priority filter;
attribute CosNotifyFilter:: MappingFilter lifetinme filter;

readonly attribute Proxyl DSeq pul | _suppliers;
readonly attribute Proxyl DSeq push_suppli ers;

ProxySupplier get_proxy_supplier (in ProxylD proxy_id)
rai ses (ProxyNot Found);

ProxySuppl i er obtain notification pull supplier (
in dientType ctype,
out Proxyl D proxy_id)
rai ses (AdminLinit Exceeded);

ProxySuppl i er obtain notification push supplier (
in dientType ctype,

out Proxyl D proxy_id)
rai ses (AdminLi nit Exceeded);

ProxySupplier obtain_txn_notification_pull_supplier (
in dientType ctype,
out Proxyl D proxy_id)

361

362

rai ses (Adm nLi m t Exceeded);

voi d destroy();
|
The Consurer Adm n interface defines the behavior of objects that create and
manage lists of proxy supplier objects within an event channel. A event
channel can have any number of Consurmer Adm n instances associated with it.
Each instance is responsible for creating and managing a list of proxy
supplier objects that share a common set of QoS property settings, and a
common set of filter objects. This feature enables clients to group proxy
suppliers within a channel into groupings that each support a set of
consumers with a common set of QoS requirements and event subscriptions.

The Consurer Adm n interface inherits the QoSAdm n interface defined within
CosNoti fi cati on, enabling each Consurer Adm n to manage a set of QoS
property settings. These QoS property settings are assigned as the default
QoS property settings for any proxy supplier object created by a
Consuner Adm n.The Consuner Adni n interface also inherits from the

Fi | t er Adm n interface defined within CosNoti f yFi | ter. This enables each
Consumer Adm n to maintain a list of filters. These filters encapsulate
subscriptions that apply to all proxy supplier objects that have been created
by a given Consumer Admi n.

The Consurer Adm n interface also inherits from the Noti f ySubscri be
interface defined in CosNot i f yConm This inheritance enables a

Consuner Admi n to be registered as the callback object for notification of
subscription changes made on filters. This optimizes the notification of a
group of proxy suppliers that have been created by the same Consuner Adni n
of changes to these shared filters.

The Consurer Adm n interface also inherits from CosEvent Channel Adni n: :
Consuner Adm n. This inheritance enables clients to use the Consurer Adni n
interface to create pure OMG event service style proxy supplier objects. Proxy
supplier objects created in this manner do not support configuration of QoS
properties, and do not have associated filters. Proxy suppliers created
through the inherited CosEvent Channel Admi n: : Consuner Admi n interface do
not have unique identifiers associated with them, whereas proxy suppliers
created by operations supported by the Consuner Admi n interface do have
unique identifiers.

The Consurer Adm n interface supports a read-only attribute that maintains a
reference to the Event Channel instance that created it. The Consuner Adni n
interface also supports a read-only attribute that contains a unique numeric
identifier which is assigned event channel upon creation of a Consuner Admi n
instance. This identifier is unique among all Consuner Admi n instances
created by a given channel.

As described above, a Consuner Adm n can maintain a list of filters that are
applied to all proxy suppliers it creates. Each proxy supplier can also support
a list of filters that apply only to the proxy. When combining these two lists
during the evaluation of a given event, either AND or CR semantics may be
applied. The choice is determined by an input flag when creating of the
Consuner Admi n, and the operator that is used for this purpose by a given
Consuner Admi n is maintained in a read-only attribute.

The Consurer Adm n interface also supports attributes that maintain
references to priority and lifetime mapping filter objects. These mapping filter
objects are applied to all proxy supplier objects created by a given
Consuner Adni n.

Each Consuner Adni n assigns a unique numeric identifier to each proxy
supplier it maintains. The Consuner Adni n interface supports attributes that
maintain the list of these unique identifiers associated with the proxy pull and
the proxy push suppliers created by a given Consuner Admi n. The

Consuner Admi n interface also supports an operation that, given the unique
identifier of a proxy supplier, returns the object reference of that proxy
supplier. Finally, the Consuner Admi n interface supports operations that create
the various styles of proxy supplier objects supported by the event channel.

ConsumerAdmin::MyID
readonly attribute Admnl D M/I D,

Maintains the unique identifier of the target Consuner Adm n instance that is
assigned to it upon creation by the event channel.

ConsumerAdmin::MyChannel

readonly attribute Event Channel M/Channel

363

364

Maintains the object reference of the event channel that created a given
Consuner Adni n instance.

ConsumerAdmin::MyOperator

readonly attribute InterFilterQ oupCperator M/Qperator;

Maintains the information regarding whether AND or CR semantics are used
during the evaluation of a given event when combining the filter objects
associated with the target Consurer Adm n and those defined locally on a given
proxy supplier.

ConsumerAdmin::priority filter
attribute CosNotifyFilter::MappingFilter priority filter;

Maintains a reference to a mapping filter object that affects how each proxy
supplier created by the target Consuner Adni n treats events with respect to
priority.

Each proxy supplier also has an associated attribute which maintains a
reference to a mapping filter object for the priority property. This local
mapping filter object is only used by the proxy supplier in the event that the
priority filter attribute of the Consuner Admi n instance that created it is
set to CBJECT_N L.

ConsumerAdmin::lifetime_filter
attribute CosNotifyFilter::MappingFilter lifetime filter;

Maintains a reference to a mapping filter that affects how each proxy supplier
created by the target Consuner Adni n treats events with respect to lifetime.

Each proxy supplier object also has an associated attribute that maintains a
reference to a mapping filter object for the lifetime property. This local
mapping filter object is only used by the proxy supplier in the event that the
lifetine filter attribute of the Consuner Admi n instance that created it is
set to CBJECT_N L.

Parameters

Exceptions

ConsumerAdmin::pull_suppliers
readonly attribute Proxyl DSeq pul | _suppliers;

Contains the list of unique identifiers that have been assigned by a Consuner -
Adni n instance to each pull-style proxy supplier it has created.

ConsumerAdmin::push_suppliers
readonly attribute Proxyl DSeq push_suppliers;

Contains the list of unique identifiers that have been assigned by a Consuner -
Adnmi n instance to each push-style proxy supplier it has created.

ConsumerAdmin::get_proxy_supplier()

ProxySuppl i er get_proxy_supplier (in Proxyl D proxy_id)
rai ses (ProxyNot Found);

Returns an object reference to the proxy supplier whose unique id was passed
to the method.

proxy_id A numeric identifier associated with one of the proxy sup-
pliers that created by the target Consuner Adni n.

ProxyNot Found The input parameter does not correspond to the unique
identifier of a proxy supplier object created by the target
CGonsuner Admi n.

ConsumerAdmin::obtain_notification_pull_supplier()

ProxySuppl i er obtain_notification_pull_supplier (
in dientType ctype,

out Proxyl D proxy_id)
rai ses (Adm nLi nm t Exceeded);

365

Parameters

Exceptions

366

Creates instances of the pull-style proxy suppliers defined in
CosNot i f yChannel Adm n and returns an object reference to the new proxy.

Three varieties of pull-style proxy suppliers are defined in this module:
® The ProxyPul | Suppli er interface supports connections to pull

consumers that receive events as Anys.

® The StructuredProxyPul | Supplier interface supports connections to
pull consumers that receive structured events.

®* The SequencePr oxyPul | Suppl i er interface support connections to pull
consumers that receive sequences of structured events.

The input parameter flag indicates which type of pull style proxy instance to
create.

The target Consuner Admi n creates the new pull-style proxy supplier and
assigns a numeric identifier to it that is unique among all proxy suppliers the
Consuner Adm n has created.

ctype A flag that indicates which style of pull-style proxy sup-
plier to create.

proxy id The unique identifier of the new proxy supplier.

Adni nLi nm t ExceededThe number of consumers currently connected to the
channel with which the target Consurmer Admi n is associ-
ated exceeds the value of the MaxConsuner s administra-
tive property.

ConsumerAdmin::obtain_notification_push_supplier()

ProxySuppl i er obtain_notification_push_supplier (
in dientType ctype,

out Proxyl D proxy_id)
rai ses (Adm nLi m t Exceeded);

Creates instances of the push-style proxy supplier objects defined in
CosNot i f yChannel Adm n and returns an object reference to the new proxy.

Parameters

Exceptions

Three varieties of push-style proxy suppliers are defined in this module:

® The ProxyPushSuppl i er interface supports connections to push
consumers that receive events as Anys.

®* The Struct ur edPr oxyPushSuppl i er interface supports connections to
push consumers that receive structured events.

® The SequencePr oxyPushSuppl i er interface supports connections to
push consumers that receive sequences of structured events.

The input parameter flag indicates which type of push-style proxy to create.

The target Consuner Admi n creates the new push-style proxy supplier and
assigns a numeric identifier to it that is unique among all proxy suppliers the
Consuner Adm n has created.

ctype A flag indicating which style of push-style proxy supplier
to create.
proxy_id The unique identifier of the new proxy supplier.

Adnmi nLi ni t ExceededThe number of consumers currently connected to the
channel with which the target Consuner Adm n is associ-
ated exceeds the value of the MaxConsuner s administra-
tive property.

ConsumerAdmin::destroy()
voi d destroy();

Destroys all proxies under the administration of the target object, and then
destroys the target object itself. When destroying each object, it frees any
storage associated with the object in question, and then invalidates the object's
IOR.

367

368

CosNotifyChannelAdmin::
EventChannel Interface

/11D

i nterface Event Channel
GosNot i fi cati on: : QoSAdni n,
GosNot i fi cati on: : Adni nProperti esAdnin,
CosEvent Channel Adm n: : Event Channel

{
readonly attribute Event Channel Factory M/Factory;
readonly attribute Consuner Adm n defaul t _consurer_adni n;
readonly attribute SupplierAdnin defaul t_supplier_adm n;
readonly attribute CosNotifyFilter::FilterFactory
default _filter_factory;
Gonsuner Adm n new f or _consurer s(
in InterF|terQ oupQperator op,
out AdnminiDid);
Suppl i er Admi n new for_suppliers(
in |InterFilter@ oupQperator op,
out AdniniDid);
Consuner Adnmin get _consuneradnmin (in AdmniDid)
rai ses (Adm nNot Found);
Suppl i erAdnmin get_supplieradnin (in AdniniDid)
rai ses (Adm nNot Found) ;
Adm nl DSeq get _al | _consurer admi ns() ;
Adm nl DSeq get _al | _suppl i eradm ns();
H

The Event Channel interface defines the behavior of an event channel. This
interface inherits from CosEvent Channel Admi n: : Event Channel ; this makes
an instance of the notification service Event Channel interface fully
compatible with an OMG event service style untyped event channel.

369

370

Inheritance of CosEvent Channel Admi n: : Event Channel enables an instance of
the Event Channel interface to create event service style Consuner Adni n and
Suppl i er Admi n instances. These instances can subsequently be used to
create pure event service style proxies, which support connections to pure
event service style suppliers and consumers.

While notification service style proxies and admin objects have unique
identifiers associated with them, enabling their references to be obtained by
invoking operations on the notification service style admin and event channel
interfaces, event service style proxies and admin objects do not have
associated unique identifiers, and cannot be returned by invoking an
operation on the notification service style admin or event channel interfaces.

The Event Channel interface also inherits from the QoSAdni n and the

Adni nPr oper t i esAdni n interfaces defined in CosNot i fi cati on. Inheritance
of these interfaces enables a notification service style event channel to
manage lists of QoS and administrative properties.

The Event Channel interface supports a read-only attribute that maintains a
reference to the Event Channel Fact ory that created it. Each instance of the
Event Channel interface has an associated default Consurer Adni n and an
associated default Suppl i er Admi n, both of which exist upon creation of the
channel and that have the unique identifier of zero. Admin object identifiers
must only be unique among a given type of admin, which means that the
identifiers assigned to Consuner Adm n objects can overlap those assigned to
Suppl i er Adm n objects. The Event Channel interface supports read-only
attributes that maintain references to these default admin objects.

The Event Channel interface supports operations that create new
Consuner Adm n and Suppl i er Adni n instances. The Event Channel interface
also supports operations that, when provided with the unique identifier of an
admin object, can return references to the Consuner Adni n and

Suppl i er Admi n instances associated with a given Event Channel . Finally, the
Event Channel interface supports operations that return the sequence of
unique identifiers of all Consuner Adni n and Suppl i er Adm n instances
associated with a given Event Channel .

EventChannel::MyFactory

readonly attribute Event Channel Factory M/Factory;

Maintains the object reference of the event channel factory that created a given
Event Channel .

EventChannel::default_consumer_admin
readonly attribute Consuner Adm n defaul t _consurer _adn n;

Maintains a reference to the default Consuner Adni n associated with the target
Event Channel . Each Event Channel instance has an associated default
Consuner Admi n, that exists upon creation of the channel and is assigned the
unique identifier of zero. Clients can create additional event service style
Consuner Adm n by invoking the inherited f or _consuner s operation, and addi-
tional notification service style Consuner Admi n by invoking the

new f or_consuner s operation defined by the Event Channel interface.

EventChannel::default_supplier_admin
readonly attribute SupplierAdnin defaul t_supplier_adm n;

Maintains a reference to the default Suppl i er Adm n associated with the target
Event Channel . Each Event Channel has an associated default Suppl i er Adni n,
that exists upon creation of the channel and is assigned the unique identifier
of zero. Clients can create additional event service style Suppl i er Adni n by
invoking the inherited f or _suppl i er s operation, and additional notification
service style Suppl i er Adni n by invoking the new f or_suppl i er s operation
defined by the Event Channel interface.

EventChannel::default_filter factory

readonly attribute CosNotifyFilter::FilterFactory
default _filter_factory;

Maintains an object reference to the default factory to be used by its associated
Event Channel for creating filters. If the target channel does not support a
default filter factory, the attribute maintains the value of CBJECT N L.

371

Parameters

Parameters

372

EventChannel::new_for_consumers()

Consuner Adm n new f or _consurrer s(
in InterFilter&oupQperator op,
out AdminiDid);

Creates a notification service style Consuner Adni n. The new instance is
assigned a unique identifier by the target Event Channel that is unique among
all Consuner Adni ns currently associated with the channel. Upon completion,
the operation returns the reference to the new Consuner Adni n, and the unique
identifier assigned to the new Consuner Admi n as the output parameter.

op A boolean flag indicating whether to use AND or CR seman-
tics when the Consuner Adm n’ s filters are combined with
the filters associated with any supplier proxies the
Consuner Admi n creates.

id The unique identifier assigned to the new GConsurner Adni n.

EventChannel::new_for_suppliers()

Suppl i er Adni n new for_suppl i ers(
inlInterFilter&oupQperator op,

out AdniniDid);

Creates a notification service style Suppl i er Adni n. The new Suppl i er Adni n is
assigned an identifier by the target Event Channel that is unique among all
Suppl i er Adni ns currently associated with the channel. Upon completion, the
operation returns the reference to the new Suppl i er Adm n, and the unique
identifier assigned to the new Suppl i er Adni n as the output parameter.

op A boolean flag indicating whether to use AND or CR seman-
tics when the Suppl i er Adni n’ s filters are combined with
the filters associated with any supplier proxies the
Suppl i er Admi n creates.

id The unique identifier assigned to the new Suppl i er Adni n.

Parameters

Exceptions

Parameters

EventChannel::get_consumeradmin()

Consuner Adni n get _consurreradmn (in AdminiDid)
rai ses (Adm nNot Found);

Returns a reference to one of the Consuner Admi ns associated with the target
Event Channel .

Note: While a notification service event channel can support both event
service and notification service style Consuner Adni ns, only notification
service style Consuner Adni ns have unique identifiers.

id A numeric value that is the unique identifier of one of the
Consuner Adm ns associated with the target Event Channel .

Adnmi nNot Found The i d is not the identifier of one of the Consuner Adni ns
associated with the target Event Channel .

EventChannel::get_supplieradmin()

Suppl i erAdmin get_supplieradmn (in AdmnlDid)
rai ses (Adm nNot Found);

Returns a reference to one of the Suppl i er Adm ns associated with the target
Event Channel .

Note: While a notification service style event channel can support both
Event service and notification service style Suppl i er Admi ns, only notification
service style Suppl i er Adni ns have unique identifiers.

id A numeric value that is the unique identifier of one of the
Suppl i er Adni ns associated with the target Event Channel .

373

Exceptions

Adnmi nNot Found The i d is not the unique identifier of one of the Suppl i er Ad-
m ns associated with the target Event Channel .

EventChannel::get_all consumeradmins()
Adni nl DSeq get _al | _consuner adm ns() ;

Returns a sequence of unique identifiers assigned to all notification service
style Consuner Adm ns created by the target Event Channel .

EventChannel::get_all _supplieradmins()
Adnmi nl DSeq get _al | _suppl i eradm ns();

Returns a sequence of unique identifiers assigned to all notification service
style Suppl i er Adm ns created by the target Event Channel .

374

CosNotifyChannelAdmin::
EventChannelFactory Interface

/11DL
i nterface Event Channel Fact ory
{
Event Channel create channel (
in CosNotification::QSProperties initial_gos,
in CosNotification:: Adm nProperties initial_admn,
out Channel ID id)
rai ses(CosNoti fi cati on: : Unsuppor t edQS,
CosNoti ficati on:: UnsupportedAdnin);

Channel | DSeq get _al | _channel s();

Event Channel get event channel (in ChannellDid)
rai ses (Channel Not Found);

}s

The Event Channel Fact ory interface defines operations for creating and
managing event channels. It supports a routine that creates new instances of
event channels and assigns unique numeric identifiers to them.

The Event Channel Fact ory interface supports a routine that returns the
unique identifiers assigned to all event channels created by a given

Event Channel Fact ory, and another routine that, given the unique identifier
of an event channel, returns the object reference of that event channel.

EventChannelFactory::create_channel()

Event Channel create_channel (
in CosNotification::QSProperties initial_qos,
in CosNotification:: Adm nProperties initial_admn,
out Channel ID id)
rai ses(CosNoti fication:: Unsupport edQsS,
CosNot i fi cati on: : UnsupportedAdmn);

375

Parameters

Exceptions

376

Creates an instance of an event channel and returns an object reference to the

new channel.

initial_qgos

initial _admn

id

Unsuppor t edQ@S

A list of name-value pairs specifying the initial QoS prop-
erty settings for the new channel.

A list of name-value pairs specifying the initial administra-
tive property settings for the new channel.

A numeric identifier that is assigned to the new event
channel and which is unique among all event channels
created by the target object.

Raised if no implementation of the Event Channel interface
exists that can support all of the requested QoS property
settings. This exception contains a sequence of data struc-
tures which identifies the name of a QoS property in the
input list whose requested setting could not be satisfied,
along with an error code and a range of settings for the
property that could be satisfied.

Unsuppor t edAdm nRaised if no implementation of the Event Channel interface

exists that can support all of the requested administrative
property settings.This exception contains a sequence of
data structures that identifies the name of an administra-
tive property in the input list whose requested setting
could not be satisfied, along with an error code and a
range of settings for the property that could be satisfied.

EventChannelFactory::get_all_channels()

Channel | DSeq get _al | _channel s();

Returns a sequence containing all of the unique numeric identifiers for the
event channels which have been created by the target object.

EventChannelFactory::get_event_channel()

Event Channel get_event _channel (in ChannelIDid)
rai ses (Channel Not Found) ;

Returns the object reference of the event channel corresponding to the input
identifier.

Parameters

id A numeric value that is the unique identifier of an event
channel that has been created by the target object.

Exceptions

Channel Not Found The i d does not correspond to he unique identifier of an
event channel that has been created by the target object.

377

378

CosNotifyChannelAdmin::
ProxyConsumer Interface

//1DL in CosNotifyChannel Adnin

i nterface ProxyConsuner:
CosNot i fi cati on: : Q@SAdmi n,
CosNotifyFilter::FilterAdmn

readonly attribute ProxyType M/Type;
readonly attribute SupplierAdnin MAdni n;

CosNoti fi cation:: Event TypeSeq obt ai n_subscri pti on_t ypes(
i n Cbt ai nl nf oMbde node) ;

void validate event _gos (
in CosNotification::QSProperties required_gos,
out CosNotification:: NamedPr opert yRangeSeq avai | abl e_qgos)
rai ses(CosNoti fication:: Unsupport edQoS);
b
The ProxyConsuner interface is an abstract interface that is inherited by the
different proxy consumers that can be instantiated within an event channel.
It encapsulates the behaviors common to all notification service proxy
consumers. In particular, the ProxyConsuner interface inherits the QoSAdni n
interface defined within the CosNoti fi cati on module, and the Fi | t er Adni n
interface defined within the CosNot i f yFi | ter module. The former
inheritance enables proxy consumers to administer a list of associated QoS
properties. The latter inheritance enables proxy consumers to administer a
list of associated filter objects. Locally, the ProxyConsuner interface defines
a read-only attribute that contains a reference to the Suppl i er Adm n object
that created it. The ProxyConsuner interface also defines an operation to
return the list of event types a given proxy consumer instance can forward,
and an operation to determine which QoS properties can be set on a
per-event basis.

379

Parameters

Parameters

380

ProxyConsumer::obtain_subscription_types()
CosNot i fi cation:: Event TypeSeq obt ai n_subscri pti on_types(

i n ot ai nl nf oMbde node) ;

Returns a list of event type names that consumers connected to the channel
are interested in receiving.

node Specifies whether to automatically notify the supplier of
changes to the subsrciption list.

ProxyConsumer::validate_event_qos()

voi d val i date_event _gos (
in CosNotification::QSProperties required_gos,
out CosNotification:: NamedPropertyRangeSeq avail abl e_qos)
rai ses (CosNotification:: Unsupported@yS);

Checks whether the target proxy object will honor the setting of the specified
QoS properties on a per-event basis. If all requested QoS property value settings
can be satisfied by the target object, the operation returns successfully with
an output parameter that contains a sequence of NanedPr oper t yRange data
structures.

requi red_gos A sequence of QoS property name-value pairs that specify a
set of QoS settings that a client is interested in setting on an
event.

Note: The QoS property settings contained in the optional
header fields of a structured event may differ from those that
are configured on a given proxy object.

avai | abl e_gos A sequence of NanedPr oper t yRange. Each element includes
the name of a an additional QoS property whose setting is
supported by the target object on a per-event basis. Each ele-
ment also includes the range of values that are acceptable for
each property.

Exceptions

Unsuppor t edQSRaised if any of the requested settings cannot be honored by
the target object. This exception contains as data a sequence
of data structures identifying the name of a QoS property in
the input list whose requested setting could not be satisfied,
along with an error code and a range of valid settings for the
property.

Exceptions

381

382

CosNotifyChannelAdmin::
ProxyPullConsumer Interface

/11DL
i nterface ProxyPul | Consuner :

Pr oxyConsuner ,
CosEvent Comm : Pul | Consuner

{
voi d connect _any_pul | _supplier (
i n CosEvent Conm : Pul | Supplier pull_supplier)
rai ses(CosEvent Channel Adm n: : Al r eadyConnect ed,
CosEvent Channel Adni n: : TypeError);
b

The ProxyPul | Consuner interface supports connections to the channel by
suppliers who make events, packaged as Anys, available to the channel
using the pull model.

The ProxyPul | Consuner interface extends the OMG event service pull-style
suppliers of untyped events by supporting event filtering and the
configuration of QoS properties. This interface enables OMG event service
style untyped event suppliers to take advantage of the features offered by the
notification service.

Through inheritance of the Pr oxyConsuner interface, the ProxyPul | Consurer
interface supports administration of QoS properties, administration of a list of
associated filter objects, and a read-only attribute containing a reference to
the Suppl i er Adni n object that created it. In addition, this inheritance implies
that a ProxyPul | Consurer instance supports an operation that returns the
list of event types that consumers connected to the same channel are
interested in receiving, and an operation that returns information about the
instance’s ability to accept a QoS request.

The ProxyPul | Consuner interface also inherits from the Pul | Consuner
interface defined within CosEvent Conm This interface supports the operation
to disconnect the ProxyPul | Consurer from its associated supplier. Finally,
the ProxyPul | Consuner interface defines the operation to establish the
connection over which the pull supplier can send events to the channel.

383

Parameters

Exceptions

384

ProxyPullConsumer::connect_any pull_supplier()

voi d connect _any pul | _supplier (
i n CosEvent Comm : Pul | Suppl ier pull_supplier)
r ai ses(CosEvent Channel Adni n: : Al r eadyConnect ed,
CosEvent Channel Adni n: : TypeError);

Establishes a connection between a pull-style supplier of events in the form of
Anys, and the event channel. Once the connection is established, the proxy
can proceed to receive events from the supplier by invoking pul | or try_pul |
on the supplier (whetherthe proxy invokes pul | ortry_pul | , and the frequency
with which it performs such invocations, is a detail that is specific to the
implementation of the channel).

pul | _suppli er A reference to an object supporting the Pul | Suppl i er
interface defined within CosEvent Corm

Al r eadyConnect edRaised if the proxy is already connected to a pull supplier.

TypeError An implementation of the ProxyPul | Consurer interface
may impose additional requirements on the interface sup-
ported by a pull supplier (for example, it may be designed
to invoke some operation other than pul | ortry pul | in
order to receive events). If the pull supplier being con-
nected does not meet those requirements, this operation
raises the TypeError exception.

CosNotifyChannelAdmin::
ProxyPullSupplier Interface

/11D
i nterface ProxyPul | Supplier :
ProxySuppl i er,
CosEvent Conm : Pul | Suppl i er
{

voi d connect _any_pul | _consuner (
i n CosEvent Conm : Pul | Consurrer pul | _consuner)
rai ses(CosEvent Channel Admi n: : Al r eadyConnect ed) ;
b
The ProxyPul | Suppl i er interface supports connections to the channel by
consumers that pull events from the channel as Anys.

The ProxyPul | Suppl i er interface extends the OMG event service pull-style
consumers of untyped events by supporting event filtering and the
configuration of QoS properties. This interface enables OMG event service
style untyped event consumers to take advantage of the features offered by
the notification service.

Through inheritance of the ProxySuppl i er interface, the ProxyPul | Suppl i er
interface supports administration of QoS properties, administration of a list of
associated filter objects, mapping filters for event priority and lifetime, and a
read-only attribute containing a reference to the Consumer Adm n object that
created it. This inheritance also means that a ProxyPul | Suppl i er instance
supports an operation that returns the list of event types that the proxy
supplier will potentially supply, and an operation that returns information
about the instance’s ability to accept a QoS request.

The ProxyPul | Suppl i er interface also inherits from the Pul | Suppl i er
interface defined within the CosEvent Commmodule of the OMG event service.
This interface supports the pul | and try_pul | operations that the consumer
connected to a ProxyPul | Suppl i er instance invokes to receive an event from
the channel in the form of an Any, and the operation to disconnect the
ProxyPul | Suppl i er from its associated consumer.

385

Parameters

Exceptions

386

Finally, the ProxyPul | Suppl i er interface defines the operation to establish a
connection over which the pull consumer receives events from the channel.

ProxyPullSupplier::connect_any_pull_consumer()

voi d connect _any_pul | _consuner (
i n CosEvent Comm : Pul | Consurrer pul | _consuner)
rai ses(CosEvent Channel Adm n: : Al r eadyConnect ed) ;

Establishes a connection between a pull consumer of events in the form of
Anys and an event channel. Once established, the consumer can receive events
from the channel by invoking pul | ortry pul | on its associated

Pr oxyPul | Suppl i er.

pul | _consurrer A reference to an object supporting the Pul | Consuner
interface defined within the CosEvent Conmmodule of the
OMG event service.

Al r eadyConnect edThe target object of this operation is already connected to
a pull consumer object.

CosNotifyChannelAdmin::
ProxyPushConsumer Interface

/11DL
i nterface ProxyPushConsuner :

Pr oxyConsuner ,
CosEvent Comm : PushConsuner

{
voi d connect _any push_supplier (
i n CosEvent Conm : PushSuppl i er push_suppli er)
r ai ses(CosEvent Channel Admi n: : Al r eadyConnect ed) ;
H

The ProxyPushConsuner interface supports connections to the channel by
suppliers that push events to the channel as Anys.

The ProxyPushConsuner extends the OMG event service push consumer
interface by supporting event filtering and the configuration of various QoS
properties. This interface enables OMG event service style untyped event
suppliers to take advantage of these new features offered by the notification
service.

Through inheritance of the ProxyConsuner interface, the Pr oxyPushConsuner
interface supports administration of QoS properties, administration of a list of
associated filter objects, and a read-only attribute containing a reference to
the Suppl i er Adm n object that created it. In addition, this inheritance means
that a ProxyPushConsurmer instance supports an operation that returns the
list of event types that consumers connected to the same channel are
interested in receiving, and an operation that returns information about the
instance’s ability to accept a QoS request.

The ProxyPushConsuner interface also inherits from the PushConsuner
interface defined within the CosEvent Commmodule of the OMG event service.
This interface supports the push operation which the supplier connected to a
Pr oxyPushConsuner instance invokes to send an event to the channel in the
form of an Any, and the operation to disconnect the Pr oxyPushConsuner from
its associated supplier.

387

Parameters

Exceptions

Exceptions

388

Finally, the ProxyPushConsuner interface defines the operation to establish
the connection over which the push supplier sends events to the channel.

ProxyPushConsumer::connect_any push_supplier()

voi d connect _any_push_supplier (
i n CosEvent Comm : PushSuppl i er push_suppli er)
rai ses(CosEvent Channel Adm n: : Al r eadyConnect ed) ;

Establishes a connection between a push-style supplier of events in the form
of an any and an event channel. Once established, the supplier can send events
to the channel by invoking the push operation supported by the target

Pr oxyPushConsuner instance.

push_suppl i er The reference to an object supporting the PushSuppl i er inter-
face defined within the CosEvent Comnmmodule.

Al readyConnect ed The target object of this operation is already connected
to a push supplier object.

CosNotifyChannelAdmin::
ProxyPushSupplier Interface

/11D
i nterface ProxyPushSupplier :
ProxySuppl i er,
CosEvent Conm : PushSuppl i er
{

voi d connect _any_push_consuner (
i n CosEvent Conm : PushConsurrer push_consuner)
rai ses(CosEvent Channel Adm n: : Al r eadyConnect ed,
CosEvent Channel Adni n: : TypeError);

voi d suspend_connecti on()
rai ses(CosEvent Channel : : Connect i onAl r eadyl nacti ve) ;

voi d resure_connecti on()

rai ses(CosEvent Channel Adm n: : Connecti onAl r eadyActi ve) ;
b
The ProxyPushSuppl i er interface supports connections to the channel by
consumers that receive events from the channel as untyped Anys.

The ProxyPushSuppl i er interface extends the OMG event service push-style
consumers of untyped events by supporting event filtering and the
configuration of QoS properties. Thus, this interface enables OMG event
service push-style untyped event consumers to take advantage of the features
offered by the notification service.

Through inheritance of ProxySuppl i er, the ProxyPushSuppl i er interface
supports administration of QoS properties, administration of a list of
associated filter objects, mapping filters for event priority and lifetime, and a
read-only attribute containing a reference to the Consuner Adm n that created
it. This inheritance also implies that a ProxyPushSuppl i er instance supports
an operation that returns the list of event types that the proxy supplier can
supply, and an operation that returns information about the instance’s ability
to accept a QoS request.

389

Parameters

Exceptions

390

The ProxyPushSuppl i er interface also inherits from the PushSuppl i er
interface defined within CosEvent Conm This interface supports the operation
to disconnect a ProxyPushSuppl i er from its associated consumer.

The ProxyPushSuppl i er interface defines the operation to establish the
connection over which the push consumer can receive events from the
channel. The ProxyPushSuppl i er interface also defines a pair of operations
that can suspend and resume the connection between a ProxyPushSuppl i er
and its associated PushConsuner . During the time a connection is suspended,
the ProxyPushSuppl i er accumulates events destined for the consumer but
does not transmit them until the connection is resumed.

ProxyPushSupplier::connect_any push_consumer()

voi d connect _any_push_consuner (
i n CosEvent Conm : PushConsurrer push_consuner)
r ai ses(CosEvent Channel Adni n: : Al r eadyConnect ed,
CosEvent Channel Adni n: : TypeError);

Establishes a connection between a push-style consumer of events in the form
of Anys, and the event channel. Once the connection is established, the

Pr oxyPushSuppl i er sends events to its associated consumer by invoking push
on the consumer.

push_consurrer A reference to an object supporting the PushConsuner
interface defined within CosEvent Conm

Al r eadyConnect edRaised if the proxy is already connected to a push con-
sumer.

TypeError An implementation of the ProxyPushSuppl i er interface
may impose additional requirements on the interface sup-
ported by a push consumer (for example, it may be
designed to invoke some operation other than push in
order to transmit events). If the push consumer being con-
nected does not meet those requirements, this operation
raises the TypeError exception.

Exceptions

Exceptions

ProxyPushSupplier::suspend_connection()

voi d suspend_connecti on()
rai ses(Connecti onAl readyl nacti ve);

Causes the ProxyPushSuppl i er to stop sending events to the PushConsumer
instance connected to it. The Pr oxyPushSuppl i er does not forward events to
its associated PushConsuner until resune_connection() is invoked. During
this time, the ProxyPushSuppl i er continues to queue events destined for the
PushConsuner ; however, events that time out prior to resumption of the
connection are discarded. Upon resumption of the connection, all queued
events are forwarded to the PushConsuner .

The Connecti onAl r eadyl nacti ve exception is raised if the connection is
currently in a suspended state.

ProxyPushSupplier::resume_connection()

voi d resune_connecti on()
rai ses(CGonnecti onAl r eadyActi ve);

Causes the ProxyPushSuppl i er interface to resume sending events to the
PushConsuner instance connected to it, including those events that have been
queued while the connection was suspended and have not yet timed out.

Connect i onAl readyAct i veThe connection is not in a suspended state.

391

392

CosNotifyChannelAdmin::
ProxySupplier Interface

/11DL

i nterface ProxySupplier :
GosNoti fi cation: : QSAdm n,
CosNotifyFilter::FilterAdmn

{
readonly attribute Consuner Adnin M/Adni n;
readonly attribute ProxyType M/Type;
attribute CosNotifyFilter:: MappingFilter priority filter;
attribute CosNotifyFilter:: MappingFilter lifetine filter;
CosNot i fi cation:: Event TypeSeq obt ai n_of fered_t ypes(
i n bt ai nl nfoMbde node) ;
voi d val i date_event _gos (
in CosNotification::QSProperties required_gos,
out CosNotification:: NamedPr opert yRangeSeq avai | abl e_qgos)
rai ses (CosNotification:: Unsupported@yS);
H

The ProxySuppl i er interface is an abstract interface that is inherited by the
different proxy suppliers that can be instantiated within an event channel. It
encapsulates the behaviors common to all notification service proxy
suppliers. In particular, the ProxySuppl i er interface inherits the QoSAdm n
interface defined within the CosNot i fi cati on module, and the Fi | t er Addm n
interface defined within the CosNot i fyFi | ter module. The former
inheritance enables proxy suppliers to administer a list of associated QoS
properties. The latter inheritance enables proxy suppliers to administer a list
of associated filter objects.

Locally, the ProxySuppl i er interface defines a read-only attribute that
contains a reference to the Consuner Adni n object that created it. In addition,
the ProxySuppl i er interface defines attributes that associate two mapping

393

394

filter objects with each proxy supplier, one for priority and one for lifetime.
For more information on mapping filters refer to the CORBA Notification
Service Guide.

Lastly, the ProxySuppl i er interface defines an operation to return the list of
event types that a given proxy supplier can forward to its associated
consumer, and an operation to determine which QoS properties can be set on
a per-event basis.

ProxySupplier::priority filter
attribute CosNotifyFilter:: MappingFilter priority filter;

Contains a reference to an object supporting the Mappi ngFi | t er interface
defined in the CosNoti fyFi |l ter module. Such an object encapsulates a list
of constraint-value pairs, where each constraint is a boolean expression based
on the type and contents of an event, and the value is a possible priority setting
for the event.

Upon receipt of an event by a proxy supplier object whose priority filter
attribute contains a non-zero reference, the proxy supplier invokes the mat ch
operation supported by the mapping filter object. The mapping filter object
then applies its encapsulated constraints to the event.

If the mat ch operation returns TRUE, the proxy supplier changes the events
priority to the value specified in the constraint-value pair that matched the
event.

If the mat ch operation returns FALSE, the proxy supplier checks if the events
priority property is already set. If so, the filter does nothing. If the priority
property is not set, the filter sets the priority property to its default value.

ProxySupplier::lifetime_filter
attribute CosNotifyFilter:: MappingFilter lifetime filter;

Contains a reference to an object supporting the Mappi ngFi | t er interface
defined in the CosNoti fyFil ter module. Such an object encapsulates a list
of constraint-value pairs, where each constraint is a boolean expression based
on the type and contents of an event, and the value is a possible lifetime setting
for the event.

Parameters

Upon receipt of each event by a proxy supplier object whose
lifetinme_filter attribute contains a non-zero reference, the proxy supplier
invokes the nat ch operation supported by the mapping filter object. The
mapping filter object then proceeds to apply its encapsulated constraints to
the event.

If the mat ch operation returns TRUE, the proxy supplier changes the events
lifetime to the value specified in the constraint-value pair that matched the
event.

If the mat ch operation returns FALSE, the proxy supplier checks if the events
lifetime property is already set. If so, the filter does nothing. If the lifetime
property is not set, the filter sets the lifetime property to its default value.

ProxySupplier::obtain_offered_types()

CosNoti fication:: Event TypeSeq obt ai n_of fered_t ypes(
i n Cbt ai nl nf oMbde node) ;

Returns a list names of event types that the target proxy supplier can forward
to its associated consumer.

This mechanism relies on event suppliers keeping the channel informed of
the types of events they plan to supply by invoking the of f er _change
operation on their associated proxy consumer objects. The proxy consumers
automatically share the information about supplied event types with the
proxy suppliers associated with the channel. This enables consumers to
discover the types of events that can be supplied to them by the channel by
invoking the obt ai n_of f er ed_t ypes operation on their associated proxy
supplier.

node Specifies how to notify consumers of changes to the publica-
tion list.

ProxySupplier::validate_event_qos()

voi d val i date_event _gos (
in CosNotification:: Q@SProperties required_gos,

395

Parameters

Exceptions

396

out CosNotifi cation:: NanmedPropert yRangeSeq avai |l abl e_qos)

rai ses (GosNotification:: UnsupportedQ@S);

Checks whether the target proxy object will honor the setting of the specified
QoS properties on a per-event basis. If all requested QoS property value settings
can be satisfied by the target object, the operation returns successfully with
an output parameter that contains a sequence of NanedPr oper t yRange data

requi red_gos A sequence of QoS property name-value pairs that specify a

set of QoS settings that a client is interested in setting on an
event

Note: The QoS property settings contained in the optional
header fields of a structured event may differ from those that
are configured on a given proxy object.

avai | abl e_gos A sequence of NanedPr oper t yRange. Each element includes

the name of a an additional QoS property whose setting is
supported by the target object on a per-event basis. Each ele-
ment also includes the range of values that are acceptable for
each such property.

Unsuppor t edQ@S Raised if any of the requested settings cannot be honored by

the target object. This exception contains as data a
sequence of data structures, each of which identifies the
name of a QoS property in the input list whose requested
setting could not be satisfied, along with an error code and a
range of settings for the property that could be satisfied.

CosNotifyChannelAdmin::
SequenceProxyPullConsumer
Interface

//1DL
i nterface SequenceProxyPul | Consuner :

Pr oxyConsuner ,
GCosNot i f yComm : SequencePul | Consuner

{
voi d connect _sequence_pul | _supplier (
in CosNoti fyComm : SequencePul | Supplier pul | _supplier)
rai ses(CosEvent Channel Adni n: : Al r eadyConnect ed,
CosEvent Channel Adnmi n: : TypeError);
b

The SequencePr oxyPul | Consuner interface supports connections to the
channel by suppliers who make sequences of structured events available to
the channel using the pull model.

Through inheritance of Pr oxyGonsuner , the SequencePr oxyPul | Consurrer
interface supports administration of QoS properties, administration of a list of
associated filter objects, and a read-only attribute containing a reference to
the Suppl i er Adm n that created it. This inheritance also implies that a
SequencePr oxyPul | Consuner supports an operation that returns the list of
event types that consumers connected to the same channel are interested in
receiving, and an operation that returns information about the instance’s
ability to accept a QoS request.

The SequencePr oxyPul | Consuner interface also inherits from the
SequencePul | Consuner interface defined in the CosNot i f yCommmodule. This
interface supports the operation to close the connection from the supplier to
the SequencePr oxyPul | Consurer . Since the SequencePul | Consuner interface
inherits from Not i f yPubl i sh, a supplier can inform its associated
SequencePr oxyPul | Consuner whenever the list of event types it plans to
supply to the channel changes.

397

Parameters

Exceptions

398

The SequencePr oxyPul | Consuner interface also defines a method to
establish a connection between the supplier and an event channel.

SequenceProxyPullConsumer::
connect_sequence_pull_supplier()

voi d connect _sequence_pul | _supplier (
in CosNotifyGomm : SequencePul | Supplier pull_supplier)
r ai ses(CosEvent Channel Adni n: : Al r eadyConnect ed,
CosEvent Channel Adnin: : TypeError);

Establishes a connection between a pull-style supplier of sequences of struc-
tured events and the event channel. Once the connection is established, the
proxy can receive events from the supplier by invoking

pul | _structured events or try pull _structured_events on the supplier
(whether the proxy invokes pul | _struct ured_events or

try pul | _structured events, and the frequency with which it performs such
invocations, is a detail specific to the implementation of the channel).

pul | _supplier A reference to an object supporting the
SequencePul | Suppl i er interface defined within

CosNot i f yComm

Al r eadyConnect edRaised if the proxy is already connected to a pull supplier.

TypeError An implementation of the SequencePr oxyPul | Consuner
interface may impose additional requirements on the inter-
face supported by a pull supplier (for example, it may be
designed to invoke some operation other than
pul | _structured_events or
try pull _structured_events in order to receive events).
If the pull supplier being connected does not meet those
requirements, this operation raises the TypeError excep-
tion.

CosNotifyChannelAdmin::
SequenceProxyPushConsumer
Interface

//1DL
i nterface SequenceProxyPushConsuner :

Pr oxyConsuner ,
GCosNot i f yComm : SequencePushConsuner

{
voi d connect _sequence_push_supplier (
in CosNoti fyComm : SequencePushSuppl i er push_suppl i er)
rai ses(CosEvent Channel Admi n: : Al r eadyConnect ed) ;
b

The SequencePr oxyPushConsuner interface supports connections to the
channel by suppliers that push events to the channel as sequences of
structured events.

Through inheritance of the ProxyConsuner interface, the interface supports
administration of QoS properties, administration of a list of associated filter
objects, and a read-only attribute containing a reference to the

Suppl i er Adm n object that created it. In addition, this inheritance means that
a SequencePr oxyPushConsuner instance supports an operation that returns
the list of event types that consumers connected to the same channel are
interested in receiving, and an operation that returns information about the
instance’s ability to accept a QoS request.

The SequencePr oxyPushConsuner interface also inherits from the
SequencePushConsuner interface defined in the CosNot i f yCommmodule. This
interface supports the operation that enables a supplier of sequences of
structured events to push them to a SequencePr oxyPushConsuner , and also
the operation to close down the connection from the supplier to the
SequencePr oxyPushConsurer . Since the SequencePushConsuner interface
inherits from the Not i f yPubl i sh interface, a supplier can inform its
associated SequencePr oxyPushConsuner when the list of event types it
supplies to the channel changes.

399

Parameters

Exceptions

400

Lastly, the SequencePr oxyPushConsuner interface defines a method to
establish a connection between a supplier and an event channel.

SequenceProxyPushConsumer::
connect_sequence push_supplier()
voi d connect _sequence_push_suppl i er (

in CosNotifyGomm : SequencePushSuppl i er push_suppli er)
rai ses(CosEvent Channel Adm n: : Al r eadyConnect ed) ;

Establishes a connection between a push-style supplier of sequences of
structured events and an event channel. Once the connection is established,
the supplier can send events to the channel by invoking

push_structured events on its associated SequencePr oxyPushConsuner .

push_supplier A reference to an object supporting the
SequencePushSuppl i er interface defined within the

CosNot i f yConmmodule.

Al readyConnect edThe proxy is already connected to a push supplier object.

CosNotifyChannelAdmin::
SequenceProxyPullSupplier Interface

/11D
i nterface SequenceProxyPul | Supplier :
ProxySuppl i er,
CosNot i f yComm : SequencePul | Suppl i er
{
voi d connect _sequence_pul | _consurrer (
in CosNoti fyGComm : SequencePul | Consuner pul | _consurrer)
rai ses(CosEvent Channel Admi n: : Al readyConnect ed) ;
b

The SequencePr oxyPul | Suppl i er interface supports connections to the
channel by consumers who pull sequences of structured events from an
event channel.

Through inheritance of the ProxySuppl i er interface, the

SequencePr oxyPul | Suppl i er interface supports administration of QoS
properties, administration of a list of associated filter objects, and a read-only
attribute containing a reference to the Consuner Adni n object that created it.
In addition, this inheritance implies that a SequencePr oxyPul | Suppl i er
instance supports an operation that returns the list of event types that the
proxy supplier can supply, and an operation that returns information about
the instance’s ability to accept a QoS request.

The SequencePr oxyPul | Suppl i er interface also inherits from the
SequencePul | Suppl i er interface defined in CosNot i f yConm This interface
supports the operations enabling a consumer of sequences of structured
events to pull them from the SequencePr oxyPul | Suppl i er, and also the
operation to close the connection from the consumer to its associated
SequencePr oxyPul | Suppl i er . Since the SequencePul | Suppl i er interface
inherits from the Not i f ySubscri be interface, a SequencePr oxyPul | Suppl i er
can be notified whenever the list of event types that its associated consumer
is interested in receiving changes.

The SequencePr oxyPul | Suppl i er interface also defines a method to
establish a connection between the consumer and an event channel.

401

Parameters

Exceptions

402

SequenceProxyPullSupplier::
connect_sequence pull_consumer()
voi d connect _sequence_pul | _consurrer (

in CosNotifyGomm : SequencePul | Consurrer pul | _consuner)
r ai ses(CosEvent Channel Adm n: : Al r eadyConnect ed) ;

Establishes a connection between a pull-style consumer of sequences of
structured events and the event channel. Once the connection is established,
the consumer can proceed to receive events from the channel by invoking
pul | _structured eventsortry pull _structured_events on its associated
SequencePr oxyPul | Suppl i er.

pul I _consurer A reference to an object supporting the
SequencePul | Consuner interface defined in

CosNot i f yConm

Al r eadyConnect edThe proxy is already connected to a pull consumer.

CosNotifyChannelAdmin::
SequenceProxyPushSupplier Interface

/11D
i nterface SequenceProxyPushSupplier :
ProxySuppl i er,
CosNot i f yComm : SequencePushSuppl i er
{

voi d connect _sequence_push_consurrer (
in CosNoti f yGComm : SequencePushConsuner push_consurrer)
r ai ses(CosEvent Channel Adni n: : Al r eadyConnect ed,
CosEvent Channel Adnmi n: : TypeError);

voi d suspend_connecti on()
rai ses(Connecti onAl r eadyl nacti ve);

voi d resunme_connecti on()
rai ses(CGonnecti onAl r eadyActi ve);

b
The SequencePr oxyPushSuppl i er interface supports connections to the

channel by consumers that receive sequences of structured events from the
channel.

Through inheritance of ProxySuppl i er, the SequencePr oxyPushSuppl i er
interface supports administration of QoS properties, administration of a list of
associated filter objects, and a read-only attribute containing a reference to
the Consuner Admi n that created it. This inheritance also implies that a
SequencePr oxyPushSuppl i er instance supports an operation that returns the
list of event types that the proxy supplier can supply, and an operation that
returns information about the instance’s ability to accept a QoS request.

The SequencePr oxyPushSuppl i er interface also inherits from the
SequencePushSuppl i er interface defined in CosNot i f yConm This interface
supports the operation to close the connection from the consumer to the
SequencePr oxyPushSuppl i er . Since the SequencePushSuppl i er interface

403

Parameters

404

inherits from the Not i f ySubscri be interface, a SequencePr oxyPushSuppl i er
can be notified whenever the list of event types that its associated consumer
is interested in receiving changes.

Lastly, the SequencePr oxyPushSuppl i er interface defines the operation to
establish the connection over which the push consumer receives events from
the channel. The SequencePr oxyPushSuppl i er interface also defines a pair of
operations to suspend and resume the connection between a

SequencePr oxyPushSuppl i er instance and its associated
SequencePushConsuner . While a connection is suspended, the

SequencePr oxyPushSuppl i er accumulates events destined for the consumer
but does not transmit them until the connection is resumed.

SequenceProxyPushSupplier::
connect_sequence_push_consumer()

voi d connect _sequence_push_consurrer (
in CosNoti f yComm : SequencePushConsurner push_consuner)
r ai ses(CosEvent Channel Adni n: : Al r eadyConnect ed,
CosEvent Channel Adni n: : TypeError);

Establishes a connection between a push-style consumer of sequences of
structured events and the event channel. Once the connection is established,
the SequencePr oxyPushSuppl i er sends events to its associated consumer by
invoking push_struct ured_events.

push_consurrer A reference to a SequencePushConsuner .

Exceptions

Al r eadyConnect edRaised if the proxy is already connected to a push con-
sumer.

TypeError An implementation of the SequencePr oxyPushSuppl i er
interface may impose additional requirements on the inter-
face supported by a push consumer (for example, it may
be designed to invoke some operation other than
push_structured_events in order to transmit events). If
the push consumer being connected does not meet those
requirements, this operation raises the TypeError excep-
tion.

SequenceProxyPushSupplier::suspend_connection()

voi d suspend_connecti on()
rai ses(Connecti onAl readyl nacti ve);

Causes the SequencePr oxyPushSuppl i er to stop sending events to the
PushConsuner instance connected to it. The Struct ur edPr oxyPushSuppl i er
does not forward events to its SequencePushConsuner until
resune_connecti on() is invoked. During this time, the

SequencePr oxyPushSuppl i er continues to queue events destined for the
SequencePushConsuner ; however, events that time out prior to resumption of
the connection are discarded. Upon resumption of the connection, all queued
events are forwarded to the SequencePushConsuner .

Exceptions

Connect i onAl r eadyl nact i veThe connection is already suspended.

SequenceProxyPushSupplier::resume_connection()

voi d resune_connecti on()
rai ses(CGonnecti onAl r eadyActi ve);

Causes the SequencePr oxyPushSuppl i er to resume sending events to the
SequencePushConsuner instance connected to it, including those that have
been queued while the connection was suspended and have not yet timed out.

405

Exceptions

Connect i onAl r eadyAct i veThe connection is not suspended.

406

CosNotifyChannelAdmin::
StructuredProxyPullConsumer
Interface

//1DL
i nterface StructuredProxyPul | Consurner :

Pr oxyConsuner ,
GCosNot i f yComm : St r uct ur edPul | Consurrer

{
voi d connect _structured_pul | _supplier (
in CosNotifyComm : StructuredPul | Supplier pull _supplier)
r ai ses(CosEvent Channel Admi n: : Al r eadyConnect ed,
CosEvent Channel Adnmi n: : TypeError);
b

The Struct ur edPr oxyPul | Consuner interface supports connections to the
channel by suppliers that make structured events available to the channel
using the pull model.

Through inheritance of Pr oxyConsuner, the Struct ur edPr oxyPul | Consurer
interface supports administration of QoS properties, administration of a list of
associated filter objects, and a read-only attribute containing a reference to
the Suppl i er Admi n object that created it. This inheritance also implies that a
St ruct ur edPr oxyPul | Consuner instance supports an operation that returns
the list of event types that consumers connected to the same channel are
interested in receiving, and an operation that returns information about the
instance’s ability to accept a QoS request.

The Struct ur edPr oxyPul | Consuner interface also inherits from the

St ruct ur edPul | Consurer interface defined in CosNot i f yComm This interface
supports the operation to close the connection from the supplier to the

St ruct ur edPr oxyPul | Consuner . Since the St ruct ur edPul | Consuner
interface inherits from Not i f yPubl i sh, a supplier can inform the

St ruct ur edPr oxyPul | Consuner to which it is connected whenever the list of
event types it plans to supply to the channel changes.

407

Parameters

Exceptions

408

Lastly, the St ruct ur edPr oxyPul | Consuner interface defines a method to
establish a connection between the supplier and an event channel.

StructuredProxyPullConsumer::
connect_structured pull_supplier()

voi d connect _structured_pul | _supplier (
in CosNotifyGomm : StructuredPul | Supplier pull _supplier)
r ai ses(CosEvent Channel Adni n: : Al r eadyConnect ed,
CosEvent Channel Adni n: : TypeError);

Establishes a connection between a pull-style supplier of structured events and
the event channel. Once the connection is established, the proxy can receive
events from the supplier by invoking pul | _structured_event or

try pull_structured event on the supplier (whether the proxy invokes

pul | _structured event ortry pul |l _structured_event, and the frequency
with which it performs such invocations, is a detail specific to the implemen-
tation of the channel).

pul | _supplier A reference to an object supporting the
Struct uredPul | Suppl i er interface defined within

CosNot i f yComm

Al r eadyConnect edRaised if the proxy is already connected to a pull supplier.

TypeError An implementation of the Struct ur edPr oxyPul | Consuner
interface may impose additional requirements on the inter-
face supported by a pull supplier (for example, it may be
designed to invoke some operation other than
pul | _structured_event ortry_pull _structured_event
in order to receive events). If the pull supplier being con-
nected does not meet those requirements, this operation
raises the TypeError exception.

CosNotifyChannelAdmin::
StructuredProxyPullSupplier Interface

/11D
i nterface StructuredProxyPul | Supplier :
ProxySuppl i er,
CosNot i f yGomm : St ruct ur edPul | Suppl i er
{

voi d connect _structured_pul | _consuner (
in CosNoti fyComm : Struct uredPul | Consurrer pul | _consurrer)
rai ses(CosEvent Channel Admi n: : Al readyConnect ed) ;
H
The Struct ur edPr oxyPul | Suppl i er interface supports connections to the
channel by consumers that pull structured events from the channel.

Through inheritance of ProxySuppl i er, the Struct ur edPr oxyPul | Suppl i er
interface supports administration of QoS properties, administration of a list of
associated filter objects, and a read-only attribute containing a reference to
the Consuner Adm n object that created it. In addition, this inheritance means
that a St ruct ur edPr oxyPul | Suppl i er instance supports an operation that
returns the list of event types that the proxy supplier can supply, and an
operation that returns information about the instance’s ability to accept a
QoS request.

The Struct ur edPr oxyPul | Suppl i er interface also inherits from the

St ruct ur edPul | Suppl i er interface defined in CosNot i f yComm This interface
supports the operations enabling a consumer of structured events to pull
them from a Struct ur edPr oxyPul | Suppl i er, and the operation to close the
connection from the consumer to the Struct ur edPr oxyPul | Suppl i er. Since
the St ruct ur edPul | Suppl i er interface inherits from Noti f ySubscri be, a

St ruct ur edPr oxyPul | Suppl i er can be notified whenever the list of event
types that its associated consumer is interested in receiving changes.

Lastly, the Struct uredPr oxyPul | Suppl i er interface defines a method to
establish a connection between the consumer and an event channel.

409

Parameters

Exceptions

410

StructuredProxyPullSupplier::
connect_structured pull_consumer()
voi d connect _structured_pul | _consuner (

in CosNotifyComm : StructuredPul | Supplier pull_consurer)
rai ses(CosEvent Channel Adm n: : Al r eadyConnect ed) ;

Establishes a connection between a pull consumer of structured events and
the event channel. Once established, the consumer can receive events from
the channel by invoking pul | _struct ured_event or

try pull_structured event on its associated

St ruct ur edPr oxyPul | Suppli er.

pul I _consurer A reference to an object supporting the
Struct ur edPul | Suppl i er interface defined in

CosNot i f yConm

Al r eadyConnect edThe proxy is already connected to a pull consumer.

CosNotifyChannelAdmin::
StructuredProxyPushConsumer
Interface

//1DL
i nterface StructuredProxyPushConsuner :

Pr oxyConsuner ,
GCosNot i f yComm : St r uct ur edPushConsurrer

{
voi d connect _structured_push_supplier (
in CosNoti fyComm : Struct ur edPushSuppl i er push_supplier)
rai ses(CosEvent Channel Admi n: : Al r eadyConnect ed) ;
b

The Struct ur edPr oxyPushConsuner interface supports connections to the
channel by suppliers that push events to the channel as structured events.

Through inheritance of the ProxyConsuner interface, the interface supports
administration of QoS properties, administration of a list of associated filter
objects, and a read-only attribute containing a reference to the

Suppl i er Adm n object that created it. In addition, this inheritance means that
a Struct ur edPr oxyPushConsuner instance supports an operation that returns
the list of event types that consumers connected to the same channel are
interested in receiving, and an operation that returns information about the
instance’s ability to accept a QoS request.

The Struct ur edPr oxyPushConsuner interface also inherits from the

St ruct ur edPushConsuner interface defined in the CosNot i f yCommmodule.
This interface supports the operation that enables a supplier of structured
events to push them to the St ruct ur edPr oxyPushConuner , and also an
operation to close down the connection from the supplier to the

St r uct ur edPr oxyPushConsuner . Since the St r uct ur edPushConsuner
interface inherits from the Not i f yPubl i sh interface, a supplier can inform the
St r uct ur edPr oxyPushConsuner to which it is connected whenever the list of
event types it plans to supply to the channel changes.

411

Parameters

Exceptions

Exceptions

412

Lastly, the St ruct ur edPr oxyPushConsuner interface defines a method to
establish a connection between the supplier and an event channel.

StructuredProxyPushConsumer::
connect_structured push_supplier()
voi d connect _structured_push_supplier (

in CosNotifyComm : Struct uredPushSuppl i er push_supplier)
rai ses(CosEvent Channel Adm n: : Al r eadyConnect ed) ;

Establishes a connection between a push-style supplier of structured events
and the event channel. Once the connection is established, the supplier can
send events to the channel by invoking push_st ruct ured_event on its asso-
ciated Struct ur edPr oxyPushConsuner instance.

push_suppl i er A reference to an object supporting the
St ruct ur edPushSuppl i er interface defined within the

CosNot i f yComnmmodule.

Al readyConnect edThe proxy object is already connected to a push supplier
object.

CosNotifyChannelAdmin::
StructuredProxyPushSupplier
Interface

/11D
i nterface StructuredProxyPushSupplier :
ProxySuppl i er,
GCosNot i fyComm : St r uct ur edPushSuppl i er
{

voi d connect _structured_push_consuner (
in CosNoti fyConm : Struct ur edPushConsuner push_consurrer)
rai ses(CosEvent Channel Admi n: : Al r eadyConnect ed,
CosEvent Channel Adni n: : TypeError);

voi d suspend_connecti on()
rai ses(Gonnecti onAl r eadyl nacti ve);

voi d resure_connecti on()
rai ses(Connecti onAl r eadyActi ve);

}
The Struct ur edPr oxyPushSuppl i er interface supports connections to the
channel by consumers that receive structured events from the channel.

Through inheritance of ProxySuppl i er, the Struct ur edPr oxyPushSuppl i er
interface supports administration of QoS properties, administration of a list of
associated filter objects, and a read-only attribute containing a reference to
the Consuner Admi n that created it. This inheritance also implies that a

St ruct ur edPr oxyPushSuppl i er instance supports an operation that returns
the list of event types that the proxy supplier can supply, and an operation
that returns information about the instance’s ability to accept a QoS request.

The Struct ur edPr oxyPushSuppl i er interface also inherits from the
St ruct ur edPushSuppl i er interface defined in CosNot i f yComm This interface
supports the operation that to close the connection from the consumer to the

413

Parameters

Exceptions

414

St ruct ur edPr oxyPushSuppl i er. Since Struct ur edPushSuppl i er inherits
from Not i f ySubscri be, a Struct ur edPr oxyPushSuppl i er can be notified
whenever the list of event types that its associated consumer is interested in
receiving changes.

Lastly, the St ruct ur edPr oxyPushSuppl i er interface defines the operation to
establish the connection over which the push consumer can receive events
from the channel. The Struct ur edPr oxyPushSuppl i er interface also defines
a pair of operations to suspend and resume the connection between a

St ruct ur edPr oxyPushSuppl i er and its associated St r uct ur edPushConsunrer .
During the time such a connection is suspended, the

St ruct ur edPr oxyPushSuppl i er accumulates events destined for the
consumer but does not transmit them until the connection is resumed.

StructuredProxyPushSupplier::
connect_structured_push_consumer()

voi d connect _struct ured_push_consuner (
in CosNotifyGomm : Struct uredPushConsuner push_consurer)
r ai ses(CosEvent Channel Adni n: : Al r eadyConnect ed,
CosEvent Channel Admi n: : TypeError);

Establishes a connection between a push-style consumer of structured events
and the event channel. Once the connection is established, the St ruct ur ed-
Pr oxyPushSuppl i er sends events to the consumer by invoking
push_structured_event.

push_consurer A reference to an object supporting the
Struct ur edPushConsuner interface defined within

CosNot i f yComm

Al r eadyConnect edRaised if the proxy is already connected to a push con-
sumer.

Exceptions

Exceptions

TypeError An implementation of the St ruct ur edPr oxyPushSuppl i er
interface may impose additional requirements on the inter-
face supported by a push consumer (for example, it may
be designed to invoke some operation other than
push_structured_event to transmit events). If the push
consumer being connected does not meet those require-
ments, this operation raises the TypeError exception.

StructuredProxyPushSupplier::suspend_connection()

voi d suspend_connecti on()
rai ses(Connecti onAl readyl nacti ve);

Causes the Struct ur edPr oxyPushSuppl i er to stop sending events to the
PushConsuner connected to it. The Struct ur edPr oxyPushSuppl i er does not
forward events to its St r uct ur edPushConsuner until resune_connecti on() is
invoked. During this time, the St ruct ur edPr oxyPushSuppl i er queues events
destined for the St r uct ur edPushConsuner ; however, events that time out prior
to resumption of the connection are discarded. Upon resumption of the
connection, all queued events are forwarded to the St r uct ur edPushConsurrer .

Connect i onAl r eadyl nact i veThe connection is already suspended.

StructuredProxyPushSupplier::resume_connection()

voi d resune_connecti on()
rai ses(CGonnecti onAl r eadyActi ve);

Causes causes the StructuredPr oxyPushSuppl i er to resume sending events to
the Struct uredPushConsuner connected to it, including those that have been
queued while the connection was suspended and have not yet timed out.

Connect i onAl r eadyAct i veThe connection is not currently suspended.

415

416

CosNotifyChannelAdmin::
SupplierAdmin Interface

/11DL

interface SupplierAdnn :
GosNot i fi cati on: : QoSAdni n,
CosNot i f yComm : Not i f yPubl i sh,
CosNotifyFilter::FilterAdnin,
CosEvent Channel Adni n: : Suppl i er Adm n

readonly attribute Admnl D M/ D,
readonly attribute Event Channel M/Channel ;

readonly attribute InterFilterQoupQperator M/Cperator;

readonly attribute Proxyl DSeq pul | _consurers;
readonly attribute Proxyl DSeq push_consurers;

ProxyConsuner get _proxy_consurner (i n Proxyl D proxy_id)
rai ses (ProxyNot Found);

ProxyConsurner obtain_notification pull consurer (
in dientType ctype,

out Proxyl D proxy_id)
rai ses (Adm nLi nit Exceeded);

ProxyConsurer obtain_notification_push_consurer (
in dientType ctype,

out Proxyl D proxy_id)
rai ses (Adm nLi nit Exceeded);

ProxyGonsurrer obt ai n_t xn_noti fi cati on_push_consurer (
in dientType ctype,

out Proxyl D proxy_id)
rai ses (AdminLi nit Exceeded);

voi d destroy();

417

418

b

The Suppl i er Adm n interface defines the behavior of objects that create and
manage lists of proxy consumers within an event channel. A event channel
can have any number of Suppl i er Adni n instances associated with it. Each
instance is responsible for creating and managing a list of proxy consumers
that share a common set of QoS property settings, and a common set of
filters. This feature enables clients to group proxy consumer objects within a
channel into groupings that each support a set of suppliers with a common
set of QoS requirements, and that make event forwarding decisions using a
common set of filters.

The Suppl i er Adm n interface inherits Q@oSAdmi n. This enables each

Suppl i er Adni n to manage a set of QoS property settings. These QoS property
settings are assigned as the default QoS property settings for any proxy
consumer created by a Suppl i er Admi n.

The Suppl i er Admi n interface inherits from the Fi | t er Adm n interface defined
in CosNot i fyFi | ter, enabling each Suppl i er Adnmi n to maintain a list of
filters. These filters encapsulate subscriptions that apply to all proxy
consumer objects that have been created by a given Suppl i er Admi n instance.

The Suppl i er Adni n interface also inherits from the Noti f yPubl i sh interface
defined in CosNot i f yConm This inheritance enables a Suppl i er Adni n to be
the target of an of f er _change request made by a supplier, and for the
change in event types being offered to be shared by all proxy consumer that
were created by the target Suppl i er Admi n. This optimizes the notification of
a group of proxy consumers that have been created by the same

Suppl i er Adm n of changes to the types of events being offered by suppliers.

The Suppl i er Adm n interface also inherits from CosEvent Channel Adnin: :
Suppl i er Admi n. This inheritance enables clients to use the Suppl i er Adni n
interface to create pure OMG event service style proxy consumer objects.
Proxy consumer objects created in this manner do not support configuration
of QoS properties, and do not have associated filters. Proxy consumer objects
created through the inherited CosEvent Channel Adm n: : Suppl i er Adni n
interface do not have unique identifiers associated with them, whereas proxy
consumers created by invoking the operations supported by the

Suppl i er Admi n interface do.

The Suppl i er Adm n interface supports a read-only attribute that maintains a
reference to the Event Channel that created a given Suppl i er Adm n. The
Suppl i er Admi n interface also supports a read-only attribute that contains a

numeric identifier that is assigned to a Suppl i er Adni n the event channel that
creates it. This identifier is unique among all Suppl i er Admi ns created by a
given channel.

A Suppl i er Admi n maintains a list of filters that are applied to all proxy
consumers it creates. Each proxy consumer also supports a list of filters that
apply only that proxy. When combining these two lists during the evaluation
of an event, either AND or CR semantics can be applied. The choice is
determined by an input flag upon creation of the Suppl i er Admi n, and the
operator that is used for this purpose by a given Suppl i er Adni n is
maintained in a read-only attribute.

Each Suppl i er Adni n assigns a unique numeric identifier to each proxy
consumer it maintains. The Suppl i er Adm n interface supports attributes that
maintain the list of these unique identifiers associated with the proxy pull and
the proxy push consumers created by a given Suppl i er Adni n. The

Suppl i er Admi n interface also supports an operation which, when provided
with the unique identifier of a proxy consumer, returns the object reference of
that proxy consumer object. Finally, the Suppl i er Adni n interface supports
operations that can create the various styles of proxy consumers supported by
the event channel.

SupplierAdmin::MyID
readonly attribute Admnl D M/I D,

Maintains the unique identifier of the target Suppl i er Adm n. This ID is assigned
to it upon creation by the event channel.

SupplierAdmin::MyChannel
readonly attribute Event Channel M/Channel ;

Maintains an object reference to the event channel that created the
Suppl i er Adni n.

419

Parameters

Exceptions

420

SupplierAdmin::MyOperator

readonly attribute InterFilterQ oupQperator M/Qperator;;

Maintains the information regarding whether AND or CR semantics are used
during the evaluation of events when combining the filters associated with the
target Suppl i er Adm n and those defined on a given proxy consumer.

SupplierAdmin::pull_consumers
readonly attribute Proxyl DSeq pul | _consurers;

Contains the list of unique identifiers assigned by a Suppl i er Adni n to each
pull-style proxy consumer it has created.

SupplierAdmin::push_consumers
readonly attribute Proxyl DSeq push_consurers;

Contains the list of unique identifiers assigned by a Suppl i er Adni n to each
push-style proxy consumer it has created.

SupplierAdmin::get_proxy_consumer()

ProxyConsurrer get _proxy_consuner (in ProxylD proxy_id)
rai ses (ProxyNot Found);

Returns an object reference to the proxy consumer whose unique identifier was
specified.

proxy_id The numeric identifier associated with one of the proxy
consumers created by the target Suppl i er Admi n.

ProxyNot Found The input parameter does not correspond to the unique
identifier of a proxy consumer created by the target
Suppl i er Adm n.

Parameters

Exceptions

SupplierAdmin::obtain_notification_pull_consumer()

ProxyConsuner obt ai n_notification_pul | _consuner (
in dientType ctype,
out Proxyl D proxy_id)
rai ses (Adm nLi nit Exceeded);

Creates an instances of a pull-style proxy consumers and returns an object
reference to the new proxy.

Three varieties of pull-style proxy consumers are defined:
®* The ProxyPul | Consuner interface supports connections to pull suppliers

that send events as Anys.

® The Struct uredProxyPul | Consuner interface supports connections to
pull suppliers that send structured events.

® The SequencePr oxyPul | Consuner interface supports connections to pull
suppliers that send sequences of structured events.

The input parameter flag indicates which type of pull style proxy to create.

The target Suppl i er Admi n creates the new pull-style proxy consumer and
assigns it a numeric identifier that is uniqgue among all proxy consumers it
has created.

ctype A flag indicating which style of pull-style proxy consumer
to create.
proxy_id The unique identifier of the new proxy consumer.

Adni nLi m t ExceededThe number of consumers currently connected to the
channel that the target Suppl i er Admi n is associated
with exceeds the value of the MaxSuppl i ers administra-
tive property.

SupplierAdmin::obtain_notification_push_consumer()

ProxyConsuner obt ai n_noti ficati on_push_consurer (
in dientType ctype,

421

Parameters

Exceptions

422

out Proxyl D proxy_id)
rai ses (Adm nLi m t Exceeded);

Creates an instance of a push-style proxy supplier and returns an object
reference to the new proxy.

Three varieties of push-style proxy consumer are defined:

®* The ProxyPushConsuner interface supports connections to push
consumers that receive events as Anys.

® The Struct ur edPr oxyPushConsuner interface supports connections to
push consumers that receive structured events.

® The SequencePr oxyPushConsuner interface supports connections to
push consumers that receive sequences of structured events.

The input parameter flag indicates which type of push-style proxy to create.

The target Suppl i er Admi n creates the new push-style proxy consumer and
assigns it a numeric identifier that is unique among all proxy suppliers it has
created.

ctype A flag that indicates the type of push-style proxy consumer
to create.
proxy_id The unique identifier of the new proxy consumer.

Adni nLi m t ExceededThe number of consumers currently connected to the
channel that the target Suppl i er Adni n is associated
with exceeds the value of the MaxSuppl i er s administra-
tive property.

SupplierAdmin::destroy()
voi d destroy();

Iteratively destroys each proxy under the administration of the target object,
and finally destroys the target object itself. When destroying each object, it
frees any storage associated with the object, and then invalidates the object's
IOR.

423

424

CosNotifyComm Module

CosNot i f yCommspecifies the following interfaces to instantiate notification
service clients:

PushConsuner PushSuppl i er

Pul | Consurrer Pul | Suppl i er

St r uct ur edPushConsurrer St ruct ur edPushSuppl i er
St r uct ur edPul | Consurrer Struct uredPul | Suppl i er
SequencePushConsurner SequencePushSuppl i er
SequencePul | Consuner SequencePul | Suppli er

The module also specifies the Not i f yPubl i sh and Not i f ySubscri be
interfaces to facilitate informing notification clients about subscription and
publication changes.

CosNotifyComm Exceptions

CosNotifyComm::InvalidEventType Exception

exception | nvalidEvent Type{ CosNotification::Event Type type };

Raised when the specified Event Type is not syntactically correct. It returns the
name of the invalid event type.

Note: The Orbix notification service does not throw this exception.

425

426

CosNotifyComm::NotifyPublish
Interface

interface NotifyPublish {
voi d of fer_change (
in CosNotification::Event TypeSeq added,
in CosNotification::Event TypeSeq renoved)
rai ses (InvalidEvent Type);

b

The Not i f yPubl i sh interface supports an operation that allows a supplier to
announce, or publish, the names of the event types it supplies. It is an
abstract interface which is inherited by all notification service consumer
interfaces, and it enables suppliers to inform consumers supporting this
interface of the types of events they intend to supply.

NotifyPublish::offer_change()

voi d of fer_change (
in CosNotification::Event TypeSeq added,
in CosNotification::Event TypeSeq renoved)
rai ses (InvalidEvent Type);

Allows a supplier of notifications to announce, or publish, the names of the
types of events it supplies.

Note: Each event type name consists of two components: the name of the
domain in which the event type has meaning, and the name of the actual
event type. Either component of a type name may specify a complete
domain/event type name, a domain/event type name containing the wildcard
“*' character, or the special event type name “%ALL".

427

Parameters
added A sequence of event type names specifying those event
types which the event supplier plans to supply.
renoved Sequence of event type names specifying those event
types which the client no longer plans to supply.

Exceptions

I nval i dEvent Type One of the event type names supplied in either input
parameter is syntactically invalid. In this case, the invalid
name is returned in the type field of the exception.

428

CosNotifyComm::NotifySubscribe
Interface

interface NotifySubscribe {
voi d subscri ption_change(
in CosNotification::Event TypeSeq added,
in CosNotification::Event TypeSeq renoved)
rai ses (InvalidEvent Type);

b

The Not i fySubscri be interface supports an operation allowing a consumer
to inform suppliers of the event types it wishes to receive. It is an abstract
interface that is inherited by all notification service supplier interfaces. Its
main purpose is to enable consumers to inform suppliers of the event types
they are interested in, ultimately enabling the suppliers to avoid supplying
events that are not of interest to any consumer.

NotifySubscribe::subscription_change()

voi d subscri pti on_change(
in CosNotification::Event TypeSeq added,
in CosNotification::Event TypeSeq renoved)
rai ses (InvalidEvent Type);

Allows a consumer to inform suppliers of the event types it wishes to receive.

Note: Each event type name is comprised of two components: the name of
the domain in which the event type has meaning, and the name of the actual
event type. Also note that either component of a type name may specify a
complete domain/event type name, a domain/event type name containing the
wildcard ‘*’ character, or the special event type name “%ALL".

429

Parameters
added A sequence of event type names specifying the event types
the consumer wants to add to its subscription list.
renoved A sequence of event type names specifying the event types
the consumer wants to remove from its subscription list.

Exceptions

I nval i dEvent Type One of the event type names supplied in either input
parameter is syntactically invalid. The invalid name is
returned in the type field of the exception.

430

CosNotifyComm::PullConsumer
Interface

i nterface Pul |l Consuner :

Not i f yPubl i sh,
CosEvent Comm : Pul | Consuner

{

b

The Pul | Consuner interface inherits all the operations of CosEvent Conm :
Pul | Consuner . In addition, the Pul | Consuner interface inherits the

Not i f yPubl i sh interface described above, which enables a supplier to inform
an instance supporting this interface whenever there is a change to the types
of events it intends to produce.

Note: An object supporting Pul | Consuner can receive all events that were
supplied to its associated channel. How events supplied to the channel in
other forms are internally mapped for delivery to a Pul | Consuner is
summarized in the CORBA Notification Service Guide.

431

432

CosNotifyComm::PullSupplier
Interface

interface Pull Supplier :

Not i f ySubscri be,

CosEvent Comm : Pul | Suppl i er
{
}
The Pul | Suppl i er interface inherits all the operations of CosEvent Cornm :
Pul | Suppl i er. In addition, the Pul | Suppl i er interface inherits the
Not i f ySubscri be interface described above, which enables a consumer to
inform an instance supporting this interface whenever there is a change to
the types of events it wishes to receive.

Note: An object supporting the Pul | Suppl i er interface can transmit events
that can potentially be received by any consumer connected to the channel.
How events supplied to the channel in other forms are translated is
summarized in the CORBA Notification Service Guide

433

434

CosNotifyComm::PushConsumer
Interface

i nterface PushConsuner :

Not i f yPubl i sh,
CosEvent Comm : PushConsuner

{

b

The PushConsuner interface inherits all the operations of CosEvent Conm :
PushConsuner . In addition, the PushConsuner interface inherits the

Not i f yPubl i sh interface described above, which enables a supplier to inform
an instance supporting this interface whenever there is a change to the types
of events it intends to produce.

Note: An object supporting PushConsuner can receive all events that were
supplied to its associated channel. How events supplied to the channel in
other forms are internally mapped for delivery to a PushConsuner is
summarized in the CORBA Notification Service Guide.

435

436

CosNotifyComm::PushSupplier
Interface

i nterface PushSupplier :

Not i f ySubscri be,

CosEvent Comm : PushSuppl i er
{
}
The PushSuppl i er interface inherits all the operations of CosEvent Cornm :
PushSuppl i er. In addition, the PushSuppl i er interface inherits the
Not i f ySubscri be interface described above, which enables a consumer to
inform an instance supporting this interface whenever there is a change to
the types of events it wishes to receive.

Note: An object supporting the PushSuppl i er interface can transmit events
that can potentially be received by any consumer connected to the channel.
How events supplied to the channel in other forms are translated is
summarized in the CORBA Notification Service Guide

437

438

CosNotifyComm::
SequencePullConsumer Interface

i nterface SequencePul | Consurer : NotifyPublish {
voi d di sconnect _sequence_pul | _consuner () ;

b

The SequencePul | Consuner interface defines an operation to disconnect the
pull consumer from its associated supplier. The SequencePul | Consuner
interface inherits Not i f yPubl i sh, which enables a supplier to inform an
instance supporting this interface whenever there is a change to the types of
events it intends to produce.

Note: An object supporting the SequencePul | Consuner interface can receive
all events that were supplied to its associated channel, including events
supplied in a form other than a sequence of structured events. How events
supplied to the channel in other forms are internally mapped into a sequence
of structured events for delivery to a SequencePul | Consurner is summarized
in the CORBA Notification Service Guide.

SequencePullConsumer::
disconnect_sequence_pull_consumer()

voi d di sconnect _sequence_pul | _consuner () ;

Terminates a connection between the target SequencePul | Consuner and its
associated supplier. The target SequencePul | Consurer releases all resources
allocated to support the connection, and disposes of its own object reference.

439

440

CosNotifyComm::
SequencePullSupplier Interface

i nterface SequencePul | Supplier : NotifySubscribe
{

GosNoti fi cation:: EventBatch pul | _structured_event s(
in long max_nunber)
rai ses(CosEvent Conm : D sconnect ed) ;

CosNotification::StructuredEvent try pull structured events(
in long nmax_nunber,
out bool ean has_event)
rai ses(CosEvent Conm : D sconnect ed) ;

voi d di sconnect _sequence_pul | _supplier();

b

The SequencePul | Suppl i er interface supports operations that enable
suppliers to transmit sequences of structured events using the pull model. It
also defines an operation to disconnect the pull supplier from its associated
consumer. The SequencePul | Suppl i er interface inherits Noti f ySubscri be,
which enables a consumer to inform an instance supporting this interface
whenever there is a change to the types of events it is interested in receiving.

Note: An object supporting the SequencePul | Suppl i er interface can
transmit events that can be received by any consumer connected to the
channel, including those which consume events in a form other than a
sequence of structured events. How events supplied to the channel in the
form of a sequence of structured events are internally mapped into different
forms for delivery to consumers that receive events in a form other than the a
sequence of structured events is summarized in the CORBA Notification
Service Guide.

441

Parameters

Exceptions

442

SequencePullSupplier::pull_structured_events()

CosNot i fi cation::EventBatch pul | _structured_event s(

in long max_nunber)
r ai ses(CosEvent Conm : D sconnect ed) ;

Blocks until a sequence of structured events is available for transmission, at
which time it returns the sequence containing events to be delivered to its
connected consumer proxy.

The amount of time the supplier packs events into the sequence before
transmitting it, along with the maximum size of any sequence it transmits
(regardless of the input parameter), are controlled by QoS property settings as
described in the CORBA Notification Service Guide.

max_nunber The maximum length of the sequence returned.

b sconnected The operation was invoked on a SequencePul | Suppl i er
that is not currently connected to a consumer proxy.

SequencePullSupplier::try_pull_structured_events()

CosNoti fication::StructuredEvent try_pul |l _structured_events(
in long max_nunber,
out bool ean has_event)
r ai ses(CosEvent Conm : D sconnect ed) ;

Returns a sequence of a structured events that contains events being delivered
to its connected consumer, if such a sequence is available for delivery at the
time the operation was invoked:

* |f an event sequence is available for delivery and is returned as the
result, the output parameter has_event is set to TRUE.

* |f no event sequence is available to return upon invocation, the operation
returns immediately with the value of the output parameter set to FALSE.
In this case, the return value does not contain a valid event sequence.

Parameters

max_nunber The maximum length of the sequence returned.

has_event An output parameter of type boolean that indicates
whether or not the return value actually contains a
sequence of events.

Exceptions

D sconnected This operation was invoked on a SequencePul | Suppl i er
that is not currently connected to a consumer proxy.

SequencePullSupplier::disconnect_sequence_pull_supplier()
voi d di sconnect _sequence_pul | _supplier();

Terminates a connection between the target SequencePul | Suppl i er and its
associated consumer. The target SequencePul | Suppl i er releases all resources
allocated to support the connection, and disposes of its own object reference.

443

444

CosNotifyComm::
SequencePushConsumer Interface

i nterface SequencePushConsurer : NotifyPublish {
voi d push_structured_event s(
in CosNotification::EventBatch notifications)
rai ses(CosEvent Conm : D sconnect ed) ;
voi d di sconnect _sequence_push_consuner () ;

b

The SequencePushConsuner interface supports an operation that enables
consumers to receive sequences of structured events using the push model. It
also defines an operation to disconnect the push consumer from its
associated supplier. The SequencePushConsuner interface inherits

Not i f yPubl i sh, which enables a supplier to inform an instance supporting
this interface whenever there is a change to the types of events it intends to
produce.

Note: An object supporting the SequencePushConsuner interface can
receive all events which are supplied to its associated channel, including
events supplied in a form other than a sequence of structured events. How
events supplied to the channel in other forms are internally mapped into a
sequence of structured events for delivery to a SequencePushConsuner is
summarized in the CORBA Notification Service Guide.

SequencePushConsumer::push_structured_events()

voi d push_structured_events(
in CosNotification::EventBatch notifications)
rai ses(CosEvent Conm : D sconnect ed) ;

Enables consumers to receive sequences of structured events by the push
model.

445

Parameters

Exceptions

446

The maximum number of events that are transmitted within a single
invocation of this operation, along with the amount of time a supplier of
sequences of structured events packs individual events into the sequence
before invoking this operation, are controlled by QoS property settings as
described in the CORBA Notification Service Guide.

notifications A parameter of type Event Bat ch as defined in the
CosNot i fi cati on module. Upon invocation, this parame-
ter contains a sequence of structured events being deliv-
ered to the consumer by its associated supplier proxy.

b sconnected The operation was invoked on a SequencePushConsuner
instance that is not currently connected to a supplier proxy.

SequencePushConsumer::
disconnect_sequence push_consumer()

voi d di sconnect _sequence_push_consuner () ;

Terminates a connection between the target SequencePushConsuner and its
associated supplier proxy. The target SequencePushConsuner releases all
resources allocated to support the connection, and disposes of its own object
reference.

CosNotifyComm::
SequencePushSupplier Interface

i nterface SequencePushSupplier : NotifySubscribe
{

}

The SequencePushSuppl i er interface defines an operation that to disconnect
the push supplier from its associated consumer proxy. In addition, the
SequencePushSuppl i er interface inherits Not i f ySubscri be, which enables a
consumer to inform an instance supporting this interface whenever there is a
change to the types of events it is interested in receiving.

voi d di sconnect _sequence_push_supplier();

Note: An object supporting the SequencePushSuppl i er interface can
transmit events that can be received by any consumer connected to the
channel, including those which consume events in a form other than a
sequence of structured events. How events supplied to the channel in the
form of a sequence of structured events are internally mapped into different
forms for delivery to consumers which receive events in a form other than a
sequence of structured events is summarized in the CORBA Notification
Service Guide.

SequencePushSupplier::disconnect_sequence_push_supplier()
voi d di sconnect _sequence_push_supplier();

Terminates a connection between the target SequencePushSuppl i er and its
associated consumer. The target SequencePushSuppl i er releases all resources
allocated to support the connection, and disposes of its own object reference.

447

448

CosNotifyComm::
StructuredPullConsumer Interface

interface StructuredPul | Consuner : NotifyPublish
{

b

The Struct ur edPul | Consuner defines an operation that can be invoked to
disconnect the pull consumer from its associated supplier. In addition, the
Struct uredPul | Consuner interface inherits the Noti f yPubl i sh interface,
which enables a supplier to inform an instance supporting this interface
whenever there is a change to the types of events it intends to produce.

voi d di sconnect _structured pul | _consuner();

Note: An object supporting the St ruct ur edPul | Consuner interface can
receive all events that were supplied to its associated channel, including
events supplied in a form other than a structured event. How events supplied
to the channel in other forms are internally mapped into a structured event
for delivery to a Struct ur edPul | Consuner is summarized in the CORBA
Notification Service Guide.

StructuredPullConsumer::
disconnect_structured_pull_consumer()

voi d di sconnect _structured_pul | _consurrer();

Terminates a connection between the target St r uct ur edPul | Consuner , and
its associated supplier proxy. The target St r uct ur edPul | Consuner releases all
resources allocated to support the connection, and disposes of its own object
reference.

449

450

CosNotifyComm::
StructuredPullSupplier Interface

interface StructuredPul | Supplier : NotifySubscribe
{

GosNotification:: StructuredBEvent pull _structured event ()
rai ses(CosEvent Conm : D sconnect ed) ;

CosNotification:: StructuredEvent try pull structured event(
out bool ean has_event)
rai ses(CosEvent Conm : D sconnect ed) ;

voi d di sconnect _structured pull supplier();

}

The Struct uredPul | Suppl i er interface supports operations that enable
suppliers to transmit structured events by the pull model. It also defines an
operation to disconnect the pull supplier from its associated consumer proxy.
In addition, the StructuredPul | Suppli er interface inherits the

Not i f ySubscri be interface, which enables a consumer to inform an instance
supporting this interface whenever there is a change to the types of events it
is interested in receiving.

Note: An object supporting the Struct uredPul | Suppl i er interface can
transmit events that can potentially be received by any consumer connected
to the channel, including those which consume events in a form other than a
structured event. How events supplied to the channel in other forms are
translated is summarized in the CORBA Notification Service Guide

StructuredPullSupplier::pull_structured event()

CosNotii fication::StructuredEvent pul |l _structured_event()
rai ses(CosEvent Conm : D sconnect ed) ;

451

Exceptions

Parameters

Exceptions

452

Blocks until an event is available for transmission, at which time it returns an
instance of a structured event containing the event being delivered to its
connected consumer proxy.

DO sconnected The operation was invoked on a Struct ur edPul | Suppl i er
that is not currently connected to a consumer proxy.

StructuredPullSupplier::try_pull_structured_event()

CosNoti fication::StructuredBEvent try pul | _structured_event (
out bool ean has_event)
r ai ses(CosEvent Conm : D sconnect ed) ;

If an event is available for delivery at the time the operation was invoked, the
method returns a structured event that contains the event being delivered to
its connected consumer and the output parameter of the operation is set to
TRUE. If no event is available to return upon invocation, the operation returns
immediately with the value of the output parameter set to FALSE. In this case,
the return value does not contain a valid event.

has_event An output parameter of type bool ean that indicates
whether or not the return value actually contains an event.

DO sconnected The operation was invoked on a Struct ur edPul | Suppl i er
that is not currently connected to a consumer proxy.

StructuredPullSupplier::disconnect_structured pull_supplier()
voi d di sconnect _structured_pul | _supplier();

Terminates a connection between the target St ruct ur edPul | Suppl i er and its
associated consumer. The target St ruct uredPul | Suppl i er releases all re-
sources allocated to support the connection, and disposes of its own object
reference.

CosNotifyComm::
StructuredPushConsumer Interface

i nterface StructuredPushConsuner : NotifyPublish {
voi d push_structured_event (
in CosNotification::StructuredEvent notification)
rai ses(CosEvent Conm : D sconnect ed) ;
voi d di sconnect _st ruct ured_push_consurrer () ;

}

The Struct ur edPushConsuner interface supports an operation enabling
consumers to receive structured events by the push model. It also defines an
operation to disconnect the push consumer from its associated proxy
supplier. In addition, the Struct ur edPushConsuner interface inherits the

Not i f yPubl i sh interface described above, which enables a supplier to inform
an instance supporting this interface whenever there is a change to the types
of events it intends to produce.

Note: An object supporting the Struct ur edPushConsuner interface can
receive all events that were supplied to its associated channel, including
events supplied in a form other than a structured event. How events supplied
to the channel in other forms are internally mapped into a structured event
for delivery to a St ruct ur edPushConsuner is summarized in the CORBA
Notification Service Guide.

StructuredPushConsumer::push_structured_event()

voi d push_structured_event (
in CosNotification::StructuredEvent notification)
rai ses(CosEvent Conm : D sconnect ed) ;

Enables consumers to receive structured events by the push model.

453

Parameters

Exceptions

454

notification A parameter of type Struct ur edEvent as defined in the
CosNoti ficati on module. When the method returns this
parameter contains a structured event being delivered to
the consumer by its proxy supplier.

DO sconnected This operation was invoked on a Struct ur edPushConsuner
instance that is not currently connected to a proxy supplier.

StructuredPushConsumer::
disconnect_structured push_consumer()

voi d di sconnect _structured_push_consuner () ;

Terminates a connection between the target St r uct ur edPushConsuner and its
associated proxy supplier. That the target Struct ur edPushConsuner releases
all resources allocated to support the connection, and disposes of its own object
reference.

CosNotifyComm::
StructuredPushSupplier Interface

interface StructuredPushSupplier : NotifySubscribe {
voi d di sconnect _structured push_supplier();

b

The St ruct uredPushSuppl i er interface supports the behavior of objects that
transmit structured events using push-style communication. It defines an
operation that can be invoked to disconnect the push supplier from its
associated consumer proxy. In addition, the St ruct ur edPushSuppl i er
interface inherits Not i f ySubscri be, which enables a consumer to inform an
instance supporting this interface whenever there is a change to the types of
events it is interested in receiving.

Note: An object supporting the St ruct ur edPushSuppl i er interface can
transmit events which can potentially be received by any consumer
connected to the channel, including those which consume events in a form
other than a structured event. How events supplied to the channel are
translated is summarized in the CORBA Notification Service Guide.

StructuredPushSupplier::
disconnect_structured push_supplier()

voi d di sconnect _structured_push_supplier();

Terminates a connection between the target Struct ur edPushSuppl i er, and
its associated consumer. The target Struct uredPushSuppl i er releases all
resources allocated to support the connection, and disposes of its own object
reference.

455

456

CosNotifyFilter Module

The CosNot i f yFi | t er Modul e specifies the following interfaces to support
event filtering:

Filter

FilterFactory

Mappi ngFi | ter
FilterAdmn

In addition to these interfaces the module specifies several data types and
exceptions related to event filtering.

CosNotifyFilter Data Types

CosNotifyFilter::ConstraintlD Data Type
typedef |long Constraintl D,

Identifies a constraint.

CosNotifyFilter::ConstraintExp Data Structure

struct Constrai nt Exp

{
CosNoti fi cation:: Event TypeSeq event _t ypes;
string constrai nt_expr;

}s

Contains a constraint expression and a list of events to check against. The
constraint _expr member is a string that conforms to the Trader constraint
grammar. For more information on the constraint grammar, see the CORBA
Notification Service Guide.

457

CosNotifyFilter::ContsraintIDSeq Data Type
typedef <Constraintl D> Constraint | DSeq;

Contains a list of constraint ID.

CosNotifyFilter::ConstraintExpSeq Data Type
typedef sequence<Constrai nt Exp> Cont srai nt ExpSeq;

Contains a list of constraint expressions.

CosNotifyFilter::Constraintinfo Data Structure

struct CGonstraintlnfo

{
Gonst rai nt Exp constrai nt _expr essi on;

Constraintl D constraint_id;

}

Specifies an instantiated constraint.

CosNotifyFilter::ConstraintinfoSeq Data Type
t ypedef sequence<Constraintlnfo> Constrai nt| nfoSeq;

Contains a list of instantiated constraints.

CosNotifyFilter::FilterID Data Type
typedef long FilterlD

Identifies an instantiated filter. It is unique to the object to which it is attached.

CosNotifyFilter::FilterIDSeq Data Type
typedef sequence<Filterl D> FilterlDSeq;

458

CosNotifyFilter Data Types

Contains a list of Filterlds.

CosNotifyFilter:: MappingConstraintPair Data Structure

struct Mappi ngConstrai nt Pai r

{
Gonst rai nt Exp constrai nt _expr essi on;
any result_to_set;

}

Specifies a constraint expression and the value to set if the event matches the
constraint expression.

CosNotifyFilter::MappingConstraintPairSeq Data Type
t ypedef sequence<Mappi ngConst rai nt Pai r> Mappi ngConst r ai nt Pai r Seq

Contains a list of mapping filter constraint/value pairs.

CosNotifyFilter:: MappingConstraintinfo Data Structure

struct Mappi ngConstraintlnfo

{
Gonst rai nt Exp constrai nt _expr essi on;

GonstraintID constraint_id;
any val ue;

}

Specifies a mapping constraint that has been instantiated.

CosNotifyFilter::MappingConstraintinfoSeq Data Types
t ypedef sequence<Mappi ngConst rai nt | nf o> Mappi ngConst r ai nt | nf 0Seq;

Contains a list of instantiated mapping filter constraint/value pairs.

459

CosNotifyFilter::CallbacklD Data Type
typedef |ong Cal | backl D,

Holds an identifier for a callback registered with att ach_cal | back.

CosNotifyFilter::CallbacklDSeq Data Type
typedef sequence<Cal | backl D> Cal | backl DSeq;

Contains a list of callback IDs.

CosNotifyFilter Exceptions

460

CosNotifyFilter::UnsupportedFilterableData Exception
exception UnsupportedFilterabl eData {};

Raised if the input parameter contains data that the nat ch operation is not
designed to handle. For example, the filterable data contains a field whose
name corresponds to a standard event field that has a numeric value, but the
actual value associated with this field name within the event is a string.

CosNotifyFilter::InvalidGrammar Exception
exception Inval i d&amar {};

Raised when creating a filter. If the string passed to the filter factory specifies
a grammar that is not supported, the factory will throw | nval i dG anmar .

Note: Orbix notification service supports the EXTENDED TCL grammar.

CosNotifyFilter Exceptions

CosNotifyFilter::InvalidConstraint Exception
exception InvalidConstraint {Constraint Exp constr};

Raised during the creation of constraints. If the string specifying the constraint
is syntactically incorrect, I nval i dConst rai nt is thrown. It returns the invalid
constraint.

CosNotifyFilter::ConstraintNotFound Exception
excepti on Constrai nt Not Found {Constrai ntlD id};

Raised when a specified constraint ID cannot be resolved to a constraint
attached to the target filter object. It returns the ID that cannot be resolved.

CosNotifyFilterFilter::CallbackNotFound Exception
excepti on Cal | backNot Found {};

Raised when the specified callback ID cannot be resolved to a callback object
attached to the target filter object.

CosNotifyFilter::InvalidValue Exception
exception InvalidVal ue {Constrai nt Exp constr; any val ue};

Raised when the t ype_code of the value associated with the mapping filter
constraint does not match the val ue_t ype of the target mapping filter object.

CosNotifyFilter::FilterNotFound Exception
exception FilterNotFound {};

Raised if the specified filter ID cannot be resolved to a filter associated with
the target object.

461

462

CosNotifyFilter::Filter Interface

interface Filter

{

readonly attribute string constraint_granmnar;

Constrai nt | nfoSeq add _constrai nt s(
in Constraint ExpSeq constraint_list)
raises (lnvalidGConstraint);

voi d nodi fy constrai nts(
in ConstraintlDSeq del _|ist,
in ConstraintlnfoSeq nodify |ist)
rai ses (lnvalidGConstraint, ConstraintNotFound);

Constraint | nfoSeq get _constrai nt s(
in ConstraintIDSeq id |ist)
rai ses (Gonstrai nt Not Found) ;

ConstraintlnfoSeq get _all _constraints();

void renove_all _constraints();

voi d destroy();

bool ean match(in any filterabl e data)
rai ses (UnsupportedFilterabl eData);

bool ean nat ch_st ruct ur ed(
in CosNotification::StructuredEvent filterable data)
rai ses (UnsupportedFilterabl eData);

bool ean mat ch_t yped (
in CosTrading: : PropertySeq filterabl e_data)
rai ses (UnsupportedFilterabl eData);

Cal | backl D attach cal |l back (
in CosNotifyGomm: NotifySubscribe call back);

463

464

voi d detach cal | back (in Call backl D cal | back)
rai ses (Cal | backNot Found);

Cal | backl DSeq get _cal | backs();
Y, /] Filter

The Filter interface defines the behaviors supported by filter objects. These
objects encapsulate constraints that are used by the proxies and admins
associated with an event channel. The proxies and admins use the constraint
definitions to determine which events are forwarded, and which are
discarded.

For more information on filters and the constraint language, see the CORBA
Notification Service Guide.

The Fi | ter interface supports operations to manage the constraints
associated with a Fi | ter instance, along with a read-only attribute to identify
the constraint grammar used to evaluate the constraints associated with the
instance. In addition, the Fi I ter interface supports three variants of the

mat ch operation which are invoked by a proxy object upon receipt of an
event—the specific variant selected depends upon whether the event is
received as an Any or a structured event—to evaluate the object using the
constraints associated with the filter object.

The Fi | ter interface also supports operations enabling a client to associate
any number of callbacks with the target filter object. The callbacks are
notified each time there is a change to the list of event types the filer
forwards through the event channel. Operations are also defined to support
administration of this callback list by unique identifier.

Filter::constraint_grammar
readonly attribute string constraint_grammar;

const rai nt _grammar is a readonly attribute specifiying the particular grammar
used to parse the constraint expressions encapsulated by the target filter. The
value of this attribute is set upon creation of a filter object.

A filter's constraints must be expressed using a particular constraint grammar
because its member mat ch operations must be able to parse the constraints
to determine whether or not a particular event satisfies one of them.

Parameters

Exceptions

Orbix supports an implementation of the Fi | t er interface which supports the
default constraint grammar described in the CORBA Notification Service
Guide. The constrai nt_gramnar attribute is set to the value EXTENDED TCL
when the target filter object supports this default grammar.

Other implementations can provide additional implementations of the Fi I t er
interface that support different constraint grammars, and thus the
constraint_grammar attribute must be set to a different value upon creation
of such a filter object.

Filter::add_constraints()

Constrai nt | nfoSeq add_const rai nt s(
in Constraint ExpSeq constraint_Iist)
rai ses (lnvalidGonstraint);

Associates one or more new constraints with the target filter object. Upon
successful processing of all input constraint expressions, add_const rai nt s()
returns a Const rai nt | nf 0Seq containing all of the constraints and the identi-
fiers assigned to them by the filter.

If one or more of the constraints passed into add_constrai nt s() is invalid,
none of the constraints are added to the target filter.

Note: Once add _constrai nts() is invoked by a client, the target filter is
temporarily disabled from usage by any proxy or admin it may be associated
with. Upon completion of the operation, the target filter is re-enabled and can
once again be used by associated proxies and admins to make event
forwarding decisions.

constraint _|ist A sequence of constraint data structures
using the constraint grammar supported by
the target object.

If any of the constraints in the input sequence is not a valid expression within
the supported constraint grammar, the | nval i dConst r ai nt exception is raised.
This exception contains as data the specific constraint expression that was
determined to be invalid.

465

Parameters

Exceptions

466

Filter::modify_constraints()

void nodify_constraints (
in ConstraintlDSeq del _|ist,
in ConstraintlnfoSeq nodify_list)
rai ses (lnvalidGonstraint, ConstraintNot Found);

Modifies the constraints associated with the target filter object. This operation
can be used both to remove constraints currently associated with the target
filter, and to modify the constraint expressions of constraints currently associ-
ated with the filter.

If an exception is raised during the operation, no changes are made to the
filter's constraints.

Note: Once nodi fy_constraints is invoked by a client, the target filter is
temporarily disabled from use by any proxy or admin. Upon completion of the
operation, the target filter is re-enabled and can once again be used by
associated proxies and admins to make event forwarding decisions.

del |ist A sequence of numeric identifiers each of which should be
associated with one of the constraints currently encapsu-
lated by the target filter object.

modi fy_|ist A sequence containing constraint structures and an asso-
ciated numeric value. The numeric value in each element
of the sequence is the unique identifier of one of the con-
straints encapsulated by the target filter.

Const r ai nt Not Found Raised if any of the numeric values in either input
sequences does not correspond to the unique identifier
associated with any constraint encapsulated by the tar-
get filter. This exception contains the specific identifier
that did not correspond to the identifier of some con-
straint encapsulated by the target filter.

InvalidGonstraint Raised if any of the constraint expressions supplied in
the second input sequence is not a valid expression in
terms of the constraint grammar supported by the tar-
get object. This exception contains the specific con-
straint that was determined to be invalid.

Filter::get_constraints()

ConstraintlnfoSeq get_constraints(in ConstraintlDSeq id_|ist)
rai ses (Gonstrai nt Not Found) ;

Returns a sequence of data structures containing the input identifiers along
with their associated constraint.

Parameters

id_list A sequence of numeric values corresponding to the unique
identifiers of constraints encapsulated by the target object.

Exceptions

Const r ai nt Not FoundOne of the input values does not correspond to the iden-
tifier of some encapsulated constraint. The exception
contains that input value.

Filter::get_all_constraints()

ConstraintlnfoSeq get_all _constraints();

Returns all of the constraints currently encapsulated by the target filter object.

Filter::remove_all_constraints()
void renove_all _constraints();

Removes all of the constraints currently encapsulated by the target filter. Upon
completion, the target filter still exists but no constraints are associated with it.

467

Parameters

Exceptions

468

Filter::destroy()
voi d destroy();

Destroys the target filter and invalidates its object reference.

Filter::match()

bool ean natch (in any filterabl e_data)
rai ses (UnsupportedFilterabl eData);

Evaluates the filter constraints associated with the target filter against an
event supplied to the channel in the form of a GCRBA : Any. The operation
returns TRUE if the input event satisfies one of the filter constraints, and FALSE
otherwise.

The act of determining whether or not a given event passes a given filter
constraint is specific to the type of grammar in which the filter constraint is
specified.

filterabl e_data A OCRBA : Any which contains an event to be evaluated.

Unsuppor t edFi | t er abl eDat aThe input parameter contains data that the
mat ch operation is not designed to handle.

Filter::match_structured()

bool ean nat ch_st ruct ur ed(
in CosNotification::StructuredEvent filterable_data)
rai ses (UnsupportedFilterabl eData);

Evaluates the filter constraints associated with the target filter against a
structured event. The operation returns TRUE if the input event satisfies one of
the filter constraints, and FALSE otherwise.

The act of determining whether or not a given event passes a given filter
constraint is specific to the type of grammar in which the filter constraint is
specified.

Parameters

Exceptions

Parameters

filterable_data A CosNotification::StructuredEvent containing an
event to be evaluated,

Unsuppor t edFi | t er abl eDat aThe input parameter contains data that the
mat ch operation is not designed to handle.

Filter::attach_callback()

Cal | backl D attach_cal | back (
in CosNotifyGomm : NotifySubscribe cal | back);

Associates an object supporting the CosNot i f yConm : Not i f ySubscri be
interface with the target filter. This operation returns a numeric value
assigned to this callback that is unique to all such callbacks currently
associated with the target filter.

After this operation has been successfully invoked on a filter, the filter
invokes the subscri pti on_change() method of all its associated callbacks
each time the set of constraints associated with the filter is modified. This
process informs suppliers in the filter's callback list of the change in the set of
event types to which the filter's clients subscribe. With this information,
suppliers can make intelligent decisions about which event types to produce.

cal | back The reference to an object supporting the CosNot i f yConm
:Not i f ySubscri be interface.

Filter::detach_callback()

voi d detach_cal | back(i n Cal | backl D cal | back)
rai ses (Cal |l backNot Found);

Removes a callback object from the filter's callback list. Subsequent changes
to the event type subscription list encapsulated by the target filter are no longer
propagated to that callback object.

469

Parameters

cal | back A unique identifiers associated with one of the callback
objects attached to the target filter.

Exceptions

Cal | backNot Found The input value does not correspond to the unique identi-
fier of a callback object currently attached to the target fil-
ter object.

Filter::get_callbacks()

Cal | backl Dseq get _cal | backs();

Returns all the unique identifiers for the callback objects attached to the target
filter.

470

CosNotifyFilter::FilterAdmin Interface

Parameters

interface FilterAdmn {
FilterlD add filter (in Filter newfilter);

void renove filter (in FilterIDfilter)
raises (FilterNotFound);

Filter get filter (in FilterIDfilter)
raises (FilterNotFound);

FilterIDSeq get_all _filters();

void renove all filters();

b

The Fi | t er Admi n interface defines operations enabling an object supporting
this interface to manage a list of filters, each of which supports the Fi | ter
interface. This interface is an abstract interface which is inherited by all of
the proxy and admin interfaces defined by the notification service.

FilterAdmin::add_filter()
FilterID add filter(in Filter newfilter);

Appends a filter to the list of filters associated with the target object upon
which the operation was invoked and returns an identifier for the filter.

new filter A reference to an object supporting the Fi | ter interface.

FilterAdmin::remove _filter()

void renove_filter(in FilterIDfilter)
raises (FilterNotFound);

471

Parameters

Exceptions

Parameters

Exceptions

472

Removes the specified filter from the target object’s list of filters.

filter A numeric value identifying a filter associated with the tar-
get object

Fi | t er Not Found The identifier does not correspond to a filter associated with
the target object.

FilterAdmin::get_filter()

Filter get filter (in FilterIDfilter)
raises (FilterNot Found);

Returns the object reference to the specified filter.

filter A numeric value identifying a filter associated with the tar-
get object

Fi | t er Not Found The identifier does not correspond to a filter associated with
the target object.

FilterAdmin::get_all_filters()

FilterIDSeq get_all_filters();

Returns the list of unique identifiers corresponding to all of the filters associated
with the target object.

FilterAdmin::remove_all_filters()

void renove_all _filters();

Removes all filters from the filter list of the target object.

473

474

CosNotifyFilter::FilterFactory
Interface

Parameters

Exceptions

interface FilterFactory {
Filter create filter (
in string constraint_gramar)
rai ses (lnvalidGammar);

Mappi ngFi lter create mapping filter (
in string constraint_gramar,
in any defaul t_val ue)

rai ses(lnvali dG anmar);

}

The Fi | ter Fact ory interface defines operations for creating filter.

FilterFactory::create filter()

Filter create filter (in string constraint_grammar)

rai ses (lnvalidGammr);

Creates a forwarding filter object and returns a reference to the new filter.

constrai nt _grammar A string identifying the grammar used to parse con-
straints associated with this filter.

I nval i d&@ ammar The client invoking this operation supplied the name of a
grammar that is not supported by any forwarding filter
implementation this factory is capable of creating.

475

Parameters

Exceptions

476

FilterFactory::create_mapping_filter()

Mappi ngFi I ter create_napping_filter (
in string constraint_gramar,

in any defaul t_val ue)
rai ses(lnval i d& anmmar);

Creates a mapping filter object and returns a reference to the new mapping
filter.

constrai nt _grammar A string parameter identifying the grammar used to
parse constraints associated with this filter.

defaul t _val ue An Any specifying the def aul t_val ue of the new map-
ping filter.

I nval i dG ammar The client invoking this operation supplied the name of a
grammar that is not supported by any mapping filter imple-
mentation this factory is capable of creating.

CosNotifyFilter::MappingFilter
Interface

i nterface Mappi ngFilter

{
readonly attribute string constraint_granmnar;
readonly attribute OORBA : TypeCode val ue_t ype;
readonly attribute any default val ue;

Mappi hgConstrai nt | nf oSeq add_nappi ng_constraints (
i n Mappi ngConst rai nt Pai rSeq pair_list)
raises (lnvalidConstraint, |nvalidVvalue);

voi d nodi fy_mappi ng_constraints (
in ConstraintlDSeq del _list,
i n Mappi ngConst rai nt1 nf oSeq nodi fy_|ist)
rai ses (lnvalidGConstraint, |nvalidValue, ConstraintNotFound);

Mappi ngConstrai nt | nf oSeq get _nappi ng_constraints (
in ConstraintlDSeq id_list)
rai ses (Gonstraint Not Found) ;

Mappi ngConstrai nt I nfoSeq get _al |l _mappi ng _constraints();

voi d renove_al |l _mappi ng_constraints();

voi d destroy();

bool ean natch (in any filterable_data, out any result_to_set)
rai ses (UnsupportedFilterabl eData);

bool ean natch structured (
in CosNotification::StructuredEvent filterabl e _data,
out any result_to_set)

rai ses (UnsupportedFilterabl eData);

bool ean nat ch_t yped (

477

478

in CosTrading: : PropertySeq fil terabl e_dat a,
out any result_to_set)
rai ses (UnsupportedFilterabl eData);
}; /1 MappingFilter

The Mappi ngFi | t er interface defines the behaviors of objects that
encapsulate a sequence of constraint-value pairs (see the description of the
Default Filter Constraint Language in the CORBA Notification Service
Guide). These constraint-value pairs are used to evaluate events and adjust
their lifetime/priority values according to the result. An object supporting the
Mappi ngFi | t er interface can effect either an events lifetime property or its
priority property, but not both.

The Mappi ngFi | t er interface supports the operations required to manage the
constraint-value pairs associated with an object instance supporting the
interface. In addition, the Mappi ngFi | t er interface supports a read-only
attribute that identifies the constraint grammar used to parse the constraints
encapsulated by this object. The Mappi ngFi | t er interface supports a
read-only attribute that identifies the typecode associated with the datatype
of the specific property value it is intended to affect. It also supports another
read-only attribute which holds the default value which is returned as the
result of a match operation in cases when the event in question is found to
satisfy none of the constraints encapsulated by the mapping filter. Lastly, the
Mappi ngFi | t er interface supports three variants of the operation which are
invoked by an associated proxy object upon receipt of an event, to determine
how the property of the event which the target mapping filter object was
designed to affect should be modified.

MappingFilter::constraint_grammar
readonly attribute string constraint_grammar;

Identifies the grammar used to parse the constraint expressions encapsulated
by the target mapping filter. The value of this attribute is set upon creation of
a mapping filter.

A filter object’s constraints must be expressed using a particular constraint
grammar because its member mat ch operations must be able to parse the
constraints to determine whether or not a particular event satisfies one of

them.

Orbix supports an implementation of the Mappi ngFi | t er object which
supports the default constraint grammar described in the CORBA
Notification Service Guide. constraint _grammar is set to the value
EXTENDED TCL when the target mapping filter supports this default grammar.

Users may provide additional implementations of the Mappi ngFi | t er
interface which support different constraint grammars, and thus set the
constraint_grammar attribute to a different value when creating such a
mapping filter.

MappingFilter::value_type
readonly attribute OORBA: : TypeCode val ue_type;

Identifies the datatype of the property value that the target mapping filter is
designed to affect. Note that the factory creation operation for mapping filters
accepts as an input parameter the def aul t _val ue to associate with the
mapping filter instance. This def aul t _val ue is a CCRBA: : Any. Upon creation
of a mapping filter, the t ypecode associated with the def aul t val ue is
abstracted from the OCRBA: : Any, and its value is assigned to this attribute.

MappingFilter::default_value
readonly attribute any defaul t_val ue;

The value returned as the result of any mat ch operation during which the input
event does not satisfy any of the constraints encapsulated by the mapping filter.
The value of this attribute is set upon creation of a mapping filter object
instance.

MappingFilter::add_mapping_constraints()

Mappi ngConst rai nt | nf 0Seq add_mappi ng_constraints (
i n Mappi ngGonstrai nt PairSeq pair_list)
rai ses (lnvalidGConstraint, |nvalidVal ue);

Returns a sequence of structures which contain one of the input constraint
expressions, its corresponding value, and the unique identifier assigned to
this constraint-value pair by the target filter.

479

If one or more of the constraints passed into add_nappi ng_const rai nts() is
invalid, none of the constraints are added to the target mapping filter.

Note: Once add_mappi ng_constrai nt s is invoked by a client, the target
filter is temporarily disabled from use by any proxy it may be associated with.
Upon completion of the operation, the target filter is re-enabled and can once
again be used by associated proxies to make event property mapping
decisions.

Parameters

pair_list A sequence of constraint-value pairs. Each constraint in
this sequence must be expressed in the constraint gram-
mar supported by the target object, and each associated
value must be of the data type indicated by the
val ue_t ype attribute of the target object.

Exceptions

I nval i dConst rai nt Raised if any of the constraint expressions in the input
sequence is not a valid expression. This exception con-
tains the constraint that was determined to be invalid.

| nval i dval ue Raised if any of the values supplied in the input
sequence are not of the same datatype as that indicated
by the target object’s val ue_t ype attribute. This excep-
tion contains the invalid value and its corresponding con-
straint.

MappingFilter::modify_mapping_constraints()

voi d nodi fy_mappi ng_constraints (
in GonstraintlDSeq del _list,
i n Mappi ngConstrai ntlnfoSeq nmodi fy_|ist)
rai ses(lnvalidConstraint,
| nval i dval ue,
CGonst r ai nt Not Found) ;

480

Parameters

Exceptions

Modifies the constraint-value pairs associated with the target mapping filter.
This operation can remove constraint-value pairs currently associated with the
target mapping filter, and to modify the constraints and/or values of con-
straint-value pairs currently associated with the target mapping filter.

If an exception is raised during the operation, no changes are made to the
filter's constraints.

Note: Once nodi fy_nappi ng_constrai nts() is invoked by a client, the
target mapping filter is temporarily disabled from use by any proxy it may be
associated with. Upon completion of the operation, the target mapping filter
is re-enabled and can be used by associated proxies to make event property
mapping decisions.

del |ist A sequence of unique identifiers associated with one of the
constraint-value pairs currently encapsulated by the target
mapping filter. If all input values are valid, the specific
constraint-value pairs identified by the values contained in
this parameter are deleted from the mapping filter's list of
constraint-value-pairs.

modi fy |ist A sequence of structures containing a constraint structure,
an Any value, and a numeric identifier. The numeric iden-
tifier of each element is the unique identifier associated
with one of the constraint-value pairs currently encapsu-
lated by the target filter object. The constraint-value pairs
identified are modified to the values specified in the input
list.

Const rai nt Not FoundRaised if any of the identifiers in either of the input

sequences does not correspond to the unique identifier
associated with a constraint-value pair encapsulated by
the target mapping filter. This exception contains the
identifier which did not correspond to a constraint-value
pair encapsulated by the target object.

481

Parameters

Exceptions

482

I nval i dConstrai nt Raised if any of the constraint expressions supplied in

an element of the second input sequence is not valid.
This exception contains the constraint that was deter-
mined to be invalid.

I nval i dval ue Raised if any of the values in the second input sequence

is not of the same datatype as that indicated by the
mapping filter's val ue_t ype attribute. This exception
contains the invalid value and its corresponding con-
straint expression.

MappingFilter::get_mapping_constraints()
Mappi ngGonst rai nt | nf 0Seq get _nmappi ng_constraints (

in ConstraintlDSeq id_|list)
rai ses (Constrai nt Not Found) ;

Returns a sequence of constraint-value pairs associated with the target
mapping filter.

idlist A sequence of unique identifiers for constraint-value pairs
encapsulated by the target object.

Const r ai nt Not FoundOne of the input values does not correspond to the
identifier of an encapsulated constraint-value pair. The
exception contains the identifier that did not correspond
to a constraint-value pair.

MappingFilter::get_all_mapping_constraints()
Mappi ngGonst rai nt | nf oSeq get _al | _mappi ng_constrai nts();

Returns all of the constraint-value pairs encapsulated by the target mapping
filter.

Parameters

MappingFilter::remove_all_mapping_constraints
voi d renove_al | _mappi ng_constraints();

Removes all of the constraint-value pairs currently encapsulated by the target
mapping filter. Upon completion, the target mapping filter still exists but has
no constraint-value pairs associated with it.

MappingFilter::destroy()
voi d destroy();

Destroys the target mapping filter, and invalidates its object reference.

MappingFilter::match()

bool ean match(in any filterable data, out any result_to_set)
rai ses (UnsupportedFilterabl eData);

Determines how to modify some property value of an event in the form of a
CCRBA: : Any.

The target mapping filter begins applying the its constraints according to
each constraint’s associated value, starting with the constraint with the best
associated value for the specific property the mapping filter is designed to
affect (for example, the highest priority, the longest lifetime, and so on), and
ending with the constraint with the worst associated value.

Upon encountering a constraint which the event matches, the operation sets
result _to_set to the value associated with the matched constraint, and
returns with a value of TRUE. If the event does not satisfy any of the target
mapping filter's constraints, the operation setsresult _to_set to the value of
the target mapping filter's def aul t val ue attribute and returns with a value
of FALSE.

The act of determining whether or not a given event passes a given filter
constraint is specific to the grammar used to parse the filter constraints.

filterabl e_data An Any containing the event being evaluated

483

Exceptions

Parameters

484

result_to_set An Any containing the value and the property name to set
when an event evaluates to TRUE.

Unsuppor t edFi | t er abl eDat aThe input parameter contains data that the

mat ch operation is not designed to handle.

MappingFilter::match_structured()

bool ean natch_structured (
in CosNotification::StructuredEvent filterabl e_data,
out any result_to_set)
rai ses (UnsupportedFilterabl eData);

Determines how to modify some property value of a structured event.

The target mapping filter begins applying the its constraints according to
each constraints associated value, starting with the constraint with the best
associated value for the specific property the mapping filter is designed to
affect (for example, the highest priority, the longest lifetime, and so on), and
ending with the constraint with the worst associated value.

Upon encountering a constraint which the event matches, the operation sets
result_to_set to the value associated with the matched constraint, and
returns with a value of TRUE. If the event does not satisfy any of the target
mapping filter's constraints, the operation sets result _to_set to the value of
the target mapping filter's def aul t val ue attribute and returns with a value
of FALSE.

The act of determining whether or not a given event passes a given filter
constraint is specific to the grammar used to parse the filter constraints.

filterable_data A CosNotification::StructuredEvent containing the
event being evaluated.

result_to_set An Any containing the value and the property name to set
when an event evaluates to TRUE.

Exceptions

Unsuppor t edFi | t er abl eDat The input parameter contains data that
mat ch_struct ured() is not designed to handle.

485

486

CosTrading Module

Contains the major functional interfaces of a trading service.

CosTrading Data Types

Notes

CosTrading::Constraint Data Type

typedef |string Constraint;

A query constraint expression. The constraint is used to filter offers during a
query, and must evaluate to a boolean expression.

The constraint language consists of the following elements:
® comparative functions: ==, I=, >, >=,

®* boolean connectives: and, or, not

® property existence: exist

® property names

®* numeric, boolean and string constants

®* mathematical operators: +, -, *,/

® grouping operators: (,)

The following property value types can be manipulated using the constraint
language:

® boolean, short, unsigned short, long, unsigned long, float, double, char,
Ichar, string, Istring

® sequences of the above types

Only the exi st operator can be used on properties of other types.
The constraint language keywords are case-sensitive

Literal strings should be enclosed in single quotes

The boolean literals are TRUE and FALSE

487

488

CosTrading::Istring Data Type
typedef string Istring;

When internationalized strings are widely supported, this definition will be
changed.

CosTrading::LinkName Data Type
typedef |string Li nkNane;

The name of a unidirectional link from one trader to another. The only
restriction on the format of a link name is it cannot be an empty string.

CosTrading::LinkNameSeq Data Type
typedef sequence<Li nkNanme> Li nkNameSeq;

CosTrading::Offerld Data Type
typedef string Cfferld,;

An offer identifier is an opaque string whose format is determined entirely by
the trading service from which the offer identifier was obtained, and can only
be used with that trading service.

CosTrading::OfferldSeq Data Type
typedef sequence<Ciferld> OferldSeq;

CosTrading::OfferSeq Data Type
t ypedef sequence<Cf fer> Cff er Seq;

CosTrading Data Types

CosTrading::PolicyName Data Type
typedef string PolicyNane;

The name of a policy used to control the trader's behavior. The only
restriction on the format of a policy name is it cannot be an empty string.

CosTrading::PolicyNameSeq Data Type
t ypedef sequence<Pol i cyNane> Pol i cyNameSeq;

CosTrading::PolicySeq Data Type
t ypedef sequence<Pol i cy> Pol i cySeq;

CosTrading::PolicyValue Data Type
typedef any PolicyVal ue;

CosTrading::PropertyName Data Type
typedef |string PropertyNamne;

Although not explicitly defined in the specification, a property name should
start with a letter, may contain digits and underscores, and should not
contain spaces.

CosTrading::PropertyNameSeq DataType
t ypedef sequence<PropertyName> PropertyNameSeq;

CosTrading::PropertySeq Data Type
t ypedef sequence<Property> PropertySeq;

489

490

CosTrading::PropertyValue Data Type
typedef any PropertyVal ue;

A OCRBA: : Any containing the value of the property. Orbix Trader allows
arbitrarily complex user-defined types to be used as property values.

CosTrading::ServiceTypeName Data Type
typedef |string ServiceTypeNane;

A service type name can have one of two formats, both representing formats
that appear in the Interface Repository.

® Scoped Name - A scoped name has the form : : One: : Two. Other
supported variations are Three: : Four and Fi ve.

* Interface Repository Identifier - An interface repository identifier has the
form 1 DL: [prefi x/] [nodul e/] name: X. Y. For example, | DL: ony. or g/
CosTr adi ng/ Lookup: 1. 0 is a valid interface repository identifier, and you
can use the same format for your service type names.

Note: Although a service type name can appear similar to hames used in
the interface repository, the trading service never uses servicetype names to
look up information in the interface repository.

CosTrader::TraderName Data Type
typedef Li nkNaneSeq Trader Narre;

A Tr ader Nane represents a path from one trader to the desired trader by
following a sequence of links. The starting_trader importer policy, if
specified for a query operation, should contain a value of this type.

Cos:Trading::TypeRepository Data Type
typedef (hject TypeRepository;

CosTrading Data Types

TypeReposi t ory represents an object reference for a CosTr adi ngRepos: :
Ser vi ceTypeReposi t ory object. You will need to narrow this reference before
you can interact with the service type repository.

CosTrading::FollowOption Enum

enum Fol | onpt i on

{
|l ocal _only,
if_no_local,
al ways

H

Determines the follow behavior for linked traders.
The member values are defined as follows:

| ocal only The trader will not follow a link.

if_no_| ocal The trader will only follow a link if no offers
were found locally.

al ways The trader will always follow a link.

CosTrading::Offer Struct

struct Ofer

{
oj ect reference;
PropertySeq properties;
b

The description of a service offer. The data members contains the following
data:

ref erence The object reference associated with this
offer. Depending on the configuration of the
server, this reference may be nil .

properties A sequence of properties associated with this
offer.

491

CosTrading::Policy Struct

struct Policy

{
Pol i cyNane narne;
Pol i cyVal ue val ue;
}

CosTrading::Property Struct

struct Property

{
Pr opert yNane nane;
Propert yVal ue val ue;
|

A name-value pair associated with a service offer or proxy offer. If the
property hame matches the name of a property in the offer's service type,
then the TypeCode of the value must match the property definition in the
service type.

Note: Orbix Trader allows properties to be associated with an offer even if
the property name does not match any property in the service type. These
properties can also be used in query constraint and preference expressions.

CosTrading Exceptions

492

CosTrading::DuplicatePolicyName

exception DuplicatePol i cyNare {Pol i cyNanme nane};

More than one value was supplied for a policy. The policy name that caused
the exception is returned.

CosTrading Exceptions

CosTrading::DuplicatePropertyName
exception Dupli cat ePropertyNanme {PropertyNane nane};

The property name has already appeared once. The duplicated property
name is returned.

CosTrading::lllegalConstraint
exception Il1legal Constraint{Constraint constr};

An error occurred while parsing the constraint expression. The invalid
constraint is passed back.

CosTrading::lllegalOfferld

exception Illegal Offerld {(ferld id};
The offer identifier is empty or malformed. The invalid id is returned.

CosTrading::lllegalPropertyName
exception |1l egal PropertyNane {PropertyName narne};

The property name is empty or does not conform the format supported by the
trader. The property name that caused the exception is returned.

CosTrading::lllegalServiceType
exception |11 egal ServiceType {ServiceTypeNane type};

A service type name does not conform to the formats supported by the trader.
The name that caused the exception is returned.

CosTrading::InvalidLookupRef
exception | nval i dLookupRef {Lookup target};

493

494

The Lookup object reference cannot be nil .

CosTrading::MissingMandatoryProperty

excepti on M ssi nghandat or yProperty

{
Servi ceTypeNane type;
Pr oper t yNane nane;

b

No value was supplied for a property defined as mandatory by the service
type.

CosTrading::NotImplemented

exception Notlnpl emented {};
The requested operation is not supported by this trading service.

CosTrading::PropertyTypeMismatch

excepti on PropertyTypeM snat ch

{
Servi ceTypeNane t ype;
Property prop;

b

The property va