IONA

fgl Orbix®

Management Programmer’s

Guide

Version 6.2, December 2004

Making Software Work Together™

IONA, IONA Technologies, the IONA logo, Orbix, Orbix/E, Orbacus, Artix, Orchestrator,
Mobile Orchestrator, Enterprise Integrator, Adaptive Runtime Technology, Transparent
Enterprise Deployment, and Total Business Integration are trademarks or registered
trademarks of IONA Technologies PLC and/or its subsidiaries.

Java and J2EE are trademarks or registered trademarks of Sun Microsystems, Inc. in the
United States and other countries.

CORBA is a trademark or registered trademark of the Object Management Group, Inc. in
the United States and other countries. All other trademarks that appear herein are the
property of their respective owners.

While the information in this publication is believed to be accurate, IONA Technologies PLC makes no warranty
of any kind to this material including, but not limited to, the implied warranties of merchantability and fitness for
a particular purpose. IONA Technologies PLC shall not be liable for errors contained herein, or for incidental or
consequential damages in connection with the furnishing, performance or use of this material.

COPYRIGHT NOTICE

No part of this publication may be reproduced, stored in a retrieval system or transmitted, in any form or by any
means, photocopying, recording or otherwise, without prior written consent of IONA Technologies PLC. No third

party intellectual property right liability is assumed with respect to the use of the information contained herein.
IONA Technologies PLC assumes no responsibility for errors or omissions contained in this book. This publica-

tion and features described herein are subject to change without notice.

Copyright © 2004 IONA Technologies PLC. All rights reserved.

All products or services mentioned in this manual are covered by the trademarks, service marks, or product
names as designated by the companies who market those products.

Updated: 24-Jan-2005

Contents

List of Figures

Preface

Part | Overview

Chapter 1 Introduction to Application Management
Introduction to Orbix Management Tools
Introduction to Java Management Extensions
Introduction to the Orbix Management API
Overview of Management Programming Tasks

Part II CORBA Java Management

Chapter 2 Instrumenting CORBA Java Applications
Step 1—Identifying Tasks to be Managed
Step 2—Defining your MBeans
Step 3—Implementing your MBeans
Step 4—Gaining Access to an MBean Server
Step 5—Registering your MBeans
Step 6—Unregistering your MBeans
Step 7—Connecting MBeans Together
Monitoring MBean Statistics

Chapter 3 Displaying CORBA Java Applications
Displaying MBeans
Adding Application MBeans to the Tree
Customizing your Application MBean Icons

vii

oo =

15
16
19
24
28
31
34
35
37

41
42
44
46

CONTENTS

Part Il CORBA C++ Management

Chapter 4 Instrumenting CORBA C+ + Applications
Step 1—Identifying Tasks to be Managed
Step 2—Defining your MBeans
Step 3—Implementing your MBeans
Step 4—lInitializing the Management Plugin
Step 5—Creating your MBeans
Step 6—Connecting MBeans Together
Monitoring MBean Statistics

Appendix | MBean Document Type Definition
The MBean Document Type Definition File

Glossary

Index

51
52
56
62
76
78
80
84

87
88

91

97

List of Figures

Figure 1: IONA Administrator Web Console

Figure 2: JMX Management and Orbix

Figure 3: Example Parent-Child Relationship

Figure 4: Bank Teller Application

Figure 5: Bank Example in IONA Administrator
Figure 6: Bank Application Overview

Figure 7: Account Manager Example

Figure 8: Bank Process MBean

Figure 9: Instrumented Plugin in IONA Administrator
Figure 10: Instrumented Plugin Application Overview
Figure 11: Instrumented Plugin Custom Exception
Figure 12: Instrumented Plugin Process MBean
Figure 13: Instrumented Plugin Child MBean

18
26
42
43
53
55
71
80
83

LIST OF FIGURES

vi

Audience

Organization of this guide

Preface

Orbix provides support for enterprise-level management across different
platform and programming language environments. Orbix management tools
enable administrators to manage distributed enterprise applications. This
guide explains how programmers can enable applications to be managed by
Orbix management tools (for example, IONA Administrator).

This guide is aimed at developers writing distributed enterprise applications
who wish to enable their applications for management by Orbix
management tools. It assumes knowledge of either C++ or Java.

This guide is divided as follows:

Part I, Overview

This introduces Orbix enterprise management, and the tools used to manage
distributed applications.

Part I, Java Management

This explains how to enable CORBA Java applications for management, and
display them in IONA Administrator.

Part Ill, C++ Management

This explains how to enable CORBA C+ + applications for management,
and display them in IONA Administrator

vii

PREFACE

Related documentation

Additional resources

Typographical conventions

viii

The document set for Orbix includes the following related documentation:
® Management User’s Guide

® Administrator’s Guide

® CORBA Programmer’s Guide, C++ Edition

® CORBA Programmer’s Guide, Java Edition

The latest updates to the Orbix documentation can be found at

http://ww. i ona. cond docs.

The IONA knowledge base (ht t p: // waw. i ona. con support /

know edge_base/ i ndex. xni) contains helpful articles, written by IONA
experts, about IONA Administrator and other products.

The IONA update center (http://www.iona.com/support/updates/index.xml)
contains the latest releases and patches for IONA products:

If you need help with this or any other IONA products, contact IONA at
suppor t @ona. com Comments on IONA documentation can be sent to
docs- suppor t @ona. com

This guide uses the following typographical conventions:

Constant width Constant width (courier font) in normal text
represents portions of code and literal names of items
such as classes, functions, variables, and data
structures. For example, text might refer to the
QCRBA: : (oj ect class.

Constant width paragraphs represent code examples
or information a system displays on the screen. For
example:

#i ncl ude <stdio. h>

http://www.iona.com/support/knowledge_base/index.xml
http://www.iona.com/support/updates/index.xml
http://<APPLICABLE-PATH>

[talic

PREFACE

Italic words in normal text represent emphasis and
new terms.

Italic words or characters in code and commands
represent variable values you must supply, such as
arguments to commands or path names for your
particular system. For example:

% cd /users/your_name

Note: Some command examples may use angle
brackets to represent variable values you must
supply. This is an older convention that is replaced
with jtalic words or characters.

Keying conventions This guide may use the following keying conventions:

No prompt

%

[1]

{3}

When a command’s format is the same for multiple
platforms, a prompt is not used.

A percent sign represents the UNIX command shell
prompt for a command that does not require root
privileges.

A number sign represents the UNIX command shell
prompt for a command that requires root privileges.

The notation > represents the DOS, Windows NT,
Windows 95, or Windows 98 command prompt.

Horizontal or vertical ellipses in format and syntax
descriptions indicate that material has been
eliminated to simplify a discussion.

Brackets enclose optional items in format and syntax
descriptions.

Braces enclose a list from which you must choose an
item in format and syntax descriptions.

A vertical bar separates items in a list of choices
enclosed in { } (braces) in format and syntax
descriptions.

PREFACE

Part |

Overview

In this part This part contains the following chapter:

Introduction to Application Management page 1

In this chapter

CHAPTER 1

Introduction to

Application

Management

This chapter gives an overview of Orbix enterprise application
management. It introduces the Orbix management tools, Sun’s
Java Management Extensions API, and IONA’s management

API.

This chapter contains the following sections:

Introduction to Orbix Management Tools page 2
Introduction to Java Management Extensions page 5
Introduction to the Orbix Management API page 8
Overview of Management Programming Tasks page 10

CHAPTER 1 | Introduction to Application Management

Introduction to Orbix Management Tools

Overview

IONA Administrator Web Console

Orbix Management Service

Orbix management tools enable administrators to monitor and control
distributed applications at runtime. These tools provide seamless
management of IONA products, or any applications developed using those
products, across different platform and programming language
environments. Orbix management tools include the following main
components:

® “IONA Administrator Web Console”.

® “Orbix Management Service”.

® “IONA Configuration Explorer”.

® “Orbix Configuration Authority”.

The IONA Administrator Web Console provides a web browser interface to
the Orbix management tools. It enables you to manage applications and
application events from anywhere, without the need for download or
installation. It communicates with the management service using HTTP
(Hypertext Transfer Protocol), as illustrated in Figure 1.

The Orbix management service is the central point of contact for accessing
management information in a domain. A domain is an abstract group of
managed server processes within a physical location. The management
service is accessed by both the IONA Administrator Web Console and by the
IONA Configuration Explorer.

Note: Managed applications can be written in C++ or Java. The same
management service process (i ona_ser vi ces. managenent) can be used by
Java and C+ + applications.

Introduction to Orbix Management Tools

IONA Configuration Explorer The IONA Configuration Explorer is a Java graphical user interface (GUI)
that enables you to manage your configuration settings. It communicates
with your configuration repository (CFR) or configuration file using 110OP
(Internet Inter-ORB Protocol).

Figure 1 shows the IONA Administrator Web Console, and how it interacts
with managed applications to provide management capability.

IONA
Administrator
Web Console

HTTP

Management Service

Managed
Application

Orbix Domain

Figure 1: /ONA Administrator Web Console

CHAPTER 1 | Introduction to Application Management

Orbix Configuration Authority

Integrating with Enterprise
Management Systems

Further information

The Orbix Configuration Authority provides a web browser interface to
descriptive information about all Orbix configuration settings. You can
browse and search for information about Orbix configuration variables in
your CFR or configuration file.

Performance logging plugins enable Orbix to integrate effectively with
Enterprise Management Systems (EMS), such as IBM Tivoli™, HP
OpenView™, CA Unicenter™, or BMC Patrol™.

These systems enable system administrators and production operators to
monitor enterprise-critical applications from a single management console.
This enables them to quickly recognize the root cause of problems that may
occur, and take remedial action.

For detailed information on using the Orbix management tools, and on how
to configure EMS integration, see the Management User’s Guide.

Introduction to Java Management Extensions

Introduction to Java Management Extensions

Overview

MBeans

The MBean server

Java Management Extensions (JMX) is a standards-based API from Sun that
provides a framework for adding enterprise management capabilities to user
applications. This section explains the main JMX concepts and shows how
JMX and Orbix interact to provide enterprise management for Java
applications. This section includes the following:

* “MBeans”.

® “The MBean server”.

® “Management instrumentation”.

® “Standard and Dynamic MBeans”.

® “Further information”.

The concept of an MBean (a managed bean) is central to JMX. An MBean is
simply an object with associated attributes and operations. It acts as a
handle to your application object, and enables the object to be managed.

For example, a Car MBean object, with an associated speed attribute, and
start() and stop() operations, is used to represent a car application
object, with corresponding attributes and operations. Application developers
can express their application objects as a series of related MBeans. This
enables administrators to manage these application objects using an
administration console (for example, IONA Administrator).

All the MBeans created by developers are managed and controlled by a
MBean server, which is provided by JMX. All MBeans that are created must
be registered with an MBean server so that they can be accessed by
management applications, such as Orbix.

Figure 2 shows a Java example of the JMX components at work. It shows
how these components interact with Orbix to provide management
capability for your application.

CHAPTER 1 | Introduction to Application Management

IONA
Administrator
Web Console

For simplicity, this diagram only shows one MBean. An application might
have multiple MBeans representing the application objects that you wish to
manage. In addition, new instrumentation code is not solely confined to the
MBean. You will need to add some new code to your sever implementation
(for example, to enable your server to contact the management service).

A
HTTP
Management
Service
KEY
IIOP Colour
IIOP Adaptor

NN I

Orbix domain

Figure 2: JMX Management and Orbix

Component

New instrumentation code

Supplied JMX component

Existing server application

Supplied Orbix component

JVM

Management instrumentation

Standard and Dynamic MBeans

Further information

Introduction to Java Management Extensions

Adding JMX management code to your application is also known as adding
management instrumentation or instrumenting your existing application.
These standard management terms are used throughout this book.

Figure 2 shows the new management instrumentation code as an MBean.
MBeans must be added to your application to enable it for management.

The MBeans discussed so far in this chapter are referred to as standard
MBeans. These are ideally suited to straightforward management scenarios
where the structure of managed data is well defined and unlikely to change
often. JMX specifies another category of MBeans called dynamic MBeans.
These are designed for when the structure of the managed data is likely to
change regularly during the lifetime of the application.

Implementing dynamic MBeans is more complex than for standard MBeans.
If your management solution needs to provide integration with existing and
future management protocols and platforms, using dynamic MBeans could
make it more difficult to achieve this goal. The examples cited in this book
use standard MBeans only.

For more information about JMX, see Sun’s JMX Instrumentation and Agent
Specification, and Reference Implementation Javadoc. These documents are
available online at:

http://j ava. sun. coni pr oduct s/ JavaManagenent /

For information on how to integrate IONA Administrator with other general
purpose management applications (for example, HP OpenviewT’VI or CA
UniCenter™), see the "SNMP Integration" chapter in the Management
User’s Guide.

http://java.sun.com/products/JavaManagement/

CHAPTER 1 | Introduction to Application Management

Introduction to the Orbix Management API

Overview

The IIOP adaptor

Defining MBean relationships

JMX does not specify how to remotely access MBeans using network
protocols. IONA’s Orbix management API is used to enable remote
communications for MBeans. This API also enables you to specify
relationships between MBeans, and display MBeans in IONA Administrator.
This section includes the following:

® “The IIOP adaptor”.

® “Defining MBean relationships”.

® “C++ Instrumentation”.

The Orbix management API enables network communication between the
MBean server and the management service over |IOP (Internet Inter-ORB
Protocol). This is performed using an [IOP adapter, which is contained in
the ORB plugin.

Figure 2 shows an example of this IIOP communication. This cross-platform
API also enables communication for CORBA Java and C++ servers.

The Orbix management API also enables you to specify hierarchical parent—
child relationships between MBeans. For example, you may want to show
relationships between your server and its lower-level processes. These
relationships can then be displayed in the IONA Administrator Web Console.

Figure 3 shows example parent—child relationships displayed in the left
pane of the IONA Administrator Web Console.

; T0NA Administrator - Microsoft Internet Explorer

Introduction to the Orbix Management API

4

_lol x|
Fle Edk Vew Favortes Tods Heb Ea
Back - = - @) @) @ | Qoearch Garavortes Fveda B BY- S =1 =
Address [hepssjfsummer:53186/adminindex.do E | Links »
BF e d
(] @ secure-sample-comain A, event log managed entity
£ &, iona_services. otstm summer @ Evenﬂ_og

[{F iona_services otstm.summer

&, Management Server DefaultFilterConfigured false

&, iona_services locator summer DefaultFilters ["*=\WWARNERROR|FATAL"|
&, iona_services node _daeman summer
&, iona_services naming.summer

ry DefaultDormain:type=EventLog,orb=iona_semices. otstrm name=EventLog,cascaded=iona_semwices. otstm. summer
& Encina Transaction Manager - -

1§ iona_services.otstm

& Evertlog

Filters ["IT_OTS_SRv=""]

| 2

[&] Processes

[[5 88 ocdlintranet 7

C++ Instrumentation

Figure 3: Example Parent-Child Relationship

The concept of an MBean is Java term that comes from JMX. The C++
version of the Orbix management API uses the generic concept of a
Managed Entity instead of an MBean. A C++ Managed Entity is
functionally similar to the Java MBean. It acts as a handle to your
application object, and enables the object to be managed.

The C++ version of the Orbix management API is defined in IDL (Interface
Definition Language).

For more details of the Orbix management API, see the Orbix Management
IDLdoc, and the Orbix Management Javadoc.

CHAPTER 1 | Introduction to Application Management

Overview of Management Programming Tasks

Overview

Identifying tasks to be managed

Writing your MBeans

10

This section gives an overview of the typical management programming
tasks. These include the following:

® “ldentifying tasks to be managed”.

® “Writing your MBeans”.

® “Registering your MBeans with the MBean server”.

® “Unregistering your MBeans”.

® “Defining relationships between MBeans”.

These tasks are explained in more detail in the rest of this document.

Before adding any management code to an application, you must decide on
the application tasks that you wish the administrator to manage.

Deciding which tasks should be managed varies from application to
application. This depends on the nature of the application, and on the type
of runtime administration that is required. Typical managed tasks include
monitoring the status of an application (for example, whether it is active or
inactive), and controlling its operation (for example, starting or stopping the
application).

When you have decided which parts of your application need to be
managed, you can define and implement MBeans to satisfy your
management objectives. Each MBean object must implement an interface
ending with the term MBean (for example, Car MBean).

To expose its attributes, an MBean interface must declare a number of get
and set operations. If get operations are declared only, the MBean attributes
are read-only. If set operations are declared, the MBean attributes are
writable.

Registering your MBeans with the
MBean server

Unregistering your MBeans

Defining relationships between
MBeans

Overview of Management Programming Tasks

Registering application MBeans with the MBean server enables them to be
monitored and controlled by the IONA Administrator. Choosing when to
register or expose your MBeans varies from application to application.
However, there are two stages when all applications create and register
MBeans:

During application initialization. During any application initialization
sequence, a set of objects is created that represents the core functionality of
the application. After these objects are created, MBeans should also be
created and registered, to enable basic management of that application.

During normal application runtime. During normal application runtime,
new objects are created as a result of internal or external events (for
example, an internal timer, or a request from a client). When new objects
are created, corresponding MBeans can be created and registered, to enable
management of these new application components. For example, in a bank
example when a new account is created, a new account MBean would be
also be created and registered with the MBean server.

You might wish to unregister an MBean in response to an administrator's
interaction with the system. For example, if a bank teller session is closed, it
would be appropriate to unregister a corresponding session MBean. This
ensures that the MBean will no longer be displayed as part of the
application that is being managed.

You can use the Orbix management API to define parent—child relationships
between MBeans. These relationships are then displayed in the IONA
Administrator Web Console, as shown in Figure 3 on page 9.

Parent-child relationships are no longer displayed in the console when the
MBean is unregistered by the application (for example, if a bank account is
closed).

11

CHAPTER 1 | Introduction to Application Management

Further information All of these management programming tasks are explained in detail, with
examples, in the parts that follow:

® Part Il CORBA Java management.
® Part lll CORBA C++ management.

It is not necessary to read one part before another. You can read these parts
in any order.

12

Part I
CORBA Java Management

In this part This part contains the following chapters:

Instrumenting CORBA Java Applications page 15

Displaying CORBA Java Applications page 41

In this chapter

Instrumenting
CORBA Java
Applications

CHAPTER 2

This chapter explains how to use the Java Management
Extensions APl and the Orbix Java Management APl to enable
an existing CORBA Java application for management. It uses

a banking example application.

This chapter contains the following sections:

Step 1—Identifying Tasks to be Managed page 16
Step 2—Defining your MBeans page 19
Step 3—Implementing your MBeans page 24
Step 4—Gaining Access to an MBean Server page 28
Step b—Registering your MBeans page 31
Step 6—Unregistering your MBeans page 34
Step 7—Connecting MBeans Together page 35
Monitoring MBean Statistics page 37

15

CHAPTER 2 | Instrumenting CORBA Java Applications

Step 1—Identifying Tasks to be Managed

Overview

Existing user tasks

16

Before adding management code to an application, you must decide on the
tasks in your application that you wish to be managed by a system
administrator. Only then should you start thinking about adding
management instrumentation code to your existing application.

This section includes the following:

® “Existing user tasks”.

®* “New management tasks for administrators”.
® “Planning your Programming Steps”.

The First Northern Bank (FNB) example used in this chapter adds
management capabilities to an existing CORBA Java banking application.
This example application delivers standard banking services to customers.

The existing FNB application enables bank tellers to do the following:
® Logon and log off the system.

® Create a customer account.

® Lodge money into an account.

¢ Withdraw money from an account.

Figure 4 shows the user interface to these existing features.

Step 1—Identifying Tasks to be Managed

& FNB Teller Application ;Iglll

File Account Help

Name

Bloggs, Joe
Account Type
Current

Account Number
1791578293
Address

32 Main Street
Jonesville

Open Account || Exit |

Figure 4: Bank Teller Application

New management tasks for The new management instrumentation code added to FNB application
administrators enables administrators to do the following:

® Monitor the back-tier server.

® Monitor customer accounts.

® Unload account objects from memory.
® Monitor the middle-tier server.
® Monitor teller sessions.
® Monitor bank tellers.

Administrators can perform these tasks using the IONA Administrator Web
Console, shown in Figure 5.

17

CHAPTER 2 | Instrumenting CORBA Java Applications

Planning your Programming Steps

18

7} ronA Administrator - Microsoft Internet Explorer =] 3]
Fle Edt Wew Favortes Toos Help []
deback - = - @ [2] 4| @oearch [GgFavortes @reds 4| By S E G
Address [€] http:fflacalhost:885 adminjindex.do ~| Pa \ Links

Bigie
B iazmple-dnmain A& Semer Managed Object

=] Serers @) A A

NBMiddleTier FNBMiddleTier

ioha_senices. lacator sample-domain:type=Server,name=F NBMiddleTier Domain=sample-domain

IPAZ Server

FMEMainframe N L EES—S——————————
& iona_serices. naming Mame FNEMiddleTier

& Managerment Server

Domain sample-domain
ActiveProcesses { ENBMiddleTier }
State Running

Operation Parameters

shutdown

none

& [[[ZELocalintranet i

Figure 5: Bank Example in IONA Administrator

When you have identified your management tasks, you should think
carefully about how exactly you wish to add the new management code to
your existing application. For example, how much of the new code you will
add to your existing classes, and how much will be in new classes.
Depending on the size of your application, you might wish to keep new
instrumentation classes in a separate directory.

This chapter shows how JMX management code was added to the FNB
CORBA Java application. It shows the standard programming steps. For
example, defining and implementing MBeans, and registering and
unregistering your MBeans with the MBean server.

Note: When instrumenting CORBA Java servers, you do not need to make
any changes to the CORBA IDL. You can enable your application for
management simply by adding new MBean instrumentation code to your
CORBA Java implementation.

Step 2—Defining your MBeans

Step 2—Defining your MBeans

Overview

Rules for MBean interfaces

When you have planned which parts of your application need to be
managed, you can then define MBeans to satisfy your management
objectives. This section shows how to define example MBean interfaces for
the FNB application. It includes the following:

® “Rules for MBean interfaces”.

® ‘“Example MBeans”.

¢ “AccountMgrMBean interface”.

® “CreditCardMBean interface”.

® “BusinessSessionManagerMBean interface”.
® “BusinessSessionMBean interface”.

® “MBean object names”.

® “Further information”.

Each MBean object must implement an interface ending with the term
MBean (for example, Busi nessSessi onMBean).

To expose its attributes, an MBean interface must declare a number of

get () and set () operations. If only get () operations are declared, the
MBean attributes are read-only. If set () operations are declared, the MBean
attributes are writable.

To expose management operations, you must declare an appropriate
method in the MBean interface, and then implement it in the corresponding
MBean class.

19

CHAPTER 2 | Instrumenting CORBA Java Applications

Example MBeans

20

Table 1 lists the example MBeans that are declared for the FNB application.

Table 1: FNB MBeans

Account Myr MBean This back-tier MBean
represents the bank account
information managed by an
administrator. For example,
the number and type of
accounts in the bank.

O edi t Car dMBean This back-tier MBean
represents credit card
accounts.

Busi nessSessi onManager MBean This middle-tier MBean

represents the number of
open bank teller sessions in
the bank,

Busi nessSessi onMBean This middle-tier MBean
represents the list of recent
transactions for a particular
bank teller session.

Step 2—Defining your MBeans

AccountMgrMBean interface The interface for the Account Myr MBean is defined as follows:
package bankobj ect s. managenent ;
i mport j avax. managenent. *;
inport com i ona. managenent . j nx_i i op. *;
i mport com i ona. nanagenent. j nx_i i op. Publi c. *;

public interface Account Myr MBean {

/] attributes

public int get Nunber O Account s() ;
public int get Nunber & O edi t Cards() ;
public int get Nunber & Qur r ent Account s() ;
public int get Nunber & LoadedAccount s() ;
publ i ¢ (oj ect Nane[] get ActiveQreditCards();
/'l operations
publ i ¢ bool ean unl oadAccount (int account Nunj;
}
CreditCardMBean interface The interface for the O edi t Car dvBean is defined as follows:

package bankobj ect s. managenent ;

inport javax.managerent . *;

inport com i ona. managenent . j nx_i i op. *;

i mport com i ona. managenent. j mx_ii op. Publi c. *;

public interface O editCardMvBean {

public int sinple® ();

21

CHAPTER 2 | Instrumenting CORBA Java Applications

BusinessSessionManagerMBean

interface

BusinessSessionMBean interface

MBean object names

22

The interface for the Busi nessSessi onManager MBean is defined as follows:

package fnbba. managenent ;

i mport j avax. management. *;

inport comiona. managenent . j nx_i i op. *;

i mport com i ona. nanagenent . j nx_i i op. Publi c. *;

public interface Busi nhessSessi onVanager MBean {

public int getNunber f QpenSessions ();

The interface for the Busi nessSessi onMBean is defined as follows:

package fnbba. managenent ;

i mport j avax. management. *;

inport comiona. managenent . j mx_iiop. *;

inport com i ona. managenent . j mx_i i op. Public. *;

public interface Busi hessSessi onMBean {

public String[] getRecentTransactionList();

MBean object names are used to uniquely identify an MBean. Object names
are represented by the j avax. managenent . (bj ect Nane class, which extends
the j ava. | ang. oj ect class.

In the FNB example, the Account Myr MBean interface declares the following

get () method for the Acti veQredi t Cards attribute:

public bjectNanme[] getActiveQeditCards();

This returns an array of MBean object names for the associated credit card

accounts. The get Acti veQredi t Cards() method is an example of using an
object name to connect MBeans together.

Further information

Step 2—Defining your MBeans

For information about how to specify MBean object names, see “Step 3—
Implementing your MBeans” on page 24.

For detailed information about the Qbj ect Nane class, see Sun’s JMX
Reference Implementation Javadoc. This is available along with the source
code from:

http://j ava. sun. coni pr oduct s/ JavaManagenent

23

http://java.sun.com/products/JavaManagement

CHAPTER 2 | Instrumenting CORBA Java Applications

Step 3—Implementing your MBeans

Overview After defining your MBean interfaces, you must provide an MBean
implementation. MBean implementation objects typically interact with the
application they are designed to manage, enabling monitoring and control.

For example, this section shows interaction between an MBean

(Busi nessSessi onManager) and the CORBA server implementation object
(Busi nessSessi onManager Del egat e). The MBean'’s

get Nunber OF QpenSessi ons() method calls the implementation object’s
openSessi ons() method. This section includes the following:

“Example MBean implementation”.
“The management wrapper class”.
“Management wrapper implementation”.
“Identifying MBeans”.

“Further information”.

Example MBean implementation The following code example shows the Busi nessSessi onManager
implementation for the Busi nessSessi onManager MBean:

package fnbba. managenent;

inport javax.managenent. *;
i mport com i ona. nenagenent . j nx_ii op. *;
i mport com i ona. nanagenent . j nx_i i op. Publi c. *;

publ i c cl ass Busi nessSessi onManager

24

i npl enent s Busi nessSessi onManager MBean {

private Managenent W apper ngnt Wapper = nul | ;
private bject Nane nyName = nul | ;
private fnbba. Busi nessSessi onManager Del egate nylnpl = nul | ;

The management wrapper class

Step 3—Implementing your MBeans

publ i ¢ Busi nessSessi onManager
(f nbba. Busi nessSessi onManager Del egat e nyl npl) {
this.nylmpl = nylnpl;

try { nyName = new
Cbj ect Nane(" FNBM ddl eTi er : nane=Busi nessSessi onManager") ;

}
catch (Exception j) {}

ngnt W apper = Managenent W apper . i nst ance
(" FNBM ddI eTi er : nane=FNBM ddl| eTi er");
ngnt W apper . addMBean(t hi s, nyNane) ;
}

public int getNunber f GpenSessi ons()
{ return nyl npl . openSessi ons(); }

public void renove ()
{ nmgnt W apper . renoveMBean (nyNare); }

In this example, the MBean representing the bank teller

Busi nessSessi onManager uses an underlying class (the Management W apper
class) to perform most of the work. The Managenent W apper object creates
the Busi nessSessi onMBeans for each bank teller session. It registers these
beans with the MBean server, and then adds them to the IONA
Administrator Web Console display. A simplified overview is shown in
Figure 6.

This is a typical MBean implementation, where the MBean uses the
functionality of other application objects (in this case, the management
wrapper) to provide the management capability. The management wrapper
performs the core management tasks (for example, gaining access to the
MBean server, and registering the MBean with the MBean server).

25

CHAPTER 2 | Instrumenting CORBA Java Applications

IONA Administrator

FNB Java Application T

FNB Business Architecture
Session Mngr

Teller
Session
Bob

Mgmt
Wrapper
Tellers

Teller
Session
Sue

Figure 6: Bank Application Overview

26

Management wrapper
implementation

Identifying MBeans

Further information

Step 3—Implementing your MBeans

The Managenent W apper . i nst ance() method that creates the MBean is
defined as a st ati ¢ class method. This is because only one wrapper is
required by each domain displayed by IONA Administrator. For example,
Figure 5 on page 18 shows the FNBM ddl eTi er node, which has a

FNBM ddl eTi er MBean domain. Multiple wrappers representing multiple
domains can be stored in an array of management wrappers. For example,
you could add ATM support, which would use a separate management
wrapper to manage the ATM sessions. For more information on MBean
domain names, see “ldentifying MBeans".

The management wrapper code and the standard management tasks that it
performs are explained in the sections that follow.

An uj ect Name must be a unique name in the MBean server. It includes an
MBean domain name, separated from a list of name and value pairs by a
colon. These name value pairs can be of any type or value. The syntax is:

donai n- nane: namel=val uel,nane2=val ue2,...

The object name used in the Busi nessSessi onManager example represents
the following simple domain and name-value pair:

FNBM ddl eTi er: nanme=Busi nessSessi onManager

Note: The MBean domain name is not related to an Orbix configuration or
location domain. This is purely a namespace for MBeans only.

For detailed information about the (bj ect Nane class, see Sun’s JMX
Reference Implementation Javadoc. This is available along with the source
code from: htt p://j ava. sun. coni pr oduct s/ JavaManagenent

For another Java example, see the “Example object name” on page 28. This
shows an MBean object name that specifies additional name-value pairs.
This enables you to display more information in the IONA Administrator
Web Console.

27

http://java.sun.com/products/JavaManagement

CHAPTER 2 | Instrumenting CORBA Java Applications

Step 4—Gaining Access to an MBean Server

Overview

Loading the IONA management
plugin

28

After defining and implementing your MBeans, you must gain access to an
MBean Server. In the FNB example application, the MBean server is
accessed by the management wrapper object. The management wrapper
object performs the same tasks for different MBean implementations.

Note: You must explicitly load the IONA management plugin (i t _ngnt)
for CORBA Java applications.

This section includes the following:

® “Loading the IONA management plugin”.
® “Accessing the MBean server”.

¢ “IT_llIOPAdaptorServer object”.

® “Specifying an MBean object name”.

You must first ensure that the IONA management plugin (i t _ngm) is
specified by your or b_pl ugi ns configuration variable in the appropriate
configuration scope.

For example, the following settings are taken from the FNB configuration
file:
FNBM ddl eTi er {

orb_plugins = ["it_mgm", "iiop_profile", "giop", "iiop"];
b

FNBMai nf rame {
orb plugins = ["it_mgnt", "iiop_profile", "giop", "iiop"];
b

Note: You must ensure that all settings are made in correct configuration
scope (for example, FNBM ddl eTi er). Do not add the i t _ngnt plugin to the
orb_pl ugi ns variable in the global configuration scope.

Step 4—Gaining Access to an MBean Server

Accessing the MBean server The following code extract from the Management W apper class shows how its
constructor method accesses the default MBean server:

private Managenent Wapper (String Confi gDonai nNare) {

adapt or Server =
(1 T_I'| GPAdapt or Ser ver) com i ona. managenent . j nx_i i op. | T_Dynam c
Loadi ng. get Def aul t | | OPAdapt or Ser ver () ;

try {
managedChj Nane = new (bj ect Nane(Conf i gDonmai nNarre) ;

nBeanServer = adapt or Server . get MBeanSer ver () ;

} catch (Exception ex) {

System out. print| n(" Unexpect ed exception while registering
i BankMBean: " + ex);
}

nyConfi gDomai n = new String (Confi gDomai nNarre) ;

processMBean =com i ona. managerent . j nx_i i op. | T_Dynam cLoadi ng.
get Processhj ect Nane() ;
}

IT_lIOPAdaptorServer object In the Managenent W apper class, the 1 T_I | CPAdapt or Ser ver object is used
to provide a reference to the MBean server. When you have accessed the
default MBeanSer ver using the get MBeanSer ver () method, you can then
register your MBeans with the MBean server.

For detailed reference information about | T_I | GPAdapt or Ser ver, see the
Management Javadoc.

29

CHAPTER 2 | Instrumenting CORBA Java Applications

Specifying an MBean object name

The Process MBean

30

The Conf i gDomai nNane parameter passed to Managenent W apper () specifies
the MBean object name used by the management wrapper, and which is
displayed in IONA Administrator as an MBean object. For example, the
middle-tier f nbba server uses the following object name:

FNBM ddl eTi er : name=FNBM ddl eTi er

Note: The Confi gDomai nName parameter is not related to the Orbix
configuration or location domain. This is an MBean oj ect Nane domain is
purely a namespace for MBeans only.

For more information, see “ldentifying MBeans” on page 27.

The process MBean is the starting point for navigation through a sever in the
IONA Administrator Web Console. In the console, application MBeans are
displayed as nodes that are added to the process MBean in the navigation
tree.

The Managenent W apper obtains the process MBean's object name using the
get Process(bj ect Nane() method. This standard JMX call obtains the
process MBean that will be used later to add the application MBean to the
IONA Administrator display. For more information, see “Creating
parent-child relationships” on page 33.

Step 5—Registering your MBeans

Step 5—Registering your MBeans

Overview

Example MBean registration

After gaining access to the MBean server, you can then register your
MBeans with the MBean server. Registering MBeans enables them to be
monitored and controlled using IONA Administrator. This section includes
the following:

“Example MBean registration”.
“addMBean() implementation”.
“Registering MBeans”.

“Creating parent-child relationships”.

The following FNB example from the Busi nessSessi on class first creates a
MBean for a bank teller session, and then registers it with the MBean server.
The MBean is registered using the management wrapper's addMBean()
method:

publ i ¢ Busi nessSessi on (fnbba. Busi nessSessi onDel egat e nyl npl ,

String SessionNane) {
this.nylnpl = nylnpl;

ngnt Wapper = Managenent W apper . i nst ance
(" FNBM ddI eTi er : nane=FNBM ddl eTi er");

try {
String t =new String ("FNBM ddl eTi er: name=" + Sessi onNane) ;
nyNane = new Cbj ect Narre(t);

}
catch (Exception j) {}

ngnt W apper . addMBean(t hi s, nyNane);

31

CHAPTER 2 | Instrumenting CORBA Java Applications

addMBean() implementation The addMBean() method is implemented in the Managenment W apper class as
follows:

publ i ¢ bool ean addMBean (j ava. | ang. Cbj ect nbean, Cbj ect Narre
nbeanNane)

{
Systemout. println ("Registering nbean...");

try {
Chj ect Narre tnpArray [] = new Cbj ect Nane [1];
tnpArray [0] = nbeanNane;

nBeanSer ver . r egi st er MBean(nbean, nbeanNane) ;

adapt or Ser ver . cr eat ePar ent Chi | dRel at i on(pr ocessMBean, t npAr r ay
)
}
catch (Exception j) {
Systemerr.println ("Exception in registering MBean " + j

)
}

return true;

}

return fal se;

Registering MBeans You can register MBean objects using either of the following approaches:

® Create the MBean object manually, and then register it with the
MBean server. If you choose this approach, you must use the new()
constructor and r egi st er MBean() method.

® Create and register your MBean with the MBean server, using the
creat eMBean() constructor. This registers the MBean automatically.

The FNB example uses the MBean server's regi st er MBean() method to

register the MBean. The regi st er MBean() method takes two parameters:

® The MBean object instance (nbean in this example).

® An vj ect Nane, which is used to identify the MBean. The object name
in this example is nbeanNane. For more information on object names,
see “ldentifying MBeans” on page 27.

32

Creating parent-child
relationships

Step 5—Registering your MBeans

The creat ePar ent Chi | drRel ati on() method adds the MBean to the Process
MBean. This is the starting point for navigation through a sever in the IONA
Administrator Web Console. The cr eat ePar ent Chi | dRel ati on() method
takes two parameters:

® The parent MBean bj ect Nane.
® The child MBean (uj ect Nane.

For more information on the Process MBean and how it is displayed by
IONA Administrator, see Chapter 3.

33

CHAPTER 2 | Instrumenting CORBA Java Applications

Step 6—Unregistering your MBeans

Overview

Example MBean unregistration

The unregisterMBean() method

34

You might wish to unregister an MBean in response to an administrator’s
interaction with the system. For example, if an bank teller session is closed,
it would be appropriate to unregister the corresponding

Busi nessSessi onMBean. This ensures that the MBean will no longer be
displayed as part of the application that is being managed. This section
includes the following:

®* “Example MBean unregistration”.
® “The unregisterMBean() method”.

To unregister an MBean, use the MBean server's unr egi st er MBean()
method. In the FNB application, the unr egi st er MBean() method is called
by the management wrapper's r enoveMBean() method. The following code
extract is taken from the Busi nessSessi on class:

public void renmove ()

{
ngnt W apper . r enoveMBean (nyNane) ;

}

The renoveMBean() method is implemented in the management wrapper
class as follows:

publ i c bool ean renmoveMBean ((hj ect Nane nbean) throws Exception
{
nBeanSer ver . unr egi st er MBean (nbean) ;
return true;
}
}

When the account’s MBean has been unregistered, using the

unr egi st er MBean() method, it is no longer displayed by the IONA
Administrator Web Console. All parent-child relationships between MBeans
created using the creat ePar ent Chi | dRel ati on() method are also removed.

The unr egi st er MBean() method takes an MBean object name as a
parameter. For more information, see “MBean object names” on page 22.

Step 7—Connecting MBeans Together

Step 7—Connecting MBeans Together

Overview

Connecting MBeans using a get()
method

Your application is displayed in the IONA Administrator Web Console as a
series of related or connected MBeans, which can be monitored by
administrators.

This section explains how to connect MBeans together. There are two
different approaches:

® “Connecting MBeans using a get() method”.
® “Connecting MBeans using the createParentChildRelation() method”.

To connect two MBeans together using a get () method, you must create
MBean methods that return MBean Qbj ect Nanes. For example, in the FNB
application the Account Myr MBean must be connected with the active

QO edi t Card MBeans. The Account Myr MBean interface declares the following
get () method for the Acti veQredi t Cards attribute:

public CojectNane[] getActiveCeditCards();

This method returns an array of MBean object names for the associated
credit card accounts. If this method returns object names that are already
registered MBean names, these MBeans are displayed in the

ActiveQ edit Cards attribute of the Oredi t Card MBean.

By using methods that return oj ect Nanes, you will see hyperlinks displayed
in the details view on the right of the console. You can use these hyperlinks
to navigate between managed objects like they are web pages. The
navigation tree on the left is not affected.

35

CHAPTER 2 | Instrumenting CORBA Java Applications

Connecting MBeans using the
createParentChildRelation()
method

36

Using the get () method, hyperlinks between MBeans are displayed in the
details view, on the right of the console. Alternatively, you can use

creat ePar ent Chi | dRel ati on() method to connect two MBeans together.
This enables MBeans to appear as children of others in the tree view, on the
left of the console.

The creat ePar ent Chi | dRel ati on() method takes the parent and child
MBeans as parameters, and is defined as follows:
publ i ¢ bool ean creat ePar ent Chi | dRel at i on(Cbj ect Nane par ent Cbj Nane,

Qbj ect Narre[] chi | dCbj Nanes) t hr ows
com i ona. conmon. nanagenent . rel ati on. Rel ati onSer vi ceExcepti on

For an example of using this method, see “addMBean() implementation” on
page 32

Monitoring MBean Statistics

Monitoring MBean Statistics

Overview

MBean monitoring

Optionally, you can also monitor statistics from MBeans in your own
applications. The i t _nbean_noni t ori ng performance logging plug-in
enables you to periodically harvest statistics associated with MBean
attributes. This section includes the following:

® “MBean monitoring”.
® ‘“Configuration steps”.
® “Programming steps”.

The I T_MBeanMbni t ori ng IDL interface provides the support for monitoring
MBean statistics. This interface is defined as follows:

nodul e | T_MBeanMbni tori ng
{

const string MANAGEMENT MBEAN MONI TCRING I N TI AL_REF =
"1 T_MBeanMoni t ori ngRegi stration";

/1 Interface exceptions.

exception MBeanNot Found {};

exception MBeanAttri but eNot Found {};
exception MBeanAttributel nval i dType {};

// 1 T_MBeanhbni t ori ng: : MBeanMbni t ori ngRegi strati on
/1l

// An interface which provides a neans to

// nonitor and | og statistics about nbeans

/1 registered with the managenent servi ce.

37

CHAPTER 2 | Instrumenting CORBA Java Applications

| ocal interface MBeanMnitoringRegistration

{
voi d noni tor_attri bute(
in string object_nane,
in string attribute_namne,
in string alias) raises (MBeanNot Found,
MBeanAt t ri but eNot Found, MBeanAttri but el nval i dType) ;

voi d cancel _noni tor (

in string object_nane,

in string attribute_nane,

in string alias) raises (MBeanNot Found);

}
IE

When the it _nbean_noni tori ng plug-in is included in your or b_pl ugi ns
list, an initial reference is registered for the
| T_MBeanMoni t ori ngRegi st rati on interface.

When you resolve on your application MBean, the | T_MBeanMoni t ori ng API
can be used to switch on, or turn off, monitoring of an application MBean.
Statistics for user monitored MBeans will then appear in the performance
logs.

Configuration steps You must ensure that the i t _nbean_noni t ori ng plug-in is included in your
orb_pl ugi ns list.

In addition, the following Orbix JAR file must be included on your classpath:

$I T_PRCDUCT_DI R lib/./art/java managenent _| oggi ng/ 1. 2/ perf _| oggi ng. j ar

Programming steps This example assumes that you already have an MBean with an attribute
that you want to be sampled and logged. For example, the MBean might
track the memory currently being used by the process. The programming
steps are as follows:

1. Import the following package:

i nport com i ona. managenent . | oggi ng. | T_MBeanhMbni t ori ng. MBeanMbni t or i ngRegi strati on;

38

Monitoring MBean Statistics

2. To register your MBean with the i t _nbean_noni t ori ng plug-in, you
must first resolve on the MBean monitoring initial reference:

/!l Resolve initial reference for MBeanMbnitoringRegi stration object.
MBeanMoni t or i ngRegi strati on nbeanMoni t ori ngRegi strati on = (MBeanhbni t ori ngRegi strati on)
orb.resol ve_initial _references(lT_MBeanhnitoringRegistration);

3. You can then register the attribute to be monitored by specifying your
MBean details to moni tor _attribute():

// Turn on nonitoring for nbean attri bute.
mbeanMoni t or i ngRegi strati on. moni tor_attri but e("mbean_name", "attribute
name, "mbean_friendly_name");

The mbean_friendly_name is an alternative alias that will also appear
in the log file.

Further information For more details on Orbix performance logging, see the Orbix Management
User’s Guide.

39

CHAPTER 2 | Instrumenting CORBA Java Applications

40

In this Chapter

CHAPTER 3

Displaying CORBA
Java Applications

This chapter explains how to display CORBA applications in
the IONA Administrator Web Console in more detail. It
explains the concept of the Process MBean, how to add
MBeans to the navigation tree, and how to customize your
icons.

This chapter contains the following sections:

Displaying MBeans page 42
Adding Application MBeans to the Tree page 44
Customizing your Application MBean Icons page 46

41

CHAPTER 3 | Displaying CORBA Java Applications

Displaying MBeans

Overview

IONA Administrator Web Console

42

This section explains how MBeans are displayed by IONA Administrator. It
includes the following:

®* “|ONA Administrator Web Console”.

® “The Process MBean".

®* “Example Process MBean”.

The IONA Administrator Web Console is shown in Figure 7. This example
shows the managed attributes and operations for the FNB Account Manager
object. The attributes and operations displayed correspond to those declared
in “Step 2—Defining your MBeans” on page 19.

/3 IONA Administrator - Microsoft Internet Explorer] 3]
File Edt Wew Favortes Tools Help |

wBak o+ = - (@ [H] A Boeach GaFavores @veda (B By Sl =

Address [{€] httpijlocahost:B885 sdminjindsx.do = P
@7 e
B zﬂmplerdumain A, Information on the management interface of the MBean
g4, Servers @
& FNEMiddieTier AccountManager
& IPAS Server FMNEMainframe: name=AccountManager,cascaded=FNBMainframe
& iona_semices naming
Bl Processes N LLSEE—S—S—S—————.
E--iF FNEMainframe MumberQffccounts 2
Bl

MumberOfCreditCards

il
& Management Server § NumberOfCurrentAccounts | 1
MumberOfl sadedAccounts |0
ActiveCreditCards

unloadAccount
@ param java.lang.Integer

& [[[[EELocalintranet i

Figure 7: Account Manager Example

The Process MBean

Example Process MBean

Displaying MBeans

“Step 4—Gaining Access to an MBean Server” on page 25 shows how the
I T_I | CPAdapt or Ser ver object is used to access the default MBean server.
When the | T_I | GPAdapt or Server instance is created, the IONA
Administrator Web Console creates an entry in the navigation tree. This
entry represents the Process MBean, the first-level MBean that is exposed.
The

Process MBean is the starting point for navigation through an application in
the IONA Administrator Web Console.

In Figure 8, the selected Process MBean in the navigation tree is
FNBM ddl eTi er. The MBean’s object name is displayed as:

Def aul t Donai n: t ype=Pr ocess, nane=FNBM ddI eTi er,
Ser ver =FNBM ddl eTi er, Dormai n=Def aul t Dormai n, cascaded=FNBM ddI eTi er

The Process MBean has associated default attributes, displayed in the
details panel (for example, process type, uptime, host, and so on).

[1080 Atz stor - icrosoft termet pporer =
Ele Edt Wew Favortes Tools Help ‘
daback - = - Q) [2] 4| @oearch [GFavortes Preds F | BN S E E
Adiress [] httpsjflocahostissesfadminindex.do = ¢=

BigFie
B-& sample-domain Process Managed Object
e e P*FNBMiddleTier
=} 53-5 DefaultDomain:type=Fracess name=FNBMiddleTier Serve=FNBMiddleTier, Domain=0efaultDormain,cas
9 eTie
p QRO | e Jvane _________
@ FMEMainframe Mame FHEMiddleTier
& Management Serer B e s oM
State Running
Server FNEMiddleTier
Domain DefaultDomain
CurrentTime Wed Jan 15 12:03:23 GMT 2003
TimeStarting Wed Jan 15 11:43:09 GMT 2003
TimeRunning 20 minutes, 20 seconds
HostMame SUMMER
HostiPAddress 10.2.4.83
Totalbermnary. 4599308
Ereetemary 1027080
Pl | 2
& [[| [BELocalintranet y

Figure 8: Bank Process MBean

43

CHAPTER 3 | Displaying CORBA Java Applications

Adding Application MBeans to the Tree

Overview

Creating a parent-child
relationship

44

To display your application MBeans in the navigation tree of the IONA
Administrator Web Console, you must create a parent-child relationship
between Process MBean and your application MBean.

To create parent-child relationships between your MBeans, use the

creat ePar ent Chi | dRel ati on() method. This section includes the following:
® “Creating a parent-child relationship”.

® “The createParentChildRelation() method”.

When create parent-child relationships your MBeans will be displayed as
children of the Process MBean in the navigation tree, and as attributes in
the details panel. Figure 8 shows the FNBM ddl eTi er Process MBean in the
navigation tree, and its child MBeans listed details pane (for example, the
Busi nessSessi onManager MBean).

The following code example shows how the addMBean() method is
implemented in the Managenent W apper class. This method calls the
cr eat ePar ent Chi | dRel ati on() method:

publ i ¢ bool ean addMBean (j ava. | ang. bj ect nbean, Cbj ect Narre
nbeanNane)

{
Systemout.println ("Registering nbean...");

try {
Chj ect Nae tnpArray [] = new (bj ect Nane [1];
tnpArray [0] = nbeanNare;

nBeanSer ver . r egi st er MBean(nbean, nbeanNane) ;

Adding Application MBeans to the Tree

adapt or Ser ver. cr eat ePar ent Chi | dRel at i on(pr ocessMBean, t npArr ay) ;
}
catch (Exception j) {
Systemerr.println ("Exception in registering MBean " + j
)
return fal se;

}
return true;
}
The createParentChildRelation() The creat ePar ent Chi | drRel ati on() method takes two parameters:
method ® The parent MBean Qoj ect Nare (in this case, the Process MBean).
® The child MBean uj ect Nane (in this case, an array of MBeans).
Note:

MBeans must first be registered in order for them to appear when
added to the Process MBean. For details of how to register MBeans, see
“Step b—Registering your MBeans” on page 31.

45

CHAPTER 3 | Displaying CORBA Java Applications

Customizing your Application MBean Icons

Overview

Changing the admin.war file

46

By default, when you add an new MBean, it is displayed using a default
blue MBean icon. You can direct IONA Administrator to use your own
custom icons for your application MBeans.

The FNB example uses the default icons, and does not use custom icons.
The examples in this section are taken from a demo application named
iBank. The iBank example uses a bank icon to represent a Managedi Bank
MBean, and a cash icon to represent a Managedi BankAccount MBean MBean.

This section explains the following:

® “Changing the admin.war file".
® “Changing the admin.war file".
® “Accessing your custom icons”.

You must first update the contents of the management web console by
changing the adni n. war file. The adm n. war file can be found in the
following directory:

<instal | -dir/asp/ version/ et ¢/ adni n/ webapps

Note: You may want to make a backup copy of adm n. war before
removing it.

Under this directory, create a new directory called adm n. Unjar adni n. war
into this directory, for example, using the following commands:

cd admn
jar xvf ../adm n.war
rm../adm n. war

When you have changed the adni n. war file you can then edit the
i mage_nappi ng. properti es file.

Updating your image mapping file

Customizing your Application MBean Icons

To use custom icons, you must update your i mage_nappi ng. properti es file.
This file is stored in your resour ces directory:

UNIX <instal | -dir>/etc/opt/iona/ domai ns/ ny- domai n/ r esour ces

Windows <install-dir>\etc\donai ns\ ny- donai n\ r esour ces

For example, the i mage_nappi ng. properti es file lists all the iBank MBeans;
and for each MBean there are several entries. The following entries are for
Banki ng Servers type, which contains the Managedi Bank MBean:

Type = Banki ngServer
exanpl es. ej b. managenent . i bank. Managedi Bank. smal | =

resour ces/ i mages/ bank16. gi f
exanpl es. ej b. managenent . i bank. Managedi Bank. | arge =

resour ces/ i mages/ bank32. gi f
exanpl es. ej b. nanagenent . i bank. Managedi Bank. text = "i Bank"
Banki ngSer ver . smal | =bank16. gi f
Banki ngSer ver . | ar ge=bank32. gi f
Banki ngSer ver . t ext =Banki ng Server
Banki ngSer ver . t ype=Banki ng Servers

These entries specify the images for a small icon (16x16), a larger icon
(32x32), the text displayed for the icon, and its type or group
(Banki ngSer ver).

In the first three entries in this example, the first part of the property name
denotes the classname of the MBean. For example,
"exanpl es. ej b. ranagenent . i bank. Managedi Bank".

In the remaining entries, the first part of the property name denotes the type
of the property (for example, Banki ngSer ver). This is the type in which the
MBean is grouped and displayed in the console.

47

CHAPTER 3 | Displaying CORBA Java Applications

Accessing your custom icons

48

To access your new icons, simply copy them into your resour ces/ i mages
subdirectory.

When you are happy with the results you, may want to j ar your . war file
again. You can do this from within the adm n directory, for example, using
the following command:

jar cvf ../admn.war .
cd ..
rm-rf admn

You must clear out the classloading cache to see your changes take effect.
You can do this by stopping the management service and removing the
contents of the cache, for example, as follows:

rm-rf <install-dir>/var/nydomai n/ dbs/ ngnt/ cache/ CIMP/ *

Part Il
CORBA C++ Management

In this part This part contains the following chapters:

Instrumenting CORBA C++ Applications page b1

In this chapter

Instrumenting
CORBA C++
Applications

CHAPTER 4

This chapter explains how to use the Orbix C++ Management
API to enable an existing CORBA C++ application for
management. It uses the CORBA instrumented plugin demo

as an example.

This chapter contains the following sections:

Step 1—Identifying Tasks to be Managed page 52
Step 2—Defining your MBeans page 56
Step 3—Implementing your MBeans page 62
Step 4—lInitializing the Management Plugin page 76
Step 5—Creating your MBeans page 78
Step 6—Connecting MBeans Together page 80
Monitoring MBean Statistics page 84

51

CHAPTER 4 | Instrumenting CORBA C+ + Applications

Step 1—Identifying Tasks to be Managed

Overview

Existing functionality

New management tasks

52

Before adding management code to an application, you must decide on the
tasks in your application that you wish to be managed by a system
administrator. Only then should you start thinking about adding
management instrumentation code to your existing application. This section
includes the following:

® ‘“Existing functionality”.

® “New management tasks”.

® “Planning your programming steps”.

® “Location of the management code”.

The i nstrunent ed_pl ugi n example adds management capability to an
existing CORBA C+ + application. This is a simple "Hello World"
application, where the client application reads the server's object reference
from a file.

For details of how to run the instrumented plugin application, see the
READVE_CXX. txt file in the following Orbix directory:

install-dir\ asp\ version\ denos\ cor ba\ pdk\ i nst r unent ed_pl ugi n

The new management instrumentation code added to i nst r ument ed_pl ugi n
application enables administrators to perform the following additional tasks:

® Monitor the status of the Hel | o server (active or inactive).

® Monitor the number of times that the client reads the server’s object
reference.

® Set a hello text message.

® Invoke a weather forecast with specified text values.

® Shutdown the Hel | o server.

Administrators can perform these tasks using the IONA Administrator
Console, shown in Figure 9.

Planning your programming steps

Step 1—Identifying Tasks to be Managed

Z§ 10NA Administrator - Microsoft Internet Explorer (=] 54|
Ble Edit View Favorites Tools Help ‘
GBack - =& - @ [@ | Qoearch Garavortes Fveda (F | E- S EHEH O
Address [&] hep:/flocalnost 585 adminindex.do =] e |Lmks

B 7 e
B my-domain A, Hella Service

Bl sk Servers -]

S hello hello1
= 6—33 Processes DefaultDomain:type=HelloMBean name=hello] cascaded=hello
B-£F hello

= 6—23 HellohBean
=)

B HelloMBean TotalHelloCalls 9

S
@ hellod .

. 2 hellod Children { hello3, hello? }

E-& Management Server Message IHE”D, howyou doin'?
= 6—23 Processes
£¥ Management Server Process @ @
minimumTemperature 55

Jjava.lang. Short

CreateForecast
@ maximumTemperature [B5

Jjava.lang. Short

prospect |cloudy
ava. lang. Strin

4 | J g 9

[pone]

(ZE Local intranst 4

Figure 9: Instrumented Plugin in IONA Administrator

When you have identified your management tasks, you should think
carefully about how exactly you wish to add the new management code to
your existing application. For example, how much of the new code you will
add to existing files, and how much will be in new files.

In the i nst runent ed_pl ugi n example, the instrumentation code is part of
the service and is initialized when the service is initialized. For larger
applications, you might wish to keep new instrumentation files in a separate
directory.

53

CHAPTER 4 | Instrumenting CORBA C+ + Applications

Location of the management code

Instrumented plugin overview

54

This chapter explains how Orbix C++ management code was added to the
i nst runent ed_pl ugi n application, and shows the standard programming
steps. For example, defining and implementing your MBeans, and defining
relationships between MBeans.

Note: When instrumenting CORBA C+ + servers, you do not need to
make any changes to the CORBA IDL. You can enable your application for
management simply by adding new MBean instrumentation code to your
CORBA C+ + implementation files.

You should first decide where you wish to store your new management
code. All source code for the i nst runent ed_pl ugi n application is stored in
the following directory:

install-dir\asp\ version\ denos\ cor ba\ pdk\ i nst r unent ed_pl ugi n\

The management code for the CORBA C+ + server is stored in the following
directory:

... \instrument ed_pl ugi n\ cxx_ser ver
The following files are discussed in detail in this chapter

® hello_nbean. h
® hel | o_nbean. cxx
® hello_world_inpl.cxx

For larger applications, it is advised that you to store your management code

in a separate managenent directory. This will make your application more
modular, and easier to understand.

Figure 10 shows the main components of the i nst runent ed_pl ugi n
application. In this simple example, there is only one C++ MBean, the
Hel | oBean.

Most of the key management programming tasks in this example are
performed in the Hel | oWr | d server implementation

(hel 1 o_wor | d_i npl . cxx). For example, management initialization, creating
the MBean, and displaying MBeans in the navigation tree of the console.
The server implementation interacts with the MBean implementation to
perform these tasks.

Step 1—Identifying Tasks to be Managed

IONA Administrator

Instrumented Plugin C++ Application

HelloWorld
» plugin

HelloWorld
Server

HelloWorld
Client

}

Figure 10: Instrumented Plugin Application Overview

55

CHAPTER 4 | Instrumenting CORBA C+ + Applications

Step 2—Defining your MBeans

Overview

Managed Entities and MBeans

Rules for MBean declarations

56

When you have planned which parts of your application need to be
managed, you can then define MBeans to satisfy your management
objectives. This section shows how to define an example MBean header file
for the i nst r ument ed_pl ugi n application. This section includes the
following:

® “Managed Entities and MBeans”.

® “Rules for MBean declarations”.

¢ “Example MBean declaration”.

® “Example private description”.

® “Further information”.

The C+ + version of the Orbix management API is based around the concept
of a Managed Entity. This is similar to the JMX MBeans that are used by
Java Programmers. A managed entity acts as a handle to your application
object, and enables the object to be managed. The terms managed entity
and MBean are used interchangeably in this document.

The Orbix C++ Management API is defined in CORBA IDL (Interface
Definition Language). For full details of the Orbix Management API, see the
Orbix Management IDLdoc.

The following rules apply for C++ MBeans:

® Each MBean object must implement the declaration defined for it in a
C++ header file (in this example, hel | o_nbean. h).

® The following two operations must be declared and implemented:
* get_ngm _attribute()
. set_ngnt _attribute()

(although their implementation may be empty). These are the only two
operations for getting and setting all MBean attributes. The name of
the attribute is passed as a parameter, and the operation determines
whether to get or set the attribute.

Example MBean declaration

Step 2—Defining your MBeans

® Theinvoke_met hod() operation must also be declared and
implemented (although its implementation may be empty).

You must declare all these methods in the MBean header file, and then
implement them in the corresponding MBean implementation file (in this
example, hel | o_nbean. cxx).

The header file for the i nst r ument ed_pl ugi n application is hel | o_nbean. h.
It includes the following Hello MBean declaration:

Example 1: Hello MBean Declaration

#i fndef _HELLO MBEAN H_
#define HELLO MBEAN H_

#i ncl ude
#i ncl ude
#i ncl ude
#i ncl ude
#i ncl ude
#i ncl ude

<ony/ or b. hh>

<or bi x_pdk/ i nstrunent at i on. hh>
<or bi x/ cor ba. hh>
<it_dsa/string. h>
<it_dsa/list.h>

<it_ts/mtex. h>

class Hel | oVorl dl npl ;

cl ass Hel | oMBean :
public virtual |T_Mnt::ManagedEntity,
public virtual |IT _OCRBA: : Ref Count edLocal (bj ect {

publ i c:
Hel | oMBean (
Hel | oVor | dl npl * orb_info,
const char * nane
DE

virtual ~Hel |l oMBean();

I T_Mym : : ManagedEntityl dentifier managed_entity_id()
| T_THRON DEQL((CORBA: : Syst enException));

char* entity type() |T_THRONDECL((OCRBA: : Syst enException));

57

CHAPTER 4 | Instrumenting CORBA C+ + Applications

Example 1: Hello MBean Declaration

4 OORBA: : Any* get _nmgnt _attribute(const char* key)
| T_THRON DECL((CCRBA: : Syst enExcept i on,
I T_Mynt:: Attri but elnknown)) ;

voi d set_ngnt _attri but e(
const char* key, const CORBA: : Any & new val ue)
| T_THRON DEQL((CORBA: : Syst enExcept i on,
I T_Mymi:: AttributeUnknown, | T Mynt::AttributeReadOnly,
I T_Mynt:: AttributeVal uel nvalid));

QCRBA: : Any* i nvoke_met hod (const char* nethod_nare,
const | T_Mynt:: Argunent Seq& i n_paraneters,
I T_Mynt: : Argunent Seq_out out _par anet er s)
| T_THRON DECL((OCRBA: : Syst enExcept i on,
I T_Mynt: : Met hodUnknown, | T_Mynt:: | nvocationFailed));

5 I T_Mymt : : ManagedEnt i t yDescri ption get_descri ption()
I T_THRON DECL((OORBA: : Syst enException)) ;

struct Hel | oParam

{

const char *nane;

const char *type;

const char *description;
B

typedef |T_List<Hell oParan® Hel | oParanii st ;

This hel | o_nbean. h code example is described as follows:

1. The Hel | oMBean class implements the | T_Mynt : : ManagedEnt ity IDL
interface. All entities that need to be managed must derive from this
interface. The C++ implementation of the | T_Myni : : ManagedEnt ity
IDL interface is equivalent to a Java MBean.

2. ThelT_Myn:: ManagedEntityldentifier managed entity id()
operation is used to uniquely identify the managed entity.

3. Theentity_type() operation returns a string indicating the type.
This demo uses Hel | oMBean, which is the C++ classname. The
naming service, for example, uses Nani ngMBean.

58

Example private description

1

Step 2—Defining your MBeans

4. Theget_ngm _attribute(), set_ngnt_attribute(), and
i nvoke_net hod() operations all use the OORBA: : Any type to access
managed entity attributes and operations.

The GCRBA : Any type enables you to specify values that can express
any IDL type. For detailed information about the GCRBA: : Any type, see
the CORBA Programmer’s Guide (C++ version).

5. The get _description() operation returns an XML description of the
managed entity. This is used to display information about the managed
entity in the IONA Administrator Web Console. This is described in
more detail in the next topic.

The hel | o_nbean. h file also includes the following privately declared
information:

Example 2: HelloMBean Private Declaration

private:

struct Hell oAttribute

{
const char * nang;
const char * type;
const char * description;
| T_Bool access;
ik

typedef |T_List<HelloAttribute> HelloAttri butelList;

struct Hell oQperation

{
const char * nang;
const char * return_type;
const char * description;
Hel | oPar anii st par ans;

It

typedef |T_List<HelloQoeration> Hell oQperati onLi st;
void initialize attributes();
void initialize operations();

IT String get_attributes_ XM.() const;

59

CHAPTER 4 | Instrumenting CORBA C+ + Applications

60

Example 2: HelloMBean Private Declaration

IT String get_attribute XM_(Hel | oAttribute att) const;
IT_String get_operati ons_XM.() const;
I T _String get_operati on_XM_(Hel | oQperation op) const;
I T _String get_param XM.(Hel | oPar am paran) const;
I T_Bool validate_create_forecast_paramet ers(

const | T_Mynt:: Argurent Seq& i n_paramet ers)

throw (I T_Mynt: : I nvocati onFail ed) ;

voi d t hrow wr ong_num par anet er s()
throw (I T_Mynt: : I nvocati onFail ed) ;

voi d throw_ i nval i d_paranet er (const char *param nane)
throw (I T_Mynt: : I nvocati onFail ed) ;

voi d throw bad tenp_range(const char *paraniane,
QCRBA: : Short minVal, OORBA :Short naxVal)
throw (1 T_Mymt:: | nvocationFail ed);

voi d throw nmax_nust _be_great er _t han_m n()
throw (1 T_Mymt: : | nvocati onFai |l ed);

Hel | oAt tri but eLi st mattribute_|ist;
Hel | oQper at i onLi st m operation_|ist;
I T _String midentity;

IT String m donai n;

IT String m cl ass_narre;
IT_String mtype;

IT_String m nane;

I T_Mit ex m nut ex;

/] Attribute names

const char* m hi t_count _nane;
const char* m chi | dren_narre;
const char* m nessage_nane;

/1 Qperation names
const char* m create_forecast _nane;

Hel | oWr | dI npl * m hel | o;

Further information

Step 2—Defining your MBeans

1. This privately declared information is used to display descriptions of
managed attributes and operations in the IONA Administrator Web
Console. For example, the initialize_attributes() function uses a
Hel | oAt tri but e structure to define a single attribute. An instance of
this attribute and anything else that you declare are pushed onto a a
list. This list is then processed by get _attributes_XW.() and by
get _attribute_XM() to generate the description for display in the
IONA Administrator Web Console.

2. These operations all throw | T_Mymt management exceptions. You also
can specify custom management exceptions. For more information, see
“Throw the managed exceptions” on page 70.

C++ Managed entities are similar to the JMX MBeans that are used by Java
Programmers. For information about Java MBeans see:

http://j ava. sun. con pr oduct s/ JavaManagenent / i ndex. ht m

61

http://java.sun.com/products/JavaManagement/index.html

CHAPTER 4 | Instrumenting CORBA C+ + Applications

Step 3—Implementing your MBeans

Overview After defining your MBean interfaces, you must provide an MBean
implementation. MBean implementation objects interact with the
application they are designed to manage, enabling monitoring and control.

For example, this section shows the interaction between an MBean

(Hel | omBean) and the CORBA server implementation object

(Hel 1 over | diI npl). This section shows example code extracts from the
MBean implementation file (hel | o_nmbean. cxx). It includes the following
steps:

“Write the MBean constructor and destructor”.
“Get the managed entity ID and entity type”.
“Get the managed attributes”.

“Set the managed attributes”

“Invoke the managed operations”.

“Throw the managed exceptions”.

N o o s~ e

“Get the MBean description”.

Write the MBean constructor and The Hel | oMBean constructor and destructor are shown in the following
destructor extract from hel | o_nbean. cxx:

Example 3: MBean Constructor and Destructor

1 Hell oMBean: : Hel | oMBean (
Hel | oWor I dl npl * hello, const char *nane) : mhello(0)
{
assert(hello != 0);
hel | o->_add_ref();
m hello = hell o;
m donmai n = m hel | o- >get _donai n_nane() ;
m cl ass_name = “comi ona. hel | 0. Hel | oMBean";
mtype = "Hel | oMBean";
m nane = "Hel | oService";

62

Get the managed entity ID and
entity type

1

2

Step 3—Implementing your MBeans

Example 3: MBean Constructor and Destructor

}

midentity = "Defaul t Donai n";
//midentity = mdomain.c_str();
midentity += ":type=Hel | oMBean, nane="
midentity += nare;

initialize_ attributes();
initialize_operations();

Hel | oMBean: : ~Hel | oMBean()

}

m hel | o-> renove_ref();

This code extract is explained as follows:

1.

The Hel | oMBean() constructor specifies all the key information used to
identify the MBean, and display it in the IONA Administrator Web
Console. For example, this includes its domain name, a Java-style
class name (comi ona. hel | 0. Hel | oMBean), and a managed entity ID.
For information about registering MBeans as managed entities, see
“Creating an example MBean” on page 78.

The Hel | oMBean() destructor. For information about unregistering
MBeans as managed entities, see “Removing your MBeans” on

page 79.

The managed entity ID and type uniquely identify the managed entity. The
following code extract shows how to obtain the managed entity ID and its
type:

Example 4: Managed Entity ID and Type

I T_Mynt: : ManagedEnti tyl dentifier Hel | oMBean: : managed_entity i d()

{

| T_THRON DECL((OCRBA: : Syst enExcept i on))

return OORBA: :string_dup(midentity.c_str());

char* Hel | oMBean: :entity_type()

{
}

I T_THRON DEQL((CORBA: : Syst enExcept i on))

return QORBA: :string_dup(mtype.c_str());

63

CHAPTER 4 | Instrumenting CORBA C+ + Applications

Get the managed attributes

64

This code extract is explained as follows:

1. The ID returned by managed_entity_id() is a string that includes the
domain, type, and name, at minimum. These are the keys that are
looked up in the MBean by the management service. The actual values
are decided by the developer.

This example uses the Def aul t Domai n for the first string (the domain).
You can specify your own domain name instead. The rest of the name
value pairs follow, and are separated by commas, for example:

" Def aul t Domai n: t ype=Hel | oMBean, nane=Hel | oSer vi ce"

Note: The domain name part of the managed entity ID is not related
to an Orbix configuration or location domain. It is a namespace for
managed entities only. For example, in a banking application your
IDs might use a Banki ngApp domain.

2. Theentity_type() operation returns a string indicating the type of the
managed entity. The entity type is formatted in a dotted Java-style
notation, which can be used by the IONA Administrator Web Console
to display icons for an MBean. For example, this demo uses the
com i ona. hel | 0. Hel | oMBean type.

The following code extract shows how to get managed MBean attributes:
Example 5: Getting Managed Attributes

OCRBA: : Any* Hel | oMBean: : get _nmgmt _attri but e(const char* key)
| T_THRON DECL((CCORBA: : Syst enExcept i on,
I T_Myni:: Attri but eUnknown))
{
OCRBA: : Any_var retval = new CCRBA: : Any;
if (strcnp(key, mhit_count_nane) == 0)
{
| T_Locker<I T_Mit ex> | ock(m nut ex) ;
*retval <<= mhello->total _hits();
return retval . _retn();

else if (strcnp(key, mchildren_nane) == 0)
{
| T_Locker <I T_Mit ex> | ock(m nut ex) ;
Hel | oWor | dI npl : : Hel | oWor | dLi st children =
m hel | o- >get _chi l dren();

Step 3—Implementing your MBeans

Example 5: Getting Managed Attributes

}

QCRBA: : AnySeq chi | dren_seq(chil dren.size());
chil dren_seq. | engt h(chi |l dren. si ze());

Hel l oVor i dinpl:: HelloWrldList::iterator iter =
chil dren. begi n();

for (int i =0; i < children.size();i++ iter++)

{
I T_Mynt : : ManagedEntity_var nbean = (*iter)->get_nbean();
children_seq[i] <<= nbean.in();

}

*retval <<= children_seq;

return retval . _retn();

}

else if (strcnp(key, mmessage_name) == 0)

{
I T _Locker<I T_Mit ex> | ock(m mut ex) ;
OORBA: : String_var nessage = mhel | o- >get _message();
*retval <<= nmessage.in();
return retval . _retn();

}

el se

{

throw new | T_Mynt: : Attri but eUnknown() ;

}

This code extract is explained as follows:

1.

The get _ngmt _attri but e() operation is the only operation used for
getting all MBean attributes. The name of the attribute is passed in
and the operation determines whether to get the attribute.

The GCORBA : Any type enables you to specify values that can express
any IDL type. For details of managed attribute types, see “Permitted
types” on page 66. For detailed information about the CORBA: : Any
type, see the Orbix CORBA Programmer’s Guide (C++ version).
This get _ngnt _attribute() implementation supports complex
attribute types by also getting the attributes of child MBeans.

In the i nst rument ed_pl ugi n example, the children attribute of the
Hello MBean gets a list of references to child MBeans.

65

CHAPTER 4 | Instrumenting CORBA C+ + Applications

For example, in Figure 9 on page 53, the Children attribute and its
child MBeans (hello3 and hello2) are displayed in the IONA
Administrator Web Console.

Permitted types The following basic types are permitted for managed
attributes:

CCRBA: : Short

CCRBA: : Long

QOCRBA: : LongLong

CCRBA: : Fl oat

QCRBA: : Doubl e

CCRBA: : Bool ean

CORBA: : Cct et

QORBA: : String,

QCRBA: : Wt ri ng.

In addition, you can use ManagedEnt i t y references to connect one Managed
Entity and another. These will be displayed as hyperlinks on the web
console. Finally, you can use OCRBA: : AnySeq to create lists of any of the
permitted types already listed.

Set the managed attributes The following code extract shows how to set managed MBean attributes:
Example 6: Setting Managed Attributes

1 void Hell oMBean: :set_ngmt _attribute(const char* key,
const OORBA : Any & new val ue
| T_THRON DECL((CCRBA: : Syst enExcept i on,
I T_Mynmi:: AttributeUnknown, | T _Mynm::AttributeReadOnly,
I T_Myni::AttributeVal uelnvalid))
{
if (strcenp(key, mnessage_nane) == 0)
{
OCORBA: : TypeCode_var tc(new val ue.type());
OCRBA: : TCKi nd kind = tc->kind();

if (kind != CCRBA: :tk_string)

{

throw new | T_Mynt:: Attri but eVal uel nval i d();
}

const char *new nmessage;
new val ue >>= new_nessage;

66

Step 3—Implementing your MBeans

Example 6: Setting Managed Attributes

}

m hel | o- >set _nmessage(new_nessage) ;

else if (strcnp(key, mhit_count_nane) == 0)
{

throw new | T_Mynt:: Attri but eReadOnl y();
}
else if (strcnp(key, mchildren_nane) == 0)
{

throw new | T_Mym:: Attri but eReadnl y();
}
el se
{

throw new | T_Mynt : : Attri but enknown() ;
}

This code extract is explained as follows:

1.

2.

The set_ngm _attri but e() operation is the only operation used for
setting all MBean attributes. The name of the attribute is passed in and
the operation determines whether to set the attribute.

The GCRBA : Any type enables you to specify values that can express
any IDL type. For detailed information about the GCRBA: : Any type, see
the Orbix CORBA Programmer’s Guide (C++ version).

The set _nessage() function enables you to set the text message for
the hello greeting that is returned by the Hello object. For example,
Figure 9 on page 53, shows an example text greeting for the Message
attribute in the IONA Administrator Web Console.

67

CHAPTER 4 | Instrumenting CORBA C+ + Applications

Invoke the managed operations

68

The following code extract shows how to invoke MBean operations:
Example 7: [nvoke Operations

QCRBA: : Any* Hel | oMBean: : i nvoke_met hod(const char* et hod_nane,
const | T_Mynt:: Argurment Seq& i n_pararet ers,
I T_Myni: : Argunent Seq_out out _par anet er s)
I T_THRON DECL((OCRBA: : Syst enExcepti on, | T_Mynt : : Met hodUnknown
I T_Mynt: : I nvocati onFail ed))
{
OCRBA: : Any_var retval = new CCRBA: : Any;
if (strcnp(method_nane, mcreate_forecast_name) == 0)
{

I T_Locker <I T_Mit ex> | ock(m nut ex) ;

out _paranmeters = new | T_Mynt: : Argunent Seq(0) ;
out _par anet er s- >l engt h(0) ;

OCORBA: : String_var forecast;
OORBA: : Short mn_tenp, nmax_tenp;
const char *prospect;

if (in_paraneters.length() != 3)

{
}

t hr ow wr ong_num par anet ers() ;

val i date_creat e_forecast _paranet ers(i n_paraneters);

in_paraneters[0].val ue >>= mn_tenp;
if (mn_tenmp < COLDEST MN.TEMP || mn_tenp >
HOTTEST_NVAX_TEMP)

t hrow_bad_t enp_range(" m ni nunirenper at ur ",
COLDEST_M N_TEMP, HOTTEST_NAX_TEMWP) ;
}

in_paraneters[1].val ue >>= max_t enp;
if (max_tenp < COLDEST_ M N TEMP || max_tenp >
HOTTEST_MAX_TEMP)

t hrow_bad_t enp_r ange(" maxm nunTenper at ur e",
QCLDEST_M N _TEMP, HOTTEST_NAX _TEMWP) ;
}

Step 3—Implementing your MBeans

Example 7: /nvoke Operations

}

in_paraneters[2].val ue >>= prospect;
if (max_tenp < mn_tenp)

{
t hrow_nmax_nust _be greater_than_mn();
}
m hel | o- >set _f or ecast _par anet er s(
m n_t enp,
max_t enp,
pr ospect

)

forecast = mhel |l o->get forecast();
*retval <<= forecast.in();
return retval . _retn();

}
el se
{
throw new | T_Mynt : : Met hodUnknown() ;
}

This code extract is explained as follows:

1.

The i nvoke_net hod() operation is the only operation used for invoking
all MBean operations. The name of the operation is passed in and the
i nvoke_net hod() operation determines whether to invoke the
operation.

The OCRBA : Any type enables you to specify values that can express
any IDL type. For detailed information about the GCRBA: : Any type, see
the Orbix CORBA Programmer’s Guide (C++ version).

In this example, the val i dat e_creat e_f or ecast _par anet er s()
function checks that the weather forecast values entered are of the
correct type (short or string). The rest of the code checks that the
temperature values entered do not fall outside the range of the
predeclared const values:

static const OCRBA: : Short OOLDEST_M N TEMP = - 100;
static const OCRBA : Short HOTTEST MAX TEMP = 150;

69

CHAPTER 4 | Instrumenting CORBA C+ + Applications

Throw the managed exceptions

70

3. Theset_forecast_parameters() and get_forecast () functions
enable you to create and invoke your own weather forecast. Figure 9
on page 53, shows example parameter values for the CreateForecast

operation in th

e IONA Administrator Web Console. This operation

takes the following parameters:

. m n_tenp
. max_t enp

¢ pr ospect

(short)
(short)
(string)

Before throwing management exceptions, you must first declare them in
your MBean implementation file, for example:

static const char
"com i ona. deno.
static const char

*BAD TEMP_RANCE EX =
pdk. i nst r urrent edpl ugi n. BadTenpRange" ;
*MAX_MUST_BE _GREATER THAN M N EX =

"com i ona. deno. pdk. i nst r ument edpl ugi n. MaxMist BeG eat er ThanM n";

static const char
static const char
static const char
static const char

*| NVALI D_PARAM EX_PARAM NAME = " par anane” ;
*BAD TEMP_RANGE_EX_PARAM NAME = " par anhane" ;
*BAD TEMP_RANGE EX MN VAL = "nminVal "

*BAD TEMP_RANGE EX MAX VAL = "maxVal "

The following code shows two example functions that are used to throw

management except

ions:

Example 8: Throwing Management Exceptions

voi d Hel | oMBean: : t hr ow_bad_t enp_r ange(

const char *p
CCRBA: : Short
CCORBA: : Shor t

I T_Mynt: : | nvo

ar an\ane,
m nval ,
nmaxVal) throw (I T_Mynt:: | nvocati onFai | ed)

cati onFai |l ed ex;

I T_Myni:: | nvocationError err;
| T_Mym: : PropertySeq_var properties = new

I T_Mnt: :

PropertySeq(3);

properties->l engt h(3);

properties[0]

properties[O0].
properties[1].
properties[1].
properties[2].

properties[2]

.name = BAD TEMP_RANCE EX PARAM NAME;
val ue <<= par am\are;

nane = BAD TEMP_RANCE EX M N VAL;
val ue <<= ninval;

nane = BAD TEMP_RANGE EX MAX VAL,
.val ue <<= nmaxVal ;

Step 3—Implementing your MBeans

Example 8: Throwing Management Exceptions

err.id = (const char *) BAD TEMP_RANCGE EX;
err.error_parans = properti es;
ex.error_details = err;

throw | T_Mynt: : | nvocat i onFai | ed(ex);

}

voi d Hel | oMBean: : t hr ow_nmax_nust _be_great er _t han_m n()
throw (I T_Mynt: : | nvocat i onFai | ed)

{
I'T_Myn:: | nvocationFail ed ex;
I'T_Mymi::InvocationError err;
err.id = (const char *) MAX MUST_BE GREATER THAN M N EX
ex.error_details = err;
throw | T_Mynt : : | nvocat i onFai | ed(ex) ;
}

Custom exception messages You can specify custom messages using the
exception-ia. properties file, which is located in the following directory:
<i nstal | -di r>\ et c\ donmai ns\ sanpl e- donai n\ r esour ces

For example, the entry in this file for the t hr ow bad_t enp_r ange() operation
is as follows:

com i ona. deno. pdk. i nst r unent edpl ugi n. BadTenpRange=Bad
tenperature range entered for paraneter %araniName% The
tenperature nmust be between % nVal % and %raxVal %

Microsoft Internet Explorer x|

& Operation invocation has Failed for "CreateForecast”
Managemenk Exception:
Bad temperature range entered For parameter

[minimurmTemperature], The kemperature must
be between [-100] and [150].

Figure 11: Instrumented Plugin Custom Exception

71

CHAPTER 4 | Instrumenting CORBA C+ + Applications

Get the MBean description The following code shows how the MBean descriptions are obtained for
display in the IONA Administrator Web Console:

Example 9: Getting the MBean Description

1 I T _Mynt:: ManagedEntityDescription Hel | oMBean: : get _description()
I T_THRON DECL((CORBA: : Syst enExcept i on))
{
IT String xm _str =
"<?xm version=\"1.0\"?>"
"<?rumdtd version=\"1.0\" ?>"
" <nbean>"
"<cl ass_nane>";

xm _str += mcl ass_nane;

xm _str +=
"</ cl ass_name>"

" <domai n>";

xm _str += mdonai n;

xm _str +=
"</ domai n>"

" <type>";

xm _str += mtype;

xm _str +=
"</ type>"

"<identity>";

xm _str += midentity;

xm _str +=
"</identity>"
"<descri pti on>"

xm _str += "Hell o Service";

xm _str +=
"</ descri ption>";

xm _str += get_attributes XM();
xm _str += get_operations_XM();
xm _str += "</ nbean>";

return CORBA: :string_dup(xm _str.c_str());
2 void HelloMBean::initialize_ attributes()
{

mhit_count_name = "Total Hel | oCal | s";

Hel loAttribute total _hits =
{

72

Step 3—Implementing your MBeans

Example 9: Getting the MBean Description

m hit_count _nane, "long",
"The total nunber of successful calls to
Hel | oWor | d: : request _nunber () "
"since the Hello Service started",
| T_FALSE
IE
mattribute |ist.push_back(total hits);

m chi | dren_name = "Children";

Hel l oAttribute children =

mchi |l dren_nare, "list",
"The list of children of this MBean",
| T_FALSE

H
mattribute_|ist.push_back(children);
m nessage_name = "Message";

Hel | oAt tribute nessage =

{
m message_nane, "string",
"Message that this object emts",
I T_TRUE
ik
mattribute_|ist.push_back(message);
}
I T _String Hel | oMBean: : get _attributes_XM.() const
{
IT_String xm _str("");
Hel | oAttributelList::const_iterator iter =
mattribute_list.begin();
while (iter !'= mattribute |ist.end())
{
xm _str += get_attribute XM (*iter);
iter++
}
return xm _str;
}

73

CHAPTER 4 | Instrumenting CORBA C+ + Applications

Example 9: Getting the MBean Description

IT_String Hel | oMBean: : get _attri bute XM
(Hel loAttribute att) const
{
IT String xm _str =
"<managed_attri but e>"

" <npane>";
xm _str += att.nane;
xm _str +=

"</ name>"

" <type>";
xm _str += att.type;
xm _str +=

"</ type>"

"<descri ption>";
xm _str += att.description;
xm _str +=

"</ descri pti on>"

" <property>"
" <name>Access</ nane>"
"<val ue>";

xm _str += att.access ? "ReadWite" :

xm _str +=
"</ val ue>"
"</ property>"
"</ managed_at tri but e>";
return xm _str;

74

"Read";

Step 3—Implementing your MBeans

This code extract is explained as follows:

1.

The get _descri ption() operation returns an XML string description of
the managed entity, which is displayed by IONA Administrator. This
description normally includes the managed entity’s attributes and
operations (with parameters and return types). This string must be
exact in order to parse correctly. This code example includes the

cl ass_nane, donmai n and t ype attributes in the description.

The rest of the functions are local to this particular implementation,
and are not defined in IDL. The initialize_ attributes() function
uses a locally-defined structure (Hel | oAt t ri but e) to define a single
attribute. Hel 1 oAt tri but e is declared in hel | o_nbean. h. An instance
of this attribute and anything else that you declare are pushed on to a
list, including child MBeans.

The Hel 1 oAt tri but eLi st is then processed by get _attri but es_XM.()
and by get _attribute_XM() to generate the description for display in
the IONA Administrator Web Console.

There are similar functions for displaying the operations and their
parameters in the console (get _operati on_XM.(),
get _operations_XMW.() and get _param XM.()).

For full details of the nbean. dt d file used to display the XML string
description, see Appendix | on page 87.

75

CHAPTER 4 | Instrumenting CORBA C+ + Applications

Step 4—Initializing the Management Plugin

Overview

Example management
initialization

76

1

After defining and implementing your MBeans, you should then initialize the
the management plugin in your server implementation. The

i nst runent ed_pl ugi n example adds the additional instrumentation code to
the existing server implementation file.

Alternatively, for a larger application, you could create a separate
instrumentation class, which is called by your server implementation.

The following code extract is also from the server implementation file
(hel 1 o_wor 1 d_i npl . cxx) . It shows how the management plugin is
initialized in the i nst rument ed_pl ugi n application:

Example 10: Management initialization
void HelloWrldlinpl::initialize nanagenent() |T_THRONDECL(())

if (!mconfig->get_string("domai n_nane", m domai n_nane))
{
cerr << "Couldn't get donmai n_nanme from config" << endl;
m donai n_name = "<unknown donai n>";
}
try
{
CORBA: : (hj ect _var obj ;
CORBA: : String_var process_obj ect _nane;

obj = morb->resolve_initial_references("lIT_Instrunmentation");
I'T_Myni:: I nstrumentation_var instrunent;
instrunent = | T_Mynt:: I nstrunmentation::_narrow obj);

if (CORBA: :is_nil(instrurment))
{

throw I T_String("Instrunentation reference is nil");

}

Step 4—1Initializing the Management Plugin

This hel | o_wor | d_i npl . cxx code extract is described as follows:

1.

The get _string() operation obtains the managed entity domain
name. For more information, see “Get the managed entity ID and entity
type” on page 63.

Like any other Orbix service, the management service must be
initialized by your server implementation. The

resol ve_initial _references() operation obtains a reference to the
management instrumentation interface, | T_I nst runent ati on. This is
then narrowed to the I T_Mynt : : I nst rurent at i on type.

A managed entity must be registered with the instrumentation interface
to be displayed in the IONA Administrator Web Console.

77

CHAPTER 4 | Instrumenting CORBA C+ + Applications

Step 5—Creating your MBeans

Overview

Creating an example MBean

78

After initializing the management service plugin, you can then create your
MBeans in your server implementation. This section includes the following:

“Creating an example MBean".
“Removing your MBeans”.

The following is a continuation of the example in the last section, taken from
the server implementation file. It shows how the MBean is created for the
i nst runent ed_pl ugi n application:

Example 11: Creating an MBean

void Hel loWrldlinpl::initialize nanagenent ()

{

| T_THROWDECL(())

/l Oreate and register the Hell o MBean

I T_Mynt : : ManagedEntity var hel |l o_nbean ref;

hel | o_nbean_ref = mhell o_nbean_servant =
new Hel | oMBean(this, mnane.in());
i nst runent - >new entity(hel | o_nbean_ref);

if (mis_parent)

{

/1 Get the Process (hject Nane
process_obj ect _nane = i nstrunent->get process_obj ect _name();

/1 Add the MBean as a child of the Process MBean.
i nstrunent - >creat e_parent_chil d_rel ati onshi p(
process_obj ect _nane,
hel | o_nbean_r ef - >nanaged_entity_i d()

)

Removing your MBeans

Further information

Step 5—Creating your MBeans

This hel | o_wor | d_i npl . cxx code extract is described as follows:

1. You must create the MBean using the new() method, and register it as
a managed entity using the new entity() operation.

2. This gets the string that specifies the process object. The process
object is displayed as the parent of the Hel | oMBean in the navigation
tree of the IONA Administrator Web Console. For more information
about the process name, see “The Process MBean” on page 80.

3. This creates a parent-child relationship between your MBean and the
Process MBean. The create_parent_chil d_rel ati onshi p()
operation takes two parameters:

. The parent MBean name (in this case, the Process MBean).
. The child MBean name (in this case, a reference to the
Hel | oMBean).

Creating a parent-child relationship adds the MBean to the navigation
tree of the console.

You might wish to remove an MBean in response to an administrator's
interaction with the system. For example, in a banking application, if an
account is deleted from the bank, it would be appropriate to remove the
corresponding MBean for the account.

Removing an MBean unregisters it as a managed entity. This ensures that
the MBean will no longer be displayed as part of the managed application.

To remove an MBean, use the renove_entity() operation. When the
account’s MBean has been removed, it is no longer displayed in the IONA
Administrator Web Console. The renove_entity() operation takes the
managed entity name as a parameter.

The i nst runent ed_pl ugi n application is a simple example that does not
remove any MBeans.

For full details of the Orbix Management API, see the Orbix Management
IDLdoc.

79

CHAPTER 4 | Instrumenting CORBA C+ + Applications

Step 6—Connecting MBeans Together

Overview

The Process MBean

80

Applications are displayed in the IONA Administrator Web Console as a
series of related or connected MBeans, which can be monitored by
administrators. This section explains how to connect your application
MBeans together.

The management service plugin creates a Process MBean when it is first
loaded. A Process MBean is the default starting point in the console for
navigation within a managed process. In the i nst runent ed_pl ugi n
application, the Hel | oMBean is a child of the Process MBean.

Figure 12 shows the Process MBean for the i nst r ument ed_pl ugi n
application. The Process MBean has associated default attributes, displayed

in the details pane (for example, process type, time running, hostname, and
so on).

23 IONA Administrator - Microsoft Internet Explorer 5 =13l x|

Eile Edit View Favorites Tools Help |

back + = - @) el | Qsearch [GlFavorkes [fMeda 4 | B S = =

Adress [] http:flocalhost 5585 adminjindex do] @
0@ 7@
EL,@ sample-domain -ﬂ‘ Process Managed Objact

e S(é?rwvoer:z_sewices.locator hel IO

& IPAS Server DefaultDomain:type=Process name=hello, Server=hello, cascaded=hello
& iona_senices.node_daeman

8- lona_senices naming Attibute
B2 hallg e e e

Bl-ghy Processes Timemow Tue, 04 Feb 2003 12:06:27 5780000
El - 7
a HellahBean TimeRunning 19 hours, 16 minutes, 27 seconds
Bl hellal TimeStarted Mon, 03 Feb 2003 16:45:59.9540000
& Management Server e P
HostMName SUMMER
State Running
‘@ ’7’7,7 E Local intranet 4

Figure 12: Instrumented Plugin Process MBean

Step 6—Connecting MBeans Together

Creating parent—child Use the creat e_parent _chil d_rel ationshi p() operation to connect two
relationships MBeans together. This enables MBeans to appear as children of others in
the navigation tree on the left of the console.

“Creating an example MBean” on page 78 shows how to use this operation
to add your application MBean as a child of the Process MBean. In
Example 12, the add_chi 1 d() function shows how to add further child
MBeans created by your application to the navigation tree.

Example 12: Creating Child MBeans

voi d Hel | oWr | dl npl : : add_chi | d(Hel | oVWr | dl npl *chi | d)
I T_THRONDECL(())

{

/'l Lock nutex
try
{
1 OCRBA: : (hj ect _var obj ;
obj = morb->resolve_ initial _references("IT_Instrunentation");
I T_Mymi:: | nstrumentation_var instrunent;
instrunent = |T_Mnt::Instrunentation::_narrow obj);

if (CCRBA :is_nil(instrunent))

throw I T_String("Instrunentation reference is nil");

}
QCRBA: : String_var ny_nane, child_nare;
2 ny_name = m hel | o_nbean_servant - >managed_entity_id();
I T_Mynt: : ManagedEntity_var chil dMBean = chil d->get _nbean();
chi | d_name = chi | dMBean- >managed_entity id();
3 i nstrunent - >creat e_parent _chi |l d_rel ati onshi p(
ny_nane.in(),

chil d_nane.in()

)s

81

CHAPTER 4 | Instrumenting CORBA C+ + Applications

82

4

Example 12: Creating Child MBeans

}

m chi | dren. push_front (child);

catch(1 T_Mymt : : Managenent Bi ndFai | ed& ex)

{

cerr << "Managenent bind failed: " << ex << endl;
mis_managed = | T_FALSE;

}

}.

This hel | o_wor | d_i npl . cxx code extract is described as follows:
1.

The resol ve_initial _references() operation obtains a reference to
the management instrumentation interface, | T_I nst runent ati on. This
is then narrowed to the I T_Mynt : : I nst runent at i on type. All managed
entities must be registered with the instrumentation interface to be
displayed in the IONA Administrator Web Console.

The managed_entity_i d() operation is used to uniquely identify the
managed entity.

The creat e_parent _chil d_rel ati onshi p() operation takes the parent
MBean and the child MBean as parameters.

This adds the child MBean to the list of MBeans. These steps add the
child MBean to the tree for display in console. For example, Figure 13
shows a child MBean for the i nst r unent ed_pl ugi n application (in this
example, hello3).

Step 6—Connecting MBeans Together

a IONA Administrator - Microsoft Internet Explorer

File Edit

- _jolx
es Tools Help |
Bk - = - D @t | @search [GaFavortes @veda (4 | By S = =il

Address [&] http://localhost 8885 adminfindex.do

j r{'\?Go
D (@ F @
- .a sample-domain A Hello Senice
" --S.é?r\\fner::_sewices locator © he”°3

& IPAS. Server
B-&, iona_senices.node_daernon
& Iona_senices. narming

DefaultDomain:type=HelloMBean harme=hello3 cascaded=hello

: Val
g pop e
Bl-ghy Processes TotalHelloCalls 1]
E-£¥ hello :
E|523 HellohBean e 0
B hellot Message Hello, Warld!
8- 523 HellotBean I

B Management Server

Opel Parameters

CreateForecast

minimumTermperature : java.lang. Short

maximurmTemperature

prospect

: java.lang. Short

Java.lang. String

‘@ Done

’_ ,_ ,_ |;:|;"' Local intranet A

Figure 13: Instrumented Plugin Child MBean

83

CHAPTER 4 | Instrumenting CORBA C+ + Applications

Monitoring MBean Statistics

Overview Optionally, you can also monitor statistics from MBeans in your own
applications. The i t _nbean_noni t ori ng performance logging plug-in
enables you to periodically harvest statistics associated with MBean
attributes. This section includes the following:
® “MBean monitoring”.
® “Programming steps”.

MBean monitoring The I T_MBeanMoni t ori ng IDL interface provides the support for monitoring
MBean statistics. This interface is defined as follows:

nodul e | T_MBeanMbni tori ng
{

const string MANAGEMENT_MBEAN MONI TCRING I N TI AL_REF =
"1 T_MBeanMoni t ori ngRegi stration";

/1 Interface exceptions.

exception MBeanNot Found {};

exception MBeanAttri buteNot Found {};
exception MBeanAttri butel nval i dType {};

/1 1 T_MBeanMoni t ori ng: : MBeanMbni t ori ngRegi strati on
/1

// An interface which provides a neans to

/1 nonitor and |log statistics about nbeans

Il registered with the managenent servi ce.

84

Programming steps

Monitoring MBean Statistics

| ocal interface MBeanhbnitoringRegistration

{

voi d noni tor_attribute(
in string object_nane,
in string attribute_namne,
in string alias) raises (MBeanNot Found,
MBeanAt t ri but eNot Found, MBeanAttri but el nval i dType) ;

voi d cancel _noni tor (

in string object_namne,

in string attribute_nane,

instring alias) raises (MBeanNot Found);

}
IE

When the i t _nbean_noni t ori ng plug-in is included in your or b_pl ugi ns
list, an initial reference is registered for the
| T_MBeanMoni t ori ngRegi st rat i on interface.

When you resolve on your application MBean, the | T_MBeanMoni t ori ng API
can be used to switch on, or turn off, monitoring of an application MBean.
Statistics for user monitored MBeans will then appear in the performance
logs.

This example assumes that you already have an MBean with an attribute
that you want to be sampled and logged. For example, the MBean might
track the memory currently being used by the process. The programming
steps are as follows:

1. Include the following header files:

#i ncl ude <or bi x_pdk/ nbean_poni t ori ng_regi strati on. hh>

85

CHAPTER 4 | Instrumenting CORBA C+ + Applications

2. To register your MBean with the i t _nbean_roni t ori ng plug-in, you
must first resolve on the MBean monitoring initial reference:

try {
Chj ect _var obj = orb->resolve_initial_references(

I T_MBeanMoni t ori ng: : MANAGEMENT_MBEAN MONI TCRI NG | N Tl AL_REF
)

m nbean_noni toring_registration =
MBeanMoni t or i ngRegi strati on: : _narrow(obj);

}
catch(const ORB:: | nval i dNaneg&)

{
}

3. You can then register the attribute to be monitored by specifying your
MBean details in a call to noni tor_attribute():

try {
m nbean_noni t ori ng_regi strati on->noni tor_attri but e(
"mbean_name", "attribute_name", "mbean_friendly_name");
}
catch (...)

/1 do not hi ng.

}
The mbean_friendly_name is an alternative alias that will also appear
in the log file.
Further information For more details on Orbix performance logging, see the Orbix Management

User’s Guide.

86

In this appendix

APPENDIX |

MBean Document
Type Definition

This appendix lists the contents of the mbean.dtd file used to
generate the display of the IONA Administrator Web Console.

This appendix contains the following section:

The MBean Document Type Definition File page 88

87

APPENDIX | | MBean Document Type Definition

The MBean Document Type Definition File

Overview The mbean.dtd file used to generate the XML used in the display of the
IONA Administrator Web Console. For example, the get _descri pti on()
operation returns an XML string description of the managed entity, which is
then displayed by the console. This description normally includes the
managed entity’s attributes and operations (with parameters and return
types).

mbean.dtd contents The contents of the mbean.dtd file is as follows:

<l-- MBean is the top level elenent -->

<! ELEMENT nbean (cl ass_name, domain, identity, agent_id,
description, notification_listener*, notification_filter*,
notification_broadcaster*, constructor*, operation*,
managed_at t ri but e*) >

<I'-- | MVEDI ATE MBEAN PRCPERTI ES -->
<| ELEMENT cl ass_nane (#PCDATA) >

<! ELEMENT donai n (#PCDATA) >

< ELEMENT identity (#PCDATA) >

<I ELEMENT agent _id (#PCDATA) >

<l-- COWDN ELEMENT TYPES -->

<I-- type = void | byte| char | double | float | long | |onglong
| short | boolean | string | list | ref | UNSUPPCRTED -->
<! ELEMENT type (#PCDATA) >

<! ELEMENT nane (#PCDATA) >
<! ELEMENT descri ption (#PCDATA) >
<! ELEMENT param (nane, type, description)>

<l-- NOTI FI CATICN details - note no recipients are shown for the
broadcasts -->

<I ELEMENT notification_|istener EMPTY>

<I ELEMENT notification_filter EMPTY>

<! ELEMENT noti fi cati on_broadcaster EMPTY>

88

The MBean Document Type Definition File

<l-- CONSTRUCTGRS - ->
<! ELEMENT constructor (nane, description, parant)>

<l-- CPERATIONS -->

<! ELEMENT operation (nanme, type, description, parant)>

<l-- MANACGED ATTR BUTES -->
<! ELEMENT nanaged_attribute (nane, type, description,
property*)>

<l-- PRCPERTIES -->

<!-- npane = Access -->

<! ELEMENT property (nane, val ue)>

<I-- value = ReadWite | ReadOnly | | NACCESSI BLE -->
<! ELEMENT val ue (#PCDATA) >

89

APPENDIX | | MBean Document Type Definition

90

Glossary

Administration

All aspects of installing, configuring, deploying, monitoring, and managing a
system.

Application Server

A software platform that provides the services and infrastructure required to
develop and deploy middle-tier applications. Middle-tier applications perform
the business logic necessary to provide web clients with access to enterprise
information systems. In a multi-tier architecture, an application server sits
beside a web server or between a web server and enterprise information
systems. Application servers provide the middleware for enterprise systems.

CORBA

Common Object Request Broker Architecture. An open standard that enables
objects to communicate with one another regardless of what programming
language they are written in, or what operating system they run on.

Configuration
A specific arrangement of system elements and settings.

Controlling

The process of modifying the behavior of running software components,
without stopping them.

Details Pane

The display pane on the right hand side of the IONA Administrator Web
Console user interface.

Deployment

The process of distributing a configuration or system element into an
environment.

Domain

An abstract grouping of managed server processes and hosts within a physical
location. Processes within a domain share the same configuration and
distributed application infrastructure. A domain is equivalent to an Orbix
configuration domain.

91

GLOSSARY

92

Event
An occurrence of interest, which is emitted from a managed entity.

Host
Generic term used to describe a computer, which runs parts of a distributed
application.

Installation
The placement of software on a computer. Installation does not include
Configuration unless a default configuration is supplied.

Instrumentation

Code instructions that monitor specific components in a system (for example,
instructions that output logging information on screen.) When an application
contains instrumentation code, it can be managed using a management tool
such as IONA Administrator.

Invocation
A request issued on an already active software component.

JRE

Java Runtime Environment. A subset of the Java Development Kit required
to run Java programs. The JRE consists of the Java Virtual Machine, the Java
platform core classes and supporting files. It does not include the compiler or
debugger.

JMX

Java Management Extensions. Sun’s standard for distributed management
solutions. JMX provides tools for building distributed, Web-based solutions
for managing devices, applications and service-driven networks.

Managed Application
An abstract description of a distributed application, which does not rely on
the physical layout of its components.

Managed Entity
A generic manageable component (C++ or Java). Managed entities include
managed domains, servers, containers, modules, and beans.

GLOSSARY

A managed entity acts as a handle to your application object, and enables
the object to be managed. The terms managed entity and MBean are used
interchangeably in this document.

Managed Server

A set of replicated managed processes. A managed process is a physical
process which contains an ORB and which has loaded the management
plugin. The managed server can be an EJB application server, CORBA server,
or any other instrumented server that can be managed by IONA Administrator.

Managed Process.
A physical process which contains an ORB and which has loaded the
management plugin.

Management

To direct or control the use of a system or component. Sometimes used in a
more general way meaning the same as Administration.

MBean
A JMX term used to describe a generic manageable object.

An MBean acts as a handle to your application object, and enables the
object to be managed. The terms managed entity and MBean are used
interchangeably in this document.

Monitoring
Observing characteristics of running instances of software components.
Monitoring does not change a system.

Navigation Tree
The tree on the left hand side of the IONA Administrator Web Console.

Node

A node represents a host machine on which the product is installed. The
management service and managed servers are deployed on nodes.

ORB

CORBA Object Request Broker. This is the key component in the CORBA
architecture model. It acts as the middleware between clients and servers.

93

GLOSSARY

94

Process

This is the operating system execution environment in which system and
application programs execute. A Java Virtual Machine (JVM) is a special type
of process that runs Java programs. A process that is not running Java
programs is referred to as a standard or C++ process.

Process MBean

The is the first-level MBean that is exposed for management of an application.
It is the starting point for navigation through an application in the IONA
Administrator Web Console

Resource

This represents shared data or services provided by a server. Examples of
J2EE resources include JDBC, JNDI, JMS, JCA, and so on. Examples of
CORBA resources include naming service, implementation repository, trading
service, notification service, etc.

Server

This is a collection of one or more processes on the same or different nodes
that execute the same programs. The processes in a server are tightly coupled,
and provide equivalent service. This means that the calling client does not
care which process ends up servicing the request.

Runtime Administration, Runtime Management
Encompasses the running, monitoring, controlling and stopping of software
components.

SNMP

Simple Network Management Protocol. The Internet standard protocol
developed to manage nodes on an IP network. It can be used to manage and
monitor all sorts of devices (for example, computers, routers, and hubs)

Starting
The process of activating an instance of a deployed software component.

Stopping
The process of deactivating a running instance of a software component.

GLOSSARY

Web Services

Web services are XML-based information exchange systems that use the
Internet for direct application-to-application interaction. These systems can
include programs, objects, messages, or documents.

XML

Extensible Markup Language. XML is a simpler but restricted form of Standard
General Markup Language (SGML). The markup describes the meaning of the
text. XML enables the separation of content from data. XML was created so
that richly structured documents could be used over the web. See

ht t p: // waww w3. or g/ XM/

95

http://www.w3.org/XML/

GLOSSARY

96

Index

C

CFR 3

CORBA, definition 91

createMBean() method 32
createParentChildRelation() method 44
create_parent_child_relationship() operation 79
custom exception messages 71

D
domains
definition 91
introduction 2
dynamic MBeans 7

E
EJB, definition 92
entity_type() operation 58

G

get_attributes_XML() function 61
get_description() operation 59
get_forecast() function 70

get_ mgmt_attribute() operation 56
get string() operation 77

H

HelloAttributeList 75
HelloMBean() constructor 63
HelloMBean() destructor 63
HelloMBean class 58
HelloWorldImpl object 62

|
iBank example 18, 54
IIOP 3
initialize_attributes() function 61
instrumentation, definition 92
instrumented_plugin example 52
invoke_method() operation 57
IONA Administrator

Web Console 2

IONA Configuration Explorer 3
iona_services.management process 2
IT_lIOPAdaptorServer object 29
IT_MBeanMonitoring 37, 84

it_ mbean_monitoring 37, 84
IT_Mgmt::Instrumentation type 77

J

JMX
definition 92
introduction 5

M
Managed Entity 9
managed_entity id() operation 58
management instrumentation

programming steps 7
management service, overview 2
mbean.dtd file 75
MBeans

creating 31

defining interfaces 19

domain name 27

dynamic 7

identifying 27

implementing 24, 62

introduction 5

monitoring C++ 84

monitoring Java 37

object names 22

Process MBean 33, 43, 80, 94

registering 31

standard 7

unregistering 11, 34

viewing in IONA Administrator 42
MBeans, definition 93
MBean server

gaining access to 28

introduction 5
monitor_attribute() 39, 86

97

INDEX

N
new() method 32
new_entity() operation 79

o)

ObjectName parameter 27
object names, for MBeans 22
ORB, definition 93

Orbix Configuration Authority 4

P

performance logging 37
permitted attribute types, C++ 66
Process MBean 33, 43, 80, 94
programming steps

for management instrumentation 7

R

registerMBean() method 32
remove_entity() operation 79
resolve_initial_references() operation 77

S

set_forecast_parameters() function 70
set_message() function 67
set_mgmt_attribute() operation 56
SNMP, definition 94

standard MBeans 7

U
unregisterMBean() method 34

\'

validate create forecast parameters() function 69

w
Web Services, definition 95

X
XML, definition 95

98

	List of Figures
	Preface
	Overview
	Introduction to Application Management
	Introduction to Orbix Management Tools
	Introduction to Java Management Extensions
	Introduction to the Orbix Management API
	Overview of Management Programming Tasks

	CORBA Java Management
	Instrumenting CORBA Java Applications
	Step 1—Identifying Tasks to be Managed
	Step 2—Defining your MBeans
	Step 3—Implementing your MBeans
	Step 4—Gaining Access to an MBean Server
	Step 5—Registering your MBeans
	Step 6—Unregistering your MBeans
	Step 7—Connecting MBeans Together
	Monitoring MBean Statistics

	Displaying CORBA Java Applications
	Displaying MBeans
	Adding Application MBeans to the Tree
	Customizing your Application MBean Icons

	CORBA C++ Management
	Instrumenting CORBA C++ Applications
	Step 1—Identifying Tasks to be Managed
	Step 2—Defining your MBeans
	Step 3—Implementing your MBeans
	Step 4—Initializing the Management Plugin
	Step 5—Creating your MBeans
	Step 6—Connecting MBeans Together
	Monitoring MBean Statistics

	MBean Document Type Definition
	The MBean Document Type Definition File

	Glossary
	Index

