IONA

fgl Orbix®

Enterprise Messaging Guide

Java
Version 6.3, December 2005

Making Software Work Together™

IONA Technologies PLC and/or its subsidiaries may have patents, patent applications,
trademarks, copyrights, or other intellectual property rights covering subject matter in
this publication. Except as expressly provided in any written license agreement from
IONA Technologies PLC, the furnishing of this publication does not give you any license
to these patents, trademarks, copyrights, or other intellectual property. Any rights not
expressly granted herein are reserved.

IONA, IONA Technologies, the IONA logo, Orbix, Orbix Mainframe, Orbix Connect, Artix,
Artix Mainframe, Artix Mainframe Developer, Mobile Orchestrator, Orbix/E, Orbacus,
Enterprise Integrator, Adaptive Runtime Technology, and Making Software Work
Together are trademarks or registered trademarks of IONA Technologies PLC and/or its
subsidiaries.

Java and J2EE are trademarks or registered trademarks of Sun Microsystems, Inc. in the
United States and other countries.

CORBA is a trademark or registered trademark of the Object Management Group, Inc. in
the United States and other countries. All other trademarks that appear herein are the
property of their respective owners.

IONA Technologies PLC makes no warranty of any kind to this material including, but not limited to, the implied
warranties of merchantability and fitness for a particular purpose. IONA Technologies PLC shall not be liable for
errors contained herein, or for incidental or consequential damages in connection with the furnishing, perform-
ance or use of this material.

COPYRIGHT NOTICE

No part of this publication may be reproduced, stored in a retrieval system or transmitted, in any form or by any
means, photocopying, recording or otherwise, without prior written consent of IONA Technologies PLC. No third
party intellectual property right liability is assumed with respect to the use of the information contained herein.
IONA Technologies PLC assumes no responsibility for errors or omissions contained in this book. This publica-
tion and features described herein are subject to change without notice.

Copyright © 2005 IONA Technologies PLC. All rights reserved.

All products or services mentioned in this manual are covered by the trademarks, service marks, or product
names as designated by the companies who market those products.

Updated: 9-Dec-2005

M3214

Contents

List of Tables ix
List of Figures Xi
Preface Xiii

Part | Messaging Service Technologies

Chapter 1 CORBA Messaging Technologies 1
Event Service 3
Notification Service 5
Telecom Log Service 6
Event Communication 8

Chapter 2 The Java Messaging Service 11
Java Messaging Service Overview 12
Point to Point Messaging 13
Publish / Subscribe Messaging 14
Chapter 3 The JMS-Notification Bridge Service 15

Part Il The Notification Service

Chapter 4 Developing Suppliers and Consumers 21
Obtaining an Event Channel 22
Implementing a Supplier 27

Instantiating the Supplier 28
Connecting to a Channel 30

Creating Event Messages 35

CONTENTS

Sending Event Messages

Disconnecting From the Event Channel
Implementing a Consumer

Instantiating a Consumer

Connecting to the Channel

Obtaining Event Messages

Disconnecting From the Event Channel

Chapter 5 Notification Service Properties
Property Types
Property Inheritance
Setting Properties
Setting Properties Programmatically
Setting a Structured Event’s QoS Properties
Getting Properties
Validating Properties
Property Descriptions
Reliability Properties
Event Queue Order
Event Priority
Lifetime Properties
Start Time Properties
Undelivered Event Properties
RequestTimeout
Sequenced Events Properties
Proxy Push Supplier Properties
Proxy Pull Consumer Properties
Channel Administration Properties

Chapter 6 Event Filtering
Forwarding Filters
Implementing a Forwarding Filter
Processing Events with Forwarding Filters
Mapping Filters
Implementing a Mapping Filter Object
Processing Events with Mapping Filters
Filter Constraint Language
Constraint Expression Data Structure

39
43
44
45
47
52
56

57
58
60
61
62
65
66
67
69
70
72
73
74
75
76
77
78
79
80
81

83
84
85
90
93
94
98

100
101

CONTENTS

Event Type Filtering 102
Referencing Filtered Data 104
Operand Handling 107
Examples of Notification Service Constraints 108
Chapter 7 Subscribing and Publishing 109
Event Subscription 110
Adding Forwarding Filters 111
Obtaining Subscriptions 113
Implementing subscription_change() 116
Publishing Event Types 119
Advertising Event Types 120
Discovering Available Event Types 122
Implementing offer_change() 126
Chapter 8 Multicast Consumers 129
MIOP 130
IDL Interfaces 131
Configuring Orbix for Multicast 133
Implementing an Endpoint Group 134
Instantiating an IP/Multicast Consumer 135
Creating a POA for an Endpoint Group 137
Registering an Endpoint Group Object Reference 139
Connecting to an Event Channel 140
Receiving Events 145
Filtering and Event Subscription 146
Disconnecting from an Event Channel 147
Chapter 9 Managing the Notification Service 149
Configuring the Notification Service 150
Running the Notification Service 151
Using Direct Persistence 152
Managing a Deployed Notification Service 154
Example 1: Generating Trace Information 155

Example 2: Failure Recovery 156

CONTENTS

Part Ill The Telecom Log Service

Chapter 10 Telecom Log Service Basics
Telecom Log Service Objects
Telecom Log Service Features

Chapter 11 Developing Telecom Log Clients
Creating a Log
Obtain a log factory
Obtain a log object
Logging Events
Logging with a BasiclLog
Logging Events with an EventlLog
Logging Events with a NotifyLog
Getting Log Records
Deleting Records from the Log
Ending a Logging Session

Chapter 12 Advanced Features

Scheduling

Log Generated Events

Event Forwarding

Filtering

Log Management
Administrative State
Maximum Log Size
Log Duration
Record Lifetime
Log QoS Properties
Availability Status
Operational State

Qualities of Service

Chapter 13 Managing the Telecom Log Service
Configuring the Telecom Log Service
Running the Telecom Log Service
Managing a Deployed Telecom Log Service

Vi

159
160
161

163
164
165
166
171
172
176
178
180
182
184

185
186
190
199
206
210
211
213
214
215
216
218
220
221

223
224
227
229

Part IV The Java Messaging Service

Chapter 14 Developing a JMS Application
Using Point to Point Messaging
Creating a Queue
Implementing a Point to Point Message Producer
Implementing a Point to Point Message Consumer
Using Publish / Subscribe Messaging
Creating a Topic
Implementing a Message Publisher
Implementing a Subscriber

Chapter 15 Managing JMS

JMS Configuration
Running JMS

Starting the JMS Broker

Shutting Down the JMS Broker
Managing JMS with the Management Service
Selecting a Persistent Store Implementation
Running JMS Clients

Part V. The JMS-Notification Bridge Service

Chapter 16 JMS-Notification Message Translation
JMS Message to Notification Event
Notification Event to JMS Message

Chapter 17 Managing the JMS-Notification Bridge Service

Configuring the Bridge Service
Running the Bridge Service
Managing the Bridge Service with itadmin
Managing the Bridge Service Programatically
Getting a BridgeAdmin
Getting a Bridge
Managing Message Flow Through a Bridge

CONTENTS

233
235
236
238
243
249
250
252
257

263
264
266
267
269
270
273
275

279
280
284

289
290
291
292
296
297
298
301

vii

CONTENTS

Destroying a Bridge 302

Glossary 303

Index 309

viii

List of Tables

Table 1:
Table 2:
Table 3:
Table 4:
Table 5:
Table 6:
Table 7:
Table 8:
Table 9:

Table 10:
Table 11:
Table 12:
Table 13:
Table 14:
Table 15:
Table 16:
Table 17:
Table 18:
Table 19:

Features of the telecom log service

Component Support for Quality-of-Service Properties
Error Codes returned with the UnsupportedQoS and UnsupportedAdmin Exceptions

Log feature support

Initial reference strings

Settings for a log’s full_action

Events generated by a log factory
Methods for attaching filters
Administrative states for a log

Log QoS settings

Availability states for a log

Log operational states

Telecom log service configuration variables
Queue and Topic feature chart

JMS broker MBean attributes

JMS broker MBean operations

JMS destination MBean attributes
JMS Message Header Completion
CORBA::Any to JMS message mapping

7
58
63

16l
165
167
190
207
211
216
218
220
225
233
270
271
271
286
287

LIST OF TABLES

List of Figures

Figure 1:
Figure 2:
Figure 3:
Figure 4:
Figure 5:
Figure 6:
Figure 7:
Figure 8:
Figure 9:

Suppliers and Consumers Communicating through an Event Channel

Event Propagation in a CORBA System

Log service configuration

The Push Model of Event Transfer

Pull Model Suppliers and Consumers Communicating through an Event Channel
Push Suppliers and Pull Consumers Communicating through an Event Channel
Simple JMS system

JMS Point to Point Messaging

JMS Publish/Subscribe Messaging

Figure 10: JMS-Notification Bridging
Figure 11: Structured Event Components

Figure 12: Forwarding Filters Can Intercept an Event Message at Multiple Delivery Points

Figure 13: Filter points in event’s life-cycle

Figure 14: JMS message to structured event mapping

Figure 15: Structured event to JMS message mapping

N © O 00 O b W

14
16
36
91
206
280
285

Xi

LIST OF FIGURES

Xii

Specification compliance

Audience

Related Documentation

Preface

IONA'’s Notification Service is a full implementation of the notification
service as specified by the Object Management Group.

IONA's Telecom Log Service is a full implementation of the telecom log
service a specified by the Object Management Group.

All CORBA messaging services comply with the following specifications:

®* CORBA23

® GIOP 1.2 (default), 1.1, and 1.0

IONA’s Java Messaging Service implentation is a full implementation of Sun
Microsystem'’s Java Messaging Service specification version 1.0.2b.

If you need help with this or any other IONA products, contact IONA at
suppor t @ona. com Comments on IONA documentation can be sent to
docs- support @ona. com

This guide is intended to help you become familiar with the notification
service, and shows how to develop applications with it. This guide assumes
that you are familiar with CORBA concepts, and with Java.

This guide does not discuss every interface and its operations in detail, but
gives a general overview of the capabilities of the notification service and
how various components fit together. For detailed information about
individual operations, refer to the CORBA Programmer’s Reference.

For the latest version of all IONA product documentation, see the IONA web
site:
http: // waw. i ona. coni docs/

xiii

http://www.iona.com/docs/

PREFACE

Organization of this Guide

Document Conventions

Xiv

Read “Messaging Service Technologies” for an overview of the Orbix
enterprise messaging services. Subsequent parts describe various
components of the messaging service in detail, and show how you
implement an application that uses its capabilities.

This guide uses the following typographical conventions:

Constant wi dth

Italic

Constant width (courier font) in normal text represents
portions of code and literal names of items such as

classes, functions, variables, and data structures. For
example, text might refer to the CORBA: : (j ect class.

Constant width paragraphs represent code examples
or information a system displays on the screen. For
example:

#i ncl ude <stdio. h>

Italic words in normal text represent emphasis and
new terms.

Italic words or characters in code and commands
represent variable values you must supply, such as
arguments to commands or path names for your
particular system. For example:

% cd /users/your_name
Note: some command examples may use angle
brackets to represent variable values you must supply.

This is an older convention that is replaced with italic
words or characters.

This guide may use the following keying conventions:

No prompt

%

When a command’s format is the same for multiple
platforms, a prompt is not used.

A percent sign represents the UNIX command shell
prompt for a command that does not require root
privileges.

A number sign represents the UNIX command shell
prompt for a command that requires root privileges.

The notation > represents the DOS, Windows NT,
Windows95, or Windows98 command prompt.

{}

PREFACE

Horizontal or vertical ellipses in format and syntax
descriptions indicate that material has been
eliminated to simplify a discussion.

Brackets enclose optional items in format and syntax
descriptions.

Braces enclose a list from which you must choose an
item in format and syntax descriptions.

A vertical bar separates items in a list of choices
enclosed in {} (braces) in format and syntax
descriptions.

XV

PREFACE

XVi

Overview

In this part

Part |

Messaging Service
Technologies

Orbix provides enterprise messaging technology through the CORBA
notification service, the CORBA telecom log service, and the Java Messaging
System(JMS). Orbix also provides a bridging service that allows the CORBA
notification service and JMS to seamlessly share messages.

This part contains the following chapters:

CORBA Messaging Technologies page 1

The Java Messaging Service page 11

The JMS-Notification Bridge Service page 15

Overview

In this chapter

CHAPTER 1

CORBA Messaging
Technologies

The architecture of the CORBA event service provides the foundation for the
CORBA messaging technologies. In the event service, client suppliers
generate messages which are forwarded to client consumers through an
event channel. The event channel provides a mechanism for publish /
subscribe messaging, but does not support point to point messaging.

The notification service provides enterprise level decoupled messaging
facilities by extending the functionality of the CORBA event service to
include Qualities of Service, subscription mechanisms, filtering, and
structured messages.

The telecom log service encompasses the functionality of both the event
service and the notification service and extends their functionality by adding
a durable and searchable log. The logs record the events forwarded through
the associated event or notification service.

Note: The telecom log service also provides a log for non-messaging
CORBA clients.

This chapter discusses the following topics:

Event Service page 3

Notification Service page 5

CHAPTER 1 | CORBA Messaging Technologies

Telecom Log Service page 6

Event Communication page 8

Event Service

Event Service

Overview An event originates at a client supplier and is forwarded through an event
channel to any number of client consumers. Suppliers and consumers are
completely decoupled; a supplier has no knowledge of the number of
consumers or their identities, and consumers have no knowledge of which
supplier generated a given event.

Service Capabilities An event channel provides the following capabilities for forwarding events:
® Accepts incoming events from client suppliers.
® Forwards supplier-generated events to all connected consumers.

Connections Suppliers and consumers connect to an event channel and not directly to
each other, as shown in Figure 1. From a supplier's perspective, the event
channel appears as a single consumer; from a consumer’s perspective, the
event channel appears as a single supplier. In this way, the event channel
decouples suppliers and consumers.

Event agation
Q S /@
. Event Channel “_{—p»
Suppliers Q \\ Q

Consumers

Figure 1: Suppliers and Consumers Communicating through an Event
Channel

CHAPTER 1 | CORBA Messaging Technologies

How Many Clients?

Example

Event Delivery

Further Reading

Any number of suppliers can issue events to any number of consumers using
a single event channel. There is no correlation between the number of
suppliers and the number of consumers. New suppliers and consumers can
be easily added to or removed from the system.

Many documents can be linked to a spreadsheet cell, and must be notified
when the cell value changes. However, the spreadsheet software does not
need to know about the documents linked to its cell. When the cell value
changes, the spreadsheet software should be able to issue an event that is
automatically forwarded to each connected document.

Figure 2 shows a sample implementation of event propagation in a CORBA
system. In this example, suppliers are implemented as CORBA clients; the
event channel and consumers are implemented as CORBA servers. An event
occurs when a supplier invokes a clearly defined IDL operation on an object
in the event channel application. The event channel then propagates the
event by invoking a similar operation on objects in each of the consumer
servers.

Supplier

O

1. Supplier calls operation
on event channel

Consumers

O

Event Channel -]
]

2. Event channel calls
operation on consumers

Figure 2: Event Propagation in a CORBA System

"

O

¥

For a full discussion of the event service and how to develop applications
with it see the CORBA Programmer’s Guide.

Notification Service

Notification Service

Extensions of Event-based The notification service extends the concept of event-based messaging with
Communication the following features:
Feature Description

Quality-of-service

Properties such as event message priority and
lifetime, can be set on different levels within the
event channel.

Persistence

Quality-of-service parameters control the availability
of events and channels beyond the lifetime of the
service process, supplier processes, or consumer
processes.

Event filtering
and subscription

Filters allow consumers to receive only the events
they are interested in, and to tell suppliers which
events are in demand.

Event publication

Suppliers can inform an event channel which events
they can supply, so consumers can subscribe to new
event types as they become available.

Structured
events

Header information in structured events let you set
properties and filterable data on event messages.

Multicast event
delivery

Groups of consumers can subscribe to events and
receive them using UDP multicast protocol, which
keeps network traffic to a minimum.

Note: The CORBA notification service is integrated with the other Orbix
services. However, it is not designed for use with the Object Transaction

Service (OTS).

For more information on the CORBA notification service, see “The
Notification Service” on page 19

CHAPTER 1 | CORBA Messaging Technologies

Telecom Log Service

Overview The telecom log service is modeled on the CORBA notification service and
uses event-aware objects and an event channel to manage the logging of
events to a persistent store. This implementation allows logs to generate
events relating to the log and propagate them to their clients, filter events for
logging, and forward events from suppliers to consumers. It also allows
notification channel-aware logs to leverage the notification service’s Quality
of Service (QoS) properties. The telecom log service also provides interfaces
that allow event-unaware clients to write directly to the log.

Figure 3 shows a basic telecom log service configuration.

event/
notification
supplier

event/
notification
consumer

proxy
consumer

proxy
supplier

event / notification channel

proxy
consumer

proxy
supplier

event /
notification
consumer

event /
notification
supplier

A 4

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

persistent store

standard CORBA
object

Figure 3: Log service configuration

Telecom Log Service

Features of the Telecom Log The telecom log service offers the following extensions to the notification
Service service:

Table 1: Features of the telecom log service

Feature Description

Log generated events | Log objects can keep their event aware clients
informed of the telecom log service’s state by
generating events and forwarding the events
onto their clients.

Quality of Service The telecom log service specifies three levels of
Quality of Service for logged events.

Log size The size of the persistent store for each log
object can be set individually.

Log full behavior The behavior of the log when it becomes full is
configurable. The log can either discard new log
records until the old ones are deleted manually,
or the log can overwrite the oldest records in the
store with new ones.

History The maximum lifetime of a log record can be
controlled through property settings.

Scheduling Record logging can be scheduled. When the log
object is scheduled to log events, it is fully
functional. When it is not scheduled to receive
events, the log object will continue to provide
read access to the logged events and perform
the functions of an event or notification channel.

Filtering In addition to delivery level filtering, Noti f yLog
objects support event filtering at the logging
level. They can apply filters to the events that
are recorded in the log's persistent store.

For more information of the telecom log service, see “The Telecom Log
Service” on page 157.

CHAPTER 1 | CORBA Messaging Technologies

Event Communication

Overview CORBA specifies two approaches to initiating the transfer of events between

suppliers and consumers

® push model: Suppliers initiate transfer of events by sending those
events to the channel. The channel then forwards them to any
consumers connected to it.

® pull model: Consumers initiate the transfer of events by requesting
them from the channel. The channel requests events from the
suppliers connected to it.

Push Model In the push model, suppliers generate events and actively pass them to an
event channel. In this model, consumers wait for events to arrive from the
channel.

Figure 4 illustrates a push model architecture in which push suppliers
communicate with push consumers through the event channel.

Event propagation
O e ()
Push Event Channel <P‘>©
us
suppliers Q \Q

S he

Push
consumers
Figure 4: The Push Model of Event Transfer
Pull Model In the pull model, a consumer actively requests events from the channel.

The supplier waits for a pull request to arrive from the channel. When a pull
request arrives, event data is generated and returned to the channel.

Event Communication

Figure 5 illustrates a pull model architecture in which pull consumers
communicate with pull suppliers through the event channel.

E t ti
Q vent propagation Q
\\ Event Channel
Pull Q - | Q

suppliers /
Q Pull

consumers

Figure 5: Pull Model Suppliers and Consumers Communicating through
an Event Channel

Mixing Push and Pull Models Because suppliers and consumers are completely decoupled by the event
channel, push and pull models can be mixed in a single system.

For example, suppliers can connect to an event channel using the push
model, while consumers connect using the pull model, as shown in
Figure 6.

Event propagation
O o ()

Event Channel Q
Push
suppliers Q O

Pull
consumers

Figure 6: Push Suppliers and Pull Consumers Communicating through an
Event Channel

CHAPTER 1 | CORBA Messaging Technologies

10

In this case, both suppliers and consumers participate in initiating event
transfer. A supplier invokes an operation on an object in the event channel
to transfer an event to the channel. A consumer then invokes another
operation on an event channel object to transfer the event data from the
channel.

In the case where push consumers and pull suppliers are mixed, the event
channel actively propagates events by invoking IDL operations in objects in
both suppliers and consumers. The pull supplier would wait for the channel
to invoke an event transfer before sending events. Similarly, the push
consumer would wait for the event channel to invoke event transfer before
receiving events.

Overview

In this chapter

CHAPTER 2

The Java
Messaging Service

The Java Messaging Service (JMS) provides a native
mechanism for Java applications to participate in messaging
systems.

Orbix provides messaging services to its J2EE application server through an
implementation of Sun’s Java Messaging Service(JMS) specification. lona’s
JMS implementation can also provide messaging services to any application
written in Java, including CORBA applications.

This chapter discusses the following topics:

Java Messaging Service Overview page 12
Point to Point Messaging page 13
Publish / Subscribe Messaging page 14

11

CHAPTER 2 | The Java Messaging Service

Java Messaging Service Overview

Messaging architecture

MessagePr oducer

Java Messaging Service Features

12

In general, JMS clients can be either a MessagePr oducer or a
MessageConsurer . Producers send messages to a Desti nati on and
consumers receive the messages from the destination. Figure 7 shows a
simple JMS system with one producer and one consumer.

Destination

MessageConsuner

Figure 7: Simple JMS system

The Java Messaging Service provides the following features for messaging:

Point to point messaging

Publish / subscribe messaging

Quality of Service properties to set the priority and lifetime of messages
Properties to set the level of guarantee that a message will be delivered
Information to associate messages with one another

User definable properties

Header information defining a reply destination

Filtering

Point to Point Messaging

Point to Point Messaging

Architecture

QueueSender

When using the point to point messaging, JMS producers, QueueSender s,
and JMS consumers, QueueReci evers, connect to a specialized destination
called a Queue. Producers place messages on the queue and the messages
are consumed in FIFO order by message consumers. Once a message has
been consumed it is removed from queue.

Figure 8 shows a JMS point to point implementation.

Message N
Message 4
Message 3
Message 2
Message 1

QueueReci ever

Figure 8: JMS Point to Point Messaging

JMS queues ensure that messages are delivered to one message consumer.

If no consumer is connected to the queue messages are stored until one
connects.

13

CHAPTER 2 | The Java Messaging Service

Publish / Subscribe Messaging

Architecture

JMS also supports publish / subscribe style messaging which functions
similarly to the CORBA notification service. Many producers,

Topi cPubl i shers, and consumers, Topi cSubscri bers, connect to a
destination, called a Topi c. The topic receives messages from all connected
producers and forwards the messages to all consumers. Consumers can opt
to not receive certain messages by implementing a MessageSel ect or to filter
out messages.

Figure 9 shows a JMS publish / subscribe implementation.

T#i cSubscri b

Topi cPubl i sher

Topi cPubl i sher

Topi cSubscri ber

Topi cPubl i sher

Delivery guarantee

14

\Ompi cSubscri ber

Topi cSubscri ber

Figure 9: JMS Publish/Subscribe Messaging

JMS topics offer no guarantee that messages will be delivered to any
consumers. If there are no consumers connected to the topic when a
message is sent, the message is simply dropped. If consumers wish to
ensure that all messages are delivered to them regardless of their
connections status, the consumer can register a durable subscription.

For more information on the Java Messaging Service, see “The Java
Messaging Service” on page 231.

Overview

Message sharing

CHAPTER 3

The
JMS-Notification
Bridge Service

The bridge service allows JMS and CORBA notification clients
to share messages.

Orbix provides a bridging mechanism between CORBA notification service
clients and JMS clients. Using this bridge notification service clients and
JMS clients can exchange messages based on the OMG’s Notification / Java
Message Service specification.

The JMS-Notification bridge allows JMS publishers to forward messages to
CORBA notification consumers and CORBA natification suppliers to forward
messages to JMS subscribers. This is done using unidirectional bridges that
mimic JMS and notification clients.

For example, a bridge forwarding messages from a notification channel to a
JMS topic acts as a CORBA notification consumer and a JMS publisher.
Figure 10 shows an application that uses two bridges to facilitate
bidirectional messaging between a JMS topic and a notification channel. All

15

CHAPTER 3 | The JMS-Notification Bridge Service

of the events supplied to the naotification channel are forwarded to the
notification consumers and Bri dge2. All of the messages published to the
JMS topic are forwarded to the subscribers and Bri dgel.

RSN

Topi cSubscri be!

Bridgel Notification
JMS Channel

Topi cPubl i sher

Topic

Topi cPubl i sher
4__< Bri dge2 ><_

Topi cPubl i sher L.

Topi cSubscri ber
Figure 10: JMS-Notification Bridging

Bri dgel is a JMS subcriber to the topic and consumes the JMS messages. It
then converts them to a notification service event and pushes the events to
the notification service, where the attached consumers can recieve them.

Bri dge2 is a notification push consumer attached to the notification service.
When it recieves an event it converts it into a JMS message and publishes
the message to the topic, where the subscribers can consume it.

Bridge endpoints Bridges connect to JMS and the notification service using endpoints which
mimic notification or JMS clients. For example, a bridge that passes
messages from a JMS topic to a notification channel might have one

16

Message and property conversion

endpoint that acts like a durable JMS Topi cSubscri ber at the JMS side of
the bridge and another endpoint that behaves like a
St ruct ur edPushSuppl i er on the notification service end of the bridge.

Note: In fact, notification endpoints are specialized instances of proxy
objects. In the example above the endpoint in the notification channel
would appear as a bridge proxy consumer in the notification service
console.

The translation of message data and properties conforms to the OMG'’s

Notification / Java Message System Interworking specification.

Essentially, JMS messages are translated into structured events with the

JMS header and property data placed in the structured event header. Events

are translated into JMS messages based on the following conventions:

® Any events are translated such that the data of the event is stored in
the JMS message body and any QoS properties set for the message are
placed in the appropriate fields of the JMS message header.

® Structured events are translated such that the data encapsulated in the
message body is mapped to the JMS message body, the optional
header fields and filterable date are mapped to user defined properties,
and any QoS properties set in the header are mapped to the
appropriate JMS header fields.

® Sequences of events are broken into single JMS messages according to
the mapping for a structured event.

QoS service properties specifying the level of guarantee that a message is

delivered, the lifetime of the message, and the priority of the message are

preserved in the mapping and are enforced according to the specifications of
each service.

For more information on the JMS-Notification bridge, see “The
JMS-Notification Bridge Service” on page 277.

17

CHAPTER 3 | The JMS-Notification Bridge Service

18

Part ||

The Notification Service

In this part This part contains the following chapters:
Developing Suppliers and Consumers page 21
Notification Service Properties page 57
Event Filtering page 83
Subscribing and Publishing page 109
Multicast Consumers page 129
Managing the Notification Service page 149

Overview

In This Chapter

CHAPTER 4

Developing
Suppliers and
Consumers

Client suppliers and consumers connect to an event channel
in order to share information with each other.

The CosNot i f yCommmodule defines client supplier and consumer interfaces.

The interfaces can be categorized according to the following dependencies:

® Aclient interface supports either the push or pull model.

® For each push or pull model, an interface is defined to support one of
the event message types: untyped, structured, or sequence.

The interface that you implement determines how a client sends or receives
event messages.

This chapter covers the following topics:

Obtaining an Event Channel page 22
Implementing a Supplier page 27
Implementing a Consumer page 44

21

CHAPTER 4 | Developing Suppliers and Consumers

Obtaining an Event Channel

Overview Client consumers and suppliers obtain an event channel object reference
either by creating a channel, or by finding an existing one.

Procedure You obtain an event channel by completing the following steps:

Step Action

1 | Obtain an event channel factory by calling
resolve_initial _references("NotificationService").

2 | Use the event channel factory to create a channel or find an
existing one.

Event Channel Factory Operations You can call one of several operations on an event channel factory to create
or find an event channel. By providing both create and find operations, the
notification service allows any client or supplier to create an event channel,
which other clients and suppliers can subsequently discover.

Orbix Notification supports two sets of event channel factory operations:
® The OMG-defined CosNot i f yChannel Adm n: : Event Channel Fact ory
interface relies on system-generated IDs.

Proprietary extensions in the I T_Not i f yChannel Adni n: :

Event Channel Fact ory interface allow user-defined channel names.

22

Obtaining an Event Channel

OMG Operations CosNot i f yChannel Adni n: : Event Channel Fact ory defines the following
operations for obtaining an event channel:

// 1 DL nmodul e CosNoti fyChannel Adm n
interface Event Channel Factory {
Event Channel creat e_channel (
in CosNotification::QSProperties initial_gos,
in CosNotification::Adm nProperties initial_admn,
out Channel I D id)
rai ses(CosNoti fi cation:: Unsupport edQsS,
CosNot i fi cati on: : Unsuppor t edAdni n) ;

Channel | DSeq get _al | _channel s();
Event Channel get _event _channel (i n Channel | D i d)
rai ses(Channel Not Found) ;
Ik
create_channel() creates an event channel and returns an object reference.

get_all_channels() returns a sequence IDs of all event channels.

get_event_channel() returns an object reference to the ID-specified event
channel.

Orbix Extensions Orbix Notification provides proprietary operations for obtaining named event
channels, in I T_Noti f yChannel Adm n: : Event Channel Fact ory:

// 1DL modul e | T_NotifyChannel Adm n
struct Event Channel | nfo

{
string nane;
CosNot i f yChannel Admi n: : Channel | D i d;
CosNot i f yChannel Adni n: : Event Channel ref erence;

¥
t ypedef sequence<Event Channel | nf o> Event Channel | nf oLi st ;
...

i nterface Event Channel Factory :
CosNot i f yChannel Admi n: : Event Channel Fact ory

23

CHAPTER 4 | Developing Suppliers and Consumers

24

{

/...
CosNot i f yChannel Admi n: : Event Channel creat e_nanmed_channel (

IE

in string nare,
in CosNotification::QSProperties initial_gos,
in CosNotification::Adm nProperties initial_admn,
out CosNoti fyChannel Adm n: : Channel I D i d)
rai ses(Channel Al readyExi sts, CosNoti fi cation:: Unsupport edQS,
CosNot i fi cati on: : Unsuppor t edAdm n) ;

CosNot i f yChannel Adni n: : Event Channel fi nd_channel (
in string nane,
out CosNoti f yChannel Adm n: : Channel I D i d)
rai ses(CosNot i f yChannel Adni n: : Channel Not Found) ;
CosNot i f yChannel Admi n: : Event Channel find_channel _by_i d(
in CosNoti fyChannel Adm n: : Channel I D i d,
out string nane)
rai ses(CosNot i f yChannel Admi n: : Channel Not Found) ;
/...
Event Channel | nfoLi st |ist_channel s();

create_named_channel() creates a named event channel and returns an
object reference.

find_channel() returns an object reference to the named event channel.

find_channel_by_id() returns an object reference to an event channel based

on

the channel’s ID.

list_channels() returns a list of event channels, which provides their names,
IDs, and object references.

Example

Obtaining an Event Channel

The following code can be used by any supplier or consumer to obtain an
event channel.

Example 1: Obtaining an Event Channel

/1 Java

inport org.ony. CCRBA *;

i nport org.ony. CCRBA. CRBPackage. *;
inport org.ony. CosNotification.*;
inport org.ong. CosNot i fyChannel Adm n. *;

/11 ona specific classes
inport comiona.corba. | T_NotifyChannel Adni n. *;

Event Channel ec = nul | ;

Event Channel Factory mfactory = nul | ;
IntHol der id = new | nt Hol der();
Property[] init_qgos = new Property[0];
Property[] init_admn = new Property[0];

(hj ect obj =
orb.resolve_initial_references("NotificationService");
m factory = Event Channel Fact or yHel per. narrow(obj) ;

try ec = mfactory. create_named_channel ("Event Channel ",
init_gos, init_admn, id)
cat ch (Channel Al readyExi sts cae)
/* Channel already exists, so try to find it */
try
{

ec = mfactory.find_channel ("Event Channel ", id);

catch (Channel Not Found cnf)
{

Systemerr.println("Could not create or find event
channel *);

Systemexit(1);

}
cat ch (SystenException sys)
{
Systemerr. println("System exception occurred during

find_channel: " +
Syst enExcept i onD spl ayHel per.toString(sys));
Systemexit(1);
}

25

CHAPTER 4 | Developing Suppliers and Consumers

This code executes as follows:
1. Obtains the event channel factory.
2. Tries to create an event channel by calling cr eat e_naned_channel ().

3. Catches the I T_Noti f yChannel Adm n: : Channel Al r eadyExi sts
exception if a channel of the specified name already exists.

4. Tries to obtain an existing channel of the same name by calling
find_channel ().

26

Implementing a Supplier

Implementing a Supplier

Actions

In This Section

A client supplier program performs the following actions:

1.

o wnN

CosNot i f yComm

Creates event messages.

Connects suppliers to the event channel.

Sends event messages to the event channel.

Disconnects from the event channel.

Instantiates suppliers using the appropriate interface in module

This section discusses the following topics:

Instantiating the Supplier page 28
Connecting to a Channel page 30
Creating Event Messages page 35
Sending Event Messages page 39
Disconnecting From the Event Channel page 43

27

CHAPTER 4 | Developing Suppliers and Consumers

Instantiating the Supplier

Which Interface to Use?

Example

28

Two dependencies determine which interface you should use to instantiate a

supplier:

® The model that the supplier supports: push or pull.

® The type of event messages that the supplier generates: untyped,
structured, or sequence of structures.

The IDL module CosNot i f yComm defines six interfaces that support different
combinations of both dependencies:

Event type Push model Pull model
untyped PushSuppl i er Pul | Suppl i er
structured St ruct ur edPushSuppl i er Struct uredPul | Suppl i er
sequence SequencePushSuppl i er SequencePul | Suppl i er

You instantiate a supplier from the interface that supports the desired model
and event message type. Example 2 shows how a client application might
instantiate a supplier of type St ruct ur edPushSuppl i er .

Example 2: Instantiating a StructuredPushSupplier (Sheet 1 of 2)

/1 Java

inport org.ong. CCRBA *;

i nport org. ong. CCRBA. CRBPackage. *;
inport org.ong. CosNotification.*;
inport org.ong. CosNot i fyChannel Admi n. *;
inport org.ong. CosNot i f yConm *;

inport org.ong. Ti neBase. *;

inport org.ony. Portabl eServer. *;
inport org.ong. Port abl eServer. PQAPackage. *;
class NotifyPushSupplier extends StructuredPushSupplier POA

/1 Menber variabl es not shown .

Implementing a Supplier

Example 2: [Instantiating a StructuredPushSupplier (Sheet 2 of 2)

/!l The main entry point @aramargs comand |ine args
public static void main (String args[])

// CRB and PQA Activation not shown
/...

Not i f yPushSuppl i er supplier = new NotifyPushSupplier();
/...

}
publ i c voi d NotifyPushSupplier()

// |nplenentation not shown ...

}

29

CHAPTER 4 | Developing Suppliers and Consumers

Connecting to a Channel

Overview

Procedure

Obtaining a Supplier Admin

30

In order to pass messages to the event channel, a supplier must connect to
it through a proxy consumer that receives unfiltered events from the
supplier. Each supplier must have its own proxy consumer. The proxy
consumer begins the filtering process and passes the events down the
channel.

A client supplier connects to the event channel in three steps:

Step Action

1 | Obtain a Suppl i er Adni n object from the event channel.

2 | Create a proxy consumer in the event channel, to receive the
events that the supplier generates.

3 | Connect to the proxy consumer.

On creation, an event channel instantiates a default Suppl i er Admi n object,
which you obtain by calling def aul t _suppl i er _adni n() on the event
channel. For example:

or g. ong. CosNot i f yChannel Adm n. Suppl i erAdnin sa =
channel s. def aul t _suppl i er _adm n();

The Event Channel interface also defines operations for creating and getting
other supplier admin objects:

new_for_suppliers() returns a new supplier admin and its system-assigned
Adni nl D identifier. When you create a supplier admin, you also determine
whether to AND or CRits filters with proxy consumer filters (see “Traversing
Multiple Filters in a Channel” on page 90).

get_supplieradmin() takes an Adni nI D identifier and returns an existing
supplier admin.

get_all_supplieradmins() returns a sequence of Adni nl Didentifiers.

Why Create Multiple Admin
Objects?

Proxy Consumers

Implementing a Supplier

You might want to create multiple supplier admin objects for one of the

following reasons:

® Groups of proxy consumers each require the same quality-of-service
properties. All proxy consumers inherit properties from their parent
supplier admin. By creating different supplier admin objects with the
desired sets of properties, you can more easily manage the properties
of individual proxies.

For more information about quality-of-service properties, see
Chapter 5.

® Groups of proxy consumers have different filtering requirements. You
can set different filters on individual admin objects and group proxy
consumers accordingly.

® You need to distribute the load of event messages among different
supplier admin objects. A supplier admin’s workload is liable to
increase for two reasons: using supplier-side forwarding filters (see
“Forwarding Filters” on page 84), and implementing pull-model
suppliers. One or both factors might require additional supplier admin
objects to handle the extra work load that these entail.

A proxy consumer is responsible for receiving event messages from its client
supplier and inserting them into the event channel, where they are
forwarded to all interested consumers. You create one proxy consumer for
each client supplier.

As with client suppliers, you can create six types of proxy consumers,
depending on the client supplier's model (push/pull) and event message
type (untyped, structured, or sequence of structures). The type of proxy
consumer must match the type of its client supplier.

The CosNot i f yChannel Admi n module defines interfaces that support the
following proxy consumer objects:

Pr oxyPushConsuner

St ruct ur edPr oxyPushConsuner
SequencePr oxyPushConsurrer
Pr oxyPul | Consuner

St ruct ur edPr oxyPul | Consuner
SequencePr oxyPul | Consurrer

31

CHAPTER 4 | Developing Suppliers and Consumers

Obtaining a Proxy Consumer

Example

32

You obtain a proxy consumer by invoking one of the following operations on
a supplier admin:

obtain_notification_push_consumer() returns a push-model proxy
consumer.

obtain_notification_pull_consumer() returns a pull-model proxy consumer.

Both methods take one of the following arguments, which determines the
event message type that this proxy consumer handles:

ANY_EVENT

STRUCTURED EVENT

SEQUENCE_EVENT

Both methods raise CosNot i f yChannel Adni n: : Admi nLi mi t Exceeded when
the event channel’s MaxSuppl i er s(see “MaxSuppliers” on page 81) limit is
reached.

The code in Example 3 obtains a St ruct ur edPr oxyPushConsurmer proxy
consumer for a Struct ur edPushSuppl i er supplier by calling

obt ai n_noti fi cati on_push_consuner (), and supplying an argument of
STRUCTURED EVENT.

Example 3: Obtaining a Proxy Consumer

/1 Java
inport org.ong. CosNot i f yChannel Adm n. *;

I nt Hol der proxy_id = new I nt Hol der () ;
dientType ctype = dient Type. STRUCTURED EVENT;
try

{

Pr oxyConsurer obj =
sa.obtain_notification_push_consurer (ctype, proxy_id);

}

cat ch(Adm nLi m t Exceeded err)

/1 handl e the exception

}

St r uct ur edPr oxyPushConsuner ppc =
St r uct ur edPr oxyPushConsuner Hel per . nar row(obj) ;

Connecting a Supplier to a Proxy
Consumer

Example

Implementing a Supplier

After creating a proxy consumer, you can connect it to a compatible client
supplier. This establishes the client supplier's connection to the event
channel, so it can send messages.

Each proxy consumer interface supports a connect operation; the operation
requires that the supplier and its proxy support the same delivery model and
event-message type. For example, the Struct ur edPr oxyPushConsumer
interface defines connect _st ruct ured_push_suppl i er (), which only
accepts an object reference to a Struct uredPushSuppl i er as input.:

/1 1D
interface StructuredProxyPushConsuner :

Pr oxyConsurrer, CosNot i f yComm : St ruct ur edPushConsurrer
{

voi d connect _st ruct ured_push_suppl i er (

in CosNotifyComm : Struct uredPushSuppl i er push_suppl i er)
rai ses(CosEvent Channel Adm n: : Al r eadyConnect ed) ;

¥

Example 4 shows one method of implementing a St ruct ur edPushSuppl i er
client that connects itself to a proxy consumer.

Example 4: Connecting a StructuredPushSupplier (Sheet 1 of 2)

/1 Java
inport org.onyg. CosEvent Channel Adni n. *;

class NotifyPushSupplier extends StructuredPushSuppli er POA
{
...
public static void main (String args[])
{

// ORB and PQA creation not shown
/1l proxy ppc and PushSupplier supplier obtained previously

try

{

ppc. connect _st ruct ured_push_suppl i er (suppli er);

catch (A readyConnect ed. val ue ac)
{
// Handl e the exception
}

33

CHAPTER 4 | Developing Suppliers and Consumers

Example 4: Connecting a StructuredPushSupplier (Sheet 2 of 2)

catch (SystenException sys)
{
Systemerr. println("Encountered system exception
during connect: " +
Syst enExcept i onD spl ayHel per.toString(sys));
Systemexit(1);
}
/...

34

Implementing a Supplier

Creating Event Messages

Types of Event Messages

Structured Event Messages

The notification service supports three formats for sending events:

®* Untyped events are sent as OORBA: : Any types. Clients can store an
event message into any format they choose, including a structure, then
package the data into an Any.

® Structured events provide a well-defined data structure that
encapsulates an event's type and other information. Filters use this
data to screen event messages.

® Sequences of structured events are simply batches of structured events
gathered together and sent at the same time.

Structured event messages are defined in module CosNot i fi cati on as
follows:

struct Property {
Pr opert yNane nane;
PropertyVal ue val ue;
B
typedef sequence<Property> PropertySeq;

typedef PropertySeq Optional Header Fi el ds;
typedef PropertySeq Filterabl eEvent Body;

struct Event Type {
string domai n_nane;
string type_nare;

¥

struct Fi xedEvent Header {
Event Type event _type;
string event_nane;

%

struct Event Header {
Fi xedEvent Header fi xed_header;
pt i onal Header Fi el ds vari abl e_header ;

IE

35

CHAPTER 4 | Developing Suppliers and Consumers

struct StructuredEvent {
Event Header header ;
Filterabl eEvent Body filterabl e _data;
any renai nder _of _body;

b

Each structured event has three main components, as shown in Figure 11.

StructuredEvent
EventHeader

event_type.domain_name

event_type.type_name Fixed header

event_name

name: value

name: value

Optional header
fields

name: value

FilterableEventBody

name: value

name: value

Filterable body fields

name: value

remainder_of_body

Figure 11: Structured Event Components

EventHeader consists of two members:

® Afixed header section that contains three string fields for specifying
event-type data: domai n_nare, type_nane, and event _nane.

36

Why Use Structured Event
Messages?

Example

Implementing a Supplier

® Alist of zero or more optional header fields. Each field name is a
string, and each value is a GCRBA : Any. These fields are typically used
to set properties on an event message, such as its lifetime and priority.

FilterableEventBody consists of data fields that can be used to set
user-defined properties. Filters typically use these to screen event messages.

remainder_of _body is a GCRBA: : Any, which can store any event-related
data, such as the contents of a file.

A structured event message can provide filterable information, such as the
event’s type and contents, and assign quality-of-service properties to the
event, such as its priority or lifetime. Later chapters in this guide describe
notification filters (Chapter 6) and quality-of-service properties (Chapter 5).

The code in Example 5 shows how a supplier creates a structured message
that sets an event type’s domain name and type name to Sport sNews and
Basebal | Resul t's, respectively, and sets its priority to O.

Example 5: Creating a Structured Message

/1 Java
inport org.ong. CosNotification.*;
StructuredEvent event = new StructuredEvent();

String donmai n_name = new String(" SportsNews");

String type_name = new String("Basebal | Resul ts");

Event Type event _type = new Event Type(donai n_nare, type_name);

String event_name = new String("");

Fi xedEvent Header fixed_header = new Fi xedEvent Header (event _t ype,
event _nare) ;

String property_nanme = new String(Priority.val ue)

Property[] variabl e_header = new Property[1];

vari abl e_header[0] = new Property();

vari abl e_header[0] . nane = property_nare;

vari abl e_header[0] . val ue = orb. create_any();

vari abl e_header[0] . val ue. i nsert_| ong(0);

event . header = new Event Header (fi xed_header, vari abl e_header);

event.filterabl e data = new Property [0];
event . renai nder _of _body = ORB.create_any();

37

CHAPTER 4 | Developing Suppliers and Consumers

38

This code executes as follows:

ook wN

Creates an event.

Builds a new event header.

Builds a new fixed event header.

Builds a new property list in the variable header.

Adds the fixed header and the variable header to the event.
Creates the remainder of the event body.

Implementing a Supplier

Sending Event Messages

Push Supplier

Example

A client supplier sends event messages in one of two ways:

® A push supplier invokes the appropriate push operation on its proxy

consumer and supplies the event as an input argument.

® A pull supplier implements the appropriate pul | ortry_pul |
operation. When the proxy consumer invokes one of these operations,
the supplier returns an event message, if one is available.

A push supplier invokes one of the following push operations on its proxy
consumer, according to the event messages that they support:

push() is invoked by a PushSuppl i er and accepts a QORBA: : Any as

input.

push_structured_event () is invoked by a Struct ur edPushSuppl i er
and accepts a Struct uredEvent as input.

push_struct ured_event s() is invoked by a SequencePushSuppl i er

and accepts a sequence of event structures as input.

Example 6 pushes a structured event message.
Example 6: Pushing a Structured Event

/1 Java
/1l proxy consuner and event nessage al ready obtai ned
try
{
proxy. push_struct ured_event (se);
}
cat ch (SystenException sys)
{
Systemerr. println("Unexpected syst emexcepti on during push: "
+Syst enExcept i onD spl ayHel per.toString(sys));
Systemexit(1);
}
cat ch (org. ong. CosEvent Comm Di sconnect ed dc)
{
Systemerr. println("Channel is disconnected.");
Systemexit(1);
}

39

CHAPTER 4 | Developing Suppliers and Consumers

Pull Supplier

40

Example 6: Pushing a Structured Event

catch (Exception e)

{

Systemerr. printl n("Unknown exception occurred during push");
Systemexit(1);
}

A pull supplier sends event messages only on request. Depending on the
setting of the configuration variable di spat ch_st rat egy, a pull supplier's
proxy consumer invokes atry_pul I () ora pul | () operation on it's supplier.
Pull suppliers are responsible for implementing the appropriate variant of
try_pul I () orpul | (). Each pull supplier interface supports atry_pul | ()
and pul | () operation:

® try_pull() and pul I () are invoked on a Pul | Suppl i er and return a
CCRBA: : Any.

® try_pull_structured_event() and pul | _structured_event() are
invoked on a Struct uredPul | Suppl i er and return a
CosNoti fication:: StructuredEvent.

® try pull_structured_events() and pul | _structured_events() are
invoked on a SequencePul | Suppl i er and return a sequence of event
structures.

A try_pul | operation is non-blocking and is called by the proxy when the
notification service’s di spat ch_strat egy is set to t hread_pool . It returns
immediately with an output parameter of type boolean to indicate whether
the return value actually contains an event. The proxy consumer continues
to invoke the pull operation on the supplier as many times as specified in
the MaxRet ri es property (see “MaxRetries” on page 79). The interval
between retries is specified by the Pul | I nterval property (see “Pullinterval”
on page 80).

A pul | operation is blocking and is called by the proxy when the notification

service's di spat ch_strat egy is set to si ngl e_t hread. It blocks until an
event is ready to be forwarded to the proxy.

Since the setting of the notification service’s di spat ch_st r at egy cannot
typically be determined at development time, the safest approach to
developing pull style suppliers is implement both try_pul I () and pul I ().

Example

Implementing a Supplier

Example 7 implements try_pul | _structured_event () by attempting to
populate an event structure with the latest baseball scores.

Example 7: Pulling Structured Events

/1 Java
inport org.ony. CosNotification.*;

class NotifyPul |l Supplier extends StructuredPul | Supplier POA
{
/.

public StructuredEvent try_pul | _structured_event
(Bool eanHol der has_event)

{

StructuredEvent se = new Struct uredEvent ();
has_event . val ue = fal se;

I/ get scores
String scores;
bool ean has_scores = get_scores(scores);

I/ If there are scores build the event
if (has_scores == true)
{
String donmai n_name = new String ("SportsNews");
String type_name = new String ("Basebal | Results");
Event Type event _type = new Event Type(donmai n_nane,
type_nane) ;

String event_name = new String("");
Fi xedEvent Header fixed_header =
new Fi xedEvent Header (event _t ype, event_nane);

Property[] variabl e_header = new Property[O0];
se. header = new Event Header (fi xed_header,
vari abl e_header);

se.filterabl e_data = new Property [O];

se. renai nder _of _body = ORB.create_any();
se. renai nder _of _body. i nsert_string(scores);

has_event . val ue = true;

41

CHAPTER 4 | Developing Suppliers and Consumers

Example 7: Pulling Structured Events

return se;

}

42

Implementing a Supplier

Disconnecting From the Event Channel

Overview

A client supplier can disconnect from the event channel at any time by
invoking the disconnect operation on its proxy consumer. This operation
terminates the connection between a supplier and its target proxy consumer.
The channel then releases all resources allocated to support its connection
to the supplier, including destruction of the target proxy consumer.

Each proxy consumer interface supports a disconnect operation. For
example, di sconnect _st ruct ur ed_push_consurer () is defined in the
interface St ruct ur edPr oxyPushConsurer .

43

CHAPTER 4 | Developing Suppliers and Consumers

Implementing a Consumer

Actions A client consumer program performs the following actions:
1. Instantiates consumers using the appropriate CosNot i f yConminterface.
2. Connects consumers to the event channel.
3. Obtains event messages.
4. Disconnects from the event channel.

In This Section This section covers the following topics:
Instantiating a Consumer page 45
Connecting to the Channel page 47
Obtaining Event Messages page 52
Disconnecting From the Event Channel page 56

44

Implementing a Consumer

Instantiating a Consumer

Which Interface to Use?

Example

Two dependencies determine which interface you use to instantiate a
consumer:

® The model that the consumer supports: push or pull.

The type of event messages that the consumer receives: untyped,
structured, or sequence of structures.

The IDL module CosNot i f yConmdefines six interfaces that support different
combinations of both dependencies:

Event type Push model Pull model
untyped PushConsuner Pul | Consurrer
structured Struct ur edPushConsune | Struct ur edPul | Consum

r er
sequence SequencePushConsurer SequencePul | Consurrer

You instantiate a consumer from the interface that supports the desired
model and event message type.

Example 8 shows how a client application might instantiate a structured
push consumer.

Example 8: [Instantiating a Consumer (Sheet 1 of 2)

/1 Java

inport org.ong. CCRBA *;

inport org.ony. CosNotification.*;

inport org.onyg. CosNot i fyChannel Adm n. *;
inport org.ong. CosNot i f yConm *;

import org.ony. Portabl eServer. *;

inport org.ony. Portabl eServer . POAPackage. *;

cl ass NotifyPushConsuner extends StructuredPushConsurrer POA
{

/1 menber variables not shown. ..

45

CHAPTER 4 | Developing Suppliers and Consumers

Example 8: /Instantiating a Consumer (Sheet 2 of 2)

/1l The main entry point @aramargs comand |ine args
public static void main (String args[])

// CRB and PQA initialization not shown ...

Not i f yPushConsurrer consumner = new Noti f yPushConsurer () ;

...
}
voi d public NotifyPushConsurer ()
{
}

46

Implementing a Consumer

Connecting to the Channel

Overview

Procedure

Obtaining a Consumer Admin

Consumers receive messages from the event channel through a proxy
supplier. Each consumer on the channel has its own proxy supplier. Proxy
suppliers use the same delivery method as their consumers and send the
appropriate message type.

Consumers connect to the event channel in three steps:

Step Action

1 | Obtain a Consuner Adni n object from the event channel.

2 | Create a proxy supplier in the event channel, to receive
supplier-generated event messages.

3 | Connect to the proxy supplier.

On creation, an event channel instantiates a default Consuner Admi n object,
which you supply by calling def aul t _consuner _adm n() on the event
channel. For example:

or g. ong. CosNot i f yChannel Adm n. Consuner Adnmin ca =
channel . def aul t _consuner _admi n();

The Event Channel interface also defines operations for creating and getting
other consumer admin objects:

new_for_consumers() returns a new consumer admin and its
system-assigned Admi nl D identifier. When you create a consumer admin,
you also determine whether to AND or CRits forwarding filters with proxy
supplier filters (see “Traversing Multiple Filters in a Channel” on page 90).

get_consumeradmin() takes an Adni ni D identifier and returns an existing
consumer admin.

get_all_consumeradmins() returns a sequence of Adni nl Didentifiers.

47

CHAPTER 4 | Developing Suppliers and Consumers

Why Create Multiple Admin
Objects?

Proxy Suppliers

48

You might want to create multiple consumer admin objects for one of the

following reasons:

® Groups of proxy suppliers each require the same quality-of-service
properties. All proxy suppliers inherit properties from their parent
consumer admin. By creating different consumer admin objects with
the desired sets of properties, you can more easily manage the
properties of individual proxies.

For more information about quality-of-service properties, see
Chapter 5.

® Groups of proxy suppliers each have the same filtering requirements.
Because all event messages are initially filtered by the consumer
admin, you can use admin filters to centralize filter processing and
administration, and minimize the associated overhead.

® You need to distribute the load of event messages among different
consumer admin objects. A consumer admin’s work load is liable to
increase for two reasons: using consumer-side filters, and the number
of message-forwarding proxies. One or both factors might require
additional consumer admin objects to handle the extra work load that
these entail.

For more information about filters, see Chapter 6.

A proxy supplier is responsible for distributing event messages that have
been sent by the event channel to its consumer, subject to filtering and
quality-of-service settings. You create one proxy supplier for each client
consumer.

As with client consumers, you can create six types of proxy suppliers,
depending on the client consumer's model (push/pull) and event message
type (untyped, structured, or sequence of structures). The proxy supplier
must be the same type as its client consumer.

The module CosNot i f yChannel Adni n defines interfaces that support the
following proxy supplier objects:

Pr oxyPushSuppl i er

St ruct ur edPr oxyPushSuppl i er
SequencePr oxyPushSuppl i er
ProxyPul | Suppl i er

St ruct ur edPr oxyPul | Suppl i er

Obtaining a Proxy Supplier

Example

Implementing a Consumer

SequencePr oxyPul | Suppl i er

You obtain a proxy supplier by invoking one of the following methods on a
consumer admin:

obtain_notification_push_supplier() returns a push-model proxy supplier.

obtain_notification_pull_supplier() returns a pull-model proxy supplier.

Both methods take one of the following arguments, which determines the
event message type that this proxy supplier handles:

ANY_EVENT

STRUCTURED EVENT

SEQUENCE_EVENT

Both methods raise CosNot i f yChannel Admi n: : Adm nLi nmi t Exceeded when
the event channel’s MaxConsuner s(see “MaxConsumers” on page 81) limit is
reached.

Example 9 obtains a proxy supplier for a St ruct ur edPushConsurer supplier
by calling obt ai n_noti fi cation_push_supplier().

Example 9: Obtaining a Proxy Supplier

/1 Java
i mport org. ony. CosNot i f yChannel Adm n. *;

I nt Hol der proxy_id = new | nt Hol der () ;
dientType ctype = dient Type. STRUCTURED EVENT;

try
{

ProxySuppl i er obj =

ca.obtain_notification_push _supplier(ctype, proxy_id);

}
cat ch(Adm nLi m t Exceeded err)
{

// handl e exception

}

St ruct ur edPr oxyPushSuppl i er pps =
St r uct ur edPr oxyPushSuppl i er Hel per. narrow(obj) ;

49

CHAPTER 4 | Developing Suppliers and Consumers

Connecting a ConsumertoaProxy After creating a proxy supplier, you can connect it to a compatible client

Supplier

Example

50

consumer. This establishes the client’s connection to the event channel, so
it can obtain messages from suppliers.

Each proxy supplier interface supports a connect operation; the operation
requires that the client supplier and its proxy support the same push or pull
model and event-message type. For example, the

St ruct ur edPr oxyPushSuppl i er interface defines

connect _st ruct ured_push_consuner (), which only accepts an object
reference to a Struct ur edPushSuppl i er as input:

/1 1D
interface StructuredProxyPushSupplier :
ProxySuppl i er,
CosNot i fyComm : St ruct ur edPushSuppl i er
{
voi d connect _st ruct ured_push_consurer
(in CosNotifyComm : Struct uredPushConsuner push_consuner)
rai ses(CosEvent Channel Adm n: : Al r eadyConnect ed,
CosEvent Channel Admi n: : TypeError);
b

Example 10 shows how you might implement a St r uct ur edPushConsurrer
client that connects itself to a proxy supplier.

Example 10: Connecting to a Proxy Supplier (Sheet 1 of 2)

/1 Java
inport org.ong. CosNot i fyChannel Admi n. *;

cl ass NotifyPushConsuner extends StructuredPushConsurer POA

{
...

public static void main (String args[])

{
1. ..
/1 Proxy pps and PushConsurer consuner obtained previously
try
{
pps. connect _st ruct ur ed_push_consuner (consuner) ;
}

Implementing a Consumer

Example 10: Connecting to a Proxy Supplier (Sheet 2 of 2)

/...

cat ch (A readyConnect ed. val ue ac)

{
Systemerr. println("A ready connecting to channel .");
Systemexit (1);
}
cat ch (SystenException sys)
{

Systemerr. printl n("Encountered system exception during
connect: " + SystenExceptionD spl ayHel per.toString(sys));
Systemexit(1);

}

51

CHAPTER 4 | Developing Suppliers and Consumers

Obtaining Event Messages

Overview

Event Message Conversion

Push Consumer

52

A client consumer obtains event messages in one of two ways:

A push consumer implements the appropriate push operation. As
events become available, the proxy supplier pushes them to its client
consumer in the appropriate format.

A pull consumer invokes the appropriate pul | or try_pul | operation
on its proxy supplier; the proxy supplier returns with the next available
event.

If necessary, the event channel converts event messages to the type
expected by its consumers. For example, if a PushSuppl i er pushes an
untyped event message to an event channel that has

St ruct ur edPushConsuner clients, the channel delivers the event to those
clients as a structured event message. The event data is stored in the
message’s r emai nder _of _body member. Similarly, PushConsuner clients
receive an event originally sent in structured format as a GCRBA: : Any.

A push consumer implements one of the following push operations:

push() is implemented by a PushConsuner, and receives an event
message of the CORBA : Any type.

push_struct ured_event () is implemented by a

St ruct ur edPushConsuner and receives an event message of
CosNoti fication:: StructuredEvent.

push_struct ured_event s() is implemented by a
SequencePushConsuner and receives a sequence of structured event
messages CosNot i fi cati on:: Event Bat ch.

Example

Pull Consumer

Implementing a Consumer

Example 11 implements push_struct ured_event () to receive a structured
event that contains sports scores.

Example 11: Receiving Events Using Push

/1 Java
inport org.ony. CosNotification.*;

cl ass NotifyPushConsuner extends StructuredPushConsurrer POA

{
o

publ i ¢ voi d push_structured_event (StructuredEvent event)
{
String news_type = new
String(event . header. fi xed_header . event _t ype. domai n_nane) ;
String sports_type = new
String(event. header. fi xed_header. event _type. type_nare) ;

i f (news_t ype. equal s(" SportsNews"))
{

String scores =
event . remai nder _of _body. extract _string();

Systemout. println("Qurrent " + sports_type + "scores:
' + scores);
}

A pull client consumer invokes the appropriate pul | ortry_pul | operation

on its proxy supplier to solicit event messages; the proxy supplier returns
with the next available event.

Each proxy supplier interface supports a variant of the pul I and the
try_pul | operations:

pul I () and try_pul I () are invoked on a Pul | Suppl i er proxy and
return a OCRBA: : Any argument.

53

CHAPTER 4 | Developing Suppliers and Consumers

Example

54

pul | _structured_event () and try_pul | _structured_event () are
invoked on a Struct ur edPul | Suppl i er proxy and return a

CosNot i fication:: StructuredEvent.

pul | _structured events() andtry pull _structured events() are

invoked on a SequencePul | Suppl i er proxy and return a sequence of
event structures.

The pul | and try_pul | operations differ only in their blocking mode:

® Anpull operation blocks until an event is available.

Atry_pul | operation is non-blocking—it returns immediately with a
boolean output parameter to indicate whether the return value actually
contains an event. The proxy consumer continues to invoke the pull
operation on the supplier as many times as specified in the

MaxPr oxyConsuner Ret ri es property (see “MaxRetries” on page 79).
The interval between retries is specified by the Pul | I nt erval property
(see “Pullinterval” on page 80).

Example 12 shows how one might use try_pul | to receive data from a
St ruct ur edProxyPul | Suppl i er.

Example 12: Pulling Events (Sheet 1 of 2)

/1 Java
Bool eanHol der has_data = new Bool eanHol der () ;

try

{
event = proxy.try_pul | _structured_event (has_data);

}

catch (org. ong. CosEvent Comm Di sconnect ed dsc)

Systemerr. println("D sconnect ed exception occured during
pul I");
Systemexit (1);
}
cat ch (SystenException sys)
{
Systemerr. println("System exception occured during pull");
Systemexit (1);
}

Implementing a Consumer

Example 12: Pulling Events (Sheet 2 of 2)

if (has_data. val ue)

{

n = event 2. remai nder _of _body. extract _ul ong ();
Systemout. printl n("Recei ved event nunber " + n + " using
try pull");

55

CHAPTER 4 | Developing Suppliers and Consumers

Disconnecting From the Event Channel

Overview

56

A client consumer can disconnect from the event channel at any time by
invoking the disconnect operation on its proxy supplier. This operation
terminates the connection between the consumer and its target proxy
supplier. The event channel then releases all resources allocated to support
its connection to the consumer, including destruction of the target proxy
supplier.

Each proxy supplier interface supports a disconnect operation. For example,
di sconnect _struct ured_push_suppl i er () is defined in
St ruct ur edPr oxyPushSuppl i er.

Overview

In This Chapter

CHAPTER 5

Notification
Service Properties

You can set and modify a number of properties on notification
service components.

Notification service properties control the delivery of event messages—for
example, their priority and reliability. You can use either the API or the
Notification Console to set these properties on a channel, an administration
object, a proxy object, or an event message.

This chapter covers the following topics:

Property Types page 58
Property Inheritance page 60
Setting Properties page 61
Getting Properties page 66
Validating Properties page 67
Property Descriptions page 69

57

CHAPTER 5 | Notification Service Properties

Property Types

In This Section

Administration Properties

Quality-of-Service Properties

This section covers the following topics:

Administration Properties page 58

Quality-of-Service Properties page 58

Administration properties control the behavior of event channels and cannot
be set on other objects. They are supported by the Adm nProperti esAdni n
interface, which provides the accessor operations get _admi n() and

set _admn() .

The notification service supports the following administration properties:
MaxConsurrer s

MaxSuppl i ers

MaxQueuelengt h
Rej ect NewEvent s

Quality-of-service properties control the behavior of all notification service
components and can be set on any notification service object, including
messages. They are supported by the QoSAdni n interface, which provides
accessor operations get _gos() and set_qos() .

Table 2 lists the quality-of-service properties and the component types on
which they can be set. Some properties have more specific restrictions;
these are discussed in the property descriptions (see “Property Descriptions’
on page 69).

Table 2: Component Support for Quality-of-Service Properties
Property Message Proxy Admin Channel
EventReliability Y
ConnectionReliability
Priority Y

58

Table 2:

Property Types

Component Support for Quality-of-Service Properties

Property

Message

Proxy

Admin

Channel

QO derPolicy

St opTi ne

St opTi meSupport ed

Ti meout

StartTi ne

St art Ti meSupport ed

MaxEvent sPer Consuner

D scardPol i cy

Maxi munBat chSi ze

Paci ngl nt er val

MaxRetri es

Ret ryTi meout

MaxRet r yTi neout

Request Ti neout

Pul I I nt erval

RetryMil tiplier

<|<|<|=<|=<|=<|=<|=<|=<]|=<]=<

<|<|<|=<|=<|=<|=<|=<|=<]|=<]<=<

< | =<| =<|=<|=<|=<|=<|=<|=<]|=<]=<

59

CHAPTER 5 | Notification Service Properties

Property Inheritance

Order of Inheritance On creation, an event channel, admin, or proxy initially inherits its
quality-of-service properties from the following components, in ascending
order of precedence

® The notification service's default property settings.

® Component ancestors, in order of creation.

For example, when you create a consumer proxy, the notification service:

1. Obtains its own default properties

2. Merges these properties with notification channel properties.

3. Merges the aggregate of all higher-level properties with the parent
supplier admin’s properties

4. Sets the merged list of properties on the consumer proxy.

At each merge stage, the current object’s properties override corresponding
properties of all higher-level components.

WARNING: If you change a component’s propetrties, the changes are
inherited only by child components that are created afterwards; existing
child components are unaffected by changes in their parents.

60

Setting Properties

Setting Properties

Overview

Consistency

In This Section

Properties can be set on the following notification service components, in
ascending order of precedence:

®* Event channel

® Admins

® Proxies

® Structured event messages

Properties can be set programmatically or through the Notification Console.

Properties can also be set for individual structured events through their
optional header fields.

Because properties can be set individually on the different components that
handle event message delivery, it is important to ensure consistent settings
across the entire delivery path. Unless all of the components in the delivery
path agree on a consistent set of policies, message delivery can be
unpredictable.

This section covers the following topics:

Setting Properties Programmatically page 62

Setting a Structured Event's QoS Properties page 65

61

CHAPTER 5 | Notification Service Properties

Setting Properties Programmatically

Methods for Setting Properties

set_admin()

set_qos()

62

The notification service provides two methods for setting an object’s

properties:

® set_adm n()sets administration properties on an event channel. It
cannot be used to set properties on other notification service objects.

® set_qos() sets quality-of-service properties on all notification service
objects.

set _adm n() is called on an event channel to set one of the following
administration properties:

MaxConsurrer s

MaxSuppl i ers

You can use set _adni n() to change existing properties on an event channel
or set new ones. Any property that is not specified remains unchanged.

set _adm n() takes a single argument of type

CosNot i fi cation:: Adm nProperties, which is defined as a sequence of
Stri ng/ Any name-value pairs specifying the properties to be changed and
their new settings.

set _adm n() throws an exception of Unsupport edAdmi n if the property is
unsupported for the target component. This exception returns a sequence of
structures containing the name of the invalid property, an error code
identifying the error, and a cstruct specifing the valid range of settings for
the property.

Table 3 lists the possible error codes returned because of an

Unsuppor t edAdmi n exception.

set _qgos() can be called on all notification service components to set their
quality-of-service properties.

You can use set _gos() to change existing properties on any notification
service component or to set new ones. Any property that is not specified
remains unchanged.

Setting Properties

set _gos() takes a single argument of type

CosNot i fication:: QSProperties which is defined as a sequence of
Stri ng/ Any name-value pairs specifying the properties to be changed and
their new settings.

set _gos() can throw Unsuppor t edQoS, if the property is unsupported for the
target component. This exception returns a sequence of structures
containing the name of the invalid property, an error code identifying the
error, and a cst ruct specifing the valid range of settings for the property.

Table 3 lists the possible error codes returned because of an
Unsuppor t edQS exception.

Table 3: Error Codes returned with the UnsupportedQoS and
UnsupportedAdmin Exceptions

Error code

Meaning

UNSUPPCRTED _PRCPERTY

Orbix does not support the property for this type of object.

UNAVAI LABLE PRCPERTY

This property cannot be combined with existing quality-of-service properties.

UNSUPPCRTED_VALUE

The value specified for this property is invalid for the target object. A range of
valid values is returned.

UNAVAI LABLE VALUE

The value requested for this property is invalid in the context of other

quality-of-service properties currently in force. A range of valid values is returned.

BAD PRCPERTY The property name is unknown.

BAD TYPE The type supplied for the value of this property is incorrect.

BAD VALUE The value supplied for this property is illegal. A range of valid values is returned.
Example Example 13 shows one way to set an event channel’s O der Pol i cy to

Fi foOrder.
Example 13: Setting Qos Properties (Sheet 1 of 2)
\\ Java

\\ Event channel chan obtained earlier
inport org.ong. CosNotification;

CHAPTER 5 | Notification Service Properties

Example 13: Setting Qos Properties (Sheet 2 of 2)

try
{

}

Property[] NewQ@S = Property[1];

NewQ@$S[0] = new Property();

NewQ@9S][0] . name = Order Pol i cy. val ue;

NewQos[0] . val ue = CRB.init().create_any();
NewQos[O] . val ue. i nsert _short (Fi f oOr der. val ue);

chan. set _qgos(qos) ;

catch (org. ong. CosNoti fi cati on. Uhsupport edQS uqgos)

}

64

Systemexit(1);
Systemerr. printl n(" Unsupported@S Exception");

Setting Properties

Setting a Structured Event’s QoS Properties

Overview

BAD_QOS Exception

Example

You can set quality-of-service properties in a structured event message’s
header. These settings override the corresponding properties specified for
the consumer and supplier proxies; however, they apply only to that event.

If the requested property is invalid, the notification service raises system
exception BAD Qos. This exception is thrown during transmission of a
structured event from a supplier to the channel when the channel
determines that it cannot accept the event header properties.

The BAD_QCs exception provides no details about why it was thrown. By
calling val i dat e_event _qos() in advance, a client can verify whether it can
safely set a property in an event message header. For more on this operation
see page 67.

Example 14 sets a structured event's Priori ty property to O.
Example 14: Setting QoS Properties in an Event Header

/1 Java
inport org.ong. CosNotification;

Struct uredBvent event = new StructuredEvent ();
event . header = new Event Header () ;
event . header . fi xed_header = new Fi xedEvent Header () ;
event . header . fi xed_header . event _type = new
Event Type(" Sport News", "Basebal | Resul ts")
event . header . fi xed_header . event _nane = new String("");
event . header . vari abl e_header = new Property[1];
event . header . vari abl e_header. nane = Priority;
event . header . vari abl e_header. val ue = CRB.create_any();

event . header . vari abl e_header . val ue. i nsert _short (0);

event.filterabl e_data = new Property [0];

65

CHAPTER 5 | Notification Service Properties

Getting Properties

Methods

get_admin()

get_qos()

Example

66

The notification service provides methods for looking at a notification service
object’s properties. Depending on a property’s type (see “Property Types” on
page 58), you can call either get _adnmin() or get_qgos() on a notification
service object to retrieve its properties.

get _adm n() takes no input parameters, and returns a sequence of
CosNot i fication:: Adm nProperties which contains name-value pairs
encapsulating the current administrative settings for the target channel.

get _qos() retrieves the effective quality-of-service properties for a channel,
admin, or proxy. It returns the list of properties, and their values, that are set
on the target object, including those properties inherited from higher levels,
in a sequence of name-value pairs of type

CosNot i fication:: QSProperties.

Example 15 gets the quality-of-service properties that are set for channel
chan.

Example 15: Getting QoS Properties

/1 Java
org. ong. CosNot i fi cation. Property[] current_qos;

current _qos = chan. get_qos();

Validating Properties

Validating Properties

Methods

Parameters

UnsupportedQoS Exception

Example

The notification service supports two methods that lets a supplier check

whether a given object supports one or more quality-of-service properties:

® validate_gos() can be called on all notification service objects.

® validate_event_qgos() can only be called on consumer proxies to
determines which quality-of-service properties are valid for an event
message.

Both methods take an input and output parameter:

required_qgos: A sequence of quality-of-service property name-value pairs of
type CosNot i fi cation:: QoSProperties that specify a set of
quality-of-service settings.

available_gos: An output parameter that contains a sequence of

CosNbot i fication:: PropertyRange data structures. Each element in this
sequence includes the name of an additional quality-of-service property
supported by the target object that could have been included on the input
list and resulted in a successful return from the operation, along with the
range of values that would have been acceptable for each such property.

avai | abl e_gos only returns properties that have no interdependencies. If
two properties are interdependent—for example, Event Rel i abi | ity and
Connect i onRel i abi | i t y—then neither is returned.

If any of the properties listed in requi red_gos are invalid for the target
object, the call throws an Unsuppor t edQS exception, which shows which
properties are invalid and why. For more information on return codes, see
Table 3 on page 63.

In Example 16, a supplier calls val i dat e_event _gos() on the proxy
consumer ppc to determine whether it can accept a structured event whose
Event Rel i abi | ity property is set to Persistent.

67

CHAPTER 5 | Notification Service Properties

Example 16: Validating Event Properties

/1 Java
// consuner proxy ppc obtianed earlier
inport org.onyg. CosNotification;

Property[] QS = new Property[1];

Q@S 0] = new Property();

Q@9 0] . name = new String(EventReliability.val ue);
Qos[0] . val ue = CRB. create_any();

Qos[0] . val ue. i nsert_short (Persi stent. val ue);

try
{
ppc. val i dat e_event _gos(QS);
}
cat ch(Unsuppor t edQS unsupport ed)
{
Systemerr. prntl n("Event persistence not allowed. Error:
unsupported.");
}
cat ch(or g. omg. GCRBA. Syst enExcepti on se)

Systemerr. prntl n("System exception occurred during
val i date_event _qos call.");

68

Property Descriptions

Property Descriptions

Topics The following topics are discussed in this section:
Reliability Properties page 70
Event Priority page 73
Event Queue Order page 72
Lifetime Properties page 74
Start Time Properties page 75
Undelivered Event Properties page 76
Discard Policy page 76
Sequenced Events Properties page 78
Proxy Push Supplier Properties page 79
Proxy Pull Consumer Properties page 80
RequestTimeout page 77
Channel Administration Properties page 81

69

CHAPTER 5 | Notification Service Properties

Reliability Properties

Property Names

EventReliability

ConnectionReliability

70

The notification service defines two reliability properties that determine how
it handles service fail over:

® EventReliability
® ConnectionReliability

Event Rel i abi | i ty specifies level of assurance that an event will be
delivered over multiple restarts of the process hosting its event channel. This
property can be set on an event channel and on individual events. By
default, an event’s reliability is set to match the event channel.

You can set this property to Best Ef fort or Persi stent:

BestEffort: (default) A queued event remains viable only during the event
channel’s hosting process’ lifetime. If the event channel’s hosting process
fails, delivery cannot be guaranteed for any buffered best-effort events; and
consumers might receive the same event more than once.

Persistent: A queued event is persistent. If the event channel’s hosting
process fails, all persistent events that remain within their expiry limits are
restored when the channel’s hosting process is restarted.

Note: EventReliability on a per event basis is only effective when the
channel’s Event Rel i abi | i ty is set to Persi st ent . Otherwise, all events
will be delivered with BestEffort .

Connect i onRel i abi | ity specifies whether a channel maintains information
about connected suppliers and consumers beyond its hosting processes
current lifetime. This property can be set only on a channel.

You can set this property to Best Effort or Persistent:

BestEffort: (default) Supplier and consumer connections are valid only
during the event channel’s hosting process’ current lifetime. If the event
channel’s hosting process fails, all references to that event channel become

Valid Combinations

Property Descriptions

invalid and should be explicitly disconnected by the consumers and
suppliers. Upon restart of the channel’s hosting process, all suppliers and
consumers must reconnect to the channel using new references.

Persistent: All supplier and consumer connections remain viable beyond the
event channel’s hosting process’ current lifetime. Upon restart from a
failure, the event channel automatically re-establishes connections to all
clients that were connected to it at the time of failure.

The following matrix shows which combinations for Event Rel i abi l i ty and
Connect i onRel i abi ity are valid:

EventReliability
Best Ef fort

Per si st ent

ConnectionReliability

Best Ef f or t Per si st ent
Y \4
N Y

71

CHAPTER 5 | Notification Service Properties

Event Queue Order

OrderPolicy

Values

72

The O der Pol i cy property tells a proxy in what order to queue events for
delivery. This property can be set on a channel, and on individual admin or
proxy objects; it is typically set by a consumer on its consumer admin,
supplier proxy, or both.

You set this policy with one of the following constants:

AnyOrder: Queue events in any order. In practice, this has the same effect
as specifying Fi f oQr der .

FifoOrder: Queue events in the order they are received by the event channel.

PriorityOrder: (default) Queue events according to their Priority property
setting, so higher priority events are delivered before lower priority events.

DeadlineOrder: Queue events in order of expiry deadlines, so events that are
destined to expire earliest are delivered first.

Property Descriptions

Event Priority

Priority

Interaction with OrderPolicy

Values

The Priority property determines the order in which events are delivered to
a consumer. This property can be set on all component types; however, it is
typically set on individual event messages.

Priority settings are effective only if the delivery points for prioritized
messages have their O der Pol i cy property setto Pri ori t yQ der (see “Event
Queue Order” on page 72); otherwise, the Priority property is ignored.
Thus, in order to guarantee that all supplier-assigned priorities are respected
in a given channel, O der Pol i cy must be set to Pri orityQrder for all proxy
suppliers within that channel.

The Priority property can be set to any short value between - 32, 767
(lowest priority) and 32, 767 (highest priority), inclusive. By default, all
events have a Pri ori ty setting of 0.

Note: A consumer can modify a message’s priority with mapping filters
(see “Mapping Filters” on page 93).

73

CHAPTER 5 | Notification Service Properties

Lifetime Properties

Property Names

StopTime

StopTimeSupported

Timeout

74

Lifetime properties specify the time span in which an event remains viable;
if the event is not delivered within that time span, it is discarded. By default,
events do not have fixed expiry times. The notification service defines three
lifetime properties:

® StopTinme

® StopTi meSupport ed

® Tineout

St opTi ne sets an absolute expiry time (for example, September 1, 2001),
after which the event is no longer deliverable and must be discarded.
St opTi me can only be set in the header of structured event messages.

This property is set with a Ti meBase: : U cT datatype.

St opTi meSuppor t ed can be set on a channel, admin, or proxy objects; its
boolean setting specifies whether the component supports the St opTi e
property. It has a defualt setting of TRUE and the notification service does not
currently support a setting of FALSE.

Ti meout specifies, in units of 1077 seconds, how long an event remains
viable after the channel receives it. After the Ti neout value expires, the
event is no longer deliverable and must be discarded.

You can set this property on a structured event message, channel, admin, or
proxy. A consumer can override this property with mapping filters (see
“Mapping Filters” on page 93).

This property is set with a Ti meBase: : Ti meT datatype; the default value is
0.

Property Descriptions

Start Time Properties

Property Names

StartTime

StartTimeSupported

Start time properties specify when an event becomes deliverable. By default,
all events are deliverable as soon as they are received by the channel. The
notification service defines two start time properties:

® SartTine

® StartTi neSupported

St art Ti me specifies that the event is to be delivered only after the specified
time, which is set with a Ti neBase: : U cT datatype. This property can only
be set on structured event messages.

Start Ti meSupport ed can be set on a channel, admin, or proxy objects, its
boolean setting specifies whether the component supports the Start Ti ne
property. It has a defualt setting of TRUE and the notification service does not
currently support a setting of FALSE.

75

CHAPTER 5 | Notification Service Properties

Undelivered Event Properties

Property Names

MaxEventsPerConsumer

Discard Policy

76

Two properties control the behavior of undelivered events in a channel:
® MaxEvent sPer Consuner
® DiscardpPolicy

MaxEvent sPer Consurer limits the number of undelivered events that a
channel queues for a consumer at any given time.

Overflow events are discarded in the order specified by Di scar dPol i cy.

You can set MaxEvent sPer Consuner on:

® Individual consumers, by setting it on their supplier proxies.

® A group of consumers, by setting it on their common consumer admin.

® All consumers connected to a given channel, by setting this property on
the channel itself.

This property is set with a | ong datatype; the default value is O (unlimited).

Di scar dPol i cy specifies the order in which events are discarded. You can
set D scar dPol i cy with one of the following constants:

AnyOrder: (default) Discard any events.
FifoOrder: Discard events from the head of the queue.

PriorityOrder: Discard events according to their priority, so lower priority
events are discarded before higher priority events.

DeadlineOrder: Discard events in order of shortest expiry deadline first.
LifoOrder: Discard events from the tail of the queue.
Note: Events are discarded only for a consumer whose number of queued

events exceeds its MaxEvent sPer Consuner setting. The event remains
queued for any consumers whose maximum is not exceeded.

Property Descriptions

RequestTimeout

Request Ti neout specifies, in units of 107 seconds, how much time is
allowed a channel object to perform an operation on a client. If the
operation does not return within the specified limit, it throws a

OCRBA: : TRANSI ENT system exception.

This property is set with a Ti neBase: : Ti meT datatype; the default is 5
seconds. The maximum value is 600 seconds.

77

CHAPTER 5 | Notification Service Properties

Sequenced Events Properties

Property Names

MaximumBatchSize

Pacinginterval

Setting Both Properties

78

Consumers that are registered to receive sequences of structured events can
control the inflow of events through two properties:

® Maxi nunBat chSi ze

® Pacinglnterval

Both properties can be set only for supplier proxies of types

SequencePr oxyPushSuppl i er and SequencePr oxyPul | Suppl i er. You can set
these properties on individual proxies, on consumer admin objects, and on
the event channel.

Maxi nunBat chSi ze specifies the maximum number of structured events that
are sent in a sequence to consumers. This property is set with a I ong
datatype; the default value is 1.

Paci ngl nt erval specifies, in units of 1077 seconds, the maximum amount
of time that a channel is given to assemble structured events into a
sequence, before delivering the sequence to consumers. This property is set
with a Ti neBase: : Ti neT datatype; the default value is O.

Note: The default values for Maxi munBat chSi ze and Paci ngl nt er val
configure a SequencePr oxy to behave similarly to a St rucur edPr oxy.

With both properties set, a supplier proxy must deliver a sequence of
structured events to its consumers when one of the following events occurs:

® The number of events is equal to Maxi nunBat chSi ze.
® The Pacinglnterval time limit expires.

Property Descriptions

Proxy Push Supplier Properties

Property Names

MaxRetries

RetryTimeout

RetryMultiplier

MaxRetryTimeout

Four quality-of-service properties control interaction between a
Pr oxyPushSuppl i er and its consumer:

® MaxRetries

® RetryTimeout

® RetryMiltiplier
® MaxRet ryTi neout

You can set these properties on a ProxyPushSuppl i er on consumer
administration objects, and on an event channel.

MaxRet ri es specifies the maximum number of times that a proxy push
supplier calls push() on its consumer before it gives up. This property is set
with a GCRBA : U ong datatype; the default value is O, which effectivly
means an infinite number of retries.

Ret ryTi meout specifies, in units of 1077 seconds, how much time elapses
between attempts by a proxy push supplier to call push() on its consumer.
This property is set with a Ti neBase: : Ti meT datatype; the default value is 1
second (1x107).

RetryMuil tiplier specifies the number by which the current value of
Ret ryTi meout is multiplied to determine the next Ret ryTi nout value.
RetryMil tiplier is applied until either the push() is successful or
MaxRet ryTi meout is reached. This property is set with a QORBA: : doubl e
datatype between 1.0 and 2.0; the default value is 1.0.

MaxRet ryTi meout sets the ceiling, in units of 1077 seconds, for

Ret ryTi meout . This property applies to Ret ryTi meout values directly
assigned by developers as well as Ret ryTi meout values reached by the
multiplication of RetryMil ti plier and RetryTi neout . This property is set
with a Ti neBase: : Ti neT datatype; the default value is 60 seconds
(60x107).

79

CHAPTER 5 | Notification Service Properties

Proxy Pull Consumer Properties

Property Names

MaxRetries

Pullinterval

80

Two quality-of-service properties control interaction between a
Pr oxyPul | Consurer and its supplier:

° MaxRetri es
® Pulllnterval

You can set these properties on a ProxyPul | Consuner ; on supplier admin
objects; and on an event channel.

MaxRet ri es specifies the maximum number of times that a proxy pull
consumer calls pul 1 () ortry_pul | () on its supplier before it gives up. This
property is set with a OORBA: : U ong datatype. The default value is 3.

Pul | I nterval specifies, in units of 1077 seconds, how much time elapses
between attempts by a proxy pull consumer to call pul | () ortry_pul | () on
its supplier. This property is set with a | ong datatype; the default value is 1
second (1x107).

Property Descriptions

Channel Administration Properties

Overview

MaxConsumers

MaxSuppliers

MaxQueueLength

RejectNewEvents

MaxConsurer s, MaxSuppl i er s, MaxQueuelLengt h, and Rej ect NewEvent s apply
only to event channel administration, and can be set only on an event
channel. These properties are accessible through set _adnin() and

get _admn().

MaxConsurrer s specifies the maximum number of consumers that can be
connected to the channel at any given time. This property is set with a | ong
datatype; the default value is O (unlimited).

MaxSuppl i er s specifies the maximum number of suppliers that can be
connected to the channel at any given time. This property is set with a | ong
datatype; the default value is O (unlimited).

MaxQueuelengt h specifies the maximum number of events that will be
queued by the channel before the channel begins discarding events or
rejecting new events if Rej ect NewEvent s is set to TRUE; the default value is O
(unlimited).

Rej ect NewEvent s specifies whether or not the channel continues accepting
new events after the number of events has reached MaxQueueLengt h. IONA's
implementation only supports a value of TRUE for this property.

When the total number of undelivered events within the channel is equal to
MaxQueuelLengt h, each pull-style proxy consumer will stop attempting to
perform pull invocations on its supplier until the total number of undelivered
events within the channel is decreased. Attempts to push new events to the
channel by push-style suppliers will result in the I MPL_LI M T system
exception being raised.

81

CHAPTER 5 | Notification Service Properties

82

Overview

In This Chapter

CHAPTER 6

Event Filtering

Filter objects screen events as they pass through the channel,
and process those that meet the filter constraints.

The notification service defines two types of filters:

® Forwarding filters are set in a channel by clients that wish to restrict

event delivery to those events that meet certain constraints. These
filters implement interface CosNotifyFilter::Filter.

Mapping filters are set by consumers to adjust the priority or lifetime
settings of those messages that meet filter constraints. These filters
implement interface CosNoti fyFil ter:: Mappi ngFil ter.

The following topics are covered in this chapter:

Forwarding Filters page 84
Mapping Filters page 93
Filter Constraint Language page 100

83

CHAPTER 6 | Event Filtering

Forwarding Filters

Overview

In This Section

84

Consumers can use forwarding filters to receive only those events that
interest them. For example, a consumer within a company’s accounting
department might use filters to ensure that it receives from government
agencies only those events that pertain to tax code changes.

Forwarding filters can be set on individual proxies, both consumer and
supplier types, and on groups of proxies through their common admin
objects. Because forwarding filters can be set on any delivery point within
an event channel, you can build a filtering system that satisfies the
individual and collective needs of widely different consumers.

Note: An object that has no filters associated with it forwards all events
that it receives to the next delivery point.

The following topics are covered in this section:

Implementing a Forwarding Filter page 85

Processing Events with Forwarding Filters page 90

Forwarding Filters

Implementing a Forwarding Filter

Procedure Implementing a forwarding filter is a four-step process:

Step Action

1 | Obtain a filter object.

Set up filter constraints.

2
3 | Add constraints to the filter object.
4

Attach the filter to a proxy or admin object.

Obtaining a Filter Object To create filter objects, an application first obtains a filter factory, which is
based on interface CosNotifyFilter::FilterFactory:

// 1DL in CosNotifyFilter
interface FilterFactory {
Filter create filter (
in string constraint_grammar)
rai ses (lnvalidGammr);
/...

IE

Orbix Notification provides a default filter factory instance that is associated
with each event channel. After obtaining a filter factory, the consumer or
supplier client calls create_filter () on the filter factory object; the call
supplies the argument EXTENDED TCL, which specifies the default constraint
grammatr.

85

CHAPTER 6 | Event Filtering

Example

Setting Up Filter Constraints

86

The code in Example 17 obtains a filter object.
Example 17: Obtaining a Filter Object

/1l Java
/1 event channel obtianed earlier

org.onyg. CosNotifyFilter.FilterFactory dff =
channel - >defaul t _filter_factory();

org.ony. CosNotifyFilter.Filter filter =
df f->create_filter("EXTENDED TCL");

After creating a filter object, you can set up its constraints. Filter objects
encapsulate one or more constraints through a sequence of
CosNot i fyFilter:: Constrai nt Exp data structures.

/1 1DL
struct ConstraintExp {

CosNot i fication:: Event TypeSeq event _t ypes;
string constraint_expr;

IE
typedef sequence<Constrai nt Exp> Constr ai nt ExpSeq;

Each Constrai nt Exp has two members:

EventTypeSeq specifies a sequence of Event Type data structures, each
containing two fields that combine to specify an event type:

// IDL in nmodul e CosNoti fication
struct Event Type {

string donai n_narre;

string domai n_type;

B
typedef sequence<Event Type>Event TypeSeq;
constraint_expr specifies a boolean string expression whose syntax

conforms to the default filter constraint language (see “Filter Constraint
Language” on page 100).

Example

Adding Constraints to a Filter

Forwarding Filters

Example 18 sets up a filter constraint with a single constraint expression,
which specifies to forward only even-numbered events:

Example 18: Setting up a Filter Constraint

/1 Java
inport org.ony. CosNotification.*;
inport org.ony. CosNotifyFilter.*;

Event Type[] event _types = new Event Type(1);

event _types[0] . donai n_name = new String("C bi x Denos");
event _types[0].type_nane =
new String("Structured Notification Push Demo Event");

Constrai nt Exp[] constraints = Constraint Exp(1);

constrai nts[0].event_types = event_types;
constrai nts[0].constrai nt_expr =

new String("($Event Nunber / 2) == (($Event Nunber + 1) / 2)");
The filter constraint is set up as follows:

1. Asingle Event Type is initialized, where the donmai n_name member is set
to O bi x Denos; and the t ype_nanme member is set to Struct ured
Notification Push Deno Event.

A Const rai nt ExpSeq is defined with a single Const rai nt Exp member.

constrai nt_expr is set to a boolean string expression, which evaluates
to true if an event’s $Event Nunber is an even integer; false if it is odd.

After you set up filter constraints, you add them to a filter by calling
add_constrai nts(), as in the following example:

org. ony. CosNoti fyfilter.ConstraintInfo[] info =
filter.add_contraints(constraints);

The operation checks whether the constraint is syntactically correct; if not, it
throws exception | nval i dConst rai nt .

87

CHAPTER 6 | Event Filtering

Attaching Filters All proxy and admin objects inherit CosNoti fyFilter::FilterAdnin, which
provides operations for adding and removing filters:

\\ 1DL
interface FilterAdmn {
FilterID add_filter(in Filter newfilter);
void renove_filter(in FilterIDfilter)
rai ses (FilterNotFound);
Filter get filter(in FilterIDfilter)
rai ses (FilterNotFound);
FilterIDSeq get_all filters();
voi d renove_all _filters();

Ik

You can add one or more filter objects to any proxy or admin object in an
event channel, providing multiple filtering layers in a channel.

Example Example 19 attaches the filter object created earlier to a structured proxy
push supplier.

Example 19: Attach a Filter Object

/1 Java
inport org.ong. CosNot i f yChannel Adm n. *;

/1 event channel ca and filter filter obtained earlier

/] create a structured push supplier
ProxySuppl i er obj =
ca.obtain_notification_push_supplier
(A ient Type. STRUCTURED EVENT, proxy_id);
St ruct ur edPr oxyPushSuppl i er pps =
St ruct ur edPr oxyPushSuppl i er Hel per. narrow(obj) ;

// add filter to proxy
IntHol der fid = new I ntHol der();
fid = pps.add_filter(filter);

In this example, the filter is attached to a supplier proxy, so it applies to all
events that are targeted at that proxy’s consumer. Filters that are attached
to an admin object apply to all the admin’s proxies. If a set of proxies can
use the same filters, it is more efficient to set these on a common admin, so
filter processing on a given event takes place only once for all proxies.

88

Filter Evaluation

Forwarding Filters

If filters are set on an admin and one of its proxies, events can be evaluated
against both sets of filters, depending on whether the admin object was
created with AND or CR semantics (see “Traversing Multiple Filters in a
Channel” on page 90).

A filter evaluates an event against its set of constraints until one evaluates to

true. A constraint evaluates to true when both of the following conditions are

true:

®* A member of the constraint’'s Event TypeSeq matches the message’s
event type.

® The constraint expression evaluates to true.

The first filter in which the event message evaluates to true forwards the
event to the next delivery point in the channel. If the event message fails to
pass any forwarding filters, the event may not be forwarded. For full details
on filter processing, see “Processing Events with Forwarding Filters” on
page 90.

89

CHAPTER 6 | Event Filtering

Processing Events with Forwarding Filters

Overview When an event message enters an event channel, it can encounter filters at
one or more delivery points. The filters at each delivery point evaluate the
event message, then either forward the event message to the next delivery

point, or drop the event.

Event Message Evaluation When an object receives an event, it invokes the appropriate match
operation—mat ch_st ruct ured() on structured events, mat ch() on untyped
events—on its filters. The match operation accepts as input the contents of
the event, evaluates it against the filter constraints, and returns a Boolean

result:

® true: The event satisfies one of the filter constraints and is forwarded
immediately to the next delivery point. Other filters for that object are

ignored.

® false: The event satisfies none of the filter constraints. If the object
has multiple filters, the event is passed on to the next filter and the
match operation is invoked on it. If all match invocations return false,
the event message may be removed from the event channel, depending
on the status of its progress in the channel delivery path.

Traversing Multiple Filters in a Forwarding filters can be attached to admin and proxy objects on both
Channel supplier and consumer sides of an event channel. As Figure 12 on page 91
shows, an event message can potentially traverse four sets of forwarding

filters, set on the following objects:
® Consumer proxy

® Supplier admin object

® Consumer's admin object

90

® Supplier proxy

Event channel

Forwarding Filters

A —
consumer| consumer (
P> proxy admin |
@ v ® |
supplier supplier
admin proxy
ool ——
N @ @ N

i

forwarding filters: reee1
supplier

consumer

Figure 12: Forwarding Filters Can Intercept an Event Message at Multiple

Delivery Points

If filters are set on an admin and one of its proxies, events can be evaluated

against both sets of filters, depending on whether the admin object was

created with AND or CR semantics:

® ANDsemantics require events to pass both admin and proxy filters.
® (CRsemantics only require an event to pass an admin or proxy filter.

An event message traverses channel filters as follows:

1. The consumer proxy filters each forwarded event with one of the

following results:

¢ If the supplier admin has CR semantics, an event that passes any
proxy filter is forwarded directly to the consumer admin.

‘ If the supplier admin has ANDsemantics, an event that passes any
proxy filter is forwarded to the supplier admin for further filtering.

. If the admin has AND semantics, an event that fails all proxy filters

is not forwarded.

2. The supplier admin filters each event with one of the following results:

91

CHAPTER 6 | Event Filtering

92

+ The event passes one of the filters and is forwarded to the
consumer admin.

+ The event fails all filters and is not forwarded.

The consumer admin filters each forwarded event with one of the

following results:

¢ If the admin has CR semantics, an event that passes any filter is
forwarded directly to the consumer.

* If the admin has AND semantics, an event that passes any filter is
forwarded to the supplier proxy for further filtering.

. If the admin has ANDsemantics, an event that fails all filters is not
forwarded.

The supplier proxy filters each forwarded event with one of the

following results:

+ The event passes one of the filters and is forwarded to the
consumer.

+ The event fails all filters and is not forwarded to the consumer.

Mapping Filters

Mapping Filters

Overview

In This Section

An event's lifetime and priority can be set at several levels—in the event
message itself, and at the channel, admin, or proxy levels. While suppliers
can set an event’s priority or lifetime—typically, in the header of a
structured event message—they cannot always anticipate the importance
that individual consumers might assign to events of certain types. For
example, a consumer might wish to raise the priority of all messages where
event _type field is set to sport and sport _type field is set to basebal I .
Mapping filters allow consumers to increase or diminish the importance of
certain events by enabling their supplier proxies to override their Priority
and Ti meout properties.

You can apply mapping filters to supplier proxies and consumer admin
objects. Each object can have up to two mapping filters:

® A priority filter that determines an event’s priority.
® A lifetime filter that determines how long an event remains deliverable.

The following topics are discussed in this section:

Implementing a Mapping Filter Object page 94

Processing Events with Mapping Filters page 98

93

CHAPTER 6 | Event Filtering

Implementing a Mapping Filter Object

Procedure Implementing a mapping filter is a four-step process:

Step Action

1 | Obtain a filter object.

Set up constraints and associated values.

2
3 | Add constraints to the filter object.
4

Associate the mapping filter with a supplier proxy or consumer
admin.

Obtaining a Mapping Filter Object To create mapping filter objects, an application first obtains a filter factory,
which is based on interface CosNotifyFilter::FilterFactory:

\\ IDL in nodul e CosNotifyFilter
interface FilterFactory {

/...

Mappi ngFi | ter create_mappi ng_filter (
in string constraint_gramar,
in any defaul t_val ue)

rai ses(Inval i dG ammar) ;

IE

The consumer client calls creat e_mappi ng_filter() on the filter factory

object and supplies two arguments:

® The argument EXTENDED TQ., which specifies the default constraint
grammar.

® An any that specifies the mapping filter's default value. This value is
used only when an event message fails to match any filter constraints,
and the target property is not set anywhere for the event (see
“Processing Events with Mapping Filters” on page 98). This value
must be consistent with the mapping filter's target property.

94

Example

Setting Up Filter Constraints

Mapping Filters

Example 20 creates a mapping filter object and sets its default value to 2.
Example 20: Creating a Mapping Filter

/1 Java

/1 channel obtained earlier
inport org.ony. CCRBA *;

inport org.ony. CosNotifiyFilter.*;

[/ channel obtained earlier
FilterFactory var dff = channel.default_filter_factory();

Il set filters default priority to two
Any defaul t_val ue = CRB.create_any();
defaul t _val ue.insert_short (2);

[l Create filter
Mappi ngFi | ter Mapfilter =
df f. create_mappi ng_filter("EXTENDED TCL", defaul t_val ue);

After creating a mapping filter object, you can set up its constraints.
Mapping filter objects encapsulate one or more constraints through a
sequence of CosNotifyFilter:: Mappi ngConst rai nt Pai r data structures:

// 1DL in nodul e CosNotifyFilter
/...

struct Constraint Exp {

CosNot i fication:: Event TypeSeq event _t ypes;
string constraint_expr;

IE

struct Mappi ngConstrai nt Pai r{
Constrai nt Exp constrai nt_expression;
any result_to_set;

Ik

Each Mappi ngConst r ai nt Pai r contains:

® A constraint that is defined through a Const rai nt Exp data structure

(see “Event Type Filtering” on page 102).

The property override value associated with the constraint. The
override value must be consistent with the target property: short for a
priority filter; Ti neBase: : Ti neT for a lifetime filter.

95

CHAPTER 6 | Event Filtering

Example Example 21 sets up a mapping filter constraint with two
Mappi ngConst rai nt Pai r data structures, which evaluates all events whose
event type domain field is set to Sport sNews:

® |f the event type is set to Basebal | Resul t s, and the event's priority is
less than 100, reset the priority to 100.

® |f the event type is set to Foot bal | Resul t s and the event’s priority is
greater than 0, reset the priority to O.

Example 21: Adding Mapping Filter Constraints

/1 Java
inport org.ong. CosNotification.*;
inport org.onyg. CosNotifyFilter.*;

Mappi ngConstrai nt Pair[] mapex = new Mappi ngCont srai nt Pai r (2);

/I Oreate first constraint

mapex[0] . const ri ant _expr essi on = new Constrai nt Expr (1) ;

mapex[0] . const rai nt _expr essi on[0] . event _types =
new Event Type(1);

mapex[0] . cont rai nt _expressi on[0] . event _t ypes[0] . domai n_nane =
new String(" SportsNews");

mapex[0] . const rai nt _expr essi on[0] . event _types[0] . t ype_nane =
new String("Basebal | Results");

mapex[0] . cont rai nt _expr essi on[0] . constrai nt _expr =
new String("($Priority < 100)");

mapex[0].result_to_set = CRB.create_any();

mapex[0] .result _to_set.insert_short(100);

/1 Oreate second constraint
mapex[1] . const ri ant _expr essi on = new Constrai nt Expr (1) ;
mapex[1] . const rai nt _expr essi on[0] . event _types =
new Event Type(1);
mapex[1] . cont rai nt _expr essi on[0] . event _t ypes[0] . domai n_nane =
new String(" SportsNews");
mapex[1] . const rai nt _expr essi on[0] . event _t ypes[0] . t ype_nane =
new String("Footbal | Results");
mapex[1] . contrai nt _expressi on[0] . constrai nt_expr =
new String("($Priority > 0)");
mapex[1] .result_to_set = CRB.create_any();
mapex[1].result_to_set.insert_short(0);

96

Adding Constraints to a Mapping
Filter

Attaching Mapping Filters

Mapping Filters

After you set up filter constraints, you add them to the mapping filter by
calling add_mappi ng_constrai nts(), as in the following example:

org. ong. CosNot i fyFi | ter. Mappi ngConstrai ntlnfo[] ntisl =
Mapfi | t er.add_mappi ng_constrai nt s(mapexp) ;

The operation checks whether the constraint is syntactically correct; if not, it
throws exception I nval i dConstrai nt .

Any supplier proxy and consumer admin can have up to two mapping filters;

one that pertains to an event’s Priority property, the other to its Ti meout

property. The following objects provide a method for setting each filter type:

® priority_filter() attaches a mapping filter that can override an
event's Priority setting.

® Jifetime_filter() attaches a mapping filter that can override an
event’s Ti meout setting.

For example, the following code attaches a priority mapping filter to a
supplier proxy:

// add the filter to the structured push supplier proxy
pps.priority filter(Mpfilter);

97

CHAPTER 6 | Event Filtering

Processing Events with Mapping Filters

Overview When an event message enters an event channel, it can encounter mapping
filters at one or more delivery points. The mapping filters at each delivery
point evaluate the event message, and either override the messages
quality-of-service settings, set the messages default quality-of-service
settings, or do nothing.

Event Evaluation When a consumer admin or supplier proxy object receives an event, it
invokes the appropriate match operation on its mapping filters—
mat ch_st ruct ured() on structured events, mat ch() on any-type events:

// IDL in interface CosNotifyFilter::MppingFilter
bool ean match (in any filterable data, out any result_to_set)
rai ses (UnsupportedFilterabl eData);

bool ean match_structured (
in CosNotification::StructuredEvent filterable data,
out any result_to_set)
rai ses (UnsupportedFilterabl eData);

The match operation accepts as input the contents of the event, and
evaluates it against the filter constraints. Filter constraints are traversed in
descending order of override values—longest-to-shortest lifetime for a
lifetime filter, and largest-to-smallest integer for a priority filter.

The match operation returns from each filter with a Boolean result:

® true: The event satisfies one of the mapping filter constraints and
applies that constraint’s override value to the event. The match
operation’s output parameter returns with the override value.

® false: The event satisfies none of the filter constraints. In this case, the
event retains its current property setting, if this is explicitly set
elsewhere in the channel—for example, by the event channel itself, or
in the current proxy. If the target property is not set anywhere, the
mapping filter's default value is applied.

98

Traversing Multiple Mapping
Filters in a Channel

Mapping Filters

While mapping filters effectively change an event's lifetime and priority, they
have no effect on event message content. Because they do not depend on
finding property settings in the message itself, you can apply mapping filters
to any-type and structured event messages alike.

Mapping filters can be attached to a consumer admin and its supplier
proxies. If set on both, a supplier proxy’s mapping filters take precedence.

929

CHAPTER 6 | Event Filtering

Filter Constraint Language

Overview The default filter constraint language is based on the standard OMG Trader
Constraint Language with some modifications that make it more suitable for
use as a filter constraint language.

In This Section The following topics are discussed in this section:
Constraint Expression Data Structure page 101
Event Type Filtering page 102
Referencing Filtered Data page 104
Operand Handling page 107
Examples of Notification Service Constraints page 108

100

Filter Constraint Language

Constraint Expression Data Structure

Constraint Sequence

EventTypeSeq

constraint_expr

Filter objects encapsulate one or more constraints through a sequence of
CosNoti fyFilter:: Constraint Exp data structures:

\\ IDL in nodul e CosNotifyFilter

struct Constrai nt Exp{
CosNot i fication:: Event TypeSeq event _t ypes;
string constraint_expr;

iE
t ypedef sequence<Constrai nt Exp> Constrai nt ExpSeq;

Each Const rai nt Exp has two members:
® Event TypeSeq

® constraint_expr

A sequence of Event Type data structures which contains two fields that
specify an event type:

\\ I1DL

struct Event Type {
string domai n_nare;
string domai n_type;};

typedef sequence<Event Type>Event TypeSeq;

A boolean string expression whose syntax conforms to the default filter
constraint language (see “Examples of Notification Service Constraints” on
page 108). The constraint expression is applied to events whose event type
matches one of the event types defined in the constraint’s Event TypeSeq.

For full details on the filter constraint language, see the OMG’s Notification
Service Specification.

101

CHAPTER 6 | Event Filtering

Event Type Filtering

Overview The Const rai nt Exp portion of a constraint is a sequence of Event Type data

structures identifying which event types are to be filtered. Any event type not
specified in a filter's Const rai nt Exp will be evaluated to false by the filter.

In This Section The following topics are discussed in this section:

Filtering for a Single Event Type page 102

Applying a Constraint to All Events page 102

Using Wildcards page 103

Filtering for a Single Event Type Example 22 sets up a constraint expression that evaluates to t r ue for all

sports news events reporting on baseball results and whose priority is set to
less than 100.

Example 22: Using the Filter Constraint Language

/1 Java
inport org.CosNotification.*;
inport org.onyg. CosNotifyFilter.*;

Constrai nt Expr[] constriant_expression = new Constrai nt Expr (1);
constraint_expression[0] . event _types = new Event Type(1);
contrai nt_expression[0].event _types[0].donmai n_nane =

new String(" SportsNews");
constrai nt_expression[0] . event _types[0].type_name =

new String("Basebal | Results");
contrai nt_expression[0].constraint_expr =

new String("($Priority < 100)");

Applying a Constraint to All Events A constraint can set its Event TypeSeq to indicate that the constraint
expression applies to all events, in several ways:

102

Filter Constraint Language

Declare an empty Event TypeSeq:

org. ong. CosNoti fi cati on. Event Type[] event_types =
new or g. ong. CosNot i fi cati on. Event Type(0) ;

® |nitialize a single-element Event TypeSeq to empty strings:

org. ong. CosNoti fi cati on. Event Type[] event_types =
new or g. ong. CosNot i fi cati on. Event Type(1);

event _types[0] . dormai n_nane = new String("");

event types[0].type_name = new String("");

® |nitialize a single-element Event TypeSeq with wildcard characters, *:

org. ong. CosNoti fi cation. Event Type[] event_types =
new or g. ong. CosNot i fi cati on. Event Type(1);

event _types[0] . dormai n_nane = new String("*");

event _types[O0].type_nane = new String("*");

Using Wildcards The default constraint grammar supports wildcard characters in Event Type

fields. For example, the following setting applies to all news events, such as
Sport sNews or Fi nanci al News:

org. ong. CosNot i fi cation. Event Type[] event_types =
new or g. ong. CosNot i fi cati on. Event Type(1);

event _types[0].domai n_nane = new String("*News");

event _types[O0].type_nane = new String("*");

103

CHAPTER 6 | Event Filtering

Referencing Filtered Data

Overview

In This Section

Name-Value Pair Notation

104

You can identify any data component in a structured event message by
specifying its full path within a CosNot i fi cati on: : Struct ur edEvent :

$. Event Header [. i nt er nedi at e- conponent[...]]. conponent - nane
For example, you can reference an event type’s domain name as follows:

$. Event Header . Fi xedEvent Header . event _t ype. domai n_nane

The following topics are discussed in this section:

Name-Value Pair Notation page 104

Shorthand Notation page 105

Structured event messages are set up to allow extensive use of name-value
pairs sequences. The full syntax for referencing these is as follows:

$. Event Header . Fi xedEvent Header . Opt i onal Header Fi el ds[i] . nane
$. Event Header . Fi xedEvent Header . Opt i onal Header Fi el ds[i] . val ue
$. Fi | terabl eEvent Body[i] . nane

$. Fi | terabl eEvent Body[i] . val ue

Given this syntax, you can construct a constraint expression that evaluates
as follows:

($. Event Header . Fi xedEvent Header . Qpt i onal Header Fi el ds[i] . nane ==
"Priority’) and

($. Event Header . Fi xedEvent Header . Opt i onal Header Fi el ds[i] . val ue >
10)

While this syntax lets you loop through all optional header and filterable
data field members, it is also cumbersome. Therefore, the notification
service also supports two abbreviated formats for referencing name-value
pairs in a structured event message.

Shorthand Notation

Filter Constraint Language

Optional header fields can be represented as follows:
$. Event Header . vari abl e_header (pr op- nane)

For example, the constraint expression shown earlier might be rewritten as
follows:

$. Event Header . vari abl e_header (Priority) > 10

Filterable data fields can be represented as follows:
$.filterabl e_data(fi el d-name)

For example, the following notation refers to filterable data field
St ockSynbol :

$.filterabl e_data(St ockSynbol)

The notification service supports a shorthand notation that lets you
reference filterable data components in both structured and unstructured
events:

$conponent - nare

This notation is valid for referencing the following structured event
components:

$. Event Header . Fi xedEvent Header . event _t ype. donai n_nane

$. Event Header . Fi xedEvent Header . event _t ype. t ype_nane

$. Event Header . Fi xedEvent Header . event _nane

$. Event Header . vari abl e_header . (pr op- nane)

$.filterabl e_data. (fiel d-nane)

For example, the following constraint:

($. Event Header . Fi xedEvent Header . event _t ype. t ype_nane ==
"StockAlert’) and

($. Event Header . vari abl e_header (pct _change) > 5. 0)

can be rewritten as follows:

($type_nane == 'StockAl ert’) and ($pct_change > 5.0)

105

CHAPTER 6 | Event Filtering

106

The notification service uses the following algorithm to resolve runtime
variable $vari abl e:

1. If the variable name is reserved—for example, $curti me—this usage
takes precedence.
2. The first matching translation is chosen from:
* A member of $. Event Header . Fi xedEvent Header
. A property in $. Event Header . vari abl e_header
* A field name in $.filterabl e_data
3. If no match is found, the translation defaults to $. vari abl e.

Thus, a generic constraint can use $Priority to reference an unstructured
event’s $. priority member, and a structured event's
$. Event Header . vari abl e_header (priority) member.

Filter Constraint Language

Operand Handling

Overview

Examples

When you add a constraint to a filter, the notification service only checks
whether it is syntactically correct. When a filter processes an event, the
match operation is responsible for ensuring that operands have valid data
types. When the match operation encounters invalid operands, or
nonexistent identifiers, it returns false.

The following constraint expression evaluates three event message fields, a,
b, and c:

($a + 1 > 32) or ($b == 5) or ($c > 3)
The following examples show how the match operation handles constraint
operands as it evaluates the contents of different events.

Event 1: <$a, ' Hawaii'>, <$c, 5.0>

The first expression resolves to (Hawaii’ + 1 > 32). Because it is not
possible to add an integer to a string data type, the constraint is invalid and
the match operation returns false.

Event 2: <$a, 5>, <$c, 5.0>

The first expression evaluates to false. Because the event lacks a $b
member, an error occurs and the match operation returns false. The
constraint expression can be modified to handle the missing $b member as
follows:

($a + 1 > 32) or (exist $b and $b == 5) or ($c > 3)

Event 3: <$a, 5>, <$b, 5.0>

The second expression evaluates to true, although $b is set to a floating
point. Following arithmetic conversion rules, the constraint expression’s
constant 5 is also cast to floating point. Because the second expression
evaluates to true, the match operation never detects the omission of
member $c.

107

CHAPTER 6 | Event Filtering

Examples of Notification Service Constraints

The following examples show different constraint expressions that use the
default constraint language:

Accept all Communi cat i onsAl ar mevents but no | ost _packet messages:

$event _type == ' Conmuni cati onsA armi and
not ($event nane == '| ost_packet’)

Accept Communi cati onsAl ar mevents with priorities ranging from 1 to 5:

($event _type == ' Communi cati onsA arm) and
($priority >= 1) and ($priority <= 5)

Select MOV E events featuring at least three of the Marx Brothers:
($event _type == "MOME) and (((’'groucho’ in $.starlist) +
("chico’ in $.starlist) + ("harpo’ in $.starlist) +
(" zeppo’ in $.starlist) + ("gumo’ in $.starlist)) > 2)

Accept only recent events:

$ori gi nation_tinestanp. high + 2 < $curtine. hi gh

Accept students that took all three tests and had an average score of at least
80%:

($.test. _length == 3) and ((($.test[1].score + $.test[2].score +
$.test[3].score) / 3) >= 80)

Select processes that exceed a certain usage threshold:

$rmensize / 5.5 + $cputine * 1275.0 + $filesize * 1.25 > 500000. Oh

108

Overview

In This Chapter

CHAPTER 7

Subscribing and
Publishing

Notification service consumers can tell an event channel
which event types they wish to receive from suppliers, and
suppliers can advertise the event types they offer to
consumers.

The event channel maintains all information about event type supply and

demand, and passes this information to consumers and suppliers:

® As consumers change their subscriptions, the channel updates its
subscription list and informs suppliers of the changes, so that they can
adjust event output accordingly.

® As suppliers add or remove event types that they supply, the channel
updates its publication list and informs consumers of the changes, so
that they can re-evaluate their subscriptions.

The following topics are covered in this chapter:

Event Subscription page 110

Publishing Event Types page 119

109

CHAPTER 7 | Subscribing and Publishing

Event Subscription

Overview

In This Section

110

Event subscription enables clients to inform suppliers which events they are

interested in receiving. Event subscription requires the following actions

from client consumers and suppliers:

® Each consumer subscribes to its desired event types by adding or
modifying forwarding filters to their proxy suppliers or consumer
admin.

® Each supplier builds its own list of event types to evaluate changes to
the channel subscription list against the list of events that they supply.

® On connecting to the event channel, suppliers call
obt ai n_subscri ption_types() on their proxy consumers to discover
which event types are currently subscribed to by consumers.

® The supplier's implementation of subscri pti on_change() evaluates
changes to the channel’s subscription list and acts accordingly.

The following topics are covered in this section:

Adding Forwarding Filters page 111
Obtaining Subscriptions page 113
Implementing subscription_change() page 116

Event Subscription

Adding Forwarding Filters

Overview

Filter Modification Operations

Subscription List

A consumer initially specifies which event types it wishes to subscribe to by
adding forwarding filters to its proxy supplier or consumer admin. The event
types specified in these filters are relayed to the channel, which
consolidates, in a single subscription list, all event types that consumers
require. A consumer can also remove or modify existing filters. Each time a
consumer changes its forwarding filters, the channel modifies its
subscription list accordingly.

A consumer modifies its forwarding filters through one of the following
operations, defined in module CosNoti fyFilter:

in FilterAdmin interface: in Filter interface:
add _filter() add_constraints()
remove_filter() nmodi fy_constraints
renmove_al | _filters(); renove_constraints

The channel’s subscription list contains one entry for each event type, and
associates a reference count with it. When a consumer adds an unknown
event type to one of its filters, the channel opens a new entry in the
subscription list and assigns it a reference count of 1. It then notifies client
suppliers of the new event type by calling subscri pti on_change(), which is
implemented by each supplier's developer, on them. The supplier's
implementation (see “Implementing subscription_change()” on page 116.)
typically uses subscription information to evaluate consumer demand, and
to determine whether it should continue or stop supplying certain events.

If an event type’s reference count falls to O—that is, no filters specify this
event type—the channel removes the event type from its subscription list. It
then notifies all suppliers of the removal through subscri pti on_change() .
Given this new information, suppliers can stop supplying this particular
event type.

Note: Consumers should never invoke subscri pti on_change() on their

proxy suppliers. The notification service calls this operation automatically
when a proxy supplier detects changes in consumer subscriptions.

111

CHAPTER 7 | Subscribing and Publishing

Example

112

For information about implementing forwarding filters, see “Forwarding
Filters” on page 84.

Example 23 implements a client push supplier that defines an array of
Suppl i edType elements. This structure encapsulates the event types that
this supplier can produce, and sets a flag of true or false to indicate which
ones the supplier should push.

Example 23: Client Push Supplier

/1l Java

class NotifyPushSupplier extends StructuredPushSupplier POA
{
cl ass Suppl i edType

{
public String domai n_nane;
public String type_nane;
publ i ¢ bool ean supply;

}

private SuppliedType[] msupply_types = null;
private int numtypes_supplied = 5;

/...

}

Event Subscription

Obtaining Subscriptions

obtain_subscription_types()

Arguments

Return Values

After a supplier connects to an event channel, it can ascertain which event
types consumers currently require by calling obt ai n_subscri pti on_t ypes()
on its proxy consumer. This operation is defined as follows:

org. ong. CosNot i fi cati on. Event Type[]
obt ai n_subscri pti on_types(in Qbtai nl nf oMde node) ;

It takes a single ot ai nl nf oMbde argument as input, which informs the
channel whether to automatically notify this supplier of future subscription
list changes. This argument is typically set with one of the following flags:

ALL_NOW_UPDATES_ON: The invocation returns the contents of the
subscription list, and enables automatic notification by

subscri ption_change() . Use this argument for a supplier that implements
subscri ption_change() to handle notification (see “Implementing
subscription_change()” on page 116).

ALL_NOW_UPDATES_OFF: The invocation returns the contents of the
subscription list, and disables automatic notification. Use this argument for
a supplier that wishes to control when it receives subscription changes,
through subsequent calls to obt ai n_subscri ption_t ypes().

NONE_NOW_UPDATES_ON: The invocation enables automatic notification
of updates to the subscription list without returning the contents of the
subscription list. Use this argument for a supplier that implements

subscri ption_change() to handle notification (see “Implementing
subscription_change()” on page 116).

NONE_NOW_UPDATES_OFF: The invocation disables automatic
notification of updates to the subscription list without returning the contents
of the subscription list. Use this argument for a supplier that wishes to
control when it receives subscription changes, through subsequent calls to
obtai n_subscri ption_types().

The operation returns an Event Type[], which contains all event types
currently requested by consumers.

113

CHAPTER 7 | Subscribing and Publishing

Example

114

In Example 24, a client supplier performs the following steps to implement
obt ai n_subscri ption_types():

1. Initializes a list of event types that it supplies.

2. Calls obtai n_subscri ption_types() to obtain a list of subscription
types.

3. For each subscription type, calls fi nd_i ndex() (shown in the next
section), which compares each subscription type against the client's
own event types list; if the event types match, it sets the list element’s
suppl y flag to true.

Example 24: Implementing obt ai n_subscri pti on_t ypes()

/1 Java

class NotifyPushSupplier extends StructuredPushSupplier POA
{
W\

void init_supply_types()
{
int i;
1 m suppl y_types = new Suppl yType[num t ypes_suppl i ed] ;

for(i=0; i < numtypes_supplied ; i++)
{
m suppl y_types[i].donai n_name =
new String("SportsNews");
msuppl y_types[i].supply = fal se;
}

m suppl y_t ypes[O] . t ype_nane

m suppl y_types[1] . t ype_nane
/1 other sporting events ...

m suppl y_types[4] .type_nane = new String("Tenni sResul ts");

new String("BaseBal | Resul ts");
new String("Footbal | Resul ts");

2 org. ong. CosNot i fi cati on. Event Type[] types_to_supply =
m pr oxy- >obt ai n_subscri pti on_t ypes(ALL_NON UPDATES Q\) ;

Event Subscription

Example 24: Implementing obt ai n_subscri pti on_t ypes()

/'l For each supplied event type which consuners want,
/] set its boolean flag to true
| ong i ndex;

for (i=0; i<types_to_supply.length(); i++)

{
index = find_i ndex(types_to_supply[i]);
if (index >= 0)
m suppl y_t ypes[index] . supply = true;
}

115

CHAPTER 7 | Subscribing and Publishing

Implementing subscription_change()

subscription_change() When the channel’s subscription list adds or removes an event type, the
channel automatically calls subscri pti on_change() on all client suppliers.
This operation is defined in interface CosNot i f yComm : Not i f ySubscri be:

\\ 1D
nodul e CosNot i f yConm
{
exception | nvalidEvent Type {CosNoti fication:: Event Type
type;};
...
interface NotifySubscribe
{
voi d subscri pti on_change(
in CosNotification::Event TypeSeq added,
in CosNotification::Event TypeSeq renoved)
rai ses (lnvalidEvent Type);

}
I
ik
Arguments The operation receives two Event TypeSeq arguments:
added Specifies new event types that this supplier now offers.
r emoved Specifies event types that the supplier no longer offers.

A supplier implements this operation in order to ascertain which event types
are being consumed and which are not, and reevaluate its event output
accordingly.

Example If a consumer subscribes to sports news events, suppliers can detect this
interest through their implementation of subscri pti on_change() and start
to push events of that type. When consumers are no longer interested in this
event type, the channel’s subscription list changes again, and the channel
calls subscri pti on_change() on its suppliers with this change. The supplier
can then stop pushing those events.

116

1

2

Event Subscription

In the implementation of subscri pti on_change() shown in Example 25 the
supplier updates the list of events that it can supply.

Example 25: Updating the Supplier’s List of Events

/1 Java

class NotifyPushSupplier extends StructuredPushSupplier POA
{
WL

int find_i ndex(org.onyg. CosNotification. Event Type e_type)
{
for(int i=0; i < numtypes_supplied; i++)
i f (etype. donai n_narre. equal s(m suppl y_type[i].donai n_narre)

&& etype.type_nare. equal s(msupply_tpye[i].type_nane))
return i;

return -1; // event tyoe not found

}

voi d subscri ption_change(org. ong. CosNot i facti on. Event Type[]
added, org.ony. Event Type[] renoved)
{
/1 Turn on supplying of added types
for(i = 0; i < added.length(); i++)
if find_i ndex(added[i]) >= 0)
m suppl y_types[i].supply = | T_TRUE

// Turn of f supplying of renoved types
for(i =0; i <renoved.length(); i++)
i f(find_i ndex(renmoved[i]) >= 0)
m suppl y_types[i].supply = | T_FALSE;

This code executes as follows:

1.

The first argument (added) is evaluated for new event types that have
been added to the subscription list. If the argument contains event
types, find_i ndex() is called for each event type and compares it
against the client’s list of supplied event types. If it is on the list, the
event type’s Boolean flag is set to true.

117

CHAPTER 7 | Subscribing and Publishing

The second argument (r enoved) is evaluated for event types that have
been removed from the subscription list. If the argument contains
event types, fi nd_i ndex() is called for each event type and compares
it against the client’s list of supplied event types. If it is on the list, the
event type's Boolean flag is set to false.

Note: A supplier that wishes not to be notified of subscription changes
should implement subscri pti on_change() to throw a
QCRBA : NO | MPLEMENT exception.

118

Publishing Event Types

Publishing Event Types

Overview

In This Section

Event publication enables consumers to discover new event types as they
are offered by suppliers. Event publication requires the following actions
from client consumers and suppliers:
® Suppliers advertise event types that they can provide by calling
of f er_change() .
® On connecting the consumer to the event channel, consumers call
obt ai n_of fered_t ypes() on their proxy suppliers to discover which
event types are currently available.
® The consumer’s implementation of of f er _change() evaluates changes
to the channel’s publication list and acts accordingly.

The following topics are covered in this section:

Advertising Event Types page 120
Discovering Available Event Types page 122
Implementing offer_change() page 126

119

CHAPTER 7 | Subscribing and Publishing

Advertising Event Types

offer_change()

Arguments to offer_change()

Publication List

120

renoved

A supplier informs the event channel of those event types that it can supply
by calling of f er _change() on its proxy consumer or supplier admin object.
This operation is defined in interface Not i f yPubl i sh interface, which is
inherited by all Consuner Adm n and Suppl i er Admi n interfaces:

\\ 1D
nmodul e CosNot i f yConm
{

exception | nval i dEvent Type{ CosNoti fi cati on:: Event Type type;};

interface NotifyPublish
{
voi d of fer_change(in CosNotificati on:: Event TypeSeq added,

in CosNotification::Event TypeSeq renoved)
rai ses(| nval i dEvent Type);

of fer _change() receives two arguments of the Event TypeSeq type, which is
a sequence of Event Type structures defined as follows:

// 1DL in nodul e CosNoti fication
struct Event Type {

string donai n_narre;
string type_nare;

IE

typedef sequence<Event Type> Event TypeSeq;

The two parameters let the supplier modify the channel’s publication list:
added

Specifies new event types that this supplier now offers.
Specifies event types that the supplier no longer offers.

An event channel maintains a single publication list of all event types that its

suppliers advertise, which it updates with each supplier’s invocation of
of fer _change() .

Example

Publishing Event Types

The channel’s publication list contains one entry for each event type, and
associates a reference count with it. When a supplier calls of f er _change()
with an unknown event type, the channel opens an entry in the publication
list and assigns it a reference count of 1. It then notifies client consumers of
the new event type by calling of f er _change() on them. The consumer’s
implementation (see “Implementing offer_change()” on page 126) typically
evaluates the updated publication data, to determine whether it contains
event types of interest.

As other suppliers advertise the same event type, the channel updates its
reference count. However, intermediate changes in an event type's reference
count—for example, an increase from 1 to 2—are not conveyed to
consumers.

If an event type's reference count falls to O—that is, no suppliers offer this
event type—the channel removes the event type from its publication list. It
then notifies all consumers of the removal through of f er _change() . Given
this new information, consumers can remove or modify the filters that
forward this event type, and avoid the overhead these otherwise incur.

In the following code, a supplier builds event types that it wishes to supply,
and adds them to an Event Type sequence. It then invokes of f er _change()
on its structured proxy push consumer, st ruct ured_ppc.

/1 Java
inport org.ong. CosNotification.*;

Event Type[] added = new Event Type[2]

added[0] . dormai n_nane = new String(" SportsNews");
added[0] . type_nane = new String("Basebal | Resul ts");
added[1] . dormai n_nanme = new String(" SportsNews");
added[1] . type_nanme = new String(" Foot bal | Resul ts");
Event Type[] renoved = Event Type[0] ;

struct ured_ppc. of f er _change(added, renoved);

121

CHAPTER 7 | Subscribing and Publishing

Discovering Available Event Types

obtain_offered_types()

Arguments

122

After a consumer connects to an event channel, it can ascertain which event
types are currently available from suppliers by calling

obt ai n_of f ered_t ypes() on its proxy supplier or consumer admin. This
operation is defined as follows:

CosNot i fi cati on:: Event TypeSeq
obtai n_of fered_t ypes(i n Qotai nl nf oMbde node) ;

It takes a single (ot ai nl nf oMbde argument as input, which informs the
channel whether or not to automatically notify this consumer of future
publication list changes. This argument is typically set with one of the
following flags:

ALL_NOW_UPDATES_ON: The invocation returns the contents of the
publication list, and enables automatic notification of future changes to the
list through of f er _change() . Use this argument for a consumer that
implements of f er _change() to handle notification (see “Implementing
offer_change()” on page 126).

ALL_NOW_UPDATES_OFF: The invocation returns the contents of the
publication list, and disables automatic notification. Use this argument for a
consumer that wishes to control when it receives publication changes
through subsequent calls to obt ai n_of f ered_t ypes() .

NONE_NOW_UPDATES_ON: The invocation enables automatic notification
of updates to the publication list without returning the contents of the
publication list. Use this argument for a supplier that implements

of fer_change() to handle notification (see “Implementing offer_change()”
on page 126).

NONE_NOW_UPDATES_OFF: The invocation disables automatic
notification of updates to the publication list without returning the contents
of the publication list. Use this argument for a supplier that wishes to
control when it receives publication changes, through subsequent calls to
obtai n_of fered_types().

Return Values

Example

Publishing Event Types

The operation returns an Event TypeSeq, which contains all event types
currently available from suppliers.

The code shown in Example 26 might be called by a consumer during or
immediately after instantiation. In it, two methods are implemented.

init_consume_types() calls obt ai n_of f ered_t ypes() , which returns with all
currently advertised event types. The method then calls get _choi ces(),
which returns with the events selected (if any) by an end user. The method
finally calls add_subscri ption().

add_subscription() receives the user-selected event types and builds a
forwarding filter for each one. It then builds an indexed list of filter data and
their IDs, which allows the client consumer to access filters as its
subscription needs change.

Example 26: Subscribing to Selected Event Types

/1 Java
inport org.ony. CosNotifyFilter.*;
inport org.ony. CosNotification.*;

class NotifyPushConsuner extends Struct uredPushConsurer POA

{

Filterl D] filterlD

int numfilters;

Event Type[] consune_t ypes;

int max_filters = 10; // hard coded array size

WL

123

CHAPTER 7 | Subscribing and Publishing

Example 26: Subscribing to Selected Event Types

// Add a subscription for new event types chosen by user

publ i c voi d add_subscri pti on(Event Type e_type)

{
/] Oreate a filter for the new subscription
FilterFactory dff = channel.default_filter_factory();
Filter filter = dff.create_filter("EXTENDED TCL");

/] Set up constraint expression for new filter

Event Type[] event _types = new Event Type(1);

event _types[0] . domai n_nane = new String(e_type. donai n_nane) ;
event _types[0].type_name = new String(e_type.type_name);

Constrai nt Exp[] constraints = new CosNotifyFilter(1);
constraints[0].event_types = event_types;
constraints[0].constraint_expr = new String("");

/] Add constraint to new filter
Constraintinfo[] info = filter->add_constrai nts(constraints)

filterlDnumfilters] = proxy.add filter(filter);

// Update internal data structures to track subscription data
consune_t ypes[num filters].donai n_name =
new String(e_type. donai n_nane) ;
consune_types[numfilters].type name =
new String(e_type.type_nare);
numfilters++;

}

1 public void init_consune_types()
{
org. ong. CosNot i fication. Event Type[] types_available =
proxy. obt ai n_of f er ed_t ypes(ALL_NON UPDATES_ON) ;

2 /] return with user choices
org. ong. CosNot i fi cati on. Event Type[] types_wanted =
get _choi ces(types_avai |l abl e);

3 for (int i =0; i <types_wanted.length(); i++)
add_subscri ption(types_wanted[i]);
}

/...
}/ 1 NotifyPushGConsuner

124

Publishing Event Types

The code executes as follows:

1. Obtains all available event types that are currently advertised in the
event channel.

2. Calls get _choi ces(), which returns with user-selected event types.

3. For each chosen event type, calls add_subscri pti on(), which
subscribes the client consumer to receive that event type.

125

CHAPTER 7 | Subscribing and Publishing

Implementing offer_change()

Overview

Example

126

When the channel’s publication list adds or removes an event type, the
channel calls of f er _change() on all client consumers. This operation
receives two input arguments of type Event TypeSeq, which contain added
and removed event types (see “Arguments to offer_change()” on page 120).
A consumer’s implementation should examine both arguments and
re-evaluate its subscriptions accordingly.

In Example 27, of fer _change() returns new event types to an end user,
who decides which (if any) of the new event types to subscribe to.

Example 27:Adding and Removing Event Types

/1 Java
inport org.onyg. CosNotification.*;
inport org.ong. CosNotifyFilter.*;

class NotifyPushConsuner extends StructuredPushConsurer POA
{

Filterl D] filterlD

int numfilters;

Event Type[] consune_t ypes;

int max_filters = 10; // hard coded array size

W

publ i c voi d of fer_change(Event Type[] added, Event Type[] renoved)
t hrow (org. ong. CORBA. Syst enExcept i on)
{

[l return with user choices

Event Type[] types_want ed;

if (added.length() > 0)

{
types_wanted = get _choi ces(added);// not inpl emented here
for(int i=0; i < types_wanted.|ength(); i++)
add_subscription(types_wanted[i]);
} /] if added

Publishing Event Types

Example 27: Adding and Removing Event Types

2

// Renove subscription for types no | onger supplied
for(int i =0; i <renoved.length(); i++)

{

for(int n =0, n <numfilters; n++)
{
if
(renoved[i] . domai n_nane. equal s(consune_t ypes[n] . donai n_narre)
&% renoved[i] . type_nane. equal s(consure_t ypes[n] . type_nare))
{
/1 Renove filter from proxy
proxy.renove_filter(filteriDn]);

/1 Renove subscription data fromcustomer |ist
for (int ix =n; ix < (numfilters-1); ix++)
{
filterlIDix] =filterlDix + 1];
consune_t ypes[i x] . domai n_nane =
consure_t ypes[i x + 1] .domai n_nane;
consune_types[ix].type_name =
consurre_types[i x + 1].type_nane;
Y /] for ix

I/ Resize data structures appropriately.
numfilters--;

Y1 if equals
} I/ for n
} /1 for i

} /1 offer_change

/...

This code executes as follows:

1.

The first argument (added) is evaluated for new event types that have
been added to the publication list. If the argument contains event
types, get _choi ces() is called and returns with the user’s choices, if
any. For each event type chosen, add_subscri ption() is called
(shown in the previous section), which builds a filter for that event
type, and updates the consumer’s own subscription list.

127

CHAPTER 7 | Subscribing and Publishing

2. The second argument (r enoved) is evaluated for event types that have
been removed from the subscription list. If the argument contains
event types, the method looks up each event type in the consumer’s
subscription list. If found, the corresponding filter is removed and the
consumer’s subscription list is updated.

Note: A consumer that wishes not to be notified of publication changes

should implement of f er _change() to throw exception
OORBA: : NO | MPLEMENT.

128

Overview

In this Chapter

CHAPTER 8

Multicast
Consumers

A group of consumers that subscribe to the same events can
connect to the notification service by using a UDP/IP Multicast
based protocol, thereby reducing network overhead.

A notification service with many clients will generate a large amount of
network traffic. The Orbix notification service provides a multicast based
protocol to reduce the network overhead.

This chapter covers the following topics:

MIOP page 130
IDL Interfaces page 131
Configuring Orbix for Multicast page 133
Implementing an Endpoint Group page 134
Connecting to an Event Channel page 140
Receiving Events page 145
Filtering and Event Subscription page 146
Disconnecting from an Event Channel page 147

129

CHAPTER 8 | Multicast Consumers

MIOP

Definition

Endpoint Groups

Limitations

130

Multicast Inter-ORB Protocol (M/OP) provides one-way communication
between the notification service and groups of similar event consumers,
using the UDP IP/Multicast protocol. This protocol helps lower network
overhead when a large number of push-style consumers are receiving the
same events.

With MIOP, any number of push-style consumers interested in receiving
identical events can join an endpoint group. While TCP/IP based [IOP
requires the service to send one message per individual client, IP/Multicast
based MIOP only requires one message per endpoint group. The endpoint
group members attach to the same proxy supplier, and share the same
filters and quality-of-service properties.

MIOP cannot verify receipt of events by individual consumers. This raises
the possibility that interested consumers using MIOP may miss events due
to being unreachable when the channel sends them.

Note: The OMG provides no specifications for MIOP. Therefore,
notification services from other vendors might be incompatible with Orbix
IP/Multicast consumers.

IDL Interfaces

IDL Interfaces

Interfaces for Endpoint Groups The module | T_Not i f yCommextends CosNot i f yCommand provides interfaces
for IP/Multicast endpoint groups. These interfaces support push-style
delivery of untyped, structured, and sequence events to endpoint groups, via
a UDP IP/Multicast based protocol.

The interfaces that support endpoint groups are defined as follows:

/1 1DL
nodul e | T_Not i f yConm
{
interface G oupNotifyPublish
{
oneway voi d of fer_change(
in CosNotification::Event TypeSeq added,
in CosNotification::Event TypeSeq renoved) ;
}; // QG oupNotifyPublish

interface G oupPushConsurer : QG oupNoti fyPublish
{

oneway void push(in any data);

oneway voi d di sconnect _push_consurer () ;
}; /1 QG oupPushConsurrer

interface Q oupStructuredPushConsuner : G oupNotifyPublish
{
oneway voi d push_structured_event (
in CosNotification::StructuredEvent notification);
oneway voi d di sconnect _struct ured_push_consurrer () ;
}; /1 Q@ oupStruct uredPushConsuner

i nterface QG oupSequencePushConsurer : QG oupNoti fyPublish
{
oneway voi d push_structured_event s(
in CosNotification::EventBatch notifications);
oneway voi d di sconnect _sequence_push_consuner () ;
}; /1 QG oupSequencePushConsurrer
Y /1 1 T_NotifyComm

131

CHAPTER 8 | Multicast Consumers

Oneway Communication

132

The interfaces for multicast consumers only support oneway invocation.
MIOP only provides communication from the notification channel to the
consumers. Consumers cannot report back to the notification service
regarding the success or failure of a given transmission.

Consumers communicate with the notification service via standard [IOP.

Configuring Orbix for Multicast

Configuring Orbix for Multicast

Configuration Scope In order to use MIOP, the runtime ORB must load the egm op plug-in. A
named configuration scope must be created that establishes the proper
settings.

Settings In order to configure the ORB to load the correct plug-ins for multicast,

follow these steps:

1. Include "egmiop" in the orb_pl ugi ns list.

2. Include "@ CP+EGM CP" in the bi nding: client _binding |ist.

3. Label the well known addressing id and set
<l abel >: egmi op: addr _I i st property to a valid multicast endpoint
address.

When each multicast client starts up, it finds the proper configuration scope

by initializing the ORB with a name that corresponds to a multicast

configuration scope. Each client must also set its well-known addressing ID
to the correct label.

Example The following configuration excerpt creates a configuration scope for the
ORB egmi op_test. It includes the plug-in and the bindings required to use
multicast. It labels the well-known address "m op_test".

egni op_t est
{
orb_plugins = ["iiop_profile", "giop", "iiop", "egmop"];
bi nding:client_binding_list = ["Q CP+ECGM CP', "PQA Col oc",
"OTS+TLS_Col oc+PQA Col oc*,
"TLS Col oc+PQA Col oc",
"OTS+d CP+H I CP', "A CPHI I CP'];
m op_t est: egm op: addr _| i st = ["228.0.0.0: 500"];
}

133

CHAPTER 8 | Multicast Consumers

Implementing an Endpoint Group

Overview To use MIOP effectively, create an endpoint group of push-style consumers
who share identical event subscriptions and quality-of-service properties.

In this Section This section covers the following topics:
Instantiating an IP/Multicast Consumer page 135
Creating a POA for an Endpoint Group page 137
Registering an Endpoint Group Object Reference page 139

134

Implementing an Endpoint Group

Instantiating an IP/Multicast Consumer

Determining the Interface

ORB Initialization

Example

Consumers that use IP/Multicast are instantiated from the | T_Not i f yConm
group interface that corresponds to the type of events the group will
receive—any, struct ured, or sequence (see “Interfaces for Endpoint
Groups” on page 131).

The consumer must also initialize an ORB whose configuration scope
establishes the correct environment for MIOP (see “Configuring Orbix for
Multicast” on page 133).

Example 28 shows how a client application might instantiate a consumer of
type @ oupPushConsurer and initialize an ORB whose configuration scope
loads the correct plug-ins for MIOP.

Example 28: Instantiating a Consumer for Multicast (Sheet 1 of 2)

/1 Java

inport org.ony. CCRBA *;

i nport org.ony. CCRBA. CRBPackage. *;

inport org.ong. CosNotification.*;

inport org.ong. CosNot i fyChannel Adm n. *;
inport org.ong. CosNot i f yConm *;

inport org.ong. Ti neBase. *;

inport org.ony. Portabl eServer. *;

inport org.ony. Port abl eServer . POAPackage. *;

// lona inports

inport comiona.corba. | T_Notifucation.?*;
import comiona. corba. | T_Noti fyChannel Admi n. *;
inport comiona.corba. | T_NotifyGComm *;

class NotifyPushConsuner extends G oupPushConsurner POA

{
public static ORB orb;
/1 menber variables not shown...

135

CHAPTER 8 | Multicast Consumers

Example 28: Instantiating a Consumer for Multicast (Sheet 2 of 2)

// The main entry poi nt @aramargs command |ine args
public static void main (String args[])

/1 Add -CRBnane to end of argunent |ist to ensure the proper
configuration scope
String[] orb_nane_args = new String[args.length + 2];
System arraycopy(args, 0, orb_name_args, 0, args.length);
orb_name_args[orb_name_args.length - 2] = "-CRBnane";
orb_name_args[orb_nanme_args.length - 1] = "egmop_test";

orb = CRB.init(orb_nane_args, null);
//PQA initialization not shown ...

Not i f yPushConsurrer consumner = new Noti f yPushConsurer () ;

...
}
voi d public NotifyPushConsurer ()
{
}
voi d public ~NotifyPushConsuner ()
{
}
/.
}
Required Methods You must provide implementations for push(), of f er _change(), and

di sconnect _push_consuner () for consumers. | T_Noti f yConmalso specifies

the methods di sconnect _st ruct ur ed_push_consuner () and

di sconnect _sequence_push_consuner () for clients that support those event

types.

136

Implementing an Endpoint Group

Creating a POA for an Endpoint Group

Required Policies

Example

To create an endpoint group, all of the endpoint group members must create

POAs with the following policies:

POA Policy

Setting

PERS| STENCE_MODE_PCLI CY_I D

DI RECT_PERSI STENCE

LI FESPAN_PCLI CY

PERSI STENT

| D_ASSI GNVENT_PCLI CY

USER | D

VELL_KNOM_ADDRESS! NG PCLI CY_I D

An agreed upon label as specified
in the configuration scope for the
ORB (see “Configuring Orbix for
Multicast” on page 133).

In addition, every endpoint group member must also use an agreed upon

POA name.

Note: If a consumer’'s POA name is not identical to the POA names of the
endpoint group members, it will not become a member of the endpoint

group.

The code in Example 29 creates a POA with the correct policies. It must be
run by every consumer wishing to join the endpoint group.

Example 29: Creating a POA for an Endpoint Group (Sheet 1 of 2)

/1 Java
inport org.ony. CCRBA*. ;
import org.ony. Portabl eServer*.;

...

(bj ect obj = orb.resol ve_initial _references("Root PQA");
PQA root _poa = PQAHel per. narrow(obj);
PQAManager poa_nanager = root_poa. t he PQAVanager () ;

137

CHAPTER 8 | Multicast Consumers

Example 29: Creating a POA for an Endpoint Group (Sheet 2 of 2)

Policy[] policies = new Policy[4];
Any addressing_id = orb.create_any();
addressing_id.insert_string("mop");
policies[0] =
orb. create_pol i cy(WELL_KNOM ADDRESS| NG PCLI CY_I D. val ue,
addr essing_id);

policies[1] =
root _poa. create_lifespan_policy(LifespanPol i cyVal ue. PERSI STENT) ;

Any persistent_node = orb. create_any();
Per si st enceMbdePol i cyVal ueHel per. i nsert (persi stent _node,
Per si st enceMbdePol i cyVal ue. Dl RECT_PES| STENCE) ;
policies[2] =
orb. creat e_pol i cy(PERSI STENCE_ MCDE_PCLI CY_| D. Val ue,
per si st ent _node) ;

policies[3] =
root _poa. creat e_i d_assi gnnent _pol i cy(| dAssi gnnent Pol i cyVal ue. USE
RID;

PQA mul ti cast _poa =
root _poa. creat e_PQA("m op_poa", poa_nanager, policies);

138

Implementing an Endpoint Group

Registering an Endpoint Group Object Reference

Object Name

Example

[y

After each endpoint group member creates a POA with the correct policies
and name, it must register an object reference. Each endpoint group
member registers with the same object reference. All endpoint group
members must use the same object name to generate an object reference.
Because this group object reference is created with a POA configured to
support MIOP, it contains the multicast information needed to reach the
endpoint group members.

Note: The consumer’s object name must be identical to the other

endpoint group member's object names. Otherwise, it will not join the
endpoint group.

Example 30 shows how an endpoint group member might register with a
group object reference.

Example 30: Registering with a Group Object Reference

/1 Java
i nport org.ony. Portabl eServer. *;

/...

(bj ectld oid = nulticast_poa. string_to_Cbect | d("m opConsuner");
mul ti cast _poa. acti vate_object_wi th_id(oid, consuner);

PQAManager nul ticast_poa nanager =
mul ti cast _poa. t he_PQAManager () ;
poa_nanager . activate();
mul ti cast _poa_manager . activate();
The code executes as follows:

1. Gets an object ID for the consumer using the name agreed on by all
members of the group.

2. Registers the consumer's object reference by activating it.
3. Activates the multicast POA to receive messages.

Repeat this sequence for each endpoint group member.

139

CHAPTER 8 | Multicast Consumers

Connecting to an Event Channel

Overview

Interfaces

140

All endpoint group members share the same proxy supplier. Therefore, only
one endpoint group member connects to the channel. After this endpoint
group member connects, the group can begin receiving messages.

Because all of the consumers in an endpoint group share a proxy, they also
share the same event subscriptions, filters, and quality-of-service properties.

Module I T_Not i f yChannel Admi n provides an interface to connect endpoint
groups of each consumer type—any, st ruct ur ed, or sequence—to a
notification channel:

/1 1D
interface @ oupProxyPushSupplier :
CosNot i f yChannel Adm n: : ProxyPushSuppl i er
{
voi d connect _group_any_push_consuner (
in I T_NotifyConm : G oupPushConsuner group_push_consuner)
rai ses(
CosEvent Channel Adm n: : Al r eadyConnect ed,
CosEvent Channel Admi n: : TypeEr r or
)i
}; 1/ Q@ oupProxyPushSuppli er

interface @ oupStruct uredProxyPushSupplier :
CosNot i f yChannel Admi n: : Struct ur edPr oxyPushSuppl i er
{
voi d connect _group_st ruct ur ed_push_consuner (
in I T NotifyComm : Q oupStruct ur edPushConsuner
group_push_consuner)
rai ses(
CosEvent Channel Adm n: : Al r eadyConnect ed,
CosEvent Channel Admi n: : TypeEr r or
)i
}; I/ Q@ oupStruct uredProxyPushSuppl i er

Connecting to an Event Channel

interface G oupSequenceProxyPushSupplier :
CosNot i f yChannel Admi n: : SequencePr oxyPushSuppl i er
{
voi d connect _group_sequence_push_consuner (
in I T_NotifyConm : G oupSequencePushConsuner
gr oup_push_consurrer)
rai ses(
CosEvent Channel Adni n: : Al r eadyConnect ed,
CosEvent Channel Adm n: : TypeErr or
)5
}; /1 Q@ oupSequencePr oxyPushSuppl i er

Implementation The connecting consumer creates a group proxy supplier of the same type in
a notification channel. It then connects to the event channels by invoking
the corresponding connect operation on the proxy.

Note: If more than one member of the group attempts to connect to the
event channel, an Al r eadyConnect ed exception is raised.

Group Proxy The proxy created by the connecting consumer serves as the proxy for the
entire endpoint group and is shared by all of the endpoint group members.

If the connecting consumer disconnects from the channel, all members of
the endpoint group also disconnect. However, if the connecting consumer
dies without disconnecting, the proxy remains active and the remaining
members of the group continue to receive events.

141

CHAPTER 8 | Multicast Consumers

Example Example 31 shows how to connect an endpoint group of
QG oupPushConsurrer s to a notification channel.

Example 31: Connecting an Endpoint Group to an Event Channel (Sheet 1
of 2)

/1 Java

inport org.onyg. CCRBA *;

inport org. ong. CosEvent Channel Admi n. *;
inport org.ong. CosNotification.*;
inport org.ong. CosNot i f yChannel Admi n. *;

/11 ONA specific classes
inport comiona.corba. | T_NotifyGComm *;
import comiona. corba. | T_NotifyChannel Admi n. *;

class NotifyPushConsuner extends G oupPushConsurner PQA
{

public static GRB orb = null;

public static EventChannel ec = null;

// menber variabl es not shown...

...

void main(String[] args)

{
/] ORB and PQA activation shown above
/1l

1 or g. ong. CORBA. (bj ect obj =
orb.resolve_initial _references("NotificationService");
Event Channel Factory factory =
Event Channel Fact or yHel per . narrow(obj) ;

I ntHol der id = new | ntHol der () ;

Property[] init_gos = new Property[O0];
Property[] init_admn = new Property[0];

142

Connecting to an Event Channel

Example 31: Connecting an Endpoint Group to an Event Channel (Sheet 2
of 2)

2 try
{
ec = factory. create_naned_channel ("m op_channel ", init_gos,
init_admn, id);

cat ch(Channel Al readyExi sts cae)
{
/1 channel already exists
try
{

ec = factory. find_channel ("m op_channel ", id);

cat ch(Channel Not Found cnf)
{
Systemerr.printIn("GCould not create or find
notification channel.");
Systemexit(1);
} /1 catch(Channel Not Found)
} // catch(Channel Al r eadyExi st's)

3 InterFilterQGoupQperator op = new InterFilterQoupQerator();
op = CosNoti f yChannel Adm n. AND_CP;
Adminl D i d;

Consuner Adm n ca = ec. new f or_consurers(op, id);

I nt Hol der proxy_id = new | nt Hol der () ;
dientType ctype = dient Type. ANY_EVENT;

4 ProxySuppl i er obj =
ca. obtai n_notification_push_supplier(ctype, proxy_id);
Q@ oupPr oxyPushSuppl i er pps =
@ oupPr oxyPushSuppl i er Hel per. narr ow(obj) ;

5 try
{

pps. connect _gr oup_any_push_consuner (consurrer) ;

}
cat ch(Al r eadyConnect ed)

/1 inplenentation | eft to devel oper

}
} // nmain
} // NotifyPushGonsurer
This code executes as follows:

143

CHAPTER 8 | Multicast Consumers

144

ok W=

Obtains an Event Channel Fact ory from the ORB.

Obtains the event channel m op_channel .

Creates a consumer admin object for the group.

Creates a @ oupPr oxyPushSuppl i er for the group.

Invokes connect on the consumer and catches any exceptions.

Receiving Events

Receiving Events

Consumers that use IP/Multicast receive events the same way as a
non-multicast, push-style consumer (see “Obtaining Event Messages” on
page 52).

145

CHAPTER 8 | Multicast Consumers

Filtering and Event Subscription

Overview Like non-multicast consumers, endpoint groups can use mapping and
forwarding filters and subscribe to events. However, because they share a
proxy supplier, any change in filters or subscriptions made by one endpoint
group member affects every other endpoint group member.

ALL_UPDATES_NOW To maximize the overhead benefits of using IP/Multicast, consumers should
call obtai n_of fered_types() with ALL_UPDATES NOW The channel then
automatically notifies the group of future changes in the list of available
events using IP/Multicast through of f er _change() . Consumers should
implement of f er _change() to handle notification (see “Implementing
offer_change()” on page 126).

Updating the Subscription List Changes to the list of available events are broadcast to all endpoint group
members using this implementation. However, only one endpoint group
member should make changes to the subscription list, because all endpoint
group members share the same proxy.

IIOP Calls Calls to obt ai n_of fered_events(), create_filter(), and add_filter()
are two-way and do not use IP/Multicast.

For More Information For more information on filters and subscribing to events, see “Event
Filtering” on page 83 and “Subscribing and Publishing” on page 109.

146

Disconnecting from an Event Channel

Disconnecting from an Event Channel

Overview

An endpoint group is disconnected from the notification channel when one
of its members invokes the disconnect operation on the group’s proxy
supplier. This operation terminates the connection between the group and
its proxy supplier. The notification channel then releases all resources
allocated to support its connection to the group, including the destruction of
the group’s proxy supplier.

Each proxy supplier interface supports a disconnect operation. For example,
di sconnect _struct ur ed_push_suppl i er () is defined in

St ruct ur edPr oxyPushSuppl i er.

WARNING: When one group member invokes disconnect on the proxy

supplier, all members of the group stop receiving events from the
notification channel.

147

CHAPTER 8 | Multicast Consumers

148

In this chapter

Managing the
Notification

Service

CHAPTER 9

Orbix notification provides several configuration variables that
allow you to control the behavior of a deployed notification

service.

This chapter discusses the following topics:

Configuring the Notification Service page 150
Running the Notification Service page 151
Using Direct Persistence page 152
Managing a Deployed Notification Service page 154
Example 1: Generating Trace Information page 155
Example 2: Failure Recovery page 156

149

CHAPTER 9 | Managing the Notification Service

Configuring the Notification Service

Uses of Configuration Variables

Namespaces

Changing

150

Configuration variables allow the user to control the behavior of the
notification service. You can alter the number of event channels that can be
created, the maximum number of notification clients, the threading behavior
of the individual components of the service, and other properties. Because
the elements in the notification service are interdependent, changing one
configuration variable may affect how several components of the service
perform.

The notification service's behavior is affected by variables in two
namespaces:

plugins:notification The variables in this namespace control both the event
and notification service. They control the general performance
characteristics of event channel objects, including the number of threads
they can use and how many event channels can be created at a time.

plugins:notify The variables in this namespace are specific to the
notification service. They control the amount of debugging information the
notification service generates, how the service’s database behaves, and the
threading strategy used in dispatching events to notification service clients.

For a complete listing of the notification service’s configuration variables,
see the CORBA Administrator’s Guide.

You can edit the values of the notification service's configuration variables
either by using i tadm n or, in the case of a file-based configuration, hand
editing the configuration file. For more information, see the CORBA
Administrator’s Guide.

Running the Notification Service

Running the Notification Service

Starting the service Like all Orbix services, the notification service can be configured to start on
demand, to start at system boot, or be started by a script generated by the
configuration tool.

You can also manually start the notification service with the following
command:

itnotify

Stopping the Service To stop the notification service you can use the stop script generated by the
configuration tool or you can use the following command:

itnotify stop

151

CHAPTER 9 | Managing the Notification Service

Using Direct Persistence

Overview

Technical Details

Performance Issues

Configuring Direct Persistence

152

By running in direct persistence mode, the notification service can function
as a stand-alone component. It does not require the Orbix infrastructure.

When the notification service runs in direct persistence mode it listens on a
fixed host and port number. This information is embedded into the IOR that
the service exports as an initial reference.

When a CORBA client asks for the notification service’s initial reference, it
receives the IOR containing the host and port information for the service.
The client uses the embedded information to directly contact the notification
service, bypassing the locator and node daemon normally used by Orbix
CORBA services.

While direct persistence liberates the notification service from the Orbix
infrastructure, it also has a cost in terms of fault tolerance and flexibility.
When running in direct persistence mode the notification service cannot be
started on demand and must always listen on the configured host and port
number.

To configure the notification service to run in direct persistence mode
complete the following steps:

1. If the notification service is running, shut it down with the command
itnotify stop

2. Set pl ugi ns: noti fy: direct_persi st ence to TRUE within the
notification service's configuration scope. The default scope is
i ona_services. notify.

Note: For information on changing configuration variables, see the
CORBA Administrator’s Guide.

3. Within the same configuration scope, set pl ugi ns: noti fy:iiop: port
to some open port number.

Using Direct Persistence

4. Prepare the service, by running the command
itnotify prepare

This command causes the notification service to generate a new IOR
for itself. The new IOR will be printed to the console. Save it for use in
the next step.

5. Within the same configuration scope as used in steps 2 and 3, replace
the value of i ni tial _references: NotificationServi ce: ref erence
with the IOR returned in step 4.

6. Start the service using the command

itnotify

153

CHAPTER 9 | Managing the Notification Service

Managing a Deployed Notification Service

Using the notification service The notification service console provides administrators the ability to

console monitor and control a deployed notification service. It provides controls to
create and destroy notification channels, admin objects, proxy objects, and
filters. It also provides controls to edit QoS properties and assign filters and
subscriptions to objects in a deployed notification service.

To start the notification console use the following command:
itnotify_consol e

The console has detailed context sensitive help to guide you in using it.

154

Example 1: Generating Trace Information

Example 1: Generating Trace Information

Scenario

Problem

Solution

Your company recently installed an inventory control program using Orbix
notification to facilitate communication between the sales, manufacturing,
and purchasing departments. The sales department takes orders on PDAs
and syncs them with the inventory and ordering system when they return to
the office. The sales information triggers manufacturing jobs, which in turn
produce materials requisitions. The inventory system checks the requisitions
against what is in-stock. If all of the requisitions for a job can be filled, the
requisitions are filled. If a requisition cannot be filled, the system alerts
purchasing and the remaining requisitions are filled.

A large number of jobs are being held up because the needed materials are
not being ordered. After looking for human causes and finding none, the
company tasks you with finding the bottleneck in the new system.

The first step in your task is to determine if the purchasing system is
receiving the alert that it needs to order new materials. To accomplish this
task you need to turn on the notification services logging facility.

The logging facility is controlled using the variables in the

pl ugi ns: noti fy: trace namespace. By default they are set to 0, which
means no logging information is generated. To trace events as they pass
through the notification service, use i t adm n to set

pl ugi ns: noti fy: trace: events to 1. If you need more detailed information,
set the value higher.

155

CHAPTER 9 | Managing the Notification Service

Example 2: Failure Recovery

Scenario Your bank has just converted its ATM network to a system built using Orbix
notification. Because of the sensitivity of the information and the fact that it
processes information when service personnel may not be immediately
available, the system needs to be extremely fault tolerant.

Solution To increase the fault tolerance of Orbix notification you can change the
settings of the variables in the pl ugi ns: not i f y: dat abase namespace.
These variables control the database used by persistent channels in a
deployed notification service.

For example, if you wanted to retain archive copies of old checkpoint logs,
you would set pl ugi ns: not i fy: dat abase: checkpoi nt _ar chive_ol d files
to true. You could also reduce the interval between database checkpoints
by setting pl ugi ns: not i fy: dat abase: checkpoi nt _i nterval to a smaller
number.

156

Part 11l

The Telecom Log Service

In this part This part contains the following chapters:
Telecom Log Service Basics page 159
Developing Telecom Log Clients page 163
Advanced Features page 185
Managing the Telecom Log Service page 223

In this chapter

CHAPTER 10

Telecom Log
Service Basics

The telecom log service provides a mechanism for creating a
persistent log of events in a distributed computing
environment. It provides tools for reviewing past events and it
also allows for the recovery of events in the event of a
catastrophic failure.

This chapter discusses the following topics:

Telecom Log Service Objects page 160

Telecom Log Service Features page 161

159

CHAPTER 10 | Telecom Log Service Basics

Telecom Log Service Objects

BasicLog

EventLog

NotifyLog

Factory objects

160

Basi cLog objects provide standard, event-unaware, CORBA objects write
access to the telecom log service’s persistent store. The Basi cLog object can
also query the service’s persistent store.

Event Log objects provide event functionality to event-aware CORBA objects.
The Event Log object can forward events from an event supplier to an event
consumer. It also allows log clients to receive log generated events.

Not i f yLog objects extend the functionality of the Event Log objects to take
advantage of the notification service's filtering and QoS capabilities.

Not i f yLog objects can also filter the types of events that are logged to the
persistent store. You must have a licensed and functioning notification
service to use Not i f yLog objects.

Each type of log object also has an associated log factory object for creating
and managing log objects.

Telecom Log Service Features

Telecom Log Service Features

Overview Table 4 shows the features that each type of log object supports.
Table 4: Log feature support
Type of Log Write Filtering Event Event QoS
Operations Forwarding Generation

BasicLog Store data None None None Log level QoS
directly to the
log.

EventlLog Write data None Supports push Yes Log level QoS
directly to the and pull style
log and forwarding of
push/pull style unstructured
events. events.

NotifyLog Write data Supports Supports push Yes Log level and
directly to the filtering of and pull style notification
log and events being forwarding of service levels of
push/pull style | written to the structured and QoS
writing of log as well as unstructured
structured and notification events.
unstructured style event
events. filtering.

Quality of Service

The telecom log service offers three quality of service levels:

QoSNone specifies that log records are buffered in memory when received
and are written to the persistent store by the log at preconfigured intervals.

QoSFlush specifies that log records are buffered in memory and are written
to the persistent store when the f1 ush() method is invoked on the log

object.

QosReliability specifies that log records are written directly to the persistent

store.

161

CHAPTER 10 | Telecom Log Service Basics

162

In this chapter

CHAPTER 11

Developing
Telecom Log
Clients

Clients connect to the telecom log service to create a persistent
record of their activities.

This chapter discusses the following topics:

Creating a Log page 164
Logging Events page 171
Getting Log Records page 180
Deleting Records from the Log page 182
Ending a Logging Session page 184

163

CHAPTER 11 | Developing Telecom Log Clients

Creating a Log

Overview

Steps

164

The telecom log service provides a factory object for each type of logging
object. A factory object, which also acts as a manger for the log objects it
creates, can be used to instantiate log objects of the same type. For
example, a Not i f yLogFact ory object would be used to instantiate a

Not i f yLog object.

To create a log object complete the following steps:
1. “Obtain a log factory”
2. “Obtain a log object”

Creating a Log

Obtain a log factory

You obtain a log factory by resolving the telecom log service’s initial
reference through the ORB, by calling resol ve_i niti al _ref erences() with
the string for the type of log factory you wish to obtain.

Table 5 lists the string to use for each factory object.

Table 5: Initial reference strings

Factory Initial Reference String
Basi cLogFact ory Basi cLoggi ngSer vi ce
Event LogFact ory Event Loggi ngSer vi ce
Noti f yLogFact ory Not i f yLoggi ngSer vi ce

Once you have obtained the object reference from

resol ve_ini tial _references(), you need to narrow it to the proper object
type (Basi cLogFact ory, Event LogFact ory, or Noti f yLogFact ory).

Example 32 shows how to obtain the Noti f yLogFact ory.
Example 32: Obtaining a NotifyLogFactory

/1 Java
inport org.ong. DsNoti f yLogAdm n. *;

1 org.onyg. CORBA CRB orb = org. ong. CCRBA CRB_ini t (args,

2 org.ony. OCCRBA (hj ect obj =
orb.resolve_initial_references("NotifylLoggi ngService");

Noti fyLogFactory factory = NotifyLogFact oryHel per. narrow(obj);

props) ;

1. Initialize the orb.
2. Obtain a reference to the Not i f yLoggi ngSer vi ce.
3. Narrow the object reference to the Not i f yLogFact ory.

165

CHAPTER 11 | Developing Telecom Log Clients

Obtain a log object

Overview

Finding a log

Creating a BasiclLog

166

Once you have a log factory, you can then obtain a log object from it. The
log factories provide three methods of obtaining a log object:

find_log() allows you to find a log object using its unique id number.
create() creates a log object with an id assigned by the telecom log service.

create_with_id() creates a log object with a user assigned id.

If you have a specific log object you wish to use and you know its id, you
can call the log factory’s fi nd_l og() method. It has the following syntax:

/1 1D
Log find_log(in Logld id);

If the log exists find_l og() returns a reference to the log object. Otherwise,
it returns a nil object reference.

A Basi cLog object is created from the Basi cLogFact ory. Once you have
obtained the Basi cLogFact ory from the ORB, you can use either the
create() method or create_with_i d() method to create a Basi cLog.

create()
The Basi cLogFact ory’'s creat e() method has the following signature:

/1 1DL

Basi cLog create(in LogFul | ActionType full_action,
in unsigned | ong | ong max_si ze,
out Logld i d)

rai ses (lnvalidLogFul | Action);

It takes the following parameters:

Creating a Log

full_action defines how the log will behave once it has reached it maximum
size. Table 6 shows the possible values for ful | _acti on.

Table 6: Settings for a log’s full_action

Value Behavior

hal t The log stops logging events until the old events have been
cleared out and the log's size is below its max size.

wr ap The log will wipe out the oldest events to make room for new
event logging.

max_size specifies the maximum size of the log in bytes.

id is the unique id assigned to the log object by the log factory.

create() will raise the I nval i dLogFul | Acti on exception if ful | _action is
not a valid LogFul | Acti onType.

create_with_id()

The Basi cLogFact ory’s create_wi t h_i d() method has the following
signature:

/1 1DL
Basi cLog create with_id(in Logl D id
in LogFul | ActionType full_action,
in unsigned | ong | ong max_si ze,
rai ses (Logl dAl readyExi sts, |nvalidLogFull Action);
It takes the following parameters:

id is the log object’s unique id.

full_action defines how the log will behave once it has reached it maximum
size. Table 6 on page 167 shows the possible values for ful | _acti on.

max_size specifies the maximum size of the log in bytes.

create_wi th_id() raises the following exceptions:

LogldAlreadyExists is raised if a log object is already using the i d you
passed as a parameter.

167

CHAPTER 11 | Developing Telecom Log Clients

Creating an EventLog

Creating a NotifyLog

168

InvalidLogFullAction is raised if ful | _acti on is not a valid
LogFul | Acti onType.

An Event Log object is created from the Event LogFact ory. Once you have
obtained the Event LogFact ory from the ORB, you can use either the
create() method or create_wi th_i d() method to create an Event Log.

When a new log object is created, the Event LogFact ory generates an
(bj ect Oreat i on event.

create()

The Event LogFact ory’'s creat e() method has the following signature:

/1 1DL

Event Log create(in LogFul | ActionType full _acti on,
in unsigned | ong | ong max_si ze,
in Capacit yAl arnThr eshol dLi st threshol ds,
out Logld id)

rai ses (InvalidLogFul | Acti on,
I nval i dThr eshol d) ;

The Event LogFact ory's creat e() method is similar to the

Basi cLogFact ory’s creat e() method. See “create()” on page 166.
However, the Event LogFact ory adds the t hr eshol ds parameter. This
parameter holds a sequence of short which specifies, as a percentage of
max log size, the points at which an Thr eshol dAl ar mevent will be
generated. If an invalid threshold value is passed to the method,

I nval i dThr eshol d exception is thrown.

create_with_id()

The create_with_id() method also takes the additional t hr eshol ds
parameter and will throw I nval i dThr eshol d. Otherwise it is identical to the
Basi cLogFact ory’s create_wi t h_i d() method. See “create_with_id()” on
page 167.

A Not i fyLog object is created from the Noti f yLogFact ory. Once you have
obtained the Noti f yLogFact ory from the ORB, you can use either the
create() method or create with_id() method to create a Noti f yLog.

Creating a Log

create()
The Noti fyLogFact ory’s creat e() method has the following signature:

/1 1DL
NotifyLog create(in DsLogAdm n:: LogFul | ActionType ful |l _acti on,
in unsigned |ong | ong nax_si ze,
i n DsLogAdm n: : Capaci t yAl ar mThr eshol dLi st t hr eshol ds,
in CosNotification:: Q@SProperties initial_qos,
in CosNotification::Adm nProperties initial_adnn,
out DsLogAdm n:: Logld id)
rai ses(DsLogAdnmi n: : | nval i dLogFul | Acti on,
DsLogAdmi n: : | nval i dThr eshol d,
CosNot i ficati on: : Unsupport ed@sS,
CosNot i ficati on: : Unsupport edAdm n) ;

The Noti fyLogFact ory’s creat e() method extends the functionality of the
Event LogFact ory’s creat e() method by including parameters to support a
Notification Channel. These parameters are:

initial_qos specifies the initial QoS properties for the log’s associated
notification channel.

initial_admin specifies the initial admin properties for the log's associated
notification channel.

id is the unique id assigned to the log object by the log factory.

create_with_id()
The Noti fyLogFactory’s create_wi th_i d() method has the following
signature:

/1 1DL
NotifylLog create_with_id(in DsLogAdm n::Logld id,
in DsLogAdmi n: : LogFul | Acti onType ful | _action,
in unsigned | ong | ong nmax_si ze,
i n DsLogAdmi n: : Capaci t yAl ar nThr eshol dLi st t hreshol ds,
in CosNotification:: QSProperties initial_qos,
in CosNotification::Adm nProperties initial_admn)
rai ses(DsLogAdni n: : Logl dA r eadyExi st s,
DsLogAdmi n: : | nval i dLogFul | Acti on,
DsLogAdmi n: : | nval i dThr eshol d,
CosNot i ficati on: : Unsupport ed@S,
CosNot i ficati on: : Unsupport edAdm n) ;

169

CHAPTER 11 | Developing Telecom Log Clients

Example

170

When a new log object is created, the Noti f yLogFact ory generates an
(hj ect Oreat i on event.

The Noti fyLogFactory’s create() and create_wi th_i d() methods are
similar to the Event LogFact ory’s creat e() and creat e_wi t h_i d() methods.
See “Creating an EventLog” on page 168. However, the Noti f yLogFact ory
inherits the CosNot i f yChannel Adni n: : Consumer Adni n interface and

Not i f yLog objects take full advantage of the telecom log service's ability to
provide notification channel functionality. Therefore, the

Not i fyLogFact ory’s create()and create_wi th_i d() methods have two
additional parameters. One configures its QoS properties and one configures
its Admin properties. In addition, the Not i f yLogFact ory’s methods throw
both the CosNot i fi cati on: : Unsuppor t edQS exception and the

CosNot i fi cation: : Unsupport edAdmi n exception. For more information see
“Notification Service Properties” on page 57.

Example 33 creates a Noti f yLog of type QoSNone that will generate a
Thr eshol dAl ar mwhen it reaches 90% of its maximum capacity. Note that
by default, the log will be created with the QoSNone QoS property.

Example 33: Creating a NotifyLog

/1l Java
inport org.ong. DsLogAdm n. *
inport org.ong. CosNotification.*;

IntHol der id = new I ntHol der();
Il create the notification QS properties
Property[] qos = new Property[0];

/] create the notification Adm n properties

Property[] admn = new Property[0];

/1l Set a threshold alarmat 90%ful |

short[] threshold = new short[1];

threshol d[0] = 90;

/1 factory obtained previously

NotifylLog log = factory.create(halt, 0, threshold, qos, adnin,
id);

1. Specify the QoS and Admin properties for the log object.
2. Specify the threshold list for the log object.
3. Call create() on the factory object to get the log object.

Logging Events

Logging Events

Overview

In this section

Events are stored in the log’s persistent database. This is accomplished by
one of two mechanisms, for Basi cLog objects you must directly call the
write_records() method orthe wite_recordlist() method. You can use
the wite_records() orthewite_recordlist() methods to write data
directly to the log. In addition to using write_records() and

wite recordlist(), you can record events in Event Log and Noti f yLog
objects using the push/pull mechanisms as you would when using the event
or notification service.

When data is recorded in the log, it is assigned a unique id and the time it
was recorded is noted. This information is stored in a record header that can
be used to retrieve the data.

This section discusses the following topics:

Logging with a BasiclLog page 172
Logging Events with an EventLog page 176
Logging Events with a NotifyLog page 178

171

CHAPTER 11 | Developing Telecom Log Clients

Logging with a BasicLog

Overview

write_records()

172

Basi cLog objects have no knowledge of events or event channels and
therefore must communicate directly with the log. The write_records()
method and awrite_recordlist () method, specified in DsLogAdni n: : Log,
provide Basi cLog objects with this functionality.

write_records() has the following signature:

/1 1DL in DsLogAdm n:: Log
typedef sequnce<any> Anys;

void wite records(in Anys records)
rai ses(LogFul |, LogChfDuty, LoglLocked, LogD sabl ed);

It takes a sequence of Any that contains the data to be logged. The data is
recorded directly into the log without any filtering or indexing. It raises the
following exceptions:

LogFul | Raised if the log has reached its maximum size and its
full action is set to hal t .
LogCf f Dut y Raised when the log is not scheduled to receive data.
LogLocked Raised when the log’s administrative state is set to
| ocked.
LogDi sabl ed Raised when the log's operational state is set to
di sabl ed.

To store data using write_records() complete the following steps:

1. Package the data to be logged into a DsLogAdni n: : Anys, which is a
sequence of Any.

2. Invoke wite_records() on the log.

3. Catch any exceptions.

Logging Events

Example 34 writes a record containing information about a cell phone call.
The information logged is the number the call originated from, the number
called, and the reason for the event.

Example 34: Writing data to a BasicLog object

/1 Java
inport org.ony. DsLogAdm n. *;

DsLogAdm n. Any[] anys = new DsLogAdm n. Any[3] ;
any[0] . val ue.insert _string("7989028321");

any[1] . val ue.insert_string("8606531000");

any[2] . val ue. i nsert_string("connected");

try
{
log.wite_records(anys); // |log obtained earlier
}
cat ch(const DsLogAdni n: : LogFul | &)
{

Systemerr.printin("'Basic log "+ og->id()+"" is full");

}
cat ch(const DsLogAdmi n: : LogCr f Dut y&)

{
Systemerr.println("' Basic log "+ og->id()+"" is off duty");

}
cat ch(const DsLogAdmi n: : LogLocked&)

{

Systemerr.printin("' Basic log "+l og->id()+"" is |ocked");
}
cat ch(const DsLogAdmi n: : LogD sabl ed&)

{
Systemerr.println("' Basic log "+ og->id()+"" is disabled");

}

173

CHAPTER 11 | Developing Telecom Log Clients

write_recordlist()

174

wite recordl ist() has the following signature:

// 1DL is DsLogAdnmin.idl
struct NVPair

{
string nane;
any val ue;

B
typedef sequence<NVPair> NWLi st;

struct LogRecord
{
Recordld id;
Ti meT time;
NWLi st attr_list; // attributes, optional
any i nfo;
B
typedef sequence<LogRecord> RecordLi st ;

void wite recordlist(in RecordList |ist)
rai ses(LogFul |, LogCHfDuty, LoglLocked, LogD sabl ed);

write_recordlist() isfunctionally identical to wite_records(). It writes

data directly to the log and raises the same exceptions. The major difference

is that the record’s data is stored in a LogRecor d. This allows you to add a

series of name/value pair attributes to assist in querying the log.

To store data using wite_recordlist() complete the following steps:

1. Package the data to be logged into a DsLogAdni n: : Recor dLi st , which
is a sequence of LogRecor d. Each record’s id and time members will be
filled in by the log.

2. Invokewite_recordlist() on the log.

3. Catch any exceptions.

Example 35 writes a record to a Basi cLog object using

write_recordlist(). The record includes a single attribute that identifies
the type of minutes being billed.

Logging Events

Example 35: Writing data to a Basi cLog object

/1 Java
inport org.ony. DsLogAdm n. *;

//Create a new | og record
LogRecord record = new LogRecord();

/] create a new attribute |ist
record.attr_list[] = new NVList[1];
record.attr_list[0].name = "m nute_type";
record.attr_list[0].value =

org.ong. CCRBA CRB.init().create_any();
record.attr_list[0].value.insert_string("free");

/] Load the data into an any
record.info = org. ong. CORBA. CRB. i nit().create_any();
record.info.insert_string("7989028321, 8606531000, connected");

// Oeate a RecordLi st
Record[] records =new Records[1];
records[0] = record;

try
{
log.wite_recordlist(records); // log obtained previously
}
cat ch(const DsLogAdni n: : LogFul | &)
{
Systemerr.printin("' Basic log "+ og->d()+"" is full");

}
cat ch(const DsLogAdmi n: : LogCrf f Dut y&)

{ Systemerr.printin("'Basic log "+ og->d()+"" is off duty");
i:at ch(const DsLogAdni n: : LogLocked&)

{ Systemerr.printin("'Basic log "+ og->id()+"" is |ocked");
iat ch(const DsLogAdni n: : LogD sabl ed&)

{ Systemerr.printIn("'Basic log "+ og->id()+"" is disabled");
}

175

CHAPTER 11 | Developing Telecom Log Clients

Logging Events with an EventLog

Overview

Procedure

Example

1
2

3

176

While an Event Log object can use the write_records() method or the
write_recordlist() method to log data in a persistent data store, Event Log
objects also take advantage of the CORBA event services push/pull
mechanisms to log events.

The procedure for logging events using an Event Log object is identical to
sending an event through the event service. The object generating the event
is an event service supplier and it either pushes events to the log or allows
the log to pull events from it depending on the suppliers implementation.

The Event Log inherits from the CosEvent Channel Adni n: : Event Channel
interface, thus it has the associated methods to connect an event supplier
through a proxy consumer.

To log events using an Event Log, complete the following steps:
1. Obtain a Suppl i er Adm n from the log.

2. Obtain a proxy consumer from the Suppl i er Adm n.

3. Connect the proxy consumer to the log’s event channel.
4

Send events to the log using either push() or pul I () depending on the
type of supplier you choose to use.
For more information on connecting supplier to an event channel, see the
chapter on the event service in the CORBA Programmer’s Guide.

Once the supplier is connected to the log, you can continue to pass events
to the log until you explicitly disconnect from the log.

Example 36 logs events to an Event Log using a push supplier. The code is
labeled according to the steps outlined in the procedure above.

Example 36: Logging events to an EventlLog using a push supplier

or g. ong. CosEvent Channel Adm n. Suppl i erAdm n sa =
| og. for_suppliers();

or g. ong. CosEvent Channel Adm n. Pr oxyPushConsuner ppc =
sa. obt ai n_push_consurer () ;

ppp. connect _push_suppl i er (or g. ong. CosEvent Comm PushSul | plier. _ni
10):

Logging Events

Example 36: Logging events to an Eventlog using a push supplier
org. ong. CCRBA Any any = org.ong. CCRBA CGRB.init().create_any();
any.insert_string("7989028321, 8606531000, connected");

4 ppc. push(any);

In step 3 a nil supplier reference is used because the log object does not
need a disconnect notification.

177

CHAPTER 11 | Developing Telecom Log Clients

Logging Events with a NotifyLog

Overview

Procedure

Example

178

Not i f yLog objects are similar to Event Log objects in that they use an event
channel and use the push/pull methods to log data. However, Noti f yLog
objects also inherit from CosNot i f yChannel Admi n, which enables them to
log sturctured events and sequenced events.

The procedure for connecting to a Noti f yLog and logging events is the same
as that used for a connecting to the notification service.

To log events using an Not i f yLog, complete the following steps:
1. Obtain a Suppl i er Adm n from the log.

2. Obtain a proxy consumer from the Suppl i er Admi n.

3. Connect the proxy consumer to the log's event channel.
4

Send events to the log using either push() or pul I () depending on the
type of supplier you choose to use.

For information on connecting to the notification service, see the
“Implementing a Supplier” on page 27.

Example 37 logs events to a Noti f yLog using a push supplier.
Example 37: Logging events to a NotifyLog using a push supplier

/1 Java
inport org.ong. CosNot i f yChannel Adm n. *;

Suppl i erAdm n sa = | og. def aul t _suppl i er_adm n();

I nt Hol der proxy_id = new I nt Hol der () ;

dientType ctype = CosNoti fyChannel Adni n. ANY_EVENT;

ProxyConsuner obj = sa.obtain_notification_push_consuner(ctype,
proxy_id);

Pr oxyPushConsuner pc = ProxyPushGonsurer Hel per. narr ow(obj) ;

pc. connect _any_push_suppl i er (CosEvent Comm PushSupplier._nil());

Logging Events

Example 37: Logging events to a NotifyLog using a push supplier

org. ong. CCRBA Any any = org.ong. CCRBA CGRB.init().create_any();
any.insert_string("7989028321, 8606531000, connected");

pc. push(any);

Get the default Suppl i er Admi n object for the log’s notification channel.
Get a proxy consumer that uses unstructured events.

Narrow the returned proxy to a Pr oxyPushConsuner .

AN

Connect the proxy consumer to the log’s notification channel. A nil
reference can be passed because the log does not need to be notified of
a disconnect.

5. Push the event to the log.

179

CHAPTER 11 | Developing Telecom Log Clients

Getting Log Records

Overview

Retrieving records based on time
logged

Querying the log for records

180

When a record is stored in the log, the log creates a header for it that

contains a unique id for the record and the time that the data was recorded.

This header can also contain an optional attribute list. Using this data, you

can retrieve records from the log.

The telecom log service provides two methods for getting records from the

Iog:

1. You can retrieve a series of records based on the time when they were
logged. For example, you can retrieve the first 100 records logged after
10pm February 3, 2002.

2. You can retrieve records based on a search criteria. For example, you
can retrieve all of the events that record losses by your local rugby
team.

The retrieve() operation reads the log records in the log sequentially
starting from any given time. It has the following signature:

/1 1DL
RecordLi st retrieve(in TinmeT start, in long num out Iterator i);

If a negative value for the number of records to retrieve is supplied,
retirieve() will return records that were logged prior to the start time,
starting with the most recently logged and ending with the oldest in the
series

The iterator value is used to handle the retrieval of large amounts of data. If
the number of records specified cannot fit in the return value, the iterator
provides access to the remaining records. If the iterator is not needed it will
be nil.

Each log record contains the time it was logged, a unique record id, a set of
optional attributes, and the data being logged. Queries can be constructed to
retrieve log records based on any of this information.

Queries are constructed using a constraint language based on the standard
OMG Trader Constraint Language with some modifications that make it

Getting Log Records

more suitable for use in querying log records. For more information on the
constraint language, see “Filter Constraint Language” on page 100.

The query() operation takes in a constraint and returns all of the records in
the log that matches it. query() has the following signature:

/1 1DL

RecordLi st query(in string grammar, in Constraint match_string,
out lterator i)

rai ses(lnval i d@ammar, InvalidConstraint);

The grammar parameter indicates how to interpret the constraint string. The
default grammar is “EXTENDED TQL". The records which match the
constraint, mat ch_stri ng, are returned as a Recor dLi st . An iterator may be
returned to handle large query results. A nil object reference will be returned
for the iterator if it is not needed.

query() can raise the following exceptions:

Inval idGammar Raised if the log does not support the grammar
specified.

I nval i dConst rai nt Raised if the constraint string is invalid.

Example 38 retrieves all of the records that have the attribute ni nut e_t ype
set to “roani ng“.

Example 38: Querying a log for records
/1 Java
org. ong. DsLogAdnmi n. I terat orHol der iter = new

or g. ong. DsLogAdni n. | t er at or Hol der () ;

or g. ony. DsLogAdni n. Record[] list = | og. querey(“EXTENDED TCL",
"$mnute_type == 'roaming ", iter);

181

CHAPTER 11 | Developing Telecom Log Clients

Deleting Records from the Log

Overview Records are removed from the log automatically once they reach their life
expectancy. However, it is occasionally necessary to delete records from the
log. The telecom log service provides you with the option of deleting specific
records based on their record id or deleting records based on a constraint.

Deleting records by id The del et e_records_by_i d() operation deletes specific log records from the
log. It takes a sequence of Recor dl d as a parameter, and returns the number
of records deleted. If no records match the ids specified, the operation will

return O.
Using a constraint to delete The del et e_records() operation deletes records from the log based on a
records constraint. See “Querying the log for records” on page 180 for more

information on how to form a constraint.

It returns the number of records deleted and can raise the following

exceptions:

InvalidGammar Raised if the implementation does not support the
specified grammar.

Inval i dConst rai nt Raised if the constraint string is invalid.

Inval i dAttribute Raised if one of the attributes specified in the constraint
string is invalid.

Example 39 deletes all of the records whose id is less than 10.

Example 39: Deleting records from a log

/] Ct+

QOCRBA : ULong del ed = | og->del ete_records(“EXTENDED TCL”, "$.id <
10");
cout << deled << "records deleted fromthe log." << endl;

182

Deleting Records from the Log

Example 40: Deleting records from a log

/1 Java

org. ong. CCRBA U ong del ed = | og. del et e_recor ds(“ EXTENDED TCL",
"$.id < 10");

Systemout. printin(del ed + " records del eted fromthe log.");

183

CHAPTER 11 | Developing Telecom Log Clients

Ending a Logging Session

Overview

184

To end a logging session, the client needs to release the object reference to
the log object. For Event Log objects and Not i f yLog objects, the developer

must also disconnect the client from the event channel associated with the
log.

Using the dest roy() operation will eliminate the object instantiating the log
in the telecom log service and destroy any records stored in the log.

In this chapter

CHAPTER 12

Advanced
Features

The telecom log service provides a number of features to make
it flexible enough to handle most enterprise level applications.
Most of the features leverage the functionality of the event and
notification services and are therefore only available to
EventLogs and NotifyLogs.

This chapter discusses the following topics:

Scheduling page 186
Log Generated Events page 190
Event Forwarding page 199
Filtering page 206
Log Management page 210
Qualities of Service page 221

185

CHAPTER 12 | Advanced Features

Scheduling

Overview All log implementations allow you to schedule when the log is active. During
this time, it will be fully functional and log messages. When the log is not
scheduled to log new records, it will still be available for record retrieval and
event forwarding.

Scheduling scenario The ability to schedule when the log records data can be valuable to control
both the size of the persistent store and the overall performance of your
system. For example, suppose you need to develop an application to
monitor the performance of a cell phone network. During peak hours, there
are millions of events generated per hour on the network and there are
technicians on hand at all times. During off-peak hours, the number of
events generated is cut in half and there is only a skeleton crew of
technicians available to handle critical failures.

The added overhead of logging events during peak hours will most likely
have serious implications in overall system performance and may, during
particularly heavy periods, be prohibitive. Because there are a number of
technicians and support personnel on hand to monitor the network
manually, it may not be necessary to log events during peak hours.
Therefore you could schedule the log to only log events during off-peak
hours when the overhead would be lower and there are not enough
technicians to constantly monitor the network.

186

Schedule data

Scheduling

Log schedules are specified using a VéekMask which is a struct defined in
module DsLogAdni n.

// 1DL in DsLogAdm n

struct Time24

{
unsi gned short hour; [l 0-23
unsi gned short minute; // 0-59

%

struct Ti ne24l nterval
{

Ti me24 start;

Ti ne24 stop;
B

typedef sequence<Ti ne24l nterval > | nt erval sCf Day;

const unsi gned short Sunday
const unsigned short Mnday
const unsigned short Tuesday
const unsi gned short Wdnesday
const unsigned short Thursday = 16;
const unsigned short Friday
const unsi gned short Sat urday

I
SR

Inonoon
o W
e R

typedef unsi gned short DaysCf Wek;// Bit mask of week days

struct WeekMaskltem
{
DaysCr ek days;
Interval sCDay intervals;
B
typedef sequence<WekMaskltenm> WeekMask;

The i nterval s field of a eekMaskl t emspecifies the time, in 24 hour
format, that the log will begin logging records and the time that the log will
stop logging records.

The days field of WeekMaskl t emindicates which days of the week to apply
the start and st op times specified in the i nt erval s field. It is created using
a bitwise CRoperation to create a bitmask specifying the days. For example,
to specify that an interval should be valid on Friday, Saturday, and Sunday
you would use the following code:

DaysCr Week days = Friday | Saturday | Sunday;

187

CHAPTER 12 | Advanced Features

Setting a schedule

188

By default, a log has no set schedule and will log records continuously. If
you want to alter that behavior, you use the set _week_nask() operation to
set a schedule for the log. The operation has the following signature:

\\ 1DL
voi d set_week_mask(i n WekMask nmasks)
rai ses (lnvalidTime, InvalidTinelnterval, |nvalidMask);

The masks parameter allows you to specify as complex a schedule as
needed. For instance you can set a different logging interval for each day of
the week or specify multiple intervals during a single day to log records
(providing the intervals do not overlap).

When using an Event Log or a Not i fyLog, an Attri but eval ueChange event
is generated whenever the log's schedule is changed. See “Log Generated
Events” on page 190 for more information.

set _week_nask() raises the following exceptions:
I nval i dTi e One of the values specified for a start or stop time is
not within the valid range.

I'nval i dTi el nt er val One of the time intervals is improperly formed. For
example, the stop time is before the start. Also raised
if the intervals overlap.

I nval i dMask The days parameter is malformed.

Example 41 tells a log to log records from 12am until 8am and from
7:30pm until 11:59pm Monday through Friday.

Example 41: Setting a logs schedule

/1 Java
inport org.onyg. DsLogAdm n. *;

Scheduling

Example 41: Setting a logs schedule

// Contruct the times between the log is to record data
Interval s Day[] intervals = new | nterval O Day[2] ;
nterval s[O].start. hour = O;

nterval s[0].start.mnute = 0;

nt erval s[0] . st op. hour = 8;

nterval s[0].stop. mnute = O;

nterval s[1].start. hour = 19;

nterval s[1].start.mnute = 30;

nt erval s[1] . st op. hour = 23;

nterval s[1] . stop. m nute = 59;

// Build the mask to specify the days on which

/1 the schedule is valid

DaysCr ek days = Monday | Tuesday | Wdnesday | Thursday |
Fri day;

/| Package the schedul e

VWekMask[] sched = new WWekMask[1] ;
sched[0] . days = days;

sched[O] .intervals = intervals;

/1l Apply the schedule to the |og
try
{

| og- >set _week_nask(sched);

}

// Handl e any exceptions
cat ch(const | nvalidTi ne&)

{
-

catch(const InvalidTi nel nterval &

{
}
cat ch(const | nval i dvask&)
{

Determining a log’s schedule You can determine what schedules, if any, have been set for a given log by
calling the get _week_mask() method on it. get _week_nask() takes no
parameters and returns the scheduling information for the log in a VeekMask.

189

CHAPTER 12 | Advanced Features

Log Generated Events

Overview

Log events

190

Event LogFact ory and Not i f yLogFact ory objects can keep their clients
informed of the telecom log service's state by generating events and
forwarding the events onto their clients. This feature can be particularly
useful for developing clients that need to respond gracefully to log failures or
other status changes.

For example, you need to implement a system to process purchases made
through your companies web site and you decide to use the telecom log
service to create a persistent record of the purchases made outside of
normal business hours, so that the orders can be handled the following
business day. If the log being used to store the purchases reached its
threshold before the new purchases could be processed, the log would have
two options of how to react, depending on how you set its ful | _acti on. The
log could either stop recording the purchases, or it could write over the old
records. Neither option is acceptable.

If you developed a client that received log generated events, you could
design it to handle a full log gracefully. For instance, you could have the
client stop accepting new purchases until the log was emptied or you could
have it create a new log object and begin to record purchases there.

Log objects generate events for the following reasons:

Table 7: Events generated by a log factory

Event Reason
(hj ect Oreat i on Generated when a log object is created.
(hj ect Del eti on Generated when a log object is destroyed.
Ther shol dAl arm Generated when a log object’s threshold

capacity is reached. Alarms can be configured
at different percentages of the logs capacity.
For example, one alarm event can be
generated when the log reaches 90% of
capacity and another can be generated when
the log reaches 95% of capacity.

Event propagation

Receiving log generated events

Log Generated Events

Table 7: Events generated by a log factory

Event Reason

Attribut eVal ueChange | Generated when a log changes one of the
following log attributes:

® capacity alarm threshold

® Jog full action

® maximum log size

® starttime

® stoptime

® week mask

® adding/removing/changing a constraint
expression on the log's filter object

¢ maxrecord life

® quality of service

St at eChange Generated when a log object’s operational or
administrative state is changed.

Processi ngError Alarm | Generated when a log generates an error.

The Event LogFact ory and Not i f yLogFact ory interface inherit from the
CosEvent Channel Adni n: : Consurer Admi n and the

CosNot i f yChannel Admi n: : Consurer Admi n interfaces, respectively. Therefore
event service consumers, both push and pull style, can connect to an

Event LogFact ory to receive log generated events. Also, notification service
consumers, both push and pull, can connect to a Not i f yLogFact ory to
receive log generated events. For more information about event propagation
see “Event Communication” on page 8.

To develop a telecom log service client that receives log generated events
from the Event LogFact ory or the Noti f yLogFact ory complete the following
steps:

1. Obtain a reference to the log factory, either Event LogFact ory or
Not i f yLogFact ory. See “Obtain a log factory” on page 165.

2. Obtain a proxy supplier from the log factory.

191

CHAPTER 12 | Advanced Features

3. Connect to the proxy supplier using its connect method.

For a pull consumer, call pul I () ortry_pul I () to receive events. For a
push consumer, you will need to implement the appropriate push()
method.

For a more detailed description of how to connect an event consumer to an
event channel, see the CORBA Programmer’s Guide and “Implementing a
Consumer” on page 44.

Example 42 implements a push consumer that receives events from the
Noti f yLogFact ory.

Example 42: Receiving events from the NotifyLogFactory

/1 Java

inport org.onyg. CCRBA *;

inport org.ong. CosNotification.*;

inport org.ong. CosNot i fyChannel Adm n. *;
inport org.onyg. CosNot i f yConm *;

inport org.ong. Portabl eServer. *;

inport org.ong. Port abl eServer. PQAPackage. *;

1 class NotifyPushConsuner extends PushConsuner POA
{

/1 menber variabl es not shown...
voi d public push(Any event)

/1 Process the event
/...

}

voi d public NotifyPushConsuner ()
{
{

/1 client consurner program
public static main(String args[])

{
// CRB and PQA activation not shown
/...

2 /I Create the push consuner
Not i f yPushConsuner consuner = new Noti f yPushGonsuner () ;

192

Log Generated Events

Example 42: Receiving events from the NotifyLogFactory

/1 get a reference to the NotifylLogFactory
(bj ect obj =
orb.resolve_initial_references("NotifylLoggi ngService");
org. ong. DsNot i f yLogAdm n. Not i f yLogFactory factory =
org. ong. DsNot i f yLogAdm n. Not i f yLogFact or yHel per . narrow(obj) ;

/1l The client consunes events of type ANY
dientType type = CosNoti fyChannel Adm n. ANY_EVENT;

/1 get the push proxy supplier
I nt Hol der proxy_id = new | nt Hol der () ;

try
{
ProxySuppl i er obj =
factory. obtain_notification_push_supplier(type, proxy_id);
}
cat ch(CosNot i f yChannel Adm n: : Admi nLi m t Exceeded err)

/1 handl e the exception

}

Pr oxyPushSuppl i er _var pps =
Pr oxyPushSuppl i er Hel per . narrowobj) ;

try
{

pps. connect _push_consurer (consuner)

catch (A readyConnect ed ac)
{
Systemout. println("A ready connected to channel .");
exit (1);
}
catch (CCRBA: : Syst enExcepti on& se)
{

System out . printl n("System exception occurred during
connect.");

exit(1);
}

/...

Y}/l main
} // NotifyPushConsurrer

193

CHAPTER 12 | Advanced Features

Event data types

194

Implement the consumer’s class and its push() method.
2. Instantiate the consumer.

3. Obtain a reference to the Noti f yLogFact ory, which inherits from
CosNot i f yChannel Adni n: : Consurer Adm n.

4. Obtain a push supplier from the log factory and narrow it to a
Pr oxyPushSuppl i er .

5. Connect the consumer to its proxy supplier.

Once the consumer is connected to its proxy it will continue to receive log
generated events until it explicitly disconnects.

Each event generated by the telecom log service is passed to the clients as
an any and the clients are responsible for unpacking the data correctly
before decoding it. The data types defined for each event provide all of the
information necessary to describe the action that generated the event. For
example, an At tri but eVal ueChanged event’s data structure includes a field
to describe which attribute was changed, the old value of the attribute, and
the new value of the attribute.

ObjectCreation event
An bj ect O eat i on event has the following data structure:

/1 1D
struct (bjectCreation

{
Logld id;
Ti meT time;

b
It contains the new log's id and the time that the new log was created.

ObjectDeletion event
An vj ect Del eti on event has the following data structure:

/1 1DL
struct QbjectDel etion

{
Logld id;
Ti meT time;

IE

It contains the id of the deleted log and the time it was deleted.

Log Generated Events

ThresholdAlarm event
A Thr eshol dAl ar mevent has the following data structure:

/1l 1DL
struct Threshol dAl arm

{
Log | ogref;
Logld id;
Ti neT ti ne;
Thr eshol d crossed_val ue;
Thr eshol d observed_val ue;
Per cei vedSeveri t yType percei ved_severity;

IE

It contains the object reference and the id of the log whose alarm was set off
and the time when the log reached its capacity alarm threshold. The

obser ved_val ue field indicates the log's size, as a percentage of the
maximum log size. The crossed_val ue field indicates the threshold level
that was crossed. The per cei ved_severi ty field is m nor if log is not full,
and critical otherwise.

AttributeValueChanged event
An Attri but eval ueChanged event has the following data structure:

/1 1D
struct Attri buteVal ueChange

{
Log | ogref;
Logl d id;
Ti meT tine;
AttributeType type;
any ol d_val ue;
any new val ue;

IE

Along with the affected log's object reference, the affected log's id, and the
time of the event, the data structure includes the t ype field which identifies
the attribute that was changed, the old value of the attribute, and the new
value of the attribute.

195

CHAPTER 12 | Advanced Features

Unpacking log generated events

196

StateChange event
A St at eChange event has the following data structure:

/1 1DL
struct StateChange

{
Log | ogref;
Logld id;
Ti meT ti me;
St at eType type;
any new val ue;

IE

Along with the affected log's object reference, the affected log’s id, and the
time of the event, the data structure includes the t ype field, which identifies
the attribute that was changed, and the new val ue field, which contains the
new value of the attribute.

ProcessingErrorAlarm event
A ProcessError Al ar mevent has the following data structure:

/1 1DL
struct ProcessingErrorAlarm
{

I ong error_num
string error_string;

e

It contains the error number and a textual description of the log object’s
error.

Clients can determine how to unpack log generated events in one of two
ways:
Trial and Error

You can code the client code to simply keep trying to stuff the returned any
into the different log event data structures. Example 43 shows client code

Log Generated Events

for unpacking log generated events by trial and error.
Example 43: Unpacking an event by trial and error
/1 Java

org. ong. CCRBA Any any = org.ong. CCRBA. GRB.init().create_any();
any = // the event received by the client.

const org.ony. DsLogNot i fi cati on. Cbj ect O eati on* obj ect _creati on;
const org.ongy. DsLogNoti fi cati on. Chj ect Del eti on* obj ect _del eti on;

i f(any >>= obj ect _creati on)
{

/1 An object creation event was received.

el se if(any >>= obj ect_del eti on)

{
// An object deletion event was received.
}
el se
{
/1 Sone other event type...
}

197

CHAPTER 12 | Advanced Features

198

Type Codes

You can also use the type code of the returned any to determine what type
of event was returned and unpack it accordingly. Example 44 shows client
code for unpacking log generated events based on their typecode.

Example 44: Unpacking log generated events by typecode

/1 Java

org. ong. CORBA Any any = org.ongy. CCRBA GRB.init().create_any();
any = // the event received by the client.

org. ong. CORBA TypeCode tc = any.type();
i f(tc.equival ent (DsLogNotification. Cbject O eationHel per.type()))
{
/1 An object creation event was received.
/1 Unpack the event and handl e the results.
}
el se
if(tc.quival ent(DsLogNotification.(hjectDel eti onHel per.type()
))
{
/1 An object deletion event was recei ved.
/1 Unpack the event and handl e the results.

}

el se

{
}

/1 Sone other event type...

When using Not i f yLog clients, you can limit the type of events they receive
from the log by filtering out the events you do not want the client to receive.

See “Filtering” on page 206 and “Event Filtering” on page 83 for detailed
information on event filtering.

Event Forwarding

Event Forwarding

Overview

Developing a telecom log
application that uses event
forwarding

As seen in Figure 3 on page 6 the telecom log service encapsulates an event
channel to provide added functionality to Event Log objects and Noti f yLog
objects. Therefore both Event Log objects and Not i f yLog objects are capable
of emulating an event channel and passing events between suppliers and
consumers using both the push and pull methods. NotifylLog clients can
also take advantage of the notification service style QoS properties and
notification style filtering. See “Filtering” on page 206 and “Log
Management” on page 210.

Logs will forward events as long as their For war di ngSt at e attribute is set to
on. Changing a log’s administrative state or using a schedule to turn logging
on and off does not affect the log’s ability to forward events.

The basic steps involved in log event forwarding are:

1. Set the log's Forwardi ngSt at e to on. This is the default for all newly
created Event Log objects and Not i f yLog objects.

2. Connect the clients to the log object via the event or notification
channel interface it supports.

3. NotifyLog clients specify filters. See “Filtering” on page 206.

Suppliers send events to the log by using either push() for push style
suppliers, or pul | () for pull style suppliers. Pull style suppliers can
alsouse try_pull ().

5. If the log is set to log events, the events sent to the log object will be
recorded.

6. Consumers receive events from the channel.

Developing a telecom log service that uses event forwarding is essentially
identical to developing an event service or notification service application.
However, the telecom log service has the added benefit that it will maintain
a persistent and fully accessible history of the events that are being passed
through the channel. The telecom log service suppliers can also be
implemented to receive log generated events. See “Log Generated Events”
on page 190.

199

CHAPTER 12 | Advanced Features

NotifyLog features

Example

200

To develop a telecom log service application that forwards events between

event suppliers and event consumers complete the following steps:

1. Implement the required methods for the event supplier. If you use a
pull style supplier, you will need to implement the appropriate pul | ()
and/or try_pul | () method.

2. Implement the required methods for the event consumer class. If you
use a push style consumer, you will need to implement the appropriate
push() method.

3. Instantiate both the supplier's class and the consumer’s class.

Obtain either an Event Log object or a Not i f yLog object that has its
For war di ngSt at e set to on.

5. Connect the supplier to the log’s associated event channel by obtaining
a Suppl i er Admi n from the log object. From the Suppl i er Admi n, you
obtain a ProxyConsuner to connect to the channel.

Begin generating events.

Connect the consumer to the log’s associated event channel by
obtaining a Consuner Adm n from the log object. From the
Consurrer Adni n, you obtain a ProxySuppl i er to connect to the
channel.

For a detailed description of implementing event consumers and event

suppliers, see “Developing Suppliers and Consumers” on page 21 and the
CORBA Programmer’s Guide.

If you are using a Not i f yLog object, you can take full advantage of all of the
notification services features. These include: event filtering, structured and
sequence events, event subscription, and notification-style QoS properties
for events. See “Notification Service Properties” on page 57.

The following example implements an application that passes an
unstructured event containing the price of a stock from a notification push
supplier to a notification push consumer. They both connect to a Noti fyLog
with the id 123. By using a log with a user defined i d, you ensure that the
consumer and the supplier are connected to the log object.

Example 45 implements the notification push supplier.

Example 45: /mplementing the push supplier.

/1 Java

i npor t
i npor t
i npor t
i npor t
i npor t
i npor t
i npor t

i npor t
i npor t

class NotifyPushSupplier extends PushSupplier POA

{

org

org.
org.
org.
org.
org.
org.

org
org

. ong.
ong.
ony.
ong.
ong.
ony.
ong.

. ong.
. ong.

DsNot i f yLogAdm n. *;
QOORBA. *;

OORBA. CRBPackage. *;
CosNot i fication. *;
CosNot i f yChannel Admi n. *;
CosNot i f yComm *;

Ti meBase. *;

Port abl eServer . *;
Por t abl eSer ver . POAPackage. *;

// Menber variabl es not shown. ..

public voi d NotifyPushSupplier()

{

// |nplenentation not shown...

}

Event Forwarding

// The main entry point @aramargs command |ine args
public static void main (String args[])

{
// ORB and PQA Activation not shown
Not i f yPushSuppl i er supplier = new NotifyPushSupplier();

/|l Get a Log Factory

Cbect obj =
orb.resolve_initial_references("NotifylLoggi ngService");
Noti fyLogFactory factory =

Not i f yLogFact or yHel per. narrow(obj) ;

201

CHAPTER 12 | Advanced Features

202

Example 45: /mplementing the push supplier.

// The log will have an id of 123
IntHol der id = new | nt Hol der();
id = (U.ong) 123;

/l Set the Log’'s QoS properties
Property[] gos = new Property[0];
gos[0] . nane = Type;
gos[0] . val ue. i nsert_i nt (QoSNone) ;

Property[] admn = new Property[0];
Capaci t yAl ar nThr eshol dLi st threshol ds = nul | ;

NotifylLog log = factory.create with id(id, halt, O,
threshol ds, qos, adnmin);

SupplierAdmn sa = | og.default_supplier_admn();

I nt Hol der proxy_id = new I nt Hol der () ;
dientType ctype = Aient Type. ANY_EVENT;
try

{

ProxyConsuner obj =
sa. obtain_notification_push_consurer (ctype, proxy_id);

}
cat ch(Adm nLi m t Exceeded err)

{

// handl e the exception

}

Pr oxyPushConsuner ppc = ProxyPushConsurer Hel per. narrow(obj) ;
Any any = org.ong. CORBA. CRB.init().create_any();

any. insert_string("FKUSX, $33.02");

ppc. push(any);

...
}

}

The supplier code show in Example 45 does the following:
1. Implements the supplier's object class.

2. Instantiates a supplier object.

3. Initializes the ORB and uses resol ve_i ni tial _references() to get a
reference to the Noti f yLogFact ory.

2

Event Forwarding

4. Creates a log with an id of 123 using create_wi th_i d(). The log is of
type Q@SNone and does not have any threshold alarms set.

5. Obtains a ProxyPushConsumer and connects to the log’s associated
notification channel.

6. Pushes a single event.

Example 46 implements the notification push consumer.
Example 46: /mplementing the push consumer

/1 Java

inport org.ony. CCRBA *;

inport org.ong. CosNotification.*;

i nport org.ong. CosNot i fyChannel Adm n. *;
inport org.ong. CosNot i f yConm *;

inport org.ong. Port abl eServer. *;

inport org.ony. Port abl eServer . PQAPackage. *;

class NotifyPushConsuner extends PushConsurer PQA
{

/1 menber variabl es not shown...

voi d public NotifyPushConsurer ()

{
}
publ i c voi d push(Any event)
{
if ((event.type()).kind() == TCK nd.tk_string)
{
String stock _pice = event.extract_string();
Systemout. println("Stock price is" + stock_price);
}
el se

Systemout. printin("lnvalid Event");

}

// The main entry point @aramargs command |ine args
public static void main (String args[])

// CRB and PQA initialization not shown ...

Not i f yPushConsurer consuner = new Noti f yPushConsuner () ;

203

CHAPTER 12 | Advanced Features

204

Example 46: /mplementing the push consumer

(hect obj =

orb.resol ve_initial _references("NotifylLoggi ngService");
Noti fyLogFactory factory =

Not i f yLogFact or yHel per . narrow(obj) ;

Int Hol der id = 123;
NotifyLog |l og = factory. find_| og(id))

Consurrer Admi n ca = | og. def aul t _consurer _adm n() ;

I nt Hol der proxy_id = new | nt Hol der();
dientType ctype = dient Type. ANY_EVENT;

try
{
ProxySuppl i er obj =

ca.obtai n_notification_push_supplier(ctype, proxy_id);
}

cat ch(Adm nLi m t Exceeded err)

//'handl e excepti on

}

ProxyPushSuppl i er pps = ProxyPushSuppl i er Hel per. narrow(obj) ;

try
{

pps. connect _push_consuner (consuner) ;

cat ch(Al readyConnect ed. val ue ac)
{
Systemerr. println("A ready connecting to channel.");
Systemexit(1);
}
catch (SystenException sys)
{
Systemerr. println("Encountered system exception during
connect: " + SysteniExceptionD spl ayHel per.toString(sys));
Systemexit(1);
}

orb.run();

}
}

Event Forwarding

The consumer code show in Example 46 does the following:

1.
2.
3.

Implements the consumer’s object class.
Instantiates a consumer object.

Uses resol ve_initial _references() to get a reference to the
Not i fyLogFact ory.

Uses find_l og() to obtain a reference the log created by the supplier.

Obtains a ProxyPushSuppl i er and connects to the log's associated
notification channel.

Turns control over to the ORB to wait for events.

205

CHAPTER 12 | Advanced Features

Filtering

Overview

206

notification

supplier

Not i f yLog objects support two types of filtering:

® Notification style filtering which determines if an event passes through
the log's associated event channel.

® Log filtering which determines if an event is logged.

Figure 13 on page 206 shows the different types of filters that can be used
by a Noti fyLog. Notification style filters are applied to the admin and proxy
objects in the Not i f yLog object’s associated event channel. Each admin and
proxy object may have multiple filters associated with it. If an event is
discarded due to a filter on a proxy consumer or supplier admin, it will not
reach the log filter and will not be logged.

NotifyLog :

notification

-

consumer supplier

proxy

consumer

filter

supplier consumer
I_; admin filter admin filter

notification channel

log filter

persistent store

Figure 13: Filter points in event’s life-cycle

Implementing a filter

Filtering

Log filters are applied directly to the log object and do not effect the
forwarding of an event. If the event does not pass the log filter, it will not be
logged, but it will be passed on to the consumer admin. Unlike a proxy or
admin object, a log object can only have one filter associated with it. The
log filter can be useful in situations where the log's clients are generating a
large number of events of varying types. If you are only interested in a few
types of events, you can control the size of the log by applying filters. For
example, you can log only events whose "severity" is greater than 4 or
events with a "l og" attribute of 1.

For a more detailed discussion of filtering, see “Event Filtering” on page 83.

To implement a filter complete the following steps:

1. Obtain a filter factory from the log using the
defaul t _filter_factory() method.

2. Create afilter using the factory's create_fil ter () method. Specify the
EXTENDED TCL grammar, which is the same grammar used by the
notification service. See “Filter Constraint Language” on page 100.

3. Build your constraints for the filter, and add them using the filter's
add_const rai nts() method.

4. Attach the filter to the desired object (proxy, admin, or log) using the
appropriate method. Table 8 on page 207 shows the method used to
attach a filter to the specified object.

Table 8: Methods for attaching filters

Object Method

log object set_filter(CosNotifyFilter::Filter filter)

proxy object add_filter(CosNotifyFilter::Filter filter)

admin object | add_filter(CosNotifyFilter::Filter filter)

207

CHAPTER 12 | Advanced Features

Filter evaluation

208

Example 47 on page 208 creates a filter to log data error events whose
severity is greater than 4 and attaches it to the log.

Example 47: Attaching a filter to a log object
/1 Java

inport org.onyg. CosNotifyFilter.*;

inport org.ong. CosNotification.*;

/1 NotifylLog | og obtained earlier
FilterFactory dff = log.default _filter_factory();

Filter filter = dff.create filter("EXTENDED TCL");

/] create a constraint
Event Type[] event _types = new Event Type(1);

event _types[0] . domai n_name = new String("Dal W");
event _types[0].type_name = new String("Data Error");

Constraint Exp[] constraints = Constraint Exp(1);

constraints[0].event_types = event_types;
constraint[0].constraint_expr = new String("$severity >'4"");

GonstraintInfo[] info = filter.add_constraints(constraint);

log.set_filter(filter)

An event must pass each notification style filter before it is forwarded to the
next point in the channel. If filters are set on an admin object and one of its

proxies, events can be evaluated against both sets of filters, depending on
whether the admin object was created with AND or R semantics:

® ANDsemantics require events to pass both admin and proxy filters.

® (ORsemantics only require an event to pass an admin or proxy filter.

A filter evaluates an event against its set of constraints until one evaluates to
true. A constraint evaluates to true when both of the following conditions are

true:

® A member of the constraint's Event TypeSeq matches the message's

event type.

® The constraint expression evaluates to true.

Filtering

The first filter in which the event message evaluates to true forwards the
event to the next delivery point in the channel. If the event message fails to
pass any filters, the event may not be forwarded.

209

CHAPTER 12 | Advanced Features

Log Management

Overview The telecom log service allows you to control the following attributes of a
log:
® Administrative State
® Maximum log size
® Log duration
® Record lifetime
® Log QoS properties
You can also monitor a log's availability status, its operational state, and its
current size (in bytes and number of records).

In this section This section discusses the following topics:
Administrative State page 211
Maximum Log Size page 213
Log Duration page 214
Log QoS Properties page 216
Log QoS Properties page 216
Availability Status page 218
Operational State page 220

210

Log Management

Administrative State

Overview

States

Methods

Example

Administrative state can also be thought of as the “logging state” and is
used to turn logging on and off. A log's administrative state does not affect
the log's ability to forward events. If the administrative state of the log is
locked, events will pass through the event channel as long as the log's
forwarding state is set to on.

Logs can be put into one of two administrative states:

Table 9: Administrative states for a log

Administrative Log Functionality
State
Unlocked The log is fully functional. New records can be added.

Records can be retrieved and deleted from the log.
Events can be forwarded.

Locked The log will not create new records. All other
functionality of the log is still available.

By default, the administrative state of a newly created log object is
unl ocked.

You can determine the administrative state of a log by using its
get _adm ni strative_state() method. It returns the administrative state in
the enumerated type, Adnini strati veState.

You set a log’'s administrative state using its set _admi ni strative_state()
method, which takes a single parameter of type Adnini strativeState. A
St at eChange event is generated whenever the administrative state of a log is
changed.

Example 48 checks to see if a log is | ocked and if it is changes its
administrative state to unl ocked.

211

CHAPTER 12 | Advanced Features

Example 48: Setting a log’s administrative state

/1 Java
/1 1og obtained previously
if (log.get_admnistrative_state() ==
Admi ni strativeSt at e. | ocked)
{
| 0g. set _adm ni strative_state(Adni nistrativeState. unl ocked);
Systemout. println("Log " + log.id() + "is now unl ocked.");

}

212

Log Management

Maximum Log Size

Setting

Checking

Alog's set _max_si ze() method sets its maximum size in bytes. The method
takes an unsi gned | ong | ong. If a value of zero is supplied, then the log
size will be set to have no predefined limit. If the new maximum log size is
less than the current log size, an I nval i dPar amexception will be raised. If
the maximum size of the log is changed, an At t ri but eVal ueChange event is
generated.

A log's get _max_si ze() method returns its size in bytes.

213

CHAPTER 12 | Advanced Features

Log Duration

Overview

Specifying

Setting

214

In addition to setting fine-grained scheduling intervals for a log to record
data, you can also specify a course-grained duration for a log’s functionality.
By default, a log's functional duration is set to be the log’s lifetime. It will
start logging records immediately after it is created and continue to log
events until it is destroyed.

However, you can program the log to start functioning at a specific time and
stop functioning at a later date. Before the log's start time and after its stop
time, it will not provide any logging functionality and any schedules set for
the log will be invalid. The log will, however, forward events. See “Event
Forwarding” on page 199.

A log’s duration is specified using a Ti mel nterval structure which has the
following signature:

\\ IDL
struct Ti nel nt erval

{
Ti neT start;
Ti meT st op;

b

If you specify a start time of zero, the log will become functional as soon as
it is enabled. A stop time of zero causes the log to remain functional until it
is destroyed.

You use a log's set _i nterval () method to set a log’s functional interval. It
takes a single Ti nel nt erval parameter. An I nval i dTi mel nt erval is thrown
if the start time is before the stop time. If the log's functional duration is
successfully changed, an At tri but eVal ueChange event is generated.

Note: A race condition could exist when setting the start/stop time. For
instance, if a log's start time is too close to the time the set _i nt erval ()
method is invoked, then the time the log may have missed some events
that should have been logged before it could be activated.

Log Management

Record Lifetime

Overview

Setting

Checking

The lifetime of records in a log determines the amount of time between
when the log creates the record and when the log compacts, or deletes the
record. By default, all logs have a record life of zero, which specifies that
records have an infinite lifespan. However, this also means that the log can
not perform any automatic garbage collecting.

For logs with a limited amount of persistent storage space, or for logs that
store large volumes of records, you may want to have records expire and be
automatically compacted.

You set a log’s record lifetime using the log’s set _record_l i fe() method. It
specifies the record’s lifetime in seconds. When you successfully change a
log’s record lifetime, an Attri but eval ueChange event is generated.

The get _nmax_record_l i fe() method returns the log's record lifetime
setting.

215

CHAPTER 12 | Advanced Features

Log QoS Properties

Overview The telecom log service supports a lightweight QoS framework that specifies
the level of assurance that logged records will be stored in a log’s persistent
data store.

Properties Log objects support the following QoS settings:

Table 10: Log QoS settings

QoS Setting Log Behavior
QSNone Records are buffered in memory when they are
(default) logged. The log flushes its memory buffer to the

persistent store at intervals specified in the telecom
log service’s configuration database. This level of
service provides no guarantee that logged records will
be stored to the persistent store.

QoSFl ush Records are buffered in memory when they are
logged. The log’s memory buffer is flushed when a
client invokes the log’s f 1 ush() method. This level of
service also provides no guarantee that logged
records will be written to the persistent store.
However, it does provide log clients with greater
control over when a log’'s memory buffer is flushed to
the persistent store.

QoSReliability | Records are written directly to the persistent store
when they are logged. This level of service guarantees
that all records will be available in the persistent
store and provides a high level of recoverability in the
event of a crash. It will suffer a performance hit due
to the increased amount of disk access.

Setting The set _| og_qgos() operation sets the quality of service properties of the
log. If the QoS properties of a log is changed, an Attri but eVal ueChange
event is generated. If set _| og_gos() is passed an invalid QoSLi st type, it
will raise a DsLogAdmi n: : Unsuppor t edQS exception.

216

Flushing the buffer

Example

Log Management

The f1ush() method writes out a log’s memory buffer to the persistent
store. It guarantees that all events recorded by the log before the invocation
of the f1 ush() operation will be written to the persistent store.

Chapter 12 on page 217 sets a log’'s QoS to QoSFI ush and then calls
flush() on it.

Example 49: Setting a log’s QoS properties and flushing its memory buffer

/1 Java

/11 0g object obtained previously
QSType[] qos = new QSType(1);
qos[0] = QSFl ush. val ue;

try
{

| 0g. set _| og_qos(qos) ;

cat ch (DsLogAdm n: : Unsuppor t edQS)
{
/1 handl e the exception

}

/...

/l wite the log’'s nmenory buffer to disk
I og. flush();

217

CHAPTER 12 | Advanced Features

Availability Status

Overview The telecom log service updates monitors the availability of all active logs.
Depending on scheduling and the amount of data stored in a log, it may not
be available for recording new records. Determining a log's availability can
provide valuable feedback for clients. For example, a log’s clients might
generate an alarm if the log is not available because it is full.

States A log can be in one of three availability states:

Table 11: Availability states for a log

State Log Behavior

On duty The log is fully functional. It can
log new records, forward events,
and retrieve records.

Off duty The log is not scheduled to log
new records. All other functionality
is still available.

Log full The log has reached its maximum
size and is no longer able to log
new records. All other functionality
is available.

Checking The telecom log service provides the get _avail ability_status() method
to check a log's availability to log new records. The method returns an
Avai | abi |i tyStatus structure, shown in below.

/1 1D
struct AvailabilityStatus
{

bool ean of f _duty;
bool ean 1 og_full;

Ik

218

Log Management

It is possible that both the of f _duty and | og_ful | fields can be true at the
same time. A log is on duty if both fields are false and its operational state is
enabl ed.

219

CHAPTER 12 | Advanced Features

Operational State

Overview

States

Checking

State change events

220

In addition to monitoring logs availability to log new records, the telecom log
service also monitors the operation state of log objects. The operation state
differs from the availability status of a log in that a log's operational state
indicates possible processing errors within a log.

Table 12 shows the possible operational states for a log.

Table 12: Log operational states

Operational Reason
State
enabled The log is healthy and its full functionality is available for
use.
disabled The log has encountered a runtime error and is

unavailable. The log will not accept any new records and
it may not be able to retrieve valid records. The log will
still attempt to forward events if its Forwar di ngSt at e is
set to on.

To check the operational state of a log, invoke its get _oper ati onal _st at e()
method. get _operational _state() returns a value of Qper ati onal St at e,
which is an enumerated type with the values enabl ed and di sabl ed.

A st at eChange event is generated whenever the operational state of a log

changes.

Qualities of Service

Qualities of Service

Overview

Setting QoS properties

In addition to the QoS properties offered by the telecom log service,

Not i f yLog objects can specify notification service level Qualities of Service

for events. The additional QoS settings provide greater control over the

reliability of messages reaching consumers and the scalability of the telecom

log service. The notification service QoS properties include:

® the level of assurance the events will get delivered

® the persistence of client connection information

® anevent’s priority

® anevent's lifetime in the channel

® the order in which the channel discards stale events

® the maximum number of times a proxy tries to contact a client before
giving up

® the amount of time between a proxy consumer’s calls to pul | ()

For a full listing of the notification service’s QoS properties and their
descriptions, see “Notification Service Properties” on page 57.

To set notification service level QoS on a Noti f yLog you use the log's
set _gos() method. See “Log QoS Properties” on page 216.

Example 50 on page 221 sets a log's Event Rel i abi | i ty and
Connect i onRel i abi |ity QoS to Persistent.

Example 50: Setting notification level QoS on a NotifyLog object
/1 Java

Property[] gos = new Property(2);

gos[0] = new Property();

qos[0] . name = Event Rel i abi lity. val ue;

qos[0] . val ue = org. ong. CORBA. CRB. i nit (). create_any();
gos[0] . val ue. i nsert _short (Persi stent. val ue);

qos[1] . name = Connecti onRel i abi lity. val ue;

qos[1] .value = org. ong. CORBA. CRB.init().create_any();
gos[1] . val ue. i nsert _short (Persi stent. val ue);

| 0g. set _gos(qos);

221

CHAPTER 12 | Advanced Features

222

In this chapter

CHAPTER 13

Managing the
Telecom Log
Service

The telecom log service has several configuration variables
that determine its behavior. They can control the speed and
reliability of the telecom log service.

This chapter discusses the following topics:

Configuring the Telecom Log Service page 224
Running the Telecom Log Service page 227
Managing a Deployed Telecom Log Service page 229

223

CHAPTER 13 | Managing the Telecom Log Service

Configuring the Telecom Log Service

Overview

Configuration scopes

Namespaces

224

The telecom log service can be customized by adjusting the service's
configuration settings. Using this mechanism you can set the service’s
persistence mode, the maximum number or records returned from a query
before an iterator object is used(“Getting Log Records” on page 180), and
the interval between flushes of the log object’s internal memory
buffer(“Flushing the buffer” on page 217).

Most of the configuration variables for the telecom log service are found in

the following configuration scopes:

® jona_services. basi c_| og - The variables in this scope set the
database location, tracing level, persistence mode, and other default
settings used by Basi cLog objects.

® iona_services. event _| og - The variables in this scope set the
database location, tracing level, persistence mode, and other default
settings used by Event Log objects.

. i ona_services. notify_| og - The variables in this scope set the
database location, tracing level, persistence mode, and other default
settings used by Noti f yLog objects.

The initial reference for the telecom log service is set in the configuration’s

root scope, as are the variables for using the telecom log service with the

IONA management service.

The telecom log service's configuration variables are in the following
namespaces:

plugins:tlog contains variables to control the general performance of the
telecom log service. The variables in this namespace effect all log objects.

plugins:tlog:database contains variables to configure the database used as
the persistent store for log objects.

plugins:basic_log contains variables that are related to the generic server
plug-in.

Performance tuning variables

Configuring the Telecom Log Service

plugins:event_log contains variables that are related to the generic server
plug-in.

plugins:notify_log contains variables that are related to the generic server
plug-in.

In addition to the namespaces that are specifically used to configure telecom
log service properties, the following namespace is used to configure the
telecom log service’s collocated notification service:

plugins:notify contains variables to control the performance of the
collocated notification service used by Noti f yLog objects. To effect the
telecom log service the variables in the pl ugi ns: noti fy hamespace must
occur in the i ona_servi ces. notify_| og scope. The variables specified
under the i ona_servi ces. noti fi cati on scope do not effect the telecom log
service.

Modifying the telecom log service's configuration variables effects the overall
performance of the service in terms of the amount of resources it consumes
and the speed at which it processes events. You can use the configuration
variables to tune the telecom log service’s performance to meet you specific
needs.

Some of the variables that effect performance are listed in Table 13.

Table 13: Telecom log service configuration variables

Variable Effect

flush_interval Specifies the time in seconds between automated
flushes of a log object’'s memory buffer. This
property only effects log objects with the QoSNone
quality of service. Setting the value to O disables
automatic flushing. The default value is 5
minutes. See “Log QoS Properties” on page 216.

max_r ecor ds Specifies the maximum number of records that a
query or retrieve operation can return without
using an iterator. The default is 100. See “Getting
Log Records” on page 180.

225

CHAPTER 13 | Managing the Telecom Log Service

Further reading

226

Table 13: Telecom log service configuration variables

Variable

Effect

iterator_tinmeout

Specifies the lifetime of an inactive iterator object
in seconds. Iterator objects that have been inactive
for longer than the time specified are reaped.
Setting the value to O disables iterator reaping.
The default value is 4 hours.

For a complete listing of the telecom log service’s configuration variables
and a detailed description of how to set them see the Application Server
Platform Administrator’s Guide.

Running the Telecom Log Service

Running the Telecom Log Service

Starting the service

Stopping the service

Like all Orbix services, the telecom log service can be configured to start on
demand, to start at system boot, or be started by a script generated by the
configuration tool.

You can also manually start the telecom log service with the following
command:

Basic Logging

C \Program Fi | es\ | ONA\ asp\ 6. 2\ bi n\i t basi c_| og. exe -background
run -CORBdomai n_name <domain_name> - CRBconf i g_domai ns_di r
"C \ Program Fi | es\ | ONA\ et c\ donai ns" - CRBname
i ona_servi ces. basi c_| og

Event Logging

C \Program Fi | es\| ONA\ asp\ 6. 2\ bi n\i t event _| og. exe -background
run -CORBdomai n_name <domain_name> - CRBconf i g_domai ns_di r
"C \ Program Fi | es\ | ONA et c\ donai ns" - CRBname
i ona_servi ces. event _| og

Notification Logging

C\Program Fil es\| ONA\ asp\ 6. 2\ bi n\itnotify_| og. exe -background
run -CRBdomai n_name <domain_name> - CRBconf i g_domai ns_di r
"C \ Program Fi | es\ | ONA et c\ donai ns" - CRBnanme
iona_services.notify_|og

To stop the telecom logging service you can use the stop script generated by
the configuration tool or you can use i t adm n. You stop the telecom log
service with the following i t adm n command:

Basic Logging
% basi c_| og stop
Event Logging

% event _| og stop

227

CHAPTER 13 | Managing the Telecom Log Service

Notification Logging

%notify | og stop

Further reading For a detailed description of using i t adm n to start and stop Orbix services
see the Application Server Platform Administrator’s Guide.

228

Managing a Deployed Telecom Log Service

Managing a Deployed Telecom Log Service

Using the telecom log service
console

The telecom log service console provides administrators the ability to
monitor and control a deployed telecom log service. It provides controls to
create and destroy logs, admin objects, proxy objects, and filters. It also
provides controls to edit QoS properties, schedules, and lifespans.

To start the telecom log service console use the following command:
itl oggi ng_consol e

The console has detailed context sensitive help to guide you in its use.

229

CHAPTER 13 | Managing the Telecom Log Service

230

Part IV

The Java Messaging Service

In this part This part contains the following chapters:

Developing a JMS Application page 233

Managing JMS page 263

Overview

CHAPTER 14

Developing a JMS
Application

The Java Messaging System provides a native messaging
solution for all Java applications.

The Java Messaging System provides facilites for using both point to point
messaging or publish and subscribe messaging. Point to point messaging is
implemented using Queues. Publish and subscribe messaging is
implemented using Topics. Table 14 compares the properties of Queues and

Topics.

Table 14: Queue and Topic feature chart

Queue

Topic

Most common topologies

one -> one, many -> one

one -> many, many -> many

Action if multiple consumers

Each message goes to only one
consumer.

All consumers recieve every
message.

Action if no consumers

Messages are retained.

Messages are discarded.

Durable consumers No, but if a single consumer is Yes
being used messages are retained
so none will be lost.

Browse undelivered messages Yes No

233

CHAPTER 14 | Developing a JMS Application

Table 14: Queue and Topic feature chart

Queue

Topic

Delivery order

FIFO none

In this chapter

234

This chapter discusses the following topics:

Using Point to Point Messaging

page 235

Using Publish / Subscribe Messaging

page 249

Using Point to Point Messaging

Using Point to Point Messaging

Overview

In this section

In point to point messaging, messages are typically sent between one
producer and one consumer. Typically calls to receive messages will block
until a message is received; however, senders need not block until a
message is received.

JMS Queues are used to implement point to point messaging between
clients. A Queue delivers a message once and only once. Typically, a Queue
will only have one client consuming messages although JMS does not
prohibit connecting more than one consumer. A JMS Queue also provides
for asynchronous point to point messaging.

As the name implies, a Queue enforces a FIFO order of message delivery.
Messages are placed at the end of the queue when they are posted and
cannot be consumed out of order. Once a message has been consumed, it is
popped off the queue and cannot be consumed again unless it is
redelivered. A consumer can browse a queue to see what messages are
waiting to be consumed, and can acknowledge that messages have been
received.

This section discussed the following topics:

Creating a Queue page 236
Implementing a Point to Point Message Producer page 238
Implementing a Point to Point Message Consumer page 243

235

CHAPTER 14 | Developing a JMS Application

Creating a Queue

Overview

Using the management console

Programatically

236

Queues are considered administered objects in JMS and are maintained by
the service. Applications using JMS Queues need to use a JNDI lookup to
get a reference to an existing Queue.

By default the IONA JMS initializes two default Queues called
"i ona: j ms/ queue/ queue0" and "i ona: j ms/ queue. queuel”. queueO is used
by the included demo programs; queuel is left free.

Note: Because Queues only deliver a message to one consumer, it is
advisable to ensure that each application uses a unique Queue.

New Queues can be created in one of two ways:
® Using the management console
® Programatically

The IONA management service provides a cr eat eQueue operation to create
new Queues. For more information on using the management service with
JMS see “Managing JMS with the Management Service” on page 270.

To create a Queue programatically, five steps are required:
1. Create an initial context.

2. Get a reference to the queue connection factory using a JNDI lookup
for "i ona: j ns/ queue/ connect i onFact ory" as shown in Example 51.

Example 51: Looking up the queue connection factory.

/1l Java
import javax.j ns. Queue;
inport javax.j nms. QueueConnecti onFact ory;

/1 Context ctx obtained previously

QueueConnect i onFact ory qconFactory = (QueueConnecti onFact ory)
ct x. | ookup("i ona: j ns/ queue/ connect i onFact ory");

Using Point to Point Messaging

3. Create a connection using the connection factory as shown in

Example 52.

Example 52: Create a connection.

/1 Java
inport comiona.jns. api .| TQueueConnecti on;

// Connection factory gconFactory obtai ned in previous exanpl e
| TQueueConnect i on queueConn = (| TQueueConnect i on)
gconFact ory. cr eat eQueueConnection() ;

4. Get a reference to the Desti nati onAdni n from the newly created

connection as shown in Example 53.
Example 53: Obtaining a DestinationAdmin

/1 Java
inport comiona.jns.api.admn. | TDesti nati onAdmi n;

/1 Connection queueConn obtained in previous exanpl e
| TDest i nati onAdm n dest Adm n = queueConn. get Dest i nati onAdm n() ;

5. Create a Queue using the Desti nati onAdni n’s creat eDest i nati on()

operation as shown in Example 54.
Example 54: Creating a Queue

/1 Java
inport javax.jmns. Qeue;

// DestinationAdm n dest Adm n obtained in previous exanpl e

Queue queue = (Queue) dest Admi n. creat eDesi nati on(queue_nane,
| TDesti nati on. QEUE, null);

createDestination() takes the following parameters:

queue_nane The name of the new queue.
type The type of destination to create. | TDest i nat i on. QUEUE
is specified because the new destination is a Queue.

properties The Java properties for the new destination.

237

CHAPTER 14 | Developing a JMS Application

Implementing a Point to Point Message Producer

Overview

Getting the administered objects

238

A client that wants to send messages using a JMS Queue must perform the
following tasks:

1. Get a reference to a Queue and the queue connection factory.
Create a QueueConnect i on using the connection factory.
Create a QueueSessi on using the connection.

Create a QueueSender using the session.

Create and send messages.

ook wN

Close the connection.

The queue connection factory and all existing Queues are administered
objects and must be discovered using the JNDI lookup.

The reference for the queue connection factory is

"i ona: j ms/ queue/ connect i onFact ory" . The reference for a Queue takes the
form "i ona: j ns/ queue/ queueName" where queueName specifies the
name of the Queue.

Note: A Queue must exist before it can be used by a client program. For
information on creating a Queue, see “Creating a Queue” on page 236

Example 55 shows how to obtain references for Queue sport sQueue and the
queue connection factory.

Example 55: Obtaining references to the administered objects

/1 Java
i mport j avax.j ns. Queue;
inport javax.j nms. QueueConnecti onFact ory;

// Initial Contect ctx obtained previously

/1 Lookup the queue connection factory

QueueConnecti onf act ory gconnFactory = (QueueConnect i onFact ory)
ct x. | ookup("i ona: j ns/ queue/ connect i onFact ory");

[/ Lookup the Queue sportsQieue
Queue queue = (Queue) ctx. | ookup("iona:jns/queue/ sportsQeue");

Creating a connection

Creating a session

Using Point to Point Messaging

A JMS QueueConnect i on maintains the active connection information
between the client and JMS. It provides operations for stopping and starting
the flow of messages. However, a message producer would be unlikely to
use these operations because their behavior only effect the ability of
message consumers to receive messages from a connection. A connection
that has been stopped will still accept messages from a message producer
and will deliver the messages once the connection is restarted.

The QueueConnect i on also provides the operation for creating Sessi on
objects which manage the actual production and consumption of messages.
QueueConnect i ons are created using the queue connection factory’s

cr eat eQueueConnect i on() operation which takes no arguments.
Example 56 shows how to create a QueueConencti on.

Example 56: Creating a QueueConnection

/1 Java
inport javax.j nms. QueueConnecti on;

// Connection factory gconFactory obtai ned previously
QueueConnect i on queueConn = (QueueConnecti on)
gconFact ory. cr eat eQueueConnecti on() ;

A QueueSessi on is created using the cr eat eQueueSessi on() operation of a
QueueConnect i on. This operation has the following signature:

QueueSessi on creat eQueueSessi on(Bool ean transacted, int
acknowl edge) ;

creat eQueueSessi on() takes two parameters.

transact ed Specifies if the Sessi on is transacted. Can be either t rue
or fal se.

239

CHAPTER 14 | Developing a JMS Application

acknowl edge Specifies how the receipt of messages will be
acknowledged by the Sessi on. Can be take one of three
values:

AUTO_ACKNOWLEDGE specifies that the session
automatically acknowledges the receipt of all messages
immediately upon the receiving client’s return from the
reci eve() operation.

CLIENT_ACKNOWLEDGE specifies that message
receivers must acknowledge the receipt of a message by
calling the message’s acknow edge() method.

DUPS_OK_ACKNOWLEDGE specifies that the session
can lazily acknowledge the delivery of messages. This
may result in duplicate messages being delivered to
clients.

A QueueSessi on provides a single-threaded context for sending and receiving
messages. It provides operations for creating QueueSender s,
QueueReci ever s, QueueBr owser s, and messages.

The code in Example 57 creates a non-transacted QueueSessi on that uses
lazy acknowledgement of messages.

Example 57: Creating a QueueSession

/1 Java
inport javax.jns. Session;
inport javax.j nms. QueueSessi on;

[/ Connection queueConn obt ai ned previously
QueueSessi on queueSessi on = queueConn. cr eat eQueueSessi on(f al se,
Sessi on. DUPS_CK_ACKNON_EDGE) ;

Creating a message sender In point to point messaging, messages are sent using a QueueSender object.
A QueueSender is created from a QueueSessi on using the session’s
creat eSender () operation. The operation has the following signature:

QueueSender creat eSender (Queue queue);

240

Creating and sending a message

Using Point to Point Messaging

creat eSender () takes a single parameter which is the Queue to which the
sender is going to send messages.

A QueueSender is also responsible for specifying the level of guarantee, or
delivery mode, that is used when sending messages. This is done using the
QueueSender's set Del i ver yMobde() operation. This operation takes a single
parameter which can take one of the following values:

DeliveryMode.NON_PERSISTENT specifies that there is no guarantee that
a message will be delivered if the JMS Broker or other component of JMS
fails while the message is in transit.

DeliveryMode.PERSISTENT specifies that the message is guaranteed to be
delivered even if the JMS Broker or other component of JMS fails while the
message is in transit.

The code in Example 58 creates a QueueSender and sets its delivery mode
to PERSI STENT.

Example 58: Creating a persistent QueueSender

/1 Java
inport javax.j ns. QueueSender;
import javax.j ms. Del i veryMde;

/1 Session queueSessi on obtained in a previous exanpl e
/1 Queue queue obtained in a previous exanpl e
QueueSender gSender = queueSessi on. cr eat eSender (queue) ;
gSender . set Del i ver yMode(Del i ver yMode. PERSI STENT) ;

JMS messages come in several different flavors depending on the type of
information you wish to use as message. The messages are created from a
Sessi on using one of the session’s create message operations.

Messages are sent using the QueueSender’s send() operation.

241

CHAPTER 14 | Developing a JMS Application

Closing the connection

242

The code in Example 59 creates a simple text message containing the string
"pul chri tudi nous" and sends it.

Example 59: Sending a simple text message

/1 Java
inport javax.jmns. Text Message;

I/ Session queueSessi on and QueueSender gSender obt ai ned
I/ in a previous exanpl e
Text Message nessage =

quueueSessi on. cr eat eText Message(" pul chri t udi nous") ;
gSender . send(nessage) ;

A QueueConnect i on is resource intensive and should be closed one it is no
longer in use. Also, because it is possible for a number of objects to hold
references to the connection, the JVM's garbage collection routine will not
recover the resources in a timely or reliable manner.

Connections are closed using the cl ose() operation. Once the call to

cl ose() is made, all Sessi ons, and their associated QueueSender s and
messages, are destroyed.

Example 60 shows how to close a QueueConnect i on.
Example 60: Closing a QueueConnection
/1 Java

/1 Connection queueConn obtained in a previous exanpl e
queueConn. cl ose() ;

Using Point to Point Messaging

Implementing a Point to Point Message Consumer

Overview

Getting the administered objects

A client wishing to receive messages using a JMS Queue must perform the
following tasks:

1.

No ok b

Get a reference to a Queue and the queue connection factory.
Create a QueueConnect i on using the connection factory.
Create a QueueSessi on using the connection.

Create a QueueReci ever using the session.

Start the QueueConnet i on to begin the flow of messages.
Receive and process messages.

Close the connection.

The queue connection factory and all existing Queues are administered
objects and must be discovered using the JNDI lookup.

The reference for the queue connection factory is

"i ona: j ms/ queue/ connect i onFact ory". The reference for a Queue takes the
form "i ona: j s/ queue/ queueName" where queueName specifies the
name of the Queue.

Note: A Queue must exist before it can be used by a client program. For
information on creating a Queue, see “Creating a Queue” on page 236

243

CHAPTER 14 | Developing a JMS Application

Creating a connection

244

Example 61 shows how to obtain references for Queue spor t sQueue and the
queue connection factory.

Example 61: Obtaining references to the administered objects

/1 Java
inport javax.jns. Queue;
inport javax.j ns. QueueConnecti onFact ory;

[/ Initial Contect ctx obtained previously

/1 Lookup the queue connection factory

QueueConnecti onf act ory gconnFactory = (QueueConnect i onFact ory)
ct x. | ookup("i ona: j ns/ queue/ connect i onFact ory");

/1 Lookup the Queue sportsQieue
Queue queue = (Queue) ctx. | ookup("iona:jns/queue/ sportsQeue”);

A JMS QueueConnect i on maintains the active connection information
between the client and JMS. It provides operations for stopping and starting
the flow of messages. When a connection is stopped, using the st op()
operation, message consumers will not receive any messages. Also,
message time-out values will continue to be enforced and therefore
messages may time-out while the connection is stopped. Once the
connection is restarted, using the start () operation, message consumers
will again begin receiving messages.

Note: Message producers can continue to send messages while the

connection is stopped. These new messages will be delivered when the
connection is restarted.

The QueueConnect i on also provides the operation for creating Sessi on
objects which manage the actual production and consumption of messages.

Creating a session

Using Point to Point Messaging

QueueConnect i ons are created using the queue connection factory’s
cr eat eQueueConnect i on() operation which takes no arguments.
Example 62 shows how to create a QueueConencti on.

Example 62: Creating a QueueConnection

/1 Java
inport javax.j nms. QueueConnecti on;

// Connection factory gconFactory obtai ned previously
QueueConnect i on queueConn = (QueueConnecti on)
gconFact ory. cr eat eQueueConnection() ;

When a QueueConneci t on is first created, it is stopped and message
receivers cannot receive messages until it is explicitly started. While the
connection can be started immediately after it is created, this could result in
messages being delivered before the message receiver is ready to process
them. It is best to start the connection after the message receiver is
initialized and ready to process messages.

A QueueSessi on is created using the cr eat eQueueSessi on() operation of a
QueueConnect i on. This operation has the following signature:

QueueSessi on creat eQueueSessi on(Bool ean transacted, int
acknowl edge) ;

cr eat eQueueSessi on() takes two parameters.

transact ed Specifies if the Sessi on is transacted. Can be either true
or fal se.

245

CHAPTER 14 | Developing a JMS Application

acknowl edge Specifies how the receipt of messages will be
acknowledged by the Sessi on. Can be take one of three
values:

AUTO_ACKNOWLEDGE specifies that the session
automatically acknowledges the receipt of all messages
immediately upon the receiving client’s return from the
reci eve() operation.

CLIENT_ACKNOWLEDGE specifies that message
receivers must acknowledge the receipt of a message by
calling the message’s acknow edge() method.

DUPS_OK_ACKNOWLEDGE specifies that the session
can lazily acknowledge the delivery of messages. This
may result in duplicate messages being delivered to
clients.

A QueueSessi on provides a single-threaded context for sending and receiving
messages. It provides operations for creating QueueSender s,
QueueReci ever s, QueueBr owser s, and messages.

The code in Example 63 creates a non-transacted QueueSessi on that uses
lazy acknowledgement of messages.

Example 63: Creating a QueueSession

/1 Java
inport javax.jns. Session;
inport javax.j nms. QueueSessi on;

[/ Connection queueConn obt ai ned previously
QueueSessi on queueSessi on = queueConn. cr eat eQueueSessi on(f al se,
Sessi on. DUPS_CK_ACKNON_EDGE) ;

Creating a message receiver In point to point messaging, messages are received by a QueueReci ever
object. A QueueReci ever is created from a QueueSessi on using the session’s
creat eReci ever () operation. The operation has the following signature:

QueueReci ever creat eReci ever (Queue queue);

246

Starting the connection and
receiving messages

Using Point to Point Messaging

creat eReci ever () takes a single parameter which is the Queue from which
the receiver is going to recieve messages.

The code in Example 64 creates a QueueReci ever .
Example 64: Creating a QueueReciever

/1 Java
inport javax.j ms. QueueReci ever;

/1 Session queueSessi on obtained in a previous exanpl e
/1 Queue queue obtained in a previous exanpl e
QueueReci ever gReci ever = queueSessi on. cr eat eReci ever (queue) ;

Once the QueueReci ever is created and any other initialization required for
message processing is completed, the connection needs to be started to
begin the flow of messages. The connection is started using the start ()
operation on the QueueConnect i on.

After starting the connection, the QueueReci ever can begin synchronously
receiving messages using its reci eve() operation. reci eve() blocks until a
message is consumed from the queue. The operation can take a parameter

that specifies the amount of time, in milliseconds, to block before timing
out.

If a client wishes to receive messages asynchronously, it can register a
MessagelLi st ener, which will notify the client when messages are ready..

Example 65 shows the code to start a connection and receive a text
message. The QueueReci ver only blocks for 4 seconds before timing out.

Example 65: Receiving a text message

/1 Java
inport javax.j ms. Text Message;

/1 Connection queueConn and QueueReci ever gReci ever obti aned
// in a previous exanpl e
queueConn. start ();
Text Message nessage = qReci ever. reci eve(4000);
if (message != null)
Systemout. printl n("Message reci eved: " + nessage. getText());

247

CHAPTER 14 | Developing a JMS Application

Closing the connection

248

If a message is received from the queue, the message is printed out using
the get Text () operation defined on a JMS Text Message. If no message is
received from the queue, reci eve() returns a nul | .

A QueueConnect i on is resource intensive and should be closed one it is no
longer in use. Also, because it is possible for a number of objects to hold
references to the connection, the JVM'’s garbage collection routine will not
recover the resources in a timely or reliable manner.

Connections are closed using the cl ose() operation. Once the call to
cl ose() is made, all Sessi ons, and their associated QueueSender s and
messages, are destroyed.

Example 66 shows how to close a QueueConnect i on.
Example 66: Closing a QueueConnection
/1 Java

// Connecti on queueConn obtained in a previous exanpl e
queueConn. cl ose() ;

Using Publish / Subscribe Messaging

Using Publish / Subscribe Messaging

Overview

In this section

In publish / subscribe messaging, many message producers forward
messages to many message consumers. This style of messaging is typically
asynchronous, meaning that call to receive messages do not block. The
message consumers continue to process information while waiting for new
messages to arrive.

JMS Topics are used to implement publish / subscribe messaging between
JMS clients. Topics allow anonymous publishers, TopicPublishers, and
anonymous suppliers, TopicSubscriber, to connect and disconnect at
random intervals. The Topic ensures that all messages are delivered to each
connected consumer at least once. If a consumer wishes to receive
messages even when it is disconnected from the Topic it must register using
a durable subscription.

Topics also provide a means to ensure that messages are delivered to all
connected consumers reliably. Messages published as NON_PERSI STENT are
not guaranteed to arrive to all connected consumers. Messages published
PERSI STENT are guaranteed to arrive to each connected consumer at most
once.

This sections discusses the following topics:

Creating a Topic page 250
Implementing a Message Publisher page 252
Implementing a Subscriber page 257

249

CHAPTER 14 | Developing a JMS Application

Creating a Topic

Overview

Using the management console

Programatically

250

Topics are considered administered objects in JMS and are maintained by
the service. Applications using JMS Topics need to use a JNDI lookup to get
a reference to an existing Topic.

By default the IONA JMS initializes two default Queues called

"i ona: j ms/ queue/ t opi c0" and "i ona: j ms/ queue. t opi c1". t opi cO is used
by the included demo programs; t opi c1 is left free.

Topics can be created in one of two ways:

® Using the management console

® Programatically

The IONA management service provides a cr eat eTopi ¢ operation to create
new Topics. For more information on using the management service with
JMS see “Managing JMS with the Management Service” on page 270.

To create a Topic programatically, five steps are required:
1. Create an initial context.

2. Get a reference to the topic connection factory using a JNDI lookup for
"i ona: j ms/ t opi ¢/ connect i onFact ory" as shown in Example 67.

Example 67: Looking up the topic connection factory.

/1 Java
inport javax.]j ns. Topi cConnecti onFact ory;

/1 Context ctx obtained previously
Topi cConnect i onFactory tconFactory = (Topi cConnecti onFact ory)
ct x. | ookup("i ona: j ns/t opi ¢/ connect i onFact ory");

Using Publish / Subscribe Messaging

3. Create a connection using the connection factory as shown in

Example 68.

Example 68: Create a connection.

/1 Java
inport comiona.jns.api.| TTopi cConnecti on;

/1 Connection factory tconFactory obtained in previous exanpl e
| TTopi cConnect i on topi cConn = (| TTopi cConnect i on)
t conFact ory. cr eat eTopi cConnecti on() ;

4. Get a reference to the Desti nati onAdni n from the newly created

connection as shown in Example 69.

Example 69: Obtaining a DestinationAdmin

/1 Java
inport comiona.jns.api.admn. | TDesti nati onAdmi n;

/1 Connection topi cConn obtained in previous exanpl e
| TDest i nati onAdm n dest Adm n = t opi cConn. get Dest i nati onAdm n() ;

5. Create a Topic using the Desti nati onAdni n’s creat eDesti nati on()

operation as shown in Example 70.
Example 70: Creating a Topic

/1 Java
inport javax.jmns. Topic;

// DestinationAdm n dest Adm n obtained in previous exanpl e

Topi ¢ topic = (Topi c) dest Adm n. creat eDesi nati on(topi c_nane,
| TDestination. TGPIC, null);

createDestination() takes the follwoing parameters:

t opi c_nane The name of the new topic.
type The type of destination to create. | TDest i nati on. TCPI C
is specified because the new destination is a Topic.

properties The Java properties for the new destination.

251

CHAPTER 14 | Developing a JMS Application

Implementing a Message Publisher

Overview

Getting the administered objects

252

A client wishing to publish messages to a JMS Topic must perform the
following tasks:

1. Get a reference to a Topic and the topic connection factory.
Create a Topi cConnect i on using the connection factory.
Create a Topi cSessi on using the connection.

Create a Topi cPubl i sher using the session.

Create and publish messages.

ook wN

Close the connection.

The queue connection factory and all existing Topics are administered
objects and must be discovered using the JNDI lookup.

The reference for the topic connection factory is

"i ona: j ms/ t opi ¢/ connect i onFact ory". The reference for a Queue takes the
form "i ona: j ns/ t opi ¢/ topicName" where topicName specifies the name
of the Queue.

Note: A Topic must exist before it can be used by a client program. For
information on creating a Topic, see “Creating a Topic” on page 250

Example 71 shows how to obtain references for Topic sport sTopi ¢ and the
topic connection factory.

Example 71: Obtaining references to the administered objects

/1 Java
i mport j avax.j ns. Topi c;
inport javax.]j nms. Topi cConnect i onFact ory;

// Initial Contect ctx obtained previously

/1 Lookup the topic connection factory

Topi cConnecti onfactory tconnFactory = (Topi cConnect i onFact ory)
ct x. | ookup("i ona: j ns/t opi ¢/ connect i onFact ory");

/1 Lookup the Topic sportsTopic
Topi ¢ topic = (Topic) ctx.lookup("iona:jns/topic/sportsTopic");

Creating a connection

Creating a session

Using Publish / Subscribe Messaging

A JMS Topi cConnect i on maintains the active connection information
between the client and JMS. It provides operations for stopping and starting
the flow of messages. However, the state of the connection does not effect a
publisher's ability to publish message to the Topic. Therefore message
publishers would most likely not change the state of the Connection.

The Topi cConnect i on also provides the operation for creating Sessi on
objects which manage the actual production and consumption of messages.
Topi cConnect i ons are created using the topic connection factory’s

cr eat eTopi cConnecti on() operation which takes no arguments.
Example 72 shows how to create a Topi cConencti on.

Example 72: Creating a TopicConnection

/1 Java
inport javax.j nms. Topi cConnecti on;

/1 Connection factory tconFactory obtai ned previously
Topi cConnect i on topi cConn = (Topi cConnect i on)
t conFact ory. cr eat eTopi cConnecti on() ;

A Topi cSessi on is created using the creat eTopi cSessi on() operation of a
Topi cConnect i on. This operation has the following signature:

Topi cSessi on cr eat eTopi cSessi on(Bool ean transacted, int
acknowl edge) ;

creat eQueueSessi on() takes two parameters.

transact ed Specifies if the Sessi on is transacted. Can be either t rue
or fal se.

253

CHAPTER 14 | Developing a JMS Application

Creating a message publisher

254

acknowl edge Specifies how the receipt of messages will be
acknowledged by the Sessi on. Can be take one of three
values:

AUTO_ACKNOWLEDGE specifies that the session
automatically acknowledges the receipt of all messages
immediately upon the receiving client’s return from the
reci eve() operation.

CLIENT_ACKNOWLEDGE specifies that message
receivers must acknowledge the receipt of a message by
calling the message’s acknow edge() method.

DUPS_OK_ACKNOWLEDGE specifies that the session
can lazily acknowledge the delivery of messages. This
may result in duplicate messages being delivered to
clients.

A Topi cSessi on provides a single-threaded context for sending and receiving
messages. It provides operations for creating Topi cPubl i shers,
Topi cSubscri bers, and messages.

The code in Example 73 creates a non-transacted Topi cSessi on that uses
client acknowledgement of messages.

Example 73: Creating a TopicSession

/1 Java
inport javax.jns. Session;
inport javax.j nms. Topi cSessi on;

/1 Connection Topi cConn obt ai ned previ ously
Topi cSessi on t opi cSessi on = topi cConn. creat eTopi cSessi on(fal se,
Sessi on. CLI ENT_ACKNONLEDGE) ;

In publish / subscribe messaging, messages are published using a

Topi cPubl i sher object. A Topi cPubl i sher is created from a Topi cSessi on
using the session’s creat ePubl i sher () operation. The operation has the
following signature:

Topi cPubl i sher creat ePubl i sher (Topi c topic);

Creating and publishing messages

Using Publish / Subscribe Messaging

creat ePubl i sher () takes a single parameter which is the Topi ¢ to which
the publisher publishes messages.

A Topi cPubl i sher is also responsible for specifying the level of guarantee,
or delivery mode, that is used when sending messages. This is done using
the Topi cPubl i sher’s set Del i ver yMbde() operation. This operation takes a
single parameter which can take one of the following values:

DeliveryMode.NON_PERSISTENT specifies that there is no guarantee that

a message will be delivered if the JMS Broker or other component of JMS
fails while the message is in transit.

DeliveryMode.PERSISTENT specifies that the message is guaranteed to be
delivered even if the JMS Broker or other component of JMS fails while the
message is in transit.

The code in Example 74 creates a Topi cPubl i sher and sets its delivery
mode to PERSI STENT.

Example 74: Creating a persistent TopicPublisher

/1 Java
inport javax.j nms. Topi cPubl i sher;
import javax.j ms. Del i veryMde;

/1 Session topicSession obtained in a previous exanpl e

// Topic topic obtained in a previous exanpl e

Topi cPubl i sher tPub = topi cSessi on. creat ePubl i sher(topic);
t Pub. set Del i ver yMode(Del i ver yMbde. PERS| STENT) ;

JMS messages come in several different flavors depending on the type of
information you wish to use as message. The messages are created from a
Session using one of the session’s create message operations.

Messages are sent using the Topi cPubl i sher’s publ i sh() operation.

255

CHAPTER 14 | Developing a JMS Application

Closing the connection

256

The code in Example 75 creates a simple text message containing the string
"pul chritudi nous" and publishes it.

Example 75: Publishing a simple text message

/1 Java
inport javax.jmns. Text Message;

/1 Session topicSession and Topi cPubl i sher tPub obtai ned
I/ in a previous exanpl e
Text Message nessage =
t opi cSessi on. cr eat eText Message(" pul chri t udi nous") ;
t Pub. publ i sh(nessage) ;

A Topi cConnecti on is resource intensive and should be closed one it is no
longer in use. Also, because it is possible for a number of objects to hold
references to the connection, the JVM's garbage collection routine will not
recover the resources in a timely or reliable manner.

Connections are closed using the cl ose() operation. Once the call to

cl ose() is made, all Sessi ons, and their associated Topi cPubl i shers and
messages, are destroyed.

Example 76 shows how to close a Topi cConnect i on.

Example 76: Closing a TopicConnection

/1 Java

/1 Connection topi cConn obtained in a previous exanpl e
t opi cConn. cl ose() ;

Using Publish / Subscribe Messaging

Implementing a Subscriber

Overview

Getting the administered objects

A client wishing to publish messages to a JMS Topic must perform the
following tasks:

1. Get a reference to a Topic and the topic connection factory.
Create a Topi cConnect i on using the connection factory.
Create a Topi cSessi on using the connection.

Create a Topi cSubscri ber using the session.

Create and publish messages.

ook wN

Close the connection.

The queue connection factory and all existing Topics are administered
objects and must be discovered using the JNDI lookup.

The reference for the topic connection factory is

"i ona: j ms/ t opi ¢/ connect i onFact ory". The reference for a Queue takes the
form "i ona: j ns/ t opi ¢/ topicName" where topicName specifies the name
of the Queue.

Note: A Topic must exist before it can be used by a client program. For
information on creating a Topic, see “Creating a Topic” on page 250

Example 77 shows how to obtain references for Topic sport sTopi ¢ and the
topic connection factory.

Example 77: Obtaining references to the administered objects

/1 Java
i mport j avax.j ns. Topi c;
inport javax.j ms. Topi cConnect i onFact ory;

// Initial Contect ctx obtained previously

/1 Lookup the topic connection factory

Topi cConnect i onfactory tconnFactory = (Topi cConnect i onFact ory)
ct x. | ookup("i ona: j ns/ t opi ¢/ connect i onFact ory");

/1 Lookup the Topic sportsTopic
Topi ¢ topic = (Topic) ctx.lookup("iona:jns/topic/sportsTopic");

257

CHAPTER 14 | Developing a JMS Application

Creating a connection

Creating a session

258

A JMS Topi cConnect i on maintains the active connection information
between the client and JMS. It provides operations for stopping and starting
the flow of messages. When a connection is stopped, using the st op()
operation, message consumers will not receive any messages. Also,
message time-out values will continue to be enforced and therefore
messages may time-out while the connection is stopped. Once the
connection is restarted, using the start () operation, message consumers
will again begin receiving messages.

Note: Message producers can continue to send messages while the
connection is stopped. These new messages will be delivered when the
connection is restarted.

The Topi cConnect i on also provides the operation for creating Sessi on
objects which manage the actual production and consumption of messages.

Topi cConnect i ons are created using the topic connection factory’s
creat eTopi cConnect i on() operation which takes no arguments.
Example 78 shows how to create a Topi cConenct i on.

Example 78: Creating a TopicConnection

/1 Java
inport javax.j ns. Topi cConnecti on;

/1 Connection factory tconFactory obtained previously
Topi cConnect i on topi cConn = (Topi cConnect i on)
t conFact ory. cr eat eTopi cConnecti on() ;

When a Topi cConneci t on is first created, it is stopped and subscribers
cannot receive messages until it is explicitly started. While the connection
can be started immediately after it is created, this could result in messages
being delivered before the subscriber is ready to process them. It is best to
start the connection after the subscriber is initialized and ready to process
messages.

A Topi cSessi on is created using the cr eat eTopi cSessi on() operation of a
Topi cConnect i on. This operation has the following signature:

Topi cSessi on creat eTopi cSessi on(Bool ean transact ed, int
acknow edge) ;

Using Publish / Subscribe Messaging

cr eat eQueueSessi on() takes two parameters.

transact ed Specifies if the Sessi on is transacted. Can be either true
or fal se.

acknow edge Specifies how the receipt of messages will be
acknowledged by the Sessi on. Can be take one of three
values:

AUTO_ACKNOWLEDGE specifies that the session
automatically acknowledges the receipt of all messages
immediately upon the receiving client’s return from the
reci eve() operation.

CLIENT_ACKNOWLEDGE specifies that message
receivers must acknowledge the receipt of a message by
calling the message’s acknow edge() method.

DUPS_OK_ACKNOWLEDGE specifies that the session
can lazily acknowledge the delivery of messages. This
may result in duplicate messages being delivered to
clients.

A Topi cSessi on provides a single-threaded context for sending and receiving
messages. It provides operations for creating Topi cPubl i sher objects,
Topi cSubscri ber objects, and messages.

The code in Example 79 creates a non-transacted Topi cSessi on that uses
client acknowledgement of messages.

Example 79: Creating a TopicSession

/1 Java
inport javax.jns.Session;
inport javax.j nms. Topi cSessi on;

// Connection Topi cConn obt ai ned previously

Topi cSessi on t opi cSessi on = topi cConn. cr eat eTopi cSessi on(fal se,
Sessi on. CLI ENT_ACKNONLEDGE) ;

259

CHAPTER 14 | Developing a JMS Application

Creating a message subscriber

Starting the connection and
consuming messages

260

In publish / subscribe messaging messages are consumed by a
Topi cSubscri ber object. A TopicSubscriber is created from a Topi cSessi on

using the session’s creat eSubscri ber () operation. The operation has the
following signature:

Topi cSubscri ber creat eSubscri ber (Topi ¢ topic);

creat eSubscri ber () takes a single parameter which is the Topi ¢ from
which the subscriber consumes messages.

The code in Example 80 creates a Topi cSubscri ber .
Example 80: Creating a TopicSubscriber

/1 Java
inport javax.j ns. Topi cSubscri ber;

// Session topicSession obtained in a previous exanpl e
/1 Topic topic obtained in a previous exanpl e
Topi cSubscri ber tSub = topi cSessi on. creat eSubscri ber (t opic);

Once the Topi cSubscri ber is created and any other initialization required
for message processing is completed, the connection needs to be started to
begin the flow of messages. The connection is started using the start ()
operation on the Topi cConnecti on.

After starting the connection, the Topi cSubscri ber can begin synchronously
consuming messages using its reci eve() operation. reci eve() blocks until
a message is consumed from the topic. The operation can take a parameter
that specifies the amount of time, in milliseconds, to block before timing
out.

If a client wishes to consume messages asynchronously, it can register a
Messageli st ener, which will notify the client when messages are ready. .

Closing the connection

Using Publish / Subscribe Messaging

Example 81 shows the code to start a connection and consume a text
message. The Topi cSubscri ber blocks for 4 seconds before timing out.

Example 81: Consuming a text message

/1 Java
inport javax.jms. Text Message;

/1 Connection topi cConn and Topi cSubscri ber t Sub obti aned
I/ in a previous exanple
topi cConn. start ();

Text Message nessage = (Text Message) t Sub. reci eve(4000);
if (nmessage != null)

Systemout. printl n("Message reci eved: " + nessage. get Text());

If a message is consumed from the topic, the message is printed out using
the get Text () operation defined on a JMS Text Message. If no message is
consumed from the topic, reci eve() returns a nul | .

A Topi cConnect i on is resource intensive and should be closed one it is no
longer in use. Also, because it is possible for a number of objects to hold
references to the connection, the JVM'’s garbage collection routine will not
recover the resources in a timely or reliable manner.

Connections are closed using the cl ose() operation. Once the call to

cl ose() is made, all Sessi on objects, and their associated QueueSender
objects and messages, are destroyed.

Example 82 shows how to close a Topi cConnect i on.
Example 82: Closing a TopicConnection
/1 Java

// Connection topicConn obtained in a previous exanpl e
t opi cConn. cl ose();

261

CHAPTER 14 | Developing a JMS Application

262

In this chapter

Managing JMS

CHAPTER 15

The Java Messaging Service is fully configurable to handle a

variety of deployment scenarios.

This chapter discusses the following topics:

JMS Configuration page 264
Running JMS page 266
Managing JMS with the Management Service page 270
Selecting a Persistent Store Implementation page 273
Running JMS Clients page 275

263

CHAPTER 15 | Managing JMS

JMS Configuration

Overview

Configuration scope

Initial References

Namespaces

264

To maximize the service's scalability and functionality, JMS is highly
configurable. Like other Orbix services, JMS has a number of user editable
configuration variables that control its behavior. For instance, you can
control the maximum amount of active JDBC connections the broker can
offer and what database JMS uses for a persistent store.

The JMS broker's configuration variables are in the i ona_servi ces. j ns
configuration scope. JMS client configuration information, such as the initial
references to the JMS broker, are found in the global scope, or may be
scoped by the client’'s ORB name.

JMS clients require two initial references:

IT_JMSMessageBroker provides the initial reference to the JMS message
broker.

IT_JMSServerContext is used to support JNDI lookup of JMS destinations
and connection factories. See “JNDI” on page 265.

Other than the initial reference variables, the JMS configuration variables
only affect the behavior of the JMS broker. They are contained in several
namespaces under the JMS configuration scope. The namespaces are:

persistence:jdbc controls what implementation is being used for the
service's persistent store. Orbix currently supports Cloudscape, Oracle, and

a purely in-memory implementation.

destinations controls the default queue and topic names that the service
creates at start up.

plugins:jms specifies the service’s type of persistence and its well known
address.

thread_pool specifies the behavior of the services thread pool.

Other variables

JNDI

JMS Configuration

factory specifies a username and password for accessing the
j avax. j ms. Connect i onFact ory object.

JMS also has variables that specify a replica name, if the service’s
management features are active, and the number of threads available to the
service. For a complete listing of the configuration variables see the Orbix
Configuration Reference Guide.

JMS clients use JNDI to get references to connection factories and message
destinations. For JMS a URL-based naming scheme is used for identifying
JMS objects. The JNDI entries for JMS are:

QueueConnect i onFact ory: "iona:j ns/ queue/ connect i onFact or y"
Topi cConnect i onFact ory: "iona:j ns/topi c/ connecti onFact or y*
Queue : "iona:j s/ queue/ queue_nane"
Topi ¢ : "iona:jns/topic/topi c_name"

To enable the URL naming scheme, you must set the JNDI

java. naming. factory. url. pkgs property to comi ona. j ns. nam ng. You can
do this using system properties, a properties file, or programmatically.
Example 83 shows how to set the property programmatically.

Example 83: Setting the JNDI naming package to use JMS URL based
names

inport java.util.Hashtabl e;

inport j avax. nam ng. Cont ext ;

inport javax.naning.lnitial Context;
inport javax.jns. Topic;

/...
Hasht abl e env = new Hasht abl e() ;
env. put (Cont ext . URL_PKG PREFI XES, "com i ona. | nms. nam ng");

Initial Context ctx = new Initial Context(env);
Topi ¢ topic = (Topic)ctx. | ookup("iona:jns/topic/topic0");

265

CHAPTER 15 | Managing JMS

Running JMS

Overview JMS has several start-up configurations depending upon how it is deployed.
In this section This section discusses the following topics:
Starting the JMS Broker page 267
Shutting Down the JMS Broker page 269

266

Running JMS

Starting the JMS Broker

Overview

Pure-Java standalone mode

JMS is configured to start in the same manner as all other Orbix services. In
addition, the JMS broker can be started in one of four ways:

® Pure-Java standalone mode
® Native standalone mode

® NT service

® Embedded mode

To start the JMS broker in pure-Java standalone mode, you run it via the
JRE.

java - Dcl oudscape. syst em home=db_di r\ var\ donmai n_nane\ dbs\ j ns
- DCRBdonai n_nanme=dorai n_nane
- DCRBconf i g_domai ns_di r =donai n_di r
com i ona. j ns. server . JVBBr oker

db_dir The directory where Orbix log and database files are
stored. You specified this location when you configured
the domain.

domai n_nane The name of your configuration domain.

domai n_di r The directory where Orbix configuration files are stored.
You specified this location when you configured the
domain.

The cl oudscape. syst em hone system property tells Cloudscape where the
JMS database resides. If this property is not set, Cloudscape assumes the
database should be written in the current working directory.

Note: This system property only needs to be set if you are using
Cloudscape as the JMS persistent store implementation. Oracle may have
other system properties that need to be set.

267

CHAPTER 15 | Managing JMS

Native standalone mode

NT service

Embedded mode

268

The JMS broker can also be run under the Orbix’s native JVM wrapper.

To start the JMS broker in native standalone mode, use the following
command:

itjms

The JMS broker, like all other Orbix services, can be configured to start as
an NT service on systems running Windows. When running as an NT
service, the JMS broker runs in native standalone mode. For more
information, see the Application Server Platform Administrator’s Guide.

The JMS broker can also be started from within a Java application that
wishes to use it. Once running, the JMS broker will be available for any Java
client that wishes to use it.

To start the JMS broker from within a Java application use the following
code:

inport comiona.jns. api.| TMessageSer vi ce;
/...

| TMessageServi ce nsgSvc = | TMessageService.init(args);
nsgSvc. start (true);

Running JMS

Shutting Down the JMS Broker

Overview The JMS broker may be stopped in one of three ways:
® Using the JRE
® Using itadmin
® Programmatically
Using the JRE To shut down the JMS broker using the JRE, use the following command:
java - Dcl oudscape. syst em horme=db_di r\ var\ dormai n_nane\ dbs\ j ns
- DCRBdonai n_nane=donai n_nane
- DORBconf i g_domai ns_di r =donai n_di r
com i ona. j ns. server . JVBBr oker shut down
Using itadmin

To shut down the JMS broker using i t adni n, use the following command:

itadmn jns stop

Programmatically If the JMS broker was started by a Java application, the application can shut

it down using the shut down() operation of the | TMessageSer vi ce used to
start the broker.

// nsgSvc obtained in previous code sanpl e
nsgSvc. shut down() ;

269

CHAPTER 15 | Managing JMS

Managing JMS with the Management Service

Overview JMS includes instrumentation for the IONA management service and can be
managed through the IONA Administrator Console. Two MBean types are
exposed by JMS. One for the JMS broker and one for each JMS destination.

Configuring JMS to be managed To enable JMS management using the IONA management service and IONA
Administrator Console there are two configuration variables that must be
set:

pl ugi ns:jns: i s_managed = "true";
instrunentati on: enabl ed = "true";

JMS can also be managed through a light-weight JMX wed adaptor that is
provided with the product. To enable this form of management set the
following configuration variables:

j nx: adapt or: enabl ed = "true";
j mx: adapt or: port = "port_nunber";

Broker Administration If you have enabled JMS management in your configuration, the JMS
broker's MBean is registered as the root MBean for the service. It exposes
the following attributes:

Table 15: JMS broker MBean attributes

Attribute Description

InstrumentationEnabled A boolean determining if verbose statistics are being generated for JMS.

InstrumentationStartTime | The time at which verbose statistic generation began.

MessageThroughput A read-only attribute showing the number of JMS messages processed since the
I nstrument ationStart Ti ne.

DataThroughput A read-only attribute showing the amount of JMS message data processes since
the I'nstrunentati onStart Ti ne.

270

Managing JMS with the Management Service

Table 15: JMS broker MBean attributes

Attribute

Description

MessagelnProgress

A read-only attribute showing the number of JMS messages currently being
processed.

DatalnProgress

A read-only attribute showing the amount of JMS message data currently being
processed.

ActiveQueues

A read-only list of bj ect Names representing the currently active queues.

ActiveTopics

A read-only list of Cbj ect Names representing the currently active topics.

The JMS broker's MBean also exposes the following operations:

Table 16: JMS broker MBean operations

Operation Description
createQueue Creates a new named queue.
removeQueue Removes an existing queue.

createTopic

Creates a new named topic.

removeTopic

Removes an existing topic.

shoutdownBroker

Shuts down the JMS broker.

Destination Administration

If you have enabled JMS management in your configuration, each
destination used by the service will have an MBean registered with the
management service. The destination MBeans expose the following
attributes:

Table 17: JMS destination MBean attributes

Attribute Description
URL The URL used to lookup this destination in the JNDI.
MessageThroughput A read-only attribute showing the throughput of the destination in terms of JMS

messages since the I nst runent ati onStart Ti ne.

271

CHAPTER 15 | Managing JMS

Table 17: JMS destination MBean attributes

Attribute

Description

DataThroughput

A read-only attribute showing the throughput of the destination in terms of JMS
message data processes since the I nst runent ati onSt art Ti ne.

MessagelnProgress

A read-only attribute showing the number of JMS messages being currently
processed for the destination.

DatalnProgress

A read-only attribute showing the amount of JMS message data being currently
processed for the destination.

MaxMessageSize

A controllable attribute that specifies the maximum size, in bytes, allowed for
the destination.

MaxConsumers

A controllable attribute that specifies the maximum number of consumers that
can connect to the destination.

DurableConsumersAllowed

A controllable attribute that specifies if the destination allows durable
consumers

MaxUnconsumedMessages

A controllable attribute that specifies the maximum number of unconsumed
JMS messages the destination can store.

MaxUnconsumedData

A controllable attribute that specifies the maximum amount of unconsumed
JMS message data, in bytes, the destination can store.

272

Selecting a Persistent Store Implementation

Selecting a Persistent Store Implementation

Overview

Cloudscape

Oracle with Merant SequeLink
JDBC drivers

Currently, Orbix supports four persistent store configurations. It defaults to
work with the Cloudscape database installed with Orbix. It can also work
with Oracle using either the Merant SequeLink JDBC drivers which are
shipped with Orbix or the Oracle JDBC drivers which are shipped with
Oracle. JMS also supports an implementation that operates purely in
memory and is transient for testing purposes.

To configure JMS to use Cloudscape as its persistent store you must make
the following configuration entries:

per si st ence: nessage_st or e="d oudscape";
per si st ence: j dbc: dri ver =" 0OOM cl oudscape. cor e. JDBCDr i ver";
persi stence: j dbc: ur |l ="j dbc: cl oudscape: dat a; cr eat e=t rue";

Note: Cloudscape is the default configuration.

To configure JMS to use Oracle, with the Merant SequeLink JDBC driver, as
its persistent store you must make the following configuration entries:

persi st ence: nessage_st ore="Q acl e";
persi stence: j dbc: dri ver="com i ona. j ms. st ore. j dbc. SequeLi nkDri ver

W apper";
persi stence: j dbc: url ="j dbc: i ona: sequel i nk: //host: port; [O acl €] ;
Dat abase=si d";

per si st ence: j dbc: user =" or acl e_user nane";
per si st ence: j dbc: passwor d="or acl e_passwor d";

You must also ensure that the Merant SequeLink JDBC driver's jar file is in
the JMS CQLASSPATH. For a default windows installation, the jar file would be
located ininstal | _dir\shared\lib\sljc_brabd-6.1\sljc_brand.jar.

273

CHAPTER 15 | Managing JMS

Oracle with Oracle JDBC drivers

Pure memory store

274

To configure JMS to use Oracle, with Oracle’s JDBC drivers, as its persistent
store you must make the following configuration entries:

per si st ence: nessage_st ore="Q acl e";

per si st ence: j dbc: dri ver="or acl e. j dbc. pool . O acl eConnect i onPool Da
t aSour ce";

persi stence: j dbc: url ="j dbc: oracl e: t hi n: @ost: port:sid";

per si st ence: j dbc: user =" or acl e_user nane";

per si st ence: j dbc: passow d="or acl e_passwor d";

You must also ensure that the Oracle JDBC driver's jar file is in the JMS
CLASSPATH.

To configure JMS to use a purely in-memory persistent store implementation
you must make the following configuration entries:

per si st ence: nessage_st or e=" Menory";
per si st ence: j dbc: dri ver="";
persi stence: jdbc: url ="";

WARNING: This implementation is transient and is only suitable for
testing purposes. It is not suitable for deployment environments because it
does not provide the reliability guarantees for re-delivery of
unacknowledged messages as mandated by the JMS specification.

Running JMS Clients

Running JMS Clients

JMS clients initialize the Orbix ORB silently and therefore do not pass along
command line arguments to the ORB. This requires that you pass any ORB
command line arguments as Java system properties.

Specifically, you must be sure to pass your domain name and configuration
directories to the ORB. For example, to run the point to point demao’s sender
client you would type

j ava - DCRBdonai n_name=nane - DCRBconf i g_domai ns_di r=di r
denos. j ns. poi nt ToPoi nt . Sender

The following would not work:

j ava denwos. j ns. poi nt ToPoi nt. Sender - CRBdomai n_nane nane
- CRBconfig domains_dir dir

275

CHAPTER 15 | Managing JMS

276

Part V

The JMS-Notification Bridge
Service

In this part This part contains the following chapters:

JMS-Notification Message Translation page 279

Managing the JMS-Notification Bridge Service page 289

CHAPTER 16

JMS-Notification
Message
Translation

The JMS-Notification bridge translates messages between
JMS and the notification service based on OMG specified

standards.
In this chapter This chapter discusses the following topics:
JMS Message to Notification Event page 280
Notification Event to JMS Message page 284

279

CHAPTER 16 | JMS-Notification Message Translation

JMS Message to Notification Event

Overview

Header

user

standard
properties
properties{

280

JMS messages are translated into structured events. The JMS header
properties which define lifetime, priority, and persistence are mapped to the
corresponding QoS properties in the variable header of the structured event.
All other JMS header properties are stored in the filterable data portion of
the structured event. The method used to translate the JMS message body
into the structured event body depends on the type of JMS message being

translated.

Figure 14 shows how a JMS message is mapped to a structured event that

a notification service consumer can understand.

domain_type = "
JMS message type type_name
Topic/Queue event_name
JMSDeliveryMode Event Reliability| short
JMSExpiration | Timeout TimeT
JMSPriority Priority short
JMSType JMSMessagelD fd_namel fd_valuel
JMSTimestamp | JMSDestination fd_name2 |fd value2
JMSReplyTo [JMSRedelivered fd_name3 |fd value3
JMSCorrealationlD
JMSXUserlD JMSXAppID fdnameN fd_valueN
JMSXGroupID | JMSXGroupSeq remainder_of body
name_ptrl value_ptrl
Body

Figure 14: JMS message to structured event mapping

fixed
header

variable
header

filterable
body

Structured event fixed header data

Persistence, lifetime, and priority
property mapping

Other JMS header fields

JMS Message to Notification Event

A structured event's fixed header fields are mapped as follows:

domain_name
The donai n_nane field is set to an empty string.

type_name

The type_nane field is set to indicate the JMS message’s type. The
message's type specifier is prefixed with the percent (%) character. For
example, a JMS text message would have a t ype_nane of " 9%dext Message" .

event_name

The event _nane field is set to the name of the JMS destination from which
the message was forwarded.

A JMS message’s header uses three fields to specify a message'’s
persistence, lifetime, and priority. These fields are mapped directly to
notification service QoS properties in the structured event variable header.
They are mapped as follows:

JMSDeliveryMode

The JMBDel i ver yMode field of the JMS message header is mapped to the
Event Rel i abi | ity QoS property and is set in the structured event’s variable
header field. If the JMBDel i ver yMode is specified as Persi stent,

Event Rel i abi l ity is set to Persi st ent. All other JMBDel i ver yMode settings
are mapped to BestEffort.

JMSExpiration

The JMBExper at i on field of the JMS message header is mapped to the

Ti meout QoS property. The value is converted from milliseconds, JMS units
for message timeout, to units of 100 nanoseconds, the notification service’s
units for message timeout.

JMSPriority

The JVsPriori ty field of the JMS message header is mapped to the
Priority QoS property.

The remaining fields of the JMS message header have no direct mapping
into QoS property settings in a structured event's header field. Therefore, the
remaining fields are mapped into the filterable data section of the structured

281

CHAPTER 16 | JMS-Notification Message Translation

Optional JMS property fields

JMS Message body

282

event. They are inserted into the filterable data section as name-value pairs
using the CosNoti fi cati on: : PropertySeq data structure. JMS header fields
with null values are omitted upon translation.

A JMS message can contain a number of optional property fields to further
specify the message’s origin and content. These properties, if specified, are
placed into the structured event’s filterable body along with the JMS header
fields. They are also inserted using the CosNoti fi cati oi n: : PropertySeq
data structure.

The body of a JMS message is inserted into the r emai nder _of _body portion
of the structured event as a QCRBA: : Any. JMS message bodies are mapped
differently depending on the type of JMS message body passing through the
bridge. The different message types are mapped as follows:

TextMessage

A JMS Text Message consists of a Java Stri ng. The data is inserted into the
remai nder _of _body by insertiting the String in a CCRBA : Any as a wide
string.

StreamMessage

A JMS streanMessage consists of a stream of Java primitive types. The data
in the stream is inserted into the r emai nder _of _body by translating each
piece of data using the standard IDL to Java mapping and encapsulating the
stream into a CORBA: : AnySeq.

MapMessage

A JMS MapMessage consists of a sequence of name-value pairs where the
name is a Java Stri ng and the value is a Java primitive type. The data is
inserted into the r emai nder _of _body by translating the sequence of
name-value pairs into a CosNot i fi cati on: : PropertySeq data structure. The
Java primitive types are translated using the standard Java to IDL mapping.

BytesMessage

A JMS Byt esMessage consists of uninterpreted stream data from either a
Java Dat al nput Streamor a Java Dat aQut put St ream The data is inserted
into the renai nder _of _body as an untranslated IDL Cct et Seq.

JMS Message to Notification Event

ObjectMessage

A JMS nj ect Message consists of a Java object that supports the

Seri al i zabl e interface. The data is inserted into the reni ander _of _body as
an Cct et Seq. The data in the Cct et Seq can be reconstructed by a
notification consumer, but it is up to the consumer’s developer to implement
the reconstruction process.

283

CHAPTER 16 | JMS-Notification Message Translation

Notification Event to JMS Message

Overview

284

All styles of notification events, Any, Sequence, and Structured, are treated
as structured events when being mapped to a JMS message. The mapping
of Any and Sequence events follows the standard mapping specified by the
OMG. The QoS properties Event Rel ai bi lity, Ti neout, and Priority are
mapped to the corresponding fields in the JMS message header. THe
remainder of the variable header fields and the filterable body are mapped
into the user defined properties section of the JMS message as name-value
pairs. The reani ander _of _body portion of the structured event is mapped to
the JMS message body. The JMS message is assigned a JMSType of

St ruct uredEvent . The remaining header and property fields of the JMS
message are filled in by the bridge using default values.

Notification Event to JMS Message

Figure 15 shows how a structured event is mapped to a JMS message.

generated by the bridge —: JMSMessagelD
JMSTimestamp
domain_type Topic/Queug —— JMSDestination
rftiexae(?er type_name JMSType="StructuredEvent”
event_name JMSReplyTo=nil neader
Event Rellablllty short JMSCorrelationID=""
Timeout TimeT \ JMSRedelivered=0
variable Priority short JMSDeliveryMode
header ohf namel | ohf valuel JMSExpiration
: . JMSPriority i
ohf_nameN |ohf_valueN namel valuel
fd_namel | fd_valuel “ : #user-defined
filterable ; ; . properties
body . . nameN valueN
fd_nameN | fd_valueN
remainder_of body Body

QoS properties

structured event

JMS message

Figure 15: Structured event to JMS message mapping

The notification service properties Event Rel i abi |'i ty, Ti neout, and

Priority are mapped to the JMBDel i ver yMode, the JMSExpi rat i on, and the
JIMBPriori ty fields in the JMS message header.

EventReliability

If the Event Rel i abi | i ty property is set in the event’s variable header, the
value is mapped to the JMBDel i ver yMode field. If the Event Rel i ability
property is not set, JMSDel i ver yMode is set to Persi stent .

285

CHAPTER 16 | JMS-Notification Message Translation

Remainder of the JMS header

Structured event fixed header

286

Timeout

If the Ti meout property is set in the event’s variable header, the value is
mapped to the IMBExpi rat i on field. The value is converted from units of
100 nanoseconds into milliseconds. If the Ti neout property is not set,
JMBEXpi ration is set to unlimited.

Priority
If the Priority property is set in the event's variable header, the value is

mapped to the IMSPriori ty field. If Priority is not set, IMSPriority is set
to 4.

The remainder of the JMS message header fields are filled in by the bridge.
Table 18 shows how the remaining header fields are filled in.

Table 18: JMS Message Header Completion

JMS header field Value
JMBMessagel D A unique key prefixed by ' 1D .
JNBTi mest anp The time that the message was passed to JMS for
delivery.
JMBDest i nat i on The name of the Topic or Queue to which the

message is being sent.

JMBType " StructuredEvent’

JMBRepl yTo ni |

JMBCorrel ationl D i

JMBRedel i ver ed 0

The three fields of the structured events fixed header are converted into
name value pairs and inserted in the JMS message as user defined
properties. The names of the properties are prefixed by a*$' and the values
are mapped to Java Stri ng. For example the donai n_nane field would be
mapped to the JMS property $donai n_nane.

Remaining variable header fields

Filterable data

Event body

Notification Event to JMS Message

Any properties, other than the QoS properties, set in the structured event’s
variable header are converted into name value pairs and mapped to user
defined properties in the JMS message.

The name of the event property is prefixed with a*$ when mapped to its
corresponding JMS property. The value of the event property is mapped to
the corresponding Java primitive type. For example, an event property scor e
would be mapped to the JMS property $score.

The structured event's filterable data is mapped to the user defined
properties section of the JMS message. Each name value pair in the
filterable data is mapped to a JMS user defined property using the same
mapping used for the variable header fields.

How the structured event’s r emai nder _of _body is mapped to the JMS
message body depends upon the complexity of the data packaged into the
CCRBA: : Any.

Table 19 shows how the data in the r eni ander _of _body is mapped into the
JMS message body.

Table 19: CORBA::Any to JMS message mapping

CORBA::Any JMS message body

Each element maps to a java
primitive using the standard IDL to
Java mapping. The data is inserted
into the JMS message as a

St r eanMessage body.

IDL basic types

Single string Inserted directly into the JMS
message body as a String.
Pr opertySeq Each property is mapped to a

name-value pair where the values
are mapped to the corresponding
Java primitive using the standard
IDL to Java mapping. The data is
inserted into the JMS message as
a MapMessage body.

287

CHAPTER 16 | JMS-Notification Message Translation

Table 19: CORBA::Any to JMS message mapping

CORBA::Any JMS message body

Qct et Seq The data is mapped directly into
an unfiltered byte stream and
inserted as a Byt eMessage body.

User constructed types The data is mapped directly into
an unfiltered byte stream and
inserted as a Byt eMessage body.
The burden of reconstructing the
data type is left to the JMS
consumer.

288

In this chapter

CHAPTER 17

Managing the
JMS-Notification
Bridge Service

The JMS-Notification bridge service is a light weight, easy to
use service that can be managed using command line tools or

through programatic interfaces.

This chapter discusses the following topics:

Configuring the Bridge Service page 290
Running the Bridge Service page 291
Managing the Bridge Service with itadmin page 292
Managing the Bridge Service Programatically page 296

289

CHAPTER 17 | Managing the JMS-Notification Bridge Service

Configuring the Bridge Service

Configuring the environment Once the notification service and JMS are configured and deployed into your
configuration, the bridge is automatically configured and deployed.

Administrative properties The bridge has only one configuration property:
jms_notify_bridge: endpoi nt _adm n_nane
This property sets the name of the notification service endpoint admin
object. This property does not need to be set unless you are running more
than one notification service that is to be bridged.

Optimization The bridge is optimized by optimizing JMS and the notification service.
There are no configuration variables that directly effect the performance of
the bridge itself.

290

Running the Bridge Service

Running the Bridge Service

Launching the service

Creating bridges

To launch the JMS-Notification bridge you need to launch the notification
service, the JMS broker, and have a valid license to use the bridge service.
The administrative services for the bridge are handled by the JMS broker, so
there are no separate services that need to be launched.

For information on starting the notification service, see “Running the
Notification Service” on page 151.

For information on starting JMS, see “Running JMS” on page 266.

You can create a bridge in one of three ways:
® using itadmin.
® programatically.

291

CHAPTER 17 | Managing the JMS-Notification Bridge Service

Managing the Bridge Service with itadmin

Overview lona’s command line admin tool, i t admi n, can be used to create, manage
and monitor bridges and their endpoints.

Creating a bridge A bridge can be created using the following itadmin command:

itadmin bridge create -source_adnin <ICR | | N T_REF_KEY>
-source_type <topic | queue | channel >
-'sour ce_nane <source name>
-sink_admn <ICR | |INT_REF KEY>
-sink_type <topic | queue | channel >
-si nk_name <sink name>
<bri dge name>

The bridge create command has the following arguments:

source_adm n The IOR or initial reference of the administrative object
used to connect to the message source. To use the
default notification endpoint admin use
"I T_NotificationEndpoi nt Adm n"; to use the default
JMS endpoint admin use "1 T_JMSEndpoi nt Adm n".

sour ce_type The type of object that will be passing messages into the
bridge. It can take one of three values:

topic if the messages will originate from a JMS topic.
queue if the messages will originate from a JMS queue.

channel if the messages will originate from a notification
channel.

sour ce_nane The name of the object that will be passing messages
into the bridge.

292

si nk_adm n

si nk_type

si nk_nane

bridge nane

Managing the Bridge Service with itadmin

The IOR or initial reference of the administrative object
used to connect to where messages are being forwarded.
If the message source is a notification channel, the
message sink should be a JMS Desti nati on. To use the
default notification admin use

"I T_Notificati onEndpoi nt Adni n"; to use the default
JMS admin use "1 T_JMBEndpoi nt Adm n".

The type of object that will be receiving messages from
the bridge. It can take one of three values:

topic if the messages are being forwarded to a JMS topic.

queue if the messages are being forwarded to a JMS
queue.

channel if the messages are being forward to a
notification channel.

The name of the object that will receive messages from
the bridge.

The name of the bridge. This must be a unique string
value that will be used to identify this bridge.

For example, to create a bridge, sports_bri dge, from a notification channel,
sports_channel , to a JMS topic, sports_t opi c, you could use the following

command:

itadmn bridge create -source_admn
"I'T_Notificati onEndpoi nt Adm n"

-source_type channel

-sour ce_nane sports_channel
-sink_adm n "I T_JMSEndpoi nt Admi n"
-sink_type topic

-si nk_name sports_topic
sports_bridge

When a bridge is created it is in stopped state and cannot begin passing
messages until it is explicitly started.

293

CHAPTER 17 | Managing the JMS-Notification Bridge Service

Controlling the flow of messages
through a bridge

Monitoring bridges

Monitoring bridge endpoints

294

A bridge can either be started, suspended, or stopped. If a bridge is started,
messages are forwarded through the bridge. If the bridge is suspended,
messages are collected at the source of the bridge, but the messages are not
forwarded until the bridge is restarted. If the bridge is stopped, messages
are not forwarded by the bridge.

To start the flow of messages through a bridge use the following command:
itadmin bridge start <bridge name>

To suspend the flow of messages through a bridge use the following
command:

itadmn bridge suspend <bridge nane>
To stop the flow of messages through a bridge use the following command:

itadmn bridge stop <bridge name>

itadmin provides commands for discovering and displaying the status of
bridges and their endpoints.

To list all of the instantiated bridges in a deployment use the following
command:

itadmn bridge |ist
To display the status of a bridge use the following command:

itadmn bridge show <bri dge name>

To display an endpoint admin’s name and the type of endpoints it supports
use the following command:

i tadm n endpoi nt_adm n show <ICR | | N T_REF_KEY>

To list the endpoints associated with an endpoint admin use the following
command:

itadmn endpoint |ist <-source | -sink> -admn <ICR |
I N T_REF_KEY>

Destroying bridges

Managing the Bridge Service with itadmin

You need to select whether you wish to list the source endpoints or the sink
endpoints associated with the specified admin.

To display the status and attributes of a particular endpoint use the
following command:

itadm n show <-source | -sink> -adnin <ICR | |INT_REF KEY>
<bri dge nane>

itadmin provides commands for destroying endpoints and bridges.

To destroy an endpoint use the following command:

i tadm n endpoi nt destroy <-source | -sink> -adnmn <ICR |
INT_REF KEY> <bridge nane>

You need to specify whether the endpoint is a message source or a message
sink and what type of admin object with which it is associated.

To destroy a bridge use the following command:

itadmn bridge destroy <bridge name>

295

CHAPTER 17 | Managing the JMS-Notification Bridge Service

Managing the Bridge Service Programatically

Overview

Actions

In this section

296

The JMS-notification bridge provides a APIs for both JMS and notification
clients to use in creating and managing bridges. These APIs are specified in
the following IDL modules:

® | T_Messagi ngBri dgeAdnin

® | T_Messagi ngBri dge

® | T_NotifyBridge

Applications that programatically manage bridges perform the following
actions:

® Get a Bri dgeAdni n object which serves as a factory for bridges.

® Locate existing bridges.

® Get Messagi ngEndpoi nt objects.

® Create new bridges.

® Start message flow through a bridge.

® Stop the flow of messages through a bridge.
® Destroy bridges.

This section discusses the following topics:

Getting a BridgeAdmin page 297
Getting a Bridge page 298
Managing Message Flow Through a Bridge page 301
Destroying a Bridge page 302

Managing the Bridge Service Programatically

Getting a BridgeAdmin

The Bri dgeAdni n interface, defined in I T_Messagi ngBri dgeAdmin, is a
bridge factory. You get an instance of the Bri dgeAdni n by using the
standard CORBA call resol ve_i ni ti al _references() with the key

"1 T_Messagi ngBri dge" and narrowing the returned object.

Example 84 shows the code used to get a Bri dgeAdni n.
Example 84: Getting a BridgeAdmin instance

org. ony. CORBA (bj ect obj =
orb.resolve_initial_references("| T_Messagi ngBri dgeAdm n");
com i ona. nessagi ng. | T_Messagi ngBri dgeAdm n. Bri dgeAdm n
bridge_admn =
com i ona. messagi ng. | T_Messagi ngBri dgeAdm n. Bri dgeAdm nHel per.
narrow(obj) ;

297

CHAPTER 17 | Managing the JMS-Notification Bridge Service

Getting a Bridge

Operations

Creating endpoints

298

The Bri dgeAdni n interface provides three operations for getting a bridge:
/1 1DL in | T_Messagi ngBri dgeAdm n: : Bri dgeAdni n

Bridge create_bridge(in BridgeNanme bridge_nane,
i n Endpoi ntlnfo source,
i n Endpoi nt1nfo sink);
rai ses (InvalidEndpoint, BridgeA readyExists,
Bri dgeNaneAl r eadyExi sts, Cannot Or eat eBri dge) ;

Bri dge get_bridge(in Bri dgeNane bri dge_nane)
rai ses (BridgeNot Found);

Bridge find_bridge(in Endpointlnfo source,

in Endpoi ntlnfo sink,

out Bridgename bridge_narme)
rai ses (BridgeNot Found);

The create_bridge() and find_bri dge() operations require that you first
specify both the source and sink endpoints of the bridge using an

| T_Messagi ngBri dgeAdm n: : Endpoi nt | nf o element. Endpoi nt | nf o contains
three fields:

admin specifies the Endpoi nt Adm n to which the endpoint will be
associated. The Endpoi nt Admi n is obtained by calling

resol ve_initial _references() using "1 T_Notifi cati onEndpoi nt Adni n"
to obtain an endpoint in the notification service or "I T_JVMSEndpoi nt Adni n"
to obtain an endpoint in JMS.

type specifies the type of the endpoint. It can take one of three values:
* | T_Messagi ngBri dge: : IM5_TCPI C
* | T_Messagi ngBri dge: : IM5_QUELE
* | T_Messagi ngBri dge: : NOTI FY_CHANNEL

name specifies the name of the messaging object to which the endpoint is
associated.

Creating a bridge

Managing the Bridge Service Programatically

The code in Example 85 creates a source endpoint for connecting to a JMS
topic.

Example 85: Creating an endpoint

/1 Java
inport comiona. messagi ng. | T_Messagi ngBri dge. *;
inport comiona. messagi ng. | T_Messagi ngAdni n. *;

Endpoi nt I nfo endpt = new Endpoi nt | nfo();

org. ong. CCRBA. (hj ect obj =
orb.resolve_initial_references("|T_JMSEndpoi nt | nfo");

endpt . adm n = Endpoi nt Adni nHel per . narrow(obj) ;
endpt . nane = “sports_topic";
endpt . t ype = Endpoi nt Type. IMS_TCPI C. val ue;

The previous example does the following:

1. Get a reference to the JMS Endpoi nt Adni n by calling

resol ve_initial _references() and narrowing the returned object
reference.

2. Specify the name of the messaging object to which the endpoint is
going to be associated.

3. Specifies that the endpoint will connect to a JMS topic.

You create new unidirectional bridges by calling the Bri dgeAdni n’s
create_bridge() operation. The operation takes three parameters:

bridge_name is a unique string identifier for the new bridge. If the specified
name is already used by another bridge the operation will raise the
| T_Messagi ngBri dge: : Bri dgeNaneAl r eadyExi sts exception.

source specifies the endpoint that connects to the source of the messages
being forwarded through the bridge. It is specified as an Endpoi nt | nf o.

sink specifies the endpoint that connects to the destination of the messages
being forwarded through the bridge. It is specified as an Endpoi nt | nf o.

For information on specifying endpoints see “Creating endpoints” on
page 298.

299

CHAPTER 17 | Managing the JMS-Notification Bridge Service

Finding existing bridges

300

Before the newly created bridge will begin forwarding messages, it must be
explicitly started by calling the start () operation on it.

You can get a reference to an already existing bridge by either specifying the
bridge’'s name or by specifying the bridge’s endpoints.

The Bri dgeAdmi n's get _bri dge() operation allows you to discover an
existing bridge using its unique name. The operation will return a reference
to the specified bridge if it exists; otherwise it will raise

| T_Messagi ngBri dgeAdm n: : Bri dgeNot Found.

If you do not know the bridge’s unique name, but do know the bridge’s
endpoints you can use the Bri dgeAdni n’s find_bri dge() operation to get a
reference to the bridge. find_bri dge() takes the source and sink

Endpoi nt | nf o for the bridge and will return a reference to the bridge if it
exists. If the bridge does not exist it will raise

| T_Messagi ngBri dgeAdm n: : Bri dgeNot Found.

Managing the Bridge Service Programatically

Managing Message Flow Through a Bridge

Operations

Example

The | T_Messagi ngBri dgeAdni n: : Bri dge interface defines three operations
to control the flow of messages through a bridge:

start() begins the flow of messages through the bridge. The bridge will
forward messages until another call stops or suspends the flow of messages.

Note: When a bridge is first created it must be explicitly started before
messages can flow through it.

suspend() stops the flow of messages through the bridge. The bridge will
continue to queue messages for forwarding when the bridge is restarted.

stop() stops the flow of messages through the bridge. The bridge will not
continue to accept any messages for forwarding until it is restarted.

These operations take no parameters.

The code in Example 86 gets a bridge named “sports_bridge” and starts the
flow of messages through it.

Example 86: Starting a bridge

/1 Java
try
{

com i ona. messagi ng. | T_Messagi ngBri dgeAdm n. Bri dge bri dge=

bri dge_adm n. get _bri dge("sports_bri dge");

}
cat ch(com i ona. nessagi ng. | T_Messagi ngBri dgeAdm n. Bri dgeNot Found)
{

/1 handl e the exception

}

bridge.start();

301

CHAPTER 17 | Managing the JMS-Notification Bridge Service

Destroying a Bridge

Operation

Example

302

You destroy a bridge by calling its dest roy() operation. The bridge’s
destroy() operation frees all resources used to maintain the bridge.

The code in Example 87 gets the bridge named “sports_bridge” and
destroys it.

Example 87: Destroying a bridge

/1 Java
try
{
com i ona. messagi ng. | T_Messagi ngBri dgeAdm n. Bri dge bri dge=
bri dge_adni n. get _bri dge("sports_bridge");
}

cat ch(com i ona. nessagi ng. | T_Messagi ngBr i dgeAdmi n. Bri dgeNot Found)

/1 handl e the exception

}

bri dge. destroy();

Glossary

administration
All aspects of installing, configuring, deploying, monitoring, and managing a
system.

client

An application (process) that typically runs on a desktop and requests services
from other applications that often run on different machines (known as server
processes). In CORBA, a client is a program that requests services from
CORBA objects.

configuration
A specific arrangement of system elements and settings.

configuration domain

Contains all the configuration information that Orbix ORBs, services and
applications use. Defines a set of common configuration settings that specify
available services and control ORB behavior. This information consists of
configuration variables and their values. Configuration domain data can be
implemented and maintained in a centralised Orbix configuration repository
or as a set of files distributed among domain hosts. Configuration domains
let you organise ORBs into manageable groups, thereby bringing scalability
and ease of use to the largest environments. See also configuration file and
configuration repository.

configuration file
A file that contains configuration information for Orbix components within a
specific configuration domain. See also configuration domain.

configuration repository

A centralised store of configuration information for all Orbix components
within a specific configuration domain. See also configuration domain.

303

GLOSSARY

304

configuration scope

Orbix configuration is divided into scopes. These are typically organized into
a root scope and a hierarchy of nested scopes, the fully-qualified names of
which map directly to ORB names. By organising configuration properties into
scopes, different settings can be provided for individual ORBs, or common
settings for groups of ORB. Orbix services have their own configuration scopes.

CORBA

Common Object Request Broker Architecture. An open standard that enables
objects to communicate with one another regardless of what programming
language they are written in, or what operating system they run on. The
CORBA specification is produced and maintained by the OMG. See also OMG.

CORBA objects

Self-contained software entities that consist of both data and the procedures
to manipulate that data. Can be implemented in any programming language
that CORBA supports, such as C++ and Java.

deployment
The process of distributing a configuration or system element into an
environment.

event

The occurrence of a condition or state change, or the availability of some
information that is of interest to one or more modules in a system. Suppliers
generate events and consumers subscribe to receive them.

event channel

Accepts incoming events from client suppliers and forwards
supplier-generated events to all connected consumers. From a supplier's
perspective, the event channel appears as a single consumer; from a
consumer's perspective, the event channel appears a a single supplier.

event service
See Orbix event service.

GLOSSARY

IDL

Interface Definition Language. The CORBA standard declarative language that
allows a programmer to define interfaces to CORBA objects. An IDL file defines
the public APl that CORBA objects expose in a server application. Clients use
these interfaces to access server objects across a network. IDL interfaces are
independent of operating systems and programming languages.

IIOP

Internet Inter-ORB Protocol. The CORBA standard messaging protocol,
defined by the OMG, for communications between ORBs and distributed
applications. 1IOP is defined as a protocol layer above the transport layer,
TCP/IP.

installation
The placement of software on a computer. Installation does not include
configuration unless a default configuration is supplied.

Interface Definition Language
See IDL.

invocation
A request issued on an already active software component.

IOR
Interoperable Object Reference. See object reference.

Java Messaging Service
An implementation of Sun’s Java Messaging Service Specification. Provides
a native mechanism for Java applications to participate in messaging systems.

JMS

See Java Messaging Service.

JMS-Notification Bridge
An implementation of the OMG'’s Notification/JMS Interworking specification.
Allows JMS and CORBA notification clients to share messages.

305

GLOSSARY

306

node daemon
Starts, monitors, and manages servers on a host machine. Every machine
that runs a server must run a node daemon.

notification service
See Orbix notification service.

object reference

Uniquely identifies a local or remote object instance. Can be stored in a
CORBA naming service, in a file or in a URL. The contact details that a client
application uses to communicate with a CORBA object. Also known as
interoperable object reference (IOR) or proxy.

OoOMG

Object Management Group. An open membership, not-for-profit consortium
that produces and maintains computer industry specifications for
interoperable enterprise applications, including CORBA. See www.omg.com.

ORB

Object Request Broker. Manages the interaction between clients and servers,
using the Internet Inter-ORB Protocol (1I0P). Enables clients to make requests
and receive replies from servers in a distributed computer environment. Key
component in CORBA.

Orbix event service

An implementation of the OMG Event Service Specification. Decouples
communication between objects. Defines two roles for objects: a supplier role
and a consumer role. Suppliers produce event data and send it to consumers
through an event channel.

Orbix notification service

An implementation of the OMG Notification Service Specification. Extends the
CORBA Event Service Specification to include qualities of service, subscription
mechanisms, filtering and structured messages.

http://www.omg.com
http://www.omg.com

GLOSSARY

Orbix OTS

An implementation of the OMG Transaction Service Specification. Provides
interfaces to manage the demarcation of transactions and the propagation of
transaction contexts.

Orbix telecom log service

An implementation of the OMG Telecom Log Specification. The telecom log
service encompasses and builds on the functionality of the event and the
notification services by providing a durable and searchable log.

POA

Portable Object Adapter. Maps object references to their concrete
implementations in a server. Creates and manages object references to all
objects used by an application, manages object state, and provides the
infrastructure to support persistent objects and the portability of object
implementations between different ORB products. Can be transient or
persistent.

protocol
Format for the layout of messages sent over a network.

server

A program that provides services to clients. CORBA servers act as containers
for CORBA objects, allowing clients to access those objects using IDL
interfaces.

TCP/IP

Transmission Control Protocol/Internet Protocol. The basic suite of protocols
used to connect hosts to the Internet, intranets, and extranets.

telecom log service
See Orbix telecom log service.

307

GLOSSARY

TLS

Transport Layer Security. An IETF open standard that is based on, and is the
successor to, SSL. Provides transport-layer security for secure
communications.

308

Index

A
ActiveQueues 271
ActiveTopics 271
add_constraints() 87, 207
add_filter() 207
add_mapping_constraints() 97
administered objects 236, 250
administration properties 58

accessor operations 58

obtaining 66

setting 62
administrative state 211

checking 211

locked 211

setting 211

unlocked 211
AdministrativeState data type 211
ALL_NOW_UPDATES OFF

consumer 122

supplier 113
ALL_NOW_UPDATES _ON

consumer 122

supplier 113
AlreadyConnected exception 140, 141
AttributeValueChange event 188, 191, 195, 213,

214,215, 216

AUTO_ACKNOWLEDGE 240, 246, 254, 259
AvailabilityStatus 218
availability status 218

checking 218

log full 218

off duty 218

on_duty 218, 219

B
BAD_QOS exception 65
BasicLog 160
BasicLogFactory 165
create() 166
create_with_id() 167, 169
Bridge::destroy() 302
Bridge::start() 300, 301
Bridge::suspend() 301

BridgeAdmin interface 297, 298
bridge endpoints 16

creating 298
bridges

destroying 302

starting 300, 301

suspending 301
BytesMessage 282

C
ChannelAlreadyExists exception 26
CLIENT_ACKNOWLEDGE 240, 246, 254, 259
close() 242, 248, 256, 261
compacting 215
configuration 224
flush_interval 225
initial reference 224
iterator_timeout 226
max_records 225
namespaces 224
plugins:basic_log 224
plugins:event_log 225
plugins:notification 225
plugins:notify_log 225
plugins:tlog 224
configuration scope 224
configuration variables
plugins:notification 150
plugins:notify 150
plugins:notify:database:checkpoint_interval 156
plugins:notify:database:checkpoint_old_files 156
plugins:notify:trace:events 155
scope 224
using itadmin 150
connect_group_any push_consumer 140
connect_group_sequence_push_consumer 141
connect_group_structured_push_consumer 140
ConnectionReliability 221
ConnectionReliability property 70
constraint
applying to all events 102
constraint language, see default filter constraint
language

309

INDEX

constraints

adding to a filter 207

constraint language 180

grammar 181, 207

using to find records 180
consumer

connecting to event channel 47

connecting to proxy supplier 50

disconnecting from event channel 56

implementing 44

instantiating 28

obtaining proxy supplier 49
consumer admin

creating 47

forwarding filters 92

obtaining default 47

obtaining non-default 47
CosEventChannelAdmin::ConsumerAdmin 191
CosNotification::UnsupportedAdmin exception 170
CosNotification::UnsupportedQoS exception 170
CosNotification module 35
CosNotifyChannelAdmin::ConsumerAdmin 191
CosNotifyChannelAdmin module 31
CosNotifyComm module 21
CosNotifyFilter::Filter 207
create() 166
create_bridge() 298, 299
create_channel() 23
createDestination() 237, 251
create_filter() 85, 207
create_named_channel() 24
createPublisher() 254
createQueue 236, 271
createQueueSession() 239, 245
createReciever() 246
createSender() 240
createSubscriber() 260
createTopic 250, 271
createTopicConnection() 253, 258
createTopicSession() 253, 258
create_with_id() 166
creating a bridge 299

D

DatalnProgress 271, 272
DataThroughput 270, 272
DaysOfWeek 187
default_consumer_admin() 47
default filter constraint language

310

grammar 103

shorthand notation 105

specifying 85

wildcard characters 103
default_filter_factory() 207
default_supplier_admin() 30
delete_records() 182
delete_records by id() 182
delivery mode

NON_PERSISTENT 241, 255

PERSISTENT 241, 255
DeliveryMode.NON_PERSISTENT 241, 255
DeliveryMode.PERSISTENT 241, 255
Destination 12
DestinationAdmin 237, 251
destinations 264
destroy() 184
direct persistence 152
DiscardPolicy property 76
disconnect operation

consumer 56, 147

supplier 43
disconnect_structured_push_supplier() 56, 147
domain_name 281
DsLogAdmin::UnsupportedQoS exception 216
DUPS_OK ACKNOWLEDGE 240, 246, 254, 259
DurableConsumersAllowed 272

E
EndpointAdmin 298
endpoint group 130
connecting to event channel 140
disconnecting from event channel 147
event subscription 146
filters 146
implementing 134
POA policies 137
recieving events 145
registering object reference 139
event
advertising 120
creating 35
delivery queue order 72
filter evaluation 90
name-value pair notation 104
obtaining 52
pull consumer 53
push consumer 52
publishing 119

sending 39
pull supplier 40
push supplier 39
sequence 35
structured 35
subscribing 110
type conversion 52
untyped 35
event channel
administration properties 81
connecting an endpoint group 140
connecting consumer 47
connecting supplier 30
creating 23
creating named 24
disconnecting an endpoint group 147
disconnecting consumer 56
disconnecting supplier 43
finding by id 24
finding by name 24
listing all by names 24
obtaining 22
obtaining administration properties 62
obtaining all 23
event channel factory
OMG operations 23
Orbix extensions 23
event communication 8
mixing push and pull models 9
pull model 8
push model 8
event data
AttributeValueChange 195
filtering 206
ObjectCreation 194
ObjectDeletion 194
ProcessingAlarmError 196
StateChange 196
ThresholdAlarm 195
unpacking
trial and error 196
type codes 198
EventLog 160
EventLogFactory 165
create() 168
create_with_id() 168
event_ name 281
EventReliability 221, 281, 285
EventReliability property 70

INDEX

events
subscription 200

event subscription 200

EventTypeSeq 86, 208

exceptions
AleadyConnected 140, 141
BAD_QOS 65
BridgeNameAlreadyExists 299
BridgeNotFound 300
ChannelAlreadyExists 26
CosNotification::UnsupportedAdmin 170
CosNotification::UnsupportedQoS 170
DsLogAdmin::UnsupportedQoS 216
InvalidAttribute 182
InvalidConstraint 97, 181, 182
InvalidGrammar 181, 182
InvalidLogFullAction 167
InvalidMask 188
InvalidParam 213
InvalidThreshold 168
InvalidTime 188
InvalidTimelnterval 188, 214
LogDisabled 172
LogFull 172
LogldAlreadyExists 167
Loglocked 172
LogOffDuty 172
NO_IMPLEMENT 118, 128
TRANSIENT 77
TypeError 140, 141
UnsupportedAdmin 62

EXTENDED_TCL grammar 181, 207

F
factory 265
filter
adding constraints 87
constraint expression data structures 101
constraint language, see default filter constraint
language
match operations 90, 98
and invalid operands 107
processing events with 90
See also forwarding filter, mapping filter
filterable data fields 105
FilterableEventBody 37
FilterAdmin interface 111
filtered data, referencing 104
filter factory 94

311

INDEX

obtaining 85 GroupSequencePushConsumer interface 131
Filter interface 111 GroupSequencePushSupplier interface 141
filters GroupStructuredPushConsumer interface 131

adding constraints 207
AND semantics 208
attaching to an object 207
creating 207
evaluation 208
implementing 207
log filtering 206
notification style 206
NotifyLog 206
obitaining a factory 207
OR semantices 208
find_bridge() 300
find_bridge() operation 298
find_channel() 24
find_channel_by id() 24
find_log() 166
flush() 217
flush_interval 225
forwarding filter 83
implementing 85
modifying 111
setting constraints 86
ForwardingState 199
full_action 167

G

garbage collection 215
get_admin() 58, 66
get_administrative_state() 211
get_all_channels() 23
get_all_consumeradmins() 47
get_all_supplieradmins() 30

get availability_status() 218

get bridge() 300
get_consumeradmin() 47
get_event _channel() 23
get_max_record_life() 215
get_max_size() 213
get_operational_state() 220
get_qos() 58, 66
get_supplieradmin() 30

getText() 248, 261

get week_mask() 189
GroupNotifyPublish interface 131
GroupProxyPushSupplier interface 140
GroupPushConsumer interface 131

312

initial_reference:IT_JMSMessageBroker:reference 2

64

initial_reference:IT_JMSServer:reference 264

initial references
BasicLoggingService 165
EventLoggingService 165
IT_JMSEndpointAdmin 293, 298
IT_MessagingBridge 297

IT_NotificationEndpointAdmin 293, 298

NotificationService 22
NotifyLoggingService 165
InstrumentationEnabled 270
InstrumentationStartTime 270
interface
BridgeAdmin 298
FilterAdmin 88
FilterFactory 85, 94
GroupNotifyPublish 131
GroupProxyPushSupplier 140
GroupPushConsumer 131
GroupSequenceProxyPushSupplier 141
GroupSequencePushConsumer 131

GroupStructuredProxyPushSupplier 140

GroupStructuredPushConsume 131

IT_MessagingBridgeAdmin::Bridge 301
InvalidAttribute exception 182
InvalidConstraint exception 97, 181, 182
InvalidGrammar exception 181, 182
InvalidLogFullAction exception 167
InvalidMask exception 188
InvalidParam exception 213
InvalidThreshold exception 168
InvalidTime exception 188
InvalidTimelnterval exception 188, 214
iona_services.basic_log 224
iona_services.event_log 224
iona_services.notify_log 224
itadmin 150
iterator_timeout 226

IT_MessagingBridge::BridgeNameAlreadyExists

exception 299
IT_MessagingBridge::JMS_QUEUE 298
IT_MessagingBridge::JMS_TOPIC 298

IT_MessagingBridge:: NOTI_FY_CHAN NEL 298

IT_MessagingBridgeAdmin::Bridge interface 301

IT_MessagingBridgeAdmin::BridgeNotFound
exception 300

IT_MessagingBridgeAdmin::Endpointinfo data
structure 298

IT_MessagingBridgeAdmin module 297

IT_NotifyChannelAdmin module 140

IT_NotifyComm module 131

J
Java Naming Directory Interface 265
JMS
Administrator Console 270
embedded 268, 269
JMS broker
MBeans 270
JMSDeliveryMode 281, 285
JMSExpiration 281, 286
JMS lookup 265
JMSPriority 281, 286
JNDI 236, 250, 265

L
lifetime_filter() 97
lifetime properties 74
list_channels() 24
log buffer
flushing 217
LogDisabled exception 172
log duration 214
setting 214
log events
AttributeValueChange 188, 191, 195,213, 214,
215,216
filtering 206
ObjectCreation 168, 170, 190, 194
ObjectDeletion 190, 194
ProcessingAlarmError 191, 196
StateChange 191, 196, 211, 220
ThresholdAlarm 168, 190, 195
unpacking
trial and error 196
type codes 198
log factories 165
log filters 206
LogFullActionType 167
LogFull exception 172
LogldAlreadyExists exception 167

INDEX

Loglocked exception 172
LogOffDuty exception 172
log QoS 216

setting 216
log scheduling 7, 187

M
MapMessage 282
mapping filter 83, 93
adding constraints 97
default value 94
implementing 94
overriding Priority property 97
overriding Timeout property 97
processing events 98
setting constraints 95
traversing multiple 99
match() 90
match_structured() 90
MaxConsumers 272
MaxConsumers property 81
MaxEventsPerConsumer property 76
MaximumBatchSize property 78
maximum log size 213
MaxMessageSize 272
MaxProxyConsumerRetries property 40, 80
MaxQueuelength property 81
max_records 225
MaxSuppliers property 81
MaxUnconsumedData 272
MaxUnconsumedMessages 272
MessageConsumer 12
MessagelnProgress 271, 272
Messagelistener 247, 260
MessageProducer 12
MessageSelector 14
MessageThroughput 270, 271
MIOP 130
module
IT_MessagingBridgeAdmin 297
IT_NotifyChannelAdmin 140
IT_NotifyComm 131
Mulitcast consumer
connecting to an event channel 140
Multicast consumer
registering for object reference 139
Multicast consumers 129
disconnecting from event channel 147
event subscription 146

313

INDEX

filters 146
instantiating 135
POA policies 137
recieving events 145

N

namespaces
plugins:basic_log 224
plugins:event_log 225
plugins:jms 264
plugins:notification 150, 225
plugins:notify 150
plugins:notify:database 156
plugins:notify:trace 155
plugins:notify_log 225
plugins:tlog 224
plugins:tlog:database 224
new_for_consumers() 47
new_for_suppliers() 30
NO_IMPLEMENT exception 118, 128
NON_PERSISTENT 249
notification console 69
notification service properties 57
descriptions 70
inheritance 60
See also quality-of-service properties,
administration properties
setting 61
NotifyLog 160
filtering events 206
QoS 221
Quality of Service 221
NotifyLogFactory 165
create() 169, 170
create_with_id() 169, 170
NotifySubscribe interface 116

0

ObjectCreation event 168, 170, 190, 194

ObjectDeletion event 190, 194
ObjectMessage 283
obtain_notification_pull_consumer() 32
obtain_notification_pull_supplier() 49

obtain_notification_push_consumer() 32

obtain_notification_push_supplier() 49
obtain_offered types() 122
obtain_offered types() 119
obtain_subscription_types()

314

proxy consumer 113

proxy supplier 110
offer_change() 119, 122

adding new event 121

arguments 120

calling from supplier 120

implementing 126

removing event 121
OperationalState 220
operational state

checking 220
OperationTimeoutInterval property 77
OrderPolicy property 72

P

PacinglInterval property 78
persistence:jdbc 264
persistence:jdbc:driver 273, 274
persistence:jdbc:password 273, 274
persistence:jdbc:url 273, 274
persistence:jdbc:user 273, 274
persistence:message_store 273, 274
PERSISTENT 249
point to point messaging 13, 235
Priority 281, 286
priority_filter() 97
Priority property 73
ProcessingErrorAlarm event 191, 196
properties

Managing with the notification console 69

See administration properties, notification service

properties, quality-of-service properties

proxy consumer

connecting supplier 32

creating 31

interfaces 31
proxy pull consumer

quality-of-service properties 80
proxy push supplier

quality-of-service properties 79
proxy supplier 33

connecting consumer 50

creating 48

interfaces 48

pull operations 53
publication list 109, 121

adding new event 121

modifying 120

notifying consumer of changes 122

removing event 121
publish() 255
publish and subscribe messaging 14, 249
pull() 40, 53, 192
pull consumer

obtaining messages 52, 53

obtaining proxy supplier 49
Pullinterval property 80
pull model 9
pull_structured_event() 40, 54
pull_structured_events() 40, 54
pull supplier

obtaining proxy consumer 32
push() 39, 52,192
push and pull model mixed 8
push consumer

obtaining messages 52

obtaining proxy supplier 49
push model 8
push_structured_event() 39, 52
push_structured_events() 39, 52
push supplier

obtaining proxy consumer 32

Q
QoS
ConnectionReliability 221
EventReliability 221
log properties 216
notification service level 221
NotifyLog 221
setting 221
setting on log 216
QoSFlush 161, 216, 217
QoSNone 161, 216
flush_interval 225
QoSProperties 216
QoSReliability 161, 216
Quality of Service 161
ConnectionReliability 221
EventReliability 221
log properties 216
notification service level 221
NotifyLog 221
setting 221
setting on log 216
quality-of-service properties 58
accessor operations 58
list of 58

INDEX

obtaining 66
setting 62
setting on structured event 65
setting on supplier admin 31
query() 180
Queue 13, 235
QueueConnection 238, 239, 242, 243, 244, 248
QueueConnection.close() 242, 248, 256, 261
QueueRecciever 243
QueueReciever 13
QueueReviever 246
QueueSender 13, 238, 240
QueueSession 238, 239, 243, 245

R
recieve() 247, 260
record compacting 215
record lifetime 215

getting 215

infinite 215

setting 215
remainder_of body 37
removeQueue 271
removeTopic 271
retrieve() 180

S

send() 241

sequence of structured event messages 35
maximum batch size 78
pacing interval 78

Serializable 283

Session 239, 244, 253, 258
AUTO_ACKNOWLEDGE 240, 246, 254, 259
CLIENT_ACKNOWLEDGE 240, 246, 254, 259
DUPS_OK ACKNOWLEDGE 240, 246, 254,

259

set_admin() 58, 62

set_administrative_state() 211

setDeliveryMode() 241, 255

set_fliter() 207

set_interval() 214

set_log qos() 216

set_max_size() 213

set_gos() 58, 62, 221

set_record_life() 215

set_week_mask() 188

shoutdownBroker 271

315

INDEX

start() 244, 258, 260
StartTime property 75
StartTimeSupported property 75
StateChange event 191, 196, 211, 220
stop() 244, 258
StopTime property 74
StopTimeSupported property 74
StreamMessage 282
structured event 35

components 36

constructing message 37

FilterableEventBody 37

fixed header fields 36

header 36

identifying data components 104

optional header fields 37

remainder_of body 37

setting properties on 37, 65
StructuredPushSupplier 17
subscription_change() 111

implementing 110, 116

obtaining subscriptions 113
subscription list 109, 111

adding event type 111

notifying supplier of changes 113
subscriptions, obtaining 113
supplier

connecting to proxy consumer 33

disconnecting from event channel 43

implementing 27
supplier admin

creating 30

forwarding filters 91

obtaining 30

obtaining default 30

obtaining non-default 30

setting quality-of-service properties 31
supplier proxy

forwarding filters 92
syncronous messaging 247, 260
system exceptions

See exceptions

T
TextMessage 248, 261, 282
thread_pool 264

ThresholdAlarm event 168, 190, 195
Timelnterval 214

Timeout 281, 286

316

Timeout property 74
Topic 14, 249

TopicConnection 252, 253, 256, 257, 258, 261

TopicPublisher 14, 249, 252, 254
TopicSession 252, 253, 257, 258
TopicSubscriber 14, 17, 249, 257, 260
TRANSIENT exception 77

try_pull() 40, 53, 192
try_pull_structured_event() 40, 41, 54
try_pull_structured_events() 40, 54
TypeError exception 140, 141
type_name 281

U
UnsupportedAdmin exception 62
UnsupportedQoS exception 63
error codes 63
untyped event message 35
untyped events
filtering 90
URL 271

Vv

validate_event_gos() 65

w

WeekMask 187
WeekMaskltem 187
write_recordlist() 174
write_records() 172

INDEX

317

INDEX

318

	List of Tables
	List of Figures
	Preface
	Part I—Messaging Service Technologies
	CORBA Messaging Technologies
	Event Service
	Notification Service
	Telecom Log Service
	Event Communication

	The Java Messaging Service
	Java Messaging Service Overview
	Point to Point Messaging
	Publish / Subscribe Messaging

	The JMS-Notification Bridge Service

	Part II—The Notification Service
	Developing Suppliers and Consumers
	Obtaining an Event Channel
	Implementing a Supplier
	Instantiating the Supplier
	Connecting to a Channel
	Creating Event Messages
	Sending Event Messages
	Disconnecting From the Event Channel

	Implementing a Consumer
	Instantiating a Consumer
	Connecting to the Channel
	Obtaining Event Messages
	Disconnecting From the Event Channel

	Notification Service Properties
	Property Types
	Property Inheritance
	Setting Properties
	Setting Properties Programmatically
	Setting a Structured Event’s QoS Properties

	Getting Properties
	Validating Properties
	Property Descriptions
	Reliability Properties
	Event Queue Order
	Event Priority
	Lifetime Properties
	Start Time Properties
	Undelivered Event Properties
	RequestTimeout
	Sequenced Events Properties
	Proxy Push Supplier Properties
	Proxy Pull Consumer Properties
	Channel Administration Properties

	Event Filtering
	Forwarding Filters
	Implementing a Forwarding Filter
	Processing Events with Forwarding Filters

	Mapping Filters
	Implementing a Mapping Filter Object
	Processing Events with Mapping Filters

	Filter Constraint Language
	Constraint Expression Data Structure
	Event Type Filtering
	Referencing Filtered Data
	Operand Handling
	Examples of Notification Service Constraints

	Subscribing and Publishing
	Event Subscription
	Adding Forwarding Filters
	Obtaining Subscriptions
	Implementing subscription_change()

	Publishing Event Types
	Advertising Event Types
	Discovering Available Event Types
	Implementing offer_change()

	Multicast Consumers
	MIOP
	IDL Interfaces
	Configuring Orbix for Multicast
	Implementing an Endpoint Group
	Instantiating an IP/Multicast Consumer
	Creating a POA for an Endpoint Group
	Registering an Endpoint Group Object Reference

	Connecting to an Event Channel
	Receiving Events
	Filtering and Event Subscription
	Disconnecting from an Event Channel

	Managing the Notification Service
	Configuring the Notification Service
	Running the Notification Service
	Using Direct Persistence
	Managing a Deployed Notification Service
	Example 1: Generating Trace Information
	Example 2: Failure Recovery

	Part III—The Telecom Log Service
	Telecom Log Service Basics
	Telecom Log Service Objects
	Telecom Log Service Features

	Developing Telecom Log Clients
	Creating a Log
	Obtain a log factory
	Obtain a log object

	Logging Events
	Logging with a BasicLog
	Logging Events with an EventLog
	Logging Events with a NotifyLog

	Getting Log Records
	Deleting Records from the Log
	Ending a Logging Session

	Advanced Features
	Scheduling
	Log Generated Events
	Event Forwarding
	Filtering
	Log Management
	Administrative State
	Maximum Log Size
	Log Duration
	Record Lifetime
	Log QoS Properties
	Availability Status
	Operational State

	Qualities of Service

	Managing the Telecom Log Service
	Configuring the Telecom Log Service
	Running the Telecom Log Service
	Managing a Deployed Telecom Log Service

	Part IV—The Java Messaging Service
	Developing a JMS Application
	Using Point to Point Messaging
	Creating a Queue
	Implementing a Point to Point Message Producer
	Implementing a Point to Point Message Consumer

	Using Publish / Subscribe Messaging
	Creating a Topic
	Implementing a Message Publisher
	Implementing a Subscriber

	Managing JMS
	JMS Configuration
	Running JMS
	Starting the JMS Broker
	Shutting Down the JMS Broker

	Managing JMS with the Management Service
	Selecting a Persistent Store Implementation
	Running JMS Clients

	Part V—The JMS-Notification Bridge Service
	JMS-Notification Message Translation
	JMS Message to Notification Event
	Notification Event to JMS Message

	Managing the JMS-Notification Bridge Service
	Configuring the Bridge Service
	Running the Bridge Service
	Managing the Bridge Service with itadmin
	Managing the Bridge Service Programatically
	Getting a BridgeAdmin
	Getting a Bridge
	Managing Message Flow Through a Bridge
	Destroying a Bridge

	Glossary
	Index

