
ORBIX
®

PROGRESS
®

Administrator’s Guide
Version 6.3.5, July 2011

© 2011 Progress Software Corporation and/or its subsidiaries or affiliates. All rights
reserved.
These materials and all Progress® software products are copyrighted and all rights are
reserved by Progress Soft ware Corporation. The information in these materials is subject
to change without notice, and Progress Software Corporation assumes no responsibility for
any errors that may appear therein. The references in these materials to specific platforms
supported are subject to change.

Actional, Apama, Artix, Business Empowerment, Business Making Progress, DataDirect
(and design), DataDi rect Connect, DataDirect Connect64, DataDirect Technologies,
DataDirect XML Converters, DataDirect XQuery, DataXtend, Dynamic Routing
Architecture, EdgeXtend, Empowerment Center, Fathom, Fuse Media tion Router, Fuse
Message Broker, Fuse Services Framework, IntelliStream, IONA, Making Software Work
Together, Mindreef, ObjectStore, OpenEdge, Orbix, PeerDirect, POSSENET, Powered by
Progress, Pow erTier, Progress, Progress DataXtend, Progress Dynamics, Progress Business
Empowerment, Progress Empowerment Center, Progress Empowerment Program, Progress
OpenEdge, Progress Profiles, Progress Results, Progress Software Business Making
Progress, Progress Software Developers Network, Progress Sonic, ProVision, PS Select,
Savvion, SequeLink, Shadow, SOAPscope, SOAPStation, Sonic, Sonic ESB, SonicMQ,
Sonic Orchestration Server, SpeedScript, Stylus Studio, Technical Empowerment,
WebSpeed, Xcalia (and design), and Your Software, Our Technology-Experience the
Connection are registered trademarks of Progress Software Corporation or one of its
affiliates or subsidiaries in the U.S. and/or other countries. AccelEvent, Apama Dashboard
Studio, Apama Event Manager, Apama Event Modeler, Apama Event Store, Apama Risk
Firewall, AppsAlive, AppServer, ASPen, ASP-in-a-Box, BusinessEdge, Cache-Forward,
CloudEdge, DataDirect Spy, DataDirect SupportLink, Fuse, FuseSource, Future Proof,
GVAC, High Performance Integration, Object Store Inspector, ObjectStore Performance
Expert, OpenAccess, Orbacus, Pantero, POSSE, ProDataSet, Progress Arcade, Progress
CloudEdge, Progress Control Tower, Progress ESP Event Manager, Progress ESP Event
Modeler, Progress Event Engine, Progress RFID, Progress RPM, PSE Pro, SectorAlliance,
SeeThinkAct, Shadow z/Services, Shadow z/Direct, Shadow z/Events, Shadow z/
Presentation, Shadow Studio, SmartBrowser, SmartComponent, SmartDataBrowser,
SmartDataObjects, SmartDataView, SmartDialog, SmartFolder, Smart Frame,
SmartObjects, SmartPanel, SmartQuery, SmartViewer, SmartWindow, Sonic Business
Integration Suite, Sonic Process Manager, Sonic Collaboration Server, Sonic Continuous
Availability Architecture, Sonic Database Service, Sonic Workbench, Sonic XML Server,
The Brains Behind BAM, WebClient, and Who Makes Progress are trademarks or service
marks of Progress Software Corporation and/or its subsidiaries or affiliates in the U.S. and
other countries. Java is a registered trademark of Oracle and/or its affiliates. Any other
marks con tained herein may be trademarks of their respective owners.

Third Party Acknowledgements:

Progress Orbix v6.3.5 incorporates Jakarata-struts 1.0.2 from the Apache Software
Foundation (http://www.apache.org). Such Apache Technology is subject to the following
terms and conditions: The Apache Soft ware License, Version 1.1 Copyright (c) 1999-2001
The Apache Software Foundation. All rights reserved. Redistribution and use in source

and binary forms, with or without modification, are permitted provided that the following conditions are
met: 1. Redistributions of source code must retain the above copyright notice, this list of conditions and the
following disclaimer. 2. Redistributions in binary form must reproduce the above copy right notice, this list
of conditions and the following disclaimer in the documentation and/or other materials provided with the
distribution. 3. The end-user documentation included with the redistribution, if any, must include the
following acknowledgment: "This product includes software developed by the Apache Software
Foundation (http://www.apache.org/)." Alternately, this acknowledgment may appear in the software itself,
if and wherever such third-party acknowledgments normally appear. 4. The names "The Jakarta Project",
"Struts", and "Apache Software Foundation" must not be used to endorse or promote products derived from
this software without prior written permission. For written permission, please contact apache@apache.org.
5. Products derived from this software may not be called "Apache", nor may "Apache" appear in their name,
without prior written permission of the Apache Software Foundation. THIS SOFTWARE IS PROVIDED
``AS IS'' AND ANY EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
TO, THE IMPLIED WARRANTIES OF MER CHANTABILITY AND FITNESS FOR A PARTICULAR
PURPOSE ARE DIS CLAIMED. IN NO EVENT SHALL THE APACHE SOFTWARE FOUNDATION
OR ITS CONTRIBU TORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
EXEMPLARY, OR CONSEQUEN TIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
PROCUREMENT OF SUB STITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
WHETHER IN CONTRACT, STRICT LIA BILITY, OR TORT (INCLUDING NEGLIGENCE OR
OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
OF THE POSSIBILITY OF SUCH DAMAGE. This software consists of voluntary contributions made by
many individuals on behalf of the Apache Soft ware Foun dation. For more information on the Apache
Software Foundation, please see <http://www.apache.org/>.

Progress Orbix v6.3.5 incorporates Jakarta-bcel 5.0 from the Apache Software Foundation (http://
www.apache.org). Such Apache Technology is subject to the following terms and conditions: The Apache
Software License, Version 1.1 Copy right (c) 2001 The Apache Software Foundation. All rights reserved.
Redistribution and use in source and binary forms, with or without modification, are permitted provided that
the following conditions are met: 1. Redistributions of source code must retain the above copyright notice,
this list of conditions and the following disclaimer. 2. Redistributions in binary form must reproduce the
above copyright notice, this list of conditions and the following disclaimer in the docu mentation and/or
other materials provided with the distribution. 3. The end-user documentation included with the
redistribution, if any, must include the following acknowledgment: "This product includes software
developed by the Apache Software Foundation (http://www.apache.org/)." Alternately, this
acknowledgment may appear in the software itself, if and wherever such third-party acknowledgments
normally appear. 4. The names "Apache" and "Apache Software Foundation" and "Apache BCEL" must
not be used to endorse or promote products derived from this software with out prior written permission.
For written permission, please contact apache@apache.org. 5. Products derived from this software may not
be called "Apache", "Apache BCEL", nor may "Apache" appear in their name, without prior written
permission of the Apache Software Foundation. THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY
EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
DISCLAIMED. IN NO EVENT SHALL THE APACHE SOFTWARE FOUNDATION OR ITS
CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
iii

Administrator’s Guide
PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
BUSI NESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
OF THE POSSIBILITY OF SUCH DAMAGE. This software consists of voluntary contributions made by
many individuals on behalf of the Apache Software Founda tion. For more information on the Apache
Software Foundation, please see <http://www.apache.org/>.

Progress Orbix v6.3.5 incorporates Jakarat-regexp 1.2 from the Apache Software Foundation (http://
www.apache.org). Such Apache Technology is subject to the following terms and conditions: The Apache
Software License, Version 1.1 Copyright (c) 1999 The Apache Software Foundation. All rights reserved.
Redistribution and use in source and binary forms, with or without modification, are permitted provided that
the following conditions are met: 1. Redistributions of source code must retain the above copyright notice,
this list of conditions and the following disclaimer. 2. Redistributions in binary form must reproduce the
above copyright notice, this list of conditions and the following disclaimer in the documentation and/or
other materials provided with the distribution. 3. The end-user documentation included with the
redistri bution, if any, must include the following acknowledgment: "This product includes software
developed by the Apache Software Foundation (http://www.apache.org/)." Alternately, this
acknowledgment may appear in the software itself, if and wherever such third-party acknowledgments
normally appear. 4. The names "The Jakarta Project", "Jakarta -Regexp", and "Apache Software
Foundation" and "Apache BCEL" must not be used to endorse or promote products derived from this
software without prior written permission. For written permission, please contact apache@apache.org. 5.
Products derived from this software may not be called "Apache", nor may "Apache" appear in their name,
without prior written permission of the Apache Software Foundation. THIS SOFTWARE IS PROVIDED
``AS IS'' AND ANY EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE APACHE SOFTWARE FOUNDATION
OR ITS CONTRIBUTORS BE LIA BLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
OF THE POSSIBILITY OF SUCH DAMAGE. This software consists of voluntary contributions made by
many individuals on behalf of the Apache Software Foundation. For more information on the Apache
Software Foundation, please see <http://www.apache.org/>.

Progress Orbix v6.3.5 incorporates the Jakarta-log4j 1.2.6 from the Apache Software Foundation (http://
www.apache.org). Such Apache Technology is subject to the following terms and conditions: The Apache
Software License, Version 1.1 Copyright (c) 1999 The Apache Software Foundation. All rights reserved.
Redistribution and use in source and binary forms, with or without modification, are permitted provided that
the following conditions are met: 1. Redistributions of source code must retain the above copyright notice,
this list of conditions and the following disclaimer. 2. Redistributions in binary form must reproduce the
above copyright notice, this list of conditions and the following dis claimer in the documentation and/or
other materials provided with the distribution. 3. The end-user documentation included with the
redistribution, if any, must include the following acknowledgment: "This product includes software
 iv

developed by the Apache Software Foundation (http://www.apache.org/)." Alternately, this
acknowledgment may appear in the software itself, if and wherever such third-party acknowledgments
normally appear. 4. The names "log4j" and "Apache Software Foundation" and "Apache BCEL" must not
be used to endorse or promote products derived from this software without prior written permission. For
written permission, please contact apache@apache.org. 5. Products derived from this software may not be
called "Apache", nor may "Apache" appear in their name, without prior written per mission of the Apache
Software Foundation. THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESSED OR
IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
EVENT SHALL THE APACHE SOFTWARE FOUNDATION OR ITS CONTRIBUTORS BE LIABLE
FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
CAUSED AND ON ANY THEORY OF LIABIL ITY, WHETHER IN CONTRACT, STRICT LIABILITY,
OR TORT (INCLUD ING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. This
software consists of voluntary contributions made by many individuals on behalf of the Apache Software
Foundation. For more information on the Apache Software Foun dation, please see <http://
www.apache.org/>.

Progress Orbix v6.3.5 incorporates Ant 1.5 from the Apache Software Foundation (http://www.apache.org).
Such technology is subject to the following terms and conditions: The Apache Software License, Version
1.1 Copyright (c) 2000-2002 The Apache Software Foundation. All rights reserved. Redistribution and use
in source and binary forms, with or without modification, are permitted provided that the following
conditions are met: 1. Redistributions of source code must retain the above copyright notice, this list of
conditions and the fol lowing disclaimer. 2. Redistributions in binary form must reproduce the above
copyright notice, this list of conditions and the following disclaimer in the documentation and/or other
materials provided with the distribution. 3. The end-user documentation included with the redistribution, if
any, must include the following acknowledgment: "This product includes software developed by the
Apache Software Foundation (http://www.apache.org/)." Alternately, this acknowledgment may appear in
the software itself, if and wherever such third-party acknowledgments normally appear. 4. The names "Ant"
and "Apache Software Foundation" and "Apache BCEL" must not be used to endorse or promote products
derived from this software without prior writ ten permission. For written permission, please contact
apache@apache.org. 5. Products derived from this software may not be called "Apache", nor may
"Apache" appear in their name, without prior written permission of the Apache Software Foundation. THIS
SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESSED OR IMPLIED WARRANTIES,
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER CHANTABILITY
AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
APACHE SOFTWARE FOUNDATION OR ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT,
INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
(INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. This software consists
v

Administrator’s Guide
of voluntary contri butions made by many individuals on behalf of the Apache Software Foundation. For
more information on the Apache Software Foundation, please see <http://www.apache.org/>.

Progress Orbix v6.3.5 incorporates Xalan-j 2.3.1 from the Apache Software Foundation (http://
www.apache.org). Such Apache Technology is subject to the following terms and conditions: The Apache
Soft ware License, Version 1.1. Copyright (c) 1999 The Apache Software Foundation. All rights reserved.
Redistribution and use in source and binary forms, with or without modification, are permitted provided that
the following conditions are met: 1. Redistributions of source code must retain the above copyright notice,
this list of conditions and the following disclaimer. 2. Redistributions in binary form must reproduce the
above copyright notice, this list of conditions and the following disclaimer in the documentation and/or
other materials provided with the distribution. 3. The end-user documentation included with the
redistribution, if any, must include the following acknowledgment: "This product includes software
developed by the Apache Software Foundation (http://www.apache.org/)." Alternately, this
acknowledgment may appear in the software itself, if and wherever such third-party acknowledgments
normally appear. 4. The names "Xalan" and "Apache Software Foundation" and "Apache BCEL" must not
be used to endorse or promote products derived from this software without prior written permission. For
written permission, please contact apache@apache.org. 5. Products derived from this software may not be
called "Apache", nor may "Apache" appear in their name, without prior written permission of the Apache
Software Foundation. THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESSED OR
IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MER CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
EVENT SHALL THE APACHE SOFTWARE FOUNDATION OR ITS CONTRIBUTORS BE LIABLE
FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. This
software consists of voluntary contri butions made by many individuals on behalf of the Apache Software
Foundation. For more information on the Apache Software Foundation, please see <http://www.apache.org/
>.

Progress Orbix v6.3.5 incorporates the Xerces-c++ 2.4 from the Apache Software Foundation (http://
www.apache.org). Such Apache Technology is subject to the following terms and conditions: The Apache
Software License, Version 1.1. Copyright (c) 1999-2001 The Apache Software Foundation. All rights
reserved. Redistribution and use in source and binary forms, with or without modification, are permitted
provided that the following conditions are met: 1. Redistributions of source code must retain the above
copyright notice, this list of conditions and the following disclaimer. 2. Redis tributions in binary form must
reproduce the above copyright notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution. 3. The end-user documentation
included with the redistribution, if any, must include the following acknowledgment: "This product
includes software developed by the Apache Software Foundation (http://www.apache.org/)." Alternately,
this acknowledgment may appear in the software itself, if and wherever such third-party acknowledgments
normally appear. 4. The names "Xerces" and "Apache Software Foundation" and "Apache BCEL" must not
be used to endorse or promote products derived from this software without prior written permission. For
written permission, please contact apache@apache.org. 5. Products derived from this software may not be
 vi

called "Apache", nor may "Apache" appear in their name, without prior written permission of the Apache
Software Foundation. THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESSED OR
IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANT ABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
EVENT SHALL THE APACHE SOFTWARE FOUNDATION OR ITS CONTRIBUTORS BE LIABLE
FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. This
software consists of voluntary contributions made by many individuals on behalf of the Apache Software
Founda tion. For more information on the Apache Software Foundation, please see <http://
www.apache.org/>.

Progress Orbix v6.3.5 incorporates xerces-j 2.5 from the Apache Software Foundation (http://
www.apache.org). Such Apache Technology is subject to the following terms and conditions: The Apache
Software License, Version 1.1. Copy right (c) 1999-2002 The Apache Software Foundation. All rights
reserved. Redistribution and use in source and binary forms, with or without modification, are permitted
provided that the following conditions are met: 1. Redistributions of source code must retain the above
copyright notice, this list of conditions and the following disclaimer. 2. Redistributions in binary form must
reproduce the above copyright notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution. 3. The end-user documentation
included with the redistribution, if any, must include the following acknowledgment: "This product
includes software developed by the Apache Software Foundation (http://www.apache.org/)." Alternately,
this acknowledgment may appear in the software itself, if and wherever such third-party acknowledgments
normally appear. 4. The names "Xerces" and "Apache Software Foundation" must not be used to endorse or
promote products derived from this software without prior written permission. For written permission,
please contact apache@apache.org. 5. Products derived from this software may not be called "Apache", nor
may "Apache" appear in their name, without prior written permission of the Apache Software Foundation.
THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESSED OR IMPLIED WARRANTIES,
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND
FITNESS FOR A PARTIC ULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
APACHE SOFTWARE FOUNDATION OR ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT,
INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
(INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. This software consists
of voluntary contributions made by many individuals on behalf of the Apache Software Foundation. For
more information on the Apache Software Foundation, please see <http://www.apache.org/>.

Progress Orbix v6.3.5 incorporates the Tomcat 4.0.4 from the Apache Software Foundation (http://
www.apache.org). Such Apache Technology is subject to the following terms and conditions: The Apache
Software License, Version 1.1. Copyright (c) 1999, 2000 The Apache Software Foundation. All rights
vii

Administrator’s Guide
reserved. Redistribution and use in source and binary forms, with or without modification, are permitted
provided that the following conditions are met: 1. Redistributions of source code must retain the above
copyright notice, this list of conditions and the following disclaimer. 2. Redis tributions in binary form must
reproduce the above copyright notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution. 3. The end-user documentation
included with the redistribution, if any, must include the following acknowledgment: "This product
includes software developed by the Apache Software Foundation (http://www.apache.org/)." Alternately,
this acknowledgment may appear in the software itself, if and wherever such third-party acknowledgments
normally appear. 4. The names "The Jakarta Project", "Tomcat" and "Apache Software Foundation" must
not be used to endorse or promote products derived from this software without prior written permission. For
written permission, please contact apache@apache.org. 5. Products derived from this software may not be
called "Apache", nor may "Apache" appear in their name, without prior written permission of the Apache
Software Foundation. THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESSED OR
IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANT ABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
EVENT SHALL THE APACHE SOFTWARE FOUNDATION OR ITS CONTRIBUTORS BE LIABLE
FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. This
software consists of voluntary contributions made by many individuals on behalf of the Apache Software
Foundation. For more information on the Apache Software Foun dation, please see <http://
www.apache.org/>.

Progress Orbix v6.3.5 incorporates MCPP 2.6.4 from the MCPP Project. Such technology is subject to the
following terms and conditions: Copyright (c) 1998, 2002-2007 Kiyoshi Matsui kmatsui@t3.rim.or.jp All
rights reserved. This software including the files in this directory is provided under the following license.
Redistribu tion and use in source and binary forms, with or without modification, are permitted provided
that the following conditions are met: 1. Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer. 2. Redistributions in binary form must reproduce
the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or
other materials provided with the distribution. THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS
IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT,
INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
(INCLUDING, BUT NOT LIMITED TO, PROCURE MENT OF SUBSTITUTE GOODS OR SERVICES;
LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
ON ANY THEORY OF LIABILITY, WHETHER IN CON TRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

Progress Orbix v6.3.5 incorporates Xalan c++ v1.7 from The Apache Software Foundation. Such
technology is subject to the following terms and conditions: The Apache Software License, Version 1.1
 viii

Copyright (c) 1999-2004 The Apache Software Foundation. All rights reserved. Redistribution and use in
source and binary forms, with or without modification, are permitted provided that the following conditions
are met: 1. Redistributions of source code must retain the above copyright notice, this list of conditions and
the following disclaimer. 2. Redis tributions in binary form must reproduce the above copyright notice, this
list of conditions and the follow ing disclaimer in the documentation and/or other materials provided with
the distribution. 3. The end-user documentation included with the redistribution, if any, must include the
following acknowledgment: "This product includes software developed by the Apache Software Foundation
(http://www.apache.org/)." Alternately, this acknowledgment may appear in the software itself, if and
wherever such third-party acknowledgments normally appear. 4. The names "Xalan" and "Apache Software
Foundation" must not be used to endorse or promote prod ucts derived from this software without prior
written permission. For written permission, please contact apache@apache.org. 5. Products derived from
this software may not be called "Apache", nor may "Apache" appear in their name, without prior written
permission of the Apache Software Foundation. THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY
EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICU LAR PURPOSE ARE
DISCLAIMED. IN NO EVENT SHALL THE APACHE SOFTWARE FOUNDATION OR ITS
CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
OF THE POSSIBILITY OF SUCH DAMAGE.
==
This software consists of voluntary contributions made by many individuals on behalf of the Apache
Software Foundation and was originally based on software copyright (c) 1999, Lotus Development
Corporation., http://www.lotus.com. For more information on the Apache Software Foundation, please see
<http://www.apache.org/>.

Progress Orbix v6.3.5 incorporates Tcl 8.4.15 from Regents of the University of California, Sun
Microsystems, Inc., Scriptics Corporation, and other parties. Such technology is subject to the following
terms and conditions: This software is copyrighted by the Regents of the University of California, Sun
Microsystems, Inc., Scriptics Corporation, and other parties. The following terms apply to all files
associated with the software unless explicitly disclaimed in individual files. The authors hereby grant
permission to use, copy, modify, distribute, and license this software and its documentation for any purpose,
provided that existing copyright notices are retained in all copies and that this notice is included verbatim in
any distributions. No written agreement, license, or royalty fee is required for any of the authorized uses.
Modifications to this software may be copyrighted by their authors and need not follow the licensing terms
described here, provided that the new terms are clearly indicated on the first page of each file where they
apply. IN NO EVENT SHALL THE AUTHORS OR DISTRIBUTORS BE LIABLE TO ANY PARTY
FOR DIRECT, INDIRECT, SPECIAL, INCIDENTAL, OR CONSEQUENTIAL DAMAGES ARISING
OUT OF THE USE OF THIS SOFTWARE, ITS DOCUMENTATION, OR ANY DERIVATIVES
THEREOF, EVEN IF THE AUTHORS HAVE BEEN ADVISED OF THE POSSIBILITY OF SUCH
DAMAGE. THE AUTHORS AND DISTRIBUTORS SPE CIFICALLY DISCLAIM ANY
WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WAR RANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, AND NON-INFRINGEMENT.
ix

Administrator’s Guide
THIS SOFTWARE IS PROVIDED ON AN "AS IS" BASIS, AND THE AUTHORS AND
DISTRIBUTORS HAVE NO OBLIGATION TO PROVIDE MAINTENANCE, SUPPORT, UPDATES,
ENHANCEMENTS, OR MODIFI CATIONS. GOVERNMENT USE: If you are acquiring this software on
behalf of the U.S. government, the Government shall have only "Restricted Rights" in the software and
related documentation as defined in the Federal Acquisition Regulations (FARs) in Clause 52.227.19 (c) (2).
If you are acquiring the software on behalf of the Department of Defense, the software shall be classified as
"Commercial Computer Software" and the Government shall have only "Restricted Rights" as defined in
Clause 252.227-7013 (c) (1) of DFARs. Notwithstanding the foregoing, the authors grant the U.S.
Government and others acting in its behalf permission to use and distribute the software in accordance with
the terms specified in this license.

Progress Orbix v6.3.5 incorporates bzip2 1.0.2 from Julian Seward. Such Technology is subject to the
following terms and conditions: This program, "bzip2" and associated library "libbzip2", are copyright (C)
1996-2002 Julian R Seward. All rights reserved. Redistribution and use in source and binary forms, with or
without modification, are permitted provided that the following conditions are met: 1. Redistributions of
source code must retain the above copyright notice, this list of conditions and the following disclaimer. 2.
The origin of this software must not be misrepresented; you must not claim that you wrote the original
software. If you use this software in a product, an acknowledgment in the product documentation would be
appreciated but is not required. 3. Altered source versions must be plainly marked as such, and must not be
misrepresented as being the original software. 4. The name of the author may not be used to endorse or
promote products derived from this software without specific prior written permission. THIS SOFTWARE
IS PROVIDED BY THE AUTHOR "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES,
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANT ABILITY
AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
POSSIBILITY OF SUCH DAMAGE. Julian Seward, Cambridge, UK.jseward@acm.org bzip2/libbzip2
version 1.0.2 of 30 December 2001.

Progress Orbix v6.3.5 incorporates zlib 1.2.3 from Jean-loup Gailly and Mark Adler. Such Technology is
subject to the following terms and conditions: License /* zlib.h -- interface of the 'zlib' general purpose
compression library version 1.2.3, July 18th, 2005 Copyright (C) 1995-2000 Jean-loup Gailly and Mark
Adler. This software is provided 'as-is', without any express or implied warranty. In no event will the
authors be held liable for any damages arising from the use of this software. Permission is granted to anyone
to use this software for any purpose, including commercial applications, and to alter it and redistribute it
freely, subject to the following restrictions: 1. The origin of this software must not be mis represented; you
must not claim that you wrote the original software. If you use this software in a product, an
acknowledgment in the product documentation would be appreciated but is not required. 2. Altered source
versions must be plainly marked as such, and must not be misrepresented as being the original software. 3.
This notice may not be removed or altered from any source distribution. Jean-loup Gailly jloup@gzip.org
Mark Adler madler@alumni.caltech.edu */
 x

Progress Orbix v6.3.5 incorporates the MinML 1.7 from John Wilson. Such Technology is subject to the
following terms and conditions: Copyright (c) 1999, John Wilson (tug@wilson.co.uk). All rights reserved.
Redistribution and use in source and binary forms, with or without modification, are permitted provided that
the following conditions are met: Redistributions of source code must retain the above copyright notice,,
this list of conditions and the following disclaimer. Redistributions in binary form must reproduce the above
copyright notice, this list of conditions and the following dis claimer in the documentation and/or other
materials provided with the distribution. All advertising materials mention ing features or use of this
software must display the following acknowledgement: This product includes software devel oped by John
Wilson. The name of John Wilson may not be used to endorse or promote products derived from this
software without specific prior written permission. THIS SOFTWARE IS PROVIDED BY JOHN WILSON
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL JOHN WILSON BE LIABLE FOR ANY
DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
(INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABIL ITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

Progress Orbix v6.3.5 incorporates JDOM vbeta9 from JDOM. Such Technology is subject to the following
terms and conditions: LICENSE.txt, v 1.10 2003/04/10 08:36:05 jhunter Exp $ Copyright (C) 2000-2003
Jason Hunter & Brett McLaughlin. All rights reserved. Redistribution and use in source and binary forms,
with or with out modification, are permitted provided that the following conditions are met: 1.
Redistributions of source code must retain the above copyright notice, this list of conditions, and the
following disclaimer. 2. Redistribu tions in binary form must reproduce the above copyright notice, this list
of conditions, and the dis claimer that follows these conditions in the documentation and/or other materials
provided with the distribu tion. 3. The name "JDOM" must not be used to endorse or promote products
derived from this software without prior written permission. For written permission, please contact <license
AT jdom DOT org>. 4. Prod ucts derived from this soft ware may not be called "JDOM", nor may "JDOM"
appear in their name, without prior written permission from the JDOM Project Management <pm AT jdom
DOT org>. In addition, we request (but do not require) that you include in the end-user documentation
provided with the redistribution and/or in the soft ware itself an acknowledgement equivalent to the
following: "This product includes software developed by the JDOM Project (http://www.jdom.org/)."
Alternatively, the acknowledgment may be graphical using the logos available at http://www.jdom.org/
images/logos. THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESSED OR IMPLIED
WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WAR RANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DIS CLAIMED. IN NO
EVENT SHALL THE JDOM AUTHORS OR THE PROJECT CONTRIBUTORS BE LIA BLE FOR ANY
DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
(INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABIL ITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. This software consists
xi

Administrator’s Guide
of voluntary contributions made by many individuals on behalf of the JDOM Project and was originally
created by Jason Hunter <jhunter AT jdom DOT org> and Brett McLaughlin <brett AT jdom DOT org>.
For more information on the JDOM Project, please see <http://www.jdom.org/>.

Progress Orbix v6.3.5 incorporates OpenSSL 0.9.8i Copyright (c) 1998-2008 The OpenSSL Project
Copyright (c) 1995-1998 Eric A. Young, Tim J. Hudson All rights reserved. Such Technology is subject to
the following terms and conditions: The OpenSSL toolkit stays under a dual license, i.e. both the conditions
of the OpenSSL License and the original SSLeay license apply to the toolkit. See below for the actual
license texts. Actually both licenses are BSD-style Open Source licenses. In case of any license issues
related to OpenSSL please contact openssl-core@openssl.org. OpenSSL License - Copyright (c) 1998-2008
The OpenSSL Project. All rights reserved. Redistribution and use in source and binary forms, with or
without modification, are permitted pro vided that the following conditions are met: 1. Redistributions of
source code must retain the above copy right notice, this list of conditions and the following disclaimer. 2.
Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the
following disclaimer in the documentation and/or other materials provided with the distribution. 3. All
advertising materials mentioning features or use of this software must display the following
acknowledgment: "This product includes software developed by the OpenSSL Project for use in the
OpenSSL Toolkit. (http://www.openssl.org/)" 4. The names "OpenSSL Toolkit" and "OpenSSL Project"
must not be used to endorse or promote products derived from this software without prior written
permission. For written permission, please contact openssl-core@openssl.org. 5. Products derived from this
software may not be called "OpenSSL" nor may "OpenSSL" appear in their names without prior written
permission of the OpenSSL Project. 6. Redistributions of any form whatsoever must retain the following
acknowledgment: "This product includes software developed by the OpenSSL Project for use in the
OpenSSL Toolkit (http://www.openssl.org/)" THIS SOFTWARE IS PROVIDED BY THE OpenSSL
PROJECT ``AS IS'' AND ANY EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR
ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
EXEMPLARY, OR CONSEQUENTIAL DAM AGES (INCLUDING, BUT NOT LIMITED TO,
PROCUREMENT OF SUBSTITUTE GOODS OR SERV ICES; LOSS OF USE, DATA, OR PROFITS;
OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
OF THE POSSIBILITY OF SUCH DAMAGE. This product includes cryp tographic software written by
Eric Young (eay@cryptsoft.com). This product includes software written by Tim Hudson
(tjh@cryptsoft.com). - Original SSLeay License - Copyright (C) 1995-1998 Eric Young
(eay@crypt soft.com) All rights reserved. This package is an SSL implementation written by Eric Young
(eay@crypt soft.com). The implementation was written so as to conform with Netscapes SSL. This library
is free for commercial and non-commer cial use as long as the following conditions are aheared to. The
following conditions apply to all code found in this distribution, be it the RC4, RSA, lhash, DES, etc., code;
not just the SSL code. The SSL documentation included with this distribution is covered by the same
copyright terms except that the holder is Tim Hudson (tjh@cryptsoft.com). Copy right remains Eric
Young's, and as such any Copyright notices in the code are not to be removed. If this package is used in a
product, Eric Young should be given attribution as the author of the parts of the library used. This can be in
the form of a textual message at program startup or in documentation (online or textual) provided with the
package. Redistri bution and use in source and binary forms, with or with out modification, are permitted
 xii

provided that the follow ing conditions are met: 1. Redistributions of source code must retain the copyright
notice, this list of conditions and the following disclaimer. 2. Redistributions in binary form must reproduce
the above copyright notice, this list of con ditions and the following dis claimer in the documentation and/or
other materials provided with the distribution. 3. All advertising materials mention ing features or use of this
software must display the following acknowledge ment: "This product includes crypto graphic software
written by Eric Young (eay@cryptsoft.com)" The word 'cryptographic' can be left out if the rou tines from
the library being used are not crypto graphic related :-). 4. If you include any Windows specific code (or a
deriv ative thereof) from the apps directory (application code) you must include an acknowledgement: "This
product includes software written by Tim Hudson (tjh@cryptsoft.com)" THIS SOFTWARE IS PROVIDED
BY ERIC YOUNG ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT
NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANT ABILITY AND FITNESS FOR A
PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR
CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE CIAL,
EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
PROCURE MENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
OF THE POSSI BILITY OF SUCH DAMAGE. The licence and distribution terms for any publically
available version or deriva tive of this code cannot be changed. i.e. this code cannot simply be copied and
put under another distribution licence [including the GNU Public Licence.]

Progress Orbix v6.3.5 incorporates PCRE v7.8 from the PCRE Project. Such Technology is subject to the
following terms and conditions:
PCRE LICENCE

PCRE is a library of functions to support regular expressions whose syntax and semantics are as close as
possible to those of the Perl 5 language. Release 7 of PCRE is distributed under the terms of the
"BSD"licence, as specified below. The documentation for PCRE, supplied in the "doc" directory, is
distributed under the same terms as the software itself. The basic library functions are written in C and are
freestanding. Also included in the distribution is a set of C++ wrapper functions.
THE BASIC LIBRARY FUNCTIONS

Written by: Philip Hazel
Email local part: ph10
Email domain: cam.ac.uk
University of Cambridge Computing Service,
Cambridge, England.
Copyright (c) 1997-2008 University of Cambridge
All rights reserved.
THE C++ WRAPPER FUNCTIONS

xiii

Administrator’s Guide
Contributed by: Google Inc.
Copyright (c) 2007-2008, Google Inc.
All rights reserved.
THE "BSD" LICENCE

Redistribution and use in source and binary forms, with or without modification, are permitted provided that
the following conditions are met: Redistributions of source code must retain the above copyright notice, this
list of conditions and the following disclaimer. Redistributions in binary form must reproduce the above
copyright notice, this list of conditions and the following disclaimer in the documentation and/or other
materials provided with the distribution. Neither the name of the University of Cambridge nor the name of
Google Inc. nor the names of their contributors may be used to endorse or promote products derived from
this software without specific prior written permission. THIS SOFT WARE IS PRO VIDED BY THE
COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED
WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRAN TIES OF
MERCHANT ABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT,
INDI RECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
(INCLUDING, BUT NOT LIMITED TO, PROCURE MENT OF SUBSTITUTE GOODS OR SERVICES;
LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

Progress Orbix v6.3.5 incorporates IDL Compiler Front End 1 from Sun Microsystems, Inc. Copyright
1992, 1993, 1994 Sun Microsystems, Inc. Printed in the United States of America. All Rights Reserved.
Such tech nology is subject to the following terms and conditions: This product is protected by copyright
and distrib uted under the following license restricting its use. The Interface Definition Language Compiler
Front End (CFE) is made available for your use provided that you include this license and copyright notice
on all media and documentation and the software program in which this product is incorporated in whole or
part. You may copy and extend functionality (but may not remove functionality) of the Interface Definition
Language CFE without charge, but you are not authorized to license or distribute it to anyone else except as
part of a product or program developed by you or with the express written consent of Sun Microsystems,
Inc. ("Sun"). The names of Sun Microsystems, Inc. and any of its subsidiaries or affiliates may not be used
in advertising or publicity per taining to distribution of Interface Definition Language CFE as permitted
herein. This license is effective until termi nated by Sun for failure to comply with this license. Upon
termination, you shall destroy or return all code and documentation for the Interface Definition Language
CFE. INTERFACE DEFINITION LANGUAGE CFE IS PROVIDED AS IS WITH NO WARRANTIES
OF ANY KIND INCLUDING THE WARRANTIES OF DESIGN, MERCHANTIBILITY AND FITNESS
FOR A PARTICULAR PURPOSE, NONINFRINGEMENT, OR ARISING FROM A COURSE OF
DEALING, USAGE OR TRADE PRACTICE. INTERFACE DEFINITION LANGUAGE CFE IS
PROVIDED WITH NO SUPPORT AND WITHOUT ANY OBLIGATION ON THE PART OF Sun OR
ANY OF ITS SUBSIDIARIES OR AFFILIATES TO ASSIST IN ITS USE, CORREC TION,
MODIFICATION OR ENHANCEMENT. SUN OR ANY OF ITS SUBSIDIARIES OR AFFILIATES
SHALL HAVE NO LIABILITY WITH RESPECT TO THE INFRINGEMENT OF COPYRIGHTS,
TRADE SECRETS OR ANY PATENTS BY INTERFACE DEFINITION LANGUAGE CFE OR ANY
 xiv

PART THEREOF. IN NO EVENT WILL SUN OR ANY OF ITS SUBSIDIARIES OR AFFILIATES BE
LIABLE FOR ANY LOST REVENUE OR PROFITS OR OTHER SPECIAL, INDIRECT AND
CONSE QUENTIAL DAMAGES, EVEN IF SUN HAS BEEN ADVISED OF THE POSSIBILITY OF
SUCH DAMAGES. Use, duplication, or disclosure by the government is subject to restrictions as set forth
in subpara graph (c)(1)(ii) of the Rights in Technical Data and Computer Software clause at DFARS
252.227-7013 and FAR 52.227-19. Sun, Sun Microsystems and the Sun logo are trademarks or registered
trademarks of Sun Microsys tems, Inc. SunSoft, Inc. 2550 Garcia Avenue, Mountain View, California
94043 NOTE: SunOS, Sun Soft, Sun, Solaris, Sun Microsystems or the Sun logo are trademarks or
registered trademarks of Sun Micro systems, Inc.

Progress Orbix v6.3.5 incorporates LibXML2 2.4.24 from Daniel Veillard. Such Technology is subject to
the following terms and conditions: Except where otherwise noted in the source code (trio files, hash.c and
list.c) covered by a similar license but with different Copyright notices: Copyright (C) 1998-2002 Daniel
Veillard. All Rights Reserved. Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal in the Software without
restriction, including with out limitation the rights to use, copy, modify, merge, publish, distribute,
sublicense, and/or sell copies of the Soft ware, and to permit persons to whom the Software is furnished to
do so, subject to the following conditions: The above copyright notice and this permission notice shall be
included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS",
WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED
TO THE WARRANTIES OF MERCHANTA BILITY, FITNESS FOR A PARTICULAR PURPOSE AND
NONINFRINGEMENT. IN NO EVENT SHALL THE DANIEL VEILLARD BE LIABLE FOR ANY
CLAIM, DAMAGES OR OTHER LIA BILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE
USE OR OTHER DEALINGS IN THE SOFTWARE. Except as contained in this notice, the name of Daniel
Veillard shall not be used in advertising or otherwise to promote the sale, use or other dealings in this
Software without prior written authorization from him.
=== trio.c, trio.h: Copyright (C) 1998 Bjorn Reese and Daniel Stenberg. Permission to use, copy, modify,
and distribute this software for any purpose with or without fee is hereby granted, provided that the above
copyright notice and this permission notice appear in all copies. THIS SOFTWARE IS PROVIDED "AS IS"
AND WITH OUT ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, WITHOUT
LIMITATION, THE IMPLIED WARRANTIES OF MERCHANTIBILITY AND FITNESS FOR A
PARTICULAR PURPOSE. THE AUTHORS AND CONTRIB UTORS ACCEPT NO RESPONSIBILITY
IN ANY CONCEIVABLE MANNER. ==== triop.h: Copyright (C) 2000 Bjorn Reese and Daniel Stenberg.
Permission to use, copy, modify, and dis tribute this software for any purpose with or without
fee is hereby granted, provided that the above copyright notice and this permission notice appear in all
copies. THIS SOFTWARE IS PROVIDED ``AS IS'' AND WITHOUT ANY EXPRESS OR IMPLIED
WARRANTIES, INCLUDING, WITHOUT LIMITATION, THE IMPLIED WARRANTIES OF
MERCHANTIBILITY AND FITNESS FOR A PARTIC ULAR PURPOSE. THE AUTHORS AND
CONTRIBUTORS ACCEPT NO RESPONSIBILITY IN ANY CONCEIVABLE MANNER.
==== hash.c: Copyright (C) 2000 Bjorn Reese and Daniel Veillard. Permission to use, copy, modify, and
distribute this software for any purpose with or without fee is hereby granted, provided that the above
copyright notice and this permis sion notice appear in all copies. THIS SOFTWARE IS PROVIDED ``AS
IS'' AND WITHOUT ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, WITHOUT
LIMITATION, THE IMPLIED WARRANTIES OF MERCHAN TIBILITY AND FITNESS FOR A
xv

Administrator’s Guide
PARTICULAR PURPOSE. THE AUTHORS AND CONTRIBUTORS ACCEPT NO RESPONSIBILITY
IN ANY CONCEIVABLE MANNER.
===== list.c: Copyright (C) 2000 Gary Pennington and Daniel Veillard. Permission
to use, copy, modify, and distribute this software for any purpose with or without fee is hereby granted,
provided that the above copyright notice and this permission notice appear in all copies. THIS SOFTWARE
IS PROVIDED ``AS IS'' AND WITHOUT ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING,
WITHOUT LIMITATION, THE IMPLIED WARRANTIES OF MERCHANTIBILITY AND FITNESS
FOR A PARTICULAR PURPOSE. THE AUTHORS AND CONTRIBUTORS ACCEPT NO
RESPONSIBILITY IN ANY CONCEIVABLE MANNER. ===
triodef.h, trionan.c, trionan.h: Copyright (C) 2001 Bjorn Reese Permission to use, copy, modify, and
distribute this soft ware for any purpose with or without fee is hereby granted, provided that the above
copyright notice and this permis sion notice appear in all copies. THIS SOFTWARE IS PROVIDED ``AS
IS'' AND WITHOUT ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, WITHOUT
LIMITATION, THE IMPLIED WARRANTIES OF MER CHANTIBILITY AND FITNESS FOR A
PARTICULAR PURPOSE. THE AUTHORS AND CONTRIBUTORS ACCEPT NO RESPONSIBILITY
IN ANY CONCEIVABLE MANNER.
==== triostr.c, triostr.h: Copyright (C) 2001 Bjorn Reese and Daniel Stenberg.
Permission to use, copy, modify, and distribute this software for any purpose with or without fee is hereby
granted, pro vided that the above copyright notice and this permission notice appear in all copies. THIS
SOFTWARE IS PRO VIDED ``AS IS'' AND WITHOUT ANY EXPRESS OR IMPLIED WARRANTIES,
INCLUDING, WITHOUT LIMITATION, THE IMPLIED WARRANTIES OF MERCHANTIBILITY
AND FITNESS FOR A PARTICULAR PUR POSE. THE AUTHORS AND CONTRIBUTORS ACCEPT
NO RESPONSIBILITY IN ANY CONCEIVABLE MANNER.

Progress Orbix v6.3.5 incorporates ICU library 2.6 from IBM. Such Technology is subject to the following
terms and conditions: Copyright (c) 1995-2009 International Business Machines Corporation and others.
All rights reserved. Per mission is hereby granted, free of charge, to any person obtaining a copy of this
software and associated documenta tion files (the "Software"), to deal in the Software without restriction,
including without limitation the rights to use, copy, modify, merge, publish, distribute, and/or sell copies of
the Software, and to permit persons to whom the Soft ware is fur nished to do so, provided that the above
copyright notice(s) and this permission notice appear in all copies of the Software and that both the above
copyright notice(s) and this permission notice appear in supporting documentation. THE SOFTWARE IS
PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING
BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A
PARTICU LAR PUR POSE AND NONINFRINGEMENT OF THIRD PARTY RIGHTS. IN NO EVENT
SHALL THE COPYRIGHT HOLDER OR HOLDERS INCLUDED IN THIS NOTICE BE LIABLE FOR
ANY CLAIM, OR ANY SPECIAL INDI RECT OR CONSEQUENTIAL DAMAGES, OR ANY
DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN
AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TOR TIOUS ACTION, ARISING OUT OF
OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. Except as
contained in this notice, the name of a copyright holder shall not be used in advertising or other wise to
promote the sale, use or other dealings in this Software without prior written authorization of the copyright
holder. All trademarks and registered trademarks mentioned herein are the property of their respective
owners.
Updated: July 29, 2011
 xvi

Contents

List of Figures xvii

List of Tables xix

Preface xxi

Part I Introduction

Chapter 1 The Orbix Environment 1
Basic CORBA Model 2
Simple Orbix Application 4

Portable Object Adapter 5
Broader Orbix Environment 7

Managing Object Availability 8
Scaling Orbix Environments with Configuration Domains 11
Using Dynamic Orbix Applications 14

Orbix Administration 15

Chapter 2 Selecting an Orbix Environment Model 17
Orbix Development Environment Models 18

Independent Development Environments 19
Distributed Development and Test Environments 22

Configuration Models 23
Getting the Most from Your Orbix Environment 26

Using Capabilities of Well-Designed Orbix Applications 27
Using the Right Data Storage Mechanism 29

Getting the Most from Orbix Configuration 30
iii

CONTENTS
Part II Managing an Orbix Environment

Chapter 3 Managing Orbix Configuration 33
How an ORB Gets its Configuration 34

Locating the Configuration Domain 36
Obtaining an ORB’s Configuration 38

Configuration Variables and Namespaces 45
Managing Configuration Domains 47

Chapter 4 Managing Persistent CORBA Servers 49
Introduction 50
Registering Persistent Servers 51
Server Environment Settings 56

Windows Environment Settings 57
UNIX Environment Settings 58

Managing a Location Domain 60
Managing Server Processes 61
Managing the Locator Daemon 62
Managing Node Daemons 65
Listing Location Domain Data 68
Modifying a Location Domain 69
Ensuring Unique POA Names 70

Using Direct Persistence 72
CORBA Applications 73
Orbix Services 77

Chapter 5 Configuring Scalable Applications 79
Fault Tolerance and Replicated Servers 81

About Replicated Servers 82
Automatic Replica Failover 85
Direct Persistence and Replica Failover 86

Building a Replicated Server 89
Example 1: Building a Replicated Server to Start on Demand 90
Example 2: Updating a Replicated Server 93
Example 3: Dynamically Changing the Load Balancing Algorithm 94

Replicating Orbix Services 95
PSS Master-Slave Replication 98
 iv

CONTENTS
Active Connection Management 103
Setting Buffer Sizes 105

Chapter 6 Managing the Naming Service 107
Naming Service Administration 109

Naming Service Commands 111
Controlling the Naming Service 112
Building a Naming Graph 113

Creating Naming Contexts 115
Creating Name Bindings 116

Maintaining a Naming Graph 118
Managing Object Groups 119

Chapter 7 Managing an Interface Repository 121
Interface Repository 122
Controlling the Interface Repository Daemon 123
Managing IDL Definitions 124

Browsing Interface Repository Contents 125
Adding IDL Definitions 127
Removing IDL Definitions 128

Chapter 8 Managing the Firewall Proxy Service 131
Orbix Firewall Proxy Service 132
Configuring the Firewall Proxy Service 133
Known Restrictions 136

Chapter 9 Managing Orbix Service Databases 137
Berkeley DB Environment 138
Performing Checkpoints 139
Managing Log File Size 140
Troubleshooting Persistent Exceptions 141
Database Recovery for Orbix Services 142
Replicated Databases 147

Chapter 10 Configuring Orbix Compression 149
Introduction 150
Configuring Compression 152
v

CONTENTS
Example Configuration 156
Message Fragmentation 158

Chapter 11 Configuring Advanced Features 159
Configuring Java NIO 160
Configuring Internet Protocol Version 6 163
Configuring Shared Memory 166
Configuring Bidirectional GIOP 168

Enabling Bidirectional GIOP 169
Migration and Interoperability Issues 172

Chapter 12 Orbix Mainframe Adapter 175
CICS and IMS Server Adapters 176
Using the Mapping Gateway Interface 177
Locating Server Adapter Objects Using itmfaloc 181

Part III Monitoring Orbix Applications

Chapter 13 Configuring Orbix Logging 187
Setting Logging Filters 188
Logging Subsystems 190
Logging Severity Levels 192
Configuring Log Output 194
Dynamic Logging 198

Chapter 14 Monitoring GIOP Message Content 201
Introduction to GIOP Snoop 202
Configuring GIOP Snoop 203
GIOP Snoop Output 206

Chapter 15 Debugging IOR Data 213
IOR Data Formats 214
Using iordump 217
iordump Output 219

Stringified Data Output 222
ASCII-Hex Data Output 223
 vi

CONTENTS
Data, Warning, Error and, Information Text 224
Errors 225
Warnings 228

Part IV Command Reference

Starting Orbix Services 233
Starting and Stopping Configured Services 234
Starting Orbix Services Manually 235

itconfig_rep run 236
itlocator run 237
itnode_daemon run 238
itnaming run 240
itifr run 241
itevent run 242
itnotify run 243

Stopping Services Manually 244

Event Log 245
logging get 245
logging set 246

Managing Orbix Services With itadmin 247
Using itadmin 248
Command Syntax 251
Services and Commands 254

Bridging Service 255
bridge create 256
bridge destroy 257
bridge list 257
bridge show 257
bridge start 257
bridge stop 257
bridge suspend 257
endpoint_admin show 258
vii

CONTENTS
endpoint destroy 258
endpoint list 258
endpoint show 259

JMS Broker 260
jms start 260
jms stop 260

Configuration Domain 261
Configuration Repository 262

config dump 262
config list_servers 263
config show_server 263
config stop 264
file_to_cfr.tcl 264

Namespaces 266
namespace create 266
namespace list 267
namespace remove 268
namespace show 268

Scopes 269
scope create 269
scope list 269
scope remove 270
scope show 270

Variables 271
variable create 271
variable modify 273
variable remove 274
variable show 274

Event Service 275
Event Service Management 276

event show 276
event stop 277

Event Channel 278
ec create 279
ec create_typed 279
ec list 279
 viii

CONTENTS
ec remove 280
ec remove_typed 280
ec show 281
ec show_typed 281

Interface Repository 283
IDL Definitions 284

idl -R=-v 284
Repository Management 285

ifr cd 285
ifr destroy_contents 286
ifr ifr2idl 286
ifr list 286
ifr pwd 286
ifr remove 287
ifr show 287
ifr stop 287

Location Domain 289
Locator Daemon 290

locator heartbeat_daemons 290
locator list 291
locator show 291
locator stop 292

Named Key 293
named_key create 294
named_key list 294
named_key remove 295
named_key show 295

Node Daemon 296
node_daemon list 297
node_daemon remove 297
node_daemon show 297
.node_daemon stop 298
add_node_daemon.tcl 298

ORB Name 300
orbname create 300
orbname list 300
ix

CONTENTS
orbname modify 301
orbname remove 302
orbname show 303

POA 304
poa create 304
poa list 307
poa modify 307
poa remove 309
poa show 310

Server Process 311
process create 311
process disable 314
process enable 314
process kill 314
process list 315
process modify 316
process remove 318
process show 319
process start 320
process stop 321

Mainframe Adapter 323
mfa add 325
mfa change 325
mfa delete 326
mfa -help 326
mfa list 326
mfa refresh 327
mfa reload 327
mfa resetcon 327
mfa resolve 328
mfa save 328
mfa stats 329
mfa stop 329
mfa switch 329

Naming Service 331
Names 332
 x

CONTENTS
ns bind 332
ns list 333
ns list_servers 333
ns newnc 333
ns remove 334
ns resolve 334
ns show_server 335
ns stop 335
ns unbind 335

Object Groups 336
nsog add_member 337
nsog bind 337
nsog create 338
nsog list 338
nsog list_members 338
nsog modify 339
nsog remove 339
nsog remove_member 340
nsog set_member_timeout 340
nsog show_member 341
nsog update_member_load 342

Notification Service 343
Notification Service Management 344

notify checkpoint 344
notify post_backup 345
notify pre_backup 345
notify show 345
notify stop 347

Event Channel 348
nc create 348
nc list 349
nc remove 350
nc show 350
nc set_qos 351

Object Transaction Service 355
tx begin 355
xi

CONTENTS
tx commit 356
tx resume 356
tx rollback 357
tx suspend 357

Object Transaction Service Encina 359
encinalog add 360
encinalog add_mirror 361
encinalog create 361
encinalog display 362
encinalog expand 363
encinalog init 364
encinalog remove_mirror 364
otstm stop 365

Persistent State Service 367
pss_db archive_old_logs 368
pss_db checkpoint 368
pss_db delete_old_logs 369
pss_db list_replicas 369
pss_db name 369
pss_db post_backup 369
pss_db pre_backup 370
pss_db remove_replica 370
pss_db show 371

Security Service 373
Logging On 375

admin_logon 375
Managing Checksum Entries 376

checksum confirm 376
checksum create 377
checksum list 377
checksum new_pw 378
checksum remove 378

Managing Pass Phrases 379
kdm_adm change_pw 379
kdm_adm confirm 380
 xii

CONTENTS
kdm_adm create 380
kdm_adm list 381
kdm_adm new_pw 382
kdm_adm remove 382

Trading Service 383
Trading Service Administrative Settings 384

trd_admin get 384
trd_admin set 386
trd_admin stop 388

Federation Links 389
trd_link create 389
trd_link list 390
trd_link modify 390
trd_link remove 391
trd_link show 392

Regular Offers 393
trd_offer list 393
trd_offer remove 393
trd_offer show 394

Proxy Offers 395
trd_proxy list 395
trd_proxy remove 395
trd_proxy show 396

Type Repository 397
trd_type list 397
trd_type mask 397
trd_type remove 398
trd_type show 398
trd_type unmask 399

Part V Appendices

Appendix A Orbix Windows Services 403
Managing Orbix Services on Windows 405
Orbix Windows Service Commands 406

continue 406
xiii

CONTENTS
help 407
install 407
pause 407
prepare 407
query 408
run 408
stop 408
uninstall 408

Orbix Windows Service Accounts 409
Running Orbix Windows Services 411
Logging Orbix Windows Services 412
Uninstalling Orbix Windows Services 413
Troubleshooting Orbix/Windows Services 414

Appendix B Run Control Scripts for Unix Platforms 415
Solaris 417
AIX 420
HP-UX 424
IRIX 428
Red Hat Linux 431

Appendix C ORB Initialization Settings 435
Domains directory 436
Domain name 436
Configuration directory 437
ORB name 437
Initial reference 438
Default initial reference 438
Product directory 439

Appendix D Development Environment Variables 441
IT_IDL_CONFIG_FILE 441
IT_IDLGEN_CONFIG_FILE 442

Appendix E Named Keys for Orbix Services 443
Orbix Service Named Key Strings 444
Configuration for Advertising Services 447
 xiv

CONTENTS
Glossary 449

Index 457
xv

CONTENTS
 xvi

List of Figures

Figure 1: Basic CORBA Model 3

Figure 2: Overview of a Simple Orbix Application 4

Figure 3: A POA’s Role in Client–Object Communication 5

Figure 4: Simple Configuration Domain and Location Domain 12

Figure 5: Multiple Configuration Domains 13

Figure 6: An Independent Development and Test Environment 19

Figure 7: Multiple Independent Development and Test Environments 20

Figure 8: A Distributed Development and Test Environment 22

Figure 9: Orbix Environment with Local Configuration 24

Figure 10: Orbix Environment with Centralized Configuration 25

Figure 11: How an Orbix Application Obtains its Configurations 34

Figure 12: Hierarchy of Configuration Scopes 38

Figure 13: Replicated Naming Service 96

Figure 14: Naming Context Graph 113

Figure 15: Overview of ZIOP Compression 150

Figure 16: Locator Service Details 409
xvii

LIST OF FIGURES
 xviii

List of Tables
Table 1: Configuration Domain Management Tasks 47

Table 2: Commands that List Location Domain Data 68

Table 3: Commands that Modify a Location Domain 69

Table 4: Commands that Remove Location Domain Components 69

Table 5: Naming Graph Maintenance Commands 118

Table 6: Orbix Logging Subsystems 190

Table 7: Orbix Logging Severity Levels 193

Table 8: Commands to Manually Start Orbix Services. 235

Table 9: Commands for Stopping Orbix Services 244

Table 10: Event Log Commands 245

Table 11: Bridging Service Commands 255

Table 12: JMS Broker Commands 260

Table 13: Configuration Repository Commands 262

Table 14: Configuration Namespace Commands 266

Table 15: Configuration Scope Commands 269

Table 16: Configuration Variable Commands 271

Table 17: Event Service Commands 276

Table 18: Event Channel Commands 278

Table 19: Interface Repository Commands 285

Table 20: Locator Daemon Commands 290

Table 21: Named Key Commands 293

Table 22: Node Daemon Commands 296

Table 23: ORB Name Commands 300

Table 24: POA Commands 304

Table 25: Server Process Commands 311
xix

LIST OF TABLES
Table 26: Mainframe Adapter itadmin Commands 323

Table 27: Naming Service Commands 332

Table 28: Object Group Commands 336

Table 29: Notification Service Commands 344

Table 30: Event Channel Commands 348

Table 31: Object Transaction Service Commands 355

Table 32: Persistent State Service Commands 367

Table 33: Checksum Entry Commands 376

Table 34: Pass Phrase Commands 379

Table 35: Trading Service Commands 384

Table 36: Federation Link Commands 389

Table 37: Regular Offer Commands 393

Table 38: Proxy Offer Commands 395

Table 39: Server Type Repository Commands 397

Table 40: Orbix Service Key Strings 444

Table 41: Advertise Service Configuration Variables 447
 xx

Preface
Introduction Orbix is a software environment for building and integrating distributed

object-oriented applications. Orbix provides a full implementation of the
Common Object Request Broker Architecture (CORBA) from the Object
Management Group (OMG). Orbix is compliant with version 2.4 of the OMG’S
CORBA specification. This guide explains how to configure and manage the
components of an Orbix environment.

Audience This guide is aimed at administrators managing Orbix environments, and
programmers developing Orbix applications.

Organization This guide is divided into the following parts:

• Introduction introduces the Orbix environment, and the basic concepts

required to understand how it works.

• Managing an Orbix Environment explains how to manage each component

of an Orbix environment. It provides task-based information and examples.

• Command Reference provides a comprehensive reference for all Orbix

configuration variables and administration commands.

• Appendices explain how to use Orbix components as Windows NT

services. They also provide reference information for initialization

parameters and environment variables.
xxi

PREFACE
Related documentation Orbix documentation also includes the following related books:

• Management User’s Guide

• Deployment Guide

• CORBA Programmer’s Guide

• CORBA Programmer’s Reference

• CORBA Code Generation Toolkit Guide

Additional resources The following additional resources are available:

• The most up-to-date versions of Orbix technical documentation are

available from:

http://communities.progress.com/pcom/docs/DOC-105909

• The Orbix Knowledge Base is a database of articles that contain practical

advice on specific development issues, contributed by developers, support

specialists, and customers. This is available from: http://

www.progress.com/orbix/orbix-support.html

• Contact Orbix technical support at:

 http://www.progress.com/orbix/orbix-support.html

Document conventions This guide uses the following typographical conventions:

Constant width Constant width font in normal text represents commands,
portions of code and literal names of items (such as
classes, functions, and variables). For example, constant
width text might refer to the itadmin orbname create
command.

Constant width paragraphs represent information
displayed on the screen or code examples. For example
the following paragraph displays output from the
itadmin orbname list command:

ifr
naming
production.test.testmgr
production.server

Italic Italic words in normal text represent emphasis and new
terms (for example, location domains).
 xxii

http://www.iona.com/support/docs/orbix/6.3/index.xml
http://www.progress.com/orbix/orbix-support.html
http://www.progress.com/orbix/orbix-support.html
http://www.iona.com/support/kb/
http://www.progress.com/orbix/orbix-support.html

PREFACE
The following keying conventions are observed:

Code italic Italic words or characters in code and commands
represent variable values you must supply; for example,
process names in your particular system:

itadmin process create process-name

Code bold Code bold font is used to represent values that you must
enter at the command line. This is often used in
conjunction with constant width font to distinguish
between command line input and output. For example:

itadmin process list
ifr
naming
my_app

No prompt When a command’s format is the same for multiple
platforms, a prompt is not used.

% A percent sign represents the UNIX command shell
prompt for a command that does not require root
privileges.

A number sign represents the UNIX command shell
prompt for a command that requires root privileges.

> The notation > represents the DOS or Windows
command prompt.

... Horizontal ellipses in format and syntax descriptions
indicate that material has been eliminated to simplify a
discussion.

[] Italicized brackets enclose optional items in format and
syntax descriptions.

{} Braces enclose a list from which you must choose an item
in format and syntax descriptions.

| A vertical bar separates items in a list of choices.
Individual items can be enclosed in {} (braces) in format
and syntax descriptions.
xxiii

PREFACE
 xxiv

Part I
Introduction

In this part This part contains the following chapters:

The Orbix Environment page 1

Selecting an Orbix Environment Model page 17

CHAPTER 1

The Orbix
Environment
Orbix is a network software environment that enables
programmers to develop and run distributed applications.

Overview This chapter introduces the main components of an Orbix environment, explains
how they interact, and gives an overview of Orbix administration.

In this chapter This chapter contains the following sections:

Basic CORBA Model page 2

Simple Orbix Application page 4

Broader Orbix Environment page 7

Orbix Administration page 15
1

CHAPTER 1 | The Orbix Environment
Basic CORBA Model

Overview An Orbix environment is a networked system that makes distributed applications
function as if they are running on one machine in a single process space. Orbix
relies on several kinds of information, stored in various components in the
environment. When the environment is established, programs and Orbix services
can automatically store their information in the appropriate components.

To establish and use a proper Orbix environment, administrators and
programmers need to know how the Orbix components interact, so that
applications can find and use them correctly. This chapter starts with a sample
application that requires a minimal Orbix environment. Gradually, more services
are added.

The basic model for CORBA applications uses an object request broker, or ORB.
An ORB handles the transfer of messages from a client program to an object
located on a remote network host. The ORB hides the underlying complexity of
network communications from the programmer. In the CORBA model,
programmers create standard software objects whose member methods can be
invoked by client programs located anywhere in the network. A program that
contains instances of CORBA objects is known as a server.

When a client invokes a member function on a CORBA object, the ORB
intercepts the function call. As shown in Figure 1, the ORB redirects the
function call across the network to the target object. The ORB then collects
results from the function call and returns these to the client.
 2

Basic CORBA Model
Figure 1: Basic CORBA Model

Client Host Server Host

ObjectClient

Object Request Broker

Function Call
3

CHAPTER 1 | The Orbix Environment
Simple Orbix Application

Overview A simple Orbix application might contain a client and a server along with one or
more objects (see Figure 2). In this model, the client obtains information about
the object it seeks, using object references. An object reference uniquely
identifies a local or remote object instance.

How an ORB enables remote
invocation

Figure 2 shows how an ORB enables a client to invoke on a remote object:

1. When a server starts, it creates one or more objects and publishes their

object references in a naming service. A naming service uses simple names

to make object references accessible to prospective clients. Servers can

also publish object references in a file or a URL.

2. The client program looks up the object reference by name in the naming

service. The naming service returns the server’s object reference.

3. The client ORB uses the object reference to pass a request to the server

object

Figure 2: Overview of a Simple Orbix Application

Network

Client Host

Object
Client

ORB ORB

12

3

Server Host

Naming
Service
 4

Simple Orbix Application
Portable Object Adapter

Overview For simplicity, Figure 2 on page 4 omits details that all applications require. For
example, Orbix applications use a portable object adapter, or POA, to manage
access to server objects. A POA maps object references to their concrete
implementations on the server, or servants. Given a client request for an object, a
POA can invoke the referenced object locally.

POA functionality A POA can divide large sets of objects into smaller, more manageable subsets; it
can also group related objects together. For example, in a ticketing application,
one POA might handle reservation objects, while another POA handles payment
objects.

Figure 3 shows how the POA connects a client to a target object. In this instance,
the server has two POAs that each manage a different set of objects.

Figure 3: A POA’s Role in Client–Object Communication

Naming
Service

Network

Process

Client
ORB

Process

POA
Server

ORB

Objects

POA

Objects
5

CHAPTER 1 | The Orbix Environment
POA names Servers differentiate between several POAs by assigning them unique names
within the application. The object reference published by the server contains the
complete or fully qualified POA name (FQPN) and the object’s ID. The client
request embeds the POA name and object ID taken from the published object
reference. The server then uses the POA name to invoke the correct POA. The
POA uses the object ID to invoke the desired object, if it exists on the server.

Limitations of a simple application This simple model uses a naming service to pass object references to clients. It
has some limitations and does not support all the needs of enterprise-level
applications. For example, naming services are often not designed to handle
frequent updates. They are designed to store relatively stable information that is
not expected to change very often. If a process stops and restarts frequently, a
new object reference must be published with each restart. In production
environments where many servers start and stop frequently, this can overwork a
naming service. Enterprise applications also have other needs that are not met by
this simple model—for example, on-demand activation, and centralized
administration. These needs are met in a broader Orbix environment, as
described in the next section.
 6

Broader Orbix Environment
Broader Orbix Environment

Overview Along with the naming service, Orbix offers a number of features that are
required by many distributed applications, for flexibility, scalability, and ease of
use. These include:

• Location domains enable a server and its objects to move to a new process

or host, and to be activated on demand.

• Configuration domains let you organize ORBs into independently

manageable groups. This brings scalability and ease of use to the largest

environments.

• The interface repository allows clients to discover and use additional

objects in the environment—even if clients do not know about these

objects at compile time.

• The event service allows applications to send events that can be received

by multiple objects.

In this section This section discusses the following topics:

Managing Object Availability page 8

Scaling Orbix Environments with Configuration Domains page 11

Using Dynamic Orbix Applications page 14
7

CHAPTER 1 | The Orbix Environment
Managing Object Availability

Overview A system with many servers cannot afford the overhead of manually assigned
fixed port numbers, for several reasons:

• Over time, hardware upgrades, machine failures, or site reconfiguration

require you to move servers to different hosts.

• To optimize resource usage, rarely used servers only start when they are

needed, and otherwise are kept inactive.

• To provide fault tolerance and high availability for critical objects, they

can be run within redundant copies of a server. In case of server overload

or failure, clients can transparently reconnect to another server

Orbix location domains provide all of these benefits, without requiring explicit
programming.

Transient and persistent objects A server makes itself available to clients by publishing interoperable object
references, or IORs. An IOR contains an object’s identity and address. This
address can be of two types, depending on whether the object is transient or
persistent:

• The IORs of transient objects always contain the server host machine’s

address. A client that invokes on this object sends requests directly to the

server. If the server stops running, the IORs of its transient objects are no

longer valid, and attempts to invoke on these objects raise the

OBJECT_NOT_EXIST exception.

• The IORs of persistent objects are exported from their server with the

address of the domain’s locator daemon. This daemon is associated with a

database, or implementation repository, which dynamically maps

persistent objects to their server’s actual address.

Invocations on persistent objects When a client invokes on a persistent object, Orbix locates the object as follows:

1. When a client initially invokes on the object, the client ORB sends the

invocation to the locator daemon.

2. The locator daemon searches the implementation repository for the actual

address of a server that runs this object in the implementation repository.

The locator daemon returns this address to the client.
 8

Broader Orbix Environment
3. The client connects to the returned server address and directs this and all

subsequent requests for this object to that address.

All of this work is transparent to the client. The client never needs to contact the
locator daemon explicitly to obtain the server's location.

Locator daemon benefits Using the locator daemon provides two benefits:

• By interposing the locator daemon between client and server, a location

domain isolates the client from changes in the server address. If the server

changes location—for example, it restarts on a different host, or moves to

another port— the IORs for persistent objects remain valid. The locator

daemon supplies the server’s new address to clients.

• Because clients contact the locator daemon first when they initially invoke

on an object, the locator daemon can launch the server on behalf of the

client. Thus, servers can remain dormant until needed, thereby optimizing

use of system resources.
9

CHAPTER 1 | The Orbix Environment
Components of an Orbix location
domain

An Orbix location domain consists of two components: a locator daemon and a
node daemon:

locator daemon: A CORBA service that acts as the control center for the entire
location domain. The locator daemon has two roles:

• Manage the configuration information used to find, validate, and activate

servers running in the location domain.

• Act as the contact point for clients trying to invoke on servers in the

domain.

node daemon: Acts as the control point for a single host machine in the system.
Every machine that runs an server must run a node daemon. The node daemon
starts, monitors, and manages servers on its machine. The locator daemon relies
on node daemons to start processes and tell it when new processes are available.
 10

Broader Orbix Environment
Scaling Orbix Environments with Configuration Domains

Overview Small environments with a few applications and their ORBs can be easy to
administer manually: you simply log on to systems where the ORBs run and
adjust configuration files as needed. However, adding more ORBs can
substantially increase administrative overhead. With configuration domains, you
can scale an Orbix environment and minimize overhead.

Grouping related applications Related application ORBs usually have similar requirements. A configuration
domain defines a set of common configuration settings, which specify available
services and control ORB behavior. For example, these settings define libraries
to load at runtime, and initial object references to services.

File- and repository-based
configurations

Configuration domain data can be maintained in two ways:

• As a set of files distributed among domain hosts.

• In a centralized configuration repository.

Each ORB gets its configuration data from a domain, regardless of how it is
implemented. Orbix environments can have multiple configuration domains
organized by application, by geography, by department, or by some other
appropriate criteria. You can divide large environments into smaller,
independently manageable Orbix environments.
11

CHAPTER 1 | The Orbix Environment
Simple configuration domain and
location domain

Figure 4 shows a simple configuration, where all ORBs are configured by the
same domain. Such a configuration is typical of small environments. In fact,
many environments begin with this configuration and grow from there.

Multiple configuration and
location domains

Figure 5 shows an environment with multiple configuration domains. This
environment can be useful in a organization that must segregate user groups. For
example, separate configurations can be used for production and finance
departments, each with different security requirements. In this environment, all
clients and servers use the same locator daemon; thus, the two configuration
domains are encompassed by a single location domain.

Figure 4: Simple Configuration Domain and Location Domain

Configuration Domain
& Location Domain

ORB

Client

ORB

Client

ORB

Client

ORB

Application

Configuration
Locator
 12

Broader Orbix Environment
Figure 5: Multiple Configuration Domains

Location Domain
Locator used by
Configuration
Domains 1 and 2

Configuration Domain 1

ORB

Client

ORB

Client

ORB

Client

ORB

Application

ORB

Client

ORB

Client

ORB

Client

ORB

Client

Configuration Domain 2

Configuration
Configuration

Locator
13

CHAPTER 1 | The Orbix Environment
Using Dynamic Orbix Applications

Overview Within the CORBA model, client programs can invoke on remote objects, even
if those objects are written in a different programming language and run on a
different operating system. CORBA’s Interface Definition Language (IDL)
makes this possible. IDL is a declarative language that lets you define interfaces
that are independent of any particular programming language and operating
system.

Orbix includes a CORBA IDL compiler, which compiles interface definitions
along with the client and server code. A client application compiled in this way
contains internal information about server objects. Clients use this information
to invoke on objects.

This model restricts clients to using only those interfaces that are known when
the application is compiled. Adding new features to clients requires
programmers to create new IDL files that describe the new interfaces and to
recompile clients along with the new IDL files.

Orbix provides an interface repository, which enables clients to call operations
on IDL interfaces that are unknown at compile time. The interface repository
(IFR) provides centralized persistent storage of IDL interfaces. Orbix programs
can query the interface repository at runtime, to obtain information about IDL
definitions.

Managing an interface repository Administrators and programmers can use interface repository management
commands to add, remove, and browse interface definitions in the repository.
Interfaces and types that are already defined in a system do not need to be
implemented separately in every application. They can be invoked at runtime
through the interface repository. For more details on managing an interface
repository, see Chapter 7.
 14

Orbix Administration
Orbix Administration

Overview Orbix services, such as the naming service, and Orbix components, such as the
configuration repository, must be configured to work together with applications.
Applications themselves also have administration needs.

This section identifies the different areas of administration. It explains the
conditions in the environment and in applications that affect the kind of
administration you are likely to encounter. Orbix itself usually requires very
little administration when it is set up and running properly. Applications should
be easy to manage when designed with management needs in mind.

Administration tasks Orbix administration tasks include the following:

• Managing an Orbix environment

• Application deployment and management

• Troubleshooting

Managing an Orbix environment

This involves starting up Orbix services, or adding, moving, and removing Orbix
components. For example, adding an interface repository to a configuration
domain, or modifying configuration settings (for example, initial references to
Orbix services). Examples of location domain management tasks include
starting up the locator daemon and adding a node daemon. See Part II of this
manual for more information.

Application deployment and management

An application gets its configuration from configuration domains, and finds
persistent objects through the locator daemon. Both the configuration and
location domains must be modified to account for application requirements. For
more information, see Chapter 3.

Troubleshooting

You can set up Orbix logging in order to collect system-related information,
such as significant events, and warnings about unusual or fatal errors. For more
information, see Chapter 13.
15

CHAPTER 1 | The Orbix Environment
Administration tools The Orbix itadmin command interface lets you control all aspects of Orbix
administration. Administration commands can be executed from any host. For
detailed reference information about Orbix administration commands, see
Part IV of this manual.
 16

CHAPTER 2

Selecting an Orbix
Environment
Model
This chapter shows different ways in which Orbix can be
configured in a network environment.

In this chapter This chapter contains the following sections:

Orbix Development Environment Models page 18

Configuration Models page 23

Getting the Most from Your Orbix Environment page 26

Getting the Most from Orbix Configuration page 30
17

CHAPTER 2 | Selecting an Orbix Environment Model
Orbix Development Environment Models

Overview Business applications must be capable of scaling to meet enterprise level needs.
Such applications often extend beyond departments, and even beyond corporate
boundaries. Orbix domain and service infrastructures offer a framework for
building and running applications that range from small, department-level
applications to full-scale enterprise applications with multiple servers and
hundreds or thousands of clients.

This chapter offers an overview of Orbix environment models that can handle
one or many applications. It also explains Orbix configuration mechanisms, and
how to scale an Orbix environment to support more applications, more users,
and a wider geographical area. For detailed information on how to set up your
Orbix environment, see the Orbix Deployment Guide.

Orbix development environments Orbix development environments are used for creating or modifying Orbix
applications. A minimal Orbix development environment consists of the Orbix
libraries and the IDL compiler, along with any prerequisite C++ or Java files and
development tools.

Application testing requires deployment of Orbix runtime services, such as the
configuration repository and locator daemon, naming service, and interface
repository.

In environments with multiple developers, each developer must install the Orbix
development environment, and the necessary C++ or Java tools. Runtime
services can either be installed in each development environment, or distributed
among various hosts and accessed remotely.

In this section This section discusses the following topics:

Independent Development Environments page 19

Distributed Development and Test Environments page 22
 18

Orbix Development Environment Models
Independent Development Environments

Overview This section discusses some typical models of Orbix development (and testing)
environments. Actual development environments might contain any one or a
blend of these models.

Testing and deployment
environment

Figure 6 shows a simple environment that can support application development
and testing.

To test an application, it must first be deployed. This involves populating the
necessary Orbix repositories (for example, the configuration domain, location
domain, and naming service), with appropriate Orbix application data.

This private environment is useful for testing applications on a local scale before
introducing them to an environment distributed across a network. Figure 6
shows this environment on Windows NT, but it can be established on any
supported platform.

Figure 6: An Independent Development and Test Environment

Windows NT

Orbix
Dev Kit

C++ or Java development tools (Note)

Note. C++ or Java tools must exist on each development platform.

IMR
Naming
Service

IFRConfiguration

Orbix Runtime Services

A dotted outline indicates an optional runtime service.
19

CHAPTER 2 | Selecting an Orbix Environment Model
Multiple private environments Figure 7 is a variant of the model shown in Figure 6 on page 19. In this model,
multiple private environments are established on a single multi-user machine.
Each of these private environments can be used to create, deploy, and test
applications.

Figure 7: Multiple Independent Development and Test Environments

Multi-User Machine

Note. C++ or Java tools must exist on each development platform.

A dotted outline indicates an optional runtime service.

Windows NT

Orbix
Dev Kit

IMR
Naming
Service

IFRConfiguration

Orbix Runtime Services

C++ or Java development tools (Note)

Solaris

Orbix
Dev Kit

IMR
Naming
Service

IFRConfiguration

Orbix Runtime Services

C++ or Java development tools (Note)

Linux

Orbix
Dev Kit

IMR
Naming
Service

IFRConfiguration

Orbix Runtime Services

C++ or Java development tools (Note)
 20

Orbix Development Environment Models
Setting up independent
environments

To establish independent development and test environments, first ensure that
the appropriate C++ or Java libraries are present. You should then install Orbix
on the desired platforms. For information on what C++ or Java libraries are
required, and instructions on how to install Orbix, see the Orbix Installation
Guide.

For information on how to configure and deploy Orbix runtime services in your
environment (for example, a locator daemon), see the Orbix Deployment Guide.
21

CHAPTER 2 | Selecting an Orbix Environment Model
Distributed Development and Test Environments

Overview Figure 8 on page 22 illustrates a runtime test environment shared by multiple
development platforms. This scenario more closely models the distributed
environments in which applications are likely to run. Most applications should
be tested in an environment like this before they are deployed into a production
environment.

To establish this environment, install the Orbix runtime services in your
environment. Ensure that the appropriate C++ or Java libraries are present on
your development platforms. Then install the Orbix developer’s kit on each
platform. For information on how to configure and deploy Orbix runtime
services such as the interface repository in your environment, see Orbix
Deployment Guide.

Figure 8: A Distributed Development and Test Environment

CORBA Transports

Naming
Service

IFR
Location
Service

Orbix Runtime Services

Configuration

Windows NT Solaris HP-UX

Orbix
E2A

C++ or Java
development

tools

Orbix
E2A

C++ or Java
development

tools

Orbix
E2A

C++ or Java
development

tools

A dotted outline indicates an optional runtime service.
 22

Configuration Models
Configuration Models

Overview Orbix provides two configuration mechanisms:

• Local file-based configuration

• Configuration repository

For information on managing Orbix configuration domains, see Chapter 3.

Local file-based configuration A local configuration model is suitable for environments with a small number of
clients and servers, or when configuration rarely changes. The local
configuration mechanism supplied by Orbix uses local configuration files.
Figure 9 on page 24 shows an example Orbix environment where the
configuration is implemented in local files on client and server machines.

The Orbix components in Figure 9 on page 24 consist of Orbix management
tools, the locator daemon, and configuration files that store the configuration of
the Orbix components. When Orbix is installed, it stores its configuration in the
same configuration file, but in a separate configuration scope. Application
clients store their configurations in files on their host machines. Application
clients and servers also include necessary Orbix runtime components, but for
simplicity these are not shown in Figure 9 on page 24.

This simple model is easy to implement and might be appropriate for small
applications with just a few clients. Keeping these separate files properly
updated can become difficult as applications grow or more servers or clients are
added.

You can minimize administrative overhead by using a centralized configuration
file, which is served to many ORBs using NFS, Windows Networking, or a
similar network service. A centralized file is easier to maintain than many local
files, because only one file must be kept updated.
23

CHAPTER 2 | Selecting an Orbix Environment Model

Configuration repository A centralized configuration model is suitable for environments with a potentially
large number of clients and servers, or when configuration is likely to change.
The Orbix configuration repository provides a centralized database for all
configuration information.

The Orbix components in Figure 10 on page 25 consist of the Orbix
management tools, the locator daemon, and a configuration repository. The
configuration repository stores the configuration for all Orbix components.
When servers and clients are installed, they store their configuration in separate
configuration scopes in the configuration repository. Application clients and
servers also include their own Orbix runtime components, but these are not
shown.

Figure 9: Orbix Environment with Local Configuration

Distribution CD
Orbix Runtime
Location Service, Configuration, Naming,
Interface Repository, Administration
(Mgmt) tools

Config File

CORBA Transports

Host (NT)

Host (Solaris)

Config
File

Mgmt

Host (NT)

Host (NT)

Client

Config File

Client

Config File

Application
Server

Legend:

Gray shapes identify Orbix components and files.

Client

Dotted outlines identify application components (usually installed after Orbix is installed).

Location
service
 24

Configuration Models
This model is highly scalable because more applications can be added to more
hosts in the environment, without greatly increasing administration tasks. When
a configuration value changes, it must be changed in one place only. In this
model, the host running Orbix, the configuration repository, and locator daemon
must be highly reliable and always available to all clients and servers.

Figure 10: Orbix Environment with Centralized Configuration

Distribution CD
Orbix Location Service, Configuration,
Naming, Interface Repository,
Administration tools

CORBA Transports

Host (NT)

Host (HP/UX)

Location
Service

Mgmt

Host (NT)

Host (NT)

Application
Server

Legend:

Gray shapes identify Orbix components and files.

Dotted outlines identify application components .

Client Client

Client

Cfg.
Repository
25

CHAPTER 2 | Selecting an Orbix Environment Model
Getting the Most from Your Orbix
Environment

Overview As you add more or larger applications to your Orbix environment, scalability
becomes more crucial. This section discusses some Orbix features that support
scalability, and shows how to use them. The following topics are discussed:

• “Using Capabilities of Well-Designed Orbix Applications” on page 27

• “Using the Right Data Storage Mechanism” on page 29

Moving other Orbix services (for example, a naming service), or moving servers
also requires some administration to ensure continuation of these services.
However, handling these changes is relatively simple and does not involve much
administration.
 26

Getting the Most from Your Orbix Environment
Using Capabilities of Well-Designed Orbix Applications

Orbix optimizations Like a major highway, Orbix is designed to handle a lot of traffic. For example,
when Orbix clients seek their configuration from a centralized configuration
mechanism, they compare the version of the locally cached configuration to the
version of the live configuration. If versions match, the client uses the cached
version. Not reading the entire configuration from the central repository saves
time and network bandwidth. Many other programmatic techniques are used
throughout Orbix to make it efficient. On the administrative side, proper domain
management keeps applications and their clients in an orderly, efficient, and
scalable framework.

For such reasons, most applications and environments will not come close to any
limitations imposed by Orbix. It is more likely that other network or host-related
limitations will get in the way first. Nevertheless, extremely large applications,
or large environments with huge numbers of applications and users, are special
cases and there are guidelines for keeping such applications and their
environments running smoothly.

Special cases For example, imagine a very large database application with thousands of POAs
registered with the locator daemon. If a server restarts, programmatic
re-registering of POA state information with the locator daemon can take some
time, and even slow down other applications that are using the locator daemon.
In such cases, programmers should use the Orbix dynamic activation capability
to avoid an unnecessary server-side bottleneck. With dynamic activation, POAs
are registered during application deployment. POA state information is handled
only if an object is invoked, and only for the POA that is hosting the object.
27

CHAPTER 2 | Selecting an Orbix Environment Model
Looking now at the client side of very large applications, imagine a locator
daemon with thousands of registered POAs (for example, an airline ticketing
application) handling thousands of client requests per minute. Programmatic
optimizations (for example, efficient use of threads, proper organization of the
application's POA system or load balancing) help to minimize bottlenecks here.
Administrators can take additional steps, such as active connection management,
to optimize performance.

Other issues Other application design issues include multi-threading, how to partition objects
across POAs, how to partition POAs across servers, and what POA policies
would be best to use under certain circumstances). For more information, see the
CORBA Programmer’s Guide.
 28

Getting the Most from Your Orbix Environment
Using the Right Data Storage Mechanism

Overview Orbix provides standard storage mechanisms for storing persistent data used by
Orbix and by applications. Access to these standard mechanisms uses the
CORBA persistent state service. This service allows alternative storage
mechanisms to be used within an environment for storing data for configuration,
location, and the naming service. If your applications encounter limitations
imposed by a specific storage mechanism, consider moving to an industrial
strength database (for example, Oracle or Sybase) at the backend.

Information about implementing alternative storage mechanisms is outside the
scope of this guide. Consult your Orbix vendor for more information.
29

CHAPTER 2 | Selecting an Orbix Environment Model
Getting the Most from Orbix Configuration

Overview This section answers some basic questions administrators might have about
using:

• Separate Orbix environments

• Multiple configuration domains

Separate Orbix environments Companies can use separate Orbix environments to insulate development, test,
and production environments from each other. While you can use separate
configuration scopes for this, having separate sets of Orbix services reduces the
risk of development and test efforts interfering with production- level Orbix
services.

Multiple configuration domains Development environments might use separate configuration domains to isolate
development and test efforts from one another. Security policies might also
require multiple configuration domains within a single customer environment.
For example, separate organizations in a company might have different
administrators with different network security credentials.

Geographic separation or network latency issues might also drive a decision to
have separate configuration domains.
 30

Part II
Managing an Orbix

Environment

In this part This part contains the following chapters:

Managing Orbix Configuration page 33

Managing Persistent CORBA Servers page 49

Configuring Scalable Applications page 79

Managing the Naming Service page 107

Managing an Interface Repository page 121

Managing the Firewall Proxy Service page 131

Managing Orbix Service Databases page 137

Configuring Orbix Compression page 149

Configuring Advanced Features page 159

CHAPTER 3

Managing Orbix
Configuration
All Orbix clients and servers, including Orbix services such as the
locator or naming service, belong to a configuration domain that
supplies their configuration settings.

Orbix identifies a client or server by the name of its ORB, which maps to a
configuration scope. This scope contains configuration variables and their
settings, which control the ORB’s behavior. Configuration domains can be
either based on a centralized configuration repository, or on configuration files
that are distributed among all application hosts. Both configuration types operate
according to the principles described in this chapter.

In this chapter This chapter contains the following sections:

Note: For details on how to set up an Orbix environment, see the Orbix
Deployment Guide. For details on using a secure configuration
repository-based domain, see the Orbix Security Guide.

How an ORB Gets its Configuration page 34

Locating the Configuration Domain page 36

Obtaining an ORB’s Configuration page 38

Managing Configuration Domains page 47
33

CHAPTER 3 | Managing Orbix Configuration
How an ORB Gets its Configuration

Overview Every ORB runs within a configuration domain, which contains variable settings
that determine the ORB’s runtime behavior. Figure 12 summarizes how an
initializing ORB obtains its configuration information in a configuration
repository-based system, where services are distributed among various hosts.

Figure 11: How an Orbix Application Obtains its Configurations

2

Host

Naming
Service

Host

Locator

Host

Interface
Repository

Host
Initializing

ORB

Local
Disk

Configuration Domain File

plugins:iiop, giop

domain:itconfig://IOR...

1

3

Standard orb plug-ins
orb_plugins = "iiop_profile, giop, iiop"

Standard initial references
initial_references:NamingService:reference ="IOR:0100..."
initial_references:InterfaceRepository:reference = "IOR"
initial_references:Locator:reference = "IOR:01000..."

Other configuration variables,
configuration scopes, and
 ORB-specific variables.

Host
Configuration

Repository
 34

How an ORB Gets its Configuration
1. The initializing ORB reads the local configuration file, which is used to

contact the configuration repository.

2. The ORB reads configuration data from the configuration repository, and

obtains settings that apply to its unique name. This establishes the normal

plug-ins and locates other CORBA services in the domain.

3. The fully initialized ORB communicates directly with the services defined

for its environment.

Configuration steps An initializing ORB obtains its configuration in two steps:

1. Locates its configuration domain.

2. Obtains its configuration settings.

The next two sections describe these steps.

Note: In repository-based configuration domains, the local
configuration file contains a domain configuration variable, which is set
to the repository’s IOR. For example:

domain = "itconfig://00034f293b922...00d3";

In a file-based configuration, the domain-name.cfg file does not contain
a domain variable; instead, the local configuration file itself contains all
configuration data.
35

CHAPTER 3 | Managing Orbix Configuration
Locating the Configuration Domain
An ORB locates its configuration domain as described in the following
language-specific sections.

C++ applications In C++ applications, the ORB obtains the domain name from one of the
following, in descending order of precedence:

1. The -ORBconfig_domain command-line parameter

2. The IT_CONFIG_DOMAIN environment variable

3. default-domain.cfg

The domain is located in one of the following, in descending order of
precedence:

1. The path set in either the -ORBconfig_domains_dir command line

parameter or the IT_CONFIG_DOMAINS_DIR.environment variable.

2. The domains subdirectory to the path set in either the -ORBconfig_dir

command-line parameter or the IT_CONFIG_DIR.environment variable.

3. The default configuration directory:

UNIX

Windows

Java applications In Java applications, the ORB obtains the domain name from one of the
following, in descending order of precedence:

1. The -ORBconfig_domain command-line parameter.

2. The ORBconfig_domain Java property.

3. default-domain.cfg.

/etc/opt/iona

%IT_PRODUCT_DIR%\etc
 36

How an ORB Gets its Configuration
The domain is located in one of the following, in descending order of
precedence:

1. The path set in either the -ORBconfig_domains_dir command-line

parameter or the ORBconfig_domains_dir Java property.

2. The domains subdirectory to the path set in either the -ORBconfig_dir

command-line parameter or the ORBconfig_dir Java property.

3. All directories specified in the classpath.

Note: Java properties can be set for an initializing ORB in two ways, in
descending order of precedence:

• As system properties.

• In the iona.properties properties file. See “Java properties” on

page 435 for information on how an ORB locates this file.
37

CHAPTER 3 | Managing Orbix Configuration
Obtaining an ORB’s Configuration

Overview All ORBs in a configuration domain share the same data source—either a
configuration file or a repository. Configuration data consists of variables that
determine ORB behavior. These are typically organized into a hierarchy of
scopes, whose fully-qualified names map directly to ORB names. By organizing
configuration variables into various scopes, you can provide different settings
for individual ORBs, or common settings for groups of ORBs.

Configuration scopes apply to a subset of ORBs or a specific ORB in an
environment. Orbix services such as the naming service have their own
configuration scopes. Orbix services scopes are automatically created when you
configure those services into a new domain.

Applications can have their own configuration scopes and even specific parts of
applications (specific ORBs) can have ORB-specific scopes.

Scope organization Figure 12 shows how a configuration domain might be organized into several
scopes:

Figure 12: Hierarchy of Configuration Scopes

company

production

operations

finance

hr

company

production

operations

finance

hr
 38

How an ORB Gets its Configuration
Five scopes are defined:

• company

• company.production

• company.operations

• company.operations.finance

• company.operations.hr

Given these scopes, and the following ORB names:

All ORBs whose names are prefixed with company.operations.finance
obtain their configuration information from the company.operations.finance
configuration scope.

Variables can also be set at a configuration’s root scope—that is, they are set
outside all defined scopes. Root scope variables apply to all ORBs that run in the
configuration domain.

Scope name syntax An initializing ORB must be supplied the fully qualified name of its
configuration scope. This name contains the immediate scope name and the
names of all parent scopes, delimited by a period (.). For example:

ORB name mapping An initializing ORB maps to a configuration scope through its ORB name. For
example, if an initializing ORB is supplied with a command-line -ORBname
argument of company.operations, it uses all variable settings in that scope, and
the parent company and root scopes. Settings at narrower scopes such as
company.operations.finance, and settings in unrelated scopes such as
company.production, are unknown to this ORB and so have no effect on its
behavior.

company.operations.finance.ORB001
company.operations.finance.ORB002
company.operations.finance.ORB003
company.operations.finance.ORB004

company.operations.hr
39

CHAPTER 3 | Managing Orbix Configuration
If an initializing ORB doesn’t find a scope that matches its name, it continues its
search up the scope tree. For example, given the hierarchy shown earlier, ORB
name company.operations.finance.payroll will fail to find a scope that
matches. An ORB with that name next tries the parent scope
company.operations.finance. In this case, ORB and scope names match and
the ORB uses that scope. If no matching scope is found, the ORB takes its
configuration from the root scope.

Defining configuration scopes After you create a configuration domain, you can modify it to create the desired
scopes:

• A file-based configuration can be edited directly with any text editor, or

with itadmin commands scope create and scope remove.

• A repository-based configuration can only be modified with itadmin

commands scope create and scope remove.

File-based configuration

In a file-based configuration, scopes are defined as follows:

scope-name
{
 variable settings
 ...
 nested-scope-name
 {
 variable settings
 ...
 }
}

 40

How an ORB Gets its Configuration
For example, the following file-based Orbix configuration information defines
the hierarchy of scopes shown in Figure 12 on page 38:

itadmin commands

You can create the same scopes with itadmin commands, as follows:

company
{
 # company-wide settings
 operations
 {
 # Settings common to both finance and hr

 finance
 {
 # finance-specific settings
 }
 hr
 {
 # hr-specific settings
 }

 } # close operations scope
 production
 {
 # production settings
 }

} # close company scope

itadmin scope create company
itadmin scope create company.production
itadmin scope create company.operations
itadmin scope create company.operations.finance
itadmin scope create company.operations.hr
41

CHAPTER 3 | Managing Orbix Configuration
Precedence of variable settings Configuration variables set in narrower configuration scopes override variable
settings in wider scopes. For example, the company.operations.orb_plugins
variable overrides company.orb_plugins. Thus, the plug-ins specified at the
company scope apply to all ORBs in that scope, except those ORBs that belong
specifically to the company.operations scope and its child scopes, hr and
finance. Example 1 shows how a file-based configuration might implement
settings for the various configurations shown in Figure 12 on page 38:

Example 1: File-Based Configuration

1 company
{
 # company-wide settings

 # Standard ORB plug-ins
 orb_plugins =
 ["local_log_stream", "iiop_profile", "giop", "iiop"];

 # Standard initial references.
 initial_references:RootPOA:plugin = "poa";
 initial_references:ConfigRepository:reference
 = "IOR:010000002000...00900";
 initial_references:InterfaceRepository:reference
 = "IOR:010000002000...00900";
 # Standard IIOP configuration
 policies:iiop:buffer_sizes_policy:max_buffer_size = -1

2 operations
 {
 # Settings common to both finance and hr

 # limit binding attempts
 max_binding_iterations = "3";

 3 finance
 {
 # finance-specific settings

 # set 5-second timeout on invocations
 policies:relative_binding_exclusive_request_timeout =
 "5000"
 }
 42

How an ORB Gets its Configuration
1. The company scope sets the following variables for all ORBs within its

scope:

♦ orb_plugins specifies the plug-ins available to all ORBs.

♦ Sets initial references for several servers.

♦ Sets an unlimited maximum buffer size for the IIOP transport.

2. ORBs in the operations scope limit all invocations to three rebind

attempts.

3. All ORBs in the finance scope set invocation timeouts to 5 seconds.

4. All ORBs in the hr scope set invocation timeouts to 15 seconds.

5. The production scope overrides the company-scope setting on

policies:iiop:buffer_sizes_policy:max_buffer_size, and limits

maximum buffer sizes to 4096.

4 hr
 {
 # hr-specific settings

 # set 15-second timeout on invocations
 policies:relative_binding_exclusive_request_timeout =
 "15000"
 }

 } # close operations scope
5 production

 {
 # production settings
 policies:iiop:buffer_sizes_policy:max_buffer_size =
 "4096";

 }

} # close company scope

Example 1: File-Based Configuration
43

CHAPTER 3 | Managing Orbix Configuration
Sharing scopes All ORBs in a configuration domain must have unique names. To share settings
among different ORBs, define a common configuration scope for them. For
example, given two ORBs with common configuration settings, a file-based
configuration might define their scopes as follows:

Thus, the two ORBs—common.server1 and common.server2—share common
scope settings.

If an ORB has no settings that are unique to it, you can omit defining a unique
scope for it. For example, if common.server2 has no unique settings, you might
modify the previous configuration as follows:

When the common.server2 ORB initializes, it fails to find a scope that matches
its fully qualified names. Therefore, it searches up the configuration scope tree
for a matching name, and takes its settings from the parent scope, common.

common {
 # common settings here
 # ...
 server1 {
 #unique settings to server1
 }
 server2 {
 #unique settings to server2
 ...
 }
} # close common scope

common {
 # common settings here
 # ...
 server1 {
 #unique settings to server1
 }
} # close common scope
 44

Configuration Variables and Namespaces
Configuration Variables and Namespaces

Variable components Configuration variables determine an ORB’s behavior, and are organized into
namespaces. For example, a configuration might contain the following entry:

This variable consists of three components:

• The initial_references:IT_Locator namespace.

• The variable name reference.

• A string value.

Namespaces Configuration namespaces are separated by a colon (:). Configuration
namespaces group related variables together—in the previous example, initial
references. Orbix defines namespaces for its own variables. You can define your
own variables within these namespaces, or create your own namespaces.

Data types Each configuration variable has an associated data type that determines the
variable’s value. When creating configuration variables, you must specify the
variable type.

Data types can be categorized into two types:

• Primitive types

• Constructed types

Primitive types

Three primitive types, boolean, double, and long, correspond to IDL types of
the same name. See the CORBA Programmer’s Guide for more information.

Constructed types

Orbix supports two constructed types: string and ConfigList (a sequence of
strings).

initial_references:IT_Locator:reference ="IOR:010000...0900";
45

CHAPTER 3 | Managing Orbix Configuration
A string type is an IDL string whose character set is limited to the character set
supported by the underlying configuration domain type. For example, a
configuration domain based on ASCII configuration files could only support
ASCII characters, while a configuration domain based on a remote configuration
repository might be able to perform character set conversion.

Variables of the string type also support string composition. A composed string
variable is a combination of literal values and references to other string
variables. When the value is retrieved, the configuration system replaces the
variable references with their values, forming a single complete string.

The ConfigList type is simply a sequence of string types. For example:

Setting configuration variables itadmin provides two commands for setting configuration domain variables:

• itadmin variable create creates a variable or namespace in the

configuration domain.

• itadmin variable modify changes the value of a variable or namespace

in a configuration domain.

In a file-based domain, you can use these commands, or you can edit the
configuration file manually. In a file-based configuration, all variable values
must be enclosed in quotes ("") and terminated by a semi-colon (;). ConfigList
variables can include empty entries, for example:

This can be added to the configuration file manually, or specified on the
command line as follows:

orb_plugins = ["local_log_stream", "iiop_profile",
"giop","iiop"];

binding:server_binding_list = ["OTS", ""];

itadmin variable create -type list -value OTS,\"\"
binding:server_binding_list
 46

Managing Configuration Domains
Managing Configuration Domains
Configuration management generally consists of the tasks outlined in Table 1.

Note: For details on using a secure configuration repository-based domain,
see the Orbix Security Guide.

Table 1: Configuration Domain Management Tasks

Perform this task... By running...

Start the configuration
repository

One of the following:

start_domain-name_services script
starts the configuration repository and
other domain services.

itconfig_rep run starts the
configuration repository only.

Stop the configuration
repository

itadmin config stop

View configuration repository
contents

itadmin config dump

List all replicas of the
configuration repository

itadmin config list_servers

Convert from a file to a
configuration repository

itadmin file_to_cfr.tcl

Create scope itadmin scope create

List scopes itadmin scope list

View scope contents itadmin scope show

Create namespace itadmin namespace create

List namespaces itadmin namespace list

View namespace contents itadmin namespace show

Remove namespace itadmin namespace remove
47

CHAPTER 3 | Managing Orbix Configuration
Troubleshooting configuration
domains

By default, itadmin manages the same configuration that it uses to initialize
itself. This can be problematic if you need to run itadmin in order to repair a
configuration repository that is unable to run. In this case, you can run itadmin
in another configuration domain by supplying the following command-line
parameters (or the equivalent environment variable or Java property):

For example, the following itadmin command runs the itadmin tool in the
temp-domain domain, and adds the orb_plugins variable to the repository of
the acme-products domain:

Create variable itadmin variable create

View variable itadmin variable show

Modify variable itadmin variable modify

Remove variable itadmin variable remove

Table 1: Configuration Domain Management Tasks

Perform this task... By running...

-ORBdomain_name Specifies the configuration for itadmin. This
is typically a temporary file-based
configuration created for this purpose only.

-ORBadmin_domain_name Specifies the configuration domain repository
to modify.

-ORBadmin_config_domains_dirSpecifies the directory in which to find the
the administered configuration. This
parameter is required only if the
configuration’s location is different from the
default domain’s directory.

itadmin -ORBdomain_name temp-domain
 -ORBadmin_domain_name acme-products
 variable create -type list
 -value iiop_profile,giop,iiop orb_plugins
 48

CHAPTER 4

Managing
Persistent CORBA
Servers
Location and activation data for persistent CORBA servers are
maintained by the locator daemon in the implementation
repository.

In this chapter This chapter explains how to register and manage server information in a
location domain. It contains the following sections:

Introduction page 50

Registering Persistent Servers page 51

Server Environment Settings page 56

Managing a Location Domain page 60

Using Direct Persistence page 72
49

CHAPTER 4 | Managing Persistent CORBA Servers
Introduction

Overview CORBA servers that export persistent objects must be registered with a locator
daemon using its implementation repository. Servers that are registered with the
same locator daemon comprise a location domain. Through the implementation
repository, a locator daemon can locate persistent objects on any server in its
domain. A server can also be configured for automatic activation, if necessary,
through a node daemon that runs on each domain host.

Management tasks After you register persistent servers in an implementation repository, servers and
clients use this repository transparently. A configured location domain typically
requires very little outside management. However, occasional circumstances
might require you to manage a location domain. For example:

• The locator daemon stops and needs to be restarted, or runtime parameters

need to be updated.

• An application is installed, moved, or removed, and application data needs

to be updated.

• Activation parameters need to be changed—for example, the command

line arguments passed into a server.

itadmin commands itadmin commands lets you update and view data in the implementation
repository. You can issue these commands manually from the command line or
the itadmin command shell, or automatically through an application setup
script. You can execute these commands from any host that belongs to the
location domain.
 50

Registering Persistent Servers
Registering Persistent Servers

CORBA persistent servers A persistent CORBA server is one whose ORB contains persistent POAs. All
persistent POAs must be registered in the implementation repository of that
server’s location domain. When the server initializes, the following occurs:

1. The server’s ORB creates communication endpoints for its persistent

POAs, where POA managers listen for incoming object requests.

2. The ORB sends POA endpoint addresses to the locator daemon, which

registers them in the implementation repository against the corresponding

entry.

3. The locator daemon returns its own address to the server’s ORB. Persistent

POAs that run in this ORB embed that address in all persistent object

references.

Because a persistent object’s IOR initially contains the locator daemon’s
address, the locator daemon receives the initial invocation and looks up the
object’s actual location in the implementation repository. It then returns this
address back to the client, which sends this and later invocations on the object
directly to the server.

By relying on the locator daemon to resolve their location, persistent objects and
their servers can exist anywhere in the location domain. Furthermore, an
implementation repository can register server processes for on-demand
activation and for per-client activation.

Persistent server registration
process

In general, registration of a persistent server is a three-step process:

1. “Register the server process for on-demand activation”.

2. “Register the ORB” that runs in that process.

3. “Register POAs” that run in the ORB.

This section shows how to use itadmin commands to perform these tasks. You
can enter these commands either on the command line, or using a script.

Per-client activation is a special case of on-demand activation that provides a
one-to-one mapping between clients and server processes. See “Per-client
activation” on page 54 for more details.
51

CHAPTER 4 | Managing Persistent CORBA Servers
Register the server process for
on-demand activation

itadmin process create lets you register a process with a location domain for
on-demand activation. When a locator daemon receives an invocation for an
object whose server process is inactive, it contacts the node daemon that is
registered for that process, which activates the process.

The following example registers the my_app server process with the oregon
node daemon:

In this example, the process create command takes the following parameters:

For more about these and other parameters, see process create.

Register the ORB After you register a server process, associate it with the name of the ORB that it
initializes, using itadmin orbname create. This name must be the same as
-ORBname argument that you supply the server during startup. For example, the
following command associates the registered process, my_app, with the
my_app.server_orb ORB:

itadmin process create
 -node_daemon iona_services.node_daemon.oregon
 -pathname "d:/bin/myapp.exe"
 -startupmode on_demand
 -args "training.persistent.my_server
 -ORBname my_app.server_orb" my_app

-node_daemon Specifies the node daemon that resides on the process’s host.
This node daemon is responsible for starting the process.

-startupmode When set to on_demand, this specifies that the node daemon
restarts the server process when requested.

-args Specifies command-line arguments. Use the -args argument
to specify the ORB name and (for Java executables) the Java
class name. You can also use this argument to set the Java
class path.

itadmin orbname create -process my_app my_app.server_orb
 52

Registering Persistent Servers
The ORB name must be unique in the location domain; otherwise an error is
returned.

Register POAs After you register a server process and its ORB, register all persistent POAs and
their ancestors—whether persistent or transient—using itadmin poa create.
Persistent POAs must be registered with the ORB name (or in the case of
replicated POAs, ORB names) in which they run. For example, the following
command registers the banking_service/account/checking persistent POA
and its immediate ancestors banking_service/checking and
banking_service with the my_app.server_orb ORB:

All POA names within a location domain must be unique. For more information
about avoiding name conflicts, see “Ensuring Unique POA Names” on page 70.

Transient POAs

A transient POA does not require state information in the implementation
repository. However, you must register its POA name in the implementation
repository if it is in the path of any persistent POAs below it. In the previous
example, the banking_service/account transient POA is registered as the
parent of the banking_service/account/checking persistent POA.

POA replicas

Orbix implements server replication at the POA level. To create POA replicas,
specify the ORB names in which they run using the -replicas argument. For
more details, refer to “Building a Replicated Server” on page 89.

Note: If you change an ORB name to make it unique in the location domain,
also be sure to change the ORB name that is specified for the server. If an
ORB-specific scope has been established in the configuration domain, also
change the configuration scope name.

itadmin poa create -orbname my_app.server_orb \
 banking_service
itadmin poa create \
 banking_service/account -transient
itadmin poa create -orbname my_app.server_orb \
 banking_service/account/checking
53

CHAPTER 4 | Managing Persistent CORBA Servers
Per-client activation You can register a process for per-client activation using the itadmin process
create command. In this case, instead of multiple clients sharing the same
server, a new process is created for each client. When the locator daemon
receives an invocation for an object whose server process is registered as
per_client, it creates a new ORB name and process, and contacts the registered
node daemon to launch the server.

The following example registers the my_app server process with the oregon
node daemon for per-client activation:

In this example, the process create command takes the following parameters:

itadmin process create
 -node_daemon iona_services.node_daemon.oregon
 -pathname "d:/bin/myapp.exe"
 -startupmode per_client
 -args "training.persistent.my_server
 -ORBname %o" my_app

-node_daemon Specifies the node daemon that resides on the process’s
host. This node daemon is responsible for starting the
process.

-startupmode When set to per_client, specifies that the locator creates
a new process and ORB name for each client invoking on
objects in the associated persistent POA, and requests the
node daemon to start the process.

-args Specifies the command-line arguments. Because the
locator generates the ORB name, any string matching %o in
the process's argument list is replaced with the name of the
new ORB. Similarly, any string matching %p is replaced
with the name of the process created by the locator.
 54

Registering Persistent Servers
To ensure that multiple servers containing the same object can co-exist, the
locator creates a new ORB name and a new process for each client. The new
ORB name is created by appending an id string to the registered ORB name,
where id is an integer value. In this example, the created ORB names might be
my_app.12 and my_app.3. This naming scheme ensures that configuration
variables can be shared between the server processes. New process names are
created in a similar manner. When a server process has terminated, the locator
can reuse the ORB name and process name.

The persistent POA associated with a per-client activated process must support
dynamic addition of replicas. This support is automatically enabled when
creating a POA whose associated process's startup-mode is per-client. See poa
create and poa modify for more details.

For more information about these and other parameters, see process create.

WARNING:The locator or node daemons do not terminate the server process
when the server's associated client terminates. It is the application’s
responsibility to terminate the server process by, for example:

• adding a shutdown operation that is invoked by the client before the

client terminates;

• using the leasing plug-in to detect when the client has completed;

• making the server to terminate after a certain amount of time has elapsed

without any invocation.
55

CHAPTER 4 | Managing Persistent CORBA Servers
Server Environment Settings

Overview When a registered server process starts, it is subject to its current environment.

In this section The following sections discuss:

Windows Environment Settings page 57

UNIX Environment Settings page 58
 56

Server Environment Settings
Windows Environment Settings

Creation flag settings The following creation flag settings apply:

DETACHED_PROCESS for console processes, denies the newly created
process access to the console of the parent process.

CREATE_NEW_PROCESS_GROUP identifies the created process as the
root process of a new process group. The process group includes all processes
that are descendants of this root process.

CREATE_DEFAULT_ERROR_MODE specifies that the created process
does not inherit the error mode of the calling process.

NORMAL_PRIORITY_CLASS indicates a normal process with no special
scheduling needs.

Handle inheritance Open handles are not inherited from the node daemon.

Security The new process’s handle and thread handle each get a default security
descriptor.
57

CHAPTER 4 | Managing Persistent CORBA Servers
UNIX Environment Settings

File access permissions You can set user and group IDs for new processes using the -user and -group
arguments to itadmin process create. Before setting user or group IDs for the
target process, ensure that the following applies on the host where the target
process resides:

• The specified user exists in the user database.

• The specified group exists in the group database.

• The specified group matches the primary group of the specified user in the

user database.

If the specified group does not match the primary group in the users database,
the specified user must be a member of the specified group in the group
database.

Before a server starts, the file access privilege of the activated process is lowered
if the node daemon is the superuser. If the node daemon is not the superuser, the
activated process has the same privileges as the node daemon.

Check whether newly activated target processes have set-uid/set-gid
permissions. These allow the server to change the effective user and group IDs,
enabling a possible breach of security.

The user and group ID settings affect the working directory settings (if directory
paths are created) and the open standard file-descriptor processing.

File creation permissions The file mode creation mask is set by supplying the -umask argument to
itadmin process create. By default, the umask is 022 and the actual creation
mode is 755 (rwxr-xr-x).

The umask setting affects the current directory setting (if directory paths are
created) and the open standard file-descriptor processing.

Open file descriptors The activated server has only standard input, output, and error open for both
reading and writing, and is connected to /dev/null instead of to a terminal.

Note: If you cannot edit the /etc/group file, specify the user’s primary
group. This allows the server to operate normally, even if the /etc/group file
is not well maintained.
 58

Server Environment Settings
Resource limits Resource limits are inherited from the node daemon.

Session leader The activated server creates a new session and becomes leader of the session and
of a new process group. It has no controlling terminal.

Signal disposition All valid signals between 1 and NSIG-1 are set to their default dispositions for
the activated server.
59

CHAPTER 4 | Managing Persistent CORBA Servers
Managing a Location Domain

Management tasks Location domain management generally consists of the following tasks:

• Managing server processes.

• Managing the locator daemon.

• Managing node daemons.

• Listing location domain data.

• Modifying a location domain.

• Ensuring that all POA names within a domain are unique.
 60

Managing a Location Domain
Managing Server Processes

Starting and stopping registered
server processes

Server processes that are registered for on-demand activation do not require any
manual intervention. You only need to explicitly start and stop processes that are
not set for on-demand activation.

To manually start a registered target server process on a host where a node
daemon resides, use the itadmin process start command. For example:

To stop a registered target server process on the host where the node daemon
resides, use the itadmin process stop command. For example:

Securing server processes You can specify that the node daemon can launch processes only from a list of
secure directories, in one of two ways:

• Set the itnode_daemon run’s -ORBsecure_directories parameter.

• Set the secure_directories configuration variable.

Both specify a list of secure directories in which the node daemon can launch
processes. When the node daemon attempts to launch a registered process, it
checks its pathname against the secure_directories list. If a match is found,
the process is activated; otherwise, the node daemon returns a
StartProcessFailed exception to the client.

Moving manually launched
processes

A process that is not registered to be launched on demand can be moved to a new
host by stopping it on its current host, and restarting it on the new host.

This behavior can be disabled by setting the following configuration variable to
false, and restarting the locator:

plugins:locator:allow_node_daemon_change

Attempting to move a process that is already active or is registered to be
launched on demand results in an error.

itadmin process start my_app

itadmin process stop my_app
61

CHAPTER 4 | Managing Persistent CORBA Servers
Managing the Locator Daemon

Overview A locator daemon enables clients to locate servers in a network environment.
Normally, a locator daemon runs as root on UNIX, or with administrator
privileges on Windows NT. To start and stop a locator daemon, you must be
logged on as UNIX root or with Windows NT administrator privileges.

This section assumes that Orbix has been installed and configured to run within
your network environment. For more on configuring and deploying Orbix, see
Orbix Deployment Guide.

Starting a locator daemon To start a locator daemon:

1. On the machine where the locator daemon runs, log on as root or NT

administrator.

2. Open a terminal or command window.

3. Enter itlocator run.

By default, this runs the locator daemon in the foreground.

4. Complete the appropriate actions for your platform as specified below.

Windows

Leave the command window open while the locator is running.

UNIX

Leave the terminal window open or use operating system commands to run

the process in the background.

Note: In a configuration repository domain, the configuration repository
must be running before starting the locator daemon.
 62

Managing a Location Domain
Stopping a locator daemon To stop a locator daemon, use the itadmin locator stop command. This
command has the following syntax:

Stopping all daemons and
monitored processes

To stop the locator, all registered node daemons, and monitored processes
running in the location domain, use the -alldomain argument:

Restarting a locator daemon If a locator daemon is stopped and restarted while server processes are active, it
recovers information about the active processes when it starts up again. The
locator daemon validates that server processes, ORBs and POAs that were active
when it was shutdown are still responding. If these server processes are no
longer running, the locator daemon can detect this.

Starting the locator under a heavy
client load

When a server receives a large number of client requests, the server’s node
daemon may not be able to register itself with the locator, which prevents the
server from starting properly.

To handle this, Orbix provides a message-level interceptor plug-in that closes
the connection on receiving locator requests from hosts other than those
specified. Orbix does this until a node daemon has registered (the filter is
effectively switched off). The clients must be able to handle the
CORBA::Exception as a result of the connection being closed.

itadmin locator stop locator-name

itadmin locator stop -alldomain locator-name
63

CHAPTER 4 | Managing Persistent CORBA Servers
Example configuration

The following shows how to configure this interceptor:

plugins:connection_filter:shlib_name = "it_connection_filter";

Add the connection filter to the locator binding list
plugins:giop:message_server_binding_list = ["BiDir_GIOP",

"FILTER+GIOP", "GIOP"];

Add the connection filter to the locator orb plugins list
orb_plugins = ["local_log_stream", "iiop_profile", "giop",
"connection_filter", "ots", "iiop"];

enable the interceptor
plugins:node_daemon:registration:required = "true";

Accept connections from these hosts
plugins:connection_filter:address:list = ["10.2.2.127"];

Optional
Limit the number of threads that are getting created in the
locator - this is optional, but could prevent core dumps
thread_pool:high_water_mark = "200";

See what the filter is doing
event_log:filters = ["IT_POA_LOCATOR=*", "IT_LOCATOR=*",
"IT_PSS_DB=INFO_HIGH+WARN+ERROR+FATAL",

"IT_CONNECTION_FILTER=*"];
 64

Managing a Location Domain
Managing Node Daemons

Overview In an Orbix location domain, the node daemon is responsible for activating and
managing server processes. Every host running an server must also run a node
daemon. The node daemon performs the following tasks:

• Starts processes on demand.

• Monitors all child processes of registered server processes, and informs the

locator daemon about any events relating to these child processes—in

particular, when a child process terminates. This enables the locator

daemon to remove the outdated dynamic process state information from

the implementation repository, and to restart the process if necessary.

• Monitors all services via heartbeating. If a manually started service

crashes, the node daemon detects this and returns all requests routed to this

server with the appropriate exception.

• Acts as the contact point for servers starting on this machine. When an

server starts on a machine, it contacts the locally running node daemon to

announce its presence. The node daemon informs the locator daemon of

the new server’s presence.

Target server processes that are manually started do not need to register their
process information with the locator daemon. Even when process information is
not registered with the locator daemon, these processes should behave normally
with respect to other location domain capabilities (for example, object location).

However, if you enter process information for a manually started server, you can
still use manual starting by setting its automatic start-up mode to disabled. You
might wish to store this information, to keep a record of all processes installed in
the location domain.
65

CHAPTER 4 | Managing Persistent CORBA Servers
Starting a node daemon To start a node daemon, log on to the host where you want to run the daemon
and enter itnode_daemon run.

By default, at startup, the node daemon attempts to contact the CORBA servers
that it managed during the previous time it ran. If the node daemon was
managing a large number of CORBA servers, this can take up to several
minutes, and delay the node daemon from starting up.

In certain circumstances—for example, restarting after a reboot—it is not
necessary for the node daemon to contact running CORBA servers. This is
because it can be guaranteed that those servers are not running. You can use the
following configuration variable to turn off this default behavior:

plugins:node_daemon:recover_processes="false";

This enables the node daemon to complete its initialization more quickly. You
should set this variable in the node daemon's configuration scope.

Running multiple node daemons
on a single host

One node daemon can control multiple server processes; and normally one node
daemon runs on a given host. Sometimes an application might require a separate
node daemon (for example, to launch servers as different users). In this case, you
can run multiple node daemons on a single host. For example, one node daemon
might run as root, and another as a different user with fewer privileges.

Multiple node daemons on the same host must have different names, which
should reflect their application name in some way.

To configure multiple node daemons, perform the following steps:

1. In the default node_daemon configuration scope, create a sub-scope (for

example, node_daemon.engineering).

2. Provide a value for the node daemon name configuration variable. For

example:

itadmin variable create -scope node_daemon.engineering
-type string -value "eng_node_daemon"
plugins:node_daemon:name
 66

Managing a Location Domain
3. Run the node daemon in the new scope, using the -ORBname argument:

For example, the following commands start two node daemons on the same

host:

Stopping a node daemon To terminate a node daemon, use itadmin .node_daemon stop. This command
also stops all the server processes that the node daemon monitors. For example,
the following command stops the node daemon on alaska:

Viewing a node daemon’s
processes

Before you stop a node daemon, you might want to list all the active processes
that it currently monitors. To do so, run itadmin process list -active. For
example, this command lists the active processes for the node daemon on
alaska:

itnode_daemon
itnode_daemon –ORBname node_daemon.engineering

itadmin node_daemon stop alaska

itadmin process list -active -node_daemon alaska
my_server_process
67

CHAPTER 4 | Managing Persistent CORBA Servers
Listing Location Domain Data
With itadmin commands, you can list the names and attributes of registered
entries in the implementation repository.

Table 2: Commands that List Location Domain Data

Command Action

process list Lists the names of all target processes registered in the
location domain.

process show Lists the attributes of server processes registered with the
locator daemon.

orbname list Lists all ORB names in the location domain.

orbname show Lists the attributes of ORB names registered with the
locator daemon.

poa list Lists the names of all POAs in the location domain.

poa show Lists the attributes of all registered POA names.
 68

Managing a Location Domain
Modifying a Location Domain

Overview With itadmin commands, you can modify and remove registered processes,
ORB names, and POA names from the implementation repository. For detailed
information, see Chapter 23 on page 289.

Modifying entries The itadmin commands listed in Table 3 modify entries for processes, ORB
names, and POA names that are registered with a location domain.

Removing entries You can remove any entry from the implementation repository, whether the
target object is running or not. The itadmin commands listed in Table 4 remove
entries for processes, ORB names, and POA names that are registered with a
location domain.

Table 3: Commands that Modify a Location Domain

Command Action

process modify Modifies the specified process entry.

orbname modify Associates an ORB name with the specified
process name.

poa modify Modifies the specified POA name.

Table 4: Commands that Remove Location Domain Components

Command Action

process remove Removes a process entry.

orbname remove Removes an ORB name from the location domain.
If there is an active ORB entry for the ORB name
in the locator's active ORB table, this is also
removed.

poa remove Removes the entry for the specified POA and its
descendants from the location domain. By default,
all active entries for the POA and its descendants
are also removed.
69

CHAPTER 4 | Managing Persistent CORBA Servers
Ensuring Unique POA Names

Overview The locator daemon finds persistent objects by looking up their POA names in
the implementation repository. Consequently, POA names must be unique in a
location domain.

If you use a repository-based configuration, the implementation repository
prevents name duplication and raises the following error:

If different Orbix applications use the same POA names, you can avoid name
conflicts by setting plugins:poa:root_name. The root_name variable names
the application’s root POA, which is otherwise unnamed. By setting this variable
for each application’s ORB to a unique string, you can ensure unique names for
all POAs.

Procedure The following procedure shows how to register a root POA’s name within a
location domain, and use it with all descendant persistent POAs:

1. To define a root POA name for a server, create a plugins:poa:root_name

configuration variable in the server ORB’s configuration scope:

When the server initializes, it reads its root POA name and applies this to

all its POA names.

ERROR: Unable to add an implementation repository entry for the

POA: EntryAlreadyExists

itadmin variable create
 -scope production.test.servers.server001 -type string
 -value "my_app" plugins:poa:root_name
 70

Managing a Location Domain
2. Register the root POA’s name in the implementation repository:

3. When you register persistent POAs for this server in the implementation

repository, prefix their names (and the names of all ancestor POAs) with

the root POA’s prefix. The following commands register two persistent

POAs:

itadmin poa create -transient my_app

itadmin poa create -transient my_app/poa1
itadmin poa create -orbname

production.test.servers.server001 my_app/poa1/poa2
itadmin poa create -orbname

production.test.servers.server001 my_app/poa1/poa2/poa3
71

CHAPTER 4 | Managing Persistent CORBA Servers
Using Direct Persistence
Using direct persistence enables Orbix to bypass the locator daemon when
resolving persistent object references or contacting Orbix services.

In this section This section discusses the following topics:

CORBA Applications page 73

Orbix Services page 77
 72

Using Direct Persistence
CORBA Applications
In general, a CORBA applications rely on the location daemon to resolve
persistent object references. Alternatively, you might want to avoid the overhead
that is incurred by relying on the location daemon. In this case, you can set up a
server that generates direct persistent object references—that is, object
references whose IORs contain a well-known address for the server process.
This section includes:

• “Requirements”.

• “Example”.

• “Setting direct persistence in configuration only”.

Requirements Two requirements apply:

• The server that generates the object references must set its POA policies to

PERSISTENT, DIRECT_PERSISTENCE. The POA must also have a

WELL_KNOWN_ADDRESSING_POLICY whose value is set to prefix (see the

CORBA Programmer’s Guide).

• The configuration must contain a well-known address configuration

variable, with the following syntax:

address-prefix::transport:addr_list=[address-spec [,...]]

where address-spec has the following syntax:

"[+]host-spec:port-spec"

The plus (+) prefix is optional, and only applies to replicated servers, where

multiple addresses might be available for the same object reference (see

“Direct Persistence and Replica Failover” on page 86).

Note: These requirements involve setting direct persistence programatically.
As an alternative for C++ servers, see also “Setting direct persistence in
configuration only”.
73

CHAPTER 4 | Managing Persistent CORBA Servers
Example For example, you might create a well-known address configuration variable in
scope MyConfigApp as follows:

Given this configuration, a POA created in the MyConfigApp ORB can have its
PolicyList set so it generates persistent object references that use direct
persistence, as follows:

C++

MyConfigApp {
 ...
 my_server:iiop:addr_list=["host.com:1075"];
 ...
}

CORBA::PolicyList policies;
policy.length(4);
CORBA::Any persistence_mode_policy;
CORBA::Any well_known_addressing_policy;
persistence_mode_policy_value <<=

IT_PortableServer::DIRECT_PERSISTENCE;
well_known_addressing_policy_value <<=

CORBA::Any::from_string("wka", IT_TRUE);

policy[0] = poa–>create_lifespan_policy
 (PortableServer::PERSISTENT);
policy[1] = poa–>create_id_assignment_policy
 (PortableServer::USER_ID);
policy[2] = orb->create_policy
 (IT_PortableServer::PERSISTENCE_MODE_POLICY_ID,
 persistence_mode_policy);
policy[3] = orb->create_policy
 (IT_CORBA::WELL_KNOWN_ADDRESSING_POLICY_ID,
 well_known_addressing_policy);
 74

Using Direct Persistence
Java

Setting direct persistence in
configuration only

Orbix has two configuration variables that enable POAs to use direct persistence
and well-known addressing, if the policies have not been set programatically.
Both variables specify the policy for individual POAs by specifying the fully
qualified POA name for each POA. They take the form of
poa:fqpn:variable-name (fqpn is frequently used POA name). For example,
to set the well-known address for a POA whose fully qualified POA name is
darleen you would set the variable poa:darleeen:well_known_address.

poa:fqpn:direct_persistent specifies if a POA runs using direct persistence. If
this is set to true the POA generates IORs using the well-known address that is
specified in the well_known_address variable. Defaults to false.

import com.iona.corba.*;
import com.iona.IT_CORBA.*;
import com.iona.IT_PortableServer.*;

// Set up IONA policies
org.omg.CORBA.Any persistent_mode_policy_value =

global_orb.create_any();
org.omg.CORBA.Any well_known_addressing_policy_value =

global_orb.create_any();
PersistenceModePolicyValueHelper.insert(
 persistent_mode_policy_value,
 PersistenceModePolicyValue.DIRECT_PERSISTENCE);
well_known_addressing_policy_value.insert_string("wka");

org.omg.CORBA.Policy[] policies=new Policy[]
{
 root_poa.create_lifespan_policy(
 LifespanPolicyValue.PERSISTENT),
 root_poa.create_id_assignment_policy(
 IdAssignmentPolicyValue.USER_ID),
 global_orb.create_policy(
 PERSISTENCE_MODE_POLICY_ID.value,
 persistence_mode_policy_value),
 global_orb.create_policy(
 WELL_KNOWN_ADDRESSING_POLICY_ID.value,
 well_known_addressing_policy_value),
};
...
75

CHAPTER 4 | Managing Persistent CORBA Servers
poa:FQPN:well_known_address specifies the address used to generate IORs for
the associated POA when that POA’s direct_persistent variable is set to
true.

For example, by default, the simple_persistent demo creates an indirect
persistent POA called simple_persistent. If you want to run this server using
direct persistence, and well known addressing, add the following to your
configuration:

All object references created by the simple_persistent POA will now be
direct persistent containing the well known IIOP address of port 5555.

Obviously, if your POA name was different the configuration variables would
need to be modified. The scheme used is the following:

FQPN is the fully qualified POA name. This introduces the restriction that your
POA name can only contain printable characters, and may not contain white
space.

AddressPrefix is the string that gets passed to the well-known addressing POA
policy. Specify the actual port used using the variable
AddressPrefix:iiop:port. You can also use iiop_tls instead of iiop.

simple_orb {
 poa:simple_persistent:direct_persistent = "true";
 poa:simple_persistent:well_known_address = "simple_server";
 simple_server:iiop:port = "5555";
 };

poa:FQPN:direct_persistent=<BOOL>;
poa:FQPN:well_known_address=<address_prefix>;
AddressPrefix:iiop:port=<LONG>;

Note: This functionality is currently only implemented in the C++ ORB. If
you are using the Java ORB, you must set the direct persistence and well
known addressing policies programmatically.
 76

Using Direct Persistence
Orbix Services
In general, Orbix uses the locator daemon to resolve the initial reference for each
of the services. Alternatively, you might want to avoid the overhead that is
incurred by relying on the location daemon. In this case, you would configure
the service to run in direct persistence mode.

Technical details When a service runs in direct persistence mode it listens on a fixed host and port
number. This information is embedded into the IOR that the service exports as
an initial reference.

When a CORBA client asks for the service’s initial reference, it receives the IOR
containing the host and port information for the service. The client uses the
embedded information to directly contact the service, bypassing the locator and
node daemon normally used by Orbix services.

Performance issues While direct persistence reduces the overhead of using the locator and node
daemons, it also has a cost in terms of fault tolerance and flexibility. When
running in direct persistence mode a service cannot be started on demand and it
must always listen on the configured host and port number.

Configuration variables To configure a service to run in direct persistence mode, three configuration
variables need to be modified:

plugins:ServiceName:direct_persistence Indicates whether the service
uses direct or indirect persistence. The default value is FALSE, which indicates
indirect persistence.

plugins:ServiceName:iiop:port Specifies the port number that the service will
listen on. If security is installed, then a TLS port is also required.

initial_references:ServiceReferenceString:reference specifies the IOR of
the service.

If the service is clustered, plugins:ServiceName:iiop:host must also be set.
77

CHAPTER 4 | Managing Persistent CORBA Servers
Configuring direct persistence To configure a service to run in direct persistence mode complete the following
steps:

1. If the service is running, shut it down.

2. Set plugins:ServiceName:direct_persistence to TRUE within the

service’s configuration scope.

3. Within the same configuration scope, set

plugins:ServiceName:iiop:port to some open port number.

4. Prepare the service. This causes the service to generate a new IOR for

itself. The new IOR will be printed to the console. Save it for use in the

next step.

5. Within the same configuration scope as used in steps 2 and 3, replace the

value of initial_references:ServiceReferenceString:reference

with the IOR returned in step 4.

6. Restart the service.
 78

CHAPTER 5

Configuring
Scalable
Applications
Enterprise-scale systems, which are distributed across multiple
hosts, networks, and applications, must be designed to handle a
wide variety of contingencies.

For example, mechanical or electrical malfunctions can cause host machines to
stop working. A network can be cut apart by an excavator that accidentally slices
through phone lines. Operating systems can encounter fatal errors and fail to
reboot. Compiler or programming errors can cause software applications to
crash.

Poor design can also cause problems. For example, you might run multiple
copies of a web server to handle higher levels of browser activity. However, if
you run all copies on the same underpowered host machine, you may reduce,
rather than increase, system performance and scalability. Running all web
servers on the same host also makes the entire web site dependent on that
machine—if it fails, it brings down the entire site.

In general, a distributed enterprise system must facilitate reliability and
availability. Otherwise, users and applications are liable to encounter service
bottlenecks and outages.
79

CHAPTER 5 | Configuring Scalable Applications
In this chapter This chapter contains the following sections:

Further information See Chapter 11 for information on additional features that are designed to
enhance scalability and performance (for example, Java new I/O and shared
memory).

Fault Tolerance and Replicated Servers page 81

Building a Replicated Server page 89

Replicating Orbix Services page 95

Fault Tolerance and Replicated Servers page 81

Setting Buffer Sizes page 105
 80

Fault Tolerance and Replicated Servers
Fault Tolerance and Replicated Servers

Overview Reliable and available CORBA applications require an ORB that supports fault
tolerance—that is, an ORB that avoids any single point of failure in a distributed
application. With the enterprise edition of Orbix, you can protect your system
from single points of failure through replicated servers.

A replicated server is comprised of multiple instances, or replicas, of the same
server; together, these act as a single logical server. Clients invoke requests on
the replicated server, and Orbix routes the requests to one of the member
replicas. The actual routing to a replica is transparent to the client.

Benefits Orbix replicated servers provide the following benefits:

Client transparency: Client applications can invoke requests on replicated
servers without requiring any changes.

Transparent failover: If one replica in a replicated server fails, Orbix
automatically redirects clients to another replica, without the clients’ knowledge.

Dynamic management: You can modify a replicated server by adding or
removing replicas at runtime, without affecting client applications or other
replicas.

Replicated infrastructure: Critical services such as the locator daemon,
configuration repository, and naming service are configured as replicated
servers. This ensures that they are always available.

Load balancing: Client invocations can be routed to different replicas within a
replicated server, thus balancing the client load across all, and improving system
performance. Orbix provides out-of-the-box round robin, random, and preferred
local load balancing strategies. The Orbix load-balancing framework is
pluggable, so you can easily implement your own strategies.
81

CHAPTER 5 | Configuring Scalable Applications
About Replicated Servers

Overview Orbix replicates servers with the same infrastructure that supports persistent
CORBA objects—that is, objects that are maintained in POAs with a lifetime
policy of PERSISTENT. Orbix locates persistent objects using the locator daemon,
which maintains their addresses on a physical server (see “Managing Object
Availability” on page 8). A client that invokes on a persistent object for the first
time sends its request to the locator daemon, which redirects the request to the
server’s current host and port. Thus, a client invoking on these objects is
insulated from any knowledge of their actual location.

Orbix uses the locator daemon to support replicated servers. If a persistent object
is instantiated on a replicated server, its references contain the address of the
locator daemon. The locator daemon is responsible for redirecting client requests
on that object to one of the server’s replicas.

POA replicas Object persistence is always set by POA policies. Therefore, Orbix implements
replication through registration of multiple instances, or replicas, of a POA, in a
location domain’s implementation repository. This provides the necessary level
of granularity without adding significant administrative overhead. POA replicas
ensure continuous access to persistent objects; and the Orbix infrastructure is
required only to monitor POA activity.

Deployment of a replicated server For example, you might want to deploy a replicated server that implements the
replicated POA ozzy on hosts zep, floyd, and cream. To do this, complete the
following steps:

Note: The following procedure assumes that a locator daemon and a naming
service are already deployed.
 82

Fault Tolerance and Replicated Servers
1. Register replicas of POA ozzy in the location domain’s implementation

repository. At runtime, each server sends the replica’s actual address to the

domain’s locator daemon. For details on registering POA replicas, see

“Example 1: Building a Replicated Server to Start on Demand” on

page 90.

2. Make persistent object references in a replicated server available to

prospective clients—typically, by advertising object references through the

CORBA naming service.

3. Ensure that the node daemon activates servers on the initial client request.

Otherwise, you must manually activate those servers.

Replicated server startup When the servers start up, the following occurs:

1. Each server’s ORB creates communication endpoints for its persistent

POAs, where POA managers listen for incoming object requests.

2. The ORB sends POA endpoint addresses to the locator daemon, which

registers them in the implementation repository against the corresponding

POA entry. If a persistent POA is replicated across multiple servers, each

replica’s address is registered against the corresponding replica entry.

Thus, the locator daemon can maintain multiple addresses for the same

POA.

3. The locator daemon returns its own address to each ORB. Persistent POAs

that run in this ORB embed that address in all persistent object references.

Invocations on replicated
persistent objects

When a client invokes on a persistent object in the replicated server, the
following occurs:

1. The client ORB sends a locate request to the object reference’s

communication endpoint, which is the locator daemon.

2. When the locator daemon receives the locate request, it searches the

implementation repository for the target object's POA. In this case, it finds

that the ozzy POA is replicated across three servers that run on zep, floyd,

and cream.
83

CHAPTER 5 | Configuring Scalable Applications
3. The locator daemon uses the load-balancing algorithm that is associated

with the ozzy POA to determine which POA replica should handle the

request—for example, the replica on zep.

4. The locator daemon obtains the address to the ozzy POA on zep, and

returns a direct object reference that contains this address to the requesting

client's ORB.

5. The client's ORB sends another locate request for the object, this time with

the direct object reference, to zep. The replica confirms the object’s

existence with an object-here reply.

6. When the client ORB receives the object-here reply, it resends the

client's request to the object instantiated in the ozzy replica on zep.

Except for the original invocation, all steps in this process are transparent to the
client. Thus, clients can invoke on a server in exactly the same way, whether it
exists alone or as a replica within a replicated server.
 84

Fault Tolerance and Replicated Servers
Automatic Replica Failover

Replica Failure If a replica becomes unavailable—for example, because of machine or network
failure—another replica enables clients to access the same objects as follows:

1. As soon as a direct object reference fails, the client ORB retrieves the

object’s original IOR, and sends a locate request to the locator daemon.

2. The locator daemon reapplies the load balancing algorithm for the target

POA against the remaining viable replicas, to determine which one should

handle requests on this object. It then returns a direct object reference to

the client for the chosen replica.

3. All client invocations on the object, including the forwarded one, are

handled by the new replica.

Replica restoration If a failed replica is restored, it can transparently rejoin the replicated server by
reregistering its address with the locator daemon. The locator daemon
reassociates that replica with the name of the replicated POA in its database, thus
making that replica available for subsequent client requests.

Restarting on a different host A replica must be restarted on the host with which it is registered. If the failed
replica needs to be restarted on a different host, you must modify the replicas
registration using the following command:

itadmin process modify -node_daemon <new-node-daemon> <process>

Because persistent object references are addressed initially to the locator
daemon, it is always safe to remove replicas from a replicated server and add
new ones at runtime, without affecting client invocations.
85

CHAPTER 5 | Configuring Scalable Applications
Direct Persistence and Replica Failover

Overview The failover mechanism described thus far relies upon the locator daemon to
forward persistent object references from a failed replica to another replica that
is still active. However, you can also create a persistent POA that circumvents
the overhead of a locator daemon. This POA publishes persistent object
references that embed a well-known address—that is, the address where the
POA listens for incoming requests.

Requirements To ensure failover in a replicated POA with direct persistence, the following
requirements apply:

• The well-known address list that each replica obtains from its

configuration must specify all addresses for each replica, including its

own. Thus, the object references published by each replica must list the

addresses of all replicas.

• The well-known address list for a given replica must always single out one

address as its listening address. In the IORs that it generates, all other

addresses are for publication only.

When a client request uses a direct object reference, it is directed to the first
replica address in the list. If that replica is not available, it tries the next replica
in the list, and so on, until it finds an available replica.

Example configuration For example, given replicas that are instantiated on host1 and host2, you can
create the following configuration for each replica as follows:

MyConfigApp {
 ...
 wka_1:iiop:addr_list=["host1.com:1075", "+host2.com:2075"];
 wka_2:iiop:addr_list="+host1.com:1075", "host2.com:2075"];
 ...
}

 86

Fault Tolerance and Replicated Servers
The plus (+) prefix indicates that an address is for publication only in the IOR; a
non-prefixed address is for publication and listening. Each POA replica obtains a
different listening address as follows:

• The replica on host1 specifies well-known address prefix wka_1, so it

listens on the non-prefixed address host1.com:1075.

• The replica on host2 specifies well-known address prefix wka_2, so it

listens on the non-prefixed address host2.com:2075.

Example server code The server code shown earlier is modified on each host as follows:

C++

Note: For full details of all configuration required for direct persistence and
well-know addressing, see “Setting direct persistence in configuration only” on
page 75.

// on host1:
// ...
CORBA::Any well_known_addressing_policy_value;
well_known_addressing_policy_value <<=
 CORBA::Any::from_string("wka_1", IT_TRUE);

// ...

policies[3] = orb->create_policy(
 IT_CORBA::WELL_KNOWN_ADDRESSING_POLICY_ID,
 well_known_addressing_policy_value);

// on host2:
// ...
CORBA::Any well_known_addressing_policy_value;
well_known_addressing_policy_value <<=
 CORBA::Any::from_string("wka_2", IT_TRUE);

// ...

policies[3] = orb->create_policy(
 IT_CORBA::WELL_KNOWN_ADDRESSING_POLICY_ID,
 well_known_addressing_policy_value);
87

CHAPTER 5 | Configuring Scalable Applications
Java

The object references for both replicas contain the same address list. Thus,
requests on these IORs are first directed to host1 address. If the replica on
host1 is unavailable, the request is redirected to the address on host2.

//on host1:
// ...
PersistenceModePolicyValueHelper.insert(
 persistent_mode_policy_value,
 PersistenceModePolicyValue.DIRECT_PERSISTENCE);
well_known_addressing_policy_value.insert_string(
 "wka_1");
// ...

//on host2:
// ...
PersistenceModePolicyValueHelper.insert(
 persistent_mode_policy_value,
 PersistenceModePolicyValue.DIRECT_PERSISTENCE);
well_known_addressing_policy_value.insert_string(
 "wka_2");
// ...
 88

Building a Replicated Server
Building a Replicated Server

Overview The following sections walk you through the process of building a replicated
server, including the ability to load balance clients across multiple servers,
activate multiple servers in response to a single client request, and dynamically
change replicas in a replicated server.

Sample code These examples are based on several demos in the Orbix
demos\corba\enterprise\clustering directory. These demos consist of a
simple client and server. The server program exports a single object,
SimpleClusteredObject, which has the following interface:

SimpleClusteredObject has a single operation, server_name(), which returns
the name of the server as passed on the server command line. This is used to
demonstrate the Orbix load-balancing features. Each server that runs the simple
object is passed a different server name on the command line. Clients that
connect to the object get and display the server name, thereby showing the server
that they have been connected to.

This section includes the following examples:

module Clustering
{
 interface SimpleClusteredObject
 {
 string
 server_name();
 };
};

“Example 1: Building a Replicated Server to Start on Demand”

“Example 2: Updating a Replicated Server”

“Example 3: Dynamically Changing the Load Balancing Algorithm”
89

CHAPTER 5 | Configuring Scalable Applications
Example 1: Building a Replicated Server to Start on Demand
The following example shows how to register a replicated server for on-demand
activation in a location domain.

1. Build the application. For example:

2. Start an itadmin session, and use the process create command to create

an entry in the implementation repository for each replica in a replicated

server:

$ cd c:\iona\asp\version\demos\enterprise\clustering
$ nmake

$ itadmin
% process create \
 -pathname
 /opt/iona/asp/version/demos/enterprise/clustering/ \
 cxx_server/server \
 -node_daemon daemon_name \
 -startupmode on_demand \
 -args "--ORBname demos.clustering.server_1 server_1" \
 demos.clustering.server_process_1
%
% process create \
 # same arguments as before \
 ... \
 -args "--ORBname demos.clustering.server_2 server_2"\
 demos.clustering.server_process_2
%
% process create \
 ... same arguments as before \
 -args "--ORBname demos.clustering.server_3 server_3" \
 demos.clustering.server_process_3
%

 90

Building a Replicated Server
These process create commands create entries for three servers to start

on demand. This command requires the following arguments:

♦ The path name for the server executable.

♦ The name of the node daemon to start the server.

♦ A list of command line arguments passed to the server using the

-args argument. These include a unique ORB name that is associated

with each server replica.

3. Call orbname create to associate an ORB name with each server instance.

The -process argument associates the new ORB name with the

corresponding process name created in step 3. The process name must be

the same one that specified the new ORB name:

4. Call poa create to create a replicated POA, supplying two arguments:

♦ The -replicas argument replicates the POA ClusterDemo on the

three ORB names created in step 3.

♦ The -load_balancer argument specifies the load-balancing strategy

to associate with the replicated POA; this tells the locator daemon

how to route requests to the POA replicas. In this case, the random

strategy is specified, which routes requests randomly among the

POA’s available replicas.

Note: The server must always be started on the same host as its
associated node daemon. Otherwise, you will receive a
PROCESS_IN_DIFFERENT_NODE_DAEMON exception.

% orbname create \
 -process demos.clustering.server_process_1 \
 demos.clustering.server_1
% orbname create
 -process demos.clustering.server_process_2 \
 demos.clustering.server_2
% orbname create \
 -process demos.clustering.server_process_3 \
 demos.clustering.server_3

$ itadmin
% poa create -replicas demos.clustering.server_1, \
 demos.clustering.server_2, demos.clustering.server_3 \
 -load_balancer random ClusterDemo
91

CHAPTER 5 | Configuring Scalable Applications
5. Run the servers.

Each server is passed an -ORBname parameter to identify the server. This

parameter is passed to ORB_init(), which passes it on to the locator to

identify the server when it creates the POA. Each of the servers must also

be passed a server name parameter (for example, server_1), which is

returned to the client to identify the server.

The following shows how you might run these servers.

6. Run the client against the server.

The client output shows how the locator randomly selects a server for each

client that is running, load balancing the clients across the set of servers. If

you kill one of the servers, the locator continues to forward clients to the

remaining two servers, choosing between them at random.

$ # cd $IT_PRODUCT_DIR/asp/version/demo/clustering
$./server -ORBname demos.clustering.server_1 server_1

../object.ior &
$./server -ORBname demos.clustering.server_2 server_2 &
$./server -ORBname demos.clustering.server_3 server_3 &
 92

Building a Replicated Server
Example 2: Updating a Replicated Server
Orbix replication is implemented so that you can add new servers on-the-fly
without shutting down your system. The following commands add a server
replica to the set already registered in the clustering demo:

1. process create registers a new location domain process,

demos.clustering.server_process_4.

2. orbname create associates a new ORB name,

demos.clustering.server_4, with the new process.

3. poa modify redefines the ClusterDemo POA, specifying a fourth POA

replica to run in the demos.clustering.server_4 ORB.

After following these steps, run the clients against the server again. As before,
the client output shows how the locator randomly selects a server for each client
that is running, and eventually prints out the name of the fourth server.

Example 2: Commands for Updating a Replicated Server

1 process create \
 -pathname $server_name \
 -node_daemon $daemon_name \
 -startupmode on_demand \
 -args "--ORBname demos.clustering.server_4 server_4" \
 demos.clustering.server_process_4

2 orbname create
 -process demos.clustering.server_process_4

demos.clustering.server_4

3 poa modify \
 -replicas \
 demos.clustering.server_1, \
 demos.clustering.server_2, \
 demos.clustering.server_3, \
 demos.clustering.server_4 \
 ClusterDemo
93

CHAPTER 5 | Configuring Scalable Applications
Example 3: Dynamically Changing the Load Balancing
Algorithm

Orbix enables you to dynamically change the load balancing algorithm used for
a replicated POA. Orbix supports the following load balancing algorithms:

For example, you can change the load-balancing algorithm used by the
clustering demo by issuing the following itadmin poa modify command:

You can verify this by running several clients. The names of the servers now
print out in the order in which they were started.

Per-Request Load Balancing By default the locator load balancing is performed on a per-client ORB basis
therefore once a binding to a replica has been established all requests from that
ORB use the initial binding. You can choose to select an option that will allow
load balancing to occur within the ORB, on a per-request basis.

To activate per-request load balancing, set the policy in the configuration file as
follows:

round_robin The locator uses a round-robin algorithm to select from the list
of active servers. The first client is sent to the first server, the
second client to the second server, and so on.

random The locator randomly selects an active server to handle the
client.

prefer_local The locator tries to use a server whose IP address matches that
of the client.

$ itadmin poa modify -load_balancer round_robin ClusterDemo

policies:per_request_lb = "true"
 94

Replicating Orbix Services
Replicating Orbix Services

Overview Clients that use replicated Orbix services, such as the locator, are automatically
routed to the first available server. If a server fails, clients are transparently
rerouted to another server. Orbix services are normally replicated across a
number of hosts, but it is also possible to replicate services on the same host.

The following Orbix services can be replicated:

• Locator daemon.

• Naming service.

• Configuration repository (CFR).

• Security service.

Figure 13 shows an example of a replicated naming service. This shows updates
being pushed across from the master naming service to the slave naming service.

Replicating locator daemon and
naming service

Continuous availability is especially important for the locator daemon and
naming service. Replicating these services ensures that:

• Clients can always access persistent servers.

• New persistent servers can be activated on demand.

• itadmin commands that read the implementation repository always work

(for example, itadmin poa list, and itadmin process show).

• Clients can always obtain object references from the naming service.

Note: To replicate an Orbix service, you must first use the Orbix
Configuration GUI tool (itconfigure) to specify a replica host (see the
Orbix Deployment Guide).
95

CHAPTER 5 | Configuring Scalable Applications
CFR-based versus file-based
replication domains

Orbix services can be replicated in both CFR-based domains and in
configuration file-based domains.

In a CFR-based domain, it is recommended that the CFR service is replicated, in
addition to any other replicated services (for example, the security service). This
ensures that all clients and servers can continue to run in the event of a failure.

Figure 13: Replicated Naming Service

Note: For details on using a secure configuration repository-based domain,
see the Orbix Security Guide.
 96

Replicating Orbix Services
Replicating the security service In a secure domain, replicating the security service is important to ensure that all
services are accessible even in the event of a host failure.

To replicate the security service, use the Orbix Configuration GUI tool
(itconfigure) to specify a replica host, like with other services (see the Orbix
Deployment Guide). The generated configuration will contain the all relevant
CORBA clustering information.

However, with the security service, you must also edit your is2.properties
file, and create a cluster.properties file. For details on these files, see the
Orbix Security Guide.

Master and slave replicas The locator daemon, naming service, and configuration repository use the
persistent state service (PSS) to replicate their state. The PSS uses a master-slave
model where a single replica is designated the master, and can process both read
and write operations. All other replicas are slaves and can only process read
operations. For more details, see “PSS Master-Slave Replication” on page 98.

Adding and removing replicas New server replicas can be added dynamically into a running system, and
existing replicas can also be removed. For more details, see the Orbix
Deployment Guide.

Note: All replicas in a PSS-based replicated service must be run on identical
operating systems.
97

CHAPTER 5 | Configuring Scalable Applications
PSS Master-Slave Replication

Overview The locator, naming service, and configuration repository all use PSS-based
master slave replication. In this model, one replica is designated as the master,
and the remaining replicas are designated as slaves. Only the master can provide
both read and write access; while slave replicas provide read-only access. In
addition, only the master can process any read operation that is part of a
distributed transaction.

If a slave replica receives a write or a read request in a distributed transaction,
this request is either delegated to the master, or rejected if there is no master
available. If the master fails, the remaining slaves hold an election to determine
the new master. The automatic promotion of a slave to master is transparent to
clients. This section includes the following:

• “Startup of master-slave services”.

• “Master election protocol”.

• “Setting replica priorities”.

• “Setting a refresh master interval”.

• “Relaxing majority rule”.

• “Setting heartbeats”

• “Enabling master demotion”

• “Overcoming deadlock with duplicate masters”

• “Replica administration”.

Startup of master-slave services When a group of replicated services has been deployed, all services are started as
slaves. A majority of a service’s replicas must have started before an election to
select the master replica can take place.

This means, for example, in a replica group with four replicas (including the
master), that at least three replicas must be running before an election can take
place and write requests are possible.

Having a majority of replicas running ensures that a network partition can not
result in duplicate masters. It also guarantees that previously committed updates
are not lost.
 98

Replicating Orbix Services
Master election protocol When the master is unavailable, an election protocol is used to determine the
new master. If a majority of replicas are running, the slave that is most
up-to-date with updates from the master is elected as the new master. If there is a
tie, a priority system is used to elect the master. If there is still a tie, a random
selection is made.

Setting replica priorities You can configure the priority of a replica in elections using the following
configuration variable:

The default value is 1. Higher values mean a higher priority; while a priority of 0
means that slave is not to be promoted. For more details, see
plugins:pss_db:envs:env-name in the Orbix Configuration Reference.

By default, the first replica deployed is given a higher priority than the
remaining replicas. This increases the likelihood that the first replica runs as
master when the services are started. This avoids unnecessary delegation for
write operations.

In addition, replica priorities are more likely to be honoured if services are
shutdown cleanly (using the stop_domain_name_services command).

Setting a refresh master interval Each of the replicated Orbix services that use PSS replication enable you to
configure the amount of time that a slave replica waits for a new master to be
elected:

This interval specifies the maximum number of seconds that a write request is
blocked at a slave while waiting for a master to be elected. For example, to set a
time limit on the naming service to 30 seconds:

Note: To support the automatic promotion of a slave, the minimum number
of replicas in a group is three (one master and two slaves). For more details,
see “Relaxing majority rule” on page 100”.

plugins:pss_db:envs:env-name:replica_priority = "1";

plugins:naming:refresh_master_interval
plugins:locator:refresh_master_interval
plugins:config_rep:refresh_master_interval

plugins:naming:refresh_master_interval = “30”;
99

CHAPTER 5 | Configuring Scalable Applications
For more details, see the following sections in the Orbix Configuration
Reference:

• plugins:naming

• plugins:locator

• plugins:config_rep

• plugins:pss_db:envs:env-name

Relaxing majority rule To promote a slave, a majority of replicas must be running. This means that in a
replica group with two replicas (one master and one slave), the slave can never
be promoted. As a special case, it is possible to allow the slave to be promoted.
You can do this by setting the following variable to true:

For more details, see plugins:pss_db:envs:env-name in the Orbix
Configuration Reference.

plugins:pss_db:envs:env-name:allow_minority_master = "true";

Note: Setting allow_minority_master to true means that it is possible for
duplicate masters to exist if there is a network partition. It also means that
updates may be lost if services are started in different orders. To minimize the
possibility of this, perform the following steps:

1. Only set the allow_minority_master variable to true on one replica (the
one most likely to be the slave).

2. The replica with this variable set to true should always be started second.

3. If the master fails, and the slave is promoted, the previous master must be
restarted only when the new master is running.
 100

Replicating Orbix Services
Setting heartbeats Orbix replicated services send heartbeats to handle network partitions and
enable promotion of slaves:

• Slave replicas monitor the health of the master by sending periodic

heartbeat messages. This enables a slave to be promoted in a timely

manner.

• Heartbeats are sent from the master to unresponsive slaves. An

unresponsive slave is detected if it has not sent a heartbeat message to the

master in a while.

• Heartbeats are sent from replicas to replicas in an unknown state. When

any message sent to a replica fails, the replica is marked as unknown until

it re-joins, is removed, or a network partition is repaired.

This support is controlled by the following configuration variables:

plugins:pss_db:envs:env-name:hearbeat_interval specifies the interval in
seconds between heartbeats. A value of 0 means that no heartbeats are sent. The
default value is 10 seconds.

plugins:pss_db:envs:env-name:heartbeat_missed_interval specifies the
time interval between the last heartbeat from a slave and when the master
decides to send a heartbeat to the slave. A value of 0 means this heartbeat and
heartbeats between unknown replicas are not sent. The default value is 0
seconds.

Enabling master demotion An master replica can demote itself if there is the possibility that unconnected
replicas can form a majority and elect a new master. The
plugins:pss_db:envs:env-name:allow_demotion variable specifies whether
the master demotes itself if unconnected replicas can form a majority and elect a
master. The default value is false.

This variable only needs to be set to true if there are three or more nodes in a
replica group, or if there are two replicas in the group, and
allow_minority_master is set to true (see “Relaxing majority rule” on
page 100).

Note: plugins:pss_db:envs:env-name:master_heartbeat_interval is
deprecated. plugins:pss_db:envs:env-name:hearbeat_interval takes
precedence if both are set.
101

CHAPTER 5 | Configuring Scalable Applications
Overcoming deadlock with
duplicate masters

Orbix PSS-based replicated services can overcome potential deadlock when
there are duplicate masters. The
plugins:pss_db:envs:env-name:lsn_timeout variable specifies the
maximum time in seconds to wait for a replication message for a particular log
record.

When this time is exceeded, the pss_db plug-in no longer waits for the log
message and continues normal processing. A negative value means the pss_db
plug-in never waits for a log record. A value of 0 means the timeout is infinite.
Defaults to 10.

Replica administration The itadmin tool provides several commands to examine the state of replicated
services:

For more details on these itadmin commands, see the following:

• “Naming Service” on page 331.

• “Location Domain” on page 289.

• “Configuration Domain” on page 261.

• “Persistent State Service” on page 367.

In addition, for details on administration of PSS databases, see “Managing Orbix
Service Databases” on page 137.

itadmin ns list_servers
itadmin ns show_server
itadmin locator list_servers
itadmin locator show
itadmin config list_servers
itadmin config show_server
itadmin pss_db list_replicas
itadmin pss_db show
 102

Active Connection Management
Active Connection Management

Overview Orbix active connection management lets servers scale up to large numbers of
clients without encountering connection limits. Using active connection
management, Orbix recycles least recently used connections as new connections
are required.

You can control active connection management in Orbix with configuration
variables, that specify the maximum number of incoming and outgoing client–
server connections. Two settings are available for both client-side and
server-side connections:

• A hard limit specifies the number of connections beyond which no new

connections are permitted.

• A soft limit specifies the number of connections at which Orbix begins

closing connections.

Setting incoming server-side
connections

To limit the number of incoming server-side connections, set the following
configuration variables:

plugins:iiop:incoming_connections:hard_limit specifies the maximum
number of incoming (server-side) connections permitted to IIOP. IIOP does not
accept new connections above this limit. This variable defaults to -1 (disabled).

plugins:iiop:incoming_connections:soft_limit specifies the number of
connections at which IIOP starts closing incoming (server-side) connections.
This variable defaults to -1 (disabled).

For example, the following file-based configuration entry sets a server’s hard
connection limit to 1024:

The following itadmin command sets this variable:

plugins:iiop:incoming_connections:hard_limit=1024;

itadmin variable create -type long -value 1024
 plugins:iiop:incoming_connections:hard_limit
103

CHAPTER 5 | Configuring Scalable Applications
Setting outgoing client-side
connections

To limit the number of outgoing client-side connections, set the following
configuration variables:

plugins:iiop:outgoing_connections:hard_limit specifies the maximum
number of outgoing (client-side) connections permitted to IIOP. IIOP does not
allow new outgoing connections above this limit. This variable defaults to -1
(disabled).

plugins:iiop:outgoing_connections:soft_limit specifies the number of
connections at which IIOP starts closing outgoing (client-side) connections. This
variable defaults to -1 (disabled).

For example, the following file-based configuration entry sets a hard limit for
outgoing connections to 1024:

The following itadmin command sets this variable:

plugins:iiop:outgoing_connections:hard_limit=1024;

itadmin variable create -type long -value 1024
 plugins:iiop:outgoing_connections:hard_limit
 104

Setting Buffer Sizes
Setting Buffer Sizes

Overview If the IIOP buffer size within an ORB is configured to a sufficiently large
number, fragmentation is not required by the ORB and does not occur. This
section describes how to set the buffer size in the C++ and Java CORBA ORBs.

C++ configuration policies:<protocol-name>:buffer_sizes_policy:default_buffer_size

This variable is used as the initial size for the buffer and also as the increment
size if the buffer is too small.

For example, when sending a message of 60,000 bytes (including GIOP header
overhead, remember depending on the types used by GIOP, this overhead may
be large), if the default_buffer_size value is set to 10000, the buffer is
initially 10,000 bytes. The C++ ORB then sends out 6 message fragments of
10,000 bytes each. If the default_buffer_size value is set to 64000, only one
unfragmented message is sent out.
105

CHAPTER 5 | Configuring Scalable Applications
Java configuration policies:<protocol-name>:buffer_sizes_policy:default_buffer_size

This variable is used as the initial size for the buffer unless it is less than the
system defined minimum buffer size.

policies:<protocol-name>:buffer_sizes_policy:max_buffer_size

This value is used as the initial size for the buffer if smaller than
default_buffer_size. For example, when sending a message with an overall
size of 60,000 bytes, if the lower of the buffer_size values mentioned above is
set to 10000, the buffer is initially 10,000 bytes. The Java ORB then sends out 6
message fragments of 10,000 bytes each. If the lower of the buffer_size values
mentioned above is set to 64000, only one unfragmented message is sent out.

Data fragmentation For a CORBA ORB to be considered compliant with the OMG GIOP 1.1
specification, the ORB implementation must support data fragmentation.

Some CORBA ORB implementations do not support data fragmentation but
claim GIOP 1.1 compliance. Orbix ORBs support fragmentation and are fully
compliant with the GIOP 1.1 specification.

Note: These configuration settings apply to secure or non-secure IIOP,
depending on whether the iiop or iiop_tls scope is used. For alignment
purposes, buffer size values should be a multiple of 8 (i.e. 32,000 or 64,000).
 106

CHAPTER 6

Managing the
Naming Service
The naming service lets you associate abstract names with CORBA
objects in your applications, enabling clients to locate your objects.

The interoperable naming service is a standard CORBA service, defined in the
Interoperable Naming Specification. The naming service allows you to associate
abstract names with CORBA objects, and enables clients to find those objects by
looking up the corresponding names. This service is both very simple and very
useful. Most CORBA applications make some use of the naming service.
Locating a particular object is a common requirement in distributed systems and
the naming service provides a simple, standard way to do this. The naming
service is installed by default as part of every Orbix installation.

In addition to naming service functionality, Orbix also provides naming-based
load balancing, using object groups. An object group is a collection of objects
that can increase or decrease in size dynamically. When a bound object is an
object group, clients can resolve object names in a naming graph, and
transparently obtain references to different objects.

In this chapter This chapter contains the following sections:

Naming Service Administration page 109

Controlling the Naming Service page 112

Building a Naming Graph page 113
107

CHAPTER 6 | Managing the Naming Service
Maintaining a Naming Graph page 118

Managing Object Groups page 119
 108

Naming Service Administration
Naming Service Administration

Overview The naming service maintains hierarchical associations of names and object
references. An association between a name and an object is called a binding. A
client or server that holds a CORBA object reference binds a name to the object
by contacting the naming service. To obtain a reference to the object, a client
requests the naming service to look up the object associated with a specified
name. This is known as resolving the object name. The naming service provides
interfaces, defined in IDL, that enables clients and servers to bind to and resolve
names to object references.

The naming service has an administrative interface and a programming
interface. These enable administrators and programmers to create new bindings,
resolve names, and delete existing bindings. For information about the
programming interface to the naming service, see the CORBA Programmer’s
Guide.

Typical administration tasks While most naming service operations are performed by programs,
administrative tasks include:

• Controlling the naming service (for example, starting and stopping the

naming service).

• Viewing naming information (for example, bindings between names and

objects).

• Adding or modifying naming information that has not been properly

maintained by programs. For instance, you might need to remove outdated

information left behind by programs that have been moved or removed

from the environment.

You can perform these tasks administratively with itadmin commands. This is
especially useful when testing applications that use the naming service. You can
use itadmin commands to create, delete, and examine name bindings in the
naming service.
109

CHAPTER 6 | Managing the Naming Service
Name formats and naming graphs Naming service names adhere to the CORBA naming service format for string
names. You can associate names with two types of objects: a naming context or
an application object. A naming context is an object in the naming service
within which you can resolve the names of application objects.

Naming contexts are organized into a naming graph. This can form a naming
hierarchy, much like that of a filing system. Using this analogy, a name bound to
a naming context would correspond to a directory and a name bound to an
application object would correspond to a file.

The full name of an object, including all the associated naming contexts, is
known as a compound name. The first component of a compound name gives the
name of a naming context, in which the second component is accessed. This
process continues until the last component of the compound name has been
reached.

A compound name in the CORBA naming service can take two forms:

• An IDL sequence of name components

• A human-readable StringName in the Interoperable Naming Service (INS)

string name format
 110

Naming Service Administration
Naming Service Commands
itadmin provides commands for browsing and managing naming service
information. Many naming service commands take a path argument. This
specifies the path to the context or object on which the command is performed.

For reference information about these itadmin commands, see “Naming
Service” on page 331. The rest of this chapter uses itadmin commands to build
an example naming graph and populate it with name bindings.

Note: Many of these commands take object references as command-line
arguments. These object references are expected in the string format returned
from CORBA::ORB::object_to_string(). By default, this string format
represents an interoperable object reference (IOR).
111

CHAPTER 6 | Managing the Naming Service
Controlling the Naming Service

Starting the naming service You must start up the naming service on the machine where it runs. To start the
naming service:

1. Log in as root on UNIX, or as administrator on Windows NT.

2. Open a terminal or command window.

3. Enter itnaming run

4. Do the following depending on your platform:

Windows

Leave the command window open.

UNIX

Leave the terminal window open, or push the process into the background

and close the window.

Stopping the naming service itadmin ns stop stops the naming service.
 112

Building a Naming Graph
Building a Naming Graph

Overview A naming context is an object in the naming service that can contain the names
of application objects. Naming contexts are organized into a hierarchical naming
graph. This section uses itadmin commands to build the naming graph shown in
Figure 14.

Figure 14: Naming Context Graph

root

company

engineering

support

james.
person

john.
person

paula.
person

staff

james

john manager.
person

paula

manager.
person

denotes a naming context

denotes an application object
113

CHAPTER 6 | Managing the Naming Service
Names are given in the INS string name format id.kind (for example,
john.person). The kind component can be empty (for example, john). The
combination of id and kind fields must unambiguously specify the name.

In this section Using the example naming graph in Figure 14, this section explains the
following tasks:

• Creating Naming Contexts.

• Creating Name Bindings.
 114

Building a Naming Graph
Creating Naming Contexts
itadmin ns newnc provides the simplest way to create a naming context. This
command takes an optional path argument, which takes the form of an INS
string name. For example, the following command creates a new context that is
bound to a simple name with an id of company, and an empty kind value:

The following example creates a new naming context that is bound to the name
company/engineering; the context company must already exist.

The following example creates a new context that is bound to the name
company/engineering/support; the context company/engineering must
already exist.

Creating an unbound naming
context

You can also use itadmin ns newnc to create an unbound context. If the path
argument is not specified, itadmin ns newnc prints the IOR to standard out. For
example:

On UNIX, to bind the context created with ns newnc, use the ns bind
-context command, as follows:

This binds the new context to the name company/staff.

itadmin ns newnc company

itadmin ns newnc company/engineering

itadmin ns newnc company/engineering/support

itadmin ns newnc
"IOR:000000000002356702b4944c3a6f6d672e6f7267...."

itadmin ns bind -c -path company/staff ’itadmin ns newnc’
115

CHAPTER 6 | Managing the Naming Service
Creating Name Bindings
To bind a name to an object, use itadmin ns bind -object. Given the naming
context graph shown in Figure 14 on page 113, this section assumes the
application objects are associated with the following object reference strings:

You can bind these objects to appropriate names within the company/staff
naming context, as follows:

These commands assign a kind of person in the final component of each
employee name.

itadmin ns bind takes an IOR from the command line. For example, on UNIX,
if you have Paula’s IOR in a file named paula.ior, you can bind it, as follows:

To build the naming graph further, create additional bindings that are based on
the departments that employees are assigned to. The following example takes
IORs from files printed to standard input.

james IOR:0000000037e276f47a4b94874c64648e949...

john IOR:0000028e276f47a40b9248474c64646F3E5...

paula IOR:00000000569a2e8034b94874d6583f09e24...

itadmin ns bind -o -path company/staff/james.person
"IOR:0000000037e276f47a4b94874c64648e949..."

itadmin ns bind -o -path company/staff/john.person
"IOR:0000028e276f47a40b9248474c64646F3E5..."

itadmin ns bind -o -path company/staff/paula.person
"IOR:00000000569a2e8034b94874d6583f09e24..."

itadmin ns bind -o -path company/staff/paula.person ’cat
paula.ior’

itadmin ns bind -o -path
company/engineering/support/james.person ’cat james.ior’

itadmin ns bind -o -path company/engineering/john.person ’cat
john.ior’

itadmin ns bind -o -path company/engineering/paula.person ’cat
paula.ior’
 116

Building a Naming Graph
To enable an application to find the manager of a department easily, add the
following bindings:

The following names now resolve to the same object:

The naming contexts and name bindings created by this sequence of commands
builds the complete naming graph shown in Figure 14 on page 113.

itadmin ns bind -o -path company/engineering/manager.person ’cat
paula.ior’

itadmin ns bind -o -path
company/engineering/support/manager.person ’cat paula.ior’

company/staff/paula.person
company/engineering/paula.person
company/engineering/manager.person
company/engineering/support/manager.person
117

CHAPTER 6 | Managing the Naming Service
Maintaining a Naming Graph

Maintenance commands After you create a naming graph, it is likely you will need to periodically modify
its contents—for example, remove bindings, or to change the bindings for an
object reference. Table 5 describes the itadmin commands that you can use to
maintain naming contexts and bindings.

Rebinding a name to an object or
naming context

To change the binding for an object reference, perform the following steps:

1. Use itadmin ns resolve to obtain the object reference bound to the

current path and write it to a file:

The path argument takes the form of a string name.

2. Call itadmin ns unbind to unbind the current path:

3. Call itadmin ns bind to bind the saved object reference to the new path.

For example, on UNIX:

Table 5: Naming Graph Maintenance Commands

Command Task

ns list List all bindings in a naming context

ns resolve Print the object reference for the application object or
naming context to which a name is bound.

ns unbind Unbind the binding for an object reference.

ns remove Unbind and destroy a name binding.

Note: unbind and remove can be disabled by setting
plugins:naming:destructive_methods_allowed to false.

itadmin ns resolve path > file

itadmin ns unbind path

itadmin ns bind -c newpath ’cat file’
 118

Managing Object Groups
Managing Object Groups

Overview An object group is a naming service object that provides transparent
naming-based load balancing for clients. An object group contains application
objects, and can increase or decrease in size dynamically when member objects
are added or removed.

An object group object can be bound to a path in a naming graph like any other
object. Each object group contains a pool of member objects associated with it.
When a client resolves the path that an object group is bound to, the naming
service returns one of the member objects according to the group’s selection
policy.

Creating an object group You can create an object group using the itadmin commands in the following
steps:

1. Create the object group using itadmin nsog create and specify the

desired selection algorithm (see “Selection algorithms” on page 120).

2. Add application objects to the newly created object group using itadmin

nsog add_member on it.

3. Bind an existing naming context to the object group using itadmin nsog

bind.

When you create the object group, you must supply a group identifier. This
identifier is a string value that is unique among other object groups.

Similarly, when you add a member to the object group, you must supply a
reference to the object and a corresponding member identifier. The member
identifier is a string value that must be unique within the object group.
119

CHAPTER 6 | Managing the Naming Service
Selection algorithms Each object group has a selection algorithm that is set when the object group is
created. This algorithm is applied when a client resolves the name associated
with the object group. Three selection algorithms are supported:

• Round-robin

• Random

• Active load balancing

The naming service directs client requests to objects according to the group’s
selection algorithm.

Active load balancing In an object group that uses active load balancing, each object group member is
assigned a load value. The naming service satisfies client resolve() invocations
by returning references to members with the lowest load values.

Default load values can be set administratively using the configuration variable
plugins:naming:lb_default_initial_load. Thereafter, load values should
be updated programmatically by periodically calling
ObjectGroup::update_member_load(). itadmin provides an equivalent
command, nsog update_member_load, in cases where manual intervention is
required.

You should also set or modify member timeouts using itadmin nsog
set_member_timeout, or programmatically using
ObjectGroup::set_member_timeout(). You can configure default timeout
values by updating plugins:naming:lb_default_load_timeout. If a
member’s load value is not updated within its timeout interval, its object
reference becomes unavailable to client resolve() invocations. This typically
happens because the object itself or an associated process is no longer running,
and therefore cannot update the object’s load value.

A member reference can be made available again to client resolve()
invocations by resetting its load value using
ObjectGroup::update_member_load() or itadmin nsog
update_member_load. In general, an object’s timeout should be set to an
interval greater than the frequency of load value updates.

Commands “Object Groups” on page 336 describes the itadmin commands that you can use
to create and administer object groups.
 120

CHAPTER 7

Managing an
Interface
Repository
An interface repository stores information about IDL definitions,
and enables clients to retrieve this information at runtime. This
chapter explains how to manage the contents of an interface
repository.

In this chapter This chapter contains the following sections:

Interface Repository page 122

Controlling the Interface Repository Daemon page 123

Managing IDL Definitions page 124
121

CHAPTER 7 | Managing an Interface Repository
Interface Repository

Overview An interface repository maintains information about the IDL definitions
implemented in your system. Given an object reference, a client can use the
interface repository at runtime to determine the object’s type and all information
about that type. Clients can also browse the contents of an interface repository.
Programmers can add sets of IDL definitions to an interface repository, using
arguments to the IDL compiler command.

Interface repository
administration

An interface repository database is centrally located. When Orbix environments
have more than one interface repository, they are often organized so that each
application or set of related applications uses a common interface repository.
When an interface repository has been configured, it requires minimal
administrative intervention. Typical tasks include stopping and restarting the
interface repository, when necessary, removing outdated definitions, when
applications are removed, and troubleshooting, when necessary.

This chapter provides information for administrators on how start and stop the
interface repository. It also provides information for programmers on how to
add, examine, and remove IDL definitions.

For details on advanced interface repository features, see the CORBA
Programmer’s Guide.
 122

Controlling the Interface Repository Daemon
Controlling the Interface Repository Daemon

Overview The primary interface repository tasks for administrators are starting and
stopping the interface repository daemon.

Starting the interface repository
daemon

Run the interface repository daemon on the machine where the interface
repository runs. To start the interface repository:

1. Log in as root on UNIX, or as administrator on Windows.

2. Open a terminal or command window.

3. Enter itifr run.

4. Follow the directions for your platform:

Windows

Leave the command window open.

UNIX

Leave the terminal window open, or push the process into the background

and close the window.

Stopping the interface repository
daemon

itadmin ifr stop stops the interface repository daemon.
123

CHAPTER 7 | Managing an Interface Repository
Managing IDL Definitions

Overview Orbix includes an API that offers applications complete programmatic control
over managing and accessing IDL definitions in the interface repository.
Occasionally, you might require manual control to list definitions, remove
invalid definitions, and so on. This is especially useful during application
development and troubleshooting.

The interface repository has a structure that mirrors the natural containment of
the IDL types in the repository. Understanding these types and their
relationships is key to understanding how to use the interface repository. Refer
to the CORBA Programmer’s Guide for more information.

In this section This section provides information on using the interface repository to perform
the following tasks manually:

For a complete reference of the commands used to manage the interface
repository, see “Repository Management” on page 285.

Browsing Interface Repository Contents page 125

Adding IDL Definitions page 127

Removing IDL Definitions page 128
 124

Managing IDL Definitions
Browsing Interface Repository Contents

Overview This section shows how to use itadmin commands to perform these tasks:

• List the current container

• Display the containment hierarchy

• Navigate to other levels of containment

The foo.idl interface provides a simple example of containment, in which
interface Foo contains a typedef and two operations:

List the current container itadmin ifr list lists the specified or current container’s contents.

Display the containment hierarchy itadmin ifr show displays the entire containment hierarchy, beginning with the
current container. For example:

// Begin foo.idl

interface Foo {
 typedef long MyLong;
 MyLong op1();
 void op2();
};

itadmin ifr list
Foo/

itadmin ifr show Foo
 interface Foo
 {
 ::Foo::MyLong
 op1() ;
 typedef long MyLong;
 void
 op2() ;
 };
125

CHAPTER 7 | Managing an Interface Repository
Navigate to other levels of
containment

itadmin ifr cd lets you navigate to other levels of containment. For example:

itadmin ifr cd Foo
itadmin ifr list
op1 MyLong op2
 126

Managing IDL Definitions
Adding IDL Definitions

Overview Adding IDL definitions to an interface repository makes application objects
available to other applications that have access to the same interface repository.

Procedure You can add IDL definitions to the interface repository with the idl -R=-v
command, as follows:

1. Go to the directory where the IDL files are located.

2. Enter the following command:

Example The following example shows how to add a simple IDL interface definition to
the interface repository with the IDL command. The interface definition is:

The command to add this IDL definition to the interface repository is:

idl -R=-v filename

// Begin foo.idl

interface Foo {
 typedef long MyLong;
 MyLong op1();
 void op2();
};

$ idl -R=-v foo.idl
Created Alias MyLong.
Created Operation op1.
Created Operation op2.
Created Interface Foo.
$

127

CHAPTER 7 | Managing an Interface Repository
Removing IDL Definitions

Overview You might wish to remove IDL definitions from the interface repository when
they are invalid, or make them unavailable to other applications. To remove an
IDL definition, use itadmin ifr remove scoped-name.

Alternatively, to remove the entire contents of the interface repository, use
itadmin ifr destroy_contents.

Removing an IDL definition The following example removes the operation op2 from the foo.idl definition:

itadmin ifr list
Foo/
itadmin ifr cd Foo
itadmin ifr list
op1 MyLong op2
itadmin ifr remove op2
itadmin ifr list
op1 MyLong
itadmin ifr quit
 128

Managing IDL Definitions
Removing the entire contents of
the IFR

To remove the entire contents of the interface repository, use ifr
destroy_contents. This destroys the entire contents of the interface repository,
leaving the repository itself intact.

If you have loaded a very large number of IDL interfaces into the interface
repository, and then want destroy the contents of the IFR, you should first
increase the value of the following configuration variable:

plugins:pss_db:envs:ifr_store:lk_max

This variable specifies the maximum number of locks available to the Berkeley
DB. The default is 1000.

The following example increases this value to 10000

This prevents the IFR from crashing with the following entry in the IFR log file:

iona_services {
 ...
 ifr {
 ...
 plugins:pss_db:envs:ifr_store:lk_max = "10000";
 };
 };

ERROR: DB del failed; env is ifr_store, db is
IRObjectPSHomeImpl:1.0, errno is 12 (Not enough space)
129

CHAPTER 7 | Managing an Interface Repository
 130

CHAPTER 8

Managing the
Firewall Proxy
Service
The Orbix firewall proxy service provides an added layer of
security to your CORBA servers by placing a configurable proxy
between the server and its clients.

In this chapter This chapter discusses the following topics:

Orbix Firewall Proxy Service page 132

Configuring the Firewall Proxy Service page 133

Known Restrictions page 136
131

CHAPTER 8 | Managing the Firewall Proxy Service
Orbix Firewall Proxy Service

Overview The main goal of the firewall proxy service is to enable the firewall
administrator to reduce the number of ports that need to be opened to enable
access from clients outside the firewall to services inside the firewall. To
accomplish this the firewall proxy service creates and registers a proxy for each
POA created by a server using the service. The proxies then intercept requests
made by clients and forwards the requests on to the appropriate server.

Server registration Any server using the firewall proxy service will exchange IOR template
information with the firewall proxy service during a registration process that is
kicked off by the creation of a POA. When a server creates a new POA, the
firewall proxy service creates a separate proxy which will forward client
requests.

Request forwarding When a server has registered with the firewall proxy service, it will generate
IORs that point clients to proxies managed by the firewall proxy service. When a
client invokes a request on one of these IORs, the request is intercepted by the
firewall proxy service. The firewall proxy service then uses the stored template
information to forward the request to the appropriate server.

Persistence of registrations The firewall proxy service maintains a persistent store of registration
information. When the firewall proxy service initializes, it recreates the bindings
for any server that registered with the service during a previous execution. This
assures that server registration is persistent across many executions of the
firewall proxy service.
 132

Configuring the Firewall Proxy Service
Configuring the Firewall Proxy Service

Overview The firewall proxy service is designed to act as an application level proxy
mechanism for servers configured to utilize the service at run time.
Configuration from the server's point of view is trivial and only requires that a
plug-in be initialized in the ORB.

Configuring a server to use the
firewall proxy service

Any server that wishes to use the firewall proxy service needs to include the
firewall proxy plug-in to the list of plug-ins that are loaded for the server’s ORB.
You add the plug-in to the ORB’s plug-in list using itadmin. The itadmin
command is:

Once the firewall proxy plug-in has been added to the ORB’s plug-in list and the
firewall proxy service is running, the server will automatically register with the
firewall proxy service and the service will relay requests on the client’s behalf.

For example, you could configure the typetest demo to use the firewall proxy
service. To do this complete the following steps:

1. Create a configuration scope for the typetest demo.

2. Add the ORB’s plug-in list to the scope.

3. Run the typetest demo server and specify the ORB name.

Java libraries To use Java services, such as trader, with the firewall proxy service, you need to
ensure that the firewall proxy service’s registration agent’s jar file,
fps_agent.jar, is added to the services CLASSPATH.

itadmin variable modify -scope ORBName -type list -value
iiop_profile,giop,iiop,fps orb_plugins

itadmin scope create typetest

itadmin variable create -scope ORBName -type list -value
iiop_profile,giop,iiop,fps orb_plugins

server -ORBname typetest
133

CHAPTER 8 | Managing the Firewall Proxy Service
Managing the number of proxies By default, the firewall proxy service imposes no restrictions on the number of
servers for which it will proxy requests. The maximum is a factor of system
resources. However, you can configure the firewall proxy service to employ a
least recently used (LRU) eviction algorithm to select which server bindings to
remove. The LRU eviction strategy has configurable soft and hard limits that
affect its behavior. The soft limit specifies the point at which the firewall proxy
service should proactively begin attempting to reclaim resources. The hard limit
specifies the point at which new registrations should be rejected.

The limits are controlled by the following configuration variables:

Setting the hard limit to zero effectively disables the services resource control
features.

Disabling POA registration If you develop an application containing a number of “outward” facing objects
that you want to place behind the firewall proxy service as well as a number of
“inward” facing objects that do not need to be placed behind the firewall proxy
service, you can use the INTERDICTION POA policy.

The INTERDICTION policy controls the behavior of the firewall proxy service
plug-in, if it is loaded. The INTERDICTION policy has two settings:

The following code samples demonstrate how to set the INTERDICTION policy on
a POA. In the examples, the policy is set to DISABLE which disables the
proxification of the POA. For more information on POA policies read the
CORBA Programmer’s Guide.

fps:proxy_evictor:soft_limit
fps:proxy_evictor:hard_limit

ENABLE This is the default behavior of the firewall proxy service
plug-in. A POA with its INTERDICTION policy set to ENABLE
will be proxified.

DISABLE This setting tells the firewall proxy service plug-in to not
proxify the POA. POAs with their INTERDICTION policy set
to DISABLE will not use the firewall proxy service and
requests made on objects under its control will come directly
from the requesting clients.
 134

Configuring the Firewall Proxy Service
Java

C++

import com.iona.corba.IT_FPS.*;

// Create a PREVENT interdiction policy.
Any interdiction = m_orb.create_any();
InterdictionPolicyValueHelper.insert(interdiction,

InterdictionPolicyValue.DISABLE);

Policy[] policies = new Policy[1];
polices[0] = m_orb.create_policy(INTERDICTION_POLICY_ID.value,

interdiction);

// Create and return new POA.
return m_poa.create_POA("no_fps_poa", null, policies);

#include <orbix/fps.hh>

// Create a PREVENT interdiction policy.
CORBA::Any interdiction;
interdiction <<= IT_FPS::DISABLE;

CORBA::PolicyList policies(1);
policies.length(1);
policies[0] =

m_orb->create_policy(IT_FPS::INTERDICTION_POLICY_ID,
interdiction);

 // Create and return new POA.
return m_poa->create_POA("no_fps_poa", 0, policies);
135

CHAPTER 8 | Managing the Firewall Proxy Service
Known Restrictions
The current implementation of the firewall proxy service has the following
known restrictions:

• There have are problems using the firewall proxy service and POA

collocated calls on UNIX platforms. Calls which should be collocated are

being routed through the firewall proxy service in a CORBA mediated call

and the call being blocked. The work-around is to remove POA_Coloc from

the client_binding_list configuration parameter.

• Transport Layer Security (TLS) is not supported by the firewall proxy

service. This means that the firewall proxy service does not work with

Iona’s IS2 security infastructure or any other systems that use TLS.

• The J2EE portion of your systems cannot be hidden behind a proxy.
 136

CHAPTER 9

Managing Orbix
Service Databases
This chapter explains how to manage databases that store
persistent data about Orbix services. It explains the Berkeley DB
database management system embedded in Orbix.

A number of Orbix services maintain persistent information (for example, the
locator daemon, node daemon, naming service, IFR and CFR). By default, these
Orbix services use an embedded Berkeley DB database management system.
Typically, Berkeley DB requires little or no administration. The default settings
are sufficient for most environments. Tasks that you might want to perform
include performing checkpoints, and managing backups, recoveries and log
files.

In this chapter This chapter contains the following sections:

Berkeley DB Environment page 138

Performing Checkpoints page 139

Managing Log File Size page 140

Troubleshooting Persistent Exceptions page 141

Database Recovery for Orbix Services page 142

Replicated Databases page 147
137

CHAPTER 9 | Managing Orbix Service Databases
Berkeley DB Environment

Overview A Berkeley DB environment consists of a set of database files and log files. In
Orbix, only a single Berkeley DB environment can be used by one process at a
time. Multiple processes using the same Berkeley DB environment concurrently
can lead to crashes and data corruption. This means that different Orbix services
must use different Berkeley DB environments.

This section explains Berkeley DB environment file types and how they should
be stored.

Berkeley DB environment files A Berkeley DB environment consists of two kinds of files:

Data files contain the real persistent data. By default, these files are stored in the
data subdirectory of the Berkeley DB environment home directory. For
example:

install-dir\var\domain-name\dbs\locator\data

Transaction log files record changes made to the data files using transactions.
By default, these files are stored in the logs subdirectory of the Berkeley DB
environment home directory. For example:

install-dir\var\domain-name\dbs\locator\logs

All Orbix services use only transactions to update their persistent data.

Transaction log files can be used to recreate the data files (for example, if these
files are corrupted or accidently deleted).

Storing environment files To maximize performance and facilitate recovery, store all the Berkeley DB
environment files on a file system that is local to the machine where the
Berkeley DB environment is used.

Log files are of more value than data files because data files can be reconstructed
from log files (but not vice-versa). Using different disks and disk controllers for
the data and the log files further facilitates recovery.
 138

Performing Checkpoints
Performing Checkpoints

Overview The Berkeley DB transaction logs must be checkpointed periodically to force the
transfer of updates to the data files, and also to speed up recovery. By default,
each Orbix service checkpoints the transaction logs of its Berkeley DB
environment every 15 minutes.

Using configuration variables You can control checkpoint behavior using the following configuration
variables:

plugins:pss_db:envs:env_name:checkpoint_period
plugins:pss_db:envs:env_name:checkpoint_min_size

For example, the following variable sets the checkpoint period for the locator
database to 10 minutes.

plugins:pss_db:envs:locator:checkpoint_period = 10;

For more information, see the section on the plugins:pss_db namespace in the
Configuration Reference Guide.

Using the command line You can also checkpoint the transaction logs of a Berkeley DB environment
using the itadmin command. For example:

itadmin pss_db checkpoint env-home/env.ior

For more information, see “Persistent State Service” on page 367.
139

CHAPTER 9 | Managing Orbix Service Databases
Managing Log File Size

Setting log file size The Berkeley DB transaction logs are not reused. They grow until they reach a
specified level. By default, a transaction log file grows until its size reaches 10
MB. Berkeley DB then creates a new transaction log file.

You can control the maximum size of transaction log files using the following
configuration variable:

lg_max is measured in bytes and its value must be to the power of 2.

Deleting and archiving old log files When a transaction log file does not contain any information pertaining to active
transactions, it can be archived or deleted by either of the following:

Using configuration settings By default, each Orbix service checks after each
periodic checkpoint to see if any transaction log files are no longer used. By
default, old log files are then deleted. You can disable the deletion of old log
files by setting the following configuration variable to false:

plugins:pss_db:envs:env_name:checkpoint_deletes_old_logs

Old log files can also be archived (moved to the old_logs directory). To archive
old log files, set the following variable to true:

plugins:pss_db:envs:env_name:checkpoint_archives_old_logs

Using itadmin commands You can also delete or archive the old transaction
logs of a Berkeley DB environment using itadmin commands:

For more information, see “Persistent State Service” on page 367.

plugins:pss_db:envs:env_name:lg_max

itadmin pss_db archive_old_logs env-home/env.ior
itadmin pss_db delete_old_logs env-home/env.ior

WARNING:Deleting old transaction log files can make recovery from a
catastrophic failure impossible. See “Database Recovery for Orbix Services”
on page 142.
 140

Troubleshooting Persistent Exceptions
Troubleshooting Persistent Exceptions

Overview This section explains what has happened if you received a PERSIST_STORE
exception from your Orbix service, and how to recover.

PERSIST_STORE exception When you see an IDL:omg.org/CORBA/PERSIST_STORE:1.0 error from an
Orbix service, it typically means that the service's persistent storage has become
corrupted. The exception is usually accompanied with a minor code representing
a Persistent State Service (PSS) exception (for example, IT_PSS_DB). Such an
error is usually caused by some form of corruption in the underlying database.
This corruption can be caused by the following:

• There is limited space on the disk for the underlying database files, and

thus it is no longer possible to log transactions. If you find this to be the

problem, free disk space immediately and restart the service.

• A service has been shutdown ungracefully (without using the

stop_<domain_name>_services scripts). For example, this could be

caused by executing kill -9 on the service. This can possibly cause

corruption on the database due to unfinished transactions.

• You have put your Orbix services databases on an NFS mounted drive,

which is either not available, or your machine’s NFS client might have a

problem.

When the IDL:omg.org/CORBA/PERSIST_STORE:1.0 error occurs, contact
IONA support with a copy of logs that show the exact exception, and a
description of any unusual activity that may have led up to the problem.

How to recover from a
PERSIST_STORE error

To recover from the PERSIST_STORE error, it is likely you will need to recover
the most recent stable state of your underlying database. If precautions are taken
beforehand, your system can be brought back to this stable state with minimal
downtime. It is important to determine the level of recovery that is acceptable
within your production environment.

For example, you may wish to recover all data prior to the system going down.
Alternatively, there may not be as much concern for loss of data, and it may be
satisfactory to simply get back to a stable state such that the services can be
restarted.
141

CHAPTER 9 | Managing Orbix Service Databases
Database Recovery for Orbix Services

Overview Each time you start an Orbix service that uses Berkeley DB, the service performs
a normal recovery. If the service was stopped in the middle of an update, the
transaction is rolled back, and the service persistent data is restored to a
consistent state.

In some cases, however, the data files or the log files are missing or corrupted,
and normal recovery is not sufficient. Then you must perform a catastrophic
recovery. This section explains how to back up your data and log files and
perform a full or incremental recovery. It includes the following:

• “Full backup”.

• “Performing a full backup”.

• “Full backup recovery”.

• “Incremental backup”.

• “Enabling incremental backup”.

• “Performing an incremental backup”.

• “Performing an incremental recovery”.

Full backup It is important that you archive a stable snapshot of your services database,
which can be used in case a recovery is needed. This is referred to as a full
backup and can be performed by making a backup of the entire dbs directory.
The purpose of this backup is that if a PERSIST_STORE error occurs for any Orbix
services, you can replace the corrupted directory with the backup. The services
should then start without a problem.

The backup can be made at any time. The only requirement is that the service be
in a stable state (can run and function without errors). You can take the backup
directly after configuring your domain, or after the system has been running for a
while. The backup that you make will determine the snapshot that your system
will return to in the case of a recovery. For example, if you have numerous
entries into the IMR (registered POAs, ORBs, and so on), you may wish to add
these entries before backing up the locator database. This prevents you from
having to do the extra re-configuration if you ever need to recover.
 142

Database Recovery for Orbix Services
Performing a full backup To do a full backup, perform the following steps:

1. You must first disable the default periodic deletion and/or archival of old

log files during the period while you are backing up the database To

disable run the following command:

itadmin pss_db pre_backup env.ior

The env.ior represents a handle to the database. Each service should have

its corresponding env.ior file within the dbs/<service name>.

2. Make a backup of the following directories

dbs/<service name>/data directory
dbs/<service name>/ logs directory

Store these backups in a safe location. After a successful full backup, you

can discard older full backups (if any).

3. Re-enable the default periodic deletion and/or archival of old log files:

itadmin pss_db post_backup env.ior

Full backup recovery To do a full backup recovery, perform the following steps:

1. Determine which service is failing on startup.

2. Ensure that your Orbix services are stopped.

3. Make a temporary backup the dbs/<service_name> directory for the

service you wish to recover.

4. Delete the dbs/<service_name> directory for the service you wish to

recover.

5. Replace the deleted dbs/<service_name> directory in your environment

with the latest full backup of this directory.

6. Restart the services.

The environment should now be in the state that it was in at the time the last full
backup was performed.

Note: If you can bring the services down before doing the backup, you can
skip the first step. If you have a live system, and are unable to bring down the
services, you can do a backup while the services are running.
143

CHAPTER 9 | Managing Orbix Service Databases
Incremental backup You should determine whether you also need to do regular incremental backups.
Generally, these are performed in an environment that requires a large amount of
additional configuration beyond initial domain creation, or undergoes constant
changes to the configuration. For example, it might make sense to do
incremental backups of the locator database in an environment where POA and
ORB names are being created or modified constantly, and you need to be able to
recover to the most recent state possible. Similarly, if the naming service is
constantly undergoing changes of objects references, naming contexts, and so
on, and any recovery needs to reflect the most recent state of the underlying
database. Another candidate would be for a configuration repository where
variables are added or modified regularly.

Enabling incremental backup If you determine that you need to do regular incremental backups, you should
perform the following steps first. These steps apply to the locator, but similarly
can be applied to naming service, CFR, and so on.

1. To enable incremental backup, you should tell the service not to

automatically delete old log files. By default, old log files are

automatically deleted when it is determined the log file is no longer being

used. To disable this default behavior, set the following configuration

variable:

You can easily apply this to other services by changing it_locator to

another service (for example, it_naming).

2. To enable the automatic archival of old log files, set the following

configuration variable:

This will specify whether old log files are automatically archived to the

old_logs directory. To archive old log files, set this variable to true. This

defaults to false.

plugins:pss_db:envs:it_locator:
checkpoint_deletes_old_logs = “false”

plugins:pss_db:envs:it_locator:checkpoint_archives_old_logs
 144

Database Recovery for Orbix Services
3. To specify where the old log files get archived to, set a value for the

following:

The path is usually set relative to db_home directory. You must ensure you

have sufficient space in the above directory, and also, in the location

specified by:

Performing an incremental
backup

The following assumes that you have previously performed a complete backup
(see “Full backup” on page 142) at least once in your environment. An
incremental backup performs a backup of the log files that have changed or have
been created since the last full or incremental backup.

On a predetermined schedule (once a day or week), do a incremental backup of
each service as follows:

1. Disable the default periodic deletion and/or archival of old log files during

the period while you are doing an incremental backup of the database. To

disable, run the following command:

The env.ior represents a handle to the database. Each service should have

its corresponding env.ior file within the dbs/<service name>.

2. Make a backup of files (if any) in <service_name>/old_logs directory.

When you have made the backup, it is then safe to remove the contents of

the <service_name>/old_logs directory in your production database.

3. Make a backup of the <service_name>/logs directory. This contains the

most recent (current) transaction log.

plugins:pss_db:envs:it_locator:old_logs_dir =
"<path/to/old_logs>"

plugins:pss_db:envs:it_locator:db_home

Note: It is critical to the stability of your system that you have sufficient
space in these locations to hold the database files and transaction logs for the
service.

itadmin pss_db pre_backup env.ior
145

CHAPTER 9 | Managing Orbix Service Databases
Performing an incremental
recovery

The following explains the steps needed to recover if data and/or log files have
been corrupted. These steps assume you have taken regular incremental backups
as described in “Incremental backup” on page 144. Perform the following steps:

1. Determine which service is failing on startup.

2. Ensure that your Orbix services are stopped.

3. Make a temporary backup the dbs/<service_name> directory for the

service you wish to recover.

4. Delete the dbs/<service_name> directory for the service you wish to

recover.

5. Replace the deleted dbs/<service_name> directory in your environment

with the latest full backup of this directory (see “Full backup recovery” on

page 143).

6. In the order of oldest to the newest, copy the files from

<service_name/old_logs and <service_name>/logs from each

incremental backup. Put the incremental backup versions of the log files in

<service_name/old_logs and <service_name>/logs into the

dbs/<service_name>/logs directory of your environment.

7. Set the following configuration variable to true:

8. Start the Orbix services.

9. Set the following configuration variable to false:

plugins:pss_db:envs:env_name:recover_fatal

The environment should now be in the state it was in when the last archived log
file was written. These steps apply to the locator but similarly can be applied to
naming service, CFR, and so on.

Further information For more information, SleepyCat Software provides full details of Berkeley DB
administration at http://www.sleepycat.com/docs/.

plugins:pss_db:envs:env_name:recover_fatal
 146

http://www.sleepycat.com/docs

Replicated Databases
Replicated Databases

Overview The Berkeley DB supports replicated databases using the master-slave model
with automatic promotion of slaves. The following Orbix services use this
functionality to increase their availability:

• Locator daemon

• Naming service

• Configuration repository

Using configuration variables You can control replicated databases with the following configuration variables:

For more details, see plugins:pss_db:envs:env-name in the Orbix
Configuration Reference.

Using the command line You can examine the state of a replicated database and remove replicas using the
itadmin commands. For example:

For more details on these commands, see “Persistent State Service” on page 367.

pss_db:envs:env-name:allow_minority_master
pss_db:envs:env-name:always_download
pss_db:envs:env-name:election_backoff_ratio
pss_db:envs:env-name:election_delay
pss_db:envs:env-name:election_init_timeout
pss_db:envs:env-name:init_rep
pss_db:envs:env-name:master_heartbeat_interval
pss_db:envs:env-name:max_elections
pss_db:envs:env-name:replica_priority

itadmin pss_db list_replicas env-home/env.ior
147

http://www.iona.com/support/docs/orbix/6.2/admin/config_ref/index.html
http://www.iona.com/support/docs/orbix/6.2/admin/config_ref/index.html

CHAPTER 9 | Managing Orbix Service Databases
 148

CHAPTER 10

Configuring Orbix
Compression
This chapter explains how to configure the Orbix ZIOP
compression plug-in. This can enable significant performance
improvements on low bandwidth networks.

In this chapter This chapter includes the following topics

Introduction page 150

Configuring Compression page 152

Example Configuration page 156

Message Fragmentation page 158
149

CHAPTER 10 | Configuring Orbix Compression
Introduction

Overview The Orbix ZIOP compression plug-in provides optional
compression/decompression of GIOP messages on the wire. Compressed and
uncompressed transports can be mixed together. This can enable significant
performance improvements on low bandwidth networks.

These performance improvements depend on the network and the message data.
For example, if the requests contain already compressed data, such as .jpeg
images, there is virtually no compression. However, with repetitive string data,
there is good compression.

ZIOP stands for Zipped Inter-ORB Protocol, which is an proprietary IONA
feature. Figure 15 shows a simple overview of ZIOP compression in a
client-server environment.

Figure 15: Overview of ZIOP Compression

Client Host Server Host

ObjectClient

ZIOP Compression

GIOP message
 150

Introduction
Implementation Orbix ZIOP compression has been implemented in both C++ and Java and is
available on all platforms. The Orbix compression plug-in (ziop) supports the
following compression algorithms:

• gzip

• pkzip

• bzip2

The compression is performed using a configurable compression library.
Compression can be configured on a per-ORB basis, and also on a per-binding
basis (using ORB policies).

Per-ORB settings can be made in the client or server scope of your configuration
file (described in this chapter). More fine grained per-binding settings can be
made programmatically (see the Orbix CORBA Programmer’s Guide for
details).

Additional components The following Orbix components have also been updated for ZIOP compression:

• The giop_snoop plug-in has been updated to detect ZIOP compressed

messages.

• The iordump tool has been updated to parse the new IOR component for

ZIOP compression.
151

CHAPTER 10 | Configuring Orbix Compression
Configuring Compression

Overview Orbix uses symbolic names to configure plug-ins and then associates them with
a Java or a C++ implementation. The compression/decompression plug-in is
named ziop. This is implemented in Java by the
com.iona.corba.ziop.ZIOPPlugIn class, and in C++ by the it_ziop shared
library.

This section shows how to configure the behavior of the compression plug-in for
your client or servers. It includes the following:

• “Configuring the ziop plug-in”.

• “Configuring binding lists”.

• “Enabling compression”.

• “Setting the compression algorithm”.

• “Setting the compression level”.

• “Setting the compression threshold”.

Configuring the ziop plug-in To configure the ziop plug-in, perform the following steps:

1. Ensure that the following entries are present in your Orbix configuration

file:

2. Include the ziop plug-in the ORB plug-ins list:

For example:

Note: These settings must be added to your client or server configuration
scope, as appropriate.

plugins:ziop:shlib_name = "it_ziop";
plugins:ziop:ClassName = "com.iona.corba.ziop.ZIOPPlugIn";

orb_plugins = [.... "ziop" ...];

orb_plugins = ["local_log_stream", "iiop_profile", "giop",
"ziop", "iiop"];
 152

Configuring Compression
Configuring binding lists To enable compression/decompression for CORBA IIOP communication,
ensure that your binding lists contain the following entries.

For clients:

For servers:

The client or server binding lists can be much more complicated than these
simple examples, although these are adequate for compressed GIOP/IIOP
communication. Here is an example of more complex binding lists:

Enabling compression To enable or disable compression, use the
policies:ziop:compression_enabled configuration variable. For example:

The default value is true. This means that even when this entry does not appear
in the configuration, compression is enabled. However, the ziop plug-in must
first be loaded in the orb_plugins list, and selected by a server or client binding.

binding:client_binding_list = ["GIOP+ZIOP+IIOP"];

plugins:giop:message_server_binding_list = ["ZIOP+GIOP"];

binding:client_binding_list = ["OTS+GIOP+ZIOP+IIOP_TLS",
"CSI+GIOP+ZIOP+IIOP_TLS", "GIOP+ZIOP+IIOP_TLS",
"CSI+GIOP+ZIOP+ZIOP+IIOP", "GIOP+ZIOP+IIOP"];

plugins:giop:message_server_binding_list = ["BiDir_GIOP",
"ZIOP+GIOP", "GIOP"];

policies:ziop:compression_enabled = "true";
153

CHAPTER 10 | Configuring Orbix Compression
Setting the compression algorithm The default compression algorithm can be set using the
policies:ziop:compressor_id configuration variable. For example:

Possible values are as follows:

If this configuration variable is not specified, the default value is 1 (gzip
compression).

The ZIOP compression plug-in can be extended with additional compression
algorithms using the IT_ZIOP::CompressionManager API. See the Orbix
CORBA Programmer's Guide for details.

Setting the compression level To set compression levels, use the
policies:ziop:compressor:compressor_id:level variable.

Using this variable, you can specify the compression level for each of the
algorithms registered in the ziop plug-in. The permitted values are specific to
the selected algorithm. For example:

For the gzip and pkzip algorithms, possible values are in the range between 0 (no
compression) and 9 (maximum compression). The default value is 9.

For the bzip2 algorithm, (compressor_id = 3), possible values are in the range
between 1 (least compression) and 9 (maximum compression). The default value
is 9.

policies:ziop:compressor_id = "1";

1 gzip algorithm

2 pkzip algorithm

3 bzip2 algorithm

policies:ziop:compressor:1:level = "9";
 154

Configuring Compression
Setting the compression threshold The compression threshold defines the message size above which compression
occurs.

To specify the minimum message size that is compressed, use the
policies:ziop:compression_threshold variable. For example:

Using this setting, messages smaller than 50 bytes are not compressed.The
default setting is 0, which means that all messages are compressed.

If you set this to a negative value, the compression threshold is equal to infinity,
which means that messages are never compressed. This can be of use if you want
to enable compression in one direction only. For example, you can compress
messages sent from the server to the client, while in the other direction,
messages from the client to the server remain uncompressed.

policies:ziop:compression_threshold = "50";
155

CHAPTER 10 | Configuring Orbix Compression
Example Configuration

Overview This section shows some example compression configurations. It includes the
following:

• “Standard ziop configuration”.

• “Debug configuration with giop_snoop”.

Standard ziop configuration The following example shows a standard compression configuration in the
ziop_test configuration scope:

Depending on the particular circumstances, these settings must be added to the
client or the server scope, as appropriate.

If you do not use a scope for your client or server, you can put the settings into
the global scope, however, this is not recommended.

ziop_test {
#These settings are necessary for the ziop plug-in
plugins:ziop:ClassName = "com.iona.corba.ziop.ZIOPPlugIn";
plugins:ziop:shlib_name = "it_ziop";
orb_plugins = ["local_log_stream", "iiop_profile", "giop",

"ziop", "iiop"];
binding:client_binding_list = ["GIOP+ZIOP+IIOP"];
plugins:giop:message_server_binding_list = ["ZIOP+GIOP"];

#These settings are optional
policies:ziop:compression_enabled = "true";
policies:ziop:compressor_id = "1";
policies:ziop:compression_level = "9";
policies:ziop:compression_threshold = "80";
};
 156

Example Configuration
Debug configuration with
giop_snoop

The following example shows a debug configuration using the giop_snoop
plug-in:

Using this configuration, you can trace the compression/decompression
behavior. The giop_snoop plug-in logs the parameters to standard out before or
after the ziop plug-in (depending on its position before or after the ZIOP
plug-in).

To send the output to a file instead of standard out, use the following setting:

ziop_test {

plugins:ziop:ClassName = "com.iona.corba.ziop.ZIOPPlugIn";
plugins:ziop:shlib_name = "it_ziop";

plugins:giop_snoop:shlib_name = "it_giop_snoop";
plugins:giop_snoop:ClassName =

"com.iona.corba.giop_snoop.GIOPSnoopPlugIn";

orb_plugins = ["local_log_stream", "iiop_profile", "giop",
"giop_snoop", "ziop", "iiop"];

binding:client_binding_list = ["GIOP+ZIOP+GIOP_SNOOP+IIOP"];
plugins:giop:message_server_binding_list =

["GIOP_SNOOP+ZIOP+GIOP"];

event_log:filters = ["IT_GIOP=*"];
policies:ziop:compression_enabled = "true";
policies:ziop:compressor_id = "1";
policies:ziop:compression_level = "9";
policies:ziop:compression_threshold = "80";
};

plugins:local_log_stream:filename = "c:\temp\test.log";
157

CHAPTER 10 | Configuring Orbix Compression
Message Fragmentation

Overview The GIOP/IIOP protocol from version 1.1 can fragment messages. The default
setting for Orbix is to use message fragmentation. The default fragment size is
16 KB.

This is relevant to the ziop plug-in, because the compression algorithm can
access at most a single fragment at a time. The compression plug-in therefore
operates at the granularity of a single fragment. In this way, message
fragmentation can potentially have a large effect on the compression rate.

Increasing message fragment size Depending on the structure of your data, it might make sense to increase the
fragment size so that the compression algorithm is optimized for larger blocks of
data. You can configure the fragment size using the
policies:iiop:buffer_sizes_policy:default_buffer_size configuration
variable. For example:

This sets the fragment size to 64 KB.

Fragmentation example Only the overall message size is transmitted. For example, if the message is only
4 KB, only these 4 KB are transmitted. Only if the message is larger than the
maximum fragment size will it be transmitted in fragments.

For example, if the maximum fragment size is 16 KB. And the message size is
44 KB. The message will be sent in fragments of 16 KB, 16 KB, and 12 KB.

policies:iiop:buffer_sizes_policy:default_buffer_size = "65536";
 158

CHAPTER 11

Configuring
Advanced Features
This chapter explains some how to configure advanced features
such as Java new I/O, IPv6, and bidirectional GIOP.

In this chapter This chapter includes the following topics

Configuring Java NIO page 160

Configuring Internet Protocol Version 6 page 163

Configuring Shared Memory page 166

Configuring Bidirectional GIOP page 168
159

CHAPTER 11 | Configuring Advanced Features
Configuring Java NIO

Overview Java’s new I/O (NIO) provides enhanced connection scalability. It enables you
to manage more connections with fewer resources (specifically, fewer threads).
This section includes the following:

• “ATLI2/Java NIO”.

• “Requirements”.

• “Enabling Java NIO”.

• “CFR-based domains”.

• “File-based domains”.

• “Further information”.

ATLI2/Java NIO IONA’s current transport layer implementation is called the Abstract Transport
Layer Interface, version 2 (ATLI2). Orbix offers an ATLI2 implementation
based on Java NIO. The default ATLI2 plugin is based on Java classic I/O
(CIO).

In addition to allowing more connections to be managed with fewer threads,
ATLI2/Java NIO also performs better than ATLI2/Java CIO in the presence of
many incoming connections.

Requirements To use ATLI2/Java NIO, you must have JDK version 1.4.x installed.

Note: Applications that use either Transport Layer Security (TLS) or
Endpoint Granularity Multicast Inter-ORB Protocol (EGMIOP) must use the
default Java CIO. Java NIO does not support TLS or multicast sockets.
 160

Configuring Java NIO
Enabling Java NIO To enable Java NIO, you must change the plugins:atli2_ip:ClassName
configuration variable, which is set to Java CIO by default:

You should update this variable to Java NIO as follows:

CFR-based domains When setting Java NIO or CIO in a configuration repository-based domain, if
you wish to override plugins:atli2_ip:ClassName at an inner configuration
scope, some additional configuration is required.

Enabling Java NIO at an inner scope

When setting Java NIO in CFR-based domain, to override
plugins:atli2_ip:ClassName at an inner configuration scope, perform the
following steps:

1. Set the following variable at the global scope:

2. Set the following at the inner scope:

plugins:atli2_ip:ClassName
=com.iona.corba.atli2.ip.cio.ORBPlugInImpl

plugins:atli2_ip:ClassName
=com.iona.corba.atli2.ip.nio.ORBPlugInImpl

plugins:atli2_ip_nio:ClassName=
"com.iona.corba.atli2.ip.nio.ORBPlugInNIOImpl";

initial_references:IT_IPTransport:plugin = "atli2_ip_nio";
161

CHAPTER 11 | Configuring Advanced Features
Enabling Java CIO at an inner scope

Similarly, when setting Java CIO in a CFR-based domain, to override
plugins:atli2_ip:ClassName at an inner scope:

1. Set the following variable at the global scope:

2. Set the following at the inner scope:

File-based domains When setting Java NIO or Java CIO in a configuration file-based domain, you
can override plugins:atli2_ip:ClassName at an inner configuration scope,
without the additional configuration required for overriding in a CFR-based
domain.

Further information For more information about Java NIO, see the Sun web site:

http://java.sun.com/j2se/1.4.1/docs/guide/nio/

plugins:atli2_ip_cio:ClassName=
"com.iona.corba.atli2.ip.cio.ORBPlugInCIOImpl";

initial_references:IT_IPTransport:plugin = "atli2_ip_cio";
 162

http://java.sun.com/j2se/1.4.1/docs/guide/nio/

Configuring Internet Protocol Version 6
Configuring Internet Protocol Version 6

Overview Orbix provides support for Internet Protocol version 4 (IPv4) and Internet
Protocol version 6 (IPv6). Orbix supports IPv4 connections by default. IPv6
fixes a number of issues in IPv4, such as the limited number of available IPv4
addresses, and adds improvements in routing and network configuration.

Supported platforms

Orbix supports IPv6 on the following platforms:

• Windows XP and Vista

• Sun Solaris version 8, 9,and 10

• Red Hat Linux AS version 3 and 4

Configuring IPv6 in Orbix You can configure Orbix servers to listen for the following connections:

• IPv4 only

• IPv4 and IPv6

• IPv6 only

The default behavior is for servers to listen for IPv4 connections only. The
following configuration variables control this behavior for Orbix servers and
clients:

• policies:network:interfaces:prefer_ipv4

• policies:network:interfaces:prefer_ipv6

For example, to enable Orbix communication over IPv6 only, add the following
setting in the ORB or global configuration scope:

policies:network:interfaces:prefer_ipv6 = "true";
163

CHAPTER 11 | Configuring Advanced Features
Configuring IPv4 only
communication

By default, prefer_ipv4 is set to true and prefer_ipv6 is set to false. To
continue using Orbix where there is no requirement for IPv6 communication,
you do not need to make any changes to configuration.

Configuring IPv4 and IPv6
communication

On hosts that are configured for IPv4 and IPv6 (dual-stack), you can configure
Orbix servers to listen for connections from clients communicating over both
IPv4 and IPv6. To run Orbix servers in this mode, use the following setting in
the ORB or global configuration scope:

Servers started with this configuration listen for both IPv4 and IPv6 client
connections. No special configuration is required for Orbix clients connecting to
an Orbix server started in this mode.

Configuring IPv6 only
communication

On hosts that are configured for IPv4 and IPv6 (dual-stack), you can configure
Orbix servers and clients to communicate over IPv6 only using the following
setting

Servers started with this variable set at the global or ORB configuration scope
listen for connections from clients connecting over IPv6. Clients with this
configuration try to connect over IPv6 to the server.

Note: This is the default behavior on any host (including dual-stack) where
the hostname can be resolved to an IPv4 address. However, if the hostname
can only be resolved to an IPv6 address, by default, prefer_ipv4 set to false
and prefer_ipv6 is set to true.

policies:network:interfaces:prefer_ipv4 = "false";

policies:network:interfaces:prefer_ipv6 = "true";

Note: When this is set to true, no communication is possible from IPv4
clients trying to connect to the server where the server is running on Windows
or the server is configured to write numeric addresses into the IOR.

If the hostname can only be resolved to an IPv6 address, by default, the server
only listens for IPv6 communication; there is no need to set any configuration
for the server or client.
 164

Configuring Internet Protocol Version 6
Deploying IPv6 services The Orbix Configuration tool (itconfigure) does not support enabling services
to use IPv6 at deployment time. However, you can to enable Orbix services for
IPv6 after deployment using the prefer_ipv4 and prefer_ipv6 configuration
variables.

This is only possible when the hostname is written to the IOR for the service.
This is because when publishing numeric addresses to the IOR, itconfigure
only publishes IPv4 numeric addresses.

Backward compatibility Enabling a server for IPv6 by setting prefer_ipv4 to false does not affect the
ability of older Orbix clients, or clients that have not been enabled for IPv6, to
connect to the server.

For more details on compatibility, see “Configuring IPv6 only communication”
on page 164.

Direct persistence and replica
failover with IPv6

When configuring direct persistence and replica failover, you should enclose
IPv6 numeric addresses in brackets. For example:

For more details, see “Fault Tolerance and Replicated Servers” on page 81.

Specifying IPv6 addresses in a
corbaloc

The use of numeric IPv6 addresses is supported since IIOP version 1.2. You
must enclose numeric IPv6 addresses in brackets in the corbaloc URL. For
example:

MyConfigApp {
 ...

wka_1:iiop:addr_list=["[2001:cc1e:1:3:203:baff:fe66:240b]:10
75", "+host2.com:2075"];

 ...
}

"corbaloc::1.2@[fe80::203:baff:fe6f:3e91]:125/OneAddress"
165

CHAPTER 11 | Configuring Advanced Features
Configuring Shared Memory

Overview Shared memory is an inter-process communication mechanism, available on
certain operating systems. It provides an efficient means of passing data between
programs that are executing on the same host. One process creates a memory
portion that other processes can access.

When the client and server are located on the same host, using shared memory to
communicate is usually faster than using network calls. This section includes the
following:

• “Shared memory segment size”.

• “Enabling shared memory”.

• “Shared memory logging”.

• “Shared memory segment size”.

Platform availability The shared memory plug-in is available for C++ ORBs on the following
platforms:

• Solaris

• HP-UX

• Windows

Enabling shared memory Orbix provides the shmiop transport plugin, which uses shared memory as its
underlying communication mechanism.

To use shared memory with Orbix, perform the following steps:

1. Modify the orb_plugins list in your configuration to include the SHMIOP

plugin. For example:

Note: Java ORBs can not read their orb_plugins list if it specifies the shared
memory plug-in. For this reason, a shared memory configuration domain
should not be shared between C++ and Java ORBs.

orb_plugins = ["local_log_stream", "iiop_profile", "giop",
"iiop", "shmiop"];
 166

Configuring Shared Memory
2. On the client side, add the shmiop plugin to the client_binding_list, for

example:

When the client_binding_list is set, Orbix first attempts to bind to the

server using the faster shared memory transport. If this is unsuccessful—

for example, if the server is not on the same host as the client—Orbix then

uses the standard IIOP transport as normal.

Shared memory logging To enable logging output from the shared memory plugin, turn on the log
stream, and add the following filter in your configuration:

IONA’s transport layer implementation is referred to as the Abstract Transport
Layer Interface, version 2 (ATLI2).

Shared memory segment size You can configure the size of the shared memory segment created (for example,
in the call to mmap on Solaris). You can set this using the following configuration
variable:

The default value is 8*1024*1024. This size should be larger than the largest
data payload passed between a client and server. If the setting is too small, the
shared memory transport will run out of memory, and will be unable to marshal
the data. If there is danger of this occurring, add GIOP+IIOP to your
client_binding_list setting. This enables the ORB to use the normal network
transport if a large payload can not make it through shared memory.

Further information For information on additional shared memory configuration variables, see the
plugin:atli2_shm and policies:shmiop namespaces in the Orbix
Configuration Reference. The default configuration settings are sufficient for
most cases.

binding:client_binding_list = ["GIOP+SHMIOP", "GIOP+IIOP"];

event_log:filters = ["IT_ATLI2_SHM=*"];

plugin:atli2_shm:shared_memory_size
167

CHAPTER 11 | Configuring Advanced Features
Configuring Bidirectional GIOP

Overview This section explains how to set up your system to use bidirectional GIOP. This
allows callbacks to be made using a connection opened by the client, instead of
requiring the server to open a new connection for the callback.

Bidirectional GIOP is decoupled from IIOP, and is applicable over arbitrary
connection-oriented transports (for example, IIOP/TLS or SHMIOP).
Bidirectional GIOP may be used regardless of how the callback IOR is passed to
the server. For example, it can be passed over an IDL interface, using a shared
file, or using a naming or trader service.

GIOP specifications Orbix supports bidirectional GIOP (General Inter-ORB Protocol), as described
in the firewall submission:

http://www.omg.org/docs/orbos/01-08-03.pdf.

As originally specified, GIOP connections were restricted to unidirectional. This
proved to be very inconvenient in certain deployment scenarios where the
callback pattern was in use, and clients could not accept incoming connections
(for example, due to sandbox restrictions on Java applets, or the presence of
client-side firewalls). This restriction was relaxed for GIOP 1.2, allowing
bidirectional connections to be used under certain conditions.

This section includes the following:

• “Enabling Bidirectional GIOP” on page 169.

• “Migration and Interoperability Issues” on page 172.
 168

http://www.omg.org/docs/orbos/01-08-03.pdf

Configuring Bidirectional GIOP
Enabling Bidirectional GIOP

Overview Bidirectional GIOP is enabled by overriding policies in the client and server
applications. To enable bidirectional GIOP, perform the following steps:

1. “Set the export policy to allow”.

2. “Set the offer policy to allow”.

3. “Set the accept policy to allow”.

Set the export policy to allow The POA used to activate the client-side callback object must have an effective
BiDirPolicy::BiDirExportPolicy set to BiDirPolicy::ALLOW. You can do
this programmatically by including this policy in the list that is passed to
POA::create_POA(). Alternatively, you can do this in configuration, using the
following setting:

This results in including an IOP::TAG_BI_DIR_GIOP component in the callback
IOR. This indicates that bidirectional GIOP is enabled and advertising a
GIOP::BiDirId generated for that POA.

If necessary, you can control the lifespan of the BiDirId by using the proprietary
IT_BiDirPolicy::BiDirIdGenerationPolicy, either allowing random or
requiring repeatable IDs be generated. This is only an issue if the callback POA
is persistent, in which case repeatable IDs are required. This would be unusual
because callbacks are usually purely transient, in which case the default
BiDirIdGenerationPolicy is appropriate.

policies:giop:bidirectional_export_policy="ALLOW";

Note: Setting policies programatically gives more fine-grained control than
setting policies in configuration. See “Implications for pre-existing application
code” on page 172 for more details.
169

CHAPTER 11 | Configuring Advanced Features
Set the offer policy to allow A bidirectional offer is triggered for an outgoing connection by setting the
effective BiDirPolicy::BiDirOfferPolicy to ALLOW for an invocation. This
policy may be overridden in the usual way—in descending order of precedence,
either on the object reference, current thread, ORB policy manager.
Alternatively, you can do this in configuration, using the following setting:

The client_policy demo illustrates the different ways of overriding client
policies. This results in an IOP::BI_DIR_GIOP_OFFER service context being
passed with the request, unless the policies effective for the callback POA
conflict with the outgoing connection (for example, if the former requires
security but the latter is insecure).

Set the accept policy to allow On the server side, the effective BiDirPolicy::BiDirAcceptPolicy for the
callback invocation must be set to ALLOW. You can do this in configuration, using
the following setting:

This accepts the client's bidirectional offer, and uses an incoming connection for
an outgoing request, as long the policies effective for the invocation are
compatible with the connection.

Confirming bidirectional GIOP is
in use

The simplest way to check that bidirectional GIOP is in use is to examine your
log file. First, ensure that the level configured for the IT_GIOP sub-system
includes INFO_LOW events, for example:

For each client binding established, LocateRequest/Request and/or
LocateReply/Reply sent or received in the bidirectional sense, the log message
includes a [bidirectional] suffix.

You can also use the iordump utility to check that the TAG_BI_DIR_GIOP
component is present in the callback IOR. For information on using iordump,
see Appendix 15 on page 213.

policies:giop:bidirectional_offer_policy="ALLOW";

policies:giop:bidirectional_accept_policy="ALLOW";

event_log:filters = ["IT_GIOP=INFO_LOW+WARN+ERROR+FATAL", ...];
 170

Configuring Bidirectional GIOP
Server and client binding lists In a generated configuration domain, by default, your client and server binding
lists are set to include BiDir_GIOP. You do not have to configure these
configuration settings manually. The default settings are explained as follows:

• On the server-side, the binding:client_binding_list includes an entry

for BiDir_GIOP, for example:

This enables the existing incoming message interceptor chain to be

re-used, so that the outgoing client binding dispatches the callback

invocation.

• On the client-side, the plugins:giop:message_server_binding_list

includes an entry for BiDir_GIOP, for example:

This enables the existing outgoing message interceptor chain to be re-used

for an incoming server binding.

 binding:client_binding_list = ["OTS+BiDir_GIOP",
"BiDir_GIOP", "OTS+GIOP+IIOP", "GIOP+IIOP", ...];

plugins:giop:message_server_binding_list=
["BiDir_GIOP","GIOP"];
171

CHAPTER 11 | Configuring Advanced Features
Migration and Interoperability Issues

Overview This section includes the following bidirectional GIOP issues:

• “Implications for pre-existing application code”.

• “Incompatible ORBs”.

• “Interoperability with Orbix 3”.

• “Orbix 6.x restrictions”.

Implications for pre-existing
application code

There are no implications for existing applications that do not need bidirectional
GIOP. This feature is disabled by default.

Otherwise, the code impact can be minimized by setting the relevant policies
using configuration, as explained “Enabling Bidirectional GIOP” on page 169.
However, this is quite a coarse grained approach, and often its not necessary or
desirable to enable bidirectional GIOP for the entire ORB. The recommended
approach is to selectively override the relevant programmatic policies in a
fine-grained manner on exactly those elements (POAs, ORBs, threads, object
references) that require it.

Also, currently existing persistent callback IORs (for example, those bound in
the naming service) must be regenerated to include the TAG_BI_DIR_GIOP
component. However, this is unlikely to impact many real applications as
callback references are usually transient and regenerated every time the client
application is run.

Incompatible ORBs There are several incompatible bidirectional schemes in use. For example,
Orbacus uses a proprietary mechanism, and several commercial and open source
ORBs support the soon-to-be obsolete bidirectional standard; while Orbix 2000
and Orbix E2A 5.x/6.0 do not have any analogous functionality.

All of these schemes are mutually incompatible and non-interoperable. Hence,
Orbix 6.x reverts to unidirectional GIOP when interoperating with any of these
ORBs.
 172

Configuring Bidirectional GIOP

Interoperability with Orbix 3 Orbix 6.x includes support for interoperability with Orbix 3.x (Generation 3).
This enables an Orbix 6.x server to invoke on an Orbix 3.x callback reference in
a bidirectional fashion. To configure interoperability with Orbix 3.x, perform the
following steps:

1. Set the IT_BiDirPolicy::BidirectionalGen3AcceptPolicy to ALLOW.

This is a proprietary policy analogous to

BiDirPolicy::BidirectionalAcceptPolicy. It enables an Orbix 6.x

server to accept an Orbix 3.x bidirectional offer.

You can do this either programmatically or using the following

configuration setting:

2. Include the appropriate BiDir_Gen3 entry in the server's configured

binding:client_binding_list. For example,

For more details, see “Server and client binding lists” on page 171.

Orbix 3 restrictions The following restrictions apply to bidirectional GIOP in
Orbix 3:

• Orbix 3 bidirectional callback references may only be passed to the server

as a request parameter. Orbix 6.x bidirectional callback references can be

passed in any way (for example, using the naming service, or a shared file).

• Orbix 3 bidirectional callback references may only be invoked on in a

bidirectional fashion during the lifetime of the connection over which it

was received. Orbix 6.x bidirectional invocations may be made after the

connection is reaped by Active Connective Management and

re-established.

The Orbix 6.x and Orbix 3 bidirectional mechanisms will co-exist peacefully.
An incoming connection can only be considered for bidirectional invocations by,
at most, one of the two schemes, depending on whether the client is based on
Orbix 6.x or Orbix 3.x.

policies:giop:bidirectional_gen3_accept_policy="ALLOW";

binding:client_binding_list =
["OTS+BiDir_GIOP", "BiDir_GIOP", "BiDir_Gen3", "OTS+GIOP+IIOP",

"GIOP+IIOP", ...];
173

CHAPTER 11 | Configuring Advanced Features
Orbix 6.x restrictions Orbix 6.x includes the following restrictions:

• Orbix 6.x support for Orbix 3 bidirectional GIOP is asymmetric. An Orbix

6.x server can invoke on a Orbix 3 callback reference using bidirectional

GIOP. However, an Orbix 6.x client can not produce a callback reference

that an Orbix 3 server could invoke on using bidirectional GIOP.

• To be compatible with GIOP 1.2 (that is, not be dependent on GIOP 1.4

NegotiateSession messages), only weak BiDirIds are used, and the

challenge mechanism to detect client spoofing is not supported. This

functionality will be added in a future release, when GIOP 1.4 is

standardized.
 174

CHAPTER 12

Orbix Mainframe
Adapter
The Orbix Mainframe Adapter (MFA) plugin enables you to
communicate with Orbix Mainframe CICS and IMS server
adapters from Windows and UNIX. It includes a Mapping Gateway
interface and an itmfaloc URL resolver. This chapter introduces
the CICS and IMS server adapters, and explains how to use the
Mapping Gateway interface and the itmfaloc URL resolver.

In this chapter This chapter contains the following sections:

CICS and IMS Server Adapters page 176

Using the Mapping Gateway Interface page 177

Locating Server Adapter Objects Using itmfaloc page 181

Note: In addition to Orbix, you must have Orbix Mainframe installed and
running before you can use the MFA.
175

CHAPTER 12 | Orbix Mainframe Adapter
CICS and IMS Server Adapters

Overview The Orbix Mainframe product includes a CICS server adapter and an IMS server
adapter. This section gives a brief description of each of these adapters and
includes the following to topics:

• CICS server adapter

• IMS server adapter

• More information

CICS server adapter The Orbix CICS server adapter is an Orbix Mainframe service that can be
deployed in either a native OS/390 or UNIX System Services environment. The
CICS server adapter acts as a bridge between CORBA/EJB clients and CICS
servers. It enables you to set up a distributed system that combines the powerful
online transaction processing capabilities of CICS with the consistent and
well-defined structure of a CORBA environment.

IMS server adapter The Orbix IMS server adapter is an Orbix Mainframe service that can be
deployed in a native OS/390 or UNIX System Services environment. It provides
a simple way to integrate distributed CORBA and EJB clients on various
platforms with existing and new IMS transactions running on OS/390. The IMS
server adapter allows you to develop and deploy Orbix COBOL and PL/I servers
in IMS, and to integrate these IMS servers with distributed CORBA clients
running on various platforms. It also facilitates the integration of existing IMS
transactions, not developed using Orbix, with distributed CORBA clients,
without the need to change these existing transactions.

More information For more information, see the Orbix Mainframe CICS Adapters Administrator’s
Guide and IMS Adapters Administrator’s Guide, which are available on the
IONA documentation web pages at:

http://www.iona.com/support/docs/orbix/mainframe/6.0/index.xml
 176

http://www.iona.com/support/docs/orbix/mainframe/6.0/index.xml

Using the Mapping Gateway Interface
Using the Mapping Gateway Interface

Overview The Mapping Gateway interface is used to control CICS or IMS server adapters
running on the mainframe. You can use the Mapping Gateway interface to list
the transaction mappings that the server adapter supports, to add or delete
individual interfaces and operations, or to change the transaction that an
operation is mapped to. A new mapping file can be read, or the existing
mappings can be written to a new file. Access to the Mapping Gateway interface
using itadmin is provided as a plug-in. This plug-in is selected with the mfa
keyword.

In this section This section provides some examples of how you can to use the itadmin mfa
plugin to control CICS and IMS server adapters running on the mainframe. The
following topics are covered:

• Configuring the Mapping Gateway interface

• Listing itadmin mfa commands

• Printing a list of supported mappings

• Changing an operation’s transaction mapping

• Saving mappings to a specified file and reloading current mappings

• Switching the mapping file

• Invoking on exported interfaces

• Selecting a specific server adapter
177

CHAPTER 12 | Orbix Mainframe Adapter
Configuring the Mapping
Gateway interface

The Mapping Gateway interface is configured by default. The following
configuration values are added to the configuration file:

You must, however, add the mainframe IOR to the configuration file as follows:

For details of how to obtain the IOR, see the CICS Adapters Administrator’s
Guide and the IMS Adapters Administrator’s Guide.

Listing itadmin mfa commands To obtain a list of all the commands provided by the itadmin mfa plug-in, use
the following command:

The output is follows:

Items shown in angle brackets (<…>) must be supplied and items shown in square
brackets ([…]) are optional. Modules names form part of the interface name and
are separated from the interface name with a / character. For detailed
information on these commands, see Chapter 24.

plugins:mfa_adm:grammar_db = "admin_plugins = [..., "mfa_adm"];
plugins:mfa_adm:shlib_name = "it_mfa_adm";
plugins:mfa_adm:grammar_db = "mfa_adm_grammar.txt";
plugins:mfa_adm:help_db = "mfa_adm_help.txt";

initial_references:IT_MFA:reference = "IOR:";

$ itadmin mfa –help

mfa list
 add -interface <name> -operation <name> <mapped value>
 change -interface <name> -operation <name> <mapped value>
 delete -interface <name> -operation <name>
 resolve <interface name>
 refresh [-operation <name>] <interface name>
 reload
 save [<mapping_file name>]
 switch <mapping_file name>
 stats
 resetcon
 stop
 178

Using the Mapping Gateway Interface
Printing a list of supported
mappings

To print a list of the mappings (interface, operation and name) that the server
adapter supports, use the following command:

itadmin mfa list

For example, the output is as follows:

Changing an operation’s
transaction mapping

You can use the mfa change command to change the transaction to which an
existing operation is mapped. For example, to change the transaction to which
the call_me operation is mapped, from SIMPLESV to NSTSEQSV, use the
following command:

To view the result, use the mfa list command:

itadmin mfa list

For example, the output is as follows:

Saving mappings to a specified file
and reloading current mappings

You can use the mfa save command to get the server adapter to save its current
mappings to either its current mapping file or to a filename that you provide. For
example, to cause the server adapter to save its current mappings to a file called
myMappings.map, but reload the list of mappings from its mapping file, use the
following commands:

To view the result, use the mfa list command:

itadmin mfa list

Simple/SimpleObject,call_me, SIMPLESV
nested_seqs,test_bounded,NSTSEQSV
nested_seqs,test_unbounded,NSTSEQSV

itadmin mfa change -interface Simple/SimpleObject -operation
call_me NSTSEQSV

Simple/SimpleObject,call_me, NSTSEQSV
nested_seqs,test_bounded,NSTSEQSV
nested_seqs,test_unbounded,NSTSEQSV

itadmin mfa save "c:\myMappings.map"
itadmin mfa reload
179

CHAPTER 12 | Orbix Mainframe Adapter
For example, the output is as follows:

Switching the mapping file You can get the server adapter to switch to using a new mapping file and export
only the mappings contained within it. For example, to get the server adapter to
switch from its current mapping file to myMappings.map, use the following
command:

To view the result, use the mfa list command:

itadmin mfa list

The output looks as follows:

Invoking on exported interfaces The Mapping Gateway interface provides the means by which IIOP clients can
invoke on the exported interfaces. Using the resolve operation, an IOR can be
retrieved for any exported interface. This IOR can then be used directly by IIOP
clients, or registered with an Orbix naming service as a way of publishing the
availability of the interface. For example, to retrieve an IOR for Simple IDL, use
the following command:

Selecting a specific server adapter To select a specific server adapter, provide the ORBname for the server adapter on
a request. For example, to specify the CICS server adapter and obtain the IOR
for the Simple interface, use the following command:

Simple/SimpleObject,call_me, SIMPLESV
nested_seqs,test_bounded,NSTSEQSV
nested_seqs,test_unbounded,NSTSEQSV

itadmin mfa switch "c:\myMappings.map"

Simple/SimpleObject,call_me, NSTSEQSV
nested_seqs,test_bounded,NSTSEQSV
nested_seqs,test_unbounded,NSTSEQSV

itadmin mfa resolve Simple/SimpleObject

itadmin -ORBname iona_utilities.cicsa mfa resolve
Simple/SimpleObject
 180

Locating Server Adapter Objects Using itmfaloc
Locating Server Adapter Objects Using
itmfaloc

Overview The CICS and IMS server adapter maintains object references that identify
CORBA server programs running in CICS and IMS respectively. A client must
obtain an appropriate object reference in order to access the target server. The
itmfaloc URL resolver plug-in facilitates and simplifies this task.

In this section This section discusses how you can use the itmfaloc URL resolver as an
alternative to the itadmin mfa resolve command. The following topics are
covered:

• Locating server adapters using IORs

• Locating objects using itmfaloc

• Format of an itmfaloc URL

• What happens when itmfaloc is used

• Example of using itmfaloc

Locating server adapters using
IORs

One way of obtaining an object reference for a target server, managed by the
CICS or IMS server adapter, is to retrieve the IOR using the itadmin tool. This
calls the resolve() method on the server adapter's Mapping Gateway interface
and returns a stringified IOR. For example, to retrieve an IOR for Simple IDL,
use the following command:

When retrieved, the IOR can be distributed to the client and used to invoke on
the target server running inside CICS.

Note: The itmfaloc URL resolver is only available in C++.

itadmin mfa resolve Simple/SimpleObject
181

CHAPTER 12 | Orbix Mainframe Adapter
Locating objects using itmfaloc In some cases, the use of itadmin and the need to persist stringified IORs is not
very manageable, and a more dynamic approach is desirable. The itmfaloc
URL resolver is designed to provide an alternative approach. It follows a similar
scheme to that of the corbaloc URL technique.

In this way, the Orbix CORBA client can specify a very simple URL format
which identifies the target service required. This text string can be used
programmatically in place of the rather cumbersome stringified IOR
representation.

Format of an itmfaloc URL An itmfaloc URL is a string of the following format:

<InterfaceName> is the fully-scoped name of the IDL interface implemented by
the target server (as specified in the server adapter mapping file).

What happens when itmfaloc is
used

When an itmfaloc URL is used in place of an IOR, the Orbix client application
contacts the server adapter to attain an object reference for the desired CICS or
IMS server. The itmfaloc URL string only encodes the interface name and not
the server adapter’s location. To establish the initial connection to the server
adapter, the value of the IT_MFA:initial_references variable is used.

If multiple server adapters are deployed, the client application must specify the
correct IT_MFA:initial_references setting in order to contact the correct
server adapter. You can do this by specifying the appropriate ORB name, which
represents the particular configuration scope. For example, for the CICS server
adapter, -ORBname iona_utilities.cicsa

If the client application successfully connects to the server adapter, it calls the
resolve() operation on the Mapping Gateway object reference, retrieving an
object reference for the target server managed by the server adapter.

itmfaloc:<InterfaceName>
 182

Locating Server Adapter Objects Using itmfaloc
Example of using itmfaloc The simple demo client code that is shipped with Orbix uses a file-based
mechanism to access the target server's stringified IOR. If the target server
resides in CICS or IMS, an alternative approach is to specify an itmfaloc URL
string in the string-to-object call; for example:

objref = orb->string_to_object("itmfaloc:Simple/SimpleObject");
if (CORBA::is_nil(objref))
 {
 return 1;
 }
simple = Simple::SimpleObject::_narrow(objref);
183

CHAPTER 12 | Orbix Mainframe Adapter
 184

Part III
Monitoring Orbix

Applications

In this part This part contains the following chapters:

Configuring Orbix Logging page 187

Monitoring GIOP Message Content page 201

Debugging IOR Data page 213

CHAPTER 13

Configuring Orbix
Logging
Orbix logging enables you to collect system-related information,
such as significant events, and warnings about unusual or fatal
errors.

Through a configuration domain’s logging variables, you can specify the kinds
of messages to collect, and where to direct them.

In this chapter This chapter covers the following topics:

Note: For information on logging Orbix Windows NT Services, refer to
“Logging Orbix Windows Services” on page 412.

Setting Logging Filters page 188

Logging Subsystems page 190

Logging Severity Levels page 192

Configuring Log Output page 194

Dynamic Logging page 198
187

CHAPTER 13 | Configuring Orbix Logging
Setting Logging Filters

Overview The event_log:filters configuration variable sets the level of logging for
specified subsystems, such as POAs or the naming service. You can set this
variable in an Orbix configuration file or using itadmin commands.

In addition, you can also set logging levels dynamically using itadmin
commands and the IONA Administrator Web Console.

Logging syntax The event_log:filters variable is set to a list of filters, where each filter sets
logging for a specified subsystem with the following format:

For example, the following filter specifies that only errors and fatal errors for the
naming service should be reported:

The subsystem field indicates the name of the Orbix subsystem that reports the
messages (see Table 6 on page 190). The severity field indicates the severity
levels that are logged by that subsystem (see Table 7 on page 193).

You can set this variable by directly editing a configuration file, or using
itadmin commands. In the examples that follow, logging is enabled as follows:

• For POAs, enable logging of warnings, errors, fatal errors, and

high-priority informational messages.

• For the ORB core, enable logging of all events.

• For all other subsystems, enable logging of warnings, errors, and fatal

errors.

subsystem=severity-level[+severity-level]...

IT_NAMING=ERR+FATAL
 188

Setting Logging Filters
Set in a configuration file In a configuration file, event_log:filters is set as follows:

The following entry in a configuration file explicitly sets message severity levels
for the POA and ORB core, and all other subsystems:

Set with itadmin You can use itadmin commands variable create and variable modify to set
and modify event_log:filters. For example, the following command creates
the same setting as shown before, this time specifying to set this logging for the
locator daemon:

Dynamic logging The itadmin logging get and logging set commands enable the Orbix event
log filters to be displayed or updated dynamically on the command line. You can
also perform these actions using the IONA Administrator Web Console. For
more details, see “Dynamic Logging” on page 198.

event_log:filters=["log-filter"[,"log-filter"]...]

event_log:filters = ["IT_POA=INFO_HI+WARN+ERROR+FATAL",
 "IT_CORE=*", "*=WARN+ERR+FATAL"];

itadmin variable modify -scope locator -type list -value\
 IT_POA=INFO_HI+WARN+ERROR+FATAL, \
 IT_CORE=*, \
 *=WARN+ERR+FATAL \
 event_log:filters
189

CHAPTER 13 | Configuring Orbix Logging
Logging Subsystems
You can apply one or more logging severity levels to any or all ORB
subsystems. Table 6 shows the available ORB subsystems. By default, Orbix
logs warnings, errors, and fatal errors for all subsystems.

Table 6: Orbix Logging Subsystems

Subsystem Description

* All logging subsystems.

IT_ACTIVATOR Activator daemon.

IT_ATLI2_IOP Abstract Transport Layer Inter-ORB Protocol.

IT_ATLI2_IP Abstract Transport Layer Internet Protocol Plug-in.

IT_ATLI2_ITMP Abstract Transport Layer Multicast Plug-in.

IT_ATLI2_ITRP Abstract Transport Layer Reliable Multicast Plug-in.

IT_ATLI2_SHM Abstract Transport Layer Shared Memory Plug-in.

IT_ATLI_TLS Abstract Transport Layer (secure).

IT_CFR Configuration repository.

IT_ClassLoading Classloading plug-in (Java).

IT_CODESET Internationalization plug-in.

IT_CONFIG_REP Configuration repository.

IT_CORE Core ORB.

IT_CSI Common Secure Interoperability.

IT_GIOP General Inter-Orb Protocol (transport layer).

IT_GSP Generic Security Plug-in.

IT_IFR Interface repository.

IT_IIOP Internet Inter-Orb Protocol (transport layer).
 190

Logging Subsystems
IT_IIOP_PROFILE Internet Inter-Orb Protocol profile (transport layer).

IT_IIOP_TLS Internet Inter-Orb Protocol (secure transport layer).

IT_JAVA_SERVER Java server plug-in

IT_LEASE Session management service.

IT_LOCATOR Server locator daemon.

IT_MGMT Management instrumentation plug-in.

IT_MGMT_SVC Management service.

IT_NAMING Naming service.

IT_NOTIFICATION Event service.

IT_NodeDaemon Node daemon.

IT_OTS_LITE Object transaction service.

IT_POA Portable object adapter.

IT_POA_LOCATOR Server locator daemon (POA specific).

IT_PSS Persistent state service.

IT_PSS_DB Persistent state service (raw database layer).

IT_PSS_R Persistent state service (database driver).

IT_SCHANNEL Microsoft Schannel (Windows only).

IT_TLS Transport Layer Security.

IT_TS Threading/synchronization package.

IT_XA X/Open XA standard (transactions).

Table 6: Orbix Logging Subsystems

Subsystem Description
191

CHAPTER 13 | Configuring Orbix Logging
Logging Severity Levels

Overview Orbix supports four levels of message severity:

• Informational

• Warning

• Error

• Fatal error

Informational Informational messages report significant non-error events. These include server
startup or shutdown, object creation or deletion, and information about
administrative actions.

Informational messages provide a history of events that can be valuable in
diagnosing problems. Informational messages can be set to low, medium, or
high verbosity.

Warning Warning messages are generated when Orbix encounters an anomalous
condition, but can ignore it and continue functioning. For example, encountering
an invalid parameter, and ignoring it in favor of a default value.

Error Error messages are generated when Orbix encounters an error. Orbix might be
able to recover from the error, but might be forced to abandon the current task.
For example, an error message might be generated if there is insufficient
memory to carry out a request.
 192

Logging Severity Levels
Fatal error Fatal error messages are generated when Orbix encounters an error from which
it cannot recover. For example, a fatal error message is generated if the ORB
cannot connect to the configuration domain.

Table 7 shows the syntax used to specify Orbix logging severity levels.

Table 7: Orbix Logging Severity Levels

Severity Level Description

INFO_LO[W] Low verbosity informational messages.

INFO_MED[IUM] Medium verbosity informational messages.

INFO_HI[GH] High verbosity informational messages.

INFO_ALL All informational messages.

WARN[ING] Warning messages.

ERR[OR] Error messages.

FATAL[_ERROR] Fatal error messages.

* All messages.
193

CHAPTER 13 | Configuring Orbix Logging
Configuring Log Output

Overview By default, Orbix is configured to log messages to standard error. You can
change this behavior for an ORB by setting a logstream plug-in to be loaded by
the ORB. For example, you can set the output stream to a local file owned by the
ORB, or to the host’s system error log.

As with all other configuration variables, these can be set using the itadmin
commands variable create and variable modify.

This section includes the following:

• “Setting the output stream to a local file”.

• “Using rolling log files”.

• “Setting the output stream to the system log”.

• “Buffering the output stream before writing to a file”.

• “Setting precision logging”.

• “Setting request logging”.

Setting the output stream to a local
file

To set the output stream to a local file, set the following configuration variable:

For example:

plugins:local_log_stream:filename = filename

plugins:local_log_stream:filename = "/var/adm/mylocal.log";

Note: In a configuration repository domain, this variable is set by default (for
example: "/var/logs/boot-orb.log"). To enable logging to standard error,
remove (or comment out) this variable.
 194

Configuring Log Output
Using rolling log files Normally, the local log stream uses a rolling file to prevent the log from growing
indefinitely. In this model, the stream appends the current date to the configured
filename. This produces a complete filename (for example,
/var/adm/art.log.02172002). A new file begins with the first event of the day
and ends at 23:59:59 each day.

You can disable rolling file behavior by setting the rolling_file variable to
false. For example:

Setting the output stream to the
system log

The system log stream reports events to the host's system log—syslog on
UNIX, and the event log on Windows. Each log entry is tagged with the current
time and logging process ID, and the event priority is translated into a format
appropriate for the native platform.

To set the output stream to the system log, add the system_log_stream value to
the orb_plugins configuration variable. You can use the system_log_stream
output stream concurrently with the local_log_stream, if necessary.

The following orb_plugins variable includes the system_log_stream value:

Buffering the output stream
before writing to a file

You can also set the output stream to a buffer before writing to a local log file.
Use the plugins:local_log_stream:buffer_file configuration variable to
specify this behavior. When this variable is set to true, by default, the buffer is
output to the local file every 1000 milliseconds when there are more than 100
messages logged. The log interval and the number of log elements can also be
configured.

For example, the following configuration writes the log output to the
/var/adm/art.log file every 400 milliseconds if there are more then 20 log
messages in the buffer.

plugins:local_log_stream:rolling_file = "false";

orb_plugins=["system_log_stream", "iiop_profile", "giop",
"iiop",];

plugins:local_log_stream:filename = "/var/adm/art.log";
plugins:local_log_stream:buffer_file = "true";
plugins:local_log_stream:milliseconds_to_log = "400";
plugins:local_log_stream:log_elements = "20";
195

CHAPTER 13 | Configuring Orbix Logging
Setting precision logging You can also specify whether events are logged with time precision, or at the
granularity of seconds. Precision logging is disabled by default (to avoid
changing the logging output of deployed systems). To enable precision logging,
set the value to true. For example:

Application code can also provide its own LogStream to receive precision events
by implementing the PrecisionLogStream interface. For details, see the Orbix
Configuration Reference.

Setting request logging For C++ applications, you can use the request logger plug-in to output logging
that combines connection information with GIOP request information.

Request logging format

The request_logger plug-in logs one log statement for each incoming request
and one log statement for each outgoing reply. The format of the request log
statement is as follows:

The format of the reply log statement is as follows:

The TransactionName is only logged for Orbix mainframe, and only if the
operation name is one of the known operations of the imsraw or cicsraw
interfaces. The cicsraw operations are as follows:

plugins:local_log_stream:precision_logging = "true";

[REQUEST] IPaddress, port, operation, NO PRINCIPAL|giop
principal[, TransactionName]

[REPLY] IPaddress, port, operation, NO PRINCIPAL|giop principal[,
TransactionName], ReturnStatus

run_program
run_program_binary
run_program_with_trans
run_program_binary_with_trans
 196

Configuring Log Output
The imsraw operations are as follows:

If no GIOP principal is contained in the request, the NO PRINCIPAL string is
logged. Otherwise, the GIOP principal is logged.
policies:giop:interop_policy in the Orbix Configuration Reference
explains how to specify that a GIOP principal is sent by the client and received
by the server.

Request logging configuration

The configuration variable that identifies the shared library (or DLL in
Windows) that contains the request logger plug-in implementation is included in
a generated configuration domain:

To enable the request logger server interceptor to included in a server binding,
add the request logger plug-in to the orb_plgins list after the giop plug-in,
for example:

In addition, you must add the server interceptor name to the
server_binding_list, for example:

run_transaction
run_transaction_binary
run_transaction_no_reply
run_transaction_binary_no_reply

plugins:request_logger:shlib_name = "it_request_logger";

orb_plugins = ["local_log_stream", "iiop_profile", "giop",
"iiop", "request_logger"];

binding:server_binding_list = ["request_logger", ""];
197

CHAPTER 13 | Configuring Orbix Logging
Dynamic Logging

Overview Dynamic logging enables you to modify the event_log:filters setting of a
deployed server ORB on the fly, without needing to stop, reconfigure the static
setting, and restart the server. You can change logging dynamically using
itadmin commands or the IONA Administrator Web Console.

using itadmin commands The itadmin logging get and logging set commands enable the Orbix event
log filters to be displayed or updated dynamically on the command line.

For example, the following command dynamically updates the event log filters
that are used by the currently running naming service.

For full details, see “Event Log” on page 245.

C++ management agent
registration plug-in

The C++ management agent registration plug-in is designed for use in a domain
were the Java-based Orbix management service is not deployed. It is available as
C++ implementation only. This plug-in is not intended as a replacement for the
management service but as a means to dynamically change logging levels of
servers using itadmin.

You do not need to use this plug-in in a domain were the management service is
deployed. In such a domain, you can dynamically update log levels of servers
using itadmin and the IONA Administrator Web Console.

Note: You must ensure that dynamic logging has been enabled for a service
when the domain was created using the Orbix Configuration tool. For details,
see the Orbix Deployment Guide.

itadmin logging set -orbname iona_services.naming -value
IT_GIOP=*,IT_MGMT=*

Note: To use C++ management agent registration plug-in, the naming service
must be deployed.
 198

Dynamic Logging
To enable this plug-in, use the following configuration:

IONA Administrator Web
Console

For details on using the IONA Administrator Web Console, see the Orbix
Management User’s Guide.

Initial referenece must be set
initial_references:IT_MgmtService:plugin = "it_mgmt_agent_reg";

The plugins library name
plugins:it_mgmt_agent_reg:shlib_name = "it_mgmt_agent_reg";

The ORB must be managed for dynamic logging
plugins:orb:is_managed = "true";

The naming service must be deployed and the registration of the
agent with the naming service set to true in the same ORB scope.
plugins:it_mgmt:register_agent_with_ns = "true";

The it_mgmt_agent_reg must be added to the ORB plugin list.
 orb_plugins = ["it_mgmt_agent_reg", "local_log_stream",

"iiop_profile", "giop", "ots", "iiop"];
199

CHAPTER 13 | Configuring Orbix Logging
 200

CHAPTER 14

Monitoring GIOP
Message Content
Orbix includes the GIOP Snoop tool for intercepting and
displaying GIOP message content.

In this chapter This chapter contains the following sections:

Introduction to GIOP Snoop page 202

Configuring GIOP Snoop page 203

GIOP Snoop Output page 206
201

CHAPTER 14 | Monitoring GIOP Message Content
Introduction to GIOP Snoop

Overview GIOP Snoop is a GIOP protocol level plug-in for intercepting and displaying
GIOP message content. This plug-in implements message level interceptors that
can participate in client and/or server side bindings over any GIOP-based
transport. The primary purposes of GIOP Snoop are to provide a protocol level
monitor and debug aid.

GIOP plug-ins The primary protocol for inter-ORB communications is the General Inter-ORB
Protocol (GIOP) as defined the CORBA Specification. Orbix provides several
GIOP based plug-ins that map GIOP to a number of transports. For example,
CORBA IIOP (for TCP/IP), and proprietary IONA transport mappings, such as
SIOP (a shared memory transport), and MPI (a multicast transport for GIOP).
GIOP Snoop may be used with these (and any future) GIOP-based plug-ins.
 202

Configuring GIOP Snoop
Configuring GIOP Snoop

Overview GIOP Snoop can be configured for debugging in client, server, or both
depending on configuration. This section includes the following configuration
topics:

• “Loading the GIOP Snoop plug-in”.

• “Client-side snooping”.

• “Server-side snooping”.

• “GIOP Snoop verbosity levels”.

• “Directing output to a file”.

• “Using the Java version of GIOP Snoop”

Loading the GIOP Snoop plug-in For either client or server configuration, the GIOP Snoop plug-in must be
included in the Orbix orb_plugins list (... denotes existing configured
settings):

Note: The giop_snoop plug-in must be placed between giop and iiop. Failing
to do so results in a message similar to the following:

Additional settings

In addition, the giop_snoop plug-in must be located and loaded using the
following settings:

orb_plugins = [...,"giop", "giop_snoop", "iiop" ...];

Wed, 30 Oct 2005 10:09:43.0000000 [merge:11654] (IT_CORE:200) E -
could not resolve initial reference for
IT_GIOP_ServerFactoryManager: not registered or configured
Unexpected CORBA exception: InvalidName
(IDL:omg.org/CORBA/ORB/InvalidName:1.0) Server exiting

// C++
plugins:giop_snoop:shlib_name = "it_giop_snoop";

// Java
plugins:giop_snoop:ClassName =
 "com.iona.corba.giop_snoop.GIOPSnoopPlugIn";
203

CHAPTER 14 | Monitoring GIOP Message Content
Client-side snooping To enable client-side snooping, include the GIOP_SNOOP factory in the client
binding list. In this example, GIOP Snoop is enabled for IIOP-specific bindings:

When setting bindings for the client and server side make sure the GIOP snoop
binding goes before the GIOP+IIOP (client) and GIOP (server), as shown in the
examples. Failing to do so will produce no additional output from the GIOP
snoop plug-in.

Server-side snooping To enable server-side snooping, include the GIOP_SNOOP factory in the server
binding list.

GIOP Snoop verbosity levels You can use the following variable to control the GIOP Snoop verbosity level:

The verbosity levels are as follows:

These verbosity levels are explained with examples in “GIOP Snoop Output” on
page 206.

binding:client_binding_list = [... "GIOP+GIOP_SNOOP+IIOP",
"GIOP+IIOP" ...];

plugins:giop:message_server_binding_list = [...
"GIOP_SNOOP+GIOP", "GIOP" ...];

Note: For Orbix 6.x, the ordering of this setting has been reversed to correct
consistency issues in previous releases of Orbix across Java and C++
configuration.

plugins:giop_snoop:verbosity = "1";

1 LOW

2 MEDIUM

3 HIGH

4 VERY HIGH
 204

Configuring GIOP Snoop
Directing output to a file By default, GIOP Snoop output is directed to standard error (stderr). However,
you can specify an output file using the following configuration variable:

You can include a month/day/year time stamp in the output filename with the
following general format:

The following setting enables you to include a time stamp in the output
filename:

As a result, applications running for several days create a new log file each day.
To enable administrators to control the size and content of output files, GIOP
Snoop does not hold output files open.

Using the Java version of GIOP
Snoop

To use the Java version of the GIOP Snoop plug-in, add the following to your
classpath:

UNIX

Windows

plugins:giop_snoop:filename = "<some-file-path>";

<filename>.MMDDYYYY

plugins:giop_snoop:rolling_file = "true";

export
CLASSPATH=$CLASSPATH:$IT_PRODUCT_DIR/lib/platform/java_trans
ports/1.3/giop_snoop.jar:

 $IT_PRODUCT_DIR/asp/6.3/lib/asp-corba.jar

set
CLASSPATH=%CLASSPATH%;%IT_PRODUCT_DIR%\lib\platform\java_transp
orts\1.3\giop_snoop.jar

%IT_PRODUCT_DIR%\asp\6.3\lib\asp-corba.jar
205

CHAPTER 14 | Monitoring GIOP Message Content

0

GIOP Snoop Output

Overview The output shown in this section uses a simple example that shows client-side
output for a single binding and operation invocation. The client establishes a
client-side binding that involves a message interceptor chain consisting of IIOP,
GIOP Snoop, and GIOP. The client then connects to the server and first sends a
[LocateRequest] to the server to test if the target object is reachable. When
confirmed, a two-way invocation [Request] is sent, and the server processes the
request. When complete, the server sends a [Reply] message back to the client.

Output detail varies depending on the configured verbosity level. With level 1
(LOW), only basic message type, direction, operation name and some GIOP
header information (version, and so on) is given. More detailed output is
possible, as described under the following examples. This section includes the
following:

• “LOW verbosity client-side snooping”

• “MEDIUM verbosity client-side snooping”

• “HIGH verbosity client side snooping”

• “VERY HIGH verbosity client side snooping”

• “Troubleshooting”

LOW verbosity client-side
snooping

An example of LOW verbosity output is as follows:

This example shows an initial conversation from the client-side perspective. The
client transmits a [LocateRequest] message to which it receives a
[LocateReply] indicates that the server supports the target object. It then makes
an invocation on the operation null_op.

[Conn:1] Out:(first for binding) [LocateRequest] MsgLen: 39 ReqId:
[Conn:1] In: (first for binding) [LocateReply] MsgLen: 8 ReqId: 0
 Locate status: OBJECT_HERE
[Conn:1] Out: [Request] MsgLen: 60 ReqId: 1 (two-way)
 Operation (len 8) 'null_op'
[Conn:1] In: [Reply] MsgLen: 12 ReqId: 1
 Reply status (0) NO_EXCEPTION
 206

GIOP Snoop Output
The Conn indicates the logical connection. Because GIOP may be mapped to
multiple transports, there is no transport specific information visible to
interceptors above the transport (such as file descriptors) so each connection is
given a logical identifier. The first incoming and outgoing GIOP message to pass
through each connection are indicated by (first for binding).

The direction of the message is given (Out for outgoing, In for incoming),
followed by the GIOP and message header contents. Specific information
includes the GIOP version (version 1.2 above), message length and a unique
request identifier (ReqId), which associates [LocateRequest] messages with
their corresponding [LocateReply] messages. The (two-way) indicates the
operation is two way and a response (Reply) is expected. String lengths such as
len 8 specified for Operation includes the trailing null.

MEDIUM verbosity client-side
snooping

An example of MEDIUM verbosity output is as follows:

For MEDIUM verbosity output, extra information is provided. The addition of time
stamps (in hh:mm:ss) precedes each snoop line. The byte order of the data is
indicated (Endian) along with more detailed header information such as the
target address shown in this example. The target address is a GIOP 1.2 addition
in place of the previous object key data.

16:24:39 [Conn:1] Out:(first for binding) [LocateRequest]
GIOP v1.2 MsgLen: 39

 Endian: big ReqId: 0
 Target Address (0: KeyAddr)
 ObjKey (len 27) ':>.11........\..A..........'

16:24:39 [Conn:1] In: (first for binding) [LocateReply] GIOP
v1.2 MsgLen: 8

 Endian: big ReqId: 0
 Locate status: OBJECT_HERE

16:24:39 [Conn:1] Out: [Request] GIOP v1.2 MsgLen: 60
 Endian: big ReqId: 1 (two-way)
 Target Address (0: KeyAddr)
 ObjKey (len 27) ':>.11........\..A..........'
 Operation (len 8) 'null_op'

16:24:39 [Conn:1] In: [Reply] GIOP v1.2 MsgLen: 12
 Endian: big ReqId: 1
 Reply status (0) NO_EXCEPTION
207

CHAPTER 14 | Monitoring GIOP Message Content
HIGH verbosity client side
snooping

The following is an example of HIGH verbosity output:

16:24:39 [Conn:1] Out:(first for binding) [LocateRequest]
GIOP v1.2 MsgLen: 39

 Endian: big ReqId: 0
 Target Address (0: KeyAddr)
 ObjKey (len 27) ':>.11...........A..........'
 GIOP Hdr (len 12):

[47][49][4f][50][01][02][00][03][00][00][00][27]
 Msg Hdr (len 39):

[00][00][00][00][00][00][00][00][00][00][00][1b][3a][3e]
[02][31][31][0c][00][00][00][00][00][00][0f][05][00][00][41][c6

][08][00][00][00]
[00][00][00][00][00]
[---- end of message ----]

16:31:37 [Conn:1] In: (first for binding) [LocateReply]
GIOP v1.2 MsgLen: 8

 Endian: big ReqId: 0
 Locate status: OBJECT_HERE
 GIOP Hdr (len 12):

[47][49][4f][50][01][02][00][04][00][00][00][08]
 Msg Hdr (len 8): [00][00][00][00][00][00][00][01]
[---- end of message ----]

16:31:37 [Conn:1] Out: [Request] GIOP v1.2 MsgLen: 60
 Endian: big ReqId: 1 (two-way)
 Target Address (0: KeyAddr)
 ObjKey (len 27) ':>.11...........A..........'
 Operation (len 8) 'null_op'
 No. of Service Contexts: 0
 GIOP Hdr (len 12):

[47][49][4f][50][01][02][00][00][00][00][00][3c]
 Msg Hdr (len 60):

[00][00][00][01][03][00][00][00][00][00][00][00][00][00]
[00][1b][3a][3e][02][31][31][0c][00][00][00][00][00][00][0f][05

][00][00][41][c6]
[08][00][00][00][00][00][00][00][00][00][00][00][00][08][6e][75

][6c][6c][5f][6f]
[70][00][00][00][00][00]
[---- end of message ----]
 208

GIOP Snoop Output
This level of verbosity includes all header data, such as service context data.
ASCII-hex pairs of GIOP header and message header content are given to show
the exact on-the-wire header values passing through the interceptor. Messages
are also separated showing inter-message boundaries.

VERY HIGH verbosity client side
snooping

This is the highest verbosity level available. Displayed data includes HIGH level
output and in addition the message body content is displayed. Because the
plug-in does not have access to IDL interface definitions, it does not know the
data types contained in the body (parameter values, return values and so on) and
simply provides ASCII-hex output. Body content display is truncated to a
maximum of 4 KB with no output given for an empty body. Body content output
follows the header output, for example:

Troubleshooting When trying to start your application, you might get the following message:

16:31:37 [Conn:1] In: [Reply] GIOP v1.2 MsgLen: 12
 Endian: big ReqId: 1
 Reply status (0) NO_EXCEPTION
 No. of Service Contexts: 0
 GIOP Hdr (len 12):

[47][49][4f][50][01][02][00][01][00][00][00][0c]
 Msg Hdr (len 12):

[00][00][00][01][00][00][00][00][00][00][00][00]
[---- end of message ----]

...
GIOP Hdr (len 12): [47][49][4f][50][01][02][00][01][00][00][00][0c]
Msg Hdr (len 12): [00][00][00][01][00][00][00][00][00][00][00][00]
Msg Body (len <x>): <content>
...

 Wed, 30 Oct 2005 10:39:39.0000000 [merge:11672] (IT_GIOP:32) ? -
The GIOP server side message interceptor factory 'GIOP_SNOOP'
specified in configuration setting
'plugins:giop:message_server_binding_list' is unknown.
Unexpected CORBA exception: IDL:omg.org/CORBA/INITIALIZE:1.0:
minor = 0x49540201
(IT_GIOP:SERVER_BINDING_LIST_UNKNOWN_FACTORY), completion
status = NO Server exiting
209

CHAPTER 14 | Monitoring GIOP Message Content
This happens when the GIOP snoop plug-in configuration settings are made at
the global scope level, but no corresponding configuration adjustments have
been made to the iona_services scope.

Typically, the orb_plugins configuration variable is redefined in the scope of
important services (for example, locator, node daemon and naming), and it does
not include the giop_snoop plug-in by default. The error gets generated when
the server binding list setting gets picked up from the root level as follows:

From the point of view of the service scope, the GIOP_SNOOP reference is
unknown because of the orb_plugins redefinition.

orb_plugins = ["local_log_stream", "iiop_profile", "giop",
"giop_snoop", "iiop"];

plugins:giop:message_server_binding_list = ["GIOP+GIOP_SNOOP",
"GIOP"];

iona_services
 {
 locator
 {
 ...
 orb_plugins = ["local_log_stream", "iiop_profile", "giop",

"iiop", "ots"];
 ...
 };
};
 210

GIOP Snoop Output
To correct this problem, you can add the giop_snoop plug-in in the
orb_plugins list for each service scope where orb_plugins has been redefined.
However, be aware that setting GIOP snoop at the root level produces a large
amount of data because it affects all your servers and services. Instead, consider
setting it for each individual service as follows:

plugins:giop_snoop:shlib_name = "it_giop_snoop";
plugins:giop_snoop:ClassName =

"com.iona.corba.giop_snoop.GIOPSnoopPlugIn";
plugins:giop_snoop:verbosity = "1";

iona_services
 {
 locator
 {
 ...
 orb_plugins = ["local_log_stream", "iiop_profile", "giop",

"giop_snoop", "iiop", "ots"];

 plugins:giop:message_server_binding_list =

["GIOP+GIOP_SNOOP", "GIOP"];
 ...
 };
};
211

CHAPTER 14 | Monitoring GIOP Message Content
 212

CHAPTER 15

Debugging IOR
Data
Orbix includes iordump tool for analyzing IOR data and finding
possible causes for badly formed IORs.

In this chapter This chapter contains the following sections:

IOR Data Formats page 214

Using iordump page 217

iordump Output page 219

Data, Warning, Error and, Information Text page 224
213

CHAPTER 15 | Debugging IOR Data
IOR Data Formats

Overview CORBA Inter-operable Object Reference (IOR) data can be presented in one of
two forms:

• Stringified form which is coded by converting each binary byte of coded

data into an ASCII pair of characters representing the hex equivalent in

readable form.

• CDR encoded (and aligned) binary data, which encodes each CORBA

defined data type on its natural boundary. Short values are encoded on a

2-byte boundary, long values on a 4-byte boundary and, so on. Data

contains padding between data types in order to ensure aligned data.

Stringified IOR data Stringified IOR data is in the format IOR: followed by a series of hex value
pairs. For example:

It is best known as the CORBA IOR: URL passed to the IDL operation
CORBA::ORB::string_to_object(). The stringified IOR data format of an
encoded IOR can be obtained by using the IDL operation
CORBA::ORB::object_to_string().

IOR:010000001c00000049444c3a53696d706c652f53696d706c654f626a6
 214

IOR Data Formats
IDL definition Raw IOR data is encoded as the CDR representation of the IOR structure,
defined in the CORBA GIOP specification, declared by the IDL shown in
Example 3:

Example 3: IOR data IDL definition

// IDL
typedef unsigned long ProfileId;

const ProfileId TAG_INTERNET_IOP = 0;
const ProfileId TAG_MULTIPLE_COMPONENTS = 1;

// A TaggedProfile contains opaque profile and component
// data and a tag to indicate the type and format of the data.
struct TaggedProfile
 {
 ProfileId tag;
 sequence <octet> profile_data;
 };

// IOR is a sequence of object specific protocol profiles
// (TaggedProfiles) plus a type id.
struct IOR
 {
 string type_id;
 sequence <TaggedProfile> profiles;
 };

// A MultipleComponentProfile is contained in a TaggedProfile
// with the tag TAG_MULTIPLE_COMPONENTS.
typedef unsigned long ComponentId;

struct TaggedComponent
 {
 ComponentId tag;
 sequence <octet> component_data;
 };

typedef sequence <TaggedComponent> MultipleComponentProfile;
215

CHAPTER 15 | Debugging IOR Data
// This declares IIOP ProfileBody data contained in a
// TaggedProfile with the tag TAG_INTERNET_IOP.
// IIOP 1.0/1.1/1.2 revisions are given.
struct Version
 {
 octet major;
 octet minor;
 };

struct ProfileBody_1_0
 {
 Version iiop_version;
 string host;
 unsigned short port;
 sequence <octet> object_key;
 };

struct ProfileBody_1_1
 {
 Version iiop_version;
 string host;
 unsigned short port;
 sequence <octet> object_key;
 sequence <IOP::TaggedComponent> components; // Added in 1.1
 };

typedef ProfileBody_1_1 ProfileBody_1_2; // Same as 1.1

Example 3: IOR data IDL definition
 216

Using iordump
Using iordump

Overview iordump is a utility that decodes CORBA inter-operable object reference (IOR)
content and presents it in readable format through stdout. This utility’s output
also includes debugging information to assist in analyzing the cause of
malformed IOR data.

Synopsis iordump [-no_host_check] {file | -}

iordump [-no_host_check] IOR:...

Description iordump reads the IOR data either from a specified file (- for stdin), or given as
a command line argument, and prints the detailed contents of the IOR data. The
IOR may be specificed either in the standard CORBA defined stringified form or
raw binary CDR encoded data. The IOR content is displayed in both stringified
and ASCII-hex formats. The tools emphasis is on reporting all possible erroneous
values or suspect data, while also displaying the meaning and value of each data
item.

Parameters iordump takes the following parameters:

-no_host_check The default behavior is to attempt a host lookup on each host
specified in the IOR. This option prevents this host lookup
check.

file Specifies the name of the file from which to read the IOR
data.

- Specifies that the IOR data is to be read from stdin.

IOR:... Specifies the IOR to decode on the command line.
217

CHAPTER 15 | Debugging IOR Data
Examples To analyze the contents of a stringified IOR read from stdin:

To analyze the contents of the IOR generated by the simple CORBA demo:

To analyze the contents of a stringified IOR specified as a command line
argument:

Notes Data other than a single IOR in a file will result in the whole data being analyzed
as a single IOR. Only in the case of stringified IORs are trailing newlines, carriage
returns and nulls removed.

> echo “IOR:...” | iordump -

> iordump simple1.ior

> iordump IOR:000001.....
 218

iordump Output
iordump Output

Overview iordump decodes the IOR data provided and outputs the data to the screen in
both stringified format and ASCII-hex fomat. All lines beginning with a ’>>’
prefix contain ASCII-hex data. Interspersed with the ASCII-hex data may be
errors, warnings, and other data messages. These are explained in “Data,
Warning, Error and, Information Text” on page 224.

Example Example 4 shows a sample output from iordump.

Example 4: Sample iordump Output

C:\>iordump simple1.ior

Stringified IOR is: ([string/coded data] length: 312 / 154 bytes)

>>
IOR:010000001c00000049444c3a53696d706c652f53696d706c654f626a6
563743a312e300001000000000000006a000000010102000e00000036332e
36352e3133332e32353000a70f1b0000003a3e0231310c00000000ec09000
08d2000000800000000000000000002000000010000001800000001000000
0100010000000000000101000100000009010100060000000600000001000
0001100

--
>> +0 [01]
 Byte order of IOR: (1) Little Endian
>> +1 [00][00][00]
 (padding)
>> +4 [1c][00][00][00]
 TypeId length: 28 bytes (including null)
>> +8

[49][44][4c][3a][53][69][6d][70][6c][65][2f][53][69][6d][70][
6c][65][4f][62][6a][65][63][74][3a][31][2e][30][00]

 TypeId value: 'IDL:Simple/SimpleObject:1.0.'
>> +36 [01][00][00][00]
 Number of tagged profiles: 1
219

CHAPTER 15 | Debugging IOR Data
 Profile 1:
>> +40 [00][00][00][00]
 Tag: (0) TAG_INTERNET_IOP
>> +44 [6a][00][00][00]
 Profile length: 106 bytes
>> +48 [01]
 Byte Order: (1) Little Endian
>> +49 [01][02]
 Version: 1.2
>> +52 [0e][00][00][00]
 Host length: 14 bytes (including null)
>> +56 [36][33][2e][36][35][2e][31][33][33][2e][32][35][30][00]
 Host string: '63.65.133.250.'
 * host IP address lookup succeeded, but failed to

find a hostname (warning)
>> +70 [a7][0f]
 Port: 4007
>> +72 [1b][00][00][00]
 Object Key length: 27 bytes (including any

trailing null)
>> +76

[3a][3e][02][31][31][0c][00][00][00][00][ec][09][00][00][8d][
20][00][00][

08][00][00][00][00][00][00][00][00]
 Object key data: ':>.11..........'
 (looks like an Orbix ART Transient key)
>> +103 [00]
 (padding)
>> +104 [02][00][00][00]
 Number of tagged components: 2

Example 4: Sample iordump Output
 220

iordump Output
 Component 1:
>> +108 [01][00][00][00]
 Tag: (1) CODE_SETS
>> +112 [18][00][00][00]
 Component length: 24 bytes
>> +116 [01]
 Component Byte Order: (1) Little Endian
>> +117 [00][00][00]
 (padding)
>> +120 [01][00][01][00]
 Native CodeSet id (for char): 65537
 (ISO 8859-1:1987; Latin Alphabet No. 1)
>> +124 [00][00][00][00]
 Number of conversion code sets (CCS): 0
>> +128 [00][01][01][00]
 Native CodeSet id (for wchar): 65792
 (ISO/IEC 10646-1:1993; UCS-2, Level 1)
>> +132 [01][00][00][00]
 Number of conversion code sets (CCS): 1
>> +136 [09][01][01][00]
 CCS(1) CodeSet Id 65801
 (ISO/IEC 10646-1:1993; UTF-16, UCS

Transformation Format 16-bit form)

 Component 2:
>> +140 [06][00][00][00]
 Tag: (6) ENDPOINT_ID_POSITION
>> +144 [06][00][00][00]
 Component length: 6 bytes
>> +148 [01]
 Component Byte Order: (1) Little Endian
>> +149 [00]
 (padding)
>> +150 [00][00]
 EndpointId begin (index): 0
>> +152 [11][00]
 EndpointId end (index): 17

Example 4: Sample iordump Output
221

CHAPTER 15 | Debugging IOR Data
Stringified Data Output
All output begins with the stringified IOR such as:

The first line gives the string length as the number of characters in the following
IOR string, including the IOR: prefix. The coded data length indicates the
number of bytes of encoded data which is represented by the stringified IOR, as
per the CDR rules for encoding IOR data.

Stringified IOR is: ([string/coded data] length: 312 / 154 bytes)

>>
IOR:010000001c00000049444c3a53696d706c652f53696d706c654f626a6
563743a312e300001000000000000006a000000010102000e00000036332e
36352e3133332e32353000a70f1b0000003a3e0231310c00000000ec09000
08d2000000800000000000000000002000000010000001800000001000000
0100010000000000000101000100000009010100060000000600000001000
0001100
 222

iordump Output
ASCII-Hex Data Output

Display format All ASCII-hex pairs are printed as [ab] pairs in the output, where ab is a
character pair in the range 00 to FF.

Each line of ASCII-hex output contain segments of ASCII-hex data taken from
the stringified IOR, including the byte offset of the data relative to the start of
the equivalent binary coded IOR, beginning at byte zero:

Example For example, the following output text:

indicates the four ASCII pairs which are coded four bytes into the IOR binary
data, in this case being the TypeId string length value of 24 bytes.

Note also that all printed data is shown in the byte order as coded into the IOR.
The above, for example, is the value 24 as coded on a Big Endian machine and is
displayed as such regardless of the byte order of the machine iordump is running
on. Iordump only byte-swaps the values, if needed, in order to decode and print
their actual value.

>> +offset [ab][ab][ab]...

>> +4 [00][00][00][18]
223

CHAPTER 15 | Debugging IOR Data
Data, Warning, Error and, Information Text

Overview All other output consists of data text for each data type and its value, and any
relevant text to inform of errors, warnings or simple informative message text of
conditions detected for each specific data item.

Example For example, the following output shows the data type/value output TypeId
length:... and an error message indicating an invalid data value.

In this section This section discusses the following topics:

>> +4 [40][32][40][32]
 TypeId length: 843067968 bytes (including null)
 * bad TypeId sequence length (843067968)

Errors page 225

Warnings page 228
 224

Data, Warning, Error and, Information Text
Errors
The errors include the following:

* unknown General error indicating the specified data value is not a known or
standard value. This typically includes Tag values and other well known values.

* number of profiles is zero (should at least have one!) The IOR
TaggedProfile sequence length value indicates there are no tagged profiles,
only a TypeId string. If this is not the case, the length value may be set
incorrectly to zero.

* empty profile (zero length); skip to next profile ATaggedProfile is of zero
length. This may be possible although it is currently flagged as a possible error.

* gone beyond the end of the profile data; must exit (number of profiles
suggests more data) The number of profiles value has caused iordump to skip
beyond the end of the data. The tool expects to see more profiles. This occurs
because the value is corrupt or has been coded in the IOR incorrectly. A few
reasons for this error is: a value is encoded using the wrong alignment, or a value
is decoded based on an incorrect byte order setting, or the wrong value was
encoded.

* unknown IIOP version (attempting to read as 1.0 data) The ProfileBody
is not one of the supported IIOP versions recognized by iordump. An attempt is
made to interpret the initial part of the data as 1.0 IIOP profile data.

* unknown profile tag/format The profile tag is unknown, either because it is
corrupt or because it is an unknown vendor-defined tag not registered with the
OMG.

* gone beyond the end of the component data; skip component An invalid
length has caused the component data to be exhausted. If possible, iordump will
skip the invalid component data and move onto the next to the next component.

* only one ORB_TYPE component allowed The OMG specification only
allows one TAG_ORB_TYPE component per profile, so the IOR is not
OMG-compliant.
225

CHAPTER 15 | Debugging IOR Data
* missing CodeSetComponent for wchar / * missing conversion code sets for
wchar ATAG_CODE_SETS component consists of two CodeSetComponents, one
for char conversions and one for wchar conversions. Each CodeSetComponent
is a struct containing a native CodeSetId, specified as a ulong and conversion
code sets, specified as a sequence of CodeSetId. The encapsulated data
contained in the tagged component is a CodeSetComponentInfo which is
defined as follows:

These errors are reported if part of this data structure is missing from the IOR
tagged component.

* null wchar native code set; client will throw INV_OBJREF The CORBA
specification includes a requirement that a native code set is specified at least for
a server that supports the IDL wchar type because there is no default wchar
conversion code set. If the native code set for wchar is set to zero this is an error
and according to the spec; the client will throw an INV_OBJREF exception.

* a zero string length is illegal, client will throw MARSHAL A string is
encoded as <length><characters> where the length includes a terminating
null. All strings contain a null, therefore a zero length is illegal.

* should be 0 or 1; assuming (1) Little Endian The octet containing the byte
order flag in an IOR may only contain the values 0 or 1 to indicate Big or Little
Endian.

* bad <data type> sequence length (<n>) The length check on a
sequence<octet> coded length value indicates an invalid length field.

typedef unsigned long CodeSetId;
struct CodeSetComponent
 {
 CodeSetId native_code_set;
 sequence<CodeSetId> conversion_code_sets;
 };
struct CodeSetComponentInfo
 {
 CodeSetComponent ForCharData;
 CodeSetComponent ForWcharData;
 };
 226

Data, Warning, Error and, Information Text
* stringified IOR should have an even length; added trailing’0’ to continue

The stringified IOR always contains an even number of characters because it
contains ASCII-Hex pairs. An additional 0 is added to the data to allow it to be
decoded and analyzed. Possible errors will result when analyzing the last bytes.

* tried to skip <n> byte(s) of padding beyond the remaining data; exit..

Tried to align for a data type when the alignment has skipped beyond the amount
of remaining data.

* attempt to read <n> byte data type, only <m> remaining; exit.. After
skipping padding bytes and aligning to read the next data item, a check is also
made that the number of bytes required to read the data type does not exceed
what data is actually left to read.

* no more data; exit.. Unexpectedly ran over the end of data.
227

CHAPTER 15 | Debugging IOR Data
Warnings
The warnings include the following.

* non zero padding (warning) This indicates that unused octets in the data
contain non-zero values. Unused bytes exist because of required padding bytes
between data values in order to maintain the correct data alignment. The
CORBA specification does not insist on having all padding zeroed although this
potentially creates problems when an IOR is published, or used for hashing, or
any situation which results in two IORs being considered different simply
because of differences in unused padding data.

* no null character at end (warning) In some cases, a sequence<octet> may
be used to store string values. This warning indicates that a data value that can
be interpreted as a string does not contain a terminating null. If the data is
meant to be used as a string, this can cause problems when trying to decode and
use the string. An example is the use of strings to represent the object key by
some vendors. Otherwise, this warning may be ignored.

A simple mistake made when coding such a string is in using the string length
given by strlen(1) to code the sequence length, without adding 1 for the null.

* should TypeId begin with ’IDL:’ prefix? (warning) A check was made on
the TypeId string and the expected IDL: prefix was not found.

* num profiles sounds excessive, only printing <n> If the value containing the
number of profiles exceeds a reasonable limit (100 as set by iordump), only the
number of profiles up to the limit is printed.

* IOR contains <n> garbage trailing byte(s): Any remaining bytes in the data,
beyond the last decoded data value are printed before exit.

* empty component data, zero length (warning) A TaggedComponent length
field indicates a zero length component.

* previous component sequence length may be wrong (warning) The
sequence length of a previous component may be wrong and caused the data of
the following component to be considered part of it. This is only a possible
explanation for a missing component, particularly if the previous component
reported an unknown or illegal data value.
 228

Data, Warning, Error and, Information Text
* host unknown; possibly unqualified (warning) An attempt is made to do a
lookup of the host contained in an IIOP profile. If the host lookup fails, this is
printed as a warning. This would result if the host is really unknown, or is not
fully qualified with the complete domain.

* host name lookup succeeded, but failed to find an IP address (warning)

The specified host lookup succeeded, but an attempt to lookup the IP address
mapping for the specified host failed.

* host IP address lookup succeeded, but failed to find a hostname (warning)

The specified IP address lookup succeeded, but an attempt to lookup the host
mapping for the specified address failed.
229

CHAPTER 15 | Debugging IOR Data
 230

Part IV
Command Reference

In this part This part contains the following chapters:

Starting Orbix Services page 233

Managing Orbix Services With itadmin page 247

CHAPTER 16

Starting Orbix
Services
This chapter describes commands that start Orbix services. For
information on starting Orbix services as Windows NT services,
see Appendix A on page 403.

In this chapter This chapter contains the following sections:

Starting and Stopping Configured Services page 234

Starting Orbix Services Manually page 235

Stopping Services Manually page 244
233

CHAPTER 16 | Starting Orbix Services
Starting and Stopping Configured Services

Start and stop scripts The Orbix configuration tool generates two scripts that start and stop all
configured Orbix services:

UNIX

Windows

The startup script starts all Orbix services you configured using the
configuration tool. For example, given a domain name of AcmeServices, the
following command starts all services on Windows:

Start-up order Orbix services, when configured, start up in the following order:

1. Configuration repository

2. Locator daemon

3. Node daemon

4. Naming service

5. Interface repository

6. Event service

For example, you might decide to configure the event service but not the naming
service. In this case, the event service takes a priority of 5.

start_domain-name_services.sh
stop_domain-name_services.sh

start_domain-name_services.bat
stop_domain-name_services.bat

start_AcmeServices_services.bat
 234

Starting Orbix Services Manually
Starting Orbix Services Manually
Orbix also provides separate commands for starting each service manually, with
the following syntax:

run is optional. For example, the following commands both start the interface
repository:

Table 8 lists all commands for running services manually:

itservice-name [run]

itifr
itifr run

Table 8: Commands to Manually Start Orbix Services.

Command Starts

itconfig_rep run Configuration repository

itlocator run Locator daemon

itnode_daemon run A node daemon

itnaming run Naming service database

itifr run Interface repository

itevent run Event service

itnotify run Notification service

Note: In a configuration repository-based domain, the configuration
repository must be running before starting additional services.
235

CHAPTER 16 | Starting Orbix Services
itconfig_rep run

Synopsis itconfig_rep -ORBdomain_name cfr-domain-name [-ORBname ORB-name]
[run] [-background]

Description Starts the configuration repository. The configuration repository must already be
configured in your Orbix environment. This command requires you to be logged
in as administrator (Windows) or root (UNIX).

UNIX

You can push the process into the background.

Windows

Leave the command window open.

Options

Note: For details on using a secure configuration repository-based domain,
see the Orbix Security Guide.

-ORBdomain_name
cfr-domain-name

The configuration repository’s domain file name,
which is generated when you create the domain. The
generated configuration domain file has the name
cfr-domain-name.cfg.

For example, given configuration domain
acmeproducts, the configuration repository initializes
itself from cfr-acmeproducts.cfg.

-ORBname ORB-name Directs the initializing configuration repository to
retrieve its configuration from the specified
configuration scope.

By default, this is the config_rep scope. Use the
-ORBname argument to specify a different
configuration scope. For example:

itconfig_rep -ORBname config_rep.config2 run
 236

Starting Orbix Services Manually
itlocator run

Synopsis itlocator [-ORBname ORB-name] run [-background]

Description Starts the locator daemon. The locator daemon must already be configured in your
Orbix environment. In a location domain, the locator daemon controls read and
write operations to the implementation repository. By default, entering itlocator
without specifying the run command starts the default locator daemon.

UNIX

You can push the process into the background.

Windows

Leave the command window open.

Options

-background Runs the configuration repository in the background.
Control returns to the command line only after the
service successfully launches. If you omit the
-background argument, the configuration repository
runs in the foreground. This argument can be
abbreviated to -bg. For example:

itconfig_rep run -bg

The -background argument is especially useful in
scripts that start multiple services. It guarantees that
services always launch in the same sequence as the
script specifies.

-ORBname ORB-name Directs the initializing locator daemon to retrieve its
configuration from the specified configuration scope.

By default, this is the locator scope. Use the
-ORBname argument to specify a different
configuration scope. For example:

itlocator -ORBname locator.locator2 run
237

CHAPTER 16 | Starting Orbix Services
itnode_daemon run

Synopsis itnode_daemon [-ORBname ORB-name] run [-background]

Description Starts a node daemon. A node daemon controls registered server processes to
ensure that they are always running, starts processes on demand, or disables them
from starting. The node daemon also monitors all child processes of registered
server processes, and informs the locator daemon about any events relating to
these child processes—in particular, when a child process terminates. By default,
entering itnode_daemon without specifying the run command starts the default
node daemon.

UNIX

You can push the process into the background.

Windows

Leave the command window open.

Options

-background Runs the locator daemon in the background. Control
returns to the command line only after the service
successfully launches. If you omit the -background
argument, the locator daemon runs in the foreground.
You can abbreviate this argument to -bg. For
example:

itlocator run -bg

The -background argument is especially useful in
scripts that start multiple services. It guarantees that
services always launch in the same sequence as the
script specifies.

-ORBname ORB-name Directs the initializing node daemon to retrieve its
configuration from the specified configuration
scope.

By default, this is the iona_services.node_daemon
scope. Use the -ORBname argument to specify a
different configuration scope. For example:

itnode_daemon -ORBname
iona_services.node_daemon.nd2 run
 238

Starting Orbix Services Manually
-background Runs the node daemon in the background. Control
returns to the command line only after the service
successfully launches. If you omit the -background
argument, the node daemon runs in the foreground.
You can abbreviate this argument to -bg. For
example:

itnode_daemon run -bg

The -background argument is especially useful in
scripts that start multiple services. It guarantees that
services always launch in the same sequence as the
script specifies.

-ORBsecure_directories Specifies a list of secure directories in which the
node daemon launches processes. This overrides the
path specified for the registered process. For
example:

itnode_daemon -ORBsecure_directories
[c:\Acme\bin,c:\my_app]

You must enclose the directory list in square
brackets. If you omit this argument, the node
daemon launches processes from the path specified
in the location domain.
239

CHAPTER 16 | Starting Orbix Services
itnaming run

Synopsis itnaming [-ORBname ORB-name] run

Description Starts the naming service, assuming it is already configured in your Orbix
environment. By default, entering itnaming without specifying the run command
starts the naming service.

UNIX

You can push the process into the background.

Windows

Leave the command window open.

Options

-ORBname ORB-name Directs the initializing naming service to retrieve its
configuration from the specified configuration scope.

By default, this is the naming scope. Use the
-ORBname argument to specify a different
configuration scope. For example:

itnaming -ORBname naming.naming2 run

-background Runs the naming service in the background. Control
returns to the command line only after the service
successfully launches. If you omit the -background
argument, the naming service runs in the foreground.
You can abbreviate this argument to -bg. For
example:

itnaming run -bg

The -background argument is especially useful in
scripts that start multiple services. It guarantees that
services always launch in the same sequence as the
script specifies.
 240

Starting Orbix Services Manually
itifr run

Synopsis itifr [-ORBname ORB-name] run [-background]

Description Starts the interface repository daemon. The interface repository must already be
configured in your Orbix environment. By default, entering itifr without
specifying the run command starts the interface repository.

UNIX

You can push the process into the background.

Windows

Leave the command window open.

Options

-ORBname ORB-name Directs the initializing interface repository to retrieve
its configuration from the specified configuration
scope.

By default, this is the ifr scope. Use the -ORBname
argument to specify a different configuration scope.
For example:

itifr -ORBname ifr.ifr2 run

-background Runs the interface repository in the background.
Control returns to the command line only after the
service successfully launches. If you omit the
-background argument, the interface repository runs
in the foreground. You can abbreviate this argument
to -bg. For example:

itifr run -bg

The -background argument is especially useful in
scripts that start multiple services. It guarantees that
services always launch in the same sequence as the
script specifies.
241

CHAPTER 16 | Starting Orbix Services
itevent run

Synopsis itevent [-ORBname ORB-name] run [-background]

Description Starts the event service. The event service must already be configured in your
Orbix environment. By default, entering itevent without specifying the run
command starts the event service.

UNIX

You can push the process into the background.

Windows

Leave the command window open.

Options

-ORBname ORB-name Directs the initializing event service to retrieve its
configuration from the specified configuration scope.

By default, this is the event scope. Use the -ORBname
argument to specify a different configuration scope.
For example:

itevent -ORBname event.event2 run

-background Runs the event service in the background. Control
returns to the command line only after the service
successfully launches. If you omit the -background
argument, the event service runs in the foreground.
You can abbreviate this argument to -bg. For
example:

itevent run -bg

The -background argument is especially useful in
scripts that start multiple services. It guarantees that
services always launch in the same sequence as the
script specifies.
 242

Starting Orbix Services Manually
itnotify run

Synopsis itnotify [-ORBname ORB-name] run [-background]

Description Starts the notification service. The notification service must already be configured
in your Orbix environment. By default, entering itnotify without specifying the
run command starts the event service.

UNIX

You can push the process into the background.

Windows

Leave the command window open.

Options

-ORBname ORB-name Directs the initializing notification service to retrieve
its configuration from the specified configuration
scopes.

By default, this is the notify scope. Use the
-ORBname argument to specify a different
configuration scope. For example:

itnotify -ORBname notify.notify2 run

-background Runs the notification service in the background.
Control returns to the command line only after the
service successfully launches. If you omit the
-background argument, the notification service runs
in the foreground. You can abbreviate this argument
to -bg. For example:

itnotify run -bg

The -background argument is especially useful in
scripts that start multiple services. It guarantees that
services always launch in the same sequence as the
script specifies.
243

CHAPTER 16 | Starting Orbix Services
Stopping Services Manually
Any service that can be started manually can also be stopped manually using
itadmin commands. The order in which you shut down services should be
determined by the dependencies among them. For example, in a
repository-based domain, you should not shut down the configuration repository
until all other services are shut down.

Shut-down commands have the following syntax:

Table 9 lists the itadmin commands for shutting down Orbix services:

itadmin service-name stop

Table 9: Commands for Stopping Orbix Services

Service Shut-down command

Configuration repository itadmin config stop

Locator itadmin locator stop

Node daemon itadmin .node_daemon stop

Naming service itadmin ns stop

Interface repository itadmin ifr stop

Event service itadmin event stop
 244

Event Log
Overview The event log commands enable the Orbix event log filters to be displayed or

updated dynamically using the itadmin command line. You can also perform
these actions using the IONA Administrator Web Console:

logging get

Synopsis logging get -orbname orb_name

Description Displays the event log filter settings for the specified ORB name.

Arguments

Examples

This command displays the event log filter settings that are used by the currently
running naming service.

Table 10: Event Log Commands

logging get Displays the event log filter settings.

logging set Updates the event log filter.

-orbname The specified ORB name of the event log to display.

itadmin logging set -orbname iona_services.naming
245

CHAPTER 17 | Event Log
logging set

Synopsis logging set -orbname orb_name -value new_event_log_filter

Description Updates the event log filter settings for the specified ORB name.

Arguments

Examples

This command updates the event log filters that are used by the currently
running naming service.

-orbname The specified ORB name of the event log to update.

-value The new event log setting.

itadmin logging set -orbname iona_services.naming -value
IT_GIOP=*,IT_MGMT=*
 246

CHAPTER 18

Managing Orbix
Services With
itadmin
This chapter provides an overview of using the command-line tool
itadmin to manage Orbix services. Typical management tasks in
Orbix include creating, viewing, and removing data stored in
service repositories.

In this chapter This chapter contains the following sections:

Using itadmin page 248

Command Syntax page 251

Services and Commands page 254
247

CHAPTER 18 | Managing Orbix Services With itadmin
Using itadmin

Overview itadmin lets you manage information used by Orbix services. You can use
itadmin in various modes and contexts:

• Command-line utility

• Command shell

• Tcl script

• Transactions

Command-line utility To use itadmin as a command-line utility, simply enter the appropriate
command at the command prompt. For example, the following command
registers an ORB name with the locator daemon:

In command-line mode, you must specify the itadmin prefix before each
command. For a list of itadmin commands, see “Services and Commands” on
page 254.

Command shell To use the itadmin shell, enter itadmin at the command line. The itadmin
prompt is displayed. Once you have entered the command shell, you do not need
to enter itadmin before each command. For example:

To leave the itadmin shell mode, enter exit.

Nested itadmin commands

In shell and Tcl script mode, you can use nested itadmin commands by
enclosing each command in square brackets. When itadmin commands are
nested, innermost command are executed first.

itadmin orbname create my_orb_name

itadmin
% orbname create my_orb_name
 248

Using itadmin
Tcl script You can write your own Tcl scripts that incorporate itadmin commands. For
example, you could develop a Tcl script called my_script that contains one
itadmin command per line. You would invoke this script by entering:

You can use Tcl scripts at the command prompt and in the command shell.
Incorporating itadmin commands in reusable Tcl scripts provides an extremely
powerful way of automating administration tasks (for example, populating a
configuration domain or location domain).

Sample scripts

The following example shows the contents of a simple Tcl script that calls an
itadmin variable create command:

This command creates a configuration variable named
initial_references:POACurrent:plugin and assigns it a value of poa. The
remaining Tcl in this simple example is used for Tcl script management. For
example, catch prevents a Tcl stack dump if an exception is thrown during
execution.

itadmin my_script.tcl

if { [catch {variable create -type string -value poa
 initial_references:POACurrent:plugin} result] } {
 puts $result
 flush stdout
 exit 1
 }
249

CHAPTER 18 | Managing Orbix Services With itadmin
The following is a more realistic example of how to use itadmin commands
within Tcl scripts:

The do_cmd procedure installs an exception handler for each itadmin command.
Each itadmin command is in turn sent as a parameter to do_cmd. For example,
the first call to do_cmd creates initial_references:RootPOA:plugin and
assigns it a value of poa.

Transactions itadmin supports the object transaction service (OTS). Using itadmin
commands in transactions provides itadmin with multiple undo capability.

Orbix provides itadmin commands to start, commit, rollback, suspend, and
resume transactions. This enables you to use other itadmin commands in
transactional mode. For more details, see “Object Transaction Service” on
page 355.-

Multiple itadmin sessions itadmin does not perform any record locking while it is making changes to the
configuration database. Therefore, running multiple sessions of itadmin in
parallel will corrupt your Orbix configuration.

do_cmd installs an exception handler for each itadmin command

proc do_cmd {cmd} {
 set fail [catch {eval $cmd} result]
 if {$fail} {
 puts stderr "Problem in \"$cmd\": $result"
 flush stderr
 exit 1
 }
}

Each itadmin command is sent as a parameter to do_cmd

 do_cmd {variable create -type string -value poa
 initial_references:RootPOA:plugin}
 do_cmd {variable create -type string -value poa
 initial_references:POACurrent:plugin}
 do_cmd {variable modify ... }
 do_cmd {poa create ...}
 exit 0
 250

Command Syntax
Command Syntax

Overview itadmin syntax takes the following general form:

actor [actor modifiers] action [action modifiers] [target]

For example, the following command registers a process name with the locator
daemon:

In this example, the actor is orbname, the action is create, the action
modifier is -process, and the target is ORB-name.

In this section The following topics are discussed in this section:

Specifying lists When a command takes a list, separate the list elements with spaces and enclose
the entire list in double quotation marks. For example, the following command
creates a server process entry in the location domain with the specified
environment values:

In this example, the value of the -env modifier is a list with three elements, and
the equal sign is treated as a character.

orbname create -process process-name ORB-name

Note: The order of itadmin components is significant. Each component must
be separated by a space.

Specifying lists page 251

Specifying negative values page 252

Abbreviating command parameters page 253

Obtaining help page 253

% process create -env "mode=listen priority=low startup=yes"
process-name
251

CHAPTER 18 | Managing Orbix Services With itadmin
Double quotation marks group a set of elements into a single entity in which
spaces are not significant. For example, the -args argument to the process
create command is treated as a single list element, which must be enclosed by
double quotes:

When using itadmin in command line mode, the quotation marks must be
escaped or they will be stripped away by the command line interpreter. It is
unnecessary to escape the quotation marks when using itadmin in shell or script
modes.

Specifying spaces in values When a value specified to itadmin includes a space, you can use the itadmin
escape character ̂to specify the space. For example, the following command
shows how to specify a space in a value included in a list:

Specifying negative values When the first character of a value supplied to an argument is a minus sign or
hyphen, you must supply an additional hyphen. For example:

When the first character is not a hyphen, an additional hyphen is not necessary.
For example:

You must supply an additional hyphen even if the first character is enclosed in
quotation marks. For example:

% process create -args "foo bar baz" process-name

% process modify -env "name1=value1 name2=value^ 2"

-modifier --3

-modifier 4,-1,99

% variable create -type long -value "--99" my_variable
 252

Command Syntax
Abbreviating command
parameters

You can abbreviate all itadmin command parameters. For example, the
following commands all have the same effect:

Abbreviations must be unique. For example, if two parameters begin with the
same letter, their abbreviations must use at least the minimum number of letters
that differentiate between them.

Obtaining help To obtain command line help for itadmin, enter:

You can obtain context-sensitive help by entering a command (in its entirety, or
in part) and adding the keyword help. For example, for help on the orbname
create command, enter any of the following:

% orbname list -p process-name
% orbname list -pr process-name
% orbname list -pro process-name
 ...
% orbname list -process process-name

itadmin -help

% orbname -help
% orbname create -help
% orbname create -process -help
% orbname create -process process-name -help
% orbname create -process process-name ORB-name -help
% orbname create ORB-name -help
253

CHAPTER 18 | Managing Orbix Services With itadmin
Services and Commands

In this section The following sections group itadmin commands according to Orbix services:

Bridging Service page 255

Configuration Domain page 261

Event Log page 245

Event Service page 275

Interface Repository page 283

Location Domain page 289

Naming Service page 331

Notification Service page 343

Object Transaction Service page 355

Object Transaction Service Encina page 359

Persistent State Service page 367

Security Service page 373

Trading Service page 383
 254

Bridging Service
Overview The bridge service allows JMS and CORBA notification clients to share

messages. itadmin provides a set of commands for managing the bridging
service:

Table 11: Bridging Service Commands

bridge create Creates a bridge.

bridge destroy Destroys a bridge.

bridge list Lists all of the instantiated bridges in a
deployment.

bridge show Displays the status of a bridge.

bridge start Starts the flow of messages through a
bridge.

bridge stop Stops the flow of messages through a
bridge.

bridge suspend Suspends the flow of messages through
a bridge.

endpoint_admin show Displays a bridge’s endpoint admin’s
name and the type of endpoints it
supports.

endpoint destroy Destroys an endpoint.

endpoint list Lists the endpoints associated with an
endpoint admin.

endpoint show Display the status and attributes of a
particular endpoint for the specified
bridge.
255

CHAPTER 19 | Bridging Service
bridge create

Synopsis bridge create [-source_admin IOR | INIT_REF_KEY] [-source_type topic
| queue | channel] -source_name source name [-sink_admin IOR |
INIT_REF_KEY] -sink_type [topic | queue | channel] -sink_name sink
name bridge name

Description Creates a bridge.

Arguments

–source_admin The IOR or initial reference of the administrative object
used to connect to the message source. To use the default
notification endpoint admin use
“IT_NotificationEndpointAdmin”; to use the default
JMS endpoint admin use "IT_JMSEndpointAdmin".

-source_type The type of object that passes messages into the bridge. It
can take one of three values: topic if the messages originate
from a JMS topic, queue if the messages originate from a
JMS queue and channel if the messages originate from a
notification channel.

-source_name The name of the object that passes messages to the bridge.

-sink_admin The IOR or initial reference of the administrative object
used to connect to where messages are being forwarded. If
the message source is a notification channel, the message
sink should be a JMS Destination. To use the default
notification admin use
"IT_NotificationEndpointAdmin"; to use the default
JMS admin use "IT_JMSEndpointAdmin".

-sink_type The type of object that receives messages from the bridge.
It can take one of three values: topic if the messages are
being forwarded to a JMS topic, queue if the messages are
being forwarded to a JMS queue and channel if the
messages are being forward to a notification channel.

-sink_name The name of the object that receives messages from the
bridge.

bridge name The name of the bridge. This must be a unique string value
that is used to identify this bridge.
 256

bridge destroy

Synopsis bridge destroy bridge name

Description Destroys a bridge.

bridge list

Synopsis bridge list

Description Lists all of the instantiated bridges in a deployment.

bridge show

Synopsis bridge show bridge name

Description Displays the status of a bridge.

bridge start

Synopsis bridge start bridge name

Description Starts the flow of messages through a bridge.

bridge stop

Synopsis bridge stop bridge name

Description Stops the flow of messages through a bridge.

bridge suspend

Synopsis bridge suspend bridge name

Description Suspends the flow of messages through a bridge.
257

CHAPTER 19 | Bridging Service
endpoint_admin show

Synopsis endpoint_admin show [IOR | INIT_REF_KEY]

Description Displays a bridge’s endpoint admin’s name and the type of endpoints it supports.

endpoint destroy

Synopsis endpoint destroy [-source | -sink] [-admin IOR | INIT_REF_KEY] bridge
name

Description Destroys an endpoint.

Arguments

endpoint list

Synopsis endpoint list [-source | -sink] [-admin IOR | INIT_REF_KEY]

Description Lists the endpoints associated with an endpoint admin.

Arguments

–source | -sink Specify whether the endpoint is a message source or a
message sink.

-admin Specify what type of admin object with which it is
associated.

–source | -sink Specify whether the endpoint is a message source or a
message sink.

-admin Specify what type of admin object with which it is
associated.
 258

endpoint show

Synopsis endpoint show [-source | -sink] [-admin IOR | INIT_REF_KEY] bridge
name

Description Display the status and attributes of a particular endpoint for the specified bridge.

Arguments

–source | -sink Specify whether the endpoint is a message source or a
message sink.

-admin Specify what type of admin object with which it is
associated.
259

CHAPTER 19 | Bridging Service
JMS Broker

Overview The Java Messaging Service (JMS) provides a native mechanism for Java
applications to participate in messaging systems.

itadmin provides a set of commands for managing the JMS broker:

jms start

Synopsis jms start

Description Starts the JMS broker.

jms stop

Synopsis jms stop

Description Shuts down the JMS broker.

Table 12: JMS Broker Commands

jms start Starts the JMS broker.

jms stop Shuts down the JMS broker.
 260

Configuration
Domain

Overview A subset of itadmin commands let you manage a configuration domain, both
file-based and configuration repository-based. These commands manage the
following components of a configuration domain:

Configuration Repository page 262

Namespaces page 266

Scopes page 269

Variables page 271

Note: To use itadmin in a repository-based configuration domain, the
configuration repository must be running (see “Starting Orbix Services” on
page 233).
261

CHAPTER 20 | Configuration Domain
Configuration Repository

Overview The following commands enable you to manage the configuration repository
(CFR):

config dump

Synopsis config dump [-compatible]

Description Outputs the entire contents of the configuration domain to stdout in a form similar
to a configuration file.

Table 13: Configuration Repository Commands

config dump Displays the entire contents of the configuration
domain.

config list_servers Shows all deployed replicas of the configuration
repository.

config stop Stops the configuration repository.

file_to_cfr.tcl Converts from a file-based to a CFR-based
configuration.

Note: For details on using a secure configuration repository-based domain,
see the Orbix Security Guide.

-compatible Formats the CFR configuration so that it can be
used in a file-based configuration. You can copy
the output into a configuration file.
 262

Configuration Repository
Examples The following extract shows the values of some initial object references and
plug-ins in the initial_references configuration namespace:

config list_servers

Synopsis config list_servers [-active]

Description Shows all active deployed replicas of the configuration repository.

Arguments

config show_server

Synopsis config show_server cfr replica name

Description Displays runtime information about the specified CFR server.

itadmin config dump
...
initial_references:IT_Locator:reference =

"IOR:010000002500000049444c3a696...723a312e300000000001000000
00001a00"

initial_references:POACurrent:plugin = "poa"

initial_references:NameService:reference =
"IOR:010000002f00000049444c3a696f6e61...2e6362f49545f4e616d69
6e606000000010000003500"

initial_references:DynAnyFactory:plugin = "it_dynany"

initial_references:ConfigRepository:reference =
"IOR:010000002000000049444c3a495000002000...00006000000010000
000900"

...

-active Displays the total number of active deployed replicas.
263

CHAPTER 20 | Configuration Domain
config stop

Synopsis config stop [replica-name | -ior replica-ior]

Description Stops the configuration repository. An unqualified config stop command stops
all running replicas of the configuration repository.

Arguments

file_to_cfr.tcl

Synopsis file_to_cfr.tcl [-scope scope] [-output_to_file file]

Description Converts from a file-based configuration to a CFR-based configuration. Running
this script creates itadmin variable create arguments in the output file, which
you can then run against a CFR.

Examples The recommended way to run this is to set $IT_DOMAIN_NAME to your file-based
domain name, and execute the script. Then set $IT_DOMAIN_NAME to your CFR
domain name, and finally run the generated output script.

Because a file-based configuration contains no data type information, the
file_to_cfr.tcl script must make educated guesses about the types being
processed. However, you can edit the generated script to ensure that the correct
data types were chosen before running it against your CFR.

replica-name Stops the specified replica of the configuration repository.
You can obtain the replica’s name with itadmin config
list.

-ior replica-ior Stops the specified replica, as specified by its IOR.

Note: Because this tcl script creates a temporary file, the user will need write
access to the current directory.
 264

Configuration Repository
Arguments

If the -scope argument is omitted, the script processes the whole configuration.
If the -output_to_file argument is omitted, the output goes to stdout instead.

-scope Processes configuration in the specified scope
only.

-output_to_file <filename>Specifies the newly generated script used to
populate a CFR.
265

CHAPTER 20 | Configuration Domain
Namespaces

Overview The following commands let you manage configuration namespaces:

namespace create

Synopsis namespace create [-scope scoped-name] namespace

Description Creates a namespace and any intermediate namespaces, if they do not already
exist.

Arguments

Examples The following example creates the plugins:local_log_stream namespace
within the node_daemon configuration scope:

Table 14: Configuration Namespace Commands

namespace create Creates namespaces in the specified scope.

namespace list Lists the namespaces in the given namespace or
configuration scope.

namespace remove Removes a namespace and all its contained
namespaces and variables from the configuration
domain.

namespace show Displays all sub-namespaces, variables and their
values contained within a namespace.

-scope Creates the namespace in the specified scope. If you omit
this argument, the namespace is created in the root scope.

itadmin namespace create -scope node_daemon
plugins:local_log_stream
 266

Namespaces
namespace list

Synopsis namespace list [-scope scoped-name] [namespace]

Description Lists the namespaces in the specified namespace or configuration scope. If you
specify a namespace, itadmin lists only the namespaces nested within it;
otherwise, it shows all namespaces within the specified or root scope.

Arguments

Examples The following example lists namespaces in the root configuration scope:

The following example lists namespaces nested within the initial_references
namespace:

-scope Narrows the namespaces to a specific configuration scope. If
you omit this argument, namespaces in the root scope are
listed.

itadmin namespace list
binding
plugins
url_protocols
url_resolvers
domain_plugins
initial_references

itadmin namespace list initial_references
PSS
RootPOA
PICurrent
IT_Locator
POACurrent
NameService
XAConnector
EventService
IT_Activator
DynAnyFactory
IT_NodeDaemon
...
IT_MulticastReliabilityProtocol
267

CHAPTER 20 | Configuration Domain
namespace remove

Synopsis namespace remove [-scope scoped-name] namespace

Description Removes a namespace.

Arguments

namespace show

Synopsis namespace show [-scope scoped-name] namespace

Description Displays all namespaces, variables and their values within the specified
namespace.

Arguments

Examples The following example shows the contents of the initial_references
namespace in the root configuration scope:

-scope Removes the namespace from the specified scope. If you
omit this argument, the namespace is removed from the root
scope.

-scope Narrows the namespaces to a specific scope. If you omit this
argument, namespaces and their contents in the root scope
are displayed.

itadmin namespace show initial_references
initial_references:RootPOA:plugin = "poa";
initial_references:POACurrent:plugin = "poa";
initial_references:DynAnyFactory:plugin = "it_dynany";
initial_references:TransactionCurrent:plugin = "ots_lite";
initial_references:TransactionFactory:plugin = "ots_lite";
initial_references:PSS:plugin = "pss_db";
initial_references:NameService:reference = "IOR:0100...00900";
initial_references:ConfigRepository:reference="IOR:0100...00900"

;
initial_references:IT_Locator:reference = "IOR:0100...00900";
 268

Scopes
Scopes

Overview The following commands let you manage configuration scopes:

scope create

Synopsis scope create scoped-name

Description Creates a configuration scope. Unless qualified by higher-level scope names, the
scope is created in the root configuration scope. To create a scope in a scope other
than the root, specify its fully qualified name.

Examples For example, the following command creates the test scope within
company.production:

After you create the scope, add the desired namespaces and variables within it
with itadmin variable create and itadmin namespace create.

scope list

Synopsis scope list [scoped-name]

Description Lists all the sub-scopes in the specified configuration scope. If no scope is
specified, this command lists the sub-scopes in the root scope.

Table 15: Configuration Scope Commands

scope create Creates a configuration scope.

scope list Displays all sub-scopes defined within a scope.

scope remove Removes a configuration scope and all its contained
namespaces, variables, and scopes.

scope show Displays all namespaces, variables, and their values
defined within a scope.

itadmin scope create company.production.test
269

CHAPTER 20 | Configuration Domain
Examples The following command lists all the sub-scopes defined within the node_daemon
configuration scope:

scope remove

Synopsis scope remove scoped-name

Description Removes the specified scope from the configuration. This includes all its
contained namespaces, variables, and configuration scopes.

scope show

Synopsis scope show [scoped-name] [-compatible] [-output_to_file filename]

Description Displays all sub-namespaces, variables, and their values in the specified
configuration scope. If no scope is specified, this command displays the contents
of the root scope.

Arguments

Examples The following command displays the contents of the node_daemon configuration
scope:

itadmin scope list node_daemon
node_daemon2
node_daemon3

-compatible Formats the displayed configuration so that it
can be used in a file-based configuration. This
enables you to produce file-based configuration
segments from a scope (rather than the entire
CFR).

-output_to_file <filename>Directs the output to the specified file.

itadmin scope show node_daemon
orb_plugins = local_log_stream, iiop_profile, giop, iiop;
event_log:filters=IT_NODE_DAEMON=INFO_ALL+WARN+ERROR+FATAL;
plugins:node_daemon:shlib_name = "it_node_daemon_svr";
plugins:node_daemon:nt_service_dependencies = "IT locator

orbix2000";
plugins:node_daemon:name = "it_node_daemon";
 270

Variables
Variables

Overview The following commands let you manage configuration variables:

variable create

Synopsis variable create [-scope scoped-name] -type long|bool|list|string
-value value var-name

Description Creates the specified variable in the configuration domain. Any configuration
namespaces specified in the variable name that do not exist are also created.

Arguments The following arguments are supported:

Table 16: Configuration Variable Commands

variable create Creates a variable or namespace within the
configuration domain.

variable modify Changes one or more variable values.

variable remove Removes a variable from the configuration domain.

variable show Displays a variable and its value.

-scope scoped-name The configuration scope in which to define the
variable. If you omit this argument, the variable is
created in the root configuration scope.

-type type The type of the variable. Supply one of the following
types:

• long

• bool

• list (a comma-separated list of strings)

• string

For more about variable types, see “Data types” on
page 45.
271

CHAPTER 20 | Configuration Domain
Examples The following example creates a variable named orb_plugins in the root
configuration scope:

The following example creates variable service_name in scope IFR:

The following example creates a namespace in the root configuration scope:

-value value The variable’s value. The value must match the type
specified by the -type switch.

The following values are valid for the specified type:

long: any signed long value

bool: true or false

list: list items must be separated by commas. Empty
elements or list items containing spaces must be
quoted—for example:

foo,"bar none",baz

See “Specifying lists” on page 251 for more details.

string: Enclose values in double quotes.

itadmin variable create -type list -value IIOP,GIOP,PSS
orb_plugins

itadmin variable create -scope IFR -type string -value "ARTIFR"
service_name

itadmin variable create -type string -value
"IOR:004332434235234235933..."
initial_references:IntefaceRepository:reference

Note: In shell mode, do not specify IORs to the -value argument. Specify
IORs in command-line and script modes only.
 272

Variables
variable modify

Synopsis variable modify [-scope scoped-name] -type long|bool|list|string
-value value var-name

Description Modifies the value of a variable or namespace in the configuration domain in the
specified scope.

Arguments The following arguments are supported:

Examples The following example modifies the event log filters for the naming service:

-scope scoped-name The configuration scope in which to modify the
variable or namespace. The default is the root
configuration scope.

-type type The type of the variable. Supply one of the following
types:

• long

• bool

• list (a comma-separated list of strings)

• string

-value value The variable’s value. The value must match the type
specified by the -type switch.

The following values are valid for the specified type:

long: any signed long value

bool: true or false

list: list items must be separated by commas. Empty
elements or list items containing spaces must be
quoted—for example:

foo,"bar none",baz

See “Specifying lists” on page 251 for more details.

string: Enclose values in double quotes.

itadmin variable modify -scope naming -type list -value
IT_NAMING=ERR+FATAL event_log:filters
273

CHAPTER 20 | Configuration Domain
variable remove

Synopsis variable remove [-scope scoped-name] var-name

Description Removes the specified variable from the configuration domain. This operation
does not remove a configuration namespace.

Arguments

variable show

Synopsis variable show [-scope scoped-name] var-name

Description Displays the specified variable and its value, within the specified scope. The
default is the root configuration scope.

Arguments

Examples The following example shows a variable in the default root configuration scope:

The following example shows the same variable as it is set for the event service
in the configuration scope event:

-scope scoped-name The configuration scope from which to remove the
variable. If you omit this argument, the variable is
removed from the root scope.

-scope Narrows the displayed variable to a specific configuration
scope.

itadmin variable show orb_plugins
orb_plugins = iiop_profile, giop, iiop

itadmin variable show -scope iona_services.event orb_plugins
orb_plugins = iiop_profile, giop, iiop
 274

Event Service
Overview The event service is a CORBA service that enables applications to send events

that can be received by any number of objects. For more about the event service,
see the CORBA Programmer’s Guide.

itadmin commands let you manage the following event service components:

Event Service Management page 276

Event Channel page 278
275

CHAPTER 21 | Event Service
Event Service Management

Overview The following commands let you manage an event service instance:

event show

Synopsis event show

Description Displays the attributes of the default event service.

Multiple instances of the event service are also supported. To show the attributes
of a non-default event service, specify the ORB name used to start the event
service (using the -ORBname parameter to itadmin).

Examples The following command shows the attributes of a default event service:

The following command shows the attributes of a non-default event service:

Each event service instance must have a unique name. You can specify this is in
your configuration, using the plugins:poa:root_name variable. The event
service uses named roots to support multiple instances.

Table 17: Event Service Commands

event show Displays the attributes of the specified event service.

event stop Stops an instance of the event service.

itadmin event show
Event Service Name: IT_EventNamedRoot
 Host Name: podge
 Event Channel Name List:
 my_channel

itadmin -ORBname event.event2 event show
Event Service Name: IT_EventNamedRoot2
 Host Name: rodge
 Event Channel Name List:
 my_channel
 my_channel2
 276

Event Service Management
In this example, the plugins:poa:root_name variable is set to
IT_EventNamedRoot2 in the event.event2 configuration scope:

event stop

Synopsis event stop

Description Stops the default event service.

Multiple instances of the event service are also supported. To stop a non-default
event service, qualify the itadmin command with the -ORBname argument and
supply the ORB name used to start the event service.

To start the event service, use the itevent command. You can also use the
start_domain-name_services command. For more information, see “Starting
Orbix Services” on page 233.

Examples The following command stops the default event service.

The following command stops the event service that was started with ORB name
event.event2:

...
event{
 plugins:poa:root_name = "IT_EventNamedRoot";
 ...

 event2
 {
 plugins:poa:root_name = "IT_EventNamedRoot2";
 };
}
...

itadmin event stop

itadmin -ORBname event.event2 event stop
277

CHAPTER 21 | Event Service
Event Channel
The following commands let you manage an event channel:

Table 18: Event Channel Commands

ec create Creates an untyped event channel with the specified
name.

ec create_typed Creates a typed event channel with the specified
name.

ec list Displays all untyped event channels managed by the
event service.

ec remove Removes the specified untyped event channel.

ec remove_typed Removes the specified typed event channel.

ec show Displays all attributes of the specified untyped event
channel.

ec show_typed Displays all attributes of the specified typed event
channel.
 278

Event Channel
ec create

Synopsis ec create channel-name

Description Creates an untyped event channel with the specified name. If specified with an
unqualified itadmin command, the event channel is created in the default event
service. You can create an event channel in another (non-default) event service
by qualifying the itadmin command with the -ORBname argument and supplying
the ORB name used to start the service.

Examples The following command creates an untyped event channel, my_channel:

The following command creates an untyped event channel (for a non-default
event service) named my_channel2:

ec create_typed

Synopsis ec create_typed channel_name

Description Creates a typed event channel with the specified name.

ec list

Synopsis ec list [-count]

Description Displays all the untyped event channels managed by an event service.

Arguments

Examples The following example displays the untyped event channels that are in the default
event service:

itadmin ec create my_channel

itadmin -ORBname event.event2 ec create my_channel2

-count Displays the total number of untyped event channels.

itadmin ec list
my_channel
mkt_channel
eng_channel
279

CHAPTER 21 | Event Service
The following example displays the untyped event channels that are in a
non-default event service:

The following example displays the number of untyped event channels managed
by an event service:

ec remove

Synopsis ec remove channel-name

Description Removes the specified untyped event channel.

Examples The following command removes untyped event channel my_channel:

The following command removes untyped event channel my_channel2 from a
non-default event service:

ec remove_typed

Synopsis ec remove_typed channel_name

Description Removes the specified typed event channel.

itadmin -ORBname event.event2 ec list
my_channel
my_channel2
mkt_channel
eng_channel

itadmin ec list -count
3

itadmin ec remove my_channel

itadmin -ORBname event.event2 ec remove my_channel2
 280

Event Channel
ec show

Synopsis ec show channel-name

Description Displays all attributes of the specified untyped event channel.

Examples The following command displays the attributes of my_channel:

The following command displays the attributes of my_channel2 from a
non-default event service:

ec show_typed

Synopsis ec show_typed channel_name

Description Displays all attributes of the specified typed event channel.

itadmin ec show my_channel
Channel Name: my_channel
 Channel ID: 1
 Event Communication: Untyped

itadmin -ORBname event.event2 ec show my_channel2
Channel Name: my_channel2
 Channel ID: 2
 Event Communication: Untyped

Note: For information about event service configuration variables, see the
section on the plugins:notification namespace in the Orbix Configuration
Reference.
281

CHAPTER 21 | Event Service
 282

Interface
Repository

Overview A subset of itadmin commands let you create, browse, and remove IDL
definitions from the interface repository. You can manage the following
interface repository components:

IDL Definitions page 284

Repository Management page 285
283

CHAPTER 22 | Interface Repository
IDL Definitions

Overview itadmin provides a single itadmin idl command, which lets you modify the
contents of an interface repository with new IDL definitions.

idl -R=-v

Synopsis idl -R=-v idl-filename

Description Writes IDL definitions from a single IDL source file into the interface repository.
The -R=-v argument setting causes the interface repository to use verbose mode
to indicate command progress. The idl-filename argument names the IDL file.
You must execute the idl command from the command line.

Examples The following example writes the IDL definitions in the foo.idl file to the
interface repository:

bash $ idl -R=-v foo.idl
 Created Alias MyLong.
 Created Operation op1.
 Created Operation op2.
 Created Interface Foo.

Note: The idl -R=-v command does not require the itadmin command.
 284

Repository Management
Repository Management

Overview The following commands let you browse and modify the contents of an interface
repository:

ifr cd

Synopsis ifr cd [scoped-name | ..]

Description Changes the current container to the specified scoped name. Using the argument
“..” changes the current container to the next outermost container. If no
arguments are given, ifr cd changes the current container to the interface
repository. Use ifr cd in command shell mode only.

Examples The following command changes to the specified scoped name:

Table 19: Interface Repository Commands

ifr cd Changes the current container (in shell mode).

ifr destroy_contents Destroys the contents of the interface
repository.

ifr ifr2idl Outputs the contents of the interface repository
to the specified file.

ifr list Lists the contents of the current container.

ifr pwd Prints the name of the current container (in
shell mode).

ifr remove Removes an IDL definition from the interface
repository.

ifr show Prints specified IDL definitions contained in
the interface repository.

ifr stop Stops the interface repository.

itadmin ifr cd MYCO.PRODUCTION.TOOLS
285

CHAPTER 22 | Interface Repository
ifr destroy_contents

Synopsis ifr destroy_contents

Description Destroys the entire contents of the interface repository, leaving the repository itself
intact.

ifr ifr2idl

Synopsis ifr ifr2idl filename

Description Converts the entire contents of the interface repository to text and writes it to the
specified filename.

ifr list

Synopsis ifr list [-l] [scoped-name | .]

Description Lists the contents of the specified container. If no container name is provided, this
command lists the contents of the current container.

Arguments

ifr pwd

Synopsis ifr pwd

Description Displays the name of the current container. Use ifr pwd in command shell mode
only. Command-line mode does not store persistent state.

-l Lists the contents in long form: absolute name, kind,
repository ID.

scoped-name Specifies the container to list the contents of. The default is
the root name.

. (dot) Specifies the current container.
 286

Repository Management
ifr remove

Synopsis ifr remove scoped-name

Description Removes the scoped name by invoking the function IRObject::destroy() on
the scoped name. The scoped-name argument is the name of the interface
repository entry to be removed, and is relative to the current container.

ifr show

Synopsis ifr show scoped-name

Description Displays the scoped name in IDL format. The scoped-name argument is relative
to the current container.

ifr stop

Synopsis ifr stop

Description Stops the interface repository.
287

CHAPTER 22 | Interface Repository
 288

Location Domain
Overview This section describes itadmin commands that manage a location domain and

its components. Some commands modify static information in the
implementation repository; others affect runtime components.

itadmin commands let you manage the following location domain components:

Locator Daemon page 290

Named Key page 293

Node Daemon page 296

ORB Name page 300

POA page 304

Server Process page 311
289

CHAPTER 23 | Location Domain
Locator Daemon

Overview The following commands manage locator daemons:

Locator daemon name Most commands require you to supply the locator daemon name. The default
name has the following format:

For example:

locator heartbeat_daemons

Synopsis locator heartbeat_daemons locator_name

Description Pings all the of the node daemons known to the specified locator, removing those
that are no longer active.

Table 20: Locator Daemon Commands

locator
heartbeat_daemons

Pings all the of the node daemons known to the
specified locator, removing those that are no
longer active.

locator list Displays all locators in the location domain.

locator show Displays all attributes of the specified locator
daemon.

locator stop Stops the locator daemon.

iona_services.locator_daemon.unqualified-hostname

iona_services.locator_daemon.oregon
 290

Locator Daemon
locator list

Synopsis locator list [-count] [-active]

Description Displays all locators in the location domain.

Arguments

locator show

Synopsis locator show [-ior] locator-name

Description Displays all attributes of the specified locator.

Arguments

Examples The following example shows the attributes displayed for a default locator:

The following example shows the attributes for a locator running on wicklow,
port 3076.

-count Displays the number of locators in the location domain.

-active Displays all active locators in the location domain.

-ior Indicates that the target is an IOR, rather than the name of the Locator.

itadmin locator show iona_services.locator.wicklow
Locator Name: iona_services.locator
 Domain name: enterprise_services
 Host name: wicklow
 Start time: Sun, 05 Aug 2001 07:55:59.5380000 +0500
 Replica type: Master

itadmin locator show -ior corbaloc::1.2@wicklow:3076/IT_Locator
Locator Name: iona_services.locator
 Domain name: enterprise_services
 Host name: wicklow
 Start time: Sun, 05 Aug 2001 07:55:59.5380000 +0500
 Replica type: Master
291

CHAPTER 23 | Location Domain
locator stop

Synopsis locator stop [-alldomain] [-ior] locator-name

Description Stops the specified locator daemon.

Arguments

-alldomain Stops the locator, all registered node daemons, and monitored
processes running in a location domain.

-ior Indicates that the target is an IOR, rather than the name of the
Locator.
 292

Named Key
Named Key

Overview Named keys allow users to specify human readable URLs in place of a server’s
IOR. Named keys work best when used with persistent objects. If the object’s
IOR changes, the named key will need to recreated.

To pass the IOR of a server to a client using a named key, the user will need to
supply an address is the following format:

For example, the corbaloc reference for a replicated locator daemon would look
like:

One instance of the locator daemon is hosted on fox and listens on port 8035.
The other instance is hosted on hound and also listens on port 8035. The named
key associated with this replicated locator daemon’s IOR is hunter.

For more information on corbaloc references read section 13.6.10, “Object
URLs,” of the OMG CORBA specification.

Commands The following commands let you manage named keys:

corbaloc:iiop:ver@host:port/named_key

ver The IIOP version the server uses to communicate.

host The hostname for the machine running the locator daemon.

port The port used by the locator.

named_key The named key created for the server.

corbaloc:iiop:1.2@fox:8035,iiop:1.2@hound:8035/hunter

Table 21: Named Key Commands

named_key create Creates an association between a specified
well-known object key and a specified object
reference.

named_key list Lists all well known object keys that are registered
with the locator daemon.
293

CHAPTER 23 | Location Domain
named_key create

Synopsis named_key create -key object-key object-reference

Description Associates a well-known object key name with an object reference. The -key
argument specifies the human-readable string name of the key to use when
referring to the specified object-reference.

After entering this command, object requests destined for the specified object
key are forwarded to the specified object reference.

Use named_key create in command-line mode only.

Examples The following example shows the named key created for the default naming
service when Orbix is installed:

named_key list

Synopsis named_key list [-count]

Description Lists all well-known object keys registered in the location domain.

Arguments

Examples The following command lists the named keys that are created in a default Orbix
environment:

named_key remove Removes the specified object-key from the location
domain.

named_key show Displays the object reference associated with the
given key.

Table 21: Named Key Commands

itadmin named_key create -key NameService IOR:010000002...003500

-count Displays the number of well-known object keys in the location
domain.

itadmin named_key list
NameService
InterfaceRepository
 294

Named Key
named_key remove

Synopsis named_key remove object-key

Description Removes the specified human-readable object-key from the location domain.

named_key show

Synopsis named_key show object-key

Description Displays the object reference associated with the specified human-readable
object-key.

Examples

itadmin named_key show NameService
Named Object Key : NameService
Associated Object Reference:

IOR01000002f0000004944...00100003500
295

CHAPTER 23 | Location Domain
Node Daemon

Overview The following commands manage node daemons:

Node daemon name Most commands require you to supply the node daemon name. The default name
has the following format:

For example:

Table 22: Node Daemon Commands

node_daemon list Displays all node daemon names implicitly
registered with the locator daemon.

node_daemon remove Removes a node daemon from the location
domain that is created implicitly when the
specified node daemon starts.

node_daemon show Displays all attributes of the specified node
daemon.

.node_daemon stop Stops the node daemon.

add_node_daemon.tcl Adds node daemons to a host.

iona_services.node_daemon.unqualified-hostname

iona_services.node_daemon.oregon
 296

Node Daemon
node_daemon list

Synopsis node_daemon list [-count]

Description Displays all node daemon names implicitly registered with the locator daemon.
Node daemon entries are implicitly created in the implementation repository
(IMR) when the specified node daemon starts.

Arguments

node_daemon remove

Synopsis node_daemon remove node-daemon-name

Description Removes a node daemon entry from the implementation repository. Node daemon
entries are created implicitly when the specified node daemon starts.

Use this command only when the specified node daemon shuts down
prematurely due to a host crash or termination signal.

node_daemon show

Synopsis node_daemon show node-daemon-name

Description Displays the attributes for the specified node daemon.

Examples The following example shows the attributes displayed for the node daemon on
host dali:

-count Displays the total node daemon count.

WARNING:Do not use node_daemon remove on a running node daemon.

itadmin node_daemon show dali
Node Daemon Name: dali
 Host Name: dali
 File Access Permissions:
 User: mstephens
 Group: o2kadm
 Start time: Mon, 06 Aug 2001 06:55:53.4480000 +0500
297

CHAPTER 23 | Location Domain
The default node name is host. To change the default name, modify
plugins:node_daemon:name, using itadmin variable modify. In a file-based
configuration domain, you can also edit this variable in your configuration file

.node_daemon stop

Synopsis node_daemon stop node-daemon-name

Description Stops the specified node daemon. This command also stops all the processes
monitored by that node daemon.

To view all processes monitored by the specified node daemon, use process
list -node_daemon.

add_node_daemon.tcl

Synopsis itadmin add_node_daemon.tcl -number<add> -port <base_port>
-script_dir <script_dir> [-host <cluster>] [-out <IOR_file>]

Arguments

add The number of node daemons to add to the host.

base_port The port number to be used by the first new node daemon. Each
additional node daemon will be assigned a port numbers
incrementing upward by one.

script_dirThe directory where the domain’s start and stop scripts reside. This
is typically, <install_dir>\etc\bin.

cluster Indicates the name of the cluster or federated name of which the
host is associated. This parameter is optional.

IOR_file The full path name of the file store the IORs of the new node
daemons. This parameter is optional and the default location is
<current_working_dir>\node_daemons.ior.
 298

Node Daemon
To add node daemons to a host:

1. Ensure that the domain to which additional node daemons are to be added

is running.

2. Source the <domain>_env file to set the configuration environment

variables.

3. Run the command. It silently configures and deploys the new node

daemons into the running configuration. The domain start and stop scripts

will be modified to include the new node daemons.

4. Once the command finishes, stop the domain’s services using the domain’s

stop script, stop_<domain>_services.

5. Manually modify the value of

initial_references:IT_NodeDaemon:reference for the CORBA

servers you want to use the additional node daemons so that it contains a

reference to the new node daemon.

6. If the servers are started on demand, you must also modify their process

information to reflect the server’s new node daemon.

7. Restart the domain using its start script, start_<domain>_services.
299

CHAPTER 23 | Location Domain
ORB Name

Overview The following commands manage ORB names:

orbname create

Synopsis orbname create [-process process-name] ORB-name

Description Creates the specified ORB name in the location domain. This designates a
server-side ORB that is subject to POA or process activation. In the location
domain, the ORB name is associated with a POA name and is used for process
activation.

Arguments

Examples The following command creates a scoped ORB name:

orbname list

Synopsis orbname list [-active] [-count] [-process process-name]

Table 23: ORB Name Commands

orbname create Creates an ORB name in the location domain.

orbname list Displays all ORB names in the location domain.

orbname modify Modifies the specified ORB name entry either by
associating it with another process entry, or by
disassociating it from any process.

orbname remove Removes an ORB name from the location domain.

orbname show Displays attributes for the specified ORB name.

-process Associates the ORB name with the specified process. The process
name must previously be registered with the locator daemon (see
“process create” on page 311).

itadmin orbname create MutualFunds.Tracking.GroInc.Stocks
 300

ORB Name
Description Lists all ORB names in the location domain.

Arguments

Examples The following example lists all registered ORB names in the location domain:

orbname modify

Synopsis orbname modify [-process process-name] ORB-name

Description Modifies the specified ORB name entry by associating it with the specified process
name. If the process name is omitted, the ORB name is disassociated from any
process.

Arguments

-active Lists only the name in the locator's active ORB table.

-count Lists the total number of ORB names in the location domain.

-process Lists only the ORB name entries that are associated with
process-name.

itadmin orbname list
ifr
naming
production.test.testmgr
production.server

process-name The name of the process to which the ORB name will be
associated.
301

CHAPTER 23 | Location Domain
orbname remove

Synopsis orbname remove [-active|-deep|-force] ORB-name

Description Removes an ORB name from the location domain. You might need to remove an
ORB name, if its application is removed from the environment, or if the ORB
name has changed, or to prevent process activation.

If there is an active ORB entry for the ORB name in the locator's active ORB
table, this is also removed.

An ORB name can be the same as the ORB_id (used to identify an ORB within a
process) and has the following syntax:

Arguments The following arguments are mutually exclusive:

Examples The following example removes the production.test ORB name:

ORBNameSegment.ORBNameSegment.ORBNameSegment

-active Removes only the active ORB entry from the locator's active ORB
table, and does not remove the ORB name.

-deep Removes the ORB name and all POA names in the location domain
that refer to it.

-force Forces ORB name removal, even though some POA names in the
location domain might have references to it.

itadmin orbname list
ifr
naming
production.test.testmgr
production.server

itadmin orbname remove -active production.test.testmgr

itadmin orbname list
ifr
naming
production.server
 302

ORB Name
orbname show

Synopsis orbname show ORB-name

Description Displays all the attributes for the specified ORB name.

Examples The following example displays the attributes for the company.sales ORB name:

itadmin orbname show company.sales
ORB Name: company.sales
Process Name: sales_process
Active: yes
303

CHAPTER 23 | Location Domain
POA

Overview The following commands manage POA entries:

poa create

Synopsis poa create [-orbname ORB-name] [-replicas replica-list]

 [-persistent] [-transient] [-allowdynamic]

 [-allowdynreplicas] [-clear_replicas]

 [-load_balancer lb-name] FQPN

Registers a POA in the location domain. The required FQPN argument is the
fully-qualified POA name. An FQPN has the following syntax:

Arguments

Table 24: POA Commands

poa create Creates a POA name in the location domain.

poa list Displays POA names in the location domain.

poa modify Modifies the indicated POA name as specified.

poa remove Removes a POA name from the location domain.

poa show Displays all data that is entered for POA-name.

FQPNsegment/FQPNsegment/FQPNsegment

-orbname ORB-name Associates an ORB name with the specified POA. This
argument requires an ORB-name argument with the
following syntax:

ORBNameSegment.ORBNameSegment.ORBNameSegment

-orbname cannot be combined with -persistent,
-replicas, or -transient
 304

POA
-replicas
replica-list

Associates the specified POA with multiple ORBs
specified in replica-list, where replica-list is a
comma-delimited list of ORBs:

orb[,orb]...

-replicas cannot be combined with -persistent,
-orbname, or -transient.

-persistent Marks the POA as persistent without associating it with an
ORB.

-persistent cannot be combined with -replicas,
-orbname, or -transient.

-transient Marks the POA as transient.

-transient cannot be combined with -replicas,
-orbname, or -persistent

-allowdynamic Enables dynamic registration of a POA in the location
domain. The default is no dynamic registration. Enabling
dynamic creation allows servers to register information
(although administrators must create the top-level name
manually).

-allowdynreplicas Must be set to yes or no:

• yes: (default) Any ORB creating the POA is

automatically added to the POA's replica list.

• no: Only those ORBs that are configured in the

cluster through replicas are allowed to create the

POA.
305

CHAPTER 23 | Location Domain
Examples The following command creates a transient POA name in the location domain:

The following command creates a persistent POA name in the location domain:

The following command creates a persistent POA name associated with multiple
ORBs:

-load_balancer
lb-name

Determines the load balancer used to select a replica
response to client requests. If a load balancer is not
specified, requests will be routed to the first server that
creates the POA.

The Orbix distribution provides support for the following
algorithms:

• round_robin: the locator uses a round-robin

algorithm to select from the list of active servers—

that is, the first client is sent to the first server, the

second client to the second server, and so on.

• random: the locator randomly selects an active server

to handle the client.

• prefer_local: the locator tries to use a server whose

IP address matches that of the client.

itadmin poa create -transient banking_service

itadmin poa create -orbname banking_services_app
banking_service/account

itadmin poa create -replicas bank_server_1,bank_server_2
-load_balancer round_robin banking_service/account
 306

POA
poa list

Synopsis poa list [-active] [-children FQPN] [-count] [-persistent]
[-transient]

Description Shows all POA names in the location domain.

Arguments

Examples

poa modify

Synopsis poa modify [-orbname ORB-name]

 [-replicas replica-list]

 [-clear_replicas]

 [-augment_replicas replica-list]

 [-remove_replicas replica-list]

 [-allowdynamic]

 [-allowdynreplicas]

 [-load_balancer lb-name] FQPN

-active Lists only entries for POAs that are currently active.
-active and -transient parameters are mutually
exclusive.

-children FQPN Lists only entries for child POAs of the specified parent
POA.

-count Lists the total number of POA names in the location
domain.

-persistent Lists only POA names for persistent POAs.

-transient Lists only POA names for transient POAs. -transient
and -active arguments are mutually exclusive.

itadmin poa list
banking_service
banking_service/account
banking_service/account/checking
banking_service/account/checking/deposit
307

CHAPTER 23 | Location Domain
Description Modifies the specified POA name. The required FQPN argument is the
fully-qualified POA name. A FQPN has the following syntax:

Arguments

FQPNsegment/FQPNsegment/FQPNsegment

-orbname ORB-name Associates the specified ORB name with the specified
POA. This argument requires an ORB-name argument with
the following syntax:

ORBNameSegment.ORBNameSegment.ORBNameSegment

-replicas
replica-list

Associates the specified POA with multiple ORBs
specified in replica-list, where replica-list is a
comma-delimited list of ORBs:

orb[,orb]...

-replicas cannot be combined with -orbname.

-clear_replicas Disassociates the POA from any ORBs.

-augment_replicas
replica-list

Enables you to add replicas without having to redefine the
complete list. replica-list is a comma-delimited list of
additional ORBs:

orb[,orb]...

-remove_replicas
replica-list

Enables you to remove replicas without having to redefine
the complete list. replica-list is a comma-delimited list
of ORBs to be removed:

orb[,orb]...

-allowdynamic Enables dynamic registration of a POA in the location
domain. The default is no dynamic registration. Enabling
dynamic creation allows servers to register information
(although administrators must create the top-level name
manually).

-allowdynreplicas Must be set to yes or no:

• yes: (default) Any ORB creating the POA is

automatically added to the POA's replica list.

• no: Only those ORBs that are explicitly configured in

the cluster through replicas are allowed to create the

POA.
 308

POA
poa remove

Synopsis poa remove [-active|-allactive] FQPN

Description Removes the entry for the specified POA and its descendants from the location
domain. By default, all active entries for the POA and its children are also
removed. Use the -active argument to remove only the active entry for the
specified POA.

Arguments

-load_balancer Determines the load balancer used to select a replica
response to client requests. If a load balancer is not
specified, requests will be routed to the first server that
creates the POA.

The Orbix distribution provides support for the following
algorithms:

• round_robin: the locator uses a round-robin

algorithm to select from the list of active servers—

that is, the first client is sent to the first server, the

second client to the second server, and so on.

• random: the locator randomly selects an active server

to handle the client.

• prefer_local: the locator tries to use a server whose

IP address matches that of the client.

-active Removes currently active entries for the specified POA only.
-active and -allactive arguments are mutually exclusive.

-allactive Removes only active entries for the specified POA and all its
children.
309

CHAPTER 23 | Location Domain
Examples The following example removes the specified POA and its children:

poa show

Synopsis poa show FQPN

Description Displays all the attributes for the specified POA name. A FQPN (fully-qualified
POA name) has the following syntax:

Examples The following example shows the attributes for the IFR POA name:

itadmin
% poa list
banking_service
banking_service/account
banking_service/account/checking
banking_service/account/checking/deposit

% poa remove banking_service/account/checking
% poa list
banking_service
banking_service/account

FQPNsegment/FQPNsegment/FQPNsegment

itadmin poa show IFR
FQPN: IFR
 Active: no
 Lifespan: persistent
 ORB Names:
 iona_services.ifr
 Allow Replicas outside this list: no
 Load Balancing Algorithm: <NONE>
 Allow Dynamic Registration: no
 Parent FQPN: <NONE>
 Children FQPN: <NONE>
 310

Server Process
Server Process

Overview The following commands let you manage server process entries:

process create

Synopsis process create -args "-ORBname orb-name [arg-list]"

 [-description] [-startupmode mode]

 [-node_daemon node-daemon-name] [-pathname pathname]

 [-directory dir] [-env env] [-group group] [-user user]

 [-umask umask] process-name

Description Registers a server process in a location domain’s implementation’s repository.

Table 25: Server Process Commands

process create Creates a server process name in the location domain.

process disable Disables the specified server process for process
activation, using the node daemon.

process enable Enables a target server process for on-demand
activation by the node daemon.

process kill Kills the specified process that was started by its
associated node daemon.

process list Lists names of server processes in the location
domain.

process modify Modifies the process as specified.

process remove Removes a server process name from the location
domain.

process show Displays a complete server process entry.

process start Starts a registered server process.

process stop Stops a registered server process.
311

CHAPTER 23 | Location Domain
Arguments The following arguments apply to all platforms.

-args Arguments supplied to the process when it starts. At a
minimum, supply the -ORBname argument with the name of the
ORB associated with this server process.

Enclose all arguments within quotation marks, and separate
multiple arguments with spaces. For example:

itadmin process create -args "-ORBname
company.production.sver1" my_app

If you are registering a Java server, the argument list generally
includes the class path.

If the process start-up mode is per_client, the locator creates a
new ORB name and a new process entry for each request from
a client to the persistent POA associated with this process. In
this case, the %o and %p strings in the process's arguments are
substituted with the new ORB name and the new process name
respectively. For example:

-args "--ORBname %o"

For more details, see “Per-client activation” on page 54.

-description A brief description of the target process. Enclose the
description in double quotes.

-startupmode Specifies the start-up mode of the target process:

• on_demand (default) starts the process when requested by

a client.

• per_client starts a new process for each client.

• disable disables automatic startup.

-node_daemon The name of the node daemon that starts or modifies this
process.

-pathname The full pathname of the executable to start when the process is
activated.

On Windows platforms, specify a drive letter if not the current
drive of the node daemon. Windows paths can be expressed
with one forward slash separator or two backward slashes.
 312

Server Process
-directory Specifies the working directory to which the target process
writes output files, error logs, and so on.

On UNIX the default current working directory is set to the root
file system. On Windows, the default current drive is the node
daemon’s drive, and the current directory is set to the root
directory.

On Windows, specify a drive letter if the working directory
drive differs from the node daemon’s current drive. Windows
paths can be expressed with one forward slash separator or two
backward slashes.

On UNIX, if the current working directory path does not exist,
it is created automatically with permissions drwx------.

Use this argument in order to:

• Ensure that the server runs in a directory that is in the root

file system. This avoids problems with running servers in

mounted file systems.

• Use relative path names. This means that administrators

can set the working directory for the activated server,

without having to define other paths and directories.

• Ensure that core files cannot overwrite each other if the

server is configured to run somewhere other than the root

directory.

-env Explicitly sets the process environment. This argument takes an
list of space-delimited variable=value pairs, enclosed in
quotation marks:

env "DISPLAY=circus:0.0 CLOWN=Bozo HOME=/tent"

This option overrides any environment variables set by the node
daemon. By default, the server inherits its environment from the
node daemon. If you use this option, you must specify all
environment variables that the server requires.

For more information about environment settings, see “Server
Environment Settings” on page 56.

-group Group name that starts the target process. The default is
nobody. For more information, see page 58.

-user User name that starts the target process. The default is nobody.
For more information, see page 58.
313

CHAPTER 23 | Location Domain
process disable

Synopsis process disable process-name

Description Disables on-demand activation of the specified server process-name.

process enable

Synopsis process enable process-name

Description Enables on-demand activation of the specified server process-name.

process kill

Synopsis process kill [-signal signal_number] [-force] process_name

Description Kills the specified process that was started by its associated node daemon. The
-signal argument specifies the UNIX signal number to kill the process. This
command has the following effects:

This command only works for processes activated by the node daemon. For
manually launched processes, it has no effect.

Arguments

-umask File mode creation mask for the activated target process.
Specify as three octal digits ranging from 000 to 777. The
default is 022 (maximum file permissions: 755, or rwxr-xr-x).

UNIX Sends a signal to the process. The default is 9.

Windows Calls TerminateProcess().

-signal Specifies the UNIX signal number to kill a process. The default
is 9.
 314

Server Process
process list

Synopsis process list [-count] [-node_daemon node-daemon-name] [-active]

Description Lists the target process names of all processes registered in the location domain.
Listing process names is useful for verifying a target process name or its status.

Arguments

Examples The following example lists all registered process names in a location domain

-force Forces the removal of the persistent data for the specified
process from the implementation repository (IMR). This can be
used when a previously active process has died or been killed,
and the persistent data in the IMR was not cleaned up correctly.
If the persistent data held by the locator and node daemon was
not correctly cleaned up, there may be issues when trying to
restart the process.

Note: This command should be used with caution, and only if
the normal cleanup mechanisms have failed for some unknown
reason.

-count Displays the total number of process names in the location
domain.

-node_daemon Lists all monitored processes for a given node daemon. This is
useful if you want to perform the .node_daemon stop
command.

-active Lists all currently active processes.

itadmin process list
if
naming
my_app
315

CHAPTER 23 | Location Domain
process modify

Synopsis process modify -args ’-ORBname orb-name [arg-list]"

 [-description] [-startupmode mode]

 [-node_daemon node-daemon-name]

 [-pathname pathname] [-directory dir]

 [-env env] [-group group] [-user user]

 [-umask umask] process-name

Description Modifies the specified process entry in the implementation repository.

Arguments

-args Arguments supplied to the process when it starts. At a
minimum, supply the -ORBname argument with the name of
the ORB associated with this server process.

Enclose all arguments with quotation marks, and separate
multiple arguments with spaces. For example:

itadmin process create -args "-ORBname
company.production.sver1" my_app

If you are registering a Java server, the argument list
generally includes the class path.

If the start-up mode of the process is per_client, the locator
creates a new ORB name and a new process entry for each
request from a client to the persistent POA associated with
this process. In this case, the %o and %p strings in the process's
arguments are substituted with the new ORB name and the
new process name respectively. For example:

-args "--ORBname %o"

For more details, see “Per-client activation” on page 54.

-description A brief description of the target process.

-startupmode Specifies the start-up mode of the target process:

• on_demand starts the process when requested by a

client.

• per_client starts a new process for each client.

• disable disables automatic startup.

-node_daemon The name of the node daemon that will start or modify this
process.
 316

Server Process
-pathname The complete pathname of the executable that will be started
when the process is activated.

For Windows platforms, specify a drive letter if the
executable is not the same as the current drive of the node
daemon. Windows paths can be expressed with one forward
slash separator or two backward slashes.

-directory Specifies the working directory where the target process
writes output files, error logs, and so on.

On UNIX the default current working directory is set to the
root file system. On Windows, the default current drive is the
node daemon’s drive, and the current directory is set to the
root directory.

On Windows, specify a drive letter if the working directory
drive differs from the node daemon’s current drive. Windows
paths can be expressed with one forward slash separator or
two backward slashes.

On UNIX, if the current working directory path does not
exist, it is created automatically with permissions
drwx------.

Use this argument in order to:

• Ensure that the server runs in a directory that is in the

root file system. This avoids problems with running

servers in mounted file systems.

• Use relative path names. This means that administrators

can set the working directory for the activated server

without having to define other paths and directories.

• Ensure that core files cannot overwrite each other if the

server is configured to run somewhere other than the

root directory.
317

CHAPTER 23 | Location Domain
process remove

Synopsis process remove [-force|-deep|-active] process-name

Description Removes a process implementation repository entry created using process
create. If you omit the -force or -deep switch, POA entries that reference this
process are not removed and an error is reported.

Removing a process also removes the active process entry from the locator's
active process table. The -active argument removes only an active process
entry from the locator's active process table; the process remains registered with
the implementation repository.

Arguments The following arguments are mutually exclusive. Choose one:

-env Explicitly sets the process environment. This argument takes
a list of space-delimited variable=value pairs, enclosed in
quotation marks:

env "DISPLAY=circus:0.0 CLOWN=Bozo HOME=/tent"

This option overrides any environment variables set by the
node daemon. By default, the server inherits its environment
from the node daemon. If you use this option, you must
specify all environment variables that the server requires.

For more information about environment settings, see
“Server Environment Settings” on page 56.

-group Group name that starts the target process. The default is
nobody. For more information, see page 58.

-user User name that starts the target process. The default is
nobody. For more information, see “File access permissions”
on page 58.

-umask File mode creation mask for the activated target process.
Specify as three octal digits, ranging from 000 to 777. The
default is 022 (maximum file permissions: 755, or
rwxr-xr-x).

-active Removes only the active process entry from the locator's active
process table.

-deep Removes the process entry and all object adapter implementation
repository entries that refer to it.
 318

Server Process
Examples The following example removes the my_app server process name:

process show

Synopsis process show process-name

Description Displays all process data entered for the specified process-name. If the process
is active, process show displays the active node daemon name. Viewing a target
process is useful for verifying whether a process name is registered and has the
appropriate settings.

-force Forces process removal even if other implementation repository
entities have references to it.

itadmin process list
ifr
naming
my_app

itadmin process remove -force my_app

itadmin process list
ifr
naming
319

CHAPTER 23 | Location Domain
Examples The following example shows the information registered with the locator daemon
for a target process:

process start

Synopsis process start process-name

Description Starts a target process on the host where the node daemon configured for the
process resides.

itadmin process show my_app
Process Name: my_app
Description: Unknown services provided.
Startup Mode: on_demand
Node Daemon List:
 Node Daemon Name: oregon
 Host Name: oregon
 Max. Retries: 3
 Retry Interval: 2
 Path Name: c:\Program Files\Acme\bin\my_app.exe
 Arguments: -safe -sane
 Environment Variables: Inherited from node daemon
 File Access Permissions:
 User: mstephen
 Group: PC-GROUP
 File Creation Permissions:
 Umask: 022
 Current Directory: /
 Resource Limits: Inherited from node daemon
 320

Server Process
process stop

Synopsis process stop [-signal number] process-name

Arguments Stops the specified process that was started by its associated node daemon.
Depending on the environment used, this command has the following effect:

Arguments

UNIX/C++ Sends a SIGINT (2) signal to the process.

Windows/C++ Calls GenerateConsoleCtrlEvent(CTRL_BREAK_EVENT, 0).

Java Calls System.exit(0).

-signal Specifies the UNIX signal number to stop a process.

WARNING:The signal number is ignored for a Windows NT process.
321

CHAPTER 23 | Location Domain
 322

Mainframe Adapter
Overview The following itadmin commands enable you to use the mapping gateway

interface of the Orbix Mainframe Adapter (MFA).

These commands enable you to list transaction mappings supported by your
CICS or IMS server adapter, add or delete interfaces and operations, and change
transactions that operations are mapped to. A new mapping file can be read, or
the existing mappings can be written to a new file.

Table 26: Mainframe Adapter itadmin Commands

mfa add Adds a new mapping.

mfa change Changes the transaction to which an existing
operation is mapped.

mfa delete Causes the server adapter to stop exporting a
specified operation.

mfa -help Prints a list of the operations that the mfa
plugin supports.

mfa list Prints a list of the mappings (interface,
operation, and name) that the server adapter
supports.

mfa refresh Causes the server adapter to obtain up-to-date
type information for the specified operation.

mfa reload Causes the server adapter to reload the list of
mappings from its mapping file.

mfa resetcon If the IMS server adapter is using OTMA to
communicate with IMS, this command causes
the server adapter to close its connection and to
reconnect.

Has no effect on the CICS server adapter.

mfa resolve Prints a stringified IOR for the object in the
server adapter that supports the specified
interface.
323

CHAPTER 24 | Mainframe Adapter
mfa save Causes the server adapter to save its current
mappings to either its current mapping file or
to a filename that you provide.

mfa stats Causes the server adapter to switch over to a
new mapping file, and to export only the
mappings contained within it.

mfa stats Displays statistical information on the running
server adapter.

mfa stop Instructs the server adapter to shut down.

Note: The add, change, and delete operations only update the CICS or IMS
server adapter internal information. If, however, you use the save operation
the new details are written to the server adapter mapping file.

Table 26: Mainframe Adapter itadmin Commands
 324

mfa add

Synopsis mfa add -interface <name> -operation <name> <mapped value>

Description Adds a new mapping.

Parameters You must supply the name of the interface, name of the operation and the mapped
value that you want added. Module names form part of the interface name and are
separated from the interface name with a / character.

Examples For example, to add a new Simple/SimpleObject mapping, use the following
command:

mfa change

Synopsis mfa change -interface <name> -operation <name> <mapped value>

Description Changes the transaction to which an existing operation is mapped.

Parameters You must supply the name of the interface, name of the operation and the mapped
value that you want added. Module names form part of the interface name and are
separated from the interface name with a / character.

Examples For example, to change the transaction to which the call_me operation is mapped
to SIMPLESV, use the following command:

itadmin mfa add -interface Simple/SimpleObject -operation
call_me SIMPLESV

itadmin mfa change -interface Simple/SimpleObject -operation
call_me SIMPLESV
325

CHAPTER 24 | Mainframe Adapter
mfa delete

Synopsis mfa delete -interface <name> -operation <name>

Description Stops the server adapter exporting the specified operation.

Parameters You must supply the interface name and the operation name that you want the
server adapter to stop exporting. Module names form part of the interface name
and are separated from the interface name with a / character.

Examples For example, to stop the server adapter exporting the call_me operation, use the
following command:

mfa -help

Synopsis mfa -help

Description Lists all the operations provided by the mfa itadmin plugin.

mfa list

Synopsis mfa list

Description Prints a list of the mappings (interface, operation and name) that the adapter server
supports.

Parameters You must supply the interface name. Module names form part of the interface
name and are separated from the interface name with a / character.

itadmin mfa delete -interface Simple/SimpleObject -operation
call_me
 326

mfa refresh

Synopsis mfa refresh [-operation <name>] <interface name>

Description Causes the server adapter to obtain up-to-date type information for the specified
interface.

Parameters You must supply the interface name. Module names form part of the interface
name and are separated from the interface name with a / character. The
-operation <name> argument is optional. If you omit the -operation <name>
argument, all operations mapped in the specified interface are refreshed.

Examples For example, to cause the server adapter to get up-to-date type information for the
Simple interface, use the following command:

mfa reload

Synopsis mfa reload

Description Causes the server adapter to reload the list of mappings from its mapping file.

mfa resetcon

Synopsis mfa resetcon

Description If the IMS server adapter is using OTMA to communicate with IMS, when this
operation is called on the Mapping Gateway interface, the server adapter closes
its connection with OTMA and reconnects. This is done in such a way that it does
not affect any clients connected to the server adapter by briefly queueing client
requests in the server adapter until the connection is re-established. The purpose
of this operation is to free any cached security ACEE's on the OTMA connection.
You should, therefore, use this operation after changes that affect users access to
IMS have been made to user security profiles in the OS/390 security package; for
example, RACF.

itadmin mfa refresh Simple/SimpleObject

Note: This command has no effect on the CICS server adapter.
327

CHAPTER 24 | Mainframe Adapter
mfa resolve

Synopsis mfa resolve <interface name>

Description Prints a stringified IOR for the object in the server adapter that supports the
specified interface. This IOR string can then be given to clients of that interface,
or stored in an Orbix naming service. The IOR produced contains the TCP/IP port
number for the locator if the server adapter is running with direct persistence set
to no. Otherwise, it contains the server adapter’s port number.

Examples For example, to retrieve an IOR for Simple IDL, use the following command:

Once retrieved, the IOR can be distributed to the client and used to invoke on the
target server running inside CICS or IMS.

mfa save

Synopsis mfa save [<mapping_file name>]

Description Causes the server adapter to save its current mappings to either its current mapping
file, or to a file name that you provide.

Parameters The [<mapping_file name>] argument is optional. You need only provide it if
you want the server adapter to save its current mappings to a specified file.

Examples For example, to get the server adapter to save its current mappings to a
myMappings.map file, use the following command:

itadmin mfa resolve Simple/SimpleObject

itadmin mfa save "C:\myMappings.map"
 328

mfa stats

Synopsis mfa stats

Description Displays some statistical information on the running server adapter. Information
includes the current time according to the server adapter, the pending request
queue length, the total number of worker threads, worker threads currently active,
total number of requests processed by the server adapter since startup and the
server adapter startup time.

mfa stop

Synopsis mfa stop

Description Causes the server adapter to shut down.

mfa switch

Synopsis mfa switch <mapping_file name>

Description Causes the server adapter to switch over to a new mapping file, and to export only
the mappings contained in it.

Parameters You must provide the name of the mapping file that you want the server adapter
to switch over to.

Examples For example, to get the server adapter to switch over to a myMappings.map
mapping file, use the following command:

itadmin mfa switch "c:\myMappings.map"
329

CHAPTER 24 | Mainframe Adapter
 330

Naming Service
Overview A subset of itadmin commands let you manage the naming service and its

contents. You can use these commands to create, list, and remove naming
contexts, objects, and object groups from the naming service.

All paths and compound names in the naming service conform to the CORBA
Interoperable Naming Service (INS) string name format.

Naming service commands operate on two components:

Names page 332

Object Groups page 336
331

CHAPTER 25 | Naming Service
Names

Overview The following ns commands let you manage and browse the naming service:

ns bind

Synopsis ns bind {-context | -object} -path path IOR

Description Creates an association between a context or object reference and the
path-specified compound name. Use this command in command-line mode only.

Arguments

Table 27: Naming Service Commands

ns bind Creates an association between a context or object
reference and the specified compound name.

ns list Lists the contents of the specified path.

ns list_servers Lists all active naming servers.

ns newnc Creates a new naming context or object and binds it
to the specified path.

ns remove Removes the specified context or object.

ns resolve Displays a resolved string name form of the IOR for
a specified path.

ns show_server Displays the naming server details for the server
name specified.

ns stop Stops the naming service.

ns unbind Unbinds the path-specified context or object.

-context Binds a context

-object Binds an object.

-path Specifies an INS string name as the path to the new binding.
 332

Names
Examples The following example binds an object to the name james.person,in the
company/staff naming context:

ns list

Synopsis ns list [path]

Description Displays the contents of the specified path. If path resolves to a context, its
contents are displayed. If path resolves to an object, the object is displayed. If no
path is specified, the contents of the initial naming context are displayed. The path
argument takes the form of an INS string name.

The type of the binding is also listed. A binding of type Object names an object.
A binding of type Context names a naming context.

Examples The following command lists the bindings in company/engineering in the
naming service:

ns list_servers

Synopsis ns list_servers [-active]

Description Lists all the active servers.

Arguments

ns newnc

Synopsis ns newnc [path]

itadmin ns bind -o -path company/staff/james.person
"IOR:0000000037e276f47a4b94874c64648e949..."

itadmin ns list company/engineering
paula (Object)
production (Context)
john (Object)
manager (Object)

-active Displays all active naming servers.
333

CHAPTER 25 | Naming Service
Description Creates a naming context or object and binds it to the specified path. If path is
not specified, ns newnc prints the IOR to standard out. The path argument takes
the form of an INS string name.

Examples

ns remove

Synopsis ns remove [-recursive] path

Description Unbinds the specified context or object. If path is a context, the context is also
destroyed. The ns remove command checks whether a context is empty before
destroying it. If the context is empty, ns remove destroys it and then unbinds it.
If the context is not empty and you omit the -recursive argument, ns remove
displays an error message. The required path argument specifies an INS string
name.

Arguments

Examples For example, the following commands destroy the manager bindings:

ns resolve

Synopsis ns resolve path

Description Prints the resolved string form of the IOR for a given path specified by an INS
string name. If a path is not specified, the string form of the root naming context
is displayed. The path argument takes the form of an INS string name.

itadmin
% ns newnc foo.bar/foo3.bar3
% ns list foo.bar
/foo2.bar2 Context
/foo3.bar3 Context

-recursive Recursively destroys and unbinds a context or object if the
context is not empty.

itadmin ns remove company/engineering/manager.person
itadmin ns remove company/engineering/support/manager.person
 334

Names
For example:

Examples The following examples show that the names company/staff/paula.person and
company/engineering/manager.person resolve to the same object:

ns show_server

Synopsis ns show_server server_name

Description Displays the naming server details for the server name specified.

ns stop

Synopsis ns stop server_name

Description Stops the naming service.

ns unbind

Synopsis ns unbind path

Description Unbinds the context or object specified by path. The path argument takes the
form of an INS string name.

itadmin ns resolve company/engineering
"IOR:0003032272d9218a35d9614357f87c93800d7...6f3"

itadmin ns resolve company/staff/paula.person
"IOR:00000000569a2e8034b94874d6583f09e24..."

itadmin ns resolve company/engineering/manager.person
"IOR:00000000569a2e8034b94874d6583f09e24..."
335

CHAPTER 25 | Naming Service
Object Groups

Overview The following nsog commands let you manage object groups:

Table 28: Object Group Commands

nsog add_member Adds the specified member object to the
specified object group.

nsog bind Binds the specified object group to the
specified path.

nsog create Creates the specified object group, with the
specified selection policy.

nsog list Lists all object groups currently existing in
the naming service.

nsog list_members Lists the names of members belonging to
the specified object group.

nsog modify Modifies the selection policy for the
specified object group.

nsog remove Removes the specified object group from
the naming service.

nsog remove_member Removes the specified member object from
the specified object group.

nsog set_member_timeout Sets the load timeout period for a member
of an active object group.

nsog show_member Displays the object reference that
corresponds to the specified member of an
object group.

nsog update_member_load Updates the load value of a member of an
active object group.
 336

Object Groups
nsog add_member

Synopsis nsog add_member -og_name group-name -member_name member-name IOR

Description Adds an object to the specified object group. After being added, the object is
available for selection.

Arguments The following arguments are all required:

Examples The following command adds a member, paula, to the engineers object group
with an object reference of IOR:0001def...:

nsog bind

Synopsis nsog bind -og_name group-name path

Description Binds the specified object group to the specified path in the naming service. When
clients resolve that path, they transparently obtain a member of the specified object
group.

Arguments

Examples The following example binds the engineers object group to the path
company/engineering/engineers.pool:

The company/engineering context must be already created.

-og_name
group-name

Specifies the object group to which the member is added.

-member_name
member-name

Specifies a unique group member name.

IOR Specifies the member’s object reference.

itadmin nsog add_member -og_name engineers -member_name paula
IOR:0001def...

-og_name
group-name

Specifies the name of the object group to bind.

path SPecifies the INS path to bind the object group.

itadmin nsog bind -og_name engineers
company/engineering/engineers.pool
337

CHAPTER 25 | Naming Service
nsog create

Synopsis nsog create -type selection-policy group-name

Description Adds the named object group group-name to the naming service with the specified
selection policy. On creation, an object group contains no member objects.

The naming service directs client requests to object group members according to
the specified selection algorithm. For more about active load balancing, see
“Active load balancing” on page 120.

Arguments

Examples The following example creates an object group, engineers, with a random
selection policy:

nsog list

Synopsis nsog list

Description Displays all object groups that currently exist in the naming service.

Examples

nsog list_members

Synopsis nsog list_members -og_name group-name

-type
selection-policy

Specifies the object group’s selection algorithm with
one of the following values:

rr: round-robin

rand: random

active: active load balancing

group-name Specifies the name of the new object group.

itadmin nsog create -type rand engineers

itadmin nsog list
Random Groups: engineers
 338

Object Groups
Description Lists the members of the specified object group.

Arguments

Examples The following example lists the members of the engineers object group:

nsog modify

Synopsis nsog modify -type selection-policy group-name

Description Changes the selection algorithm for the specified object group. An object group’s
selection algorithm determines how the naming service directs client requests to
object group members (see “Selection algorithms” on page 120).

Arguments

Examples The following command changes the object group engineers’s selection
algorithm:

nsog remove

Synopsis nsog remove group-name

Description Removes the specified object group from the naming service.

-og_name
group-name

Specifies the target object group.

itadmin nsog list_members engineers

-type
selection-po
licy

Specifies the object group’s selection algorithm with one of
the following values:

rr: round-robin

rand: random

active: active load balancing (see “Active load balancing”
on page 120).

group-name Specifies the object group to modify.

itadmin nsog modify -type rr engineers
339

CHAPTER 25 | Naming Service
Examples The following example removes and unbinds the engineers object group:

nsog remove_member

Synopsis nsog remove_member -og_name group-name member-name

Description Removes an object group member. You might wish to remove a member of an
object group if it no longer participates in the group—for example, the service it
references is inaccessible.

Arguments

Examples The following example removes paula from the engineers object group:

nsog set_member_timeout

Synopsis nsog set_member_timeout -og_name group-name -member_name member
timeout-value

Description Specifies how long an object group member is eligible for load updates, in an
object group that has active load balancing. If the member’s load value is not
updated before timeout-value elapses, the member is removed from the object
group’s selection pool.

This command has no effect on round-robin and random groups. However, the
member timeout is stored and put to use if the object group’s selection algorithm
is modified to active load balancing (see “nsog modify” on page 339).

itadmin nsog remove engineers
itadmin unbind company/engineering/engineers.pool

Note: If the object group is bound in a naming graph, you must also unbind
it, as shown in this previous example.

-og_name
group-name

The target object group.

member-name The member to remove from group-name.

itadmin nsog remove_member -og_name engineers paula
 340

Object Groups
Arguments

Examples The following command sets the load timeout period to 30 seconds for member
gate3 in the gateway active object group:

nsog show_member

Synopsis nsog show_member -og_name group-name member-name

Description Displays the object reference that corresponds to the specified member of the
specified object group.

Examples For example, to display the IOR of member paula in the object group engineers:

-og_name
group_name

Specifies the target object group.

-member_name
member

Specifies the target object.

timeout-value Specifies the timeout value in seconds. A value of -1 sets an
infinite timeout value.

nsog set_member_timeout -og_name gateway -member_name gate3 30

itadmin nsog show_member -og_name engineers paula
"IOR:00000000569a2e8034b94874d6583f09e24..."
341

CHAPTER 25 | Naming Service
nsog update_member_load

Synopsis nsog update_member_load -og_name group_name -member_name
member_name load_value

Description Updates the load value for the specified member of an active object group. This
load value is valid for a period of time specified by the timeout assigned to that
member (see “nsog set_member_timeout” on page 340). In an active selection
policy, the naming service selects the group member with the lowest load value.

This command has no effect on round-robin and random object groups. The
naming service makes no interpretation of a member's load value, and only uses
this information to select the lowest loaded member.

Examples The following command updates the load value to 2.0 for member1 in the
webrouter active object group:

nsog update_member_load -og_name webrouter -member_name member1
2.0
 342

Notification
Service

Overview The CORBA notification service enables applications to send events to any
number of objects. For more details, see the Orbix Enterprise Messaging Guide.

Orbix itadmin commands enable you to manage the following components of a
notification service:

Notification Service Management page 344

Event Channel page 348
343

CHAPTER 26 | Notification Service
Notification Service Management
The following commands let you manage an notification service instance.

notify checkpoint

Synopsis notify checkpoint

Description Performs checkpoint operations on the notification service’s Berkeley DB
database.

When using transactions, Berkeley DB maintains transaction log files. Each time
a transaction commits, data is appended to the transaction log files, and the
database files are not modified. Data in transaction log files is then transferred
periodically to the database files. This transfer is called a checkpoint. You can
specify the checkpoint interval with the following configuration variable:

The checkpoint operation performs a Berkeley DB checkpoint. The following
configuration variable determines whether to delete the old log files, or move
them to another directory:

Table 29: Notification Service Commands

notify checkpoint Performs checkpoint operations on the
notification service’s Berkeley DB database.

notify post_backup Performs post-backup operations on the
notification service database.

notify pre_backup Performs pre-backup operations on the
notification service database.

notify show Displays the attributes of the specified
notification service.

notify stop Stops a notification service.

plugins:notify:database:checkpoint_interval

plugins:notify:database:checkpoint_deletes_old_logs
 344

Notification Service Management
The following configuration variable specifies the directory to which log files
should be moved:

notify post_backup

Synopsis notify post_backup

Description Performs post-backup operations on the notification service database.

When backing up data files, it is important that no checkpoint occurs during the
backup. The pre-backup operations force a checkpoint and then suspend
checkpointing. The post-backup operations resume checkpointing.

notify pre_backup

Synopsis notify pre_backup

Description Performs pre-backup operations on the notification service database.

When backing up data files, it is important that no checkpoint occurs during the
backup. The pre-backup operations force a checkpoint and then suspend
checkpointing. The post-backup operations resume checkpointing.

notify show

Synopsis notify show

Description Displays the attributes of the default notification service.

Multiple instances of the notification service are also supported. To show the
attributes of a non-default notification service, specify the ORB name used to
start the notification service (using the -ORBname parameter to itadmin).

Examples The following command shows the attributes of a default notification service:

plugins:notify:database:old_log_dir

itadmin notify show
Notification Service Name: IT_NotifyNamedRoot
 Host Name: podge
 Notification Channel Name List:
 my_channel
345

CHAPTER 26 | Notification Service
The following command shows the attributes of the specified non-default
notification service:

The notification service name must be unique for each notification service
instance. You can specify this is in your configuration, by setting
plugins:poa:root_name. The notification service uses named roots to support
multiple instances.

In the following example, plugins:poa:root_name is set to
IT_NotifyNamedRoot2 in the notify.notify2 configuration scope:

itadmin -ORBname notify.notify2 notify show
Notification Service Name: IT_NotifyNamedRoot2
 Host Name: rodge
 Notification Channel Name List:
 my_channel
 my_channel2

...
event{
 plugins:poa:root_name = "IT_NotifyNamedRoot";
 ...

 notify2
 {
 plugins:poa:root_name = "IT_NotifyNamedRoot2";
 };
}
...
 346

Notification Service Management
notify stop

Synopsis notify stop

Description Stops the default notification service.

Multiple instances of the notification service are also supported. To stop a
non-default notification service, specify the ORB name used to start the
notification service (using the -ORBname parameter to itadmin).

To start the notification service, use the itnotify run command. You can also
use the start_domain-name_services command. For more information, see
“Starting Orbix Services” on page 233.

Examples The following command stops the default notification service:

The following command stops a notification service that was started with an
ORB name of notify.notify2:

itadmin notify stop

itadmin -ORBname notify.notify2 notify stop
347

CHAPTER 26 | Notification Service
Event Channel
The following commands enable you to manage a notification service’s event
channel:

nc create

Synopsis nc create -event_reliability -connection_reliability channel-name

Creates an untyped event channel, in the default notification service, with the
specified name.

Arguments

Table 30: Event Channel Commands

nc create Creates an untyped event channel with the specified
name.

nc list Displays all untyped event channels managed by the
notification service.

nc remove Removes the specified untyped event channel.

nc show Displays all attributes of the specified untyped event
channel.

nc set_qos Specifies qualities of service for the specified event
channel.

-event_reliability Specifies the level of guarantee given on the
delivery of individual events. Possible values are
best_effort or persistent.

-connection_reliability Specifies the level of guarantee given on the
persistence of a clients connection to its
notification channel. Possible values are
best_effort or persistent.
 348

Event Channel
Examples The following command creates an untyped event channel named my_channel:

The following command creates an untyped event channel named my_channel2
in the notify.notify2 notification service:

The event reliability and connection reliability must be set at the time of
creation. When these values are set, they cannot be changed.

nc list

Synopsis nc list -count

Description Displays all the untyped event channels managed by the notification service.

To display the total number of untyped event channels, specify the -count
argument. No value argument is required.

Examples The following command displays the untyped event channels managed by a
default notification service:

itadmin nc create -event_reliability persistent
-connection_reliability persistent my_channel

itadmin -ORBname notify.notify2 nc create -event_reliability
persistent -connection_reliability persistent my_channel2

itadmin nc list
my_channel
mkt_channel
eng_channel
349

CHAPTER 26 | Notification Service
The following command displays the untyped event channels managed by a
non-default notification service:

The following command displays the number of untyped event channels
managed by a notification service:

nc remove

Synopsis nc remove channel-name

Description Removes the specified untyped event channel.

Examples The following command removes an untyped event channel named my_channel:

The following command removes an untyped event channel (from a non-default
notification service) named my_channel2:

nc show

Synopsis nc show channel-name

Description Displays all attributes of the specified untyped event channel.

Examples The following command displays all the attributes of an event channel named
my_channel:

itadmin -ORBname notify.notify2 nc list
my_channel
my_channel2
mkt_channel
eng_channel

itadmin nc list -count
3

itadmin nc remove my_channel

itadmin -ORBname notify.notify2 nc remove my_channel2

itadmin nc show my_channel
Channel Name: my_channel
 Channel ID: 1
 Event Communication: Untyped
 350

Event Channel
The following command displays the attributes of an event channel (from a
non-default notification service) named my_channel2:

nc set_qos

Synopsis nc set_qos

[-priority] [-order_policy] [-discard_policy]
[-start_time_supported] [-stop_time_supported]
[-max_events_per_consumer] [-max_batch_size] [-max_retries]
[-pacing_interval] [-timeout] [-pull_interval] [-retry_timeout]
[-max_retry_timeout] [-request_timeout] [-retry_multiplier]

channel name

Specifies various qualities of service (QoS) for the specified event channel
name. Values of existing QoS properties can be changed, and new QoS
properties can be added. All set_qos arguments are optional.

Arguments

itadmin -ORBname notify.notify2 nc show my_channel2
Channel Name: my_channel2
 Channel ID: 2
 Event Communication: Untyped

Note: For information about notification service configuration variables, see
the section discussing the plugins:notification namespace in the Orbix
Configuration Reference.

-priority Specifies the order that events are delivered to a
consumer whose -order_policy is set to
priority_order. It also affects the order that
events are dequeued for consumers whose
-discard_policy is set to priority_order.

The -priority indicates the relative priority of
the event compared to other events in the
channel. Values can be in the range of -32,767
and 32,767. Higher priority events are delivered
before lower. The default is 0.
351

CHAPTER 26 | Notification Service
-order_policy Specifies the order to queue events for delivery.
Possible values are:

any_order
fifo_order
priority_order
deadline_order

-discard_policy Specifies the order that events are discarded
when -max_events_per_consumer has been
reached. Possible values are:

any_order
fifo_order
priority_order
deadline_order

-start_time_supported Specifies whether start time is supported. This is
an absolute time (e.g., 20/12/04 at 11:15) that
determines the earliest time a channel can deliver
the event. If set to true, the event is held until the
specified time is reached.

-stop_time_supported Specifies whether stop time is supported. This is
an absolute time (e.g., 20/12/04 at 11:15) that
determines the latest time a channel can deliver
the event. If set to true, events later than the
specified stop time are not sent.

-max_events_per_consumer Specifies the maximum number of events that a
channel queues for a consumer before it starts
discarding them. Events are discarded in the
order specified by -discard_policy. A setting
of 0 specifies the channel to queue an unlimited
number of events.

-max_batch_size Specifies the maximum number of structured
events sent in a sequence to consumers.

-max_retries Specifies the maximum number of times that a
proxy push supplier calls push() on its
consumer before it gives up. The default value is
0, which means an infinite number of retries.
 352

Event Channel
-pacing_interval Specifies the maximum amount of time that a
channel is given to assemble structured events in
a sequence, before delivering the sequence to
consumers.

The default value is 0, which specifies an
unlimited time.

-timeout Specifies how long an event remains viable after
the channel receives it. After the -timeout value
expires, the event is discarded. The default is 0,
which means that events have an infinite lifetime.

-pull_interval Specifies how much time elapses between
attempts by a proxy pull consumer to call pull()
or try_pull() on its supplier. The default value
is 1 second.

-retry_timeout Specifies how much time elapses between
attempts by a proxy push supplier to call push()
on its consumer. The default is 1 second.

-max_retry_timeout Specifies the ceiling for -retry_timeout. This
applies to timeouts directly assigned by
developers as well as values reached by the
multiplication of -retry_multiplier
and-retry_timeout. The default value is 60
seconds.

-request_timeout Specifies how much time is permitted to a
channel object to perform an operation on a
client.

If the operation does not return within the
specified limit, the operation throws a
CORBA::TRANSIENT system exception.

-retry_multiplier Specifies the number by which the current value
of -retry_timeout is multiplied to determine
the next -retry_timeout value. The
-retry_multiplier value is applied until either
the push() is successful or -max_retry_timeout
is reached. The default value is 1.0.
353

CHAPTER 26 | Notification Service
Examples The following simple example sets the order and discard policies for an event
channel named my_channel:

The following example sets the order policy and the priority for an event channel
named sales_channel.

The following enables start time for an event channel named
production_channel:

itadmin nc set_qos -order_policy fifo_order -discard_policy
fifo_order my_channel

itadmin nc set_qos -order_policy priority_order sales_channel
itadmin nc set_qos -priority 3 sales_channel

itadmin nc set_qos -start_time_supported true production_channel
 354

Object Transaction
Service

Overview itadmin supports the object transaction service (OTS). Using itadmin
commands in transactional mode ensures consistency and reliability in a
distributed environment.

With itadmin, you can start, commit, rollback, suspend, and resume
transactions. This lets you use other itadmin commands in transactional
mode—for example, process create, or orbname modify.

A service can have several readers but only one writer. A transaction takes the
writer thread. So, if you start a transaction in a service and then do not commit,
roll back, or suspend the transaction, the service blocks until the timeout period
expires (30 seconds). The transaction is then rolled back.

Similarly, if a transaction involving a service and the client (itadmin in this
case) is terminated, the service is unaware of this and must be terminated.

You can manage transactions with the following itadmin commands:

tx begin

Synopsis tx begin

Description Starts a transaction. To use itadmin commands in a transaction, call tx begin
followed by the other itadmin commands you wish to execute (for example,
orbname create).

Table 31: Object Transaction Service Commands

tx begin Starts a transaction.

tx commit Commits a transaction.

tx resume Resumes a transaction.

tx rollback Rolls back a transaction.

tx suspend Suspends a transaction.
355

CHAPTER 27 | Object Transaction Service
You must finalize the execution of these commands, using tx commit, or undo
them, using tx rollback.

Examples The following example starts a transaction, and then creates an ORB name:

tx commit

Synopsis tx commit

Description Commits a transaction. The commands executed after the transaction started using
tx begin are finalized.

Examples The following example commits the transaction:

tx resume

Synopsis tx resume

Description Resumes a suspended transaction. Commands that occur after tx resume are part
of the context of the transaction and are committed or rolled back at the conclusion
of the transaction.

Examples The following example resumes the transaction:

itadmin
% tx begin
% orbname create MutualFunds.Tracking.GroInc.Stocks

itadmin
% tx begin
% orbname create MutualFunds.Tracking.GroInc.Stocks
% tx commit

itadmin
% tx begin
% orbname create MutualFunds.Tracking.GroInc.Stocks
% tx suspend
% tx resume

Note: You can not use more than one transaction at a time. You can not begin
a transaction, suspend it and then begin another transaction. The tx suspend
command should be only used to do non-transactional work before a
subsequent tx resume command.
 356

tx rollback

Synopsis tx rollback

Description Rolls back a transaction. The effects of commands executed after the transaction
started using tx begin are undone.

Examples The following example rolls back the transaction:

tx suspend

Synopsis tx suspend

Description Suspends a transaction. Commands that occur between tx suspend and tx resume
are not part of the transaction, and are not committed or rolled back at the end of
the transaction.

Examples The following example suspends the transaction:

itadmin
% tx begin
% orbname create MutualFunds.Tracking.GroInc.Stocks
% tx rollback

itadmin
% tx begin
% orbname create MutualFunds.Tracking.GroInc.Stocks
% tx suspend
357

CHAPTER 27 | Object Transaction Service
 358

Object Transaction
Service Encina

Overview A subset of itadmin commands support the object transaction service (OTS)
Encina plug-in.

In order to support the two-phase commit (2PC) protocol, an Encina OTS server
needs a medium to log information about transactions—for example, IORs of
the resources participating in a transaction. This medium is the transaction log, a
logical entity consisting of or mirrored by one or more (physical) Encina
volumes. Each volume in turn consists of one or more files or raw disks, which
are said to back up the volume. Each of these volumes, or mirrors, contain the
same information. This ensures recovery in case of failure of a machine that
hosts some or all of a volume’s constituent files/raw disks.

Transaction logs contain metadata, such as number and location of files or raw
disks backing up the physical volumes that mirror the transaction log. Two files
maintain this information:

• Restart file identifies an initialized transaction log.

• Backup restart file provides a backup to the restart file in case it is lost or

corrupted by hardware failure.

For full information about two-phase commit and the Encina plug-in, see the
CORBA OTS Guide.

You can manage the OTS Encina plug-in with the following itadmin
commands:

encinalog add Adds a file/raw disk to the list of files/raw disks backing
up a physical volume of an Encina transaction log.

encinalog
add_mirror

Creates a new physical volume and adds this to the list
of volumes mirroring an Encina transaction log.

encinalog create Creates a file for use in a transaction log—that is, a file
that can be used to back up a physical volume mirroring
an Encina transaction log.

encinalog display Displays information about the physical volumes of an
Encina transaction log.

encinalog expand Expands an Encina transaction log.
359

CHAPTER 28 | Object Transaction Service Encina
encinalog add

Synopsis encinalog add –restart restart-file [-backup backup-file] [-vol
vol-spec] [-silent] file-spec

Description Adds a file/raw disk to the list of files/raw disks that back up the physical volume
vol-spec, thereby increasing the total size of this volume.

If you omit the -vol argument, the file/raw disk is added to the list of files/raw
disks backing up volume logVol_physicalVol1.

Arguments

Examples The following example adds the file ots2.log to the physical volume
logVol_physicalVol2 which mirrors the transaction log identified by restart file
ots.restart and backup restart file ots.backup:

encinalog init Initializes an Encina transaction log, thereby creating
restart and backup restart files.

encinalog
remove_mirror

Removes a physical volume from an Encina transaction
log.

otstm stop Stops the otstm service.

Note: The commands described in this chapter assume the use of the itadmin
command shell unless stated otherwise.

–restart restart-file Identifies the target transaction log.

-backup backup-file Optionally identifies the target transaction log. If no
backup restart file is specified, the default path is
derived from restart-file.bak.

–vol vol-spec Specifies a physical volume other than the default
one.

–silent Suppresses the display of the completion status.

file-spec The path to an existing file (created with encinalog
create) or raw disk.

itadmin encinalog add –restart ots.restart -backup ots.backup –
vol logVol_physicalVol2 ots2.log

Note: Use the encinalog display command to list the named of the
individual physical volumes mirroring the transaction log.
 360

encinalog add_mirror

Synopsis encinalog add_mirror –restart restart-file -backup backup-file
[-silent] file-spec

Description Creates a physical volume backed up by file-spec, and adds it to the list of
physical volumes mirroring the transaction log.

The new physical volume is named logVol_physicalVoln, where n is the
lowest number for which there is no physical volume mirroring the transaction
log.

Arguments

Examples The following example adds a physical volume backed up by file otsmirror.log
to the to the list of volumes mirroring the transaction log identified by restart file
ots.restart and backup restart file ots.backup:

encinalog create

Synopsis encinalog create [-size-type file-size] [-replace] [-silent]
file-spec

Description Creates a file, file-spec, which can be used to back up a physical volume of an
Encina transaction log. The default size is 4 megabytes.

–restart
restart-file

Identifies the target transaction log.

-backup
backup-file

Optionally identifies the target transaction log. If no
backup restart file is specified, the default path is derived
from restart-file.bak.

–silent Suppresses the display of the completion status.

file-spec The path name of a file or raw disk created with encinalog
create.

itadmin encinalog add_mirror –restart ots.restart -backup
ots.backup otsmirror.log
361

CHAPTER 28 | Object Transaction Service Encina
Arguments

Examples The following example creates a file of size 2 megabytes and overwrites an
existing file of the same name:

encinalog display

Synopsis encinalog display –restart restart-file [-backup backup-file]

Description Displays information on the physical volumes mirroring the transaction log.

Arguments

-size-type
file-size

Specifies a non-default size, where -size-type is one of
the following literals:

• -msize specifies the size in megabytes.

• -ksize specifies the size in kilobytes.

• -size specifies the size in bytes.

The minimum size is 1 megabyte; the maximum size is 16
megabytes.

–replace Overwrites an existing file.

–silent Suppresses the display of the completion status.

itadmin encinalog create –msize 2 –replace ots.log

–restart
restart-file

Identifies the target transaction log.

-backup
backup-file

Optionally identifies the target transaction log. If no
backup restart file is specified, the default path is derived
from restart-file.bak.
 362

Examples The following example displays information on the physical volumes of a
transaction log identified by ots.restart and the backup restart file ots.backup:

encinalog expand

Synopsis encinalog expand –restart restart-file [-backup backup-file]
[-silent]

Description Expands the transaction log to its maximum size, which is the minimum of the
individual physical volume sizes. These, in turn, are the accumulated sizes of the
files/raw disks backing up the individual physical volumes. The operation is
necessary after the size of all physical volumes has been increased by adding
files/raw disks to the volumes.

Arguments

Examples The following example expands the logical volume associated with ots.restart
and the backup restart file ots.backup:

itadmin encinalog display –restart ots.restart –backup
ots.backup

%
Logical Volume: logVol
Free Pages: 960
Total Number of Pages: 1016
Physical Volume: logVol_physicalVol1
 File Name: /tmp/ots.log
Physical Volume: logVol_physicalVol2
 File Name: /tmp/otsmirror.log

-restart
restart-file

Identifies the transaction log to expand

-backup
backup-file

Optionally identifies the transaction log to expand. If no
backup restart file is specified, the default path is derived
from restart-file.bak.

–silent Suppresses the display of the completion status.

itadmin encinalog expand –restart ots.restart -mirror ots.backup
363

CHAPTER 28 | Object Transaction Service Encina
encinalog init

Synopsis encinalog init [-replace] [-restart restart-file] [-backup
backup-file] [-silent] file-spec

Description Initializes an Encina transaction log, mirrored by one physical volume
logVol_physicalVol1, and backed up by the file/raw disk file-spec.

The command also creates restart and backup files. You can explicitly name
these files; otherwise, the default restart file and backup restart file names are
file-spec_restart and file-spec_restart.bak, respectively.

Arguments

Examples The following example initializes a transaction log using alternative names for
the restart and backup restart files:

encinalog remove_mirror

Synopsis encinalog remove_mirror –restart restart-file [-backup
backup-file] [-silent] vol-spec

Description Removes the physical volume vol-spec from the list of volumes mirroring the
transaction log.

Arguments

-restart
restart-file

Specifies the restart file name.

-backup
backup-file

Optionally identifies the transaction log to initialize. If no
backup restart file is specified, the default path is derived
from restart-file.bak.

–replace Overwrites the existing restart files.

–silent Suppresses the display of the completion status.

itadmin encinalog init –restart ots.restart –backup ots.backup
ots.log

–restart
restart-file

Identifies the target transaction log.
 364

Examples The following example removes the physical volume logVol_physicalVol1
from the transaction log identified by ots.restart and backup restart file
ots.backup:

otstm stop

Synopsis otstm stop

Description Stops the otstm service.

-backup
backup-file

Optionally identifies the target transaction log. If no
backup restart file is specified, the default path is derived
from restart-file.bak.

–silent Suppresses the display of the completion status.

itadmin encinalog remove_mirror –restart ots.restart -backup
ots.backup logVol_physicalVol1

Note: See encinalog init and encinalog add_mirror for the possible
names of a physical volume, or use the encinalog display command to get
the names of the physical volumes mirroring a transaction log. Because a
transaction log needs at least one mirror, remove_mirror will not allow you to
remove a physical volume if it is the only volume.
365

CHAPTER 28 | Object Transaction Service Encina
 366

Persistent State
Service

Overview A subset of itadmin commands let you manage the persistent state service
(PSS). PSS is a CORBA service for building CORBA servers that access
persistent data and include transactional support. PSS is for use with C++
applications only. For more details about PSS, see the CORBA Programmer’s
Guide.

You can manage a PSS database using the following commands:

Table 32: Persistent State Service Commands

pss_db archive_old_logs Archives old log files for the specified IOR.

pss_db checkpoint Performs checkpoint operations on the
database referenced in the specified file.

pss_db delete_old_logs Deletes old log files for specified IOR.

pss_db list_replicas Lists the replicas for the specified IOR.

pss_db name Returns the name of the object reference to
the database.

pss_db post_backup Performs post-backup operations on the
database referenced in the specified file.

pss_db pre_backup Performs pre-backup operations on the
database referenced in the specified file.

pss_db remove_replica Removes a replica from the database’s
replica group.

pss_db show Returns replication related information for
the specified IOR.
367

CHAPTER 29 | Persistent State Service
pss_db archive_old_logs

Synopsis pss_db archive_old_logs IOR-file

Description Archives old log files for the specified IOR. The IOR-file argument specifies the
full pathname to the file that contains the object reference.

pss_db checkpoint

Synopsis pss_db checkpoint IOR-file

Description Performs checkpoint operations on the database referenced in the file. The
IOR-file argument specifies the full pathname to the file that contains the object
reference.

When using transactions, Berkeley DB maintains transaction log files. Each time
a transaction commits, data is appended to the transaction log files, and the
database files are not modified. Data in transaction log files is then transferred
periodically to the database files. This transfer is called a checkpoint. You can
specify the checkpoint interval, using the following configuration variable:

For example, plugins:pss_db:envs:locator:checkpoint_interval.

The checkpoint operation performs a Berkeley DB checkpoint. The following
configuration variable specifies whether to delete the old log files, or move them
to another directory:

The following configuration variable specifies the directory to which log files
should be moved:

For more details on these configuration variables, see the section discussing the
plugins:pss_db namespace in the Orbix Configuration Reference.

plugins:pss_db:envs:env_name:checkpoint_interval

plugins:pss_db:envs:env_name:checkpoint_deletes_old_logs

plugins:pss_db:envs:env_name:old_log_dir
 368

pss_db delete_old_logs

Synopsis pss_db delete_old_logs IOR-file

Description Deletes old log files for specified IOR. The IOR-file argument specifies the full
pathname to the file that contains the object reference.

pss_db list_replicas

Synopsis pss_db list_replicas [-active] IOR-file

Returns the names of all replicas for the database specified in the file containing
the object reference.

Arguments

pss_db name

Synopsis pss_db name IOR-file

Description Returns the name of the object reference to the persistent state database.

The IOR-file argument specifies the full pathname to the file that contains the
object reference.

pss_db post_backup

Synopsis pss_db post_backup IOR-file

Description Performs post-backup operations on the database referenced in the file. The
IOR-file argument specifies the full pathname to the file that contains the object
reference.

When backing up data files, it is important that no checkpoint occurs during the
backup. The pre-backup operations force a checkpoint and then suspend
checkpointing. The post-backup operations resume checkpointing.

-active List only active replicas.

IOR-file Specifies the full pathname to file that contains the
object reference.
369

CHAPTER 29 | Persistent State Service
pss_db pre_backup

Synopsis pss_db pre_backup IOR-file

Description Performs pre-backup operations on the database referenced in the file. The
IOR-file argument specifies the full pathname to file that contains the object
reference.

When backing up data files, it is important that no checkpoint occurs during the
backup. The pre-backup operations force a checkpoint and then suspend
checkpointing. The post-backup operations resume checkpointing.

pss_db remove_replica

Synopsis pss_db remove_replica [-iorfile IOR-file] [-envhome env-dir]
replica-name

Description Removes the replica specified replica-name from the replica group. The
–iorfile or envhome argument must be specified, depending on whether the
service containing the database is running or not.

The remove_replica command should only be used when removing a service’s
replica. See the Orbix Deployment Guide for more details.

Arguments

-iorfile Specifies the path to the file containing the databases
reference. This argument is used to remove a replica
when the replica group is running.

-envhome Specifies the path to the database root directory. This
argument is used when the service containing the
database is not running. It only removes the replica
from the local database.
 370

pss_db show

Synopsis pss_db show IOR-file

Description Returns information about the specified database. This includes:

• database name

• whether the database is replicated

• database replica name

• whether the database is a master or slave.

The IOR-file argument specifies the full pathname to file that contains the
object reference.
371

CHAPTER 29 | Persistent State Service
 372

Security Service
Overview The itadmin tool supports security commands to administer the key distribution

management (KDM) database, which is part of SSL/TLS for CORBA. The
KDM is a security feature that enables automatic activation of secure Orbix
servers—see the CORBA SSL/TLS Guide for details.

Key distribution management Key distribution management (KDM) is a mechanism that distributes pass
phrases to a secure server during automatic activation. Without the KDM, it is
impossible to activate a secure server automatically because pass phrases must
be supplied manually when the server starts up.

The KDM also protects a server’s implementation repository (IMR) entry from
unauthorized tampering. Whenever a process IMR entry is updated, the KDM
requires a security checksum to be generated (using the checksum create
command). The process IMR entry is the part of an IMR record that stores the
server executable location. Before activating a secure server, the KDM checks
that the stored checksum matches the current checksum for the process IMR
entry.

The KDM framework consists of the following elements:

• A KDM server provides security attributes to the locator on request.

• A KDM database is used by the KDM server to store security attributes.

• A KDM administration plug-in provides the security commands described

in this section and communicates directly with the KDM server. SSL/TLS

installs a secure KDM administration plug-in the itadmin utility.

KDM database The KDM database stores the following kinds of security attributes:

• Pass phrases are associated with an ORB name and stored as a security

attribute in the KDM database. The pass phrases are supplied to a secure

server during automatic activation.

• Checksums are associated with a process name and stored as a security

attribute in the KDM database. The checksum is tested against the current

process IMR record before a server is automatically activated.

The process IMR record used by the checksum algorithm includes all of the
fields associated with the itadmin process command except the process
description.
373

CHAPTER 30 | Security Service
The security commands are mainly concerned with managing the entries in the
KDM database—creating, updating, and removing security attributes.

All of these commands require a secure connection to the KDM database. It is
therefore necessary to log on to the KDM server, using admin_logon, prior to
issuing any of the security commands.

Commands itadmin commands let you manage the following security service activities:

Logging On page 375

Managing Checksum Entries page 376

Managing Pass Phrases page 379
 374

Logging On
Logging On

Overview You log on to the KDM server with the itadmin admin_logon command.

admin_logon

Synopsis admin_logon login [-password pass-phrase] identity

Description Logs an administrator on to the KDM server. This command must be issued prior
to any of the other secure commands (kdm_adm or checksum).

Arguments

Examples To log on to the KDM server, before issuing any secure commands, enter the
following at the command line:

The Enter password prompt lets you enter the pass phrase for the
my_admin_id.p12 certificate without echoing to the screen.

login This argument specifies the name of an X.509 certificate that
identifies the administrator.

The identity parameter specifies the name of a PKCS#12
certificate file, identity.p12, located in the directory specified
by the itadmin_x509_cert_root configuration variable.

-password This argument lets you specify the pass phrase for the
identity.p12 certificate on the same line as the command,
instead of being prompted for it.

This argument is provided for scripting in a development
environment and should not be used in a live system.

itadmin
% admin_logon login my_admin_id
Please enter password for identity my_admin_id:
%
375

CHAPTER 30 | Security Service
Managing Checksum Entries

Overview The following itadmin commands let you manage checksum entries:

checksum confirm

Synopsis checksum confirm -process process-name

Description Confirms that the process IMR entry for process-name has not been modified
since the checksum entry in the KDM database was created.

Arguments

Table 33: Checksum Entry Commands

checksum confirm Confirms that the process IMR entry for the
specified process has not been changed since the
checksum was created.

checksum create Creates a checksum for the specified process IMR
entry and store the checksum in the KDM
database.

checksum list Lists process names that have security checksum
information in the KDM database.

checksum remove Removes a security checksum entry from the
KDM database.

-process Specifies the name, process-name, of a process IMR entry.
 376

Managing Checksum Entries
Examples To confirm that the checksum previously stored for the my_process_name process
agrees with the checksum for the current my_process_name IMR entry, enter the
following at the command line:

checksum create

Synopsis checksum create -process process-name

Description Creates a checksum entry in the KDM database for the process process-name.
The checksum must be recreated whenever the process IMR entry for the specified
process is modified.

Arguments

Examples To create a checksum entry in the KDM database for my_process_name, enter the
following at the command line:

checksum list

Synopsis checksum list [-count]

Description Lists the names of all processes that have checksum entries in the KDM database.

Arguments

itadmin
% admin_logon login my_admin_id
Please enter password for identity my_admin_id:
% checksum confirm -process my_process_name
The checksum is valid.
%

-process Specifies the name, process-name, of a process IMR entry.

itadmin
% admin_logon login my_admin_id
Please enter password for identity my_admin_id:
% checksum create -process my_process_name
%

-count Returns a count of the number of checksum entries, instead of listing
them.
377

CHAPTER 30 | Security Service
Examples To list all process names with checksum entries in the KDM database, enter the
following at the command line:

checksum new_pw

Synopsis checksum new_pw

Description Password protects the checksum entry in the KDM database.

checksum remove

Synopsis checksum remove -process process-name

Description Removes the checksum entry associated with the process-name process name
from the KDM database.

Arguments

Examples To remove the checksum entry associated with my_process_name from the KDM
database, enter the following at the command line:

itadmin
% admin_logon login my_admin_id
Please enter password for identity my_admin_id:
% checksum list
simple_process
%

-process Specifies the name, process-name, of a process IMR entry.

itadmin
% admin_logon login my_admin_id
Please enter password for identity my_admin_id:
% checksum remove -process my_process_name
Security checksum associated with process my_process_name has

been removed.
%
 378

Managing Pass Phrases
Managing Pass Phrases

Overview The following itadmin commands let you manage pass phrases:

kdm_adm change_pw

Synopsis kdm_adm change_pw

Description Changes the pass phrase used to encrypt the KDM database. The command
prompts you for the current pass phrase and then prompts you twice for the new
pass phrase (to ensure it was entered correctly).

Table 34: Pass Phrase Commands

kdm_adm change_pw Changes the pass phrase for encrypting the KDM
database.

kdm_adm confirm Confirms that the pass phrase associated with the
specified ORB name has the value you expect.

kdm_adm create Creates an entry in the KDM database that
associates a pass phrase with the specified ORB
name.

kdm_adm list Lists the ORB names that have pass phrase
information in the KDM database.

kdm_adm new_pw Creates a new pass phrase for encrypting the KDM
database.

kdm_adm remove Removes an entry from the KDM database
associated with the specified ORB name.
379

CHAPTER 30 | Security Service
Examples To change the KDM database pass phrase, enter the following at the command
line:

After entering the admin_logon command, you are prompted for the
my_admin_id.p12 certificate pass phrase.

After entering the kdm_adm change_pw command, you are prompted three times
for pass phrases. In response to the first Enter password prompt, enter the
current KDM database pass phrase. In response to the second and third Enter
password prompts, enter the new KDM database pass phrase.

kdm_adm confirm

Synopsis kdm_adm confirm -orbname ORB-name

Description Confirms the pass phrase associated with the specified ORB name, ORB-name. The
command prompts you for the pass phrase associated with ORB-name and tells you
whether or not you entered the correct pass phrase.

Examples To confirm the pass phrase associated with the my_orb_name ORB name, enter
the following at the command line:

kdm_adm create

Synopsis kdm_adm create -orbname ORB-name [-password pass-phrase]

itadmin
% admin_logon login my_admin_id
Please enter password for identity my_admin_id:
% kdm_adm change_pw
Please enter the current KDM password:
Please enter the new KDM password:
Please confirm the new KDM password:
%

itadmin
% admin_logon login my_admin_id
Please enter password for identity my_admin_id:
% kdm_adm confirm -orbname my_orb_name
Please enter password for orb my_orb_name :
The password is correct.
%
 380

Managing Pass Phrases
Description Creates an entry in the KDM database to associate a pass phrase with the specified
ORB name, ORB-name. Just one pass phrase can be associated with an ORB name.
If the -password argument is omitted, the command prompts you for a pass phrase
which is not echoed to the screen.

Arguments

Examples To associate a pass phrase with the my_orb_name ORB name and store the
association in the KDM database, enter the following at the command line:

kdm_adm list

Synopsis kdm_adm list [-count]

Lists all ORB names that have associated pass phrases stored in the KDM
database.

Arguments

-orbname Specifies the ORB name, ORB-name, with which the new pass
phrase is associated.

-password Lets you specify a new pass phrase. This argument is provided for
scripting purposes during development and should not be used in
a live system.

itadmin
% admin_logon login my_admin_id
Please enter password for identity my_admin_id:
% kdm_adm create -orbname my_orb_name
Please enter password for orb my_orb_name :
%

-count Returns a count of the number of ORB name entries instead of
listing them.

381

CHAPTER 30 | Security Service
Examples To list all ORB names that have associated pass phrases, enter the following at
the command line:

kdm_adm new_pw

Synopsis kdm_adm new_pw

Description Creates a new pass phrase for encrypting the KDM database.

kdm_adm remove

Synopsis kdm_adm remove -orbname ORB-name

Description Removes the security entry in the KDM database associated with the ORB-name
ORB name.

Examples To remove the security entry associated with the my_orb_name ORB name, enter
the following at the command line:

itadmin
% admin_logon login my_admin_id
Please enter password for identity my_admin_id:
% kdm_adm list
my_orb_name
%

itadmin
% admin_logon login my_admin_id
Please enter password for identity my_admin_id:
% kdm_adm remove -orbname my_orb_name
Security attributes associated with orbname my_orb_name have been

removed.
%
 382

Trading Service
Overview itadmin provides a set of commands for managing the following trading service

components:

Trading Service Administrative Settings page 384

Federation Links page 389

Regular Offers page 393

Proxy Offers page 395

Type Repository page 397
383

CHAPTER 31 | Trading Service
Trading Service Administrative Settings

Overview The following commands let you mange trading service administrative settings:

trd_admin get

Synopsis trd_admin get arg

Description Displays administrative settings.

Arguments Supply one of the following arguments:

Table 35: Trading Service Commands

trd_admin get Displays administrative settings.

trd_admin set Modifies administrative settings.

trd_admin stop Stops the trading service.

-request_id_stem Displays the request id stem assigned to this
instance of the trading service.

-def_search_card Displays the default search cardinality-the default
upper bound of offers to be searched.

-max_search_card Displays the maximum search
cardinality-maximum upper bound of offers to be
searched.

-def_match_card Displays the default match cardinality-default upper
bound of matched offers to be ordered.

-max_match_card Displays the maximum match cardinality-maximum
upper bound of matched offers to be ordered.

-def_return_card Displays the default return cardinality-default upper
bound of ordered offers to be returned.

-max_return_card Displays the maximum return cardinality-maximum
upper bound of ordered offers to be returned.
 384

Trading Service Administrative Settings
Examples

-max_list Displays the upper bound on the size of any list
returned by the trading service, namely the returned
offers parameter in query, and the next_n operations
in OfferIterator and OfferIdIterator.

-modifiable_properties Displays whether the trading service supports
properties modification.

-dynamic_properties Displays whether the trading service supports
dynamic properties.

-proxy_offers Displays whether the trading service supports proxy
offers.

-def_hop_count Displays the default hop count-default upper bound
of depth of links to be traversed in a federated
query.

-max_hop_count Displays the maximum hop count-maximum upper
bound of depth of links to be traversed in a
federated query.

-def_follow_policy Displays the default federation link follow policy.

-max_follow_policy Displays the limiting link follow policy for all links
of the trader. This setting overrides both link and
importer policies.

-max_link_follow_policy Displays the most permissive follow policy allowed
when creating new links.

-type_repos Displays the stringified IOR of the service type type
repository.

>itadmin trd_admin get -type_repos
IOR:0000000000000036494….

> itadmin trd_admin get -proxy_offers
yes

>itadmin trd_admin get -def_follow_policy
always

>itadmin trd_admin get -max_list
2147483647
385

CHAPTER 31 | Trading Service
trd_admin set

Synopsis trd_admin set arg

Description Modifies administrative settings.

Arguments Supply one of the following arguments:

-request_id_stem id_stem Modifies the request id stem of this instance
of the trading service.

-def_search_card value Modifies the default search cardinality-the
default upper bound of offers to be searched.
The value must be a positive integer.

-max_search_card value Modifies the maximum search
cardinality-the maximum upper bound of
offers to be searched. The value must be a
positive integer.

-def_match_card value Modifies the default match cardinality-the
default upper bound of matched offers to be
ordered. The value must be a positive
integer.

-max_match_card value Modifies the maximum match
cardinality-the maximum upper bound of
matched offers to be ordered. The value
must be a positive integer.

-def_return_card value Modifies the default return cardinality-the
default upper bound of ordered offers to be
returned. The value must be a positive
integer.

-max_return_card value Modifies the maximum return
cardinality-the maximum upper bound of
ordered offers to be returned. The value
must be a positive integer.

-max_list value Modifies the upper bound on the size of any
list returned by the trading service, namely
the returned offers parameter in query, and
the next_n operations in OfferIterator
and OfferIdIterator. The value must be a
positive integer.
 386

Trading Service Administrative Settings
-modifiable_properties
boolean-value

Specifies whether to enable support of
modifiable properties.

-dynamic_properties
boolean-value

Specifies whether to enable support of
dynamic properties.

-proxy_offers boolean-value Specifies whether to enable support of proxy
offers.

-def_hop_count value Sets the default hop count-the default upper
bound of depth of links to be traversed in a
federated query. The value must be a
positive integer.

-max_hop_count Sets the maximum hop count-the maximum
upper bound of depth of links to be traversed
in a federated query.

-def_follow_policy policy Sets the default federation link follow policy
with one of the following values:

• local_only

• if_no_local

• always

-max_follow_policy policy Sets the limiting link follow policy for all
links of the trader. This setting overrides
both link and importer policies. Supply one
of the following values:

• local_only

• if_no_local

• always

-max_link_follow_policy
policy

Specifies the most permissive follow policy
allowed when creating new links with one of
the following values:

• local_only

• if_no_local

• always

-type_repos IOR Sets the IOR, in string format, of the service
type repository.
387

CHAPTER 31 | Trading Service
Examples

trd_admin stop

Stops the trading service.

>itadmin trd_admin set -def_search_card 12
def_search_card set to 12
 388

Federation Links
Federation Links

Overview The following commands let you mange federation links:

trd_link create

Synopsis trd_link create

 -target IOR

 -def_pass_on_follow_rule rule

 -limiting_follow_rule rule

 link-name

Description Creates a federation link.

Arguments

Table 36: Federation Link Commands

trd_link create Creates a federation link.

trd_link list Lists all federation links.

trd_link modify Modifies a federation link.

trd_link remove Removes a federation link.

trd_link show Displays the details on a federation link.

-target IOR Defines the trading service instance the link
points to. An IOR to a CosTrading::Lookup
interface is expected.

-def_pass_on_follow_rule
rule

Defines default link-follow behavior to pass
on for a particular link, if an importer does not
specify its link_follow_rule; it must not
exceed limiting_follow_rule. Supply one
of the following values for rule:

• local_only

• if_no_local

• always
389

CHAPTER 31 | Trading Service
Examples

trd_link list

Synopsis trd_link list

Description Lists names of all federation links in the trading service instance.

Examples

trd_link modify

Synopsis trd_link modify

 -def_pass_on_follow_rule rule

 -limiting_follow_rule rule

 link-name

Description Modifies an existing federation link.

-limiting_follow_rule rule Defines limiting link follow behavior for a
particular link. Supply one of the following
values for rule:

• local_only

• if_no_local

• always

 link-name A string that uniquely identifies the new link
in the trading service instance.

>itadmin trd_link create -target ’cat ./trader_B_lookup.ior’
-def_pass_on_follow_rule always -limiting_follow_rule always
Link_to_Trader_B

created link Link_to_Trader_B

>itadmin trd_link list
Link_to_Trader_B
 390

Federation Links
Arguments

Examples

trd_link remove

Synopsis trd_link remove link-name

Description Removes the specified federation link.

Arguments

Examples

-def_pass_on_follow_rule
rule

Defines the default link-follow behavior to be
passed on for a particular link if an importer does
not specify its link_follow_rule; it must not
exceed limiting_follow_rule. Supply one of
the following values for rule:

• local_only

• if_no_local

• always

-limiting_follow_rule ruleDefines limiting link follow behavior for a
particular link. Supply one of the following
values for rule:

• local_only

• if_no_local

• always

link-name A string that uniquely identifies the new link in
the trading service instance.

>itadmin trd_link modify -def_pass_on_follow_rule if_no_local
-limiting_follow_rule always Link_to_Trader_B

modified link Link_to_Trader_B

link-name A string that uniquely identifies the link to be removed from the
trading service instance.

>itadmin trd_link remove Link_to_Trader_B
removed link Link_to_Trader_B
391

CHAPTER 31 | Trading Service
trd_link show

Synopsis trd_link show link-name

Description Displays details on the specified federation link.

Arguments

Examples

link-name A string that uniquely identifies the link whose details are to be
displayed.

>itadmin trd_link show Link_to_Trader_B
name:
 Link_to_Trader_B
def_pass_on_follow_rule:
 if_no_local
limiting_follow_rule:
 always
target:
limiting_follow_rule:
 IOR:000000000000002249…
 392

Regular Offers
Regular Offers

Overview The following commands let you mange regular offers:

trd_offer list

Synopsis trd_offer list

Description Lists the offer IDs of all regular (non-proxy) offers.

Examples

trd_offer remove

Synopsis trd_offer remove offer-id

Description Removes (withdraws) the specified offer.

Arguments

Examples

Table 37: Regular Offer Commands

trd_offer list Lists all regular offers.

trd_offer remove Removes a regular offer.

trd_offer show Displays details on a regular offer.

>itadmin trd_offer list
Printer~1~0

offer-id Offer ID of an existing offer.

>itadmin trd_offer remove Printer~1~0
offer Printer~1~0 removed
393

CHAPTER 31 | Trading Service
trd_offer show

Synopsis trd_offer show offer-id

Description Displays details on the specified offer.

Arguments

Examples

offer-id Offer ID of an existing offer.

>itadmin trd_offer show Printer~1~0
offer id:
 Printer~1~0
object:
 IOR:00000000000000224…
service type:
 Printer
properties:
 boolean color TRUE
 long dpi 3200
 short ppm 30
 394

Proxy Offers
Proxy Offers

Overview The following commands let you manage proxy offers:

trd_proxy list

Synopsis trd_proxy list

Description Lists the offer IDs of all proxy offers

Examples

trd_proxy remove

Synopsis trd_proxy remove offer-id

Description Removes (withdraws) the specified proxy offer.

Arguments

Examples

Table 38: Proxy Offer Commands

trd_proxy list Lists all proxy offers.

trd_proxy remove Removes a proxy offer.

trd_proxy show Displays details on a proxy offer.

>itadmin trd_proxy list
Printer~2~0

offer-id Offer ID of an existing proxy offer

>itadmin trd_proxy remove Printer~2~0
proxy offer Printer~2~0 removed
395

CHAPTER 31 | Trading Service
trd_proxy show

Parameters trd_proxy show offer-id

Description Displays details on the specified proxy offer.

Arguments

Examples

offer-id Offer ID of an existing proxy offer

>itadmin trd_proxy show Printer~2~0
offer id:
 Printer~2~0
service type:
 Printer
target:
 IOR:00000000000000224…
if match all:
 TRUE
constraint recipe:
 ppm > 20
policies to pass on:
 boolean bool_policy FALSE
properties:
 boolean color FALSE
 long dpi 3200
 short ppm 12
 396

Type Repository
Type Repository

Overview They following commands effect the server type repository:

trd_type list

Synopsis trd_type list

Description Lists all service types in the service type repository.

Examples

trd_type mask

Synopsis trd_type mask service-type-name

Description Masks a service type.

Examples

Table 39: Server Type Repository Commands

trd_type list Lists all service types in the service type
repository.

trd_type mask Masks a service type.

trd_type remove Removes a service type from the service type
repository.

trd_type show Displays details on a given service type.

trd_type unmask Unmasks a service type.

>itadmin trd_type list
Printer

>itadmin trd_type mask Printer
service type Printer masked
397

CHAPTER 31 | Trading Service
trd_type remove

Synopsis trd_type remove service-type-name

Description Removes a service type from the service type repository.

Examples

trd_type show

Synopsis trd_type show service-type-name

Description Displays details on a given service type.

Examples

>itadmin trd_type remove Printer
service type Printer removed

>itadmin trd_type show Printer
name:
 Printer
interface:
 IDL:PrintServer:1.0
masked:
 no
incarnation number:
 {0,1}
super types:
 none
properties:
 mandatory read-only boolean color
 mandatory long dpi
 mandatory read-only short ppm
 398

Type Repository
trd_type unmask

Synopsis trd_type unmask service-type-name

Description Unmasks a service type.

Examples

>itadmin trd_type unmask Printer
service type Printer unmasked
399

CHAPTER 31 | Trading Service
 400

Part V
Appendices

In this part This part contains the following:

Orbix Windows Services page 403

Run Control Scripts for Unix Platforms page 415

ORB Initialization Settings page 435

Development Environment Variables page 441

Debugging IOR Data page 213

APPENDIX A

Orbix Windows
Services
During configuration, Orbix services are installed as Windows
services that start up automatically at system startup.

This appendix describes how you can manage Orbix services as Windows
services, and offers solution to typical problems. These services include:

• Configuration repository

• Locator daemon

• Node daemon

• Naming service

• Interface repository

• Event and notification services

• JMS

• Object transaction service

In this appendix This appendix discusses the following topics:

Managing Orbix Services on Windows page 405

Orbix Windows Service Commands page 406

Orbix Windows Service Accounts page 409

Running Orbix Windows Services page 411
403

APPENDIX A | Orbix Windows Services
Logging Orbix Windows Services page 412

Uninstalling Orbix Windows Services page 413

Troubleshooting Orbix/Windows Services page 414
 404

Managing Orbix Services on Windows
Managing Orbix Services on Windows

Overview If you choose to install Orbix services as Windows services, you can use the
control panel’s Services dialog to start, pause, continue, and stop any of the
installed services. Equivalent functionality is provided through Orbix commands
(see “Orbix Windows Service Commands”).

Identifying Orbix services as
Windows services

Each installed Orbix service executable name has a Windows service name. This
is a unique identifier for each service used by the Windows Service control
manager. By default, a Windows service name has the following format:

Each service can create sub-keys under the following registry key:

A Windows service name is used internally and must be unique. A Windows
display name is shown in the Services dialog only. By default, the Windows
service name and display name are the same.

Note: To install and uninstall Orbix services as Windows services, you must
execute the install and uninstall commands.

IT ORB-name domain-name

HKEY_LOCAL_MACHINE/SYSTEM/CurrentControlSet/Services
405

APPENDIX A | Orbix Windows Services
Orbix Windows Service Commands

Overview You can manage Orbix services from the command-line. Service commands
have the following syntax:

ORB-arguments can be any of the ORB initialization parameters that are
documented in Appendix C on page 435. In general, ORB-arguments is required
only for the configuration repository. Because the configuration repository has
its own domain, any service command that applies to the configuration
repository must supply the -ORBname argument.

For example, the following command installs the configuration repository as a
Windows service in the cfr-AcmeProducts configuration repository domain:

You can execute the following commands on any Orbix Windows service:

continue
help
install
pause
prepare
query
run
stop
uninstall

continue

Synopsis executable-name continue

Description Resumes execution of the background service from its paused state.

exec-name [ORB-arguments] [exec-arguments] Win-service-command
[Win-service-arguments]

itconfig_rep -ORBname iona_services.config_rep -ORBdomain_name
cfr-AcmeProducts install
 406

Orbix Windows Service Commands
help

Synopsis executable-name help

Description Prints a description message for the specified service.

install

Synopsis executable-name install [-description=service-description]

Description Installs the specified Orbix service as a Windows service. Because the Orbix
configuration tool automatically installs the desired services as Windows services,
you should rarely need to use this command to install a service manually.

The Windows service control manager starts installed Orbix services
automatically during system startup. The install command specifies a
Windows 32-bit service that runs in its own process.

Use the -description argument to change a display name for each service used
by the Windows Service control manager. This leaves unchanged the internal
service name used in the Windows registry key.

pause

Synopsis executable-name pause

Description Pauses execution of the specified background service.

prepare

Synopsis executable-name prepare [-publish_to_file=name]

Description Prepares the specified Orbix service for running, creating databases and initial
object references. Use the -publish_to_file argument to write object references
to a specified file; otherwise, stdout is used. This command is implicitly
performed when Orbix is configured.

Note: In general, it is recommended that you always install Orbix Windows
services by running the Orbix configuration tool.
407

APPENDIX A | Orbix Windows Services
query

Synopsis executable-name query

Description For the specified service, outputs current status, configuration parameters, and
dependencies on other services.

run

Synopsis executable-name run -service

Description Runs the specified Orbix service as a Windows service. The specified service must
already be installed.

stop

Synopsis executable-name stop

Description Stops execution of the specified service. You must stop a service before you can
uninstall it.

uninstall

Synopsis executable-name uninstall -ORBname name

Description Uninstalls the specified Orbix service as a Windows service. You must specify an
ORB name. See “Uninstalling Orbix Windows Services” on page 413 for more
details.
 408

Orbix Windows Service Accounts
Orbix Windows Service Accounts

Overview By default, Orbix installs services on Windows under a LocalSystem account
that has no interaction with the desktop. You can change the
domain/user/passwd with the Windows service control manager.

To change this password, use the Services options in the Windows Control
Panel. You can also enable interaction with the desktop for a LocalSystem
account only. Figure 16 shows details displayed for the locator service on
Windows 2000.

Figure 16: Locator Service Details
409

APPENDIX A | Orbix Windows Services
Setting service security A service running under the LocalSystem account has no user account
information associated with it. As a result, the service might have limited access
to network resources. If this is not desired, use the Services options available in
the Windows Control Panel to change the user/group and passwd for the
service.

Orbix node daemons run under the LocalSystem account and activate other
processes as the LocalSystem account. If this is not desired, use the Services
options available in the Windows Control Panel to change the user/group and
passwd for this service.
 410

Running Orbix Windows Services
Running Orbix Windows Services

Overview Before you can run an Orbix Windows service, the specified service must
already be installed. You must supply the -service parameter to run as a
Windows service.

When Orbix Windows services are installed, the order in which they must be run
depends on whether your configuration domain is configuration
repository-based or file-based.

Running in a configuration
repository domain

When running Orbix Windows services in a configuration repository domain,
run the services in the following order:

1. Configuration repository. For example:

2. Locator daemon. For example:

3. Any other persistent service—interface repository, node daemon, naming

service. For example:

Running in a file-based domain When running Orbix services as Windows services in a file-based domain, run
Orbix services in the following order:

1. Locator daemon. For example:

2. Any other persistent service—interface repository, node daemon, naming

service. For example:

itconfig_rep -ORBdomain_name cfr-AcmeProducts run -service

itlocator run -service

itifr run -service

itlocator run -service

itnode_daemon run -service
411

APPENDIX A | Orbix Windows Services
Logging Orbix Windows Services

Overview In a configuration domain, logging is written to a file located in the same
directory as the services, by default. By default, logging shows all informational
messages, warnings, errors, and fatal errors.

The default log file name has the following format:

For example, the locator’s log file might have the following name:

Setting user-defined logging To change the logging output stream to a different file, set the following
configuration variable in the configuration scope for each service:

To add this variable to your configuration domain, use the itadmin variable
create command. You must set this variable in the configuration scope for each
service; for example, in the locator configuration scope:

If your configuration domain is file based, you can manually add variables to
your configuration file in the appropriate configuration scope. For example, to
set logging for the node daemon, add the following in the node_daemon scope:

See Chapter 13 on page 187 for more information on Orbix logging.

service-name.log.timestamp

locator.log.18012000

plugins:local_log_stream:filename=filename

itadmin variable create -scope iona_services.locator
 -type string -value "c:temp\it_locator.log"
 plugins:local_log_stream:filename

plugins:local_log_stream:filename="c:\temp\it_node_daemon.log";
 412

Uninstalling Orbix Windows Services
Uninstalling Orbix Windows Services

Overview To cleanly remove any version of Orbix from your system, you should first
uninstall all Orbix services from the Windows host.

In a configuration repository-based domain, complete the following procedure:

1. Stop and uninstall all services while the configuration repository and

locator daemon are still running.

2. Stop and uninstall the locator daemon.

3. Stop and uninstall the configuration repository.

Commands for uninstalling
services

The following series of commands show how you should stop and uninstall
Orbix Windows services:

itnode_daemon -ORBname iona_services.node_daemon.test stop
itnode_daemon -ORBname iona_services.node_daemon.test uninstall

itifr -ORBname iona_services.ifr.test stop
itifr -ORBname iona_services.ifr.test uninstall

itnaming -ORBname iona_services.naming.test stop
itnaming -ORBname iona_services.naming.test uninstall

itevent -ORBname iona_services.event.test stop
itevent -ORBname iona_services.event.test uninstall

itlocator -ORBname iona_services.locator.test stop
itlocator -ORBname iona_services.locator.test uninstall

itconfig_rep -ORBname iona_services.config_rep.test
-ORBdomain_name cfr-AcmeProducts stop

itconfig_rep -ORBname iona_services.config_rep.test
-ORBdomain_name cfr-AcmeProducts uninstall
413

APPENDIX A | Orbix Windows Services
Troubleshooting Orbix/Windows Services
The following sections describe several common problems related to
Orbix/Windows services, and how to resolve them.

Handling log-off events in
activated servers

A node daemon that is installed as a Windows service continues to run in the
background after users log off. It also activates server processes under the
LocalSystem account. In order to shield these processes from log-off events
(CTRL_LOGOFF_EVENT), the activated processes must have control handlers;
otherwise, the logoff causes them to shut down.

Configuring for slow service
startup

Occasionally, Windows services might require extra time to restart after system
reboot. This might be due to a slow system, or to recovery of service-related
databases.

Two changes in the configuration can help resolve this problem:

• Reduce the value set for max_binding_iterations, as in the following

example:

• Increase the wait time for a service’s pending operations (for example,

start, pause, resume). The default wait time for all services is set to 900

seconds (15 minutes):

Reset this variable for services, as necessary. For example, the following

variable increases the locator’s wait time to 20 minutes:

policies:binding_establishment:max_binding_iterations = "1";

plugins:plugin-name:nt_service_pending_op_wait = "900";

plugins:locator:nt_service_pending_op_wait = "1200";
 414

APPENDIX B

Run Control Scripts
for Unix Platforms
Orbix services can be configured to start when the operating system
enters the default run level and to shut down when the operating
system leaves the default run level.

Overview This appendix provides details on how Orbix registers its services with the
operating system for automated startup and shutdown. Procedures for disabling,
enabling and removal of automated startup registration are also covered.

Sometimes UNIX system administrators choose to customize run levels and run
control scripts of their operating systems. If your run levels are customized, the
details in this appendix will help you manually register your Orbix services for
automated startup and shutdown or to use run control scripts generated by Orbix
as a starting point for customization.

You must have root privileges to perform tasks described in this appendix.

Note: For reliable startup and shutdown of Orbix services, it is recommended
that you install the Java runtime, the Orbix components, the license file, the
domain configuration files, the service databases and the log files on locally
mounted filesystems.
415

APPENDIX B | Run Control Scripts for Unix Platforms
Operating Systems Follow the links below for details on your operating system:

For additional details on run levels and run control scripts refer to your operating
system’s documentation.

Solaris page 417

AIX page 420

HP-UX page 424

IRIX page 428

Red Hat Linux page 431
 416

Solaris
Solaris

Run level The default run level is 3; this includes all services from run level 2.

Run control scripts For a domain, <domain>, the following run control scripts are generated:

/etc/init.d/itsvs_<domain> contains the following:

/etc/init.d/itsvs_<domain>
/etc/rc0.d/K27itsvs_<domain> -> /etc/init.d/itsvs_<domain>
/etc/rc1.d/K27itsvs_<domain> -> /etc/init.d/itsvs_<domain>
/etc/rc2.d/S97itsvs_<domain> -> /etc/init.d/itsvs_<domain>
/etc/rcS.d/K27itsvs_<domain> -> /etc/init.d/itsvs_<domain>

#!/bin/sh
#
Copyright (c) 1993-2002 IONA Technologies PLC.
All Rights Reserved.
#
<deployment-specific portion>
DOMAIN=boot
DOMAINS_ETC_DIR=/etc/opt/iona
DOMAINS_VAR_DIR=/var/opt/iona
</deployment-specific portion>

DOMAIN_START_SCRIPT=
${DOMAINS_ETC_DIR}/bin/tart_${DOMAIN}_services

DOMAIN_STOP_SCRIPT=
${DOMAINS_ETC_DIR}/bin/stop_${DOMAIN}_services
417

APPENDIX B | Run Control Scripts for Unix Platforms
Disabling automatic services To temporarily disable automatic startup and shutdown for domain <domain>:

1. Stop <domain> services by running

rval=0
case "$1" in
 'start')
if [-x ${DOMAIN_START_SCRIPT}]; then
 echo "Starting IONA Orbix services for domain ${DOMAIN}"
 ${DOMAIN_START_SCRIPT}
else
echo “ERROR: Failed to start IONA Orbix services for domain

${DOMAIN} - \
 domain start script ${DOMAIN_START_SCRIPT} does not

exist or is not executable"
rval=1
fi
 ;;
 'stop')

if [-x ${DOMAIN_STOP_SCRIPT}]; then
 echo "Stopping IONA Orbix services for domain ${DOMAIN}"
 ${DOMAIN_STOP_SCRIPT}
else
echo “ERROR: Failed to stop IONA Orbix services for domain

${DOMAIN} - \
 domain stop script ${DOMAIN_STOP_SCRIPT} does not exist

or is not executable"
rval=1
fi
 ;;
 *)
 echo "IONA Orbix run control script for domain ${DOMAIN}”
echo “Usage: $0 { start | stop }"
 rval=1
 ;;
 esac
 exit $rval

> stop_<domain>_services
 418

Solaris
2. Rename the following symbolic links by prepending a _ to their names:

Enabling automatic service To enable automatic startup and shutdown for <domain>:

1. Rename the following symbolic links by removing leading _ from their

names:

2. Start domain services by running:

Unregistering automatic services To unregister automatic startup and shutdown for <domain>:

1. Stop <domain> services by running:

2. Remove the following files:

/etc/rc0.d/K27itsvs_<domain>
/etc/rc1.d/K27itsvs_<domain>
/etc/rc2.d/S97itsvs_<domain>
/etc/rcS.d/K27itsvs_<domain>

/etc/rc0.d/_K27itsvs_<domain>
/etc/rc1.d/_K27itsvs_<domain>
/etc/rc2.d/_S97itsvs_<domain>
/etc/rcS.d/_K27itsvs_<domain>

> start_<domain>_services

> stop_<domain>_services

/etc/rc0.d/K27itsvs_<domain>
/etc/rc1.d/K27itsvs_<domain>
/etc/rc2.d/S97itsvs_<domain>
/etc/rcS.d/K27itsvs_<domain>
/etc/init.d/itsvs_<domain>
419

APPENDIX B | Run Control Scripts for Unix Platforms
AIX

Run level The default run level is 2.

Actions For a domain named <domain>, Orbix performs the following actions:

• Makes an entry in /etc/inittab with /usr/sbin/mkitab:

• Creates a run control script /etc/rc.itsvs_<domain> that contains the

following:

itsvs_<domain>:2:wait:/etc/rc.itsvs_<domain> start
>/dev/console 2>&1 # IONA Orbix services for domain
<domain>

#!/bin/sh
#
Copyright (c) 1993-2002 IONA Technologies PLC.
All Rights Reserved.
#

<deployment-specific portion>
DOMAIN=boot
DOMAINS_ETC_DIR=/etc/opt/iona
DOMAINS_VAR_DIR=/var/opt/iona
</deployment-specific portion>

#
DOMAIN_START_SCRIPT=

${DOMAINS_ETC_DIR}/bin/start_${DOMAIN}_services
DOMAIN_STOP_SCRIPT=

${DOMAINS_ETC_DIR}/bin/stop_${DOMAIN}_services
 420

AIX
rval=0
case "$1" in
'start')
if [-x ${DOMAIN_START_SCRIPT}] ; then
echo "Starting IONA Orbix services for domain ${DOMAIN}"
${DOMAIN_START_SCRIPT}
else
echo " ERROR: Failed to start IONA Orbix services for domain

${DOMAIN} - \
 domain start script

${DOMAIN_START_SCRIPT} does not exist or is not
executable"

rval=1
fi
;;
'stop')
if [-x ${DOMAIN_STOP_SCRIPT}] ; then
echo "Stopping IONA Orbix services for domain <domain>"
${DOMAIN_STOP_SCRIPT}
else
echo "Can not stop IONA Orbix servies for domain <domain> -

\
 domain stop script ${DOMAIN_STOP_SCRIPT} does not

exist or is not executable"
rval=1
fi
;;
*)
echo "IONA Orbix run control script for domain ${DOMAIN}”
echo "Usage: $0 { start | stop }"
rval=1
;;
esac
exit $rval
421

APPENDIX B | Run Control Scripts for Unix Platforms
• Creates /etc/rc.shutdown if it does not exist, and adds the following

code:

Disable automatic services To temporarily disable automatic startup and shutdown for <domain>:

1. Stop domain services by running

2. Comment out the itsvs_<domain> entry in /etc/inittab.

3. Comment out the code between <IONA Orbix <domain> > and </IONA

Orbix <domain> > tags in /etc/rc.shutdown.

Enable automatic services To enable automatic startup and shutdown for <domain>:

1. Uncomment the code between <IONA Orbix <domain> > and </IONA

Orbix <domain> > tags in /etc/rc.shutdown.

2. Uncomment the itsvs_<domain> entry in /etc/inittab.

3. Start domain services by running

#<IONA Orbix <domain> >
if [-x /etc/rc.itsvs_<domain>]; then
/etc/rc.itsvs_<domain> stop
else
echo "ERROR: Failed to stop IONA Orbix services for domain

<domain> - \
 /etc/rc.itsvs_<domain> does not exist or is not

executable"
fi
#</IONA Orbix <domain> >

exit 0

Note: /etc/rc.shutdown must return 0, otherwise the AIX shutdown
sequence is interrupted.

> stop_<domain>_services

> start_<domain>_services
 422

AIX
Unregister automatic services To unregister automatic startup and shutdown for <domain>:

1. Remove the itsvs_<domain> entry from /etc/inittab by running

2. If <domain> is the only Orbix domain registered for automatic startup and

shutdown, remove file /etc/rc.shutdown. Otherwise, remove the code

between <IONA Orbix <domain> > and </IONA Orbix <domain> > tags

in/etc/rc.shutdown.

3. Remove /etc/rc.itsvs_<domain>.

> rmitab itsvs_<domain>
423

APPENDIX B | Run Control Scripts for Unix Platforms
HP-UX

Run level The default run level is 3. See the output of run control scripts for the last boot of
the machine in /etc/rc.log. The previous boot log is in /etc/rc.log.old.

Run control scripts For a domain, <domain>, the following files are generated:

The contents of /sbin/init.d/itsvs_<domain> is as follows:

/sbin/rc2.d/K270itsvs_<domain> -> /sbin/init.d/itsvs_<domain>
/sbin/rc3.d/S970itsvs_<domain> -> /sbin/init.d/itsvs_<domain>
/sbin/init.d/itsvs_<domain>
/etc/rc.config.d/itsvs_<domain>

#!/bin/sh
#
Copyright (c) 1993-2002 IONA Technologies PLC.
All Rights Reserved
#
<deployment-specific portion>
DOMAIN=boot
DOMAINS_ETC_DIR=/etc/opt/iona
DOMAINS_VAR_DIR=/var/opt/iona
</deployment-specific portion>

DOMAIN_START_SCRIPT=
${DOMAINS_ETC_DIR}/bin/start_${DOMAIN}_services

DOMAIN_STOP_SCRIPT=
${DOMAINS_ETC_DIR}/bin/stop_${DOMAIN}_services

if [-r /etc/rc.config.d/itsvs_ ${DOMAIN}] ;
 then . /etc/rc.config.d/itsvs_${DOMAIN}
else
 echo "WARNING: /etc/rc.config.d/itsvs_${DOMAIN} configuration

file is missing or is not readable"
fi
 424

HP-UX
rval=0

case "$1" in
 'start_msg')
 echo "Starting IONA Orbix services for domain ${DOMAIN}"
 ;;

 ’stop_msg')
 echo "Stopping IONA Orbix services for domain ${DOMAIN}"
 ;;

 'start')
if [“ITSVS_${DOMAIN}” -eq 1]; then
 if [-x ${DOMAIN_START_SCRIPT}]; then
 echo "Starting IONA Orbix services for domain ${DOMAIN}"
 ${DOMAIN_START_SCRIPT}
 rval=4
 else
 echo "ERROR: Failed to start IONA Orbix services for domain

${DOMAIN} - \ domain start script ${DOMAIN_START_SCRIPT} does
not exist or is not executable"

 rval=1
 fi
else
 # domain is disabled
 rval=2
fi
 ;;

 'stop')
if [“ITSVS_${DOMAIN}” -eq 1]; then
 if [-x ${DOMAIN_STOP_SCRIPT}]; then
 echo "Stopping Orbix services for the ${DOMAIN} domain"

${DOMAIN_STOP_SCRIPT}
 rval=4
 else
 echo "ERROR: Failed to start IONA Orbix services for domain

${DOMAIN} - \ domain stop script ${DOMAIN_STOP_SCRIPT} does
not exist or is not executable"

 rval=1
 fi
else
 # domain is disabled
 rval=2
fi
 ;;
425

APPENDIX B | Run Control Scripts for Unix Platforms
/etc/rc.config.d/itsvs_<domain> contains the following:

Disable automatic services To temporarily disable automatic startup and shutdown for <domain>:

1. Stop domain services by running

2. Set ITSVS_<DOMAIN> to 0 in /etc/rc.config.d/itsvs_<domain>.

Enable automatic services To enable automatic startup and shutdown for <domain>:

1. Set ITSVS_<DOMAIN> to 1 in /etc/rc.config.d/itsvs_<domain>.

2. Start domain services by running

*)
 echo "IONA Orbix run control script for domain ${DOMAIN}”
 echo “Usage: $0 { start | stop }"
 rval=1
 ;;
 esac
 exit $rval

#
Copyright (c) 1993-2002 IONA Technologies PLC.
All Rights Reserved
#
IONA Orbix services, domain <domain> configuration
ITSVS_<DOMAIN>: set to 1 to enable Orbix services for

domain <domain>

ITSVS_<DOMAIN>=1

> stop_<domain>_services

> start_<domain>_services
 426

HP-UX
Unregister automatic services To unregister automatic startup and shutdown for <domain>:

1. Stop domain services by running

2. Remove the following files:

> stop_<domain>_services

/sbin/rc2.d/K270itsvs_<domain>
/sbin/rc3.d/S970itsvs_<domain>
/sbin/init.d/itsvs_<domain>
/etc/rc.config.d/itsvs_<domain>
427

APPENDIX B | Run Control Scripts for Unix Platforms
IRIX

Run level The default run level is 2.

Run control scripts For a domain, <domain>, the following files are generated:

/etc/init.d/itsvs_<domain> contains the following:

/etc/init.d/itsvs_<domain>
/etc/r0.d/K27itsvs_<domain> -> /etc/init.d/itsvs_<domain>
/etc/r2.d/S97itsvs_<domain> -> /etc/init.d/itsvs_<domain>
/var/config/itsvs_<domain>

#!/bin/sh
#
Copyright (c) 1993-2002 IONA Technologies PLC.
All Rights Reserved.
#

<deployment-specific portion>
DOMAIN=boot
DOMAINS_ETC_DIR=/etc/opt/iona
DOMAINS_VAR_DIR=/var/opt/iona
</deployment-specific portion>

DOMAIN_START_SCRIPT=
${DOMAINS_ETC_DIR}/bin/start_${DOMAIN}_services

DOMAIN_STOP_SCRIPT=
${DOMAINS_ETC_DIR}/bin/stop_${DOMAIN}_services

rval=0

if [! /sbin/chkconfig itsvs_${DOMAIN}]; then
domain is disabled
 exit $rval
fi
 428

IRIX
Disable automatic services To temporarily disable automatic startup and shutdown for <domain>:

1. Stop domain services by running

2. Run

case "$1" in
 'start')
if [-x ${DOMAIN_START_SCRIPT}]; then
 echo "Starting Orbix services for domain ${DOMAIN}"
 ${DOMAIN_START_SCRIPT}
else
 echo "ERROR: Failed to start IONA Orbix services for domain

${DOMAIN} - "
 echo "domain start script ${DOMAIN_START_SCRIPT} does not exist

or is not executable"
 rval=1
fi
;;

 'stop')
if [-x ${DOMAIN_STOP_SCRIPT}] ; then
 echo "Stopping IONA Orbix services for domain ${DOMAIN}"
 ${DOMAIN_STOP_SCRIPT}
else
 echo "ERROR: Failed to stop IONA Orbix servies for domain

${DOMAIN} - "
 echo "domain stop script ${DOMAIN_STOP_SCRIPT} does not exist

or is not executable"
 rval=1
fi
;;

 *)
 echo "IONA Orbix run control script for domain ${DOMAIN}”
 echo “Usage: $0 { start | stop }"
 rval=1
 ;;
 esac
 exit $rval

> stop_<domain>_services

> /sbin/chkconfig itsvs_<domain> off
429

APPENDIX B | Run Control Scripts for Unix Platforms
Enable automatic services To enable automatic startup and shutdown for <domain>:

1. Run

2. Start domain services by running

Unregister automatic services To unregister automatic startup and shutdown for <domain>:

1. Stop domain services by running

2. Remove the following files:

> /sbin/chkconfig itsvs_<domain> on

> start_<domain>_services

> stop_<domain>_services

/var/config/itsvs_<domain>
/etc/r0.d/K27itsvs_<domain>
/etc/r2.d/S97itsvs_<domain>
/etc/init.d/itsvs_<domain>
 430

Red Hat Linux
Red Hat Linux

Run level The default run level is either 3 or 5. Orbix determines the default run level.

Run control scripts Run control scripts generated by the Orbix configuration tool are compatible
with chkconfig(8) and linuxconf.

For a domain named <domain>, the following files are generated by the Orbix
configuration tool:

/etc/rc.d/init.d/itsvs_<domain> contains the following:

/etc/rc0.d/K27itsvs_<domain> -> /etc/rc.d/init.d/itsvs_<domain>
/etc/rc1.d/K27itsvs_<domain> -> /etc/rc.d/init.d/itsvs_<domain>
/etc/rc2.d/K27itsvs_<domain> -> /etc/rc.d/init.d/itsvs_<domain>
/etc/rc[3|5].d/S97itsvs_<domain> ->

/etc/rc.d/init.d/itsvs_<domain>
/etc/rc6.d/K27itsvs_<domain> -> /etc/rc.d/init.d/itsvs_<domain>

#!/bin/bash

#
Copyright (c) 1993-2002 IONA Technologies PLC.
All Rights Reserved
#
chkconfig: [3|5] 27 97
description: IONA Orbix services, domain <domain>
#

<deployment-specific portion>
DOMAIN=boot
DOMAINS_ETC_DIR=/etc/opt/iona
DOMAINS_VAR_DIR=/var/opt/iona
</deployment-specific portion>

DOMAIN_START_SCRIPT=
${DOMAINS_ETC_DIR}/bin/start_${DOMAIN}_services

DOMAIN_STOP_SCRIPT=
${DOMAINS_ETC_DIR}/bin/stop_${DOMAIN}_services

DOMAIN_LOCK_FILE=/var/lock/subsys/itsvs_${DOMAIN}
431

APPENDIX B | Run Control Scripts for Unix Platforms
rval=0
case "$1" in
 'start')
check if the domain is running
[-f "${DOMAIN_LOCK_FILE}"] && exit $rval
if [-x ${DOMAIN_START_SCRIPT}]; then
 echo "Starting IONA Orbix services for domain <domain>"
 ${DOMAIN_START_SCRIPT}
 touch ${DOMAIN_LOCK_FILE}
else
 echo "ERROR: Failed to start IONA Orbix services for domain

<domain> - "
 echo "domain start script ${DOMAIN_START_SCRIPT} does not exist

or is not executable"
 rval=1
fi
 ;;

 'stop')
check if the domain is not running
[! -f "${DOMAIN_LOCK_FILE}"] && exit $rval
if [-x ${DOMAIN_STOP_SCRIPT}]; then
 echo "Stopping IONA Orbix services for domain <domain>"
 ${DOMAIN_STOP_SCRIPT}
else
 echo "ERROR: Failed to stop IONA Orbix services for domain

<domain> - "
 echo "domain stop script ${DOMAIN_STOP_SCRIPT} does not exist

or is not executable"
fi
rm -f ${DOMAIN_LOCK_FILE}
 ;;

*)
 echo "IONA Orbix run control script for domain ${DOMAIN}”
 echo “Usage: $0 { start | stop }"
 rval=1
;;
 esac
 exit $rval
 432

Red Hat Linux
Disable automatic services To temporarily disable automatic startup and shutdown for <domain>:

1. Stop domain services by running

2. Run

Enable automatic services To enable automatic startup and shutdown for <domain>:

1. Run

2. Start domain services by running

Unregister automatic services To unregister automatic startup and shutdown for <domain>:

1. Stop domain services by running

2. Run

3. Remove the following files:

> stop_<domain>_services

> chkconfig –del itsvs_<domain>

> chkconfig –add itsvs_<domain>

> start_<domain>_services

> stop_<domain>_services

> chkconfig –del itsvs_<domain>

/etc/rc.d/init.d/itsvs_<domain>
/var/lock/subsys/itsvs_<domain>
433

APPENDIX B | Run Control Scripts for Unix Platforms
 434

APPENDIX C

ORB Initialization
Settings
Initialization settings can be set for an ORB through command-line
arguments, which are passed to the initializing ORB.

In most cases, equivalent environment variables or Java properties are available.
In the absence of command-line arguments, these are used by the initializing
ORB.

Initialization parameters pertain to the immediate requirements of the initializing
ORB; for example, the name of its configuration domain and location, and the
naming scope in which to find the ORB’s configuration. The ORB’s behavior is
further defined by its configuration, as set by configuration variables. For more
information about these, refer to the Configuration Reference.

Precedence of settings Most initialization parameters can be set in one of the following ways, in
descending order of precedence:

• Command-line arguments.

• Environment variables or Java properties.

• Default values.

Java properties Java properties can be set for an initializing ORB in two ways, in descending
order of precedence:
435

APPENDIX C | ORB Initialization Settings
• Set as system properties. For example:

• Set in the properties file iona.properties.

An initializing ORB searches for the properties file in the following locations, in
this order:

1. Current directory.

2. Directories on the classpath.

3. Jars on the classpath.

Domains directory

The directory that contains the target configuration file; set with:

This directory typically stores a file for each accessible configuration domain
name.

For example:

Nothing else should be stored in this directory. This enables tools to easily
enumerate the list of available domains.

The configuration domains directory defaults to ORBconfig_dir/domains on
UNIX, and ORBconfig_dir\domains on Windows.

Domain name

The name of the configuration domain to use; set with:

java -DORBdomain_name finance corporate.finance_app

Command-line argument: -ORBconfig_domains_dir

Environment variable: IT_CONFIG_DOMAINS_DIR

Java property: ORBconfig_domains_dir

my_app -ORBconfig_domains_dir c:\iona\etc\domains

Command-line argument: -ORBdomain_name

Environment variable: IT_DOMAIN_NAME

Java property: ORBdomain_name
 436

For example:

Configuration directory

The root configuration directory; set with:

Specifies the root configuration directory. The default root configuration
directory is /etc/opt/iona on UNIX, and product-dir\etc on Windows.

ORB name

The ORB name, which specifies the configuration scope for this ORB; set with:

The following application takes it configuration from the my_orb scope:

You can also use the -ORBname parameter to specify non-default configuration
scopes for Orbix services. For example:

my_app -ORBdomain_name my_domain

Command-line argument: -ORBconfig_dir

Environment variable: IT_CONFIG_DIR

Java property: ORBconfig_dir

Command-line argument only: -ORBname

my_app -ORBname my_orb

itconfig_rep -ORBname config_rep.config2 run
437

APPENDIX C | ORB Initialization Settings
Initial reference

An initial object reference for a service using the interoperable naming service
format; set with:

For example:

Default initial reference

An initial object reference to a service if none is explicitly specified by
-ORBInitRef; set with:.

This parameter takes a URL, which forms a new URL identifying an initial
object reference. For example:

A call to resolve_initial_references("NotificationService") with the
following argument results in a new URL:

The new URL has a '/' character and a stringified object key appended.

Command-line argument only: -ORBInitRef

-ORBInitRef NameService=IOR00023445AB...
-ORBInitRef

NotificationService=corbaloc:555objs.com/NotificationService

-ORBInitRef TradingService=corbaname:555objs.com/Dev/Trader

Command-line argument only: -ORBDefaultInitRef

my_app -ORBDefaultInitRef corbaloc:555objs.com

corbaloc:555.objs.com/NotificationService
 438

Product directory

The directory in which IONA products are installed, set with:

For example:

This directory is read-only and location independent. This enables it to be shared
across systems even if mounted at different locations.

The directory in which products are installed defaults to /opt/iona on UNIX,
and %SystemDrive%\Program Files\IONA on Windows.

Command-line argument: -ORBproduct_dir

Environment variable: IT_PRODUCT_DIR

Java property: ORBproduct_dir

my_app -ORBproduct_dir c:\iona
439

APPENDIX C | ORB Initialization Settings
 440

APPENDIX D

Development
Environment
Variables
For C++ installations, you can specify several environment
variables that pertain to development environments only.

IT_IDL_CONFIG_FILE

Specifies the configuration file for the IDL compiler.

UNIX

Defaults to $IT_INSTALL_DIR/asp/version/etc/idl.cfg.

Windows

Defaults to %IT_INSTALL_DIR%\asp\version\etc\idl.cfg.

Note: Do not modify the default IDL configuration file. This affects demo
programs and other applications. Instead, use this variable to point the IDL
compiler to a customized file if necessary.
441

APPENDIX D | Development Environment Variables
IT_IDLGEN_CONFIG_FILE

Specifies the configuration file for the Orbix code generation toolkit.

UNIX

Defaults to $IT_INSTALL_DIR/asp/version/etc/idlgen.cfg.

Windows

Defaults to %IT_INSTALL_DIR%\asp\version\etc\idlgen.cfg.
 442

APPENDIX E

Named Keys for
Orbix Services
This appendix lists the named keys for the Orbix services and
associated configuration variables.

In this appendix This appendix includes the following sections:

Orbix Service Named Key Strings page 444

Configuration for Advertising Services page 447
443

APPENDIX E | Named Keys for Orbix Services
Orbix Service Named Key Strings
Table 40 shows the key strings used by each service.

Table 40: Orbix Service Key Strings

Service Plain Text Forwarder
Key

IMR Key IOR Prefix Initial Reference

Security IT_SecurityService n/a IT_SecurityService IT_SecurityService

IT_Login n/a IT_Login IT_Login

Configuratio
n Repository
(CFR)

ConfigRepository n/a ConfigRepository ConfigRepository

IT_ConfigRepositoryRep
lica

n/a IT_SingleConfigRepositor
y

n/a

Firewall
Proxy
Service (FPS)

IT_FPS_Registry n/a IT_FPS_Registry IT_FPS_Registry

IT_FPS_Manager n/a IT_FPS_Manager IT_FPS_Manager

Management IT_ManagementService.
User

n/a IT_MgmtServiceUser IT_MgmtServiceUse
r

IT_ManagementService.
Registration

n/a IT_MgmtService IT_MgmtService

IT_ManagementService.
Security

n/a IT_MgmtServiceSec IT_MgmtServiceSec

Locator IT_Locator n/a IT_Locator IT_Locator

IT_LocatorReplica n/a IT_SingleLocator n/a

Node daemon IT_NodeDaemon n/a IT_NodeDaemon n/a

Transaction
monitor

TransactionServiceAdmi
n

TransactionServic
eAdmin

TransactionServiceAdmin TransactionServiceA
dmin
 444

Orbix Service Named Key Strings
TransactionFactory TransactionFactor
y

TransactionFactory TransactionFactory

Interface
Repository

InterfaceRepository InterfaceRepositor
y

InterfaceRepository InterfaceRepository

Naming NameService NameService NameService NameService

IT_NameServiceReplica n/a IT_SingleNameService n/a

Trader TradingService TradingService TradingService TradingService

TradingServiceNR n/a n/a n/a

Replicator n/a n/a n/a

Basic Log DefaultBasicLogFactory BasicLoggingServ
ice

BasicLoggingService BasicLoggingService

Event Log DefaultEventLogFactory EventLoggingServ
ice

EventLoggingService EventLoggingServic
e

Notification
Log

DefaultNotifyLogFactory NotifyLoggingSer
vice

NotifyLoggingService NotifyLoggingServic
e

Notification DefaultEventChannelFact
ory

NotificationServic
e

NotificationService NotificationService

DefaultEndpointAdmin n/a IT_NotificationEndpointA
dmin

IT_NotificationEndp
ointAdmin

Event DefaultEventChannelFact
ory

 EventService EventService EventService

DefaultTypesEventChann
elFactory

n/a n/a n/a

JMS MessageBroker IT_JMSMessageB
roker

IT_JMSMessageBroker IT_JMSMessageBro
ker

ServerContext n/a IT_JMSServerContext IT_JMSServerConte
xt

MessagingBridge n/a IT_MessagingBridge IT_MessagingBridge

Service Plain Text Forwarder
Key

IMR Key IOR Prefix Initial Reference
445

APPENDIX E | Named Keys for Orbix Services
EndpointAdmin n/a IT_JMSEndpointAdmin IT_JMSEndpointAd
min

Service Plain Text Forwarder
Key

IMR Key IOR Prefix Initial Reference
 446

Configuration for Advertising Services
Configuration for Advertising Services
Table 41 shows the configuration variables for each service (where applicable).
Setting one of these variables to true prevents registration of a key with the
plain text key forwarder for that service.

Table 41: Advertise Service Configuration Variables

Service Configuration Variable Name

Firewall Proxy Service
(FPS)

fps:advertise_services

Transaction monitor plugins:ots:advertise_services

Interface Repository plugins:ifr:advertise_services

Naming plugins:naming:advertise_services

Trader trader:advertise_services

Basic Log plugins:basic_log:advertise_services

Event Log plugins:event_log:advertise_services

Notification Log plugins:notify_log:advertise_services

Notification plugins:notify:advertise_services

Event plugins:event:advertise_services
447

APPENDIX E | Named Keys for Orbix Services
 448

Glossary
A administration

All aspects of installing, configuring, deploying, monitoring, and managing a
system.

ART
Adaptive Runtime Technology. IONA’s modular, distributed object architecture,
which supports dynamic deployment and configuration of services and application
code. ART provides the foundation for IONA software products.

ATLI2
Abstract Transpot Layer Interface, version 2. IONA’s current transport layer
implementation.

C Certificate Authority
Certificate Authority (CA). A trusted third-party organization or company that
issues digital certificates used to create digital signatures and public-private key
pairs. The role of the CA in this process is to guarantee that the individual granted
the unique certificate is, in fact, who he or she claims to be. CAs are a crucial
component in data security and electronic commerce because they guarantee that
the two parties exchanging information are really who they claim to be.

CFR
See configuration repository.

client
An application (process) that typically runs on a desktop and requests services
from other applications that often run on different machines (known as server
processes). In CORBA, a client is a program that requests services from CORBA
objects.

configuration
A specific arrangement of system elements and settings.
449

GLOSSARY
configuration domain
Contains all the configuration information that Orbix ORBs, services and
applications use. Defines a set of common configuration settings that specify
available services and control ORB behavior. This information consists of
configuration variables and their values. Configuration domain data can be
implemented and maintained in a centralized Orbix configuration repository or as
a set of files distributed among domain hosts. Configuration domains let you
organize ORBs into manageable groups, thereby bringing scalability and ease of
use to the largest environments. See also configuration file and configuration
repository.

configuration file
A file that contains configuration information for Orbix components within a
specific configuration domain. See also configuration domain.

configuration repository
A centralized store of configuration information for all Orbix components within
a specific configuration domain. See also configuration domain.

configuration scope
Orbix configuration is divided into scopes. These are typically organized into a
root scope and a hierarchy of nested scopes, the fully-qualified names of which
map directly to ORB names. By organizing configuration properties into various
scopes, different settings can be provided for individual ORBs, or common
settings for groups of ORB. Orbix services, such as the naming service, have their
own configuration scopes.

CORBA
Common Object Request Broker Architecture. An open standard that enables
objects to communicate with one another regardless of what programming
language they are written in, or what operating system they run on. The CORBA
specification is produced and maintained by the OMG. See also OMG.

CORBA naming service
An implementation of the OMG Naming Service Specification. Describes how
applications can map object references to names. Servers can register object
references by name with a naming service repository, and can advertise those
 450

GLOSSARY
names to clients. Clients, in turn, can resolve the desired objects in the naming
service by supplying the appropriate name. The Orbix naming service is an
example.

CORBA objects
Self-contained software entities that consist of both data and the procedures to
manipulate that data. Can be implemented in any programming language that
CORBA supports, such as C++ and Java.

CORBA transaction service
An implementation of the OMG Transaction Service Specification. Provides
interfaces to manage the demarcation of transactions and the propagation of
transaction contexts. Orbix OTS is such as service.

CSIv2
The OMG Common Secure Interoperability protocol v2.0, which can be used to
provide the basis for application-level security in both CORBA and J2EE
applications. The IONA Security Framework implements CSIv2 to transmit
usernames and passwords, and to assert identities between applications.

D deployment
The process of distributing a configuration or system element into an environment.

H HTTP
HyperText Transfer Protocol. The underlying protocol used by the World Wide
Web. It defines how files (text, graphic images, video, and other multimedia files)
are formatted and transmitted. Also defines what actions Web servers and
browsers should take in response to various commands. HTTP runs on top of
TCP/IP.

I IDL
Interface Definition Language. The CORBA standard declarative language that
allows a programmer to define interfaces to CORBA objects. An IDL file defines
the public API that CORBA objects expose in a server application. Clients use
these interfaces to access server objects across a network. IDL interfaces are
independent of operating systems and programming languages.
451

GLOSSARY
IFR
See interface repository.

IIOP
Internet Inter-ORB Protocol. The CORBA standard messaging protocol, defined
by the OMG, for communications between ORBs and distributed applications.
IIOP is defined as a protocol layer above the transport layer, TCP/IP.

implementation repository
A database of available servers, it dynamically maps persistent objects to their
server’s actual address. Keeps track of the servers available in a system and the
hosts they run on. Also provides a central forwarding point for client requests. See
also location domain and locator daemon.

IMR
See implementation repository.

installation
The placement of software on a computer. Installation does not include
configuration unless a default configuration is supplied.

Interface Definition Language
See IDL.

interface repository
Provides centralized persistent storage of IDL interfaces. An Orbix client can
query this repository at runtime to determine information about an object’s
interface, and then use the Dynamic Invocation Interface (DII) to make calls to
the object. Enables Orbix clients to call operations on IDL interfaces that are
unknown at compile time.

invocation
A request issued on an already active software component.

IOR
Interoperable Object Reference. See object reference.
 452

GLOSSARY
L location domain
A collection of servers under the control of a single locator daemon. Can span any
number of hosts across a network, and can be dynamically extended with new
hosts. See also locator daemon and node daemon.

locator daemon
A server host facility that manages an implementation repository and acts as a
control center for a location domain. Orbix clients use the locator daemon, often
in conjunction with a naming service, to locate the objects they seek. Together
with the implementation repository, it also stores server process data for activating
servers and objects. When a client invokes on an object, the client ORB sends this
invocation to the locator daemon, and the locator daemon searches the
implementation repository for the address of the server object. In addition, enables
servers to be moved from one host to another without disrupting client request
processing. Redirects requests to the new location and transparently reconnects
clients to the new server instance. See also location domain, node daemon, and
implementation repository.

N naming service
See CORBA naming service.

node daemon
Starts, monitors, and manages servers on a host machine. Every machine that runs
a server must run a node daemon.

O object reference
Uniquely identifies a local or remote object instance. Can be stored in a CORBA
naming service, in a file or in a URL. The contact details that a client application
uses to communicate with a CORBA object. Also known as interoperable object
reference (IOR) or proxy.

OMG
Object Management Group. An open membership, not-for-profit consortium that
produces and maintains computer industry specifications for interoperable
enterprise applications, including CORBA. See www.omg.com.
453

http://www.omg.com

GLOSSARY
ORB
Object Request Broker. Manages the interaction between clients and servers, using
the Internet Inter-ORB Protocol (IIOP). Enables clients to make requests and
receive replies from servers in a distributed computer environment. Key
component in CORBA.

OTS
See CORBA transaction service.

P POA
Portable Object Adapter. Maps object references to their concrete
implementations in a server. Creates and manages object references to all objects
used by an application, manages object state, and provides the infrastructure to
support persistent objects and the portability of object implementations between
different ORB products. Can be transient or persistent.

protocol
Format for the layout of messages sent over a network.

S server
A program that provides services to clients. CORBA servers act as containers for
CORBA objects, allowing clients to access those objects using IDL interfaces.

SSL
Secure Sockets Layer protocol. Provides transport layer security—authenticity,
integrity, and confidentiality—for authenticated and encrypted communications
between clients and servers. Runs above TCP/IP and below application protocols
such as HTTP and IIOP.

SSL handshake
An SSL session begins with an exchange of messages known as the SSL
handshake. Allows a server to authenticate itself to the client using public-key
encryption. Enables the client and the server to co-operate in the creation of
symmetric keys that are used for rapid encryption, decryption, and tamper
 454

GLOSSARY
detection during the session that follows. Optionally, the handshake also allows
the client to authenticate itself to the server. This is known as mutual
authentication.

T TCP/IP
Transmission Control Protocol/Internet Protocol. The basic suite of protocols used
to connect hosts to the Internet, intranets, and extranets.

TLS
Transport Layer Security. An IETF open standard that is based on, and is the
successor to, SSL. Provides transport-layer security for secure communications.
See also SSL.
455

GLOSSARY
 456

Index

A
active connection management 103

client-side configuration 104
server-side configuration 103

active load balancing 120
admin_logon 375
algorithms, compression 151
-args 54
ATLI2 160

B
backups

full 142
incremental 144

bandwidth 149
Berkeley DB environment 138

checkpoints 139
data files 138
file types 138
recovery 142
store environment files 138
transaction log files 138

archive 140
delete 140
size 140

bidirectional GIOP 168
BiDir_Gen3 173
BiDir_GIOP 171
BiDirIdGenerationPolicy 169
BiDirPolicy::ALLOW 169
BiDirPolicy::BiDirAcceptPolicy 170
BiDirPolicy::BidirectionalAcceptPolicy 173
BiDirPolicy::BiDirExportPolicy 169
BiDirPolicy::BiDirOfferPolicy 170
binding:client_binding_list 153, 167, 171
binding:server_binding_list 197
boolean 45
buffered logging 195
bzip2 151

C
C++ management agent registration 198
C++ request logging 196
catastrophic recovery 142
checkpoints

Berkeley DB 139
checksum 373

confirm 376
create 377
list 377
list all processes 377
manage 376
remove 378

cicsraw operations 196
CICS server adapter

Mapping Gateway interface 177
client_binding_list 167
cluster.properties file 97
command-line parameters

-ORBadmin_config_domains_dir 48
-ORBadmin_domain_name 48
-ORBconfig_domain 36
-ORBdomain_name 48

compression plug-in 149
config dump 262
ConfigList 45
config list 263
config stop 264
configuration

convert from file to CFR 264
default directory 36
file-based 23
itadmin commands 261
namespace management 266
repository-based 24
scope management 269
variable management 271

configuration domain
obtain for ORB 34

C++ applications 36
Java applications 36

troubleshoot 48
configuration repository 24

converting from file to 264
dump contents 262
457

INDEX
list replicas 263
manage 262
start 236
stop 264

configuration scope 38
define 40

file-based configuration 40
itadmin commands 41

map to ORB name 39
name 39
share 44

configuration variables
components 45
data type 45

constructed 45
namespace 45
precedence of settings 42
set value 46

constructed types 45
corbaloc URL 165
CREATE_DEFAULT_ERROR_MODE 57
CREATE_NEW_PROCESS_GROUP 57

D
data files

Berkeley DB 138
decompression 150
default-domain.cfg 36
DETACHED_PROCESS 57
direct persistence 165

failover 86
double 45
dual-stack host 164
dynamic logging 198

E
ec

create 279
list 279
remove 280
show 281

EGMIOP 160
election protocol 99
encinalog

add 360
add_mirror 361
create 361
display 362
 458
expand 363
init 364
remove_mirror 364

Encina transactions
add backup files 360
add mirror volume 361
create log backup 361
display mirror volume data 362
expand transaction log 363
initialize transaction log 364
remove mirror 364
stop service 365

environment variables
development 442
ORB initialization 435

event
show 276
stop 277

event channel
create 279, 348, 351
list all 279, 349
manage 278, 348
remove 280, 350
show attributes 281, 350

event log 245
event_log:filters 167, 170
event service

itadmin commands 275
manage 276
show attributes 276
start 242
stop 277

export policy 169

F
failover 81, 85

direct persistence 86
federation links,manage 389
file-based configuration 23
filename 194
file_to_cfr.tcl 264
filters 188
firewall proxy plug-in 133
firewall proxy service 131
fps 133
fps:proxy_evictor:hard_limit 134
fps:proxy_evictor:soft_limit 134
fps_agent.jar 133
FQPN 6

INDEX
fragmentation 158
full backup 142

G
General Inter-ORB Protocol 168
GenerateConsoleCtrlEvent() 321
GIOP, bidirectional 168
GIOP::BiDirId 169
GIOP request 196
GIOP Snoop 151, 201
gzip 151

H
hard_limit

IIOP 103, 104
host, moving to a new 61

I
IDL 14

compile 14
IDL definitions, manage 124, 284
ifr

cd 285, 326
destroy_contents 129, 286
ifr2idl 286, 325
list 286, 326
pwd 286, 328
remove 128, 287, 327
show 287, 327
stop 123, 287, 328

IIOP plug-in configuration
hard connection limit

client 104
server-side 103

soft connection limit
client 104
server 103

implementation repository 8
imsraw operations 197
IMS server adapter

Mapping Gateway interface 177
incremental backups 144
initial_references:IT_IPTransport:plugin 161
initial_references:IT_MFA:reference 178
INTERDICTION policy 134
Interface Definition language. See IDL
interface repository

add IDL definitions 127, 284
browse contents 125
destroy contents 286
display containment hierarchy 125
itadmin commands 283, 323
list container contents 125, 286, 326
list current container 286, 328
maintain 14
manage 283, 323
navigate to other containment levels 126, 285, 326
remove definitions 128, 287, 327
show scoped name 287, 327
start 123
start daemon 241
stop daemon 123, 287, 328
usage 14
write contents to file 286, 325

interfaces
add to interface repository 127, 284
define 14
obtain from interface repository 14
remove definitions from interface repository 128

interoperable object reference. See IOR
IOP::BI_DIR_GIOP_OFFER 170
IOP::TAG_BI_DIR_GIOP 169
IOR 8
iordump 151, 170
IPv4 163
IPv6 163
is2.properties file 97
IT_ACTIVATOR 190
itadmin commands 248

abbreviations 253
command-line usage 248
configuration domain 261
escape character 252
event service 275
help 253
interface repository 283, 323
lists 251
location domain 289
logging 245
mainframe adapter 178
naming service 332
negative values 252
nested 248
notification service 343
object group 336
OTS 355
OTS Encina 359
459

INDEX
PSS 367
shell usage 248
spaces in values 252
SSL/TLS 373
syntax 251
Tcl scripts 249
trading service 245, 255, 383
undo 250

itadmin logging set 198
IT_ATLI2_IOP 190
IT_ATLI2_IP 190
IT_ATLI2_ITMP 190
IT_ATLI2_ITRP 190
IT_ATLI2_SHM 190
IT_ATLI_TLS 190
IT_BiDirPolicy::BidirectionalGen3AcceptPolicy 173
IT_BiDirPolicy::BiDirIdGenerationPolicy 169
IT_ClassLoading 190
IT_CODESET 190
IT_CONFIG_DIR 437
IT_CONFIG_DOMAIN 36
IT_CONFIG_DOMAINS_DIR 436
IT_CONFIG_REP 190
itconfig_rep run 236
IT_CORE 190
IT_CSI 190
IT_DOMAIN_NAME 436
itevent run 242
IT_GIOP 190
IT_GSP 190
IT_IDL_CONFIG_FILE 441
IT_IDLGEN_CONFIG_FILE 442
IT_IFR 190
itifr run 123, 241
IT_IIOP 190
IT_IIOP_PROFILE 190
IT_IIOP_TLS 191
IT_JAVA_SERVER 191
IT_LEASE 191
IT_LOCATOR 191
itlocator run 62, 237
itmfaloc 182
itmfaloc URL resolver 181
IT_MGMT 191
it_mgmt_agent_reg 199
IT_MGMT_SVC 191
IT_NAMING 191
itnaming run 112, 240
IT_NODE_DAEMON 191
 460
itnode_daemon run 66, 238
IT_NOTIFICATION 191
itnotify run 243
IT_OTS_LITE 191
IT_POA 191
IT_POA_LOCATOR 191
IT_PRODUCT_DIR 439
IT_PSS 191
IT_PSS_DB 141, 191
IT_PSS_R 191
it_request_logger 197
IT_SCHANNEL 191
IT_TLS 191
IT_TS 191
IT_XA 191
it_ziop 152

J
Java CIO 160
Java NIO 160

K
KDM 373

database 373
log on 375

kdm_adm change_pw 379
kdm_adm confirm 380
kdm_adm create 380
kdm_adm list 381
kdm_adm remove 382

L
load balancing 81, 94

active selection 120
replicated servers 81
selection strategies 120, 338, 339

LocateReply 206
LocateRequest 206
location domain

daemon. See locator daemon
implementation repository 8
itadmin commands 289
list registered entries 68
modify entries 69
register ORB 52
register POA 53
register server process 52
remove entries 69

INDEX
locator
list 291
show 291
stop 63, 292

locator daemon 8
list all 291
manage 290
restart 63
show attributes 291
start 62, 237
stop 63, 292
usage 10

locator daemon configuration
find persistent objects 8

logging
buffered 195
configuration 194
dynamic 198
get 245
local file 194
message severity levels 192
output to local file 194
output to system log 195
rolling_file 195
set 246
set filters for subsystems 188
subsystems 190

logging, precision 196
long 45
low bandwidth 149

M
mainframe 196
Mainframe Adapter 175

itmfaloc URL resolver 181
Mapping Gateway interface 177

mainframe adapter
itadmin commands 323

majority rule
replicas 100

Mapping Gateway interface 177
IOR 180

master
election protocol 99

master-slave replication 97
message fragmentation 158
mfa 177

add 325
change 325
delete 326
list 326
refresh 327
reload 327
resetcon 327
resolve 328
save 328
stats 329
stop 329
switch 329

MPI 202

N
name

bind to object 332
rebind 118

named_key
create 294
list 294
remove 295
show 295

named keys
create 294
list all 294
manage 293
remove 295
show object reference 295

namespace
create 266
list 267
remove 268
show 268

namespaces
create 266
list 267
manage 266
remove from configuration 268
show contents 268

naming context
create 115
unbound 115

naming graph 110
build 113

naming service 4
administer 109
bind name 332
bind name to object 116
build naming graph 113
itadmin commands 332
461

INDEX
list contents 333
manage 332
naming context

create 115
unbound 115

naming graph 110
new context 333
object groups 119, 336
rebind name 118
resolve name 334
start 112, 240
stop 112, 335
unbind 334, 335

nc
create 348, 351
list 349
remove 350
set_qos 351
show 350

NegotiateSession 174
NIO

new I/O 160
-node_daemon 54
node daemon 65

list 297
list active processes 67
manage 296
remove 297
run several on host 66
show attributes 297
start 66, 238
stop 67, 298
usage 10

node_daemon
list 297
remove 297
show 297
stop 67, 298

NORMAL_PRIORITY_CLASS 57
normal recovery 142
notification service

checkpoint operations 344
itadmin commands 343
manage 344
post-backup operations 345
pre-backup operations 345
show attributes 345
start 243
stop 347
 462
notify
checkpoint 344
post_backup 345
pre_backup 345
show 345
stop 347

ns
bind 116, 332
list 333
newnc 115, 333
remove 334
resolve 118, 334
stop 112, 335
unbind 118, 335

nsog
add_member 337
bind 337
create 338
list 338
list_members 338
modify 339
remove 339
remove_member 340
set_member_timeout 340
show_member 341
update_member_load 342

O
object group 119

active load balancing 120
add member 337
bind 337
create 119, 338
identifier 119
itadmin commands 336
list all 338
list members 338
manage 336
member identifiers 119
member IOR 341
member load value updates 342
member timeout 340
modify selection strategy 339
remove 339
remove member 340
selection strategies 120, 338, 339

OBJECT_NOT_EXIST exception 8
object references 4

client invocations on 4

INDEX
map to servants 5
object request broker. See ORB
objects

persistent 8
transient 8

on_demand 312
on-demand activation 52

replicated server 90
ORB

configuration 38
initialization 35, 435
map name to configuration scope 39
register in location domain 52
register root POA name 70
server 2
share configuration scope 44

-ORBadmin_config_domains_dir 48
-ORBadmin_domain_name 48
-ORBconfig_dir 437
ORBconfig_dir Java property 437
-ORBconfig_domain 36
ORBconfig_domain Java property 36
-ORBconfig_domains_dir 436
ORBconfig_domains_dir Java property 436
-ORBDefaultInitRef 438
-ORBdomain_name 48, 436
ORBdomain_name Java property 436
ORB initialization 435

configuration directory 437
default initial reference 438
domain name 436
domains directory 436
initial reference 438
Java properties 435
ORB name 437
precedence of settings 435
product directory 439

-ORBInitRef 438
Orbix mainframe 196
Orbix services

order of startup 234
start and stop scripts 234
start commands 235
stop commands 244

Orbix services, replication 95
-ORBname 437
ORB name 437

create 300
list all 300
manage 300
modify 301
remove 302
show attributes 303

orbname
create 52, 300

register replicated server 91
list 300
modify 301
remove 302
show 303

orb_plugins 166, 203
-ORBproduct_dir 439
ORBproduct_dir Java property 439
OS/390 176
OTS

itadmin commands 355
manage 355

OTS Encina
itadmin commands 359
manage 359

otstm stop 365

P
pass phrases 373

change 379
confirm 380
create 380
list 381
manage 379
remove 382

per_client 54, 312
per-client activation 54
persistent objects 8

direct persistence
and failover 86

invoke on 8
locate 51
replicated 83

PERSIST_STORE exception 141
pkzip 151
plugin:atli2_shm:shared_memory_size 167
plugins:atli2_ip:ClassName 161
plugins:atli2_ip_cio:ClassName 162
plugins:atli2_ip_nio:ClassName 161
plugins:config_rep:refresh_master_interval 99
plugins:giop:message_server_binding_list 153, 171
plugins:giop_snoop:ClassName 203
plugins:giop_snoop:filename 205
463

INDEX
plugins:giop_snoop:rolling_file 205
plugins:giop_snoop:shlib_name 203
plugins:giop_snoop:verbosity 204
plugins:local_log_stream:buffer_file 195
plugins:local_log_stream:filename 157, 195
plugins:local_log_stream:log_elements 195
plugins:local_log_stream:milliseconds_to_log 195
plugins:local_log_stream:precision_logging 196
plugins:locator:allow_node_daemon_change 61
plugins:locator:refresh_master_interval 99
plugins:naming:refresh_master_interval 99
plugins:node_daemon:recover_processes 66
plugins:orb:is_managed 199
plugins:pss_db:envs

env-name:replica_priority 99
plugins:pss_db:envs:env-name:allow_demotion 101
plugins:pss_db:envs:env-name:allow_minority_master

100
plugins:pss_db:envs:env-name:hearbeat_interval 101
plugins:pss_db:envs:env-name:lsn_timeout 102
plugins:pss_db:envs:env-name:master_heartbeat_interv

al 101
plugins:pss_db:envs:env_name:recover_fatal 146
plugins:pss_db:envs:ifr_store:lk_max 129
plugins:pss_db:envs:it_locator:checkpoint_archives_ol

d_logs 144
plugins:pss_db:envs:it_locator:checkpoint_deletes_old

_logs 144
plugins:pss_db:envs:it_locator:db_home 145
plugins:pss_db:envs:it_locator:old_logs_dir 145
plugins:ziop:ClassName 152
plugins:ziop:shlib_name 152
POA 5

FQPN 6
list 307
manage 304
modify 307
name root POA 70
names 6
persistent 51
register in location domain 53, 304
remove 309
replicas 53, 82
show attributes 310
transient 53

POA::create_POA() 169
poa:fqpn:direct_persistent 75
poa:fqpn:well_known_address 76
poa create 53, 304
 464
replicated POA 91
poa list 307
poa modify 307
poa remove 309
poa show 310
policies:giop:bidirectional_accept_policy 170
policies:giop:bidirectional_export_policy 169
policies:giop:bidirectional_gen3_accept_policy 173
policies:giop:bidirectional_offer_policy 170
policies:giop:interop_policy 197
policies:iiop:buffer_sizes_policy:default_buffer_size 1

58
policies:network:interfaces:prefer_ipv4 163
policies:network:interfaces:prefer_ipv6 163
policies:per_request_lb 94
policies:ziop:compression_enabled 153
policies:ziop:compression_threshold 155
policies:ziop:compressor:compressor_id:level 154
policies:ziop:compressor_id 154
portable object adapter. See POA
precision logging 196
prefer_local 94, 306, 309
primitive types 45
priorities, replica 99
process

create 52, 311
disable 314
enable 314
list 67, 315
modify 316
moving to a new host 61
remove 318
show 319
start 61, 320
stop 61, 321

process create 54
proxy offers, manage 395
PSS

checkpoint 368
itadmin commands 367
manage 367
obtain IOR to 369
post-backup operations 369
pre-backup operations 370

pss_db
checkpoint 368
name 369
post_backup 143, 369
pre_backup 145, 370

INDEX
pss_db archive_old_logs 368
pss_db checkpoint 368
pss_db delete_old_logs 369
pss_db list_replicas 369
pss_db name 369
pss_db post_backup 369
pss_db pre_backup 370
pss_db remove_replica 370
pss_db show 371

Q
QoS 351
qualities of service, event channel 351

R
random 94, 306, 309
recovery

Berkeley DB 142
refresh master interval 99
regular offers, manage 393
replica failover 165
replicated servers 81

add server replicas 93
build 89
deploy 82
failover 85
load balancing 85

specifying strategy 91
on-demand activation 90
register ORB names 91
register POA 91
register processes 90
startup 83

replication
Orbix services 95
priorities 99
security service 97

Reply 206
repository-based configuration 24
Request 206
request_logger 196
rolling_file 195
root_name 70
root POA

register name 71
round_robin 94, 306, 309
S
scope

create 269
list 269
list sub-scopes 269
manage 269
remove 270
show 270
show contents 270

scope See configuration scope
secure_directories 61
security service

replication 97
server process

disable on-demand activation 314
enable on-demand activation 314
list 315
manage 311
modify 316
moving to a new host 61
register 311
register for on-demand activation 52

on replicated server 90
remove 318
secure directories 61
show attributes 319
start 320
start and stop 61
stop 321

servers, reactivate with node daemon 10
shared memory 166
shmiop plugin 166
simple_persistent demo 76
SIOP 202
soft_limit

IIOP 103, 104
SSL/TLS

itadmin commands 373
KDM 373
manage 373

-startupmode 54
start-up mode 312
string 45

T
TAG_BI_DIR_GIOP 170, 172
Tcl scripts, itadmin commands 249
TerminateProcess() 314
465

INDEX
trading service
create federation link 389
federation links 389
itadmin commands 245, 255, 383
list federation links 390
list offer IDs 393
list proxy offer IDs 395
list service types 397
manage 245, 255, 383
mask service type 397
modify administrative settings 386
modify federation link 390
obtain administrative settings 384
proxy offers 395
regular offers 393
remove federation link 391
remove offer 393
remove proxy offer 395
remove service type 398
show federation link attributes 392
show offer attributes 394
show proxy offer attributes 396
show service type attributes 398
stop 388
type repositories 397
unmask service type 399

transaction
begin 355
commit 356
resume 356
roll back 357
suspend 357

transaction log files 138
transient objects 8
trd_admin

get 384
set 386
stop 388

trd_link
create 389
list 390
modify 390
remove 391
show 392

trd_offer
list 393
remove 393
show 394

trd_proxy
 466
list 395
remove 395
show 396

trd_type
list 397
mask 397
remove 398
show 398
unmask 399

tx
begin 355
commit 356
resume 356
rollback 357
suspend 357

type repository, manage 397

U
UNIX System Services 176

V
variable

create 271
manage in configuration 271
modify 273
remove 274
show 274
show setting 274

Vista 163

W
WELL_KNOWN_ADDRESSING_POLICY 73
Windows NT services 403

accounts 409
commands 406
identify Orbix services 405
install Orbix service 407
logging 412
manage 405
obtain data 408
obtain help on service 407
pause background service 407
prepare Orbix service 407
run 408, 411

in file-based configuration 411
in repository-based configuration 411

security 410
stop Orbix service 408

INDEX
troubleshoot 414
uninstall service 408, 413

Windows Vista 163
Windows XP 163

X
XP 163

Z
ZIOP compression 149
ziop plug-in 152
467

INDEX
 468

	List of Figures
	List of Tables
	Preface
	Introduction
	The Orbix Environment
	Basic CORBA Model
	Simple Orbix Application
	Portable Object Adapter

	Broader Orbix Environment
	Managing Object Availability
	Scaling Orbix Environments with Configuration Domains
	Using Dynamic Orbix Applications

	Orbix Administration

	Selecting an Orbix Environment Model
	Orbix Development Environment Models
	Independent Development Environments
	Distributed Development and Test Environments

	Configuration Models
	Getting the Most from Your Orbix Environment
	Using Capabilities of Well-Designed Orbix Applications
	Using the Right Data Storage Mechanism

	Getting the Most from Orbix Configuration

	Managing an Orbix Environment
	Managing Orbix Configuration
	How an ORB Gets its Configuration
	Locating the Configuration Domain
	Obtaining an ORB’s Configuration

	Configuration Variables and Namespaces
	Managing Configuration Domains

	Managing Persistent CORBA Servers
	Introduction
	Registering Persistent Servers
	Server Environment Settings
	Windows Environment Settings
	UNIX Environment Settings

	Managing a Location Domain
	Managing Server Processes
	Managing the Locator Daemon
	Managing Node Daemons
	Listing Location Domain Data
	Modifying a Location Domain
	Ensuring Unique POA Names

	Using Direct Persistence
	CORBA Applications
	Orbix Services

	Configuring Scalable Applications
	Fault Tolerance and Replicated Servers
	About Replicated Servers
	Automatic Replica Failover
	Direct Persistence and Replica Failover

	Building a Replicated Server
	Example 1: Building a Replicated Server to Start on Demand
	Example 2: Updating a Replicated Server
	Example 3: Dynamically Changing the Load Balancing Algorithm

	Replicating Orbix Services
	PSS Master-Slave Replication

	Active Connection Management
	Setting Buffer Sizes

	Managing the Naming Service
	Naming Service Administration
	Naming Service Commands

	Controlling the Naming Service
	Building a Naming Graph
	Creating Naming Contexts
	Creating Name Bindings

	Maintaining a Naming Graph
	Managing Object Groups

	Managing an Interface Repository
	Interface Repository
	Controlling the Interface Repository Daemon
	Managing IDL Definitions
	Browsing Interface Repository Contents
	Adding IDL Definitions
	Removing IDL Definitions

	Managing the Firewall Proxy Service
	Orbix Firewall Proxy Service
	Configuring the Firewall Proxy Service
	Known Restrictions

	Managing Orbix Service Databases
	Berkeley DB Environment
	Performing Checkpoints
	Managing Log File Size
	Troubleshooting Persistent Exceptions
	Database Recovery for Orbix Services
	Replicated Databases

	Configuring Orbix Compression
	Introduction
	Configuring Compression
	Example Configuration
	Message Fragmentation

	Configuring Advanced Features
	Configuring Java NIO
	Configuring Internet Protocol Version 6
	Configuring Shared Memory
	Configuring Bidirectional GIOP
	Enabling Bidirectional GIOP
	Migration and Interoperability Issues

	Orbix Mainframe Adapter
	CICS and IMS Server Adapters
	Using the Mapping Gateway Interface
	Locating Server Adapter Objects Using itmfaloc

	Monitoring Orbix Applications
	Configuring Orbix Logging
	Setting Logging Filters
	Logging Subsystems
	Logging Severity Levels
	Configuring Log Output
	Dynamic Logging

	Monitoring GIOP Message Content
	Introduction to GIOP Snoop
	Configuring GIOP Snoop
	GIOP Snoop Output

	Debugging IOR Data
	IOR Data Formats
	Using iordump
	iordump Output
	Stringified Data Output
	ASCII-Hex Data Output

	Data, Warning, Error and, Information Text
	Errors
	Warnings

	Command Reference
	Starting Orbix Services
	Starting and Stopping Configured Services
	Starting Orbix Services Manually
	Stopping Services Manually

	Event Log
	Managing Orbix Services With itadmin
	Using itadmin
	Command Syntax
	Services and Commands

	Bridging Service
	JMS Broker

	Configuration Domain
	Configuration Repository
	Namespaces
	Scopes
	Variables

	Event Service
	Event Service Management
	Event Channel

	Interface Repository
	IDL Definitions
	Repository Management

	Location Domain
	Locator Daemon
	Named Key
	Node Daemon
	ORB Name
	POA
	Server Process

	Mainframe Adapter
	Naming Service
	Names
	Object Groups

	Notification Service
	Notification Service Management
	Event Channel

	Object Transaction Service
	Object Transaction Service Encina
	Persistent State Service
	Security Service
	Logging On
	Managing Checksum Entries
	Managing Pass Phrases

	Trading Service
	Trading Service Administrative Settings
	Federation Links
	Regular Offers
	Proxy Offers
	Type Repository

	Appendices
	Orbix Windows Services
	Managing Orbix Services on Windows
	Orbix Windows Service Commands
	Orbix Windows Service Accounts
	Running Orbix Windows Services
	Logging Orbix Windows Services
	Uninstalling Orbix Windows Services
	Troubleshooting Orbix/Windows Services

	Run Control Scripts for Unix Platforms
	Solaris
	AIX
	HP-UX
	IRIX
	Red Hat Linux

	ORB Initialization Settings
	Development Environment Variables
	Named Keys for Orbix Services
	Orbix Service Named Key Strings
	Configuration for Advertising Services

	Glossary
	Index

