ORBIX

COMet Programmer’s Guide

and Reference
Version 6.3.5, July 2011

PROGRESS

software
BUSINESS MAKING PROGRESSw

© 2011 Progress Software Corporation and/or its subsidiaries or affiliates. All rights
reserved.

These materials and all Progress® software products are copyrighted and al rights are
reserved by Progress Soft ware Corporation. The information in these materials is subject
to change without notice, and Progress Software Corporation assumes no responsihility for
any errorsthat may appear therein. The references in these materials to specific platforms
supported are subject to change.

Actional, Apama, Artix, Business Empowerment, Business Making Progress, DataDirect
(and design), DataDi rect Connect, DataDirect Connect64, DataDirect Technologies,
DataDirect XML Converters, DataDirect X Query, DataXtend, Dynamic Routing
Architecture, EdgeXtend, Empowerment Center, Fathom, Fuse Mediation Router, Fuse
Message Broker, Fuse Services Framework, IntelliStream, IONA, Making Software Work
Together, Mindreef, ObjectStore, OpenEdge, Orbix, PeerDirect, POSSENET, Powered by
Progress, Pow erTier, Progress, Progress DataXtend, Progress Dynamics, Progress Business
Empowerment, Progress Empowerment Center, Progress Empowerment Program, Progress
OpenEdge, Progress Profiles, Progress Results, Progress Software Business Making
Progress, Progress Software Devel opers Network, Progress Sonic, ProVision, PS Select,
Savvion, SequeLink, Shadow, SOAPscope, SOAPStation, Sonic, Sonic ESB, SonicMQ,
Sonic Orchestration Server, SpeedScript, Stylus Studio, Technical Empowerment,
WebSpeed, Xcalia (and design), and Your Software, Our Technology-Experience the
Connection are registered trademarks of Progress Software Corporation or one of its
affiliates or subsidiariesin the U.S. and/or other countries. Accel Event, Apama Dashboard
Studio, Apama Event Manager, Apama Event Modeler, Apama Event Store, Apama Risk
Firewall, AppsAlive, AppServer, ASPen, ASP-in-a-Box, BusinessEdge, Cache-Forward,
CloudEdge, DataDirect Spy, DataDirect SupportLink, Fuse, FuseSource, Future Proof,
GVAC, High Performance Integration, Object Store Inspector, ObjectStore Performance
Expert, OpenAccess, Orbacus, Pantero, POSSE, ProDataSet, Progress Arcade, Progress
CloudEdge, Progress Control Tower, Progress ESP Event Manager, Progress ESP Event
Modeler, Progress Event Engine, Progress RFID, Progress RPM, PSE Pro, SectorAlliance,
SeeThinkAct, Shadow z/Services, Shadow z/Direct, Shadow z/Events, Shadow z/
Presentation, Shadow Studio, SmartBrowser, SmartComponent, SmartDataBrowser,
SmartDataObjects, SmartDataView, SmartDialog, SmartFolder, Smart Frame,
SmartObjects, SmartPanel, SmartQuery, SmartViewer, SmartWindow, Sonic Business
Integration Suite, Sonic Process Manager, Sonic Collaboration Server, Sonic Continuous
Availahility Architecture, Sonic Database Service, Sonic Workbench, Sonic XML Server,
The Brains Behind BAM, WebClient, and Who Makes Progress are trademarks or service
marks of Progress Software Corporation and/or its subsidiaries or affiliatesin the U.S. and
other countries. Javaisaregistered trademark of Oracle and/or its affiliates. Any other
marks con tained herein may be trademarks of their respective owners.

Third Party Acknowledgements:

Progress Orbix v6.3.5 incorporates Jakarata-struts 1.0.2 from the Apache Software
Foundation (http://www.apache.org). Such Apache Technology is subject to the following
terms and conditions: The Apache Soft ware License, Version 1.1 Copyright (c) 1999-2001
The Apache Software Foundation. All rights reserved. Redistribution and usein source

and binary forms, with or without modification, are permitted provided that the following conditions are
met: 1. Redistributions of source code must retain the above copyright notice, thislist of conditions and the
following disclaimer. 2. Redistributionsin binary form must reproduce the above copy right notice, thislist
of conditions and the following disclaimer in the documentation and/or other materials provided with the
distribution. 3. The end-user documentation included with the redistribution, if any, must include the
following acknowledgment: "This product includes software developed by the Apache Software
Foundation (http://www.apache.org/).” Alternately, this acknowledgment may appear in the software itself,
if and wherever such third-party acknowledgments normally appear. 4. The names "The Jakarta Project”,
"Struts”, and " Apache Software Foundation" must not be used to endorse or promote products derived from
this software without prior written permission. For written permission, please contact apache@apache.org.
5. Products derived from this software may not be called "Apache", nor may "Apache" appear in their name,
without prior written permission of the Apache Software Foundation. THIS SOFTWARE IS PROVIDED
“ASIS'AND ANY EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
TO, THE IMPLIED WARRANTIES OF MER CHANTABILITY AND FITNESS FOR A PARTICULAR
PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE APACHE SOFTWARE FOUNDATION
ORITSCONTRIBU TORSBE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
EXEMPLARY, OR CONSEQUEN TIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
PROCUREMENT OF SUB STITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
WHETHER IN CONTRACT, STRICT LIA BILITY, OR TORT (INCLUDING NEGLIGENCE OR
OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
OF THE POSSIBILITY OF SUCH DAMAGE. This software consists of voluntary contributions made by
many individuals on behalf of the Apache Soft ware Foun dation. For more information on the Apache
Software Foundation, please see <http://www.apache.org/>.

Progress Orhix v6.3.5 incorporates Jakarta-bcel 5.0 from the Apache Software Foundation (http://
www.apache.org). Such Apache Technology is subject to the following terms and conditions. The Apache
Software License, Version 1.1 Copy right (c) 2001 The Apache Software Foundation. All rights reserved.
Redistribution and use in source and binary forms, with or without modification, are permitted provided that
the following conditions are met: 1. Redistributions of source code must retain the above copyright notice,
thislist of conditions and the following disclaimer. 2. Redistributions in binary form must reproduce the
above copyright natice, thislist of conditions and the following disclaimer in the docu mentation and/or
other materials provided with the distribution. 3. The end-user documentation included with the
redistribution, if any, must include the following acknowledgment: "This product includes software
developed by the Apache Software Foundation (http://www.apache.org/)." Alternately, this
acknowledgment may appear in the software itself, if and wherever such third-party acknowledgments
normally appear. 4. The names"Apache" and "Apache Software Foundation" and "Apache BCEL" must
not be used to endorse or promote products derived from this software with out prior written permission.
For written permission, please contact apache@apache.org. 5. Products derived from this software may not
be called "Apache", "Apache BCEL", nor may "Apache" appear in their name, without prior written
permission of the Apache Software Foundation. THIS SOFTWARE ISPROVIDED “ASIS' AND ANY
EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
DISCLAIMED. IN NO EVENT SHALL THE APACHE SOFTWARE FOUNDATION ORITS
CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,

COMet Programmer’s Guide and Reference

PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
BUSI NESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
OF THE POSSIBILITY OF SUCH DAMAGE. This software consists of voluntary contributions made by
many individuals on behalf of the Apache Software Foundation. For more information on the Apache
Software Foundation, please see <http://www.apache.org/>.

Progress Orbix v6.3.5 incorporates Jakarat-regexp 1.2 from the Apache Software Foundation (http://
www.apache.org). Such Apache Technology is subject to the following terms and conditions: The Apache
Software License, Version 1.1 Copyright (c) 1999 The Apache Software Foundation. All rights reserved.
Redistribution and use in source and binary forms, with or without modification, are permitted provided that
the following conditions are met: 1. Redistributions of source code must retain the above copyright notice,
thislist of conditions and the following disclaimer. 2. Redistributions in binary form must reproduce the
above copyright notice, thislist of conditions and the following disclaimer in the documentation and/or
other materials provided with the distribution. 3. The end-user documentation included with the

redistri bution, if any, must include the following acknowledgment: "This product includes software
developed by the Apache Software Foundation (http://www.apache.org/)." Alternately, this
acknowledgment may appear in the software itself, if and wherever such third-party acknowledgments
normally appear. 4. The names"The Jakarta Project”, "Jakarta -Regexp", and "Apache Software
Foundation" and "Apache BCEL" must not be used to endorse or promote products derived from this
software without prior written permission. For written permission, please contact apache@apache.org. 5.
Products derived from this software may not be called "Apache", nor may "Apache” appear in their name,
without prior written permission of the Apache Software Foundation. THIS SOFTWARE IS PROVIDED
TASIS' AND ANY EXPRESSED OR IMPLIED WARRANTIES, INCLUDING BUT NOT LIMITED
TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE APACHE SOFTWARE FOUNDATION
ORITSCONTRIBUTORSBE LIA BLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
OF THE POSSIBILITY OF SUCH DAMAGE. This software consists of voluntary contributions made by
many individuals on behalf of the Apache Software Foundation. For more information on the Apache
Software Foundation, please see <http://www.apache.org/>.

Progress Orbix v6.3.5 incorporates the Jakarta-log4j 1.2.6 from the Apache Software Foundation (http://
www.apache.org). Such Apache Technology is subject to the following terms and conditions: The Apache
Software License, Version 1.1 Copyright (c) 1999 The Apache Software Foundation. All rights reserved.
Redistribution and use in source and binary forms, with or without modification, are permitted provided that
the following conditions are met: 1. Redistributions of source code must retain the above copyright notice,
thislist of conditions and the following disclaimer. 2. Redistributions in binary form must reproduce the
above copyright notice, thislist of conditions and the following dis claimer in the documentation and/or
other materials provided with the distribution. 3. The end-user documentation included with the
redistribution, if any, must include the following acknowledgment: "This product includes software

developed by the Apache Software Foundation (http://www.apache.org/)." Alternately, this
acknowledgment may appear in the software itself, if and wherever such third-party acknowledgments
normally appear. 4. The names "logdj" and "Apache Software Foundation" and "Apache BCEL" must not
be used to endorse or promote products derived from this software without prior written permission. For
written permission, please contact apache@apache.org. 5. Products derived from this software may not be
called "Apache", nor may "Apache" appear in their name, without prior written per mission of the Apache
Software Foundation. THIS SOFTWARE ISPROVIDED “ASIS' AND ANY EXPRESSED OR
IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
EVENT SHALL THE APACHE SOFTWARE FOUNDATION OR ITSCONTRIBUTORS BE LIABLE
FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
CAUSED AND ON ANY THEORY OF LIABIL ITY, WHETHER IN CONTRACT, STRICT LIABILITY,
OR TORT (INCLUD ING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. This
software consists of voluntary contributions made by many individuals on behalf of the Apache Software
Foundation. For more information on the Apache Software Foun dation, please see <http://
www.apache.org/>.

Progress Orbix v6.3.5 incorporates Ant 1.5 from the Apache Software Foundation (http://www.apache.org).
Such technology is subject to the following terms and conditions. The Apache Software License, Version
1.1 Copyright (c) 2000-2002 The Apache Software Foundation. All rightsreserved. Redistribution and use
in source and binary forms, with or without modification, are permitted provided that the following
conditions are met: 1. Redistributions of source code must retain the above copyright notice, this list of
conditions and the fol lowing disclaimer. 2. Redistributionsin binary form must reproduce the above
copyright notice, thislist of conditions and the following disclaimer in the documentation and/or other
materials provided with the distribution. 3. The end-user documentation included with the redistribution, if
any, must include the following acknowledgment: "This product includes software devel oped by the
Apache Software Foundation (http://www.apache.org/)." Alternately, this acknowledgment may appear in
the software itself, if and wherever such third-party acknowledgments normally appear. 4. The names"Ant"
and " Apache Software Foundation" and "Apache BCEL" must not be used to endorse or promote products
derived from this software without prior writ ten permission. For written permission, please contact
apache@apache.org. 5. Products derived from this software may not be called "Apache”, nor may
"Apache" appear in their name, without prior written permission of the Apache Software Foundation. THIS
SOFTWARE ISPROVIDED “"ASIS" AND ANY EXPRESSED OR IMPLIED WARRANTIES,
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER CHANTABILITY
AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
APACHE SOFTWARE FOUNDATION OR ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT,
INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
(INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. This software consists

COMet Programmer’s Guide and Reference

of voluntary contri butions made by many individuals on behalf of the Apache Software Foundation. For
more information on the Apache Software Foundation, please see <http://www.apache.org/>.

Progress Orbix v6.3.5 incorporates Xalan-j 2.3.1 from the Apache Software Foundation (http://
www.apache.org). Such Apache Technology is subject to the following terms and conditions: The Apache
Soft ware License, Version 1.1. Copyright (c) 1999 The Apache Software Foundation. All rights reserved.
Redistribution and use in source and binary forms, with or without modification, are permitted provided that
the following conditions are met: 1. Redistributions of source code must retain the above copyright notice,
thislist of conditions and the following disclaimer. 2. Redistributions in binary form must reproduce the
above copyright notice, thislist of conditions and the following disclaimer in the documentation and/or
other materials provided with the distribution. 3. The end-user documentation included with the
redistribution, if any, must include the following acknowledgment: "This product includes software
developed by the Apache Software Foundation (http://www.apache.org/).” Alternately, this
acknowledgment may appear in the software itself, if and wherever such third-party acknowledgments
normally appear. 4. The names"Xalan" and "Apache Software Foundation" and "Apache BCEL" must not
be used to endorse or promote products derived from this software without prior written permission. For
written permission, please contact apache@apache.org. 5. Products derived from this software may not be
called "Apache", nor may "Apache" appear in their name, without prior written permission of the Apache
Software Foundation. THIS SOFTWARE ISPROVIDED "ASIS' AND ANY EXPRESSED OR
IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MER CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
EVENT SHALL THE APACHE SOFTWARE FOUNDATION OR ITS CONTRIBUTORS BE LIABLE
FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
DAMAGES (INCLUDING BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. This
software consists of voluntary contri butions made by many individuals on behalf of the Apache Software
Foundation. For more information on the Apache Software Foundation, please see <http://www.apache.org/
>,

Progress Orbix v6.3.5 incorporates the Xerces-c++ 2.4 from the A pache Software Foundation (http://
www.apache.org). Such Apache Technology is subject to the following terms and conditions: The Apache
Software License, Version 1.1. Copyright (c) 1999-2001 The Apache Software Foundation. All rights
reserved. Redistribution and use in source and binary forms, with or without modification, are permitted
provided that the following conditions are met: 1. Redistributions of source code must retain the above
copyright notice, thislist of conditions and the following disclaimer. 2. Redis tributionsin binary form must
reproduce the above copyright notice, thislist of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution. 3. The end-user documentation
included with the redistribution, if any, must include the following acknowledgment: "This product
includes software developed by the Apache Software Foundation (http://www.apache.org/)." Alternately,
this acknowledgment may appear in the software itself, if and wherever such third-party acknowledgments
normally appear. 4. The names"Xerces' and "Apache Software Foundation™ and "Apache BCEL" must not
be used to endorse or promote products derived from this software without prior written permission. For
written permission, please contact apache@apache.org. 5. Products derived from this software may not be

Vi

called "Apache”, nor may "Apache" appear in their name, without prior written permission of the Apache
Software Foundation. THIS SOFTWARE ISPROVIDED T“ASIS' AND ANY EXPRESSED OR
IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANT ABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
EVENT SHALL THE APACHE SOFTWARE FOUNDATION OR ITSCONTRIBUTORS BE LIABLE
FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. This
software consists of voluntary contributions made by many individuals on behalf of the Apache Software
Foundation. For moreinformation on the Apache Software Foundation, please see <http://
www.apache.org/>.

Progress Orbix v6.3.5 incorporates xerces-j 2.5 from the Apache Software Foundation (http://
www.apache.org). Such Apache Technology is subject to the following terms and conditions: The Apache
Software License, Version 1.1. Copy right (c) 1999-2002 The Apache Software Foundation. All rights
reserved. Redistribution and use in source and binary forms, with or without modification, are permitted
provided that the following conditions are met: 1. Redistributions of source code must retain the above
copyright notice, thislist of conditions and the following disclaimer. 2. Redistributionsin binary form must
reproduce the above copyright notice, thislist of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution. 3. The end-user documentation
included with the redistribution, if any, must include the following acknowledgment: "This product
includes software devel oped by the Apache Software Foundation (http://www.apache.org/).” Alternately,
this acknowledgment may appear in the software itself, if and wherever such third-party acknowledgments
normally appear. 4. The names"Xerces' and "Apache Software Foundation" must not be used to endorse or
promote products derived from this software without prior written permission. For written permission,
please contact apache@apache.org. 5. Products derived from this software may not be called "Apache", nor
may "Apache" appear in their name, without prior written permission of the Apache Software Foundation.
THIS SOFTWARE ISPROVIDED “ASIS"' AND ANY EXPRESSED OR IMPLIED WARRANTIES,
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND
FITNESS FOR A PARTIC ULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
APACHE SOFTWARE FOUNDATION OR ITSCONTRIBUTORS BE LIABLE FOR ANY DIRECT,
INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
(INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. This software consists
of voluntary contributions made by many individuals on behalf of the Apache Software Foundation. For
more information on the Apache Software Foundation, please see <http://www.apache.org/>.

Progress Orbix v6.3.5 incorporates the Tomcat 4.0.4 from the Apache Software Foundation (http://
www.apache.org). Such Apache Technology is subject to the following terms and conditions: The Apache
Software License, Version 1.1. Copyright (c) 1999, 2000 The Apache Software Foundation. All rights

Vii

COMet Programmer’s Guide and Reference

reserved. Redistribution and use in source and binary forms, with or without modification, are permitted
provided that the following conditions are met: 1. Redistributions of source code must retain the above
copyright notice, thislist of conditions and the following disclaimer. 2. Redistributionsin binary form must
reproduce the above copyright notice, thislist of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution. 3. The end-user documentation
included with the redistribution, if any, must include the following acknowledgment: "This product
includes software devel oped by the Apache Software Foundation (http://www.apache.org/).” Alternately,
this acknowledgment may appear in the software itself, if and wherever such third-party acknowledgments
normally appear. 4. The names"The Jakarta Project”, "Tomcat" and "Apache Software Foundation" must
not be used to endorse or promote products derived from this software without prior written permission. For
written permission, please contact apache@apache.org. 5. Products derived from this software may not be
called "Apache", nor may "Apache" appear in their name, without prior written permission of the Apache
Software Foundation. THIS SOFTWARE ISPROVIDED "ASIS' AND ANY EXPRESSED OR
IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANT ABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
EVENT SHALL THE APACHE SOFTWARE FOUNDATION OR ITSCONTRIBUTORS BE LIABLE
FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. This
software consists of voluntary contributions made by many individuals on behalf of the Apache Software
Foundation. For more information on the Apache Software Foun dation, please see <http://
www.apache.org/>.

Progress Orbix v6.3.5 incorporates MCPP 2.6.4 from the MCPP Project. Such technology is subject to the
following terms and conditions: Copyright (c) 1998, 2002-2007 Kiyoshi Matsui kmatsui @t3.rim.or.jp All
rights reserved. This software including the filesin this directory is provided under the following license.
Redistribu tion and use in source and binary forms, with or without modification, are permitted provided
that the following conditions are met: 1. Redistributions of source code must retain the above copyright
notice, thislist of conditions and the following disclaimer. 2. Redistributionsin binary form must reproduce
the above copyright notice, thislist of conditions and the following disclaimer in the documentation and/or
other materials provided with the distribution. THIS SOFTWARE ISPROVIDED BY THE AUTHOR “AS
IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT,
INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
(INCLUDING, BUT NOT LIMITED TO, PROCURE MENT OF SUBSTITUTE GOODS OR SERVICES;
LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
ON ANY THEORY OF LIABILITY, WHETHER IN CON TRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

Progress Orbix v6.3.5 incorporates Xalan c++ v1.7 from The Apache Software Foundation. Such
technology is subject to the following terms and conditions: The Apache Software License, Version 1.1

viii

Copyright (c) 1999-2004 The Apache Software Foundation. All rights reserved. Redistribution and use in
source and binary forms, with or without modification, are permitted provided that the following conditions
are met: 1. Redistributions of source code must retain the above copyright notice, thislist of conditions and
the following disclaimer. 2. Redis tributions in binary form must reproduce the above copyright notice, this
list of conditions and the follow ing disclaimer in the documentation and/or other materials provided with
the distribution. 3. The end-user documentation included with the redistribution, if any, must include the
following acknowledgment: " This product includes software developed by the Apache Software Foundation
(http:/lwww.apache.org/)." Alternately, this acknowledgment may appear in the software itself, if and
wherever such third-party acknowledgments normally appear. 4. The names"Xalan" and " Apache Software
Foundation" must not be used to endorse or promote prod ucts derived from this software without prior
written permission. For written permission, please contact apache@apache.org. 5. Products derived from
this software may not be called "Apache", nor may "Apache" appear in their name, without prior written
permission of the Apache Software Foundation. THIS SOFTWARE IS PROVIDED “ASIS' AND ANY
EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICU LAR PURPOSE ARE
DISCLAIMED. IN NO EVENT SHALL THE APACHE SOFTWARE FOUNDATION ORITS
CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
OF THE POSSIBILITY OF SUCH DAMAGE.

This software consists of voluntary contributions made by many individuals on behalf of the Apache
Software Foundation and was originally based on software copyright (c) 1999, L otus Devel opment
Corporation., http://www.lotus.com. For more information on the Apache Software Foundation, please see
<http://www.apache.org/>.

Progress Orbix v6.3.5 incorporates Tcl 8.4.15 from Regents of the University of California, Sun
Microsystems, Inc., Scriptics Corporation, and other parties. Such technology is subject to the following
terms and conditions: This software is copyrighted by the Regents of the University of California, Sun
Microsystems, Inc., Scriptics Corporation, and other parties. The following terms apply to all files
associated with the software unless explicitly disclaimed in individual files. The authors hereby grant
permission to use, copy, modify, distribute, and license this software and its documentation for any purpose,
provided that existing copyright notices are retained in all copies and that this noticeisincluded verbatimin
any distributions. No written agreement, license, or royalty feeis required for any of the authorized uses.
Modifications to this software may be copyrighted by their authors and need not follow the licensing terms
described here, provided that the new terms are clearly indicated on the first page of each file where they
apply. IN NO EVENT SHALL THE AUTHORS OR DISTRIBUTORS BE LIABLE TO ANY PARTY
FOR DIRECT, INDIRECT, SPECIAL, INCIDENTAL, OR CONSEQUENTIAL DAMAGES ARISING
OUT OF THE USE OF THIS SOFTWARE, ITSDOCUMENTATION, OR ANY DERIVATIVES
THEREOF, EVEN IF THE AUTHORS HAVE BEEN ADVISED OF THE POSSIBILITY OF SUCH
DAMAGE. THE AUTHORS AND DISTRIBUTORS SPE CIFICALLY DISCLAIM ANY
WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WAR RANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, AND NON-INFRINGEMENT.

COMet Programmer’s Guide and Reference

THIS SOFTWARE IS PROVIDED ON AN "ASIS' BASIS, AND THE AUTHORS AND
DISTRIBUTORS HAVE NO OBLIGATION TO PROVIDE MAINTENANCE, SUPPORT, UPDATES,
ENHANCEMENTS, OR MODIFI CATIONS. GOVERNMENT USE: If you are acquiring this software on
behalf of the U.S. government, the Government shall have only "Restricted Rights" in the software and
related documentation as defined in the Federal Acquisition Regulations (FARS) in Clause 52.227.19 (c) (2).
If you are acquiring the software on behalf of the Department of Defense, the software shall be classified as
"Commercial Computer Software" and the Government shall have only "Restricted Rights" as defined in
Clause 252.227-7013 (c) (1) of DFARs. Notwithstanding the foregoing, the authors grant the U.S.
Government and others acting in its behalf permission to use and distribute the software in accordance with
the terms specified in thislicense.

Progress Orbix v6.3.5 incorporates bzip2 1.0.2 from Julian Seward. Such Technology is subject to the
following terms and conditions: This program, "bzip2" and associated library "libbzip2", are copyright (C)
1996-2002 Julian R Seward. All rights reserved. Redistribution and use in source and binary forms, with or
without modification, are permitted provided that the following conditions are met: 1. Redistributions of
source code must retain the above copyright notice, thislist of conditions and the following disclaimer. 2.

The origin of this software must not be misrepresented; you must not claim that you wrote the original
software. If you use this software in a product, an acknowledgment in the product documentation would be
appreciated but is not required. 3. Altered source versions must be plainly marked as such, and must not be
misrepresented as being the original software. 4. The name of the author may not be used to endorse or
promote products derived from this software without specific prior written permission. THIS SOFTWARE
ISPROVIDED BY THE AUTHOR"ASIS' AND ANY EXPRESS OR IMPLIED WARRANTIES,
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANT ABILITY
AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
POSSIBILITY OF SUCH DAMAGE. Julian Seward, Cambridge, UK .jseward@acm.org bzip2/libbzip2
version 1.0.2 of 30 December 2001.

Progress Orbix v6.3.5 incorporates zlib 1.2.3 from Jean-loup Gailly and Mark Adler. Such Technology is
subject to the following terms and conditions: License /* zlib.h -- interface of the 'zlib' general purpose
compression library version 1.2.3, July 18th, 2005 Copyright (C) 1995-2000 Jean-loup Gailly and Mark
Adler. Thissoftwareis provided 'as-is, without any express or implied warranty. In no event will the
authors be held liable for any damages arising from the use of this software. Permission is granted to anyone
to use this software for any purpose, including commercial applications, and to alter it and redistribute it
freely, subject to the following restrictions: 1. The origin of this software must not be mis represented; you
must not claim that you wrote the original software. If you use this software in a product, an
acknowledgment in the product documentation would be appreciated but is not required. 2. Altered source
versions must be plainly marked as such, and must not be misrepresented as being the original software. 3.
This notice may not be removed or altered from any source distribution. Jean-loup Gailly jloup@gzip.org
Mark Adler madler@alumni.caltech.edu */

Progress Orbix v6.3.5 incorporates the MinML 1.7 from John Wilson. Such Technology is subject to the
following terms and conditions. Copyright (c) 1999, John Wilson (tug@uwilson.co.uk). All rights reserved.
Redistribution and use in source and binary forms, with or without modification, are permitted provided that
the following conditions are met: Redistributions of source code must retain the above copyright notice,,
thislist of conditions and the following disclaimer. Redistributionsin binary form must reproduce the above
copyright notice, thislist of conditions and the following dis claimer in the documentation and/or other
materials provided with the distribution. All advertising materials mention ing features or use of this
software must display the following acknowledgement: This product includes software devel oped by John

Wilson. The name of John Wilson may not be used to endorse or promote products derived from this
software without specific prior written permission. THIS SOFTWARE ISPROVIDED BY JOHN WILSON
"ASIS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL JOHN WILSON BE LIABLE FOR ANY
DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
(INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABIL ITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

Progress Orbix v6.3.5 incorporates JDOM vbetad from JDOM. Such Technology is subject to the following
terms and conditions: LICENSE.txt, v 1.10 2003/04/10 08:36:05 jhunter Exp $ Copyright (C) 2000-2003
Jason Hunter & Brett McLaughlin. All rights reserved. Redistribution and use in source and binary forms,
with or with out modification, are permitted provided that the following conditions are met: 1.
Redistributions of source code must retain the above copyright notice, thislist of conditions, and the
following disclaimer. 2. Redistribu tions in binary form must reproduce the above copyright notice, thislist
of conditions, and the dis claimer that follows these conditionsin the documentation and/or other materials
provided with the distribu tion. 3. The name"JDOM" must not be used to endorse or promote products
derived from this software without prior written permission. For written permission, please contact <license
AT jdom DOT org>. 4. Prod ucts derived from this soft ware may not be called "JDOM", nor may "JDOM"
appear in their name, without prior written permission from the JDOM Project Management <pm AT jdom
DOT org>. In addition, we request (but do not require) that you include in the end-user documentation
provided with the redistribution and/or in the soft ware itself an acknowledgement equivalent to the
following: "This product includes software devel oped by the JIDOM Project (http://www.jdom.org/)."
Alternatively, the acknowledgment may be graphical using the logos available at http://www.jdom.org/
images/logos. THIS SOFTWARE ISPROVIDED “ASIS' AND ANY EXPRESSED OR IMPLIED
WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WAR RANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DIS CLAIMED. IN NO
EVENT SHALL THE JDOM AUTHORS OR THE PROJECT CONTRIBUTORSBE LIA BLE FOR ANY
DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
(INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABIL ITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. This software consists

Xi

COMet Programmer’s Guide and Reference

of voluntary contributions made by many individuals on behalf of the JIDOM Project and was originally
created by Jason Hunter <jhunter AT jdom DOT org> and Brett McLaughlin <brett AT jdom DOT org>.
For more information on the JIDOM Project, please see <http://www.jdom.org/>.

Progress Orbix v6.3.5 incorporates OpenSSL 0.9.8i Copyright (c) 1998-2008 The OpenSSL Project
Copyright (c) 1995-1998 Eric A. Young, Tim J. Hudson All rights reserved. Such Technology is subject to
the following terms and conditions: The OpenSSL toolkit stays under adual license, i.e. both the conditions
of the OpenSSL License and the original SSLeay license apply to the toolkit. See below for the actual
license texts. Actually both licenses are BSD-style Open Source licenses. In case of any license issues
related to OpenSSL please contact openssl-core@openssl.org. OpenSSL License - Copyright (c) 1998-2008
The OpenSSL Project. All rightsreserved. Redistribution and use in source and binary forms, with or
without modification, are permitted pro vided that the following conditions are met: 1. Redistributions of
source code must retain the above copy right notice, thislist of conditions and the following disclaimer. 2.
Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the
following disclaimer in the documentation and/or other materials provided with the distribution. 3. All
advertising materials mentioning features or use of this software must display the following
acknowledgment: "This product includes software devel oped by the OpenSSL Project for use in the
OpenSSL Toolkit. (http://www.openss.org/)" 4. The names "OpenSSL Toolkit" and "OpenSSL Project"
must not be used to endorse or promote products derived from this software without prior written
permission. For written permission, please contact openssl-core@openssl.org. 5. Products derived from this
software may not be called "OpenSSL" nor may "OpenSSL" appear in their names without prior written
permission of the OpenSSL Project. 6. Redistributions of any form whatsoever must retain the following
acknowledgment: "This product includes software devel oped by the OpenSSL Project for use in the
OpenSSL Toolkit (http://www.openssl.org/)" THIS SOFTWARE IS PROVIDED BY THE OpenSSL
PROJECT "ASIS' AND ANY EXPRESSED OR IMPLIED WARRANTIES, INCLUDING BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR
ITSCONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
EXEMPLARY, OR CONSEQUENTIAL DAM AGES (INCLUDING BUT NOT LIMITED TO,
PROCUREMENT OF SUBSTITUTE GOODS OR SERV ICES; LOSS OF USE, DATA, OR PROFITS;
OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
OF THE POSSIBILITY OF SUCH DAMAGE. This product includes cryp tographic software written by
Eric Young (eay @cryptsoft.com). This product includes software written by Tim Hudson
(tih@cryptsoft.com). - Original SSLeay License - Copyright (C) 1995-1998 Eric Young

(eay@crypt soft.com) All rights reserved. This package is an SSL implementation written by Eric Young
(eay@crypt soft.com). The implementation was written so as to conform with Netscapes SSL. Thislibrary
isfree for commercial and non-commer cial use as long as the following conditions are aheared to. The
following conditions apply to al code found in this distribution, be it the RC4, RSA, lhash, DES, etc., code;
not just the SSL code. The SSL documentation included with this distribution is covered by the same
copyright terms except that the holder is Tim Hudson (tjh@cryptsoft.com). Copy right remains Eric
Young's, and as such any Copyright notices in the code are not to be removed. If this packageisusedina
product, Eric Young should be given attribution as the author of the parts of the library used. Thiscan bein
the form of atextual message at program startup or in documentation (online or textual) provided with the
package. Redistri bution and use in source and binary forms, with or with out modification, are permitted

Xii

provided that the follow ing conditions are met: 1. Redistributions of source code must retain the copyright
notice, thislist of conditions and the following disclaimer. 2. Redistributionsin binary form must reproduce
the above copyright notice, thislist of con ditions and the following dis claimer in the documentation and/or
other materials provided with the distribution. 3. All advertising materials mention ing features or use of this
software must display the following acknowledge ment: "This product includes crypto graphic software
written by Eric Young (eay@cryptsoft.com)" The word ‘cryptographic’ can be left out if the rou tines from
the library being used are not crypto graphic related :-). 4. If you include any Windows specific code (or a
deriv ative thereof) from the apps directory (application code) you must include an acknowledgement: "This
product includes software written by Tim Hudson (tjh@cryptsoft.com)" THIS SOFTWARE |S PROVIDED
BY ERIC YOUNG "ASIS' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT
NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANT ABILITY AND FITNESS FOR A
PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THEAUTHOR OR
CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE CIAL,
EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
PROCURE MENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
OF THE POSSI BILITY OF SUCH DAMAGE. The licence and distribution terms for any publically
available version or derivative of this code cannot be changed. i.e. this code cannot simply be copied and
put under another distribution licence [including the GNU Public Licence.]

Progress Orhix v6.3.5 incorporates PCRE v7.8 from the PCRE Project. Such Technology is subject to the
following terms and conditions:

PCRE LICENCE

PCRE isalibrary of functions to support regular expressions whose syntax and semantics are as close as
possible to those of the Perl 5 language. Release 7 of PCRE is distributed under the terms of the
"BSD"licence, as specified below. The documentation for PCRE, supplied in the "doc" directory, is
distributed under the same terms as the software itself. The basic library functions are written in C and are
freestanding. Also included in the distribution is a set of C++ wrapper functions.

THE BASIC LIBRARY FUNCTIONS

Written by: Philip Hazel

Email local part: ph10

Email domain: cam.ac.uk

University of Cambridge Computing Service,
Cambridge, England.

Copyright (c) 1997-2008 University of Cambridge
All rights reserved.

THE C++ WRAPPER FUNCTIONS

Xiii

COMet Programmer’s Guide and Reference

Contributed by: Google Inc.
Copyright (c) 2007-2008, Google Inc.
All rights reserved.

THE "BSD" LICENCE

Redistribution and use in source and binary forms, with or without modification, are permitted provided that
the following conditions are met: Redistributions of source code must retain the above copyright notice, this
list of conditions and the following disclaimer. Redistributions in binary form must reproduce the above
copyright notice, thislist of conditions and the following disclaimer in the documentation and/or other
materials provided with the distribution. Neither the name of the University of Cambridge nor the name of
Google Inc. nor the names of their contributors may be used to endorse or promote products derived from
this software without specific prior written permission. THIS SOFT WARE IS PRO VIDED BY THE
COPYRIGHT HOLDERS AND CONTRIBUTORS "ASIS' AND ANY EXPRESS OR IMPLIED
WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRAN TIES OF
MERCHANT ABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT,
INDI RECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
(INCLUDING, BUT NOT LIMITED TO, PROCURE MENT OF SUBSTITUTE GOODS OR SERVICES;
LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

Progress Orbix v6.3.5 incorporates IDL Compiler Front End 1 from Sun Microsystems, Inc. Copyright
1992, 1993, 1994 Sun Microsystems, Inc. Printed in the United States of America. All Rights Reserved.
Such tech nology is subject to the following terms and conditions: This product is protected by copyright
and distrib uted under the following license restricting its use. The Interface Definition Language Compiler
Front End (CFE) is made available for your use provided that you include this license and copyright notice
on al media and documentation and the software program in which this product isincorporated in whole or
part. You may copy and extend functionality (but may not remove functionality) of the Interface Definition
Language CFE without charge, but you are not authorized to license or distribute it to anyone el se except as
part of a product or program devel oped by you or with the express written consent of Sun Microsystems,
Inc. ("Sun"). The names of Sun Microsystems, Inc. and any of its subsidiaries or affiliates may not be used
in advertising or publicity per taining to distribution of Interface Definition Language CFE as permitted
herein. Thislicenseis effective until termi nated by Sun for failure to comply with thislicense. Upon
termination, you shall destroy or return all code and documentation for the Interface Definition Language
CFE. INTERFACE DEFINITION LANGUAGE CFE ISPROVIDED ASISWITH NO WARRANTIES
OF ANY KIND INCLUDING THE WARRANTIES OF DESIGN, MERCHANTIBILITY AND FITNESS
FOR A PARTICULAR PURPOSE, NONINFRINGEMENT, OR ARISING FROM A COURSE OF
DEALING USAGE OR TRADE PRACTICE. INTERFACE DEFINITION LANGUAGE CFE IS
PROVIDED WITH NO SUPPORT AND WITHOUT ANY OBLIGATION ON THE PART OF Sun OR
ANY OF ITSSUBSIDIARIES OR AFFILIATESTO ASSIST IN ITSUSE, CORREC TION,
MODIFICATION OR ENHANCEMENT. SUN OR ANY OF ITS SUBSIDIARIES OR AFFILIATES
SHALL HAVE NO LIABILITY WITH RESPECT TO THE INFRINGEMENT OF COPYRIGHTS,
TRADE SECRETS OR ANY PATENTSBY INTERFACE DEFINITION LANGUAGE CFE OR ANY

Xiv

PART THEREOF. IN NO EVENT WILL SUN OR ANY OF ITS SUBSIDIARIES OR AFFILIATES BE
LIABLE FOR ANY LOST REVENUE OR PROFITS OR OTHER SPECIAL, INDIRECT AND

CONSE QUENTIAL DAMAGES, EVEN IF SUN HASBEEN ADVISED OF THE POSSIBILITY OF
SUCH DAMAGES. Use, duplication, or disclosure by the government is subject to restrictions as set forth
in subpara graph (c)(1)(ii) of the Rightsin Technical Data and Computer Software clause at DFARS
252.227-7013 and FAR 52.227-19. Sun, Sun Microsystems and the Sun logo are trademarks or registered
trademarks of Sun Microsys tems, Inc. SunSoft, Inc. 2550 Garcia Avenue, Mountain View, Caifornia
94043 NOTE: SunOS, Sun Soft, Sun, Solaris, Sun Microsystems or the Sun logo are trademarks or
registered trademarks of Sun Micro systems, Inc.

Progress Orhix v6.3.5 incorporates LibXML2 2.4.24 from Daniel Veillard. Such Technology is subject to
the following terms and conditions: Except where otherwise noted in the source code (trio files, hash.c and
list.c) covered by asimilar license but with different Copyright notices: Copyright (C) 1998-2002 Daniel
Veillard. All Rights Reserved. Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the " Software"), to deal in the Software without
restriction, including with out limitation the rights to use, copy, modify, merge, publish, distribute,
sublicense, and/or sell copies of the Soft ware, and to permit persons to whom the Software is furnished to
do s0, subject to the following conditions. The above copyright notice and this permission notice shall be
included in al copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "ASI1S",
WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED
TO THE WARRANTIES OF MERCHANTA BILITY, FITNESS FOR A PARTICULAR PURPOSE AND
NONINFRINGEMENT. IN NO EVENT SHALL THE DANIEL VEILLARD BE LIABLE FOR ANY
CLAIM, DAMAGESOR OTHERLIA BILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE
USE OR OTHER DEALINGSIN THE SOFTWARE. Except as contained in this notice, the name of Daniel
Veillard shall not be used in advertising or otherwise to promote the sale, use or other dealingsin this
Software without prior written authorization from him.

===trio.c, trio.h: Copyright (C) 1998 Bjorn Reese and Daniel Stenberg. Permission to use, copy, modify,
and distribute this software for any purpose with or without fee is hereby granted, provided that the above
copyright notice and this permission notice appear in all copies. THIS SOFTWARE ISPROVIDED "ASIS"
AND WITH OUT ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, WITHOUT
LIMITATION, THE IMPLIED WARRANTIES OF MERCHANTIBILITY AND FITNESSFOR A
PARTICULAR PURPOSE. THE AUTHORS AND CONTRIB UTORS ACCEPT NO RESPONSIBILITY
IN ANY CONCEIVABLE MANNER. ====triop.h: Copyright (C) 2000 Bjorn Reese and Daniel Stenberg.
Permission to use, copy, modify, and dis tribute this software for any purpose with or without

feeis hereby granted, provided that the above copyright notice and this permission notice appear in all
copies. THIS SOFTWARE ISPROVIDED "ASIS"AND WITHOUT ANY EXPRESS OR IMPLIED
WARRANTIES, INCLUDING, WITHOUT LIMITATION, THE IMPLIED WARRANTIES OF
MERCHANTIBILITY AND FITNESS FOR A PARTIC ULAR PURPOSE. THE AUTHORS AND
CONTRIBUTORS ACCEPT NO RESPONSIBILITY IN ANY CONCEIVABLE MANNER.

==== hash.c: Copyright (C) 2000 Bjorn Reese and Daniel Veillard. Permission to use, copy, modify, and
distribute this software for any purpose with or without feeis hereby granted, provided that the above
copyright notice and this permis sion notice appear in all copies. THIS SOFTWARE IS PROVIDED “AS
IS" AND WITHOUT ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, WITHOUT
LIMITATION, THE IMPLIED WARRANTIES OF MERCHAN TIBILITY AND FITNESS FOR A

XV

COMet Programmer’s Guide and Reference

PARTICULAR PURPOSE. THE AUTHORS AND CONTRIBUTORS ACCEPT NO RESPONSIBILITY
IN ANY CONCEIVABLE MANNER.

=====ist.c: Copyright (C) 2000 Gary Pennington and Daniel Veillard. Permission

to use, copy, modify, and distribute this software for any purpose with or without fee is hereby granted,
provided that the above copyright notice and this permission notice appear in al copies. THIS SOFTWARE
ISPROVIDED "ASIS' AND WITHOUT ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING,
WITHOUT LIMITATION, THE IMPLIED WARRANTIES OF MERCHANTIBILITY AND FITNESS
FOR A PARTICULAR PURPOSE. THE AUTHORS AND CONTRIBUTORS ACCEPT NO
RESPONSIBILITY IN ANY CONCEIVABLE MANNER. ===

triodef.h, trionan.c, trionan.h: Copyright (C) 2001 Bjorn Reese Permission to use, copy, modify, and
distribute this soft ware for any purpose with or without fee is hereby granted, provided that the above
copyright notice and this permis sion notice appear in al copies. THIS SOFTWARE ISPROVIDED “AS
IS AND WITHOUT ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, WITHOUT
LIMITATION, THE IMPLIED WARRANTIES OF MER CHANTIBILITY AND FITNESSFOR A
PARTICULAR PURPOSE. THE AUTHORS AND CONTRIBUTORS ACCEPT NO RESPONSIBILITY
IN ANY CONCEIVABLE MANNER.

====triogtr.c, triostr.h: Copyright (C) 2001 Bjorn Reese and Daniel Stenberg.

Permission to use, copy, modify, and distribute this software for any purpose with or without fee is hereby
granted, pro vided that the above copyright notice and this permission notice appear in all copies. THIS
SOFTWARE ISPRO VIDED “ASIS" AND WITHOUT ANY EXPRESS OR IMPLIED WARRANTIES,
INCLUDING WITHOUT LIMITATION, THE IMPLIED WARRANTIES OF MERCHANTIBILITY
AND FITNESS FOR A PARTICULAR PUR POSE. THE AUTHORS AND CONTRIBUTORS ACCEPT
NO RESPONSIBILITY IN ANY CONCEIVABLE MANNER.

Progress Orhix v6.3.5 incorporates |CU library 2.6 from IBM. Such Technology is subject to the following
terms and conditions: Copyright (c) 1995-2009 International Business Machines Corporation and others.
All rights reserved. Per mission is hereby granted, free of charge, to any person obtaining a copy of this
software and associated documenta tion files (the " Software"), to deal in the Software without restriction,
including without limitation the rights to use, copy, modify, merge, publish, distribute, and/or sell copies of
the Software, and to permit persons to whom the Soft wareis fur nished to do so, provided that the above
copyright notice(s) and this permission notice appear in al copies of the Software and that both the above
copyright notice(s) and this permission notice appear in supporting documentation. THE SOFTWARE IS
PROVIDED "ASIS', WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING
BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A

PARTICU LAR PUR POSE AND NONINFRINGEMENT OF THIRD PARTY RIGHTS. IN NO EVENT
SHALL THE COPYRIGHT HOLDER OR HOLDERS INCLUDED IN THISNOTICE BE LIABLE FOR
ANY CLAIM, OR ANY SPECIAL INDI RECT OR CONSEQUENTIAL DAMAGES, OR ANY
DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN
AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TOR TIOUS ACTION, ARISING OUT OF
OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. Except as
contained in this notice, the name of a copyright holder shall not be used in advertising or other wiseto
promote the sale, use or other dealings in this Software without prior written authorization of the copyright
holder. All trademarks and registered trademarks mentioned herein are the property of their respective
owners.

Updated: July 12, 2011

XVi

Contents

List of Figures
List of Tables

Preface

Part 1 Introduction

Chapter 1 COM and CORBA Principles
Main Similarities and Differences
CORBA Overview
COM Overview
COM
Automation

Chapter 2 Introduction to COMet
The Interworking M odel
How COMet Implementsthe M odel
COMet System Components

Chapter 3 Usage Models and Bridge L ocations

Automation Client to CORBA Server
COM Client to CORBA Server

Part 2 Programmer’s Guide

Chapter 4 Getting Started
Prerequisites
Developing Automation Clients

XXV

XXVii

XXiX

» W

[
wowvo

18
20
24

27
28
31

35
36
38

XVii

CONTENTS

Introduction
Using the Visual Basic Genie
Writing a Visual Basic Client without the Genie
Writing a PowerBuilder Client
Running the Client
Using DCOM with COMet
Introduction
Launching the COMet Bridge Out-of-Process
DCOM Security
Using COMet with Internet Explorer
Specifying the Bridge Location
The Supplied Demonstration
Automation Dual Interface Support
Developing COM Clients
Generating Microsoft IDL from OMG IDL
Compiling Microsoft IDL
Writing a COM C++ Client
Priming the COMet Type Store Cache

Chapter 5 Developing an Automation Client

The Telephone Book Example

Using Automation Dual Interfaces

Writing the Client
Obtaining a Reference to a CORBA Object
The Visua Basic Client Code in Detail
The PowerBuilder Client Code in Detail

Building and Running the Client

Chapter 6 Developinga COM Client
The Telephone Book Example
Prerequisites
Writing the Client
Obtaining a Reference to a CORBA Object
The COM C++ Client Code in Detail
Building and Running the Client

Chapter 7 Exception Handling
CORBA Exceptions

Xviii

39

47
50
53

55
56
59
60
61
63
67
70
71
73
74
77

79
80

85
86
89
92
95

97

98
101
102
103
107
110

113
114

CONTENTS

Example of a User Exception 115
Exception Properties 118
General Exception Properties 119
Additional System Exception Properties 120
Exception Handling in Automation 122
Exception Handling in Visual Basic 123

Inline Exception Handling 125

Using Type Information 128
Exception Handling in COM 131
Catching COM Exceptions 132

Using Direct-to-COM Support 134
Chapter 8 Client Callbacks 137
Introduction to Callbacks 138
Implementing Callbacks 139
Definingthe OMG IDL Interfaces 140
Generating Stub Code for the Callback Objects 142
Implementing the Client 143
Implementing the Client in Visual Basic 144
Implementing the Client in PowerBuilder 146
Implementing the Client in COM C++ 147
Implementing the Server 149
Chapter 9 Deployinga COMet Application 151
Deployment Models 152
Bridge In-Process to Each Client 153
Bridge Out-of-Process on Each Client Machine 155
Bridge on Intermediary Machine 157
Bridge on Server Machine 159
Internet Deployment 161
Deployment Steps 162
Minimizing the Client-Side Footprint 164
Deploying Multiple Hosts 166
Chapter 10 Development Support Tools 171
The COMet Type Store 173
The Central Role of the Type Store 174

The Caching Mechanism of the Type Store 176

XiX

CONTENTS

Part 3 Programmer’s Reference

The COMet Tools Window
Adding New Information to the Type Store
Using the GUI Tool
Using the Command Line
Deleting the Type Store Contents
Dumping the Type Store Contents
Creating aMicrosoft IDL File
Using the GUI Tool
Using the Command Line
Creatinga TypelLibrary
Using the GUI Tool
Using the Command Line
Creating Stub Codefor Client Callbacks
Replacing an Existing DCOM Server
Generating Visual Basic Client Code
Introduction
Using the GUI Tool
Using the Command Line

Chapter 11 COMet API Reference

XX

Common Interfaces
| ForeignObject
IMonikerProvider

Automation-Specific I nterfaces
DICORBAAnNy
DICORBAFactory
DICORBAFactoryEx
DICORBA Object
DICORBA Struct
DICORBA SystemException
DICORBATYypeCode
DICORBAUnNion
DICORBAUserException
DIForeignComplexType
DIForeignException

178
180
181
182
184
185
186
187
189
190
191
193
194
196
199
200
202
213

217
218
219
221
222
223
228
230
231
233
234
235
239
240
241
242

CONTENTS

DIObject 243
DIObjectinfo 244
DIOrbixORBObject 245
DIORBObject 248
COM-Specific Interfaces 250
ICORBA_Any 251
ICORBAFactory 253
|CORBAObject 255
ICORBA_TypeCode 257
ICORBA_TypeCodeExceptions 261

| OrbixORBObject 262
|ORBObject 265
Chapter 12 Introductionto OMG IDL 267
IDL 268
M odules and Name Scoping 269
I nterfaces 270
Introduction to Interfaces 271
Interface Contents 273
Operations 274
Attributes 277
Exceptions 278
Empty Interfaces 279
Inheritance of Interfaces 280
Multiple Inheritance 281
Inheritance of the Object Interface 283
Inheritance Redefinition 284
Forward Declaration of IDL Interfaces 285

Local Interfaces 286
Valuetypes 288
Abstract Interfaces 289

IDL Data Types 290
Built-in Data Types 291
Extended Built-in Data Types 293
Complex Data Types 296

Enum Data Type 297

Struct Data Type 298

Union Data Type 299

Arrays 301

XXi

CONTENTS

Sequence 302
Pseudo Object Types 303
Defining Data Types 304
Constants 305
Constant Expressions 308
Chapter 13 Mapping CORBA to Automation 311
Mapping for Basic Types 313
Mapping for Strings 315
Mapping for Interfaces 316
Basic Interface Mapping 317
Mapping for Attributes 319
Mapping for Operations 321
Mapping for Interface Inheritance 323
Mapping for Single Inheritance 324
Mapping for Multiple Inheritance 326
Mapping for Complex Types 329
Creating Constructed OMG IDL Types 330
Mapping for Structs 331
Mapping for Unions 333
Mapping for Sequences 336
Mapping for Arrays 339
Mapping for System Exceptions 340
Mapping for User Exceptions 341
Mapping for the Any Type 343
Mapping for Object References 344
Mapping for Modules 347
Mapping for Constants 348
Mapping for Enums 349
Mapping for Scoped Names 351
Mapping for Typedefs 352
Chapter 14 Mapping CORBA to COM 353
Basic Types 355
Mapping for Strings 356
Mapping for Interfaces 357
Mapping Interface Identifiers 358

Mapping for Nested Types 359

XXii

CONTENTS

Mapping for Attributes 360
Mapping for Operations 362
Mapping for Interface Inheritance 364
Mapping for Complex Types 368
Creating Constructed OMG IDL Types 369
Mapping for Structs 370
Mapping for Unions 372
Mapping for Sequences 374
Mapping for Arrays 376
Mapping for System Exceptions 377
Mapping for User Exceptions 381
Mapping for the Any Type 384
Mapping for Object References 386
M apping for M odules 388
M apping for Constants 389
Mapping for Enums 391
Mapping for Scoped Names 393
Mapping for Typedefs 394
Chapter 15 COMet Configuration 395
Overview 396
COMet: Config Namespace 397
COMet:Mapping Namespace 399
COMet: Debug Namespace 400
COMet: TypeM an Namespace 401
COM et: Services Namespace 405
Chapter 16 COMet Utility Arguments 407
Typeman Arguments 408
Ts2idl Arguments 410
Ts2tlb Arguments 411
Aliassrv Arguments 412
Custsur Arguments 413
Tlibreg Arguments 414
Idlgen vb_genie.tcl Arguments 415

I ndex 417

XXili

CONTENTS

XXIV

List of Figures

Figure 1: Role of the ORB in Client-Server Communication
Figure 2: The Standard Interworking Model

Figure 3: COMet’ s Implementation of the Interworking Model
Figure 4: View Object in COMet

Figure 5: Automation Client to CORBA Server

Figure 6: COM Client to CORBA Server

Figure 7: Visual Basic Client GUI for the COMet Grid Demonstration
Figure 8: PowerBuilder Client GUI for the COMet Grid Demonstration
Figure 9: Development Overview Using Code Generation
Figure 10: Telephone Book Example with Automation Client
Figure 11: Phone List Search Client GUI Interface

Figure 12: Binding to the CORBA PhoneBook Object

Figure 13: Telephone Book Example with COM Client

Figure 14: Binding to the CORBA PhoneBook Object

Figure 15: Bridge In-Process to Each Client

Figure 16: Bridge Out-Of-Process On Each Client Machine
Figure 17: Bridge on Intermediary Machine

Figure 18: Bridge on Server Machine

Figure 19: Deploying Multiple Hosts

Figure 20: COMet Type Store and the Development Utilities
Figure 21: COMet Tools Window

Figure 22: Creating a Microsoft IDL File from OMG IDL
Figure 23: Creating a Type Library from OMG IDL

Figure 24: Creating Stub Code for Callbacks

Figure 25: Aliasing the Bridge

Figure 26: Visual Basic Project Dialog Window

18
21
22
28
31
41
42

81

83

88

99
105
154
156
158
160
166
174
178
188
191
194
197
202

XXV

LIST OF FIGURES

Figure 27:
Figure 28:
Figure 29:
Figure 30:
Figure 31:
Figure 32:
Figure 33:
Figure 34:
Figure 35:
Figure 36:
Figure 37:
Figure 38:
Figure 39:
Figure 40:
Figure 41:
Figure 42:
Figure 43:

XXVi

COMet Wizard - Introduction Window

COMet Wizard - Step 1 Window

Select the IDL File Window

Step 1 Window Displaying Full Path to the Selected File
COMet Wizard - Step 2 Window

COMet Wizard - Step 3 Window

Selecting a Folder

Step 3 Window Displaying Full Path to the Selected Folder
COMet Wizard - Finished Window

Example of a Generated Client Application

Inheritance Hierarchy for PremiumAccount Interface
Automation View of the Bank Interface

Example of a CORBA Interface Hierarchy

Automation View of the OMG IDL AccoutDetails Struct
Automation View of the OMG IDL Union, U
Automation View of Bank_Reject

Example of a CORBA Interface Hierarchy

203
204
205
206
207
208
209
210
211
212
282
318
326
332
335
342
365

List of Tables

Table 1:
Table 2:
Table 3:
Table 4:
Table5:
Table 6:
Table 7:
Table 8:

Main Differences between COM and CORBA

Differences between COM and Automation Interfaces
CORBA ::Local Object Pseudo-Operations and Return Values
Built-in IDL Data Types, Sizes, and Vaues

Extended built-in IDL Data Types, Sizes, and Values
CORBA-to-Automation Mapping Rules for Basic Types
CORBA-to-COM Mapping Rules for Basic Types

Using Error Object for CORBA System Exceptions

14
287
291
293
313
355
378

XXVii

LIST OF TABLES

XXViii

Preface

COMet combines the best of both the object management group (OMG)
common object request broker architecture (CORBA) and Microsoft component
object model (COM) standards. It provides a high performance dynamic bridge,
which enables transparent communication between COM clients and CORBA
SErvers.

COMet is designed to allow COM programmers—who use tools such as Visual
C++, Visua Basic, PowerBuilder, Delphi, or Active Server Pages on the
Windows desktop—to easily access CORBA applications running in Windows,
UNIX, or OS/390 environments. It meansthat COM programmers can use the
tools familar to them to build heterogeneous systems that use both COM and
CORBA components within a COM environment.

The interworking model and mapping standards described in this guide are

based on chapters 17, 18, and 19 of the OMG Common Object Request Broker:
Architecture and Specification:

ftp://ftp.omg.org/pub/docs/formal/01-12-35.pdf

Note: Orbix COMet is supported with Microsoft Visual C++ 6.0 only. Orbix
also supports Visual C++ 7.1, Visual C++ 8.0, and Visual C++ 9.0. However,
Orbix COMet does not support these newer compiler versions, and works with
Visual C++ 6.0 only.

XXiX

ftp://ftp.omg.org/pub/docs/formal/01-12-35.pdf

PREFACE

Audience

Organization of thisguide

XXX

This guideisintended for COM application programmers who want to use
COMet to develop and deploy distributed applications that combine CORBA
and COM components within a COM environment. This guide assumes that the
reader already has aworking knowledge of COM-based and A utomation-based
toals, such as Visual Basic, PowerBuilder, and Visual C++. (See“COM
Overview” on page 9 for a distinction between COM and Automation.)

Thisguideisdivided asfollows:

Part 1 “Introduction”

This part first provides an introductory overview of the main principles of both
COM and CORBA. It then provides an introduction to COMet and an overview
of the various ways you can useit in adistributed system.

Part 2 “Programmer’s Guide”

This part describes how to:

®* UseCOMet to develop COM and Automation clients that can
communicate with a CORBA server.

. Implement exception handling and client callbacks in your COMet
applications.

° Deploy a distributed COMet application.

® Usethe various development utilities that are supplied with COMet.

Part 3 “Programmer’ s Reference”

This part describes:

®* The application programming interfaces (APIs) supplied with COMet.

® Thesemantics of CORBA IDL for defining interfaces to CORBA
applications.

® Therulesfor mapping CORBA IDL typesto COM and Automation.

® The configuration variables associated with COMet.

® Thearguments available with each COMet utility.

Related reading

Additional resources

Typographical conventions

PREFACE

The following related reading material is recommended:

The Common Object Request Broker: Architecture and Specification:
ftp://ftp.omg.org/pub/docs/formal /01-12-35.pdf

COM-CORBA Interoperability, Ronan Geraghty et al., (Prentice Hall,
1999).

The following additional Orbix resources are available:

Contact Orbix technical support at:
http://www.progress.com/orbix/orbix-support.html

The most up-to-date versions of Orbix technical documentation are
available from:

http://web.progress.com/orbix/support/6.3.4/

The Orbix Knowledge Base is a database of articles that contain practical
advice on specific development issues, contributed by developers, support
specialists, and customers. Thisis available from: http://
www.progress.com/orbix/orbix-support.html

This guide uses the following typographical conventions:

Constant width Constant width (courier font) in normal text represents

portions of code and literal names of items such as
classes, functions, variables, and data structures. For
example, text might refer to the corea: : Object class.
Constant width paragraphs represent code examples or

information a system displays on the screen. For
example:

#include <stdio.h>

XXXI

http://www.progress.com/orbix/orbix-support.html
http://www.iona.com/support/docs/orbix/6.3/index.xml
ftp://ftp.omg.org/pub/docs/formal/01-12-35.pdf
http://www.progress.com/orbix/orbix-support.html
http://www.progress.com/orbix/orbix-support.html
http://www.progress.com/orbix/orbix-support.html
http://www.progress.com/orbix/orbix-support.html

PREFACE

Italic

Italic words in normal text represent emphasis and new
terms.

Italic words or characters in code and commands
represent variable values you must supply, such as
arguments to commands or path names for your
particular system. For example:

% cd /users/your_name

Note: Some command examples may use angle
brackets to represent variable values you must supply.
Thisisan older convention that is replaced with italic
words or characters.

Keying conventions This guide may use the following keying conventions:

No prompt

o°

{}

XXXil

When acommand’ s format is the same for multiple
platforms, a prompt is not used.

A percent sign represents the UNIX command shell
prompt for a command that does not require root
privileges.

A number sign represents the UNIX command shell
prompt for a command that requires root privileges.

The notation > represents the DOS and Windows
command prompt.

Horizontal or vertical ellipsesin format and syntax
descriptionsindicate that material has been eliminated to
simplify adiscussion.

Brackets enclose optional itemsin format and syntax
descriptions.

Braces enclose alist from which you must choose an
item in format and syntax descriptions.

A vertical bar separatesitemsin alist of choices
enclosedin{ } (braces) in format and syntax
descriptions.

Part 1

| ntroduction

In ThisPart This part contains the following chapters:
COM and CORBA Principles page 3
Introduction to COMet page 17

Usage Models and Bridge Locations page 27

In This Chapter

CHAPTER 1

COM and CORBA
Principles

COMet is an implementation of the Object Management Group
(OMG) Interworking Architecture specification for allowing
component object model (COM) clients to communicate with
common object request broker architecture (CORBA) servers.!
Both CORBA and COM are standards for distributed object
technology. This chapter providesan introductory overview of the
main principles of both COM and CORBA.

This chapter discusses the following topics:

Main Similarities and Differences page 4
CORBA Overview page 6
COM Overview page 9

Note: A more in-depth study of COM and CORBA is outside the scope of
this guide.

1. The Interworking Architecture specification is part of the CORBA Specification
availableat ftp: //ftp.omg.org/pub/docs/formal/01-12-35.pdf. COMet
isnot afull implementation of the Interworking Architecture specification, because it
does not also alow CORBA clients to communicate with COM servers.

CHAPTER 1| COM and CORBA Principles

Main Similarities and Differences

Overview

This section outlines the main similarities and differences between COM and

CORBA. The following topics are discussed:

“Similarities’ on page 4.
“Differences’ on page 4.

Similarities
o
°
o

COM and CORBA share the following principles:

The system architecture is based around the concept of objects.

An object is adiscrete unit of functionality.

An object exposes its behavior through a set of well defined interfaces.
The details of an object’simplementation are hidden from the clients that

want to make requests on it.

Differences

Table 1:

Table 1 summarizes the main differences between COM and CORBA.

Main Differences between COM and CORBA (Sheet 1 of 2)

COM

CORBA

An object istypicaly a
subcomponent of an application that
represents a point of exposure to
other components of that
application, or to other applications.

An object is an independent
component with arelated set of
behaviors, transparently available to
any CORBA client, regardless of
where the object or client are
implemented in the system.

The domain of an object istypically
asingle-user, multitasking visual
desktop environment, such as
Microsoft Windows.

The domain of an object istypicaly
an arbitrarily scalable distributed
network.

Table 1:

Main Similarities and Differences

Main Differences between COM and CORBA (Sheet 2 of 2)

COM

CORBA

The purpose of COM isto expedite
collaboration and information
sharing among applications using
the same desktop, by alowing auser
to manipulate visual elementson the
screen.

The purpose of CORBA isto allow
independent components of a
distributed system to be shared
among awide variety of possibly
unrelated applications and objectsin
that distributed system.

CHAPTER 1| COM and CORBA Principles

CORBA Overview

Overview

CORBA Objects

Object IDsand References

CORBA Object Interfaces

CORBA isastandard for distributed object technology from the OMG. This
section provides a brief overview of the fundamental principles of a CORBA
object management system. The following topics are discussed:

® “CORBA Objects’ on page 6.

® “Object IDsand References’ on page 6.
® “CORBA Object Interfaces’ on page 6.
® “CORBA Client Requests’ on page 7.

® “CORBA Object Lifetime” on page 7.
® “Object Request Broker” on page 7.

e “Multiple Inheritance” on page 8.

A CORBA object is a discrete, independent unit of functionality, comprising a
related set of behaviors. A particular CORBA object can be described as an
entity that exhibits a consistency of interface, behavior (or functionality), and
state over itslifetime.

CORBA uses the concept of a portable object adapter (POA), which is used to
map abstract CORBA objectsto their actual implementations. A CORBA object
can be implemented in any programming language that CORBA supports, such
as C++ or Java.

A CORBA object has both an object ID and an object reference. An object ID
identifies an object with respect to a particular POA instance. An object
reference contains unique details about an object, including its object ID and
POA identifier, which can be used by clientsto locate and invoke on that object.
See “CORBA Client Requests’ on page 7 for more details about the use of
object references.

A CORBA object presents itsdlf to its clients through a published interface,
defined in OMG interface definition language (IDL). The concept of keeping an
object’ sinterface separate from itsimplementation means that a client can make
requests on an object without needing to know how or where that object is
implemented.

CORBA Client Requests

CORBA Object Lifetime

Object Request Broker

CORBA Overview

The IDL interfaces for CORBA objects can be stored (registered) in an interface
repository. CORBA identifies an interface by means of an interface repository
ID. Even if you update a particular interface in some way, its repository ID can
remain the same.

In CORBA, aclient can access an object’ s interface and its underlying
functionality by making one or more requests on that object. Each client request
is made on a specific instance of an object, which isidentifiable and contactable
viaan object reference that is unique to that object instance. An object reference
isanamethat is used to consistently identify a particular object during that
object’s lifetime. An object reference in CORBA isroughly equivalent to the
concept of an interface pointer in COM.

CORBA client requests can contain parameters consisting of object references
or data values that correspond to particular types of data supported by the
system. A client request can be dynamically created at runtime (rather than
simply being statically defined at compile time) on any object whose interfaces
are stored in an interface repository.

The in-memory lifetime of a CORBA object is independent of the lifetime of
any clients that hold areference to it. This meansthat a client that is no longer
running can continue to maintain object references. It also means that a server
object can deactivate and remove itself from memory when it becomesidle
(although this does consequently mean that the server application must be made
to explicitly decide when this should happen).

A CORBA system is based on an architectural abstraction called the object

request broker (ORB). An ORB alowsfor:

. Interception and transfer of client requests to servers across the network,
and the return of output from the server back to the client.

° Registration of data types and their interfaces, defined in OMG IDL.

. Registration of object instance identities, from which the ORB can
construct appropriate object references for use by clients that want to make
reguests on those object instances.

° Location (and activation, if necessary) of objects.

Orbix isIONA’s implementation of an ORB.

CHAPTER 1| COM and CORBA Principles

Figure 1 provides an overview of the role of the ORB in CORBA client-server
communication.

Client Host Server Host
Object
Client ‘

Function
Call

Client Object
Stub Skeleton
Code Code

Object Request Broker

Multiple Inheritance

Figure1l: Role of the ORB in Client-Server Communication

CORBA supports the concept of multiple interface inheritance. This basically
means that a CORBA object interface can be extended by making it derive from
one or more other interfaces. The derived interface ends up having not only its
own defined functionality, but also the functionality of the interface(s) from
which it derives. Interfaces can also be evolved dynamically at runtime, by
having new interfaces derive from existing interfaces.

A CORBA object reference refers to a CORBA object that exposes asingle,
most-derived interfacein which any and all parent interfaces arejoined. CORBA
does not support the concept of objects with multiple, disjoint interfaces. See
“Introduction to OMG IDL" on page 267 for more details of multiple
inheritance.

COM Overview

COM Overview

Overview For the purposes of clarity, this overview of COM is divided into two
subsections. Thefirst provides an overview of COM itself, and the second
provides an overview of Automation, which is an extension of COM.

I'n This Section This section discusses the following topics:

COM page 10

Automation page 13

CHAPTER 1| COM and CORBA Principles

COM

Overview

Background

COM Objects

COM Class

10

COM isastandard for distributed object technology from Microsoft
Corporation. This subsection provides a brief overview of the fundamental
principles of a COM object management system. The following topics are
discussed:

. “Background” on page 10.

. “COM Objects’” on page 10.

® “COM Class’ on page 10.

® “COM Object Interfaces’ on page 11.

. “COM Client Requests’ on page 11.

® “COM Object Lifetime” on page 11.

. “Multiple Inheritance” on page 12.

COM is an object programming standard that evolved from the object linking
and embedding (OLE) standard, which specifies how an object created with one
end-user application could be linked or embedded within another end-user
application (for example, an Excel spreadsheet within a Word document). This
subsection provides a brief overview of the fundamental principles of a COM
object management system.

A COM object istypically a subcomponent of an application, representing a
point of exposure to other components of the same application, or to other
applications. A particular COM object can be described as an active instance of
an implementation; an instance in this case can be described as an entity whose
interface (or one of whose interfaces) isreturned by calling the COM
IClassFactory: :CreateInstance method.

COM supports an implementation typing mechanism that is centered around the
concept of aCOM class. A COM class implements an interface and has a
well-defined identity. Implementations are identified by class IDs. An
implementation repository, called the Windows system registry, maps
implementations to specific units of executable code that embody their actual

COM Object Interfaces

COM Client Requests

COM Object Lifetime

COM Overview

code redlizations. A single instance of a COM class can be registered in COM’s
active object registry. The only inherently available reference for a COM
instance is its unknown pointer.

Theidentity and management of object state are generally kept separate from the
identity and lifecycle of COM classinstances. For example, filesthat contain the
state of a document object are persistent. A single COM instance of a document
type could load, manipulate, and store severa different document files over its
lifetime; similarly, multiple COM instances of different object types could load
and use the the samefile.

A COM object exposesitsinterfacesin avirtual function table (also called a
vtable), which contains entries corresponding to each operation defined in an
interface. COM interfaces are usually described in Microsoft interface definition
language (IDL). COM identifies an interface by means of a COM interface ID
(I1D). If you update a COM interface in some way, it isnormal practice to use a
different 11D for the updated interface.

In COM, aclient can make arequest on an object if it has both compile-time
knowledge of the object’ s interface structure and a reference to an instance
offering that interface. A COM client can call the COM GetactiveObject
function to obtain an Tunknown pointer for an active object.

A COM client can use a COM interface pointer to make requests on an object.
Interface pointersin COM are roughly equivalent to the concept of object
referencesin CORBA. COM interfaces cannot be invoked by aclient that does
not have compile-time knowledge of them.

The in-memory lifetime of a COM object is linked to the lifetime of the clients
that hold areferenceto it. This means that the object is destroyed when no more
clients are attached to it. This can lead to problems, however, if aclient crashes
without releasing its references to the object. To avoid this, COM provides
support for clientsto ping servers, so that if aclient ping is not received within a
designated timeframe, the referencesiit held can then be released.

As an dternative to having clients ping servers, an alternative form of binding
can be used in COM, through the use of monikers (that is, persistent interface
references). Monikers are conceptually equivalent to CORBA object references.
Although the use of monikers can help in determining when deactivation should

11

CHAPTER 1| COM and CORBA Principles

Multiple Inheritance

12

occur, it does, however, mean that a COM client must be explicitly set up to use
this alternative form of binding, to alow the server to release its references if
necessary.

Unlike CORBA, COM does not support the concept of multiple interface
inheritance. This has conseguences for the way in which multiply-inherited
CORBA interfaces are mapped to COM—see “Mapping for Interface
Inheritance” on page 364 for more details. Y ou can use the COM
QueryInterface () method to find out and explore the interfaces that a
particular COM object supports.

COM Overview

Automation

Overview

Extension of COM

Automation Object Interfaces

Automation Client Requests

This subsection provides a brief overview of the fundamental principles of
Automation. The following topics are discussed:

®* “Extension of COM” on page 13.

. “ Automation Object Interfaces’ on page 13.

e “Automation Client Requests’ on page 13.

®* “Dud Interfaces’ on page 14.

. “ Automation Object Lifetime” on page 14.

e “Multiple Inheritance” on page 14.

* “Summary of Differences between COM and Automation” on page 14.

Automation is an extension of COM and isimplemented through it. Automation
provides a mechanism for dynamic operation invocation at runtime (unlike a
pure COM call that relies on static information known at compile time).
However, the data types that Automation supports are only a subset of the types
supported by COM (for example, Automation does not support complex,
user-defined constructed types, such as structs or unions). Microsoft Excel isan
example of atypical Automation application.

Automation interfaces can be described in Microsoft object definition language
(ODL). Automation interfaces can be registered in abinary type library, which
alows for runtime checking of client requests.

Unlike COM interfaces, Automation interfaces can be invoked dynamically at
runtime, through a special COM interface, called 1pispatch. Thisisalso known
as late binding. An Automation client can use the Automation Getobject
function (equivalent to the COM Getactiveobject function) to obtain an
Tunknown pointer for an active object in COM’s active object registry.

13

CHAPTER 1| COM and CORBA Principles

Dual Interfaces

Automation Object Lifetime

Multiple Inheritance

Summary of Differences between
COM and Automation

14

Some Automation controllers (for example, Visua Basic) provide the option of
using either straight tpispatch interfaces or dual interfaces for invoking on a
server. An Automation dua interface isa COM vtable-based interface that
derives from the 1pispatch interface. It istherefore ahybrid form of interface,
which supports both an Automation and a COM-like interface.

The use of dual interfaces means that client invocations can be routed directly
through the vtable. Thisis known as early binding, because interfaces are known
at compile time. One advantage to early binding is that it removes the
performance overhead associated with late binding at runtime.

Asfor COM objects, the in-memory lifetime of an Automation object is linked
to the lifetime of the clients that hold areferenceto it. See “COM Object
Lifetime” on page 11 for more details.

Because COM does not support the concept of multiple interface inheritance,
neither does Automation. This has consequences for the way in which
multiply-inherited CORBA interfaces are mapped to Automation—see
“Mapping for Interface Inheritance” on page 323 for more details.

Automation objects typically provide all Automation operationsin asingle
IDispatch interface, in aflat format. In an Automation controller that provides
the option of using dual interfaces, you can use dual interfaces to expose
multiple Ipispatch interfaces for a particular COM co-class. For example, a
Dim X as new Y Statement in Visual Basic can be used to invoke a
QueryInterface () onthey interface.

The following is a summary of the main differences between COM and
Automation interfaces:

Table2: Differences between COM and Automation Interfaces

COM Interfaces Automation I nterfaces

Support afull range of COM types, Support only asubset of COM types.
including user-defined constructed Automation does not, for example,
types such as unions or structs. support user-defined constructed

types.

COM Overview

Table2: Differences between COM and Automation Interfaces

COM Interfaces Automation Interfaces

Can only be invoked by clientswith | Can beinvoked at runtime (if
compile-time knowledge of them. required) through a special COM
interface, caled IDispatch.

Define methods only. Define both properties and methods.

Note: Theinterface syntax and semantics for COM and Automation are not
the same. The OMG therefore presents separate sets of rules for mapping
CORBA typesto COM and for mapping CORBA types to Automation. See
“Mapping CORBA to COM” on page 353 and “Mapping CORBA to
Automation” on page 311 for more details of these rules.

15

CHAPTER 1| COM and CORBA Principles

16

In This Chapter

CHAPTER 2

| ntroduction to
COMet

COMet enables transparent communication between clients that
arerunning in a Microsoft COM environment and serversthat are
runningina CORBA environment. Thischapter introducesCOMet,
first by outlining the concepts of the standard interworking model
on which it is based, and then by describing how COMet
implements these concepts.

This chapter discusses the following topics:

The Interworking Model page 18
How COMet Implements the Model page 20
COMet System Components page 24

Note: COMet supports development and deployment of COM or Automation
clients that can communicate with CORBA servers. Any CORBA C++ server
examples provided in this guide are supplied for reference purposes only. It is
assumed that you already have a CORBA server implementation product. The
examples provided were designed for use with Orbix 6.1.

17

CHAPTER 2 | Introduction to COMet

Thelnterworking M odel

Overview

Interworking Ar chitecture
Specification

Overview of Interworking Model

18

This section describes the principles of theinterworking model on which COMet
is based. The following topics are discussed:

* “Interworking Architecture Specification” on page 18.
® “Overview of Interworking Model” on page 18.

* “Bridge’ on page 19.

® “Bridge View of Target Object” on page 19.

The Interworking Architecture specification, which is part of the OMG Common
Object Request Broker: Architecture and Specification at
ftp://ftp.omg.org/pub/docs/formal/01-12-35.pdf, defines the standard
interworking model that specifies how the integration between COM or
Automation clients and CORBA object modelsis achieved.

Figure 2 provides an overview of the interworking model, which involves a
client in one object system (in this case, COM or Automation) that wantsto send
arequest to an object in another object system (in this case, CORBA).

Object model A (client) Object model B (server)

Object referencein A ‘

Target

' I_ Object

| Object referencein B

Bridge

Figure2: The Sandard Interworking Model

Bridge

Bridge View of Target Object

The Interworking M odel

The interworking model shown in Figure 2 on page 18 provides a bridge that
acts as an intermediary between the two object systems. The bridge providesthe
mappings that are required between the object systems. It provides these

mappings transparently, so that the client can make requestsin itsfamiliar object
model.

To effect the bridge, the interworking model provides an object called aview in
the client’s system. The view object exposes the interface of the target foreign
object in the model that is understood by the client. See Figure 4 on page 22 for
an overview of how the view object isimplemented in COMet.

The client makes requests on the view object’ sinterface in the bridge. The
bridge then maps these requestsinto requests on the target object’ sinterface, and
forwards them to the target object across the system boundary. The workings of
the bridge are transparent to the client, so the client does not have to know that
the objectsit is using belong to another object system.

The bridge can consist of multiple view objects. Each view object in the bridge
is bound to an Orbix object reference that corresponds to areal target object
across the system boundary. See Figure 4 on page 22 for more details.

19

CHAPTER 2 | Introduction to COMet

How COMet Implementsthe M odel

Overview This section describes how COMet implements the interworking model. The
following topics are discussed:
® “Roleof COMet” on page 20.
® “Graphical Overview of Role” on page 21.
® “COM View of CORBA Objects’ on page 21.
® “Graphica Overview of View” on page 22.
e “Creating aView” on page 22.
* “Advantagesfor the COM Programmer” on page 23.
® “Supported Protocols’ on page 23.

Role of COMet COM et supports application integration across network boundaries, different
operating systems, and different programming languages. It provides a high
performance dynamic bridge that enables integration between COM or
Automation and CORBA objects. It allows you to develop and deploy COM or
Automation client applications that can interact with existing CORBA server
applications that might be running on Windows or another platform.

20

Graphical Overview of Role

How COMet Implementsthe Model

Figure 3 provides a conceptual overview of how COMet implements the
interworking model.

COM or Automation
Client

Visual Basic,

PowerBuilder,

C++, VI++,
and so on

CORBA Server

COMet
UNIX, OS/390,
Windows NT, Java,
and so on

— =

Type Store

COM View of CORBA Objects

\ (Machine/Process Boundary)

Figure3: COMet’'s Implementation of the Interworking Model

Figure 3 shows no process boundary between the client and COMet, which isthe
only supported scenario for COM clients. In the case of Automation clients,
however, you can choose to have a process and machine boundary between the
client and COMéet, or to have no machine boundary between COMet and the
server. See “Usage Models and Bridge Locations’ on page 27 for more details.

Asexplained in “Bridge View of Target Object” on page 19, the interworking
model provides the concept of a view object in the bridge, which allows a client
to make requests on an object in aforeign object system as if that object werein
the client’s own native system. It follows that COM et supports the concept of
COM or Automation views of CORBA objects.

Thisin turn means that a corresponding COM or Automation interface must be
generated for each CORBA interface that isimplemented by the CORBA
objects a client wants to invoke. (COMet supplies utilities that allow you to

21

CHAPTER 2 | Introduction to COMet

Graphical Overview of View

Creatinga View

22

COM Interface
O

generate such COM or Automation interfaces from CORBA interfaces, and
these are described in more detail in “Development Support Tools’ on

page 171.) At application runtime, a client can create and subsequently invoke
on view objectsthat implement and expose these COM or Automation interfaces
(see“Creating a View” on page 22 for more details).

Figure 4 provides a graphical overview of how aview object isimplemented in
COMet.

i

Automation Igterface

Orbix
Object
Reference

COM or Automation
View Object

11OP

COMet Address Space

Figure4: View Object in COMet

A view object is created in the COMet bridge when a client calls the
COMet-supplied (D) ICORBAFactory: :GetObject () method on a particular
CORBA object. As shown in Figure 4 on page 22, aview exposes COM or
Automation interfaces, which correspond to the CORBA interfaces on the object
that the client wants to invoke. The view object is automatically bound on
creation to an Orbix object reference for the target object. This object reference
isreturned to the client, to allow it to invoke operations on the target object. See
Part 2 “Programmer’s Guide” and “COMet API Reference” on page 217 for
more details of how to use DICORBAFActory: :GetObject ().

Note: All COM views that are mapped from a particular OMG IDL interface
must share the same COM |1Ds. See “Mapping Interface Identifiers’ on
page 358 for more details.

Advantagesfor the COM
Programmer

Supported Protocols

How COMet Implementsthe Model

COMet provides two main advantages to COM programmers:

1. COMet provides accessto existing CORBA servers, which can be
implemented on any operating system and in any language supported by a
CORBA implementation. Orbix supports a range of operating systems,
such as Windows, UNIX, and OS/390. It also supports different
programming languages, including C++ and Java.

2. Using COMet, a COM programmer can use familiar COM-based and
Automation-based tools to build heterogeneous systems that use both
COM and CORBA components within a COM environment. COMet,
therefore, presents a programming model that is familiar to the COM
programmer.

COMet supports both the internet inter-ORB protocol (110P) and Microsoft’s
distributed component object model (DCOM) protocol. This means that any
I1OP-compliant ORB can interact with a COMet application.

Note: There are some restrictions in the use of DCOM with COMet. These
are explained in more detail in “Usage Models and Bridge Locations’ on

page 27. The recommended approach is to load the bridge in-process to the
client (that is, in the client’s address space) and hence alow the client machine
to use I1OP to communicate with the server.

23

CHAPTER 2 | Introduction to COMet

COMet System Components

Overview This section describes the various components that comprise a COMet system.
The following topics are discussed:

®* “Bridge’ on page 24.

. “Type Store” on page 24.

e “Automation Client” on page 24.
® “COM Client” on page 25.

® “COM Library” on page 25.

° “CORBA Server” on page 25.

Bridge The bridgeis a synonym for COMet itself. It isimplemented as a set of DLLs
that are capable of dynamically mapping requests from a COM or Automation
environment to a CORBA environment. The bridge provides the mappings and
performs the necessary translation between COM or Automation and CORBA
types.

Asshownin Figure 4 on page 22, aview object in the bridge contains both a
COM/Automation object interface and an Orbix object interface. This means

that the bridge can expose an appropriate COM or Automation interface to its
clients.

Type Store Asshown in Figure 3 on page 21, COMet uses a component called the type
store. Thetype storeis used to hold a cache of information about all the CORBA
typesin your system. COMet can retrieve this information from the Interface
Repository at application runtime, and then automatically update the type store
with thisinformation for subsequent use, instead of having to query the Interface
Repository for it again. The type store holds its cache of type information in a
neutral binary format. See “ Development Support Tools” on page 171 for more
details about the workings of the type store.

Automation Client An Automation client can use COMet to communicate with a CORBA server.
Thisisaregular Automation client written in alanguage such as Visual Basic,
PowerBuilder, or any other Automation-compatible language.

24

COM Client

COM Library

CORBA Server

COMet System Components

A COM client can use COMet to communicate with a CORBA server. Thisisa
pure COM client (that is, not an Automation-based client) written in C++ or any
language that supports COM clients.

Thisis part of the operating system that provides the COM and Automation
infrastructure.

A CORBA server can be contacted by COM or Automation clients, using
COMet. Thisisanormal CORBA server written in any language and running on
any platform supported by an ORB. Depending on the location of the COMet
bridge in your system, the CORBA server might need to be running on Windows
(if so, preferably Windows 2000, for reasons of scalability). See“Usage Models
and Bridge Locations’ on page 27 for more details.

25

CHAPTER 2 | Introduction to COMet

26

CHAPTER 3

Usage Models and
Bridge Locations

You can use COMet to devel op and deploy distributed applications
consisting of COM or Automation clientsthat can call objectsina
CORBA server. This chapter explains how COMet supports this
usage model for both COM and Automation.

In This Chapter This chapter discusses the following topics:
Automation Client to CORBA Server page 28
COM Client to CORBA Server page 31

Note: See“Deploying a COMet Application” on page 151 for more details
and examples of the various ways you can use COMet when deploying your
applications.

27

CHAPTER 3 | Usage M odels and Bridge L ocations

Automation Client to CORBA Server

Overview This section describes a usage model involving an Automation client and a
CORBA server. The following topics are discussed:

® “Graphica Overview” on page 28.

* “Automation Client” on page 28.

e “Automation Client with Bridge In-Process’ on page 29.

e “Automation Client with Bridge Out-of-Process’ on page 29.
® “CORBA Server” on page 29.

* “Bridge’ on page 30.

Graphical Overview Figure 5 shows a graphical overview of this usage model.
Automation Client CORBA Server
Bridge
DCOM /\ 110P
2 ‘

Automation Interface Pointer
(IDispatch pointer)

Automation View CORBA Object Reference

(a real Automation object)

Figure5: Automation Client to CORBA Server

Automation Client An Automation client can be written in any Automation-based programming
language, such as Visual Basic or PowerBuilder. The client does not need to
know that the target object isa CORBA object.

An Automation client can have the bridge loaded in any of the following ways:
. In-process (that is, in the client’ s address space).
® Qut-of-process on the client machine.

28

Automation Client with Bridge
I n-Process

Automation Client with Bridge
Out-of-Process

CORBA Server

Automation Client to CORBA Server

® Qut-of-process on a separate machine.

The recommended deployment scenario for an Automation client with COMet is
toload the bridge in-process (that is, in the client’s address space). Thisinvolves
the use of 110P as the wire protocol for communication between the Automation
client machine and CORBA server.

When the bridge is loaded in-process, an Automation client can use dual
interfaces instead of 1pispatch interfaces. COMet does not support the use of
dual interfaces when the bridge is loaded out-of-process. The use of either dual
interfaces or IDispatch interfaces determines whether early binding or late
binding is allowed. (See “ Automation Client Requests’ on page 13 and “Dual
Interfaces’” on page 14 for adefinition of early and late binding.)

Figure 5 on page 28 shows a scenario where the Automation client is using
DCOM to communicate with the bridge, which means the bridge is |oaded
out-of-process on a separate machine. Although thisis a supported deployment
scenario for Automation clients, it is not recommended unless the bridge
machine s running on Windows 2000, because it otherwise limits the number of
clients that can be handled.

Note: If you want to load the bridge out-of-process, your Automation client
must use IDispatch interfaces instead of dual interfaces.

Asshown in Figure 5 on page 28, the Automation client uses an Ipispatch
pointer to make method calls on an Automation view object in the bridge. The
bridge uses a CORBA object reference to make a corresponding operation call
on the target object in the CORBA server.

The dynamic marshalling engine of COMet allows for automatic mapping of
IDispatch pointersto CORBA interfaces and object references at runtime.

The CORBA server presents an OMG IDL interface to its objects. The server
application can exist on platforms other than Windows. However, if you choose
to locate the bridge on the server machine, the server must be running on
Windows (preferably Windows 2000 for reasons of scalability). It can be written
in any language supported by a CORBA implementation, such as C++ or Java.

29

CHAPTER 3 | Usage M odels and Bridge L ocations

Bridge

30

The bridge can be located on the Automation client machine, on an intermediary
machine, or on the CORBA server machine. If the bridge is not located on the
client machine, the bridge machine must be running on Windows (preferably
Windows 2000 for reasons of scalability).

The bridge acts as an Automation server, because it accepts requests from the
Automation client. The bridge al so acts asa CORBA client, because it translates
reguests from the Automation client into requests on the CORBA server.

If the bridge is not located on the client machine, the Automation client uses
DCOM to communicate with it. The bridge uses |1OP to communicate with the
CORBA server.

COM Client to CORBA Server

COM Client to CORBA Server

Overview

Graphical Overview

This section describes a usage model involving a COM client and a CORBA
server. The following topics are discussed:

® “Graphica Overview” on page 31.
® “COM Client” on page 31.

° “CORBA Server” on page 32.

®* “Bridge’ on page 32

Figure 6 shows a graphical overview of this usage model.

Client Process

T T — e A CORBA Server
| COM Client . |

| Bridge |

: O- O | lioP

| A 4 |

: COM Interface Pointer ‘ I

I CORBA Object Reference :

I

| | COM View (a real COM object) :

i |

COM Client

Figure6: COM Client to CORBA Server

The only supported deployment scenario for a COM client with COMet isto
load the bridge in-process (that is, in the client’s address space). Thisinvolves
the use of 110P as the wire protocol for communication between the COM client
machine and CORBA server. Figure 6 provides a graphical overview of this
scenario.

31

CHAPTER 3 | Usage M odels and Bridge L ocations

CORBA Server

Bridge

32

The COM client can use a COM interface pointer to make method callson a
COM view object in the bridge. The bridge uses a CORBA object reference to
make a corresponding operation call on the target object in the CORBA server.

The dynamic marshalling engine of COMet allows for automatic mapping of
COM interface pointers to CORBA interfaces and object references at runtime.

The client does not need to know that the target object isa CORBA object. A
COM client can be written in C++ or any language that supports COM clients.

The CORBA server presents an OMG IDL interface to its objects. The server
application can exist on platforms other than Windows. It can be written in any
language supported by a CORBA implementation, such as C++ or Java.

The bridge must be located in-process to the COM client. The bridge actsas a
COM server, because it accepts requests from the COM client. The bridge also
acts as a CORBA client, because it trandlates requests from the COM client into
requests on the CORBA server.

Part 2

Programmer’ s Guide

In ThisPart This part contains the following chapters:
Getting Started page 35
Developing an Automation Client page 79
Developing a COM Client page 97
Exception Handling page 113
Client Callbacks page 137
Deploying a COMet Application page 151
Development Support Tools page 171

In This Chapter

CHAPTER 4

Getting Started

This chapter isprovided as a means to getting started quickly in
application programming with COMet. It explains the basics you
need to know to devel op a simple COMet application that consists
of a COM or Automation client, written in PowerBuilder, Visual
Basic, or COM C++, which can call objectsin an existing CORBA

C++ server.

This chapter discusses the following topics:

Prerequisites page 36
Developing Automation Clients page 38
Using DCOM with COMet page 54
Using COMet with Internet Explorer page 60
Automation Dual Interface Support page 67
Developing COM Clients page 70
Priming the COMet Type Store Cache page 77

35

CHAPTER 4 | Getting Started

Prereguisites

Overview

Orbix Comet development
environment

Client-Side Requirements
Server-Side Requirements

Registering OMG IDL Type
Information

36

This section describes the prerequisites to starting application development with
COMet. The following topics are discussed:

®* “Client-Side Requirements’ on page 36.

®* “Server-Side Requirements’ on page 36.

® “Registering OMG IDL Type Information” on page 36.
®* “Priming the Type Store” on page 37.

Orbix COMet is supported with Microsoft Visual C++ 6.0 only. Orbix also
supports Visual C++ 7.1 and Visual C++ 8.0. However, Orhix COMet does not
support these newer compiler versions, and works with Visual C++ 6.0 only.

Ensure that both Orbix and COMet are installed and configured correctly. See
the Orbix Installation Guide for more details about installation. See the Orbix
Deployment Guide and Configuration Reference for details about configuring
both Orbix and COMet.

COMet requires no changes to existing CORBA servers. See the Orbix
documentation set for details of how to manage servers. This chapter assumes
that you are using Orbix as your server-side object request broker (ORB).

Asexplained in “How COMet Implements the Model” on page 20, COMet isa
fully dynamic bridge that enables integration between COM or Automation
clientsand CORBA servers. The bridgeisdriven by OMG IDL typeinformation
derived from a CORBA Interface Repository.

Before you run an application, ensure that your OMG IDL isregistered in the
Interface Repository. Thisis because COMet is designed to automatically
retrieve the required type information from the Interface Repository at
application runtime. COMet then saves this information to the type store for
subsequent use. See the Orbix documentation set for details of how to register
OMG IDL.

Priming the Type Store

Prerequisites

As an alternative to having COMet retrieve the type information from the
Interface Repository at application runtime, you can manually configure the type
store with the required type information before the first run of an application.
Thisis also known as priming the cache and is described in more detail in
“Priming the COMet Type Store Cache” on page 77. This also requires that the
OMG IDL isregistered in the Interface Repository.

37

CHAPTER 4 | Getting Started

Developing Automation Clients

Overview Y ou can use COMet to develop Automation client applications, using any
Automation-based tool. This section describes how to use COMet to develop
Automation clientsin Visual Basic and PowerBuilder.

In This Section This section discusses the following topics:
Introduction page 39
Using the Visual Basic Genie page 43
Writing a Visual Basic Client without the Genie page 47
Writing a PowerBuilder Client page 50
Running the Client page 53

38

Developing Automation Clients

I ntroduction

Overview

The Grid Demonstration

OMG IDL grid Interface

This subsection provides an introduction to the Automation client
demonstrations provided. The following topics are discussed:

“The Grid Demonstration” on page 39.

“OMG IDL grid Interface” on page 39.

“Automation Dlgrid Interface” on page 40.

“Visual Basic Client GUI Interface” on page 41.
“Location of Visual Basic Source Files’ on page 41.
“PowerBuilder Client GUI Interface” on page 42.
“Location of PowerBuilder Source Files’ on page 42.

The examples devel oped in this section are Automation clients, writtenin Visual
Basic and PowerBuilder, which can access and modify values that are assigned
to cellswithin agrid that isimplemented as an object in a supplied CORBA
server.

Thegria object inthe CORBA server implements the following OMG IDL
grid interface:

// OMG IDL
interface grid {

readonly attribute short height;

readonly attribute short width;

void set(in short n, in short m, in long value);
long get(in short n, in short m);

39

CHAPTER 4 | Getting Started

The corresponding Automation interface for the preceding OMG IDL interface

Automation Dlgrid Interface
iscalled p1grid, and is defined as follows:

[odl,..]
interface DIgrid : IDispatch {
[1d(0x00000001)]
HRESULT _stdcall get(
[in] short n,
[in] short m,
[out, optional] VARIANT* excep_OBJ,
[out, retval] long* val) ;
[1d(0x00000002)]
HRESULT _stdcall set(
[in] short n,
[in] short m,
[in] long value,
[out, optional] VARIANT* excep_OBJ) ;
[1d(0x00000003), propget]
HRESULT _stdcall height ([out, retval] short* val);

[1d(0x00000004), propget]
HRESULT _stdcall width([out, retval] short* val);

b
The Automation view of the target CORBA object must implement the prgrid

interface.

40

Developing Automation Clients

Visual Basic Client GUI Interface Figure 7 showsthe Visua Basic client GUI interface implemented in this
section.

iw, OrbixDCOM Gnd Demo

OrbixDCOM Grid

= i
Demo
[V IDispatch Host I
Width Height

Sef [5Es

Connect [NiEEomnes

Figure7: Visual Basic Client GUI for the COMet Grid Demonstration

L ocation of Visual Basic Source The source for the Visual Basic demonstration isin
Files install-dir\demos\comet\grid\vb_client, Where install-dir represents

the Orbix installation directory.

41

CHAPTER 4 | Getting Started

Power Builder Client GUI Figure 8 shows the PowerBuilder client GUI interface implemented in this
Interface section.

: =] E3

Bridge Host | |

Grid Dimensions : Current Cell ;

Heigt [] XCel el
[]

Wiidth | | | |

“alle I:I

et | (5t |

Connect | Diannnectl

Figure8: PowerBuilder Client GUI for the COMet Grid Demonstration

L ocation of PowerBuilder Source The source for the PowerBuilder demonstrationisin
Files install-dir\demos\comet\grid\pb_client, Where install-dir represents

the Orbix installation directory.

42

Developing Automation Clients

Using the Visual Basic Genie

Overview

Visual Basic Genie

C++ Genie

This subsection provides an introduction to using the supplied Visual Basic
genie for development of Automation clients. The following topics are
discussed:

®* “Visua Basic Geni€” on page 43.

. “C++ Genie’ on page 43.

® “Overview of Client Development Process’ on page 44.

* “Explanation of Client Development Process’ on page 44.
* “Development Steps Using Code Generation” on page 45.
®* “Files Generated by the Visua Basic Geni€’ on page 45.

COMet is shipped with a Visual Basic code generation genie that can
automatically generate the bulk of the application code for aVisual Basic client,
based on OMG IDL definitions. Both a GUI and command-line version of the
genie are supplied. The use of the Visual Basic genieis not compulsory for
creating Visual Basic clients, using COMet. However, using the genie makesthe
development of Visual Basic clients much faster and easier.

The Visual Basic genie is designed to create Visual Basic clients that can
communicate with C++ servers that have been created using the C++ genie
supplied with the CORBA Code Generation Toolkit. (See the CORBA Code
Generation Toolkit Guide for details about the C++ genie.)

43

CHAPTER 4 | Getting Started

Overview of Client Development Figure 9 provides an overview of how the client development process works

Process with the genie.

Visual Basic
Client Program

Modified
Visual Basic
Client Program

Figure9: Development Overview Using Code Generation

Explanation of Client Figure 9 on page 44 can be explained as follows:

Development Process 1. Thecode generation genie takesthe OMG IDL file asinput and generatesa

complete client program. See “Files Generated by the Visua Basic Genie’
on page 45 for details of the Visual Basic files that the genie generates.

Note: The generated client is a dummy implementation that invokes
every operation on each interfacein the IDL file exactly once. The
dummy client is aworking application that can be built and run
immediately.

2. Theclient developer can then modify the client to complete the
application.

a4

Development Steps Using Code

Generation

Files Generated by the Visual
Basic Genie

Developing Automation Clients

The main stepsto develop aclient-server application, using code generation, are

asfollows:

Step

Action

1 | Generatethe CORBA server code, using the C++ genie supplied
with the CORBA Code Generation Toolkit. See the CORBA Code
Generation Toolkit Guide for more details.

2 | Generatethe Visual Basic client, using the Visual Basic genie
supplied with COMet. See “Generating Visua Basic Client Code’
on page 199 for details of how to use the genie.

3 | Register the appropriate OMG IDL file with the Orbix Interface
Repository.? See the CORBA Administrator’s Guide for details.

4 | Loadtheclient.vbp fileintothe Visua Basic IDE. Then build
the client as normal.

a. You only need to perform this step if you are using the command-line version of
the genie. The GUI version of the genie automatically registersthe OMG IDL,, if
it has not already been registered.

The Visual Basic genie creates the following files:

client.vbp
client.frm

FindIOR. frm

Call_Funcs.bas

Print_Funcs.bas

Random_Funcs.bas

Thisisthe Visua Basic project file for the client.
Thisisthemain Visual Basic form for the client.

This form contains the functions needed by the client to
selecta . ref file. The . ref fileiswritten by the server and
contains the server object’s IOR.

This contains Visual Basic code for implementing the
operations defined in the selected interface(s).

This contains functions for printing the values of all the
CORBA simple types supported by COMet. It also
contains functions for printing any user-defined types
declared inthe IDL file.

This contains functions for generating random values for
all the CORBA simple types supported by COMet. It also
contains functions for generating random values for any
user-defined types declared in the IDL file.

45

CHAPTER 4 | Getting Started

IT_Random.cls This classisarandom number generator that isused in the
generated Random_Funcs.bas file.

46

Developing Automation Clients

Writing a Visual Basic Client without the Genie

Overview This subsection describes the steps to use COMet to develop asimple Visua
Basic client of a CORBA server, if you are not using the code generation genie.
The steps are:

Step Action

1 | Declare global data.

2 | Connect to the Orbix grid server, and obtain an object reference
for the grid object.

3 | Invoke operations on the grid object.

4 | Disconnect.

Any filenames mentioned in this subsection refer to files contained in the
install-dir\demos\comet\grid\vb_client directory.

Step 1—Declaring Global Data Start by declaring global variables for the bridge (bridge), the CORBA object
factory (fact), and the Automation view object (gridpisp).

' Visual Basic

Dim bridge As Object
Dim fact As Object
Dim gridDisp As Object

Step 2—ConnectingtoServer and The following code is executed when you click Connect on the Visual Basic
Obtaining Object Reference client window shown in Figure 7 on page 41:

Example 1:

' Visual Basic
Private Sub Connect_Click()

1 Set fact = CreateObject ("CORBA.Factory")
2 Set gridbhisp = fact.GetObject ("grid:" + sIOR)

width_val.Caption = gridDisp.Width

47

CHAPTER 4 | Getting Started

Example 1:

height_val.Caption = gridDisp.Height
Commandl .Enabled = False

Command?2 .Enabled = True
SetButton.Enabled = True
GetButton.Enabled = True

End Sub

The preceding code can be explained as follows:

1. Thecall to createobject resultsin the creation of aninstance of a
CORBA object factory inthe bridge. It isassigned a ProgID,
CORBA.Factory.

2. After acorBa.Factory object has been returned, the client can call
GetObject () on the object factory, to request a particular object. The call
to GetObject () achieves a connection between the client’s gridpisp
object reference (for the view) and the target grid object in the server.
The call to Getobject () causesthe following:

i. Theobject factory creates an Automation view object that
implements the p1grid interface.

ii. Theview object is bound to an instance of the CORBA grid object
named in the parameter for Getobject ().

iii. Thegrid object is mapped onto a CORBA object reference. (This
object reference is then bound to the view.)

iv. A referenceto the Automation view is returned to the client.

See “Obtaining a Reference to a CORBA Object” on page 86 and
“DICORBAFactory” on page 228 for more details about Getobject ().

Step 3—Invoking Operations After calling Getobject (), the client can implement the Get and Set buttons on
the client GUI interface, by using the gridpisp object reference to invoke the
OMG IDL operations on the grid object in the server. For example:

.gridDisp.set(...)

48

Developing Automation Clients

Step 4—Disconnecting When disconnecting, it isimportant to release all referencesto objectsin the
bridge, to alow the process to terminate. In the grid demonstration, thisis
performed by the following subroutine:

' Visual Basic

Private Sub Disconnect_Click()
Set gridDisp = Nothing

Set fact = Nothing

Set bridge = Nothing

End Sub

49

CHAPTER 4 | Getting Started

Writing a Power Builder Client

Overview

Step 1—Declaring Global Data

Step 2—Connecting to the Orbix
Grid Server

50

This subsection describes the steps to use COMet to develop asimple
PowerBuilder client of a CORBA server. The steps are:

Step Action

1 | Declare global data.

2 | Connect to the Orbix grid serverm and obtain an object reference
for the target CORBA grid object.

3 | Invoke operations on the grid object.

4 | Disconnect.

Note: Thereisno code generation genie available for PowerBuilder.

Any filenames mentioned in this subsection refer to files contained in the
install-dir\demos\comet\grid\pb_client dHEIIOFy.

Start by declaring global variables for the bridge (bridge), the CORBA object
factory (fact), and the Automation view object (grid client).

// PowerBuilder
OleObject bridge
OleObject fact
OleObject grid_client

The following code is executed when you click Connect on the PowerBuilder
client window shown in Figure 8 on page 42:

Example 2:
// Powerscript
// create the CORBA factory object

fact = CREATE OleObject

fact .ConnectToNewObject ("CORBA.Factory")

Developing Automation Clients

Example 2:

// Exception parameter in case a CORBA exception occurs
OleObject ex
ex = CREATE OleObject

grid_client = CREATE OleObject
grid_client = fact.GetObject ("grid:" + sIOR)

height_val.Text = string(grid _client.Height)
width_val.Text = string(grid_client.Width)

connect_button.Enabled = False
unplug_button.Enabled = True
set_button.Enabled = True
get_button.Enabled = True

The preceding code can be explained as follows:

1. Thecal to connectToNewObject resultsin the creation of an instance of a
CORBA object factory in the bridge. It is assigned a ProgID,
CORBA.Factory.

2. After acorBa.Factory object has been returned, the client can call
GetObject () on the object factory, to request a particular object. The call
to GetObject () achieves a connection between the client’s grid_client
object reference (for the view) and the target grid object in the server.
The call to Getobject () causes the following:

i. Theobject factory creates an Automation view object that
implements the p1grid interface.

ii. Theview object is bound to an instance of the CORBA grid object
named in the parameter for Getobject ().

iii. Thegrid object is mapped onto a CORBA object reference. (This
object reference is then bound to the view.)

iv. A reference to the Automation view is returned to the client.

See “Obtaining a Reference to a CORBA Object” on page 86 and
“DICORBAFactory” on page 228 for more details about cetobject ().

51

CHAPTER 4 | Getting Started

Step 3—Invoking Operations

Step 4—Disconnecting

52

After calling cetobject (), the client can implement the Get and Set buttons on
the client GUI interface, by using the grid_client object referenceto invoke
the OMG IDL operations on the grid object in the server. For example:

.grid_client.set(..)

When disconnecting, it isimportant to release all referencesto objectsin the
bridge, to alow the process to terminate. In the grid demonstration, thisis
performed by the following subroutine:

// PowerBuilder
grid_client.DisconnectObject ()
DESTROY grid_client

fact .DisconnectObject ()
DESTROY fact
bridge.DisconnectObject ()
DESTROY bridge

Developing Automation Clients

Running the Client

Overview This subsection describes the steps to run the client application.
Steps The stepsto run the client are:
Step Action
1 | If youareusing:

® Visual Basic, run vbgrid. exe.

This opens the client window shown in Figure 7 on page 41.
4 PowerBuilder, run grid.exe.

This opens the client window shown in Figure 8 on page 42.

Specify the hostname in the appropriate field and click Connect.
This contacts the supplied grid C++ server, and obtains the width
and height of the grid.

Type x and y values for the grid coordinates.

Click Set to modify valuesinthegrid, or Get to obtain valuesfrom
the grid.

Click Disconnect when you are finished.

53

CHAPTER 4 | Getting Started

Using DCOM with COM et

Overview This section describes how to use COMet to develop Automation clients that

launch the COMet bridge out-of-process, and hence use DCOM as the wire
protocol for communication.

In This Section This section discusses the following topics:
Introduction page 55
Launching the COMet Bridge Out-of-Process page 56
DCOM Security page 59

54

Using DCOM with COMet

I ntroduction

Overview

I n-Process ver sus Out-of-Pr ocess

Automation Clients versus COM
Clients

I Dispatch Interfaces

Windows 2000

This subsection provides an introduction to the concept of launching the bridge
out-of-process, and the mandates and recommendations associated with it. The
following topics are discussed:

® “In-Process versus Out-of-Process’ on page 55.

. “ Automation Clients versus COM Clients’ on page 55.
® “IDispatch Interfaces’ on page 55.

. “Windows 2000" on page 55.

The examples provided in “ Developing Automation Clients” on page 38 create
an instance of the corRea. Factory object in the Automation client’s address
space, which means the COMet bridge is launched in-process to the client.
Launching the bridge in-process is the recommended deployment scenario with
COMet, because it involves the use of 110P as the wire protocol for
communication between the client machine and the CORBA server.

Launching the bridge out-of-process involves the use of DCOM as the wire
protocol for communication between the client and the COMet bridge. If the
bridge islaunched out-of-process on the same machine asthe client, it isreferred
toasalocal server. If the bridgeis launched on a separate machine, it is referred
to as aremote server. Launching the bridge out-of-process comes with certain
mandates and recommendations, which are described next.

COMet only alows Automation clients to launch the bridge out-of-process. It
does not support COM clients with the bridge loaded out-of-process. COM
clients must launch the bridge in-process.

If you want to launch the bridge out-of-process, your Automation clients must
use IDispatch interfaces. The use of dual interfacesis not supported with
DCOM.

If you want to launch the bridge out-of -process, the bridge machine must be
running on Windows. For reasons of scalability, it is recommended that the
bridge machine is running on Windows 2000. Running the bridge on any other
version of Windows limits the number of clientsthat it can handle.

55

CHAPTER 4 | Getting Started

L aunching the COMet Bridge Out-of-Process

Overview This subsection describes how to write a client that can launch the bridge
out-of-process. The following topics are discussed:
* “Example’ on page 56.
. “Explanation” on page 57.
® “Required Setting” on page 57.
® “Thecustsur.exe Executable’ on page 57.
. “The CreateObject() Method” on page 58.

Example Example 3 shows a sample Visual Basic client that can launch the bridge
out-of-process.

Example3: Sample Visual Basic Client for Out-of-Process Launching

' Visual Basic
Private Sub ConnectBtn_Click()
On Error GoTo errortrap
1 If inprocess.Value <> Checked Then

2 set objFactory = CreateObject ("CORBA.Factory", HostName.Text)
Else
set objFactory = CreateObject ("CORBA.Factory")
End If

inprocess.Enabled = False
3 Set srvObj = objFactory.GetObject ("grid:" + sIOR)
StartBtn.Enabled = True
ConnectBtn.Enabled = False
Exit Sub
errortrap:
MsgBox (Err.Description & ", in " & Err.Source)
End Sub

56

Explanation

Required Setting

The custsur.exe Executable

Using DCOM with COMet

The client code shown in Example 3 can be explained as follows:

1. Theclientimplementsacheck button (inprocess), to let the user decide at
runtime whether to launch the bridge in-process or out-of-process. Because
the decision is controlled by asimple 1f..E1se statement, both
configurations are equally easy to use from the client programmer’s point
of view.

2. TheVisual Basic createobject () method allows you to specify a
hostname as an optional, extra parameter. The hostname specified is the
name of the machine on which you want to launch the bridge. The call to
CreateObject () creates an instance of the CoOrBa . Factory object in the
bridge.

The Visual Basic createobject () method is similar to the COM
CoCreateInstanceEx () method. Most Automation controllers allow you
to specify an optional hostname to their equivalent of the Visual Basic
CreateObject () method.

3. Theclient calscetobject () on the object factory, to invoke on the target
grid object. The call to cetobject () achieves a connection between the
client’s srvobj object reference (for the view) and the target grid object in
the server.

If you want to launch the bridge out-of-process, the install-dir\bin directory
must be set on the system path. This might already have been done automatically
at installation time. If not, you must do it manually.

When COMet is launched in-process to the client, the COMet DLLs are hosted
by a default surrogate executable, called pr.LHOST . exe. However, when COMet
is launched out-of-process, the COMet DLLs are instead hosted by a surrogate
executable, called custsur. exe, 0n the bridge host.

The custsur. exe executable is supplied with your COMet installation. It is
indicated by the following Windows registry value that is set during installation
(where version represents the Orbix version number):

HKEY_CLASSES_ROOT\AppID\{A8B553C5-3B72-11CF-BBFC-444553540000}
[DllSurrogate] = install-dir\asp\version\bin\custsur.exe

57

CHAPTER 4 | Getting Started

The CreateObject() Method The Visual Basic createobject () method is completely independent of
COMet, and can therefore be used on dedicated DCOM client machines. Thisis
of particular use when you are using COMet with Internet Explorer. See “Using
COMet with Internet Explorer” on page 60 for more details.

58

Using DCOM with COMet

DCOM Security

Overview

Addressing Security | ssues

For More Information

This subsection addresses the subject of DCOM security, which isimportant for
launching the bridge out-of-process. The following topics are discussed:

® “Addressing Security Issues’ on page 59.
. “For More Information” on page 59.

Using DCOM as the wire protocol for communication between the client
machine and the bridge machine requires that DCOM security issues are
addressed. Security can be dealt with either by using bcoMCNFG . EXE, OF
programmatically via APl security functions, or using a combination of these
two approaches.

A full treatment of COM security is outside the scope of this guide. For more
details see the COM security FAQ at:

http://support.microsoft.com/support/kb/articles/gl58/5/08.asp

59

CHAPTER 4 | Getting Started

Using COMet with Internet Explorer

Overview This section describes how to use atool such as VBScript to set up aweb-based
Automation client that runsin Internet Explorer and uses COMet to
communicate with CORBA objects in aremote web server.

Note: Before reading this section, ensure that you have read “Using DCOM
with COMet” on page 54.

In This Section This section discusses the following topics:
Specifying the Bridge L ocation page 61
The Supplied Demonstration page 63

60

Using COM et with Internet Explorer

Specifying the Bridge L ocation

Overview

Supplied DLL

Referencingthe DLL in HTML

This subsection describes how to specify the location of the bridge for use with
an Internet Explorer client. The following topics are discussed:

e “Supplied DLL"” on page 61.
® “Referencingthe DLL inHTML” on page 61.
e “Attributesfor the OBJECT Tag” on page 62.

Unlike the Visual Basic createObject () method, the createobject () method
used in VVBScript does not have the ability to pass an optional hostname
parameter. COMet therefore supplies afile, called
IT_C2K_CCIExWrapper0_VC60.DLL, Which contains an ActiveX control used for
wrapping the COM cocCreateInstanceEx () method. Y ou can reference the
IT_C2K_CCIExWrapper0_vc60.DLL filein HTML, by using the oBJECT tag.

The following is an example of how to use the oBJeCT tag in HTML, to
reference the IT_C2K_CcCIExWrapper0_vc60.DLL file

<OBJECT ID="bridge" <
CLASSID="CLSID:3DA5B85F-F2FC-11D0-8D97-0060970557AC"
change this to reflect the location of
IT C2K_CCIExWrapperO_VC60.DLL on your machine
CODEBASE="\\machine-name\install-dir\asp\x.x\bin\

IT C2K_CCIExWrapper0_VC60.DLL"
>
</OBJECT>

In the preceding example, install-dir representsthe full path to your
installation, and x. x represents the Orbix version number.

61

CHAPTER 4 | Getting Started

Attributesfor the OBJECT Tag

62

The oBJECT tag that is used to reference the DLL contains attributes that can be
explained as follows:

ID The vaue for this attribute specifies the object name. In the
preceding example it iSbridge.

CLASSID The value for this attribute specifies the object type (that is,
the object implementation). The syntax for this attribute is
CLSID: class-identifier for registered ActiveX controls.

CODEBASE The value for this attribute specifies the object location, by
supplying a URL that identifies the codebase for the object.
Y ou might need to modify the machine-name in the HTML
file before the demonstration can work.

Using COM et with Internet Explorer

The Supplied Demonstration

Overview

Downloading the HTML
Demonstration

VBScript Example

This subsection describes the sample Internet Explorer client demonstration
supplied with your COMet installation. The following topics are discussed:

®* “Downloading the HTML Demonstration” on page 63.
. “VBScript Example”’ on page 63.

e “VBScript Explanation” on page 64.

* “Location of the VBScript Example” on page 64.

. “Setting Internet Explorer Security” on page 64.

* “Specifying the Machine Name” on page 65.

® “Running the Demonstration” on page 65.

When the HTML file for the supplied demonstration is first downloaded to the
client machine, the ActiveX control for wrapping CoCreateInstanceEx () IS
aso retrieved and registersitself on your client machine (provided you agree, of
course). This allows use of COMet from client machines, with no configuration
effort required on the client’s part.

The only requirement is that you must configure COMet on the server side with
respect to type information, access permissions, and so on, and placethe HTML
file for the demonstration on the server where the bridge resides.

DCOM s used as the wire protocol for communication between the client and
the bridge.

The HTML file can contain VVBScript or JavaScript for calling methods on the
remote CORBA objects. For the purposes of this example, it contains VB Script.
Example 4 shows the VBScript example. client connects to the grid object on
the "advice.iona.com" machine and obtains the height and the width of the
grid:

Example4: Sample VBcript Client

<SCRIPT LANGUAGE="VBScript">
<!--

Dim Grid
Dim fact

63

CHAPTER 4 | Getting Started

VBScript Explanation

L ocation of theVBScript Example

Setting I nternet Explorer Security

64

Example4: Sample VBScript Client

Sub btnConnect_Onclick
1blStatus.Value = "Connecting.."

DCOM on the wire..

the parameter should be the name of the

machine where the bridge is located

Set fact = bridge.IT CreateRemoteFactory ("advice.iona.com")

IIOP on the wire
Set fact = CreateObject ("CORBA.Factory")

Set Grid = fact.GetObject ("grid:" + sIOR)
1blStatus.Value = "Obtaining dimensions.."
sleWidth.Value = Grid.width
sleHeight.Value = Grid.height
1blStatus.Value = "Connected..."

End Sub

——>
</SCRIPT>

The code shown in Example 4 can be explained as follows:

1. Theclient creates an instance of the remote CORBA object factory on the
advice.iona.com machine (that is, the host on which the bridgeisto be
launched).

2. Theclient calscetobject () onthe object factory, to invoke on the target
grid object. The call to Getobject () achieves a connection between the
client'scrid object reference (for the view) and the target grid object in
the server.

The full version of the preceding VBScript example is supplied in

install-dir\demos\comet\grid\ie_client.

To use the supplied VB Script example, you must set your Internet Explorer
security settings to medium in your Windows Control Panel. A security setting
of medium means that you are prompted whenever executable content is being

Specifying the Machine Name

Running the Demonstration

Using COM et with Internet Explorer

downloaded. That isall you need to do. Y ou do not need to have Orbix installed.
Y ou can now open the
install-dir\demos\comet\grid\ie_ client\griddemo.htm file.

Y ou must complete the following steps in the griddemo . htm file (where x. x
represents the Orbix version number), to specify the name of the machinethat is
to be contacted (that is, the machine where the bridge is |ocated) when the
demonstration is downloaded to a client:

Step Action

1 | Edit thefollowing line:

CODEBASE="\\machine-name\install-dir\asp\x.x\bin
\IT_C2K_CCIExWrapper(0_VC60.DLL"

2 | Edit either of the following lines:

Set fact = bridge.IT CreateInstanceEx("{A8B553C5-3B72-
11CF-BBFC-444553540000}", "machine-name")

or

Set fact = bridge.IT CreateRemoteFactory ("machine-
name")

Note: In the preceding example, IT_CreateInstanceEx takesa

stringified CLSID as the first parameter, which in this case isthe

CLSID for corBa.Factory. On the other hand, the CLSID for

CORBA.Factory IS hard-coded in the implementations of

IT CreateRemoteFactory.

When these changes have been made, the HTML file can be accessed from any
Windows machine with Internet Explorer. Neither Orbix nor COMet are
required on the client side for the demonstration to work.

The first time you access the HTML page, a dialog box opensto tell you that
unsigned executable content is being downloaded, which is acceptable in this
case. Y ou should be presented with asimple GUI, similar to the Visual Basic or
PowerBuilder GUI screensin Figure 7 on page 41 and Figure 8 on page 42. The
steps to use the demonstration are:

65

CHAPTER 4 | Getting Started

66

Step Action
1 | Select Connect.
2 | Typex andy vauesfor the grid coordinates.
3 | Select Set to modify valuesin the grid, or Get to obtain values
from the grid.
4 | Select Disconnect when you are finished.

Automation Dual Interface Support

Automation Dual Interface Support

Overview

What isa Dual Interface?

Early Binding

Some Automation controllers (for example, Visual Basic) provide clients the
option of using either straight 1pispatch interfaces or dual interfacesfor
invoking on aserver. This section describes the use of dual interfaces. The
following topics are discussed:

* “WhatisaDua Interface?’ on page 67.

e “Early Binding” on page 67.

® “Typelibraries’ on page 68.

® “Thets2tlb Utility” on page 68.

®* “Viewing the Type Library” on page 69.

® “Usingthe TypeLibrary inaClient” on page 69.
® “Registering the Type Library” on page 69.

An Automation dual interfaceisa COM vtable-based interface that derives from
the Tpispatch interface. The vtable, a standard feature of object-oriented
programming, is afunction table that contains entries corresponding to each
operation defined in an interface. This means that its methods can be either
late-bound, using Ipispatch: : Invoke, Or early-bound through the vtable
portion of the interface.

Note: If you want to use dual interfaces with COMet, you must load the
bridge in-process to the client. COMet does not support the use of dual
interfaces with the bridge loaded out-of-process.

The use of dual interfaces means that client invocations can be routed directly
through the vtable. Thisisknown as early binding, because interfaces are known
at compiletime. The alternative to early binding is late binding, where client
invocations are routed dynamically through 1pispatch interfaces at runtime.
The advantage of using dual interfaces and early binding isthat it helps to avoid
the tDispatch marshalling overhead at runtime that can be associated with late
binding.

67

CHAPTER 4 | Getting Started

TypelLibraries

Thets2tlb Utility

68

The use of dual interfaces requires the use of atype library. To use dua
interfaces in an Automation client that wants to communicate with a CORBA
server, you must create atype library that is based on the OMG IDL type
information implemented by the target CORBA server. This alows the
Automation client to be presented with an Automation view of the target
CORBA objects.

COMet provides atype library generation tool, called ts2t1b, which produces
type libraries, based on OMG IDL type information in the COMet type store.
For example, the following ts2t1b command createsagrid. t1b typelibrary in
the 1T_grid library, based on the OMG IDL grid interface:

ts2tlb -f grid.tlb -1 IT grid grid

For more complicated OMG IDL interfaces (for example, those that pass
user-defined types as parameters), ts2t1b attemptsto resolve all those types
from the disk cache, the Interface Repository, or both. It can only create atype
library, however, if it finds all the OMG IDL typesit looks for.

Note: You must ensure that your OMG IDL isregistered with the Interface
Repository before you add it to the type store and use ts2t1b to create type
librariesfrom it. See “ Development Support Tools” on page 171 for full details
about ts2t1b and creating type libraries from OMG IDL.

Viewing the TypeLibrary

Usingthe TypeLibraryinacClient

Registering the TypeLibrary

Automation Dual Interface Support

The generated type library, based on the OMG IDL grid interface, appears as
follows when viewed using oleview:

[odl,..]
interface DIgrid : IDispatch {
[1d(0x00000001)]
HRESULT _stdcall get(
[in] short n,
[in] short m,
[out, optional] VARIANT* excep_ OBJ,
[out, retval] long* val);
[1d (0x00000002)]
HRESULT _stdcall set(
[in] short n,
[in] short m,
[in] long value,
[out, optional] VARIANT* excep_OBJ) ;
[1d(0x00000003) , propget]
HRESULT _stdcall height([out, retval] short* val);
[1d(0x00000004) , propget]
HRESULT _stdcall width([out, retval] short* wval);

I8

Note: All UUIDs are generated by using the MD5 algorithm, which is
described in the OMG Interworking Architecture specification at
ftp://ftp.omg.org/pub/docs/formal/01-12-55.pdf.

Having created areference to the typelibrary, it can be used in Visual Basic, for
example, asfollows:

' Visual Basic
Dim custGrid As IT grid.DIgrid

If you want to register the generated type library in the Windows registry, use
the supplied t1libreg utility. You can also use t1libreg to unregister atype
library. See “COMet Utility Arguments” on page 407 for more detail s about

tlibreg.

69

CHAPTER 4 | Getting Started

Developing COM Clients

Overview COMet provides support for COM customized interfaces. In other words,
COMet not only supports standard Automation interfaces; it also supports COM
interfaces, with all the extended types that they provide. This support isaimed
primarily at C++ programmers writing COM clients who want to make use of
the full set of COM types, rather than being restricted to typesthat are
compatible with Automation. This section describes how to use COMet to
develop COM clientsin C++.

In This Section This section discusses the following topics:
Generating Microsoft IDL from OMG IDL page 71
Compiling Microsoft IDL page 73
Writing aCOM C++ Client page 74

70

Developing COM Clients

Generating Microsoft IDL from OMG IDL

Overview

Thets2idl Utility

Thefirst step in implementing a COM client that can communicate with a
CORBA server isto generate the Microsoft IDL definitions required by the
COM client from existing OMG IDL for the CORBA objects. This allowsthe
COM client to be presented with a COM view of the target CORBA objects.

This subsection describes how to generate Microsoft IDL from OMG IDL. The
following topics are discussed:

. “Thets2idl Utility” on page 71.
. “OMG IDL grid Interface” on page 72.
° “Microsoft IDL Igrid Interface” on page 72.

COMet provides a COM IDL generation tool, called ts2id1, which produces
Microsoft IDL, based on OMG IDL type information in the COMet type store.
For example, the following ts2id1 command createsagrid.idl Microsoft IDL
file, based on the OMG IDL grid interface:

ts2idl -f grid.idl grid

For more complicated OMG IDL interfaces that employ user-defined types, you
can specify a-r argument with ts21d1, to completely resolve those types and to
produce COM IDL for them also.

Note: You must ensure that your OMG IDL is registered with the Interface
Repository before you add it to the type store and use ts2id1 to create COM
IDL fromit. See“Development Support Tools’ on page 171 for full details
about ts2id1 and creating COM IDL from OMG IDL.

71

CHAPTER 4 | Getting Started

OMG IDL grid Interface The grid object in the CORBA server implements the following OMG IDL
gridinterface:

// OMG IDL

interface grid {

readonly attribute short height;

readonly attribute short width;

void set (in short n, in short m, in long value) ;
long get(in short n, in short m);

hg

Microsoft IDL Igrid Interface The corresponding COM interface for the preceding OMG IDL interfaceis
caled 1grid, and is defined as follows:

//Microsoft IDL
[object,...]
interface Igrid : IUnknown
{
HRESULT get ([in] short n,
[in] short m,
[out] long *val) ;
HRESULT set ([in] short n,
[in] short m,
[in] long value) ;
HRESULT _get_height ([out] short *val);
HRESULT _get_width([out] short *val);
}i
#endif

72

Developing COM Clients

Compiling Microsoft IDL

Overview

The midl.exe Compiler

Resulting Output

Building the Proxy/Stub DL L

After generating the required Microsoft IDL definitions from OMG IDL, you
must compile the Microsoft IDL. This subsection describes how to compile it
and the resulting output. The following topics are discussed:

. “The midl.exe Compiler” on page 73.

® “Resulting Output” on page 73

® “Building the Proxy/Stub DLL" on page 73.

Usethemidl . exe compiler to compile the Microsoft IDL.

Themidl.exe compiler produces:

® The C++ interface definitions to be used within the COM client
application.

® A proxy/stub DLL to marshal the customized Microsoft IDL interface.

This procedure is standard practice when writing COM applications.

Y ou can use ts2id1 to produce a makefile that subsequently alowsyou to build
and register the proxy/stub DLL. The steps are:

Step Action

1 | Usethe -p argument with ts2id1 to produce the makefile. For
example, the following command produces agrid.mk filein
addition to the grid. id1 file already shown in “ Generating
Microsoft IDL from OMG IDL” on page 71:

ts2idl -p -f grid.idl grid

The generated makefile contains information on how to build and
register the proxy/stub DLL.

2 | Usethe generated makefile to build the proxy/stub DLL as normal.
Note: You need Visual C++ 6.0, to build the proxy/stub DLL.

73

CHAPTER 4 | Getting Started

Writinga COM C++ Client

Overview This subsection describes the steps to use COMet to write a COM C++ client of
aCORBA server. The steps are:

Step Action

1 | Make genera declarations.

Connect to the CORBA factory.

Connect to the CORBA server.

B w N

Invoke operations on the grid object.

Note: The source for this demonstration isin
install—dir\demos\comet\grid\coanlient,VVhEIe install-dir
represents the Orbix installation directory.

Step 1—General Declarations Declare areference to the CORBA object factory and to agrid COM view
object:
// COM C++
HRESULT hr = NOERROR;
TUnknown *pUnk = NULL;
ICORBAFactory *pCORBAFact = NULL;
DWORD ctx;
// our custom interface
Igrid *pIBasic = NULL;
MULTI_QI mai;

74

Step 2—Connecting to the
CORBA Object Factory

Step 3—Connecting to the
CORBA Server

Developing COM Clients

Create aremote instance of the CORBA object factory, which implements the
ICORBAFactory interface, on the client machine. Thisinvolves calling the COM
CoCreateInstanceEx () method asnormal, to obtain a pointer to
ICORBAFactory. The remote instance of the CORBA object factory is assigned

the IID_ICORBAFactory |ID:

// COM C++
// Call to CoInitialize(), some error handling,

// and so on, omitted for clarity

memset (&mgi, 0x00, sizeof (MULTI_QI));

mgi.pIID = &IID ICORBAFactory;

ctx = CLSCTX_ INPROC_SERVER;

hr = CoCreateInstanceEx (IID_ICORBAFactory, NULL, ctx, NULL, 1,
&mqi) ;

CheckHRESULT ("CoCreateInstanceEx ()", hr, FALSE);

pCORBAFact = (ICORBAFactory*)mgi.pItf;

Call cetobject () onthe CORBA object factory, to get a pointer to the
Tunknown interface of the COM view of the target grid CORBA object.

// COM C++
sprintf (szObjectName, "grid:%s", sIOR) ;

hr = pCORBAFact->GetObject (szObjectName, &pUnk) ;

if (!CheckErrInfo (hr, pCORBAFact, IID_ICORBAFactory))

{
PCORBAFact->Release() ;

return;

}
PCORBAFact->Release() ;

In the preceding code, checkErrorInfo () isautility function used by the
demonstrations to check the thread’ s Errorinfo object after each call. Thisis
useful for obtaining information about, for example, a CORBA system
exception that might be raised during the course of a call. See “ Exception
Handling” on page 113 for more details about exception handling.

See “Obtaining a Reference to a CORBA Object” on page 103 and
“ICORBAFactory” on page 253 for more details about Getobject ().

75

CHAPTER 4 | Getting Started

Step 4—Invoking Oper ations on
the Grid Object

76

Call gueryInterface() onthe pointer to the Tunknown interface of the COM
view object, to obtain a pointer to the customized 1gridinterface. The client can
then use the pTF object reference to invoke operations on the target grid object
in the server:

// COM C++

short width, height;

Igrid *pIF= 0;

hr = pUnk->QueryInterface(IID_Igrid, (PPVOID)& pIF);

if (!CheckErrInfo (hr, pUnk, IID Igrid))
{

pUnk->Release() ;

return;

}

hr = pIF->_get_width (&width) ;
CheckErrInfo (hr, pIF, IID Igrid);
cout << "width is " << width << endl;
hr = pIF->_get_height (&height) ;
CheckErrInfo (hr, pIF, IID Igrid);
cout << "height is " << height << endl;
pIF->Release() ;

Priming the COMet Type Store Cache

Priming the COMet Type Store Cache

Overview

What is Priming?

Relevance of Priming

For Morelnformation

This section describes the concept of priming the type store cache. The
following topics are discussed:

* “WhatisPriming?’ on page 77.
* “Relevance of Priming” on page 77.
®* “For More Information” on page 77.

When you are ready to run your application for the first time, you have the
option of improving the runtime performance by adding the OMG IDL type
information required by the application to the COMet type store. Thisisalso
known as priming the type store cache. Priming the cache means that the type
store already holds the required OMG IDL type information in memory before
you run your application. Therefore, the application does not have to keep
contacting the Interface Repository for each IDL type required.

Priming the type store cacheis a useful but optional step that is only relevant
before the first run of an application that will be using type information
previously unseen by the type store. On exiting an application, new entriesin the
memory cache are written to persistent storage and are automatically reloaded
the next time the application is executed. Therefore, the cache can satisfy all
subsequent queries for previously obtained type information.

See“Development Support Tools” on page 171 for details about the workings of
the COMet type store cache and how to primeiit.

77

CHAPTER 4 | Getting Started

78

In This Chapter

CHAPTER 5

Developing an
Automation Client

Thischapter expandsonwhat you learnedin“ Getting Sarted” on
page 35. It uses the example of a distributed tel ephone book
application to show how to write Automation clientsin
PowerBuilder or Visual Basic that can communicate with an
existing CORBA C++ server.

This chapter discusses the following topics:

The Telephone Book Example page 80
Using Automation Dual Interfaces page 84
Writing the Client page 85
Building and Running the Client page 95

Note: This chapter assumes that you are familiar with the CORBA Interface
Definition Language (OMG IDL). See “Introduction to OMG IDL” on
page 267 for more details.

79

CHAPTER 5 | Developing an Automation Client

The Telephone Book Example

Overview This section provides an introduction to the telephone book application
developed in this chapter. The following topics are discussed:

e “Application Summary” on page 80.

® “Graphical Overview” on page 81.

® “OMG IDL PhoneBook Interface” on page 81.
® “Location of Source Files’ on page 82.

® “Client GUI Layout” on page 82.

Note: You do not need to understand how the demonstration server is
implemented, to follow the examplesin this chapter.

Application Summary In the supplied telephone book application, the Automation client makes
requests on a PhoneBook object implemented in a CORBA C++ server. As
explained in “How COMet Implements the Model” on page 20, the client
actually makes its method calls on a view object in the COMet bridge. The
principal task of the Automation client in this example s, therefore, to obtain a
reference to an Automation PhoneBook View object in the bridge.

The PhoneBook View object exposes an Automation DIPhoneBook interface,
generated from the OMG IDL phoneBook interface. (See “Mapping CORBA to
Automation” on page 311 for details of how CORBA types are mapped to
Automation.) When the client makes method calls on the PhoneBook view
object, the bridge forwards the client requests to the target CORBA PhoneBook
object.

80

Graphical Overview

The Telephone Book Example

Figure 10 provides a graphical overview of the components of the telephone
book application.

CORBA Server

Automation

COMet — PhoneBook

Client

Object

OMG IDL PhoneBook Interface

numberOfEntries () Orbix Object
addNumber () (Implemented in C++)
lookupNumber ()

Figure 10: Telephone Book Example with Automation Client

The PhoneBook object in the CORBA server implements the following OMG
IDL PhoneBook interface:

// OMG IDL
interface PhoneBook {
readonly attribute long numberOfEntries;

boolean addNumber (in string name, in long number) ;

long lookupNumber (in string name) ;
}i

81

CHAPTER 5 | Developing an Automation Client

Automation DI PhoneBook The corresponding Automation interface for the “OMG IDL PhoneBook
Interface Interface” on page 81 is called p1PhoneBook, and is defined as follows:
[odl,..]

interface DIPhoneBook : IDispatch {
[1d(0x00000001)]
HRESULT addNumber (
[in] BSTR name,
[in] long number,
[in, out, optional] VARIANT* excep_ OBJ,
[out, retval] VARIANT BOOL* val) ;
[1d(0x00000002)]
HRESULT lookupNumber (
[in] BSTR name,
[in, out, optional] VARIANT* excep_OBJ,
[out, retvall long* val);
[1d(0x00000003), propget]
HRESULT numberOfEntries([out, retval] long* val);
hg

L ocation of Source Files Y ou can find versions of the Automation client application described in this
chapter at the following locations, where install-dir represents the Orbix
installation directory:

Visual Basic install-dir\demos\comet\phonebook\vb_client
PowerBuilder install-dir\demos\comet\phonebook\pb_client
Internet Explorer install-dir\demos\comet\phonebook\ie_client

The CORBA server application is supplied in the
install-dir\demos\comet\phonebook\cxx_server directory.

Client GUI Layout Figure 11 shows the layout of the client GUI interface that is developed in this
chapter.

82

The Telephone Book Example

. Phone List Search Client

Figure 11: Phone List Search Client GUI Interface

CHAPTER 5 | Developing an Automation Client

Using Automation Dual Interfaces

Overview

I Dispatch versus Dual Interfaces

Creating TypeLibraries

84

This section describes the use of Automation dual interfaces. The following
topics are discussed:

® “IDispatch versus Dual Interfaces’ on page 84.
. “Creating Type Libraries’ on page 84.

“Automation Dual Interface Support” on page 67 has already explained that,
when using an Automation client, you have the option in some controllers (for
example, Visual Basic) of using straight 1pispatch interfaces or dual interfaces,
which determines whether your application can use early or late binding.

Note: Theuse of dua interfaces is only supported when the bridge is loaded
in-process to the client. If the bridge is loaded out-of-process, you must use
IDispatch.

If you want to use dual interfaces, you must create atype library. To create an
Automation client that uses dual interfaces and communicates with a CORBA
server, you must create atype library that is based on the OMG IDL interfaces
exposed by the CORBA server. Y ou can create atype library, based on existing
OMG IDL information in the type store, using either the GUI or command-line
version of the COMet ts2t1b utility. See“ Creating a Type Library” on

page 190 for more details.

Writing the Client

Writing the Client

Overview

In This Section

This section describes how to write a Visual Basic version of the client, without
using the code generation genie. It also describes how to write a PowerBuilder
version of the client.

Note: Thereisno code generation genie available for PowerBuilder. If you
want to use the code generation genie for Visual Basic, see “Using the Visual
Basic Geni€” on page 43 for a detailed introduction, and “ Generating Visual
Basic Client Code” on page 199 for full details of how to use it.

This section discusses the following topics:

Obtaining a Reference to a CORBA Object page 86
The Visual Basic Client Code in Detail page 89
The PowerBuilder Client Code in Detail page 92

85

CHAPTER 5 | Developing an Automation Client

Obtaining a Referenceto a CORBA Object

Overview

Visual Basic Example

Power Builder Example

86

This subsection provides Visual Basic and PowerBuilder examples of the client
code that is used to obtain areference to a CORBA object. See “ The Visua
Basic Client Code in Detail” on page 89 and “The PowerBuilder Client Code in
Detail” on page 92 for the complete client code. The following topics are
discussed:

®* “Visua Basic Exampl€e” on page 86.

* “PowerBuilder Example” on page 86.

e “Explanation of Examples’ on page 87.

® “Format of Parameter for GetObject()” on page 87.

®* “Purpose of GetObject()” on page 88.

* “Explanation of GetObject()” on page 88.

Thefollowing isaVisual Basic example of how to obtain a CORBA object
reference:

Example 5:
' Visual Basic

Dim ObjFactory As Object
Dim phoneBookObj As Object

1 Set ObjFactory = CreateObject ("CORBA.Factory")

2 Set phoneBookObj = ObjFactory.GetObject ("PhoneBook:" + sIOR)

The following is a PowerBuilder example of how to obtain a CORBA object
reference:

Example 6:
// PowerBuilder
OleObject ObjFactory

OleObject phoneBookObj

ObjFactory = CREATE OleObject
ObjFactory.ConnectToNewObject ("CORBA.Factory")

Explanation of Examples

Format of Parameter for
GetObject()

Writing the Client

Example 6:

phoneBookObj = CREATE OleObject
phoneBookObj ObjFactory.GetObject ("PhoneBook:" + sIOR)

The preceding examples can be explained as follows:

1. Theclientinstantiatesa CORBA object factory in the bridge. The CORBA
object factory is afactory for creating view objects. It is assigned the
CORBA.Factory ProgID.

2. Theclient callscetobject () onthe CORBA object factory. It passesthe
name of the PhoneBook object in the CORBA server in the parameter for
GetObject ().

The parameter for Getobject () takes the following format:

"interface: TAG: Tag Data"

The Tac variable can be either of the following:

* IOR
Inthiscase, Tag data isthe hexadecimal string for the stringified IOR.
For example:

fact.GetObject ("employee: IOR:123456789...")

b NAME,_SERVICE

Inthiscase, Tag data isthe Naming Service compound name separated
by ".". For example:

fact.GetObject ("employee:NAME_SERVICE:IONA.staff.PD.Tom")

Note: If theinterface is scoped (for example, "Module: : Interface"), the
interface token is "Module/ Interface".

87

CHAPTER 5 | Developing an Automation Client

Purpose of GetObject()

The purpose of the call to cetobject () iSto achieve the connection between the
client’ s phoneBookobj object reference and the target PhoneBook object in the
server. Figure 12 shows how the call to Getobject () achievesthis.

Ref.
to

Automation Client

Factory

Ref.
to To PhoneBook
PhoneBook object in remote

Explanation of GetObject()

88

v CORBA server
~

~
3~ 2/
~

< &

Automation
View
DIPhoneBook

>

Bridge

Figure 12: Binding to the CORBA PhoneBook Object

In Figure 12, GetObject ():

1. Createsan Automation view object in the COMet bridge that implements
the DIPhoneBook dual interface.

2. Bindsthe Automation view object to the CORBA PhoneBook
implementation object named in the parameter for Getobject ().

3. Returns areference to the Automation view object.

After the call to Getobject (), the client in this example can use the
phoneBookObj object reference to invoke operations on the target PhoneBook
object in the server. Thisis further illustrated for Visual Basic in “ Step 4—
Invoking Operations on the PhoneBook Object” on page 90 and for
PowerBuilder in “ Step 4—Invoking Operations on the PhoneBook Object” on

page 93.

Writing the Client

TheVisual Basic Client Codein Detail

Overview

Step 1—General Declarations

Step 2—Connecting to the
CORBA Object Factory

This subsection describes the steps to write the complete Visual Basic client
application. It shows how the Visual Basic code extracts shown in “ Obtaining a
Reference to a CORBA Object” on page 86 fit into the overall client program.
The steps are:

Step Action

1 | Make genera declarations.

2 | Createtheform.

Connect to the CORBA server.

Invoke operations on the PhoneBook 0Object.

g | W

Unload the form.

Declare areference to the object factory and to the phonebookobj Automation
view object:

' Visual Basic
Dim ObjFactory As Object
Dim phoneBookObj As Object

Create an instance of the the CORBA object factory when the Visual Basic form
is created, and assign the ProglD, COrRBA. Factory, tO it:

' Visual Basic

Private Sub Form Load ()

Set ObjFactory = CreateObject ("CORBA.Factory")
End Sub

89

CHAPTER 5 | Developing an Automation Client

Step 3—Connecting to the Implement the Connect button, call cetobject () onthe CORBA object
CORBA Server factory, and pass the name of the PhoneBook oObject as the parameter to
GetObject ():

' Visual Basic
Private Sub ConnectBtn Click()
Set phoneBookObj = ObjFactory.GetObject ("PhoneBook:" + sIOR)

End Sub

In the preceding code, the implementation of the Connect button connectsto the
PhoneBook object in the CORBA server. After the call to Getobject (), the
client can use the phoneBookob7 object reference to invoke operations on the
target PhoneBook Object in the server. Thisisillustrated next in “ Step 4—
Invoking Operations on the PhoneBook Object”.

Step 4—Invoking Operations on Implement the Add, L ookup, and Update buttons, which call the OMG IDL
the PhoneBook Object operations on the phoneBook object in the CORBA server:

' Visual Basic

Private Sub AddBtn_ Click()

If phoneBookObj .addNumber (PersonalName.Text, Number.Text) Then
MsgBox "Added " & PersonalName.Text & " successfully"

Else ..

End If

' Update the display of the current number of

' entries in the phonebook

EntryCount.Caption = phoneBookObj.numberOfEntries
End Sub

Private Sub LookupBtn_Click/()
Dim num
num = phoneBookObj .lookupNumber (PersonalName.Text)

End Sub

Private Sub UpdateBtn_Click/()

' Update the display for the number of entries

' in the remote phonebook

EntryCount.Caption = phoneBookObj.numberOfEntries
End Sub

90

Step 5—Unloading the Form

Writing the Client

Release the CORBA object factory and the Automation view object, using the
Form_Unload () subroutine:

' Visual Basic
Private Sub Form Unload(Cancel As Integer)

Set ObjFactory = Nothing
Set phoneBookObj = Nothing

End Sub

91

CHAPTER 5 | Developing an Automation Client

The PowerBuilder Client Codein Detail

Overview

Step 1—General Declarations

Step 2—Connecting to the
CORBA Object Factory

92

This subsection describes the steps to write the complete PowerBuilder client
application. It shows how the PowerBuilder code extracts shown in “Obtaining a
Reference to a CORBA Object” on page 86 fit into the overall client program.
The steps are:

Step Action

1 | Make genera declarations.

Load the window.

Connect to the CORBA server.

Invoke operations on the PhoneBook object.

a|l b WO[DN

Unload the window.

Declare global variables for the object factory and the phonebookob3
Automation view object:

// PowerBuilder
OleObject ObjFactory
OleObject phoneBookObj

Create an instance of the CORBA object factory within the open event for the
Phone List Search Client window, and assign it ProglD, CORBA.Factory, t0 it:

// PowerBuilder
ObjFactory = CREATE OleObject
ObjFactory.ConnectToNewObject ("CORBA.Factory")

Step 3—Connecting to the
CORBA Server

Step 4—Invoking Operations on
the PhoneBook Object

Step 5—Unloading the Window

Writing the Client

Implement the clicked event for the Connect button, call Getobject () onthe
CORBA object factory, and pass the name of the PhoneBook object asthe
parameter to GetObject ():

// PowerBuilder
phoneBookObj = CREATE OleObject
phoneBookObj = ObjFactory.GetObject ("PhoneBook:" + sIOR)

In the preceding code, the clicked event for the Connect button connects to the
PhoneBook Object in the CORBA server. After the call to Getobject (), the
client can use the phoneBookob;j object reference to invoke operations on the
target PhoneBook object in the server. Thisisillustrated next in“ Step 4—
Invoking Operations on the PhoneBook Object”.

Implement the clicked event for the Add, L ookUp, and Update buttons, which
call the OMG IDL operations on the PhoneBook object in the CORBA server:

// PowerBuilder
// Add Button
If sle phone.Text <> "" and sle name.Text <> "" then
If phoneBookObj .addNumber (sle_name.Text, sle_phone.Text) Then
MessageBox ("Success!", "Added " + sle_name.Text
+ " successfully.")
EntryCount.Text = String (phoneBookObj.numberOfEntries)

End If
End if

// Lookup Button
if sle_name.Text <> "" then

Result = phoneBookObj.lookupNumber (sle_name)
end if

// Update Button
EntryCount.Text = String(phoneBookObj.numberOfEntries)

Release the CORBA object factory and the Automation view object when
unloading the window:

93

CHAPTER 5 | Developing an Automation Client

// PowerBuilder
ObjFactory.DisconnectObject ()
DESTROY ObjFactory

DESTROY phoneBookObj

94

Building and Running the Client

Building and Running the Client

Overview

Building the Client

Running the Client

This section describes how to build and run the client. The following topics are
discussed:

® “Building the Client” on page 95.
® “Running the Client” on page 95.

Y ou can build your client executable as normal for the language you are using.

The stepsto run the client are:

Step Action

1 | Ensurethat an activator daemon is running on the CORBA
server’'s host. This alows the locator daemon to automatically
activate the server. (See the CORBA Administrator’s Guide for
more details.)

2 | Register the CORBA server with the Implementation Repository.
(Usually, it is not necessary to register a server, if the server has
been written and registered by someone else.) See the Orbix
documentation set for more details.

3 | Runtheclient.

On the Phone List Search Client screen, shownin Figure 11 on
page 83, type the server’'s hostname in the Host text box, and
select Connect. Y ou can now add and look up telephone book
entries.

Note: If your client isinactive for some time, the PhoneBooksrv server is
timed-out and exits. It is reactivated automatically if the client i ssues another
request.

95

CHAPTER 5 | Developing an Automation Client

96

In This Chapter

CHAPTER 6

Developing aCOM
Client

Thischapter expandson what you learned in“ Getting Started” on
page 35. It uses the example of a distributed tel ephone book
application to show how to write a COM C++ client that can
communicate with an existing CORBA C++ server.

This chapter discusses the following topics:

The Telephone Book Example page 98

Writing the Client page 102
Writing the Client page 102
Writing the Client page 102
Building and Running the Client page 110

Note: This chapter assumes that you are familiar with the CORBA Interface
Definition Language (OMG IDL). See “Introduction to OMG IDL” on
page 267 for more details.

97

CHAPTER 6 | Developing a COM Client

The Telephone Book Example

Overview This section provides an introduction to the telephone book application
developed in this chapter. The following topics are discussed:

“Application Summary” on page 98.

“Graphical Overview” on page 99.

“OMG IDL PhoneBook Interface” on page 99.
“Microsoft IDL 1PhoneBook Interface” on page 100.
“Location of Source Files’ on page 100.

Note: Y ou do not need to understand how the demonstration server is
implemented, to follow the example in this chapter.

Application Summary In the supplied telephone book application, the COM client makes requests on a
PhoneBook Object implemented in a CORBA C++ server. Asexplained in “How
COMet Implementsthe Model” on page 20, the client actually makes its method
callson aview object in the COMet bridge. The principal task of the COM client
in this exampleis, therefore, to obtain areference to a COM PhoneBook View
object in the bridge.

The PhoneBook View object exposes a COM IPhoneBook interface, generated
from the OMG IDL pPhoneBook interface. (See “Mapping CORBA to COM” on
page 353 for details of how CORBA types are mapped to COM.) When the
client makes method calls on the PhoneBook View object, the bridge forwardsthe
client requests to the target CORBA PhoneBook 0bject.

98

Graphical Overview

The Telephone Book Example

Figure 13 provides a graphical overview of the components of the telephone
book application.

CORBA Server

COM Client

COMet — PhoneBook

Object

OMG IDL PhoneBook Interface

numberOfEntries () Orbix Object
addNumber () (Implemented in C++)
lookupNumber ()

Figure 13: Telephone Book Example with COM Client

The PhoneBook object in the CORBA server implements the following OMG
IDL PhoneBook interface:

// OMG IDL
interface PhoneBook {
readonly attribute long numberOfEntries;

boolean addNumber (in string name, in long number) ;

long lookupNumber (in string name) ;
}i

99

CHAPTER 6 | Developing a COM Client

Microsoft DL | PhoneBook The corresponding COM interface for the preceding OMG IDL interfaceis
Interface called TPhoneBook, and is defined as follows:

//COM IDL

[object,..]

interface IPhoneBook : IUnknown
{
HRESULT addNumber ([in, string] LPSTR name,
[in] long number,
[out] boolean *val);
HRESULT lookupNumber ([in, string] LPSTR name,
[out] long *val);
HRESULT _get_numberOfEntries([out] long *val);
1%

L ocation of Source Files Y ou can find aversion of the COM client application described in this chapter in
install-dir\demos\comet\phonebook\cxx client, where install-dir
represents the Orbix installation directory. This directory contains Visual C++
COM client code.

The CORBA server application is supplied in the
install-dir\demos\comet\phonebook\cxx_server directory.

100

Prerequisites

Prereguisites

Overview

Generating Microsoft IDL from
OMG IDL

Building a Proxy/Stub DL L

This section describes the prerequisities to writing a COM client with COMet.
The following topics are discussed:

® “Generating Microsoft IDL from OMG IDL” on page 101.
e “Building aProxy/Stub DLL" on page 101.

Asexplained in “ Generating Microsoft IDL from OMG IDL” on page 71, the
normal procedure for writing a client in COM isto first obtain a COM IDL
definition for the object interface. In this case, you want to create a COM client
that can communicate with a CORBA server, so you must create COM IDL
definitions that are based on the OMG IDL interfaces exposed by the CORBA
server.

Y ou can generate COM DL, based on existing OMG IDL information in the
type store, using either the GUI or command-line version of the COMet ts2id1l
utility. See “Development Support Tools” on page 171 for details of how to use
it.

If the COMet bridge is not being loaded in-process to your COM client
application, you must create astandard DCOM proxy DLL for the interfaces you
areusing. Thisis necessary to allow the DCOM protocol to correctly make a
connection to the remote COMet bridge from the client. Y ou can use the
supplied ts2id1 utility to create the sources for the proxy/stub DLL. For this
example, use the following command:

ts2idl -f PhoneBook.idl -s -p PhoneBook

The -p argument with ts2id1 createsaVisual C++ makefile that you can use to
compile your proxy/stub DLL. For this example, this makefileis called
Phonebookps . MK and is supplied in the
install-dir\demos\comet\phonebook\com client directory.

101

CHAPTER 6 | Developing a COM Client

Writing the Client

Overview The section describes how to write the COM C++ client.

In This Section This section discusses the following topics:
Obtaining a Reference to a CORBA Object page 103
The COM C++ Client Code in Detail page 107

102

Writing the Client

Obtaining a Referenceto a CORBA Object

Overview

Example

This subsection shows how the COM C++ client obtains areference to a
CORBA object. Seethe“The COM C++ Client Code in Detail” on page 107 for

the complete client code. The following topics are discussed:
* “Example’ on page 103.

* “Explanation” on page 104.

®* “Format of Parameter for GetObject()” on page 104.

®* “Purpose of GetObject()” on page 105.

* “Explanation of GetObject()” on page 105.

® “Using CoCreatelnstance()” on page 106.

Thefollowingisa COM C++ example of how to obtain a CORBA object

reference:
Example 7:

// COM C++

// General Declarations
TUnknown *pUnk=NULL;
IPhoneBook *pIPhoneBook=NULL;

// Connecting to the CORBA Factory

hr = CoCreateInstanceEx (IID_ICORBAFactory, NULL,
&mgi) ;

pCORBAFact = (ICORBAFactory*)mgi.pItf;

// Connecting to the CORBA Server

// Read IOR from file

/]

sprintf (szObjectName, "PhoneBook:%s", szIOR) ;

hr = pCORBAFact->GetObject (szObjectName, &pUnk) ;
hr

ctx, NULL, 1,

pUnk->QueryInterface (IID IPhoneBook, (PPVOID)&pIPhoneBook) ;

103

CHAPTER 6 | Developing a COM Client

Explanation

Format of Parameter for
GetObject()

104

The preceding example can be explained as follows:

1

The client first instantiates a CORBA object factory in the bridge. The
CORBA object factory isafactory for creating view objects. It is assigned
the IID_ICORBAFactory IID.

The client then calls Getobject () onthe CORBA object factory. It passes
the name of the PhoneBook object in the CORBA server in the parameter
for GetObject ().

The parameter for Getobject () takes the following format:

"interface: TAG: Tag Data"

The Tac variable can be either of the following:

IOR

Inthiscase, Tag data isthe hexadecimal string for the stringified IOR.
For example:

fact.GetObject ("employee: IOR:123456789...")

NAME_SERVICE

Inthiscase, Tag data isthe naming service compound name separated by
".". For example:

fact.GetObject ("employee:NAME_SERVICE:IONA.staff.PD.Tom")

Note: If theinterfaceis scoped (for example, "Module: : Interface"), the
interface token is "Module/ Interface".

Purpose of GetObject()

Writing the Client

The purpose of the call to Getobject () iSto get apointer to the Tunknown
interface (punk) of the COM view of the target PhoneBook object. Figure 14
shows how the call to Getobject () achievesthis.

COM Client
Ref. Ref.
to to To PhoneBook
Factory PhoneBook object in remote

Explanation of GetObject()

v CORBA server
~
X 2
\ 3~ < /
~

COMView
IPhoneBook

Bridge

Figure 14: Binding to the CORBA PhoneBook Object

In Figure 14, GetObject ():

1. CreatesaCOM view object in the COMet bridge that implements the
COM IPhoneBook interface.

2. Bindsthe COM view object to the CORBA PhoneBook implementation
object named in the parameter for Getobject ().

3. Setsthe pointer specified by the second parameter (punk) to point to the
Tunknown interface of the COM view object.

After the call to Getobject (), the client in this example can obtain a pointer to
the TPhoneBook interface (pIPhoneBook) by performing a gueryInterface ()
on the pointer to the Tunknown interface of the COM view object. The client can

105

CHAPTER 6 | Developing a COM Client

Using CoCreatel nstance()

106

then use the pIPhoneBook Object reference to invoke operations on the target
PhoneBook Object in the server. Thisisfurther illustrated in “ Step 5—Invoking
Operations on the PhoneBook Object” on page 108.

The CORBA object factory alows you to obtain areferenceto a CORBA object
in amanner that is compliant with the OMG specification. However, as an
alternative, COMet also allows a COM client to use the standard
CoCreateInstance () COM API call, to connect directly to a CORBA server.

Writing the Client

The COM C++ Client Codein Detall

Overview

Step 1—Include Statements

Step 2—General Declarations

This subsection describes the steps to write the complete COM C++ client
application. It shows how the code extracts shown in “ Obtaining a Reference to
a CORBA Object” on page 103 fit into the overall client program. The steps are:

Step Action

1 | Makeinclude statements.

2 | Make general declarations.

Connect to the CORBA factory.

Connect to the CORBA server.

g | W

Invoke operations on the PhoneBook 0Object.

Include the phoneBook . h header file created from the MIDL file, which was
generated from the OMG IDL for the CORBA object in the type store:

// COM C++

// Header file created from the MIDL file
// generated by the TypeStore Manager Tool
//

#include "phoneBook.h"

Declare areference to the CORBA object factory and to a PhoneBook COM
view object:

// COM C++

TUnknown*pUnk = NULL;
IPhoneBook*pIPhoneBook = NULL;
ICORBAFactory*pCORBAFact = NULL;
char szObjectName[128];

107

CHAPTER 6 | Developing a COM Client

Step 3—Connecting to the
CORBA Object Factory

Step 4—Connecting to the
CORBA Server

Step 5—Invoking Operations on
the PhoneBook Object

108

Use the DCOM coCreateInstanceEx () call to create a remote instance of the
CORBA object factory on the client machine, and assign it the
IID_ICORBAFactory IID.

// COM ++

hr = CoCreateInstanceEx (IID_ICORBAFactory,
NULL, ctx, NULL, 1, &mgi);

pCORBAFact = (ICORBAFactory*)mgi.pItf;

Call Getobject () on the CORBA object factory, and pass the name of the
PhoneBook Object as the parameter:

// COM C++
sprintf (szObjectName, "PhoneBook:%s", szIOR);

hr = pCORBAFact->GetObject (szObjectName, &pUnk) ;
hr = pUnk->QueryInterface (IID_IPhoneBook, (PPVOID)&pIPhoneBook) ;

After the call to cetobject (), the client in this example can obtain a pointer to
the TPhoneBook interface (pIPhoneBook) by performing a QueryInterface ()
on the pointer to the Tunknown interface of the COM view object. The client can
then use the pTPhoneBook object reference to invoke operations on the target
PhoneBook Object in the server. Thisisillustrated next in “ Step 5—Invoking
Operations on the PhoneBook Object”.

Invoke operations on the pPhoneBook oObject in the CORBA server, which allow
you to add a number to the telephone book and look up entries:

Writing the Client

// COM C++

boolean 1Added=0;

cout << "About to add IONA Freephone USA" << endl;

hr = pIF->addNumber ("IONA Freephone USA", 6724948, &lAdded) ;
if (1added)

cout << "Successfully added the number" << endl;

else

cout << "Failed to add the number" << endl;

// see how many entries there are in the phonebook

long nNumEntries=0;

hr = pIF->_get_numberOfEntries (&nNumEntries) ;

cout << "There are " << nNumEntries << " entries" << endl;

// then lookup a couple of numbers

long phoneNumber=0;

pIF->lookupNumber ("IONA Freephone USA", &phoneNumber) ;

cout << "The number for IONA Freephone USA is " << phoneNumber <<
endl;

109

CHAPTER 6 | Developing a COM Client

Building and Running the Client

Overview This section describes how to build and run the client. The following topics are
discussed:

® “Building the Client” on page 110.
® “Running the Client” on page 110.
® “Client Output” on page 111.

Building the Client Y ou can now build your client executable as normal, by running the makefile.
Running the Client The stepsto run the client are:
Step Action

1 | Ensurethat an activator daemon is running on the CORBA
server’s host. This allows the locator daemon to automatically
activate the server. (See the CORBA Administrator’s Guide for
more details.)

2 | Register the CORBA server with the Implementation Repository.
(Usually, it is not necessary to register a server, if the server has
been written and registered by someone else.) See the Orbix
documentation set for more details.

3 | Runtheclient.

110

Building and Running the Client

Client Output The client produces output such as the following:

%% App beginning --

%%% Using
[392: New
[392: New
[392: New
[392: New
[392: New
[392: New

in-process server

IIOP Connection
IIOP Connection
IIOP Connection
IIOP Connection
IIOP Connection
IIOP Connection

(axiom:1570)]
(192.122.221.51:1570) 1
(axiom:1607) 1
(192.122.221.51:1607) 1
(axiom:1611) 1
(192.122.221.51:1611) 1

About to add IONA Freephone USA
Successfully added the number

There are

11 entries

The number for IONA Freephone USA is 6724948
%% Test end

111

CHAPTER 6 | Developing a COM Client

112

In This Chapter

CHAPTER 7

Exception Handling

Remote method callsare much more compl ex to transmit than local
method calls, so there are many more possibilities for error.
Exception handling is therefore an important aspect of
programming a COMet application. This chapter explains how
CORBA exceptions can be handled in a client, and how a server
can raise a user exception.

This chapter discusses the following topics:

CORBA Exceptions page 114
Example of a User Exception page 115
Exception Properties page 118
Exception Handling in Automation page 122
Exception Handling in COM page 131

Note: Seethe Orbix documentation set for details of system exceptions.

113

CHAPTER 7 | Exception Handling

CORBA EXxceptions

Overview

Standard System Exceptions

Application-Specific User
Exceptions

Exception Handling ver sus
Exception Raising

114

This section introduces the concept of CORBA exceptions. The following topics
are discussed:

® “Standard System Exceptions’ on page 114
e “Application-Specific User Exceptions’ on page 114.
® “Exception Handling versus Exception Raising” on page 114.

CORBA defines a standard set of system exceptions that can be raised by the
ORB during the transmission of remote operation calls, and reported to aclient
or server. COMet can rai se system exceptions either during a remote invocation
or through callsto COMet. These exceptions range from reporting network
problems to failure to marshal operation parameters.

CORBA also allows usersto define application-specific exceptions that allow an
application to define the set of exception conditions associated with it. These
user exceptions are defined in the raises clause of an OMG IDL operation, and
can beraised by acall to that OMG IDL operation. See the Orbix documentation
set for more details.

Applications do not (and should not) explicitly raise system exceptions.
However, client applications should be able to handle both standard system
exceptions and application-specific user exceptions. See “ Exception Handling in
Automation” on page 122 and “Exception Handling in COM” on page 131 for
details of how clients can handle exceptions.

Example of a User Exception

Example of a User Exception

Overview

OMG IDL Example

Explanation

This section provides an example of atypical user exception. The following
topics are discussed:

° “OMG IDL Example” on page 115.

e “Explanation” on page 115.

® “Corresponding Automation Interface” on page 116.
® “Corresponding COM Interface” on page 117.

The following is an example of an OMG IDL Bank interface, which contains a
newAccount operation that raises areject exception:

Example 8:

//OMG IDL
interface Bank {

exception Reject ({
string reason;
bp
Account newAccount (in string owner) raises (Reject);
i

An operation can raise more than one user exception. For example:

Account newAccount (in string owner) raises (Reject, BankClosed) ;

The preceding example can be explained as follows:
1. Thezgank interface defines a user exception called Reject.

2. TheRreject exception contains one member, of the string type, whichis
used to specify the reason why the request for a new account was rejected.

115

CHAPTER 7 | Exception Handling

3. ThenewAccount () operation can raise the Reject user exception (for
example, if the bank cannot create an account, because the owner already
has an account at the bank).

Note: If COMet encounters some problem during the operation invocation,
the newAccount () operation can then, of course, raise a system exception.
However, system exceptions are not listed in a raises clause, and user code
should never explicitly raise a system exception.

Corresponding Automation The Automation view of the preceding OMG IDL isasfollows:
Interface

// COM IDL
interface DIBank : IDispatch {
HRESULT newAccount (
[in] BSTR owner,
[optional,out] VARIANT* IT Ex,
[retval,out] IDispatch** IT retval) ;

}
interface DIBank_Reject : DICORBAUserException {
[propput] HRESULT reason([in] BSTR reason) ;

[propget] HRESULT reason([retval,out] BSTR* IT retval);
}

See “Mapping CORBA to Automation” on page 311 for details of how OMG
IDL interfaces and exceptions map to Automation.

116

Example of a User Exception

Corresponding COM Interface The COM view of the preceding OMG IDL isasfollows:

// COM IDL
interface IBank: IUnknown

{
typedef struct tagbank reject

{
LPSTR reason;
} bank_reject;
HRESULT deleteAccount ([in] Iaccount *a);
HRESULT newAccount ([in, string] LPSTR name,
[out] TIaccount **val,
[in, out,unique] bankExceptions **ppException) ;
HRESULT newCurrentAccount ([in, string] LPSTR name,
[in] float limit,
{out] IcurrentAccount **val,
[in, out,unique] bankExceptions **ppException) ;

hg
See “Mapping CORBA to COM” on page 353 for details of how OMG IDL
interfaces and exceptions map to COM.

117

CHAPTER 7 | Exception Handling

Exception Properties

Overview This section describes system and user exception properties.

In This Section This section discusses the following topics:
General Exception Properties page 119
Additional System Exception Properties page 120

118

Exception Properties

General Exception Properties

Overview

(D)l ForeignException Definition

Explanation

This subsection describes the general exception propertiesthat allow you to find
information about a system or user exception that has occurred. The following
topics are discussed:

* “(D)IForeignException Definition” on page 119.
. “Explanation” on page 119.

All exceptions expose the (D) IForeignException interface. It is defined as
follows:

interface DIForeignException : DIForeignComplexType {
[propget] HRESULT EX_majorCode ([retval,out] long*
IT retval);

[propget] HRESULT EX_ Id([retval,out] BSTR* IT retval);
}i

The methods relating to (D) IForeignException can be described asfollows:

EX_majorCode () Thisindicatesthe category of exception raised. It can be any
of the following, defined in the rTstdInterfaces.tlbfile:

EXCEPTION_NO
EXCEPTION_USER
EXCEPTION_SYSTEM

EX_Id() Thisindicates the type of exception raised. For example,
CORBA: : COMM_FATILURE iS an example of a system exception.
Bank: :Reject iSan example of a user exception (based on
the Bank interface in “ Example of a User Exception” on
page 115).

119

CHAPTER 7 | Exception Handling

Additional System Exception Properties

Overview This subsection describes the additional system exception properties. The
following topics are discussed:

e “(D)ICORBA SystemException Definition” on page 120.
* “Explanation” on page 120.

System exceptions have additional properties, which are defined in the
(D) ICORBASYSstemException interface.

(D)ICORBASystemException Additional system exceptions are defined in the (D) ICORBASYstemException
Definition interface. It is defined as follows:

interface DICORBASystemException : DIForeignException {
[propget] HRESULT EX_minorCode([retval,out] long*

IT retval);
[propget] HRESULT EX_completionStatus([retval,out] long*
IT retval);
i
Explanation The methods relating to (D) ICORBASystemException can be described as

follows:

EX_completionStatus() Thisindicatesthe status of the operation at the time
the system exception is raised. The status can be as

follows:

COMPLETION_YES Thismeans the operation had
completed before the exception
was raised.

COMPLETION_NO Thismeansthe operation had not
completed before the exception
was raised.

COMPLETION_MAYBET his means the operation was
initiated, but it cannot be
determined whether or not it had
completed.

120

EX_minorCode ()

Exception Properties

This returns a code describing the type of system
exception that has occurred. See the CORBA
Programmer’s Guide, C++ for details of minor
exception codes and their associated textual
descriptions.

121

CHAPTER 7 | Exception Handling

Exception Handling in Automation

Overview CORBA exceptions are mapped to Automation exceptions by the bridge. This
means that exceptions raised by callsto CORBA objects can be handled in
whatever way your development tool handles Automation exceptions.

User exceptions can define members as part of their OMG IDL definition. For
example, in “Example of a User Exception” on page 115, the Reject exception
contains one member, which is called reason and is of the string type.
However, using Automation’ s native exception handling, exception members
cannot be accessed by aclient.

In This Section This section discusses the following topics:
Exception Handling in Visual Basic page 123
Inline Exception Handling page 125
Using Type Information page 128

122

Exception Handling in Automation

Exception Handling in Visual Basic

Overview

Example

Triggering an Automation
Exception

TheErr Object

This subsection describes how to use the on Error GoTo clause and standard
Err object for exception handling, in a controller such asVisual Basic. The
following topics are discussed:

. “Example’ on page 123.

. “Triggering an Automation Exception” on page 123.

® “TheErr Object” on page 123.

In Visual Basic, exceptions can be trapped using the on Error GoTo clause, and
handled using the standard err object. (See your Visua Basic documentation for
full details of the Err object.) The following Visual Basic code shows how a
client can trap and handle an exception:

' Visual Basic

Dim accountObj As BankBridge.DIAccount
Dim bankObj As BankBridge.DIBank

On Error Goto errorTrap

' Obtain a reference to a Bank object:
Set bankObj = ..
Set accountObj = bankObj.newAccount (owner)

Exit Sub
errorTrap:

MsgBox (Err.Description & " occurred in " & Err.Source)
End Sub

Even though the client cannot call the COM GetErrorinfo () function, to
retrieve the error information, most controllers can trigger an Automation
exception when the view callsthe setErrorinfo () function to populate the Err
object with exception details. In the case of Visua Basic, for example, the
currently active error trap is called and the Err object is used to contain the
details of the exception that occurred.

The standard Exrr object contains properties that provide details of any exception
that occurs. These properties can be described as follows:

123

CHAPTER 7 | Exception Handling

Err.Description Thisprovides details of the exception, including the name of
the exception; for example, CORBA: : COMM_FATLURE OF
Bank: :Reject.

For a user exception, an example of the string in
Err.Description is asfollows:

CORBA User Exception :[Bank::Reject]
For a system exception, an example of the string in
Err.Description is asfollows:

CORBA System Exception :[CORBA::COMM_FAILURE]
minor code [10087] [NO]

Err.Source Thisindicates the operation that raised the exception (for
example, Bank.newAccount).

124

Exception Handling in Automation

I nline Exception Handling

Overview

How It Works

Example

This subsection describes exception handling in Automation controllers that do
not support the concept of the standard rr object. The following topics are
discussed:

* “How It Works’ on page 125.

. “Example” on page 125.

° “IT_Ex Parameter” on page 126.

* “Disabling Standard Exception Handling” on page 126.
. “Uses of Inline Exception Handling” on page 126.

Automation controllers that do not support the concept of the standard Exrr
object can use inline exception handling as an aternative. Inline exception
handling involves passing an additional parameter to each method, to obtain any
error information that might occur. Any exception that does occur, inthiscase, is
returned to the client via the DICORBASystemException interface, whose
properties allow access to the error information.

Note: You must use inline exception handling if you want to access the
membersin auser exception. See “Mapping CORBA to Automation” on
page 311 for details of how OMG IDL user exceptions map to Automation.

Asdescribed in “Mapping for System Exceptions” on page 340, an OMG IDL
operation maps to an Automation method that has an additional optional
parameter. For example:

1. Consider the following OMG IDL.:

// OMG IDL
interface Account {

void makeDeposit (in float amount, out float balance) ;

bp

125

CHAPTER 7 | Exception Handling

IT_Ex Parameter

Disabling Standard Exception
Handling

Uses of Inline Exception Handling

126

2. Thismapsto the following COM IDL:

// COM IDL
interface DIAccount : IDispatch {

HRESULT makeDeposit ([in] float amount,
[out] float* balance,
[optional, in, out] VARIANT* IT EX);

A client can passthe 1T_Ex parameter, shown in the preceding example, ina
method call, and check to seeiif it contains an exception after the call. To use
exceptionsin this manner, however, the 1T_Ex parameter must first beinitialized
to Nothing in the client code, as follows:

Dim IT Ex As Object
Set IT Ex = Nothing

When the 1T_Ex parameter is subsequently passed in a method call, COMet does
not translate any CORBA exceptions that might occur during the call into an
Automation exception. Instead, an instance of DICORBASystemException IS
created and inserted into the IT_Ex parameter. This meansthat the 1T_gx
parameter is populated with error information relating to any CORBA exception
that occurs. This allows the client to retrieve the exception parameter in the
context of the invoked method.

Passing the 1T_Ex parameter means that standard Automation exception
handling is disabled, so the view makes no callsto setErrorinfo(). The
corresponding operation returns HRESULT_FALSE, which prevents an active error
trap from being called.

A user exception can define one or more members that translate to COM |DL
methods. The client can pass the 1T_ex parameter in calls to these methods, so
that if a user exception does occur, the IT_Ex parameter is popul ated with
additional error information that the client in turn can extract.

Exception Handling in Automation

Because the error-handling code must be written inline, the value of the
exception can be examined inline. The ability to handle user exceptionsinlineis
useful, because user exceptions can be thrown to indicate logical errors rather
than unrecoverable errors.

127

CHAPTER 7 | Exception Handling

Using Type Infor mation

Overview This subsection describes how you can use type information to check the type of
exception that occured. The following topics are discussed:

. “Example for Type Library Usage” on page 128.
* “Explanation” on page 129.
e “Examplefor Non-Usage of Type Library” on page 129.

Examplefor TypelLibrary Usage Consider the following Visual Basic example, which assumesthat atypelibrary
is being used:

' Visual Basic
Dim ex As Variant
Set ex = Nothing
' Optional exception param passed, therefore COMet will not
convert a CORBA exception into an Automation exception
Set accountDisp = bankObj.newAccount (Namebox.Text, ex)

any exception occur?

If ex.EX majorCode <> CORBA_ORBIX.EXCEPTION_NO Then

' Is it a user exception?

If TypeOf ex Is CORBA_ORBIX.DICORBAUserException Then

' Which user exception?

If TypeOf ex Is IT Library bank.DIbank_reject Then
Dim exReject As IT Library_ bank.DIbank_reject
Set exReject = ex
MsgBox exReject.EX Id, "User Exception EX_Id :"

MsgBox exReject.INSTANCE_repositoryId, , "User
Exception INSTANCE repositoryId :"
MsgBox exReject.reason, , "User Exception reason :"
End If

Is it a system exception?

ElseIf TypeOf ex Is CORBA_ORBIX.DICORBASystemException Then

Dim exSystemException As
CORBA_ORBIX.DICORBASystemException

Set exSystemException = ex

128

Exception Handling in Automation

MsgBox "System exception has occurred : " &
exSystemException.EX_Id
Select Case exSystemException.EX_completionStatus
Case CORBA_ORBIX.COMPLETION_MAYBE
MsgBox "System exception Completion Status : Maybe "
Case CORBA_ORBIX.COMPLETION_NO
MsgBox "System exception Completion Status : No
Case CORBA_ORBIX.COMPLETION_YES
MsgBox "System exception Completion Status : Yes "
Case Else
MsgBox "Unknown System exception Completion Status"
End Select
End If
End If

Explanation In the preceding example, ex isdeclared asavariant type, and it isinitalized to
Nothing. This sets up avariant that contains an object equal to nothing. Thisis
the correct way to interface from Visual Basic to COMet when using late
binding (that is, when using Ipispatch interfaces) in an Automation client.

Example for Non-Usage of Type The following Visual Basic example assumes that atype library is not being
Library used:

129

CHAPTER 7 | Exception Handling

130

' Visual Basic
Dim ex As Variant
Set ex = Nothing

' Optional exception param passed, therefore COMet will not
' convert a CORBA exception into an Automation exception
Set accountDisp = bankObj.newAccount (Namebox.Text, ex)

' any exception occur?

If ex.EX majorCode <> CORBA_ORBIX.EXCEPTION_NO Then

' Is it a user exception?

If TypeOf ex Is CORBA_ORBIX.DICORBAUserException Then

' Which user exception?
If ex.EX Id = bank::reject
MsgBox ex.EX_Id, "User Exception EX_Id :"
MsgBox ex.INSTANCE_repositoryId, , "User
Exception INSTANCE_ repositoryId :"
MsgBox ex.reason, , "User Exception reason :"
End If

' TIs it a system exception?
ElseIf TypeOf ex Is CORBA ORBIX.DICORBASystemException Then
Dim exSystemException As
CORBA_ORBIX.DICORBASystemException
Set exSystemException = ex

MsgBox "System exception has occurred : " &
exSystemException.EX_Id
Select Case exSystemException.EX completionStatus
Case CORBA_ORBIX.COMPLETION_MAYBE
MsgBox "System exception Completion Status : Maybe "
Case CORBA_ORBIX.COMPLETION_NO
MsgBox "System exception Completion Status : No "
Case CORBA_ORBIX.COMPLETION_YES
MsgBox "System exception Completion Status : Yes "

Case Else
MsgBox "Unknown System exception Completion Status"
End Select
End If
End If

Exception Handlingin COM

Exception Handling in COM

Overview Asexplained in “Mapping for System Exceptions’ on page 377, a CORBA
exception mapsto aCOM IDL interface and an exception structure that appears
asthe last parameter of any mapped operation. This section describes two
aternative ways of handling exceptionsin COM. The one you use depends on
how you build your COM client.

Note: Seethe Orbix documentation set for details of system exceptions.

In This Section This section discusses the following topics:
Catching COM Exceptions page 132
Using Direct-to-COM Support page 134

131

CHAPTER 7 | Exception Handling

Catching COM Exceptions

Overview This subsection describes the standard method of CORBA exception handling in
COM clients. The following topics are discussed:

* “How It Works’ on page 132.

. “Example” on page 132.

* “Explanation” on page 133.

e “Memory Handling” on page 133.

How It Works COMet maps CORBA exceptions to standard COM exceptions. There are two
parts to the exception. The first part, HRESULT, gives the class of the exception.
The second part is a human-readable form of the exception, which is exposed
through the TsupportErrorInfo interface that is supported by all COM views
of CORBA objects.

Example Consider the following client example:

HRESULT hRes;
IErrorInfo *pIErrInfo = 0;
ISupportErrorInfo *pISupportErrInfo = 0;

if (SUCCEEDED (hr))
return TRUE;

if (SUCCEEDED (pUnk->QueryInterface (IID ISupportErrorInfo,
PPVOID) &pISupportErrInfo)))
{
if (SUCCEEDED (pISupportErrInfo->InterfaceSupportsErrorInfo
(riid)))
{
hRes = GetErrorInfo(0, &pIErrInfo);
if (hRes == S_OK)
{
pIErrInfo->GetSource (&src) ;
pIErrInfo->GetDescription (&desc) ;
mbsrc = WSTR2CHAR (src) ;
mbdesc = WSTR2CHAR (desc) ;
SysFreeString (src) ;
SysFreeString (desc) ;

132

Explanation

Memory Handling

Exception Handlingin COM

mbmsg = new char [strlen(mbsrc) + strlen(mbdesc) + _
strlen(™ : ”)+1];

sprintf (mbmsg, “%s : %$s”, mbsrc, mbdesc);

pIErrInfo->Release() ;

CheckHRESULT (mbmsg, hr) ;

delete [] mbsrc;

delete [] mbdesc;

delete [] mbmsg;

} else
cout << “No error object found” << endl;
} pISupportErrInfo->Release({};
} CheckHRESULT (“Error : “, hr);

If the bridge makes a call to the server that subsequently raises a system or user
exception, the COM view in the bridge calls the COM setErrorInfo ()
function, to set the COM error object in the client thread. This allows the client
code to subsequently call the GetErrorinfo () function, to retrieve the error
object for reporting to the user.

The preceding code does the same as a COM client would do to report a COM
exception, if aCOM server were using the COM setErrorInfo() method.

If no exception is raised, the COM view in the bridge calls setErrorInfo ()
with anull value for the IsupportErrinfo pointer parameter. This assures the
error object that the client thread is thoroughly destroyed.

The client can indicate that no exception information should be returned, by
specifying null as the value for the operation’ s exception parameter.

If the client expectsto receive exception information, it must pass the address of
apointer to the memory in which the exception information is to be placed. The
client must subsequently release this memory when it is no longer required.
The COM view isresponsible for the allocation of memory used to hold
exception information being returned.

133

CHAPTER 7 | Exception Handling

Using Direct-to-COM Support

Overview

How It Works

Example

134

This subsection describes an alternative to standard CORBA exception handling
in COM clients. The following topics are discussed:

e “How It Works’ on page 134.
. “Example”’ on page 134.
* “Explanation” on page 135.

In some cases, the IDL for a CORBA operation can define that it raises only one
user exception, coM_ERROR. This happens, for example, in the case of a CORBA
implementation of an aready existing COM interface. Specifying coM_ERROR in
an OMG IDL raises clause indicates that the operation was originally defined
asa COM operation.

Consider the following client example:In this case, CORBA exceptions are
mapped to the standard _com_error exception. For example:

Example9: Using Direct-to-COM Exception Handling (Sheet 1 of 2)

try

{

short h, w;

DIbankPtr bank;
DIaccountPtr acc;
DICORBAFactoryPtr fact;

fact.CreateInstance ("CORBA.Factory") ;

bank = fact->GetObject (szObjectName, NULL) ;
acc = bank->newAccount ("Ronan", NULL) ;

cout << "Created new account ‘Ronan’" << endl;
acc—->makeLodgement (100, NULL) ;

cout << “Deposited $100” << endl;

cout << “New balance is ” << acc->Getbalance() << endl;
bank->deleteAccount (acc, NULL) ;

cout << “Deleted account” << endl;

}

catch (_com_error &e)

{

print_error(e) ;

}

Exception Handlingin COM

Example 9: Using Direct-to-COM Exception Handling (Sheet 2 of 2)

catch (..)
{

cerr << “Caught unknown exception ” << endl;

}

Explanation

The szObjectName parameter to Getobject () takesthe format

"bank : IOR : xoooooc” (Where scoooooo: represents the |0OR string).

CORBA exceptions are mapped to, and caught by, the standard
_com_error exception.

135

CHAPTER 7 | Exception Handling

136

In This Chapter

CHAPTER 8

Client Callbacks

Usually, CORBA clients invoke operations on objects in CORBA
servers. However, CORBA clients can implement some of the
functionality associated with servers, and all serverscan act as

clients. A callback invocation is a programming technique that

takes advantage of this. This chapter describes how to implement

client callbacks.

This chapter discusses the following topics:

Introduction to Callbacks page 138
Implementing Callbacks page 139
Defining the OMG IDL Interfaces page 140
Generating Stub Code for the Callback Objects page 142
Implementing the Client page 143
Implementing the Server page 149

137

CHAPTER 8| Client Callbacks

| ntroduction to Callbacks

Overview

What Isa Callback?

Typical Use

138

This chapter introduces the concept of client callbacks. The following topics are
discussed:

* “What IsaCalback?’ on page 138.
® “Typical Use’ on page 138.

A callback is an operation invocation made from a server to an object that is
implemented in aclient. A callback allowsaserver to send information to clients
without forcing clientsto explicitly request the information.

Callbacks are typically used to allow a server to notify aclient to update itself.
For example, in the bank application, clients might maintain alocal cache to
hold the balance of accounts for which they hold references. Each client that
uses the server’ s account object maintains alocal copy of its balance. If the
client accesses the balance attribute, the local value is returned if the cacheis
valid. If the cacheisinvalid, the remote balance is accessed and returned to the
client, and the local cache is updated.

Note: The COMet bridge holds an Orbix proxy object, as well asa COM or
Automation view object, for each implementation object to which it hasa
reference.

When a client makes a deposit to, or withdrawal from, an account, it invalidates
the cached balance in the remaining clients that hold areference to that account.
These clients must be informed that their cached valueisinvalid. To do this, the
real account object in the server must notify (that is, call back) its clients
whenever its balance changes.

Implementing Callbacks

| mplementing Callbacks

Overview This section describes how to implement callbacks.

In This Section This section discusses the following topics:
Defining the OMG IDL Interfaces page 140
Generating Stub Code for the Callback Objects page 142
Implementing the Client page 143
Implementing the Server page 149

Note: A demonstration that implements callback functionality is provided in
install-dir\demos\comet\COMet\callback, Where install-dir represents
your Orbix installation directory.

139

CHAPTER 8| Client Callbacks

Defining the OM G IDL Interfaces

Overview

Client Interface Example

Client Interface Explanation

Server Interface Example

Server Interface Explanation

140

This section describes the first step in implementing client callback
functionality, which isto define the OMG IDL interfaces for the server objects
and client objects. The following topics are discussed:

® “Client Interface Example” on page 140.
® “Client Interface Explanation” on page 140.
* “Server Interface Example” on page 140.
®* “Server Interface Explanation” on page 140.

The client implements an IDL interface that the server uses to call back clients.
A suitable IDL interface for the client might be defined as follows:

// OMG IDL
interface NotifyCallback{
oneway void notifyClient();

}

In the preceding example, the notifyClient () operation isdeclared as oneway,
because it isimportant that the server is not blocked when it calls back its
clients.

The server implementsan IDL interface that allowsit to maintain alist of clients
that should be notified of changesin its objects’ data. A suitable IDL interface
for the server might be defined as follows:

// OMG IDL

interface RegisterCallback{
void registerClient (in NotifyCallback client) ;
void unregisterClient (in NotifyCallback client) ;

The preceding example can be explained as follows:

Defining the OMG IDL Interfaces

The registercClient () Operation registers aclient with the server. The
parameter to registerclient () iSOf the Notifycallback type, so that
the client can pass areference to itself to the server. The server can
maintain thisreferencein alist of clients that should be notified of events
of interest.

The unregisterClient () operation tells the server that the client is no
longer interested in receiving callbacks. The server can remove the client
from itslist of interested clients.

141

CHAPTER 8| Client Callbacks

Generating Stub Code for the Callback
Objects

Overview After you have defined the OMG IDL interfaces for the server and client, you
can generate the stub code for the callback objects from the OMG IDL.

For MoreInformation See “Creating Stub Code for Client Callbacks’ on page 194 for full details of
how to do this.

142

Implementing the Client

| mplementing the Client

Overview

In This Section

Towriteaclient, you must implement the Not i fycallback interface defined for
the client objects. Y ou can use the generated stub code for the callback objects as
astarting point.

This section discusses the following topics:

Implementing the Client in Visual Basic page 144
Implementing the Client in PowerBuilder page 146
Implementing the Client in COM C++ page 147

Note: Because it implements an interface, the client is acting as a server.
However, the client does not have to register itsimplementation object with the
bridge, and it is not registered in the Implementation Repository. Therefore,
the server cannot bind to the client’ s implementation object.

143

CHAPTER 8| Client Callbacks

I mplementing the Client in Visual Basic

Overview This subsection describes how to implement the client in Visual Basic. The
following topics are discussed:

® “Codefor Generated Class File’ on page 144.
. “Code for Client Form” on page 144.
* “Explanation” on page 145.

Codefor Generated Class File The following is the code in the generated Noti fycallback.cls file:

' Visual Basic
Public Sub notifyClient (Optional ByRef IT _Ex As Variant)

. ' Your code goes here

End Sub

Codefor Client Form Thefollowing isthe codeinthe client. frmfile for the Visual Basic client’s
form:

Example 10:

' Visual Basic
1 Dim clientObj as New NotifyCallback

Dim ObjFactory As Object
Set ObjFactory = CreateObject ("CORBA.Factory")

Dim serverObj as clientBridge.DIRegisterCallback

Set serverObj =
2 ObjFactory.GetObject ("RegisterCallback: "&IOR_file)
3 serverObj.registerClient clientObj

144

Implementing the Client

Explanation The preceding client code can be explained as follows:

1

It creates an implementation object, clientobsj, which is of the

NotifyCallback type.

It binds to an object of the Registercallback typein the server. At this

point, the client holds both of the following:

+ Animplementation object for the Noti fycallback type.

. A reference to an Automation view object, servercobs, for an object
of the Registercallback type.

To alow the server to invoke operations on the Not i fyCallback object,

the client must pass areference to its implementation object to the server.

Thus, the client callsthe registerclient () operation on the serverob;j

view object, and passes it areference to its implementation object,

clientObj.

145

CHAPTER 8| Client Callbacks

I mplementing the Client in Power Builder

Overview This subsection describes how to implement the client in PowerBuilder. The
following topics are discussed:

e “Example’ on page 146.
. “Explanation” on page 146.

Example The following is the code for the PowerBuilder client:
Example 11:

//PowerBuilder
integer success
OleObject clientObj
OleObject ObjFactory
1 success = clientObj.ConnectToNewObject
("PBcallback.NotifyCallback")

ObjFactory = CREATE OleObject
serverObj = CREATE OleObject

if success != 2 then
2 serverObj = ObjFactory.GetObject (“CallBack:"&IOR_file)
3 serverObj .Register (clientObj)
Explanation The preceding client code can be explained as follows:

1. It creates an implementation object, clientobj, whichis of the
NotifyCallback type

2. It bindsto an object of the cal1Back typein the server. At this point, the
client holds both of the following:

+ Animplementation object for the Noti fycallback type.
+ A reference to an Automation view object, serverobs, for an object
of the callBack type.

3. Toalow the server to invoke operations on the Noti fycallback object,
the client must pass a reference to its implementation object to the server.
Thus, the client callsthe Register () operation on the serverobj view
object, and passes it areference to itsimplementation object, clientobj.

146

Implementing the Client

I mplementing the Client in COM C++

Example The following is the code for the COM C++ client:
Example 12:

ICallBack *pIF = NULL;

hr = CoCreatelInstanceEx (IID_ICORBAFactory, NULL, ctx, NULL, 1,
&mgi) ;
CheckHRESULT ("CoCreateInstanceEx ()", hr, FALSE);

pCORBAFact = (ICORBAFactory*)mgi.pItf;

// connect to the target CORBA server
char *sIOR;
// read IOR
char *szObjectName;
// allocate memory for string
sprintf (szObjectName, "Callback:%s", sIOR);
hr = pCORBAFact->GetObject (szObjectName, &pUnk) ;
if (!CheckErrInfo (hr, pCORBAFact, IID ICORBAFactory))
{
PCORBAFact->Release() ;
return;
}
PCORBAFact->Release() ;

hr = pUnk->QueryInterface(IID ICallBack, (PPVOID)&pIF) ;
if (!CheckErrInfo (hr, pUnk, IID ICallBack))
{

pUnk->Release() ;

return;

}
pUnk->Release() ;

// Create our implementation for the callback object
ICOMCallBackImpl * poImpl = ICOMCallBackImpl::Create();

// make the call to the server passing in our object
pIF->Register (poImpl) ;

// wait until we explicitly quit for the none console application

147

CHAPTER 8| Client Callbacks

Example 12:

StartCOMServerLOOP (10000) ;
poImpl->Release() ;

148

Implementing the Server

| mplementing the Server

Overview

Step 1—Implementing the
Register Callback I nterface

Step 2—Invoking the
notifyClient() Operation

This section describes the steps to implement a server for the purpose of client
callbacks. The steps are:

Step Action

1 | Implement the Registercallback interface.

2 | InvokethenotifyClient () operation.

Note: Seethe CORBA Programmer’s Guide, C++ for more details of how to
implement servers.

Y ou must provide an implementation class for the Registercallback interface.
Y ou can use the stub code generated for the callback objects as a starting point to
do this.

The implementation of the registerclient () operation receives an object
reference from the client. When this object reference enters the server address
space, a CORBA view for the client’ sNotifyCallback object is created in the
client’ s bridge.

The server uses the created view to call back to the client. The implementation
of the registerclient () operation should store the reference to the view for
this purpose.

After the COM or Automation view for the client’ sNot i fycallback object has
been created in the server address space, the server can then invoke the
notifyClient () operation on theview.

149

CHAPTER 8| Client Callbacks

150

In This Chapter

CHAPTER 9

Deploying a
COMet Application

This chapter provides examples of the various deployment models
you can adopt when deploying a distributed application with
COMet. It also describes the steps you must follow to deploy a
distributed COMet application.

This chapter discusses the following topics:

Deployment Models page 152
Deployment Steps page 162
Minimizing the Client-Side Footprint page 164
Deploying Multiple Hosts page 166

151

CHAPTER 9 | Deploying a COMet Application

Deployment M odels

Overview “Usage Models and Bridge Locations’ on page 27 outlines the various
deployment scenarios that are supported with COMet. When it comes to
Automation clients, COMet supports communication using either DCOM or
I1OP. When it comes to COM clients, COMet only supports communication
using I1OP. This means Automation clients enjoy agood deal of flexibility about
where the bridge can be installed, whereas COM clients enjoy no such
flexibility. This section provides some more details about the various possible
deployment scenarios that COMet offers.

In This Section This section discusses the following topics:
Bridge In-Process to Each Client page 153
Bridge Out-of-Process on Each Client Machine page 155
Bridge on Intermediary Machine page 157
Bridge on Server Machine page 159
Internet Deployment page 161

152

Deployment Models

Bridge In-Processto Each Client

Overview

Details

Graphical Overview

This subsection describes a scenario where the bridge is loaded in-process to
each client. The following topics are discussed:

®* “Detals’ onpage 153.
. “Graphical Overview” on page 153.

This hasthe COMet bridge loaded in-processto each COM or Automation client
(that is, in each client’ s address space). In this case:

®* Thebridge on each client machine uses I1OP to communicate with the
CORBA server.

. Each client machine can be running on Windows NT, Windows 98, or
Windows 2000.

® Each client can be COM-based or Automation-based.

® The CORBA server machine can be running on any platform, such as
Windows, UNIX, or OS/390.

For Automation clients, thisis the recommended COMet deployment scenario.
For COM clients, thisis the only supported COMet deployment scenario.

Figure 15 provides a graphical overview of a scenario where the COMet bridge
is loaded in-process to each COM or Automation client.

153

CHAPTER 9 | Deploying a COMet Application

COM or Automation Client Machine 1
(Windows NT, Windows 98, or Windows 2000)

Client Process

COMet
Client Program
(Visual Basic,
PowerBuilder, View
Visual C++, - Object
and so on)

CORBA Server Machine

(Windows, UNIX, OS/390, and so on)
1IOP

Server
Application

COM or Automation Client Machine 2
(Windows NT, Windows 98, or Windows 2000)

CORBA
Object

Client Process

COMet
Client Program
(Visual Basic,]
PowerBuilder, o View
Visual C++, Object

and so on)

11OP

Figure 15: Bridge In-Process to Each Client

154

Deployment Models

Bridge Out-of-Process on Each Client Machine

Overview

Details

Graphical Overview

This subsection describes a scenario where the bridge islaunched out-of-process
on each client machine. The following topics are discussed:

“Details’ on page 155.
“Graphical Overview” on page 155.

This has the COMet bridge launched out-of-process on each client machine. In
this case:

The bridge isreferred to as alocal server.

The bridge on each client machine uses 11OP to communicate with the
CORBA server.

Each client machine should preferably be running on Windows 2000, for
reasons of scalability. Otherwise, it limits the number of clients that can be
handled.

Each client must be Automation-based and using 1pispatch interfaces
rather than dual interfaces.

The CORBA server machine can be running on any platform, such as
Windows, UNIX, or OS/390.

Figure 16 provides a graphical overview of ascenario where the COMet bridge
is loaded out-of-process on each Automation client machine.

155

CHAPTER 9 | Deploying a COMet Application

Automation Client Machine 1
(Windows (2000 preferably))

Client Process

COMet
Client Program N
(Visual Basic, .
PowerBuilder, *— VI?W
Object
and so on)

Automation Client Machine 2
(Windows (2000 preferably))

Client Process

COMet
Client Program
(Visual Basic, View
PowerBuilder, C Object
and so on)

CORBA Server Machine

lop (Windows, UNIX, 0S/390, and so on)
Server
Application
CORBA
Object
11OP

Figure 16: Bridge Out-Of-Process On Each Client Machine

156

Deployment Models

Bridge on Intermediary Machine

Overview

Details

CreatingaRemotelnstanceof the
CORBA Object Factory

TYPEMAN_READONLY
Configuration Setting

This subsection describes a scenario where the bridge is launched on asingle
intermediary machine. The following topics are discussed:

* “Details’ on page 157.

® “Creating a Remote Instance of the CORBA Object Factory” on page 157.
* “TYPEMAN_READONLY Configuration Setting” on page 157.

® “Graphical Overview” on page 158.

This has the COMet bridge launched on a single intermediary machine. In this

case:

®* Thebridgeisreferred to as aremote server.

° Each client machine can be running on Windows NT, Windows 98, or
Windows 2000.

. Each client must be Automation-based and using 1pispatch interfaces
rather than dual interfaces.

° Each client uses DCOM to communicate with the bridge.

® The bridge machine must be running on Windows. It should preferably be
running on Windows 2000, for reasons of scalability. Otherwise, it limits
the number of clients that can be handled.

® Thebridge uses 11OP to communicate with the CORBA server.

® The CORBA server machine can be running on any platform, such as
Windows, UNIX, or OS/390.

For the purposes of this deployment scenario, you only need to be able to create
aremote instance of the CORBA object factory on your client machines. This
is normally done using the COM coCreateInstanceEx () method. Most
Automation controllers now allow you to supply ahostname as an optional extra
parameter to their equivalent of the Visual Basic createobject () method,
similar to the cocreateInstanceEx () method.

When using multiple DCOM clientswith a single bridge, as shown in Figure 17,
the setting of the coMet . Typeman . TYPEMAN_READONLY configuration variableis
particularly important. See “COMet Configuration” on page 395 for details.

157

CHAPTER 9 | Deploying a COMet Application

Graphical Overview Figure 17 provides a graphical overview of a scenario where the COMet bridge
isinstalled on a single separate machine.

Automation Client Machine 1
(Windows NT, Windows 98, or
Windows 2000)

CORBA Server Machine
Client Program | COMet Bridge Machine (Windows, UNIX, OS/390,
(Visual Basic, (Windows (2000 preferably)) and so on)
PowerBuilder, DCOM
and so on) Server
COMet lIOP Application
/\
Automation Client Machine 2 o | View
(Windows NT, Windows 98, or Object CORBA
Windows 2000) Object
Client Program

(Visual Basic,
PowerBuilder, DCOM
and so on)

Figure 17: Bridge on Intermediary Machine

158

Deployment Models

Bridge on Server Machine

Overview

Details

Creatinga Remotelnstanceof the
CORBA Object Factory

TYPEMAN_READONLY
Configuration Setting

This subsection describes a scenario where the bridge is launched on the
CORBA server machine. The following topics are discussed:

®* “Detals’ onpage 159.

®* “Creating a Remote Instance of the CORBA Object Factory” on page 159.
* “TYPEMAN_READONLY Configuration Setting” on page 159.

®* “Graphical Overview” on page 160.

This has the COMet bridge installed on the CORBA server machine. In this

case:

®* Thebridgeisreferred to as aremote server.

° Each client machine can be running on Windows NT, Windows 98, or
Windows 2000.

. Each client must be Automation-based and using 1pispatch interfaces
rather than dual interfaces.

® Eachclient usesDCOM to communicate with the CORBA server machine.

® The CORBA server machine must be running on Windows. It should
preferably be running on Windows 2000, for reasons of scalability.
Otherwise, it limits the number of clients that can be handled.

For the purposes of this deployment scenario, you only need to be able to create
aremote instance of the CORBA object factory on your client machines. This
is normally done using the COM coCreateInstanceEx () method. Most
Automation controllers now allow you to supply ahostname as an optional extra
parameter to their equivalent of the Visual Basic createdbject () method,
similar to the cocreateInstanceEx () method.

When using multiple DCOM clients with asingle bridge, as shown in Figure 18
on page 160, the setting of the coMet . Typeman . TYPEMAN_READONLY
configuration variable is particularly important. See “COMet Configuration” on
page 395 for details.

159

CHAPTER 9 | Deploying a COMet Application

Graphical Overview Figure 18 provides a graphical overview of a scenario where the COMet bridge
isinstalled on the CORBA server machine.

Automation Client Machine 1
(Windows NT, Windows 98,
or Windows 2000)

1 CORBA Server Machine

Client Program DCOM (Windows (2000 preferably))
(Visual Basic,

PowerBuilder,
and so on) IoP

COMet Server Program

Automation Client Machine 2
(Windows NT, Windows 98, View CORBA
or Windows 2000) Object Object

Client Program /
(Visual Basic,
PowerBuilder,

and so on) DCOM

Figure 18: Bridge on Server Machine

160

Deployment Models

Internet Deployment

Overview This subsection discusses deploying a COMet application on the Internet. There
are two deployment options to choose from. The following topics are discussed:

* “Dowloading the Bridge to the Client” on page 161.
. “Leaving the Bridge on the Internet Server” on page 161.

Dowloading the Bridge to the Y ou can choose to download the entire COMet bridge to the client machine. To
Client do this, you can bundle the bridge files, for example, inasingle CAB file. Inthis
case, your ActiveX control uses |1OP to communicate with your Internet server.

LeavingtheBridgeonthelnternet You can aternatively choose to download only the

Server IT_C2K_CCIExWrapper0_vC60.DLL file and leave the bridge on the Internet
server. In this case, your ActiveX control uses DCOM to communicate with
your Internet server.

161

CHAPTER 9 | Deploying a COMet Application

Deployment Steps

Overview

Installing Your Application
Runtime

Installing the Development
Language Runtime

Installing the Orbix Deployment
Environment

Configuring COM et

162

This section describes the steps you must follow to deploy a COMet application.
The following topics are discussed:

e “Instaling Your Application Runtime” on page 162.

* “Instaling the Development Language Runtime” on page 162.
* “Instaling the Orbix Deployment Environment” on page 162.
® “Configuring COMet” on page 162.

* “Installing and Registering Type Libraries’ on page 163.

The components associated with your COMet application consist of:
® Your application executables.
®* Any other DLLs needed by your application.

The runtime requirements for your development language normally consist of:
° Runtime libraries (such as Visual Basic or PowerBuilder runtimelibraries).
® Support libraries (such as Roguewave tools or extralibraries).

See the documentation set for the specific development language you are using
for details of the runtime requirements of that language.

Regardless of the model you adopt in deploying your COMet applications, the
Orbix deployment environment requirements remain the same. See the Orbix
Deployment Guide for full details of Orbix deployment environment
requirements.

Y ou must set the COMet configuration variables required by your COMet
application at the location where the COMet runtimeis installed. Y ou must
modify the configuration entries in the configuration domain appropriately for
your system.

Installing and Registering Type
Libraries

Deployment Steps

When specifying a path name for a specific directory, you must provide the full
path name and ensureit is valid. Y ou must also ensure the activator and locator
daemons have read/write permissions on the directories specified in these path
names.

See“COMet Configuration” on page 395 for details of the COMet configuration
variables. See the CORBA Administrator’s Guide for details of the core Orbix
configuration variables.

If your client references any type libraries, they must be installed on the client
machine, and registered in the Windows registry. Y ou can use the supplied
tlibreg utility to register atype library. See“Creating a Type Library” on
page 190 and “Tlibreg Arguments” on page 414 for more details.

163

CHAPTER 9 | Deploying a COMet Application

Minimizing the Client-Side Footprint

Overview

Zero-Install Configuration

I nter net-Based Deployment

Automation-Based Clients

164

This section describes how to minimize the client-side footprint in your COMet
deployment. The following topics are discussed:

e “Zero-Install Configuration” on page 164.
* “Internet-Based Deployment” on page 164.
e “Automation-Based Clients’ on page 164.
® “COM-Based Clients” on page 165.

In certain scenarios, COMet allows you to deploy your client application without
requiring any COMet footprint on the client machine. Thisis normally referred
to asazero-install configuration. This means you can use a centralised
installation of the COMet bridge for your clients that provides the deployment
option of using DCOM as the wire protocol for communication between the
client and the bridge.

This deployment scenario alows you to download your client application over
the Internet. Because COMet supports the DCOM wire protocol, your
web-based clients can use DCOM to communicate with your installation of
COMet, which then forwards the callsto the appropriate CORBA server. If your
scripting language supports the creation of aremote DCOM object, no COMet
runtime needs to be downloaded to that machine.

If you are developing client applications that use Automation late binding (that
is, they use 1Dispatch interfaces), you can choose to use DCOM as the wire
protocol. In this scenario, you do not need any COMet installation on your client
machine, provided the Automation language supports connection to aremote
DCOM object (which in this case is the COMet bridge).

COM-Based Clients

Minimizing the Client-Side Footprint

If your client applications use early binding (that is, they use dual interfaces
rather than straight 1pispatch interfaces), the type library that you created via
the coMetcfg tool or the ts2t1b command-line utility must be included with
your client application. (This means that the type library file must be copied
aong with the client executable file to any machine on which you want to run
the application.) This allows DCOM to use the standard type library,
Marshaller, to manage the client-side marshalling of your client.

The normal DCOM deployment rules state that you must deploy and register a
proxy/stub DLL for all the COM interfaces that your client uses. COMet can
automatically generate the COM IDL definitions and makefile, which are
needed to create this DLL, by using the cometcfg tool or the ts2idl command
linetool.

If your COM client application uses the standard COMet interfaces, such as
ICORBAFactory, you must also include the COMet proxy/stub DLL. Thisis
called IT_c2x_PROXY_STUBS_vC60.DLL and is located in the
install-dir\asp\version\bin directory, where version representsthe Orbix
version number.

If your COM client uses pure DCOM calls, you must register forwarding entries
inyour client-side registry, to indicate the COMet CORBA location information
for your CORBA server. You can use the srvalias utility to create the extra
registry entries. For deployment purposes, you can use the Aliassrv.exe to
restore these settings during installation. See the demo\CoM\coCreate
demonstration for an example. See “Replacing an Existing DCOM Server” on
page 196 for more details about the aliassrv and srvalias utilities.

165

CHAPTER 9 | Deploying a COMet Application

Deploying Multiple Hosts

Overview

Graphical overview

166

Client Machine 1

Client Program

(Visual Basic,

PowerBuilder,
and so on)

A typical scenario might involve multiple clients running simultaneously, with
each client configured to connect to a different server on adifferent host. This
section describes how this scenario can be easily achieved.

Figure 19 provides a graphical overview of a deployment scenario involving
different COMet clients, each of which contacts a different server host at
application runtime.

Development Machine

Client Machine 2

Client Program

(Visual Basic,

PowerBuilder,
and so on)

Client Machine 3

Client Program

(Visual Basic,

PowerBuilder,
and so on)

» COMet bridge » Server Application
QA Machine
» COMet bridge » Server Application

Production Machine

COMet bridge

\
4

Server Application

Figure 19: Deploying Multiple Hosts

Deploying Multiple Hosts

Note: In redity, the COMet bridge could be deployed in a number of
different ways, as explained in “Deployment Models’ on page 152. Even
though it is possible to deploy just one COMet bridge to mediate between all
clients and servers, thisis not recommended because of the performance
overheads it could incur at application runtime.

Steps The steps to deploy this type of scenario are:

1

Ensure that your server-side configuration includes the Naming Service
and IFR. See the Orbix Deployment Guide and Orbix Administrator’s
Guide for more details of how to set up configuration domains and
configuration scopes. See the Orbix Configuration Reference for more
details of how to configure Orbix services such as the Naming Service and
IFR.

Ensure that your client program calls Getobject () to obtain the relevant
object references via the Naming Service. For example:

// Visual Basic

obj = fact.GetObject ("interface type:NAME_SERVICE:name")

See “Format of Parameter for GetObject()” on page 87 for more details of
the format of the preceding example.
Ensure that your client-side configuration includes the
initial_ references:NameService:reference and
initial_references:InterfaceRepository:reference configuration
items. The values that can be specified for these items can take either of the
following formats:
¢ "IOR:."
In this case, the IOR string for the Naming Service or IFR can be
obtained from the server-side configuration.

167

CHAPTER 9 | Deploying a COMet Application

168

. "corbaloc:iiop:host:port: /NameService" O

"corbaloc:iiop:host:port:/InterfaceRepository"

In this case, host and port specify where the locator daemon is
running. Thisformat is particularly useful in allowing you to quickly
change the details of the host (for example, Development machine,
QA machine, Production machine) to which you want to point the
client.

By encapsulating these variables in configuration scopes specific to each
deployment scenario, as shown in the following example, it is possible at
runtime to dynamically change the configuration. For example:

Development

{

host="123.45.67.89";

port="3075";

initial_references:NamingService:reference="corbaloc:iiop:"
+host+" : "+port+" /NameService"

initial_references:InterfaceRepository:reference="corbaloc:
iiop: "+host+":"+port+"/InterfaceRepository";

}i

QA

{

host="123.45.66.123";

port="3075";

initial_references:NamingService:reference="corbaloc:iiop:"
+host+": "+port+" /NameService"

initial_references:InterfaceRepository:reference="corbaloc:
iiop: "+host+":"+port+"/InterfaceRepository";

}i

Production

{

host="123.45.70.14";

port="3075";

initial_references:NamingService:reference="corbaloc:iiop:"
+host+": "+port+" /NameService"

initial_references:InterfaceRepository:reference="corbaloc:
iiop: "+host+": "+port+"/InterfaceRepository";

i

Deploying Multiple Hosts

Note: Any variable defined in the global configuration scope can also be
included within scopes such as those in the preceding example. This allows
you to fine-tune your configuration for specific clients.

4.

To specify which ORB isto be used, ensure that the form load at the start
of your client program calls setorbName (), passing the name of the
relevant configuration scope (that is, "Development", "Qa", Or
"Production") asaparameter.

An alternative to setting the ORB name programatically isto set the
IT_ORB_NAME environment variable with the relevant ORB name. Y ou can
set this environment variable either globally through the Windows Control
Panel or locally through a batch file.

169

CHAPTER 9 | Deploying a COMet Application

170

CHAPTER 10

Development
Support Tools

This chapter first describes the central role played by the COMet
type storein terms of the devel opment support tools supplied with
COMet. It then describesthe tool s you can use to manage the type
store cache and to generate Microsoft IDL and type library

information from existing OMG IDL, which is necessary to allow
COM or Automation clientsto communicate with CORBA servers.
It also describes how to generate stub code, if you want to avail of
client callback functionality in your applications. Finally, it

describesthetoolsyou can useto generate Visual Basic codefrom
OMG IDL, and to replace an existing COM or Automation server

with a CORBA server.
In This Chapter This chapter discusses the following topics:
The COMet Type Store page 173
The COMet Tools Window page 178
Adding New Information to the Type Store page 180
Deleting the Type Store Contents page 184
Dumping the Type Store Contents page 185

171

CHAPTER 10 | Development Support Tools

Creating aMicrosoft IDL File page 186
Creating a Type Library page 190
Creating Stub Code for Client Callbacks page 194
Replacing an Existing DCOM Server page 196
Generating Visua Basic Client Code page 199

Note: The typeman, ts2idl, and ts2t1b command-line utilities described in
this chapter are located in install-dir\bin, Where install-dir represents
your Orbix installation directory.

172

The COMet Type Store

TheCOMet Type Store

Overview This section describes the COMet type store in terms of itsrole and how it
works.
I'n This Section This section discusses the following topics:
The Central Role of the Type Store page 174
The Caching Mechanism of the Type Store page 176

173

CHAPTER 10 | Development Support Tools

The Central Role of the Type Store

Overview This subsection describes the role of the type store. The following topics are
discussed:

® “Graphical Overview” on page 174.
. “Role”’ on page 175.

Graphical Overview Figure 20 provides a graphical overview of the central role played by the type
store in the use of the COMet development utilities.

OMG IDL

—T1

idl -R=-v

i

Interface
Repository

1

typeman

l

— 2@ =
COMet
Type Store

ts2tlb ts2idl cometcfg

Stub for
Type
Library COM IDL Callbacks

Figure 20: COMet Type Sore and the Devel opment Utilities

174

Role

The COMet Type Store

Asshown in Figure 20 on page 174, the type store plays a central rolein the use
of the COMet development utilities. The typeman utility managesthe OMG IDL
information in the type store cache. The ts2t1b, ts2idl, and cometcfg Utilities
use the OMG IDL typeinformation in the cache to respectively generate the
Microsoft IDL, type library information, and callback stub code used by your
COM or Automation clients for communicating with CORBA servers.

175

CHAPTER 10 | Development Support Tools

The Caching M echanism of the Type Store

Overview

OMG IDL

Memory and Disk Cache

Type Information Management

176

This subsection describes how type information is stored in the type store. The
following topics are discussed:

° “OMG IDL” on page 176.
. “Memory and Disk Cache” on page 176.
® “TypeInformation Management” on page 176.

OMG IDL files define the IDL interfaces for CORBA objects. (See
“Introduction to OMG IDL” on page 267 for more details.) Asshownin

Figure 20 on page 174, you can register OMG IDL in a CORBA Interface
Repository, whereit isstored in binary format. (See the Orbix documentation set
for full details of how to register OMG IDL.)

COMet usesthe OMG IDL typeinformation available in the Interface
Repository. The typeinformation can consist of module names, interface names,
or datatypes.

A possible performance bottleneck might result at application runtime, if COMet
needs to contact the Interface Repository for each OMG IDL definition. Thisis
because every query might involve multiple remote invocations.

To avoid any bottlenecks, COMet uses a memory and disk cache of type
information. The typeman utility converts OMG IDL type information into an
ORB-neutral binary format, and caches it in memory. The use of a memory
cache means that COMet hasto query the Interface Repository only once for
each OMG IDL definition.

At application runtime, when COMet is marshalling information, and method
invocations are being made, the type store cache holds the required type
information in memory. The type information is handled on afirst-in-first-out
basisin the memory cache. This means that the most recently accessed
information becomes the most recent in the queue.

On exiting the application process, or when the memory cache size limit has
been reached, new entries in the memory cache are written to persistent storage,
and are rel oaded on the next run of a COMet application.

The COMet Type Store

The memory cache and disk cache are quite separate. Initially, on starting up, the
memory cache is primed with the most recently accessed elements of the disk
cache. (The number of elementsin the memory cache depends on the
configuration settings, as described in “COMet Configuration” on page 395.)
When lookups are performed, if the required type information is not already in
the memory cache, typeman pullsit out of the disk cache. If the required type
information is not in the disk cache, typeman pullsit out of the Interface
Repository. The related type information then becomes the most recent item in
the queue in the type store memory cache.

177

CHAPTER 10 | Development Support Tools

Overview

Window L ayout

The COMet ToolsWindow

This section describes the COM et Tools window, which allows you to:

® Addnew OMG IDL information to the type store.

® Delete the type store contents.

® Create Microsoft IDL from cached OMG IDL.

® Create Automation type libraries from cached OMG IDL.

Note: You canignore this section if you intend using only the typeman,
ts2idl, and ts2t1b utilities from the command line.

Figure 21 shows the layout of the COMet T ools window.

o]
— TypeStare Contents — Types to use
Feeld == < Heniaye
[Interface] gnid -
[Interface] pazsSeq
[Interface] pazsStruct
[Interface] :PhoneB ook
[Interface] ArpDemo::testdny
[Interface] CallE ack
[Interface] ClientQbiject
[Interface] DCOM_Testz:BasicTypesTest
[Interface] grid
[Interface] paszSeq
[Interface] passStruct
[Interface] PhoneB ook
[Struct] ArnpDemo:structS
[Struct] passStuct:structFizedlength LI
I Lokl | |
Refrezh Dizplay | Delete TypeStare | [Ereate ke | [Ereate Stuts | [Ereate il |

Digk Cache Size: 2000 Memory Cache Size: 250

About | Ezit |

%

Figure 21: COMet Tools Window

178

Opening the COMet Tools
Window

Viewing Command-Line Changes

The COMet Tools Window

To open the COM et Tools window, enter cometcfg on the command line, or
select the Configure COM et iconin the Orbix Configuration panel on the
IONA Central window. (Y ou can open the |ONA Central window by entering
itcentral on the command line.) When you open the COMet Tools window,
the TypeStor e Contents panel automatically lists al the OMG IDL type
information that is currently held in the type store cache.

If you are using both the GUI and the typeman command-line utility to manage
the type store, changes made viathe typeman command-line utility do not
appear automatically in the TypeStor e Contents panel on the COMet Tools
window, shown in Figure 21 on page 178. In this case, you must select Refresh
Display, to alow the GUI tool to reflect any changes that were made viathe
command line.

179

CHAPTER 10 | Development Support Tools

Adding New Information to the Type Store

Overview

In This Section

180

This section describes how to add new OMG IDL type information to the
COMet type store, by using either the GUI tool or the typeman command-line
utiilty.

“The Caching Mechanism of the Type Store” on page 176 describes how the
type store cache can obtain its information on an as-needed basis at application
runtime. However, users can choose to add the required OMG IDL type
information to the cache before the first run of an application. Thisis known as
priming the cache, and it can lead to a notable performance improvement.

Priming the cacheis a useful but optional step that helpsto optimize thefirst run
of aCOMet application that is using previously unseen OMG IDL types. After
COMet has obtained the type information from the Interface Repository, either
through cache priming or during the first run of an application, al subsequent
queries for that type information are satisfied by the cache.

This section discusses the following topics:

Using the GUI Tool page 181

Using the Command Line page 182

Note: An OMG IDL interface must be registered in the Interface Repository
before you can add it to the COMet type store. See the CORBA
Administrator’s Guide for more details about registering OMG IDL.

Adding New Information to the Type Store

Using the GUI T ool

Overview This subsection describes how to use the GUI tool to add OMG IDL type
information to the type store.

Steps The steps to add new information to the type store are:
Step Action
1 | Openthe COMet Toolswindow shown in Figure 21 on page 178.

2 | Inthefield beside the L ookUp button, enter the name of an OMG
IDL interface that you want to add.
This enables the L ook Up button.

3 | Select the LookUp button.

COM et searches both the Interface Repository and the type store
cachefor the specified name. If the relevant nameis not already in
the cache, and it is found in the Interface Repository, it isthen
automatically added to the cache.

181

CHAPTER 10 | Development Support Tools

Using the Command Line

Overview This section describes how to use the typeman command-line utility to add
OMG IDL type information to the type store. (See “COMet Utility Arguments’
on page 407 for details of each of the arguments available with typeman.)

Example The following command adds the grid interface to the type store:
typeman -e grid

Usage String You can call up the usage string for typeman as follows:
typeman -?

The usage string for typeman is:

TypeMan

182

[filename | -e name|uuid|TLBName] [-v[s[i] method]]
[options]

filename: Name of input text file.
-e: Look up entry (name, {uuid} or type library
pathname) .
-c[n] [u]: List disk cache contents, n: Natural order,
u: display uuid.
-w[m] : Delete (wipe) cache contents. [m]: Delete uuid-
mapper contents.
-f: List type store data files.
-r: Resolve all references (use to generate static
bridge compatible names for CORBA sequences) .
-1: Always connect to IFR (for performance comparisons) .
-v[s[i] method]: Log v-table for interface/struct.
[s:search for method].
[i]: Ignore case. Use -v with -e option.
-b: Log mem cache hash-table bucket sizes.
-h: Log cache hits/misses.
-z: Log mem cache size after each addition.
-1[+|tlb|union]: Log TS basic contents ['+' shows new's/
delete's]. tlb: TypeLib, union: Logs OMG
IDL for unions.

-?2: Priming input file format info.

Priming the Type Store with an
Individual Entry

Priming the Type Store with
Multiple Entries

Adding New Information to the Type Store

To prime the type store with the OMG IDL mygrid interface, enter:

typeman -e mymodule: :mygrid

In this case, the -e argument instructs typeman to query the Interface Repository
for the specified mygrid interface, and then add it to the type store. Ensure that
you enter the fully scoped name of the OMG IDL type, as shown. This means
you must precede the interface name with the module name (that is, mymodule: :
in the previous example).

To prime the type store with multiple OMG IDL entries simultaneously, create a
text file that lists any number of OMG IDL typenames. Y ou can call thetext file
any name you want (for example, prime. txt). Each entry in the text file must be
on a separate line. For example:

MyAccount
Chat: :ChatClient
Chat: :ChatServer

As shown in the preceding example, OMG IDL typenames must be fully scoped
(that is, precede the interface name with modulename: :). Y ou can comment out
aline by putting // at the start of it. If you insert adouble blank line, it is treated
asthe end of thetext file. The -22 option with typeman alows you to view the
format that the text file entries should take.

After you have created the text file, enter the following command (assuming you
have called the file prime . txt), to prime the cache with the type information
relating to the text file entries:

typeman prime.txt

This can be a convenient way of managing the cache, and repriming it with a
modified list of types.

183

CHAPTER 10 | Development Support Tools

Deleting the Type Store Contents

Overview

Using the GUI Tool

Using the Command Line

184

Y ou can use either the GUI tool or the command-line utilities to del ete the entire
contents of the type store. It is not possible to selectively delete only some type
store entries. To delete entries, you must del ete the entire cache.

To delete the entire contents of the cache, select Delete TypeStor e on the
COMet Toolswindow shown in Figure 21 on page 178.

Either of the following commands deletes the entire contents of the type store:
typeman -wm

or
del c:\temp\typeman.*

In this case, the second command assumes that the typeman datafilesare heldin
c:\temp. (The coMet . TypeMan . TYPEMAN_CACHE_FILE configuration variable
determines where the data files are stored. See “COMet Configuration” on

page 395 for more details.)

The typeman data files include:

typeman._dc Thisisthe disk cache datafile.

typeman. idc Thisisthe disk cache index.

typeman. edc Thisisthe disk cache empty record index.
typeman . map Thisisthe UUID name mapper.

Note: The typeman -wcommand does not delete the typeman .map file. You
must specify typeman -wm to ensure that thisfileis also deleted.

Dumping the Type Store Contents

Dumping the Type Store Contents

Overview

Example

The typeman utility is also auseful diagnostic utility, becauseit allows you to
dump the contents of the type store cache.

The following command prints the methods of the grid interface in both
aphabetic and vtable order (the vtable order is determined by the OMG
Interworking Architecture specifiction at
ftp://ftp.omg.org/pub/docs/formal/01-12-55.pdf):

[c:\] typeman -e grid -v

MD5/Name or IFR look up: grid

Name sorted V-table DispId Offset
get get 1 0

height get set 2 1

set height 3 2

width get width 4 3

Note: The second column in the preceding example denotes operations for
the get attribute. The absence of height set andwidth set impliesthat these
are readonly attributes.

185

CHAPTER 10 | Development Support Tools

Creating a Microsoft IDL File

Overview The normal procedure for writing a COM or Automation client to communicate
with a CORBA server isto first obtain a Microsoft IDL definition of the target
CORBA interface, which the COM or Automation client can understand. Y ou
can generate Microsoft IDL definitions from existing OMG IDL information in
the type store. To minimize manual lookups, you should ensure that each IDL
file contains a module.

Note: Creating Microsoft IDL in this way allows you to create a standard
DCOM proxy/stub DLL that can beinstalled with a COM or Automation
client. This means that you do not have to install any CORBA components on
the client machine. In this case, the distribution model is exactly the same as
for astandard DCOM application. This means that it includes a COM or
Automation client and a proxy/stub DLL.

In This Section This section discusses the following topics:
Using the GUI Tool page 187
Using the Command Line page 189

186

Creating a Microsoft IDL File

Using the GUI T ool

Overview

Steps

This subsection describes how to use the GUI tool to create aMicrosoft IDL file
from OMG IDL.

The stepsto create a Microsoft IDL file are:

1
2.

Open the COM et Tools window shown in Figure 21 on page 178.

From the TypeStor e Contents panel, select the item of OMG IDL type
information on which you want to base the Microsoft IDL file.

Select Add. This adds the item to the Typesto use panel.

Repeat steps 1 and 2 until you have added all theitems of type information
that you want to include in the Microsoft IDL file.

Select Create MIDL. This opens the COMet ts2idl client window shown
in Figure 22 on page 188.

If you want to:

+ Ensurethat Microsoft IDL is created for all dependent types not
defined within the scope of (for example) your interface, select the
Resolve Refer ences check box.

+ Copy the contents of the Microsoft IDL fileto your development
environment, select the Copy All button.

. Refresh the window, select the Clear button.
+ Assign aMicrosoft IDL filename, select the Save As button.
Select the Generate I DL button. This creates the Microsoft IDL file.

187

CHAPTER 10 | Development Support Tools

COMet ts2idl Client Window Figure 22 showsthe COMet ts2idl client window, which you can useto create a
Microsoft IDL file from OMG IDL.

E¥: coMet tszidl client ' B S

& eneraleIDLI

¥ Resolve References

| »

=

* File generated by tsidl verzion 2.0.7 at
*06:19:27 PM on Wednesday 12 December, 2001

=

* Contentg: MIDL

Hifndef _ GRID_
fdefine __GRID_ —

import "oaidlidl";

I
A interface |_grid ;
AHUUID [18303970-3ACF-3C37-1D4B-3FAT1EBFDEFE)

/MDE YES

/f Source cIFR

I _I
Save bz, Copp sl Clear Cloze |

Figure 22: Creating a Microsoft IDL File from OMG IDL

188

Creating a Microsoft IDL File

Using the Command Line

Overview

Example

Usage String

This subsection describes how to use the ts2id1 command-line utility to create
aMicrosoft IDL file from existing OMG IDL type information. (See “COMet
Utility Arguments’ on page 407 for details of each of the arguments available
with ts2idl.)

The following command creates agrid.idi file, based on the OMG IDL grid
interface:

ts2idl -f grid.idl grid

You can call up the usage string for ts2id1 asfollows:
ts2idl -v
The usage string for ts2idl is:

Usage:
ts2idl [options] <type name | type library name> [[<type name>]
o]
Options:
-c : Don’t connect to the IFR (e.g. if cache is fully primed) .
-r : Resolve referenced types.
-m : Generate Microsoft IDL (default).
-p : Generate makefile for proxy/stub DLL.
-s : Force inclusion of standard types (ITStdcon.idl /
orb.idl) .
-f : <filename>.
-v : Print this message.

Tip : Use -p to generate a makefile for the marshalling DLL.

189

CHAPTER 10 | Development Support Tools

Creatinga TypelLibrary

Overview

Using I Dispatch Interface

Using Dual I nterfaces

190

When using an Automation client, you have the option in some controllers (for
example, Visual Basic) of using straight Tpispatch interfaces or dual interfaces.

If you want to develop an Automation client that isto only use the straight
IDispatch interface, thereisno need to create atype library from existing OMG
IDL information in the type store. This is because COMet automatically copies
the related type information into the type store when it uses Getobject to
perform alookup on the target CORBA object.

Thefollowing isaVisua Basic example of how an Automation client can use
GetObject () to get an object reference to a CORBA object:

' Visual Basic requesting an Automation object
' reference to OMG IDL interface mod::CorbaSrv
srvobj = factory.GetObject ("mod/CorbaSrv")

If you want to develop an Automation client that uses dual interfaces, instead of
using the straight tpispatch interface, you must use either the GUI tool or the
ts2t1b command-line utility to create atype library from existing OMG IDL
information in the type store.

Note: If you intend to use dual interfaces, the bridge must be loaded
in-process to the client (that is, in the client’ s address space). The use of dual
interfaces is not supported with the bridge loaded out-of-process.

Creatinga TypeLibrary

Using the GUI T ool

Overview

Steps

This subsection describes how to use the GUI tool to create atype library from
OMG IDL.

The stepsto create atype library are:
1. Openthe COMet Toolswindow shown in Figure 21 on page 178.

2. Fromthe TypeStore Contents panel, select an item of OMG IDL type
information on which you want to base the type library.

3. Select Add. This adds the item to the Typesto use panel.

Repeat steps 1 and 2 until you have added all theitems of type information
that you want to include in the type library.

4. Select Create TLB. This opensthe Typelibrary Generator window shown
in Figure 23.

!:'.'-'"Typelihrary Generator M=] E3

 Interface praototypes appear as:

Library Mame

I = Dispatch only.

% Interface name.
Tupelibray pathname

I e | [Apply identifier prefis ta avaid name clashes.

Generate TLE | Cloze |

Figure 23: Creating a Type Library from OMG IDL

191

CHAPTER 10 | Development Support Tools

192

IntheLibrary Namefield, type theinternal library name. This can be the
same as the type library path name if you wish, but ensure that the library
does not have the same name as any of the types that it contains.

In the Typelibrary pathnamefield, type the full path name for the type
library.

If you want interface prototypes to:

+ Appear as Ipispatch, select | Dispatch only.

¢+ Usethe specific interface name, select | nterface name.

To apply an identifier prefix to avoid name clashes, select the
corresponding check box. This helpsto avoid potential name clashes
between OMG IDL and Microsoft IDL keywords.

Click Generate TLB. This creates the type library.

Creatinga TypeLibrary

Using the Command Line

Overview

Example

Usage String

This subsection describes how to use the ts2t1b command-line utility to create
atype library from existing OMG IDL type information. (See “ COMet Utility

Arguments’ on page 407 for details of each of the arguments available with
ts2tlb.)

The following command creates agrid. t1b filein the 1T_grid library, based

onthe OMG IDL grid interface:

ts2tlb -f grid.tlb -1 IT grid grid

You can call up the usage string for ts2t1b asfollows:
ts2tlb -v
The usage string for ts2t1bis:

Usage:
ts2tlb [options] <type name> [[<type name>] ..]
-f : File name (defaults to <type name #1>.tlb).
-1 : Library name (defaults to IT Library <type name #1>).
-p : Prefix parameter names with "it_".
-1 : Pass a pointer to interface Foo as IDispatch*
rather than DIFoo* - necessary for some controllers.
-v : Print this message.

Tip : Use tlibreg.exe to register your type library.

193

CHAPTER 10 | Development Support Tools

Creating Stub Codefor Client Callbacks

Overview

Steps

!:'.'-':Stuh Code Generator

Clutput Directony

When you want your application to have client callback functionality, you must
provide an implementation for the callback objects. This section describes how
to use the GUI tool to generate Visual Basic or PowerBuilder stub code for
callbacks.

Note: Thereis no equivalent command-line utility available for creating stub
code for callbacks.

The steps to create stub code for callbacks are:

1. Openthe COMet Toolswindow shown in Figure 21 on page 178.

2. Fromthe TypeStore Contents panel, select the item of OMG IDL type
information on which you want to base the stub code.

3. Select the Add button. This adds the item to the Typesto use panel.
Repest steps 1 and 2 until you have added al the items of type information
that you want to include in the stub code.

4. Select the Create Stub button. This opens the Stub Code Generator
window shown in Figure 24.

=10l x]

Language

Igc:

% Yizual Basich.0 class file [.CLS)

3 demos
SR COMet
“H callback

(] dual
[idispatch

" Powerbuilder 5.0 user-object import file [SRU]

H
A
4 Generate Cloze

194

Figure 24: Creating Stub Code for Callbacks

Creating Stub Code for Client Callbacks

5. Select the radio button corresponding to the language you are using.
6. Select the output directory where you want the stub code to be saved.
7. Click Generate. This generates the stub code.

195

CHAPTER 10 | Development Support Tools

Replacing an Existing DCOM Server

Overview

Background

ThesrvAlias Utility

196

This section describes the concept of replacing an existing DCOM server with a
CORBA server, and how to do it. The following topics are discussed:

®* “Background” on page 196.

®* “ThesrvAlias Utility” on page 196.

® “The Server Aliasing Registry Editor Window” on page 197.
® “Using the Window” on page 197.

® “Thealassrv Utility” on page 198.

At some stage, it might become necessary to replace an existing COM or
Automation server with a CORBA server, without the opportunity to modify
existing COM or Automation clients. However, such clients are not aware of the
(D)ICORBAFactory interface that has so far been the usual way for clientsto
obtain initial referencesto CORBA objects.

The solution is to allow such clients to continue to use their normal
CoCreateInstanceEx () OF CreateObject () cals. This meansthat you must
retrofit the bridge to serve these clients’ activation requests. In other words, you
must aiasthe bridge to the legacy COM or Automation server. This ensures that
when the client is subsequently run, the bridge is activated in response to the
client's coCreateInstanceEx () OF CreateObject () cals.

COMet suppliesasrvalias utility, which you can enter at the command line, to
open the Server Aliasing Registry Editor window shown in Figure 25 on
page 197.

Replacing an Existing DCOM Server

The Server Aliasing Registry Figure 25 shows the layout of the Server Aliasing Registry Editor window,
Editor Window which you can open by running srvAlias from the command line.

. Server Allazing Reqgistry Editor

CLSID: I {FFBEATEE-I0EF-1101-8E10-0060370557AC}

D escription IEIrI:-i:-c FReplace Server demo

[+ Create Key Laadkey Restore
ProglD IIT_D comTest|T_DeoomT est
Beiltes Sl IT_DcomT estreplace]

Aliaz | Delete Save

Figure 25: Aliasing the Bridge

Using the Window The Server Aliasing Registry Editor window allows you to place some entries
intheregistry, to allow server "diasing’. Y ou must enter the CLSID for the
server to be replaced, and then supply, in the appropriate text box, the string that
should be passed to (D) ICORBAFactory: :GetObject () if the CORBA factory
were being used. This string is then stored in the registry (under a coMet Info
subkey, under the server’s CLSID entries). In addition, ITunknown.d11 is
registered as the server executable. Nothing elseis required.

197

CHAPTER 10 | Development Support Tools

The aliassrv Utility The srvalias utility allows usersto save the new registry entriesin binary
format, so that an accompanying aliassrv utility can be used at application
deployment time to restore the entries on the destination machine. For example,
given afile called replace.reg, which contains the modified registry entries,
the following command aliases the specified CLSID to COMet:

aliassrv -r replace.reg -c {F7B6A75E-90BF-11D1-8E10-0060970557AC}
The next time aDCOM client of the server is run, COMet is used instead.

198

Generating Visual Basic Client Code

Generating Visual Basic Client Code

Overview

In This Section

This section describes how to use the Visual Basic genie, to generate Visual
Basic client code from OMG IDL definitions.

This section discusses the following topics:

Introduction page 200
Using the GUI Tool page 202
Using the Command Line page 213

199

CHAPTER 10 | Development Support Tools

I ntroduction

Overview This subsection provides an introduction to the concept of using the genie to
generate Visual Basic client code. The following topics are discussed:

®* “Introduction to the Genie” on page 200.
. “Development Steps’ on page 200.
® “Generated Files’ on page 201.

Introduction to the Genie COMet is shipped with aVisual Basic code generation genie that can
automatically generate the bulk of the application code for aVisual Basic client,
based on OMG IDL definitions. The use of the Visual Basic genieis not
compulsory for creating Visual Basic clients with COMet. However, using the
genie makes the development of Visual Basic clients much faster and easier.

The genieis designed to generate VVisual Basic clients. These clients can
communicate with C++ servers that have been generated via the C++ genie
supplied with the CORBA Code Generation Toolkit. (See the CORBA Code
Generation Toolkit Guide for more details about the C++ genie.)

Development Steps The steps to create and build a distributed COMet client-server application via
code generation are:

Step Action

1 | Generate the CORBA server code, by using the idlgen
cpp_poa_genie supplied with the CORBA Code Generation
Toolkit. See the CORBA Code Generation Toolkit Guide for more
details.

2 | Generatethe Visual Basic client, by using the idigen vb_genie
supplied with COMet. The following subsections describe how to
use either the command-line or GUI version of the genieto do this.
See “Generated Files’ on page 201 for alist of the files that the
Visual Basic genie creates.

3 | Register the OMG IDL file with the Orbix Interface Repository.
Thisstep isonly required if using the command-line version of the
genie.

200

Generated Files

Generating Visual Basic Client Code

Step

Action

client.

4 | Loadtheclient.vbp fileintothe Visual Basic IDE, and build the

Thefilesthat the Visual Basic genie creates are:

client.vbp

client.frm

FindIOR. frm

Call_Funcs.bas

Print_Funcs.bas

Thisisthe Visua Basic project file for the client.
Thisisthemain Visual Basic form for the client.

This form contains the functions needed by the client to
select a . ref file. The . ref fileiswritten by the server and
contains the server object’s IOR.

This contains the Visual Basic code for implementing the
operations defined in the selected interface(s).

This contains functions for printing the values of al the
CORBA simple types supported by COMet. It also contains
functions for printing any user-defined types declared in the
IDL file.

Random_Funcs .basThis contains functions for generating random values for all

IT_Random.cls

the CORBA simple types supported by COMet. It also
contains functions for generating random values for any
user-defined types declared in the IDL file.

This classis arandom number generator that is used in the
generated Random_Funcs.bas file.

201

CHAPTER 10 | Development Support Tools

Using the GUI Tool

Overview This subsection describes the steps to use the GUI tool to generate Visual Basic
client code from existing OMG IDL are:

1 FromtheVisual Basic project dialog shown in Figure 26, select the COM et
Wizard icon.

New | Ewigting I Recent I

R 4 'y
Standard EXE AckiveX EXE Ackived DLL Ackive
Control
A A & &
a a\,
2 o
WEB Application VB Wizard Ackiven Ackiver
wizard Manager Document Dl Document Exe
Pea 4 P 4 Pea 4 P 4

[Don't show this dislog in the future

Figure 26: Visual Basic Project Dialog Window

This opensthe COMet Wizard Introduction window shown in Figure 27 on
page 203.

202

Generating Visual Basic Client Code

2 Select the Next button onthe COMet Wizard - Introduction window shownin
Figure 27.

COMet Wizard - Introduction

The COMet YB Client Wizard Creates a vE
automation client which can communicate
through COMet 2000 with a COREA server
implementing the interfaces defined in the
selected IDL File.

[Skip this screen in the Fukure,

Zancel | = Batl | Mext = | FEmie

Figure 27: COMet Wizard - Introduction Window

This opensthe COMet Wizard - Step 1 window shown in Figure 28 on
page 204.

203

CHAPTER 10 | Development Support Tools

3 Select the Browse button on the COMet Wizard - Step 1 window in Figure 28.

COMet Wizard - Step 1

Select an IDL file containing the inkerface that
wou wish to implement,

Browse |
FEmie |

Zancel |

Figure 28: COMet Wizard - Step 1 Window

This opensthe Select the IDL file window shown in Figure 29 on page 205.

204

Generating Visual Basic Client Code

4 From the Select the IDL file window in Figure 29, select the OMG IDL fileon
which you want to base the Visual Basic client.

Select the IDL file.

I = j
o
3 Program Files
EF10MA
) orbiv_art
320
S demos
S COMet
S qrid

& comman

Filenarme:

|E:"~F'ru:ugram Filez\IOMANarbix_arts2. Dhdemoz W COket

Cancel |

Ok

Figure 29: Sdlect the IDL File Window

The Filename field displays the full path to the OMG IDL file that you select

Select the Ok button on the Select the I DL file window.
This opensthe COMet Wizard - Step 1 window again, this time with the full

path to the selected OMG IDL file displayed, as shown in Figure 30 on
page 206.

205

CHAPTER 10 | Development Support Tools

6 Select the Next button on the COMet Wizard - Step 1 window in Figure 30.

COMet Wizard - Step 1

Select an IDL file containing the inkerface that
wou wish to implement,

|C:'|,F‘ru:ugram Files\IOMA orbix_arth 2, 0Ydemos

Zancel | < Back Mext = FEmie

Figure 30: Sep 1 Window Displaying Full Path to the Selected File

This opensthe COMet Wizard - Step 2 window shown in Figure 31 on
page 207.

206

Generating Visual Basic Client Code

7 Select the appropriate radio button on the COM et Wizard - Step 2 window in
Figure 31, depending on whether you want to connect to the server by using an
IOR or the Naming Service.

Note: The option you choose must correspond with the option selected for
the C++ server when it was created viathe CORBA Code Generation ToolKkit.

COMet Wizard - Step 2

Do wou wish bo connect to locate the
server using an object reference (IOR)
writken ko a file or using the Maming
Service,

" Use the Maming service

% Use an IOR

Zancel | < Back |

FEmie |

Figure 31: COMet Wizard - Sep 2 Window

8 Select the Next button on the COMet Wizard - Step 2 window.

This opensthe COMet Wizard - Step 3 window shown in Figure 32 on
page 208.

207

CHAPTER 10 | Development Support Tools

9 Select the Browse button on the COMet Wizard - Step 3 window in Figure 32.

COMet Wizard - Step 3

Select the Folder in which wou would like
the project ko be created. IF the Folder
does not exist a new one will be
created,

Browse |
FEmie |

Zancel |

Figure 32: COMet Wizard - Step 3 Window

This opens the Select the Folder window shown in Figure 33 on page 209.

208

Generating Visual Basic Client Code

10 From the Select the Folder window in Figure 33, select the path to the folder in
which you want to store your Visual Basic client project.

Select the Folder

o
Y Temp
a test

Folder: |E:'xTemp'xtest'va

Cancel | Ok |

Figure 33: Sdlecting a Folder

The Folder field displays the full path to the folder that you select.

11 Select the Ok button on the Select the Folder window.

This opensthe COMet Wizard - Step 3 window again, this time with the full
path to the selected folder displayed, as shown in Figure 34 on page 210.

209

CHAPTER 10 | Development Support Tools

12 Select the Next button on the COMet Wizard - Step 3 window in Figure 34.

COMet Wizard - Step 3

Select the Folder in which wou would like
the project ko be created. IF the Folder
does not exist a new one will be
created,

|C:'|,Temp'l,test'l,vl:u

Zancel | < Back Mext = FEmie

Figure 34: Sep 3 Window Displaying Full Path to the Selected Folder

This opensthe COMet Wizard - Finished window shown in Figure 35 on
page 211.

210

Generating Visual Basic Client Code

13 Select the Finish button on the COMet Wizard - Finished window in
Figure 35.

COMet Wizard - Finished!

The CoOMet Wizard is finished collecting
information, Click the Finish bukton to
generate the client project. This may kake a
few minutes on slower machines,

[~ Bave settings For next use.}

Zancel | < Back | (et = | Finish

Figure 35: COMet Wizard - Finished Window

This automatically generates the Visual Basic client project for you. It also
automatically registers the corresponding OMG IDL file in the Interface

Repository.
When the genie has completed its processing, the generated client application
appears, as shown in Figure 36 on page 212.

211

CHAPTER 10 | Development Support Tools

212

&5, Client - Microsoft Yisual Basic [design] -8 x|

Flle Edt Yiew Projsct Format Debug Run Query Diagram Tools Add-Ins Window Help

ERE = A =T = af=af=R
B3

: Forml
Exit Appearance 1-30
_ AtoRedraw False

2008000 _’|J BackCalor [0 Hz000000Fz,

Forderstyle 1 - Fixed Single

Server 0R flefor isiface: [irgeiit Browse “aption Cliznt
ClpControls True

Project - Client X
General HE
kB . Client - Form1 {Form) E--gE; Eﬂlie:t (client.vbp)
o - orms
A la_b\ - Farml (Client.Frm)
" U 55 Wodus
i ~ 444 Call_Funcs (Call_Funics.bas)
g Connect | - -« Print_Funcs (Print_Funcs.bas)
2 : 4% Reandom_Funcs (Random_Func
E8
am ﬂ Disconnect
= « D]
Fiun Client
B3] o e Properties - Form 1 X
H ~ : [Farm1 Farm -
m &I Aiphabetic | cateqoried |

(Contraliox False

Drantode 13 - Copy Pen

Dranstyls 0- Solid

Drawwidth 1

Enzblzd True

Fillclar W =Ho00000002,

Fillstyle 1- Transparent
S x| [Fort S Sans Serif =l
T] ame

| |Returns the name used in code ko identify an
object,

[Form Layout

Figure 36: Example of a Generated Client Application

Generating Visual Basic Client Code

Using the Command Line

The idlgen vb_genie utility can create the bulk of aVisual Basic client
application from existing OMG IDL definitions. The command-line syntax for
the genie is as follows, where £i1ename represents the name of the OMG IDL
file:

idlgen vb_genie.tcl [options] filename.idl [interface wildcard]*

Y ou can generate a Visual Basic client, based on any of the following:
® Allinterfacesinan OMG IDL file.

For example, the following command creates a Visual Basic client, based
on all the interfaces contained in the grid. id1 file:

idlgen vb_genie.tcl grid.idl *

* A specificinterfacein an OMG IDL file.

For example, the following command creates a Visual Basic client, based
onthegrid interfaceinthe grid.idi file:

idlgen vb_genie.tcl modulename: :grid grid.idl

In this case, you must supply the fully scoped name of theinterface (that is,
the interface name preceded by module name and : :).

® Arangeof selected interfacesin an OMG IDL file, by using wildcard
characters.
For example, the following command creates a Visual Basic client, based
on al interfacesin foo.id1 that are within the Test module, and which
have names that begin with Foo or end with Bar:

idlgen vb_genie.tcl Test::* foo.idl "Foo*" "*Bar"

Note: Remember that the command-line version of the genie does not
automatically register OMG IDL in the Interface Repository. Y ou must do this
manually after the genie has created the Visua Basic client application. For
example, to register the OMG IDL in afile called grid.id1, enter the
command idl -R=-v grid.idl.

213

CHAPTER 10 | Development Support Tools

You can call up the usage string for the genie as follows:
idlgen vb_genie -h
The usage string for the genieis:

usage: idlgen vb_genie.tcl [options] file.idl [interface
wildcard] *

[options]

-I<directory> Passed to preprocessor.

-D<name> [=value] Passed to preprocessor.

-h Prints this help message.

-v Verbose mode.

-s Silent mode (opposite of -v option) .

-dir <directory> Put generated files in the specified
directory.

-include Process interfaces in #include’d file too.

- (no)ns Use the Naming Service (default no).

See“Idigen vb_genie.tcl Arguments’ on page 415 for details of each of the
arguments available with the genie.

214

Part 3

Programmer’ s Reference

In ThisPart This part contains the following chapters:
COMet API Reference page 217
Introduction to OMG IDL page 267
Mapping CORBA to Automation page 311
Mapping CORBA to COM page 353
COMet Configuration page 395
COMet Utility Arguments page 407

CHAPTER 11

COMet API
Reference

This chapter describes the application programming interface
(API) for COMet, which is defined in Microsoft IDL.

In This Chapter This chapter discusses the following topics:
Common Interfaces page 218
Automation-Specific Interfaces page 222
COM-Specific Interfaces page 250

217

CHAPTER 11 | COMet API Reference

Common Interfaces

Overview This section describes the interfaces that are common to both COM and
Automation.
In This Section This section discusses the following topics:
| ForeignObject page 219
IMonikerProvider page 221

218

Common I nterfaces

| ForeignObj ect

Synopsis

Description

typedef [public] struct objSystemIDs {
unsigned long cbMaxSize;
unsigned long cbLengthUsed;
[size_is(cbMaxSize), length_is(cbLengthUsed), unique]
long * pvalue;
} objSystemIDs;

[object, uuid(..), pointer_ default (unique)]

interface IForeignObject : IUnknown

{

HRESULT GetForeignReference ([in] objSystemIDs systemIDs,
[out] long * systemID,
[out] LPSTR * objRef);

HRESULT GetUniqueId ([out] LPSTR * uniqueId);

}i

Mapping object references through views, and passing those object references
back and forth through the bridge, could potentially lead to the creation of
indefinitely long chains of views that delegate to other views, and so on
indefinitely. The IForeignobject interfaceis provided as a deterrent to this
potential problem, in that it provides a mechanism to extract avalid CORBA
object reference from aview.

To effect this solution, each COM and Automation view object must map onto
one and only one CORBA object reference, and it must also expose the
IForeignObject interface. Thisin turn means that an unambiguous CORBA
object reference can be obtained via TForeignobject from any COM or
Automation view.

Note: The matching Automation interface for a constructed OMG IDL type

(such as struct, union, or exception) exposes DIForeignComplexType instead
of IForeignObject.

219

CHAPTER 11 | COMet API Reference

Methods

uulD

Notes

220

The methods for the TForeignobject interface are:

GetForeignReference ()

GetUniqueId()

This extracts an object reference in string form from
aproxy.

The systemIDs parameter isan array of long values,
whereavaluein the array identifies an object system
(for example, CORBA) for which the caller is
interested in obtaining object references. The value
for the CORBA object systemisthelong value, 1. If
the proxy is aproxy for an object in more than one
object system, the order of IDsin the systemIDs
array indicates the caller’s order of preference.

The out parameter, system1D, identifies an object
system for which the proxy can produce an object
reference. If the proxy can produce a reference for
more than one object system, the order of preference
specified in the systemIDs parameter is used to
determine the value returned in this parameter.

The out parameter, objref, contains the object
referencein string form. In the case of the CORBA
object system, thisis astringified interoperable
object reference (I0R).

This returns a unique identifier for the object.

{204£6242-3aec-11cf-bbfc-444553540000}

COM/CORBA-compliant.

Common I nterfaces

IMonikerProvider

Synopsis

Description

Methods

uuiD

Notes

[object, uuid(..)]

interface IMonikerProvider : IUnknown

{

HRESULT get_moniker ([out] IMoniker ** wval);
Y

The COM standard does not provide any mechanism for clients to deal with
server objectsthat areinherently persistent (that is, server objects that store their
own state instead of having their state stored through an external interface such
as IpersistStorage). Databases are atypical example of inherently persistent
server objects. COM does have the concept of monikers, which are the
conceptual equivalent of CORBA persistent object references, but they are used
in only alimited capacity in the COM world.

The MonikerProvider interface allows clients to obtain an IMoniker interface
pointer from COM and Automation views. The resulting moniker can be used as
a persistent reference to the CORBA object that relates to the view from which
the moniker was obtained.

Both COM and Automation views can support the 1MonikerProvider interface.
It allows clients to persistently save object references for later use, without
needing to keep the view in memory.

The methods for the IMonikerProvider interface are:

get_moniker () Thisreturnsamoniker that allowsthe CORBA object to be
converted to persistent form for storage in afile, and so on.
Onceit is stored in persistent form, by means of this
moniker, the CORBA object can be reconnected to again, by
using the standard COM moniker semantics.

{ecce76fe-39ce-11cf-8e92-080000970dac7}

COM/CORBA-compliant.

221

CHAPTER 11 | COMet API Reference

Automation-Specific I nterfaces

Overview

In This Section

222

This section describes the interfaces that are specific to Automation.

This section discusses the following topics:

DICORBAAnNy page 223
DICORBAFactory page 228
DICORBAFactoryEx page 230
DICORBAObject page 231
DICORBA Struct page 233
DICORBA SystemException page 234
DICORBATYypeCode page 235
DICORBAUnion page 239
DICORBAUserException page 240
DIForeignComplexType page 241
DIForeignException page 242
DIObject page 243
DIObjectinfo page 244
DIOrbixORBObject page 245
DIORBObject page 248

Automation-Specific I nterfaces

DICORBAANY

Synopsis

typedef enum {

tk_null, tk void, tk_short, tk_long, tk ushort,
tk_ulong, tk_float, tk_double, tk_octet, tk_any,
tk_typeCode, tk_principal, tk_objref, tk_struct,
tk_union, tk_enum, tk string, tk sequence, tk_array,
tk_alias, tk_except, tk_boolean, tk_char

} CORBATCKind;

[oleautomation, dual,uuid(..)]

interface DICORBAANy :

//

//

//

//

//

/7

DIForeignComplexType {
[id(0) ,propget] HRESULT value([retval,out] VARIANT*
IT retval);
[id(0) ,propput] HRESULT value([in] VARIANT val);
[propget] HRESULT kind([retval,out] CORBATCKind* IT retval);

tk_objref, tk_struct, tk union, tk_alias, tk_except
[propget] HRESULT id([retval,out] BSTR* IT retval);
[propget] HRESULT name ([retval,out] BSTR* IT retval);

tk_struct, tk union, tk_enum, tk except

[propget] HRESULT member_count ([retval,out] long* IT retval);

HRESULT member_name ([in] long index, [retval,out] BSTR*
IT retval);

HRESULT member_type([in] long index, [retval,out] VARIANT*
IT retval);

tk_union

HRESULT member_label ([in] long index, [retval,out] VARIANT*
IT retval);

[propget] HRESULT discriminator_type ([retval,out] VARIANT*
IT retval);

[propget] HRESULT default_index([retval,out] long*
IT retval);

tk_string, tk_array, tk_sequence

[propget] HRESULT length([retval,out] long* IT retval);

tk_array, tk _sequence, tk_alias
[propget] HRESULT content_type ([retval,out] VARIANT*
IT retval);

tk_array, tk_sequence

223

CHAPTER 11 | COMet API Reference

Description

Methods

224

HRESULT insert_safearray([in] VARIANT val, [in] BSTR
typeName) ;
}i

The OMG IDL any type maps to the b1corrAAny Automation interface. Y ou can
use DICORBAANny to find details about the type of value stored by an any. The
particular methods that you can call on pIcoreaany depend on the kind of value
it contains. A Badkind exception israised if amethod is called on DICORBAANY
that is not appropriate to the kind of value it contains.

You can usethe kind () method to find the kind of value contained. Thekind ()
method returns an enumerated value of the corBATCKind type. For example, a
DICORBAAny containing astruct is of the tk_struct kind; a DICORBAANY
containing an object is of the tk_objref Kind; a DICORBAANY containing a
typedef is of the tk_alias kind.

Because p1corRBAANy derives from the DIForeignComplexType interface,
objects that implement it are effectively pseudo-objects.

If the any contains a CORBA sequence or array type, the varIanT value
property contains an Automation safearray or an OLE collection. If the any
contains acomplex CORBA type, such asastruct or union, the varTanT value
property contains an IDispatch pointer to the Automation interface to which
that type is mapped.

The methods for the DrcorBAANY interface are:

value() These propput and propget methods can be called
on every kind of bICOrRBAZNY.

The propget method returns the actual value stored
in DICORBAANY.

The propput method inserts avalue into a
DICORBAANY.

kind () This can be called on every kind of DICORBAANY.

It finds the type of OMG IDL definition described by
the any. It returns an enumerated value of the
CORBATCKind type. For example, an any that contains
asequenceis of the tk_sequence kind. Once the
kind of value stored by the any is known, the
methods that can be called on the any are determined.

id()

name ()

member_count ()

member_name ()

Automation-Specific I nterfaces

This can be called on a bIcorBAANY Of the
tk_objref, tk_struct, tk_union, tk_enum,
tk_alias, OF tk_except kind. If called on a
DICORBAAny Of adifferent kind, it raises aBadkind
exception.

It returns the Interface Repository 1D that globally
identifies the type.

This method requires runtime access to the Interface
Repository.

This can be called on a bIcorBAANY Of the
tk_objref, tk_struct, tk_union, tk_enum,
tk_alias, Or tk_except kind. If called on a
DICORBAAny Of adifferent kind, it raises aBadkind
exception.

It returns the name that identifies the type. The
returned name does not contain any scoping
information.

This can be called on a bIcorRBAANY Of the
tk_struct, tk_union, tk_enum, Or tk_except Kind.
If called on aprcorBaAny of adifferent kind, it raises
aBadkind exception.

It returns the number of members that make up the
type.

This can be called on a bIcorBAANY Of the
tk_struct, tk_union, tk_enum, Of tk_except Kind.
If called on apIcorBaAny of adifferent kind, it raises
aBadKind exception.

It returns the name of the member specified in the
index parameter. The returned name does not
contain any scoping information.

A Bounds exception israised if the index parameter
is greater than or equal to the number of members
that make up the type. Theindex startsat 0.

225

CHAPTER 11 | COMet API Reference

226

member_type ()

member_label ()

discriminator_type()

default_index()

length()

This can be called on a pICcORBAANY Of the
tk_struct, tk_union, Of tk_except kind. If called
on apIcorBAAny Of adifferent kind, it raisesa
BadKind exception.

It returns the type of the member identified by the
index parameter.

A Bounds exception israised if the index parameter
is greater than or equal to the number of members
that make up the type. The index starts at 0.

This can be called on apIcorRBAANY Of the tk_union
kind. If called on aprcorBaany of adifferent kind, it
raises a Badkind exception.

It returns the case label of the union member
identified by the index parameter. (The case label is
an integer, char, boolean, or enum type.)

A Bounds exception israised if the index parameter
is greater than or equal to the number of members
that make up the type. The index starts at o.

This can be called on a bIcoRBAANY Of the tk_union
kind. If called on aprcorBaany of adifferent kind, it
raises a Badkind exception.

It returns the type of the union’s discriminator.

This can be called on apICcoRBAANY Of the tk_union
kind. If called on aprcorBaany of adifferent kind, it
raises a Badkind exception.

It returns the index of the default member; it returns
-1 if there is no default member.

This can be called on a prcorBaany of the
tk_string, tk_sequence, OF tk_array Kind.

For abounded string or sequence, it returns the value
of the bound; areturn value of o indicates an
unbounded string or sequence. For an array, it returns
the length of the array.

Automation-Specific I nterfaces

content_type () This can be called on a p1corBaAAny of the
tk_sequence, tk_array, Or tk_alias kind. If called
on apIcorBAAny Of adifferent kind, it raisesa
BadKind exception.

For asequence or array, it returns the type of element
contained in the sequence or array. For an dias, it
returns the type aliased by the typedef definition.

insert_safearray() This can be called on a bIcorRBAANY Of the
tk_sequence Of tk_array Kind. If called on a
DICORBAANY Of adifferent kind, it raises a Badkind
exception.

Thisisused to insert sequences or arrays into anys.
The typename of the sequence or array must be
supplied along with the array itself.

UuID {A8B553C4-3B72-11CF-BBFC-444553540000}

Notes Automation/CORBA -compliant.

227

CHAPTER 11 | COMet API Reference

DICORBAFactory

Synopsis

Description

228

[oleautomation, dual,uuid(...)]

interface DICORBAFactory : IDispatch

{

HRESULT GetObject ([in] BSTR objectName,
[optional, in,out] VARIANT* IT Ex,
[retval,out] IDispatch** IT retval);

The pIcORBAFactory interfaceis used to make CORBA objects available to
Automation clients, in a manner that is similar to the Getactiveobject method
in Automation (already described in“COM and CORBA Principles’ on page 3).
Itisafactory classthat allows an Automation client to create new CORBA
object instances and bind to existing CORBA objects. It isdesigned to be similar
to the Visual Basic createObject and GetObject functions.

The Automation/CORBA-compliant Progl D for this classis CORBA.Factory.
An instance of this class must be registered in the Windows system registry on
the client machine.

In COMet, the name CORBA. Factory.Orbix isalso registered as an alias for
CORBA.Factory. Thisallows access to the Orbix instance in the event of a
subsequent installation of an ORB other than Orbix.

Automation-Specific I nterfaces

Methods The methods for the b1corRBAFactory interface are:

GetObject ()

This alows aclient to specify the name of atarget object to
which it wants to connect. It creates an Automation view of
the specified target object, binds this view to the target, and
provides the client with a reference to the view, which the
client can then use to makes its requests.

The objectName parameter specifies the target CORBA
object to which the client wants to connect. In COMet, the
format of this parameter is as follows:

"interface:TAG:Tag data"

The interface component represents the IDL interface that
the target object supports. If the interface is scoped (for
example, "module name: : interface name"), the interface
token is "module name/interface name".

The Tac component can be either of the following:

b IOR
Inthiscase, the Tag dataisthe hexadecimal string for
the stringified IOR. For example:
fact.GetObject ("employee: IOR:123456789..")

® NAME_SERVICE
In this case, the Tag data isthe Naming Service
compound name separated by " .". For example:

fact.GetObject ("employee:NAME_SERVICE:IONA.
staff.PD.Tom")

UulD {204F6241-3AEC-11CF-BBFC-444553540000}

Notes Automation/CORBA -compliant.

229

CHAPTER 11 | COMet API Reference

DICORBAFactoryEx

Synopsis [oleautomation, dual,uuid(..)]
interface DICORBAFactoryEx : DICORBAFactory {
HRESULT CreateType ([in] IDispatch* scopingObj,
[in] BSTR typeName,
[optional, in,out] VARIANT* IT Ex,
[retval,out] VARIANT* IT retval) ;
HRESULT CreateTypeById([in] IDispatch* scopingObj,
[in] BSTR repID,
[optional,in,out] VARIANT* IT Ex,
[retval,out] VARIANT* IT retval);
};

Description DICORBAFactoryEx iSafactory classthat alows creation of Automation objects
that are instances of CORBA complex types, such as structs, unions, and
exceptions.

DICORBAFactoryEx derives from DICORBAFactory. You can call
DICORBAFactoryEx methods on an instance of DICORBAFactory.

Methods The methods for DICORBAFactoryEx are:

CreateType () This creates an Automation object that is an instance of
an OMG IDL complex type. The scopingobj parameter
indicates the scope in which the type contained in the
typeName parameter should be interpreted. Global scope
isindicated by passing the Nothing parameter.

CreateTypeById() Thiscreatesan instance of acomplex type, based on its
repository 1D. The repository ID can be determined by
calling DIForeignComplexType: :
INSTANCE_repositoryID().

This method requires runtime access to the Interface

Repository.
uuID {A8B553C5-3B72-11CF-BBFC-444553540000}
Notes Automation/CORBA-compliant. There is no corresponding TCORBAFactoryEx

COM API, because CORBA structures map to native COM structures.

230

Automation-Specific I nterfaces

DICORBAODbject

Synopsis

Description

M ethods

[oleautomation, dual,uuid(...)]
interface DICORBAObject : IDispatch {
HRESULT GetInterface([optional,in,out] VARIANT* IT Ex,
[retval,out] IDispatch** IT retval);
HRESULT GetImplementation([optional,in,out] VARIANT* IT Ex,
[retval,out] BSTR* IT retval);
HRESULT IsA([in] BSTR repositoryID,
[optional, in,out] VARIANT* IT Ex,
[retval,out] VARIANT BOOL* IT retval);
HRESULT IsNil ([optional,in,out] VARIANT* IT EXx,
[retval,out] VARIANT BOOL* IT retval);
HRESULT IsEquivalent ([in] IDispatch* obj,
[optional, in,out] VARIANT* IT_Ex,
[retval,out] VARIANT BOOL* IT retval);
HRESULT NonExistent ([optional, in,out] VARIANT* IT Ex,
[retval,out] VARIANT BOOL* IT retval);
HRESULT Hash([in] long maximum,
[optional,in,out] VARIANT* IT Ex,
[retval,out] long* IT retval);
Y

All Automation views of CORBA objects expose the b1corBacbject interface.
It provides a number of Automation/CORBA-compliant methods that all
CORBA (and hence, Orhix) objects support.

An Automation client must call DTORBObject : : Get CORBAObject (), to obtain an
IDispatch pointer to the DICORBAOb]ect interface.

The methods for the DIcorRBAObject interface are:

GetInterface() This returns areference to an object in the Interface
Repository that provides type information about the
target object. This method requires runtime access to
the Interface Repository.

GetImplementation() Thisfindsthe name of the target object’s server, as
registered in the Implementation Repository. For a
local object in aserver, it isthat server’sname, if it is
known. For an object created in aclient program, it is
the processidentifier of the client process.

231

CHAPTER 11 | COMet API Reference

IsA()

IsNil()

IsEquivalent ()

NonExistent ()

Hash()

Thisreturns true if the object is either an instance of
the type specified by the repositoryID parameter, or
an instance of a derived type of the type contained in
the repositoryID parameter. Otherwise, it returns
false.

Thisreturns true if an object referenceisnil.
Otherwise, it returns false.

Thisreturns true if thetarget object referenceis known
to be equivalent to the object referencein the obj
parameter. A return value of false indicates that the
object references are distinct; it does not necessarily
mean that the references indicate distinct objects.

Thisreturns true if the object has been destroyed.
Otherwise, it returns false.

Every object reference has an internal identifier
associated with it—a value that remains constant
throughout the lifetime of the object reference.

Hash () returns a hashed value, determined viaa
hashing function, from the internal identifier. Two
different object references can yield the same hashed
value. However, if two object references return
different hash values, these object references are for
different objects.

TheHash () method allows you to partition the space of
object references into sub-spaces of potentially
equivalent object references.

The maximum parameter specifies the maximum value
that is to be returned by the Hash () method. For
example, by setting maximum to 7, the object reference
space is partitioned into a maximum of eight
sub-spaces (because the lower bound of the method is
0).

UuID {204F6244-3AEC-11CF-BBFC-444553540000})

Notes Automation/CORBA-compliant.

232

Automation-Specific I nterfaces

DICORBAStruct
Synopsis

Description

uuiD

Notes

[oleautomation, dual,uuid(...)]
interface DICORBAStruct : DIForeignComplexType {};

The p1corBAStruct interfaceis used to show that an Automation interface has
been trandlated from an OMG IDL struct definition. Any Automation interface
that results from the translation of an OMG IDL struct supports DICORBAStruct.

DICORBAStruct derives from the bIForeignComplexType interface. It has no
associated methods.

{A8B553C1-3B72-11CF-BBFC-444553540000}

Automation/CORBA -compliant.

233

CHAPTER 11 | COMet API Reference

DICORBASystemEXxception

Synopsis

Description

Methods

uuiD

Notes

234

[oleautomation, dual,uuid(...)]

interface DICORBASystemException : DIForeignException {
[propget] HRESULT EX minorCode ([retval,out] long* IT retval);
[propget] HRESULT EX_completionStatus([retval,out] long*

IT retval);
}:

The DICORBASYstemException interfaceis used to show that an Automation
interface has been trand ated from a CORBA system exception. (CORBA system
exceptions are not defined in OMG IDL.) Any Automation interface that results
from the tranglation of a CORBA system exception supports
DICORBASystemException, Which in turn derives from DIForeignException.

The methods for the DICORBASystemException interface are:

EX_minorCode ()

EX_completionStatus ()

This describes the system exception.

Thisindicates the status of the operation at the time
the exception occurred. Possible return values are:

COMPLETION_YES = 0 Thisindicatesthat the
operation had completed
before the exception was
raised.

COMPLETION_NO = 1 Thisindicates that the
operation had not
completed before the
exception was raised.

COMPLETION MAYBE = 2 Thisindicatesthat it
cannot be determined at
what stage the exception
occurred.

{A8B553C9-3B72-11CF-BBFC-444553540000}

Automation/CORBA -compliant.

Automation-Specific I nterfaces

DICORBATypeCode

Synopsis

Description

[oleautomation, dual,uuid(...)]

interface DICORBATypeCode : DIForeignComplexType {
[propget] HRESULT kind ([retval,out] CORBA_TCKind * val);
// tk_objref, tk_struct,

// tk_union, tk_alias,

// tk_except

[propget] HRESULT id ([retval,out] BSTR * val);

[propget] HRESULT name ([retval,out] BSTR * val);

// tk_struct, tk_union,

// tk_enum, tk_except

[propget] HRESULT member_count ([retval,out] long* val);

HRESULT member_name ([in] long index, [retval,out] BSTR* val);

HRESULT member_type ([in] long index, [retval,out]
DICORBATypeCode** val) ;

// tk_union
HRESULT member_label ([in] long index,
[retval,out] VARIANT* val);
[propget] HRESULT discriminator_type ([retval,out] IDispatch **
val) ;
[propget] HRESULT default_index ([retval,out] long* val);

// tk_string, tk_array,
// tk_sequence
[propget] HRESULT length ([retval,out] long* wval) ;

// tk_array, tk_sequence,

// tk_alias

[propget] HRESULT content_type ([retval,out] IDispatch** val);
}i

The pICORBATYpeCode interfaceis used to show that an Automation interface
has been translated from an OMG IDL typecode definition. Any Automation
interface that results from the trandation of an OMG IDL typecode supports
DICORBATypeCode, which in turn derives from DIForeignComplexType.

235

CHAPTER 11 | COMet API Reference

Methods

kind ()

id()

name ()

member_count ()

236

The methods for the DICORBATypeCode interface are:

This can be called on all typecodes. It finds the type of
OMG IDL definition described by the typecode. It
returns an enumerated value of the CORBA_TCKind
type. For example, atypecode that contains a sequence
is of the tk_sequence kind. Once the kind of value
stored by the typecode is known, the methods that can
be called on the typecode are determined.

This can be called on a bIcorRBATypeCode Of the
tk_objref, tk_struct, tk_union, tk_enum,
tk_alias, Or tk_except kind. If called on a
DICORBATypeCode Of adifferent kind, it raisesa
BadKind exception.

It returns the Interface Repository 1D that globally
identifies the type.

This method requires runtime access to the Interface
Repository.

This can be called on a DICORBATypeCode Of the
tk_objref, tk_struct, tk_union, tk_enum,
tk_alias, O tk_except kind. If called on a
DICORBATypeCode Of adifferent kind, it raisesa
BadKind exception.

It returns the name that identifies the type. The
returned name does not contain any scoping
information.

This can be called on a DICORBATypeCode Of the
tk_struct, tk_union, tk_enum, Of tk_except Kind. If
called on a DICORBATypeCode Of adifferent kind, it
raises a Badkind exception.

It returns the number of members that make up the
type.

member_name ()

member_type ()

member_label ()

discriminator_type ()

Automation-Specific I nterfaces

This can be called on a DICORBATypeCode oOf the
tk_struct, tk_union, tk_enum, OF tk_except kind. If
called on a bICORBATypeCode Of adifferent kind, it
raises aBadkind exception.

It returns the name of the member identified by the
index parameter. The returned name does not contain
any scoping information.

A Bounds exception israised if the index parameter is
greater than or equal to the number of members that
make up the type. Theindex starts at o.

This can be called on a DICORBATypeCode Of the
tk_struct, tk_union, Or tk_except kind. If called on
aDICORBATypeCode Of adifferent kind, it raises a
BadKind exception.

It returns the type of the member specified in the
index parameter.

A Bounds exception israised if the index parameter is
greater than or equal to the number of members that
make up the type. Theindex starts at o.

This can be called on a DICORBATypeCode Of the
tk_union kind. If called on a DICORBATypeCode Of a
different kind, it raises a Badkind exception.

Themember label () method returns the case label of
the union member specified in the index parameter.
(The case label is an integer, char, boolean, or enum
type.)

A Bounds exception israised if the index parameter is
greater than or equal to the number of members that
make up the type. Theindex starts at o.

This can be called on a DICORBATypeCode Of the
tk_union kind. If caled on a DICORBATypeCode Of a
different kind, it raises a Badkind exception.

It returns the type of the union’s discriminator.

237

CHAPTER 11 | COMet API Reference

default_index()

length()

content_type ()

This can be called on a DICORBATypeCode Of the
tk_union kind. If called on a DICORBATypeCode Of a
different kind, it raises a Badxkind exception.

Thedefault_index () method returnstheindex of the
default member; it returns -1 if there is no default
member.

This can be called on a DICORBATypeCode Of the
tk_string, tk_sequence, Of tk_array Kind.

For abounded string or sequence, it returns the bound
value. A return value of 0 indicates an unbounded
string or sequence.

For an array, it returns the length of the array.

This can be called on a DICORBATypeCode Of the
tk_sequence, tk_array, Of tk_alias kind. If called
0N a DICORBATypeCode Of adifferent kind, it raises a
BadKind exception.

For a sequence or array, it returns the type of element
contained in the sequence or array. For an dias, it
returns the type aliased by the typedef definition.

UuID {A8B553C3-3B72-11CF-BBFC-444553540000}

Notes Automation/CORBA-compliant.

238

Automation-Specific I nterfaces

DICORBAUnNion

Synopsis

Description

M ethods

uuiD

Notes

[oleautomation, dual,uuid(...)]

interface DICORBAUnion : DIForeignComplexType {
[1d(400)] HRESULT Union_d ([retval,out] VARIANT * val);
}i

The pICORBAUNion interface is used to show that an Automation interface has
been trandated from an OMG IDL union definition. Any Automation interface
that results from the trandlation of an OMG IDL union supports DICORBAUnion,
which in turn derives from bIForeignComplexType.

The methods for the DIcorRBAUNiOn interface are:

Union_d() Thisreturns the current value of the union’s discriminant.

{A8B553C2-3B72-11CF-BBFC-444553540000}

Automation/CORBA -compliant.

239

CHAPTER 11 | COMet API Reference

DICORBAUser Exception

Synopsis

Description

uulD

Notes

240

[oleautomation, dual,uuid(...)]
interface DICORBAUserException : DIForeignException {};

The DICORBAUserException interface is used to show that an Automation
interface has been translated from an OMG IDL user-defined exception. Any
Automation interface that results from the tranglation of an OMG IDL
user-defined exception supports DICORBAUserException, Which in turn derives
from DIForeignException. DICORBAUserException has no associated
methods.

{A8B553C8-3B72-11CF-BBFC-444553540000}

Automation/CORBA-compliant.

Automation-Specific I nterfaces

DI ForeignComplexType

Synopsis

Description

M ethods

uuiD

Notes

[oleautomation, dual,uuid(...)]
interface DIForeignComplexType : IDispatch {
[propget] HRESULT INSTANCE_repositoryId([retval,out] BSTR*
IT retval);
HRESULT INSTANCE_clone([in] IDispatch* obj,
[optional,in,out] VARIANT* IT Ex,
[retval,out] IDispatch** IT retval);
Y

The DIForeignComplexType interface is used to show that an Automation
interface has been translated from an OMG IDL complex type (for example, a
struct, union, or exception). Any Automation interface that results from the
trandation of an OMG IDL complex type supports DIForeignComplexType.

The interfaces that derive from DIForeignComplexType are DICORBAANY,
DICORBAStruct, DICORBATypeCode, DICORBAUnion, and DIForeignException
(that is, the matching Automation interface for any CORBA constructed type).

The methods for the DIForeignComplexType interface are:

INSTANCE_repositoryId() Thisreturnsthe repository ID of acomplex type.
The DICORBAFactoryEx: : CreateTypeById ()
method can subsequently use the repository ID to
create an instance of acomplex type, based on the
repository 1D.

INSTANCE_clone () This creates a new instance that is an identical
copy of thetarget instance.

Note: Both of these methods are deprecated since CORBA 2.2. The approved
way to get arepository 1D iSto use DIcbjectInfo: :unique id(), and then
USe DIObjectInfo: :clone().

{A8B553C0-3B72-11CF-BBFC-444553540000}

Automation/CORBA -compliant.

241

CHAPTER 11 | COMet API Reference

DI ForeignException

Synopsis

Description

Methods

uuiD

Notes

242

[oleautomation, dual,uuid(...)]

interface DIForeignException : DIForeignComplexType {
[propget] HRESULT EX majorCode([retval,out] long* IT retval);
[propget] HRESULT EX_Id([retval,out] BSTR* IT retval);

Y

The DIForeignException interfaceis used to show that an Automation
interface has been translated from either an OMG IDL user-defined exception or
a CORBA system exception. Any Automation interface that results from the
translation of either an OMG IDL user-defined or system exception supports
DIForeignException.

The interfaces that derive from DIForeignException are

DICORBASystemException and DICORBAUserException The
DIForeignException interface in turn derives from DIForeignComplexType.

The methods for the DIForeignException interface are:
EX_majorCode() Thisdefinesthe category of exception raised. Possiblereturn
values are:
° IT NoException
i IT UserException
i IT SystemException

EX_TId() This returns a unique string that identifies the exception.

{A8B553C7-3B72-11CF-BBFC-444553540000}

Automation/CORBA -compliant.

Automation-Specific I nterfaces

DIObject
Synopsis

Description

uuiD

Notes

[oleautomation, dual,uuid(...)]
interface DIObject : IDispatch {};

The p1object interface isthe object wrapper for the OMG IDL object type. It
has no associated methods.

{49703179-4414-a552-1ddf-90151ac3b54b}

Automation/CORBA-compliant.

243

CHAPTER 11 | COMet API Reference

DIObjectlnfo

Synopsis [oleautomation, dual,uuid(..)]
interface DIObjectInfo : DICORBAFactoryExX {

HRESULT type_name ([in] IDispatch* target,
[optional, in,out] VARIANT * IT_Ex,
[retval,out] BSTR* typeName) ;

HRESULT scoped_name ([in] IDispatch* target,
[optional, in,out] VARIANT * IT_Ex,
[retval,out] BSTR* repositoryID) ;

HRESULT unique_id ([in] IDispatch* target,
[optional, in,out] VARIANT * IT_Ex,
[retval,out] BSTR* uniquelD);

HRESULT clone ([in] IDispatch * target,
[optional, in,out] VARIANT * IT_Ex,
[retval,out] IDispatch ** resultObj) ;

}i

Description The pI0objectInfo interface allows you to retrieve information about a complex
data type (such as aunion, structure, or exception) that is held as an 1pispatch
pointer. It derives from the DICORBAFactoryEx interface..

Note: Therecommended way to obtain arepository ID isto call
DIObjectInfo: :unique_id(), followed by DIObjectInfo: :clone().

Methods The methods for the DIobjectinfo interface are:
type_name () Thisretrieves the simple type name of the data type.
scoped_name () Thisretrieves the scoped name of the data type.
unique_id() Thisretrieves the repository I1D of the data type.
clone() This creates a new instance that isidentical to the target

instance.
uuID {6dd1b940-21a0-11d1-9d47-00a024a73e4 £}
Notes Automation/CORBA -compliant.

244

Automation-Specific I nterfaces

DIOrbixORBODbject

Synopsis

Description

[oleautomation, dual,uuid(...)]
interface DIOrbixORBObject : DIORBObject {
HRESULT GetConfigValue([in] BSTR name, [out] BSTR *value,
[in, out, optional] VARIANT *IT_Ex,
[retval, out] VARIANT BOOL * IT retval);
HRESULT StartUp([in, out, optional] VARIANT *IT Ex,
[retval, out] VARIANT BOOL * IT retval);
HRESULT ShutDown ([in, out, optional] VARIANT *IT Ex,
[retval, out] VARIANT BOOL * IT retval);
HRESULT RunningInIDE([in, out, optional] VARIANT *IT Ex,
[retval, out] VARIANT BOOL * IT retval);
HRESULT ReleaseCORBAView([in] IDispatch* poObj,
[in] VARIANT BOOL 1ToDestruction,
[in, out, optional] VARIANT* IT Ex,
[retval, out] VARIANT BOOL * IT retval);
HRESULT ProcessEvents ([in, out, optional] VARIANT* IT EXx,
[retval, out] VARIANT BOOL * IT retval);
HRESULT Narrow([in] IDispatch* poObj,
[in] BSTR cNewIFaceName,
[in, out, optional] VARIANT* IT Ex,
[out, retval] IDispatch** poDerivedObj) ;
HRESULT SetOrbName ([in] BSTR strOrbName,
[in, out, optional] VARIANT* IT EXx,
[out, retval] VARIANT BOOL* IT retval);
}i

The pTorbixoRBObject interface provides Orbix-specific methods that allow
you to control some aspects of the ORB (that is, Orbix) or to request it to
perform actions. bTorbixORBObject derives from DIorRBObject. The
DIOrbixORBObject methods augment the Automation/CORBA-compliant
methods defined in DIORBObject.

The ORB hasthe corea.orB. 2 ProglD, which isthe

Automation/CORBA -compliant name. In COMet, the CORBA . ORB. Orbix hame
isregistered as an dias for corea.ors. 2. This allows access to the Orbix
instance in the event of a subsequent installation of an ORB other than Orbix.

245

CHAPTER 11 | COMet API Reference

Methods

246

The methods for the DrorbixoRBObject interface are:

GetConfigvalue() This obtains the value of the configuration entry
specified in the name parameter.

See the Orbix documentation set for information on
configuration values.

StartUp() Thisinitializes the bridge. Invoking this method is
optional. If startup () isnot invoked, the bridgeis
automatically initialized when the first object is
created. However, itisa CORBA guideline that an
ORB should be initialized before being used.
Therefore, you should call this method before doing
anything else (that is, before you make any callsto
GetObject Of CreateType ON DICORBAFactory).

ShutDown () This shuts down the bridge. Invoking this method
might be necessary if, for example, you are
experiencing hang-on-exit problems or the
COMet .Config.COMET SHUTDOWN_POLICY
configuration variable is set to Disabled. After this
method is called, no more invocations can be made
using CORBA.

RunningInIDE() This changes the internal shutdown policy, so COMet
can run in the Visual Basic studio debugger. This call
has no effect on the
COMet . Config.COMET_SHUTDOWN_POLICY
configuration variable.

ReleaseCORBAView() Thisisused by clientsto free the CORBA view of a
DCOM callback object when receipt of callbacksis no
longer required.

ProcessEvents () This causes any outstanding CORBA events to be
dispatched to a client or server application for
processing. It might be necessary to call this method in
aclient application, if the client is asynchronously
receiving callbacks from a server object. This depends
primarily on your development environment.

If you want to use this method, set the
COMet .Config.SINGLE THREADED_ CALLBACK
configuration variable to YEs.

uuiD

Notes

Narrow ()

SetOrbName ()

Automation-Specific I nterfaces

A client that holds an object reference for an object of
one type, and knows that the (remote) implementation
object isaderived type, can narrow the object reference
to the derived type.

Thefollowing Visua Basic code shows how to usethis
function:

Set objFact = CreateObject ("CORBA.Factory")
Set orb = CreateObject ("CORBA.ORB.2")
Set aObj = obj.Fact.GetObject("A:" + ior)
Set cObj = orb.Narrow(aObj, "C")
If cObj Is Nothing Then

MsgBox "Error: narrow failed"
End If

Every ORB is associated with a configuration domain
that provides it with configuration information. A
single configuration domain can hold configuration
information for multiple ORBs, with each ORB using
its ORB name as a "key" or configuration scopein
which the particular configuration information relating
to that ORB islocated.

This method lets you programmatically specify, in the
form load at the start of your applications, the ORB
name that you want your COMet applicationsto use.
This means that you can specify at runtime what
configuration information isto be used by your COMet
applications.

If you do not use this method to specify an ORB name,
the configuration information relating to the default
ORB name in the configuration repository is used
instead.

Note: Only one COMet ORB object should be created
in any COMet application. Therefore, setorbName
should only be called once during each run of an
application, and it should be thefirst call that is made.

{036A6A33-0BB3-CF47-1DCB-A2C4E4C6417A}

Automation/CORBA -compliant.

247

CHAPTER 11 | COMet API Reference

DIORBODbj ect

Synopsis [oleautomation, dual,uuid(..)]
interface DIORBObject : IDispatch {

HRESULT ObjectToString([in] IDispatch* obj,
[optional, in,out] VARIANT* IT_Ex,
[retval,out] BSTR* IT retval);

HRESULT StringToObject ([in] BSTR ref,
[optional, in,out] VARIANT* IT_Ex,
[retval,out] IDispatch** IT retval);

HRESULT GetInitialReferences ([optional,in,out] VARIANT*

IT Ex,
[retval,out] VARIANT* IT retval);

HRESULT ResolveInitialReference([in] BSTR name,
[optional, in,out] VARIANT* IT_Ex,
[retval,out] IDispatch** IT retval);

HRESULT GetCORBAObject ([in] IDispatch* obj,
[optional, in,out] VARIANT* IT_Ex,
[retval,out] IDispatch** IT retval);

}i

Description All Automation views of CORBA objects expose the DIorRBObject interface. It
provides Automation/CORBA -compliant methodsthat allow Automation clients
to request the ORB to perform various operations. Y ou can call the
DICORBAFactory: :GetObject () method, to obtain areference to bTorBObject.

The ORB hasthe corea.orB. 2 ProglD. In COMet, the CORBA.ORB. Orbix hame
isregistered as an alias for corea.orB. 2. This allows access to the Orhix
instance in the event of a subsequent installation of an ORB other than Orbix.

Methods The methods for the p1ORBObject interface are:
ObjectToString () This converts the target object’ s reference to an
IOR.
StringToObject () This accepts a string produced by

ObjectToString () and returnsthe
corresponding object reference.

248

uuiD

Notes

GetInitialReferences ()

ResolveInitialReference ()

GetCORBAObject ()

Automation-Specific I nterfaces

The Interface Repository and the CORBA
services can only be used by first obtaining a
reference to an object, through which the service
can be used. The Automation/CORBA standard
defines GetInitialReferences () asaway to
list the available services.

(CORBA services are optional extensions to
ORB implementations that are specified by
CORBA. They include the Naming Service and
Event Service)

This returns an object reference through which a
service (for example, the Interface Repository or
one of the CORBA services) can be used. The
name parameter specifiesthe desired service. A
list of supported services can be obtained, using
DIORBObject: :GetInitialReferences ().

This returns an object that allows access to the
methods defined on the pIcorBAOLect
interface, to gain access to operations on the
CORBA object reference interface.

{204F6246-3AEC-11CF-BBFC-444553540000}

Automation/CORBA -compliant.

249

CHAPTER 11 | COMet API Reference

COM-Specific Interfaces

Overview

In This Section

250

This section describes the interfaces that are specific to COM.

This section discusses the following topics:

ICORBA_Any page 251
ICORBA Factory page 253
ICORBAObject page 255
ICORBA_TypeCode page 257
ICORBA_TypeCodeExceptions page 261
10rbixORBObject page 262
IORBObject page 265

COM -Specific Interfaces

ICORBA_Any

Synopss typedef [public,vl_enum] enum CORBAAnyDataTagEnum {

anySimplevalTag=0,
anyAnyValTag,
anySegValTag,
anyStructvalTag,
anyUnionValTag,
anyObjectValTag

}CORBAAnyDataTag;

interface ICORBA_ANY;
interface ICORBA_TypeCode;

typedef union CORBAAnyDataUnion switch (CORBAAnyDataTag whichOne) {
case anyAnyValTag:
ICORBA_Any *anyVal;
case anySegValTag:
struct tagMultival {
[string,unique] LPSTR repositoryId;
unsigned long ckbMaxSize;
unsigned long cbLengthUsed;
[size_is (cbMaxSize),length_is (cbLengthUsed) ,uniquel
union CORBAAnyDataUnion * pVal;
} multival;
case anyUnionValTag:
struct tagUnionvVal {
[string,unique] LPSTR repositoryId long disc;
union CORBAAnyDataUnion * pval;
} unionval;
case anyObjectValTag:
struct tagObjectVal {
[string,unique] LPSTR repositoryId VARIANT val;
} objectval;
case anySimpleValTag:
VARIANT simpleVal;
} CORBAAnyData;

[object,uuid(...) ,pointer_default (unique)]

interface ICORBA_Any : IUnknown

{

HRESULT _get_value([out] VARIANT * val);

HRESULT _put_value([in] VARIANT val);

HRESULT _get CORBAAnyData([out] CORBAAnyData * val);
HRESULT _put_CORBAAnyData ([in] CORBAAnyData val) ;

251

CHAPTER 11 | COMet API Reference

HRESULT _get_typeCode ([out] ICORBA_ TypeCode ** tc);
}i

Description The OMG IDL any type maps to the rcorea_any COM interface. Y ou can use
ICORBA_Any to get the type of an any, and to get or set its value.

Methods The methods for the 1corRBA_any interface are:

_get_value() Thisreturns the value of a CORBA any that can be
contained by a varIaNT (that is, if the value of the any
isasimple type or an interface pointer).

_put_value() This sets the value of a CORBA any that can be
contained by avarIanT (that is, if the value of the any
isasimple type or an interface pointer).

_get_CORBAAnyData() Thisreturnsthe value of a CORBA any that cannot be
contained by avarIanT (that is, if the value of the any
isacomplex type, such asastruct or union).

_put_CORBAAnyData () This setsthe value of a CORBA any that cannot be
contained by a VARIANT (that is, if the value of the
any isacomplex type, such asastruct or union).

_get_typeCode () This returns the type of the any.
uuID {74105£50-3c68-11cf-9588-aa0004004a09}
Notes COM/CORBA-compliant.

252

COM -Specific Interfaces

| CORBAFactory

Synopsis

Description

[object,uuid(...)]
interface ICORBAFactory : IUnknown

{
HRESULT GetObject ([in] LPSTR objectName, [out] IUnknown **

val) ;
}:

The 1corRBAFactory interfaceis used to make CORBA objects available to
COM clients, in amanner that is similar to Getobject method in COM (already
described in “COM and CORBA Principles’ on page 3). It isafactory classthat
alowsaCOM client to create new CORBA object instances and bind to existing
CORBA objects.

An instance of this class must be registered in the Windows system registry on
the client machine, using the following settings:

{913D82C0-3B00-11cf-BBFC-444553540000}

DEFINE GUID(IID_ICORBAFactory, 0x913d82c0, 0x3b00, Oxllcf, Oxbb,
Oxfc, 0x44, 0x45, 0x53, 0x54, 0x0, 0x0);

"CORBA.Factory.COM"

Your COM clients can obtain a pointer to ICORBAFactory, by making the COM
CoCreateInstanceEx () call asnormal. ThelID that the client assigns to the
factory (for example, TTD_TICORBAFactory) is specified in the parameter to
CoCreateInstanceEx (). Thecall to CocreateInstanceEx () Createsaremote
instance of the CORBA object factory on the client machine.

253

CHAPTER 11 | COMet API Reference

Methods

uuiD

Notes

254

The methods for the 1cOrRBAFactory interface are:

GetObject ()

This alows aclient to specify the name of atarget object to
which it wants to connect. It creates a COM view of the
specified target object, binds this view to the target, and sets
up a pointer to the Tunknown interface of the view object.
After calling Getobject (), the COM client can then call
QueryTInterface () onthe pointer to Tunknown, to obtain a
reference to the view, which the client can then use to makes
its requests.

The objectName parameter specifies the target CORBA
object to which the client wants to connect. In COMet, the
format of this parameter is as follows:

"interface: TAG: Tag data"

The interface component representsthe IDL interface that
the target object supports. If the interface is scoped (for
example, "Module: : Interface"), the interface token is
"Module/Interface".

TAG can be either of the following:

o IOR
Inthis case, the Tag data isthe hexadecimal string for
the stringified IOR. For example:
fact.GetObject ("employee: IOR:123456789..")

o NAME,_SERVICE
In this case, the Tag data isthe Naming Service
compound name separated by ".". For example:

fact.GetObject ("employee:NAME_ SERVICE:IONA.
staff.PD.Tom")

{204F6240-3AEC-11CF-BBFC-444553540000}

COM/CORBA-compliant.

COM -Specific Interfaces

| CORBAObject

Synopsis

Description

Methods

[object,uuid(..)]
interface ICORBAObject : IUnknown

{

HRESULT GetInterface ([out] IUnknown ** val);

HRESULT GetImplementation ([out] LPSTR * val);

HRESULT IsA ([in] LPSTR repositoryID, [out] boolean* val) ;
HRESULT IsNil ([out] boolean* wval) ;

HRESULT IsEquivalent ([in] IUnknown* obj, [out] boolean*

val) ;

HRESULT NonExistent ([out] boolean* val);
HRESULT Hash ([in] long maximum, [out] long* val);

}:

All COM views of CORBA objects expose the IcOrRBAObject interface. It
provides a number of COM/CORBA -compliant methods that all CORBA (and
hence, Orbix) objects support.

TICORBAObject alows COM clientsto have access to operations on the CORBA
object references, which are defined on the corea: :Object pseudo-interface. A
COM client can call QueryInterface () to obtain a pointer to ICORBAGbject.

The methods for the zcorBaObject interface are:

GetInterface() This returns areference to an object in the Interface

Repository that provides type information about the
target object. This method requires runtime access to
the Interface Repository.

GetImplementation() Thisfindsthe name of the target object’s server, as

IsA()

IsNil()

registered in the Implementation Repository. For a
local object in aserver, it isthat server’sname, if it is
known. For an object created in aclient program, it is
the process identifier of the client process.

Thisreturns true if the object is either an instance of
the type specified in the repositoryTD parameter, or
an instance of aderived type of the type specifiedin the
repositoryID parameter. Otherwise, it returns false.

Thisreturns true if an object referenceis nil.
Otherwise, it returns false.

255

CHAPTER 11 | COMet API Reference

uuiD

Notes

256

IsEquivalent ()

NonExistent ()

Hash()

Thisreturns true if the target object referenceis
known to be equivalent to the object reference
specified in the obj parameter.

A return value of false indicates that the object
references are distinct; it does not necessarily mean
that the references indicate distinct objects.

This returns true if the object has been destroyed.
Otherwise, it returns false.

Every object reference has an internal identifier
associated with it—a value that remains constant
throughout the lifetime of the object reference.

Hash () returns a hashed value, determined viaa
hashing function, from the internal identifier. Two
different object references can yield the same hashed
value. However, if two object references return
different hash values, these object references are for
different objects.

TheHash () method allows you to partition the space of
object references into sub-spaces of potentially
equivalent object references.

The maximum parameter specifies the maximum value
that is to be returned from the Hash () method. For
example, by setting maximum to 7, the object reference
space is partitioned into a maximum of eight
sub-spaces (because the lower bound value of the
method is 0).

{204F6243-3AEC-11CF-BBFC-444553540000}

COM/CORBA-compliant.

COM -Specific Interfaces

|CORBA _TypeCode

Synopsis

Description

[uuid(..), object, pointer_default (unique)]
interface ICORBA_TypeCode : IUnknown

{

Y

HRESULT equal ([in] ICORBA_TypeCode * pTc,

[out] boolean * pval,

[out] CORBA_TypeCodeExceptions ** ppExcept) ;
HRESULT kind ([out] CORBA_TCKind * pval,

[out] CORBA_TypeCodeExceptions ** ppExcept) ;
HRESULT id ([out] LPSTR * pId,

[out] CORBA_TypeCodeExceptions ** ppExcept) ;
HRESULT name ([out] LPSTR * pName,

[out] CORBA_TypeCodeExceptions ** ppExcept) ;
HRESULT member_count ([out] unsigned long * pCount,

[out] CORBA_TypeCodeExceptions ** ppExcept) ;
HRESULT member_name ([in] unsigned long nIndex,

[out] LPSTR * pName,

[out] CORBA_TypeCodeExceptions ** ppExcept) ;
HRESULT member_type ([in] unsigned long nIndex,

[out] ICORBA_TypeCode ** pRetval,

[out] CORBATypeCodeExceptions ** ppExcept) ;
HRESULT member_label ([in] unsigned long nIndex,

[out] ICORBA_Any ** pRetval,

[out] CORBA_TypeCodeExceptions ** ppExcept) ;
HRESULT discriminator_type ([out] ICORBA TypeCode ** pRetval,

[out] CORBA_TypeCodeExceptions ** ppExcept) ;
HRESULT default_index ([out] unsigned long * pRetval,

[out] CORBA_TypeCodeExceptions ** ppExcept) ;
HRESULT length ([out] unsigned long * nLen,

[out] CORBA_TypeCodeExceptions ** ppExcept) ;
HRESULT content_type ([out] ICORBA_TypeCode ** pRetval,

[out] CORBA_TypeCodeExceptions ** ppExcept) ;

The ICORBA_TypeCode interface is used to show that a COM interface has been
trandated from an OMG IDL typecode definition. Any COM interface that
results from the tranglation of an OMG IDL typecode supports
ICORBA_TypeCode. It describes arbitrarily complex OMG IDL type structures at
runtime.

257

CHAPTER 11 | COMet API Reference

Methods The methods for the TCORBA_TypeCode interface are:

equal ()

kind()

id()

name ()

member_count ()

258

Thisreturns true if the typecodes are equal.
Otherwise, it returns false.

This can be called on all typecodes. It finds the type of
OMG IDL definition described by the typecode. It
returns an enumerated value of the corea_TCKind
type. For example, atypecode that contains a
sequence is of the tk_sequence kind. Once the kind
of value stored by the typecode is known, the methods
that can be called on the typecode are determined.

This can be called on an ICORBA_TypeCode of the
tk_objref, tk_struct, tk_union, tk_enum,
tk_alias, Or tk_except kind. If called on an
ICORBA_TypeCode Of adifferent kind, it raisesa
BadKind exception.

It returns the Interface Repository 1D that globally
identifies the type.

This method requires runtime access to the Interface
Repository.

This can be called on an IcorBaA_TypeCode of the
tk_objref, tk_struct, tk_union, tk_enum,
tk_alias, OF tk_except kind. If called on an
ICORBA_TypeCode Of adifferent kind, it raisesa
BadKind exception.

It returns the name that identifies the type. The
returned name does not contain any scoping
information.

This can be called on an IcorBaA_TypeCode of the
tk_struct, tk_union, tk_enum, OF tk_except kind.
If called on an 1cORBA_TypeCode of adifferent kind, it
raises aBadkind exception.

It returns the number of members that make up the
type.

member_name ()

member_type ()

member_label ()

discriminator_type ()

COM -Specific Interfaces

This can be called on an ICORBA_TypeCode of the
tk_struct, tk_union, tk_enum, OF tk_except kind.
If called on an ICORBA_TypeCode Of adifferent kind, it
raises a Badkind exception.

The member_name () method returns the name of the
member specified in the nIndex parameter. The
returned name does not contain any scoping
information.

A Bounds exception israised if the nTndex parameter
is greater than or equal to the number of members that
make up the type. Theindex starts at o.

This can be called on an IcorRBA_TypeCode of the
tk_struct, tk_union, Or tk_except kind. If called
0N an ICORBA_TypeCode Of adifferent kind, it raisesa
BadKind exception.

It returns the type of the member specified in the
nIndex parameter.

A Bounds exception israised if the nindex parameter
is greater than or equal to the number of members that
make up the type. Theindex starts at o.

This can be called on an ICORBA_TypeCode of the
tk_union kind. If called on an ICORBA_TypeCode Of a
different kind, it raises a Badkind exception.

It returns the case label of the union member specified
in the nindex parameter. (The case label isan integer,
char, boolean, or enum type.)

A Bounds exception israised if the nIndex parameter
isgreater than or equal to the number of members that
make up the type. Theindex starts at 0.

This can be called on an IcorBA_TypeCode of the
tk_union kind. If called on an TcORBA_TypeCode Of a
different kind, it raises a Badkind exception.

It returns the type of the union’s discriminator.

259

CHAPTER 11 | COMet API Reference

uuiD

Notes

260

default_index()

length()

content_type ()

This can be called on an ICORBA_TypeCode of the
tk_union kind. If called on an ICORBA_TypeCode Of a
different kind, it raises a Badkind exception.

The default_index () method returns the index of
the default member; it returns -1 if there is no default
member.

This can be called on an ICORBA_TypeCode of the
tk_string, tk_sequence, O tk_array Kind.

For abounded string or sequence, it returns the bound
value. A return value of 0 indicates an unbounded
string or sequence.

For an array, it returns the length of the array.

This can be called on an ICORBA_TypeCode of the
tk_sequence, tk_array, Or tk_alias kind. If called
0N an ICORBA_TypeCode Of adifferent kind, it raisesa
BadKind exception.

For a sequence or array, it returns the type of element
contained in the sequence or array. For an dlias, it
returns the type aliased by the typedef definition.

{9556EA21-3889-11cf-9586AA0004004A09}

COM/CORBA-compliant.

COM -Specific Interfaces

| CORBA_TypeCodeExceptions

Synopsis

Description

M ethods

uuiD

Notes

typedef struct tagTypeCodeBounds {long 1;} TypeCodeBounds;
typedef struct tagTypeCodeBadKind {long 1;} TypeCodeBadKind;

[object, uuid(..), pointer_default (unique)]
interface ICORBA_TypeCodeExceptions : IUnknown
{
HRESULT _get_Bounds ([out] TypeCodeBounds * pExceptionBody) ;
HRESULT _get_BadKind([out] TypeCodeBadKind * pExceptionBody) ;
}i
typedef struct tagCORBA TypeCodeExceptions
{
CORBA_ExceptionType type;
LPSTR repositoryId;
ICORBA_TypeCodeExceptions *pUserException;
} CORBA_TypeCodeExceptions;

The TCORBA_TypeCodeExceptions interface allows for theraising of exceptions
that can occur with ICORBA_TypeCode at runtime.

The methods for the TcorRBA_TypeCodeExceptions interface are:

_get_Bounds() ThisreturnsaBounds exception, which resultsif the nindex
parameter is greater than or equal to the number of members
that make up the type.

_get_Badkind() Thisreturns a Badxind exception, which results from
performing a method call on an TICORBA_TypeCode that has
the wrong kind for that method.

{9556ea20-3889-11cf-9586-aa0004004a09}

COM/CORBA-compliant.

261

CHAPTER 11 | COMet API Reference

| OrbixORBODbj ect

Synopsis

Description

Methods

262

[object, uuid(..)]
interface IOrbixORBObject : IORBObject ({
HRESULT GetConfigValue([in] LPSTR name,
[out] LPSTR *value,
[out] BOOLEAN * IT retval);
HRESULT StartUp([out] BOOLEAN * IT retval);
HRESULT ShutDown ([out] BOOLEAN * IT retval);
HRESULT ReleaseCORBAView([in IDispatch * poObj,
[in] VARIANT BOOL l1ToDestruction,
[optional, in,out] VARIANT *IT Ex,
[retval,out] VARIANT BOOL * IT retval);
HRESULT ProcessEvents (in, out, optional] VARIANT* IT_Ex,
[retval, out] VARIANT BOOL * IT retval);
HRESULT SetOrbName ([in] LPSTR strOrbName,
[out] BOOLEAN * IT retval);
}i

The 10rbix0RBObject interface provides Orbix-specific methods that allow you
to control some aspects of the ORB (that is, Orbix) or to request it to perform
actions. TorbixORBObject derives from I10rRBObject. The I0rbixORBObject
methods augment the COM/CORBA -compliant methods defined in the
IORBObject interface.

The ORB hasthe corsa.ors.2 ProglD, which is the COM/CORBA-compliant
name. In COMet, the name CORBA . ORB. Orbix iS registered as an alias for
CORBA.ORB. 2. Thisallows access to the Orbix instance in the event of a
subsequent installation of an ORB other than Orbix.

The methods for the T1orbixORBObject interface are:
GetConfigvalue() Thisobtainsthe value of the configuration entry
specified in the name parameter.

See the Orbix documentation set for information on
configuration values.

StartUp ()

ShutDown ()

ReleaseCORBAView ()

ProcessEvents ()

COM -Specific Interfaces

Thisinitializes the bridge. Invoking this method is
optional. If startup () isnot invoked, the bridgeis
automatically initialized when thefirst object is created.
However, it isa CORBA guideline that an ORB should
beinitialized before being used. Therefore, you should
call this method before doing anything else (that is,
before you make any callsto Getobject () or
CreateType() ON ICORBAFactory).

This shuts down the bridge. Invoking this method might
be necessary if, for example, you are experiencing
hang-on-exit problems or the

COMet : Config: COMET_SHUTDOWN_POLICY configuration
variable is set to pisabled. After this method is called,
no more invocations can be made using CORBA.

Thisis used by clientsto free the CORBA view of a
DCOM callback object when receipt of callbacksis no
longer required.

This causes any outstanding CORBA eventsto be
dispatched to aclient or server application for
processing. It might be necessary to call this method in a
client application, if the client is asynchronously
receiving callbacks from a server object. This depends
primarily on your development environment.

If you want to use this method, set the
COMet .Config.SINGLE_THREADED_CALLBACK
configuration variable to YEs.

263

CHAPTER 11 | COMet API Reference

uuiD

Notes

264

SetOrbName ()

Every ORB is associated with a configuration domain
that provides it with configuration information. A single
configuration domain can hold configuration information
for multiple ORBs, with each ORB using its ORB name
as a"key" or configuration scope in which the particul ar
configuration information relating to that ORB is
located.

This method lets you programmatically specify the ORB
name that you want your COMet applications to use.
This means that you can specify at runtime what
configuration information is to be used by your COMet
applications.

If you do not use this method to specify an ORB name,
the configuration information relating to the default ORB
name in the configuration repository is used instead.

Note: Only one COMet ORB object should be created
in any COMet application. Therefore, setOrbName
should only be called once during each run of an
application, and it should be thefirst call that is made.

{036A6A33-0BB3-CF47-1DCB-A2C4E4C6417A}

Automation/CORBA-compliant.

COM -Specific Interfaces

| ORBODbject

Synopsis

Description

M ethods

[public] typedef struct tagCORBA_ORBObjectIdList {
unsigned long cbMaxSize;
unsigned long cbLengthUsed;
[size_is(cbMaxSize), length_is(cbLengthUsed), unique]
LPSTR *pValue;
} CORBA_ORBObjectIdList;

[object, uuid(..)]
interface IORBObject : IUnknown
{
HRESULT ObjectToString ([in] IUnknown* obj,
[out] LPSTR* wval);
HRESULT StringToObject ([in,string] LPSTR cStr,
[out] IUnknown ** val);
HRESULT GetInitialReferences ([out] CORBA_ORBObjectIdList*
val) ;
HRESULT ResolveInitialReference ([in,string] LPSTR name,
[out] IUnknown** IT retval);
}i

All COM views of CORBA objects expose the TorRBObject interface. It
provides COM/CORBA -compliant methods that allow COM clients to request
the ORB to perform various operations. Y ou can call the

ICORBAFactory: :GetObject () method, to obtain areference to TorRBObject.

The ORB hasthe corea.org. 2 ProglD. In COMet, the CORBA . ORB. Orbix hame
isregistered as an dias for corea.ors. 2. This allows access to the Orbix
instance in the event of a subsequent installation of an ORB other than Orbix.

The methods for the TorRBObject interface are:

ObjectToString () This converts the target object’ s reference to an
IOR.
StringToObject () This accepts a string produced by

ObjectToString () and returnsthe
corresponding object reference.

265

CHAPTER 11 | COMet API Reference

uuiD

Notes

266

GetInitialReferences ()

ResolveInitialReference ()

The Interface Repository and the CORBA
services can only be used by first obtaining an
object reference to an object through which the
service can be used. The COM/CORBA
standard definesGetInitialReferences () asa
way to list the available services.

(CORBA services are optiona extensionsto
ORB implementations that are specified by
CORBA. They include the Naming Service and
Event Service)

Thisreturns an object reference through which a
service (for example, the Interface Repository or
one of the CORBA services) can be used. The
name parameter specifies the desired service. A
list of supported services can be obtained via
DIORBObject: :GetInitialReferences ().

{204F6245-3AEC-11CF-BBFC-444553540000}

COM/CORBA-compliant.

In This Chapter

CHAPTER 12

| ntroduction to
OMG IDL

An object’ s interface describes that object to potential clients
through its attributes and operations, and their signatures. This
chapter describes the semantics and uses of the CORBA Interface
Definition Language (OMG IDL), which is used to describe the
interfaces to CORBA objects.

This chapter discusses the following topics:

IDL page 268
Modules and Name Scoping page 269
Interfaces page 270
IDL Data Types page 290
Defining Data Types page 304

Note: COMet does not support all the OMG IDL types described in this
chapter. See “Mapping CORBA to Automation” on page 311 and “Mapping
CORBA to COM” on page 353 for details of the OMG IDL typesthat COMet
supports.

267

CHAPTER 12 | Introduction to OMG IDL

IDL

Overview

IDL Standard Mappings

Overall Structure

IDL Definition Structure

268

An IDL-defined object can be implemented in any language that IDL maps to,
including C++, Java, COBOL, and PL/I. By encapsulating object interfaces
within acommon language, IDL facilitates interaction between objects
regardless of their actual implementation. Writing object interfacesin IDL is
therefore central to achieving the CORBA goal of interoperability between
different languages and platforms.

CORBA defines standard mappings from IDL to several programming
languages, including C++, Java, COBOL, and PL/I. Each IDL mapping specifies
how an IDL interface corresponds to alanguage-specific implementation. The
Orbix 2000 IDL compiler uses these mappings to convert IDL definitions to
language-specific definitions that conform to the semantics of that language.

Y ou create an application’s IDL definitions within one or more IDL modules.
Each module provides a naming context for the IDL definitions within it.
Modules and interfaces form naming scopes, so identifiers defined inside an
interface need to be unique only within that interface.

In the following example, two interfaces, Bank and account, are defined within
the BankDemo module:

module BankDemo
{
interface Bank {
llexo
17

interface Account {
/7
iy
I8

M odules and Name Scoping

M odules and Name Scoping

Resolving a Name

Referencing I nterfaces

Nesting Restrictions

To resolve aname, the IDL compiler conducts a search among the following
scopes, in the order outlined:

1. Thecurrent interface.
2. Baseinterfaces of the current interface (if any).
3. The scopesthat enclose the current interface.

Interfaces can reference each other by name al one within the same module. If an
interface is referenced from outside its module, its name must be fully scoped,
with the following syntax:

module-name: : interface-name

For example, the fully scoped names of the Bank and Account interfaces shown
in“IDL Definition Structure” on page 268 are, respectively, BankDemo: : Bank
and BankDemo: : Account.

A module cannot be nested inside a module of the same name. Likewise, you
cannot directly nest an interface inside a module of the same name. To avoid
name ambiguity, you can provide an intervening name scope as follows:

module A
{
module B
{
interface A {
o
i
iy

269

CHAPTER 12 | Introduction to OMG IDL

| nterfaces

Overview

In This Section

This section provides details about OMG IDL interfaces.

The following topics are discussed in this section:

Introduction to Interfaces page 271
Interface Contents page 273
Operations page 274
Attributes page 277
Exceptions page 278
Empty Interfaces page 279
Inheritance of Interfaces page 280
Multiple Inheritance page 281

270

Interfaces

I ntroduction to I nterfaces

Overview

What Are Interfaces?

Objectsand Interfaces

Public Members

Operationsand Attributes

This subsection provides an introductory overview of OMG IDL interfaces.

Interfaces are the fundamental abstraction mechanism of CORBA. An interface
defines atype of object, including the operations that object supportsin a
distributed enterprise application.

Every CORBA object has exactly oneinterface. However, the same interface
can be shared by many CORBA objectsin a system. CORBA object references
specify CORBA objects (that is, interface instances). Each reference denotes
exactly one object, which provides the only means by which that object can be
accessed for operation invocations.

Because an interface does not expose an object’simplementation, all members
are public. A client can access variables in an object’ s implementation only
through an interface’ s operations and attributes.

An IDL interface generally defines an object’ s behavior through operations and

attributes:

® Operations of an interface give clients access to an object’s behavior.
When aclient invokes an operation on an object, it sends a message to that
object. The ORB transparently dispatches the call to the object, whether it
isin the same address space as the client, in another address space on the
same machine, or in an address space on a remote machine.

® AnIDL attribute is short-hand for a pair of operations that get and,
optionally, set valuesin an object.

271

CHAPTER 12 | Introduction to OMG IDL

Account Interface IDL Sample In the following example, the Account interface in the BankDemo module
describes the objects that implement the bank accounts:

module BankDemo
{
typedef float CashAmount; // Type for representing cash
typedef string AccountId; // Type for representing account
// ids
I s
interface Account {
readonly attribute AccountId account_id;
readonly attribute CashAmount balance;

void
withdraw(in CashAmount amount)
raises (InsufficientFunds);

void
deposit (in CashAmount amount) ;

Code Explanation Thisinterface has two readonly attributes, Account1d and balance, which are
respectively defined as typedefs of the string and £loat types. The interface
a so defines two operations, withdraw () and deposit (), which aclient can
invoke on this object.

272

Interfaces

I nterface Contents

IDL Interface Components An IDL interface definition typically has the following components.
® Operation definitions.
* Attribute definitions
. Exception definitions.
®* Typedefinitions.
¢ Constant definitions.

Of these, operations and attributes must be defined within the scope of an
interface, all other components can be defined at a higher scope.

273

CHAPTER 12 | Introduction to OMG IDL

Operations

Overview

Operation Components

OperationsIDL Sample

274

Operations of an interface give clients access to an object’s behavior. When a
client invokes an operation on an object, it sends a message to that object. The
ORB transparently dispatches the call to the object, whether it is in the same
address space as the client, in another address space on the same machine, or in
an address space on aremote machine.

IDL operations define the signature of an object’ s function, which client
invocations on that object must use. The signature of an IDL operation is
generally composed of three components:

° Return value data type.

. Parameters and their direction.

* Exception clause.

An operation’ s return value and parameters can use any data types that IDL
supports.

In the following example, the Account interface defines two operations,
withdraw() and deposit (), and an InsufficientFunds exception:

module BankDemo
{
typedef float CashAmount; // Type for representing cash
/]
interface Account ({
exception InsufficientFunds {};

void
withdraw(in CashAmount amount)
raises (InsufficientFunds);

void
deposit (in CashAmount amount) ;

Code Explanation

Parameter Direction

Par ameter-Passing M ode
Qualifiers

One-Way Operations

Interfaces

On each invocation, both operations expect the client to supply an argument for
the amount parameter, and return void. Invocations on the withdraw ()
operation can also raise the InsufficientFunds exception, if necessary.

Each parameter specifies the direction in which its arguments are passed
between client and object. Parameter-passing modes clarify operation definitions
and allow the IDL compiler to accurately map operations to atarget
programming language. The COBOL runtime uses parameter-passing modes to
determine in which direction or directionsit must marshal a parameter.

There are three parameter-passing mode qualifiers:

in This means that the parameter isinitalized only by the client and is
passed to the object.

out This means that the parameter isinitialized only by the object and
returned to the client.

inout This means that the parameter isinitialized by the client and passed to
the server; the server can modify the value before returning it to the
client.

In general, you should avoid using inout parameters. Because an inout
parameter automatically overwritesitsinitial value with anew value, its usage
assumes that the caller has no use for the parameter’s original value. Thus, the
caller must make a copy of the parameter in order to retain that value. By using
the two parameters, in and out, the caller can decide for itself when to discard
the parameter.

By default, IDL operations calls are synchronous—that is, a client invokes an
operation on an object and blocks until the invoked operation returns. If an
operation definition begins with the keyword oneway, a client that calls the
operation remains unblocked while the object processes the call.

The COBOL runtime cannot guarantee the success of a one-way operation call.
Because one-way operations do not support return data to the client, the client
cannot ascertain the outcome of its invocation. The COBOL runtime indicates
failure of aone-way operation only if the call fails before it exitsthe client’s
address space; in this case, the COBOL runtime rai ses a system exception.

275

CHAPTER 12 | Introduction to OMG IDL

A client can also issue non-blocking, or asynchronous, invocations. See the
CORBA Programmer’s Guide, C++ for more details.

One-Way Operation Constraints ~ Three constraints apply to a one-way operation:
® Thereturn value must be set to void.
i Directions of al parameters must be set to in.
® Noraises clauseisallowed.

One-Way Operation IDL Sample In thefollowing example, the account interface defines a one-way operation
that sends a notice to an Account object:

module BankDemo {
s
interface Account {
oneway void notice(in string text);
[/
};
i

276

Interfaces

Attributes

Attributes Overview
Qualified and Unqualified

Attributes

IDL Readonly Attributes Sample

Code Explanation

An interface’ s attributes correspond to the variables that an object implements.
Attributes indicate which variables in an object are accessible to clients.

Unqualified attributes map to a pair of get and set functionsin the
implementation language, which alow client applications to read and write
attribute values. An attribute that is qualified with the readonly keyword maps
only to a get function.

For example the account interface defines two readonly attributes, Account1d
and balance. These attributes represent information about the account that only
the object’ simplementation can set; clients are limited to readonly access:

module BankDemo
{
typedef float CashAmount; // Type for representing cash
typedef string AccountId; //Type for representing account
ids
// .
interface Account {
readonly attribute AccountId account_id;
readonly attribute CashAmount balance;

void
withdraw(in CashAmount amount)
raises (InsufficientFunds);

void
deposit (in CashAmount amount) ;

The account interface has two readonly attributes, Account1d and balance,
which are respectively defined as typedefs of the string and float types. The
interface also defines two operations, withdraw () and deposit (), which a
client can invoke on this object.

277

CHAPTER 12 | Introduction to OMG IDL

Exceptions

IDL and Exceptions

Theraises Clause

Example of DL -Defined
Exceptions

278

IDL operations can raise one or more CORBA-defined system exceptions. Y ou
can aso define your own exceptions and explicitly specify thesein an IDL
operation. An IDL exception is a data structure that can contain one or more
member fields, formatted as follows:

exception exception-name {
[member;]...
hg

Exceptions that are defined at modul e scope are accessible to all operations
within that module; exceptions that are defined at interface scope are accessible
on to operations within that interface.

After you define an exception, you can specify it through a raises clausein any
operation that is defined within the same scope. A raises clause can contain
multiple comma-delimited exceptions:

return-val operation-name([params-1ist])
raises(exception-name[, exception-name]);

The account interface defines the InsufficientFunds exception with asingle
member of the string datatype. This exception is available to any operation
within the interface. The following IDL defines the withdraw () operation to
raise this exception when the withdrawal fails:

module BankDemo
{
typedef float CashAmount; // Type for representing cash
s
interface Account {
exception InsufficientFunds {};

void

withdraw(in CashAmount amount)
raises (InsufficientFunds);
/o

Interfaces

Empty Interfaces

Defining Empty I nterfaces IDL alowsyou to define empty interfaces. This can be useful when you wish to
model an abstract base interface that ties together a number of concrete derived
interfaces.

IDL Empty Interface Sample In the following example, the CORBA portableserver module defines the

abstract servant Manager interface, which servesto join the interfaces for two
servant manager types, ServantActivator and ServantLocator:

module PortableServer
{

interface ServantManager {};

interface ServantActivator : ServantManager {
fexo
bg

interface ServantLocator : ServantManager {

/o
17

279

CHAPTER 12 | Introduction to OMG IDL

Inheritance of I nterfaces

Inheritance Overview

Inheritance Interface IDL Sample

Code Sample Explanation

280

An IDL interface can inherit from one or more interfaces. All elements of an
inherited, or base interface, are available to the derived interface. An interface
specifies the base interfaces from which it inherits, as follows:

interface new-interface : base-interface[, base-interface]..
el 7

In thefollowing example, the Checkingaccount and savingsaccount interfaces
inherit from the account interface, and implicitly include al its elements:

module BankDemo {
typedef float CashAmount; // Type for representing cash
interface Account {
/7
iy

interface CheckingAccount : Account {
readonly attribute CashAmount overdraftLimit;
boolean orderCheckBook () ;

17

interface SavingsAccount : Account {
float calculateInterest ();
iy

An object that implements the checkingaccount interface can accept
invocations on any of its own attributes and operations as well asinvocations on
any of the elements of the account interface. However, the actual
implementation of elementsin a checkingaccount object can differ from the
implementation of corresponding elementsin an Account object. IDL
inheritance only ensures type-compatibility of operations and attributes between
base and derived interfaces.

Interfaces

Multiple Inheritance

Multiple Inheritance IDL Sample

Multiple Inheritance Constraints

Inheritance Hierarchy Diagram

In the following IDL definition, the Bankbemo module is expanded to include
the PremiumaAccount interface, which inherits from the checkingaccount and
SavingsAccount interfaces:

module BankDemo {

interface Account {
o
17

interface CheckingAccount : Account {
/7
iy

interface SavingsAccount : Account {
[/
bg

interface PremiumAccount :
CheckingAccount, SavingsAccount {
[/

iy

Multiple inheritance can lead to name ambiguity among elements in the base
interfaces. The following constraints apply:

Names of operations and attributes must be unique across al base
interfaces.

If the base interfaces define constants, types, or exceptions of the same
name, references to those elements must be fully scoped.

Figure 37 shows the inheritance hierarchy for the account interface, whichis
defined in “Multiple Inheritance IDL Sample” on page 281.

281

CHAPTER 12 | Introduction to OMG IDL

| Account |

A

CheckingAccount | SavingsAccount

A

PremiumAccount

Figure 37: Inheritance Hierarchy for PremiumAccount Interface

282

Interfaces

Inheritance of the Object Interface

User-Defined Interfaces All user-defined interfaces implicitly inherit the predefined object interface.
Thus, al object operations can be invoked on any user-defined interface. You
can also use Object as an attribute or parameter type, to indicate that any
interface type isvalid for the attribute or parameter.

Object Locator IDL Sample For example, the following getanyobject () operation serves as an all-purpose
object locator:

interface ObjectLocator ({
void getAnyObject (out Object obj);
¥

Note: Itisillegal in IDL syntax to explicitly inherit the object interface.

283

CHAPTER 12 | Introduction to OMG IDL

I nheritance Redefinition

Overview A derived interface can modify the definitions of constants, types, and
exceptionsthat it inherits from a base interface. All other components that are
inherited from a base interface cannot be changed.

Inheritance Redefinition I DL In the following example, the checkingaAccount interface modifies the
Sample definition of the InsufficientFunds exception, which it inherits from the
Account interface:

module BankDemo
{
typedef float CashAmount; // Type for representing cash
/o
interface Account ({
exception InsufficientFunds {};
/o
17
interface CheckingAccount : Account {
exception InsufficientFunds {
CashAmount overdraftLimit;
I g
b7
e
I8

Note: While aderived interface definition cannot override base operations or
attributes, operation overloading is permitted in interface implementations for
those languages, such as C++, that support it. However, COBOL does not
support operation overloading.

284

Interfaces

Forward Declaration of IDL Interfaces

Overview

Forward Declaration IDL Sample

An IDL interface must be declared before another interface can reference it. If
two interfaces reference each other, the module must contain aforward
declaration for one of them; otherwise, the IDL compiler reports an error. A
forward declaration only declares the interface’ s name; the interface’ s actual
definition is deferred until later in the module.

In the following example, the Bank interface defines a create_account () and
find_account () operation, both of which return referencesto account objects.
Because the Bank interface precedes the definition of the account interface,
Account is forward-declared:

module BankDemo

{

typedef float CashAmount; // Type for representing cash
typedef string AccountId; //Type for representing account ids

// Forward declaration of Account
interface Account;

// Bank interface...used to create Accounts

interface Bank {
exception AccountAlreadyExists { AccountId account_id; };
exception AccountNotFound { AccountId account_id; };

Account
find_account (in AccountId account_id)
raises (AccountNotFound) ;

Account
create_account (
in AccountId account_id,
in CashAmount initial_balance
) raises (AccountAlreadyExists) ;
}i

// Account interface.used to deposit, withdraw, and query
// available funds.
interface Account { //..

1%

285

CHAPTER 12 | Introduction to OMG IDL

L ocal I nterfaces

Overview An interface declaration that containsthe IDL 1ocal keyword definesa local
interface. An interface declaration that omits this keyword can be referred to as
an unconstrained interface, to distinguish it from local interfaces. An object that
implements alocal interfaceisalocal object.

Characteristics Local interfaces differ from unconstrained interfacesin the following ways:

®* Alocal interface can inherit from any interface, whether local or
unconstrained. Unconstrained interfaces cannot inherit from local
interfaces.

* Any non-interface type that uses alocd interface is regarded as alocal
type. For example, a struct that contains alocal interface member is
regarded asalocal struct, and is subject to the same localization constraints
asalocal interface.

. Local types can be declared as parameters, attributes, return types, or
exceptions only in alocal interface, or as state members of avaluetype.

° Local types cannot be marshalled, and referencesto local objects cannot be
converted to strings through ORB: :object_to_string (). Any attemptsto
do so throw a CoRBaA: : MARSHAL exception.

®* Any operation that expects a reference to aremote object cannot be
invoked on alocal object. For example, you cannot invoke any DI
operations or asynchronous methods on alocal object; similarly, you
cannot invoke pseudo-object operations such as is_a () or
validate_connection (). Any attemptsto do so throw a
CORBA: :NO_IMPLEMENT exception.

®* The ORB does not mediate any invocations on alocal object. Thus, local
interface implementations are responsible for providing the parameter copy
semantics that a client expects.

. Instances of local objects that the OMG defines, as supplied by ORB
products, are exposed either directly or indirectly through

ORB: :resolve_initial_references().

286

I mplementation

Local Object Pseudo-Operations

Interfaces

Local interfaces are implemented by COrRBA: : LocalObject to provide
implementations of object pseudo-operations, and other ORB-specific support
mechanisms that apply. Because object implementations are language-specific,
the Localobject typeisonly defined by each language mapping.

The Localobject type implements the object pseudo-operations shown in
Table 3.

Table3: CORBA::Local Object Pseudo-Operations and Return Values

Operation Alwaysreturns
is_a() An exception of NO_IMPLEMENT.
get_interface() An exception of NO_IMPLEMENT.
get_domain_managers () An exception of NO_TMPLEMENT.
get_policy() An exception of NO_IMPLEMENT.
get_client_policy() An exception of NO_IMPLEMENT.
set_policy overrides() An exception of NO_IMPLEMENT.
get_policy_overrides () An exception of NO_IMPLEMENT.
validate_connection() An exception of NO_IMPLEMENT.
non_existent () False.
hash () A hash value that is consistent with
the object’ s lifetime.
is_equivalent () True, if the references refer to the
same LocalObject implementation.

287

CHAPTER 12 | Introduction to OMG IDL

Valuetypes

Overview

Characteristics

Valuetype Support

Valuetype I nvocations

Valuetype | mplementations

288

V aluetypes enable programs to pass objects by value across adistributed system.
Thistype is especialy useful for encapsulating lightweight data such as linked
lists, graphs, and dates.

Valuetypes can be seen as a cross between the following:

° Datatypes, such as 1long and string, which can be passed by value over
the wire as arguments to remote invocations.

® Objects, which can only be passed by reference.

When a program supplies an object reference, the object remainsin its original

location; subsequent invocations on that object from other address spaces move
across the network, rather than the object moving to the site of each request.

Like an interface, a valuetype supports both operations and inheritance from
other valuetypes; it also can have data members. When a valuetypeis passed as
an argument to a remote operation, the receiving address space creates a copy of
it. The copied valuetype exists independently of the original; operations that are
invoked on one have no effect on the other.

Because a valuetype is always passed by value, its operations can only be
invoked locally. Unlike invocations on objects, val uetype invocations are never
passed over the wire to aremote valuetype.

V aluetype implementations necessarily vary, depending on the languages used
on sending and receiving ends of the transmission, and their respective abilities
to marshal and demarshal the valuetype’s operations. A receiving processthat is
written in C++ must provide a class that implements val uetype operations and a
factory to create instances of that class. These classes must be either compiled
into the application, or made available through a shared library. Conversely,
Java applications can marshal enough information on the sender, so the receiver
can download the bytecodes for the val uetype operation implementations.

Interfaces

Abstract I nterfaces

Overview

IDL Abstract Interface Sample

Abstract Interface IDL Sample

An application can use abstract interfaces to determine at runtime whether an
object is passed by reference or by value.

In the following example, the IDL definitions specify that the
Example: :display () operation acceptsany derivation of the abstract interface,
Describable:

abstract interface Describable {
string get_description() ;
I8

interface Example {
void display (in Describable someObject) ;

bg

Based on the preceding IDL, you can define two derivations of the bescribable
abstract interface—the currency valuetype and the account interface:

interface Account : Describable {
// body of Account definition not shown
i

valuetype Currency supports Describable {
// body of Currency definition not shown
I g

Note: Because the parameter for display () iSdefined asabescribable
type, invocations on this operation can supply either account objects or
Currency valuetypes.

289

CHAPTER 12 | Introduction to OMG IDL

|DL Data Types

In This Section The following topics are discussed in this section:
Built-in Data Types page 291
Extended Built-in Data Types page 293
Complex Data Types page 296
Enum Data Type page 297
Struct Data Type page 298
Union Data Type page 299
Arrays page 301
Sequence page 302
Pseudo Object Types page 303

Data Type Categories In addition to IDL module, interface, valuetype, and exception types, IDL data

types can be grouped into the following categories:

L Built-in types such as short, long, and float.

i Extended built-in types such as long long and wstring.
i Complex types such as enum, struct, and string.

® Pseudo objects.

290

IDL Data Types

Built-in Data Types

List of Types, Sizes, and Values

Floating Point Types

Char Type

Table 4 shows alist of CORBA IDL built-in data types (where the <symbol
means’less than or equal t0') .

Table 4:

Built-in IDL Data Types, Szes, and Values

short <16 bits 215 2151

unsigned short <16 hits 0..2161

long <32 bits 281 281

unsigned long <32 bits 0..2%2-1

float <32 hits |EEE single-precision floating
point numbers

double <64 hits IEEE double-precision
floating point numbers

char <8 hits I1SO Latin-1

string Variable length SO Latin-1, except NUL

string<bound> Variable length I1SO Latin-1, except NUL

boolean Unspecified TRUE Of FALSE

octet <8 hits 0x0 t0 Ox££

any Variable length Universal container type

The float and double types follow | EEE specifications for single-precision and
double-precision floating point values, and on most platforms map to native
|EEE floating point types.

The char type can hold any value from the ISO Latin-1 character set. Code
positions 0-127 are identical to ASCII. Code positions 128-255 are reserved for
specia charactersin various European languages, such as accented vowels.

291

CHAPTER 12 | Introduction to OMG IDL

String Type

Bounded and Unbounded Strings

Octet Type

Any Type

292

The string type can hold any character from the |SO Latin-1 character set,
except NUL. IDL prohibits embedded nuL charactersin strings. Unbounded string
lengths are generally constrained only by memory limitations. A bounded string,
such as string<10>, can hold only the number of characters specified by the
bounds, excluding the terminating NuL character. Thus, a string<6> can
contain the six-character string, cheese.

The declaration statement can optionally specify the string’s maximum length,
thereby determining whether the string is bounded or unbounded:

string[length] name

For example, the following code declares the shortstring type, whichisa
bounded string with a maximum length of 10 characters:

typedef string<l0> ShortString;
attribute ShortString shortName; // max length is 10 chars

Octet types are guaranteed not to undergo any conversionsin transit. Thislets
you safely transmit binary data between different address spaces. Avoid using
the char type for binary data, because characters might be subject to translation
during transmission. For example, if aclient that uses ASCII sendsastring to a
server that uses EBCDIC, the sender and receiver are liable to have different
binary values for the string’s characters.

The any type allows specification of values that express any IDL type, whichis
determined at runtime, thereby allowing a program to handle values whose types
are not known at compile time. An any logically contains a TypeCode and a
value that is described by the Typecode. A client or server can construct an any
to contain an arbitrary type of value and then passthiscall in acall to the
operation. A process receiving an any must determine what type of valueit
stores and then extract the value via the typecode. See the CORBA
Programmer’s Guide, C++ for more details about the any type.

IDL Data Types

Extended Built-in Data Types

List of Types, Sizes, and Values

Long Long Type

Table 5 shows alist of CORBA IDL extended built-in data types (where the <
symbol means’less than or equal to’).

Table5:

Extended built-in IDL Data Types, Szes, and Values

long long? <64 bits —263 2631

unsigned long long? <64 hits 0..-2841

long double? <79 bits | EEE double-extended
floating point number, with an
exponent of at least 15 bitsin
length and asigned fraction of
at least 64 bits. The long
double typeis currently not
supported on Windows NT.

wchar Unspecified Arbitrary codesets

wstring Variable Arbitrary codesets

length
fixed® Unspecified <31significant digits

a Dueto compiler restrictions, the COBOL range of valuesfor the long long and
unsiﬁned long long types is the same range as for a long type (that is,
0...2°-1).

b. Due to compiler restrictions, the COBOL range of values for the long double
type is the same range as for adouble type (that is, <64 bits).

¢. Dueto compiler restrictions, the COBOL range of valuesfor the fixed typeis<18

significant digits.

The 64-bit integer types, long long and unsigned long long, SUpport numbers
that are too large for 32-hit integers. Platform support varies. If you compile IDL
that contains one of these types on a platform that does not support it, the

compiler issues an error.

293

CHAPTER 12 | Introduction to OMG IDL

Long Double Type

Wchar Type

Wstring Type

Fixed Type

294

Like 64-bit integer types, platform support varies for the 1ong double type, sO
its use can yield IDL compiler errors.

The wchar type encodes wide characters from any character set. The size of a
wchar is platform-dependent. Because Orbix 2000 currently does not support
character set negotiation, use this type only for applications that are distributed
across the same platform.

The wstring type isthe wide-character equivalent of the string type. Like
string types, wstring types can be unbounded or bounded. Wide strings can
contain any character except NUL.

IDL specifiesthat the £ixed type provides fixed-point arithmetic values with up
to 31 significant digits. However, dueto restrictionsin the COBOL compiler for
0S/390, only up to 18 significant digits are supported.

Y ou specify a fixed type with the following format:
typedef fixed<digit-size,scale> name

The format for the fixed type can be explained as follows:

®* Thedigit-size represents the number’slength in digits. The maximum
valuefor digit-sizeis31 and it must be greater than scale. A fixed
type can hold any value up to the maximum value of adouble type.

° If scaleisapositive integer, it specifies where to place the decimal point
relative to the rightmost digit. For example, the following code declares a
fixed type, cashamount, to have a digit size of 10 and a scale of 2:

typedef fixed<10,2> CashAmount;

Given thistypedef, any variable of the cashamount type can contain values
of up to (+/-)99999999.99.

Constant Fixed Types

Fixed Typeand Decimal Fractions

IDL Data Types

° If scaleisanegative integer, the decimal point moves to the right by the

number of digits specified for scale, thereby adding trailing zeros to the
fixed data type’s value. For example, the following code declares a fixed
type, bighum, to have adigit size of 3 and ascale of -4:

typedef fixed <3,-4> bigNum;
bigNum myBigNum;

If myBigNum has a value of 123, its numeric value resolvesto 1230000.
Definitions of this sort allow you to efficiently store numbers with trailing
ZEros.

Constant fixed types can also be declared in IDL, where digit-size and scale
are automatically calculated from the constant value. For example:

module Circle ({
const fixed pi = 3.142857;

I g

Thisyields afixed type with adigit size of 7, and ascale of 6.

Unlike | EEE floating-point values, the £ixed typeis not subject to
representational errors. |EEE floating point values are liable to inaccurately
represent decimal fractions unless the value is a fractional power of 2. For
example, the decimal value, 0.1, cannot be represented exactly in |EEE format.
Over aseries of computations with floating-point values, the cumulative effect
of thisimprecision can eventually yield inaccurate results.

The fixed typeisespecialy useful in calculations that cannot tolerate any
imprecision, such as computations of monetary values.

295

CHAPTER 12 | Introduction to OMG IDL

Complex Data Types

IDL Complex Data Types IDL provide the following complex data types:
° Enums.
° Structs.

. Multi-dimensional fixed-sized arrays.
. Sequences.

296

IDL Data Types

Enum Data Type

Overview

Enum IDL Sample

Ordinal Valuesof Enum Type

An enum (enumerated) type |ets you assign identifiers to the members of a set of
values.

For example, you can modify the BankDemo IDL with the balanceCurrency
enum type:

module BankDemo {
enum Currency {pound, dollar, yen, franc};

interface Account {
readonly attribute CashAmount balance;
readonly attribute Currency balanceCurrency;
o
17
I8

In the preceding example, the balanceCurrency attribute in the account
interface can take any one of the values pound, dol1lar, yen, Or franc.

The ordinal values of an enum type vary according to the language
implementation. The CORBA specification only guarantees that the ordinal
values of enumerated types monotonically increase from left to right. Thus, in
the previous example, dol1lar is greater than pound, yen is greater than dollar,
and so on. All enumerators are mapped to a 32-bit type.

297

CHAPTER 12 | Introduction to OMG IDL

Struct Data Type

Overview A struct type lets you package a set of named members of various types.

Struct IDL Sample In the following example, the customerDetails struct has several members.
The getCustomerDetails () operation returns astruct of the Customerbetails
type, which contains customer data:

module BankDemo {

struct CustomerDetails {
string custID;
string lname;
string fname;
short age;
/o

17

interface Bank {
CustomerDetails getCustomerDetails (in string custID);
/o
b7
}i

Note: A struct type must include at least one member. Because a struct

provides a naming scope, member names must be unique only within the
enclosing structure.

298

IDL Data Types

Union Data Type

Overview

Union Declaration Syntax

Discriminated Unions

IDL Union Date Sample

A union type lets you define a structure that can contain only one of several
aternative members at any given time. A union type saves space in memory,

because the amount of storage required for a union is the amount necessary to
store its largest member.

Y ou declare a union type with the following syntax:

union name switch (discriminator) {
case labell : element-spec;
case label2 : element-spec;
[...]
case labeln : element-spec;
[default : element-spec;]

All IDL unions are discriminated. A discriminated union associates a constant
expression (labell..labeln) with each member. The discriminator’s value
determines which of the membersis active and stores the union’s value.

Thefollowing IDL defines a bate union type, which is discriminated by an
enum value:

enum dateStorage
{ numeric, strMMDDYY, strDDMMYY };

struct DateStructure {
short Day;
short Month;
short Year;
I8
union Date switch (dateStorage) ({
case numeric: long digitalFormat;
case strMMDDYY :
case strDDMMYY: string stringFormat;

default: DateStructure structFormat;
}i

299

CHAPTER 12 | Introduction to OMG IDL

Sample Explanation

Rulesfor Union Types

300

Given the preceding IDL:

If the discriminator value for pate isnumeric, the digitalFormat member
isactive.

If the discriminator’ svalueis strMMDDYY OF strDDMMYY, the stringFormat
member is active.

If neither of the preceding two conditions apply, the default structFormat
member is active.

The following rules apply to union types:

A union’s discriminator can be integer, char, boolean, enum, Of an alias
of one of these types; all case label expressions must be compatible with
the relevant type.

Because a union provides a naming scope, member names must be unique
only within the enclosing union.

Each union contains a pair of values: the discriminator value and the active
member.

IDL unions alow multiple case labels for asingle member. In the previous
example, the stringFormat member is active when the discriminator is
either strMMDDYY OF strDDMMYY.

IDL unions can optionally contain adefault caselabel. The
corresponding member is active if the discriminator value does not
correspond to any other label.

IDL Data Types

Arrays

Overview

Array IDL Sample

Array Indexes

IDL supports multi-dimensional fixed-size arrays of any IDL datatype, with the
following syntax (where dimension-spec must be a non-zero positive constant
integer expression):

[typedef] element-type array-name [dimension-spec]..

IDL does not allow open arrays. However, you can achieve equivalent
functionality with sequence types.

For example, the following defines a two-dimensional array of bank accounts
within a portfolio:

typedef Account portfolio[MAX ACCT TYPES] [MAX_ ACCTS]

Note: For an array to be used as a parameter, an attribute, or a return value,
the array must be named by a typedef declaration. Y ou can omit a typedef
declaration only for an array that is declared within a structure definition.

Because of differences between implementation languages, IDL does not specify
the origin at which arrays are indexed. For example, C and C++ array indexes
aways start at 0, but COBOL, PL/I, and Pascal always start at 1. Consequently,
clients and servers cannot exchange array indexes unless they both agree on the
origin of array indexes and make adjustments, as appropriate, for their respective
implementation languages. Usually, it is easier to exchange the array element
itself, instead of itsindex.

301

CHAPTER 12 | Introduction to OMG IDL

Sequence

Overview

Bounded and Unbounded
Sequences

Bounded and Unbounded IDL
Definitions

302

IDL supports sequences of any IDL data type with the following syntax:
[typedef] sequence < element-type[, max-elements] > sequence-name
AnIDL sequenceissimilar to aone-dimensional array of elements; however, its
length varies according to its actual number of elements, so it uses memory more
efficiently.

For a sequence to be used as a parameter, an attribute, or areturn value, the
sequence must be named by a typedef declaration. Y ou can omit a typedef
declaration only for a sequence that is declared within a structure definition.

A sequence’ s element type can be of any type, including another sequence type.
Thisfeature is often used to model trees.

The maximum length of a sequence can be fixed (bounded) or unfixed

(unbounded):

® Unbounded sequences can hold any number of elements, up to the memory
limits of your platform.

. Bounded sequences can hold any number of elements, up to the limit
specified by the bound.

The following code shows how to declare bounded and unbounded sequences as
members of an IDL struct:

struct LimitedAccounts {

string bankSortCode<10>;

sequence<Account, 50> accounts; // max sequence length is 50
I8

struct UnlimitedAccounts {

string bankSortCode<10>;

sequence<Account> accounts; // no max sequence length
I8

IDL Data Types

Pseudo Object Types

Overview

Defining

CORBA defines a set of pseudo-object types that ORB implementations use
when mapping IDL to a programming language. These object types have
interfaces defined in IDL; however, these object types do not have to follow the
normal IDL mapping rules for interfaces and they are not generally availablein
your IDL specifications.

Y ou can use only the following pseudo-object types as attribute or operation
parameter typesin an IDL specification:

CORBA: :NamedValue
CORBA: : TypeCode

To usethesetypesin an IDL specification, include the orb. id1 filein the IDL
fileasfollows:

#include <orb.idl>
//

This statement instructs the IDL compiler to allow the Namedvalue and
TypeCode types.

303

CHAPTER 12 | Introduction to OMG IDL

Defining Data Types

Overview With typedef, you can define more meaningful or simpler names for existing
data types, regardless of whether those types are IDL-defined or user-defined.

The following code defines the typedef identifier, standardaccount, so that it
can act asan alias for the account typein later IDL definitions:

module BankDemo {
interface Account {
llexo
be

typedef Account StandardAccount;
bg

In This Section This section contains the following subsections:
Constants page 305
Constant Expressions page 308

304

Defining Data Types

Constants

Overview

Integer Constants

Floating-Point Constants

IDL letsyou define constants of all built-in types except the any type. To define
aconstant’ s value, you can use either another constant (or constant expression)
or aliteral. You can use a constant wherever aliteral is permitted.

IDL accepts integer literalsin decimal, octal, or hexadecimal:

const
const

const long long I3
const long long I4

short
long

-99;

0123; // Octal 123, decimal 83
0x123; // Hexadecimal 123, decimal 291
+0xaB; // Hexadecimal ab, decimal 171

Both unary plus and unary minus are legal.

Floating-point literals use the same syntax as C++:

const

const
const
const
const
const

f4 =

float f1
double £2
long double £3
double

double £5
double fé

= 3.1le-9;

= -3.14;
= .1

i

= .1E12
= 2El2

//
//
//
//
//
//
//

Integer part, fraction part,
exponent

Integer part and fraction part
Fraction part only

Integer part only

Fraction part and exponent
Integer part and exponent

305

CHAPTER 12 | Introduction to OMG IDL

Character and String Constants Character constants use the same escape sequences as C++:

const char Cl = 'c'; // the character c

const char C2 = '\007"'; // ASCII BEL, octal escape

const char C3 = '\x41"'; // ASCII A, hex escape

const char C4 = '\n'; // newline

const char C5 = '\t'; // tab

const char C6 = '"\v'; // vertical tab

const char C7 = '\b'; // backspace

const char C8 = '\r'; // carriage return

const char C9 = '\f'; // form feed

const char C10 = '\a'; // alert

const char Cl1 = "\\'; // backslash

const char Cl2 = '\?'; // question mark

const char C13 = '\''; // single quote

// String constants support the same escape sequences as C++
const string S1 = "Quote: \""; // string with double quote
const string S2 = "hello world"; // simple string

const string S3 = "hello" " world"; // concatenate

const string S4 = "\xA" "B"; // two characters

// ("\xA' and 'B'),
// not the single character '\xAB'

Wide Character and String Wide character and string constants use C++ syntax. Use universal character
Constants codes to represent arbitrary characters. For example:

const wchar C =L'X";

const wstring GREETING = L"Hello";

const wchar OMEGA = L'\u03a9';

const wstring OMEGA_STR = L"Omega: \u3A9";

IDL files always use the ISO Latin-1 code set; they cannot use Unicode or other
extended character sets.

Boolean Constants Boolean constants use the FaLse and TRUE keywords. Their use is unnecessary,
inasmuch as they create unnecessary aliases:

// There is no need to define boolean constants:
const CONTRADICTION = FALSE; // Pointless and confusing
const TAUTOLOGY = TRUE; // Pointless and confusing

306

Octet Constants

Fixed-Point Constants

Enumeration Constants

Defining Data Types

Octet constants are positive integers in the range 0-255.

const octet 01 232
const octet 02 = 0xf0;

Octet constants were added with CORBA 2.3; therefore, ORBs that are not
compliant with this specification might not support them.

For fixed-point constants, you do not explicitly specify the digits and scale.
Instead, they are inferred from the initializer. Theinitializer must end in d or .
For example:

// Fixed point constants take digits and scale from the
// initializer:

const fixed vall = 3D; // fixed<l, 0>
const fixed val2 = 03.14d; // fixed<3, 2>
const fixed val3 = -03000.00D; // fixed<4, 0>
const fixed val4 = 0.03D; // fixed<3,2>

The type of afixed-point constant is determined after removing leading and
trailing zeros. The remaining digits are counted to determine the digits and scale.
The decimal point is optional.

Currently, there is no way to control the scale of aconstant if it endsin trailing
Zeros.

Enumeration constants must be initialized with the scoped or unscoped name of
an enumerator that is a member of the type of the enumeration. For example:

enum Size { small, medium, large }

const Size DFL_SIZE = medium;
const Size MAX SIZE ::large;

Enumeration constants were added with CORBA 2.3; therefore, ORBs that are
not compliant with this specification might not support them.

307

CHAPTER 12 | Introduction to OMG IDL

Constant Expression

Overview

Arithmetic Operators

Evaluating Expressions for
Arithmetic Operators

Bitwise Operators

308

S

IDL provides a number of arithmetic and bitwise operators. The arithmetic
operators have the usual meaning and apply to integral, floating-point, and
fixed-point types (except for %, which requires integral operands). However,
these operators do not support mixed-mode arithmetic: you cannot, for example,
add an integral value to afloating-point value.

The following code contains several examples of arithmetic operators:

// You can use arithmetic expressions to define constants.
const long MIN = -10;

const long MAX = 30;

const long DFLT = (MIN + MAX) / 2;

// Can't use 2 here
const double TWICE PI = 3.1415926 * 2.0;

// 5% discount
const fixed DISCOUNT = 0.05D;
const fixed PRICE = 99.99D;

// Can't use 1 here
const fixed NET_PRICE = PRICE * (1.0D - DISCOUNT) ;

Expressions are evaluated using the type promotion rules of C++. Theresult is
coerced back into the target type. The behavior for overflow is undefined, so do
not rely on it. Fixed-point expressions are evaluated internally with 31 bits of
precision, and results are truncated to 15 digits.

Bitwise operators only apply to integral types. The right-hand operand must be
in the range 0-63. The right-shift operator, >>, is guaranteed to insert zeros on
the left, regardless of whether the left-hand operand is signed or unsigned.

// You can use bitwise operators to define constants.
const long ALL ONES = -1; // Oxffffffff
const long LHW_MASK = ALL, ONES << 16; // OxfE£££0000
const long RHW_MASK = ALL, ONES >> 16; // 0x0000ffff

Defining Data Types

IDL guarantees two’ s complement binary representation of values.

Precedence The precedence for operators follows the rules for C++. Y ou can override the
default precedence by adding parentheses.

309

CHAPTER 12 | Introduction to OMG IDL

310

In This Chapter

CHAPTER 13

Mapping CORBA
to Automation

CORBA types are defined in OMG IDL. Automation types are
definedin object definitionlanguage (ODL). Toallowinterworking
between Automation clients and CORBA servers, Automation
clients must be presented with ODL versions of the interfaces
exposed by CORBA objects. Therefore, it must be possible to
transate CORBA typesto ODL. This chapter outlines the
CORBA-to-Automation mapping rules.

This chapter discusses the following topics:

Mapping for Basic Types page 313
Mapping for Strings page 315
Mapping for Interfaces page 316
Mapping for Complex Types page 329
Mapping for Object References page 344
Mapping for Modules page 347
Mapping for Constants page 348
Mapping for Enums page 349

311

CHAPTER 13 | Mapping CORBA to Automation

312

Mapping for Scoped Names page 351

Mapping for Typedefs page 352

Note: For the purposes of illustration, this chapter describes a textual
mapping between OMG IDL and COM IDL. COMet itself does not require
this textual mapping to take place, because it includes a dynamic marshalling
engine. The textual mappings shown in this chapter are automatically
performed by COMet at application runtime.

Mapping for Basic Types

Mapping for Basic Types

Overview OMG IDL basic types translate to compatible types in Automation.
Mapping Rules Table 6 shows the mapping rules for each basic type.
Table6: CORBA-to-Automation Mapping Rules for Basic Types
OMG Description COM IDL Description
IDL
boolean Unsigned char, 8-hit VARIANT BOOL | 16-bit integer
0 = FALSE 0 = FALSE
1 = TRUE 1 = TRUE
char 8-bit quantity ur1? 8-bit unsigned
integer
double |EEE 64-hit float double |EEE 64-bit float
float |EEE 32-bit float float |EEE 32-hit float
long 32-bit integer long 32-bit integer
octet 8-hit quantity Ul 8-hit unsigned
integer
short 16-bit integer short 16-bit integer
unsigned | 32-bitinteger long 32-bit integer
long
unsigned | 16-bitinteger long 32-bit integer
short
a. Ullissupported in Windows 32-hit programs.
Limitations The types supported by OMG IDL and Automation do not correspond exactly,

because Automation offers amore limited support for basic types. For example,
Automation does not support unsigned types (that is, unsigned short or
unsigned long). In some cases, the mapping rules involve atype promotion, to

313

CHAPTER 13 | Mapping CORBA to Automation

avoid dataloss (for example, translating OMG IDL unsigned short to
Automation long.) In other cases, the mapping rules involve a type demotion
(for example, trandating OMG IDL unsigned long to Automation long.)

Bidirectional Trandation An Automation view interface provides an Automation client with an
Automation view of a CORBA object. An operation of an Automation view
interface uses the mapping rules shown in Table 6 on page 313, to perform
bidirectiona trandlation of parameters and return types between Automation and
CORBA. It trandates in parameters from Automation to CORBA, and
trandates out parameters from CORBA back to Automation.

RuntimeErrors Because there is not an exact correspondence between the types supported by
Automation and CORBA, the following translations performed by an
Automation view operation result in aruntime error:

* Trandating an in parameter of the Automation long typetothe OMG IDL
unsigned long type, if the value of the Automation long parameter isa
negative number.

. Demoting an in parameter of the Automation long type to the OMG IDL
unsigned short type, if the value of the Automation 1ong parameter is
either negative or greater than the maximum value of the OMG IDL
unsigned short type.

° Demoting an out parameter of the OMG IDL unsigned long typeback to
the Automation long type, if the value of the OMG IDL unsigned long
parameter is greater than the maximum value of the Automation Long type.

314

Mapping for Strings

Mapping for Strings

Overview OMG IDL bounded and unbounded strings map to an Automation BSTR.

Note: A runtime error occurs when mapping afixed-length OMG IDL string,
if the BSTR exceeds the maximum length of the OMG IDL string.

Example The example can be broken down as follows:
1. Consider the following OMG IDL:

// OMG IDL

// This definition might appear within a struct definition.
string name<20>;

string address;

2. Thepreceding OMG IDL mapsto the following COM IDL:

// COM IDL
BSTR name;
BSTR address;

315

CHAPTER 13 | Mapping CORBA to Automation

Mapping for Interfaces

Overview

In This Section

316

This section describes how OMG IDL interfaces map to Automation.

This section discusses the following topics:

Basic Interface Mapping page 317
Mapping for Attributes page 319
Mapping for Operations page 321

Mapping for Interfaces

Basic | nterface M apping

Overview

Example

TheDIBank Interface

Standard Automation View
Interfaces

An OMG IDL interface maps to an Automation view interface.

The example can be broken down as follows:
1. Consider the following OMG IDL interface, Bank:

// OMG IDL
interface Bank
{

// Attributes and operations here;
17

2. Thepreceding OMG IDL mapsto the following Automation view
interface, DIBank:

// COM IDL
// Definitions that are not of interest here.

[oleautomation, dual, uuid(..)]
interface DIBank : IDispatch
{

// Properties and methods here.

Asshown in Figure 38 on page 318, the Automation view in the bridge supports
the p1Bank interface. Any Automation controller can use the p1Bank interface to
invoke operations on the Automation view. The view forwards the request to the
target Bank object in the CORBA server.

The prBank interfaceis an Automation dual interface. A dual interfaceisaCOM
vtable-based interface that derives from Ipispatch. This means that its methods
can be either late-bound, using Ipispatch: : Invoke, Or early-bound through the
vtable portion of the interface.

The Automation view also supports the following interfaces, by default:

. TUnknown and IDispatch, required by all Automation objects.

317

CHAPTER 13 | Mapping CORBA to Automation

i DIForeignObject, required by all views.
® DICORBAObject, required by al CORBA objects.
® DIOrbixObject, supported by all Orbix objects.

Graphical Overview Figure 38 provides a graphical overview of the interfaces that the Automation
view object supports, based on the example of the OMG IDL Bank interface.

IUnknown

I

IDispatch o—
1ForeignObject O—
DICORBAODbject 0—
DI1OrbixObject o—
DIBank O

Figure 38: Automation View of the Bank Interface

318

Mapping for Interfaces

Mapping for Attributes

Overview An OMG IDL attribute maps to an Automation property, as follows:

A normal attribute maps to a property that has a method to set the value
and a method to get the value.

A readonly attribute maps to a property that only has a method to get the
value.

Example The example can be broken down as follows:

1

Consider the following OMG IDL:

// OMG IDL
interface Account

{

I8

2.

attribute float balance;

readonly attribute string owner;

void makeLodgement (in float amount, out float balance) ;
void makeWithdrawal (in float amount, out float balance) ;

The preceding OMG IDL maps to the following in Automation:

// COM IDL
[oleautomation, dual, uuid(..)]
interface DIAccount : IDispatch

{

HRESULT makeLodgement ([in] float amount,

[out] float * balance,

[optional, out] VARIANT * excep_OBJ) ;
HRESULT makeWithdrawal ([in] float amount,

[out] float * balance,

[optional, out] VARIANT * excep_OBJ) ;
[propget] HRESULT balance([retval,out] float * val);
[propput] HRESULT balance ([in] float balance) ;
[propget] HRESULT owner ([retval,out] BSTR * val);

Note: The get method returns the attribute value contained in the
[retval, out] parameter.

319

CHAPTER 13 | Mapping CORBA to Automation

Visual Basic Example Thefollowing isaVisua Basic example of how to set and get the balance of an

account object, accountobj:

' Visual Basic

Set accountObj = .. ' Get a reference to an Account object.

Dim myBalance as Single

' Set the balance of accountObj:
accountObj.balance = 150.22

' Get the balance of accountObj:
myBalance = accountObj.balance

Power Builder Example Thefollowing is a PowerBuilder example of how to set and get the balance of an

account object, accountobj:

// PowerBuilder
.. // Get a reference to an Account object.

integer myBalance

myBalance = accountObj.balance
accountObj.balance myBalance

320

Mapping for Interfaces

Mapping for Operations

Overview An OMG IDL operation maps to an Automation method.

Example The example can be broken down as follows:
1. Consider the following OMG IDL.:

// OMG IDL

interface Account {
void makeDeposit (in float amount, out float balance) ;
float calculateInterest();

};
2. Thepreceding OMG IDL mapsto the following in Automation:

// COM IDL
[oleautomation, dual,uuid(..),helpstring ("Account")]
interface DIAccount : IDispatch {
[1d(100)] HRESULT makeDeposit (
[in] float it_amount,
[in,out] float *it_balance,
[optional, in,out] VARIANT *IT Ex);
[1d(101)] HRESULT calculateInterest (
[optional,in,out] VARIANT *IT Ex,
[retval,out] float *IT retval);

Rulesfor Parameter Passing The following mapping rules apply for parameter-passing modes:
®* AnOMGIDL in parameter mapsto an Automation [in] parameter.
®* AnOMGIDL out parameter mapsto an Automation [out] parameter.

* AnOMGIDL inout parameter mapsto an Automation [in, out]
parameter.

Rulesfor Return Types The following mapping rules apply for return types:
®* AnOMGIDL void return type does not need any translation.

321

CHAPTER 13 | Mapping CORBA to Automation

Visual Basic Example

322

An OMG IDL return typethat is not void mapsto an Automation
[retval,out] parameter. A CORBA operation’sreturn valueis therefore
mapped to the last argument in the corresponding operation of the
Automation view interface.
All operations on the Automation view interface have an optional out
parameter of the varIANT type. This parameter appears before the return
type and is used to return exception information. See “Mapping for System
Exceptions’ on page 340 for more information.
If the CORBA operation has no return value, the optional out parameter of
the varIanT typeisthelast parameter in the corresponding Automation
operation. If the CORBA operation does have a return value, the optional
parameter appears directly before the return value in the corresponding
Automation operation. Thisis because the return value must always be the
last parameter.

Thefollowing isaVisual Basic example, based on the generated definitionsin
the preceding COM IDL example:

' Visual Basic
Dim interest, amount As Single

' Get a reference to an Account object:
accountObj .makeDeposit amount, balance
interest = accountObj.calculatelInterest

Mapping for Interface Inheritance

Mapping for Interface Inheritance

Overview

In This Section

This section describes the CORBA -to-Automation mapping rules for both single
and multiple interface inheritance.

This section discusses the following topics:

Mapping for Single Inheritance page 324

Mapping for Multiple Inheritance page 326

323

CHAPTER 13 | Mapping CORBA to Automation

Mapping for Single Inheritance

Overview A hierarchy of singly-inherited OMG IDL interfaces maps to an identical
hierarchy of Automation view interfaces.

Example The example can be broken down as follows:

1. Consider thefollowing OMG IDL interface, account, and its derived
interface, checkingAccount:

// OMG IDL
{
interface account
{
attribute float balance;
readonly attribute string owner;
void makeLodgement (in float amount, out float balance) ;
void makeWithdrawal (in float amount, out float
theBalance) ;
}i

interface checkingAccount :account
{
readonly attribute float overdraftLimit;
boolean orderChequeBook () ;
}i
}i

2. Thepreceding OMG IDL maps to the following Automation view
interfaces:

324

Mapping for Interface Inheritance

// COM IDL
[oleautomation, dual, uuid(..)]
interface account:IDispatch
{
HRESULT makeLodgement ([in] float amount,
[out] float * balance),
[optional, out] VARIANT * excep OBJ) ;
HRESULT makeWithdrawal ([in] float amount,
[out] float * balance),
[optional, out] VARIANT * excep OBJ) ;
[propget] HRESULT balance([retval,out] float * wval);
[propput] HRESULT balance([in] float balance) ;
[propget] HRESULT owner ([retval,out] BSTR * val);
hg
[oleautomation, dual, uuid(..)]
interface checkingAccount:account
{
HRESULT orderChequeBook ([optional, out] VARIANT *
excep_OBJ,
[retval, out] short * val);
[propget] HRESULT overdraftLimit ([retval, out] short *
val) ;

325

CHAPTER 13 | Mapping CORBA to Automation

Mapping for Multiple Inheritance

Overview Automation does not support multiple inheritance. Therefore, a direct mapping
of a CORBA inheritance hierarchy using multiple inheritance is not possible.
This mapping splits such a hierarchy, at the points of multiple inheritance, into
multiple singly-inherited strands. The mechanism for determining which
interfaces appear on which strands is based on aleft-branch traversal of the
inheritance tree.

Interface Hierarchy Example Figure 39 provides a graphical example of a CORBA interface hierarchy.

Bank

/N

Account Simple

\

CheckingDetails

Miscellaneous

Figure 39: Example of a CORBA Interface Hierarchy

Interface Hierarchy Explanation In Figure 39, the hierarchy can be read as follows:
i Account and Simple derive from Bank.
b CheckingDetails derives from Account and Simple.
b Miscellaneous derives from checkingDetails.

326

Code Example

Mapping for Interface Inheritance

In this example, CheckingDetails iSsthe point of multiple inheritance. The
CORBA hierarchy maps to two Automation single-inheritance hierarchies (that
iS, Bank-Account-CheckingDetails and Bank-Simple. The leftmost strand is
the main strand, which is Bank-Account-CheckingDetails.

To accomodate access to all of the object’s methods, the operations of the
secondary strands are aggregated into the interface of the main strand at the
points of multiple inheritance. The operations of the simple interface are
therefore added to checkingDetails. This means checkingDetails hasal the
methods of the hierarchy, and an Automation controller holding areference to
CheckingDetails can access al the methods of the hierarchy without having to
Cd|QueryInterface

The example can be broken down as follows:

1. Consider thefollowing OMG IDL, which represents an interface hierarchy
based on the example shown in Figure 39 on page 326:

// OMG IDL
{
interface Bank {
void OpBank() ;
¥
interface Account : Bank {
void OpAccount () ;
¥
interface Simple : Bank {
void OpSimple() ;
Fi
interface CheckingDetails : Account, Simple {
void OpCheckingDetails() ;
Fi
interface Miscellaneous : CheckingDetails {
void OpMiscellaneous () ;
Fi
}i

2. Thepreceding OMG IDL maps to the following two Automation view
hierarchies:

327

CHAPTER 13 | Mapping CORBA to Automation

328

// COM IDL
// strand 1:Bank-Account-CheckingDetails
[oleautomation, dual, uuid(..)]
interface Bank:IDispatch
{
HRESULT OpBank ([optional, out] VARIANT * excep_OBJ) ;
}
[oleautomation, dual, uuid(..)]
interface Account:Bank
{
HRESULT OpAccount ([optional, out] VARIANT * excep_OBJ) ;
}
[oleautomation, dual, uuid(..)]
interface CheckingDetails:Account
{
// Aggregated operations of Simple
HRESULT OpSimple ([optional, out] VARIANT * excep_OBJ) ;
// Normal operations of CheckingDetails
HRESULT OpCheckingDetails([optional, out] VARIANT *
excep_OBJ) ;

// strand 2:Bank-Simple
[oleautomation, dual, uuid(..)]
interface Simple:Bank
{
HRESULT OpSimple([optional, out] VARIANT * excep_OBJ) ;

Mapping for Complex Types

Mapping for Complex Types

Overview Tranglation is straightforward where there is a direct Automation counterpart for
a CORBA type. However, Automation has no data type corresponding to a
user-defined complex type. CORBA complex types are therefore mapped to
Automation view interfaces. Each element in the complex type mapsto a
property in the Automation view, with a get method to retrieve its value, and a
set method to alter its value.

In This Section This section discusses the following topics:
Creating Constructed OMG IDL Types page 330
Mapping for Structs page 331
Mapping for Unions page 333
Mapping for Sequences page 336
Mapping for Arrays page 339
Mapping for System Exceptions page 340
Mapping for User Exceptions page 341
Mapping for the Any Type page 343

Note: Thereis no standard CORBA-to-Automation mapping specified for
OMG IDL context clauses.

329

CHAPTER 13 | Mapping CORBA to Automation

Creating Constructed OMG IDL Types

Pseudo-Automation I nterfaces

Pseudo-Objects

The CreateType() Method

Prototypefor CreateType()

Parametersfor CreateType()

330

OMG IDL constructed types such as struct, union, and exception map to
pseudo-Automation interfaces. The OMG Interworking Architecture
specification at ftp://ftp.omg.org/pub/docs/formal/01-12-55.pdf chose
this translation, because Automation does not allow Automation constructed
types as valid parameter types.

Pseudo-objects, which implement pseudo-Automation interfaces, do not expose
the TForeignobject interface. Instead, the matching Automation interface for a
constructed type exposes the DIForeignComplexType interface.

To create acomplex OMG IDL type, you can use the createType () method,
which is defined on the DICORBAFactoryEx interface. The createType ()
method creates an Automation object that is an instance of an OMG IDL
constructed type.

The prototype for createType () is:

CreateType([in] IDispatch* scope, [in] BSTR typename)

The parameters for createType () can be explained as follows:

®* The scope parameter refersto the scope in which the type should be
interpreted. To indicate global scope, pass Nothing in this parameter.

® The typename parameter is the name of the complex type you want to
create.

Y ou can create an object that represents an OMG IDL constructed typein a
client, to passit asan in or inout parameter to an OMG IDL operation. Y ou can
create an object that represents an OMG IDL constructed typein a server, to
return it as an out or inout parameter, or return value, from an OMG IDL
operation.

See“Mapping for Structs’ on page 331, “Mapping for Unions’ on page 333, and
“Mapping for System Exceptions’ on page 340 for examples of how to use
CreateType () tO create structs, unions, and exceptions.

Mapping for Complex Types

Mapping for Structs

Overview

Example

An OMG IDL struct maps to an Automation interface of the same name that
supportsthe bTcorBAStruct interface. DICORBAStruct, inturn, derivesfrom the
DIForeignComplexType interface. DICORBAStruct doesnot define any methods.
It is used to identify that the interface is mapped from a struct.

The example can be broken down as follows:
1. Consider thefollowing OMG IDL.:

// OMG IDL
struct AccountDetails
{
long number;
float balance;
17

2. Thepreceding OMG IDL is mapped asif it were defined as follows:

// OMG IDL
interface AccountDetails
{
attribute long number;
attribute float balance;
B g

331

CHAPTER 13 | Mapping CORBA to Automation

Figure 40 provides a graphical overview of the interfaces that the Automation
view object supports, based on the example of the OMG IDL AccountDetails

struct.

Graphical Overview

1Unknown

I

1Dispatch O—

D1ForeignComplexType O—
DICORBAStruct o0——

DIAccountDetails O

Figure 40: Automation View of the OMG IDL AccoutDetails Struct

Thefollowing is aVisual Basic example, based on the preceding OMG IDL
definition:

Visual Basic Example

' Visual Basic
Dim ObjFactory As CORBA_Orbix.DICORBAFactoryEx
Dim details As BankBridge.DIAccountDetails

Set details = ObjFactory.CreateType (Nothing, "AccountDetails")

details.balance = 1297.66
details.number = 109784

332

Mapping for Complex Types

Mapping for Unions

Overview An OMG IDL union maps to an Automation interface that exposes the
DICORBAUnion interface. DICORBAUnion, in turn, derives from the
DIForeignComplexType interface. DICORBAUNion does not define any methods.
It is used to identify that the interface is translated from a union.

DICORBAUnion Interface The following is a synopsis of the bcorBaunion interface:

[oleautomation, dual,uuid(..)]

interface DICORBAUnion : DIForeignComplexType {
[1d(400)] HRESULT Union_d ([retval,out] VARIANT * val);
bg

DICORBAUnion has one method, union_d, which returns the current value of the
union’s discriminant.

DICORBAUnNion2 Interface The pIcorBAUNnion2 interfaceis defined to describe CORBA union typesthat
support multiple case labels for each union branch. All mapped unions should
support the pTCorRBAUNion2 interface. The DICORBAUNi on2 provides two
additional accessor methods, as follows:

// COM IDL
[oleautomation, dual, uuid(..)]
interface DICORBAUnion2 :DICORBAUnion
{
HRESULT SetValue([in] long disc, [in] VARIANT val) ;
[propget, id(-4)]
HRESULT CurrentValue([out, retval] VARIANT * val);
bg

DICORBAUnNion2 Methods The methods provided by prcorBaunion2 can be described as follows:

SetValue This can be used to set the discriminant and value
simultaneously.

CurrentValue This uses the current discriminant value to initialize the
VARIANT with the union element.

333

CHAPTER 13 | Mapping CORBA to Automation

Example The example can be broken down as follows:
1. Consider thefollowing OMG IDL:

// OMG IDL
interface A {..};

union U switch(long) {
case 1: long 1;
case 2: float f;
default: A obj;

iy

2. The preceding OMG IDL mapsto the following Automation
pseudo-union::

// COM IDL
interface DIU : DICORBAUnion2{
[propget] HRESULT get_UNION_d([retval,out] long * val);
[propget] HRESULT 1 ([retval,out] long * 1);
[propget] HRESULT 1([in] long 1);
[propget] HRESULT f([retval,out] float * f);
[propget] HRESULT f([in] float f);
[propget] HRESULT A([retval,out] DIA ** wval);
[propget] HRESULT A([in] DIA * val);
}i

3. Thefollowing Visua Basic exampleis based on the preceding COM IDL:

' Visual Basic
Dim ObjFactory As CORBA_Orbix.DICORBAFactoryEx
Dim myUnion As DIU

Set myUnion = ObjFactory.CreateType (Nothing, "U")
myUnion.s = "This is a string"

Select Case (myUnion.UNION_d())
Case 1: MsgBox ("Union (long):" & Str$ (myUnion.l)
Case 2: MsgBox ("Union (float):" & Str$ (myUnion.f)
Case Else : MsgBox ("Union contains object reference")
End Select

334

Explanation

Graphical Overview

Mapping for Complex Types

The preceding COM IDL examplein point 2 can be explained as follows:

The mapped Automation dual interface derives from the bIcorBAUNion2
interface. The untoN_d property returns the value of the discriminant. The
discriminant indicates the type of value that the union holds. In this
example, the value of unToN_dis 2, if the union, u, contains afloat type.
For each member of the union, a property is generated in the matching
COM IDL interface to read the value of the member and to set the value of
the member. The property to set the value of a union member also setsthe
value of the discriminant. Do not try to read the value of amember, using a
method that does not match the type of the discriminant.

The mapping for the OMG IDL default Iabel isignored, if the cases are
exhaustive over the permissible cases (for example, if the switch typeis
boolean, and a case TRUE and a case FALSE are both defined).

Figure 41 provides a graphical overview of the interfaces that the Automation
view object supports, based on the example of the OMG IDL union, u.

D1ForeignComplexType O—

IUnknown

I

IDispatch O—

DICORBAUnion o—
DICORBAUnNion20

Figure 41: Automation View of the OMG IDL Union, U

335

CHAPTER 13 | Mapping CORBA to Automation

Mapping for Sequences

Overview

Mapping to SafeArrays

Example

336

An OMG IDL sequence maps to an Automation SafeArray.

An OMG IDL sequence maps to a VARIANT type containing an Automation
SafeArray. An OMG IDL bounded sequence mapsto afixed-size SafeArray. If
you pass a SafeArray that contains a different number of elements than that
required by the bounded sequence, it is automatically resized to the correct size.
An OMG IDL unbounded sequence maps to an empty SafeArray that can grow
or shrink to any size.

The coMet . Mapping . SAFEARRAYS_CONTATN_VARIANTS configuration value
maps a sequence of any typeto a SafeArray of VARIANT types containing the real
type.

The example can be broken down asfollows:

1. Consider the following OMG IDL, which defines both a bounded and
unbounded sequence:

OMG IDL
module ModBank {
interface Transaction {..};

// A bounded sequence
typedef sequence<Transaction, 30> TransactionList;

interface Account {
readonly attribute TransactionList statement;
readonly attribute float balance;

}i

// An unbounded sequence
typedef sequence<Account> AccountList;

interface Bank {
readonly attribute AccountList personalAccounts;
AccountList sortAccounts (in AccountList toSort)

Mapping for Complex Types

2. Thepreceding OMG IDL mapsto the following in Automation:

// COM IDL
typedef [public] VARIANT ModBank_ TransactionList

[oleautomation, dual, uuid(..)]
interface DIModBank Transaction: IDispatch {}

typedef [public] VARIANT ModBank_ AccountList;
[oleautomation, dual, uuid(..)]
interface DIModBank_Account: IDispatch {
[propget] HRESULT statement ([retval, out] IDispatch**
IT retval);
[propget] HRESULT balance ([retval, out] float*
IT retval);
17

[oleautomation, dual, uuid(..)]
interface DIModBank_ Bank: IDispatch {
[propget] HRESULT personalAccounts ([retval,out]
IDispatch** IT reval);
HRESULT sortAccounts ([in] IDispatch* toSort,
[optional, out] VARIANT* IT Ex,
[retval, out] IDispatch** IT retval);
}i

337

CHAPTER 13 | Mapping CORBA to Automation

338

The following Visual Basic exampleis based on the preceding COM IDL:

' Visual Basic

Dim myBank As IT Library_ Bank.DIModBank_Bank

Dim myAccounts As Variant

Dim tmpAccount As IT Library. Bank.DIModBank_ Account
Dim myBalance As Single

' Obtain a reference to a Bank object

Set myBank = ..
Set myAccounts = ORBFactory.CreateType (Nothing,
“ModBank/AccountsList”)

For Each acc in myAccounts
acc.balance = 0.00
Next acc

' Access a member of myAccounts
myBalance = myAccounts(4) .balance

' Obtain a reference to a member of myAccounts
Set tmpAccount = myAccounts(7)
myBalance = tmpAccount.balance

Mapping for Complex Types

Mapping for Arrays

Overview The mapping for an OMG IDL array is similar to that for an OMG IDL
sequence. OMG IDL arrays can map to either Automation SafeArrays or OLE
collections.

Mapping to SafeArrays Multidimensional OMG IDL arrays map to VARIANT types containing

multidimensional SafeArrays. The order of dimensionsin the OMG IDL array,
from left to right, corresponds to the ascending order of dimensionsin the
SafeArray. An error occurs if the number of dimensionsin an input SafeArray
does not match the CORBA type.

Mapping to OLE Collections Only single-dimension arrays can be supported when mapping to OLE
collections.

339

CHAPTER 13 | Mapping CORBA to Automation

Mapping for System Exceptions

Overview

Example

Explanation

340

The CORBA model uses exceptions to report error information. System
exceptions can be raised by any operation. However, system exceptions are not
defined at the OMG IDL level. A standard set of system exceptionsis defined by
CORBA, and Orbix provides a number of additional system exceptions. See the
Orbix documentation set for details of the system exceptions available.

A CORBA system exception maps to the DICORBASystemException
Automation interface, which is a pseudo-Automation interface (or
pseudo-exception) that derives from DIForeignException. See “COMet API
Reference” on page 217 for more details of these interfaces.

Consider the following example of how a CORBA system exception is defined
in Automation:

// COM IDL
[oleautomation, dual, uuid(..)]
interface DICORBASystemException : DIForeignException
{
[propget] HRESULT EX minorCode([retval,out] long * val);
[propget] HRESULT EX_completionStatus([retval,out] long *
val) ;

The attributes shown in the preceding example for system exceptions can be
described as follows:

EX_minorCode This defines the type of system exception raised.
EX_completionStatus Thistakes one of the following values:

o COMPLETION_YES = 0

* COMPLETION NO = 1

M COMPLETION_MAYBE = 2

These values are specified as an enum in the type
library information, as follows:
typedef enum {COMPLETION YES, COMPLETION_NO,

COMPLETION_MAYBE}
CORBA_CompletionStatus;

Mapping for Complex Types

Mapping for User Exceptions

Overview The CORBA model uses exceptionsto report error information. User exceptions
aredefinedin OMG IDL, and an OMG IDL operation can optionally specify that
it might raise a specific set of user exceptions.

An OMG IDL user-defined exception maps to an Automation interface that has

a corresponding property for each member of the exception. The Automation
interface derives from the DICORBAUserException interface.

Example The example can be broken down as follows:
1. Consider the following OMG IDL:

// OMG IDL
exception Reject
{

string reason;
17

2. Thepreceding OMG IDL mapsto the following in Automation:

// COM IDL
[oleautomation, dual, uuid(..)]
interface DIreject : DICORBAUserException
{
[propget] HRESULT reason([retval,out] BSTR reason) ;
}

Graphical Overview for User Figure 42 provides a graphical overview of the interfaces that the Automation
Exceptions view object supports, based on the example of the OMG IDL Bank: :Reject
exception.

341

CHAPTER 13 | Mapping CORBA to Automation

1Unknown

I

1Dispatch O—
D1ForeignComplexType O—
DIForeignException 0—

DICORBAUserException 0—

DIBank_Reject O

Figure 42: Automation View of Bank_Reject

342

Mapping for Complex Types

Mapping for the Any Type

Overview The OMG IDL any type translates to an OLE vaARIANT type.

Containing a Simple Type If the any contains a simple data type, it mapsto a varIanT type that contains a
corresponding simple type. See Table 6 on page 313 for details of the mappings
for basic types.

Containing a Complex Type If the any contains a complex type, the VARIANT type contains an Ibispatch
view of the CORBA type.

Containing a Sequence or Array If the any contains a CORBA sequence Or array type, the vARTANT type
contains an Automation SafeArray. See “Mapping for Sequences’ on page 336
and “Mapping for Arrays’ on page 339 for more details.

343

CHAPTER 13 | Mapping CORBA to Automation

Mapping for Object References

Overview

Example

344

When an OMG IDL operation returns an object reference, or passes an object
reference as an operation parameter, this is mapped as areference to an
IDispatch interfacein COM IDL.

The example can be broken down as follows:
1. Consider thefollowing OMG IDL:

// OMG IDL

interface Simple

{
attribute short shortTest;

1

interface ObjRefTest

{
attribute Simple simpleTest;
Simple simpleOp (in Simple inTest, out Simple outTest,

inout Simple inoutTest) ;

}i

15

| ForeignObject Interface

Visual Basic Example

Mapping for Object References

2. Thepreceding OMG IDL mapsto the following in Automation:

// COM IDL
[oleautomation, dual, uuid(..)]
interface DISimple : IDispatch
{
[propget] HRESULT shortTest ([retval,out] short * wval);
[propput] HRESULT shortTest ([in] short shortTest);
hg
[oleautomation, dual, uuid(..)]
interface DIObjRefTest : IDispatch
{
HRESULT simpleOp([in] DISimple *inTest,
[out] DISimple **outTest,
[in,out] DISimple **inoutTest,
[optional,out] VARIANT * excep_OBJ,
[retval,out] DISimple ** wval);
[propget] HRESULT simpleTest ([retval,out] DISimple ** val);
[propput] HRESULT simpleTest ([in] DISimple * simpleTest) ;
}i

An Automation view interface must expose the IForeignObject interfacein

addition to the interface that isisomorphic to the mapped CORBA interface.

IForeignObject provides amechanism to extract avalid CORBA object

reference from aview object.

Consider an Automation view object, B, that is passed as an in parameter to an

operation, , in view a. The M operation must somehow convert the B view to a

valid CORBA object reference. The sequence of eventsinvolving

IForeignObject: :GetForeignReference iS asfollows:

1. Theclient calls automation-view-A: :M, passing an Ibispatch-derived
pointer to Automation-view-B.

2. Automation-View-A: :M calls IDispatch: :QueryInterface for
IForeignObject.

3. Automation-View-A: :M CalS IForeignObject: :GetForeignReference
to get the reference to the CORBA object of the B type.

4, Automation-View-A::M cCallS CORBA-Stub-A::M with the reference,
narrowed to the B interface type, asthe object reference in parameter.

Thefollowing Visual Basic exampleisbased on the preceding mapping rulesfor
object references:

345

CHAPTER 13 | Mapping CORBA to Automation

' Visual Basic
Dim bankObj As BankBridge.DIBank
Dim accountObj As BankBridge.DIAccount

' Get a reference to a Bank object
Set bankObj = ..

' Get a reference to an Account object as a return value
Set accountObj = bankObj.newAccount "John"

' Use the returned object reference
accountObj .makeDeposit 231.98

' finished, delete the account
bankobj .deleteAccount accountObj

346

Mapping for Modules

Mapping for Modules

Overview An OMG IDL definition contained within the scope of an OMG IDL module
maps to its corresponding Automation definition, by prefixing the name of the
Automation type definition with the name of the module.

Example The example can be broken down as follows:
1. Consider thefollowing OMG IDL:

// OMG IDL
module Finance {
interface Bank {

i
iy
2. Thepreceding OMG IDL mapsto the following in Automation:
// COM IDL
[oleautomation, dual, uuid(..), helpstring("Finance_Bank")]
interface DIFinance Bank : IDispatch {

}

3. Thepreceding example can then be used asfollows, for example, in Visua
Basic:

' Visual Basic
Dim bankObj As DIFinance_Bank

347

CHAPTER 13 | Mapping CORBA to Automation

Mapping for Constants

Overview

Example

348

There is no Automation definition generated for an OMG IDL constant
definition, because Automation does not have the concept of a constant.
However, code can be generated for an Automation controller, if appropriate.

If an OMG IDL constant is contained within an interface or module, its
trandated name is prefixed by the name of the interface or module in the
Automation controller language. (See “Mapping for Scoped Names’ on
page 351 for more details.)

The example can be broken down as follows:
1. Consider thefollowing OMG IDL constant definition:

// OMG IDL
const long Max = 1000;

2. The preceding constant definition can be represented as followsin Visua
Basic:

' Visual Basic
' In .BAS file
Global Const Max = 1000

Alternatively, the preceding constant definition in point 1 can be
represented as follows in PowerBuilder:

// PowerBuilder
CONSTANT long Max=1000

Mapping for Enums

Mapping for Enums

Overview A CORBA enum maps to an Automation enum.

Example The example can be broken down as follows:
1. Consider thefollowing OMG IDL:

// OMG IDL

{

enum colour { white, blue, red };
interface foo
{

void opl (in colour col);

¥

17

2. Thepreceding OMG IDL mapsto the following in Automation:

// COM IDL
typedef [public,vl_enum] { white, blue, red } colour;
[oleautomation, dual, uuid(..)]
interface foo:IDispatch
{
HRESULT opl([in] colour col, [optional, out] VARIANT *
excep_OBJ) ;

RuntimeErrors Because Automation maps enum parameters to the platform’ s integer type, a
runtime error occurs in the following situations:

* If the number of elementsin the CORBA enum exceeds the maximum
value of an integer.

i If the actual parameter applied to the mapped parameter in the Automation
view interface exceeds the maximum value of the enum.

349

CHAPTER 13 | Mapping CORBA to Automation

Enumswithin an Interface or
Module

Enumsat Global Scope

350

If an OMG IDL enum is contained within an interface or module, its translated
nameis prefixed with the name of the interface or module in the Automation
controller language. (See “Mapping for Scoped Names” on page 351 for more
details.)

If an OMG IDL enumis declared at global OMG IDL scope, the name of the
enum should also be included in the constant name.

Mapping for Scoped Names

Mapping for Scoped Names

Overview An OMG IDL scoped name maps to an Automation identifier where the scope
operator, : :, isreplaced with an underscore.

Example The example can be broken down as follows:
1. Consider thefollowing OMG IDL:

// OMG IDL
module Finance {
interface Bank {
struct PersonnelRecord {

iy
void addRecord(in PersonnelRecord r) ;
Y7
bg
2. Thepreceding OMG IDL yields the scoped name,

Finance: :Bank: : PersonnelRecord.

3. The preceding scoped name maps to the Automation identifier,

Finance_ Bank_PersonnelRecord.

351

CHAPTER 13 | Mapping CORBA to Automation

Mapping for Typedefs

Overview The mapping of an OMG IDL typedef to Automation depends on the OMG IDL
type for which the typedef is defined. A typedef definition is most often used for
array and sequence definitions.

There is no mapping provided for typedefs for the basic OMG IDL types listed
in Table 6 on page 313. Therefore, aVisual Basic programmer cannot make use
of these typedef definitions for basic types.

Example The example can be broken down as follows:

1. Consider thefollowing OMG IDL:

// OMG IDL
module MyModule{
module Module2 {
module Module3 {
interface foo{};
Ve
}i
g
typedef MyModule::Module2::Module3: :foo bar;

2. Thepreceding OMG IDL can be used asfollowsin Visual Basic:

' Visual Basic

Dim a as Object

Set a = theOrb.GetObject (“MyModule/Module2/Module3/foo”)
' Release the object

Set a = Nothing

' Create the object using a typedef alias

Set a = theOrb.GetObject (“bar”)

352

In This Chapter

CHAPTER 14

Mapping CORBA
to COM

CORBA typesaredefined in OMG IDL. COM typesaredefinedin
Microsoft IDL. To allow interworking between COM clients and
CORBA servers, COM clients must be presented with Microsoft
IDL versions of the interfaces exposed by CORBA objects.
Therefore, it must be possible to translate CORBA typesto
Microsoft IDL. This chapter outlines the CORBA-to-COM

mapping rules.

This chapter discusses the following topics:

Basic Types page 355
Mapping for Strings page 356
Mapping for Interfaces page 357
Mapping for Complex Types page 368
Mapping for Object References page 386
Mapping for Modules page 388
Mapping for Constants page 389
Mapping for Enums page 391

353

CHAPTER 14 | Mapping CORBA to COM

Mapping for Scoped Names page 393

Mapping for Typedefs page 394

354

Note: For the purposes of illustration, this chapter describes a textual
mapping between OMG IDL and Microsoft IDL. COMet itself does not
require this textual mapping to take place, because it includes a dynamic
marshalling engine. The textual mappings shown in this chapter are actually
performed by COMet at runtime.

Basic Types

Basic Types

Overview OMG IDL bhasic types translate to compatible typesin COM.

Mapping Rules Table 7 shows the mapping rules for each basic type.

Table7: CORBA-to-COM Mapping Rules for Basic Types

OMG IDL Description Micr osoft Description
IDL

boolean Unsigned char, 8-bit boolean 16-bit integer

0 = FALSE 0 = FALSE

1 = TRUE 1 = TRUE
char 8-bit quantity char 8-bit quantity
double | EEE 64-bit float double |EEE 64-bit float
float |EEE 32-bit float float |EEE 32-bit float
long 32-hit integer long 32-hit integer
octet 8-bit quantity unsigned | 8-bit quantity

char

short 16-bit integer short 16-bit integer
unsigned 32-bit integer unsigned | 32-bitinteger
long long
unsigned 16-bit integer unsigned 16-bit integer
short short
unsigned 8-bit quantity unsigned | 8-bit quantity
char char

355

CHAPTER 14 | Mapping CORBA to COM

Mapping for Strings

Overview

Example for Unbounded Strings

Example for Bounded Strings

356

An OMG IDL string mapsto aMicrosoft IDL 1.psTR, which is anull-terminated
8-hit character string.

The example can be broken down asfollows:
1. Consider the following OMG IDL definition for an unbounded string:

// OMG IDL
typedef string UNBOUNDED_STRING;

2. The preceding OMG IDL mapsto the following Microsoft IDL:

// Microsoft IDL
typedef [string, unique] char * UNBOUNDED_STRING;

The example can be broken down as follows:
1. Consider thefollowing OMG IDL definition for a bounded string:
// OMG IDL

const long N = ..;
typdef string<N>BOUNDED_STRING;

2. The preceding OMG IDL mapsto the following Microsoft IDL:
// Microsoft IDL

const long N = ..;
typdef [string, unique] char (*BOUNDED_STRING) [N];

Mapping for Interfaces

Mapping for Interfaces

Overview This section describes how OMG IDL interfaces map to COM.

In This Section This section discusses the following topics:
Mapping Interface Identifiers page 358
Mapping for Nested Types page 359
Mapping for Attributes page 360
Mapping for Operations page 362

357

CHAPTER 14 | Mapping CORBA to COM

Mapping Interface I dentifiers

Overview

MDS5 Algorithm

DCE UUID

Implicit Assumption

358

An OMG IDL repository ID mapsto aMicrosoft IDL 1ID. All COM views that
are mapped from a particular CORBA interface must share the same COM 11D.

The mapping for interface identifiersis achieved by using a derivative of the
RSA Data Security Inc. MD5 Message-Digest algorithm. The repository ID for
the CORBA interface is fed into the algorithm to produce the I1D, whichisa
128-bit hash identifier. (A hash isa number generated by aformulafrom atext
string.) The generated 11D is then used for aCOM view of a CORBA interface.

One exception to therule isiif the repository ID isa DCE UUID, and the lID
generated isfor a COM interface (as opposed to an Automation or Automation
dual interface). In this case, the DCE UUID (and not the generated 11D) is used
asthelID. Thisisto allow a scenario where CORBA server devel opers can
implement existing COM interfaces.

The mapping for interface identifiersimplicitly assumes that repository IDs are
identical across ORBs for the same interface, and unique across ORBs for
different interfaces. Thisis necessary if IIOPis to function correctly across
ORBs.

Mapping for Interfaces

Mapping for Nested Types

Overview

Example

OMG IDL and Microsoft IDL do not share the same rules for the scoping level
of types declared within interfaces. OMG IDL considers atype to be scoped
within its enclosing module or interface. Microsoft IDL considersall typesto be
declared at global scope. To avoid accidental name collisions, therefore, types
declared within OMG IDL interfaces and modules must be fully qualified in
Microsoft IDL.

The example can be broken down as follows:

1

Consider the following OMG IDL:

// OMG IDL
module MyModule {
interface MyInterface ({
enum type {TYPEl, TYPE2};
struct MyStruct {
string mystring;
float myfloat;
type mykind;
17
void myop (in MyStruct val) ;
}i

The preceding OMG IDL mapsto the following Microsoft IDL:

// Microsoft IDL
[uuid(..), object]
interface IMyModule MyInterface : IUnknown {
typedef [vl enum] enum
{MyModule MyInterface TYPEL,
MyModule MyInterface TYPE2} MyModule MyInterface type;
typedef struct ({
LPTSTR account;
MyModule MyInterface type mykind;
} MyModule MyInterface MyStruct;
HRESULT myop (in MyModule MyInterface MyStruct *val);

359

CHAPTER 14 | Mapping CORBA to COM

Mapping for Attributes

Overview An OMG IDL attribute maps to a Microsoft IDL attribute, as follows:
®* A normd attribute mapsto a property that has a method to set the value
and a method to get the value.
* A readonly attribute maps to a property that only has a method to get the
value.
Example The example can be broken down as follows:

1. Consider thefollowing OMG IDL:

// OMG IDL
struct CustomerData
{
CustomerId Id;
string Name;
string SurName;
17

#pragma ID “BANK: :Account” “IDL:BANK/Account:3.1”
interface Account
{
readonly attribute float Balance;
float Deposit(in float amount) raises(InvalidAmount) ;
float Withdrawal (in float amount) raises(InsufFunds,
InvalidAmount) ;
float Close();
i

#pragma ID “BANK: :Customer” “IDL:BANK/Customer:1.2”"
interface Customer
{

attribute CustomerData Profile:
i

360

Mapping for Interfaces

2. Theprofile attribute in the preceding OMG IDL maps to the following
Microsoft IDL:

// Microsoft IDL
[object,uuid(...) ,pointer_default (unique)]
interface IBANK Customer: IUnknown
{
HRESULT _get_Profile([out] BANK CustomerData * val);
HRESULT _put_Profile([in] BANK CustomerData * val);
bp

The readonly attribute, Balance, in the preceding OMG IDL in point 1
maps to the following Microsoft IDL:

// Microsoft IDL
[object,uuid(..)]
interface IBANK Account: IUnknown
{
HRESULT _get_Balance([out] float * wval);
17

Note: The get method returns the attribute value contained in the [out]
parameter.

361

CHAPTER 14 | Mapping CORBA to COM

Mapping for Operations

Overview An OMG IDL operation mapsto a Microsoft IDL method.

Example The example can be broken down as follows:
1. Consider thefollowing OMG IDL:

// OMG IDL
#pragma ID “BANK::Teller” “IDL:BANK/Teller:1.2”
interface Teller
{
Account OpenAccount (in float StartingBalance,
in AccountTypes AccountType) ;
void Transfer (in Account Accountl,
in Account Account2,
in float Amount) raises (InSufFunds);
i

2. The preceding OMG IDL mapsto the following Microsoft IDL:

// Microsoft IDL
[object,uuid(..) ,pointer_default (unique)]
interface IBANK_Teller: IUnknown
{
HRESULT OpenAccount ([in] float StartingBalance,
[in] IBANK_AccountTypes AccountType,
[out] IBANK_Account ** ppiNewAccount) ;
HRESULT Transfer ([in] IBANK Account * Accountl,
[in] IBANK Account * Account2,
[in] float Amount,
[out] BANK TellerExceptions ** ppException) ;

Rulesfor Parameter Passingand The following mapping rules apply for parameter-passing modes and return
Return Types types:

®* AnOMGIDL in parameter mapsto a Microsoft IDL [in] parameter.
®* AnOMG IDL out parameter mapsto a Microsoft IDL [out] parameter.

®* AnOMGIDL inout parameter mapsto aMicrosoft IDL [in, out]
parameter.

362

Mapping for Interfaces

® AnOMG IDL return type mapsto aMicrosoft IDL [out] parameter as
the last parameter in the signature.

Indirection Levelsfor Parameters Thefollowing rules exist for operation parameters in terms of indirection levels:

i Integral types (for example, long, char, enum) are passed by value as in
parameters, and are passed by reference as out parameters.

® Strings are passed as LPSTR &S in parameters, and are passed as LPSTR* as
out parameters.

® Complex types (for example, union, struct, exception) are dways
passed by reference.

® Optional parameters are passed using double indirection (for example,

IntfException ** val).

Operationswith Oneway An OMG IDL operation that is defined with the oneway attribute maps to
Attribute Microsoft IDL in the same way as an operation that has no output arguments.

363

CHAPTER 14 | Mapping CORBA to COM

Mapping for Interface Inheritance

Overview CORBA and COM have different models for inheritance. CORBA interfaces
can be multiply inherited, but COM does not support multiple interface
inheritance.

Mapping Rules The CORBA-to-COM mapping rules for an interface hierarchy are asfollows:

364

Each OMG IDL interface nameis preceded by the letter 1 in the
corresponding Microsoft IDL definition.

If theinterface is scoped by OMG IDL modules, using : :, thisis replaced
by an underscorein Microsoft IDL (for example, mymodule: :myinterface
mMaps to Imymodule myinterface).

Each OMG IDL interface that does not have a parent maps to a Microsoft
IDL interface derived from the Tunknown interface.

Each OMG IDL interface that inherits from a single parent interface maps
to aMicrosoft IDL interface derived from the mapping for the parent
interface.

Each OMG IDL interface that inherits from multiple parent interfaces
maps to a Microsoft IDL interface derived from the Tunknown interface.
This Microsoft IDL interface then aggregates both base interfaces.

For each CORBA interface, the mapping for operations precedes the
mapping for attributes.

Operations are sorted in ascending order, based on the ISO Latin-1
encoding values of the respective operation names.

Attributes are sorted in ascending order, based on the ISO Latin-1
encoding values of the respective attribute names. For read-write attributes,
the get_attribute name method immediately precedesthe
set_attribute name method.

Interface Hierarchy Example

Interface Hierarchy Explanation

Mapping for Interface Inheritance

Figure 43 shows an example of a CORBA interface hierarchy.

Account Simple

CheckingDetails

Miscellaneous

Figure 43: Example of a CORBA Interface Hierarchy

The hierarchy in Figure 43 can be explained as follows:

b Account and Simple derive from Bank.

L CheckingDetails derives from account and Simple.
b Miscellaneous derives from checkingDetails.

365

CHAPTER 14 | Mapping CORBA to COM

Code Example The example can be broken down as follows:

1. Consider thefollowing OMG IDL, which represents an interface hierarchy
based on the example shown in Figure 43 on page 365:

// OMG IDL
interface Bank
{
void opBank () ;
attribute long val;
g
interface Account : Bank
{
void opAccount () ;
b7
interface Simple : Bank
{
void opSimple() ;
i
interface CheckingDetails : Account, Simple
{
void opCheckingDetails() ;
g
interface Miscellaneous : CheckingDetails
{
void opMiscellaneous () ;
b7

2. The preceding OMG IDL mapsto the following Microsoft IDL:

366

Mapping for Interface Inheritance

// Microsoft IDL
[object,uuid(...)]
interface IBank: IUnknown

{
HRESULT opBank () ;
HRESULT get val ([out] long * val);
HRESULT set val([in] long val);

bg

[{object,uuid(...)]
interface IAccount: IBank
{
HRESULT opAccount () ;
iy
[object,uuid(...)]
interface ISimple: IBank
{
HRESULT opSimple() ;
}i
[object,uuid(...)]
interface ICheckingDetails: IUnknown
{
HRESULT opCheckingDetails() ;
g
[object,uuid(..)]
interface IMiscellaneous: IUnknown
{
HRESULT opMiscellaneous () ;
iy

367

CHAPTER 14 | Mapping CORBA to COM

Mapping for Complex Types

Overview OMG IDL includes anumber of typesthat do not have counterpartsin Microsoft
IDL. This section describes the CORBA-to-COM mapping rules for these
complex types.

In This Section This section discusses the following topics:
Creating Constructed OMG IDL Types page 369
Mapping for Structs page 370
Mapping for Unions page 372
Mapping for Sequences page 374
Mapping for Arrays page 376
Mapping for System Exceptions page 377
Mapping for User Exceptions page 381
Mapping for the Any Type page 384

Note: Thereis no standard CORBA-to-COM mapping specified for OMG
IDL context clauses.

368

Mapping for Complex Types

Creating Constructed OMG IDL Types

Overview OMG IDL constructed types such as struct, union, sequence, and exception
map to corresponding struct typesin Microsoft IDL.

To create acomplex OMG IDL type, you should simply instantiate an instance
of its Microsoft IDL struct type. You must create an object representing an
OMG IDL constructed typein aclient, to passit asan in Or inout parameter to
an OMG IDL operation. Y ou can create an object representing an OMG IDL
constructed type in a server, to return it as an out Or inout parameter, or return
value, from an OMG IDL operation.

369

CHAPTER 14 | Mapping CORBA to COM

Mapping for Structs

Overview An OMG IDL struct mapsto aMicrosoft IDL struct.

Example The example can be broken down as follows:
1. Consider thefollowing OMG IDL:

// OMG IDL

typedef .. TO;
typedef .. T1;
typedef .. T2;

typedef .. Tn;
struct STRUCTURE

{

TO mO;
T1 ml;
T2 m2;

Tn mN;

iy

2. The preceding OMG IDL maps to the following Microsoft IDL:

// Microsoft IDL

typedef ..
typedef ..
typedef ..

typedef ..

typedef
{

TO;
T1;
T2;

Tn;
struct

T0 mO;
T1 ml;
T2 m2;

Tn mN;
}

STRUCTURE ;

370

Mapping for Complex Types

Examplefor Self-Referential Self-referential data types are expanded in the same manner as in the previous
Types example. For example:

1. Consider the following OMG IDL:

// OMG IDL
struct A
{
sequence<A> vl;
iy

2. Thepreceding OMG IDL mapsto the following Microsoft IDL:

// Microsoft IDL
typedef struct A
{
struct
{
unsigned long cbMaxSize;
unsigned long cbLengthUsed;
[size_is(cbMaxSize), length_is (cbLengthUsed),
unique]
struct A * pvValue;
} vl;
} A;

371

CHAPTER 14 | Mapping CORBA to COM

Mapping for Unions

Overview A discriminated union in OMG IDL maps to an encapsulated union in Microsoft
IDL.
Example The example can be broken down as follows:

1. Consider thefollowing OMG IDL:

// OMG IDL
enum UNION_DISCRIMINATOR
{
dChar=0;
dShort,
dLong,
dFloat,
dDouble};
union UNION_OF_CHAR AND ARITHMETIC
switch (UNION_DISCRIMINATOR)
{
case dChar: char c;
case dShort: short s;
case dLong: long 1;
case dFloat: float f:
case dDouble: double d;
default: octet vI[8]; };

2. The preceding OMG IDL maps to the following Microsoft IDL:

372

Mapping for Complex Types

// Microsoft IDL
typedef enum [vl_enum,public]
{
dchar=o,
dshort,
dLong,
dFloat,
dbDouble,
} UNION_DISCRIMINATOR;
typedef union switch (UNION_DISCRIMINATOR DCE_d)
{
case dChar: char c;
case dShort: short s;
case dLong: long 1;
case dFloat: float £f;
case dDouble: double d;
default: byte v[8];
} UNION_OF_CHAR AND ARITH

373

CHAPTER 14 | Mapping CORBA to COM

Mapping for Sequences

Overview

Example for Unbounded
Sequences

Explanation for Unbounded
Sequences

374

OMG IDL sequences have no direct corresponding typein COM. An OMG IDL
sequence can be bounded (that is, of fixed length) or unbounded (that is, of
variable length). An OMG IDL sequence mapsto a COM structure.

The example can be broken down as follows:

1. Consider thefollowing OMG IDL, which defines an unbounded sequence
of sometype, T:

// OMG IDL
typedef .. T;
typedef sequence<T> UNBOUNDED_SEQUENCE;

2. The preceding OMG IDL mapsto the following Microsoft IDL, which
definesa COM structure containing a pointer to the first element, with a
length and member indicating the total number of elementsin the
sequence:

// Microsoft IDL
typedef .. U;
typedef struct
{
unsigned long cbMaxSize;
unsigned long cbLengthUsed;
[size_is(cbMaxSize), length_is (cbLengthUsed), unique] U
*pValue;
} UNBOUNDED_SEQUENCE;

In the preceding example, the encoding for the unbounded OMG IDL sequence
of type T isthat of aMicrosoft IDL struct that contains a unique pointer to a
conformant array of type u, where u isthe Microsoft IDL mapping of T. The
enclosing struct in the Microsoft IDL mapping is necessary, to provide a scope
in which extent and data bounds can be defined.

Mapping for Complex Types

Example for Bounded Sequences The example can be broken down as follows:

1

some type, T, which can grow to ben size:

// OMG IDL
const long N = ..;

typedef .. T;

typedef sequence<T,N> BOUNDED_SEQUENCE_OF_N;

// Microsoft IDL
const long N = ..;
typedef .. U;
typedef struct
{
unsigned long reserved;
unsigned long cbLengthUsed;
[length_is (cbLengthUsed)] U Value N;
} BOUNDED_SEQUENCE_OF_N;

Note: The maximum size of the bounded sequence is declared in the

declaration of the array. A [size is ()] attribute istherefore not needed.

The preceding OMG IDL maps to the following Microsoft IDL, which
definesa COM structure containing a fixed-size array of data elements:

Consider the following OMG IDL, which defines a bounded sequence of

375

CHAPTER 14 | Mapping CORBA to COM

Mapping for Arrays

Overview OMG IDL arrays map to corresponding COM arrays. The array element types
follow their standard mapping rules.

Example The example can be broken down as follows:
1. Consider the following OMG IDL, which defines an array of sometype, T:

// OMG IDL

const long N = ..;
typedef .. T;

typedef T ARRAY OF T[N];

2. The preceding OMG IDL maps to the following Microsoft IDL, which
defines an array of typeu:

// Microsoft IDL

const long N = ..;
typedef .. U;

typedef U ARRAY_OF U[N];

Explanation In the preceding example, the Microsoft IDL array of type uisthe result of
mapping the OMG IDL, T, into Microsoft IDL.

If the ellipsis (that is, ..) shown in the preceding example represents octet in the
OMG IDL, the ellipsis must be byte in the Microsoft IDL. Thisis why the types
of the array elements have different namesin the OMG IDL and Microsoft IDL
defintions.

376

Mapping for Complex Types

Mapping for System Exceptions

Overview

Rules

Error Object

The CORBA model uses exceptions to report error information. System
exceptions can be raised by any operation, regardless of the interface on which
the operation was invoked. A standard set of system exceptionsis defined by
CORBA, and Orbix provides a humber of additional system exceptions. Seethe
Orbix documentation set for details about the system exceptions available.

There are two aspects to the mapping of CORBA system exceptions to COM:

° Exceptions must be returned to COM clients viathe COM HRESULT return
type. Therefore, the CORBA exception is mapped to one of the standard
COM =resuLT values. When a CORBA system exception is raised, the
COM view in the bridge returns the HREsSULT to the client.

®* Additiona information pertaining to the system exception (for example, its
minor code and repository ID) cannot be mapped to the HrREsULT value.
Instead, additional information can be returned to the client via a standard
COM error object. Writing information to an error object is, however,
optional.

Because it is not possible to map information such asa CORBA system
exception’s minor code and repository ID to the HrREsuLT value, you can choose
to have this additional exception information written to a COM error object, and
returned to the client that way.

If you use an error object, the COM view must support the TsupportErrorinfo
interface. If aCOM client call resultsin a system exception, the COM view must
call the COM setErrorInfo () function, to set the error object to the client’s
calling thread. This allows the client to retrieve the error object, to report the
error to the user. Even if no system exception occurs, the COM view must till
call setErrorinfo (), thistimewith anull value for the 1ErrorInfo pointer
parameter, to ensure that the error object on that thread is destroyed.

377

CHAPTER 14 | Mapping CORBA to COM

Error Object Properties

378

The properties of the error object are set as shown in Table 8.

Table8: Using Error Object for CORBA System Exceptions

Property

Description

bstrSource

This takes the following format:
interfacename.operationname

The interface and operation name pertain to the
CORBA interface that the view represents.

bstrDescription

This takes the following format:
CORBA System Exception: [repository ID]
minor code[minor code] [completion status]

The repository IDand minor code arethose of
the system exception. The completion statuscan
be vEs, NO, or MaYBE, depending on the value of the
system exception’s CORBA compl etion status.

bstrHelpFile

Thisis unspecified.

dwHelpContext

Thisis unspecified.

GUID

Thisisthe IDD of the COM view interface.

Mapping for Complex Types

Example The example can be broken down as follows:

1. Consider the following COM C++ code for aCOM view that supports
error objects:

// COM C++
SetErrorInfo (OL,NULL); //Initialise the thread-local error
object
try
{
// Call the CORBA operation
}
catch(...)
{

CreateErrorInfo (&pICreateErrorInfo) ;
pICreateErrorInfo->SetSource(..) ;
pICreateErrorInfo->SetDescription (..) ;
pICreateErrorInfo->SetGUID(...) ;
pICreateErrorInfo->QueryInterface (IID_IErrorInfo,
&pIErrorInfo) ;
pICreateErrorInfo->SetErrorInfo (OL, pIErrorInfo) ;
pIlErrorInfo->Release() ;
pICreateErrorInfo->Release() ;

2. Thefollowing COM C++ client code shows how aclient can access the
error object:

379

CHAPTER 14 | Mapping CORBA to COM

// COM C++
// After obtaining a pointer to an interface on the COM View, the
// client does the following one time
pIMyMappedInterface->QueryInterface (IID_ISupportErrorInfo,
&pISupportErrorInfo) ;
hr = pISupportErrorInfo->InterfaceSupportsErrorInfo
(IID MyMappedInterface) ;
BOOL bSupportsErrorInfo = (hr == NOERROR ? TRUE : FALSE) ;

// Call to the COM operation.
HRESULT hrOperation = pIMyMappedInterface->..
if (bSupportsErrorInfo)
{
HRESULT hr = GetErrorInfo (0, &pIErrorInfo) ;
// S_FALSE means that error data is not available
// NO ERROR means it is available
if (hr == NO_ERROR)
{
pIErrorInfo->GetSource(..) ;
// Has repository id and minor code
// hrOperation has the completion status encoded into it
pIlErrorInfo->GetDescription (...) ;

}

380

Mapping for Complex Types

Mapping for User Exceptions

Overview

Exception Structure

The CORBA model uses exceptionsto report error information. User exceptions
aredefinedin OMG IDL. An OMG IDL operation can optionally specify that it
might raise a specific set of user exceptions. An OMG IDL operation might also
raise a system exception, but thisis not defined at the OMG IDL level.

An OMG IDL user-defined exception maps to a Microsoft IDL interface and an
exception structure that describes the body of information to be returned for the
exception to the client.

For the purpose of allowing access to user exception information, a Microsoft
IDL interfaceis defined for each OMG IDL interface that can raise auser
exception. The name of the Microsoft IDL interface is based on the fully scoped
name of the OMG IDL interface on which the exception is raised.

An exception structure is defined for each user exception. The exception
structure is specified as an output parameter, and it appears as the last parameter
of any COM operation signature that has been mapped from any OMG IDL
operation with araises clause. For example, if an operation in

MyModule: :MyTnterface raiSes a user exception, an exception structure named
MyModule_MyInterfaceExceptions is created and mapped as an output
parameter to Microsoft IDL. This extra parameter is passed by indirect
reference, to alow it to be treated as optional by the target server side.

Although a COM view can call setErrorInfo () toindicate a CORBA user

exception has occurred (as in the case of a CORBA system exception), thereis

no mechanism in COM to allow for accessing the additional data members

defined on a user exception object. The additional error information is therefore

mapped to an exception structure instead.

The exception structure contains:

. Members indicating the exception type.

®* Therepository ID for the exception definition in the CORBA Interface
Repository.

®* A pointer to the exception data.

381

CHAPTER 14 | Mapping CORBA to COM

Mapped Operations Each exception that can be raised by an operation is mapped to an operation on
the Exception interface. The mapped operation nameis constructed by prefixing
the exception name with get_. Each mapped operation takes one output
parameter, of the struct type, which is used to return the exception information.
Each mapped operation is defined to return aHresuLT value, for which the exact
value depends on the type of exception raised and whether a structure has been
specified by the client.

HRESULT for Successful If the call to a particular operation is successful and does not raise a user
Operations exception, arrRESULT value of s_ok isreturned, to indicate that the operation has
been successful.

Example The example can be broken down asfollows:
1. Consider the following OMG IDL:

// OMG IDL
module BANK
{

exception InsufficientFunds {float balance};
exception InvalidAmount {float amount};

interface Account
{
exception NotAuthorised{};
float Deposit(in float Amount) raises(InvalidAmount) ;
float Withdraw(in float Amount) raises (InvalidAmount,
NotAuthorised) ;
1%
iy

2. The preceding OMG IDL mapsto the following Microsoft IDL:

382

Mapping for Complex Types

// Microsoft IDL
struct BANK_InsufficientFunds
{
float balance;
hg
struct BANK_InvalidAmount
{
float amount;
i
struct BANK_Account_ NotAuthorised
{
}i

interface IBANK_AccountUserExceptions: IUnknown
{
HRESULT get_InsufficientFunds ([out] BANK_ InsufficientFunds

*exceptionBody) ;

HRESULT get_TInvalidAmount ([out] BANK_InvalidAmount
*exceptionBody) ;

HRESULT get_NotAuthorised([out] BANK_Account_NotAuthorised
*exceptionBody) ;

I8
typedef struct
{
ExceptionType type;
LPSTR repositoryId;
IBANK_AccountUserExceptions * piUserException;
} BANK_AccountExceptions

383

CHAPTER 14 | Mapping CORBA to COM

Mapping for the Any Type

Overview The OMG IDL any type does not map directly to COM.

The following is the Microsoft IDL interface definition to which the OMG IDL

Example
any typeis mapped:
// Microsoft IDL
typedef [vl_enum, public]
enum CORBAAnyDataTagEnum{
anySimpleValTag=0,
anyAnyValTag,
anySeqgValTag,
anyStructvValTag,
anyUnionValTag
} CORBAAnyDataTag;

typedef union CORBAAnyDataUnion
switch (CORBAAnyDataTag whichOne) {
case anyAnyValTag:ICORBA_Any *anyVal;
case anySeqgValTag:
case anyStructValTag:

struct {
[string, unique] char * repositoryId;

unsigned long cbMaxSize;
unsigned long cbLength-Used;
[size_is(cbMaxSize), length_is (cbLengthUsed),
unique] union CORBAAnyDatUnion *pVal;
multival;
case anyUnionValTag;
struct{
[string, unique] char * repositoryId;
long disc;
union CORBAAnyDataUnion *value;
unionval;
case anyObjectValTag:
struct{
[string, unique] char * repositoryId;
VARIANT val;
objectval;
case anySimpleValTag: //All other types
VARIANT simpleval;
} CORBAAnyData;

384

Mapping for Complex Types

Lauidl...]

interface ICORBA_Any: IUnknown

{

HRESULT _get_value([out] VARIANT * val);

HRESULT _put_value([in] VARIANT val) ;

HRESULT _get_CORBAAnyData ([out] CORBAAnyData * val);
HRESULT _put_CORBAAnyData ([in] CORBAAnyData val);
HRESULT _get_typeCode ([out] ICORBA_TypeCode ** tc);
}

385

CHAPTER 14 | Mapping CORBA to COM

Mapping for Object References

Overview When an OMG IDL operation returns an object reference, or passes an object
reference as an operation parameter, thisis mapped to areference to an
Tunknown-based interface in Microsoft IDL.

Example The example can be broken down as follows:
1. Consider the following OMG IDL:

// OMG IDL
interface Account ({

hg

interface Bank {
Account newAccount (in string name) ;
deleteAccount (in Account a);

i

2. The preceding OMG IDL mapsto the following Microsoft IDL:

// Microsoft IDL
[object, uuid(..)]
interface IBank : IUnknown {
HRESULT newAccount ([in] LPSTR it_name, [out] IAccount **
value) ;
HRESULT deleteAccount ([in] IAccount * account);
bg

3. Thefollowing COM C++ code is based on the preceding Microsoft IDL
definition:

386

Mapping for Object References

// COM C++
// Get a pointer to the Bank interface (pIF) using the GetObject
// method of ICORBAFactory

HRESULT hr = NOERROR;

LPSTR szName = “John Smith”;

float balance = 0, deposit = 10.0;
TIAccount *pAcc = 0;

hr = pIF->newAccount (szName, &pAcc, NULL) ;
hr = pAcc->makeLodgement (deposit) ;

hr = pAcc->_get_balance (&balance) ;

cout << ‘“balance is” << balance << endl;
hr = pIF->deleteAccount (pAcc) ;
pAcc->Release() ;

387

CHAPTER 14 | Mapping CORBA to COM

Mapping for M odules

Overview

Example

388

An OMG IDL definition contained within the scope of an OMG IDL module
maps to its corresponding Microsoft IDL definition, by prefixing the name of the
Microsoft IDL type definition with the name of the module.

The example can be broken down asfollows:
1. Consider the following OMG IDL:

// OMG IDL
module Finance {
interface Bank {

}i
}i
2. The preceding OMG IDL maps to the following Microsoft IDL:

// Microsoft IDL
[object, uuid(..), helpstring ("Finance_Bank")]
interface IFinance_Bank : IUnknown {

}

Mapping for Constants

Mapping for Constants

Overview

An OMG IDL const type maps to a Microsoft IDL const type.

Example

The example can be broken down as follows:

1. Consider thefollowing OMG IDL:

// OMG IDL

const
const
const
const
const
const
const
const
const

2. Thepreceding OMG IDL mapsto the following Microsoft IDL:

short S = ..;

long L = ..;

unsigned short US = ..;
unsigned long UL = ..;
float F = ..;

double D = ..;

char C = ..;

boolean B = ..;

string STR = “..”;

// Microsoft IDL

const
const
const
const
const
const
const
const
const

short S = ..;

long L = ..;

unsigned short US = ..;
unsigned long UL = ..;
float F = ..;

double D = ..;

char C = ..;

boolean B = ..;

LPSTR STR = “.”;

389

CHAPTER 14 | Mapping CORBA to COM

Scoping of Constant Declarations CORBA observes scoping of constant declarations, but COM ignores such
scoping and always treats a constant declaration as though it were globally
defined. To avoid potential name clashes, mapped constants in Microsoft IDL
are prefixed with the enclosing type in which they are declared. For example,
consider the following OMG IDL:

// OMG IDL
module PhoneCompany {
interface CustomerServices ({
const float CallRate = 11.7;
bp
I8

The preceding OMG IDL mapsto the following Microsoft IDL:

// Microsoft IDL
const float PhoneCompany CustomerServices_CallRate = 11.7;

390

Mapping for Enums

Mapping for Enums

Overview

Example

Valuesand Ordering

Scoping

A CORBA enum mapsto a COM enum.

The example can be broken down as follows:
1. Consider thefollowing OMG IDL:

// OMG IDL
interface MyIntf
{
enum A or B or C {A,B,C};
i

2. Thepreceding OMG IDL mapsto the following Microsoft IDL:

// Microsoft IDL
[uuid(...), ..]
interface IMyIntf
{
typedef [vl_enum, public]
enum MyIntf A or B or C {MyIntf A = 0, MyIntf B, MyIntf C}
MyIntf A or B or_C;

CORBA has enumsthat are not explicitly tagged with values. On the other hand,
Microsoft IDL supports enums that are explicitly tagged with values. Therefore,
any language mapping that permits two enumsto be compared, or which defines
successor or predecessor functions on enums, must conform to the ordering of
the enums as specified in OMG IDL.

CORBA observes scoping of enum declarations, but COM ignores such scoping
and always treats an enum declaration as though it were globally defined. To
avoid potential name clashes, translated enums in Microsoft IDL are prefixed
with the enclosing type in which they are declared. Therefore, in the preceding
example, the OMG IDL 2_or_B_or_c enumismapped to MyIntf_A_or_B_or_C.

391

CHAPTER 14 | Mapping CORBA to COM

Transmitting as 32-Bit

Truncation of Identifiers

392

The Microsoft IDL keyword, v1_enum, isrequired for an enum to be transmitted
as 32-bit values. Microsoft recommends that this keyword is used on 32-bit
platforms, because it increases the efficiency of marshalling and unmarshalling
data when such an enum is embedded in a structure or union.

CORBA supports enums with up to 232 identifiers, but Microsoft IDL only
supports 218 identifiers. Truncation might therefore result.

Mapping for Scoped Names

Mapping for Scoped Names

Overview An OMG IDL scoped name must be fully qualified in Microsoft IDL, to prevent
accidental name collisions.

Example The example can be broken down as follows:
1. Consider thefollowing OMG IDL:

// OMG IDL
module Bank {
interface ATM {
enum type {CHECKS, CASH] ;
struct DepositRecord ({
string account;
float amount;
type kind;
iy
void deposit (in DepositRecord val) ;
}i

2. Thepreceding OMG IDL mapsto the following Microsoft IDL:

Microsoft IDL
[uuid(..), object]
interface IBANK_ATM: IUnknown {
typedef [vl enum] enum BANK_ATM type
{BANK_ATM CHECKS, BANK_ATM CASH} BANK ATM type;
typedef struct
{
LPSTR account;
float amount;
BANK_ATM_ type kind;
}
BANK_ATM DepositRecord;
HRESULT deposit (in BANK_ATM DepositRecord * val) ;
}i

393

CHAPTER 14 | Mapping CORBA to COM

Mapping for Typedefs

Overview A CORBA typedef mapsto aMicrosoft IDL typedef. A typedef definitionis
most often used for array and sequence definitions.

Example The example can be broken down as follows:
1. Consider the following OMG IDL:

// OMG IDL
interface Account {..};

typedef sequence<Account, 100> AccountList;
2. The preceding OMG IDL maps to the following Microsoft IDL:
// Microsoft IDL
[object, UUID(..)]
interface IAccount : IUnknown {..};

Typedef struct {

} AccountList;

394

CHAPTER 15

COMet
Configuration

Thischapter describesthe configurationvariablesthat are specific
to COMet, and their associated values.

In This Chapter This chapter discusses the following topics:
Overview page 396
COMet:Config Namespace page 397
COMet:Mapping Namespace page 399
COMet:Debug Namespace page 400
COMet: TypeMan Namespace page 401
COM et: Services Namespace page 405

395

CHAPTER 15| COMet Configuration

Overview

Configuration Domains

The COMet: Scope

396

Configuration variables are stored in a configuration domain. A configuration
domain can be based on one of two distinct configuration models, depending on
whether your deployment needs are small scale or large scale. For small-scale
deployment, you can implement a configuration domain as an ASCII text file
that is stored locally on each machine and edited directly. For large-scale
deployment, Orhix provides a distributed configuration repository server that
enables centralized configuration for all applications spread across a network.

Configuration variables specific to COMet are grouped within various
namespaces within a covet : scope, asfollows:

COMet :Config:..
COMet :Mapping:...
COMet :Debug:...
COMet:Typeman:...
COMet:Services....

See the CORBA Administrator’s Guide for details of CORBA configuration
variables.

COM et:Config Namespace

COMet:Config Namespace

Overview

This section describes the configuration variables within the coMet : config:
namespace.

COMET_SHUTDOWN_POLICY The default setting for thisvariableis:
COMet :Config:COMET_SHUTDOWN_POLICY="implicit"

The valid settings for this variable are:

"implicit" This means that COMet shuts down the first time
D1llCanUnloadNow iS about to return yes.

"explicit" This means that you must make a call to orB: : ShutDown ()
to force COMet to shut down.

"Disabled" This means that COMet does not shut down the ORB when

it thinksit is about to unload. That is, the DLL is not
unloaded when D11canunloadNow is called by the COM
runtime. Visua Basic and Internet Explorer do thisto cache
the DLLs.

A problem arises, however, if the DLL is re-used, because
Orbix has aready been shut down.

"atExit" This means that the COMet bridge only shuts down at
process-exit time. Thisis the recommended setting when
running in the Visual Basic development environment.

STNGLE_THREADED_CALLBACK The default setting for thisvariableis:
COMet : Config: SINGLE_THREADED_CALILBACK="NO"

The valid settings for this variable are:

"NO" This means that COMet dispatches callbacks as they arrive.

"YES" This means that you can implement your own event loop for
processing callbacks.

397

CHAPTER 15| COMet Configuration

398

USE_INTERFACE_IN_IOR The default setting for thisvariableis:
COMet : Config:USE_INTERFACE IN_IOR="YES"

The valid settings for this variable are:

"YES" This means that COMet uses the type ID that is embedded in
the IOR as the interface name when narrowing to derived
interfaces. This can help to improve performance at application
runtime.

"NO" This means that COMet must make remote calls to
get_interface () and possibly repeated calls on the IFR when
narrowing to derived interfaces. This might have an adverse
affect on performance at application runtime.

COM et:Mapping Namespace

COMet:Mapping Namespace

Overview

This section describes the configuration variables within the coMet :Mapping:
namespace.

SAFEARRAYS_CONTAIN_VARIANT The default setting for thisvariableis:
COMet : Mapping : SAFEARRAYS_CONTAIN VARIANTS="yes"

Thereisaproblemin Visual Basic when dealing with SafeArrays as out
parameters. Visual Basic does not correctly check the v_vrt type of the
SafeArray contents and automatically assumesthey are of the varTanT type.
When constructing the out parameter, COMet cannot tell if the parameter type
has been declared (using the dim statement) asthereal type from the typelibrary
or Simply as SAFEARRAY.

The valid settings for this variable are;
"yes" This means that COMet should treat, for example, a

sequence of long types as mapping to a SafeArray of
VARIANT types, where each VARIANT contains a long.

"no" This means that COMet should treat, for example, a
sequence of 1ong types as mapping to a SafeArray of long
types.

KEYWORDS An example setting for thisvariableis:
COMet :Mapping :KEYWORDS="grid, DialogBox, bar, Foobar, height"

This variable allows you to specify alist of words that are to be prefixed with
1T_, to avoid clashes when using ts21id1 to generate Microsoft IDL from
existing OMG IDL typeinformation in the type store.

399

CHAPTER 15| COMet Configuration

COMet:Debug Namespace

Overview This section describes the configuration variable within the coMet : Debug:
namespace.

MessageLevel An example setting for thisvariable is:
COMet : Debug :MessageLevel="255, c:\temp\comet.log"

This variable can take any value in the range 0-255. The higher the value, the
more logging information is available. In the preceding example, avalue of 255
means that all messages are logged, in the specified comet . 1og file.

400

COMet: TypeM an Namespace

COMet: TypeMan Namespace

Overview

This section describes the configuration variables within the comet : TypeMan :
namespace.

TYPEMAN CACHE_FILE The default setting for thisvariableis:

COMet : TypeMan : TYPEMAN CACHE FILE="install-dir\var\it_domainname\
dbs\comet"

COMet uses amemory and disk cache for efficient access to type information.
This entry specifies the name and location of thefile used. It is automatically set
by the configuration script. In the preceding example, install-dir represents
the Orbix installation directory, and domainname represents your domain name.

TYPEMAN DISK_CACHE_SIZE The default setting for thisvariableis:
COMet : TypeMan : TYPEMAN DISK CACHE SIZE="2000"

Thisvariableis used in conjunction with TYPEMAN_MEM_CACHE_SIZE. It specifies
the maximum number of entries allowed in the disk cache. When thisvalueis
exceeded, entries can be flushed from the cache. The nature of the applications
using the bridge affects the value that should be assigned to this variable.
However, as ageneral rule, the disk cache size should be about eight to ten times
greater than the the memory cache. (See “TYPEMAN_MEM_CACHE_SIZE”
on page 402 for more details about setting the maximum number of entries for
the memory cache.)

A cache “entry” in this case corresponds to a user-defined type. For example, a
union defined in OMG IDL resultsin one entry in the cache. An interface
containing the definition of a structure resultsin two entries.

A good rule of thumb isthat 1000 cache entries (given a representative cross
section of user-defined types) corresponds to approximately 2 megabytes of disk
space. Therefore, the default disk cache size of 2000 allows for a maximum disk
cachefile size of approximately 4 megabytes. When the cache is primed with
type libraries for DCOM servers, the size could be considerably larger. It

401

CHAPTER 15| COMet Configuration

402

depends on the size of the type libraries, and this can vary considerably.
Typically, aprimed type library is more than three times the size of the original
type library, because the information is stored in aformat that optimizes speed.

TYPEMAN MEM_CACHE_SIZE The default setting for thisvariable is:
COMet : TypeMan : TYPEMAN_MEM CACHE_SIZE="250"

Thisvariable is used in conjunction with TYPEMAN_DISK_CACHE_SIZE. It
specifies the maximum number of entries allowed in the memory cache. When
thisvalueis exceeded, entries can be flushed from the cache. The nature of the
applications using the bridge affects the value that should be assigned to this
variable. However, as ageneral rule, the disk cache size should be about eight to
ten times greater than the the memory cache. Furthermore, to avoid unnecessary
swapping into and out from disk, you should ensure the memory cache sizeisno
smaller than 100. See “TYPEMAN DISK_CACHE_SIZE” on page 401 for more
details.

TYPEMAN_IFR_IOR_FILENAME The default setting for thisvariableis:
COMet : TypeMan : TYPEMAN_IFR_IOR FILENAME=" "

When the dynamic marshalling enginein COMet encounters atype for which it
cannot find corresponding type information in the type store, it must then
retrieve the type information from the Interface Repository. The order in which
COMet attempts to connect to the Interface Repository is as follows:

i If anameis specified in the coMet : TypeMan : TYPEMAN _IFR_NS_NAME
variable, COMet looks up that name in the Naming Service to connect to
the Interface Repository.

. If anameis not specified in covet : TypeMan : TYPEMAN_IFR_NS_NAME,
COMet checksto seeif an IOR is specified in the
initial references:InterfaceRepository:reference variable. If so,
it uses the Interface Repository associated with that IOR.

° If an IOR isnot specified in
initial_ references:InterfaceRepository:reference, COMet
checksto seeif afilenameis specified in the TYPEMAN_TFR_IOR_FILENAME
variable.

COMet: TypeM an Namespace

Consequently, you must set the TYPEMAN_IFR_IOR_FILENAME Variableif you do
not set CoMet : TypeMan : TYPEMAN : ITFR_NS_NAME Of
initial_references:InterfaceRepository:reference. Inthiscase, the
value required is the full pathname to the file that contains the IOR for the
Interface Repository you want to use.

TYPEMAN_TFR_NS_NAME The default setting for thisvariableis:
COMet : TypeMan: TYPEMAN TFR NS _NAME=" "

Thisvariable is needed if you are using the Naming Service to resolve the
Interface Repository. It specifies the name of the Interface Repository in the
Naming Service. You should register an IOR for the Interface Repository in the
Naming Service under acompound name. This variable should contain that
compound name. As explained in “TYPEMAN TFR_IOR_FILENAME” on

page 402, thisisthefirst configuration variable that COMet always checksiif it
needs to contact the Interface Repository for type information that it cannot find
in the type store.

TYPEMAN_READONLY The default setting for thisvariableis:
COMet : TypeMan : TYPEMAN_READONLY="no"

The valid settings for this variable are:

"no" This means that clients have write access to the type store.
"yes" This means that clients have readonly access to the type
store.

This variable specifies whether clients have write access or readonly access to
the type store. If you have a scenario involving multiple Automation clients
sharing asingle out-of-process bridge, it meansthat all your clientsare using one
central type store. If clients are granted write access to the type store, the type
store is blocked whenever it isin use by a particular client, and al other clients
must wait until that client isfinished using it. This can have anegative impact on
both performance and scalability. It is therefore recommended that you set this
configuration variable to "yes', to only alow clients readonly accessto the type
store.

403

CHAPTER 15| COMet Configuration

404

TYPEMAN_LOGGING The default setting for thisvariableis:
COMet : TypeMan : TYPEMAN_LOGGING="none"

The valid settings for this variable are:

"none" This means that no logging information is output for the
COMet type store manager (typeman).

"stdout" This means that logging information is used only with
typeman. exe.

"DBMon" This means that logging information is output to DEMon . exe.

"file" This means that logging information is output to the file
specified by the coMet : Typeman : TYPEMAN_1OG_FILE
variable.

TYPEMAN LOG_FILE An example setting for thisvariableis:
COMet : TypeMan : TYPEMAN LOG_FILE="c:\temp\typeman.log"

If the value of the TyPEMAN L.OGGING Variableissetto "file, thisvariable
specifies the full path to that output file for typeman logging information.

COM et: Services Namespace

COM et: Services Namespace

Overview This section describes the configuration variable within the coMet : Services:
namespace.

NameService The default setting for this variableis:
COMet : Services:NameService=" "

By default, COMet uses the Naming Service that is specified in the Orbix
initial_references:NameService: configuration scope. If (and only if) the
value specified for that configuration variableis blank, or it relatesto an invalid
IOR, COMet then uses the Naming Service that is specified by the

COMet : Services :NameService configuration variable. The value specified is
the full pathname to the file that contains the IOR for the Naming Service you
want to use.

405

CHAPTER 15| COMet Configuration

406

In This Chapter

CHAPTER 16

COMet Utility

Arguments

This chapter describes the various arguments that are available
with each of the COMet command-line utilities.

This chapter discusses the following topics:

Typeman Arguments page 408
Ts2idl Arguments page 410
Ts2tlb Arguments page 411
Aliassrv Arguments page 412
Custsur Arguments page 413
Tlibreg Arguments page 414
Idigen vb_genie.tcl Arguments page 415

407

CHAPTER 16 | COMet Utility Arguments

Typeman Arguments

Overview This section describes the arguments available with the typeman utility, which
manages the COMet type store.

Summary of Arguments The arguments available with typeman are:
-b Thisallowsyou to view the bucket sizesin the memory cache hash table.

-C

408

This allows you to view the contents of the type store disk cache. You
can specify -cn to view the contentsin the order in which they have been
added to the cache. Y ou can specify -cu to view the UUID of each type
listed. (Every typein the type store has an associated UUID. COMet
generates UUIDs for OMG IDL types, using the MD5 agorithm, as
specified by the OMG.)

Thisinstructs typeman to search the Interface Repository or atype
library for aspecific item of type information, and then add it to the type
store cache. Y ou must qualify -e with an OMG IDL interface name, a
full type library pathname, the UUID of a COM IDL interface, or the
name of atext file that lists the aforementioned in any combination. See
“Adding New Information to the Type Store” on page 180 for details of
how to specify each.

If you specify an OMG IDL interface name that is not already in the
cache, typeman |00ks up the Interface Repository. If you specify atype
library pathname or UUID that is not already in the cache, typeman
looks up the relevant type library. Regardless of where the type
information originates, typeman then copiesit to the type store cache.

This allows you to view the type store data files. These include the disk
cache datafile (typeman._dc), the disk cache index file (typeman. idc),
the disk cache empty record index file (typeman. edc), and the UUID
name mapper file (typeman.map).

Thisinstructs typeman to display "cache miss" on the screen, if atype
itislooking for is not aready in the cache. If the typeis already in the
cache, typeman displays "Mem cache hit" on the screen.

Thisinstructs typeman to always query the Interface Repository for an
item of OMG IDL type information. This can be used to compare the
performance of different ORBs, and so on.

-V

-w

-?2

Typeman Arguments

This logs the type store basic contents to the screen. Enter -1+ to log
newly added and deleted entries. Enter -1 tibto log typelibrary
information. Enter -1 union to log OMG IDL information for unions.

This generates static bridge compatible names for OMG IDL sequences.

This allows you to view the v-table contents for an interface or struct.
This option provides output such as the following:

Name Sorted V-table DispId Offset
balance get makeLodgement 1 0
makeLodgement makeWithdrawal 2 1
makeWithdrawal balance 3 2
overdraftLimit get overdraftLimit 4 3

This deletes the type store contents. This meansthat it deletes the disk
cache datafile (typeman._dc), the disk cache index file (typeman. idc),
and the disk cache empty record index file (typeman.edc). If you aso
want to delete the UUID name mapper file (typeman .map), you must
enter -wm instead. Deleting the type store contents is useful when you
want to reprime the cache. Y ou might want to reprime the cache, for
example, if it contains type information for an interface that has
subsequently been modified.

This allows you to view the actual size to which the memory cache
temporarily growswhen typeman isloading in acontaining type (such as
amodule) to retrieve a contained type (such as an interface within that
module).

This outputs the usage string for typeman.

This allows you to view the format of the entries that you can includein
atext file, which you can specify with the -e option, if you want to
prime the cache simultaneously with any number and combination of
type names, type library pathnames, and COM UUIDs.

409

CHAPTER 16 | COMet Utility Arguments

Ts2idl Arguments

Overview

Summary of Arguments

410

This section describes the arguments available with the ts2ia1 utility,
which allows you to create COM IDL definitions, based on existing
OMG IDL typeinformation in the type store.

The arguments available with ts2id1 are:

-C

b

Thisinstructs ts2id1 not to query the Interface Repository for the
specified OMG IDL interface. In this case, ts2idl searchesonly the
type store for the relevant information.

Use this to specify the name of the IDL file to be created. Y ou must
qualify this option with the filename (for example, grid.id1). Inturn,
you must qualify the filename with the name of the item of type
information on which it is being based. For example:

ts2idl -f grid.idl grid
Thisinstructs ts2id1 to generate a COM IDL file, based on OMG IDL

information in the type store. Thisisadefault option. Y ou do not have to
specify -m, to create a COM IDL file.

Y ou can use this option when generating COM IDL, based on OMG IDL
information in the type store. It is a useful labor-saving device that
produces a makefile for building the proxy/stub DLL, which
subsequently marshals requests from the COM client to CORBA
objects.

Y ou can use this option when generating COM IDL based on OMG IDL
interfaces that employ user-defined types. This option completely
resolves those types and produces COM IDL for them.

Thisforcesinclusion of standard types from rTstdcon.idl and
orb.idl.

This outputs the usage string for ts2id1. You can aso use - for this.

Ts2tlb Arguments

Ts2tlb Arguments

Overview

Summary of Arguments

This section describes the arguments available with the ts2t1b utility, which
alowsyou to create atypelibrary, based on existing OMG IDL typeinformation
in the type store.

The arguments available with ts2t1b are:

-f

-V

Use this to specify the name of the type library to be created. Y ou must
qualify this option with the type library filename. The default isto use
the type name on which the type library is based, with a . t1b suffix (for
example, grid. t1b).

Thisindicates that interface prototypes are to appear as Ibispatch,
instead of using the specific interface name. If you do not specify this
option, the specific interface nameis used.

Use thisto specify the interna library namein which the typelibrary is
to be created. Y ou must qualify this option with the library name. The
default isto use the type name on which the typelibrary is based, with an
IT Library_prefix (for example, IT_Library_grid).

This prefixes parameter names with it_.
This outputs the usage string for ts2t1b. You can aso use - for this.

411

CHAPTER 16 | COMet Utility Arguments

Aliassrv Arguments

Overview

Summary of Arguments

412

This section describes the arguments available with the aliassrv utility, which
is used in association with the srvalias GUI toal, to allow you to replace a
legacy DCOM server with a CORBA server. See“ Replacing an Existing DCOM
Server” on page 196 for more details.

The arguments available with aliassrv are:

-C

-V

Thisindicates the CLSID of the legacy DCOM server that is being
replaced. Y ou must qualify this argument with the actual CLSID
enclosed in opening and closing braces (that is, { and 3).

This deletes the registry key denoted by the specified CLSID. Y ou must
qualify -a with the -c argument, which in turn must be qualified with
the CLSID.

This aliases the specified CLSID to COMet, so that the next time you
run aDCOM client of the legacy server whose CLSID is specified,
COMet is used instead of the legacy server. Y ou must qualify -r with
the name of thefile that contains the modified registry entries, to restore
the registry entries on the destination machine. For example:

aliassrv -r replace.reg -c { cLs1n}

This outputs the usage string for aliassrv. You can also use -» for this.

Custsur Arguments

Custsur Arguments

Overview This section describes the arguments available with the custsur utility, whichis
ageneric surrogate program that hosts the COMet DLLs when the bridge is
loaded out-of-process. Y ou can use custsur to generate IORs for non-Orhix
clients.

Summary of Arguments The arguments available with custsur are:

-f This specifies the filename to which the IOR is to be written.

-g Thisinstructs custsur to generate an IOR.

-i This specifies the interface name for which the IOR is to be created.
-m This specifies the marker name.

-s This specifies the name of the server.

-t This specifies atimeout value, in milliseconds, for the server being
implemented by custsur.

-v This outputs the usage string for custsur. You can also use - for this.

413

CHAPTER 16 | COMet Utility Arguments

Tlibreg Arguments

Overview

Summary of Arguments

414

This section describes the arguments available with the t1ibreg utility, which
alowsyou to register and unregister atype library that you have generated from
OMG IDL viats2tlb. The tlibreg utility registersthe type library with the
Windows registry.

The arguments available with t1libreg are:

-u Thisunregistersatypelibrary. Y ou must qualify this option with the full
type library pathname.

-v This outputs the usage string for ts2sp. You can aso use - for this.

Idlgen vb_genie.tcl Arguments

|dlgen vb_genie.tcl Arguments

Overview

Summary of Arguments

The Visual Basic code generation genie allows for quick, easy, and automatic
development of Visual Basic clients from existing OMG IDL definitions. It can
be run from the command line, using the following command format:

idlgen vb_genie.tcl [options] filename.idl [interface wildcard]*

In the preceding format, £ilename representsthe name of the OMG IDL file
from which the Visua Basic code is generated.

The arguments available with idigen vb_genie.tcl are:

-I

-dir

Before idigen parsesan IDL file, it sendsthe IDL file through an
IDL preprocessor. The -1 argument is one of two arguments that
allow you to passinformation to the IDL preprocessor.
Specificaly, -1 lets you specify the include path for the
preprocessor. For example:

idlgen vb_genie.tcl -I/inc -I../std/inc bank.idl

The -p argument also alows you to pass information to the IDL
preprocessor. Specifically, -p lets you define additional
preprocessor symbols. For example:

idlgen vb_genie.tcl -I/inc -DDEBUG

This outputs the usage string for idlgen vb_genie.tcl.

Thisindicates that the genieisto run in verbose mode (that is,
diagnostic messages are written to standard output when the genie
is generating an output file).

Thisindicates that the genieisto runin silent mode (that is,

diagnostic messages are not written to standard output when the
genieis generating an output file).

This specifies the directory path to which the generated fileisto be
output. This option must be qualified by afull directory path. If
-dir isnot specified, all output files are written to the current
directory.

415

CHAPTER 16 | COMet Utility Arguments

416

-include

-nons

-ns

By default, the genie generates client code for the specified IDL
files only. This argument alows you to specify that the genie must
also generate code for al #include files specifed in the IDL. For
example:

idlgen vb_genie.tcl -all -include grid.idl

The preceding example specifies that the genie isto generate
Visual Basic client code from grid.idl and any IDL filesthat are
included in it.

Thisindicates that stringified object references are to be written to
an IOR file, instead of using the Naming Service. Thisisthe default
setting. The IOR filename consists of the interface name and . ref
suffix. This argument is mutually exclusive with the -ns argument.

Specify thisargument only if it was also specified when generating
the CORBA server with the CORBA Code Generation Toolkit.
Thisindicates that the Naming Serviceis to be used to publish
object references, instead of writing them to an IOR file by defaullt.
This argument is mutually exclusive with the -nons argument.
Specify thisargument only if it was also specified when generating
the CORBA server with the CORBA Code Generation Toolkit.

| ndex

A
abstract interfacesin IDL 289
activator daemon 95, 110
algorithm, MD5 69, 358
aliassrv 198
options 412
any type
inIDL 292
any type (in OMG IDL) 224, 252
CORBA-to-Automation mapping 343
CORBA-to-COM mapping 384
API reference
Automation 222-249
COM 250-266
application runtime, installing 162
applications, deploying 151-165
Application Server Platform Deployment Environment,
installing 162
array type
inIDL 301
array type (in OMG IDL)
CORBA-to-Automation mapping 339
CORBA-to-COM mapping 376
attributes
inIDL 277
attributes (in OMG IDL)
CORBA-to-Automation mapping 319
CORBA-to-COM mapping 360
Automation clients
building 95
implementing in PowerBuilder 50, 92
implementing in Visual Basic with code
generation 43, 85
implementing in Visual Basic without code
generation 47, 89
introduction to 24
running 95
Automation interfaces
DICORBAAny 223
DICORBAFactory 228
DICORBAFactoryEx 230
DICORBAObject 231
DICORBAStruct 233

DICORBA SystemException 234
DICORBATypeCode 235
DICORBAUnNion 239
DICORBAUserException 240
DIForeignComplexType 241
DIForeignException 242
DIObject 243
DIObjectinfo 244
DIOrbixORBObject 245
DIORBObject 248
Automation view interface 314

B
basic types
inIDL 291
basic types (in OMG IDL)
CORBA-to-Automation mapping 313
CORBA-to-COM mapping 355
binding, early and late 14, 29, 67
bitwise operators 308
bounded sequences 375
bridge
aliasing 196
introduction to 24
bridge locations
client machines 153
intermediary machine 157
introduction to 30, 32
server machine 159
built-in typesin IDL 291

C
caching mechanism 176
callbacks 137-7?
generating stub code for 142
implementing 139
char type
inIDL 291
clients
writing 143
clients. See Automation clients, COM clients
client-side footprint, minimizing 164

417

INDEX

clone() 244
CLSID 197
CoCreatelnstance() 106
COM clients
building 110
implementing in C++ 70
introductionto 25
running 110
cometcfg 179
COM exceptions, catching 132
COM IDL, creating from OMG IDL 71, 101, 186
COM interfaces
ICORBA_Any 251
ICORBAFactory 253
ICORBAObject 255
ICORBA_TypeCode 257
ICORBA_TypeCodeExceptions 261
IMonikerProvider 221
10rbixORBObject 262
IORBObject 265
COM library 25
command options 407-416
commands
aliassrv 198, 412
custsur 57, 413
idigen vb_genie 213, 415
srvAlias 196, 412
tlibreg 69, 414
ts2idl 189, 410
ts2tlb 193, 411
typeman 182, 408
COM-to-CORBA model
implementation of 20
introductionto 18
configuration domain 396
configuration namespaces
Config 397
Debug 400
Mapping 399
Services 405
TypeMan 401
configuration repository 396
configuration variables 395405
COMET_SHUTDOWN_POLICY 397
KEYWORDS 399
Messagel evel 400
NameService 405
SAFEARRAYS_CONTAIN_VARIANTS 399
SINGLE_THREADED_CALLBACK 397, 398

418

TYPEMAN_CACHE_FILE 401
TYPEMAN_DISK_CACHE_SIZE 401
TYPEMAN_IFR_IOR_FILENAME 402
TYPEMAN_IFR_NS NAME 403
TYPEMAN_LOG_FILE 404
TYPEMAN_LOGGING 404
TYPEMAN_MEM_CACHE_SIZE 402
TYPEMAN_READONLY 403
constant definitionsin IDL 305
constant expressionsin IDL 308
constant fixed typesin IDL 295
constant types (in OMG IDL)
CORBA-to-Automation mapping 348
CORBA-t0-COM mapping 389
constructed types (in OMG IDL)
CORBA-to-Automation mapping 330
CORBA-t0-COM mapping 369
in Automation 230, 330
inCOM 369
content_type() 227, 238, 260
context clause (in OMG IDL) 344, 386
CORBA complex types 329, 368
CORBA exceptions
handling in Automation 122
handlingin COM 131
properties of 118
CORBA interface hierarchy 326, 364
CORBA servers
introduction to 25
registering 95, 110
replacing DCOM serverswith 196, 412
CORBA-to-Automation mapping 311-352
anys 343
arrays 339
attributes 319
basic types 313
constants 348
constructed types 330
enums 349
exceptions 340
interfaces 316
modules 347
object references 344
operations 321
scoped names 351
sequences 336
strings 315
structs 331
typedefs 352

unions 333
CORBA-t0-COM mapping 353-394

anys 384

arrays 376

attributes 360

basic types 355

constants 389

constructed types 369

enums 391

exceptions 377

inheritance 364

interfaces 357

modules 388

object references 386

operations 362

scoped names 393

sequences 374

strings 356

structs 370

typedefs 394

unions 372
CreateType() 230, 330
CreateTypeByld() 230
custsur 57

options 413

D
daemons 95, 110
datatypes, defining in IDL 304
DCOM
limitations of 23
using with COMet 54
DCOM proxy DLL 101, 186
DCOM servers, replacing with CORBA servers 196,
412
decimal fractions 295
default_index() 226, 238, 260
deploying applications 151-165
deployment
recommended scenario for 55
scenario recommended for Automation 29
scenario supported for COM 31
deployment models
bridge on each client machine 153
bridge on server machine 159
bridge shared by multiple clients 157
internet 161
DICORBAAny 223
DICORBAFactory 196, 228

INDEX

DICORBAFactoryEx 230, 330
DICORBAODbject 231

DICORBAStruct 233, 331

DICORBA SystemException 120, 234, 340
DICORBATYypeCode 235
DICORBAUnion 239, 333
DICORBAUSserException 240
DIForeignComplexType 241, 330
DIForeignException 119, 242

DIObject 243

DIObjectinfo 244

DIOrbixORBObject 245

DIORBObject 248

direct-to-COM support, using in Visual C++ 134
discriminator_type() 226, 237, 259

disk cache 177

dual interfaces 14, 29, 67, 317

E
early binding 14, 29, 67
empty interfacesin IDL 279
enum type
inIDL 297
ordinal values of 297
enum type (in OMG IDL)
CORBA-to-Automation mapping 349
CORBA-t0-COM mapping 391
equal() 258
equivalence of object references 232
Err object 123
error-handling code 127
exception handling 113-135
exceptions, in IDL 278
See also system exceptions, user exceptions
exceptions See also system exceptions
CORBA-to-Automation mapping 340
CORBA-t0o-COM mapping 377
handling in Automation 122
handling in COM 131
properties of 118
exception type (in OMG IDL)
in Automation 230, 330
inCOM 369
EX_completionStatus() 234
EX_1d() 242
EX_majorCode() 242
EX_minorCode() 234
extended built-in typesin IDL 293

419

INDEX

F

factory. See object factory
fixed type
inIDL 294
floating point typein IDL 291
footprint, minimizing client-side 164
forward declaration of interfacesin IDL 285

G
genies

C++ 43

Visual Basic 43, 85
get_BadKind() 261
get_ Bounds() 261
GetConfigvValue() 246, 262
get CORBAAnyData() 252
GetCORBAODbject() 249
GetForeignReference() 220
Getlmplementation() 231, 255
GetlnitialReferences() 249, 266
GetInterface() 231, 255
get_moniker() 221
GetObject() 229, 254

COM C++ example 103

example 144

PowerBuilder example 87

Visual Basic example 86
get_typeCode() 252
GetUniqueld() 220
get_vaueg() 252

H

Hash() 232, 256

hierarchy of interfacesin OMG IDL
mapping to Automation 326
mapping to COM 364

I
ICORBA_Any 251
ICORBAFactory 196, 253
ICORBAObject 255
ICORBA_TypeCode 257
ICORBA_TypeCodeExceptions 261
id() 225, 236, 258
IDispatch, usein late binding 67
IDispatch interfaces

use in deployment 29
IDL

420

abstract interfaces 289
arrays 301
attributes 277
built-in types 291
constant definitions 305
constant expressions 308
creating COM IDL from 71, 102, 186
creating type librariesfrom 67, 84, 190
empty interfaces 279
enum type 297
exceptions 278
extended built-in types 293
forward declaration of interfaces 285
inheritance redefinition 284
interface inheritance 280
local interfaces 286
modules and name scoping 269
multiple inheritance 281
object interface inheritance 283
operations 274
pseudo object types 303
registering 180
sequence type 302
struct type 298
structure 268
union type 299
valuetypes 288
idigen vb_geniettcl 213, 415
I1OP 23
usein deployment 27, 152
IMonikerProvider 221
Implementation Repository 95, 110
implementing
callbacks 139
server for client callbacks 149
inheritance (in OMG IDL)
CORBA -to-Automation mapping 323
CORBA-t0-COM mapping 364
multiple 326

inheritance redefinition in IDL 284
inline exception handling in Automation 125
insert_safearray() 227

INSTANCE_clone() 241
INSTANCE repositoryld() 241

interface (in OMG IDL)

CORBA -to-Automation mapping 316
CORBA-t0-COM mapping 357

interface hierarchy (in OMG IDL)

CORBA -to-Automation mapping 326

CORBA-to-COM mapping 364
interface inheritance in IDL 280
internet deployment 161
Internet Explorer 60
Internet Explorer security settings 64
Internet Inter-ORB Protocol. See 11OP
|OrbixORBObject 262
IORBObject 265
ISA() 232,255
IsEquivalent() 232, 256
IsNil() 232, 255

K
kind() 224, 236, 258

L

late binding 13, 29, 67

length() 226, 238, 260

local interfacesin IDL 286

local object pseudo-operations 287
|ocator daemon 95, 110

long double typein IDL 294

long long typein IDL 293

M

MD?5 agorithm 69, 358

member_count() 225, 236, 258

member_|abel() 226, 237, 259

member_name() 225, 237, 259

member_type() 226, 237, 259

memory cache 177

module (in OMG IDL)
CORBA-to-Automation mapping 347
CORBA-to-COM mapping 388

modules and name scoping in IDL 269

multiple inheritance 326

multiple inheritancein IDL 281

N

name() 225, 236, 258
Narrow() 247

nil object references 232
NonExistent() 232, 256

@)
object factory 87, 104
creating remote instance of 157, 159

INDEX

object interface inheritancein IDL 283
object references
Automation 86
COM 103
converting to strings 248, 265
CORBA-to-Automation mapping 344
CORBA-to-COM mapping 386
equivalent 232
foreign 220
nil 232
ObjectToString() 248, 265
octet type
inIDL 292
OLE collections 339
OMG IDL SeelDL
operation (in OMG IDL)
CORBA-to-Automation mapping 321
CORBA-t0-COM mapping 362
operations
inIDL 274

P
parameter-passing modes

CORBA -to-Automation mapping 321

CORBA-t0-COM mapping 362
PowerBuilder

example of GetObject() 87

runtime 162

writing clientsin 50, 92
ProcessEvents() 246, 263
properties of CORBA exceptions 118
protocols

introduction to 23

limitationsin using DCOM 29
pseudo object typesin IDL 303
put_CORBAAnyData() 252
put_value() 252

R
references. See object references
ReleaseCORBAView() 246, 263
Resolvelnitial Reference() 249, 266
return types
CORBA-to-Automation mapping 321
CORBA-t0-COM mapping 362
RunningInIDE() 246
runtime errors, mapping from CORBA to
Automation 314

421

INDEX

runtime requirements 162

S

SafeArrays 336, 339

scoped_name() 244

scoped names (in OMG IDL)
CORBA-to-Automation mapping 351
CORBA-to-COM mapping 393

self-referential datatypes 371

sequence type
inIDL 302

sequence type (in OMG IDL)
CORBA-to-Automation mapping 336
CORBA-to-COM mapping 374

servers
implementing for client callbacks 149
replacing DCOM with CORBA 196

SetOrbName() 247, 264

ShutDown() 246, 263

single inheritance 324

srvAlias 196, 412

StartUp() 246, 263

stringified object references 248, 265

StringToObject() 248, 265

string type
inIDL 292

string type (in OMG IDL)
CORBA-to-Automation mapping 315
CORBA-to-COM mapping 356

struct type
inIDL 298

struct type (in OMG IDL)
CORBA -to-Automation mapping 331
CORBA-to-COM mapping 370
in Automation 230, 330
inCOM 369

stub code
generating for callbacks 142

system exceptions 120
CORBA-to-Automation mapping 340
CORBA-to-COM mapping 379
properties of 120

T
target object

binding view object to 88, 105
tlibreg 69

options 414

422

ts2idl 189
location of 172
options 410

ts2tlb 193
location of 172
options 411

typedef (in OMG IDL)
CORBA-to-Automation mapping 352
CORBA-to-COM mapping 394

type libraries
creating from OMG IDL 67, 84, 190
registering 69, 414

typeman 182
location of 172
options 408

type_name() 244

type store
adding OMG IDL to 180
caching mechanism 176
central roleof 174
creating COM IDL from 186
creating type libraries from 190
deleting contents of 184
dumping contents of 185
priming 180

U
unbounded sequences 374
Union_d() 239
union type
inIDL 299
union type (in OMG IDL)
CORBA-to-Automation mapping 333
CORBA-t0-COM mapping 372
in Automation 230, 330
in COM 369
unique_id() 244
usage models 27-32
Automation client to CORBA server 28
COM client to CORBA server 31
user exceptions
CORBA -to-Automation mapping 341
CORBA-to-COM mapping 379, 382
UUIDs, generating 69

\%
value() 224
valuetypesin IDL 288

INDEX

view object
binding to target object 88, 105
introduction to 19
obtaining reference to in Automation 80
obtaining referencetoin COM 98
Visual Basic
example of GetObject() 86
generating clientsin, using genie 43
runtime 162
writing clientsin 47, 89
Visual C++, using direct-to-COM support in 134
vtable 14, 67, 317

W

wchar typein IDL 294
writing aclient 143
wstring typein IDL 294

Z
zero install configuration 164

423

INDEX

424

	Introduction
	COM and CORBA Principles
	Main Similarities and Differences
	CORBA Overview
	COM Overview
	COM
	Automation

	Introduction to COMet
	The Interworking Model
	How COMet Implements the Model
	COMet System Components

	Usage Models and Bridge Locations
	Automation Client to CORBA Server
	COM Client to CORBA Server

	Programmer’s Guide
	Getting Started
	Prerequisites
	Developing Automation Clients
	Introduction
	Using the Visual Basic Genie
	Writing a Visual Basic Client without the Genie
	Writing a PowerBuilder Client
	Running the Client

	Using DCOM with COMet
	Introduction
	Launching the COMet Bridge Out-of-Process
	DCOM Security

	Using COMet with Internet Explorer
	Specifying the Bridge Location
	The Supplied Demonstration

	Automation Dual Interface Support
	Developing COM Clients
	Generating Microsoft IDL from OMG IDL
	Compiling Microsoft IDL
	Writing a COM C++ Client

	Priming the COMet Type Store Cache

	Developing an Automation Client
	The Telephone Book Example
	Using Automation Dual Interfaces
	Writing the Client
	Obtaining a Reference to a CORBA Object
	The Visual Basic Client Code in Detail
	The PowerBuilder Client Code in Detail

	Building and Running the Client

	Developing a COM Client
	The Telephone Book Example
	Prerequisites
	Writing the Client
	Obtaining a Reference to a CORBA Object
	The COM C++ Client Code in Detail

	Building and Running the Client

	Exception Handling
	CORBA Exceptions
	Example of a User Exception
	Exception Properties
	General Exception Properties
	Additional System Exception Properties

	Exception Handling in Automation
	Exception Handling in Visual Basic
	Inline Exception Handling
	Using Type Information

	Exception Handling in COM
	Catching COM Exceptions
	Using Direct-to-COM Support

	Client Callbacks
	Introduction to Callbacks
	Implementing Callbacks
	Defining the OMG IDL Interfaces
	Generating Stub Code for the Callback Objects
	Implementing the Client
	Implementing the Client in Visual Basic
	Implementing the Client in PowerBuilder
	Implementing the Client in COM C++

	Implementing the Server

	Deploying a COMet Application
	Deployment Models
	Bridge In-Process to Each Client
	Bridge Out-of-Process on Each Client Machine
	Bridge on Intermediary Machine
	Bridge on Server Machine
	Internet Deployment

	Deployment Steps
	Minimizing the Client-Side Footprint
	Deploying Multiple Hosts

	Development Support Tools
	The COMet Type Store
	The Central Role of the Type Store
	The Caching Mechanism of the Type Store

	The COMet Tools Window
	Adding New Information to the Type Store
	Using the GUI Tool
	Using the Command Line

	Deleting the Type Store Contents
	Dumping the Type Store Contents
	Creating a Microsoft IDL File
	Using the GUI Tool
	Using the Command Line

	Creating a Type Library
	Using the GUI Tool
	Using the Command Line

	Creating Stub Code for Client Callbacks
	Replacing an Existing DCOM Server
	Generating Visual Basic Client Code
	Introduction
	Using the GUI Tool
	Using the Command Line

	Programmer’s Reference
	COMet API Reference
	Common Interfaces
	IForeignObject
	IMonikerProvider

	Automation-Specific Interfaces
	DICORBAAny
	DICORBAFactory
	DICORBAFactoryEx
	DICORBAObject
	DICORBAStruct
	DICORBASystemException
	DICORBATypeCode
	DICORBAUnion
	DICORBAUserException
	DIForeignComplexType
	DIForeignException
	DIObject
	DIObjectInfo
	DIOrbixORBObject
	DIORBObject

	COM-Specific Interfaces
	ICORBA_Any
	ICORBAFactory
	ICORBAObject
	ICORBA_TypeCode
	ICORBA_TypeCodeExceptions
	IOrbixORBObject
	IORBObject

	Introduction to OMG IDL
	IDL
	Modules and Name Scoping
	Interfaces
	Introduction to Interfaces
	Interface Contents
	Operations
	Attributes
	Exceptions
	Empty Interfaces
	Inheritance of Interfaces
	Multiple Inheritance
	Inheritance of the Object Interface
	Inheritance Redefinition
	Forward Declaration of IDL Interfaces
	Local Interfaces
	Valuetypes
	Abstract Interfaces

	IDL Data Types
	Built-in Data Types
	Extended Built-in Data Types
	Complex Data Types
	Enum Data Type
	Struct Data Type
	Union Data Type
	Arrays
	Sequence
	Pseudo Object Types

	Defining Data Types
	Constants
	Constant Expressions

	Mapping CORBA to Automation
	Mapping for Basic Types
	Mapping for Strings
	Mapping for Interfaces
	Basic Interface Mapping
	Mapping for Attributes
	Mapping for Operations

	Mapping for Interface Inheritance
	Mapping for Single Inheritance
	Mapping for Multiple Inheritance

	Mapping for Complex Types
	Creating Constructed OMG IDL Types
	Mapping for Structs
	Mapping for Unions
	Mapping for Sequences
	Mapping for Arrays
	Mapping for System Exceptions
	Mapping for User Exceptions
	Mapping for the Any Type

	Mapping for Object References
	Mapping for Modules
	Mapping for Constants
	Mapping for Enums
	Mapping for Scoped Names
	Mapping for Typedefs

	Mapping CORBA to COM
	Basic Types
	Mapping for Strings
	Mapping for Interfaces
	Mapping Interface Identifiers
	Mapping for Nested Types
	Mapping for Attributes
	Mapping for Operations

	Mapping for Interface Inheritance
	Mapping for Complex Types
	Creating Constructed OMG IDL Types
	Mapping for Structs
	Mapping for Unions
	Mapping for Sequences
	Mapping for Arrays
	Mapping for System Exceptions
	Mapping for User Exceptions
	Mapping for the Any Type

	Mapping for Object References
	Mapping for Modules
	Mapping for Constants
	Mapping for Enums
	Mapping for Scoped Names
	Mapping for Typedefs

	COMet Configuration
	Overview
	COMet:Config Namespace
	COMet:Mapping Namespace
	COMet:Debug Namespace
	COMet:TypeMan Namespace
	COMet:Services Namespace

	COMet Utility Arguments
	Typeman Arguments
	Ts2idl Arguments
	Ts2tlb Arguments
	Aliassrv Arguments
	Custsur Arguments
	Tlibreg Arguments
	Idlgen vb_genie.tcl Arguments

