
ORBIX
®

PROGRESS
®

CORBA OTS Guide C++
Version 6.3.5, July 2011

© 2011 Progress Software Corporation and/or its subsidiaries or affiliates. All rights
reserved.
These materials and all Progress® software products are copyrighted and all rights are
reserved by Progress Soft ware Corporation. The information in these materials is subject
to change without notice, and Progress Software Corporation assumes no responsibility for
any errors that may appear therein. The references in these materials to specific platforms
supported are subject to change.

Actional, Apama, Artix, Business Empowerment, Business Making Progress, DataDirect
(and design), DataDi rect Connect, DataDirect Connect64, DataDirect Technologies, Data-
Direct XML Converters, DataDirect XQuery, DataXtend, Dynamic Routing Architecture,
EdgeXtend, Empowerment Center, Fathom, Fuse Media tion Router, Fuse Message Broker,
Fuse Services Framework, IntelliStream, IONA, Making Software Work Together, Mind-
reef, ObjectStore, OpenEdge, Orbix, PeerDirect, POSSENET, Powered by Progress,
Pow erTier, Progress, Progress DataXtend, Progress Dynamics, Progress Business Empow-
erment, Progress Empowerment Center, Progress Empowerment Program, Progress
OpenEdge, Progress Profiles, Progress Results, Progress Software Business Making
Progress, Progress Software Developers Network, Progress Sonic, ProVision, PS Select,
Savvion, SequeLink, Shadow, SOAPscope, SOAPStation, Sonic, Sonic ESB, SonicMQ,
Sonic Orchestration Server, SpeedScript, Stylus Studio, Technical Empowerment, Web-
Speed, Xcalia (and design), and Your Software, Our Technology-Experience the Connec-
tion are registered trademarks of Progress Software Corporation or one of its affiliates or
subsidiaries in the U.S. and/or other countries. AccelEvent, Apama Dashboard Studio,
Apama Event Manager, Apama Event Modeler, Apama Event Store, Apama Risk Firewall,
AppsAlive, AppServer, ASPen, ASP-in-a-Box, BusinessEdge, Cache-Forward, CloudEdge,
DataDirect Spy, DataDirect SupportLink, Fuse, FuseSource, Future Proof, GVAC, High
Performance Integration, Object Store Inspector, ObjectStore Performance Expert, Open-
Access, Orbacus, Pantero, POSSE, ProDataSet, Progress Arcade, Progress CloudEdge,
Progress Control Tower, Progress ESP Event Manager, Progress ESP Event Modeler,
Progress Event Engine, Progress RFID, Progress RPM, PSE Pro, SectorAlliance,
SeeThinkAct, Shadow z/Services, Shadow z/Direct, Shadow z/Events, Shadow z/Presenta-
tion, Shadow Studio, SmartBrowser, SmartComponent, SmartDataBrowser, SmartDataOb-
jects, SmartDataView, SmartDialog, SmartFolder, Smart Frame, SmartObjects, SmartPanel,
SmartQuery, SmartViewer, SmartWindow, Sonic Business Integration Suite, Sonic Process
Manager, Sonic Collaboration Server, Sonic Continuous Availability Architecture, Sonic
Database Service, Sonic Workbench, Sonic XML Server, The Brains Behind BAM, Web-
Client, and Who Makes Progress are trademarks or service marks of Progress Software Cor-
poration and/or its subsidiaries or affiliates in the U.S. and other countries. Java is a
registered trademark of Oracle and/or its affiliates. Any other marks con tained herein may
be trademarks of their respective owners.

Third Party Acknowledgements:

Progress Orbix v6.3.5 incorporates Jakarata-struts 1.0.2 from the Apache Software Founda-
tion (http://www.apache.org). Such Apache Technology is subject to the following terms
and conditions: The Apache Soft ware License, Version 1.1 Copyright (c) 1999-2001 The
Apache Software Foundation. All rights reserved. Redistribution and use in source and

binary forms, with or without modification, are permitted provided that the following conditions are met: 1.
Redistributions of source code must retain the above copyright notice, this list of conditions and the follow-
ing disclaimer. 2. Redistributions in binary form must reproduce the above copy right notice, this list of
conditions and the following disclaimer in the documentation and/or other materials provided with the dis-
tribution. 3. The end-user documentation included with the redistribution, if any, must include the following
acknowledgment: "This product includes software developed by the Apache Software Foundation (http://
www.apache.org/)." Alternately, this acknowledgment may appear in the software itself, if and wherever
such third-party acknowledgments normally appear. 4. The names "The Jakarta Project", "Struts", and
"Apache Software Foundation" must not be used to endorse or promote products derived from this software
without prior written permission. For written permission, please contact apache@apache.org. 5. Products
derived from this software may not be called "Apache", nor may "Apache" appear in their name, without
prior written permission of the Apache Software Foundation. THIS SOFTWARE IS PROVIDED ``AS IS''
AND ANY EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MER CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
ARE DIS CLAIMED. IN NO EVENT SHALL THE APACHE SOFTWARE FOUNDATION OR ITS
CONTRIBU TORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEM-
PLARY, OR CONSEQUEN TIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCURE-
MENT OF SUB STITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
WHETHER IN CONTRACT, STRICT LIA BILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
THE POSSIBILITY OF SUCH DAMAGE. This software consists of voluntary contributions made by
many individuals on behalf of the Apache Soft ware Foun dation. For more information on the Apache
Software Foundation, please see <http://www.apache.org/>.

Progress Orbix v6.3.5 incorporates Jakarta-bcel 5.0 from the Apache Software Foundation (http://
www.apache.org). Such Apache Technology is subject to the following terms and conditions: The Apache
Software License, Version 1.1 Copy right (c) 2001 The Apache Software Foundation. All rights reserved.
Redistribution and use in source and binary forms, with or without modification, are permitted provided that
the following conditions are met: 1. Redistributions of source code must retain the above copyright notice,
this list of conditions and the following disclaimer. 2. Redistributions in binary form must reproduce the
above copyright notice, this list of conditions and the following disclaimer in the docu mentation and/or
other materials provided with the distribution. 3. The end-user documentation included with the redistribu-
tion, if any, must include the following acknowledgment: "This product includes software developed by the
Apache Software Foundation (http://www.apache.org/)." Alternately, this acknowledgment may appear in
the software itself, if and wherever such third-party acknowledgments normally appear. 4. The names
"Apache" and "Apache Software Foundation" and "Apache BCEL" must not be used to endorse or promote
products derived from this software with out prior written permission. For written permission, please con-
tact apache@apache.org. 5. Products derived from this software may not be called "Apache", "Apache
BCEL", nor may "Apache" appear in their name, without prior written permission of the Apache Software
Foundation. THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESSED OR IMPLIED WAR-
RANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTA-
BILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL
THE APACHE SOFTWARE FOUNDATION OR ITS CONTRIBUTORS BE LIABLE FOR ANY
DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
(INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
3

CORBA OTS Guide
LOSS OF USE, DATA, OR PROFITS; OR BUSI NESS INTERRUPTION) HOWEVER CAUSED AND
ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. This software consists
of voluntary contributions made by many individuals on behalf of the Apache Software Founda tion. For
more information on the Apache Software Foundation, please see <http://www.apache.org/>.

Progress Orbix v6.3.5 incorporates Jakarat-regexp 1.2 from the Apache Software Foundation (http://
www.apache.org). Such Apache Technology is subject to the following terms and conditions: The Apache
Software License, Version 1.1 Copyright (c) 1999 The Apache Software Foundation. All rights reserved.
Redistribution and use in source and binary forms, with or without modification, are permitted provided that
the following conditions are met: 1. Redistributions of source code must retain the above copyright notice,
this list of conditions and the following disclaimer. 2. Redistributions in binary form must reproduce the
above copyright notice, this list of conditions and the following disclaimer in the documentation and/or
other materials provided with the distribution. 3. The end-user documentation included with the
redistri bution, if any, must include the following acknowledgment: "This product includes software devel-
oped by the Apache Software Foundation (http://www.apache.org/)." Alternately, this acknowledgment
may appear in the software itself, if and wherever such third-party acknowledgments normally appear. 4.
The names "The Jakarta Project", "Jakarta -Regexp", and "Apache Software Foundation" and "Apache
BCEL" must not be used to endorse or promote products derived from this software without prior written
permission. For written permission, please contact apache@apache.org. 5. Products derived from this soft-
ware may not be called "Apache", nor may "Apache" appear in their name, without prior written permission
of the Apache Software Foundation. THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY
EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DIS-
CLAIMED. IN NO EVENT SHALL THE APACHE SOFTWARE FOUNDATION OR ITS CONTRIBU-
TORS BE LIA BLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUB-
STITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUP-
TION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY
WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
DAMAGE. This software consists of voluntary contributions made by many individuals on behalf of the
Apache Software Foundation. For more information on the Apache Software Foundation, please see <http:/
/www.apache.org/>.

Progress Orbix v6.3.5 incorporates the Jakarta-log4j 1.2.6 from the Apache Software Foundation (http://
www.apache.org). Such Apache Technology is subject to the following terms and conditions: The Apache
Software License, Version 1.1 Copyright (c) 1999 The Apache Software Foundation. All rights reserved.
Redistribution and use in source and binary forms, with or without modification, are permitted provided that
the following conditions are met: 1. Redistributions of source code must retain the above copyright notice,
this list of conditions and the following disclaimer. 2. Redistributions in binary form must reproduce the
above copyright notice, this list of conditions and the following dis claimer in the documentation and/or
other materials provided with the distribution. 3. The end-user documentation included with the redistribu-
tion, if any, must include the following acknowledgment: "This product includes software developed by the
Apache Software Foundation (http://www.apache.org/)." Alternately, this acknowledgment may appear in
 4

the software itself, if and wherever such third-party acknowledgments normally appear. 4. The names
"log4j" and "Apache Software Foundation" and "Apache BCEL" must not be used to endorse or promote
products derived from this software without prior written permission. For written permission, please con-
tact apache@apache.org. 5. Products derived from this software may not be called "Apache", nor may
"Apache" appear in their name, without prior written per mission of the Apache Software Foundation.
THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESSED OR IMPLIED WARRANTIES,
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND
FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
APACHE SOFTWARE FOUNDATION OR ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT,
INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUD-
ING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF
USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
THEORY OF LIABIL ITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUD ING
NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE,
EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. This software consists of voluntary
contributions made by many individuals on behalf of the Apache Software Foundation. For more informa-
tion on the Apache Software Foun dation, please see <http://www.apache.org/>.

Progress Orbix v6.3.5 incorporates Ant 1.5 from the Apache Software Foundation (http://www.apache.org).
Such technology is subject to the following terms and conditions: The Apache Software License, Version
1.1 Copyright (c) 2000-2002 The Apache Software Foundation. All rights reserved. Redistribution and use
in source and binary forms, with or without modification, are permitted provided that the following condi-
tions are met: 1. Redistributions of source code must retain the above copyright notice, this list of condi-
tions and the fol lowing disclaimer. 2. Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in the documentation and/or other materials pro-
vided with the distribution. 3. The end-user documentation included with the redistribution, if any, must
include the following acknowledgment: "This product includes software developed by the Apache Software
Foundation (http://www.apache.org/)." Alternately, this acknowledgment may appear in the software itself,
if and wherever such third-party acknowledgments normally appear. 4. The names "Ant" and "Apache Soft-
ware Foundation" and "Apache BCEL" must not be used to endorse or promote products derived from this
software without prior writ ten permission. For written permission, please contact apache@apache.org. 5.
Products derived from this software may not be called "Apache", nor may "Apache" appear in their name,
without prior written permission of the Apache Software Foundation. THIS SOFTWARE IS PROVIDED
``AS IS'' AND ANY EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
TO, THE IMPLIED WARRANTIES OF MER CHANTABILITY AND FITNESS FOR A PARTICULAR
PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE APACHE SOFTWARE FOUNDATION
OR ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PRO-
CUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
THE POSSIBILITY OF SUCH DAMAGE. This software consists of voluntary contri butions made by
many individuals on behalf of the Apache Software Foundation. For more information on the Apache Soft-
ware Foundation, please see <http://www.apache.org/>.
5

CORBA OTS Guide
Progress Orbix v6.3.5 incorporates Xalan-j 2.3.1 from the Apache Software Foundation (http://
www.apache.org). Such Apache Technology is subject to the following terms and conditions: The Apache
Soft ware License, Version 1.1. Copyright (c) 1999 The Apache Software Foundation. All rights reserved.
Redistribution and use in source and binary forms, with or without modification, are permitted provided that
the following conditions are met: 1. Redistributions of source code must retain the above copyright notice,
this list of conditions and the following disclaimer. 2. Redistributions in binary form must reproduce the
above copyright notice, this list of conditions and the following disclaimer in the documentation and/or
other materials provided with the distribution. 3. The end-user documentation included with the redistribu-
tion, if any, must include the following acknowledgment: "This product includes software developed by the
Apache Software Foundation (http://www.apache.org/)." Alternately, this acknowledgment may appear in
the software itself, if and wherever such third-party acknowledgments normally appear. 4. The names
"Xalan" and "Apache Software Foundation" and "Apache BCEL" must not be used to endorse or promote
products derived from this software without prior written permission. For written permission, please con-
tact apache@apache.org. 5. Products derived from this software may not be called "Apache", nor may
"Apache" appear in their name, without prior written permission of the Apache Software Foundation. THIS
SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESSED OR IMPLIED WARRANTIES, INCLUD-
ING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER CHANTABILITY AND FIT-
NESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE APACHE
SOFTWARE FOUNDATION OR ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THE-
ORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEG-
LIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE,
EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. This software consists of voluntary
contri butions made by many individuals on behalf of the Apache Software Foundation. For more informa-
tion on the Apache Software Foundation, please see <http://www.apache.org/>.

Progress Orbix v6.3.5 incorporates the Xerces-c++ 2.4 from the Apache Software Foundation (http://
www.apache.org). Such Apache Technology is subject to the following terms and conditions: The Apache
Software License, Version 1.1. Copyright (c) 1999-2001 The Apache Software Foundation. All rights
reserved. Redistribution and use in source and binary forms, with or without modification, are permitted
provided that the following conditions are met: 1. Redistributions of source code must retain the above cop-
yright notice, this list of conditions and the following disclaimer. 2. Redis tributions in binary form must
reproduce the above copyright notice, this list of conditions and the following disclaimer in the documenta-
tion and/or other materials provided with the distribution. 3. The end-user documentation included with the
redistribution, if any, must include the following acknowledgment: "This product includes software devel-
oped by the Apache Software Foundation (http://www.apache.org/)." Alternately, this acknowledgment
may appear in the software itself, if and wherever such third-party acknowledgments normally appear. 4.
The names "Xerces" and "Apache Software Foundation" and "Apache BCEL" must not be used to endorse
or promote products derived from this software without prior written permission. For written permission,
please contact apache@apache.org. 5. Products derived from this software may not be called "Apache", nor
may "Apache" appear in their name, without prior written permission of the Apache Software Foundation.
THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESSED OR IMPLIED WARRANTIES,
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANT ABILITY
AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
 6

APACHE SOFTWARE FOUNDATION OR ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT,
INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUD-
ING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF
USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE,
EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. This software consists of voluntary
contributions made by many individuals on behalf of the Apache Software Founda tion. For more informa-
tion on the Apache Software Foundation, please see <http://www.apache.org/>.

Progress Orbix v6.3.5 incorporates xerces-j 2.5 from the Apache Software Foundation (http://
www.apache.org). Such Apache Technology is subject to the following terms and conditions: The Apache
Software License, Version 1.1. Copy right (c) 1999-2002 The Apache Software Foundation. All rights
reserved. Redistribution and use in source and binary forms, with or without modification, are permitted
provided that the following conditions are met: 1. Redistributions of source code must retain the above cop-
yright notice, this list of conditions and the following disclaimer. 2. Redistributions in binary form must
reproduce the above copyright notice, this list of conditions and the following disclaimer in the documenta-
tion and/or other materials provided with the distribution. 3. The end-user documentation included with the
redistribution, if any, must include the following acknowledgment: "This product includes software devel-
oped by the Apache Software Foundation (http://www.apache.org/)." Alternately, this acknowledgment
may appear in the software itself, if and wherever such third-party acknowledgments normally appear. 4.
The names "Xerces" and "Apache Software Foundation" must not be used to endorse or promote products
derived from this software without prior written permission. For written permission, please contact
apache@apache.org. 5. Products derived from this software may not be called "Apache", nor may "Apache"
appear in their name, without prior written permission of the Apache Software Foundation. THIS SOFT-
WARE IS PROVIDED ``AS IS'' AND ANY EXPRESSED OR IMPLIED WARRANTIES, INCLUDING,
BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
FOR A PARTIC ULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE APACHE SOFT-
WARE FOUNDATION OR ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCI-
DENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIA-
BILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE
OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. This software consists of voluntary contribu-
tions made by many individuals on behalf of the Apache Software Foundation. For more information on the
Apache Software Foundation, please see <http://www.apache.org/>.

Progress Orbix v6.3.5 incorporates the Tomcat 4.0.4 from the Apache Software Foundation (http://
www.apache.org). Such Apache Technology is subject to the following terms and conditions: The Apache
Software License, Version 1.1. Copyright (c) 1999, 2000 The Apache Software Foundation. All rights
reserved. Redistribution and use in source and binary forms, with or without modification, are permitted
provided that the following conditions are met: 1. Redistributions of source code must retain the above cop-
yright notice, this list of conditions and the following disclaimer. 2. Redis tributions in binary form must
reproduce the above copyright notice, this list of conditions and the following disclaimer in the documenta-
tion and/or other materials provided with the distribution. 3. The end-user documentation included with the
7

CORBA OTS Guide
redistribution, if any, must include the following acknowledgment: "This product includes software devel-
oped by the Apache Software Foundation (http://www.apache.org/)." Alternately, this acknowledgment
may appear in the software itself, if and wherever such third-party acknowledgments normally appear. 4.
The names "The Jakarta Project", "Tomcat" and "Apache Software Foundation" must not be used to endorse
or promote products derived from this software without prior written permission. For written permission,
please contact apache@apache.org. 5. Products derived from this software may not be called "Apache", nor
may "Apache" appear in their name, without prior written permission of the Apache Software Foundation.
THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESSED OR IMPLIED WARRANTIES,
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANT ABILITY
AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
APACHE SOFTWARE FOUNDATION OR ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT,
INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUD-
ING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF
USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE,
EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. This software consists of voluntary
contributions made by many individuals on behalf of the Apache Software Foundation. For more informa-
tion on the Apache Software Foun dation, please see <http://www.apache.org/>.

Progress Orbix v6.3.5 incorporates MCPP 2.6.4 from the MCPP Project. Such technology is subject to the
following terms and conditions: Copyright (c) 1998, 2002-2007 Kiyoshi Matsui kmatsui@t3.rim.or.jp All
rights reserved. This software including the files in this directory is provided under the following license.
Redistribu tion and use in source and binary forms, with or without modification, are permitted provided
that the following conditions are met: 1. Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer. 2. Redistributions in binary form must reproduce
the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or
other materials provided with the distribution. THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS
IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDI-
RECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
BUT NOT LIMITED TO, PROCURE MENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THE-
ORY OF LIABILITY, WHETHER IN CON TRACT, STRICT LIABILITY, OR TORT (INCLUDING
NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE,
EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

Progress Orbix v6.3.5 incorporates Xalan c++ v1.7 from The Apache Software Foundation. Such technol-
ogy is subject to the following terms and conditions: The Apache Software License, Version 1.1 Copyright
(c) 1999-2004 The Apache Software Foundation. All rights reserved. Redistribution and use in source and
binary forms, with or without modification, are permitted provided that the following conditions are met: 1.
Redistributions of source code must retain the above copyright notice, this list of conditions and the follow-
ing disclaimer. 2. Redis tributions in binary form must reproduce the above copyright notice, this list of con-
ditions and the follow ing disclaimer in the documentation and/or other materials provided with the
distribution. 3. The end-user documentation included with the redistribution, if any, must include the follow-
 8

ing acknowledgment: "This product includes software developed by the Apache Software Foundation (http:/
/www.apache.org/)." Alternately, this acknowledgment may appear in the software itself, if and wherever
such third-party acknowledgments normally appear. 4. The names "Xalan" and "Apache Software Founda-
tion" must not be used to endorse or promote prod ucts derived from this software without prior written per-
mission. For written permission, please contact apache@apache.org. 5. Products derived from this software
may not be called "Apache", nor may "Apache" appear in their name, without prior written permission of
the Apache Software Foundation. THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESSED
OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
OF MERCHANTABILITY AND FITNESS FOR A PARTICU LAR PURPOSE ARE DISCLAIMED. IN
NO EVENT SHALL THE APACHE SOFTWARE FOUNDATION OR ITS CONTRIBUTORS BE LIA-
BLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
==
This software consists of voluntary contributions made by many individuals on behalf of the Apache Soft-
ware Foundation and was originally based on software copyright (c) 1999, Lotus Development Corpora-
tion., http://www.lotus.com. For more information on the Apache Software Foundation, please see <http://
www.apache.org/>.

Progress Orbix v6.3.5 incorporates Tcl 8.4.15 from Regents of the University of California, Sun Microsys-
tems, Inc., Scriptics Corporation, and other parties. Such technology is subject to the following terms and
conditions: This software is copyrighted by the Regents of the University of California, Sun Microsystems,
Inc., Scriptics Corporation, and other parties. The following terms apply to all files associated with the soft-
ware unless explicitly disclaimed in individual files. The authors hereby grant permission to use, copy, mod-
ify, distribute, and license this software and its documentation for any purpose, provided that existing
copyright notices are retained in all copies and that this notice is included verbatim in any distributions. No
written agreement, license, or royalty fee is required for any of the authorized uses. Modifications to this
software may be copyrighted by their authors and need not follow the licensing terms described here, pro-
vided that the new terms are clearly indicated on the first page of each file where they apply. IN NO EVENT
SHALL THE AUTHORS OR DISTRIBUTORS BE LIABLE TO ANY PARTY FOR DIRECT, INDI-
RECT, SPECIAL, INCIDENTAL, OR CONSEQUENTIAL DAMAGES ARISING OUT OF THE USE OF
THIS SOFTWARE, ITS DOCUMENTATION, OR ANY DERIVATIVES THEREOF, EVEN IF THE
AUTHORS HAVE BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. THE AUTHORS
AND DISTRIBUTORS SPE CIFICALLY DISCLAIM ANY WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WAR RANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICU-
LAR PURPOSE, AND NON-INFRINGEMENT. THIS SOFTWARE IS PROVIDED ON AN "AS IS"
BASIS, AND THE AUTHORS AND DISTRIBUTORS HAVE NO OBLIGATION TO PROVIDE MAIN-
TENANCE, SUPPORT, UPDATES, ENHANCEMENTS, OR MODIFI CATIONS. GOVERNMENT USE:
If you are acquiring this software on behalf of the U.S. government, the Government shall have only
"Restricted Rights" in the software and related documentation as defined in the Federal Acquisition Regula-
tions (FARs) in Clause 52.227.19 (c) (2). If you are acquiring the software on behalf of the Department of
Defense, the software shall be classified as "Commercial Computer Software" and the Government shall
have only "Restricted Rights" as defined in Clause 252.227-7013 (c) (1) of DFARs. Notwithstanding the
9

CORBA OTS Guide
foregoing, the authors grant the U.S. Government and others acting in its behalf permission to use and dis-
tribute the software in accordance with the terms specified in this license.

Progress Orbix v6.3.5 incorporates bzip2 1.0.2 from Julian Seward. Such Technology is subject to the fol-
lowing terms and conditions: This program, "bzip2" and associated library "libbzip2", are copyright (C)
1996-2002 Julian R Seward. All rights reserved. Redistribution and use in source and binary forms, with or
without modification, are permitted provided that the following conditions are met: 1. Redistributions of
source code must retain the above copyright notice, this list of conditions and the following disclaimer. 2.
The origin of this software must not be misrepresented; you must not claim that you wrote the original soft-
ware. If you use this software in a product, an acknowledgment in the product documentation would be
appreciated but is not required. 3. Altered source versions must be plainly marked as such, and must not be
misrepresented as being the original software. 4. The name of the author may not be used to endorse or pro-
mote products derived from this software without specific prior written permission. THIS SOFTWARE IS
PROVIDED BY THE AUTHOR "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUD-
ING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANT ABILITY AND FIT-
NESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR
BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSE-
QUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE
GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
Julian Seward, Cambridge, UK.jseward@acm.org bzip2/libbzip2 version 1.0.2 of 30 December 2001.

Progress Orbix v6.3.5 incorporates zlib 1.2.3 from Jean-loup Gailly and Mark Adler. Such Technology is
subject to the following terms and conditions: License /* zlib.h -- interface of the 'zlib' general purpose com-
pression library version 1.2.3, July 18th, 2005 Copyright (C) 1995-2000 Jean-loup Gailly and Mark Adler.
This software is provided 'as-is', without any express or implied warranty. In no event will the authors be
held liable for any damages arising from the use of this software. Permission is granted to anyone to use this
software for any purpose, including commercial applications, and to alter it and redistribute it freely, subject
to the following restrictions: 1. The origin of this software must not be mis represented; you must not claim
that you wrote the original software. If you use this software in a product, an acknowledgment in the product
documentation would be appreciated but is not required. 2. Altered source versions must be plainly marked
as such, and must not be misrepresented as being the original software. 3. This notice may not be removed
or altered from any source distribution. Jean-loup Gailly jloup@gzip.org Mark Adler
madler@alumni.caltech.edu */

Progress Orbix v6.3.5 incorporates the MinML 1.7 from John Wilson. Such Technology is subject to the
following terms and conditions: Copyright (c) 1999, John Wilson (tug@wilson.co.uk). All rights reserved.
Redistribution and use in source and binary forms, with or without modification, are permitted provided that
the following conditions are met: Redistributions of source code must retain the above copyright notice,,
this list of conditions and the following disclaimer. Redistributions in binary form must reproduce the above
copyright notice, this list of conditions and the following dis claimer in the documentation and/or other
materials provided with the distribution. All advertising materials mention ing features or use of this soft-
ware must display the following acknowledgement: This product includes software devel oped by John
 10

Wilson. The name of John Wilson may not be used to endorse or promote products derived from this soft-
ware without specific prior written permission. THIS SOFTWARE IS PROVIDED BY JOHN WILSON
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PUR-
POSE ARE DISCLAIMED. IN NO EVENT SHALL JOHN WILSON BE LIABLE FOR ANY DIRECT,
INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUD-
ING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF
USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABIL ITY, OR TORT (INCLUDING
NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE,
EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

Progress Orbix v6.3.5 incorporates JDOM vbeta9 from JDOM. Such Technology is subject to the following
terms and conditions: LICENSE.txt, v 1.10 2003/04/10 08:36:05 jhunter Exp $ Copyright (C) 2000-2003
Jason Hunter & Brett McLaughlin. All rights reserved. Redistribution and use in source and binary forms,
with or with out modification, are permitted provided that the following conditions are met: 1. Redistribu-
tions of source code must retain the above copyright notice, this list of conditions, and the following dis-
claimer. 2. Redistribu tions in binary form must reproduce the above copyright notice, this list of
conditions, and the dis claimer that follows these conditions in the documentation and/or other materials
provided with the distribu tion. 3. The name "JDOM" must not be used to endorse or promote products
derived from this software without prior written permission. For written permission, please contact <license
AT jdom DOT org>. 4. Prod ucts derived from this soft ware may not be called "JDOM", nor may "JDOM"
appear in their name, without prior written permission from the JDOM Project Management <pm AT jdom
DOT org>. In addition, we request (but do not require) that you include in the end-user documentation pro-
vided with the redistribution and/or in the soft ware itself an acknowledgement equivalent to the following:
"This product includes software developed by the JDOM Project (http://www.jdom.org/)." Alternatively, the
acknowledgment may be graphical using the logos available at http://www.jdom.org/images/logos. THIS
SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESSED OR IMPLIED WARRANTIES, INCLUD-
ING, BUT NOT LIMITED TO, THE IMPLIED WAR RANTIES OF MERCHANTABILITY AND FIT-
NESS FOR A PARTICULAR PURPOSE ARE DIS CLAIMED. IN NO EVENT SHALL THE JDOM
AUTHORS OR THE PROJECT CONTRIBUTORS BE LIA BLE FOR ANY DIRECT, INDIRECT, INCI-
DENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIA-
BILITY, WHETHER IN CONTRACT, STRICT LIABIL ITY, OR TORT (INCLUDING NEGLIGENCE
OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. This software consists of voluntary contribu-
tions made by many individuals on behalf of the JDOM Project and was originally created by Jason Hunter
<jhunter AT jdom DOT org> and Brett McLaughlin <brett AT jdom DOT org>. For more information on
the JDOM Project, please see <http://www.jdom.org/>.

Progress Orbix v6.3.5 incorporates OpenSSL 0.9.8i Copyright (c) 1998-2008 The OpenSSL Project Copy-
right (c) 1995-1998 Eric A. Young, Tim J. Hudson All rights reserved. Such Technology is subject to the
following terms and conditions: The OpenSSL toolkit stays under a dual license, i.e. both the conditions of
the OpenSSL License and the original SSLeay license apply to the toolkit. See below for the actual license
texts. Actually both licenses are BSD-style Open Source licenses. In case of any license issues related to
11

CORBA OTS Guide
OpenSSL please contact openssl-core@openssl.org. OpenSSL License - Copyright (c) 1998-2008 The
OpenSSL Project. All rights reserved. Redistribution and use in source and binary forms, with or without
modification, are permitted pro vided that the following conditions are met: 1. Redistributions of source
code must retain the above copy right notice, this list of conditions and the following disclaimer. 2. Redistri-
butions in binary form must reproduce the above copyright notice, this list of conditions and the following
disclaimer in the documentation and/or other materials provided with the distribution. 3. All advertising
materials mentioning features or use of this software must display the following acknowledgment: "This
product includes software developed by the OpenSSL Project for use in the OpenSSL Toolkit. (http://
www.openssl.org/)" 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to endorse
or promote products derived from this software without prior written permission. For written permission,
please contact openssl-core@openssl.org. 5. Products derived from this software may not be called
"OpenSSL" nor may "OpenSSL" appear in their names without prior written permission of the OpenSSL
Project. 6. Redistributions of any form whatsoever must retain the following acknowledgment: "This prod-
uct includes software developed by the OpenSSL Project for use in the OpenSSL Toolkit (http://
www.openssl.org/)" THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY
EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DIS-
CLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR ITS CONTRIBUTORS BE LIABLE
FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
DAM AGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
SERV ICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. This
product includes cryp tographic software written by Eric Young (eay@cryptsoft.com). This product
includes software written by Tim Hudson (tjh@cryptsoft.com). - Original SSLeay License - Copyright (C)
1995-1998 Eric Young (eay@crypt soft.com) All rights reserved. This package is an SSL implementation
written by Eric Young (eay@crypt soft.com). The implementation was written so as to conform with Net-
scapes SSL. This library is free for commercial and non-commer cial use as long as the following conditions
are aheared to. The following conditions apply to all code found in this distribution, be it the RC4, RSA,
lhash, DES, etc., code; not just the SSL code. The SSL documentation included with this distribution is
covered by the same copyright terms except that the holder is Tim Hudson (tjh@cryptsoft.com). Copy right
remains Eric Young's, and as such any Copyright notices in the code are not to be removed. If this package
is used in a product, Eric Young should be given attribution as the author of the parts of the library used.
This can be in the form of a textual message at program startup or in documentation (online or textual) pro-
vided with the package. Redistri bution and use in source and binary forms, with or with out modification,
are permitted provided that the follow ing conditions are met: 1. Redistributions of source code must retain
the copyright notice, this list of conditions and the following disclaimer. 2. Redistributions in binary form
must reproduce the above copyright notice, this list of con ditions and the following dis claimer in the docu-
mentation and/or other materials provided with the distribution. 3. All advertising materials mention ing
features or use of this software must display the following acknowledge ment: "This product includes
crypto graphic software written by Eric Young (eay@cryptsoft.com)" The word 'cryptographic' can be left
out if the rou tines from the library being used are not crypto graphic related :-). 4. If you include any Win-
dows specific code (or a deriv ative thereof) from the apps directory (application code) you must include an
acknowledgement: "This product includes software written by Tim Hudson (tjh@cryptsoft.com)" THIS
SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND ANY EXPRESS OR IMPLIED WAR-
RANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
 12

MERCHANT ABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
INCIDENTAL, SPE CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
NOT LIMITED TO, PROCURE MENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THE-
ORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEG-
LIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE,
EVEN IF ADVISED OF THE POSSI BILITY OF SUCH DAMAGE. The licence and distribution terms for
any publically available version or deriva tive of this code cannot be changed. i.e. this code cannot simply
be copied and put under another distribution licence [including the GNU Public Licence.]

Progress Orbix v6.3.5 incorporates PCRE v7.8 from the PCRE Project. Such Technology is subject to the
following terms and conditions:
PCRE LICENCE

PCRE is a library of functions to support regular expressions whose syntax and semantics are as close as
possible to those of the Perl 5 language. Release 7 of PCRE is distributed under the terms of the
"BSD"licence, as specified below. The documentation for PCRE, supplied in the "doc" directory, is distrib-
uted under the same terms as the software itself. The basic library functions are written in C and are free-
standing. Also included in the distribution is a set of C++ wrapper functions.
THE BASIC LIBRARY FUNCTIONS

Written by: Philip Hazel
Email local part: ph10
Email domain: cam.ac.uk
University of Cambridge Computing Service,
Cambridge, England.
Copyright (c) 1997-2008 University of Cambridge
All rights reserved.
THE C++ WRAPPER FUNCTIONS

Contributed by: Google Inc.
Copyright (c) 2007-2008, Google Inc.
All rights reserved.
THE "BSD" LICENCE

Redistribution and use in source and binary forms, with or without modification, are permitted provided that
the following conditions are met: Redistributions of source code must retain the above copyright notice, this
list of conditions and the following disclaimer. Redistributions in binary form must reproduce the above
copyright notice, this list of conditions and the following disclaimer in the documentation and/or other
materials provided with the distribution. Neither the name of the University of Cambridge nor the name of
13

CORBA OTS Guide
Google Inc. nor the names of their contributors may be used to endorse or promote products derived from
this software without specific prior written permission. THIS SOFT WARE IS PRO VIDED BY THE COP-
YRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRAN-
TIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRAN TIES OF
MERCHANT ABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT,
INDI RECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUD-
ING, BUT NOT LIMITED TO, PROCURE MENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF
USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE,
EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

Progress Orbix v6.3.5 incorporates IDL Compiler Front End 1 from Sun Microsystems, Inc. Copyright
1992, 1993, 1994 Sun Microsystems, Inc. Printed in the United States of America. All Rights Reserved.
Such tech nology is subject to the following terms and conditions: This product is protected by copyright
and distrib uted under the following license restricting its use. The Interface Definition Language Compiler
Front End (CFE) is made available for your use provided that you include this license and copyright notice
on all media and documentation and the software program in which this product is incorporated in whole or
part. You may copy and extend functionality (but may not remove functionality) of the Interface Definition
Language CFE without charge, but you are not authorized to license or distribute it to anyone else except as
part of a product or program developed by you or with the express written consent of Sun Microsystems,
Inc. ("Sun"). The names of Sun Microsystems, Inc. and any of its subsidiaries or affiliates may not be used
in advertising or publicity per taining to distribution of Interface Definition Language CFE as permitted
herein. This license is effective until termi nated by Sun for failure to comply with this license. Upon ter-
mination, you shall destroy or return all code and documentation for the Interface Definition Language CFE.
INTERFACE DEFINITION LANGUAGE CFE IS PROVIDED AS IS WITH NO WARRANTIES OF
ANY KIND INCLUDING THE WARRANTIES OF DESIGN, MERCHANTIBILITY AND FITNESS
FOR A PARTICULAR PURPOSE, NONINFRINGEMENT, OR ARISING FROM A COURSE OF DEAL-
ING, USAGE OR TRADE PRACTICE. INTERFACE DEFINITION LANGUAGE CFE IS PROVIDED
WITH NO SUPPORT AND WITHOUT ANY OBLIGATION ON THE PART OF Sun OR ANY OF ITS
SUBSIDIARIES OR AFFILIATES TO ASSIST IN ITS USE, CORREC TION, MODIFICATION OR
ENHANCEMENT. SUN OR ANY OF ITS SUBSIDIARIES OR AFFILIATES SHALL HAVE NO LIA-
BILITY WITH RESPECT TO THE INFRINGEMENT OF COPYRIGHTS, TRADE SECRETS OR ANY
PATENTS BY INTERFACE DEFINITION LANGUAGE CFE OR ANY PART THEREOF. IN NO
EVENT WILL SUN OR ANY OF ITS SUBSIDIARIES OR AFFILIATES BE LIABLE FOR ANY LOST
REVENUE OR PROFITS OR OTHER SPECIAL, INDIRECT AND CONSE QUENTIAL DAMAGES,
EVEN IF SUN HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. Use, duplication,
or disclosure by the government is subject to restrictions as set forth in subpara graph (c)(1)(ii) of the Rights
in Technical Data and Computer Software clause at DFARS 252.227-7013 and FAR 52.227-19. Sun, Sun
Microsystems and the Sun logo are trademarks or registered trademarks of Sun Microsys tems, Inc. Sun-
Soft, Inc. 2550 Garcia Avenue, Mountain View, California 94043 NOTE: SunOS, Sun Soft, Sun, Solaris,
Sun Microsystems or the Sun logo are trademarks or registered trademarks of Sun Micro systems, Inc.

Progress Orbix v6.3.5 incorporates LibXML2 2.4.24 from Daniel Veillard. Such Technology is subject to
the following terms and conditions: Except where otherwise noted in the source code (trio files, hash.c and
 14

list.c) covered by a similar license but with different Copyright notices: Copyright (C) 1998-2002 Daniel
Veillard. All Rights Reserved. Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal in the Software without restric-
tion, including with out limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/
or sell copies of the Soft ware, and to permit persons to whom the Software is furnished to do so, subject to
the following conditions: The above copyright notice and this permission notice shall be included in all cop-
ies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WAR-
RANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE
WARRANTIES OF MERCHANTA BILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONIN-
FRINGEMENT. IN NO EVENT SHALL THE DANIEL VEILLARD BE LIABLE FOR ANY CLAIM,
DAMAGES OR OTHER LIA BILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTH-
ERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
OTHER DEALINGS IN THE SOFTWARE. Except as contained in this notice, the name of Daniel Veillard
shall not be used in advertising or otherwise to promote the sale, use or other dealings in this Software with-
out prior written authorization from him.
=== trio.c, trio.h: Copyright (C) 1998 Bjorn Reese and Daniel Stenberg. Permission to use, copy, modify,
and distribute this software for any purpose with or without fee is hereby granted, provided that the above
copyright notice and this permission notice appear in all copies. THIS SOFTWARE IS PROVIDED "AS IS"
AND WITH OUT ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, WITHOUT LIMITA-
TION, THE IMPLIED WARRANTIES OF MERCHANTIBILITY AND FITNESS FOR A PARTICULAR
PURPOSE. THE AUTHORS AND CONTRIB UTORS ACCEPT NO RESPONSIBILITY IN ANY CON-
CEIVABLE MANNER. ==== triop.h: Copyright (C) 2000 Bjorn Reese and Daniel Stenberg. Permission to
use, copy, modify, and dis tribute this software for any purpose with or without
fee is hereby granted, provided that the above copyright notice and this permission notice appear in all cop-
ies. THIS SOFTWARE IS PROVIDED ``AS IS'' AND WITHOUT ANY EXPRESS OR IMPLIED WAR-
RANTIES, INCLUDING, WITHOUT LIMITATION, THE IMPLIED WARRANTIES OF
MERCHANTIBILITY AND FITNESS FOR A PARTIC ULAR PURPOSE. THE AUTHORS AND CON-
TRIBUTORS ACCEPT NO RESPONSIBILITY IN ANY CONCEIVABLE MANNER.
==== hash.c: Copyright (C) 2000 Bjorn Reese and Daniel Veillard. Permission to use, copy, modify, and
distribute this software for any purpose with or without fee is hereby granted, provided that the above cop-
yright notice and this permis sion notice appear in all copies. THIS SOFTWARE IS PROVIDED ``AS IS''
AND WITHOUT ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, WITHOUT LIMITA-
TION, THE IMPLIED WARRANTIES OF MERCHAN TIBILITY AND FITNESS FOR A PARTICULAR
PURPOSE. THE AUTHORS AND CONTRIBUTORS ACCEPT NO RESPONSIBILITY IN ANY CON-
CEIVABLE MANNER.
===== list.c: Copyright (C) 2000 Gary Pennington and Daniel Veillard. Permission
to use, copy, modify, and distribute this software for any purpose with or without fee is hereby granted, pro-
vided that the above copyright notice and this permission notice appear in all copies. THIS SOFTWARE IS
PROVIDED ``AS IS'' AND WITHOUT ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING,
WITHOUT LIMITATION, THE IMPLIED WARRANTIES OF MERCHANTIBILITY AND FITNESS
FOR A PARTICULAR PURPOSE. THE AUTHORS AND CONTRIBUTORS ACCEPT NO RESPONSI-
BILITY IN ANY CONCEIVABLE MANNER. ===
triodef.h, trionan.c, trionan.h: Copyright (C) 2001 Bjorn Reese Permission to use, copy, modify, and distrib-
ute this soft ware for any purpose with or without fee is hereby granted, provided that the above copyright
notice and this permis sion notice appear in all copies. THIS SOFTWARE IS PROVIDED ``AS IS'' AND
15

CORBA OTS Guide
WITHOUT ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, WITHOUT LIMITATION,
THE IMPLIED WARRANTIES OF MER CHANTIBILITY AND FITNESS FOR A PARTICULAR PUR-
POSE. THE AUTHORS AND CONTRIBUTORS ACCEPT NO RESPONSIBILITY IN ANY CONCEIV-
ABLE MANNER.
==== triostr.c, triostr.h: Copyright (C) 2001 Bjorn Reese and Daniel Stenberg.
Permission to use, copy, modify, and distribute this software for any purpose with or without fee is hereby
granted, pro vided that the above copyright notice and this permission notice appear in all copies. THIS
SOFTWARE IS PRO VIDED ``AS IS'' AND WITHOUT ANY EXPRESS OR IMPLIED WARRANTIES,
INCLUDING, WITHOUT LIMITATION, THE IMPLIED WARRANTIES OF MERCHANTIBILITY
AND FITNESS FOR A PARTICULAR PUR POSE. THE AUTHORS AND CONTRIBUTORS ACCEPT
NO RESPONSIBILITY IN ANY CONCEIVABLE MANNER.

Progress Orbix v6.3.5 incorporates ICU library 2.6 from IBM. Such Technology is subject to the following
terms and conditions: Copyright (c) 1995-2009 International Business Machines Corporation and others.
All rights reserved. Per mission is hereby granted, free of charge, to any person obtaining a copy of this soft-
ware and associated documenta tion files (the "Software"), to deal in the Software without restriction,
including without limitation the rights to use, copy, modify, merge, publish, distribute, and/or sell copies of
the Software, and to permit persons to whom the Soft ware is fur nished to do so, provided that the above
copyright notice(s) and this permission notice appear in all copies of the Software and that both the above
copyright notice(s) and this permission notice appear in supporting documentation. THE SOFTWARE IS
PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING
BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A
PARTICU LAR PUR POSE AND NONINFRINGEMENT OF THIRD PARTY RIGHTS. IN NO EVENT
SHALL THE COPYRIGHT HOLDER OR HOLDERS INCLUDED IN THIS NOTICE BE LIABLE FOR
ANY CLAIM, OR ANY SPECIAL INDI RECT OR CONSEQUENTIAL DAMAGES, OR ANY DAM-
AGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
ACTION OF CONTRACT, NEGLIGENCE OR OTHER TOR TIOUS ACTION, ARISING OUT OF OR
IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. Except as contained in
this notice, the name of a copyright holder shall not be used in advertising or other wise to promote the sale,
use or other dealings in this Software without prior written authorization of the copyright holder. All trade-
marks and registered trademarks mentioned herein are the property of their respective owners.

Updated: 13-Jul-2011
 16

Contents

List of Figures vii

List of Tables ix

Preface xi

Chapter 1 Transaction Service 1
About Transactions 2
Transaction Managers 4

Chapter 2 OMG OTS and X/Open XA Interfaces 7
Transaction Interfaces 8
OTS Interfaces 10
The X/Open XA Interface 12

Chapter 3 Getting Started with Transactions 13
Application Overview 14
Transaction Demarcation 16
Transaction Propagation and POA Policies 19
XA Resource Manager Integration 21
Application-Specific Resources 24
Configuration Issues 25

Chapter 4 Transaction Demarcation and Control 27
The OTS Current Object 28
Direct Transaction Demarcation 36

Chapter 5 Propagation and Transaction Policies 39
Implicit Propagation Policies 40
Shared and Unshared Transactions 41
Policy Meanings 42
Example Use of an OTSPolicy 45
iii

CONTENTS
Example Use of a NonTxTargetPolicy 47
Use of the ADAPTS OTSPolicy 50
Orbix-Specific OTSPolicies 52
Migrating from TransactionPolicies 55
Explicit Propagation 57

Chapter 6 Using XA Resource Managers with OTS 59
The XA Interface 60
XA and Multi-Threading 63
Using the Orbix XA Plug-In 65
Associations between Transactions and Connections 67
Association State Diagram 69
Using a Remote Resource Manager 71

Chapter 7 Transaction Management 75
Synchronization Objects 76
Transaction Identity Operations 79
Transaction Status 81
Transaction Relationships 83
Recreating Transactions 85

Chapter 8 Writing Recoverable Resources 87
The Resource Interface 88
Creating and Registering Resource Objects 91
Resource Protocols 95
Responsibilities and Lifecycle of a Resource Object 104

Chapter 9 Interoperability 109
Use of InvocationPolicies 110
Use of the TransactionalObject Interface 111
Interoperability with Orbix 3 OTS Applications 113
Using the Orbix 3 otstf with Orbix Applications 116

Chapter 10 OTS Plug-Ins and Deployment Options 117
The OTS Plug-In 120
The OTS Lite Plug-In 122
The Encina Transaction Manager 124
 iv

CONTENTS
The itotstm Transaction Manager Service 126

Appendix A OTS Management 131
Introduction to OTS Management 132
TransactionManager Entity 135
Transaction Entity 138
Encina Transaction Log Entity 140
Encina Volume Entity 142
Management Events 143

Glossary 145

Index 149
v

CONTENTS
 vi

List of Figures

Figure 1: OTS and XA 8

Figure 2: Example OTS Application – Funds Transfer 14

Figure 3: Thread and Transaction Associations 29

Figure 4: Association State Diagram 70

Figure 5: Relationship between resources and transactions 89

Figure 6: Rollback after a timeout 96

Figure 7: Successful 2PC protocol with two resources 97

Figure 8: Voting to rollback the transaction. 97

Figure 9: A resource returning VoteReadOnly. 98

Figure 10: A successful 1PC protocol. 98

Figure 11: The 1PC protocol resulting in a rollback. 99

Figure 12: Raising the HeuristicCommit exception 100

Figure 13: Recovery after the failure of a resource object 101

Figure 14: Use of the replay_completion() operation 103

Figure 15: Interoperability with Orbix 3 OTS Applications 113

Figure 16: Using and alternative OTS Implementation 116

Figure 17: The Generic OTS Plug-In 120

Figure 18: Deployment using the OTS Lite Plug-In 122

Figure 19: Using the OTS Encina plug-in with the itotstm service 127

Figure 20: Loading the OTS Encina Plug-In into the Application 129

Figure 21: OTS Management Model 132

Figure 22: OTS Encina Transaction Manager Entity 134
vii

LIST OF FIGURES
 viii

List of Tables
Table 1: OTS Interfaces 10

Table 2: XA interfaces. 12

Table 3: Mapping from TransactionPolicy values 55

Table 4: Coordinator interface identity operations 79

Table 5: Coordinator interface relationship operations 83

Table 6: Heuristic Outcomes 99

Table 7: Mapping TransactionalObject to OTSPolicies 111

Table 8: Features in OTS Implementation 118

Table 9: TransactionManager Attributes 135

Table 10: Encina TransactionManager Attributes 136

Table 11: Encina TransactionManager Operations 137

Table 12: Transaction Attributes 138

Table 13: Encina Transaction Attributes 138

Table 14: Transaction Operations 139

Table 15: Encina Transaction Log Attributes 140

Table 16: Encina Transaction Log Operations 141

Table 17: Encina (Physical) Volume Attributes 142

Table 18: Encina (Physical) Volume Operations 142
ix

LIST OF TABLES
 x

Preface
Orbix OTS is a full implementation from IONA Technologies of the
interoperable transaction service as specified by the Object Management Group.
Orbix OTS complies with the following specifications:

• CORBA 2.3

• OTS 1.2

• GIOP 1.2 (default), 1.1, and 1.0

If you need help with this or any other IONA products, contact IONA at
support@iona.com. Comments on IONA documentation can be sent to
docs-support@iona.com.

Audience This guide is intended to help you become familiar with the transaction service,
and shows how to develop applications with it. This guide assumes that you are
familiar with CORBA concepts, and with C++.

This guide does not discuss every interface and its operations in detail, but gives
a general overview of the capabilities of the transaction service and how various
components fit together. For detailed information about individual operations,
refer to the CORBA Programmer’s Reference.

Related Documentation For the latest version of all IONA product documentation, see the IONA web
site:

http://www.iona.com/docs/

Organization of this Guide This guide is divided as follows:

Chapter 1 provides a brief overview of the basic concepts involved in using the
transactions service.
xi

http://www.iona.com/docs/

PREFACE
Chapter 2 provides an overview of the transaction service’s interfaces. It also
provides information on the X/Open XA interfaces and how to use them to
interact with compliant resources.

Chapter 3 is a simple example of the steps involved in developing a client that
uses the transaction service. It discusses the basic steps required to use
transactions and the concepts behind them.

Chapter 4 covers transaction demarcation. It covers both using the transactions
Current object, which is convenient but limited, and using the
TransactionFactory and the Terminator interfaces to directly manipulate
demarcation.

Chapter 5 covers how to control how the transaction is propagated to its target
object through the use of POA policies.

Chapter 6 provides a detailed discussion how to implement
CosTransactions::Resource objects on top of the standard X/Open XA
interface to manage transactional resources.

Chapter 7 covers some additional areas of transaction management. This
includes synchronization objects, transaction identity and status operations,
relationships between transactions and recreating transactions.

Chapter 8 describes the CosTransactions::Resource interface; how resource
objects participate in the transaction protocols and the requirements for
implementing resource objects.

Chapter 9 describes how the Orbix OTS interoperates with older releases of
Orbix and with other OTS implementations including the Orbix 3 OTS.

Chapter 10 discusses the plugins that implement the transaction service and
options for deploying them.

Additional Related Resources The IONA knowledge base contains helpful articles, written by IONA experts,
about the Orbix and other products. You can access the knowledge base at the
following location:

http://www.iona.com/support/knowledge_base/

The IONA update center contains the latest releases and patches for IONA
products:

http://www.iona.com/support/updates/
 xii

http://www.iona.com/support/knowledge_base/
http://www.iona.com/support/updates/index.xml

PREFACE
Typographical Conventions This guide uses the following typographical conventions:

Keying Conventions This guide may use the following keying conventions:

Constant width Constant width (courier font) in normal text represents
portions of code and literal names of items such as
classes, functions, variables, and data structures. For
example, text might refer to the CORBA::Object class.

Constant width paragraphs represent code examples or
information a system displays on the screen. For
example:

#include <stdio.h>

Italic Italic words in normal text represent emphasis and new
terms.

Italic words or characters in code and commands
represent variable values you must supply, such as
arguments to commands or path names for your
particular system. For example:

% cd /users/your_name

Note: Some command examples may use angle
brackets to represent variable values you must supply.
This is an older convention that is replaced with italic
words or characters.

No prompt When a command’s format is the same for multiple
platforms, a prompt is not used.

% A percent sign represents the UNIX command shell
prompt for a command that does not require root
privileges.

A number sign represents the UNIX command shell
prompt for a command that requires root privileges.

> The notation > represents the DOS, Windows NT,
Windows 95, or Windows 98 command prompt.

...

.

.

.

Horizontal or vertical ellipses in format and syntax
descriptions indicate that material has been eliminated to
simplify a discussion.
xiii

PREFACE
[] Brackets enclose optional items in format and syntax
descriptions.

{ } Braces enclose a list from which you must choose an
item in format and syntax descriptions.

| A vertical bar separates items in a list of choices
enclosed in { } (braces) in format and syntax
descriptions.
 xiv

CHAPTER 1

Transaction Service
This chapter describes the transaction processing capabilities of
Orbix, showing how to use the Object Transaction Service (OTS)
for transaction demarcation, propagation and integration with
resource managers. Integration with X/Open XA compliant
resource managers is described.

In this chapter This chapter discusses the following topics:

About Transactions page 2

Transaction Managers page 4
1

CHAPTER 1 | Transaction Service
About Transactions

What is a transaction? Orbix gives separate software objects the power to interact freely even if they
are on different platforms or written in different languages. Orbix adds to this
power by permitting those interactions to be transactions.

What is a transaction? Ordinary, non-transactional software processes can
sometimes proceed and sometimes fail, and sometimes fail after only half
completing their task. This can be a disaster for certain applications. The most
common example is a bank fund transfer: imagine a failed software call that
debited one account but failed to credit another. A transactional process, on the
other hand, is secure and reliable as it is guaranteed to succeed or fail in a
completely controlled way.

Transaction support in Orbix To support the development of object-oriented, distributed,
transaction-processing applications, Orbix offers:

• An implementation of the Object Management Group’s Object Transaction

Service (OMG OTS).

• Integration with resource managers supporting the X/Open XA interface.

• A pluggable architecture that supports both a lightweight OTS

implementation and a full recoverable two-phase-commit (2PC)

implementation.

Example The classical illustration of a transaction is that of funds transfer in a banking
application. This involves two operations: a debit of one account and a credit of
another (perhaps after extracting an appropriate fee). To combine these
operations into a single unit of work, the following properties are required:

• If the debit operation fails, the credit operation should fail, and vice-versa;

that is, they should both work or both fail.

• The system goes through an inconsistent state during the process (between

the debit and the credit). This inconsistent state should be hidden from

other parts of the application.

• It is implicit that committed results of the whole operation are permanently

stored.
 2

About Transactions
Properties of transactions The following points illustrate the so-called ACID properties of a transaction.

Thus a transaction is an operation on a system that takes it from one persistent,
consistent state to another.

Atomic A transaction is an all or nothing procedure –
individual updates are assembled and either
committed or aborted (rolled back) simultaneously
when the transaction completes.

Consistent A transaction is a unit of work that takes a system
from one consistent state to another.

Isolated While a transaction is executing, its partial results are
hidden from other entities accessing the transaction.

Durable The results of a transaction are persistent.
3

CHAPTER 1 | Transaction Service
Transaction Managers

Purpose of a Transaction Manager Most resource managers, for example databases and message queues, provide
support for native transactions. However, when an application wants two or
more resource managers to be part of the same transaction some third party must
provide the necessary coordination to ensure the ACID properties are guaranteed
for the distributed transaction. This is where the concept of an transaction
manager that is independent of the individual resource manager comes in.

The application uses the transaction manager to create the transaction. Each
resource manager accessed during the transaction becomes a participant in the
transaction. Then when the application completes the transaction, either with a
commit or rollback request, the transaction manager communicates with each
resource manager.

Two-phase commit protocol When there are two of more participants involved in a transaction the transaction
manager uses a two-phase-commit (2PC) protocol to ensure that all participants
agree on the final outcome of the transaction despite any failures that may occur.
Briefly the 2PC protocol works as follows:

• In the first phase, the transaction manager sends a “prepare” message to

each participant. Each participant responds to this message with a vote

indicating whether the transaction should be committed or rolled back.

• The transaction manager collects all the prepare votes and makes a

decision on the outcome of the transaction. If all participants voted to

commit the transaction may commit. However if a least one participant

voted to rollback the transaction is rolled back. This completes the first

phase.

• In the second phase the transaction manager sends either commit or

rollback messages to each participant.

The 2PC protocol guarantees the ACID properties despite any failures that may
occur. Usually the transaction manager uses a log to record the progress of the
2PC protocol so that messages can be replayed during recovery.
 4

Transaction Managers
One-phase-commit protocol If there is only one participant in the transaction the transaction manager can use
a one-phase-commit (1PC) protocol instead of the 2PC protocol which can be
expensive in terms or the number of messages sent and the data that must be
logged. The 1PC protocol essentially delegates the transaction completion to the
single resource manager. Orbix supports this 1PC protocol which allows
developers to make use of the Orbix transaction manager without suffering the
overheads associated with the 2PC protocol. By making use of the OTS and XA
interfaces an application can be easily extended to support multiple resource
managers within a transaction easily.
5

CHAPTER 1 | Transaction Service
 6

CHAPTER 2

OMG OTS and
X/Open XA
Interfaces
The OMG OTS provides interfaces to manage the demarcation of
transactions and the propagation of transaction contexts. With the
X/Open XA interface, integration with compliant resource
managers such as databases and message queues is provided.

In this chapter This chapter discusses the following topics:

Transaction Interfaces page 8

OTS Interfaces page 10

The X/Open XA Interface page 12
7

CHAPTER 2 | OMG OTS and X/Open XA Interfaces
Transaction Interfaces

Purpose The OMG OTS provides interfaces to manage the demarcation of transactions
(creation and completion), the propagation of transaction contexts to the
participants of the transaction and interfaces to allow applications to participate
in the transaction.

With the X/Open XA interface, integration with compliant resource managers
such as databases and message queues is provided.

Illustration of transaction interfaces

Figure 1 shows these areas of transaction management.

Figure 1: OTS and XA

OTS Transaction Service

Resource
Manager

(Database)

Transactional
Clients

(e.g., Teller)

Transactional
Application
(e.g., Bank)

Resource
Manager
(Message
Queue)

Transactional
Application
(e.g., Bank)

Transaction Demarcation

CosTransactions::Current
begin(), commit(),
rollback(), ...

Transaction Propagation

CosTransactions::OTSPolicy
REQUIRES, ADAPTS, ...

Resource Manager Integration

X/Open XA &
CosTransactions::Resource

Transaction Management

TransactionFactory,
Control, Coordinator,

Terminator, ...
 8

Transaction Interfaces
Transaction Demarcation Transaction demarcation is where the application sets the boundaries of the
transaction. Typically this is done using the OTS Current interface; invoking
the begin() operation at the start of the transaction and either commit() or
rollback() at the end of the transaction. An alternative to using the Current
interface is to create transactions directly using the TransactionFactory
interface and commit or rollback the transactions using the Terminator
interface.

Transaction Propagation Propagation refers to the passing of information related to the transaction to the
application objects that are participants in the transaction. When the Current
interface is used for transaction demarcation this propagation takes place
transparently and is controlled by a number of POA policies. Transactions
created using the TransactionFactory interface must be propagated by adding
an extra parameter to the operation.

Resource Manager Integration Integration with resource managers such as databases is done using the XA
interface. Alternatively an application may use the OTS Resource interface to
provide integration with proprietary resource managers.

Transaction Management The OTS interfaces also provide operations for general transaction management.
These include, setting timeouts, registering resource objects and synchronization
objects, comparing transactions and getting transaction names
9

CHAPTER 2 | OMG OTS and X/Open XA Interfaces
OTS Interfaces

Supported OTS Interfaces The following is a list of the main interfaces supported by the OTS. All
interfaces are part of the IDL module CosTransactions. For more details on these
interfaces, refer to the CORBA Programmer’s Reference.

Table 1: OTS Interfaces

Interface Purpose

Control The return type of
TransactionFactory::create(). It provides
access to the two controllers of the
transactions, the Coordinator and the
Terminator.

Coordinator Provides operations to register objects that
participate in the transaction.

Current A local interface that provides the concept of
a transaction to the current thread of control.
The Current interface supports a subset of the
operations provided by the Coordinator and
Terminator interfaces.

RecoveryCoordinator Used in certain failure cases to complete the
transaction completion protocol for a
registered resource object.

Resource Represents a recoverable participant in a
transaction. Objects supporting this interface
are registered with a transaction’s coordinator,
and are then invoked at key points in the
transaction’s completion.

SubtransactionAwareReso
urce

Represents a participant that is aware of
nested transactions. Nested transactions are
not supported in this release.
 10

OTS Interfaces
OTS Transaction Modes When using the OTS interfaces for transaction demarcation and propagation,
there are two modes of use:

The preferred mode for most applications is the indirect/implicit mode. The
direct/explicit provides more flexibility but is more difficult to manage (see
“Direct Transaction Demarcation” on page 36 and “Explicit Propagation” on
page 57) for more details.

Synchronization Represents a non-recoverable object allowing
application specific operations to occur both
before and after transaction completion.

Terminator Provides a means of directly committing or
rolling back a transaction.

TransactionalObject This interface has been deprecated and
replaced with transaction policies (see
Chapter 5).

TransactionFactory Provides a means of directly creating
top-level transactions.

Table 1: OTS Interfaces

Interface Purpose

Indirect/Implicit In the indirect/implicit mode transaction are created,
committed and rolled back using the Current
interface. Propagation takes place automatically
depending on the policies in the target object’s POA.

Direct/Explicit In the direct/explicit mode transactions are created
using the TransactionFactory and committed or
rolled back using the Terminator object. Propagation
is done by adding a parameter (for example, the
transaction’s control object) to each IDL operation.
11

CHAPTER 2 | OMG OTS and X/Open XA Interfaces
The X/Open XA Interface

XA Interfaces The X/Open XA interface is a C API between a transaction manager and a
resource manager (for example, a database). The C API provides functions for
opening and closing connections to the resource manager (xa_open() and
xa_close()), managing associations between the current connection and global
transactions (xa_start() and xa_end()), transaction protocols (xa_prepare(),
xa_commit(), xa_rollback() and xa_forget()), and functions to support
recovery (xa_recover()).

Integration with OTS Integration between XA compliant resource managers and the OTS is provided
by several interfaces in the XA module, as detailed in the following table.

Table 2: XA interfaces.

Interface Purpose

Connector Provides a means of getting
CurrentConnection and ResourceManager
objects.

CurrentConnection Represents the current XA connection to a
resource manager.

BeforeCompletionCallback Allows an application to be called before the
completion of a transaction.

ResourceManager Use to register and unregister
BeforeCompletionCallback objects.
 12

CHAPTER 3

Getting Started
with Transactions
This chapter illustrates the Object Transaction Service (OTS) by
way of an example application. It includes the basic steps needed
to develop an application with the OTS.

In this chapter This chapter discusses the following topics:

Application Overview page 14

Transaction Demarcation page 16

Transaction Propagation and POA Policies page 19

XA Resource Manager Integration page 21

Application-Specific Resources page 24

Configuration Issues page 25
13

CHAPTER 3 | Getting Started with Transactions
Application Overview

Funds transfer application The example application is that of funds transfer between two bank accounts.
Figure 2 shows the application. The client has a reference to two objects
representing two accounts. The account objects are implemented directly on top
of an XA-compliant database and use SQL to access the database. This example
shows the source and destination accounts using different databases, however
they could both be using the same database.

Interface definition The interface for the account objects is defined in IDL as follows:

Figure 2: Example OTS Application – Funds Transfer

SQL/XA

SQL/XA

Database
A

Client

Src
Acc

Dest
Acc

$

Database
B

// IDL
module Bank
{
 typedef float CashAmount;
 interface Account
 {
 exception InsufficientFunds {};
 void deposit(in CashAmount amt);
 void withdraw(in CashAmount amt)
 raises (InsufficientFunds);
 };
 ...
};
 14

Application Overview
TransactionalObject interface
deprecated

Readers familiar with version 1.1 of the OTS specification (used by OrbixOTM
and Orbix 3) will notice that the Account interface does not inherit from the
CosTransactions::TransactionalObject interface. The use of that interface
to mark objects as transactional has been deprecated in favor of using POA
policies in version 1.2 of the specification. The TransactionalObject interface
is still supported for backward compatibility with the OTS in OrbixOTM and
Orbix 3. See “Use of the TransactionalObject Interface” on page 111 for more
details.

Since the TransactionalObject interface is deprecated, application developers
no longer have to change the IDL used by their applications when adding
transactional capabilities.

Transferring funds Given a source and destination account, the funds transfer is performed by
invoking the withdraw() operation on the source account followed by invoking
the deposit() operation on the destination account. The application will look
something like the following:

Completing the application To make this a transactional application we need three more steps:

1. The funds transfer application needs to be wrapped in a transaction to

ensure the ACID properties. This is covered in “Transaction Demarcation”

on page 16.

2. The application must make sure the transaction is propagated to the two

account objects during the invocations of the deposit() and withdraw()

operations. This is covered in “Transaction Propagation and POA Policies”

on page 19

3. The implementation of the account objects must be integrated with an XA

compliant database. This is covered in “XA Resource Manager

Integration” on page 21.

// C++
Bank::Account_var src_acc = ...
Bank::Account_var dest_acc = ...
Bank::CashAmount amount = 100.0;
src_acc->withdraw(amount);
dest_acc->deposit(amount);
15

CHAPTER 3 | Getting Started with Transactions
Transaction Demarcation

Demarcation using OTS current
object

Transaction demarcation refers to setting the boundaries of the transaction. The
simplest way to do this is to use the OTS current object. The following are the
steps involved:

1. Obtain a reference to the OTS current object from the ORB.

2. Create a new transaction.

3. Perform the funds transfer.

4. Complete the transaction by either committing it or rolling it back.

More information on transaction demarcation including other ways of creating,
committing and rolling back transactions is covered in Chapter 4.

Obtain a reference to the OTS
current object from the ORB

The OTS current object supports the CosTransactions::Current interface and
a reference to the object is obtained by calling the ORB operation
resolve_initial_references(“TransactionCurrent”).

Note that the file CosTransactions.hh must be included to use the interfaces
defined in the CosTransactions module. Error handling has been omitted for
clarity:

// C++
...
#include <CosTransactions.hh>
...
int main(int argc, char** argv)
{
 CORBA::ORB_var orb = CORBA::ORB_init(argc, argv);

 CORBA::Object_var obj =
 orb->resolve_initial_references(“TransactionCurrent”);
 CosTransactions::Current_var tx_current =
 CosTransactions::Current::_narrow(obj);
 ...
}

 16

Transaction Demarcation
Create a new transaction The next step is the creation of a new top-level transaction. This is done by
invoking begin() on the OTS current object:

If the begin() succeeds, a new transaction is associated with the current thread
of control.

Perform the funds transfer The funds transfer is the same as shown in the application overview. There are
no changes for transaction management. The code is reproduced here for
completeness:

Complete the transaction by either
committing it or rolling it back

Once the work has been done, we need to complete the transaction. Most of the
time the application simply wants to attempt to commit the changes made: this is
done by invoking the commit() operation on the OTS current object:

The commit() operation only attempts to commit the transaction. It may happen
that due to system failures or other reasons the transaction cannot be committed;
in this case the TRANSACTION_ROLLEDBACK system exception is raised.

The parameter passed to commit() is a boolean specifying whether heuristics
outcomes should be reported to the client (see “Heuristic Outcomes” on page 99
for details on heuristic outcomes). In this example we do not wait for heuristic
outcomes.

If instead of attempting a commit the application wants to roll back the changes
made, the operation rollback() is invoked on the OTS current object:

// C++
tx_current->begin();

// C++
Bank::Account_var src_acc = ...
Bank::Account_var dest_acc = ...
Bank::CashAmount amount = 100.0;
src_acc->withdraw(amount);
dest_acc->deposit(amount);

// C++
try {
 tx_current->commit(IT_false)
} catch (CORBA::TRANSACTION_ROLLEDBACK&) {
 // Transaction has been rolled back.
}

17

CHAPTER 3 | Getting Started with Transactions
// C++
tx_current->rollback()
 18

Transaction Propagation and POA Policies
Transaction Propagation and POA Policies

Propagating the transaction The funds transfer application invokes the withdraw() and deposit()
operations within the context of a transaction associated with the current thread
of control. However the transaction needs to be propagated to the target objects
to ensure that any updates they make are done in the context of the application’s
transaction.

POA Policies To ensure propagation of transaction contexts the target objects must be placed
in a POA with specific OTS POA policies. In particular the POA must use one
of the OTSPolicy values REQUIRES or ADAPTS. The following code shows the
creation of a POA with the REQUIRES OTSPolicy and the activation of an
account object in the POA.

// C++

CORBA::ORB_var orb = ...

// Create a policy object for the REQUIRES OTS Policy.
CORBA::Any policy_val;
policy_val <<= CosTransactions::REQUIRES;
CORBA::Policy_var tx_policy =
 orb->create_policy(CosTransactions::OTS_POLICY_TYPE,
 policy_val);

// Add OTS policy to policy list (just 1 policy in this case).
CORBA::PolicyList policies(1);
policies.length(1);
policies[0] = CORBA::Policy::_duplicate(tx_policy);

// Get a reference to the root POA.
CORBA::Object_var obj =
 orb->resolve_initial_references("RootPOA");
PortableServer::POA_var root_poa =
 PortableServer::POA::_ narrow(obj);

// Create a new POA with the OTS Policy.
PortableServer::POA_var POA tx_poa =
 root_poa->create_POA("REQUIRES TX",
 root_poa->the_POAManager(),
 policies);
19

CHAPTER 3 | Getting Started with Transactions
OTSPolicy values There are three OTSPolicy values: REQURIES, ADAPTS and FORBIDS. REQUIRES
specifies that the object must be invoked within a transaction; ADAPTS allows the
object to be invoked both within and without a transaction; FORBIDS specifies
that the object must not be invoked within a transaction. See Chapter 5 for a full
discussion of POA and client policies relating to transaction propagation.
Support for the deprecated TransactionalObject interface is discussed in
“Use of the TransactionalObject Interface” on page 111.

// Create object using the transactional POA. This example
// uses servant_to_reference() to create the object
//
// AccountImpl is the servant class implementing the
// IDL interface Account.
AccountImpl* servant = new AccountImpl(...);
PortableService::ObjectId_var id =
 tx_poa->activate_object(servant);
obj = tx_poa->servant_to_reference(servant);
Bank::Account_var account = Bank::Account::_narrow(obj);
 20

XA Resource Manager Integration
XA Resource Manager Integration

Process of using an XA Resource
Manager

Integrating an XA compliant resource manager with OTS managed transactions
involves three steps:

1. Setting up configuration variables for the resource manager.

2. Application initialization.

3. Accessing the database during an OTS transaction.

Full details are in Chapter 6.

Resource Manager Configuration Each resource manager used by an application requires configuration. The
configuration is placed in a namespace that is passed to the
create_resource_manager() operation during application initialization. The
minimum configuration is the specification of the resource manager’s
open-string. This is a resource manager specific string that is passed to the
xa_open() call and contains sufficient information to create an XA connection
to the database. For example this can contain user name and password details.

The following example shows the configuration for an Oracle database using the
xa_resource_managers:oracle namespace. The thread_model configuration
variable specifies scope of an XA connection (either thread or process):

Application Initialization Applications using XA resource managers must include the file omg/XA.hh to
access the interfaces in the XA module. During application initialization
ResourceManager and CurrentConnection objects are created to represent the

xa_resource_managers:oracle:thread_model = “PROCESS”;
xa_resource_managers:oracle:open_string =
 “Oracle_XA+Acc=P/SCOTT/TIGER+SesTm=60+SqlNet=osol”
21

CHAPTER 3 | Getting Started with Transactions
resource manager being integrated. This is done by getting a reference to the
Connector object (by passing “XAConnector” to
resolve_initial_references()) and calling create_resource_manager():

The create_resource_manager() operation is passed the resource manager's
name, XA switch (xaosw is Oracle's XA switch), open-string and close string as
well as flags that affect the behavior of the resource manager. It returns a
reference to the ResourceManager object and a reference to the
CurrentConnection object (as an out parameter).

Accessing the Database within an
OTS Transaction

The application code used to read and write to the database is the same as for a
normal application with the following exceptions:

1. Before each access to the database the start() operation must be called on

the XA Connection object to associate the connection with the current

transaction.

2. After the database access the end() operation must be called on the XA

Connection object to remove the association with the current transaction.

3. Resource manager operations related to transaction management such as

the embedded SQL operations BEGIN, COMMIT, or ROLLBACK must

not be used.

The following shows how integration with an XA-compliant database is
achieved using embedded SQL:

// C++
...
CORBA::ORB_var orb = ...

// Get reference to the XAConnector object.
CORBA::Object_var xa_connector_obj =
 orb->resolve_initial_references("XAConnector");
 XA::Connector_var xa_connector =
 XA::Connector::_narrow(xa_connector_obj);

// Get XA Connection object for the resource manager.
XA::CurrentConnection_var current_connection;
XA::ResourceManager_var rm =
 xa_connector->create_resource_manager(
 "xa_resource_managers:oracle",
 xaosw, "",
 current_connection);
 22

XA Resource Manager Integration
// C++
void AccountImpl::deposit(float amt)
{
 // Get the coordinator and otid for the current
 // transaction.
 CosTransactions::Current_var tx_current = ...
 CosTransactions::Control_var control =
 tx_current->get_control();
 CosTransactions::Coordinator_var tx =
 control->get_coordinator();
 CosTransactions::PropagationContext_var ctx =
 tx->get_txcontext();
 const CosTransactions::otid_t& otid = ctx->current.otid;

 // Associate current transaction with the XA connection
 // to the database.
 XA:CurrentConnection_var current_connection = ...
 current_connection->start(tx, otid);

 EXEC SQL BEGIN DECLARE SECTION
 unsigned long acc_id = m_accId;
 float balance = 0.0;
 EXEC SQL END DECLARE SECTION

 // Get the current balance.
 EXEC SQL SELECT BALANCE
 INTO :balance
 FROM ACCOUNTS
 WHERE ACC_ID = :acc_id;

 // Update balance.
 balance += amt;
 EXEC SQL UPDATE ACCOUNTS
 SET BALANCE = :balance
 WHERE ACC_ID = :acc_id;

 // Dissociate the current transaction from the XA
 // connection to the database.
 current_connection->end(tx, otid, IT_true);
}

23

CHAPTER 3 | Getting Started with Transactions
Application-Specific Resources

Resource interface operations The CosTransactions::Resource interface provides a mechanism for
applications to become involved in the commit and rollback protocol of a
transaction. The Resource interface provides five operations that are called at
key points during the commit or rollback protocols:

• prepare()

• commit()

• rollback()

• commit_one_phase()

• forget()

Implementing resource objects An application implements a resource object that supports the Resource
interface and registers an instance of the object with a transaction using the
register_resource() operation provided by the Coordinator interface.
Resource object implementations are responsible for cooperating with the OTS
to ensure the ACID properties for the whole transaction. In particular resource
objects must be able to recover from failures.

The implementation of resource objects is discussed in detail in Chapter 8.
 24

Configuration Issues
Configuration Issues

Issues Before an application using OTS can run there are a number of configuration
issues. These are concerned with loading the appropriate plug-ins and setting up
the client and server bindings to enable implicit propagation of transactions.

Loading the OTS plug-in For server applications, the OTS plug-in must be loaded explicitly by including
it in the orb_plugins configuration variable. For example:

orb_plugins = [..., “ots”];

The client and server bindings are controlled with the configuration variables
binding:client_binding_list and binding:server_binding_list
respectively. The settings for both variables need to take account of the OTS for
potential bindings. For example, to be considered for the IIOP/GIOP and
collocated-POA bindings the variables must be set as follows:

binding:client_binding_list = [“OTS+POA_Coloc”,
 “OTS+GIOP+IIOP”,
 “POA_Coloc”,
 “GIOP+IIOP”];

binding:server_binding_list = [“OTS”, “”];

Other configuration variables can be used to alter the characteristics of your
application. These are covered in Chapter 11.
25

CHAPTER 3 | Getting Started with Transactions
 26

CHAPTER 4

Transaction
Demarcation and
Control
The most convenient means of demarcating transactions is to use
the OTS Current object. Direct transaction demarcation using the
TransactionFactory and Terminator interfaces provide more
flexibility but is more difficult to manage.

In this chapter This chapter discusses the following topics:

The OTS Current Object page 28

Direct Transaction Demarcation page 36
27

CHAPTER 4 | Transaction Demarcation and Control
The OTS Current Object

Current Interface The OTS Current object maintains associations between the current thread of
control and transactions. The Current interface is defined as follows:

// IDL (in module CosTransactions)
local interface Current : CORBA::Current {

 void begin()
 raises(SubtransactionsUnavailable);

 void commit(in boolean report_heuristics)
 raises(NoTransaction, HeuristicMixed,
 HeuristicHazard);

 void rollback()
 raises(NoTransaction);

 void rollback_only()
 raises(NoTransaction);

 Status get_status();

 string get_transaction_name();

 void set_timeout(in unsigned long seconds);
 unsigned long get_timeout();

 Control get_control();

 Control suspend();

 void resume(in Control which)
 raises(InvalidControl);
};
 28

The OTS Current Object
Threads and transactions The OTS Current object maintains the association between threads and
transactions. This means the same OTS Current object can be used by several
threads. Figure 3 shows the relationship between threads, the OTS Current
object, and the three objects that represent a transaction (Control, Coordinator
and Terminator).

Figure 3: Thread and Transaction Associations

Thread A

Thread B

Current

Control A

Coordinator A

Terminator A

Control B

Terminator B

Coordinator B
29

CHAPTER 4 | Transaction Demarcation and Control
Getting a Reference to the OTS
Current Object

A reference to the OTS Current object is obtained by calling
resolve_initial_references() passing “TransactionCurrent” as the
parameter and narrowing the result to CosTransactions::Current. For
example:

The Current interface is declared as local which means references to the
Current object cannot be passed as parameters to IDL operations or passed to
operations such as object_to_string().

Creating Transactions The begin() operation is used to create a new transaction and associate the new
transaction with the current thread of control. If there is no current transaction a
top-level transaction is created; otherwise a nested transaction is created (see
“Nested Transactions” on page 33).

// C++
CosTransactions::Current_var tx_current;
try {
 CORBA::ORB_var orb = ...
 CORBA::Object_var obj =
 orb->resolve_initial_references("TransactionCurrent");

 tx_current = CosTransactions::Current::_narrow(obj);
}
catch (CORBA::SystemException& ex)
{
 // Error handling.
 ...
}

 30

The OTS Current Object
The following code creates a new transaction:

Committing the Current
Transaction

The commit() operation attempts to commit the current transaction, if any, and
removes the current thread/transaction association. If the commit() operation
returns normally the transaction was successfully committed. However if the
TRANSACTION_ROLLEDBACK system exception is raised the transaction has been
rolled back. In both cases the transaction is disassociated with the current thread
of control.

// C++
CosTransactions::Current_var tx_current = ...
try
{
 tx_current->begin();
}
catch (CosTransactions::SubtransactionsUnavailable& ex)
{
 // Already in a transaction and nested transaction are not
 // supported.
}
catch (CORBA::SystemException& ex)
{
 // Error handling...
}

31

CHAPTER 4 | Transaction Demarcation and Control
For example, the following code attempts to commit the current transaction:

If there is no current transaction the CosTransactions::NoTransaction
exception is raised.

The commit() operation takes a boolean parameter that indicates whether
reporting of heuristic exceptions is permitted. Heuristic exceptions occur when a
there is a conflict or potential conflict between the outcome decided by the
transaction coordinator and the outcome performed by one or more resource
managers (see “Heuristic Outcomes” on page 99 for more details). If a value of
true is passed, the application must be prepared to catch the HeuristicMixed
and HeuristicHazard exceptions; if a value of false is passed these exceptions
are never raised.

// C++
CosTransactions::Current_var tx_current = ...
try
{
 // Attempt to commit the current transaction.
 tx_current->commit(IT_false);
}
catch (CORBA::TRANSACTION_ROLLEDBACK&)
{
 // The transaction was rolled back.
}
catch (CORBA::SystemException& ex)
{
 // Error handling...
}
catch (CosTransactions::NoTransaction& ex)
{
 // There was no transaction to commit.
}

 32

The OTS Current Object
Rolling Back the Current
Transaction

The rollback() operation rolls back the current transaction, if any, and
removes the current thread/transaction association. For example, the following
code rolls back the current transaction:

If there is no current transaction the CosTransactions::NoTransaction
exception is raised.

The rollback_only() operation may also be used to mark a transaction to be
rolled back. This operation does not actively rollback the transaction, but instead
prevents it from ever being committed. This can be useful, for example, to
ensure the current transaction will be rolled back during a remote operation.
Again, the NoTransaction exception is raised if there is no current transaction.

Nested Transactions Nested transactions, also known as sub-transactions, provide a way of
composing applications from a set of transactions each of which can fail
independently of each other. Nested transactions form a hierarchy known as a
transaction family. No updates are made permanent until the top-level
transaction commits.

When using the Current object, a nested transaction is created by calling
begin() when there is already a transaction associated with the current thread of
control. When nested transaction is committed or rolled back, the thread
transaction association reverts back to the parent transaction.

Note: Nested transactions are not supported in this release of Orbix.

// C++
CosTransactions::Current_var tx_current = ...
try
{
 tx_current->rollback();
}
catch (CORBA::SystemException& ex)
{
 // Error handling...
}
catch (CosTransactions::NoTransaction& ex)
{
 // There was no transaction to commit.
}

33

CHAPTER 4 | Transaction Demarcation and Control
Timeouts The set_timeout() operation sets the timeout in seconds for subsequent
top-level transactions. It does not set the timeout for the current transaction.
Passing a value of 0 means subsequent top-level transactions will never timeout.

If set_timeout() is not called the default timeout is taken from the
plugins:ots:default_transaction_timeout configuration variable.

The get_timeout() operation returns the current timeout in seconds for
subsequent top-level transactions. It does not return the timeout for the current
transaction.

For example, the following code sets the timeout for subsequent top level
transactions to 30 seconds:

Suspending and Resuming
Transactions

The suspend() operation temporarily removes the association between the
current thread of control and the current transaction if any. Calling suspend()
returns a reference to a control object for the transaction. The transaction can be
resumed later by calling the resume() operation passing in the reference to the
control object.

Suspending a transaction is useful if it is necessary to perform work outside of
the current transaction. For example:

// C++
CosTransactions::Current_var tx_current = ...
tx_current->set_timeout(30);

// C++
CosTransactions::Current_var tx_current = ...
tx_current->begin();
account->deposit(100.0);

// Suspend the current transaction.
CosTransactions::Control_var control =
 tx_current->suspend();

// Do some non-transactional work.
...

// Resume the transaction.
tx_current->resume(control);

tx_current->commit(IT_true);
 34

The OTS Current Object
The resume() operation raises the CosTransactions::InvalidControl
exception if the transaction represented by the control object cannot be resumed.

Sometimes the work done during the transaction’s suspend state can be work on
a different transaction. Thus, suspend() and resume() give you a way to work
on multiple transactions within the same thread of control.

Miscellaneous Operations The get_status() and get_transaction_name() operations provide
information on the current transaction. The get_control() operations returns
the Control object for the current transaction or nil if there is no current
transaction. This is used to provide access to the Coordinator and Terminator
objects for more advanced control. See Chapter 7 for more details
35

CHAPTER 4 | Transaction Demarcation and Control
Direct Transaction Demarcation

Using the transaction factory to
create transactions

The alternative to using the OTS Current object is to use the transaction factory
directly to create transactions.

Example The following code shows the creation of a new top-level transaction:

The first step is to obtain a reference to the transaction factory object. This is
done by calling resolve_initial_references() passing a value of
“TransactionFactory” and narrowing the result to
CosTransactions::TransactionFactory.

The create() operation creates a new top-level transaction and returns a
control object representing the new transaction. create() is passed the timeout
in seconds for the transaction. A value of 0 means there is no timeout.

To complete a transaction created using the transaction factory, the terminator
object is used. The terminator object is obtained by calling get_terminator()
on the control object. The Terminator interface provides the commit() and
rollback() operations. These are the same as the ones provided by the Current
interface except they do not raise the NoTransaction exception.

// C++
//
// Get a reference to the transaction factory.
CORBA::ORB_var orb = ...
CORBA::Object_var obj =
 orb->resolve_initial_references("TransactionFactory");
CosTransactions::TransactionFactory_var tx_factory =
 CosTransactions::TransactionFactory::_narrow(obj);

// Create a transaction with a timeout of 60 seconds.
CosTransactions::Control_var control =
 tx_factory->create(60);
 36

Direct Transaction Demarcation
Example of a commit The following shows the attempted commit of a transaction using the direct
approach:

// C++
//
try {
 CosTransactions::Terminator_var term =
 control->get_terminator();
 term->commit(IT_true);
} catch (CORBA::TRANSACTION_ROLLEDBACK&){
 // Transaction has been rolled back.
}

37

CHAPTER 4 | Transaction Demarcation and Control
 38

CHAPTER 5

Propagation and
Transaction
Policies
This chapter describes how to control transfer of the transaction
to the target object using POA policies or explicitly.

In this chapter This chapter discusses the following topics:

Implicit Propagation Policies page 40

Shared and Unshared Transactions page 41

Policy Meanings page 42

Example Use of an OTSPolicy page 45

Example Use of a NonTxTargetPolicy page 47

Use of the ADAPTS OTSPolicy page 50

Orbix-Specific OTSPolicies page 52

Migrating from TransactionPolicies page 55

Explicit Propagation page 57
39

CHAPTER 5 | Propagation and Transaction Policies
Implicit Propagation Policies

Implicit and Explicit Propagation Propagation refers to the transfer of the transaction to the target object during an
invocation.

For transactions created using the OTS Current object , propagation is implicit.
That is, the application does not have to change the way the object is invoked in
order for the transaction to be propagated. Implicit propagation is controlled
using POA policies.

For transactions created directly via the TransactionFactory reference, explicit
propagation must be used.

Policies for implicit propagation For implicit propagation, there are two POA policies and one client policy that
affect the behavior of invocations with respect to transactions.

The POA policies are:

• OTSPolicy

• InvocationPolicy

Both policies allow an object to set requirements on whether the object is
invoked in the context of a transaction and transaction model being used.

The client OTS policy is:

• NonTxTargetPolicy

This alters the client’s behavior when invoking on objects that do not permit
transactions.

Note: These three policies replace the deprecated TransactionPolicy and the
use of the deprecated TransactionalObject interface both of which are still
supported in this release. See “Migrating from TransactionPolicies” on page 55
and “Use of the TransactionalObject Interface” on page 111 for more details.
 40

Shared and Unshared Transactions
Shared and Unshared Transactions

InvocationPolicy transaction
models

The InvocationPolicy deals with the transaction model supported by the target
object. There are two transaction models:

• shared

• unshared

Shared model The shared model is the familiar end-to-end transaction where the client and the
target object both share the same transaction. That is, an invocation on an object
within a shared transaction is performed within the context of the transaction
associated with the client.

Unshared model An unshared transaction is used for asynchronous messaging where different
transactions are used along the invocation path between the client and the target
object. Here, the target object invocation is performed within the context of a
different transaction than the transaction associated with the client. Hence, the
client and target object does not share the same transaction. This model is
required since with asynchronous messaging it is not guaranteed that the client
and server are active at the same time.

Orbix does not support unshared transactions in this release. They are included
in the following discussion for completeness only.
41

CHAPTER 5 | Propagation and Transaction Policies
Policy Meanings

The three standard OTSPolicy
values

The OTSPolicy has three possible standard values plus additional two values
specific to Orbix. The Orbix-specific values are discussed in “Orbix-Specific
OTSPolicies” on page 52; the standard values and their meanings are:

Objects with the REQUIRES or ADAPTS OTSPolicy are also known as transactional
objects since they support invocations within transactions; objects with the
FORBIDS OTSPolicy or no OTSPolicy at all are known as non-transactional
objects since they do not support invocations within transactions.

For an example of using an OTSPolicy see “Example Use of an OTSPolicy” on
page 45 below.

REQUIRES This policy is used when the target object always expects to
be invoked within the context of a transaction. If there is no
transaction the TRANSACTION_REQUIRED system exception is
raised. This policy guarantees that the target object is
always invoked within a transaction.

FORBIDS This policy is used when the target object does not permit
invocations performed within the context of a transaction. If
a transaction is present the INVALID_TRANSACTION system
exception is raised. This policy guarantees that the target
object is never invoked within a transaction. This is the
default policy.

ADAPTS This policy is used when the target object can accept both
the presence and absence of a transaction. If the client is
associated with a transaction, the target object is invoked in
the context of the transaction; otherwise the target object is
invoked without a transaction. This policy guarantees that
the target object is invoked regardless of whether there is a
transaction or not. Here, the target object adapts to the
presence or not of a transaction.
 42

Policy Meanings
The two NonTxTargetPolicy
values

The default behavior for a client that invokes on an object within a transaction
where the target object has the FORBIDS OTSPolicy (or where the object does not
have any OTSPolicy, since FORBIDS is the default) is for the
INVALID_TRANSACTION exception to be raised. This behavior can be altered with
the NonTxTargetPolicy. The policy values and their meanings are:

Setting the policies As with all client policies, there are four ways in which they may be set:

1. Using configuration. For the NonTxTargetPolicy the variable to set is

policies:non_tx_target_policy.

2. Set the policy on the ORB using the CORBA::PolicyManager interface.

3. Set the policy for the current invocation using the CORBA::PolicyCurrent

interface.

4. Set the policy on the target object using the

CORBA::Object::_set_policy_overrides() operation.

For more information on client policies see the chapter “Using Policies” in the
CORBA Programmer’s Guide. For an example of using a NonTxTargetPolicy
see “Example Use of a NonTxTargetPolicy” on page 47 below.

Note that since the default OTSPolicy is FORBIDS, using the PREVENT
NonTxTargetPolicy could result in previously working code becoming
unworkable due to invocations been denied. The PREVENT policy should be
used with care.

PREVENT The invocation is prevented from proceeding and the
INVALID_TRANSACTION system exception is raised. This is
the default behavior

PERMIT The invocation proceeds but the target object is not invoked
within the context of the transaction. This satisfies the target
object’s requirements and allows the client to make
invocations on non-transactional objects within a
transaction.
43

CHAPTER 5 | Propagation and Transaction Policies
The three InvocationPolicy values Finally, the choice of which transaction model (shared or unshared) that an
object supports is done using the InvocationPolicy. This has three values:

Note that the UNSHARED and EITHER InvocationPolicies cannot be used in
combination with the FORBIDS and ADAPTS OTSPolicies. Attempting to create a
POA with these policy combinations results in the
PortableServer::InvalidPolicy exception being raised.

SHARED The target object supports only shared transactions. This is
the default. An asynchronous invocation results in the
TRANSACTION_MODE system exception being raised.

UNSHARED The target object supports only unshared transactions. A
synchronous invocation results in the TRANSACTION_MODE
system exception begin raised.

EITHER The target object supports both shared and unshared
transactions.
 44

Example Use of an OTSPolicy
Example Use of an OTSPolicy

Steps to create an object with an
OTSPolicy

The following are the steps to create an object with a particular OTS policy:

1. Create a CORBA Policy object that represents the desired OTS policy.

This is done by calling the ORB operation create_policy() passing in

the value CosTransactions::OTS_POLICY_VALUE as the first parameter

and the policy value (encoded as an any) as the second parameter.

2. Create a POA that includes the OTSPolicy in its policy list. This is done by

calling create_POA().

3. Create an object using the new POA.

Example The following code sample shows an object being created in a POA that uses the
ADAPTS OTSPolicy. For clarity, the POA is created off the root POA and only
one new policy is added.

// C++
//
// Create CORBA policy object for ADAPTS OTSPolicy
CORBA::Any tx_policy_value;
tx_policy_value <<= CosTransactions::ADAPTS;

CORBA::ORB_var orb = ...
CORBA::Policy_var tx_policy = orb->create_policy(
 CosTransactions::OTS_POLICY_TYPE, tx_policy_value);

// Create a POA using the transactional policy.
CORBA::PolicyList policies(1);
policies.length(1);
policies[0] = CORBA::Policy::_duplicate(tx_policy)

// Get a reference to the root POA.
CORBA::Object_var obj =
orb->resolve_initial_references("RootPOA");
PortableServer::POA_var root_poa = PortableServer::_narrow(obj);
45

CHAPTER 5 | Propagation and Transaction Policies
// Set up nil POAManager reference.
PortableServer::POAManager_var nil_mgr =
PortableServer::POAManager::_nil();

PortableServer::POA_var tx_poa =
root_poa->create_POA("TX ADAPTS", nil_mgr, policies);

// Create object using the transactional POA. This example
// uses servant_to_reference() to create the object

// AccountImpl is the servant class implementing the
// IDL interface Account.
AccountImpl* servant = new AccountImpl(...);

PortableServer::ObjectId_var id =
 tx_poa->activate_object(servant);

obj = tx_poa->servant_to_reference(servant);
Account_var account = Account::_narrow(obj);
 46

Example Use of a NonTxTargetPolicy
Example Use of a NonTxTargetPolicy

Steps to use a NonTxTargetPolicy The following are the steps for a client to use a NonTxTargetPolicy when
invoking on a non-transactional object:

1. Get a reference to the PolicyCurrent or PolicyManager object.

2. Create a CORBA Policy object that represents the desired

NonTxTargetPolicy. This is done by calling the

CORBA::ORB::create_policy() operation passing in the value

CosTransactions::NON_TX_TARGET_POLICY_TYPE as the first parameter

and the policy value (encoded as an any) as the second parameter.

3. Call the set_policy_overrides() operation on the PolicyCurrent or

PolicyManager object passing in a policy list containing the

NonTxTargetPolicy. Alternatively call the _set_policy_overrides()

operation on the target object itself.

4. Invoke on the non-transaction object (from within a transaction).
47

CHAPTER 5 | Propagation and Transaction Policies
Example The following code shows a client using the PERMIT NonTxTargetPolicy to
invoke on a non-transactional object within a transaction. The client uses the
PolicyCurrent object to set the policy. Assume that the Account object is
using the REQUIRES or ADAPTS OTSPolicy and the AuditLog object is using the
FORBIDS OTSPolicy or no OTSPolicy at all:

// C++
//
// Get reference to PolicyCurrent object.
CORBA::ORB_var orb = ...
CORBA::Object_var obj =
 orb->resolve_initial_references(“PolicyCurrent”);

CORBA::PolicyCurrent_var policy_current =
 CORBA::PolicyCurrent::_narrow(obj);

// Create PERMIT NonTxTarget policy.
CORBA::PolicyList policy_list(1);
policy_list.length(1);

CORBA::Any tx_policy_value;
tx_policy_value <<= CosTransactions::PERMIT;

policy_list[0] = orb->create_policy(
 CosTransactions::NON_TX_TARGET_POLICY_TYPE,
 tx_policy_value);

// Set policy overrides.
policy_current->set_policy_overrides(policy_list,
 CORBA::ADD_OVERRIDE);

// Invoke on target object
CosTransctions::Current_var tx_current = ...
Account_var account = ...
AuditLog_var log = ...

tx_current->begin();
account->deposit(100.00);
log->append(“User ... deposited 100 to account ...”);
tx_current->commit(IT_true);
 48

Example Use of a NonTxTargetPolicy
Specifying the default
NonTxTargetPolicy

The default NonTxTargetPolicy value is taken from the
policies:non_tx_target_policy configuration variable, which can be set to
“prevent” and “permit” to represent the PREVENT and PERMIT policy values. If
this configuration variable is not set, the default is PREVENT.
49

CHAPTER 5 | Propagation and Transaction Policies
Use of the ADAPTS OTSPolicy

Using the ADAPTS OTSPolicy The ADAPTS OTSPolicy is useful for implementing services that must work
whether or not the client is using OTS transactions. If the client is using
transactions, the target object simply executes in the same transaction context
and its work will be either committed or rolled back when the client completes
the transaction.

However, if there is no transaction the target object can choose to create a local
transaction for the duration of the invocation.

Example The following code shows how a servant might be implemented to take
advantage of the ADAPTS OTSPolicy (error handling has been omitted):

// C++
void AccountImpl::deposit(float amount)
{
 CosTransactions::Current_var tx_current = ...

 // Test if a transaction was propagated from the client.
 CosTransactions::Control_var control =
 tx_current->get_control();

 if (CORBA::is_nil(control))
 {
 // No current transaction, so create one.
 tx_current->begin();
 }

 // Do the transactional work
 ...

 // If a local transaction was created, commit it.
 if (CORBA::is_nil(control))
 {
 tx_current->commit(IT_true);
 }
}

 50

Use of the ADAPTS OTSPolicy
This approach allows clients to selectively bracket operations with transactions
based on how much work is done. For example, if only a single server operation
is performed then no client transaction needs to be created. However, if more
than one operation is performed the client creates a transaction to ensure ACID
properties for all of the operations.

For example (error handling omitted):

For this example the servant created an OTS transaction. However, it could just
create a local database transaction instead or not create any transaction at all.

// C++
// Deposit money into a single account (no transaction
// needed).
Account_var acc = ...
acc->deposit(100.00);

// Transfer money between two account (this requires a
// transaction)
Account_var src_acc = ...
Account_var dest_acc = ...
CosTransactions::Current_var tx_current = ...

tx_current->begin();
src_acc->withdraw(200.00);
dest_acc->deposit(200.00);
tx_current->commit(IT_true);
51

CHAPTER 5 | Propagation and Transaction Policies
Orbix-Specific OTSPolicies

The two proprietary OTSPolicy
values

Orbix extends the set of OTSPolicies with two proprietary values to support
automatically created transactions and optimizations. The values and their
meanings are:

Automatic Transactions The ADAPTS OTSPolicy (see “Use of the ADAPTS OTSPolicy” on page 50) is
useful for implementing servants that can be invoked both with and without
transactions. A useful pattern to use is for the servant to check for the existence
of a transaction and create one for the duration of the invocation if there is none.
The AUTOMATIC OTSPolicy provides this functionality without having to code it
into the servant implementation.

From the target object’s point of view the AUTOMATIC OTSPolicy is the same as
REQUIRES since the target object is always invoked in the context of a
transaction. However, from the clients point of view, the AUTOMATIC policy is the
same as ADAPTS since the client can choose whether to invoke on the object
within a transaction or not. In fact, object references created in a POA with the
AUTOMATIC OTSPolicy contain the ADAPTS policy so they can be used by other
OTS implementations that do not support the AUTOMATIC OTSPolicy.

For the case were the client does not use a transaction and the automatically
created transaction fails to commit, the standard TRANSACTION_ROLLEDBACK
system exception is raised. Reporting of heuristic exceptions is not supported.

AUTOMATIC This policy is used when the target object always expects
to be invoked within the context of a transaction. If there
is no transaction a transaction is created for the duration
of the invocation. This policy guarantees that the target
object is always invoked within a transaction. See
“Automatic Transactions” on page 52below.

SERVER_SIDE This policy is used in conjunction with just-in-time
transaction creation to optimize the number of network
messages in special cases. See “Just-In-Time Transaction
Creation” on page 53 below.
 52

Orbix-Specific OTSPolicies
Just-In-Time Transaction
Creation

Orbix provides three extensions to support the concept of just-in-time (JIT)
transaction creation to eliminate network messages in special conditions. These
extensions are:

1. A configuration option to enable JIT transaction creation, which allows the

creation of a transaction to be delayed until it is really needed.

2. The SERVER_SIDE OTSPolicy which allows a transaction to be created just

before a target object is invoked.

3. A additional operation commit_on_completion_of_next_call() that

allows the next invocation on an object to also commit the transaction.

The use of JIT transaction creation is useful when invocations between a client
and an object involve using a network connection. This is because it can reduce
the number of network messages that are exchanged to create, propagate and
commit a transaction.

Enabling JIT Transaction
Creation

JIT transaction creation is enabled by setting the
plugins:ots:jit_transactions configuration variable to “true”. When
enabled a call to Current::begin() does not create a transaction; instead, it
remembers that the client requested to create one. The client is said to be in the
context of an empty transaction. At this stage a call to Current::get_status()
would return StatusActive event though a real transaction has not been created.
Likewise, calls to Current::commit() and Current::rollback() would
succeed. A real transaction is only created at the following points:

1. When any of the following CosTransactions::Current operations are

invoked: rollback_only(), get_control(), get_transaction_name()

or suspend().

2. When an object with any of the standard OTSPolicies is invoked.

If the target object’s OTSPolicy is SERVER_SIDE, a real transaction is not created
until the invocation has reached the object’s POA. Note that unlike the
AUTOMATIC OTSPolicy, this transaction it not terminated when the invocation
has completed. Instead, the client adopts the newly created transaction.

When JIT transactions are not enabled, the SERVER_SIDE OTSPolicy behaves
the same as the ADAPTS OTSPolicy, except that unlike the AUTOMATIC policy,
other OTS implementations will not recognize the new policy.
53

CHAPTER 5 | Propagation and Transaction Policies
A final optimization is possible when JIT transaction creation and the
SERVER_SIDE OTSPolicy are used. The OTS current object in Orbix provides an
additional operation that allows a transaction to be committed within the context
of the target object rather than by the client:

The commit_on_completion_of_next_call() operation causes the current
transaction to be committed after the completion of the next object invocation
(so long as the target object is using the SERVER_SIDE OTSPolicy). The
transaction commit is performed by the target object’s POA, which means that
the transaction will have been created and committed in the context of the target
object rather than by the client.

To use the operation the client must include the file <orbix/cos_transactions.hh>
and narrow the OTS current object to the IT_CosTransactions::Current
interface.

Note that the client still must call the commit() operation, though this will not
result in any network messages.

// IDL
module IT_CosTransactions
{
 interface Current : CosTransactions::Current
 {
 void
 commit_on_completion_of_next_call()
 raises (CosTransactions::NoTransaction)
 };
};

// C++
CosTransactions::Current_var tx_current = ...

IT_CosTransactions::Current_var it_tx_current =
 IT_CosTransactions::Current::_narrow(tx_current);

Account_var account = ...
it_tx_current->begin();

account->deposit(100.00);

it_tx_current->commit_on_completion_of_next_call();
account->deposit(50.00);

it_tx_current->commit(IT_true);
 54

Migrating from TransactionPolicies
Migrating from TransactionPolicies

Mapping from TransactionPolicy
values

Previous releases of Orbix used the deprecated
CosTransaction::TransactionPolicy which provided seven standard policy
values and two Orbix extensions. Below is a table that provides the mapping
from TransactionPolicy values to their OTSPolicy and InvocationPolicy
equivalent.

Combining Policy Types It is possible to create a POA that combines all three policy types to support
interoperability with earlier versions of Orbix. However, invalid combinations
result in the PortableServer::InvalidPolicy exception being raised when
PortableServer::POA::create_POA() is called. An invalid combination is any
combination not in Table 3; for example combining Requires_shared with
ADAPTS and SHARED.

The mappings for the Allows_unshared and Allows_either
TransactionPolicies are not supported since this would lead to an invalid
combination of OTSPolicies and InvocationPolicies.

Table 3: Mapping from TransactionPolicy values

TransactionPolicy
Value

OTSPolicy
Value

InvocationPolicy
Value

Allows_shared ADAPTS SHARED

Allows_none FORBIDS SHARED

Requires_shared REQUIRES SHARED

Allows_unshared ADAPTS Not supported

Allows_either ADAPTS Not supported

Requires_unshared REQUIRES UNSHARED

Requires_either REQUIRES EITHER or none

Automatic_shared AUTOMATIC SHARED

Server_side_shared SERVER_SIDE SHARED
55

CHAPTER 5 | Propagation and Transaction Policies
Note: Support for the TransactionPolicy type may be discontinued in a future
Orbix release. It is recommended that only OTSPolicies and
InvocationPolicies be used.
 56

Explicit Propagation
Explicit Propagation

Altering the IDL to propagate
explicitly

When a transaction is created directly using the TransactionFactory interface
the transaction must be propagated explicitly to target objects. This means
altering the IDL for the application to add an extra parameter for the
transaction’s Control object.

Example The following is the Account IDL interface modified to support explicit
propagation:

// IDL (in module Bank)
#include <CosTransactions.idl>
...
interface Account
{
 exception InsufficientFunds {};

 void deposit(in CashAmount amt.
 in CosTransactions::Control ctrl);

 void withdraw(in CashAmount amt,
 in CosTransactions::Control ctrl)
 raises (InsufficientFunds);
};
57

CHAPTER 5 | Propagation and Transaction Policies
Each invocation on the account object must now take a reference to a transaction
control as its last parameter:

It is also possible to pass a reference to the transaction’s coordinator object
instead of its control object.

// C++
CosTransactions::TransactionFactory_var tx_factory = ...
CosTransactions::Control_var control =
 tx_factory->create(60);

Bank::Account_var src_acc = ...
Bank::Account_var dest_acc = ...
Bank::CashAmount amount = 100.0;
src_acc->withdraw(amount, control);
dest_acc->deposit(amount, control);

CosTransactions::Terminator_var term =
 control->get_terminator();
term->commit(IT_true);
 58

CHAPTER 6

Using XA
Resource Managers
with OTS
This chapter describes how to integrate with transactional systems
by implementing CosTransactions::Resource objects on top of the
standard X/Open XA interface.

In this chapter This chapter discusses the following topics:

The XA Interface page 60

XA and Multi-Threading page 63

Using the Orbix XA Plug-In page 65

Associations between Transactions and Connections page 67

Association State Diagram page 69

Using a Remote Resource Manager page 71
59

CHAPTER 6 | Using XA Resource Managers with OTS
The XA Interface

Resource objects To use a transactional system (such as a database system) with the transaction
service, you must "connect" the transactions provided by the transactional
system to the distributed transactions managed by the transaction service. With
the transaction service, this is achieved by implementing
CosTransactions::Resource objects — each resource represents a local
transaction in the transactional system — and registering these Resource objects
with the distributed transactions.

Because many systems provide a standard interface to their transactional
capabilities — the X/Open XA interface — you can implement
CosTransactions::Resource objects on top of the XA interface, and provide
an easy-to-use integration with the transaction service. This is precisely what the
Orbix XA plug-in provides.

XA Overview XA (X/Open CAE Specification, Distributed Transaction Processing: The XA
specification, December 1991, ISBN: 1 872630 24 3) specifies a standard C API
provided by transactional systems (called Resource Managers in the XA
specification) that want to participate in distributed transactions managed by
 60

The XA Interface
transaction managers developed by other vendors. XA defines a set of
C-function pointers, and a C-struct that holds these function pointers,
xa_switch_t (see orbix_sys/xa.h):

Function pointers Each XA Resource Manager must provide a global instance of xa_switch_t.
For example, Oracle's global xa_switch_t instance is called xaosw.

The function pointers provided by this xa_switch_t instances can be divided
into four categories:

• Functions to connect and disconnect to the XA Resource

Manager:xa_open() and xa_close(). The string passed to xa_open()

typically contains connection information, e.g. a database name and a

username and password.

• Transaction completion functions xa_prepare(), xa_commit(),

xa_rollback(), xa_forget() correspond to the

CosTransactions::Resource operations.

struct xa_switch_t
{
 char name[RMNAMESZ]; /* name of resource manager */
 long flags; /* resource manager specific options */
 long version; /* must be 0 */
 int (*xa_open_entry) /* xa_open function pointer */
 (char *, int, long);
 int (*xa_close_entry) /* xa_close function pointer */
 (char *, int, long);
 int (*xa_start_entry) /* xa_start function pointer */
 (XID *, int, long);
 int (*xa_end_entry) /* xa_end function pointer */
 (XID *, int, long);
 int (*xa_rollback_entry) /* xa_rollback function pointer */
 (XID *, int, long);
 int (*xa_prepare_entry) /* xa_prepare function pointer */
 (XID *, int, long);
 int (*xa_commit_entry) /* xa_commit function pointer */
 (XID *, int, long);
 int (*xa_recover_entry) /* xa_recover function pointer */
 (XID *, long, int, long);
 int (*xa_forget_entry) /* xa_forget function pointer */
 (XID *, int, long);
 int (*xa_complete_entry) /* xa_complete function pointer */
 (int *, int *, int, long);
};
61

CHAPTER 6 | Using XA Resource Managers with OTS
• Recovery function xa_recover() is currently not used by the XA plug-in.

• Functions used to start and end associations between connections and a

transactions: xa_start(), xa_end()

In order to use an XA connection to do some work within a distributed

transaction, it is necessary to create an association between this connection

and the distributed transaction. xa_start() is used to create such an

association; xa_end(TMSUSPEND) suspends the association, without

releasing the connection; xa_start(TMRESUME) resumes a suspended

association; xa_end(TMSUCCESS) terminates an association with success;

and xa_end(TMFAIL) terminates an association and marks the transaction

rollback-only.

Note: xa_complete() is only used for asynchronous XA, an optional part of XA
which is not supported by any popular XA implementation.
 62

XA and Multi-Threading
XA and Multi-Threading
In the XA specification, the scope of an XA connection is called
"thread-of-control". Each thread-of-control can only use the connections that it
has established (using xa_open()). The XA specification maps thread-of-control
to operating system process (2.2.8). Each thread in a process has access to all the
XA connections established by this process. This is clearly specified in the JTA
specification (XA for Java).

Unfortunately, for the C XA API, most vendors implement the following:

• a thread-unsafe mode, in which the scope of each XA connection is the

process (XA thread-of-control maps to process)

• a thread-safe mode, in which the scope of each XA connection is the thread

by which is was created (XA thread-of-control maps to thread)

For example, with Oracle, the "+threads={true,false}" option of the OracleXA
open string lets the application programmer choose between these two
modes.The thread-of-control equal thread model sometimes simplifies the API
used to access the data. For example, Oracle embedded SQL in C/C++
(Pro*C/C++) has a notion of a default database connection for each thread of
control.

When the model is thread-of-control equal process, and a process has a pool of
connections to the same database, it is necessary to explicitly specify which
connection to use (with an Oracle AT clause):

EXEC SQL AT :db_name INSERT VALUES(123, 43, 3.49) INTO
SALE_DETAILS;

But when the model is thread-of-control equal thread, and each thread has one
connection to a given database, there is no need to explicitly specify the
connection to use (no AT clause):

EXEC SQL INSERT VALUES(123, 43, 3.49) INTO SALE_DETAILS;

The EXEC SQL statements used in a multi-threaded multi-connection
application look very much like the EXEC SQL statement used in a
single-threaded single-connection application.

The main drawback of tying connection and threads is flexibility since it
prevents the application from managing connections independently of threads,
which limits the kind of connection pooling that can be implemented. Also, a
CORBA server typically dispatches different requests to different threads: the
thread-of-control equal thread model prevents the use of xa_end(TMSUSPEND) at
63

CHAPTER 6 | Using XA Resource Managers with OTS
the end of a request and xa_start(TMRESUME) at the beginning of the next
request in the same transaction, since an association must be resumed by the
thread of control from which it was suspended.
 64

Using the Orbix XA Plug-In
Using the Orbix XA Plug-In
The Orbix XA plug-in implements and manages CosTransactions::Resource
objects on behalf of the application. It supports the two thread-of-control models
described in the previous paragraph: when the thread model is XA::PROCESS, it
uses a single-threaded persistent POA to host its CosTransactions::Resource
servants. When the thread model is XA::THREAD, it uses a multi-threaded
persistent POA.

You access the XA plug-in by obtaining a reference to the XA::Connector local
object through resolve_initial_references():

Then you create an XA::ResourceManager, by calling
create_resource_manager on the connector. This operation creates a persistent
POA that hosts the resource manager's servant and will host the
CosTransactions::Resource servants. The create_resource_manager
operation also returns an XA::CurrentConnection local object, which

#include <omg/xa.hh>
CORBA::Object_var xa_connector_obj =
 orb- >resolve_initial_references("XAConnector");
XA::Connector_var xa_connector =
 XA::Connector::_narrow(xa_connector_obj);
65

CHAPTER 6 | Using XA Resource Managers with OTS
establishes (with xa_open()) connections when needed, and lets you start,
suspend, resume, and end associations between any transaction and the current
XA thread of control's connection.

The first parameter of create_resource_manager is the name of an Orbix
configuration namespace; this configuration namespace defines the name of the
resource manager persistent POA (defaults to the given namespace name), the
open string when the open_string parameter is empty, the close string when the
close_string parameter is empty, and various other properties. The resource
manager id can also be set in the configuration using the rmid variable. When
the rmid variable is set, the XA integration uses the value as the rmid passed to
xa_open() and all subsequent xa_ calls. When the rmid variable is not set, the
XA integration generates a new rmid value for each CurrentConection object.

XA::CurrentConnection_var current_connection;
XA::ResourceManager_var rm =
 xa_connector->create_resource_manager(
 "xa_resource_managers:oracle",
 // the name of an Orbix configuration namespace
 xaosw, // XA switch
 "", // empty open-string, i.e. the unsecured
 // open-string is specified in configuration
 "", // empty close-string, i.e. the unsecured
 // close-string is specified in the

configuration
 XA::PROCESS, // thread-model
 false, // no automatic association
 false, // do not use dynamic registration
 current_connection // (out) current connection local object
);
 66

Associations between Transactions and Connections
Associations between Transactions and
Connections

The CurrentConnection local interface is defined in the XA module as follows:

When the thread model is PROCESS, xa_open() is called by the first start call
or the first operation performed by a Resource servant; and xa_close() is called
during shutdown. When the thread model is THREAD, xa_open() is called the
first time a thread calls CurrentConnection::start, or any operation on a
Resource servant; xa_close() is called when this thread exits.

enum ThreadModel { PROCESS, THREAD };
local interface CurrentConnection
{

void
start(
 // xa_start(TMNOFLAGS) or xa_start(TMJOIN)
 in CosTransactions::Coordinator tx,
 in CosTransactions::otid_t otid
);
void
suspend(
 // xa_end(TMSUSPEND)
 in CosTransactions::Coordinator tx,
 in CosTransactions::otid_t otid
);
void resume(
 // xa_start(TMRESUME)
 in CosTransactions::Coordinator tx,
 in CosTransactions::otid_t otid
);
void end(
 // xa_end(TMSUCCESS) or xa_end(TMFAIL)
 in CosTransactions::Coordinator tx,
 in CosTransactions::otid_t otid,
 in boolean success
);
ThreadModel thread_model();
long rmid();

};
67

CHAPTER 6 | Using XA Resource Managers with OTS
In order to do some work within a distributed transaction with a given resource
manager, you have to associate the resource manager's current connection with
this transaction, by calling CurrentConnection::start:

The first time CurrentConnection::start() is called with a given transaction,
the XA plug-in creates a CosTransactions::Resource persistent object and
registers this object with the transaction coordinator.

Once you have finished using a connection, it is critical to end the association
with the transaction for two reasons:

• It releases the connection, and makes it available for other transactions

• As long as any connection is associated with a transaction, this transaction

cannot be committed. Some systems (e.g. Oracle) don't even allow to roll

back a transaction while it is associated with any connection.

The recommended way to start and end (or start/suspend/resume/suspend...) an
association is to use a helper C++ class: the helper class constructor creates the
association by calling start, and the helper class destructor ends the association.
The multi-threaded transfer demo provides a helper Association class which
uses start and end; the single-threaded farm demo provides a helper Association
class which uses start, suspend and resume.

// assuming the OTS transaction is associated with the current
// thread

CosTransactions::Control_var control =
tx_current->get_control();

CosTransactions::Coordinator_var tx =
control->get_coordinator();

CosTransactions::PropagationContext_var ctx =
tx->get_txcontext();

const CosTransactions::otid_t& otid = ctx->current.otid;
current_connection->start(tx, otid);
 68

Association State Diagram
Association State Diagram
Figure 4 shows the state diagram of an association between a transaction and an
XA connection. In this diagram all start, suspend, resume, and end calls are
successful (they do not raise any exception). When start, suspend, resume or end
raises CORBA::INTERNAL with the minor code
IT_XA_MinorCodes::INTERNAL::XAER_RMFAIL_ the new state is "non existant".
When resume, suspend or end raises CORBA::TRANSACTION_ROLLEDBACK with
the minor code IT_XA_MinorCodes::TRANSACTION_ROLLEDBACK::XA_RB_, the
new state is "non existant". When end raises CORBA::TRANSACTION_ROLLEDBACK
with the minor code
IT_XA_MinorCodes::TRANSACTION_ROLLEDBACK::DEFERRED_ROLLBACK, the
new state is "non existant". For every other exception raised by start, suspend,
resume and end, there is no state transition.
69

CHAPTER 6 | Using XA Resource Managers with OTS
Figure 4: Association State Diagram
 70

Using a Remote Resource Manager
Using a Remote Resource Manager
The Resource servants and the application logic that performs the transactional
data access (for example, through embedded SQL in C/C++ calls) do not need to
be in the same process. You use the operation
Connector::connect_to_resource_manager to connect to a remote
XA::ResourceManager:

Some systems (e.g. Oracle) even allow you to create associations between a
given transaction and connections to the same database established by different
processes: this is referred to as "tightly coupled threads" in the XA specification.

Using a remote resource manager is particularly useful for single-threaded
servers, since it allows you to make a data-access server available for other
transactions as soon as the transaction has finished with this server (before the
completion of the transaction). See the farm demo.

XA::CurrentConnection_var current_connection =
 xa_connector->connect_to_resource_manager(
 "xa_resource_managers:oracle",
// the name of an Orbix configuration namespace
 rm, // object reference to an XA::ResourceManager object
 xaosw, // XA switch
 "", //open string (empty string means that the actual open
 // string is in configuration)
 "", //close string (empty string means that the actual

close
 // string is in configuration)
 XA::PROCESS, // thread-model
 false, // no automatic association
 false, // do not use dynamic registration
);
71

CHAPTER 6 | Using XA Resource Managers with OTS
Before Completion Callback You can register with a resource manager any number of
BeforeCompletionCallback objects:

The before completion callbacks objects are called by the Resource servant
before prepare, commit_one_phase, and rollback on a non-prepared
transaction. If any of these before completion callbacks calls raise an exception,
the transaction is rolled back. A typical use of the BeforeCompletionCallback
is to end a suspended association in a single-threaded server. See the farm demo.

Asynchronous Rollback Support An XA implementation may or may not support asynchronous rollbacks,that is
xa_rollback() may or may not be called on a transaction while this transaction
is actively associated with some connection. This is typically not documented by
the XA implementation — OracleXA does not support asynchronous rollbacks,
while SybaseXA does.

When you set supports_async_rollback to "false" and use a remote resource
manager, the XA plug-in uses a transient object to handle asynchronous
rollbacks (by deferring them until the association is ended). This transient object
is hosted by the root POA, so you have to activate the root POA manager.

interface BeforeCompletionCallback
{
 void
 before_completion(
 in CosTransactions::Coordinator tx,
 in CosTransactions::otid_t otid,
 in boolean success
);
};
interface ResourceManager
{
 unsigned long register_before_completion_callback(
 in BeforeCompletionCallback bcc);
 void unregister_before_completion_callback(
 in unsigned long key);
};
 72

Using a Remote Resource Manager
Ping Period The Resource Manager can periodically check that the transactions with which
the Resource servants it manages were registered are still alive by calling
get_status on their respective coordinators. When a call to get_status fails
(that is, it raises any exception), and the associated Resource is not prepared, this
Resource is immediately rolled back.
73

CHAPTER 6 | Using XA Resource Managers with OTS
 74

CHAPTER 7

Transaction
Management
This chapter covers some additional areas of transaction
management. This includes Synchronization objects, transaction
identity and status operations, relationships between transactions
and recreating transactions.

In this chapter This chapter discusses the following topics:

Synchronization Objects page 76

Transaction Identity Operations page 79

Transaction Status page 81

Transaction Relationships page 83

Recreating Transactions page 85
75

CHAPTER 7 | Transaction Management
Synchronization Objects

Synchronization interface The transaction service provides a Synchronization interface to allow an object
to be notified before the start of a transaction's completion and after it is
finished. This is useful, for example, for applications integrated with an XA
compliant resource manager where the data is cached inside the application. By
registering a synchronization object with the transaction the cache can be
flushed to the resource manager before the transaction starts to commit. Without
the synchronization object any updates made by the application could not be
moved from the cache to the resource manager. The Synchronization interface
is as follows:

before_completion() This operation is invoked during the commit protocol before any 2PC or 1PC
operations have been called, that is before any XA or Resource prepare
operations.

An implementation may flush all modified data to the resource manager to
ensure that when the commit protocol begins, the data in the resource is up to
date.

Raising a system exception causes the transaction to be rolled back as does
invoking the rollback_only() operation on the Current or Coordinator
interfaces.

The before_completion() operation is only called if the transaction is to be
committed. If the transaction is being rolled back for any reason this operation is
not called.

// IDL (in module CosTransactions)
interface Synchronization : CosTransactions::TransactionalObject

{
 void before_completion();

 void (in Status s);
};
 76

Synchronization Objects
after_completion() This operation is invoked after the transaction has completed, that is after all XA
or Resource commit or rollback operations have been called. The operation is
passed the status of the transaction so it is possible to determine the outcome. It
is possible that before_completion() has not been called, so the
implementation must be able to deal with this possibility.

An implementation can use this operation to release locks that were held on
behalf of the transaction or to clean up caches. Raising an exception in this
operation has no effect on the outcome of the transaction as this has already been
determined. All system exceptions are silently ignored.

register_synchronization() A synchronization object is registered with a transaction by calling the
register_synchronization() operation on the transaction’s coordinator.
Assuming the SynchronizationImpl class supports the Synchronization
interface the following code may be used:

// C++
//
// Get the control and coordinator object for the
// current transaction.
//
CosTransactions::Current_var tx_current = ...
CosTransactions::Control_var control =
 tx_current->get_control();
CosTransactionsCoordinator_var coordinator =
 control->get_coordinator();

//
// Create a synchronization servant and activate it in a
// transactional POA. The OTS Policy should be ADAPTS
//
SynchronizationImpl servant = new SynchronizationImpl();
PortableServer::POA_var poa = ...
CosTransactions::Synchronization_var obj =
 sync_servant->activate(poa);

//
// Register the synchronization once with the transaction
//
coord->register_synchronization(obj);
77

CHAPTER 7 | Transaction Management
The register_synchronization() operation raises the Inactive exception if
the transaction has started completion or has already been prepared. A
synchronization object must only be registered once per transaction, this is the
application’s responsibility.

Note: Unlike resource objects, synchronization objects are not recoverable.
The transaction service does not guarantee that either operation on the
interface will be called in the event of a failure. It is imperative that
applications use a resource object if they need guarantees in these situations (to
release persistent locks for example).
 78

Transaction Identity Operations
Transaction Identity Operations

Coordinator interface identity
operations

The Coordinator interface provides a number of operations related to the
identify of transactions. Some of these operations are also available in the
Current interface:

// IDL (in module CosTransactions)
interface Coordinator {
 boolean is_same_transaction(in Coordinator tc);
 unsigned long hash_transaction();
 unsigned long hash_top_level_tran();
 string get_transaction_name();
 PropagationContext get_txcontext();
 ...
};

Table 4: Coordinator interface identity operations

Operation Description

is_same_transaction() Takes a transaction coordinator as a
parameters and returns true if both
coordinator objects represent the same
transaction; otherwise returns false.

hash_transaction() Returns a hash code for the transaction
represented by the target coordinator obejct.
Hash codes are uniformly distributed over the
range of a CORBA unsigned long and are not
guaranteed to be unique for each transaction.

get_transaction_name() Returns a string representation of the
transaction’s identify. This string is not
guaranteed to be unique for each transaction
so it is only useful for display and debugging
purposes. This operation is also available on
the Current interface.
79

CHAPTER 7 | Transaction Management
Maintaining information in
individual transactions

The is_same_transaction() and hash_transaction() operations are useful
when it is necessary for an application to maintain data on a per transaction basis
(for example, for keeping track of whether a particular transaction has visited the
application before to determine whether a Resource or Synchronization object
needs to be registered). The hash_transation() operation can be used to
implement an efficient hash table while the is_same_transaction() operation
can be used for comparison within the hash table.

For nested transaction families the hash_top_level_transaction() is
provided. This returns the hash code for the top level transaction.

get_txcontext() Returns the PropagationContext structure for
the transaction represented by the target
coordinator object. Amongst other
information, the PropagationContext structure
contains the transaction identifier in the
current.otid field. See “Recreating
Transactions” on page 85 for more
information on the structure of the
PropagationContext.

Table 4: Coordinator interface identity operations

Operation Description
 80

Transaction Status
Transaction Status

Coordinator interface status
operations

The Coordinator::get_status() operation returns the current status of a
transaction. This operation is also provided by Current::get_status() for the
current transaction. The status returned may be one of the following values:

StatusActive The transaction is active. This is the case after the
transaction has started and before the transaction has
started to be committed or rolled back.

StatusCommitted The transaction has successfully completed its
commit protocol.

StatusCommitting The transaction is in the process of committing.

StatusMarkedRollback The transaction has been marked to be rolled back.

StatusNoTransaction There is no transaction. This can only be returned
from the Current::get_status() operation and
occurs when there is no transaction associated with
the current thread of control.

StatusPrepared The transaction has completed the first phase of the
2PC protocol.

StatusPreparing The transaction is in the process of the first phase of
the 2PC protocol.

StatusRolledBack The transaction has completed rolling back.

StatusRollingBack The transaction is in the process of being rolled back.

StatusUnknown The exact status of the transaction is unknown at this
point.
81

CHAPTER 7 | Transaction Management
The following code shows how to obtain the status of a transaction from the
transaction’s coordinator object:

There are two additional status operations for use within nested transaction
families:

• get_top_level_status() returns the status of the top-level transaction.

• get_parent_status() returns the status of a transaction’s parent.

// C++
CosTransactions::Coordinator_var coord = ...
CosTransactions::Status status = coord->get_status();
if (status == CosTransactions::StatusActive)
{
 ...
} else if (status == CosTransactions::StatusRollingBack)
{
 ...
} else if ...
 82

Transaction Relationships
Transaction Relationships

Coordinator interface
relationship operations

The Coordinator interface provides several operations to test the relationship
between transactions. Each operation takes as a parameter a reference to another
transaction’s coordinator object:

// IDL (in module CosTransactions)
interface Coordinator {
 boolean is_same_transaction(in Coordinator tc);
 boolean is_related_transaction(in Coordinator tc);
 boolean is_ancestor_transaction(in Coordinator tc);
 boolean is_descendant_transaction(in Coordinator tc);
 boolean is_top_level_transaction();
 ...
};

Table 5: Coordinator interface relationship operations

Operation Description

is_same_transaction() returns true if both coordinator objects
represent the same transaction; otherwise
returns false.

is_related_transaction() returns true if both coordinator objects
represent transactions in the same nested
transaction family; otherwise returns false.

is_ancestor_transaction() returns true if the transaction represented by
the target coordinator object is an ancestor
of the transaction represented by the
coordinator parameter; otherwise returns
false. A transaction is an ancestor to itself
and a parent transaction is an ancestor to its
child transactions.
83

CHAPTER 7 | Transaction Management
Example The following code tests if the transaction represented by the coordinator c1 is
an ancestor of the transaction represented by the coordinator c2:

is_descendant_transaction() Returns true if the transaction represented
by the target coordinator object is a
descendant of the transaction represented
by the coordinator parameter; otherwise
returns false. A transaction is a descendant
of itself and is a descendent of its parent.

is_top_level_transaction() Returns true if the transaction represented
by the target coordinator object is a
top-level transaction; otherwise returns
false.

Table 5: Coordinator interface relationship operations

Operation Description

// C++
CosTransactions::Coordinator_var c1 = ...
CosTransactions::Coordinator_var c2 = ...
if (c1->is_ancestor_transaction(c2))
{
 // c1 is an ancestor of c2
}
else
{
 // c1 is not an ancestor of c2
}

 84

Recreating Transactions
Recreating Transactions

TransactionFactory interface The TransactionFactory interface provides the create() operation for
creating new top-level transactions. The interface also provides a recreate()
operation to import an existing transaction into the local context. The
recreate() is passed a PropagationContext structure and returns a Control
object representing the recreated transaction. The interfaces and types are
declared as follows:

// IDL (in module CosTransactions)
struct otid_t {
 long formatID;
 long bqual_length;
 sequence <octet> tid;
};

struct TransIdentity {
 Coordinator coord;
 Terminator term;
 otid_t otid;
};

struct PropagationContext {
 unsigned long timeout;
 TransIdentity current;
 sequence <TransIdentity> parents;
 any implementation_specific_data;
};

interface TransactionFactory
{
 Control recreate(in PropagationContext ctx);
 ...
};

interface Coordinator
{
 PropagationContext get_txcontext();
 raises (Unavailable);
 ...
};
85

CHAPTER 7 | Transaction Management
The PropagationContext is a structure that encodes sufficient information
about the transaction to successfully recreate it. To get the PropagationContext
for a transaction use the get_txcontext() operation provided by the
Coordinator interface.

Example The following code shows how to use the get_txcontext() and recreate()
operations to explicitly import a transaction given a reference to the Control
object for a foreign transaction:

The PropagationContext structure contains the transaction’s global identifier in
the current.otid field. This is essentially a sequence of octets divided into two
parts: a global transaction identifier and a branch qualifier. This structure is
indented to match the XID transaction identifier format for the X/Open XA
specification.

// C++
CosTransactions::Control_var foreign_control = ...
CosTransactions::Coordinator_var foreign_coord =
 foreign_control->get_coordinator();
CosTransactions::PropagationContext_var ctx =
 foreign_coord->get_txcontext();

CosTransactions::TransactionFactory_var tx_factory = ...
CosTransactions::Control_var control =
 tx_factory->recreate(ctx);
 86

CHAPTER 8

Writing
Recoverable
Resources
The OTS supports resource objects to allow applications to
participate in transactions. For example, an application might
maintain some data for which ACID properties are required. This
chapter describes the CosTransactions::Resource interface; how
resource objects participate in the transaction protocols and the
requirements for implementing resource objects.

In this chapter This chapter discusses the following topics:

The Resource Interface page 88

Creating and Registering Resource Objects page 91

Resource Protocols page 95

Responsibilities and Lifecycle of a Resource Object page 104
87

CHAPTER 8 | Writing Recoverable Resources
The Resource Interface

Resource interface transaction
operations

The CosTransactions::Resource interface provides a means for applications
to participate in an OTS transaction. The interface is defined as follows:

Resource object implementations cooperate with the OTS, through these five
operations, to ensure the ACID properties are satisfied for the whole transaction.
Each resource object represents a single participant in a transaction and
throughout the lifecycle of the resource it must respond to the invocations by the
OTS until the resource object is no longer needed. This may include surviving
the failure of the process or node hosting the resource object or the failure of the
process or node hosting the OTS implementation.

// IDL (in module CosTransactions)
interface Resource
{
 void commit_one_phase()
 raises (HeuristicHazard);

 Vote prepare()
 raises (HeuristicMixed,
 HeuristicHazard);

 void rollback()
 raises (HeuristicCommit,
 HeuristicMixed,
 HeuristicHazard);

 void commit()
 raises (NotPrepared,
 HeuristicRollback,
 HeuristicMixed,
 HeuristicHazard);

 void forget();
};
 88

The Resource Interface
Overview of the use of resource
objects

Figure 5 shows a high level picture of how clients, applications, the OTS and
resource objects interoperate to achieve the ACID properties.

The steps involved are:

1. The client contacts the OTS implementation and creates a transaction.

2. The client makes invocations on the application within the context of the

transaction and updates some data.

3. The application detects that the data is being updated and creates a

resource object. The resource object is registered with the transaction.

4. The client completes by contacting the OTS implementation and

attempting to commit the transaction.

5. The transaction initiates the commit protocol. The choice of which

protocol to use (either 1PC or 2PC) depends on the number of resource

objects registered with the transaction and whether the OTS supports the

1PC optimization.

6. Assuming the 2PC protocol is being used, the OTS sends a prepare

message to the resource. The resource stably stores enough information to

recover in case of a crash (for example, by writing the changes to a log

file). The resource object votes to commit the transaction.

Figure 5: Relationship between resources and transactions

Client

Log

Application

Data

Resource

update

write

OTS

Transaction

begin/commit

2PC/1PC
protocol

register
89

CHAPTER 8 | Writing Recoverable Resources
7. The OTS gathers the votes of all resource objects and decides the outcome

of the transaction. This decision is send to all registered resource objects.

8. The resource object upon receiving the commit or rollback message makes

the necessary changes and saves the decision to the log.

9. The OTS returns the outcome to the client.
 90

Creating and Registering Resource Objects
Creating and Registering Resource Objects

Implementing servants for
resource objects

Implementing servants for resource objects is similar to any servant
implementation. The resource servant class needs to inherit from the
POA_CosTransactions::Resource class to extend the ResourcePOA class and
provide implementations for the five resource operations. For example, the
following class can be used to implement a resource servant:

// C++
class ResourceImpl : public POA_CosTransactions::Resource
{
 public:

 ResourceImpl();

 virtual ~ResourceImpl();

 CosTransactions::Vote
 prepare()
 throw (CORBA::SystemException,
 CosTransactions::HeuristicMixed,
 CosTransactions::HeuristicHazard);

 void
 rollback()
 throw (CORBA::SystemException,
 CosTransactions::HeuristicCommit,
 CosTransactions::HeuristicMixed,
 CosTransactions::HeuristicHazard);

 void
 commit()
 throw(CORBA::SystemException,
 CosTransactions::NotPrepared,
 CosTransactions::HeuristicRollback,
 CosTransactions::HeuristicMixed,
 CosTransactions::HeuristicHazard);
91

CHAPTER 8 | Writing Recoverable Resources
Creating resource objects Resource objects, once prepared, must survive failures until the 2PC protocol
has completed. During recovery any resource objects requiring completion must
be recreated using the same identifier so the transaction coordinator can deliver
the outcome. This means that resource objects must be created within a POA
with a PERSISTENT lifespan policy and a USER_ID ID assignment policy. See the
sections “Setting Object Lifespan” and “Assigning Object IDs” in the chapter
"Managing Server Objects" in the CORBA Programmer’s Guide for more
details.

Tracking resource objects Each resource object can only be used once and may only be registered with one
transaction. It is up to the application to keep track of whether it has seen a
particular transaction before. This can be done efficiently using the
hash_transaction() and is_same_transaction() operations provided by the
Coordinator interface to implement a hash map (see “Transaction Identity
Operations” on page 79 for details).

Some form of unique identifier must be used for the resource object’s ObjectId.
One possibility is to use the transaction identifier (obtained from the otid field
in the transaction’s propagation context).

 void
 commit_one_phase()
 throw(CORBA::SystemException,
 CosTransactions::HeuristicHazard);

 void
 forget()
 throw (CORBA::SystemException);
};
 92

Creating and Registering Resource Objects
Registering resource objects Registration of a resource object with a transaction is done by the
register_resource() operation provided by the transaction’s coordinator
object. For example, the following code sample shows a resource servant and
object being created and registered with a transaction:

// C++
CosTransactions::Current_var tx_current = ...

// Get the transaction’s coordinator object.
CosTransactions::Control_var control =
 tx_current->get_control();
CosTransactions::Coordinator_var coord =
 control->get_coordinator();

// Create resource servant.
ResourceImpl* servant = new ResourceImpl();

// Create resource object. The POA referenced by resource_poa
// has the PERSISTENT lifespan policy and the USER_ID ID
// assignment policy.
PortableServer::POA_var resource_poa = ...
PortableServer::ObjectId_var oid = ...

resource_poa->activate_object_with_id(oid, servant);

CORBA::Object_var obj =
 resource_poa->servant_to_reference(servant);

CosTransactions::Resource_var resource =
 CosTransactions::Resource::_narrow(obj);

// Register the resource with the transaction coordinator.
CosTransactions::RecoveryCoordinator_var rec_coord =
 coord->register_resource(resource);
93

CHAPTER 8 | Writing Recoverable Resources
The register_resource() operation returns a reference to a recovery
coordinator object:

The recovery coordinator object supports a single operation,
replay_completion(), that is used for certain failure scenarios (see “Failure of
the Transaction Coordinator” on page 101). Resource objects must hold onto the
recovery coordinator reference.

The register_resource() operation raises the Inactive exception if the
transaction is no longer active.

// IDL (in module CosTransactions)
interface Coordinator
{
 RecoveryCoordinator register_resource(in Resource r)
 raises(Inactive);
 ...
};

interface RecoveryCoordinator
{
 Status replay_completion(in Resource r)
 raises(NotPrepared);
};
 94

Resource Protocols
Resource Protocols

Protocols supported by resource
objects

Resource object implementations cooperate with the transaction coordinator to
achieve the ACID properties. This section examines the protocols that resource
objects are required to support:

• Rolling back a transaction.

• The 2-phase-commit protocol.

• Read-only resources.

• The 1-phase-commit protocol.

• Heuristic outcomes.

• Failure and recovery

Transaction Rollbacks Up until the time the coordinator makes the decision to commit a transaction, the
transaction may be rolled back for a number of reasons. These include:

• A client calling the rollback() operation.

• Attempting to commit the transaction after the transaction has been marked

to be rolled-back with the rollback_only() operation.

• The transaction being timed-out.

• The failure of any participant in the transaction.
95

CHAPTER 8 | Writing Recoverable Resources
When the transaction is rolled-back all registered resource are rolled-back via
the rollback() operation. Figure 6 shows a transaction with two registered
resource objects being rolled back after a timeout.

Rollbacks may also occur during the 2PC protocol (see below).

The 2-Phase-Commit Protocol The 2-phase-commit (2PC) protocol is designed so that all participants within a
transaction know the final outcome of the transaction. The final outcome is
decided by the transaction coordinator but each resource object participating can
influence this decision.

During the first phase, the transaction coordinator invokes the prepare()
operation on each resource asking it to prepare to commit the transaction. Each
resource object returns a vote which may be one of three possible values:
VoteCommit indicates the resource is prepared to commit its part of the
transaction; VoteRollback indicates the transaction must be rolled-back; and
VoteReadOnly indicates the resource is no longer interested in the outcome of
the transaction (see “Read-Only Resources” on page 97).

The coordinator makes a decision on whether to commit or rollback the
transaction based on the votes of the resource objects. Once a decision has been
reached the second phase commences where the resource objects are informed
of the transaction outcome.

In order for the coordinator to decide to commit the transaction, each resource
object must have either voted to commit the transaction or indicated that it is no
longer interested in the outcome. Once a resource has voted to commit, it must
wait for the outcome to be delivered via either the commit() or rollback()
operation. The resource must also survive failures. This means that sufficient

Figure 6: Rollback after a timeout

OTS Resource A Resource BClient

rollback

rollback

begin

TIMEOUT
 96

Resource Protocols
information must be stable stored so that during recovery the resource object and
its associated state can be reconstructed. Figure 7 shows a successful 2PC
protocol with two resources objects. Both resources return VoteCommit from
the prepare() operation and the coordinator decides to commit the transaction
resulting in the commit() operations being invoked on the resources.

If one resource returns VoteRollback the whole transaction is rolled back.
Resources which have already been prepared and which voted to commit and
resources which have not yet been prepared are told to rollback via the
rollback() operation. Figure 8 shows VoteRollback being returned by one
resource which results in the other resource being told to rollback.

Read-Only Resources A resource can return VoteReadOnly from the prepare() operation which
means the resource is no longer interested in the outcome of the transaction. This
is useful, for example, when the application data associated with the resource
was not modified during the transaction. Here it does not matter whether the

Figure 7: Successful 2PC protocol with two resources

OTS Resource A Resource BClient

prepare

prepare

commit

commit

VoteCommit

VoteCommit

commit

Figure 8: Voting to rollback the transaction.

commit

OTS Resource A Resource BClient

prepare

rollback

VoteRollback

TRANSACTION_ROLLEDBACK
97

CHAPTER 8 | Writing Recoverable Resources
transaction is committed or rolled back. By returning VoteReadOnly the
resource is opting out of the 2PC protocol and the resource object will not be
contacted again by the transaction coordinator.

Figure 9 shows the 2PC protocol with two resource objects. In the first phase,
the first resource returns VoteReadOnly and the second resource returns
VoteCommit. During the second phase only the second resource is informed of
the outcome (commit in this case).

The 1-Phase-Commit Protocol The 1-phase-commit (1PC) protocol is an optimization of the 2PC protocol
where the transaction only has one participant. Here the OTS can short circuit
the 2PC protocol and ask the resource to commit the transaction directly. This is
done by invoking the commit_one_phase() operation rather than the
prepare() operation.

When the 1PC protocol is uses the OTS is delegating the commit decision to the
resource object. If the resource object decides to commit the transaction, the
commit_one_phase() operation returns successfully. However, if the resource
decides to rollback the transaction it must raise the TRANSACTION_ROLLEDBACK
system exception. Figure 10 shows a successful 1PC protocol.

Figure 9: A resource returning VoteReadOnly.

commit

OTS Resource A Resource BClient

prepare

prepare

commit

VoteReadOnly

VoteCommit

Figure 10: A successful 1PC protocol.

commit

OTS Resource AClient

commit_one_phase
 98

Resource Protocols
Figure 11 shows a 1PC protocol resulting in the transaction being rolled-back.

It is possible for the commit_one_phase() operation to be called even when
more than one resource is registered with a transaction when resources return
VoteReadOnly from prepare(). Assume for example there are three resources
registered with a transaction. If the first two resources both return VoteReadOnly
the third resource does not need to be prepared and the commit_one_phase()
operation can be used instead.

Heuristic Outcomes Heuristics outcomes occur when at least one resource object unilaterally decides
to commit or rollback its part of the transaction and this decision is in conflict
with the eventual outcome of the transaction. For example, a resource may have
a policy that, once prepared, it will decide to commit if no outcome has been
delivered within a certain period. This might be done to free up access to shared
resources.

Any unilateral decisions made must be remembered by the resource. When the
eventual outcome is delivered to the resource it must reply according to the
compatibility of the decisions. For example, if the resource decides to commit its
part of the transaction and the transaction is eventually rolled back, the
resource’s rollback() operation must raise the HeuristicCommit exception.
The following table lists the resource’s response for the various possible
outcomes.

Figure 11: The 1PC protocol resulting in a rollback.

commit

OTS Resource AClient

commit_one_phase

TRANSACTION_ROLLEDBACK

TRANSACTION_ROLLEDBACK

Table 6: Heuristic Outcomes

Resource Decision Transaction Outcome Resource’s Response

Commit Commit commit() returns successfully.

Commit Rollback rollback() raises HeuristicCommit
99

CHAPTER 8 | Writing Recoverable Resources
Once a resource has raised a heuristic exception it must remember this until the
forget() operation has been called by the OTS (see Figure 12). For example,
after a failure the OTS might invoke the rollback operation again in which case
the resource must re-raise the HeuristicCommit exception. Once the forget()
operation has been called the resource object is no longer required and can be
deleted.

Heuristic outcome are reported to the client only if true is passed to the
commit() operation provided by the OTS Current object. They are reported by
raising one of the exceptions: HeuristicMixed or HeuristicHazard.
HeuristicMixed means a heuristic decision has been made resulting in some
updates being committed and some being rolled back. HeuristicHazard
indicates that a heuristic decision may have been made.

If the commit_one_phase() operation is called by the transaction coordinator,
the commit decision is delegated to the resource implementation. This means
that if the operation fails (that is results in a system exception other than
TRANSACTION_ROLLEDBACK being raised) then the coordinator cannot know the
true outcome of the transaction. For this case, the OTS raises the
HeuristicHazard exception.

Rollback Rollback rollback() returns successfully

Rollback Commit commit() raises HeuristicRollback

Table 6: Heuristic Outcomes

Resource Decision Transaction Outcome Resource’s Response

Figure 12: Raising the HeuristicCommit exception

commit

OTS Resource AClient

prepare

rollback

VoteCommit

Commit!

HeuristicCommit

HeuristicHazard forget
 100

Resource Protocols
Failure and Recovery Resource objects need to be able to deal with the failure of the process or node
hosting the resource and the failure of the process or node hosting the OTS
implementation.

Failure of the Resource If the process or node hosting the resource object fails after the resource has
been prepared, the resource object must be recreated during recovery so that the
outcome of the transaction can be delivered to the resource. Figure 13 shows a
crash occurring sometime after the resource has been prepared but before the
coordinator invokes the commit() operation. When the coordinator does invoke
the commit() operation the resource object is not active and the coordinator will
attempt to commit later. In the meantime the resource object is recreated and
waits for the commit() operation to be invoked. The next time the coordinator
calls commit() the resource receives the invocation and proceeds as normal.

If the failure occurs before the resource has been prepared, there is no need to
recreate the resource during recovery. When the 2PC protocol starts the OTS
will not be able to contact the resource and the transaction will be rolled back.

Failure of the Transaction
Coordinator

If the process or node hosting the transaction coordinator fails there are two
possible ways in which the failure is resolved:

Figure 13: Recovery after the failure of a resource object

OTS Resource AClient Application
begin

register_resource

commit

prepare

CRASH!

VoteCommit

recreate

create

commit

commit
101

CHAPTER 8 | Writing Recoverable Resources
1. The transaction coordinator recovers and eventually sends the outcome to

the resource. Here, the resource does not need to participate in the

recovery; either the commit() or rollback() operation will be invoked as

normal.

2. The resource detects that no outcome has been delivered and asks the

transaction coordinator to complete the transactions. This is done using the

replay_completion() operation provided by the recovery coordinator

object.

The second way of resolving the failure of the OTS is required because the OTS
supports a behavior called presumed rollback. With presumed rollback, if a
transaction is rolled back the coordinator is not required to stably store this fact.
Instead, on recovery if there is no information available on a transaction, the
transaction is presumed to have rolled back. This saves on the amount of data
that must be stably stored but means the resource object must check to see if the
transaction has been rolled back.

Recall from “Creating and Registering Resource Objects” on page 91 when a
resource is registered with the coordinator a reference to a recovery coordinator
object is returned. The recovery coordinator supports the RecoveryCoordinator
interface:

The sole operation, replay_completion(), takes a resource object and returns
the status of the transaction. If the transaction has not been prepared the
NotPrepared exception is raised. The replay_completion() operation is meant
to hint to the coordinator that the resource is expecting the transaction to be
completed.

To support detecting presumed rolled-back transactions, the
replay_completion() operation is used to detect if the transaction still exists. If
the transaction still exists the operation will either return a valid status or the
NotPrepared exception. However, if the transaction no longer exists the
OBJECT_NOT_EXIST system exception will be raised (other system exceptions
should be ignored).

// IDL (in module CosTransactions)
interface RecoveryCoordinator
{
 Status replay_completion(in Resource r)
 raises (NotPrepared);
};
 102

Resource Protocols
By periodically calling replay_completion() and checking for the
OBJECT_NOT_EXIST exception, the resource object can detect rolled-back
transactions (see Figure 14). This periodic calling of replay_completion()
must be done before the resource has been prepared, after the resource has been
prepared and after recovery of the resource due to a crash. To implement the
latter, the resource object needs to stably store the recovery coordinator
reference (for example using a stringified IOR) so that after a failure, the
recovery coordinator can be contacted.

Figure 14: Use of the replay_completion() operation

OTS Resource AClient Application
begin

register_resource

replay_completion

NotPrepared
replay_completion

NotPrepared

commit
prepare

replay_completion

CRASH!

replay_completion

OBJECT_NOT_EXIST
Rollback!

VoteCommit

create
103

CHAPTER 8 | Writing Recoverable Resources
Responsibilities and Lifecycle of a Resource
Object

Overview This section details the responsibilities of a resource object for each operation
and shows the lifecycle of a resource object.

prepare() Vote prepare() raises (HeuristicMixed, HeuristicHazard);

The prepare() operation is called during the first phase of the 2PC protocol
allowing the resource to vote in the transaction’s outcome and if necessary
prepare for eventual commitment.

Voting is done by returning one of the three values VoteCommit, VoteRollback
and VoteReadOnly:

VoteCommit This indicates that the resource is willing to commit
its part of the transaction and has fully prepared itself
for the eventual outcome of the transaction. The next
invocation on the resource will be either commit() or
rollback().

VoteRollback This indicates that the resource has decided to
rollback the transaction. This ensures that the
transaction will be rolled back. The resource object
can forget about the transaction and no further
operations will be invoked on the resource object.

VoteReadOnly This indicates that the resource does not want to be
further involved in the 2PC protocol. This does not
affect the transaction outcome and the resource object
can forget about the transaction. No further operations
will be invoked on the resource object.
 104

Responsibilities and Lifecycle of a Resource Object
If a resource object returns VoteCommit it must stably store sufficient
information so that in the event of a failure, the resource object and its state can
be reconstructed and continue to participate in the 2PC protocol. The actual
information that is saved depends on the application, but typically it will include
the following:

• The identity of the transaction. This can be obtained from the otid field in

the transaction’s propagation context which in turn is obtained by the

get_txcontext() operation on the transaction’s coordinator.

• The ObjectID for the resource.

• The reference for the recovery coordinator object associated with the

resource. This can be saved as a stringified IOR obtained by the

object_to_string() operation.

• Sufficient information to redo or undo any modifications made to

application data by the transaction.

The prepare() operation can raise two exceptions dealing with heuristic
outcomes: HeuristicMixed and HeuristicHazard. These exceptions may be
used internally in an OTS implementation; most resource implementations do
not need to raise these exceptions.

commit() void commit() raises (NotPrepared, HeuristicRollback,
HeuristicMixed, HeuristicHazard)

The commit() operation is called during the second phase of the 2PC protocol
after the coordinator has decided to commit the transaction. The commit()
operation may be invoked multiple times due to various failures such as a
network error, failure of the OTS and failure of the application.

Typically the commit() operation does the following:

• Make permanent any modifications made to the data associated with the

resource.

• Cleans up all traces of the transaction, including information stably stored

for recovery.

The commit() operation can raise one of four user exceptions: NotPrepared,
HeuristicRollback, HeuristicMixed, HeuristicHazard. The NotPrepared
exception must be raised if commit() is invoked before the resource has been
prepared (that is, returned VoteCommit from the prepare() operation).
105

CHAPTER 8 | Writing Recoverable Resources
The HeuristicRollback exception must be raised if the resource had decided to
rollback its part of the transaction after being prepared and prior to the commit()
operation being invoked. If this exception is raised it must be raised on future
invocations of the commit() operation and the resource must wait for the
forget() operation to be invoked before cleaning up the transaction.

The HeuristicMixed and HeuristicHazard exceptions may be used internally
in an OTS implementation; most resource implementations do not need to raise
these exceptions.

rollback() void rollback() raises (HeuristicCommit, HeuristicMixed,
HeuristicHazard)

There are two occasions when the rollback() operation is called:

1. During the second phase of the 2PC protocol after the coordinator has

decided to commit the transaction.

2. When the transaction is rolled back prior to the start of the 2PC protocol.

This may occur for several reasons including the client invoking the

rollback() operation on the OTS Current object, the transaction begin

timed-out, and an attempt to commit a transaction that has been marked for

rollback.

The rollback() operation may be invoked multiple times due to various
failures such as a network error, failure of the OTS and failure of the application.

Typically the rollback() operation does the following:

• Undo any modifications made to the data associated with the resource.

• Cleans up all traces of the transaction, including information stably stored

for recovery.

The rollback() operation can raise one of three user exceptions:
HeuristicCommit, HeuristicMixed, HeuristicHazard. The HeuristicCommit
exception must be raised if the resource had decided to commit its part of the
transaction after being prepared and prior to the rollback() operation being
invoked. If this exception is raised it must be raised on future invocations of the
rollback() operation and the resource must wait for the forget() operation to
be invoked before cleaning up the transaction. Heuristic exceptions can only be
raised if the resource has been prepared.

The HeuristicMixed and HeuristicHazard exceptions may be used internally
in an OTS implementation; most resource implementations do not need to raise
these exceptions.
 106

Responsibilities and Lifecycle of a Resource Object
commit_one_phase() void commit_one_phase() raises (HeuristicHazard)

The commit_one_phase() operation may be invoked when there is only one
resource registered with the transaction. The resource decides whether to
commit or rollback the transaction. Typically the commit_one_phase()
operation does the following:

• An attempt is made to commit any changes made to the application data. If

this succeeds the operation returns normally; otherwise the changes are

undone and the TRANSACTION_ROLLEDBACK system exception is raised.

• Cleans up all traces of the transaction.

The HeuristicHazard exception must be raised if the resource cannot
determine whether the commit attempt was successful or not. If this exception is
raised the resource must wait for the forget() operation to be invoked before
cleaning up the transaction.

forget() void forget()

The forget() operation is called after the resource object raised a heuristic
exception from either commit(), rollback() or commit_one_phase(). The
forget() operation may be invoked multiple times due to various failures such
as a network error, failure of the OTS and failure of the application. Typically
the resource cleans up all traces of the transaction, including information stably
stored for recovery.
107

CHAPTER 8 | Writing Recoverable Resources
Resource Object Checklist The following is a list of things to remember when implementing recoverable
resource objects:

• A resource object can only be registered with one transaction. At the end of

the resource’s lifecycle the resource must be deactivated.

• Resource objects need unique identifiers. This means they must be created

in a POA with a USER_ID ID assignment policy.

• Resource objects must be able to be recreated after a failure. This means

they must be created in a POA with a PERSISTENT lifecycle policy.

• Resource objects must implement both the 2PC operations (prepare(),

commit(), rollback() and forget()) as well as the 1PC operation

(commit_one_phase()).

• Only return VoteCommit from the prepare() operation if the resource can

commit the transaction and has stably stored sufficient state to be recreated

after a failure.

• If a resource object wants to opt out of the 2PC protocol, it should return

VoteReadOnly from the prepare() operation.

• If the resource takes heuristic decisions, the decisions must be remembered

and reported to the OTS.

• Periodically call the replay_completion() operation to check for

presumed rollback transactions.

• Resources are expensive in terms of 2PC messages and stable storage for

recovery. Design your applications to minimize the number of resources

used.
 108

CHAPTER 9

Interoperability
This chapter describes how the Orbix OTS interoperates with older
releases of Orbix and with other OTS implementations including
the Orbix 3 OTS.

In this chapter This chapter discusses the following topics:

Use of InvocationPolicies page 110

Use of the TransactionalObject Interface page 111

Interoperability with Orbix 3 OTS Applications page 113

Using the Orbix 3 otstf with Orbix Applications page 116
109

CHAPTER 9 | Interoperability
Use of InvocationPolicies

Deprecated policies This release of Orbix introduces the OTSPolicies, InvocationPolicies and
NonTxTargetPolicies that replace the deprecated TransactionPolicies. The
deprecated TransactionPolicies (for example, Requires_shared and
Allows_shared) are supported allowing interoperability between different
releases of Orbix.

When creating Orbix transactional POAs that must interoperate with previous
releases, the policies for the POA must include the deprecated
TransactionPolicy as well as the OTSPolicy and InvocationPolicy. See
“Migrating from TransactionPolicies” on page 55 for more details.

Note: Support for the TransactionPolicy type may be discontinued in a
future Orbix release. It is recommended that only OTSPolicies and
InvocationPolicies be used.
 110

Use of the TransactionalObject Interface
Use of the TransactionalObject Interface

Enabling support for the
TransactionalObject interface

Version 1.1 of the OTS specification uses inheritance from the empty
CosTransactions:TransactionalObject interface to indicate the
transactional requirements of an object. For example, the Orbix 3 OTS only
supports the TransactionalObject interface and not the policies.

Orbix provides support for the TransactionalObject interface, allowing
different behaviors to be configured. This support needs to be enabled by setting
the plugins:ots:support_ots_v11 configuration variable to “true” (by
default this support is not enabled). Once enabled, an object which supports the
TransactionalObject interface is interpreted as having an effective OTSPolicy
which depends on the value of the plugins:ots:ots_v11_policy configuration
variable. Table 7 details this mapping:

The default value for the plugins:ots:ots_v11_policy is “requires” since this
is the default behavior for the Orbix 3 OTS. For backward compatibility with
previous Orbix releases a value of “allows” is interpreted as “adapts”.

It is recommended that the when support for TransactionalObject is enabled, the
NonTxTargetPolicy PERMIT should be used.

If an object supports TransactionalObject and also uses OTSPolicies, the
OTSPolicies take priority; compatibility checks are not done.

Table 7: Mapping TransactionalObject to OTSPolicies

Inherits from
TransactionalObject

Value of
plugins:ots:ots_v11_policy

Effective
OTSPolicy Value

No n/a FORBIDS

Yes “requires” REQUIRES

Yes “adapts” ADAPTS
111

CHAPTER 9 | Interoperability
To summarize, to enable support for the TransactionalObject interface the
following is required:

1. Set the plugins:ots:support_ots_v11 configuration variable to “true”.

2. Set the plugins:ots:ots_v11_policy configuration variable to either

“requires” (the default) or “adapts”.

3. Use the PERMIT NonTxTargetPolicy (for example, by setting the

policies:non_tx_target_policy configuration variable to “permit”).
 112

Interoperability with Orbix 3 OTS Applications
Interoperability with Orbix 3 OTS
Applications

Overview This section details how an Orbix client can interoperate with an existing Orbix
3 OTS application. Since Orbix 3 supports only the TransactionalObject
interface this section is an extension of the previous section “Use of the
TransactionalObject Interface” on page 111

Details on using the Encina OTS are covered in “The Encina Transaction
Manager” on page 124.

Orbix 3 OTS Interoperability Figure 15 shows an Orbix client working with an existing Orbix 3 OTS
application. The first thing to note is that the Orbix 3 OTS always requires a full
2PC transaction manager such as that provided by the Encina OTS (see “The
Encina Transaction Manager” on page 124) or the otstf provided with Orbix 3. A
1PC-only transaction created by the OTS Lite transaction manager will not be
usable by the Orbix 3 OTS. This means that the Orbix client must be configured
to use an external transaction factory to create transactions.

Figure 15: Interoperability with Orbix 3 OTS Applications

Orbix 2000
OTS Client Database

Orbix 3
OTS

Application

Orbix 2000 itotstm
or

Orbix 3 otstf
113

CHAPTER 9 | Interoperability
Using otstf as transaction manager To get the Orbix client to use the Orbix 3 otstf server as its transaction manager,
the initial_references:TransactionFactory:reference configuration
variable must be set to the reference of the otstf’s transaction factory object. This
can be done by passing the –T switch to the otstf and copying the IOR reference
output. Alternatively the otstf can publish its name to the name service using the
–t switch and a suitable corbaname URL can be used as the reference value (see
the section “Resolving Names with corbaname” in the chapter “Naming
Service” in the CORBA Programmer’s Guide).

The Orbix 3 OTS application must be enabled to import standard transaction
contexts. This is done by setting the Orbix 3 OrbixOTS.INTEROP configuration
variable to “TRUE”.

The final consideration is the mapping from inheritance from
TransactionalObject to the effective OTSPolicy. The Orbix 3 OTS provides a
proprietary policy mechanism which mimics the behavior of the OTSPolicies
REQUIRES and ADAPTS (the default being REQUIRES). Therefore, when selecting
the value for the plugins:ots:ots_v11_policy configuration variable, make
sure it matches the policy expected by the Orbix 3 application.

Bypassing otstf It is possible to bypass the use of the otstf server and use the transaction factory
provided by the Orbix 3 OTS application. This is done by modifying the Orbix 3
application to publish its internal transaction factory reference. This is illustrated
in the following code:

Summary The following is a checklist for enabling interoperability between Orbix clients
and Orbix 3 OTS applications.

1. Set the plugins:ots:support_ots_v11 configuration variable to “true”.

// Orbix 3 OTS C++ Application Code
CORBA::ORB_var orb = ...
OrbixOTS::Server_var ots = ...

// Get reference to the local transaction factory.
CosTransactions::TransactionFactory_var tx_factory =
 ots->get_transaction_factory_reference();

// Publish reference (eg, to the name service or a file)
 114

Interoperability with Orbix 3 OTS Applications
2. Set the plugins:ots:ots_v11_policy configuration variable to match

the equivalent Orbix 3 OTS policy for the TransactionalObject

interface.

3. Use the PERMIT NonTxTargetPolicy.

4. Set the initial_references:TransactionFactory:reference

configuration variable to refer to either the Orbix 3 otstf’s transaction

factory another transaction factory that supports 2PC.

5. Set the Orbix 3 OrbixOTS.INTEROP configuration variable to “TRUE”.

For more information on the use of the otstf server and setting Orbix 3
transaction policies, refer to the Orbix 3 OTS manual.
115

CHAPTER 9 | Interoperability
Using the Orbix 3 otstf with Orbix
Applications

Using Orbix 3 otstf transaction
manager

Another possible use of Orbix 3 is to use the 2PC otstf transaction manager with
an Orbix OTS application. This setup is shown in Figure 16.

This setup is achieved by setting the
initial_references:TransactionFactory:reference configuration
variable to refer to the otstf’s transaction factory.

Figure 16: Using and alternative OTS Implementation

Orbix 2000
OTS Client Database

Orbix 2000
OTS Server

 Orbix 3 otstf
 116

CHAPTER 10

OTS Plug-Ins and
Deployment
Options
Orbix provides a generic OTS plugin that provides an
implementation of the OTS Current object including transaction
propagation. In addition there are two OTS transaction manager
implementations: OTS Lite, which provides a lightweight
transaction coordinator supporting only the 1PC protocol, and
OTS Encina, which provides full recoverable 2PC support. This
chapter discusses deployment options.

In this chapter This chapter discusses the following topics:

The OTS Plug-In page 120

The OTS Lite Plug-In page 122

The Encina Transaction Manager page 124

The itotstm Transaction Manager Service page 126
117

CHAPTER 10 | OTS Plug-Ins and Deployment Options
OTS Plug-ins Orbix provides a generic OTS plugin that provides an implementation of the
OTS Current object including transaction propagation.

There are two OTS transaction manager implementations:

• OTS Lite

• OTS Encina.

OTS Lite OTS Lite provides lightweight transaction coordinator supporting only the 1PC
protocol. It is available as an application plug-in and requires minimal
configuration and administration but can only be used by applications with only
a single resource manager.

OTS Encina OTS Encina provides full recoverable 2PC support allowing it to be used by
applications that are using one or more resource managers. It is available as a
standalone service and as a application plug-in.

Note: OTS Encina is only available in the Orbix Enterprise Edition.

Features in OTS Table 8 shows the features supported by these pieces.

Table 8: Features in OTS Implementation

Feature Generic OTS OTS Lite OTS Encina

Current Object Y

Transaction Policies Y

Old Transaction Policies Y

TransactionalObject Y

1PC Protocol Y Y

2PC Protocol N Y

Resource Objects Y Y

Synchronization Objects Y Y

Nested Transactions N N
 118

iPAC Management N Y

XA Support Y Y

Application Plug-In Y Y Y

Table 8: Features in OTS Implementation

Feature Generic OTS OTS Lite OTS Encina
119

CHAPTER 10 | OTS Plug-Ins and Deployment Options
The OTS Plug-In

Purpose of the OTS plug-in Any application using the OTS Current object needs to load the OTS plug-in.
This plug-in provides an implementation of the OTS Current object which
provides the thread/transaction association, propagation of the current
transaction to transactional objects and the policies OTSPolicy,
InvocationPolicy and NonTxTargetPolicy. In addition the OTS plug-in provides
the client stubs for the CosTransactions module, so applications need to link
with the OTS plug-in library.

In OTS plug-in does not provide any transaction manager functionality. Instead
the OTS plug-in delegates elsewhere using the standard CosTransactions
module APIs (see Figure 17). This allows different deployment options to be
easily supported through configuration.

Loading the OTS plug-in There are two ways in which the OTS plug-in can be loaded:

1. Explicitly adding the plug-in name “ots” to the orb_plugins

configuration variable. For example: orb_plugins = [..., “ots”];

2. Setting the initial_references:TransactionCurrent:plugin

configuration variable to the value “ots”. This causes the OTS plug-in to

be loaded when resolve_initial_references(“TransactionCurrent”)

Figure 17: The Generic OTS Plug-In

 Application

OTS Plug-In

?

 120

The OTS Plug-In
is called. When using this way, resolve_initial_references()

should be called immediately after ORB_init() has been called and before

any transaction POAs are created.

When the OTS plug-in is initialized it obtains a reference to a transaction factory
object by calling resolve_initial_references(“TransactionFactory”). So changing
which transaction manager to use is just a matter of using configuration to
change the outcome of resolve_initial_references().

Deployment scenarios The remainder of this section describes three possible deployment scenarios for
C++:

• Using the OTS Lite plug-in when only 1PC transactions are required.

• Using the itotstm service with the OTS Encina plug-in where recoverable

2PC transactions are required.

• Using the OTS Encina plug-in loaded into the application itself.

For more information, see the Orbix Deployment Guide.
121

CHAPTER 10 | OTS Plug-Ins and Deployment Options
The OTS Lite Plug-In

Overview The OTS Lite plug-in is a lightweight transaction manager that only supports the
1PC protocol. This plug-in allows applications that only access a single
transactional resource to use the OTS APIs without incurring a large overhead,
but allows them to migrate easily to the more powerful 2PC protocol by
switching to a different transaction manager. Figure 18 shows a client/server
deployment that uses the OTS Lite plug-in.

As usual both the client and server applications must load the OTS plug-in. In
addition the client application loads the OTS Lite plug-in, allowing the client to
create 1PC transaction locally.

Figure 18: Deployment using the OTS Lite Plug-In

Client
 Application

OTS Plug-In

OTS Lite Plug-In

Server
 Application

OTS Plug-In

Note: When using the Orbix configuration tool, itconfigure, the OTS Lite
plug-in is deployed by default.
 122

The OTS Lite Plug-In
Loading the OTS Lite plug-in As with the OTS plug-in the OTS Lite plug-in can be loaded in two ways:

1. Adding the plug-in name “ots_lite” to the orb_plugins configuration

variable. For example: orb_plugins = [..., “ots”, “ots_lite”];

2. Setting the initial_references:TransactionFactory:plugin

configuration variable to “ots_lite”. This causes the OTS Lite plug-in to

be loaded by the OTS plug-in when

resolve_initial_references(“TransactionFactory”) is called.

The server application does not need to load the OTS Lite plug-in except when
standard interposition is used (that is, when the
plugins:ots:interposition_style configuration variable is set to
“standard”). In this case when the OTS plug-in imports the transaction from
the client a transaction manager is required to create the sub-coordinated
transaction.

This deployment should be used when the application only accesses on
transactional resource (for example, updates a single database).
123

CHAPTER 10 | OTS Plug-Ins and Deployment Options
The Encina Transaction Manager

Overview The Encina OTS Transaction Manager provides full recoverable 2PC transaction
coordination implemented on top of the industry proven Encina Toolkit from
IBM/Transarc.

There are two ways in which the Encina OTS may be used:

1. By configuring the itotstm service to load the Encina OTS plug-in.

2. By loading the Encina OTS plug-in directly into the application.

Configuring the OTS Encina
Plug-In

Whether the OTS Encina plug-in is used in the itotstm service or directly in the
application, there are a number of administration steps required to successfully
use it.

1. Two transient POAs must be created. These serve as namespace POAs off

which the OTS Encina plug-in creates its persistent POAs. The first POA is

called “iOTS” and the second is a child POA whose name is set by the

plugins:ots_encina:namespace_poa. The default value of this configuration

variable is “otstm” for the itotstm service and “Encina” for an application

loading the plug-in. The POAs should be created using itadmin as follows:

itadmin poa create –transient –allowdynamic iOTS
itadmin poa create –transient –allowdynamic iOTS/otstm

2. The Encina OTS is fully recoverable and requires a transaction log to write

the state of its transactions. Assuming the log file is to be located in

“/local/logs/ots.log” the log is created and initialized using itadmin as

follows:

itadmin encinalog create /local/logs/ots.log
itadmin encinalog init /local/logs/ots.log

Note: If you selected Distributed Transaction services when running the
Orbix configuration tool, itconfigure, the administration steps outlined in
this subsection are done automatically.
 124

The Encina Transaction Manager
The effect of initializing the log is to create a restart file. This a file that

contains sufficient information for the OTS Encina plug-in to restart and

includes the location of the transaction log. In this example, the restart file

is called /local/logs/ots_restart. The name of the restart file must be passed

to the OTS Encina plug-in by setting the

plugins:ots_encina:restart_file configuration variable.

The minimum configuration required to load the OTS Encina plug-in into an
applications is:

<app-scope> {
 initial_references:TransactionFactory:plugin = “ots_encina”;
 plugins:ots_encina:namespace_poa = “<name>”;
 plugins:ots_encina:restart_file = “<path>”;
}

125

CHAPTER 10 | OTS Plug-Ins and Deployment Options
The itotstm Transaction Manager Service

Overview The itotstm program is a standalone transaction manager service which can be
configured to load any transaction manager plug-in. This section shows how it
can be used along with the Encina OTS plug-in to provide 2PC transactions for
an application. The itotstm service is deployed if you select the Distributed
Transaction service when running the Orbix configuration tool, itconfigure.

Using itconfigure If you select the Distributed Transaction service when running the Orbix
configuration tool, itconfigure, the OTS Lite plug-in and the itotstm service
are deployed. By default the OTS Lite plug-in is configured to be used by all
clients and servers. To make use of the itotstm service, however, clients need to
pick up the initial_references:TransactionFactory:reference
configuration variable that is set in the iona_services.otstm client
configuration scope. This can be done this by passing "-ORBname
iona_services.otstm.client" to the ORB_init() operation or by adding a
copy of the variable to the application's configuration scope.

Example client/server deployment Figure 19 shows a client/server deployment where the itotstm in conjunction
with the OTS Encina plug-in is used to provide 2PC transaction management.
Here, neither the client nor the server needs to load any transaction manager
plug-in. Instead the client OTS is configured to pick up its transaction factory
reference from the OTS Encina plug-in loaded into the itotstm standalone
service.
 126

The itotstm Transaction Manager Service

There are two parts to setting up such a deployment.

• Configuring the itotstm to load the OTS Encina plug-in.

• Configuring the OTS plug-in to pickup the reference to the OTS Encina

transaction factory within the itotstm service.

Configuring itotstm The itotstm service uses the configuration scope “otstm” by default. This can be
changed by using a different ORB name using the -ORBname command line
option. Configuring itotstm to load the OTS Encina plug-in can be done in two
ways:

1. Adding the OTS plug-in name “ots_encina” to the orb_plugins

configuration variable. For example, orb_plugins = [..., “ots”,

“ots_encina”];

2. Setting the initial_references:TransactionFactory:plugin

configuration variable to the name of the OTS Encina plug-in

“ots_encina”.

Figure 19: Using the OTS Encina plug-in with the itotstm service

Client
 Application

itotstm

OTS Encina Plug-In

Server
 Application

OTS Plug-InOTS Plug-In

OTS Plug-In
127

CHAPTER 10 | OTS Plug-Ins and Deployment Options
Note that in both cases the orb_plugins configuration variable must contain
“ots” since the OTS plug-in is required for synchronization objects.

The remainder of the otstm scope should contain the configuration necessary for
the OTS Encina plug-in.

Configuring the OTS plug-in Next the OTS plug-in loaded into the applications needs to pick up the
transaction factory reference of the OTS Encina plug-in. Essentially this means
setting the initial_references:TransactionFactory:refererence
configuration variable in the applications configuration scope to any suitable
reference. Three possible ways of achieving this are:

1. Get the OTS Encina plug-in to export its transaction factory reference to

the name service and use a corbaname style URL for the initial reference.

This is done by setting the

plugins:ots_encina:transaction_factory_ns_name configuration

variable to the name for the object reference in the name service. For

example, if this is set to “ots/encina” a URL of the form

“corbaname:rir:#ots/encina” can be used.

2. Get the itotstm to publish the transaction factory IOR to a file using the

“prepare” and “-publish_to_file” command-line switches. Then use the

IOR in the file as the transaction factory reference.

The deployment should be used when the application requires or might require
full recoverable 2PC transactions. For example, the application make use of ore
or more resource managers.
 128

The itotstm Transaction Manager Service
Loading the OTS Encina Plug-In
into the Application

An alternative to loading the OTS Encina plug-in into the itotstm service is to
load the plug-in directly into the application. This deployment is shown in
Figure 20.

This deployment options should be used when the application requires full
recoverable 2PC transactions and also wants to improve performance by
eliminating some of the network messages that are necessary when the
standalone itotstm service is used.

To configure this deployment, follow the instructions for configuring the OTS
Encina plug-in, making sure the configuration is done within the application’s
scope.

Figure 20: Loading the OTS Encina Plug-In into the Application

Client
 Application

Server
 Application

OTS Plug-InOTS Plug-In

OTS Encina Plug-In
129

CHAPTER 10 | OTS Plug-Ins and Deployment Options
 130

APPENDIX A

OTS Management
This appendix describes the OTS server features that have been
exposed for management. It explains all the managed entities,
attributes, and operations. These can be managed using the IONA
Administrator management consoles.

In this Appendix This appendix contains the following sections:

“Introduction to OTS Management” on page 132.

“TransactionManager Entity” on page 135.

“Transaction Entity” on page 138.

“Encina Transaction Log Entity” on page 140.

“Encina Volume Entity” on page 142.

“Management Events” on page 143.
131

APPENDIX A | OTS Management
Introduction to OTS Management

Overview This section provides an introduction to the OTS management model and the
IONA Administrator management consoles.

OTS Management Model Figure 21 shows the main components of the OTS management model.

In Figure 21, the components on the left are common to both OTS Encina and
OTS Lite. The components on the right apply to OTS Encina only.

In this model, each OTS server can have multiple Transactions and multiple
Encina Transaction Volumes. However, each server can only have one
Transaction Manager, and one Encina Transaction Log.

Figure 21: OTS Management Model

OTS Server

Transaction Manager

Transaction

Encina
Transaction Log

Encina
Transaction

Volume

Encina-Specific Components
 132

Introduction to OTS Management
OTS Managed Entities The following OTS server components have been instrumented for
management:

• TransactionManager / Encina TransactionManager

• Transaction / Encina Transaction

• Encina Transaction Log

• Encina Volume

This means that these features can be managed using the IONA Administrator
management consoles.

IONA Administrator IONA Administrator is a set of tools that enables you to manage and configure
server applications at runtime. IONA Administrator provides a graphical user
interface known as the IONA Administrator Console. This enables you to
manage applications, configuration settings, event logging, and user roles.

IONA Administrator also provides a web browser interface known as the IONA
Administrator Web Console. The web console enables you to manage
applications and event logging from anywhere, without the need for a lengthy
download or installation.

For detailed information about IONA Administrator, see the CORBA IONA
Administrator User’s Guide.

Example Managed Entity Figure 22 shows an OTS Encina Transaction Manager running in the IONA
Administrator web console. It shows the attributes and operations that are
exposed for this entity.

The next sections in this chapter describe the attributes and operations that are
displayed for each of the OTS managed entities.
133

APPENDIX A | OTS Management
Figure 22: OTS Encina Transaction Manager Entity
 134

TransactionManager Entity
TransactionManager Entity

Overview This section describes the managed attributes and operations that are exposed for
the TransactionManager and Encina TransactionManager entity. These
attributes and operations are displayed in the IONA Administrator Console.

TransactionManager Attributes The managed attributes for the TransactionManager entity are shown in Table 9.
These attributes apply to both OTS Encina and OTS Lite.

Table 9: TransactionManager Attributes (Sheet 1 of 2)

Attribute Type Description

Name string Name of the transaction
manager.

Supports 1PC boolean Whether the manager supports
one-phase commit.

Supports 2PC boolean Whether the manager supports
two-phase commit.

Active long Number of active transactions.

Completed long Number of completed
transactions (since the server
started).

Committed long Number of committed
transactions (since the server
started).

Aborted long Number of aborted transactions.

In Doubt long Number of transactions that are
in doubt.

TPM long Number of transactions per
minute.
135

APPENDIX A | OTS Management
Encina TransactionManager
Attributes

The additional managed attributes for the Encina TransactionManager entity are
shown in Table 10. These attributes apply to OTS Encina only.

TPM Peak long Maximum number of
transactions per minute (since the
server started).

TPM Peak Time string Time when the maximum
transactions per minute was
reached.

TPM Peak Average double Average transactions per minute
(since server started).

Timeout long Default value for transaction
timeout (same as the
default_transaction_

timeout configuration variable
for the ots_lite and
ots_encina plug-ins).

This attribute is writable.

Transaction Log hyperlink Hyperlink to the Transaction Log
entity (null for OTS Lite).

Table 9: TransactionManager Attributes (Sheet 2 of 2)

Attribute Type Description

Table 10: Encina TransactionManager Attributes (Sheet 1 of 2)

Attribute Type Description

Trace File string The file to which the trace
output is written (stderr if the
string is empty).

This attribute is writable.

Trace On boolean Whether Encina tracing is
enabled or not.

This attribute is writable.
 136

TransactionManager Entity
Encina TransactionManager
Operations

The managed operations for the Encina TransactionManager entity are shown in
Table 11.

Trace Level bde space-separated
list of strings,
where each
element is one of
the following:

GLOBAL, EVENT,

PARAM, NONE,

INTERNAL_PARAM,
INTERNAL_EVENT

(for example,
"EVENT PARAM")

These attributes specify the
trace level for the
corresponding Encina module
(one of bde, log, restart,
tran, util, vol, respectively).

These attributes are writable.

Trace Level log

Trace Level restart

Trace Level tran

Trace Level util

Trace Level vol

Table 10: Encina TransactionManager Attributes (Sheet 2 of 2)

Attribute Type Description

Table 11: Encina TransactionManager Operations

Operation Parameters Type Description

dump file name

overwrite

string

boolean

Writes the contents of the
Encina trace buffer to the
specified file. Depending on
the value of the overwrite
parameter, appends to an
existing file, or overwrites it.
137

APPENDIX A | OTS Management
Transaction Entity

Overview This section describes the managed attributes and operations exposed for the
Transaction and Encina Transaction entity. These attributes and operations are
displayed in the IONA Administrator Console.

Transaction Attributes The managed attributes for the Transaction entity are shown in Table 12. These
attributes apply to both OTS Encina and OTS Lite.

Encina Transaction Attributes The additional managed attributes for the Encina Transaction entity are shown in
Table 13. These attributes apply to OTS Encina only.

Transaction Operations The managed operations for the Transaction entity are shown in Table 14. These
operations apply to both OTS Encina and OTS Lite.

Table 12: Transaction Attributes

Attribute Type Description

Global TID string Global transaction identifier.

Timeout boolean Transaction-specific timeout.

Creation Time boolean Time when the transaction was
created.

Status long CosTransactions::Status

values.

Resources long Available resources for the
transaction.

Table 13: Encina Transaction Attributes

Attribute Type Description

Local TID string Local Encina-specific
transaction identifier.
 138

Transaction Entity
Table 14: Transaction Operations

Operation Parameter Description

Rollback none Roll back the transaction.

Mark Rollback none Mark the transaction for being
rolled back.

Commit none Commit the transaction.

Remove Resource string Remove (unregister) the
resource identified by the
stringified object reference
from the transaction.

For example, this enables a
transaction to complete if
repeated attempts to deliver an
outcome to a resource are
failing.

Note: These operations are applicable to all transactions. In practice
however, these operations will most likely fail for well-behaved transactions
because of their short lifetime. They would only be applied in critical situations
(for example, on a transaction with resource failures).
139

APPENDIX A | OTS Management
Encina Transaction Log Entity

Overview This section describes the managed attributes and operations exposed for the
Encina Transaction Log entity. These attributes and operations are displayed in
the IONA Administrator Console.

Encina Transaction Log
Attributes

The managed attributes for the Encina Transaction Log are shown in Table 15.

Table 15: Encina Transaction Log Attributes (Sheet 1 of 2)

Attribute Type Description

Name string Name of the log (always tranLog for the
Encina Transaction Log).

Size long Size (in pages of 512 K).

Free long Free space (in pages).

Threshold long Percentage of used pages versus total
pages that (when exceeded) cause a
management event to be sent to the
management service.

This attribute is writable.

Check Interval long Interval (in seconds) for checking the
amount of free space in the log.

This attribute is writable.

Growth long Difference of free space in the log at
beginning and end of the last check
interval.

Average Growth double Average of the growth rate (in the
lifetime of the OTS server).

Archive Device string File name of the archive device of the
log.
 140

Encina Transaction Log Entity
Encina Transaction Log
Operations

The managed operations for the Encina Transaction Log are shown in Table 16.

Mirrors list of
hyperlinks

List of hyperlinks to Encina Volume
entities.

Table 15: Encina Transaction Log Attributes (Sheet 2 of 2)

Attribute Type Description

Table 16: Encina Transaction Log Operations

Operation Parameters Description

Expand none Expands the log to maximum possible
size. This is necessary to avail of the
increased disk space after a mirror has
been added.

Add Mirror string Creates a new physical volume backed
up by the specified disk, and adds it to
the list of volumes currently mirroring
the transaction log.

The raw partition or file specified by the
string parameter must exist. You can
create files using the itadmin tool.
141

APPENDIX A | OTS Management
Encina Volume Entity

Overview This section describes the managed attributes and operations exposed for the
Encina (Physical) Volume entity. These attributes and operations are displayed
in the IONA Administrator Console.

Encina Volume Attributes The managed attributes for the Encina (Physical) Volume entity are shown in
Table 17.

Encina Volume Operations The managed operations for the Encina (Physical) Volume are shown in
Table 18.

Table 17: Encina (Physical) Volume Attributes

Attribute Type Description

Name string Logical name of the physical volume.

Disks list of strings List of fully qualified file or raw
partition names for the different disks
that backup the volume.

Table 18: Encina (Physical) Volume Operations

Operation Parameter Description

Remove none Removes this physical volume.

Add Disk string Adds the specified disk to the
physical volume. The raw partition or
file must exist. You can create files
using the itadmin tool.
 142

Management Events
Management Events
The following OTS events are logged with the IONA Administrator
management service:

• The heuristic outcome of a transaction.

This event includes the otid and the heuristic outcome type.

• When the used space in the transaction log exceeds the threshold.

This event includes the actual percentage of used versus the total number

of pages in the transaction log.
143

APPENDIX A | OTS Management
 144

Glossary
A administration

All aspects of installing, configuring, deploying, monitoring, and managing a
system.

C client
An application (process) that typically runs on a desktop and requests services
from other applications that often run on different machines (known as server
processes). In CORBA, a client is a program that requests services from CORBA
objects.

configuration
A specific arrangement of system elements and settings.

configuration domain
Contains all the configuration information that Orbix ORBs, services and
applications use. Defines a set of common configuration settings that specify
available services and control ORB behavior. This information consists of
configuration variables and their values. Configuration domain data can be
implemented and maintained in a centralised Orbix configuration repository or as
a set of files distributed among domain hosts. Configuration domains let you
organise ORBs into manageable groups, thereby bringing scalability and ease of
use to the largest environments. See also configuration file and configuration
repository.

configuration file
A file that contains configuration information for Orbix components within a
specific configuration domain. See also configuration domain.

configuration repository
A centralised store of configuration information for all Orbix components within
a specific configuration domain. See also configuration domain.
145

GLOSSARY
configuration scope
Orbix configuration is divided into scopes. These are typically organized into a
root scope and a hierarchy of nested scopes, the fully-qualified names of which
map directly to ORB names. By organising configuration properties into scopes,
different settings can be provided for individual ORBs, or common settings for
groups of ORB. Orbix services have their own configuration scopes.

CORBA
Common Object Request Broker Architecture. An open standard that enables
objects to communicate with one another regardless of what programming
language they are written in, or what operating system they run on. The CORBA
specification is produced and maintained by the OMG. See also OMG.

CORBA objects
Self-contained software entities that consist of both data and the procedures to
manipulate that data. Can be implemented in any programming language that
CORBA supports, such as C++ and Java.

D deployment
The process of distributing a configuration or system element into an environment.

E event
The occurrence of a condition or state change, or the availability of some
information that is of interest to one or more modules in a system. Suppliers
generate events and consumers subscribe to receive them.

I IDL
Interface Definition Language. The CORBA standard declarative language that
allows a programmer to define interfaces to CORBA objects. An IDL file defines
the public API that CORBA objects expose in a server application. Clients use
these interfaces to access server objects across a network. IDL interfaces are
independent of operating systems and programming languages.
 146

GLOSSARY
IIOP
Internet Inter-ORB Protocol. The CORBA standard messaging protocol, defined
by the OMG, for communications between ORBs and distributed applications.
IIOP is defined as a protocol layer above the transport layer, TCP/IP.

installation
The placement of software on a computer. Installation does not include
configuration unless a default configuration is supplied.

Interface Definition Language
See IDL.

invocation
A request issued on an already active software component.

IOR
Interoperable Object Reference. See object reference.

M management
To direct or control the use of a system or component. Sometimes used in a more
general way meaning the same as Administration. management console

N node daemon
Starts, monitors, and manages servers on a host machine. Every machine that runs
a server must run a node daemon.

O object reference
Uniquely identifies a local or remote object instance. Can be stored in a CORBA
naming service, in a file or in a URL. The contact details that a client application
uses to communicate with a CORBA object. Also known as interoperable object
reference (IOR) or proxy.

object transaction service
See Orbix OTS.
147

GLOSSARY
OMG
Object Management Group. An open membership, not-for-profit consortium that
produces and maintains computer industry specifications for interoperable
enterprise applications, including CORBA. See www.omg.com.

ORB
Object Request Broker. Manages the interaction between clients and servers, using
the Internet Inter-ORB Protocol (IIOP). Enables clients to make requests and
receive replies from servers in a distributed computer environment. Key
component in CORBA.

Orbix OTS
Object Transaction Service. An implementation of the OMG Transaction Service
Specification. Provides interfaces to manage the demarcation of transactions and
the propagation of transaction contexts.

POA
Portable Object Adapter. Maps object references to their concrete
implementations in a server. Creates and manages object references to all objects
used by an application, manages object state, and provides the infrastructure to
support persistent objects and the portability of object implementations between
different ORB products. Can be transient or persistent.

protocol
Format for the layout of messages sent over a network.

S server
A program that provides services to clients. CORBA servers act as containers for
CORBA objects, allowing clients to access those objects using IDL interfaces.

T transaction manager
Manages global transactions on behalf of application programs. A transaction
manager coordinates commands from application programs and resource
managers to start and complete global transactions. When an application
completes a transaction, either with a commit or rollback request, the transaction
manager communicates the outcome with each resource manager.
 148

http://www.omg.com

Index

Numerics
1PC 5, 98

operation 108
Orbix 3 OTS 115
OTS Lite 120
OTS Lite deployment 124
resource objects 89
successful 99

2PC 96
ACID properties 4
commit() 106
operations 108
OTS Encina 120
OTS plug-in configuration 130
otstf transaction manager 118
prepare() 105
resource objects 89, 92
rollback() 107
rollbacks 96
successful 97
transaction management 128
transaction manager 115

A
ADAPTS policy 42

AUTOMATIC policy 52
code example 45
default_ots_policy 134
InvalidPolicy exception 44
Orbix 3 OTS 116
ots_v11_policy 133
POA policies 19
policy mappings 55
SERVER_SIDE policy 53
Transactional objects 113
using 50

after_completion() 77
agent_ior_file 139
allow_registration_after_rollback_only

OTS Encina 137
OTS Lite 136

Allows_either TransactionPolicy 55
Allows_unshared TransactionPolicy 55
asynchronous XA 62
AUTOMATIC policy 52

policy mappings 55
SEVER_SIDE policy 53

automatic transactions 52

B
backup_restart_file 138
before_completion 72

after_completion 77
before_completion() 76
BeforeCompletionCallback interface 12
BeforeCompletionCallback objects, registering 72
begin() 9

current interface 28
invoking 17
JIT transactions 53
nested transactions 33
new transactions 30

bindings 25

C
C API

resource manager integration 12
XA specification 60

client_binding_list 25
client OTS policy 40
close_string 141

Orbix namespace 66
commit() 9

2PC 96
code example 36
exceptions 17
functions 106
heuristic exceptions 32
heuristic outcomes 100
invoking 17
JIT transactions 53
new transactions 31
resoruce failure 101
resource interface 88
resource objects 91
149

INDEX
commit_on_completion_of_next_call() 54
commit_one_phase() 98

invoking 107
Connector interface 12
Control interface 10
Coordinator interface 10

identity operations 79
relationship operations 83
status operations 81

CosTransactions.hh 16
create()

Control interface 10
new top-level transactions 85
timeouts 36

create_POA() 45
exceptions 55

create_policy() 45
create_resource_manager() 21

calling 22
CurrentConnection interface 12
CurrentConnection object 22
Current interface 9, 10

commit_on_completion_of_next_call() 54
definition 28
Transaction Factory 9

Current object
nested transactions 33
transaction demarcation 16

D
database access 22
default_ots_policy 134
default_transaction_policy 134
default_transaction_timeout 133
direct mode transactions 11
direct_persistence 137

E
EITHER policy 44

policy mappings 55
Encina plug-In

configuring 126
loading 130

Encina plug-in
configuring 129
itotstm service 128

Encina Transaction Manager 126
exceptions
 150
forget() 108
heuristic 100, 106
HeuristicCommit 107
HeuristicMixed and HeuristicHazard 32
inactive 94
InvalidControl 35
InvalidPolicy 44, 55
INVALID_TRANSACTION 42, 43
NotPrepared 103
NoTransaction 32, 36
OBJECT_NOT_EXIST 103
See Also system exceptions
TRANSACTION_MODE 44
TRANSACTION_REQUIRED 42
TRANSACTION_ROLLBACK 52
TRANSACTION_ROLLEDBACK 17, 31, 99
user 106, 107

explicit mode transactions 11
explicit propagation

IDL 57
TransactionFactory reference 40

F
FORBIDS policy 20, 42

InvalidPolicy exception 44
forget() 108

G
get_control() 35

real transactions 53
get_parent_status() 82
get_status() 35

Current interface return values 81
get_timeout() 34
get_top_level_status() 82
get_transaction_name() 35, 79

real transactions 53
get_txcontext() 80

PropagationContext 86
global_namespace_poa 137

H
hash_top_level_transaction() 80
hash_transaction() 79

maintaining data 80
tracking resource objects 92

HeuristicCommit exception 100, 107
heuristic exception 100

INDEX
HeuristicMixed and HeuristicHazard exceptions 32
HeuristicRollbackException 106
heuristics outcomes 99

I
implicit propagation policy 40
Inactive exception 94
indirect(implicit) mode transactions 11
indirect mode transactions 11
initial_disk 139
initial_disk_size 139
initial_references:OTSManagement:plugin 132
initial_references:TransactionFactory:plugin 132
initial_references:TransactionFactory:reference 132
interposition_style 133
InvalidControl exception 35
InvalidPolicy exception 44

create_POA() 55
INVALID_TRANSACTION exception

FORBIDS policy 42
PREVENTS policy value 43

InvocationPolicy 40
transaction models 41
values 44

is_ancestor_transaction() 83
is_descendant_transaction() 84
is_related_transaction(83
is_same_transaction() 79

description 83
maintaining data 80
tracking resource objects 92

is_top_level_transaction() 84
itadmin

transient POAs 126
itotstm

configuring 129
service 126
transaction manager service 128

itotstm service 126

J
JIT transaction creation 53
jit_transactions 134

L
Lite plug-in

deployment 124
loading 124
transaction manager 115
log_check_interval 140
log_threshold 139

M
max_resource_failures 140
Multi-threading 63

N
namespace_poa 137
nested transaction families 82
nested transactions 33
NonTxTargetPolicy 40

default value 49
steps for using 47
values 43

non_tx_target_policy 142
NotPrepared exception 103
NoTransaction exception 32, 36

O
OBJECT_NOT_EXIST exception 103
one-phase-commit (1PC) protocol See 1PC
open_string 141
open-string specification 21
Oracle database example 21
orbix/cos_transactions.hh 54
orbix/xa.hh 21
Orbix 3 OTS applications 115
OrbixOTS.INTEROP variable 117
orb_name 135, 137
orb_plugins configuration variable 129
otid field 92
otid_format_id 136, 138
OTS Application example

funds transfer 14
OTS application example

completion steps 15
ots_encina Namespace Variables 137
OTS Encina See Under Enicna
OTS Interfaces 10
ots_lite Namespace Variables 135
OTS Lite See Lite
OTS plug-in

loading 122
OTS plug-ins 120

deployment scenarios 123
loading 25
151

INDEX
purpose of 122
OTSPolicies, Orbix specific 52
OTSPolicy 40

creating objects 45
values 19, 42

OTS Resource interface 9
otstf

bypassing 116
server 116

OTS transaction modes 11
ots_v11_policy 133

P
PERMIT NonTxTargetPolicy 117
PERMIT policy 113

value 43
PERSISTENT lifespan policy 92
ping_period 141
plugins:ots_encina:orb_name 137
plugins:ots_encina Namespace Variables 137
plugins:ots_lite Namespace Variables 135
poa_name 141
POA policies 19

transaction propagation 40
POAs and Encina plug-in 126
PolicyCurrent object 47
PolicyManager object 47
prepare() 96, 105
PREVENT policy value 43
propagate_separate_tid_optimization 134
PropagationContext structure 85
propagation policies 40

R
RecoveryCoordinator interface 10, 103
recovery coordinator object 94
recreate() 85
register_resource() 24, 93
register_synchronization() 77
replay_completion() 94, 102

usage model 104
using 109

REQUIRES policy value 19
resolve_initial_references() 16

transaction factory object 36
XAConnector 22

Resource interface 9, 10
resource interface operations 24
 152
Resource interface transaction operations 88
ResourceManager interface 12
ResourceManager object 22
resource managers, XA compliant 12
resource objects

creating 92
failure/recovery 101
implementation checklist 108
implementing servants 91
protocols supported 95
registering 93
tracking 92
usage model 89

ResourcePOA class 91
resource_retry_timeout 138
restart_file 138
resume() 34
rmid 141
rollback() 96

current transactions 33
invoking 18
occasions when called 107
transaction demarcation 9
user exceptions 107

rollback_only() 33, 76
real transactions 53

rollback_only_on_system_ex 134
rollbacks, reasons for 95

S
server_binding_list 25
SERVER_SIDE policy value 52, 134

JIT 53
set_policy_overrides() 47
set_timeout() 34
SHARED policy 44
shared transaction model 41
StatusActive value 81
StatusCommitted value 81
StatusCommitting value 81
StatusMarkedRollback 81
StatusMarkedRollback value 81
StatusNoTransaction value 81
StatusPrepared value 81
StatusPreparing value 81
StatusRolledBack value 81
StatusRollingBack value 81
StatusUnknown value 81
SubtransactionAwareResource interface 10

INDEX
superior_ping_timeout 136
support_ots_v11 133
supports_async_rollback 141
suspend() 34

real transactions 53
Synchronization interface 11, 76
synchronization objects 78
system exceptions

effects of raising 76
INVALID_TRANSACTION 43
OBJECT_NOT_EXIST 103
rollback_only_on_system_ex 134
TRANSACTION_MODE 44
TRANSACTION_REQUIRED 42
TRANSACTION_ROLLEDBACK 17, 31, 52, 101,

108

T
Terminator interface 11, 36
thread_model configuration variable 21
threads 29
timeouts 34, 96
trace_comp 139
trace_file 139
trace_on 139
TransactionalObject interface 11, 15

Orbix support 113
transaction coordinator failure 102
transaction demarcation 9
TransactionFactory interface 11

Current interface 9
declaring 85

transaction_factory_name 133
ots_encina 138
ots_lite 135

transaction_factory_ns_name 138
transaction family 33
transaction identifier 92
Transaction interface 8

resource manager integration 9
transaction management

OTS interfaces 9
TransactionManager 4
TRANSACTION_MODE exception

SHARED policy value 44
transaction modes 11
TransactionPolicies 112
TransactionPolicy

migrating from 55
transaction propagation 9
TRANSACTION_REQUIRED exception 42
transaction rollbacks, reasons for 95
TRANSACTION_ROLLEDBACK exception 17, 31,

52, 101, 108
transactions 2

automatic 52
creating 30
creating new 17
database access steps 22
example 2
maintaining data 80
nested 33
obrix support 2
POA policies 19
propagation policies 40
properties 3
suspending/resuming 34
threads 29

transaction_timeout_period 135, 138
two-phase-commit (2PC) protocol See 2PC

U
UNSHARED policy value 44
unshared transaction model 41
use_internal_orb 135, 138
use_raw_disk 139
user exceptions 106, 107
USER_ID ID assignment policy 92, 108

V
VoteCommit value 96

using 109
VoteReadOnly value 96, 105

using 109
VoteRollback value 105

X
X/Open XA interface 12
xa_close() 12, 61
xa_commit() 12, 61
xa_complete() 62
XA-compliant database 23
xa_end() 12, 62
xa_forget() 12, 61
XA interfaces 12
xa_open() 12, 61

open-string 21
153

INDEX
xaosw 22, 61
xa_prepare() 12, 61
xa_recover() 12, 62
XA resource manager

OTS managed transactions integration 21
XA Resource Manager Variables 141
xa_rollback() 12, 61
xa_start() 12, 62
xa_switch_t instance 61
XID transaction identifier format 86
 154

	List of Figures
	List of Tables
	Preface
	Audience
	Related Documentation
	Organization of this Guide
	Additional Related Resources
	Typographical Conventions
	Keying Conventions
	CHAPTER 1
	Transaction Service

	In this chapter
	About Transactions
	What is a transaction?
	Transaction support in Orbix
	Example
	Properties of transactions

	Transaction Managers
	Purpose of a Transaction Manager
	Two-phase commit protocol
	One-phase-commit protocol
	CHAPTER 2
	OMG OTS and X/Open XA Interfaces

	In this chapter

	Transaction Interfaces
	Purpose
	Figure 1: OTS and XA
	Transaction Demarcation
	Transaction Propagation
	Resource Manager Integration
	Transaction Management

	OTS Interfaces
	Supported OTS Interfaces
	Table 1: OTS Interfaces
	Interface
	Purpose
	OTS Transaction Modes

	The X/Open XA Interface
	XA Interfaces
	Integration with OTS
	Table 2: XA interfaces.
	Interface
	Purpose
	CHAPTER 3
	Getting Started with Transactions

	In this chapter

	Application Overview
	Funds transfer application
	Figure 2: Example OTS Application – Funds Transfer
	Interface definition
	TransactionalObject interface deprecated
	Transferring funds
	Completing the application
	1. The funds transfer application needs to be wrapped in a transaction to ensure the ACID properties. This is covered in “Transaction Demarcation” on page 16.
	2. The application must make sure the transaction is propagated to the two account objects during the invocations of the deposit() and withdraw() operations. This is covered in “Transaction Propagation and POA Policies” on page 19
	3. The implementation of the account objects must be integrated with an XA compliant database. This is covered in “XA Resource Manager Integration” on page 21.

	Transaction Demarcation
	Demarcation using OTS current object
	1. Obtain a reference to the OTS current object from the ORB.
	2. Create a new transaction.
	3. Perform the funds transfer.
	4. Complete the transaction by either committing it or rolling it back.

	Obtain a reference to the OTS current object from the ORB
	Create a new transaction
	Perform the funds transfer
	Complete the transaction by either committing it or rolling it back

	Transaction Propagation and POA Policies
	Propagating the transaction
	POA Policies
	OTSPolicy values

	XA Resource Manager Integration
	Process of using an XA Resource Manager
	1. Setting up configuration variables for the resource manager.
	2. Application initialization.
	3. Accessing the database during an OTS transaction.

	Resource Manager Configuration
	Application Initialization
	Accessing the Database within an OTS Transaction
	1. Before each access to the database the start() operation must be called on the XA Connection object to associate the connection with the current transaction.
	2. After the database access the end() operation must be called on the XA Connection object to remove the association with the current transaction.
	3. Resource manager operations related to transaction management such as the embedded SQL operations BEGIN, COMMIT, or ROLLBACK must not be used.

	Application-Specific Resources
	Resource interface operations
	Implementing resource objects

	Configuration Issues
	Issues
	Loading the OTS plug-in
	CHAPTER 4
	Transaction Demarcation and Control

	In this chapter

	The OTS Current Object
	Current Interface
	Threads and transactions
	Figure 3: Thread and Transaction Associations
	Getting a Reference to the OTS Current Object
	Creating Transactions
	Committing the Current Transaction
	Rolling Back the Current Transaction
	Nested Transactions
	Timeouts
	Suspending and Resuming Transactions
	Miscellaneous Operations

	Direct Transaction Demarcation
	Using the transaction factory to create transactions
	Example
	Example of a commit
	CHAPTER 5
	Propagation and Transaction Policies

	In this chapter

	Implicit Propagation Policies
	Implicit and Explicit Propagation
	Policies for implicit propagation

	Shared and Unshared Transactions
	InvocationPolicy transaction models
	Shared model
	Unshared model

	Policy Meanings
	The three standard OTSPolicy values
	The two NonTxTargetPolicy values
	Setting the policies
	1. Using configuration. For the NonTxTargetPolicy the variable to set is policies:non_tx_target_policy.
	2. Set the policy on the ORB using the CORBA::PolicyManager interface.
	3. Set the policy for the current invocation using the CORBA::PolicyCurrent interface.
	4. Set the policy on the target object using the CORBA::Object::_set_policy_overrides() operation.

	The three InvocationPolicy values

	Example Use of an OTSPolicy
	Steps to create an object with an OTSPolicy
	1. Create a CORBA Policy object that represents the desired OTS policy. This is done by calling the ORB operation create_policy() passing in the value CosTransactions::OTS_POLICY_VALUE as the first parameter and the policy value (encoded as an any) a...
	2. Create a POA that includes the OTSPolicy in its policy list. This is done by calling create_POA().
	3. Create an object using the new POA.

	Example

	Example Use of a NonTxTargetPolicy
	Steps to use a NonTxTargetPolicy
	1. Get a reference to the PolicyCurrent or PolicyManager object.
	2. Create a CORBA Policy object that represents the desired NonTxTargetPolicy. This is done by calling the CORBA::ORB::create_policy() operation passing in the value CosTransactions::NON_TX_TARGET_POLICY_TYPE as the first parameter and the policy val...
	3. Call the set_policy_overrides() operation on the PolicyCurrent or PolicyManager object passing in a policy list containing the NonTxTargetPolicy. Alternatively call the _set_policy_overrides() operation on the target object itself.
	4. Invoke on the non-transaction object (from within a transaction).

	Example
	Specifying the default NonTxTargetPolicy

	Use of the ADAPTS OTSPolicy
	Using the ADAPTS OTSPolicy
	Example

	Orbix-Specific OTSPolicies
	The two proprietary OTSPolicy values
	Automatic Transactions
	Just-In-Time Transaction Creation
	1. A configuration option to enable JIT transaction creation, which allows the creation of a transaction to be delayed until it is really needed.
	2. The SERVER_SIDE OTSPolicy which allows a transaction to be created just before a target object is invoked.
	3. A additional operation commit_on_completion_of_next_call() that allows the next invocation on an object to also commit the transaction.

	Enabling JIT Transaction Creation
	1. When any of the following CosTransactions::Current operations are invoked: rollback_only(), get_control(), get_transaction_name() or suspend().
	2. When an object with any of the standard OTSPolicies is invoked.

	Migrating from TransactionPolicies
	Mapping from TransactionPolicy values
	Table 3: Mapping from TransactionPolicy values
	TransactionPolicy Value
	OTSPolicy Value
	InvocationPolicy Value
	Combining Policy Types

	Explicit Propagation
	Altering the IDL to propagate explicitly
	Example
	Chapter 6
	Using XA Resource Managers with OTS

	In this chapter

	The XA Interface
	Resource objects
	XA Overview
	Function pointers

	XA and Multi-Threading
	Using the Orbix XA Plug-In
	Associations between Transactions and Connections
	Association State Diagram
	Figure 4: Association State Diagram

	Using a Remote Resource Manager
	Before Completion Callback
	Asynchronous Rollback Support
	Ping Period
	CHAPTER 7
	Transaction Management

	In this chapter

	Synchronization Objects
	Synchronization interface
	before_completion()
	after_completion()
	register_synchronization()

	Transaction Identity Operations
	Coordinator interface identity operations
	Table 4: Coordinator interface identity operations
	Operation
	Description
	Maintaining information in individual transactions

	Transaction Status
	Coordinator interface status operations

	Transaction Relationships
	Coordinator interface relationship operations
	Table 5: Coordinator interface relationship operations
	Operation
	Description
	Example

	Recreating Transactions
	TransactionFactory interface
	Example
	CHAPTER 8
	Writing Recoverable Resources

	In this chapter

	The Resource Interface
	Resource interface transaction operations
	Overview of the use of resource objects
	Figure 5: Relationship between resources and transactions
	1. The client contacts the OTS implementation and creates a transaction.
	2. The client makes invocations on the application within the context of the transaction and updates some data.
	3. The application detects that the data is being updated and creates a resource object. The resource object is registered with the transaction.
	4. The client completes by contacting the OTS implementation and attempting to commit the transaction.
	5. The transaction initiates the commit protocol. The choice of which protocol to use (either 1PC or 2PC) depends on the number of resource objects registered with the transaction and whether the OTS supports the 1PC optimization.
	6. Assuming the 2PC protocol is being used, the OTS sends a prepare message to the resource. The resource stably stores enough information to recover in case of a crash (for example, by writing the changes to a log file). The resource object votes to...
	7. The OTS gathers the votes of all resource objects and decides the outcome of the transaction. This decision is send to all registered resource objects.
	8. The resource object upon receiving the commit or rollback message makes the necessary changes and saves the decision to the log.
	9. The OTS returns the outcome to the client.

	Creating and Registering Resource Objects
	Implementing servants for resource objects
	Creating resource objects
	Tracking resource objects
	Registering resource objects

	Resource Protocols
	Protocols supported by resource objects
	Transaction Rollbacks
	Figure 6: Rollback after a timeout
	The 2-Phase-Commit Protocol

	Figure 7: Successful 2PC protocol with two resources
	Figure 8: Voting to rollback the transaction.
	Read-Only Resources

	Figure 9: A resource returning VoteReadOnly.
	The 1-Phase-Commit Protocol

	Figure 10: A successful 1PC protocol.
	Figure 11: The 1PC protocol resulting in a rollback.
	Heuristic Outcomes

	Table 6: Heuristic Outcomes
	Resource Decision
	Transaction Outcome
	Resource’s Response
	Figure 12: Raising the HeuristicCommit exception
	Failure and Recovery
	Failure of the Resource

	Figure 13: Recovery after the failure of a resource object
	Failure of the Transaction Coordinator
	1. The transaction coordinator recovers and eventually sends the outcome to the resource. Here, the resource does not need to participate in the recovery; either the commit() or rollback() operation will be invoked as normal.
	2. The resource detects that no outcome has been delivered and asks the transaction coordinator to complete the transactions. This is done using the replay_completion() operation provided by the recovery coordinator object.

	Figure 14: Use of the replay_completion() operation

	Responsibilities and Lifecycle of a Resource Object
	Overview
	prepare()
	commit()
	rollback()
	1. During the second phase of the 2PC protocol after the coordinator has decided to commit the transaction.
	2. When the transaction is rolled back prior to the start of the 2PC protocol. This may occur for several reasons including the client invoking the rollback() operation on the OTS Current object, the transaction begin timed-out, and an attempt to com...

	commit_one_phase()
	forget()
	Resource Object Checklist
	CHAPTER 9
	Interoperability

	In this chapter

	Use of InvocationPolicies
	Deprecated policies

	Use of the TransactionalObject Interface
	Enabling support for the TransactionalObject interface
	Table 7: Mapping TransactionalObject to OTSPolicies
	Inherits from TransactionalObject
	Value of plugins:ots:ots_v11_policy
	Effective OTSPolicy Value
	1. Set the plugins:ots:support_ots_v11 configuration variable to “true”.
	2. Set the plugins:ots:ots_v11_policy configuration variable to either “requires” (the default) or “adapts”.
	3. Use the PERMIT NonTxTargetPolicy (for example, by setting the policies:non_tx_target_policy configuration variable to “permit”).

	Interoperability with Orbix 3 OTS Applications
	Overview
	Orbix 3 OTS Interoperability
	Figure 15: Interoperability with Orbix 3 OTS Applications
	Using otstf as transaction manager
	Bypassing otstf
	Summary
	1. Set the plugins:ots:support_ots_v11 configuration variable to “true”.
	2. Set the plugins:ots:ots_v11_policy configuration variable to match the equivalent Orbix 3 OTS policy for the TransactionalObject interface.
	3. Use the PERMIT NonTxTargetPolicy.
	4. Set the initial_references:TransactionFactory:reference configuration variable to refer to either the Orbix 3 otstf’s transaction factory another transaction factory that supports 2PC.
	5. Set the Orbix 3 OrbixOTS.INTEROP configuration variable to “TRUE”.

	Using the Orbix 3 otstf with Orbix Applications
	Using Orbix 3 otstf transaction manager
	Figure 16: Using and alternative OTS Implementation
	CHAPTER 10
	OTS Plug-Ins and Deployment Options
	In this chapter
	OTS Plug-ins
	OTS Lite
	OTS Encina
	Features in OTS

	Table 8: Features in OTS Implementation
	Feature
	Generic OTS
	OTS Lite
	OTS Encina

	The OTS Plug-In
	Purpose of the OTS plug-in
	Figure 17: The Generic OTS Plug-In
	Loading the OTS plug-in
	1. Explicitly adding the plug-in name “ots” to the orb_plugins configuration variable. For example: orb_plugins = [..., “ots”];
	2. Setting the initial_references:TransactionCurrent:plugin configuration variable to the value “ots”. This causes the OTS plug-in to be loaded when resolve_initial_references(“TransactionCurrent”) is called. When using this way, resolve_init...

	Deployment scenarios

	The OTS Lite Plug-In
	Overview
	Figure 18: Deployment using the OTS Lite Plug-In
	Loading the OTS Lite plug-in
	1. Adding the plug-in name “ots_lite” to the orb_plugins configuration variable. For example: orb_plugins = [..., “ots”, “ots_lite”];
	2. Setting the initial_references:TransactionFactory:plugin configuration variable to “ots_lite”. This causes the OTS Lite plug-in to be loaded by the OTS plug-in when resolve_initial_references(“TransactionFactory”) is called.

	The Encina Transaction Manager
	Overview
	1. By configuring the itotstm service to load the Encina OTS plug-in.
	2. By loading the Encina OTS plug-in directly into the application.

	Configuring the OTS Encina Plug-In
	1. Two transient POAs must be created. These serve as namespace POAs off which the OTS Encina plug-in creates its persistent POAs. The first POA is called “iOTS” and the second is a child POA whose name is set by the plugins:ots_encina:namespace_...
	2. The Encina OTS is fully recoverable and requires a transaction log to write the state of its transactions. Assuming the log file is to be located in “/local/logs/ots.log” the log is created and initialized using itadmin as follows:

	The itotstm Transaction Manager Service
	Overview
	Using itconfigure
	Example client/server deployment
	Figure 19: Using the OTS Encina plug-in with the itotstm service
	Configuring itotstm
	1. Adding the OTS plug-in name “ots_encina” to the orb_plugins configuration variable. For example, orb_plugins = [..., “ots”, “ots_encina”];
	2. Setting the initial_references:TransactionFactory:plugin configuration variable to the name of the OTS Encina plug-in “ots_encina”.

	Configuring the OTS plug-in
	1. Get the OTS Encina plug-in to export its transaction factory reference to the name service and use a corbaname style URL for the initial reference. This is done by setting the plugins:ots_encina:transaction_factory_ns_name configuration variable t...
	2. Get the itotstm to publish the transaction factory IOR to a file using the “prepare” and “-publish_to_file” command-line switches. Then use the IOR in the file as the transaction factory reference.

	Loading the OTS Encina Plug-In into the Application

	Figure 20: Loading the OTS Encina Plug-In into the Application
	APPENDIX A
	OTS Management
	In this Appendix

	Introduction to OTS Management
	Overview
	OTS Management Model
	Figure 21: OTS Management Model
	OTS Managed Entities
	IONA Administrator
	Example Managed Entity

	Figure 22: OTS Encina Transaction Manager Entity

	TransactionManager Entity
	Overview
	TransactionManager Attributes
	Table 9: TransactionManager Attributes (Sheet 1 of 2)
	Attribute
	Type
	Description
	Encina TransactionManager Attributes

	Table 10: Encina TransactionManager Attributes (Sheet 1 of 2)
	Attribute
	Type
	Description
	Encina TransactionManager Operations

	Table 11: Encina TransactionManager Operations
	Operation
	Parameters
	Type
	Description

	Transaction Entity
	Overview
	Transaction Attributes
	Table 12: Transaction Attributes
	Attribute
	Type
	Description
	Encina Transaction Attributes

	Table 13: Encina Transaction Attributes
	Attribute
	Type
	Description
	Transaction Operations

	Table 14: Transaction Operations
	Operation
	Parameter
	Description

	Encina Transaction Log Entity
	Overview
	Encina Transaction Log Attributes
	Table 15: Encina Transaction Log Attributes (Sheet 1 of 2)
	Attribute
	Type
	Description
	Encina Transaction Log Operations

	Table 16: Encina Transaction Log Operations
	Operation
	Parameters
	Description

	Encina Volume Entity
	Overview
	Encina Volume Attributes
	Table 17: Encina (Physical) Volume Attributes
	Attribute
	Type
	Description
	Encina Volume Operations

	Table 18: Encina (Physical) Volume Operations
	Operation
	Parameter
	Description

	Management Events
	Glossary
	A
	administration

	C
	client
	configuration
	configuration domain
	configuration file
	configuration repository
	configuration scope
	CORBA
	CORBA objects

	D
	deployment

	E
	event

	I
	IDL
	IIOP
	installation
	Interface Definition Language
	invocation
	IOR

	M
	management

	N
	node daemon

	O
	object reference
	object transaction service
	OMG
	ORB
	Orbix OTS
	POA
	protocol

	S
	server

	T
	transaction manager
	Index

	Numerics
	1PC 5, 98
	operation 108
	Orbix 3 OTS 115
	OTS Lite 120
	OTS Lite deployment 124
	resource objects 89
	successful 99

	2PC 96
	ACID properties 4
	commit() 106
	operations 108
	OTS Encina 120
	OTS plug-in configuration 130
	otstf transaction manager 118
	prepare() 105
	resource objects 89, 92
	rollback() 107
	rollbacks 96
	successful 97
	transaction management 128
	transaction manager 115

	A
	ADAPTS policy 42
	AUTOMATIC policy 52
	code example 45
	default_ots_policy 134
	InvalidPolicy exception 44
	Orbix 3 OTS 116
	ots_v11_policy 133
	POA policies 19
	policy mappings 55
	SERVER_SIDE policy 53
	Transactional objects 113
	using 50

	after_completion() 77
	agent_ior_file 139
	allow_registration_after_rollback_only
	OTS Encina 137
	OTS Lite 136

	Allows_either TransactionPolicy 55
	Allows_unshared TransactionPolicy 55
	asynchronous XA 62
	AUTOMATIC policy 52
	policy mappings 55
	SEVER_SIDE policy 53

	automatic transactions 52

	B
	backup_restart_file 138
	before_completion 72
	after_completion 77

	before_completion() 76
	BeforeCompletionCallback interface 12
	BeforeCompletionCallback objects, registering 72
	begin() 9
	current interface 28
	invoking 17
	JIT transactions 53
	nested transactions 33
	new transactions 30

	bindings 25

	C
	C API
	resource manager integration 12
	XA specification 60

	client_binding_list 25
	client OTS policy 40
	close_string 141
	Orbix namespace 66

	commit() 9
	2PC 96
	code example 36
	exceptions 17
	functions 106
	heuristic exceptions 32
	heuristic outcomes 100
	invoking 17
	JIT transactions 53
	new transactions 31
	resoruce failure 101
	resource interface 88
	resource objects 91

	commit_on_completion_of_next_call() 54
	commit_one_phase() 98
	invoking 107

	Connector interface 12
	Control interface 10
	Coordinator interface 10
	identity operations 79
	relationship operations 83
	status operations 81

	CosTransactions.hh 16
	create()
	Control interface 10
	new top-level transactions 85
	timeouts 36

	create_POA() 45
	exceptions 55

	create_policy() 45
	create_resource_manager() 21
	calling 22

	CurrentConnection interface 12
	CurrentConnection object 22
	Current interface 9, 10
	commit_on_completion_of_next_call() 54
	definition 28
	Transaction Factory 9

	Current object
	nested transactions 33
	transaction demarcation 16

	D
	database access 22
	default_ots_policy 134
	default_transaction_policy 134
	default_transaction_timeout 133
	direct mode transactions 11
	direct_persistence 137

	E
	EITHER policy 44
	policy mappings 55

	Encina plug-In
	configuring 126
	loading 130

	Encina plug-in
	configuring 129
	itotstm service 128

	Encina Transaction Manager 126
	exceptions
	forget() 108
	heuristic 100, 106
	HeuristicCommit 107
	HeuristicMixed and HeuristicHazard 32
	inactive 94
	InvalidControl 35
	InvalidPolicy 44, 55
	INVALID_TRANSACTION 42, 43
	NotPrepared 103
	NoTransaction 32, 36
	OBJECT_NOT_EXIST 103
	See Also system exceptions
	TRANSACTION_MODE 44
	TRANSACTION_REQUIRED 42
	TRANSACTION_ROLLBACK 52
	TRANSACTION_ROLLEDBACK 17, 31, 99
	user 106, 107

	explicit mode transactions 11
	explicit propagation
	IDL 57
	TransactionFactory reference 40

	F
	FORBIDS policy 20, 42
	InvalidPolicy exception 44

	forget() 108

	G
	get_control() 35
	real transactions 53

	get_parent_status() 82
	get_status() 35
	Current interface return values 81

	get_timeout() 34
	get_top_level_status() 82
	get_transaction_name() 35, 79
	real transactions 53

	get_txcontext() 80
	PropagationContext 86

	global_namespace_poa 137

	H
	hash_top_level_transaction() 80
	hash_transaction() 79
	maintaining data 80
	tracking resource objects 92

	HeuristicCommit exception 100, 107
	heuristic exception 100
	HeuristicMixed and HeuristicHazard exceptions 32
	HeuristicRollbackException 106
	heuristics outcomes 99

	I
	implicit propagation policy 40
	Inactive exception 94
	indirect(implicit) mode transactions 11
	indirect mode transactions 11
	initial_disk 139
	initial_disk_size 139
	initial_references:OTSManagement:plugin 132
	initial_references:TransactionFactory:plugin 132
	initial_references:TransactionFactory:reference 132
	interposition_style 133
	InvalidControl exception 35
	InvalidPolicy exception 44
	create_POA() 55

	INVALID_TRANSACTION exception
	FORBIDS policy 42
	PREVENTS policy value 43

	InvocationPolicy 40
	transaction models 41
	values 44

	is_ancestor_transaction() 83
	is_descendant_transaction() 84
	is_related_transaction(83
	is_same_transaction() 79
	description 83
	maintaining data 80
	tracking resource objects 92

	is_top_level_transaction() 84
	itadmin
	transient POAs 126

	itotstm
	configuring 129
	service 126
	transaction manager service 128

	itotstm service 126

	J
	JIT transaction creation 53
	jit_transactions 134

	L
	Lite plug-in
	deployment 124
	loading 124
	transaction manager 115

	log_check_interval 140
	log_threshold 139

	M
	max_resource_failures 140
	Multi-threading 63

	N
	namespace_poa 137
	nested transaction families 82
	nested transactions 33
	NonTxTargetPolicy 40
	default value 49
	steps for using 47
	values 43

	non_tx_target_policy 142
	NotPrepared exception 103
	NoTransaction exception 32, 36

	O
	OBJECT_NOT_EXIST exception 103
	one-phase-commit (1PC) protocol See 1PC
	open_string 141
	open-string specification 21
	Oracle database example 21
	orbix/cos_transactions.hh 54
	orbix/xa.hh 21
	Orbix 3 OTS applications 115
	OrbixOTS.INTEROP variable 117
	orb_name 135, 137
	orb_plugins configuration variable 129
	otid field 92
	otid_format_id 136, 138
	OTS Application example
	funds transfer 14

	OTS application example
	completion steps 15

	ots_encina Namespace Variables 137
	OTS Encina See Under Enicna
	OTS Interfaces 10
	ots_lite Namespace Variables 135
	OTS Lite See Lite
	OTS plug-in
	loading 122

	OTS plug-ins 120
	deployment scenarios 123
	loading 25
	purpose of 122

	OTSPolicies, Orbix specific 52
	OTSPolicy 40
	creating objects 45
	values 19, 42

	OTS Resource interface 9
	otstf
	bypassing 116
	server 116

	OTS transaction modes 11
	ots_v11_policy 133

	P
	PERMIT NonTxTargetPolicy 117
	PERMIT policy 113
	value 43

	PERSISTENT lifespan policy 92
	ping_period 141
	plugins:ots_encina:orb_name 137
	plugins:ots_encina Namespace Variables 137
	plugins:ots_lite Namespace Variables 135
	poa_name 141
	POA policies 19
	transaction propagation 40

	POAs and Encina plug-in 126
	PolicyCurrent object 47
	PolicyManager object 47
	prepare() 96, 105
	PREVENT policy value 43
	propagate_separate_tid_optimization 134
	PropagationContext structure 85
	propagation policies 40

	R
	RecoveryCoordinator interface 10, 103
	recovery coordinator object 94
	recreate() 85
	register_resource() 24, 93
	register_synchronization() 77
	replay_completion() 94, 102
	usage model 104
	using 109

	REQUIRES policy value 19
	resolve_initial_references() 16
	transaction factory object 36
	XAConnector 22

	Resource interface 9, 10
	resource interface operations 24
	Resource interface transaction operations 88
	ResourceManager interface 12
	ResourceManager object 22
	resource managers, XA compliant 12
	resource objects
	creating 92
	failure/recovery 101
	implementation checklist 108
	implementing servants 91
	protocols supported 95
	registering 93
	tracking 92
	usage model 89

	ResourcePOA class 91
	resource_retry_timeout 138
	restart_file 138
	resume() 34
	rmid 141
	rollback() 96
	current transactions 33
	invoking 18
	occasions when called 107
	transaction demarcation 9
	user exceptions 107

	rollback_only() 33, 76
	real transactions 53

	rollback_only_on_system_ex 134
	rollbacks, reasons for 95

	S
	server_binding_list 25
	SERVER_SIDE policy value 52, 134
	JIT 53

	set_policy_overrides() 47
	set_timeout() 34
	SHARED policy 44
	shared transaction model 41
	StatusActive value 81
	StatusCommitted value 81
	StatusCommitting value 81
	StatusMarkedRollback 81
	StatusMarkedRollback value 81
	StatusNoTransaction value 81
	StatusPrepared value 81
	StatusPreparing value 81
	StatusRolledBack value 81
	StatusRollingBack value 81
	StatusUnknown value 81
	SubtransactionAwareResource interface 10
	superior_ping_timeout 136
	support_ots_v11 133
	supports_async_rollback 141
	suspend() 34
	real transactions 53

	Synchronization interface 11, 76
	synchronization objects 78
	system exceptions
	effects of raising 76
	INVALID_TRANSACTION 43
	OBJECT_NOT_EXIST 103
	rollback_only_on_system_ex 134
	TRANSACTION_MODE 44
	TRANSACTION_REQUIRED 42
	TRANSACTION_ROLLEDBACK 17, 31, 52, 101, 108

	T
	Terminator interface 11, 36
	thread_model configuration variable 21
	threads 29
	timeouts 34, 96
	trace_comp 139
	trace_file 139
	trace_on 139
	TransactionalObject interface 11, 15
	Orbix support 113

	transaction coordinator failure 102
	transaction demarcation 9
	TransactionFactory interface 11
	Current interface 9
	declaring 85

	transaction_factory_name 133
	ots_encina 138
	ots_lite 135

	transaction_factory_ns_name 138
	transaction family 33
	transaction identifier 92
	Transaction interface 8
	resource manager integration 9

	transaction management
	OTS interfaces 9

	TransactionManager 4
	TRANSACTION_MODE exception
	SHARED policy value 44

	transaction modes 11
	TransactionPolicies 112
	TransactionPolicy
	migrating from 55

	transaction propagation 9
	TRANSACTION_REQUIRED exception 42
	transaction rollbacks, reasons for 95
	TRANSACTION_ROLLEDBACK exception 17, 31, 52, 101, 108
	transactions 2
	automatic 52
	creating 30
	creating new 17
	database access steps 22
	example 2
	maintaining data 80
	nested 33
	obrix support 2
	POA policies 19
	propagation policies 40
	properties 3
	suspending/resuming 34
	threads 29

	transaction_timeout_period 135, 138
	two-phase-commit (2PC) protocol See 2PC

	U
	UNSHARED policy value 44
	unshared transaction model 41
	use_internal_orb 135, 138
	use_raw_disk 139
	user exceptions 106, 107
	USER_ID ID assignment policy 92, 108

	V
	VoteCommit value 96
	using 109

	VoteReadOnly value 96, 105
	using 109

	VoteRollback value 105

	X
	X/Open XA interface 12
	xa_close() 12, 61
	xa_commit() 12, 61
	xa_complete() 62
	XA-compliant database 23
	xa_end() 12, 62
	xa_forget() 12, 61
	XA interfaces 12
	xa_open() 12, 61
	open-string 21

	xaosw 22, 61
	xa_prepare() 12, 61
	xa_recover() 12, 62
	XA resource manager
	OTS managed transactions integration 21

	XA Resource Manager Variables 141
	xa_rollback() 12, 61
	xa_start() 12, 62
	xa_switch_t instance 61
	XID transaction identifier format 86

