
ORBIX
®

PROGRESS
®

Management Programmer’s
Guide

Version 6.3.5, July 2011

© 2011 Progress Software Corporation and/or its subsidiaries or affiliates. All rights
reserved.
These materials and all Progress® software products are copyrighted and all rights are
reserved by Progress Soft ware Corporation. The information in these materials is subject
to change without notice, and Progress Software Corporation assumes no responsibility for
any errors that may appear therein. The references in these materials to specific platforms
supported are subject to change.

Actional, Apama, Artix, Business Empowerment, Business Making Progress, DataDirect
(and design), DataDi rect Connect, DataDirect Connect64, DataDirect Technologies, Data-
Direct XML Converters, DataDirect XQuery, DataXtend, Dynamic Routing Architecture,
EdgeXtend, Empowerment Center, Fathom, Fuse Media tion Router, Fuse Message Broker,
Fuse Services Framework, IntelliStream, IONA, Making Software Work Together, Mind-
reef, ObjectStore, OpenEdge, Orbix, PeerDirect, POSSENET, Powered by Progress,
Pow erTier, Progress, Progress DataXtend, Progress Dynamics, Progress Business Empow-
erment, Progress Empowerment Center, Progress Empowerment Program, Progress
OpenEdge, Progress Profiles, Progress Results, Progress Software Business Making
Progress, Progress Software Developers Network, Progress Sonic, ProVision, PS Select,
Savvion, SequeLink, Shadow, SOAPscope, SOAPStation, Sonic, Sonic ESB, SonicMQ,
Sonic Orchestration Server, SpeedScript, Stylus Studio, Technical Empowerment, Web-
Speed, Xcalia (and design), and Your Software, Our Technology-Experience the Connec-
tion are registered trademarks of Progress Software Corporation or one of its affiliates or
subsidiaries in the U.S. and/or other countries. AccelEvent, Apama Dashboard Studio,
Apama Event Manager, Apama Event Modeler, Apama Event Store, Apama Risk Firewall,
AppsAlive, AppServer, ASPen, ASP-in-a-Box, BusinessEdge, Cache-Forward, CloudEdge,
DataDirect Spy, DataDirect SupportLink, Fuse, FuseSource, Future Proof, GVAC, High
Performance Integration, Object Store Inspector, ObjectStore Performance Expert, Open-
Access, Orbacus, Pantero, POSSE, ProDataSet, Progress Arcade, Progress CloudEdge,
Progress Control Tower, Progress ESP Event Manager, Progress ESP Event Modeler,
Progress Event Engine, Progress RFID, Progress RPM, PSE Pro, SectorAlliance,
SeeThinkAct, Shadow z/Services, Shadow z/Direct, Shadow z/Events, Shadow z/Presenta-
tion, Shadow Studio, SmartBrowser, SmartComponent, SmartDataBrowser, SmartDataOb-
jects, SmartDataView, SmartDialog, SmartFolder, Smart Frame, SmartObjects, SmartPanel,
SmartQuery, SmartViewer, SmartWindow, Sonic Business Integration Suite, Sonic Process
Manager, Sonic Collaboration Server, Sonic Continuous Availability Architecture, Sonic
Database Service, Sonic Workbench, Sonic XML Server, The Brains Behind BAM, Web-
Client, and Who Makes Progress are trademarks or service marks of Progress Software Cor-
poration and/or its subsidiaries or affiliates in the U.S. and other countries. Java is a
registered trademark of Oracle and/or its affiliates. Any other marks con tained herein may
be trademarks of their respective owners.

Third Party Acknowledgements:

Progress Orbix v6.3.5 incorporates Jakarata-struts 1.0.2 from the Apache Software Founda-
tion (http://www.apache.org). Such Apache Technology is subject to the following terms
and conditions: The Apache Soft ware License, Version 1.1 Copyright (c) 1999-2001 The
Apache Software Foundation. All rights reserved. Redistribution and use in source and

binary forms, with or without modification, are permitted provided that the following conditions are met: 1.
Redistributions of source code must retain the above copyright notice, this list of conditions and the follow-
ing disclaimer. 2. Redistributions in binary form must reproduce the above copy right notice, this list of
conditions and the following disclaimer in the documentation and/or other materials provided with the dis-
tribution. 3. The end-user documentation included with the redistribution, if any, must include the following
acknowledgment: "This product includes software developed by the Apache Software Foundation (http://
www.apache.org/)." Alternately, this acknowledgment may appear in the software itself, if and wherever
such third-party acknowledgments normally appear. 4. The names "The Jakarta Project", "Struts", and
"Apache Software Foundation" must not be used to endorse or promote products derived from this software
without prior written permission. For written permission, please contact apache@apache.org. 5. Products
derived from this software may not be called "Apache", nor may "Apache" appear in their name, without
prior written permission of the Apache Software Foundation. THIS SOFTWARE IS PROVIDED ``AS IS''
AND ANY EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MER CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
ARE DIS CLAIMED. IN NO EVENT SHALL THE APACHE SOFTWARE FOUNDATION OR ITS
CONTRIBU TORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEM-
PLARY, OR CONSEQUEN TIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCURE-
MENT OF SUB STITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
WHETHER IN CONTRACT, STRICT LIA BILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
THE POSSIBILITY OF SUCH DAMAGE. This software consists of voluntary contributions made by
many individuals on behalf of the Apache Soft ware Foun dation. For more information on the Apache
Software Foundation, please see <http://www.apache.org/>.

Progress Orbix v6.3.5 incorporates Jakarta-bcel 5.0 from the Apache Software Foundation (http://
www.apache.org). Such Apache Technology is subject to the following terms and conditions: The Apache
Software License, Version 1.1 Copy right (c) 2001 The Apache Software Foundation. All rights reserved.
Redistribution and use in source and binary forms, with or without modification, are permitted provided that
the following conditions are met: 1. Redistributions of source code must retain the above copyright notice,
this list of conditions and the following disclaimer. 2. Redistributions in binary form must reproduce the
above copyright notice, this list of conditions and the following disclaimer in the docu mentation and/or
other materials provided with the distribution. 3. The end-user documentation included with the redistribu-
tion, if any, must include the following acknowledgment: "This product includes software developed by the
Apache Software Foundation (http://www.apache.org/)." Alternately, this acknowledgment may appear in
the software itself, if and wherever such third-party acknowledgments normally appear. 4. The names
"Apache" and "Apache Software Foundation" and "Apache BCEL" must not be used to endorse or promote
products derived from this software with out prior written permission. For written permission, please con-
tact apache@apache.org. 5. Products derived from this software may not be called "Apache", "Apache
BCEL", nor may "Apache" appear in their name, without prior written permission of the Apache Software
Foundation. THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESSED OR IMPLIED WAR-
RANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTA-
BILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL
THE APACHE SOFTWARE FOUNDATION OR ITS CONTRIBUTORS BE LIABLE FOR ANY
DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
(INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
iii

Management Programmer’s Guide
LOSS OF USE, DATA, OR PROFITS; OR BUSI NESS INTERRUPTION) HOWEVER CAUSED AND
ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. This software consists
of voluntary contributions made by many individuals on behalf of the Apache Software Founda tion. For
more information on the Apache Software Foundation, please see <http://www.apache.org/>.

Progress Orbix v6.3.5 incorporates Jakarat-regexp 1.2 from the Apache Software Foundation (http://
www.apache.org). Such Apache Technology is subject to the following terms and conditions: The Apache
Software License, Version 1.1 Copyright (c) 1999 The Apache Software Foundation. All rights reserved.
Redistribution and use in source and binary forms, with or without modification, are permitted provided that
the following conditions are met: 1. Redistributions of source code must retain the above copyright notice,
this list of conditions and the following disclaimer. 2. Redistributions in binary form must reproduce the
above copyright notice, this list of conditions and the following disclaimer in the documentation and/or
other materials provided with the distribution. 3. The end-user documentation included with the
redistri bution, if any, must include the following acknowledgment: "This product includes software devel-
oped by the Apache Software Foundation (http://www.apache.org/)." Alternately, this acknowledgment
may appear in the software itself, if and wherever such third-party acknowledgments normally appear. 4.
The names "The Jakarta Project", "Jakarta -Regexp", and "Apache Software Foundation" and "Apache
BCEL" must not be used to endorse or promote products derived from this software without prior written
permission. For written permission, please contact apache@apache.org. 5. Products derived from this soft-
ware may not be called "Apache", nor may "Apache" appear in their name, without prior written permission
of the Apache Software Foundation. THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY
EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DIS-
CLAIMED. IN NO EVENT SHALL THE APACHE SOFTWARE FOUNDATION OR ITS CONTRIBU-
TORS BE LIA BLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUB-
STITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUP-
TION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY
WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
DAMAGE. This software consists of voluntary contributions made by many individuals on behalf of the
Apache Software Foundation. For more information on the Apache Software Foundation, please see <http:/
/www.apache.org/>.

Progress Orbix v6.3.5 incorporates the Jakarta-log4j 1.2.6 from the Apache Software Foundation (http://
www.apache.org). Such Apache Technology is subject to the following terms and conditions: The Apache
Software License, Version 1.1 Copyright (c) 1999 The Apache Software Foundation. All rights reserved.
Redistribution and use in source and binary forms, with or without modification, are permitted provided that
the following conditions are met: 1. Redistributions of source code must retain the above copyright notice,
this list of conditions and the following disclaimer. 2. Redistributions in binary form must reproduce the
above copyright notice, this list of conditions and the following dis claimer in the documentation and/or
other materials provided with the distribution. 3. The end-user documentation included with the redistribu-
tion, if any, must include the following acknowledgment: "This product includes software developed by the
Apache Software Foundation (http://www.apache.org/)." Alternately, this acknowledgment may appear in
 iv

the software itself, if and wherever such third-party acknowledgments normally appear. 4. The names
"log4j" and "Apache Software Foundation" and "Apache BCEL" must not be used to endorse or promote
products derived from this software without prior written permission. For written permission, please con-
tact apache@apache.org. 5. Products derived from this software may not be called "Apache", nor may
"Apache" appear in their name, without prior written per mission of the Apache Software Foundation.
THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESSED OR IMPLIED WARRANTIES,
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND
FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
APACHE SOFTWARE FOUNDATION OR ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT,
INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUD-
ING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF
USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
THEORY OF LIABIL ITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUD ING
NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE,
EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. This software consists of voluntary
contributions made by many individuals on behalf of the Apache Software Foundation. For more informa-
tion on the Apache Software Foun dation, please see <http://www.apache.org/>.

Progress Orbix v6.3.5 incorporates Ant 1.5 from the Apache Software Foundation (http://www.apache.org).
Such technology is subject to the following terms and conditions: The Apache Software License, Version
1.1 Copyright (c) 2000-2002 The Apache Software Foundation. All rights reserved. Redistribution and use
in source and binary forms, with or without modification, are permitted provided that the following condi-
tions are met: 1. Redistributions of source code must retain the above copyright notice, this list of condi-
tions and the fol lowing disclaimer. 2. Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in the documentation and/or other materials pro-
vided with the distribution. 3. The end-user documentation included with the redistribution, if any, must
include the following acknowledgment: "This product includes software developed by the Apache Software
Foundation (http://www.apache.org/)." Alternately, this acknowledgment may appear in the software itself,
if and wherever such third-party acknowledgments normally appear. 4. The names "Ant" and "Apache Soft-
ware Foundation" and "Apache BCEL" must not be used to endorse or promote products derived from this
software without prior writ ten permission. For written permission, please contact apache@apache.org. 5.
Products derived from this software may not be called "Apache", nor may "Apache" appear in their name,
without prior written permission of the Apache Software Foundation. THIS SOFTWARE IS PROVIDED
``AS IS'' AND ANY EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
TO, THE IMPLIED WARRANTIES OF MER CHANTABILITY AND FITNESS FOR A PARTICULAR
PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE APACHE SOFTWARE FOUNDATION
OR ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PRO-
CUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
THE POSSIBILITY OF SUCH DAMAGE. This software consists of voluntary contri butions made by
many individuals on behalf of the Apache Software Foundation. For more information on the Apache Soft-
ware Foundation, please see <http://www.apache.org/>.
v

Management Programmer’s Guide
Progress Orbix v6.3.5 incorporates Xalan-j 2.3.1 from the Apache Software Foundation (http://
www.apache.org). Such Apache Technology is subject to the following terms and conditions: The Apache
Soft ware License, Version 1.1. Copyright (c) 1999 The Apache Software Foundation. All rights reserved.
Redistribution and use in source and binary forms, with or without modification, are permitted provided that
the following conditions are met: 1. Redistributions of source code must retain the above copyright notice,
this list of conditions and the following disclaimer. 2. Redistributions in binary form must reproduce the
above copyright notice, this list of conditions and the following disclaimer in the documentation and/or
other materials provided with the distribution. 3. The end-user documentation included with the redistribu-
tion, if any, must include the following acknowledgment: "This product includes software developed by the
Apache Software Foundation (http://www.apache.org/)." Alternately, this acknowledgment may appear in
the software itself, if and wherever such third-party acknowledgments normally appear. 4. The names
"Xalan" and "Apache Software Foundation" and "Apache BCEL" must not be used to endorse or promote
products derived from this software without prior written permission. For written permission, please con-
tact apache@apache.org. 5. Products derived from this software may not be called "Apache", nor may
"Apache" appear in their name, without prior written permission of the Apache Software Foundation. THIS
SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESSED OR IMPLIED WARRANTIES, INCLUD-
ING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER CHANTABILITY AND FIT-
NESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE APACHE
SOFTWARE FOUNDATION OR ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THE-
ORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEG-
LIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE,
EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. This software consists of voluntary
contri butions made by many individuals on behalf of the Apache Software Foundation. For more informa-
tion on the Apache Software Foundation, please see <http://www.apache.org/>.

Progress Orbix v6.3.5 incorporates the Xerces-c++ 2.4 from the Apache Software Foundation (http://
www.apache.org). Such Apache Technology is subject to the following terms and conditions: The Apache
Software License, Version 1.1. Copyright (c) 1999-2001 The Apache Software Foundation. All rights
reserved. Redistribution and use in source and binary forms, with or without modification, are permitted
provided that the following conditions are met: 1. Redistributions of source code must retain the above cop-
yright notice, this list of conditions and the following disclaimer. 2. Redis tributions in binary form must
reproduce the above copyright notice, this list of conditions and the following disclaimer in the documenta-
tion and/or other materials provided with the distribution. 3. The end-user documentation included with the
redistribution, if any, must include the following acknowledgment: "This product includes software devel-
oped by the Apache Software Foundation (http://www.apache.org/)." Alternately, this acknowledgment
may appear in the software itself, if and wherever such third-party acknowledgments normally appear. 4.
The names "Xerces" and "Apache Software Foundation" and "Apache BCEL" must not be used to endorse
or promote products derived from this software without prior written permission. For written permission,
please contact apache@apache.org. 5. Products derived from this software may not be called "Apache", nor
may "Apache" appear in their name, without prior written permission of the Apache Software Foundation.
THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESSED OR IMPLIED WARRANTIES,
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANT ABILITY
AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
 vi

APACHE SOFTWARE FOUNDATION OR ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT,
INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUD-
ING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF
USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE,
EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. This software consists of voluntary
contributions made by many individuals on behalf of the Apache Software Founda tion. For more informa-
tion on the Apache Software Foundation, please see <http://www.apache.org/>.

Progress Orbix v6.3.5 incorporates xerces-j 2.5 from the Apache Software Foundation (http://
www.apache.org). Such Apache Technology is subject to the following terms and conditions: The Apache
Software License, Version 1.1. Copy right (c) 1999-2002 The Apache Software Foundation. All rights
reserved. Redistribution and use in source and binary forms, with or without modification, are permitted
provided that the following conditions are met: 1. Redistributions of source code must retain the above cop-
yright notice, this list of conditions and the following disclaimer. 2. Redistributions in binary form must
reproduce the above copyright notice, this list of conditions and the following disclaimer in the documenta-
tion and/or other materials provided with the distribution. 3. The end-user documentation included with the
redistribution, if any, must include the following acknowledgment: "This product includes software devel-
oped by the Apache Software Foundation (http://www.apache.org/)." Alternately, this acknowledgment
may appear in the software itself, if and wherever such third-party acknowledgments normally appear. 4.
The names "Xerces" and "Apache Software Foundation" must not be used to endorse or promote products
derived from this software without prior written permission. For written permission, please contact
apache@apache.org. 5. Products derived from this software may not be called "Apache", nor may "Apache"
appear in their name, without prior written permission of the Apache Software Foundation. THIS SOFT-
WARE IS PROVIDED ``AS IS'' AND ANY EXPRESSED OR IMPLIED WARRANTIES, INCLUDING,
BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
FOR A PARTIC ULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE APACHE SOFT-
WARE FOUNDATION OR ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCI-
DENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIA-
BILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE
OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. This software consists of voluntary contribu-
tions made by many individuals on behalf of the Apache Software Foundation. For more information on the
Apache Software Foundation, please see <http://www.apache.org/>.

Progress Orbix v6.3.5 incorporates the Tomcat 4.0.4 from the Apache Software Foundation (http://
www.apache.org). Such Apache Technology is subject to the following terms and conditions: The Apache
Software License, Version 1.1. Copyright (c) 1999, 2000 The Apache Software Foundation. All rights
reserved. Redistribution and use in source and binary forms, with or without modification, are permitted
provided that the following conditions are met: 1. Redistributions of source code must retain the above cop-
yright notice, this list of conditions and the following disclaimer. 2. Redis tributions in binary form must
reproduce the above copyright notice, this list of conditions and the following disclaimer in the documenta-
tion and/or other materials provided with the distribution. 3. The end-user documentation included with the
vii

Management Programmer’s Guide
redistribution, if any, must include the following acknowledgment: "This product includes software devel-
oped by the Apache Software Foundation (http://www.apache.org/)." Alternately, this acknowledgment
may appear in the software itself, if and wherever such third-party acknowledgments normally appear. 4.
The names "The Jakarta Project", "Tomcat" and "Apache Software Foundation" must not be used to endorse
or promote products derived from this software without prior written permission. For written permission,
please contact apache@apache.org. 5. Products derived from this software may not be called "Apache", nor
may "Apache" appear in their name, without prior written permission of the Apache Software Foundation.
THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESSED OR IMPLIED WARRANTIES,
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANT ABILITY
AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
APACHE SOFTWARE FOUNDATION OR ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT,
INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUD-
ING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF
USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE,
EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. This software consists of voluntary
contributions made by many individuals on behalf of the Apache Software Foundation. For more informa-
tion on the Apache Software Foun dation, please see <http://www.apache.org/>.

Progress Orbix v6.3.5 incorporates MCPP 2.6.4 from the MCPP Project. Such technology is subject to the
following terms and conditions: Copyright (c) 1998, 2002-2007 Kiyoshi Matsui kmatsui@t3.rim.or.jp All
rights reserved. This software including the files in this directory is provided under the following license.
Redistribu tion and use in source and binary forms, with or without modification, are permitted provided
that the following conditions are met: 1. Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer. 2. Redistributions in binary form must reproduce
the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or
other materials provided with the distribution. THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS
IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDI-
RECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
BUT NOT LIMITED TO, PROCURE MENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THE-
ORY OF LIABILITY, WHETHER IN CON TRACT, STRICT LIABILITY, OR TORT (INCLUDING
NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE,
EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

Progress Orbix v6.3.5 incorporates Xalan c++ v1.7 from The Apache Software Foundation. Such technol-
ogy is subject to the following terms and conditions: The Apache Software License, Version 1.1 Copyright
(c) 1999-2004 The Apache Software Foundation. All rights reserved. Redistribution and use in source and
binary forms, with or without modification, are permitted provided that the following conditions are met: 1.
Redistributions of source code must retain the above copyright notice, this list of conditions and the follow-
ing disclaimer. 2. Redis tributions in binary form must reproduce the above copyright notice, this list of con-
ditions and the follow ing disclaimer in the documentation and/or other materials provided with the
distribution. 3. The end-user documentation included with the redistribution, if any, must include the follow-
 viii

ing acknowledgment: "This product includes software developed by the Apache Software Foundation (http:/
/www.apache.org/)." Alternately, this acknowledgment may appear in the software itself, if and wherever
such third-party acknowledgments normally appear. 4. The names "Xalan" and "Apache Software Founda-
tion" must not be used to endorse or promote prod ucts derived from this software without prior written per-
mission. For written permission, please contact apache@apache.org. 5. Products derived from this software
may not be called "Apache", nor may "Apache" appear in their name, without prior written permission of
the Apache Software Foundation. THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESSED
OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
OF MERCHANTABILITY AND FITNESS FOR A PARTICU LAR PURPOSE ARE DISCLAIMED. IN
NO EVENT SHALL THE APACHE SOFTWARE FOUNDATION OR ITS CONTRIBUTORS BE LIA-
BLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
==
This software consists of voluntary contributions made by many individuals on behalf of the Apache Soft-
ware Foundation and was originally based on software copyright (c) 1999, Lotus Development Corpora-
tion., http://www.lotus.com. For more information on the Apache Software Foundation, please see <http://
www.apache.org/>.

Progress Orbix v6.3.5 incorporates Tcl 8.4.15 from Regents of the University of California, Sun Microsys-
tems, Inc., Scriptics Corporation, and other parties. Such technology is subject to the following terms and
conditions: This software is copyrighted by the Regents of the University of California, Sun Microsystems,
Inc., Scriptics Corporation, and other parties. The following terms apply to all files associated with the soft-
ware unless explicitly disclaimed in individual files. The authors hereby grant permission to use, copy, mod-
ify, distribute, and license this software and its documentation for any purpose, provided that existing
copyright notices are retained in all copies and that this notice is included verbatim in any distributions. No
written agreement, license, or royalty fee is required for any of the authorized uses. Modifications to this
software may be copyrighted by their authors and need not follow the licensing terms described here, pro-
vided that the new terms are clearly indicated on the first page of each file where they apply. IN NO EVENT
SHALL THE AUTHORS OR DISTRIBUTORS BE LIABLE TO ANY PARTY FOR DIRECT, INDI-
RECT, SPECIAL, INCIDENTAL, OR CONSEQUENTIAL DAMAGES ARISING OUT OF THE USE OF
THIS SOFTWARE, ITS DOCUMENTATION, OR ANY DERIVATIVES THEREOF, EVEN IF THE
AUTHORS HAVE BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. THE AUTHORS
AND DISTRIBUTORS SPE CIFICALLY DISCLAIM ANY WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WAR RANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICU-
LAR PURPOSE, AND NON-INFRINGEMENT. THIS SOFTWARE IS PROVIDED ON AN "AS IS"
BASIS, AND THE AUTHORS AND DISTRIBUTORS HAVE NO OBLIGATION TO PROVIDE MAIN-
TENANCE, SUPPORT, UPDATES, ENHANCEMENTS, OR MODIFI CATIONS. GOVERNMENT USE:
If you are acquiring this software on behalf of the U.S. government, the Government shall have only
"Restricted Rights" in the software and related documentation as defined in the Federal Acquisition Regula-
tions (FARs) in Clause 52.227.19 (c) (2). If you are acquiring the software on behalf of the Department of
Defense, the software shall be classified as "Commercial Computer Software" and the Government shall
have only "Restricted Rights" as defined in Clause 252.227-7013 (c) (1) of DFARs. Notwithstanding the
ix

Management Programmer’s Guide
foregoing, the authors grant the U.S. Government and others acting in its behalf permission to use and dis-
tribute the software in accordance with the terms specified in this license.

Progress Orbix v6.3.5 incorporates bzip2 1.0.2 from Julian Seward. Such Technology is subject to the fol-
lowing terms and conditions: This program, "bzip2" and associated library "libbzip2", are copyright (C)
1996-2002 Julian R Seward. All rights reserved. Redistribution and use in source and binary forms, with or
without modification, are permitted provided that the following conditions are met: 1. Redistributions of
source code must retain the above copyright notice, this list of conditions and the following disclaimer. 2.
The origin of this software must not be misrepresented; you must not claim that you wrote the original soft-
ware. If you use this software in a product, an acknowledgment in the product documentation would be
appreciated but is not required. 3. Altered source versions must be plainly marked as such, and must not be
misrepresented as being the original software. 4. The name of the author may not be used to endorse or pro-
mote products derived from this software without specific prior written permission. THIS SOFTWARE IS
PROVIDED BY THE AUTHOR "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUD-
ING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANT ABILITY AND FIT-
NESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR
BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSE-
QUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE
GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
Julian Seward, Cambridge, UK.jseward@acm.org bzip2/libbzip2 version 1.0.2 of 30 December 2001.

Progress Orbix v6.3.5 incorporates zlib 1.2.3 from Jean-loup Gailly and Mark Adler. Such Technology is
subject to the following terms and conditions: License /* zlib.h -- interface of the 'zlib' general purpose com-
pression library version 1.2.3, July 18th, 2005 Copyright (C) 1995-2000 Jean-loup Gailly and Mark Adler.
This software is provided 'as-is', without any express or implied warranty. In no event will the authors be
held liable for any damages arising from the use of this software. Permission is granted to anyone to use this
software for any purpose, including commercial applications, and to alter it and redistribute it freely, subject
to the following restrictions: 1. The origin of this software must not be mis represented; you must not claim
that you wrote the original software. If you use this software in a product, an acknowledgment in the product
documentation would be appreciated but is not required. 2. Altered source versions must be plainly marked
as such, and must not be misrepresented as being the original software. 3. This notice may not be removed
or altered from any source distribution. Jean-loup Gailly jloup@gzip.org Mark Adler
madler@alumni.caltech.edu */

Progress Orbix v6.3.5 incorporates the MinML 1.7 from John Wilson. Such Technology is subject to the
following terms and conditions: Copyright (c) 1999, John Wilson (tug@wilson.co.uk). All rights reserved.
Redistribution and use in source and binary forms, with or without modification, are permitted provided that
the following conditions are met: Redistributions of source code must retain the above copyright notice,,
this list of conditions and the following disclaimer. Redistributions in binary form must reproduce the above
copyright notice, this list of conditions and the following dis claimer in the documentation and/or other
materials provided with the distribution. All advertising materials mention ing features or use of this soft-
ware must display the following acknowledgement: This product includes software devel oped by John
 x

Wilson. The name of John Wilson may not be used to endorse or promote products derived from this soft-
ware without specific prior written permission. THIS SOFTWARE IS PROVIDED BY JOHN WILSON
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PUR-
POSE ARE DISCLAIMED. IN NO EVENT SHALL JOHN WILSON BE LIABLE FOR ANY DIRECT,
INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUD-
ING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF
USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABIL ITY, OR TORT (INCLUDING
NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE,
EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

Progress Orbix v6.3.5 incorporates JDOM vbeta9 from JDOM. Such Technology is subject to the following
terms and conditions: LICENSE.txt, v 1.10 2003/04/10 08:36:05 jhunter Exp $ Copyright (C) 2000-2003
Jason Hunter & Brett McLaughlin. All rights reserved. Redistribution and use in source and binary forms,
with or with out modification, are permitted provided that the following conditions are met: 1. Redistribu-
tions of source code must retain the above copyright notice, this list of conditions, and the following dis-
claimer. 2. Redistribu tions in binary form must reproduce the above copyright notice, this list of
conditions, and the dis claimer that follows these conditions in the documentation and/or other materials
provided with the distribu tion. 3. The name "JDOM" must not be used to endorse or promote products
derived from this software without prior written permission. For written permission, please contact <license
AT jdom DOT org>. 4. Prod ucts derived from this soft ware may not be called "JDOM", nor may "JDOM"
appear in their name, without prior written permission from the JDOM Project Management <pm AT jdom
DOT org>. In addition, we request (but do not require) that you include in the end-user documentation pro-
vided with the redistribution and/or in the soft ware itself an acknowledgement equivalent to the following:
"This product includes software developed by the JDOM Project (http://www.jdom.org/)." Alternatively, the
acknowledgment may be graphical using the logos available at http://www.jdom.org/images/logos. THIS
SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESSED OR IMPLIED WARRANTIES, INCLUD-
ING, BUT NOT LIMITED TO, THE IMPLIED WAR RANTIES OF MERCHANTABILITY AND FIT-
NESS FOR A PARTICULAR PURPOSE ARE DIS CLAIMED. IN NO EVENT SHALL THE JDOM
AUTHORS OR THE PROJECT CONTRIBUTORS BE LIA BLE FOR ANY DIRECT, INDIRECT, INCI-
DENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIA-
BILITY, WHETHER IN CONTRACT, STRICT LIABIL ITY, OR TORT (INCLUDING NEGLIGENCE
OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. This software consists of voluntary contribu-
tions made by many individuals on behalf of the JDOM Project and was originally created by Jason Hunter
<jhunter AT jdom DOT org> and Brett McLaughlin <brett AT jdom DOT org>. For more information on
the JDOM Project, please see <http://www.jdom.org/>.

Progress Orbix v6.3.5 incorporates OpenSSL 0.9.8i Copyright (c) 1998-2008 The OpenSSL Project Copy-
right (c) 1995-1998 Eric A. Young, Tim J. Hudson All rights reserved. Such Technology is subject to the
following terms and conditions: The OpenSSL toolkit stays under a dual license, i.e. both the conditions of
the OpenSSL License and the original SSLeay license apply to the toolkit. See below for the actual license
texts. Actually both licenses are BSD-style Open Source licenses. In case of any license issues related to
xi

Management Programmer’s Guide
OpenSSL please contact openssl-core@openssl.org. OpenSSL License - Copyright (c) 1998-2008 The
OpenSSL Project. All rights reserved. Redistribution and use in source and binary forms, with or without
modification, are permitted pro vided that the following conditions are met: 1. Redistributions of source
code must retain the above copy right notice, this list of conditions and the following disclaimer. 2. Redistri-
butions in binary form must reproduce the above copyright notice, this list of conditions and the following
disclaimer in the documentation and/or other materials provided with the distribution. 3. All advertising
materials mentioning features or use of this software must display the following acknowledgment: "This
product includes software developed by the OpenSSL Project for use in the OpenSSL Toolkit. (http://
www.openssl.org/)" 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to endorse
or promote products derived from this software without prior written permission. For written permission,
please contact openssl-core@openssl.org. 5. Products derived from this software may not be called
"OpenSSL" nor may "OpenSSL" appear in their names without prior written permission of the OpenSSL
Project. 6. Redistributions of any form whatsoever must retain the following acknowledgment: "This prod-
uct includes software developed by the OpenSSL Project for use in the OpenSSL Toolkit (http://
www.openssl.org/)" THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY
EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DIS-
CLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR ITS CONTRIBUTORS BE LIABLE
FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
DAM AGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
SERV ICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. This
product includes cryp tographic software written by Eric Young (eay@cryptsoft.com). This product
includes software written by Tim Hudson (tjh@cryptsoft.com). - Original SSLeay License - Copyright (C)
1995-1998 Eric Young (eay@crypt soft.com) All rights reserved. This package is an SSL implementation
written by Eric Young (eay@crypt soft.com). The implementation was written so as to conform with Net-
scapes SSL. This library is free for commercial and non-commer cial use as long as the following conditions
are aheared to. The following conditions apply to all code found in this distribution, be it the RC4, RSA,
lhash, DES, etc., code; not just the SSL code. The SSL documentation included with this distribution is
covered by the same copyright terms except that the holder is Tim Hudson (tjh@cryptsoft.com). Copy right
remains Eric Young's, and as such any Copyright notices in the code are not to be removed. If this package
is used in a product, Eric Young should be given attribution as the author of the parts of the library used.
This can be in the form of a textual message at program startup or in documentation (online or textual) pro-
vided with the package. Redistri bution and use in source and binary forms, with or with out modification,
are permitted provided that the follow ing conditions are met: 1. Redistributions of source code must retain
the copyright notice, this list of conditions and the following disclaimer. 2. Redistributions in binary form
must reproduce the above copyright notice, this list of con ditions and the following dis claimer in the docu-
mentation and/or other materials provided with the distribution. 3. All advertising materials mention ing
features or use of this software must display the following acknowledge ment: "This product includes
crypto graphic software written by Eric Young (eay@cryptsoft.com)" The word 'cryptographic' can be left
out if the rou tines from the library being used are not crypto graphic related :-). 4. If you include any Win-
dows specific code (or a deriv ative thereof) from the apps directory (application code) you must include an
acknowledgement: "This product includes software written by Tim Hudson (tjh@cryptsoft.com)" THIS
SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND ANY EXPRESS OR IMPLIED WAR-
RANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
 xii

MERCHANT ABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
INCIDENTAL, SPE CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
NOT LIMITED TO, PROCURE MENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THE-
ORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEG-
LIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE,
EVEN IF ADVISED OF THE POSSI BILITY OF SUCH DAMAGE. The licence and distribution terms for
any publically available version or deriva tive of this code cannot be changed. i.e. this code cannot simply
be copied and put under another distribution licence [including the GNU Public Licence.]

Progress Orbix v6.3.5 incorporates PCRE v7.8 from the PCRE Project. Such Technology is subject to the
following terms and conditions:
PCRE LICENCE

PCRE is a library of functions to support regular expressions whose syntax and semantics are as close as
possible to those of the Perl 5 language. Release 7 of PCRE is distributed under the terms of the
"BSD"licence, as specified below. The documentation for PCRE, supplied in the "doc" directory, is distrib-
uted under the same terms as the software itself. The basic library functions are written in C and are free-
standing. Also included in the distribution is a set of C++ wrapper functions.
THE BASIC LIBRARY FUNCTIONS

Written by: Philip Hazel
Email local part: ph10
Email domain: cam.ac.uk
University of Cambridge Computing Service,
Cambridge, England.
Copyright (c) 1997-2008 University of Cambridge
All rights reserved.
THE C++ WRAPPER FUNCTIONS

Contributed by: Google Inc.
Copyright (c) 2007-2008, Google Inc.
All rights reserved.
THE "BSD" LICENCE

Redistribution and use in source and binary forms, with or without modification, are permitted provided that
the following conditions are met: Redistributions of source code must retain the above copyright notice, this
list of conditions and the following disclaimer. Redistributions in binary form must reproduce the above
copyright notice, this list of conditions and the following disclaimer in the documentation and/or other
materials provided with the distribution. Neither the name of the University of Cambridge nor the name of
xiii

Management Programmer’s Guide
Google Inc. nor the names of their contributors may be used to endorse or promote products derived from
this software without specific prior written permission. THIS SOFT WARE IS PRO VIDED BY THE COP-
YRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRAN-
TIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRAN TIES OF
MERCHANT ABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT,
INDI RECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUD-
ING, BUT NOT LIMITED TO, PROCURE MENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF
USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE,
EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

Progress Orbix v6.3.5 incorporates IDL Compiler Front End 1 from Sun Microsystems, Inc. Copyright
1992, 1993, 1994 Sun Microsystems, Inc. Printed in the United States of America. All Rights Reserved.
Such tech nology is subject to the following terms and conditions: This product is protected by copyright
and distrib uted under the following license restricting its use. The Interface Definition Language Compiler
Front End (CFE) is made available for your use provided that you include this license and copyright notice
on all media and documentation and the software program in which this product is incorporated in whole or
part. You may copy and extend functionality (but may not remove functionality) of the Interface Definition
Language CFE without charge, but you are not authorized to license or distribute it to anyone else except as
part of a product or program developed by you or with the express written consent of Sun Microsystems,
Inc. ("Sun"). The names of Sun Microsystems, Inc. and any of its subsidiaries or affiliates may not be used
in advertising or publicity per taining to distribution of Interface Definition Language CFE as permitted
herein. This license is effective until termi nated by Sun for failure to comply with this license. Upon ter-
mination, you shall destroy or return all code and documentation for the Interface Definition Language CFE.
INTERFACE DEFINITION LANGUAGE CFE IS PROVIDED AS IS WITH NO WARRANTIES OF
ANY KIND INCLUDING THE WARRANTIES OF DESIGN, MERCHANTIBILITY AND FITNESS
FOR A PARTICULAR PURPOSE, NONINFRINGEMENT, OR ARISING FROM A COURSE OF DEAL-
ING, USAGE OR TRADE PRACTICE. INTERFACE DEFINITION LANGUAGE CFE IS PROVIDED
WITH NO SUPPORT AND WITHOUT ANY OBLIGATION ON THE PART OF Sun OR ANY OF ITS
SUBSIDIARIES OR AFFILIATES TO ASSIST IN ITS USE, CORREC TION, MODIFICATION OR
ENHANCEMENT. SUN OR ANY OF ITS SUBSIDIARIES OR AFFILIATES SHALL HAVE NO LIA-
BILITY WITH RESPECT TO THE INFRINGEMENT OF COPYRIGHTS, TRADE SECRETS OR ANY
PATENTS BY INTERFACE DEFINITION LANGUAGE CFE OR ANY PART THEREOF. IN NO
EVENT WILL SUN OR ANY OF ITS SUBSIDIARIES OR AFFILIATES BE LIABLE FOR ANY LOST
REVENUE OR PROFITS OR OTHER SPECIAL, INDIRECT AND CONSE QUENTIAL DAMAGES,
EVEN IF SUN HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. Use, duplication,
or disclosure by the government is subject to restrictions as set forth in subpara graph (c)(1)(ii) of the Rights
in Technical Data and Computer Software clause at DFARS 252.227-7013 and FAR 52.227-19. Sun, Sun
Microsystems and the Sun logo are trademarks or registered trademarks of Sun Microsys tems, Inc. Sun-
Soft, Inc. 2550 Garcia Avenue, Mountain View, California 94043 NOTE: SunOS, Sun Soft, Sun, Solaris,
Sun Microsystems or the Sun logo are trademarks or registered trademarks of Sun Micro systems, Inc.

Progress Orbix v6.3.5 incorporates LibXML2 2.4.24 from Daniel Veillard. Such Technology is subject to
the following terms and conditions: Except where otherwise noted in the source code (trio files, hash.c and
 xiv

list.c) covered by a similar license but with different Copyright notices: Copyright (C) 1998-2002 Daniel
Veillard. All Rights Reserved. Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal in the Software without restric-
tion, including with out limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/
or sell copies of the Soft ware, and to permit persons to whom the Software is furnished to do so, subject to
the following conditions: The above copyright notice and this permission notice shall be included in all cop-
ies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WAR-
RANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE
WARRANTIES OF MERCHANTA BILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONIN-
FRINGEMENT. IN NO EVENT SHALL THE DANIEL VEILLARD BE LIABLE FOR ANY CLAIM,
DAMAGES OR OTHER LIA BILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTH-
ERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
OTHER DEALINGS IN THE SOFTWARE. Except as contained in this notice, the name of Daniel Veillard
shall not be used in advertising or otherwise to promote the sale, use or other dealings in this Software with-
out prior written authorization from him.
=== trio.c, trio.h: Copyright (C) 1998 Bjorn Reese and Daniel Stenberg. Permission to use, copy, modify,
and distribute this software for any purpose with or without fee is hereby granted, provided that the above
copyright notice and this permission notice appear in all copies. THIS SOFTWARE IS PROVIDED "AS IS"
AND WITH OUT ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, WITHOUT LIMITA-
TION, THE IMPLIED WARRANTIES OF MERCHANTIBILITY AND FITNESS FOR A PARTICULAR
PURPOSE. THE AUTHORS AND CONTRIB UTORS ACCEPT NO RESPONSIBILITY IN ANY CON-
CEIVABLE MANNER. ==== triop.h: Copyright (C) 2000 Bjorn Reese and Daniel Stenberg. Permission to
use, copy, modify, and dis tribute this software for any purpose with or without
fee is hereby granted, provided that the above copyright notice and this permission notice appear in all cop-
ies. THIS SOFTWARE IS PROVIDED ``AS IS'' AND WITHOUT ANY EXPRESS OR IMPLIED WAR-
RANTIES, INCLUDING, WITHOUT LIMITATION, THE IMPLIED WARRANTIES OF
MERCHANTIBILITY AND FITNESS FOR A PARTIC ULAR PURPOSE. THE AUTHORS AND CON-
TRIBUTORS ACCEPT NO RESPONSIBILITY IN ANY CONCEIVABLE MANNER.
==== hash.c: Copyright (C) 2000 Bjorn Reese and Daniel Veillard. Permission to use, copy, modify, and
distribute this software for any purpose with or without fee is hereby granted, provided that the above cop-
yright notice and this permis sion notice appear in all copies. THIS SOFTWARE IS PROVIDED ``AS IS''
AND WITHOUT ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, WITHOUT LIMITA-
TION, THE IMPLIED WARRANTIES OF MERCHAN TIBILITY AND FITNESS FOR A PARTICULAR
PURPOSE. THE AUTHORS AND CONTRIBUTORS ACCEPT NO RESPONSIBILITY IN ANY CON-
CEIVABLE MANNER.
===== list.c: Copyright (C) 2000 Gary Pennington and Daniel Veillard. Permission
to use, copy, modify, and distribute this software for any purpose with or without fee is hereby granted, pro-
vided that the above copyright notice and this permission notice appear in all copies. THIS SOFTWARE IS
PROVIDED ``AS IS'' AND WITHOUT ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING,
WITHOUT LIMITATION, THE IMPLIED WARRANTIES OF MERCHANTIBILITY AND FITNESS
FOR A PARTICULAR PURPOSE. THE AUTHORS AND CONTRIBUTORS ACCEPT NO RESPONSI-
BILITY IN ANY CONCEIVABLE MANNER. ===
triodef.h, trionan.c, trionan.h: Copyright (C) 2001 Bjorn Reese Permission to use, copy, modify, and distrib-
ute this soft ware for any purpose with or without fee is hereby granted, provided that the above copyright
notice and this permis sion notice appear in all copies. THIS SOFTWARE IS PROVIDED ``AS IS'' AND
xv

Management Programmer’s Guide
WITHOUT ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, WITHOUT LIMITATION,
THE IMPLIED WARRANTIES OF MER CHANTIBILITY AND FITNESS FOR A PARTICULAR PUR-
POSE. THE AUTHORS AND CONTRIBUTORS ACCEPT NO RESPONSIBILITY IN ANY CONCEIV-
ABLE MANNER.
==== triostr.c, triostr.h: Copyright (C) 2001 Bjorn Reese and Daniel Stenberg.
Permission to use, copy, modify, and distribute this software for any purpose with or without fee is hereby
granted, pro vided that the above copyright notice and this permission notice appear in all copies. THIS
SOFTWARE IS PRO VIDED ``AS IS'' AND WITHOUT ANY EXPRESS OR IMPLIED WARRANTIES,
INCLUDING, WITHOUT LIMITATION, THE IMPLIED WARRANTIES OF MERCHANTIBILITY
AND FITNESS FOR A PARTICULAR PUR POSE. THE AUTHORS AND CONTRIBUTORS ACCEPT
NO RESPONSIBILITY IN ANY CONCEIVABLE MANNER.

Progress Orbix v6.3.5 incorporates ICU library 2.6 from IBM. Such Technology is subject to the following
terms and conditions: Copyright (c) 1995-2009 International Business Machines Corporation and others.
All rights reserved. Per mission is hereby granted, free of charge, to any person obtaining a copy of this soft-
ware and associated documenta tion files (the "Software"), to deal in the Software without restriction,
including without limitation the rights to use, copy, modify, merge, publish, distribute, and/or sell copies of
the Software, and to permit persons to whom the Soft ware is fur nished to do so, provided that the above
copyright notice(s) and this permission notice appear in all copies of the Software and that both the above
copyright notice(s) and this permission notice appear in supporting documentation. THE SOFTWARE IS
PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING
BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A
PARTICU LAR PUR POSE AND NONINFRINGEMENT OF THIRD PARTY RIGHTS. IN NO EVENT
SHALL THE COPYRIGHT HOLDER OR HOLDERS INCLUDED IN THIS NOTICE BE LIABLE FOR
ANY CLAIM, OR ANY SPECIAL INDI RECT OR CONSEQUENTIAL DAMAGES, OR ANY DAM-
AGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
ACTION OF CONTRACT, NEGLIGENCE OR OTHER TOR TIOUS ACTION, ARISING OUT OF OR
IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. Except as contained in
this notice, the name of a copyright holder shall not be used in advertising or other wise to promote the sale,
use or other dealings in this Software without prior written authorization of the copyright holder. All trade-
marks and registered trademarks mentioned herein are the property of their respective owners.

Updated: 13-Jul-2011
 xvi

Contents

List of Figures xix

Preface xxi

Part I Overview

Chapter 1 Introduction to Application Management 1
Introduction to Orbix Management Tools 2
Introduction to Java Management Extensions 5
Introduction to the Orbix Management API 8
Overview of Management Programming Tasks 10

Part II CORBA Java Management

Chapter 2 Instrumenting CORBA Java Applications 15
Step 1—Identifying Tasks to be Managed 16
Step 2—Defining your MBeans 19
Step 3—Implementing your MBeans 24
Step 4—Gaining Access to an MBean Server 28
Step 5—Registering your MBeans 31
Step 6—Unregistering your MBeans 34
Step 7—Connecting MBeans Together 35
Monitoring MBean Statistics 37

Chapter 3 Displaying CORBA Java Applications 41
Displaying MBeans 42
Adding Application MBeans to the Tree 44
Customizing your Application MBean Icons 46
xvii

CONTENTS
Part III CORBA C++ Management

Chapter 4 Instrumenting CORBA C++ Applications 51
Step 1—Identifying Tasks to be Managed 52
Step 2—Defining your MBeans 56
Step 3—Implementing your MBeans 62
Step 4—Initializing the Management Plugin 76
Step 5—Creating your MBeans 78
Step 6—Connecting MBeans Together 80
Monitoring MBean Statistics 84

Appendix I MBean Document Type Definition 87
The MBean Document Type Definition File 88

Glossary 91

Index 97
 xviii

List of Figures

Figure 1: IONA Administrator Web Console 3

Figure 2: JMX Management and Orbix 6

Figure 3: Example Parent–Child Relationship 9

Figure 4: Bank Teller Application 17

Figure 5: Bank Example in IONA Administrator 18

Figure 6: Bank Application Overview 26

Figure 7: Account Manager Example 42

Figure 8: Bank Process MBean 43

Figure 9: Instrumented Plugin in IONA Administrator 53

Figure 10: Instrumented Plugin Application Overview 55

Figure 11: Instrumented Plugin Custom Exception 71

Figure 12: Instrumented Plugin Process MBean 80

Figure 13: Instrumented Plugin Child MBean 83
xix

LIST OF FIGURES
 xx

Preface
Orbix provides support for enterprise-level management across different
platform and programming language environments. Orbix management tools
enable administrators to manage distributed enterprise applications. This guide
explains how programmers can enable applications to be managed by Orbix
management tools (for example, IONA Administrator).

Audience This guide is aimed at developers writing distributed enterprise applications who
wish to enable their applications for management by Orbix management tools. It
assumes knowledge of either C++ or Java.

Organization of this guide This guide is divided as follows:

Part I, Overview

This introduces Orbix enterprise management, and the tools used to manage
distributed applications.

Part II, Java Management

This explains how to enable CORBA Java applications for management, and
display them in IONA Administrator.

Part III, C++ Management

This explains how to enable CORBA C++ applications for management, and
display them in IONA Administrator
xxi

PREFACE
Related documentation The document set for Orbix includes the following related documentation:

• Management User’s Guide

• Administrator’s Guide

• CORBA Programmer’s Guide, C++ Edition

• CORBA Programmer’s Guide, Java Edition

The latest updates to the Orbix documentation can be found at

http://www.iona.com/docs.

Additional resources The IONA knowledge base (http://www.iona.com/support/
knowledge_base/index.xml) contains helpful articles, written by IONA
experts, about IONA Administrator and other products.

The IONA update center (http://www.iona.com/support/updates/index.xml)
contains the latest releases and patches for IONA products:

If you need help with this or any other IONA products, contact IONA at
support@iona.com. Comments on IONA documentation can be sent to
docs-support@iona.com.

Typographical conventions This guide uses the following typographical conventions:

Constant width Constant width (courier font) in normal text represents
portions of code and literal names of items such as
classes, functions, variables, and data structures. For
example, text might refer to the CORBA::Object class.

Constant width paragraphs represent code examples or
information a system displays on the screen. For
example:

#include <stdio.h>
 xxii

http://www.iona.com/support/knowledge_base/index.xml
http://www.iona.com/support/updates/index.xml
http://<APPLICABLE-PATH>

PREFACE
Keying conventions This guide may use the following keying conventions:

Italic Italic words in normal text represent emphasis and new
terms.

Italic words or characters in code and commands
represent variable values you must supply, such as
arguments to commands or path names for your
particular system. For example:

% cd /users/your_name

Note: Some command examples may use angle
brackets to represent variable values you must supply.
This is an older convention that is replaced with italic
words or characters.

No prompt When a command’s format is the same for multiple
platforms, a prompt is not used.

% A percent sign represents the UNIX command shell
prompt for a command that does not require root
privileges.

A number sign represents the UNIX command shell
prompt for a command that requires root privileges.

> The notation > represents the DOS, Windows NT,
Windows 95, or Windows 98 command prompt.

...

.

.

.

Horizontal or vertical ellipses in format and syntax
descriptions indicate that material has been eliminated to
simplify a discussion.

[] Brackets enclose optional items in format and syntax
descriptions.

{ } Braces enclose a list from which you must choose an
item in format and syntax descriptions.

| A vertical bar separates items in a list of choices
enclosed in { } (braces) in format and syntax
descriptions.
xxiii

PREFACE
 xxiv

Part I
Overview

In this part This part contains the following chapter:

Introduction to Application Management page 1

CHAPTER 1

Introduction to
Application
Management
This chapter gives an overview of Orbix enterprise application
management. It introduces the Orbix management tools, Sun’s
Java Management Extensions API, and IONA’s management API.

In this chapter This chapter contains the following sections:

Introduction to Orbix Management Tools page 2

Introduction to Java Management Extensions page 5

Introduction to the Orbix Management API page 8

Overview of Management Programming Tasks page 10
1

CHAPTER 1 | Introduction to Application Management
Introduction to Orbix Management Tools

Overview Orbix management tools enable administrators to monitor and control
distributed applications at runtime. These tools provide seamless management of
IONA products, or any applications developed using those products, across
different platform and programming language environments. Orbix management
tools include the following main components:

• “IONA Administrator Web Console”.

• “Orbix Management Service”.

• “IONA Configuration Explorer”.

• “Orbix Configuration Authority”.

IONA Administrator Web
Console

The IONA Administrator Web Console provides a web browser interface to the
Orbix management tools. It enables you to manage applications and application
events from anywhere, without the need for download or installation. It
communicates with the management service using HTTP (Hypertext Transfer
Protocol), as illustrated in Figure 1.

Orbix Management Service The Orbix management service is the central point of contact for accessing
management information in a domain. A domain is an abstract group of
managed server processes within a physical location. The management service is
accessed by both the IONA Administrator Web Console and by the IONA
Configuration Explorer.

Note: Managed applications can be written in C++ or Java. The same
management service process (iona_services.management) can be used by
Java and C++ applications.
 2

Introduction to Orbix Management Tools
IONA Configuration Explorer The IONA Configuration Explorer is a Java graphical user interface (GUI) that
enables you to manage your configuration settings. It communicates with your
configuration repository (CFR) or configuration file using IIOP (Internet
Inter-ORB Protocol).

Figure 1 shows the IONA Administrator Web Console, and how it interacts with
managed applications to provide management capability.

Figure 1: IONA Administrator Web Console

IONA
Administrator
Web Console

HTTP

text
text

Managed
Application

Orbix Domain

...

Management Service
3

CHAPTER 1 | Introduction to Application Management
Orbix Configuration Authority The Orbix Configuration Authority provides a web browser interface to
descriptive information about all Orbix configuration settings. You can browse
and search for information about Orbix configuration variables in your CFR or
configuration file.

Integrating with Enterprise
Management Systems

Performance logging plugins enable Orbix to integrate effectively with
Enterprise Management Systems (EMS), such as IBM Tivoli™, HP
OpenView™, CA Unicenter™, or BMC Patrol™.

These systems enable system administrators and production operators to monitor
enterprise-critical applications from a single management console. This enables
them to quickly recognize the root cause of problems that may occur, and take
remedial action.

Further information For detailed information on using the Orbix management tools, and on how to
configure EMS integration, see the Management User’s Guide.
 4

Introduction to Java Management Extensions
Introduction to Java Management Extensions

Overview Java Management Extensions (JMX) is a standards-based API from Sun that
provides a framework for adding enterprise management capabilities to user
applications. This section explains the main JMX concepts and shows how JMX
and Orbix interact to provide enterprise management for Java applications. This
section includes the following:

• “MBeans”.

• “The MBean server”.

• “Management instrumentation”.

• “Standard and Dynamic MBeans”.

• “Further information”.

MBeans The concept of an MBean (a managed bean) is central to JMX. An MBean is
simply an object with associated attributes and operations. It acts as a handle to
your application object, and enables the object to be managed.

For example, a Car MBean object, with an associated speed attribute, and
start() and stop() operations, is used to represent a car application object,
with corresponding attributes and operations. Application developers can
express their application objects as a series of related MBeans. This enables
administrators to manage these application objects using an administration
console (for example, IONA Administrator).

The MBean server All the MBeans created by developers are managed and controlled by a MBean
server, which is provided by JMX. All MBeans that are created must be
registered with an MBean server so that they can be accessed by management
applications, such as Orbix.

Figure 2 shows a Java example of the JMX components at work. It shows how
these components interact with Orbix to provide management capability for your
application.
5

CHAPTER 1 | Introduction to Application Management
For simplicity, this diagram only shows one MBean. An application might have
multiple MBeans representing the application objects that you wish to manage.
In addition, new instrumentation code is not solely confined to the MBean. You
will need to add some new code to your sever implementation (for example, to
enable your server to contact the management service).

Figure 2: JMX Management and Orbix

text

Orbix domain

HTTP

IIOP

IONA Administrator
Web Console

MBean Server

MBean

JVM

KEY

Supplied Orbix component

ComponentColour

Existing server application

Supplied JMX component

New instrumentation code

Java Server

Management Service

IIOP Adaptor
 6

Introduction to Java Management Extensions
Management instrumentation Adding JMX management code to your application is also known as adding
management instrumentation or instrumenting your existing application. These
standard management terms are used throughout this book.

Figure 2 shows the new management instrumentation code as an MBean.
MBeans must be added to your application to enable it for management.

Standard and Dynamic MBeans The MBeans discussed so far in this chapter are referred to as standard MBeans.
These are ideally suited to straightforward management scenarios where the
structure of managed data is well defined and unlikely to change often. JMX
specifies another category of MBeans called dynamic MBeans. These are
designed for when the structure of the managed data is likely to change regularly
during the lifetime of the application.

Implementing dynamic MBeans is more complex than for standard MBeans. If
your management solution needs to provide integration with existing and future
management protocols and platforms, using dynamic MBeans could make it
more difficult to achieve this goal. The examples cited in this book use standard
MBeans only.

Further information For more information about JMX, see Sun’s JMX Instrumentation and Agent
Specification, and Reference Implementation Javadoc. These documents are
available online at:

http://java.sun.com/products/JavaManagement/

For information on how to integrate IONA Administrator with other general
purpose management applications (for example, HP OpenviewTM or CA
UniCenterTM), see the "SNMP Integration" chapter in the Management User’s
Guide.
7

http://java.sun.com/products/JavaManagement/

CHAPTER 1 | Introduction to Application Management
Introduction to the Orbix Management API

Overview JMX does not specify how to remotely access MBeans using network protocols.
IONA’s Orbix management API is used to enable remote communications for
MBeans. This API also enables you to specify relationships between MBeans,
and display MBeans in IONA Administrator. This section includes the
following:

• “The IIOP adaptor”.

• “Defining MBean relationships”.

• “C++ Instrumentation”.

The IIOP adaptor The Orbix management API enables network communication between the
MBean server and the management service over IIOP (Internet Inter-ORB
Protocol). This is performed using an IIOP adapter, which is contained in the
ORB plugin.

Figure 2 shows an example of this IIOP communication. This cross-platform
API also enables communication for CORBA Java and C++ servers.

Defining MBean relationships The Orbix management API also enables you to specify hierarchical parent–
child relationships between MBeans. For example, you may want to show
relationships between your server and its lower-level processes. These
relationships can then be displayed in the IONA Administrator Web Console.

Figure 3 shows example parent–child relationships displayed in the left pane of
the IONA Administrator Web Console.
 8

Introduction to the Orbix Management API

C++ Instrumentation The concept of an MBean is Java term that comes from JMX. The C++ version
of the Orbix management API uses the generic concept of a Managed Entity
instead of an MBean. A C++ Managed Entity is functionally similar to the Java
MBean. It acts as a handle to your application object, and enables the object to
be managed.

The C++ version of the Orbix management API is defined in IDL (Interface
Definition Language).

For more details of the Orbix management API, see the Orbix Management
IDLdoc, and the Orbix Management Javadoc.

Figure 3: Example Parent–Child Relationship
9

CHAPTER 1 | Introduction to Application Management
Overview of Management Programming
Tasks

Overview This section gives an overview of the typical management programming tasks.
These include the following:

• “Identifying tasks to be managed”.

• “Writing your MBeans”.

• “Registering your MBeans with the MBean server”.

• “Unregistering your MBeans”.

• “Defining relationships between MBeans”.

These tasks are explained in more detail in the rest of this document.

Identifying tasks to be managed Before adding any management code to an application, you must decide on the
application tasks that you wish the administrator to manage.

Deciding which tasks should be managed varies from application to application.
This depends on the nature of the application, and on the type of runtime
administration that is required. Typical managed tasks include monitoring the
status of an application (for example, whether it is active or inactive), and
controlling its operation (for example, starting or stopping the application).

Writing your MBeans When you have decided which parts of your application need to be managed,
you can define and implement MBeans to satisfy your management objectives.
Each MBean object must implement an interface ending with the term MBean
(for example, CarMBean).

To expose its attributes, an MBean interface must declare a number of get and
set operations. If get operations are declared only, the MBean attributes are
read-only. If set operations are declared, the MBean attributes are writable.
 10

Overview of Management Programming Tasks
Registering your MBeans with the
MBean server

Registering application MBeans with the MBean server enables them to be
monitored and controlled by the IONA Administrator. Choosing when to
register or expose your MBeans varies from application to application.
However, there are two stages when all applications create and register MBeans:

During application initialization. During any application initialization
sequence, a set of objects is created that represents the core functionality of the
application. After these objects are created, MBeans should also be created and
registered, to enable basic management of that application.

During normal application runtime. During normal application runtime, new
objects are created as a result of internal or external events (for example, an
internal timer, or a request from a client). When new objects are created,
corresponding MBeans can be created and registered, to enable management of
these new application components. For example, in a bank example when a new
account is created, a new account MBean would be also be created and
registered with the MBean server.

Unregistering your MBeans You might wish to unregister an MBean in response to an administrator’s
interaction with the system. For example, if a bank teller session is closed, it
would be appropriate to unregister a corresponding session MBean. This ensures
that the MBean will no longer be displayed as part of the application that is
being managed.

Defining relationships between
MBeans

You can use the Orbix management API to define parent–child relationships
between MBeans. These relationships are then displayed in the IONA
Administrator Web Console, as shown in Figure 3 on page 9.

Parent-child relationships are no longer displayed in the console when the
MBean is unregistered by the application (for example, if a bank account is
closed).
11

CHAPTER 1 | Introduction to Application Management
Further information All of these management programming tasks are explained in detail, with
examples, in the parts that follow:

• Part II CORBA Java management.

• Part III CORBA C++ management.

It is not necessary to read one part before another. You can read these parts in
any order.
 12

Part II
CORBA Java Management

In this part This part contains the following chapters:

Instrumenting CORBA Java Applications page 15

Displaying CORBA Java Applications page 41

CHAPTER 2

Instrumenting
CORBA Java
Applications
This chapter explains how to use the Java Management Extensions
API and the Orbix Java Management API to enable an existing
CORBA Java application for management. It uses a banking
example application.

In this chapter This chapter contains the following sections:

Step 1—Identifying Tasks to be Managed page 16

Step 2—Defining your MBeans page 19

Step 3—Implementing your MBeans page 24

Step 4—Gaining Access to an MBean Server page 28

Step 5—Registering your MBeans page 31

Step 6—Unregistering your MBeans page 34

Step 7—Connecting MBeans Together page 35

Monitoring MBean Statistics page 37
15

CHAPTER 2 | Instrumenting CORBA Java Applications
Step 1—Identifying Tasks to be Managed

Overview Before adding management code to an application, you must decide on the tasks
in your application that you wish to be managed by a system administrator. Only
then should you start thinking about adding management instrumentation code
to your existing application.

This section includes the following:

• “Existing user tasks”.

• “New management tasks for administrators”.

• “Planning your Programming Steps”.

Existing user tasks The First Northern Bank (FNB) example used in this chapter adds management
capabilities to an existing CORBA Java banking application. This example
application delivers standard banking services to customers.

The existing FNB application enables bank tellers to do the following:

• Log on and log off the system.

• Create a customer account.

• Lodge money into an account.

• Withdraw money from an account.

Figure 4 shows the user interface to these existing features.
 16

Step 1—Identifying Tasks to be Managed
New management tasks for
administrators

The new management instrumentation code added to FNB application enables
administrators to do the following:

• Monitor the back-tier server.

• Monitor customer accounts.

• Unload account objects from memory.

• Monitor the middle-tier server.

• Monitor teller sessions.

• Monitor bank tellers.

Administrators can perform these tasks using the IONA Administrator Web
Console, shown in Figure 5.

Figure 4: Bank Teller Application
17

CHAPTER 2 | Instrumenting CORBA Java Applications
Planning your Programming
Steps

When you have identified your management tasks, you should think carefully
about how exactly you wish to add the new management code to your existing
application. For example, how much of the new code you will add to your
existing classes, and how much will be in new classes. Depending on the size of
your application, you might wish to keep new instrumentation classes in a
separate directory.

This chapter shows how JMX management code was added to the FNB CORBA
Java application. It shows the standard programming steps. For example,
defining and implementing MBeans, and registering and unregistering your
MBeans with the MBean server.

Figure 5: Bank Example in IONA Administrator

Note: When instrumenting CORBA Java servers, you do not need to make
any changes to the CORBA IDL. You can enable your application for
management simply by adding new MBean instrumentation code to your
CORBA Java implementation.
 18

Step 2—Defining your MBeans
Step 2—Defining your MBeans

Overview When you have planned which parts of your application need to be managed,
you can then define MBeans to satisfy your management objectives. This section
shows how to define example MBean interfaces for the FNB application. It
includes the following:

• “Rules for MBean interfaces”.

• “Example MBeans”.

• “AccountMgrMBean interface”.

• “CreditCardMBean interface”.

• “BusinessSessionManagerMBean interface”.

• “BusinessSessionMBean interface”.

• “MBean object names”.

• “Further information”.

Rules for MBean interfaces Each MBean object must implement an interface ending with the term MBean
(for example, BusinessSessionMBean).

To expose its attributes, an MBean interface must declare a number of get() and
set() operations. If only get() operations are declared, the MBean attributes
are read-only. If set() operations are declared, the MBean attributes are
writable.

To expose management operations, you must declare an appropriate method in
the MBean interface, and then implement it in the corresponding MBean class.
19

CHAPTER 2 | Instrumenting CORBA Java Applications
Example MBeans Table 1 lists the example MBeans that are declared for the FNB application.

Table 1: FNB MBeans

MBean Functionality

AccountMgrMBean This back-tier MBean
represents the bank account
information managed by an
administrator. For example, the
number and type of accounts in
the bank.

CreditCardMBean This back-tier MBean
represents credit card accounts.

BusinessSessionManagerMBean This middle-tier MBean
represents the number of open
bank teller sessions in the bank,

BusinessSessionMBean This middle-tier MBean
represents the list of recent
transactions for a particular
bank teller session.
 20

Step 2—Defining your MBeans
AccountMgrMBean interface The interface for the AccountMgrMBean is defined as follows:

CreditCardMBean interface The interface for the CreditCardMBean is defined as follows:

package bankobjects.management;

import javax.management.*;
import com.iona.management.jmx_iiop.*;
import com.iona.management.jmx_iiop.Public.*;

public interface AccountMgrMBean {

 // attributes
 public int getNumberOfAccounts();
 public int getNumberOfCreditCards();
 public int getNumberOfCurrentAccounts();
 public int getNumberOfLoadedAccounts();
 public ObjectName[] getActiveCreditCards();

 // operations
 public boolean unloadAccount (int accountNum);
}

package bankobjects.management;

import javax.management.*;
import com.iona.management.jmx_iiop.*;
import com.iona.management.jmx_iiop.Public.*;

public interface CreditCardMBean {

 public int simpleOp ();

}

21

CHAPTER 2 | Instrumenting CORBA Java Applications
BusinessSessionManagerMBean
interface

The interface for the BusinessSessionManagerMBean is defined as follows:

BusinessSessionMBean interface The interface for the BusinessSessionMBean is defined as follows:

MBean object names MBean object names are used to uniquely identify an MBean. Object names are
represented by the javax.management.ObjectName class, which extends the
java.lang.Object class.

In the FNB example, the AccountMgrMBean interface declares the following
get() method for the ActiveCreditCards attribute:

public ObjectName[] getActiveCreditCards();

This returns an array of MBean object names for the associated credit card
accounts. The getActiveCreditCards() method is an example of using an
object name to connect MBeans together.

package fnbba.management;

import javax.management.*;
import com.iona.management.jmx_iiop.*;
import com.iona.management.jmx_iiop.Public.*;

public interface BusinessSessionManagerMBean {

 public int getNumberOfOpenSessions ();

}

package fnbba.management;

import javax.management.*;
import com.iona.management.jmx_iiop.*;
import com.iona.management.jmx_iiop.Public.*;

public interface BusinessSessionMBean {

 public String[] getRecentTransactionList();

}

 22

Step 2—Defining your MBeans
Further information For information about how to specify MBean object names, see “Step 3—
Implementing your MBeans” on page 24.

For detailed information about the ObjectName class, see Sun’s JMX Reference
Implementation Javadoc. This is available along with the source code from:

http://java.sun.com/products/JavaManagement
23

http://java.sun.com/products/JavaManagement

CHAPTER 2 | Instrumenting CORBA Java Applications
Step 3—Implementing your MBeans

Overview After defining your MBean interfaces, you must provide an MBean
implementation. MBean implementation objects typically interact with the
application they are designed to manage, enabling monitoring and control.

For example, this section shows interaction between an MBean
(BusinessSessionManager) and the CORBA server implementation object
(BusinessSessionManagerDelegate). The MBean’s
getNumberOfOpenSessions() method calls the implementation object’s
openSessions() method. This section includes the following:

• “Example MBean implementation”.

• “The management wrapper class”.

• “Management wrapper implementation”.

• “Identifying MBeans”.

• “Further information”.

Example MBean implementation The following code example shows the BusinessSessionManager
implementation for the BusinessSessionManagerMBean:

package fnbba.management;

import javax.management.*;
import com.iona.management.jmx_iiop.*;
import com.iona.management.jmx_iiop.Public.*;

public class BusinessSessionManager
 implements BusinessSessionManagerMBean {

 private ManagementWrapper mgmtWrapper = null;
 private ObjectName myName = null;
 private fnbba.BusinessSessionManagerDelegate myImpl = null;

 24

Step 3—Implementing your MBeans
The management wrapper class In this example, the MBean representing the bank teller
BusinessSessionManager uses an underlying class (the ManagementWrapper
class) to perform most of the work. The ManagementWrapper object creates the
BusinessSessionMBeans for each bank teller session. It registers these beans
with the MBean server, and then adds them to the IONA Administrator Web
Console display. A simplified overview is shown in Figure 6.

This is a typical MBean implementation, where the MBean uses the
functionality of other application objects (in this case, the management wrapper)
to provide the management capability. The management wrapper performs the
core management tasks (for example, gaining access to the MBean server, and
registering the MBean with the MBean server).

 public BusinessSessionManager
(fnbba.BusinessSessionManagerDelegate myImpl){

 this.myImpl = myImpl;

 try { myName = new
 ObjectName("FNBMiddleTier:name=BusinessSessionManager");
 }
 catch (Exception j) {}

 mgmtWrapper = ManagementWrapper.instance
("FNBMiddleTier:name=FNBMiddleTier");

 mgmtWrapper.addMBean(this, myName);
 }

 public int getNumberOfOpenSessions()
 { return myImpl.openSessions(); }

 public void remove ()
 { mgmtWrapper.removeMBean (myName);}
}

25

CHAPTER 2 | Instrumenting CORBA Java Applications
Figure 6: Bank Application Overview

Mgmt
Wrapper
Tellers

MBean
Bob

MBean Server

MBean
Sue

FNB Business Architecture
Session Mngr

FNB Java Application

Teller
Session

Bob

IONA Administrator

Teller
Session

Sue
 26

Step 3—Implementing your MBeans
Management wrapper
implementation

The ManagementWrapper.instance() method that creates the MBean is defined
as a static class method. This is because only one wrapper is required by each
domain displayed by IONA Administrator. For example, Figure 5 on page 18
shows the FNBMiddleTier node, which has a FNBMiddleTier MBean domain.
Multiple wrappers representing multiple domains can be stored in an array of
management wrappers. For example, you could add ATM support, which would
use a separate management wrapper to manage the ATM sessions. For more
information on MBean domain names, see “Identifying MBeans”.

The management wrapper code and the standard management tasks that it
performs are explained in the sections that follow.

Identifying MBeans An ObjectName must be a unique name in the MBean server. It includes an
MBean domain name, separated from a list of name and value pairs by a colon.
These name value pairs can be of any type or value. The syntax is:

domain-name:name1=value1,name2=value2,...

The object name used in the BusinessSessionManager example represents the
following simple domain and name-value pair:

FNBMiddleTier:name=BusinessSessionManager

Further information For detailed information about the ObjectName class, see Sun’s JMX Reference
Implementation Javadoc. This is available along with the source code from:
http://java.sun.com/products/JavaManagement

For another Java example, see the “Example object name” on page 28. This
shows an MBean object name that specifies additional name-value pairs. This
enables you to display more information in the IONA Administrator Web
Console.

Note: The MBean domain name is not related to an Orbix configuration or
location domain. This is purely a namespace for MBeans only.
27

http://java.sun.com/products/JavaManagement

CHAPTER 2 | Instrumenting CORBA Java Applications
Step 4—Gaining Access to an MBean Server

Overview After defining and implementing your MBeans, you must gain access to an
MBean Server. In the FNB example application, the MBean server is accessed
by the management wrapper object. The management wrapper object performs
the same tasks for different MBean implementations.

This section includes the following:

• “Loading the IONA management plugin”.

• “Accessing the MBean server”.

• “IT_IIOPAdaptorServer object”.

• “Specifying an MBean object name”.

Loading the IONA management
plugin

You must first ensure that the IONA management plugin (it_mgmt) is specified
by your orb_plugins configuration variable in the appropriate configuration
scope.

For example, the following settings are taken from the FNB configuration file:

FNBMiddleTier{
 orb_plugins = ["it_mgmt", "iiop_profile", "giop", "iiop"];
};

FNBMainframe {
 orb_plugins = ["it_mgmt", "iiop_profile", "giop", "iiop"];
};

Note: You must explicitly load the IONA management plugin (it_mgmt) for
CORBA Java applications.

Note: You must ensure that all settings are made in correct configuration
scope (for example, FNBMiddleTier). Do not add the it_mgmt plugin to the
orb_plugins variable in the global configuration scope.
 28

Step 4—Gaining Access to an MBean Server
Accessing the MBean server The following code extract from the ManagementWrapper class shows how its
constructor method accesses the default MBean server:

IT_IIOPAdaptorServer object In the ManagementWrapper class, the IT_IIOPAdaptorServer object is used to
provide a reference to the MBean server. When you have accessed the default
MBeanServer using the getMBeanServer() method, you can then register your
MBeans with the MBean server.

For detailed reference information about IT_IIOPAdaptorServer, see the
Management Javadoc.

 private ManagementWrapper (String ConfigDomainName) {

 adaptorServer =
(IT_IIOPAdaptorServer)com.iona.management.jmx_iiop.IT_Dynamic
Loading.getDefaultIIOPAdaptorServer();

 try {
 managedObjName = new ObjectName(ConfigDomainName);
 mBeanServer = adaptorServer.getMBeanServer();

 } catch (Exception ex) {
 System.out.println("Unexpected exception while registering

iBankMBean: " + ex);
 }

 myConfigDomain = new String (ConfigDomainName);

 processMBean =com.iona.management.jmx_iiop.IT_DynamicLoading.
 getProcessObjectName();
 }
29

CHAPTER 2 | Instrumenting CORBA Java Applications
Specifying an MBean object name The ConfigDomainName parameter passed to ManagementWrapper() specifies
the MBean object name used by the management wrapper, and which is
displayed in IONA Administrator as an MBean object. For example, the
middle-tier fnbba server uses the following object name:

FNBMiddleTier:name=FNBMiddleTier

For more information, see “Identifying MBeans” on page 27.

The Process MBean The process MBean is the starting point for navigation through a sever in the
IONA Administrator Web Console. In the console, application MBeans are
displayed as nodes that are added to the process MBean in the navigation tree.

The ManagementWrapper obtains the process MBean’s object name using the
getProcessObjectName() method. This standard JMX call obtains the process
MBean that will be used later to add the application MBean to the IONA
Administrator display. For more information, see “Creating parent-child
relationships” on page 33.

Note: The ConfigDomainName parameter is not related to the Orbix
configuration or location domain. This is an MBean ObjectName domain is
purely a namespace for MBeans only.
 30

Step 5—Registering your MBeans
Step 5—Registering your MBeans

Overview After gaining access to the MBean server, you can then register your MBeans
with the MBean server. Registering MBeans enables them to be monitored and
controlled using IONA Administrator. This section includes the following:

• “Example MBean registration”.

• “addMBean() implementation”.

• “Registering MBeans”.

• “Creating parent-child relationships”.

Example MBean registration The following FNB example from the BusinessSession class first creates a
MBean for a bank teller session, and then registers it with the MBean server. The
MBean is registered using the management wrapper’s addMBean() method:

public BusinessSession (fnbba.BusinessSessionDelegate myImpl,
 String SessionName) {
 this.myImpl = myImpl;

 mgmtWrapper = ManagementWrapper.instance
("FNBMiddleTier:name=FNBMiddleTier");

 try {
 String t =new String ("FNBMiddleTier:name=" + SessionName);
 myName = new ObjectName(t);
 }
 catch (Exception j) {}

 mgmtWrapper.addMBean(this, myName);
 }
31

CHAPTER 2 | Instrumenting CORBA Java Applications
addMBean() implementation The addMBean() method is implemented in the ManagementWrapper class as
follows:

Registering MBeans You can register MBean objects using either of the following approaches:

• Create the MBean object manually, and then register it with the MBean

server. If you choose this approach, you must use the new() constructor

and registerMBean() method.

• Create and register your MBean with the MBean server, using the

createMBean() constructor. This registers the MBean automatically.

The FNB example uses the MBean server’s registerMBean() method to
register the MBean. The registerMBean() method takes two parameters:

• The MBean object instance (mbean in this example).

• An ObjectName, which is used to identify the MBean. The object name in

this example is mbeanName. For more information on object names, see

“Identifying MBeans” on page 27.

public boolean addMBean (java.lang.Object mbean, ObjectName
mbeanName)

 {
 System.out.println ("Registering mbean...");

 try {
 ObjectName tmpArray [] = new ObjectName [1];
 tmpArray [0] = mbeanName;

 mBeanServer.registerMBean(mbean, mbeanName);

adaptorServer.createParentChildRelation(processMBean,tmpArray
);
 }
 catch (Exception j) {
 System.err.println ("Exception in registering MBean " + j

);
 return false;
 }
 return true;
}

 32

Step 5—Registering your MBeans
Creating parent-child
relationships

The createParentChildRelation() method adds the MBean to the Process
MBean. This is the starting point for navigation through a sever in the IONA
Administrator Web Console. The createParentChildRelation() method
takes two parameters:

• The parent MBean ObjectName.

• The child MBean ObjectName.

For more information on the Process MBean and how it is displayed by IONA
Administrator, see Chapter 3.
33

CHAPTER 2 | Instrumenting CORBA Java Applications
Step 6—Unregistering your MBeans

Overview You might wish to unregister an MBean in response to an administrator’s
interaction with the system. For example, if an bank teller session is closed, it
would be appropriate to unregister the corresponding BusinessSessionMBean.
This ensures that the MBean will no longer be displayed as part of the
application that is being managed. This section includes the following:

• “Example MBean unregistration”.

• “The unregisterMBean() method”.

Example MBean unregistration To unregister an MBean, use the MBean server’s unregisterMBean() method.
In the FNB application, the unregisterMBean() method is called by the
management wrapper’s removeMBean() method. The following code extract is
taken from the BusinessSession class:

The removeMBean() method is implemented in the management wrapper class
as follows:

The unregisterMBean() method When the account’s MBean has been unregistered, using the
unregisterMBean() method, it is no longer displayed by the IONA
Administrator Web Console. All parent-child relationships between MBeans
created using the createParentChildRelation() method are also removed.

The unregisterMBean() method takes an MBean object name as a parameter.
For more information, see “MBean object names” on page 22.

 public void remove ()
 {
 mgmtWrapper.removeMBean (myName);
 }

public boolean removeMBean (ObjectName mbean) throws Exception
 {
 mBeanServer.unregisterMBean (mbean);
 return true;
 }
}

 34

Step 7—Connecting MBeans Together
Step 7—Connecting MBeans Together

Overview Your application is displayed in the IONA Administrator Web Console as a
series of related or connected MBeans, which can be monitored by
administrators.

This section explains how to connect MBeans together. There are two different
approaches:

• “Connecting MBeans using a get() method”.

• “Connecting MBeans using the createParentChildRelation() method”.

Connecting MBeans using a get()
method

To connect two MBeans together using a get() method, you must create MBean
methods that return MBean ObjectNames. For example, in the FNB application
the AccountMgr MBean must be connected with the active CreditCard MBeans.
The AccountMgrMBean interface declares the following get() method for the
ActiveCreditCards attribute:

public ObjectName[] getActiveCreditCards();

This method returns an array of MBean object names for the associated credit
card accounts. If this method returns object names that are already registered
MBean names, these MBeans are displayed in the ActiveCreditCards attribute
of the CreditCard MBean.

By using methods that return ObjectNames, you will see hyperlinks displayed in
the details view on the right of the console. You can use these hyperlinks to
navigate between managed objects like they are web pages. The navigation tree
on the left is not affected.
35

CHAPTER 2 | Instrumenting CORBA Java Applications
Connecting MBeans using the
createParentChildRelation()
method

Using the get() method, hyperlinks between MBeans are displayed in the
details view, on the right of the console. Alternatively, you can use
createParentChildRelation() method to connect two MBeans together. This
enables MBeans to appear as children of others in the tree view, on the left of the
console.

The createParentChildRelation() method takes the parent and child MBeans
as parameters, and is defined as follows:

public boolean createParentChildRelation(ObjectName parentObjName,
ObjectName[] childObjNames) throws
com.iona.common.management.relation.RelationServiceException

For an example of using this method, see “addMBean() implementation” on
page 32
 36

Monitoring MBean Statistics
Monitoring MBean Statistics

Overview Optionally, you can also monitor statistics from MBeans in your own
applications. The it_mbean_monitoring performance logging plug-in enables
you to periodically harvest statistics associated with MBean attributes. This
section includes the following:

• “MBean monitoring”.

• “Configuration steps”.

• “Programming steps”.

MBean monitoring The IT_MBeanMonitoring IDL interface provides the support for monitoring
MBean statistics. This interface is defined as follows:

module IT_MBeanMonitoring
 {

 const string MANAGEMENT_MBEAN_MONITORING_INITIAL_REF =
 "IT_MBeanMonitoringRegistration";

 // Interface exceptions.
 exception MBeanNotFound {};
 exception MBeanAttributeNotFound {};
 exception MBeanAttributeInvalidType {};

 // IT_MBeanMonitoring::MBeanMonitoringRegistration
 //
 // An interface which provides a means to
 // monitor and log statistics about mbeans
 // registered with the management service.

37

CHAPTER 2 | Instrumenting CORBA Java Applications
When the it_mbean_monitoring plug-in is included in your orb_plugins list,
an initial reference is registered for the IT_MBeanMonitoringRegistration
interface.

When you resolve on your application MBean, the IT_MBeanMonitoring API
can be used to switch on, or turn off, monitoring of an application MBean.
Statistics for user monitored MBeans will then appear in the performance logs.

Configuration steps You must ensure that the it_mbean_monitoring plug-in is included in your
orb_plugins list.

In addition, the following Orbix JAR file must be included on your classpath:

Programming steps This example assumes that you already have an MBean with an attribute that
you want to be sampled and logged. For example, the MBean might track the
memory currently being used by the process. The programming steps are as
follows:

1. Import the following package:

 local interface MBeanMonitoringRegistration
 {
 void monitor_attribute(
 in string object_name,
 in string attribute_name,
 in string alias) raises (MBeanNotFound,
 MBeanAttributeNotFound, MBeanAttributeInvalidType);

 void cancel_monitor(
 in string object_name,
 in string attribute_name,
 in string alias) raises (MBeanNotFound);
 };

};

$IT_PRODUCT_DIR/lib/./art/java_management_logging/1.2/perf_logging.jar

import com.iona.management.logging.IT_MBeanMonitoring.MBeanMonitoringRegistration;
 38

Monitoring MBean Statistics
2. To register your MBean with the it_mbean_monitoring plug-in, you must

first resolve on the MBean monitoring initial reference:

3. You can then register the attribute to be monitored by specifying your

MBean details to monitor_attribute():

The mbean_friendly_name is an alternative alias that will also appear in

the log file.

Further information For more details on Orbix performance logging, see the Orbix Management
User’s Guide.

// Resolve initial reference for MBeanMonitoringRegistration object.
MBeanMonitoringRegistration mbeanMonitoringRegistration = (MBeanMonitoringRegistration)

orb.resolve_initial_references(IT_MBeanMonitoringRegistration);

// Turn on monitoring for mbean attribute.
mbeanMonitoringRegistration.monitor_attribute("mbean_name","attribute

name,"mbean_friendly_name");
39

CHAPTER 2 | Instrumenting CORBA Java Applications
 40

CHAPTER 3

Displaying
CORBA Java
Applications
This chapter explains how to display CORBA applications in the
IONA Administrator Web Console in more detail. It explains the
concept of the Process MBean, how to add MBeans to the
navigation tree, and how to customize your icons.

In this Chapter This chapter contains the following sections:

Displaying MBeans page 42

Adding Application MBeans to the Tree page 44

Customizing your Application MBean Icons page 46
41

CHAPTER 3 | Displaying CORBA Java Applications
Displaying MBeans

Overview This section explains how MBeans are displayed by IONA Administrator. It
includes the following:

• “IONA Administrator Web Console”.

• “The Process MBean”.

• “Example Process MBean”.

IONA Administrator Web
Console

The IONA Administrator Web Console is shown in Figure 7. This example
shows the managed attributes and operations for the FNB AccountManager
object. The attributes and operations displayed correspond to those declared in
“Step 2—Defining your MBeans” on page 19.

Figure 7: Account Manager Example
 42

Displaying MBeans
The Process MBean “Step 4—Gaining Access to an MBean Server” on page 25 shows how the
IT_IIOPAdaptorServer object is used to access the default MBean server.
When the IT_IIOPAdaptorServer instance is created, the IONA Administrator
Web Console creates an entry in the navigation tree. This entry represents the
Process MBean, the first-level MBean that is exposed. The

Process MBean is the starting point for navigation through an application in the
IONA Administrator Web Console.

Example Process MBean In Figure 8, the selected Process MBean in the navigation tree is
FNBMiddleTier. The MBean’s object name is displayed as:

DefaultDomain:type=Process,name=FNBMiddleTier,
Server=FNBMiddleTier,Domain=DefaultDomain,cascaded=FNBMiddleTier

The Process MBean has associated default attributes, displayed in the details
panel (for example, process type, uptime, host, and so on).

Figure 8: Bank Process MBean
43

CHAPTER 3 | Displaying CORBA Java Applications
Adding Application MBeans to the Tree

Overview To display your application MBeans in the navigation tree of the IONA
Administrator Web Console, you must create a parent-child relationship
between Process MBean and your application MBean.

To create parent-child relationships between your MBeans, use the
createParentChildRelation() method. This section includes the following:

• “Creating a parent-child relationship”.

• “The createParentChildRelation() method”.

Creating a parent-child
relationship

When create parent-child relationships your MBeans will be displayed as
children of the Process MBean in the navigation tree, and as attributes in the
details panel. Figure 8 shows the FNBMiddleTier Process MBean in the
navigation tree, and its child MBeans listed details pane (for example, the
BusinessSessionManager MBean).

The following code example shows how the addMBean() method is
implemented in the ManagementWrapper class. This method calls the
createParentChildRelation() method:

public boolean addMBean (java.lang.Object mbean, ObjectName
mbeanName)

 {
 System.out.println ("Registering mbean...");

 try {
 ObjectName tmpArray [] = new ObjectName [1];
 tmpArray [0] = mbeanName;

 mBeanServer.registerMBean(mbean, mbeanName);

 44

Adding Application MBeans to the Tree
The createParentChildRelation()
method

The createParentChildRelation() method takes two parameters:

• The parent MBean ObjectName (in this case, the Process MBean).

• The child MBean ObjectName (in this case, an array of MBeans).

 adaptorServer.createParentChildRelation(processMBean,tmpArray);
 }
 catch (Exception j) {
 System.err.println ("Exception in registering MBean " + j

);
 return false;
 }
 return true;
}

Note: MBeans must first be registered in order for them to appear when
added to the Process MBean. For details of how to register MBeans, see “Step
5—Registering your MBeans” on page 31.
45

CHAPTER 3 | Displaying CORBA Java Applications
Customizing your Application MBean Icons

Overview By default, when you add an new MBean, it is displayed using a default blue
MBean icon. You can direct IONA Administrator to use your own custom icons
for your application MBeans.

The FNB example uses the default icons, and does not use custom icons. The
examples in this section are taken from a demo application named iBank. The
iBank example uses a bank icon to represent a ManagediBank MBean, and a cash
icon to represent a ManagediBankAccountMBean MBean.

This section explains the following:

• “Changing the admin.war file”.

• “Changing the admin.war file”.

• “Accessing your custom icons”.

Changing the admin.war file You must first update the contents of the management web console by changing
the admin.war file. The admin.war file can be found in the following directory:

<install-dir/asp/version/etc/admin/webapps

Under this directory, create a new directory called admin. Unjar admin.war into
this directory, for example, using the following commands:

When you have changed the admin.war file you can then edit the
image_mapping.properties file.

Note: You may want to make a backup copy of admin.war before removing
it.

cd admin
jar xvf ../admin.war
rm ../admin.war
 46

Customizing your Application MBean Icons
Updating your image mapping file To use custom icons, you must update your image_mapping.properties file.
This file is stored in your resources directory:

For example, the image_mapping.properties file lists all the iBank MBeans;
and for each MBean there are several entries. The following entries are for
Banking Servers type, which contains the ManagediBank MBean:

These entries specify the images for a small icon (16x16), a larger icon (32x32),
the text displayed for the icon, and its type or group (BankingServer).

In the first three entries in this example, the first part of the property name
denotes the classname of the MBean. For example,
"examples.ejb.management.ibank.ManagediBank".

In the remaining entries, the first part of the property name denotes the type of
the property (for example, BankingServer). This is the type in which the
MBean is grouped and displayed in the console.

UNIX <install-dir>/etc/opt/iona/domains/my-domain/resources

Windows <install-dir>\etc\domains\my-domain\resources

Type = BankingServer
examples.ejb.management.ibank.ManagediBank.small =
 resources/images/bank16.gif
examples.ejb.management.ibank.ManagediBank.large =
 resources/images/bank32.gif
examples.ejb.management.ibank.ManagediBank.text = "iBank"
BankingServer.small=bank16.gif
BankingServer.large=bank32.gif
BankingServer.text=Banking Server
BankingServer.type=Banking Servers
47

CHAPTER 3 | Displaying CORBA Java Applications
Accessing your custom icons To access your new icons, simply copy them into your resources/images
subdirectory.

When you are happy with the results you, may want to jar your .war file again.
You can do this from within the admin directory, for example, using the
following command:

You must clear out the classloading cache to see your changes take effect. You
can do this by stopping the management service and removing the contents of
the cache, for example, as follows:

rm -rf <install-dir>/var/mydomain/dbs/mgmt/cache/CJMP/*

jar cvf ../admin.war .
cd ..
rm -rf admin
 48

Part III
CORBA C++ Management

In this part This part contains the following chapters:

Instrumenting CORBA C++ Applications page 51

CHAPTER 4

Instrumenting
CORBA C++
Applications
This chapter explains how to use the Orbix C++ Management API
to enable an existing CORBA C++ application for management. It
uses the CORBA instrumented_plugin demo as an example.

In this chapter This chapter contains the following sections:

Step 1—Identifying Tasks to be Managed page 52

Step 2—Defining your MBeans page 56

Step 3—Implementing your MBeans page 62

Step 4—Initializing the Management Plugin page 76

Step 5—Creating your MBeans page 78

Step 6—Connecting MBeans Together page 80

Monitoring MBean Statistics page 84
51

CHAPTER 4 | Instrumenting CORBA C++ Applications
Step 1—Identifying Tasks to be Managed

Overview Before adding management code to an application, you must decide on the tasks
in your application that you wish to be managed by a system administrator. Only
then should you start thinking about adding management instrumentation code
to your existing application. This section includes the following:

• “Existing functionality”.

• “New management tasks”.

• “Planning your programming steps”.

• “Location of the management code”.

Existing functionality The instrumented_plugin example adds management capability to an existing
CORBA C++ application. This is a simple "Hello World" application, where the
client application reads the server’s object reference from a file.

For details of how to run the instrumented plugin application, see the
README_CXX.txt file in the following Orbix directory:

install-dir\asp\version\demos\corba\pdk\instrumented_plugin

New management tasks The new management instrumentation code added to instrumented_plugin
application enables administrators to perform the following additional tasks:

• Monitor the status of the Hello server (active or inactive).

• Monitor the number of times that the client reads the server’s object

reference.

• Set a hello text message.

• Invoke a weather forecast with specified text values.

• Shutdown the Hello server.

Administrators can perform these tasks using the IONA Administrator Console,
shown in Figure 9.
 52

Step 1—Identifying Tasks to be Managed

Planning your programming steps When you have identified your management tasks, you should think carefully
about how exactly you wish to add the new management code to your existing
application. For example, how much of the new code you will add to existing
files, and how much will be in new files.

In the instrumented_plugin example, the instrumentation code is part of the
service and is initialized when the service is initialized. For larger applications,
you might wish to keep new instrumentation files in a separate directory.

Figure 9: Instrumented Plugin in IONA Administrator
53

CHAPTER 4 | Instrumenting CORBA C++ Applications
This chapter explains how Orbix C++ management code was added to the
instrumented_plugin application, and shows the standard programming steps.
For example, defining and implementing your MBeans, and defining
relationships between MBeans.

Location of the management code You should first decide where you wish to store your new management code. All
source code for the instrumented_plugin application is stored in the following
directory:

install-dir\asp\version\demos\corba\pdk\instrumented_plugin\

The management code for the CORBA C++ server is stored in the following
directory:

...\instrumented_plugin\cxx_server

The following files are discussed in detail in this chapter

• hello_mbean.h

• hello_mbean.cxx

• hello_world_impl.cxx

For larger applications, it is advised that you to store your management code in a
separate management directory. This will make your application more modular,
and easier to understand.

Instrumented plugin overview Figure 10 shows the main components of the instrumented_plugin
application. In this simple example, there is only one C++ MBean, the
HelloBean.

Most of the key management programming tasks in this example are performed
in the HelloWorld server implementation (hello_world_impl.cxx). For
example, management initialization, creating the MBean, and displaying
MBeans in the navigation tree of the console. The server implementation
interacts with the MBean implementation to perform these tasks.

Note: When instrumenting CORBA C++ servers, you do not need to make
any changes to the CORBA IDL. You can enable your application for
management simply by adding new MBean instrumentation code to your
CORBA C++ implementation files.
 54

Step 1—Identifying Tasks to be Managed
Figure 10: Instrumented Plugin Application Overview

HelloWorld
Client

HelloWorld
Server

HelloMBean

Instrumented Plugin C++ Application

IONA Administrator

HelloWorld
plugin
55

CHAPTER 4 | Instrumenting CORBA C++ Applications
Step 2—Defining your MBeans

Overview When you have planned which parts of your application need to be managed,
you can then define MBeans to satisfy your management objectives. This section
shows how to define an example MBean header file for the
instrumented_plugin application. This section includes the following:

• “Managed Entities and MBeans”.

• “Rules for MBean declarations”.

• “Example MBean declaration”.

• “Example private description”.

• “Further information”.

Managed Entities and MBeans The C++ version of the Orbix management API is based around the concept of a
Managed Entity. This is similar to the JMX MBeans that are used by Java
Programmers. A managed entity acts as a handle to your application object, and
enables the object to be managed. The terms managed entity and MBean are
used interchangeably in this document.

The Orbix C++ Management API is defined in CORBA IDL (Interface
Definition Language). For full details of the Orbix Management API, see the
Orbix Management IDLdoc.

Rules for MBean declarations The following rules apply for C++ MBeans:

• Each MBean object must implement the declaration defined for it in a C++

header file (in this example, hello_mbean.h).

• The following two operations must be declared and implemented:

♦ get_mgmt_attribute()

♦ set_mgmt_attribute()

(although their implementation may be empty). These are the only two

operations for getting and setting all MBean attributes. The name of the

attribute is passed as a parameter, and the operation determines whether to

get or set the attribute.
 56

Step 2—Defining your MBeans
• The invoke_method() operation must also be declared and implemented

(although its implementation may be empty).

You must declare all these methods in the MBean header file, and then
implement them in the corresponding MBean implementation file (in this
example, hello_mbean.cxx).

Example MBean declaration The header file for the instrumented_plugin application is hello_mbean.h. It
includes the following Hello MBean declaration:

Example 1: Hello MBean Declaration

#ifndef _HELLO_MBEAN_H_
#define _HELLO_MBEAN_H_

#include <omg/orb.hh>
#include <orbix_pdk/instrumentation.hh>
#include <orbix/corba.hh>
#include <it_dsa/string.h>
#include <it_dsa/list.h>
#include <it_ts/mutex.h>

class HelloWorldImpl;

class HelloMBean :

1 public virtual IT_Mgmt::ManagedEntity,
 public virtual IT_CORBA::RefCountedLocalObject {

 public:

 HelloMBean (
 HelloWorldImpl * orb_info,
 const char * name
);

 virtual ~HelloMBean();

2 IT_Mgmt::ManagedEntityIdentifier managed_entity_id()
 IT_THROW_DECL((CORBA::SystemException));

3 char* entity_type() IT_THROW_DECL((CORBA::SystemException));
57

CHAPTER 4 | Instrumenting CORBA C++ Applications
This hello_mbean.h code example is described as follows:

1. The HelloMBean class implements the IT_Mgmt::ManagedEntity IDL

interface. All entities that need to be managed must derive from this

interface. The C++ implementation of the IT_Mgmt::ManagedEntity IDL

interface is equivalent to a Java MBean.

2. The IT_Mgmt::ManagedEntityIdentifier managed_entity_id()

operation is used to uniquely identify the managed entity.

3. The entity_type() operation returns a string indicating the type. This

demo uses HelloMBean, which is the C++ classname. The naming service,

for example, uses NamingMBean.

4 CORBA::Any* get_mgmt_attribute(const char* key)
 IT_THROW_DECL((CORBA::SystemException,
 IT_Mgmt::AttributeUnknown));

 void set_mgmt_attribute(
 const char* key, const CORBA::Any & new_value)
 IT_THROW_DECL((CORBA::SystemException,
 IT_Mgmt::AttributeUnknown, IT_Mgmt::AttributeReadOnly,
 IT_Mgmt::AttributeValueInvalid));

 CORBA::Any* invoke_method (const char* method_name,
 const IT_Mgmt::ArgumentSeq& in_parameters,
 IT_Mgmt::ArgumentSeq_out out_parameters)
 IT_THROW_DECL((CORBA::SystemException,
 IT_Mgmt::MethodUnknown, IT_Mgmt::InvocationFailed));

5 IT_Mgmt::ManagedEntityDescription get_description()
 IT_THROW_DECL((CORBA::SystemException));

 struct HelloParam
 {
 const char *name;
 const char *type;
 const char *description;
 };

 typedef IT_List<HelloParam> HelloParamList;
.
.
.

Example 1: Hello MBean Declaration
 58

Step 2—Defining your MBeans
4. The get_mgmt_attribute(), set_mgmt_attribute(), and

invoke_method() operations all use the CORBA::Any type to access

managed entity attributes and operations.

The CORBA::Any type enables you to specify values that can express any

IDL type. For detailed information about the CORBA::Any type, see the

CORBA Programmer’s Guide (C++ version).

5. The get_description() operation returns an XML description of the

managed entity. This is used to display information about the managed

entity in the IONA Administrator Web Console. This is described in more

detail in the next topic.

Example private description The hello_mbean.h file also includes the following privately declared
information:

Example 2: HelloMBean Private Declaration

private:

1 struct HelloAttribute
 {
 const char * name;
 const char * type;
 const char * description;
 IT_Bool access;
 };
 typedef IT_List<HelloAttribute> HelloAttributeList;

 struct HelloOperation
 {
 const char * name;
 const char * return_type;
 const char * description;
 HelloParamList params;
 };

 typedef IT_List<HelloOperation> HelloOperationList;

 void initialize_attributes();

 void initialize_operations();

 IT_String get_attributes_XML() const;
59

CHAPTER 4 | Instrumenting CORBA C++ Applications
 IT_String get_attribute_XML(HelloAttribute att) const;

 IT_String get_operations_XML() const;

 IT_String get_operation_XML(HelloOperation op) const;

 IT_String get_param_XML(HelloParam param) const;

2 IT_Bool validate_create_forecast_parameters(
 const IT_Mgmt::ArgumentSeq& in_parameters)
 throw (IT_Mgmt::InvocationFailed);

 void throw_wrong_num_parameters()
 throw (IT_Mgmt::InvocationFailed);

 void throw_invalid_parameter(const char *param_name)
 throw (IT_Mgmt::InvocationFailed);

 void throw_bad_temp_range(const char *paramName,
 CORBA::Short minVal, CORBA::Short maxVal)
 throw (IT_Mgmt::InvocationFailed);

 void throw_max_must_be_greater_than_min()
 throw (IT_Mgmt::InvocationFailed);

 HelloAttributeList m_attribute_list;
 HelloOperationList m_operation_list;
 IT_String m_identity;
 IT_String m_domain;
 IT_String m_class_name;
 IT_String m_type;
 IT_String m_name;
 IT_Mutex m_mutex;

 // Attribute names
 const char* m_hit_count_name;
 const char* m_children_name;
 const char* m_message_name;

 // Operation names
 const char* m_create_forecast_name;

 HelloWorldImpl* m_hello;
};

Example 2: HelloMBean Private Declaration
 60

Step 2—Defining your MBeans
1. This privately declared information is used to display descriptions of

managed attributes and operations in the IONA Administrator Web

Console. For example, the initialize_attributes() function uses a

HelloAttribute structure to define a single attribute. An instance of this

attribute and anything else that you declare are pushed on to a a list. This

list is then processed by get_attributes_XML() and by

get_attribute_XML() to generate the description for display in the IONA

Administrator Web Console.

2. These operations all throw IT_Mgmt management exceptions. You also can

specify custom management exceptions. For more information, see

“Throw the managed exceptions” on page 70.

Further information C++ Managed entities are similar to the JMX MBeans that are used by Java
Programmers. For information about Java MBeans see:

http://java.sun.com/products/JavaManagement/index.html
61

http://java.sun.com/products/JavaManagement/index.html

CHAPTER 4 | Instrumenting CORBA C++ Applications
Step 3—Implementing your MBeans

Overview After defining your MBean interfaces, you must provide an MBean
implementation. MBean implementation objects interact with the application
they are designed to manage, enabling monitoring and control.

For example, this section shows the interaction between an MBean
(HelloMBean) and the CORBA server implementation object
(HelloWorldImpl). This section shows example code extracts from the MBean
implementation file (hello_mbean.cxx). It includes the following steps:

1. “Write the MBean constructor and destructor”.

2. “Get the managed entity ID and entity type”.

3. “Get the managed attributes”.

4. “Set the managed attributes”

5. “Invoke the managed operations”.

6. “Throw the managed exceptions”.

7. “Get the MBean description”.

Write the MBean constructor and
destructor

The HelloMBean constructor and destructor are shown in the following extract
from hello_mbean.cxx:

Example 3: MBean Constructor and Destructor

1 HelloMBean::HelloMBean (
 HelloWorldImpl * hello, const char *name) : m_hello(0)
{
 assert(hello != 0);
 hello->_add_ref();
 m_hello = hello;
 m_domain = m_hello->get_domain_name();
 m_class_name = "com.iona.hello.HelloMBean";
 m_type = "HelloMBean";
 m_name = "HelloService";
 62

Step 3—Implementing your MBeans
This code extract is explained as follows:

1. The HelloMBean() constructor specifies all the key information used to

identify the MBean, and display it in the IONA Administrator Web

Console. For example, this includes its domain name, a Java-style class

name (com.iona.hello.HelloMBean), and a managed entity ID. For

information about registering MBeans as managed entities, see “Creating

an example MBean” on page 78.

2. The HelloMBean() destructor. For information about unregistering

MBeans as managed entities, see “Removing your MBeans” on page 79.

Get the managed entity ID and
entity type

The managed entity ID and type uniquely identify the managed entity. The
following code extract shows how to obtain the managed entity ID and its type:

 m_identity = "DefaultDomain";
 //m_identity = m_domain.c_str();
 m_identity += ":type=HelloMBean,name=";
 m_identity += name;
 initialize_attributes();
 initialize_operations();
}

2 HelloMBean::~HelloMBean()
{
 m_hello->_remove_ref();
}

Example 3: MBean Constructor and Destructor

Example 4: Managed Entity ID and Type

1 IT_Mgmt::ManagedEntityIdentifier HelloMBean::managed_entity_id()
IT_THROW_DECL((CORBA::SystemException))

{
 return CORBA::string_dup(m_identity.c_str());
}

2 char* HelloMBean::entity_type()
 IT_THROW_DECL((CORBA::SystemException))
{
 return CORBA::string_dup(m_type.c_str());
}

63

CHAPTER 4 | Instrumenting CORBA C++ Applications
This code extract is explained as follows:

1. The ID returned by managed_entity_id() is a string that includes the

domain, type, and name, at minimum. These are the keys that are looked

up in the MBean by the management service. The actual values are decided

by the developer.

This example uses the DefaultDomain for the first string (the domain).

You can specify your own domain name instead. The rest of the name

value pairs follow, and are separated by commas, for example:

"DefaultDomain:type=HelloMBean,name=HelloService"

2. The entity_type() operation returns a string indicating the type of the

managed entity. The entity type is formatted in a dotted Java-style

notation, which can be used by the IONA Administrator Web Console to

display icons for an MBean. For example, this demo uses the

com.iona.hello.HelloMBean type.

Get the managed attributes The following code extract shows how to get managed MBean attributes:

Note: The domain name part of the managed entity ID is not related to
an Orbix configuration or location domain. It is a namespace for
managed entities only. For example, in a banking application your IDs
might use a BankingApp domain.

Example 5: Getting Managed Attributes

1 CORBA::Any* HelloMBean::get_mgmt_attribute(const char* key)
IT_THROW_DECL((CORBA::SystemException,
IT_Mgmt::AttributeUnknown))

 {
2 CORBA::Any_var retval = new CORBA::Any;

 if (strcmp(key, m_hit_count_name) == 0)
 {
 IT_Locker<IT_Mutex> lock(m_mutex);
 *retval <<= m_hello->total_hits();
 return retval._retn();
 }

3 else if (strcmp(key, m_children_name) == 0)
 {
 IT_Locker<IT_Mutex> lock(m_mutex);
 HelloWorldImpl::HelloWorldList children =
 m_hello->get_children();
 64

Step 3—Implementing your MBeans
This code extract is explained as follows:

1. The get_mgmt_attribute() operation is the only operation used for

getting all MBean attributes. The name of the attribute is passed in and the

operation determines whether to get the attribute.

2. The CORBA::Any type enables you to specify values that can express any

IDL type. For details of managed attribute types, see “Permitted types” on

page 66. For detailed information about the CORBA::Any type, see the

Orbix CORBA Programmer’s Guide (C++ version).

3. This get_mgmt_attribute() implementation supports complex attribute

types by also getting the attributes of child MBeans.

In the instrumented_plugin example, the children attribute of the Hello

MBean gets a list of references to child MBeans.

 CORBA::AnySeq children_seq(children.size());
 children_seq.length(children.size());
 HelloWorldImpl::HelloWorldList::iterator iter =
 children.begin();

 for (int i = 0; i < children.size();i++, iter++)
 {
 IT_Mgmt::ManagedEntity_var mbean = (*iter)->get_mbean();
 children_seq[i] <<= mbean.in();
 }
 *retval <<= children_seq;
 return retval._retn();
 }

 else if (strcmp(key, m_message_name) == 0)
 {
 IT_Locker<IT_Mutex> lock(m_mutex);
 CORBA::String_var message = m_hello->get_message();
 *retval <<= message.in();
 return retval._retn();
 }
 else
 {
 throw new IT_Mgmt::AttributeUnknown();
 }
}

Example 5: Getting Managed Attributes
65

CHAPTER 4 | Instrumenting CORBA C++ Applications
For example, in Figure 9 on page 53, the Children attribute and its child

MBeans (hello3 and hello2) are displayed in the IONA Administrator Web

Console.

Permitted types The following basic types are permitted for managed
attributes:

CORBA::Short
CORBA::Long
CORBA::LongLong
CORBA::Float
CORBA::Double
CORBA::Boolean
CORBA::Octet
CORBA::String,
CORBA::WString.

In addition, you can use ManagedEntity references to connect one Managed
Entity and another. These will be displayed as hyperlinks on the web console.
Finally, you can use CORBA::AnySeq to create lists of any of the permitted types
already listed.

Set the managed attributes The following code extract shows how to set managed MBean attributes:

Example 6: Setting Managed Attributes

1 void HelloMBean::set_mgmt_attribute(const char* key,
 const CORBA::Any & new_value

IT_THROW_DECL((CORBA::SystemException,
 IT_Mgmt::AttributeUnknown, IT_Mgmt::AttributeReadOnly,

IT_Mgmt::AttributeValueInvalid))
 {
 if (strcmp(key, m_message_name) == 0)
 {
 CORBA::TypeCode_var tc(new_value.type());
 CORBA::TCKind kind = tc->kind();

 if (kind != CORBA::tk_string)
 {
 throw new IT_Mgmt::AttributeValueInvalid();
 }
 const char *new_message;
 new_value >>= new_message;
 66

Step 3—Implementing your MBeans
This code extract is explained as follows:

1. The set_mgmt_attribute() operation is the only operation used for

setting all MBean attributes. The name of the attribute is passed in and the

operation determines whether to set the attribute.

The CORBA::Any type enables you to specify values that can express any

IDL type. For detailed information about the CORBA::Any type, see the

Orbix CORBA Programmer’s Guide (C++ version).

2. The set_message() function enables you to set the text message for the

hello greeting that is returned by the Hello object. For example, Figure 9

on page 53, shows an example text greeting for the Message attribute in

the IONA Administrator Web Console.

2 m_hello->set_message(new_message);
 }
 else if (strcmp(key, m_hit_count_name) == 0)
 {
 throw new IT_Mgmt::AttributeReadOnly();
 }
 else if (strcmp(key, m_children_name) == 0)
 {
 throw new IT_Mgmt::AttributeReadOnly();
 }
 else
 {
 throw new IT_Mgmt::AttributeUnknown();
 }
}

Example 6: Setting Managed Attributes
67

CHAPTER 4 | Instrumenting CORBA C++ Applications
Invoke the managed operations The following code extract shows how to invoke MBean operations:

Example 7: Invoke Operations

1 CORBA::Any* HelloMBean::invoke_method(const char* method_name,
 const IT_Mgmt::ArgumentSeq& in_parameters,
 IT_Mgmt::ArgumentSeq_out out_parameters)
 IT_THROW_DECL((CORBA::SystemException,IT_Mgmt::MethodUnknown
 IT_Mgmt::InvocationFailed))
 {
 CORBA::Any_var retval = new CORBA::Any;
 if (strcmp(method_name,m_create_forecast_name) == 0)
 {
 IT_Locker<IT_Mutex> lock(m_mutex);

 out_parameters = new IT_Mgmt::ArgumentSeq(0);
 out_parameters->length(0);

 CORBA::String_var forecast;
 CORBA::Short min_temp, max_temp;
 const char *prospect;

 if (in_parameters.length() != 3)
 {
 throw_wrong_num_parameters();
 }

2 validate_create_forecast_parameters(in_parameters);

 in_parameters[0].value >>= min_temp;
 if (min_temp < COLDEST_MIN_TEMP || min_temp >
 HOTTEST_MAX_TEMP)
 {
 throw_bad_temp_range("minimumTemperature",
 COLDEST_MIN_TEMP,HOTTEST_MAX_TEMP);
 }

 in_parameters[1].value >>= max_temp;
 if (max_temp < COLDEST_MIN_TEMP || max_temp >
 HOTTEST_MAX_TEMP)
 {
 throw_bad_temp_range("maxmimumTemperature",
 COLDEST_MIN_TEMP, HOTTEST_MAX_TEMP);
 }
 68

Step 3—Implementing your MBeans
This code extract is explained as follows:

1. The invoke_method() operation is the only operation used for invoking all

MBean operations. The name of the operation is passed in and the

invoke_method() operation determines whether to invoke the operation.

The CORBA::Any type enables you to specify values that can express any

IDL type. For detailed information about the CORBA::Any type, see the

Orbix CORBA Programmer’s Guide (C++ version).

2. In this example, the validate_create_forecast_parameters() function

checks that the weather forecast values entered are of the correct type

(short or string). The rest of the code checks that the temperature values

entered do not fall outside the range of the predeclared const values:

 in_parameters[2].value >>= prospect;
 if (max_temp < min_temp)
 {
 throw_max_must_be_greater_than_min();
 }

3 m_hello->set_forecast_parameters(
 min_temp,
 max_temp,
 prospect
);

 forecast = m_hello->get_forecast();
 *retval <<= forecast.in();
 return retval._retn();
 }
 else
 {
 throw new IT_Mgmt::MethodUnknown();
 }
}

Example 7: Invoke Operations

static const CORBA::Short COLDEST_MIN_TEMP = -100;
static const CORBA::Short HOTTEST_MAX_TEMP = 150;
69

CHAPTER 4 | Instrumenting CORBA C++ Applications
3. The set_forecast_parameters() and get_forecast() functions enable

you to create and invoke your own weather forecast. Figure 9 on page 53,

shows example parameter values for the CreateForecast operation in the

IONA Administrator Web Console. This operation takes the following

parameters:

♦ min_temp (short)

♦ max_temp (short)

♦ prospect (string)

Throw the managed exceptions Before throwing management exceptions, you must first declare them in your
MBean implementation file, for example:

The following code shows two example functions that are used to throw
management exceptions:

static const char *BAD_TEMP_RANGE_EX =
 "com.iona.demo.pdk.instrumentedplugin.BadTempRange";
static const char *MAX_MUST_BE_GREATER_THAN_MIN_EX =
 "com.iona.demo.pdk.instrumentedplugin.MaxMustBeGreaterThanMin";
static const char *INVALID_PARAM_EX_PARAM_NAME = "paramName";
static const char *BAD_TEMP_RANGE_EX_PARAM_NAME = "paramName";
static const char *BAD_TEMP_RANGE_EX_MIN_VAL = "minVal";
static const char *BAD_TEMP_RANGE_EX_MAX_VAL = "maxVal";

Example 8: Throwing Management Exceptions

void HelloMBean::throw_bad_temp_range(
 const char *paramName,
 CORBA::Short minVal,
 CORBA::Short maxVal) throw (IT_Mgmt::InvocationFailed)
{
 IT_Mgmt::InvocationFailed ex;
 IT_Mgmt::InvocationError err;
 IT_Mgmt::PropertySeq_var properties = new
 IT_Mgmt::PropertySeq(3);
 properties->length(3);
 properties[0].name = BAD_TEMP_RANGE_EX_PARAM_NAME;
 properties[0].value <<= paramName;
 properties[1].name = BAD_TEMP_RANGE_EX_MIN_VAL;
 properties[1].value <<= minVal;
 properties[2].name = BAD_TEMP_RANGE_EX_MAX_VAL;
 properties[2].value <<= maxVal;
 70

Step 3—Implementing your MBeans
Custom exception messages You can specify custom messages using the
exception-ia.properties file, which is located in the following directory:

<install-dir>\e2a\etc\domains\sample-domain\resources

For example, the entry in this file for the throw_bad_temp_range() operation is
as follows:

 err.id = (const char *) BAD_TEMP_RANGE_EX;
 err.error_params = properties;
 ex.error_details = err;

 throw IT_Mgmt::InvocationFailed(ex);
}

void HelloMBean::throw_max_must_be_greater_than_min()
 throw (IT_Mgmt::InvocationFailed)
{
 IT_Mgmt::InvocationFailed ex;
 IT_Mgmt::InvocationError err;

 err.id = (const char *) MAX_MUST_BE_GREATER_THAN_MIN_EX;
 ex.error_details = err;

 throw IT_Mgmt::InvocationFailed(ex);
}

Example 8: Throwing Management Exceptions

com.iona.demo.pdk.instrumentedplugin.BadTempRange=Bad
temperature range entered for parameter %paramName%. The
temperature must be between %minVal% and %maxVal%.

Figure 11: Instrumented Plugin Custom Exception
71

CHAPTER 4 | Instrumenting CORBA C++ Applications
Get the MBean description The following code shows how the MBean descriptions are obtained for display
in the IONA Administrator Web Console:

Example 9: Getting the MBean Description

1 IT_Mgmt::ManagedEntityDescription HelloMBean::get_description()
IT_THROW_DECL((CORBA::SystemException))

{
 IT_String xml_str =
 "<?xml version=\"1.0\"?>"
 "<?rum_dtd version=\"1.0\" ?>"
 "<mbean>"
 "<class_name>";
 xml_str += m_class_name;
 xml_str +=
 "</class_name>"
 "<domain>";
 xml_str += m_domain;
 xml_str +=
 "</domain>"
 "<type>";
 xml_str += m_type;
 xml_str +=
 "</type>"
 "<identity>";
 xml_str += m_identity;
 xml_str +=
 "</identity>"
 "<description>";
 xml_str += "Hello Service";
 xml_str +=
 "</description>";
 xml_str += get_attributes_XML();
 xml_str += get_operations_XML();
 xml_str += "</mbean>";

 return CORBA::string_dup(xml_str.c_str());
}

2 void HelloMBean::initialize_attributes()
{
 m_hit_count_name = "TotalHelloCalls";

 HelloAttribute total_hits =
 {
 72

Step 3—Implementing your MBeans
 m_hit_count_name, "long",
 "The total number of successful calls to
 HelloWorld::request_number() "
 "since the Hello Service started",
 IT_FALSE
 };
 m_attribute_list.push_back(total_hits);

 m_children_name = "Children";

 HelloAttribute children =
 {
 m_children_name, "list",
 "The list of children of this MBean",
 IT_FALSE
 };

 m_attribute_list.push_back(children);

 m_message_name = "Message";

 HelloAttribute message =
 {
 m_message_name, "string",
 "Message that this object emits",
 IT_TRUE
 };

 m_attribute_list.push_back(message);
}

3 IT_String HelloMBean::get_attributes_XML() const
{
 IT_String xml_str("");

 HelloAttributeList::const_iterator iter =
 m_attribute_list.begin();
 while (iter != m_attribute_list.end())
 {
 xml_str += get_attribute_XML(*iter);
 iter++;
 }
 return xml_str;
}

Example 9: Getting the MBean Description
73

CHAPTER 4 | Instrumenting CORBA C++ Applications
IT_String HelloMBean::get_attribute_XML
 (HelloAttribute att) const
{
 IT_String xml_str =
 "<managed_attribute>"
 "<name>";
 xml_str += att.name;
 xml_str +=
 "</name>"
 "<type>";
 xml_str += att.type;
 xml_str +=
 "</type>"
 "<description>";
 xml_str += att.description;
 xml_str +=
 "</description>"
 "<property>"
 "<name>Access</name>"
 "<value>";
 xml_str += att.access ? "ReadWrite" : "Read";
 xml_str +=
 "</value>"
 "</property>"
 "</managed_attribute>";
 return xml_str;
}
.
.
.

Example 9: Getting the MBean Description
 74

Step 3—Implementing your MBeans
This code extract is explained as follows:

1. The get_description() operation returns an XML string description of

the managed entity, which is displayed by IONA Administrator. This

description normally includes the managed entity’s attributes and

operations (with parameters and return types). This string must be exact in

order to parse correctly. This code example includes the class_name,

domain and type attributes in the description.

2. The rest of the functions are local to this particular implementation, and are

not defined in IDL. The initialize_attributes() function uses a

locally-defined structure (HelloAttribute) to define a single attribute.

HelloAttribute is declared in hello_mbean.h. An instance of this

attribute and anything else that you declare are pushed on to a list,

including child MBeans.

3. The HelloAttributeList is then processed by get_attributes_XML()

and by get_attribute_XML() to generate the description for display in the

IONA Administrator Web Console.

There are similar functions for displaying the operations and their

parameters in the console (get_operation_XML(),

get_operations_XML() and get_param_XML()).

For full details of the mbean.dtd file used to display the XML string description,
see Appendix I on page 87.
75

CHAPTER 4 | Instrumenting CORBA C++ Applications
Step 4—Initializing the Management Plugin

Overview After defining and implementing your MBeans, you should then initialize the the
management plugin in your server implementation. The instrumented_plugin
example adds the additional instrumentation code to the existing server
implementation file.

Alternatively, for a larger application, you could create a separate
instrumentation class, which is called by your server implementation.

Example management
initialization

The following code extract is also from the server implementation file
(hello_world_impl.cxx). It shows how the management plugin is initialized in
the instrumented_plugin application:

Example 10: Management initialization

void HelloWorldImpl::initialize_management() IT_THROW_DECL(())
 {

1 if (!m_config->get_string("domain_name", m_domain_name))
 {
 cerr << "Couldn't get domain_name from config" << endl;
 m_domain_name = "<unknown domain>";
 }
 try
 {
 CORBA::Object_var obj;
 CORBA::String_var process_object_name;

2 obj = m_orb->resolve_initial_references("IT_Instrumentation");
 IT_Mgmt::Instrumentation_var instrument;
 instrument = IT_Mgmt::Instrumentation::_narrow(obj);

 if (CORBA::is_nil(instrument))
 {
 throw IT_String("Instrumentation reference is nil");
 }
.
.
.

 76

Step 4—Initializing the Management Plugin
This hello_world_impl.cxx code extract is described as follows:

1. The get_string() operation obtains the managed entity domain name.

For more information, see “Get the managed entity ID and entity type” on

page 63.

2. Like any other Orbix service, the management service must be initialized

by your server implementation. The resolve_initial_references()

operation obtains a reference to the management instrumentation interface,

IT_Instrumentation. This is then narrowed to the

IT_Mgmt::Instrumentation type.

A managed entity must be registered with the instrumentation interface to

be displayed in the IONA Administrator Web Console.
77

CHAPTER 4 | Instrumenting CORBA C++ Applications
Step 5—Creating your MBeans

Overview After initializing the management service plugin, you can then create your
MBeans in your server implementation. This section includes the following:

• “Creating an example MBean”.

• “Removing your MBeans”.

Creating an example MBean The following is a continuation of the example in the last section, taken from the
server implementation file. It shows how the MBean is created for the
instrumented_plugin application:

Example 11: Creating an MBean

void HelloWorldImpl::initialize_management()
 IT_THROW_DECL(())
{
 .
 .
 .
 // Create and register the Hello MBean
 IT_Mgmt::ManagedEntity_var hello_mbean_ref;

 1 hello_mbean_ref = m_hello_mbean_servant =
 new HelloMBean(this,m_name.in());
 instrument->new_entity(hello_mbean_ref);

 if (m_is_parent)
 {

 2 //Get the Process ObjectName
 process_object_name = instrument->get_process_object_name();

3 // Add the MBean as a child of the Process MBean.
 instrument->create_parent_child_relationship(
 process_object_name,
 hello_mbean_ref->managed_entity_id()
);
 }
.
.
}

 78

Step 5—Creating your MBeans
This hello_world_impl.cxx code extract is described as follows:

1. You must create the MBean using the new() method, and register it as a

managed entity using the new_entity() operation.

2. This gets the string that specifies the process object. The process object is

displayed as the parent of the HelloMBean in the navigation tree of the

IONA Administrator Web Console. For more information about the

process name, see “The Process MBean” on page 80.

3. This creates a parent-child relationship between your MBean and the

Process MBean. The create_parent_child_relationship() operation

takes two parameters:

♦ The parent MBean name (in this case, the Process MBean).

♦ The child MBean name (in this case, a reference to the HelloMBean).

Creating a parent-child relationship adds the MBean to the navigation tree

of the console.

Removing your MBeans You might wish to remove an MBean in response to an administrator’s
interaction with the system. For example, in a banking application, if an account
is deleted from the bank, it would be appropriate to remove the corresponding
MBean for the account.

Removing an MBean unregisters it as a managed entity. This ensures that the
MBean will no longer be displayed as part of the managed application.

To remove an MBean, use the remove_entity() operation. When the account’s
MBean has been removed, it is no longer displayed in the IONA Administrator
Web Console. The remove_entity() operation takes the managed entity name
as a parameter.

The instrumented_plugin application is a simple example that does not
remove any MBeans.

Further information For full details of the Orbix Management API, see the Orbix Management
IDLdoc.
79

CHAPTER 4 | Instrumenting CORBA C++ Applications
Step 6—Connecting MBeans Together

Overview Applications are displayed in the IONA Administrator Web Console as a series
of related or connected MBeans, which can be monitored by administrators. This
section explains how to connect your application MBeans together.

The Process MBean The management service plugin creates a Process MBean when it is first loaded.
A Process MBean is the default starting point in the console for navigation
within a managed process. In the instrumented_plugin application, the
HelloMBean is a child of the Process MBean.

Figure 12 shows the Process MBean for the instrumented_plugin application.
The Process MBean has associated default attributes, displayed in the details
pane (for example, process type, time running, hostname, and so on).

Figure 12: Instrumented Plugin Process MBean
 80

Step 6—Connecting MBeans Together
Creating parent–child
relationships

Use the create_parent_child_relationship() operation to connect two
MBeans together. This enables MBeans to appear as children of others in the
navigation tree on the left of the console.

“Creating an example MBean” on page 78 shows how to use this operation to
add your application MBean as a child of the Process MBean. In Example 12,
the add_child() function shows how to add further child MBeans created by
your application to the navigation tree.

Example 12: Creating Child MBeans

void HelloWorldImpl::add_child(HelloWorldImpl *child)
 IT_THROW_DECL(())
{
 // Lock mutex
 try
 {

1 CORBA::Object_var obj;
 obj = m_orb->resolve_initial_references("IT_Instrumentation");
 IT_Mgmt::Instrumentation_var instrument;
 instrument = IT_Mgmt::Instrumentation::_narrow(obj);

 if (CORBA::is_nil(instrument))
 {
 throw IT_String("Instrumentation reference is nil");
 }

 CORBA::String_var my_name, child_name;

2 my_name = m_hello_mbean_servant->managed_entity_id();

 IT_Mgmt::ManagedEntity_var childMBean = child->get_mbean();

 child_name = childMBean->managed_entity_id();

3 instrument->create_parent_child_relationship(
 my_name.in(),
 child_name.in()
);

81

CHAPTER 4 | Instrumenting CORBA C++ Applications
This hello_world_impl.cxx code extract is described as follows:

1. The resolve_initial_references() operation obtains a reference to the

management instrumentation interface, IT_Instrumentation. This is then

narrowed to the IT_Mgmt::Instrumentation type. All managed entities

must be registered with the instrumentation interface to be displayed in the

IONA Administrator Web Console.

2. The managed_entity_id() operation is used to uniquely identify the

managed entity.

3. The create_parent_child_relationship() operation takes the parent

MBean and the child MBean as parameters.

4. This adds the child MBean to the list of MBeans. These steps add the child

MBean to the tree for display in console. For example, Figure 13 shows a

child MBean for the instrumented_plugin application (in this example,

hello3).

4 m_children.push_front(child);
 }
 catch(IT_Mgmt::ManagementBindFailed& ex)
 {
 cerr << "Management bind failed: " << ex << endl;
 m_is_managed = IT_FALSE;
 }
 .
 .
 .
}

Example 12: Creating Child MBeans
 82

Step 6—Connecting MBeans Together
Figure 13: Instrumented Plugin Child MBean
83

CHAPTER 4 | Instrumenting CORBA C++ Applications
Monitoring MBean Statistics

Overview Optionally, you can also monitor statistics from MBeans in your own
applications. The it_mbean_monitoring performance logging plug-in enables
you to periodically harvest statistics associated with MBean attributes. This
section includes the following:

• “MBean monitoring”.

• “Programming steps”.

MBean monitoring The IT_MBeanMonitoring IDL interface provides the support for monitoring
MBean statistics. This interface is defined as follows:

module IT_MBeanMonitoring
 {

 const string MANAGEMENT_MBEAN_MONITORING_INITIAL_REF =
 "IT_MBeanMonitoringRegistration";

 // Interface exceptions.
 exception MBeanNotFound {};
 exception MBeanAttributeNotFound {};
 exception MBeanAttributeInvalidType {};

 // IT_MBeanMonitoring::MBeanMonitoringRegistration
 //
 // An interface which provides a means to
 // monitor and log statistics about mbeans
 // registered with the management service.

 84

Monitoring MBean Statistics
When the it_mbean_monitoring plug-in is included in your orb_plugins list,
an initial reference is registered for the IT_MBeanMonitoringRegistration
interface.

When you resolve on your application MBean, the IT_MBeanMonitoring API
can be used to switch on, or turn off, monitoring of an application MBean.
Statistics for user monitored MBeans will then appear in the performance logs.

Programming steps This example assumes that you already have an MBean with an attribute that
you want to be sampled and logged. For example, the MBean might track the
memory currently being used by the process. The programming steps are as
follows:

1. Include the following header files:

 local interface MBeanMonitoringRegistration
 {
 void monitor_attribute(
 in string object_name,
 in string attribute_name,
 in string alias) raises (MBeanNotFound,
 MBeanAttributeNotFound, MBeanAttributeInvalidType);

 void cancel_monitor(
 in string object_name,
 in string attribute_name,
 in string alias) raises (MBeanNotFound);
 };

};

#include <orbix_pdk/mbean_monitoring_registration.hh>
85

CHAPTER 4 | Instrumenting CORBA C++ Applications
2. To register your MBean with the it_mbean_monitoring plug-in, you

must first resolve on the MBean monitoring initial reference:

3. You can then register the attribute to be monitored by specifying your

MBean details in a call to monitor_attribute():

The mbean_friendly_name is an alternative alias that will also appear in

the log file.

Further information For more details on Orbix performance logging, see the Orbix Management
User’s Guide.

try {
 Object_var obj = orb->resolve_initial_references(

IT_MBeanMonitoring::MANAGEMENT_MBEAN_MONITORING_INITIAL_REF
);

 m_mbean_monitoring_registration =
 MBeanMonitoringRegistration::_narrow(obj);
 }
 catch(const ORB::InvalidName&)
 {
...

}

try {
 m_mbean_monitoring_registration->monitor_attribute(

"mbean_name", "attribute_name", "mbean_friendly_name");
 }
 catch (...)
 {
 // do nothing.
 }
 86

APPENDIX I

MBean Document
Type Definition
This appendix lists the contents of the mbean.dtd file used to
generate the display of the IONA Administrator Web Console.

In this appendix This appendix contains the following section:

The MBean Document Type Definition File page 88
87

APPENDIX I | MBean Document Type Definition
The MBean Document Type Definition File

Overview The mbean.dtd file used to generate the XML used in the display of the IONA
Administrator Web Console. For example, the get_description() operation
returns an XML string description of the managed entity, which is then
displayed by the console. This description normally includes the managed
entity’s attributes and operations (with parameters and return types).

mbean.dtd contents The contents of the mbean.dtd file is as follows:

<!-- MBean is the top level element -->
<!ELEMENT mbean (class_name, domain, identity, agent_id,

description, notification_listener*, notification_filter*,
notification_broadcaster*, constructor*, operation*,
managed_attribute*)>

<!-- IMMEDIATE MBEAN PROPERTIES -->
<!ELEMENT class_name (#PCDATA)>
<!ELEMENT domain (#PCDATA)>
<!ELEMENT identity (#PCDATA)>
<!ELEMENT agent_id (#PCDATA)>

<!-- COMMON ELEMENT TYPES -->

<!-- type = void | byte| char | double | float | long | longlong
| short | boolean | string | list | ref | UNSUPPORTED -->

<!ELEMENT type (#PCDATA)>

<!ELEMENT name (#PCDATA)>
<!ELEMENT description (#PCDATA)>
<!ELEMENT param (name, type, description)>

<!-- NOTIFICATION details - note no recipients are shown for the
broadcasts -->

<!ELEMENT notification_listener EMPTY>
<!ELEMENT notification_filter EMPTY>
<!ELEMENT notification_broadcaster EMPTY>
 88

The MBean Document Type Definition File
<!-- CONSTRUCTORS -->
<!ELEMENT constructor (name, description, param*)>

<!-- OPERATIONS -->
<!ELEMENT operation (name, type, description, param*)>

<!-- MANAGED ATTRIBUTES -->
<!ELEMENT managed_attribute (name, type, description,

property*)>

<!-- PROPERTIES -->
<!-- name = Access -->
<!ELEMENT property (name, value)>
<!-- value = ReadWrite | ReadOnly | INACCESSIBLE -->
<!ELEMENT value (#PCDATA)>
89

APPENDIX I | MBean Document Type Definition
 90

Glossary
Administration
All aspects of installing, configuring, deploying, monitoring, and managing a
system.

Application Server
A software platform that provides the services and infrastructure required to
develop and deploy middle-tier applications. Middle-tier applications perform the
business logic necessary to provide web clients with access to enterprise
information systems. In a multi-tier architecture, an application server sits beside
a web server or between a web server and enterprise information systems.
Application servers provide the middleware for enterprise systems.

CORBA
Common Object Request Broker Architecture. An open standard that enables
objects to communicate with one another regardless of what programming
language they are written in, or what operating system they run on.

Configuration
A specific arrangement of system elements and settings.

Controlling
The process of modifying the behavior of running software components, without
stopping them.

Details Pane
The display pane on the right hand side of the IONA Administrator Web Console
user interface.

Deployment
The process of distributing a configuration or system element into an environment.

Domain
An abstract grouping of managed server processes and hosts within a physical
location. Processes within a domain share the same configuration and distributed
application infrastructure. A domain is equivalent to an Orbix configuration
domain.
91

GLOSSARY
Event
An occurrence of interest, which is emitted from a managed entity.

Host
Generic term used to describe a computer, which runs parts of a distributed
application.

Installation
The placement of software on a computer. Installation does not include
Configuration unless a default configuration is supplied.

Instrumentation
Code instructions that monitor specific components in a system (for example,
instructions that output logging information on screen.) When an application
contains instrumentation code, it can be managed using a management tool such
as IONA Administrator.

Invocation
A request issued on an already active software component.

JRE
Java Runtime Environment. A subset of the Java Development Kit required to run
Java programs. The JRE consists of the Java Virtual Machine, the Java platform
core classes and supporting files. It does not include the compiler or debugger.

JMX
Java Management Extensions. Sun’s standard for distributed management
solutions. JMX provides tools for building distributed, Web-based solutions for
managing devices, applications and service-driven networks.

Managed Application
An abstract description of a distributed application, which does not rely on the
physical layout of its components.

Managed Entity
A generic manageable component (C++ or Java). Managed entities include
managed domains, servers, containers, modules, and beans.
 92

GLOSSARY
A managed entity acts as a handle to your application object, and enables the
object to be managed. The terms managed entity and MBean are used
interchangeably in this document.

Managed Server
A set of replicated managed processes. A managed process is a physical process
which contains an ORB and which has loaded the management plugin. The
managed server can be an EJB application server, CORBA server, or any other
instrumented server that can be managed by IONA Administrator.

Managed Process.
A physical process which contains an ORB and which has loaded the management
plugin.

Management
To direct or control the use of a system or component. Sometimes used in a more
general way meaning the same as Administration.

MBean

A JMX term used to describe a generic manageable object.

An MBean acts as a handle to your application object, and enables the object to
be managed. The terms managed entity and MBean are used interchangeably in
this document.

Monitoring
Observing characteristics of running instances of software components.
Monitoring does not change a system.

Navigation Tree
The tree on the left hand side of the IONA Administrator Web Console.

Node
A node represents a host machine on which the product is installed. The
management service and managed servers are deployed on nodes.

ORB
CORBA Object Request Broker. This is the key component in the CORBA
architecture model. It acts as the middleware between clients and servers.
93

GLOSSARY
Process
This is the operating system execution environment in which system and
application programs execute. A Java Virtual Machine (JVM) is a special type of
process that runs Java programs. A process that is not running Java programs is
referred to as a standard or C++ process.

Process MBean
The is the first-level MBean that is exposed for management of an application. It
is the starting point for navigation through an application in the IONA
Administrator Web Console

Resource
This represents shared data or services provided by a server. Examples of J2EE
resources include JDBC, JNDI, JMS, JCA, and so on. Examples of CORBA
resources include naming service, implementation repository, trading service,
notification service, etc.

Server
This is a collection of one or more processes on the same or different nodes that
execute the same programs. The processes in a server are tightly coupled, and
provide equivalent service. This means that the calling client does not care which
process ends up servicing the request.

Runtime Administration, Runtime Management
Encompasses the running, monitoring, controlling and stopping of software
components.

SNMP
Simple Network Management Protocol. The Internet standard protocol developed
to manage nodes on an IP network. It can be used to manage and monitor all sorts
of devices (for example, computers, routers, and hubs)

Starting
The process of activating an instance of a deployed software component.

Stopping
The process of deactivating a running instance of a software component.
 94

GLOSSARY
Web Services
Web services are XML-based information exchange systems that use the Internet
for direct application-to-application interaction. These systems can include
programs, objects, messages, or documents.

XML
Extensible Markup Language. XML is a simpler but restricted form of Standard
General Markup Language (SGML). The markup describes the meaning of the
text. XML enables the separation of content from data. XML was created so that
richly structured documents could be used over the web. See
http://www.w3.org/XML/
95

http://www.w3.org/XML/

GLOSSARY
 96

Index

C
CFR 3
CORBA, definition 91
createMBean() method 32
createParentChildRelation() method 44
create_parent_child_relationship() operation 79
custom exception messages 71

D
domains

definition 91
introduction 2

dynamic MBeans 7

E
EJB, definition 92
entity_type() operation 58

G
get_attributes_XML() function 61
get_description() operation 59
get_forecast() function 70
get_mgmt_attribute() operation 56
get_string() operation 77

H
HelloAttributeList 75
HelloMBean() constructor 63
HelloMBean() destructor 63
HelloMBean class 58
HelloWorldImpl object 62

I
iBank example 18, 54
IIOP 3
initialize_attributes() function 61
instrumentation, definition 92
instrumented_plugin example 52
invoke_method() operation 57
IONA Administrator

Web Console 2
IONA Configuration Explorer 3
iona_services.management process 2
IT_IIOPAdaptorServer object 29
IT_MBeanMonitoring 37, 84
it_mbean_monitoring 37, 84
IT_Mgmt::Instrumentation type 77

J
JMX

definition 92
introduction 5

M
Managed Entity 9
managed_entity_id() operation 58
management instrumentation

programming steps 7
management service, overview 2
mbean.dtd file 75
MBeans

creating 31
defining interfaces 19
domain name 27
dynamic 7
identifying 27
implementing 24, 62
introduction 5
monitoring C++ 84
monitoring Java 37
object names 22
Process MBean 33, 43, 80, 94
registering 31
standard 7
unregistering 11, 34
viewing in IONA Administrator 42

MBeans, definition 93
MBean server

gaining access to 28
introduction 5

monitor_attribute() 39, 86
97

INDEX
N
new() method 32
new_entity() operation 79

O
ObjectName parameter 27
object names, for MBeans 22
ORB, definition 93
Orbix Configuration Authority 4

P
performance logging 37
permitted attribute types, C++ 66
Process MBean 33, 43, 80, 94
programming steps

for management instrumentation 7

R
registerMBean() method 32
remove_entity() operation 79
resolve_initial_references() operation 77

S
set_forecast_parameters() function 70
set_message() function 67
set_mgmt_attribute() operation 56
SNMP, definition 94
standard MBeans 7

U
unregisterMBean() method 34

V
validate_create_forecast_parameters() function 69

W
Web Services, definition 95

X
XML, definition 95
 98

	List of Figures
	Preface
	Overview
	Introduction to Application Management
	Introduction to Orbix Management Tools
	Introduction to Java Management Extensions
	Introduction to the Orbix Management API
	Overview of Management Programming Tasks

	CORBA Java Management
	Instrumenting CORBA Java Applications
	Step 1—Identifying Tasks to be Managed
	Step 2—Defining your MBeans
	Step 3—Implementing your MBeans
	Step 4—Gaining Access to an MBean Server
	Step 5—Registering your MBeans
	Step 6—Unregistering your MBeans
	Step 7—Connecting MBeans Together
	Monitoring MBean Statistics

	Displaying CORBA Java Applications
	Displaying MBeans
	Adding Application MBeans to the Tree
	Customizing your Application MBean Icons

	CORBA C++ Management
	Instrumenting CORBA C++ Applications
	Step 1—Identifying Tasks to be Managed
	Step 2—Defining your MBeans
	Step 3—Implementing your MBeans
	Step 4—Initializing the Management Plugin
	Step 5—Creating your MBeans
	Step 6—Connecting MBeans Together
	Monitoring MBean Statistics

	MBean Document Type Definition
	The MBean Document Type Definition File

	Glossary
	Index

