
ORBIX
®

PROGRESS
®

TS Thread Library Reference
Version 6.3.5, July 2011

© 2011 Progress Software Corporation and/or its subsidiaries or affiliates. All rights
reserved.
These materials and all Progress® software products are copyrighted and all rights are
reserved by Progress Soft ware Corporation. The information in these materials is subject
to change without notice, and Progress Software Corporation assumes no responsibility for
any errors that may appear therein. The references in these materials to specific platforms
supported are subject to change.

Actional, Apama, Artix, Business Empowerment, Business Making Progress, DataDirect
(and design), DataDi rect Connect, DataDirect Connect64, DataDirect Technologies, Data-
Direct XML Converters, DataDirect XQuery, DataXtend, Dynamic Routing Architecture,
EdgeXtend, Empowerment Center, Fathom, Fuse Media tion Router, Fuse Message Broker,
Fuse Services Framework, IntelliStream, IONA, Making Software Work Together, Mind-
reef, ObjectStore, OpenEdge, Orbix, PeerDirect, POSSENET, Powered by Progress,
Pow erTier, Progress, Progress DataXtend, Progress Dynamics, Progress Business Empow-
erment, Progress Empowerment Center, Progress Empowerment Program, Progress
OpenEdge, Progress Profiles, Progress Results, Progress Software Business Making
Progress, Progress Software Developers Network, Progress Sonic, ProVision, PS Select,
Savvion, SequeLink, Shadow, SOAPscope, SOAPStation, Sonic, Sonic ESB, SonicMQ,
Sonic Orchestration Server, SpeedScript, Stylus Studio, Technical Empowerment, Web-
Speed, Xcalia (and design), and Your Software, Our Technology-Experience the Connec-
tion are registered trademarks of Progress Software Corporation or one of its affiliates or
subsidiaries in the U.S. and/or other countries. AccelEvent, Apama Dashboard Studio,
Apama Event Manager, Apama Event Modeler, Apama Event Store, Apama Risk Firewall,
AppsAlive, AppServer, ASPen, ASP-in-a-Box, BusinessEdge, Cache-Forward, CloudEdge,
DataDirect Spy, DataDirect SupportLink, Fuse, FuseSource, Future Proof, GVAC, High
Performance Integration, Object Store Inspector, ObjectStore Performance Expert, Open-
Access, Orbacus, Pantero, POSSE, ProDataSet, Progress Arcade, Progress CloudEdge,
Progress Control Tower, Progress ESP Event Manager, Progress ESP Event Modeler,
Progress Event Engine, Progress RFID, Progress RPM, PSE Pro, SectorAlliance,
SeeThinkAct, Shadow z/Services, Shadow z/Direct, Shadow z/Events, Shadow z/Presenta-
tion, Shadow Studio, SmartBrowser, SmartComponent, SmartDataBrowser, SmartDataOb-
jects, SmartDataView, SmartDialog, SmartFolder, Smart Frame, SmartObjects, SmartPanel,
SmartQuery, SmartViewer, SmartWindow, Sonic Business Integration Suite, Sonic Process
Manager, Sonic Collaboration Server, Sonic Continuous Availability Architecture, Sonic
Database Service, Sonic Workbench, Sonic XML Server, The Brains Behind BAM, Web-
Client, and Who Makes Progress are trademarks or service marks of Progress Software Cor-
poration and/or its subsidiaries or affiliates in the U.S. and other countries. Java is a
registered trademark of Oracle and/or its affiliates. Any other marks con tained herein may
be trademarks of their respective owners.

Third Party Acknowledgements:

Progress Orbix v6.3.5 incorporates Jakarata-struts 1.0.2 from the Apache Software Founda-
tion (http://www.apache.org). Such Apache Technology is subject to the following terms
and conditions: The Apache Soft ware License, Version 1.1 Copyright (c) 1999-2001 The
Apache Software Foundation. All rights reserved. Redistribution and use in source and

binary forms, with or without modification, are permitted provided that the following conditions are met: 1.
Redistributions of source code must retain the above copyright notice, this list of conditions and the follow-
ing disclaimer. 2. Redistributions in binary form must reproduce the above copy right notice, this list of
conditions and the following disclaimer in the documentation and/or other materials provided with the dis-
tribution. 3. The end-user documentation included with the redistribution, if any, must include the following
acknowledgment: "This product includes software developed by the Apache Software Foundation (http://
www.apache.org/)." Alternately, this acknowledgment may appear in the software itself, if and wherever
such third-party acknowledgments normally appear. 4. The names "The Jakarta Project", "Struts", and
"Apache Software Foundation" must not be used to endorse or promote products derived from this software
without prior written permission. For written permission, please contact apache@apache.org. 5. Products
derived from this software may not be called "Apache", nor may "Apache" appear in their name, without
prior written permission of the Apache Software Foundation. THIS SOFTWARE IS PROVIDED ``AS IS''
AND ANY EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MER CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
ARE DIS CLAIMED. IN NO EVENT SHALL THE APACHE SOFTWARE FOUNDATION OR ITS
CONTRIBU TORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEM-
PLARY, OR CONSEQUEN TIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCURE-
MENT OF SUB STITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
WHETHER IN CONTRACT, STRICT LIA BILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
THE POSSIBILITY OF SUCH DAMAGE. This software consists of voluntary contributions made by
many individuals on behalf of the Apache Soft ware Foun dation. For more information on the Apache
Software Foundation, please see <http://www.apache.org/>.

Progress Orbix v6.3.5 incorporates Jakarta-bcel 5.0 from the Apache Software Foundation (http://
www.apache.org). Such Apache Technology is subject to the following terms and conditions: The Apache
Software License, Version 1.1 Copy right (c) 2001 The Apache Software Foundation. All rights reserved.
Redistribution and use in source and binary forms, with or without modification, are permitted provided that
the following conditions are met: 1. Redistributions of source code must retain the above copyright notice,
this list of conditions and the following disclaimer. 2. Redistributions in binary form must reproduce the
above copyright notice, this list of conditions and the following disclaimer in the docu mentation and/or
other materials provided with the distribution. 3. The end-user documentation included with the redistribu-
tion, if any, must include the following acknowledgment: "This product includes software developed by the
Apache Software Foundation (http://www.apache.org/)." Alternately, this acknowledgment may appear in
the software itself, if and wherever such third-party acknowledgments normally appear. 4. The names
"Apache" and "Apache Software Foundation" and "Apache BCEL" must not be used to endorse or promote
products derived from this software with out prior written permission. For written permission, please con-
tact apache@apache.org. 5. Products derived from this software may not be called "Apache", "Apache
BCEL", nor may "Apache" appear in their name, without prior written permission of the Apache Software
Foundation. THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESSED OR IMPLIED WAR-
RANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTA-
BILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL
THE APACHE SOFTWARE FOUNDATION OR ITS CONTRIBUTORS BE LIABLE FOR ANY
DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
(INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
iii

TS Thread Library Reference
LOSS OF USE, DATA, OR PROFITS; OR BUSI NESS INTERRUPTION) HOWEVER CAUSED AND
ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. This software consists
of voluntary contributions made by many individuals on behalf of the Apache Software Founda tion. For
more information on the Apache Software Foundation, please see <http://www.apache.org/>.

Progress Orbix v6.3.5 incorporates Jakarat-regexp 1.2 from the Apache Software Foundation (http://
www.apache.org). Such Apache Technology is subject to the following terms and conditions: The Apache
Software License, Version 1.1 Copyright (c) 1999 The Apache Software Foundation. All rights reserved.
Redistribution and use in source and binary forms, with or without modification, are permitted provided that
the following conditions are met: 1. Redistributions of source code must retain the above copyright notice,
this list of conditions and the following disclaimer. 2. Redistributions in binary form must reproduce the
above copyright notice, this list of conditions and the following disclaimer in the documentation and/or
other materials provided with the distribution. 3. The end-user documentation included with the
redistri bution, if any, must include the following acknowledgment: "This product includes software devel-
oped by the Apache Software Foundation (http://www.apache.org/)." Alternately, this acknowledgment
may appear in the software itself, if and wherever such third-party acknowledgments normally appear. 4.
The names "The Jakarta Project", "Jakarta -Regexp", and "Apache Software Foundation" and "Apache
BCEL" must not be used to endorse or promote products derived from this software without prior written
permission. For written permission, please contact apache@apache.org. 5. Products derived from this soft-
ware may not be called "Apache", nor may "Apache" appear in their name, without prior written permission
of the Apache Software Foundation. THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY
EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DIS-
CLAIMED. IN NO EVENT SHALL THE APACHE SOFTWARE FOUNDATION OR ITS CONTRIBU-
TORS BE LIA BLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUB-
STITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUP-
TION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY
WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
DAMAGE. This software consists of voluntary contributions made by many individuals on behalf of the
Apache Software Foundation. For more information on the Apache Software Foundation, please see <http:/
/www.apache.org/>.

Progress Orbix v6.3.5 incorporates the Jakarta-log4j 1.2.6 from the Apache Software Foundation (http://
www.apache.org). Such Apache Technology is subject to the following terms and conditions: The Apache
Software License, Version 1.1 Copyright (c) 1999 The Apache Software Foundation. All rights reserved.
Redistribution and use in source and binary forms, with or without modification, are permitted provided that
the following conditions are met: 1. Redistributions of source code must retain the above copyright notice,
this list of conditions and the following disclaimer. 2. Redistributions in binary form must reproduce the
above copyright notice, this list of conditions and the following dis claimer in the documentation and/or
other materials provided with the distribution. 3. The end-user documentation included with the redistribu-
tion, if any, must include the following acknowledgment: "This product includes software developed by the
Apache Software Foundation (http://www.apache.org/)." Alternately, this acknowledgment may appear in
 iv

the software itself, if and wherever such third-party acknowledgments normally appear. 4. The names
"log4j" and "Apache Software Foundation" and "Apache BCEL" must not be used to endorse or promote
products derived from this software without prior written permission. For written permission, please con-
tact apache@apache.org. 5. Products derived from this software may not be called "Apache", nor may
"Apache" appear in their name, without prior written per mission of the Apache Software Foundation.
THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESSED OR IMPLIED WARRANTIES,
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND
FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
APACHE SOFTWARE FOUNDATION OR ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT,
INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUD-
ING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF
USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
THEORY OF LIABIL ITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUD ING
NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE,
EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. This software consists of voluntary
contributions made by many individuals on behalf of the Apache Software Foundation. For more informa-
tion on the Apache Software Foun dation, please see <http://www.apache.org/>.

Progress Orbix v6.3.5 incorporates Ant 1.5 from the Apache Software Foundation (http://www.apache.org).
Such technology is subject to the following terms and conditions: The Apache Software License, Version
1.1 Copyright (c) 2000-2002 The Apache Software Foundation. All rights reserved. Redistribution and use
in source and binary forms, with or without modification, are permitted provided that the following condi-
tions are met: 1. Redistributions of source code must retain the above copyright notice, this list of condi-
tions and the fol lowing disclaimer. 2. Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in the documentation and/or other materials pro-
vided with the distribution. 3. The end-user documentation included with the redistribution, if any, must
include the following acknowledgment: "This product includes software developed by the Apache Software
Foundation (http://www.apache.org/)." Alternately, this acknowledgment may appear in the software itself,
if and wherever such third-party acknowledgments normally appear. 4. The names "Ant" and "Apache Soft-
ware Foundation" and "Apache BCEL" must not be used to endorse or promote products derived from this
software without prior writ ten permission. For written permission, please contact apache@apache.org. 5.
Products derived from this software may not be called "Apache", nor may "Apache" appear in their name,
without prior written permission of the Apache Software Foundation. THIS SOFTWARE IS PROVIDED
``AS IS'' AND ANY EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
TO, THE IMPLIED WARRANTIES OF MER CHANTABILITY AND FITNESS FOR A PARTICULAR
PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE APACHE SOFTWARE FOUNDATION
OR ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PRO-
CUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
THE POSSIBILITY OF SUCH DAMAGE. This software consists of voluntary contri butions made by
many individuals on behalf of the Apache Software Foundation. For more information on the Apache Soft-
ware Foundation, please see <http://www.apache.org/>.
v

TS Thread Library Reference
Progress Orbix v6.3.5 incorporates Xalan-j 2.3.1 from the Apache Software Foundation (http://
www.apache.org). Such Apache Technology is subject to the following terms and conditions: The Apache
Soft ware License, Version 1.1. Copyright (c) 1999 The Apache Software Foundation. All rights reserved.
Redistribution and use in source and binary forms, with or without modification, are permitted provided that
the following conditions are met: 1. Redistributions of source code must retain the above copyright notice,
this list of conditions and the following disclaimer. 2. Redistributions in binary form must reproduce the
above copyright notice, this list of conditions and the following disclaimer in the documentation and/or
other materials provided with the distribution. 3. The end-user documentation included with the redistribu-
tion, if any, must include the following acknowledgment: "This product includes software developed by the
Apache Software Foundation (http://www.apache.org/)." Alternately, this acknowledgment may appear in
the software itself, if and wherever such third-party acknowledgments normally appear. 4. The names
"Xalan" and "Apache Software Foundation" and "Apache BCEL" must not be used to endorse or promote
products derived from this software without prior written permission. For written permission, please con-
tact apache@apache.org. 5. Products derived from this software may not be called "Apache", nor may
"Apache" appear in their name, without prior written permission of the Apache Software Foundation. THIS
SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESSED OR IMPLIED WARRANTIES, INCLUD-
ING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER CHANTABILITY AND FIT-
NESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE APACHE
SOFTWARE FOUNDATION OR ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THE-
ORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEG-
LIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE,
EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. This software consists of voluntary
contri butions made by many individuals on behalf of the Apache Software Foundation. For more informa-
tion on the Apache Software Foundation, please see <http://www.apache.org/>.

Progress Orbix v6.3.5 incorporates the Xerces-c++ 2.4 from the Apache Software Foundation (http://
www.apache.org). Such Apache Technology is subject to the following terms and conditions: The Apache
Software License, Version 1.1. Copyright (c) 1999-2001 The Apache Software Foundation. All rights
reserved. Redistribution and use in source and binary forms, with or without modification, are permitted
provided that the following conditions are met: 1. Redistributions of source code must retain the above cop-
yright notice, this list of conditions and the following disclaimer. 2. Redis tributions in binary form must
reproduce the above copyright notice, this list of conditions and the following disclaimer in the documenta-
tion and/or other materials provided with the distribution. 3. The end-user documentation included with the
redistribution, if any, must include the following acknowledgment: "This product includes software devel-
oped by the Apache Software Foundation (http://www.apache.org/)." Alternately, this acknowledgment
may appear in the software itself, if and wherever such third-party acknowledgments normally appear. 4.
The names "Xerces" and "Apache Software Foundation" and "Apache BCEL" must not be used to endorse
or promote products derived from this software without prior written permission. For written permission,
please contact apache@apache.org. 5. Products derived from this software may not be called "Apache", nor
may "Apache" appear in their name, without prior written permission of the Apache Software Foundation.
THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESSED OR IMPLIED WARRANTIES,
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANT ABILITY
AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
 vi

APACHE SOFTWARE FOUNDATION OR ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT,
INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUD-
ING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF
USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE,
EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. This software consists of voluntary
contributions made by many individuals on behalf of the Apache Software Founda tion. For more informa-
tion on the Apache Software Foundation, please see <http://www.apache.org/>.

Progress Orbix v6.3.5 incorporates xerces-j 2.5 from the Apache Software Foundation (http://
www.apache.org). Such Apache Technology is subject to the following terms and conditions: The Apache
Software License, Version 1.1. Copy right (c) 1999-2002 The Apache Software Foundation. All rights
reserved. Redistribution and use in source and binary forms, with or without modification, are permitted
provided that the following conditions are met: 1. Redistributions of source code must retain the above cop-
yright notice, this list of conditions and the following disclaimer. 2. Redistributions in binary form must
reproduce the above copyright notice, this list of conditions and the following disclaimer in the documenta-
tion and/or other materials provided with the distribution. 3. The end-user documentation included with the
redistribution, if any, must include the following acknowledgment: "This product includes software devel-
oped by the Apache Software Foundation (http://www.apache.org/)." Alternately, this acknowledgment
may appear in the software itself, if and wherever such third-party acknowledgments normally appear. 4.
The names "Xerces" and "Apache Software Foundation" must not be used to endorse or promote products
derived from this software without prior written permission. For written permission, please contact
apache@apache.org. 5. Products derived from this software may not be called "Apache", nor may "Apache"
appear in their name, without prior written permission of the Apache Software Foundation. THIS SOFT-
WARE IS PROVIDED ``AS IS'' AND ANY EXPRESSED OR IMPLIED WARRANTIES, INCLUDING,
BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
FOR A PARTIC ULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE APACHE SOFT-
WARE FOUNDATION OR ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCI-
DENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIA-
BILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE
OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. This software consists of voluntary contribu-
tions made by many individuals on behalf of the Apache Software Foundation. For more information on the
Apache Software Foundation, please see <http://www.apache.org/>.

Progress Orbix v6.3.5 incorporates the Tomcat 4.0.4 from the Apache Software Foundation (http://
www.apache.org). Such Apache Technology is subject to the following terms and conditions: The Apache
Software License, Version 1.1. Copyright (c) 1999, 2000 The Apache Software Foundation. All rights
reserved. Redistribution and use in source and binary forms, with or without modification, are permitted
provided that the following conditions are met: 1. Redistributions of source code must retain the above cop-
yright notice, this list of conditions and the following disclaimer. 2. Redis tributions in binary form must
reproduce the above copyright notice, this list of conditions and the following disclaimer in the documenta-
tion and/or other materials provided with the distribution. 3. The end-user documentation included with the
vii

TS Thread Library Reference
redistribution, if any, must include the following acknowledgment: "This product includes software devel-
oped by the Apache Software Foundation (http://www.apache.org/)." Alternately, this acknowledgment
may appear in the software itself, if and wherever such third-party acknowledgments normally appear. 4.
The names "The Jakarta Project", "Tomcat" and "Apache Software Foundation" must not be used to endorse
or promote products derived from this software without prior written permission. For written permission,
please contact apache@apache.org. 5. Products derived from this software may not be called "Apache", nor
may "Apache" appear in their name, without prior written permission of the Apache Software Foundation.
THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESSED OR IMPLIED WARRANTIES,
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANT ABILITY
AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
APACHE SOFTWARE FOUNDATION OR ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT,
INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUD-
ING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF
USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE,
EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. This software consists of voluntary
contributions made by many individuals on behalf of the Apache Software Foundation. For more informa-
tion on the Apache Software Foun dation, please see <http://www.apache.org/>.

Progress Orbix v6.3.5 incorporates MCPP 2.6.4 from the MCPP Project. Such technology is subject to the
following terms and conditions: Copyright (c) 1998, 2002-2007 Kiyoshi Matsui kmatsui@t3.rim.or.jp All
rights reserved. This software including the files in this directory is provided under the following license.
Redistribu tion and use in source and binary forms, with or without modification, are permitted provided
that the following conditions are met: 1. Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer. 2. Redistributions in binary form must reproduce
the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or
other materials provided with the distribution. THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS
IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDI-
RECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
BUT NOT LIMITED TO, PROCURE MENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THE-
ORY OF LIABILITY, WHETHER IN CON TRACT, STRICT LIABILITY, OR TORT (INCLUDING
NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE,
EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

Progress Orbix v6.3.5 incorporates Xalan c++ v1.7 from The Apache Software Foundation. Such technol-
ogy is subject to the following terms and conditions: The Apache Software License, Version 1.1 Copyright
(c) 1999-2004 The Apache Software Foundation. All rights reserved. Redistribution and use in source and
binary forms, with or without modification, are permitted provided that the following conditions are met: 1.
Redistributions of source code must retain the above copyright notice, this list of conditions and the follow-
ing disclaimer. 2. Redis tributions in binary form must reproduce the above copyright notice, this list of con-
ditions and the follow ing disclaimer in the documentation and/or other materials provided with the
distribution. 3. The end-user documentation included with the redistribution, if any, must include the follow-
 viii

ing acknowledgment: "This product includes software developed by the Apache Software Foundation (http:/
/www.apache.org/)." Alternately, this acknowledgment may appear in the software itself, if and wherever
such third-party acknowledgments normally appear. 4. The names "Xalan" and "Apache Software Founda-
tion" must not be used to endorse or promote prod ucts derived from this software without prior written per-
mission. For written permission, please contact apache@apache.org. 5. Products derived from this software
may not be called "Apache", nor may "Apache" appear in their name, without prior written permission of
the Apache Software Foundation. THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESSED
OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
OF MERCHANTABILITY AND FITNESS FOR A PARTICU LAR PURPOSE ARE DISCLAIMED. IN
NO EVENT SHALL THE APACHE SOFTWARE FOUNDATION OR ITS CONTRIBUTORS BE LIA-
BLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
==
This software consists of voluntary contributions made by many individuals on behalf of the Apache Soft-
ware Foundation and was originally based on software copyright (c) 1999, Lotus Development Corpora-
tion., http://www.lotus.com. For more information on the Apache Software Foundation, please see <http://
www.apache.org/>.

Progress Orbix v6.3.5 incorporates Tcl 8.4.15 from Regents of the University of California, Sun Microsys-
tems, Inc., Scriptics Corporation, and other parties. Such technology is subject to the following terms and
conditions: This software is copyrighted by the Regents of the University of California, Sun Microsystems,
Inc., Scriptics Corporation, and other parties. The following terms apply to all files associated with the soft-
ware unless explicitly disclaimed in individual files. The authors hereby grant permission to use, copy, mod-
ify, distribute, and license this software and its documentation for any purpose, provided that existing
copyright notices are retained in all copies and that this notice is included verbatim in any distributions. No
written agreement, license, or royalty fee is required for any of the authorized uses. Modifications to this
software may be copyrighted by their authors and need not follow the licensing terms described here, pro-
vided that the new terms are clearly indicated on the first page of each file where they apply. IN NO EVENT
SHALL THE AUTHORS OR DISTRIBUTORS BE LIABLE TO ANY PARTY FOR DIRECT, INDI-
RECT, SPECIAL, INCIDENTAL, OR CONSEQUENTIAL DAMAGES ARISING OUT OF THE USE OF
THIS SOFTWARE, ITS DOCUMENTATION, OR ANY DERIVATIVES THEREOF, EVEN IF THE
AUTHORS HAVE BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. THE AUTHORS
AND DISTRIBUTORS SPE CIFICALLY DISCLAIM ANY WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WAR RANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICU-
LAR PURPOSE, AND NON-INFRINGEMENT. THIS SOFTWARE IS PROVIDED ON AN "AS IS"
BASIS, AND THE AUTHORS AND DISTRIBUTORS HAVE NO OBLIGATION TO PROVIDE MAIN-
TENANCE, SUPPORT, UPDATES, ENHANCEMENTS, OR MODIFI CATIONS. GOVERNMENT USE:
If you are acquiring this software on behalf of the U.S. government, the Government shall have only
"Restricted Rights" in the software and related documentation as defined in the Federal Acquisition Regula-
tions (FARs) in Clause 52.227.19 (c) (2). If you are acquiring the software on behalf of the Department of
Defense, the software shall be classified as "Commercial Computer Software" and the Government shall
have only "Restricted Rights" as defined in Clause 252.227-7013 (c) (1) of DFARs. Notwithstanding the
ix

TS Thread Library Reference
foregoing, the authors grant the U.S. Government and others acting in its behalf permission to use and dis-
tribute the software in accordance with the terms specified in this license.

Progress Orbix v6.3.5 incorporates bzip2 1.0.2 from Julian Seward. Such Technology is subject to the fol-
lowing terms and conditions: This program, "bzip2" and associated library "libbzip2", are copyright (C)
1996-2002 Julian R Seward. All rights reserved. Redistribution and use in source and binary forms, with or
without modification, are permitted provided that the following conditions are met: 1. Redistributions of
source code must retain the above copyright notice, this list of conditions and the following disclaimer. 2.
The origin of this software must not be misrepresented; you must not claim that you wrote the original soft-
ware. If you use this software in a product, an acknowledgment in the product documentation would be
appreciated but is not required. 3. Altered source versions must be plainly marked as such, and must not be
misrepresented as being the original software. 4. The name of the author may not be used to endorse or pro-
mote products derived from this software without specific prior written permission. THIS SOFTWARE IS
PROVIDED BY THE AUTHOR "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUD-
ING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANT ABILITY AND FIT-
NESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR
BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSE-
QUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE
GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
Julian Seward, Cambridge, UK.jseward@acm.org bzip2/libbzip2 version 1.0.2 of 30 December 2001.

Progress Orbix v6.3.5 incorporates zlib 1.2.3 from Jean-loup Gailly and Mark Adler. Such Technology is
subject to the following terms and conditions: License /* zlib.h -- interface of the 'zlib' general purpose com-
pression library version 1.2.3, July 18th, 2005 Copyright (C) 1995-2000 Jean-loup Gailly and Mark Adler.
This software is provided 'as-is', without any express or implied warranty. In no event will the authors be
held liable for any damages arising from the use of this software. Permission is granted to anyone to use this
software for any purpose, including commercial applications, and to alter it and redistribute it freely, subject
to the following restrictions: 1. The origin of this software must not be mis represented; you must not claim
that you wrote the original software. If you use this software in a product, an acknowledgment in the product
documentation would be appreciated but is not required. 2. Altered source versions must be plainly marked
as such, and must not be misrepresented as being the original software. 3. This notice may not be removed
or altered from any source distribution. Jean-loup Gailly jloup@gzip.org Mark Adler
madler@alumni.caltech.edu */

Progress Orbix v6.3.5 incorporates the MinML 1.7 from John Wilson. Such Technology is subject to the
following terms and conditions: Copyright (c) 1999, John Wilson (tug@wilson.co.uk). All rights reserved.
Redistribution and use in source and binary forms, with or without modification, are permitted provided that
the following conditions are met: Redistributions of source code must retain the above copyright notice,,
this list of conditions and the following disclaimer. Redistributions in binary form must reproduce the above
copyright notice, this list of conditions and the following dis claimer in the documentation and/or other
materials provided with the distribution. All advertising materials mention ing features or use of this soft-
ware must display the following acknowledgement: This product includes software devel oped by John
 x

Wilson. The name of John Wilson may not be used to endorse or promote products derived from this soft-
ware without specific prior written permission. THIS SOFTWARE IS PROVIDED BY JOHN WILSON
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PUR-
POSE ARE DISCLAIMED. IN NO EVENT SHALL JOHN WILSON BE LIABLE FOR ANY DIRECT,
INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUD-
ING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF
USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABIL ITY, OR TORT (INCLUDING
NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE,
EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

Progress Orbix v6.3.5 incorporates JDOM vbeta9 from JDOM. Such Technology is subject to the following
terms and conditions: LICENSE.txt, v 1.10 2003/04/10 08:36:05 jhunter Exp $ Copyright (C) 2000-2003
Jason Hunter & Brett McLaughlin. All rights reserved. Redistribution and use in source and binary forms,
with or with out modification, are permitted provided that the following conditions are met: 1. Redistribu-
tions of source code must retain the above copyright notice, this list of conditions, and the following dis-
claimer. 2. Redistribu tions in binary form must reproduce the above copyright notice, this list of
conditions, and the dis claimer that follows these conditions in the documentation and/or other materials
provided with the distribu tion. 3. The name "JDOM" must not be used to endorse or promote products
derived from this software without prior written permission. For written permission, please contact <license
AT jdom DOT org>. 4. Prod ucts derived from this soft ware may not be called "JDOM", nor may "JDOM"
appear in their name, without prior written permission from the JDOM Project Management <pm AT jdom
DOT org>. In addition, we request (but do not require) that you include in the end-user documentation pro-
vided with the redistribution and/or in the soft ware itself an acknowledgement equivalent to the following:
"This product includes software developed by the JDOM Project (http://www.jdom.org/)." Alternatively, the
acknowledgment may be graphical using the logos available at http://www.jdom.org/images/logos. THIS
SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESSED OR IMPLIED WARRANTIES, INCLUD-
ING, BUT NOT LIMITED TO, THE IMPLIED WAR RANTIES OF MERCHANTABILITY AND FIT-
NESS FOR A PARTICULAR PURPOSE ARE DIS CLAIMED. IN NO EVENT SHALL THE JDOM
AUTHORS OR THE PROJECT CONTRIBUTORS BE LIA BLE FOR ANY DIRECT, INDIRECT, INCI-
DENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIA-
BILITY, WHETHER IN CONTRACT, STRICT LIABIL ITY, OR TORT (INCLUDING NEGLIGENCE
OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. This software consists of voluntary contribu-
tions made by many individuals on behalf of the JDOM Project and was originally created by Jason Hunter
<jhunter AT jdom DOT org> and Brett McLaughlin <brett AT jdom DOT org>. For more information on
the JDOM Project, please see <http://www.jdom.org/>.

Progress Orbix v6.3.5 incorporates OpenSSL 0.9.8i Copyright (c) 1998-2008 The OpenSSL Project Copy-
right (c) 1995-1998 Eric A. Young, Tim J. Hudson All rights reserved. Such Technology is subject to the
following terms and conditions: The OpenSSL toolkit stays under a dual license, i.e. both the conditions of
the OpenSSL License and the original SSLeay license apply to the toolkit. See below for the actual license
texts. Actually both licenses are BSD-style Open Source licenses. In case of any license issues related to
xi

TS Thread Library Reference
OpenSSL please contact openssl-core@openssl.org. OpenSSL License - Copyright (c) 1998-2008 The
OpenSSL Project. All rights reserved. Redistribution and use in source and binary forms, with or without
modification, are permitted pro vided that the following conditions are met: 1. Redistributions of source
code must retain the above copy right notice, this list of conditions and the following disclaimer. 2. Redistri-
butions in binary form must reproduce the above copyright notice, this list of conditions and the following
disclaimer in the documentation and/or other materials provided with the distribution. 3. All advertising
materials mentioning features or use of this software must display the following acknowledgment: "This
product includes software developed by the OpenSSL Project for use in the OpenSSL Toolkit. (http://
www.openssl.org/)" 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to endorse
or promote products derived from this software without prior written permission. For written permission,
please contact openssl-core@openssl.org. 5. Products derived from this software may not be called
"OpenSSL" nor may "OpenSSL" appear in their names without prior written permission of the OpenSSL
Project. 6. Redistributions of any form whatsoever must retain the following acknowledgment: "This prod-
uct includes software developed by the OpenSSL Project for use in the OpenSSL Toolkit (http://
www.openssl.org/)" THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY
EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DIS-
CLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR ITS CONTRIBUTORS BE LIABLE
FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
DAM AGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
SERV ICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. This
product includes cryp tographic software written by Eric Young (eay@cryptsoft.com). This product
includes software written by Tim Hudson (tjh@cryptsoft.com). - Original SSLeay License - Copyright (C)
1995-1998 Eric Young (eay@crypt soft.com) All rights reserved. This package is an SSL implementation
written by Eric Young (eay@crypt soft.com). The implementation was written so as to conform with Net-
scapes SSL. This library is free for commercial and non-commer cial use as long as the following conditions
are aheared to. The following conditions apply to all code found in this distribution, be it the RC4, RSA,
lhash, DES, etc., code; not just the SSL code. The SSL documentation included with this distribution is
covered by the same copyright terms except that the holder is Tim Hudson (tjh@cryptsoft.com). Copy right
remains Eric Young's, and as such any Copyright notices in the code are not to be removed. If this package
is used in a product, Eric Young should be given attribution as the author of the parts of the library used.
This can be in the form of a textual message at program startup or in documentation (online or textual) pro-
vided with the package. Redistri bution and use in source and binary forms, with or with out modification,
are permitted provided that the follow ing conditions are met: 1. Redistributions of source code must retain
the copyright notice, this list of conditions and the following disclaimer. 2. Redistributions in binary form
must reproduce the above copyright notice, this list of con ditions and the following dis claimer in the docu-
mentation and/or other materials provided with the distribution. 3. All advertising materials mention ing
features or use of this software must display the following acknowledge ment: "This product includes
crypto graphic software written by Eric Young (eay@cryptsoft.com)" The word 'cryptographic' can be left
out if the rou tines from the library being used are not crypto graphic related :-). 4. If you include any Win-
dows specific code (or a deriv ative thereof) from the apps directory (application code) you must include an
acknowledgement: "This product includes software written by Tim Hudson (tjh@cryptsoft.com)" THIS
SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND ANY EXPRESS OR IMPLIED WAR-
RANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
 xii

MERCHANT ABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
INCIDENTAL, SPE CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
NOT LIMITED TO, PROCURE MENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THE-
ORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEG-
LIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE,
EVEN IF ADVISED OF THE POSSI BILITY OF SUCH DAMAGE. The licence and distribution terms for
any publically available version or deriva tive of this code cannot be changed. i.e. this code cannot simply
be copied and put under another distribution licence [including the GNU Public Licence.]

Progress Orbix v6.3.5 incorporates PCRE v7.8 from the PCRE Project. Such Technology is subject to the
following terms and conditions:
PCRE LICENCE

PCRE is a library of functions to support regular expressions whose syntax and semantics are as close as
possible to those of the Perl 5 language. Release 7 of PCRE is distributed under the terms of the
"BSD"licence, as specified below. The documentation for PCRE, supplied in the "doc" directory, is distrib-
uted under the same terms as the software itself. The basic library functions are written in C and are free-
standing. Also included in the distribution is a set of C++ wrapper functions.
THE BASIC LIBRARY FUNCTIONS

Written by: Philip Hazel
Email local part: ph10
Email domain: cam.ac.uk
University of Cambridge Computing Service,
Cambridge, England.
Copyright (c) 1997-2008 University of Cambridge
All rights reserved.
THE C++ WRAPPER FUNCTIONS

Contributed by: Google Inc.
Copyright (c) 2007-2008, Google Inc.
All rights reserved.
THE "BSD" LICENCE

Redistribution and use in source and binary forms, with or without modification, are permitted provided that
the following conditions are met: Redistributions of source code must retain the above copyright notice, this
list of conditions and the following disclaimer. Redistributions in binary form must reproduce the above
copyright notice, this list of conditions and the following disclaimer in the documentation and/or other
materials provided with the distribution. Neither the name of the University of Cambridge nor the name of
xiii

TS Thread Library Reference
Google Inc. nor the names of their contributors may be used to endorse or promote products derived from
this software without specific prior written permission. THIS SOFT WARE IS PRO VIDED BY THE COP-
YRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRAN-
TIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRAN TIES OF
MERCHANT ABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT,
INDI RECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUD-
ING, BUT NOT LIMITED TO, PROCURE MENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF
USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE,
EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

Progress Orbix v6.3.5 incorporates IDL Compiler Front End 1 from Sun Microsystems, Inc. Copyright
1992, 1993, 1994 Sun Microsystems, Inc. Printed in the United States of America. All Rights Reserved.
Such tech nology is subject to the following terms and conditions: This product is protected by copyright
and distrib uted under the following license restricting its use. The Interface Definition Language Compiler
Front End (CFE) is made available for your use provided that you include this license and copyright notice
on all media and documentation and the software program in which this product is incorporated in whole or
part. You may copy and extend functionality (but may not remove functionality) of the Interface Definition
Language CFE without charge, but you are not authorized to license or distribute it to anyone else except as
part of a product or program developed by you or with the express written consent of Sun Microsystems,
Inc. ("Sun"). The names of Sun Microsystems, Inc. and any of its subsidiaries or affiliates may not be used
in advertising or publicity per taining to distribution of Interface Definition Language CFE as permitted
herein. This license is effective until termi nated by Sun for failure to comply with this license. Upon ter-
mination, you shall destroy or return all code and documentation for the Interface Definition Language CFE.
INTERFACE DEFINITION LANGUAGE CFE IS PROVIDED AS IS WITH NO WARRANTIES OF
ANY KIND INCLUDING THE WARRANTIES OF DESIGN, MERCHANTIBILITY AND FITNESS
FOR A PARTICULAR PURPOSE, NONINFRINGEMENT, OR ARISING FROM A COURSE OF DEAL-
ING, USAGE OR TRADE PRACTICE. INTERFACE DEFINITION LANGUAGE CFE IS PROVIDED
WITH NO SUPPORT AND WITHOUT ANY OBLIGATION ON THE PART OF Sun OR ANY OF ITS
SUBSIDIARIES OR AFFILIATES TO ASSIST IN ITS USE, CORREC TION, MODIFICATION OR
ENHANCEMENT. SUN OR ANY OF ITS SUBSIDIARIES OR AFFILIATES SHALL HAVE NO LIA-
BILITY WITH RESPECT TO THE INFRINGEMENT OF COPYRIGHTS, TRADE SECRETS OR ANY
PATENTS BY INTERFACE DEFINITION LANGUAGE CFE OR ANY PART THEREOF. IN NO
EVENT WILL SUN OR ANY OF ITS SUBSIDIARIES OR AFFILIATES BE LIABLE FOR ANY LOST
REVENUE OR PROFITS OR OTHER SPECIAL, INDIRECT AND CONSE QUENTIAL DAMAGES,
EVEN IF SUN HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. Use, duplication,
or disclosure by the government is subject to restrictions as set forth in subpara graph (c)(1)(ii) of the Rights
in Technical Data and Computer Software clause at DFARS 252.227-7013 and FAR 52.227-19. Sun, Sun
Microsystems and the Sun logo are trademarks or registered trademarks of Sun Microsys tems, Inc. Sun-
Soft, Inc. 2550 Garcia Avenue, Mountain View, California 94043 NOTE: SunOS, Sun Soft, Sun, Solaris,
Sun Microsystems or the Sun logo are trademarks or registered trademarks of Sun Micro systems, Inc.

Progress Orbix v6.3.5 incorporates LibXML2 2.4.24 from Daniel Veillard. Such Technology is subject to
the following terms and conditions: Except where otherwise noted in the source code (trio files, hash.c and
 xiv

list.c) covered by a similar license but with different Copyright notices: Copyright (C) 1998-2002 Daniel
Veillard. All Rights Reserved. Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal in the Software without restric-
tion, including with out limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/
or sell copies of the Soft ware, and to permit persons to whom the Software is furnished to do so, subject to
the following conditions: The above copyright notice and this permission notice shall be included in all cop-
ies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WAR-
RANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE
WARRANTIES OF MERCHANTA BILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONIN-
FRINGEMENT. IN NO EVENT SHALL THE DANIEL VEILLARD BE LIABLE FOR ANY CLAIM,
DAMAGES OR OTHER LIA BILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTH-
ERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
OTHER DEALINGS IN THE SOFTWARE. Except as contained in this notice, the name of Daniel Veillard
shall not be used in advertising or otherwise to promote the sale, use or other dealings in this Software with-
out prior written authorization from him.
=== trio.c, trio.h: Copyright (C) 1998 Bjorn Reese and Daniel Stenberg. Permission to use, copy, modify,
and distribute this software for any purpose with or without fee is hereby granted, provided that the above
copyright notice and this permission notice appear in all copies. THIS SOFTWARE IS PROVIDED "AS IS"
AND WITH OUT ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, WITHOUT LIMITA-
TION, THE IMPLIED WARRANTIES OF MERCHANTIBILITY AND FITNESS FOR A PARTICULAR
PURPOSE. THE AUTHORS AND CONTRIB UTORS ACCEPT NO RESPONSIBILITY IN ANY CON-
CEIVABLE MANNER. ==== triop.h: Copyright (C) 2000 Bjorn Reese and Daniel Stenberg. Permission to
use, copy, modify, and dis tribute this software for any purpose with or without
fee is hereby granted, provided that the above copyright notice and this permission notice appear in all cop-
ies. THIS SOFTWARE IS PROVIDED ``AS IS'' AND WITHOUT ANY EXPRESS OR IMPLIED WAR-
RANTIES, INCLUDING, WITHOUT LIMITATION, THE IMPLIED WARRANTIES OF
MERCHANTIBILITY AND FITNESS FOR A PARTIC ULAR PURPOSE. THE AUTHORS AND CON-
TRIBUTORS ACCEPT NO RESPONSIBILITY IN ANY CONCEIVABLE MANNER.
==== hash.c: Copyright (C) 2000 Bjorn Reese and Daniel Veillard. Permission to use, copy, modify, and
distribute this software for any purpose with or without fee is hereby granted, provided that the above cop-
yright notice and this permis sion notice appear in all copies. THIS SOFTWARE IS PROVIDED ``AS IS''
AND WITHOUT ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, WITHOUT LIMITA-
TION, THE IMPLIED WARRANTIES OF MERCHAN TIBILITY AND FITNESS FOR A PARTICULAR
PURPOSE. THE AUTHORS AND CONTRIBUTORS ACCEPT NO RESPONSIBILITY IN ANY CON-
CEIVABLE MANNER.
===== list.c: Copyright (C) 2000 Gary Pennington and Daniel Veillard. Permission
to use, copy, modify, and distribute this software for any purpose with or without fee is hereby granted, pro-
vided that the above copyright notice and this permission notice appear in all copies. THIS SOFTWARE IS
PROVIDED ``AS IS'' AND WITHOUT ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING,
WITHOUT LIMITATION, THE IMPLIED WARRANTIES OF MERCHANTIBILITY AND FITNESS
FOR A PARTICULAR PURPOSE. THE AUTHORS AND CONTRIBUTORS ACCEPT NO RESPONSI-
BILITY IN ANY CONCEIVABLE MANNER. ===
triodef.h, trionan.c, trionan.h: Copyright (C) 2001 Bjorn Reese Permission to use, copy, modify, and distrib-
ute this soft ware for any purpose with or without fee is hereby granted, provided that the above copyright
notice and this permis sion notice appear in all copies. THIS SOFTWARE IS PROVIDED ``AS IS'' AND
xv

TS Thread Library Reference
WITHOUT ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, WITHOUT LIMITATION,
THE IMPLIED WARRANTIES OF MER CHANTIBILITY AND FITNESS FOR A PARTICULAR PUR-
POSE. THE AUTHORS AND CONTRIBUTORS ACCEPT NO RESPONSIBILITY IN ANY CONCEIV-
ABLE MANNER.
==== triostr.c, triostr.h: Copyright (C) 2001 Bjorn Reese and Daniel Stenberg.
Permission to use, copy, modify, and distribute this software for any purpose with or without fee is hereby
granted, pro vided that the above copyright notice and this permission notice appear in all copies. THIS
SOFTWARE IS PRO VIDED ``AS IS'' AND WITHOUT ANY EXPRESS OR IMPLIED WARRANTIES,
INCLUDING, WITHOUT LIMITATION, THE IMPLIED WARRANTIES OF MERCHANTIBILITY
AND FITNESS FOR A PARTICULAR PUR POSE. THE AUTHORS AND CONTRIBUTORS ACCEPT
NO RESPONSIBILITY IN ANY CONCEIVABLE MANNER.

Progress Orbix v6.3.5 incorporates ICU library 2.6 from IBM. Such Technology is subject to the following
terms and conditions: Copyright (c) 1995-2009 International Business Machines Corporation and others.
All rights reserved. Per mission is hereby granted, free of charge, to any person obtaining a copy of this soft-
ware and associated documenta tion files (the "Software"), to deal in the Software without restriction,
including without limitation the rights to use, copy, modify, merge, publish, distribute, and/or sell copies of
the Software, and to permit persons to whom the Soft ware is fur nished to do so, provided that the above
copyright notice(s) and this permission notice appear in all copies of the Software and that both the above
copyright notice(s) and this permission notice appear in supporting documentation. THE SOFTWARE IS
PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING
BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A
PARTICU LAR PUR POSE AND NONINFRINGEMENT OF THIRD PARTY RIGHTS. IN NO EVENT
SHALL THE COPYRIGHT HOLDER OR HOLDERS INCLUDED IN THIS NOTICE BE LIABLE FOR
ANY CLAIM, OR ANY SPECIAL INDI RECT OR CONSEQUENTIAL DAMAGES, OR ANY DAM-
AGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
ACTION OF CONTRACT, NEGLIGENCE OR OTHER TOR TIOUS ACTION, ARISING OUT OF OR
IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. Except as contained in
this notice, the name of a copyright holder shall not be used in advertising or other wise to promote the sale,
use or other dealings in this Software without prior written authorization of the copyright holder. All trade-
marks and registered trademarks mentioned herein are the property of their respective owners.

Updated: 14-Jul-2011

 xvi

xvii

TS Thread Library Reference
 xviii

Contents
Threading and Synchronization Toolkit Overview 1
Timeouts 2
Execution Modes 2

Wrapper Classes 3
Inlined Classes 3
Setting an Execution Mode 3

Errors and Exceptions 4

IT_Condition Class 7
IT_Condition::broadcast() 7
IT_Condition::IT_Condition() Constructor 8
IT_Condition::~IT_Condition() Destructor 8
IT_Condition::signal() 8
IT_Condition::wait() 9

IT_CurrentThread Class 11
IT_CurrentThread::cleanup() 11
IT_CurrentThread::id() 11
IT_CurrentThread::is_main_thread() 12
IT_CurrentThread::self() 12
IT_CurrentThread::sleep() 12
IT_CurrentThread::yield() 13

IT_DefaultTSErrorHandler Class 15
IT_DefaultTSErrorHandler::handle() 15
IT_DefaultTSErrorHandler::~IT_DefaultTSErrorHandler() Destructor 15

IT_Gateway Class 17
IT_Gateway::close() 17
IT_Gateway::IT_Gateway() Constructor 18
IT_Gateway::~IT_Gateway() Destructor 18
IT_Gateway::open() 18
IT_Gateway::wait() 19
iii

Table of Contents
IT_Locker Template Class 21
IT_Locker::cancel() 23
IT_Locker::is_locked() 23
IT_Locker::IT_Locker() 23
IT_Locker::~IT_Locker() 24
IT_Locker::lock() 25
IT_Locker::mutex() 25
IT_Locker::trylock() 26

IT_Mutex Class 27
IT_Mutex::IT_Mutex() Constructor 28
IT_Mutex::~IT_Mutex() Destructor 28
IT_Mutex::lock() 28
IT_Mutex::trylock() 29
IT_Mutex::unlock() 29

IT_PODMutex Structure 31
IT_PODMutex::lock() 31
IT_PODMutex::m_index Data Type 32
IT_PODMutex::trylock() 32
IT_PODMutex::unlock() 33

IT_RecursiveMutex Class 35
IT_RecursiveMutex::IT_RecursiveMutex() Constructor 36
IT_RecursiveMutex::~IT_RecursiveMutex() Destructor 36
IT_RecursiveMutex::lock() 36
IT_RecursiveMutex::trylock() 37
IT_RecursiveMutex::unlock() 37

IT_RecursiveMutexLocker Class 39
IT_RecursiveMutexLocker::cancel() 41
IT_RecursiveMutexLocker::IT_RecursiveMutexLocker() Constructors 41
IT_RecursiveMutexLocker::~IT_RecursiveMutexLocker() Destructor 42
IT_RecursiveMutexLocker::lock() 43
IT_RecursiveMutexLocker::lock_count() 43
IT_RecursiveMutexLocker::mutex() 43
IT_RecursiveMutexLocker::trylock() 43
 iv

Table of Contents
IT_RecursiveMutexLocker::unlock() 44

IT_Semaphore Class 45
IT_Semaphore::IT_Semaphore() Constructor 45
IT_Semaphore::~IT_Semaphore() Destructor 46
IT_Semaphore::post() 46
IT_Semaphore::trywait() 46
IT_Semaphore::wait() 47

IT_TerminationHandler Class 49
IT_TerminationHandler() 50
~IT_TerminationHandler() 50

IT_Thread Class 51
IT_Thread::id() 52
IT_Thread::is_null() 52
IT_Thread::IT_Thread() Constructors 52
IT_Thread::~IT_Thread() Destructor 53
IT_Thread::join() 53
IT_Thread::operator=() 53
IT_Thread::operator==() 54
IT_Thread::operator!=() 54
IT_Thread::thread_failed Constant 54

IT_ThreadBody Class 57
IT_ThreadBody::~IT_ThreadBody() Destructor 57
IT_ThreadBody::run() 57

IT_ThreadFactory Class 59
IT_ThreadFactory::DetachState Enumeration 60
IT_ThreadFactory::IT_ThreadFactory() Constructor 60
IT_ThreadFactory::~IT_ThreadFactory() Destructor 60
IT_ThreadFactory::smf_start() 61
IT_ThreadFactory::start() 61

IT_TimedCountByNSemaphore Class 63
IT_TimedCountByNSemaphore::infinite_size Constant 64
v

Table of Contents
IT_TimedCountByNSemaphore::infinite_timeout Constant 64
IT_TimedCountByNSemaphore::IT_TimedCountByNSemaphore() Constructor 64
IT_TimedCountByNSemaphore::~IT_TimedCountByNSemaphore() Destructor 65
IT_TimedCountByNSemaphore::post() 65
IT_TimedCountByNSemaphore::trywait() 65
IT_TimedCountByNSemaphore::wait() 66

IT_TimedOneshot Class 67
IT_TimedOneshot::infinite_timeout Constant 68
IT_TimedOneshot::IT_TimedOneshot() Constructor 68
IT_TimedOneshot::~IT_TimedOneshot() Destructor 68
IT_TimedOneshot::reset() 69
IT_TimedOneshot::signal() 69
IT_TimedOneshot::trywait() 69
IT_TimedOneshot::wait() 70

IT_TimedSemaphore Class 71
IT_TimedSemaphore::infinite_timeout Constant 72
IT_TimedSemaphore::IT_TimedSemaphore() Constructor 72
IT_TimedSemaphore::~IT_TimedSemaphore() Destructor 72
IT_TimedSemaphore::post() 72
IT_TimedSemaphore::trywait() 73
IT_TimedSemaphore::wait() 73

IT_TSBadAlloc Error Class 75

IT_TSError Error Class 77
IT_TSError::IT_TSError() Constructors 77
IT_TSError::~IT_TSError() Destructor 78
IT_TSError::OS_error_number() 78
IT_TSError::raise() 78
IT_TSError::TS_error_code() 78
IT_TSError::what() 79

IT_TSErrorHandler Class 81
IT_TSErrorHandler::handle() 81
IT_TSErrorHandler::~IT_TSErrorHandler() Destructor 81
 vi

Table of Contents
IT_TSLogic Error Class 83

IT_TSRuntime Error Class 85

IT_TSVoidStar Class 87
IT_TSVoidStar::IT_TSVoidStar() Constructor 87
IT_TSVoidStar::~IT_TSVoidStar() Destructor 88
IT_TSVoidStar::get() 89
IT_TSVoidStar::set() 89

Index 91
vii

Table of Contents
 viii

Threading and Synchronization
Toolkit Overview

The Threading and Synchronization (TS) toolkit provides an object-oriented and
platform-neutral abstraction that hides the diverse, lower-level, thread packages.
Table 1 shows the threading and synchronization (TS) classes organized into
some useful groups.

The rest of this overview covers these topics:

Table 1: TS Thread Classes

Thread Management IT_CurrentThread
IT_Thread
IT_ThreadBody
IT_ThreadFactory
IT_TerminationHandler
IT_TSVoidStar

Thread Errors and
Exceptions

IT_TSBadAlloc
IT_DefaultTSErrorHandler
IT_TSError
IT_TSErrorHandler
IT_TSLogic
IT_TSRuntime

Mutex Locks IT_Locker
IT_Mutex
IT_PODMutex
IT_RecursiveMutex
IT_RecursiveMutexLocker

Thread Synchronization IT_Condition
IT_Gateway
IT_Semaphore
IT_TimedCountByNSemaphore
IT_TimedOneshot
IT_TimedSemaphore
1

• “Timeouts”

• “Execution Modes”

• “Errors and Exceptions”

Timeouts
Timeouts are expressed in milliseconds. They represent the time period from the
invocation of the timed method until the expiration of the timer. This time-out
period is approximate because it is affected by the number and kind of interrupts
received and by the changes external sources may make to the system’s time.

Execution Modes
The TS classes are designed to be efficient and to help you write code that is
correct and portable across various platforms. You can build TS applications in
either of the following modes:

The effect of a program that runs correctly (the program does not create any TS
error object) in the checked mode is identical to that of the unchecked mode.

TS provides two kinds of classes in different sets of header files. These include
wrapper and inline classes.

Unchecked This is the normal production mode. Inexpensive checks,
such as checking values returned by the API, are
performed, but a minimum of memory, locking, and
system calls are used to implement TS features.

Checked In this mode, extra-checking is performed to detect
erroneous or non-portable situations. On platforms that
support exceptions, exceptions are raised to report such
errors. This mode may be less time or space efficient
than the unchecked mode.
 2

Execution Modes
Wrapper Classes

Wrapper classes are the recommended classes to use because you can switch
between checked and unchecked modes by simply re-linking without recompiling
your application. These clean, platform-neutral wrapper classes simply delegate
to the appropriate inlined classes for whichever mode you are using.

The wrapper classes are in header files ending in .h.

Inlined Classes

To minimize the delegation overhead of wrapper classes, the TS toolkit also
provides C++ classes with only inlined member methods and pre-preprocessor
directives. These inline classes accommodate the differences between the
underlying thread packages.

Delegation overhead for a normal method call is generally negligible, but you can
save on this overhead by using these inlined classes directly. However by using
these header files, you will need to recompile your application whenever you
want to switch between checked and unchecked modes, and each time even minor
improvements are made to the TS implementation.

The inline classes are in header files ending in _i.h.

Setting an Execution Mode

Table 2 shows the default settings for each platform.

Table 2: Default Thread Settings

Platform Thread Primitives Default Mode

HPUX 11

Solaris 2.6

Posix unchecked

HPUX 10.20 DCE unchecked

Other Solaris UI unchecked

Win32 Win32 unchecked
3

To set a different mode, you reset the library by inserting the preferred lib
subdirectory at the beginning of your LD_LIBRARY_PATH or SHLIB_PATH. For
example, to reset to the checked mode, do the following for your respective
platform:

Errors and Exceptions
Table 3 summarizes the TS error classes:

The TS API allows you to use either error parameters or exceptions. The last
parameter of almost every TS method is a reference to an error handler object of
the class IT_TSErrorHandler. When a TS method detects an error, it creates an
IT_TSError object and passes it to IT_TSErrorHandler::handle().

TS errors form the hierarchy shown in Figure 1. An IT_TSRuntime error
generally signals an error detected by the operating system or the underlying
thread package. An IT_TSLogic error reports a logic error in your program, for
example, when a thread tries to release a lock it does not own. Logic errors are
either detected by the underlying thread package, or by extra checking code in
checked mode. An IT_TSBadAlloc error signals that the new operator failed.

Solaris Put the following at the beginning of your LD_LIBRARY_PATH:

/vob/common/ts/lib/posix/checked

HPUX 10.20 Put the following at the beginning of your SHLIB_PATH:

/vob/common/ts/lib/dce/checked

HPUX 11.00 Put the following at the beginning of your SHLIB_PATH:

/vob/common/ts/lib/posix/checked

NT Put the following at the beginning of your PATH:

/common/ts/lib/win32/checked

Table 3: Error and Exception Classes

Control Exceptions

IT_DefaultTSErrorHandler
IT_TSError
IT_TSErrorHandler

IT_TSBadAlloc
IT_TSLogic
IT_TSRuntime
 4

Errors and Exceptions
The TS API provides a default, static, and stateless error handler named
IT_DefaultTSErrorHandler. If you use exceptions, this error handler throws
IT_TSError objects. In environments that do not use exceptions this handler
aborts the process.

For most applications, the default error handler object provides the desired behav-
ior. In this situation, instead of passing an IT_DefaultTSErrorHandler object each
time you call a TS method, you can define in your build command the environment
variable IT_TS_DEFAULTED. This will instruct the TS API to use the default error
handler object for the error handler parameter. For example:

#ifndef IT_TS_DEFAULT_ERROR_HANDLER
#ifdef IT_TS_DEFAULTED
#define IT_TS_DEFAULT_ERROR_HANDLER = IT_DefaultTSErrorHandler
#else
#define IT_TS_DEFAULT_ERROR_HANDLER
#endif
#endif

C++ destructors do not have parameters, and as result, cannot be given an error
handler object parameter. In the checked mode, the TS API reports errors in
destructors to the default error handler object. In the unchecked mode, the TS API
does not report errors that occur in destructors.

Figure 1: The TS Error Class Hierarchy

IT_TSError

IT_TSRuntime IT_TSLogic

IT_TSBadAlloc
5

Because default parameters are not part of the function-type in C++, the TS
library can be built with or without defining IT_TS_DEFAULTED. Also, the same
library can be used by modules that use the defaulted parameter and by modules
built without defining IT_TS_DEFAULTED.

If you intend to use your own error handler objects in your application, it is
strongly recommended that you do not define IT_TS_DEFAULTED to avoid using
the default error handler object by mistake. If you want to consistently use the
same error handler object, you can define IT_TS_DEFAULT_ERROR_HANDLER in
your command or in a non-exported file. For example:

#define IT_TS_DEFAULT_ERROR_HANDLER = myErrorHandler;
 6

IT_Condition Class
The IT_Condition class provides a signalling mechanism that events use to
synchronize when sharing a mutex. In one atomic operation, a condition wait
both releases the mutex and waits until another thread signals or broadcasts a
change of state for the condition.

class IT_Condition {
public:
 IT_Condition(
 IT_TSErrorHandler& eh IT_TS_DEFAULT_ERROR_HANDLER
);
 ~IT_Condition();
 void wait(
 IT_Mutex& app_mutex,
 IT_TSErrorHandler& eh IT_TS_DEFAULT_ERROR_HANDLER
);
 void wait(
 IT_MutexLocker& locker,
 IT_TSErrorHandler& eh IT_TS_DEFAULT_ERROR_HANDLER
);
 void signal(
 IT_TSErrorHandler& eh IT_TS_DEFAULT_ERROR_HANDLER
);
 void broadcast(
 IT_TSErrorHandler& eh IT_TS_DEFAULT_ERROR_HANDLER
);
};

IT_Condition::broadcast()

void broadcast(
 IT_TSErrorHandler& eh IT_TS_DEFAULT_ERROR_HANDLER
);

Wakes up all waiting threads. One thread acquires the mutex and resumes with the
associated mutex lock. The rest of the threads continue waiting.
7

Parameters

Enhancement Orbix enhancement.

See Also IT_Mutex

IT_Condition::IT_Condition() Constructor

IT_Condition(
 IT_TSErrorHandler& eh IT_TS_DEFAULT_ERROR_HANDLER
);

The constructor for an IT_Condition object.

Parameters

Enhancement Orbix enhancement.

IT_Condition::~IT_Condition() Destructor

~IT_Condition();

The destructor for an IT_Condition object.

Enhancement Orbix enhancement.

IT_Condition::signal()

void signal(
 IT_TSErrorHandler& eh IT_TS_DEFAULT_ERROR_HANDLER
);

Wakes up a single waiting thread. The thread resumes with the associated mutex
locked.

Parameters

eh A reference to an error handler object.

eh A reference to an error handler object.

eh A reference to an error handler object.
 8

Enhancement Orbix enhancement.

IT_Condition::wait()

void wait(
 IT_Mutex& app_mutex,
 IT_TSErrorHandler& eh IT_TS_DEFAULT_ERROR_HANDLER
);

void wait(
 IT_MutexLocker& locker,
 IT_TSErrorHandler& eh IT_TS_DEFAULT_ERROR_HANDLER
);

Atomically releases the mutex, and waits until another thread calls signal() or
broadcast().

Parameters

The mutex must always be locked when wait() is called. When a condition
wakes up from a wait, it resumes with the mutex locked.

Enhancement Orbix enhancement.

app_mutex Use the mutex app_mutex.

locker Use the mutex in locker.

eh
9

 10

IT_CurrentThread Class
The IT_CurrentThread class gives access to the current thread. It has only static
member methods.

class IT_TS_API IT_CurrentThread {
public:
 static IT_Thread self(
 IT_TSErrorHandler& eh IT_TS_DEFAULT_ERROR_HANDLER
);

 static int is_main_thread();

 static void cleanup();

 static void yield();

 static void sleep(
 unsigned long milliseconds
);

 static long id();
};

IT_CurrentThread::cleanup()

static void cleanup();

Cleans up thread-specific data. A thread typically calls cleanup() before exiting.
Threads created with an IT_ThreadFactory do this automatically.

Enhancement Orbix enhancement.

IT_CurrentThread::id()

static long id();

Returns a unique identifier for the current thread.
11

Enhancement Orbix enhancement.

IT_CurrentThread::is_main_thread()

static int is_main_thread();

Returns 1 if the caller is the main thread, but returns 0 if it is not.

Enhancement Orbix enhancement.

IT_CurrentThread::self()

static IT_Thread self(
 IT_TSErrorHandler& eh IT_TS_DEFAULT_ERROR_HANDLER
);

Returns an IT_Thread object for the thread that calls this method.

Parameters

Enhancement Orbix enhancement.

IT_CurrentThread::sleep()

static void sleep(
 unsigned long milliseconds
);

Suspends the current thread for the approximate number of milliseconds input.

Parameters

Enhancement Orbix enhancement.

eh A reference to an error handler object.

milliseconds The length of time in milliseconds to suspend the thread.
 12

IT_CurrentThread::yield()

static void yield();

Yields the CPU to another thread of equal priority, if one is available.

Enhancement Orbix enhancement.
13

 14

IT_DefaultTSErrorHandler Class
The IT_DefaultTSErrorHandler class is the default TS error handler. If you use
exceptions, this error handler throws IT_TSError objects. In environments that
do not use exceptions this handler aborts the process.

class IT_DefaultTSErrorHandler : public IT_TSErrorHandler{
public:
 virtual ~IT_DefaultTSErrorHandler()
 virtual void handle(
 const IT_TSError& this_error
);
};

See page 4 for more on error handling.

IT_DefaultTSErrorHandler::handle()

void handle(
 const IT_TSError& this_error
);

Do appropriate processing for the given error.

Parameters

Enhancement Orbix enhancement.

IT_DefaultTSErrorHandler::~IT_DefaultTSErrorHandler()
Destructor

~IT_DefaultTSErrorHandler()

The destructor for the error handler object.

Enhancement Orbix enhancement.

this_error A reference to an error object.
15

 16

IT_Gateway Class
The IT_Gateway class provides a gate where a set of threads can only do work if
the gate is open.

class IT_Gateway {
public:
 IT_Gateway(
 IT_TSErrorHandler& eh IT_TS_DEFAULT_ERROR_HANDLER
);
 ~IT_Gateway();

 void open(
 IT_TSErrorHandler& eh IT_TS_DEFAULT_ERROR_HANDLER
);

 void close(
 IT_TSErrorHandler& eh IT_TS_DEFAULT_ERROR_HANDLER
);

 void wait(
 IT_TSErrorHandler& eh IT_TS_DEFAULT_ERROR_HANDLER
);

private:
...

IT_Gateway::close()

void close(
 IT_TSErrorHandler& eh IT_TS_DEFAULT_ERROR_HANDLER
);

Close the gateway so no threads can do any work.

Parameters

eh A reference to an error handler object.
17

Enhancement Orbix enhancement.

IT_Gateway::IT_Gateway() Constructor

IT_Gateway(
 IT_TSErrorHandler& eh IT_TS_DEFAULT_ERROR_HANDLER
);

The gateway constructor.

Parameters

Enhancement Orbix enhancement.

IT_Gateway::~IT_Gateway() Destructor

~IT_Gateway();

The destructor.

Enhancement Orbix enhancement.

IT_Gateway::open()

void open(
 IT_TSErrorHandler& eh IT_TS_DEFAULT_ERROR_HANDLER
);

Open the gateway to allow threads to work.

Parameters

Enhancement Orbix enhancement.

eh A reference to an error handler object.

eh A reference to an error handler object.
 18

IT_Gateway::wait()

void wait(
 IT_TSErrorHandler& eh IT_TS_DEFAULT_ERROR_HANDLER
);

Wait for a thread to finish.

Parameters

Enhancement Orbix enhancement.

eh A reference to an error handler object.
19

 20

IT_Locker Template Class
IT_Locker is a helper class for locking and unlocking non-recursive mutexes,
including IT_Mutex and IT_PODMutex objects. Typically a locker locks a mutex
in its constructor and releases it in its destructor. This is particularly useful for
writing clean code that behaves properly when an exception is raised.

An IT_Locker object must be created on the stack of a particular thread, and
must never be shared by more than one thread.

The IT_Locker method definitions are inlined directly in the class declaration,
because these methods call each other. If a definition calls a method that is not
previously declared inlined, this method is generated out of line, regardless of its
definition (which can be provided later in the translation unit with the inline
keyword).

template<class T> class IT_Locker {
public:
 IT_Locker(
 T& mutex,
 IT_TSErrorHandler& eh IT_TS_DEFAULT_ERROR_HANDLER
) :
 m_mutex(mutex),
 m_locked(0),
 m_error_handler(eh)
 {
 lock();
 }

 IT_Locker(
 T& mutex,
 int wait,
 IT_TSErrorHandler& eh IT_TS_DEFAULT_ERROR_HANDLER
) :
 m_mutex(mutex),
 m_locked(0),
 m_error_handler(eh)
 {
 if (wait)
 {
21

 lock();
 }
 else
 {
 trylock();
 }
 }

 ~IT_Locker()
 {
 cancel();
 }

 void cancel()
 {
 if (m_locked)
 {
 m_mutex.unlock(m_error_handler);
 m_locked = 0;
 }
 }

 int is_locked()
 {
 return m_locked;
 }

 void lock()
 {
 m_mutex.lock(m_error_handler);
 m_locked = 1;
 }

 int trylock()
 {
 return (m_locked = m_mutex.trylock(m_error_handler));
 }

 T& mutex()
 {
 return m_mutex;
 }
private:
 22

...

IT_Locker::cancel()

void cancel() {
 if (m_locked)
 {
 m_mutex.unlock(m_error_handler);
 m_locked = 0;
 }
}

Releases the mutex only if it is locked by this locker. You can call cancel() safely
even when the mutex is not locked.

Enhancement Orbix enhancement.

Exceptions Errors that can be reported include:

IT_TSRuntime
IT_TSLogic

IT_Locker::is_locked()

int is_locked() {
 return m_locked;
}

returns 1 if this mutex locker has the lock and returns 0 if it does not.

Enhancement Orbix enhancement.

IT_Locker::IT_Locker()

IT_Locker(
 T& mutex,
 IT_TSErrorHandler& eh IT_TS_DEFAULT_ERROR_HANDLER
) :
 m_mutex(mutex),
 m_locked(0),
 m_error_handler(eh)
23

{
 lock();
}

A constructor for a locker object that locks the given mutex.

IT_Locker(
 T& mutex,
 int wait,
 IT_TSErrorHandler& eh IT_TS_DEFAULT_ERROR_HANDLER
) :
 m_mutex(mutex),
 m_locked(0),
 m_error_handler(eh)
{
 if (wait)
 {
 lock();
 }
 else
 {
 trylock();
 }
}

A constructor for a locker object.

Parameters

Enhancement Orbix enhancement.

See Also IT_Locker::trylock()

IT_Locker::~IT_Locker()

~IT_Locker()
{

mutex The mutex to which the locker applies.

wait If wait has a value of 1, this constructor waits to acquire the lock.
If wait has a value of 0, the constructor only tries to lock the
mutex.

eh A reference to an error handler object.
 24

 cancel();
}

The destructor releases the mutex if it is locked by this locker.

Enhancement Orbix enhancement.

Exceptions Errors that can be reported include:

IT_TSLogic
IT_TSRuntime

IT_Locker::lock()

void lock()
{
 m_mutex.lock(m_error_handler);
 m_locked = 1;
}

Locks the mutex associated with the locker.

Enhancement Orbix enhancement.

Exceptions Errors that can be reported include:

IT_TSLogic
IT_TSRuntime

IT_Locker::mutex()

T& mutex()
{
 return m_mutex;
}

Returns direct access to the locker’s mutex.

Enhancement Orbix enhancement.
25

IT_Locker::trylock()

int trylock()
{
 return (m_locked = m_mutex.trylock(m_error_handler));
}

Tries to lock the mutex. Returns 1 if the mutex is successfully locked or 0 if it is
not locked.

Enhancement Orbix enhancement.

Exceptions Errors that can be reported include:

IT_TSLogic
IT_TSRuntime
 26

IT_Mutex Class
An IT_Mutex object is a synchronization primitive for mutual exclusion locks.

When a thread has successfully locked, it is said to own the IT_Mutex. IT_Mutex
objects have scope only within a single process (they are not shared by several
processes) and they are not recursive. When a thread that owns an IT_Mutex
attempts to lock it again, a deadlock occurs.

You use an IT_Mutex in conjunction with an IT_Locker object to lock and
unlock your mutexes.

class IT_Mutex {
public:
 IT_Mutex(
 IT_TSErrorHandler& eh IT_TS_DEFAULT_ERROR_HANDLER
);

 ~IT_Mutex();

 void lock(
 IT_TSErrorHandler& eh IT_TS_DEFAULT_ERROR_HANDLER
);

 void unlock(
 IT_TSErrorHandler& eh IT_TS_DEFAULT_ERROR_HANDLER
);

 int trylock(
 IT_TSErrorHandler& eh IT_TS_DEFAULT_ERROR_HANDLER
);

private:
// …
};

See Also IT_Locker
IT_RecursiveMutex
27

IT_Mutex::IT_Mutex() Constructor

IT_Mutex(I
 IT_TSErrorHandler& eh IT_TS_DEFAULT_ERROR_HANDLER
);

Constructs an IT_Mutex object. It is initially unlocked.

Parameters

Enhancement Orbix enhancement.

Exceptions The IT_TSRuntime error can be reported.

IT_Mutex::~IT_Mutex() Destructor

IT_Mutex();

The destructor for the mutex.

Enhancement Orbix enhancement.

IT_Mutex::lock()

void lock(
 IT_TSErrorHandler& eh IT_TS_DEFAULT_ERROR_HANDLER
);

Blocks until the IT_Mutex can be acquired.

Parameters

Enhancement Orbix enhancement.

Exceptions Errors that can be reported include:

IT_TSLogic
IT_TSRuntime

eh A reference to an error handler object.

eh A reference to an error handler object.
 28

IT_Mutex::trylock()

int trylock(
 IT_TSErrorHandler& eh IT_TS_DEFAULT_ERROR_HANDLER
);

Tries to acquire the lock. If successful, the method returns a 1 immediately,
otherwise it returns a 0 and does not block.

Parameters

Enhancement Orbix enhancement.

Exceptions Errors that can be reported include:

IT_TSLogic
IT_TSRuntime

IT_Mutex::unlock()

void unlock(
 IT_TSErrorHandler& eh IT_TS_DEFAULT_ERROR_HANDLER
);

Releases this IT_Mutex. Only the owner thread of an IT_Mutex is allowed to
release an IT_Mutex.

Parameters

Enhancement Orbix enhancement.

Exceptions Errors that can be reported include:

IT_TSLogic
IT_TSRuntime

eh A reference to an error handler object.

eh A reference to an error handler object.
29

 30

IT_PODMutex Structure
An IT_PODMutex is a mutex for a “plain old data” (POD) structure. Just as with a
standard C++ PODS, an IT_PODMutex can be fully initialized at compile time
without the overhead of an explicit constructor call. This is particularly useful for
static objects. Likewise, the object can be destroyed without an explicit destructor
call (in a manner similar to the C language).

You can use the built-in definition IT_POD_MUTEX_INIT to easily initialize an
IT_PODMutex to zero. For example:

static IT_PODMutex my_global_mutex = IT_POD_MUTEX_INIT;

You use an IT_PODMutex in conjunction with an IT_Locker object to lock and
unlock your mutexes. The structure members for an IT_PODMutex include the
following:

struct IT_TS_API IT_PODMutex {
 void lock(
 IT_TSErrorHandler& eh IT_TS_DEFAULT_ERROR_HANDLER
);
 int trylock(
 IT_TSErrorHandler& eh IT_TS_DEFAULT_ERROR_HANDLER
);
 void unlock(
 IT_TSErrorHandler& eh IT_TS_DEFAULT_ERROR_HANDLER
);
 // DO NOT USE and DO NOT MAKE PRIVATE
 unsigned char m_index;
};

See Also IT_Locker
IT_Mutex

IT_PODMutex::lock()

void lock(
 IT_TSErrorHandler& eh IT_TS_DEFAULT_ERROR_HANDLER
);
31

Blocks until the mutex can be acquired.

Parameters

Enhancement Orbix enhancement.

Exceptions Errors that can be reported include:

IT_TSLogic
IT_TSRuntime

IT_PODMutex::m_index Data Type

unsigned char m_index;

Note: For internal use only.

IT_PODMutex::trylock()

int trylock(
 IT_TSErrorHandler& eh IT_TS_DEFAULT_ERROR_HANDLER
);

Tries to acquire the mutex lock. If trylock() succeeds, it returns a 1 immediately.
Otherwise it returns 0.

Parameters

Enhancement Orbix enhancement.

Exceptions Errors that can be reported include:

IT_TSLogic
IT_TSRuntime

eh A reference to an error handler object.

eh A reference to an error handler object.
 32

IT_PODMutex::unlock()

void unlock(
 IT_TSErrorHandler& eh IT_TS_DEFAULT_ERROR_HANDLER
);

Releases the mutex lock. Only the owner of a mutex is allowed to release it.

Parameters

Enhancement Orbix enhancement.

Exceptions Errors that can be reported include:

IT_TSLogic
IT_TSRuntime

eh A reference to an error handler object.
33

 34

IT_RecursiveMutex Class
An IT_RecursiveMutex object is a synchronization primitive for mutual
exclusion. In general do not used it directly.

Note: It is strongly recommended that you use the IT_RecursiveMutexLocker
to lock and unlock your recursive mutexes.

In most respects an IT_RecursiveMutex object is similar to an IT_Mutex object.
However, it can be locked recursively, which means that a thread that already
owns a recursive mutex object can lock it again in a deeper scope without
creating a deadlock condition.

When a thread has successfully locked a recursive mutex, it is said to own it.
Recursive mutex objects have process-scope which means that they are not
shared by several processes.

To release an IT_RecursiveMutex, its owner thread must call unlock() the same
number of times that it called lock().

class IT_RecursiveMutex {
public:
 IT_RecursiveMutex(
 IT_TSErrorHandler& eh IT_TS_DEFAULT_ERROR_HANDLER
);

 ~IT_RecursiveMutex();

 void lock(
 IT_TSErrorHandler& eh IT_TS_DEFAULT_ERROR_HANDLER
);

 void unlock(
 IT_TSErrorHandler& eh IT_TS_DEFAULT_ERROR_HANDLER
);

 int trylock(
 IT_TSErrorHandler& eh IT_TS_DEFAULT_ERROR_HANDLER
35

);
private:
...

See Also IT_Mutex
IT_RecursiveMutexLocker

IT_RecursiveMutex::IT_RecursiveMutex() Constructor

IT_RecursiveMutex(
 IT_TSErrorHandler& eh IT_TS_DEFAULT_ERROR_HANDLER
);

Constructs an IT_RecursiveMutex object. It is initially unlocked.

Parameters

Enhancement Orbix enhancement.

Exceptions The IT_TSRuntime error can be reported.

IT_RecursiveMutex::~IT_RecursiveMutex() Destructor

~IT_RecursiveMutex();

Destructor for an IT_RecursiveMutex object.

Enhancement Orbix enhancement.

IT_RecursiveMutex::lock()

void lock(
 IT_TSErrorHandler& eh IT_TS_DEFAULT_ERROR_HANDLER
);

Blocks until the recursive mutex can be acquired.

Parameters

eh A reference to an error handler object.

eh A reference to an error handler object.
 36

Enhancement Orbix enhancement.

Exceptions The IT_TSRuntime error can be reported.

IT_RecursiveMutex::trylock()

int trylock(
 IT_TSErrorHandler& eh IT_TS_DEFAULT_ERROR_HANDLER
);

Tries to acquire the recursive mutex. If it succeeds, returns 1 immediately; other-
wise returns 0.

Parameters

Enhancement Orbix enhancement.

Exceptions The IT_TSRuntime error can be reported.

IT_RecursiveMutex::unlock()

void unlock(
 IT_TSErrorHandler& eh IT_TS_DEFAULT_ERROR_HANDLER
);

Releases this recursive mutex (one count). Only the owner of a mutex is allowed
to release it.

Parameters

Enhancement Orbix enhancement.

Exceptions Errors that can be reported include:

IT_TSRuntime
IT_TSLogic

eh A reference to an error handler object.

eh A reference to an error handler object.
37

 38

IT_RecursiveMutexLocker Class
The IT_RecursiveMutexLocker is a locker for recursive mutexes. The
IT_RecursiveMutexLocker methods are defined as inline in the class
declaration, because these methods call each other.

class IT_RecursiveMutexLocker {
public:
 IT_RecursiveMutexLocker(
 IT_RecursiveMutex& m,
 IT_TSErrorHandler& eh IT_TS_DEFAULT_ERROR_HANDLER
) :
 m_recursive_mutex(m),
 m_lock_count(0),
 m_error_handler(eh)
 {
 lock();
 }

 IT_RecursiveMutexLocker(
 IT_RecursiveMutex& m,
 int wait,
 IT_TSErrorHandler& eh IT_TS_DEFAULT_ERROR_HANDLER
) :
 m_recursive_mutex(m),
 m_lock_count(0),
 m_error_handler(eh)
 {
 if (wait)
 {
 lock();
 }
 else
 {
 trylock();
 }
 }

 ~IT_RecursiveMutexLocker()
39

 {
 cancel();
 }

 void cancel()
 {
 while (m_lock_count > 0)
 {
 m_recursive_mutex.unlock(m_error_handler);
 m_lock_count--;
 }
 }

 void lock()
 {
 m_recursive_mutex.lock(m_error_handler);
 m_lock_count++;
 }

 unsigned int lock_count()
 {
 return m_lock_count;
 }

 int trylock()
 {
 if (m_recursive_mutex.trylock(m_error_handler) == 1)
 {
 m_lock_count++;
 return 1;
 }
 else
 {
 return 0;
 }
 }

 void unlock()
 {
 m_recursive_mutex.unlock(m_error_handler);
 m_lock_count--;
 }
 40

 IT_RecursiveMutex& mutex()
 {
 return m_recursive_mutex;
 }

Private:
...

IT_RecursiveMutexLocker::cancel()

void cancel() {
 while (m_lock_count > 0)
 {
 m_recursive_mutex.unlock(m_error_handler);
 m_lock_count--;
 }
}

Releases all locks held by this recursive mutex locker. The cancel() method can
be called safely even when the recursive mutex is not locked.

Enhancement Orbix enhancement.

IT_RecursiveMutexLocker::IT_RecursiveMutexLocker()
Constructors

IT_RecursiveMutexLocker(
 IT_RecursiveMutex& m,
 IT_TSErrorHandler& eh IT_TS_DEFAULT_ERROR_HANDLER
) :
 m_recursive_mutex(m),
 m_lock_count(0),
 m_error_handler(eh)
{
 lock();
}

Constructs a recursive mutex locker object. This constructor locks the given
recursive mutex.

IT_RecursiveMutexLocker(
 IT_RecursiveMutex& m,
41

 int wait,
 IT_TSErrorHandler& eh IT_TS_DEFAULT_ERROR_HANDLER
) :
 m_recursive_mutex(m),
 m_lock_count(0),
 m_error_handler(eh)
{
 if (wait)
 {
 lock();
 }
 else
 {
 trylock();
 }
}

Constructs a recursive mutex locker object.

Parameters

Enhancement Orbix enhancement.

IT_RecursiveMutexLocker::~IT_RecursiveMutexLocker()
Destructor

~IT_RecursiveMutexLocker()
{
 cancel();
}

The destructor releases all locks held by this recursive mutex locker.

Enhancement Orbix enhancement.

m The mutex to which the locker applies.

wait If wait has a value of 1, this constructor waits to acquire the lock.
If wait has a value of 0, it only tries to lock the recursive mutex.

eh A reference to an error handler object.
 42

IT_RecursiveMutexLocker::lock()

void lock()
{
 m_recursive_mutex.lock(m_error_handler);
 m_lock_count++;
}

Acquires the lock.

Enhancement Orbix enhancement.

IT_RecursiveMutexLocker::lock_count()

unsigned int lock_count()
{
 return m_lock_count;
}

Returns the number of locks held by this recursive mutex locker.

Enhancement Orbix enhancement.

IT_RecursiveMutexLocker::mutex()

IT_RecursiveMutex& mutex()
{
 return m_recursive_mutex;
}

Returns direct access to the locker’s recursive mutex.

Enhancement Orbix enhancement.

IT_RecursiveMutexLocker::trylock()

int trylock()
{
 if (m_recursive_mutex.trylock(m_error_handler) == 1)
 {
 m_lock_count++;
43

 return 1;
 }
 else
 {
 return 0;
 }
}

Tries to acquire one lock for the recursive mutex. Returns 1 if the mutex lock is
successfully acquired or 0 if it is not.

Enhancement Orbix enhancement.

IT_RecursiveMutexLocker::unlock()

void unlock()
{
 m_recursive_mutex.unlock(m_error_handler);
 m_lock_count--;
}

Releases one lock held by this recursive mutex.

Enhancement Orbix enhancement.
 44

IT_Semaphore Class
A semaphore is a non-negative counter, typically used to coordinate access to
some resources.

class IT_Semaphore {
public:
 IT_Semaphore(
 size_t initialCount,
 IT_TSErrorHandler& eh IT_TS_DEFAULT_ERROR_HANDLER
);

 ~IT_Semaphore();

 void post(
 IT_TSErrorHandler& eh IT_TS_DEFAULT_ERROR_HANDLER
);

 void wait(
 IT_TSErrorHandler& eh IT_TS_DEFAULT_ERROR_HANDLER
);

 int trywait(
 IT_TSErrorHandler& eh IT_TS_DEFAULT_ERROR_HANDLER
);

private:
// …
};

IT_Semaphore::IT_Semaphore() Constructor

IT_Semaphore(
 size_t initialCount,
 IT_TSErrorHandler& eh IT_TS_DEFAULT_ERROR_HANDLER
);
45

A semaphore constructor that initializes the semaphore’s counter with the value
initialCount.

Parameters

Enhancement Orbix enhancement.

Exceptions The IT_TSRuntime error can be reported.

IT_Semaphore::~IT_Semaphore() Destructor

~IT_Semaphore();

Destroys the semaphore.

Enhancement Orbix enhancement.

IT_Semaphore::post()

void post(
 IT_TSErrorHandler& eh IT_TS_DEFAULT_ERROR_HANDLER
);

Posts a resource thread with the semaphore. This method increments the sema-
phore’s counter and wakes up a thread that might be blocked on wait().

Parameters

Enhancement Orbix enhancement.

Exceptions The IT_TSRuntime error can be reported.

IT_Semaphore::trywait()

int trywait(
 IT_TSErrorHandler& eh IT_TS_DEFAULT_ERROR_HANDLER
);

initialCount A positive integer value.

eh A reference to an error handler object.

eh A reference to an error handler object.
 46

Tries to get a resource thread. The method returns 1 if it succeeds, and 0 if it fails.

Parameters

Enhancement Orbix enhancement.

Exceptions An error that can be reported is IT_TSRuntime.

IT_Semaphore::wait()

void wait(
 IT_TSErrorHandler& eh IT_TS_DEFAULT_ERROR_HANDLER
);

Waits for one resource. The wait() method blocks if the semaphore’s counter value
is 0 and decrements the counter if the counter’s value is greater than 0.

Parameters

Enhancement Orbix enhancement.

Exceptions Errors that can be reported include:

IT_TSLogic
IT_TSRuntime

See Also IT_TimedSemaphore
IT_TimedCountByNSemaphore

eh A reference to an error handler object.

eh A reference to an error handler object.
47

 48

IT_TerminationHandler Class
The IT_TerminationHandler class enables server applications to handle
delivery of CTRL_C and similar events in a portable manner. On UNIX, the
termination handler handles the following signals:

SIGINT
SIGTERM
SIGQUIT

On Windows, the termination handler is a wrapper around
SetConsoleCtrlHandler, which handles delivery of the following control
events:

CTRL_C_EVENT
CTRL_BREAK_EVENT
CTRL_SHUTDOWN_EVENT
CTRL_LOGOFF_EVENT
CTRL_CLOSE_EVENT

You can create only one termination handler object in a program.

#include <it_ts/ts_error.h>

typedef void (*IT_TerminationHandlerFunctionPtr)(long);

class IT_IFC_API IT_TerminationHandler
{
 public:

 IT_TerminationHandler(
 IT_TerminationHandlerFunctionPtr f,
 IT_ExceptionHandler& eh = IT_EXCEPTION_HANDLER
);

 ~IT_TerminationHandler();
};
49

IT_TerminationHandler()

IT_TerminationHandler(
 IT_TerminationHandlerFunctionPtr f,
 IT_ExceptionHandler& eh = IT_EXCEPTION_HANDLER
);

Creates a termination handler object on the stack. On POSIX platforms, it is
critical to create this object in the main thread before creation of any other thread,
and especially before ORB initialization.

Parameters

~IT_TerminationHandler()

~IT_TerminationHandler();

Deregisters the callback, in order to avoid calling it during static destruction.

f The callback function registered by the application. The callback
function takes a single long argument:

• On UNIX, the signal number on Unix/POSIX

• On Windows, the type of event caught
 50

IT_Thread Class
An IT_Thread object represents a thread of control. An IT_Thread object can be
associated with a running thread, associated with a thread that has already
terminated, or it can be null, which means it is not associated with any thread.

The important class members are as follows:

class IT_Thread {
public:
 IT_Thread();

 ~IT_Thread();

 IT_Thread(
 const IT_Thread& other
);

 IT_Thread& operator=(
 const IT_Thread& other
);

 int operator==(
 const IT_Thread& x
) const;

 int operator!=(
 const IT_Thread& x
) const
 {
 return ! operator==(x);
 }

 int is_null() const;

 static void* const thread_failed;

 void* join(
 IT_TSErrorHandler& eh IT_TS_DEFAULT_ERROR_HANDLER
) const;
51

 long id() const;
...
};

IT_Thread::id()

long id() const;

Returns a unique thread identifier. This method is useful for debugging.

Enhancement Orbix enhancement.

IT_Thread::is_null()

int is_null() const;

Tests if this is a null IT_Thread object.

Enhancement Orbix enhancement.

IT_Thread::IT_Thread() Constructors

IT_Thread(
 IT_Thread_i* t=0
);

Constructs a null IT_Thread object.

IT_Thread (
 const IT_Thread& other
);

Copies the IT_Thread object. This constructor does not start a new thread.

Parameters

Enhancement Orbix enhancement.

other The original thread to copy.
 52

IT_Thread::~IT_Thread() Destructor

~IT_Thread();

Destructor for an IT_Thread object.

Enhancement Orbix enhancement.

IT_Thread::join()

void* join(
 IT_TSErrorHandler& eh IT_TS_DEFAULT_ERROR_HANDLER
) const;

Waits until the thread has terminated and returns its exit status. At most one thread
can successfully join a given thread, and only Attached threads can be joined. Note
that even in the checked mode, join() does not always detect that you tried to join
a Detached thread, or that you joined the same thread several times.

Parameters

Enhancement Orbix enhancement.

Exceptions Errors that can be reported include:

IT_TSLogic
IT_TSRuntime

See Also IT_CurrentThread
IT_ThreadBody

IT_Thread::operator=()

IT_Thread& operator=(
 const IT_Thread& other
);

Assignment operator that copies the IT_Thread object. This does not start a new
thread.

Parameters

eh A reference to an error handler object.

other The original thread that is copied.
53

Enhancement Orbix enhancement.

IT_Thread::operator==()

int operator==(
 const IT_Thread& x
) const;

Operator that checks if two IT_Thread objects refer to the same thread. Returns 1
if the two objects refer to the same thread or it returns 0 if they do not refer to the
same thread.

Parameters

Enhancement Orbix enhancement.

IT_Thread::operator!=()

int operator!=(
 const IT_Thread& x
) const

Operator that checks if two IT_Thread objects refer to different threads. Returns
1 if the two objects refer to different threads or it returns 0 if they refer to the same
thread.

Parameters

Enhancement Orbix enhancement.

IT_Thread::thread_failed Constant

static void* const thread_failed;

The constant thread_failed is the return status of a thread to report a failure. It
is neither NULL nor does it denote a valid address.

Enhancement Orbix enhancement.

x The thread to compare to this thread.

x The thread to compare to this thread.
 54

55

 56

IT_ThreadBody Class
IT_ThreadBody is the base class for thread execution methods. To start a thread,
derive a class from IT_ThreadBody, add any data members needed by the thread,
and provide a run() method which does the thread's work. Then use an
IT_ThreadFactory object to start a thread that will execute the run() method of
your IT_ThreadBody object.

If a derived IT_ThreadBody contains data, then it must not be destroyed while
threads are using it. One way to manage this is to allocate the IT_ThreadBody
with the new() operator and have the IT_ThreadBody delete itself at the end of
run(). Also, if multiple threads run the same IT_ThreadBody, it is up to you to
provide synchronization on shared data.

class IT_ThreadBody {
public:
 virtual ~IT_ThreadBody() {}

 virtual void* run() =0;
};

IT_ThreadBody::~IT_ThreadBody() Destructor

virtual ~IT_ThreadBody();

The destructor for the IT_ThreadBody object.

IT_ThreadBody::run()

virtual void* run() =0;

Does the work and returns a status, which is typically NULL or the address of a static
object.

Exceptions On platforms that support exceptions, if run() throws an exception while used by
an attached thread, this thread’s exit status will be IT_Thread::thread_failed.
57

 58

IT_ThreadFactory Class
An IT_ThreadFactory object starts threads that share some common properties.
You can derive your own class from IT_ThreadFactory to control other aspect
of thread creation, such as the exact method used to create or start the thread, or
the priority of threads when they are created.

class IT_ThreadFactory {
public:
 enum DetachState { Detached, Attached };

 IT_ThreadFactory(
 DetachState detachState,
 size_t stackSize =0
);

 virtual ~IT_ThreadFactory();

 virtual IT_Thread start(
 IT_ThreadBody& body,
 IT_TSErrorHandler& eh IT_TS_DEFAULT_ERROR_HANDLER
);

 static IT_Thread smf_start(
 IT_ThreadBody& body,
 DetachState detach_state,
 size_t stack_size,
 IT_TSErrorHandler& eh IT_TS_DEFAULT_ERROR_HANDLER
);

protected:
...
59

IT_ThreadFactory::DetachState Enumeration

enum DetachState { Detached, Attached };

A thread can be started in a detached or attached state. If a thread is detached, you
cannot join it (retrieve its exit status). If a thread is attached you must join it to tell
the operating system to forget about it.

Enhancement Orbix enhancement.

IT_ThreadFactory::IT_ThreadFactory() Constructor

IT_ThreadFactory(
 DetachState detachState,
 size_t stackSize = 0
);

Constructor for an IT_ThreadFactory object.

Parameters

Enhancement Orbix enhancement.

See Also IT_Thread::join()

IT_ThreadFactory::~IT_ThreadFactory() Destructor

virtual ~IT_ThreadFactory();

The destructor for a thread factory object.

Enhancement Orbix enhancement.

detachState Specify whether the manufactured threads are Detached or
Attached.

stackSize As an option, you can specify the stack size of your threads
(expressed in bytes). A value of 0 (the default) means that the
operating system will use a default.
 60

IT_ThreadFactory::smf_start()

static IT_Thread smf_start(
 IT_ThreadBody& body,
 DetachState detach_state,
 size_t stack_size,
 IT_TSErrorHandler& eh IT_TS_DEFAULT_ERROR_HANDLER
);

A static member method (smf) that starts a thread without creating a thread factory
explicitly. This method is useful for simple examples and prototyping but is not as
flexible for robust applications.

Enhancement Orbix enhancement.

See Also IT_ThreadFactory::start()

IT_ThreadFactory::start()

virtual IT_Thread start(
 IT_ThreadBody& body,
 IT_TSErrorHandler& eh IT_TS_DEFAULT_ERROR_HANDLER
);

Starts a thread. This method creates an operating system thread that runs the given
body. The method returns an IT_Thread object that represents this thread.

Parameters

Enhancement Orbix enhancement.

Exceptions An error that can be reported includes IT_TSRuntime.

See Also IT_Thread
IT_ThreadBody

body The thread body to run.

eh A reference to an error handler object.
61

 62

IT_TimedCountByNSemaphore Class
This semaphore is a non-negative counter typically used to coordinate access to a
set of resources. Several resources can be posted or waited for atomically. For
example, if there are 5 resources available, a thread that asks for 7 resources
would wait but another thread that later asks for 3 resources would succeed,
taking 3 resources.

class IT_TimedCountByNSemaphore {
 public:
 enum { infinite_timeout = -1 };
 enum { infinite_size = 0 };

 IT_TimedCountByNSemaphore(
 size_t initial_count,
 size_t max_size,
 IT_TSErrorHandler& eh IT_TS_DEFAULT_ERROR_HANDLER
);

 ~IT_TimedCountByNSemaphore();

 void post(
 size_t n,
 IT_TSErrorHandler& eh IT_TS_DEFAULT_ERROR_HANDLER
);

 void wait(
 size_t n,
 IT_TSErrorHandler& eh IT_TS_DEFAULT_ERROR_HANDLER
);

 int wait(
 size_t n,
 long timeout,
 IT_TSErrorHandler& eh IT_TS_DEFAULT_ERROR_HANDLER
);

 int trywait(
 size_t n,
63

 IT_TSErrorHandler& eh IT_TS_DEFAULT_ERROR_HANDLER
);

private:
...
};

IT_TimedCountByNSemaphore::infinite_size Constant

enum { infinite_size = 0 };

A constant used to indicate an infinite sized semaphore.

See Also IT_TimedCountByNSemaphore::wait()

IT_TimedCountByNSemaphore::infinite_timeout Constant

enum { infinite_timeout = -1 };

A constant used to indicate there is no time-out period for the semaphore.

See Also IT_TimedCountByNSemaphore::wait()

IT_TimedCountByNSemaphore::
IT_TimedCountByNSemaphore() Constructor

IT_TimedCountByNSemaphore(
 size_t initial_count,
 size_t max_size,
 IT_TSErrorHandler& eh IT_TS_DEFAULT_ERROR_HANDLER
);

Initializes the semaphore with initial_count and sets its maximum size to
max_size.

Enhancement Orbix enhancement.

Exceptions An error that can be reported is IT_TSRuntime.
 64

IT_TimedCountByNSemaphore::
~IT_TimedCountByNSemaphore() Destructor

~IT_TimedCountByNSemaphore();

The destructor for the semaphore.

Enhancement Orbix enhancement.

IT_TimedCountByNSemaphore::post()

void post(
 size_t n,
 IT_TSErrorHandler& eh IT_TS_DEFAULT_ERROR_HANDLER
);

Posts the number of resources managed.

Parameters

Enhancement Orbix enhancement.

Exceptions Errors that can be reported include:

IT_TSRuntime
IT_TSLogic

IT_TimedCountByNSemaphore::trywait()

int trywait(
 size_t n,
 IT_TSErrorHandler& eh IT_TS_DEFAULT_ERROR_HANDLER
);

Equivalent to a wait(n, 0, eh).

Enhancement Orbix enhancement.

n The number of resources. If the value of n plus the previous
number of resources is greater than max_size, then the number
of resources remains unchanged and an IT_TSLogic error is
reported. Calling the method using a value of 0 does nothing.

eh A reference to an error handler object.
65

Exceptions An error that can be reported is IT_TSRuntime.

See Also IT_TimedCountByNSemaphore::wait()

IT_TimedCountByNSemaphore::wait()

void wait(
 size_t n,
 IT_TSErrorHandler& eh IT_TS_DEFAULT_ERROR_HANDLER
);

Attempts to take a set of resources atomically.

int wait(
 size_t n,
 long timeout,
 IT_TSErrorHandler& eh IT_TS_DEFAULT_ERROR_HANDLER
);

Attempts to take a set of resources (n) atomically. Returns 1 upon success or 0 when
the operation times out. Calling wait(0, timeout, eh) returns 1 immediately.

Parameters

IT_Semaphore and IT_TimedSemaphore can be more efficient than
IT_TimedCountByNSemaphore when resources are posted and waited for one by
one.

Enhancement Orbix enhancement.

Exceptions An error that can be reported is IT_TSRuntime.

See Also IT_Semaphore
IT_TimedSemaphore

n The number of resources attempted. A value of 0 causes the
methods to return immediately.

timeout The number of milliseconds before the call gives up. You can use
the constant infinite_timeout.

eh A reference to an error handler object.
 66

IT_TimedOneshot Class
An IT_TimedOneshot class is a synchronization policy typically used to establish
a rendezvous between two threads. It can have three states:

• RESET

• SIGNALED

• WAIT

The key class members are as follows:

class IT_TimedOneshot {
public:
 enum { infinite_timeout = -1 };

 IT_TimedOneshot(
 IT_TSErrorHandler& eh IT_TS_DEFAULT_ERROR_HANDLER
);

 ~IT_TimedOneshot();

 void signal(
 IT_TSErrorHandler& eh IT_TS_DEFAULT_ERROR_HANDLER
);

 void reset(
 IT_TSErrorHandler& eh IT_TS_DEFAULT_ERROR_HANDLER
);

 void wait(
 IT_TSErrorHandler& eh IT_TS_DEFAULT_ERROR_HANDLER
);
 int wait(
 long timeout,
 IT_TSErrorHandler& eh IT_TS_DEFAULT_ERROR_HANDLER
);

 int trywait(
 IT_TSErrorHandler& eh IT_TS_DEFAULT_ERROR_HANDLER
);
67

...
};

IT_TimedOneshot::infinite_timeout Constant

enum { infinite_timeout = -1 };

The IT_TimedOneshot class includes the symbolic constant infinite_timeout.
This constant has a value of -1.

Enhancement Orbix enhancement.

See Also IT_TimedOneshot::wait()

IT_TimedOneshot::IT_TimedOneshot() Constructor

IT_TimedOneshot(
 IT_TSErrorHandler& eh IT_TS_DEFAULT_ERROR_HANDLER
);

Initializes the one-shot to the RESET state.

Parameters

Enhancement Orbix enhancement.

IT_TimedOneshot::~IT_TimedOneshot() Destructor

~IT_TimedOneshot();

Destroys the one-shot object.

Parameters

Enhancement Orbix enhancement.

eh A reference to an error handler object.

eh A reference to an error handler object.
 68

IT_TimedOneshot::reset()

void reset(
 IT_TSErrorHandler& eh IT_TS_DEFAULT_ERROR_HANDLER
);

Resets the one-shot object.

• Resetting a one-shot while in the SIGNALED state changes its state to RESET.

• Resetting a one-shot while in the RESET state has no effect.

• Resetting a one-shot in the WAIT state is an error. Note that this error is not
always detected, even in the checked mode.

Parameters

Enhancement Orbix enhancement.

IT_TimedOneshot::signal()

void signal(
 IT_TSErrorHandler& eh IT_TS_DEFAULT_ERROR_HANDLER
);

Signals the one-shot.

• Signaling a one-shot while in the RESET state changes its state to SIGNALED.

• Signaling a one-shot while in the WAIT state atomically releases the waiting
thread and changes the one-shot state to RESET.

• Signaling a one-shot while in the SIGNALED state is an error.

Parameters

Enhancement Orbix enhancement.

IT_TimedOneshot::trywait()

int trywait(
 IT_TSErrorHandler& eh IT_TS_DEFAULT_ERROR_HANDLER

eh A reference to an error handler object.

eh A reference to an error handler object.
69

);

Equivalent to a call to wait(0, eh).

Parameters

Enhancement Orbix enhancement.

See Also IT_TimedOneshot::wait()

IT_TimedOneshot::wait()

void wait(
 IT_TSErrorHandler& eh IT_TS_DEFAULT_ERROR_HANDLER
);

int wait(
 long timeout,
 IT_TSErrorHandler& eh IT_TS_DEFAULT_ERROR_HANDLER
);

Waits for the one-shot.

• Waiting for a one-shot while in the RESET state changes its state to WAIT. the
second method returns 1 when another thread signals the one-shot within the
time-out period. Otherwise it returns 0 and changes the state back to RESET.

• Waiting for a one-shot while in the SIGNALED state changes its state to
RESET. The first method returns immediately and the second method returns
1 immediately.

• Waiting for a one-shot while in the WAIT state is an error.

Parameters

Enhancement Orbix enhancement.

See Also IT_Semaphore
IT_TimedSemaphore

eh A reference to an error handler object.

timeout The number of milliseconds before the call gives up. You can use
the constant infinite_timeout.

eh A reference to an error handler object.
 70

IT_TimedSemaphore Class
The IT_TimedSemaphore object is a counter with a timer for coordinating access
to some resources.

class IT_TS_API IT_TimedSemaphore
{
public:
 enum { infinite_timeout = -1 };

 IT_TimedSemaphore(
 size_t initial_count,
 IT_TSErrorHandler& eh IT_TS_DEFAULT_ERROR_HANDLER
);

 ~IT_TimedSemaphore();

 void post(
 IT_TSErrorHandler& eh IT_TS_DEFAULT_ERROR_HANDLER
);

 void wait(
 IT_TSErrorHandler& eh IT_TS_DEFAULT_ERROR_HANDLER
);
 int wait(
 long timeout,
 IT_TSErrorHandler& eh IT_TS_DEFAULT_ERROR_HANDLER
);

 int trywait(
 IT_TSErrorHandler& eh IT_TS_DEFAULT_ERROR_HANDLER
);
private:
...
};
71

IT_TimedSemaphore::infinite_timeout Constant

enum { infinite_timeout = -1 };

The IT_TimedSemaphore class includes the symbolic constant
infinite_timeout. This constant has a value of -1.

Enhancement Orbix enhancement.

See Also IT_TimedSemaphore::wait()

IT_TimedSemaphore::IT_TimedSemaphore() Constructor

IT_TimedSemaphore(
 size_t initial_count,
 IT_TSErrorHandler& eh IT_TS_DEFAULT_ERROR_HANDLER
);

A semaphore constructor.

Parameters

Enhancement Orbix enhancement.

Exceptions An error that can be reported is IT_TSRuntime.

IT_TimedSemaphore::~IT_TimedSemaphore() Destructor

~IT_TimedSemaphore();

The destructor.

Enhancement Orbix enhancement.

IT_TimedSemaphore::post()

void post(
 IT_TSErrorHandler& eh IT_TS_DEFAULT_ERROR_HANDLER
);

initial_count Initializes the semaphore’s counter with this value.

eh A reference to an error handler object.
 72

Parameters

Enhancement Orbix enhancement.

Exceptions An error that can be reported is IT_TSRuntime.

IT_TimedSemaphore::trywait()

int trywait(
 IT_TSErrorHandler& eh IT_TS_DEFAULT_ERROR_HANDLER
);

Returns 1 if a resource has been obtained, 0 otherwise.

Parameters

Enhancement Orbix enhancement.

Exceptions An error that can be reported is IT_TSRuntime.

IT_TimedSemaphore::wait()

void wait(]
 IT_TSErrorHandler& eh IT_TS_DEFAULT_ERROR_HANDLER
);

int wait(
 long timeout,
 IT_TSErrorHandler& eh IT_TS_DEFAULT_ERROR_HANDLER
);

Waits for one resource. The wait() method blocks if the semaphore’s counter value
is 0 and decrements the counter if the counter’s value is greater than 0.

Parameters

eh A reference to an error handler object.

eh A reference to an error handler object.

timeout The number of milliseconds before the call gives up. You can
also use the constant infinite_timeout.

eh A reference to an error handler object.
73

Enhancement Orbix enhancement.

Exceptions Errors that can be reported include:

IT_TSRuntime
IT_TSLogic
 74

IT_TSBadAlloc Error Class
When new() returns 0 an IT_TSBadAlloc exception is reported.

class IT_TS_API IT_TSBadAlloc : public IT_TSRuntime
public:
 IT_TSBadAlloc();
 virtual ~IT_TSBadAlloc();
 virtual void raise() const;
};

See Also IT_TSRuntime
IT_TSError
75

 76

IT_TSError Error Class
All errors reported by the TS package are IT_TSError objects. The key members
of the class are as follows:

class IT_TS_API IT_TSError {
public:
 IT_TSError(
 unsigned long TS_errcode,
 long OS_errno = 0
);
 IT_TSError(
 const IT_TSError& other
);

 virtual ~IT_TSError();

 unsigned long TS_error_code() const;
 long OS_error_number() const;
 const char* what() const;
 virtual void raise() const;

protected:
...

See Also IT_DefaultTSErrorHandler

IT_TSError::IT_TSError() Constructors

IT_TSError(
 unsigned long TS_errcode,
 long OS_errno = 0
);

IT_TSError(
 const IT_TSError& other
);

Constructs an error with this TS error code and optionally an error number given
by the operating system. The second method is the copy constructor.
77

Enhancement Orbix enhancement.

IT_TSError::~IT_TSError() Destructor

virtual ~IT_TSError();

The destructor.

Enhancement Orbix enhancement.

IT_TSError::OS_error_number()

long OS_error_number() const;

Returns the operating system error number that represent the error. Returns 0 if the
error is not reported by the operating system.

Enhancement Orbix enhancement.

IT_TSError::raise()

virtual void raise() const;

When exceptions are supported, this method throws *this, a pointer to this
IT_TSError object. If exceptions are not supported, it calls ::abort().

Enhancement Orbix enhancement.

IT_TSError::TS_error_code()

unsigned long TS_error_code() const;

Returns the TS error code that represents the error.

Enhancement Orbix enhancement.
 78

IT_TSError::what()

const char* what();

Returns a string describing the error. The caller must not de-allocate the returned
string.

Enhancement Orbix enhancement.

See Also IT_TSLogic
IT_TSRuntime
IT_TSBadAlloc
79

 80

IT_TSErrorHandler Class
The last parameter of almost every TS method is a reference to an object of the
class IT_TSErrorHandler. When a TS method detects an error, it creates an
IT_TSError object and passes it to IT_TSErrorHandler::handle().

class IT_TS_API IT_TSErrorHandler {
public:
 virtual ~IT_TSErrorHandler();

 virtual void handle(
 const IT_TSError& thisError
) = 0;
};

See Also IT_DefaultTSErrorHandler

IT_TSErrorHandler::handle()

virtual void handle(
 const IT_TSError& thisError
) = 0;

Handles the given TS error.

Parameters

Enhancement Orbix enhancement.

IT_TSErrorHandler::~IT_TSErrorHandler() Destructor

virtual ~IT_TSErrorHandler();

The destructor for the error handler object.

Enhancement Orbix enhancement.

thisError The error raised.
81

 82

IT_TSLogic Error Class
An IT_TSLogic error signals an error in the application’s logic, for example
when a thread attempts to join itself.

class IT_TS_API IT_TSLogic : public IT_TSError {
 public:
 IT_TSLogic(
 unsigned long code,
 long fromOS =0
);

 virtual ~IT_TSLogic();

 virtual void raise() const;

private:
// ...
};

See Also IT_TSError
IT_TSRuntime
83

 84

IT_TSRuntime Error Class
An IT_TSRuntime error is an error detected by the operating system or by the
underlying thread package.

class IT_TS_API IT_TSRuntime : public IT_TSError {
public:
 IT_TSRuntime(
 unsigned long code,
 long fromOS =0
);

 virtual ~IT_TSRuntime();

 virtual void raise() const;

private:
...

See Also IT_TSError
IT_TSRuntime
85

 86

IT_TSVoidStar Class
An IT_TSVoidStar object is a data entry point that can be shared by multiple
threads. Each thread can use this entry point to get and set a void* pointer that
refers to thread-specific (private) data.

class IT_TSVoidStar {
public:
 IT_TSVoidStar(
 void (*destructor)(void*) df,
 IT_TSErrorHandler& eh IT_TS_DEFAULT_ERROR_HANDLER
);

 ~IT_TSVoidStar();

 void* get(
 IT_TSErrorHandler& eh IT_TS_DEFAULT_ERROR_HANDLER
) const;

 void set(
 void* newValue,
 IT_TSErrorHandler& eh IT_TS_DEFAULT_ERROR_HANDLER
);

private:
...
};

IT_TSVoidStar::IT_TSVoidStar() Constructor

IT_TSVoidStar(
 void (*destructor)(void*) df,
 IT_TSErrorHandler& eh IT_TS_DEFAULT_ERROR_HANDLER
);

Constructs an IT_TSVoidStar object. Initially, all thread-specific pointers are
NULL.
87

Parameters

On some platforms, when threads are not started using an IT_ThreadBody, the
application might have to call explicitly IT_CurrentThread::cleanup() upon
thread exit to perform this cleanup.

Enhancement Orbix enhancement.

Exceptions An error that can be reported is IT_TSRuntime.

See Also IT_TSVoidStar::~IT_TSVoidStar()
IT_CurrentThread::cleanup()

IT_TSVoidStar::~IT_TSVoidStar() Destructor

~IT_TSVoidStar();

The destructor for an IT_TSVoidStar object.

If a non-NULL destructor method is associated with this IT_TSVoidStar object (by
way of the IT_TSVoidStar() constructor), and the thread-specific value of this
object is not NULL, the non-NULL destructor method is called with the
thread-specific value.

WARNING:If the IT_TSVoidStar object has a non-NULL destructor, do not
destroy the object while any other threads have a non-NULL thread-specific
pointer. This is because on some platforms, a newly allocated IT_TSVoidStar
object might reincarnate the destroyed IT_TSVoidStar object and its
thread-specific values. This can lead to unexpected results.

Enhancement Orbix enhancement.

See Also IT_TSVoidStar::IT_TSVoidStar()

df You can optionally associate a non-NULL destructor method
with an IT_TSVoidStar object. Before exiting, a thread will call
this destructor with its specific pointer value only when its
specific pointer value is not NULL.

eh A reference to an error handler object.
 88

IT_TSVoidStar::get()

void* get(
 IT_TSErrorHandler& eh IT_TS_DEFAULT_ERROR_HANDLER
) const;

Gets the pointer associated with the calling thread. Returns NULL when the calling
thread did not explicitly set this value.

Exceptions An error that can be reported is IT_TSRuntime.

Enhancement Orbix enhancement.

IT_TSVoidStar::set()

void set(
 void* newValue,
 IT_TSErrorHandler& eh IT_TS_DEFAULT_ERROR_HANDLER
);

Sets the pointer associated with the calling thread to newValue.

Exceptions An error that can be reported is IT_TSRuntime.

Enhancement Orbix enhancement.
89

 90

Index
B
broadcast() 7

C
cancel() 23, 41
cleanup() 11
close() 17

D
DetachState enumeration 60

G
get() 89

H
handle() 15, 81

I
id() 11, 52
infinite_size constant 64
infinite_timeout constant 64, 68, 72
is_locked() 23
is_main_thread() 12
is_null() 52
IT_Condition class 7
~IT_Condition() 8
IT_Condition() constructor 8
IT_CurrentThread class 11
IT_DefaultTSErrorHandler class 15
~IT_DefaultTSErrorHandler() 15
IT_Gateway class 17
~IT_Gateway() 18
IT_Gateway() constructor 18
IT_Locker Template class 21
~IT_Locker() 24
IT_Locker() 23
IT_Mutex class 27
~IT_Mutex() 28
IT_Mutex() constructor 28
IT_PODMutex Structure 31
IT_RecursiveMutex class 35
~IT_RecursiveMutex() 36
IT_RecursiveMutex() constructor 36
IT_RecursiveMutexLocker class 39
~IT_RecursiveMutexLocker() 42
IT_RecursiveMutexLocker() constructors 41
IT_Semaphore class 45
~IT_Semaphore() 46
IT_Semaphore() constructor 45
IT_TerminationHandler class 49
IT_Thread class 51
~IT_Thread() 53
IT_Thread() constructors 52
IT_ThreadBody class 57
~IT_ThreadBody() 57
IT_ThreadFactory class 59
~IT_ThreadFactory() 60
IT_ThreadFactory() constructor 60
IT_TimedCountByNSemaphore class 63
~IT_TimedCountByNSemaphore() 65
IT_TimedCountByNSemaphore() constructor 64
IT_TimedOneshot class 67
~IT_TimedOneshot() 68
IT_TimedOneshot() constructor 68
IT_TimedSemaphore class 71
~IT_TimedSemaphore() 72
IT_TimedSemaphore() constructor 72
IT_TSBadAlloc error class 75
IT_TSError error class 77
~IT_TSError() 78
IT_TSError() constructors 77
IT_TSErrorHandler class 81
~IT_TSErrorHandler() 81
IT_TSLogic error class 83
IT_TSRuntime error class 85
IT_TSVoidStar class 87
~IT_TSVoidStar() 88
IT_TSVoidStar() constructor 87

J
join() 53

L
lock() 25, 28, 31, 36, 43
lock_count() 43
91

Index
M
m_index data type 32
mutex() 25, 43

O
open() 18
operator!=() 54
operator=() 53
operator==() 54
OS_error_number() 78

P
post() 46, 65, 72

R
raise() 78
reset() 69
run() 57

S
self() 12
set() 89
signal() 8, 69
sleep() 12
smf_start() 61
start() 61
synchronization toolkit 1

T
thread

errors and exceptions 4
execution modes 2
Inlined classes 3
setting an execution mode 3
Timeouts 2
wrapper classes 3

thread_failed constant 54
threading toolkit 1
trylock() 26, 29, 32, 37, 43
trywait() 46, 65, 69, 73
TS, threading and synchronization 1
TS_error_code() 78

U
unlock() 29, 33, 37, 44
 92
W
wait() 9, 19, 47, 66, 70, 73
what() 79

Y
yield() 13

	Threading and Synchronization Toolkit Overview
	Timeouts
	Execution Modes
	Wrapper Classes
	Inlined Classes
	Setting an Execution Mode

	Errors and Exceptions

	IT_Condition Class
	IT_Condition::broadcast()
	IT_Condition::IT_Condition() Constructor
	IT_Condition::~IT_Condition() Destructor
	IT_Condition::signal()
	IT_Condition::wait()

	IT_CurrentThread Class
	IT_CurrentThread::cleanup()
	IT_CurrentThread::id()
	IT_CurrentThread::is_main_thread()
	IT_CurrentThread::self()
	IT_CurrentThread::sleep()
	IT_CurrentThread::yield()

	IT_DefaultTSErrorHandler Class
	IT_DefaultTSErrorHandler::handle()
	IT_DefaultTSErrorHandler::~IT_DefaultTSErrorHandler() Destructor

	IT_Gateway Class
	IT_Gateway::close()
	IT_Gateway::IT_Gateway() Constructor
	IT_Gateway::~IT_Gateway() Destructor
	IT_Gateway::open()
	IT_Gateway::wait()

	IT_Locker Template Class
	IT_Locker::cancel()
	IT_Locker::is_locked()
	IT_Locker::IT_Locker()
	IT_Locker::~IT_Locker()
	IT_Locker::lock()
	IT_Locker::mutex()
	IT_Locker::trylock()

	IT_Mutex Class
	IT_Mutex::IT_Mutex() Constructor
	IT_Mutex::~IT_Mutex() Destructor
	IT_Mutex::lock()
	IT_Mutex::trylock()
	IT_Mutex::unlock()

	IT_PODMutex Structure
	IT_PODMutex::lock()
	IT_PODMutex::m_index Data Type
	IT_PODMutex::trylock()
	IT_PODMutex::unlock()

	IT_RecursiveMutex Class
	IT_RecursiveMutex::IT_RecursiveMutex() Constructor
	IT_RecursiveMutex::~IT_RecursiveMutex() Destructor
	IT_RecursiveMutex::lock()
	IT_RecursiveMutex::trylock()
	IT_RecursiveMutex::unlock()

	IT_RecursiveMutexLocker Class
	IT_RecursiveMutexLocker::cancel()
	IT_RecursiveMutexLocker::IT_RecursiveMutexLocker() Constructors
	IT_RecursiveMutexLocker::~IT_RecursiveMutexLocker() Destructor
	IT_RecursiveMutexLocker::lock()
	IT_RecursiveMutexLocker::lock_count()
	IT_RecursiveMutexLocker::mutex()
	IT_RecursiveMutexLocker::trylock()
	IT_RecursiveMutexLocker::unlock()

	IT_Semaphore Class
	IT_Semaphore::IT_Semaphore() Constructor
	IT_Semaphore::~IT_Semaphore() Destructor
	IT_Semaphore::post()
	IT_Semaphore::trywait()
	IT_Semaphore::wait()

	IT_TerminationHandler Class
	IT_TerminationHandler()
	~IT_TerminationHandler()

	IT_Thread Class
	IT_Thread::id()
	IT_Thread::is_null()
	IT_Thread::IT_Thread() Constructors
	IT_Thread::~IT_Thread() Destructor
	IT_Thread::join()
	IT_Thread::operator=()
	IT_Thread::operator==()
	IT_Thread::operator!=()
	IT_Thread::thread_failed Constant

	IT_ThreadBody Class
	IT_ThreadBody::~IT_ThreadBody() Destructor
	IT_ThreadBody::run()

	IT_ThreadFactory Class
	IT_ThreadFactory::DetachState Enumeration
	IT_ThreadFactory::IT_ThreadFactory() Constructor
	IT_ThreadFactory::~IT_ThreadFactory() Destructor
	IT_ThreadFactory::smf_start()
	IT_ThreadFactory::start()

	IT_TimedCountByNSemaphore Class
	IT_TimedCountByNSemaphore::infinite_size Constant
	IT_TimedCountByNSemaphore::infinite_timeout Constant
	IT_TimedCountByNSemaphore:: IT_TimedCountByNSemaphore() Constructor
	IT_TimedCountByNSemaphore:: ~IT_TimedCountByNSemaphore() Destructor
	IT_TimedCountByNSemaphore::post()
	IT_TimedCountByNSemaphore::trywait()
	IT_TimedCountByNSemaphore::wait()

	IT_TimedOneshot Class
	IT_TimedOneshot::infinite_timeout Constant
	IT_TimedOneshot::IT_TimedOneshot() Constructor
	IT_TimedOneshot::~IT_TimedOneshot() Destructor
	IT_TimedOneshot::reset()
	IT_TimedOneshot::signal()
	IT_TimedOneshot::trywait()
	IT_TimedOneshot::wait()

	IT_TimedSemaphore Class
	IT_TimedSemaphore::infinite_timeout Constant
	IT_TimedSemaphore::IT_TimedSemaphore() Constructor
	IT_TimedSemaphore::~IT_TimedSemaphore() Destructor
	IT_TimedSemaphore::post()
	IT_TimedSemaphore::trywait()
	IT_TimedSemaphore::wait()

	IT_TSBadAlloc Error Class
	IT_TSError Error Class
	IT_TSError::IT_TSError() Constructors
	IT_TSError::~IT_TSError() Destructor
	IT_TSError::OS_error_number()
	IT_TSError::raise()
	IT_TSError::TS_error_code()
	IT_TSError::what()

	IT_TSErrorHandler Class
	IT_TSErrorHandler::handle()
	IT_TSErrorHandler::~IT_TSErrorHandler() Destructor

	IT_TSLogic Error Class
	IT_TSRuntime Error Class
	IT_TSVoidStar Class
	IT_TSVoidStar::IT_TSVoidStar() Constructor
	IT_TSVoidStar::~IT_TSVoidStar() Destructor
	IT_TSVoidStar::get()
	IT_TSVoidStar::set()

