
Orbix 6.3.7

CORBA Tutorial: Java

ii

Micro Focus
The Lawn
22-30 Old Bath Road
Newbury, Berkshire RG14 1QN
UK

http://www.microfocus.com
Copyright © Micro Focus 2014. All rights reserved.
MICRO FOCUS, the Micro Focus logo and Micro Focus Licensing are
trademarks or registered trademarks of Micro Focus IP Development
Limited or its subsidiaries or affiliated companies in the United States,
United Kingdom and other countries.
All other marks are the property of their respective owners.

2014-06-10

Contents
Getting Started with Orbix ..1
Creating a Configuration Domain...1
Setting the Orbix Environment..9
Setting ORB Properties for the Orbix ORB...10
Setting Your Classpath...11
Hello World Example ...13
Development from the Command Line ...13

Index ..19
 Orbix CORBA Tutorial for Java i i i

iv Orbix CORBA Tutorial for Java

Getting Started with
Orbix
You can use the CORBA Code Generation Toolkit to develop an Orbix
application quickly.

Given a user-defined IDL interface, the toolkit generates the bulk
of the client and server application code, including build files. You
then complete the distributed application by filling in the missing
business logic.

Creating a Configuration Domain
This section describes how to create a simple configuration
domain, simple, which is required for running basic
demonstrations. This domain deploys a minimal set of Orbix
services.

Prerequisites
Before creating a configuration domain, the following prerequisites
must be satisfied:
• Orbix is installed.
• Some basic system variables are set up (in particular, the

IT_PRODUCT_DIR, IT_LICENSE_FILE, and PATH variables).
Fore more details, please consult the Installation Guide.

Licensing
The location of the license file, licenses.txt, is specified by the
IT_LICENSE_FILE system variable. If this system variable is not
already set in your environment, you can set it now.

Steps
To create a configuration domain, simple, perform the following
steps:
1. Run itconfigure.
2. Choose the domain type.
3. Specify service startup options.
4. Specify security settings.
5. Specify fault tolerance settings.
6. Select services.
7. Confirm choices.
8. Finish configuration.
 Orbix CORBA Tutorial for Java 1

Run itconfigure
To begin creating a new configuration domain, enter itconfigure
at a command prompt. An Orbix Configuration Welcome dialog
box appears, as shown in Figure 1.
Select Create a new domain and click OK.

Figure 1: The Orbix Configuration Welcome Dialog Box
 2 Orbix CORBA Tutorial for Java

Choose the domain type
A Domain Type window appears, as shown in Figure 2.
In the Configuration Domain Name text field, type simple.
Under Configuration Domain Type, click the Select Services
radiobutton.
Click Next> to continue.

Figure 2: The Domain Type Window
Orbix CORBA Tutorial for Java 3

Specify service startup options
A Service Startup window appears, as shown in Figure 3.
You can leave the settings in this Window at their defaults.
Click Next> to continue.

Figure 3: The Service Startup Window
 4 Orbix CORBA Tutorial for Java

Specify security settings
A Security window appears, as shown in Figure 4.
You can leave the settings in this Window at their defaults (no
security).
Click Next> to continue.

Figure 4: The Security Window
Orbix CORBA Tutorial for Java 5

Specify fault tolerance settings
A Fault Tolerance window appears, as shown in Figure 5.
You can leave the settings in this Window at their defaults.
Click Next> to continue.

Figure 5: The Fault Tolerance Window
 6 Orbix CORBA Tutorial for Java

Select services
A Select Services window appears, as shown in Figure 6.
In the Select Services window, select the following services and
components for inclusion in the configuration domain: Location,
Node daemon, Management, CORBA Interface Repository,
CORBA Naming, and demos.
Click Next> to continue.

Confirm choices
You now have the opportunity to review the configuration settings
in the Confirm Choices window, Figure 7. If necessary, you can
use the <Back button to make corrections.

Figure 6: The Select Services Window
Orbix CORBA Tutorial for Java 7

Click Next> to create the configuration domain and progress to
the next window.

Finish configuration
The itconfigure utility now creates and deploys the simple
configuration domain, writing files into the OrbixInstallDir/etc/bin,
OrbixInstallDir/etc/domain, OrbixInstallDir/etc/log, and OrbixInstallDir/var
directories.
If the configuration domain is created successfully, you should see
a Summary window with a message similar to that shown in
Figure 8.

Figure 7: The Confirm Choices Window
 8 Orbix CORBA Tutorial for Java

Click Finish to quit the itconfigure utility.

Setting the Orbix Environment

Prerequisites
Before proceeding with the demonstration in this chapter you
need to ensure:
• The CORBA developer’s kit is installed on your host.
• Orbix is configured to run on your host platform.
• Your Java development kit (JDK) is configured to use the

Orbix ORB runtime (see “Setting ORB Properties for the Orbix
ORB” on page 10).

• Your configuration domain is set (see “Setting the domain”).
The Administrator’s Guide contains more information on Orbix
configuration, and details of Orbix command line utilities.

Setting the domain
The scripts that set the Orbix environment are associated with a
particular domain, which is the basic unit of Orbix configuration.
See the Installation Guide, and the Administrator’s Guide for
further details on configuring your environment.

Figure 8: Configuration Summary
Orbix CORBA Tutorial for Java 9

To set the Orbix environment associated with the domain-name
domain, enter:

Windows

UNIX

YourJdkDir is the root directory of the Java development kit that
you want to use with Orbix. See the Installation Guide for details
of supported Java platforms.
config-dir is the root directory where the Appliation Server
Platform stores its configuration information. You specify this
directory while configuring your domain. domain-name is the name of
a configuration domain.

Setting ORB Properties for the Orbix ORB
SUN’s Java development kit (JDK) comes with a built-in ORB
runtime that is used by default. However, you cannot use SUN’s
ORB runtime with Orbix applications. You must configure the JDK
to use the Orbix ORB runtime instead by setting system properties
org.omg.CORBA.ORBClass and org.omg.CORBA.ORBSingletonClass to the
appropriate values. You can set the ORB properties in one of the
following ways:
• Using the iona.properties file
• Using Java interpreter arguments

Using the iona.properties file
Setting system properties org.omg.CORBA.ORBClass and
org.omg.CORBA.ORBSingletonClass in the iona.properties file is the
preferred way to configure your JDK to use the Orbix ORB
runtime.

Location of the iona.properties file
The iona.properties file is located in the JDKHome/jre/lib directory,
where JDKHome is the JDK root directory.

Contents of the iona.properties file
The iona.properties file should contain the following two lines of
text:

The first line sets org.omg.CORBA.ORBClass to the name of a class
that implements org.omg.CORBA.ORB.

> set JAVA_HOME=YourJdkDir

> config-dir\etc\bin\domain-name_env.bat

% JAVA_HOME=YourJdkDir ; export JAVA_HOME

% . config-dir/etc/bin/domain-name_env

org.omg.CORBA.ORBClass=com.iona.corba.art.artimpl.ORBImpl
org.omg.CORBA.ORBSingletonClass=
com.iona.corba.art.artimpl.ORBSingleton
 10 Orbix CORBA Tutorial for Java

The second line sets org.omg.CORBA.ORBSingletonClass to the name
of a class that implements the static ORB instance returned from
org.omg.CORBA.ORB.init() (taking no arguments).

Using Java interpreter arguments
You can use the -Dproperty_name=property_value option on the Java
Interpreter to specify the org.omg.CORBA.ORBClass and
org.omg.CORBA.ORBSingletonClass properties. For example, to set
the ORB properties for an orbix_app Orbix application:

Setting Your Classpath
Before building any Orbix Java server or client application, you
must ensure that your classpath is configured appropriately for
the Orbix features that you wish to use.

Basic Orbix classpath settings
The basic Orbix JAR files that must be included on you classpath
are as follows:

Windows
For example, on Windows, the following command adds these JAR
files to your classpath:

WARNING: By setting system properties
org.omg.CORBA.ORBClass and
org.omg.CORBA.ORBSingletonClass in the iona.properties file,
as detailed above, you effectively specify the Orbix ORB
classes as the ORB runtime for the JDK. This might affect
other applications that use the same JDK but want to use
different ORB classes—if this is the case, you should
consider using one of the alternative mechanisms for
setting ORB properties, given in the following sub-sections.

java
-Dorg.omg.CORBA.ORBClass=com.iona.corba.art.artimpl.OR
BImpl\

 -Dorg.omg.CORBA.ORBSingletonClass=\
 com.iona.corba.art.artimpl.ORBSingleton orbix_app

OrbixInstallDir/lib/art/omg/1.3/omg.jar
OrbixInstallDir/lib/art/art/1.3/art.jar

set
CLASSPATH=%CLASSPATH%;%IT_PRODUCT_DIR%/lib/art/omg/1.3/om

g.jar;
%IT_PRODUCT_DIR%/lib/art/omg/1.3/art.jar;
Orbix CORBA Tutorial for Java 11

UNIX
For example, on UNIX, the following command adds these JAR
files to your classpath:

Classpath settings for Orbix features
Other Orbix JAR files might also need to be included on your
classpath, depending on which Orbix features your application is
using (for example, the naming service or notification service).
The following list of JAR files shows typical Orbix features that you
may wish to include on your classpath:

Windows
For example, on Windows, the following command adds the
naming service JAR file to your classpath:

UNIX
For example, on UNIX, the following command adds the naming
service JAR file to your classpath:

export
CLASSPATH=$CLASSPATH:$IT_PRODUCT_DIR/lib/art/omg/1.3/omg.jar:
$IT_PRODUCT_DIR/lib/art/art/1.3/art.jar

OrbixInstallDir/lib/platform/java_poa/1.3/poa.jar
OrbixInstallDir/lib/corba/idlgen/5.3/it_genie.jar
OrbixInstallDir/lib/platform/naming_service/1.3/naming.jar
OrbixInstallDir/lib/platform/lease/1.3/lease.jar
OrbixInstallDir/lib/corba/event_service/5.3/event.jar
OrbixInstallDir/lib/common/ifc/1.3/ifc.jar
OrbixInstallDir/lib/corba/event_service/5.3/event_psk.jar
OrbixInstallDir/lib/corba/messaging_utils/5.3/messaging.jar
OrbixInstallDir/lib/platform/ots/1.3/ots.jar
OrbixInstallDir/lib/corba/notification_service/5.3/notification.jar
OrbixInstallDir/lib/corba/notification_service/5.3/notification_psk.jar
OrbixInstallDir/lib/corba/event_service/5.3/event.jar
OrbixInstallDir/lib/corba/trading_service/5.3/trading.jar
OrbixInstallDir/lib/corba/trading_service/5.3/trading_psk.jar
OrbixInstallDir/lib/corba/basic_log_service/5.3/basic_log.jar
OrbixInstallDir/lib/corba/event_log_service/5.3/event_log.jar
OrbixInstallDir/lib/corba/notification_log_service/5.3/notify_log.jar
OrbixInstallDir/lib/platform/fps/1.3/fps_agent.jar
OrbixInstallDir/lib/platform/java_secure_transports/1.3/tls.jar
OrbixInstallDir/lib/platform/java_transports/1.3/iiop.jar

set
CLASSPATH=%CLASSPATH%;%IT_PRODUCT_DIR%/lib/platform/

naming_service/1.3/naming.jar;

export
CLASSPATH=$CLASSPATH:$IT_PRODUCT_DIR/lib/platform/naming_

service/1.3/naming.jar

Note: The following Orbix JAR file should not be included
in your build classpath:
OrbixInstallDir/asp/6.3/lib/asp-corba.jar
 12 Orbix CORBA Tutorial for Java

Hello World Example
This chapter shows how to create, build, and run a complete
client/server demonstration with the help of the CORBA code
generation toolkit. The architecture of this example system is
shown in Figure 9.

The client and server applications communicate with each other
using the Internet Inter-ORB Protocol (IIOP), which sits on top of
TCP/IP. When a client invokes a remote operation, a request
message is sent from the client to the server. When the operation
returns, a reply message containing its return values is sent back
to the client. This completes a single remote CORBA invocation.
All interaction between the client and server is mediated via a set
of IDL declarations. The IDL for the Hello World! application is:

The IDL declares a single Hello interface, which exposes a single
operation getGreeting(). This declaration provides a language
neutral interface to CORBA objects of type Hello.
The concrete implementation of the Hello CORBA object is written
in Java and is provided by the server application. The server could
create multiple instances of Hello objects if required. However,
the generated code generates only one Hello object.
The client application has to locate the Hello object—it does this
by reading a stringified object reference from the file Hello.ref.
There is one operation getGreeting() defined on the Hello
interface. The client invokes this operation and exits.

Development from the Command Line
Starting point code for CORBA client and server applications can
be generated using the idlgen command line utility.
The idlgen utility can be used on Windows and UNIX platforms.

Figure 9: Client makes a single operation call on a server

Client Machine

Client Application

IDL Interface

Server Application

Server Machine

ORB ORB

Code Code

Operation Call

Result

CORBA
Object

//IDL
interface Hello {
 string getGreeting();
};
Orbix CORBA Tutorial for Java 13

You implement the Hello World! application with the following
steps:
1. Define the IDL interface, Hello.
2. Generate starting point code.
3. Complete the server program by implementing the single IDL

getGreeting() operation.
4. Complete the client program by inserting a line of code to

invoke the getGreeting() operation.
5. Build the demonstration.
6. Run the demonstration.

Define the IDL interface
Create the IDL file for the Hello World! application. First of all,
make a directory to hold the example code:

Windows

UNIX

Create an IDL file C:\OCGT\HelloExample\hello.idl (Windows) or
OCGT/HelloExample/hello.idl (UNIX) using a text editor.
Enter the following text into the file hello.idl:

This interface mediates the interaction between the client and the
server halves of the distributed application.

Generate starting point code
Generate files for the server and client application using the
CORBA Code Generation Toolkit.
In the directory C:\OCGT\HelloExample (Windows) or
OCGT/HelloExample (UNIX) enter the following command:

> mkdir C:\OCGT\HelloExample

% mkdir -p OCGT/HelloExample

//IDL
interface Hello {
 string getGreeting();
};

idlgen java_poa_genie.tcl -all -jP HelloExample hello.idl
 14 Orbix CORBA Tutorial for Java

This command logs the following output to the screen while it is
generating the files:

You can edit the following files to customize client and server
applications:

Client:
HelloExample/client.java

Server:
HelloExample/server.java
HelloExample/HelloImpl.java

Complete the server program
Complete the implementation class, HelloImpl, by providing the
definition of the HelloImpl.getGreeting() method. This Java method
provides the concrete realization of the Hello::getGreeting() IDL
operation.
Edit the HelloImpl.java file, and delete most of the generated
boilerplate code occupying the body of the HelloImpl.getGreeting
method Replace it with the line of code highlighted in bold font
below:

Complete the client program
Complete the implementation of the client main() function in the
client.java file. You must add a couple of lines of code to make a
remote invocation of the getGreeting() operation on the Hello
object.

hello.idl:
java_poa_genie.tcl: creating idlgen/RandomFuncs.java
java_poa_genie.tcl: creating

idlgen/HelloExample/RandomHello.java
java_poa_genie.tcl: creating idlgen/RandomHelloExample.java
java_poa_genie.tcl: creating HelloExample/HelloCaller.java
java_poa_genie.tcl: creating HelloExample/client.java
java_poa_genie.tcl: creating HelloExample/HelloImpl.java
java_poa_genie.tcl: creating HelloExample/server.java
java_poa_genie.tcl: creating build.xml

//Java
//File ’HelloImpl.java’
...
 public java.lang.String getGreeting()
 throws org.omg.CORBA.SystemException
 {
 java.lang.String _result;

 _result = "Hello World!";

 return _result;
 }
...
Orbix CORBA Tutorial for Java 15

Edit the client.java file and search for the line where the
HelloExample.HelloCaller.getGreeting() method is called. Delete
this line and replace it with the line of code highlighted in bold font
below:

The object reference Hello1 refers to an instance of a Hello object
in the server application. It is already initialized for you.
A remote invocation is made by invoking getGreeting() on the
Hello1 object reference. The ORB automatically establishes a
network connection and sends packets across the network to
invoke the HelloImpl.getGreeting() method in the server
application.

Build the demonstration
The itant utility—a Java-based build tool—is used to build the
generated Java code. For more details about itant, see
http://jakarta.apache.org/ant. The itant utility is bundled with
Orbix.
The generated file build.xml is used to build this demonstration.
This file contains the rules for building the Hello World! application
in an XML format that is understood by the itant utility.
To build the client and server complete the following steps:
1. Open a command line window.
2. Go to the ../OCGT/HelloExample directory.
3. Enter:

//Java
//File: ’client.java’
...
 try
 {
 ...
 // Exercise interface HelloExample.Hello.
 //
 tmp_ref = read_reference("Hello.ref");
 HelloExample.Hello Hello1 =
 HelloExample.HelloHelper.narrow(tmp_ref);
 System.out.println("Greeting is: " + Hello1.getGreeting());

 }
 catch(Exception ex)
 {
 System.out.println("Unexpected CORBA exception: " + ex);
 }
...

> itant
 16 Orbix CORBA Tutorial for Java

http://jakarta.apache.org/ant

Run the demonstration
Run the application as follows:
1. Run the Orbix services (if required).

If you have configured Orbix to use file-based configuration,
no services need to run for this demonstration. Proceed to
step 2.
If you have configured Orbix to use configuration repository
based configuration, start up the basic Orbix services.
Open a DOS prompt in Windows, or xterm in UNIX. Enter:

Where domain-name is the name of the configuration domain.
2. Set the Application Server Platform’s environment.

3. Run the server program.
Open a DOS prompt, or xterm window (UNIX). Enter the
following command:

The server outputs the following lines to the screen:

The server performs the following steps when it is launched:
♦ It instantiates and activates a single Hello CORBA object.
♦ The stringified object reference for the Hello object is

written to the local Hello.ref file.
♦ The server opens an IP port and begins listening on the

port for connection attempts by CORBA clients.
4. Run the client program.

Open a new DOS prompt, or xterm window (UNIX). Enter the
following command:

The client outputs the following lines to the screen:

start_domain-name_services

> domain-name_env

itant runserver

Buildfile: build.xml

runserver:
 [java] Initializing the ORB
 [java] Writing stringified object reference to Hello.ref
 [java] Waiting for requests...

itant runclient

Buildfile: build.xml

runclient:
 [java] Reading stringified object reference from

Hello.ref
Greeting is: Hello World!

Total time: 3 seconds
Orbix CORBA Tutorial for Java 17

The client performs the following steps when it is run:
♦ It reads the stringified object reference for the Hello

object from the Hello.ref file.
♦ It converts the stringified object reference into an object

reference.
♦ It calls the remote Hello::getGreeting() operation by

invoking on the object reference. This causes a
connection to be established with the server and the
remote invocation to be performed.

5. When you are finished, terminate all processes.
Shut down the server by typing Ctrl-C in the window where it
is running.

6. Stop the Orbix services (if they are running).
From a DOS prompt in Windows, or xterm in UNIX, enter:

The passing of the object reference from the server to the client in
this way is suitable only for simple demonstrations. Realistic
server applications use the CORBA naming service to export their
object references instead.

stop_domain-name_services
 18 Orbix CORBA Tutorial for Java

Index
A
Application

running 16

B
build.xml 16
building applications 16

C
classpath 11
Client

generating 14
implementing 15

Code generation toolkit
idlgen utility 14

G
Genie-generated application

package name 14

H
Hello World! example 13

J
java_poa_genie.tcl 14

O
Object reference

passing as a string 13
ORBClass 10
org.omg.CORBA.ORBClass 10
org.omg.CORBA.ORBSingletonClass 11

P
Package name 14

S
Server

generating 14
implementing 15

Services 17, 18
Orbix CORBA Tutorial for Java 19

 20 Orbix CORBA Tutorial for Java

	Getting Started with Orbix
	Creating a Configuration Domain
	Setting the Orbix Environment
	Setting ORB Properties for the Orbix ORB
	Setting Your Classpath
	Hello World Example
	Development from the Command Line

	Index

