
Orbix 6.3.7

Enterprise Messaging
Guide: Java

ii

Micro Focus
The Lawn
22-30 Old Bath Road
Newbury, Berkshire RG14 1QN
UK

http://www.microfocus.com
Copyright © Micro Focus 2014. All rights reserved.
MICRO FOCUS, the Micro Focus logo and Micro Focus Licensing are
trademarks or registered trademarks of Micro Focus IP Development
Limited or its subsidiaries or affiliated companies in the United States,
United Kingdom and other countries.
All other marks are the property of their respective owners.

2014-08-05

Contents
Preface..1
Contacting Micro Focus ..2

Part I Messaging Service Technologies

CORBA Messaging Technologies ..7
Event Service ...7
Notification Service ...9
Telecom Log Service..10
Event Communication..11

The Java Messaging Service ..15
Java Messaging Service Overview..15
Point to Point Messaging ..16
Publish / Subscribe Messaging ..16

The JMS-Notification Bridge Service....................................19
Message sharing ...19
Bridge endpoints...20
Message and property conversion..20

Part II The Notification Service

Developing Suppliers and Consumers..................................23
Obtaining an Event Channel ...23
Implementing a Supplier ..26

Instantiating the Supplier...27
Connecting to a Channel ..28
Creating Event Messages ...31
Sending Event Messages..34
Disconnecting From the Event Channel ..37

Implementing a Consumer ...37
Instantiating a Consumer...38
Connecting to the Channel ...39
Obtaining Event Messages..43
Disconnecting From the Event Channel ..45

Notification Service Properties ..47
Property Types ...47
Property Inheritance..48
Setting Properties ...49

Setting Properties Programmatically ..49
Setting a Structured Event’s QoS Properties51

Getting Properties ...52
Validating Properties..53
 Orbix Enterprise Messaging Guide: Java i i i

Property Descriptions...54
Reliability Properties ..55
Event Queue Order..56
Event Priority ...57
Lifetime Properties ..57
Start Time Properties...58
Undelivered Event Properties ..59
RequestTimeout..60
Sequenced Events Properties ..60
Proxy Push Supplier Properties..61
Proxy Pull Consumer Properties...62
Channel Administration Properties ...62

Event Filtering .. 65
Forwarding Filters..65

Implementing a Forwarding Filter ..65
Processing Events with Forwarding Filters...69

Mapping Filters ...71
Implementing a Mapping Filter Object ..71
Processing Events with Mapping Filters...75

Filter Constraint Language..76
Constraint Expression Data Structure...76
Event Type Filtering...77
Referencing Filtered Data ...78
Operand Handling ...79
Examples of Notification Service Constraints80

Multicast Consumers... 83
MIOP ...83
IDL Interfaces...83
Configuring Orbix for Multicast ..84
Implementing an Endpoint Group ..85

Instantiating an IP/Multicast Consumer ..85
Creating a POA for an Endpoint Group..87
Registering an Endpoint Group Object Reference88

Connecting to an Event Channel ..89
Receiving Events ...92
Filtering and Event Subscription ..92
Disconnecting from an Event Channel ..93

Subscribing and Publishing... 95
Event Subscription...95

Adding Forwarding Filters ...95
Obtaining Subscriptions ...97
Implementing subscription_change() ...99

Publishing Event Types...101
Advertising Event Types...101
Discovering Available Event Types...103
Implementing offer_change() ...106

Managing the Notification Service 109
Configuring the Notification Service ...109
Running the Notification Service ..110
Using Direct Persistence ...110
Managing a Deployed Notification Service ...111
iv Orbix Enterprise Messaging Guide: Java

Example 1: Generating Trace Information .. 112
Example 2: Failure Recovery .. 112

Part III The Telecom Log Service

Telecom Log Service Basics ...117
Telecom Log Service Objects .. 117
Telecom Log Service Features... 118

Developing Telecom Log Clients ..119
Creating a Log.. 119

Obtain a log factory .. 119
Obtain a log object ... 120

Logging Events ... 124
Logging with a BasicLog .. 124
Logging Events with an EventLog.. 127
Logging Events with a NotifyLog ... 128

Getting Log Records .. 129
Deleting Records from the Log.. 131
Ending a Logging Session... 132

Advanced Features ..133
Scheduling... 133
Log Generated Events ... 136
Event Forwarding.. 143
Filtering... 148
Log Management .. 151

Administrative State ... 151
Maximum Log Size.. 152
Log Duration .. 152
Record Lifetime .. 153
Log QoS Properties ... 154
Availability Status ... 155
Operational State ... 156

Qualities of Service ... 157

Managing the Telecom Log Service....................................159
Configuring the Telecom Log Service ... 159
Running the Telecom Log Service.. 161
Managing a Deployed Telecom Log Service... 162

Part IV The Java Messaging Service

Developing a JMS Application ..165
Using Point to Point Messaging ... 165

Creating a Queue.. 166
Implementing a Point to Point Message Producer 167
Implementing a Point to Point Message Consumer............................. 171

Using Publish / Subscribe Messaging.. 175
Creating a Topic ... 175
Implementing a Message Publisher.. 177
Orbix Enterprise Messaging Guide: Java v

Implementing a Subscriber...181

Managing JMS... 187
JMS Configuration ...187
Running JMS...188

Starting the JMS Broker ...188
Shutting Down the JMS Broker..189

Managing JMS with the Management Service...190
Selecting a Persistent Store Implementation ...192
Running JMS Clients ..193

Part V The JMS-Notification Bridge Service

JMS-Notification Message Translation............................... 197
JMS Message to Notification Event ...197
Notification Event to JMS Message ...199

Managing the JMS-Notification Bridge Service.................. 203
Configuring the Bridge Service ..203
Running the Bridge Service...203
Managing the Bridge Service with itadmin...204
Managing the Bridge Service Programatically ..207

Getting a BridgeAdmin...207
Getting a Bridge..208
Managing Message Flow Through a Bridge ..210
Destroying a Bridge...211

Glossary.. 213

Index.. 217
vi Orbix Enterprise Messaging Guide: Java

 Orbix Enterprise Messaging Guide: C++ 1

Preface

Specification compliance
The Orbix Notification Service is a full implementation of the
notification service as specified by the Object Management Group.
The Orbix Telecom Log Service is a full implementation of the
telecom log service a specified by the Object Management Group.
All CORBA messaging services comply with the following
specifications:
• CORBA 2.6
• GIOP 1.2 (default), 1.1, and 1.0
The Orbix Java Messaging Service implementation is a full
implementation of Adobe’s Java Messaging Service specification
version 1.0.2b.

Audience
This guide is intended to help you become familiar with the
notification service, and shows how to develop applications with it.
This guide assumes that you are familiar with CORBA concepts,
and with Java.
This guide does not discuss every interface and its operations in
detail, but gives a general overview of the capabilities of the
notification service and how various components fit together. For
detailed information about individual operations, refer to the
CORBA Programmer’s Reference.

Organization of this Guide
Read “Messaging Service Technologies” for an overview of the
Orbix enterprise messaging services. Subsequent parts describe
various components of the messaging service in detail, and show
how you implement an application that uses its capabilities.

Document Conventions
This guide uses the following typographical conventions:

Constant width Constant width (courier font) in normal
text represents portions of code and literal
names of items such as classes, functions,
variables, and data structures. For
example, text might refer to the
CORBA::Object class.
Constant width paragraphs represent code
examples or information a system displays
on the screen. For example:
#include <stdio.h>

 2 Orbix Enterprise Messaging Guide: C++

This guide may use the following keying conventions:

Contacting Micro Focus
Our Web site gives up-to-date details of contact numbers and
addresses.

Further Information and Product
Support
Additional technical information or advice is available from several
sources.

Italic Italic words in normal text represent
emphasis and new terms.
Italic words or characters in code and
commands represent variable values you
must supply, such as arguments to
commands or path names for your
particular system. For example:
% cd /users/your_name
Note: some command examples may use
angle brackets to represent variable values
you must supply. This is an older
convention that is replaced with italic
words or characters.

No prompt When a command’s format is the same for
multiple platforms, a prompt is not used.

% A percent sign represents the UNIX
command shell prompt for a command that
does not require root privileges.

A number sign represents the UNIX
command shell prompt for a command that
requires root privileges.

> The notation > represents the DOS,
Windows NT, Windows95, or Windows98
command prompt.

...

.

.

.

Horizontal or vertical ellipses in format and
syntax descriptions indicate that material
has been eliminated to simplify a
discussion.

[] Brackets enclose optional items in format
and syntax descriptions.

{} Braces enclose a list from which you must
choose an item in format and syntax
descriptions.

| A vertical bar separates items in a list of
choices enclosed in {} (braces) in format
and syntax descriptions.

Orbix Enterprise Messaging Guide: C++ 3

The product support pages contain a considerable amount of
additional information, such as:
• The WebSync service, where you can download fixes and

documentation updates.
• The Knowledge Base, a large collection of product tips and

workarounds.
• Examples and Utilities, including demos and additional

product documentation.
To connect, enter http://www.microfocus.com in your browser to
go to the Micro Focus home page.
Note:
Some information may be available only to customers who have
maintenance agreements.
If you obtained this product directly from Micro Focus, contact us
as described on the Micro Focus Web site,
http://www.microfocus.com. If you obtained the product from
another source, such as an authorized distributor, contact them
for help first. If they are unable to help, contact us.

Information We Need
However you contact us, please try to include the information
below, if you have it. The more information you can give, the
better Micro Focus SupportLine can help you. But if you don't
know all the answers, or you think some are irrelevant to your
problem, please give whatever information you have.
• The name and version number of all products that you think

might be causing a problem.
• Your computer make and model.
• Your operating system version number and details of any

networking software you are using.
• The amount of memory in your computer.
• The relevant page reference or section in the documentation.
• Your serial number. To find out these numbers, look in the

subject line and body of your Electronic Product Delivery
Notice email that you received from Micro Focus.

Contact information
Our Web site gives up-to-date details of contact numbers and
addresses.
Additional technical information or advice is available from several
sources.
The product support pages contain considerable additional
information, including the WebSync service, where you can
download fixes and documentation updates. To connect, enter
http://www.microfocus.com in your browser to go to the Micro
Focus home page.

http://www.microfocus.com
http://www.microfocus.com
http://www.microfocus.com

 4 Orbix Enterprise Messaging Guide: C++

If you are a Micro Focus SupportLine customer, please see your
SupportLine Handbook for contact information. You can download
it from our Web site or order it in printed form from your sales
representative. Support from Micro Focus may be available only to
customers who have maintenance agreements.
You may want to check these URLs in particular:
• http://www.microfocus.com/products/corba/orbix/orbix-6.aspx (

trial software download and Micro Focus Community files)
• https://supportline.microfocus.com/productdoc.aspx.

(documentation updates and PDFs)
To subscribe to Micro Focus electronic newsletters, use the online
form at:

http://www.microfocus.com/Resources/Newsletters/infocus/n
ewsletter-subscription.asp

http://www.microfocus.com/products/corba/orbix/orbix-6.aspx
https://supportline.microfocus.com/productdoc.aspx
http://www.microfocus.com/Resources/Newsletters/infocus/newsletter-subscription.asp

Part I
Messaging Service

Technologies

Overview
Orbix provides enterprise messaging technology through the
CORBA notification service, the CORBA telecom log service,
and the Java Messaging System (JMS). Orbix also provides a
bridging service that allows the CORBA notification service
and JMS to seamlessly share messages.

In this part
This part contains the following chapters:

CORBA Messaging Technologies page 7

The Java Messaging Service page 15

The JMS-Notification Bridge Service page 19

 6 Orbix Enterprise Messaging Guide: C++

 Orbix Enterprise Messaging Guide: C++ 7

CORBA Messaging
Technologies
The architecture of the CORBA event service provides the
foundation for the CORBA messaging technologies. In the event
service, client suppliers generate messages which are forwarded
to client consumers through an event channel. The event channel
provides a mechanism for publish / subscribe messaging, but does
not support point to point messaging.
The notification service provides enterprise level decoupled
messaging facilities by extending the functionality of the CORBA
event service to include Qualities of Service, subscription
mechanisms, filtering, and structured messages.
The telecom log service encompasses the functionality of both the
event service and the notification service and extends their
functionality by adding a durable and searchable log. The logs
record the events forwarded through the associated event or
notification service.

Event Service
An event originates at a client supplier and is forwarded through
an event channel to any number of client consumers. Suppliers
and consumers are completely decoupled; a supplier has no
knowledge of the number of consumers or their identities, and
consumers have no knowledge of which supplier generated a
given event.

Service Capabilities
An event channel provides the following capabilities for forwarding
events:
• Accepts incoming events from client suppliers.
• Forwards supplier-generated events to all connected

consumers.

Connections
Suppliers and consumers connect to an event channel and not
directly to each other, as shown in Figure 1. From a supplier’s
perspective, the event channel appears as a single consumer;

Note: The telecom log service also provides a log for
non-messaging CORBA clients.

 8 Orbix Enterprise Messaging Guide: C++

from a consumer’s perspective, the event channel appears as a
single supplier. In this way, the event channel decouples suppliers
and consumers.

How Many Clients?
Any number of suppliers can issue events to any number of
consumers using a single event channel. There is no correlation
between the number of suppliers and the number of consumers.
New suppliers and consumers can be easily added to or removed
from the system.

Example
Many documents can be linked to a spreadsheet cell, and must be
notified when the cell value changes. However, the spreadsheet
software does not need to know about the documents linked to its
cell. When the cell value changes, the spreadsheet software
should be able to issue an event that is automatically forwarded to
each connected document.

Event Delivery
Figure 2 shows a sample implementation of event propagation in a
CORBA system. In this example, suppliers are implemented as
CORBA clients; the event channel and consumers are
implemented as CORBA servers. An event occurs when a supplier
invokes a clearly defined IDL operation on an object in the event

Figure 1: Suppliers and Consumers Communicating through an Event Channel

Event Channel
Suppliers

Event propagation

Consumers

Orbix Enterprise Messaging Guide: C++ 9

channel application. The event channel then propagates the event
by invoking a similar operation on objects in each of the consumer
servers.

Further Reading
For a full discussion of the event service and how to develop
applications with it see the CORBA Programmer’s Guide.

Notification Service

Extensions of Event-based
Communication
The notification service extends the concept of event-based
messaging with the following features:

Figure 2: Event Propagation in a CORBA System

Event Channel
1. Supplier calls operation

Consumers

on event channel

Supplier

2. Event channel calls
operation on consumers

Feature Description

Quality-of-service Properties such as event message priority
and lifetime, can be set on different levels
within the event channel.

Persistence Quality-of-service parameters control the
availability of events and channels beyond
the lifetime of the service process, supplier
processes, or consumer processes.

Event filtering and
subscription

Filters allow consumers to receive only the
events they are interested in, and to tell
suppliers which events are in demand.

Event publication Suppliers can inform an event channel
which events they can supply, so
consumers can subscribe to new event
types as they become available.

Structured events Header information in structured events let
you set properties and filterable data on
event messages.

 10 Orbix Enterprise Messaging Guide: C++

For more information on the CORBA notification service, see “The
Notification Service” on page 21

Telecom Log Service
The telecom log service is modeled on the CORBA notification
service and uses event-aware objects and an event channel to
manage the logging of events to a persistent store. This
implementation allows logs to generate events relating to the log
and propagate them to their clients, filter events for logging, and
forward events from suppliers to consumers. It also allows
notification channel-aware logs to leverage the notification
service’s Quality of Service (QoS) properties. The telecom log
service also provides interfaces that allow event-unaware clients
to write directly to the log.
Figure 3 shows a basic telecom log service configuration.

Multicast event
delivery

Groups of consumers can subscribe to
events and receive them using UDP
multicast protocol, which keeps network
traffic to a minimum.

Feature Description

Note: The CORBA notification service is integrated with
the other Orbix services. However, it is not designed for
use with the Object Transaction Service (OTS).

Figure 3: Log service configuration

LOGevent /
notification

supplier

event /
notification

supplier

event /
notification
consumer

event /
notification
consumer

standard CORBA
object

event / notification channel

log filter

persistent store

proxy
supplier

proxy
supplier

proxy
consumer

proxy
consumer

Orbix Enterprise Messaging Guide: C++ 11

Features of the Telecom Log Service
The telecom log service offers the following extensions to the
notification service:

For more information of the telecom log service, see “The Telecom
Log Service” on page 115.

Event Communication
CORBA specifies two approaches to initiating the transfer of
events between suppliers and consumers
• push model: Suppliers initiate transfer of events by sending

those events to the channel. The channel then forwards them
to any consumers connected to it.

• pull model: Consumers initiate the transfer of events by
requesting them from the channel. The channel requests
events from the suppliers connected to it.

Table 1: Features of the telecom log service

Feature Description

Log generated
events

Log objects can keep their event aware
clients informed of the telecom log service’s
state by generating events and forwarding
the events onto their clients.

Quality of
Service

The telecom log service specifies three levels
of Quality of Service for logged events.

Log size The size of the persistent store for each log
object can be set individually.

Log full behavior The behavior of the log when it becomes full
is configurable. The log can either discard
new log records until the old ones are
deleted manually, or the log can overwrite
the oldest records in the store with new
ones.

History The maximum lifetime of a log record can be
controlled through property settings.

Scheduling Record logging can be scheduled. When the
log object is scheduled to log events, it is
fully functional. When it is not scheduled to
receive events, the log object will continue
to provide read access to the logged events
and perform the functions of an event or
notification channel.

Filtering In addition to delivery level filtering,
NotifyLog objects support event filtering at
the logging level. They can apply filters to
the events that are recorded in the log’s
persistent store.

 12 Orbix Enterprise Messaging Guide: C++

Push Model
In the push model, suppliers generate events and actively pass
them to an event channel. In this model, consumers wait for
events to arrive from the channel.
Figure 4 illustrates a push model architecture in which push
suppliers communicate with push consumers through the event
channel.

Pull Model
In the pull model, a consumer actively requests events from the
channel. The supplier waits for a pull request to arrive from the
channel. When a pull request arrives, event data is generated and
returned to the channel.
Figure 5 illustrates a pull model architecture in which pull
consumers communicate with pull suppliers through the event
channel.

Figure 4: The Push Model of Event Transfer

Figure 5: Pull Model Suppliers and Consumers Communicating through an Event
Channel

Event Channel
Push

Event propagation

Push

suppliers

consumers

Event Channel
Pull

Event propagation

Pull

suppliers

consumers

Orbix Enterprise Messaging Guide: C++ 13

Mixing Push and Pull Models
Because suppliers and consumers are completely decoupled by
the event channel, push and pull models can be mixed in a single
system.
For example, suppliers can connect to an event channel using the
push model, while consumers connect using the pull model, as
shown in Figure 6.

In this case, both suppliers and consumers participate in initiating
event transfer. A supplier invokes an operation on an object in the
event channel to transfer an event to the channel. A consumer
then invokes another operation on an event channel object to
transfer the event data from the channel.
In the case where push consumers and pull suppliers are mixed,
the event channel actively propagates events by invoking IDL
operations in objects in both suppliers and consumers. The pull
supplier would wait for the channel to invoke an event transfer
before sending events. Similarly, the push consumer would wait
for the event channel to invoke event transfer before receiving
events.

Figure 6: Push Suppliers and Pull Consumers Communicating through an Event
Channel

Event Channel
Push

Event propagation

Pull

suppliers

consumers

 14 Orbix Enterprise Messaging Guide: C++

 Orbix Enterprise Messaging Guide: Java 15

The Java Messaging
Service
The Java Messaging Service (JMS) provides a native mechanism for Java
applications to participate in messaging systems.

Orbix provides messaging services to its J2EE application server
through an implementation of Sun’s Java Messaging Service(JMS)
specification. The Orbix JMS implementation can also provide
messaging services to any application written in Java, including
CORBA applications.

Java Messaging Service Overview

Messaging architecture
In general, JMS clients can be either a MessageProducer or a
MessageConsumer. Producers send messages to a Destination and
consumers receive the messages from the destination. Figure 7
shows a simple JMS system with one producer and one consumer.

Java Messaging Service Features
The Java Messaging Service provides the following features for
messaging:
• Point to point messaging
• Publish / subscribe messaging
• Quality of Service properties to set the priority and lifetime of

messages
• Properties to set the level of guarantee that a message will be

delivered
• Information to associate messages with one another
• User definable properties
• Header information defining a reply destination
• Filtering

Figure 7: Simple JMS system

Destination

MessageProducer
MessageConsumer

 16 Orbix Enterprise Messaging Guide: Java

Point to Point Messaging

Architecture
When using the point to point messaging, JMS producers,
QueueSenders, and JMS consumers, QueueRecievers, connect to a
specialized destination called a Queue. Producers place messages on
the queue and the messages are consumed in FIFO order by
message consumers. Once a message has been consumed it is
removed from queue.
Figure 8 shows a JMS point to point implementation.

JMS queues ensure that messages are delivered to one message
consumer. If no consumer is connected to the queue messages
are stored until one connects.

Publish / Subscribe Messaging

Architecture
JMS also supports publish / subscribe style messaging which
functions similarly to the CORBA notification service. Many
producers, TopicPublishers, and consumers, TopicSubscribers,
connect to a destination, called a Topic. The topic receives
messages from all connected producers and forwards the
messages to all consumers. Consumers can opt to not receive
certain messages by implementing a MessageSelector to filter out
messages.

Figure 8: JMS Point to Point Messaging

Queue

QueueSender
QueueReciever

M
es

sa
ge

 1

M
es

sa
ge

 2

M
es

sa
ge

 3

M
es

sa
ge

 4

M
es

sa
ge

 N

Orbix Enterprise Messaging Guide: Java 17

Figure 9 shows a JMS publish / subscribe implementation.

Delivery guarantee
JMS topics offer no guarantee that messages will be delivered to
any consumers. If there are no consumers connected to the topic
when a message is sent, the message is simply dropped. If
consumers wish to ensure that all messages are delivered to them
regardless of their connections status, the consumer can register
a durable subscription.
For more information on the Java Messaging Service, see “The
Java Messaging Service” on page 163.

Figure 9: JMS Publish/Subscribe Messaging

Topic

TopicPublisher
TopicSubscriber

TopicPublisher

TopicPublisher

TopicSubscriber

TopicSubscriber

TopicSubscriber

 18 Orbix Enterprise Messaging Guide: Java

 Orbix Enterprise Messaging Guide: C++ 19

The JMS-Notification
Bridge Service
The bridge service allows JMS and CORBA notification clients to share
messages.

Orbix provides a bridging mechanism between CORBA notification
service clients and JMS clients. Using this bridge notification
service clients and JMS clients can exchange messages based on
the OMG’s Notification / Java Message Service specification.

Message sharing
The JMS-Notification bridge allows JMS publishers to forward
messages to CORBA notification consumers and CORBA
notification suppliers to forward messages to JMS subscribers.
This is done using unidirectional bridges that mimic JMS and
notification clients.
For example, a bridge forwarding messages from a notification
channel to a JMS topic acts as a CORBA notification consumer and
a JMS publisher. Figure 10 shows an application that uses two
bridges to facilitate bidirectional messaging between a JMS topic
and a notification channel. All of the events supplied to the
notification channel are forwarded to the notification consumers
and Bridge2. All of the messages published to the JMS topic are
forwarded to the subscribers and Bridge1.

Bridge1 is a JMS subscriber to the topic and consumes the JMS
messages. It then converts them to a notification service event
and pushes the events to the notification service, where the
attached consumers can recieve them.

Figure 10: JMS-Notification Bridging

Notification
ChannelJMS

TopicPublisher
TopicSubscriber

TopicPublisher

TopicPublisher

Supplier

Supplier

Supplier

Topic

Consumer

Bridge1

Bridge2

Consumer

TopicSubscriber

 20 Orbix Enterprise Messaging Guide: C++

Bridge2 is a notification push consumer attached to the notification
service. When it receives an event it converts it into a JMS
message and publishes the message to the topic, where the
subscribers can consume it.

Bridge endpoints
Bridges connect to JMS and the notification service using
endpoints which mimic notification or JMS clients. For example, a
bridge that passes messages from a JMS topic to a notification
channel might have one endpoint that acts like a durable JMS
TopicSubscriber at the JMS side of the bridge and another
endpoint that behaves like a StructuredPushSupplier on the
notification service end of the bridge.

Message and property conversion
The translation of message data and properties conforms to the
OMG’s Notification / Java Message System Interworking
specification.
Essentially, JMS messages are translated into structured events
with the JMS header and property data placed in the structured
event header. Events are translated into JMS messages based on
the following conventions:
• Any events are translated such that the data of the event is

stored in the JMS message body and any QoS properties set
for the message are placed in the appropriate fields of the JMS
message header.

• Structured events are translated such that the data
encapsulated in the message body is mapped to the JMS
message body, the optional header fields and filterable date
are mapped to user defined properties, and any QoS
properties set in the header are mapped to the appropriate
JMS header fields.

• Sequences of events are broken into single JMS messages
according to the mapping for a structured event.

QoS service properties specifying the level of guarantee that a
message is delivered, the lifetime of the message, and the priority
of the message are preserved in the mapping and are enforced
according to the specifications of each service.
For more information on the JMS-Notification bridge, see “The
JMS-Notification Bridge Service” on page 195.

Note: In fact, notification endpoints are specialized
instances of proxy objects. In the example above the
endpoint in the notification channel would appear as a
bridge proxy consumer in the notification service console.

Part II
The Notification Service

In this part
This part contains the following chapters:

Developing Suppliers and Consumers page 23

Notification Service Properties page 47

Event Filtering page 65

Multicast Consumers page 83

Subscribing and Publishing page 95

Managing the Notification Service page 109

 22 Orbix Enterprise Messaging Guide: C++

 Orbix Enterprise Messaging Guide: C++ 23

Developing Suppliers
and Consumers
Client suppliers and consumers connect to an event channel in order to
share information with each other.

The CosNotifyComm module defines client supplier and consumer
interfaces. The interfaces can be categorized according to the
following dependencies:
• A client interface supports either the push or pull model.
• For each push or pull model, an interface is defined to support

one of the event message types: untyped, structured, or
sequence.

The interface that you implement determines how a client sends
or receives event messages.

Obtaining an Event Channel
Client consumers and suppliers obtain an event channel object
reference either by creating a channel, or by finding an existing
one.

Procedure
 You obtain an event channel by completing the following steps:

Event Channel Factory Operations
You can call one of several operations on an event channel factory
to create or find an event channel. By providing both create and
find operations, the notification service allows any client or
supplier to create an event channel, which other clients and
suppliers can subsequently discover.
Orbix Notification supports two sets of event channel factory
operations:
• The OMG-defined CosNotifyChannelAdmin::EventChannelFactory

interface relies on system-generated IDs.
• Proprietary extensions in the IT_NotifyChannelAdmin::

EventChannelFactory interface allow user-defined channel
names.

Step Action

1 Obtain an event channel factory by calling
resolve_initial_references("NotificationService"
).

2 Use the event channel factory to create a channel
or find an existing one.

 24 Orbix Enterprise Messaging Guide: C++

OMG Operations
CosNotifyChannelAdmin::EventChannelFactory defines the following
operations for obtaining an event channel:

create_channel() creates an event channel and returns an
object reference.

get_all_channels() returns a sequence IDs of all event
channels.

get_event_channel() returns an object reference to the
ID-specified event channel.

Orbix Extensions
Orbix Notification provides proprietary operations for obtaining
named event channels, in
IT_NotifyChannelAdmin::EventChannelFactory:

// IDL module CosNotifyChannelAdmin
interface EventChannelFactory {
 EventChannel create_channel(
 in CosNotification::QoSProperties initial_qos,
 in CosNotification::AdminProperties

initial_admin,
 out ChannelID id)
 raises(CosNotification::UnsupportedQoS,

CosNotification::UnsupportedAdmin);

 ChannelIDSeq get_all_channels();

 EventChannel get_event_channel(in ChannelID id)
 raises(ChannelNotFound);
};

// IDL module IT_NotifyChannelAdmin
struct EventChannelInfo
{
 string name;
 CosNotifyChannelAdmin::ChannelID id;
 CosNotifyChannelAdmin::EventChannel reference;
};

typedef sequence<EventChannelInfo> EventChannelInfoList;

// ...
interface EventChannelFactory :
 CosNotifyChannelAdmin::EventChannelFactory

Orbix Enterprise Messaging Guide: C++ 25

create_named_channel() creates a named event channel and
returns an object reference.

find_channel() returns an object reference to the named event
channel.

find_channel_by_id() returns an object reference to an event
channel based on the channel’s ID.

list_channels() returns a list of event channels, which provides
their names, IDs, and object references.

Example
The following code can be used by any supplier or consumer to
obtain an event channel.

{
// ...
 CosNotifyChannelAdmin::EventChannel create_named_channel(
 in string name,
 in CosNotification::QoSProperties initial_qos,
 in CosNotification::AdminProperties initial_admin,
 out CosNotifyChannelAdmin::ChannelID id)
 raises(ChannelAlreadyExists, CosNotification::UnsupportedQoS,
 CosNotification::UnsupportedAdmin);

 CosNotifyChannelAdmin::EventChannel find_channel(
 in string name,
 out CosNotifyChannelAdmin::ChannelID id)
 raises(CosNotifyChannelAdmin::ChannelNotFound);
 CosNotifyChannelAdmin::EventChannel find_channel_by_id(
 in CosNotifyChannelAdmin::ChannelID id,
 out string name)
 raises(CosNotifyChannelAdmin::ChannelNotFound);
 // ...
 EventChannelInfoList list_channels();
};

Example 1: Obtaining an Event Channel (Sheet 1 of 2)

// Java
import org.omg.CORBA.*;
import org.omg.CORBA.ORBPackage.*;
import org.omg.CosNotification.*;
import org.omg.CosNotifyChannelAdmin.*;

//Orbix specific classes
import com.iona.corba.IT_NotifyChannelAdmin.*;

EventChannel ec = null;
EventChannelFactory m_factory = null;
IntHolder id = new IntHolder();
Property[] init_qos = new Property[0];
Property[] init_admin = new Property[0];

 26 Orbix Enterprise Messaging Guide: C++

This code executes as follows:
1. Obtains the event channel factory.
2. Tries to create an event channel by calling

create_named_channel().
3. Catches the IT_NotifyChannelAdmin::ChannelAlreadyExists

exception if a channel of the specified name already exists.
4. Tries to obtain an existing channel of the same name by

calling find_channel().

Implementing a Supplier

Actions
A client supplier program performs the following actions:
1. Instantiates suppliers using the appropriate interface in

module CosNotifyComm.
2. Connects suppliers to the event channel.
3. Creates event messages.
4. Sends event messages to the event channel.
5. Disconnects from the event channel.

1 Object obj =
 orb.resolve_initial_references("NotificationService");
m_factory = EventChannelFactoryHelper.narrow(obj);

2 try ec = m_factory.create_named_channel("EventChannel",
 init_qos, init_admin, id)

3 catch (ChannelAlreadyExists cae)
/* Channel already exists, so try to find it */

4 try
 {
 ec = m_factory.find_channel("EventChannel", id);
 }
 catch (ChannelNotFound cnf)
 {
 System.err.println("Could not create or find event

channel");
 System.exit(1);
 }
 catch (SystemException sys)
 {
 System.err.println("System exception occurred during
 find_channel: " +

SystemExceptionDisplayHelper.toString(sys));
 System.exit(1);
 }

Example 1: Obtaining an Event Channel (Sheet 2 of 2)

Orbix Enterprise Messaging Guide: C++ 27

Instantiating the Supplier

Which Interface to Use?
Two dependencies determine which interface you should use to
instantiate a supplier:
• The model that the supplier supports: push or pull.
• The type of event messages that the supplier generates:

untyped, structured, or sequence of structures.
The IDL module CosNotifyComm defines six interfaces that support
different combinations of both dependencies:

Example
You instantiate a supplier from the interface that supports the
desired model and event message type. Example 2 shows how a
client application might instantiate a supplier of type
StructuredPushSupplier.

Event type Push model Pull model
 untyped PushSupplier PullSupplier

 structured StructuredPushSupplier StructuredPullSupplier

 sequence SequencePushSupplier SequencePullSupplier

Example 2: Instantiating a StructuredPushSupplier

// Java
import org.omg.CORBA.*;
import org.omg.CORBA.ORBPackage.*;
import org.omg.CosNotification.*;
import org.omg.CosNotifyChannelAdmin.*;
import org.omg.CosNotifyComm.*;
import org.omg.TimeBase.*;

import org.omg.PortableServer.*;
import org.omg.PortableServer.POAPackage.*;
class NotifyPushSupplier extends StructuredPushSupplierPOA
 {
// Member variables not shown . . .
// The main entry point @param args command line args
 public static void main (String args[])
 {
// ORB and POA Activation not shown
// ...
 NotifyPushSupplier supplier = new NotifyPushSupplier();
// ...
 }
 public void NotifyPushSupplier()
 {
 // Implementation not shown ...
 }
}

 28 Orbix Enterprise Messaging Guide: C++

Connecting to a Channel
In order to pass messages to the event channel, a supplier must
connect to it through a proxy consumer that receives unfiltered
events from the supplier. Each supplier must have its own proxy
consumer. The proxy consumer begins the filtering process and
passes the events down the channel.

Procedure
A client supplier connects to the event channel in three steps:

Obtaining a Supplier Admin
On creation, an event channel instantiates a default SupplierAdmin
object, which you obtain by calling default_supplier_admin() on
the event channel. For example:

The EventChannel interface also defines operations for creating and
getting other supplier admin objects:

new_for_suppliers() returns a new supplier admin and its
system-assigned AdminID identifier. When you create a supplier
admin, you also determine whether to AND or OR its filters with
proxy consumer filters (see “Traversing Multiple Filters in a
Channel” on page 70).

get_supplieradmin() takes an AdminID identifier and returns an
existing supplier admin.

get_all_supplieradmins() returns a sequence of AdminID
identifiers.

Why Create Multiple Admin Objects?
You might want to create multiple supplier admin objects for one
of the following reasons:
• Groups of proxy consumers each require the same

quality-of-service properties. All proxy consumers inherit
properties from their parent supplier admin. By creating

Step Action

1 Obtain a SupplierAdmin object from the event channel.

2 Create a proxy consumer in the event channel, to
receive the events that the supplier generates.

3 Connect to the proxy consumer.

org.omg.CosNotifyChannelAdmin.SupplierAdmin sa =
 channels.default_supplier_admin();

Orbix Enterprise Messaging Guide: C++ 29

different supplier admin objects with the desired sets of
properties, you can more easily manage the properties of
individual proxies.
For more information about quality-of-service properties, see
“Notification Service Properties”.

• Groups of proxy consumers have different filtering
requirements. You can set different filters on individual admin
objects and group proxy consumers accordingly.

• You need to distribute the load of event messages among
different supplier admin objects. A supplier admin’s workload
is liable to increase for two reasons: using supplier-side
forwarding filters (see “Forwarding Filters” on page 65), and
implementing pull-model suppliers. One or both factors might
require additional supplier admin objects to handle the extra
work load that these entail.

Proxy Consumers
A proxy consumer is responsible for receiving event messages
from its client supplier and inserting them into the event channel,
where they are forwarded to all interested consumers. You create
one proxy consumer for each client supplier.
As with client suppliers, you can create six types of proxy
consumers, depending on the client supplier’s model (push/pull)
and event message type (untyped, structured, or sequence of
structures). The type of proxy consumer must match the type of
its client supplier.
The CosNotifyChannelAdmin module defines interfaces that support
the following proxy consumer objects:
ProxyPushConsumer
StructuredProxyPushConsumer
SequenceProxyPushConsumer
ProxyPullConsumer
StructuredProxyPullConsumer
SequenceProxyPullConsumer

Obtaining a Proxy Consumer
You obtain a proxy consumer by invoking one of the following
operations on a supplier admin:

obtain_notification_push_consumer() returns a push-model
proxy consumer.

obtain_notification_pull_consumer() returns a pull-model
proxy consumer.
Both methods take one of the following arguments, which
determines the event message type that this proxy consumer
handles:
ANY_EVENT
STRUCTURED_EVENT
SEQUENCE_EVENT

 30 Orbix Enterprise Messaging Guide: C++

Both methods raise CosNotifyChannelAdmin::AdminLimitExceeded
when the event channel’s MaxSuppliers(see “MaxSuppliers” on
page 62) limit is reached.

Example
The code in Example 3 obtains a StructuredProxyPushConsumer
proxy consumer for a StructuredPushSupplier supplier by calling
obtain_notification_push_consumer(), and supplying an argument
of STRUCTURED_EVENT.

Connecting a Supplier to a Proxy
Consumer
After creating a proxy consumer, you can connect it to a
compatible client supplier. This establishes the client supplier’s
connection to the event channel, so it can send messages.
Each proxy consumer interface supports a connect operation; the
operation requires that the supplier and its proxy support the
same delivery model and event-message type. For example, the
StructuredProxyPushConsumer interface defines
connect_structured_push_supplier(), which only accepts an object
reference to a StructuredPushSupplier as input.:

Example 3: Obtaining a Proxy Consumer

// Java
import org.omg.CosNotifyChannelAdmin.*;

IntHolder proxy_id = new IntHolder();
ClientType ctype = ClientType.STRUCTURED_EVENT;
try
{
 ProxyConsumer obj =
 sa.obtain_notification_push_consumer(ctype, proxy_id);
}
catch(AdminLimitExceeded err)
{
 // handle the exception
}

StructuredProxyPushConsumer ppc =
 StructuredProxyPushConsumerHelper.narrow(obj);

// IDL
interface StructuredProxyPushConsumer :
 ProxyConsumer, CosNotifyComm::StructuredPushConsumer
{
 void connect_structured_push_supplier(
 in CosNotifyComm::StructuredPushSupplier push_supplier)
 raises(CosEventChannelAdmin::AlreadyConnected);
};

Orbix Enterprise Messaging Guide: C++ 31

Example
Example 4 shows one method of implementing a
StructuredPushSupplier client that connects itself to a proxy
consumer.

Creating Event Messages

Types of Event Messages
The notification service supports three formats for sending events:
• Untyped events are sent as CORBA::Any types. Clients can store

an event message into any format they choose, including a
structure, then package the data into an Any.

• Structured events provide a well-defined data structure that
encapsulates an event’s type and other information. Filters
use this data to screen event messages.

• Sequences of structured events are simply batches of
structured events gathered together and sent at the same
time.

Example 4: Connecting a StructuredPushSupplier

// Java
import org.omg.CosEventChannelAdmin.*;

class NotifyPushSupplier extends StructuredPushSupplierPOA
 {
// ...
 public static void main (String args[])
 {
// ORB and POA creation not shown
// proxy ppc and PushSupplier supplier obtained previously
 try
 {
 ppc.connect_structured_push_supplier(supplier);
 }
 catch (AlreadyConnected.value ac)
 {
 // Handle the exception
 }
 catch (SystemException sys)
 {
 System.err.println("Encountered system exception
 during connect: " +

SystemExceptionDisplayHelper.toString(sys));
 System.exit(1);
 }
 // ...
 }
 }

 32 Orbix Enterprise Messaging Guide: C++

Structured Event Messages
Structured event messages are defined in module CosNotification
as follows:

struct Property {
 PropertyName name;
 PropertyValue value;
};
typedef sequence<Property> PropertySeq;

typedef PropertySeq OptionalHeaderFields;
typedef PropertySeq FilterableEventBody;

struct EventType {
 string domain_name;
 string type_name;
};

struct FixedEventHeader {
 EventType event_type;
 string event_name;
};

struct EventHeader {
 FixedEventHeader fixed_header;
 OptionalHeaderFields variable_header;
};

struct StructuredEvent {
 EventHeader header;
 FilterableEventBody filterable_data;
 any remainder_of_body;
};

Orbix Enterprise Messaging Guide: C++ 33

Each structured event has three main components, as shown in
Figure 11.

EventHeader consists of two members:
• A fixed header section that contains three string fields for

specifying event-type data: domain_name, type_name, and
event_name.

• A list of zero or more optional header fields. Each field name is
a string, and each value is a CORBA::Any. These fields are
typically used to set properties on an event message, such as
its lifetime and priority.

FilterableEventBody consists of data fields that can be used to
set user-defined properties. Filters typically use these to screen
event messages.

remainder_of_body is a CORBA::Any, which can store any
event-related data, such as the contents of a file.

Why Use Structured Event Messages?
A structured event message can provide filterable information,
such as the event’s type and contents, and assign
quality-of-service properties to the event, such as its priority or

Figure 11: Structured Event Components

event_type.domain_name

event_type.type_name

EventHeader

event_name

Fixed header

Optional header

Filterable body fields

name: value

name: value

name: value

name: value

name: value

name: value

FilterableEventBody

remainder_of_body

fields

StructuredEvent

 34 Orbix Enterprise Messaging Guide: C++

lifetime. Later chapters in this guide describe notification filters
(“Event Filtering”) and quality-of-service properties (“Notification
Service Properties”).

Example
The code in Example 5 shows how a supplier creates a structured
message that sets an event type’s domain name and type name to
SportsNews and BaseballResults, respectively, and sets its priority
to 0.

This code executes as follows:
1. Creates an event.
2. Builds a new event header.
3. Builds a new fixed event header.
4. Builds a new property list in the variable header.
5. Adds the fixed header and the variable header to the event.
6. Creates the remainder of the event body.

Sending Event Messages
A client supplier sends event messages in one of two ways:
• A push supplier invokes the appropriate push operation on its

proxy consumer and supplies the event as an input argument.
• A pull supplier implements the appropriate pull or try_pull

operation. When the proxy consumer invokes one of these
operations, the supplier returns an event message, if one is
available.

Example 5: Creating a Structured Message

// Java
import org.omg.CosNotification.*;

1 StructuredEvent event = new StructuredEvent();

2 String domain_name = new String("SportsNews");
String type_name = new String("BaseballResults");
EventType event_type = new EventType(domain_name, type_name);

3 String event_name = new String("");
FixedEventHeader fixed_header = new

FixedEventHeader(event_type,
 event_name);

4 String property_name = new String(Priority.value)
Property[] variable_header = new Property[1];
variable_header[0] = new Property();
variable_header[0].name = property_name;
variable_header[0].value = orb.create_any();
variable_header[0].value.insert_long(0);

5 event.header = new EventHeader(fixed_header, variable_header);

6 event.filterable_data = new Property [0];
event.remainder_of_body = ORB.create_any();

Orbix Enterprise Messaging Guide: C++ 35

Push Supplier
A push supplier invokes one of the following push operations on its
proxy consumer, according to the event messages that they
support:
• push() is invoked by a PushSupplier and accepts a CORBA::Any

as input.
• push_structured_event() is invoked by a

StructuredPushSupplier and accepts a StructuredEvent as
input.

• push_structured_events() is invoked by a SequencePushSupplier
and accepts a sequence of event structures as input.

Example
Example 6 pushes a structured event message.

Pull Supplier
A pull supplier sends event messages only on request. Depending
on the setting of the configuration variable dispatch_strategy, a
pull supplier’s proxy consumer invokes a try_pull() or a pull()
operation on it’s supplier. Pull suppliers are responsible for
implementing the appropriate variant of try_pull() or pull(). Each
pull supplier interface supports a try_pull() and pull() operation:
• try_pull() and pull() are invoked on a PullSupplier and

return a CORBA::Any.

Example 6: Pushing a Structured Event

// Java
// proxy consumer and event message already obtained
try
 {
 proxy.push_structured_event(se);
 }
catch (SystemException sys)
 {
 System.err.println("Unexpected system exception during push:"
 +SystemExceptionDisplayHelper.toString(sys));
 System.exit(1);
 }
catch (org.omg.CosEventComm.Disconnected dc)
 {
 System.err.println("Channel is disconnected.");
 System.exit(1);
 }
catch (Exception e)
 {
 System.err.println("Unknown exception occurred during

push");
 System.exit(1);
 }

 36 Orbix Enterprise Messaging Guide: C++

• try_pull_structured_event() and pull_structured_event() are
invoked on a StructuredPullSupplier and return a
CosNotification::StructuredEvent.

• try_pull_structured_events() and pull_structured_events()
are invoked on a SequencePullSupplier and return a sequence
of event structures.

A try_pull operation is non-blocking and is called by the proxy
when the notification service’s dispatch_strategy is set to
thread_pool. It returns immediately with an output parameter of
type boolean to indicate whether the return value actually
contains an event. The proxy consumer continues to invoke the
pull operation on the supplier as many times as specified in the
MaxRetries property (see “MaxRetries” on page 61). The interval
between retries is specified by the PullInterval property (see
“PullInterval” on page 62).
A pull operation is blocking and is called by the proxy when the
notification service’s dispatch_strategy is set to single_thread. It
blocks until an event is ready to be forwarded to the proxy.
Since the setting of the notification service’s dispatch_strategy
cannot typically be determined at development time, the safest
approach to developing pull style suppliers is implement both
try_pull() and pull().

Example
Example 7 implements try_pull_structured_event() by attempting
to populate an event structure with the latest baseball scores.

Example 7: Pulling Structured Events

// Java
import org.omg.CosNotification.*;

class NotifyPullSupplier extends StructuredPullSupplierPOA
 {
// ...
 public StructuredEvent try_pull_structured_event

(BooleanHolder has_event)
 {
 StructuredEvent se = new StructuredEvent();
 has_event.value = false;

// get scores
 String scores;
 boolean has_scores = get_scores(scores);

Orbix Enterprise Messaging Guide: C++ 37

Disconnecting From the Event Channel
A client supplier can disconnect from the event channel at any
time by invoking the disconnect operation on its proxy consumer.
This operation terminates the connection between a supplier and
its target proxy consumer. The channel then releases all resources
allocated to support its connection to the supplier, including
destruction of the target proxy consumer.
Each proxy consumer interface supports a disconnect operation.
For example, disconnect_structured_push_consumer() is defined in
the interface StructuredProxyPushConsumer.

Implementing a Consumer

Actions
A client consumer program performs the following actions:
1. Instantiates consumers using the appropriate CosNotifyComm

interface.
2. Connects consumers to the event channel.
3. Obtains event messages.
4. Disconnects from the event channel.

// If there are scores build the event
 if (has_scores == true)
 {
 String domain_name = new String ("SportsNews");
 String type_name = new String ("BaseballResults");
 EventType event_type = new EventType(domain_name,
 type_name);

 String event_name = new String("");
 FixedEventHeader fixed_header =
 new FixedEventHeader(event_type, event_name);

 Property[] variable_header = new Property[0];
 se.header = new EventHeader(fixed_header,
 variable_header);

 se.filterable_data = new Property [0];

 se.remainder_of_body = ORB.create_any();
 se.remainder_of_body.insert_string(scores);

 has_event.value = true;
 }

 return se;
 }

Example 7: Pulling Structured Events

 38 Orbix Enterprise Messaging Guide: C++

Instantiating a Consumer

Which Interface to Use?
Two dependencies determine which interface you use to
instantiate a consumer:
• The model that the consumer supports: push or pull.
• The type of event messages that the consumer receives:

untyped, structured, or sequence of structures.
The IDL module CosNotifyComm defines six interfaces that support
different combinations of both dependencies:

You instantiate a consumer from the interface that supports the
desired model and event message type.

Example
Example 8 shows how a client application might instantiate a
structured push consumer.

Event type Push model Pull model

 untyped PushConsumer PullConsumer

 structured StructuredPushConsumer StructuredPullConsumer

 sequence SequencePushConsumer SequencePullConsumer

Example 8: Instantiating a Consumer (Sheet 1 of 2)

// Java
import org.omg.CORBA.*;
import org.omg.CosNotification.*;
import org.omg.CosNotifyChannelAdmin.*;
import org.omg.CosNotifyComm.*;
import org.omg.PortableServer.*;
import org.omg.PortableServer.POAPackage.*;

class NotifyPushConsumer extends StructuredPushConsumerPOA
{
// member variables not shown...

// The main entry point @param args command line args
 public static void main (String args[])
 {
 // ORB and POA initialization not shown ...

 NotifyPushConsumer consumer = new NotifyPushConsumer();

 // ...
 }

Orbix Enterprise Messaging Guide: C++ 39

Connecting to the Channel
Consumers receive messages from the event channel through a
proxy supplier. Each consumer on the channel has its own proxy
supplier. Proxy suppliers use the same delivery method as their
consumers and send the appropriate message type.

Procedure
Consumers connect to the event channel in three steps:

Obtaining a Consumer Admin
On creation, an event channel instantiates a default ConsumerAdmin
object, which you supply by calling default_consumer_admin() on
the event channel. For example:

The EventChannel interface also defines operations for creating and
getting other consumer admin objects:

new_for_consumers() returns a new consumer admin and its
system-assigned AdminID identifier. When you create a consumer
admin, you also determine whether to AND or OR its forwarding
filters with proxy supplier filters (see “Traversing Multiple Filters in
a Channel” on page 70).

get_consumeradmin() takes an AdminID identifier and returns
an existing consumer admin.

get_all_consumeradmins() returns a sequence of AdminID
identifiers.

 void public NotifyPushConsumer()
 {
 }

// ...
}

Example 8: Instantiating a Consumer (Sheet 2 of 2)

Step Action

1 Obtain a ConsumerAdmin object from the event channel.

2 Create a proxy supplier in the event channel, to receive
supplier-generated event messages.

3 Connect to the proxy supplier.

org.omg.CosNotifyChannelAdmin.ConsumerAdmin ca =
 channel.default_consumer_admin();

 40 Orbix Enterprise Messaging Guide: C++

Why Create Multiple Admin Objects?
You might want to create multiple consumer admin objects for one
of the following reasons:
• Groups of proxy suppliers each require the same

quality-of-service properties. All proxy suppliers inherit
properties from their parent consumer admin. By creating
different consumer admin objects with the desired sets of
properties, you can more easily manage the properties of
individual proxies.
For more information about quality-of-service properties, see
“Notification Service Properties”.

• Groups of proxy suppliers each have the same filtering
requirements. Because all event messages are initially filtered
by the consumer admin, you can use admin filters to
centralize filter processing and administration, and minimize
the associated overhead.

• You need to distribute the load of event messages among
different consumer admin objects. A consumer admin’s work
load is liable to increase for two reasons: using consumer-side
filters, and the number of message-forwarding proxies. One
or both factors might require additional consumer admin
objects to handle the extra work load that these entail.
For more information about filters, see “Event Filtering”.

Proxy Suppliers
A proxy supplier is responsible for distributing event messages
that have been sent by the event channel to its consumer, subject
to filtering and quality-of-service settings. You create one proxy
supplier for each client consumer.
As with client consumers, you can create six types of proxy
suppliers, depending on the client consumer’s model (push/pull)
and event message type (untyped, structured, or sequence of
structures). The proxy supplier must be the same type as its client
consumer.
The module CosNotifyChannelAdmin defines interfaces that support
the following proxy supplier objects:
ProxyPushSupplier
StructuredProxyPushSupplier
SequenceProxyPushSupplier
ProxyPullSupplier
StructuredProxyPullSupplier
SequenceProxyPullSupplier

Obtaining a Proxy Supplier
You obtain a proxy supplier by invoking one of the following
methods on a consumer admin:

obtain_notification_push_supplier() returns a push-model
proxy supplier.

Orbix Enterprise Messaging Guide: C++ 41

obtain_notification_pull_supplier() returns a pull-model
proxy supplier.
Both methods take one of the following arguments, which
determines the event message type that this proxy supplier
handles:
ANY_EVENT
STRUCTURED_EVENT
SEQUENCE_EVENT

Both methods raise CosNotifyChannelAdmin::AdminLimitExceeded
when the event channel’s MaxConsumers(see “MaxConsumers” on
page 62) limit is reached.

Example
Example 9 obtains a proxy supplier for a StructuredPushConsumer
supplier by calling obtain_notification_push_supplier().

Connecting a Consumer to a Proxy
Supplier
After creating a proxy supplier, you can connect it to a compatible
client consumer. This establishes the client’s connection to the
event channel, so it can obtain messages from suppliers.
Each proxy supplier interface supports a connect operation; the
operation requires that the client supplier and its proxy support
the same push or pull model and event-message type. For

Example 9: Obtaining a Proxy Supplier

// Java
import org.omg.CosNotifyChannelAdmin.*;

IntHolder proxy_id = new IntHolder();
ClientType ctype = ClientType.STRUCTURED_EVENT;

try
{
 ProxySupplier obj =
 ca.obtain_notification_push_supplier(ctype, proxy_id);
}
catch(AdminLimitExceeded err)
{
 //handle exception
}

StructuredProxyPushSupplier pps =
 StructuredProxyPushSupplierHelper.narrow(obj);

 42 Orbix Enterprise Messaging Guide: C++

example, the StructuredProxyPushSupplier interface defines
connect_structured_push_consumer(), which only accepts an object
reference to a StructuredPushSupplier as input:

Example
Example 10 shows how you might implement a
StructuredPushConsumer client that connects itself to a proxy
supplier.

// IDL
interface StructuredProxyPushSupplier :
 ProxySupplier,
 CosNotifyComm::StructuredPushSupplier
{
 void connect_structured_push_consumer
 (in CosNotifyComm::StructuredPushConsumer push_consumer)
 raises(CosEventChannelAdmin::AlreadyConnected,
 CosEventChannelAdmin::TypeError);
};

Example 10: Connecting to a Proxy Supplier

// Java
import org.omg.CosNotifyChannelAdmin.*;

class NotifyPushConsumer extends StructuredPushConsumerPOA
{
// ...

 public static void main (String args[])
 {
// ...
// Proxy pps and PushConsumer consumer obtained previously
 try
 {
 pps.connect_structured_push_consumer(consumer);
 }
 catch (AlreadyConnected.value ac)
 {
 System.err.println("Already connecting to channel.");
 System.exit (1);
 }
 catch (SystemException sys)
 {
 System.err.println("Encountered system exception during
 connect: " +

SystemExceptionDisplayHelper.toString(sys));
 System.exit(1);
 }

//...
 }
}

Orbix Enterprise Messaging Guide: C++ 43

Obtaining Event Messages
A client consumer obtains event messages in one of two ways:
• A push consumer implements the appropriate push operation.

As events become available, the proxy supplier pushes them
to its client consumer in the appropriate format.

• A pull consumer invokes the appropriate pull or try_pull
operation on its proxy supplier; the proxy supplier returns
with the next available event.

Event Message Conversion
If necessary, the event channel converts event messages to the
type expected by its consumers. For example, if a PushSupplier
pushes an untyped event message to an event channel that has
StructuredPushConsumer clients, the channel delivers the event to
those clients as a structured event message. The event data is
stored in the message’s remainder_of_body member. Similarly,
PushConsumer clients receive an event originally sent in structured
format as a CORBA::Any.

Push Consumer
A push consumer implements one of the following push
operations:
• push() is implemented by a PushConsumer, and receives an

event message of the CORBA::Any type.
• push_structured_event() is implemented by a

StructuredPushConsumer and receives an event message of
CosNotification::StructuredEvent.

• push_structured_events()is implemented by a
SequencePushConsumer and receives a sequence of structured
event messages CosNotification::EventBatch.

Example
Example 11 implements push_structured_event() to receive a
structured event that contains sports scores.

Example 11: Receiving Events Using Push (Sheet 1 of 2)

// Java
import org.omg.CosNotification.*;

class NotifyPushConsumer extends StructuredPushConsumerPOA
{
// ...

 44 Orbix Enterprise Messaging Guide: C++

Pull Consumer
A pull client consumer invokes the appropriate pull or try_pull
operation on its proxy supplier to solicit event messages; the
proxy supplier returns with the next available event.
Each proxy supplier interface supports a variant of the pull and
the try_pull operations:
• pull() and try_pull() are invoked on a PullSupplier proxy

and return a CORBA::Any argument.
• pull_structured_event() and try_pull_structured_event() are

invoked on a StructuredPullSupplier proxy and return a
CosNotification::StructuredEvent.

• pull_structured_events() and try_pull_structured_events()
are invoked on a SequencePullSupplier proxy and return a
sequence of event structures.

The pull and try_pull operations differ only in their blocking
mode:
• A pull operation blocks until an event is available.
• A try_pull operation is non-blocking—it returns immediately

with a boolean output parameter to indicate whether the
return value actually contains an event. The proxy consumer
continues to invoke the pull operation on the supplier as many
times as specified in the MaxProxyConsumerRetries property
(see “MaxRetries” on page 61). The interval between retries is
specified by the PullInterval property (see “PullInterval” on
page 62).

 public void push_structured_event(StructuredEvent event)
 {
 String news_type = new
 String(event.header.fixed_header.event_type.domain_name);
 String sports_type = new
 String(event.header.fixed_header.event_type.type_name);

 if(news_type.equals("SportsNews"))
 {
 String scores =
 event.remainder_of_body.extract_string();

 System.out.println("Current " + sports_type + "scores:
 " + scores);
 }
 }

//...
}

Example 11: Receiving Events Using Push (Sheet 2 of 2)

Orbix Enterprise Messaging Guide: C++ 45

Example
Example 12 shows how one might use try_pull to receive data
from a StructuredProxyPullSupplier.

Disconnecting From the Event Channel
A client consumer can disconnect from the event channel at any
time by invoking the disconnect operation on its proxy supplier.
This operation terminates the connection between the consumer
and its target proxy supplier. The event channel then releases all
resources allocated to support its connection to the consumer,
including destruction of the target proxy supplier.
Each proxy supplier interface supports a disconnect operation. For
example, disconnect_structured_push_supplier() is defined in
StructuredProxyPushSupplier.

Example 12: Pulling Events

// Java
BooleanHolder has_data = new BooleanHolder();

try
 {
 event = proxy.try_pull_structured_event(has_data);
 }
catch (org.omg.CosEventComm.Disconnected dsc)
 {
 System.err.println("Disconnected exception occured during
 pull");
 System.exit (1);
 }
catch (SystemException sys)
 {
 System.err.println("System exception occured during pull");
 System.exit (1);
 }

if (has_data.value)
 {
 n = event2.remainder_of_body.extract_ulong ();
 System.out.println("Received event number " + n + " using
 try pull");
 }

 46 Orbix Enterprise Messaging Guide: C++

 Orbix Enterprise Messaging Guide: C++ 47

Notification Service
Properties
You can set and modify a number of properties on notification service
components.

Notification service properties control the delivery of event
messages—for example, their priority and reliability. You can use
either the API or the Notification Console to set these properties
on a channel, an administration object, a proxy object, or an
event message.

Property Types

Administration Properties
Administration properties control the behavior of event channels
and cannot be set on other objects. They are supported by the
AdminPropertiesAdmin interface, which provides the accessor
operations get_admin() and set_admin().
The notification service supports the following administration
properties:
MaxConsumers
MaxSuppliers
MaxQueueLength
RejectNewEvents

Quality-of-Service Properties
Quality-of-service properties control the behavior of all notification
service components and can be set on any notification service
object, including messages. They are supported by the QoSAdmin
interface, which provides accessor operations get_qos() and
set_qos().
Table 2 lists the quality-of-service properties and the component
types on which they can be set. Some properties have more
specific restrictions; these are discussed in the property
descriptions (see “Property Descriptions” on page 54).

Table 2: Component Support for Quality-of-Service Properties

Property Message Proxy Admin Channel

EventReliability Y Y

ConnectionReliability Y Y Y

Priority Y Y Y Y

OrderPolicy Y Y Y

StopTime Y

 48 Orbix Enterprise Messaging Guide: C++

Property Inheritance

Order of Inheritance
On creation, an event channel, admin, or proxy initially inherits its
quality-of-service properties from the following components, in
ascending order of precedence:
• The notification service’s default property settings.
• Component ancestors, in order of creation.
For example, when you create a consumer proxy, the notification
service:
1. Obtains its own default properties
2. Merges these properties with notification channel properties.
3. Merges the aggregate of all higher-level properties with the

parent supplier admin’s properties
4. Sets the merged list of properties on the consumer proxy.
At each merge stage, the current object’s properties override
corresponding properties of all higher-level components.

StopTimeSupported Y Y Y

Timeout Y Y Y Y

StartTime Y

StartTimeSupported Y Y Y

MaxEventsPerConsumer Y Y Y

DiscardPolicy Y Y Y

MaximumBatchSize Y Y Y

PacingInterval Y Y Y

MaxRetries Y Y Y

RetryTimeout Y Y Y

MaxRetryTimeout Y Y Y

RequestTimeout Y Y Y

PullInterval Y Y Y

RetryMultiplier Y Y Y

Table 2: Component Support for Quality-of-Service Properties

Property Message Proxy Admin Channel

WARNING: If you change a component’s properties, the
changes are inherited only by child components that are
created afterwards; existing child components are
unaffected by changes in their parents.

Orbix Enterprise Messaging Guide: C++ 49

Setting Properties
Properties can be set on the following notification service
components, in ascending order of precedence:
• Event channel
• Admins
• Proxies
• Structured event messages
Properties can be set programmatically or through the Notification
Console. Properties can also be set for individual structured events
through their optional header fields.

Consistency
Because properties can be set individually on the different
components that handle event message delivery, it is important to
ensure consistent settings across the entire delivery path. Unless
all of the components in the delivery path agree on a consistent
set of policies, message delivery can be unpredictable.

Setting Properties Programmatically

Methods for Setting Properties
The notification service provides two methods for setting an
object’s properties:
• set_admin()sets administration properties on an event

channel. It cannot be used to set properties on other
notification service objects.

• set_qos() sets quality-of-service properties on all notification
service objects.

set_admin()
set_admin() is called on an event channel to set one of the
following administration properties:
MaxConsumers
MaxSuppliers

You can use set_admin() to change existing properties on an event
channel or set new ones. Any property that is not specified
remains unchanged.
set_admin() takes a single argument of type
CosNotification::AdminProperties, which is defined as a sequence
of String/Any name-value pairs specifying the properties to be
changed and their new settings.

 50 Orbix Enterprise Messaging Guide: C++

set_admin() throws an exception of UnsupportedAdmin if the
property is unsupported for the target component. This exception
returns a sequence of structures containing the name of the
invalid property, an error code identifying the error, and a cstruct
specifing the valid range of settings for the property.
Table 3 lists the possible error codes returned because of an
UnsupportedAdmin exception.

set_qos()
set_qos() can be called on all notification service components to
set their quality-of-service properties.
You can use set_qos() to change existing properties on any
notification service component or to set new ones. Any property
that is not specified remains unchanged.
set_qos() takes a single argument of type
CosNotification::QoSProperties which is defined as a sequence of
String/Any name-value pairs specifying the properties to be
changed and their new settings.
set_qos() can throw UnsupportedQoS, if the property is unsupported
for the target component. This exception returns a sequence of
structures containing the name of the invalid property, an error
code identifying the error, and a cstruct specifing the valid range
of settings for the property.
Table 3 lists the possible error codes returned because of an
UnsupportedQoS exception.

Table 3: Error Codes returned with the UnsupportedQoS and UnsupportedAdmin Exceptions

Error code Meaning

UNSUPPORTED_PROPERTY Orbix does not support the property for this type of object.

UNAVAILABLE_PROPERTY This property cannot be combined with existing
quality-of-service properties.

UNSUPPORTED_VALUE The value specified for this property is invalid for the target
object. A range of valid values is returned.

UNAVAILABLE_VALUE The value requested for this property is invalid in the context of
other quality-of-service properties currently in force. A range of
valid values is returned.

BAD_PROPERTY The property name is unknown.

BAD_TYPE The type supplied for the value of this property is incorrect.

BAD_VALUE The value supplied for this property is illegal. A range of valid
values is returned.

Orbix Enterprise Messaging Guide: C++ 51

Example
Example 13 shows one way to set an event channel’s OrderPolicy
to FifoOrder.

Setting a Structured Event’s QoS Properties
You can set quality-of-service properties in a structured event
message’s header. These settings override the corresponding
properties specified for the consumer and supplier proxies;
however, they apply only to that event.

BAD_QOS Exception
If the requested property is invalid, the notification service raises
system exception BAD_QOS. This exception is thrown during
transmission of a structured event from a supplier to the channel
when the channel determines that it cannot accept the event
header properties.
The BAD_QOS exception provides no details about why it was
thrown. By calling validate_event_qos() in advance, a client can
verify whether it can safely set a property in an event message
header. For more on this operation see page 53.

Example 13: Setting Qos Properties

\\ Java
\\ Event channel chan obtained earlier
import org.omg.CosNotification;

try
 {
 Property[] NewQoS = Property[1];
 NewQoS[0] = new Property();
 NewQoS[0].name = OrderPolicy.value;
 NewQos[0].value = ORB.init().create_any();
 NewQos[0].value.insert_short(FifoOrder.value);

 chan.set_qos(qos);
 }
catch (org.omg.CosNotification.UnsupportedQoS uqos)
 {
 System.exit(1);
 System.err.println("UnsupportedQoS Exception");
 }

 52 Orbix Enterprise Messaging Guide: C++

Example
Example 14 sets a structured event’s Priority property to 0.

Getting Properties

Methods
The notification service provides methods for looking at a
notification service object’s properties. Depending on a property’s
type (see “Property Types” on page 47), you can call either
get_admin() or get_qos() on a notification service object to retrieve
its properties.

get_admin()
get_admin() takes no input parameters, and returns a sequence of
CosNotification::AdminProperties which contains name-value pairs
encapsulating the current administrative settings for the target
channel.

get_qos()
get_qos() retrieves the effective quality-of-service properties for a
channel, admin, or proxy. It returns the list of properties, and
their values, that are set on the target object, including those
properties inherited from higher levels, in a sequence of
name-value pairs of type CosNotification::QoSProperties.

Example 14: Setting QoS Properties in an Event Header

// Java
import org.omg.CosNotification;

StructuredEvent event = new StructuredEvent();

event.header = new EventHeader();

event.header.fixed_header = new FixedEventHeader();
event.header.fixed_header.event_type = new
 EventType("SportNews", "BaseballResults");
event.header.fixed_header.event_name = new String("");

event.header.variable_header = new Property[1];
event.header.variable_header.name = Priority;
event.header.variable_header.value = ORB.create_any();
event.header.variable_header.value.insert_short(0);

event.filterable_data = new Property [0];

Orbix Enterprise Messaging Guide: C++ 53

Example
Example 15 gets the quality-of-service properties that are set for
channel chan.

Validating Properties

Methods
The notification service supports two methods that lets a supplier
check whether a given object supports one or more
quality-of-service properties:
• validate_qos() can be called on all notification service objects.
• validate_event_qos() can only be called on consumer proxies

to determines which quality-of-service properties are valid for
an event message.

Parameters
Both methods take an input and output parameter:

required_qos: A sequence of quality-of-service property
name-value pairs of type CosNotification::QoSProperties that specify
a set of quality-of-service settings.

available_qos: An output parameter that contains a sequence of
CosNotification::PropertyRange data structures. Each element in
this sequence includes the name of an additional
quality-of-service property supported by the target object that
could have been included on the input list and resulted in a
successful return from the operation, along with the range of
values that would have been acceptable for each such property.
available_qos only returns properties that have no
interdependencies. If two properties are interdependent—for
example, EventReliability and ConnectionReliability—then
neither is returned.

UnsupportedQoS Exception
If any of the properties listed in required_qos are invalid for the
target object, the call throws an UnsupportedQoS exception, which
shows which properties are invalid and why. For more information
on return codes, see Table 3 on page 50.

Example 15: Getting QoS Properties

// Java
org.omg.CosNotification.Property[] current_qos;

current_qos = chan.get_qos();

 54 Orbix Enterprise Messaging Guide: C++

Example
In Example 16, a supplier calls validate_event_qos() on the proxy
consumer ppc to determine whether it can accept a structured
event whose EventReliability property is set to Persistent.

Property Descriptions
The following topics are discussed in this section:
• Reliability Properties
• Event Priority
• Event Queue Order
• Lifetime Properties
• Start Time Properties
• Undelivered Event Properties
• Discard Policy
• Sequenced Events Properties
• Proxy Push Supplier Properties
• Proxy Pull Consumer Properties
• RequestTimeout
• Channel Administration Properties

Example 16: Validating Event Properties

// Java
// consumer proxy ppc obtianed earlier
import org.omg.CosNotification;

Property[] QoS = new Property[1];
QoS[0] = new Property();
QoS[0].name = new String(EventReliability.value);
Qos[0].value = ORB.create_any();
Qos[0].value.insert_short(Persistent.value);

try
 {
 ppc.validate_event_qos(QoS);
 }
catch(UnsupportedQoS unsupported)
 {
 System.err.prntln("Event persistence not allowed. Error:
 unsupported.");
 }
catch(org.omg.CORBA.SystemException se)
 {
 System.err.prntln("System exception occurred during
 validate_event_qos call.");
 }

Orbix Enterprise Messaging Guide: C++ 55

Reliability Properties

Property Names
The notification service defines two reliability properties that
determine how it handles service fail over:
• EventReliability
• ConnectionReliability

EventReliability
EventReliability specifies level of assurance that an event will be
delivered over multiple restarts of the process hosting its event
channel. This property can be set on an event channel and on
individual events. By default, an event’s reliability is set to match
the event channel.
You can set this property to BestEffort or Persistent:

BestEffort: (default) A queued event remains viable only during
the event channel’s hosting process’ lifetime. If the event
channel’s hosting process fails, delivery cannot be guaranteed for
any buffered best-effort events; and consumers might receive the
same event more than once.

Persistent: A queued event is persistent. If the event channel’s
hosting process fails, all persistent events that remain within their
expiry limits are restored when the channel’s hosting process is
restarted.

ConnectionReliability
ConnectionReliability specifies whether a channel maintains
information about connected suppliers and consumers beyond its
hosting processes current lifetime. This property can be set only
on a channel.
You can set this property to BestEffort or Persistent:

BestEffort: (default) Supplier and consumer connections are
valid only during the event channel’s hosting process’ current
lifetime. If the event channel’s hosting process fails, all references
to that event channel become invalid and should be explicitly
disconnected by the consumers and suppliers. Upon restart of the
channel’s hosting process, all suppliers and consumers must
reconnect to the channel using new references.

Note: EventReliability on a per event basis is only
effective when the channel’s EventReliability is set to
Persistent. Otherwise, all events will be delivered with
BestEffort.

 56 Orbix Enterprise Messaging Guide: C++

Persistent: All supplier and consumer connections remain viable
beyond the event channel’s hosting process’ current lifetime. Upon
restart from a failure, the event channel automatically
re-establishes connections to all clients that were connected to it
at the time of failure.

Valid Combinations
The following matrix shows which combinations for
EventReliability and ConnectionReliability are valid:

Event Queue Order

OrderPolicy
The OrderPolicy property tells a proxy in what order to queue
events for delivery. This property can be set on a channel, and on
individual admin or proxy objects; it is typically set by a consumer
on its consumer admin, supplier proxy, or both.

Values
You set this policy with one of the following constants:

AnyOrder: Queue events in any order. In practice, this has the
same effect as specifying FifoOrder.

FifoOrder: Queue events in the order they are received by the
event channel.

PriorityOrder: (default) Queue events according to their Priority
property setting, so higher priority events are delivered before
lower priority events.

DeadlineOrder: Queue events in order of expiry deadlines, so
events that are destined to expire earliest are delivered first.

EventReliability
ConnectionReliability
BestEffort Persistent

BestEffort Y Y
Persistent N Y

Orbix Enterprise Messaging Guide: C++ 57

Event Priority

Priority
The Priority property determines the order in which events are
delivered to a consumer. This property can be set on all
component types; however, it is typically set on individual event
messages.

Interaction with OrderPolicy
Priority settings are effective only if the delivery points for
prioritized messages have their OrderPolicy property set to
PriorityOrder (see “Event Queue Order” on page 56); otherwise,
the Priority property is ignored. Thus, in order to guarantee that
all supplier-assigned priorities are respected in a given channel,
OrderPolicy must be set to PriorityOrder for all proxy suppliers
within that channel.

Values
The Priority property can be set to any short value between
-32,767 (lowest priority) and 32,767 (highest priority), inclusive. By
default, all events have a Priority setting of 0.

Lifetime Properties

Property Names
Lifetime properties specify the time span in which an event
remains viable; if the event is not delivered within that time span,
it is discarded. By default, events do not have fixed expiry times.
The notification service defines three lifetime properties:
• StopTime
• StopTimeSupported
• Timeout

StopTime
StopTime sets an absolute expiry time (for example, September 1,
2001), after which the event is no longer deliverable and must be
discarded. StopTime can only be set in the header of structured
event messages.
This property is set with a TimeBase::UtcT datatype.

Note: A consumer can modify a message’s priority with
mapping filters (see “Mapping Filters” on page 71).

 58 Orbix Enterprise Messaging Guide: C++

StopTimeSupported
StopTimeSupported can be set on a channel, admin, or proxy
objects; its boolean setting specifies whether the component
supports the StopTime property. It has a defualt setting of TRUE and
the notification service does not currently support a setting of
FALSE.

Timeout
Timeout specifies, in units of 10-7 seconds, how long an event
remains viable after the channel receives it. After the Timeout
value expires, the event is no longer deliverable and must be
discarded.
You can set this property on a structured event message, channel,
admin, or proxy. A consumer can override this property with
mapping filters (see “Mapping Filters” on page 71).
This property is set with a TimeBase::TimeT datatype; the default
value is 0.

Start Time Properties

Property Names
Start time properties specify when an event becomes deliverable.
By default, all events are deliverable as soon as they are received
by the channel. The notification service defines two start time
properties:
• StartTime
• StartTimeSupported

StartTime
StartTime specifies that the event is to be delivered only after the
specified time, which is set with a TimeBase::UtcT datatype. This
property can only be set on structured event messages.

StartTimeSupported
StartTimeSupported can be set on a channel, admin, or proxy
objects, its boolean setting specifies whether the component
supports the StartTime property. It has a defualt setting of TRUE
and the notification service does not currently support a setting of
FALSE.

Orbix Enterprise Messaging Guide: C++ 59

Undelivered Event Properties

Property Names
Two properties control the behavior of undelivered events in a
channel:
• MaxEventsPerConsumer
• DiscardPolicy

MaxEventsPerConsumer
MaxEventsPerConsumer limits the number of undelivered events that
a channel queues for a consumer at any given time.
Overflow events are discarded in the order specified by
DiscardPolicy.
You can set MaxEventsPerConsumer on:
• Individual consumers, by setting it on their supplier proxies.
• A group of consumers, by setting it on their common

consumer admin.
• All consumers connected to a given channel, by setting this

property on the channel itself.
This property is set with a long datatype; the default value is 0
(unlimited).

Discard Policy
DiscardPolicy specifies the order in which events are discarded.
You can set DiscardPolicy with one of the following constants:

AnyOrder: (default) Discard any events.

FifoOrder: Discard events from the head of the queue.

PriorityOrder: Discard events according to their priority, so lower
priority events are discarded before higher priority events.

DeadlineOrder: Discard events in order of shortest expiry
deadline first.

LifoOrder: Discard events from the tail of the queue.

Note: Events are discarded only for a consumer whose
number of queued events exceeds its MaxEventsPerConsumer
setting. The event remains queued for any consumers
whose maximum is not exceeded.

 60 Orbix Enterprise Messaging Guide: C++

RequestTimeout
RequestTimeout specifies, in units of 10-7 seconds, how much time
is allowed a channel object to perform an operation on a client. If
the operation does not return within the specified limit, it throws a
CORBA::TRANSIENT system exception.
This property is set with a TimeBase::TimeT datatype; the default is
5 seconds. The maximum value is 600 seconds.

Sequenced Events Properties

Property Names
Consumers that are registered to receive sequences of structured
events can control the inflow of events through two properties:
• MaximumBatchSize
• PacingInterval

Both properties can be set only for supplier proxies of types
SequenceProxyPushSupplier and SequenceProxyPullSupplier. You can
set these properties on individual proxies, on consumer admin
objects, and on the event channel.

MaximumBatchSize
MaximumBatchSize specifies the maximum number of structured
events that are sent in a sequence to consumers. This property is
set with a long datatype; the default value is 1.

PacingInterval
PacingInterval specifies, in units of 10-7 seconds, the maximum
amount of time that a channel is given to assemble structured
events into a sequence, before delivering the sequence to
consumers. This property is set with a TimeBase::TimeT datatype;
the default value is 0.

Setting Both Properties
With both properties set, a supplier proxy must deliver a sequence
of structured events to its consumers when one of the following
events occurs:
• The number of events is equal to MaximumBatchSize.
• The PacingInterval time limit expires.

Note: The default values for MaximumBatchSize and
PacingInterval configure a SequenceProxy to behave
similarly to a StrucuredProxy.

Orbix Enterprise Messaging Guide: C++ 61

Proxy Push Supplier Properties

Property Names
Four quality-of-service properties control interaction between a
ProxyPushSupplier and its consumer:
• MaxRetries
• RetryTimeout
• RetryMultiplier
• MaxRetryTimeout

You can set these properties on a ProxyPushSupplier on consumer
administration objects, and on an event channel.

MaxRetries
MaxRetries specifies the maximum number of times that a proxy
push supplier calls push() on its consumer before it gives up. This
property is set with a CORBA::Ulong datatype; the default value is
0, which effectively means an infinite number of retries.

RetryTimeout
RetryTimeout specifies, in units of 10-7 seconds, how much time
elapses between attempts by a proxy push supplier to call push()
on its consumer. This property is set with a TimeBase::TimeT
datatype; the default value is 1 second (1x107).

RetryMultiplier
RetryMultiplier specifies the number by which the current value
of RetryTimeout is multiplied to determine the next RetryTimout
value. RetryMultiplier is applied until either the push() is
successful or MaxRetryTimeout is reached. This property is set with
a CORBA::double datatype between 1.0 and 2.0; the default value
is 1.0.

MaxRetryTimeout
MaxRetryTimeout sets the ceiling, in units of 10-7 seconds, for
RetryTimeout. This property applies to RetryTimeout values directly
assigned by developers as well as RetryTimeout values reached by
the multiplication of RetryMultiplier and RetryTimeout. This
property is set with a TimeBase::TimeT datatype; the default value
is 60 seconds (60x107).

 62 Orbix Enterprise Messaging Guide: C++

Proxy Pull Consumer Properties

Property Names
Two quality-of-service properties control interaction between a
ProxyPullConsumer and its supplier:
• MaxRetries
• PullInterval

You can set these properties on a ProxyPullConsumer; on supplier
admin objects; and on an event channel.

MaxRetries
MaxRetries specifies the maximum number of times that a proxy
pull consumer calls pull() or try_pull() on its supplier before it
gives up. This property is set with a CORBA::Ulong datatype. The
default value is 3.

PullInterval
PullInterval specifies, in units of 10-7 seconds, how much time
elapses between attempts by a proxy pull consumer to call pull()
or try_pull() on its supplier. This property is set with a long
datatype; the default value is 1 second (1x107).

Channel Administration Properties
MaxConsumers, MaxSuppliers, MaxQueueLength, and RejectNewEvents
apply only to event channel administration, and can be set only on
an event channel. These properties are accessible through
set_admin() and get_admin().

MaxConsumers
MaxConsumers specifies the maximum number of consumers that
can be connected to the channel at any given time. This property
is set with a long datatype; the default value is 0 (unlimited).

MaxSuppliers
MaxSuppliers specifies the maximum number of suppliers that can
be connected to the channel at any given time. This property is set
with a long datatype; the default value is 0 (unlimited).

Orbix Enterprise Messaging Guide: C++ 63

MaxQueueLength
MaxQueueLength specifies the maximum number of events that will
be queued by the channel before the channel begins discarding
events or rejecting new events if RejectNewEvents is set to TRUE;
the default value is 0 (unlimited).

RejectNewEvents
RejectNewEvents specifies whether or not the channel continues
accepting new events after the number of events has reached
MaxQueueLength. Micro Focus’s implementation only supports a
value of TRUE for this property.
When the total number of undelivered events within the channel is
equal to MaxQueueLength, each pull-style proxy consumer will stop
attempting to perform pull invocations on its supplier until the
total number of undelivered events within the channel is
decreased. Attempts to push new events to the channel by
push-style suppliers will result in the IMPL_LIMIT system exception
being raised.

 64 Orbix Enterprise Messaging Guide: C++

 Orbix Enterprise Messaging Guide: C++ 65

Event Filtering
Filter objects screen events as they pass through the channel, and process
those that meet the filter constraints.

The notification service defines two types of filters:
• Forwarding filters are set in a channel by clients that wish to

restrict event delivery to those events that meet certain
constraints. These filters implement interface
CosNotifyFilter::Filter.

• Mapping filters are set by consumers to adjust the priority or
lifetime settings of those messages that meet filter
constraints. These filters implement interface
CosNotifyFilter::MappingFilter.

Forwarding Filters
Consumers can use forwarding filters to receive only those events
that interest them. For example, a consumer within a company’s
accounting department might use filters to ensure that it receives
from government agencies only those events that pertain to tax
code changes.
Forwarding filters can be set on individual proxies, both consumer
and supplier types, and on groups of proxies through their
common admin objects. Because forwarding filters can be set on
any delivery point within an event channel, you can build a
filtering system that satisfies the individual and collective needs of
widely different consumers.

Implementing a Forwarding Filter

Procedure
Implementing a forwarding filter is a four-step process:

Note: An object that has no filters associated with it
forwards all events that it receives to the next delivery
point.

Step Action

1 Obtain a filter object.

2 Set up filter constraints.

3 Add constraints to the filter object.

4 Attach the filter to a proxy or admin object.

 66 Orbix Enterprise Messaging Guide: C++

Obtaining a Filter Object
To create filter objects, an application first obtains a filter factory,
which is based on interface CosNotifyFilter::FilterFactory:

Orbix Notification provides a default filter factory instance that is
associated with each event channel. After obtaining a filter
factory, the consumer or supplier client calls create_filter() on
the filter factory object; the call supplies the argument
EXTENDED_TCL, which specifies the default constraint grammar.

Example
The code in Example 17 obtains a filter object.

Setting Up Filter Constraints
After creating a filter object, you can set up its constraints. Filter
objects encapsulate one or more constraints through a sequence
of CosNotifyFilter::ConstraintExp data structures.

Each ConstraintExp has two members:

// IDL in CosNotifyFilter
interface FilterFactory {
 Filter create_filter (
 in string constraint_grammar)
 raises (InvalidGrammar);
 // ...
};

Example 17: Obtaining a Filter Object

// Java
// event channel obtianed earlier
org.omg.CosNotifyFilter.FilterFactory dff =
 channel->default_filter_factory();

org.omg.CosNotifyFilter.Filter filter =
 dff->create_filter("EXTENDED_TCL");

// IDL
struct ConstraintExp {
 CosNotification::EventTypeSeq event_types;
 string constraint_expr;
};

typedef sequence<ConstraintExp> ConstraintExpSeq;

Orbix Enterprise Messaging Guide: C++ 67

EventTypeSeq specifies a sequence of EventType data structures,
each containing two fields that combine to specify an event type:

constraint_expr specifies a boolean string expression whose
syntax conforms to the default filter constraint language (see
“Filter Constraint Language” on page 76).

Example
Example 18 sets up a filter constraint with a single constraint
expression, which specifies to forward only even-numbered
events:

The filter constraint is set up as follows:
1. A single EventType is initialized, where the domain_name member

is set to Orbix Demos; and the type_name member is set to
Structured Notification Push Demo Event.

2. A ConstraintExpSeq is defined with a single ConstraintExp
member.

3. constraint_expr is set to a boolean string expression, which
evaluates to true if an event’s $EventNumber is an even integer;
false if it is odd.

// IDL in module CosNotification
struct EventType {
 string domain_name;
 string domain_type;
};

typedef sequence<EventType>EventTypeSeq;

Example 18: Setting up a Filter Constraint

// Java
import org.omg.CosNotification.*;
import org.omg.CosNotifyFilter.*;

EventType[] event_types = new EventType(1);

1 event_types[0].domain_name = new String("Orbix Demos");
event_types[0].type_name =
 new String("Structured Notification Push Demo Event");

2 ConstraintExp[] constraints = ConstraintExp(1);

constraints[0].event_types = event_types;
3 constraints[0].constraint_expr =

 new String("($EventNumber / 2) == (($EventNumber + 1) / 2)");

 68 Orbix Enterprise Messaging Guide: C++

Adding Constraints to a Filter
After you set up filter constraints, you add them to a filter by
calling add_constraints(), as in the following example:

The operation checks whether the constraint is syntactically
correct; if not, it throws exception InvalidConstraint.

Attaching Filters
All proxy and admin objects inherit CosNotifyFilter::FilterAdmin,
which provides operations for adding and removing filters:

You can add one or more filter objects to any proxy or admin
object in an event channel, providing multiple filtering layers in a
channel.

Example
Example 19 attaches the filter object created earlier to a
structured proxy push supplier.

org.omg.CosNotifyfilter.ConstraintInfo[] info =
 filter.add_contraints(constraints);

\\ IDL
interface FilterAdmin {
 FilterID add_filter(in Filter new_filter);
 void remove_filter(in FilterID filter)
 raises (FilterNotFound);
 Filter get_filter(in FilterID filter)
 raises (FilterNotFound);
 FilterIDSeq get_all_filters();
 void remove_all_filters();
};

Example 19: Attach a Filter Object

// Java
import org.omg.CosNotifyChannelAdmin.*;

// event channel ca and filter filter obtained earlier

// create a structured push supplier
ProxySupplier obj =
 ca.obtain_notification_push_supplier
 (ClientType.STRUCTURED_EVENT, proxy_id);
StructuredProxyPushSupplier pps =
 StructuredProxyPushSupplierHelper.narrow(obj);

// add filter to proxy
IntHolder fid = new IntHolder();
fid = pps.add_filter(filter);

Orbix Enterprise Messaging Guide: C++ 69

In this example, the filter is attached to a supplier proxy, so it
applies to all events that are targeted at that proxy’s consumer.
Filters that are attached to an admin object apply to all the
admin’s proxies. If a set of proxies can use the same filters, it is
more efficient to set these on a common admin, so filter
processing on a given event takes place only once for all proxies.
If filters are set on an admin and one of its proxies, events can be
evaluated against both sets of filters, depending on whether the
admin object was created with AND or OR semantics (see
“Traversing Multiple Filters in a Channel” on page 70).

Filter Evaluation
A filter evaluates an event against its set of constraints until one
evaluates to true. A constraint evaluates to true when both of the
following conditions are true:
• A member of the constraint’s EventTypeSeq matches the

message’s event type.
• The constraint expression evaluates to true.
The first filter in which the event message evaluates to true
forwards the event to the next delivery point in the channel. If the
event message fails to pass any forwarding filters, the event may
not be forwarded. For full details on filter processing, see
“Processing Events with Forwarding Filters” on page 69.

Processing Events with Forwarding Filters
When an event message enters an event channel, it can encounter
filters at one or more delivery points. The filters at each delivery
point evaluate the event message, then either forward the event
message to the next delivery point, or drop the event.

Event Message Evaluation
When an object receives an event, it invokes the appropriate
match operation—match_structured() on structured events,
match() on untyped events—on its filters. The match operation
accepts as input the contents of the event, evaluates it against the
filter constraints, and returns a Boolean result:
• true: The event satisfies one of the filter constraints and is

forwarded immediately to the next delivery point. Other filters
for that object are ignored.

• false: The event satisfies none of the filter constraints. If the
object has multiple filters, the event is passed on to the next
filter and the match operation is invoked on it. If all match
invocations return false, the event message may be removed
from the event channel, depending on the status of its
progress in the channel delivery path.

 70 Orbix Enterprise Messaging Guide: C++

Traversing Multiple Filters in a Channel
Forwarding filters can be attached to admin and proxy objects on
both supplier and consumer sides of an event channel. As
Figure 12 shows, an event message can potentially traverse four
sets of forwarding filters, set on the following objects:
• Consumer proxy
• Supplier admin object
• Consumer’s admin object
• Supplier proxy

If filters are set on an admin and one of its proxies, events can be
evaluated against both sets of filters, depending on whether the
admin object was created with AND or OR semantics:
• AND semantics require events to pass both admin and proxy

filters.
• OR semantics only require an event to pass an admin or proxy

filter.
An event message traverses channel filters as follows:
1. The consumer proxy filters each forwarded event with one of

the following results:
♦ If the supplier admin has OR semantics, an event that

passes any proxy filter is forwarded directly to the
consumer admin.

♦ If the supplier admin has AND semantics, an event that
passes any proxy filter is forwarded to the supplier admin
for further filtering.

♦ If the admin has AND semantics, an event that fails all
proxy filters is not forwarded.

Figure 12: Forwarding Filters Can Intercept an Event Message at Multiple Delivery
Points

consumer
proxy

consumer
admin

supplier
admin

consumer

forwarding filters:
supplier

supplier
proxy

event

event

Event channel

1

2

3

4

Orbix Enterprise Messaging Guide: C++ 71

2. The supplier admin filters each event with one of the following
results:
♦ The event passes one of the filters and is forwarded to the

consumer admin.
♦ The event fails all filters and is not forwarded.

3. The consumer admin filters each forwarded event with one of
the following results:
♦ If the admin has OR semantics, an event that passes any

filter is forwarded directly to the consumer.
♦ If the admin has AND semantics, an event that passes any

filter is forwarded to the supplier proxy for further
filtering.

♦ If the admin has AND semantics, an event that fails all
filters is not forwarded.

4. The supplier proxy filters each forwarded event with one of
the following results:
♦ The event passes one of the filters and is forwarded to the

consumer.
♦ The event fails all filters and is not forwarded to the

consumer.

Mapping Filters
An event’s lifetime and priority can be set at several levels—in the
event message itself, and at the channel, admin, or proxy levels.
While suppliers can set an event’s priority or lifetime—typically, in
the header of a structured event message—they cannot always
anticipate the importance that individual consumers might assign
to events of certain types. For example, a consumer might wish to
raise the priority of all messages where event_type field is set to
sport and sport_type field is set to baseball. Mapping filters allow
consumers to increase or diminish the importance of certain
events by enabling their supplier proxies to override their Priority
and Timeout properties.
You can apply mapping filters to supplier proxies and consumer
admin objects. Each object can have up to two mapping filters:
• A priority filter that determines an event’s priority.
• A lifetime filter that determines how long an event remains

deliverable.

Implementing a Mapping Filter Object

Procedure
Implementing a mapping filter is a four-step process:

Step Action

1 Obtain a filter object.

2 Set up constraints and associated values.

 72 Orbix Enterprise Messaging Guide: C++

Obtaining a Mapping Filter Object
To create mapping filter objects, an application first obtains a filter
factory, which is based on interface
CosNotifyFilter::FilterFactory:

The consumer client calls create_mapping_filter() on the filter
factory object and supplies two arguments:
• The argument EXTENDED_TCL, which specifies the default

constraint grammar.
• An any that specifies the mapping filter’s default value. This

value is used only when an event message fails to match any
filter constraints, and the target property is not set anywhere
for the event (see “Processing Events with Mapping Filters” on
page 75). This value must be consistent with the mapping
filter’s target property.

Example
Example 20 creates a mapping filter object and sets its default
value to 2.

3 Add constraints to the filter object.

4 Associate the mapping filter with a supplier proxy or
consumer admin.

Step Action

\\ IDL in module CosNotifyFilter
interface FilterFactory {
 // ...
 MappingFilter create_mapping_filter (
 in string constraint_grammar,
 in any default_value)
 raises(InvalidGrammar);
};

Example 20: Creating a Mapping Filter

// Java
// channel obtained earlier
import org.omg.CORBA.*;
import org.omg.CosNotifiyFilter.*;

// channel obtained earlier
FilterFactory_var dff = channel.default_filter_factory();

// set filters default priority to two
Any default_value = ORB.create_any();
default_value.insert_short(2);

//Create filter
MappingFilter Mapfilter =
 dff.create_mapping_filter("EXTENDED_TCL", default_value);

Orbix Enterprise Messaging Guide: C++ 73

Setting Up Filter Constraints
After creating a mapping filter object, you can set up its
constraints. Mapping filter objects encapsulate one or more
constraints through a sequence of
CosNotifyFilter::MappingConstraintPair data structures:

Each MappingConstraintPair contains:
• A constraint that is defined through a ConstraintExp data

structure (see “Event Type Filtering” on page 77).
• The property override value associated with the constraint.

The override value must be consistent with the target
property: short for a priority filter; TimeBase::TimeT for a
lifetime filter.

Example
Example 21 sets up a mapping filter constraint with two
MappingConstraintPair data structures, which evaluates all events
whose event type domain field is set to SportsNews:
• If the event type is set to BaseballResults, and the event’s

priority is less than 100, reset the priority to 100.
• If the event type is set to FootballResults and the event’s

priority is greater than 0, reset the priority to 0.

// IDL in module CosNotifyFilter
// ...
struct ConstraintExp {
 CosNotification::EventTypeSeq event_types;
 string constraint_expr;
};

struct MappingConstraintPair{
 ConstraintExp constraint_expression;
 any result_to_set;
};

Example 21: Adding Mapping Filter Constraints (Sheet 1 of 2)

// Java
import org.omg.CosNotification.*;
import org.omg.CosNotifyFilter.*;

MappingConstraintPair[] mapex = new MappingContsraintPair(2);

 74 Orbix Enterprise Messaging Guide: C++

Adding Constraints to a Mapping Filter
After you set up filter constraints, you add them to the mapping
filter by calling add_mapping_constraints(), as in the following
example:

The operation checks whether the constraint is syntactically
correct; if not, it throws exception InvalidConstraint.

Attaching Mapping Filters
Any supplier proxy and consumer admin can have up to two
mapping filters; one that pertains to an event’s Priority property,
the other to its Timeout property. The following objects provide a
method for setting each filter type:
• priority_filter() attaches a mapping filter that can override

an event’s Priority setting.
• lifetime_filter() attaches a mapping filter that can override

an event’s Timeout setting.
For example, the following code attaches a priority mapping filter
to a supplier proxy:

// Create first constraint
mapex[0].constriant_expression = new ConstraintExpr(1);
mapex[0].constraint_expression[0].event_types =
 new EventType(1);
mapex[0].contraint_expression[0].event_types[0].domain_name =
 new String("SportsNews");
mapex[0].constraint_expression[0].event_types[0].type_name =
 new String("BaseballResults");
mapex[0].contraint_expression[0].constraint_expr =
 new String("($Priority < 100)");
mapex[0].result_to_set = ORB.create_any();
mapex[0].result_to_set.insert_short(100);

// Create second constraint
mapex[1].constriant_expression = new ConstraintExpr(1);
mapex[1].constraint_expression[0].event_types =
 new EventType(1);
mapex[1].contraint_expression[0].event_types[0].domain_name =
 new String("SportsNews");
mapex[1].constraint_expression[0].event_types[0].type_name =
 new String("FootballResults");
mapex[1].contraint_expression[0].constraint_expr =
 new String("($Priority > 0)");
mapex[1].result_to_set = ORB.create_any();
mapex[1].result_to_set.insert_short(0);

Example 21: Adding Mapping Filter Constraints (Sheet 2 of 2)

org.omg.CosNotifyFilter.MappingConstraintInfo[] mcis1 =
 Mapfilter.add_mapping_constraints(mapexp);

// add the filter to the structured push supplier proxy
pps.priority_filter(Mapfilter);

Orbix Enterprise Messaging Guide: C++ 75

Processing Events with Mapping Filters
When an event message enters an event channel, it can encounter
mapping filters at one or more delivery points. The mapping filters
at each delivery point evaluate the event message, and either
override the messages quality-of-service settings, set the
messages default quality-of-service settings, or do nothing.

Event Evaluation
When a consumer admin or supplier proxy object receives an
event, it invokes the appropriate match operation on its mapping
filters—match_structured() on structured events, match() on
any-type events:

The match operation accepts as input the contents of the event,
and evaluates it against the filter constraints. Filter constraints are
traversed in descending order of override values—
longest-to-shortest lifetime for a lifetime filter, and
largest-to-smallest integer for a priority filter.
The match operation returns from each filter with a Boolean
result:
• true: The event satisfies one of the mapping filter constraints

and applies that constraint’s override value to the event. The
match operation’s output parameter returns with the override
value.

• false: The event satisfies none of the filter constraints. In this
case, the event retains its current property setting, if this is
explicitly set elsewhere in the channel—for example, by the
event channel itself, or in the current proxy. If the target
property is not set anywhere, the mapping filter’s default
value is applied.

While mapping filters effectively change an event’s lifetime and
priority, they have no effect on event message content. Because
they do not depend on finding property settings in the message
itself, you can apply mapping filters to any-type and structured
event messages alike.

Traversing Multiple Mapping Filters in a
Channel
Mapping filters can be attached to a consumer admin and its
supplier proxies. If set on both, a supplier proxy’s mapping filters
take precedence.

// IDL in interface CosNotifyFilter::MappingFilter
boolean match (in any filterable_data, out any result_to_set)
 raises (UnsupportedFilterableData);

boolean match_structured (
 in CosNotification::StructuredEvent filterable_data,
 out any result_to_set)
 raises (UnsupportedFilterableData);

 76 Orbix Enterprise Messaging Guide: C++

Filter Constraint Language
The default filter constraint language is based on the standard
OMG Trader Constraint Language with some modifications that
make it more suitable for use as a filter constraint language.

Constraint Expression Data Structure

Constraint Sequence
Filter objects encapsulate one or more constraints through a
sequence of CosNotifyFilter::ConstraintExp data structures:

Each ConstraintExp has two members:
• EventTypeSeq
• constraint_expr

EventTypeSeq
A sequence of EventType data structures which contains two fields
that specify an event type:

constraint_expr
A boolean string expression whose syntax conforms to the default
filter constraint language (see “Examples of Notification Service
Constraints” on page 80). The constraint expression is applied to
events whose event type matches one of the event types defined
in the constraint’s EventTypeSeq.
For full details on the filter constraint language, see the OMG’s
Notification Service Specification.

\\ IDL in module CosNotifyFilter
struct ConstraintExp{
 CosNotification::EventTypeSeq event_types;
 string constraint_expr;
};

typedef sequence<ConstraintExp> ConstraintExpSeq;

\\ IDL
struct EventType {
 string domain_name;
 string domain_type;};

typedef sequence<EventType>EventTypeSeq;

Orbix Enterprise Messaging Guide: C++ 77

Event Type Filtering
The ConstraintExp portion of a constraint is a sequence of
EventType data structures identifying which event types are to be
filtered. Any event type not specified in a filter’s ConstraintExp will
be evaluated to false by the filter.

Filtering for a Single Event Type
Example 22 sets up a constraint expression that evaluates to true
for all sports news events reporting on baseball results and whose
priority is set to less than 100.

Applying a Constraint to All Events
A constraint can set its EventTypeSeq to indicate that the constraint
expression applies to all events, in several ways:
• Declare an empty EventTypeSeq:

• Initialize a single-element EventTypeSeq to empty strings:

• Initialize a single-element EventTypeSeq with wildcard
characters, *:

Example 22: Using the Filter Constraint Language

// Java
import org.CosNotification.*;
import org.omg.CosNotifyFilter.*;

ConstraintExpr[] constriant_expression = new ConstraintExpr(1);
constraint_expression[0].event_types = new EventType(1);
contraint_expression[0].event_types[0].domain_name =
 new String("SportsNews");
constraint_expression[0].event_types[0].type_name =
 new String("BaseballResults");
contraint_expression[0].constraint_expr =
 new String("($Priority < 100)");

org.omg.CosNotification.EventType[] event_types =
 new org.omg.CosNotification.EventType(0);

org.omg.CosNotification.EventType[] event_types =
 new org.omg.CosNotification.EventType(1);
event_types[0].domain_name = new String("");
event_types[0].type_name = new String("");

org.omg.CosNotification.EventType[] event_types =
 new org.omg.CosNotification.EventType(1);
event_types[0].domain_name = new String("*");
event_types[0].type_name = new String("*");

 78 Orbix Enterprise Messaging Guide: C++

Using Wildcards
The default constraint grammar supports wildcard characters in
EventType fields. For example, the following setting applies to all
news events, such as SportsNews or FinancialNews:

Referencing Filtered Data
You can identify any data component in a structured event
message by specifying its full path within a
CosNotification::StructuredEvent:

For example, you can reference an event type’s domain name as
follows:

Name-Value Pair Notation
Structured event messages are set up to allow extensive use of
name-value pairs sequences. The full syntax for referencing these
is as follows:

Given this syntax, you can construct a constraint expression that
evaluates as follows:

While this syntax lets you loop through all optional header and
filterable data field members, it is also cumbersome. Therefore,
the notification service also supports two abbreviated formats for
referencing name-value pairs in a structured event message.

Optional header fields can be represented as follows:

For example, the constraint expression shown earlier might be
rewritten as follows:

org.omg.CosNotification.EventType[] event_types =
 new org.omg.CosNotification.EventType(1);
event_types[0].domain_name = new String("*News");
event_types[0].type_name = new String("*");

$.EventHeader[.intermediate-component[...]].component-name

$.EventHeader.FixedEventHeader.event_type.domain_name

$.EventHeader.FixedEventHeader.OptionalHeaderFields[i].name
$.EventHeader.FixedEventHeader.OptionalHeaderFields[i].value
$.FilterableEventBody[i].name
$.FilterableEventBody[i].value

($.EventHeader.FixedEventHeader.OptionalHeaderFields[i].name ==
 ’Priority’) and
($.EventHeader.FixedEventHeader.OptionalHeaderFields[i].value >
 10)

$.EventHeader.variable_header(prop-name)

$.EventHeader.variable_header(Priority) > 10

Orbix Enterprise Messaging Guide: C++ 79

Filterable data fields can be represented as follows:

For example, the following notation refers to filterable data field
StockSymbol:

Shorthand Notation
The notification service supports a shorthand notation that lets
you reference filterable data components in both structured and
unstructured events:
$component-name

This notation is valid for referencing the following structured event
components:

For example, the following constraint:

can be rewritten as follows:

The notification service uses the following algorithm to resolve
runtime variable $variable:
1. If the variable name is reserved—for example, $curtime—this

usage takes precedence.
2. The first matching translation is chosen from:

♦ A member of $.EventHeader.FixedEventHeader
♦ A property in $.EventHeader.variable_header
♦ A field name in $.filterable_data

3. If no match is found, the translation defaults to $.variable.
Thus, a generic constraint can use $Priority to reference an
unstructured event’s $.priority member, and a structured
event’s $.EventHeader.variable_header(priority) member.

Operand Handling
When you add a constraint to a filter, the notification service only
checks whether it is syntactically correct. When a filter processes
an event, the match operation is responsible for ensuring that

$.filterable_data(field-name)

$.filterable_data(StockSymbol)

$.EventHeader.FixedEventHeader.event_type.domain_name
$.EventHeader.FixedEventHeader.event_type.type_name
$.EventHeader.FixedEventHeader.event_name
$.EventHeader.variable_header.(prop-name)
$.filterable_data.(field-name)

($.EventHeader.FixedEventHeader.event_type.type_name ==
 ’StockAlert’) and
($.EventHeader.variable_header(pct_change) > 5.0)

($type_name == ’StockAlert’) and ($pct_change > 5.0)

 80 Orbix Enterprise Messaging Guide: C++

operands have valid data types. When the match operation
encounters invalid operands, or nonexistent identifiers, it returns
false.

Examples
The following constraint expression evaluates three event
message fields, a, b, and c:

($a + 1 > 32) or ($b == 5) or ($c > 3)

The following examples show how the match operation handles
constraint operands as it evaluates the contents of different
events.

Event 1: <$a, ’Hawaii’>, <$c, 5.0>
The first expression resolves to (Hawaii’ + 1 > 32). Because it is
not possible to add an integer to a string data type, the constraint
is invalid and the match operation returns false.

Event 2: <$a, 5>, <$c, 5.0>
The first expression evaluates to false. Because the event lacks a
$b member, an error occurs and the match operation returns false.
The constraint expression can be modified to handle the missing
$b member as follows:

($a + 1 > 32) or (exist $b and $b == 5) or ($c > 3)

Event 3: <$a, 5>, <$b, 5.0>
The second expression evaluates to true, although $b is set to a
floating point. Following arithmetic conversion rules, the
constraint expression’s constant 5 is also cast to floating point.
Because the second expression evaluates to true, the match
operation never detects the omission of member $c.

Examples of Notification Service Constraints
The following examples show different constraint expressions that
use the default constraint language:
Accept all CommunicationsAlarm events but no lost_packet
messages:

Accept CommunicationsAlarm events with priorities ranging from 1
to 5:

Select MOVIE events featuring at least three of the Marx Brothers:

$event_type == ’CommunicationsAlarm’ and
not ($event_name == ’lost_packet’)

($event_type == ’CommunicationsAlarm’) and
($priority >= 1) and ($priority <= 5)

($event_type == ’MOVIE’) and (((’groucho’ in $.starlist) +
(’chico’ in $.starlist) + (’harpo’ in $.starlist) +
(’zeppo’ in $.starlist) + (’gummo’ in $.starlist)) > 2)

Orbix Enterprise Messaging Guide: C++ 81

Accept only recent events:

Accept students that took all three tests and had an average score
of at least 80%:

Select processes that exceed a certain usage threshold:

$origination_timestamp.high + 2 < $curtime.high

($.test._length == 3) and ((($.test[1].score + $.test[2].score +
 $.test[3].score) / 3) >= 80)

$memsize / 5.5 + $cputime * 1275.0 + $filesize * 1.25 >
500000.0h

 82 Orbix Enterprise Messaging Guide: C++

 Orbix Enterprise Messaging Guide: C++ 83

Multicast Consumers
A group of consumers that subscribe to the same events can connect to
the notification service by using a UDP/IP Multicast based protocol,
thereby reducing network overhead.

A notification service with many clients will generate a large
amount of network traffic. The Orbix notification service provides
a multicast based protocol to reduce the network overhead.

MIOP

Definition
Multicast Inter-ORB Protocol (MIOP) provides one-way
communication between the notification service and groups of
similar event consumers, using the UDP IP/Multicast protocol. This
protocol helps lower network overhead when a large number of
push-style consumers are receiving the same events.

Endpoint Groups
With MIOP, any number of push-style consumers interested in
receiving identical events can join an endpoint group. While
TCP/IP based IIOP requires the service to send one message per
individual client, IP/Multicast based MIOP only requires one
message per endpoint group. The endpoint group members attach
to the same proxy supplier, and share the same filters and
quality-of-service properties.

Limitations
MIOP cannot verify receipt of events by individual consumers. This
raises the possibility that interested consumers using MIOP may
miss events due to being unreachable when the channel sends
them.

IDL Interfaces

Interfaces for Endpoint Groups
The module IT_NotifyComm extends CosNotifyComm and provides
interfaces for IP/Multicast endpoint groups. These interfaces
support push-style delivery of untyped, structured, and sequence
events to endpoint groups, via a UDP IP/Multicast based protocol.

Note: The OMG provides no specifications for MIOP.
Therefore, notification services from other vendors might
be incompatible with Orbix IP/Multicast consumers.

 84 Orbix Enterprise Messaging Guide: C++

The interfaces that support endpoint groups are defined as
follows:

Oneway Communication
The interfaces for multicast consumers only support oneway
invocation. MIOP only provides communication from the
notification channel to the consumers. Consumers cannot report
back to the notification service regarding the success or failure of
a given transmission.
Consumers communicate with the notification service via standard
IIOP.

Configuring Orbix for Multicast

Configuration Scope
In order to use MIOP, the runtime ORB must load the egmiop
plug-in. A named configuration scope must be created that
establishes the proper settings.

// IDL
module IT_NotifyComm
{
 interface GroupNotifyPublish
 {
 oneway void offer_change(
 in CosNotification::EventTypeSeq added,
 in CosNotification::EventTypeSeq removed);
 }; // GroupNotifyPublish

 interface GroupPushConsumer : GroupNotifyPublish
 {
 oneway void push(in any data);
 oneway void disconnect_push_consumer();
 }; // GroupPushConsumer

 interface GroupStructuredPushConsumer : GroupNotifyPublish
 {
 oneway void push_structured_event(
 in CosNotification::StructuredEvent

notification);
 oneway void disconnect_structured_push_consumer();
 }; // GroupStructuredPushConsumer

 interface GroupSequencePushConsumer : GroupNotifyPublish
 {
 oneway void push_structured_events(
 in CosNotification::EventBatch notifications);
 oneway void disconnect_sequence_push_consumer();
 }; // GroupSequencePushConsumer
}; // IT_NotifyComm

Orbix Enterprise Messaging Guide: C++ 85

Settings
In order to configure the ORB to load the correct plug-ins for
multicast, follow these steps:
1. Include "egmiop" in the orb_plugins list.
2. Include "GIOP+EGMIOP" in the binding:client_binding_list.
3. Label the well known addressing id and set

<label>:egmiop:addr_list property to a valid multicast
endpoint address.

When each multicast client starts up, it finds the proper
configuration scope by initializing the ORB with a name that
corresponds to a multicast configuration scope. Each client must
also set its well-known addressing ID to the correct label.

Example
The following configuration excerpt creates a configuration scope
for the ORB egmiop_test. It includes the plug-in and the bindings
required to use multicast. It labels the well-known address
"miop_test".

Implementing an Endpoint Group
To use MIOP effectively, create an endpoint group of push-style
consumers who share identical event subscriptions and
quality-of-service properties.

Instantiating an IP/Multicast Consumer

Determining the Interface
Consumers that use IP/Multicast are instantiated from the
IT_NotifyComm group interface that corresponds to the type of
events the group will receive—any, structured, or sequence (see
“Interfaces for Endpoint Groups” on page 83).

ORB Initialization
The consumer must also initialize an ORB whose configuration
scope establishes the correct environment for MIOP (see
“Configuring Orbix for Multicast” on page 84).

egmiop_test
{
 orb_plugins = ["iiop_profile", "giop", "iiop", "egmiop"];
 binding:client_binding_list = ["GIOP+EGMIOP", "POA_Coloc",
 "OTS+TLS_Coloc+POA_Coloc",
 "TLS_Coloc+POA_Coloc",
 "OTS+GIOP+IIOP", "GIOP+IIOP"];
 miop_test:egmiop:addr_list = ["228.0.0.0:500"];
}

 86 Orbix Enterprise Messaging Guide: C++

Example
Example 23 shows how a client application might instantiate a
consumer of type GroupPushConsumer and initialize an ORB whose
configuration scope loads the correct plug-ins for MIOP.

Example 23: Instantiating a Consumer for Multicast

// Java
import org.omg.CORBA.*;
import org.omg.CORBA.ORBPackage.*;
import org.omg.CosNotification.*;
import org.omg.CosNotifyChannelAdmin.*;
import org.omg.CosNotifyComm.*;
import org.omg.TimeBase.*;
import org.omg.PortableServer.*;
import org.omg.PortableServer.POAPackage.*;

// Orbix imports
import com.iona.corba.IT_Notifucation.*;
import com.iona.corba.IT_NotifyChannelAdmin.*;
import com.iona.corba.IT_NotifyComm.*;

class NotifyPushConsumer extends GroupPushConsumerPOA
{
public static ORB orb;
// member variables not shown...

// The main entry point @param args command line args
 public static void main (String args[])
 {
// Add -ORBname to end of argument list to ensure the proper

configuration scope
 String[] orb_name_args = new String[args.length + 2];
 System.arraycopy(args, 0, orb_name_args, 0, args.length);
 orb_name_args[orb_name_args.length - 2] = "-ORBname";
 orb_name_args[orb_name_args.length - 1] = "egmiop_test";

 orb = ORB.init(orb_name_args, null);

 //POA initialization not shown ...

 NotifyPushConsumer consumer = new NotifyPushConsumer();

 // ...
 }

 void public NotifyPushConsumer()
 {
 }

 void public ~NotifyPushConsumer()
 {
 }

// ...
}

Orbix Enterprise Messaging Guide: C++ 87

Required Methods
You must provide implementations for push(), offer_change(), and
disconnect_push_consumer() for consumers. IT_NotifyComm also
specifies the methods disconnect_structured_push_consumer() and
disconnect_sequence_push_consumer() for clients that support those
event types.

Creating a POA for an Endpoint Group

Required Policies
To create an endpoint group, all of the endpoint group members
must create POAs with the following policies:

In addition, every endpoint group member must also use an
agreed upon POA name.

Example
The code in Example 24 creates a POA with the correct policies. It
must be run by every consumer wishing to join the endpoint
group.

POA Policy Setting

PERSISTENCE_MODE_POLICY_ID DIRECT_PERSISTENCE

LIFESPAN_POLICY PERSISTENT

ID_ASSIGNMENT_POLICY USER_ID

WELL_KNOWN_ADDRESSING_POLICY_ID An agreed upon label as
specified in the
configuration scope for the
ORB (see “Configuring Orbix
for Multicast” on page 84).

Note: If a consumer’s POA name is not identical to the
POA names of the endpoint group members, it will not
become a member of the endpoint group.

Example 24: Creating a POA for an Endpoint Group (Sheet 1 of 2)

// Java
import org.omg.CORBA*.;
import org.omg.PortableServer*.;

// ...

Object obj = orb.resolve_initial_references("RootPOA");
POA root_poa = POAHelper.narrow(obj);
POAManager poa_manager = root_poa.the_POAManager();

 88 Orbix Enterprise Messaging Guide: C++

Registering an Endpoint Group Object Reference

Object Name
After each endpoint group member creates a POA with the correct
policies and name, it must register an object reference. Each
endpoint group member registers with the same object reference.
All endpoint group members must use the same object name to
generate an object reference. Because this group object reference
is created with a POA configured to support MIOP, it contains the
multicast information needed to reach the endpoint group
members.

Example
Example 25 shows how an endpoint group member might register
with a group object reference.

Policy[] policies = new Policy[4];
Any addressing_id = orb.create_any();
addressing_id.insert_string("miop");
policies[0] =
 orb.create_policy(WELL_KNOWN_ADDRESSING_POLICY_ID.value,
 addressing_id);

policies[1] =
root_poa.create_lifespan_policy(LifespanPolicyValue.PERSISTENT)

;

Any persistent_mode = orb.create_any();
PersistenceModePolicyValueHelper.insert(persistent_mode,
 PersistenceModePolicyValue.DIRECT_PESISTENCE);
policies[2] =
 orb.create_policy(PERSISTENCE_MODE_POLICY_ID.Value,
 persistent_mode);

policies[3] =
root_poa.create_id_assignment_policy(IdAssignmentPolicyValue.US

ER_ID);

POA multicast_poa =
 root_poa.create_POA("miop_poa", poa_manager, policies);

Example 24: Creating a POA for an Endpoint Group (Sheet 2 of 2)

Note: The consumer’s object name must be identical to
the other endpoint group member’s object names.
Otherwise, it will not join the endpoint group.

Example 25: Registering with a Group Object Reference (Sheet 1 of 2)

// Java
import org.omg.PortableServer.*;

// ...

Orbix Enterprise Messaging Guide: C++ 89

The code executes as follows:
1. Gets an object ID for the consumer using the name agreed on

by all members of the group.
2. Registers the consumer’s object reference by activating it.
3. Activates the multicast POA to receive messages.
Repeat this sequence for each endpoint group member.

Connecting to an Event Channel
All endpoint group members share the same proxy supplier.
Therefore, only one endpoint group member connects to the
channel. After this endpoint group member connects, the group
can begin receiving messages.
Because all of the consumers in an endpoint group share a proxy,
they also share the same event subscriptions, filters, and
quality-of-service properties.

Interfaces
Module IT_NotifyChannelAdmin provides an interface to connect
endpoint groups of each consumer type—any, structured, or
sequence—to a notification channel:

1 ObjectId oid = multicast_poa.string_to_ObectId("miopConsumer");
2 multicast_poa.activate_object_with_id(oid, consumer);

POAManager multicast_poa_manager =
 multicast_poa.the_POAManager();

3 poa_manager.activate();
multicast_poa_manager.activate();

Example 25: Registering with a Group Object Reference (Sheet 2 of 2)

// IDL
interface GroupProxyPushSupplier :

CosNotifyChannelAdmin::ProxyPushSupplier
{
 void connect_group_any_push_consumer(
 in IT_NotifyComm::GroupPushConsumer

group_push_consumer)
 raises(
 CosEventChannelAdmin::AlreadyConnected,
 CosEventChannelAdmin::TypeError
);
}; // GroupProxyPushSupplier

 90 Orbix Enterprise Messaging Guide: C++

Implementation
The connecting consumer creates a group proxy supplier of the
same type in a notification channel. It then connects to the event
channels by invoking the corresponding connect operation on the
proxy.

Group Proxy
The proxy created by the connecting consumer serves as the
proxy for the entire endpoint group and is shared by all of the
endpoint group members.
If the connecting consumer disconnects from the channel, all
members of the endpoint group also disconnect. However, if the
connecting consumer dies without disconnecting, the proxy
remains active and the remaining members of the group continue
to receive events.

interface GroupStructuredProxyPushSupplier :
 CosNotifyChannelAdmin::StructuredProxyPushSupplier
{
 void connect_group_structured_push_consumer(
 in IT_NotifyComm::GroupStructuredPushConsumer
 group_push_consumer)
 raises(
 CosEventChannelAdmin::AlreadyConnected,
 CosEventChannelAdmin::TypeError
);
}; // GroupStructuredProxyPushSupplier

interface GroupSequenceProxyPushSupplier :
 CosNotifyChannelAdmin::SequenceProxyPushSupplier
{
 void connect_group_sequence_push_consumer(
 in IT_NotifyComm::GroupSequencePushConsumer
 group_push_consumer)
 raises(
 CosEventChannelAdmin::AlreadyConnected,
 CosEventChannelAdmin::TypeError
);
}; // GroupSequenceProxyPushSupplier

Note: If more than one member of the group attempts to
connect to the event channel, an AlreadyConnected
exception is raised.

Orbix Enterprise Messaging Guide: C++ 91

Example
Example 26 shows how to connect an endpoint group of
GroupPushConsumers to a notification channel.

Example 26: Connecting an Endpoint Group to an Event Channel (Sheet 1 of 2)

// Java
import org.omg.CORBA.*;
import org.omg.CosEventChannelAdmin.*;
import org.omg.CosNotification.*;
import org.omg.CosNotifyChannelAdmin.*;

//Orbix specific classes
import com.iona.corba.IT_NotifyComm.*;
import com.iona.corba.IT_NotifyChannelAdmin.*;

class NotifyPushConsumer extends GroupPushConsumerPOA
{
public static ORB orb = null;
public static EventChannel ec = null;
// member variables not shown...
// ...

void main(String[] args)
{
 // ORB and POA activation shown above
 // ...

1 org.omg.CORBA.Object obj =
orb.resolve_initial_references("NotificationService");

 EventChannelFactory factory =
 EventChannelFactoryHelper.narrow(obj);

 IntHolder id = new IntHolder();
 Property[] init_qos = new Property[0];
 Property[] init_admin = new Property[0];

2 try
 {
 ec = factory.create_named_channel("miop_channel",

init_qos,
 init_admin, id);
 }
 catch(ChannelAlreadyExists cae)
 {
 // channel already exists
 try
 {
 ec = factory.find_channel("miop_channel", id);
 }
 catch(ChannelNotFound cnf)
 {
 System.err.println("Could not create or find
 notification channel.");
 System.exit(1);
 } // catch(ChannelNotFound)
 } // catch(ChannelAlreadyExists)

 92 Orbix Enterprise Messaging Guide: C++

This code executes as follows:
1. Obtains an EventChannelFactory from the ORB.
2. Obtains the event channel miop_channel.
3. Creates a consumer admin object for the group.
4. Creates a GroupProxyPushSupplier for the group.
5. Invokes connect on the consumer and catches any exceptions.

Receiving Events
Consumers that use IP/Multicast receive events the same way as
a non-multicast, push-style consumer (see “Obtaining Event
Messages” on page 43).

Filtering and Event Subscription
Like non-multicast consumers, endpoint groups can use mapping
and forwarding filters and subscribe to events. However, because
they share a proxy supplier, any change in filters or subscriptions
made by one endpoint group member affects every other endpoint
group member.

ALL_UPDATES_NOW
To maximize the overhead benefits of using IP/Multicast,
consumers should call obtain_offered_types() with
ALL_UPDATES_NOW. The channel then automatically notifies the group
of future changes in the list of available events using IP/Multicast
through offer_change(). Consumers should implement
offer_change() to handle notification (see “Implementing
offer_change()” on page 106).

3 InterFilterGroupOperator op = new InterFilterGroupOperator();
 op = CosNotifyChannelAdmin.AND_OP;
 AdminID id;
 ConsumerAdmin ca = ec.new_for_consumers(op, id);

 IntHolder proxy_id = new IntHolder();
 ClientType ctype = ClientType.ANY_EVENT;

4 ProxySupplier obj =
 ca.obtain_notification_push_supplier(ctype, proxy_id);
 GroupProxyPushSupplier pps =
 GroupProxyPushSupplierHelper.narrow(obj);

5 try
 {
 pps.connect_group_any_push_consumer(consumer);
 }
 catch(AlreadyConnected)
 {
 // implementation left to developer
 }
} // main
} // NotifyPushConsumer

Example 26: Connecting an Endpoint Group to an Event Channel (Sheet 2 of 2)

Orbix Enterprise Messaging Guide: C++ 93

Updating the Subscription List
Changes to the list of available events are broadcast to all
endpoint group members using this implementation. However,
only one endpoint group member should make changes to the
subscription list, because all endpoint group members share the
same proxy.

IIOP Calls
Calls to obtain_offered_events(), create_filter(), and
add_filter() are two-way and do not use IP/Multicast.

For More Information
For more information on filters and subscribing to events, see
“Event Filtering” on page 65 and “Subscribing and Publishing” on
page 95.

Disconnecting from an Event Channel
An endpoint group is disconnected from the notification channel
when one of its members invokes the disconnect operation on the
group’s proxy supplier. This operation terminates the connection
between the group and its proxy supplier. The notification channel
then releases all resources allocated to support its connection to
the group, including the destruction of the group’s proxy supplier.
Each proxy supplier interface supports a disconnect operation. For
example, disconnect_structured_push_supplier() is defined in
StructuredProxyPushSupplier.

WARNING: When one group member invokes disconnect
on the proxy supplier, all members of the group stop
receiving events from the notification channel.

 94 Orbix Enterprise Messaging Guide: C++

 Orbix Enterprise Messaging Guide: C++ 95

Subscribing and
Publishing
Notification service consumers can tell an event channel which event
types they wish to receive from suppliers, and suppliers can advertise the
event types they offer to consumers.

The event channel maintains all information about event type
supply and demand, and passes this information to consumers
and suppliers:
• As consumers change their subscriptions, the channel updates

its subscription list and informs suppliers of the changes, so
that they can adjust event output accordingly.

• As suppliers add or remove event types that they supply, the
channel updates its publication list and informs consumers of
the changes, so that they can re-evaluate their subscriptions.

Event Subscription
Event subscription enables clients to inform suppliers which
events they are interested in receiving. Event subscription
requires the following actions from client consumers and
suppliers:
• Each consumer subscribes to its desired event types by

adding or modifying forwarding filters to their proxy suppliers
or consumer admin.

• Each supplier builds its own list of event types to evaluate
changes to the channel subscription list against the list of
events that they supply.

• On connecting to the event channel, suppliers call
obtain_subscription_types() on their proxy consumers to
discover which event types are currently subscribed to by
consumers.

• The supplier’s implementation of subscription_change()
evaluates changes to the channel’s subscription list and acts
accordingly.

Adding Forwarding Filters
A consumer initially specifies which event types it wishes to
subscribe to by adding forwarding filters to its proxy supplier or
consumer admin. The event types specified in these filters are
relayed to the channel, which consolidates, in a single subscription
list, all event types that consumers require. A consumer can also
remove or modify existing filters. Each time a consumer changes
its forwarding filters, the channel modifies its subscription list
accordingly.

 96 Orbix Enterprise Messaging Guide: C++

Filter Modification Operations
A consumer modifies its forwarding filters through one of the
following operations, defined in module CosNotifyFilter:

Subscription List
The channel’s subscription list contains one entry for each event
type, and associates a reference count with it. When a consumer
adds an unknown event type to one of its filters, the channel
opens a new entry in the subscription list and assigns it a
reference count of 1. It then notifies client suppliers of the new
event type by calling subscription_change(), which is implemented
by each supplier’s developer, on them. The supplier’s
implementation (see “Implementing subscription_change()” on
page 99.) typically uses subscription information to evaluate
consumer demand, and to determine whether it should continue
or stop supplying certain events.
If an event type’s reference count falls to 0—that is, no filters
specify this event type—the channel removes the event type from
its subscription list. It then notifies all suppliers of the removal
through subscription_change(). Given this new information,
suppliers can stop supplying this particular event type.

For information about implementing forwarding filters, see
“Forwarding Filters” on page 65.

in FilterAdmin interface: in Filter interface:
add_filter()
remove_filter()
remove_all_filters();

add_constraints()
modify_constraints
remove_constraints

Note: Consumers should never invoke
subscription_change() on their proxy suppliers. The
notification service calls this operation automatically when
a proxy supplier detects changes in consumer
subscriptions.

Orbix Enterprise Messaging Guide: C++ 97

Example
Example 27 implements a client push supplier that defines an
array of SuppliedType elements. This structure encapsulates the
event types that this supplier can produce, and sets a flag of true
or false to indicate which ones the supplier should push.

Obtaining Subscriptions

obtain_subscription_types()
After a supplier connects to an event channel, it can ascertain
which event types consumers currently require by calling
obtain_subscription_types() on its proxy consumer. This operation
is defined as follows:

Arguments
It takes a single ObtainInfoMode argument as input, which informs
the channel whether to automatically notify this supplier of future
subscription list changes. This argument is typically set with one
of the following flags:
ALL_NOW_UPDATES_ON: The invocation returns the contents
of the subscription list, and enables automatic notification by
subscription_change(). Use this argument for a supplier that
implements subscription_change() to handle notification (see
“Implementing subscription_change()” on page 99).
ALL_NOW_UPDATES_OFF: The invocation returns the contents
of the subscription list, and disables automatic notification. Use
this argument for a supplier that wishes to control when it
receives subscription changes, through subsequent calls to
obtain_subscription_types().

Example 27: Client Push Supplier

// Java
class NotifyPushSupplier extends StructuredPushSupplierPOA
{
 class SuppliedType
 {
 public String domain_name;
 public String type_name;
 public boolean supply;
 }

private SuppliedType[] m_supply_types = null;
private int num_types_supplied = 5;
//...
}

org.omg.CosNotification.EventType[]
 obtain_subscription_types(in ObtainInfoMode mode);

 98 Orbix Enterprise Messaging Guide: C++

NONE_NOW_UPDATES_ON: The invocation enables automatic
notification of updates to the subscription list without returning
the contents of the subscription list. Use this argument for a
supplier that implements subscription_change() to handle
notification (see “Implementing subscription_change()” on
page 99).
NONE_NOW_UPDATES_OFF: The invocation disables automatic
notification of updates to the subscription list without returning
the contents of the subscription list. Use this argument for a
supplier that wishes to control when it receives subscription
changes, through subsequent calls to obtain_subscription_types().

Return Values
The operation returns an EventType[], which contains all event
types currently requested by consumers.

Example
In Example 28, a client supplier performs the following steps to
implement obtain_subscription_types():
1. Initializes a list of event types that it supplies.
2. Calls obtain_subscription_types() to obtain a list of

subscription types.
3. For each subscription type, calls find_index() (shown in the

next section), which compares each subscription type against
the client’s own event types list; if the event types match, it
sets the list element’s supply flag to true.

Example 28: Implementing obtain_subscription_types()

// Java
class NotifyPushSupplier extends StructuredPushSupplierPOA
{
\\ ...

void init_supply_types()
 {
 int i;

1 m_supply_types = new SupplyType[num_types_supplied];

 for(i=0; i < num_types_supplied ; i++)
 {
 m_supply_types[i].domain_name =
 new String("SportsNews");
 m_supply_types[i].supply = false;
 }

 m_supply_types[0].type_name = new String("BaseBallResults");
 m_supply_types[1].type_name = new String("FootballResults");
// other sporting events ...
 m_supply_types[4].type_name = new String("TennisResults");

Orbix Enterprise Messaging Guide: C++ 99

Implementing subscription_change()

subscription_change()
When the channel’s subscription list adds or removes an event
type, the channel automatically calls subscription_change() on all
client suppliers. This operation is defined in interface
CosNotifyComm::NotifySubscribe:

Arguments
The operation receives two EventTypeSeq arguments:

2 org.omg.CosNotification.EventType[] types_to_supply =
 m_proxy->obtain_subscription_types(ALL_NOW_UPDATES_ON);

3 // For each supplied event type which consumers want,
 // set its boolean flag to true
 long index;

 for (i=0; i<types_to_supply.length(); i++)
 {
 index = find_index(types_to_supply[i]);
 if (index >= 0)
 m_supply_types[index].supply = true;
 }
}

// ...
}

Example 28: Implementing obtain_subscription_types()

\\ IDL
module CosNotifyComm
{
 exception InvalidEventType {CosNotification::EventType

type;};
 // ...
 interface NotifySubscribe
 {
 void subscription_change(
 in CosNotification::EventTypeSeq added,
 in CosNotification::EventTypeSeq removed)
 raises (InvalidEventType);
 }
 // ...
};

added Specifies new event types that this supplier now
offers.

removed Specifies event types that the supplier no longer
offers.

 100 Orbix Enterprise Messaging Guide: C++

A supplier implements this operation in order to ascertain which
event types are being consumed and which are not, and
re-evaluate its event output accordingly.

Example
If a consumer subscribes to sports news events, suppliers can
detect this interest through their implementation of
subscription_change() and start to push events of that type. When
consumers are no longer interested in this event type, the
channel’s subscription list changes again, and the channel calls
subscription_change() on its suppliers with this change. The
supplier can then stop pushing those events.
In the implementation of subscription_change() shown in
Example 29 the supplier updates the list of events that it can
supply.

This code executes as follows:
1. The first argument (added) is evaluated for new event types

that have been added to the subscription list. If the argument
contains event types, find_index() is called for each event

Example 29: Updating the Supplier’s List of Events

// Java
class NotifyPushSupplier extends StructuredPushSupplierPOA
{
\\ ...
int find_index(org.omg.CosNotification.EventType e_type)
 {
 for(int i=0; i < num_types_supplied; i++)
 if(etype.domain_name.equals(m_supply_type[i].domain_name)
 && etype.type_name.equals(m_supply_tpye[i].type_name))
 return i;

 return -1; // event tyoe not found
 }

void subscription_change(org.omg.CosNotifaction.EventType[]
added, org.omg.EventType[] removed)

 {
1 // Turn on supplying of added types

 for(i = 0; i < added.length(); i++)
 if find_index(added[i]) >= 0)
 m_supply_types[i].supply = IT_TRUE;

2 // Turn off supplying of removed types
 for(i = 0; i < removed.length(); i++)
 if(find_index(removed[i]) >= 0)
 m_supply_types[i].supply = IT_FALSE;
 }
// ...
}

Orbix Enterprise Messaging Guide: C++ 101

type and compares it against the client’s list of supplied event
types. If it is on the list, the event type’s Boolean flag is set to
true.

2. The second argument (removed) is evaluated for event types
that have been removed from the subscription list. If the
argument contains event types, find_index() is called for each
event type and compares it against the client’s list of supplied
event types. If it is on the list, the event type’s Boolean flag is
set to false.

Publishing Event Types
Event publication enables consumers to discover new event types
as they are offered by suppliers. Event publication requires the
following actions from client consumers and suppliers:
• Suppliers advertise event types that they can provide by

calling offer_change().
• On connecting the consumer to the event channel, consumers

call obtain_offered_types() on their proxy suppliers to
discover which event types are currently available.

• The consumer’s implementation of offer_change() evaluates
changes to the channel’s publication list and acts accordingly.

Advertising Event Types

offer_change()
A supplier informs the event channel of those event types that it
can supply by calling offer_change() on its proxy consumer or
supplier admin object. This operation is defined in interface
NotifyPublish interface, which is inherited by all ConsumerAdmin and
SupplierAdmin interfaces:

Note: A supplier that wishes not to be notified of subscription
changes should implement subscription_change() to throw a
CORBA::NO_IMPLEMENT exception.

\\ IDL
module CosNotifyComm
{
 exception InvalidEventType{CosNotification::EventType

type;};

 interface NotifyPublish
 {
 void offer_change(in CosNotification::EventTypeSeq added,
 in CosNotification::EventTypeSeq removed)
 raises(InvalidEventType);
 };
 // ...
};

 102 Orbix Enterprise Messaging Guide: C++

Arguments to offer_change()
offer_change() receives two arguments of the EventTypeSeq type,
which is a sequence of EventType structures defined as follows:

The two parameters let the supplier modify the channel’s
publication list:

Publication List
An event channel maintains a single publication list of all event
types that its suppliers advertise, which it updates with each
supplier’s invocation of offer_change().
The channel’s publication list contains one entry for each event
type, and associates a reference count with it. When a supplier
calls offer_change() with an unknown event type, the channel
opens an entry in the publication list and assigns it a reference
count of 1. It then notifies client consumers of the new event type
by calling offer_change() on them. The consumer’s
implementation (see “Implementing offer_change()” on page 106)
typically evaluates the updated publication data, to determine
whether it contains event types of interest.
As other suppliers advertise the same event type, the channel
updates its reference count. However, intermediate changes in an
event type’s reference count—for example, an increase from 1 to
2—are not conveyed to consumers.
If an event type’s reference count falls to 0—that is, no suppliers
offer this event type—the channel removes the event type from its
publication list. It then notifies all consumers of the removal
through offer_change(). Given this new information, consumers
can remove or modify the filters that forward this event type, and
avoid the overhead these otherwise incur.

// IDL in module CosNotification
struct EventType {
 string domain_name;
 string type_name;
};

typedef sequence<EventType> EventTypeSeq;

added Specifies new event types that this supplier now
offers.

removed Specifies event types that the supplier no longer
offers.

Orbix Enterprise Messaging Guide: C++ 103

Example
In the following code, a supplier builds event types that it wishes
to supply, and adds them to an EventType sequence. It then
invokes offer_change() on its structured proxy push consumer,
structured_ppc.

Discovering Available Event Types

obtain_offered_types()
After a consumer connects to an event channel, it can ascertain
which event types are currently available from suppliers by calling
obtain_offered_types() on its proxy supplier or consumer admin.
This operation is defined as follows:

Arguments
It takes a single ObtainInfoMode argument as input, which informs
the channel whether or not to automatically notify this consumer
of future publication list changes. This argument is typically set
with one of the following flags:

ALL_NOW_UPDATES_ON: The invocation returns the contents
of the publication list, and enables automatic notification of future
changes to the list through offer_change(). Use this argument for
a consumer that implements offer_change() to handle notification
(see “Implementing offer_change()” on page 106).

ALL_NOW_UPDATES_OFF: The invocation returns the contents
of the publication list, and disables automatic notification. Use this
argument for a consumer that wishes to control when it receives
publication changes through subsequent calls to
obtain_offered_types().

// Java
import org.omg.CosNotification.*;

EventType[] added = new EventType[2];
added[0].domain_name = new String("SportsNews");
added[0].type_name = new String("BaseballResults");
added[1].domain_name = new String("SportsNews");
added[1].type_name = new String("FootballResults");

EventType[] removed = EventType[0];

structured_ppc.offer_change(added, removed);

CosNotification::EventTypeSeq
 obtain_offered_types(in ObtainInfoMode mode);

 104 Orbix Enterprise Messaging Guide: C++

NONE_NOW_UPDATES_ON: The invocation enables automatic
notification of updates to the publication list without returning the
contents of the publication list. Use this argument for a supplier
that implements offer_change() to handle notification (see
“Implementing offer_change()” on page 106).

NONE_NOW_UPDATES_OFF: The invocation disables automatic
notification of updates to the publication list without returning the
contents of the publication list. Use this argument for a supplier
that wishes to control when it receives publication changes,
through subsequent calls to obtain_offered_types().

Return Values
The operation returns an EventTypeSeq, which contains all event
types currently available from suppliers.

Example
The code shown in Example 30 might be called by a consumer
during or immediately after instantiation. In it, two methods are
implemented.

init_consume_types() calls obtain_offered_types(), which
returns with all currently advertised event types. The method then
calls get_choices(), which returns with the events selected (if any)
by an end user. The method finally calls add_subscription().

add_subscription() receives the user-selected event types and
builds a forwarding filter for each one. It then builds an indexed
list of filter data and their IDs, which allows the client consumer to
access filters as its subscription needs change.

Example 30: Subscribing to Selected Event Types

// Java
import org.omg.CosNotifyFilter.*;
import org.omg.CosNotification.*;

class NotifyPushConsumer extends StructuredPushConsumerPOA
{
FilterID[] filterID;
int num_filters;
EventType[] consume_types;
int max_filters = 10; // hard coded array size

\\ ...

Orbix Enterprise Messaging Guide: C++ 105

The code executes as follows:
1. Obtains all available event types that are currently advertised

in the event channel.
2. Calls get_choices(), which returns with user-selected event

types.
3. For each chosen event type, calls add_subscription(), which

subscribes the client consumer to receive that event type.

// Add a subscription for new event types chosen by user
public void add_subscription(EventType e_type)
{
 // Create a filter for the new subscription
 FilterFactory dff = channel.default_filter_factory();
 Filter filter = dff.create_filter("EXTENDED_TCL");

 // Set up constraint expression for new filter
 EventType[] event_types = new EventType(1);
 event_types[0].domain_name = new String(e_type.domain_name);
 event_types[0].type_name = new String(e_type.type_name);

 ConstraintExp[] constraints = new CosNotifyFilter(1);
 constraints[0].event_types = event_types;
 constraints[0].constraint_expr = new String("");

 // Add constraint to new filter
 ConstraintInfo[] info = filter->add_constraints(constraints)

 filterID[num_filters] = proxy.add_filter(filter);

// Update internal data structures to track subscription data
 consume_types[num_filters].domain_name =
 new String(e_type.domain_name);
 consume_types[num_filters].type_name =
 new String(e_type.type_name);
 num_filters++;
}

1 public void init_consume_types()
{
 org.omg.CosNotification.EventType[] types_available =
 proxy.obtain_offered_types(ALL_NOW_UPDATES_ON);

2 // return with user choices
 org.omg.CosNotification.EventType[] types_wanted =
 get_choices(types_available);

3 for (int i = 0; i < types_wanted.length(); i++)
 add_subscription(types_wanted[i]);
}

// ...
}// NotifyPushConsumer

Example 30: Subscribing to Selected Event Types

 106 Orbix Enterprise Messaging Guide: C++

Implementing offer_change()
When the channel’s publication list adds or removes an event
type, the channel calls offer_change() on all client consumers. This
operation receives two input arguments of type EventTypeSeq,
which contain added and removed event types (see “Arguments to
offer_change()” on page 102). A consumer’s implementation
should examine both arguments and re-evaluate its subscriptions
accordingly.

Example
In Example 31, offer_change() returns new event types to an end
user, who decides which (if any) of the new event types to
subscribe to.

Example 31: Adding and Removing Event Types

// Java
import org.omg.CosNotification.*;
import org.omg.CosNotifyFilter.*;

class NotifyPushConsumer extends StructuredPushConsumerPOA
{
FilterID[] filterID;
int num_filters;
EventType[] consume_types;
int max_filters = 10; // hard coded array size

\\ ...

public void offer_change(EventType[] added, EventType[]
removed)

throw (org.omg.CORBA.SystemException)
{

1 // return with user choices
 EventType[] types_wanted;

 if (added.length() > 0)
 {
 types_wanted = get_choices(added);// not implemented here

 for(int i=0; i < types_wanted.length(); i++)
 add_subscription(types_wanted[i]);
 } // if added

Orbix Enterprise Messaging Guide: C++ 107

This code executes as follows:
1. The first argument (added) is evaluated for new event types

that have been added to the publication list. If the argument
contains event types, get_choices() is called and returns with
the user’s choices, if any. For each event type chosen,
add_subscription() is called (shown in the previous section),
which builds a filter for that event type, and updates the
consumer’s own subscription list.

2. The second argument (removed) is evaluated for event types
that have been removed from the subscription list. If the
argument contains event types, the method looks up each
event type in the consumer’s subscription list. If found, the
corresponding filter is removed and the consumer’s
subscription list is updated.

2 // Remove subscription for types no longer supplied
 for(int i = 0; i < removed.length(); i++)
 {

 for(int n = 0, n < num_filters; n++)
 {
 if

(removed[i].domain_name.equals(consume_types[n].domain_name)
 &&

removed[i].type_name.equals(consume_types[n].type_name))
 {
 // Remove filter from proxy
 proxy.remove_filter(filterID[n]);

 // Remove subscription data from customer list
 for (int ix = n; ix < (num_filters-1); ix++)
 {
 filterID[ix] = filterID[ix + 1];
 consume_types[ix].domain_name =
 consume_types[ix + 1].domain_name;
 consume_types[ix].type_name =
 consume_types[ix + 1].type_name;
 } // for ix

 // Resize data structures appropriately.
 num_filters--;

 }// if equals
 } // for n
 } // for i

} // offer_change

// ...
}

Example 31: Adding and Removing Event Types

Note: A consumer that wishes not to be notified of
publication changes should implement offer_change() to
throw exception CORBA::NO_IMPLEMENT.

 108 Orbix Enterprise Messaging Guide: C++

 Orbix Enterprise Messaging Guide: C++ 109

Managing the
Notification Service
Orbix notification provides several configuration variables that allow you
to control the behavior of a deployed notification service.

Configuring the Notification Service

Uses of Configuration Variables
Configuration variables allow the user to control the behavior of
the notification service. You can alter the number of event
channels that can be created, the maximum number of notification
clients, the threading behavior of the individual components of the
service, and other properties. Because the elements in the
notification service are interdependent, changing one
configuration variable may affect how several components of the
service perform.

Namespaces
The notification service’s behavior is affected by variables in two
namespaces:

plugins:notification The variables in this namespace control
both the event and notification service. They control the general
performance characteristics of event channel objects, including
the number of threads they can use and how many event channels
can be created at a time.

plugins:notify The variables in this namespace are specific to the
notification service. They control the amount of debugging
information the notification service generates, how the service’s
database behaves, and the threading strategy used in dispatching
events to notification service clients.
For a complete listing of the notification service’s configuration
variables, see the CORBA Administrator’s Guide.

Changing
You can edit the values of the notification service’s configuration
variables either by using itadmin or, in the case of a file-based
configuration, hand editing the configuration file. For more
information, see the CORBA Administrator’s Guide.

 110 Orbix Enterprise Messaging Guide: C++

Running the Notification Service

Starting the service
Like all Orbix services, the notification service can be configured to
start on demand, to start at system boot, or be started by a script
generated by the configuration tool.
You can also manually start the notification service with the
following command:

Stopping the Service
To stop the notification service you can use the stop script
generated by the configuration tool or you can use the following
command:

Using Direct Persistence
By running in direct persistence mode, the notification service can
function as a stand-alone component. It does not require the
Orbix infrastructure.

Technical Details
When the notification service runs in direct persistence mode it
listens on a fixed host and port number. This information is
embedded into the IOR that the service exports as an initial
reference.
When a CORBA client asks for the notification service’s initial
reference, it receives the IOR containing the host and port
information for the service. The client uses the embedded
information to directly contact the notification service, bypassing
the locator and node daemon normally used by Orbix CORBA
services.

Performance Issues
While direct persistence liberates the notification service from the
Orbix infrastructure, it also has a cost in terms of fault tolerance
and flexibility. When running in direct persistence mode the
notification service cannot be started on demand and must always
listen on the configured host and port number.

itnotify

itnotify stop

Orbix Enterprise Messaging Guide: C++ 111

Configuring Direct Persistence
To configure the notification service to run in direct persistence
mode complete the following steps:
1. If the notification service is running, shut it down with the

command

2. Set plugins:notify:direct_persistence to TRUE within the
notification service’s configuration scope. The default scope is
iona_services.notify.

3. Within the same configuration scope, set
plugins:notify:iiop:port to some open port number.

4. Prepare the service, by running the command

This command causes the notification service to generate a
new IOR for itself. The new IOR will be printed to the console.
Save it for use in the next step.

5. Within the same configuration scope as used in steps 2 and 3,
replace the value of
initial_references:NotificationService:reference with the
IOR returned in step 4.

6. Start the service using the command

Managing a Deployed Notification Service

Using the notification service console
The notification service console provides administrators the ability
to monitor and control a deployed notification service. It provides
controls to create and destroy notification channels, admin
objects, proxy objects, and filters. It also provides controls to edit
QoS properties and assign filters and subscriptions to objects in a
deployed notification service.
To start the notification console use the following command:

The console has detailed context sensitive help to guide you in
using it.

itnotify stop

Note: For information on changing configuration
variables, see the CORBA Administrator’s Guide.

itnotify prepare

itnotify

itnotify_console

 112 Orbix Enterprise Messaging Guide: C++

Example 1: Generating Trace Information

Scenario
Your company recently installed an inventory control program
using Orbix notification to facilitate communication between the
sales, manufacturing, and purchasing departments. The sales
department takes orders on PDAs and syncs them with the
inventory and ordering system when they return to the office. The
sales information triggers manufacturing jobs, which in turn
produce materials requisitions. The inventory system checks the
requisitions against what is in-stock. If all of the requisitions for a
job can be filled, the requisitions are filled. If a requisition cannot
be filled, the system alerts purchasing and the remaining
requisitions are filled.

Problem
A large number of jobs are being held up because the needed
materials are not being ordered. After looking for human causes
and finding none, the company tasks you with finding the
bottleneck in the new system.

Solution
The first step in your task is to determine if the purchasing system
is receiving the alert that it needs to order new materials. To
accomplish this task you need to turn on the notification services
logging facility.
The logging facility is controlled using the variables in the
plugins:notify:trace namespace. By default they are set to 0,
which means no logging information is generated. To trace events
as they pass through the notification service, use itadmin to set
plugins:notify:trace:events to 1. If you need more detailed
information, set the value higher.

Example 2: Failure Recovery

Scenario
Your bank has just converted its ATM network to a system built
using Orbix notification. Because of the sensitivity of the
information and the fact that it processes information when
service personnel may not be immediately available, the system
needs to be extremely fault tolerant.

Orbix Enterprise Messaging Guide: C++ 113

Solution
To increase the fault tolerance of Orbix notification you can
change the settings of the variables in the plugins:notify:database
namespace. These variables control the database used by
persistent channels in a deployed notification service.
For example, if you wanted to retain archive copies of old
checkpoint logs, you would set
plugins:notify:database:checkpoint_archive_old_files to true. You
could also reduce the interval between database checkpoints by
setting plugins:notify:database:checkpoint_interval to a smaller
number.

 114 Orbix Enterprise Messaging Guide: C++

Part III
The Telecom Log

Service

In this part
This part contains the following chapters:

Telecom Log Service Basics page 117

Developing Telecom Log Clients page 119

Advanced Features page 133

Managing the Telecom Log Service page 159

 116 Orbix Enterprise Messaging Guide: C++

 Orbix Enterprise Messaging Guide: C++ 117

Telecom Log Service
Basics
The telecom log service provides a mechanism for creating a persistent
log of events in a distributed computing environment. It provides tools for
reviewing past events and it also allows for the recovery of events in the
event of a catastrophic failure.

Telecom Log Service Objects

BasicLog
BasicLog objects provide standard, event-unaware, CORBA objects
write access to the telecom log service’s persistent store. The
BasicLog object can also query the service’s persistent store.

EventLog
EventLog objects provide event functionality to event-aware
CORBA objects. The EventLog object can forward events from an
event supplier to an event consumer. It also allows log clients to
receive log generated events.

NotifyLog
NotifyLog objects extend the functionality of the EventLog objects
to take advantage of the notification service’s filtering and QoS
capabilities. NotifyLog objects can also filter the types of events
that are logged to the persistent store. You must have a licensed
and functioning notification service to use NotifyLog objects.

Factory objects
Each type of log object also has an associated log factory object
for creating and managing log objects.

 118 Orbix Enterprise Messaging Guide: C++

Telecom Log Service Features
Table 4 shows the features that each type of log object supports.

Quality of Service
The telecom log service offers three quality of service levels:

QoSNone specifies that log records are buffered in memory when
received and are written to the persistent store by the log at
preconfigured intervals.

QoSFlush specifies that log records are buffered in memory and
are written to the persistent store when the flush() method is
invoked on the log object.

QosReliability specifies that log records are written directly to
the persistent store.

Table 4: Log feature support

Type of Log Write
Operations

Filtering Event
Forwarding

Event
Generation

QoS

BasicLog Store data
directly to
the log.

None None None Log level
QoS

EventLog Write data
directly to
the log and
push/pull
style events.

None Supports
push and
pull style
forwarding of
unstructured
events.

Yes Log level
QoS

NotifyLog Write data
directly to
the log and
push/pull
style writing
of structured
and
unstructured
events.

Supports
filtering of
events being
written to
the log as
well as
notification
style event
filtering.

Supports
push and
pull style
forwarding of
structured
and
unstructured
events.

Yes Log level and
notification
service levels
of QoS

 Orbix Enterprise Messaging Guide: C++ 119

Developing Telecom
Log Clients
Clients connect to the telecom log service to create a persistent record of
their activities.

Creating a Log
The telecom log service provides a factory object for each type of
logging object. A factory object, which also acts as a manger for
the log objects it creates, can be used to instantiate log objects of
the same type. For example, a NotifyLogFactory object would be
used to instantiate a NotifyLog object.

Steps
To create a log object complete the following steps:
1. “Obtain a log factory”
2. “Obtain a log object”

Obtain a log factory
You obtain a log factory by resolving the telecom log service’s
initial reference through the ORB, by calling
resolve_initial_references() with the string for the type of log
factory you wish to obtain.
Table 5 lists the string to use for each factory object.

Once you have obtained the object reference from
resolve_initial_references(), you need to narrow it to the proper
object type (BasicLogFactory, EventLogFactory, or
NotifyLogFactory).
Example 32 shows how to obtain the NotifyLogFactory.

Table 5: Initial reference strings

Factory Initial Reference String

BasicLogFactory BasicLoggingService

EventLogFactory EventLoggingService

NotifyLogFactory NotifyLoggingService

Example 32: Obtaining a NotifyLogFactory

// Java
import org.omg.DsNotifyLogAdmin.*;

1 org.omg.CORBA.ORB orb = org.omg.CORBA.ORB_init(args, props);
2 org.omg.CORBA.Object obj =

orb.resolve_initial_references("NotifyLoggingService");
3 NotifyLogFactory factory = NotifyLogFactoryHelper.narrow(obj);

 120 Orbix Enterprise Messaging Guide: C++

1. Initialize the orb.
2. Obtain a reference to the NotifyLoggingService.
3. Narrow the object reference to the NotifyLogFactory.

Obtain a log object
Once you have a log factory, you can then obtain a log object from
it. The log factories provide three methods of obtaining a log
object:

find_log() allows you to find a log object using its unique id
number.

create() creates a log object with an id assigned by the telecom
log service.

create_with_id() creates a log object with a user assigned id.

Finding a log
If you have a specific log object you wish to use and you know its
id, you can call the log factory’s find_log() method. It has the
following syntax:

If the log exists find_log() returns a reference to the log object.
Otherwise, it returns a nil object reference.

Creating a BasicLog
A BasicLog object is created from the BasicLogFactory. Once you
have obtained the BasicLogFactory from the ORB, you can use
either the create() method or create_with_id() method to create a
BasicLog.

create()
The BasicLogFactory’s create() method has the following
signature:

// IDL
Log find_log(in LogId id);

// IDL
BasicLog create(in LogFullActionType full_action,
 in unsigned long long max_size,
 out LogId id)
raises (InvalidLogFullAction);

Orbix Enterprise Messaging Guide: C++ 121

It takes the following parameters:

full_action defines how the log will behave once it has reached it
maximum size. Table 6 shows the possible values for full_action.

max_size specifies the maximum size of the log in bytes.

id is the unique id assigned to the log object by the log factory.
create() will raise the InvalidLogFullAction exception if
full_action is not a valid LogFullActionType.

create_with_id()
The BasicLogFactory’s create_with_id() method has the following
signature:

It takes the following parameters:

id is the log object’s unique id.

full_action defines how the log will behave once it has reached it
maximum size. Table 6 on page 121 shows the possible values for
full_action.

max_size specifies the maximum size of the log in bytes.
create_with_id() raises the following exceptions:

LogIdAlreadyExists is raised if a log object is already using the
id you passed as a parameter.

InvalidLogFullAction is raised if full_action is not a valid
LogFullActionType.

Creating an EventLog
An EventLog object is created from the EventLogFactory. Once you
have obtained the EventLogFactory from the ORB, you can use
either the create() method or create_with_id() method to create
an EventLog.

Table 6: Settings for a log’s full_action

Value Behavior

halt The log stops logging events until the old events have
been cleared out and the log’s size is below its max size.

wrap The log will wipe out the oldest events to make room for
new event logging.

// IDL
BasicLog create_with_id(in LogID id
 in LogFullActionType full_action,
 in unsigned long long max_size,
raises (LogIdAlreadyExists, InvalidLogFullAction);

 122 Orbix Enterprise Messaging Guide: C++

When a new log object is created, the EventLogFactory generates
an ObjectCreation event.

create()
The EventLogFactory’s create() method has the following
signature:

The EventLogFactory’s create() method is similar to the
BasicLogFactory’s create() method. See “create()” on page 120.
However, the EventLogFactory adds the thresholds parameter. This
parameter holds a sequence of short which specifies, as a
percentage of max log size, the points at which an ThresholdAlarm
event will be generated. If an invalid threshold value is passed to
the method, InvalidThreshold exception is thrown.

create_with_id()
The create_with_id() method also takes the additional thresholds
parameter and will throw InvalidThreshold. Otherwise it is
identical to the BasicLogFactory’s create_with_id() method. See
“create_with_id()” on page 121.

Creating a NotifyLog
A NotifyLog object is created from the NotifyLogFactory. Once you
have obtained the NotifyLogFactory from the ORB, you can use
either the create() method or create_with_id() method to create a
NotifyLog.

create()
The NotifyLogFactory’s create() method has the following
signature:

The NotifyLogFactory’s create() method extends the functionality
of the EventLogFactory’s create() method by including parameters
to support a Notification Channel. These parameters are:

// IDL
EventLog create(in LogFullActionType full_action,
 in unsigned long long max_size,
 in CapacityAlarmThresholdList thresholds,
 out LogId id)
raises (InvalidLogFullAction,
 InvalidThreshold);

// IDL
NotifyLog create(in DsLogAdmin::LogFullActionType full_action,
 in unsigned long long max_size,
 in DsLogAdmin::CapacityAlarmThresholdList thresholds,
 in CosNotification::QoSProperties initial_qos,
 in CosNotification::AdminProperties initial_admin,
 out DsLogAdmin::LogId id)
 raises(DsLogAdmin::InvalidLogFullAction,
 DsLogAdmin::InvalidThreshold,
 CosNotification::UnsupportedQoS,
 CosNotification::UnsupportedAdmin);

Orbix Enterprise Messaging Guide: C++ 123

initial_qos specifies the initial QoS properties for the log’s
associated notification channel.

initial_admin specifies the initial admin properties for the log’s
associated notification channel.

id is the unique id assigned to the log object by the log factory.

create_with_id()
The NotifyLogFactory’s create_with_id() method has the following
signature:

When a new log object is created, the NotifyLogFactory generates
an ObjectCreation event.
The NotifyLogFactory’s create() and create_with_id() methods are
similar to the EventLogFactory’s create()and create_with_id()
methods. See “Creating an EventLog” on page 121. However, the
NotifyLogFactory inherits the CosNotifyChannelAdmin::ConsumerAdmin
interface and NotifyLog objects take full advantage of the telecom
log service’s ability to provide notification channel functionality.
Therefore, the NotifyLogFactory’s create()and create_with_id()
methods have two additional parameters. One configures its QoS
properties and one configures its Admin properties. In addition,
the NotifyLogFactory’s methods throw both the
CosNotification::UnsupportedQoS exception and the
CosNotification::UnsupportedAdmin exception. For more
information see “Notification Service Properties” on page 47.

Example
Example 33 creates a NotifyLog of type QoSNone that will generate
a ThresholdAlarm when it reaches 90% of its maximum capacity.
Note that by default, the log will be created with the QoSNone QoS
property.

// IDL
NotifyLog create_with_id(in DsLogAdmin::LogId id,
 in DsLogAdmin::LogFullActionType full_action,
 in unsigned long long max_size,
 in DsLogAdmin::CapacityAlarmThresholdList thresholds,
 in CosNotification::QoSProperties initial_qos,
 in CosNotification::AdminProperties initial_admin)
 raises(DsLogAdmin::LogIdAlreadyExists,
 DsLogAdmin::InvalidLogFullAction,
 DsLogAdmin::InvalidThreshold,
 CosNotification::UnsupportedQoS,
 CosNotification::UnsupportedAdmin);

Example 33: Creating a NotifyLog

// Java
import org.omg.DsLogAdmin.*
import org.omg.CosNotification.*;

IntHolder id = new IntHolder();

 124 Orbix Enterprise Messaging Guide: C++

1. Specify the QoS and Admin properties for the log object.
2. Specify the threshold list for the log object.
3. Call create() on the factory object to get the log object.

Logging Events
Events are stored in the log’s persistent database. This is
accomplished by one of two mechanisms, for BasicLog objects you
must directly call the write_records() method or the
write_recordlist() method. You can use the write_records() or
the write_recordlist() methods to write data directly to the log.
In addition to using write_records() and write_recordlist(), you
can record events in EventLog and NotifyLog objects using the
push/pull mechanisms as you would when using the event or
notification service.
When data is recorded in the log, it is assigned a unique id and the
time it was recorded is noted. This information is stored in a
record header that can be used to retrieve the data.

Logging with a BasicLog
BasicLog objects have no knowledge of events or event channels
and therefore must communicate directly with the log. The
write_records() method and a write_recordlist() method,
specified in DsLogAdmin::Log, provide BasicLog objects with this
functionality.

write_records()
write_records() has the following signature:

1 // create the notification QoS properties
Property[] qos = new Property[0];

// create the notification Admin properties
Property[] admin = new Property[0];

2 // Set a threshold alarm at 90% full
short[] threshold = new short[1];
threshold[0] = 90;

3 // factory obtained previously
NotifyLog log = factory.create(halt, 0, threshold, qos, admin,

id);

Example 33: Creating a NotifyLog

// IDL in DsLogAdmin::Log
typedef sequnce<any> Anys;

void write_records(in Anys records)
raises(LogFull, LogOffDuty, LogLocked, LogDisabled);

Orbix Enterprise Messaging Guide: C++ 125

It takes a sequence of Any that contains the data to be logged. The
data is recorded directly into the log without any filtering or
indexing. It raises the following exceptions:

To store data using write_records() complete the following steps:
1. Package the data to be logged into a DsLogAdmin::Anys, which

is a sequence of Any.
2. Invoke write_records() on the log.
3. Catch any exceptions.
Example 34 writes a record containing information about a cell
phone call. The information logged is the number the call
originated from, the number called, and the reason for the event.

LogFull Raised if the log has reached its maximum size and
its full action is set to halt.

LogOffDuty Raised when the log is not scheduled to receive
data.

LogLocked Raised when the log’s administrative state is set to
locked.

LogDisabled Raised when the log’s operational state is set to
disabled.

Example 34: Writing data to a BasicLog object

// Java
import org.omg.DsLogAdmin.*;

1 DsLogAdmin.Any[] anys = new DsLogAdmin.Any[3];
any[0].value.insert_string("7989028321");
any[1].value.insert_string("8606531000");
any[2].value.insert_string("connected");

2 try
{
 log.write_records(anys); // log obtained earlier
}

3 catch(const DsLogAdmin::LogFull&)
{
 System.err.println("'Basic log "+log->id()+"' is full");
}
catch(const DsLogAdmin::LogOffDuty&)
{
 System.err.println("'Basic log "+log->id()+"' is off duty");
}
catch(const DsLogAdmin::LogLocked&)
{
 System.err.println("'Basic log "+log->id()+"' is locked");
}
catch(const DsLogAdmin::LogDisabled&)
{
 System.err.println("'Basic log "+log->id()+"' is disabled");
}

 126 Orbix Enterprise Messaging Guide: C++

write_recordlist()
write_recordlist() has the following signature:

write_recordlist() is functionally identical to write_records(). It
writes data directly to the log and raises the same exceptions. The
major difference is that the record’s data is stored in a LogRecord.
This allows you to add a series of name/value pair attributes to
assist in querying the log.
To store data using write_recordlist() complete the following
steps:
1. Package the data to be logged into a DsLogAdmin::RecordList,

which is a sequence of LogRecord. Each record’s id and time
members will be filled in by the log.

2. Invoke write_recordlist() on the log.
3. Catch any exceptions.
Example 35 writes a record to a BasicLog object using
write_recordlist(). The record includes a single attribute that
identifies the type of minutes being billed.

// IDL is DsLogAdmin.idl
struct NVPair
{
 string name;
 any value;
};

typedef sequence<NVPair> NVList;

struct LogRecord
{
 RecordId id;
 TimeT time;
 NVList attr_list; // attributes, optional
 any info;
};
typedef sequence<LogRecord> RecordList;

void write_recordlist(in RecordList list)
raises(LogFull, LogOffDuty, LogLocked, LogDisabled);

Example 35: Writing data to a BasicLog object

// Java
import org.omg.DsLogAdmin.*;

Orbix Enterprise Messaging Guide: C++ 127

Logging Events with an EventLog
While an EventLog object can use the write_records() method or
the write_recordlist() method to log data in a persistent data
store, EventLog objects also take advantage of the CORBA event
services push/pull mechanisms to log events.

Procedure
The procedure for logging events using an EventLog object is
identical to sending an event through the event service. The
object generating the event is an event service supplier and it
either pushes events to the log or allows the log to pull events
from it depending on the suppliers implementation.

1 //Create a new log record
LogRecord record = new LogRecord();

// create a new attribute list
record.attr_list[] = new NVList[1];
record.attr_list[0].name = "minute_type";
record.attr_list[0].value =

org.omg.CORBA.ORB.init().create_any();
record.attr_list[0].value.insert_string("free");

// Load the data into an any
record.info = org.omg.CORBA.ORB.init().create_any();
record.info.insert_string("7989028321, 8606531000, connected");

// Create a RecordList
Record[] records =new Records[1];
records[0] = record;

2 try
{
 log.write_recordlist(records); // log obtained previously
}

3 catch(const DsLogAdmin::LogFull&)
{
 System.err.println("'Basic log "+log->id()+"' is full");
}
catch(const DsLogAdmin::LogOffDuty&)
{
 System.err.println("'Basic log "+log->id()+"' is off duty");
}
catch(const DsLogAdmin::LogLocked&)
{
 System.err.println("'Basic log "+log->id()+"' is locked");
}
catch(const DsLogAdmin::LogDisabled&)
{
 System.err.println("'Basic log "+log->id()+"' is disabled");
}

Example 35: Writing data to a BasicLog object

 128 Orbix Enterprise Messaging Guide: C++

The EventLog inherits from the CosEventChannelAdmin::EventChannel
interface, thus it has the associated methods to connect an event
supplier through a proxy consumer.
To log events using an EventLog, complete the following steps:
1. Obtain a SupplierAdmin from the log.
2. Obtain a proxy consumer from the SupplierAdmin.
3. Connect the proxy consumer to the log’s event channel.
4. Send events to the log using either push() or pull() depending

on the type of supplier you choose to use.
For more information on connecting supplier to an event channel,
see the chapter on the event service in the CORBA Programmer’s
Guide.
Once the supplier is connected to the log, you can continue to
pass events to the log until you explicitly disconnect from the log.

Example
Example 36 logs events to an EventLog using a push supplier. The
code is labeled according to the steps outlined in the procedure
above.

In step 3 a nil supplier reference is used because the log object
does not need a disconnect notification.

Logging Events with a NotifyLog
NotifyLog objects are similar to EventLog objects in that they use
an event channel and use the push/pull methods to log data.
However, NotifyLog objects also inherit from
CosNotifyChannelAdmin, which enables them to log sturctured
events and sequenced events.

Procedure
The procedure for connecting to a NotifyLog and logging events is
the same as that used for a connecting to the notification service.
To log events using an NotifyLog, complete the following steps:
1. Obtain a SupplierAdmin from the log.
2. Obtain a proxy consumer from the SupplierAdmin.
3. Connect the proxy consumer to the log’s event channel.

Example 36: Logging events to an EventLog using a push supplier

1 org.omg.CosEventChannelAdmin.SupplierAdmin sa =
log.for_suppliers();

2 org.omg.CosEventChannelAdmin.ProxyPushConsumer ppc =
sa.obtain_push_consumer();

3 ppp.connect_push_supplier(org.omg.CosEventComm.PushSullplier._n
il());

org.omg.CORBA.Any any = org.omg.CORBA.ORB.init().create_any();
any.insert_string("7989028321, 8606531000, connected");

4 ppc.push(any);

Orbix Enterprise Messaging Guide: C++ 129

4. Send events to the log using either push() or pull() depending
on the type of supplier you choose to use.

For information on connecting to the notification service, see the
“Implementing a Supplier” on page 26.

Example
Example 37 logs events to a NotifyLog using a push supplier.

1. Get the default SupplierAdmin object for the log’s notification
channel.

2. Get a proxy consumer that uses unstructured events.
3. Narrow the returned proxy to a ProxyPushConsumer.
4. Connect the proxy consumer to the log’s notification channel.

A nil reference can be passed because the log does not need
to be notified of a disconnect.

5. Push the event to the log.

Getting Log Records
When a record is stored in the log, the log creates a header for it
that contains a unique id for the record and the time that the data
was recorded. This header can also contain an optional attribute
list. Using this data, you can retrieve records from the log.
The telecom log service provides two methods for getting records
from the log:
1. You can retrieve a series of records based on the time when

they were logged. For example, you can retrieve the first 100
records logged after 10pm February 3, 2014.

2. You can retrieve records based on a search criteria. For
example, you can retrieve all of the events that record losses
by your local rugby team.

Example 37: Logging events to a NotifyLog using a push supplier

// Java
import org.omg.CosNotifyChannelAdmin.*;

1 SupplierAdmin sa = log.default_supplier_admin();

2 IntHolder proxy_id = new IntHolder();
ClientType ctype = CosNotifyChannelAdmin.ANY_EVENT;
ProxyConsumer obj = sa.obtain_notification_push_consumer(ctype,

proxy_id);

3 ProxyPushConsumer pc = ProxyPushConsumerHelper.narrow(obj);

4 pc.connect_any_push_supplier(CosEventComm.PushSupplier._nil());

org.omg.CORBA.Any any = org.omg.CORBA.ORB.init().create_any();
any.insert_string("7989028321, 8606531000, connected");

5 pc.push(any);

 130 Orbix Enterprise Messaging Guide: C++

Retrieving records based on time logged
The retrieve() operation reads the log records in the log
sequentially starting from any given time. It has the following
signature:

If a negative value for the number of records to retrieve is
supplied, retirieve() will return records that were logged prior to
the start time, starting with the most recently logged and ending
with the oldest in the series
The iterator value is used to handle the retrieval of large amounts
of data. If the number of records specified cannot fit in the return
value, the iterator provides access to the remaining records. If the
iterator is not needed it will be nil.

Querying the log for records
Each log record contains the time it was logged, a unique record
id, a set of optional attributes, and the data being logged. Queries
can be constructed to retrieve log records based on any of this
information.
Queries are constructed using a constraint language based on the
standard OMG Trader Constraint Language with some
modifications that make it more suitable for use in querying log
records. For more information on the constraint language, see
“Filter Constraint Language” on page 76.
The query() operation takes in a constraint and returns all of the
records in the log that matches it. query() has the following
signature:

The grammar parameter indicates how to interpret the constraint
string. The default grammar is “EXTENDED_TCL”. The records which
match the constraint, match_string, are returned as a RecordList.
An iterator may be returned to handle large query results. A nil
object reference will be returned for the iterator if it is not needed.
query() can raise the following exceptions:

// IDL
RecordList retrieve(in TimeT start, in long num, out Iterator i);

// IDL
RecordList query(in string grammar, in Constraint match_string,

out Iterator i)
raises(InvalidGrammar, InvalidConstraint);

InvalidGrammar Raised if the log does not support the grammar
specified.

InvalidConstraint Raised if the constraint string is invalid.

Orbix Enterprise Messaging Guide: C++ 131

Example 38 retrieves all of the records that have the attribute
minute_type set to “roaming“.

Deleting Records from the Log
Records are removed from the log automatically once they reach
their life expectancy. However, it is occasionally necessary to
delete records from the log. The telecom log service provides you
with the option of deleting specific records based on their record id
or deleting records based on a constraint.

Deleting records by id
The delete_records_by_id() operation deletes specific log records
from the log. It takes a sequence of RecordId as a parameter, and
returns the number of records deleted. If no records match the ids
specified, the operation will return 0.

Using a constraint to delete records
The delete_records() operation deletes records from the log based
on a constraint. See “Querying the log for records” on page 130
for more information on how to form a constraint.
It returns the number of records deleted and can raise the
following exceptions:

Example 39 deletes all of the records whose id is less than 10.

Example 38: Querying a log for records

// Java
org.omg.DsLogAdmin.IteratorHolder iter = new

org.omg.DsLogAdmin.IteratorHolder();

org.omg.DsLogAdmin.Record[] list = log.querey(“EXTENDED_TCL”,
"$minute_type == ’roaming’", iter);

InvalidGrammar Raised if the implementation does not support
the specified grammar.

InvalidConstraint Raised if the constraint string is invalid.
InvalidAttribute Raised if one of the attributes specified in the

constraint string is invalid.

Example 39: Deleting records from a log

// C++
CORBA::ULong deled = log->delete_records(“EXTENDED_TCL”, "$.id

< 10");
cout << deled << "records deleted from the log." << endl;

Example 40: Deleting records from a log

// Java
org.omg.CORBA.Ulong deled = log.delete_records(“EXTENDED_TCL”,

"$.id < 10");
System.out.println(deled + " records deleted from the log.");

 132 Orbix Enterprise Messaging Guide: C++

Ending a Logging Session
To end a logging session, the client needs to release the object
reference to the log object. For EventLog objects and NotifyLog
objects, the developer must also disconnect the client from the
event channel associated with the log.
Using the destroy() operation will eliminate the object
instantiating the log in the telecom log service and destroy any
records stored in the log.

 Orbix Enterprise Messaging Guide: C++ 133

Advanced Features
The telecom log service provides a number of features to make it flexible
enough to handle most enterprise level applications. Most of the features
leverage the functionality of the event and notification services and are
therefore only available to EventLogs and NotifyLogs.

Scheduling
All log implementations allow you to schedule when the log is
active. During this time, it will be fully functional and log
messages. When the log is not scheduled to log new records, it
will still be available for record retrieval and event forwarding.

Scheduling scenario
The ability to schedule when the log records data can be valuable
to control both the size of the persistent store and the overall
performance of your system. For example, suppose you need to
develop an application to monitor the performance of a cell phone
network. During peak hours, there are millions of events
generated per hour on the network and there are technicians on
hand at all times. During off-peak hours, the number of events
generated is cut in half and there is only a skeleton crew of
technicians available to handle critical failures.
The added overhead of logging events during peak hours will most
likely have serious implications in overall system performance and
may, during particularly heavy periods, be prohibitive. Because
there are a number of technicians and support personnel on hand
to monitor the network manually, it may not be necessary to log
events during peak hours. Therefore you could schedule the log to
only log events during off-peak hours when the overhead would
be lower and there are not enough technicians to constantly
monitor the network.

 134 Orbix Enterprise Messaging Guide: C++

Schedule data
Log schedules are specified using a WeekMask which is a struct
defined in module DsLogAdmin.

The intervals field of a WeekMaskItem specifies the time, in 24 hour
format, that the log will begin logging records and the time that
the log will stop logging records.
The days field of WeekMaskItem indicates which days of the week to
apply the start and stop times specified in the intervals field. It is
created using a bitwise OR operation to create a bitmask specifying
the days. For example, to specify that an interval should be valid
on Friday, Saturday, and Sunday you would use the following
code:

// IDL in DsLogAdmin
struct Time24
{
 unsigned short hour; // 0-23
 unsigned short minute; // 0-59
};

struct Time24Interval
{
 Time24 start;
 Time24 stop;
};
typedef sequence<Time24Interval> IntervalsOfDay;

const unsigned short Sunday = 1;
const unsigned short Monday = 2;
const unsigned short Tuesday = 4;
const unsigned short Wednesday = 8;
const unsigned short Thursday = 16;
const unsigned short Friday = 32;
const unsigned short Saturday = 64;

typedef unsigned short DaysOfWeek;// Bit mask of week days

struct WeekMaskItem
{
 DaysOfWeek days;
 IntervalsOfDay intervals;
};
typedef sequence<WeekMaskItem> WeekMask;

DaysOfWeek days = Friday | Saturday | Sunday;

Orbix Enterprise Messaging Guide: C++ 135

Setting a schedule
By default, a log has no set schedule and will log records
continuously. If you want to alter that behavior, you use the
set_week_mask() operation to set a schedule for the log. The
operation has the following signature:

The masks parameter allows you to specify as complex a schedule
as needed. For instance you can set a different logging interval for
each day of the week or specify multiple intervals during a single
day to log records (providing the intervals do not overlap).
When using an EventLog or a NotifyLog, an AttributeValueChange
event is generated whenever the log’s schedule is changed. See
“Log Generated Events” on page 136 for more information.
set_week_mask() raises the following exceptions:

Example 41 tells a log to log records from 12am until 8am and
from 7:30pm until 11:59pm Monday through Friday.

\\ IDL
void set_week_mask(in WeekMask masks)
raises (InvalidTime, InvalidTimeInterval, InvalidMask);

InvalidTime One of the values specified for a start or
stop time is not within the valid range.

InvalidTimeInterval One of the time intervals is improperly
formed. For example, the stop time is before
the start. Also raised if the intervals overlap.

InvalidMask The days parameter is malformed.

Example 41: Setting a logs schedule

// Java
import org.omg.DsLogAdmin.*;

// Contruct the times between the log is to record data
IntervalsOfDay[] intervals = new IntervalOfDay[2];
intervals[0].start.hour = 0;
intervals[0].start.minute = 0;
intervals[0].stop.hour = 8;
intervals[0].stop.minute = 0;
intervals[1].start.hour = 19;
intervals[1].start.minute = 30;
intervals[1].stop.hour = 23;
intervals[1].stop.minute = 59;

// Build the mask to specify the days on which
// the schedule is valid
DaysOfWeek days = Monday | Tuesday | Wednesday | Thursday |

Friday;

// Package the schedule
WeekMask[] sched = new WeekMask[1];
sched[0].days = days;
sched[0].intervals = intervals;

 136 Orbix Enterprise Messaging Guide: C++

Determining a log’s schedule
You can determine what schedules, if any, have been set for a
given log by calling the get_week_mask() method on it.
get_week_mask() takes no parameters and returns the scheduling
information for the log in a WeekMask.

Log Generated Events
EventLogFactory and NotifyLogFactory objects can keep their
clients informed of the telecom log service’s state by generating
events and forwarding the events onto their clients. This feature
can be particularly useful for developing clients that need to
respond gracefully to log failures or other status changes.
For example, you need to implement a system to process
purchases made through your companies web site and you decide
to use the telecom log service to create a persistent record of the
purchases made outside of normal business hours, so that the
orders can be handled the following business day. If the log being
used to store the purchases reached its threshold before the new
purchases could be processed, the log would have two options of
how to react, depending on how you set its full_action. The log
could either stop recording the purchases, or it could write over
the old records. Neither option is acceptable.
If you developed a client that received log generated events, you
could design it to handle a full log gracefully. For instance, you
could have the client stop accepting new purchases until the log
was emptied or you could have it create a new log object and
begin to record purchases there.

// Apply the schedule to the log
try
{
 log->set_week_mask(sched);
}
// Handle any exceptions
catch(const InvalidTime&)
{
 ...
}
catch(const InvalidTimeInterval&)
{
...
}
catch(const InvalidMask&)
{
...
}

Example 41: Setting a logs schedule

Orbix Enterprise Messaging Guide: C++ 137

Log events
Log objects generate events for the following reasons:

Event propagation
The EventLogFactory and NotifyLogFactory interface inherit from
the CosEventChannelAdmin::ConsumerAdmin and the
CosNotifyChannelAdmin::ConsumerAdmin interfaces, respectively.
Therefore event service consumers, both push and pull style, can
connect to an EventLogFactory to receive log generated events.
Also, notification service consumers, both push and pull, can
connect to a NotifyLogFactory to receive log generated events. For
more information about event propagation see “Event
Communication” on page 11.

Table 7: Events generated by a log factory

Event Reason

ObjectCreation Generated when a log object is created.

ObjectDeletion Generated when a log object is
destroyed.

ThersholdAlarm Generated when a log object’s threshold
capacity is reached. Alarms can be
configured at different percentages of
the logs capacity. For example, one
alarm event can be generated when the
log reaches 90% of capacity and
another can be generated when the log
reaches 95% of capacity.

AttributeValueChange Generated when a log changes one of
the following log attributes:
• capacity alarm threshold
• log full action
• maximum log size
• start time
• stop time
• week mask
• adding/removing/changing a

constraint expression on the log’s
filter object

• max record life
• quality of service

StateChange Generated when a log object’s
operational or administrative state is
changed.

ProcessingErrorAlarm Generated when a log generates an
error.

 138 Orbix Enterprise Messaging Guide: C++

Receiving log generated events
To develop a telecom log service client that receives log generated
events from the EventLogFactory or the NotifyLogFactory complete
the following steps:
1. Obtain a reference to the log factory, either EventLogFactory or

NotifyLogFactory. See “Obtain a log factory” on page 119.
2. Obtain a proxy supplier from the log factory.
3. Connect to the proxy supplier using its connect method.
4. For a pull consumer, call pull() or try_pull() to receive

events. For a push consumer, you will need to implement the
appropriate push() method.

For a more detailed description of how to connect an event
consumer to an event channel, see the CORBA Programmer’s
Guide and “Implementing a Consumer” on page 37.
Example 42 implements a push consumer that receives events
from the NotifyLogFactory.

Example 42: Receiving events from the NotifyLogFactory

// Java
import org.omg.CORBA.*;
import org.omg.CosNotification.*;
import org.omg.CosNotifyChannelAdmin.*;
import org.omg.CosNotifyComm.*;
import org.omg.PortableServer.*;
import org.omg.PortableServer.POAPackage.*;

1 class NotifyPushConsumer extends PushConsumerPOA
{
// member variables not shown...

 void public push(Any event)
 {
 // Process the event
 // ...
 }

 void public NotifyPushConsumer()
 {
 {

 // client consumer program
 public static main(String args[])
 {
 // ORB and POA activation not shown
 // ...

2 // Create the push consumer
 NotifyPushConsumer consumer = new NotifyPushConsumer();

3 // get a reference to the NotifyLogFactory
 Object obj =

orb.resolve_initial_references("NotifyLoggingService");
 org.omg.DsNotifyLogAdmin.NotifyLogFactory factory =

org.omg.DsNotifyLogAdmin.NotifyLogFactoryHelper.narrow(obj);

Orbix Enterprise Messaging Guide: C++ 139

1. Implement the consumer’s class and its push() method.
2. Instantiate the consumer.
3. Obtain a reference to the NotifyLogFactory, which inherits

from CosNotifyChannelAdmin::ConsumerAdmin.
4. Obtain a push supplier from the log factory and narrow it to a

ProxyPushSupplier.
5. Connect the consumer to its proxy supplier.
Once the consumer is connected to its proxy it will continue to
receive log generated events until it explicitly disconnects.

Event data types
Each event generated by the telecom log service is passed to the
clients as an any and the clients are responsible for unpacking the
data correctly before decoding it. The data types defined for each

 // The client consumes events of type ANY
 ClientType type = CosNotifyChannelAdmin.ANY_EVENT;

 // get the push proxy supplier
 IntHolder proxy_id = new IntHolder();

4 try
 {
 ProxySupplier obj =

factory.obtain_notification_push_supplier(type, proxy_id);
 }
 catch(CosNotifyChannelAdmin::AdminLimitExceeded err)
 {
 // handle the exception
 }

 ProxyPushSupplier_var pps =
ProxyPushSupplierHelper.narrow(obj);

5 try
 {
 pps.connect_push_consumer(consumer)
 }
 catch (AlreadyConnected ac)
 {
 System.out.println("Already connected to channel.");
 exit (1);
 }
 catch (CORBA::SystemException& se)
 {
 System.out.println("System exception occurred during

connect.");
 exit(1);
 }

 // ...

 } // main
} // NotifyPushConsumer

Example 42: Receiving events from the NotifyLogFactory

 140 Orbix Enterprise Messaging Guide: C++

event provide all of the information necessary to describe the
action that generated the event. For example, an
AttributeValueChanged event’s data structure includes a field to
describe which attribute was changed, the old value of the
attribute, and the new value of the attribute.

ObjectCreation event
An ObjectCreation event has the following data structure:

It contains the new log’s id and the time that the new log was
created.

ObjectDeletion event
An ObjectDeletion event has the following data structure:

It contains the id of the deleted log and the time it was deleted.

ThresholdAlarm event
A ThresholdAlarm event has the following data structure:

It contains the object reference and the id of the log whose alarm
was set off and the time when the log reached its capacity alarm
threshold. The observed_value field indicates the log’s size, as a
percentage of the maximum log size. The crossed_value field
indicates the threshold level that was crossed. The
perceived_severity field is minor if log is not full, and critical
otherwise.

// IDL
struct ObjectCreation
{
 LogId id;
 TimeT time;
};

// IDL
struct ObjectDeletion
{
 LogId id;
 TimeT time;
};

// IDL
struct ThresholdAlarm
{
 Log logref;
 LogId id;
 TimeT time;
 Threshold crossed_value;
 Threshold observed_value;
 PerceivedSeverityType perceived_severity;
};

Orbix Enterprise Messaging Guide: C++ 141

AttributeValueChanged event
An AttributeValueChanged event has the following data structure:

Along with the affected log’s object reference, the affected log’s
id, and the time of the event, the data structure includes the type
field which identifies the attribute that was changed, the old value
of the attribute, and the new value of the attribute.

StateChange event
A StateChange event has the following data structure:

Along with the affected log’s object reference, the affected log’s
id, and the time of the event, the data structure includes the type
field, which identifies the attribute that was changed, and the
new_value field, which contains the new value of the attribute.

ProcessingErrorAlarm event
A ProcessErrorAlarm event has the following data structure:

It contains the error number and a textual description of the log
object’s error.

Unpacking log generated events
Clients can determine how to unpack log generated events in one
of two ways:

Trial and Error
You can code the client code to simply keep trying to stuff the
returned any into the different log event data structures.

// IDL
struct AttributeValueChange
{
 Log logref;
 LogId id;
 TimeT time;
 AttributeType type;
 any old_value;
 any new_value;
};

// IDL
struct StateChange
{
 Log logref;
 LogId id;
 TimeT time;
 StateType type;
 any new_value;
};

// IDL
struct ProcessingErrorAlarm
{
 long error_num;
 string error_string;
};

 142 Orbix Enterprise Messaging Guide: C++

Example 43 shows client code for unpacking log generated events
by trial and error.

Type Codes
You can also use the type code of the returned any to determine
what type of event was returned and unpack it accordingly.
Example 44 shows client code for unpacking log generated events
based on their typecode.

Example 43: Unpacking an event by trial and error

// Java
org.omg.CORBA.Any any = org.omg.CORBA.ORB.init().create_any();
any = // the event received by the client.

const org.omg.DsLogNotification.ObjectCreation*
object_creation;

const org.omg.DsLogNotification.ObjectDeletion*
object_deletion;

if(any >>= object_creation)
{
 // An object creation event was received.
}
else if(any >>= object_deletion)
{
 // An object deletion event was received.
}
else
{
 // Some other event type...
}

Example 44: Unpacking log generated events by typecode

// Java
org.omg.CORBA.Any any = org.omg.CORBA.ORB.init().create_any();
any = // the event received by the client.

org.omg.CORBA.TypeCode tc = any.type();
if(tc.equivalent(DsLogNotification.ObjectCreationHelper.type())

)
{
 // An object creation event was received.
 // Unpack the event and handle the results.
}
else

if(tc.quivalent(DsLogNotification.ObjectDeletionHelper.type(
)))

{
 // An object deletion event was received.
 // Unpack the event and handle the results.
}
else
{
 // Some other event type...
}

Orbix Enterprise Messaging Guide: C++ 143

When using NotifyLog clients, you can limit the type of events they
receive from the log by filtering out the events you do not want
the client to receive. See “Filtering” on page 148 and “Event
Filtering” on page 65 for detailed information on event filtering.

Event Forwarding
As seen in Figure 3 on page 10 the telecom log service
encapsulates an event channel to provide added functionality to
EventLog objects and NotifyLog objects. Therefore both EventLog
objects and NotifyLog objects are capable of emulating an event
channel and passing events between suppliers and consumers
using both the push and pull methods. NotifyLog clients can also
take advantage of the notification service style QoS properties and
notification style filtering. See “Filtering” on page 148 and “Log
Management” on page 151.
Logs will forward events as long as their ForwardingState attribute
is set to on. Changing a log’s administrative state or using a
schedule to turn logging on and off does not affect the log’s ability
to forward events.
The basic steps involved in log event forwarding are:
1. Set the log’s ForwardingState to on. This is the default for all

newly created EventLog objects and NotifyLog objects.
2. Connect the clients to the log object via the event or

notification channel interface it supports.
3. NotifyLog clients specify filters. See “Filtering” on page 148.
4. Suppliers send events to the log by using either push() for

push style suppliers, or pull() for pull style suppliers. Pull
style suppliers can also use try_pull().

5. If the log is set to log events, the events sent to the log object
will be recorded.

6. Consumers receive events from the channel.

Developing a telecom log application that
uses event forwarding
Developing a telecom log service that uses event forwarding is
essentially identical to developing an event service or notification
service application. However, the telecom log service has the
added benefit that it will maintain a persistent and fully accessible
history of the events that are being passed through the channel.
The telecom log service suppliers can also be implemented to
receive log generated events. See “Log Generated Events” on
page 136.

 144 Orbix Enterprise Messaging Guide: C++

To develop a telecom log service application that forwards events
between event suppliers and event consumers complete the
following steps:
1. Implement the required methods for the event supplier. If you

use a pull style supplier, you will need to implement the
appropriate pull() and/or try_pull() method.

2. Implement the required methods for the event consumer
class. If you use a push style consumer, you will need to
implement the appropriate push() method.

3. Instantiate both the supplier’s class and the consumer’s class.
4. Obtain either an EventLog object or a NotifyLog object that has

its ForwardingState set to on.
5. Connect the supplier to the log’s associated event channel by

obtaining a SupplierAdmin from the log object. From the
SupplierAdmin, you obtain a ProxyConsumer to connect to the
channel.

6. Begin generating events.
7. Connect the consumer to the log’s associated event channel

by obtaining a ConsumerAdmin from the log object. From the
ConsumerAdmin, you obtain a ProxySupplier to connect to the
channel.

For a detailed description of implementing event consumers and
event suppliers, see “Developing Suppliers and Consumers” on
page 23 and the CORBA Programmer’s Guide.

NotifyLog features
If you are using a NotifyLog object, you can take full advantage of
all of the notification services features. These include: event
filtering, structured and sequence events, event subscription, and
notification-style QoS properties for events. See “Notification
Service Properties” on page 47.

Example
The following example implements an application that passes an
unstructured event containing the price of a stock from a
notification push supplier to a notification push consumer. They
both connect to a NotifyLog with the id 123. By using a log with a
user defined id, you ensure that the consumer and the supplier
are connected to the log object.

Orbix Enterprise Messaging Guide: C++ 145

Example 45 implements the notification push supplier.

Example 45: Implementing the push supplier.

// Java
import org.omg.DsNotifyLogAdmin.*;
import org.omg.CORBA.*;
import org.omg.CORBA.ORBPackage.*;
import org.omg.CosNotification.*;
import org.omg.CosNotifyChannelAdmin.*;
import org.omg.CosNotifyComm.*;
import org.omg.TimeBase.*;

import org.omg.PortableServer.*;
import org.omg.PortableServer.POAPackage.*;

1 class NotifyPushSupplier extends PushSupplierPOA
{
// Member variables not shown...

 public void NotifyPushSupplier()
 {
 // Implementation not shown...
 }

2 // The main entry point @param args command line args
 public static void main (String args[])
 {
 // ORB and POA Activation not shown
 NotifyPushSupplier supplier = new NotifyPushSupplier();

3 // Get a Log Factory
 Obect obj =

orb.resolve_initial_references("NotifyLoggingService");
 NotifyLogFactory factory =

NotifyLogFactoryHelper.narrow(obj);

4 // The log will have an id of 123
 IntHolder id = new IntHolder();
 id = (ULong)123;

 // Set the Log’s QoS properties
 Property[] qos = new Property[0];
 qos[0].name = Type;
 qos[0].value.insert_int(QoSNone);

 Property[] admin = new Property[0];
 CapacityAlarmThresholdList thresholds = null;

 NotifyLog log = factory.create_with_id(id, halt, 0,
thresholds, qos, admin);

 146 Orbix Enterprise Messaging Guide: C++

The supplier code show in Example 45 does the following:
1. Implements the supplier’s object class.
2. Instantiates a supplier object.
3. Initializes the ORB and uses resolve_initial_references() to

get a reference to the NotifyLogFactory.
4. Creates a log with an id of 123 using create_with_id(). The log

is of type QoSNone and does not have any threshold alarms set.
5. Obtains a ProxyPushConsumer and connects to the log’s

associated notification channel.
6. Pushes a single event.
Example 46 implements the notification push consumer.

5 SupplierAdmin sa = log.default_supplier_admin();

 IntHolder proxy_id = new IntHolder();
 ClientType ctype = ClientType.ANY_EVENT;
 try
 {
 ProxyConsumer obj =

sa.obtain_notification_push_consumer(ctype, proxy_id);
 }
 catch(AdminLimitExceeded err)
 {
 // handle the exception
 }

 ProxyPushConsumer ppc = ProxyPushConsumerHelper.narrow(obj);
6 Any any = org.omg.CORBA.ORB.init().create_any();

 any.insert_string("FKUSX, $33.02");
 ppc.push(any);

 // ...
 }
}

Example 45: Implementing the push supplier.

Example 46: Implementing the push consumer

// Java
import org.omg.CORBA.*;
import org.omg.CosNotification.*;
import org.omg.CosNotifyChannelAdmin.*;
import org.omg.CosNotifyComm.*;
import org.omg.PortableServer.*;
import org.omg.PortableServer.POAPackage.*;

Orbix Enterprise Messaging Guide: C++ 147

1 class NotifyPushConsumer extends PushConsumerPOA
{
// member variables not shown...

 void public NotifyPushConsumer()
 {
 }

 public void push(Any event)
 {
 if ((event.type()).kind() == TCKind.tk_string)
 {
 String stock_pice = event.extract_string();
 System.out.println("Stock price is" + stock_price);
 }
 else
 System.out.println("Invalid Event");
 }

2 // The main entry point @param args command line args
 public static void main (String args[])
 {
 // ORB and POA initialization not shown ...

 NotifyPushConsumer consumer = new NotifyPushConsumer();

3 Obect obj =
orb.resolve_initial_references("NotifyLoggingService");

 NotifyLogFactory factory =
NotifyLogFactoryHelper.narrow(obj);

4 IntHolder id = 123;
 NotifyLog log = factory.find_log(id))

Example 46: Implementing the push consumer

 148 Orbix Enterprise Messaging Guide: C++

The consumer code show in Example 46 does the following:
1. Implements the consumer’s object class.
2. Instantiates a consumer object.
3. Uses resolve_initial_references() to get a reference to the

NotifyLogFactory.
4. Uses find_log() to obtain a reference the log created by the

supplier.
5. Obtains a ProxyPushSupplier and connects to the log’s

associated notification channel.
6. Turns control over to the ORB to wait for events.

Filtering
NotifyLog objects support two types of filtering:
• Notification style filtering which determines if an event passes

through the log’s associated event channel.
• Log filtering which determines if an event is logged.

5 ConsumerAdmin ca = log.default_consumer_admin();

 IntHolder proxy_id = new IntHolder();
 ClientType ctype = ClientType.ANY_EVENT;

 try
 {
 ProxySupplier obj =

ca.obtain_notification_push_supplier(ctype, proxy_id);
 }
 catch(AdminLimitExceeded err)
 {
 //handle exception
 }

 ProxyPushSupplier pps = ProxyPushSupplierHelper.narrow(obj);

 try
 {
 pps.connect_push_consumer(consumer);
 }
 catch(AlreadyConnected.value ac)
 {
 System.err.println("Already connecting to channel.");
 System.exit(1);
 }
 catch (SystemException sys)
 {
 System.err.println("Encountered system exception during

connect: " + SystemExceptionDisplayHelper.toString(sys));
 System.exit(1);
 }

6 orb.run();
 }
}

Example 46: Implementing the push consumer

Orbix Enterprise Messaging Guide: C++ 149

Figure 13 on page 149 shows the different types of filters that can
be used by a NotifyLog. Notification style filters are applied to the
admin and proxy objects in the NotifyLog object’s associated event
channel. Each admin and proxy object may have multiple filters
associated with it. If an event is discarded due to a filter on a
proxy consumer or supplier admin, it will not reach the log filter
and will not be logged.

Log filters are applied directly to the log object and do not effect
the forwarding of an event. If the event does not pass the log
filter, it will not be logged, but it will be passed on to the consumer
admin. Unlike a proxy or admin object, a log object can only have
one filter associated with it. The log filter can be useful in
situations where the log’s clients are generating a large number of
events of varying types. If you are only interested in a few types
of events, you can control the size of the log by applying filters.
For example, you can log only events whose "severity" is greater
than 4 or events with a "log" attribute of 1.
For a more detailed discussion of filtering, see “Event Filtering” on
page 65.

Implementing a filter
To implement a filter complete the following steps:
1. Obtain a filter factory from the log using the

default_filter_factory() method.
2. Create a filter using the factory’s create_filter() method.

Specify the EXTENDED_TCL grammar, which is the same
grammar used by the notification service. See “Filter
Constraint Language” on page 76.

Figure 13: Filter points in event’s life-cycle

notification
supplier

notification
consumer

NotifyLog

notification channel

persistent store

proxy
consumer

filter

proxy
supplier

filter
supplier

admin filter
consumer
admin filter

log filter

 150 Orbix Enterprise Messaging Guide: C++

3. Build your constraints for the filter, and add them using the
filter’s add_constraints() method.

4. Attach the filter to the desired object (proxy, admin, or log)
using the appropriate method. Table 8 on page 150 shows the
method used to attach a filter to the specified object.

Example 47 on page 150 creates a filter to log data error events
whose severity is greater than 4 and attaches it to the log.

Filter evaluation
An event must pass each notification style filter before it is
forwarded to the next point in the channel. If filters are set on an
admin object and one of its proxies, events can be evaluated
against both sets of filters, depending on whether the admin
object was created with AND or OR semantics:
• AND semantics require events to pass both admin and proxy

filters.
• OR semantics only require an event to pass an admin or proxy

filter.

Table 8: Methods for attaching filters

Object Method

log object set_filter(CosNotifyFilter::Filter filter)

proxy object add_filter(CosNotifyFilter::Filter filter)

admin object add_filter(CosNotifyFilter::Filter filter)

Example 47: Attaching a filter to a log object

// Java
import org.omg.CosNotifyFilter.*;
import org.omg.CosNotification.*;

1 // NotifyLog log obtained earlier
FilterFactory dff = log.default_filter_factory();

2 Filter filter = dff.create_filter("EXTENDED_TCL");

3 // create a constraint
EventType[] event_types = new EventType(1);

event_types[0].domain_name = new String("Dial Up");
event_types[0].type_name = new String("Data Error");

ConstraintExp[] constraints = ConstraintExp(1);

constraints[0].event_types = event_types;
constraint[0].constraint_expr = new String("$severity > ’4’");

ConstraintInfo[] info = filter.add_constraints(constraint);

4 log.set_filter(filter)

Orbix Enterprise Messaging Guide: C++ 151

A filter evaluates an event against its set of constraints until one
evaluates to true. A constraint evaluates to true when both of the
following conditions are true:
• A member of the constraint's EventTypeSeq matches the

message's event type.
• The constraint expression evaluates to true.
The first filter in which the event message evaluates to true
forwards the event to the next delivery point in the channel. If the
event message fails to pass any filters, the event may not be
forwarded.

Log Management
The telecom log service allows you to control the following
attributes of a log:
• Administrative State
• Maximum log size
• Log duration
• Record lifetime
• Log QoS properties
You can also monitor a log’s availability status, its operational
state, and its current size (in bytes and number of records).

Administrative State
Administrative state can also be thought of as the “logging state”
and is used to turn logging on and off. A log’s administrative state
does not affect the log’s ability to forward events. If the
administrative state of the log is locked, events will pass through
the event channel as long as the log’s forwarding state is set to
on.

States
Logs can be put into one of two administrative states:

By default, the administrative state of a newly created log object
is unlocked.

Table 9: Administrative states for a log

Administrative
State

Log Functionality

Unlocked The log is fully functional. New records can
be added. Records can be retrieved and
deleted from the log. Events can be
forwarded.

Locked The log will not create new records. All other
functionality of the log is still available.

 152 Orbix Enterprise Messaging Guide: C++

Methods
You can determine the administrative state of a log by using its
get_administrative_state() method. It returns the administrative
state in the enumerated type, AdministrativeState.
You set a log’s administrative state using its
set_administrative_state() method, which takes a single
parameter of type AdministrativeState. A StateChange event is
generated whenever the administrative state of a log is changed.

Example
Example 48 checks to see if a log is locked and if it is changes its
administrative state to unlocked.

Maximum Log Size

Setting
A log’s set_max_size() method sets its maximum size in bytes. The
method takes an unsigned long long. If a value of zero is supplied,
then the log size will be set to have no predefined limit. If the new
maximum log size is less than the current log size, an InvalidParam
exception will be raised. If the maximum size of the log is
changed, an AttributeValueChange event is generated.

Checking
A log’s get_max_size() method returns its size in bytes.

Log Duration
In addition to setting fine-grained scheduling intervals for a log to
record data, you can also specify a course-grained duration for a
log’s functionality. By default, a log’s functional duration is set to
be the log’s lifetime. It will start logging records immediately after
it is created and continue to log events until it is destroyed.
However, you can program the log to start functioning at a specific
time and stop functioning at a later date. Before the log’s start
time and after its stop time, it will not provide any logging
functionality and any schedules set for the log will be invalid. The

Example 48: Setting a log’s administrative state

// Java
// log obtained previously
if (log.get_administrative_state() ==

AdministrativeState.locked)
 {
 log.set_administrative_state(AdministrativeState.unlocked);
 System.out.println("Log " + log.id() + "is now unlocked.");
 }

Orbix Enterprise Messaging Guide: C++ 153

log will, however, forward events. See “Event Forwarding” on
page 143.

Specifying
A log’s duration is specified using a TimeInterval structure which
has the following signature:

If you specify a start time of zero, the log will become functional
as soon as it is enabled. A stop time of zero causes the log to
remain functional until it is destroyed.

Setting
You use a log’s set_interval() method to set a log’s functional
interval. It takes a single TimeInterval parameter. An
InvalidTimeInterval is thrown if the start time is before the stop
time. If the log’s functional duration is successfully changed, an
AttributeValueChange event is generated.

Record Lifetime
The lifetime of records in a log determines the amount of time
between when the log creates the record and when the log
compacts, or deletes the record. By default, all logs have a record
life of zero, which specifies that records have an infinite lifespan.
However, this also means that the log can not perform any
automatic garbage collecting.
For logs with a limited amount of persistent storage space, or for
logs that store large volumes of records, you may want to have
records expire and be automatically compacted.

Setting
You set a log’s record lifetime using the log’s set_record_life()
method. It specifies the record’s lifetime in seconds. When you
successfully change a log’s record lifetime, an
AttributeValueChange event is generated.

\\ IDL
struct TimeInterval
{
 TimeT start;
 TimeT stop;
};

Note: A race condition could exist when setting the
start/stop time. For instance, if a log’s start time is too
close to the time the set_interval() method is invoked,
then the time the log may have missed some events that
should have been logged before it could be activated.

 154 Orbix Enterprise Messaging Guide: C++

Checking
The get_max_record_life() method returns the log’s record lifetime
setting.

Log QoS Properties
The telecom log service supports a lightweight QoS framework
that specifies the level of assurance that logged records will be
stored in a log’s persistent data store.

Properties
Log objects support the following QoS settings:

Setting
The set_log_qos() operation sets the quality of service properties
of the log. If the QoS properties of a log is changed, an
AttributeValueChange event is generated. If set_log_qos() is
passed an invalid QoSList type, it will raise a
DsLogAdmin::UnsupportedQoS exception.

Table 10: Log QoS settings

QoS Setting Log Behavior

QoSNone
(default)

Records are buffered in memory when they
are logged. The log flushes its memory buffer
to the persistent store at intervals specified in
the telecom log service’s configuration
database. This level of service provides no
guarantee that logged records will be stored
to the persistent store.

QoSFlush Records are buffered in memory when they
are logged. The log’s memory buffer is flushed
when a client invokes the log’s flush()
method. This level of service also provides no
guarantee that logged records will be written
to the persistent store. However, it does
provide log clients with greater control over
when a log’s memory buffer is flushed to the
persistent store.

QoSReliability Records are written directly to the persistent
store when they are logged. This level of
service guarantees that all records will be
available in the persistent store and provides
a high level of recoverability in the event of a
crash. It will suffer a performance hit due to
the increased amount of disk access.

Orbix Enterprise Messaging Guide: C++ 155

Flushing the buffer
The flush() method writes out a log’s memory buffer to the
persistent store. It guarantees that all events recorded by the log
before the invocation of the flush() operation will be written to
the persistent store.

Example
Example 49 sets a log’s QoS to QoSFlush and then calls flush() on
it.

Availability Status
The telecom log service updates monitors the availability of all
active logs. Depending on scheduling and the amount of data
stored in a log, it may not be available for recording new records.
Determining a log’s availability can provide valuable feedback for
clients. For example, a log’s clients might generate an alarm if the
log is not available because it is full.

States
A log can be in one of three availability states:

Example 49: Setting a log’s QoS properties and flushing its memory buffer

// Java
//log object obtained previously
QoSType[] qos = new QoSType(1);
qos[0] = QoSFlush.value;

try
 {
 log.set_log_qos(qos);
 }
catch (DsLogAdmin::UnsupportedQoS)
 {
 // handle the exception
 }

// ...

// write the log’s memory buffer to disk
log.flush();

Table 11: Availability states for a log

State Log Behavior

On duty The log is fully functional. It can log new
records, forward events, and retrieve records.

Off duty The log is not scheduled to log new records.
All other functionality is still available.

 156 Orbix Enterprise Messaging Guide: C++

Checking
The telecom log service provides the get_availability_status()
method to check a log’s availability to log new records. The
method returns an AvailabilityStatus structure, shown in below.

It is possible that both the off_duty and log_full fields can be true
at the same time. A log is on duty if both fields are false and its
operational state is enabled.

Operational State
In addition to monitoring logs availability to log new records, the
telecom log service also monitors the operation state of log
objects. The operation state differs from the availability status of a
log in that a log’s operational state indicates possible processing
errors within a log.

States
Table 12 shows the possible operational states for a log.

Log full The log has reached its maximum size and is
no longer able to log new records. All other
functionality is available.

Table 11: Availability states for a log

State Log Behavior

// IDL
struct AvailabilityStatus
{
boolean off_duty;
boolean log_full;
};

Table 12: Log operational states

Operational
State

Reason

enabled The log is healthy and its full functionality is
available for use.

disabled The log has encountered a runtime error and
is unavailable. The log will not accept any
new records and it may not be able to
retrieve valid records. The log will still
attempt to forward events if its
ForwardingState is set to on.

Orbix Enterprise Messaging Guide: C++ 157

Checking
To check the operational state of a log, invoke its
get_operational_state() method. get_operational_state() returns
a value of OperationalState, which is an enumerated type with the
values enabled and disabled.

State change events
A StateChange event is generated whenever the operational state
of a log changes.

Qualities of Service
In addition to the QoS properties offered by the telecom log
service, NotifyLog objects can specify notification service level
Qualities of Service for events. The additional QoS settings
provide greater control over the reliability of messages reaching
consumers and the scalability of the telecom log service. The
notification service QoS properties include:
• the level of assurance the events will get delivered
• the persistence of client connection information
• an event’s priority
• an event’s lifetime in the channel
• the order in which the channel discards stale events
• the maximum number of times a proxy tries to contact a client

before giving up
• the amount of time between a proxy consumer’s calls to

pull()

For a full listing of the notification service’s QoS properties and
their descriptions, see “Notification Service Properties” on
page 47.

Setting QoS properties
To set notification service level QoS on a NotifyLog you use the
log’s set_qos() method. See “Log QoS Properties” on page 154.
Example 50 on page 158 sets a log’s EventReliability and
ConnectionReliability QoS to Persistent.

 158 Orbix Enterprise Messaging Guide: C++

Example 50: Setting notification level QoS on a NotifyLog object

// Java

Property[] qos = new Property(2);
qos[0] = new Property();
qos[0].name = EventReliability.value;
qos[0].value = org.omg.CORBA.ORB.init().create_any();
qos[0].value.insert_short(Persistent.value);
qos[1].name = ConnectionReliability.value;
qos[1].value = org.omg.CORBA.ORB.init().create_any();
qos[1].value.insert_short(Persistent.value);

log.set_qos(qos);

 Orbix Enterprise Messaging Guide: C++ 159

Managing the Telecom
Log Service
The telecom log service has several configuration variables that
determine its behavior. They can control the speed and reliability of the
telecom log service.

Configuring the Telecom Log Service
The telecom log service can be customized by adjusting the
service’s configuration settings. Using this mechanism you can set
the service’s persistence mode, the maximum number or records
returned from a query before an iterator object is used(“Getting
Log Records” on page 129), and the interval between flushes of
the log object’s internal memory buffer(“Flushing the buffer” on
page 155).

Configuration scopes
Most of the configuration variables for the telecom log service are
found in the following configuration scopes:
• iona_services.basic_log - The variables in this scope set the

database location, tracing level, persistence mode, and other
default settings used by BasicLog objects.

• iona_services.event_log - The variables in this scope set the
database location, tracing level, persistence mode, and other
default settings used by EventLog objects.

• iona_services.notify_log - The variables in this scope set the
database location, tracing level, persistence mode, and other
default settings used by NotifyLog objects.

The initial reference for the telecom log service is set in the
configuration’s root scope, as are the variables for using the
telecom log service with the Orbix management service.

Namespaces
The telecom log service’s configuration variables are in the
following namespaces:

plugins:tlog contains variables to control the general
performance of the telecom log service. The variables in this
namespace effect all log objects.

plugins:tlog:database contains variables to configure the
database used as the persistent store for log objects.

plugins:basic_log contains variables that are related to the
generic server plug-in.

 160 Orbix Enterprise Messaging Guide: C++

plugins:event_log contains variables that are related to the
generic server plug-in.

plugins:notify_log contains variables that are related to the
generic server plug-in.
In addition to the namespaces that are specifically used to
configure telecom log service properties, the following namespace
is used to configure the telecom log service’s collocated
notification service:

plugins:notify contains variables to control the performance of
the collocated notification service used by NotifyLog objects. To
effect the telecom log service the variables in the plugins:notify
namespace must occur in the iona_services.notify_log scope. The
variables specified under the iona_services.notification scope do
not effect the telecom log service.

Performance tuning variables
Modifying the telecom log service’s configuration variables effects
the overall performance of the service in terms of the amount of
resources it consumes and the speed at which it processes events.
You can use the configuration variables to tune the telecom log
service’s performance to meet you specific needs.
Some of the variables that effect performance are listed in
Table 13.

Table 13: Telecom log service configuration variables

Variable Effect

flush_interval Specifies the time in seconds between
automated flushes of a log object’s memory
buffer. This property only effects log objects
with the QoSNone quality of service. Setting
the value to 0 disables automatic flushing.
The default value is 5 minutes. See “Log QoS
Properties” on page 154.

max_records Specifies the maximum number of records
that a query or retrieve operation can return
without using an iterator. The default is 100.
See “Getting Log Records” on page 129.

iterator_timeout Specifies the lifetime of an inactive iterator
object in seconds. Iterator objects that have
been inactive for longer than the time
specified are reaped. Setting the value to 0
disables iterator reaping. The default value is
4 hours.

Orbix Enterprise Messaging Guide: C++ 161

Further reading
For a complete listing of the telecom log service’s configuration
variables and a detailed description of how to set them see the
Application Server Platform Administrator’s Guide.

Running the Telecom Log Service

Starting the service
Like all Orbix services, the telecom log service can be configured
to start on demand, to start at system boot, or be started by a
script generated by the configuration tool.
You can also manually start the telecom log service with the
following command:

Basic Logging

Event Logging

Notification Logging

Stopping the service
To stop the telecom logging service you can use the stop script
generated by the configuration tool or you can use itadmin. You
stop the telecom log service with the following itadmin command:

Basic Logging

Event Logging

Notification Logging

C:\Program Files\IONA\asp\6.2\bin\itbasic_log.exe -background run

-ORBdomain_name <domain_name> -ORBconfig_domains_dir "C:\Program
Files\IONA\etc\domains" -ORBname iona_services.basic_log

C:\Program Files\IONA\asp\6.2\bin\itevent_log.exe -background run

-ORBdomain_name <domain_name> -ORBconfig_domains_dir "C:\Program
Files\IONA\etc\domains" -ORBname iona_services.event_log

C:\Program Files\IONA\asp\6.2\bin\itnotify_log.exe -background run

-ORBdomain_name <domain_name> -ORBconfig_domains_dir "C:\Program
Files\IONA\etc\domains" -ORBname iona_services.notify_log

% basic_log stop

% event_log stop

% notify_log stop

 162 Orbix Enterprise Messaging Guide: C++

Further reading
For a detailed description of using itadmin to start and stop Orbix
services see the Application Server Platform Administrator’s
Guide.

Managing a Deployed Telecom Log Service

Using the telecom log service console
The telecom log service console provides administrators the ability
to monitor and control a deployed telecom log service. It provides
controls to create and destroy logs, admin objects, proxy objects,
and filters. It also provides controls to edit QoS properties,
schedules, and lifespans.
To start the telecom log service console use the following
command:

The console has detailed context sensitive help to guide you in its
use.

itlogging_console

Part IV
The Java Messaging

Service

In this part
This part contains the following chapters:

Developing a JMS Application page 165

Managing JMS page 187

 164 Orbix Enterprise Messaging Guide: Java

 Orbix Enterprise Messaging Guide: Java 165

Developing a JMS
Application
The Java Messaging System provides a native messaging solution for all
Java applications.

The Java Messaging System provides facilities for using both point
to point messaging or publish and subscribe messaging. Point to
point messaging is implemented using Queues. Publish and
subscribe messaging is implemented using Topics. Table 14
compares the properties of Queues and Topics.

Using Point to Point Messaging
In point to point messaging, messages are typically sent between
one producer and one consumer. Typically calls to receive
messages will block until a message is received; however, senders
need not block until a message is received.
JMS Queues are used to implement point to point messaging
between clients. A Queue delivers a message once and only once.
Typically, a Queue will only have one client consuming messages
although JMS does not prohibit connecting more than one
consumer. A JMS Queue also provides for asynchronous point to
point messaging.
As the name implies, a Queue enforces a FIFO order of message
delivery. Messages are placed at the end of the queue when they
are posted and cannot be consumed out of order. Once a message
has been consumed, it is popped off the queue and cannot be
consumed again unless it is redelivered. A consumer can browse a
queue to see what messages are waiting to be consumed, and can
acknowledge that messages have been received.

Table 14: Queue and Topic feature chart

Queue Topic

Most common topologies one -> one, many -> one one -> many, many -> many

Action if multiple
consumers

Each message goes to only
one consumer.

All consumers recieve every
message.

Action if no consumers Messages are retained. Messages are discarded.

Durable consumers No, but if a single consumer
is being used messages are
retained so none will be lost.

Yes

Browse undelivered
messages

Yes No

Delivery order FIFO none

 166 Orbix Enterprise Messaging Guide: Java

Creating a Queue
Queues are considered administered objects in JMS and are
maintained by the service. Applications using JMS Queues need to
use a JNDI lookup to get a reference to an existing Queue.
By default the Orbix JMS initializes two default Queues called
"iona:jms/queue/queue0" and "iona:jms/queue.queue1". queue0 is
used by the included demo programs; queue1 is left free.

New Queues can be created in one of two ways:
• Using the management console
• Programatically

Using the management console
The Orbix management service provides a createQueue operation
to create new Queues. For more information on using the
management service with JMS see “Managing JMS with the
Management Service” on page 190.

Programatically
To create a Queue programatically, five steps are required:
1. Create an initial context.
2. Get a reference to the queue connection factory using a JNDI

lookup for "iona:jms/queue/connectionFactory" as shown in
Example 51.

3. Create a connection using the connection factory as shown in
Example 52.

Note: Because Queues only deliver a message to one
consumer, it is advisable to ensure that each application
uses a unique Queue.

Example 51: Looking up the queue connection factory.

// Java
import javax.jms.Queue;
import javax.jms.QueueConnectionFactory;

// Context ctx obtained previously
QueueConnectionFactory qconFactory = (QueueConnectionFactory)

ctx.lookup("iona:jms/queue/connectionFactory");

Example 52: Create a connection.

// Java
import com.iona.jms.api.ITQueueConnection;

// Connection factory qconFactory obtained in previous example
ITQueueConnection queueConn = (ITQueueConnection)

qconFactory.createQueueConnection();

Orbix Enterprise Messaging Guide: Java 167

4. Get a reference to the DestinationAdmin from the newly
created connection as shown in Example 53.

5. Create a Queue using the DestinationAdmin’s
createDestination() operation as shown in Example 54.

createDestination() takes the following parameters:

Implementing a Point to Point Message Producer
A client that wants to send messages using a JMS Queue must
perform the following tasks:
1. Get a reference to a Queue and the queue connection factory.
2. Create a QueueConnection using the connection factory.
3. Create a QueueSession using the connection.
4. Create a QueueSender using the session.
5. Create and send messages.
6. Close the connection.

Getting the administered objects
The queue connection factory and all existing Queues are
administered objects and must be discovered using the JNDI
lookup.

Example 53: Obtaining a DestinationAdmin

// Java
import com.iona.jms.api.admin.ITDestinationAdmin;

// Connection queueConn obtained in previous example
ITDestinationAdmin destAdmin =

queueConn.getDestinationAdmin();

Example 54: Creating a Queue

// Java
import javax.jms.Queue;

// DestinationAdmin destAdmin obtained in previous
example

Queue queue = (Queue)
destAdmin.createDesination(queue_name,
ITDestination.QUEUE, null);

queue_name The name of the new queue.
type The type of destination to create.

ITDestination.QUEUE is specified because the new
destination is a Queue.

properties The Java properties for the new destination.

 168 Orbix Enterprise Messaging Guide: Java

The reference for the queue connection factory is
"iona:jms/queue/connectionFactory". The reference for a Queue
takes the form "iona:jms/queue/queueName" where queueName
specifies the name of the Queue.

Example 55 shows how to obtain references for Queue sportsQueue
and the queue connection factory.

Creating a connection
A JMS QueueConnection maintains the active connection information
between the client and JMS. It provides operations for stopping
and starting the flow of messages. However, a message producer
would be unlikely to use these operations because their behavior
only effect the ability of message consumers to receive messages
from a connection. A connection that has been stopped will still
accept messages from a message producer and will deliver the
messages once the connection is restarted.
The QueueConnection also provides the operation for creating
Session objects which manage the actual production and
consumption of messages.
QueueConnections are created using the queue connection factory’s
createQueueConnection() operation which takes no arguments.
Example 56 shows how to create a QueueConenction.

Note: A Queue must exist before it can be used by a client
program. For information on creating a Queue, see
“Creating a Queue” on page 166

Example 55: Obtaining references to the administered objects

// Java
import javax.jms.Queue;
import javax.jms.QueueConnectionFactory;

// InitialContect ctx obtained previously
// Lookup the queue connection factory
QueueConnectionfactory qconnFactory = (QueueConnectionFactory)

ctx.lookup("iona:jms/queue/connectionFactory");

// Lookup the Queue sportsQueue
Queue queue = (Queue) ctx.lookup("iona:jms/queue/sportsQueue");

Example 56: Creating a QueueConnection

// Java
import javax.jms.QueueConnection;

// Connection factory qconFactory obtained previously
QueueConnection queueConn = (QueueConnection)

qconFactory.createQueueConnection();

Orbix Enterprise Messaging Guide: Java 169

Creating a session
A QueueSession is created using the createQueueSession() operation
of a QueueConnection. This operation has the following signature:

createQueueSession() takes two parameters.

A QueueSession provides a single-threaded context for sending and
receiving messages. It provides operations for creating
QueueSenders, QueueRecievers, QueueBrowsers, and messages.
The code in Example 57 creates a non-transacted QueueSession
that uses lazy acknowledgement of messages.

Creating a message sender
In point to point messaging, messages are sent using a
QueueSender object. A QueueSender is created from a QueueSession
using the session’s createSender() operation. The operation has
the following signature:

QueueSession createQueueSession(Boolean transacted, int
acknowledge);

transacted Specifies if the Session is transacted. Can be either
true or false.

acknowledge Specifies how the receipt of messages will be
acknowledged by the Session. Can be take one of
three values:

AUTO_ACKNOWLEDGE specifies that the session
automatically acknowledges the receipt of all
messages immediately upon the receiving client’s
return from the recieve() operation.

CLIENT_ACKNOWLEDGE specifies that message
receivers must acknowledge the receipt of a message
by calling the message’s acknowledge() method.

DUPS_OK_ACKNOWLEDGE specifies that the
session can lazily acknowledge the delivery of
messages. This may result in duplicate messages
being delivered to clients.

Example 57: Creating a QueueSession

// Java
import javax.jms.Session;
import javax.jms.QueueSession;

// Connection queueConn obtained previously
QueueSession queueSession = queueConn.createQueueSession(false,

Session.DUPS_OK_ACKNOWLEDGE);

QueueSender createSender(Queue queue);

 170 Orbix Enterprise Messaging Guide: Java

createSender() takes a single parameter which is the Queue to
which the sender is going to send messages.
A QueueSender is also responsible for specifying the level of
guarantee, or delivery mode, that is used when sending
messages. This is done using the QueueSender’s setDeliveryMode()
operation. This operation takes a single parameter which can take
one of the following values:

DeliveryMode.NON_PERSISTENT specifies that there is no
guarantee that a message will be delivered if the JMS Broker or
other component of JMS fails while the message is in transit.

DeliveryMode.PERSISTENT specifies that the message is
guaranteed to be delivered even if the JMS Broker or other
component of JMS fails while the message is in transit.
The code in Example 58 creates a QueueSender and sets its delivery
mode to PERSISTENT.

Creating and sending a message
JMS messages come in several different flavors depending on the
type of information you wish to use as message. The messages
are created from a Session using one of the session’s create
message operations.
Messages are sent using the QueueSender’s send() operation.
The code in Example 59 creates a simple text message containing
the string "pulchritudinous" and sends it.

Example 58: Creating a persistent QueueSender

// Java
import javax.jms.QueueSender;
import javax.jms.DeliveryMode;

// Session queueSession obtained in a previous example
// Queue queue obtained in a previous example
QueueSender qSender = queueSession.createSender(queue);
qSender.setDeliveryMode(DeliveryMode.PERSISTENT);

Example 59: Sending a simple text message

// Java
import javax.jms.TextMessage;

// Session queueSession and QueueSender qSender obtained
// in a previous example
TextMessage message =

quueueSession.createTextMessage("pulchritudinous");
qSender.send(message);

Orbix Enterprise Messaging Guide: Java 171

Closing the connection
A QueueConnection is resource intensive and should be closed one it
is no longer in use. Also, because it is possible for a number of
objects to hold references to the connection, the JVM’s garbage
collection routine will not recover the resources in a timely or
reliable manner.
Connections are closed using the close() operation. Once the call
to close() is made, all Sessions, and their associated QueueSenders
and messages, are destroyed.
Example 60 shows how to close a QueueConnection.

Implementing a Point to Point Message Consumer
A client wishing to receive messages using a JMS Queue must
perform the following tasks:
1. Get a reference to a Queue and the queue connection factory.
2. Create a QueueConnection using the connection factory.
3. Create a QueueSession using the connection.
4. Create a QueueReciever using the session.
5. Start the QueueConnetion to begin the flow of messages.
6. Receive and process messages.
7. Close the connection.

Getting the administered objects
The queue connection factory and all existing Queues are
administered objects and must be discovered using the JNDI
lookup.
The reference for the queue connection factory is
"iona:jms/queue/connectionFactory". The reference for a Queue
takes the form "iona:jms/queue/queueName" where queueName
specifies the name of the Queue.

Example 60: Closing a QueueConnection

// Java
// Connection queueConn obtained in a previous example
queueConn.close();

Note: A Queue must exist before it can be used by a client
program. For information on creating a Queue, see
“Creating a Queue” on page 166

 172 Orbix Enterprise Messaging Guide: Java

Example 61 shows how to obtain references for Queue sportsQueue
and the queue connection factory.

Creating a connection
A JMS QueueConnection maintains the active connection information
between the client and JMS. It provides operations for stopping
and starting the flow of messages. When a connection is stopped,
using the stop() operation, message consumers will not receive
any messages. Also, message time-out values will continue to be
enforced and therefore messages may time-out while the
connection is stopped. Once the connection is restarted, using the
start() operation, message consumers will again begin receiving
messages.

The QueueConnection also provides the operation for creating
Session objects which manage the actual production and
consumption of messages.
QueueConnections are created using the queue connection factory’s
createQueueConnection() operation which takes no arguments.
Example 62 shows how to create a QueueConenction.

When a QueueConneciton is first created, it is stopped and message
receivers cannot receive messages until it is explicitly started.
While the connection can be started immediately after it is
created, this could result in messages being delivered before the
message receiver is ready to process them. It is best to start the
connection after the message receiver is initialized and ready to
process messages.

Example 61: Obtaining references to the administered objects

// Java
import javax.jms.Queue;
import javax.jms.QueueConnectionFactory;

// InitialContect ctx obtained previously
// Lookup the queue connection factory
QueueConnectionfactory qconnFactory = (QueueConnectionFactory)

ctx.lookup("iona:jms/queue/connectionFactory");

// Lookup the Queue sportsQueue
Queue queue = (Queue) ctx.lookup("iona:jms/queue/sportsQueue");

Note: Message producers can continue to send messages
while the connection is stopped. These new messages will
be delivered when the connection is restarted.

Example 62: Creating a QueueConnection

// Java
import javax.jms.QueueConnection;

// Connection factory qconFactory obtained previously
QueueConnection queueConn = (QueueConnection)

qconFactory.createQueueConnection();

Orbix Enterprise Messaging Guide: Java 173

Creating a session
A QueueSession is created using the createQueueSession() operation
of a QueueConnection. This operation has the following signature:

createQueueSession() takes two parameters.

A QueueSession provides a single-threaded context for sending and
receiving messages. It provides operations for creating
QueueSenders, QueueRecievers, QueueBrowsers, and messages.
The code in Example 63 creates a non-transacted QueueSession
that uses lazy acknowledgement of messages.

Creating a message receiver
In point to point messaging, messages are received by a
QueueReciever object. A QueueReciever is created from a
QueueSession using the session’s createReciever() operation. The
operation has the following signature:

QueueSession createQueueSession(Boolean transacted, int
acknowledge);

transacted Specifies if the Session is transacted. Can be either
true or false.

acknowledge Specifies how the receipt of messages will be
acknowledged by the Session. Can be take one of
three values:

AUTO_ACKNOWLEDGE specifies that the session
automatically acknowledges the receipt of all
messages immediately upon the receiving client’s
return from the recieve() operation.

CLIENT_ACKNOWLEDGE specifies that message
receivers must acknowledge the receipt of a message
by calling the message’s acknowledge() method.

DUPS_OK_ACKNOWLEDGE specifies that the
session can lazily acknowledge the delivery of
messages. This may result in duplicate messages
being delivered to clients.

Example 63: Creating a QueueSession

// Java
import javax.jms.Session;
import javax.jms.QueueSession;

// Connection queueConn obtained previously
QueueSession queueSession = queueConn.createQueueSession(false,

Session.DUPS_OK_ACKNOWLEDGE);

QueueReciever createReciever(Queue queue);

 174 Orbix Enterprise Messaging Guide: Java

createReciever() takes a single parameter which is the Queue from
which the receiver is going to recieve messages.
The code in Example 64 creates a QueueReciever.

Starting the connection and receiving
messages
Once the QueueReciever is created and any other initialization
required for message processing is completed, the connection
needs to be started to begin the flow of messages. The connection
is started using the start() operation on the QueueConnection.
After starting the connection, the QueueReciever can begin
synchronously receiving messages using its recieve() operation.
recieve() blocks until a message is consumed from the queue. The
operation can take a parameter that specifies the amount of time,
in milliseconds, to block before timing out.
If a client wishes to receive messages asynchronously, it can
register a MessageListener, which will notify the client when
messages are ready..
Example 65 shows the code to start a connection and receive a
text message. The QueueReciver only blocks for 4 seconds before
timing out.

If a message is received from the queue, the message is printed
out using the getText() operation defined on a JMS TextMessage. If
no message is received from the queue, recieve() returns a null.

Example 64: Creating a QueueReciever

// Java
import javax.jms.QueueReciever;

// Session queueSession obtained in a previous example
// Queue queue obtained in a previous example
QueueReciever qReciever = queueSession.createReciever(queue);

Example 65: Receiving a text message

// Java
import javax.jms.TextMessage;

// Connection queueConn and QueueReciever qReciever obtianed
// in a previous example
queueConn.start();
TextMessage message = qReciever.recieve(4000);
if (message != null)
 System.out.println("Message recieved: " + message.getText());

Orbix Enterprise Messaging Guide: Java 175

Closing the connection
A QueueConnection is resource intensive and should be closed one it
is no longer in use. Also, because it is possible for a number of
objects to hold references to the connection, the JVM’s garbage
collection routine will not recover the resources in a timely or
reliable manner.
Connections are closed using the close() operation. Once the call
to close() is made, all Sessions, and their associated QueueSenders
and messages, are destroyed.
Example 66 shows how to close a QueueConnection.

Using Publish / Subscribe Messaging
In publish / subscribe messaging, many message producers
forward messages to many message consumers. This style of
messaging is typically asynchronous, meaning that call to receive
messages do not block. The message consumers continue to
process information while waiting for new messages to arrive.
JMS Topics are used to implement publish / subscribe messaging
between JMS clients. Topics allow anonymous publishers,
TopicPublishers, and anonymous suppliers, TopicSubscriber, to
connect and disconnect at random intervals. The Topic ensures
that all messages are delivered to each connected consumer at
least once. If a consumer wishes to receive messages even when
it is disconnected from the Topic it must register using a durable
subscription.
Topics also provide a means to ensure that messages are
delivered to all connected consumers reliably. Messages published
as NON_PERSISTENT are not guaranteed to arrive to all connected
consumers. Messages published PERSISTENT are guaranteed to
arrive to each connected consumer at most once.

Creating a Topic
Topics are considered administered objects in JMS and are
maintained by the service. Applications using JMS Topics need to
use a JNDI lookup to get a reference to an existing Topic.
By default the Orbix JMS initializes two default Queues called
"iona:jms/queue/topic0" and "iona:jms/queue.topic1". topic0 is
used by the included demo programs; topic1 is left free.
Topics can be created in one of two ways:
• Using the management console
• Programatically

Example 66: Closing a QueueConnection

// Java
// Connection queueConn obtained in a previous example
queueConn.close();

 176 Orbix Enterprise Messaging Guide: Java

Using the management console
The Orbix management service provides a createTopic operation
to create new Topics. For more information on using the
management service with JMS see “Managing JMS with the
Management Service” on page 190.

Programatically
To create a Topic programatically, five steps are required:
1. Create an initial context.
2. Get a reference to the topic connection factory using a JNDI

lookup for "iona:jms/topic/connectionFactory" as shown in
Example 67.

3. Create a connection using the connection factory as shown in
Example 68.

4. Get a reference to the DestinationAdmin from the newly
created connection as shown in Example 69.

Example 67: Looking up the topic connection factory.

// Java
import javax.jms.TopicConnectionFactory;

// Context ctx obtained previously
TopicConnectionFactory tconFactory = (TopicConnectionFactory)

ctx.lookup("iona:jms/topic/connectionFactory");

Example 68: Create a connection.

// Java
import com.iona.jms.api.ITTopicConnection;

// Connection factory tconFactory obtained in previous example
ITTopicConnection topicConn = (ITTopicConnection)

tconFactory.createTopicConnection();

Example 69: Obtaining a DestinationAdmin

// Java
import com.iona.jms.api.admin.ITDestinationAdmin;

// Connection topicConn obtained in previous example
ITDestinationAdmin destAdmin = topicConn.getDestinationAdmin();

Orbix Enterprise Messaging Guide: Java 177

5. Create a Topic using the DestinationAdmin’s
createDestination() operation as shown in Example 70.

createDestination() takes the follwoing parameters:

Implementing a Message Publisher
A client wishing to publish messages to a JMS Topic must perform
the following tasks:
1. Get a reference to a Topic and the topic connection factory.
2. Create a TopicConnection using the connection factory.
3. Create a TopicSession using the connection.
4. Create a TopicPublisher using the session.
5. Create and publish messages.
6. Close the connection.

Getting the administered objects
The queue connection factory and all existing Topics are
administered objects and must be discovered using the JNDI
lookup.
The reference for the topic connection factory is
"iona:jms/topic/connectionFactory". The reference for a Queue
takes the form "iona:jms/topic/topicName" where topicName specifies
the name of the Queue.

Example 70: Creating a Topic

// Java
import javax.jms.Topic;

// DestinationAdmin destAdmin obtained in previous example
Topic topic = (Topic) destAdmin.createDesination(topic_name,

ITDestination.TOPIC, null);

topic_name The name of the new topic.
type The type of destination to create.

ITDestination.TOPIC is specified because the new
destination is a Topic.

properties The Java properties for the new destination.

Note: A Topic must exist before it can be used by a client
program. For information on creating a Topic, see
“Creating a Topic” on page 175

 178 Orbix Enterprise Messaging Guide: Java

Example 71 shows how to obtain references for Topic sportsTopic
and the topic connection factory.

Creating a connection
A JMS TopicConnection maintains the active connection information
between the client and JMS. It provides operations for stopping
and starting the flow of messages. However, the state of the
connection does not effect a publisher’s ability to publish message
to the Topic. Therefore message publishers would most likely not
change the state of the Connection.
The TopicConnection also provides the operation for creating
Session objects which manage the actual production and
consumption of messages.
TopicConnections are created using the topic connection factory’s
createTopicConnection() operation which takes no arguments.
Example 72 shows how to create a TopicConenction.

Creating a session
A TopicSession is created using the createTopicSession() operation
of a TopicConnection. This operation has the following signature:

createQueueSession() takes two parameters.

Example 71: Obtaining references to the administered objects

// Java
import javax.jms.Topic;
import javax.jms.TopicConnectionFactory;

// InitialContect ctx obtained previously
// Lookup the topic connection factory
TopicConnectionfactory tconnFactory = (TopicConnectionFactory)

ctx.lookup("iona:jms/topic/connectionFactory");

// Lookup the Topic sportsTopic
Topic topic = (Topic) ctx.lookup("iona:jms/topic/sportsTopic");

Example 72: Creating a TopicConnection

// Java
import javax.jms.TopicConnection;

// Connection factory tconFactory obtained previously
TopicConnection topicConn = (TopicConnection)

tconFactory.createTopicConnection();

TopicSession createTopicSession(Boolean transacted, int
acknowledge);

transacted Specifies if the Session is transacted. Can be either
true or false.

Orbix Enterprise Messaging Guide: Java 179

A TopicSession provides a single-threaded context for sending and
receiving messages. It provides operations for creating
TopicPublishers, TopicSubscribers, and messages.
The code in Example 73 creates a non-transacted TopicSession
that uses client acknowledgement of messages.

Creating a message publisher
In publish / subscribe messaging, messages are published using a
TopicPublisher object. A TopicPublisher is created from a
TopicSession using the session’s createPublisher() operation. The
operation has the following signature:

createPublisher() takes a single parameter which is the Topic to
which the publisher publishes messages.
A TopicPublisher is also responsible for specifying the level of
guarantee, or delivery mode, that is used when sending
messages. This is done using the TopicPublisher’s
setDeliveryMode() operation. This operation takes a single
parameter which can take one of the following values:

DeliveryMode.NON_PERSISTENT specifies that there is no
guarantee that a message will be delivered if the JMS Broker or
other component of JMS fails while the message is in transit.

acknowledge Specifies how the receipt of messages will be
acknowledged by the Session. Can be take one of
three values:

AUTO_ACKNOWLEDGE specifies that the session
automatically acknowledges the receipt of all
messages immediately upon the receiving client’s
return from the recieve() operation.

CLIENT_ACKNOWLEDGE specifies that message
receivers must acknowledge the receipt of a
message by calling the message’s acknowledge()
method.

DUPS_OK_ACKNOWLEDGE specifies that the
session can lazily acknowledge the delivery of
messages. This may result in duplicate messages
being delivered to clients.

Example 73: Creating a TopicSession

// Java
import javax.jms.Session;
import javax.jms.TopicSession;

// Connection TopicConn obtained previously
TopicSession topicSession = topicConn.createTopicSession(false,

Session.CLIENT_ACKNOWLEDGE);

TopicPublisher createPublisher(Topic topic);

 180 Orbix Enterprise Messaging Guide: Java

DeliveryMode.PERSISTENT specifies that the message is
guaranteed to be delivered even if the JMS Broker or other
component of JMS fails while the message is in transit.
The code in Example 74 creates a TopicPublisher and sets its
delivery mode to PERSISTENT.

Creating and publishing messages
JMS messages come in several different flavors depending on the
type of information you wish to use as message. The messages
are created from a Session using one of the session’s create
message operations.
Messages are sent using the TopicPublisher’s publish() operation.
The code in Example 75 creates a simple text message containing
the string "pulchritudinous" and publishes it.

Closing the connection
A TopicConnection is resource intensive and should be closed one it
is no longer in use. Also, because it is possible for a number of
objects to hold references to the connection, the JVM’s garbage
collection routine will not recover the resources in a timely or
reliable manner.
Connections are closed using the close() operation. Once the call
to close() is made, all Sessions, and their associated
TopicPublishers and messages, are destroyed.

Example 74: Creating a persistent TopicPublisher

// Java
import javax.jms.TopicPublisher;
import javax.jms.DeliveryMode;

// Session topicSession obtained in a previous example
// Topic topic obtained in a previous example
TopicPublisher tPub = topicSession.createPublisher(topic);
tPub.setDeliveryMode(DeliveryMode.PERSISTENT);

Example 75: Publishing a simple text message

// Java
import javax.jms.TextMessage;

// Session topicSession and TopicPublisher tPub obtained
// in a previous example
TextMessage message =

topicSession.createTextMessage("pulchritudinous");
tPub.publish(message);

Orbix Enterprise Messaging Guide: Java 181

Example 76 shows how to close a TopicConnection.

Implementing a Subscriber

Overview
A client wishing to publish messages to a JMS Topic must perform
the following tasks:
1. Get a reference to a Topic and the topic connection factory.
2. Create a TopicConnection using the connection factory.
3. Create a TopicSession using the connection.
4. Create a TopicSubscriber using the session.
5. Create and publish messages.
6. Close the connection.

Getting the administered objects
The queue connection factory and all existing Topics are
administered objects and must be discovered using the JNDI
lookup.
The reference for the topic connection factory is
"iona:jms/topic/connectionFactory". The reference for a Queue
takes the form "iona:jms/topic/topicName" where topicName specifies
the name of the Queue.

Example 77 shows how to obtain references for Topic sportsTopic
and the topic connection factory.

Example 76: Closing a TopicConnection

// Java
// Connection topicConn obtained in a previous example
topicConn.close();

Note: A Topic must exist before it can be used by a client
program. For information on creating a Topic, see
“Creating a Topic” on page 175

Example 77: Obtaining references to the administered objects

// Java
import javax.jms.Topic;
import javax.jms.TopicConnectionFactory;

// InitialContect ctx obtained previously
// Lookup the topic connection factory
TopicConnectionfactory tconnFactory = (TopicConnectionFactory)

ctx.lookup("iona:jms/topic/connectionFactory");

// Lookup the Topic sportsTopic
Topic topic = (Topic) ctx.lookup("iona:jms/topic/sportsTopic");

 182 Orbix Enterprise Messaging Guide: Java

Creating a connection
A JMS TopicConnection maintains the active connection information
between the client and JMS. It provides operations for stopping
and starting the flow of messages. When a connection is stopped,
using the stop() operation, message consumers will not receive
any messages. Also, message time-out values will continue to be
enforced and therefore messages may time-out while the
connection is stopped. Once the connection is restarted, using the
start() operation, message consumers will again begin receiving
messages.

The TopicConnection also provides the operation for creating
Session objects which manage the actual production and
consumption of messages.
TopicConnections are created using the topic connection factory’s
createTopicConnection() operation which takes no arguments.
Example 78 shows how to create a TopicConenction.

When a TopicConneciton is first created, it is stopped and
subscribers cannot receive messages until it is explicitly started.
While the connection can be started immediately after it is
created, this could result in messages being delivered before the
subscriber is ready to process them. It is best to start the
connection after the subscriber is initialized and ready to process
messages.

Creating a session
A TopicSession is created using the createTopicSession() operation
of a TopicConnection. This operation has the following signature:

createQueueSession() takes two parameters.

Note: Message producers can continue to send messages
while the connection is stopped. These new messages will
be delivered when the connection is restarted.

Example 78: Creating a TopicConnection

// Java
import javax.jms.TopicConnection;

// Connection factory tconFactory obtained previously
TopicConnection topicConn = (TopicConnection)

tconFactory.createTopicConnection();

TopicSession createTopicSession(Boolean transacted, int
acknowledge);

transacted Specifies if the Session is transacted. Can be either
true or false.

Orbix Enterprise Messaging Guide: Java 183

A TopicSession provides a single-threaded context for sending and
receiving messages. It provides operations for creating
TopicPublisher objects, TopicSubscriber objects, and messages.
The code in Example 79 creates a non-transacted TopicSession
that uses client acknowledgement of messages.

Creating a message subscriber
In publish / subscribe messaging messages are consumed by a
TopicSubscriber object. A TopicSubscriber is created from a
TopicSession using the session’s createSubscriber() operation. The
operation has the following signature:

createSubscriber() takes a single parameter which is the Topic
from which the subscriber consumes messages.

acknowledge Specifies how the receipt of messages will be
acknowledged by the Session. Can be take one of
three values:

AUTO_ACKNOWLEDGE specifies that the session
automatically acknowledges the receipt of all
messages immediately upon the receiving client’s
return from the recieve() operation.

CLIENT_ACKNOWLEDGE specifies that message
receivers must acknowledge the receipt of a
message by calling the message’s acknowledge()
method.

DUPS_OK_ACKNOWLEDGE specifies that the
session can lazily acknowledge the delivery of
messages. This may result in duplicate messages
being delivered to clients.

Example 79: Creating a TopicSession

// Java
import javax.jms.Session;
import javax.jms.TopicSession;

// Connection TopicConn obtained previously
TopicSession topicSession = topicConn.createTopicSession(false,

Session.CLIENT_ACKNOWLEDGE);

TopicSubscriber createSubscriber(Topic topic);

 184 Orbix Enterprise Messaging Guide: Java

The code in Example 80 creates a TopicSubscriber.

Starting the connection and consuming
messages
Once the TopicSubscriber is created and any other initialization
required for message processing is completed, the connection
needs to be started to begin the flow of messages. The connection
is started using the start() operation on the TopicConnection.
After starting the connection, the TopicSubscriber can begin
synchronously consuming messages using its recieve() operation.
recieve() blocks until a message is consumed from the topic. The
operation can take a parameter that specifies the amount of time,
in milliseconds, to block before timing out.
If a client wishes to consume messages asynchronously, it can
register a MessageListener, which will notify the client when
messages are ready. .
Example 81 shows the code to start a connection and consume a
text message. The TopicSubscriber blocks for 4 seconds before
timing out.

If a message is consumed from the topic, the message is printed
out using the getText() operation defined on a JMS TextMessage. If
no message is consumed from the topic, recieve() returns a null.

Closing the connection
A TopicConnection is resource intensive and should be closed one it
is no longer in use. Also, because it is possible for a number of
objects to hold references to the connection, the JVM’s garbage
collection routine will not recover the resources in a timely or
reliable manner.

Example 80: Creating a TopicSubscriber

// Java
import javax.jms.TopicSubscriber;

// Session topicSession obtained in a previous example
// Topic topic obtained in a previous example
TopicSubscriber tSub = topicSession.createSubscriber(topic);

Example 81: Consuming a text message

// Java
import javax.jms.TextMessage;

// Connection topicConn and TopicSubscriber tSub obtianed
// in a previous example
topicConn.start();
TextMessage message = (TextMessage) tSub.recieve(4000);
if (message != null)
 System.out.println("Message recieved: " + message.getText());

Orbix Enterprise Messaging Guide: Java 185

Connections are closed using the close() operation. Once the call
to close() is made, all Session objects, and their associated
QueueSender objects and messages, are destroyed.
Example 82 shows how to close a TopicConnection.

Example 82: Closing a TopicConnection

// Java
// Connection topicConn obtained in a previous example
topicConn.close();

 186 Orbix Enterprise Messaging Guide: Java

 Orbix Enterprise Messaging Guide: Java 187

Managing JMS
The Java Messaging Service is fully configurable to handle a variety of
deployment scenarios.

JMS Configuration
To maximize the service’s scalability and functionality, JMS is
highly configurable. Like other Orbix services, JMS has a number
of user editable configuration variables that control its behavior.
For instance, you can control the maximum amount of active JDBC
connections the broker can offer and what database JMS uses for
a persistent store.

Configuration scope
The JMS broker’s configuration variables are in the
iona_services.jms configuration scope. JMS client configuration
information, such as the initial references to the JMS broker, are
found in the global scope, or may be scoped by the client’s ORB
name.

Initial References
JMS clients require two initial references:

IT_JMSMessageBroker provides the initial reference to the JMS
message broker.

IT_JMSServerContext is used to support JNDI lookup of JMS
destinations and connection factories. See “JNDI” on page 188.

Namespaces
Other than the initial reference variables, the JMS configuration
variables only affect the behavior of the JMS broker. They are
contained in several namespaces under the JMS configuration
scope. The namespaces are:

persistence:jdbc controls what implementation is being used for
the service’s persistent store. Orbix currently supports Oracle and
a purely in-memory implementation.

destinations controls the default queue and topic names that the
service creates at start up.

plugins:jms specifies the service’s type of persistence and its
well known address.

thread_pool specifies the behavior of the services thread pool.

 188 Orbix Enterprise Messaging Guide: Java

factory specifies a username and password for accessing the
javax.jms.ConnectionFactory object.

Other variables
JMS also has variables that specify a replica name, if the service’s
management features are active, and the number of threads
available to the service. For a complete listing of the configuration
variables see the Orbix Configuration Reference Guide.

JNDI
JMS clients use JNDI to get references to connection factories and
message destinations. For JMS a URL-based naming scheme is
used for identifying JMS objects. The JNDI entries for JMS are:

To enable the URL naming scheme, you must set the JNDI
java.naming.factory.url.pkgs property to com.iona.jms.naming. You
can do this using system properties, a properties file, or
programmatically. Example 83 shows how to set the property
programmatically.

Running JMS
JMS has several start-up configurations depending upon how it is
deployed.

Starting the JMS Broker
JMS is configured to start in the same manner as all other Orbix
services. In addition, the JMS broker can be started in one of
these ways:
• Pure-Java standalone mode
• Embedded mode

QueueConnectionFactory: "iona:jms/queue/connectionFactory"
TopicConnectionFactory: "iona:jms/topic/connectionFactory"
Queue : "iona:jms/queue/queue_name"
Topic : "iona:jms/topic/topic_name"

Example 83: Setting the JNDI naming package to use JMS URL based names

import java.util.Hashtable;
import javax.naming.Context;
import javax.naming.InitialContext;
import javax.jms.Topic;

// ...

Hashtable env = new Hashtable();
env.put(Context.URL_PKG_PREFIXES, "com.iona.jms.naming");
InitialContext ctx = new InitialContext(env);
Topic topic = (Topic)ctx.lookup("iona:jms/topic/topic0");

Orbix Enterprise Messaging Guide: Java 189

Pure-Java standalone mode
To start the JMS broker in pure-Java standalone mode, you run it
via the JRE.

Embedded mode
The JMS broker can also be started from within a Java application
that wishes to use it. Once running, the JMS broker will be
available for any Java client that wishes to use it.
To start the JMS broker from within a Java application use the
following code:

Shutting Down the JMS Broker
The JMS broker may be stopped in one of three ways:
• Using the JRE
• Using itadmin
• Programmatically

Using the JRE
To shut down the JMS broker using the JRE, use the following
command:

java -DORBdomain_name=domain_name
-DORBconfig_domains_dir=domain_dir
com.iona.jms.server.JMSBroker

db_dir The directory where Orbix log and database files
are stored. You specified this location when you
configured the domain.

domain_name The name of your configuration domain.
domain_dir The directory where Orbix configuration files are

stored. You specified this location when you
configured the domain.

import com.iona.jms.api.ITMessageService;

//...

ITMessageService msgSvc = ITMessageService.init(args);
msgSvc.start(true);

java -DORBdomain_name=domain_name
-DORBconfig_domains_dir=domain_dir
com.iona.jms.server.JMSBroker shutdown

 190 Orbix Enterprise Messaging Guide: Java

Using itadmin
To shut down the JMS broker using itadmin, use the following
command:

Programmatically
If the JMS broker was started by a Java application, the
application can shut it down using the shutdown() operation of the
ITMessageService used to start the broker.

Managing JMS with the Management Service
JMS includes instrumentation for the Orbix management service
and can be managed through the Administrator Console. Two
MBean types are exposed by JMS. One for the JMS broker and one
for each JMS destination.

Configuring JMS to be managed
To enable JMS management using the Orbix management service
and Administrator Console there are two configuration variables
that must be set:

JMS can also be managed through a light-weight JMX wed adaptor
that is provided with the product. To enable this form of
management set the following configuration variables:

Broker Administration
If you have enabled JMS management in your configuration, the
JMS broker’s MBean is registered as the root MBean for the
service. It exposes the following attributes:

itadmin jms stop

// msgSvc obtained in previous code sample
msgSvc.shutdown();

plugins:jms:is_managed = "true";
instrumentation:enabled = "true";

jmx:adaptor:enabled = "true";
jmx:adaptor:port = "port_number";

Table 15: JMS broker MBean attributes

Attribute Description

InstrumentationEnabled A boolean determining if verbose statistics are being generated
for JMS.

InstrumentationStartTime The time at which verbose statistic generation began.

Orbix Enterprise Messaging Guide: Java 191

The JMS broker’s MBean also exposes the following operations:

Destination Administration
If you have enabled JMS management in your configuration, each
destination used by the service will have an MBean registered with
the management service. The destination MBeans expose the
following attributes:

MessageThroughput A read-only attribute showing the number of JMS messages
processed since the InstrumentationStartTime.

DataThroughput A read-only attribute showing the amount of JMS message data
processes since the InstrumentationStartTime.

MessageInProgress A read-only attribute showing the number of JMS messages
currently being processed.

DataInProgress A read-only attribute showing the amount of JMS message data
currently being processed.

ActiveQueues A read-only list of ObjectNames representing the currently active
queues.

ActiveTopics A read-only list of ObjectNames representing the currently active
topics.

Table 15: JMS broker MBean attributes

Attribute Description

Table 16: JMS broker MBean operations

Operation Description

createQueue Creates a new named queue.

removeQueue Removes an existing queue.

createTopic Creates a new named topic.

removeTopic Removes an existing topic.

shoutdownBroker Shuts down the JMS broker.

Table 17: JMS destination MBean attributes

Attribute Description

URL The URL used to lookup this destination in the JNDI.

MessageThroughput A read-only attribute showing the throughput of the destination
in terms of JMS messages since the InstrumentationStartTime.

DataThroughput A read-only attribute showing the throughput of the destination
in terms of JMS message data processes since the
InstrumentationStartTime.

MessageInProgress A read-only attribute showing the number of JMS messages
being currently processed for the destination.

 192 Orbix Enterprise Messaging Guide: Java

Selecting a Persistent Store Implementation
Currently, Orbix supports the following persistent store
configurations:
• Orbix can work with Oracle using the JDBC drivers which are

shipped with Oracle.
• JMS also supports an implementation that operates purely in

memory and is transient for testing purposes.

Oracle with Oracle JDBC drivers
To configure JMS to use Oracle, with Oracle’s JDBC drivers, as its
persistent store you must make the following configuration
entries:

You must also ensure that the Oracle JDBC driver’s jar file is in the
JMS CLASSPATH.

Pure memory store
To configure JMS to use a purely in-memory persistent store
implementation you must make the following configuration
entries:

DataInProgress A read-only attribute showing the amount of JMS message data
being currently processed for the destination.

MaxMessageSize A controllable attribute that specifies the maximum size, in
bytes, allowed for the destination.

MaxConsumers A controllable attribute that specifies the maximum number of
consumers that can connect to the destination.

DurableConsumersAllowed A controllable attribute that specifies if the destination allows
durable consumers

MaxUnconsumedMessages A controllable attribute that specifies the maximum number of
unconsumed JMS messages the destination can store.

MaxUnconsumedData A controllable attribute that specifies the maximum amount of
unconsumed JMS message data, in bytes, the destination can
store.

Table 17: JMS destination MBean attributes

Attribute Description

persistence:message_store="Oracle";
persistence:jdbc:driver="oracle.jdbc.pool.OracleConnectionPoolDataSource";
persistence:jdbc:url="jdbc:oracle:thin:@host:port:sid";
persistence:jdbc:user="oracle_username";
persistence:jdbc:passowrd="oracle_password";

persistence:message_store="Memory";
persistence:jdbc:driver="";
persistence:jdbc:url="";

Orbix Enterprise Messaging Guide: Java 193

Running JMS Clients
JMS clients initialize the Orbix ORB silently and therefore do not
pass along command line arguments to the ORB. This requires
that you pass any ORB command line arguments as Java system
properties.
Specifically, you must be sure to pass your domain name and
configuration directories to the ORB. For example, to run the point
to point demo’s sender client you would type

The following would not work:

WARNING: This implementation is transient and is only
suitable for testing purposes. It is not suitable for
deployment environments because it does not provide the
reliability guarantees for re-delivery of unacknowledged
messages as mandated by the JMS specification.

java -DORBdomain_name=name -DORBconfig_domains_dir=dir demos.jms.pointToPoint.Sender

java demos.jms.pointToPoint.Sender -ORBdomain_name name -ORBconfig_domains_dir dir

 194 Orbix Enterprise Messaging Guide: Java

Part V
The JMS-Notification

Bridge Service

In this part
This part contains the following chapters:

JMS-Notification Message Translation page 197

Managing the JMS-Notification Bridge Service page 203

 196 Orbix Enterprise Messaging Guide: C++

 Orbix Enterprise Messaging Guide: C++ 197

JMS-Notification
Message Translation
The JMS-Notification bridge translates messages between JMS and the
notification service based on OMG specified standards.

JMS Message to Notification Event
JMS messages are translated into structured events. The JMS
header properties which define lifetime, priority, and persistence
are mapped to the corresponding QoS properties in the variable
header of the structured event. All other JMS header properties
are stored in the filterable data portion of the structured event.
The method used to translate the JMS message body into the
structured event body depends on the type of JMS message being
translated.
Figure 14 shows how a JMS message is mapped to a structured
event that a notification service consumer can understand.

Structured event fixed header data
A structured event’s fixed header fields are mapped as follows:

domain_name
The domain_name field is set to an empty string.

Figure 14: JMS message to structured event mapping

remainder_of_body

domain_type = “”
type_name
event_name

Event Reliability

Timeout

Priority

short

TimeT

short

fd_name1

fd_name2

fd_name3

fdnameN

fd_value1

fd_value2

fd_value3

fd_valueN

} fixed
header

} variable
header

}filterable
body

JMS message type
Topic/Queue

JMSDeliveryMode

JMSExpiration

JMSPriority

JMSType

JMSTimestamp

JMSReplyTo

JMSCorrealationID

JMSMessageID

JMSDestination

JMSRedelivered

JMSXUserID

JMSXGroupID

JMSXAppID

JMSXGroupSeq

name_ptr1 value_ptr1

Body

{Header

{
{

standard
properties

user
properties

 198 Orbix Enterprise Messaging Guide: C++

type_name
The type_name field is set to indicate the JMS message’s type. The
message’s type specifier is prefixed with the percent ("%")
character. For example, a JMS text message would have a
type_name of "%TextMessage".

event_name
The event_name field is set to the name of the JMS destination from
which the message was forwarded.

Persistence, lifetime, and priority
property mapping
A JMS message’s header uses three fields to specify a message’s
persistence, lifetime, and priority. These fields are mapped
directly to notification service QoS properties in the structured
event variable header. They are mapped as follows:

JMSDeliveryMode
The JMSDeliveryMode field of the JMS message header is mapped to
the EventReliability QoS property and is set in the structured
event’s variable header field. If the JMSDeliveryMode is specified as
Persistent, EventReliability is set to Persistent. All other
JMSDeliveryMode settings are mapped to BestEffort.

JMSExpiration
The JMSExperation field of the JMS message header is mapped to
the Timeout QoS property. The value is converted from
milliseconds, JMS units for message timeout, to units of 100
nanoseconds, the notification service’s units for message timeout.

JMSPriority
The JMSPriority field of the JMS message header is mapped to the
Priority QoS property.

Other JMS header fields
The remaining fields of the JMS message header have no direct
mapping into QoS property settings in a structured event’s header
field. Therefore, the remaining fields are mapped into the filterable
data section of the structured event. They are inserted into the
filterable data section as name-value pairs using the
CosNotification::PropertySeq data structure. JMS header fields
with null values are omitted upon translation.

Optional JMS property fields
A JMS message can contain a number of optional property fields to
further specify the message’s origin and content. These
properties, if specified, are placed into the structured event’s
filterable body along with the JMS header fields. They are also
inserted using the CosNotificatioin::PropertySeq data structure.

Orbix Enterprise Messaging Guide: C++ 199

JMS Message body
The body of a JMS message is inserted into the remainder_of_body
portion of the structured event as a CORBA::Any. JMS message
bodies are mapped differently depending on the type of JMS
message body passing through the bridge. The different message
types are mapped as follows:

TextMessage
A JMS TextMessage consists of a Java String. The data is inserted
into the remainder_of_body by insertiting the String in a CORBA::Any
as a wide string.

StreamMessage
A JMS StreamMessage consists of a stream of Java primitive types.
The data in the stream is inserted into the remainder_of_body by
translating each piece of data using the standard IDL to Java
mapping and encapsulating the stream into a CORBA::AnySeq.

MapMessage
A JMS MapMessage consists of a sequence of name-value pairs
where the name is a Java String and the value is a Java primitive
type. The data is inserted into the remainder_of_body by translating
the sequence of name-value pairs into a
CosNotification::PropertySeq data structure. The Java primitive
types are translated using the standard Java to IDL mapping.

BytesMessage
A JMS BytesMessage consists of uninterpreted stream data from
either a Java DataInputStream or a Java DataOutputStream. The data
is inserted into the remainder_of_body as an untranslated IDL
OctetSeq.

ObjectMessage
A JMS ObjectMessage consists of a Java object that supports the
Serializable interface. The data is inserted into the
remiander_of_body as an OctetSeq. The data in the OctetSeq can be
reconstructed by a notification consumer, but it is up to the
consumer’s developer to implement the reconstruction process.

Notification Event to JMS Message
All styles of notification events, Any, Sequence, and Structured,
are treated as structured events when being mapped to a JMS
message. The mapping of Any and Sequence events follows the
standard mapping specified by the OMG. The QoS properties
EventRelaibility, Timeout, and Priority are mapped to the
corresponding fields in the JMS message header. THe remainder
of the variable header fields and the filterable body are mapped
into the user defined properties section of the JMS message as
name-value pairs. The reamiander_of_body portion of the
structured event is mapped to the JMS message body. The JMS
message is assigned a JMSType of StructuredEvent. The remaining
header and property fields of the JMS message are filled in by the
bridge using default values.

 200 Orbix Enterprise Messaging Guide: C++

Figure 15 shows how a structured event is mapped to a JMS
message.

QoS properties
The notification service properties EventReliability, Timeout, and
Priority are mapped to the JMSDeliveryMode, the JMSExpiration,
and the JMSPriority fields in the JMS message header.

EventReliability
If the EventReliability property is set in the event’s variable
header, the value is mapped to the JMSDeliveryMode field. If the
EventReliability property is not set, JMSDeliveryMode is set to
Persistent.

Timeout
If the Timeout property is set in the event’s variable header, the
value is mapped to the JMSExpiration field. The value is converted
from units of 100 nanoseconds into milliseconds. If the Timeout
property is not set, JMSExpiration is set to unlimited.

Priority
If the Priority property is set in the event’s variable header, the
value is mapped to the JMSPriority field. If Priority is not set,
JMSPriority is set to 4.

Figure 15: Structured event to JMS message mapping

domain_type

type_name

event_name

Event Reliability short

Timeout TimeT

Priority short

remainder_of_body

ohf_name1 ohf_value1

ohf_nameN ohf_valueN

fd_name1 fd_value1

fd_nameN fd_valueN

structured event
JMS message

Body

JMSMessageID

JMSTimestamp

JMSDestination

JMSType=”StructuredEvent”

JMSReplyTo=nil

JMSCorrelationID=””

JMSRedelivered=0

JMSDeliveryMode

JMSExpiration

JMSPriority

name1 value1

nameN valueN

generated by the bridge

Topic/Queue{

{
{

fixed
header

variable
header

filterable
body

}

header

user-defined
properties

Orbix Enterprise Messaging Guide: C++ 201

Remainder of the JMS header
The remainder of the JMS message header fields are filled in by
the bridge. Table 18 shows how the remaining header fields are
filled in.

Structured event fixed header
The three fields of the structured events fixed header are
converted into name value pairs and inserted in the JMS message
as user defined properties. The names of the properties are
prefixed by a ’$’ and the values are mapped to Java String. For
example the domain_name field would be mapped to the JMS
property $domain_name.

Remaining variable header fields
Any properties, other than the QoS properties, set in the
structured event’s variable header are converted into name value
pairs and mapped to user defined properties in the JMS message.
The name of the event property is prefixed with a ’$’ when
mapped to its corresponding JMS property. The value of the event
property is mapped to the corresponding Java primitive type. For
example, an event property score would be mapped to the JMS
property $score.

Filterable data
The structured event’s filterable data is mapped to the user
defined properties section of the JMS message. Each name value
pair in the filterable data is mapped to a JMS user defined
property using the same mapping used for the variable header
fields.

Table 18: JMS Message Header Completion

JMS header
field

Value

JMSMessageID A unique key prefixed by ’ID’.

JMSTimestamp The time that the message was passed
to JMS for delivery.

JMSDestination The name of the Topic or Queue to
which the message is being sent.

JMSType ’StructuredEvent’

JMSReplyTo nil

JMSCorrelationID ’’

JMSRedelivered 0

 202 Orbix Enterprise Messaging Guide: C++

Event body
How the structured event’s remainder_of_body is mapped to the
JMS message body depends upon the complexity of the data
packaged into the CORBA::Any.
Table 19 shows how the data in the remiander_of_body is mapped
into the JMS message body.

Table 19: CORBA::Any to JMS message mapping

CORBA::Any JMS message body

IDL basic types Each element maps to a java
primitive using the standard IDL
to Java mapping. The data is
inserted into the JMS message
as a StreamMessage body.

Single string Inserted directly into the JMS
message body as a String.

PropertySeq Each property is mapped to a
name-value pair where the
values are mapped to the
corresponding Java primitive
using the standard IDL to Java
mapping. The data is inserted
into the JMS message as a
MapMessage body.

OctetSeq The data is mapped directly into
an unfiltered byte stream and
inserted as a ByteMessage body.

User constructed types The data is mapped directly into
an unfiltered byte stream and
inserted as a ByteMessage body.
The burden of reconstructing the
data type is left to the JMS
consumer.

 Orbix Enterprise Messaging Guide: C++ 203

Managing the
JMS-Notification
Bridge Service
The JMS-Notification bridge service is a light weight, easy to use service
that can be managed using command line tools or through programatic
interfaces.

Configuring the Bridge Service

Configuring the environment
Once the notification service and JMS are configured and deployed
into your configuration, the bridge is automatically configured and
deployed.

Administrative properties
The bridge has only one configuration property:
jms_notify_bridge:endpoint_admin_name

This property sets the name of the notification service endpoint
admin object. This property does not need to be set unless you
are running more than one notification service that is to be
bridged.

Optimization
The bridge is optimized by optimizing JMS and the notification
service. There are no configuration variables that directly effect
the performance of the bridge itself.

Running the Bridge Service

Launching the service
To launch the JMS-Notification bridge you need to launch the
notification service, the JMS broker, and have a valid license to
use the bridge service. The administrative services for the bridge
are handled by the JMS broker, so there are no separate services
that need to be launched.
For information on starting the notification service, see “Running
the Notification Service” on page 110.
For information on starting JMS, see “Running JMS” on page 188.

 204 Orbix Enterprise Messaging Guide: C++

Creating bridges
You can create a bridge in either of these ways:
• using itadmin.
• programatically.

Managing the Bridge Service with itadmin
The command line admin tool, itadmin, can be used to create,
manage and monitor bridges and their endpoints.

Creating a bridge
A bridge can be created using the following itadmin command:

The bridge create command has the following arguments:

itadmin bridge create -source_admin <IOR | INIT_REF_KEY>
 -source_type <topic | queue | channel>
 -source_name <source name>
 -sink_admin <IOR | INIT_REF_KEY>
 -sink_type <topic | queue | channel>
 -sink_name <sink name>
 <bridge name>

source_admin The IOR or initial reference of the administrative
object used to connect to the message source. To
use the default notification endpoint admin use
"IT_NotificationEndpointAdmin"; to use the default
JMS endpoint admin use "IT_JMSEndpointAdmin".

source_type The type of object that will be passing messages
into the bridge. It can take one of three values:

topic if the messages will originate from a JMS
topic.

queue if the messages will originate from a JMS
queue.

channel if the messages will originate from a
notification channel.

source_name The name of the object that will be passing
messages into the bridge.

sink_admin The IOR or initial reference of the administrative
object used to connect to where messages are
being forwarded. If the message source is a
notification channel, the message sink should be a
JMS Destination. To use the default notification
admin use "IT_NotificationEndpointAdmin"; to use
the default JMS admin use "IT_JMSEndpointAdmin".

Orbix Enterprise Messaging Guide: C++ 205

For example, to create a bridge, sports_bridge, from a notification
channel, sports_channel, to a JMS topic, sports_topic, you could
use the following command:

When a bridge is created it is in stopped state and cannot begin
passing messages until it is explicitly started.

Controlling the flow of messages through
a bridge
A bridge can either be started, suspended, or stopped. If a bridge
is started, messages are forwarded through the bridge. If the
bridge is suspended, messages are collected at the source of the
bridge, but the messages are not forwarded until the bridge is
restarted. If the bridge is stopped, messages are not forwarded by
the bridge.
To start the flow of messages through a bridge use the following
command:

To suspend the flow of messages through a bridge use the
following command:

To stop the flow of messages through a bridge use the following
command:

sink_type The type of object that will be receiving messages
from the bridge. It can take one of three values:

topic if the messages are being forwarded to a JMS
topic.

queue if the messages are being forwarded to a
JMS queue.

channel if the messages are being forward to a
notification channel.

sink_name The name of the object that will receive messages
from the bridge.

bridge name The name of the bridge. This must be a unique
string value that will be used to identify this bridge.

itadmin bridge create -source_admin
"IT_NotificationEndpointAdmin"

 -source_type channel
 -source_name sports_channel
 -sink_admin "IT_JMSEndpointAdmin"
 -sink_type topic
 -sink_name sports_topic
 sports_bridge

itadmin bridge start <bridge name>

itadmin bridge suspend <bridge name>

itadmin bridge stop <bridge name>

 206 Orbix Enterprise Messaging Guide: C++

Monitoring bridges
itadmin provides commands for discovering and displaying the
status of bridges and their endpoints.
To list all of the instantiated bridges in a deployment use the
following command:

To display the status of a bridge use the following command:

Monitoring bridge endpoints
To display an endpoint admin’s name and the type of endpoints it
supports use the following command:

To list the endpoints associated with an endpoint admin use the
following command:

You need to select whether you wish to list the source endpoints
or the sink endpoints associated with the specified admin.
To display the status and attributes of a particular endpoint use
the following command:

Destroying bridges
itadmin provides commands for destroying endpoints and bridges.
To destroy an endpoint use the following command:

You need to specify whether the endpoint is a message source or
a message sink and what type of admin object with which it is
associated.
To destroy a bridge use the following command:

itadmin bridge list

itadmin bridge show <bridge name>

itadmin endpoint_admin show <IOR | INIT_REF_KEY>

itadmin endpoint list <-source | -sink> -admin <IOR |
INIT_REF_KEY>

itadmin show <-source | -sink> -admin <IOR | INIT_REF_KEY>
<bridge name>

itadmin endpoint destroy <-source | -sink> -admin <IOR |
INIT_REF_KEY> <bridge name>

itadmin bridge destroy <bridge name>

Orbix Enterprise Messaging Guide: C++ 207

Managing the Bridge Service Programatically
The JMS-notification bridge provides a APIs for both JMS and
notification clients to use in creating and managing bridges. These
APIs are specified in the following IDL modules:
• IT_MessagingBridgeAdmin
• IT_MessagingBridge
• IT_NotifyBridge

Actions
Applications that programatically manage bridges perform the
following actions:
• Get a BridgeAdmin object which serves as a factory for bridges.
• Locate existing bridges.
• Get MessagingEndpoint objects.
• Create new bridges.
• Start message flow through a bridge.
• Stop the flow of messages through a bridge.
• Destroy bridges.

Getting a BridgeAdmin
The BridgeAdmin interface, defined in IT_MessagingBridgeAdmin, is a
bridge factory. You get an instance of the BridgeAdmin by using the
standard CORBA call resolve_initial_references() with the key
"IT_MessagingBridge" and narrowing the returned object.
Example 84 shows the code used to get a BridgeAdmin.

Example 84: Getting a BridgeAdmin instance

org.omg.CORBA.Object obj =
orb.resolve_initial_references("IT_MessagingBridgeAdmin");

com.iona.messaging.IT_MessagingBridgeAdmin.BridgeAdmin
bridge_admin =
com.iona.messaging.IT_MessagingBridgeAdmin.BridgeAdminHelper
.narrow(obj);

 208 Orbix Enterprise Messaging Guide: C++

Getting a Bridge

Operations
The BridgeAdmin interface provides three operations for getting a
bridge:

Creating endpoints
The create_bridge() and find_bridge() operations require that you
first specify both the source and sink endpoints of the bridge using
an IT_MessagingBridgeAdmin::EndpointInfo element. EndpointInfo
contains three fields:

admin specifies the EndpointAdmin to which the endpoint will be
associated. The EndpointAdmin is obtained by calling
resolve_initial_references() using
"IT_NotificationEndpointAdmin" to obtain an endpoint in the
notification service or "IT_JMSEndpointAdmin" to obtain an endpoint
in JMS.

type specifies the type of the endpoint. It can take one of three
values:

♦ IT_MessagingBridge::JMS_TOPIC
♦ IT_MessagingBridge::JMS_QUEUE
♦ IT_MessagingBridge::NOTIFY_CHANNEL

name specifies the name of the messaging object to which the
endpoint is associated.
The code in Example 85 creates a source endpoint for connecting
to a JMS topic.

// IDL in IT_MessagingBridgeAdmin::BridgeAdmin

Bridge create_bridge(in BridgeName bridge_name,
 in EndpointInfo source,
 in EndpointInfo sink);
raises (InvalidEndpoint, BridgeAlreadyExists,
 BridgeNameAlreadyExists, CannotCreateBridge);

Bridge get_bridge(in BridgeName bridge_name)
raises (BridgeNotFound);

Bridge find_bridge(in EndpointInfo source,
 in EndpointInfo sink,
 out Bridgename bridge_name)
raises (BridgeNotFound);

Example 85: Creating an endpoint

// Java
import com.iona.messaging.IT_MessagingBridge.*;
import com.iona.messaging.IT_MessagingAdmin.*;

Orbix Enterprise Messaging Guide: C++ 209

The previous example does the following:
1. Get a reference to the JMS EndpointAdmin by calling

resolve_initial_references() and narrowing the returned
object reference.

2. Specify the name of the messaging object to which the
endpoint is going to be associated.

3. Specifies that the endpoint will connect to a JMS topic.

Creating a bridge
You create new unidirectional bridges by calling the BridgeAdmin’s
create_bridge() operation. The operation takes three parameters:

bridge_name is a unique string identifier for the new bridge. If
the specified name is already used by another bridge the
operation will raise the
IT_MessagingBridge::BridgeNameAlreadyExists exception.

source specifies the endpoint that connects to the source of the
messages being forwarded through the bridge. It is specified as an
EndpointInfo.

sink specifies the endpoint that connects to the destination of the
messages being forwarded through the bridge. It is specified as an
EndpointInfo.
For information on specifying endpoints see “Creating endpoints”
on page 208.
Before the newly created bridge will begin forwarding messages, it
must be explicitly started by calling the start() operation on it.

Finding existing bridges
You can get a reference to an already existing bridge by either
specifying the bridge’s name or by specifying the bridge’s
endpoints.
The BridgeAdmin’s get_bridge() operation allows you to discover an
existing bridge using its unique name. The operation will return a
reference to the specified bridge if it exists; otherwise it will raise
IT_MessagingBridgeAdmin::BridgeNotFound.

EndpointInfo endpt = new EndpointInfo();

1 org.omg.CORBA.Object obj =
orb.resolve_initial_references("IT_JMSEndpointInfo");

endpt.admin = EndpointAdminHelper.narrow(obj);
2 endpt.name = "sports_topic";
3 endpt.type = EndpointType.JMS_TOPIC.value;

Example 85: Creating an endpoint

 210 Orbix Enterprise Messaging Guide: C++

If you do not know the bridge’s unique name, but do know the
bridge’s endpoints you can use the BridgeAdmin’s find_bridge()
operation to get a reference to the bridge. find_bridge() takes the
source and sink EndpointInfo for the bridge and will return a
reference to the bridge if it exists. If the bridge does not exist it
will raise IT_MessagingBridgeAdmin::BridgeNotFound.

Managing Message Flow Through a Bridge

Operations
The IT_MessagingBridgeAdmin::Bridge interface defines three
operations to control the flow of messages through a bridge:

start() begins the flow of messages through the bridge. The
bridge will forward messages until another call stops or suspends
the flow of messages.

suspend() stops the flow of messages through the bridge. The
bridge will continue to queue messages for forwarding when the
bridge is restarted.

stop() stops the flow of messages through the bridge. The bridge
will not continue to accept any messages for forwarding until it is
restarted.
These operations take no parameters.

Example
The code in Example 86 gets a bridge named “sports_bridge” and
starts the flow of messages through it.

Note: When a bridge is first created it must be explicitly
started before messages can flow through it.

Example 86: Starting a bridge

// Java
try
{
 com.iona.messaging.IT_MessagingBridgeAdmin.Bridge bridge=

bridge_admin.get_bridge("sports_bridge");
}
catch(com.iona.messaging.IT_MessagingBridgeAdmin.BridgeNotFound

)
{
 // handle the exception
}

bridge.start();

Orbix Enterprise Messaging Guide: C++ 211

Destroying a Bridge

Operation
You destroy a bridge by calling its destroy() operation. The
bridge’s destroy() operation frees all resources used to maintain
the bridge.

Example
The code in Example 87 gets the bridge named “sports_bridge”
and destroys it.

Example 87: Destroying a bridge

// Java
try
{
 com.iona.messaging.IT_MessagingBridgeAdmin.Bridge bridge=

bridge_admin.get_bridge("sports_bridge");
}
catch(com.iona.messaging.IT_MessagingBridgeAdmin.BridgeNotFound

)
{
 // handle the exception
}

bridge.destroy();

 212 Orbix Enterprise Messaging Guide: C++

 Orbix Enterprise Messaging Guide: C++ 213

Glossary
A administration

All aspects of installing, configuring, deploying, monitoring, and
managing a system.

C client
An application (process) that typically runs on a desktop and
requests services from other applications that often run on different
machines (known as server processes). In CORBA, a client is a
program that requests services from CORBA objects.

configuration
A specific arrangement of system elements and settings.

configuration domain
Contains all the configuration information that Orbix ORBs, services
and applications use. Defines a set of common configuration
settings that specify available services and control ORB behavior.
This information consists of configuration variables and their values.
Configuration domain data can be implemented and maintained in
a centralized Orbix configuration repository or as a set of files
distributed among domain hosts. Configuration domains let you
organize ORBs into manageable groups, thereby bringing scalability
and ease of use to the largest environments. See also configuration
file and configuration repository.

configuration file
A file that contains configuration information for Orbix components
within a specific configuration domain. See also configuration
domain.

configuration repository
A centralized store of configuration information for all Orbix
components within a specific configuration domain. See also
configuration domain.

configuration scope
Orbix configuration is divided into scopes. These are typically
organized into a root scope and a hierarchy of nested scopes, the
fully-qualified names of which map directly to ORB names. By
organizing configuration properties into scopes, different settings
can be provided for individual ORBs, or common settings for groups
of ORB. Orbix services have their own configuration scopes.

CORBA
Common Object Request Broker Architecture. An open standard
that enables objects to communicate with one another regardless
of what programming language they are written in, or what
operating system they run on. The CORBA specification is produced
and maintained by the OMG. See also OMG.

 214 Orbix Enterprise Messaging Guide: C++

CORBA objects
Self-contained software entities that consist of both data and the
procedures to manipulate that data. Can be implemented in any
programming language that CORBA supports, such as C++ and
Java.

D deployment
The process of distributing a configuration or system element into
an environment.

E event
The occurrence of a condition or state change, or the availability of
some information that is of interest to one or more modules in a
system. Suppliers generate events and consumers subscribe to
receive them.

event channel
Accepts incoming events from client suppliers and forwards
supplier-generated events to all connected consumers. From a
supplier’s perspective, the event channel appears as a single
consumer; from a consumer’s perspective, the event channel
appears a a single supplier.

event service
See Orbix event service.

I IDL
Interface Definition Language. The CORBA standard declarative
language that allows a programmer to define interfaces to CORBA
objects. An IDL file defines the public API that CORBA objects expose
in a server application. Clients use these interfaces to access server
objects across a network. IDL interfaces are independent of
operating systems and programming languages.

IIOP
Internet Inter-ORB Protocol. The CORBA standard messaging
protocol, defined by the OMG, for communications between ORBs
and distributed applications. IIOP is defined as a protocol layer
above the transport layer, TCP/IP.

installation
The placement of software on a computer. Installation does not
include configuration unless a default configuration is supplied.

Interface Definition Language
See IDL.

invocation
A request issued on an already active software component.

IOR
Interoperable Object Reference. See object reference.

Orbix Enterprise Messaging Guide: C++ 215

J Java Messaging Service
An implementation of Sun’s Java Messaging Service Specification.
Provides a native mechanism for Java applications to participate in
messaging systems.

JMS
See Java Messaging Service.

JMS-Notification Bridge
An implementation of the OMG’s Notification/JMS Interworking
specification. Allows JMS and CORBA notification clients to share
messages.

N node daemon
Starts, monitors, and manages servers on a host machine. Every
machine that runs a server must run a node daemon.

notification service
See Orbix notification service.

O object reference
Uniquely identifies a local or remote object instance. Can be stored
in a CORBA naming service, in a file or in a URL. The contact details
that a client application uses to communicate with a CORBA object.
Also known as interoperable object reference (IOR) or proxy.

OMG
Object Management Group. An open membership, not-for-profit
consortium that produces and maintains computer industry
specifications for interoperable enterprise applications, including
CORBA. See www.omg.com.

ORB
Object Request Broker. Manages the interaction between clients
and servers, using the Internet Inter-ORB Protocol (IIOP). Enables
clients to make requests and receive replies from servers in a
distributed computer environment. Key component in CORBA.

Orbix event service
An implementation of the OMG Event Service Specification.
Decouples communication between objects. Defines two roles for
objects: a supplier role and a consumer role. Suppliers produce
event data and send it to consumers through an event channel.

Orbix notification service
An implementation of the OMG Notification Service Specification.
Extends the CORBA Event Service Specification to include qualities
of service, subscription mechanisms, filtering and structured
messages.

Orbix OTS
An implementation of the OMG Transaction Service Specification.
Provides interfaces to manage the demarcation of transactions and
the propagation of transaction contexts.

http://www.omg.com
http://www.omg.com

 216 Orbix Enterprise Messaging Guide: C++

Orbix telecom log service
An implementation of the OMG Telecom Log Specification. The
telecom log service encompasses and builds on the functionality of
the event and the notification services by providing a durable and
searchable log.

P POA
Portable Object Adapter. Maps object references to their concrete
implementations in a server. Creates and manages object
references to all objects used by an application, manages object
state, and provides the infrastructure to support persistent objects
and the portability of object implementations between different ORB
products. Can be transient or persistent.

protocol
Format for the layout of messages sent over a network.

S server
A program that provides services to clients. CORBA servers act as
containers for CORBA objects, allowing clients to access those
objects using IDL interfaces.

T TCP/IP
Transmission Control Protocol/Internet Protocol. The basic suite of
protocols used to connect hosts to the Internet, intranets, and
extranets.

telecom log service
See Orbix telecom log service.

TLS
Transport Layer Security. An IETF open standard that is based on,
and is the successor to, SSL. Provides transport-layer security for
secure communications.

Orbix Enterprise Messaging Guide: Java 217

Index

A
ActiveQueues 191
ActiveTopics 191
add_constraints() 68, 150
add_filter() 150
add_mapping_constraints() 74
administered objects 166, 175
administration properties 47

accessor operations 47
obtaining 52
setting 49

administrative state 151
checking 152
locked 151
setting 152
unlocked 151

AdministrativeState data type 152
ALL_NOW_UPDATES_OFF

consumer 103
supplier 97

ALL_NOW_UPDATES_ON
consumer 103
supplier 97

AlreadyConnected exception 89, 90
AttributeValueChange event 135, 137, 141,

152, 153, 154
AUTO_ACKNOWLEDGE 169, 173, 179, 183
AvailabilityStatus 156
availability status 155

checking 156
log full 156
off_duty 155
on_duty 155, 156

B
BAD_QOS exception 51
BasicLog 117
BasicLogFactory 119

create() 120
create_with_id() 121, 123

Bridge::destroy() 211
Bridge::start() 209, 210
Bridge::suspend() 210
BridgeAdmin interface 207, 208
bridge endpoints 20

creating 208
bridges

destroying 211
starting 209, 210
suspending 210

BytesMessage 199

C
ChannelAlreadyExists exception 26
CLIENT_ACKNOWLEDGE 169, 173, 179, 183
close() 171, 175, 180, 185
compacting 153
configuration 159

flush_interval 160
initial reference 159
iterator_timeout 160
max_records 160
namespaces 159

plugins:basic_log 159
plugins:event_log 160
plugins:notification 160
plugins:notify_log 160
plugins:tlog 159

configuration scope 159
configuration variables

plugins:notification 109
plugins:notify 109
plugins:notify:database:checkpoint_int
erval 113

plugins:notify:database:checkpoint_old
_files 113

plugins:notify:trace:events 112
scope 159
using itadmin 109

connect_group_any_push_consumer 89
connect_group_sequence_push_consume
r 90

connect_group_structured_push_consum
er 90

ConnectionReliability 157
ConnectionReliability property 55
constraint

applying to all events 77
constraints

adding to a filter 150
constraint language 130
grammar 130, 149
using to find records 130

consumer
connecting to event channel 39
connecting to proxy supplier 41
disconnecting from event channel 45
implementing 37
instantiating 27
obtaining proxy supplier 40

consumer admin
creating 39
forwarding filters 71
obtaining default 39
obtaining non-default 39

 218 Orbix Enterprise Messaging Guide: Java

CosEventChannelAdmin::ConsumerAdmin
137

CosNotification::UnsupportedAdmin
exception 123

CosNotification::UnsupportedQoS
exception 123

CosNotification module 32
CosNotifyChannelAdmin::ConsumerAdmi
n 137

CosNotifyChannelAdmin module 29
CosNotifyComm module 23
CosNotifyFilter::Filter 150
create() 120
create_bridge() 208, 209
create_channel() 24
createDestination() 167, 177
create_filter() 66, 149
create_named_channel() 25
createPublisher() 179
createQueue 166, 191
createQueueSession() 169, 173
createReciever() 173
createSender() 169
createSubscriber() 183
createTopic 176, 191
createTopicConnection() 178, 182
createTopicSession() 178, 182
create_with_id() 120
creating a bridge 209

D
DataInProgress 191, 192
DataThroughput 191
DaysOfWeek 134
default_consumer_admin() 39
default filter constraint language

grammar 78
shorthand notation 79
specifying 66
wildcard characters 78

default_filter_factory() 149
default_supplier_admin() 28
delete_records() 131
delete_records_by_id() 131
delivery mode

NON_PERSISTENT 170, 179
PERSISTENT 170, 180

DeliveryMode.NON_PERSISTENT 170, 179
DeliveryMode.PERSISTENT 170, 180
Destination 15
DestinationAdmin 167, 176
destinations 187
destroy() 132
direct persistence 110
DiscardPolicy property 59
disconnect operation

consumer 45, 93
supplier 37

disconnect_structured_push_supplier() 4
5, 93

documentation

.pdf format 4
updates on the web 4

domain_name 197
DsLogAdmin::UnsupportedQoS
exception 154

DUPS_OK_ACKNOWLEDGE 169, 173, 179,
183

DurableConsumersAllowed 192

E
EndpointAdmin 208
endpoint group 83

connecting to event channel 89
disconnecting from event channel 93
event subscription 92
filters 92
implementing 85
POA policies 87
recieving events 92
registering object reference 88

event
advertising 101
creating 31
delivery queue order 56
filter evaluation 69
name-value pair notation 78
obtaining 43

pull consumer 44
push consumer 43

publishing 101
sending 34

pull supplier 35
push supplier 35

sequence 31
structured 31, 32
subscribing 95
type conversion 43
untyped 31

event channel
administration properties 62
connecting an endpoint group 89
connecting consumer 39
connecting supplier 28
creating 24
creating named 25
disconnecting an endpoint group 93
disconnecting consumer 45
disconnecting supplier 37
finding by id 25
finding by name 25
listing all by names 25
obtaining 23
obtaining administration properties 49
obtaining all 24

event channel factory
OMG operations 24
Orbix extensions 24

event communication 11
mixing push and pull models 13
pull model 12
push model 11

Orbix Enterprise Messaging Guide: Java 219

event data
AttributeValueChange 141
filtering 148
ObjectCreation 140
ObjectDeletion 140
ProcessingAlarmError 141
StateChange 141
ThresholdAlarm 140
unpacking

trial and error 141
type codes 142

EventLog 117
EventLogFactory 119

create() 122
create_with_id() 122

event_name 198
EventReliability 157, 198, 200
EventReliability property 55
events

subscription 144
event subscription 144
EventTypeSeq 67, 151
exceptions

AleadyConnected 89, 90
BAD_QOS 51
BridgeNameAlreadyExists 209
BridgeNotFound 209, 210
ChannelAlreadyExists 26
CosNotification::UnsupportedAdmin 12

3
CosNotification::UnsupportedQoS 123
DsLogAdmin::UnsupportedQoS 154
InvalidAttribute 131
InvalidConstraint 74, 130, 131
InvalidGrammar 130, 131
InvalidLogFullAction 121
InvalidMask 135
InvalidParam 152
InvalidThreshold 122
InvalidTime 135
InvalidTimeInterval 135, 153
LogDisabled 125
LogFull 125
LogIdAlreadyExists 121
LogLocked 125
LogOffDuty 125
NO_IMPLEMENT 101, 107
TRANSIENT 60
TypeError 89, 90
UnsupportedAdmin 50

EXTENDED_TCL grammar 130, 149

F
factory 188
filter

adding constraints 68
constraint expression data
structures 76

match operations 69, 75
and invalid operands 79

processing events with 69

See also forwarding filter, mapping
filter

filterable data fields 79
FilterableEventBody 33
FilterAdmin interface 96
filtered data, referencing 78
filter factory 72

obtaining 66
Filter interface 96
filters

adding constraints 150
AND semantics 150
attaching to an object 150
creating 149
evaluation 150
implementing 149
log filtering 148
notification style 148
NotifyLog 148
obitaining a factory 149
OR semantices 150

find_bridge() 210
find_bridge() operation 208
find_channel() 25
find_channel_by_id() 25
find_log() 120
flush() 155
flush_interval 160
forwarding filter 65

implementing 65
modifying 96
setting constraints 66

ForwardingState 143
full_action 121

G
garbage collection 153
get_admin() 47, 52
get_administrative_state() 152
get_all_channels() 24
get_all_consumeradmins() 39
get_all_supplieradmins() 28
get_availability_status() 156
get_bridge() 209
get_consumeradmin() 39
get_event_channel() 24
get_max_record_life() 154
get_max_size() 152
get_operational_state() 157
get_qos() 47, 52
get_supplieradmin() 28
getText() 174, 184
get_week_mask() 136
GroupNotifyPublish interface 84
GroupProxyPushSupplier interface 89, 90
GroupPushConsumer interface 84
GroupSequencePushConsumer
interface 84

GroupSequencePushSupplier interface 90
GroupStructuredPushConsumer
interface 84

 220 Orbix Enterprise Messaging Guide: Java

I
initial_reference:IT_JMSMessageBroker:r
eference 187

initial_reference:IT_JMSServer:reference
187

initial references
BasicLoggingService 119
EventLoggingService 119
IT_JMSEndpointAdmin 204, 208
IT_MessagingBridge 207
IT_NotificationEndpointAdmin 204, 208
NotificationService 23
NotifyLoggingService 119

InstrumentationEnabled 190
InstrumentationStartTime 190
interface

BridgeAdmin 208
FilterAdmin 68
FilterFactory 66, 72
GroupNotifyPublish 84
GroupProxyPushSupplier 89
GroupPushConsumer 84
GroupSequenceProxyPushSupplier 90
GroupSequencePushConsumer 84
GroupStructuredProxyPushSupplier 90
GroupStructuredPushConsume 84
IT_MessagingBridgeAdmin::Bridge 210

InvalidAttribute exception 131
InvalidConstraint exception 74, 130, 131
InvalidGrammar exception 130, 131
InvalidLogFullAction exception 121
InvalidMask exception 135
InvalidParam exception 152
InvalidThreshold exception 122
InvalidTime exception 135
InvalidTimeInterval exception 135, 153
iona_services.basic_log 159
iona_services.event_log 159
iona_services.notify_log 159
itadmin 109
iterator_timeout 160
IT_MessagingBridge::BridgeNameAlready
Exists exception 209

IT_MessagingBridge::JMS_QUEUE 208
IT_MessagingBridge::JMS_TOPIC 208
IT_MessagingBridge::NOTIFY_CHANNEL

208
IT_MessagingBridgeAdmin::Bridge
interface 210

IT_MessagingBridgeAdmin::BridgeNotFou
nd exception 209, 210

IT_MessagingBridgeAdmin::EndpointInfo
data structure 208

IT_MessagingBridgeAdmin module 207
IT_NotifyChannelAdmin module 89
IT_NotifyComm module 83

J
Java Naming Directory Interface 188
JMS

Administrator Console 190

embedded 189, 190
JMS broker

MBeans 190
JMSDeliveryMode 198, 200
JMSExpiration 198, 200
JMS lookup 188
JMSPriority 198, 200
JNDI 166, 175, 188

L
lifetime_filter() 74
lifetime properties 57
list_channels() 25
log buffer

flushing 155
LogDisabled exception 125
log duration 152

setting 153
log events

AttributeValueChange 135, 137, 141, 152,
153, 154

filtering 148
ObjectCreation 122, 123, 137, 140
ObjectDeletion 137, 140
ProcessingAlarmError 137, 141
StateChange 137, 141, 152, 157
ThresholdAlarm 122, 137, 140
unpacking

trial and error 141
type codes 142

log factories 119
log filters 148
LogFullActionType 121
LogFull exception 125
LogIdAlreadyExists exception 121
LogLocked exception 125
LogOffDuty exception 125
log QoS 154

setting 154
log scheduling 11, 134

M
MapMessage 199
mapping filter 65, 71

adding constraints 74
default value 72
implementing 71
overriding Priority property 74
overriding Timeout property 74
processing events 75
setting constraints 73
traversing multiple 75

match() 69
match_structured() 69
MaxConsumers 192
MaxConsumers property 62
MaxEventsPerConsumer property 59
MaximumBatchSize property 60
maximum log size 152
MaxMessageSize 192
MaxProxyConsumerRetries property 36, 62

Orbix Enterprise Messaging Guide: Java 221

MaxQueueLength property 63
max_records 160
MaxSuppliers property 62
MaxUnconsumedData 192
MaxUnconsumedMessages 192
MessageConsumer 15
MessageInProgress 191
MessageListener 174, 184
MessageProducer 15
MessageSelector 16
MessageThroughput 191
MIOP 83
module

IT_MessagingBridgeAdmin 207
IT_NotifyChannelAdmin 89
IT_NotifyComm 84

Mulitcast consumer
connecting to an event channel 89

Multicast consumer
registering for object reference 88

Multicast consumers 83
disconnecting from event channel 93
event subscription 92
filters 92
instantiating 85
POA policies 87
recieving events 92

N
namespaces

plugins:basic_log 159
plugins:event_log 160
plugins:jms 187
plugins:notification 109, 160
plugins:notify 109
plugins:notify:database 113
plugins:notify:trace 112
plugins:notify_log 160
plugins:tlog 159
plugins:tlog:database 159

new_for_consumers() 39
new_for_suppliers() 28
NO_IMPLEMENT exception 101, 107
NON_PERSISTENT 175
notification console 54
notification service properties

descriptions 55
inheritance 48
setting 49

NotifyLog 117
filtering events 148
QoS 157
Quality of Service 157

NotifyLogFactory 119
create() 122, 123
create_with_id() 123

NotifySubscribe interface 99

O
ObjectCreation event 122, 123, 137, 140
ObjectDeletion event 137, 140

ObjectMessage 199
obtain_notification_pull_consumer() 29
obtain_notification_pull_supplier() 41
obtain_notification_push_consumer() 29,

30
obtain_notification_push_supplier() 40
obtain_offered_ types() 103
obtain_offered_types() 101
obtain_subscription_types()

proxy consumer 97
proxy supplier 95

offer_change() 101, 104
adding new event 102
arguments 102
calling from supplier 101
implementing 106
removing event 102

OperationalState 157
operational state

checking 157
OperationTimeoutInterval property 60
OrderPolicy property 56

P
PacingInterval property 60
persistence:jdbc 187
persistence:jdbc:driver 192
persistence:jdbc:password 192
persistence:jdbc:url 192
persistence:jdbc:user 192
persistence:message_store 192
PERSISTENT 175
point to point messaging 16, 165
Priority 198, 200
priority_filter() 74
Priority property 57
ProcessingErrorAlarm event 137, 141
properties

Managing with the notification
console 54

proxy consumer
connecting supplier 30
creating 29
interfaces 29

proxy pull consumer
quality-of-service properties 62

proxy push supplier
quality-of-service properties 61

proxy supplier 30
connecting consumer 41
creating 40
interfaces 40
pull operations 44

publication list 95, 102
adding new event 102
modifying 102
notifying consumer of changes 103
removing event 102

publish() 180
publish and subscribe messaging 16, 175
pull() 35, 44, 138

 222 Orbix Enterprise Messaging Guide: Java

pull consumer
obtaining messages 43, 44
obtaining proxy supplier 41

PullInterval property 62
pull model 12
pull_structured_event() 36, 44
pull_structured_events() 36, 44
pull supplier

obtaining proxy consumer 29
push() 35, 43, 138
push and pull model mixed 12
push consumer

obtaining messages 43
obtaining proxy supplier 40

push model 12
push_structured_event() 35, 43
push_structured_events() 35, 43
push supplier

obtaining proxy consumer 29

Q
QoS

ConnectionReliability 157
EventReliability 157
log properties 154
notification service level 157
NotifyLog 157
setting 157
setting on log 154

QoSFlush 118, 154, 155
QoSNone 118, 154

flush_interval 160
QoSProperties 154
QoSReliability 118, 154
Quality of Service 118

ConnectionReliability 157
EventReliability 157
log properties 154
notification service level 157
NotifyLog 157
setting 157
setting on log 154

quality-of-service properties 47
accessor operations 47
list of 47
obtaining 52
setting 50
setting on structured event 51
setting on supplier admin 28

query() 130
Queue 16, 165
QueueConnection 167, 168, 171, 172, 175
QueueConnection.close() 171, 175, 180, 185
QueueRecciever 171
QueueReciever 16
QueueReviever 173
QueueSender 16, 167, 169
QueueSession 167, 169, 171, 173

R
recieve() 174, 184

record compacting 153
record lifetime 153

getting 154
infinite 153
setting 153

remainder_of_body 33
removeQueue 191
removeTopic 191
retrieve() 130

S
send() 170
sequence of structured event
messages 31
maximum batch size 60
pacing interval 60

Serializable 199
Session 168, 172, 178, 182

AUTO_ACKNOWLEDGE 169, 173, 179, 183
CLIENT_ACKNOWLEDGE 169, 173, 179,

183
DUPS_OK_ACKNOWLEDGE 169, 173,

179, 183
set_admin() 47, 49
set_administrative_state() 152
setDeliveryMode() 170, 179
set_fliter() 150
set_interval() 153
set_log_qos() 154
set_max_size() 152
set_qos() 47, 50, 157
set_record_life() 153
set_week_mask() 135
shoutdownBroker 191
start() 172, 182, 184
StartTime property 58
StartTimeSupported property 58
StateChange event 137, 141, 152, 157
stop() 172, 182
StopTime property 57
StopTimeSupported property 58
StreamMessage 199
structured event 31

components 33
constructing message 33
FilterableEventBody 33
fixed header fields 33
header 33
identifying data components 78
optional header fields 33
remainder_of_body 33
setting properties on 33, 51

StructuredPushSupplier 20
subscription_change() 96

implementing 95, 99
obtaining subscriptions 97, 98

subscription list 95, 96
adding event type 96
notifying supplier of changes 97

subscriptions, obtaining 97
supplier

Orbix Enterprise Messaging Guide: Java 223

connecting to proxy consumer 30
disconnecting from event channel 37
implementing 26

supplier admin
creating 28
forwarding filters 71
obtaining 28
obtaining default 28
obtaining non-default 28
setting quality-of-service properties 28

supplier proxy
forwarding filters 71

syncronous messaging 174, 184
system exceptions

See exceptions

T
TextMessage 174, 184, 199
thread_pool 187
ThresholdAlarm event 122, 137, 140
TimeInterval 153
Timeout 198, 200
Timeout property 58
Topic 16, 175
TopicConnection 177, 178, 180, 181, 182, 184
TopicPublisher 16, 175, 177, 179
TopicSession 177, 178, 181, 182
TopicSubscriber 16, 20, 175, 181, 183
TRANSIENT exception 60
try_pull() 35, 44, 138
try_pull_structured_event() 36, 44
try_pull_structured_events() 36, 44
TypeError exception 89, 90
type_name 198

U
UnsupportedAdmin exception 50
UnsupportedQoS exception 50

error codes 50
untyped event message 31
untyped events

filtering 69
URL 191

V
validate_event_qos() 51

W
WeekMask 134
WeekMaskItem 134
write_recordlist() 126
write_records() 124

 224 Orbix Enterprise Messaging Guide: Java

	Preface
	Contacting Micro Focus

	Messaging Service Technologies
	CORBA Messaging Technologies
	Event Service
	Notification Service
	Telecom Log Service
	Event Communication

	The Java Messaging Service
	Java Messaging Service Overview
	Point to Point Messaging
	Publish / Subscribe Messaging

	The JMS-Notification Bridge Service
	Message sharing
	Bridge endpoints
	Message and property conversion

	The Notification Service
	Developing Suppliers and Consumers
	Obtaining an Event Channel
	Implementing a Supplier
	Instantiating the Supplier
	Connecting to a Channel
	Creating Event Messages
	Sending Event Messages
	Disconnecting From the Event Channel

	Implementing a Consumer
	Instantiating a Consumer
	Connecting to the Channel
	Obtaining Event Messages
	Disconnecting From the Event Channel

	Notification Service Properties
	Property Types
	Property Inheritance
	Setting Properties
	Setting Properties Programmatically
	Setting a Structured Event’s QoS Properties

	Getting Properties
	Validating Properties
	Property Descriptions
	Reliability Properties
	Event Queue Order
	Event Priority
	Lifetime Properties
	Start Time Properties
	Undelivered Event Properties
	RequestTimeout
	Sequenced Events Properties
	Proxy Push Supplier Properties
	Proxy Pull Consumer Properties
	Channel Administration Properties

	Event Filtering
	Forwarding Filters
	Implementing a Forwarding Filter
	Processing Events with Forwarding Filters

	Mapping Filters
	Implementing a Mapping Filter Object
	Processing Events with Mapping Filters

	Filter Constraint Language
	Constraint Expression Data Structure
	Event Type Filtering
	Referencing Filtered Data
	Operand Handling
	Examples of Notification Service Constraints

	Multicast Consumers
	MIOP
	IDL Interfaces
	Configuring Orbix for Multicast
	Implementing an Endpoint Group
	Instantiating an IP/Multicast Consumer
	Creating a POA for an Endpoint Group
	Registering an Endpoint Group Object Reference

	Connecting to an Event Channel
	Receiving Events
	Filtering and Event Subscription
	Disconnecting from an Event Channel

	Subscribing and Publishing
	Event Subscription
	Adding Forwarding Filters
	Obtaining Subscriptions
	Implementing subscription_change()

	Publishing Event Types
	Advertising Event Types
	Discovering Available Event Types
	Implementing offer_change()

	Managing the Notification Service
	Configuring the Notification Service
	Running the Notification Service
	Using Direct Persistence
	Managing a Deployed Notification Service
	Example 1: Generating Trace Information
	Example 2: Failure Recovery

	The Telecom Log Service
	Telecom Log Service Basics
	Telecom Log Service Objects
	Telecom Log Service Features

	Developing Telecom Log Clients
	Creating a Log
	Obtain a log factory
	Obtain a log object

	Logging Events
	Logging with a BasicLog
	Logging Events with an EventLog
	Logging Events with a NotifyLog

	Getting Log Records
	Deleting Records from the Log
	Ending a Logging Session

	Advanced Features
	Scheduling
	Log Generated Events
	Event Forwarding
	Filtering
	Log Management
	Administrative State
	Maximum Log Size
	Log Duration
	Record Lifetime
	Log QoS Properties
	Availability Status
	Operational State

	Qualities of Service

	Managing the Telecom Log Service
	Configuring the Telecom Log Service
	Running the Telecom Log Service
	Managing a Deployed Telecom Log Service

	The Java Messaging Service
	Developing a JMS Application
	Using Point to Point Messaging
	Creating a Queue
	Implementing a Point to Point Message Producer
	Implementing a Point to Point Message Consumer

	Using Publish / Subscribe Messaging
	Creating a Topic
	Implementing a Message Publisher
	Implementing a Subscriber

	Managing JMS
	JMS Configuration
	Running JMS
	Starting the JMS Broker
	Shutting Down the JMS Broker

	Managing JMS with the Management Service
	Selecting a Persistent Store Implementation
	Running JMS Clients

	The JMS-Notification Bridge Service
	JMS-Notification Message Translation
	JMS Message to Notification Event
	Notification Event to JMS Message

	Managing the JMS-Notification Bridge Service
	Configuring the Bridge Service
	Running the Bridge Service
	Managing the Bridge Service with itadmin
	Managing the Bridge Service Programatically
	Getting a BridgeAdmin
	Getting a Bridge
	Managing Message Flow Through a Bridge
	Destroying a Bridge

	Glossary
	Index

