
Orbix 6.3.9

CORBA Session Management Guide:
Java

ii

Micro Focus
The Lawn
22-30 Old Bath Road
Newbury, Berkshire RG14 1QN
UK

http://www.microfocus.com
Copyright © Micro Focus 2017. All rights reserved.

MICRO FOCUS, the Micro Focus logo, and Micro Focus product names are
trademarks or registered trademarks of Micro Focus Development Limited
or its subsidiaries or affiliated companies in the United States, United
Kingdom, and other countries. All other marks are the property of their
respective owners.

1/13/17

Contents
Preface..1
Contacting Micro Focus ..2

Using the Leasing Plug-In ...5
The Leasing Framework ...5
A Sample Leasing Application ...8
Using the Leasing Plug-In on the Client Side ...9
Using the Leasing Plug-In on the Server Side..11

Implement the LeaseCallback Interface..12
Use IT_Leasing::Current to Track Client Sessions................................15
Advertise the Lease...20
Configure the Server-Side Plug-In...22

Leasing Plug-In Configuration Variables25
Common Variables ..25
Server-Side Variables ..25

Sample Leasing Plug-In Configuration27

Leasing IDL Interfaces ..29

Glossary ..33

Index ..37
 Orbix CORBA Session Management Guide: Java i i i

iv Orbix CORBA Session Management Guide: Java

Preface
This book describes the Orbix session management capability,
which is based on the Orbix leasing plug-in.

Audience
This guide is aimed at developers of Orbix applications. Before
reading this guide, you should be familiar with the Object
Management Group IDL and the Java language.

Typographical conventions
This guide uses the following typographical conventions:

Constant width Constant width (courier font) in normal
text represents portions of code and literal
names of items such as classes, functions,
variables, and data structures. For
example, text might refer to the
CORBA::Object class.
Constant width paragraphs represent code
examples or information a system displays
on the screen. For example:
#include <stdio.h>

Italic Italic words in normal text represent
emphasis and new terms.
Italic words or characters in code and
commands represent variable values you
must supply, such as arguments to
commands or path names for your
particular system. For example:
% cd /users/your_name
Note: Some command examples may
use angle brackets to represent variable
values you must supply. This is an older
convention that is replaced with italic
words or characters.
 Orbix CORBA Session Management Guide: Java 1

Keying conventions
This guide may use the following keying conventions:

Contacting Micro Focus
Our Web site gives up-to-date details of contact numbers and
addresses.

Further Information and Product
Support
Additional technical information or advice is available from several
sources.
The product support pages contain a considerable amount of
additional information, such as:
• The WebSync service, where you can download fixes and

documentation updates.
• The Knowledge Base, a large collection of product tips and

workarounds.
• Examples and Utilities, including demos and additional

product documentation.
To connect, enter http://www.microfocus.com in your browser to
go to the Micro Focus home page.
Note:
Some information may be available only to customers who have
maintenance agreements.

No prompt When a command’s format is the same for
multiple platforms, a prompt is not used.

% A percent sign represents the UNIX
command shell prompt for a command
that does not require root privileges.

A number sign represents the UNIX
command shell prompt for a command
that requires root privileges.

> The notation > represents the DOS or
Windows command prompt.

...

.

.

.

Horizontal or vertical ellipses in format and
syntax descriptions indicate that material
has been eliminated to simplify a
discussion.

[] Brackets enclose optional items in format
and syntax descriptions.

{ } Braces enclose a list from which you must
choose an item in format and syntax
descriptions.

| A vertical bar separates items in a list of
choices enclosed in { } (braces) in format
and syntax descriptions.
 2 Orbix CORBA Session Management Guide: Java

http://www.microfocus.com

If you obtained this product directly from Micro Focus, contact us
as described on the Micro Focus Web site,
http://www.microfocus.com. If you obtained the product from
another source, such as an authorized distributor, contact them
for help first. If they are unable to help, contact us.

Information We Need
However you contact us, please try to include the information
below, if you have it. The more information you can give, the
better Micro Focus SupportLine can help you. But if you don't
know all the answers, or you think some are irrelevant to your
problem, please give whatever information you have.
• The name and version number of all products that you think

might be causing a problem.
• Your computer make and model.
• Your operating system version number and details of any

networking software you are using.
• The amount of memory in your computer.
• The relevant page reference or section in the documentation.
• Your serial number. To find out these numbers, look in the

subject line and body of your Electronic Product Delivery
Notice email that you received from Micro Focus.

Contact information
Our Web site gives up-to-date details of contact numbers and
addresses.
Additional technical information or advice is available from several
sources.
The product support pages contain considerable additional
information, including the WebSync service, where you can
download fixes and documentation updates. To connect, enter
http://www.microfocus.com in your browser to go to the Micro
Focus home page.
If you are a Micro Focus SupportLine customer, please see your
SupportLine Handbook for contact information. You can download
it from our Web site or order it in printed form from your sales
representative. Support from Micro Focus may be available only to
customers who have maintenance agreements.
You may want to check these URLs in particular:
• http://www.microfocus.com/products/corba/orbix/orbix-6.aspx (

trial software download and Micro Focus Community files)
• https://supportline.microfocus.com/productdoc.aspx.

(documentation updates and PDFs)
To subscribe to Micro Focus electronic newsletters, use the online
form at:

http://www.microfocus.com/Resources/Newsletters/infocus/n
ewsletter-subscription.asp
Orbix CORBA Session Management Guide: Java 3

http://www.microfocus.com
http://www.microfocus.com
http://www.microfocus.com/products/corba/orbix/orbix-6.aspx
https://supportline.microfocus.com/productdoc.aspx
http://www.microfocus.com/Resources/Newsletters/infocus/newsletter-subscription.asp

 4 Orbix CORBA Session Management Guide: Java

Using the Leasing
Plug-In
This chapter describes what the leasing plug-in does and how to use the
leasing plug-in on the client-side and the server-side of your application.

The Leasing Framework
The leasing plug-in is an add-on feature for Orbix that manages
server-side resources by detecting when client processes have
ceased using a server. This is done using a leasing framework.
When a client starts up, it can acquire a lease for a particular
server, renewing it periodically. When the client terminates, it
automatically releases the lease. If the client crashes, the server
later detects that the lease has expired. In this manner, both
graceful and ungraceful client process terminations are detected.

What is session management?
It is a common requirement in many CORBA systems to know
when a client process terminates, in order to clean up resources
that are used only by that client. On the server side,
session-based applications allocate resources to cater for client
requests. To prevent servers from bloating, it is necessary to
detect when clients are finished dealing with the server. CORBA
does not provide a native solution to this problem.

Features
The leasing framework has the following features:
• Zero impact on client application code.
• Zero impact on existing application IDL interfaces.
• Easy to implement.
• CORBA compliant.
• Completely configurable.
 Orbix CORBA Session Management Guide: Java 5

Server side behavior
On the server side, the leasing framework operates as follows:

Client side behavior
On the client side, the leasing framework operates as follows:

Stage Description

1 When a server starts up, it automatically loads the
leasing plug-in.

2 During initialization, the server advertises the
lease, which causes a LeaseCallback object to be
bound in the naming service.

3 Whenever the server exports object references
(IORs), the plug-in automatically adds leasing
information to the IOR in a CORBA-compliant
manner.

Stage Description

1 When the client starts up, it automatically loads
the leasing plug-in.

2 If the plug-in detects that the client is going to
invoke on an object using an IOR containing
leasing details, the plug-in automatically initiates a
session with the target server by acquiring a lease.

3 The plug-in automatically renews the lease when
needed.

4 Upon client shut down:
• If the client shuts down gracefully, the plug-in

automatically releases the lease with the
server.

• If the client crashes, the server-side plug-in
later realizes that the client has not recently
renewed the lease. The lease expires, allowing
the server to clean up appropriately.
 6 Orbix CORBA Session Management Guide: Java

Lease acquisition
A client initiates a session by acquiring a lease from a leasing
server, as shown in Figure 1.

The client session is initiated by the leasing plug-in, as follows:
1. The client’s leasing plug-in obtains an

IT_Leasing::LeaseCallback object reference by resolving a
name in the CORBA naming service.

2. The client’s leasing plug-in initiates a session by calling
acquire_lease() on the LeaseCallback object.

Lease renewal
After acquiring a lease, the client renews the lease at regular
intervals, as shown in Figure 2

The period between lease renewals is specified by the
plugins:lease:lease_ping_time configuration variable.

Figure 1: The Client Acquires a Lease

Figure 2: The Client Renews the Lease
Orbix CORBA Session Management Guide: Java 7

Client shutdown
When the client shuts down, the lease is released as shown in
Figure 3

The following shutdown scenarios can occur:
• Graceful client shutdown—if the client shuts down gracefully,

the plug-in automatically calls lease_release() to end the
session.

• Client crashes—if the client crashes, the server-side plug-in
calls lease_expired() on the LeaseCallback object after a
period of time specified by the plugins:lease:lease_reap_time
configuration variable.

A Sample Leasing Application

Location
Source code and build instructions for a sample leasing application
are located in the
asp/6.3/demos/corba/standard/session_management directory of your
Orbix installation.

Figure 3: The Lease is Released When the Client Shuts Down
 8 Orbix CORBA Session Management Guide: Java

The LeaseTest IDL module
The sample leasing application is based on a server that supports
a simple factory pattern for creating transient Person objects:

Purpose
The purpose of this example is to show that no matter how many
clients create Person objects, and no matter how those client
processes terminate, the server is notified when it can safely clean
up the objects. Therefore, the server is able to keep its memory
usage down.

Client-server interaction
Clients interact with the LeaseTest server as follows:

Using the Leasing Plug-In on the Client Side

Prerequisites
The client plug-in makes periodic resolve() calls to the Naming
Service during its lifetime. Therefore, your Orbix domain should
have a properly configured locator, activator, and naming service
ready before running a leasing client.

//IDL
module LeaseTest {
 exception PersonAlreadyExists { };

 interface Person {
 string name();
 };

 interface PersonFactory {
 Person create_person(in string name)
 raises (PersonAlreadyExists);
 };
};

Stage Description

1 A client creates new Person objects by calling the
create_person() operation, with unique name
arguments for each Person.

2 When a client terminates, the Person objects it
created no longer need to be held inside the server
memory and are deleted.
Orbix CORBA Session Management Guide: Java 9

How to use the plug-in
The only thing that needs to be changed in a client deployment
that uses the leasing framework is its configuration. Specifically,
the plug-in must be added to the list of ORB plug-ins and be
configured to participate in bindings.

Configuration variables
The following basic configuration variables are needed to configure
and activate the client-side plug-in:

The complete set of leasing plug-in configuration variables is given
in “Leasing Plug-In Configuration Variables” on page 25.

Configuring for co-located CORBA
objects
In the client_binding_list, a binding description containing the
POA_Coloc interceptor name must appear before the first binding
description that contains a LEASE interceptor name. This is to
ensure that a leasing application does not attempt to lease a
co-located CORBA object.

Example configuration
In an Orbix file-based configuration, the client-side plug-in might
be configured as follows:

Table 1: Configuration Variables Used on the Client Side

Configuration Variable Purpose

plugins:lease:ClassName Identifies the lease plug-in class
name.

orb_plugins The ORB plug-in list is modified
to ensure that the lease plug-in
is automatically loaded when the
client ORB is initialized.

binding:client_binding_list The client binding list is modified
to ensure that the plug-in can
participate in request
processing.

Orbix Configuration File
plugins:lease:ClassName =

"com.iona.corba.plugin.lease.LeasePlugIn";
orb_plugins = ["local_log_stream", "lease", "iiop_profile",

"giop", "iiop"];
binding:client_binding_list = ["POA_Coloc", "LEASE+GIOP+IIOP",

"GIOP+IIOP"];
 10 Orbix CORBA Session Management Guide: Java

Using the Leasing Plug-In on the Server Side

The IT_Leasing module
Servers wishing to act as leasing servers interact with the plug-in
to advertise leases. The interfaces used by leasing servers are
declared in the IT_Leasing module, which is defined in the
leasing.idl file:

The complete listing for the IT_Leasing module is in “Leasing IDL
Interfaces” on page 29.

The LeaseCallback interface
Your server must provide an implementation of the
IT_Leasing::LeaseCallback interface to receive notifications of
lease-related events from the leasing plug-in. For example, when
leases expire, the plug-in calls
IT_Leasing::LeaseCallback::lease_expired().

//IDL
module IT_Leasing
{
 ...
 interface LeaseCallback
 {
 LeaseID acquire_lease()
 raises (CouldNotAcquireLease);
 void lease_expired(in LeaseID lease_id);
 void lease_released(in LeaseID lease_id);
 void renew_lease(in LeaseID lease_id)
 raises (LeaseHasExpired);
 };
 local interface ServerLeaseAgent
 {
 void advertise_lease(
 in LeaseCallback lease_callback
) raises (CouldNotAdvertiseLease);
 LeaseID manufacture_lease_id();
 void withdraw_lease();
 void lease_acquired(in LeaseID lease_id);
 void lease_released(in LeaseID lease_id);
 };
 local interface Current : CORBA::Current
 {
 exception NoContext {};
 LeaseID get_lease_id() raises (NoContext);
 };
 ...
};
Orbix CORBA Session Management Guide: Java 11

The server lease agent interface
The implementation of the ServerLeaseAgent interface is provided
by the leasing plug-in. Your server communicates with the leasing
plug-in by calling the operations defined on this interface. For
example, the server can initialize the leasing plug-in by calling
IT_Leasing::ServerLeaseAgent::advertise_lease().

The Current interface
For a leasing server to react correctly to the ending of a lease, it
must know which resources are relevant to that lease. In other
words, the server must maintain an association between the
resources that it has created and the clients that are currently
using them.
This problem is solved as follows. When your server needs to
figure out which leasing client invoked a particular operation, you
can extract lease information from an object of
IT_Leasing::Current type, which is derived from CORBA::Current, an
interface specifically used for retrieving meta-information about
CORBA invocations. Once the IT_Leasing::Current object is
obtained, you can call get_lease_id() on it to find the lease ID
relevant to that call.
If the call is made from a non-leasing client (or a non-Orbix
client), the IT_Leasing::Current::NoContext user exception is
thrown.

Implementing the server
To use the plug-in on the server side, perform the following steps:

Implement the LeaseCallback Interface
You must implement the LeaseCallback interface to receive
notification of leasing events from the plug-in.
The following example shows a code extract from the LeaseTest
demonstration, where the LeaseCallback interface is implemented
by the LeaseCallbackImpl class.

Step Action

1 Implement the LeaseCallback Interface.

2 Use IT_Leasing::Current to Track Client Sessions.

3 Advertise the Lease.

4 Configure the Server-Side Plug-In.
 12 Orbix CORBA Session Management Guide: Java

Object instances
The following two object instances are used by the
LeaseCallbackImpl class:

Implementation code
The IT_Leasing::LeaseCallback interface is implemented by the
LeaseCallbackImpl Java class, as shown in Example 1.

Table 2: Object Instances Used in the LeaseCallbackImpl Class

Object Instance Description

m_lease_obj An IT_Leasing::ServerLeaseAgent object
reference. This object is used to
communicate with the leasing plug-in.

m_factory A reference to a PersonFactoryImpl object.
This object is used to create new
instances of Person CORBA objects.

Example 1: The LeaseCallbackImpl Class (Sheet 1 of 2)

//Java
package demos.session_management.LeaseTest;
//--JDK Imports--
import java.io.*;
//--IONAImports--
import demos.session_management.LeaseTest.*;
import com.iona.corba.IT_Lease_Component.*;
import com.iona.corba.IT_Lease_Logging.*;
import com.iona.corba.IT_Leasing.*;
import com.iona.corba.plugin.*;
import com.iona.corba.util.SystemExceptionDisplayHelper;
class LeaseCallbackImpl extends LeaseCallbackPOA
{
 private PersonFactoryImpl m_factory = null;
 private ServerLeaseAgent m_lease_obj = null;

 // Constructor (not shown)
 ...
 // IDL operations
Orbix CORBA Session Management Guide: Java 13

The code can be explained as follows:
1. The LeaseCallbackImpl.acquire_lease() method is called by

client lease plug-ins when they need to acquire a lease with
your server. The sample implementation asks the lease
plug-in for a new unique lease ID, and then informs the
plug-in that it has accepted the lease acquisition request by
calling lease_acquired() on the ServerLeaseAgent object. You
could also create the lease ID yourself—however, you are
then required to ensure its uniqueness within the server
process.

2. The LeaseCallbackImpl.lease_expired() method is called by the
plug-in when a particular lease has expired—that is, if the
lease has not been renewed within the configured reap time
(see “Leasing Plug-In Configuration Variables” on page 25).
This can occur if the client crashes or if the network link is lost
between the client and the server.
The sample implementation informs the Person factory that a
particular owner of Person objects has disappeared, by calling
owner_has_gone_away(). The Person factory is then free to

1 public String acquire_lease()
 {
 // We could throw CouldNotAcquireLease here if we
 // wanted to refuse the lease
 if (m_lease_obj == null)
 {
 System.err.println(
"ERROR: The Lease callback object has not been set

correctly.");
 System.exit(1);
 }
 String new_lease =

m_lease_obj.manufacture_lease_id();
 m_lease_obj.lease_acquired(new_lease);
 return new_lease;
 }

2 public void lease_expired(String lease_id)
 {
 m_factory.owner_has_gone_away(lease_id);
 }

3 public void lease_released(String lease_id)
 {
 m_lease_obj.lease_released(lease_id);
 m_factory.owner_has_gone_away(lease_id);
 }

4 public void renew_lease(String lease_id)
 {
 // Nothing to do, since the plugin has already

intercepted
 // this request and knows that the lease has been

renewed.
 }
}

Example 1: The LeaseCallbackImpl Class (Sheet 2 of 2)
 14 Orbix CORBA Session Management Guide: Java

remove any Person objects belonging to that client. The
sample PersonFactory removes the Person objects from a hash
table, which allows the garbage collector to free the
associated memory. Alternatively, a server could evict the
transient objects by persisting their data before removing
them from the hash table.

3. The LeaseCallbackImpl.lease_released() method is called by
client lease plug-ins when the client shuts down gracefully.
The implementation of this method is typically almost identical
to the implementation of lease_expired(), because they are
both caused by client terminations. The sample code
delegates to the PersonFactory servant, informing it that a
particular client has shut down.
There is one important difference between lease_released()
and lease_expired(), however. When lease_released() is
invoked, you should inform the plug-in of the event, so that it
stops managing that particular lease and checking for its
expiration. Do this by calling
ServerLeaseAgent::lease_released(), as in the example code.

4. The LeaseCallbackImpl.renew_lease() method is the ping
method that the client plug-ins call periodically to renew their
leases. You can leave this function body empty. By virtue of
the call reaching this point, it has already been intercepted
and examined by the server-side plug-in. During the
interception, the lease is timestamped with the current time
as its last renewed time. You might want to perform some
logging here.

Use IT_Leasing::Current to Track Client Sessions
The server has to track the resources associated with each client
and this is done with the help of the IT_Leasing::Current interface.
In the LeaseTest example, the associated resources are Person
objects. Whenever a Person object is created (using the
LeaseTest::PersonFactory interface) the server associates the new
Person object with the current client session.
The current client session is identified by the current lease ID,
which is obtained from the IT_Leasing::Current interface.
Orbix CORBA Session Management Guide: Java 15

Implementation code
The LeaseTest::PersonFactory interface is implemented by the
PersonFactoryImpl Java class as shown in Example 2.

Example 2: The PersonFactoryImpl Class (Sheet 1 of 5)

//Java
package demos.session_management.LeaseTest;
//--JDK Imports--
import java.io.*;
import java.util.*;
//--OMG Imports--
import org.omg.CORBA.*;
import org.omg.CORBA.ORBPackage.*;
import org.omg.PortableServer.*;
import org.omg.PortableServer.POAPackage.*;
//--IONAImports--
import com.iona.corba.util.SystemExceptionDisplayHelper;
import com.iona.corba.IT_Leasing.*;
import com.iona.corba.IT_Leasing.CurrentPackage.*;
class PersonFactoryImpl extends PersonFactoryPOA
{
 // The set of People that the Factory is currently

managing
 private Hashtable m_people = new Hashtable();
 private ORB m_orb;
 private POA m_poa;

 // Constructor
 ... // (not shown)
 public Person create_person(String name)
 throws PersonAlreadyExists
 {
 Person result = null;
 try
 {

System.out.println("LeaseTest.create_person("+name+")"
);

1 String owner = "<unknown>";

 try
 {

2 org.omg.CORBA.Object objref =

m_orb.resolve_initial_references("LeaseCurrent");
 if (objref != null)
 {
 com.iona.corba.IT_Leasing.Current current
 =

com.iona.corba.IT_Leasing.CurrentHelper.narrow(
 objref
);
 16 Orbix CORBA Session Management Guide: Java

3 owner = current.get_lease_id();
 }
 }
 catch (NoContext nc)
 {
 System.err.println(
 "Couldn't find the relevant ServiceContext

data.");
 }
 catch (InvalidName in)
 {
 System.err.println("Caught InvalidName

exception.");
 }
 catch (SystemException se)
 {
 System.err.println("Unknown exception"
 + SystemExceptionDisplayHelper.toString(se));
 }

 // Create a new Person servant and activate it
 PersonImpl newPersonServant;
 byte[] oid;
 org.omg.CORBA.Object tmp_ref = null;

 synchronized (this)
 {
 // check for Person existence within this process
 if (person_is_alive(name))
 {
 System.err.println("Person already exists!");
 throw new PersonAlreadyExists();
 }
 else
 {
 // Person does not exist, so it is created and
 // stored with the others, indexed by its name

4 newPersonServant = new PersonImpl(name, owner);

Example 2: The PersonFactoryImpl Class (Sheet 2 of 5)
Orbix CORBA Session Management Guide: Java 17

 try
 {
 oid = m_poa.activate_object(newPersonServant);
 tmp_ref = m_poa.id_to_reference(oid);
 }
 catch (ServantAlreadyActive sae)
 {
 System.err.println(
 "Unexpected ServantAlreadyActive

exception.");
 }
 catch (WrongPolicy wp)
 {
 System.err.println(
 "Unexpected WrongPolicy exception.");
 }
 catch (ObjectNotActive one)
 {
 System.err.println(
 "Unexpected ObjectNotActive exception.");
 }

 result = PersonHelper.narrow(tmp_ref);

 if (result == null)
 {
 System.err.println("Person is null error");
 System.exit(1);
 }

 // store the new servant with the others
 String temp_string = new String(name);

5 m_people.put(temp_string, newPersonServant);
 System.out.println("Created: " + name);
 dump_people_to_screen();
 }
 }
 }
 catch (PersonAlreadyExists pae)
 {
 throw pae;
 }
 catch (SystemException se)
 {
 System.err.println("Unexpected system exception." +

SystemExceptionDisplayHelper.toString(se));
 }

6 return result;
 }

Example 2: The PersonFactoryImpl Class (Sheet 3 of 5)
 18 Orbix CORBA Session Management Guide: Java

7 void owner_has_gone_away(String owner)
 {
 // Iterate through the people map and evict any people
 // who were created by 'owner'.
 //
 Hashtable tmp_table = new Hashtable();
 tmp_table.putAll(m_people);

 Set the_set = tmp_table.keySet();
 String this_owner = null;

 if (!the_set.isEmpty())
 {
 Iterator the_iter = the_set.iterator();
 do
 {
 String key = (String)the_iter.next();
 PersonImpl the_person =

(PersonImpl)tmp_table.get(key);
 this_owner = the_person.owner();

 // value may == null if this has already been

evicted
 // while we are iterating through the list.
 if (owner.equals(this_owner))
 {
 try
 {
 // deactivate the servant before deleting it
 byte[] oid = m_poa.servant_to_id(the_person);
 // deactivate the servant with the

corresponding
 // id on the POA

8 m_poa.deactivate_object(oid);
 }
 catch(ObjectNotActive one)
 {
 System.err.println(
 "ERROR: Unexpected ObjectNotActive

exception.");
 }
 catch(WrongPolicy wp)
 {
 System.err.println(
 "ERROR: Unexpected WrongPolicy

exception.");
 }
 catch(ServantNotActive sna)
 {
 System.err.println(
 "ERROR: Unexpected ServantNotActive

exception.");
 }

Example 2: The PersonFactoryImpl Class (Sheet 4 of 5)
Orbix CORBA Session Management Guide: Java 19

The code can be explained as follows:
1. If the factory cannot figure out the relevant lease ID, it

assigns a default ID of <unknown> as the owner of the object.
This happens if a non-leasing client (either a non-Orbix client
or an Orbix client that did not load the plug-in) invokes the
factory.

2. The factory checks to see if it can contact the LeaseCurrent
object.

3. If a reference to a LeaseCurrent object can be obtained, the
get_lease_id() method is called to get the lease ID (of string
type) for this invocation.

4. A new Person object is created and activated. The result
variable is set equal to the corresponding Person object
reference.

5. The factory stores the new Person object in its own internal
table of Person objects, m_people, using the lease ID,
temp_string, as a key.

6. The Person object reference, result, is returned to the calling
code.

7. The owner_has_gone_away() method is called by
LeaseCallback::lease_expired() or
LeaseCallback::lease_released() to clean up the resources
(Person objects) associated with a client session identified by
the owner string. The code iterates over all of the entries in the
m_person table, searching for entries associated with the owner
session.

8. Before removing a Person object from the hash table, the
corresponding servant must be deactivated by calling
PortableServer.POA.deactivate_object().

9. The servant object is removed from the m_people hash table in
this line of code. This allows the Java garbage collector to free
the associated memory.

Advertise the Lease

Prerequisites
Advertising the lease causes the LeaseCallback object reference to
be bound into the naming service. Therefore, you must have your
Orbix locator, node daemon, and naming service properly
configured and ready to run.

9 m_people.remove(key);
 }
 }
 while(the_iter.hasNext());
 }
 dump_people_to_screen();
 }
 ...
}

Example 2: The PersonFactoryImpl Class (Sheet 5 of 5)
 20 Orbix CORBA Session Management Guide: Java

Where to advertise
Lease advertisement is an initialization step that is performed in
the server main() method. This should be done before the server
starts to process incoming CORBA requests (that is, before the
server calls ORB.run() or ORB.perform_work()).

Implementation code
The code shown in Example 3 should be added to your server’s
main() method to advertise the lease:

Example 3: Advertising the Lease in the main() Method (Sheet 1 of 2)

//Java
package demos.session_management.LeaseTest;
// Imports (not shown)
...
class Server
{
 ...
 public static void main(String args[])
 {
 ...

 ServerLeaseAgent leaseObj = null;
 ...
 // Contact the Lease Plugin
 try
 {

1 tmp_ref = orb.resolve_initial_references(
 "IT_ServerLeaseAgent"
);
 leaseObj = ServerLeaseAgentHelper.narrow(tmp_ref);
 }
 catch (InvalidName in)
 {
 // Process the exception ...
 }
 catch (SystemException se)
 {
 // Process the exception ...
 }
 ...

 // Assume that we have already created and activated a
 // LeaseCallback servant and created a reference for

it
 // called the_LeaseCallbackObject.
 ...
 // advertise a lease on the lease plugin
 try
 {

2 leaseObj.advertise_lease(the_LeaseCallbackObject);
 }
Orbix CORBA Session Management Guide: Java 21

The code can be explained as follows:
1. The server obtains an initial reference to a ServerLeaseAgent

object, which is created by the leasing plug-in.
2. The leasing plug-in is initialized by calling advertise_lease()

on the ServerLeaseAgent object. The advertise_lease()
operation takes a single parameter, the_LeaseCallbackObject,
which causes the LeaseCallback object to be registered with
the plug-in.

Configure the Server-Side Plug-In
Server-side configuration variables are used to initialize the
server-side plug-in and to customize the behavior of the leasing
plug-in. Some of these configuration variables are communicated
to clients by inserting the information into IORs generated by the
server.

Configuration variables
In addition to the client-side configuration variables, the following
basic configuration variables are needed to configure the
server-side plug-in:

 catch (CouldNotAdvertiseLease cna)
 {
 // Process the exception ...
 }
 catch (DuplicateServerID dsid)
 {
 // Process the exception ...
 }
 catch (SystemException se)
 {
 // Process the exception ...
 }
 ...
 }
}

Example 3: Advertising the Lease in the main() Method (Sheet 2 of 2)

Table 3: Configuration Variables Used on the Client Side

Configuration Variable Purpose

binding:server_binding_list The server binding list is
modified, instructing the ORB to
insert LEASE interceptors into
server-side bindings.

plugins:lease:
lease_name_to_advertise

The name under which the
LeaseCallback object is bound in
the naming service. This name
must be unique per server.
 22 Orbix CORBA Session Management Guide: Java

The complete set of leasing plug-in configuration variables is given
in “Leasing Plug-In Configuration Variables” on page 25.

Example configuration
For a complete example of a client-side and server-side
configuration, see “Sample Leasing Plug-In Configuration” on
page 27.

plugins:lease:lease_ping_time The time interval (in
milliseconds) between
successive ping messages sent
by client-side plug-ins to renew
the lease.

plugins:lease:lease_reap_time If a particular client’s lease is not
pinged within lease_reap_time,
the server resources associated
with the client are released.

Table 3: Configuration Variables Used on the Client Side

Configuration Variable Purpose
Orbix CORBA Session Management Guide: Java 23

 24 Orbix CORBA Session Management Guide: Java

Leasing Plug-In
Configuration
Variables
The following list describes the leasing plug-in configuration variables
and their allowed values, ranges, and defaults.

Common Variables

List of variables
The following configuration variables apply to both clients and
servers:

event_log:filters Specifies a list of logging filters. You can
configure the plug-in to write to a log stream by appending the
plug-in log stream to the list of filters (see the Orbix
Administrator’s Guide for more information on log stream
configuration). The plug-in’s log stream object is IT_LEASE. For
example, to get full diagnostic output from the plug-in, set the
variable event_log:filters equal to ["IT_LEASE=*"].

plugins:lease:lease_ns_context Identifies the naming service
NamingContext where the leasing plug-in registers the
LeaseCallback object. The name should be a valid NamingContext id
(see the CORBA Naming Service specification). Since both leasing
clients and leasing servers use this value, it should be set to the
same value across your entire domain. The default is IT_Leases.

plugins:lease:ClassName Identifies the entry point for the Java
leasing plug-in code. The ClassName variable should be set to the
leasing plug-in class name, which is
com.iona.corba.plugin.lease.LeasePlugIn.

Server-Side Variables

List of Variables
The following configuration variables apply only to servers:

plugins:lease:allow_advertisement_overwrites Determines
whether the server can re-advertise the same lease when it comes
back up after a crash or disorderly shutdown. Internally, the
plug-in uses NamingContext::rebind() if set to true, or
NamingContext::bind() if set to false, when binding the
LeaseCallback object in the naming service.
 Orbix CORBA Session Management Guide: Java 25

The default is false, but in a real deployment scenario the
recommended setting is true.

plugins:lease:lease_name_to_advertise Determines the lease
name used when registering the LeaseCallback object in the
naming service. This name should be configured to be unique
among all your leasing servers. The name should be a valid
NamingContext id (see the CORBA naming service specification).
The default value is default_lease_name.

plugins:lease:lease_ping_time Determines the value inserted
into TAG_IONA_LEASE IOR components for the lease ping time.
Leasing clients using that IOR automatically renew the lease by
pinging every N ms, where N is the value specified in this variable.
The default value is 900,000 ms (15 minutes). Legal values are
unsigned longs > 1. In addition, if the ping time is specified to be
greater than the reap time, lease_reap_time, it is automatically
changed to half the reap time.

plugins:lease:lease_reap_time Determines how often the
server-side plug-in checks whether leases have expired. The value
is specified in ms. If a particular lease has not been renewed
(pinged) by its client in this amount of time, the lease expires.
Legal values are unsigned longs > 2. The default value is
1,800,000 ms (30 minutes).
 26 Orbix CORBA Session Management Guide: Java

Sample Leasing
Plug-In Configuration
This appendix shows the leasing plug-in configuration used in the session
management demonstration.

Configuration file extract
The following listing is a sample valid configuration for a set of
applications, Server1, Server2, and clients, using the leasing
plug-in. This configuration is included in generated Orbix domains,
OrbixInstallDir/etc/domains/domain_name.cfg, where domain_name is the
name of your domain.

Example 4: Configuration File Extract for Leasing Plug-In

Orbix Configuration File
...
demos {
 ...
 session_management
 {
 plugins:lease:shlib_name = "it_lease";
 plugins:lease:ClassName =
 "com.iona.corba.plugin.lease.LeasePlugIn";
 orb_plugins = ["local_log_stream", "lease",
 "iiop_profile", "giop", "iiop"];
 binding:client_binding_list = ["POA_Coloc",
 "LEASE+GIOP+IIOP",
 "GIOP+IIOP"];
 binding:server_binding_list = ["LEASE", ""];
 plugins:lease:allow_advertisement_overwrites = "true";
 # default is false
 event_log:filters = ["IT_LEASE=*"];
 server1 {
 # client must ping every 10 seconds
 plugins:lease:lease_ping_time = "10000";
 # leases will expire after 20 seconds of inactivity
 plugins:lease:lease_reap_time = "20000";
 plugins:lease:lease_name_to_advertise
 = "PersonFactorySrv1";
 };
 server2 {
 # client must ping every 20 seconds
 plugins:lease:lease_ping_time = "20000";
 # leases will expire after 40 seconds of inactivity
 plugins:lease:lease_reap_time = "40000";
 plugins:lease:lease_name_to_advertise
 = "PersonFactorySrv2";
 };
 };
 ...
};
 Orbix CORBA Session Management Guide: Java 27

 28 Orbix CORBA Session Management Guide: Java

Leasing IDL Interfaces
The complete IDL for the leasing plug-in.

The IT_Leasing IDL module
The IT_Leasing module is defined as follows:

Example 5: The IT_Leasing IDL Module (Sheet 1 of 3)

//IDL
#ifndef __IT_LEASING_IDL_
#define __IT_LEASING_IDL_
//
// @Copyright (c) 2000 IONA Technologies PLC. All Rights
// Reserved.

#include <omg/orb.idl>
#include <omg/IOP.idl>
#pragma prefix "iona.com"
module IT_Leasing
{
 // Type definitions
 typedef string LeaseID;

 // Possible error conditions
 exception LeaseHasExpired {};
 enum LeaseAdvertisementError {
 NAMING_SERVICE_UNREACHABLE,
 LEASE_ALREADY_ADVERTISED,
 LEASE_ALREADY_BOUND_IN_NS,
 UNKNOWN_ERROR
 };
 exception CouldNotAdvertiseLease
 {
 LeaseAdvertisementError reason;
 };
 exception CouldNotAcquireLease {};

 // This is the maximum amount of time that a client leasing
 // plugin will wait before automatically renewing a
 // particular lease. The value is set in the server plugins'
 // configuration.
 typedef unsigned long IdleTimeBeforePing; // milliseconds
 // This interface must be implemented by servers that
 // wish to advertise leases.
 interface LeaseCallback
 {
 // Informs the server that a client wants a new lease.
 LeaseID acquire_lease()
 raises (CouldNotAcquireLease);
 // Informs the server that a lease not been renewed
 // (usually because the client has gone away)
 void lease_expired(
 in LeaseID lease_id
);
 Orbix CORBA Session Management Guide: Java 29

 // Informs the server that a client has explicitly
 // released a lease
 void lease_released(in LeaseID lease_id);

 // renew_lease() is called by leasing plugins on the
 // client side to renew leases after some idle time.
 // This is semantically equivalent to a 'keepalive'
 // or 'heartbeat' method.
 void renew_lease(in LeaseID lease_id)
 raises (LeaseHasExpired);
 };
 // This is the interface that leasing plugins will
 // expose on the server side. Server programmers must
 // interact with this interface to advertise leases.
 local interface ServerLeaseAgent
 {
 // advertise_lease() is called by the server
 // to start the lease advertisement. The ping time
 // and ServerID values for the lease are obtained
 // from configuration.
 void advertise_lease(in LeaseCallback lease_callback)
 raises (CouldNotAdvertiseLease);
 // Helper function that generates a system defined
 // lease id, in case the server does not need to attach
 // any specific meaning to incoming leases.
 LeaseID manufacture_lease_id();
 // You may call this method at any time to withdraw your
 // lease, but note that the plugin will automatically
 // withdraw your lease at ORB shutdown time, so you
 // typically never need to call this method.
 void withdraw_lease();
 // Call this method if you wish the plugin to
 // detect that a particular lease has expired (usually
 // due to non-graceful client termination).
 // The typical place to call this is from your
 // implementation of LeaseCallback::acquire_lease().
 void lease_acquired(in LeaseID lease_id);
 // Call this method when you wish the plugin to stop
 // detecting that a particular lease has expired, usually
 // because a client has terminated gracefully and
 // released the lease themselves.
 // The typical place to call this is from your
 // implementation of LeaseCallback::lease_released().
 void lease_released(in LeaseID lease_id);
 };
 // This interface represents the lease details that will
 // be added to requests by leasing clients. The information
 // will be added as a ServiceContext and be available within
 // the servant implementations through the Current interface.
 local interface Current :
 CORBA::Current
 {
 exception NoContext {};
 LeaseID get_lease_id()
 raises (NoContext);

Example 5: The IT_Leasing IDL Module (Sheet 2 of 3)
 30 Orbix CORBA Session Management Guide: Java

 };
 const IOP::ServiceId SERVICE_ID = 0x49545F43;
};
#endif /*__IT_LEASING_IDL_*/

Example 5: The IT_Leasing IDL Module (Sheet 3 of 3)
Orbix CORBA Session Management Guide: Java 31

 32 Orbix CORBA Session Management Guide: Java

Glossary
A activator

A server host facility that is used to activate server processes.

ART
Adaptive Runtime Technology. Micro Focus’s modular, distributed
object architecture, which supports dynamic deployment and
configuration of services and application code. ART provides the
foundation for Orbix software products.

C CFR
See configuration repository.

client
An application (process) that typically runs on a desktop and
requests services from other applications that often run on different
machines (known as server processes). In CORBA, a client is a
program that requests services from CORBA objects.

configuration
A specific arrangement of system elements and settings.

configuration domain
Contains all the configuration information that Orbix ORBs, services
and applications use. Defines a set of common configuration
settings that specify available services and control ORB behavior.
This information consists of configuration variables and their values.
Configuration domain data can be implemented and maintained in
a centralized Orbix configuration repository or as a set of files
distributed among domain hosts. Configuration domains let you
organize ORBs into manageable groups, thereby bringing scalability
and ease of use to the largest environments. See also configuration
file and configuration repository.

configuration file
A file that contains configuration information for Orbix components
within a specific configuration domain. See also configuration
domain.

configuration repository
A centralized store of configuration information for all Orbix
components within a specific configuration domain. See also
configuration domain.

configuration scope
Orbix configuration is divided into scopes. These are typically
organized into a root scope and a hierarchy of nested scopes, the
fully-qualified names of which map directly to ORB names. By
organizing configuration properties into various scopes, different
settings can be provided for individual ORBs, or common settings
for groups of ORB. Orbix services, such as the naming service, have
their own configuration scopes.
 Orbix CORBA Session Management Guide: Java 33

CORBA
Common Object Request Broker Architecture. An open standard
that enables objects to communicate with one another regardless
of what programming language they are written in, or what
operating system they run on. The CORBA specification is produced
and maintained by the OMG. See also OMG.

CORBA naming service
An implementation of the OMG Naming Service Specification.
Describes how applications can map object references to names.
Servers can register object references by name with a naming
service repository, and can advertise those names to clients.
Clients, in turn, can resolve the desired objects in the naming
service by supplying the appropriate name. The Orbix naming
service is an example.

CORBA objects
Self-contained software entities that consist of both data and the
procedures to manipulate that data. Can be implemented in any
programming language that CORBA supports, such as C++ and
Java.

D deployment
The process of distributing a configuration or system element into
an environment.

I IDL
Interface Definition Language. The CORBA standard declarative
language that allows a programmer to define interfaces to CORBA
objects. An IDL file defines the public API that CORBA objects expose
in a server application. Clients use these interfaces to access server
objects across a network. IDL interfaces are independent of
operating systems and programming languages.

IIOP
Internet Inter-ORB Protocol. The CORBA standard messaging
protocol, defined by the OMG, for communications between ORBs
and distributed applications. IIOP is defined as a protocol layer
above the transport layer, TCP/IP.

implementation repository
A database of available servers, it dynamically maps persistent
objects to their server’s actual address. Keeps track of the servers
available in a system and the hosts they run on. Also provides a
central forwarding point for client requests. See also location
domain and locator daemon.

interceptor
An implementation of an interface that the ORB uses to process
requests. Abstract request handlers that can implement transport
protocols (such as IIOP), or manipulate requests on behalf of a
service (for example, adding transaction identity).

Interface Definition Language
See IDL.
 34 Orbix CORBA Session Management Guide: Java

invocation
A request issued on an already active software component.

IOR
Interoperable Object Reference. See object reference.

L location domain
A collection of servers under the control of a single locator daemon.
Can span any number of hosts across a network, and can be
dynamically extended with new hosts. See also locator daemon and
node daemon.

locator daemon
A server host facility that manages an implementation repository
and acts as a control center for a location domain. Orbix clients use
the locator daemon, often in conjunction with a naming service, to
locate the objects they seek. Together with the implementation
repository, it also stores server process data for activating servers
and objects. When a client invokes on an object, the client ORB
sends this invocation to the locator daemon, and the locator daemon
searches the implementation repository for the address of the
server object. In addition, enables servers to be moved from one
host to another without disrupting client request processing.
Redirects requests to the new location and transparently reconnects
clients to the new server instance. See also location domain, node
daemon, and implementation repository.

N naming service
See CORBA naming service.

node daemon
Starts, monitors, and manages servers on a host machine. Every
machine that runs a server must run a node daemon.

O object reference
Uniquely identifies a local or remote object instance. Can be stored
in a CORBA naming service, in a file or in a URL. The contact details
that a client application uses to communicate with a CORBA object.
Also known as interoperable object reference (IOR) or proxy.

OMG
Object Management Group. An open membership, not-for-profit
consortium that produces and maintains computer industry
specifications for interoperable enterprise applications, including
CORBA. See www.omg.com.

ORB
Object Request Broker. Manages the interaction between clients
and servers, using the Internet Inter-ORB Protocol (IIOP). Enables
clients to make requests and receive replies from servers in a
distributed computer environment. Key component in CORBA.
Orbix CORBA Session Management Guide: Java 35

http://www.omg.com

P POA
Portable Object Adapter. Maps object references to their concrete
implementations in a server. Creates and manages object
references to all objects used by an application, manages object
state, and provides the infrastructure to support persistent objects
and the portability of object implementations between different ORB
products. Can be transient or persistent.

S server
A program that provides services to clients. CORBA servers act as
containers for CORBA objects, allowing clients to access those
objects using IDL interfaces.
 36 Orbix CORBA Session Management Guide: Java

Index
Symbols
<unknown> lease ID 20

A
acquire_lease() 14
advertise_lease() 12, 22
allow_advertisement_overwrites
variable 25

C
client_binding_list 10
co-location, and the leasing plug-in 10
configuration

of leasing client 10
of leasing plug-in 25, 27
of leasing server 22

CORBA::Current 12
Current interface

in IT_Leasing module 12

D
deactivate_object() 20
documentation

.pdf format 3
updates on the web 3

E
event_log:filters variable 25

F
filters variable 25

G
get_lease_id() 12, 20

I
initial references 22
IT_Leasing module 11, 29
IT_ServerLeaseAgent 22

L
lease, advertising 20
lease_acquired() 14
LeaseCallbackImpl class 13
LeaseCallback interface 11
lease_expired() 20

and client shut down 8
implementing 14

lease ID 20
lease_name_to_advertise 22
lease_name_to_advertise variable 26
lease_ns_context variable 25
lease_ping_time variable 7, 22, 26
lease_reap_time variable 8, 22, 26
lease_release() 8
lease_released() 15, 20
LeaseTest module 9
leasing demonstration 9
leasing plug-in

client configuration 10
client-side behavior 6
client-side usage 10
co-located CORBA objects 10
common variables 25
configuration example 27
features 5
implementing the server 12
lease acquisition 7
lease renewal 7
prerequisites 9
server-side behavior 6
server-side variables 25
shutdown 8

logging filters 25

N
naming service

and advertising a lease 20
and lease_ns_context variable 25
and the leasing plug-in 9

NoContext user exception 12

O
orb_plugins variable 10
owner_has_gone_away() 20

P
PersonFactoryImpl class 16
plugins:lease:allow_advertisement_overw
rites variable 25

plugins:lease:lease_name_to_advertise
variable 26

plugins:lease:lease_ns_context
variable 25

plugins:lease:lease_ping_time variable 26
plugins:lease:lease_reap_time
variable 26

POA_Coloc interceptor 10

R
renew_lease() 15

S
server_binding_list 22
ServerLeaseAgent interface 12
Orbix CORBA Session Management Guide: Java 37

session management
demonstration location 8
overview 5

shlib_name 10

T
TAG_IONA_LEASE tag 26
 38 Orbix CORBA Session Management Guide: Java

Orbix CORBA Session Management Guide: Java 39

 40 Orbix CORBA Session Management Guide: Java

	Preface
	Contacting Micro Focus

	Using the Leasing Plug-In
	The Leasing Framework
	A Sample Leasing Application
	Using the Leasing Plug-In on the Client Side
	Using the Leasing Plug-In on the Server Side
	Implement the LeaseCallback Interface
	Use IT_Leasing::Current to Track Client Sessions
	Advertise the Lease
	Configure the Server-Side Plug-In

	Leasing Plug-In Configuration Variables
	Common Variables
	Server-Side Variables

	Sample Leasing Plug-In Configuration
	Leasing IDL Interfaces
	Glossary
	Index

