IONA

fgl Orbix®

COBOIL Programmer’s Guide

and Reference
Version 6.0, November 2003

Making Software Work Together™

IONA, IONA Technologies, the IONA logo, Orbix, Orbix/E, Orbacus, Artix, Orchestrator,
Mobile Orchestrator, Enterprise Integrator, Adaptive Runtime Technology, Transparent
Enterprise Deployment, and Total Business Integration are trademarks or registered
trademarks of IONA Technologies PLC and/or its subsidiaries.

Java and J2EE are trademarks or registered trademarks of Sun Microsystems, Inc. in the
United States and other countries.

CORBA is a trademark or registered trademark of the Object Management Group, Inc. in
the United States and other countries. All other trademarks that appear herein are the
property of their respective owners.

While the information in this publication is believed to be accurate, IONA Technologies PLC makes no warranty
of any kind to this material including, but not limited to, the implied warranties of merchantability and fitness for
a particular purpose. IONA Technologies PLC shall not be liable for errors contained herein, or for incidental or
consequential damages in connection with the furnishing, performance or use of this material.

COPYRIGHT NOTICE

No part of this publication may be reproduced, stored in a retrigval system or transmitted, in any form or by any
means, photocopying, recording or otherwise, without prior written consent of IONA Technologies PLC. No third
party intellectual property right liability is assumed with respect to the use of the information contained herein.
IONA Technologies PLC assumes no responsibility for errors or omissions contained in this book. This publica-
tion and features described herein are subject to change without notice.

Copyright © 1998, 2003 IONA Technologies PLC. All rights reserved.

All products or services mentioned in this manual are covered by the trademarks, service marks, or product
names as designated by the companies who market those products.

Updated: 14-Apr-2005

M3163

Contents

List of Figures
List of Tables

Preface

Part 1 Programmer’s Guide

Chapter 1 Introduction to Orbix
Why CORBA?
CORBA Objects
Object Request Broker
CORBA Application Basics
Orbix Plug-In Design
Orbix Application Deployment
Location Domains
Configuration Domains

Chapter 2 Getting Started in Batch
Overview and Setup Requirements
Developing the Application Interfaces

Defining IDL Interfaces

Generating COBOL Source and Copybooks
Developing the Server

Writing the Server Implementation

Writing the Server Mainline

Building the Server
Developing the Client

Writing the Client

Building the Client

Xi

Xiii

CONTENTS

Running the Application
Starting the Orbix Locator Daemon
Starting the Orbix Node Daemon
Running the Server and Client
Application Output

Application Address Space Layout

Chapter 3 Getting Started in IMS
Overview
Developing the Application Interfaces
Defining IDL Interfaces
Orbix IDL Compiler
Generated COBOL Copybooks, Source, and Mapping Member
Developing the IMS Server
Writing the Server Implementation
Writing the Server Mainline
Building the Server
Preparing the Server to Run in IMS
Developing the IMS Client
Writing the Client
Building the Client
Preparing the Client to Run in IMS
Running the Demonstrations
Running Batch Client against IMS Server
Running IMS Client against Batch Server

Chapter 4 Getting Started in CICS
Overview
Developing the Application Interfaces
Defining IDL Interfaces
Orbix IDL Compiler
Generated COBOL Copybooks, Source, and Mapping Member
Developing the CICS Server
Writing the Server Implementation
Writing the Server Mainline
Building the Server
Preparing the Server to Run in CICS

43
44
45
46
47
48

51
52
58
59
61
64
68
69
74
78
79
83
84
89
90
94
95
96

97

98
103
104
106
109
113
114
118
122
123

CONTENTS

Developing the CICS Client 127
Writing the Client 128
Building the Client 132
Preparing the Client to Run in CICS 133

Running the Demonstrations 137
Running Batch Client against CICS Server 138
Running CICS Client against Batch Server 139

Chapter 5 IDL Interfaces 141

IDL 142

Modules and Name Scoping 143

Interfaces 144
Interface Contents 146
Operations 147
Attributes 149
Exceptions 150
Empty Interfaces 151
Inheritance of Interfaces 152
Multiple Inheritance 153
Inheritance of the Object Interface 155
Inheritance Redefinition 156
Forward Declaration of IDL Interfaces 157
Local Interfaces 158
Valuetypes 159
Abstract Interfaces 160

IDL Data Types 161
Built-in Data Types 162
Extended Built-in Data Types 164
Complex Data Types 167
Enum Data Type 168
Struct Data Type 169
Union Data Type 170
Arrays 172
Sequence 173
Pseudo Object Types 174

Defining Data Types 175
Constants 176

Constant Expressions 179

CONTENTS

Chapter 6 IDL-to-COBOL Mapping

Mapping for Identifier Names
Mapping for Type Names
Mapping for Basic Types
Mapping for Boolean Type
Mapping for Enum Type
Mapping for Char Type

Mapping for Octet Type
Mapping for String Types
Mapping for Wide String Types
Mapping for Fixed Type
Mapping for Struct Type
Mapping for Union Type
Mapping for Sequence Types
Mapping for Array Type
Mapping for the Any Type
Mapping for User Exception Type
Mapping for Typedefs

Mapping for the Object Type
Mapping for Constant Types
Mapping for Operations
Mapping for Attributes

Mapping for Operations with a Void Return Type and No Parameters
Mapping for Inherited Interfaces
Mapping for Multiple Interfaces

Chapter 7 Orbix IDL Compiler

Vi

Running the Orbix IDL Compiler

Running the Orbix IDL Compiler in Batch

Running the Orbix IDL Compiler in UNIX System Services
Generated COBOL Source and Copybooks
Orbix IDL Compiler Arguments

Summary of the Arguments

Specifying Compiler Arguments

-D Argument

-M Argument

-0 Argument

-Q Argument

181
183
187
188
193
196
198
199
200
205
206
210
212
217
222
224
226
229
232
233
236
241
246
248
255

259
260
261
264
266
269
270
271
273
274
281
283

CONTENTS

-S Argument 284

-T Argument 285

-Z Argument 288

Orbix IDL Compiler Configuration 289
COBOL Configuration Variables 290
Adapter Mapping Member Configuration Variables 294
Providing Arguments to the IDL Compiler 297
Chapter 8 Memory Handling 301
Operation Parameters 302
Unbounded Sequences and Memory Management 303
Unbounded Strings and Memory Management 307
Object References and Memory Management 311

The any Type and Memory Management 315

User Exceptions and Memory Management 320
Memory Management Routines 322

Part 2 Programmer’s Reference

Chapter 9 API Reference 327
API| Reference Summary 328
API Reference Details 332

ANYFREE 334
ANYGET 336
ANYSET 338
COAERR 341
COAGET 346
COAPUT 351
COAREQ 357
COARUN 362
MEMALLOC 363
MEMFREE 365
OBJDUP 366
OBJGETID 368
OBJNEW 370
OBJREL 373

OBJRIR 375

vii

CONTENTS

OBJTOSTR
ORBARGS
ORBEXEC
ORBHOST
ORBREG
ORBSRVR
ORBSTAT
ORBTIME
SEQALLOC
SEQDUP
SEQFREE
SEQGET
SEQSET
STRFREE
STRGET
STRLEN
STRSET
STRSETP
STRTOOBJ
TYPEGET
TYPESET
WSTRFREE
WSTRGET
WSTRLEN
WSTRSET
WSTRSETP
CHECK-STATUS

Deprecated APIs

viii

377
379
382
388
390
393
394
398
400
404
409
412
415
420
422
425
427
430
432
438
440
443
444
445
446
447
448
451

Part 3 Appendices

Appendix A POA Policies
Appendix B System Exceptions
Appendix C Installed Data Sets

Index

CONTENTS

455

459

463

467

CONTENTS

List of Figures

Figure 1: The Nature of Abstract CORBA Objects

Figure 2: The Object Request Broker

Figure 3: Address Space Layout for an Orbix COBOL Application
Figure 4: Inheritance Hierarchy for PremiumAccount Interface

48
154

LIST OF FIGURES

List of Tables

Table 1:
Table 2:
Table 3:
Table 4:
Table 5:
Table 6:
Table 7:
Table 8:
Table 9:

Supplied Code and JCL

Supplied Copybooks

Generated Server Source Code Members
Generated COBOL Copybooks

Supplied Code and JCL

Supplied Copybooks

Generated COBOL Copybooks

Generated Server Source Code Members
Generated IMS Server Adapter Mapping Member
Table 10:
Table 11:
Table 12:
Table 13:
Table 14:
Table 15:
Table 16:
Table 17:
Table 18:
Table 19:
Table 20:
Table 21:
Table 22:
Table 23:
Table 24
Table 25:
Table 26:

Supplied Code and JCL

Supplied Copybooks

Generated COBOL Copybooks

Generated Server Source Code Members

Generated CICS Server Adapter Mapping Member
Built-in IDL Data Types, Sizes, and Values
Extended built-in IDL Data Types, Sizes, and Values
Mapping for Basic IDL Types

Generated Source Code and Copybook Members
Recommended Filename Extensions

Example of Default Generated Data Names
Example of Level-0-Scoped Alternative Data Names
Example of Level-1-Scoped Alternative Data Names
Example of Level-2-Scoped Alternative Data Names
Example of Modified Mapping Names

COBOL Configuration Variables

Adapter Mapping Member Configuration Variables

17
18
23
24
53
54
65
66
67
99
100
110
111
112
162
164
188
266
267
274
277
277
278
279
291
295

Xi

LIST OF TABLES

Table 27: Memory Handling for IN Unbounded Sequences 303
Table 28: Memory Handling for INOUT Unbounded Sequences 304
Table 29: Memory Handling for OUT and Return Unbounded Sequences 305
Table 30: Memory Handling for IN Unbounded Strings 307
Table 31: Memory Handling for INOUT Unbounded Strings 308
Table 32: Memory Handling for OUT and Return Unbounded Strings 309
Table 33: Memory Handling for IN Object References 311
Table 34: Memory Handling for INOUT Object References 312
Table 35: Memory Handling for OUT and Return Object References 313
Table 36: Memory Handling for IN Any Types 315
Table 37: Memory Handling for INOUT Any Types 316
Table 38: Memory Handling for OUT and Return Any Types 318
Table 39: Memory Handling for User Exceptions 320
Table 40: Summary of Common Services and Their COBOL ldentifiers 375
Table 41: POA Policies Supported by COBOL Runtime 456

Table 42: List of Installed Data Sets Relevant to COBOL 463

Xii

Audience

Supported compilers

Organization of this guide

Preface

Orbix is a full implementation from IONA Technologies of the Common
Object Request Broker Architecture (CORBA), as specified by the Object
Management Group (OMG). Orbix complies with the following
specifications:

®* CORBA2.3

® GIOP 1.2 (default), 1.1, and 1.0

Orbix Mainframe is IONA'’s implementation of the CORBA standard for the
0S/390 platform. Orbix Mainframe documentation is periodically updated.
New versions between release are available at
http://www.iona.com/support/docs.

If you need help with this or any other IONA products, contact IONA at
suppor t @ona. com Comments on IONA documentation can be sent to
docs- support @ona. com

This guide is intended for COBOL application programmers who want to
develop Orbix applications in a native 0S/390 environment.

The supported compilers are:

* |BM COBOL for 0S/390 & VM version 2.1.2.

® |BM COBOL for 0S/390 & VM version 2.2.1.

®* |IBM Enterprise COBOL for z/OS and 0S/390 3.2.0.

This guide is divided as follows:

xiii

mailto:support@iona.com
mailto:docs-support@iona.com
http://www.iona.com/support/docs

PREFACE

Xiv

Part 1, Programmer’s Guide

Chapter 1, Introduction to Orbix

With Orbix, you can develop and deploy large-scale enterprise-wide CORBA
systems in languages such as COBOL, PL/I, C++, and Java. Orbix has an
advanced modular architecture that lets you configure and change
functionality without modifying your application code, and a rich
deployment architecture that lets you configure and manage a complex
distributed system. Orbix Mainframe is IONA’s CORBA solution for the
0S/390 environment.

Chapter 2, Getting Started in Batch

This chapter introduces batch application programming with Orbix, by
showing how to use Orbix to develop a simple distributed application that
features a COBOL client and server, each running in its own region.

Chapter 3, Getting Started in IMS

This chapter introduces IMS application programming with Orbix, by
showing how to use Orbix to develop both an IMS COBOL client and an IMS
COBOL server. It also provides details of how to subsequently run the IMS
client against a COBOL batch server, and how to run a COBOL batch client
against the IMS server.

Chapter 4, Getting Started in CICS

This chapter introduces CICS application programming with Orbix, by
showing how to use Orbix to develop both a CICS COBOL client and a CICS
COBOL server. It also provides details of how to subsequently run the CICS
client against a COBOL batch server, and how to run a COBOL batch client
against the CICS server.

Chapter 5, IDL Interfaces

The CORBA Interface Definition Language (IDL) is used to describe the
interfaces of objects in an enterprise application. An object’s interface
describes that object to potential clients through its attributes and
operations, and their signatures. This chapter describes IDL semantics and
uses.

Chapter 6, IDL-to-COBOL Mapping

The CORBA Interface Definition Language (IDL) is used to define interfaces
that are exposed by servers in your network. This chapter describes the
standard IDL-to-COBOL mapping rules and shows, by example, how each
IDL type is represented in COBOL.

PREFACE

Chapter 7, Orbix IDL Compiler

This chapter describes the Orbix IDL compiler in terms of how to run it in
batch and 0S/390 UNIX System Services, the COBOL members that it
creates, the arguments that you can use with it, and the configuration
settings that it uses.

Chapter 8, Memory Handling

Memory handling must be performed when using dynamic structures such
as unbounded strings, unbounded sequences, and anys. This chapter
provides details of responsibility for the allocation and subsequent release of
dynamic memory for these complex types at the various stages of an Orbix
COBOL application. It first describes in detail the memory handling rules
adopted by the COBOL runtime for operation parameters relating to different
dynamic structures. It then provides a type-specific breakdown of the APIs
that are used to allocate and release memory for these dynamic structures.

Part 2, Programmer’s Reference

Chapter 9, API Reference

This chapter summarizes the API functions that are defined for the Orbix
COBOL runtime, in pseudo-code. It explains how to use each function, with
an example of how to call it from COBOL.

Part 3, Appendices

Appendix A, POA Policies

This appendix summarizes the POA policies that are supported by the Orbix
COBOL runtime, and the argument used with each policy.

Appendix B, System Exceptions

This appendix summarizes the Orbix system exceptions that are specific to
the Orbix COBOL runtime.

Appendix C, Installed Data Sets

This appendix provides an overview listing of the data sets installed with
Orbix Mainframe that are relevant to development and deployment of
COBOL applications.

Xv

PREFACE

Related documentation

Additional resources

Typographical conventions

Xvi

The document set for Orbix Mainframe includes the following related

documentation:

® The First Northern Bank Mainframe Guide, which provides details
about developing and running the back-end COBOL server component
of the First Northern Bank tutorial supplied with Orbix.

® The PL/I Programmer’s Guide and Reference, which provides details
about developing, in a native 0S/390 environment, Orbix PL/I
applications that can run in batch, CICS, or IMS.

® The CORBA Programmer’s Guide, C++ and the CORBA Programmer’s
Reference, C++, which provide details about developing Orbix
applications in C++ in various environments, including 0S/390.

® The Mainframe Migration Guide, which provides details of migration
issues for users who have migrated from IONA’s Orbix 2.3-based
solution for 0S/390 to Orbix Mainframe.

The latest updates to Orbix Mainframe documentation can be found at
htt p: // www. i ona. cond suppor t/ docs/ or bi x/ 6. 0/ mai nf r ane/ i ndex. xm .

The IONA knowledge base contains helpful articles, written by IONA
experts, about Orbix and other products. You can access the knowledge
base at the following location:

htt p: // waw. i ona. coni support/ kb/

The IONA update center contains the latest releases and patches for IONA
products:

http://ww i ona. conmd support/ updat e/

This guide uses the following typographical conventions:

Constant width Constant width (courier font) in normal text represents
portions of code and literal names of items such as
classes, functions, variables, and data structures. For
example, text might refer to the CORBA: : (j ect class.

Constant width paragraphs represent code examples
or information a system displays on the screen. For
example:

#i ncl ude <stdio. h>

http://www.iona.com/support/kb/
http://www.iona.com/support/update/
http://www.iona.com/support/docs/e2a/asp/5.1/mainframe/index.xml

Keying conventions

PREFACE

Italic Italic words in normal text represent emphasis and
new terms.

Italic words or characters in code and commands
represent variable values you must supply, such as
arguments to commands or path names for your
particular system. For example:

% cd /users/your_name

Note: Some command examples may use angle
brackets to represent variable values you must supply.
This is an older convention that is replaced with jtalic
words or characters.

This guide may use the following keying conventions:

No prompt When a command’s format is the same for multiple
platforms, a prompt is not used.

% A percent sign represents the UNIX command shell
prompt for a command that does not require root
privileges.

A number sign represents the UNIX command shell

prompt for a command that requires root privileges.

> The notation > represents the DOS, Windows NT,
Windows 95, or Windows 98 command prompt.

Horizontal or vertical ellipses in format and syntax
descriptions indicate that material has been
eliminated to simplify a discussion.

[1 Brackets enclose optional items in format and syntax
descriptions.

{} Braces enclose a list from which you must choose an
item in format and syntax descriptions.

| A vertical bar separates items in a list of choices
enclosed in { } (braces) in format and syntax
descriptions.

Xvii

PREFACE

xviii

Part 1

Programmer’s Guide

In this part This part contains the following chapters:

Introduction to Orbix page 3
Getting Started in Batch page 15
Getting Started in IMS page 51
Getting Started in CICS page 97
IDL Interfaces page 141
IDL-to-COBOL Mapping page 181
Orbix IDL Compiler page 259
Memory Handling page 301

In this chapter

CHAPTER 1

Introduction to
Orbix

With Orbix, you can develop and deploy large-scale
enterprise-wide CORBA systems in languages such as COBOL,
PL/l, C++, and Java. Orbix has an advanced modular
architecture that lets you configure and change functionality
without modifying your application code, and a rich
deployment architecture that lets you configure and manage
a complex distributed system. Orbix Mainframe is IONA’s
CORBA solution for the 0S/390 environment.

This chapter discusses the following topics:

Why CORBA? page 4
CORBA Application Basics page 9
Orbix Plug-In Design page 10
Orbix Application Deployment page 12

CHAPTER 1 | Introduction to Orbix

Why CORBA?

Need for open systems

Need for high-performance
systems

Open standard solution

Widely available solution

Today’s enterprises need flexible, open information systems. Most
enterprises must cope with a wide range of technologies, operating systems,
hardware platforms, and programming languages. Each of these is good at
some important business task; all of them must work together for the
business to function.

The common object request broker architecture—CORBA—provides the
foundation for flexible and open systems. It underlies some of the Internet’s
most successful e-business sites, and some of the world’s most complex and
demanding enterprise information systems.

Orbix is a CORBA development platform for building high-performance
systems. Its modular architecture supports the most demanding needs for
scalability, performance, and deployment flexibility. The Orbix architecture
is also language-independent, so you can implement Orbix applications in
COBOL, PL/I, C++, or Java that interoperate via the standard 110P protocol
with applications built on any CORBA-compliant technology.

CORBA is an open, standard solution for distributed object systems. You can
use CORBA to describe your enterprise system in object-oriented terms,
regardless of the platforms and technologies used to implement its different
parts. CORBA objects communicate directly across a network using
standard protocols, regardless of the programming languages used to create
objects or the operating systems and platforms on which the objects run.

CORBA solutions are available for every common environment and are used
to integrate applications written in C, C++, Java, Ada, Smalltalk, COBOL,
and PL/I running on embedded systems, PCs, UNIX hosts, and mainframes.
CORBA objects running in these environments can cooperate seamlessly.
Through COMet, IONA’s dynamic bridge between CORBA and COM, they
can also interoperate with COM objects. CORBA offers an extensive
infrastructure that supports all the features required by distributed business
objects. This infrastructure includes important distributed services, such as
transactions, messaging, and security.

Why CORBA?

CORBA Objects

Nature of abstract CORBA objects

Object references

IDL interfaces

CORBA objects are abstract objects in a CORBA system that provide
distributed object capability between applications in a network. Figure 1
shows that any part of a CORBA system can refer to the abstract CORBA
object, but the object is only implemented in one place and time on some
server of the system.

\) A server
< /\ implements a
CORBA object
Clients access
RN CORBA objects

___via object
/ references

\ IDL interface definitions
~ _ / specify CORBA objects

Figure 1: The Nature of Abstract CORBA Objects

An object reference is used to identify, locate, and address a CORBA object.
Clients use an object reference to invoke requests on a CORBA object.
CORBA objects can be implemented by servers in any supported
programming language, such as COBOL, PL/I, C++, or Java.

Although CORBA objects are implemented using standard programming
languages, each CORBA object has a clearly-defined interface, specified in
the CORBA Interface Definition Language (IDL). The interface definition
specifies which member functions, data types, attributes, and exceptions
are available to a client, without making any assumptions about an object’s
implementation.

CHAPTER 1 | Introduction to Orbix

Advantages of IDL

To call member functions on a CORBA object, a client programmer needs
only to refer to the object’s interface definition. Clients use their normal
programming language syntax to call the member functions of a CORBA
object. A client does not need to know which programming language
implements the object, the object’s location on the network, or the operating
system in which the object exists.

Using an IDL interface to separate an object’s use from its implementation
has several advantages. For example, it means that you can change the
programming language in which an object is implemented without affecting
the clients that access the object. It also means that you can make existing
objects available across a distributed network.

Why CORBA?

Object Request Broker

Overview

Role of an ORB

CORBA defines a standard architecture for object request brokers (ORB). An
ORB is a software component that mediates the transfer of messages from a
program to an object located on a remote network host. The ORB hides the
underlying complexity of network communications from the programmer.
With a few calls to an ORB's application programming interface (API),
servers can make CORBA objects available to client programs in your
network.

An ORB lets you create standard software objects whose member functions
can be invoked by client programs located anywhere in your network. A
program that contains instances of CORBA objects is often known as a
server. However, the same program can serve at different times as a client
and a server. For example, a server program might itself invoke calls on
other server programs, and so relate to them as a client.

When a client invokes a member function on a CORBA object, the ORB
intercepts the function call. As shown in Figure 2 on page 8, the ORB
redirects the function call across the network to the target object. The ORB
then collects results from the function call and returns these to the client.

CHAPTER 1 | Introduction to Orbix

Graphical overview of ORB role Figure 2 provides a graphical overview of the role of the ORB in distributed

network communications.

Client Host

Client

Function
Call

Server Host

Server<>

Object Request Broker

]

Figure 2: The Object Request Broker

CORBA Application Basics

CORBA Application Basics

Developing application interfaces

Client invocations on CORBA
objects

You start developing a CORBA application by defining interfaces to objects
in your system in CORBA IDL. You compile these interfaces with an IDL
compiler. An IDL compiler can generate COBOL, PL/I, C++, or Java from
IDL definitions. Generated COBOL and PL/I consists of server skeleton code,
which you use to implement CORBA objects.

When an Orbix COBOL client on 0S/390 calls a member function on a
CORBA object on another platform, the call is transferred through the
COBOL runtime to the ORB. (The client invokes on object references that it
obtains from the server process.) The ORB then passes the function call to
the server.

When a CORBA client on another platform calls a member function on an
Orbix COBOL server object on 0S390, the ORB passes the function call
through the COBOL runtime and then through the server skeleton code to
the target object.

CHAPTER 1 | Introduction to Orbix

Orbix Plug-In Design

Overview

Plug-ins

ORB core

10

Orbix has a modular plug-in architecture. The ORB core supports abstract
CORBA types and provides a plug-in framework. Support for concrete
features like specific network protocols, encryption mechanisms, and
database storage is packaged into plug-ins that can be loaded into the ORB,
based on runtime configuration settings.

A plug-in is a code library that can be loaded into an Orbix application at
runtime. A plug-in can contain any type of code; typically, it contains
objects that register themselves with the ORB runtimes to add functionality.

Plug-ins can be linked directly with an application, loaded when an
application starts up, or loaded on-demand while the application is running.
This gives you the flexibility to choose precisely those ORB features that you
actually need. Moreover, you can develop new features such as protocol
support for direct ATM or HTTPNG. Because ORB features are configured
into the application rather than compiled in, you can change your choices
as your needs change without rewriting or recompiling applications.

For example, an application that uses the standard 110OP protocol can be
reconfigured to use the secure SSL protocol simply by configuring a different
transport plug-in. There is no particular transport inherent to the ORB core;
you simply load the transport set that suits your application best. This
architecture makes it easy for IONA to support additional transports in the
future such as multicast or special purpose network protocols.

The ORB core presents a uniform programming interface to the developer:
everything is a CORBA object. This means that everything appears to be a
local COBOL, PL/I, C++, or Java object within the process, depending on
which language you are using. In fact it might be a local object, or a remote
object reached by some network protocol. It is the ORB’s job to get
application requests to the right objects no matter where they are located.

Orbix Plug-In Design

To do its job, the ORB loads a collection of plug-ins as specified by ORB
configuration settings—either on startup or on demand—as they are needed
by the application. For remote objects, the ORB intercepts local function
calls and turns them into CORBA requests that can be dispatched to a
remote object across the network via the standard [IOP protocol.

11

CHAPTER 1 | Introduction to Orbix

Orbix Application Deployment

Overview Orbix provides a rich deployment environment designed for high scalability.
You can create a location domain that spans any number of hosts across a
network, and can be dynamically extended with new hosts. Centralized
domain management allows servers and their objects to move among hosts
within the domain without disturbing clients that use those objects. Orbix
supports load balancing across object groups. A configuration domain
provides the central control of configuration for an entire distributed
application.

Orbix offers a rich deployment environment that lets you structure and

control enterprise-wide distributed applications. Orbix provides central
control of all applications within a common domain.

In this section This section discusses the following topics:
Location Domains page 13
Configuration Domains page 14

12

Orbix Application Deployment

Location Domains

Overview

Locator daemon

Node daemon

A location domain is a collection of servers under the control of a single
locator daemon. An Orbix location domain consists of two components: a
locator daemon and a node daemon.

Note: See the CORBA Administrator’s Guide for more details about
these.

The locator daemon can manage servers on any number of hosts across a
network. The locator daemon automatically activates remote servers through
a stateless activator daemon that runs on the remote host.

The locator daemon also maintains the implementation repository, which is
a database of available servers. The implementation repository keeps track
of the servers available in a system and the hosts they run on. It also
provides a central forwarding point for client requests. By combining these
two functions, the locator lets you relocate servers from one host to another
without disrupting client request processing. The locator redirects requests
to the new location and transparently reconnects clients to the new server
instance. Moving a server does not require updates to the naming service,
trading service, or any other repository of object references.

The locator can monitor the state of health of servers and redirect clients in
the event of a failure, or spread client load by redirecting clients to one of a
group of servers.

The node daemon acts as the control point for a single machine in the
system. Every machine that will run an application server must be running a
node daemon. The node daemon starts, monitors, and manages the
application servers running on that machine. The locator daemon relies on
the node daemons to start processes and inform it when new processes
have become available.

13

CHAPTER 1 | Introduction to Orbix

Configuration Domains

Overview

Plug-in design

14

A configuration domain is a collection of applications under common
administrative control. A configuration domain can contain multiple location
domains. During development, or for small-scale deployment, configuration
can be stored in an ASCII text file, which is edited directly.

The configuration mechanism is loaded as a plug-in, so future configuration
systems can be extended to load configuration from any source such as
example HTTP or third-party configuration systems.

In this chapter

CHAPTER 2

Getting Started in
Batch

This chapter introduces batch application programming with
Orbix, by showing how to use Orbix to develop a simple
distributed application that features a COBOL client and
server, each running in its own region.

This chapter discusses the following topics:

Overview and Setup Requirements page 16
Developing the Application Interfaces page 21
Developing the Server page 26
Developing the Client page 36
Running the Application page 43
Application Address Space Layout page 48

Note: The example provided in this chapter does not reflect a real-world
scenario that requires Orbix Mainframe, because the supplied client and
server are written in COBOL and running on 0S/390. The example is
supplied to help you quickly familiarize with the concepts of developing a
batch COBOL application with Orbix.

15

CHAPTER 2 | Getting Started in Batch

Overview and Setup Requirements

Introduction This section provides an overview of the main steps involved in creating an
Orbix COBOL application. It describes important steps that you must
perform before you begin. It also introduces the supplied SI MPLE
demonstration, and outlines where you can find the various source code and
JCL elements for it.

Steps to create an application The main steps to create an Orbix COBOL application are:

Step Action

1 | “Developing the Application Interfaces” on page 21.

2 | “Developing the Server” on page 26.

3 | “Developing the Client” on page 36.

This chapter describes in detail how to perform each of these steps.

The Simple demonstration This chapter describes how to develop a simple client-server application
that consists of:
® An Orbix COBOL server that implements a simple persistent
POA-based server.
® An Orbix COBOL client that uses the clearly defined object interface,
Si npl e(hj ect , to communicate with the server.

The client and server use the Internet Inter-ORB Protocol (IIOP), which runs
over TCP/IP, to communicate. As already stated, the SI MPLE demonstration
is not meant to reflect a real-world scenario requiring Orbix Mainframe,
because the client and server are written in the same language and running
on the same platform.

The demonstration server The server accepts and processes requests from the client across the
network. It is a batch server that runs in its own region.

16

The demonstration client

Location of supplied code and JCL

Overview and Setup Requirements

See “Location of supplied code and JCL" on page 17 for details of where
you can find an example of the supplied server. See “Developing the Server”
on page 26 for more details of how to develop the server.

The client runs in its own region and accesses and requests data from the
server. When the client invokes a remote operation, a request message is
sent from the client to the server. When the operation has completed, a
reply message is sent back to the client. This completes a single remote
CORBA invocation.

See “Location of supplied code and JCL" on page 17 for details of where
you can find an example of the supplied client. See “Developing the Client”
on page 36 for more details of how to develop the client.

All the source code and JCL components needed to create and run the batch
SI MPLE demonstration have been provided with your installation. Apart from
site-specific changes to some JCL, these do not require editing.

Table 1 provides a summary of the supplied code elements and JCL
components that are relevant to the batch SI MPLE demonstration (where
or bi xhl g represents your installation’s high-level qualifier).

Table 1: Supplied Code and JCL (Sheet 1 of 2)

Location

Description

or bi xhl g. DEMDS. | DL(S| MPLE)

This is the supplied IDL.

or bi xhl gq. DEMDS. OCBOL. SRQ(S| MPLESV) This is the source code for the batch server mainline
module.
or bi xhl gq. DEMDS. CCBCL. SRQ(S| MPLES) This is the source code for the batch server

implementation module.

or bi xhl gq. DEMDS. CCBCOL. SRQ(S| MPLECL) This is the source code for the client module.

or bi xhl q. JOL(LOCATCR)

This JCL runs the Orbix locator daemon.

or bi xhl q. JCL(NCDEDAEM)

This JCL runs the Orbix node daemon.

17

CHAPTER 2 | Getting Started in Batch

Table 1: Supplied Code and JCL (Sheet 2 of 2)

Location Description

or bi xhl g. DEMOS. CCBCL. BLD. JCL('SI MPLI DL) This JCL runs the Orbix IDL compiler, to generate
COBOL source and copybooks for the batch server.
The - S and - Z compiler arguments, which generate
server mainline and server implementation code
respectively, are disabled by default in this JCL.

or bi xhl gq. DEMO5. CCBCL. BLD. JOL(S| MPLECB) This JCL compiles the client module to create the
S| MPLE client program.

or bi xhl q. DEMO5. CCBCL. BLD. JO(S| MPLESB) This JCL compiles and links the batch server
mainline and batch server implementation modules
to create the SI MPLE server program.

or bi xhl g. DEMOS. CCBCL. RUNL JCL(S| MPLESV) This JCL runs the server.

or bi xhl q. DEMO5. CCBCOL. BLD. JOL(S| MPLECL) This JCL runs the client.

Note: Other code elements and JCL components are provided for the IMS
and CICS versions of the SI MPLE demonstration. See “Getting Started in
IMS” on page 51 and “Getting Started in CICS” on page 97 for more
details of these.

Supplied copybooks Table 2 provides a summary in alphabetic order of the various copybooks
supplied with your product installation that are relevant to batch. Again,
or bi xhl g represents your installation’s high-level qualifier.

Table 2: Supplied Copybooks (Sheet 1 of 2)

Location Description

or bi xhl g. | NCLUDE. GCPYLI B(CHKERRS) This contains a COBOL paragraph that can be called
both by clients and servers to check if a system
exception has occurred, and to report that system
exception.

or bi xhl g. | NOLUDE. GCPYLI B(GHKFI LE) This is used both by clients and servers. It is used for
file handling error checking.

18

Table 2:

Overview and Setup Requirements

Supplied Copybooks (Sheet 2 of 2)

Location

Description

or bi xhl g. | NCLUDE. CCPYLI B(CCRBA)

This is used both by clients and servers. It contains
various Orbix COBOL definitions, such as

REQUEST- | NFOused by the cOAREQ function, and

CRBI X- STATUS- | NFCRVATI ON which is used to register
and report system exceptions raised by the COBOL
runtime.

or bi xhl g. | NCLUDE. CCPYLI B{ CCRBATYP)

This is used both by clients and servers. It contains
the COBOL typecode representations for IDL basic
types.

or bi xhl g. | NCLUDE. GCPYLI B(| GRFD)

This is used both by clients and servers. It contains
the COBOL FD statement entry for file processing, for
use with the CCOPY..REPLACI NG statement.

or bi xhl g. | NCLUDE. OCPYLI B(| CRSLCT)

This is used both by clients and servers. It contains
the COBOL SELECT statement entry for file
processing, for use with the GCPY. REPLAQ NG
statement.

or bi xhl g. | NCLUDE. OCPYLI B{ PROCPARN)

This is used both by clients and servers. It contains
the appropriate definitions for a COBOL program to
accept parameters from the JCL for use with the
CRBARGS API (that is, the argunent -string
parameter).

or bi xhl g. I NOLUDE. GCPYLI B(WBURLSTR)

This is relevant to clients only. It contains a COBOL
representation of the corbaloc URL IIOP string
format. A client can call STRTOBJ to convert the URL
into an object reference. See “STRTOOBJ” on

page 432 for more details.

or bi xhl q. DEMOS. COBCL. CCPYLI B

This PDS is used to store all batch copybooks
generated when you run the JCL to run the Orbix IDL
compiler for the supplied demonstrations. It also
contains copybooks with Working Storage data
definitions and Procedure Division paragraphs for use
with the bank, naming, and nested sequences
demonstrations.

19

CHAPTER 2 | Getting Started in Batch

Checking JCL components

20

When creating the SI MPLE application, check that each step involved within
the separate JCL components completes with a condition code of zero. If the
condition codes are not zero, establish the point and cause of failure. The
most likely cause is the site-specific JCL changes required for the compilers.
Ensure that each high-level qualifier throughout the JCL reflects your
installation.

Developing the Application Interfaces

Developing the Application Interfaces

Overview This section describes the steps you must follow to develop the IDL
interfaces for your application. It first describes how to define the IDL
interfaces for the objects in your system. It then describes how to generate
COBOL source and copybooks from IDL interfaces, and provides a
description of the members generated from the supplied Si npl eQoj ect

interface.
Steps to develop application The steps to develop the interfaces to your application are:
interfaces
Step Action

1 | Define public IDL interfaces to the objects required in your
system.

See “Defining IDL Interfaces” on page 22.

2 | Use the Orbix IDL compiler to generate COBOL source code
and copybooks from the defined IDL.

See “Generating COBOL Source and Copybooks” on page 23.

21

CHAPTER 2 | Getting Started in Batch

Defining IDL Interfaces

Defining the IDL

Explanation of the IDL

How the demonstration uses
this IDL

22

The first step in writing an Orbix program is to define the IDL interfaces for
the objects required in your system. The following is an example of the IDL
for the Si npl e(yj ect interface that is supplied in

or bi xhl g. DEMDS. | DL(S| MPLE) :

/1 1D
nmodul e Sinple
{
interface Sinpl e(hj ect
{
voi d
call _me();
B

The preceding IDL declares a Si npl ebj ect interface that is scoped (that is,
contained) within the Si npl e module. This interface exposes a single

cal | _me() operation. This IDL definition provides a language-neutral
interface to the CORBA Si npl e: : Si npl e(hj ect type.

For the purposes of this example, the Si npl eCbj ect CORBA object is
implemented in COBOL in the supplied SI MPLES server application. The
server application creates a persistent server object of the Si npl eQbj ect
type, and publishes its object reference to a PDS member. The client
application must then locate the Si npl eChj ect object by reading the
interoperable object reference (IOR) from the relevant PDS member. The
client invokes the cal | _me() operation on the Si npl etbj ect object, and
then exits.

Developing the Application Interfaces

Generating COBOL Source and Copybooks

The Orbix IDL compiler

Orbix IDL compiler configuration

Running the Orbix IDL compiler

Generated source code members

You can use the Orbix IDL compiler to generate COBOL source and
copybooks from IDL definitions.

The Orbix IDL compiler uses the Orbix configuration member for its settings.
The I MPLI DL JCL that runs the compiler uses the configuration member
or bi xhl g. CONFI 1 DL) . See “Orbix IDL Compiler” on page 259 for more
details.

The COBOL source for the batch server demonstration described in this
chapter is generated in the first step of the following job:

or bi xhl q. DEMCS, COBCL. BLD. JCL(S| MPLI DL)

Table 3 shows the server source code members that the Orbix IDL compiler
generates, based on the defined IDL.

Table 3: Generated Server Source Code Members

Member JCL Keyword

Parameter

Description

i dl nenber naneS I MPL This is the server implementation
source code member. It contains
stub paragraphs for all the

callable operations.

The is only generated if you
specify the - Z argument with the
IDL compiler.

This is server mainline source
code member.

i dl nenber nanesSv

This is only generated if you
specify the - S argument with the
IDL compiler.

23

CHAPTER 2 | Getting Started in Batch

Note: For the purposes of this example, the SI MPLES server
implementation and SI MPLESV server mainline are already provided in your
product installation. Therefore, the IDL compiler arguments that are used
to generate them are not specified in the supplied SI MPLI DL JCL. See
“Orbix IDL Compiler” on page 259 for more details of the IDL compiler
arguments used to generate server source code.

Generated COBOL copybooks Table 4 shows the COBOL copybooks that the Orbix IDL compiler generates,
based on the defined IDL.

Table 4: Generated COBOL Copybooks

Copybook JCL Keyword Description
Parameter
i dl menber nane QCPYLI B This copybook contains data

definitions that are used for
working with operation
parameters and return values for
each interface defined in the IDL
member.

The name for this copybook does
not take a suffix.

i dl menber naneX QCPYLI B This copybook contains data
definitions that are used by the
COBOL runtime to support the
interfaces defined in the IDL
member.

This copybook is automatically
included in the i dI nenber nane
copybook.

i dl menber naneD QCPYLI B This copybook contains
procedural code for performing
the correct paragraph for the
requested operation.

This copybook is automatically
included in the i dl nenber naneS
source code member.

24

How IDL maps to COBOL
copybooks

Member name restrictions

Location of demonstration
copybooks

Developing the Application Interfaces

Each IDL interface maps to a group of COBOL data definitions. There is one
definition for each IDL operation. A definition contains each of the
parameters for the relevant IDL operation in their corresponding COBOL
representation. See “IDL-to-COBOL Mapping” on page 181 for details of
how IDL types map to COBOL.

Attributes map to two operations (get and set), and readonly attributes map
to a single get operation.

Generated source code member and copybook names are based on the IDL
member name. If the IDL member name exceeds six characters, the Orbix
IDL compiler uses only the first six characters of the IDL member name
when generating the other member names. This allows space for appending
the two-character Sv suffix to the name for the server mainline member,
while allowing it to adhere to the eight-character maximum size limit for
0S/390 member names. Consequently, all other member names also use
only the first six characters of the IDL member name, followed by their
individual suffixes, as appropriate.

You can find examples of the copybooks generated for the SI MPLE
demonstration in the following locations:

® orbi xhl g. DEMCS. GOBCL. CCPYLI B(S| MPLE)
® orbi xhl g. DEMDS. GOBCL. CCPYLI B(S| MPLEX)
® orbi xhl g. DEMOS. GOBCL. CCPYLI B(S| MPLED)

Note: These copybooks are not shipped with your product installation.
They are generated when you run the supplied SI MPLI DL JCL, to run the
Orbix IDL compiler.

25

CHAPTER 2 | Getting Started in Batch

Developing the Server

Overview This section describes the steps you must follow to develop the batch server
executable for your application.

Steps to develop the server The steps to develop the server application are:

Step Action

1 | “Writing the Server Implementation” on page 27

2 | “Writing the Server Mainline” on page 30

3 | “Building the Server” on page 35.

26

Developing the Server

Writing the Server Implementation

The server implementation
program

Example of the SIMPLES program

You must implement the server interface by writing a COBOL program that
implements each operation in the i dIl menber nane copybook. For the
purposes of this example, you must write a COBOL program that
implements each operation in the SI MPLE copybook. When you specify the
- Z argument with the Orbix IDL compiler in this case, it generates a skeleton
program called SI MPLES, which is a useful starting point.

The following is an example of the batch SI MPLES program:

Example 1: The Batch SIMPLES Demonstration (Sheet 1 of 2)

khkkhkhkkhhkhkhkhkhkhhhkhkhhhhhhkhhhhhhhhdhhhhhhhhhhhhdhhhhhdhrhhhddrrhhddrx

* | dentification D vision
khkkhkhkhkhkhkhhkhhhkhkhhkhkdhhhhhhkhhdhhrhhkhkhkhhhkhhkhkhkhdkhkdhkhkhhkdhdkhkdrhkhkhdkhrhhkhkhkx
| DENTI FI CATICN DM SI O\

PROGRAM | D. S| MPLES.

ENVI RONVENT DIV SI ON
DATA D VI SI ON
WORKI NG STCRAGE SECTI ON

QCPY SI MPLE

QCPY CCRBA

01 W& | NTERFACE- NAMVE Pl CTURE X(30) .

01 W& | NTERFACE- NAVE- LENGTH Pl CTURE 9(09) Bl NARY

VALLE 30.

D

* Procedure D vision

LR R R R SRR EEEEE SRR EEEEEEEEEEEEEEEEREEEEEEEEEEEEEEEEEEEEEEE]
PROCEDURE D' VI SI ON

ENTRY " Dl SPATCH'.

CALL " COAREQ' USI NG REQUEST- | NFQ

SET W5 COAREQ TO TRUE.
PERFCRM CHECK- STATUS.

27

CHAPTER 2 | Getting Started in Batch

28

Example 1: The Batch SIMPLES Demonstration (Sheet 2 of 2)

3 * Resolve the pointer reference to the interface nane which is
* the fully scoped interface nane
* Note nmake sure it can handl e the nax interface nanme | ength
CALL " STRGET" US| NG | NTERFACE- NAME
WS- | NTERFACE- NAME- LENGTH
WS- | NTERFACE- NAME.
SET W5 STRGET TO TRUE.
PERFCORM CHECK- STATUS.

LR E RS EE RS EEEEE R SRR EE]

* Interface(s) evaluation:

R RS RS RS SRR RS E R EE S E RS E RS E SRR RS EE R EEEEEEEEEEEEEEE]

MOVE SPACES TO SI MPLE- SI MPLECBIECT- CPERATI O\

EVALUATE W5- | NTERFACE- NAME
WHEN ' | DL: Si npl e/ Si npl e(hj ect: 1. 0

4 * Resolve the pointer reference to the operation information

CALL "STRCGET" US| NG CPERATI ON- NAME

S| MPLE- S- 3497- CPERATI ON- LENGTH

S| MPLE- S| MPLECBJECT- CPERATI CN
SET W5 STRGET TO TRUE
PERFORM CHECK- STATUS
D SPLAY "Sinple::" SIMLE S MPLECBIECT- CPERATI ON

"i nvoked"

END- EVALUATE.

5 QOCPY S| MPLED.
QOBACK.

6 DO Sl MPLE- S| MPLECBIECT- CALL- ME.
CALL " COACET" USI NG SI MPLE- SI MPLECBJECT- 70FE- ARGS.
SET W5 COAGET TO TRUE.
PERFCRM CHECK- STATUS.

CALL " CoAPUT" USI NG SI MPLE- SI MPLECBIECT- 70FE- ARGS.
SET W&- CAPUT TO TRUE
PERFCRM CHECK- STATUS.

LR EE RS R R R RS R EEEEEEEE R EEEEE R EEEEEEEEEREEEEEEEEEEEEEEEEEEEEEES]

* Check Errors Copybook

LR EE RS R RS EEEEEEEE SRR SRR EEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEE]

CCPY GHKERRS.

Developing the Server

Explanation of the batch The SI MPLES program can be explained as follows:

SIMPLES program 1.

The DI SPATCH logic is automatically coded for you, and the bulk of the
code is contained in the SI MPLED copybook. When an incoming request
arrives from the network, it is processed by the ORB and a call is made
to the DI SPATCH entry point.

QOOAREQIs called to provide information about the current invocation
request, which is held in the REQUEST- | NFOblock that is contained in
the QCRBA copybook.

QOAREQIs called once for each operation invocation—after a request
has been dispatched to the server, but before any calls are made to
access the parameter values.

STRGET is called to copy the characters in the unbounded string pointer
for the interface name to the string item representing the fully scoped
interface name.

STRGET is called again to copy the characters in the unbounded string
pointer for the operation name to the string item representing the
operation name.

The procedural code used to perform the correct paragraph for the
requested operation is copied into the program from the SI MPLED
copybook.

Each operation has skeleton code, with appropriate calls to CQaPUT and
QOAGET to copy values to and from the COBOL structures for that
operation’s argument list. You must provide a correct implementation
for each operation. You must call COAGET and GOAPUT, even if your
operation takes no parameters and returns no data. You can simply
pass in a dummy area as the parameter list.

Note: The supplied SI MPLES program is only a suggested way of
implementing an interface. It is not necessary to have all operations
implemented in the same COBOL program.

Location of the batch SIMPLES You can find a complete version of the batch SI MPLES server implementation
program program in or bi xhl q. DEMCS, OOBQL. SRQ(SI MPLES) .

29

CHAPTER 2 | Getting Started in Batch

Writing the Server Mainline

The server mainline program The next step is to write the server mainline program in which to run the
server implementation. For the purposes of this example, when you specify
the - s argument with the Orbix IDL compiler, it generates a program called
SI MPLESV, which contains the server mainline code.

Example of the batch SIMPLESV The following is an example of the batch SI MPLESV program:
program

Example 2: The Batch SIMPLESV Demonstration (Sheet I of 4)

I DENTI FI CATICN D'V SI ON

PROGRAM | D. SI MPLESV.

ENVI RONVENT DM S| ON

I NPUT- QUTPUT SECTI ON

FI LE- CONTRCL.

QCPY | CRSLCT REPLAC NG

"X-1CR" BY SI MPLE-SI MPLECBJECT- | R
"X-1CRFI LE" BY "| CRFI LE'
"X-1 OR- STAT" BY SI MPLE- S| MPLECBJECT- | CR- STAT.

DATA D'VI SI ON

FI LE SECTI ON

QCPY | CRFD REPLACI NG
"X-1CR' BY S| MPLE- S| MPLECBJECT- | CR
"X-REC' BY S| MPLE- SI MPLECBIECT- REC.

WIRKI NG STCRAGE SECTI ON

CCPY S| MPLE.

QOCPY OORBA

01 ARG LI ST Pl CTURE X(80)
VALUE SPACES.

01 ARG LI ST-LEN Pl CTURE 9(09) Bl NARY
VALUE O.

01 ORB- NAME Pl CTURE X(10)
VALLE "si npl e_orb".

01 CORB- NAME- LEN PI CTURE 9(09) BI NARY
VALUE 10.

01 SERVER NAME Pl CTURE X(18)

VALLE "si npl e_persistent ".

30

Developing the Server

Example 2: The Batch SIMPLESV Demonstration (Sheet 2 of 4)

01 SERVER- NAME- LEN Pl CTURE 9(09) Bl NARY
VALLE 17.
01 | NTERFACE- LI ST.
03 FI LLER Pl CTURE X(28)
VALLE "1 DL: Sinpl e/ Si npl eChj ect: 1.0 ".
01 | NTERFACE- NAMES- ARRAY REDEFI NES | NTERFACE- LI ST.
03 | NTERFACE- NAME OOCURS 1 Tl MES Pl CTURE X(28).

01 CBIJECT-1D-LIST.
03 FILLER Pl CTURE X(17)
VALUE "ny_si npl e_obj ect ".
01 CBIJECT- | D- ARRAY REDEFI NES GBJECT- | D- LI ST.
03 CBJECT- | DENTI FI ER OCOURS 1 TIMES PI CTURE X(17).

01 | OR REG LEN Pl CTURE 9(09) Bl NARY
VALUE 2048.

01 I R REC PTR PO NTER
VALUE NULL.

khkkhkkhkkhhkhkhkhkhkkhhhhkhhhhhhkhhhhhhhhdhhhhhhhhhhhhdhhhhhdhrhhhddrrhhdhrx

* Status and bj values for the Interface(s)
LR R R RS SRR EE SRS EEEEEEEEEEEEEEEEREEEEEEEEEEEEEEEEEEEEEEE]

01 SI MPLE- SI MPLECBIECT- | CR- STAT PI CTURE 9(02) .
01 SI MPLE- S| MPLECBIECT- CBJ PQA NTER
VALUE NULL.

GCPY PROCPARM

INT.
CALL " CRBSTAT" USI NG CRBI X- STATUS- | NFCRVATI ON
DI SPLAY “Initializing the CRB".

CALL " CRBARGS' USI NG ARG LI ST
ARG LI ST- LEN
CRB- NAME
CRB- NAME- LEN

SET W5 CRBARGS TO TRUE

PERFCRM CHECK- STATUS.

CALL " CRBSRWR! USI NG SERVER- NAME

SERVER- NAME- LEN
SET W& CRBSRVR TO TRLE

31

CHAPTER 2 | Getting Started in Batch

Example 2: The Batch SIMPLESV Demonstration (Sheet 3 of 4)

PERFCRM CHECK- STATUS.

LR EE R R R R R SRR R EEEEE R EEEEE R EEEEEEEEEREEEEEEEEEEEEEEEEREEEEES]

* |Interface Section Bl ock

LR E RS RS RS E SRR SRR EEEEE SRR EEEEEEEEEEEEEEEEEEEEEEEEEEEE]

* Cenerating |CR for interface S nple/Si npl eChj ect
DI SPLAY "Regi stering the Interface".

4 CALL " ORBREG' USI NG SI MPLE- S| MPLECBJECT- | NTERFACE.
SET W5- CRBREG TO TRUE.

CPEN QUTPUT SI MPLE- SI MPLECBJECT- | CR
QCPY GKFI LE REPLAG NG
"X-1 OR- STAT" BY Sl MPLE- SI MPLECBIECT- | CR- STAT.

DI SPLAY "Oreating the (oject".
5 CALL " CBINEW US| NG SERVER- NAME
| NTERFACE- NAME
CF | NTERFACE- NAMES- ARRAY(1)
CBJECT- | DENTI FI ER
CF CBIECT- | D ARRAY(1)
S| MPLE- S| MPLECBIECT- CBJ.
SET W5 CBINEW TO TRUE.
PERFCRM CHECK- STATUS.

6 CALL "GBJTGSTR' USI NG SI MPLE- S| MPLECBIECT- CBJ
| OR REC PTR
SET W5 CBJTGSTR TO TRUE
PERFCRM CHECK- STATUS.

CALL " STRCGET" USI NG | CR- REC- PTR

| CR REC- LEN

S| MPLE- SI MPLECBIECT- REC.
SET W5 STRGET TO TRUE
PERFCRM CHECK- STATUS.

CALL "STRFREE' USING | OR REG PTR

SET W5 STRFREE TO TRUE

PERFCRM CHECK- STATUS.

DI SPLAY "Witing object reference to file".

WR TE SI MPLE- SI MPLECBIECT- REC.

32

Explanation of the batch
SIMPLESV program

Developing the Server

Example 2: The Batch SIMPLESV Demonstration (Sheet 4 of 4)

OCPY GKFI LE REPLACI NG
"X-1OR STAT" BY SI MPLE- S| MPLECBJECT- | CR- STAT.

CLCBE S| MPLE- S| MPLECBIECT- | CR
OCPY GHKFI LE REPLACI NG
"X-1 R STAT" BY S| MPLE- S| MPLECBJECT- | CR- STAT.

DI SPLAY "Aving control to the ORB to process Requests".
CALL "COARWN'.

SET W5 COARWIN TO TRUE.

PERFCRM CHECK- STATUS.

CALL "CBIREL" USI NG SI MPLE- SI MPLECBJECT- CBJ.
SET W5 CBJREL TO TRUE.
PERFORM CGHECK- STATUS.

EXI T- PRG

STCP RUN

LR R R R EEEEEEEE SRS EE]

* Check Errors Copybook

D

QCPY GKERRS.

The SI MPLESV program can be explained as follows:

1.

CRBSTAT is called to register the CRBI X- STATUS- | NFCRVATI ON block that
is contained in the OORBA copybook. Registering the

CRBI X- STATUS- | NFCRVATI ON block allows the COBOL runtime to
populate it with exception information, if necessary.

CRBARGS is called to initialize a connection to the ORB.

CRBSRVR s called to set the server name.

CRBREG is called to register the IDL interface, Si npl eQbj ect , with the
Orbix COBOL runtime.

CBINEWIs called to create a persistent server object of the

Si npl ehj ect type, with an object ID of ny_si npl e_obj ect .
CBITCSTRIs called to translate the object reference created by CBINEW
into a stringified IOR. The stringified IOR is then written to the | GRFI LE
member.

33

CHAPTER 2 | Getting Started in Batch

7. QOARWis called, to enter the CRB: : run loop, to allow the ORB to
receive and process client requests.

8. BIREL is called to ensure that the servant object is released properly.

34

Developing the Server

Building the Server

Location of the JCL Sample JCL used to compile and link the batch server mainline and server
implementation is in or bi xhl g. DEMOS. QCBQL. BLD. JOL(S| MPLESB) .

Resulting load module When this JCL has successfully executed, it results in a load module that is
contained in or bi xhl g. DEMOS. QCBCL. LQA(S| MPLESV) .

35

CHAPTER 2 | Getting Started in Batch

Developing the Client

Overview This section describes the steps you must follow to develop the client
executable for your application.

Note: The Orbix IDL compiler does not generate COBOL client stub code.

Steps to develop the client The steps to develop the client application are:

Step Action

1 | “Writing the Client” on page 37.

2 | “Building the Client” on page 42.

36

Developing the Client

Writing the Client

The client program

Example of the SIMPLECL
program

The next step is to write the client program, to implement the client. This
example uses the supplied SI MPLEQL client demonstration.

The following is an example of the SI MPLECL program:

Example 3: The SIMPLECL Demonstration Program (Sheet I of 3)

I DENTI FI CATICN D'V SI N
PROGRAM | D. SI MPLECL.

ENVI RONVENT D VI SI ON

QONFI GURATI ON SECTI ON

I NPUT- QUTPUT SECTI ON

FI LE- CONTRCL.

OCPY | CRSLCT REPLACI NG

"X-1CR" BY SI MPLE-SI MPLECBIJECT- | CR
"X-1CRFILE" BY "I CRFI LE'
"X-1 R STAT* BY S| MPLE- S| MPLECBJECT- | CR- STAT.

DATA D'VI SI ON

FI LE SECTI ON

CCPY | CRFD REPLAC NG
"X-1CR" BY SI MPLE-SI MPLECBJECT- | R
"X-REC' BY S| MPLE- SI MPLECBIECT- REC.

WORKI NG STCRAGE SECTI O\

QCPY S| MPLE.

QOPY CCRBA

01 W& S| MPLE- | (R Pl CTURE X(2048) .

01 Sl MPLE-1 CR LENGTH Pl CTURE 9(9) Bl NARY
VALUE 2048.

01 S| MPLE- S| MPLECBIECT- | OR- STAT Pl CTURE 9(02).

01 Sl MPLE- S| MPLECBIECT- CBJ PO NTER
VALUE NULL.

01 ARG LIST PI CTURE X(80)
VALUE SPACES.

01 ARG LI ST-LEN Pl CTURE 9(09) Bl NARY
VALLE 0.

37

CHAPTER 2 | Getting Started in Batch

Example 3: The SIMPLECL Demonstration Program (Sheet 2 of 3)

01 CRB- NAME Pl CTURE X(10)
VALLE "sinpl e_orb".
01 CORB- NAME- LEN PI CTURE 9(09) BI NARY
VALLE 10.
01 | R REG PTR PO NTER
VALUE NULL.
01 | CR REG LEN Pl CTURE 9(09) Bl NARY
VALUE 2048.

QCPY PROCPARM
1 CALL "CORBSTAT" USI NG CRBI X- STATUS- | NFCRVATI N

* CRBinitialization
DI SPLAY "Initializing the CRB'.
2 CALL " ORBARGS' USI NG ARG LI ST

ARG LI ST- LEN
CRB- NAMVE
CRB- NAME- LEN

SET W5 CRBARGS TO TRLE

PERFCRM CHECK- STATUS.

* Register interface TypeTest
DI SPLAY "Regi stering the Interface".
3 CALL "CRBREG' USING S| MPLE- SI MPLECBIECT- | NTERFACE.
SET W5 CRBREG TO TRUE.
PERFCORM CHECK- STATUS.

4 ** Read inthe ICRfroma file which has been popul at ed
** by the server program

CPEN | NPUT SI MPLE- SI MPLECBIECT- | CR
CCPY CGHKFI LE REPLAC NG
"X-1 OR STAT" BY S| MPLE- S| MPLECBJECT- | CR- STAT.

Dl SPLAY "Readi ng obj ect reference fromfile".
READ S| MPLE- SI MPLECBJECT- | CR
QCPY CGHKFI LE REPLAG NG

"X-1 CR STAT" BY S| MPLE- S| MPLECBJECT- | CR- STAT.

MOVE S| MPLE- S| MPLECBJECT- REC TO W& SI MPLE- | OR
* | CR Record read successful ly

CLCSE S| MPLE- S| MPLECBIECT- | CR
CCPY GHKFI LE REPLAC NG

38

Developing the Client

Example 3: The SIMPLECL Demonstration Program (Sheet 3 of 3)

"X-1 OR STAT" BY S| MPLE- S| MPLECBJECT- | CR- STAT.
* Set the GOBOL pointer to point to the IOR string
CALL " STRSET" USI NG | CR REG PTR
| OR REG LEN
W& SI MPLE- | OR
SET W5 STRSET TO TRUE.
PERFCRM CHECK- STATUS.

* (btain obj ect reference fromthe ICR
CALL "STRTOOBJ" USI NG | OR REG PTR
SI MPLE- S| MPLECBJECT- CBJ

SET W5- STRTOCBJ TO TRUE.
PERFCRM CHECK- STATUS.

* Rel easing the nenory
CALL "STRFREE' USING | CR REG PTR
SET W5 STRFREE TO TRUE
PERFCRM CHECK- STATUS.

SET S| MPLE- S| MPLECBIJECT- CALL- ME TO TRUE
DI SPLAY "invoki ng Sinple::" Sl MPLE-SI MPLECBIECT- CPERATI ON

CALL " CRBEXEC! USI NG SI MPLE- SI MPLECBJECT- CBJ
SI MPLE- SI MPLECBJECT- CPERATI ON
SI MPLE- S| MPLECBIECT- 70FE- ARGS
SI MPLE- USER EXCEPTI ONS.

SET W5- CRBEXEC TO TRUE

PERFCRM GHECK- STATUS.

CALL "CBIREL" USI NG SI MPLE- SI MPLECBJECT- CBJ.
SET W& GBIREL TO TRUE
PERFCRM CHECK- STATUS.

DI SPLAY "Si npl e dermo conpl ete. .

LR R R R R RS R R R EEE R EEEEEEEEEEEEEEEEEEE]

* Check Errors Copybook

LR R R RS SRR EE SRR S EEEEEEEEEEEEEEEEREEEEEEEEEEEEEEEEEEEEEEE]

CCPY GKERRS.

39

CHAPTER 2 | Getting Started in Batch

Explanation of the SIMPLECL The SI MPLECL program can be explained as follows:

program 1. CRBSTAT is called to register the ORBI X- STATUS- | NFCRVATI N block that
is contained in the CCRBA copybook. Registering the
CRBI X- STATUS- | NFCRVATI ON block allows the COBOL runtime to
populate it with exception information, if necessary.

You can use the ORBI X- STATUS- | NFCRVATI ON data item (in the CORBA
copybook) to check the status of any Orbix call. The EXCEPTI ON- NUMBER
numeric data item is important in this case. If this item is 0, it means
the call was successful. Otherwise, EXCEPTI ON- NUMBER holds the
system exception number that occurred. You should test this data item
after any Orbix call.

2. CRBARGS s called to initialize a connection to the ORB.

3. CRBREGIs called to register the IDL interface with the Orbix COBOL
runtime.

4. The client reads the stringified object reference for the object from the
PDS member that has been populated by the server. For the purposes
of this example, the IOR member is contained in
or bi xhl q. DEMDS. | ORS(S| MPLE) .

5. STRSET is called to create an unbounded string to which the stringified
object reference is copied.

6. STRTOCRI is called to create an object reference to the server object
that is represented by the IOR. This must be done to allow operation
invocations on the server. The STRTOBIJ call takes an interoperable
stringified object reference and produces an object reference pointer.
This pointer is used in all method invocations. See the CORBA
Programmer’s Reference, C++ for more details about stringified
object references

7. After the object reference is created, CRBEXEC is called to invoke
operations on the server object represented by that object reference.
You must pass the object reference, the operation name, the argument
description packet, and the user exception buffer. The operation name
must have at least one trailing space. The generated operation
condition names found in the SI MPLE copybook already handle this.

40

Developing the Client

The same argument description is used by the server, and is found in
the SI MPLE copybook. For example, see
or bi xhl q. DEMDS. COBCL. COPYLI B(S| MPLE) .

8. BIREL is called to ensure that the servant object is released properly.

Location of the SIMPLECL You can find a complete version of the SI MPLECL client program in
program or bi xhl . DEMSS. COBCL. SRQ(S| MPLECL) .

41

CHAPTER 2 | Getting Started in Batch

Building the Client

Location of the JCL Sample JCL used to compile and link the client can be found in the third
step of or bi xhl . DEMS. COBCL. BLD. JOL(S| MPLECB) .

Resulting load module When the JCL has successfully executed, it results in a load module that is
contained in or bi xhl g. DEMDS. QCBQL. LOAD(SI MPLEQL) .

42

Running the Application

Running the Application

Introduction

Steps to run the application

This section describes the steps you must follow to run your application. It
also provides an example of the output produced by the client and server.

Note: This example involves running a COBOL client and COBOL server.
You could, however, choose to run a COBOL server and a C++ client, or a
COBOL client and a C++ server. Substitution of the appropriate JCL is all
that is required in the following steps to mix clients and servers in different
languages.

The steps to run the application are:

Step Action

1 | “Starting the Orbix Locator Daemon” on page 44 (if it has not
already been started).

2 | “Starting the Orbix Node Daemon” on page 45 (if it has not
already been started).

3 | “Running the Server and Client” on page 46.

43

CHAPTER 2 | Getting Started in Batch

Starting the Orbix Locator Daemon

Overview

JCL to start the Orbix locator
daemon

Locator daemon configuration

44

An Orbix locator daemon must be running on the server's location domain
before you try to run your application. The Orbix locator daemon is a
program that implements several components of the ORB, including the
Implementation Repository. The locator runs in its own address space on
the server host, and provides services to the client and server, both of which
need to communicate with it.

When you start the Orbix locator daemon, it appears as an active job waiting
for requests. See the CORBA Administrator’s Guide for more details about
the locator daemon.

If the Orbix locator daemon is not already running, you can use the JCL in
or bi xhl q. JOL(LOCATCR) to start it.

The Orbix locator daemon uses the Orbix configuration member for its
settings. The JCL that you use to start the locator daemon uses the
configuration member or bi xhl q. OCONFI G DEFAULT@ .

Running the Application

Starting the Orbix Node Daemon

Overview

JCL to start the Orbix node
daemon

Node daemon configuration

An Orbix node daemon must be running on the server’s location domain
before you try to run your application. The node daemon acts as the control
point for a single machine in the system. Every machine that will run an
application server must be running a node daemon. The node daemon
starts, monitors, and manages the application servers running on that
machine. The locator daemon relies on the node daemons to start processes
and inform it when new processes have become available.

When you start the Orbix node daemon, it appears as an active job waiting
for requests. See the CORBA Administrator’s Guide for more details about
the node daemon.

If the Orbix node daemon is not already running, you can use the JCL in
or bi xhl q. JOL(NCDEDAEMN) to start it.

The Orbix node daemon uses the Orbix configuration member for its
settings. The JCL that you use to start the node daemon uses the
configuration member or bi xhl q. CONFI G DEFAULT@ .

45

CHAPTER 2 | Getting Started in Batch

Running the Server and Client

Overview

JCL to run the server

IOR member for the server

JCL to run the client

46

This section describes how to run the SI MPLE demonstration.

To run the supplied SI MPLESV server application, use the following JCL:

or bi xhl q. DEMCS. GOBCL. RUN. JCL(S| MPLESV)

Note: You can use the 0S/390 STCP operator command to stop the
server.

When you run the server, it automatically writes its IOR to a PDS member
that is subsequently used by the client. For the purposes of this example,
the IOR member is contained in or bi xhl q. DEMDS. | CRS(S| MPLE) .

After you have started the server and made it available to the network, you
can use the following JCL to run the supplied SI MPLECL client application:

or bi xhl q. DEM2S. COBCL. RUN. JCL(S| MPLEQL)

Running the Application

Application Output

Server output The following is an example of the output produced by the server for the
S| MPLE demonstration:

Initializing the CRB

Regi stering the Interface

Oeating the (j ect

Witing object reference to file

Gving control to the ORB to process Requests
Sinpl e::cal |l _me invoked

Note: All but the last line of the preceding server output is produced by
the SI MPLESV server mainline program. The final line is produced by the
SI MPLES server implementation program.

Client output The following is an example of the output produced by the SI MPLEQL client:

Initializing the CRB

Regi stering the Interface

Readi ng obj ect reference fromfile
invoking Sinple::call_me

Si npl e deno conpl et e.

Result If you receive the preceding client and server output, it means you have
successfully created an Orbix COBOL client-server batch application.

47

CHAPTER 2 | Getting Started in Batch

Application Address Space Layout

Figure 3 is a graphical overview of the address space layout for an Orbix
COBOL application running in batch in a native 0S/390 environment. This
is shown for the purposes of example and is not meant to reflect a real-world
scenario requiring Orbix Mainframe.

Overview

0S/390 Environment

Locator Daemon Process (including TCP/IP)

Server Process (including TCP/IP)

’ Locator Daemon ‘

ORB

COBOL Runtime Node Daemon Process (including TCP/IP)

Server Mainline

Entry point for launch ’ Node Daemon ‘
includes calls to ORBSTAT, ORBARGS,

ORBSRVR, ORBREG, OBJNEW, OBJTOSTR,

and COARUN
Client Process (including TCP/IP)
Server Implementation
ORB

DISPATCH - entry point for all IDL operations.

COAREQ is called to determine which COBOL
section (that is, IDL operations) to execute.

Each section includes COAGET (to move data

from COBOL runtime to Working Storage) and

COAPUT (to move data from Working Storage
to COBOL runtime).

Working Storage
used by COAGET
and COAPUT

COBOL Runtime

Client Implementation

ORBSTAT, ORBARGS, ORBREG, and
STRTOOB calls.

An ORBEXEC call for each IDL operation to be
invoked on the CORBA object.

Working Storage used by
ORBEXEC calls

48

Figure 3: Address Space Layout for an Orbix COBOL Application

Explanation of the batch server
process

Explanation of the daemon
processes

Explanation of the batch client
process

Application Address Space Layout

The server-side ORB, COBOL runtime, server mainline (launch entry point)
and server implementation (Dl SPATCH entry point) are linked into a single
load module referred to as the "server'. The COBOL runtime marshals data
to and from the server implementation working storage, which means there
is language-specific translation between C++ and COBOL.

The server runs within its own address space. Link the code as STATI C and
NOREENTRANT (that is, not re-entrant).

The server uses the TCP/IP protocol to communicate (through the
server-side ORB) with both the client and the locator daemon.

For an example and details of:

® The APIs called by the server mainline, see “Explanation of the batch
SIMPLESV program” on page 33 and “API Reference” on page 327.

® The APIs called by the server implementation, see “Explanation of the
batch SIMPLES program” on page 29 and “API Reference” on
page 327.

The locator daemon and node daemon each runs in its own address space.
See “Location Domains” on page 13 for more details of the locator and node
daemons.

The locator daemon and node daemon use the TCP/IP protocol to
communicate with each other. The locator daemon also uses the TCP/IP
protocol to communicate with the server through the server-side ORB.

The client-side ORB, COBOL runtime, and client implementation are linked
into a single load module referred to as the “client”. The client runs within
its own address space.

The client (through the client-side ORB) uses TCP/IP to communicate with
the server.

For an example and details of the APIs called by the client, see “Explanation
of the SIMPLECL program” on page 40 and “API Reference” on page 327.

49

CHAPTER 2 | Getting Started in Batch

50

In this chapter

CHAPTER

Getting Started in
IMS

This chapter introduces IMS application programming with
Orbix, by showing how to use Orbix to develop both an IMS
COBOL client and an IMS COBOL server. It also provides
details of how to subsequently run the IMS client against a
COBOL batch server, and how to run a COBOL batch client
against the IMS server.

3

This chapter discusses the following topics:

Overview page 52
Developing the Application Interfaces page 58
Developing the IMS Server page 68
Developing the IMS Client page 83
Running the Demonstrations page 94

Note: The client and server examples provided in this chapter
respectively require use of the IMS client and server adapters that are
supplied as part of Orbix Mainframe. See the IMS Adapters
Administrator’s Guide for more details about these IMS adapters.

51

CHAPTER 3 | Getting Started in IMS

Overview

Introduction

Steps to create an application

The demonstration IMS server

The demonstration IMS client

52

This section provides an overview of the main steps involved in creating an
Orbix COBOL IMS server and client application. It also introduces the
supplied COBOL IMS client and server SI MPLE demonstrations, and outlines
where you can find the various source code and JCL elements for them.

The main steps to create an Orbix COBOL IMS server application are:

1. “Developing the Application Interfaces” on page 58.

2. “Developing the IMS Server” on page 68.

3. “Developing the IMS Client” on page 83.

For the purposes of illustration this chapter demonstrates how to develop
both an Orbix COBOL IMS client and an Orbix COBOL IMS server. It then
describes how to run the IMS client and IMS server respectively against a
COBOL batch server and a COBOL batch client. These demonstrations do
not reflect real-world scenarios requiring Orbix Mainframe, because the

client and server are written in the same language and running on the same
platform.

The Orbix COBOL server developed in this chapter runs in an IMS region. It
implements a simple persistent POA-based obect. It accepts and processes
requests from an Orbix COBOL batch client that uses the object interface,
Si npl eQoj ect, to communicate with the server via the IMS server adapter.
The IMS server uses the Internet Inter-ORB Protocol (110P), which runs over
TCP/IP, to communicate with the batch client.

The Orbix COBOL client developed in this chapter runs in an IMS region. It
uses the clearly defined object interface, Si npl ethj ect , to access and
request data from an Orbix COBOL batch server that implements a simple
persistent Si npl e(oj ect object. When the client invokes a remote
operation, a request message is sent from the client to the server via the
client adapter. When the operation has completed, a reply message is sent
back to the client again via the client adapter. The IMS client uses [IOP to
communicate with the batch server.

Supplied code and JCL for IMS
application development

Overview

All the source code and JCL components needed to create and run the IMS
SI MPLE server and client demonstrations have been provided with your
installation. Apart from site-specific changes to some JCL, these do not
require editing.

Table 5 provides a summary of these code elements and JCL components
(where or bi xhl g represents your installation’s high-level qualifier).

Table 5: Supplied Code and JCL (Sheet 1 of 2)

Location Description

or bi xhl g. DEMOS. | DL(SI MPLE) This is the supplied IDL.

or bi xhl g. DEMOS. | M5, QCBCL. SRC This is the source code for the IMS server mainline module, which

(SI MPLESV) is generated when you run the JCL in
or bi xhl g. DEMDS. | MB. GCBCL. BLD. JCL(SI MPLI DL) . (The IMS server
mainline code is not shipped with the product. You must run the
SI MPLI DL JCL to generate it.)

or bi xhl g. DEMDS. | M5. OOBCL. SRC This is the source code for the IMS server implementation

('S MPLES) module.

or bi xhl g. DEMDS. | M5. OOBCL. SRC This is the source code for the IMS client module.

(SI MPLEQL)

or bi xhl q. DEMDS. | M5. CCBCL. BLD. JOL This JCL runs the Orbix IDL compiler. See “Orbix IDL Compiler”

(SI MPLI DL) on page 61 for more details of this JCL and how to use it.

or bi xhl q. DEMOS. | M5. CCBCL. BLD. JOL This JCL compiles and links the IMS server mainline and IMS

(S| MPLESB) server implementation modules to create the SI MPLE server
program.

or bi xhl g. DEMDS. | M5. CCBCL. BLD. JOL This JCL compile the IMS client module to create the SI MPLE

(S| MPLECB) client program.

or bi xhl g. DEMDS. | M5. CCBCL. BLD. JOL This JCL registers the IDL in the Interface Repository.

(SI MPLREG

or bi xhl g. DEMDS. | M5. CCBCL. BLD. JOL This JCL obtains the IMS server's I0R (from the IMS server

(SIMPLICR) adapter). A client of the IMS server requires the IMS server's IOR,
to locate the server object.

53

CHAPTER 3 | Getting Started in IMS

Table 5: Supplied Code and JCL (Sheet 2 of 2)

Location Description

or bi xhl g. DEMOS. | M5, CCBQL. BLD. JCL This JCL adds the following configuration entry to the
(UPDTCONF) configuration member:

initial_references: Sinpl ethj ect:reference="ICR..";

This configuration entry specifies the IOR that the IMS client uses
to contact the batch server. The IOR that is set as the value for
this configuration entry is the IOR that is published in

or bi xhl g. DEMOS. | CRS(SI MPLE) when you run the batch server.
The object reference for the server is represented to the
demonstration IMS client as a corbaloc URL string in the form
corbal oc: rir:/Sinpl eQuj ect. This form of corbaloc URL string
requires the use of the

initial_references: Sinpl e(hj ect:reference="ICR."
configuration entry.

Other forms of corbaloc URL string can also be used (for example,
the IIOP version, as demonstrated in the nested sequences
demonstration supplied with your product installation). See
“STRTOOBJ” on page 432 for more details of the various forms of
corbaloc URL strings and the ways you can use them.

or bi xhl g. JOL(MFCLA) This JCL configures and runs the client adapter.
or bi xhl g. JCL(| M3A) This JCL configures and runs the IMS server adapter.
Supplied copybooks Table 6 provides a summary in alphabetic order of the various copybooks

supplied with your product installation that are relevant to IMS application
development. Again, or bi xhl g represents your installation’s high-level
qualifier.

Table 6: Supplied Copybooks (Sheet 1 of 4)

Location Description

or bi xhl g. | NCLUDE. CCPYLI B(CERRSMFA) This is relevant to IMS servers. It contains a COBOL paragraph
that can be called by the IMS server, to check if a system
exception has occurred and report it.

54

Table 6:

Overview

Supplied Copybooks (Sheet 2 of 4)

Location

Description

or bi xhl g.

| NCLUDE. GCPYLI B(CHKCLI MB)

This is relevant to IMS clients only. It contains a COBOL
paragraph that can be called by the client, to check if a system
exception has occurred and report it.

or bi xhl g.

| NCLUDE. CCPYLI B(CCRBA)

This is relevant to both IMS clients and servers. It contains
various Orbix COBOL definitions, such as REQUEST- | NFOused by
the COAREQ function, and CRBI X- STATUS- | NFCRVATI CN which is
used to register and report system exceptions raised by the
COBOL runtime.

or bi xhl g.

| NCLUDE. GOPYLI B(CORBATYP)

This is relevant to both IMS clients and servers. It contains the
COBOL typecode representations for IDL basic types.

or bi xhl g.

I NCLUDE. QOPYLI B GETUN GE)

This is relevant to IMS clients only. It contains a COBOL
paragraph that can be called by the client, to retrieve specific IMS
segments. It does this by using the supplied IBM routine
(interface) GBLTDLI to make an IMS DC (data communications)
call that specifies the @J(get unique) function command.

or bi xhl q.

I NCLUDE. GCPYLI B(| MBWRI TE)

This is relevant to IMS clients only. It contains a COBOL
paragraph called WR TE- DG TEXT, to write a segment to the IMS
output message queue. It does this by using the supplied IBM
routine (interface) CBLTDLI to make an IMS DC (data
communications) call that specifies the I SRT (insert) function
command.

or bi xhl g.

I NCLUDE. GCPYLI B(LSI MSPCB)

This is relevant to both IMS servers and clients. It is used in IMS
server mainline and client programs. It contains the linkage
section definitions of the program communication blocks (PCBs).

or bi xhl g.

I NCLUDE. GCPYLI B(UPDTPCBS)

This is relevant to IMS servers only. It is used in IMS server
mainline and implementation programs. It contains a paragraph,
used by the server mainline, that sets pointers to the PCB data
defined in the linkage section (in the LSI MSPCB copybook). The
pointers are defined in working storage (in the Wsl MSPCB
copybook). It also contains a paragraph, used by the server
implementation, that uses the pointers (in the W8l MSPCB
copybook) to map the PCB data defined in the linkage section (in
the LSI MBPCB copybook).

55

CHAPTER 3 | Getting Started in IMS

Table 6:

Supplied Copybooks (Sheet 3 of 4)

Location

Description

or bi xhl g. | NCLUDE. GCPYLI B(W5l MSCL)

This is relevant to both IMS servers and clients. It contains a
COBOL data definition that defines the format of the message that
can be written by the paragraph contained in

or bi xhl g. I NCLUDE. GCPYLI B(1 MBWR TE) . It also contains COBOL
data definitions for calling the U (get unique), NG (change), and
| SRT (insert) commands.

or bi xhl g. | NCLUDE. GCPYLI B(W8I MBPCB)

This is relevant to IMS servers only. It is used in IMS server
mainline and implementation programs. It contains the working
storage definitions of pointers to the PCB data. The IMS server
mainline uses the UPDATE- W& PCBS paragraph defined in the
UPDTPCBS copybook, to populate the Wsl M8PCB copybook with
pointer values to the PCB data from the LSI MSPCB copybook. This
allows the server implementation to access the PCB data, if
required. The IMS server implementation uses the

RETR EVE- W& PCBS paragraph defined in the UPDTPCBS copybook
to retrieve the pointer values and map the data in the linkage
section defined in the LSI MBPCB copybook.

Note: This data is populated in the supplied demonstrations, but
it is not used.

or bi xhl g. | NCLUDE. GCPYLI B(WBURLSTR)

This is relevant to clients only. It contains a COBOL representation
of the corbaloc URL IIOP string format. A client can call STRTOCBJ
to convert the URL into an object reference. See “STRTOOBJ” on
page 432 for more details.

or bi xhl q. DEM3S. | M5. COBCL. OCPYLI B

This PDS is relevant to both IMS clients and servers. It is used to
store all IMS copybooks generated when you run the JCL to run
the Orbix IDL compiler for the supplied demonstrations. It also
contains copybooks with Working Storage data definitions and
Procedure Division paragraphs for use with the nested sequences
demonstration.

56

Overview

Table 6: Supplied Copybooks (Sheet 4 of 4)

Location

Description

or bi xhl q. DEMCS. | M5. MFAVAP

This PDS is relevant to IMS servers only. It is empty at installation
time. It is used to store the IMS server adapter mapping member
generated when you run the JCL to run the Orbix IDL compiler for
the supplied demonstrations. The contents of the mapping
member are the fully qualified interface name followed by the
operation name followed by the IMS transaction name (for
example, (Si npl e/ Si npl eQoj ect, cal | _ne, SI MPLESV) . See the
IMS Adapters Administrator’s Guide for more details about
generating server adapter mapping members.

Checking JCL components

When creating either the IMS client or server SI MPLE application, check that
each step involved within the separate JCL components completes with a
condition code of zero. If the condition codes are not zero, establish the
point and cause of failure. The most likely cause is the site-specific JCL
changes required for the compilers. Ensure that each high-level qualifier
throughout the JCL reflects your installation.

57

CHAPTER 3 | Getting Started in IMS

Developing the Application Interfaces

Overview This section describes the steps you must follow to develop the IDL
interfaces for your application. It first describes how to define the IDL
interfaces for the objects in your system. It then describes how to run the
IDL compiler. Finally it provides an overview of the COBOL copybooks,
server source code, and IMS server adapter mapping member that you can
generate via the IDL compiler.

Steps to develop application The steps to develop the interfaces to your application are:
interfaces

Step Action

1 | Define public IDL interfaces to the objects required in your
system.

See “Defining IDL Interfaces” on page 59.

2 | Run the Orbix IDL compiler to generate COBOL copybooks,
server source, and server mapping member.

See “Orbix IDL Compiler” on page 61.

58

Developing the Application Interfaces

Defining IDL Interfaces

Defining the IDL

Explanation of the IDL

How the demonstration uses this
IDL

The first step in writing any Orbix program is to define the IDL interfaces for
the objects required in your system. The following is an example of the IDL
for the Si npl e(yj ect interface that is supplied in

or bi xhl g. DEMDS. | DL(S| MPLE) :

/1 1D
nmodul e Sinple
{
interface Sinpl e(hj ect
{
voi d
call _me();
i

The preceding IDL declares a Si npl ebj ect interface that is scoped (that is,
contained) within the Si npl e module. This interface exposes a single

cal | _me() operation. This IDL definition provides a language-neutral
interface to the CORBA Si npl e: : Si npl e(yj ect type.

For the purposes of the demonstrations in this chapter, the Si npl eCoj ect
CORBA object is implemented in COBOL in the supplied SI MPLES server
application. The server application creates a persistent server object of the
Si npl eoj ect type, and publishes its object reference to a PDS member.
The client invokes the cal | _me() operation on the Si npl eChj ect object, and
then exits.

The batch demonstration client of the IMS demonstration server locates the
Si npl eQoj ect object by reading the interoperable object reference (IOR) for
the IMS server adapter from or bi xhl g. DEMO5. | GRS(SI MPLE) . In this case,
the IMS server adapter IOR is published to or bi xhl g. DEMOS. | CRS(SI MPLE)
when you run or bi xhl g. DEMCS. | M5. COBCL. BLD. JOL(S| MPLI OR) .

The IMS demonstration client of the batch demonstration server locates the
Si npl ebj ect object by reading the IOR for the batch server from
or bi xhl g. DEMOS. | CRS(SI MPLE) . In this case, the batch server IOR is

59

CHAPTER 3 | Getting Started in IMS

published to or bi xhl g. DEMDS. | CRS(S| MPLE) when you run the batch server.
The object reference for the server is represented to the demonstration IMS
client as a corbaloc URL string in the form cor bal oc: rir:/Si npl ehj ect .

60

Developing the Application Interfaces

Orbix IDL Compiler

The Orbix IDL compiler

Orbix IDL compiler configuration

Example of the SIMPLIDL JCL

This subsection describes how to use the Orbix IDL compiler to generate
COBOL copybooks, server source, and the IMS server adapter mapping
member from IDL.

Note: Generation of COBOL copybooks is relevant to both IMS client and
server development. Generation of server source and the IMS server
adapter mapping member is relevant only to IMS server development.

The Orbix IDL compiler uses the Orbix configuration member for its settings.
The SI MPLI DL JCL that runs the compiler uses the configuration member
or bi xhl g. OCONFI 1 DL) . See “Orbix IDL Compiler” on page 259 for more
details.

The following is the supplied JCL to run the Orbix IDL compiler for the IMS
S| MPLE demonstration:

//SIMPLIDL JOB (),

/1 CLASS=A

/1 VBGCLASS=X,

11 VBALEVEL=(1, 1),

/1 REQ ON=OM

/1 TI ME=1440,

11 NOTI FY=&SYSU D,

/1 COND=(4, LT)

[/ #ccccocoococccoscoocccoooooccoconooooco000ococooo000cooooo0oo oo

//* Obix - Generate the GBQO. copybooks for the | M5 Sinple Deno
/52

/1 JCLLI B ORDER=(or bi xhl g. PROCS)
/1 | NCLUDE MEMBER=(CRXVARS)
1+

/1* Make the follow ng changes before running this JCL:

/1*

/1* 1. Change ' SET DOVAI N=' DEFAULT@ to your configuration
[1* domai n nane.

/1*

/1l SET DOVAl N=' DEFAULT@

/1*

61

CHAPTER 3 | Getting Started in IMS

Explanation of the SIMPLIDL JCL

Specifying what you want to
generate

62

//1DLCBL EXEC CRXI DL,

Il SOURCE=S| MPLE,

/1 | DL=&CRBI X. . DEMX5. | DL,

/1 | DLPARME' - cobol : -S: -TIMS -nfa: -t S| MPLESV
/1* | DLPARMVE' - cobol *

//TDLMFA DD D SP=SHR DSN=&CRBI X. . DEMOS. | M5. MFAVAP
/11 TDOVAI N DD DSN=&CRBI X. . CONFI G &DOVAI N) , DI SP=SHR

In the preceding JCL example, the lines | DLPARME' - cobol ' and

| DLPARME' -cobol : -S:-TIMS -nfa: -t SIMPLESV are mutually exclusive. The

line | DLPARME' - cobol : -S: - TIMS -nfa: -t SIMPLESV s relevant to IMS server

development and generates:

® COBOL copybooks via the - cobol argument.

® |MS server mainline code via the - S: - TI M5 arguments.

® |MS server adapter mapping member via the -nfa: -ttran_name
arguments.

Note: Because IMS server implementation code is already supplied for
you, the -z argument is not specified by default.

The line I DLPARME' - cobol ' in the preceding JCL is relevant to IMS client
development and generates only COBOL copybooks, because it only
specifies the - cobol argument.

Note: The Orbix IDL compiler does not generate COBOL client source
code.

To indicate which of these lines you want the SI MPLI DL to recognize,
comment out the line you do not want to use, by placing an asterisk at the
start of that line. By default, as shown in the preceding example, the JCL is
set to generate COBOL copybooks, server mainline code, and an IMS server
adapter mapping member. Alternatively, if you choose to comment out the
line that has the -cobol : -S: - TI M5 - nf a: -t SI MPLESV arguments, the IDL
compiler only generates COBOL copybooks.

See “Orbix IDL Compiler” on page 259 for more details of the Orbix IDL
compiler and the JCL used to run it.

Developing the Application Interfaces

Running the Orbix IDL compiler After you have edited the SI MPLI DL JCL according to your requirements, you
can run the Orbix IDL compiler by submitting the following job:

or bi xhl g. DEMCS. | M5. CCBCL. BLD. JO(S| MPLI DL)

63

CHAPTER 3 | Getting Started in IMS

Generated COBOL Copybooks, Source, and Mapping Member

Overview

Member name restrictions

How IDL maps to COBOL
copybooks

64

This subsection describes all the COBOL copybooks, server source, and IMS
server adapter mapping member that the Orbix IDL compiler can generate
from IDL definitions.

Note: The generated COBOL copybooks are relevant to both IMS client
and server development. The generated source and adapter mapping
member are relevant only to IMS server development. The IDL compiler
does not generate COBOL client source.

Generated copybook, source code, and mapping member names are all
based on the IDL member name. If the IDL member name exceeds six
characters, the Orbix IDL compiler uses only the first six characters of the
IDL member name when generating the other member names. This allows
space for appending the two-character Sv suffix to the name for the server
mainline member, while allowing it to adhere to the eight-character
maximum size limit for 0S/390 member names. Consequently, all other
member names also use only the first six characters of the IDL member
name, followed by their individual suffixes, as appropriate.

Each IDL interface maps to a group of COBOL data definitions. There is one
definition for each IDL operation. A definition contains each of the
parameters for the relevant IDL operation in their corresponding COBOL
representation. See “IDL-to-COBOL Mapping” on page 181 for details of
how IDL types map to COBOL.

Attributes map to two operations (get and set), and readonly attributes map
to a single get operation.

Generated COBOL copybooks

Developing the Application Interfaces

Table 7 shows the COBOL copybooks that the Orbix IDL compiler generates,
based on the defined IDL.

Table 7: Generated COBOL Copybooks

Copybook JCL Keyword Description
Parameter
i dl menber nane CCPYLI B This copybook contains data

definitions that are used for
working with operation
parameters and return values
for each interface defined in the
IDL member.

The name for this copybook
does not take a suffix.

i dl menber naneX QCPYLI B This copybook contains data
definitions that are used by the
COBOL runtime to support the
interfaces defined in the IDL
member.

This copybook is automatically
included in the i dl nenber nane
copybook.

i dl nenber naneD QCPYLI B This copybook contains
procedural code for performing
the correct paragraph for the
requested operation.

This copybook is automatically
included in the i dI menber naneS
source code member.

65

CHAPTER 3 | Getting Started in IMS

Generated server source members Table 8 shows the server source code members that the Orbix IDL compiler
generates, based on the defined IDL.

Table 8: Generated Server Source Code Members

Member JCL Keyword Description
Parameter
i dl nenber naneS | MPL This is the IMS server

implementation source code
member. It contains stub
paragraphs for all the callable
operations.

This is only generated if you
specify both the -z and - TI M8
arguments with the IDL
compiler.

i dl menber nanmeSV | | MPL This is the IMS server mainline
source code member.

This is only generated if you
specify both the -Sand - TI M8
arguments with the IDL
compiler.

Note: For the purposes of this example, the SI MPLES server
implementation is already provided in your product installation. Therefore,
the -z IDL compiler argument used to generate it is not specified in the
supplied SI MPLI DL JCL. The SI MPLESV server mainline is not already
provided, so the - S: - TI M5 arguments used to generate it are specified in
the supplied JCL. See “Orbix IDL Compiler” on page 259 for more details
of the - S, -z, and - TI M5 arguments to generate IMS server code.

66

Generated server adapter
mapping member

Location of demonstration
copybooks and mapping member

Developing the Application Interfaces

Table 9 shows the IMS server adapter mapping member that the Orbix IDL
compiler generates, based on the defined IDL.

Table 9: Generated IMS Server Adapter Mapping Member

Copybook JCL Keyword Description
Parameter
i dl menber naneA MEMBER This is a simple text file that

determines what interfaces and

operations the IMS server

adapter supports, and the IMS
transaction names to which the
IMS server adapter should map

each IDL operation.

You can find examples of the copybooks, server source, and IMS server
adapter mapping member generated for the SI MPLE demonstration in the

following locations:

® orbi xhl g. DEMDS. | M5. CCBCL. CCPYLI B(S| MPLE)

® orbi xhl g. DEMCS. | M5. OCBCL. OCPYLI B(S| MPLEX)
d or bi xhl q. DEMOS. | M5. COBQL. OCPYLI B(SI MPLED)
® orbixhl g.DEM3S. | M5. OOBQL. SRQ(SI MPLESV)

® orbixhl g. DEMDS. | M. OOBOL. SRY(S| MPLES)

® orbi xhl g. DEMCS. | M5. MFAVAP(S| MPLEA)

Note: Except for the SI MPLES member, none of the preceding elements

are shipped with your product installation. They are generated when you
run or bi xhl g. DEMDS. | M5. COBQL. BLD. JCL(S| MPLI DL), to run the Orbix IDL

compiler.

67

CHAPTER 3 | Getting Started in IMS

Developing the IMS Server

Overview This section describes the steps you must follow to develop the IMS server
executable for your application. The IMS server developed in this example
will be contacted by the simple batch client demonstration.

Steps to develop the server The steps to develop the server application are:

Step Action

1 | “Writing the Server Implementation” on page 69.

“Writing the Server Mainline” on page 74.

2
3 | “Building the Server” on page 78.
4

“Preparing the Server to Run in IMS” on page 79.

68

Developing the IMS Server

Writing the Server Implementation

The server implementation
module

Example of the IMS SIMPLES
module

N

You must implement the server interface by writing a COBOL module that
implements each operation in the i dIl menber nane copybook. For the
purposes of this example, you must write a COBOL module that implements
each operation in the SI MPLE copybook. When you specify the -z and - TI M3
arguments with the Orbix IDL compiler, it generates a skeleton server
implementation module, in this case called SI MPLES, which is a useful
starting point.

Note: For the purposes of this demonstration, the IMS server
implementation module, SI MPLES, is already provided for you, so the -z
argument is not specified in the JCL that runs the IDL compiler.

The following is an example of the IMS SI MPLES module:

Example 4: The IMS SIMPLES Demonstration (Sheet 1 of 3)

D R R

* |dentification D vision

R RS SRR S SRS SRR RS RS RS E R SRR E R RS EREE R EREEEEEEEEEE
| DENTI FI CATI CN DI'VI SI ON

PROGRAM | D. S| MPLES.

ENVI RONVENT DI M S| ON
DATA D'VI SI ON
WORKI NG STCRAGE SECTI ON

01 W& | NTERFACE- NAME Pl CTURE X(30).
01 W& | NTERFACE- NAVE- LENGTH Pl CTURE 9(09) Bl NARY
VALUE 30.

QCPY SI MPLE
QCPY CCRBA
QCPY W&l MBPCB.
QCPY W&l MBCL.
QCPY LS| MSPCB.

69

CHAPTER 3 | Getting Started in IMS

Example 4: The IMS SIMPLES Demonstration (Sheet 2 of 3)

R RS SRS RS SRR RS R SRR RS E SRR RS SRR EEEE R EEEEEEEEEEEEEEE]

* Procedure D vision

LR EE R R R R R SRR R EEEEE R EEEEE R EEEEEEEEEREEEEEEEEEEEEEEEEREEEEES]

PROCEDURE DM S| ON

4 ENTRY " D SPATCH'.
5 PERFCRM RETRI EVE- W5- PCBS.
6 CALL " COAREQ USI NG REQUEST- | NFQ

SET W5 COAREQ TO TRUE.
PERFCRM CHECK- STATUS.

7 * Resolve the pointer reference to the interface name which is
* the fully scoped interface name
* Note nake sure it can handl e the nmax interface nane | ength
CALL " STRGET" US| NG | NTERFACE- NAME
W\B- | NTERFACE- NAME- LENGTH
W\5- | NTERFACE- NAME.
SET W5 STRGET TO TRUE
PERFORM CHECK- STATUS.

LR E RS R E R RS RS SRR EEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEES]

* Interface(s) evaluation:

D R X

MOVE SPACES TO SI MPLE- SI MPLECBIECT- CPERATI O\

EVALUATE W5- | NTERFACE- NAME
WHEN ' | DL: Si npl e/ Si npl e(hj ect: 1. 0

8 * Resolve the pointer reference to the operation information

CALL "STRCGET" US| NG CPERATI ON- NAME

S| MPLE- S- 4B4B- CPERATI ON- LENGTH

S| MPLE- S| MPLECBJECT- CPERATI CN
SET W5 STRGET TO TRUE
PERFORM CHECK- STATUS
D SPLAY "Sinple::" SIMLE S| MPLECBIECT- CPERATI ON

"i nvoked"

END- EVALUATE.

9 QOCPY S| MPLED.

QOBACK.

70

10

11

12

13

Developing the IMS Server

Example 4: The IMS SIMPLES Demonstration (Sheet 3 of 3)

DO Sl MPLE- S| MPLECBIECT- CALL- ME.
CALL " OCOACGET" USI NG SI MPLE- SI MPLECBJECT- DCD9- ARGS.
SET W5- COAGET TO TRUE
PERFCRM CHECK- STATUS.

LR R R R R R RS R R R R R EEE R EEEE R TR EEEEEEEEEEEEEEEEEEE]

* An exanpl e of using a PCB in the server inplenentation.

* 'CHNG is defined in copybook W8l MBCL.

* 'LSALT-PCB is defined in copybook LS| MSPCB.
* 'NEWDEST' is user defined in working storage:
* 77 NEWDEST PIC X(8) VALUE ' MYDEST .

* CALL ' CBLTDLI' USING GHN\G

* LS ALT- PCB
* NEW DEST
* END-CALL.

* DI SPLAY ' GN\G STATUS CCDE: ' '
* LS ALTPCB- STATUS- CCDE

P o

* LS- ALTPCB- DEST- NAME

D

CALL " COAPUT" USI NG SI MPLE- S| MPLECBJECT- DCDO- ARGS.
SET W& COAPUT TO TRUE.
PERFCRM CHECK- STATUS.

D

* Retrieve the working storage PCB definitions

LR R R R R R R R E R EEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEE]

QCPY UPDTPCBS

LR R R R R R R RS EEEEEEE R R EEEEEEEEEREEEEEEEEEEEEEEEEEEEEEEE]

* Check Errors Copybook

LR R R RS SRR SRR RS EEEEEEEEEEEEEEEEREEEEEEEEEEEEEEEEEEEEEES]

GCPY CERRSMFA

71

CHAPTER 3 | Getting Started in IMS

Explanation of the IMS SIMPLES
module

72

The IMS Sl MPLES module can be explained as follows:

1.
2.

10.

The aoPY Wal MSPCB statement provides access to IMS PCBs.

The aoPY Wsl MBCL statement provides definitions that can be used
when making calls, such as GHNGor | SRT, to CBLTDLI .

The aCPY LSI MSPCB statement provides definitions for the IMS PCBs
that are mapped by the pointers defined in the W8l M5PCB copybook.

The DI SPATCH logic is automatically coded for you, and the bulk of the
code is contained in the SI MPLED copybook. When an incoming request
arrives from the network, it is processed by the ORB and a call is made
to the DI SPATCH entry point.

The RETR EVE- W&- PCBS paragraph maps the IMS PCB data defined in
the linkage section (in the LSI MBPCB copybook) with the pointers
defined in Working Storage (in the Wsl MSPCB copybook).

OQAREQIs called to provide information about the current invocation
request, which is held in the REQUEST- I NFOblock that is contained in
the QORBA copybook.

OOAREQIs called once for each operation invocation—after a request
has been dispatched to the server, but before any calls are made to
access the parameter values.

STRCGET is called to copy the characters in the unbounded string pointer
for the interface name to the string item representing the fully scoped
interface name.

STRGET is called again to copy the characters in the unbounded string
pointer for the operation name to the string item representing the
operation name.

The procedural code used to perform the correct paragraph for the
requested operation is copied into the module from the S| MPLED
copybook.

Each operation has skeleton code, with appropriate calls to COAPUT and
OOAGET to copy values to and from the COBOL structures for that
operation’s argument list. You must provide a correct implementation
for each operation. You must call COAGET and GOAPUT, even if your
operation takes no parameters and returns no data. You can simply
pass in a dummy area as the parameter list.

Location of the IMS SIMPLES
module

Developing the IMS Server

11. Some comments that illustrate how to make an IMS change call, using
the alternate PCB.

12. The aCPY UPDTPCBS statement defines the RETR EVE- W& PCBS
paragraph.

13. The IMS server implementation uses a COPY CERRSMFA statement
instead of CCPY OKERRS.

Note: The supplied SI MPLES module is only a suggested way of
implementing an interface. It is not necessary to have all operations
implemented in the same COBOL module.

You can find a complete version of the IMS SI MPLES server implementation
module in or bi xhl gq. DEMDS. | M5. QOBCL. SR S| MPLES) .

73

CHAPTER 3 | Getting Started in IMS

Writing the Server Mainline

The server mainline module

Example of the IMS SIMPLESV
module

74

The next step is to write the server mainline module in which to run the
server implementation. For the purposes of this example, when you specify
the - Sand - TI M5 arguments with the Orbix IDL compiler, it generates a
module called SI MPLESV, which contains the server mainline code.

Note: Unlike the batch server mainline, the IMS server mainline does not
have to create and store stringified object references (I0ORs) for the
interfaces that it implements, because this is handled by the IMS server
adapter.

The following is an example of the IMS SI MPLESV module:

Example 5: The IMS SIMPLESV Demonstration (Sheet 1 of 3)

| DENTI FI CATI ON DI VI SI O\
PROGRAM | D. SI MPLESV.
ENVI RONVENT D M SI ON

DATA D'VI SI ON

WRKI NG STCRAGE SECTI ON

QCPY SI MPLE

QCPY OORBA

QCPY W&l MBPCB.

01 ARG LI ST Pl CTURE X(01)
VALUE SPACES.

01 ARG LI ST-LEN Pl CTURE 9(09) Bl NARY
VALLE 0.

01 ORB- NAME Pl CTURE X(10)
VALLE "sinpl e_orb".

01 ORB- NAME- LEN Pl CTURE 9(09) Bl NARY
VALLE 10.

01 SERVER NAME Pl CTURE X(07)
VALLE "sinple "

01 SERVER NAME- LEN Pl CTURE 9(09) Bl NARY
VALLE 6.

Developing the IMS Server

Example 5: The IMS SIMPLESV Demonstration (Sheet 2 of 3)

01 | NTERFACE- LI ST.
03 FI LLER Pl CTURE X(28)
VALUE "I DL: Sinpl e/ Sinpl eChject:1.0 ".
01 | NTERFACE- NAMES- ARRAY REDEFI NES | NTERFACE- LI ST.
03 | NTERFACE- NAME COOURS 1 Tl MES Pl CTURE X(28).

01 GBIECT-I D LI ST.
03 FI LLER Pl CTURE X(27)
VALUE "Si npl e/ Si npl e(hj ect _obj ect "
01 OBIECT- | D- ARRAY REDEFI NES GBJECT- | D- LI ST.
03 CBIJECT- | DENTI FI ER OCOURS 1 TI MES Pl CTURE X(27).

RS SRS S S E S EEE S SRR RS SRS SRR SRR SRR E RS SR EEEEEEEEEEEEEE]

* (bject values for the Interface(s)
EEE R R RS EES SRS SR SRS EE SRR SRS R SRR RS E R SRS EREEREEEEEEEEEEEEESEES]
01 SI MPLE- S| MPLECBIECT- CBJ PO NTER

VALUE NULL.

QCPY LS| MBPCB.
PROCEDURE D'V SION USING LS 1 O PCB, LS ALT-PCB.

INT.
PERFCRM UPDATE- W5- PCBS.

CALL " CRBSTAT" USI NG CRBI X- STATUS- | NFCRVATI O\
SET W&- CRBSTAT TO TRUE
PERFCRM CHECK- STATUS.

CALL " CRBARGS' USI NG ARG LI ST
ARG LI ST- LEN
CRB- NAME
CRB- NAME- LEN

SET W& CRBARGS TO TRUE

PERFCRM CHECK- STATUS.

CALL " CRBSRWR USI NG SERVER- NAME
SERVER- NAMVE- LEN

SET W& CRBSRVR TO TRLE

PERFCRM CHECK- STATUS.

LR R R R R RS R R R EEE R EEEEEEEEEEEEEEEEEEE]

* |Interface Section Bl ock
R RS SRR S SRS RS E SRR SRS R SRR E R RS ERE R R EREEEEEEEEEE

75

CHAPTER 3 | Getting Started in IMS

Explanation of the IMS

SIMPLESV module

76

Example 5: The IMS SIMPLESV Demonstration (Sheet 3 of 3)

*

CGenerating Chject Reference for interface S nple/Si npl eChj ect

CALL "CRBREG' USI NG SI MPLE- SI MPLECBIECT- | NTERFACE
SET W5 CRBREG TO TRUE.
PERFCRM CHECK- STATUS.

CALL "CBINEW US| NG SERVER- NAME
| NTERFACE- NAME CF | NTERFACE- NAMES- ARRAY(1)
CBJECT- | DENTI FI ER CF CBJECT- | D- ARRAY(1)
SI MPLE- S| MPLECBJECT- CBJ.
SET W5 CBINEW TO TRUE.
PERFCRM CHECK- STATUS.

CALL "COARWN'.
SET W5- COARUN TO TRUE
PERFCRM CHECK- STATUS.

CALL "CBIJREL" USI NG SI MPLE- SI MPLECBECT- CBJ.
SET W& CBJREL TO TRUE
PERFCRM CHECK- STATUS.

EXI T- PRG

QGBACK.

D R X

* Popul ate the working storage PCB definitions

LR EE RS R E R R SRR R EEEEEEEE R EEEEE SRR EEEEEEEEEEEEEEEEEEEEEEEEEEEEEES]

QCPY UPDTPCBS.

D R R X

* Check Errors Copybook

LR E RS E R RS RS EEEEEEEEE R EEEEEEEEEEEEEEEEREEEEEEEEEEEEEEEEEEEEEEE]

QCPY CERRSMFA

The IMS SI MPLESV module can be explained as follows:

1.

CRBSTAT is called to register the CRBI X- STATUS- | NFCRVATI ON block that
is contained in the OGCRBA copybook. Registering the

CRBI X- STATUS- | NFCRVATI ON block allows the COBOL runtime to
populate it with exception information, if necessary.

CRBARGS is called to initialize a connection to the ORB.

Location of the IMS SIMPLESV
module

Developing the IMS Server

3. RBSRWRis called to set the server name.

CRBREG is called to register the IDL interface, Si npl ehj ect , with the
Orbix COBOL runtime.

5. BINEWiIs called to create a persistent server object of the
Si npl ehj ect type, with an object ID of ny_si npl e_obj ect .

6. QOOARW s called, to enter the GRB: : run loop, to allow the ORB to
receive and process client requests. This then processes the CORBA
request that the IMS server adapter sends to IMS. If the transaction
has been defined as WFI, multiple requests can be processed in the
QOARWN loop; otherwise, COARUN processes only one request.

7. CBIREL is called to ensure that the servant object is released properly.

You can find a complete version of the IMS SI MPLESV server mainline
module in or bi xhl q. DEMDS. | M5. GOBCL. SRQ(S| MPLESV) after you have run
or bi xhl g. DEMDS. | M5. OOBCL. BLD. JCOL(SI MPLI DL) to run the Orbix IDL
compiler.

77

CHAPTER 3 | Getting Started in IMS

Building the Server

Location of the JCL Sample JCL used to compile and link the IMS server mainline and server
implementation is in or bi xhl g. DEMOS. | M5. CCBQL. BLD. JOL(S| MPLESB) .

Resulting load module When this JCL has successfully executed, it results in a load module that is
contained in or bi xhl g. DEMDS. | M. GCBCL. LQAD(S| MPLESV) .

78

Developing the IMS Server

Preparing the Server to Run in IMS

Overview This section describes the required steps to allow the server to run in an IMS
region. These steps assume you want to run the IMS server against a batch
client. When all the steps in this section have been completed, the server is
started automatically within IMS, as required.

Steps The steps to enable the server to run in an IMS region are:

Step Action

1 | Define a transaction definition for IMS.

Provide the IMS server load module to an IMS region.

2
3 | Generate mapping member entries for the IMS server adapter.
4

Add the IDL to the Interface Repository.

Note: For the purposes of this demonstration, the IFR is used
as the source of type information.

5 | Obtain the IOR for use by the client program.

Step 1—Defining transaction A transaction definition must be created for the server, to allow it to run in
definition for IMS IMS. The following is the transaction definition for the supplied
demonstration:

APPLCTN GPSB=SI| MPLESV, X
PGVIYPE=(TP, , 2) X
SOHDTYP=PARALLEL

TRANSACT ~ CCDE=S| MPLESV, X
EDI T=(ULQ)

Step 2—Providing load moduleto Ensure that the or bi xhl g. DEMDS. | M5. GOBCL. LQAD PDS is added to the
IMS region STEPLIB for the IMS region that is to run the transaction, or copy the
SI MPLESV load module to a PDS in the STEPLIB of the relevant IMS region.

79

CHAPTER 3 | Getting Started in IMS

Step 3—Generating mapping
member entries

Step 4—Adding IDL to Interface
Repository

80

The IMS server adapter requires mapping member entries, so that it knows
which IMS transaction should be run for a particular interface and
operation. The mapping member entry for the supplied example is contained
in or bi xhl q. DEMOS. | M. MFAMAP(SI MPLEA) (after you run the IDL compiler)
and appears as follows:

(S npl e/ Si npl eCj ect, cal | _ne, S| MPLESV)

The generation of a mapping member for the IMS server adapter is
performed by the or bi xhl gq. DEMOS. | M5. COBCL. BLD. JOL(SI MPLI DL) JCL. The
-nfa:-ttran_name argument with the IDL compiler generates the mapping
member. For the purposes of this example, t ran_nane is replaced with

SI MPLESV. An | DLMFA DD statement must also be provided in the JCL, to
specify the PDS into which the mapping member is generated. See the IMS
Adapters Administrator’s Guide for full details about IMS server adapter
mapping members.

The IMS server adapter needs to be able to obtain operation signatures for
the COBOL server. For the purposes of this demonstration, the IFR is used
to retrieve this type information. This type information is necessary so that
the adapter knows what data types it has to marshal into IMS for the server,
and what data types it can expect back from the IMS transaction. Ensure
that the relevant IDL for the server has been added to (that is, registered
with) the Interface Repository before the IMS server adapter is started.

To add IDL to the Interface Repository, the Interface Repository must be
running. You can use the JCL in or bi xhl g. JOL(| FR) to start it. The Interface
Repository uses the configuration settings in the Orbix configuration
member, or bi xhl g. CONFI G DEFAULT@ .

Step 5—Obtaining the server

adapter IOR

Developing the IMS Server

The following JCL that adds IDL to the Interface Repository is supplied in
or bi xhl g. DEMDS. | M5. CCBCL. BLD. JCL(S| MPLEREG) :

/1 JOLLI B CRDER=(or bi xhl g. PROCS)
I | NCLUDE MEMBER=(CRXVARS)
/1%

/1* Make the followi ng changes before running this JCO.:

/1*

//* 1. Change ' SET DOVAI N=' DEFAULT@ to your configuration
/1* donai n narre.

[1*

/1l SET DOVAl N=' DEFAULT@
/1*

//1DLCBL EXEC CRXI DL,

/1l SOURCE=SI MPLE,

/1l | DL=&CRBI X. . DEMOS. | DL,
/1l | DLPARVF' - R

/11 TDOVAI N DD DSN=&CRBI X. . CONFI G &DOVAI N), DI SP=SHR

Note: An alternative to using the IFR is to use type information files.
These are an alternative method of providing IDL interface information to
the IMS server adapter. Type information files can be generated as part of
the - nf a plug-in to the IDL compiler. See the IMS Adapters
Administrator’s Guide for more details about how to generate them. The
use of type information files would render this step unnecessary; however,
the use of the IFR is recommended for the purposes of this demonstration.

The final step is to obtain the IOR that the batch client needs to locate the

IMS server adapter. Before you do this, ensure all of the following:

® The IFR server is running and contains the relevant IDL. See “Step 4—
Adding IDL to Interface Repository” on page 80 for details of how to
start it, if it is not already running.

® The IMS server adapter is running. The supplied JCL in
or bi xhl . JOL(I MBA) starts the IMS server adapter. See the IMS
Adapters Administrator’s Guide for more details.

® The IMS server adapter mapping member contains the relevant
mapping entries. For the purposes of this example, ensure that the
or bi xhl gq. DEMDS. | M5. MFAMAP(S| MPLEA) mapping member is being
used. See the IMS Adapters Administrator’s Guide for details about
IMS server adapter mapping members.

81

CHAPTER 3 | Getting Started in IMS

Now submit or bi xhl g. DEMDS. | M5. QOBCL. BLD. JCL(SI MPLI OR), to obtain the
IOR that the batch client needs to locate the IMS server adapter. This JCL
includes the resol ve command, to obtain the IOR. The following is an
example of the SI MPLI CRJCL:

/1 JOLLI B CRDER=(or bi xhl g. PROCS)
/1 I NCLUDE MEMBER=(CRXVARS)
1%

/1* Request the ICR for the I M5 'sinple persistent' server
//* and store it in a PDS for use by the client.

/1*

/1* Make the foll owi ng changes before running this JCO.:
/1*

//* 1. Change ' SET DOVAI N=' DEFAULT@ to you configuration
/1* donmai n narre.

[1*

/1l SET DOVAl N=' DEFAULLT@

/1*

/1 REG EXEC PROC-CRXADM N,

/1 PPARMVF nfa resol ve Sinplel/S npletject > DD ICR
//1CR DD DSN=&CORBI X. . DEMCS. | ORS(SI MPLE) , DI SP=SHR
//CRBARGS DD *

-CRBnane iona_utilities.insa

/*

/11 TDOVAI N DD DSN=&CRBI X. . CONFI G &DOVAI N), DI SP=SHR

When you submit the SI MPLI CR JCL, it writes the IOR for the IMS server
adapter to or bi xhl g. DEMOS. | CRS(SI MPLE) .

82

Developing the IMS Client

Developing the IMS Client

Overview This section describes the steps you must follow to develop the IMS client
executable for your application. The IMS client developed in this example
will connect to the simple batch server demonstration.

Note: The Orbix IDL compiler does not generate COBOL client stub code.

Steps to develop the client The steps to develop and run the client application are:

Step Action

1 | “Writing the Client” on page 84.

2 | “Building the Client” on page 89.

3 | “Preparing the Client to Run in IMS” on page 90.

83

CHAPTER 3 | Getting Started in IMS

Writing the Client

The client program

Example of the SIMPLECL module

84

The next step is to write the client program, to implement the IMS client.
This example uses the supplied SI MPLEQL client demonstration.

The following is an example of the IMS SI MPLECL module:

Example 6: The IMS SIMPLECL Demonstration (Sheet 1 of 3)

LR R RS R R R R SRR R EEEEEEEE R EEEEE R EEEEEEEEEEEEEEEEEEEEEEEEEEREE SRS

Copyright (c) 2001-2002 | ONA Technol ogi es PLC.
Al R ghts Reserved.

Description: This is an | M5 CCBCL client inplenentation of
the sinple interface.

*
*
*
*
*
*

D R

| DENTI FI CATI ON DI V1 SI O\
PROGRAM | D. SI MPLECL.

ENVI RONVENT DIV S| ON
QONFI GURATI CN SECTI CN
I NPUT- QUTPUT SECTI ON
DATA D'VI SI O\

WRKI NG STCRAGE SECTI ON

CCPY SI MPLE

CCPY CORBA

QCPY Wl MBCL.

01 V& S| MPLE- URL PI CTURE X(27) VALUE

"corbal oc:rir:/S npl ehj ect ".

01 W5 SI MPLE- URL- LENGTH Pl CTURE 9(9) BI NARY
VALUE 27.

01 W& SI MPLE- URL- PTR PA NTER
VALUE NULL.

01 Sl MPLE- S| MPLECBJECT- CBJ PQ NTER
VALUE NULL.

01 ARG LI ST Pl CTURE X(80)
VALUE SPACES.

01 ARG LI ST-LEN Pl CTURE 9(09) Bl NARY
VALUE 0.

Developing the IMS Client

Example 6: The IMS SIMPLECL Demonstration (Sheet 2 of 3)

01 CRB- NAME Pl CTURE X(10)
VALLE "sinpl e_orb".
01 ORB- NAME-LEN Pl CTURE 9(09) BI NARY
VALUE 10.

CCPY LS| MSPCB.

PROCEDURE DIV SION USING LS 1 G PCB, LS ALT- PCB.
0000- MAI NLI NE.

CCPY GETWIN CE

CALL " CRBSTAT" USI NG CRBI X- STATUS- | NFCRVATI O\

* CRBinitialization

D SPLAY "“Initializing the CRB'.

CALL " CRBARGS' USI NG ARG LI ST
ARG LI ST-LEN
ORB- NAME
CORB- NAME- LEN

SET W5 CRBARGS TO TRUE

PERFORM CHECK- STATUS.

* Register interface S npl e(hject
Dl SPLAY "Regi stering the Interface".
CALL "CRBREG' USI NG SI MPLE- SI MPLECBJECT- | NTERFACE.
SET W5 CRBREG TO TRUE.
PERFORM CHECK- STATUS.

* Set the GOBOL pointer to point to the URL string
CALL " STRSET" USI NG W& SI MPLE- URL- PTR
W6- S| MPLE- URL- LENGTH
W& SI MPLE- URL.
SET W5 STRSET TO TRUE.
PERFCORM CHECK- STATUS.
* (btain object reference fromthe url
CALL "STRTOBJ" USING W5 S| MPLE- URL- PTR
SI MPLE- S| MPLECBJECT- CBJ.

SET W5- STRTCCBJ TO TRUE
PERFCRM CHECK- STATUS.
* Rel easi ng the menory
CALL " STRFREE' USI NG W5 SI MPLE- URL- PTR
SET W& STRFREE TO TRUE
PERFORM CHECK- STATUS.

SET SI MPLE- S| MPLECBJECT- CALL- ME TO TRUE
D SPLAY "invoking Sinple::" Sl MPLE-SI MPLECBIECT- CPERATI ON

85

CHAPTER 3 | Getting Started in IMS

Explanation of the SIMPLECL
module

86

Example 6: The IMS SIMPLECL Demonstration (Sheet 3 of 3)

7 CALL " CRBEXEC USI NG SI MPLE- SI MPLECBIECT- CBJ
SI MPLE- SI MPLECBJECT- CPERATI CN
S| MPLE- S| MPLECBIECT- DCDO- ARGS
SI MPLE- USER- EXCEPTI ONS.
SET W5- CRBEXEC TO TRUE
PERFCRM GHECK- STATUS

8 CALL "GBIREL" USING SI MPLE- SI MPLECBIECT- CBJ.
SET W&- GBBJIREL TO TRUE
PERFCRM CHECK- STATUS.

Dl SPLAY "Si npl e dermo conpl ete. .
MOVE 38 TO QUT-LL CF
QUTPUT- AREA
MOVE "Si npl e Transacti on conpl et ed* TO
QUTPUT- LI NE CF QUTPUT- AREA.
9 PERFCRM WRI TE- DG TEXT THRU WR TE- DG TEXT- END.

LR E RS R E R RS RS SRR EEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEES]

* Qutput | M5 segnent.

D R X

10 QCPY | MBWR TE.

LR EE RS R E R R SRR R EEEEEEEE R EEEEE SRR EEEEEEEEEEEEEEEEEEEEEEEEEEEEEES]

* Check Errors Copybook

LR E RS R RS EEEEE RS SRR EEEEE SRR EEEEEEEEEEEEEEEEEEEEEEEEEEES]

11 GCPY GKCLI MB.

The IMS SI MPLECL module can be explained as follows:

1. W& SIMPLE- URL defines a corbaloc URL string in the corbal oc: rir
format. This string identifies the server with which the client is to
communicate. This string can be passed as a parameter to STRTOBJ,
to allow the client to retrieve an object reference to the server. See
point 6 about STRTOBJ for more details.

2. CORBSTAT is called to register the CRBI X- STATUS- | NFCRVATI ON block that
is contained in the CORBA copybook. Registering the
CRBI X- STATUS- | NFCRVATI ON block allows the COBOL runtime to
populate it with exception information, if necessary.

10.

11.

Developing the IMS Client

You can use the CRBI X- STATUS- | NFCRVATI ON data item (in the GCRBA
copybook) to check the status of any Orbix call. The EXCEPTI ON NUMBER
numeric data item is important in this case. If this item is 0, it means
the call was successful. Otherwise, EXCEPTI ON- NUMBER holds the
system exception number that occurred. You should test this data item
after any Orbix call.

CRBARGS is called to initialize a connection to the ORB.

CRBREG is called to register the IDL interface with the Orbix COBOL
runtime.

STRSET is called to create an unbounded string to which the stringified
object reference is copied.

STRTQCRI is called to create an object reference to the server object.
This must be done to allow operation invocations on the server. In this
case, the client identifies the target object, using a corbaloc URL string
in the form corbal oc: rir:/ Si npl eCoj ect (as defined in point 1). See
“STRTOOBJ” on page 432 for more details of the various forms of
corbaloc URL strings and the ways you can use them.

After the object reference is created, CRBEXEC is called to invoke
operations on the server object represented by that object reference.
You must pass the object reference, the operation name, the argument
description packet, and the user exception buffer. The operation name
must be terminated with a space. The same argument description is
used by the server. For ease of use, string identifiers for operations are
defined in the SI MPLE copybook. For example, see

or bi xhl q. DEMDS. | M5. OCBOL. OCPYLI B(S| MPLE) .

CBIREL is called to ensure that the servant object is released properly.
The WR TE- DG TEXT paragraph is copied in from the | MWR TE
copybook and is used to write messages to the IMS output message
queue. The client uses this to indicate whether the call was successful
or not.

A paragraph that writes messages generated by the demonstrations to
the IMS message queue is copied in from the | MSWR TE copybook.

The error-checking routine for system exceptions generated by the
demonstrations is copied in from the GHKCLI M5 copybook.

87

CHAPTER 3 | Getting Started in IMS

Location of the SIMPLECL module You can find a complete version of the IMS Sl MPLECL client module in
or bi xhl . DEMDS. | M5. OCBCL. SRC(S| MPLECL) .

88

Developing the IMS Client

Building the Client

JCL to build the client Sample JCL used to compile and link the client can be found in the third
step of or bi xhl g. DEMDS. | M3, OOBQL. BLD. JOL(S| MPLECB) .

Resulting load module When the JCL has successfully executed, it results in a load module that is
contained in or bi xhl g. DEMDS. | M5, GCBQL. LOAD(S| MPLECL) .

89

CHAPTER 3 | Getting Started in IMS

Preparing the Client to Run in IMS

Overview This section describes the required steps to allow the client to run in an IMS
region. These steps assume you want to run the IMS client against a batch
server.

Steps The steps to enable the client to run in an IMS region are:

Step Action
1 | Define an APPC transaction definition for IMS.
2 | Provide the IMS client load module to the IMS region.
3 | Start the locator, node daemon, and IFR on the server host.
4 | Add the IDL to the IFR.
5 | Start the batch server.
6 | Customize the batch server IOR.
7 | Configure and run the client adapter.

Step 1—Define transaction A transaction definition must be created for the client, to allow it to run in

definition for IMS IMS. The following is the transaction definition for the supplied

demonstration:

APPLCTN GPSB=SI| MPLECL, X
PQVIYPE=(TP, , 2), X
SOHDTYP=PARALLEL

TRANSACT ~ CCDE=S| MPLEQL, X
ED T=(ULQ)

Step 2—Provide client load Ensure that the or bi xhl g. DEMDS. | M5, OCBCL. LQAD PDS is added to the
module to IMS region STEPLIB for the IMS region that is to run the transaction.

Note: If you have already done this for your IMS server load module, you
do not need to do this again.

90

Step 3—Start locator, node
daemon, and IFR on server

Step 4—Add IDL to IFR

Developing the IMS Client

Alternatively, you can copy the SI MPLEQL load module to a PDS in the
STEPLIB of the relevant IMS region.

This step is assuming that you intend running the IMS client against the
supplied batch demonstration server.

In this case, you must start all of the following on the batch server host (if
they have not already been started):

1. Start the locator daemon by submitting or bi xhl . JOL(LOCATOR) .
2. Start the node daemon by submitting or bi xhl g. JCOL(NCDEDAEM) .
3. Start the IFR server by submitting or bi xhl q. JOL(| FR) .

See “Running the Server and Client” on page 46 for more details of running
the locator and node daemon on the batch server host.

The client adapter needs to be able to obtain the IDL for the COBOL server
from the Interface Repository, so that it knows what data types it can expect
to marshal from the IMS transaction, and what data types it should expect

back from the batch server. Ensure that the relevant IDL for the server has

been added to (that is, registered with) the Interface Repository before the

client adapter is started.

To add IDL to the IFR, the IFR server must be running. As explained in
“Step 3—Start locator, node daemon, and IFR on server”, you can use the
JCL in orbi xhl gq. JO(1 FR) to start the IFR. The IFR uses the Orbix
configuration member for its settings. The Interface Repository uses the
configuration settings in the Orbix configuration member,

or bi xhl q. CONFI G DEFAULT@ .

Note: An IDL interface only needs to be registered once with the Interface
Repository.

91

CHAPTER 3 | Getting Started in IMS

The following JCL that adds IDL to the Interface Repository is supplied in
or bi xhl g. DEMDS. | M5. CCBCL. BLD. JCL(S| MPLEREG) :

11 JCLLI B CRDER=(or bi xhl g. PROCS)

/1l | NCLUDE MEMBER=(CRXVARS)

/1*

/1* Make the foll owi ng changes before running this JCO.:
[1*

//* 1. Change ' SET DOVAI N=' DEFAULT@ to your configuration
/1* donai n nare.

/1*

/1l SET DOVAl N=' DEFAULT@

/1*

//1DLCBL EXEC CRX DL,

/1l SQURCE=S| MPLE,

/1l | DL=&CRBI X. . DEMXS. | DL,

/1 | DLPARME' -R

/11 TDOVAI N DD DSN=&CRBI X. . CONFI G &DOVAI N), DI SP=SHR

Step 5—Start batch server This step is assuming that you intend running the IMS client against the
demonstration batch server.

Submit the following JCL to start the batch server:
or bi xhl g. DEMCS. GOBCL. RUN. JOL(SI MPLESV)

See “Running the Server and Client” on page 46 for more details of running
the locator and node daemon on the batch server host.

Step 6—Customize batch server When you run the demonstration batch server it publishes its IOR to a
IOR member called or bi xhl q. DEMOS. | CRS(SI MPLE) . The demonstration IMS
client needs to use this IOR to contact the demonstration batch server.

The demonstration IMS client obtains the object reference for the
demonstration batch server in the form of a corbaloc URL string. A corbaloc
URL string can take different formats. For the purposes of this
demonstration, it takes the form cor bal oc: rir:/ Si npl eQuj ect . This form of
the corbaloc URL string requires the use of a configuration variable,
initial _references: Sinpl ethj ect : ref erence, in the configuration

92

Step 7—Configure and run client
adapter

Developing the IMS Client

domain. When you submit the JCL in
or bi xhl g. DEMOS. | M5. OCBCL. BLD. JCL(UPDTQONF) , it automatically adds this
configuration entry to the configuration domain:

initial _references: Sinpl ethj ect:reference = "I CR..";

The IOR value is taken from the or bi xhl g. DEMDS. | GRS(S| MPLE) member.

See “STRTOOBJ” on page 432 for more details of the various forms of
corbaloc URL strings and the ways you can use them.

The client adapter must now be configured before you can start the client as
a IMS transaction. See the IMS Adapters Administrator’s Guide for details
of how to configure the client adapter.

When you have configured the client adapter, you can run it by submitting
or bi xhl g. JOL(MFCLA) .

93

CHAPTER 3 | Getting Started in IMS

Running the Demonstrations

Overview This section provides a summary of what you need to do to successfully run
the supplied demonstrations.

In this section This section discusses the following topics:
Running Batch Client against IMS Server page 95
Running IMS Client against Batch Server page 96

94

Running the Demonstrations

Running Batch Client against IMS Server

Overview This subsection describes what you need to do to successfully run the
demonstration batch client against the demonstration IMS server. It also
provides an overview of the output produced.

Steps The steps to run the demonstration IMS server against the demonstration
batch client are:
1. Ensure that all the steps in “Preparing the Server to Run in IMS” on
page 79 have been successfully completed.
2. Run the batch client as described in “Running the Server and Client”
on page 46.

IMS server output The IMS server sends the following output to the IMS region:

Sinpl e::call _me i nvoked

Batch client output The batch client produces the following output:

Initializing the CRB

Regi stering the Interface

Readi ng obj ect reference fromfile
invoking Sinple::call_me

Si npl e deno conpl et e.

95

CHAPTER 3 | Getting Started in IMS

Running IMS Client against Batch Server

Overview

Steps

IMS client output

Batch server output

96

This subsection describes what you need to do to successfully run the
demonstration IMS client against the demonstration batch server. It also
provides an overview of the output produced.

The steps to run the demonstration IMS client against the demonstration

batch server are:

1. Ensure that all the steps in “Preparing the Client to Run in IMS” on
page 90 have been successfully completed.

2. Run the IMS client by entering the transaction name, SI MPLECL, in the
relevant IMS region.

The IMS client sends the following output to the IMS region:
Initializing the CRB

Regi stering the Interface

invoking Sinple::call_me

Si npl e deno conpl et e.

The IMS client sends the following output to the IMS message queue:

Sinpl e transacti on conpl et ed

The batch server produces the following output:

Initializing the CRB

Regi stering the Interface

Creating the Cbject

Witing object reference to file

Gving control to the ORB to process Requests
Sinpl e::call _me invoked

In this chapter

CHAPTER 4

Getting Started in
CICS

This chapter introduces CICS application programming with
Orbix, by showing how to use Orbix to develop both a CICS
COBOL clientand a CICS COBOL server. It also provides details
of how to subsequently run the CICS client against a COBOL
batch server, and how to run a COBOL batch client against the
CICS server.

This chapter discusses the following topics:

Overview page 98

Developing the Application Interfaces page 103
Developing the CICS Server page 113
Developing the CICS Client page 127
Running the Demonstrations page 137

Note: The client and server examples provided in this chapter
respectively require use of the CICS client and server adapters that are
supplied as part of Orbix Mainframe. See the C/CS Adapters
Administrator’s Guide for more details about these CICS adapters.

97

CHAPTER 4 | Getting Started in CICS

Overview

Introduction

Steps to create an application

The demonstration CICS server

The demonstration CICS client

98

This section provides an overview of the main steps involved in creating an
Orbix COBOL CICS server and client application. It also introduces the
supplied COBOL CICS client and server SI MPLE demonstrations, and outlines
where you can find the various source code and JCL elements for them.

The main steps to create an Orbix COBOL CICS server application are:

1. “Developing the Application Interfaces” on page 103.

2. “Developing the CICS Server” on page 113.

3. “Developing the CICS Client” on page 127.

For the purposes of illustration this chapter demonstrates how to develop
both an Orbix COBOL CICS client and an Orbix COBOL CICS server. It then
describes how to run the CICS client and CICS server respectively against a
COBOL batch server and a COBOL batch client. These demonstrations do
not reflect real-world scenarios requiring Orbix Mainframe, because the

client and server are written in the same language and running on the same
platform.

The Orbix COBOL server developed in this chapter runs in a CICS region. It
implements a simple persistent POA-based obect. It accepts and processes
requests from an Orbix COBOL batch client that uses the object interface,
Si npl eQoj ect, to communicate with the server via the CICS server adapter.
The CICS server uses the Internet Inter-ORB Protocol (1I0P), which runs
over TCP/IP, to communicate with the batch client.

The Orbix COBOL client developed in this chapter runs in a CICS region. It
uses the clearly defined object interface, Si npl ethj ect , to access and
request data from an Orbix COBOL batch server that implements a simple
persistent Si npl e(oj ect object. When the client invokes a remote
operation, a request message is sent from the client to the server via the
client adapter. When the operation has completed, a reply message is sent
back to the client again via the client adapter. The CICS client uses I[IOP to
communicate with the batch server.

Overview

Supplied code and JCL for CICS All the source code and JCL components needed to create and run the CICS

application development

SI MPLE server and client demonstrations have been provided with your
installation. Apart from site-specific changes to some JCL, these do not
require editing.

Table 10 provides a summary of these code elements and JCL components
(where or bi xhl g represents your installation’s high-level qualifier).

Table 10: Supplied Code and JCL (Sheet 1 of 2)

(S| MPLESV)

Location Description
or bi xhl g. DEMOS. | DL(SI MPLE) This is the supplied IDL.
or bi xhl g. DEMOS. A CS. QOBCL. SRC This is the source code for the CICS server mainline module,

which is generated when you run the JCL in

or bi xhl g. DEMDS. O CS. GCBQL. BLD. JA(SI MPLI DL) . (The CICS
server mainline code is not shipped with the product. You must
run the SI vPLI DL JCL to generate it.)

('Sl MPLECL)

or bi xhl g. DEMDS. A CS. OOBCL. SRC This is the source code for the CICS server implementation
(SI MPLES) module.
or bi xhl g. DEMOS. Q CS. COBCL. SRC This is the source code for the CICS client module.

or bi xhl g. DEMDS. O CS. GOBOL.
(S| MPLIDL)

BLD. JOL This JCL runs the Orbix IDL compiler. See “Orbix IDL Compiler”
on page 106 for more details of this JCL and how to use it.

(S| MPLECB)

or bi xhl g. DEM3S. O CS. GOBQL. BLD. JCL This JCL compiles and links the CICS server mainline and CICS

(S| MPLESB) server implementation modules to create the SI MPLE server
program.

or bi xhl g. DEM36. O CS. COBQL. BLD. JCL This JCL compiles the CICS client module to create the SI MPLE

client program.

or bi xhl g. DEMDS. O CS. GOBOL.
(S| MPLREG

BLD. JCL This JCL registers the IDL in the Interface Repository.

or bi xhl g. DEMDS. O CS. GOBOL.
(SIMPLICR)

BLD. JCL This JCL obtains the CICS server’'s IOR (from the CICS server
adapter). A client of the CICS server requires the CICS server's
IOR, to locate the server object.

929

CHAPTER 4 | Getting Started in CICS

Table 10: Supplied Code and JCL (Sheet 2 of 2)

Location Description

or bi xhl g. DEMOS. O CS. QCBCL. BLD. JCL This JCL adds the following configuration entry to the
(UPDTCONF) configuration member:

initial_references: Sinpl ethj ect:reference="ICR..";

This configuration entry specifies the I0R that the CICS client
uses to contact the batch server. The IOR that is set as the value
for this configuration entry is the IOR that is published in

or bi xhl g. DEMOS. | CRS(SI MPLE) when you run the batch server.
The object reference for the server is represented to the
demonstration CICS client as a corbaloc URL string in the form
corbal oc: rir:/Sinpl eQuj ect. This form of corbaloc URL string
requires the use of the

initial_references: Sinpl e(hj ect:reference="ICR."
configuration entry.

Other forms of corbaloc URL string can also be used (for example,
the IIOP version, as demonstrated in the nested sequences
demonstration supplied with your product installation). See
“STRTOOBJ” on page 432 for more details of the various forms of
corbaloc URL strings and the ways you can use them.

or bi xhl g. JOL(MFCLA) This JCL configures and runs the client adapter.
or bi xhl g. JOL(Cl CSA) This JCL configures and runs the CICS server adapter.
Supplied copybooks Table 11 provides a summary in alphabetic order of the various copybooks

supplied with your product installation that are relevant to CICS application
development. Again, or bi xhl g represents your installation’s high-level
qualifier.

Table 11: Supplied Copybooks (Sheet 1 of 3)

Location Description

or bi xhl g. | NCLUDE. CCPYLI B(CERRSMFA) This is relevant to CICS servers. It contains a COBOL paragraph
that can be called by the CICS server, to check if a system
exception has occurred and report it.

100

Overview

Table 11: Supplied Copybooks (Sheet 2 of 3)

Location

Description

or bi xhl g.

I NCLUDE. GCPYLI B(CHKCLA O

This is relevant to CICS clients only. It contains a COBOL
paragraph that has been translated via the CICS TS 1.3
translator. This paragraph can be called by the client, to check if a
system exception has occurred and report it.

or bi xhl g.

I NCLUDE. GOPYLI B(GHKAI CS)

This is relevant to CICS clients only. It contains the version of the
CGHKALA C member before it was translated via the CICS TS 1.3
translator. It is used by the G CSTRAN job to compile the GKad CS
member, using another version of the CICS translator.

or bi xhl g.

I NCLUDE. COPYLI B(Cl OVWR TE)

This is relevant to CICS clients only. It contains a COBOL
paragraph that has been translated by the CICS TS 1.3 translator.
This paragraph can be called by the client, to write any messages
raised by the supplied demonstrations to the CICS terminal.

or bi xhl g.

| NCLUDE. GOPYLI B(CORBA)

This is relevant to both CICS clients and servers. It contains
various Orbix COBOL definitions, such as REQUEST- | NFOused by
the COAREQ function, and CRBI X- STATUS- | NFCRVATI CN which is
used to register and report system exceptions raised by the
COBOL runtime.

or bi xhl g.

I NCLUDE. CCPYLI B(CORBATYP)

This is relevant to both CICS clients and servers. It contains the
COBOL typecode representations for IDL basic types.

or bi xhl g.

I NCLUDE. CCPYLI B(WsA CSCL)

This is relevant to CICS clients only. It contains a COBOL data
definition that defines the format of the message that can be
written by the paragraph contained in

or bi xhl g. | NCLUDE. CCPYLI B(Q OAR TE) .

or bi xhl g.

I NCLUDE. GOPYLI B(8O CSSV)

This is relevant to CICS servers only. It is used by the server
implementation, to obtain access to the EXEC interface block
(EIB). This copybook contains just one line, as follows:

01 Ws-EIB-PONTER USACGE | S PO NTER VALUE NULL

or bi xhl g.

I NCLUDE. GOPYLI B(VBURLSTR)

This is relevant to clients only. It contains a COBOL representation
of the corbaloc URL I1OP string format. A client can call STRTOCBJ
to convert the URL into an object reference. See “STRTOOBJ” on
page 432 for more details.

101

CHAPTER 4 | Getting Started in CICS

Table 11: Supplied Copybooks (Sheet 3 of 3)

Location

Description

or bi xhl q. DEM35. A CS. CCBCL. GCPYLI B

This PDS is relevant to both CICS clients and servers. It is used to
store all CICS copybooks generated when you run the JCL to run
the Orbix IDL compiler for the supplied demonstrations. It also
contains copybooks with Working Storage data definitions and
Procedure Division paragraphs for use with the nested sequences
demonstration.

or bi xhl g. DEM35. d CS. MFANAP

This PDS is relevant to CICS servers only. It is empty at
installation time. It is used to store the CICS server adapter
mapping member generated when you run the JCL to run the
Orbix IDL compiler for the supplied demonstrations. The contents
of the mapping member are the fully qualifed interface name
followed by the operation name followed by the CICS APPC
transaction name or CICS EXCI program name (for example,

(Si npl e/ Si npl e(oj ect, cal | _ne, SI MPLESV) . See the CICS
Adapters Administrator’s Guide for more details about generating
CICS server adapter mapping members.

Checking JCL components When creating either the CICS client or server SI MPLE application, check
that each step involved within the separate JCL components completes with
a condition code of zero. If the condition codes are not zero, establish the
point and cause of failure. The most likely cause is the site-specific JCL
changes required for the compilers. Ensure that each high-level qualifier
throughout the JCL reflects your installation.

102

Developing the Application Interfaces

Developing the Application Interfaces

Overview This section describes the steps you must follow to develop the IDL
interfaces for your application. It first describes how to define the IDL
interfaces for the objects in your system. It then describes how to run the
IDL compiler. Finally it provides an overview of the COBOL copybooks,
server source code, and CICS server adapter mapping member that you can
generate via the IDL compiler.

Steps to develop application The steps to develop the interfaces to your application are:
interfaces
Step Action
1 | Define public IDL interfaces to the objects required in your

system.
See “Defining IDL Interfaces” on page 104.

Run the Orbix IDL compiler to generate COBOL copybooks,
server source, and server mapping member.

See “Orbix IDL Compiler” on page 106.

103

CHAPTER 4 | Getting Started in CICS

Defining IDL Interfaces

Defining the IDL

Explanation of the IDL

How the demonstration uses this
IDL

104

The first step in writing any Orbix program is to define the IDL interfaces for
the objects required in your system. The following is an example of the IDL
for the Si npl e(yj ect interface that is supplied in

or bi xhl g. DEMDS. | DL(S| MPLE) :

/1 1D
nmodul e Sinple
{
interface Sinpl e(hj ect
{
voi d
call _me();
B

The preceding IDL declares a Si npl ebj ect interface that is scoped (that is,
contained) within the Si npl e module. This interface exposes a single

cal | _me() operation. This IDL definition provides a language-neutral
interface to the CORBA Si npl e: : Si npl e(hj ect type.

For the purposes of the demonstrations in this chapter, the Si npl e(hj ect
CORBA object is implemented in COBOL in the supplied SI MPLES server
application. The server application creates a persistent server object of the
Si npl ebj ect type, and publishes its object reference to a PDS member.
The client invokes the cal | _me() operation on the Si npl ebj ect object, and
then exits.

The batch demonstration client of the CICS demonstration server locates the
Si npl eQoj ect object by reading the interoperable object reference (IOR) for
the CICS server adapter from or bi xhl g. DEM3S. | CRS(SI MPLE) . In this case,

the CICS server adapter IOR is published to or bi xhl g. DEM3S. | ORS(S| MPLE)
when you run or bi xhl g. DEMOS. O CS. CCBCL. BLD. JCL(S| MPLI CR) .

The CICS demonstration client of the batch demonstration server locates the
Si npl ehj ect object by reading the IOR for the batch server from
or bi xhl g. DEMDS. | CRS(SI MPLE) . In this case, the batch server IOR is

Developing the Application Interfaces

published to or bi xhl g. DEM3S. | ORS(SI MPLE) when you run the batch server.
The object reference for the server is represented to the demonstration CICS
client as a corbaloc URL string in the form corbal oc: rir:/Si npl ehj ect .

105

CHAPTER 4 | Getting Started in CICS

Orbix IDL Compiler

The Orbix IDL compiler

Orbix IDL compiler configuration

Example of the SIMPLIDL JCL

106

This subsection describes how to use the Orbix IDL compiler to generate
COBOL copybooks, server source, and the CICS server adapter mapping
member from IDL.

Note: Generation of COBOL copybooks is relevant to both CICS client and
server development. Generation of server source and the CICS server
adapter mapping member is relevant only to CICS server development.

The Orbix IDL compiler uses the Orbix configuration member for its settings.
The sI MPLI DL JCL that runs the compiler uses the configuration member
or bi xhl g. CONFI 1 DL) . See “Orbix IDL Compiler” on page 259 for more
details.

The following JCL runs the IDL compiler for the CICS SI MPLE demonstration:

//SIMPLIDL JCB (),

/1 QLASS=A

/1 VBGCLASS=X,

11 MVBGLEVEL=(1, 1),

/1 REG ON=OM

/1 TI ME=1440,

11 NOTI FY=&SYSU D,

/1 OOND=(4, LT)

[/ ¥ccccocoocccccooocncccooo0oocco0oo0ocococo0ooocoo0ooooooo 000000 oo

/1* Obix - Generate the COBCOL copybooks for the A CS Sinple Deno
/52

/1 JCLLI B ORDER=(or bi xhl g. PROCS)
/1 | NOLUDE MEMBER=(CRXVARS)
[+

/1* Make the follow ng changes before running this JCOL:

/1*

//* 1. Change ' SET DOVAI N=' DEFAULT@ to your configuration
[1* domai n nane.

/1*

/1 SET DOVAl N=' DEFAULT@

/1*

Explanation of the SIMPLIDL JCL

Developing the Application Interfaces

//1DLCBL EXEC CRXI DL,

Il
11
/1l
[1*
/1*

SCOURCE=S| MPLE,

| DL=&CRBI X. . DEM®6. | DL,

| DLPARME' -cobol : -S: -TA CS -nfa: -t S| MPLESV
| DLPARME' -cobol : -S:-TA CS -nfa: -t SMBV

| DLPARVE' - cobol *

//IDLMFA DD Dl SP=SHR DSN=&CRBI X. . DEM3S. O CS. MFAVAP
/11 TDOVAI N DD DSN=&CRBI X. . OONFI G &DOVAIN), DI SP=SHR

In the preceding JCL example, the | DLPARMIines can be explained as
follows:

The line | DLPARME' - cobol : -S: - TACS -nfa: -t SI MPLESV s relevant to
CICS server development for EXCI. This line generates:

* COBOL copybooks via the - cobol argument.

+ CICS server mainline code via the - S: - TQ CS arguments.

* CICS server adapter mapping member via the
-nfa:-ttran_or_program nane arguments.

Note: Because CICS server implementation code is already supplied
for you, the -z argument is not specified by default.

The line I DLPARW' - cobol : -S: -TA CS -nfa: -t SMBV is relevant to
CICS server development for APPC. This line generates the same items
as the I DLPARWE' - cobol : -S: - T CS -nfa: -t SIMPLESV line. It is
disabled (that is, commented out with an asterisk) by default.

The line | DLPARME' - cobol ' is relevant to CICS client development and
generates only COBOL copybooks, because it only specifies the - cobol
argument. It is disabled (that is, commented out) by default.

Note: The Orbix IDL compiler does not generate COBOL client
source code.

For the purposes of the demonstration, the | DLPARM=' - cobol : - S; - TO CS
-nfa: -t SIMPLESV line is not commented out (that is, it is not preceded by
an asterisk) by default.

107

CHAPTER 4 | Getting Started in CICS

Specifying what you want to
generate

Running the Orbix IDL compiler

108

To indicate which one of the | DLPARMIines you want SI MPLI DL to recognize,
comment out the two | DLPARMIines you do not want to use, by ensuring an
asterisk precedes those lines. By default, as shown in the preceding
example, the JCL is set to generate COBOL copybooks, server mainline
code, and a CICS server adapter mapping member for EXCI.

See “Orbix IDL Compiler” on page 259 for more details of the Orbix IDL
compiler and the JCL used to run it.

After you have edited the SI MPLI DL JCL according to your requirements, you
can run the Orbix IDL compiler by submitting the following job:

or bi xhl g. DEMCS. O CS, OCBOL. BLD, JCL(S| MPLI DL)

Developing the Application Interfaces

Generated COBOL Copybooks, Source, and Mapping Member

Overview

Member name restrictions

How IDL maps to COBOL
copybooks

This subsection describes all the COBOL copybooks, server source, and
CICS server adapter mapping member that the Orbix IDL compiler can
generate from IDL definitions.

Note: The generated COBOL copybooks are relevant to both CICS client
and server development. The generated source and adapter mapping
member are relevant only to CICS server development. The IDL compiler
does not generate COBOL client source.

Generated copybook, source code, and mapping member names are all
based on the IDL member name. If the IDL member name exceeds six
characters, the Orbix IDL compiler uses only the first six characters of the
IDL member name when generating the other member names. This allows
space for appending the two-character Sv suffix to the name for the server
mainline member, while allowing it to adhere to the eight-character
maximum size limit for 0S/390 member names. Consequently, all other
member names also use only the first six characters of the IDL member
name, followed by their individual suffixes, as appropriate.

Each IDL interface maps to a group of COBOL data definitions. There is one
definition for each IDL operation. A definition contains each of the
parameters for the relevant IDL operation in their corresponding COBOL
representation. See “IDL-to-COBOL Mapping” on page 181 for details of
how IDL types map to COBOL.

Attributes map to two operations (get and set), and readonly attributes map
to a single get operation.

109

CHAPTER 4 | Getting Started in CICS

Generated COBOL copybooks

110

Table 12 shows the COBOL copybooks that the Orbix IDL compiler
generates, based on the defined IDL.

Table 12: Generated COBOL Copybooks

Copybook

JCL Keyword
Parameter

Description

i dl menber nane

QCPYLI B

This copybook contains data
definitions that are used for
working with operation
parameters and return values
for each interface defined in the
IDL member.

The name for this copybook
does not take a suffix.

i dl menber naneX

CCPYLI B

This copybook contains data
definitions that are used by the
COBOL runtime to support the
interfaces defined in the IDL
member.

This copybook is automatically
included in the i dI nenber nane
copybook.

i dl menber naneD

QCPYLI B

This copybook contains
procedural code for performing
the correct paragraph for the
requested operation.

This copybook is automatically
included in the i dI nenber naneS
source code member.

Developing the Application Interfaces

Generated server source members Table 13 shows the server source code members that the Orbix IDL
compiler generates, based on the defined IDL.

Table 13: Generated Server Source Code Members

Member

JCL Keyword
Parameter

Description

i dl menber naneS

I MPL

This is the CICS server
implementation source code
member. It contains stub
paragraphs for all the callable
operations.

This is only generated if you
specify both the -z and -TQ CS
arguments with the IDL compiler.

i dl menber nanesSv

This is the CICS server mainline
source code member.

This is only generated if you
specify both the - Sand - TQ CS
arguments with the IDL compiler.

Note: For the purposes of this example, the SI MPLES server
implementation is already provided in your product installation. Therefore,
the -z IDL compiler argument used to generate it is not specified in the
supplied SI MPLI DL JCL. The SI MPLESV server mainline is not already
provided, so the - S: - TA CS arguments used to generate it are specified in
the supplied JCL. See “Orbix IDL Compiler” on page 259 for more details
of the - S, -z, and - TQ CS arguments to generate CICS server code.

111

CHAPTER 4 | Getting Started in CICS

Generated server adapter
mapping member

Location of demonstration
copybooks and mapping member

112

Table 14 shows the CICS server adapter mapping member that the Orbix
IDL compiler generates, based on the defined IDL.

Table 14: Generated CICS Server Adapter Mapping Member

Copybook JCL Keyword Description
Parameter
i dl menber naneA MEMBER This is a simple text file that

determines what interfaces and
operations the CICS server
adapter supports, and the CICS
APPC transaction names, or CICS
EXCI program names, to which
the CICS server adapter should
map each IDL operation.

You can find examples of the copybooks, server source, and CICS server
adapter mapping member generated for the SI MPLE demonstration in the

following locations:

Note:

or bi xhl q. DEM5. A CS. GCBOL. OCPYLI B(S| MPLE)
or bi xhl q. DEMDS. O CS. OCBCL. OCPYLI B(S| MPLEX)
or bi xhl q. DEM2S. O CS. COBQL. OCPYLI B(SI MPLED)
or bi xhl g. DEM5. A CS. GCBOL. SRQ(S| MPLESV)

or bi xhl q. DEM3S. d CS. COBCL. SRQ(S| MPLES)

or bi xhl q. DEMS. O CS. MFAVAP(S| MPLEA)

Except for the SI MPLES member, none of the preceding elements

are shipped with your product installation. They are generated when you
run or bi xhl g. DEM3S. A CS. G0BCL. BLD. JCL(SI MPLI DL), to run the Orbix
IDL compiler.

Developing the CICS Server

Developing the CICS Server

Overview This section describes the steps you must follow to develop the CICS server
executable for your application. The CICS server developed in this example
will be contacted by the simple batch client demonstration.

Steps to develop the server The steps to develop the server application are:

Step Action

1 | “Writing the Server Implementation” on page 114.

“Writing the Server Mainline” on page 118.

2
3 | “Building the Server” on page 122.
4

“Preparing the Server to Run in CICS” on page 123.

113

CHAPTER 4 | Getting Started in CICS

Writing the Server Implementation

The server implementation
module

Example of the CICS SIMPLES
module

114

You must implement the server interface by writing a COBOL
implementation module that implements each operation in the

i dl menber nane copybook. For the purposes of this example, you must write
a COBOL module that implements each operation in the SI MPLE copybook.
When you specify the -z and - TQ CS arguments with the Orbix IDL
compiler, it generates a skeleton server implementation module, in this case
called sI MPLES, which is a useful starting point.

Note: For the purposes of this demonstration, the CICS server
implementation module, SI MPLES, is already provided for you, so the -z
argument is not specified in the JCL that runs the IDL compiler.

The following is an example of the CICS SI MPLES module:

Example 7: The CICS SIMPLES Demonstration (Sheet 1 of 3)

D R X

* |dentification D vision

EEE R RS SRR SR SRR R SRR EE R RS E SRR SRR R R R EREEEEEEEEES
| DENTI FI CATICN D'V SI ON

PROGRAM | D. S| MPLES.

ENVI RONVENT DI M Sl ON
DATA DI'VI SI ON
WIRKI NG STCRAGE SECTI O\

QPY S| MPLE.

QPY CCRBA

01 V& | NTERFACE- NAVE Pl CTURE X(30).

01 W& | NTERFACE- NAVE- LENGTH Pl CTURE 9(09) Bl NARY

VALUE 30.

R RS SRS RS SRR RS SRR E RS E RS SRR RS EEE R EEEEEEEEEEEE RS

* Procedure D vision

D R R X

PROCEDURE DM S| ON

ENTRY "Dl SPATCH'.

Developing the CICS Server

Example 7: The CICS SIMPLES Demonstration (Sheet 2 of 3)

2 CALL " COAREQ' USI NG REQUEST- | NFQ
SET W& COAREQ TO TRUE
PERFCRM CHECK- STATUS.

3 * Resolve the pointer reference to the interface name which is
* the fully scoped interface nane
* Note nmake sure it can handl e the nmax interface nane | ength
CALL " STRGET" USI NG | NTERFACE- NAMVE
W\B- | NTERFACE- NAME- LENGTH
W\B- | NTERFACE- NAME.
SET W5 STRGET TO TRUE
PERFCRM CHECK- STATUS.

D

* Interface(s) evaluation:
LR R R R R R R R R E R EEEEEEEEEREEEEEEEEEEEEEEEEEEEEEES]

MOVE SPACES TO S| MPLE- S| MPLECBIECT- CPERATI ON

EVALUATE W\&- | NTERFACE- NAVE
WHEN ' | DL: Si npl e/ Si npl eChj ect: 1. 0

4 * Resolve the pointer reference to the operation information

CALL "STRGET" US| NG CPERATI ON- NAME

S| MPLE- S- 3497- CPERATI ON- LENGTH

S| MPLE- S| MPLECBJECT- CPERATI CN
SET W5 STRGET TO TRUE
PERFCRM CHECK- STATUS
Dl SPLAY "Sinple::" SIMLE-SI MPLECBIJECT- CPERATI ON

"i nvoked"

END- EVALUATE.

5 CCPY Sl MPLED.
GOBACK
6 DO S| MPLE- S| MPLECBIECT- CALL- ME
CALL " OOAGET" USI NG SI MPLE- S| MPLECBIECT- 70FE- ARGS.
SET W5 COAGET TO TRUE
PERFCRM CHECK- STATUS.
CALL " CoAPUT" USI NG SI MPLE- SI MPLECBJECT- 70FE- ARGS.

SET W5 COAPUT TO TRUE.
PERFCRM CHECK- STATUS.

115

CHAPTER 4 | Getting Started in CICS

Explanation of the CICS SIMPLES
module

116

Example 7: The CICS SIMPLES Demonstration (Sheet 3 of 3)

LR E RS R E SRS EEEE SRR EEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEES]

* Check Errors Copybook

R RS SRS RS S SRR RS SRR SRR RS SRR RS SRR EEEE R EEEEEEEEEEEEE RS

QCPY CERRSMFA

The CICS sl MPLES module can be explained as follows:

1.

The DI SPATCH logic is automatically coded for you, and the bulk of the
code is contained in the SI MPLED copybook. When an incoming request
arrives from the network, it is processed by the ORB and a call is made
to the DI SPATCH entry point.

OQAREQIs called to provide information about the current invocation
request, which is held in the REQUEST- | NFOblock that is contained in
the QCORBA copybook.

QOOAREQIs called once for each operation invocation—after a request
has been dispatched to the server, but before any calls are made to
access the parameter values.

STRGET is called to copy the characters in the unbounded string pointer
for the interface name to the string item representing the fully scoped
interface name.

STRGET is called again to copy the characters in the unbounded string
pointer for the operation name to the string item representing the
operation name.

The procedural code used to perform the correct paragraph for the
requested operation is copied into the module from the S| MPLED
copybook.

Each operation has skeleton code, with appropriate calls to CoaPUT and
OOAGET to copy values to and from the COBOL structures for that
operation’s argument list. You must provide a correct implementation
for each operation. You must call COAGET and COAPUT, even if your
operation takes no parameters and returns no data. You can simply
pass in a dummy area as the parameter list.

Developing the CICS Server

7. The CICS server implementation uses a GCPY CERRSMWFA statement
instead of GCPY CHKERRS.

Note: The supplied SI MPLES module is only a suggested way of
implementing an interface. It is not necessary to have all operations
implemented in the same COBOL module.

Location of the CICS SIMPLES You can find a complete version of the CICS SI MPLES server implementation
module module in or bi xhl gq. DEMDS. O CS. OOBQL. SRO(S| MPLES) .

117

CHAPTER 4 | Getting Started in CICS

Writing the Server Mainline

The server mainline module

Example of the CICS SIMPLESV
module

118

The next step is to write the server mainline module in which to run the
server implementation. For the purposes of this example, when you specify
the - S and - TQ Cs arguments with the Orbix IDL compiler, it generates a
module called SI MPLESV, which contains the server mainline code.

Note: Unlike the batch server mainline, the CICS server mainline does
not have to create and store stringified object references (IORs) for the
interfaces that it implements, because this is handled by the CICS server
adapter.

The following is an example of the CICS SI MPLESV module::

Example 8: The CICS SIMPLESV Demonstration (Sheet 1 of 3)

| DENTI FI CATI ON DI VI SI O\
PROGRAM | D. SI MPLESV.
ENVI RONVENT D M SI ON

DATA D'VI SI ON

WRKI NG STCRAGE SECTI ON

CCPY S| MPLE.

QCPY OORBA

01 ARG LI ST Pl CTURE X(01)
VALUE SPACES.

01 ARG LI ST- LEN Pl CTURE 9(09) Bl NARY
VALLE 0.

01 ORB- NAME Pl CTURE X(10)
VALLE "si npl e_or b".

01 ORB- NAME- LEN PI CTURE 9(09) BI NARY
VALUE 10.

01 SERVER- NAME PI CTURE X(07)
VALLE "sinple "

01 SERVER NAME- LEN Pl CTURE 9(09) Bl NARY
VALLE 6.

Developing the CICS Server

Example 8: The CICS SIMPLESV Demonstration (Sheet 2 of 3)

01 | NTERFACE- LI ST.
03 FI LLER Pl CTURE X(28)
VALUE "I DL: Sinpl e/ Sinpl eChject:1.0 ".
01 | NTERFACE- NAMES- ARRAY REDEFI NES | NTERFACE- LI ST.

03 | NTERFACE- NAME OCOURS 1 Tl MES Pl CTURE X(28).

01 GBIECT-I D LI ST.
03 FI LLER Pl CTURE X(27)
VALUE "Si npl e/ Si npl e(hj ect _obj ect "
01 OBIECT- | D- ARRAY REDEFI NES GBJECT- | D- LI ST.

03 CBIECT- | DENTI FI ER OQCOURS 1 TI MES Pl CTURE X(27).

LR R R R RS SRR EE SRS EEEEEEEEEEEEEEEEREEEEEEEEEEEEEEEEEEEEEEE]

* (bject values for the Interface(s)

D

01 SI MPLE-SI MPLECBIECT- CBJ PQA NTER
VALUE NULL.

PROCEDURE D' VI SI ON

INT.

CALL " CRBSTAT" USI NG CRBI X- STATUS- | NFCRVATI ON
SET W5 CRBSTAT TO TRUE
PERFCRM CHECK- STATUS.

CALL " CRBARGS! USI NG ARG LI ST
ARG LI ST- LEN
CRB- NAME
CRB- NAMVE- LEN

SET W5- CRBARGS TO TRUE

PERFCRM GHECK- STATUS.

CALL " CRBSRWR! USI NG SERVER- NAME
SERVER- NAME- LEN

SET W& CRBSRVR TO TRUE

PERFCRM CHECK- STATUS.

D R R

* |Interface Section Bl ock

LR R R R R RS R R R EEE R EEEEEEEEEEEEEEEEEEE]

* Generating (bject Reference for interface Sinple/S npl e(ject

119

CHAPTER 4 | Getting Started in CICS

Explanation of the CICS
SIMPLESV module

120

Example 8: The CICS SIMPLESV Demonstration (Sheet 3 of 3)

CALL "ORBREG' USI NG SI MPLE- SI MPLECBIECT- | NTERFACE
SET W5- CRBREG TO TRUE.
PERFORM CHECK- STATUS.

CALL "CBINEW US| NG SERVER- NAME
| NTERFACE- NAME CF | NTERFACE- NAMES- ARRAY(1)
CBJECT- | DENTI FI ER CF CBJECT- | D- ARRAY(1)
SI MPLE- S| MPLECBJECT- CBJ.
SET W&- CBINEW TO TRUE
PERFCRM CHECK- STATUS.

CALL "COARUN'.
SET W5 COARUIN TO TRUE.
PERFCRM CHECK- STATUS.

CALL "CBIREL" USI NG SI MPLE- SI MPLECBIECT- CBJ.
SET W5 CBJREL TO TRUE.
PERFCRM CHECK- STATUS.

EXI T- PRG

GOBAK

LR EE RS R E R R SRR R EEEEEEEE R EEEEE SRR EEEEEEEEEEEEEEEEEEEEEEEEEEEEEES]

* Check Errors Copybook

LR E RS R E R RS RS SRR SRS EEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEE]

GCPY CERRSMFA

The CICS Sl MPLESV module can be explained as follows:

1.

CRBSTAT is called to register the ORBI X- STATUS- | NFCRVATI ON block that
is contained in the CCRBA copybook. Registering the

CRBI X- STATUS- | NFCRVATI ON block allows the COBOL runtime to
populate it with exception information, if necessary.

CRBARGS is called to initialize a connection to the ORB.

CRBSRWR is called to set the server name.

CRBREG s called to register the IDL interface, Si npl e(oj ect, with the
Orbix COBOL runtime.

CBINEWiIs called to create a persistent server object of the

Si npl eoj ect type, with an object ID of ny_si npl e_obj ect .

Location of the CICS SIMPLESV
module

Developing the CICS Server

6. QOARW s called, to enter the GRB: : run loop, to allow the ORB to
receive and process client requests. This then processes the CORBA
request that the CICS server adapter sends to CICS.

7. OBIREL is called to ensure that the servant object is released properly.

You can find a complete version of the CICS SI MPLESV server mainline
module in or bi xhl gq. DEMDS. O CS. OCBQL. SRO(SI MPLESV) after you have run
or bi xhl g. DEMDS. O CS. QOBCL. BLD. JOL(SI MPLI DL) to run the Orbix IDL
compiler.

121

CHAPTER 4 | Getting Started in CICS

Building the Server

Location of the JCL Sample JCL used to compile and link the CICS server mainline and server
implementation is in or bi xhl g. DEMOS. A CS. QCBCL. BLD. JO(S| MPLESB) .

Resulting load module When this JCL has successfully executed, it results in a load module that is
contained in or bi xhl g. DEMXS. O CS. OQCBOL. LQAD(SI MPLESV) .

122

Developing the CICS Server

Preparing the Server to Run in CICS

Overview This section describes the required steps to allow the server to run in a CICS
region. These steps assume you want to run the CICS server against a batch
client. When all the steps in this section have been completed, the server is
started automatically within CICS, as required.

Steps The steps to enable the server to run in a CICS region are:
Step Action
1 | Define an APPC transaction definition or EXCI program
definition for CICS.
2 | Provide the CICS server load module to a CICS region.
3 | Generate mapping member entries for the CICS server adapter.
4 | Add the IDL to the Interface Repository (IFR).
Note: For the purposes of this demonstration, the IFR is used
as the source of type information.
5 | Obtain the IOR for use by the client program.
Step 1—Defining program or A CICS APPC transaction definition, or CICS EXCI program definition, must
transaction definition for CICS be created for the server, to allow it to run in CICS. The following is the CICS

APPC transaction definition for the supplied demonstration:

DEFI NE

TRANSACTI O\ SVBV)

GROUP(CRXAPPC)

DESCR PTI ON(O bi x APPC Si npl e deno transacti on)
PROGRAM SI MPLESV)

PRCFI LE(DFHO CSA)

TRANCLASS(DFHTCL00)

DTl M2UT(10)

SPURGE(YES)

TPURCGE(YES)

RESSEQ(YES)

123

CHAPTER 4 | Getting Started in CICS

Step 2—Providing load module to
CICS region

Step 3—Generating mapping
member entries

124

The following is the CICS EXCI program definition for the supplied
demonstration:

DEFI NE PROGRAM S| MPLESV)
GROUP(CRXDEMD)
DESCR PTI O\ O bi x Si npl e deno server)
LANGUAGE(LE370)
DATALCCATI ON(ANY)
EXECUTI ONSET(DPLSUBSET)

See the supplied or bi xhl g. JOL(CRBI XCSD) for a more detailed example of
how to define the resources that are required to use Orbix with CICS and to
run the supplied demonstrations.

Ensure that the or bi xhl g. DEMOS. O CS. GCBQL. LQAD PDS is added to the
DFHRPL for the CICS region that is to run the transaction, or copy the
SI MPLESV load module to a PDS in the DFHRPL of the relevant CICS region.

The CICS server adapter requires mapping member entries, so that it knows
which CICS APPC transaction or CICS EXCI program should be run for a
particular interface and operation. The mapping member entry for the
supplied CICS EXCI server example is contained by default in

or bi xhl g. DEMDS. O CS. MFAMAP(SI MPLEA) after you run the IDL compiler. The
mapping member entry for EXCI appears as follows:

(S npl e/ Si npl eChj ect, cal | _ne, S| MPLESV)

Note: If instead you chose to enable the line in SI MPLI DL to generate a
mapping member entry for a CICS APPC version of the demonstration, that
mapping member entry would appear as follows:

(Simple/SimpleObject,call_me,SMSV)

The generation of a mapping member for the CICS server adapter is
performed by the or bi xhl g. DEMOS. O CS. Q0BCL. BLD. JC(SI MPLI DL) JCL.
The -nfa: -ttran_or_program name argument with the IDL compiler
generates the mapping member. For the purposes of this example,
tran_or_program nane is replaced with SI MPLESV. An | DLMFA DD statement
must also be provided in the JCL, to specify the PDS into which the
mapping member is generated. See the CICS Adapters Administrator’s
Guide for full details about CICS adapter mapping members.

Step 4—Adding IDL to Interface
Repository

Developing the CICS Server

The CICS server adapter needs to be able to obtain operation signatures for
the COBOL server. For the purposes of this demonstration, the IFR is used
to retrieve this type information. This type information is necessary so that
the adapter knows what data types it has to marshal into CICS for the
server, and what data types it can expect back from the CICS APPC
transaction or CICS EXCI program. Ensure that the relevant IDL for the
server has been added to (that is, registered with) the Interface Repository
before the CICS server adapter is started.

To add IDL to the Interface Repository, the Interface Repository must be
running. You can use the JCL in or bi xhl g. JOL(I FR) to start it. The Interface
Repository uses the configuration settings in the Orbix configuration
member, or bi xhl g. CONFI @ DEFAULT@ .

The following JCL that adds IDL to the Interface Repository is supplied in
or bi xhl q. DEMSS. O CS. GCBCL. BLD. JCL(S| MPLEREQ) :

/1 JCLLI B ORDER=(or bi xhl g. PROCS)
11 | NCLUDE MEMBER=(CRXVARS)
1+

//* Make the follow ng changes before running this JCL:

/1*

//* 1. Change ' SET DOVAI N=' DEFAULT@ to your configuration
[1* domai n nane.

/1*

/1 SET DOVAl N=' DEFAULT@
[1*

//1DLCBL EXEC CRXI DL,

Il SOURCE=SI MPLE,

/1l | DL=&CRBI X. . DEMS. | OL,
/1l | DLPARME' - R

/11 TDOVAI N DD DSN=&CRBI X. . OONFI G &DOVAI N) , DI SP=SHR

Note: An alternative to using the IFR is to use type information files.
These are an alternative method of providing IDL interface information to
the CICS server adapter. Type information files can be generated as part of
the - nf a plug-in to the IDL compiler. See the CICS Adapters
Administrator’s Guide for more details about how to generate them. The
use of type information files would render this step unnecessary; however,
the use of the IFR is recommended for the purposes of this demonstration.

125

CHAPTER 4 | Getting Started in CICS

Step 5—Obtaining the server The final step is to obtain the IOR that the batch client needs to locate the
adapter IOR CICS server adapter. Before you do this, ensure all of the following:
® The IFR server is running and contains the relevant IDL. See “Step 4—
Adding IDL to Interface Repository” on page 125 for details of how to
start it, if it is not already running.
® The CICS server adapter is running. The supplied JCL in
or bi xhl . JOL(Q C3A) starts the CICS server adapter. See the CICS
Adapters Administrator’s Guide for more details.
® The CICS server adapter mapping member contains the relevant
mapping entries. For the purposes of this example, ensure that the
or bi xhl g. DEMDS. O CS. MFAMAP(S| MPLEA) mapping member is being
used. See the CICS Adapters Administrator’s Guide for details about
CICS server adapter mapping members.

Now submit or bi xhl g. DEMCS. O CS. GCBQL. BLD. JO(SI MPLI OR), to obtain
the IOR that the batch client needs to locate the CICS server adapter. This
JCL includes the r esol ve command, to obtain the IOR. The following is an
example of the SI MPLI R JCL:

/1l JCLLI B GRDER=(or bi xhl g. PROCS)

/1 | NCLUDE MEMBER=(CRXVARS)

/1*

//* Request the ICR for the ACS 'sinple_persistent' server
//* and store it in a PDS for use by the client.

/1*

/1* Make the follow ng changes before running this JCOL:

/1*

/1* 1. Change ' SET DOVAI N=' DEFAULT@ to your configuration
/1* domai n nane.

/1*

Il SET DOVAI N=' DEFAULT@

/1*

/1 REG EXEC PROC=CRXADM N,

/1 PPARMF nfa resol ve Sinple/S nplethject > DD ICR
//1CR DD DSN=&CRBI X. . DEMXB. | CRS(SI MPLE) , DI SP=SHR
// ORBARGS DD *

-CRBnane iona_ utilities.cicsa

/*

/11 TDOVAI N DD DSN=&CRBI X. . CONFI G &DOVAI N), DI SP=SHR

126

Developing the CICS Client

Developing the CICS Client

Overview This section describes the steps you must follow to develop the CICS client
executable for your application. The CICS client developed in this example
will connect to the simple batch server demonstration.

Note: The Orbix IDL compiler does not generate COBOL client stub code.

Steps to develop the client The steps to develop and run the client application are:

Step Action

1 | “Writing the Client” on page 128.

2 | “Building the Client” on page 132.

3 | “Preparing the Client to Run in CICS” on page 133.

127

CHAPTER 4 | Getting Started in CICS

Writing the Client

The client program

Example of the SIMPLECL module

128

The next step is to write the client program, to implement the CICS client.
This example uses the supplied SI MPLEQL client demonstration.

The following is an example of the CICS SI MPLECL module:

Example 9: The CICS SIMPLECL Demonstration (Sheet I of 3)

LR R RS R R R R SRR R EEEEEEEE R EEEEE R EEEEEEEEEEEEEEEEEEEEEEEEEEREE SRS

Copyright (c) 2001-2002 | ONA Technol ogi es PLC.
Al R ghts Reserved.

Description: This is a ACS GCBQL client inplenentation of
the sinple interface.

*
*
*
*
*
*

D R

| DENTI FI CATI ON DI V1 SI O\
PROGRAM | D. SI MPLECL.

ENVI RONVENT DIV S| ON
QONFI GURATI CN SECTI CN
I NPUT- QUTPUT SECTI ON
DATA D'VI SI O\

WRKI NG STCRAGE SECTI ON

CCPY SI MPLE

CCPY CORBA

QCPY WBA CSCL.

01 V& S| MPLE- URL PI CTURE X(27) VALUE

"corbal oc:rir:/S npl ehj ect ".

01 W5 SI MPLE- URL- LENGTH Pl CTURE 9(9) BI NARY
VALUE 27.

01 W& SI MPLE- URL- PTR PA NTER
VALUE NULL.

01 Sl MPLE- S| MPLECBJECT- CBJ PQ NTER
VALUE NULL.

01 ARG LI ST Pl CTURE X(80)
VALUE SPACES.

01 ARG LI ST-LEN Pl CTURE 9(09) Bl NARY
VALUE 0.

Developing the CICS Client

Example 9: The CICS SIMPLECL Demonstration (Sheet 2 of 3)

01 CRB- NAME Pl CTURE X(10)
VALLE "sinpl e_orb".
01 ORB- NAME-LEN Pl CTURE 9(09) BI NARY
VALUE 10.

PROCEDURE DI VI SI ON
0000- MAI NLI NE.
2 CALL " CRBSTAT" USI NG CRBI X- STATUS- | NFCRIVATI ON

* CRBinitialization
D SPLAY “Initializing the CRB".
3 CALL " ORBARGS' USI NG ARG LI ST

ARG LI ST- LEN
CRB- NAME
CRB- NAME- LEN

SET W& CRBARGS TO TRIE

PERFCRM CHECK- STATUS.

* Register interface Sinpleject
Dl SPLAY "Regi stering the Interface”.
4 CALL "CRBREG' USI NG SI MPLE- SI MPLECBJECT- | NTERFACE.
SET W5 CRBREG TO TRUE.
PERFCORM CHECK- STATUS.

* Set the CCBAL pointer to point to the URL string
5 CALL " STRSET" USI NG W&- SI MPLE- URL- PTR
W& SI MPLE- URL- LENGTH
W5- S| MPLE- URL.
SET W5 STRSET TO TRUE.
PERFCRM CHECK- STATUS.
* (btain object reference fromthe url
6 CALL "STRTQBJ" USING W5 S| MPLE- URL- PTR
S| MPLE- S| MPLECBJECT- CBJ.

SET W5 STRTOOBJ TO TRUE
PERFCRM CHECK- STATUS.
* Rel easi ng the nenory
CALL " STRFREE' USI NG W&- SI MPLE- URL- PTR
SET W5 STRFREE TO TRUE.
PERFORM CHECK- STATUS.

SET SI MPLE- S| MPLECBJECT- CALL- ME TO TRUE
Dl SPLAY "invoking Sinple::" S MPLE-SI MPLECBIECT- GPERATI ON

7 CALL " CRBEXEC' USI NG SI MPLE- SI MPLECBJECT- CBJ

129

CHAPTER 4 | Getting Started in CICS

Explanation of the SIMPLECL

module

130

10

11

Example 9: The CICS SIMPLECL Demonstration (Sheet 3 of 3)

SI MPLE- S| MPLECBJECT- CPERATI CN
SI MPLE- SI MPLECBJECT- DCD9- ARGS
SI MPLE- USER- EXCEPTI ONS.

SET W5 CRBEXEC TO TRUE

PERFCRM CGHECK- STATUS

CALL "GBIREL" USING SI MPLE- SI MPLECBIECT- CBJ.
SET W5- CBJREL TO TRUE
PERFCRM GHECK- STATUS.

DI SPLAY "Si npl e deno conpl ete. .

MOVE SPACES TO W5 O CS- MESSAGE

MOVE "Si npl e Transacti on conpl eted" to W5 O CS- MESSAGE.
PERFCRM EXEC- SEND- TEXT THRU EXEG SEND- TEXT- END.

EXEC A CS RETURN END- EXEC

LR E RS R SRR R SRR SRR SRR EEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEE]

* Qutput A CS Message

D R X X

aCPY A ORI TE.

LR EE RS R E R R SRR R EEEEEEEE R EEEEE SRR EEEEEEEEEEEEEEEEEEEEEEEEEEEEEES]

* Check Errors Copybook

LR E RS R E R RS RS SRR SRS EEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEE]

GCPY GKCLA C

The CICS SI MPLECL module can be explained as follows:

1.

V& SI MPLE- URL defines a corbaloc URL string in the corbal oc:rir
format. This string identifies the server with which the client is to
communicate. This string can be passed as a parameter to STRTOBJ,
to allow the client to retrieve an object reference to the server. See
point 6 about STRTOBJ for more details.

CRBSTAT is called to register the ORBI X- STATUS- | NFCRVATI ON block that
is contained in the CCRBA copybook. Registering the

CRBI X- STATUS- | NFCRVATI ON block allows the COBOL runtime to
populate it with exception information, if necessary.

You can use the ORBI X- STATUS- | NFCRVATI ON data item (in the CORBA
copybook) to check the status of any Orbix call. The EXCEPTI ON NUMBER

Location of the SIMPLECL module

10.

11.

Developing the CICS Client

numeric data item is important in this case. If this item is 0, it means
the call was successful. Otherwise, EXCEPTI ON NUMBER holds the
system exception number that occurred. You should test this data item
after any Orbix call.

CRBARGS is called to initialize a connection to the ORB.

CRBREG is called to register the IDL interface with the Orbix COBOL
runtime.

STRSET is called to create an unbounded string to which the stringified
object reference is copied.

STRTQOBI is called to create an object reference to the server object.
This must be done to allow operation invocations on the server. In this
case, the client identifies the target object, using a corbaloc URL string
in the form corbal oc: rir:/Si npl eQvj ect (as defined in point 1). See
“STRTOOBJ” on page 432 for more details of the various forms of
corbaloc URL strings and the ways you can use them.

After the object reference is created, CRBEXEC is called to invoke
operations on the server object represented by that object reference.
You must pass the object reference, the operation name, the argument
description packet, and the user exception buffer. The operation name
must be terminated with a space. The same argument description is
used by the server. For ease of use, string identifiers for operations are
defined in the SI MPLE copybook. For example, see

or bi xhl g. DEMOS. O CS. OCBCL. GCPYLI B(S| MPLE) .

CBIREL is called to ensure that the servant object is released properly.
The EXEC SEND- TEXT paragraph is copied in from the Q OWR TE
copybook and is used to write messages to the CICS terminal. The
client uses this to indicate whether the call was successful or not.

A paragraph that writes messages generated by the demonstrations to
the CICS terminal is copied in from the A ORI TE copybook.

The CICS-translated version of the error-checking routine for system
exceptions generated by the demonstrations is copied in from the
CHKCLA C copybook.

You can find a complete version of the CICS SI MPLECL client module in
or bi xhl g. DEMOS. O CS. QOBCL. SRY(SI MPLEQL) .

131

CHAPTER 4 | Getting Started in CICS

Building the Client

JCL to build the client Sample JCL used to compile and link the client can be found in the third
step of or bi xhl ¢. DEMS. O CS. OCBOL. BLD. JOL(S| MPLECB) .

Resulting load module When the JCL has successfully executed, it results in a load module that is
contained in or bi xhl g. DEMXS. O CS. OQCBOL. LOAD(SI MPLECL) .

132

Developing the CICS Client

Preparing the Client to Run in CICS

Overview This section describes the required steps to allow the client to run in a CICS
region. These steps assume you want to run the CICS client against a batch
server.

Steps The steps to enable the client to run in a CICS region are:

Step Action
1 | Define an APPC transaction definition for CICS.
2 | Provide the CICS client load module to a CICS region.
3 | Start the locator, node daemon, and IFR on the server host.
4 | Add the IDL to the IFR.
5 | Start the batch server.
6 | Customize the batch server IOR.
7 | Configure and run the client adapter.

Step 1—Define transaction A CICS APPC transaction definition must be created for the client, to allow

definition for CICS it to run in CICS. The following is the CICS APPC transaction definition for

the supplied demonstration:

DEFI NE

TRANSACTI O\(SMOL)

GROUP(CRXDEMD)

DESCR PTION(O bix dient S nple denmo transaction)
PROGRAM S| MPLEQL)

PRCFI LE(DFHO CSA)

TRANCLASS(DFHTCL00)

DTl M2UT(10)

SPURGE(YES)

TPURCGE(YES)

RESSEQ(YES)

133

CHAPTER 4 | Getting Started in CICS

Step 2—Provide client load
module to CICS region

Step 3—Start locator, node
daemon, and IFR on server

Step 4—Add IDL to IFR

134

See the supplied or bi xhl g. JCL(ORBI XCSD) for a more detailed example of
how to define the resources that are required to use Orbix with CICS and to
run the supplied demonstrations.

Ensure that the or bi xhl g. DEMS. A CS. GCBQL. LQAD PDS is added to the
DFHRPL for the CICS region that is to run the transaction.

Note: If you have already done this for your CICS server load module, you
do not need to do this again.

Alternatively, you can copy the SI MPLECL load module to a PDS in the
DFHRPL of the relevant CICS region.

This step is assuming that you intend running the CICS client against the
supplied batch demonstration server.

In this case, you must start all of the following on the batch server host (if
they have not already been started):

1. Start the locator daemon by submitting or bi xhl . JOL(LOCATCR) .
2. Start the node daemon by submitting or bi xhl g. JOL(NCDEDAEM) .
3. Start the interface repository by submitting or bi xhl g. JOL(I FR) .

See “Running the Server and Client” on page 46 for more details of running
the locator and node daemon on the batch server host.

The client adapter needs to be able to obtain the IDL for the COBOL server
from the Interface Repository, so that it knows what data types it can expect
to marshal from the CICS APPC transaction, and what data types it should
expect back from the batch server. Ensure that the relevant IDL for the
server has been added to (that is, registered with) the Interface Repository
before the client adapter is started.

To add IDL to the Interface Repository, the Interface Repository must be

running. As explained in “Step 3—Start locator, node daemon, and IFR on
server”, you can use the JCL in or bi xhl gq. JOL(| FR) to start the IFR. The IFR

Step 5—Start batch server

Step 6—Customize batch server
IOR

Developing the CICS Client

uses the Orbix configuration member for its settings. The Interface
Repository uses the configuration settings in the Orbix configuration
member, or bi xhl q. CONFI G DEFAULT@ .

Note: An IDL interface only needs to be registered once with the Interface
Repository.

The following JCL that adds IDL to the Interface Repository is supplied in
or bi xhl g. DEMDS. A CS. 0OBCL. BLD. JCL(S| MPLEREG) :

/1 JOLLI B CRDER=(or bi xhl g. PROCS)
1 | NCLUDE MEMBER=(CRXVARS)
/1%

/1* Make the followi ng changes before running this JC.:

/1*

[1* 1. Change ' SET DOVAI N=' DEFAULT@ to your configuration
/1* donai n narre.

[1*

/1l SET DOVAI N=' DEFAULT@
/1*

//1DLCBL EXEC CRXI DL,

/1l SOURCE=S| MPLE,

/1l | DL=&CRBI X. . DEMOS. | DL,
/1 | DLPARVF' - R

/11 TDOVAI N DD DSN=&CRBI X. . OONFI G &DOVAI N, DI SP=SHR

This step is assuming that you intend running the CICS client against the
demonstration batch server.

Submit the following JCL to start the batch server:
or bi xhl g. DEMDS. CCBCL. RUN JCL(S| MPLESV)

See “Running the Server and Client” on page 46 for more details of running
the locator and node daemon on the batch server host.

When you run the batch server it publishes its IOR to a member called
or bi xhl g. DEMDS. | CRS(SI MPLE) . The CICS client needs to use this IOR to
contact the server.

The demonstration CICS client obtains the object reference for the
demonstration batch server in the form of a corbaloc URL string. A corbaloc
URL string can take different formats. For the purposes of this

135

CHAPTER 4 | Getting Started in CICS

Step 7—Configure and run client
adapter

136

demonstration, it takes the form cor bal oc: rir:/ Si npl eQoj ect . This form of
the corbaloc URL string requires the use of a configuration variable,
initial _references: Si npl ethj ect : ref erence, in the configuration
domain. When you submit the JCL in

or bi xhl g. DEMDS. O CS. OCBCL. BLD. JOL(UPDTQONF) , it automatically adds
this configuration entry to the configuration domain:

initial _references: Sinpl eChj ect:reference = "ICR.";

The IOR value is taken from the or bi xhl g. DEMOS. | CRS(S| MPLE) member.

See “STRTOOBJ” on page 432 for more details of the various forms of
corbaloc URL strings and the ways you can use them.

The client adapter must now be configured before you can start the client as
a CICS transaction. See the CICS Adapters Administrator’s Guide for details
of how to configure the client adapter.

When you have configured the client adapter, you can run it by submitting
or bi xhl g. JOL(MFCLA) .

Running the Demonstrations

Running the Demonstrations

Overview

In this section

This section provides a summary of what you need to do to successfully run

the supplied demonstrations.

This section discusses the following topics:

Running Batch Client against CICS Server

page 138

Running CICS Client against Batch Server

page 139

137

CHAPTER 4 | Getting Started in CICS

Running Batch Client against CICS Server

Overview This subsection describes what you need to do to successfully run the
demonstration batch client against the demonstration CICS server. It also
provides an overview of the output produced.

Steps The steps to run the demonstration CICS server against the demonstration
batch client are:
1. Ensure that all the steps in “Preparing the Server to Run in CICS” on
page 123 have been successfully completed.
2. Run the batch client as described in “Running the Server and Client”
on page 46.

CICS server output The CICS server sends the following output to the CICS region:

Sinpl e::call _me invoked

Batch client output The batch client produces the following output:

Initializing the CRB

Regi stering the Interface

Readi ng obj ect reference fromfile
invoking Sinple::call_me

Si npl e deno conpl et e.

138

Running the Demonstrations

Running CICS Client against Batch Server

Overview This subsection describes what you need to do to successfully run the
demonstration CICS client against the demonstration batch server. It also
provides an overview of the output produced.

Steps The steps to run the demonstration CICS client against the demonstration
batch server are:
1. Ensure that all the steps in “Preparing the Client to Run in CICS” on
page 133 have been successfully completed.
2. Run the CICS client by entering the transaction name, SML, in the
relevant CICS region.

CICS client output The CICS client sends the following output to the CICS region:
Initializing the CRB
Regi stering the Interface
invoking Sinple::call_me
Si npl e deno conpl et e.
The CICS client sends the following output to the CICS terminal:

Si npl e transacti on conpl et ed

Batch server output The batch server produces the following output:

Initializing the CRB

Regi stering the Interface

CGreating the Cbject

Witing object reference to file

Gving control to the ORB to process Requests
Sinpl e::call _me invoked

139

CHAPTER 4 | Getting Started in CICS

140

In this chapter

CHAPTER 5

IDL Interfaces

The CORBA Interface Definition Language (IDL) is used to
describe the interfaces of objects in an enterprise application.
An object’s interface describes that object to potential clients
through its attributes and operations, and their signatures.
This chapter describes IDL semantics and uses.

This chapter discusses the following topics:

IDL page 142
Modules and Name Scoping page 143
Interfaces page 144
IDL Data Types page 161
Defining Data Types page 175

141

CHAPTER 5 | IDL Interfaces

IDL

Overview

IDL standard mappings

Overall structure

IDL definition structure

142

An IDL-defined object can be implemented in any language that IDL maps
to, including C++, Java, COBOL, and PL/I. By encapsulating object
interfaces within a common language, IDL facilitates interaction between
objects regardless of their actual implementation. Writing object interfaces
in IDL is therefore central to achieving the CORBA goal of interoperability
between different languages and platforms.

CORBA defines standard mappings from IDL to several programming
languages, including C++, Java, COBOL, and PL/I. Each IDL mapping
specifies how an IDL interface corresponds to a language-specific
implementation. The Orbix IDL compiler uses these mappings to convert IDL
definitions to language-specific definitions that conform to the semantics of
that language.

You create an application’s IDL definitions within one or more IDL modules.
Each module provides a naming context for the IDL definitions within it.
Modules and interfaces form naming scopes, so identifiers defined inside an
interface need to be unique only within that interface.

In the following example, two interfaces, Bank and Account , are defined
within the BankDeno module:

nmodul e BankDeno

i{nterface Bank {
/...
b
interface Account {
/...
ik
ba

Modules and Name Scoping

Modules and Name Scoping

Resolving a name

Referencing interfaces

Nesting restrictions

To resolve a name, the IDL compiler conducts a search among the following
scopes, in the order outlined:

1. The current interface.
2. Base interfaces of the current interface (if any).

3. The scopes that enclose the current interface.

Interfaces can reference each other by name alone within the same module.
If an interface is referenced from outside its module, its name must be fully
scoped with the following syntax:

nodul e- nare: : i nt er f ace- nane

For example, the fully scoped names of the Bank and Account interfaces
shown in “IDL definition structure” on page 142 are, respectively,
BankDeno: : Bank and BankDeno: : Account .

A module cannot be nested inside a module of the same name. Likewise,
you cannot directly nest an interface inside a module of the same name. To
avoid name ambiguity, you can provide an intervening name scope as
follows:

modul e A

{

nodul e B

{
interface A {
/...

143

CHAPTER 5 | IDL Interfaces

Interfaces

In this section The following topics are discussed in this section:
Interface Contents page 146
Operations page 147
Attributes page 149
Exceptions page 150
Empty Interfaces page 151
Inheritance of Interfaces page 152
Multiple Inheritance page 153

Overview Interfaces are the fundamental abstraction mechanism of CORBA. An

interface defines a type of object, including the operations that object
supports in a distributed enterprise application.

Every CORBA object has exactly one interface. However, the same interface
can be shared by many CORBA objects in a system. CORBA object
references specify CORBA objects (that is, interface instances). Each
reference denotes exactly one object, which provides the only means by
which that object can be accessed for operation invocations.

Because an interface does not expose an object’s implementation, all
members are public. A client can access variables in an object’s
implementation only through an interface’s operations and attributes.

Operations and attributes An IDL interface generally defines an object’s behavior through operations
and attributes:
® Qperations of an interface give clients access to an object’s behavior.
When a client invokes an operation on an object, it sends a message to
that object. The ORB transparently dispatches the call to the object,

144

Account interface IDL sample

Code explanation

Interfaces

whether it is in the same address space as the client, in another
address space on the same machine, or in an address space on a
remote machine.

® An IDL attribute is short-hand for a pair of operations that get and,
optionally, set values in an object.

In the following example, the Account interface in the BankDeno module
describes the objects that implement the bank accounts:

nmodul e BankDeno
{
typedef float CashAmount; // Type for representing cash
typedef string Accountld; //Type for representing account ids
/...
interface Account {
readonly attribute Accountld account_id;
readonly attribute CashAmount bal ance;

voi d
wi t hdraw(i n CashAnount armount)
rai ses (InsufficientFunds);

voi d
deposi t (i n CashAmount anount);

This interface has two readonly attributes, Account I d and bal ance, which
are respectively defined as typedefs of the string and f1 oat types. The
interface also defines two operations, wi t hdraw() and deposit (), which a
client can invoke on this object.

145

CHAPTER 5 | IDL Interfaces

Interface Contents

IDL interface components An IDL interface definition typically has the following components.
® Operation definitions.
¢ Attribute definitions
® Exception definitions.
® Type definitions.
® Constant definitions.

Of these, operations and attributes must be defined within the scope of an
interface, all other components can be defined at a higher scope.

146

Interfaces

Operations

Overview

Operation components

Operations IDL sample

Operations of an interface give clients access to an object’s behavior. When
a client invokes an operation on an object, it sends a message to that object.
The ORB transparently dispatches the call to the object, whether it is in the
same address space as the client, in another address space on the same
machine, or in an address space on a remote machine.

IDL operations define the signature of an object’s function, which client
invocations on that object must use. The signature of an IDL operation is
generally composed of three components:

® Return value data type.
® Parameters and their direction.
® Exception clause.

An operation’s return value and parameters can use any data types that IDL
supports.

Note: Not all CORBA 2.3 IDL data types are supported by COBOL or
PL/I.

In the following example, the Account interface defines two operations,
wi t hdraw() and deposit(), and an | nsuf fi ci ent Funds exception:

nodul e BankDeno

{
typedef float CashAnmount; // Type for representing cash
/...
interface Account {
exception | nsufficientFunds {};
voi d
wi t hdraw(i n CashAmount anount)
rai ses (InsufficientFunds);
voi d
deposi t (i n CashAmount anount);
it
ik

147

CHAPTER 5 | IDL Interfaces

Code explanation

Parameter direction

Parameter-passing mode
qualifiers

One-way operations

148

On each invocation, both operations expect the client to supply an argument
for the amount parameter, and return voi d. Invocations on the wi t hdr aw()
operation can also raise the I nsuf fi ci ent Funds exception, if necessary.

Each parameter specifies the direction in which its arguments are passed
between client and object. Parameter-passing modes clarify operation
definitions and allow the IDL compiler to accurately map operations to a
target programming language. The COBOL runtime uses parameter-passing
modes to determine in which direction or directions it must marshal a
parameter.

There are three parameter-passing mode qualifiers:

in This means that the parameter is initialized only by the
client and is passed to the object.

out This means that the parameter is initialized only by the
object and returned to the client.

i nout This means that the parameter is initialized by the client

and passed to the server; the server can modify the value
before returning it to the client.

In general, you should avoid using i nout parameters. Because an i nout
parameter automatically overwrites its initial value with a new value, its
usage assumes that the caller has no use for the parameter’s original value.
Thus, the caller must make a copy of the parameter in order to retain that
value. By using the two parameters, i n and out , the caller can decide for
itself when to discard the parameter.

By default, IDL operations calls are synchronous—that is, a client invokes

an operation on an object and blocks until the invoked operation returns. If
an operation definition begins with the keyword, oneway, a client that calls
the operation remains unblocked while the object processes the call.

Note: The COBOL runtime does not support one-way operations.

Interfaces

Attributes

Overview

Qualified and unqualified
attributes

IDL readonly attributes sample

Code explanation

An interface’s attributes correspond to the variables that an object
implements. Attributes indicate which variable in an object are accessible to
clients.

Unqualified attributes map to a pair of get and set functions in the
implementation language, which allow client applications to read and write
attribute values. An attribute that is qualified with the r eadonl y keyword
maps only to a get function.

For example the Account interface defines two readonly attributes,

Account | d and bal ance. These attributes represent information about the
account that only the object’s implementation can set; clients are limited to
readonly access:

nmodul e BankDeno
{
typedef float CashAmount; // Type for representing cash
typedef string Accountld; //Type for representing account ids
/...
interface Account {
readonly attribute Accountld account_id;
readonly attribute CashAmount bal ance;

voi d
wi t hdraw(i n CashAnount arnount)
rai ses (InsufficientFunds);

voi d
deposit (i n CashAmount anount);

The Account interface has two readonly attributes, Account 1 d and bal ance,
which are respectively defined as typedefs of the string and 1 oat types.
The interface also defines two operations, wi t hdraw() and deposit(),
which a client can invoke on this object.

149

CHAPTER 5 | IDL Interfaces

Exceptions

IDL and exceptions

The raises clause

Example of IDL-defined
exceptions

150

IDL operations can raise one or more CORBA-defined system exceptions.
You can also define your own exceptions and explicitly specify these in an
IDL operation. An IDL exception is a data structure that can contain one or
more member fields, formatted as follows:

exception exception-name {
[menber;] ...

IE

Exceptions that are defined at module scope are accessible to all operations
within that module; exceptions that are defined at interface scope are
accessible on to operations within that interface.

After you define an exception, you can specify it through a rai ses clause in
any operation that is defined within the same scope. A rai ses clause can
contain multiple comma-delimited exceptions:

return-val operation-name([parans-list])
rai ses(exception-nane[, exception-nane]);

The Account interface defines the I nsuf fi ci ent Funds exception with a
single member of the stri ng data type. This exception is available to any
operation within the interface. The following IDL defines the wi t hdr aw()
operation to raise this exception when the withdrawal fails:

nmodul e BankDeno

{
typedef float CashAmount; // Type for representing cash
/...
interface Account {
exception |InsufficientFunds {};
voi d
wi t hdraw(i n CashAnount armount)
rai ses (InsufficientFunds);
/...
i
b

Interfaces

Empty Interfaces

Defining empty interfaces IDL allows you to define empty interfaces. This can be useful when you wish
to model an abstract base interface that ties together a number of concrete

derived interfaces.

IDL empty interface sample In the following example, the CORBA Port abl eSer ver module defines the
abstract Servant Manager interface, which serves to join the interfaces for
two servant manager types, Servant Acti vat or and Ser vant Locat or :

nodul e Port abl eServer

{
i nterface Servant Manager {};
interface ServantActivator : Servant Manager {
/...
ik
interface ServantLocator : Servant Manager {
/...
it
ik

151

CHAPTER 5 | IDL Interfaces

Inheritance of Interfaces

Inheritance overview

Inheritance interface IDL sample

Code sample explanation

152

An IDL interface can inherit from one or more interfaces. All elements of an
inherited, or base interface, are available to the derived interface. An
interface specifies the base interfaces from which it inherits, as follows:

interface newinterface : base-interface[, base-interface]...

{3

In the following example, the Checki ngAccount and Savi ngsAccount
interfaces inherit from the Account interface, and implicitly include all its
elements:

nodul e BankDeno{
typedef float CashAmount; // Type for representing cash
interface Account {
/...
B

i nterface Checki ngAccount : Account {
readonly attribute CashAmount overdraftLimt;
bool ean or der CheckBook ();

i

interface Savi ngsAccount : Account {
float cal cul atelnterest ();
it
ba

An object that implements the Checki ngAccount interface can accept
invocations on any of its own attributes and operations as well as
invocations on any of the elements of the Account interface. However, the
actual implementation of elements in a Checki ngAccount object can differ
from the implementation of corresponding elements in an Account object.
IDL inheritance only ensures type-compatibility of operations and attributes
between base and derived interfaces.

Interfaces

Multiple Inheritance

Multiple inheritance IDL sample In the following IDL definition, the BankDeno module is expanded to include
the Preni umAccount interface, which inherits from the Checki ngAccount and
Savi ngsAccount interfaces:

nmodul e BankDeno {
interface Account {
/...

}

i nterface Checki ngAccount : Account {
/...

b

i nterface Savi ngsAccount : Account {
/...

IE

i nterface Prem umAccount :
Checki ngAccount, Savi ngsAccount {
/...
ik
ba

Multiple inheritance constraints Multiple inheritance can lead to nhame ambiguity among elements in the
base interfaces. The following constraints apply:
® Names of operations and attributes must be unique across all base
interfaces.
® |fthe base interfaces define constants, types, or exceptions of the same
name, references to those elements must be fully scoped.

Inheritance hierarchy diagram Figure 4 shows the inheritance hierarchy for the Account interface, which is
defined in “Multiple inheritance IDL sample” on page 153.

153

CHAPTER 5 | IDL Interfaces

| Account |

A

Checki ngAccount | Savi ngsAccount

A

Pr em unAccount

Figure 4: Inheritance Hierarchy for PremiumAccount Interface

154

Interfaces

Inheritance of the Object Interface

User-defined interfaces All user-defined interfaces implicitly inherit the predefined interface oj ect .
Thus, all (oj ect operations can be invoked on any user-defined interface.
You can also use (oj ect as an attribute or parameter type to indicate that
any interface type is valid for the attribute or parameter.

Object locator IDL sample For example, the following operation get AnyQbj ect () serves as an
all-purpose object locator:

interface bjectlLocator {
voi d get Any(hj ect (out Cbject obj);
b

Note: Itis illegal in IDL syntax to explicitly inherit the (oj ect interface.

155

CHAPTER 5 | IDL Interfaces

Inheritance Redefinition

Overview A derived interface can modify the definitions of constants, types, and
exceptions that it inherits from a base interface. All other components that
are inherited from a base interface cannot be changed.

Inheritance redefinition IDL In the following example, the Checki ngAccount interface maodifies the
sample definition of the I nsuf fi ci ent Funds exception, which it inherits from the
Account interface:

nodul e BankDeno

{
typedef float CashAnmount; // Type for representing cash
/...
interface Account {
exception |InsufficientFunds {};
/...
ik
i nterface Checki ngAccount : Account {
exception |nsufficientFunds {
CashAmount overdraftLinit;
b
IE
/..
ba

Note: While a derived interface definition cannot override base operations
or attributes, operation overloading is permitted in interface
implementations for those languages, such as C++, which support it.
However, COBOL does not support operation overloading.

156

Interfaces

Forward Declaration of IDL Interfaces

Overview

Forward declaration IDL sample

An IDL interface must be declared before another interface can reference it.
If two interfaces reference each other, the module must contain a forward
declaration for one of them; otherwise, the IDL compiler reports an error. A
forward declaration only declares the interface’s name; the interface’s actual
definition is deferred until later in the module.

In the following example, the Bank interface defines a creat e_account ()
and find_account () operation, both of which return references to Account
objects. Because the Bank interface precedes the definition of the Account
interface, Account is forward-declared:

nodul e BankDeno

{
typedef float CashAnount; // Type for representing cash
typedef string Accountld; //Type for representing account ids
/1 Forward decl aration of Account
interface Account;
/1 Bank interface...used to create Accounts
interface Bank {
exception Account Al readyExi sts { Accountld account_id; };
except i on Account Not Found { Accountld account_id; };
Account
find_account (i n Accountld account _id)
rai ses(Account Not Found) ;
Account
create_account (
in Accountld account _id,
in CashAmount initial_bal ance
) raises (AccountAl readyExists);
it
/1 Account interface.used to deposit, wthdraw, and query
/] avail abl e funds.
interface Account { //...
ik
b

157

CHAPTER 5 | IDL Interfaces

Local Interfaces

Overview An interface declaration that contains the IDL | ocal keyword defines a local
interface. An interface declaration that omits this keyword can be referred to
as an unconstrained interface, to distinguish it from local interfaces. An
object that implements a local interface is a local object.

Note: The COBOL runtime and the Orbix IDL compiler backend for
COBOL do not support local interfaces.

158

Interfaces

Valuetypes

Overview Valuetypes enable programs to pass objects by value across a distributed
system. This type is especially useful for encapsulating lightweight data
such as linked lists, graphs, and dates.

Note: The COBOL runtime and the Orbix IDL compiler backend for
COBOL do not support valuetypes.

159

CHAPTER 5 | IDL Interfaces

Abstract Interfaces

Overview An application can use abstract interfaces to determine at runtime whether
an object is passed by reference or by value.

Note: The COBOL runtime and the Orbix IDL compiler backend for
COBOL do not support abstract interfaces.

160

IDL Data Types

IDL Data Types

In this section

Data type categories

The following topics are discussed in this section:

Built-in Data Types page 162
Extended Built-in Data Types page 164
Complex Data Types page 167
Enum Data Type page 168
Struct Data Type page 169
Union Data Type page 170
Arrays page 172
Sequence page 173
Pseudo Object Types page 174

In addition to IDL module, interface, valuetype, and exception types, IDL

data types can be grouped into the following categories:

® Built-in types such as short, I ong, and fl oat .

¢ Extended built-in types such as | ong | ong and wstri ng.
® Complex types such as enum struct, and string.

® Pseudo objects.

Note: Not all CORBA 2.3 IDL data types are supported by COBOL or

PL/I.

161

CHAPTER 5 | IDL Interfaces

Built-in Data Types

List of types, sizes, and values

Floating point types

162

Table 15 shows a list of CORBA IDL built-in data types (where the < symbol
means ’less than or equal to’).

Table 15: Built-in IDL Data Types, Sizes, and Values

Data type Size Range of values

short < 16 bits 215 2151

unsigned short < 16 bits 0..216.1

long < 32 bits —231 2311

unsigned long < 32 bits 0..232.1

float < 32 bits IEEE single-precision floating
point numbers

double < 64 bits IEEE double-precision
floating point numbers

char < 8 bits ISO Latin-1

string Variable length ISO Latin-1, except NUL

string<bound>

Variable length

ISO Latin-1, except NUL

boolean Unspecified TRUE or FALSE
octet < 8 bits 0x0 to Oxff
any Variable length Universal container type

The float and double types follow IEEE specifications for single-precision
and double-precision floating point values, and on most platforms map to
native IEEE floating point types.

Char type

String type

Bounded and unbounded strings

Octet type

Any type

IDL Data Types

The char type can hold any value from the ISO Latin-1 character set. Code
positions 0-127 are identical to ASCII. Code positions 128-255 are
reserved for special characters in various European languages, such as
accented vowels.

The string type can hold any character from the ISO Latin-1 character set,
except NUL. IDL prohibits embedded NUL characters in strings. Unbounded
string lengths are generally constrained only by memory limitations. A
bounded string, such as st ri ng<10>, can hold only the number of
characters specified by the bounds, excluding the terminating NUL character.
Thus, a st ri ng<6> can contain the six-character string, cheese.

The declaration statement can optionally specify the string’s maximum
length, thereby determining whether the string is bounded or unbounded:

string[length] name

For example, the following code declares the Short Stri ng type, which is a
bounded string with a maximum length of 10 characters:

typedef string<10> ShortString;
attribute ShortString shortNane; // max length is 10 chars

Qct et types are guaranteed not to undergo any conversions in transit. This
lets you safely transmit binary data between different address spaces. Avoid
using the char type for binary data, inasmuch as characters might be
subject to translation during transmission. For example, if a client that uses
ASCII sends a string to a server that uses EBCDIC, the sender and receiver
are liable to have different binary values for the string’s characters.

The any type allows specification of values that express any IDL type, which
is determined at runtime; thereby allowing a program to handle values
whose types are not known at compile time. An any logically contains a
TypeCode and a value that is described by the TypeCode. A client or server
can construct an any to contain an arbitrary type of value and then pass this
call in a call to the operation. A process receiving an any must determine
what type of value it stores and then extract the value via the TypeCode.
Refer to the CORBA Programmer’s Guide, C++ for more details about the

any type.

163

CHAPTER 5 | IDL Interfaces

Extended Built-in Data Types

List of types, sizes, and values

Long long type

164

Table 16 shows a list of CORBA IDL extended built-in data types (where the
< symbol means ’'less than or equal to’).

Table 16: Extended built-in IDL Data Types, Sizes, and Values

Data Type Size Range of Values
long long? < 64 bits 263 2631
unsigned long long? < 64 bits 0..-204.1
long doubleP < 79 bits IEEE double-extended

floating point number, with
an exponent of at least 15
bits in length and signed
fraction of at least 64 bits.
The I ong doubl e type is
currently not supported on

Windows NT.
wchar Unspecified Arbitrary codesets
wstring Variable Arbitrary codesets
length
fixed® Unspecified < 31significant digits

a. Due to compiler restrictions, the COBOL range of values for the | ong | ong
and unsi39ned I ong | ong types is the same range as for a | ong type (that
is, 0...2°-1).

b. Due to compiler restrictions, the COBOL range of values for the | ong doubl e
type is the same range as for a double type (that is, < 64 bits).

c. Due to compiler restrictions, the COBOL range of values for the fixed type is
< 18 significant digits.

The 64-bit integer types, | ong | ong and unsi gned | ong | ong, support
numbers that are too large for 32-bit integers. Platform support varies. If
you compile IDL that contains one of these types on a platform that does not
support it, the compiler issues an error.

Long double type

Wchar type

Wstring type

Fixed type

IDL Data Types

Like 64-bit integer types, platform support varies for the 1 ong doubl e type,
so usage can yield IDL compiler errors.

The wchar type encodes wide characters from any character set. The size of
a wchar is platform-dependent. Because Orbix currently does not support
character set negotiation, use this type only for applications that are
distributed across the same platform.

The wst ri ng type is the wide-character equivalent of the stri ng type. Like
string types, wstring types can be unbounded or bounded. Wide strings
can contain any character except NUL.

IDL specifies that the fi xed type provides fixed-point arithmetic values with
up to 31 significant digits. However, due to restrictions in the COBOL
compiler for 0S/390, only up to 18 significant digits are supported.

You specify a fi xed type with the following format:
typedef fixed<digit-size,scal e> name

The format for the fixed type can be explained as follows:

® Thedigit-size represents the number's length in digits. The
maximum value for di gi t-si ze is 31 and it must be greater than
scal e. A fixed type can hold any value up to the maximum value of a
doubl e type.

® If scal e is a positive integer, it specifies where to place the decimal
point relative to the rightmost digit. For example, the following code
declares a fixed type, CashAmount , to have a digit size of 10 and a
scale of 2:

typedef fixed<10, 2> CashAnount;

Given this typedef, any variable of the CashAnount type can contain
values of up to (+/-)99999999.99.

165

CHAPTER 5 | IDL Interfaces

Constant fixed types

Fixed type and decimal fractions

166

® If scal e is a negative integer, the decimal point moves to the right by
the number of digits specified for scal e, thereby adding trailing zeros
to the fixed data type’s value. For example, the following code declares
a fixed type, bi gh\um to have a digit size of 3 and a scale of - 4:

typedef fixed <3,-4> bi g\Num
bi gNum nyBi gNum

If nyBi gNumhas a value of 123, its numeric value resolves to 1230000.
Definitions of this sort allow you to efficiently store numbers with
trailing zeros.

Constant fixed types can also be declared in IDL, where di gi t - si ze and
scal e are automatically calculated from the constant value. For example:

module Grcle {
const fixed pi = 3.142857;
ik

This yields a fixed type with a digit size of 7, and a scale of 6.

Unlike IEEE floating-point values, the fi xed type is not subject to
representational errors. IEEE floating point values are liable to inaccurately
represent decimal fractions unless the value is a fractional power of 2. For
example, the decimal value 0.1 cannot be represented exactly in IEEE
format. Over a series of computations with floating-point values, the
cumulative effect of this imprecision can eventually yield inaccurate results.

The fi xed type is especially useful in calculations that cannot tolerate any
imprecision, such as computations of monetary values.

IDL Data Types

Complex Data Types

IDL complex data types

IDL provide the following complex data types:

Enums.

Structs.

Multi-dimensional fixed-sized arrays.
Sequences.

167

CHAPTER 5 | IDL Interfaces

Enum Data Type

Overview

Enum IDL sample

Ordinal values of enum type

168

An enum (enumerated) type lets you assign identifiers to the members of a
set of values.

For example, you can modify the BankDeno IDL with the bal anceCur r ency
enum type:

nodul e BankDeno {
enum Qurrency {pound, dollar, yen, franc};

interface Account {
readonly attribute CashAnount bal ance;
readonly attribute Qurrency bal anceCurrency;
/...

IE

In the preceding example, the bal anceCur rency attribute in the Account
interface can take any one of the values pound, dollar, yen, orfranc.

The ordinal values of an enum type vary according to the language
implementation. The CORBA specification only guarantees that the ordinal
values of enumerated types monotonically increase from left to right. Thus,
in the previous example, dol | ar is greater than pound, yen is greater than
dol I ar, and so on. All enumerators are mapped to a 32-bit type.

IDL Data Types

Struct Data Type

Overview

Struct IDL sample

A struct type lets you package a set of named members of various types.

In the following example, the Qust oner Det ai | s struct has several members.
The get Qust omer Det ai | s() operation returns a struct of the
Cust orer Det ai | s type, which contains customer data:

nodul e BankDeno{

struct QustonerDetails {
string custlD,
string | nare;
string fnare;
short age;
/...

IiE

interface Bank {
Qust orrer Det ai | s get Qust orer Det ai | s
(in string custlD);
/...

i
Note: A struct type must include at least one member. Because a struct

provides a naming scope, member names must be unique only within the
enclosing structure.

169

CHAPTER 5 | IDL Interfaces

Union Data Type

Overview

Union declaration syntax

Discriminated unions

IDL union date sample

170

A union type lets you define a structure that can contain only one of several
alternative members at any given time. A union type saves space in
memory, because the amount of storage required for a union is the amount
necessary to store its largest member.

You declare a union type with the following syntax:

uni on nane switch (discrimnator) {
case | abel 1 : el enent - spec;
case | abel 2 : el enent - spec;
[-1
case | abel n : el enent - spec;
[default : el enent-spec;]

All IDL unions are discriminated. A discriminated union associates a
constant expression (I abel 1.1 abel n) with each member. The
discriminator’s value determines which of the members is active and stores
the union’s value.

The following IDL defines a Dat e union type, which is discriminated by an
enum value:

enum dat eSt or age
{ nuneric, strMDDYY, strDDMWY };

struct DateStructure {
short Day;
short Mont h;
short Year;

IE

union Date sw tch (dateStorage) {
case nuneric: long digital Fornat;
case strMDDYY:
case strDDMWY: string stringFornat;
defaul t: DateStructure structFornat;

Sample explanation

Rules for union types

IDL Data Types

Given the preceding IDL:

If the discriminator value for Dat e is numeric, the di gi t al For mat
member is active.

If the discriminator’s value is st r MVDDYY or st r DDMWY, the
stringFor mat member is active.

If neither of the preceding two conditions apply, the default

st ruct For mat member is active.

The following rules apply to union types:

A union’s discriminator can be i nt eger, char, bool ean or enum or an
alias of one of these types; all case label expressions must be
compatible with the relevant type.

Because a union provides a naming scope, member names must be
unique only within the enclosing union.

Each union contains a pair of values: the discriminator value and the
active member.

IDL unions allow multiple case labels for a single member. In the
previous example, the st ri ngFor mat member is active when the
discriminator is either st r MVDDYY or st r DDMYY.

IDL unions can optionally contain a def aul t case label. The
corresponding member is active if the discriminator value does not
correspond to any other label.

171

CHAPTER 5 | IDL Interfaces

Arrays

Overview

Array IDL sample

Array indexes

172

IDL supports multi-dimensional fixed-size arrays of any IDL data type, with
the following syntax (where di mensi on- spec must be a non-zero positive
constant integer expression):

[typedef] el ement-type array-nane [di nension-spec] ...

IDL does not allow open arrays. However, you can achieve equivalent
functionality with sequence types.

For example, the following piece of code defines a two-dimensional array of
bank accounts within a portfolio:

typedef Account portfoli o[MAX_ACCT_TYPES] [MAX_ACCTS]

Note: For an array to be used as a parameter, an attribute, or a return
value, the array must be named by a typedef declaration. You can omit a
typedef declaration only for an array that is declared within a structure
definition.

Because of differences between implementation languages, IDL does not
specify the origin at which arrays are indexed. For example, C and C+ +
array indexes always start at O, while COBOL, PL/I, and Pascal use an origin
of 1. Consequently, clients and servers cannot exchange array indexes
unless they both agree on the origin of array indexes and make adjustments
as appropriate for their respective implementation languages. Usually, it is
easier to exchange the array element itself instead of its index.

IDL Data Types

Sequence

Overview

Bounded and unbounded
sequences

Bounded and unbounded IDL
definitions

IDL supports sequences of any IDL data type with the following syntax:
[typedef] sequence < el ement-type[, max-elements] > sequence- name

An IDL sequence is similar to a one-dimensional array of elements;
however, its length varies according to its actual number of elements, so it
uses memory more efficiently.

For a sequence to be used as a parameter, an attribute, or a return value,
the sequence must be named by a typedef declaration, to be used as a
parameter, an attribute, or a return value. You can omit a typedef
declaration only for a sequence that is declared within a structure definition.

A sequence’s element type can be of any type, including another sequence
type. This feature is often used to model trees.

The maximum length of a sequence can be fixed (bounded) or unfixed

(unbounded):

® Unbounded sequences can hold any number of elements, up to the
memory limits of your platform.

® Bounded sequences can hold any number of elements, up to the limit
specified by the bound.

The following code shows how to declare bounded and unbounded
sequences as members of an IDL struct:

struct LimtedAccounts {
string bankSort Code<10>;
sequence<Account, 50> accounts; // nmax sequence length is 50

%

struct UnlimtedAccounts {
string bankSort Code<10>;
sequence<Account > accounts; // no max sequence | ength

IE

173

CHAPTER 5 | IDL Interfaces

Pseudo Object Types

Overview CORBA defines a set of pseudo-object types that ORB implementations use
when mapping IDL to a programming language. These object types have
interfaces defined in IDL; however, these object types do not have to follow
the normal IDL mapping rules for interfaces and they are not generally
available in your IDL specifications.

Note: The COBOL runtime and the Orbix IDL compiler backend for
COBOL do not support all pseudo object types.

174

Defining Data Types

Defining Data Types

In this section This section contains the following subsections:
Constants page 176
Constant Expressions page 179
Using typedef With t ypedef , you can define more meaningful or simpler names for existing

data types, regardless of whether those types are IDL-defined or
user-defined.

Typedef identifier IDL sample The following code defines the t ypedef identifier, St andar dAccount , so that
it can act as an alias for the Account type in later IDL definitions:
nodul e BankDeno {
interface Account {
/...
IE

t ypedef Account StandardAccount;

175

CHAPTER 5 | IDL Interfaces

Constants

Overview

Integer constants

Floating-point constants

Character and string constants

176

IDL lets you define constants of all built-in types except the any type. To
define a constant’s value, you can use either another constant (or constant
expression) or a literal. You can use a constant wherever a literal is
permitted.

IDL accepts integer literals in decimal, octal, or hexadecimal:

const short 11 =-99;

const |ong 12 = 0123; // Cctal 123, decimal 83

const long long |3 = 0x123; // Hexadeci mal 123, decimal 291
const long long |14 = +OxaB; // Hexadeci mal ab, deci mal 171

Both unary plus and unary minus are legal.

Floating-point literals use the same syntax as C++:

const fl oat fl1=3.1e-9; // Integer part, fraction part,
I/ exponent

const doubl e f2 =-3.14; // Integer part and fraction part

const long double f3 = .1 I/ Fraction part only

const doubl e fa=1 I/ Integer part only

1
E.
N

const doubl e f5 /1 Fraction part and exponent
const doubl e f6 = 2E12 I/ Integer part and exponent

Character constants use the same escape sequences as C++:

Example 10: List of character constants (Sheet 1 of 2)

const char ClL ='c'; // the character c

const char @ = '\007"; // ASA| BEL, octal escape
const char CG3 = '\x41"; /1 ASA1l A hex escape
const char ¢G4 ='\n'; /1 new ine

const char G5 = "\t"'; /1 tab

const char G = "'\Vv'; Il vertical tab

const char C7 = '\b'; I/ backspace

const char G = '\r'; I/ carriage return

const char @ = "\f'; // formfeed

const char Cl0 = '\a'; /1 alert

Wide character and string
constants

Boolean constants

Octet constants

Defining Data Types

Example 10: List of character constants (Sheet 2 of 2)

const char C11 = "\\'; /'l backsl ash

const char C12 = '\?'; /1 question nark

const char C13 = "\'"; // single quote

// String constants support the same escape sequences as G+
const string S1 = "Quote: \""; /] string with doubl e quote
const string S2 = "hello world"; [/ sinple string

const string S3 = "hello" " world"; // concatenate

const string $4 = "\xA' "B'; Il two characters

/Il ("\xA and 'B),
/1 not the single character '\ xAB

Wide character and string constants use C++ syntax. Use universal
character codes to represent arbitrary characters. For example:

const wchar C=1LX;
const wstring GREETING = L"Hel | 0";
const wchar OMEGA = L'\ u03a9';

const wstring QVEGA STR = L"Qmrega: \u3A9";

IDL files always use the ISO Latin-1 code set; they cannot use Unicode or
other extended character sets.

Boolean constants use the FALSE and TRUE keywords. Their use is
unnecessary, inasmuch as they create unnecessary aliases:

/1 There is no need to define bool ean constants:
const CONTRADI CTI ON = FALSE; /1 Pointless and confusi ng
const TAUTALGGY = TRUE /1 Pointless and conf usi ng

Octet constants are positive integers in the range 0-255.

const octet Ol = 23;
const octet @ = OxfO;

Octet constants were added with CORBA 2.3; therefore, ORBs that are not
compliant with this specification might not support them.

177

CHAPTER 5 | IDL Interfaces

Fixed-point constants

Enumeration constants

178

For fixed-point constants, you do not explicitly specify the digits and scale.
Instead, they are inferred from the initializer. The initializer must end in d or
D. For example:

/1 Fixed point constants take digits and scale fromthe
/] initializer:

const fixed vall = 3D, /1 fixed<l, 0>
const fixed val 2 = 03. 14d; /'l fixed<3, 2>
const fixed val3 = -03000.00D, // fixed<4, 0>
const fixed val4 = 0.03D, /1 fixed<3, 2>

The type of a fixed-point constant is determined after removing leading and
trailing zeros. The remaining digits are counted to determine the digits and
scale. The decimal point is optional.

Currently, there is no way to control the scale of a constant if it ends in
trailing zeros.

Enumeration constants must be initialized with the scoped or unscoped
name of an enumerator that is a member of the type of the enumeration. For
example:

enum Size { snall, nmedium large }

const Size DFL_SI ZE = medi um
const Size MAX_SIZE = ::large;

Enumeration constants were added with CORBA 2.3; therefore, ORBs that
are not compliant with this specification might not support them.

Defining Data Types

Constant Expressions

Overview

Arithmetic operators

Evaluating expressions for
arithmetic operators

Bitwise operators

IDL provides a number of arithmetic and bitwise operators. The arithmetic
operators have the usual meaning and apply to integral, floating-point, and
fixed-point types (except for % which requires integral operands). However,
these operators do not support mixed-mode arithmetic: you cannot, for
example, add an integral value to a floating-point value.

The following code contains several examples of arithmetic operators:

/1l You can use arithnetic expressions to define constants.
const long MN = -10;

const |ong MAX = 30;

const long DFLT = (MN + MAX) / 2;

// Can't use 2 here
const double TWCE Pl = 3.1415926 * 2.0;

/1 5% di scount
const fixed D SCOUNT = 0. 05D
const fixed PR CE = 99. 99D,

// Can't use 1 here
const fixed NET PRCE = PRCE * (1.0D - D SOOUNT);

Expressions are evaluated using the type promotion rules of C++. The
result is coerced back into the target type. The behavior for overflow is
undefined, so do not rely on it. Fixed-point expressions are evaluated
internally with 31 bits of precision, and results are truncated to 15 digits.

Bitwise operators only apply to integral types. The right-hand operand must
be in the range 0-63. The right-shift operator, >>, is guaranteed to insert
zeros on the left, regardless of whether the left-hand operand is signed or
unsigned.

// You can use bitw se operators to define constants.
const long ALL ONES = -1; [l Oxffffffff
const long LHWNASK = ALL_ONES << 16; /1 Oxffff0000
const long RHAWNASK = ALL_ONES >> 16; /1 Ox0000f f f f

179

CHAPTER 5 | IDL Interfaces

IDL guarantees two’s complement binary representation of values.

Precedence The precedence for operators follows the rules for C++. You can override
the default precedence by adding parentheses.

180

CHAPTER 6

IDL-to-COBOL
Mapping

The CORBA Interface Definition Language (IDL) is used to

define interfaces that are exposed by servers in your network.
This chapter describes the standard IDL-to-COBOL mapping
rules and shows, by example, how each IDL type is represented

in COBOL.
In this chapter This chapter discusses the following topics:
Mapping for Identifier Names page 183
Mapping for Type Names page 187
Mapping for Basic Types page 188
Mapping for Boolean Type page 193
Mapping for Enum Type page 196
Mapping for Char Type page 198
Mapping for Octet Type page 199
Mapping for String Types page 200
Mapping for Wide String Types page 205

181

CHAPTER 6 | IDL-to-COBOL Mapping

Mapping for Fixed Type page 206
Mapping for Struct Type page 210
Mapping for Union Type page 212
Mapping for Sequence Types page 217
Mapping for Array Type page 222
Mapping for the Any Type page 224
Mapping for User Exception Type page 226
Mapping for Typedefs page 229
Mapping for the Object Type page 232
Mapping for Constant Types page 233
Mapping for Operations page 236
Mapping for Attributes page 241
Mapping for Operations with a Void Return Type and No Parameters
page 246

Mapping for Inherited Interfaces page 248
Mapping for Multiple Interfaces page 255

Note: See “IDL Interfaces” on page 141 for more details of the IDL types
discussed in this chapter.

182

Mapping for Identifier Names

Mapping for Identifier Names

Overview This section describes how IDL identifier names are mapped to COBOL.

COBOL rules for identifiers The following rules apply for COBOL identifiers:
® They can be a maximum of 30 characters in length.
® They can only consist of alphanumeric and hyphen characters.

IDL-to-COBOL mapping rules The following rules are used to convert an IDL identifier to COBOL:
for identifiers ® Replace each underscore with a hyphen.
® Remove any leading or trailing hyphens.
® If an identifier clashes with a reserved COBOL word, prefix it with the
characters 1 DL-. For example, procedur e maps to | DL- PROCEDURE,
st op maps to I DL- STCP, and resul t maps to | DL- RESULT.
In this case, PROCEDURE and STCP are COBOL-reserved words, and
RESWLT is reserved by the Orbix IDL compiler for operation return types.
The IDL compiler supports the COBOL-reserved words that pertain to
the Enterprise COBOL compiler and IBM 0S/390 compiler.
® |If an identifier is greater than 30 characters, truncate it to 30
characters, by using the first 25 characters followed by a hyphen
followed by a unique alphanumeric four-character suffix.

Example The example can be broken down as follows:
1. Consider the following IDL:

nodul e anodul e {

{
interface exanpl e
{
attribute bool ean nyveryl ongattri bute;
bool ean nyveryl ongopnane(i n bool ean
nyver yl ongbool ean) ;
B
}il

183

CHAPTER 6 | IDL-to-COBOL Mapping

2. The preceding IDL maps to the following COBOL:

LRSS S SRS S SRS S SR SRS SRR RS E SRR E R R SRR EEEEEEEEEEEEE]

* |Interface:

* anodul e/ exanpl e
*

* Mapped narre:

* anodul e- exanpl e

* Inherits interfaces:

* (none)
LRSS S SRS S S S S SRS RS SRR RS S S SRR E R R SRR EEEEEEEEEEEEES

LR EEE SRR EEE SRS EEE]

* Attribute: nyveryl ongattri bute
* Mapped nane: nyverylongattribute
* Type: bool ean (read/ wite)

LEEEEEEEEE R EE RS EEE]

01 AMIDULE- EXAMPLE- MYVE- 5905- ARGS.

03 RESULT Pl CTURE 9(01)
Bl NARY.
88 RESULT- FALSE VALLE 0.
88 RESULT- TRUE VALLE 1.
LEEEE R R EE R EEE RS EEEEEEEEEEEEEEEEEEEEEEEEEEEREEEEEEEEEEEEEE]
* (peration: nyver yl ongopnane
* Mapped nane: nyver yl ongopnane
* Argunent s: <i n> bool ean nyveryl ongbool ean
* Returns: bool ean

* User Exceptions: none

LR EEE R R EE R EEE RS EEE]

01 AMIDULE- EXAVPLE- MYVE- EAB7- ARGS.

03 MYVERYLONGBOCLEAN PI CTURE 9(01)
Bl NARY.
88 MYVERYLONGBOCLEAN- FALSE VALUE 0.
88 MYVERYLCONGBOCLEAN- TRUE VALLE 1.
03 RESULT Pl CTURE 9(01)
Bl NARY.
88 RESULT- FALSE VALLE 0.
88 RESULT- TRUE VALLE 1.

Note: See “-M Argument” on page 274 and “-O Argument” on page 281
for details of the arguments that you can use with the Orbix IDL compiler
to create alternative COBOL identifiers.

184

IDL identifier naming restriction

Mapping for Identifier Names

Consider the following example that has a 05 level data item called
M- STRINGand a 07 level data item also called M- STR NG

01 MVRLD.
03 M- GROLP.
05 M- STRI NG Pl CTURE X(10).
05 M- VALUES.
07 MY-LONG PI CTURE 9(09) BI NARY.
07 MY-STR NG Pl CTURE X(10).

The IBM 0S/390 compiler does not handle the scenario shown in the
preceding example where two data names of the same name (My- STR NG
under the same 01 level are referenced, and the immediate parent of the
highest level of these two data names (MYGROUP) is included in the path of
the lower level data name (My- STRING OF MWY- VALUES OF MW- GROP CF
MYWRLD).

The following example illustrates how this restriction can manifest
itself. First, consider the following IDL:

//sanpl e.idl
interface sanple
{
struct d nBum {
short int_div_id;
It
{
typedef sequence<d nBum 30> O nBungeq;
struct Mend nisp {
string nore_data sw
short int_div_id;
d nBunteg Mend nii st ;
h
short get Sunmary(out Mend nRsp Mend ai nii st);

185

CHAPTER 6 | IDL-to-COBOL Mapping

In the preceding IDL example there are two structures that both use the
same IDL field name, and one structure embeds the other. The IDL compiler
generates the following data names in the main copybook for this IDL:

01 SANPLE- GETSUMMARY- ARGS.
03 MEMCLAI MLI ST.
05 MORE- DATA- SW POl NTER VALUE NULL.
05 | NT-DI V-1 D Pl CTURE S9(05) Bl NARY.
05 MEMCLMLI ST-1 OOCURS 30 TI MES.
07 MEMCLMLI ST.
09 INT-DI V-1D Pl CTURE S9(05) Bl NARY.
05 MEMOLMLI ST- SEQUENCE.
07 SEQUENCE- M&XI MUM Pl CTURE 9(09) BI NARY VALUE 30.
07 SEQUENCE- LENGTH PI CTURE 9(09) Bl NARY VALLE 0.
07 SEQUENCE- BUFFER POl NTER VALUE NULL.
07 SEQUENCE- TYPE POl NTER VALUE NULL.
03 RESULT Pl CTURE S9(05) B NARY.

In the preceding COBOL example, the data name I NT- Dl V- | D appears
twice. When this is referenced in the COBOL application, it results in the
following error at application compile time:

I GYPS0037-S INT-DI V-1 D was not a uniquely defined nanme. The
definition to be used could not be determned fromthe
context. The reference to the nane was di scarded.

The only solutions available in such cases is to change either the conflicting
identifier names in your generated COBOL copybooks or the original IDL
itself, so that a clash does not occur at application compile time.

186

Mapping for Type Names

Mapping for Type Names

Overview

IDL-to-COBOL mapping for type
names

This section describes how IDL type names are mapped to COBOL.

The current CORBA OMG COBOL mapping is based on the use of typedefs
for naming some IDL types. Typedefs are a non-standard extension to the
COBOL-85 standard. The IBM COBOL compiler for 0S/390 & VM version 2
release 1 does not support this extension.

The CORBA COBOL mapping standard includes a recent addition that
proposes the use of GCPY ... REPLAQ NG syntax instead of typedefs for type
definitions. IONA currently uses the COBOL representation of each type
directly.

187

CHAPTER 6 | IDL-to-COBOL Mapping

Mapping for Basic Types

Overview

IDL-to-COBOL mapping
for basic types

188

This section describes how basic IDL types are mapped to COBOL.

Table 17 shows the mapping rules for basic IDL types. Types not currently
supported by Orbix COBOL are denoted by italic text. The CORBA typedef
name is provided for reference purposes only; the COBOL representation is

used directly.

Table 17: Mapping for Basic IDL Types (Sheet 1 of 2)

IDL Type CORBA Typedef Name CcoBOL
Representation
short CORBA-short PIC S9(05) BINARY
long CORBA-long PIC S9(10) BINARY

unsigned short

CORBA-unsigned-short

PIC 9(05) BINARY

unsigned long

CORBA-unsigned-long

PIC 9(10) BINARY

float CORBA-float COMP-1

double CORBA-double COMP-2

char CORBA-char PIC X

boolean CORBA-boolean PIC 9(01) BINARY

octet CORBA-octet PIC X

enum CORBA-enum PIC 9(10) BINARY

fixed<d,s> Fixed<d,s> PIC S9(d-s)v(s)
PACKED-DECIMAL

fixed<d,-s> Fixed<d,-s> PIC S9(d)P(s)

PACKED-DECIMAL

Mapping for Basic Types

Table 17: Mapping for Basic IDL Types (Sheet 2 of 2)

IDL Type CORBA Typedef Name COBOL
Representation
any CORBA-any Refer to “Mapping
for the Any Type”
on page 224.
long long CORBA-long-long PIC S9(18) BINARY
unsigned long CORBA-unsigned-long-long PIC 9(18) BINARY
long
wchar CORBA-wchar PIC G
Example The example can be broken down as follows:

1. Consider the following IDL:

const float ny outer_float = 19.76;
const doubl e ny_out er _doubl e = 123456. 789;

interface exanpl e

{
const short ny_short = 24;
const long ny_long = 9999;
typedef fixed<b, 2> a fixed 5 2;
attribute short nyshort;
attribute | ong nyl ong;
attribute unsigned short nyushort;
attribute unsigned | ong nyul ong;
attribute float nyfloat;
attri bute doubl e nydoubl e;
attribute char nychar;
attribute octet nyoctet;
attribute a fixed 5 2 nyfixed_5_2;
attribute | ong | ong nyl ongl ong;
attribute unsigned |ong | ong ul ongl ong;

}

2. The preceding IDL maps to the following COBOL:

189

CHAPTER 6 | IDL-to-COBOL Mapping

Example 11: COBOL Example for Basic Types (Sheet 1 of 3)

LRSS S SRS S S SRS SRR E SR RS EE RS EE R SRR EEEEEEEEEEEEES

* Constants in root scope:

LR EEEEEEEE SRR R EE RS EESS

01 GCBAL- EXAMLA- QONSTS.

03 M- QUTER- FLOAT QOVPUTATI CNAL- 1
VALUE 1. 976e+01.
03 M- QUTER- DOUBLE QOVPUTATI CNAL- 2

VALLE 1. 23456789e+05.

LR EEEEEEEE R EEEEE RS EEEEEEEEEEEEEEEEEEEEEEEEEEEEEEREEEEEEEEEESS

* |Interface:

* exanpl e
*

* Mapped narre:
* exanpl e
*

* Inherits interfaces:
* (none)

LR EEEEE R EE R EE R EEEEEEEEEEEEEEEEEEEEEEEEEEEEEEREEEEEEEEEESES

E o R R X X

* Attribute: nyshort
* Mapped name: nyshort
* Type: short (read/wite)

LR EE RS RS EEE RS EESES

01 EXAVPLE- MYSHCRT- ARGS.
03 RESULT Pl CTURE S9(05)
Bl NARY.
LR EEEEEEEE R EEEE RS EEEEEEEEEEEEEEEEEEEEEEEEEEEEEEREEEEEEEEEESS
* Attribute: nyl ong
* Mapped name: nyl ong
* Type: long (read/wite)

E e R R X X

01 EXAVPLE- WLONG ARGS.

03 RESULT Pl CTURE S9(10)
Bl NARY.
EEEEE SRS EEE RS EESES
* Attribute: nyushort
* Mapped nane: nyushort
* Type: unsi gned short (read/wite)

LR EEE R R EE R EEE RS EEEEEEEEEEEEEEEEEEEEEEEEEEEEEEREEEEEEEEEESS

01 EXAVPLE- MYUSHORT- ARGS.
03 RESULT Pl CTURE 9(05)
Bl NARY.

LR EEE SRR EE SRS EESE]

* Attribute: nyul ong

190

Mapping for Basic Types

Example 11: COBOL Example for Basic Types (Sheet 2 of 3)

* Mapped name: myul ong
* Type: unsi gned long (read/wite)

LR R R RS E R RS R EE]

01 EXAWPLE- MYULONG ARGS.

03 RESULT Pl CTURE 9(10)
Bl NARY.
LRSS R RS S S E S SRS SRR RS SRR RS SRR SRR R SRR EEEEEEEEEEEEES
* Attribute: nyf | oat
* Mapped nare: nyfl oat
* Type: float (read/wite)

LR EEEEEEE RS EE RS EEEE RS EEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEESES

01 EXAVPLE- MYFLQOAT- ARGS.
03 RESULT GOMPUTATI ONAL- 1.

LR EEEEEEEEEE RS RS EESES

* Attribute: nydoubl e
* Mapped name: nydoubl e
* Type: doubl e (read/wite)

LR R R RS E R RS EEES

01 EXAVPLE- MYDOUBLE- ARGS.
03 RESULT GOMPUTATI CNAL- 2.

LR R R R EEEE TS EESS

* Attribute: nychar
* Mapped name: nychar
* Type: char (read/wite)

kkkhkhkhkhkhhhhhkhhhhhhkhkhkhhhhhkhkhhhhhhkhkhkhhhhkkkhhhhkkhkkhhhkkkhkhkx

01 EXAWPLE- \YCHAR- ARGS.
03 RESULT Pl CTURE X(01).

E o)

* Attribute: nyoct et
* Mapped name: nyoct et
* Type: octet (read/wite)

LR EE SRS E SRS SRS RS EEEE RS EEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEESE]

01 EXAMPLE- MYCCTET- ARGS.
03 RESULT Pl CTURE X(01).
LR EE SRS E RS RS RS EESE]
* Attribute: nyfixed_5_2
* Mapped name: nyfixed_ 5 2
* Type: exanpl e/a_fixed 5 2 (read/wite)
LR R R R EEEE RS EESS
01 EXAWPLE- MYFI XED- 5- 2- ARGS.
03 RESULT Pl CTURE S9(3) VO(2)
PACKED- DEC MVAL.

LR E RS EEEEE RS RS EEEE RS EEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEESESES

* Attribute: nyl ongl ong

191

CHAPTER 6 | IDL-to-COBOL Mapping

Example 11: COBOL Example for Basic Types (Sheet 3 of 3)

* Mapped nane: nyl ongl ong
* Type: long long (read/wite)

LR EEEEEEEE SRR R EE RS EESS

01 EXAVPLE- WLONGLONG ARGS.

03 RESULT Pl CTURE S9(18)
Bl NARY.
LRSS SRR RS S S SRS S SR SRS E SRR RS EE RS EE R SRR EEEEEEEEEEEESS
* Attribute: ul ongl ong
* Mapped nare: ul ongl ong
* Type: unsigned |ong long (read/wite)

LR EEEEEEEE SRS SRS EESS

01 EXAVPLE- LLONGLONG ARGS.
03 RESULT Pl CTURE 9(18)
Bl NARY.

LR EEEEEEEE R EE RS EESS

* Constants in exanpl e:
LR EEE SRR EEE RS EESS

01 EXAVPLE- GONSTS.

03 M- SHORT PI CTURE S9(05)
Bl NARY VALUE 24.
03 M- LONG PI CTURE S9(10)

Bl NARY VALUE 9999.

192

Mapping for Boolean Type

Mapping for Boolean Type

Overview

IDL-to-COBOL mapping
for booleans

Example

This section describes how booleans are mapped to COBOL.

An IDL boolean type maps to a COBOL PI C 9(01) integer value and has
two COBOL conditions defined, as follows:

® Alabelidl -identifier-FALSE with a Ovalue.

® Alabelid -identifier-TRUE with a 1 value.

Note: The IBM COBOL compiler for 0S/390 & VM does not currently
support the non-COBOL85 >>CONSTANT construct. This is specified for the
mapping of constant boolean values. Responsibility is passed to the Orbix
IDL compiler to propagate constant values. In this case, the following
mapping approach that uses Level 88 items has been chosen:

The example can be broken down as follows:

1. Consider the following IDL, which is contained in an IDL member

called EXAML:

/1 1D

interface exanpl e {

attribute bool ean full;

bool ean nyop(i n bool ean nybool ean);

193

CHAPTER 6 | IDL-to-COBOL Mapping

2. Based on the preceding IDL, the Orbix IDL compiler generates the
following COBOL in the EXAML copybook:

E R X X

* Attribute: full
* Mapped nare: full
* Type: bool ean (read/ wite)

LRSS SRR S S S EE S EE RS R RS E RS R RS EEEEEEEEEEEEEES

01 EXAWPLE- FULL- ARGS.

03 RESULT Pl CTURE 9(01) BI NARY.

88 RESULT- FALSE VALUE 0.
88 RESULT- TRUE VALUE 1.

R R RS SRR SR SRR SRR SR SRR EEEEREREEEEEEEEEEEEEEEEEEEEESEEEEES]

* Qperation: nyop

* Mapped narre: nyop

* Argunents: <i n> bool ean nybool ean

* Returns: bool ean

* User Exceptions: none

L R X X

01 EXAWPLE- WCP- ARGS.

03 MYBOOLEAN Pl CTURE 9(01) Bl NARY.
88 MYBOOLEAN FALSE VALUE 0.
88 MYBOOLEAN TRUE VALUE 1.

03 RESULT Pl CTURE 9(01) Bl NARY.
88 RESULT- FALSE VALUE 0.
88 RESULT- TRUE VALUE 1.

01 EXAVPLE- CPERATI ON Pl CTURE X(26).

88 EXAWPLE- GET- FULL VALUE
"_get_full:IDL: exanpl e: 1. 0".

88 EXAWPLE- SET- FULL VALUE
" _set_full:IDL: exanpl e: 1. 0".

88 EXAWPLE- \YCP VALUE

"nyop: | DL: exanpl e: 1. 0".

01 EXAMPLE- CPERATI ON- LENGTH Pl CTURE 9(09) BI NARY

VALUE 26.

3. The preceding code can be used as follows:

194

Mapping for Boolean Type

IF RESULT- TRE OF RESULT CF EXAMPLE- FULL- ARGS THEN
SET EXAMPLE- SET-FULL TO TRUE
ELSE
SET EXAWMPLE- GET-FULL TO TRUE
END-| F
CALL "CRBEXEC' USI NG SERVER- CBJ
EXAMPLE- CPERATI ON
EXAVPLE- FULL- ARGS
EXAML- USER- EXCEPTI ONS

195

CHAPTER 6 | IDL-to-COBOL Mapping

Mapping for Enum Type

Overview This section describes how enums are mapped to COBOL.
IDL-to-COBOL mapping An IDL enum type maps to a COBOL PI C 9(10) BI NaRY type. The COBOL
for enums mapping for an enum is an unsigned integer capable of representing 2**32

enumerations (that is, 2321 enumerations). Because IDL does not allow you

to set ordinal values for enums, each identifier in a mapped enum has a
COBOL condition defined with its own appropriate integer value, based on
the rule that integer values are incrementing and start at 0. Each identifier is
a level 88 entry.

Example The example can be broken down as follows:
1. Consider the following IDL, which is contained in an IDL member
called EXAME:
// 1D

interface exanpl e {
enumtenp {cold, warm hot };
attribute tenp attri;
tenp nyop(in tenp nyenunj;

196

Mapping for Enum Type

2. Based on the preceding IDL, the Orbix IDL compiler generates the
following COBOL in the EXAM2 copybook:

B R XX

* Attribute: attrl
* Mapped narme: attrl
* Type: tenp (read/wite)

LRSS SRR S SRS S SRR SRS S SRR SRR R SRR SRR EEEEEEEEEE]

01 EXAVPLE- ATTRL- ARGS.

03 RESULT Pl CTURE 9(10) BI NARY.

88 OOLD VALUE 0.
88 WARM VALLE 1.
88 HOT VALLE 2.

LR E RS S S SR RS S E RS S SRR SRR S SRR R R R SRR EEEEEEEEEEEEE]

* Qperati on: nyop

* Mapped nane: nyop

* Argunent s: <i n> tenp nyenum

* Returns: tenp

* User Exceptions: none

LRSS SR RS S S E S S S SRR SRS S SRR EEE R SRR EEEEEEEEEEEEE]

01 EXAWPLE- WYCP- ARGS.

03 MYENUM PI CTURE 9(10) Bl NARY.
88 COLD VALLE 0.
88 WARM VALLE 1.
88 HOT VALLE 2.

03 RESULT PI CTURE 9(10) Bl NARY.
88 QOLD VALLE 0.
88 WARM VALLE 1.
88 HOT VALLE 2.

3. The preceding code can be used as follows:

EVALUATE TRUE
WHEN OCLD CF EXAMPLE- ATTRI- ARGS

WHEN WARM CF EXAMPLE- ATTRL- ARGS
WHEN HOT' CF EXAVPLE- ATTRL- ARGS

END- EVALUATE

197

CHAPTER 6 | IDL-to-COBOL Mapping

Mapping for Char Type

Overview
IDL-to-COBOL mapping

for char types

Example

198

This section describes how char types are mapped to COBOL.

Char data values that are passed between machines with different character
encoding methods (for example, ASCIl, EBCDIC, and so on) are translated
by the ORB.

The example can be broken down as follows:

Consider the following IDL, which is contained in an IDL member
called EXAMB:

/] 1DL
interface exanpl e {

attribute char achar;

char nyop(in char nychar);
}

Based on the preceding IDL, the Orbix IDL compiler generates the
following COBOL in the EXAMB copybook:

LR EEE SRR EEE SRS EEEEE SRR EEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEE]

* Attribute: achar
* Mapped nane: achar
* Type: char (read/wite)

LR EEE R R EE R EEEE RS EEE]

01 EXAVPLE- ACHAR- ARGS.

03 RESULT Pl CTURE X(01).
LR EEE R R EE R EE RS EEE]
* (peration: nyop
* Mapped nare: nyop
* Argunents: <i n> char nychar
* Returns: char

* User Exceptions: none
khkkkhkkkhkhkhkhkhkhkhkhhkhkhhkhhhhhhhkhhkhhhhhhhkhhhhkhhhdhdhhhhdhkdhhhhhhhhk
01 EXAMPLE- WCP- ARGS.
03 MYCHAR Pl CTURE X(01).
03 RESULT Pl CTURE X(01).

Mapping for Octet Type

Mapping for Octet Type

Overview

IDL-to-COBOL mapping
for octet types

Example

This section describes how octet types are mapped to COBOL.

The octet type refers to binary character data. The ORB does not translate

any octet data, even if the remote system has a different character set than
the local system (for example ASCIl and EBCDIC). You should take special

care in selecting the appropriate IDL type when representing text data (that
is, a string) as opposed to opaque binary data (that is, an octet).

The example can be broken down as follows:

1. Consider the following IDL, which is contained in an IDL member
called ExaM::

interface exanpl e {

attribute octet aoctet;

octet nyop(in octet nyoctet);
}

2. Based on the preceding IDL, the Orbix IDL compiler generates the
following COBOL in the ExAMA copybook:

EEEEEE RS S SR SRS S SRR RS SRR S SRR RS E R R RS E R R SRR EEEEEEEEE S

* Attribute: aoct et
* Mapped name: aoct et
* Type: octet (read/wite)

EEEEE SRR RS SRS EEE]

01 EXAVPLE- ACCTET- ARGS.

03 RESULT Pl CTURE X(01) .
LR EE SRS EEE SRS SRS EEE]
* Qperation: nyop
* Mapped nane: nyop
* Argunent s: <i n> char nyoct et
* Returns: oct et

* User Exceptions: none

EEEE SRS EEE SRS SRS EEE]

01 EXAMPLE- MYCP- ARGS,
03 MYGCTET Pl CTURE X(01).
03 RESULT PI CTURE X(01).

199

CHAPTER 6 | IDL-to-COBOL Mapping

Mapping for String Types

Overview

Bounded and unbounded
strings

Incoming bounded strings

200

This section describes how string types are mapped to COBOL. First, it
describes the various string types that are available.

Strings can be bounded or unbounded. Bounded strings are of a specified
size, while unbounded strings have no specified size. For example:

/11DL
string<8> a_bounded_string
string an_unbounded_stri ng

Bounded and unbounded strings are represented differently in COBOL.

Incoming strings are passed as | Nor | NOUT values by the COAGET function
into the COBOL operation parameter buffer at the start of a COBOL
operation.

An incoming bounded string is represented by a COBOL PI C X(n) data item,
where n is the bounded length of the string. For example:
1. Consider the following IDL:

interface exanpl e {
t ypedef string<10> boundedstr;
attribute boundedstr aboundedstr;
boundedstr nyop(in boundedstr nyboundedstr);

Outgoing bounded strings

Incoming unbounded strings

Mapping for String Types

2. The preceding IDL maps to the following COBOL:

LRSS SRR RS S S ESS SRR S SRR S SRR R R R SRR EEEEEEEEEEEEES

* Attribute: aboundedst r
* Mapped nane: aboundedstr
* Type: exanpl e/ boundedstr (read/ wite)

EEEEE RS EEE RS SRR EEE]

01 EXAVPLE- ABONDEDSTR- ARGS.

03 RESULT Pl CTURE X(10).
EEEEE SRR SRS S SRS EEE]
* Qperation: nyop
* Mapped nane: nyop
* Argunents: <i n> exanpl e/ boundedst r nyboundedstr
* Returns: exanpl e/ boundedst r

* User Exceptions: none

EEEE SRS EEE S S SRS EEE]

01 EXAMPLE- MYCP- ARGS.,
03 MYBOUNDEDSTR Pl CTURE X(10).
03 RESULT Pl CTURE X(10).

LR R R R R R R R R RS EEEEEREEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEE]

If the string that is passed is too big for the buffer, the string is truncated. If
the string is not big enough to fill the buffer, the remainder of the COBOL
string is filled with spaces.

Outgoing strings are copied as | NQUT, QUT, or RESULT values by the coapur
function from the complete COBOL operation parameter buffer that is
passed to it at the end of a COBOL operation.

An outgoing bounded string has trailing spaces removed, and all characters
up to the bounded length (or the first null) are passed via COAPUT. If a null is
encountered before the bounded length, only those characters preceding the
null are passed. The remaining characters are not passed.

Incoming strings are passed as | Nor | NOUT values by the COAGET function
into the COBOL operation parameter buffer at the start of a COBOL
operation.

201

CHAPTER 6 | IDL-to-COBOL Mapping

An incoming unbounded string is represented as a USAGE | S PO NTERdata
item. For example:

1. Consider the following IDL:
interface exanpl e {
typedef string unboundedstr;

attribute unboundedstr aunboundedstr;
unboundedst r nyop(i n unboundedstr nyunboundedstr);

I
2. The preceding IDL maps to the following COBOL:

LR EEE R R EE R EEEE R EEE]

* Attribute: aunboundedst r
* Mapped nane: aunboundedstr
* Type: exanpl e/ unboundedstr (read/ wite)

hkkkkhhkkhhhhhkhhhhhhkhkhkhhhhhkhkhhhhhkhkhkhhhhkhkkhhhkhkkkhhhhkkkkhhkk

01 EXAVPLE- ANBONDEDSTR- ARGS.

03 RESULT PA NTER VALUE NULL.
RS R R SRR SR SRS R R SRR R R R SR EEEEEEEEEEEEEEEEEEEEEEEEEEEEES]
* Qperation: nyop
* Mapped narre: nyop
* Argunent s: <i n> exanpl e/ unboundedst r nunyboundedst r
* Returns: exanpl e/ unboundedst r

* User Exceptions: none
RS R SRR SR SRS R R SRR EEEE R SR EEEEEEEEEEEEEEEEEEEEEEEEEEEEES]
01 EXAVPLE- WYCP- ARGS.
03 MUNYBOUNDEDSTR PO NTER VALUE NULL.
03 RESULT PQA NTER VALUE NULL.

202

Outgoing unbounded strings

Mapping for String Types

3. A pointer is supplied which refers to an area of memory containing the
string data. This string is not directly accessible. You must call the
STRCGET function to copy the data into a COBOL PI C X(n) structure. For
example:

* This is the supplied GOBOL unbounded string pointer
01 NAME USACE | S PO NTER
* This is the COBCL representation of the string

01 SUPPLI ER NAME Pl CTURE X(64) .
01 SUPPLI ER- NAME- LEN Pl CTURE 9(10) BINARY VALUE 64.

* This STRCGET call copies the characters in the NAMVE
* to the SUPPLI ER NAME

CALL " STRGET" USI NG NAME
SUPPLI ER- NAME- LEN
SUPPLI ER- NAME.

In the preceding example, the number of characters copied depends on the
value specified for SUPPLI ER- NAVE- LEN. This must be a valid positive integer
(that is, greater than zero); otherwise, a runtime error occurs. If the value
specified for SUPPLI ER- NAME is shorter than that for SUPPLI ER- NAME- LEN, the
string is still copied to SUPPLI ER- NAME, but it obviously cannot contain the
complete string.

Outgoing strings are copied as | NQUT, QUT, or RESULT values by the coapuT
function from the complete COBOL operation parameter buffer that is
passed to it at the end of a COBOL operation.

203

CHAPTER 6 | IDL-to-COBOL Mapping

204

A valid outgoing unbounded string must be supplied by the implementation
of an operation. This can be either a pointer that was obtained by an I Nor
| NOQUT parameter, or a string constructed by using the STRSET function. For
example:

* This is the GOBQL representation of the string containing a
* value that we want to pass back to the client using COAPUT

* via an unbounded pointer string. */
01 NOTES Pl CTURE X(160) .
01 NOTES-LEN Pl CTURE 9(10) Bl NARY

VALUE 160.

* This is the unbounded pointer string
01 QUST- NOTES USAGE | S PO NTER

* This STRSET call creates an unbounded string cal |l ed QUST- NOTES
* to which it copi es NOTES-LEN characters fromcharacter string
* NOTES

CALL " STRSET" USI NG QUST- NOTES
NOTES- LEN
NOTES.

Trailing spaces are removed from the constructed string. If trailing spaces
are required, you can use the STRSETP function, with the same argument
signature, to copy the specified number of characters, including trailing
spaces.

Mapping for Wide String Types

Mapping for Wide String Types

Overview

IDL-to-COBOL mapping
for wide strings

This section describes how wide string types are mapped to COBOL.

The mapping for the wst ri ng type is similar to the mapping for strings, but
it requires DBCS support from the IBM COBOL compiler for 0S/390 & VM.
The current IBM COBOL compiler for 0S/390 & VM does have DBCS
support.

A PI CTURE G (instead of a PI CTURE X) data item represents the COBOL data
item. Instead of calling STRGET and STRSET to access unbounded strings, the
auxiliary functions WSTRGET and WBTRSET should be used. The argument
signatures for these functions are equivalent to their string counterparts.

205

CHAPTER 6 | IDL-to-COBOL Mapping

Mapping for Fixed Type

Overview This section describes how fixed types are mapped to COBOL.
IDL-to-COBOL mapping The IDL fixed type maps directly to COBOL packed decimal data with the
for fixed types appropriate number of digits and decimal places (if any).

Note: All fixed types must be declared in IDL with t ypedef .

The fixed-point decimal The fixed-point decimal data type is used to express in exact terms numeric
data type values that consist of both an integer and a fixed-length decimal fraction
part. The fixed-point decimal data type has the format <d, s>.

Examples of the fixed-point You might use it to represent a monetary value in dollars. For example:
decimal data type typedef fixed<9,2> net worth; // up to $9, 999, 999.99, accurate to
/1 one cent.

typedef fixed<9, 4> exchange_rate; // accurate to 1/10000 unit.
typedef fixed<9,0> annual _revenue; // in mllions
typedef fixed<3,6> wong; // this is invalid.

Explanation of the fixed-point The format of the fixed-point decimal data type can be explained as follows:
decimal data type 1. The first number within the angle brackets is the total number of digits
of precision.

2. The second number is the scale (that is, the position of the decimal
point relative to the digits).
A positive scale represents a fractional quantity with that number of
digits after the decimal point. A zero scale represents an integral value.
A negative scale is allowed, and it denotes a number with units in
positive powers of ten (that is, hundreds, millions, and so on).

206

Mapping for Fixed Type

Example of IDL-to-COBOL The example can be broken down as follows:
mapping for fixed types 1. Consider the following IDL:

/11D

interface exanpl e

{

typedef fixed<10, 0> type_revenue;

attribute type_revenue revenue;

typedef fixed<6, 4> type_preci se;

attribute type_precise precise;

type_preci se nyop(in type_revenue nyfixed);
typedef fixed<6,-4> type_mllions;
attribute type nmillions mllions;

Ik
2. The preceding IDL maps to the following COBOL:

Example 12: COBOL Example for Fixed Type (Sheet 1 of 2)

E R o)

* Attribute: revenue
* Mapped name: revenue
* Type: exanpl e/ type_revenue (read/wite)

LRSS R RS S S SRS SRR S SRS EE R SRR RS EEEEEEEEEEEEEEEES

01 EXAVPLE- REVENUE- ARGS.
03 RESULT PI CTURE S9(10)
PACKED- DEC MAL.

LR R RS EE RS EEES

* Attribute: preci se
* Mapped name: precise
* Type: exanpl e/ type_preci se (read/wite)

E R)

01 EXAMPLE- PRECI SE- ARGS.
03 RESULT Pl CTURE S9(2) \VO(4)
PACKED- DECI MAL.

LRSS R RS E S SRS SRR S SRS SRR SRR RS EEEEEEEEEEEEEEEES

* Attribute: mllions
* Mapped narme: nillions
* Type: exanpl e/type_mllions (read/wite)

LR R R EEEE RS EESS

01 EXAMPLE-M LLI ONS- ARGS.
03 RESWLT PI CTURE S9(6) P(4)
PACKED- DEC! MAL.

kkkhkkkkhkhkhhhkhkhkhhhhkhkhkhhhhhkhkhkhhhhhkhkhkhhhhkhkhkhkhhhhkhkhhhhkkhkhkhk

* Qperation: nyop

207

CHAPTER 6 | IDL-to-COBOL Mapping

Example 12: COBOL Example for Fixed Type (Sheet 2 of 2)

* Mapped narre: nyop
* Argunent s: <i n> exanpl e/ t ype_r evenue nyfi xed
* Returns: exanpl e/ t ype_preci se

* User Exceptions: none

LR EEEEEEEE SRS SRS EESE]

01 EXAVPLE- WYCP- ARGS.

03 MYFI XED Pl CTURE S9(10)
PACKED- DECI MAL.
03 RESULT Pl CTURE S9(2) VO(4)

PACKED- DECI VAL.

Limitations in size of COBOL The IBM COBOL compiler for 0S/390 & VM version 2 release 1 limits

numeric data items numeric data items to a maximum of 18 digits, whereas the IDL fixed type
specifies support for up to 31 digits. If the IDL definition specifies more than
18 digits, the generated data item is restricted to 18 digits. Truncation of
the excess most-significant digits occurs when the item is passed to COBOL.
Passing data from COBOL to a fixed type with greater than 18 digits results
in zero-filling of the excess most-significant digits.

For example, consider the following IDL:

/1 1D
interface exanpl e

{
typedef fixed<25,0> lots of digits;
attribute lots_of _digits |arge_val ue;

typedef fixed<25,8> lots_of digits_and prec;
attribute lots_of _digits_and prec |arge_val ue_prec;

}

The preceding IDL cannot be represented in COBOL, because COBOL has a
restricted maximum of 18 digits. The Orbix IDL compiler issues a warning
message and truncates to provide the following mapping:

208

Mapping for Fixed Type

EEEE R EE R R R R EESE]

* Attribute: | ar ge_val ue
* Mapped nane: | arge_val ue
* Type: exanpl e/l ots_of _digits (read/wite)

B R R

01 EXAVPLE- LARGE- VALUE- ARGS.
03 RESULT Pl CTURE S9(18)
PACKED- DECI MAL.

EEEEEE RS S SR SRS S SRR RS SRR SRR RS E R R SRR R SRR EEEEEEEE S

* Attribute: | arge_val ue_prec
* Mapped nane: |arge_val ue_prec
* Type: exanpl e/l ots_of _digits_and prec (read/wite)

EEEEE R R R R R EE RS EEE]

01 EXAMPLE- LARGE- VALUE- PREG- ARGS,
03 RESULT Pl CTURE S9(17) VO(1)
PACKED- DECI MAL.

209

CHAPTER 6 | IDL-to-COBOL Mapping

Mapping for Struct Type

Overview

IDL-to-COBOL mapping
for struct types

Example of IDL-to-COBOL
mapping for struct types

210

This section describes how struct types are mapped to COBOL.

An IDL struct definition maps directly to COBOL group items.

The example can be broken down as follows:
1. Consider the following IDL:

/] 1DL
interface exanpl e
{
struct a structure
{
| ong menber 1;
short menber 2;
bool ean nenber 3;
string<10> nenber 4;
I8
typedef a_structure type_struct;
attribute type struct astruct;
type_struct nyop(in type_struct nystruct);
b

2. The preceding IDL maps to the following COBOL:

Mapping for Struct Type

LR RS R R RS EEE TR R R R R EEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEE]

* Attribute: ast ruct
* Mapped nane: astruct
* Type: exanpl e/ type_struct (read/wite)

hhkkhkkkkhkhhhhkhkhhhhhkhkhhkhhhhkhkhkhhhhhkkhkhhhhkhkkhhhkkhkkhhhhkkkkhkkk

01 EXAVPLE- ASTRUCT- ARGS.

03 RESULT.
05 MEMBERL Pl CTURE S9(10) Bl NARY.
05 MEMBER2 Pl CTURE S9(05) Bl NARY.
05 MEMBER3 Pl CTURE 9(01) BI NARY.
88 MEMBER3- FALSE VALLE 0.
88 MEMBER3- TRUE VALLE 1.
05 MEMBER4 Pl CTURE X(10).
* Qperation: nyop
* Mapped narre: nyop
* Argunents: <i n> exanpl e/ type_struct nystruct

* Returns: exanpl e/ t ype_struct
* User Exceptions: none

L R XX

01 EXAVPLE- MWYCP- ARGS.

03 MYSTRUCT.
05 MEMBERL
05 MEMBER2
05 MEMBER3
88 MEMBER3- FALSE
88 MEMBER3- TRUE
05 MEMBER4
03 RESULT.
05 MEMBERL
05 MEMBER2
05 MEMBER3
88 MEMBER3- FALSE
88 MEMBER3- TRUE
05 MEMBER4

Pl CTURE S9(10) Bl NARY.
Pl CTURE S9(05) Bl NARY.
Pl CTURE 9(01) Bl NARY.

VALLE 0.

VALLE 1.

Pl CTURE X(10).

Pl CTURE S9(10) Bl NARY.
Pl CTURE S9(05) Bl NARY.
Pl CTURE 9(01) Bl NARY.

VALLE 0.

VALLE 1.

Pl CTURE X(10).

211

CHAPTER 6 | IDL-to-COBOL Mapping

Mapping for Union Type

Overview This section describes how union types are mapped to COBOL.
IDL-to-COBOL mapping An IDL union definition maps directly to COBOL group items with the
for union types REDEFI NES clause.

Simple example of IDL-to-COBOL The example can be broken down as follows:
mapping for union types 1. Consider the following IDL:

/1 1DL
interface exanpl e

{

uni on a_uni on sw tch(l ong)

{
case 1: char case_l;
case 3: |long case_3;
defaul t: string case_def;
s
typedef a_union type_union;
attribute type_union aunion;
type_uni on nyop(in type_uni on nyunion);
B

2. The preceding IDL maps to the following COBOL:

Example 13: COBOL Example for Union Type (Sheet 1 of 2)

E R X)

* Attribute: auni on
* Mapped name: auni on
* Type: exanpl e/ type_union (read/wite)

LRSS SRS S SRS S SR SRS SR RS EE RS EE R SRR EEEEEEEEEEEEES

01 EXAVPLE- AN ON- ARGS.

03 RESULT.
05 D Pl CTURE S9(10) Bl NARY.
05 U.
07 FILLER Pl CTURE X(08)

VALUE LON VALUES.
05 FI LLER REDEFI NES U.

212

Mapping for Union Type

Example 13: COBOL Example for Union Type (Sheet 2 of 2)

07 CASE-1

05 FI LLER REDEFI NES U.
07 CASE-3

05 FI LLER REDEFI NES U.

Pl CTURE X(01).

Pl CTURE S9(10) BI NARY.

07 CASE- DEF PQ NTER
RS R R SRR RS SRS SRS R R SRR EEE R SRR R SRR EREEREEREEEEEEEREEEEE]
* Qperation: nyop
* Mapped narre: nyop

* Argunents:
* Returns:

* User Exceptions: none

LR R R RS R R RS R EES

01 EXAWPLE- MYCP- ARGS.

03

MYUN O\
05 D
05 U
07 FILLER

05 FI LLER REDEFI NES U.

<i n> exanpl e/t ype_uni on nyuni on
exanpl e/ t ype_uni on

Pl CTURE S9(10) BI NARY.

PI CTURE X(08)
VALUE LON VALLES.

07 CASE-1 Pl CTURE X(01).
05 FI LLER REDEFI NES U
07 CASE-3 Pl CTURE S9(10) Bl NARY.
05 FI LLER REDEFI NES U,
07 CASE- DEF PO NTER
03 RESWLT.
05 D Pl CTURE S9(10) Bl NARY.
05 U
07 FILLER Pl CTURE X(08)

05 FI LLER REDEFI NES U.
07 CASE-1

05 FI LLER REDEFI NES U.
07 CASE-3

05 FI LLER REDEFI NES U.
07 CASE- DEF

VALUE LOW VALUES.
Pl CTURE X(01).
Pl CTURE S9(10) Bl NARY.

PQ NTER

COBOL rules for mapped IDL
unions 1. The union discriminator in the group item is always referred to as D.

The following rules apply in COBOL for union types mapped from IDL:

2. The union items are contained within the group item referred to as U.

213

CHAPTER 6 | IDL-to-COBOL Mapping

Example of COBOL rules for
mapped IDL unions

214

3. Reference to union elements is made through the EVALUATE statement
to test the discriminator.

Note: If Dand Uare used as IDL identifiers, they are treated as reserved
words. This means that they are prefixed with I DL- in the generated
COBOL (for example, the IDL identifier d maps to the COBOL identifier

| DL- D).

The following code shows the COBOL rules for mapped IDL unions in effect:

EVALUATE D OF RESULT COF EXAMPLE- AN O\ ARGS

WHEN 1
DI SPLAY "its a character value = " CASE-1 CF U CF
EXAMPLE- AUNI ON- ARGS

WHEN 3

D SPLAY "its a long value = " CASE-3 CF U CF
EXAMPLE- AUNI ON- ARGS
WHEN OTHER

D SPLAY "its an unbounded string "
* use strget to retrieve val ue
END- EVALUATE

Mapping for Union Type

More complex example The following provides a more complex example of the IDL-to-COBOL
mapping rules for union types. The example can be broken down as follows:

1. Consider the following IDL:

interface exanpl e

{
uni on a_uni on sw tch(l ong)
{
case 1: char case_1;
case 3: |long case_3;
defaul t: string case_def;
B
typedef a_ union type_union;
uni on a_nest _uni on switch(char)
{
case 'a': char case_a;
case 'b': long case_b;
case 'c': type_union case_c;
defaul t: string case ot her;
B
typedef a_nest_uni on type_nest_uni on;
attribute type _nest_uni on anest uni on;
B

2. The preceding IDL maps to the following COBOL:

215

CHAPTER 6 | IDL-to-COBOL Mapping

216

LR EEEEEEEE R EEEE RS EEE]

* Attribute: anest uni on
* Mapped nane: anest uni on
* Type: exanpl e/ t ype_nest _uni on (read/ wite)

hkkhkkhhkhkhhhhhkhhhhhhkhkhkhhhhkhkhhhhhkhkhkhhhhkhkkhhhkhkhkkhhhhkkkkhhkk

01 EXAVPLE- ANESTUN ON- ARGS.

03 RESULT.
05 D Pl CTURE X(01).
05 U

07 FILLER Pl CTURE X(16)

VALUE LON VALUES.
05 FI LLER REDEFI NES U.

07 CASE-A Pl CTURE X(01).
05 FI LLER REDEFI NES U
07 CASE-B Pl CTURE S9(10) Bl NARY.
05 FI LLER REDEFI NES U
07 CASE-C.
09 D1 Pl CTURE S9(10) Bl NARY.
09 U-1.
11 FILLER Pl CTURE X(08).
09 FI LLER REDEFI NES U-1.
11 CASE-1 Pl CTURE X(01).
09 FI LLER REDEFI NES U- 1.
11 CASE-3 Pl CTURE S9(10) Bl NARY.
09 FI LLER REDEFI NES U- 1.
11 CASE- DEF PQ NTER
05 FI LLER REDEFI NES U.
07 CASE- OTHER PO NTER

Mapping for Sequence Types

Mapping for Sequence Types

Overview

Bounded and unbounded
sequences

Incoming and outgoing sequences

This section describes how sequence types are mapped to COBOL. First, it
describes the various sequence types that are available.

A sequence can be either bounded or unbounded. A bounded sequence is of
a specified size, while an unbounded sequence has no specified size. For
example:

/] 1DL

typedef sequence<| ong, 10> bounded seq
attri bute boundedseq seql

t ypedef sequence<l ong> unboundedseq
attri bute unboundedseq seq2

Bounded and unbounded sequences are represented differently in COBOL.
However, regardless of whether a sequence is bounded or unbounded, a
supporting group item is always generated by the Orbix IDL compiler, to
provide some information about the sequence, such as the maximum
length, the length of the sequence in elements, and the contents of the
sequence (in the case of the unbounded sequence). After a sequence is
initialized, the sequence length is equal to zero. The first element of a
sequence is referenced as element 1.

A sequence that is being passed as an incoming parameter to a COBOL
operation is passed as an I Nor | NOUT value by the COAGET function into the
operation parameter buffer at the start of the operation.

A sequence that is being passed as an outgoing parameter or result from a
COBOL operation is copied as an | NOUT, QUT, or RESULT value by the coaput
function from the complete operation parameter buffer that is passed to it at
the end of the operation.

217

CHAPTER 6 | IDL-to-COBOL Mapping

IDL-to-COBOL mapping for A bounded sequence is represented by a COBOL OOCURS clause and a
bounded sequences supporting group item. For example:

1. Consider the following IDL:

/1 1D
interface exanpl e

{

typedef sequence<l ong, 10> boundedsegq;
attri bute boundedseq aseq;
boundedseq nyop(in boundedseq nyseq);

g
2. The preceding IDL maps to the following COBOL:

Example 14: COBOL Example for Bounded Sequences (Sheet 1 of 2)

khkkkkhkkhkhkhkhkhkhkhhhhkhkhhhhhkhhhhhhkhkhhhhhkhkhhhhhkhkhhhhhhkhhhhhhkhhhhhhkhkhkhkxkx

* Attribute: aseq
* Mapped nane: aseq
* Type: exanpl e/ boundedseq (read/wite)

R

01 EXAWPLE- ASEQ ARGS.

03 RESULT-1 OOCURS 10 TI MES.
05 RESULT Pl CTURE S9(10) Bl NARY.
03 RESULT- SEQUENCE.
05 SEQUENCE- MAXI MM Pl CTURE 9(09) Bl NARY
VALLE 10.
05 SEQUENCE- LENGTH Pl CTURE 9(09) Bl NARY
VALUE 0.
05 SEQUENCE- BUFFER PO NTER VALUE NULL.
05 SEQUENCE- TYPE PA NTER VALUE NULL.
LR EE RS R R R RS R EE R R EEE R R EEEEEEEEEEEEEEEEEEEEEEEEEEEEE SRS
* Qperation: nyop
* Mapped narre: nyop
* Argurent s: <i n> exanpl e/ boundedseq nyseq
* Returns: exanpl e/ boundedseq

* User Exceptions: none

LR EE RS R E R R SRR R R R R EEE R EEEEEEEEEEEEEEEEREEEEEEEEEEEEEEEEEEEEEES]

01 EXAWPLE- WCP- ARGS.

03 MYSEQ 1 OOCURS 10 TI MES.
05 MYSEQ Pl CTURE S9(10) Bl NARY.
03 MYSEQ SEQUENCE.
05 SEQUENCE- MAXI MM Pl CTURE 9(09) Bl NARY
VALLE 10.
05 SEQUENCE- LENGTH Pl CTURE 9(09) Bl NARY

218

IDL-to-COBOL mapping for
unbounded sequences

Mapping for Sequence Types

Example 14: COBOL Example for Bounded Sequences (Sheet 2 of 2)

VALLE 0.
05 SEQUENCE- BUFFER POl NTER VALUE NULL.
05 SEQUENCE- TYPE PO NTER VALUE NULL.
03 RESULT-1 OOCLRS 10 TI MES.
05 RESULT Pl CTURE S9(10) Bl NARY.
03 RESULT- SEQUENCE
05 SEQUENCE- MAXI MM Pl CTURE 9(09) Bl NARY
VALUE 10.
05 SEQUENCE- LENGTH Pl CTURE 9(09) Bl NARY
VALLE 0.
05 SEQUENCE- BUFFER POl NTER VALUE NULL.
05 SEQUENCE- TYPE PO NTER VALUE NULL.

All elements of a bounded sequence can be accessed directly. Unpredictable
results can occur if you access a sequence element that is past the current
length but within the maximum number of elements for the sequence.

An unbounded sequence cannot map to a COBOL OOCURS clause, because
the size of the sequence is not known. In this case, a group item is created
to hold one element of the sequence, and a supporting group item is also

created. The supporting group item contains the following data definitions:

SEQUENCE- MAXI MM Pl CTURE 9(09) BI NARY VALUE 0.
SEQUENCE- LENGTH PI CTURE 9(09) Bl NARY VALUE 0.
SEQUENCE- BUFFER PO NTER VALUE NULL.
SEQUENCE- TYPE PQA NTER VALUE NULL.

The preceding data definitions can be explained as follows:

SEQUENCE- MAXI MM The maximum number of elements for the sequence.

SEQUENCE- LENGTH The number of elements currently populated in the
sequence.

SEQUENCE- BUFFER The actual data associated with each sequence
element.

SEQUENCE- TYPE The typecode associated with the sequence.

The elements of a sequence are not directly accessible. Instead, you can call
SEQSET to copy the supplied data into the requested element of the
sequence, and SEQGET to provide access to a specific element of the
sequence. See “SEQGET” on page 412 and “SEQSET” on page 415 for

219

CHAPTER 6 | IDL-to-COBOL Mapping

Example of unbounded sequences
mapping

220

more details of these. Also, because an unbounded sequence is a dynamic
type, memory must be allocated for it at runtime, by calling the SEQALLOC
function. See “SEQALLOC” on page 400 for more details.

The example can be broken down as follows:
1. Consider the following IDL:

/1 1D
interface exanpl e

{

typedef sequence<l| ong> unboundedseq;

attri bute unboundedseq asegq;

unboundedseq nyop(i n unboundedseq nyseq);
g

2. The preceding IDL maps to the following COBOL:

Example 15: COBOL Example for Unbounded Sequences (Sheet 1 of 2)

LR R R R R R EE SRR SRR EEE R R R EEEEEEEEEEEEEEEREEEEEEEE SRS

* Attribute: aseq
* Mapped nane: aseq
* Type: exanpl e/ unboundedseq (read/ wite)

R

01 EXAWPLE- ASEQ ARGS.

03 RESULT-1.
05 RESULT PI CTURE S9(10) Bl NARY.
03 RESULT- SEQUENCE.
05 SEQUENCE- MAXI MM Pl CTURE 9(09) Bl NARY
VALLE 0.
05 SEQUENCE- LENGTH Pl CTURE 9(09) Bl NARY
VALLE 0.
05 SEQUENCE- BUFFER PO NTER
VALUE NULL.
05 SEQUENCE- TYPE PO NTER
VALUE NULL.
R RS RS RS S SRR RS RS SRR RS S SRS SRR RS EEEE R EEEEEEEEEEEEE RS
* Cperation: nyop
* Mapped narre: nyop
* Argunents: <i n> exanpl e/ unboundedseq nyseq
* Returns: exanpl e/ unboundedseq

* User Exceptions: none
R RS RS RS S SRR RS SRR E RS E RS SRS EEEE R EEEEEEEEEEEEEEE]

01 EXAMPLE- MYCP- ARGS,
03 MYSEQ 1.

Mapping for Sequence Types

Example 15: COBOL Example for Unbounded Sequences (Sheet 2 of 2)

05 MYSEQ PI CTURE S9(10) Bl NARY.
03 MYSEQ SEQUENCE.
05 SEQUENCE- MAXI MUM Pl CTURE 9(09) Bl NARY
VALLE 0.
05 SEQUENCE- LENGTH PI CTURE 9(09) Bl NARY
VALLE 0.
05 SEQUENCE- BUFFER PQ NTER
VALUE NULL.
05 SEQUENCE- TYPE PO NTER
VALUE NULL.
03 RESULT-1.
05 RESULT Pl CTURE S9(10) Bl NARY.
03 RESULT- SEQUENCE,
05 SEQUENCE- MAXI MM Pl CTURE 9(09) Bl NARY
VALLE 0.
05 SEQUENCE- LENGTH PI CTURE 9(09) Bl NARY
VALLE 0.
05 SEQUENCE- BUFFER PO NTER
VALUE NULL.
05 SEQUENCE- TYPE PO NTER
VALUE NULL.

Initial storage is assigned to the sequence via SEQALLQC. Elements of an
unbounded sequence are not directly accessible. You can use SEQ&ET and
SEQBET to access specific elements in the sequence.

Note: For details and examples of how to use the APIs pertaining to
sequences, see “SEQALLOC” on page 400, “SEQDUP” on page 404,
“SEQFREE" on page 409, “SEQGET" on page 412, and “SEQSET"” on
page 415.

221

CHAPTER 6 | IDL-to-COBOL Mapping

Mapping for Array Type

Overview

IDL-to-COBOL mapping
for arrays

Example of IDL-to-COBOL
mapping for arrays

222

This section describes how arrays are mapped to COBOL.

An IDL array definition maps directly to the COBOL OOCOURS clause. Each
element of the array is directly accessible.

Note: A COBOL WIRKI NG STCRAGE numeric data item must be defined
and used as the subscript to reference array data (that is, table data). This
subscript value starts at 1 in COBOL, as opposed to starting at 0 in C or
C++.

The example can be broken down as follows:
1. Consider the following IDL:

/1 1D
interface exanpl e
{
typedef long |long_array[2][5];
attribute long_array aarray;
long_array nyop(in long_array nyarray);
B

2. The preceding IDL maps to the following COBOL:

Mapping for Array Type

EEEE R EE R R R R EESE]

* Attribute: aarray
* Mapped nane: aarray
* Type: exanpl e/l ong_array (read/wite)

L R XX

01 EXAVPLE- AARRAY- ARGS.

03 RESULT-1 QOOCURS 2 TI MES.
05 RESULT-2 QOCURS 5 TI MES.
07 RESULT PI CTURE SO(10) Bl NARY.
EEEEE R R R R R R RS EEEEEEEEREEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEE]
* Qperation: nyop
* Mapped nane: nyop
* Argunent s: <i n> exanpl e/ | ong_array nyarray
* Returns: exanpl e/ | ong_array

* User Exceptions: none

LR RS R R R R R TR R R R R EEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEES

01 EXAVPLE- MWYCP- ARGS.

03 MYARRAY- 1 OOCURS 2 TI MES.
05 MYARRAY- 2 OOOLRS 5 Tl MES.

07 MYARRAY Pl CTURE S9(10) Bl NARY.
03 RESUT-1 OOCURS 2 Tl MES.
05 RESULT-2 OOOLRS 5 Tl MES.

07 RESULT Pl CTURE S9(10) Bl NARY.

223

CHAPTER 6 | IDL-to-COBOL Mapping

Mapping for the Any Type

Overview This section describes how anys are mapped to COBOL.
IDL-to-COBOL mapping The IDL any type maps to a COBOL pointer.
for anys
Example of IDL-to-COBOL The example can be broken down as follows:
mapping for anys 1. Consider the following IDL:
/] 1DL
interface exanpl e
{

typedef any a_any;

attribute a_any aany;

a_any nyop(in a_any nyany);
B

2. The preceding IDL maps to the following COBOL:

LR EEE RS EEE SRS SRR T EEEEEE SRR EEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEE]

* Attribute: aany
* Mapped nane: aany
* Type: exanpl e/ a_any (read/ wite)

LR EEE R R EE R EEEE RS EEE]

01 EXAVPLE- AANY- ARGS.

03 RESULT PO NTER
VALUE NULL.
EEEEE R RS S SRS SRR RS SRR RS SRR RS E RS R R R EEEEEEEEEEEEE S
* Qperation: nyop
* Mapped narre: nyop
* Argunents: <i n> exanpl e/ a_any nyany
* Returns: exanpl e/ a_any

* User Exceptions: none
EEEEE RS S S EEEE S E RS SRR RS SRR RS E RS R R EEEEEEEEEEEEE S

01 EXAWPLE- WCP- ARGS.

03 MYANY PQA NTER
VALUE NULL.

03 RESULT PQ NTER
VALUE NULL.

224

Accessing and changing
contents of an any

Mapping for the Any Type

The contents of the any type cannot be accessed directly. Instead you can
use the ANYGET function to extract data from an any type, and use the
ANYSET function to insert data into an any type.

Before you call ANYGET, call TYPEGET to retrieve the type of the any into the
level 01 data name that is generated by the Orbix IDL compiler. This data
item is large enough to hold the largest type name defined in the interface.
Similarly, before you call ANYSET, call TYPESET to set the type of the any.

Refer to “ANYGET” on page 336 and “TYPEGET” on page 438 for details
and an example of how to access the contents of an any. Refer to “ANYSET”
on page 338 and “TYPESET” on page 440 for details and an example of
how to change the contents of an any.

225

CHAPTER 6 | IDL-to-COBOL Mapping

Mapping for User Exception Type

Overview This section describes how user exceptions are mapped to COBOL.

IDL-to-COBOL mapping An IDL exception maps to the following in COBOL:

for exceptions ® Alevel 01 group item that contains the definitions for all the user
exceptions defined in the IDL. This group item is defined in COBOL as
follows:

01 i dl menber name- USER- EXCEPTI ONS.

The group item contains the following level 03 items:

. An EXCEPTI O\ | Dstring that contains a textual description of the
exception.

+ A Ddata name that specifies the ordinal number of the current
exception. Within this each user exception has a level 88 data
name generated with its corresponding ordinal value.

. A Udata name.

. A data name for each user exception, which redefines U. Within
each of these data names are level 05 items that are the
COBOL-equivalent user exception definitions for each user
exception, based on the standard IDL-to-COBOL mapping rules.

® Alevel 01 data name with an EX- FQ\- user except i onnare format,
which has a string literal that uniquely identifies the user exception.
® A corresponding level 01 data name with an

EX- FQ\- user except i onnane- LENGTH format, which has a value

specifying the length of the string literal.

Note: If Dand Uare used as IDL identifiers, they are treated as reserved
words. This means that they are prefixed with I DL- in the generated
COBOL. For example, the IDL identifier, d, maps to the COBOL identifier,
| DL- D.

226

Example of IDL-to-COBOL
mapping for exceptions

Mapping for User Exception Type

The example can be broken down as follows:
1. Consider the following IDL:

interface exanpl e {
exception bad {
| ong val uel;
string<32> reason;

IE

exception worse {
short val ue2;
string<16> errorcode;
string<32> reason;

IE

voi d addNane(in string nane) raises(bad, worse);

}

227

CHAPTER 6 | IDL-to-COBOL Mapping

Raising a user exception

228

2.

The preceding IDL maps to the following COBOL:

LRSS S SRS S SRS S SR SRS SRR RS E SRR E R R SRR EEEEEEEEEEEEE]

* Qperation: AddNane

* Mapped nane: AddNane

* Argunents: <i n> string nane
* Returns: voi d

* User Exceptions: exanpl e/ bad

* exanpl e/ wor se

LR EE SRS EEEEEEEEE RS EEE]
01 EXAVPLE- ADDNAME- ARGS.
03 NAME PQA NTER
VALUE NULL.

LR EEE R R EE R EEE RS EEE]

* User exception bl ock

LR EEE SRR RS S SRS EEE]

01 EX- EXAMPLE- BAD Pl CTURE X(19)
VALLE "I DL: exanpl e/ bad: 1. 0".
01 EX- EXAVPLE- BAD- LENGTH PI CTURE 9(09) BI NARY
VALUE 19.
01 EX- EXAMPLE- WORSE Pl CTURE X(21)
VALLE "I DL: exanpl e/ wor se: 1. 0".
01 EX- EXAWPLE- WCRSE- LENGTH PI CTURE 9(09) BI NARY
VALLE 21.
01 EXAML6- USER- EXCEPTI ONS.
03 EXCEPTION-1 D PO NTER
VALUE NULL.
03 D Pl CTURE 9(10) BI NARY
VALUE O.
88 D NO USEREXCEPTI ON VALLE 0.
88 D EXAMPLE- BAD VALUE 1.
88 D EXAMPLE- WCRSE VALUE 2.
03 U Pl CTURE X(52)

VALUE LOWN VALUES.
03 EXCEPTI ON- EXAVPLE- BAD REDEFI NES U.

05 VALUEL Pl CTURE S9(10) Bl NARY.
05 REASCN Pl CTURE X(32).

03 EXCEPTI O\ EXAMPLE- WIRSE REDEFI NES U,
05 VALUE2 Pl CTURE S9(05) Bl NARY.
05 ERRCROCDE Pl CTURE X(16).
05 REASON Pl CTURE X(32).

Use the 0OAERR function to raise a user exception. Refer to “COAERR” on
page 341 for more details.

Mapping for Typedefs

Mapping for Typedefs

Overview This section describes how typedefs are mapped to COBOL.
IDL-to-COBOL mapping COBOL does not support typedefs directly. Any typedefs defined are output
for typedefs in the expanded form of the identifier that has been defined as a typedef,

which is used in the group levels of the attributes and operations.

Example The example can be broken down as follows:
1. Consider the following IDL:

interface exanpl e
{
typedef fixed<8,2> nillions;
typedef struct database
{
string<40> ful |l _nane;
| ong date_of _birth;
string<10> nationality;
mllions incone;
} personnel ;

attribute mllions dollars;

personnel wages(in string enpl oyee nane, in mllions
new sal ary);

229

CHAPTER 6 | IDL-to-COBOL Mapping

2. Based on the preceding IDL, the attribute and operation argument
buffer is generated as follows:

E R X X

* Attribute: dollars
* Mapped nare: dol |l ars
* Type: exanple/mllions (read/wite)
LRSS S SRS S SRS S SRR SRR RS E S SRS E R R R SRR EEEEEEEEEEEEES
01 EXAVPLE- DOLLARS- ARGS.
03 RESULT Pl CTURE S9(6) VO(2) PACKED DEC MAL.
LR RS S S SRS S S SRS S SRS RS SRR RS EE SRS E R R R EEREEEEEEEEEEEEE]
* (peration: wages
* Mapped name: wages
* Argunents: <in> string enp_nane
* <in> exanple/mllions new sal ary
* Returns: exanpl e/ per sonnel
* User Exceptions: none

LR EEE RS EEEEEEE SRS EEE]

01 EXAWPLE- WACES- ARGS.

03 EMP-NAME PO NTER VALUE NULL.
03 NEW SALARY PI CTURE S9(6) VO(2)
PACKED- DECI MAL.
03 RESULT.
05 FULL- NAME PI CTURE X(40).
05 DATE- CF- Bl RTH Pl CTURE S9(10) Bl NARY.
05 NATI ONALI TY Pl CTURE X(10).
05 | NOOVE PI CTURE S9(6) VO(2)

PACKED- DECI MAL.

3. Each typedef defined in the IDL is converted to a level 88 item in
COBOL, in the typecode section. The string literal assigned to the level
88 item is the COBOL representation of the typecode for this type.
These typecode key representations are used by COBOL applications
when processing dynamic types such as sequences and anys.

230

Mapping for Typedefs

EEEE R EE R R R R EESE]

* Typecode section
* This contains CDR encodi ngs of necessary typecodes.

*

L R XX

01 EXAMR4- TYPE Pl CTURE X(25).
QCPY CORBATYP.
88 EXAWPLE- PERSONNEL VALUE
"1 DL: exanpl e/ per sonnel : 1. 0".
88 EXAMPLE- M LLI ONS VALUE
"1 DL: exanpl e/ m | |'i ons: 1. 0".
88 EXAMPLE- DATABASE VALUE
"1 DL: exanpl e/ dat abase: 1. 0".
01 EXAMVR4- TYPE- LENGTH Pl CTURE S9(09) BI NARY
VALUE 25.

231

CHAPTER 6 | IDL-to-COBOL Mapping

Mapping for the Object Type

Overview This section describes how the obj ect type is mapped to COBOL.
IDL-to-COBOL mapping The IDL obj ect type maps to a PQ NTER in COBOL.

for typedefs

Example The example can be broken down as follows:

1. Consider the following IDL:

interface exanpl e

{

typedef (hject a_object;

attribute a object aobject;

a_obj ect nyop(in a object nyobject);
}

2. The preceding IDL maps to the following COBOL:

EEEEE R RS S SRS S S SR RS SRR RS SRR RS RS E R R SRR EEEEEEEEE S

* Attribute: aobj ect
* Mapped nane: aobj ect
* Type: exanpl e/ a_obj ect (read/wite)
LR EEE SRR EEE SRS EEES
01 EXAVPLE- ACBIECT- ARGS.
03 RESULT PO NTER VALUE NULL.

LR EEE R EEE R R EE R EEEEEEEEEEEEEEEEEEEREEEEEEEEEEEEEEEEEEEEE]

* (peration: nyop

* Mapped nane: nyop

* Argurnent s: <i n> exanpl e/ a_obj ect nyobj ect
* Returns: exanpl e/ a_obj ect

* User Exceptions: none
khkkkhkhkkhkhkhkhkhkhkhkhhkhkhhkhkhhhhhhkhhhhhhhhhhhhhkhhhdhhhhhhhhkhhhhhhhhhk
01 EXAVPLE- MYCP- ARGS.

03 My- CBJECT PO NTER VALUE NULL.

03 RESULT PO NTER VALUE NULL.

232

Mapping for Constant Types

Mapping for Constant Types

Overview This section describes how constant types are mapped to COBOL.
IDL-to-COBOL mapping Each set of const definitions at a different scope are given a unique 01 level
for constants COBOL name, where at root scope this name is

Q.CBA -i dl menber name- OONSTS. All other 01 levels are the fuly scoped name
of the module /i nt er f ace- GONSTS.

You can use the - O argument with the Orbix IDL compiler, to override the
i dl menber nare with an alternative, user-defined name.

Example The example can be broken down as follows:

1. Consider the following IDL:
/1 1DL
const unsi gned | ong nyul ong =1000;

const unsigned short nyushort = 10;

nodul e exanpl e

{
const string<l0> nystring="testing";
interface exanpl el
{
const |ong nyl ong = 1000;
const short nyshort = -10;
B
i nterface exanpl e2
{
const float nyfloat =10.22;
const doubl e nydoubl e = 11. 33;
B
}il

2. The preceding IDL maps to the following COBOL:

233

CHAPTER 6 | IDL-to-COBOL Mapping

Example 16: COBOL Example for Constant Types (Sheet 1 of 2)

LRSS S SRS S S SRS SRR E SR RS EE RS EE R SRR EEEEEEEEEEEEES

* Constants in root scope:

LR EEEEEEEE SRR R EE RS EESS

01 GCBAL- EXAML8- QONSTS.

03 MYULONG Pl CTURE 9(10) Bl NARY
VALLE 1000.

03 MYUSHCRT Pl CTURE 9(05) Bl NARY
VALLE 10.

LR EEEEEEEE R EEEEE RS EEEEEEEEEEEEEEEEEEEEEEEEEEEEEEREEEEEEEEEESS

* Constants in exanpl e:

RS RS SRS RS SRS EE R SRR SR RS REEEE RS RS EEE SRR EEEEEEREREEE]

01 EXAMPLE- GONSTS.

03 MYSTR NG Pl CTURE X(07)

VALLE "testing".

RS RS SRS RS SRS SRR RS RE SRR SR EE SRR R SRR R SR EEEEEEEEEEEEEE]

* |Interface:

* exanpl e/ exanpl el

*

* Mapped narre:

* exanpl e- exanpl el

*

* Inherits interfaces:

* (none)
LR EEEEEEEE R EEEE RS EEEEEEEEEEEEEEEEEEEEEEEEEEEEEEREEEEEEEEEESS

E o R X X

* Constants in exanpl e/ exanpl el:

LR EEEEEEEE R EEEE RS EEEEEEEEEEEEEEEEEEEEEEEEEEEEEEREEEEEEEEEESS

01 EXAVPLE- EXAMPLEL- CONSTS.

03 MYLONG Pl CTURE S9(10) Bl NARY
VALLE -1000.

03 MYSHORT Pl CTURE S9(05) Bl NARY
VALLE -10.

LR EEEEEEEE R EE RS EEEEEEEEEEEEEEEEEEEEEEEEEEEEEEREEEEEEEEEESS

* |Interface:
* exanpl e/ exanpl e2

*

* Mapped narre:
* exanpl e- exanpl e2

*

* Inherits interfaces:

* (none)
LR EEE R R EE R EEE RS EEEEEEEEEEEEEEEEEEEEEEEEEEEEEEREEEEEEEEEESS

LR EEE SRR EE SRS EESE]

* Constants in exanpl e/ exanpl e2:

234

Mapping for Constant Types

Example 16: COBOL Example for Constant Types (Sheet 2 of 2)

LRSS R RS S S E S SRS E SRS E RS SRR E R R R SRR EEEEEEEEEEEEEES

01 EXAWPLE- EXAVPLE2- CONSTS.
03 MYFLQAT

03 MYDOUBLE

OOWPUTATI ONAL- 1

VALLE 1. 022e+01.

OCOMPUTATI ONAL- 2

VALUE 1. 133e+01.

235

CHAPTER 6 | IDL-to-COBOL Mapping

Mapping for Operations

Overview

IDL-to-COBOL mapping for
operations

236

This section describes how IDL operations are mapped to COBOL.

An IDL operation maps to a number of statements in COBOL as follows:

1.

A 01 group level is created for each operation. This group level is
defined in the i dl mrenber nane copybook and contains a list of the
parameters and the return type of the operation. If the parameters or
the return type are of a dynamic type (for example, sequences,
unbounded strings, or anys), no storage is assigned to them. The 01
group level is always suffixed by - ARGS (that is,

FQ\- oper at i onnare- ARGS).

A 01 level is created for each interface, in the i dl menber narre
copybook, with a PI CTURE clause that contains the length of the
longest operation/attribute name within that interface. The value of the
Pl CTURE clause corresponds to the length of the largest operation or
attribute name plus one, for example:

01 FQN\ CPERATI CN PI CTURE X(maxoper at i onnanest ri ng+1)

The extra space is added because the operation name must be
terminated by a space when it is passed to the COBOL runtime by
CRBEXEC.

A level 88 item is also created as follows for each operation, with a
value clause that contains the string literal representing the operation
name:

88 FQ\ oper at i onnarre VALLE "operati on-nane-string".

A level 01 item is also created as follows, which defines the length of
the maximum string representation of the interface operation:

01 FQ\ CPERATI ON- LENGTH PI CTURE9(09) BI NARY
VALLE rmaxoper at i onnamest ri ng+1

Mapping for Operations

3. The preceding identifiers in point 2 are referenced in a sel ect clause
that is generated in the i dI nenber naneD copybook. This sel ect clause
calls the appropriate operation paragraphs, which are discussed next.

4. The operation/attribute procedures are generated in the
i dl menber nameS source member when you specify the - Z argument
with the Orbix IDL compiler.

Example The example can be broken down as follows:
1. Consider the following IDL:

interface exanpl e
{
I ong ny_operationl(in |long nyl ong);
short ny_operation2(in short nyshort);
b

2. Based on the preceding IDL, the following COBOL is generated in the
i dl menber name copybook:

E R R XX

* Qperation: ny_operationl
* Mapped name: ny_operationl
* Argunents: <in> |ong nyl ong
* Returns: |ong
* User Exceptions: none
IR E R RS SRR SRS SRR R SRR RS E RS R SR EREEEEEEEEEEEEEEEEEEEEEEEEEEEES]
01 EXAMVPLE- MY- CPERATI ON1- ARGS.
03 MYLONG Pl CTURE S9(10) BI NARY.
03 RESULT Pl CTURE S9(10) BI NARY.
LRSS S SR RS S E SRS S SRR SRR S SRR R R R R SRR EEEEEEEEEEEEE]
* Qperation: ny_operation2
* Mapped name: ny_oper ation2
* Argunents: <in> short nyshort
* Returns: short
* User Exceptions: none
LR E RS S S SRR S S S S S SRR SRR S SRR SRR R SRR EEEEEEEEEEEEE]
01 EXAVPLE- MY- CPERATI O\2- ARGS.
03 MYSHCRT PI CTURE S9(05) Bl NARY.
03 RESULT Pl CTURE S9(05) BI NARY.

237

CHAPTER 6 | IDL-to-COBOL Mapping

3. The following code is also generated in the i dl menber name copybook:

LRSS S SRS S SRS S SR SRS SRR RS E SRR E R R SRR EEEEEEEEEEEEE]
*

* (peration List section

* This lists the operations and attributes which an

* interface supports

*

LR RS S SRS S E RS S SR SRS SRR RS EE SRS E R R EEEEEEEEEEEEEEEE]

01 EXAMVPLE- CPERATI ON Pl CTURE X(30).
88 EXAWPLE- MY- CPERATI ONL VALUE
"ny_operationl: | DL: exanpl e: 1. 0".
88 EXAVPLE- MY- CPERATI ON\2 VALUE
"ny_operation2: | DL: exanpl e: 1. 0".
01 EXAVPLE- CPERATI ON- LENGTH Pl CTURE 9(09) Bl NARY
VALLE 30.

4. The following code is generated in the i dI menber nameD copybook
member:

EVALUATE TRUE
WHEN EXAMPLE- MY- CPERATI ONL
PERFCRM DO- EXAMPLE- MY- CPERATI ONL
WHEN EXAMPLE- MY- CPERATI ON\2
PERFCRM DO- EXAMPLE- MY- CPERATI ON\2
END- EVALUATE

5. The following is an example of the code in the i dl menber nameS source
member:

Example 17: Server Mainline Example for Operations (Sheet 1 of 3)

PROCEDURE DM S| ON
ENTRY " DI SPATCH'.
CALL "COAREQ' USI NG REQUEST- | NFQ
SET W& COAREQ TO TRUE.
PERFORM CHECK- STATUS.
* Resol ve the pointer reference to the interface nane which
* is the fully scoped interface name
CALL "STRCGET" USI NG | NTERFACE- NAME
W&- | NTERFACE- NAME- LENGTH
W5 | NTERFACE- NAME.
SET W5 STRGET TO TRUE.
PERFCORM CHECK- STATUS.

LRSS SRR RS S S SRS S SR SRS E SRR RS EE RS EE R SRR EEEEEEEEEEEEES

238

Mapping for Operations

Example 17: Server Mainline Example for Operations (Sheet 2 of 3)

* Interface(s) :

EEEEEEEEE RS RS RS EEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEESESES

MOVE SPACES TO EXAVPLE- CPERATI ON

LR EEE SR E RS RS RS EEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEESESES

* Bval uate Interface(s) :

LRSS R RS S S E S SRS SRR RS SRR RS SRR SRR R SRR EEEEEEEEEEEEES

EVALUATE W\&- | NTERFACE- NAVE
WHEN ' | DL: exanpl e: 1. 0'

* Resol ve the pointer reference to the operation infornation
CALL "STRGET" USI NG CPERATI ON- NAME
EXAMPLE- CPERATI ON- LENGTH
EXAMPLE- CPERATI ON
SET W5 STRGET TO TRUE
PERFORM CHECK- STATUS
END- EVALUATE.

CCPY EXAMRID.
GOBACK

DO EXAMPLE- MY- CPERATI ONL.
CALL "QOQOAGET" USI NG EXAMPLE- MY- CPERATI ONL- ARGS.
SET W& COAGET TO TRUE
PERFCRM CHECK- STATUS.

* TCDQ Add your operation specific code here

CALL "QOAPUT" USI NG EXAMPLE- MY- CPERATI ONL- ARGS.
SET Ws- COAPUT TO TRUE.
PERFCRM CHECK- STATUS.

DO EXAMPLE- MY- CPERATI ON\2.
CALL "OQOAGET" USI NG EXAVPLE- MY- CPERATI ON\2- ARGS.
SET W&- CQACET TO TRUE
PERFCRM CHECK- STATUS.

* TCDQ Add your operation specific code here
CALL "COAPUT" USI NG EXAVPLE- MY- CPERATI ON\2- ARGS.

SET W&- COAPUT TO TRUE
PERFCRM CHECK- STATUS.

LR R R R R R RS EES]

239

CHAPTER 6 | IDL-to-COBOL Mapping

Example 17: Server Mainline Example for Operations (Sheet 3 of 3)

* Check Errors Copybook

LR EEEEEEEE SRS SRS EESE]

CCPY CGHKERRS.

240

Mapping for Attributes

Mapping for Attributes

Overview

Similarity to mapping for
operations

IDL-to-COBOL mapping for
attributes

This section describes how IDL attributes are mapped to COBOL.

The IDL mapping for attributes is very similar to the IDL mapping for
operations, but with the following differences:

IDL attributes map to COBOL as level 88 items with a - GET- and - SET-
prefix. Two level 88 items are created for each attribute (that is, one
with a - GeT- prefix, and one with a - SET- prefix). However, readonly
attributes only map to one level 88 item, with a - GET- prefix.

An attribute’s parameters are always treated as return types (that is, a
01 group level created for a particular attribute always contains just
one immediate sub-element, RESULT).

An IDL attribute maps to a number of statements in COBOL as follows:

1.

A 01 group level is created for each attribute. This group level is
defined in the i dl nrenber nane copybook and contains one immediate
sub-element, RESWLT. If the attribute is a complex type, the RESULT
sub-element contains a list of the attribute’s parameters as lower-level
elements. If the parameters are of a dynamic type (for example,
sequences, unbounded strings, or anys), no storage is assigned to
them. The 01 group level is always suffixed by - ARGS (that is,

FQ\-at t ri but ename- ARGS).

A 01 level is created for each interface, in the i dl menber narre
copybook, with a PI CTURE clause that contains the length of the
longest operation/attribute name within that interface. The value of the
Pl CTURE clause corresponds to the length of the largest operation or
attribute name plus one, for example:

01 FQ\ CPERATI ON Pl CTURE X(maxoper at i onnanest ri ng+1)

The extra space is added because an operation name must be
terminated by a space when it is passed to the COBOL runtime by
CRBEXEC.

241

CHAPTER 6 | IDL-to-COBOL Mapping

Two level 88 items are also created as follows for each attribute, with
-CET- and - SET- prefixes, and value clauses that contain the string
literal representing the attribute name:

88 FQ\- GET-attri but enane VALUE
" get_attribute_nane_string".
88 FQ\ SET-attri but enane VALUE

" _set_attribute_nane_string".

Note: In the case of readonly attributes, only one level 88 item is
created, with a - GET- prefix. Level 88 items are created under the
same 01 level for all attributes and operations that correspond to a
particular interface.

A level 01 item is also created as follows, which defines the length of
the maximum string representation of the interface operation:

01 FQ\ CPERATI ONF LENGTH PI CTURE9(09) BI NARY
VALUE rmaxoper at i onnamest ri ng+1

3. The preceding identifiers in point 2 are referenced in a sel ect clause
that is generated in the i dI nenber naneD copybook. This sel ect clause
calls the appropriate operation paragraphs, which are discussed next.

4. The operation/attribute procedures are generated in the
i dl menber naneS source member when you specify the -z argument
with the Orbix IDL compiler.

Example The example can be broken down as follows:
1. Consider the following IDL:

interface exanpl e

{
readonly attribute | ong nyl ong;
attribute short nyshort;

}

242

Mapping for Attributes

Based on the preceding IDL, the following COBOL is generated in the
i dl menber nane copybook:

B R XX

* Attribute: nyl ong

* Mapped name: nyl ong

* Type: I ong (readonly)

LRSS SRR S SRS S SRR SRS S SRR SRR R SRR SRR EEEEEEEEEE]
01 EXAMPLE- MYLONG ARGS.

03 RESULT Pl CTURE S9(10) BI NARY.
LRSS S SRR S SRR S S SRR SRS S SRR R RS EREEEEEEEEEEEEEE]
* Attribute: nyshort
* Mapped name: nyshort
* Type: short (read/wite)

LR EEE R R R R EEEE T EEEEEEEEREEEEEEEEEEEEREEEEEEEREEEEEEEEEEEEESE]
01 EXAMPLE- MYSHORT- ARGS.
03 RESULT Pl CTURE S9(05) Bl NARY.

The following code is also generated in the i dI menber name copybook:

01 EXAWPLE- CPERATI ON Pl CTURE X(29) .
88 EXAMPLE- CET- MYLONG VALUE
" _get _nyl ong: | DL: exanpl e: 1. 0".
88 EXAMPLE- GET- MYSHORT VALUE
"_get _nyshort:|DL: exanpl e: 1. 0".
88 EXAMPLE- SET- MYSHORT VALUE
" _set_nyshort: | DL: exanpl e: 1. 0".
01 EXAWPLE- CPERATI CN- LENGTH Pl CTURE 9(09) BI NARY
VALUE 29.

The following code is generated in the i dl menber nameD copybook
member:

EVALUATE TRUE
WHEN EXAMPLE- GET- WLONG
PERFCRM DO EXAMPLE- GET- MYLONG
WHEN EXAMPLE- GET- MYSHORT
PERFCRM DO EXAMPLE- GET- MYSHORT
WHEN EXAMPLE- SET- MYSHORT
PERFCRM DO- EXAMPLE- SET- MYSHORT

END- EVALUATE

The following is an example of the code in the i dI menber naneS source
member:

243

CHAPTER 6 | IDL-to-COBOL Mapping

Example 18: Server Mainline Example for Attributes (Sheet 1 of 2)

PROCEDURE DM SI ON
ENTRY "Dl SPATCH'.
CALL "COAREQ' USI NG REQUEST- | NFQ
SET W5 COAREQ TO TRUE.
PERFCORM CHECK- STATUS.
* Resolve the pointer reference to the interface nane which
* is the fully scoped interface nane
CALL "STRCGET" USI NG | NTERFACE- NAME OF REQUEST- | NFO
W\B- | NTERFACE- NAME- LENGTH
W\B- | NTERFACE- NAME.
SET W5 STRGET TO TRUE
PERFORM CHECK- STATUS.

LR EEE SRR EE SRS EES]

* Interface(s) :

E o R R X X

MOVE SPACES TO EXAMPLE- CPERATI ON

E o R R X X

* Eval uate Interface(s) :

LR EEEEEEEE R EESS

EVALUATE W5- | NTERFACE- NAME
WHEN ' | DL: exanpl e: 1. 0

* Resol ve the pointer reference to the operation information
CALL "STRCGET" USI NG CPERATI ON- NAME CF REQUEST- | NFO
EXAMPLE- CPERATI ON- LENGTH
EXAVPLE- CPERATI ON
SET W& STRCGET TO TRUE
PERFCRM CHECK- STATUS
END- EVALUATE.

QCPY EXAMPLD.
QGBACK.

DO EXAMPLE- GET- MYLONG
CALL "OOACET" US| NG EXAVPLE- MYLONG ARGS.
SET W5 COAGET TO TRUE
PERFCRM CHECK- STATUS.
* TCDQ Add your operation specific code here

CALL "QCOAPUT" USI NG EXAMPLE- MYLONG ARGS.
SET W5- COAPUT TO TRUE

244

Mapping for Attributes

Example 18: Server Mainline Example for Attributes (Sheet 2 of 2)
PERFCRM CHECK- STATUS.

DO EXAMPLE- GET- MYSHCRT.
CALL "OOAGET" USI NG EXAMPLE- MYSHORT- ARGS.
SET Ws- COAGET TO TRUE
PERFCRM CHECK- STATUS.

* TCDQ Add your operation specific code here

CALL "COAPUT" USI NG EXAMPLE- MYSHORT- ARGS.
SET W& COAPUT TO TRUE.
PERFCRM CHECK- STATUS.

DO EXAMPLE- SET- MYSHCRT.
CALL "QOACGET" USI NG EXAMPLE- MYSHCRT- ARGS.
SET Ws- COAGET TO TRUE
PERFCRM CHECK- STATUS.

* TCDQ Add your operation specific code here

CALL "QQOAPUT" USI NG EXAMPLE- MYSHCRT- ARGS.
SET Ws- COAPUT TO TRUE.
PERFCRM CHECK- STATUS.

kkkhkhkhkhkhhhhhkhhhhhhkhkhkhhhhhkhkhhhhhhkhkhkhhhhkkkhhhhkkhkkhhhkkkhkhkx

* Check Errors Copybook

LR R R R EEEE TS EESS

OCPY GHKERRS.

245

CHAPTER 6 | IDL-to-COBOL Mapping

Mapping for Operations with a Void Return
Type and No Parameters

Overview This section describes how IDL operations that have a void return type and
no parameters are mapped to COBOL.

Example The example can be broken down as follows:
1. Consider the following IDL:

interface exanpl e

{
%

voi d nyoperation();

2. The preceding IDL maps to the following COBOL:

Example 19: COBOL Example for Void Return Type (Sheet 1 of 2)

E R R X)

* | nterface:

* exanpl e
*

* Mapped nane:
* exanpl e

*

* Inherits interfaces:
* (none)

Kk kkkhhkkhhhhhkhhhhhhkhkhkhhhhhkhkhhhhhkhkhhhhhhkhkhhkhhhkhkhkhkhhhhkhkkkhh k%

LRSS SRR S SRR S S SR SRS E SRR RS E SRR RS R R RS SRR EEEEEEEEEEEESES

* Qperation: nyoper ati on
* Mapped nane: nyoper ati on
* Argurent s: None
* Returns: voi d

* User Exceptions: none
LRSS SRR RS S SRS S SRR E SRR RS EE SRR EE R SRR EEEEEEEEEEEESES

01 EXAVPLE- MYCPERATI ON- ARGS.

03 FILLER Pl CTURE X(01).
LRSS SRR RS S S SRS S SR SRS E SRR RS EE RS EE R SRR EEEEEEEEEEEESS
CCPY EXAMLOX

E o R X X

246

Mapping for Operations with a Void Return Type and No Parameters

Example 19: COBOL Example for Void Return Type (Sheet 2 of 2)

LRSS R RS S S E S SRS E SRS E RS SRR E R R R SRR EEEEEEEEEEEEEES

*

* (peration List section
* This lists the operations and attributes which an
* interface supports

*

RS S S S RS S S SRS SRR RS SRR RS SRR SRR R SRR E RS EEEEEEEEEE]

01 EXAVPLE- CPERATI ON Pl CTURE X(28).
88 EXAMPLE- MYCPERATI ON VALUE
"nyoperation: | DL: exanpl e: 1. 0".
01 EXAVPLE- CPERATI ONF LENGTH Pl CTURE 9(09)

Bl NARY VALLE 28.

Note: The filler is included for completeness, to allow the application to
compile, but the filler is never actually referenced. The other code
segments are generated as expected.

247

CHAPTER 6 | IDL-to-COBOL Mapping

Mapping for Inherited Interfaces

Overview This section describes how inherited interfaces are mapped to COBOL.
IDL-to-COBOL mapping for An IDL interface that inherits from other interfaces includes all the attributes
inherited interfaces and operations of those other interfaces. In the header of the interface being

processed, the Orbix IDL compiler generates an extra comment that
contains a list of all the inherited interfaces.

Example The example can be broken down as follows:
1. Consider the following IDL:

interface Account

{
attribute short nybaseshort;
voi d nybasefunc(in | ong nybasel ong);
b
interface Savi ngAccount : Account
{
attribute short nyshort;
voi d nyfunc(in |ong nyl ong);
b

2. The preceding IDL maps to the following COBOL in the i dI menber nane
copybook:

Example 20: id/imembernameX Copybook Example (Sheet 1 of 4)

LRSS S SRS S SRS S E R RS SRS SRR SRR R R SRR EEEEEEEEEEEEES

I nterface:
Account

Mapped nane:
Account

Inherits interfaces:
(none)

LRSS S SRS SRS S SR SRS E SR RS SRR RS R R R SRR EEEEEEEEEEEESES

*
*
*
*
*
*
*
*

248

Mapping for Inherited Interfaces

Example 20: id/imembernameX Copybook Example (Sheet 2 of 4)

LRSS R RS S S E S SRS E SRS E RS SRR E R R R SRR EEEEEEEEEEEEEES

* Attribute: nybaseshor t
* Mapped name: nybaseshort
* Type: short (read/wite)

LR EEE SR E RS RS RS EEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEESESES

01 AGCOUNT- MYBASESHCRT- ARGS.

03 RESULT Pl CTURE S9(05)
Bl NARY.
LR R R R R R RS EEES
* Qperation: nybasef unc
* Mapped narre: nybasef unc
* Argunents: <i n> | ong nybasel ong
* Returns: voi d

* User Exceptions: none
RS R R SRR RS SRS RS RS R RS R ERE R R SRR R SRR EREEEEREEEEEEEREEEEE]
01 AGCOOUNT- MYBASEFUNG ARGS.
03 MYBASELONG Pl CTURE S9(10)
Bl NARY.

E R)

* |Interface:

* Savi ngAccount
*

* Mapped narre:

* Savi ngAccount
*

* |Inherits interfaces:
* Account

E o)

LR EEEEEE RS RS RS EESES

* Attribute: nyshort
* Mapped name: nyshort
* Type: short (read/wite)

LR R R RS EE RS EEES

01 SAVI NGAGCOOUNT- MYSHORT- ARGS.

03 RESULT Pl CTURE S9(05)
Bl NARY.
SRR R R R RS SRS SRS SRR R R R R R EEREREEEEEEEEEEEEEEEEEEEEEEEEE]
* Attribute: nybaseshor t
* Mapped name: nybaseshort
* Type: short (read/wite)

LR EEEE SR RS RS RS EEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEESESES

01 SAVI NGACCCUNT- MYBASESHCRT- ARGS.
03 RESULT PI CTURE S9(05)
Bl NARY.

249

CHAPTER 6 | IDL-to-COBOL Mapping

250

Example 20: /d/imembernameX Copybook Example (Sheet 3 of 4)

LRSS S SRS S S SRS SRR E SR RS EE RS EE R SRR EEEEEEEEEEEEES

* Qperation: nyf unc

* Mapped narre: nyf unc

* Argunents: <i n> | ong nyl ong
* Returns: voi d

* User Exceptions: none
LRSS SRR RS S S SRS S SR SRS E SRR RS EE RS EE R SRR EEEEEEEEEEEESS

01 SAVI NGAGCCOUNT- MYFUNG- ARGS.

03 MYLONG PI CTURE S9(10)
Bl NARY.
LR EEEEEEEE SRS SRS EESS
* Qperation: nybasef unc
* Mapped narre: nybasef unc
* Argurents: <i n> | ong nybasel ong
* Returns: voi d

* User Exceptions: none
RS RS SRS RS SRS EE RS E R SRR RS EEEE RS RS E R SRR EEEEEEREREEE]
01 SAVI NGACOOUNT- MYBASEFUNG: ARGS.
03 MYBASELONG Pl CTURE S9(10)
Bl NARY.

LR EEEEEEEE R EESS

*

* Qperation List section
* This lists the operations and attributes which an

* interface supports
*

LR EEEEEEEE R EEEE RS EEEEEEEEEEEEEEEEEEEEEEEEEEEEEEREEEEEEEEEESS

01 ACOOUNT- CPERATI ON Pl CTURE X(33).
88 ACOOUNT- GET- MYBASESHCRT VALUE
" _get _nybaseshort: | DL: Account: 1. 0".
88 ACOOUNT- SET- MYBASESHCRT VALUE
" _set_nybaseshort: | DL: Account: 1. 0".
88 ACOOUNT- MYBASEFUNC VALUE
"nybasef unc: | DL: Account : 1. 0".
01 AGCCOOUNT- CPERATI ON- LENGTH Pl CTURE 9(09)
Bl NARY VALUE 33.
01 SAVI NGACOOUNT- CPERATI ON Pl CTURE X(39).
88 SAVI NGACOOUNT- GET- MYSHORT VALUE
" _get_nyshort: | DL: Savi ngAccount : 1. 0".
88 SAVI NGACOOUNT- SET- MYSHORT VALUE
"_set_nyshort: | DL: Savi ngAccount : 1. 0".
88 SAVI NGACOOUNT- MYFUNC VALUE
“nyfunc: | DL: Savi ngAccount : 1. 0".
88 SAVI NGACOOUNT- GET- MYBASESHCRT VALUE

" _get _nybaseshort: | DL: Savi ngAccount: 1. 0".

Mapping for Inherited Interfaces

Example 20: id/imembernameX Copybook Example (Sheet 4 of 4)

88 SAVI NGACOOUNT- SET- MYBASESHCRT VALUE
" _set_nybaseshort: | DL: Savi ngAccount : 1. 0".
88 SAVI NGACCOUNT- MYBASEFUNC VALUE
"nybasef unc: | DL: Savi ngAccount : 1. 0".
01 SAVI NGACOCUNT- CPERATI ON- LENGTH Pl CTURE 9(09)
Bl NARY VALUE 39.

3. The following code is generated in the i dI menber nameD copybook:

EVALUATE TRUE

WHEN ACOOUNT- GET- MYBASESHCRT

PERFCRM DO ACOOUNT- GET- MYBASESHORT
WHEN ACOOUNT- SET- MYBASESHCRT

PERFCRM DO- AGCOUNT- SET- MYBASESHORT
WHEN ACOOUNT- MYBASEFUNC

PERFCRM DO- ACCOUNT- MYBASEFUNC
WHEN SAVI NGAGOCOUNT- GET- MYSHCRT

PERFCRM DO SAVI NGACOOUNT- GET- MYSHORT
WHEN SAVI NGACOCUNT- SET- MYSHORT

PERFCRM DO- SAVI NGAGCOUNT- SET- MYSHCRT
WHEN SAVI NGACOOUNT- MYFUNC

PERFCRM DO SAVI NGACCOUNT- MYFUNC
WHEN SAVI NGACOCOUNT- GET- MYBASESHCRT

PERFCRM DO SAVI NGACOCOUNT- GET- MYBA- 6FF2
WHEN SAVI NGACOCUNT- SET- MYBASESHORT

PERFCRVI DO- SAVI NGAGCOOUNT- SET- MYBA- AE11
WHEN SAVI NGACOCOUNT- MYBASEFUNC

PERFCRM DO SAVI NGACCOUNT- MYBASEFUNC

END- EVALUATE

4. The following is an example of the code in the i dI menber namesS server
implementation program:

Example 21: Server Mainline Example (Sheet 1 of 4)

E O R)

* Interface(s) :

LR R R R EEEE RS EESS

MOVE SPACES TO AGCOOUNT- CPERATI N
MOVE SPACES TO SAVI NGACOOUNT- CPERATI ON

E o)

* Evaluate Interface(s) :

LR R R R R R RS EES]

251

CHAPTER 6 | IDL-to-COBOL Mapping

Example 21: Server Mainline Example (Sheet 2 of 4)

EVALUATE W5- | NTERFACE- NAME
WHEN ' | DL: Account : 1. O'

* Resol ve the pointer reference to the operation information
CALL "STRCGET" USI NG CPERATI ON- NAME
ACOOUNT- CPERATI O\ LENGTH
ACOOUNT- CPERATI N
SET W& STRCGET TO TRUE
PERFCRM CHECK- STATUS
WHEN ' | DL: Savi ngAccount : 1. 0

* Resol ve the pointer reference to the operation information
CALL "STRCGET" USI NG CPERATI CN- NAMVE
SAVI NGACCOUNT- CPERATI ON- LENGTH
SAVI NGACCOUNT- CPERATI ON
SET W5 STRGET TO TRUE
PERFCRM CHECK- STATUS
END- EVALUATE.

CCPY EXAMROD.
GCBACKK.

DO ACOOUNT- GET- MYBASESHCRT.
CALL " COACET" USI NG ACOOUNT- MYBASESHORT- ARGS.
SET W5- COAGET TO TRUE
PERFCRM GHECK- STATUS.

* TCDQ Add your operation specific code here

CALL " GOAPUT" USI NG ACOCOUNT- MYBASESHCORT- ARGS.
SET W5 COAPUT TO TRUE
PERFCRM GHECK- STATUS.

DO- ACCOUNT- SET- MYBASESHCRT.
CALL "QCOAGET" USI NG ACOOUNT- MYBASESHORT- ARGS.
SET W5- COAGET TO TRUE
PERFCRM CHECK- STATUS.

* TCDQ Add your operation specific code here

CALL "QCOAPUT" USI NG ACOOUNT- MYBASESHORT- ARGS.
SET W5- COAPUT TO TRUE
PERFCRM CHECK- STATUS.
DO ACOOUNT- MYBASEFUNC.
CALL "QOOAGET" USI NG ACCOUNT- MYBASEFUNG- ARGS.

252

Mapping for Inherited Interfaces

Example 21: Server Mainline Example (Sheet 3 of 4)

SET W& COAGET TO TRUE
PERFCRM CHECK- STATUS.

* TCDQ Add your operation specific code here

CALL "QOAPUT" USI NG ACOOUNT- MYBASEFUNC- ARGS.
SET W& COAPUT TO TRUE.
PERFCRM CHECK- STATUS.

DO SAVI NGAGCOOUNT- GET- MYSHORT.
CALL "OOAGET" USI NG SAVI NGACOCUNT- MYSHCORT- ARGS.
SET Ws- COAGET TO TRUE
PERFCRM CHECK- STATUS.

* TCDQ Add your operation specific code here

CALL "QOAPUT" USI NG SAVI NGACOOUNT- MYSHCRT- ARGS.
SET W& COAPUT TO TRUE.
PERFCRM CHECK- STATUS.
DO SAVI NGACCOUNT- SET- MYSHCRT.
CALL "OOAGET" USI NG SAVI NGACOCUNT- MYSHCORT- ARGS.
SET W5- COAGET TO TRUE
PERFCRM GHECK- STATUS.

* TCDQ Add your operation specific code here

CALL "QOQOAPUT" USI NG SAVI NGACOOUNT- MYSHCRT- ARGS.
SET W5 COAPUT TO TRUE.
PERFCORM CHECK- STATUS.
DO SAVI NGACCOUNT- MYFUNC,

CALL "OQAGET" USI NG SAVI NGACOOUNT- MYFUNG- ARGS.
SET W5 COACET TO TRUE.
PERFCRM CHECK- STATUS.

* TCDQ Add your operation specific code here

CALL "QCQOAPUT" USI NG SAVI NGACCOUNT- MYFUNG- ARGS.
SET W&- COAPUT TO TRUE
PERFCRM CHECK- STATUS.
DO SAVI NGACOOUNT- GET- MYBA- 6FF2.
CALL "QOACGET" USI NG SAVI NGAGCOOUNT- MYBASESHORT- ARGS.
SET Ws- COAGET TO TRUE
PERFCRM CHECK- STATUS.

* TCDQ Add your operation specific code here

CALL "QQOAPUT" USI NG SAVI NGAGCOOUNT- MYBASESHCORT- ARGS.

253

CHAPTER 6 | IDL-to-COBOL Mapping

Example 21: Server Mainline Example (Sheet 4 of 4)

SET W5 COAPUT TO TRUE
PERFCRM CHECK- STATUS.
DO SAVI NGACCOUNT- SET- MYBA- AE11.
CALL "QCOACGET" USI NG SAVI NGACOOUNT- MYBASESHORT- ARGS.
SET W5- COAGET TO TRUE
PERFCRM GHECK- STATUS.

* TCDQ Add your operation specific code here

CALL "GQOAPUT" USI NG SAVI NGACOOUNT- MYBASESHORT- ARGS.
SET W5- COAPUT TO TRUE
PERFCRM GHECK- STATUS.

DO SAVI NGACCOUNT- MYBASEFUNC
CALL "QCOAGET" USI NG SAVI NGACOOUNT- MYBASEFUNC- ARGS.
SET W5- COAGET TO TRUE
PERFCRM CHECK- STATUS.

* TODQO Add your operation specific code here

CALL "QCOAPUT" USI NG SAVI NGACOOUNT- MYBASEFUNC- ARGS.
SET W5- COAPUT TO TRUE
PERFCRM CHECK- STATUS.

LR EEEEEEEE R EEEE RS EEEEEEEEEEEEEEEEEEEEEEEEEEEEEEREEEEEEEEEESS

* Check Errors Copybook

LR EEE SRR EEE RS EESS

CCPY GKERRS.

254

Mapping for Multiple Interfaces

Mapping for Multiple Interfaces

Overview This section describes how multiple interfaces are mapped to COBOL.

Example The example can be broken down as follows:
1. Consider the following IDL:

i nterface exanpl el

{
readonly attribute |ong nyl ong;
attribute short nyshort;

B

i nterface exanpl e2

{
readonly attribute |ong nyl ong;
attribute short nyshort;

I

2. Based on the preceding IDL, the following code is generated in the
i dl menber naneS member:

Example 22: Server Implementation Example (Sheet I of 3)

ENTRY "Dl SPATCH'.
CALL "COAREQ' USI NG REQUEST- | NFO
SET W5 COAREQ TO TRUE.
PERFCRM CHECK- STATUS.
* Resolve the pointer reference to the interface nane which
* is the fully scoped interface nane
CALL "STRCGET" USI NG | NTERFACE- NAME
W\&- | NTERFACE- NAME- LENGTH
V- | NTERFACE- NAME.
SET W5 STRCET TO TRUE
PERFORM CHECK- STATUS.

LR EE SRS EE RS RS RS EEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEESESES

* Interface(s) :

E o R)

MOVE SPACES TO EXAMVPLEL- CPERATI ON
MOVE SPACES TO EXAVPLE2- CPERATI ON

255

CHAPTER 6 | IDL-to-COBOL Mapping

Example 22: Server Implementation Example (Sheet 2 of 3)

LRSS S SRS S S SRS SRR E SR RS EE RS EE R SRR EEEEEEEEEEEEES

* Eval uate Interface(s) :

LR EEEEEEEE SRR R EE RS EESS

EVALUATE W5- | NTERFACE- NAME
WHEN ' | DL: exanpl el: 1. 0'

* Resol ve the pointer reference to the operation information
CALL "STRCGET" USI NG CPERATI ON- NAME
EXAVPLE1L- CPERATI ON- LENGTH
EXAMPLEL- CPERATI ON
SET W5 STRCGET TO TRUE
PERFCRVI CHECK- STATUS
WHEN ' | OL: exanpl e2: 1. 0'

* Resol ve the pointer reference to the operation infornation
CALL "STRCGET" US| NG CPERATI ON- NAMVE
EXAMPLE2- CPERATI ON- LENGTH
EXAMPLE2- CPERATI CN
SET W5- STRGET TO TRUE
PERFCRM CHECK- STATUS
END- EVALUATE.

GCPY EXAMR3D.
GCBACK.

DO EXAMPLEL- GET- YLONG
CALL " COACGET" USI NG EXAMPLEL- WLONG ARGS.
SET W5- COAGET TO TRUE
PERFCRM GHECK- STATUS.

* TODQ Add your operation specific code here

CALL " COAPUT" USI NG EXAMPLEL- MYLONG ARGS.
SET Ws- COAPUT TO TRUE.
PERFCRM CHECK- STATUS.

DO EXAMPLEL- GET- MYSHCRT.
CALL "OOAGET" USI NG EXAMVPLEL- MYSHCRT- ARGS.
SET W&- CQACGET TO TRUE
PERFCRM CHECK- STATUS.

* TODQO Add your operation specific code here

CALL "QOAPUT" USI NG EXAMVPLEL- MYSHCRT- ARGS.
SET W&- COAPUT TO TRUE

256

Mapping for Multiple Interfaces

Example 22: Server Implementation Example (Sheet 3 of 3)

PERFCRM CHECK- STATUS.
DO EXAMPLEL- SET- MYSHORT.
CALL "QOAGET" USI NG EXAMPLEL- MYSHORT- ARGS.
SET W5 COAGET TO TRUE.
PERFCRM CHECK- STATUS.

* TODQ Add your operation specific code here

CALL "QOAPUT" USI NG EXAMPLEL- MYSHORT- ARGS.
SET W& COAPUT TO TRUE.
PERFCRM CHECK- STATUS.

DO EXAMPLEZ2- GET- MYLONG
CALL " OOACET" USI NG EXAMPLE2- WYLONG ARGS.
SET Ws- COAGET TO TRUE.
PERFCRM CHECK- STATUS.

* TODQ Add your operation specific code here

CALL " COAPUT" USI NG EXAMPLE2- WYLONG ARGS.
SET Ws- COAPUT TO TRUE.
PERFCRM CHECK- STATUS.

DO EXAMPLE2- GET- MYSHCRT.
CALL "OOAGET" USI NG EXAMPLE2- MYSHCRT- ARGS.
SET W5- CQACET TO TRUE
PERFCRM CHECK- STATUS.

* TODQ Add your operation specific code here

CALL "QCOAPUT" USI NG EXAMPLE2- MYSHCRT- ARGS.
SET W&- COAPUT TO TRUE
PERFCRM CHECK- STATUS.

DO EXAVPLE2- SET- MYSHORT.
CALL "QOAGET" USI NG EXAMPLEZ2- MYSHORT- ARGS.
SET W5 COAGET TO TRUE.
PERFCRM CHECK- STATUS.

* TODQ Add your operation specific code here

CALL "QOAPUT" USI NG EXAMPLEZ2- MYSHORT- ARGS.
SET W& COAPUT TO TRUE.
PERFCRM CHECK- STATUS.

LR R R RS EEE RS EESS

* Check Errors Copybook

LR E RS EEEEE RS RS EEEE RS EEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEESESES

CCPY GKERRS.

257

CHAPTER 6 | IDL-to-COBOL Mapping

258

In this chapter

CHAPTER 7

Orbix IDL
Compiler

This chapter describes the Orbix IDL compiler in terms of how
to run it in batch and 0S/390 UNIX System Services, the
COBOL source code and copybook members that it creates,
the arguments that you can use with it, and the configuration
variables that it uses.

This chapter discusses the following topics:

Running the Orbix IDL Compiler page 260
Generated COBOL Source and Copybooks page 266
Orbix IDL Compiler Arguments page 269
Orbix IDL Compiler Configuration page 289

Note: The supplied demonstrations include examples of JCL that can be
used to run the Orbix IDL compiler. You can modify the demonstration JCL
as appropriate, to suit your applications. Any occurrences of or bi xhl g in
this chapter are meant to represent the high-level qualifier for your Orbix
Mainframe installation. If you are using 0S/390 UNIX System Services,
references to 0S/390 member names can be interchanged with filenames,
unless otherwise specified.

259

CHAPTER 7 | Orbix IDL Compiler

Running the Orbix IDL Compiler

Overview You can use the Orbix IDL compiler to generate COBOL source code and
copybooks from IDL definitions. This section describes how to run the Orbix
IDL compiler, both in batch and in 0S/390 UNIX System Services.

In this section This section discusses the following topics:

Running the Orbix IDL Compiler in Batch page 261

Running the Orbix IDL Compiler in UNIX System Services page 264

260

Running the Orbix IDL Compiler

Running the Orbix IDL Compiler in Batch

Overview This subsection describes how to run the Orbix IDL compiler in batch. It
discusses the following topics:
® “Orbix IDL compiler configuration” on page 261.
® “Running the Orbix IDL compiler” on page 261.
® “Example of the batch SIMPLIDL JCL” on page 262.
® “Description of the JCL” on page 263.

Orbix IDL compiler configuration ~ The Orbix IDL compiler uses the Orbix configuration member for its settings.
The JCL that runs the compiler uses the | DL member in the
or bi xhl g. GONFI G configuration PDS.

Running the Orbix IDL compiler For the purposes of this example, the COBOL source is generated in the first
step of the supplied or bi xhl g. DEMXS. OOBCL. BLD. JCL(S| MPLI DL) JCL. This
JCL is used to run the Orbix IDL compiler for the simple persistent
POA-based server demonstration supplied with your installation.

261

CHAPTER 7 | Orbix IDL Compiler

Example of the batch SIMPLIDL The following is the supplied JCL to run the Orbix IDL compiler for the batch
JCL version of the simple persistent POA-based server demonstration:

[ISIMPLIDL JBB (),

/1 CLASS=A,

/1l MBGOLASS=X,

/1 MBALEVEL=(1, 1),

/1 REG ON=0M

/1l TI ME=1440,

/1l NOTI FY=&SYSU D,

/1 QOND=(4, LT)
5
//* Obix - Generate the CCBQL copybooks for the Sinple dient
] o o e e e
/1 JCLLI B ORDER=(or bi xhl g. PROCS)

/1l | NCLUDE MEMBER=(CRXVARS)

/1*

/1* Make the foll owi ng changes before running this JC.:

/1*

//* 1. Change ' SET DOVAI N=' DEFAULT@ to your configuration
[1* donmai n narre.

/1*

/1l SET DOVAl N=' DEFAULT@

[1*

//1DLCBL EXEC ORXI DL,

/1l SQURCE=S| MPLE,

/1l | DL=&CRBI X. . DEMS. | DL,

/1l | DLPARME' - cobol '

/11 TDOVAI N DD DSN=&CRBI X. . CONFI G &DOVAI N) , DI SP=SHR

The preceding JCL generates COBOL copybooks from an IDL member called
S| MPLE (see the SOURCE=SI MPLE line).

Note: COBOL copybooks are always generated by default when you run
the Orbix IDL compiler.

262

Description of the JCL

Running the Orbix IDL Compiler

The preceding JCL does not specify any compiler arguments (see the

| DLPARMIine); therefore, it cannot generate any COBOL source code
members, which can only be generated if you specify the -Sand -z
arguments. See “Orbix IDL Compiler Arguments” on page 269 for more
details.

Note: The preceding JCL is specific to the batch version of the supplied

simple persistent POA-based server demonstration, and is contained in

or bi xhl g. DEMDS, GCBQL. BLD. JOL(SI MPLI DL) . For details of the JCL for the
CICS or IMS version of the demonstration see “Example of the SIMPLIDL

JCL"” on page 61 or “Example of the SIMPLIDL JCL” on page 106.

The settings and data definitions contained in the preceding JCL can be
explained as follows:

CRBI X The high-level qualifier for your Orbix Mainframe installation,
which is set in or bi xhl q. PROCS(CRXVARS) .

SOURCE The IDL member to be compiled.

I DL The PDS for the IDL member.
QCPYLIB The PDS for the COBOL copybooks generated by the Orbix IDL
compiler.

| MPL The PDS for the COBOL source code members generated by the
Orbix IDL compiler.

I DLPARM The plug-in to the Orbix IDL compiler to be used (in the preceding
example, it is the COBOL plug-in), and any arguments to be
passed to it (in the preceding example, no arguments are
specified). See “Specifying Compiler Arguments” on page 271 for
details of how to specify the Orbix IDL compiler arguments as
parameters to it.

263

CHAPTER 7 | Orbix IDL Compiler

Running the Orbix IDL Compiler in UNIX System Services

Overview

Orbix IDL compiler configuration

Prerequisites to running the Orbix
IDL compiler

Running the Orbix IDL compiler

264

This subsection describes how to run the Orbix IDL compiler in 0S/390
UNIX System Services. It discusses the following topics:

® “Orbix IDL compiler configuration” on page 264.

® “Prerequisites to running the Orbix IDL compiler” on page 264.

® “Running the Orbix IDL compiler” on page 264.

Note: Even though you can run the Orbix IDL compiler in 0S/390 UNIX
System Services, Orbix does not support subsequent building of Orbix
COBOL applications in 0S/390 UNIX System Services.

The Orbix IDL compiler uses the Orbix IDL configuration file for its settings.
This configuration file is set via the | T_I DL_CONFI G_PATH export variable.

Before you can run the Orbix IDL compiler, enter the following command to
initialize your Orbix environment (where YOUR _CRBI X_| NSTALL represents the
full path to your Orbix installation directory):

cd $YOUR CRBI X_| NSTALL/ et c/ bi n
. defaul t-donai n_env. sh

Note: You only need to do this once per logon.

The general format for running the Orbix IDL compiler is:
id -cobol[:-argunmentl][:-argument2][.] idlfilename.idl

In the preceding example, [: -argunent 1] and [: - ar gunent 2] represent
optional arguments that can be passed as parameters to the Orbix IDL
compiler, and i dl fi | enane represents the name of the IDL file from which
you want to generate the COBOL source and copybooks.

For example, consider the following command:

idl -cobol:-S sinple.idl

Running the Orbix IDL Compiler

The preceding command instructs the Orbix IDL compiler to use the

sinpl e.idl file. The Orbix IDL compiler always generates COBOL
copybooks by default, and the - S argument indicates that it should also
generate an i dl fi | enaneS server mainline source code file. See “Orbix IDL
Compiler Arguments” on page 269 for more details of Orbix IDL compiler
arguments. See “Generated COBOL Source and Copybooks” on page 266
and “Orbix IDL Compiler Configuration” on page 289 for more details of
default generated filenames.

265

CHAPTER 7 | Orbix IDL Compiler

Generated COBOL Source and Copybooks

Overview

Generated members

This section describes the various COBOL source code and copybook
members that the Orbix IDL compiler can generate.

Table 18 provides an overview and description of the COBOL source code
and copybooks that the Orbix IDL compiler can generate, based on the IDL
member name.

Note: In the following table, i dI nrenber nane represents the IDL member
name (in batch) or IDL filename (in 0S/390 UNIX System Services).

Table 18: Generated Source Code and Copybook Members

Member Name

Member Type Compiler Argument Description
Used to Generate

i dl menber naneS

Source code -Z This is the server implementation
source code member. It contains stub
paragraphs for all the callable
operations. It is only generated if you
specify the - Z argument.

i dl nenber nanesSv

Source code -S This is the server mainline source code
member. It is only generated if you
specify the - S argument.

i dl menber nane

Copybook Generated by This copybook contains data

default definitions that are used for working
with operation parameters and return
values for each interface defined in the

IDL member.
i dl menber naneX Copybook Generated by This copybook contains data
default definitions that are used by the Orbix

COBOL runtime to support the
interfaces defined in the IDL member.
It is automatically included in the

i dl menber name copybook.

266

Generated COBOL Source and Copybooks

Table 18: Generated Source Code and Copybook Members

Member Name Member Type Compiler Argument Description
Used to Generate

i dl menber naneD Copybook Generated by This copybook contains procedural
default code for performing the correct
paragraph for the requested operation.
It is automatically included in the

i dl mrenber naneS source code member.

Member name restrictions If the IDL member name exceeds six characters, the Orbix IDL compiler uses
only the first six characters of that name when generating the source code
and copybook member names. This allows space for appending the
two-character sv suffix to the server mainline source code member name,
while allowing it to adhere to the eight-character maximum size limit for
0S/390 member names. In such cases, each of the other generated
member names is also based on only the first six characters, and is
appended with its own suffix, as appropriate. Member names (and
filenames on 0S/390 UNIX System Services) are always generated in
uppercase.

Filename extensions on 0S/390 If you are running the Orbix IDL compiler in 0S/390 UNIX System Services,

UNIX System Services it is recommended (but not mandatory) that you specify certain extensions
for the generated filenames via configuration variables. The recommended
extensions and their corresponding filenames and configuration variables are
as follows:

Table 19: Recommended Filename Extensions

Filename File Type Recommended Configuration Variable
Extension
idlfilenaneS Server implementation source code . XXX I npl enent at i onExt ensi on
i dlfilenameSv Server mainline source code . chl Cobol Ext ensi on
idlfilenanme Copybook . cpy CopybookExt ensi on
idlfilenameX Copybook . cpy CopybookExt ensi on

267

CHAPTER 7 | Orbix IDL Compiler

Table 19: Recommended Filename Extensions

Filename File Type Recommended Configuration Variable
Extension
idlfilenaneD Copybook . cpy CopybookExt ensi on

268

Note: The settings for I npl enent at i onExt ensi on, Cobol Ext ensi on, and
CopybookExt ensi on are left blank by default in the Orbix IDL configuration
file. See “COBOL Configuration Variables” on page 290 for more details.

Orbix IDL Compiler Arguments

Orbix IDL Compiler Arguments

Overview This section describes the various arguments that you can specify as
parameters to the Orbix IDL compiler.

In this section This section discusses the following topics:
Summary of the Arguments page 270
Specifying Compiler Arguments page 271
-D Argument page 273
-M Argument page 274
-0 Argument page 281
-Q Argument page 283
-S Argument page 284
-T Argument page 285
-Z Argument page 288

269

CHAPTER 7 | Orbix IDL Compiler

Summary of the Arguments

Overview This subsection provides an introductory overview of the various Orbix IDL
compiler arguments. Each argument is described in more detail further on in
this section.

Summary The Orbix IDL compiler arguments can be summarized as follows:

-D Generate source code and copybooks into specified directories rather
than the current working directory.

Note: This is relevant to 0S/390 UNIX System Services only.
-M Set up an alternative mapping scheme for data names.
-0 Override default copybook names with a different name.

-Q Indicate whether single or double quotes are to be used for string
literals in COBOL copybooks.

Generate server mainline source code.
Indicate whether server code is for batch, IMS, or CICS.
Generate server implementation source code.

All these arguments are optional. This means that they do not have to be
specified as parameters to the Orbix IDL compiler.

270

Orbix IDL Compiler Arguments

Specifying Compiler Arguments

Overview

Specifying compiler arguments in
batch

Specifying compiler arguments in
UNIX System Services

This subsection describes how to specify the available arguments as
parameters to the Orbix IDL compiler, both in batch and in 0S/390 UNIX
System Services. It discusses the following topics:
® “Specifying compiler arguments in batch” on page 271.
® “Specifying compiler arguments in UNIX System Services” on

page 271.

To denote the arguments that you want to specify as parameters to the
Orbix IDL compiler, you can use the DD name, | DLPARM in the JCL that you
use to run it. See “Running the Orbix IDL Compiler” on page 260 for an
example of the supplied SI MPLI DL JCL that is used to to run the Orbix IDL
compiler for the simple persistent POA-based server demonstration.

The parameters for the | DLPARMentry in the JCL take the following format:

/1 | DLPARME' - cobol [: - M opti on] [menber nane]] [: - Ovenber nane]
[:-Qoption]][:-S][:-T[option]][:-2]"

Each argument that you specify must be preceded by a colon followed by a
hyphen (that is, : -) , with no spaces between any characters or any
arguments.

Note: In the Cobol scope of the or bi xhl . CONFI QI DL) configuration
member, if you set the | sDef aul t variable to YES, you do not need to
specify the - cobol switch in the | DLPARMIine of the JCL. See “Orbix IDL
Compiler Configuration” on page 289 for more details.

The parameters to the Orbix IDL compiler in 0S/390 UNIX System Services
take the following format:

-cobol [:-Doption][dir]][:-Moption][nenbernane]] [: - Qrenber nane]
[:-Qoption]][:-S)[:-T[option]][:-2Z]

Each argument that you specify must be preceded by a colon followed by a
hyphen (that is, : -) , with no spaces between any characters or any
arguments.

271

CHAPTER 7 | Orbix IDL Compiler

272

Note: In the Cobol scope of the Orbix IDL configuration file that is
specified via the | T_I DL_CONFI G_PATH export variable, if you set the

| sDef aul t variable to YES, you do not need to specify the - cobol switch as
a parameter to the Orbix IDL compiler. See “Orbix IDL Compiler
Configuration” on page 289 for more details.

Orbix IDL Compiler Arguments

-D Argument

Overview

Specifying the -D argument

By default, when you run the Orbix IDL compiler in 0S/390 UNIX System
Services, it generates source code and copybooks into the current working
directory. You can use the - Dargument with the Orbix IDL compiler to
redirect some or all of the generated output into alternative directories.

Note: The - Dargument is relevant only if you are running the Orbix IDL
compiler on 0S/390 UNIX System Services. It is ignored if you specify it
when running the Orbix IDL compiler on native 0S/390.

The - Dargument takes two components: a sub-argument that specifies the
type of file to be redirected, and the directory path into which the file should
be redirected. The three valid sub-arguments, and the file types they
correspond to, are as follows:

¢ Copybooks

m IDL map files

s Source code files

You must specify the directory path directly after the sub-argument. There
must be no spaces between the argument, sub-argument, and directory
path. For example, consider the following command that instructs the Orbix
IDL compiler to generate COBOL files based on the IDL in nyfile.idl, and

to place generated copybooks in / hone/ t oni cbl / cpy and generated source
code in / home/ t on cbl / src:

idl -cobol:-Dc/hone/ton cbl/cpy: -Ds/ hore/tonicbl/src nyfile.idl

Alternatively, consider the following command that instructs the Orbix IDL
compiler to generate an IDL mapping file called nyfi | e. map, based on the
IDLin nyfile.idl, and to place that mapping file in / home/ t oni cbl / nap:

i dl -cobol : D hone/ t ond cbl / map: - Mcreat eOnyfil e. map nyfile.idl

Note: See the rest of this section for more details of how to generate
source code and IDL mapping files.

273

CHAPTER 7 | Orbix IDL Compiler

-M Argument

Overview

Example of data names
generated by default

274

COBOL data names generated by the Orbix IDL compiler are based on fully
qualified IDL interface names by default (that is,

| DLmodul ename(s) - | DLi nt er f acename- | DLvar i abl ename). You can use the
- Margument with the Orbix IDL compiler to define your own alternative
mapping scheme for data names. This is particularly useful if your COBOL
data names are likely to exceed the 30-character restriction imposed by the
COBOL compiler.

The example can be broken down as follows:

1. Consider the following IDL:
modul e Banks{
nmodul e | ri shBanks{
interface Savi ngsBank{attribute short accountbal;};

interface National Bank{};
i nterface DepositBank{};

}

2. Based on the preceding IDL, the Orbix IDL compiler generates the data
names shown in Table 20 by default for the specified interfaces:

Table 20: Example of Default Generated Data Names

Interface Name Generated Data Name
Savi ngsBank Banks- | ri shBank- Savi ngsBank
Nat i onal Bank Banks- | ri shBank- Nat i onal Bank
Deposi t Bank Banks- | ri shBank- Deposi t Bank

By using the - Margument, you can replace the fully scoped names shown in
Table 20 with alternative data names of your choosing.

Defining IDLMAP DD card in
batch

Steps to generate alternative
names with the -M argument

Step 1—Generate the mapping
member

Orbix IDL Compiler Arguments

If you are running the Orbix IDL compiler in batch, and you want to specify
the - Margument as a parameter to it, you must first define a DD card for

| DLMAP in the JCL that you use to run the Orbix IDL compiler. This DD card
specifies the PDS for the mapping member generated by the Orbix IDL
compiler. For example, you might define the DD card as follows in the JCL
(where or bi xhl q represents the high-level qualifier for your Orbix
Mainframe installation):

/11 DLMAP DD DI SP=SHR, DSN=or bi xhl q. DEMOS. COBCL. VAP

You can define a DD card for | DLMAP even if you do not specify the - M
argument as a parameter to the Orbix IDL compiler. The DD card is simply
ignored if the - Margument is not specified.

The steps to generate alternative data name mappings with the - Margument
are:

Step Action

1 | Run the Orbix IDL compiler with the - Mcreat e argument, to
generate the mapping member, complete with the fully
qualified names and their alternative mappings.

2 | Edit (if necessary) the generated mapping member, to change
the alternative name mappings to the names you want to use.

3 | Run the Orbix IDL compiler with the - Mpr ocess argument, to
generate COBOL copybooks with the alternative data names.

First, you must run the Orbix IDL compiler with the - Mcr eat e argument, to
generate the mapping member, which contains the fully qualified names
and the alternative name mappings.

If you are running the Orbix IDL compiler in batch, the format of the
command in the JCL used to run the compiler is as follows, where X
represents the scope level (see “Scoping levels with the -Mcreate command”
on page 276) and BANK is the name of the mapping member you want to
create):

| DLPARME' - cobol : - Mcr eat eXBANK' ,

275

CHAPTER 7 | Orbix IDL Compiler

Generating mapping files into
alternative directories

Scoping levels with the -Mcreate
command

276

If you are running the Orbix IDL compiler in 0S/390 UNIX System Services,
the format of the command to run the compiler is as follows, where X
represents the scope level (see “Scoping levels with the -Mcreate command”
on page 276), bank. map is the name of the mapping file you want to create,
and nyfile.idl isthe name of the IDL file:

- cobol : - Mer eat exbank. map nyfile.idl

Note: The name of the mapping member can be up to six characters
long. It you specify a name that is greater than six characters, the name is
truncated to the first six characters. In the case of 0S/390 UNIX System
Services, you do not need to assign an extension of . map to the mapping
filename; you can choose to use any extension or assign no extension at
all.

If you are running the Orbix IDL compiler in 0S/390 UNIX System Services,
the mapping file is generated by default in the working directory. If you want
to place the mapping file elsewhere, use the - Dmargument in conjunction
with the - Mcr eat e argument. For example, the following command (where X
represents the scope level) creates a bank. nap file based on the nyfile.idl
file, and places it in the / hone/ t omi cbl / map directory:

- cobol : - Dni horre/ howar d/ cbl / map: - Mcr eat eXbank. map nyfile.idl

See “-D Argument” on page 273 for more details about the - D argument.

As shown in the preceding few examples, you can specify a scope level with
the - Mcreat e command. This specifies the level of scoping to be involved in
the generated data names in the mapping member. The possible scope
levels are:

0 Map fully scoped IDL names to unscoped COBOL names (that is, to
the IDL variable name only).

1 Map fully scoped IDL names to partially scoped COBOL names (that
is, to I DLi nt er f acenane- | DLvar i abl enane). The scope operator, /, is
replaced with a hyphen, -.

2 Map fully scoped IDL names to fully scoped COBOL names (that is, to
| DLmodul ename(s) - | DLi nt er f acenane- | DLvar i abl ename). The scope
operator, /, is replaced with a hyphen, -.

Orbix IDL Compiler Arguments

The following provides an example of the various scoping levels. The
example can be broken down as follows:

1. Consider the following IDL:

modul e Banks{
nmodul e | ri shBanks{

i nterface Savi ngsBank{attribute short accountbal;};
i nterface National Bank{voi d deposit (in |ong

anount) ; };
b
b

2. Based on the preceding IDL example, a - Mcr eat eOBANK command
produces the BANK mapping member contents shown in Table 21.

Table 21: Example of Level-O-Scoped Alternative Data Names

Fully Scoped IDL Names

Generated Alternative Names

deposi t

Banks Banks

Banks/ I ri shBanks I ri shBanks
Banks/ | ri shBanks/ Savi ngsBank Savi ngsBank
Banks/ | ri shBanks/ Savi ngsBank/ account bal
account bal

Banks/ | ri shBanks/ Nat i onal Bank Nat i onal Bank
Banks/ I ri shBanks/ Nat i onal Bank/ deposi t

Alternatively, based on the preceding IDL example, a - Mcr eat e1BANK
command produces the BANK mapping member contents shown in

Table 22.

Table 22: Example of Level-1-Scoped Alternative Data Names

Fully Scoped IDL Names

Generated Alternative Names

Banks

Banks

Banks/ I ri shBanks

I ri shBanks

277

CHAPTER 7 | Orbix IDL Compiler

278

Table 22: Example of Level-1-Scoped Alternative Data Names

Fully Scoped IDL Names

Generated Alternative Names

Banks/ | ri shBanks/ Savi ngsBank

Savi ngsBank

Banks/ | ri shBanks/ Savi ngsBank/
account bal

Savi ngsBanks- account bal

Banks/ | ri shBanks/ Nat i onal Bank

Nat i onal Bank

Banks/ | ri shBanks/ Nat i onal Bank/
deposi t

Nat i onal Bank- deposi t

Alternatively, based on the preceding IDL example, a - Mcr eat e2BANK
command produces the BANK mapping member contents shown in

Table 23.

Table 23: Example of Level-2-Scoped Alternative Data Names

Fully Scoped IDL Names

Generated Alternative Names

Banks

Banks

Banks/ | ri shBanks

Banks- | ri shBanks

Banks/ | ri shBanks/ Savi ngsBank

Banks- | ri shBanks- Savi ngsBank

Banks/ | ri shBanks/ Savi ngsBank/
account bal

Banks- | ri shBanks- Savi ngsBanks-
account bal

Banks/ | ri shBanks/ Nat i onal Bank

Banks- | ri shBanks- Nat i onal Bank

Banks/ | ri shBanks/ Nat i onal Bank/
deposi t

Banks- | ri shBanks- Nat i onal Bank-
deposi t

Step 2—Change the alternative
name mappings

Step 3—Generate the COBOL
copybooks

Orbix IDL Compiler Arguments

You can manually edit the mapping member to change the alternative
names to the names that you want to use. For example, you might change
the mappings in the BANK mapping member as follows:

Table 24: Example of Modified Mapping Names

Fully Scoped IDL Names Modified Names
Banks/ | ri shBanks I ri shBanks
Banks/ | ri shBanks/ Savi ngsBank MyBank
Banks/ | ri shBanks/ Nat i onal Bank M/Qt her Bank
Banks/ | ri shBanks/ Savi ngsBank/ account bal Myaccount bal ance

Note the following rules:

® The fully scoped name and the alternative name meant to replace it
must be separated by one space (and one space only).

® |f the alternative name exceeds 30 characters, it is abbreviated to 30
characters, subject to the normal COBOL mapping rules for identifiers.

® The fully scoped IDL names generated are case sensitive, so that they
match the IDL being processed. If you add new entries to the mapping
member, to cater for additions to the IDL, the names of the new entries
must exactly match the corresponding IDL names in terms of case.

When you have changed the alternative mapping names as necessary, run
the Orbix IDL compiler with the - Mpr ocess argument, to generate your
COBOL copybooks complete with the alternative data names that you have
set up in the specified mapping member.

If you are running the Orbix IDL compiler in batch, the format of the
command to generate COBOL copybooks with the alternative data names is
as follows (where BANK is the name of the mapping member you want to
create):

| DLPARMVF' - cobol : - Mpr ocessBANK

279

CHAPTER 7 | Orbix IDL Compiler

280

If you are running the Orbix IDL compiler in 0S/390 UNIX System Services,
the format of the command to generate COBOL copybooks with the
alternative data names is as follows (where bank. map is the name of the
mapping file you want to create):

- cobol : - Mpr ocessbank. map

Note: If you are running the Orbix IDL compiler in 0S/390 UNIX System
Services, and you used the - Dmargument with the - Mereat e argument, so
that the mapping file is not located in the current working directory, you
must specify the path to that alternative directory with the - Mpr ocess
argument. For example, - cobol : - Mor ocess/ hore/ t oni cbl / map/ bank. map.

When you run the - Mpr ocess command, your COBOL copybooks are
generated with the alternative data names you want to use, instead of with
the fully qualified data names that the Orbix IDL compiler generates by
default.

Orbix IDL Compiler Arguments

-0 Argument

Overview

Example of copybooks generated
by Orbix IDL compiler

COBOL source code and copybook member names generated by the Orbix
IDL compiler are based by default on the IDL member name. You can use
the - 0argument with the Orbix IDL compiler to map the default source and
copybook names to an alternative naming scheme, if you wish.

The - Oargument is, for example, particularly useful for users who have
migrated from IONA’s Orbix 2.3-based solution for 0S/390, and who want
to avoid having to change the aCPY statements in their existing application
source code. In this case, they can use the - Oargument to automatically
change the generated source and copybook names to the alternative names
they want to use.

Note: If you are an existing user who has migrated from IONA's Orbix
2.3-based solution for 0S/390, see the Mainframe Migration Guide for
more details.

The example can be broken down as follows:
1. Consider the following IDL, where the IDL is contained in a member
called TEST:

interface sinple

{
voi d sizeofgrid(in long nysizel, in |ong
nysi ze2) ;

IiE

interface bl ock

{

void area(in |long nyarea);
I

2. Based on the preceding IDL, the Orbix IDL compiler generates the
following COBOL copybooks, based on the IDL member name:

. TEST
. TESTX
. TESTD

281

CHAPTER 7 | Orbix IDL Compiler

Specifying the -0 argument

Limitation in size of
replacement name

282

If you are running the Orbix IDL compiler in batch, the following piece of
JCL, for example, changes the copybook names from TEST to S| MPLE:

/1l SOURCE=TEST
...
/1 1 DLPARW' - cobol : - 8l MPLE

If you are running the Orbix IDL compiler in 0S/390 UNIX System Services,
the following command, for example, changes the copybook names from
TEST to SI MPLE:

-cobol : - C8l MPLE test.idl

You must specify the alternative name directly after the - O argument (that
is, no spaces). Even if you specify the replacement name in lower case (for
example, si npl e instead of SI MPLE), the Orbix IDL compiler automatically

generates replacement names in upper case.

If the name you supply as the replacement exceeds six characters (in the
preceding example it does not, because it is SI MPLE), only the first six
characters of that name are used as the basis for the alternative member
names.

Orbix IDL Compiler Arguments

-Q Argument

Overview

Qualifying parameters

Specifying the -Q argument

The - Qargument indicates whether single or double quotes are to be used
on string literals in COBOL copybooks.

The - Qargument must be qualified by either s or d. If you specify - G, single
quotes are used. If you specify - Qd, double quotes are used. If you do not
specify the - Qargument, double quotes are used by default.

If you are running the Orbix IDL compiler in batch, the following piece of
JCL, for example, specifies that single quotes are to be used on string literals
in COBOL copybooks generated from the SI MPLE IDL member:

/1 SOURCE=SI MPLE,
...
/1 1 DLPARW' - cobol : - G5'

If you are running the Orbix IDL compiler in 0S/390 UNIX System Services,
the following command, for example, specifies that single quotes are to be
used on string literals in COBOL copybooks generated from the si npl e. i dI
IDL file:

-cobol : - @ sinple.idl

283

CHAPTER 7 | Orbix IDL Compiler

-S Argument

Overview

Specifying the -S argument

284

The - S argument generates server mainline source code (that is, the

i dl menber nameSV member). This member is not generated by default by the
Orbix IDL compiler. It is only generated if you use the - S argument, because
doing so overwrites any server mainline code that has already been created
based on that IDL member name.

WARNING: Only specify the - S argument if you want to generate new
server mainline source code or deliberately overwrite existing code.

If you are running the Orbix IDL compiler in batch, the following piece of
JCL, for example, creates a server mainline member called SI MPLESV, based

on the SI MPLE IDL member:

// SOURCE=S|I MPLE
...
/1 1 DLPARMF -cobol : - S

If you are running the Orbix IDL compiler in 0S/390 UNIX System Services,
the following command, for example, creates a server mainline file called
SI MPLESV, based on the sinpl e.idl IDL file:

-cobol :-S sinple.idl

Note: In the case of 0S/390 UNIX System Services, if you use the

Cobol Ext ensi on configuration variable to specify an extension for the
server mainline source code member name, this extension is automatically
appended to the generated member name. The preceding commands
generate batch server mainline code. If you want to generate CICS or IMS
server mainline code, see “-T Argument” on page 285 for more details.

Orbix IDL Compiler Arguments

-T Argument

Overview

Qualifying parameters

The - T argument allows you to specify whether the server code you want to
generate is for use in batch, IMS, or CICS.

The - T argument must be qualified by NATI VE, |1 M5, or O CS. For example:

NATI VE

acs

Specifying - TNATI VE with - S generates batch server mainline
code. Specifying - TNATI VE with - Z generates batch server
implementation code.

Note: Specifying - TNATI VE is the same as not specifying - T at
all. That is, unless you specify - TI M5, the compiler generates
server code by default for use in native batch mode, provided
of course that you also specify - Sor - Z or both.

Specifying - TI M5 with - S generates IMS server mainline code.
Specifying - TI M5 with - Z generates IMS server implementation
code. Specifying - Tl M5 means that the generated server output
makes use of the IMS-specific LSl MSPCB, W8l MSPCB, and
UPDTPCBS copybooks. The server implementation also uses the
W8l MBCL copybook.

The server mainline sets pointers to the program
communication block data that is in the linkage section. The
pointers are kept in working storage and are defined as
EXTERNAL, allowing the server implementation to access them.
The pointers are defined in the Wsl MSPCB copybook. The
program communication block data is defined in the LSI M5PCB
copybook. The pointers are set by using the UPDATE- W&- PCBS
paragraph, which is defined in the UPDTPCBS copybook.

The server implementation maps the program communication
block data defined in the linkage section using the EXTERNAL
pointers defined in working storage (in the sl MSPCB
copybook). The RETRI EVE- Ws- PCBS paragraph, which is defined
in UPDTPCBS, is used to map the program communication block
data (in the linkage section) with the pointers.

Specifying - TA CS with - S generates CICS server mainline
code. Specifying - TA CS with - Z generates CICS server
implementation code.

285

CHAPTER 7 | Orbix IDL Compiler

Specifying the -TNATIVE
argument

Specifying the -TIMS argument

286

If you are running the Orbix IDL compiler in batch, the following piece of
JCL, for example, creates a batch COBOL server mainline program (called
SI MPLESV) and a batch COBOL server implementation program (called

SI MPLES), based on the SI MPLE IDL member:

/1l SCOURCE=S| MPLE,
/1
/1l | DLPARME' - cobol : - S: - Z: - TNATI VE

If you are running the Orbix IDL compiler in 0S/390 UNIX System Services,
the following command, for example, creates a batch COBOL server
mainline program (called SI MPLESV) and a batch COBOL server
implementation program (called SI MPLES), based on the sinpl e.idl IDL
file:

-cobol : - S: - Z: - TNATI VE sinpl e.idl
Note: Specifying - TNATI VE is the same as not specifying - T at all.

See “Developing the Server” on page 26 for an example of batch COBOL
server mainline and implementation members.

If you are running the Orbix IDL compiler in batch, the following piece of
JCL, for example, creates an IMS COBOL server mainline program (called
SI MPLESV) and an IMS COBOL server implementation program (called

SI MPLES), based on the SI MPLE IDL member:

Il SCOURCE=S| MPLE,
Il
I/ | DLPARME' -cobol : -S: -Z: -TIMS |

If you are running the Orbix IDL compiler in 0S/390 UNIX System Services,
the following command, for example, creates an IMS COBOL server
mainline program (called SI MPLESV) and an IMS COBOL server
implementation program (called SI MPLES), based on the sinpl e.idl IDL
file:

-cobol :-S:-Z: -TIM sinple.idl

Specifying the -TCICS argument

Orbix IDL Compiler Arguments

See “Developing the IMS Server” on page 68 for an example of IMS COBOL
server mainline and implementation members.

If you are running the Orbix IDL compiler in batch, the following piece of
JCL, for example, creates a CICS COBOL server mainline member (called
SI MPLESV) and a CICS COBOL server implementation member (called

SI MPLES), based on the SI MPLE IDL member:

1l SOURCE=SI MPLE,
/1
/1 | DLPARME' -cobol : -S:-Z -TA CS ,

If you are running the Orbix IDL compiler in 0S/390 UNIX System Services,
the following command, for example, creates a CICS COBOL server mainline
file (called SI MPLESV) and a CICS COBOL server implementation file (called
SI MPLES), based on the si npl e.idl IDL file:

-cobol :-S:-Z:-TA CS sinpl e.idl

See “Developing the CICS Server” on page 113 for an example of CICS
COBOL server mainline and implementation members.

287

CHAPTER 7 | Orbix IDL Compiler

-Z Argument

Overview

Specifying the -Z argument

288

The - Z argument generates skeleton server implementation source code
(that is, the i dI menber nameS member). The generated code contains stub
paragraphs for all the callable operations in the defined IDL. This member is
not generated by default. It is only generated if you use the -z argument,
because doing so overwrites any server implementation code that has
already been created based on that IDL member name.

WARNING: Only specify the -z argument if you want to generate new
server implementation source code or deliberately overwrite existing code.

If you are running the Orbix IDL compiler in batch, the following piece of
JCL, for example, creates a server implementation member called SI MPLES,
based on the SI MPLE IDL member:

// SOURCE=S| MPLE,
...
/1 1 DLPARM-' - cobol : -Z'

If you are running the Orbix IDL compiler in 0S/390 UNIX System Services,
the following command, for example, creates a server implementation file
called Sl MPLES, based on the sinpl e.idl IDL file:

-cobol :-Z sinple.idl

Note: In the case of 0S/390 UNIX System Services, if you use the

| npl enent at i onExt ensi on configuration variable to specify an extension
for the server implementation source code member name, this extension is
automatically appended to the generated member name. The preceding
commands generate batch server implementation code. If you want to
generate CICS or IMS server implementation code, see “-T Argument” on
page 285 for more details.

Orbix IDL Compiler Configuration

Orbix IDL Compiler Configuration

Overview This section describes the configuration variables relevant to the Orbix IDL
compiler -cobol plug-in for COBOL source code and copybook generation,
and the - nf a plug-in for IMS or CICS adapter mapping member generation.

Note: The -nfa plug-in is not relevant for batch application development.

In this section This section discusses the following topics:
COBOL Configuration Variables page 290
Adapter Mapping Member Configuration Variables page 294
Providing Arguments to the IDL Compiler page 297

289

CHAPTER 7 | Orbix IDL Compiler

COBOL Configuration Variables

Overview The Orbix IDL configuration member contains settings for COBOL, along
with settings for C++ and several other languages. If the Orbix IDL compiler
is running in batch, it uses the configuration member located in
or bi xhl g. CONFI 1 DL) . If the Orbix IDL compiler is running in 0S/390
UNIX System Services, it uses the configuration file specified via the
| T_I DL_QOONFI G_PATH export variable.

Configuration settings The COBOL configuration is listed under Cobol as follows:

Cobol

{
Switch = "cobol *;
Shli bName = " CRXBCBL";
Shl i bMaj or Version = "x";
IsDefault = "NO';
Preset Qptions = "";

QOBCL source and copybooks extensions

The default is .cbl, .xxx and .cpy on NI and none for OF 390.
Cobol Extension = "";
| npl enent ati onExt ensi on = "";
CopybookExt ensi on = "";

Note: Settings listed with a # are considered to be comments and are not
in effect. The default in relation to COBOL source and copybooks
extensions is also none for 0S/390 UNIX System Services.

Mandatory settings The Swi tch, Shli bNane, and Shl i bMaj or Ver si on variables are mandatory
and their default settings must not be altered. They inform the Orbix IDL
compiler how to recognize the COBOL switch, and what name the DLL
plug-in is stored under. The x value for Shil i bMVaj or Ver si on represents the
version number of the supplied Shl i bNare DLL.

290

User-defined settings

List of available variables

Orbix IDL Compiler Configuration

All but the first three settings are user-defined and can be changed. The
reason for these user-defined settings is to allow you to change, if you wish,
default configuration values that are set during installation. To enable a
user-defined setting, use the following format.

setting_nane = "val ue";

Table 25 provides an overview and description of the available configuration

variables.

Table 25: COBOL Configuration Variables (Sheet 1 of 2)

Variable Name

Description

Default

| sDef aul t

Indicates whether COBOL is
the language that the Orbix
IDL compiler generates by
default from IDL. If this is set
to YES, you do not need to
specify the - cobol switch
when running the compiler.

NO

Preset ot i ons

The arguments that are passed
by default as parameters to the
Orbix IDL compiler.

Cobol Ext ensi on®

Extension for the server
mainline source code filename
on 0S/390 UNIX System
Services or Windows NT.

Note: This is left blank by
default, and you can set it to
any value you want. The
recommended setting is . cbl .

291

CHAPTER 7 | Orbix IDL Compiler

292

Table 25: COBOL Configuration Variables (Sheet 2 of 2)

Variable Name

Description

Default

| npl enent at i onExt ensi ona

Extension for the server
implementation source code
filename on 0S/390 UNIX
Systems Services or Windows
NT. You should copy this to a
file with a . cbl extension, to
avoid overwriting any
subsequent changes if you run
the Orbix IDL compiler again.

Note: This is left blank by
default, and you can set it to
any value you want. The
recommended setting is . xxx.

CopybookExt ensi ona

Extension for COBOL
copybook names on 0S/390
UNIX System Services or
Windows NT.

Note: This is left blank by
default, and you can set it to
any value you want. The
recommended setting is . cpy.

Mai nCopybookSuf fi x

Suffix for the main copybook
member name.

Runt i meCopybookSuf fi x

Suffix for the runtime
copybook name.

Sel ect CopybookSuf fi x

Suffix for the select copybook
member name.

| npl enent at i onSuf fi x

Suffix for the server
implementation source code
member name.

Server Suf fi x

Suffix for the server mainline
source code member name.

a. This is ignored on native 0S/390.

Orbix IDL Compiler Configuration

The last five variables in Table 25 are not listed by default in

or bi xhl g. CONFI 1 DL) . If you want to change the generated member
suffixes from the default values shown in Table 25, you must manually
enter the relevant variable name and its corresponding value.

293

CHAPTER 7 | Orbix IDL Compiler

Adapter Mapping Member Configuration Variables

Overview The - nf a plug-in allows the Orbix IDL compiler to generate:
® |IMS or CICS adapter mapping members from IDL, using the -t
argument.
® Type information members, using the -i nf argument.
The Orbix IDL configuration member contains configuration settings relating

to the generation of IMS or CICS adapter mapping members and type
information members.

Note: See the IMS Adapter Administrator’s Guide or CICS Adapter
Administrator’s Guide for more details about adapter mapping members
and type information members.

Configuration settings The IMS or CICS adapter mapping member configuration is listed under
MFANVappi ngs as follows:

MFAVappi ngs

Switch = "nfa";

Shli bName = " CRXBMFA';
Shl i bMyj or Version = "x";
IsDefault = "NO';

Preset Options = "";

Mappi ng & Type Info file suffix and ext. nmay be overridden
The default mapping file suffix is A

The default mapping file ext. is .map and none for O& 390
The default type info file suffix is B

The default type info file ext. is .inf and none for C&/ 390
MFAMappi ngExt ensi on "
MFAMBppi ngSuf i x
Typel nf oFi | eExt ensi on
Typel nf oFi | eSuf fi x "

1
nn.

K]

T H R H H R R HH

294

Mandatory settings

User-defined settings

List of available variables

Orbix IDL Compiler Configuration

The Swi tch, Shli bNane, and Shl i bMaj or Ver si on variables are mandatory
and their settings must not be altered. They inform the Orbix IDL compiler
how to recognize the adapter mapping member switch, and what name the
DLL plug-in is stored under. The x value for Shl i bMaj or Ver si on represents
the version number of the supplied Shl i bNarre DLL.

All but the first three settings are user-defined and can be changed. The
reason for these user-defined settings is to allow you to change, if you wish,
default configuration values that are set during installation. To enable a
user-defined setting, use the following format.

setting_nane = "val ue";

Table 26 provides an overview and description of the available configuration
variables.

Table 26: Adapter Mapping Member Configuration Variables

Variable Name Description Default

| sDef aul t Indicates whether the Orbix IDL
compiler generates adapter
mapping members by default
from IDL. If this is set to YES,
you do not need to specify the
- nf a switch when running the
compiler.

Preset Qpt i ons The arguments that are passed
by default as parameters to the
Orbix IDL compiler for the
purposes of generating adapter
mapping members.

MFAMappi ngExt ensi on? Extension for the adapter nap
mapping filename on 0S/390
UNIX System Services and
Windows NT.

295

CHAPTER 7 | Orbix IDL Compiler

296

Table 26: Adapter Mapping Member Configuration Variables

Variable Name

Description

Default

MFAMBppI ngSuf f i x

Suffix for the adapter mapping
member name. If you do not
specify a value for this, it is
generated with an A suffix by
default.

A

Typel nf oFi | eExt ensi ona

Extension for the type
information filename on
0S/390 UNIX System Services
and Windows NT.

i nf

Typel nf oFi | eSuf fi x

Suffix for the type information
member name. If you do not
specify a value for this, it is
generated with a B suffix by
default.

a. This is ignored on native 0S/390.

Orbix IDL Compiler Configuration

Providing Arguments to the IDL Compiler

Overview

IDL compiler argument input to
ORXIDL

The Orbix IDL compiler configuration can be used to provide arguments to
the IDL compiler. Normally, IDL compiler arguments are supplied to the
CRXI DL procedure via the 1 DLPARMJCL symbolic, which comprises part of
the JCL PARM. The JCL PARM has a 100-character limit imposed by the
operating system. Large IDL compiler arguments, coupled with locale
environment variables, tend to easily approach or exceed the 100-character
limit. To help avoid problems with the 100-character limit, IDL compiler
arguments can be provided via a data set containing IDL compiler
configuration statements.

The CRXI DL procedure accepts IDL compiler arguments from three sources:

The or bi xhl g. CONFI QI DL) data set—This is the main Orbix IDL
compiler configuration data set. See “COBOL Configuration Variables”
on page 290 for an example of the Cobol configuration scope. See
“Adapter Mapping Member Configuration Variables” on page 294 for
an example of the MFAMappi ngs configuration scope. The Cobol and
MFANVappi ngs configuration scopes used by the IDL compiler are in

or bi xhl g. CONFI 1 DL) . IDL compiler arguments are specified in the
Preset Qpt i ons variable.

The I DLARGS data set—This data set can extend or override what is
defined in the main Orbix IDL compiler configuration data set. The

| DLARGS data set defines a Preset Qpt i ons variable for each
configuration scope. This variable overrides what is defined in the main
Orbix IDL compiler configuration data set.

The | DLPARMsymbolic of the CRXI DL procedure—This is the usual
source of IDL compiler arguments.

297

CHAPTER 7 | Orbix IDL Compiler

Using the IDLARGS data set

298

Because the | DLPARMsymbolic is the usual source for IDL compiler

arguments, it might lead to problems with the 100-character JCL PARM

limit. Providing IDL compiler arguments in the | DLARGS data set can help to

avoid problems with the 100-character limit. If the same IDL compiler

arguments are supplied in more than one input source, the order of

precedence is as follows:

® |IDL compiler arguments specified in the | DLPARMsymbolic take
precedence over identical arguments specified in the | DLARGS data set
and the main Orbix IDL compiler configuration data set.

® The Preset Qpti ons variable in the | DLARGS data set overrides the
Preset Opt ons variable in the main Orbix IDL compiler configuration
data set. If a value is specified in the Preset Opt ons variable in the
main Orbix IDL compiler configuration data set, it should be defined
(along with any additional IDL compiler arguments) in the
Preset Qpt i ons variable in the | DLARGS data set.

The | DLARGS data set can help when IDL compiles are failing due to the
100-character limit of the JCL PARM. Consider the following JCL:

/11 DLCBL EXEC CRXI DL,

/1l SOURCE=BANKDEMD,

/1 | DL=&CRBI X. . DEMXS. | DL,

/1 CCPYLI B=&CRBI X. . DEMOS. COBCL. CCPYLI B,
/1 | MPL=&CRBI X. . DEMOS. GOBCL. SRC,

/1 | DLPARME' - cobol : - Mpr ocessBANK: - CBANK

In the preceding example, all the IDL compiler arguments are provided in
the I DLPARMJCL symbolic, which is part of the JCL PARM. The JCL PARM
can also be comprised of an environment variable that specifies locale
information. Locale environment variables tend to be large and use up many
of the 100 available characters in the JCL PARM. If the 100-character limit

Orbix IDL Compiler Configuration

is exceeded, some of the data in the | DLPARMJCL symbolic can be moved to
the | DLARGS data set to reclaim some of the JCL PARM space. The
preceding example can be recoded as follows:

/11 DLCBL EXEC CRXI DL,

Il SOURCE=BANKDEMD

Il | DL=8CRBI X. . DEMCS. | DL,

/1 QCPYLI B=&CRBI X. . DEMOS. COBQL. CCPYLI B,
Il | MPL=&CRBI X. . DEMOS. QCBQL. SRC,

/1 | DLPARME' - cobol *

/1| DLARGS DD *

Cobol {Preset Options = "-MrocessBANK: - CBANK'; | ;
/*

The 1 DLPARMJCL symbolic retains the - cobol switch. The rest of the
| DLPARMdata is now provided in the | DLARGS data set, freeing up 21
characters of JCL PARM space.

The | DLARGS data set contains IDL configuration file scopes. These are a
reopening of the scopes defined in the main IDL configuration file. In the
preceding example, the | DLPARMJCL symbolic contains a - cobol switch.
This instructs the IDL compiler to look in the Cobol scope of the | DLARGS
dataset for any IDL compiler arguments that might be defined in the
Preset Qpt i ons variable. Based on the preceding example, it finds

- Mpr ocessBANK: - CBANK.

The | DLARGS data set must be coded according to the syntax rules for the
main Orbix IDL compiler configuration data set. See “COBOL Configuration
Variables” on page 290 for an example of the Cobol configuration scope.
See “Adapter Mapping Member Configuration Variables” on page 294 for an
example of the MFAMappi ngs configuration scope.

Note: A long entry can be continued by coding a backslash character
(that is, \) in column 72, and starting the next line in column 1.

299

CHAPTER 7 | Orbix IDL Compiler

Defining multiple scopes in the
IDLARGS data set

300

The | DLARGS data set can contain multiple scopes. Consider the following
JCL that compiles IDL for a CICS server:

/11 DLCBL
/1
Il
11
/1
11l

EXEC CRXI DL,

SOURCE=NSTSEQ

| DL=&CRBI X. . DEMS. | DL,

CCPYLI B=&CRBI X. . DEMCS. A CS. CCBCL. CCPYLI B,
| MPL=&CRBI X. . DEMDS. A CS. OBCL. SRC,

| DLPARME' - cobol : -S: - TA CS - nf a: - t NSTSEQBV

The I DLPARMJCL symbolic contains both a - cobol and - nf a switch. The
preceding example can be recoded as follows:

/11 DLCBL EXEC CRXI DL,

/1l SOURCE=NSTSEQ

/1l | DL=&CRBI X. . DEMOS. | DL,

/1l QOCPYLI B=&CRBI X. . DEMC5. A CS. COBCAL. CCPYLI B,
/1l | MPL=&CRBI X. . DEMC5. A CS. GOBCL. SRC,

Il | DLPARME' - cobol - nf &'

/1] DLARGS DD *

Cobol {Presetptions = "-S:-TACS'; };

MFAVappi ngs { Preset Qptions = "-t NSTSEQSV'; } ;

/*

The 1 DLPARMJCL symbolic retains the - cobol and -nfa IDL compiler
switches. The IDL compiler looks for - cobol switch arguments in the Cobol
scope, and for - nf a switch arguments in the MFAMappi ngs scope.

In this chapter

CHAPTER 8

Memory Handling

Memory handling must be performed when using dynamic
structures such as unbounded strings, unbounded sequences,
and anys. This chapter provides details of responsibility for the
allocation and subsequent release of dynamic memory for
these complex types at the various stages of an Orbix COBOL
application. It first describes in detail the memory handling
rules adopted by the COBOL runtime for operation parameters
relating to different dynamic structures. It then provides a
type-specific breakdown of the APIs that are used to allocate
and release memory for these dynamic structures.

This chapter discusses the following topics:

Operation Parameters page 302

Memory Management Routines page 322

Note: See “API Reference” on page 327 for full API details.

301

CHAPTER 8 | Memory Handling

Operation Parameters

Overview

In this section

302

This section describes in detail the memory handling rules adopted by the
COBOL runtime for operation parameters relating to different types of
dynamic structures, such as unbounded strings, bounded and unbounded
sequences, and any types. Memory handling must be performed when using
these dynamic structures. It also describes memory issues arising from the
raising of exceptions.

The following topics are discussed in this section:

Unbounded Sequences and Memory Management page 303
Unbounded Strings and Memory Management page 307
The any Type and Memory Management page 315
Memory Management Routines page 322

Operation Parameters

Unbounded Sequences and Memory Management

Overview for IN parameters

Summary of rules for IN
parameters

Table 27 provides a detailed outline of how memory is handled for
unbounded sequences that are used as i n parameters.

Table 27: Memory Handling for IN Unbounded Sequences

Client Application Server Application

1. SEQALLOC

2. SEQSET

3. ORBEXEC—(send)
4. COAGET—(receive, allocate)
5. SEQGET

6. COAPUT—(free)

7. SEQFREE

The memory handling rules for an unbounded sequence used as anin
parameter can be summarized as follows, based on Table 27:

1. The client calls SEQALLCC to initialize the sequence information block
and allocate memory for both the sequence information block and the
sequence data.

The client calls SEQSET to initialize the sequence elements.

The client calls CRBEXEC, which causes the client-side COBOL runtime
to marshal the values across the network.

4. The server calls COAGET, which causes the server-side COBOL runtime
to receive the sequence and implicitly allocate memory for it.

5. The server calls SEQET to obtain the sequence value from the
operation parameter buffer.

6. The server calls 0APUT, which causes the server-side COBOL runtime
to implicitly free the memory allocated by the call to COAGET.

7. The client calls SEGFREE to free the memory allocated by the call to
SEQALLCC.

303

CHAPTER 8 | Memory Handling

Overview for INOUT parameters

Summary of rules for INOUT
parameters

304

Table 28 provides a detailed outline of how memory is handled for
unbounded sequences that are used as i nout parameters.

Table 28: Memory Handling for INOUT Unbounded Sequences

Client Application Server Application

1. SEQALLOC

2. SEQSET

3. ORBEXEC—(send)
. COAGET—(receive, allocate)
. SEQGET

. SEQFREE

. SEQALLOC

. SEQSET

. COAPUT—(send, free)

OWOooNO O~

10. (free, receive, allocate)
11. SEQGET
12. SEQFREE

The memory handling rules for an unbounded sequence used as an i nout
parameter can be summarized as follows, based on Table 28:

1.

The client calls SEQALLOC to initialize the sequence information block
and allocate memory for both the sequence information block and the
sequence data.

The client calls SEQSET to initialize the sequence elements.

The client calls CRBEXEC, which causes the client-side COBOL runtime
to marshal the values across the network.

The server calls QOAGET, which causes the server-side COBOL runtime
to receive the sequence and implicitly allocate memory for it.

The server calls SEQGET to obtain the sequence value from the
operation parameter buffer.

The server calls SEQFREE to explicitly free the memory allocated for the
original i n sequence via the call to COAGET in point 4.

The server calls SEQALLOC to initialize the replacement out sequence
and allocate memory for both the sequence information block and the
sequence data.

Overview for OUT and return
parameters

10.

11.

12.

Operation Parameters

The server calls SEQSET to initialize the sequence elements for the

replacement out sequence.

The server calls COAPUT, which causes the server-side COBOL runtime

to marshal the replacement out sequence across the network and then

implicitly free the memory allocated for it via the call to SEQALLCCin

point 7.

Control returns to the client, and the call to CRBEXEC in point 3 now

causes the client-side COBOL runtime to:

i Free the memory allocated for the original i n sequence via the
call to SEQALLCC in point 1.

ii. Receive the replacement out sequence.
iii. Allocate memory for the replacement out sequence.

Note: By having CRBEXECfree the originally allocated memory before
allocating the replacement memory means that a memory leak is
avoided.

The client calls SEQEET to obtain the sequence value from the operation
parameter buffer.

The client calls SEQFREE to free the memory allocated for the
replacement out sequence in point 10 via the call to CRBEXEC in point
3.

Table 29 provides a detailed outline of how memory is handled for
unbounded sequences that are used as out or ret urn parameters.

Table 29: Memory Handling for OUT and Return Unbounded Sequences

Client Application Server Application

1. ORBEXEC—(send)

6. (receive, allocate)
7. SEQGET
8. SEQFREE

2. COAGET—(receive)

3. SEQALLOC

4. SEQSET

5. COAPUT—(send, free)

305

CHAPTER 8 | Memory Handling

Summary of rules for OUT and
return parameters

306

The memory handling rules for an unbounded sequence used as an out or
ret urn parameter can be summarized as follows, based on Table 29:

1.

The client calls CRBEXEC, which causes the client-side COBOL runtime
to marshal the request across the network.

The server calls COAGET, which causes the server-side COBOL runtime
to receive the client request.

The server calls SEQALLOC to initialize the sequence and allocate
memory for both the sequence information block and the sequence
data.

The server calls SEQSET to initialize the sequence elements.

The server calls COAPUT, which causes the server-side COBOL runtime
to marshal the values across the network and implicitly free the
memory allocated to the sequence via the call to SEQALLCC.

Control returns to the client, and the call to ORBEXEC in point 1 now
causes the client-side COBOL runtime to receive the sequence and
implicitly allocate memory for it.

The client calls SEQEET to obtain the sequence value from the operation
parameter buffer.

The client calls SEQFREE, which causes the client-side COBOL runtime
to free the memory allocated for the sequence via the call to CRBEXEC.

Operation Parameters

Unbounded Strings and Memory Management

Overview for IN parameters

Summary of rules for IN
parameters

Table 30 provides a detailed outline of how memory is handled for
unbounded strings that are used as i n parameters.

Table 30: Memory Handling for IN Unbounded Strings

Client Application Server Application

1. STRSET
2. ORBEXEC—(send)

6. STRFREE

3. COAGET—(receive, allocate)
4. STRGET
5. COAPUT—(free)

The memory handling rules for an unbounded string used as an i n
parameter can be summarized as follows, based on Table 30:

1.

The client calls STRSET to initialize the unbounded string and allocate
memory for it.

The client calls CRBEXEC, which causes the client-side COBOL runtime
to marshal the values across the network.

The server calls COAGET, which causes the server-side COBOL runtime
to receive the string and implicitly allocate memory for it.

The server calls STRGET to obtain the string value from the operation
parameter buffer.

The server calls COAPUT, which causes the server-side COBOL runtime
to implicitly free the memory allocated by the call to COAGET.

The client calls STRFREE to free the memory allocated by the call to
STRSET.

307

CHAPTER 8 | Memory Handling

Overview for INOUT parameters Table 31 provides a detailed outline of how memory is handled for
unbounded strings that are used as i nout parameters.

Table 31: Memory Handling for INOUT Unbounded Strings

Client Application Server Application

1. STRSET

2. ORBEXEC—(send)
3. COAGET—(receive, allocate)
4, STRGET

5. STRFREE

6. STRSET

7. COAPUT—(send, free)

8. (free, receive, allocate)

9. STRGET

10. STRFREE
Summary of rules for INOUT The memory handling rules for an unbounded string used as an i nout
parameters parameter can be summarized as follows, based on Table 31:

1. The client calls STRSET to initialize the unbounded string and allocate
memory for it.

2. The client calls ORBEXEC, which causes the client-side COBOL runtime
to marshal the values across the network.

3. The server calls COAGET, which causes the server-side COBOL runtime
to receive the string and implicitly allocate memory for it.

4. The server calls STRGET to obtain the string value from the operation
parameter buffer.

5. The server calls STRFREE to explicitly free the memory allocated for the
original i n string via the call to COAGET in point 3.

6. The server calls STRSET to initialize the replacement out string and
allocate memory for it.

7. The server calls coaPUT, which causes the server-side COBOL runtime
to marshal the replacement out string across the network and then

implicitly free the memory allocated for it via the call to STRSET in point
6.

308

Overview for OUT and return
parameters

Summary of rules for OUT and
return parameters

Operation Parameters

8. Control returns to the client, and the call to CRBEXEC in point 2 now
causes the client-side COBOL runtime to:

i. Free the memory allocated for the original i n string via the call to
STRSET in point 1.

ii. Receive the replacement out string.

iii. Allocate memory for the replacement out string.

Note: By having CRBEXECfree the originally allocated memory before
allocating the replacement memory means that a memory leak is
avoided.

9. The client calls STRGET to obtain the replacement out string value from
the operation parameter buffer.

10. The client calls STRFREE to free the memory allocated for the
replacement out string in point 8 via the call to CRBEXEC in point 2.

Table 32 provides a detailed outline of how memory is handled for
unbounded strings that are used as out or ret urn parameters.

Table 32: Memory Handling for OUT and Return Unbounded Strings

Client Application Server Application

1. ORBEXEC—(send)
2. COAGET—(receive)

3. STRSET

4. COAPUT—(send, free)
5. (receive, allocate)
6. STRGET

7. STRFREE

The memory handling rules for an unbounded string used as an out or
ret urn parameter can be summarized as follows, based on Table 32:

1. The client calls GRBEXEC, which causes the client-side COBOL runtime
to marshal the request across the network.

2. The server calls COAGET, which causes the server-side COBOL runtime
to receive the client request.

309

CHAPTER 8 | Memory Handling

310

The server calls STRSET to initialize the string and allocate memory for
it.

The server calls CAPUT, which causes the server-side COBOL runtime
to marshal the values across the network and implicitly free the
memory allocated to the string via the call to STRSET.

Control returns to the client, and the call to CRBEXEC in point 1 now
causes the client-side COBOL runtime to receive the string and
implicitly allocate memory for it.

The client calls STRGET to obtain the string value from the operation
parameter buffer.

The client calls STRFREE, which causes the client-side COBOL runtime
to free the memory allocated for the string in point 5 via the call to
CRBEXEC in point 1.

Operation Parameters

Object References and Memory Management

Overview for IN parameters

Summary of rules for IN
parameters

Table 33 provides a detailed outline of how memory is handled for object
references that are used as i n parameters.

Table 33: Memory Handling for IN Object References

Client Application

Server Application

1. Attain object reference
2. ORBEXEC—(send)

6. OBJREL

3. COAGET—(receive)
4. read
5. COAPUT

The memory handling rules for an object reference used as an i n parameter
can be summarized as follows, based on Table 33:

1. The client attains an object reference through some retrieval
mechanism (for example, by calling STRTCOBJ or (BBJR R).

2. The client calls CRBEXEC, which causes the client-side COBOL runtime
to marshal the object reference across the network.

3. The server calls COAGET, which causes the server-side COBOL runtime

to receive the object reference.

4. The server can now invoke on the object reference.

5. The server calls GoAPUT, which causes the server-side COBOL runtime
to implicitly free any memory allocated by the call to COAGET.

6. The client calls GBIREL to release the object.

311

CHAPTER 8 | Memory Handling

Overview for INOUT parameters

Summary of rules for INOUT
parameters

312

Table 34 provides a detailed outline of how memory is handled for object
references that are used as i nout parameters.

Table 34: Memory Handling for INOUT Object References

Client Application Server Application

1. Attain object reference
2. ORBEXEC—(send)

3. COAGET—(receive)
4. read
5. OBJREL
6. Attain object reference
7. OBJDUP
8. COAPUT—(send)
9. (receive)
10. read
11. OBJREL

The memory handling rules for an object reference used as an i nout
parameter can be summarized as follows, based on Table 34:

1.

The client attains an object reference through some retrieval
mechanism (for example, by calling STRTOOBJ or CGBJIR R).

The client calls CRBEXEC, which causes the client-side COBOL runtime
to marshal the object reference across the network.

The server calls COAGET, which causes the server-side COBOL runtime
to receive the object reference.

The server can now invoke on the object reference.

The server calls GBJREL to release the original i n object reference.
The server attains an object reference for the replacement out
parameter through some retrieval mechanism (for example, by calling
STRTOCBJ of (BIR R).

The server calls CBIDUP to increment the object reference count and to
prevent the call to GOAPUT in point 8 from causing the replacement out
object reference to be released.

The server calls CoAPUT, which causes the server-side COBOL runtime
to marshal the replacement out object reference across the network.

Overview for OUT and return
parameters

Summary of rules for OUT and
return parameters

10.
11.

Operation Parameters

Control returns to the client, and the call to CRBEXEC in point 2 now
causes the client-side COBOL runtime to receive the replacement out
object reference.

The client can now invoke on the replacement object reference.
The client calls CBIREL to release the object.

Table 35 provides a detailed outline of how memaory is handled for object
references that are used as out or return parameters.

Table 35: Memory Handling for OUT and Return Object References

Client Application Server Application

1. ORBEXEC—(send)

6. (receive)
7. read
8. OBJREL

2. COAGET—(receive)

3. Attain object reference
4. OBJDUP

5. COAPUT—(send)

The memory handling rules for an object reference used as an out orreturn
parameter can be summarized as follows, based on Table 35:

1.

The client calls CRBEXEC, which causes the client-side COBOL runtime
to marshal the request across the network.

The server calls COAGET, which causes the server-side COBOL runtime
to receive the client request.

The server attains an object reference through some retrieval
mechanism (for example, by calling STRTCOBJ or (BBJR R).

The server calls CBIDUP to increment the object reference count and to
prevent the call to GOAPUT in point 5 from causing the object reference
to be released.

The server calls COAPUT, which causes the server-side COBOL runtime
to marshal the object reference across the network.

Control returns to the client, and the call to CRBEXEC in point 1 now
causes the client-side COBOL runtime to receive the object reference.

313

CHAPTER 8 | Memory Handling

7. The client can now invoke on the object reference.
8. The client calls GBIREL to release the object.

314

Operation Parameters

The any Type and Memory Management

Overview for IN parameters

Summary of rules for IN
parameters

Table 36 provides a detailed outline of how memory is handled for an any
type that is used as an i n parameter.

Table 36: Memory Handling for IN Any Types

Client Application Server Application

1. TYPESET

2. ANYSET

3. ORBEXEC—(send)
4. COAGET—(receive, allocate)
5. TYPEGET

6. ANYGET

7. COAPUT—(free)

8. ANYFREE

The memory handling rules for an any type used as an i n parameter can be
summarized as follows, based on Table 36:

1.
2.

The client calls TYPESET to set the type of the any.

The client calls ANYSET to set the value of the any and allocate memory
for it.

The client calls CRBEXEC, which causes the client-side COBOL runtime
to marshal the values across the network.

The server calls COAGET, which causes the server-side COBOL runtime
to receive the any value and implicitly allocate memory for it.

The server calls TYPEGET to obtain the typecode of the any.

The server calls ANYGET to obtain the value of the any from the
operation parameter buffer.

The server calls CoAPUT, which causes the server-side COBOL runtime
to implicitly free the memory allocated by the call to CoaGET.

The client calls ANYFREE to free the memory allocated by the call to
ANYSET.

315

CHAPTER 8 | Memory Handling

Overview for INOUT parameters

Summary of rules for INOUT
parameters

316

Table 37 provides a detailed outline of how memory is handled for an any

type that is used as an i nout parameter.

Table 37: Memory Handling for INOUT Any Types

Client Application Server Application

1. TYPESET
2. ANYSET
3. ORBEXEC—(send)

4. COAGET—(receive, allocate)
5. TYPEGET
6. ANYGET
7. ANYFREE
8. TYPSET
9. ANYSET
10. COAPUT—(send, free)
11. (free, receive, allocate)
12. TYPEGET
13. ANYGET
14. ANYFREE

The memory handling rules for an any type used as an i nout parameter can

be summarized as follows, based on Table 37:
1. The client calls TYPESET to set the type of the any.

2. The client calls ANYSET to set the value of the any and allocate memory

for it.

3. The client calls ORBEXEC, which causes the client-side COBOL runtime

to marshal the values across the network.

4. The server calls COAGET, which causes the server-side COBOL runtime

to receive the any value and implicitly allocate memory for it.
The server calls TYPEGET to obtain the typecode of the any.

The server calls ANYGET to obtain the value of the any from the
operation parameter buffer.

7. The server calls ANYFREE to explicitly free the memory allocated for the

original i n value via the call to COAGET in point 4.
8. The server calls TYPESET to set the type of the replacement any.

10.

11.

12.

13.

14.

Operation Parameters

The server calls ANYSET to set the value of the replacement any and

allocate memory for it.

The server calls CAPUT, which causes the server-side COBOL runtime

to marshal the replacement any value across the network and then

implicitly free the memory allocated for it via the call to ANYSET in point

9.

Control returns to the client, and the call to CRBEXEC in point 3 now

causes the client-side COBOL runtime to:

i Free the memory allocated for the original any via the call to
ANYSET in point 2.

ii. Receive the replacement any.

iii. Allocate memory for the replacement any.

Note: By having CRBEXECfree the originally allocated memory before
allocating the replacement memory means that a memory leak is
avoided.

The client calls TYPEGET to obtain the typecode of the replacement
any.

The client calls ANYGET to obtain the value of the replacement any from
the operation parameter buffer.

The client calls ANYFREE to free the memory allocated for the
replacement out string in point 11 via the call to CRBEXEC in point 3.

317

CHAPTER 8 | Memory Handling

Overview for OUT and return
parameters

Summary of rules for OUT and
return parameters

318

Table 38 provides a detailed outline of how memory is handled for an any

type that is used as an out or return parameter.

Table 38: Memory Handling for OUT and Return Any Types

Client Application Server Application

1. ORBEXEC—(send)
2. COAGET—(receive)

3. TYPESET

4, ANYSET

5. COAPUT—(send, free)
6. (receive, allocate)
7. TYPEGET

8. ANYGET

9. ANYFREE

The memory handling rules for an any type used as an out orreturn

parameter can be summarized as follows, based on Table 38:

1.

The client calls CRBEXEC, which causes the client-side COBOL runtime
to marshal the request across the network.

The server calls COAGET, which causes the server-side COBOL runtime
to receive the client request.

The server calls calls TYPESET to set the type of the any.

The server calls ANYSET to set the value of the any and allocate memory
for it.

The server calls COAPUT, which causes the server-side COBOL runtime
to marshal the values across the network and implicitly free the
memory allocated to the any via the call to ANYSET.

Control returns to the client, and the call to ORBEXEC in point 1 now
causes the client-side COBOL runtime to receive the any and implicitly
allocate memory for it.

The client calls TYPEGET to obtain the typecode of the any.

The client calls ANYGET to obtain the value of the any from the
operation parameter buffer.

Operation Parameters

9. The client calls ANYFREE, which causes the client-side COBOL runtime
to free the memory allocated for the any in point 6 via the call to
CRBEXEC in point 1.

319

CHAPTER 8 | Memory Handling

User Exceptions and Memory Management

Overview Table 39 provides a detailed outline of how memory is handled for user
exceptions.

Table 39: Memory Handling for User Exceptions

Client Application Server Application

1. ORBEXEC—(send)
2. COAGET—(receive, allocate)

3. write
4. COAERR
5. (free)
6. Free
Summary of rules The memory handling rules for raised user exceptions can be summarized as

follows, based on Table 39:

1. The client calls ORBEXEC, which causes the COBOL runtime to marshal
the client request across the network.

2. The server calls COAGET, which causes the server-side COBOL runtime
to receive the client request and allocate memory for any arguments (if
necessary).

3. The server initializes the user exception block with the information for
the exception to be raised.

4. The server calls COAERR, to raise the user exception.

5. The server-side COBOL runtime automatically frees the memory
allocated for the user exception in point 3.

Note: The COBOL runtime does not, however, free the argument
buffers for the user exception. To prevent a memory leak, it is up to
the server program to explicitly free active argument structures,
regardless of whether they have been allocated automatically by the
COBOL runtime or allocated manually. This should be done before
the server calls COAERR.

320

Operation Parameters

The client must explicitly free the exception ID in the user exception
header, by calling STRFREE. It must also free any exception data
mapping to dynamic structures (for example, if the user exception
information block contains a sequence, this can be freed by calling
SEGFREE).

321

CHAPTER 8 | Memory Handling

Memory Management Routines

Overview

Unbounded strings

322

This section provides examples of COBOL routines for allocating and freeing
memory for various types of dynamic structures. These routines are
necessary when sending arguments across the wire or when using
user-defined IDL types as variables within COBOL.

Use STRSET to allocate memory for unbounded strings, and STRFREE to
subsequently free this memory. For example:

01 MY- CCBCL- STRING Pl CTURE X(11) VALUE "Testing 123".
01 MY- CCBCL- STR NG LEN Pl C 9(09) BI NARY VALUE 11.
01 MY- CCRBA- STRING PO NTER VALUE NULL.

* Al ocation

CALL " STRSET" USI NG MY- OCRBA- STRI NG
MY- QCBCOL- STRI NG LEN
MY- OCRBA- STRI NG

* Del etion

CALL " STRFREE' USI NG Y- GCRBA- STRI NG

Note: Unbounded strings are stored internally as normal C or C+ +
strings that are terminated by a null character. The STRx routines provide
facilities for copying these strings without the null character. The STRx
routines also provide facilities for correctly truncating and padding the
strings to and from their COBOL equivalents. It can be useful to know
exactly how big the string actually is before copying it. You can use the
STRLEN function to obtain this information.

Unbounded wide strings

Typecodes

Unbounded sequences

Memory Management Routines

Use WBTRSET to allocate memory for unbounded wide strings, and WSTRFRE
to subsequently free this memory. For example:

01 M- CORBA- WETRI NG PO NTER VALUE NULL.

* Al ocation

CALL "WBTRSET USI NG MY- CCRBA- WBTRI NG
MY- CCBOL- WBTR NG LEN
MY- CCRBA- WETRI NG

* Del etion

CALL "WBTRFREE' USI NG M- OCRBA- WBTR NG

As described in the Mapping chapter, typecodes are mapped to a pointer.
They are handled in COBOL as unbounded strings and should contain a
value corresponding to one of the typecode keys generated by the Orbix IDL

compiler. For example:

01 M- TYPECCDE PQA NTER VALUE NULL.

* Al ocation
CALL " STRSET" USI NG Y- TYPECCDE
MY- COVPLEX- TYPE
MY- COMPLEX- TYPE- LENGTH
* Del etion
CALL " STRFREE' USI NG M- TYPECCDE.

Use SEQALLQCHO initialize an unbounded sequence. This dynamically creates
a sequence information block that is used internally to record state, and
allocates the memory required for sequence elements. You can use SEQSET
and SEQGET to access the sequence elements. You can also use SEQSET to
resize the sequence if the maximum size of the sequence is not large enough
to contain another sequence element. Use SEQFREE to free memory allocated
via SEQALLCC. For example:

* Al ocation
CALL "SEQALLCC! USI NG MY- SEQUENCE- NAXI MUM
M- USEQ TYPE
MY- USEQ TYPE- LENGTH
N SEQUENCE OF IWY- USEQ ARGS.
* Del etion
CALL " SEQFREE" USI NG N SEQUEENCE COF MY- USEQ ARGS.

323

CHAPTER 8 | Memory Handling

The any type

324

Note: You only need to call SEQFREE on the outermost sequence, because
it automatically deletes both the sequence information block and any
associated inner dynamic structures.

Use TYPESET to initialize the any information status block and allocate
memory for it. Then use ANYSET to set the type of the any. Use ANYFREE to
free memory allocated via TYPESET. This frees the flat structure created via
TYPESET and any dynamic structures that are contained within it. For
example:

01 MY- CORBA- ANY PQA NTER VALUE NULL.
01 MY-LONG Pl C 9(10) Bl NARY VALUE 123.
* Al ocation
SET CCORBA- TYPE- LONG TO TRUE.
CALL " TYPESET" USI NG MY- CCRBA- ANY
MY- COMPLEX- TYPE- LENGTH
MY- COMPLEX- TYPE.

CALL " ANYSET" USI NG M- CCRBA- ANY
MY- LONG

* Del etion
CALL " ANYFREE' USI NG MY- CORBA- ANY.

Part 2

Programmer’s Reference

In this part This part contains the following chapters:

API Reference page 327

In this chapter

CHAPTER 9

AP| Reference

This chapter summarizes the API functions that are defined
for the Orbix COBOL runtime, in pseudo-code. It explains how
to use each function, with an example of how to call it from
COBOL.

This chapter discusses the following topics:

API Reference Summary page 328
API Reference Details page 332
Deprecated APIs page 451

Note: All parameters are passed by reference to COBOL APIs.

327

CHAPTER 9 | API Reference

API| Reference Summary

Introduction This section provides a summary of the available API functions, in
alphabetic order. See “API Reference Details” on page 332 for more details
of each function.

Summary listing ANYFREE(i nout PQ NTER any- poi nt er)
/1 Frees menory allocated to an any.

ANYCGET(i n PO NTER any- poi nter,
out buffer any-data-buffer)
/l Extracts data out of an any.

ANYSET(i nout PQ NTER any- poi nt er,
in buffer any-data-buffer)
/1 Inserts data into an any.

CQAERR(i n buffer user-exception-buffer)
/1 Allows a GOBOL server to raise a user exception for an
/1 operation.

COACET(i n buffer operation-buffer)
/1 Marshals in and inout arguments for an operation on the server
/1 side froman incom ng request.

COAPUT(out buf fer operati on-buffer)
/1 Marshals return, out, and inout argurents for an operation on
/1 the server side froman inconing request.

COAREQ(i n buffer request-details)
/1 Provides current request infornation

COARUIN
/1 Indicates the server is ready to accept requests.

MEMALLOC(i n 9(09) Bl NARY nenory-si ze,
out PQA NTER nenory- poi nter)
/1 Alocates nenory at runtime fromthe program heap.

MEMFREE(i nout PQA NTER nenor y- poi nt er)
/1l Frees dynanically allocated menory.

328

API Reference Summary

CBJDUP(i n PA NTER obj ect - r ef er ence,
out PA NTER dupl i cat e- obj -ref)
/1 Duplicates an object reference.

CBJCETI D(i n PA NTER obj ect - r ef er ence,
out X(nn) object-id,
in 9(09) BINARY object-id-Iength)
/] Retrieves the object IDfroman object reference.

CBINEWi n X(nn) server-narre,

in X(nn) interface-nane,

in X(nn) object-id,

out PA NTER obj ect - ref er ence)
/1 Creates a unique object reference.

CBJREL(i nout PQ NTER obj ect - r ef er ence)
/1 Rel eases an obj ect reference.

GBIR R(in X(nn) desired-service,

out PA NTER obj ect - r ef er ence)
/1 Returns an object reference to an object through which a
/1 service such as the Naming Service can be used.

CGBJTCSTR(i n PA NTER obj ect - r ef er ence,

out PA NTER obj ect -string)
/1 Returns a stringified interoperable object reference (1R
/1 froma valid object reference.

CRBARGS(in X(nn) argunent-string,
in 9(09) BINARY argunent-string-Iength,
in X(nn) orb-narre,
in 9(09) Bl NARY orb- nane-| engt h)
/1l Initializes a client or server connection to an CRB.

CRBEXEQ(i n PA NTER obj ect - r ef er ence,
in X(nn) operation-nare,
i nout buffer operation-buffer,
i nout buffer user-exception-buffer)
/1 Invokes an operation on the specified object.

CRBHOST(in 9(09) Bl NARY host nane- | engt h,
out X(nn) host nane)
// Returns the hostname of the server

CRBREQ i n buffer interface-description)
/] Describes an IDL interface to the GQOBOL runti ne.

329

CHAPTER 9 | API Reference

CRBSRVR(i n X(nn) server-nane,
in 9(09) BINARY server-nane-| engt h)
Il Sets the server nane for the current server process.

CRBSTAT(in buffer status-buffer)
/1 Registers the status information bl ock.

CRBTI ME(in 9(04) BINARY tineout-type

in 9(09) BINARY tineout-val ue)
/1 Used by clients for setting the call timeout.
/1 Used by servers for setting the event tineout.

SEQALLOO(i n 9(09) BI NARY sequence-si ze,
in X(nn) typecode-key,
in 9(09) BINARY typecode-key-Iength,
i nout buffer sequence-control -dat a)
/1 Alocates nenory for an unbounded sequence

SECDUP(i n buffer sequence-control -data,
out buffer dupl-seg-control -data)
/1 Duplicates an unbounded sequence control bl ock.

SEQFREE(i nout buf fer sequence-control - dat a)
/1 Frees the nenory allocated to an unbounded sequence.

SEQGET(i n buffer sequence-control -data,
in 9(09) BINARY el errent - nunber,
out buffer sequence-data)
/1 Retrieves the specified el ement froman unbounded sequence.

SEQSET(out buf fer sequence-control -dat a,

in 9(09) BINARY el erent - nunber,

in buffer sequence-data)
/1 Places the specified data into the specified el ement of an
/1 unbounded sequence.

STRFREE(i n PA NTER string- poi nter)
/1 Frees the nenory allocated to a bounded string.

STRCGET(i n PA NTER string-poi nter,
in 9(09) BINARY string-Iength,
out X(nn) string)
/1 Copies the contents of an unbounded string to a bounded string.

STRLEN(i n PQ NTER stri ng- poi nter,

out 9(09) BINARY string-Iength)
/] Returns the actual |ength of an unbounded string.

330

API Reference Summary

STRSET(out PA NTER string-poi nter,
in 9(09) BINARY string-Iength,
in X(nn) string)
/1 CGreates a dynamic string froma PIC X(n) data item

STRSETP(out PQA NTER st ri ng- poi nter,
in 9(09) BINARY string-Iength,
in X(nn) string)
/1 Oreates a dynanic string froma PIC X(n) data item

STRTOBI(i n PA NTER obj ect-string,

out PA NTER obj ect - r ef er ence)
/1 Creates an object reference froman interoperabl e object
Il reference (ICR).

TYPEGET(i nout PA NTER any- poi nter,
in 9(09) BINARY typecode-key-I|ength,
out X(nn) typecode-key)

/1l Extracts the type name froman any.

TYPESET(i nout PO NTER any- poi nter,
in 9(09) BINARY typecode-key-Iength,
in X(nn) typecode-key)

/1 Sets the type nane of an any.

WBTRFREE(i n PA NTER stri ng- poi nter)
/1 Frees the nmenory allocated to a bounded wide string.

WBTRCGET(i n PA NTER stri ng- poi nter,

in 9(09) BINARY string-Iength,

out @nn) string)
/1 Copies the contents of an unbounded wide string to a bounded
/1 wide string.

WBTRLEN(i n PQ NTER stri ng- poi nter,
out 9(09) BINARY string-Iength)
/!l Returns the actual |ength of an unbounded wi de string.

WBTRSET(out PO NTER stri ng- poi nter,
in 9(09) BINARY string-Ilength
in @nn) string)
I/l Oreates a dynanic wide string froma PIC n) data item

WBTRSETP(out PQA NTER stri ng- poi nter,
in 9(09) BINARY string-Iength,
in @nn) string)
/1 Oreates a dynanic wide string froma PIC @ n) data item

331

CHAPTER 9 | API Reference

APl Reference Details

Introduction This section provides details of each available API function, in alphabetic
order.

In this section This section discusses the following topics:
ANYFREE page 334
ANYGET page 336
ANYSET page 338
COAERR page 341
COAGET page 346
COAPUT page 351
COAREQ page 357
COARUN page 362
MEMALLOC page 363
MEMFREE page 365
OBJDUP page 366
OBJGETID page 368
OBJNEW page 370
OBJREL page 373
OBJRIR page 375
OBJTOSTR page 377
ORBARGS page 379
ORBEXEC page 382

332

API Reference Details

ORBHOST page 388
ORBREG page 390
ORBSRVR page 393
ORBSTAT page 394
ORBTIME page 398
SEQALLOC page 400
SEQDUP page 404
SEQFREE page 409
SEQGET page 412
SEQSET page 415
STRFREE page 420
STRGET page 422
STRLEN page 425
STRSET page 427
STRSETP page 430
STRTOOBJ page 432
TYPEGET page 438
TYPESET page 440
WSTRFREE page 443
WSTRGET page 444
WSTRLEN page 445
WSTRSET page 446
WSTRSETP page 447
CHECK-STATUS page 448

333

CHAPTER 9 | API Reference

ANYFREE

Synopsis

Usage

Description

Parameters

Example

334

ANYFREE(i nout PO NTER any- poi nter);
Il Frees menory allocated to an any.

Common to clients and servers.

The ANYFREE function releases the memory held by an any type that is being
used to hold a value and its corresponding typecode. Do not try to use the
any type after freeing its memory, because doing so might result in a
runtime error.

When you call the ANYSET function, it allocates memory to store the actual
value of the any. When you call the TYPESET function, it allocates memory to
store the typecode associated with the value to be marshalled. When you
subsequently call ANYFREE, it releases the memory that has been allocated
via ANYSET and TYPESET.

The parameter for ANYFREE can be described as follows:

any- poi nt er This is an i nout parameter that is a pointer to the
address in memory where the any is stored.

The example can be broken down as follows:
1. Consider the following IDL:

/11D

interface sanple {
attribute any nyany;

}

See also

API Reference Details

Based on the preceding IDL, the Orbix IDL compiler generates the
following code in the i dI menber name copybook (where i dI menber name
represents the (possibly abbreviated) name of the IDL member that
contains the IDL definitions):

01 SAWPLE- MYANY- ARGS.
03 RESULT PO NTER
VALUE NULL.

The following is an example of how to use ANYFREE in your client or

server program:

PROCEDURE D'V S| ON
CALL "ANYFREE' USING RESULT CF SAWPLE- MYANY- ARGS.

“ANYSET” on page 338.
“TYPESET” on page 440.
“The any Type and Memory Management” on page 315.

335

CHAPTER 9 | API Reference

ANYGET

Synopsis

Usage

Description

Parameters

Example

336

ANYCGET(i n PO NTER any- poi nter,
out buffer any-data-buffer)
/1l Extracts data out of an any.

Common to clients and servers.

The ANYGET function provides access to the buffer value that is contained in
an any. You should check to see what type of data is contained in the any,
and then ensure you supply a data buffer that is large enough to receive its
contents. Before you call ANYGET you can use TYPEGET to extract the type of
the data contained in the any.

The parameters for ANYGET can be described as follows:
any- poi nt er This is an i nout parameter that is a pointer to the
address in memory where the any is stored.

any-dat a-buf fer This is an out parameter that can be of any valid COBOL
type. It is used to store the value extracted from the any.

The example can be broken down as follows:
1. Consider the following IDL:

interface sanple {
attribute any nyany;

}

API Reference Details

2. Based on the preceding IDL, the Orbix IDL compiler generates the
following code in the i dI menber name copybook (where i dI menber name
represents the (possibly abbreviated) name of the IDL member that
contains the IDL definitions):

01 SAWPLE- MYANY- ARGS.

03 RESWLT PO NTER
VALUE NULL.
01 EXAMPLE- TYPE Pl CTURE X(15).
QOPY CCRBATYP.
88 SAVPLE VALUE "1 DL: sanpl e: 1. 0"
01 EXAMPLE- TYPE- LENGTH Pl CTURE S9(09) Bl NARY
VALLE 22.

3. The following is an example of how to use ANYSET in a client or server
program:

WORKI NG STORAGE SECTI ON.
01 W5 DATA PI C S9(10) VALLE 0.

CALL "TYPECGET" USI NG RESULT COF SAMPLE- MYANY- ARGS
EXAVPLE- TYPE- LENGTH
EXAVPLE- TYPE.
SET W& TYPECET TO TRUE
PERFORM CHECK- STATUS.
* val i date typecode
EVALUATE TRUE
WHEN OCRBA- TYPE- LONG
* retrieve the ANY CORBA : Short val ue
CALL "ANYGET" USING RESULT OF SAMPLE- MYANY- ARGS
W5- DATA
SET W5 ANYCET TO TRUE
PERFORM CHECK- STATUS
DI SPLAY "“ANY val ue equal s " W5 DATA
WHEN OTHER
Dl SPLAY "Wong typecode recei ved, expected a LONG
t ypecode"
END- EVALUTE.

See also “ANYSET"” on page 338.

337

CHAPTER 9 | API Reference

ANYSET

Synopsis

Usage

Description

Parameters

Example

338

ANYSET(i nout PQ NTER any- poi nter,
in buffer any-data-buffer)
/1 Inserts data into an any.

Common to clients and servers.

The ANYSET function copies the supplied data, which is placed in the data
buffer by the application, into the any. ANYSET allocates memory that is
required to store the value of the any. You must call TYPESET before calling
ANYSET, to set the typecode of the any. Ensure that this typecode matches
the type of the data being copied to the any.

The parameters for ANYSET can be described as follows:
any- poi nt er This is an i nout parameter that is a pointer to the
address in memory where the any is stored.

any-dat a-buf fer This is an i n parameter that can be of any valid COBOL
type. It contains the value to be copied to the any.

The example can be broken down as follows:
1. Consider the following IDL:

interface sanple {
attribute any nyany;

}

API Reference Details

2. Based on the preceding IDL, the Orbix IDL compiler generates the
following code in the i dI menber name copybook (where i dI menber name
represents the (possibly abbreviated) name of the IDL member that
contains the IDL definitions):

01 SAWPLE- MYANY- ARGS.

03 RESWLT PO NTER
VALUE NULL.
01 EXAMPLE- TYPE Pl CTURE X(15).
QOPY CCRBATYP.
88 SAVPLE VALUE "1 DL: sanpl e: 1. 0"
01 EXAMPLE- TYPE- LENGTH Pl CTURE S9(09) Bl NARY
VALLE 22.

3. The following is an example of how to use ANYSET in a client or server
program:

WORKI NG STORAGE SECTI ON.
01 WS- DATA PI C S9(10) VALUE 100.

PROCEDURE D'V S| ON

* Set the ANY typecode to be a OORBA : Long
SET CCRBA- TYPE- LONG TO TRUE
CALL "TYPESET" USING RESULT CF
SAWPLE- MYANY- ARGS
EXAMPLE- TYPE- LENGTH
EXAMPLE- TYPE.
SET W& TYPESET TO TRUE
PERFCRM CHECK- STATUS.
* Set the ANY val ue to 100
CALL "ANYSET" USING RESULT OF SAWMPLE- MYANY- ARGS
W5- DATA
SET W& TYPESET TO TRUE
PERFORM CHECK- STATUS.

Exceptions A COCRBA : BAD | NV_CRDER : TYPESET_NOT_CALLED exception is raised if the
typecode of the any has not been set via the TYPESET function.

See also ® “ANYGET” on page 336.
® “TYPESET” on page 440.

339

CHAPTER 9 | API Reference

® “The any Type and Memory Management” on page 315.

340

API Reference Details

COAERR

Synopsis

Usage

Description

Parameters

CQAERR(i n buffer user-exception-buffer)
/1 Allows a GOBCL server to raise a user exception for an
/1 operation.

Server-specific.

The cOAERR function allows a COBOL server to raise a user exception for the
operation that supports the exception(s), which can then be picked up on
the client side via the user exception buffer that is passed to CRBEXEC for the
relevant operation. To raise a user exception, the server program must set
the EXCEPTI O\ I D, the Ddiscriminator, and the appropriate exception buffer.

The server calls CQAERR instead of CQAPUT in this instance, and this informs
the client that a user exception has been raised. Refer to the “Memory
Handling” on page 301 for more details. Calling COAERR does not terminate
the server program.

The client can determine if a user exception has been raised, by testing to
see whether the EXCEPTI ON- | D of the operation’s user - except i on- buf f er
parameter passed to CRBEXEC is equal to zero after the call. Refer to
“ORBEXEC” on page 382 for an example of how a COBOL client determines
if a user exception has been raised.

The parameter for COAERR can be described as follows:

user - except i on- buf f er This is an i n parameter that contains the COBOL
representation of the user exceptions that the
operation supports, as defined in the
i dl nrenber nane copybook generated by the Orbix
IDL compiler. If the IDL operation supports no user
exceptions, a dummy buffer is generated—this
dummy buffer is not populated on the server side,
and it is only used as the fourth (in this case,
dummy) parameter to CRBEXEC.

341

CHAPTER 9 | API Reference

Example The example can be broken down as follows:
1. Consider the following IDL:

//1DL
interface sanple {
typedef string<10> Aboundedstri ng;
excepti on M/Exception { Aboundedstring except_str; };
Aboundedst ri ng nyoperati on(i n Aboundedstring instr,
i nout Aboundedstring inoutstr,
out Aboundedstring outstr)
rai ses (nyException);
Bis

2. Based on the preceding IDL, the Orbix IDL compiler generates the
following code in the i dl menber name copybook (where i dI menber name
represents the (possibly abbreviated) name of the IDL member that
contains the IDL definitions):

Example 23: The idImembername Copybook (Sheet 1 of 2)

LR EEEEEEEE R EE RS EESS

* Qperation: nyoper ati on

* Mapped nane: nyoper ati on

* Argurent s: <i n> sanpl e/ Aboundedstring instr

& <i nout > sanpl e/ Aboundedstring inoutstr
* <out > sanpl e/ Aboundedstring outstr

* Returns: sanpl e/ Aboundedst ri ng

* User Exceptions: sanpl e/ M/Exception

LR EEE SRR EEE RS EESE]

* operation-buf fer
01 SAWPLE- MYCPERATI ON- ARGS.

03 I NSTR PI CTURE X(10).

03 | NQUTSTR PI CTURE X(10).

03 QUTSTR PI CTURE X(10).

03 RESWLT PI CTURE X(10).
LR RS EE R R EEEEEEEEEEEEEEEEEEEEEEEEEREEEEEEEEEEEEEEEEEES]
QOPY EXAMPLX

LR E RS EEEE RS EE SRS EES

R RS S E RS S S SRR E SRR SRR RS SE RS SRR RS EEEEEEEEEEEEEES
*

* (peration List section

* This lists the operations and attributes which an

* interface supports

342

API Reference Details

Example 23: The idImembername Copybook (Sheet 2 of 2)

*

LR EEEEE RS TR E R SRS EEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEE]

* The operation-nane and its corresponding 88 | evel entry

01 SAWPLE- CPERATI ON Pl CTURE X(27).
88 SAMPLE- MYCPERATI CN VALUE
"nyoperation: | DL: sanpl e: 1. 0".
01 SAMPLE- CPERATI ON- LENGTH Pl CTURE 9(09)

Bl NARY VALUE 27.

R RS S E R RS S S S SRS SRS R R R SRS RS SRR R TR EEEEEEEE S

*

* Typecode section
* This contai ns CDR encodi ngs of necessary typecodes.

*

kkkkkhkkhkkkkhkkhkhhhkhkhhhhhkhkhhhhhkhkhkhdhhhkhhhhhhkhhhhhkhkhkhhhhhkhkkkxkx

01 EXAVPLE- TYPE Pl CTURE X(29).
CCPY CCRBATYP.
88 SAMWPLE- ABOUNDEDSTRI NG VALUE
"1 DL: sanpl e/ Aboundedst ri ng: 1. 0".
01 EXAVPLE- TYPE- LENGTH Pl CTURE S9(09)

Bl NARY VALUE 29.

LR E RS EE RS E RS RS EEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEESESES

* User exception bl ock
RS R RS R E R RS SRR SRS RS EEE SRR R R EEEEEEEEEEEEEEEEEEEEEEEEEEESE]
01 EX- SAWPLE- MYEXCEPTI ON Pl CTURE X(26)
VALUE
"1 DL: sanpl e/ M/Excepti on: 1. 0".
01 EX- SAWPLE- MYEXCEPTI ON- LENGTH Pl CTURE 9(09)
Bl NARY VALUE 26.
* user - excepti on- buf f er

01 EXAWPLE- USER- EXCEPTI ONS.

03 EXCEPTI ON-1D PA NTER
VALUE NULL.
03 D Pl CTURE 9(10) BI NARY
VALLE 0.
88 D- NO USEREXCEPTI ON VALLE 0.
88 D SAMPLE- MYEXCEPTI ON VALLE 1.
03 U Pl CTURE X(10)
VALUE LON VALUES.
03 EXCEPTI O\ SAVPLE- MYEXCEPTI ON REDEFI NES U,
05 EXCEPT- STR Pl CTURE X(10).

343

CHAPTER 9 | API Reference

3. The following is an example of the server implementation code for the
nyoper at i on operation:

DO SAVPLE- MYCPERATI ON
SET D- NO USEREXCEPTI ON TO TRUE
CALL "QQOAGET" USI NG SAVPLE- MYCPERATI ON- ARGS.
SET W& COAGET TO TRUE.
PERFCRM CHECK- STATUS.

* Assum ng sone error has occurred in the application
| F APPL| CATI ON- ERRCR
* Rai se the appropi ate user exception
SET D SAWPLE- MYEXCEPTI ON TO TRUE

* Popul ate the val ues of the exception to be bassed back to
* the client
CALL "STRSET" USI NG EXCEPTI ON-I D
CF EXAMPLE- USER- EXCEPTI ONS
EX- SAVPLE- MYEXCEPTI ON- LENGTH
EX- SAMPLE- MYEXCEPTI O\
SET W5 STRSET TO TRUE.
PERFCORM CHECK- STATUS.

MOVE "FATAL ERRCR " TO EXCEPT- STR
CF EXAMPLE- USER- EXCEPTI ONS
CALL "OQAERR' USI NG EXAVPLE- USER EXCEPTI ONS
SET W5 COAERR TO TRUE
PERFCRM CHECK- STATUS
ELSE
*al | okay pass back the out/inout/return paraneters.
CALL "QQAPUT" USI NG SAMPLE- MYCPERATI ON- ARGS
SET W5 COAPUT TO TRUE
PERFCRM CHECK- STATUS
END- | F.

Exceptions The appropriate CORBA exception is raised if an attempt is made to raise a
user exception that is not related to the invoked operation.

A OCRBA: : BAD PARAM : UNKNOM_TYPEQCDE exception is raised if the typecode
cannot be determined when marshalling an any type or a user exception.

See also ® “COAGET” on page 346.
® “COAPUT” on page 351.
® “ORBEXEC” on page 382.

344

API Reference Details

The BANK demonstration in or bi xhl g. DEMDS. GCBCL. SRCfor a complete
example of how to use COAERR.

345

CHAPTER 9 | API Reference

COAGET

Synopsis

Usage

Description

Parameters

346

COAGET(in buffer operation-buffer)
/1 Marshals in and inout argunents for an operation on the server
/1 side froman incom ng request.

Server-specific.

Each operation implementation must begin with a call to COAGET and end
with a call to cAPUT. Even if the operation takes no parameters and has no
return value, you must still call COAGET and QQAPUT and, in such cases, pass
a dummy PI C X(1) data item, which the Orbix IDL compiler generates for
such cases.

QQAGET copies the incoming operation’s argument values into the complete
COBOL operation parameter buffer that is supplied. This buffer is generated
automatically by the Orbix IDL compiler. Only i n and i nout values in this
structure are populated by this call.

The Orbix IDL compiler generates the call for COAGET in the i dI nenber naneS
source module (where i dl menber name represents the name of the IDL
member that contains the IDL definitions) for each attribute and operation
defined in the IDL.

The parameter for COAGET can be described as follows:

oper ati on- buf f er This is an i n parameter that contains a COBOL 01
level data item representing the data types that the
operation supports.

API Reference Details

Example The example can be broken down as follows:
1. Consider the following IDL:

interface sanple {
typedef string<l10> Aboundedstri ng;
exception M/Exception { Aboundedstring except_str; };
Aboundedst ri ng nyoperation(in Aboundedstring instr,
i nout Aboundedstring inoutstr,
out Aboundedstring outstr)
rai ses (M/Exception);
b

2. Based on the preceding IDL, the Orbix IDL compiler generates the
following in the i dI menber name copybook (where i dI menber name
represents the (possibly abbreviated) name of the IDL member that
contains the IDL definitions):

Example 24: The idImembername Copybook (Sheet 1 of 2)

LR EE SRS EE RS RS RS EEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEESESES

* Qperation: nyoper at i on

* Mapped nane: nyoper ati on

* Argurents: <i n> sanpl e/ Aboundedstring instr

* <i nout > sanpl e/ Aboundedstring i noutstr
* <out > sanpl e/ Aboundedstri ng outstr

* Returns: sanpl e/ Aboundedst ri ng

* User Exceptions: sanpl e/ M/Exception

LRSS S S RS S SR SRS E RS SRR SRR R SRR R RS EEEEEEEEEE]
* operation-buf fer

01 SAMVPLE- MYCPERATI ON- ARGS.

03 INSTR PI CTURE X(10).

03 I NQUTSTR PI CTURE X(10).

03 QUTSTR PI CTURE X(10).

03 RESULT PI CTURE X(10).
LR RS E R SRR EEE]
QOPY EXAVPLX.

LRSS S S RS S SR SRS SRR RS E RS SRR R R R R SRR E RS EEEEEEEEEE]
LR EE SRS E SRS EESES
*

* (peration List section

* This lists the operations and attributes which an

* interface supports
*

LR RS E R SRR EEE]

347

CHAPTER 9 | API Reference

348

Example 24: The idImembername Copybook (Sheet 2 of 2)

* The operation-nane and its corresponding 88 | evel entry
01 SAWPLE- CPERATI ON Pl CTURE X(27).
88 SAWPLE- MYCPERATI ON VALUE
"nyoperation: | DL: sanpl e: 1. 0".
01 SAWPLE- CPERATI ON- LENGTH PI CTURE 9(09)

Bl NARY VALUE 27.

LR EEEEEEEE SRS SRS EESE]

*

* Typecode section
* This contains CDR encodi ngs of necessary typecodes.

*

R RS S SRR S S SRR SRR SRR RS SRR RS SRR SRR R R R EEEEEEEEES

01 EXAVPLE- TYPE PI CTURE X(29) .
CCPY CORBATYP.
88 SAWPLE- ABOUNDEDSTRI NG VALUE

"1 DL: sanpl e/ Aboundedstri ng: 1. 0".
01 EXAWPLE- TYPE- LENGTH
Bl NARY VALUE 29.

PI CTURE S9(09)

LR R R R R R R EEEEEEEEEEEEEEEEEEEEEEEEEREEEEEEEEEEEEEEEEEEES

* User exception bl ock

LR EE RS SR EE RS SRR EES]

01 EX- SAVPLE- MYEXCEPTI ON Pl CTURE X(26)
VALUE
"1 DL: sanpl e/ M/Except i on: 1. 0".
01 EX- SAVPLE- MYEXCEPTI ON- LENGTH Pl CTURE 9(09)

Bl NARY VALLE 26.
* user - excepti on-buf f er

01 EXAVPLE- USER- EXCEPTI ONS.

03 EXCEPTI ON-1D PO NTER
VALUE NULL.
03 D PI CTURE 9(10)
Bl NARY VALLE 0.
88 D NO USEREXCEPTI ON VALUE 0.
88 D- SAVPLE- MYEXCEPTI ON VALUE 1.
03 U PI CTURE X(10)
VALUE LOW VALUES,
03 EXCEPTI O\ SAVPLE- MYEXCEPTI ON REDEFI NES U,
05 EXCEPT- STR PI CTURE X(10).

API Reference Details

3. The following is an example of the server implementation code for the
nyoper at i on operation, which is generated in the i dl menber nanes
source member when you specify the - z argument with the Orbix IDL
compiler:

DO SAMPLE- MYCPERATI ON
SET D- NO USEREXCEPTI ON TO TRUE
CALL "QOOACGET" USI NG SAWPLE- MYCPERATI ON- ARGS.
SET W& CQACGET TO TRUE
PERFCRM CHECK- STATUS.

* TCDQ Add your operation specific code here

EVALUATE TRUE

WHEN D- NO- USEREXCEPTI ON

CALL "QCOAPUT" USI NG SAWPLE- MYCPERATI ON- ARGS
SET W5 COAPUT TO TRUE

PERFCRM CGHECK- STATUS

END- EVALUATE.

4. The following is an example of a modified version of the code in point 3
for the nyoper at i on operation:

Wien changed for this operation can | ook like this
Sanpl e server inplenentation for nyoperation

DO SAMPLE- MYCPERATI ON
SET D- NO USEREXCEPTI ON TO TRUE.
CALL " OQAGET" US| NG SAMPLE- MYCPERATI ON- ARGS.
SET W5- GOACET TO TRUE
* Display what the client passed in
Dl SPLAY "I n paraneter val ue equals "
I NSTR OF SAMVPLE- MYCPERATI ON- ARGS.
DI SPLAY "I nout paraneter value equals "
I NOUTSTR OF SAMWPLE- MYCPERATI ON- ARGS.

*Now nust popul ate the inout/out/return parameters if
*appl i cabl e. See COAPUT for exanpl e.

EVALUATE TRUE

WHEN D NO- USEREXCEPTI ON

CALL "QOAPUT" USI NG SAMPLE- MYCPERATI ON- ARGS

SET W5 COAPUT TO TRUE

PERFCRM CHECK- STATUS

END- EVALUATE.

349

CHAPTER 9 | API Reference

Exceptions

See also

350

A OORBA: : BAD | N\V_CRDER : ARGS_ALREADY_READ exception is raised if the i n
or i nout parameter for the request has already been processed.

A OORBA: : BAD PARAM : | NVALI D_Di SCR' M NATCR _TYPEQCDE exception is
raised if the discriminator typecode is invalid when marshalling a union
type.

A OCRBA: : BAD PARAM : UNKNOWN_TYPECCDE exception is raised if the typecode
cannot be determined when marshalling an any type or a user exception.

A OCRBA: : DATA_ OONVERSI O\ : VALUE_ QUT_COF_RANGE exception is raised if the
value is determined to be out of range when marshalling a | ong, short,
unsi gned short, unsi gned | ong | ong | ong, or unsi gned | ong | ong type.

® “COAERR” on page 341.
® “ORBEXEC” on page 382.

API Reference Details

COAPUT

Synopsis

Usage

Description

Parameters

COAPUT(out buffer operation-buffer)
/1 Marshals return, out, and inout argunents for an operation on
/1 the server side froman incom ng request.

Server-specific.

Each operation implementation must begin with a call to COAGET and end
with a call to CoaPUT. The COAPUT function copies the operation’s outgoing
argument values from the complete COBOL operation parameter buffer
passed to it. This buffer is generated automatically by the Orbix IDL
compiler. Only i nout, out, and the resul t out item are populated by this
call.

You must ensure that all i nout, out, and resul t values are correctly
allocated (for dynamic types) and populated. If a user exception has been
raised before calling COAPUT, no i nout , out, or resul t parameters are
marshalled, and nothing is returned in such cases. If a user exception has
been raised, COAERR must be called instead of COAPUT, and no inout, out,
or result parameters are marshalled. Refer to “COAERR” on page 341 for
more details.

The Orbix IDL compiler generates the call for COAPUT in the i dI nenber naneS
source module for each attribute and operation defined in the IDL.

The parameter for COAPUT can be described as follows:

oper ati on- buf f er This is an out parameter that contains a COBOL 01
level data item representing the data types that the
operation supports.

351

CHAPTER 9 | API Reference

Example The example can be broken down as follows:
1. Consider the following IDL:

interface sanple {
typedef string<10> Aboundedstri ng;
exception M/Exception { Aboundedstring except_str; };
Aboundedst ri ng nyoperati on(i n Aboundedstring instr,
i nout Aboundedstring inoutstr,
out Aboundedstring outstr)
rai ses (M/Exception);
b

2. Based on the preceding IDL, the Orbix IDL compiler generates the
following in the i dI menber name copybook (where i dI menber name
represents the (possibly abbreviated) name of the IDL member that
contains the IDL definitions):

Example 25: The idimembername Copybook (Sheet 1 of 2)

LR EE RS SR EE RS RS EE]

* Qperation: nyoper at i on

* Mapped nane: nyoper ati on

* Argunent s: <i n> sanpl e/ Aboundedstring instr

* <i nout > sanpl e/ Aboundedst ri ng i nout str
* <out > sanpl e/ Aboundedstri ng outstr

* Returns: sanpl e/ Aboundedst ri ng

* User Exceptions: sanpl e/ M/Exception

LRSS SRR RS S S SRS SR SRS SRR RS EE RS EE RS SRR EEEEEEEEEEEESS
* operation-buf fer

01 SAWPLE- MYCPERATI ON- ARGS.

03 I NSTR PI CTURE X(10).

03 | NQUTSTR PI CTURE X(10).

03 QUTSTR PI CTURE X(10).

03 RESULT PI CTURE X(10).
LR RS SRR SRR EEEEEEEEEEEEEEEEEEEEEREEEEEEEEEEEEEEEEEEES
QOPY EXAMPLX.

R RS S SRR E S SRS SRR SRR RS SE RS E R RS EEEEEEEEEEEEEES
LR EEEEEEEE SRS SRS EESE]

*

* Qperation List section
* This lists the operations and attributes which an

* interface supports
*

LR EEEEEEEE SRS SRS EESES

352

API Reference Details

Example 25: The idImembername Copybook (Sheet 2 of 2)

* The operation-nane and its corresponding 88 | evel entry

01 SAWPLE- CPERATI ON Pl CTURE X(27).
88 SAWLE- M\YCPERATI ON VALUE
"nyoper ation: | DL: sanpl e: 1. 0".
01 SAMWPLE- CPERATI ON- LENGTH Pl CTURE 9(09)

Bl NARY VALUE 27.

LR RS E R SRR RS EE]

*

* Typecode section
* This contai ns CDR encodi ngs of necessary typecodes.

*

LRSS S S S S SRS SRR RS E RS SRR SRR EEEE RS EEEEEEEEEE]

01 EXAMPLE- TYPE Pl CTURE X(29) .
QCPY CCORBATYP.
88 SAMPLE- ABOUNDEDSTR NG VALUE
"1 DL: sanpl e/ Aboundedstri ng: 1. 0".
01 EXAWPLE- TYPE- LENGTH Pl CTURE S9(09)

Bl NARY VALUE 29.

E X

* User exception bl ock

LR EEE R R R EEEE TS EESS

01 EX- SAWPLE- MYEXCEPTI ON Pl CTURE X(26)
VALUE
"1 DL: sanpl e/ M/Except i on: 1. 0".
01 EX- SAWPLE- MYEXCEPTI ON- LENGTH Pl CTURE 9(09)
Bl NARY VALUE 26.
* user exception buffer
01 EXAWPLE- USER- EXCEPTI ONS.

03 EXCEPTI O\-1 D PQ NTER
VALUE NULL.
03 D PI CTURE 9(10)
Bl NARY.
VALLE 0.
88 D NO USEREXCEPTI ON VALLE 0.
88 D SAVPLE- MYEXCEPTI ON VALUE 1.
03 U PI CTURE X(10)
VALUE LOW VALUES,
03 EXCEPTI O\ SAVPLE- MYEXCEPTI ON REDEFI NES U,
05 EXCEPT- STR PI CTURE X(10).

353

CHAPTER 9 | API Reference

3. The following is an example of the server implementation code for the
nyoper at i on operation, which is generated in the i dl menber nanes
source member when you specify the - z argument with the Orbix IDL
compiler:

DO SAMPLE- MYCPERATI ON
SET D- NO USEREXCEPTI ON TO TRUE
CALL "QOQOACET" USI NG SAWPLE- MYCPERATI ON- ARGS.
SET W& CQACET TO TRUE
PERFCRM CHECK- STATUS.

* TCDQ Add your operation specific code here

EVALUATE TRUE

WHEN D- NO- USEREXCEPTI ON

CALL "QCQOAPUT" USI NG SAWPLE- MYCPERATI ON- ARGS
SET W5 COAPUT TO TRUE

PERFCRM GHECK- STATUS

END- EVALUATE

354

Exceptions

See also

API Reference Details

The following is an example of a modified version of the code in point 3
for the nyoper at i on operation

Wien changed for this operation can | ook |ike this
Sanpl e server inplementation for nyoperation

DO SAMPLE- MYCPERATI ON

SET D NO USEREXCEPTI ON TO TRUE
CALL "QOQAGET" USI NG SAMPLE- MYCPERATI ON- ARGS.
SET W5 COAGET TO TRUE

* Display what the client passed in
Dl SPLAY "In paraneter value equals "
I NSTR OF SAMPLE- MYCPERATI ON- ARGS.
Dl SPLAY "I nout paraneter val ue equals "
I NQUTSTR CF SAMPLE- MYCPERATI ON- ARGS.

*Now nust popul ate the inout/out/return parameters if

*appl i cabl e
MOVE "Qient" TO | NOUTSTR CF SAVPLE- MYCPERATI ON- ARGS.
MOVE "xxxxx" TO QUTSTR COF SAMPLE- MYCPERATI ON- ARGS.
MOVE "YYYYY' TO RESULT CF SAWPLE- MYCPERATI ON- ARGS.

EVALUATE TRUE

WHEN D- NO- USEREXCEPTI ON

CALL "COAPUT" USI NG SAMPLE- MYCPERATI ON- ARGS
SET W5 COAPUT TO TRUE

PERFCRM CHECK- STATUS

END- EVALUATE.

A OCRBA: : BAD | N\V_CRDER : ARGS_NOT_READ exception is raised if the i n or
i nout parameters for the request have not been processed.

A CCRBA : BAD PARAM : | NVALI D_Di SCR M NATCR_TYPECCDE exception is
raised if the discriminator typecode is invalid when marshalling a union

A CCRBA: : BAD_PARAM : UNKNOMN_TYPECCDE exception is raised if the typecode
cannot be determined when marshalling an any type or a user exception.

A OCORBA: : DATA_ OONVERSI O\ : VALUE_ QUT_CF_RANGE exception is raised if the
value is determined to be out of range when marshalling a | ong, short,
unsi gned short, unsi gned | ong I ong | ong, or unsi gned | ong | ong type.

“COAERR” on page 341.

355

CHAPTER 9 | API Reference

® “ORBEXEC” on page 382.

356

API Reference Details

COAREQ

Synopsis

Usage

Description

COAREQ(i n buffer request-details)
/1 Provides current request informnation

Server-specific.

The server implementation program calls GOAREQto extract the relevant
information about the current request. COAREQ provides information about
the current invocation request in a request information buffer, which is
defined as follows in the supplied CORBA copybook:

01 REQUEST-INFQ
03 | NTERFACE- NAME USACE | S PO NTER VALUE NULL.
03 CPERATI ON- NAVE USAGE | S PO NTER VALUE NULL.
03 PR NJ PAL USACE | S PO NTER VALUE NULL.
03 TARCET USACE | S PO NTER VALUE NULL.

In the preceding structure, the first three data items are unbounded CORBA
character strings. You can use the STRGET function to copy the values of
these strings to COBOL bounded string data items. The TARGET item in the
preceding structure is the COBOL object reference for the operation
invocation. After COAREQIs called, the structure contains the following data:

| NTERFACE- NAME The name of the interface, which is stored as an
unbounded string.

CPERATI ON-NAME The name of the operation for the invocation request,
which is stored as an unbounded string.

PRI NCI PAL The name of the client principal that invoked the request,
which is stored as an unbounded string.
TARGET The object reference of the target object.

You can call CaREQonly once for each operation invocation. It must be
called after a request has been dispatched to a server, and before any calls
are made to access the parameter values. Supplied code is generated in the
i dl menber naneS source module by the Orbix IDL compiler when you specify
the -z argument. Ensure that the COBOL bounded string and the length
fields are large enough to retrieve the data from the REQUEST- | NFO pointers.

357

CHAPTER 9 | API Reference

Parameters The parameter for COAREQcan be described as follows:

request-details This is an i n parameter that contains a COBOL 01

level data item representing the current request.

Example The example can be broken down as follows:

1.

Consider the following IDL:

/11DL
nodul e Sinple

{
interface Sinpl e(j ect

{
voi d
call _me();
b
g

Based on the preceding IDL, the Orbix IDL compiler generates the
following code in the i dI menber nane copybook (where i di menber nane
represents the (possibly abbreviated) name of the IDL member that
contains the IDL definitions):

Example 26: The idImembername Copybook (Sheet 1 of 2)

LRSS SRR RS S S SRS S SR SRS E SRR RS EE RS EE R SRR EEEEEEEEEEEEES

*

*

*

*

*

Qper ati on: call_ne
Mapped nane: call _ne
Argunent s: None
Ret ur ns: voi d

User Exceptions: none

LRSS SRR RS S S S ESEE R SRS E SRR RS EE SRS E SRR RS SRR EEEEEEEEEEEESES

01 SI MPLE-SI MPLECBJECT- 70FE- ARGS.

03 FILLER Pl CTURE X(01).

LRSS SRS S SRS S SR SRS SR RS EE RS EE R SRR EEEEEEEEEEEEES

QCPY SI MPLEX

E o R X X

LRSS SRS S SRR S SRR E SRR RS SRR RS R R R SRR EEEEEEEEEEEESES

*
*
*
*

*

358

Qperation List section
This lists the operations and attributes which an

i nterface supports

API Reference Details

Example 26: The idImembername Copybook (Sheet 2 of 2)

LRSS R RS S S E S SRS E SRS E RS SRR E R R R SRR EEEEEEEEEEEEEES

01 S| MPLE- SI MPLECBIECT- CPERATI ON Pl CTURE X(36) .
88 S| MPLE- S| MPLECBJECT- CALL- ME VALUE
“cal | _nme: I DL: Si npl e/ Si npl eChj ect: 1. 0".
01 Sl MPLE- S- 3497- CPERATI ON- LENGTH Pl CTURE 9(09)

Bl NARY VALUE 36.

LR R R R R R RS EEES

*

* Typecode section

* This contai ns CDR encodi ngs of necessary typecodes.
*

LR EEEEEEEEEE RS RS EESES

01 S| MPLE-TYPE Pl CTURE X(27).
QCPY CCRBATYP.
88 S| MPLE- S| MPLECBIECT VALUE
"1 DL: Sinpl e/ S npl eChj ect: 1. 0".
01 Sl MPLE- TYPE- LENGTH Pl CTURE S9(09)

Bl NARY VALUE 27.

3. The following is an example of the server implementation code
generated in the i dI nenber naneS server implementation member:

Example 27: Part of the idlmembernameS Program (Sheet 1 of 2)

WORKI NG STCRAGE SECTI ON

01 V& | NTERFACE- NAVE Pl CTURE X(30).
01 W& | NTERFACE- NAVE- LENGTH Pl CTURE 9(09) Bl NARY
VALUE 30.

PROCEDURE DI VI SI ON
ENTRY "Dl SPATCH'.

CALL " COAREQ' USI NG REQUEST- | NFQ
SET W5 COAREQ TO TRUE.
PERFCRM GHECK- STATUS.

Resol ve the pointer reference to the interface name
which is the fully scoped interface nane.
Note nmake sure it can handle the nmax interface nane
| engt h.
CALL " STRCGET" US| NG | NTERFACE- NAME
W\6- | NTERFACE- NAME- LENGTH

L

359

CHAPTER 9 | API Reference

360

Example 27: Part of the idlmembernameS Program (Sheet 2 of 2)

W\5- | NTERFACE- NAME.
SET W5- STRGET TO TRUE
PERFCRM CHECK- STATUS.

LR EEEEEEEE SRS SRS EESE]

* Interface(s) evaluation:

LRSS SRR RS S S SRS S SR SRS E SRR RS EE RS EE R SRR EEEEEEEEEEEESS

MOVE SPACES TO S| MPLE- SI MPLECBIECT- CPERATI ON

EVALUATE W5- | NTERFACE- NAME
WHEN ' | DL: Si npl e/ Si npl ej ect: 1. 0
* Resol ve the pointer reference to the operation
* information
CALL "STRCET" US| NG CPERATI O\ NAME
S| MPLE- S- 3497- CPERATI O\ LENGTH
S| MPLE- S| MPLECBJECT- CPERATI ON
SET W5 STRGET TO TRUE
PERFORM CHECK- STATUS
D SPLAY "Sinple::" Sl MPLE-SI MPLECBIECT- CPERATI ON
"i nvoked"
END- EVALUATE.
QCPY S| MPLED.

GOBACK.
DO S| MPLE- S| MPLECBIECT- CALL- ME.
CALL " COAGET" USI NG SI MPLE- SI MPLECBJECT- 70FE- ARGS.
SET W& COACET TO TRUE
PERFCRM CHECK- STATUS.

CALL " COAPUT" USI NG SI MPLE- SI MPLECBJECT- 70FE- ARGS.
SET W& COAPUT TO TRUE
PERFCRM CHECK- STATUS.

kkkkkhkkkhhhhhkhkhhhhhkhkhkhhhhhkhkhhhhkhkhkhkhhhhkhkhhhhkkkkhhkhkkh*

* Check Errors Copybook

LR EEEEE R R R R R R R EEE]

QCPY GHKERRS.

Note: The OCPY OKERRS statement in the preceding example is used in
batch programs. It is replaced with GoPY CERRSMFA in IMS or CICS server
programs, QOPY CHKCLA Cin CICS client programs, and GCPY GHKCLI M5 in
IMS client programs.

API Reference Details

Exceptions A OCORBA: : BAD | NV_CRDER : NO_CURRENT_REQUEST exception is raised if there
is no request currently in progress.

A COCRBA : BAD | NV_CRDER : SERVER NAME_NOT_SET exception is raised if
CRBSRVR is not called.

361

CHAPTER 9 | API Reference

COARUN
Synopsis
Usage

Description

Parameters

Example

Exceptions

362

COARWIN
/1 Indicates the server is ready to accept requests.

Server-specific.

The COARUN function indicates that a server is ready to start receiving client
requests. It is equivalent to calling ORB: : run() in C++. Refer to the CORBA
Programmer’s Reference, C+ + for more details about GRB: : run() . There
are no parameters required for calling COARUN.

OOARWN takes no parameters.

The following is an example of how to use GOARUN in your server mainline
program:

DI SPLAY “"Aving control to the CRB to process requests".
CALL "OCOARWN'.

SET W& COARUIN TO TRUE.
PERFCRM CHECK- STATUS.

A QORBA: : BAD | NV_CRDER : SERVER NAME NOT_SET exception is raised if
CRBSRVRis not called.

API Reference Details

MEMALLOC

Synopsis

Usage

Description

Parameters

Exceptions

MEMALLOC(i n 9(09) BI NARY menory- si ze,
out PA NTER nenory- poi nt er)
/1 Alocates nenory at runtime fromthe program heap.

Common to clients and servers.

The MEMALLQC function allocates the specified number of bytes from the
program heap at runtime, and returns a pointer to the start of this memory
block.

MEMALLCC is used to allocate space for dynamic structures. However, it is
recommended that you use SEQALLOC when allocating memory for
sequences, because SEQALLQOC can automatically determine the amount of
memory required for sequences. Refer to “SEQALLOC” on page 400 for
more details.

The parameters for MEMALLOC can be described as follows:
menor y- si ze This is an i n parameter that specifies in bytes the
amount of memory that is to be allocated.

menor y- poi nt er This is an out parameter that contains a pointer to
the allocated memory block.

A OCRBA: : NO_MEMZRY exception is raised if there is not enough memory
available to complete the request. In this case, the pointer will contain a null
value.

363

CHAPTER 9 | API Reference

Example The following is an example of how to use MEMALLCC in a client or server
program:
WRKI NG STCRAGE SECTI ON
01 Ws- MEMCRY- BLOCK PO NTER VALUE NULL.
01 W& MEMORY- BLOCK- S| ZE Pl CTURE 9(09) Bl NARY VALLE 30.
PROCEDURE DI M SI ON
* allocates 30 bytes of nmenory at runtine fromthe heap
CALL "MENVALLCC' USI NG W5 MEMCRY- BLOCK- S| ZE
W& MEMCRY- BLOCK.
See also .

“MEMFREE" on page 365.
“Memory Handling” on page 301.

364

API Reference Details

MEMFREE

Synopsis

Usage

Description

Parameters

Example

See also

MEMFREE(i nout PQ NTER nenor y- poi nt er)
/1l Frees dynanical ly allocated menory.

Common to clients and servers.

The MEMFREE function releases dynamically allocated memory, by means of a
a pointer that was originally obtained by using MevALLCC. Do not try to use
this pointer after freeing it, because doing so might result in a runtime error.

The parameter for MEMFREE can be described as follows:

menor y- poi nt er This is an i nout parameter that contains a pointer
to the allocated memory block.

The following is an example of how to use MEMFREE in a client or server
program:

WIRKI NG STCRAGE SECTI ON
01 W& MEMCRY- BLOCK PO NTER VALUE NULL.

PROCEDURE D' VI SI ON

* Finished with the bl ock of menory allocated by call to MEVALLOC
CALL "MEMFREE' US| NG W& MEMORY- BLOCK.

“MEMALLOC” on page 363.

365

CHAPTER 9 | API Reference

OBJDUP

Synopsis

Usage

Description

Parameters

Example

366

CBJDUP(i n PA NTER obj ect - r ef er ence,
out PA NTER dupl i cat e-obj -ref)
/1 Duplicates an object reference.

Common to clients and servers.

The CBIDUP function creates a duplicate reference to an object. It returns a
new reference to the original object reference and increments the reference
count of the object. It is equivalent to calling OCRBA : (hj ect: : _dupl i cate()
in C++. Because object references are opaque and ORB-dependent, your
application cannot allocate storage for them. Therefore, if more than one
copy of an object reference is required, you can use CBJDUP to create a
duplicate.

The parameters for CGBJIDUP can be described as follows:
obj ect - ref erence This is an i n parameter that contains the valid
object reference.

dupl i cat e- obj - r ef This is an out parameter that contains the duplicate
object reference.

The following is an example of how to use CBIDUP in a client or server
program:

WIRKI NG STCRAGE SECTI O\
01 W& S| MPLE- SI MPLECBJECT PQA NTER VALUE NULL.
01 W& S| MPLE- SI MPLEOBJECT- CCPY PQ NTER VALUE NULL.

PROCEDURE D'V S| ON

* Note that the object reference will have been created,
* for exanple, by a call to CBINEW
CALL "CBIDUP" USI NG W5 SI MPLE- SI MPLECBIECT
W5- S| MPLE- SI MPLECBIECT- CCPY.
SET W5 CBJDUP TO TRUE
PERFORM CHECK- STATUS.

API Reference Details

See also ® “OBJREL” on page 373.
® “Object References and Memory Management” on page 311.

367

CHAPTER 9 | API Reference

OBJGETID

Synopsis CBJGETI D(i n PA NTER obj ect - r ef er ence,
out X(nn) object-id,
in 9(09) BINARY object-id-Iength)
/] Retrieves the object IDfroman object reference.

Usage Specific to batch servers. Not relevant to CICS or IMS.

Description The CBIGETI D function retrieves the object ID string from an object
reference. It is equivalent to calling POA : reference_to_id in C++.

Parameters The parameters for CBIGETI D can be described as follows:

obj ect - ref erence This is an i n parameter that contains the valid
object reference.

obj ect-id This is an out parameter that is a bounded string
containing the object name relating to the specified
object reference. If this string is not large enough to
contain the object name, the returned string is
truncated.

obj ect -i d-1ength This is an i n parameter that specifies the length of
the object name.

Exceptions A OCORBA: : BAD PARAM : LENGTH TOO SMALL exception is raised if the length of
the string containing the object name is greater than the obj ect-i d-1ength
parameter.

A OCRBA : BAD PARAM : | NVALI D_CBIECT I D exception is raised if an Orbix
2.3 object reference is passed.

A OORBA: : BAD | NV_CRDER : SERVER NAME_NOT_SET exception is raised if
CRBSRVR is not called.

Example The following is an example of how to use CBIGETI Din a client or server
program:

368

API Reference Details

WZRKI NG STCRAGE SECTI ON

01 W& CBJECT- | DENTI FI ER- LEN Pl CTURE 9(09) Bl NARY VALUE O.
01 W& CBJECT- | DENTI FI ER Pl CTURE X(20) VALUE SPACES.
01 W& GBIECT PO NTER VALUE NULL.

PROCEDURE D M SI ON

* Note that the object reference will have been created, for
* exanple, by a call to CBINEW

MOVE 20 TO W5- CBIJECT- | DENTI FI ER- LEN
CALL "CBIJCGETID' USI NG W5 CBJECT
W5- CBJECT- | DENTI FI ER
W5- CBJECT- | DENTI FI ER- LEN
SET W& GBICGETI D TO TRIE
PERFCRM CHECK- STATUS.

DI SPLAY "(bj ect identifier string equals "
W5- CBJECT- | DENTI FI ER

369

CHAPTER 9 | API Reference

OBJNEW

Synopsis

Usage

Description

Parameters

370

CBINEWi n X(nn) server-nare,

in X(nn) interface-nare,

in X(nn) object-id,

out PQA NTER obj ect - r ef er ence)
/1 Creates a unique object reference.

Server-specific.

The aBINEWfunction creates a unique object reference that encapsulates the
specified object identifier and interface names. The resulting reference can
be returned to clients to initiate requests on that object. It is equivalent to
calling POX : create reference with_idin C++.

The parameters for CBINEwcan be described as follows:

server - nane

i nt erface-name

object-id

obj ect -reference

This is an i n parameter that is a bounded string
containing the server name. This must be the same
as the value passed to GRBSRVR. This string must be
terminated by at least one space.

This is an i n parameter that is a bounded string
containing the interface name. This must be the
same as the value specified in the i dl nenber nane
and i dI menber naneX copybooks (that is, of the form
| DL: nane: ver si on_nunber). This string must be
terminated by at least one space.

This is an i n parameter that is a bounded string
containing the object identifier name relating to the
specified object reference. This string must be
terminated by at least one space.

This is an out parameter that contains the created
object reference.

API Reference Details

Example The example can be broken down as follows:
1. Consider the following IDL:

/1 1D
nmodul e Sinpl e
{
interface S npl e(j ect
{
voi d
call _me();
B

}

2. Based on the preceding IDL, the Orbix IDL compiler generates the
following in the i dI menber name copybook (where i dI menber name
represents the (possibly abbreviated) name of the IDL member that
contains the IDL definitions):

WCRKI NG STCRAGE SECTI ON

01 W5 SERVER- NAME Pl CTURE X(18) VALUE

"sinpl e_persistent ".
01 W& SERVER- NAMVE- LEN Pl CTURE 9(09) BI NARY VALUE 17.
01 W& | NTERFACE- NAME Pl CTURE X(28) VALUE

"I DL: Sinpl e/ Sinpl eChject:1.0 ".
01 W5 CBIJECT- | DENTI FI ER Pl CTURE X(17) VALUE
"ny_sinpl e_obj ect ".
01 W5 SI MPLE- SI MPLECBIECT PO NTER VALUE NULL.
PROCEDURE DI M SI ON

CALL " CBINEW USI NG W5- SERVER NAME
- | NTERFACE- NAME
W5 CBJECT- | DENTI FI ER
W& SI MPLE- S| MPLECBJECT.
SET W& CBINEW TO TRUE.
PERFCRM CGHECK- STATUS.

Exceptions A CCRBA : BAD PARAM : | NVALI D_SERVER NAME exception is raised if the
server name does not match the server name passed to CRBSRVR.

371

CHAPTER 9 | API Reference

A QORBA: : BAD PARAM : NO CBJECT_| DENTI FI ER exception is raised if the
parameter for the object identifier name is an invalid string.

A QCORBA: : BAD | N\V_CRDER : | NTERFACE_NOT_REGQ STERED exception is raised
if the specified interface has not been registered via CRBREG

A QORBA: : BAD | NV_CRDER : SERVER NAME NOT_SET exception is raised if
CRBSRVR is not called.

372

API Reference Details

OBJREL

Synopsis

Usage

Description

Parameters

Example

See also

CBJREL(i nout PQ NTER obj ect - r ef er ence)
/1 Rel eases an obj ect reference.

Common to clients and servers.

The GBIREL function indicates that the caller will no longer access the object
reference. It is equivalent to calling OCRBA : rel ease() in C++. CBIREL
decrements the reference count of the object reference.

The parameter for CBIREL can be described as follows:

obj ect - r ef er ence This is an i nout parameter that contains the valid
object reference.

The following is an example of how to use CBJREL in a client or server
program:

WORKI NG STCRAGE SECTI O\
01 W& Sl MPLE- S| MPLECBIJECT PO NTER VALUE NULL.
01 W& Sl MPLE- SI MPLECBIECT- CCPY PQA NTER VALUE NULL.

PROCEDURE D'V SI ON

* Note that the object reference will have been created, for
* exanple, by a call to CBINEW

CALL "CBIDUP' USI NG W5- S| MPLE- SI MPLEOBIECT

W&- SI MPLE- S| MPLECBIECT- CCPY.
SET W5- CBJDUP TO TRUE.
PERFCRM CHECK- STATUS.

CALL "CBIREL" USI NG W5 SI MPLE- SI MPLECBJECT- CCPY.
SET W& CBJREL TO TRUE
PERFCRM CHECK- STATUS.

® “OBJDUP” on page 366.

373

CHAPTER 9 | API Reference

® “Object References and Memory Management” on page 311.

374

API Reference Details

OBJRIR

Synopsis

Usage

Description

Parameters

GBIR R(in X(nn) desired-service,

out PA NTER obj ect - r ef er ence)
/1 Returns an object reference to an object through which a
/1 service such as the Naming Service can be used.

Common to clients and servers. Not relevant to CICS or IMS.

The CBIR Rfunction returns an object reference, through which a service
(for example, the Interface Repository or a CORBAservice like the Naming
Service) can be used. For example, the Naming Service is accessed by using
a desi r ed- ser vi ce string with the "NameSer vi ce " value. It is equivalent to
calling CRB: : resol ve_i ni ti al _services() in C++.

Table 40 shows the common services available, along with the COBOL
identifier assigned to each service. The COBOL identifiers are declared in the
QCRBA copybook.

Table 40: Summary of Common Services and Their COBOL Identifiers

Service COBOL Identifier
InterfaceRepository | FR- SERVI CE
NameService NAM NG SERVI CE
TradingService TRAD NG SERVI CE

Not all the services available in C++ are available in COBOL. Refer to the
l'ist_initial_services function in the CORBA Programmer’s Reference,
C++ for details of all the available services.

The parameters for GBJR Rcan be described as follows:

desi r ed- servi ce This is an i n parameter that is a string specifying
the desired service. This string is terminated by a
space.

obj ect - r ef er ence This is an out parameter that contains an object

reference for the desired service.

375

CHAPTER 9 | API Reference

Example The example can be broken down as follows:
1. The following code is defined in the supplied GORBA copybook:

01 SERVI CE- REQUESTED Pl CTURE X(20)
VALUE SPACES.
88 | FR- SERVI CE VALLE "I nterfaceRepository ".
88 NAM NG SERVI CE VALUE " NaneService ".
88 TRAD NG SERVI CE VALUE " Tr adi ngService "

2. The following is an example of how to use GBJR Rin a client or server
program:

WORKI NG STCRAGE SECTI ON
01 W5 NAMESERVI CE- CBJ PA NTER VALUE NULL.
PROCEDURE DI'MVI S| ON

SET NAM NG SERVI CE TO TRUE.

CALL "GBIR R’ USI NG SERVI CE- REQUESTED
W5- NAMESERVI CE- CBJ.

SET Ws- BBJR R TO TRUE.

PERFCRM CHECK- STATUS.

Exceptions A OCRBA : CRB: : | nval i dNane exception is raised if the desi r ed- servi ce
string is invalid.

376

API Reference Details

OBJTOSTR

Synopsis

Usage

Description

Parameters

CBJTCSTR(i n PA NTER obj ect - r ef er ence,

out PO NTER obj ect - string)
/1 Returns a stringified interoperable object reference (IR
/1 froma valid object reference.

Common to batch clients and servers. Not relevant to CICS or IMS.

The ABITCSTR function returns a string representation of an object reference.
It translates an object reference into a string, and the resulting value can
then be stored or communicated in whatever ways strings are manipulated.

A string representation of an object reference has an | CR prefix followed by
a series of hexadecimal octets. It is equivalent to calling

QCRBA: : CRB: : obj ect_to_string() in C++.

Because an object reference is opaque and might differ from one ORB to the
next, the object reference itself is not a convenient value for storing
references to objects in persistent storage or for communicating references
by means other than invocation.

The parameters for CBITGSTR can be described as follows:

obj ect - ref erence This is an i n parameter that contains the object
reference.
obj ect-string This is an out parameter that contains the

stringified representation of the object reference
(that is, the IOR).

377

CHAPTER 9 | API Reference

Example

See also

378

The following is an example of how to use CBITCSTRn a client or server
program:

WIRKI NG STORAGE SECTI ON
01 W& S| MPLE- SI MPLECBJECT
01 W& | CR-PTR

01 W5 I CR STRI NG

01 W51 R LEN

PQ NTER VALUE NULL.

PQ NTER VALUE NULL.

PI CTURE X(2048) VALUE SPACES.
PI CTURE 9(09) BI NARY VALUE 2048.

PROCEDURE DM S| ON

* Note that the object reference will have been created, for
* exanple, by a call to CBINEW

CALL "CBITCSTR' USI NG W5- SI MPLE- SI MPLECBIECT

W5 | R PTR
SET W& GBBJTCSTR TO TRUE

PERFCRM CHECK- STATUS.

CALL "STRCGET" USI NG W& | CR- PTR
W51 CR- LEN

W& | R STR NG
SET W5 STRGET TO TRUE

PERFCRM CHECK- STATUS.

DI SPLAY "I nt er oper abl e obj ect reference (IR equals "
V& | CR STRI NG

“STRTOOBJ” on page 432.

API Reference Details

ORBARGS

Synopsis

Usage

Description

CRBARGS(in X(nn) argunent-string,
in 9(09) BINARY argunent-string-Iength,
in X(nn) orb-narre,
in 9(09) BINARY orb-nane-| engt h)
// Initializes a client or server connection to an CRB.

Common to clients and servers.

The CRBARGS function initializes a client or server connection to the ORB, by
making a call to CORBA : CRB_i nit () in C++. It first initializes an
application in the ORB environment and then it returns the ORB
pseudo-object reference to the application for use in future ORB calls.

Because applications do not initially have an object on which to invoke ORB
calls, ORB_i ni t () is a bootstrap call into the CORBA environment.
Therefore, the CRB_i ni t () call is part of the CORBA module but is not part of
the CORBA: : CRB class.

The arg-1i st is optional and is usually not set. The use of the or b- nane is
recommended, because if it is not specified, a default ORB name is used.

Special ORB identifiers (indicated by either the or b- nane parameter or the
- CRBi d argument) are intended to uniquely identify each ORB used within
the same location domain in a multi-ORB application. The ORB identifiers
are allocated by the ORB administrator who is responsible for ensuring that
the names are unambiguous.

When you are assigning ORB identifiers via ORBARGS, if the or b- nane
parameter has a value, any - CRBi d arguments in the ar gv are ignored.
However, all other ORB arguments in ar gv might be significant during the
ORB initialization process. If the or b- name parameter is null, the ORB
identifier is obtained from the - CRBi d argument of ar gv. If the or b- nane is
null and there is no - CRBi d argument in ar gv, the default ORB is returned in
the call.

379

CHAPTER 9 | API Reference

Parameters

ORB arguments

380

The parameters for CRBARGS can be described as follows:

argunent -string This is an i n parameter that is a bounded string
containing the argument list of the
environment-specific data for the call. Refer to
“ORB arguments” for more details.

argurent - st ri ng-1 engt h This is an i n parameter that specifies the length of
the argument string list.

or b- name This is an i n parameter that is a bounded string
containing the ORB identifier for the initialized
ORB, which must be unique for each server across
a location domain. However, client-side ORBs and
other "transient" ORBs do not register with the
locator, so it does not matter what name they are
assigned.

or b- narre- | engt h This is an i n parameter that specifies the length of
the ORB identifier string.

Each ORB argument is a sequence of configuration strings or options of the
following form:

-CRBsuffix val ue

The suffix is the name of the ORB option being set. The value is the value to
which the option is set. There must be a space between the suffix and the
value. Any string in the argument list that is not in one of these formats is
ignored by the CRB i ni t () method.

Valid ORB arguments include:

- CRBboot _domai n val ueThis indicates where to get boot configuration

information.

- CRBdomai n val ue This indicates where to get the ORB actual
configuration information.

-CRBi d val ue This is the ORB identifier.

- CRBnane val ue This is the ORB name.

API Reference Details

Example The following is an example of how to use CRBARGS in a client or server
program:
WORKI NG STCRAGE SECTI ON
01 ARG LI ST Pl CTURE X(01) VALUE SPACES
01 ARG LI ST-LEN Pl CTURE 9(09) BI NARY VALUE 0.
01 CRB-NAME Pl CTURE X(10) VALLE "sinpl e orb"
01 CORB- NAME- LEN Pl CTURE 9(09) Bl NARY VALLE 10.
PROCEDURE DM SI O\
DI SPLAY "“Initializing the CRB".
CALL "CRBARGS' USI NG ARG LI ST
ARG LI ST- LEN
CRB- NAME
CRB- NAME- LEN
SET W& CRBARGS TO TRUE
PERFCRM CHECK- STATUS.
Exceptions

A CORBA: : BAD | NV_CRDER : ADAPTER ALREADY | N Tl ALI ZED exception is
raised if CRBARGS is called more than once in a client or server.

381

CHAPTER 9 | API Reference

ORBEXEC

Synopsis

Usage

Description

Parameters

382

CRBEXECQ(i n PA NTER obj ect -r ef er ence,
in X(nn) operation-nane,
inout buffer operation-buffer,
inout buffer user-exception-buffer)
/1 Invokes an operation on the specified object.

Client-specific.

The CRBEXEC function allows a COBOL client to invoke operations on the
server interface represented by the supplied object reference. All in and
inout parameters must be set up prior to the call. CRBEXEC invokes the
specified operation for the specified object, and marshals and populates the
operation buffer, depending on whether they are i n, out, i nout, or return
arguments.

As shown in the following example, the client can test for a user exception
by examining the EXCEPTI O\ | D of the operation' s user - except i on- buf f er
parameter after calling CRBEXEC. A non-zero value indicates a user
exception. A zero value indicates that no user exception was raised by the
operation that the call to CRBEXEC invoked. If an exception is raised, you
must reset the discriminator of the user exception block to zero before the
next call. Refer to the following example for more details of how to do this.

Note: The caller is blocked until either the request has been processed by
the target object or an exception occurs. This is equivalent to
Request : : i nvoke() in C++.

The parameters for CRBEXEC can be described as follows:

obj ect - ref erence This is an i n parameter that contains the valid
object reference. You can use STRTQCBJ to create
this object reference.

oper at i on- nane This is an i n parameter that is a string containing
the operation name to be invoked. This string is
terminated by a space.

oper at i on- buf f er

API Reference Details

This is an i nout parameter that contains a COBOL
01 level data item representing the data types that
the operation supports.

user - except i on- buf f er This is an i n parameter that contains the COBOL

representation of the user exceptions that the
operation supports, as defined in the

i dl menber nane copybook generated by the Orbix
IDL compiler. If the IDL operation supports no user
exceptions, a dummy buffer is generated—this
dummy buffer is not populated on the server side,
and it is only used as the fourth (in this case,
dummy) parameter to CRBEXEC.

Example The example can be broken down as follows:

1.

Consider the following IDL:

/1 1DL

interface sanple

{

typedef string<10> Aboundedstri ng;
exception M/Exception {Aboundedstring except_str; };
Aboundedst ri ng nyoperation(in Aboundedstring instr,

i nout Aboundedstring inoutstr,

out Aboundedstring outstr)

rai ses(M/Exception);

}

Based on the preceding IDL, the Orbix IDL compiler generates the
following code in the i di menber nane copybook (where i dI menber nane
represents the (possibly abbreviated) name of the IDL member that
contains the IDL definitions):

Example 28: The idImembername Copybook (Sheet 1 of 3)

LRSS R RS S E S SRS S SRR S SRS SRR RS E R R RS EEEEEEEEEEEEEEEES

*
*
*
*
*

*

*

Qperat i on:
Mapped nane:
Argunent s:

Ret ur ns:

nyoper at i on

nyoper at i on

<i n> sanpl e/ Aboundedstring instr

<i nout > sanpl e/ Aboundedstring i noutstr
<out > sanpl e/ Aboundedstring outstr
sanpl e/ Aboundedst ri ng

User Exceptions: sanpl e/ M/Excepti on

383

CHAPTER 9 | API Reference

Example 28: The idImembername Copybook (Sheet 2 of 3)

R RS S E RS S S SRR E SRR SRR RS SE RS SRR RS EEEEEEEEEEEEEES

* operation-buffer
01 SAWPLE- MYCPERATI ONF ARGS.

03 I NSTR PI CTURE X(10).
03 | NOUTSTR Pl CTURE X(10).
03 QUTSTR PI CTURE X(10).
03 RESULT PI CTURE X(10).

LR EEEE R R R R R R R EEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEE]

QCPY EXAWPLX.

LR EEEEE R SRR SRR S SRR E R EEEEE RS EEEEEEEEEEEEEEEEEEEEEEEEEE]

R RS S SRR S S SRR SRR SRR RS SRR RS SRR SRR R R R EEEEEEEEES

*

* (peration List section
* This lists the operations and attributes which an
* interface supports

*

Kk khkkhkkkhhhhhhkhhhhhkhkhkhhhhkhkhkhhhhhhkhkhhhhhkhkhkhkhhhhkhkkhhhhhkkhkkhk

* The operation-nane and its corresponding 88 | evel entry

01 SAWPLE- CPERATI ON Pl CTURE X(27).
88 SAWPLE- MYCPERATI ON VALUE
"nyoperation: | DL: sanpl e: 1. 0".
01 SAWPLE- OPERATI ON- LENGTH Pl CTURE 9(09)

Bl NARY VALUE 27.

LR EEEEE R R EEE R EEE]

*

* Typecode section
* This contains CDR encodi ngs of necessary typecodes.

*

LR EE RS EEEE SRS EEE]

01 EXAWPLE- TYPE Pl CTURE X(29) .
QCPY CORBATYP.
88 SAWPLE- ABOUNDEDSTR NG VALUE
"1 DL: sanpl e/ Aboundedstri ng: 1. 0".
01 EXAVPLE- TYPE- LENGTH Pl CTURE S9(09)

Bl NARY VALUE 29.

LR EEE SRR EE SRS EES]

* User exception bl ock

E o R X X

01 EX- SAWPLE- MYEXCEPTI ON Pl CTURE X(26)
VALUE

384

API Reference Details

Example 28: The idImembername Copybook (Sheet 3 of 3)

"1 DL: sanpl e/ M/Excepti on: 1. 0".
01 EX- SAMPLE- MYEXCEPTI ON- LENGTH Pl CTURE 9(09)
Bl NARY VALUE 26.

* user exception buffer
01 EXAVPLE- USER- EXCEPTI ONS.

03 EXCEPTI ON-1D PQ NTER
VALUE NULL.
03 D Pl CTURE 9(10) BI NARY
VALLE 0.
88 D- NO- USEREXCEPTI CN VALLE 0.
88 D SAMPLE- MYEXCEPTI ON VALUE 1.
03 U Pl CTURE X(10)
VALUE LON VALUES.
03 EXCEPTI O\ SAMPLE- MYEXCEPTI ON REDEFI NES U,
05 EXCEPT- STR Pl CTURE X(10).

3. The following is an example of how to use CRBEXECin a client program:
Example 29: Using ORBEXEC in the Client Program (Sheet 1 of 2)

WIRKI NG STCRAGE SECTI ON
01 W5 SAVPLE- CBJ PA NTER VALUE NULL.
01 W& EXCEPT-| D STR Pl CTURE X(200) VALUES SPACES.

PROCEDURE DM SI ON

*The SAMPLE-CBJ wil |l have been created
*with a previous call to api STRTOCB]

SET SAMPLE- WCPERATION TO TRUE
Dl SPLAY "invoki ng Sinple::" SAWLE- CPERATI ON
* popul ate the in argunents
MOVE "Hello " TO I NSTR CF SAMPLE- MYCPERATI ON- ARGS.
* popul ate the inout argurents

MOVE "Server " TO | NOUTSTR CF SAVPLE- MYCPERATI ON- ARGS.

CALL " CRBEXEC USI NG W&- SAMPLE- CBJ
SAWPLE- CPERATI ON
SAMPLE- MYCPERATI ON- ARGS
SAMPLE- USER- EXCEPTI ONS.
SET W5- CRBEXEC TO TRUE
PERFCRM GHECK- STATUS.
* check if user exceptions thrown

385

CHAPTER 9 | API Reference

Example 29: Using ORBEXEC in the Client Program (Sheet 2 of 2)

EVALUATE TRUE
WHEN D- NO- USEREXCEPTI ON
* no exception
* check inout argunents
D SPLAY "In out paraneter returned equal s "
I NQUTSTR CF SAMPLE- MYCPERATI ONF ARGS
* check out argunents
D SPLAY "Qut paranmeter returned equals "
QUTSTR CF SAMPLE- MYCPERATI ON- ARGS
* check return argunents
D SPLAY "Return paraneter returned equal s "
RESULT CF SAVPLE- MYCPERATI ON- ARGS
* WEXCEPTI CN rasi ed by the server
WHEN D SAMPLE- MYEXCEPTI ON
MOVE SPACES TO W5- EXCEPT- | D- STRI NG
*retrieve string value formthe exception-id pointer
CALL "STRGET" USI NG EXCEPTI ON-1 D CF
SAWPLE- USER- EXCEPTI ONS
EX- SAMPLE- MYEXCEPTI ON- LENGTH
W5- EXCEPT- | D- STRI NG
Dl SPLAY "Exception id equal s "
W& EXCEPT- | D- STRI NG

*Check the values of the returned exception which
*in this exanple is a bounded string
DI SPLAY "Exception val ue retuned "
EXCEPT- STR OF EXAMPLE- USER EXCEPTI ONS
CALL "STRFREE' EXCEPTI ON-|1 D OF SAMPLE- USER- EXCEPTI ONS
SET W5 STRFREE TO TRUE
PERFCRM CHECK- STATUS
* Initialize for the next ORBEXEC cal |
SET D NO USEREXCEPTI ON TO TRUE
END- EVALUATE.

Exceptions A OORBA: : BAD | NV_CRDER : | NTERFACE_NOT_REQ STERED exception is raised
if the client tries to invoke an operation on an interface that has not been
registered via CRBREG
A OCRBA: : BAD_PARAM : | NVALI D_DI SCRI M NATCR _TYPEQCDE exception is
raised if the discriminator typecode is invalid when marshalling a union
type.

A OORBA: : BAD PARAM : UNKNOMN_CPERATI ON exception is raised if the
operation is not valid for the interface.

386

See also

API Reference Details

A CCRBA: : BAD PARAM : UNKNOMN_TYPEQCDE exception is raised if the typecode
cannot be determined when marshalling an any type or a user exception.

A OCRBA: : DATA_ CONVERSI O\ : VALUE_ QUT_CF_RANGE exception is raised if the
value is determined to be out of range when marshalling a | ong, short,
unsi gned short, unsi gned | ong, | ong | ong, or unsi gned | ong | ong type.

® “COAGET” on page 346.
® “COAPUT” on page 351.

® The BANK demonstration in or bi xhl g. DEMDS. GOBCL. SRCfor a complete
example of how to use CRBEXEC.

387

CHAPTER 9 | API Reference

ORBHOST

Synopsis

Usage

Description

Parameters

Example

388

CRBHOST(in 9(09) Bl NARY host narre- | engt h,
out X(nn) host name)
// Returns the hostnanme of the server

Specific to batch servers. Not relevant to CICS or IMS.

The CRBHOST function returns the hostname of the machine on which the
server is running.

Note: This is only applicable if TCP/IP is being used on the host machine.

The parameters for CRBEXEC can be described as follows:

host name- | engt h This is an i n parameter that specifies the length of
the hostname.

host nane This is an out parameter that is a bounded string
used to retrieve the hostname.

The following is an example of how to use CRBHOST in a server program:

WIRKI NG STORAGE SECTI ON

01 HGOST- NAVE Pl CTURE X(255) .
01 HOST- NAMVE- LEN Pl CTURE 9(09) Bl NARY
VALUE 255.

PROCEDURE DM S| ON

CALL "CORBHOBT" USI NG HOST- NAME- LENGTH
HCST- NAMVE.

SET W& CRBHCST TO TRUE

PERFORM CHECK- STATUS.

Dl SPLAY "Host name equal s " HOST- NAME

API Reference Details

Exceptions A OCRBA : BAD_PARAM : LENGTH TQD SMVALL exception is raised if the length of
the string containing the hostname is greater than the host name-1 engt h
parameter.

389

CHAPTER 9 | API Reference

ORBREG

Synopsis

Usage

Description

Parameters

390

CRBREJ i n buffer interface-description)
/1 Describes an IDL interface to the COBCL runti ne.

Common to clients and servers.

The CRBREGfunction registers an interface with the COBOL runtime, by using
the interface description that is stored in the i dI menber nameX copybook
generated by the Orbix IDL compiler. Each interface within the IDL member
has a 01 level, which is the parameter to be passed to the CRBREG call.

The Orbix 2000 IDL compiler generates a 01 level in the i dI menber nameX
copybook for each interface in the IDL member. Each 01 level that is
generated fully describes the interface to the COBOL runtime; for example,
the interface name, what it inherits from, each operation, its parameters and
user exceptions, and all the associated typecodes. The i dI menber nameX
copybook cannot be amended by the user, because doing so can cause
unpredictable results at runtime.

You must call CRBREGfor every interface that the client or server uses.
However, it is to be called only once for each interface; therefore, you
should place the calls in the client and server mainline programs.

The parameter for CRBREG can be described as follows:

i nterface-descriptionThis is an i n parameter that contains the address of
the interface definition, which is defined as a 01
level in the i dI nenber naneX copybook.

Example

API Reference Details

The example can be broken down as follows:
1. Consider the following IDL:

/1 1D
nmodul e Sinpl e
{
interface S npl e(j ect
{
voi d
call _me();
B
I

2. Based on the preceding IDL, the Orbix IDL compiler generates the
following code in the i dI menber naneX copybook (where i dI nenber nane
represents the (possibly abbreviated) name of the IDL member that
contains the IDL definitions):

01 SI MPLE-SI MPLECBJECT- | NTERFACE.

03 FILLER PI C X(160) VALUE X'00000050G00000058C9CAD37
= " AE2899497938561E289949793850682918583A37AF14BF
= " 000000000040000000ECICADE 7AE2899497938561E2899
- "4979385D682918583A37AF14BFO000000001E289949793
= " 85D0682918583A300FFFFFFO0000004COCAD37AE2899497
= " 938561E289949793850682918583A37AF14BF000000000
- " 180000000000000001838193936D948500000000000000
= " 00000000000000000000" .

3. The following is an example of how to use CRBREGin a client or server
program:
WORKI NG STCRACGE SECTI ON
CCPY S| MPLE.
PROCEDURE DI M SI ON
* Register interface(s) after CGRB initialization
Dl SPLAY "Regi stering the Interface".
CALL " CRBREG' USI NG
S| MPLE- S| MPLECBIJECT- | NTERFACE.

SET W5- CRBREG TO TRUE
PERFCRM CHECK- STATUS

391

CHAPTER 9 | API Reference

Exceptions A OORBA : BAD | NV_CRDER : | NTERFACE_ALREADY_REQ STERED exception is
raised if the client or server attempts to register the same interface more
than once.

392

API Reference Details

ORBSRVR

Synopsis

Usage

Description

Parameters

Example

Exceptions

CRBSRVR(i n X(nn) server-nane,
in 9(09) Bl NARY server-name-| ength)
/1l Sets the server name for the current server process.

Server-specific.

The CRBSRVR function sets the server name for the current server. This
should be contained in the server mainline program, and should be called
only once, after calling CRBARGS.

The parameters for ORBSRVR can be described as follows:
server - nane This is an i n parameter that is a bounded string
containing the server name.

server-nane-length This is an i n parameter that specifies the length of
the string containing the server name.

The following is an example of how to use CRBSRVRin a server program:

VORKI NG STORAGE SECTI ON
01 SERVER- NAME PI CTURE X(17) VALUE "si npl e_persistent”.
01 SERVER- NAME- LEN Pl CTURE 9(09) Bl NARY VALUE 17.

PROCEDURE D'V SI ON

* After CRBARGS call.
CALL "CRBSRVR' USI NG SERVER NAVE
SERVER- NAVE- LEN
SET W& ORBSRVR TO TRUE
PERFCRM CHECK- STATUS.

A OCORBA: : BAD | N\V_CRDER : SERVER NAME ALREADY_SET exception is raised if
CRBSRWR is called more than once.

393

CHAPTER 9 | API Reference

ORBSTAT

Synopsis

Usage

Description

Parameters

394

CRBSTAT(in buffer status-buffer)
/1l Registers the status information bl ock.

Common to both clients and servers.

The CRBSTAT function registers the supplied status information block to the
COBOL runtime. The status of any COBOL runtime call can then be
checked, for example, to test if a call has completed successfully.

The ORBI X- STATUS- | NFORVATI ON structure is defined in the supplied CORBA
copybook. A copybook called CHKERRS (for batch), CERRSMFA (for IMS or CICS
servers), CHKCLA C (for CICS clients), and aKaLl Ms (for IMS clients) is also
provided, which contains a GHECK- STATUS function that can be called after
each API call, to check if a system exception has occurred. Alternatively,
this can be modified or replaced for the system environment.

You should call CRBSTAT once, as the first API call, in your server mainline
and client programs. If it is not called, and an exception occurs at runtime,
the application terminates with the following message:

An exception has occurred but ORBSTAT has not been call ed.
Pl ace the ORBSTAT APl call in your application, conpile and
rerun. Exiting now

The parameters for CRBSTAT can be described as follows:

stat us-buffer This is an i n parameter that contains a COBOL 01
level data item representing the status information
block defined in the GORBA copybook. This buffer is
populated when a CORBA system exception occurs
during subsequent API calls. Refer to “Definition of
status information block” for more details of how it
is defined.

API Reference Details

Definition of status information CRBI X- STATUS- | NFCRVATI ON is defined in the OORBA copybook as follows:
block

Example 30: ORBIX-STATUS-INFORMATION Definition (Sheet I of 2)

*

** This data itemnust be originally set by calling the

** CORBSTAT api .

** This data itemis then used to deternine the status of
** each api called (eg COAGET, ORBEXEC).

* %

** |f the call was successful then CORBA- EXCEPTI ON and

** OCRBA-MNOR-CCDE will be both set to 0 and

** OOWPLETI ON STATUS- YES wi l | be set to true.

* %

** EXCEPTION-TEXT is a pointer to the text of the exception.
** STRGET nust be used to extract this text.

** (Refer to CHKERRS or CERRSMFA Copybooks for nore details).

*

01 CRBI X- STATUS- | NFCRVATI ON | S EXTERNAL.

03 CORBA- EXCEPTI ON Pl CTURE 9(5) BI NARY.
88 OCRBA- NO- EXCEPTI ON VALLE 0.
88 CORBA- UNKNOMW VALUE 1.
88 CCORBA- BAD- PARAM VALUE 2.
88 OCRBA- NO- MEMCRY VALLE 3.
88 CORBA-I MP-LIMT VALUE 4.
88 CORBA- COMM FAl LURE VALLE 5.
88 OCRBA- | Nv- CBIREF VALLE 6.
88 CORBA- NO- PERM SSI ON VALUE 7.
88 CORBA- | NTERNAL VALLE 8.
88 OCRBA- MARSHAL VALUE 9.
88 CORBA-I N TI ALI ZE VALUE 10.
88 CORBA- NO- | MPLEMENT VALUE 11.
88 (OCORBA- BAD- TYPECCDE VALUE 12.
88 CORBA- BAD- CPERATI ON VALUE 13.
88 CORBA- NO- RESOURCES VALLE 14.
88 OCRBA- NO- RESPONSE VALUE 15.
88 CORBA- PERSI ST- STCRE VALLE 16.
88 CORBA- BAD- | NV- CRDER VALUE 17.
88 OCRBA- TRANSI ENT VALUE 18.
88 CORBA- FREE- MEM VALUE 19.
88 CORBA- | Nv- | DENT VALUE 20.
88 OCRBA- | NV- FLAG VALUE 21.
88 CCORBA- | NTF- REPCS VALUE 22.
88 CORBA- BAD- CONTEXT VALUE 23.
88 OCRBA- (BJ- ADAPTER VALUE 24.

395

CHAPTER 9 | API Reference

Example 30: ORBIX-STATUS-INFORMATION Definition (Sheet 2 of 2)

88 CORBA- DATA- CONVERSI ON VALLE 25.
88 CORBA- CBJECT- NOT- EXI ST VALLE 26.
88 OCRBA- TRANSACTI ON- REQUI RED VALUE 27.
88 CORBA- TRANSACTI ON- ROLLEDBACK VALLE 28.
88 CORBA- | NVALI D- TRANSACTI ON VALLE 29.

88 CORBA- | NV- PCLI CY VALUE 30.
88 CORBA- REBI ND VALUE 31.
88 CORBA- TI MEQUT VALUE 32.
88 CORBA- TRANSACTI ON- UNAVAI LABLE VALUE 33.
88 CORBA- TRANSACTI O\ MCDE VALUE 34.
88 CORBA- BAD (B VALUE 35.
88 CORBA- CCDESET- | NOOVPATI BLE VALUE 36.
03 COVPLETI ON- STATUS PI CTURE 9(5) Bl NARY
88 COVPLETI O\ STATUS- YES VALLE 0.
88 COMPLETI O\ STATUS- NO VALUE 1.
88 COMPLETI ON- STATUS- NAYBE VALLE 2.
03 EXCEPTI O\ M NCR- CCDE PI CTURE S9(10) BI NARY

03 EXCEPTI O\ NUVBER REDEFI NES EXCEPTI ON- M NOR- OCDE
Pl CTURE S9(10) Bl NARY.
03 EXCEPTI O\- TEXT USAGE | S PO NTER

396

API Reference Details

Example The following is an example of how to use CRBSTAT in a server mainline or
client program:

WIRKI NG STCRAGE SECTI ON
CCPY CORBA

PROCEDURE DI M SI ON
CALL "CORBSTAT" USI NG CRBI X- STATUS- | NFCRVATI CN
DI SPLAY "“Initializing the CRB".

CALL "CRBARGS' USING ARG LI ST
ARG LI ST- LEN
CRB- NAME
CRB- NAMVE- LEN

SET W& CRBARGS TO TRUE

PERFCRM CHECK- STATUS.

EXI T- PRG
STCP RN

QCPY GKERRS.

Note: The CCPY GKERRS statement in the preceding example is used in
batch programs. It is replaced with GoPY CERRSMFA in IMS or CICS server
programs, QCPY CHKCLA Cin CICS client programs, and GCPY GHKCLI M5 in
IMS client programs.

Exceptions A OCRBA : BAD | N\V_CRDER : STAT_ALREADY CALLED exception is raised if
CRBSTAT is called more than once with a different
CRBI X- STATUS- | NFCRVATI ON block.

397

CHAPTER 9 | API Reference

ORBTIME

Synopsis

Usage

Description

Parameters

398

CRBTI ME(in 9(04) BINARY tineout-type

in 9(09) BINARY tineout-val ue)
/1 Used by clients for setting the call timeout.
/1 Used by servers for setting the event tineout.

Common to batch clients and servers. Not relevant to CICS or IMS.

The CRBTI ME function provides:

® Call timeout support to clients. This means that it specifies how long
before a client should be timed out after having established a
connection with a server. The value only comes into effect after the
connection has been established.

® Event timeout support to servers. This means that it specifies how long
a server should wait between connection requests.

The parameters for GRBTI ME can be described as follows:

timeout -t ype This is an i n parameter that determines whether
call timeout or event timeout functionality is
required. It must be set to one of the two values
defined in the OORBA copybook for the
CRBI X- TI MEQUT- TYPE. In this case, value 1
corresponds to event timeout, and value 2
corresponds to call timeout.

ti meout - val ue This is an i n parameter that specifies the timeout
value in milliseconds.

API Reference Details

Server example On the server side, CRBTI ME must be called immediately before calling
OOARWN. After COARWN has been called, the event timeout value cannot be
changed. For example:

01 W& TI MEQUT- VALUE Pl CTURE 9(09) BI NARY VALUE 0.
PROCEDURE DI M SI ON

*set the timeout value to two m nutes

MOVE 120000 TO W& Tl MEQUT- VALUE

SET EVENT- TI MEQUT TO TRUE.

CALL "CRBTI ME' USI NG CRBI X- TI MEQUT- TYPE
W5 Tl MEQUT- VALUE.

SET W5 CRBTI ME TO TRUE.

PERFORM CHECK- STATUS.

CALL "QCOARWN'.

Client example On the client side, CRBTI ME must be called before calling CRBEXEC. For
example:

*set the timeout value to two m nutes

MOVE 120000 TO W5 Tl MEQUT- VALUE

SET CALL- TI MEQUT TO TRUE.

CALL "CRBTI ME' USI NG CRBI X- TI MEQUT- TYPE
W5 TI MEQUT- VALUE.

SET W& CRBTI ME TO TRLE

PERFCRM CHECK- STATUS.

CALL " CRBEXEC'

Exceptions A COCRBA : BAD PARAM : | NVALI D_TI MEQUT_TYPE exception is raised if the
ti meout - t ype parameter is not set to one of the two values defined for
CRBI X- TI MEQUT- TYPE in the OCRBA copybook.

399

CHAPTER 9 | API Reference

SEQALLOC

Synopsis

Usage

Description

Parameters

400

SEQALLOO(i n 9(09) BI NARY sequence-si ze,
in X(nn) typecode-key,
in 9(09) BINARY typecode-key-I|ength,
i nout buffer sequence-control -data)
/1 Alocates nenory for an unbounded sequence

Common to clients and servers.

The SEQaLLGC function allocates initial storage for an unbounded sequence.
You must call SEQALLCC before you call SEQSET for the first time. The length
supplied to the function is the initial sequence size requested. The typecode
supplied to SEQALLOC must be the sequence typecode.

Note: You can use SEQALLOC only on unbounded sequences.

The parameters for SEQALLOC can be described as follows:

sequence- si ze This is an i n parameter that specifies the maximum
expected size of the sequence.

t ypecode- key This is an i n parameter that contains a 01 level
data item representing the typecode key, as defined
in the i dl menber nane copybook generated by the
Orbix IDL compiler. This is a bounded string.

typecode-key- 1l ength This is an i n parameter that specifies the length of
the typecode key, as defined in the i dI nenber nane
copybook generated by the Orbix IDL compiler.

sequence- cont rol -dat aThis is an i nout parameter that contains the
unbounded sequence control data.

Note: The typecode keys are defined as level 88 data items in the
i dl mrenber nane copybook generated by the Orbix IDL compiler.

API Reference Details

Example The example can be broken down as follows:
1. Consider the following IDL:

/1 1DL
interface exanpl e

{

typedef sequence<l| ong> unboundedseq;
unboundedseq nyop();
I

2. Based on the preceding IDL, the Orbix IDL compiler generates the
following code in the i dl menber name copybook (where i dI menber name
represents the (possibly abbreviated) name of the IDL member that
contains the IDL definitions):

Example 31: The idImembername Copybook (Sheet 1 of 2)

LR R R R R RS EEE]

* Qperation: nyop
* Mapped narre: nyop
* Argurents: None
* Returns: exanpl e/ unboundedseq

* User Exceptions: none

LR EEE R R R EEEE TS EESS

01 EXAWPLE- MYCP- ARGS.

03 RESULT-1.
05 RESULT PI CTURE S9(10) BI NARY.
03 RESULT- SEQUENCE
05 SEQUENCE- MAXI MUM PI CTURE 9(09) BI NARY
VALLE 0.
05 SEQUENCE- LENGTH PI CTURE 9(09) BI NARY
VALLE 0.
05 SEQUENCE- BUFFER PQ NTER
VALUE NULL.
05 SEQUENCE- TYPE PQ NTER
VALUE NULL.

LRSS R RS S S S SRS RS SRS SRR SRR RS EEEEEEEEEEEEEEEES
*

* (peration List section

* This lists the operations and attributes which an

* interface supports

*

LRSS S S RS S SRS RS SRR S SRR RS SRR RS SRR R SRR R RS EEEEEEEEEE]

01 EXAVPLE- CPERATI ON Pl CTURE X(21).

401

CHAPTER 9 | API Reference

Example 31: The idImembername Copybook (Sheet 2 of 2)

88 EXAWPLE- WCP VALUE
"nyop: | DL: exanpl e: 1. 0".
01 EXAVPLE- CPERATI O\ LENGTH Pl CTURE 9(09) Bl NARY
VALUE 21.

LR EEEEEEEE SRS SRS EESE]

*

* Typecode section
* This contains CDR encodi ngs of necessary typecodes.

*

R RS S SRR SRS SRR SRR RS RS E SRR SR EEEEEEEEEEEEES

01 EXAWPLE- TYPE Pl CTURE X(28).
CCPY CORBATYP.
88 EXAVPLE- UNBOUNDEDSEQ VALUE
"1 DL: exanpl e/ unboundedseq: 1. 0".
88 EXAWPLE VALUE
"1 DL: exanpl e: 1. 0".
01 EXAVPLE- TYPE- LENGTH Pl CTURE S9(09)

Bl NARY VALUE 28.

3. The following is an example of how to use SEQALLOC in a client or
server program:

Example 32: Using SEQALLOC in Client or Server (Sheet 1 of 2)

WIRKI NG STORAGE SECTI ON

01 V& MAX- ELEMENTS PI CTURE 9(09) BI NARY
VALUE 10.

01 WG CURRENT- ELEMENT PI CTURE 9(09) BI NARY
VALLE 0.

DO EXAMPLE- MYCP.
CALL "COAGET" USI NG EXAVPLE- MYCP- ARGS.
SET W5 COACGET TO TRUE.
PERFORM CHECK- STATUS.

* initialize the maxi numand length fields.

* MOVE W5- MAX- ELEMENTS TO SEQUENCE- MAXI MM CF

MOVE O TO SEQUENCE- MAXI MM CF
EXAVPLE- MYCP- ARGS.
MOVE O TO SEQUENCE- LENGTH CF

EXAMPLE- WYOP- ARGS.
* Initialize the sequence el enent data

MOVE O TO RESULT CF
RESULT-1 CF

402

Exceptions

See also

API Reference Details

Example 32: Using SEQALLOC in Client or Server (Sheet 2 of 2)

EXAMPLE- MYCP- ARGS.
* set the typecode of the sequence
SET EXAMPLE- UNBOUNDEDSEQ TO TRUE.
Al l ocate nenory for the unbounded sequence.
* NOTE SEQUENCE-MAXIMMis set to W5 MAX- ELEMENTS after
* SEQALLCC cal |
CALL "SEQALLCC' USI NG W5 MAX- ELEMENTS
EXAMPLE- TYPE
EXAMPLE- TYPE- LENGTH
RESULT- SEQUENCE CF
EXAVPLE- MYCP- ARGS.
SET W& SEQALLCC TO TRUE
PERFORM CHECK- STATUS.
* Now ready to popul ate the segeunce see SEQSET

LR R R RS R R RS EEE]

* Check Errors Copybook

RS E R R SRR EEE]

OCPY CHKERRS.

*

Note: The OCPY OHKERRS statement in the preceding example is used in
batch programs. It is replaced with GoPY CERRSMFA in IMS or CICS server
programs, OCPY CHKOLA Cin CICS client programs, and OCPY GHKCLI M5 in
IMS client programs.

A OCRBA: : NO_MEMIRY exception is raised if there is not enough memory
available to complete the request. In this case, the pointer will contain a null
value.

A CCRBA: : BAD PARAM : | NVALI D_SEQUENCE exception is raised if the sequence
has not been set up correctly.

® “SEQFREE” on page 409.
® “Unbounded Sequences and Memory Management” on page 303.

403

CHAPTER 9 | API Reference

SEQDUP

Synopsis SEQDUP(i n buffer sequence-control -dat a,
out buffer dupl-seg-control -data)
/1 Duplicates an unbounded sequence control bl ock.

Usage Common to clients and servers.

Description The SEQDUP function creates a copy of an unbounded sequence. The new
sequence has the same attributes as the original sequence. The sequence
data is copied into a newly allocated buffer. The program owns this
allocated buffer. When this buffer is no longer required, you must call
SEQFREE to free the memory allocated to it.

You can call SEQDUP only on unbounded sequences.

Parameters The parameters for SEQDUP can be described as follows:
sequence- cont rol -dat aThis is an i n parameter that contains the
unbounded sequence control data.

dupl - seg-cont rol -dat aThis is an out parameter that contains the
duplicated unbounded sequence control data block.

Example The example can be broken down as follows:
1. Consider the following IDL:

interface exanpl e

{
typedef sequence<l| ong> unboundedseq;
unboundedseq nyop() ;

I

404

API Reference Details

2. Based on the preceding IDL, the Orbix IDL compiler generates the
following in the i dI menber name copybook (where i dI menber name
represents the (possibly abbreviated) name of the IDL member that
contains the IDL definitions):

Example 33: The idImembername Copybook (Sheet 1 of 2)

LRSS R RS S S E S SRS SRR RS SRR RS SRR SRR R SRR EEEEEEEEEEEEES

* Qperation: nyop
* Mapped narre: nyop
* Argurents: None
* Returns: exanpl e/ unboundedseq

* User Exceptions: none
LRSS R RS S S E S SRS SRS SRS SRR SRR R EEEEEEEEEEEEEEEES

01 EXAWPLE- MYCP- ARGS.

03 RESWLT-1.
05 RESWLT Pl CTURE S9(10) Bl NARY.
03 RESULT- SEQUENCE
05 SEQUENCE- MAXI MUM Pl CTURE 9(09) Bl NARY
VALLE 0.
05 SEQUENCE- LENGTH Pl CTURE 9(09) Bl NARY
VALLE 0.
05 SEQUENCE- BUFFER PO NTER
VALUE NULL.
05 SEQUENCE- TYPE PO NTER
VALUE NULL.

LR E RS EEEEE RS RS EEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEESESES

*

* (peration List section
* This lists the operations and attributes which an
* interface supports

*

LR EE SRS E SRS SRS RS EEEE RS EEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEESE]

01 EXAWPLE- CPERATI ON Pl CTURE X(21).
88 EXAMPLE- WYCP VALUE
"nyop: | DL: exanpl e: 1. 0".
01 EXAWPLE- CPERATI ON- LENGTH Pl CTURE 9(09) Bl NARY
VALLE 21.

LR R R R EEEE RS EESS

*

* Typecode section
* This contai ns CDR encodi ngs of necessary typecodes.

*

RS E R SRS EEE]

405

CHAPTER 9 | API Reference

Example 33: The idImembername Copybook (Sheet 2 of 2)

01 EXAVPLE- TYPE Pl CTURE X(28).
CCPY CORBATYP.
88 EXAVPLE- UNBOUNDEDSEQ VALUE
"1 DL: exanpl e/ unboundedseq: 1. 0".
88 EXAWPLE VALUE
"1 DL: exanpl e: 1. 0"
01 EXAMPLE- TYPE- LENGTH PI CTURE S9(09) BI NARY
VALUE 28.

3. The following is an example of how to use SEQDUP in a client or server
program:

Example 34: Using SEQDUP in Client or Server (Sheet 1 of 2)

WIRKI NG STCRAGE SECTI O\

01 WG CURRENT- ELEMENT PI CTURE 9(09) BI NARY
VALLE 0.
01 W5 ARGS.
03 CCPIED- 1.
05 QOPI ED- VALUE PI CTURE S9(10) BI NARY.
03 OCPI ED- SEQUENCE,
05 SEQUENCE- MAXI MUM PI CTURE 9(09) BI NARY
VALLE 0.
05 SEQUENCE- LENGTH PI CTURE 9(09) BI NARY
VALUE 0.
05 SEQUENCE- BUFFER PQ NTER
VALUE NULL.
05 SEQUENCE- TYPE PQ NTER
VALUE NULL.

PROCEDURE DM S| ON

CALL " CRBEXEC' USI NG EXAVPLE- CBJ
EXAMPLE- CPERATI CN
EXAVPLE- MYCP- ARGS
EXAVPLE- USER- EXCEPTI ONS.
SET W& CRBEXEC TO TRUE.
PERFCRMI CHECK- STATUS.
* Make a copy of the unbounded sequence
CALL "SEQDUP* USI NG RESULT- SEQUENCE CF
EXAVPLE- MYCP- ARGS
QOCPl ED- SEQUENCE CF
W6 ARGS.
SET W& SEQDUP TO TRUE

406

API Reference Details

Example 34: Using SEQDUP in Client or Server (Sheet 2 of 2)

E

PERFCRM CHECK- STATUS.

Rel ease the menory allocated by SEQALLCC

Refer to menory nanagenent chapter on when to call this
api . * NOTE The SEQUENCE- MAXI MM and SEQUENCE- LENGTH
are not initialized.

CALL "SEQFREE' USI NG RESULT- SEQUENCE CF
EXAMPLE- MYCP- ARGS.

SET W& SECGFREE TO TRUE

PERFCRM CHECK- STATUS.

Get each of the 10 elenents in the copied sequence.
PERFCRM VARYI NG W5~ CURRENT- ELEMVENT
FROM 1 BY 1 UNTIL
W5- CURRENT- ELEMENT >
SEQUENCE- LENGTH CF
W6 ARGS
Get the current elenent in the copied sequence
CALL "SEQGET" USI NG OCPI ED- SEQUENCE COF
V& ARGS
W\B- CURRENT- ELEMENT
QCPl ED- VALLE CF
CCPIED- 1 CF
W6 ARGS
SET W5 SEQCET TO TRUE
PERFORM CHECK- STATUS
D SPLAY "H enent data val ue equal s "
QCPI ED- VALUE CF
CCPIED-1 CF
W6 ARGS

LRSS E SRS SRS RS EESE]

* Check Errors Copybook

E R)

QCPY GKERRS.

407

CHAPTER 9 | API Reference

Note: The OCPY GKERRS statement in the preceding example is used in
batch programs. It is replaced with acPY CERRSMFA in IMS or CICS server

programs, QCPY GHKCLA Cin CICS client programs, and OCPY CHKCLI M5 in
IMS client programs.

Exceptions A CORBA: : BAD PARAM : | NVALI D_SEQUENCE exception is raised if the sequence
has not been set up correctly.

See also ® “SEQFREE” on page 409.

® “Unbounded Sequences and Memory Management” on page 303.

408

API Reference Details

SEQFREE

Synopsis

Usage

Description

Parameters

Example

SEQFREE(i nout buffer sequence-control -data)
/1 Frees the nenory allocated to an unbounded sequence.

Common to clients and servers.

The SEQFREE function releases storage assigned to an unbounded sequence.
(Storage is assigned to a sequence by calling SEQALLQC.) Do not try to use
the sequence again after freeing its memory, because doing so might result
in a runtime error.

You can use SEQFREE only on unbounded sequences. Refer to the “Memory
Handling” on page 301 for details of when it should be called.

The parameter for SEQFREE can be described as follows:

sequence- control -dat a This is an i nout parameter that contains the
unbounded sequence control data.

The example can be broken down as follows:
1. Consider the following IDL:

/] 1DL
interface exanpl e

{

typedef sequence<l| ong> unboundedseq;
unboundedseq nyop();
b

2. Based on the preceding IDL, the Orbix IDL compiler generates the
following code in the i dI menber name copybook (where i dI menber name
represents the (possibly abbreviated) name of the IDL member that
contains the IDL definitions):

Example 35: The idImembername Copybook (Sheet I of 2)

409

CHAPTER 9 | API Reference

410

Example 35: The idImembername Copybook (Sheet 2 of 2)

LRSS S SRS S S SRS SRR E SR RS EE RS EE R SRR EEEEEEEEEEEEES

* Qperation: nyop
* Mapped narre: nyop
* Argurent s: None
* Returns: exanpl e/ unboundedseq

* User Exceptions: none
LRSS SRR RS S S SRS S SR SRS E SRR RS EE RS EE R SRR EEEEEEEEEEEESS

01 EXAVPLE- WCP- ARGS.

03 RESULT-1.
05 RESULT Pl CTURE S9(10) Bl NARY.
03 RESULT- SEQUENCE,
05 SEQUENCE- MAXI MM Pl CTURE 9(09) Bl NARY
VALLE 0.
05 SEQUENCE- LENGTH Pl CTURE 9(09) Bl NARY
VALLE 0.
05 SEQUENCE- BUFFER PO NTER
VALUE NULL.
05 SEQUENCE- TYPE PO NTER
VALUE NULL.

LR EEE SRR EE SRS EES]

*

* Qperation List section
* This lists the operations and attributes which an
* interface supports

*

LRSS EEE RS EEE]

01 EXAVPLE- CPERATI ON Pl CTURE X(21).
88 EXAWPLE- WYCP VALUE
"nyop: | DL: exanpl e: 1. 0".
01 EXAVPLE- CPERATI O\ LENGTH Pl CTURE 9(09) Bl NARY
VALLE 21.

LR EEE SRR SRS SRS EESS

*

* Typecode section
* This contains CDR encodi ngs of necessary typecodes.

*

Kk khkkhkhkkhhhhhkhkhhhhhkhkhkhhhhhkhkhhhhhhkhkhhhhhkhkhkhkhhhkhkhkkhhhhkkkkkk

01 EXAVPLE- TYPE Pl CTURE X(28).
CCPY CORBATYP.
88 EXAWPLE- UNBOUNDEDSEQ VALUE
"1 DL: exanpl e/ unboundedseq: 1. 0".
88 EXAWPLE VALUE
"1 DL: exanpl e: 1. 0".
01 EXAVPLE- TYPE- LENGTH Pl CTURE S9(09)

Bl NARY VALUE 28.

See also

API Reference Details

3. The following is an example of how to use SEQFREE in a client or server
program:

WCRKI NG STCRAGE SECTI ON

01 Vi MAX- ELEMENTS PI CTURE 9(09) BI NARY
VALLE 10.

01 V& CURRENT- ELEMENT PI CTURE 9(09) Bl NARY
VALLE 0.

* Rel ease the nmenory allocated by SEQALLOCC
* Refer to nmenory nanagenent chapter on when to call this
* api.
* NOTE The SEQUENCE- MAXI MM and SEQUENCE- LENGTH ar e
* not initialized.
CALL "SEQFREE' USI NG RESULT- SEQUENCE CF
EXAMVPLE- MYCP- ARGS.
SET W& SEQGFREE TO TRUE.
PERFORM CHECK- STATUS.

LRSS S SRR S SRS SRR RS RS SRR EEE RS EEEEEEEEEEEEEES

* Check Errors Copybook

hhkkhkkkkhkhhhhhkhhhhhkhkhkhkhhhhkhkhkhhhhhkkhkkhhhkkkhhhkkhkkhhhhkkkkhkk

OCPY GKERRS.

Note: The CCPY GKERRS statement in the preceding example is used in
batch programs. It is replaced with GoPY CERRSMFA in IMS or CICS server
programs, QCPY CHKCLA Cin CICS client programs, and GCPY GHKCLI M5 in
IMS client programs.

“Unbounded Sequences and Memory Management” on page 303.

411

CHAPTER 9 | API Reference

SEQGET

Synopsis SEQGET(i n sequence sequence-control -dat a,
in 9(09) BINARY el errent - nunber,
out buffer sequence-data)
/1 Retrieves the specified el ement froman unbounded sequence.

Usage Common to clients and servers.

Description The SEQGET function provides access to a specific element of an unbounded
sequence. The data is copied from the specified element into the supplied
data area (that is, into the sequence- dat a parameter).

You can use SEQGET only on unbounded sequences.

Parameters The parameter for SEQGET can be described as follows:
sequence-control -dat a This is an i n parameter that contains the
unbounded sequence control data.

el ement - nunber This is an i n parameter that specifies the index of
the element number to be retrieved.

sequence- dat a This is an out parameter that contains the buffer to
which the sequence data is to be copied.

Example The example can be broken down as follows:
1. Consider the following IDL:

/1 1DL
interface exanpl e

{

typedef sequence<| ong> unboundedseq;
unboundedseq nyop();

412

API Reference Details

2. Based on the preceding IDL, the Orbix IDL compiler generates the
following code in the i dI menber name copybook (where i dI menber name
represents the (possibly abbreviated) name of the IDL member that
contains the IDL definitions):

Example 36: The idImembername Copybook (Sheet 1 of 2)

LRSS R RS S S E S SRS SRR RS SRR RS SRR SRR R SRR EEEEEEEEEEEEES

* Qperation: nyop
* Mapped narre: nyop
* Argurents: None
* Returns: exanpl e/ unboundedseq

* User Exceptions: none
LRSS R RS S S E S SRS SRS SRS SRR SRR R EEEEEEEEEEEEEEEES

01 EXAWPLE- MYCP- ARGS.

03 RESWLT-1.
05 RESWLT Pl CTURE S9(10) Bl NARY.
03 RESULT- SEQUENCE
05 SEQUENCE- MAXI MUM Pl CTURE 9(09) Bl NARY
VALLE 0.
05 SEQUENCE- LENGTH Pl CTURE 9(09) Bl NARY
VALLE 0.
05 SEQUENCE- BUFFER PO NTER
VALUE NULL.
05 SEQUENCE- TYPE PO NTER
VALUE NULL.

LR E RS EEEEE RS RS EEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEESESES

*

* (peration List section
* This lists the operations and attributes which an
* interface supports

*

LR RS R R R SRR RS EE]

01 EXAVPLE- CPERATI ON Pl CTURE X(21).
88 EXAMPLE- MYCP VALUE
"nyop: | DL: exanpl e: 1. 0".
01 EXAMPLE- CPERATI ON- LENGTH Pl CTURE 9(09) Bl NARY
VALLE 21.

LRSS E SRS SRS RS EESE]

*

* Typecode section
* This contai ns CDR encodi ngs of necessary typecodes.

*

kkkhkhkkhkhhhkhkhhhhhhkhkhhhhhkhkhhhhhkhkhkhkhhhhhkkkkhhkkkkhhhkkhkkkk

01 EXAWPLE- TYPE Pl CTURE X(28).
QCPY CCORBATYP.

413

CHAPTER 9 | API Reference

Example 36: The idImembername Copybook (Sheet 2 of 2)

88 EXAVPLE- UNBOUNDEDSEQ VALUE
"1 DL: exanpl e/ unboundedseq: 1. 0".
88 EXAWPLE VALUE
"1 DL: exanpl e: 1. 0".
01 EXAVPLE- TYPE- LENGTH Pl CTURE S9(09)

Bl NARY VALUE 28.

3. The following is an example of how to use SEQEET in a client or server
program:

WORKI NG STCRAGE SECTI O\

01 W5 MAX- ELEMENTS Pl CTURE 9(09) BI NARY
VALLE 10.

01 W5- CURRENT- ELEMENT Pl CTURE 9(09) BI NARY
VALUE 0.

CALL " CRBEXEC' USI NG EXAMPLE- CBJ
EXAMPLE- CPERATI ON
EXAMPLE- MYCP- ARGS
EXAMPLE- USER- EXCEPTI ONS.
SET W& CRBEXEC TO TRUE
PERFCORM CHECK- STATUS.
* Get each of the 10 el enents in the sequence.
PERFCRM VARYI NG W5- CURRENT- ELEMVENT
FROM 1 BY 1 UNTI L
WE- CURRENT- ELEMENT >
SEQUENCE- LENGTH CF
EXAMPLE- MYCP- ARGS
* Get the current el enent
CALL "SEQCET" USI NG RESULT- SEQUENCE CF
EXAMPLE- MYCP- ARGS
W5- CURRENT- ELEMENT
RESULT CF
RESULT-1 CF
EXAMPLE- MYCP- ARGS
SET W& SEQGET TO TRUE

Exceptions A OCRBA: : BAD PARAM : | NVALI D_SEQUENCE exception is raised if the sequence
has not been set up correctly.

A OCRBA: : BAD PARAM : | NVALI D_BOUNDS exception is raised if the element to
be accessed is either set to 0 or greater than the current length.

414

API Reference Details

SEQSET

Synopsis

Usage

Description

Parameters

Example

SEQSET(out buffer sequence-control -data,

in 9(09) BINARY el erment - nunber,

in buffer sequence-data)
/1 Places the specified data into the specified el enent of an
/1 unbounded sequence.

Common to clients and servers.

The SEQSET function copies the supplied data into the requested element of
an unbounded sequence. You can set any element ranging between 1 and
the maximum size of a sequence plus one. If the current maximum element
plus one is set, the sequence is then reallocated, to hold the enlarged
sequence.

Note: You can call SEQSET only on unbounded sequences.

The parameters for SEQSET can be described as follows:

sequence- control -dat a This is an i n parameter that contains the
unbounded sequence control data.

el ement - nunber This is an i n parameter that specifies the index of
the element number that is to be set.

sequence- dat a This is an i n parameter that contains the address
of the buffer containing the data that is to be
placed in the sequence.

1. Consider the following IDL:

/1 1DL
interface exanpl e

{

typedef sequence<l| ong> unboundedseq;
unboundedseq nyop();
I

415

CHAPTER 9 | API Reference

416

2. Based on the preceding IDL, the Orbix IDL compiler generates the

following code in the i dl menber name copybook (where i dI menber name
represents the (possibly abbreviated) name of the IDL member that
contains the IDL definitions):

Example 37: The idImembername Copybook (Sheet 1 of 2)

LRSS SRR RS S S SRS S SR SRS E SRR RS EE RS EE R SRR EEEEEEEEEEEESS

* Qperation: nyop
* Mapped narre: nyop
* Argurent s: None
* Returns: exanpl e/ unboundedseq

* User Exceptions: none
LRSS S SRR S SRS SRR SRS S SRR RS SRR RS EEE R SRR EEEEEEEEEEEESES

01 EXAVPLE- WCP- ARGS.

03 RESWLT-1.
05 RESULT Pl CTURE S9(10) Bl NARY.
03 RESULT- SEQUENCE.
05 SEQUENCE- MAXI MM Pl CTURE 9(09) Bl NARY
VALLE 0.
05 SEQUENCE- LENGTH Pl CTURE 9(09) Bl NARY
VALLE 0.
05 SEQUENCE- BUFFER PO NTER
VALUE NULL.
05 SEQUENCE- TYPE PO NTER
VALUE NULL.

LR EEE SRR EEE RS EESS

*

* Qperation List section
* This lists the operations and attributes which an
* interface supports

*

LR EE RS EEEE SRS EEE]

01 EXAVPLE- CPERATI ON Pl CTURE X(21).
88 EXAWPLE- WYCP VALUE
"nyop: | DL: exanpl e: 1. 0".
01 EXAVPLE- CPERATI O\ LENGTH Pl CTURE 9(09) Bl NARY
VALLE 21.

LR EEEEEEEE SRS SRS EESES

*

* Typecode section
* This contains CDR encodi ngs of necessary typecodes.

*

Kkkkhkkhkkkhhhhhkhkhhhhhkkkkhhhhkhkhhhhhkhkhkhkhhhhkhkhkkhhkhhkkkhhhkkkkhk

01 EXAWPLE- TYPE Pl CTURE X(28).
CCPY CORBATYP.

API Reference Details

Example 37: The idImembername Copybook (Sheet 2 of 2)

88 EXAMPLE- UNBOUNDEDSEQ VALUE
"1 DL: exanpl e/ unboundedseq: 1. 0".
88 EXAMPLE VALUE
"1 DL: exanpl e: 1. 0".
01 EXAWPLE- TYPE- LENGTH Pl CTURE S9(09)

Bl NARY VALUE 28.

3. The following is an example of how to use SEQSET in a client or server
program:

Example 38: Using SEQSET in Client or Server (Sheet 1 of 2)

WIRKI NG STCRAGE SECTI ON

01 V& MAX- ELEMENTS PI CTURE 9(09) Bl NARY
VALUE 10.

01 WG CURRENT- ELEMENT PI CTURE 9(09) BI NARY
VALLE 0.

DO EXAMVPLE- MYCP.
CALL "OQAGET" USI NG EXAMPLE- MYCP- ARGS.
SET W5 COACGET TO TRUE.
PERFORM CHECK- STATUS.

initialize the maxi rumand | ength fiel ds.

* MOVE W5- MAX- ELEMENTS TO SEQUENCE- MAXI MM CF
MOVE O TO SEQUENCE- MAXI MM CF
EXAVPLE- MYCP- ARGS.
MOVE O TO SEQUENCE- LENGTH CF

EXAVPLE- MYCP- ARGS.

Initialize the sequence el enent data
MOVE 0 TO RESULT CF
RESULT-1 CF
EXAMPLE- MYCP- ARGS.
set the typecode of the sequence
SET EXAMPLE- UNBOUNDEDSEQ TO TRUE
* Alocate menory for the unbounded sequence.
* NOTE: SEQUENCE-MAXIMMis set to Ws- MAX- ELEMENTS
after SEQALLCC call .
CALL "SEQALLQC' USI NG W5 MAX- ELEMENTS
EXAMPLE- TYPE
EXAMPLE- TYPE- LENGTH
RESULT- SEQUENCE CF
EXAMPLE- MYOP- ARGS.

*

417

CHAPTER 9 | API Reference

Example 38: Using SEQSET in Client or Server (Sheet 2 of 2)

SET W5 SEQALLOC TO TRUE
PERFCRM CHECK- STATUS.
* Set each of the 10 el enents in the sequence.
PERFCRM VARYI NG W5- CURRENT- ELEMENT
FROM 1 BY 1 UNTIL
W& CURRENT- ELEMENT >
SEQUENCE- MAXI MM CF
EXAMPLE- MYCP- ARGS
* initialize the elenent data
ADD 2 TO RESULT CF
RESULT-1 CF
EXAMPLE- WWCP- ARGS
Dl SPLAY "H erment data val ue equal s "
RESULT CF
RESULT-1 CF
EXAMPLE- MVCP- ARGS

* Set the current elenent to the el enent data buffer
* NOTE: SEQUENCE- LENGTH i s increnented on each seqset
CALL "SECBET" USI NG RESULT- SEQUENCE CF
EXAMPLE- MYCP- ARGS
W5 CURRENT- ELEMENT
RESULT CF
RESULT-1 CF
EXAMPLE- MYCP- ARGS
SET W5 SEQBET TO TRUE
PERFCRM CHECK- STATUS
END- PERFCRM

CALL "QQOAPUT" USI NG EXAMPLE- MYCP- ARGS.
SET W& COAPUT TO TRUE.
PERFCRM CHECK- STATUS.

KAk khkkhkkhkhhhhhkhkhhhhhkkkhhhhhkhkhkhhhhhkhkhhhhhkhkhkhkhhhhkhkkhhhhkkkkhk

* Check Errors Copybook

LR EEEEEEEE R EE RS EESS

OCPY GHKERRS.

Note: The OCPY OKERRS statement in the preceding example is used in
batch programs. It is replaced with GoPY CERRSMFA in IMS or CICS server
programs, QOPY CHKCLA Cin CICS client programs, and GCPY GHKCLI M5 in
IMS client programs.

418

Exceptions

API Reference Details

A CCORBA: : BAD PARAM : | NVALI D_SEQUENCE exception is raised if the sequence
has not been set up correctly.

A OORBA: : BAD PARAM : | NVALI D_BOUNDS exception is raised if the element to
be accessed is either set to 0 or greater than the current length.

419

CHAPTER 9 | API Reference

STRFREE

Synopsis

Usage

Description

Parameters

Example

420

STRFREE(i n PO NTER string- poi nter)
/1 Frees the nenory allocated to a bounded string.

Common to clients and servers.

The STRFREE function releases dynamically allocated memory for an
unbounded string, via a pointer that was originally obtained by calling
STRSET. Do not try to use the unbounded string after freeing it, because
doing so might result in a runtime error. Refer to “Memory Handling” on
page 301 for more details.

The parameters for STRFREE can be described as follows:

string-pointer This is an i n parameter that is the unbounded string
pointer containing a copy of the bounded string.

The example can be broken down as follows:
1. Consider the following IDL:
interface sanple {

typedef string astring;
attribute astring nystring;

API Reference Details

2. Based on the preceding IDL, the Orbix IDL compiler generates the
following code in the i dI menber name copybook (where i dI menber name
represents the (possibly abbreviated) name of the IDL member that
contains the IDL definitions):

EEEE R EE R R R R EESE]

* Attribute: nystring
* Mapped name: nystring
* Type: sanpl e/ astring (read/wite)

L R XX

01 SAWPLE- MYSTR NG ARGS.
03 RESULT PA NTER
VALUE NULL.

3. The following is an example of how to use STRFREE in a client or server
program:
PROCEDURE DI M SI ON
* note the string pointer will have been set
* by a call to STRSET/ STRSETP
CALL "STRFREE' USI NG RESULT CF SAWPLE- MYSTRI NG ARGS.

DI SPLAY “The nenory i s now rel eased".

See also “STRSET"” on page 427.

421

CHAPTER 9 | API Reference

STRGET

Synopsis

Usage

Description

Parameters

422

STRCGET(i n PAQ NTER stri ng- poi nter,
in 9(09) BINARY string-Iength,
out X(nn) string)
/1 Copies the contents of an unbounded string to a bounded string.

Common to clients and servers.

The STRGET function copies the characters in the unbounded string pointer,
string-pointer, to the string item. If the string- poi nter parameter does
not contain enough characters to exactly fill the target string, the target
string is terminated by a space. If there are too many characters in the
string- poi nter, the excess characters are not copied to the target string.

Note: Null characters are never copied from the stri ng- poi nt er to the
target string.

The number of characters copied depends on the length parameter. This
must be a valid positive integer (that is, greater than zero); otherwise, a
runtime error occurs. If the X(nn) data item is shorter than the length field,
the string is still copied, but obviously cannot contain the intended string.

The parameters for STRGET can be described as follows:

string-pointer This is an i n parameter that is the unbounded string pointer
containing a copy of the unbounded string.

string-length This is an i n parameter that specifies the length of the
unbounded string.

string This is an out parameter that is a bounded string to which
the contents of the string pointer are copied. This string is
terminated by a space if it is larger than the contents of the
string pointer.

API Reference Details

The example can be broken down as follows:
1. Consider the following IDL:

Example

/1 1DL
interface sanple

{

typedef string astring;
attribute astring nystring;

b

2. Based on the preceding IDL, the Orbix IDL compiler generates the
following code in the i dl menber name copybook (where i dI menber name
represents the (possibly abbreviated) name of the IDL member that
contains the IDL definitions):

EEEEE RS E RS EE SRR EEE]

* Attribute: nystring
* Mapped nane: nystring
* Type: sanpl e/ astring (read/wite)

EEEEE R R R R R R RS EE]

01 SAWPLE- MYSTR NG ARGS.

03 RESULT PA NTER

VALUE NULL.

3. The following is an example of how to use STRGET in a client or server

program:

423

CHAPTER 9 | API Reference

WRKI NG STCRAGE SECTI ON

01 W& BOUNDED- STRI NG Pl CTURE X(20) VALUE SPACES.
01 W& BOUNDED- STRING LEN Pl CTURE 9(09) Bl NARY VALUE 20.

PROCEDURE D'V SI ON

* note the string pointer wll have been set
* by a call to STRSET/ STRSETP

CALL "STRGET" USI NG RESULT OF MYSTR NG ARGS
W5- BONDED- STRI NG LEN
W6- BOMNDED- STRI NG
SET W5 STRGET TO TRUE
PERFCRM CHECK- STATUS.
Dl SPLAY "Bounded string nowretrieved and val ue equal s "
W6- BOMNDED- STR NG

424

API Reference Details

STRLEN

Synopsis

Usage

Description

Parameters

Example

STRLEN(i n PQ NTER stri ng- poi nter,
out 9(09) BINARY string-Iength)
/1 Returns the actual |ength of an unbounded string.

Common to clients and servers.

The STRLEN function returns the number of characters in an unbounded
string.

The parameters for STRLEN can be described as follows:
string-poi nter This is an i n parameter that is the unbounded string pointer
containing the unbounded string.

string-length This is an out parameter that is used to retrieve the actual
length of the string that the stri ng- poi nt er contains.

The example can be broken down as follows:
1. Consider the following IDL:

/1 1DL
interface sanple

{

typedef string astring;
attribute astring nystring;
Bis

425

CHAPTER 9 | API Reference

2. Based on the preceding IDL, the Orbix IDL compiler generates the
following code in the i dl menber name copybook (where i dI menber name
represents the (possibly abbreviated) name of the IDL member that
contains the IDL definitions):

LR EEEEEEEE R EEEE RS EEE]

* Attribute: nystring
* Mapped name: nystring
* Type: sanpl e/ astring (read/wite)

hkkkkhkkhhhhhhhhhhhkhkhkhhhhkhkhhhhhkhkhkhhhhkhkkhhhkhkhkhhhhhkkkhhkk

01 SAWPLE- MYSTR NG ARGS.
03 RESULT PA NTER
VALUE NULL.

3. The following is an example of how to use STRLENn a client or server
program:

WORKI NG STCRAGE SECTI ON
01 W& BOUNDED STRING LEN Pl CTURE 9(09) Bl NARY VALUE 0.
PROCEDURE DM S| ON
* note the string pointer wll have been set
* by a call to STRSET/ STRSETP
CALL "STRLEN' USI NG RESULT CF MYSTRI NG ARGS
W5- BONDED- STRI NG LEN

DI SPLAY "The String length equals set".
W& BOUNDED- STRI NG LEN

426

API Reference Details

STRSET

Synopsis

Usage

Description

Parameters

STRSET(out PQ NTER string-pointer,
in 9(09) BINARY string-I|ength,
in X(nn) string)
/1 Oreates a dynanmic string froma PIC X(n) data item

Common to clients and servers

The STRSET function creates an unbounded string to which it copies the
number of characters specified in | engt h from the bounded string specified
in string. If the bounded string contains trailing spaces, these are not
copied to the target unbounded string whose memory location is specified
by string-pointer.

The STRSETP version of this function is identical, except that it does copy
trailing spaces. You can use the STRFREE to subsequently free this allocated
memory.

The number of characters copied depends on the length parameter. This
must be a valid positive integer (that is, greater than zero); otherwise, a
runtime error occurs. If the X(nn) data item is shorter than the length field,
the string is still copied, but obviously cannot contain the intended string.

Note: STRSET allocates memory for the string from the program heap at
runtime. Refer to “STRFREE” on page 420 and “Unbounded Strings and
Memory Management” on page 307 for details of how this memory is
subsequently released.

The parameters for STRSET can be described as follows:

string-poi nter This is an out parameter to which the unbounded string is
copied.

string-length This is anin parameter that specifies the number of
characters to be copied from the bounded string specified in
string.

427

CHAPTER 9 | API Reference

string This is an i n parameter containing the bounded string that
is to be copied. This string is terminated by a space if it is
larger than the contents of the target string pojnter. If the
bounded string contains trailing spaces, they are not copied.

The example can be broken down as follows:
1. Consider the following IDL:

Example

/1 1DL
interface sanpl e

{
typedef string astring;

attribute astring nystring;
g
2. Based on the preceding IDL, the Orbix IDL compiler generates the
following code in the i dI menber nane copybook (where i di menber nane
represents the (possibly abbreviated) name of the IDL member that
contains the IDL definitions):

LR EEE R EE R EEEE T EEE]

* Attribute: nystring
* Mapped name: nystring
* Type: sanpl e/ astring (read/wite)

LRSS S SRS S E S S SRS RS SRR RS EE SRS E R R R SRR EEEEEEEEEEEEES

01 SAWPLE- MYSTR NG ARGS.

03 RESULT PQA NTER
VALUE NULL.

428

API Reference Details

3. The following is an example of how to use STRSET in a client or server
program:

WCRKI NG STCRAGE SECTI ON

01 W& BONDED- STRI NG PI CTURE X(20) VALUE SPACES.
01 W5 BOMNDED- STRI NG LEN Pl CTURE 9(09) Bl NARY VALUE 20.

PROCEDURE DI M SI ON

* Note trailing spaces are not copi ed.
MOVE "JCE BLOEES' TO WS- BOUNDED STR NG
CALL "STRSET" USING RESULT OF SAMPLE- MYSTR NG ARGS
W\&- BOUNDED- STR NG LEN
W5- BOUNDED- STRI NG
SET W& STRSET TO TRUE.
PERFCRM CHECK- STATUS.

DI SPLAY "String pointer is now set".

See also ® “STRFREE” on page 420.
® “Unbounded Strings and Memory Management” on page 307.

429

CHAPTER 9 | API Reference

STRSETP

Synopsis

Usage

Description

Example

430

STRSETP(out PQA NTER stri ng- poi nter,
in 9(09) BINARY string-Ilength,
in X(nn) string)
/l Creates a dynamic string froma PIC X(n) data item

Common to clients and servers.

The STRSETP function is exactly the same as STRSET, except that STRSETP

does copy trailing spaces to the unbounded string. Refer to “STRSET” on
page 427 for more details.

Note: STRSETP allocates memory for the string from the program heap at
runtime. Refer to “STRFREE” on page 420 and “Unbounded Strings and

Memory Management” on page 307 for details of how this memory is
subsequently released.

The example can be broken down as follows
1. Consider the following IDL:

/11DL
interface sanple
{
typedef string astring;

attribute astring nystring;
ik

API Reference Details

2. Based on the preceding IDL, the Orbix IDL compiler generates the
following code in the i dI menber name copybook (where i dI menber name
represents the (possibly abbreviated) name of the IDL member that
contains the IDL definitions):

EEEE R EE R R R R EESE]

* Attribute: nystring
* Mapped name: nystring
* Type: sanpl e/ astring (read/wite)

L R XX

01 SAWPLE- MYSTR NG ARGS.
03 RESULT PQA NTER
VALUE NULL.

3. The following is an example of how to use STRSETP in a client or server
program:

WCRKI NG STCRAGE SECTI ON

01 W& BOMNDED- STRI NG Pl CTURE X(20) VALUE SPACES.
01 W5 BOMNDED- STRING LEN Pl CTURE 9(09) BI NARY VALUE 20.

PROCEDURE D' VI SI ON

* Note trailing spaces are copi ed.
MOVE "JCE BLOGGS' TO Ws- BOUNNDED- STR NG
CALL "STRSETP' USI NG RESULT CF MYSTR NG ARGS
W\&- BOUNDED- STRI NG LEN
W\&- BOUNDED- STRI NG
SET W& STRSETP TO TRUE
PERFCRM CHECK- STATUS.

DI SPLAY "String pointer is now set".

See also ® “STRFREE” on page 420.
® “Unbounded Strings and Memory Management” on page 307.

431

CHAPTER 9 | API Reference

STRTOOBJ

Synopsis

Usage

Description

Parameters

Format for input string

432

STRTOCBI(i n PA NTER obj ect -stri ng,

out PA NTER obj ect - r ef er ence)
/1 Creates an object reference froman interoperabl e object
Il reference (ICR).

Common to clients and servers.

The STRTOBJ function creates an object reference from an unbounded
string. When a client has called STRTQCBJ to create an object reference, the
client can then invoke operations on the server.

The parameters for STRTQOBJ can be described as follows:

obj ect-string This is an i n parameter that contains a pointer to the
address in memory where the interoperable object
reference is held.

obj ect-reference This is an out parameter that contains a pointer to the
address in memory where the returned object reference
is held.

The obj ect - stri ng input parameter can take different forms, as follows:
® Stringified interoperable object reference (IOR)

The CORBA specification defines the representation of stringified I0R
references, so this form is interoperable across all ORBs that support
IIOP. For example:

I CR 000...

You can use the supplied i or dunp utility to parse the IOR. The i or dunp
utility is available with your Orbix Mainframe installation on 0S/390
UNIX System Services.

® corbaloc:rir URL
This is one of two possible formats relating to the corbaloc mechanism.
The corbaloc mechanism uses a human-readable string to identify a

API Reference Details

target object. A corbaloc:rir URL can be used to represent an object
reference. It defines a key upon which resol ve_i niti al _ref erences is
called (that is, it is equivalent to calling CBIR R.

The format of a corbaloc:rir URL is corbal oc:rir:/rir-argument (for
example, "corbal oc: rir:/NaneService"). See the CORBA
Programmer’s Guide, C++ for more details on the operation of

resol ve_initial _references.

corbaloc:iiop-address URL

This is the second of two possible formats relating to the corbaloc
mechanism. A corbaloc:iiop-address URL is used to identify
named-keys.

The format of a corbaloc:iiop-address URL is

corbal oc: i i op-address[, iiop-address]./key-string (for example,
"corbal oc: i i op: xyz. comi BankSer vi ce").

itmfaloc URL

The itmfaloc URL facilitates locating IMS and CICS adapter objects.
Using an itmfaloc URL is similar to using the i tadm n nfa resol ve
command; except that the imfaloc URL exposes this functionality
directly to Orbix applications.

The format of an itmfaloc URL is i t nfal oc: i t nfal oc-ar gument (for
example, "itnfal oc: Si npl e/ Si npl eCoj ect”). See the CICS Adapters
Administrator’s Guide and the IMS Adapters Administrator’s Guide for
details on the operation of itmfaloc URLs.

433

CHAPTER 9 | API Reference

Stringified IOR example Consider the following example of a client program that first shows how the
server's object reference is retrieved via STRTOOBJ, and then shows how the
object reference is subsequently used:

WORKI NG STORAGE SECTI ON

* Normally not stored in Wrking storage - this is just for

denonstrati on.

01 W5 SIMPLE-1 CR PI C X(2048) VALUE
"1 R 010000001c00000049444c3a53696d706c652f 53696d706c654f 626a
6563743a312e300001000000000000007€000000010102000a0000006a757
87461706f 736500e803330000003a3e023231096a75787461706f 73651273
696d706c655f 70657273697374656e7400106d795f 73696d706c655f 6f 626
a656374000200000001000000180000000100000001000100000000000001
010001000000090101000600000006000000010000002100"
01 W& SI MPLE- SI MPLECBIJECT PA NTER VALUE NULL.

* Set the CCBOL pointer to point to the ICR string
* Normally read froma file
CALL "STRSET" USI NG | CR REG PTR
| OR REG LEN
W& SI MPLE- | OR
SET W5 STRSET TO TRUE
PERFORM CHECK- STATUS.
* (btain object reference fromthe IR
CALL "STRTGCBJ" USI NG | OR REG PTR
W& S| MPLE- SI MPLECBIECT
SET W5 STRTOOBJ TO TRUE.
PERFCORM CHECK- STATUS.

434

orbaloc:rir URL example

corbaloc:iiop-address URL
example

API Reference Details

Consider the following example that uses a corbaloc to call
resol ve_initial _references on the Naming Service:

01 W5 GORBALOC STR PI CTURE X(26) VALUE
"corbal oc:rir:/NaneService ".
01 W5 CCRBALCGC- PTR PO NTER VALUE NULL.
01 W5 CORBALQG STR- LENGTH PI CTURE 9(9) BI NARY VALUE 26.
01 W& NAM NG SERVI CE- CBJ P NTER VALUE NULL.

/* Oreate an unbounded corbal oc string to Nami ng Service */
CALL "STRSET" USI NG W5- CCRBALOGC PTR

W5- CCRBALCG STR- LENGTH

W5- CORBALCOG STR

SET W5 STRSET TO TRUE.
PERFORM CHECK- STATUS.
/* Oreate an object reference using the unbounded corbal oc str */
CALL "STRTOOBJ" USI NG Ws- QCRBALCOG PTR
W& NAM NG SERVI CE- CBJ.
SET W5 STRTOCBJ TO TRUE.
PERFCRM CHECK- STATUS.
/* Can now i nvoke on nam ng service */

You can use STRTQOBJ to resolve a named key. A named key, in essence,
associates a string identifier with an object reference. This allows access to
the named key via the string identifier. Named key pairings are stored by the
locator. The following is an example of how to create a named key:

itadm n named_key create -key TesthjectNK ICR ...

435

CHAPTER 9 | API Reference

Consider the following example that shows how to use STRRTOOBJ to resolve
this named key:

itadm n named_key create -key Test ChjectNK ICR ...
01 W5 CCRBALQC- STR PI CTURE X(46)
VALUE "corbal oc:iiop: 1. 2@ocal host: 5001/ Test Chj ect NK ".
01 W5 CCRBALQOC- PTR PA NTER VALUE NULL.
01 W5 CORBALCC STR- LENGTH PI CTURE 9(9) BI NARY VALUE 46.
01 W5- TEST- GBJECT- CBJ PA NTER VALUE NULL.
/* Oreate an unbounded corbal oc string to the Test (hject */
CALL "STRSET" USI NG W5- CCRBALOC- PTR
WS- CCRBALCC- STR- LENGTH
W5 CCRBALCG- STR

SET W& STRSET TO TRUE
PERFCRM CHECK- STATUS.

/* Oeate an object reference using the unbounded corbal oc str */
CALL "STRTQOBJ" USI NG Ws- CORBALCG PTR
W5- TEST- CBJECT- CBJ.
SET W5 STRTCCBJ TO TRUE.
PERFCRM CHECK- STATUS.

/* Can now i nvoke on Test (hj ect */

itmfaloc URL example You can use STRTOBI to locate IMS and CICS server objects via the itmfaloc
mechanism. To use an itmfaloc URL, ensure that the configuration scope
used contains a valid initial reference for the adapter that is to be used. You
can do this in either of the following ways:
® Ensure that the LOCAL_MFA REFERENCE in your Orbix configuration
contains an object reference for the adapter you want to use.
® Use either "- CRBnane iona_servi ces. i nsa" or "- CRBnane
i ona_ser vi ces. ci csa" to explicitly pass across a domain that defines
| T_MFA initial references.

In essence, an itmfaloc URL allows programmatic access to i tadnin nfa
resol ve functionality.

436

API Reference Details

Consider the following example that shows how to locate IMS and CICS
server objects via the itmfaloc URL mechanism:

01 W5 CCRBALGCG STR Pl CTURE X(29)

VALLE "itnfal oc: Sinple:/SinpleChject ".

01 W5- CORBALCG PTR PTR

01 W5- CORBALQOG- STR- LENGTH PI CTURE 9(9) Bl NARY VALUE 29.
01 W5 TEST- CBJECT- CBJ PA NTER VALUE NULL.

/* Oreate an unbounded corbal oc string to the */
/* SinplelSinplehject interface defined to an I M5/ CICS */
/* adapter */
CALL "STRSET" USI NG W5 CCRBALOG PTR

WS- CCRBALCG: STR- LENGTH

W5- CCRBALCG STR
SET W5 STRSET TO TRUE.
PERFCORM CHECK- STATUS.
/* Oeate an object reference using the unbounded corbal oc str */
CALL "STRTOOBJ" USI NG Ws- CORBALCG- PTR

W&- TEST- CBJECT- CBJ.

SET W& STRTOCBJ TO TRUE
PERFORM CHECK- STATUS.
/* Can now i nvoke on Sinpl e/ Si npl eChj ect */

See also “OBJTOSTR” on page 377.

437

CHAPTER 9 | API Reference

TYPEGET

Synopsis

Usage

Description

Parameters

Example

438

TYPECET(i nout PO NTER any- poi nt er,
in 9(09) BINARY typecode-key-I ength,
out X(nn) typecode-key)

Il Extracts the type name froman any.

Common to clients and servers.

The TYPEGET function returns the typecode of the value of the any. You can
then use the typecode to ensure that the correct buffer is passed to the
ANYGET function for extracting the value of the any.

The parameters for TYPEGET can be described as follows:

any- poi nt er This is an i nout parameter that is a pointer to the
address in memory where the any is stored.

typecode- key- 1 ength This is an i n parameter that specifies the length of
the typecode key, as defined in the i dI nenber nane
copybook generated by the Orbix IDL compiler.

t ypecode- key This is an out parameter that contains a 01 level
data item to which the typecode key is copied. This
is defined in the i dI menber nane copybook generated
by the Orbix IDL compiler. This is a bounded string.

The example can be broken down as follows:
1. Consider the following IDL:

/1 1DL
interface sanple

{
I

attribute any nyany;

API Reference Details

2. Based on the preceding IDL, the Orbix IDL compiler generates the
following code code in the i dI menber name copybook (where
i dl menber nane represents the (possibly abbreviated) name of the IDL
member that contains the IDL definitions):

01 SAWPLE- MYANY- ARGS.

03 RESULT PO NTER
VALUE NULL.
01 EXAVPLE- TYPE Pl CTURE X(15) .
QCPY CORBATYP.
88 SAWPLE VALUE
"1 DL: sanpl e: 1. 0".
01 EXAMPLE- TYPE- LENGTH Pl CTURE S9(09) Bl NARY
VALUE 22.

3. The following is an example of how to use TYPEGET in a client or server
program:

WIRKI NG STCRAGE SECTI O\
01 W& DATA Pl C S9(5) VALUE 0.

CALL "TYPEGET" USING RESULT OF SAWPLE- MYANY- ARGS
EXAMPLE- TYPE- LENGTH
EXAMPLE- TYPE.
SET W& TYPECET TO TRUE
PERFCRM CHECK- STATUS.
* val i dat e typecode
EVALUATE TRUE
WHEN OCRBA- TYPE- SHORT
*retrieve the ANY CORBA : Short val ue
CALL "ANYCET" USI NG RESULT CF SAMPLE- MYANY- ARGS
W5 DATA
SET W5 ANYGET TO TRUE
PERFORM CHECK- STATUS
Dl SPLAY "ANY val ue equal s " W5 DATA
WHEN OTHER
Dl SPLAY "Wong typecode recei ved, expected a SHORT
t ypecode "
END- EVALUATE.

Exceptions A OCRBA : BAD | N\V_CRDER : TYPESET_NOT_CALLED exception is raised if the
typecode of the any has not been set via TYPESET.

439

CHAPTER 9 | API Reference

TYPESET

Synopsis

Description

Parameters

Example

440

TYPESET(i nout PO NTER any- poi nt er,
in 9(09) BINARY typecode-key-I ength,
in X(nn) typecode-key)

/1l Sets the type nane of an any.

The TYPESET function sets the type of the any to the supplied typecode. You
must call TYPESET before you call ANYSET, because ANYSET uses the current
typecode information to insert the data into the any.

The parameters for TYPESET can be described as follows:

any-type This is an i nout parameter that is a pointer to the
address in memory where the any is stored.

typecode- key- 1 ength This is an i n parameter that specifies the length of
the typecode string, as defined in the i dI menber nane
copybook generated by the Orbix IDL compiler.

t ypecode- key This is an i n parameter containing the typecode
string representation, as defined in the
i dl mrenber nane copybook generated by the Orbix IDL
compiler. The appropriate 88 level item is set for the
typecode to be used.

The example can be broken down as follows:
1. Consider the following IDL:

/1 1D
interface sanpl e

{
}

attribute any nyany;

API Reference Details

2. Based on the preceding IDL, the Orbix IDL compiler generates the
following code in the i dI menber name copybook (where i dI menber name
represents the (possibly abbreviated) name of the IDL member that
contains the IDL definitions):

01 SAWPLE- MYANY- ARGS.
03 RESULT PA NTER
VALUE NULL.

LR R R R R R R RS EE]

*

* Typecode secti on
* Thi s cont ai ns CDR encodi ngs of necessary typecodes.

*

LR E RS S S SR RS SRS S SRR S SRR S SRR SRR R SRR EEEEEEEEEEEEES

01 EXAVPLE- TYPE Pl CTURE X(15).
QCPY CORBATYP.
88 SAVPLE VALUE
"I OL: sanpl e: 1. 0".
01 EXAVPLE- TYPE- LENGTH Pl CTURE S9(09)

Bl NARY VALUE 22.

3. The following is an example of how to use TYPESET in a client or server
program:

WIRKI NG STCRAGE SECTI O\
01 W& DATA Pl C S9(5) VALUE O.

PROCEDURE DM S| ON

* Set the ANY typecode to be a OORBA : ShortLong

SET CGORBA- TYPE- SHORT TO TRUE.

CALL "TYPESET" USING RESULT CF
SAWPLE- MYANY- ARGS
EXAMPLE- TYPE- LENGTH
EXAMPLE- TYPE.

SET W5 TYPESET TO TRUE

PERFCRM CHECK- STATUS.

Exceptions A OCRBA: : BAD PARAM : UNKNOWN_TYPECCDE exception is raised if the typecode
cannot be determined from the typecode key passed to TYPESET.

See also ® “ANYFREE" on page 334.

441

CHAPTER 9 | API Reference

® “The any Type and Memory Management” on page 315.

442

API Reference Details

WSTRFREE

Synopsis

Usage

Description

Parameters

WBTRFREE(i n PO NTER wi destri ng- poi nter)
/1 Frees the nenory allocated to a bounded wide string.

Common to clients and servers.

The WSTRFREE function releases dynamically allocated memory for an
unbounded wide string, via a pointer that was originally obtained by calling
VSTRSET. Do not try to use the unbounded wide string after freeing it,
because doing so might result in a runtime error. Refer to the “Memory
Handling” on page 301 for more details.

The parameter for WETRGET can be described as follows:

wi destring-poi nter This is an i n parameter that is the unbounded wide
string pointer containing a copy of the bounded wide
string.

443

CHAPTER 9 | API Reference

WSTRGET

Synopsis

Usage

Description

Parameters

444

WBTRCGET(i n PA NTER wi dest ri ng- poi nter,

in 9(09) BINARY widestring-Iength,

out @ nn) wdestring)
/1 Copies the contents of an unbounded wi de string to a bounded
/1 wide string.

Common to clients and servers.

The WSTRGET function copies the characters in the unbounded wide string
pointer, string_poi nt er, to the COBOL PI C X(n) wide string item. If the
string_poi nter parameter does not contain enough characters to exactly
fill the target wide string, the target wide string is terminated by a space. If
there are too many characters in the stri ng- poi nt er, the excess characters
are not copied to the target wide string.

Note: Null characters are never copied from the stri ng- poi nter to the
target wide string.

The parameters for WETRGET can be described as follows:

wi destring-poi nter This is an i n parameter that is the unbounded wide
string pointer containing a copy of the unbounded
wide string.

wi destring-1ength This is an i n parameter that specifies the length of
the unbounded wide string.

wi destring This is an out parameter that is a bounded wide
string to which the contents of the wide string pointer
are copied. This wide string is terminated by a space
if it is larger than the contents of the wide string
pojnter.

API Reference Details

WSTRLEN

Synopsis

Usage

Description

Parameters

WBTRLEN(i n PQ NTER wi dest ri ng- poi nter,
out 9(09) BINARY wi destring-1ength)
/1 Returns the actual |ength of an unbounded wi de string.

Common to clients and servers.

The WSTRLEN function returns the number of characters in an unbounded
wide string.

The parameters for WsTRLEN can be described as follows:
wi destring-poi nter This is an i n parameter that is the unbounded wide
string pointer containing the unbounded wide string.

wi destring-1ength This is an out parameter that is used to retrieve the
actual length of the wide string that the
string- poi nter contains.

445

CHAPTER 9 | API Reference

WSTRSET

Synopsis

Usage

Description

Parameters

446

WBTRSET(out PO NTER wi destri ng- poi nter,
in 9(09) BINARY widestring-Iength,
in @ nn) wdestring)
/1 Oreates a dynanic wide string froma PIC Gn) data item

Common to clients and servers

The WSTRSET function creates an unbounded wide string to which it copies
the number of characters specified in | engt h from the bounded wide string
specified in string. If the bounded wide string contains trailing spaces,
these are not copied to the target unbounded wide string whose memory
location is specified by stri ng- poi nter.

The WSTRSETP version of this function is identical, except that it does copy
trailing spaces. You can use the WSTRFREE to subsequently free this allocated
memory.

The parameters for WETRSET can be described as follows:

wi destring-pointer This is an out parameter to which the unbounded
string is copied.

widestring-length Thisis anin parameter that specifies the number of
characters to be copied from the bounded string
specified in stri ng.

wi destring This is an i n parameter containing the bounded
string that is to be copied. This string is terminated
by a space if it is larger than the contents of the
target string pojnter. If the bounded string contains
trailing spaces, they are not copied.

API Reference Details

WSTRSETP

Synopsis WSTRSETP(out PA NTER wi dest ri ng- poi nt er,
in 9(09) BINARY wi destring-Iength,
in @nn) wdestring)
/1 Oreates a dynamc wide string froma PIC Qn) data item

Usage Common to clients and servers.

Description The WSTRSETP function is exactly the same as WSTRSET, except that WETRSETP
does copy trailing spaces to the unbounded wide string. Refer to
“WSTRSET” on page 446 for more details.

447

CHAPTER 9 | API Reference

CHECK-STATUS

Synopsis

Usage

Description

448

CHECK- STATUS
/1 Checks to see if a systemexception has occurred on an APl call.

Common to clients and servers.

The CHECK- STATUS paragraph written in COBOL checks to see if a system
exception has occurred on an API call. It is not an APl in the COBOL
runtime. It is contained in the or bi xhl g. | NOLUDE. QCPYLI B(OHKERRS)
member. To use GHECK- STATUS, you must use CRBSTAT to register the
CRBI X- STATUS- | NFCRVATI CN block with the COBOL runtime. (Refer to
“ORBSTAT" on page 394.) You should call GHECK- STATUS from the
application on each subsequent API call, to determine if an exception has
occurred on that API call.

The CHECK- STATUS paragraph checks the CORBA- EXCEPTI ONvariable that is
defined in the GRBI X- STATUS- | NFCRVATI ON block, and which is updated after
every API call. If an exception has occurred, the following fields are set in
the CRBI X- STATUS- | NFCRVATI ON block:

QOCRBA- EXCEPTI ON This contains the appropriate value relating to the
exception that has occurred. Values are in the
range 1-36. A 0 value means no exception has
occurred.

OOWPLETI O\ STATUS This can be:
COMPLETI O\ STATUS- YES—Value 0.
OOVPLETI ON- STATUS- NO—Value 1.
COWPLETI ON- STATUS- MAYBE—Value 2.

EXCEPTI ON- TEXT This is a COBOL pointer that contains a reference
to the text of the CORBA system exception that has
occurred.

Note: When an exception occurs, the JCL RETURN OCDE is set to 12 and
the application terminates.

API Reference Details

Parameters CHECK- STATUS takes no parameters.

Definition The CHECK- STATUS function is defined as follows in the GKERRS copybook:

khkkhkkhkkhhkhkhkhkhkhhhkhkhhhhhhkhhhhhhkhhdhhhhhhhhhhhhdhhhhhdhrhhdddrrhhddrx

* Copyright 2001-2002 | ONA Technol ogi es PLC. Al R ghts Reserved.
*

* Nane: GHKERRS
*

LRSS SR RS SRS SRR E RS SRR SRR R R SR EEEEEEEEEEEEEE]

* Check Errors Section for Batch COBQL.

I F NOT CORBA- NO- EXCEPTI ON THEN
DI SPLAY " Syst em Excepti on encount er ed"
Dl SPLAY "Function called : " W API-CALLED
SET OCRBA- EXCEPTI O\ | NDEX TO CORBA- EXCEPTI ON
SET CORBA- EXCEPTI ON- | NDEX UP BY 1
Dl SPLAY " Exception nane

CCRBA- EXCEPTI ON- NAME(OORBA- EXCEPTI ON- | NDEX)

CALL "STRCGET" USI NG EXCEPTI ON- TEXT
ERRCR- TEXT- LEN CF
CRBI X- EXCEPTI ON- TEXT
ERRCR TEXT CF
CRBI X- EXCEPTI ON- TEXT

Dl SPLAY " Exception "
Dl SPLAY ERROR TEXT CF CRBI X-EXCEF’TICN-TEXT (1:64)
Dl SPLAY ERRCR- TEXT CF CORBI X- EXCEPTI ON- TEXT (64: 64)
Dl SPLAY ERROR- TEXT COF ORBI X- EXCEPTI ON- TEXT (128: 64)
MOVE 12 TO RETURN CCDE
STCP RN

END- | F.

Note: The CHECK- STATUS paragraph in the CERRSMFA copybook is almost
exactly the same, except it does not set the RETURN- OCDE register, and it
calls @BAXK instead of STCP RN Iif a system exception occurs. This means
that the native version of CHECK- STATUS is used to update the return code
and exit the program.

449

CHAPTER 9 | API Reference

Example The following is an example of how to use CHECK- STATUS in the batch server
implementation program:

DO S| MPLE- SI MPLECBJECT- CALL- ME.
CALL "OQACGET" USI NG SI MPLE- SI MPLECBIECT- 70FE- ARGS.
SET W5 COAGET TO TRUE
PERFCRM CHECK- STATUS.

CALL "QCOAPUT" USI NG SI MPLE- SI MPLECBIECT- 70FE- ARGS.
SET W5- COAPUT TO TRUE
PERFCRM CHECK- STATUS.

R

* Check Errors Copybook

R R R R R EEEEE SRR RS EEEEEE SRR EEEEEEEEEEEEEEEEEEEEEEEE SRR

QCPY GHKERRS.

Note: The OCPY CHKERRS statement in the preceding example is replaced
with 0Py CERRSMFA in the IMS or CICS server programs, OOPY GHKCLC Cin
CICS client programs, and GCPY GHKCLI M5 in IMS client programs. See
Table 6 on page 54 and Table 11 on page 100 for more details of these
copybooks.

450

Deprecated APIs

Deprecated APIs

Deprecated APIs

This section summarizes the APIs that were available with the Orbix 2.3
COBOL adapter, but which are now deprecated with the Orbix COBOL
runtime. It also outlines the APIs that are replacing these deprecated APIs.

CBJCET(I N obj ect _ref, QUT dest_pointer, IN src_|ength)

/1 Obix 2.3 : Returned a stringified Obix object reference.

/1 CObix Minfrane: No replacenent. Supported on the server side
/1 for mgration purposes.

CBJCETI (I N obj ect _ref, OJT dest_pointer, IN dest_|ength)

/1 Obix 2.3 : Returned a stringified interoperable object

/1 reference (ICR) froma valid object reference.
/1 CObix Minfrane: Replaced by CBITGSTR

CBJSET(I N obj ect _narme, QUT obj ect _ref)

/1 Obix 2.3 : Oeated an object reference froma stringified
/1 obj ect reference.

/1 O bix Minframe: Replaced by STRTGOBJ.

CBJSETM I N obj ect _name, | N narker, QUT object_ref)

/1 Obix 2.3 : Oeated an object reference froma stringified
/1 obj ect reference and set its narker.

/1 O bix Minfrane: Replaced by CBINEW

CRBALLO(I N I ength, QUJT poi nter)
/1 Gbix 2.3 : Alocated nenory at runtime.
/1 QO bix Minframe: Replaced by MENALLCC

CRBFREE(| N poi nt er)
/1 Obix 2.3 : Freed nenory.
/1 Obix Minframe: Replaced by MEMFREE and STRFREE.

CRBGET(| NOUT conpl et e_cobol _oper ati on_par anet er _buf f er)
/1 Obix 2.3 : Gt INand | NQUT val ues.
/1 O bix Minfrane: Replaced by COACGET.

CRBI NI T(I N server_name, | N server_nare_| en)
/1 OGbix 2.3 : Equivalent to inpl _is_ready in G+
/1 Obix Minfrane: Replaced by COARUN

CRBPUT(| NOUT conpl et e_cobol _oper at i on_par aret er _buf f er)
/1 Obix 2.3 : Returned |NQUT, QUT & result val ues.

451

CHAPTER 9 | API Reference

/1 Obix Minfrane: Replaced by COAPUT.

CRBREQ(| N cobol _interface_description, OUT object_ref)

/1 Obix 2.3 : Describes an interface to the GOBCL adapter and
/1 creates an object reference using the interface
/1 descri ption.

/1 O bix Minfrane: Replaced by CBINEWand CRBREG

CRBREQ(I N request _i nfo_buffer)
/1 Obix 2.3 : Provided current request information.
/1 Obix Minfrane: Replaced by COAREQ

STRSETSP(QUT dest _pointer, INsrc_length, IN src)

/1 Obix 2.3 : Oeated a dynamic string froma PIC X(n) data item
/1 Orbix Minframe: Replaced by STRSETP.

452

Part 3

Appendices

In this part This part contains the following appendices:
POA Policies page 455
System Exceptions page 459

Installed Data Sets page 463

In this appendix

Overview

APPENDIX A

POA Policles

This appendix summarizes the POA policies that are supported
by the Orbix COBOL runtime, and the argument used with each
policy.

This chapter contains the following sections:

Overview page 455

POA policy listing page 456

A POA's policies play an important role in determining how the POA
implements and manages objects and processes client requests. There is
only one POA created by the Orbix COBOL runtime, and that POA uses only
the policies listed in this chapter.

See the CORBA Programmer’s Guide, C++ for more details about POAs
and POA policies in general. See the Port abl eServer: : PQA interface in the
CORBA Programmer’s Reference, C++ for more details about the POA
interface and its policies.

Note: The POA policies described in this chapter are the only POA
policies that the Orbix COBOL runtime supports. Orbix COBOL
programmers have no control over these POA policies. They are outlined
here simply for the purposes of illustration and the sake of completeness.

455

CHAPTER A | POA Policies

POA policy listing Table 41 describes the POA policies that are supported by the Orbix COBOL
runtime, and the argument used with each policy.

Table 41: POA Policies Supported by COBOL Runtime (Sheet 1 of 3)

Policy Argument Used Description

Id Assignment USER I D This policy determines whether
object IDs are generated by the
POA or the application. The
USER | D argument specifies that
only the application can assign
object IDs to objects in this POA.
The application must ensure that
all user-assigned IDs are unique
across all instances of the same
POA.

USER | Dis usually assigned to a
POA that has an object lifespan
policy of PERSI STENT (that is, it
generates object references whose
validity can span multiple
instances of a POA or server
process, so the application
requires explicit control over object
IDs).

Id Uniqueness MLTI PLE I D This policy determines whether a
servant can be associated with
multiple objects in this POA. The
MULTI PLE_I Dspecifies that any
servant in the POA can be
associated with multiple object
IDs.

Implicit Activation NO | MPLI O T_ACTI VATI ON This policy determines the POA’s
activation policy. The

NO_| MPLI O T_ACTI VATI ON
argument specifies that the POA
only supports explicit activation of
servants.

456

Table 41: POA Policies Supported by COBOL Runtime (Sheet 2 of 3)

Policy Argument Used Description

Lifespan PERSI STENT This policy determines whether
object references outlive the
process in which they were
created. The PERSI STENT
argument specifies that the IOR
contains the address of the
location domain’s implementation
repository, which maps all servers
and their POAs to their current
locations. Given a request for a
persistent object, the Orbix
daemon uses the object’s virtual
address first, and looks up the
actual location of the server
process via the implementation
repository.

Request Processing USE_ACTI VE_CBIJECT_NMAP_QN\LY This policy determines how the
POA finds servants to implement
requests. The

USE_ACTI VE_CBJECT_MAP_ONLY
argument assumes that all object
IDs are mapped to a servant in the
active object map. The active
object map maintains an
object-servant mapping until the
object is explicitly deactivated via
deacti vat e_obj ect ().

This policy is typically used for a
POA that processes requests for a
small number of objects. If the
object ID is not found in the active
object map, an CBJECT_NOT_EXI ST
exception is raised to the client.
This policy requires that the POA
has a servant retention policy of
RETAI N.

457

CHAPTER A | POA Policies

Table 41: POA Policies Supported by COBOL Runtime (Sheet 3 of 3)

Policy

Argument Used

Description

Servant Retention

The RETAI N argument with this
policy specifies that the POA
retains active servants in its active
object map.

Thread

SI NGLE_THREAD MODEL

The SI NGLE_THREAD MCDEL
argument with this policy specifies
that requests for a single-threaded
POA are processed sequentially. In
a multi-threaded environment, all
calls by a single-threaded POA to
implementation code (that is,
servants and servant managers)
are made in a manner that is safe
for code that does not account for
multi-threading.

458

APPENDIX B

System Exceptions

This appendix summarizes the Orbix system exceptions that
are specific to the Orbix COBOL runtime.

Note: This appendix does not describe other Orbix system exceptions that
are not specific to the COBOL runtime. See the CORBA Programmer’s
Guide, C++ for details of these other system exceptions.

In this appendix This appendix contains the following sections:
CORBA::INITIALIZE:: exceptions page 459
CORBA::BAD_PARAM:: exceptions page 460
CORBA::INTERNAL:: exceptions page 460
CORBA::BAD_INV_ORDER:: exceptions page 460
CORBA::DATA_CONVERSION:: exceptions page 461
CORBA::INITIALIZE:: The following exception is defined within the CORBA: : I NI Tl ALI ZE: : scope:
exceptions
UNKNOMN This exception is raised by any APl when the exact

problem cannot be determined.

459

CHAPTER B | System Exceptions

CORBA::BAD_PARAM::
exceptions

CORBA::INTERNAL::
exceptions

CORBA::BAD_INV_ORDER::
exceptions

460

The following exceptions are defined within the CORBA: : BAD PARAM : scope:

UNKNOAN_CPERATI ON

NO CBJECT | DENTI FI ER

| NVALI D_SERVER NAME

This exception is raised by CRBEXEC, if the
operation is not valid for the interface.

This exception is raised by CGBINEW if the
parameter for the object name is an invalid string.

This exception is raised if the server name that is
passed does not match the server name passed to
CRBSRVR.

The following exceptions are defined within the CORBA: : | NTERNAL: : scope:

UNEXPECTED_| NVOCATI ON

UNKNOW_TYPECGCDE

I NVALI D_STREAVABLE

This exception is raised on the server side when a
request is being processed, if a previous request
has not completed successfully.

This exception is raised internally by the COBOL
runtime, to show that a serious error has occurred.
It normally means that there is an issue with the
typecodes in relation to either the i dI menber nameX
copybook or the application itself.

This exception is raised internally by the COBOL
runtime, to show that a serious error has occurred.
It normally means that there is an issue with the
typecodes in relation to either the i dI menber nameXx
copybook or the application itself.

The following exceptions are defined within the OORBA: : BAD | N\V_CRDER :

scope:

| NTERFACE_NOT_REQ STERED This exception is raised if the specified

interface has not been registered via
CRBREG

| NTERFACE_ALREADY_REQ STEREDThis exception is raised by CRBREG, if the

client or server attempts to register the
same interface more than once.

CORBA::DATA_CONVERSION::
exceptions

ADAPTER ALREADY_| N TI ALI ZED This exception is raised by CRBARGS, if it is

STAT_ALREADY CALLED

SERVER NAME_ALREADY SET

SERVER NAME_NOT_SET

NO_CURRENT_REQUEST

ARGS_NOT_READ

ARGS_ALREADY READ

TYPESET NOT_CALLED

called more than once in a client or server.

This exception is raised by CRBSTAT if it is
called more than once.

This exception is raised by CRBSRVR, if the
APl is called more than once.

This exception is raised by CBINEW COAREQ
CBJCETI D, or COARLN, if ORBSRVR is called.

This exception is raised by COAREQ if no
request is currently in progress.

This exception is raised by coAPUT, if the i n
or i nout parameters for the request have
not been processed.

This exception is raised by COAGET, if the i n
or i nout parameters for the request have
already been processed.

This exception is raised by ANYSET or
TYPECGET, if the typecode for the any type
has not been set via a call to TYPESET.

The following exception is defined within the CORBA: : DATA_ OONVERSI O\ :

scope:

VALUE_QUT_CF_RANGE This exception is raised by CRBEXEC, COAGET, or
QOAPUT, if the value is determined to be out of range
when marshalling a | ong, short, unsi gned short,
unsi gned | ong | ong | ong, or unsi gned | ong | ong

type.

461

CHAPTER B | System Exceptions

462

In this appendix

Overview

List of COBOL-related data sets

APPENDIX C

Installed Data Sets

This appendix provides an overview listing of the data sets
installed with Orbix Mainframe that are relevant to
development and deployment of COBOL applications.

This appendix contains the following sections:

Overview page 463

List of COBOL-related data sets page 463

The list of data sets provided in this appendx is specific to COBOL and
intentionally omits any data sets specific to PL/l or C++. For a full list of all
installed data sets see the Mainframe Installation Guide.

Table 42 lists the installed data sets that are relevant to COBOL.

Table 42: List of Installed Data Sets Relevant to COBOL (Sheet 1 of 4)

Data Set

Description

or bi xhl g. ADM N GRAMVAR

Contains i t adm n grammar files.

or bi xhl g. ADM N HELP

Contains i t adm n help files.

or bi xhl g. ADM N LQAD

Contains Orbix administration programs.

or bi xhl gq. COBCL. LI B

Contains programs for Orbix COBOL support.

463

CHAPTER C

| Installed Data Sets

Table 42: List of Installed Data Sets Relevant to COBOL (Sheet 2 of 4)

Data Set Description
or bi xhl g. CO\FI G Contains Orbix configuration information.
or bi xhl g. DEMCS. O CS. GCBCL. BLD. JOL Contains jobs to build the CICS COBOL

demonstrations.

or bi xhl g.

DEMOS. A CS. COBAL. CCPYLI B

Used to store generated files for the CICS COBOL
demonstrations.

or bi xhl g.

DEMDS. A CS. CCBAL. LOAD

Used to store programs for the CICS COBOL
demonstrations.

or bi xhl g.

DEMDS. A CS. CCBAL. READMVE

Contains documentation for the CICS COBOL
demonstrations.

or bi xhl g.

DEMDS. A CS. G3BAL. SRC

Contains program source for the CICS COBOL
demonstrations.

or bi xhl g.

DEMCS. A CS. MFAVAP

Used to store CICS server adapter mapping
member information for demonstrations.

or bi xhl g.

DEMDS. GOBQL. BLD. JCL

Contains jobs to build the COBOL
demonstrations.

or bi xhl g.

DEMOS. OQOBAL. CCPYLI B

Used to store generated files for the COBOL
demonstrations.

or bi xhl g.

DEMCS. COBQAL. FNBIN' T

Used to store initialized records for the FNB demo
VSAM files.

or bi xhl g.

DEMOS. CCBAL. LQAD

Used to store programs for the COBOL
demonstrations.

or bi xhl g.

DEMDS. COBAL. VAP

Used to store name substitution maps for the
COBOL demonstrations.

or bi xhl g.

DEMDS. COBAL. README

Contains documentation for the COBOL
demonstrations.

or bi xhl g.

DEMDS. GOBAL. RN JCL

Contains jobs to run the COBOL demonstrations.

or bi xhl g.

DEMOS. GCBCL. SRC

Contains program source for the COBOL
demonstrations.

464

Table 42: List of Installed Data Sets Relevant to COBOL (Sheet 3 of 4)

Data Set Description
or bi xhl g. DEMOS. | DL Contains IDL for demonstrations.
or bi xhl g. DEMDS. | M5, GCBCL. BLD. JCL Contains jobs to build the IMS COBOL

demonstrations.

or bi xhl g.

DEMOS. | M5, QCBAL. CCPYLI B

Used to store generated files for the IMS COBOL
demonstrations.

or bi xhl g.

DEMOS. | M5, OQCBAL. LOAD

Used to store programs for the IMS COBOL
demonstrations.

or bi xhl g.

DEMOS. | M. COBCL. READMVE

Contains documentation for the IMS COBOL
demonstrations.

or bi xhl g.

DEMOS. | M5, QCBAL. SRC

Contains program source for the IMS COBOL
demonstrations.

or bi xhl g.

DEMOS. | M5. MFAVAP

Used to store IMS server adapter mapping
member information for demonstrations.

or bi xhl g. DEM3B. | CRS Used to store IORs for demonstrations.
or bi xhl g. DEMOS. TYPEl NFO Optional type information store.

or bi xhl g. DOVAI NS Contains Orbix configuration information.
or bi xhl g. | NCLUDE. CCPYLI B Contains include file for COBOL programs.
or bi xhl g. | NCLUDE. | T@ CS. | DL Contains IDL files.

or bi xhl g. | NCLUDE. | T@MS. | DL Contains IDL files.

or bi xhl g. | NCLUDE. | T@FA | DL Contains IDL files.

or bi xhl g. | NCLUDE. OMG | DL Contains IDL files.

or bi xhl g. | NCLUDE. CRBI X. | DL Contains IDL files.

or bi xhl g. | NCLUDE. CRBI X@XT. | DL Contains IDL files.

or bi xhl g. JOL Contains jobs to run Orbix.

or bi xhl g. LKED Contains side-decks for the DLLs.

465

CHAPTER C | Installed Data Sets

Table 42: List of Installed Data Sets Relevant to COBOL (Sheet 4 of 4)

Data Set Description
or bi xhl g. LPA Contains LPA eligible programs.
or bi xhl g. MFA. LQAD Contains DLLS required for deployment of Orbix
programs in IMS.
or bi xhl g. PROCS Contains JCL procedures.
or bi xhl g. RIN Contains binaries & DLLs.

466

Index

A
abstract interfaces in IDL 160
ADAPTER_ALREADY _INITIALIZED exception 461
address space layout for COBOL batch
application 48

ANYFREE function 334
ANYGET function 336
ANYSET function 338
any type

in IDL 163

mapping to COBOL 224

memory handling for 315
APIs 327
application interfaces, developing 21, 58, 103
ARGS_ALREADY_READ exception 461
ARGS_NOT_READ exception 461
array type

inIDL 172

mapping to COBOL 222
attributes

in IDL 149

mapping to COBOL 241

B
basic types
in IDL 162
mapping to COBOL 188
bitwise operators 179
boolean type, mapping to COBOL 193
built-in types in IDL 162

C
CERRSMFA copybook 54, 100
char type

in IDL 163

mapping to COBOL 198
CHECK-STATUS function 448
CHKCICS copybook 101
CHKCLCIC copybook 101
CHKCLIMS copybook 55
CHKERRS copybook 18
CHKFILE copybook 18

CICWRITE copybook 101
client output, for batch 47
clients
building for batch 42
building for CICS 132
building for IMS 89
introduction to 7
preparing to run in CICS 133
preparing to run in IMS 90
running in batch 46
writing for batch 37
writing for CICS 128
writing for IMS 84
COAERR function 341
COAGET function 346
in batch server implementation 29
in CICS server implementation 116
in IMS server implementation 72
COAPUT function 351
in batch server implementation 29
in CICS server implementation 116
in IMS server implementation 72
COAREQ function 357
in batch server implementation 29
in CICS server implementation 116
in IMS server implementation 72
COARUN function 362
in batch server mainline 34
in CICS server mainline 121
in IMS server mainline 77
COBOL group data definitions 25, 64, 109
COBOL runtime 9, 49, 327
COBOL source
generating for batch 23
generating for CICS 109
generating for IMS 64
COM 4
COMet 4
configuration domains 12
constant definitions in IDL 176
constant expressions in IDL 179
constant fixed types in IDL 166

467

INDEX

copybooks
generating for batch 23
generating for CICS 109
generating for IMS 64
CORBA
introduction to 4
objects 5
CORBA copybook 19, 55, 101
CORBATYP copybook 19, 55, 101

D

data sets installed 463

data types, defining in IDL 175
decimal fractions 166

E

empty interfaces in IDL 151
enum type
in IDL 168
mapping to COBOL 196
ordinal values of 168
exceptions, in IDL 150
See also system exceptions, user exceptions
extended built-in types in IDL 164

F
fixed type
in IDL 165
mapping to COBOL 206
floating point type in IDL 162
forward declaration of interfaces in IDL 157

G
GETUNIQE copybook 55

|
Id Assignment policy 456
identifier names, mapping to COBOL 183
IDL
abstract interfaces 160
arrays 172
attributes 149
built-in types 162
constant definitions 176
constant expressions 179
defining 22, 58, 103
empty interfaces 151

468

enum type 168

exceptions 150

extended built-in types 164

forward declaration of interfaces 157

inheritance redefinition 156

interface inheritance 152

introduction to interfaces 5

local interfaces 158

modules and name scoping 143

multiple inheritance 153

object interface inheritance 155

operations 147

sequence type 173

struct type 169

structure 142

union type 170

valuetypes 159
IDL-to-COBOL mapping

any type 224

array type 222

attributes 241

basic types 188

boolean type 193

char type 198

enum type 196

exception type 226

fixed type 206

identifier names 183

object type 232

octet type 199

operations 236, 246

sequence type 217

string type 200

struct type 210

typedefs 229

type names 187

union type 212

user exception type 226

wide string type 205
Id Uniqueness policy 456
I1OP protocol 4
Implicit Activation policy 456
IMSWRITE copybook 55
inheritance redefinition in IDL 156
INTERFACE_ALREADY_REGISTERED

exception 460

interface inheritance in IDL 152
INTERFACE_NOT_REGISTERED exception 460
interfaces, developing for your application 21, 58,

103
INVALID_SERVER_NAME exception 460
INVALID_STREAMABLE exception 460
IORFD copybook 19
IORSLCT copybook 19

J
JCL components, checking 20, 57, 102

L
Lifespan policy 457
local interfaces in IDL 158
location domains 12
locator daemon
introduction to 13
starting 44
long double type in IDL 165
long long type in IDL 164
LSIMSPCB copybook 55

M
MEMALLOC function 363
MEMFREE function 365
memory handling

any type 315

object references 311

routines for 322

unbounded sequences 303

unbounded strings 307

user exceptions 320
modules and name scoping in IDL 143
MULTIPLE_ID argument 456
multiple inheritance in IDL 153

N
NO_CURRENT_REQUEST exception 461
node daemon

introduction to 13

starting 45
NO_IMPLICIT_ACTIVATION argument 456
NO_OBJECT_IDENTIFIER exception 460

o
OBJDUP function 366
object interface inheritance in IDL 155
object references
introduction to 5

INDEX

memory handling for 311
object request broker. See ORB
objects, defined in CORBA 5
object type, mapping to COBOL 232
OBJGETI deprecated function 451
OBJGETID function 368
OBJNEW function 370

in batch server mainline 33

in CICS server mainline 120

in IMS server mainline 77
OBJREL function 373

in batch client 41

in batch server mainline 34

in CICS client 131

in CICS server mainline 121

in IMS client 87

in IMS server mainline 77
OBJRIR function 375
OBJSET deprecated function 451
OBJTOSTR function 377

in batch server mainline 33
octet type

inIDL 163

mapping to COBOL 199
operations

inIDL 147

mapping to COBOL 236
ORB, role of 7
ORBALLOC deprecated function 451
ORBARGS function 379

in batch client 40

in batch server mainline 33

in CICS client 131

in CICS server mainline 120

in IMS client 87

in IMS server mainline 76
ORBEXEC function 382

in batch client 40

in CICS client 131

in IMS client 87
ORBFREE deprecated function 451
ORBGET deprecated function 451
ORBHOST function 388
ORBINIT deprecated function 451
Orbix COBOL runtime 9, 49, 327
Orbix IDL compiler

configuration settings 289

introduction to 23, 61, 106

-M argument 274

469

INDEX

-0 argument 281

-Q argument 283

running 260

-S argument 284

specifying arguments for 271

-Z argument 288
Orbix locator daemon. See locator daemon
Orbix node daemon. See node daemon
ORBPUT deprecated function 451
ORBREG function 390

in batch client 40

in batch server mainline 33

in CICS client 131

in CICS server mainline 120

in IMS client 87

in IMS server mainline 77
ORBREGO deprecated function 452
ORBREQ deprecated function 452
ORBSRVR function 393

in batch server mainline 33

in CICS server mainline 120

in IMS server mainline 77
ORBSTAT function 394

in batch client 40

in batch server mainline 33

in CICS client 130

in CICS server mainline 120

in IMS client 86

in IMS server mainline 76
ORBTIME function 398

P

PERSISTENT argument 457
plug-ins, introduction to 10
PROCPARM copybook 19

R

Request Processing policy 457
RETAIN argument 458

S
SEQALLOC function 400
SEQDUP function 404
SEQFREE function 409
SEQGET function 412
SEQSET function 415
sequence type

inIDL 173

470

mapping to COBOL 217
See also memory handling
Servant Retention policy 458

SERVER_NAME_ALREADY_SET exception 461

SERVER_NAME_NOT_SET exception 461
server output, for batch 47
servers
building for batch 35
building for CICS 122
building for IMS 78
introduction to 7
preparing to run in CICS 123
preparing to run in IMS 79
running in batch 46
writing batch implementation code for 27
writing batch mainline code for 30
writing CICS implementation code for 114
writing CICS mainline code for 118
writing IMS implementation code for 69
writing IMS mainline code for 74
SIMPLIDL JCL 262
example for CICS 106
example for IMS 61
SINGLE_THREAD_MODEL argument 458
SSL 10
STAT_ALREADY_CALLED exception 461
STRFREE function 420
STRGET function 422
in batch server implementation 29
in CICS server implementation 116
in IMS server implementation 72
string type
inIDL 163
mapping to COBOL 200
See also memory handling
STRLEN function 425
STRSET function 427
in batch client 40
in CICS client 131
in IMS client 87
STRSETP function 430
STRSETSP deprecated function 452
STRTOOBJ function 432
in batch client 40
in CICS client 131
in IMS client 87
struct type
in IDL 169
mapping to COBOL 210

T
Thread policy 458

typedefs, mapping to COBOL 229
TYPEGET function 438

type names, mapping to COBOL 187
TYPESET function 440
TYPESET_NOT_CALLED exception 461

U

unbounded sequences, memory handling for 303
unbounded strings, memory handling for 307
UNEXPECTED_INVOCATION exception 460
union type

in IDL 170

mapping to COBOL 212
UNKNOWN exception 459
UNKNOWN_OPERATION exception 460
UNKNOWN_TYPECODE exception 460
UPDTPCBS copybook 55
USE_ACTIVE_OBJECT_MAP_ONLY argument 457
user exceptions

mapping to COBOL 226

memory handling for 320
USER_ID argument 456

\"
valuetypes in IDL 159

w

wchar type in IDL 165

wide string type, mapping to COBOL 205
WSCICSCL copybook 101
WSCICSSV copybook 101
WSIMSCL copybook 56
WSIMSPCB copybook 56
WSTRFREE function 443
WSTRGET function 205, 444
wstring type in IDL 165

WSTRLEN function 445
WSTRSET function 205, 446
WSTRSETP function 447
WSURLSTR copybook 19, 56, 101

INDEX

471

INDEX

472

	List of Figures
	List of Tables
	Preface
	Programmer’s Guide
	Introduction to Orbix
	Why CORBA?
	CORBA Objects
	Object Request Broker

	CORBA Application Basics
	Orbix Plug-In Design
	Orbix Application Deployment
	Location Domains
	Configuration Domains

	Getting Started in Batch
	Overview and Setup Requirements
	Developing the Application Interfaces
	Defining IDL Interfaces
	Generating COBOL Source and Copybooks

	Developing the Server
	Writing the Server Implementation
	Writing the Server Mainline
	Building the Server

	Developing the Client
	Writing the Client
	Building the Client

	Running the Application
	Starting the Orbix Locator Daemon
	Starting the Orbix Node Daemon
	Running the Server and Client
	Application Output

	Application Address Space Layout

	Getting Started in IMS
	Overview
	Developing the Application Interfaces
	Defining IDL Interfaces
	Orbix IDL Compiler
	Generated COBOL Copybooks, Source, and Mapping Member

	Developing the IMS Server
	Writing the Server Implementation
	Writing the Server Mainline
	Building the Server
	Preparing the Server to Run in IMS

	Developing the IMS Client
	Writing the Client
	Building the Client
	Preparing the Client to Run in IMS

	Running the Demonstrations
	Running Batch Client against IMS Server
	Running IMS Client against Batch Server

	Getting Started in CICS
	Overview
	Developing the Application Interfaces
	Defining IDL Interfaces
	Orbix IDL Compiler
	Generated COBOL Copybooks, Source, and Mapping Member

	Developing the CICS Server
	Writing the Server Implementation
	Writing the Server Mainline
	Building the Server
	Preparing the Server to Run in CICS

	Developing the CICS Client
	Writing the Client
	Building the Client
	Preparing the Client to Run in CICS

	Running the Demonstrations
	Running Batch Client against CICS Server
	Running CICS Client against Batch Server

	IDL Interfaces
	IDL
	Modules and Name Scoping
	Interfaces
	Interface Contents
	Operations
	Attributes
	Exceptions
	Empty Interfaces
	Inheritance of Interfaces
	Multiple Inheritance
	Inheritance of the Object Interface
	Inheritance Redefinition
	Forward Declaration of IDL Interfaces
	Local Interfaces
	Valuetypes
	Abstract Interfaces

	IDL Data Types
	Built-in Data Types
	Extended Built-in Data Types
	Complex Data Types
	Enum Data Type
	Struct Data Type
	Union Data Type
	Arrays
	Sequence
	Pseudo Object Types

	Defining Data Types
	Constants
	Constant Expressions

	IDL-to-COBOL Mapping
	Mapping for Identifier Names
	Mapping for Type Names
	Mapping for Basic Types
	Mapping for Boolean Type
	Mapping for Enum Type
	Mapping for Char Type
	Mapping for Octet Type
	Mapping for String Types
	Mapping for Wide String Types
	Mapping for Fixed Type
	Mapping for Struct Type
	Mapping for Union Type
	Mapping for Sequence Types
	Mapping for Array Type
	Mapping for the Any Type
	Mapping for User Exception Type
	Mapping for Typedefs
	Mapping for the Object Type
	Mapping for Constant Types
	Mapping for Operations
	Mapping for Attributes
	Mapping for Operations with a Void Return Type and No Parameters
	Mapping for Inherited Interfaces
	Mapping for Multiple Interfaces

	Orbix IDL Compiler
	Running the Orbix IDL Compiler
	Running the Orbix IDL Compiler in Batch
	Running the Orbix IDL Compiler in UNIX System Services

	Generated COBOL Source and Copybooks
	Orbix IDL Compiler Arguments
	Summary of the Arguments
	Specifying Compiler Arguments
	-D Argument
	-M Argument
	-O Argument
	-Q Argument
	-S Argument
	-T Argument
	-Z Argument

	Orbix IDL Compiler Configuration
	COBOL Configuration Variables
	Adapter Mapping Member Configuration Variables
	Providing Arguments to the IDL Compiler

	Memory Handling
	Operation Parameters
	Unbounded Sequences and Memory Management
	Unbounded Strings and Memory Management
	Object References and Memory Management
	The any Type and Memory Management
	User Exceptions and Memory Management

	Memory Management Routines

	Programmer’s Reference
	API Reference
	API Reference Summary
	API Reference Details
	ANYFREE
	ANYGET
	ANYSET
	COAERR
	COAGET
	COAPUT
	COAREQ
	COARUN
	MEMALLOC
	MEMFREE
	OBJDUP
	OBJGETID
	OBJNEW
	OBJREL
	OBJRIR
	OBJTOSTR
	ORBARGS
	ORBEXEC
	ORBHOST
	ORBREG
	ORBSRVR
	ORBSTAT
	ORBTIME
	SEQALLOC
	SEQDUP
	SEQFREE
	SEQGET
	SEQSET
	STRFREE
	STRGET
	STRLEN
	STRSET
	STRSETP
	STRTOOBJ
	TYPEGET
	TYPESET
	WSTRFREE
	WSTRGET
	WSTRLEN
	WSTRSET
	WSTRSETP
	CHECK-STATUS

	Deprecated APIs

	Appendices
	POA Policies
	System Exceptions
	Installed Data Sets

	Index

