IONA

fgl Orbix®

First Northern Bank Demo
Mainframe Guide

Version 6.0, November 2003

Making Software Work Together™

IONA, IONA Technologies, the IONA logo, Orbix, Orbix/E, Orbacus, Artix, Orchestrator,
Mobile Orchestrator, Enterprise Integrator, Adaptive Runtime Technology, Transparent
Enterprise Deployment, and Total Business Integration are trademarks or registered
trademarks of IONA Technologies PLC and/or its subsidiaries.

Java and J2EE are trademarks or registered trademarks of Sun Microsystems, Inc. in the
United States and other countries.

CORBA is a trademark or registered trademark of the Object Management Group, Inc. in
the United States and other countries. All other trademarks that appear herein are the
property of their respective owners.

While the information in this publication is believed to be accurate, IONA Technologies PLC makes no warranty
of any kind to this material including, but not limited to, the implied warranties of merchantability and fitness for
a particular purpose. IONA Technologies PLC shall not be liable for errors contained herein, or for incidental or
consequential damages in connection with the furnishing, performance or use of this material.

COPYRIGHT NOTICE

No part of this publication may be reproduced, stored in a retrigval system or transmitted, in any form or by any
means, photocopying, recording or otherwise, without prior written consent of IONA Technologies PLC. No third
party intellectual property right liability is assumed with respect to the use of the information contained herein.
IONA Technologies PLC assumes no responsibility for errors or omissions contained in this book. This publica-
tion and features described herein are subject to change without notice.

Copyright © 2002, 2003 IONA Technologies PLC. All rights reserved.

All products or services mentioned in this manual are covered by the trademarks, service marks, or product
names as designated by the companies who market those products.

Updated: 15-Dec-2003

M3170

Contents

Preface

Chapter 1 Introduction

First Northern Bank Architecture

CORBA Banking Application

J2EE Internet Banking Application

Web Services Credit Card Validation Application

Chapter 2 Developing the FNB COBOL Back-End Server

Introduction

Purpose and Design

Location of Supplied Elements
Developing the Application Interfaces

Defining IDL Interfaces

Orbix IDL Compiler

Generated Source Code and Copybooks
Writing the Server

Writing the Server Implementation

Writing the Server Mainline
Building the Server

Chapter 3 Running the FNB COBOL Back-End Server

Prerequisites
Creating the VSAM data sets
Starting the Orbix Locator Daemon
Starting the Orbix Node Daemon
Starting the Naming Service

Starting the Server

After Starting the Server

coohDNDH-

11

14
18
21
22
28
34
37
38
62
75

77
78
79
80
81
82
83
84

CONTENTS

Audience

Preface

Orbix provides a demonstration called First Northern Bank (FNB) that
integrates CORBA, J2EE, and Web services components. This guide is
intended for use when running the FNB demonstration with the FNB COBOL
back-end server supplied with Orbix Mainframe. It provides an introductory
overview of the entire FNB demonstration in terms of the technologies it
supports, but focuses specifically on the development and running of the
FNB COBOL back-end server.

This document is intended as an addendum or complement to the core FNB
documentation set that is supplied with Orbix. For full details of the
development and management of the front-end and middle-tier components
of the FNB demonstration, see the core FNB documentation set at

htt p: // waw. i ona. cond suppor t/docs/ orbi x/6.1/tutorials. xm .

If you need help with this or any other IONA products, contact IONA at
support @ona. com Comments on IONA documentation can be sent to
docs- support @ona. com

Chapter 1 is intended for anyone who wants to familiarize with the overall
architecture of the FNB demonstration.

Chapters 2 and 3 are intended for COBOL application programmers who
want to develop and run CORBA applications on 0S/390. The prerequisites
are a good knowledge of COBOL and familiarity with basic CORBA
concepts. See the Mainframe Concepts Guide for more details of basic
CORBA concepts.

mailto:support@iona.com
mailto:docs-support@iona.com
http://www.iona.com/support/docs/e2a/asp/6.0/tutorials.xml

PREFACE

Organization of this guide

Related documentation

Additional resources

vi

This guide is divided as follows:

Chapter 1, Introduction

This chapter introduces the overall FNB demonstration architecture, and its
CORBA, J2EE, and Web services components.

Chapter 2, “Developing the FNB COBOL Back-End Server”

This chapter discusses the design and implementation of the COBOL
back-end server component of the FNB demonstration. The server is
implemented in COBOL and runs in batch on 0S/390.

Chapter 3, Running the FNB COBOL Back-End Server

This chapter describes how to start the COBOL back-end server component
of the FNB demonstration.

The following Orbix documentation provides details of the development and
management of the front-end and middle-tier components of the FNB
demonstration:

® First Northern Bank Tutorial

® First Northern Bank Developer’s Introduction

These documents can be found at ht t p: // wwy i ona. cond suppor t/ docs/
orbix/6.1/tutorials.xm .

The COBOL Programmer’s Guide and Reference supplied with Orbix
Mainframe complements this guide by providing more details of CORBA
application development in COBOL on 0S/390.

The latest updates to all Orbix Mainframe documentation can be found at
http://ww. i ona. com suppor t/ docs/ or bi x/ nai nf rarme/ 6. 0/ i ndex. xm .

The IONA knowledge base contains helpful articles, written by IONA
experts, about the Orbix and other products. You can access the knowledge
base at the following location:

http://ww i ona. cond support/ kb/

The IONA update center contains the latest releases and patches for IONA
products:

ht t p: // waw. i ona. cond suppor t / updat e/

http://www.iona.com/support/kb/
http://www.iona.com/support/update/
http://www.iona.com/support/docs/e2a/asp/5.1/mainframe/index.xml
http://www.iona.com/support/docs/e2a/asp/6.0/tutorials.xml
http://www.iona.com/support/docs/e2a/asp/6.0/tutorials.xml

Typographical conventions

Keying conventions

PREFACE

This guide uses the following typographical conventions:

Constant wi dt h Constant width (courier font) in normal text represents
portions of code and literal names of items such as
classes, functions, variables, and data structures. For
example, text might refer to the OORBA: : (j ect class.

Constant width paragraphs represent code examples
or information a system displays on the screen. For
example:

#i ncl ude <stdio. h>

Italic Italic words in normal text represent emphasis and
new terms.

Italic words or characters in code and commands
represent variable values you must supply, such as
arguments to commands or path names for your
particular system. For example:

% cd /users/your_name

Note: Some command examples may use angle
brackets to represent variable values you must supply.
This is an older convention that is replaced with jtalic
words or characters.

This guide may use the following keying conventions:

No prompt When a command’s format is the same for multiple
platforms, a prompt is not used.

% A percent sign represents the UNIX command shell
prompt for a command that does not require root
privileges.

A number sign represents the UNIX command shell

prompt for a command that requires root privileges.

> The notation > represents the DOS, Windows NT,
Windows 95, or Windows 98 command prompt.

Horizontal or vertical ellipses in format and syntax
descriptions indicate that material has been
eliminated to simplify a discussion.

vii

PREFACE

viii

{}

Brackets enclose optional items in format and syntax
descriptions.

Braces enclose a list from which you must choose an
item in format and syntax descriptions.

A vertical bar separates items in a list of choices
enclosed in { } (braces) in format and syntax
descriptions.

In this chapter

Introduction

CHAPTER 1

Orbix provides a demonstration called First Northern Bank
(FNB) that integrates CORBA, J2EE, and Web services
components. This guide is intended for use when running the
FNB demonstration with the FNB COBOL back-end server that
is supplied with Orbix Mainframe. This chapter introduces the
overall FNB demonstration architecture, and its CORBA, J2EE,

and Web services components.

This chapter discusses the following topics:

First Northern Bank Architecture page 2
CORBA Banking Application page 4
J2EE Internet Banking Application page 6
Web Services Credit Card Validation Application page 8

CHAPTER 1 | Introduction

First Northern Bank Architecture

Overview This section describes the high-level architecture of the new FNB system,

and gives a brief overview of its components. It includes the following
topics:

® “FNB architecture”.

® “CORBA banking”.

¢ “J2EE internet banking”.

® “Web services credit card validation”.

FNB architecture Figure 1 shows the overall FNB demonstration system architecture.

Web Teller GU| Middle Tier Server
Services Client (CORBA/Java) (CORBAfJava)

i

Mainframe Back Tier
Web Browser (CORBASCOBOL)
Client (JSP)

Figure 1: FNB System Architecture

The main components in Figure 1 are as follows:
1. CORBA core banking.
2. J2EE Internet banking.

CORBA banking

J2EE internet banking

Web services credit card
validation

First Northern Bank Architecture

3. Web services credit card validation.

The CORBA banking application provides the core banking services that the
bank offers to its customers. For example, opening an account, making a
deposit, or making a withdrawal.

The CORBA banking application is implemented as a three-tier system,
which consists of the following components:

® Bank teller client GUI (Graphical User Interface) on Windows.

® Middle-tier Java server on Windows or UNIX.

® Back-tier COBOL server on 0S/390.

All network communication is sent using the Internet Inter-ORB Protocol
(OP).

The J2EE application provides customers with Internet banking services. It
provides Web browser access to customer accounts (for example, viewing
an account balance, or paying a bill online).

The J2EE Internet banking application is implemented using Enterprise Java
Beans (EJBs) and Java Server Pages (JSPs), which run in the Orbix
Application Server. This in turn connects to the back-tier CORBA server on
08/390.

Network communications between the application server and the browser
client are sent using the Hypertext Transfer Protocol (HTTP). Those between
the application server and the back-tier 0S/390 server are sent using I110P.

The Web services application provides online credit card validation and
payment services for customers. Figure 1 shows a Web services client
application that invokes on the Web service running in the application
server. This client could be implemented in several programming languages
(for example, Java, C#, or Visual Basic).

Like the CORBA and J2EE systems, the Web services application is also a
three-tier system. Network communications between the Web service and
client are sent using the Simple Object Access Protocol (SOAP) over HTTP.

CHAPTER 1 | Introduction

CORBA Banking Application

Overview This section describes the CORBA core banking application in more detail. It
includes the following topics:

® “CORBA bank architecture”.
®* “Bank teller GUI client”.

® “Middle-tier CORBA server”.
® “Back-tier CORBA server”.

CORBA bank architecture Figure 2 shows the architecture of the three-tier CORBA banking
application.

Middle Tier Server Mainframe Back Tier
(CORBA fJava) (CORBA/COBOL)

Teller GUI
[CORBA/Java)

=] ‘,-' Account Manager
. 3 + . Session +*
¥ — - Manager S e .
-" b =

Accounts

@ sessior CEC)

e

Database
B

DB

Figure 2: FNB Bank Application

The main components in Figure 2 are as follows:

® Front-tier client used by bank teller (Java GUI).

® Middle-tier business architecture (CORBA Java server).

® Back-tier mainframe system (CORBA COBOL server) using VSAM files.

Bank teller GUI client

Middle-tier CORBA server

Back-tier CORBA server

CORBA Banking Application

The bank teller GUI enables tellers to open and close accounts, and to make
withdrawal and lodgements to accounts. The bank teller GUI is
implemented as a Java Swing client application.

The middle-tier CORBA Java server manages business sessions between the
client and the back-tier server.

The middle-tier server implements a Bussi nesSessi onManager factory
object, which creates session objects to manage interaction with the client
(for example, Tel | er Sessi on and Busi nessSessi on objects).

The middle-tier CORBA server is also known as the FNB Business
Architecture (FNBBA).

The back-tier CORBA server on the mainframe is responsible for managing
customer accounts. This is implemented as the COBOL FNB server. The
back-end server is automatically deployed on 0S/390 when you install Orbix
Mainframe.

The FNB server implements an Account Myr factory object, which creates
Account objects (for example, O edi t Car dAccount and Qur r ent Account
objects). These objects represent all customer account information (for
example, customer name, address, and account number).

The Account objects are stored in VSAM data sets on 0S/390. Four VSAM

data sets are used, to store the following data:

® Account data—this includes an alternative index, to allow for
referencing data by account number or account type.

® Transaction history.

® last used account number.

® Last used transaction history key (for each account).

Note: For details on development and building of the COBOL back-end
server, see “Developing the FNB COBOL Back-End Server” on page 11.

CHAPTER 1 | Introduction

J2EE Internet Banking Application

Overview

Internet banking architecture

This section describes the J2EE Internet banking application and its
components in more detail. It includes the following topics:

® ‘“Internet banking architecture”.
® “Web browser client”.

® “J2EE application server”.

® “Cloudscape database”.

® “Back-tier CORBA server”.

Figure 3 shows the architecture of the three-tier J2EE Internet banking
application.

EJB App Server Mainframe Back Tier

{CORBA/SCOBOL)
Web Browser
Client -
oo = Internet Account | EEEEETSS
_— _HTTR % Session Bean | IS Account Manager

Accounts

wmw.Inb.cam

i Uy

User Entity
Bean

;

~ Database Database
i ol <l
Cloudscape DE DB

Figure 3: FNB Internet Banking Application

The main components in Figure 3 are as follows:

Web browser client

J2EE application server

Cloudscape database

Back-tier CORBA server

J2EE Internet Banking Application

® Web browser client on Windows.

® Middle-tier J2EE application server on Windows or UNIX.

® Cloudscape database.

® Back-tier CORBA COBOL server on 0S/390 using VSAM files.

A standard Web browser provides Internet banking services to customers.
Users must first register, and create a user ID and password, before logging
on. Internet banking services include viewing an account balance and
paying a bill online.

Network communications between the Web browser and the application
server are sent using HTTP.

An Orbix J2EE application server provides the middle-tier J2EE
infrastructure. It runs the Java Server Pages (JSPs) that serve up the Internet
banking Web pages in the browser. The application server also runs the
Enterprise Java Beans (EJBs) that communicate with the Cloudscape
database and the back-tier CORBA server on 0S/390.

For example, the User entity bean handles the customer information stored
in the database; while the Internet account session bean (i net Account)
handles browser sessions with the back-tier server.

A Cloudscape database stores customer information that is used to access
customer accounts online (for example, the user ID and password
associated with each customer account).

Communications between the application server and the back-tier server are
sent using [IOP. See “CORBA Banking Application” on page 4 for more
information about the back-tier CORBA server.

Note: For details on development and building of the COBOL back-end
server, see “Developing the FNB COBOL Back-End Server” on page 11.

CHAPTER 1 | Introduction

Web Services Credit Card Validation
Application

Overview This section describes the Web services credit card application and its
components in more detail. It includes the following topics:
® “Credit card validation architecture”.
® “J2EE application server”.
® “J2EE application server”.
® “Orbix XMLBus".
® “Back-tier CORBA server”.

Credit card validation architecture Figure 4 shows the architecture of the three-tier credit card validation
application.

C# Web
Services Cllent

FNETL

wewRLin boom

Mainframe Back Tier
E-IE fAppRarier (CORBA/COBOL)

Account Manager

4
* ®
EMLBus

Credit Card Accounts
Valldation

Bean o O

Makile Phone

[

Figure 4: FNB Credit Card Validation Application

Web services clients

J2EE application server

Orbix XMLBus

Back-tier CORBA server

Web Services Credit Card Validation Application

The main components in Figure 4 are as follows:

® Web services clients on Windows.

® Middle-tier J2EE application server on Windows or UNIX.
® Orbix XMLBus.

® Back-tier CORBA COBOL server.

The Web services client applications provide online facilities for credit card
validation and confirmation of purchase.

Figure 4 shows a variety of client applications. Because this is a Web
service, the client could be written in several programming languages (for
example, C#, Java, or Visual Basic). This tutorial demonstrates how to use
a Web services test client that is provided by Orbix XMLBus, IONA’s Web
services environment.

The middle-tier Orbix application server runs the Orbix XMLBus Web
services environment, and the Val i dat eCr edi t Car d session bean, shown in
Figure 4. The application server communicates with the Web services client
using SOAP and HTTP.

See “J2EE Internet Banking Application” on page 6 for more information
about the application server.

Orbix XMLBus is IONA’s Web services environment. In the First Northern
Bank demonstration, the XMLBus version supplied with the Orbix
Application Server Platform runs in an Orbix Application Server. The
application server forwards the HTTP request to the XMLBus Container,
which decodes and handles the incoming SOAP message.

You can also run Orbix XMLBus in other application server environments (for
example, IBM WebSphere, BEA WebLogic, and Apache Tomcat).

Communication between the application server and the back-tier server is
sent using [IOP. See “CORBA Banking Application” on page 4 for more
information about the back-tier CORBA server.

Note: For details on development and building of the COBOL back-end
server, see “Developing the FNB COBOL Back-End Server” on page 11.

CHAPTER 1 | Introduction

10

In this chapter

CHAPTER 2

Developing the
FNB COBOL
Back-End Server

This chapter discusses the design and implementation of the
COBOL back-end server component of the First Northern Bank
(FNB) demonstration. The server is implemented in COBOL
and runs in batch on 0S/390.

This chapter discusses the following topics:

Introduction page 13
Developing the Application Interfaces page 21
Writing the Server page 37
Building the Server page 75

11

CHAPTER 2 | Developing the FNB COBOL Back-End Server

12

Note: For more details about CORBA application development in COBOL
on 0S/390 see the COBOL Programmer’s Guide and Reference. For more
details of the development of the front-end and middle-tier components of
the FNB demonstration see the First Northern Bank Developer’s
Introduction supplied on the Orbix Documentation CD, or online at:
http://www.iona.com/support/docs/orbix/6.1/tutorials.xml.

http://www.iona.com/support/docs/e2a/asp/5.1/tutorials.xml

Introduction

Introduction

Overview This section introduces the COBOL back-end server component of the FNB
demonstration in terms of its purpose and design. It also outlines where you
can find the various source code and JCL elements for it.

In this section This section discusses the following topics:
Purpose and Design page 14
Location of Supplied Elements page 18

13

CHAPTER 2 | Developing the FNB COBOL Back-End Server

Purpose and Design

Overview

Purpose

14

This subsection provides an overview of the purpose and design of the
COBOL back-end server component of the FNB demonstration. It discusses
the following topics:

“Purpose” on page 14.

“CORBA object types” on page 15.
“AccountMgr object” on page 15.
“Account objects” on page 15.
“CurrentAccount objects” on page 16.
“CreditCardAccount objects” on page 16.

The purpose of the back-end server is to provide the basic business objects
for the bank application—in this demonstration, Account objects. It accepts
and processes requests from the middle-tier FNB Business Architecture
across the network.

The back-end server has the following general characteristics:

Provides close integration with persistent storage—the CORBA
back-end server consists of a wrapper around a database that stores
the business data.

Provides an implementation of Account CORBA objects—the account
data thus becomes accessible to other distributed applications.
Ignores presentation requirements—the back-end server is not
concerned with the way in which clients access and use the Account
objects. This is left to other parts of the distributed application.

CORBA object types

AccountMgr object

Account objects

Introduction

Figure 5 shows the inheritance hierarchy for the object types implemented
in the COBOL back-end server. There is a corresponding interface of the
same name defined for each of the object types shown (see “Developing the
Application Interfaces” on page 21 for more details).

Account Myr
Account
Current Account Savi ngsAccount Cr edi t Car dAccount

Figure 5: Inheritance Hierarchy for Account Object Types

Note: This version of the FNB COBOL back-end server does not
implement the Savi ngsAccount objects.

A single Account Myr factory object is created, based on the Account Myr
interface. A factory object is an object that creates instances of other object
types. The Account Myr factory object is used to manage and provide access
to the Account objects. The Account Myr factory object is needed to:
® Create new Account objects.
® Find existing Account objects—two alternative search methods are
supported:
¢ Lookup by account number.

. Listing all accounts of a particular type.

As shown in Figure 5 on page 15, the Account interface is (in CORBA
terms) an abstract base interface from which other, concrete interfaces
derive. An abstract base interface is not used directly to implement CORBA
objects. Instead, the interfaces that derive from the base interface inherit all

15

CHAPTER 2 | Developing the FNB COBOL Back-End Server

CurrentAccount objects

CreditCardAccount objects

16

the elements of it. Therefore, an object that implements a derived interface
can accept invocations on any of the elements of the derived interface and
the base interface.

A number of attributes are defined on the base Account interface:

® Account number.

® Owner details (name and address).

® Alist of recent transactions.

Methods are also defined on the base Account interface, as follows:
® Deposit and withdraw cash.

® Transfer money in or out of the account.

Any Qurrent Account object is based on the Qurrent Account interface. The
following attribute is defined on the Qurrent Account interface:

® Current overdraft limit.
The following method is also defined:
® Request approval for a new overdraft limit.

Because the current Account interface derives from the Account interface,
any Qurrent Account object can accept invocations on all the attributes and
methods of both the Qurrent Account and Account interface.

Any O edi t Car dAccount object is based on the O edi t Car dAccount
interface. The following attributes are defined on the O edi t Car dAccount
interface:

® Credit limit.

® Interest rate on overdue payments.

The following methods are also defined:

® Authorize an amount of money to be spent.

® Make a purchase, based on an authorization code.

® (Calculate the interest due on late payments.

Because the Oredi t Car dAccount interface derives from the Account
interface, any Oredi t Car dAccount object can accept invocations on all the

attributes and methods of both the O edi t Car dAccount and Account
interface.

COBOL and interface inheritance

Introduction

COBOL for 0S/390 does not support the concept of IDL interface
inheritance. To cater for this, and to avoid having to duplicate code in the
implementation of all methods that are inherited from the base Account
interface, the FNB COBOL server implementation implements each base
interface method only once, and has the derived interface methods calling
the implemented base methods by means of PERFCRMstatements.

This should not be seen as a standard or even recommended way of
overcoming interface inheritance restrictions within COBOL, but it is one
possible tradeoff between theory and common sense design in a language
that does not support interface inheritance on 0S/390.

This approach to implementing the FNB server, however, works only under
the premise that the base Account methods should not be called directly by
the client. For this reason, the implementation code for any base method
does not include direct calls to COAGET or COAPUT. See “Writing the Server
Implementation” on page 38 for more details. See the preface of the COBOL
Programmer’s Guide and Reference for details of supported compilers.

17

CHAPTER 2 | Developing the FNB COBOL Back-End Server

Location of Supplied Elements

Overview

All the source code and JCL components needed to create and run the

COBOL back-end server for the FNB demonstration have been provided with
your Orbix Mainframe installation. This subsection provides an overview of
these components. It discusses the following topics:

® “Location of supplied code and JCL" on page 18.

® “lLocation of supplied copybooks” on page 19.

Location of supplied code and JCL

Table 1 provides a summary of the supplied code elements and JCL

components that are relevant to the FNB COBOL demonstration (where
or bi xhl g represents your installation’s high-level qualifier). Apart from
site-specific changes to some JCL, these do not require editing.

Table 1:

Supplied Code and JCL (Sheet 1 of 2)

Location

Description

or bi xhl q. DEM3S. | DL(FNB)

This is the supplied IDL for the FNB server.

or bi xhl . DEMCS. | DL(DATADEFS)

This is supplied IDL that defines some basic data
types used by the FNB server.

or bi xhl q. DEMCS. GCBCL. SRQ(FNBSV)

This is the source code for the FNB server mainline
module.

or bi xhl q. DEM3S. CCBQL. SR FNBS)

This is the source code for the FNB server
implementation module.

or bi xhl q. JOL(LOCATCR)

This JCL runs the Orbix locator daemon.

or bi xhl q. JCL(NCDEDAEM)

This JCL runs the Orbix node daemon.

or bi xhl g. JOL(NAM NG

This JCL runs the Orbix naming service.

or bi xhl q. DEM3S. GCBCL. BLD. JCL(FNBI DL)

This JCL runs the Orbix IDL compiler, to generate
COBOL copybooks for the FNB server. The -Sand -z
compiler arguments, which generate server mainline
and server implementation code respectively, are
disabled by default in this JCL.

18

Introduction

Table 1: Supplied Code and JCL (Sheet 2 of 2)

Location Description

or bi xhl g. DEMDS. GCBQL. BLD. JOL(NAMESI DL) This JCL runs the Orbix IDL compiler, to generate
COBOL copybooks for the IDL operations defined in
the or bi xhl g. | NCLUDE. OMG | DL(GOSNaM) IDL
member for the Naming Service.

or bi xhl q. DEMD5. GOBCL. BLD. JCL(FNBSB) This JCL compiles and links the batch server mainline
and batch server implementation modules.

or bi xhl g. DEMOS. CCBCL. BLD. JOL(FNBVSAWP) This JCL generates offline prints of the VSAM data
sets used by the FNB demonstration. This is not
necessary for running the FNB demonstration. You
can submit this JCL if you want to print the contents
of the VSAM files.

Note: This job yields a return code of 12 if the FNB
server is active. This is expected behavior, because
the server should not be active while running this job.

or bi xhl g. DEMOS. GCBOL. RUN JOL(FNBSV) This JCL runs the server.

Location of supplied copybooks Table 2 provides a summary in alphabetic order of the various copybooks
supplied with your Orbix Mainframe installation that are relevant to this
batch server demonstration. Again, or bi xhl g represents your installation’s
high-level qualifier.

Table 2: Supplied Copybooks (Sheet 1 of 2)

Location Description

or bi xhl g. | NCLUDE. OCOPYLI B(OHKERRS) This contains a COBOL paragraph that can be called
to check if a system exception has occurred, and to
report that system exception.

or bi xhl g. | NCLUDE. OCPYLI B(GKFI LE) This is used for file handling error checking.

or bi xhl g. | NCLUDE. CCPYLI B(CCRBA) This contains various Orbix COBOL definitions, such
as REQUEST- | NFO used by the CoarREQfunction, and
CRBI X- STATUS- | NFCRVATI ON which is used to register
and report system exceptions raised by the COBOL
runtime.

19

CHAPTER 2 | Developing the FNB COBOL Back-End Server

Table 2:

Supplied Copybooks (Sheet 2 of 2)

Location

Description

or bi xhl q. | NCLUDE. OCPYLI B{ GORBATYP)

This contains the COBOL typecode representation for
IDL basic types.

or bi xhl g. I NCLUDE. OCPYLI B(FNBACCNO

This is specific to the FNB demonstration. It defines
the layout of the account number records used in this
demonstration.

or bi xhl g. | NCLUDE. OCPYLI B(FNBRECS)

This is specific to the FNB demonstration. It defines

the layout of the account records, transaction account
history records, and transaction number records used
in this demonstration.

or bi xhl g. | NCLUDE. OCPYLI B(| ORFD)

This contains the COBOL FD statement entry for file
processing, for use with the GCPY. REPLAQ NG
statement.

or bi xhl g. | NCLUDE. GCPYLI B(| CRSLCT)

This contains the COBOL SELECT statement entry for
file processing, for use with the GCPY..REPLAC NG
statement.

or bi xhl g. | NCLUDE. OCPYLI B(PROCPARV)

This contains the appropriate definitions for a COBOL
program to accept parameters from the JCL for use
with the GRBARGS API (that is, the argunent -string
parameter).

or bi xhl q. DEMOS. CCBCL. GCPYLI B

This PDS is used to store all batch copybooks
generated when you run the JCL to run the Orbix IDL
compiler for the supplied demonstrations. It also
contains copybooks with Working Storage data
definitions and Procedure Division paragraphs for use
with the bank, naming, and nested sequences
demonstrations.

Checking JCL components

When creating the FNB COBOL back-end application, check that each step

involved within the separate JCL components completes with a condition
code of zero. If the condition codes are not zero, establish the point and
cause of failure. The most likely cause is the site-specific JCL changes
required for the compilers. Ensure that each high-level qualifier throughout
the JCL reflects your installation.

20

Developing the Application Interfaces

Developing the Application Interfaces

Overview

In this section

This section describes how to develop the interfaces to the objects that are
to be implemented in the FNB server. It first describes the IDL interfaces on
which the FNB objects are based. It then describes how to generate COBOL
source and copybooks from these IDL interfaces, and provides a description
of the various members generated.

This section discusses the following topics:

Defining IDL Interfaces page 22
Orbix IDL Compiler page 28
Generated Source Code and Copybooks page 34

21

CHAPTER 2 | Developing the FNB COBOL Back-End Server

Defining IDL Interfaces

Overview

OMG IDL

Data definitions IDL

22

The first step in writing any Orbix application is to define the IDL interfaces
for the objects required in your system. This section provides a very brief
overview of IDL and its advantages before then showing and describing the
IDL definitions for the objects implemented by the FNB COBOL back-end
server. It discusses the following topics:

® “OMG IDL" on page 22.

® “Data definitions IDL” on page 22.

® “FNB IDL" on page 24.

Note: The IDL interfaces are already supplied for you, in the

or bi xhl g. DEMDS. | DL PDS, so this subsection is provided for the purposes
of illustration.

The OMG interface definition language (IDL) is a purely declarative

language, with a syntax similar to C++ and Java, that is used to define the
interfaces for CORBA objects.

The advantage of OMG IDL is that it enables you to define distributed
interfaces in a language-neutral manner.

A server developer can use IDL to define the service provided to clients,
irrespective of the language or platform used on the server side. Conversely,
a client programmer can use IDL as a blueprint for accessing the service,
irrespective of the language or platform used on the client side.

For more details about IDL in general see the COBOL Programmer’s Guide
and Reference.

Example 1 shows the data definitions IDL member. This IDL member is
contained in or bi xhl g. DEMDS. | DL(DATADEFS) and defines some basic data
types used in other parts of the IDL.

Example 1: Data Definitions IDL Member
/1l 1D

#i f ndef DATADEFS | DL
#def i ne DATADEFS | DL

Developing the Application Interfaces

Example 1: Data Definitions IDL Member

2 typedef |ong account Num
3 typedef sequence<account Num> account Nunii st;

#endi f // DATADEFS | DL

The preceding code can be explained as follows:

1.

An IDL member can contain preprocessor macros, similar to the C and
C++ languages. The start of a macro is signalled by a # character at
the beginning of a line.

In this example, the #i f ndef , #def i ne, and #endi f preprocessor
macros guard against multiple inclusion of this file into other IDL
members.

The typedef construction is grammatically similar to t ypedef in C and
C++. In this example, account Numbecomes a synonym for the IDL

I ong type (32-bit signed integer).

This line defines a sequence type, account Nunti st, defined as an
unbounded sequence of integers, account Num A sequence is similar to
a one-dimensional array except that its length can be arbitrary.

For example, the IDL-to-COBOL mapping specifies that for the
purposes of mapping an IDL unbounded sequence to COBOL, a group
item is created to hold one element of the sequence, and a supporting
group item is also created. The supporting group item contains data
definitions that define the maximum number of elements for the
sequence, the number of elements currently populated in the
sequence, the actual data associated with each element, and the
typecode associated with the sequence.

Because the elements of a sequence are not directly accessible, you
can call SEQSET to copy the supplied data into the requested element of
the sequence, and SEQGET to provide access to a specific element of

23

CHAPTER 2 | Developing the FNB COBOL Back-End Server

FNB IDL

24

the sequence. Because an unbounded sequence is a dynamic type,
memory must be allocated for it at runtime, by calling SEQALLCC.

Note: See the COBOL Programmer’s Guide and Reference for more
details of IDL-to-COBOL mapping rules, SEQEET, SEQSET, and
SEQALLCC,

Example 2 shows the main IDL member used by the FNB COBOL back-end
server. This IDL member is contained in or bi xhl . DEM3S. | DL(FNB) and
defines all the CORBA interfaces implemented by the back-end server.

Example 2: FNB IDL Member (Sheet 1 of 3)

/1 1D

#i fndef FNB_| DL
#define FNB | DL

#i ncl ude " DATADEFS'

/|l Exceptions raised in this file

nmodul e bankobj ects {
exception | NSUFFI G ENT_FUNDS {};
excepti on CANNOT_CLCSE ACCOUNT {};
excepti on ACOOUNT_DCESNT_EXI ST {};
exception FA LED TO AUTHOR ZE {};

struct address {
string address_1;
string address_2;
string address_3;

}

/]l Stucture to hold informati on on what a custoner
/1 is doing with the bank
struct BankTransaction {

short id;

string date;

string record_type;

string val ue;

}

typedef sequence<BankTransacti on> Account Transacti ons;
i nterface Account;

10

11

Developing the Application Interfaces

Example 2: FNB IDL Member (Sheet 2 of 3)

interface Account Mgr {

}

Account openAccount (in account Num account Nunber)
rai ses (ACCOUNT_DCESNT_EXI ST) ;

Account newAccount (in string account Type);

voi d cl oseAccount (in account Num account Nunber)
rai ses (CANNOT_CLOSE _AGCOUNT) ;

account Nunii st get Qurrent Account Li st ();
account Nunii st getQreditCardList ();

interface Account {

IE

readonly attribute account Num account nunber ;
readonly attribute address addr;
readonly attribute string account Type;

attribute string firstnane;
attribute string |astnane;

readonly attribute float accountBal ance;

readonly attribute Account Transacti ons
recent Tr ansact i ons;

[/ Updat e met hods
bool ean nmakelLodgerent (in float amount);
bool ean wi t hdrawFunds (in float anount)
rai ses (1 NSUFFI G ENT_FUNDS) ;
bool ean updat eAddress (i n address newAddress);

voi d transferFundsin (in float amount);
voi d transferFundsQut (in float anount)
rai ses (1 NSUFFI A ENT_FUNDS) ;

/1 Adm n stuff
voi d sendSt atement ();

interface Qurrent Account : Account {

}

readonly attribute float overdraftLimt;

/1 Account nai ntenace routines
bool ean approveNewOverdraft (in float anmount);

25

CHAPTER 2 | Developing the FNB COBOL Back-End Server

26

Example 2: FNB IDL Member (Sheet 3 of 3)

%

interface Savi ngsAccount : Account {

B
typedef short authorizati onCode;

interface OeditCardAccount : Account {
attribute float limt;
attribute float interest_rate;

// Cal cul ate how much interest is owed on this account
float calculatelnterest ();

/| Basic operations on a credit card
aut hori zat i onCode aut hori seAmount (in float anount)
rai ses (FAI LED TO AUTHCRI ZE) ;
bool ean makePurchase (in string vendor, in float anmount,
i n aut hori zati onCode aut h_code) ;

IE

/] Modul e

#endi f // ACOOUNT_| DL

The preceding code can be explained as follows:

1.

Definitions from the DATADEFS IDL member (see “Data definitions IDL”
on page 22) are included in this file by calling the #i ncl ude
preprocessor macro.

The definitions in the FNB IDL member are enclosed within the
bankobj ect s module. An IDL module is a scoping mechanism for IDL.
All the entities defined in the scope of the bankobj ect s module gain
bankobj ect s: : as a prefix. For example, bankobj ects: : Account is the
fully scoped identifier for the Account interface.

This line and the following lines define some IDL user exception types.
The exception definitions shown here have an empty body, {}, because
there is no data associated with these user exceptions.

The syntax for declaring an IDL st ruct is similar to the syntax of a
C++ struct.

For example, the addr ess struct type contains three strings
corresponding to the three fields of an address, address_1, address_2,
and address_3.

10.

11.

Developing the Application Interfaces

The t ypedef declares an unbounded sequence, Account Transact i ons,
that holds a list of BankTr ansact i on structs. A sequence should always
be declared using a t ypedef construction.

This is an example of a forward declaration of an interface, Account .
This enables the Account interface to be referenced before it is defined.
The actual definition of the Account interface appears further on.

This line introduces the definition of an IDL interface, Account Myr .
Interfaces are the most important sort of definition in IDL. An IDL
interface defines the attributes and operations for CORBA objects of a
particular type.

This line shows an example of an /DL operation, openAccount (). A
rai ses() clause introduces the list of user exceptions that can be
thrown by this operation.

A readonly attribute in an IDL interface maps to an operation with a
- &&=T- prefix that enables you to retrieve the attribute value..

Note: See the COBOL Programmer’s Guide and Reference for more
details of IDL-to-COBOL mapping rules.

An attribute that is not readonly maps to two operations: one with a
- &&T- prefix that enables you to retrieve the attribute value, and one
with a - SET- prefix that enables you to update the attribute value.

The Qurrent Account interface inherits from Account . IDL inheritance is
indicated using : (that is, a colon). Multiple inheritance is supported in
IDL.

27

CHAPTER 2 | Developing the FNB COBOL Back-End Server

Orbix IDL Compiler

Overview

Using Orbix IDL compiler

Orbix IDL compiler configuration

28

This subsection describes how to configure and run the Orbix IDL compiler

to generate COBOL source and copybooks from IDL definitions. It discusses
the following topics:

® “Using Orbix IDL compiler” on page 28.

® “Orbix IDL compiler configuration” on page 28.

“Configuration settings” on page 29.

“Configuration settings explanation” on page 29.

“Generating COBOL copybooks for Naming Service” on page 32.

Note: See the COBOL Programmer’s Guide and Reference for more

details of the Orbix IDL compiler, including all the arguments that you can
use with it.

To access the definitions expressed in IDL, it is necessary to compile the IDL
into a target language such as COBOL. This is accomplished using the /DL

compiler, which takes an IDL file as input and generates server skeleton
files as output.

Note: For certain languages, such as C++ or Java, the Orbix IDL
compiler generates client stub files as well as server skeleton files. It does
not, however, generate client stub files for COBOL.

The Orbix IDL compiler uses the Orbix configuration member for its settings.
The FNBI DL JCL that runs the Orbix IDL compiler on 0S/390 uses a
configuration member provided in or bi xhl g. CONFI Q1 DL) .

Configuration settings

Configuration settings explanation

Developing the Application Interfaces

The COBOL configuration for the Orbix IDL compiler is listed under Cobol as
follows:

Gobol
{
Switch = "cobol ";
Shli bNane = " CORXBCBL";
Shli bMaj or Version = "x";
IsDefault = "NO';
Preset Options = "";
OOBCL source and copybooks ext ensi ons
The default is .cbhl, .xxx and .cpy on NI and none for C& 390.
Cobol Ext ension = "";
| npl enent ati onExtension = "";
CopybookExt ension = "*";
ik

Note: Settings listed with a # are considered to be comments and are not
in effect. The default in relation to COBOL source and copybooks
extensions is also none for 0S/390 UNIX System Services.

The available configuration settings can be explained as follows:

Table 3: COBOL Configuration Settings (Sheet 1 of 3)

Variable Name Description Default

Swi tch This informs the Orbix IDL
compiler how to recognise the
COBOL switch that indicates to
generate COBOL code. This
setting is mandatory and must
not be altered.

Shl i bName This informs the Orbix IDL
compiler what name the DLL
plug-in is stored under. This
setting is mandatory and must
not be altered.

29

CHAPTER 2 | Developing the FNB COBOL Back-End Server

30

Table 3: COBOL Configuration Settings (Sheet 2 of 3)

Variable Name

Description

Default

Shl i bMaj or Ver si on

This is the version number of
the supplied ShlibName DLL.
This setting is mandatory and
must not be altered.

| sDef aul t

Indicates whether COBOL is
the language that the Orbix IDL
compiler generates by default
from IDL. If this is set to YES,
you do not need to specify the
- cobol switch when running
the compiler.

Preset ot i ons

The arguments that are passed
by default as parameters to the
Orbix IDL compiler.

Cobol Ext ensi on?

Extension for the server
mainline source code file on
0S/390 UNIX System Services
and Windows NT.

Note: This is left blank by
default, and you can set it to
any value you want. The
recommended setting is . cbl .

| npl enent at i onExt ensi ona

Extension for the server
implementation source code
filename on 0S/390 UNIX
System Services and Windows
NT. You should copy this to a
file with a . cbl extension, to
avoid overwriting any
subsequent changes if you run
the Orbix IDL compiler again.

Note: This is left blank by
default, and you can set it to
any value you want. The
recommended setting is . xxx.

Generating alternative mapping
entries

Developing the Application Interfaces

Table 3: COBOL Configuration Settings (Sheet 3 of 3)

Variable Name Description Default

CopybookExt ensi ona Extension for COBOL copybook
names on 0S/390 UNIX
System Services and Windows
NT.

Note: This is left blank by
default, and you can set it to
any value you want. The
recommended setting is . cpy.

Mai nCopybookSuf fi x Suffix for the main copybook
member name.

Runt i meCopybookSuf fi x Suffix for the runtime copybook | X
member name.

Sel ect CopybookSuf fi x Suffix for the select copybook D
member name.

| npl enent at i onSuf fi x Suffix for the server S
implementation source code
member name.

Server Suf fi x Suffix for the server mainline Y
source code member name.

a. This is ignored on native 0S/390.

Note: The last five variables in Table 3 are not listed by default in

or bi xhl g. CONFI G 1 D) . If you want to change the generated member
suffixes from the default values shown in Table 3, you must manually
enter the relevant variable name and its corresponding value.

The Orbix IDL compiler can take various arguments as parameters. See the
COBOL Programmer’s Guide and Reference for full details of these. One of
these arguments, - M allows you to set up an alternative mapping scheme
for data names. By default, the Orbix IDL compiler generates COBOL data
names based on fully scoped interface names. This can lead to unwieldy
and possibly truncated identifier names.

31

CHAPTER 2 | Developing the FNB COBOL Back-End Server

Generating COBOL copybooks for
Naming Service

Generating COBOL copybooks for
the FNB server

32

To allow you to specify an alternative and more meaningful naming scheme
for your COBOL identifiers, you can specify the - Margument when you run
the IDL compiler, to generate a mapping member that contains a more
logical naming scheme. The following is an example of the contents of the
supplied mapping member for the FNB demonstration:

bankobj ects bo

bankobj ect s/ Account Account

bankobj ect s/ Account Myr AccMyr

bankobj ect s/ Qurr ent Account CA

bankobj ect s/ Savi ngsAccount SA

bankobj ect s/ O edi t Car dAccount CCA

bankobj ect s/ Oredi t Car dAccount/limt CCA-LIMT
bankobj ect s/ BankTransaction/id TXN-I D

bankobj ect s/ BankTr ansact i on/ dat e TXN DATE
bankobj ect s/ BankTr ansact i on/ r ecor d_t ype TXN RECCRD- TYPE
bankobj ect s/ BankTr ansact i on/ val ue TXN- VALUE

For example, based on the preceding mapping member example, the
alternative name for the bankobj ect s/ Or edi t Car dAccount identifier is CCA.

Before you run the Orbix IDL compiler to generate the COBOL copybooks for
the FNB demonstration server, run the Orbix IDL compiler to generate the
COBOL copybooks for the Naming Service. To do this, submit

or bi xhl g. DEMDS. QCBCL. BLD. JOL(NAMESI DL) . This takes as input the IDL
defined in or bi xhl g. | NCLUDE. MG | DL(GC8NAM) for the Naming Service
and generates the COBOL copybooks NAMES, NAMESX, and NAMESD in

or bi xhl g. DEMJ5. GCBQL. CCPYLI B.

In this case, the NaMESI DL JCL specifies the - Oargument with the Orbix IDL
compiler, to generate alternative copybook names instead of allowing the
generated copybook names to be automatically based on the IDL member
name, COSNAM .

Submit or bi xhl g. DEMDS. C0BQL. BLD. JOL(FNBI DL) to run the Orbix IDL
compiler, to generate the COBOL copybooks for the FNB server. This takes
as input the IDL defined in or bi xhl g. DEMCS. | DL(FNB) for the FNB
demonstration and generates the COBOL copybooks FNB, FNBX, and FNBD in
or bi xhl g. DEMCS. GCBCL. CCPYLI B.

Developing the Application Interfaces

The source code members for the FNB COBOL back-end server are already
generated and shipped with Orbix Mainframe. The arguments to generate
the relevant source code members are therefore disabled in

or bi xhl g. DEMOS. GCBCL. BLD. JOL(FNBI DL) . See the COBOL Programmer’s
Guide and Reference for full details of IDL compiler arguments.

33

CHAPTER 2 | Developing the FNB COBOL Back-End Server

Generated Source Code and Copybooks

Overview

Generated source code members

34

This subsection provides an overview of the source code and copybook
members that the Orbix IDL compiler generates for the FNB COBOL

back-end server.

Table 4 provides an overview of the server source code members that the
Orbix IDL compiler generates, based on the defined IDL.

Note: These are already generated for you for the purposes of this
demonstration. They are provided in the or bi xhl g. DEMOS. COBQL. SRC PDS.

Table 4: Generated FNB Server Source Code Members

Source Member JCL Keyword Description
Name Parameter

FNBS 1 MPL This is the server implementation
source code member. It contains
stub paragraphs for all the
callable operations.

FNBSV I MPL This is the server mainline source
code member.

Generated copybooks

How IDL maps to COBOL
copybooks

Developing the Application Interfaces

Table 5 provides an overview of the COBOL copybook members that the
Orbix IDL compiler generates, based on the defined IDL, when you submit
the or bi xhl g. DEMDS. COBCL. BLD. JOL(FNBI DL) JCL.

Table 5: Generated COBOL Copybooks

Copybook

JCL Keyword
Parameter

Description

FN\B

CCPYLI B

The FNB copybook contains data
definitions that are used for
working with operation
parameters and return values
for each interface defined in the
FNB IDL member.

FNBX

QCPYLI B

The FNBX copybook contains
data definitions that are used by
the COBOL runtime to support
the interfaces defined in the FNB
IDL member.

This copybook is automatically
included in the FNB copybook.

FNBD

QCPYLI B

The FNBD copybook contains
procedural code for performing
the correct paragraph for the
requested operation.

This copybook is automatically
included in the FNBS server
implementation source code
member.

Each IDL interface maps to a group of COBOL data definitions. There is one
definition for each IDL operation. A definition contains each of the
parameters for the relevant IDL operation in their corresponding COBOL
representation. See the COBOL Programmer’s Guide and Reference for

details of how IDL types map to COBOL.

Attributes map to two operations (get and set), and readonly attributes map
to a single get operation.

35

36

CHAPTER 2 | Developing the FNB COBOL Back-End Server

Location of demonstration source

Location of demonstration
copybooks

You can find examples of the source code for the FNB back-end server
demonstration in the following locations:
[)

or bi xhl g. DEMOS, OOBCL. SR FABSV)
® orbi xhl g. DEMDS. GOBCL. SR FNBS)

Note: These source code members are shipped with your Orbix
Mainframe installation.

You can find examples of the copybooks generated for the FNB back-end
server demonstration in the following locations:

® orbi xhl g. DEMSS. GCBCL. CCPYLI B(FNB)
® orbi xhl g. DEMCB. GCBCL. CCPYLI B(FNBX)
® orbi xhl g. DEMSB. GOBCL. CCPYLI B(FNBD)

Note: These copybooks are not shipped with your Orbix Mainframe
installation. They are generated when you run the supplied JCL in
or bi xhl g. DEMDS. GCBQOL. BLD. JOL(FNBI DL) , to run the Orbix IDL compiler

Writing the Server

Writing the Server

Overview This section describes the steps you must follow to develop the server
executable for the FNB back-end server demonstration.

Note: This section is provided for the purposes of illustration only. The
server is supplied fully written with your Orbix Mainframe installation.

Steps to develop the server The steps to develop the server application are:

Step Action

1 | “Writing the Server Implementation” on page 38

2 | “Writing the Server Mainline” on page 62

37

CHAPTER 2 | Developing the FNB COBOL Back-End Server

Writing the Server Implementation

The server implementation
module

Example of the FNBS module

38

You must implement the server interface by writing a COBOL module that
implements each operation in the generated FNB copybook.

Note: Ordinarily, when you specify the - Z argument with the Orbix IDL
compiler, it generates a module called i dl menber naneS, which contains
the server skeleton implementation code. For the purposes of this
demonstration, however, the FNBS module is provided fully implemented
for you. The - Z argument is therefore disabled by default in the FNBI DL JCL
that you use to run the IDL compiler for this demonstration.

Example 3 shows parts of the FNBS module (ellipses are used to denote code
omitted for the sake of brevity):

Note: You can find the complete FNBS server implementation program in
or bi xhl ¢. DEMCS. COBCL. SRO(FNBS) .

Example 3: FNBS Server Implementation Module (Sheet 1 of 11)

D R R

Copyright (c) 2001-2003 | ONA Technol ogi es PLC.
Al R ghts Reserved.

Description: This is the batch server inplenentation of the
FNB deno.

*
*
*
*
*
*

LR EE RS R E RS EEEEEEE SRR EE]

| DENTI FI CATI ON DI VI SI O\
PROGRAM | D. FNBS.

ENVI RONVENT DI M S| ON

I NPUT- QUTPUT SECTI N

DATA DV S| ON

FI LE SECTI ON

Writing the Server

Example 3: FNBS Server Implementation Module (Sheet 2 of 11)

WORKI NG STCRAGE SECTI ON

QCPY FNB.
GCPY CCRBA

LI NKAGE SECTI ON
01 LS ACCOUNT- CHAI N- ENTRY.

05 LS ACCONT- I CR PQA NTER
05 LS- ACCOUNT- NUMBER Pl C 9(10) Bl NARY.
05 LS- ACOOUNT- NEXT- ENTRY PQ NTER

PROCEDURE DI M SI ON
ENTRY " DI SPATCH'.

CALL "OCOAREQ' USI NG REQUEST- | NFO
SET W5 COAREQ TO TRUE.
PERFORM CHECK- STATUS.
* Resolve the pointer reference to the interface nane which is
* the fully scoped interface name
CALL "STRCET" US| NG | NTERFACE- NAME
W\&- | NTERFACE- NAME- LENGTH
V- | NTERFACE- NAME.
SET W5 STRCET TO TRUE
PERFORM CHECK- STATUS.

LR R R SRR R RS SRR RS EEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEE]

* Interface(s) :

ISR RS SRR SRR SRS RS RS EEEREEREREEEEEEREREEEEEEEEEEEESEEEEESS]
MOVE SPACES TO ACCMER- CPERATI ON

MOVE SPACES TO ACOOUNT- CPERATI CN.

MOVE SPACES TO CA- CPERATI ON

MOVE SPACES TO OCA- CPERATI ON

e R

* Eval uate Interface(s) :

khkkkkhkkhkkkhkhkkhhhhkhkhhhhhkhkhhhhhkhkhhhhhhkhhhhhhkhhhhhhkhkhkhhhhkhkhkkhhhhkhkhkhhkxkx

EVALUATE W5- | NTERFACE- NAME
WHEN ' | DL: bankobj ect s/ Account Myr: 1. 0

* Resol ve the pointer reference to the operation information
CALL "STRCET" USI NG CPERATI ON- NAME

39

CHAPTER 2 | Developing the FNB COBOL Back-End Server

40

10

Example 3: FNBS Server Implementation Module (Sheet 3 of 11)

ACCMER- CPERATI ON- LENGTH
ACOMER- CPERATI CN

SET W& STRCGET TO TRUE

PERFORM CHECK- STATUS

WHEN ' | DL: bankobj ect s/ Account : 1. 0'

* Resol ve the pointer reference to the operation infornation
CALL "STRGET" USI NG CPERATI ON- NAMVE
ACCOUNT- CPERATI ON- LENGTH
ACOOUNT- CPERATI ON
SET W5 STRCET TO TRUE
PERFCRM CHECK- STATUS
WHEN ' | DL: bankobj ect s/ Qurr ent Account : 1. 0’

* Resol ve the pointer reference to the operation infornation
CALL "STRGET" USI NG CPERATI ON- NAMVE
CA- CPERATI ON- LENGTH
CA- CPERATI ON
SET W STRCET TO TRUE
PERFCRM CHECK- STATUS
WHEN ' | DL: bankobj ect s/ O edi t Car dAccount : 1. 0'

* Resol ve the pointer reference to the operation information
CALL "STRCET" USI NG CPERATI ON- NAMVE
CCA- CPERATI ON- LENGTH
CCA- CPERATI CN
SET W5 STRCGET TO TRUE
PERFCRM CHECK- STATUS
END- EVALUATE.

QCPY FNBD.
GCBAKK

This entry point is not really needed but is used to denon
-strate how dynam c storage can be freed agai n. The dynam c
storage is in this case the linked |ist containing the account
obj ect references that have been already been created. This
entry point is called at the end of the server main program
when it is shutting down.

E O R

SET ADDRESS CF LS- ACOOUNT- CHAI N- ENTRY TO
W5~ ACOOUNT- ANCHCR
PERFCRM UNTI L ADDRESS CF LS- ACOOUNT- CHAI N- ENTRY = NULL

12

11

Writing the Server

Example 3: FNBS Server Implementation Module (Sheet 4 of 11)

CALL "CBIREL" USING LS- ACCONT- I CR
SET Ws- GBJREL TO TRUE
PERFCRM CGHECK- STATUS

SET WS- ACOOUNT- ENTRY- PTR TO
ADDRESS CF LS- ACCOUNT- CHAI N- ENTRY
SET ADDRESS CF LS- ACOOUNT- CHAI N- ENTRY TO
LS- AGOOUNT- NEXT- ENTRY

CALL "MEMFREE' USI NG W& ACOOUNT- ENTRY- PTR
SET W& MEMFREE TO TRUE
PERFCRM CGHECK- STATUS

END- PERFCRM
GCBACK.

DO ACOMER- CPENACCOUNT.

SET D- NO USEREXCEPTI ON TO TRUE

CALL "OOACGET" USI NG ACOMER- CPENACCOUNT- ARGS.
SET W5- CQACET TO TRUE

PERFCRM CHECK- STATUS.

MOVE ACCOUNTNUMBER CF ACOMER- CPENACCOUNT- ARGS TO
ACCOUNT- NUMBER

READ ACCOUNTS KEY | S ACCOUNT- KEY
END- READ.

I'F (ACCOUNT- STATUS NOT = 0
AND ACCOUNT- STATUS NOT = 2
AND ACCOUNT- STATUS NOT = 23)
DI SPLAY ' *** A response of, ' ACCOUNT- STATUS ', was '
" detect ed when reading the Account file.'
GCBACK
END- | F

| F ACOOUNT- STATUS = 23
DI SPLAY " account nunber not found "
SET D BO- ACCOUNT- DCESNT- EXI ST TO TRUE

DI SPLAY "set exception id ..."

CALL "STRSET" USI NG EXCEPTI ON-1D
EX- BO- ACCOUNT- DCESNT- EXI S- 4410
EX- BO- ACCOUNT- DCESNT- EXI ST

41

CHAPTER 2 | Developing the FNB COBOL Back-End Server

Example 3: FNBS Server Implementation Module (Sheet 5 of 11)

SET W5- STRSET TO TRUE
PERFCRM CHECK- STATUS

DI SPLAY "rai se user exception with coaerr..."
CALL "OQAERR' USI NG FNB- USER- EXCEPTI ONS

SET W& CQAERR TO TRUE
PERFCRM CHECK- STATUS

END- | F
* the account exists in the datastore. Have we created an
* object reference for it? Search the linked list first.
* These searches are extrenely fast despite being QN).
* |f the search fails then call objnewto create the object
* and insert it into the linked |ist.
PERFCORM SEARCH ACCOUNT- CHAI N
I F W& QU T- SEARCH ACCOUNT- LOCP = 0 THEN

DI SPLAY " no record in linked list for "

Dl SPLAY " account nunber " AGCCOUNT- NUMBER

DI SPLAY " cal |l objnew "
* set up the call to CBINEW
EVALUATE ACCOUNT- CLASS

WEN ' Oedit Card

MOVE " | DL: bankobj ect s/ Or edi t CardAccount: 1.0 "
TO W5 | NTERFACE- NAME
WEN ' CQurrent’
MOVE " | DL: bankobj ect s/ Qurrent Account: 1.0 "
TO W5 | NTERFACE- NAME

END- EVALUATE

* convert binary account nunber key to string - nust
* be at |least one trailing space for use in CBINEW
* call
MOVE ACCOUNT- NUMBER TO WS- ACOOUNT- NUMBER- STR11
MOVE SPACES TO W5- ACCOUNT- NUMBER- STR11(11: 1)

* create new account object reference
CALL "CBINEW USI NG SERVER- NAVE
W\6- | NTERFACE- NAME
W\B- ACOOUNT- NUMBER- STR11
W5 CBJ- CCPY
SET W5 CBINEW TO TRUE
PERFCRM CHECK- STATUS
* (BINEWwas Ck - add the new obj reference to the linked |ist
MOVE LENGTH OF LS- ACOOUNT- CHAl N- ENTRY

42

11

13

14

15

Writing the Server

Example 3: FNBS Server Implementation Module (Sheet 6 of 11)

TO W5 TEMP- LENGTH
CALL "MENALLCC' USI NG W5- TEMP- LENGTH
W5 ACOOUNT- ENTRY- PTR
SET W5 MEMALLCC TO TRUE
PERFCRM CGHECK- STATUS

* set current chain entry to newy all ocated nenory
SET ADDRESS CF LS- ACOOUNT- CHAI N- ENTRY TO
W\B- ACOOUNT- ENTRY- PTR
* wite the newy created account nunber to the chain entry
MOVE ACCOUNT- NUMBER TO LS- ACOOUNT- NUMBER
* duplicate object just created in order to prevent del etion
* when COAPUT runs
SET LS AGCONT- | R TO Ws- CBJ- CCPY
* finally insert the new chain entry at the head of the chain.
SET LS- ACOOUNT- NEXT- ENTRY TO W5- ACCOUNT- ANCHCR
SET W5 ACCOUNT- ANCHCR TO WS- ACOOUNT- ENTRY- PTR
CALL "CBIDUP' US| NG LS- ACOOUNT- | CR
RESULT CF
ACCMER- CPENACOOUNT- ARGS
SET Ws- CBJIDUP TO TRUE
PERFCRM CHECK- STATUS
ELSE
CALL "CBIDUP' USI NG LS- ACOOUNT- | CR
RESULT CF
ACCMER- CPENACOOUNT- ARGS
SET Ws- CBJIDUP TO TRUE
PERFCRM CHECK- STATUS
* end of linked |ist search test ******xdkkdkakakskrkx
END- | F.

EVALUATE TRUE

WHEN D- NO- USEREXCEPTI ON

CALL "QOAPUT" USI NG ACOMER- CPENAGCOUNT- ARGS
SET W5 COAPUT TO TRUE

PERFCRM CHECK- STATUS

END- EVALUATE.

DO ACOMER- NEWAGCOUNT.

DO ACOMER- CLCSEAGCOUNT.

DO ACOMER- GETAURRENTACOOU- AE9B.

43

CHAPTER 2 | Developing the FNB COBOL Back-End Server

44

15

16

17

18

18

19

18

19

20

16

21

22

21

23

24

Example 3: FNBS Server Implementation Module (Sheet 7 of 11)

DO ACOMER- GETCREDI TCARDLI ST.

DO ACOOUNT- GET- ACCOUNTNUMBER

DO ACOOUNT- GET- ADDR

DO ACOOUNT- GET- ACCOUNTTYPE

DO ACOOUNT- GET- FI RSTNAME

DO ACOOUNT- SET- FI RSTNAME

DO ACOOUNT- GET- LASTNAVE

DO ACOOUNT- SET- LASTNAVE

DO ACOOUNT- GET- ACCOUNTBALANCE

DO ACOOUNT- GET- RECENTTRAN- D044.

DO ACOOUNT- VAKEL CDGEIVENT.

DO ACOOUNT- UPDATEADDRESS.

DO ACOOUNT- TRANSFERFUNDSI N

DO CA- GET- OVERDRAFTLI M T.

DO CA- APPROVENEWDVERDRAFT.

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

Writing the Server

Example 3: FNBS Server Implementation Module (Sheet 8 of 11)

DO CA- GET- ACCOUNTNUMBER

DO CA- GET- ADDR

DO CA- GET- ACCOUNTTYPE

DO CA- CET- FI RSTNAME.

DO CA- SET- FI RSTNAME.

DO CA- CET- LASTNAMVE.

DO CA- SET- LASTNAME.

DO CA- GET- ACCOUNTBALANCE

DO CA- GET- RECENTTRANSACTI ONS.

DO CA- VAKEL CDGEMVENT.

DO CA- W THDRAWFUNDS.

DO CA- UPDATEADDRESS.

DO CA- TRANSFERFUNDSI N

DO CA- TRANSFERFUNDSCUT.

DO CCA- GET-LIM T.

45

CHAPTER 2 | Developing the FNB COBOL Back-End Server

46

40

39

40

41

42

43

25

26

27

28

29

30

31

32

33

Example 3: FNBS Server Implementation Module (Sheet 9 of 11)

DO CCA-SET-LIMT.

DO CCA- GET- | NTEREST- RATE

DO CCA- SET- | NTEREST- RATE

DO CCA- CALOULATE! NTEREST.

DO CCA- AUTHCR SEAMOUNT.

DO CCA- MAKEPURCHASE.

DO CCA- GET- ACOOUNTNUVBER

DO CCA- GET- ADDR

DO CCA- GET- ACCONTTYPE

DO CCA- GET- FI RSTNAVE

DO CCA- SET- FI RSTNAVE

DO CCA- GET- LASTNAME

DO CCA- SET- LASTNAME

DO CCA- GET- ACOOUNTBALANCE.

DO CCA- GET- RECENTTRANSACTI ONS.

34

35

36

37

38

44

Writing the Server

Example 3: FNBS Server Implementation Module (Sheet 10 of 11)

DO OCA- MAKEL CDGEMENT.

DO CCA- W THDRAWFUNDS.

DO CCA- UPDATEADDRESS.

DO CCA- TRANSFERFUNDSI N

DO CCA- TRANSFERFUNDSCUT.

RS R RS SRS SRS SRS SRR SR ER SRR R SR EEEREEEREREEEEEEEEEEEEEEEEEEESEES]
*

Check Errors Copybook
khkkhkkhkkhhkhkhkhkhkkhhhhkhhhhhhkhhhhhhhhdhhhhhhhhhhhhdhhhhhdhrhhhddrrhhdhrx

*

QCPY GKERRS.
FI ND- LAST- ACCNUM

*

UPDATE- LAST- ACCNUM

*

CREATE- NEW AGCOUNT.

*

CGET- GBIECTI D- FROM TARCET.

*

RETR EVE- ACOOUNT- DETA! LS.

*

UPDATE- ACCOUNT- DETAI LS.

*

47

CHAPTER 2 | Developing the FNB COBOL Back-End Server

Example 3: FNBS Server Implementation Module (Sheet 11 of 11)

BU LD- ACOOUNT- SEQUENCE.

BU LD- CCA- SEQUENCE.
*

BU LD TXNH ST- SEQUENCE.

*

BU LD- CCA- TXN\H ST- SEQUENCE

48

Explanation of the batch FNBS
module

Writing the Server

The FNBS module can be explained as follows:

1.

This section defines the files to be used by the server application for
storing account data (ACOOUNTS), last-account-number-used data
(ACONUM), transaction history data (TXNH ST), and
last-transaction-history-key-used-per-account data (TXNNUM.

This section defines the layout of the records in each of the files used
by the server application.

The data definitions used for working with operation parameters and
return values for each interface being implemented are copied in from
the FNB copybook.

Various Orbix COBOL definitions, such as REQUEST- | NFOused by the
QOAREQfunction, and CRBI X- STATUS- | NFORVATI CN used to register and
report system exceptions raised by the COBOL runtime, are copied in
from the OORBA copybook.

This section defines the layout of the data in the linked list for
recording currently active objects.

The DI SPATCH logic is automatically coded for you, and the bulk of the
code is contained in the FNBD copybook. When an incoming request
arrives from the network, it is processed by the ORB and a call is made
to the DI SPATCH entry point.

QOOAREQIs called to provide information about the current invocation
request, which is held in the REQUEST- | NFOblock that is contained in
the CORBA copybook.

OOAREQIs called once for each operation invocation—after a request
has been dispatched to the server, but before any calls are made to
access the parameter values.

STRGET is called to copy the characters in the unbounded string pointer
for the interface name to the string item representing the fully scoped
interface name.

STRGET is called again to copy the characters in the unbounded string
pointer for the relevant operation name, in each interface respectively,
to the string item representing the operation name.

49

CHAPTER 2 | Developing the FNB COBOL Back-End Server

50

10. The procedural code used to perform the correct paragraph for the
requested operation is copied into the program from the FNBD
copybook.

11.

12.

13.

This operation (and every other operation) calls COAGET and COAPUT to
copy incoming values and return values, respectively, from and to the
COBOL structures for the operation’s parameter list. COAGET and
QOAPUT must be called by every operation, even if the operation takes
no parameters or returns no values.

The DO ACOMER- CPENACCCOUNT operation:

Moves the account number passed in from the client to file.

Reads the account file, to check if the account already exists,
using the account number as the key.

Checks the account status to see if the account exists on file.

If the account does not exist, the server calls COAERR, to raise the
ACOOUNT_DCESNT_EXI ST user exception.

If the account does exist, the server searches the linked list, to
see if an object reference already exists for it.

If an object reference does not exist for the account, the server
checks the AGOOUNT- CLASS value on the account record to see if it
is a credit card or current account, calls CBINEWto create an
object reference, calls MEMALLOC to dynamically allocate memory
in the account chain for the account’s IOR, and then moves the
account number to the newly created entry in the account chain.
Alternatively, if an object reference already exists, the server calls
CBIDUP to create a copy of the object reference, to conform with
the memory management rules for object references (see the
COBOL Programmer’s Guide and Reference for more details).

The DO ACOMER- NEWACCOCOUNT operation:

Performs the FI ND- LAST- ACONUM paragraph, to find out the last
account number created in the AGCNUMdata set.

Initializes an account record and assigns it an account number
equal to the last account number plus one.

Calls STRGET, using the account type passed in, to see what type
of account is to be created.

14.

15.

vi.

vii.

viii.

Writing the Server

Converts the binary account number key to a string.

Calls MEVALLCOC to dynamically allocate memory in the account
chain for the new account’s IOR.

Calls cBINEWto create an object reference for the new account,
and then moves the newly created account number to the newly
created entry in the account chain.

Calls cBIDUP to create a copy of the object reference, to conform
with the memory management rules for object references (see the
COBOL Programmer’s Guide and Reference for more details)..
Performs the CREATE- NEW ACOOUNT paragraph to create the new
account record in the ACOOUNTS data set, and then performs the
UPDATE- LAST- ACONUMparagraph to store the new account number
as the last account number created in the ACONUMdata set.
Finally, it performs the CREATE- TXN- H ST paragraph, to update
the transaction history for the new account in the TXNH ST data
set.

The DO ACOMER CLOSEACOOUNT operation:

Moves the account number passed in to the record key of the
accounts file (ACOOUNTS).

If the record exists on file, it is deleted. Otherwise, the server
raises the CANNOT_CLOSE_AGOOUNT user exception.

The DO ACOMER GETCURRENTACOOU- AE9B and
DO ACOMER- GETCREDI TCARDLI ST operations:

Moves the literal value relating to the account type (that is
"Qurrent" or"Qredit Card") to file.

Reads the account file, using the account class (that is, the
account type) as the key.

Calls SEQALLCC, if no accounts of that type exist, to return a
sequence of zero length.

Calls SEQALLCC, if accounts of that type do exist, to return a
sequence of those accounts.

51

CHAPTER 2 | Developing the FNB COBOL Back-End Server

52

16. The DO ACOOUNT- GET- ACOOUNTNUMBER and
DO ACOOUNT- GET- RECENTTRAN- D044 generic operations:

17.

18.

Perform the GET- CBJECTI D- FROM TARGET paragraph, which calls
CBIGETI D to retrieve the object name from the related object
reference.

Convert the account number in Working Storage to a numeric
string.

The DO ACCOUNT- GET- ADDR generic operation:

Vi.

Performs the GET- GBIECTI D- FROM TARGET paragraph, which calls
CBJCGETI Dto retrieve the object name from the related object
reference.

Converts the account number in Working Storage to a numeric
string.

Performs the RETR EVE- ACOOUNT- DETAI LS paragraph, which reads
the accounts file, based on the account number, to retrieve the
account details.

Moves the account record address line 1 and its length to
Working Storage.

Calls STRSET to create an unbounded string from address line 1 in
Working Storage.

Repeats steps v and vi for address line 2 and address line 3.

The DO ACCOUNT- GET- ACOOUNTTYPE, DO- ACOOUNT- GET- FI RSTNAME, and
DO ACOOUNT- GET- LASTNAME generic operations:

Perform the GET- CBJECTI D- FROM TARGET paragraph, which calls
CBJCGETI Dto retrieve the object name from the related object
reference.

Convert the account number in Working Storage to a numeric
string.

Perform the RETR EVE- ACCOUNT- DETAI LS paragraph, which reads
the accounts file, based on the account number, to retrieve the
account details.

Move the account record field being processed (account class,
first name, or last name), and its length, to Working Storage.
Call STRSET to create an unbounded string for the relevant field.

Writing the Server

19. The DO ACOOUNT- SET- FI RSTNAME and DO- ACOOUNT- SET- LASTNAVE
generic operations:

20.

21.

vi.

Vii.

Move the length of the first name or last name unbounded strings
passed in from the client to Working Storage.

Call STRGET to copy the characters in the unbounded string
pointer in Working Storage to the bound string data item in
Working Storage.

Perform the GET- CBJECTI D- FROM TARGET paragraph, which calls
CBICGETI Dto retrieve the object name from the related object
reference.

Convert the account number in Working Storage to a numeric
string.

Move the account number in Working Storage to file.

Move account first name or last name in Working Storage to file.
Perform the UPDATE- ACOOUNT- DETAI LS paragraph, which updates
the relevant account record.

The DO ACOOUNT- GET- ACCOUNTBALANCE generic operation:

Performs the GET- GBIECTI D- FROM TARGET paragraph, which calls
CBIGETI Dto retrieve the object name from the related object
reference.

Convert the account number in Working Storage to a numeric
string.

Perform the RETR EVE- ACOOUNT- DETAI LS paragraph, which reads
the accounts file, based on the account number, to retrieve the
account details.

The DO ACCOUNT- MAKE- LODGEMENT and DO ACCOUNT- TRANSFERFUNDSI N
operations:

Perform the GET- CBJECTI D- FROM TARGET paragraph, which calls
CBIGETI Dto retrieve the object name from the related object
reference.

Convert the account number in Working Storage to a numeric
string.

53

CHAPTER 2 | Developing the FNB COBOL Back-End Server

54

22.

23.

Vi.

Perform the RETR EVE- ACCOUNT- DETAI LS paragraph, which reads
the accounts file, based on the account number, to retrieve the
account details.

Calculate the new account balance as the existing account
balance plus the temporary amount in Working Storage.

Perform the UPDATE- ACOOUNT- DETAI LS paragraph, which updates
the relevant account record.

Update the transaction history record for the account, by
initializing the transaction history record and calling the

CREATE- TXN- H ST paragraph, which in turn calls the GET- TXN\- 1 D
paragraph (to read the transaction number key), the

UPDATE- TXNH ST paragraph (to update the transaction history
record for the account), and the UPDATE- TXNNUM paragraph (to
update the last-transaction-history-key-used record).

The DO- ACOOUNT- UPDATEADDRESS operation:

Vi.

vii.

viii.

Moves the length of address line 1 to Working Storage.

Calls STRGET to copy the characters in the unbounded string
pointer in Working Storage to the string item in Working Storage.

Moves address line 1 from Working Storage to file.

Repeats steps i—iii for address line 2 and address line 3.
Performs the GET- CBJECTI D- FROM TARGET paragraph, which calls
CBJGETI Dto retrieve the object name from the related object
reference.

Converts the account number in Working Storage to a numeric
string.

Moves the account number in Working Storage to file.

Performs the UPDATE- ACOOUNT- DETAI LS paragraph, which updates
the relevant account record.

The DO CA- GET- OVERDRAFTLI M T operation:

Performs the GET- CBIECTI D- FROM TARGET paragraph, which calls
CBJCGETI Dto retrieve the object name from the related object
reference.

Converts the account number in Working Storage to a numeric
string.

24.

25.

26.

27.

Writing the Server

iii. Performs the RETR EVE- ACOOUNT- DETAI LS paragraph, which reads
the accounts file, based on the account number, to retrieve the
account details.

iv. Moves the overdraft limit from the relevant account record to the
operation argument list, and returns this value to the client.

The DO CA- APPROVENEWDVERDRAFT operation:

i. Performs the GET- CBJECTI D- FROM TARGET paragraph, which calls
CBICGETI Dto retrieve the object name from the related object
reference.

ii. Converts the account number in Working Storage to a numeric
string.

iii. Performs the RETR EVE- ACOOUNT- DETAI LS paragraph, which reads
the accounts file, based on the account number, to retrieve the
account details.

iv. Moves the new overdraft amount passed in to the overdraft field
on the customer record.

v. Performs the UPDATE- ACOCUNT- DETAI LS paragraph, which updates
the relevant account record with the new overdraft amount.

The DO CA- GET- ACOCOUNTNUVBER and DO OCA- GET- ACOOUNTNUMVBER

operations:

i. Perform DO ACOOUNT- GET- ACCOUNTNUMBER (see point 16).

ii. Assign the account number to the account number parameter of
the customer account, and return this to the client.

The DO CA- GET- ADDR and DO- OCA- GET- ADDR operations:

i. Perform DO ACOOUNT- GET- ADDR (see point 17).

ii. Assign the customer address to the three address parameters of
the customer account, and return these to the client. These three
string data items are unbounded strings.

The DO CA- GET- ACOOUNTTYPE and DO QCA- GET- ACOOUNTTYPE

operations:

i. Perform DO AOOOUNT- GET- ACCOUNTTYPE (see point 18).

ii. Assign the relevant account type to the account type parameter of
the customer account, and return this to the client. The account
type is an unbounded string data item.

55

CHAPTER 2 | Developing the FNB COBOL Back-End Server

56

28.

29.

30.

31.

32.

33.

The DO CA- GET- FI RSTNAME and DO OCA- GET- FI RSTNAME operations:

i. Perform DO ACOOUNT- GET- FI RSTNAME (see point 18).

ii. Assign the relevant first name to the first name parameter of the
customer account, and return this to the client. The first name is
an unbounded string data item.

The DO CA- SET- FI RSTNAME and DO OCA- SET- FI RSTNAME operations:

i. Assign the unbounded string data item in Working Storage to the
first name parameter of the customer account.

ii. Perform DO ACOOUNT- SET- FI RSTNAME (see point 19).

The DO CA- GET- LASTNAME and DO CCA- GET- LASTNAME operations:

i. Perform DO AOOOUNT- GET- LASTNAME (see point 18).

ii. Assign the relevant last name to the last name parameter of the
customer account, and return this to the client. The last name is
an unbounded string data item.

The DO CA- SET- LASTNAME and DO- GCA- SET- LASTNAME operations:

i. Assign the bounded string data item in Working Storage to the
last name parameter of the customer account.

ii. Perform DO ACOOUNT- SET- LASTNAME (see point 19).

The DO CA- GET- ACOOUNTBALANCE and DO OCA- GET- ACOCUNTBALANCE

operations:

i Perform DO AGOOUNT- GET- ACOOUNTBALANCE (see point 20).

ii. Assign the account balance to the account balance parameter of
the customer account, and return this to the client.

The DO CA- GET- RECENTTRANSACTI ONS and

DO CCA- GET- RECENTTRANSACTI ONS operations:

i. Perform DO ACOOUNT- GET- RECENTTRAN- D044 (see point 16).

ii. Read the transaction history file, using the transaction history key
as the key, to check if the specific account has any history
records.

iii. If no transaction history exists, an error message is displayed.
Otherwise, SEQALLCOC is called to create an unbounded sequence
and populate it with elements containing details of each history
account record, and this sequence is returned to the client.

34.

35.

36.

37.

Writing the Server

The DO CA- MAKELCDGEMENT and DO- OCA- MAKELCDGEMENT operations:

i Move the amount to be lodged to Working Storage.

ii. Perform DO ACOOUNT- MAKELCDGEMENT (see step 21).

The DO CA- W THDRAWFUNDS and DO OCA- W THDRAWFUNDS operations:

i. Move the amount to be withdrawn to Working Storage.

ii. Perform the GET- CBJECTI D- FROM TARGET paragraph, which calls

CBIGETI Do retrieve the object name from the related object
reference.

iii. Convert the account number in Working Storage to a numeric
string.

iv. Perform the RETRI EVE- ACOOUNT- DETAI LS paragraph, which reads
the accounts file based on the account key, to retrieve account
details.

v. Calculate the withdrawal limit in Working Storage as the account
balance plus the overdraft or credit limit.

vi. If the amount to be withdrawn is not greater than the withdrawal
limit, the server calculates the account balance as the existing
account balance minus the amount to be withdrawn, performs
the UPDATE- ACOOUNT- DETAI LS paragraph to update the relevant
account record, and performs the CREATE- TXN- H ST paragraph to
to update the transaction history for the account.

vii. Conversely, if the amount to be withdrawn is greater than the
withdrawal limit, the server calls COAERR to raise the
I NSUFFI O ENT_FUNDS user exception.

The DO CA- UPDATEADDRESS and DO OCA- UPDATEADDRESS operations:

i. Assign the unbounded string data items in Working Storage to the
three address parameters of the customer account.

ii. Perform DO ACOOUNT- UPDATEADDRESS (see step 22).

The DO CA- TRANSFERFUNDSI N and DO CCA- TRANSFERFUNDSI N

operations:

i Move amount, to be transferred, to Working Storage.

ii. Perform DO ACOOUNT- TRANSFERFUNDSI N (see point 21).

57

CHAPTER 2 | Developing the FNB COBOL Back-End Server

58

38. The DO CA- TRANSFERFUNDSCUT and DO QCA- TRANSFERFUNDSCUT
operations:

39.

Vi.

Vii.

Move amount, to be transferred, to Working Storage.

Perform the GET- CBJECTI D- FROM TARGET paragraph, which calls
CBJCETI Dto retrieve the object name from the related object
reference.

Convert the account number in Working Storage to a numeric
string.

Perform the RETR EVE- ACCOUNT- DETAI LS paragraph, which reads
the accounts file based on the account key, to retrieve account
details.

Calculate the withdrawal limit in Working Storage as the account
balance plus the overdraft limit.

If the amount to be withdrawn is less than the withdrawal limit,
the server calculates the account balance as the existing account
balance minus the amount to be withdrawn, performs the
UPDATE- ACOOUNT- DETAI LS paragraph to update the relevant
account record, and performs the CREATE- TXNt H ST paragraph to
to update the transaction history for the account.

Conversely, if the amount to be withdrawn is greater than the
withdrawal limit, the server calls CQAERR to raise the

I NSUFFI O ENT_FUNDS user exception.

The DO OCA- GET- LI M T and DO OCA- GET- | NTEREST- RATE operations:

Perform the GET- CBJECTI D- FROM TARGET paragraph, which calls
CBJCETI Dto retrieve the object name from the related object
reference.

Convert the account number in Working Storage to a numeric
string.

Perform the RETR EVE- ACOOUNT- DETAI LS paragraph, which reads
the accounts file based on the account key, to retrieve account
details.

Assign the limit or interest rate amount of the customer account
to the limit or interest rate parameter, and return this to the
client.

Writing the Server

40. The DO CCA- SET-LI M T and DO OCA- SET- | NTEREST- RATE operations:

41.

42.

Perform the GET- CBJECTI D- FROM TARGET paragraph, which calls
CBIGETI Do retrieve the object name from the related object
reference.

Convert the account number in Working Storage to a numeric
string.

Perform the RETR EVE- ACOOUNT- DETAI LS paragraph, which reads
the accounts file based on the account key, to retrieve account
details.

Move the limit or interest rate passed in to the limit or interest
rate field on the customer record.

Perform the UPDATE- ACOOUNT- DETAI LS paragraph, which updates
the relevant account record.

The DO OCA- CALCULATEl NTEREST operation:

Performs the GET- GBIECTI D- FROM TARGET paragraph, which calls
CBIGETI Dto retrieve the object name from the related object
reference.

Converts the account number in Working Storage to a numeric
string.

Performs the RETR EVE- ACOOUNT- DETAI LS paragraph, which reads
the accounts file based on the account key, to retrieve account
details.

Checks if the account balance is negative. If so, it calculates the
interest due as the account balance multiplied by the interest
rate, and places it in the result of the operation’s argument list.
Otherwise, it moves zero to the result of the opertion’s argument
list.

The DO OCA- AUTHCRI SEAMOUNT operation:

Performs the GET- GBIECTI D- FROM TARGET paragraph, which calls
CBIGETI Dto retrieve the object name from the related object
reference.

Converts the account number in Working Storage to a numeric
string.

59

CHAPTER 2 | Developing the FNB COBOL Back-End Server

Vi.

Performs the RETR EVE- ACCOUNT- DETAI LS paragraph, which reads
the accounts file based on the account key, to retrieve account
details.

Calculates the real limit in Working Storage as the account
balance plus the account limit.

Checks if the amount being requested for authorization is within
the calculated credit limit. If so, the server calculates an
authorization code, by using the COBOL random function, to
retrieve a value between 0.0 and 1.0. The result calculated is
then multiplied by 10000, to obtain the first four significant
digits. The calculated authorization code is assigned to the
authorization code parameter of the operation, and then returned
to the client. The server performs the UPDATE- ACOUNT- DETAI LS
paragraph to then update the account record.

Conversely, if the amount being requested for authorization is not
within the calculated credit limit, the server calls CAERR to raise
the FAI LED TO AUTHCRI ZE user exception.

43. The DO OCA- MAKEPURCHASE operation:

60

Performs the GET- CBJECTI D- FROM TARGET paragraph, which calls
CBJCGETI Dto retrieve the object name from the related object
reference.

Converts the account number in Working Storage to a numeric
string.

Performs the RETR EVE- ACOOUNT- DETAI LS paragraph, which reads
the accounts file based on the account key, to retrieve account
details.

Checks to see if the purchase is already authorized (that is, if the
authorisation code passed in equals the authorization code on
record). If so, the server calculates the account balance as the
existing account balance minus the purchase amount, performs
the UPDATE- ACOOUNT- DETAI LS paragraph to update the account
record, performs the CREATE- TXN- H ST paragraph to update the
transaction history for the account, and calls STRGET to output the
transaction vendor details.

Writing the Server

44, A COBOL function that is called to check to see if a system exception
has occurred, and to report that system exception, is copied in from
the GHKERRS copybook.

61

CHAPTER 2 | Developing the FNB COBOL Back-End Server

Writing the Server Mainline

The server mainline module

Example of the batch FNBSV
module

62

The next step is to write the server mainline module in which to run the
server implementation.

Note: Ordinarily, when you specify the - S argument with the Orbix IDL
compiler, it generates a module called i dl menber nanmeSV, which contains
the server mainline code. For the purposes of this demonstration, however,
the FNBSV module is already provided for you. The - S argument is therefore
disabled by default in the FNBI DL JCL that you use to run the IDL compiler
for this demonstration.

Example 4 shows parts of the batch FNBSV module (ellipses are used to
denote code omitted for the sake of brevity):

Note: You can find the complete FNBSV server implementation program in
or bi xhl . DEMCS. GOBCL. SRO(FNBSV) .

Example 4: FNBSV Server Mainline Module (Sheet 1 of 11)

D R R

* Copyright (c) 2001-2003 | ONA Technol ogi es PLC.

* Al Rghts Reserved.

* Description: This is the batch server nainline of the FNB
* deno.

*

LR EE RS R E RS EEEEEEE SRR EE]

I DENTI FI CATICN D'V SI ON
PROGRAM | D. FNBSV.
ENVI RONVENT DM S| ON

I NPUT- QUTPUT SECTI N

FI LE- CONTRCL.

QCPY | CRSLCT REPLACI NG
"X-1COR'" BY ACOM=R-| CR
"X-1CRFILE" BY "I CRFI LE'
"X-1 OR STAT* BY ACCMER- | CR- STAT.

DATA DV S| ON

No o,

10

11

12

13

Writing the Server

Example 4: FNBSV Server Mainline Module (Sheet 2 of 11)

FI LE SECTI ON
GCPY FNBRECS.
QCPY | CRFD REPLAC NG
"X-1CR'" BY ACOM=R-| CR
"X-REC' BY ACCM=R- REC.
WRKI NG STCRAGE SECTI ON
QCPY NAMES.

QCPY FNB.
QCPY CCRBA

QCPY PROCPARM

PERFCRM CPEN- FI LE.

CALL "CORBSTAT" USI NG CRBI X- STATUS- | NFCRVATI ON

SET W5 CRBSTAT TO TRUE
PERFCRM CHECK- STATUS.

CALL "CORBARGS' USI NG ARG LI ST

ARG LI ST- LEN

CRB- NAME

CRB- NAME- LEN

SET W5 CRBARGS TO TRUE
PERFCRM GHECK- STATUS.

CALL "CRBSRVR' USI NG SERVER- NAME
SERVER- NAME- LEN

SET W& CRBSRVR TO TRUE
PERFCRM CHECK- STATUS.

LR R R RS SRR SRR RS EEEEEEEEEEEEEEEEREEEEEEEEEEEEEEEEEEEEEES]

* |Interface Section Bl ock

D R R

* Generating I CR for interface bankobj ect s/ Account Myr

CALL "CRBREG' USI NG ACOMER- | NTERFACE

SET W5- CRBREG TO TRUE.
PERFCRM GHECK- STATUS.

63

CHAPTER 2 | Developing the FNB COBOL Back-End Server

Example 4: FNBSV Server Mainline Module (Sheet 3 of 11)

CPEN QUTPUT ACOMER- I CR

I F ACOMR- | CR- STAT NOT = 0
QO TO EXI T- PRG

END- | F.

14 CALL "CBINEW USI NG SERVER- NAVE
| NTERFACE- NAME CF | NTERFACE- NAMES- ARRAY(1)
CBJECT- | DENTI FI ER CGF CBJECT- | D- ARRAY(1)
ACCMER- CBJ.
SET W5 CBINEW TO TRUE.
PERFCRM CHECK- STATUS.

15 CALL "CBITCSTR' USI NG ACOMER- CBJ
| OR- REG PTR
SET W5- CBJTCSTR TO TRUE.
PERFCRM CHECK- STATUS.

16 CALL "STRCGET" USI NG | CR REG PTR
| OR- REC- LEN
ACOMER- REC.

SET W5 STRGET TO TRUE

PERFCRM CHECK- STATUS.

17 CALL "STRFREE' USI NG | OR- REG PTR
SET W5 STRFREE TO TRUE
PERFCRM CHECK- STATUS.

18 WR TE ACCMER- REC.
IF ACOMR- | CR- STAT NOT = 0 THEN
QO TO EXI T- PRG
END- | F.

CLCSE ACOMER- | R

IF ACOMER- | R STAT NOT = 0 THEN
QO TO EXI T- PRG

END- | F.

* Register interface bankobj ect s/ Account
19 CALL "ORBREG' USI NG ACOOUNT- | NTERFACE.
SET W5 CRBREG TO TRUE
PERFORM CHECK- STATUS.

* Register interface bankobj ect s/ Qurrent Account
19 CALL "CRBREG' USI NG CA- | NTERFACE.

64

Writing the Server

Example 4: FNBSV Server Mainline Module (Sheet 4 of 11)

SET W5 CRBREG TO TRUE.
PERFCRM CHECK- STATUS.

* Regi ster interface bankobjects/ O edit Car dAccount
19 CALL "CRBREG' USI NG CCA- | NTERFACE
SET W& CRBREG TO TRUE.
PERFORM CHECK- STATUS.

* Register interface Nam ngCont ext Ext for access as a
* OCRBA Interace
20 CALL "CRBREG' US| NG CCBNAM NG NAM N- EF2D- | NTERFACE.
SET W5 CRBREG TO TRUE.
PERFCRM CHECK- STATUS.

* Attain a reference to the Nam ng service using GBIJR R
DI SPLAY "Attaining reference to the Nam ng Service".
SET NAM NG SERVI CE TO TRUE.
21 CALL "GBIRR' USI NG SERVI CE- REQUESTED
SET W& GBJR R TO TRUE
PERFCRM CHECK- STATUS.

* Bind acc mgr object reference to the naming service
* setting up val ues
* set IDto object to resolve
MOVE SPACES TO W5 THE- STR NG
MOVE " BankQbj ect s_Account Myr* TO W5 THE- STR NG
MOVE LENGTH CF W5 THE- STRI NG TO
W6 THE- STR NG LENGTH

22 CALL " STRSET" USING IDL-IDCF NCF N1 CF
COBNAM NG NAM NGOONT- 330B- ARGS
W6- THE- STR NG LENGTH
W& THE- STRI NG
SET W5 STRSET TO TRUE.
PERFCRM CHECK- STATUS.
* set kind to nothing
MOVE SPACES TO W5 THE- STR NG
MOVE 1 TO W5 THE- STR NG LENGTH
22 CALL " STRSET" USINGKIND CF NCF N1 CF
COBNAM NG NAM NGOONT- 330B- ARGS
W5- THE- STR NG LENGTH
W&- THE- STRI NG
SET W5 STRSET TO TRUE.

65

CHAPTER 2 | Developing the FNB COBOL Back-End Server

Example 4: FNBSV Server Mainline Module (Sheet 5 of 11)
PERFCRM CHECK- STATUS.
* A sequence of nane conponents is used by cosnam ng to describe

* a path in the nam ng service graph.
* For deno purposes, just branch off root

23 MOVE 1 TO W8 SEQUENCE- LENGTH
SET COSNAM NG NAMVE TO TRUE.
24 CALL "SEQALLGC' US| NG W5 SEQUENCE- LENGTH
NAMVES- TYPE
NAMES- TYPE- LENGTH
N- SEQUENCE CF

CCENAM NG- NAM NGOCNT- 330B- ARGS.
SET W5 SEQALLCC TO TRUE.
PERFCRM CHECK- STATUS.

MOVE 1 TO SEQUENCE-NMAXIMM CF N SEQUENCE CF
CCBNAM NG- NAM NGOCNT- 330B- ARGS.

MOVE 1 TO SEQUENCE- LENGTH CF N-SEQUENCE CF
COSNAM NG NAM NGOONT- 330B- ARGS.

25 CALL " SEQBET" USI NG N SEQUENCE CF
QOCBNAM NG NAM NGOONT- 330B- ARGS
WB- SEQUENCE- LENGTH
N1 CF
QOCBNAM NG NAM NGOONT- 330B- ARGS.
SET W5 SEQBET TO TRUE.
PERFORM CHECK- STATUS.
* set obj val ue
26 SET CBJ OF OCSNAM NG NAM NGOONT- 330B- ARGS TO
ACOMER- CBJ.
* Bind acc mgr object reference to the nam ng service
DI SPLAY “Trying to Bind to the Naming Service...".

SET CCBNAM NG NAM NGOONTEXTEX- 330B TO TRUE

27 CALL " CRBEXEC! USI NG NAME- SERVI CE- CBJ
COSNAM NG NAM N- EF2D- CPERATI ON
COSNAM NG- NAM NGOONT- 330B- ARGS
NAMES- USER- EXCEPTI ONS.
SET W&- CRBEXEC TO TRLE
PERFCRM CHECK- STATUS.

28 * already bound exception, call rebind

66

Writing the Server

Example 4: FNBSV Server Mainline Module (Sheet 6 of 11)

I F D CF NAVES- USER EXCEPTI ONS = 4
SET D NO USEREXCEPTI ON CF NAMES- USER- EXCEPTI ONS TO TRUE
Dl SPLAY "Al ready bound exception Thrown..."
D SPLAY "Trying to Rebind to the Nam ng Service..."

* Rebind acc ngr object reference to the naning service
* setting up val ues
* set IDto object to resolve
MOVE SPACES TO Ws- THE- STR NG
MOVE " Bank(hj ect s_Account Myr" TO W5 THE- STR NG
MOVE LENGTH CF W5 THE- STR NG TO
W5- THE- STRI NG LENGTH

CALL " STRSET" USING IDL-ID OF NCF N1 CF
CCBNAM NG NAM NGOONT- A492- ARGS
W6 THE- STRI NG LENGTH
W& THE- STRI NG

SET W5 STRSET TO TRUE

PERFCRM CHECK- STATUS

* set kind to nothing

MOVE SPACES TO W5 THE- STR NG

MOVE 1 TO W5 THE- STRI NG LENGTH

CALL " STRSET" USING KIND CF N CF N1 CF
CCBNAM NG NAM NGOONT- A492- ARGS
W6 THE- STRI NG LENGTH
W& THE- STRI NG

SET W5 STRSET TO TRUE

PERFCRM CHECK- STATUS

* A sequence of nane conponents is used by cosnam ng to describe
* a path in the naning service graph.
* For deno purposes, just branch off root

MOVE 1 TO W5 SEQUENCE- LENGTH
SET OCBNAM NG NAME TO TRUE
CALL "SEQALLCC! USI NG W5 SEQUENCE- LENGTH
NAMES- TYPE
NAMES- TYPE- LENGTH
N SEQUENCE CF
CCBNAM NG- NAM NGOONT- A492- ARGS
SET W& SEQALLOC TO TRUE
PERFCRM GHECK- STATUS

MOVE 1 TO SEQUENCE-MAXIMM CF N SEQUENCE CF
COSNAM NG NAM NGCOONT- A492- ARGS

67

CHAPTER 2 | Developing the FNB COBOL Back-End Server

Example 4: FNBSV Server Mainline Module (Sheet 7 of 11)

MOVE 1 TO SEQUENCE-LENGTH CF N SEQUENCE CF
COSNAM NG NAM NGOCNT- A492- ARGS

CALL " SEQSET" USI NG N SEQUENCE COF
COBNAM NG NAM NGOONT- A492- ARGS
WE- SEQUENCE- LENGTH
N1 CF
COBNAM NG NAM NGOONT- A492- ARGS
SET W& SEQBET TO TRUE
PERFORM CHECK- STATUS
* set obj val ue
SET CGBJ OF COSNAM NG NAM NGOONT- A492- ARGS TO
ACOMER CBJ
* Rebind acc ngr object reference to the naning service

SET COSNAM NG NAM NGOONTEXTEX- A492 TO TRUE

CALL " CRBEXEC' US| NG NAME- SERVI CE- CBJ
CCBNAM NG NAM N- EF2D- CPERATI ON
CCBNAM NG- NAM NGOONT- A492- ARGS
NAMES- USER- EXCEPTI ONS

SET W5 CRBEXEC TO TRUE

PERFCRM CHECK- STATUS

I F NOT D NO USEREXCEPTI CN CF NAMES- USER EXCEPTI ONS
PERFCRM Bl ND- EVAL

ELSE
Dl SPLAY "Rebi nd Success.."

END- I F

* clean up after ourselves
29 CALL " SEQFREE" USI NG N- SEQUENCE CF
CCBNAM NG NAM NGOONT- A492- ARGS
SET W5- SEQFREE TO TRUE
PERFCRM CHECK- STATUS
ELSE
| F NOT D NO USEREXCEPTI ON OF NAMES- USER- EXCEPTI ONS
PERFCRM Bl ND- EVAL
ELSE
D SPLAY "Bi nd Success.."
END- | F
* clean up after oursel ves
CALL " SEQFREE" USI NG N- SEQUENCE COF
CCSNAM NG- NAM NGOONT- 300B- ARGS
SET Ws- SEQFREE TO TRUE

68

Writing the Server

Example 4: FNBSV Server Mainline Module (Sheet 8 of 11)

PERFCRM CGHECK- STATUS
END- | F.

DI SPLAY "A ving control to the ORB to process Requests".

30 CALL "COARWN'.
SET W& COARUIN TO TRUE.
PERFCRM CHECK- STATUS.

EXI T- PRG
31 PERFCRM CLCSE- FI LE.

DI SPLAY " Bank shutting down..."
CALL " SHUTDOM'.
STCP RN

LR E R R EEEEE TR S SRR EEEEEEEEEEEEEEEEREEEEEEEEEEEEEEEEEEEEEEE]

* Check Errors Copybook

D R

OCPY GHKERRS.

CPEN-FI LE.

CPEN | - O ACOOUNTS.
I F ACCOUNT- STATUS NOT = 0
| F ACOOUNT- STATUS = 97
DI SPLAY ' *** jntegrity check successful
'server starting ...'
DI SPLAY ' *** previ ous shutdown without file '
' closure detected. '
DI SPLAY ' *** |n future use M/S stop (/p) to stop '
‘server in orderly way'
ELSE
DI SPLAY ' *** A response of, ' ACOOUNT-STATUS ', was '
' det ect ed when openi ng the Account file.'
QGOBACK
END | F
END- | F.

CPEN | - O TX\H ST.
I F TXNH ST- STATUS NOT = 0
| F TXNH ST- STATUS = 97
DI SPLAY ' *** integrity check successful '
‘server starting ...'

69

CHAPTER 2 | Developing the FNB COBOL Back-End Server

Example 4: FNBSV Server Mainline Module (Sheet 9 of 11)

D SPLAY ' *** previ ous shutdown without file '
' closure detected. '
D SPLAY ' *** |n future use M/S stop (/p) to stop '
‘server in orderly way'
ELSE
DI SPLAY ' *** A response of, ' TXNH ST-STATUS ', was '
' det ect ed when opening the TXNH ST file.'
QGOBACK
END- | F
END- | F.
CPEN | - O TXNNUM
I F TXNNUM STATUS NOT = 0
I F TXNNUM STATUS = 97
D SPLAY ' *** integrity check successful '
‘server starting ...'
Dl SPLAY ' *** previ ous shutdown without file '
' closure detected. '
D SPLAY ' *** |n future use M/S stop (/p) to stop '
‘server in orderly way."'
ELSE
Dl SPLAY ' *** A response of, ' TXNNUM STATUS ', was '
' det ect ed when opening the Txnnumfile."'

GOBACK
END-| F
END- | F.

EXIT.

CLCSE-FI LE

CLCSE ACOOUNTS.
| F ACCOUNT- STATUS NOT = 0
DI SPLAY ' *** A response of, ' ACOOUNT-STATUS ', was '
"detected when closing the Account file.'
END- | F.
CLCSE TXNH ST.
I F TXNH ST- STATUS NOT = 0
DI SPLAY ' *** A response of, ' TXNH ST- STATUS ', was '
"detected when closing the TXNH ST file.'
END- | F.

CLCSE TXNNUM
I F TXNNUM STATUS NOT = 0

70

Writing the Server

Example 4: FNBSV Server Mainline Module (Sheet 10 of 11)

D SPLAY ' *** A response of, ' TXNNUM STATUS ', was '
"detected when closing the Txnnumfile.'
END-| F.

EXT.

RS E RS SRR E S SRR RS SRS S SRR ER SRR R RS SR EEEEEEEEEEEEEE]

* Bind Eval uate checks if a user exception is returned from
* the bind/rebind operation and deals with the user exception if
* one is thrown.

RS SRS S S E S EEE S SRR RS SRS SRR SRR SRR E RS SR EEEEEEEEEEEEEE]

EVALUATE TRUE

* Cannot Proceed exception thrown
WHEN D- COBNAM NG NAM NGOONTEXT- 9F29 CF
NAMES- USER- EXCEPTI ONS
D SPLAY "Bi nd Wnsuccessful ...
MOVE SPACES TO W5 EXCEPTI ON- STRI NG
MOVE EX- COBNAM NG NAM NGOONTEX- 1482 TO
WB- EXCEPTI O\ STR NG LEN

PERFCORM THROW USER- EXCEPTI ON

* | nval i dName exception thrown
WHEN D- COBNAM NG NAM NGOONTEXT- 29EC CF

NAMES- USER- EXCEPTI ONS

D SPLAY "Bi nd Unsuccessful"

MOVE SPACES TO W5 EXCEPTI ON- STRI NG

MOVE EX- COBNAM NG NAM NGOONTEX- 9079 TO
W6- EXCEPTI ON- STR NG LEN

PERFCORM THROW USER- EXCEPTI ON

END- EVALUATE

LR R R RS SRR SRR RS EEEEEEEEEEEEEEEEREEEEEEEEEEEEEEEEEEEEEES]

*

* Print exception nessage
*

LR R R R R RS R R R EEE R EEEEEEEEEEEEEEEEEEE]

THROW USER- EXCEPTI N

*

71

CHAPTER 2 | Developing the FNB COBOL Back-End Server

Explanation of the batch FNBSV
module

72

Example 4: FNBSV Server Mainline Module (Sheet 11 of 11)

CALL "STRGET" USING EXCEPTION-ID CF
NAMES- USER- EXCEPTI ONS
W& EXCEPTI ON- STRI NG LEN
WE- EXCEPTI ON- STRI NG

SET W5 STRGET TO TRUE

PERFCRM CHECK- STATUS.

Dl SPLAY "Exception ID : " W5 EXCEPTI ON-STR NG

CALL "STRFREE' USING EXCEPTION-ID CF
NAMES- USER- EXCEPTI ONS.

SET W& STRFREE TO TRUE

PERFCRM CHECK- STATUS.

MOVE 12 TO RETURN- CCDE
Q0 TO EXI T- PRG

The FNBSV module can be explained as follows:

1. This section defines the files to be used by the server application for
storing account data, transaction history data, and
last-transaction-history-key-used-per-account data.

2. The COBOL SELECT statement entry for file processing, for use with the
QOCPY. REPLAQ NG statement, is copied from the | GRSLCT copybook.

3. The record layouts for storing account data, transaction history data,
and last-transaction-history-key-used-per-account data are copied from
the FNBRECS copybook.

4. The COBOL FDstatement entry for file processing, for use with the
OCPY. REPLAQ NG statement, is copied from the | GRFD copybook.

5. Data definitions used for working with operation parameters and return
values for each Naming Service interface, defined in the cosNamM IDL
member, are copied from the NAMES copybook.

6. Data definitions used for working with operation parameters and return
values for each FNB server interface, defined in the FNB IDL member,
are copied from the FNB copybook.

10.

11.

12.

13.

14.

15.

16.

17.

18.
19.

Writing the Server

Various Orbix COBOL definitions, such as REQUEST- | NFOused by the
QOAREQ function, and CRBI X- STATUS- | NFORVATI ON which is used to
register and report system exceptions raised by the COBOL runtime,
are copied from the OORBA copybook.

The appropriate definitions to allow the program to accept parameters
for use with the CRBARGS call are copied from the PROCPARMcopybook.
The CPEN- FI LE paragraph is performed to open the AGOOUNTS, TXNH ST,
and TXNNUMdata sets.

CRBSTAT is called to register the CRBI X- STATUS- | NFCRVATI ON block that
is contained in the OCRBA copybook. Registering the

CRBI X- STATUS- | NFCRVATI ON block allows the COBOL runtime to
populate it with exception information, if necessary.

CRBARGS is called to initialize a connection to the ORB, and to read the
command-line arguments to the program, which are specified as
parameters on the PPARM JCL parameter.

CRBSRVR s called to set the server name.

CRBREG is called to register the Account Myr interface with the Orbix
COBOL runtime.

CBINEWiIs called to create a persistent server object of the Account Myr
type. The object reference created encapsulates the specified object 1D
and interface name.

CBITCSTRIs called to translate the object reference created by CBINEW
into a stringified IOR. The stringified IOR is then written to the | GRFI LE
member.

STRGET is called to copy the characters in the unbounded stringified
IOR to a bounded string.

STRFREE is called to release the dynamically allocated memory for the
unbounded stringified IOR.

The account manager IOR is written to file.

CRBREG is called to register the Account, Qurrent Account, and

O edi t Car dAccount interfaces respectively with the Orbix COBOL
runtime.

73

CHAPTER 2 | Developing the FNB COBOL Back-End Server

74

20.

21.

22.

23.
24.
25.
26.

27.

28.

29.
30.

31.

CRBREG s called again to register the Nam ngCont ext Ext interface with
the Orbix COBOL runtime, so that it can be accessed as a CORBA
interface.

CBIR Ris called to obtain an object reference to the Naming Service.

STRSET is called to set the i d and ki nd fields of the sequence member
for the name sequence that is now about to be built.

A sequence of length 1 is allocated.
SEQALLCC s called to allocate initial storage for the sequence.
SEQSET is called to create the first sequence element.

Set the account manager object that you want to bind into the Naming
Service.

CRBEXEC is called to allow for invocations on the server interface
represented by the supplied object reference.

If the already bound exception is thrown, a rebind is attempted and
steps 22-27 are then repeated.

SEQFREE is called to release the name sequence.

QOOARWN is called, to enter the CRB: : run loop, to allow the ORB to
receive and process client requests.

The CLCSE- FI LE paragraph is called to close the ACOOUNT, TXNH ST, and
TXNNUMdata sets.

Building the Server

Building the Server

This section describes how to build the FNB COBOL server.

Overview
Note: The server is not supplied pre-built, so you must complete the
steps described in this section.

Before building the server Before you build the server ensure that you have completed the steps

described in “Generating COBOL copybooks for Naming Service” on
page 32 and “Generating COBOL copybooks for the FNB server” on

page 32.

Sample JCL used to compile and link the FNB back-end server mainline and
server implementation is in or bi xhl gq. DEMOS. OOBCL. BLD. JCL(FNBSB) . When
this JCL has successfully executed, it results in a load module that is
contained in or bi xhl g. DEMOS. QCBCL. LOAD(FNBSV) .

JCL to build the server

75

CHAPTER 2 | Developing the FNB COBOL Back-End Server

76

In this chapter

CHAPTER 3

Running the FNB
COBOL Back-End

Server

This chapter describes how to start the COBOL back-end server
component of the FNB demonstration.

Note: You must start the back-end server on 0S/390 before you start the
front-end and middle-tier components on Windows or UNIX. After you
have completed this chapter see the First Northern Bank Tutorial supplied
with Orbix for details of how to start the front end and middle tier.

This chapter discusses the following topics:

Prerequisites page 78
Starting the Server page 83
After Starting the Server page 84

77

CHAPTER 3 | Running the FNB COBOL Back-End Server

Prerequisites

Overview

In this section

78

This section describes what you need to do before you can actually start the
FNB COBOL back-end server on 0S/390.

Note: See the Mainframe Installation Guide for more details about
customizing various services such as the Naming Service.

This section discusses the following topics:

Creating the VSAM data sets page 79
Starting the Orbix Locator Daemon page 80
Starting the Orbix Node Daemon page 81
Starting the Naming Service page 82

Prerequisites

Creating the VSAM data sets

Overview As explained in “Back-tier CORBA server” on page 5, the FNB COBOL
server uses four VSAM data sets for object data persistence. Before you can
start the server and run the FNB demonstration these data sets must be
created.

Summary of data sets To recap, the four data sets used store the following data:

® Account data—this includes an alternate index, to allow for referencing

account records by account number or account type.
® Transaction history.
® Last used account number.
® Last used transaction history key (for each account).

JCL to create the data sets You can use the JCL in or bi xhl g. DEM3S. COBCL. RUN JCL(FNBVSAN) to create
these VSAM data sets.

Note: An IEC161I rc 39 with VSAM error code 100 is generated when
you submit the FNBvSAMJCL. This error is normal and can be ignored.

79

CHAPTER 3 | Running the FNB COBOL Back-End Server

Starting the Orbix Locator Daemon

Overview

JCL to start the Orbix locator
daemon

Locator daemon configuration

80

An Orbix locator daemon must be running on the server's location domain
before you try to run the server application. The Orbix locator daemon is a
program that implements several components of the ORB, including the
Implementation Repository. The locator runs in its own address space on
the server host, and provides services to the client and server, both of which
need to communicate with it.

When you start the Orbix locator daemon, it appears as an active job waiting
for requests. See the CORBA Administrator’s Guide for more details about
the locator daemon.

If the Orbix locator daemon is not already running, you can use the JCL in
or bi xhl q. JOL(LOCATCR) to start it.

The Orbix locator daemon uses the Orbix configuration member for its
settings. The JCL that you use to start the locator daemon uses a sample
configuration member that is provided in or bi xhl g. CONFI G DEFAULT@ .

Prerequisites

Starting the Orbix Node Daemon

Overview

JCL to start the Orbix node
daemon

Node daemon configuration

An Orbix node daemon must be running on the server’s location domain
before you try to run the server application. The node daemon acts as the
control point for a single machine in the system. Every machine that will run
an application server must be running a node daemon. The node daemon
monitors and manages the application servers running on that machine. The
locator daemon relies on the node daemons to start processes and inform it
when new processes have become available.

When you start the Orbix node daemon, it appears as an active job waiting
for requests. See the CORBA Administrator’s Guide for more details about
the node daemon.

If the Orbix node daemon is not already running, you can use the JCL in
or bi xhl q. JOL(NCDEDAEMN) to start it.

The Orbix node daemon uses the Orbix configuration member for its
settings. The JCL that you use to start the node daemon uses a configuration
member that is provided in or bi xhl g. CONFI G DEFAULT@ .

81

CHAPTER 3 | Running the FNB COBOL Back-End Server

Starting the Naming Service

Overview

JCL to start the Naming Service

Naming Service configuration

82

The Naming Service maintains a database of names and the objects
associated with them. An association between a name and an object
is called a binding. The IDL interfaces to the Naming Service provide
operations to access the database of bindings. For example, you can create
new bindings, resolve names, and delete existing bindings.

IONA’s implementation of the Naming Service is implemented as a normal
Orbix server. This server contains objects that support the standard IDL
interfaces to the Naming Service. These interfaces are defined in

or bi xhl . I NCLUDE. OMG | DL(QCBNAM) . See the CORBA Programmer’s
Guide, C++ for more details about the Naming Service.

If the Naming Service is not already running, you can use the JCL in
or bi xhl q. JOL(NAM NG to start it.

The Naming Service uses the Orbix configuration member for its settings.
The JCL that you use to start the Naming Service uses a configuration
member that is provided in or bi xhl g. CONFI G DEFAULT@ .

Starting the Server

Starting the Server

Overview

JCL to run the server

JCL to publish the Naming Service
IOR

This section describes how to run the FNB COBOL back-end server. The
following topics are discussed:

® “JCL to run the server” on page 83.
® “JCL to publish the Naming Service IOR” on page 83.

To run the supplied FNB server application, submit the following JCL:

or bi xhl q. DEM25. COBCL. RUN JCL(FNBSV)

Note: You should use the 0S/390 STCP (/ P) operator command to
subsequently stop the server. Otherwise, the server cannot close the VSAM
data sets and will issue a warning the next time it tries to open them.

When you run the server, the object reference of the AccountManager
factory object is automatically published in the Naming Service.

To allow the FNB demonstration mid-tier to access the COBOL back-end
server, the client must be able to obtain the IOR for the Naming Service. To
publish the IOR for the Naming Service, submit the following JCL:

or bi xhl g. DEMDS. GOBCL. RUN. JOL(FNBNSI OR)

This writes the IOR for the Naming Service to or bi xhl g. DEM3S. | CGR(NS) .

83

CHAPTER 3 | Running the FNB COBOL Back-End Server

After Starting the Server

Overview

Copying Naming Service IOR to
Windows or UNIX

Contacting the Mainframe
Naming Service

84

This section describes two extra steps that must be completed after you
have started the FNB COBOL server on 0S/390 but before you start the
front-end and middle-tier components of the FNB demonstration on
Windows or UNIX. These steps are essential to ensure that the front-end
and middle-tier components can successfully contact the mainframe server.

Note: After you have completed these two steps, the front-end and
middle-tier components can be started as normal, as described in the First
Northern Bank Tutorial that is supplied with Orbix.

The following topics are discussed:
® “Copying Naming Service IOR to Windows or UNIX” on page 84.
® “Contacting the Mainframe Naming Service” on page 84.

The IOR member in or bi xhl q. DEMDS. | OR(NS) is a simple text file that
contains the IOR for the back-end Naming Service on 0S/390.

You must copy this IOR file to the Windows or UNIX host where you have
installed the front-end and middle-tier components of the FNB
demonstration. You should copy the IOR file to the

instal | -dir/asp/ 6.0/ denos/ common/ f nb directory, whereinstal | -dir
represents the full path to your installation directory.

After you have copied the IOR for the back-end Naming Service to the
relevant Windows or UNIX host, enter the following command on that host,
in the i nstal | -di r/ asp/ 6. 0/ denos/ conmon/ f nb directory:

itant -Dmai nfrane_ns_i or_fil e=mai nfrane. i or
add_f eder at ed_mai nfrane

Note: Even though you can give the IOR file any name, you should call it
something meaningful, such as mai nfrane. i or in the preceding example.

After Starting the Server

The preceding command allows the middle-tier client to subsequently
contact the Naming Service on the 0S/390 backend instead of the local
Naming Service on its own host.

At this stage, the front-end and middle-tier components of the FNB
demonstration can now be started on Windows or UNIX. See the First
Northern Bank Tutorial that is supplied with Orbix for details of how to start
these components.

85

CHAPTER 3 | Running the FNB COBOL Back-End Server

86

	Preface
	Introduction
	First Northern Bank Architecture
	CORBA Banking Application
	J2EE Internet Banking Application
	Web Services Credit Card Validation Application

	Developing the FNB COBOL Back-End Server
	Introduction
	Purpose and Design
	Location of Supplied Elements

	Developing the Application Interfaces
	Defining IDL Interfaces
	Orbix IDL Compiler
	Generated Source Code and Copybooks

	Writing the Server
	Writing the Server Implementation
	Writing the Server Mainline

	Building the Server

	Running the FNB COBOL Back-End Server
	Prerequisites
	Creating the VSAM data sets
	Starting the Orbix Locator Daemon
	Starting the Orbix Node Daemon
	Starting the Naming Service

	Starting the Server
	After Starting the Server

