IONA

fgl Orbix®

Mainframe Management

User's Guide

Version 6.0, November 2003

Making Software Work Together™



IONA, IONA Technologies, the IONA logo, Orbix, Orbix/E, Orbacus, Artix, Orchestrator,
Mobile Orchestrator, Enterprise Integrator, Adaptive Runtime Technology, Transparent
Enterprise Deployment, and Total Business Integration are trademarks or registered
trademarks of IONA Technologies PLC and/or its subsidiaries.

Java and J2EE are trademarks or registered trademarks of Sun Microsystems, Inc. in the
United States and other countries.

CORBA is a trademark or registered trademark of the Object Management Group, Inc. in
the United States and other countries. All other trademarks that appear herein are the
property of their respective owners.

While the information in this publication is believed to be accurate, IONA Technologies PLC makes no warranty
of any kind to this material including, but not limited to, the implied warranties of merchantability and fitness for
a particular purpose. IONA Technologies PLC shall not be liable for errors contained herein, or for incidental or
consequential damages in connection with the furnishing, performance or use of this material.

COPYRIGHT NOTICE

No part of this publication may be reproduced, stored in a retrigval system or transmitted, in any form or by any
means, photocopying, recording or otherwise, without prior written consent of IONA Technologies PLC. No third
party intellectual property right liability is assumed with respect to the use of the information contained herein.
IONA Technologies PLC assumes no responsibility for errors or omissions contained in this book. This publica-
tion and features described herein are subject to change without notice.

Copyright © 2003 IONA Technologies PLC. All rights reserved.

All products or services mentioned in this manual are covered by the trademarks, service marks, or product
names as designated by the companies who market those products.

Updated: 15-Dec-2003

M3172



Contents

List of Figures

Preface

Part 1 Administrator's Guide

Chapter 1 Introduction to IONA Administrator
IONA Administrator
IONA Administrator Components
IONA Administrator Web Console
IONA Administrator Management Service
IONA Configuration Explorer
Orbix Configuration Authority
IONA Administrator Tasks

Chapter 2 Managing Orbix Mainframe Services
Introduction
Orbix Mainframe Instrumentation
Management Configuration
Monitoring Orbix Services on 0S/390

Part 2 Programmer’s Guide

Chapter 3 Introduction to Application Management
Introduction to IONA Administrator
Introduction to Java Management Extensions
Introduction to the Orbix Management API
Overview of Management Programming Tasks

vii

=
wr~ROoOoUIA W

17
18
19
20
22

25
26
28
31
33



CONTENTS

Chapter 4 Instrumenting CORBA C+ + Applications
Step 1—Identifying Tasks to be Managed
Step 2—Defining your MBeans
Step 3—Implementing your MBeans
Step 4—lInitializing the Management Plugin
Step 5—Creating your MBeans
Step 6—Connecting MBeans Together

Appendix A MBean Document Type Definition
The MBean Document Type Definition File

Glossary

Index

37
38
42
48
62
64
66

71
72

75

81



List of Figures

Figure 1:
Figure 2:
Figure 3:
Figure 4:
Figure b:
Figure 6:
Figure 7:
Figure 8:
Figure 9:

IONA Administrator

IONA Administrator Web Console

IONA Administrator Web Console Architecture
IONA Configuration Explorer

Orbix Configuration Authority

IONA Administrator Integration with 0S/390
IONA Administrator Components

JMX Management and Orbix

Example Parent-Child Relationship

Figure 10: Instrumented Plugin in IONA Administrator

Figure 11: Instrumented Plugin Application Overview

Figure 12: Instrumented Plugin Custom Exception

Figure 13: Instrumented Plugin Process MBean

Figure 14: Instrumented Plugin Child MBean



LIST OF FIGURES

vi



Audience

Organization of this guide

Preface

Orbix Mainframe provides full integration with the IONA Orbix Management
infrastructure, which provides support for enterprise-level management
across different platform and programming language environments. IONA
Administrator is a set of tools, integrated with IONA’s Adaptive Runtime
Technology, that enables seamless management of distributed enterprise
applications.

If you need help with this or any other IONA products, contact IONA at
suppor t @ona. com Comments on IONA documentation can be sent to
docs- suppor t @ona. com

Part 1 is aimed at 0S/390 systems programmers managing distributed
enterprise applications.

Part 2 is aimed at 0S/390 application programmers writing distributed
enterprise applications in C++ who wish to enable their applications for
management by IONA Administrator. It assumes a prior knowledge of C++.

This guide is divided as follows:

Part 1, “Administrator’s Guide”

This part is aimed at 0S/390 systems programmers. First it introduces Orbix
enterprise management in general, and the tools used to manage distributed
applications. Then it describes how to manage Orbix Mainframe services.

vii


mailto:support@iona.com
mailto:docs-support@iona.com

PREFACE

Related documentation

Additional resources

Typographical conventions

viii

Part 2, “Programmer’s Guide”

This part is aimed at 0S/390 application programmers writing distributed
enterprise applications in C++ who wish to enable their applications for
management by IONA Administrator. It explains how to enable CORBA
C++ applications for management, and display them in IONA
Administrator.

The Orbix Mainframe library includes the following related documentation:
®  Adminstrator’s Guide
® CORBA Programmer's Guide, C++ Edition

The Management User’s Guide in the Orbix library can also be referred to
for more details.

The latest updates to the Orbix Mainframe documentation can be found at
http://wmw i ona. cond support/ docs/ or bi x/ nai nf rame/ 6. 0/ i ndex. xm .

The IONA knowledge base contains helpful articles, written by IONA
experts, about Orbix and other products. You can access the knowledge
base at the following location:

http://ww i ona. cormd support/ know edge_base/ i ndex. xni

The IONA update center contains the latest releases and patches for IONA
products:

http://ww. i ona. com support/ updat es/ i ndex. xm

This guide uses the following typographical conventions:

Constant width Constant width (courier font) in normal text represents
portions of code and literal names of items such as
classes, functions, variables, and data structures. For
example, text might refer to the CORBA: : (j ect class.

Constant width paragraphs represent code examples
or information a system displays on the screen. For
example:

#i ncl ude <stdio. h>


http://www.iona.com/support/knowledge_base/index.xml
http://www.iona.com/support/updates/index.xml
http://www.iona.com/support/docs/orbix/mainframe/6.0/index.xml

Keying conventions

PREFACE

Italic Italic words in normal text represent emphasis and
new terms.

Italic words or characters in code and commands
represent variable values you must supply, such as
arguments to commands or path names for your
particular system. For example:

% cd /users/your_name

Note: Some command examples may use angle
brackets to represent variable values you must supply.
This is an older convention that is replaced with jtalic
words or characters.

This guide may use the following keying conventions:

No prompt When a command’s format is the same for multiple
platforms, a prompt is not used.

% A percent sign represents the UNIX command shell
prompt for a command that does not require root
privileges.

# A number sign represents the UNIX command shell

prompt for a command that requires root privileges.

> The notation > represents the DOS, Windows NT,
Windows 95, or Windows 98 command prompt.

Horizontal or vertical ellipses in format and syntax
descriptions indicate that material has been
eliminated to simplify a discussion.

[1 Brackets enclose optional items in format and syntax
descriptions.

{} Braces enclose a list from which you must choose an
item in format and syntax descriptions.

| A vertical bar separates items in a list of choices
enclosed in { } (braces) in format and syntax
descriptions.



PREFACE



Part 1

Administrator’'s Guide

In this part This part contains the following chapter:

Introduction to IONA Administrator page 3

Managing Orbix Mainframe Services page 17







In this chapter

CHAPTER 1

Introduction to
IONA
Administrator

IONA Administrator is a set of tools that enables you to manage
component-based distributed enterprise applications. This
chapter introduces IONA Administrator and outlines typical
administration tasks.

This chapter contains the following sections:

IONA Administrator page 4
IONA Administrator Components page 5
IONA Administrator Web Console page 8
IONA Administrator Management Service page 10
IONA Configuration Explorer page 11
Orbix Configuration Authority page 13
IONA Administrator Tasks page 15




CHAPTER 1 | Introduction to IONA Administrator

IONA Administrator

Overview

Scope of IONA Administrator

Assumptions

IONA Administrator is a set of IONA tools that enable you to manage and
configure component-based distributed enterprise applications. It is
integrated with IONA’s Adaptive Runtime Technology (ART). This enables
IONA Administrator to provide seamless management of IONA products and
any applications developed using those products.

IONA Administrator is not aimed solely at any specific technology (for
example, CORBA or Web services), but provides a generic management
paradigm that enables the application to be managed without the
administrator requiring knowledge of the technology used to create that
application.

IONA Administrator enables you to manage and configure distributed
applications that have been developed using Orbix and Orbix Mainframe.
For detailed information about the Orbix product range, see the IONA web
site:

http://waw. i ona. cond product s

IONA Administrator does not assume that you are familiar Orbix or Orbix
Mainframe. What is required is a basic understanding of distributed
applications, regardless of whether they are based on CORBA or Web
services. In fact, you can use IONA Administrator to manage any C++
system that has been enabled for management.


http://www.iona.com/products

IONA Administrator Components

IONA Administrator Components

Overview

IONA Administrator Web Console

IONA Administrator Management
Service

IONA Administrator includes the following main components:
®  “IONA Administrator Web Console”.

®  “IONA Administrator Management Service”.

®  “IONA Configuration Explorer”.

®  “Orbix Configuration Authority”.

Note: The IONA configuration explorer is introduced here for the sake of
completeness, but it is not supported with Orbix Mainframe.

The IONA Administrator Web Console provides a web browser interface to
IONA Administrator. It enables you to manage applications and application
events from anywhere, without the need for download or installation. It
communicates with the management service using HTTP (Hypertext
Transfer Protocol), as illustrated in Figure 1.

The IONA Administrator Management Service is the central point of contact
for accessing management information in a domain. A domain is an abstract
group of managed server processes within a physical location. The
management service is accessed by both the IONA Administrator Web
Console and by the /ONA Configuration Explorer.

Note: Managed applications can be written in C++. The same
management service process (i ona_ser vi ces. managenent ) can be used by
CORBA C+ + applications.



CHAPTER 1 | Introduction to IONA Administrator

IONA Configuration Explorer The IONA Configuration Explorer is a Java graphical user interface (GUI)
that enables you to manage your configuration settings. It communicates
with your Configuration Repository (CFR) or configuration file using [IOP
(Internet Inter-ORB Protocol).

Note: The IONA Configuration Explorer is not supported with Orbix
Mainframe. You must manually browse your Orbix Mainframe
configuration file.

Orbix Configuration Authority The Orbix Configuration Authority provides a web browser interface to
descriptive information about all Orbix configuration settings. You can
browse and search for information about Orbix configuration variables in
your CFR or configuration file.

IONA
Administrator
Web Console

HTTP I

Management Service

Managed
Entity

Domain

Figure 1: /ONA Administrator



Additional features

Adding management
instrumentation

IONA Administrator Components

Application programmers can add instructions to their code to monitor
specific components in their system. This is known as adding management
instrumentation.

IONA products provide default instrumentation that publishes core
information to the management service for any application built using these
products.

However, programmers might also wish to add custom instrumentation to
an application to suit their needs. IONA Administrator therefore enables full
instrumentation of server code. For information on how to write
instrumentation code, see “Programmer’s Guide” on page 23.



CHAPTER 1 | Introduction to IONA Administrator

IONA Administrator Web Console

Overview

Multiple applications and
domains

The IONA Administrator Web Console provides a standard web browser
interface to explore and manage distributed applications. The IONA
Administrator Web Console uses HTML and JavaScript to create a standard
explorer view to represent the data.

Figure 2 shows an example IONA Administrator Web Console interface.

-2 IONA Administrator - Microsoft Internet Explorer i =13l x|

File Edit Yiew Favarites Tools Help |

&Back - = - fat | Qsearch [GFavorites Media (4 | B-S = =l

Address [(€] hitpiflocahost 53185 adminfindex.da = @ |Links
AL
El& sample-domain A& Server Managed Object

Ve 55rivner:;ser\-'\ce'a narning @ iPAS.SerVer

reices. locator.! sample-dornaintype=Serer hame=iPAS. Server Domain=sample-dormain
=

p o] e value
Mame IPAS Server
Domain sample-dormain
ActiveProcesses  |{ IPAS. Server. Default }
State Running
shutdown
@ none
Y | i
@ C [ i

Figure 2: /ONA Administrator Web Console

You can use one instance of the IONA Administrator Web Console to
manage multiple applications in a single domain. You also can use multiple
instances of the web console to manage multiple domains from a single
machine. This is shown in Figure 3.



Interaction with the management
service

Web Console architecture

IONA Administrator Web Console

Each IONA Administrator management service makes management data
available using a special URL. The management service is the central point
of contact for management information in each domain. It publishes
information about all managed servers within its domain.

Figure 3 gives an overview of this architecture. Each IONA Administrator
Web Console interacts with one management service only. This means that
each console can administer the managed servers in one of the two domains

only.

Multiple instances of the web console can interact with the same
management service through the same HTTP port.

IONA
Administrator
Web Console 1

HTTP

IONA IONA
Administrator Administrator
Web Console 2 Web Console 3

HTTP HTTP

Management Service

Managed
Application

Domain A

N

Management Service

Application

Managed

Domain B

Figure 3: /ONA Administrator Web Console Architecture




CHAPTER 1 | Introduction to IONA Administrator

IONA Administrator Management Service

Overview

Management information

Key features

10

The IONA Administrator management service is the central point of contact
for accessing management information in a domain. The management
service acts as a buffer between managed applications and management
tools.

The management service maintains key state information, reducing the need
to constantly access the managed applications, and thereby improving
performance.

The management service stores and publishes information about all
managed servers within its domain. It exposes attributes, operations, and
events for all managed servers in a domain. The management service also
stores information about user roles and passwords for each user in a
domain.

Note: Each domain can have only one management service.

Key features provided by the management service are:

®  (Centralized repository for all management information.

®  (Centralized collection of event logging information.

®  Persistent storage of event log and agent information.

® Load management gateway plugins (for example, an SNMP plugin).
®  (Capability to terminate server processes.

For more detailed information, see the Management User’s Guide at
http://ww i ona. cond support/ docs/ e2a/ asp/ 6. 0/ adm n. xm .



http://www.iona.com/support/docs/e2a/asp/6.0/admin.xml

IONA Configuration Explorer

IONA Configuration Explorer

Overview The IONA Configuration Explorer is an intuitive Java GUI that enables you to

view, modify, and search for configuration settings.

In Figure 4, the Contents pane on the left shows the configuration scopes
and namespaces displayed for a domain named ny- donmai n. The Details
pane on the right displays the configuration variables and their values.
Clicking on a icon on the left displays its associated variables on the right.

14 IONA Configuration Explorer 6.0 =18 =]
Domain Edit Help
almE X
Contents Dretails
2% Domains Mame Yalue IDL Type
@ E APPSERVER_CLASSPATH [filatestkitaspis. Mlibij2ee... |string
& (J demos admin_plugins locator_adrn,config_adm,i.. string
& @ iona_senvices MANAGEMENT_CLASSPA.. Fiatestkitetcidamains;fil... string
g :;ETE:,ERB canfig.domain.owner string
g iPAS export_canfig.arbacus false string
g multicast_dema admin_parser_name admin_parser.tcl string
@ PAC_UTIL IPAS_REPOSITORY_URL  fileiit\atest-kitwarlmy-da... |string
g :E:;:_bz'l?aicers APPSERVER_LOG fAlatest-kitwarmy-domaint... |string
B plugins CLASSLOADING_CACHE... ffile:iifilatest-kitvearimy-do... |string
B url_resolvers LOCAL_MNODE_DAEMOR... [IOR:01000000210000004 ... string
= initial_refere.nces 02k data.root flatest-kitwar string
E ‘;T:J”er;;a;;zrﬁem CLOUDSCAPE_DATABAS.. Fiatestkitetcidhs string
i url_pratacals IT_GLOBAL_REFOSITORY [filedifiatest-kitwarmy-do... |string
i hinding IT_LocatorReplicas iona_serices. locatar=cor... |string
orh_plugins local_log_stream jiiop_pr... |string
IT_MameSericeReplicas  |iona_serices.naming=10... |string
canfig.daemaon.install false string
IMS_CLASSPATH flatest-kitaspl6. 0Mibjms.... |string
IPAS_ARCHIVE_URL file:fif\atest-kitwarmy-do... |string
EXTERMAL_SERVICES_L.. [flatest-kitwatmy-domaint... |string
Ready
B Configuration |

Figure 4: |ONA Configuration Explorer

11



CHAPTER 1 | Introduction to IONA Administrator

Multiple Domains

12

You can use a single instance of the IONA Configuration Explorer to manage
configuration of multiple domains, both locally and on remote host
machines. The IONA Configuration Explorer communicates with CFRs in
any domains that it can contact. It can also read file-based domains where
they are locally visible.

Note: Because the CFR is not supported with Orbix Mainframe, and the
Configuration Explorer is run off-host, there is currently no way for the
Configuration Explorer to interact with an Orbix Mainframe configuration
domain. Therefore, you must manually browse the configuration file
located in H.Q DOVAI NS in your Orbix Mainframe installation.



Orbix Configuration Authority

Orbix Configuration Authority

Overview

/2 Orbix E2A Configuration Authority - Microsoft Internet Explorer =lol x|

File Edit Yiew Favorites Tools Help ‘

The Orbix Configuration Authority displays text descriptions of all Orbix
configuration settings. Its web browser interface enables you to navigate to
and search for configuration information, as shown in Figure 5.

The navigation tree, on the left of the screen displays a hierarchical list of
configuration namespaces and variables. The details pane, on the right,
displays information about the configuration variables associated with the
selected node on the tree.

Bk - = - D | Qisearch [GFavortes Ehmeda (4 | B S ¥ - 12 o

Address [&] http:jlocalhost 53185jcajca html | @aeo |Lnks

ﬂ Configuration Autharity
[ COMet ! Configuration Description

Orbix E2A Configuration Authority [Beta]

Configuration Authority

[ bameservice Variahle

(] addr : destinations queue_list  quewe fist specifies the names of the initial queus objects
) aert_container . JMS creates to support point to point messages when it
B3] binein : starts. Defaults to ["ruewel”, "queuwe"].

[ classloader destinations:topic_list  topic_fist specifies the names of the initial topic objects

£ configuration ' IS creates to support publish and subscribe messages
) corbalncs : when it starts. Defaults to [“topic0”, "topic?"]

[ destinations
] domain_plugins
T evert barrier
) evert history
[ event listener

evert log

gvert processor |
bl
| _'I_I :

l_ l_ ’_ E Local inktranet Y

Figure 5: Orbix Configuration Authority
The Search box located at the top left of the screen enables you to search

for information about configuration variables containing a specified text
string.

13



CHAPTER 1 | Introduction to IONA Administrator

For more detailed information about the Orbix Configuration Authority, see
see the Management User’s Guide at
http://ww. i ona. cond suppor t/ docs/ e2a/ asp/ 6. 0/ adni n. xm .

14


http://www.iona.com/support/docs/e2a/asp/6.0/admin.xml

IONA Administrator Tasks

IONA Administrator Tasks

Overview

Managing domains

Managing servers

Typical Orbix management tasks that you can perform with IONA
Administrator include:

®  “Managing domains”.

®  “Managing servers”.

®  “Monitoring events”.

®  “Managing configuration settings”.
®  “Getting started”

This section gives a quick overview of these tasks, and shows where you
can find further information in this book.

Typical domain management tasks include:
® Viewing domains.
®  Monitoring domain status (whether it is running or stopped).

For more details of how to manage domains, using the IONA Administrator
Web Console, see the Management User’s Guide at
htt p: // waw. i ona. coni suppor t/ docs/ e2a/ asp/ 6. 0/ adm n. xni .

Typical server management tasks include:

®  Viewing servers.

®  Monitoring server status (whether it is running or inactive).

®  Controlling servers (shutting down, setting attributes, and invoking
operations).

For more details of how to manage servers, using the IONA Administrator
Web Console, see the Management User’s Guide at
http: //waw. i ona. cond suppor t/ docs/ e2a/ asp/ 6. 0/ adm n. xm .

15


http://www.iona.com/support/docs/e2a/asp/6.0/admin.xml
http://www.iona.com/support/docs/e2a/asp/6.0/admin.xml

CHAPTER 1 | Introduction to IONA Administrator

Monitoring events

Managing configuration settings

Getting started

16

Typical event management tasks include:

®  Selecting a domain in which to manage events.

®  Viewing full details of an event.

®  Setting event viewing options. For example, you can set the number of
events viewed, set the kind of events viewed.

For more details of how to manage events, using the IONA Administrator

Web Console, see the Management User’s Guide at
http://ww i ona. coml support/ docs/ e2a/ asp/ 6. 0/ adm n. xm .

Typical configuration management tasks include:

® Loading up a domain.

®  Viewing configuration settings.

®  Searching your configuration.

®  Finding text descriptions of configuration variables.

For more details of how to find text descriptions of configuration variables
using the Orbix Configuration Authority and manage configuration settings

for the management service, see the Management User’s Guide at
htt p: // waw. i ona. coni suppor t/ docs/ e2a/ asp/ 6. 0/ adm n. xni .

For details of how to get started with the IONA Administrator Web Console,
see the Management User’s Guide at
http://ww. i ona. cond suppor t/ docs/ e2a/ asp/ 6. 0/ adni n. xm .



http://www.iona.com/support/docs/e2a/asp/6.0/admin.xml
http://www.iona.com/support/docs/e2a/asp/6.0/admin.xml
http://www.iona.com/support/docs/e2a/asp/6.0/admin.xml

In this chapter

CHAPTER 2

Managing Orbix
Mainframe
Services

Orbix Mainframe provides full integration with the IONA Orbix
Management infrastructure. This allows Orbix servers running
on the mainframe to be monitored from a centralized location,
using IONA Administrator. This chapter provides details on
Orbix Mainframe instrumentation and the configuration items
involved in managing Orbix Mainframe services.

This chapter discusses the following topics:

Introduction page 18
Orbix Mainframe Instrumentation page 19
Management Configuration page 20
Monitoring Orbix Services on 0S/390 page 22

17



CHAPTER 2 | Managing Orbix Mainframe Services

Introduction

Overview

Graphical overview

C++ and Java management

18

Windows or UNIX

Web Console
(off-host)

HTTP

This section provides an introductory overview of how IONA Administrator
components are used in the management of Orbix services running on
05/390.

Figure 6 provides a graphical overview of how IONA Administrator
components such as the Web Console and Management Service are used in
the management of Orbix services on 0S/390.

Windows or UNIX 0S/390

Management Service |_ liop IONA services running

(off-host) ‘ "1 on the mainframe

Figure 6: /ONA Administrator Integration with 0S/390

As shown in Figure 6, the Web Console and Management Service run
off-host and communicate with each other over HTTP. The Management
Service and the services running on 0S/390 communicate with each other
over |IOP.

Orbix Mainframe fully supports the C++ Management runtime and C++
Management APIs for developing instrumentation capabilities within your
Orbix applications. However, Orbix Mainframe does not include the Java
Management Service component. Instead, the Java Management Service
must be deployed in an off-host Orbix domain, and must be contactable by
the Orbix Mainframe environment.



Orbix Mainframe Instrumentation

Orbix Mainframe Instrumentation

Overview

Instrumentation components

Instrumentation demonstration

This section outlines the components involved in Orbix Mainframe
instrumentation. It discusses the following topics:

®  ‘“Instrumentation components”.
®  “Instrumentation demonstration”.

Orbix Mainframe instrumentation consists of:

®  Default core instrumentation—all Orbix applications can be configured
to expose ORB instrumentation statistics.

®  Naming Service—the Orbix Naming Service supports instrumentation
specific to management of, for example, naming contexts and load
balancing.

®  C++ custom development—the Orbix C++ Management API allows
you to develop customized instrumentation for your own Orbix
applications.

For more details on adding management instrumentation to an application,
see “Programmer’s Guide” on page 23.

An instrumentation demonstration is provided in the UNIX System Services
component of your Orbix Mainframe installation, as follows (where

instal | _dir represents the full path to your Orbix Mainframe installation on
UNIX System Services):

instal |l _dir/asp/ 6.0/ denos/ cor ba/ pdk/ i nst runent ed_pl ugi n

This instrumentation demonstration illustrates how to use the main
Management APIs and how to write your own Generic Service application.
You can use an ORB plug-in approach to build the Management code, to
instrument existing services such as the CICS and IMS server adapters.

19



CHAPTER 2 | Managing Orbix Mainframe Services

Management Configuration

Overview

Domain interaction

Configuration steps

20

This section provides details of the steps involved in configuring the
management of Orbix services on 0S/390. It also describes each of the
associated configuration items that need to be set on the mainframe host. It
discusses the following topics:

“Domain interaction”
“Configuration steps”

This section assumes that an off-host Orbix domain is available and has
been configured to enable management. It is also assumed that the Orbix
Mainframe domain is compatible with this off-host Orbix domain, and that
communication between them has already been verified. For example, if the
off-host domain has been configured to be fully secure, the Orbix Mainframe
domain must be deployed with a TLS domain. Before you attempt to run
any managed services on 0S/390, you should first confirm that the off-host
locator and the other off-host services can be contacted successfully (for
example, by using the i t adm n or CRXADM N tool from 0S/390).

The steps to enable the management of Orbix services on 0S/390 are:

1. Add the Management Service initial reference configuration setting to
the Orbix Mainframe configuration file at the global scope, as follows:

initial _references: | T_Mnt Service:reference = "I GR 000..";

The IOR can be obtained from the off-host configuration domain.

2. Enable ORB instrumentation by adding the following configuration
setting to the configuration scope for the relevant server:

pl ugi ns: orb: i s_nmanaged = "true";

3. Ensure that each service has a unique server ID across your entire
management domain by adding the following configuration item to the
configuration scope for the appropriate server:

pl ugi ns: i t_ngnt : nanaged_server _i d: nane = "."



Management Configuration

Note: By default, the ORB name of the relevant server is used as the
ID for a particular service. For example, to specify a unique server
name for the locator service, you can choose to set the preceding
variable to "i ona_servi ces. | ocat or. mai nfrane_host ", where

mai nf rame_host is the local TCP/IP hostname.

Enable instrumentation of the Naming Service by adding the following
configuration settings to the i ona_ser vi ces. nam ng configuration
scope:

pl ugi ns: orb: i s_managed = "true";

pl ugi ns: nam ng: i s_nmanaged = "true";

pl ugi ns: i t_ngmnt : managed_ser ver _i d: nane =
"i ona_servi ces. nam ng. mai nfrane_bost ";

21



CHAPTER 2 | Managing Orbix Mainframe Services

Monitoring Orbix Services on 0S/390

Overview

Steps

22

This section outlines the steps to monitor Orbix services on 0S/390.

The steps to monitor Orbix services on 0S/390 are:

Ensure that the Orbix off-host services are running. This includes the
Management Service.

Start the Orbix Mainframe managed services. On starting, these
services attempt to register themselves with the off-host Management
Service.

Note: If a managed server is unable to contact the off-host
Management Service, it starts and continues to run without issuing a
warning message. If there is a communication problem, for example,
the managed server does not appear in the Management console.

Start the Web Console. After the various services have been
successfully deployed, you can use the Web Console to contact the
Management Service, to monitor the state of each of the various
services.

Note: For more details on using the off-host Web Console and the
off-host Management Service refer to the Management User’s Guide at
htt p: // ww i ona. coni support/ docs/ e2a/ asp/ 6. 0/ adm n. xni .



http://www.iona.com/support/docs/e2a/asp/6.0/admin.xml

In this part

Part 2

Programmer’s Guide

This part contains the following chapters:

Introduction to Application Management page 25

Instrumenting CORBA C++ Applications page 37

MBean Document Type Definition page 71







In this chapter

CHAPTER 3

Introduction to

Application

Management

This chapter gives an overview of Orbix enterprise application
management. It introduces the IONA Administrator
management tools, Sun’s Java Management Extensions API,
and IONA’s Management API. It also provides an overview of

management programming tasks.

This chapter contains the following sections:

Introduction to IONA Administrator page 26
Introduction to Java Management Extensions page 28
Introduction to the Orbix Management API page 31
Overview of Management Programming Tasks page 33

25



CHAPTER 3 | Introduction to Application Management

Introduction to IONA Administrator

Overview

IONA Administrator Web Console

IONA Administrator Management
Service

IONA Configuration Explorer

26

IONA Administrator is a set of tools that enable administrators to_configure,
monitor and control distributed applications at runtime. Orbix provides
seamless management of all IONA products, or any applications developed
using those products, across different platform and programming language
environments. IONA Administrator includes the following main components:
®  “IONA Administrator Web Console”.

®  “IONA Administrator Management Service”.

®  “IONA Configuration Explorer”.

®  “Orbix Configuration Authority”.

The IONA Administrator Web Console provides a web browser interface to
IONA Administrator. It enables you to manage applications and application
events from anywhere, without the need for download or installation. It
communicates with the management service using HTTP (Hypertext
Transfer Protocol), as illustrated in Figure 7.

The IONA Administrator Management Service is the central point of contact
for accessing management information in a domain. A domain is an abstract
group of managed server processes within a physical location. The
management service is accessed by both the IONA Administrator Web
Console and by the /ONA Configuration Explorer.

Note: Managed 0S/390 applications can be written in C++. CORBA
C++ applications use the management service process,
i ona_servi ces. managenent .

The IONA Configuration Explorer is a Java graphical user interface (GUI)
that enables you to manage your configuration settings. It communicates
with your Configuration Repository (CFR) or configuration file, using I1OP
(Internet Inter-ORB Protocol).



Introduction to IONA Administrator

Figure 7 shows how IONA Administrator interacts with managed
applications to provide management capabilities.

IONA

Administrator
Web Console

HTTP

Management Service

Managed
Application

Orbix E2A Domain

Figure 7: IONA Administrator Components

Orbix Configuration Authority The Orbix Configuration Authority provides a web browser interface to
descriptive information about all Orbix configuration settings. You can
browse and search for information about Orbix configuration variables in
your CFR or configuration file.

Further information For detailed information about using IONA Administrator, see the
Management User’s Guide.

27



CHAPTER 3 | Introduction to Application Management

Introduction to Java Management Extensions

Overview

MBeans

The MBean server

28

Java Management Extensions (JMX) is a standards-based API from Sun that
provides a framework for adding enterprise management capabilities to user
applications. This section explains the main JMX concepts and shows how
JMX and Orbix interact to provide enterprise management for Java
applications. This includes both J2EE and CORBA Java servers.

This section includes the following:

*  “MBeans”.

®  “The MBean server”.

®  “Management instrumentation”.

®  “Standard and Dynamic MBeans”.

®  “Further information”.

The concept of an MBean (a managed bean) is central to JMX. An MBean is
simply an object with associated attributes and operations. It acts as a
handle to your application object, and enables the object to be managed.

For example, a Car MBean object, with an associated speed attribute, and
start() and stop() operations, is used to represent a car application
object, with corresponding attributes and operations. Application developers
can express their application objects as a series of related MBeans. This
enables administrators to manage these application objects using an
administration console (for example, IONA Administrator).

All the MBeans created by developers are managed and controlled by a
MBean server, which is provided by JMX. All MBeans that are created must
be registered with an MBean server so that they can be accessed by
management applications, such as Orbix.

Figure 8 shows a Java example of the JMX components at work. It shows
how these components interact with Orbix to provide management
capability for your application.



Introduction to Java Management Extensions

For simplicity, this diagram only shows one MBean. An application might
have multiple MBeans representing the application objects that you wish to
manage. In addition, new instrumentation code is not solely confined to the
MBean. You will need to add some new code to your sever implementation
(for example, to enable your server to contact the management service).

IONA
Administrator
Web Console

HTTP

Management Service

KEY
IIOP
Colour Component

JVM New instrumentation code

Supplied JMX component

Existing server application

Supplied Orbix component

JVM

I N

Orbix Domain

Figure 8: JMX Management and Orbix

29



CHAPTER 3 | Introduction to Application Management

Management instrumentation

Standard and Dynamic MBeans

Further information

30

Adding JMX management code to your application is also known as adding
management instrumentation or instrumenting your existing application.
These standard management terms are used throughout this book.

Figure 8 shows the new management instrumentation code as an MBean.
MBeans must be added to your application to enable it for management.

The MBeans discussed so far in this chapter are referred to as standard
MBeans. These are ideally suited to straightforward management scenarios
where the structure of managed data is well defined and unlikely to change
often. JMX specifies another category of MBeans called dynamic MBeans.
These are designed for when the structure of the managed data is likely to
change regularly during the lifetime of the application.

Implementing dynamic MBeans is more complex than for standard MBeans.
If your management solution needs to provide integration with existing and
future management protocols and platforms, using dynamic MBeans could
make it more difficult to achieve this goal. The examples cited in this book
use standard MBeans only.

For more information about JMX, see Sun’s JMX Instrumentation and Agent
Specification, and Reference Implementation Javadoc. These documents are
available online at:

http://j ava. sun. coni pr oduct s/ JavaManagenent /

For information on how to integrate IONA Administrator with other general
purpose management applications (for example, HP OpenviewT’VI or CA
UniCenter™), see the "SNMP Integration" chapter in the Management
User’s Guide.



http://java.sun.com/products/JavaManagement/

Introduction to the Orbix Management API

Introduction to the Orbix Management API

Overview

The IIOP Adaptor

Defining MBean relationships

JMX does not specify how MBeans communicate at the network protocol
level. IONA’s Orbix Management API is used to enable network
communications for MBeans. This API also enables you to specify
relationships between MBeans, and display MBeans in IONA Administrator.
This section includes the following:

®  “The IIOP Adaptor”.

®  “Defining MBean relationships”.

®  “C++ Instrumentation”.

The Orbix Management API enables network communication between the
MBean server and the management service over |IOP (Internet Inter-ORB
Protocol). This is performed using an [IOP adapter, which is contained in
the ORB plugin for the management service.

Figure 8 shows a J2EE example of this [IOP communication. This
cross-platform API also enables communication for CORBA Java and C+ +
servers.

The Orbix Management API also enables you to specify hierarchical parent—
child relationships between MBeans. For example, you might want to show
relationships between your application server and its lower-level processes.
These relationships can then be displayed in the IONA Administrator Web
Console.

Figure 9 shows example parent—child relationships displayed in the left
pane of the IONA Administrator Web Console.

31



CHAPTER 3 | Introduction to Application Management

C++ Instrumentation

32

a IONA Administrator - Microsoft Internet Explorer

o x|
File Edt Wiew Favortes Tools Help |ﬁ
Bak v = - (@ [H] A | Boeach GuFavortes @veda (B By S =l =
Address [{€] httpijlocahost:8885 adminjindex.do = P

@2igle

B sample-domain
E-gf; Servers
& FNEMiddleTier
B, iPAS Server
Bl-gh Processes
E-EF IPAS. Server. Default
Elghy J2EEServer
B IPAS. Server. Default
s

52-5 Data Sources
s ORBs
& iona_senices.naming
& FNBMainframe
& Managerment Server

EH-E-E

vhe

»y

Dynarnic MBean for managing Deployed Applications
JMX_Examples Ear

iPAS:type=Container,name=IMx_Examples
Ear J2ZEESerner=iPAS. Server.Default cascaded=iPAS. Server. Default

CreatedBy smccarth
CreatedOn Tue Jan 14 14:50:54 GMT 2003
Ugtime 23 hours, 42 minutes, 44 seconds
Refreshinterval lD—
Modules { iBank sxample }
o 3
e
@ none
undeploy
nong

&) iPAS type=Container,name=JMY_Examples Ear, J2EEServer=PAS, Server Default,cascaded=iPAS. Server. Default

[ [BE Local intranet %

Figure 9: Example Parent—Child Relationship

The concept of an MBean is a Java term that comes from JMX. The C+ +
version of the Orbix Management API uses the generic concept of a
Managed Entity instead of an MBean. A C++ Managed Entity is
functionally equivalent to the Java MBean. It acts as a handle to your
application object, and enables the object to be managed.

The C++ version of the Orbix Management API is defined in IDL (Interface
Definition Language).

For more details of the Orbix Management API, see the Orbix Management

IDLdoc.



Overview of Management Programming Tasks

Overview of Management Programming Tasks

Overview

Identifying tasks to be managed

Writing your MBeans

This section gives an overview of the typical management programming
tasks. These include the following:

®  “ldentifying tasks to be managed”.

®  “Writing your MBeans”.

®  “Registering your MBeans with the MBean server”.

®  “Unregistering your MBeans”.

®  “Defining relationships between MBeans”.

These tasks are explained in more detail in “Instrumenting CORBA C++
Applications” on page 37.

Before adding any management code to an application, you must decide on
the application tasks that you wish the administrator to manage.

Deciding which tasks should be managed varies from application to
application. This depends on the nature of the application, and on the type
of runtime administration that is required. Typical managed tasks include
monitoring the status of an application (for example, whether it is active or
inactive), and controlling its operation (for example, starting or stopping the
application).

When you have decided which parts of your application need to be
managed, you can define and implement MBeans to satisfy your
management objectives. Each MBean object must implement an interface
ending with the term MBean (for example, Car MBean).

To expose its attributes, an MBean interface must declare a number of get
and set operations. If get operations are declared only, the MBean attributes
are read-only. If set operations are declared, the MBean attributes are
writable.

33



CHAPTER 3 | Introduction to Application Management

Registering your MBeans with the
MBean server

Unregistering your MBeans

Defining relationships between
MBeans

34

Registering application MBeans with the MBean server enables them to be
monitored and controlled by the IONA Administrator. Choosing when to
register or expose your MBeans varies from application to application.
However, there are two stages when all applications create and register
MBeans:

During application initialization. During any application initialization
sequence, a set of objects is created that represents the core functionality of
the application. After these objects are created, MBeans should also be
created and registered, to enable basic management of that application.

During normal application runtime. During normal application runtime,
new objects are created as a result of internal or external events (for
example, an internal timer, or a request from a client). When new objects
are created, corresponding MBeans can be created and registered, to enable
management of these new application components. For example, in a bank
example when a new account is created, a new account MBean would be
also be created and registered with the MBean server.

You might wish to unregister an MBean in response to an administrator’s
interaction with the system. For example, if a bank teller session is closed, it
would be appropriate to unregister a corresponding session MBean. This
ensures that the MBean will no longer be displayed as part of the
application that is being managed.

You can use the Orbix Management API to define parent—child relationships
between MBeans. These relationships are then displayed in the IONA
Administrator Web Console, as shown in Figure 9 on page 32.

Parent-child relationships are no longer displayed in the console when the
MBean is unregistered by the application (for example, if a bank account is
closed).



Instrumentation demonstration

Overview of Management Programming Tasks

An instrumentation demonstration is provided in the UNIX System Services
component of your Orbix Mainframe installation, as follows (where

instal | _dir represents the full path to your Orbix Mainframe installation on
UNIX System Services):

instal | _dir/asp/ 6.0/ denos/ cor ba/ pdk/ i nst runent ed_pl ugi n

This instrumentation demonstration illustrates how to use the main
Management APIs and how to write your own Generic Service application.
You can use an ORB plug-in approach to build the Management code, to
instrument existing services such as the CICS and IMS server adapters.

35



CHAPTER 3 | Introduction to Application Management

36



In this chapter

Instrumenting
CORBA C++
Applications

CHAPTER 4

This chapter explains how to use the Orbix C++ Management
APl to enable an existing CORBA C++ application for
management. It uses the CORBA instrumented plugin demo

as an example.

This chapter contains the following sections:

Step 1—Identifying Tasks to be Managed page 38
Step 2—Defining your MBeans page 42
Step 3—Implementing your MBeans page 48
Step 4—Initializing the Management Plugin page 62
Step 5—Creating your MBeans page 64
Step 6—Connecting MBeans Together page 66

37



CHAPTER 4 | Instrumenting CORBA C+ + Applications

Step 1—Identifying Tasks to be Managed

Overview

Existing functionality

New management tasks

38

Before adding management code to an application, you must decide on the
tasks in your application that you wish to be managed by a system
administrator. Only then should you start thinking about adding
management instrumentation code to your existing application. This section
includes the following:

®  ‘“Existing functionality”.

®  “New management tasks”.

®  “Planning your programming steps”.

®  “Location of the management code”.

The i nstrunent ed_pl ugi n example adds management capability to an
existing CORBA C+ + application. This is a simple "Hello World"
application, where the client application reads the server's object reference
from a file.

For details of how to run the instrumented plugin application, see the
READVE_CXX. txt file in the following Orbix directory:

<instal | -dir>/asp/ 6.0/ denos/ cor ba/ pdk/ i nst rumrent ed_pl ugi n

The new management instrumentation code added to i nst r ument ed_pl ugi n

application enables administrators to perform the following additional tasks:

®  Monitor the status of the Hel | o server (active or inactive).

®  Monitor the number of times that the client reads the server's object
reference.

®  Set a hello text message.

® Invoke a weather forecast with specified text values.

®  Shutdown the Hel | o server.

Administrators can perform these tasks using the IONA Administrator
Console, shown in Figure 10.



Planning your programming steps

Step 1—Identifying Tasks to be Managed

Z§ 10NA Administrator - Microsoft Internet Explorer (=] 54|
Ble Edit View Favorites Tools  Help ‘
GBack - =& - @ [ @ | Qoearch Garavortes Fveda (F | E- S EHEH O
Address [&] hep:/flocalnost 585 adminindex.do =] e |Lmks
B 7 e
B my-domain A, Hella Service
Bl sk Servers -]
S hello hello1
= 6—33 Processes DefaultDomain:type=HelloMBean name=hello] cascaded=hello
B-£F hello
B HelloMBean TotalHelloCalls 9
A&
@ hellod .
. 2 hellod Children { hello3, hello? }
E-& Management Server Message IHE”D, howyou doin'?
= 6—23 Processes
£¥ Management Server Process @ @
minimumTemperature 55
CreateForecast |**® e el
@ maximumTemperature |85
Jjava.lang. Short
prospect |cloudy
ava.lang. Strin
il [ 5] java lang String
[&] bone || | |EEvocalintranet 4

Figure 10: Instrumented Plugin in IONA Administrator

When you have identified your management tasks, you should think
carefully about how exactly you wish to add the new management code to
your existing application. For example, how much of the new code you will
add to existing files, and how much will be in new files.

In the i nst runent ed_pl ugi n example, the instrumentation code is part of
the service and is initialized when the service is initialized. For larger
applications, you might wish to keep new instrumentation files in a separate
directory.

39



CHAPTER 4 | Instrumenting CORBA C+ + Applications

Location of the management code

Instrumented plugin overview

40

This chapter explains how Orbix C++ management code was added to the
i nst runent ed_pl ugi n application, and shows the standard programming
steps. For example, defining and implementing your MBeans, and defining
relationships between MBeans.

Note: When instrumenting CORBA C+ + servers, you do not need to
make any changes to the CORBA IDL. You can enable your application for
management simply by adding new MBean instrumentation code to your
CORBA C+ + implementation files.

You should first decide where you wish to store your new management
code. All source code for the i nst runent ed_pl ugi n application is stored in
the following directory:

<i nstal | -di r>/asp/ 6. 0/ denos/ cor ba/ pdk/ i nst r ument ed_pl ugi n/

The management code for the CORBA C+ + server is stored in the following
directory:

... /instrument ed_pl ugi n/ cxx_server

The following files are discussed in detail in this chapter

®  hello_nbean. h

®  hel | o_nbean. cxx

®  hello_world_impl.cxx

For larger applications, it is advised that you to store your management code

in a separate managenent directory. This will make your application more
modular, and easier to understand.

Figure 11 shows the main components of the i nst r unent ed_pl ugi n
application. In this simple example, there is only one C++ MBean, the
Hel | oBean.

Most of the key management programming tasks in this example are
performed in the Hel | oWr | d server implementation

(hel 1 o_wor | d_i npl . cxx). For example, management initialization, creating
the MBean, and displaying MBeans in the navigation tree of the console.
The server implementation interacts with the MBean implementation to
perform these tasks.



Step 1—Identifying Tasks to be Managed

IONA Administrator

Instrumented Plugin C++ Application

HelloWorld
» plugin

HelloWorld
Server

HelloWorld
Client

}

Figure 11: Instrumented Plugin Application Overview

41



CHAPTER 4 | Instrumenting CORBA C+ + Applications

Step 2—Defining your MBeans

Overview

Managed Entities and MBeans

Rules for MBean declarations

42

When you have planned which parts of your application need to be
managed, you can then define MBeans to satisfy your management
objectives. This section shows how to define an example MBean header file
for the i nst r ument ed_pl ugi n application. This section includes the
following:

®  “Managed Entities and MBeans”.

®  “Rules for MBean declarations”.

®  “Example MBean declaration”.

®  “Example private description”.

®  “Further information”.

The C+ + version of the Orbix Management API is based around the concept
of a Managed Entity. This is similar to the JMX MBeans that are used by
Java Programmers. A managed entity acts as a handle to your application
object, and enables the object to be managed. The terms managed entity
and MBean are used interchangeably in this document.

The Orbix C++ Management API is defined in CORBA IDL (Interface
Definition Language). For full details of the Orbix Management API, see the
Orbix Management IDLdoc.

The following rules apply for C++ MBeans:

® Each MBean object must implement the declaration defined for it in a
C++ header file (in this example, hel | o_nbean. h).

®  The following two operations must be declared and implemented:
* get_ngm _attribute()
. set_ngnt _attribute()

(although their implementation may be empty). These are the only two
operations for getting and setting all MBean attributes. The name of
the attribute is passed as a parameter, and the operation determines
whether to get or set the attribute.



Example MBean declaration

Step 2—Defining your MBeans

® Theinvoke_met hod() operation must also be declared and
implemented (although its implementation may be empty).

You must declare all these methods in the MBean header file, and then
implement them in the corresponding MBean implementation file (in this
example, hel | o_nbean. cxx).

The header file for the i nst r ument ed_pl ugi n application is hel | o_nbean. h.
It includes the following Hello MBean declaration:

Example 1: Hello MBean Declaration

#i fndef _HELLO MBEAN H_
#define HELLO MBEAN H_

#i ncl ude
#i ncl ude
#i ncl ude
#i ncl ude
#i ncl ude
#i ncl ude

<ony/ or b. hh>

<or bi x_pdk/ i nstrunent at i on. hh>
<or bi x/ cor ba. hh>
<it_dsa/string. h>
<it_dsa/list.h>

<it_ts/mtex. h>

class Hel | oVorl dl npl ;

cl ass Hel | oMBean :
public virtual |T_Mnt::ManagedEntity,
public virtual |IT _OCRBA: : Ref Count edLocal (bj ect {

publ i c:
Hel | oMBean (
Hel | oVor | dl npl * orb_info,
const char * nane
DE

virtual ~Hel |l oMBean();

I T_Mym : : ManagedEntityl dentifier managed_entity_id()
| T_THRON DEQL( ( CORBA: : Syst enException));

char* entity type() |T_THRONDECL((OCRBA: : Syst enException));

43



CHAPTER 4 | Instrumenting CORBA C+ + Applications

Example 1: Hello MBean Declaration

4 OORBA: : Any* get _nmgnt _attribute(const char* key)
| T_THRON DECL( ( CCRBA: : Syst enExcept i on,
I T_Mynt:: Attri but elnknown) ) ;

voi d set_ngnt _attri but e(
const char* key, const CORBA: : Any & new val ue)
| T_THRON DEQL( ( CORBA: : Syst enExcept i on,
I T_Mymi:: AttributeUnknown, | T Mynt::AttributeReadOnly,
I T_Mynt:: AttributeVal uel nvalid));

QCRBA: : Any* i nvoke_met hod (const char* nethod_nare,
const | T_Mynt:: Argunent Seq& i n_paraneters,
I T_Mynt: : Argunent Seq_out out _par anet er s)
| T_THRON DECL( ( OCRBA: : Syst enExcept i on,
I T_Mynt: : Met hodUnknown, | T_Mynt:: | nvocationFailed ));

5 I T_Mymt : : ManagedEnt i t yDescri ption get_descri ption()
I T_THRON DECL( ( OORBA: : Syst enException)) ;

struct Hel | oParam

{

const char *nane;

const char *type;

const char *description;
B

typedef |T_List<Hell oParan® Hel | oParanii st ;

This hel | o_nbean. h code example is described as follows:

1. The Hel | oMBean class implements the | T_Mynt : : ManagedEntity IDL
interface. All entities that need to be managed must derive from this
interface. The C++ implementation of the | T_Myn : : ManagedEnt ity
IDL interface is equivalent to a Java MBean.

2. The I T_Mynt:: ManagedEntityl dentifier managed entity id()
operation is used to uniquely identify the managed entity.

3. Theentity_type() operation returns a string indicating the type.
This demo uses Hel | oMBean, which is the C++ classname. The
naming service, for example, uses Nani ngMBean.

44



Example private description

1

Step 2—Defining your MBeans

4. Theget_ngm _attribute(), set_ngnt_attribute(), and
i nvoke_net hod() operations all use the OORBA: : Any type to access
managed entity attributes and operations.

The GCRBA : Any type enables you to specify values that can express
any IDL type. For detailed information about the GCRBA: : Any type, see
the CORBA Programmer’s Guide (C++ version).

5. The get _description() operation returns an XML description of the
managed entity. This is used to display information about the managed
entity in the IONA Administrator Web Console. This is described in
more detail in the next topic.

The hel | o_nbean. h file also includes the following privately declared
information:

Example 2: HelloMBean Private Declaration

private:

struct Hell oAttribute

{
const char * nang;
const char * type;
const char * description;
| T_Bool access;
ik

typedef |T_List<HelloAttribute> HelloAttri butelList;

struct Hell oQperation

{
const char * nang;
const char * return_type;
const char * description;
Hel | oPar anii st par ans;

It

typedef |T_List<HelloQoeration> Hell oQperati onLi st;
void initialize attributes();
void initialize operations();

IT String get_attributes_ XM.() const;

45



CHAPTER 4 | Instrumenting CORBA C+ + Applications

46

Example 2: HelloMBean Private Declaration

IT String get_attribute XM_(Hel | oAttribute att) const;
IT_String get_operati ons_XM.() const;
I T _String get_operati on_XM_(Hel | oQperation op) const;
I T _String get_param XM.( Hel | oPar am paran) const;
I T_Bool validate_create_forecast_paramet ers(

const | T_Mynt:: Argurent Seq& i n_paramet ers)

throw (I T_Mynt: : I nvocati onFail ed) ;

voi d t hrow wr ong_num par anet er s()
throw (I T_Mynt: : I nvocati onFail ed) ;

voi d throw_ i nval i d_paranet er (const char *param nane)
throw (I T_Mynt: : I nvocati onFail ed) ;

voi d throw bad tenp_range( const char *paraniane,
QCRBA: : Short minVal, OORBA :Short naxVal)
throw (1 T_Mymt:: | nvocationFail ed);

voi d throw nmax_nust _be_great er _t han_m n()
throw (1 T_Mymt: : | nvocati onFai |l ed);

Hel | oAt tri but eLi st mattribute_|ist;
Hel | oQper at i onLi st m operation_|ist;
I T _String midentity;

IT String m donai n;

IT String m cl ass_narre;
IT_String mtype;

IT_String m nane;

I T_Mit ex m nut ex;

/] Attribute names

const char* m hi t_count _nane;
const char* m chi | dren_narre;
const char* m nessage_nane;

/1 Qperation names
const char* m create_forecast _nane;

Hel | oWr | dI npl * m hel | o;



Further information

Step 2—Defining your MBeans

1. This privately declared information is used to display descriptions of
managed attributes and operations in the IONA Administrator Web
Console. For example, the initialize_attributes() function uses a
Hel | oAt tri but e structure to define a single attribute. An instance of
this attribute and anything else that you declare are pushed on to a a
list. This list is then processed by get _attributes_XM.() and by
get _attribute_XM.() to generate the description for display in the
IONA Administrator Web Console.

2.  These operations all throw | T_Mymt management exceptions. You also
can specify custom management exceptions. For more information, see
“Throw the managed exceptions” on page 56.

C++ Managed entities are similar to the JMX MBeans that are used by Java
Programmers. For information about Java MBeans see:

http://j ava. sun. con pr oduct s/ JavaManagenent / i ndex. ht m

47


http://java.sun.com/products/JavaManagement/index.html

CHAPTER 4 | Instrumenting CORBA C+ + Applications

Step 3—Implementing your MBeans

Overview After defining your MBean interfaces, you must provide an MBean
implementation. MBean implementation objects interact with the
application they are designed to manage, enabling monitoring and control.

For example, this section shows the interaction between an MBean

(Hel | omBean) and the CORBA server implementation object

(Hel 1 over | di npl ). This section shows example code extracts from the
MBean implementation file (hel | o_nmbean. cxx). It includes the following
steps:

“Write the MBean constructor and destructor”.
“Get the managed entity ID and entity type”.
“Get the managed attributes”.

“Set the managed attributes”

“Invoke the managed operations”.

“Throw the managed exceptions”.

N o o s~ e

“Get the MBean description”.

Write the MBean constructor and  The Hel | oMBean constructor and destructor are shown in the following
destructor extract from hel | o_nbean. cxx:

Example 3: MBean Constructor and Destructor

1  Hell oMBean: : Hel | oMBean (
Hel | oWor I dl npl * hello, const char *nane) : mhello(0)
{
assert(hello != 0);
hel | o->_add_ref();
m hello = hell o;
m donmai n = m hel | o- >get _donai n_nane() ;
m cl ass_name = “comi ona. hel | 0. Hel | oMBean";
mtype = "Hel | oMBean";
m nane = "Hel | oService";

48



Get the managed entity ID and
entity type

1

2

Step 3—Implementing your MBeans

Example 3: MBean Constructor and Destructor

}

midentity = "Defaul t Donai n";
//midentity = mdomain.c_str();
midentity += ":type=Hel | oMBean, nane="
midentity += nare;

initialize_ attributes();
initialize_operations();

Hel | oMBean: : ~Hel | oMBean()

}

m hel | o-> renove_ref();

This code extract is explained as follows:

1.

The Hel | oMBean() constructor specifies all the key information used to
identify the MBean, and display it in the IONA Administrator Web
Console. For example, this includes its domain name, a Java-style
class name (com i ona. hel | 0. Hel | oMBean), and a managed entity ID.
For information about registering MBeans as managed entities, see
“Creating an example MBean” on page 64.

The Hel | oMBean() destructor. For information about unregistering
MBeans as managed entities, see “Removing your MBeans” on

page 65.

The managed entity ID and type uniquely identify the managed entity. The
following code extract shows how to obtain the managed entity ID and its
type:

Example 4: Managed Entity ID and Type

I T_Mynt: : ManagedEnti tyl dentifier Hel | oMBean: : managed_entity i d()

{

| T_THRON DECL( ( OCRBA: : Syst enExcept i on))

return OORBA: :string_dup(midentity.c_str());

char* Hel | oMBean: :entity_type()

{
}

I T_THRON DEQL( ( CORBA: : Syst enExcept i on))

return QORBA: :string_dup(mtype.c_str());

49



CHAPTER 4 | Instrumenting CORBA C+ + Applications

Get the managed attributes

50

This code extract is explained as follows:

1. The ID returned by managed_entity_i d() is a string that includes the
domain, type, and name, at minimum. These are the keys that are
looked up in the MBean by the management service. The actual values
are decided by the developer.

This example uses the Def aul t Domai n for the first string (the domain).
You can specify your own domain name instead. The rest of the name
value pairs follow, and are separated by commas, for example:

" Def aul t Domai n: t ype=Hel | oMBean, nane=Hel | oSer vi ce"

Note: The domain name part of the managed entity ID is not related
to an Orbix configuration or location domain. It is a namespace for
managed entities only. For example, in a banking application your
IDs might use a Banki ngApp domain.

2. Theentity_ type() operation returns a string indicating the type of the
managed entity. The entity type is formatted in a dotted Java-style
notation, which can be used by the IONA Administrator Web Console
to display icons for an MBean. For example, this demo uses the
com i ona. hel | 0. Hel | oMBean type.

The following code extract shows how to get managed MBean attributes:
Example 5: Getting Managed Attributes

OCRBA: : Any* Hel | oMBean: : get _nmgmt _attri but e(const char* key)
| T_THRON DECL( ( CCORBA: : Syst enExcept i on,
I T_Myni:: Attri but eUnknown))
{
OCRBA: : Any_var retval = new CCRBA: : Any;
if (strcnp(key, mhit_count_nane) == 0)
{
| T_Locker<I T_Mit ex> | ock( m nut ex) ;
*retval <<= mhello->total _hits();
return retval . _retn();

else if (strcnp(key, mchildren_nane) == 0)
{
| T_Locker <I T_Mit ex> | ock( m nut ex) ;
Hel | oWor | dI npl : : Hel | oWor | dLi st children =
m hel | o- >get _chi l dren();



Step 3—Implementing your MBeans

Example 5: Getting Managed Attributes

}

QCRBA: : AnySeq chi | dren_seq(chil dren.size());
chil dren_seq. | engt h(chi |l dren. si ze());

Hel l oVor i dinpl:: HelloWrldList::iterator iter =
chil dren. begi n();

for (int i =0; i < children.size();i++ iter++)

{
I T_Mynt : : ManagedEntity_var nbean = (*iter)->get_nbean();
children_seq[i] <<= nbean.in();

}

*retval <<= children_seq;

return retval . _retn();

}

else if (strcnp(key, mmessage_name) == 0)

{
I T _Locker<I T_Mit ex> | ock(m mut ex) ;
OORBA: : String_var nessage = mhel | o- >get _message();
*retval <<= nmessage.in();
return retval . _retn();

}

el se

{

throw new | T_Mynt: : Attri but eUnknown() ;

}

This code extract is explained as follows:

1.

The get _ngmt _attri but e() operation is the only operation used for
getting all MBean attributes. The name of the attribute is passed in
and the operation determines whether to get the attribute.

The GCORBA : Any type enables you to specify values that can express
any IDL type. For details of managed attribute types, see “Permitted
types” on page 52. For detailed information about the CORBA: : Any
type, see the CORBA Programmer’s Guide, C++.

This get _ngnt _attribute() implementation supports complex
attribute types by also getting the attributes of child MBeans.

In the i nst rument ed_pl ugi n example, the children attribute of the
Hello MBean gets a list of references to child MBeans.

51



CHAPTER 4 | Instrumenting CORBA C+ + Applications

For example, in Figure 10 on page 39, the Children attribute and its
child MBeans (hello3 and hello2) are displayed in the IONA
Administrator Web Console.

Permitted types The following basic types are permitted for managed
attributes:

CCRBA: : Short

CCRBA: : Long

QOCRBA: : LongLong

CCRBA: : Fl oat

QCRBA: : Doubl e

CCRBA: : Bool ean

CORBA: : Cct et

QORBA: : String,

QCRBA: : Wt ri ng.

In addition, you can use ManagedEnt i t y references to connect one Managed
Entity and another. These will be displayed as hyperlinks on the web
console. Finally, you can use QCRBA: : AnySeq to create lists of any of the
permitted types already listed.

Set the managed attributes The following code extract shows how to set managed MBean attributes:
Example 6: Setting Managed Attributes

1 void Hell oMBean: :set_ngmt _attribute(const char* key,
const OORBA : Any & new val ue
| T_THRON DECL( ( CCRBA: : Syst enExcept i on,
I T_Mynmi:: AttributeUnknown, | T _Mynm::AttributeReadOnly,
I T_Myni::AttributeVal uelnvalid ))
{
if (strcenp(key, mnessage_nane) == 0)
{
OCORBA: : TypeCode_var tc(new val ue.type());
OCRBA: : TCKi nd kind = tc->kind();

if (kind != CCRBA: :tk_string)

{

throw new | T_Mynt:: Attri but eVal uel nval i d();
}

const char *new nmessage;
new val ue >>= new_nessage;

52



Step 3—Implementing your MBeans

Example 6: Setting Managed Attributes

}

m hel | o- >set _nmessage( new_nessage) ;

else if (strcnp(key, mhit_count_nane) == 0)
{

throw new | T_Mynt:: Attri but eReadOnl y();
}
else if (strcnp(key, mchildren_nane) == 0)
{

throw new | T_Mym:: Attri but eReadnl y();
}
el se
{

throw new | T_Mynt : : Attri but enknown() ;
}

This code extract is explained as follows:

1.

2.

The set_ngm _attri but e() operation is the only operation used for
setting all MBean attributes. The name of the attribute is passed in and
the operation determines whether to set the attribute.

The GCRBA : Any type enables you to specify values that can express
any IDL type. For detailed information about the GCRBA: : Any type, see
the CORBA Programmer’s Guide, C++.

The set _nessage() function enables you to set the text message for
the hello greeting that is returned by the Hello object. For example,
Figure 10 on page 39, shows an example text greeting for the Message
attribute in the IONA Administrator Web Console.

53



CHAPTER 4 | Instrumenting CORBA C+ + Applications

Invoke the managed operations

54

The following code extract shows how to invoke MBean operations:
Example 7: [nvoke Operations

QCRBA: : Any* Hel | oMBean: : i nvoke_met hod(const char* et hod_nane,
const | T_Mynt:: Argurment Seq& i n_pararet ers,
I T_Myni: : Argunent Seq_out out _par anet er s)
I T_THRON DECL( ( OCRBA: : Syst enExcepti on, | T_Mynt : : Met hodUnknown
I T_Mynt: : I nvocati onFail ed))
{
OCRBA: : Any_var retval = new CCRBA: : Any;
if (strcnp(method_nane, mcreate_forecast_name) == 0)
{

I T_Locker <I T_Mit ex> | ock( m nut ex) ;

out _paranmeters = new | T_Mynt: : Argunent Seq(0) ;
out _par anet er s- >l engt h(0) ;

OCORBA: : String_var forecast;
OORBA: : Short mn_tenp, nmax_tenp;
const char *prospect;

if (in_paraneters.length() != 3)

{
}

t hr ow wr ong_num par anet ers() ;

val i date_creat e_forecast _paranet ers(i n_paraneters);

in_paraneters[0].val ue >>= mn_tenp;
if (mn_tenmp < COLDEST MN.TEMP || mn_tenp >
HOTTEST_NVAX_TEMP)

t hrow_bad_t enp_range(" m ni nunirenper at ur ",
COLDEST_M N_TEMP, HOTTEST_NAX_TEMWP) ;
}

in_paraneters[1].val ue >>= max_t enp;
if (max_tenp < COLDEST_ M N TEMP || max_tenp >
HOTTEST_MAX_TEMP)

t hrow_bad_t enp_r ange(" maxm nunTenper at ur e",
QCLDEST_M N _TEMP, HOTTEST_NAX _TEMWP) ;
}



Step 3—Implementing your MBeans

Example 7: /nvoke Operations

}

in_paraneters[2].val ue >>= prospect;
if (max_tenp < mn_tenp)

{
t hrow_nmax_nust _be greater_than_mn();
}
m hel | o- >set _f or ecast _par anet er s(
m n_t enp,
max_t enp,
pr ospect

)

forecast = mhel |l o->get forecast();
*retval <<= forecast.in();
return retval . _retn();

}
el se
{
throw new | T_Mynt : : Met hodUnknown() ;
}

This code extract is explained as follows:

1.

The i nvoke_net hod() operation is the only operation used for invoking
all MBean operations. The name of the operation is passed in and the
i nvoke_net hod() operation determines whether to invoke the
operation.

The GCRBA : Any type enables you to specify values that can express
any IDL type. For detailed information about the GCRBA: : Any type, see
the CORBA Programmer’s Guide, C++.

In this example, the val i dat e_creat e_f or ecast _par anet er s()
function checks that the weather forecast values entered are of the
correct type (short or string). The rest of the code checks that the
temperature values entered do not fall outside the range of the
predeclared const values:

static const OCRBA: : Short OOLDEST_M N TEMP = - 100;
static const OCRBA : Short HOTTEST MAX TEMP = 150;

55



CHAPTER 4 | Instrumenting CORBA C+ + Applications

3. Theset_forecast_parameters() and get _forecast () functions
enable you to create and invoke your own weather forecast. Figure 10
on page 39, shows example parameter values for the CreateForecast
operation in the IONA Administrator Web Console. This operation
takes the following parameters:

* mn_tenp (short)
¢ max_t enp (short)

* prospect (string)

Throw the managed exceptions Before throwing management exceptions, you must first declare them in
your MBean implementation file, for example:

static const char *BAD TEMP_RANCE EX =

"com i ona. deno. pdk. i nst r urrent edpl ugi n. BadTenpRange" ;
static const char *MAX MJUST_BE GREATER THAN M N EX =

"com i ona. deno. pdk. i nst r ument edpl ugi n. MaxMist BeG eat er ThanM n";
static const char *I NVALI D PARAM EX PARAM NAME = " par aniNane";
static const char *BAD TEMP_RANGE EX PARAM NAME = "par anmi\ane";
static const char *BAD TEMP_ RANGE EX MN VAL = "mi nVal ";
static const char *BAD TEMP_RANGE EX MAX VAL = "maxVal ";

The following code shows two example functions that are used to throw
management exceptions:

Example 8: Throwing Management Exceptions

voi d Hel | oMBean: : t hr ow_bad_t enp_r ange(
const char *param\are,
CCRBA: : Short mi nVal ,
OCRBA: : Short maxVal ) throw (I T_Mynt: : I nvocati onFai | ed)

I'T_Myni::InvocationFail ed ex;

I T_Myni:: | nvocationError err;

| T_Mym: : PropertySeq_var properties = new
I'T_Mymi : : PropertySeq(3);

properties->l engt h(3);

properties[0].nane = BAD TEMP_RANGE_EX PARAM NAVE;

properties[0].val ue <<= paranmi\ane;

properties[1].name = BAD TEMP_RANGE EX M N VAL;

properties[1].val ue <<= nminVval;

properties[2].name = BAD TEMP_RANGE EX MAX VAL;

properties[2].val ue <<= naxVal ;

56



Step 3—Implementing your MBeans

Example 8: Throwing Management Exceptions

err.id = (const char *) BAD TEMP_RANCGE EX;
err.error_parans = properti es;
ex.error_details = err;

throw | T_Mynt: : | nvocat i onFai | ed(ex);

}

voi d Hel | oMBean: : t hr ow_nmax_nust _be_great er _t han_m n()
throw (I T_Mynt: : | nvocat i onFai | ed)

{
I'T_Myn:: | nvocationFail ed ex;
I'T_Mymi::InvocationError err;
err.id = (const char *) MAX MUST_BE GREATER THAN M N EX
ex.error_details = err;
throw | T_Mynt : : | nvocat i onFai | ed(ex) ;
}

Custom exception messages You can specify custom messages using the
exception-ia. properties file, which is located in the following off-host
directory:

i nstal | -dir/conf/domai ns/ def aul t - dormai n/ r esour ces

For example, the entry in this file for the t hr ow bad_t enp_r ange() operation
is as follows:

com i ona. deno. pdk. i nst r unent edpl ugi n. BadTenpRange=Bad
tenperature range entered for parameter %araniName% The
tenperature nmust be between % nVal % and %raxVal %

Microsoft Internet Explorer x|

& Operation invocation has Failed for "CreateForecast”
Managemenk Exception:
Bad temperature range entered For parameter

[minimurmTemperature], The kemperature must
be between [-100] and [150].

Figure 12: Instrumented Plugin Custom Exception

57



CHAPTER 4 | Instrumenting CORBA C+ + Applications

Get the MBean description The following code shows how the MBean descriptions are obtained for
display in the IONA Administrator Web Console:

Example 9: Getting the MBean Description

1 I T _Mynt:: ManagedEntityDescription Hel | oMBean: : get _description()
I T_THRON DECL( ( CORBA: : Syst enExcept i on))
{
IT String xm _str =
"<?xm version=\"1.0\"?>"
"<?rumdtd version=\"1.0\" ?>"
" <nbean>"
"<cl ass_nane>";

xm _str += mcl ass_nane;

xm _str +=
"</ cl ass_name>"

" <domai n>";

xm _str += mdonai n;

xm _str +=
"</ domai n>"

" <type>";

xm _str += mtype;

xm _str +=
"</ type>"

"<identity>";

xm _str += midentity;

xm _str +=
"</identity>"
"<descri pti on>"

xm _str += "Hell o Service";

xm _str +=
"</ descri ption>";

xm _str += get_attributes XM();
xm _str += get_operations_XM();
xm _str += "</ nbean>";

return CORBA: :string_dup(xm _str.c_str());
2 void HelloMBean::initialize_ attributes()
{

mhit_count_name = "Total Hel | oCal | s";

Hel loAttribute total _hits =
{

58



Step 3—Implementing your MBeans

Example 9: Getting the MBean Description

m hit_count _nane, "long",
"The total nunber of successful calls to
Hel | oWor | d: : request _nunber () "
"since the Hello Service started",
| T_FALSE
IE
mattribute |ist.push_back(total hits);

m chi | dren_name = "Children";

Hel l oAttribute children =

mchi |l dren_nare, "list",
"The list of children of this MBean",
| T_FALSE

H
mattribute_|ist.push_back(children);
m nessage_name = "Message";

Hel | oAt tribute nessage =

{
m message_nane, "string",
"Message that this object emts",
I T_TRUE
ik
mattribute_|ist.push_back(message);
}
I T _String Hel | oMBean: : get _attributes_XM.() const
{
IT_String xm _str("");
Hel | oAttributelList::const_iterator iter =
mattribute_list.begin();
while (iter !'= mattribute |ist.end())
{
xm _str += get_attribute XM (*iter);
iter++
}
return xm _str;
}

59



CHAPTER 4 | Instrumenting CORBA C+ + Applications

60

Example 9: Getting the MBean Description

IT_String Hel | oMBean: : get _attri bute XM
(Hel loAttribute att) const
{
IT String xm _str =
"<managed_attri but e>"

" <npane>";
xm _str += att.nane;
xm _str +=

"</ name>"

"<type>";
xm _str += att.type;
xm _str +=

"</ type>"

"<descri ption>";
xm _str += att.description;
xm _str +=

"</ descri pti on>"

" <property>"
" <nane>Access</ name>"
"<val ue>";

xm _str += att.access ? "ReadWite" :

xm _str +=
"</ val ue>"
"</ property>"
"</ managed_at tri but e>";
return xm _str;

}

This code extract is explained as follows:

"Read";

1. The get _description() operation returns an XML string description of
the managed entity, which is displayed by IONA Administrator. This
description normally includes the managed entity’s attributes and
operations (with parameters and return types). This string must be
exact in order to parse correctly. This code example includes the

cl ass_nane, domai n and t ype attributes in the description.

2. The rest of the functions are local to this particular implementation,
and are not defined in IDL. Theinitialize_attributes() function
uses a locally-defined structure (Hel | oAt tri but e) to define a single



Step 3—Implementing your MBeans

attribute. Hel | oAt tri but e is declared in hel | o_nbean. h. An instance
of this attribute and anything else that you declare are pushed on to a
list, including child MBeans.

3. The Hell oAttributeList is then processed by get _attri but es_XM.()
and by get _attribute_XM.() to generate the description for display in
the IONA Administrator Web Console.

There are similar functions for displaying the operations and their
parameters in the console (get _operati on_XM.(),
get _operations_XMW.() and get _param XM.() ).
For full details of the nbean. dt d file used to display the XML string
description, see Appendix A on page 71.

61



CHAPTER 4 | Instrumenting CORBA C+ + Applications

Step 4—Initializing the Management Plugin

Overview

Example management
initialization

62

1

After defining and implementing your MBeans, you should then initialize the
the management plugin in your server implementation. The

i nst runent ed_pl ugi n example adds the additional instrumentation code to
the existing server implementation file.

Alternatively, for a larger application, you could create a separate
instrumentation class, which is called by your server implementation.

The following code extract is also from the server implementation file
(hel 1 o_worl d_i npl . cxx) . It shows how the management plugin is
initialized in the i nst r ument ed_pl ugi n application:

Example 10: Management initialization
void HelloWrldlinpl::initialize nanagenent() |T_THRONDECL(())

if (!mconfig->get_string("domai n_nane", m domai n_nane))
{
cerr << "Couldn't get donmai n_nanme from config" << endl;
m donai n_name = "<unknown donai n>";
}
try
{
CORBA: : (hj ect _var obj ;
CORBA: : String_var process_obj ect _nane;

obj = morb->resolve_initial_references("lIT_Instrunmentation");
I'T_Myni:: I nstrumentation_var instrunent;
instrunent = | T_Mynt:: I nstrunmentation::_narrow obj);

if (CORBA: :is_nil(instrurment))
{

throw I T_String("Instrunentation reference is nil");

}



Step 4—1Initializing the Management Plugin

This hel | o_wor | d_i npl . cxx code extract is described as follows:

1.

The get _string() operation obtains the managed entity domain
name. For more information, see “Get the managed entity ID and entity
type” on page 49.

Like any other Orbix service, the management service must be
initialized by your server implementation. The

resol ve_initial _references() operation obtains a reference to the
management instrumentation interface, | T_I nst runent ati on. This is
then narrowed to the I T_Mynt : : I nst rurent at i on type.

A managed entity must be registered with the instrumentation interface
to be displayed in the IONA Administrator Web Console.

63



CHAPTER 4 | Instrumenting CORBA C+ + Applications

Step 5—Creating your MBeans

Overview

Creating an example MBean

64

After initializing the management service plugin, you can then create your
MBeans in your server implementation. This section includes the following:

“Creating an example MBean".
“Removing your MBeans”.

The following is a continuation of the example in the last section, taken from
the server implementation file. It shows how the MBean is created for the
i nst runent ed_pl ugi n application:

Example 11: Creating an MBean

void Hel loWrldlinpl::initialize nanagenent ()

{

| T_THROWDECL(())

/l Oreate and register the Hell o MBean

I T_Mynt : : ManagedEntity var hel |l o_nbean ref;

hel | o_nbean_ref = mhell o_nbean_servant =
new Hel | oMBean(this, mnane.in());
i nst runent - >new entity(hel | o_nbean_ref);

if (mis_parent)

{

/1 Get the Process (hject Nane
process_obj ect _nane = i nstrunent->get process_obj ect _name();

/1 Add the MBean as a child of the Process MBean.
i nstrunent - >creat e_parent_chil d_rel ati onshi p(
process_obj ect _nane,
hel | o_nbean_r ef - >nanaged_entity_i d()

)



Removing your MBeans

Further information

Step 5—Creating your MBeans

This hel | o_wor | d_i npl . cxx code extract is described as follows:

1. You must create the MBean using the new() method, and register it as
a managed entity using the new entity() operation.

2. This gets the string that specifies the process object. The process
object is displayed as the parent of the Hel | oMBean in the navigation
tree of the IONA Administrator Web Console. For more information
about the process name, see “The Process MBean” on page 66.

3. This creates a parent-child relationship between your MBean and the
Process MBean. The create_parent_chil d_rel ati onshi p()
operation takes two parameters:

. The parent MBean name (in this case, the Process MBean).
. The child MBean name (in this case, a reference to the
Hel | oMBean).

Creating a parent-child relationship adds the MBean to the navigation
tree of the console.

You might wish to remove an MBean in response to an administrator’s
interaction with the system. For example, in a banking application, if an
account is deleted from the bank, it would be appropriate to remove the
corresponding MBean for the account.

Removing an MBean unregisters it as a managed entity. This ensures that
the MBean will no longer be displayed as part of the managed application.

To remove an MBean, use the renove_entity() operation. When the
account’s MBean has been removed, it is no longer displayed in the IONA
Administrator Web Console. The renove_entity() operation takes the
managed entity name as a parameter.

The i nst runent ed_pl ugi n application is a simple example that does not
remove any MBeans.

For full details of the Orbix Management API, see the Orbix Management
IDLdoc.

65



CHAPTER 4 | Instrumenting CORBA C+ + Applications

Step 6—Connecting MBeans Together

Overview

The Process MBean

66

Applications are displayed in the IONA Administrator Web Console as a
series of related or connected MBeans, which can be monitored by
administrators. This section explains how to connect your application
MBeans together.

The management service plugin creates a Process MBean when it is first
loaded. A Process MBean is the default starting point in the console for
navigation within a managed process. In the i nst runent ed_pl ugi n
application, the Hel | oMBean is a child of the Process MBean.

Figure 13 shows the Process MBean for the i nst r ument ed_pl ugi n
application. The Process MBean has associated default attributes, displayed

in the details pane (for example, process type, time running, hostname, and
so on).

23 IONA Administrator - Microsoft Internet Explorer 5 =13l x|

Eile Edit View Favorites Tools Help |

back + = - @) el | Qsearch [GlFavorkes [fMeda 4 | B S = =

Adress [ ] http:flocalhost 5585 adminjindex do ] @
0@ 7@
EL,@ sample-domain -ﬂ‘ Process Managed Objact

e S(é?rwvoer:z_sewices.locator hel IO

& IPAS Server DefaultDomain:type=Process name=hello, Server=hello, cascaded=hello
& iona_senices.node_daeman

8- lona_senices naming Attibute
B2 hallg e e e

Bl-ghy Processes Timemow Tue, 04 Feb 2003 12:06:27 5780000
El - 7
a HellahBean TimeRunning 19 hours, 16 minutes, 27 seconds
Bl hellal TimeStarted Mon, 03 Feb 2003 16:45:59.9540000
& Management Server e P
HostMName SUMMER
State Running
‘@ ’7’7,7 E Local intranet 4

Figure 13: Instrumented Plugin Process MBean



Step 6—Connecting MBeans Together

Creating parent—child Use the creat e_parent _chil d_rel ationshi p() operation to connect two
relationships MBeans together. This enables MBeans to appear as children of others in
the navigation tree on the left of the console.

“Creating an example MBean” on page 64 shows how to use this operation
to add your application MBean as a child of the Process MBean. In
Example 12, the add_chi 1 d() function shows how to add further child
MBeans created by your application to the navigation tree.

Example 12: Creating Child MBeans

voi d Hel | oWr | dl npl : : add_chi | d(Hel | oVWr | dl npl  *chi | d)
I T_THRONDECL(())

{

/'l Lock nutex
try
{
1 QCRBA: : (oj ect _var obj ;
obj = morb->resolve_ initial _references("IT_Instrunentation");
I T_Mymi:: | nstrumentation_var instrunent;
instrunent = |T_Mnt::Instrunentation::_narrow obj);

if (CCRBA :is_nil(instrunent))

throw I T_String("Instrunentation reference is nil");

}
QCRBA: : String_var ny_nane, child_nare;
2 ny_name = m hel | o_nbean_servant - >managed_entity_id();
I T_Mynt: : ManagedEntity_var chil dMBean = chil d->get _nbean();
chi | d_name = chi | dMBean- >managed_entity id();
3 i nstrunent - >creat e_parent _chi |l d_rel ati onshi p(
ny_nane.in(),

chil d_nane.in()

)s

67



CHAPTER 4 | Instrumenting CORBA C+ + Applications

68

4

Example 12: Creating Child MBeans

}

m chi | dren. push_front (child);

catch(1 T_Mymt : : Managenent Bi ndFai | ed& ex)

{

cerr << "Managenent bind failed: " << ex << endl;
mis_managed = | T_FALSE;

}

}.

This hel | o_wor | d_i npl . cxx code extract is described as follows:

1.

The resol ve_initial _references() operation obtains a reference to
the management instrumentation interface, | T_I nst runent ati on. This
is then narrowed to the I T_Mynt: : I nst runent at i on type. All managed
entities must be registered with the instrumentation interface to be
displayed in the IONA Administrator Web Console.

The managed_entity_i d() operation is used to uniquely identify the
managed entity.

The creat e_parent _chil d_rel ati onshi p() operation takes the parent
MBean and the child MBean as parameters.

This adds the child MBean to the list of MBeans. These steps add the
child MBean to the tree for display in console. For example, Figure 14
shows a child MBean for the i nst r unent ed_pl ugi n application (in this
example, hello3).



Step 6—Connecting MBeans Together

23 IONA Administrator - Microsoft Internet Explorer : =[0] x|
Eile Edit  Wiew

Favorites  Tools  Help |

T < | el | Qsearch [GlFavorkes EfMeda ¢4 | B S = =

Adress [ ] http:flocalhost 5585 adminjindex do =] @
D (@ F e
B- (?_a sample-domain A Hello Service
E"“ Sé?rwvoer:z_sewices.locator © he”°3
B, IPAS Server DefaultDomain:type=HelloMBean narme=hello3 cascaded=hello

& iona_senvices.node_daerman

B, iana_senices. naming Attibute
B, hallo el T

Bl-ghy Processes TotalHellaCalls 0
E-{£¥ hello i
B gig HelloMBean sl 8
B hellot IMessage |Hello, World!

&g HellaMBean

«»r <>

CreateForecast rinimumTermperature : java.lang. Short

raxirmumTemperature : java.lang. Shont
prospect jawa.lang. String

5 hello2
B Management Server

& pone T T BEednvee
Figure 14: Instrumented Plugin Child MBean

69



CHAPTER 4 | Instrumenting CORBA C++ Applications

70



In this appendix

APPENDIX A

MBean Document
Type Definition

This appendix lists the contents of the mbean.dtd file used to
generate the display of the IONA Administrator Web Console.

This appendix contains the following section:

The MBean Document Type Definition File page 72

71



CHAPTER A | MBean Document Type Definition

The MBean Document Type Definition File

Overview The mbean.dtd file used to generate the XML used in the display of the
IONA Administrator Web Console. For example, the get _descri pti on()
operation returns an XML string description of the managed entity, which is
then displayed by the console. This description normally includes the
managed entity’s attributes and operations (with parameters and return
types).

mbean.dtd contents The contents of the mbean.dtd file is as follows:

<l-- MBean is the top level elenent -->

<! ELEMENT nbean (cl ass_name, domain, identity, agent_id,
description, notification_listener*, notification_filter*,
notification_broadcaster*, constructor*, operation*,
managed_at t ri but e*) >

<I'-- | MVEDI ATE MBEAN PRCPERTI ES -->
<| ELEMENT cl ass_nane (#PCDATA) >

<! ELEMENT donai n (#PCDATA) >

< ELEMENT identity (#PCDATA) >

<I ELEMENT agent _id (#PCDATA) >

<l-- COWDN ELEMENT TYPES -->

<I-- type = void | byte| char | double | float | long | |onglong
| short | boolean | string | list | ref | UNSUPPCRTED -->
<! ELEMENT type (#PCDATA) >

<! ELEMENT nane (#PCDATA) >
<! ELEMENT descri ption (#PCDATA) >
<! ELEMENT param (nane, type, description)>

<l-- NOTI FI CATICN details - note no recipients are shown for the
broadcasts -->

<I ELEMENT notification_|istener EMPTY>

<I ELEMENT notification_filter EMPTY>

<! ELEMENT noti fi cati on_broadcaster EMPTY>

72



The MBean Document Type Definition File

<l-- CONSTRUCTGRS - ->
<! ELEMENT constructor (nane, description, parant)>

<l-- CPERATIONS -->

<! ELEMENT operation (nanme, type, description, parant)>

<l-- MANACGED ATTR BUTES -->
<! ELEMENT nanaged_attribute (nane, type, description,
property*)>

<l-- PRCPERTIES -->

<!-- npane = Access -->

<! ELEMENT property (nane, val ue)>

<I-- value = ReadWite | ReadOnly | | NACCESSI BLE -->
<! ELEMENT val ue (#PCDATA) >

73



CHAPTER A | MBean Document Type Definition

74



Glossary

Administration

All aspects of installing, configuring, deploying, monitoring, and managing a
system.

Application Server

A software platform that provides the services and infrastructure required to
develop and deploy middle-tier applications. Middle-tier applications perform
the business logic necessary to provide web clients with access to enterprise
information systems. In a multi-tier architecture, an application server sits
beside a web server or between a web server and enterprise information
systems. Application servers provide the middleware for enterprise systems.

CORBA

Common Object Request Broker Architecture. An open standard that enables
objects to communicate with one another regardless of what programming
language they are written in, or what operating system they run on.

Configuration
A specific arrangement of system elements and settings.

Controlling

The process of modifying the behavior of running software components,
without stopping them.

Details Pane

The display pane on the right hand side of the IONA Administrator Web
Console user interface.

Deployment

The process of distributing a configuration or system element into an
environment.

Domain

An abstract grouping of managed server processes and hosts within a physical
location. Processes within a domain share the same configuration and
distributed application infrastructure. A domain is equivalent to an Orbix
configuration domain.

75



CHAPTER B |

76

EJB

Enterprise Java Beans. Sun Microsystems' architecture for the development
and deployment of reusable, object-oriented, middle-tier components. EJBs
can be either session beans or entity beans. EJB enables the implementation
of a multi-tier, distributed object architecture. See

http://java. sun. com product s/ ej b/

Event
An occurrence of interest, which is emitted from a managed entity.

Host
Generic term used to describe a computer, which runs parts of a distributed
application.

Installation
The placement of software on a computer. Installation does not include
Configuration unless a default configuration is supplied.

Instrumentation

Code instructions that monitor specific components in a system (for example,
instructions that output logging information on screen.) When an application
contains instrumentation code, it can be managed using a management tool
such as IONA Administrator.

Invocation
A request issued on an already active software component.

JRE

Java Runtime Environment. A subset of the Java Development Kit required
to run Java programs. The JRE consists of the Java Virtual Machine, the Java
platform core classes and supporting files. It does not include the compiler or
debugger.

JMX

Java Management Extensions. Sun’s standard for distributed management
solutions. JMX provides tools for building distributed, Web-based solutions
for managing devices, applications and service-driven networks.


http://java.sun.com/products/ejb/

Managed Application
An abstract description of a distributed application, which does not rely on
the physical layout of its components.

Managed Entity

A generic manageable component (C++ or Java). Managed entities include
managed domains, servers, containers, modules, and beans.

A managed entity acts as a handle to your application object, and enables

the object to be managed. The terms managed entity and MBean are used

interchangeably in this document.

Managed Server

A set of replicated managed processes. A managed process is a physical
process which contains an ORB and which has loaded the management
plugin. The managed server can be an EJB application server, CORBA server,
or any other instrumented server that can be managed by IONA Administrator.

Managed Process.
A physical process which contains an ORB and which has loaded the
management plugin.

Management
To direct or control the use of a system or component. Sometimes used in a
more general way meaning the same as Administration.

MBean
A JMX term used to describe a generic manageable object.

An MBean acts as a handle to your application object, and enables the
object to be managed. The terms managed entity and MBean are used
interchangeably in this document.

Monitoring
Observing characteristics of running instances of software components.

Monitoring does not change a system.

Navigation Tree
The tree on the left hand side of the IONA Administrator Web Console.

77



CHAPTER B |

78

Node
A node represents a host machine on which the product is installed. The
management service and managed servers are deployed on nodes.

ORB
CORBA Object Request Broker. This is the key component in the CORBA
architecture model. It acts as the middleware between clients and servers.

Process

This is the operating system execution environment in which system and
application programs execute. A Java Virtual Machine (JVM) is a special type
of process that runs Java programs. A process that is not running Java
programs is referred to as a standard or C++ process.

Process MBean

The is the first-level MBean that is exposed for management of an application.
It is the starting point for navigation through an application in the IONA
Administrator Web Console

Resource

This represents shared data or services provided by a server. Examples of
J2EE resources include JDBC, JNDI, JMS, JCA, and so on. Examples of
CORBA resources include naming service, implementation repository, trading
service, notification service, etc.

Server

This is a collection of one or more processes on the same or different nodes
that execute the same programs. The processes in a server are tightly coupled,
and provide equivalent service. This means that the calling client does not
care which process ends up servicing the request.

Runtime Administration, Runtime Management
Encompasses the running, monitoring, controlling and stopping of software
components.



SNMP

Simple Network Management Protocol. The Internet standard protocol
developed to manage nodes on an IP network. It can be used to manage and
monitor all sorts of devices (for example, computers, routers, and hubs)

Starting
The process of activating an instance of a deployed software component.

Stopping
The process of deactivating a running instance of a software component.

Web Services

Web services are XML-based information exchange systems that use the
Internet for direct application-to-application interaction. These systems can
include programs, objects, messages, or documents.

Web Services Container

A Web services container provides an environment for deploying and running
Web services. A Web services container is typically deployed and runs in an
application server.

XML

Extensible Markup Language. XML is a simpler but restricted form of Standard
General Markup Language (SGML). The markup describes the meaning of the
text. XML enables the separation of content from data. XML was created so
that richly structured documents could be used over the web. See

ht t p: // waw. w3. or g/ XM/

79


http://www.w3.org/XML/

CHAPTER B |

80



Index

A

architecture
IONA Administrator Web Console 9

C

CFR 26

CORBA, definition 75
create_parent_child_relationship() operation 65
custom exception messages 57

D
domains
definition 5, 75
introduction 26
dynamic MBeans 30

E
EJB, definition 76
entity_type() operation 44

G

get_attributes XML() function 47
get_description() operation 45
get_forecast() function 56

get_ mgmt_attribute() operation 42
get_string() operation 63

H

HelloAttributeList 61
HelloMBean() constructor 49
HelloMBean() destructor 49
HelloMBean class 44
HelloWorldimpl object 48

|

iBank example 40

IIOP 6, 26

initialize_attributes() function 47
instrumentation, definition 7, 76
instrumented_plugin example 38
invoke_method() operation 43

IONA Administrator
Management Service 26
overview 26
Web Console 26
IONA Administrator Web Console
components 5
overview 8
IONA Configuration Explorer 26
iona_services.management process 26
IT_Mgmt::Instrumentation type 63

J

JMX
definition 76
introduction 28

M
Managed Entity 32
managed_entity id() operation 44
management instrumentation
programming steps 30
management service
overview 5
management service, overview 26
mbean.dtd file 61
MBeans
dynamic 30
implementing 48
introduction 28
Process MBean 66, 78
standard 30
unregistering 34
MBeans, definition 77
MBean server
introduction 28

N

new_entity() operation 65

o)
ORB, definition 78
Orbix Configuration Authority 27

81



INDEX

P
permitted attribute types, C++ 52
Process MBean 66, 78
programming steps
for management instrumentation 30

R

remove_entity() operation 65
resolve_initial_references() operation 63

S

set_forecast_parameters() function 56
set_message() function 53
set_mgmt_attribute() operation 42
SNMP, definition 79

standard MBeans 30

\'

validate create forecast parameters() function 55
W

Web Services, definition 79

X

XML, definition 79

82



	List of Figures
	Preface
	Administrator’s Guide
	Introduction to IONA Administrator
	IONA Administrator
	IONA Administrator Components
	IONA Administrator Web Console
	IONA Administrator Management Service
	IONA Configuration Explorer
	Orbix Configuration Authority
	IONA Administrator Tasks

	Managing Orbix Mainframe Services
	Introduction
	Orbix Mainframe Instrumentation
	Management Configuration
	Monitoring Orbix Services on OS/390


	Programmer’s Guide
	Introduction to Application Management
	Introduction to IONA Administrator
	Introduction to Java Management Extensions
	Introduction to the Orbix Management API
	Overview of Management Programming Tasks

	Instrumenting CORBA C++ Applications
	Step 1—Identifying Tasks to be Managed
	Step 2—Defining your MBeans
	Step 3—Implementing your MBeans
	Step 4—Initializing the Management Plugin
	Step 5—Creating your MBeans
	Step 6—Connecting MBeans Together

	MBean Document Type Definition
	The MBean Document Type Definition File


	Glossary
	Index

