
Mainframe Migration
and Upgrade Guide

Version 6.2, May 2005

IONA, IONA Technologies, the IONA logo, Orbix, Orbix/E, Orbacus, Artix, Orchestrator,
Mobile Orchestrator, Enterprise Integrator, Adaptive Runtime Technology, Transparent
Enterprise Deployment, and Total Business Integration are trademarks or registered
trademarks of IONA Technologies PLC and/or its subsidiaries.
Java and J2EE are trademarks or registered trademarks of Sun Microsystems, Inc. in the
United States and other countries.
CORBA is a trademark or registered trademark of the Object Management Group, Inc. in
the United States and other countries. All other trademarks that appear herein are the
property of their respective owners.
While the information in this publication is believed to be accurate, IONA Technologies PLC makes no warranty of
any kind to this material including, but not limited to, the implied warranties of merchantability and fitness for a
particular purpose. IONA Technologies PLC shall not be liable for errors contained herein, or for incidental or
consequential damages in connection with the furnishing, performance or use of this material.

COPYRIGHT NOTICE
No part of this publication may be reproduced, stored in a retrieval system or transmitted, in any form or by any
means, photocopying, recording or otherwise, without prior written consent of IONA Technologies PLC. No third
party intellectual property right liability is assumed with respect to the use of the information contained herein.
IONA Technologies PLC assumes no responsibility for errors or omissions contained in this book. This publication
and features described herein are subject to change without notice.

Copyright © 2001�2005 IONA Technologies PLC. All rights reserved.

All products or services mentioned in this manual are covered by the trademarks, service marks, or product
names as designated by the companies who market those products.

Updated: 08-Jun-2005

Contents

List of Tables ix

Preface xi

Part 1 Overview

Chapter 1 Introduction 3
Advantages of Orbix 6.2 4
Migration Resources 6

Part 2 Migrating from 2.3.x

Chapter 2 Migration Possibilities and Main Differences 9
Migration Possibilities 10
C++ Applications 11
COBOL and PL/I Applications 12

Chapter 3 Installation Requirements 15

Chapter 4 IDL Migration Issues 19
The Opaque Type 20
IDL Fixed Type Definitions 21
IDL Defined in Fixed Block Data Sets 22
imsraw and cicsraw IDL changes 23
Orbix 6.2 C++ IDL Compiler Output 25
iii

CONTENTS
Chapter 5 C++ Migration Issues 27
C++ Compiler Issues 28
C++ Client Migration 29

CORBA Object Location and Binding 30
Interface Repository Interoperability 35
IDL-to-C++ Mapping 36
Client-Side CORBA Compliancy 37
Callback Objects 39
System Exception Semantics 40
Dynamic Invocation Interface (DII) 41

C++ Server Migration 42
BOA to POA Migration 43
Activation Modes 45
Object/Servant Lifecycles 46
Creating Object References Without Servants 48
Function Signatures 49
Exception-Safe Servant Implementations 50

Migrating Proprietary 2.3 Features 51
Orbix Filters and CORBA 2.3 Alternatives 52
Transformers 56
Orbix-Specific APIs 57
Connection Management 58
Callbacks and Bidirectional GIOP 60

Chapter 6 COBOL Migration Issues 61
Name Mapping Issues 63

Fully Qualified Level 01 Data Names 64
Operation and Level 88 Data Names 68
IDL Constant Definitions Mapped to Fully Qualified Names 72
Derived Interface Names and Fully Qualified Names 77
Numeric Suffixes for Data Names 80
160-Character Limit for String Literals 81
Maximum Length of COBOL Data Names 86

Copybook Names Based on IDL Member Name 89
Introduction to IDL Member Name Migration Issues 90
IDL Member Name Different from its Interface Names 92
More than One Interface in an IDL Member 94
Length of IDL Member Names 96
 iv

CONTENTS
Name Scoping and the COBOL Compilers 97
Same Container Name Used More than Once 98
Same Fieldname Used More than Once 105

Typecode Name and Length Identifiers 107
Comparing Compiler Output 108
IDL Member Name Different from its Interface Name 109
More than One Interface in an IDL Member 112

Reserved COBOL and OMG Keywords 116
Reserved COBOL Keywords for Module or Interface Names 117
Use of Result as an Argument Name in IDL 118
OMG Mapping Standard for Unions and Exceptions 120

Error Checking and Exceptions 122
COBOL-Specific Issue Relating to Error Checking 123
Error Checking Generation at Runtime for Batch Servers 125

Nested Unions in IDL 126
Mapping for Arrays 131
Working Storage data Items and Group Moves 133
Mapping for IDL type Any 135
CORBA Copybook Additions 137
Parameter Passing of Object References in IDL Operations 138
CORBA Object Location and Binding 139

Migration Overview and Example 140
The Naming Service 142
Object-String Conversion 144

API Migration Issues 145
Deprecated APIs 146
ORBEXEC and USER Exception parameters 147
ORBSTAT 148
ORBALLOC 149

COBOL IMS Server Migration Issues 151
Server Mainline Program Requirement for IMS Servers 152
The Linkage Section for IMS Servers 156
Access to the Program Communication Block for IMS Servers 162
Error Checking Generation at Runtime for IMS Servers 164

COBOL IMS Client Migration Issues 165
The Linkage Section for IMS Clients 166
Error Checking Generation at Runtime for IMS Clients 168
Extra Copybooks in Orbix 6.2 for IMS Clients 169
v

CONTENTS
COBOL CICS Server Migration Issues 171
Server Mainline Program Requirement for CICS Servers 172
Access to the EXEC Interface Block Data Structure 176
Error Checking Generation at Runtime for CICS Servers 177

COBOL CICS Client Migration Issues 178
Error Checking Generation at Runtime for CICS Clients 179
Extra Copybooks in Orbix Mainframe 6.2 180

Miscellaneous 181

Chapter 7 PL/I Migration Issues 183
Fully Qualified Level 1 Data Names 185
Maximum Length of PL/I Data Names 188
IDL Constant Definitions Mapped to Fully Qualified Names 192
Typecode Name and Length Identifiers 195
Include Member names Based on the IDL Member name 196

IDL Member names Different from Interface Names 199
More than One Interface in an IDL Member 201

Reserved PL/I Keywords for Module or Interface Names 203
Orbix PL/I Error Checking 204
CORBA Object Location and Binding 205

Migration Overview and Example 206
Naming Service 208
Object-String Conversion 210

CORBA Include Member Additions 211
API Migration Issues 212

Deprecated APIs 213
PODSTAT in Orbix 6.2 214
PODEXEC and User Exception parameters 215

Server Accessor (Z Member) 216
PL/I IMS Server Migration Issues 222

Server Mainline Module 223
Access to the Program Communication Block 228

PL/I IMS Client Migration issues 230
Program Communication Block Definitions Modifications 231
DLIDATA Include Member Modifications 234
Error Checking Generation at Runtime for IMS Clients 235

PL/I CICS Server Migration Issues 236
Server Mainline Program Requirements for CICS Servers 237
Access to the EXEC Interface Block Data Structure 242
 vi

CONTENTS
PL/I CICS Client Migration Issues 243
Miscellaneous 244

Chapter 8 Diagnostic Output 247

Chapter 9 CORBA Services 249
Naming Service 250
Interface Repository 251
IMS Adapter 252
CICS Adapter 254

Chapter 10 Administrative Tools 257

Chapter 11 Interoperability 261
Use of the Orbix Protocol 262
GIOP Versions 263
Launch and Invoke Rights 265
Codeset Negotiation 267

Introduction to Codeset Negotiation 268
Configuring Codeset Negotiation 269
Default Codesets 270
Configuring Legacy Behavior 273

Part 3 Migrating from 5.1

Chapter 12 Upgrading from Mainframe Edition 5.x 277
Installation Requirements 279
Configuration Changes 281
New Node Daemon 289
Database Migration 290
C++ Migration 291
COBOL Migration 293
PL/I Migration 294
vii

CONTENTS
Part 4 Migrating from 6.0

Chapter 13 Upgrading from Orbix Mainframe 6.0 299
Installation Requirements 301
Configuration Changes 303
Database Migration 308
C++ Migration 309
COBOL Migration 311
PL/I Migration 312
JCL Updates 314

Part 5 Migrating from Artix Mainframe Developer 2.0

Chapter 14 Upgrading from Artix Mainframe Developer 2.0 319

Index 1
 viii

List of Tables

Table 1: Migration Possibilities for z/OS 10

Table 2: Differences in PDS Naming Conventions 17

Table 3: C++ Compiler Output Comparison for UNIX System Services 25

Table 4: POA Policy Types and Their Values for Callback Objects 39

Table 5: Migrated System Exceptions 40

Table 6: COBOL Compiler Output for IDL Constant Definitions 72

Table 7: COBOL Compiler Output for GRID IDL Member 95

Table 8: COBOL Mapping Changes for IDL Data Types 133

Table 9: Deprecated COBOL APIs and Their Replacements 146

Table 10: ORBALLOC and Mapping Changes for IDL Data Types 149

Table 11: Extra Copybooks that ship with Orbix 6.2 169

Table 12: Extra Copybooks that ship with Orbix 6.2 180

Table 13: PL/I Compiler Output for IDL Constant Definitions 192

Table 14: PL/I Compiler Output Comparison GRID Include Member Names 199

Table 15: PL/I Compiler Deprecated IDL Generated Members and Their Replacements 202

Table 16: Deprecated PL/I APIs and Their Replacements 213

Table 17: Differences in Controlling OTMA-Based IMS Adapters 252

Table 18: Differences in Controlling APPC-Based IMS Adapters 253

Table 19: Differences in Controlling EXCI-Based CICS Adapters 254

Table 20: Differences in Controlling APPC-Based CICS Adapters 255

Table 21: CORBA-Specified Minimum GIOP Versions 263

Table 22: Orbix-Specific Minimum GIOP Versions 264

Table 23: Default GIOP Version Used by Orbix Clients 264

Table 24: CORBA Codeset Configuration Variables (Orbix 6.2) 269

Table 25: CORBA C++ Codesets (Non-MVS Platforms) 270

Table 26: CORBA C++ Codesets (MVS Platform) 271
ix

LIST OF TABLES
Table 27: CORBA Java Codesets (ISO-8859-1/Cp-1292/US-ASCII locale) 271

Table 28: CORBA Java Codesets (Shift_JIS locale) 271

Table 29: CORBA Java Codesets (EUC_JP locale) 272

Table 30: CORBA Java Codesets (other locale) 272

Table 31: Differences in PDS Naming Conventions 280

Table 32: Differences in PDS Naming Conventions 302
 x

Preface
Overview This guide describes the issues that surround the migration of applications

from earlier IONA mainframe solutions to an Orbix Mainframe 6.2 solution.
Part 1 provides an introduction to Orbix Mainframe migration. The bulk of
this guide (Part 2) focuses on migrating from Orbix 2.3.x-based solutions,
because much fewer changes are required to migrate from Orbix E2A
Mainframe Edition 5.x. Part 3 describes Orbix E2A Mainframe Edition 5.x
migration issues. Part 4 describes Orbix Mainframe 6.0 migration issues.
Part 5 describes Artix Mainframe Developer 2.0 migration issues.

This guide describes migration issues relating specifically to COBOL and
PL/I applications in a native z/OS environment, and to C++ applications in
both a native z/OS and UNIX System Services environment.

Support If you need help with this or any other IONA products, contact IONA at
support@iona.com. Comments on IONA documentation can be sent to
docs-support@iona.com.

Audience This guide is intended for application programmers who want to migrate
their applications from earlier IONA mainframe solutions to an Orbix
Mainframe 6.2 solution. It is assumed that the reader is familiar with the
basic concepts of CORBA 2.6.

Related Documentation Orbix Mainframe 6.0 documentation includes the following related guides:

� CORBA Programmer�s Guide, C++

� CORBA Programmer�s Reference, C++

� COBOL Programmer�s Guide and Reference
xi

mailto:support@iona.com
mailto:docs-support@iona.com

PREFACE
� PL/I Programmer�s Guide and Reference

� CORBA Administrator�s Guide

� IMS Adapters Administrator�s Guide

� CICS Adapters Administrator�s Guide

� Mainframe CORBA Concepts Guide

� Mainframe Security Guide

� Mainframe Management Guide

For the latest version of all IONA product documentation, see the IONA web
site at: http://www.iona.com/support/docs

Organization of this Guide This guide is divided into two main parts as follows:

Part 1, �Overview�

Chapter 1, �Introduction�

This chapter introduces the main differences between previous IONA
mainframe solutions and Orbix Mainframe 6.2. It also summarizes the main
migration impact involved.

Part 2, �Migrating from 2.3.x�

Chapter 3, Installation Requirements

Orbix Mainframe 6.2 is substantially different from Orbix 2.3-based IONA
mainframe solutions in terms of the DLLs and build procedures it contains.
This chapter outlines the installation requirements for upgrading from an
Orbix 2.3.x-based IONA mainframe solution to Orbix Mainframe 6.2.

Chapter 4, �IDL Migration Issues�

This chapter discusses the main IDL differences between an Orbix
2.3-based IONA mainframe solution and Orbix Mainframe 6.2..

Chapter 5, �C++ Migration Issues�

This chapter describes the main issues involved in migrating C++
applications on native z/OS and on z/OS UNIX System Services, from an
Orbix 2.3-based IONA mainframe solution to Orbix Mainframe 6.2.

Chapter 6, �COBOL Migration Issues�

This chapter describes the issues involved in migrating COBOL applications
from an Orbix 2.3.x-based IONA mainframe solution to Orbix Mainframe
6.2.
 xii

http://www.iona.com/docs

PREFACE
Chapter 7, �PL/I Migration Issues�

This chapter describes the issues involved in migrating PL/I applications
from an Orbix 2.3.x-based IONA mainframe solution to Orbix Mainframe
6.2.

Chapter 8, �Diagnostic Output�

This chapter summarizes the differences between how diagnostic data is
output for Orbix 2.3.x and Orbix 6.2.

Chapter 9, �CORBA Services�

This chapter summarizes the differences in CORBA services between Orbix
2.3.x and Orbix 6.2.

Chapter 10, �Administrative Tools�

This chapter summarizes the differences between Orbix 2.3.x and Orbix 6.2
administration tools.

Chapter 11, �Interoperability�

This chapter describes the issues relating to interoperability when migrating
from an Orbix 2.3-based IONA mainframe solution to Orbix Mainframe 6.2.

Part 3, �Migrating from 5.1�

Chapter 12, �Upgrading from Mainframe Edition 5.x�

This chapter outlines the requirements for upgrading from an Orbix E2A
Mainframe Edition 5.x-based solution to Orbix Mainframe 6.2.

Part 4, �Migrating from 6.0�

Chapter 13, �Upgrading from Orbix Mainframe 6.0�

This chapter outlines the requirements for upgrading from Orbix Mainframe
6.0 to Orbix Mainframe 6.2.

Part 5, Migrating from Artix Mainframe Developer 2.0

Chapter 14, �Upgrading from Artix Mainframe Developer 2.0�

The Artix Mainframe Developer 2.0 product has been incorporated into
Orbix Mainframe 6.2. This chapter outlines the requirements for upgrading
from Artix Mainframe Developer 2.0 to Orbix Mainframe 6.2.
xiii

PREFACE
Document Conventions This guide uses the following typographical conventions:

This guide may use the following keying conventions:

Constant width Constant width (courier font) in normal text represents
portions of code and literal names of items such as
classes, functions, variables, and data structures. For
example, text might refer to the CORBA::Object class.

Constant width paragraphs represent code examples
or information a system displays on the screen. For
example:

#include <stdio.h>

Italic Italic words in normal text represent emphasis and
new terms.

Code italic Italic words or characters in code and commands
represent variable values that you must supply; for
example:

install-dir/etc/domains

Code Bold Code bold is used to highlight a piece of code within a
particular code sample.

No prompt When a command�s format is the same for multiple
platforms, no prompt is used.

% A percent sign represents the UNIX command shell
prompt for a command that does not require root
privileges.

$ A dollar sign represents the z/OS UNIX System
Services command shell prompt for a command that
does not require root privileges.

A number sign represents the UNIX command shell
prompt for a command that requires root privileges.

…

.

.

.

Horizontal or vertical ellipses in format and syntax
descriptions indicate that material has been
eliminated to simplify a discussion.

[] Brackets enclose optional items in format and syntax
descriptions.
 xiv

PREFACE
{ } Braces enclose a list from which you must choose an
item in format and syntax descriptions.
xv

PREFACE
 xvi

Part 1
Overview

In this part This part contains the following chapters:

Introduction page 3

CHAPTER 1

Introduction
This chapter introduces the main differences between previous
IONA mainframe solutions and Orbix Mainframe 6.2. It also
provides an overview of the resources available to assist with
your migration to Orbix Mainframe 6.2.

In This Chapter This chapter discusses the following topics:

Advantages of Orbix 6.2 page 4

Migration Resources page 6
3

CHAPTER 1 | Introduction
Advantages of Orbix 6.2

Overview Orbix Mainframe 6.2 is IONA�s new product offering for the z/OS
environment. This release of Orbix Mainframe offers COBOL and PL/I
application support on native z/OS. It also offers C++ application support
on native z/OS and z/OS UNIX System Services.

The recommended path for customers upgrading to a new version of Orbix is
to move to Orbix 6.2. The extra features offered by Orbix can be divided into
the following categories:

� CORBA 2.6-compliant features.

� Unique features.

CORBA 2.6-compliant features Orbix 6.2 is based on the CORBA 2.6 specification, which standardizes
almost every aspect of CORBA programming. Migrating your source code to
Orbix 6.2, therefore, represents a valuable investment because your code
will be based on a stable, highly standardized programming interface.

Because Orbix 6.2 contains a CORBA 2.6-compliant ORB, it offers the
following advantages over Orbix 2.x and Orbix 3.x (that is, all minor versions
of Orbix 2 and Orbix 3):

� Portable interceptor support.

� Codeset negotiation support.

� Value type support.

� Asynchronous method invocation (AMI) support.

� Persistent State Service (PSS) support.

� Dynamic any support.
 4

Advantages of Orbix 6.2
Unique features Orbix 6.2 also offers some unique benefits over other commercial ORB
implementations, including:

� ORB extensibility using IONA's patented Adaptive Runtime Technology
(ART).

Orbix 6.2 has a modular structure built on a micro-kernel architecture.
Required ORB modules, ORB plug-ins, are specified in a configuration
file and loaded at runtime, as the application starts up. The advantage
of this approach is that new ORB functionality can be dynamically
loaded into an Orbix application without rebuilding the application.

� Improved performance.

The performance of Orbix 6.2 has been optimized, resulting in
performance that is faster than Orbix 2.x, Orbix 3.x, and OrbixWeb 3.x
in every respect.
5

CHAPTER 1 | Introduction
Migration Resources

Overview of resources IONA is committed to assisting you with your migration effort, to ensure that
it proceeds as easily and rapidly as possible. The following resources are
currently available:

� This migration and upgrade guide.

This technical document provides detailed guidance on converting to
Orbix Mainframe 6.2. It aims to provide comprehensive coverage of
migration issues, and to demonstrate how features supported in earlier
versions can be mapped to Orbix Mainframe 6.2 features.

� Professional Services migration packages.

IONA's Professional Services organization has put together a set of
consultancy packages that facilitate rapid migration to Orbix
Mainframe 6.2. Details of Professional Services assessment and
migration packages are available at:
http://www.iona.com/info/services/migration.htm.
 6

Part 2
Migrating from 2.3.x

In this part This part contains the following chapters:

Migration Possibilities and Main Differences page 9

Installation Requirements page 15

IDL Migration Issues page 19

C++ Migration Issues page 27

COBOL Migration Issues page 61

PL/I Migration Issues page 183

Diagnostic Output page 247

CORBA Services page 249

Administrative Tools page 257

Interoperability page 261

CHAPTER 2

Migration
Possibilities and
Main Differences
This chapter introduces the migration possibilites when
upgrading from a 2.3.x-based IONA mainframe solution to
Orbix 6.2. It also provides an introductory overview of the main
migration impact involved for C++, COBOL and PL/I
applications.

In This Chapter This chapter discusses the following topics:

Migration Possibilities page 10

C++ Applications page 11

COBOL and PL/I Applications page 12
9

CHAPTER 2 | Migration Possibilities and Main Differences
Migration Possibilities

Overview This section summarizes the migration possiblities available.

Summary The migration possibilities with this release can be summarized as follows:

Table 1: Migration Possibilities for z/OS

Migrate From Migrate To

Orbix 2.3-based C++ on native
OS/390 and on OS/390 UNIX
System Services.

Orbix Mainframe 6.2 C++ on
native z/OS and on z/OS UNIX
System Services.

Orbix 2.3-based COBOL on native
OS/390.

Orbix Mainframe 6.2 COBOL on
native z/OS.

Orbix 2.3-based PL/I on native
OS/390.

Orbix Mainframe 6.2 PL/I on
native z/OS.

Note: This release of Orbix Mainframe is not binary compatible with the
Orbix 2.3.x based product. Therefore, when migrating applications, all IDL
must be compiled with the Orbix 6.2 IDL Compiler, the language-specific
mappings regenerated, and the applications recompiled and linked.
 10

C++ Applications
C++ Applications

In This Section This section discusses the following topics:

� BOA replacement

� The Code Generation Toolkit

BOA replacement For C++ application programmers, most of the migration issues surround
rewriting a server to replace the basic object adapter (BOA) with the
portable object adapter (POA). Other issues are more subtle, especially
those specific to Orbix, which were used either to work around old
deficiencies of the CORBA specification, or to exploit value-added
extensions.

The Code Generation Toolkit The code generation toolkit can be used to develop C++ applications on a
platform other than z/OS (for example, Windows or UNIX). Orbix Mainframe
does not support use of the code generation toolkit in either native z/OS or
UNIX System Services. However, you can use the code generation toolkit
off-host, with Orbix on Windows or UNIX, and then copy the generated code
to z/OS. Refer to the CORBA Code Generation Toolkit Guide for more
details.
11

CHAPTER 2 | Migration Possibilities and Main Differences
COBOL and PL/I Applications

In This Section This section discusses the following topics:

� The gencbl and genpli Utilities

� Working Storage and Temporary Storage Labels

� Generated Data Names

� Orbix 6.2 IDL Compiler

The gencbl and genpli Utilities For COBOL and PL/I application programmers, the biggest difference
between Orbix 2.3-based IONA mainframe solutions and Orbix Mainframe
6.2 is the way in which you can generate COBOL and PL/I code from IDL
definitions. Orbix 2.3-based IONA mainframe solutions provide the gencbl
and genpli utilities, which generate COBOL and PL/I code respectively from
IDL registered in the Interface Repository. These utilities are deprecated in
Orbix Mainframe 6.2.

Working Storage and Temporary
Storage Labels

For COBOL and PL/I applications, no extra code or changes to application
logic are required to achieve successful migration. All required changes to
existing COBOL or PL/I code involve updating the source Working Storage
labels generated by gencbl or the source Temporary Storage labels
generated by genpli, to reflect the new labels generated by the Orbix 6.2
IDL Compiler.

Generated Data Names For COBOL and PL/I applications, most migration changes revolve around
the differences in the way the deprecated gencbl and genpli utilities and
the Orbix 6.2 IDL Compiler generate data names. Therefore, the Orbix 6.2
IDL Compiler provides a number of arguments that you can use to facilitate
integration of your regenerated data names with the legacy code from Orbix
2.3. Refer to the COBOL Programmer�s Guide and Reference and the PL/I
Programmer�s Guide and Reference for details of these arguments.
 12

COBOL and PL/I Applications
Orbix 6.2 IDL Compiler Orbix Mainframe 6.2 uses the Orbix 6.2 IDL Compiler to generate COBOL
and PL/I code from IDL definitions. The Orbix 6.2 IDL Compiler is easier to
use than the deprecated utilities. You simply have to run the Orbix 6.2 IDL
Compiler with a flag that acts as a plug-in to indicate that you want to
generate COBOL or PL/I code. The Orbix 6.2 IDL Compiler does not require
an Interface Repository to successfully generate code from IDL.

WARNING: Orbix Mainframe 6.2 supports one set of POA policies. In
Orbix Mainframe 6.2, POA names and server names are case sensitive and
must therefore match exactly.
13

CHAPTER 2 | Migration Possibilities and Main Differences
 14

CHAPTER 3

Installation
Requirements
Orbix Mainframe 6.2 is substantially different from Orbix
2.3-based IONA mainframe solutions in terms of the DLLs and
build procedures it contains. This chapter outlines the
installation requirements for upgrading from an Orbix
2.3.x-based IONA mainframe solution to Orbix Mainframe 6.2.

In this chapter This chapter discusses the following topics:

� �Installing on native z/OS� on page 15.

� �Installing on z/OS System Services� on page 16.

� �Standard Customization Tasks� on page 16.

� �Other Customization Tasks� on page 16.

� �Rebuilding Existing Applications� on page 17.

Installing on native z/OS Even though you have already installed a previous version of IONA's
mainframe product, you must perform in full the tasks described in the 6.2
version of the Mainframe Installation Guide that pertain to installing on
z/OS, because of the inherent differences between this and previous
versions.

You must perform all these installation tasks in the order in which they are
described in the Mainframe Installation Guide. Some tasks might not be
relevant to your setup, but this is highlighted where appropriate.
15

CHAPTER 3 | Installation Requirements
Installing on z/OS System Services If you choose to install Orbix Mainframe 6.2 on z/OS UNIX System Services
as well as on native z/OS, you must perform in full the tasks described in the
6.2 version of the Mainframe Installation Guide that pertain to installing on
z/OS UNIX System Services.

Standard Customization Tasks After successfully installing Orbix Mainframe 6.2 on z/OS (and on z/OS UNIX
System Services if you want), you must perform in full the standard
customization tasks described in the 6.2 version of the Mainframe
Installation Guide.

You must perform all these standard customization tasks in the order in
which they are described in the Mainframe Installation Guide. Some tasks
might not be relevant to your setup, but this is highlighted where
appropriate.

Other Customization Tasks Depending on your setup, there are additional customization tasks that you
might also need to perform. These customization tasks relate to:

� Naming Service and Interface Repository customization.

� IMS adapter customization.

� CICS adapter customization.

If you need to perform any of these tasks, you must perform them in the
order in which they are described in the Mainframe Installation Guide.
 16

PDS names In Orbix Mainframe 6.2, PDS naming conventions are different from those in
Orbix 2.3.x-based solutions. The differences can be summarized as follows:

Rebuilding Existing Applications If you have built applications using a previous version of IONA's mainframe
product, you must:

1. Recompile the IDL pertaining to these applications.

2. Check the rest of this guide for details of specific code changes that
you might need to make to your applications.

3. Update any JCL that you have stored in non-IONA libraries, to ensure
that your applications subsequently compile and link correctly with
version 6.2.

Changing your applications and rebuilding them in this way is essential to
allow existing applications to function in accordance with the changes
inherent in version 6.2.

Table 2: Differences in PDS Naming Conventions

2.3.x 6.2

COBOL CBL

JCL JCLLIB

LIB OBJLIB

LOAD LOADLIB

LPA LPALIB

PROCS PROCLIB

RUN LOADLIB

Note: See the relevant programmer's guide for the language you are
using for details of how to use the Orbix 6.2 IDL compiler.
17

CHAPTER 3 | Installation Requirements
 18

CHAPTER 4

IDL Migration
Issues
This chapter discusses the main IDL differences between an
Orbix 2.3-based IONA mainframe solution and Orbix
Mainframe 6.2.

In this chapter This chapter discusses the following topics:

The Opaque Type page 20

IDL Fixed Type Definitions page 21

IDL Defined in Fixed Block Data Sets page 22

imsraw and cicsraw IDL changes page 23

Orbix 6.2 C++ IDL Compiler Output page 25
19

CHAPTER 4 | IDL Migration Issues
The Opaque Type

Migrating to Orbix 6.2 The object-by-value (OBV) specification, introduced in CORBA 2.3 and
supported in Orbix 6.2, replaces opaques.
 20

IDL Fixed Type Definitions
IDL Fixed Type Definitions

In This Section This section discusses the following topics:

� Orbix 6.2

� Sample IDL

� In summary

Orbix 6.2 The Orbix 6.2 IDL compiler complies with the CORBA 2.3 specification for
IDL fixed type definitions. Each fixed type definition must be specified as a
typedef.

Sample IDL The following IDL illustrates a fixed type definition that is specified as a
typedef:

In summary This issue relates to all languages and all platforms.

//IDL fixed type specified as a typedef
typedef fixed<2,2> t_interest;
attribute t_interest interest;
21

CHAPTER 4 | IDL Migration Issues
IDL Defined in Fixed Block Data Sets

Overview In the native z/OS environment, all IDL source stored in fixed block data sets
must be formatted to adhere to a particular length, because Orbix 6.2
ignores the last eight columns in each record.

This section discusses the following topics:

� Orbix 6.2

� Workaround

Orbix 6.2 When Orbix 6.2 accesses fixed block data sets it ignores the last eight
columns in each record � which are usually reserved for sequence
numbers. For example, if your IDL data set is defined as a fixed block record
length 80, the characters after column 72 are ignored.

Workaround If this problem occurs you can do one of the following:

� Move the IDL to variable block data sets.

� Edit the IDL to get around the restriction.

Note: This is also the case for other Orbix 6.2 fixed block data sets for
example configuration files and the license file.
 22

imsraw and cicsraw IDL changes
imsraw and cicsraw IDL changes

Overview This section discusses the impact of changes to imsraw and cicsraw IDL
interfaces used with the IMS and CICS server adapters.

This section discusses the following topics:

� Details

� Migration impact

Details In this release, the imsraw and cicsraw IDL interfaces have been modified in
the following ways:

� The imsraw interface is now scoped within a module called
IT_MFA_IMS.

� The cicsraw interface is now scoped within a module called
IT_MFA_CICS.

� The do_trans() operation has been removed from both imsraw and
cicsraw.

Migration impact If you have existing imsraw or cicsraw clients that use the unscoped API,
these clients can no longer interoperate with the new, scoped imsraw and
cicsraw interface. To avoid the need to modify these existing clients, you
can configure the IMS and CICS server adapters as follows, to expose the
unscoped version of imsraw and cicsraw:

Valid values for the preceding configuration variables are:

…
plugins:imsa:imsraw_api_support = "unscoped";
…
plugins:cicsa:cicsraw_api_support = "unscoped";
…

scoped Expose only the scoped IT_MFA_IMS::imsraw or
IT_MFA_CICS::cicsraw API. This is the default setting.

unscoped Expose only the unscoped imsraw or cicsraw API.

both Expose both scoped and unscoped versions of the API.
23

CHAPTER 4 | IDL Migration Issues
The associated IDL for both the scoped and unscoped APIs is available in
your Orbix installation. On native z/OS it is located in the
orbixhlq.INCLUDE.ORBIX@PD.IDL PDS. On z/OS UNIX System Services it is
located in the install-dir/asp/6.0/idl/orbix_pdk subdirectory.
 24

Orbix 6.2 C++ IDL Compiler Output
Orbix 6.2 C++ IDL Compiler Output

Overview Most C++ applications require the IDL compiler to generate both the client
stub and server skeleton files. These generated output files have changed
slightly in Orbix 6.2, and so too has the way the IDL compiler is invoked.
Refer to the CORBA Programmer�s Guide, C++ for more information on
how the IDL compiler is invoked.

This subsection discusses the following topics:

� IDL Compiler Output.

� Migration Impact.

IDL Compiler Output Table 3 summarizes compiler output for both Orbix 6.2 and Orbix 2.3.x for
an IDL file called the grid.idl in a UNIX System Services environment:

Migration Impact A server�s servant implementation in Orbix 6.2 must contain #include
gridS.hh. Also, a server must be linked with gridS.o and gridC.o. This
differs from Orbix 2.3.x where you only had to link with grid.o. This is
because in Orbix 2.3.x the last line of gridS.cxx was always
#include gridC.cxx.

Existing makefiles need to be updated to take account of any new IDL
compiler options, and care must be taken to explicitly include the client stub
object file in the server�s link line.

Refer to the Orbix 6.2 demonstrations for details on how to upgrade your
makefile structure.

Table 3: C++ Compiler Output Comparison for UNIX System Services

Orbix 6.2 Orbix 2.3.x File Description

grid.hh grid.hh Common header file

gridC.cxx gridC.cxx Client stubs

gridS.cxx gridS.cxx Server skeletons

gridS.hh Server header file
25

CHAPTER 4 | IDL Migration Issues
 26

CHAPTER 5

C++ Migration
Issues
This chapter describes the main issues involved in migrating
C++ applications on native z/OS and on z/OS UNIX System
Services, from an Orbix 2.3-based IONA mainframe solution
to Orbix Mainframe 6.2.

In this Chapter This chapter discusses the following topics:

C++ Compiler Issues page 28

C++ Client Migration page 29

C++ Server Migration page 42

Migrating Proprietary 2.3 Features page 51
27

CHAPTER 5 | C++ Migration Issues
C++ Compiler Issues

C++ runtime support Orbix Mainframe 6.2 supports the IBM z/OS V1.4 ANSI C++ compiler, the
z/OS 1.5 ANSI C++ compiler, and the z/OS 1.6 ANSI C++ compiler.
Because IBM no longer supports the OS/390 V2R10 compiler, IONA has
also removed support and certification for this compiler in this release.

Environment targets Orbix Mainframe 6.2 supplies a C++ options file in
HLQ.ORBIX62.CONFIG(ORXCPPO) that includes the "TARGET" compiler option
of "ZOSV1R2". The "TARGET" compiler option enables the development of
applications on higher release levels of z/OS for subsequent use on platforms
that are running lower release levels of z/OS or OS/390. You can update the
ORXCPPO member with "ZOSV1R4", "ZOSV1R5" or "ZOSV1R6", as appropriate.
Alternatively, you can remove the "TARGET" option from the ORXCPPO
member. This means that it uses the "CURRENT" option by default, which
corresponds to the z/OS release on which your system is running. For more
information see the IBM publication: C/C++ User�s Guide.

Compiler options Orbix 6.2 uses the Run Time Type Identification (RTTI) z/OS compiler
option. This allows you to take advantage of C++ dynamic casting. In
previous releases of Orbix, this option was not used because the OS/390
V2R10 compiler did not support it. Therefore, IONA relied on proprietary
code to simulate this functionality. Because the current supported compilers
all provide the RTTI option, Orbix 6.2 now uses the C++ dynamic casting
(RTTI) option and no longer uses proprietary code.
 28

C++ Client Migration
C++ Client Migration

Overview This section discusses the following topics:

CORBA Object Location and Binding page 30

Interface Repository Interoperability page 35

IDL-to-C++ Mapping page 36

Client-Side CORBA Compliancy page 37

Callback Objects page 39

System Exception Semantics page 40

Dynamic Invocation Interface (DII) page 41
29

CHAPTER 5 | C++ Migration Issues
CORBA Object Location and Binding

Overview This subsection summarizes the differences between Orbix 2.3.x object
location mechanisms and Orbix 6.2 object location mechanisms. It
discusses the following topics:

� Migration Impact

� CORBA Naming Service

� Object-to-string conversion

� corbaloc URL

� ORB:resolve_initial_references

Migration Impact All calls to _bind() must be removed and replaced with one of the following
object location mechanisms:

� CORBA Naming Service.

� Object-to-string conversion.

� corbaloc URL.

� ORB::resolve_initial_references().

All these alternatives are based on the use of CORBA standard interoperable
object references (IORs), the difference being in where the IORs are stored
and how they are retrieved by the client application.

CORBA Naming Service The naming service is the recommended replacement for _bind() in most
applications. It is easy to understand and use if the application�s naming
graph is not too complex. Migration to the naming service is straightforward
on the client side. The triplet of markerName, serverName, and hostName,
used by the _bind() function to locate an object, is replaced by a simple
name in the naming service.

All applications should use the interoperable Naming Service, which
provides access to future Naming Service implementations.

Access to the Naming Service can easily be wrapped. The only potential
drawback in using the Naming Service is that it might become a single point
of failure or performance bottleneck. If you use the Naming Service only to
retrieve initial object references, these problems are unlikely to arise.
 30

C++ Client Migration
When using the naming service, an object's name is an abstraction of the
object location and the actual location details are stored in the naming
service. Object names are resolved using these steps:

1. An initial reference to the naming service is obtained by calling
resolve_initial_references() with NameService as its argument.

2. The client uses the naming service reference to resolve the names of
CORBA objects, receiving object references in return.

Orbix 6.2 supports the CORBA Interoperable Naming Service, which is
backward-compatible with the old CORBA Naming Service and adds
support for stringified names.

The URL syntax that the Naming Service provides makes it easier to
configure IORs�and is similar to _bind() by letting you specify host, port,
and well known object key in readable format. An example of the syntax for
both types is outlined as follows:

� Stringified IOR syntax example:

�IOR:004301EF100...�

� URL type IOR syntax example:
�corbaloc::1.2@myhost:3075/NamingService�

With the URL syntax, corbaloc is the protocol name, the IIOP version
number is 1.2, the host name is myhost, and the port number is 3075.

Object-to-string conversion CORBA offers two CORBA-compliant conversion functions:

CORBA::ORB::object_to_string()
CORBA::ORB::string_to_object()

These functions can replace _bind(), because they allow a client to create
an IOR with information that is similar to _bind(). The Orbix 6.2 locator
daemon redirects the IOR, so it avoids the drawbacks of _bind().

Note: If you are using the URL type IOR syntax, Orbix 6.2 requires you to
register the stringified IOR against a well known key with the Orbix 6.2
locator daemon. This centralizes the use of stringified IORs in a single
place, and lets you widely distribute readable URLs for clients.
31

CHAPTER 5 | C++ Migration Issues
The object_to_string() and string_to_object() functions allow you to
convert an object reference to and from the stringified interoperable object
reference (stringified IOR) format. These functions enable a CORBA object to
be located as follows:

1. A server generates a stringified IOR by calling
CORBA::ORB::object_to_string().

2. The server passes the stringified IOR to the client (for example, by
writing the string to a file).

3. The client reads the stringified IOR from the file and converts it back to
an object reference, using CORBA::ORB::string_to_object().

Orbix 6.2 uses a sequence of octets to compose an object�s ID. Orbix 2.3.x
uses string markers. CORBA provides helper methods called
string_to_ObjectId() and ObjectId_to_string() to convert between the
two types, so migration from marker dependencies to Object IDs should be
straightforward.

Because they are not scalable, the object_to_string() and
string_to_object() functions are generally not useful in a large-scale
CORBA system. Use them only to build initial prototypes or proof-of-concept
applications.

corbaloc URL A corbaloc URL is a form of human-readable stringified object reference. If
you are migrating your clients to Orbix 6.2 but leaving your servers as Orbix
2.3 applications, the corbaloc URL offers a convenient replacement for
_bind().

To access an object in an Orbix 2.3 server from an Orbix 6.2 client, using a
corbaloc URL, perform the following steps:

1. Obtain the object key, ObjectKey, for the object in question, as follows:

i. Get the Orbix 2.3 server to print out the stringified IOR using, for
example, the CORBA::ORB::object_to_string() operation. The
result is a string of the form IOR:00….

ii. Use the Orbix 6.2 iordump utility to parse the stringified IOR.
Copy the string that represents the object key field, ObjectKey.

2. Construct a corbaloc URL of the following form (where DaemonHost and
DaemonPort are the Orbix daemon�s host and port respectively):

corbaloc:iiop:1.0@DaemonHost:DaemonPort/ObjectKey%00
 32

C++ Client Migration
A null character, %00, is appended to the end of the ObjectKey string,
because Orbix 2.3 applications expect object key strings to be
terminated by a null character.

3. In the source code of the Orbix 6.2 client, use the
CORBA::ORB::string_to_object() operation to convert the corbaloc
URL to an object reference.

The general form of a corbaloc URL for this case is as follows:

In the preceding example, the components of the corbaloc URL are as
follows:

� GIOPVersion�The maximum GIOP version acceptable to the server.
Can be either 1.0 or 1.1.

� Host and Port�The daemon�s (or server�s) host and port. The Host
can either be a DNS host name or an IP address in dotted decimal
format.

The Orbix3ObjectKey takes the following general form:

In the preceding example, the components of the Orbix 3 object key are as
follows:

� Host�The server host. The Host can either be a DNS host name or an
IP address in dotted decimal format.

� SvrName�The server name of the Orbix 2.3 server.

� Marker�The CORBA object�s marker.

� IFRSvrName�Can be either IR or IFR.

� InterfaceName�The object�s IDL interface name.

corbaloc:iiop:GIOPVersion@Host:Port/Orbix3ObjectKey%00

:\Host:SvrName:Marker::IFRSvrName:InterfaceName%00

Note: Constructing an Orbix 2.3 object key directly based on the
preceding format does not always work because some versions of Orbix
impose extra restrictions on the object key format. Extracting the object
key from the server-generated IOR is a more reliable approach. If you
encounter any difficulties with using corbaloc URLs, please contact
support@iona.com.
33

CHAPTER 5 | C++ Migration Issues
ORB:resolve_initial_references The CORBA::ORB::resolve_initial_references() operation provides a
mechanism for obtaining references to basic CORBA objects (for example,
the naming service, the interface repository, and so on).

Orbix 6.2 allows the resolve_initial_references() mechanism to be
extended, so it can use application-specific services along with typical ones
such as the Naming Service. For example, to access the BankApplication
service using resolve_initial_references(), simply add the following
variable to the Orbix 6.2 configuration:

Use this mechanism sparingly. The OMG defines the intended behavior of
resolve_initial_references() and the arguments that can be passed to
it. A name that you choose now might later be reserved by the OMG. It is
generally better to use the naming service to obtain initial object references
for application-level objects.

Orbix 6.2 Configuration File
initial_references:BankApplication:reference =

"IOR:010347923849..."
 34

C++ Client Migration
Interface Repository Interoperability

Overview Significant changes were made to the IDL definition of the Interface
Repository (IFR) between CORBA 2.2 and CORBA 2.3. The Orbix 6.2 IFR is
written to conform to the CORBA 2.4 specification and it has many
advantages over the Orbix 2.3 IFR.

If you have both Orbix 2.3 and Orbix 6.2 applications that use the IFR, it is
recommended that you change the Orbix 2.3 applications to use the Orbix
6.2 IFR.

Modifying Orbix 2.3 applications
to use the Orbix 6.2 IFR

To change an Orbix 2.3 C++ application to use the Orbix 6.2 IFR, perform
the following steps:

1. Take the IDL for the Orbix 6.2 IFR and generate stub code from it,
using the Orbix 2.3 IDL compiler.

2. Modify the source code of your Orbix 2.3 application to be consistent
with the IDL for the Orbix 6.2 IFR.

3. Link your Orbix 2.3 application with the IFR stub code generated in
step 1.
35

CHAPTER 5 | C++ Migration Issues
IDL-to-C++ Mapping

Overview The definition of the IDL-to-C++ mapping has changed little going from
Orbix 2.3 to Orbix 6.2 (apart from some extensions to support valuetypes).

Two notable changes are:

� The CORBA::Any Type.

� The CORBA::Environment parameter.

The CORBA::Any Type In Orbix 6.2, it is not necessary to use the type-unsafe interface to Any.
Recent revisions to the CORBA specification have filled the gaps in the
IDL-to-C++ mapping that made these functions necessary. That is, the
following functions are deprecated in Orbix 6.2:

The CORBA::Environment
parameter

In Orbix 2.3, the signatures of IDL calls contain the CORBA::Environment
parameter. In Orbix 6.2, the signatures of IDL calls do not contain the
CORBA::Environment parameter.

You must therefore remove CORBA::Environment parameters from servant
implementation classes. The CORBA::Environment parameter is needed for
compilers that do not support native C++ exception handling, and as a
hook for some Orbix proprietary mechanisms.

// C++
// CORBA::Any Constructor.
Any(

CORBA::TypeCode_ptr tc,
void* value,
CORBA::Boolean release = 0

);
// CORBA::Any::replace() function.
void replace(

CORBA::TypeCode_ptr,
void* value,
CORBA::Boolean release = 0

);
 36

C++ Client Migration
Client-Side CORBA Compliancy

Overview Orbix 6.2 enforces strict compliance with the CORBA 2.3 specification. This
sub-section describes the main client-side CORBA compliancy issues that
should be encountered. It discusses the following topics:

� Processing Requests

� Clean Shutdown

� Global Objects

� CORBA::Orbix Object Support

� Incorrect Raising of INV_OBJREF

� Incorrect Raising of COMM_FAILURE

Processing Requests Call CORBA::ORB_init() before processing any requests.

Clean Shutdown Call CORBA::ORB::shutdown(1) and CORBA::ORB::destroy() before the
end of main() to ensure clean shutdown and to prevent resource leaks.

Global Objects The global objects in Orbix 2.3.x means that all ORB initialization is
completed before main() is entered. Orbix 6.2 requires you to initialize the
ORB explicitly in your client and server mainlines.

CORBA::Orbix Object Support The CORBA::Orbix object is not supported in Orbix 6.2. Because this
object is unavailable, you must convert Orbix 6.2 client code that uses this
convention to call methods on either CORBA::ORB or PortableServer.

Incorrect Raising of INV_OBJREF The INV_OBJREF exception means that an object reference is corrupt or so
malformed that an ORB cannot locate it, or even its server. Customers who
use INV_OBJREF to remove proxy objects from memory must now use
OBJECT_NOT_EXIST.

An Orbix 6.2 application must raise the OBJECT_NOT_EXIST exception, to
indicate that an object does not exist after the client has successfully
contacted the server.
37

CHAPTER 5 | C++ Migration Issues
Incorrect Raising of
COMM_FAILURE

CORBA specifies to throw a COMM_FAILURE exception only when a network
error occurs after a request is made, but before the reply is received. Orbix
6.2 throws the TRANSIENT exception when a connection to the server
cannot be established. The TRANSIENT exception indicates that an object
reference is currently unusable but might work later. This distinction is
important to applications that catch COMM_FAILURE explicitly to implement
connection retries.
 38

C++ Client Migration
Callback Objects

Overview Callback objects must be contained in a POA like any other CORBA object.
This subsection discusses the following topics:

� POA Policies for Callback Objects

� Multi-Threaded Clients

POA Policies for Callback Objects Table 4 shows the most sensible POA policies for a POA that manages
callback objects.

These policies allow for easy management of callback objects and a
straightforward upgrade path.

Multi-Threaded Clients Callback objects offer one of the few cases where the root POA has
reasonable policies, provided the client is multi-threaded (as it normally is
for callbacks) to support callbacks efficiently.

Table 4: POA Policy Types and Their Values for Callback Objects

Policy Type Policy Value

Lifespan Policy TRANSIENT

ID Assignment Policy SYSTEM_ID

Servant Retention Policy RETAIN

Request Processing Policy USE_ACTIVE_OBJECT_MAP_ONLY

Note: By choosing a TRANSIENT lifespan policy, you remove the need to
register the client with an Orbix 6.2 locator daemon.
39

CHAPTER 5 | C++ Migration Issues
System Exception Semantics

Overview Orbix 2.3.x clients that catch specific system exceptions might need to
change the exceptions they handle when they are migrated to Orbix 6.2.

System exceptions Orbix 6.2 follows the latest CORBA standards for exception semantics.

Table 2 shows the two system exceptions most likely to affect existing code.

Minor codes System exception minor codes are completely different between Orbix 2.3.x
and Orbix 6.2. Applications that examine minor codes need to be modified
to use Orbix 6.2 minor codes.

Table 5: Migrated System Exceptions

When This Happens Orbix 2.3.x Raise Orbix 6.2 Raise

Server object does not
exist

INV_OBJREF OBJECT_NOT_EXIST

Cannot connect to
server

COMM_FAILURE TRANSIENT
 40

C++ Client Migration
Dynamic Invocation Interface (DII)

Overview This subsection summarizes the differences in availability of DII methods
between Orbix 2.3.x and Orbix 6.2. It discusses the following topics:

� Orbix 2.3.x DIIs

� Orbix 6.2 DIIs

� Migration Impact

Orbix 2.3.x DIIs Orbix-specific DII methods are available in Orbix 2.3.x.

Orbix 6.2 DIIs Orbix-specific DII methods are not available in Orbix 6.2. Stub code
generated by Orbix 6.2 consists of sets of statically generated
CORBA-compliant DII calls.

Migration Impact Code that uses CORBA::Request::operator<<() methods and overloads
must be changed to use CORBA-compliant DII methods.
41

CHAPTER 5 | C++ Migration Issues
C++ Server Migration

Overview Server code typically requires many more changes than client code. It is
relatively easy to migrate a BOA-based server to a POA-based server by
putting all objects in a simple POA that uses an active object map.
However, this approach is unable to exploit most of the functionality that a
POA-based server offers. It is worthwhile redesigning and rewriting servers
so they benefit fully from POA functionality.

In this Section This section discusses the following topics:

BOA to POA Migration page 43

Activation Modes page 45

Object/Servant Lifecycles page 46

Creating Object References Without Servants page 48

Function Signatures page 49

Exception-Safe Servant Implementations page 50
 42

C++ Server Migration
BOA to POA Migration

Overview Migrating an Orbix 2.3.x server largely consists of removing BOA-specific
code and replacing it with POA functionality. This subsection describes the
issues that you must consider. It discusses the following topics:

� Writing POA-based Code

� Choosing POA Policies

� Object IDs versus Markers

� Migrating Orbix Loaders

� Servant Locators

� Overriding the Default POA

Writing POA-based Code Several resources and strategies are available for learning how to write
efficient POA-based code:

� Enroll in an Orbix 6.2 training course.

� Read Henning/Vinoski�s Advanced CORBA Programming with C++.

� Examine the demonstrations that are provided with your Orbix 6.2
installation.

� Use the Orbix 6.2 code generation toolkit to generate test clients and
automate the more routine aspects of server programming.

Choosing POA Policies A POA that uses a servant manager, and especially a servant locator, can
assert great control over object life cycles. A POA can also implement a
default servant, which can simulate almost unlimited numbers of objects.

IONA�s Orbix 6.2 training course contains much advice, including a decision
flowchart on how to choose POA policies.

Note: Orbix Mainframe does not support use of the code generation
toolkit in either native z/OS or UNIX System Services. However, you
can use the code generation toolkit off-host, with Orbix on Windows
or UNIX, and then copy the generated code to z/OS.
43

CHAPTER 5 | C++ Migration Issues
Object IDs versus Markers Orbix 6.2 uses a sequence of octets to compose an object�s ID. Orbix 2.3.x
uses string markers. CORBA provides helper methods
string_to_ObjectId() and ObjectId_to_string() to convert between the
two types, so migration from marker dependencies to Object IDs should be
straightforward.

Migrating Orbix Loaders Orbix loader architecture is constrained by BOA limitations. The BOA always
maintains an object map internally. This can lead to duplicated efforts and
synchronization concerns, if you try to maintain your own object map for
caching and eviction.

Servant Locators A servant locator gives you full control over servant creation and routing of
CORBA requests to the appropriate servants. Servant locators also help you
avoid thread-related blockages.

Overriding the Default POA The issues that surround implicit activation of objects in an unexpected POA
require careful consideration by anyone who works with Orbix 6.2. Orbix
6.2 genies offer several options to override _default_POA() that your own
code can emulate.
 44

C++ Server Migration
Activation Modes

In This Section This subsection describes migration issues relating to activation modes. It
discusses the following topics:

� BOA Activation Modes

� POA Shared Modes

� Migration Impact

� Orbix 6.2 Enterprise Edition

BOA Activation Modes BOA activation modes�Shared, Unshared, Per-method and Persistent�are
used for a variety of reasons: to achieve multi-threaded behavior in a single-
threaded environment, to increase server reliability, and so on. All Orbix
2.3.x activation modes, except Shared, are typically used to achieve some
form of load balancing that is transparent to the client. The two most
popular modes are Shared and the Orbix-specific mode, Per-Client-Pid:

� Shared mode � enables all clients to communicate with the same
server implementation.

� Per-Client-Pid mode � enforces a one-to-one relationship between the
client process and server process, and is sometimes used to maximize
server availability.

POA Shared Modes The POA provides three shared activation modes:

� always

� on-demand

� never

Migration Impact The choice of activation mode has almost no impact on BOA-based or
POA-based server code, so the migration path should be straightforward.

Orbix 6.2 Enterprise Edition The Enterprise Edition of Orbix 6.2 includes transparent locator-based load
balancing over a group of replica POAs. This should answer the needs
currently addressed by most Orbix 2.3.x activation modes.
45

CHAPTER 5 | C++ Migration Issues
Object/Servant Lifecycles

Overview This subsection summarizes the differences in object reference creation
between BOAs and POAs. It discusses the following topics:

� Creating Object References with POAs

� BOA-based Implementation

� POA-based Implementation

� Migration Impact

Creating Object References with
POAs

Because the POA separates CORBA objects from servants, it offers markedly
different approaches to the creation of object references. For example, the
following IDL provides a factory object, openNewAccount(),for creating
Account objects:

BOA-based Implementation A typical C++ BOA-based implementation of the Bank::openNewAccount()
method looks like this:

POA-based Implementation A POA-based implementation is slightly, but significantly, different:

interface Account {…}
interface Bank {
 Account openNewAccount(in string owner);
};

Account_ptr Bank_i::openNewAccount(const char* owner)
{

Account_i* newAccImpl = new Account_i(owner);
StoreWithAllTheOtherAccounts(newAccImpl);
return Account::_duplicate(newAccImpl);

}

Account_ptr Bank_i::openNewAccount(const char* owner)
{

Account_i* newAccImpl = new Account_i(owner);
StoreWithAllTheOtherAccounts(newAccImpl);
return newAccImpl->_this();

}

 46

C++ Server Migration
Migration Impact You do not need to manage the object reference. It is returned to the client
and forgotten until a client makes an invocation on it. The server then
determines which servant processes the request. You can delegate this work
to the POA, or you use a servant manager to do it yourself.
47

CHAPTER 5 | C++ Migration Issues
Creating Object References Without Servants

Overview This subsection summarizes the differences in the way that BOAs and POAs
associate object references with servants. It discusses the following topics:

� BOA-Based Servers

� POA-Based Servers

� Scalability of POA-Based Servers

� Migration Impact

BOA-Based Servers In BOA-based servers, the tie approach helps to separate a CORBA object
from its servant. Because the POA enforces this separation, there is usually
no reason to use the tie approach. It is useful only on the rare occasion
where a servant cannot inherit from third party classes, as mandated by
some object-oriented databases. In general, the tie approach adds an extra
layer of unnecessary functionality.

POA-Based Servers A POA-based server lets you create CORBA object references without
creating their servant implementations. When created you can send these
references around your CORBA system and deal with processing invocations
on them at a later stage.

Scalability of POA-Based Servers Creating CORBA object references without creating their servant
implementations lends itself to very scalable solutions. For example, you
can distribute all Account object references in a CORBA system and use a
default servant to process all the invocations on them, rather than
implement a unique servant for each object. This is logical as there typically
might be only several invocations on a given Account object each week.

Migration Impact You do not need to manage object references. An object reference is
returned to the client and forgotten until a client makes an invocation on it.
The server then determines which servant processes the request. You can
delegate this work to the POA, or you can use a servant manager to do it
yourself.
 48

C++ Server Migration
Function Signatures

Changes to the signature In Orbix 6.2, two significant changes have been made to C++ function
signatures:

� The CORBA::Environment parameter has been dropped.

� New types are used for out parameters. An out parameter of T type is
now passed as a T_out type.

Consequently, when migrating C++ implementation classes you must
replace the function signatures that represent IDL operations and attributes.
49

CHAPTER 5 | C++ Migration Issues
Exception-Safe Servant Implementations

Overview This subsection describes migration issues relating to the _var type. It
discusses the following topics:

� CORBA 2.1 and Behavior of the _var Type.

� Exception-Safe Use of _var Type.

CORBA 2.1 and Behavior of the
_var Type

The CORBA 2.1 specifications and earlier versions failed to consider the
behavior of the _var type during a servant method implementation that
might require the _var to give up the memory that it owns (usually under
exceptional circumstances).

Exception-Safe Use of _var Type The CORBA 2.2 specification improved the C++ mapping by introducing
the _retn() method on _var classes. This method ensures exception-safe
usage of _var types and allows the _var to properly relinquish ownership
of its data.

For example:

// C++
char* FooImpl::get_string() throw(CORBA::SystemException) {
CORBA::String_var result = CORBA::string_dup("foo”);
// Now do something that might throw a SystemException,
// for instance, make another CORBA call.
// This is safe since result is a _var and cleans
// up when it goes out of scope
return result._retn(); // Give up ownership to return
}

 50

Migrating Proprietary 2.3 Features
Migrating Proprietary 2.3 Features

Overview This section discusses the issues that relate to migrating proprietary Orbix
2.3.x features to Orbix 6.2.

In this section This section discusses the following topics:

Orbix Filters and CORBA 2.3 Alternatives page 52

Transformers page 56

Orbix-Specific APIs page 57

Connection Management page 58

Callbacks and Bidirectional GIOP page 60
51

CHAPTER 5 | C++ Migration Issues
Orbix Filters and CORBA 2.3 Alternatives

Overview This subsection summarizes, from the point of view of their purpose, the
CORBA 2.3 alternatives in Orbix 6.2 to Orbix filters. It discusses the
following topics:

� Orbix Filter Functions

� Request Logging

� Accessing a Client�s TCP/IP Information

� Piggybacking Extra Data

� Multi-Threaded Request Processing

� Thread Pools

� Thread Pool Configuration Settings

� WorkQueue Policies

Orbix Filter Functions Orbix proprietary filter mechanisms serve many purposes. These include:

� Request logging.

� Accessing the client�s TCP/IP information using
Request::descriptor().

� Piggybacking extra data.

� Security using an AuthenticationFilter.

� Multi-threading using a ThreadFilter.

The following sections discuss Orbix 6.2 alternatives.

Request Logging To achieve request logging capabilities, use PortableInterceptor
interfaces to obtain access to a CORBA request at any stage of the
marshalling process. These interfaces offer much more than Orbix filters.
You can use them to add and examine service contexts. You can also use
them to examine the actual arguments to the request.

Note: The PortableInterceptor draft specification is still undergoing
review and might be subject to changes before final ratification.
 52

Migrating Proprietary 2.3 Features
Accessing a Client�s TCP/IP
Information

Some clients use Orbix-specific extensions to access socket-level
information, such as the caller�s IP address, to implement proprietary
security features. Methods such as CORBA::Request::descriptor(),
however, are not available in Orbix 6.2, so alternatives must be found.

To provide security for your applications, it is recommended that you use an
implementation of the security service provided with the Orbix 6.2
Enterprise Edition off-host instead. See the Mainframe Security Guide for
more details.

Security using an authentication
filter

Some Orbix 2.3.x applications use authentication filters to implement
security features. In Orbix 6.2, it is recommended that you use the security
service that is made available with the Orbix 6.2 Enterprise Edition off-host.
See the Mainframe Security Guide for more details.

Piggybacking Extra Data Piggybacking is a feature in Orbix 2.3.x that enables you to add and remove
extra arguments to a request message. Piggybacking extra data from client
to server should be changed to the CORBA 2.3-compliant approach of using
ServiceContexts.

Multi-Threaded Request
Processing

Orbix 2.3.x supports the Orbix ThreadFilters mechanism, which offers
multi-threading capabilities.

In Orbix 6.2, request processing conforms to the CORBA 2.4 specification.
Each POA can have its own threading policy:

� SINGLE_THREAD_MODEL ensures that all servant objects in that POA
have their functions called in a serial manner. In Orbix 6.2, servant
code is called only by the main thread; therefore, no locking or
concurrency-protection mechanisms need to be used.

� ORB_CTRL_MODEL leaves the ORB free to dispatch CORBA invocations to
servants in any order and from any thread it chooses.

Note: File descriptors are not exposed, because Orbix 6.2 transparently
supports protocols such as shared memory or multicast, which do not
necessarily have a concept of a file descriptor. Exposing a file descriptor
breaks this transparency and greatly constrains the flexibility of the ORB
and the application.
53

CHAPTER 5 | C++ Migration Issues
Because the CORBA 2.4 specification does not specify exactly what
happens when the ORB_CTRL_MODEL policy is chosen, Orbix 6.2 makes some
proprietary extensions to the threading model.

The multi-threaded processing of requests is controlled using the Orbix 6.2
work queue feature. Two kinds of work queue are provided by Orbix 6.2:

� Automatic Work Queue: A work queue that feeds a thread pool. When
a POA uses an automatic work queue, request events are automatically
dequeued and processed by threads. The size of the thread pool is
configurable.

� Manual Work Queue: A work queue that requires the developer to
explicitly dequeue and process events.

Manual work queues give developers greater flexibility when it comes
to multi-threaded request processing. For example, prioritized
processing of requests could be implemented by assigning high-priority
CORBA objects to one POA instance and low-priority CORBA objects to
a second POA instance. Given that both POAs are associated with
manual work queues, the developer can write threading code that
preferentially processes requests from the high-priority POA.

Thread Pools Thread pools are created and controlled through the ORB configuration. All
POAs with a policy of ORB_CTRL_MODEL share a thread pool within the ORB.
By default, the thread pool starts with five threads, and adds new threads
when the number of outstanding requests exceeds the number of threads.
By default, there is no limit to the maximum number of threads.

Thread Pool Configuration
Settings

The configuration settings for the thread pool are:

� thread_pool:high_water_mark

� thread_pool:low_water_mark

� thread_pool:initial_threads

� thread_pool:max_queue_size

These settings can be controlled through the Orbix 6.2 configuration.
 54

Migrating Proprietary 2.3 Features
WorkQueue Policies Orbix 6.2 also provides a proprietary WorkQueue policy, which you can
associate with a POA and thereby control the flow of incoming requests for
that POA. You can implement your own WorkQueue interface, or use
IONA-supplied WorkQueue factories to create one of two WorkQueue types:

� A ManualWorkQueue, which requires the developer to explicitly
dequeue and process events.

� An AutomaticWorkQueue, which feeds a thread pool.

When a POA uses an AutomaticWorkQueue, request events are automatically
dequeued and processed by threads. Use one of the preceding thread pool
configuration settings listed to configure the size of the thread pool.
55

CHAPTER 5 | C++ Migration Issues
Transformers

Orbix 2.3.x Transformers are a deprecated feature of Orbix 2.3.x that allow you to apply
customized encryption to CORBA request messages. This could be used to
implement a primitive substitute for a security service.

Orbix 6.2 In Orbix 6.2, transformers are not supported. It is recommended, instead,
that you use the security service that is made available with the enterprise
edition of Orbix 6.2. See the Mainframe Security Guide for more details.
 56

Migrating Proprietary 2.3 Features
Orbix-Specific APIs

In This Section This subsection describes migration issues relating to Orbix-specific APIs. It
discusses the following topics:

� Availability of ORB Classes in Orbix 2.3.x.

� Availability of ORB Classes in Orbix 6.2.

� Migration Impact.

Availability of ORB Classes in
Orbix 2.3.x

The Orbix ORB class has many proprietary configuration Application
Programming Interfaces (APIs) and extensions, such as
maxConnectRetries() and bindUsingIIOP().

Availability of ORB Classes in
Orbix 6.2

Proprietary Orbix ORB class APIs are not available in the Orbix 6.2 ORB
class.

Migration Impact In general, these calls are no longer necessary, or their functionality is
available through configuration.
57

CHAPTER 5 | C++ Migration Issues
Connection Management

Overview Orbix 6.2 provides an active connection manager that allows the ORB to
reclaim connections automatically, and thereby increases the number of
clients that can concurrently use a server beyond the limit of available file
descriptors.

This subsection discusses the following topics:

� IIOP Configuration Variables

� ORBs and IIOP Connections

� File Descriptor Limits

� File Descriptor Limits and Orbix 6.2

� TCP/IP Socket-Level Access

IIOP Configuration Variables IIOP connection management is controlled by four configuration variables:

� plugins:iiop:incoming_connections:hard_limit sets the maximum
number of incoming (server-side) connections allowed to IIOP. IIOP
refuses new connections above this limit.

� plugins:iiop:incoming_connections:soft_limit determines when
IIOP starts to close incoming connections.

� plugins:iiop:outgoing_connections:hard_limit sets the maximum
number of outgoing (client-side) connections allowed to IIOP. IIOP
refuses new outgoing connections above this limit.

� plugins:iiop:outgoing_connections:soft_limit determines when
IIOP starts to close outgoing connections.

ORBs and IIOP Connections The ORB first tries to close idle connections in least-recently-used order. If
there are no idle connections, the ORB closes busy connections in
least-recently-opened order.

File Descriptor Limits Active connection management effectively remedies file descriptor limits
that have constrained previous Orbix applications. If a client is idle for a
period of time and the server ORB reaches its connection limit, it sends a
 58

Migrating Proprietary 2.3 Features
GIOP CloseConnection message to the client and closes the connection.
Later, the same client can transparently re-establish its connection, to send
a request without throwing a CORBA exception.

File Descriptor Limits and Orbix
6.2

Orbix 6.2 is configured to use the largest upper file descriptor on each
supported operating system (OS). On a UNIX OS it is possible to rebuild the
OS kernel to obtain a larger number. However, active connection
management should make this unnecessary.

File descriptors are not exposed, because Orbix 6.2 transparently supports
protocols such as shared memory or multicast, which do not necessarily
have a concept of a file descriptor. Exposing a file descriptor breaks this
transparency and greatly constrains the flexibility of the ORB and the
application.

TCP/IP Socket-Level Access Orbix 6.2 does not allow access to TCP/IP sockets or transport-level
information, nor does it mandate a TCP/IP transport layer. You can specify a
transport plug-in such as multicast, (which is connectionless), SOAP, HTTP,
ATM, and so on. The shared memory transport (SIOP), for example, does
not use file descriptors or sockets. Because Orbix 6.2 has no equivalent to
the Orbix IOCallback functionality, you must migrate any code that uses it.

Note: Orbix 2.3.x throws a COMM_FAILURE exception on the first attempt
at re-connection; server code that anticipates this exception should be
reevaluated against Orbix 6.2 functionality.
59

CHAPTER 5 | C++ Migration Issues
Callbacks and Bidirectional GIOP

Overview Orbix 6.2 introduces support for bidirectional GIOP, based on an OMG
standard. This is a new feature introduced since Orbix E2A ASP v 6.0.
Previously (in Orbix E2A ASP v5.x and v6.0), bidirectional GIOP was not
supported, or was not based on an OMG standard (Orbix 3.x and earlier).

Motivation for bi-directional IIOP Bidirectional GIOP was introduced in Orbix in order to overcome the
limitations of standard GIOP in relation to using callback objects through a
firewall.

Features IONA�s implementation of bidirectional GIOP has the following features:

1. Compliant with the modified bidirectional GIOP approach described in
the firewall submission.

2. Compatible with GIOP 1.2 (that is, not dependent on GIOP 1.4
NegotiateSession messages).

3. Decoupled from IIOP, so that it can be used over arbitrary
connection-oriented transports (for example, SHMIOP).

4. Supports weak BiDirIds initially.

5. Supports bidirectional invocations on legacy Orbix 2.3.x callback
object references in order to facilitate phased migration to Orbix 6.2.

References For more details about the bidirectional GIOP support in Orbix 6.2, see the
following references:

� CORBA Programmer�s Guide

� Administrator�s Guide
 60

CHAPTER 6

COBOL Migration
Issues
This chapter describes the issues involved in migrating COBOL
applications from an Orbix 2.3-based IONA mainframe
solution to Orbix Mainframe 6.2.

In this Chapter This chapter discusses the following topics:

Name Mapping Issues page 63

Copybook Names Based on IDL Member Name page 89

Name Scoping and the COBOL Compilers page 97

Typecode Name and Length Identifiers page 107

Reserved COBOL and OMG Keywords page 116

Error Checking and Exceptions page 122

Nested Unions in IDL page 126

Mapping for Arrays page 131

Working Storage data Items and Group Moves page 133

Mapping for IDL type Any page 135

CORBA Copybook Additions page 137
61

CHAPTER 6 | COBOL Migration Issues
Parameter Passing of Object References in IDL Operations page 138

CORBA Object Location and Binding page 139

API Migration Issues page 145

COBOL IMS Server Migration Issues page 151

COBOL IMS Client Migration Issues page 165

COBOL CICS Server Migration Issues page 171

COBOL CICS Client Migration Issues page 178

Miscellaneous page 181
 62

Name Mapping Issues
Name Mapping Issues

In This Section This section discusses the following topics:

Fully Qualified Level 01 Data Names page 64

Operation and Level 88 Data Names page 68

IDL Constant Definitions Mapped to Fully Qualified Names page 72

Derived Interface Names and Fully Qualified Names page 77

Numeric Suffixes for Data Names page 80

160-Character Limit for String Literals page 81

Maximum Length of COBOL Data Names page 86
63

CHAPTER 6 | COBOL Migration Issues
Fully Qualified Level 01 Data Names

Overview This subsection summarizes the differences in the way that gencbl and the
Orbix 6.2 Compiler generate level 01 data names. It discusses the following
topics:

� The gencbl Utility

� Orbix 6.2 IDL Compiler

� Sample IDL

� The gencbl Utility Output

� Orbix 6.2 IDL Compiler Output

� Migration Impact

� Example of Using the -M Argument

� In Summary

The gencbl Utility The gencbl utility uses only the interface name as a prefix for generated
data names. The gencbl utility can only support interfaces that are defined
within a single module. It can therefore not support multiple levels of nested
modules and interfaces.

Orbix 6.2 IDL Compiler The Orbix 6.2 IDL Compiler replaces the gencbl utility. The Orbix 6.2 IDL
Compiler generates fully qualified names for COBOL 01 level data items.
This means that it includes both module and interface names in COBOL
data names. It can therefore support any level of scoping in IDL members
(that is, multiple levels of nested modules and interfaces).

The ability of the Orbix 6.2 IDL Compiler to generate fully qualified names
ensures the uniqueness of each generated name when, for example, the
same operation name or attribute is used at a different scope within an IDL
member.
 64

Name Mapping Issues
Sample IDL Consider the following IDL sample called the AMODULE member:

The gencbl Utility Output The gencbl utility outputs the following for the preceding IDL sample:

The module name is omitted from the 01 level data name.

Orbix 6.2 IDL Compiler Output Orbix 6.2 IDL Compiler outputs the following for the preceding IDL:

The Orbix 6.2 IDL Compiler includes Mymod in the 01 level data name

Migration Impact Use the -M argument that is provided with the Orbix 6.2 IDL Compiler to
avoid having to make changes to your application source code. The -M
argument allows you to generate a mapping member that you can then use
to map alternative names to your fully qualified data names. You can set
these alternative names in the mapping member to be the same as the
COBOL data names that were originally generated by gencbl.

You must run the Orbix 6.2 IDL Compiler twice, first with the -McreateN
and then the -Mprocess argument. The first run generates the mapping
member, complete with the fully qualified names and the alternative name
mappings. The alternative name mappings generated are dependent on the
argument given to the -McreateN where N can have an integer value of
either 0, 1, or 2. At this point you can manually edit the mapping member (if
necessary) to change the alternative names to the names you want to use.

module Mymod
 {
 interface myinter
 {
 void myop(inout long mylong);
 };
};

 01 MYINTER-MYOP-ARGS.
 03 MYLONG PICTURE S9(09) BINARY.

 01 MYMOD-MYINTER-MYOP-ARGS.
 03 MYLONG PICTURE S9(10) BINARY.
65

CHAPTER 6 | COBOL Migration Issues
Then run the -Mprocess argument again, this time to generate your COBOL
copybooks complete with the alternative data names in the specified
mapping member.

Refer to the COBOL Programmer�s Guide and Reference for an example of
how to use the -M argument.

Example of Using the -M
Argument

The -M argument can be used to make the Orbix 6.2 compiler output the
same as the gencbl output for the preceding IDL. The steps to do this are as
follows:

Step Action

1 Create a mapping member for the IDL by running the mapping
member as follows:

//IDLCBL EXEC ORXIDL,

// SOURCE=AMODULE,

// IDL=&ORBIX..DEMOS.IDL,

// COPYLIB=&ORBIX..DEMOS.COBOL.COPYLIB,

// IMPL=&ORBIX..DEMOS.COBOL.SRC,

// IDLPARM='-cobol:-Mcreate1MYMAP'

//IDLMAP DD DISP=SHR,DSN=&ORBIX..DEMOS.COBOL.MAP

This produces the following in the mapping member:

Mymod Mymod

Mymod/myinter myinter

Mymod/myinter/myop myinter-myop
 66

Name Mapping Issues
In Summary Affects both clients and servers. Requires use of the -M argument, and if
necessary, code changes.

2 Using the mapping member in step 1 and run the IDL compiler
again as follows:

//IDLCBL EXEC ORXIDL,

// SOURCE=AMODULE,

// IDL=&ORBIX..DEMOS.IDL,

// COPYLIB=&ORBIX..DEMOS.COBOL.COPYLIB,

// IMPL=&ORBIX..DEMOS.COBOL.SRC,

// IDLPARM='-cobol:-MprocessMYMAP'

//IDLMAP DD DISP=SHR,DSN=&ORBIX..DEMOS.COBOL.MAP

This produces output which is the same as that generated by
gencbl for this operation section:

01 MYINTER-MYOP-ARGS.

 03 MYLONG PICTURE S9(10) BINARY.

Step Action
67

CHAPTER 6 | COBOL Migration Issues
Operation and Level 88 Data Names

Overview This subsection summarizes the differences in the way that gencbl and the
Orbix 6.2 IDL Compiler generate level 88 and level 01 data names for
operations and attributes defined in IDL. It discusses the following topics:

� The gencbl approach

� Orbix 6.2 IDL Compiler

� Migration Impact

� Sample IDL

� The gencbl Utility Output

� Orbix 6.2 IDL Compiler Output

� Example of Using the -M Argument

� In Summary

The gencbl approach The gencbl utility does not use the fully qualified name, instead it uses the
interface name only as the first qualifier. You can use the -M argument with
the Orbix 6.2 IDL Compiler to mimic gencbl output.

Orbix 6.2 IDL Compiler Operation identifier names and associated level 88 data names are
generated with fully qualified names by default, because of the multiple
levels of nesting in IDL members that the Orbix 6.2 IDL Compiler supports.
The issue is similar to that discussed in �Fully Qualified Level 01 Data
Names� on page 64.

Migration Impact There is only a migration impact if the IDL contains modules.

Use the -M argument that is provided with the Orbix 6.2 IDL Compiler to
resolve the migration impact. The -M argument can be used to map the fully
qualified generated names (based on the IDL member name) to alternative
names that match those generated by gencbl.

Refer to the COBOL Programmer�s Guide and Reference for an example of
how to use the -M argument.
 68

Name Mapping Issues
Sample IDL Consider the following IDL, called the MYMOD member:

The gencbl Utility Output Based on the preceding IDL, gencbl outputs the following:

Orbix 6.2 IDL Compiler Output Based on the preceding IDL, the Orbix 6.2 IDL Compiler outputs the
following:

module amodule
{
 interface fred
 {
 void myop(in long along,inout short ashort);
 };

};

01 FRED-OPERATION PICTURE X(26).

 88 FRED-MYOP VALUE "myop:IDL:amodule/fred:1."

01 FRED-OPERATION-LENGTH PICTURE 9(09)BINARY VALUE 26.

01 AMODULE-FRED-OPERATION PICTURE X(26).
 88 AMODULE-FRED-MYOP

VALUE "myop:IDL:amodule/fred:1.0".
01 AMODULE-FRED-OPERATION-LENGTH PICTURE 9(09) BINARY
 VALUE 26.
69

CHAPTER 6 | COBOL Migration Issues
Example of Using the -M
Argument

The -M argument be used can to make the Orbix 6.2 compiler output the
same as the gencbl output for the preceding IDL by following the steps
below:

Step Action

1 Create a mapping member for the IDL by running the mapping
member as follows:

 //IDLCBL EXEC ORXIDL,

// SOURCE=MYMOD,

// IDL=&ORBIX..DEMOS.IDL,

// COPYLIB=&ORBIX..DEMOS.COBOL.COPYLIB,

// IMPL=&ORBIX..DEMOS.COBOL.SRC,

// IDLPARM='-cobol:-Mcreate1MYMAP1'

//IDLMAP DD DISP=SHR,DSN=&ORBIX..DEMOS.COBOL.MAP

This produces the following in the mapping member:

amodule amodule

amodule/fred fred

amodule/fred/myop/ fred-myop
 70

Name Mapping Issues
In Summary Affects clients and servers. Requires code change or use of the described
workaround.

2 Use the mapping member in step 1 and run the IDL compiler
again as follows:

//IDLCBL EXEC ORXIDL,

// SOURCE=MYMOD,

// IDL=&ORBIX..DEMOS.IDL,

// COPYLIB=&ORBIX..DEMOS.COBOL.COPYLIB,

// IMPL=&ORBIX..DEMOS.COBOL.SRC,

// IDLPARM='-cobol:-MprocessMYMAP1'

//IDLMAP DD DISP=SHR,DSN=&ORBIX..DEMOS.COBOL.MAP

This produces output which is the same as that generated by
gencbl for this operation section:

01 FRED-OPERATION PICTURE X(26).

 88 FRED-MYOP VALUE "myop:IDL:amodule/fred:1.0".

01 FRED-OPERATION-LENGTH PICTURE 9(09)

 BINARY VALUE 26.

Step Action
71

CHAPTER 6 | COBOL Migration Issues
IDL Constant Definitions Mapped to Fully Qualified Names

Overview This subsection summarizes the differences in the way that gencbl and the
Orbix 6.2 IDL Compiler generate COBOL data names for IDL constant
definitions. It discusses the following topics:

� Mapping for Constants Comparison

� The gencbl Utility

� Orbix 6.2 IDL Compiler

� Migration Impact

� Sample IDL

� Orbix 6.2 Generated Data Names

� Legacy Support

� In Summary

Mapping for Constants
Comparison

The following are the differences between the Orbix 6.2 IDL Compiler and
gencbl mapping for constants:

In the preceding table, FQN represents the fully qualified name for the
module or interface where the constant is defined.

The gencbl Utility The gencbl utility uses only the interface name to map IDL constant
definitions to data names, because it only supports only one level of nesting
of modules in IDL.

Table 6: COBOL Compiler Output for IDL Constant Definitions

Orbix 6.2 IDL Compiler gencbl Utility

Global constant
at IDL member
level

01 GLOBAL-idlmembername-CONSTS

 03 localname…

01 interfacename-GLOBAL-CONSTS

 03 interfacename-localaname…

Global constant
at module level

01 FQN-CONSTS

 03 localname…

01 interfacename-MODULE-CONSTS

 03 interfacename-localname…

Constant at
interface level

01 FQN-CONSTS

 03 localname…

01 interfacename-CONSTANTS

 03 interfacename-localname...
 72

Name Mapping Issues
Orbix 6.2 IDL Compiler IDL constant definitions are mapped to fully qualified data names in Orbix
6.2, because the Orbix 6.2 IDL Compiler can process any level of scoping in
IDL members (that is, multiple levels of nested modules and interfaces).
Therefore, the same constant names can be used at different scopes, and
uniqueness of data names is imperative.

Migration Impact The MODULE keyword that is generated by gencbl is not used in Orbix 6.2,
because there is support for more than one level of module. With gencbl,
only one level of module is supported. .

Note: The GLOBAL keyword is still used, but in the case of gencbl, refers
to all constant definitions defined in the Interface Repository. In the case of
Orbix 6.2 it refers to all constants defined at global scope in the IDL
member being processed.

Note: The Interface Repository server is not required by the Orbix 6.2 IDL
Compiler when generating COBOL definitions from IDL. For further details
refer to �Interface Repository Server� on page 181.
73

CHAPTER 6 | COBOL Migration Issues
Sample IDL Consider the following IDL member, called TEST, which defines four
constants with the same name � myconstant � at different levels:

//test.idl
const long myconstant = 1;
module m1
{
 const long myconstant = 1;
 interface fred
 {
 const long myconstant = 1;
 void myop();
 };
 module m2
 {
 interface fred
 {
 const long myconstant = 1;
 void myop();
 };
 };
};
 74

Name Mapping Issues
Orbix 6.2 Generated Data Names Based on the preceding IDL, the Orbix 6.2 IDL Compiler generates the
following data names:

Legacy Support It is not feasible to provide full legacy support in this case. However, you
can use the -M argument with the Orbix 6.2 IDL Compiler to control the FQN
name shown in the preceding example. You can also use the -O argument
with the Orbix 6.2 IDL Compiler to determine the name of the generated
copybook, which defaults to the IDL member name. This only affects the
level 01 data name for Global constants; for example, if the -O argument is
used with the name TESTS, that is, -OTESTS, the IDL compiler output
changes from:

to:

**
* Constants in root scope:
**
01 GLOBAL-TEST-CONSTS.
 03 MYCONSTANT PICTURE S9(10) BINARY VALUE 1.
**
* Constants in m1:
**
01 M1-CONSTS.
 03 MYCONSTANT PICTURE S9(10) BINARY
 VALUE 1.
**
* Constants in m1/fred:
**
01 M1-FRED-CONSTS.
 03 MYCONSTANT PICTURE S9(10) BINARY
 VALUE 1.
**
* Constants in m1/m2/fred:
**
01 M1-M2-FRED-CONSTS.
 03 MYCONSTANT PICTURE S9(10) BINARY
 VALUE 1.

01 GLOBAL-TEST-CONSTS.
 03 MYCONSTANT PICTURE S9(09) BINARY VALUE 1.

01 GLOBAL-TESTS-CONSTS.
 03 MYCONSTANT PICTURE S9(09) BINARY VALUE 1.
75

CHAPTER 6 | COBOL Migration Issues
In Summary Affects clients and servers. Requires code changes where constants are
used.
 76

Name Mapping Issues
Derived Interface Names and Fully Qualified Names

Overview This subsection summarizes the differences in the way that version v2r3m5
(or higher) of gencbl and the Orbix 6.2 IDL Compiler generate level 88
entries for IDL operation names to process remote derived objects on the
client side.

This subsection discusses the following topics:

� Migration Impact

� Sample IDL

� Main Copybook Sample for GRID using version v2r3m5 (or higher)

� Orbix 6.2 IDL Compiler Output

� Changes on the Client-Side

� In Summary

Migration Impact For users of gencbl version v2r3m5 (or higher) which generates a main
copybook that includes an extra level 88 entry for each operation name
(incorporating the fully qualified name) changes are required.

Applications that use fully qualified data names require changes to use the
original name. For the grid example this would mean changing set
fq-grid-get-height to set grid-get-height. The Orbix 6.2 IDL Compiler
does not generate the fully qualified data name, therefore client code that
references these fully qualified names needs to be changed to use the
original names.

Note: For users of a gencbl version earlier than version v2r3m5 no
changes are required, because the extra level 88 entry for each operation
name (incorporating the fully qualified name) is not included.
77

CHAPTER 6 | COBOL Migration Issues
Sample IDL Consider the following sample IDL, with an interface called grid

Main Copybook Sample for GRID
using version v2r3m5 (or higher)

The gencbl version v2r3m5 (or higher) outputs the following for the
preceding IDL:

Note the extra entry per operation.

interface grid {
 readonly attribute short height; // height of the grid
 readonly attribute short width; // width of the grid

 // IDL operations

 // set the element [n,m] of the grid, to value:
 void set(in short n, in short m, in long value);

 // return element [n,m] of the grid:
 long get(in short n, in short m);
};

01 GRID-OPERATION PICTURE X(17).
 88 GRID-GET-HEIGHT VALUE "_get_height".
 88 FQ-GRID-GET-HEIGHT VALUE "_get_height:grid".
 88 GRID-GET-WIDTH VALUE "_get_width".
 88 FQ-GRID-GET-WIDTH VALUE "_get_width:grid".
 88 GRID-IDL-SET VALUE "set".
 88 FQ-GRID-IDL-SET VALUE "set:grid".
 88 GRID-IDL-GET VALUE "get".
 88 GRID-IDL-GET VALUE "get".
 88 FQ-GRID-IDL-GET VALUE "get:grid".
 78

Name Mapping Issues
Orbix 6.2 IDL Compiler Output The Orbix 6.2 IDL Compiler generates the following output for the grid
interface:

There is no extra entry per operation, and each entry contains all the
necessary information in the level 88 string, that is, the operation name (and
the module and interface name) it relates to.

Changes on the Client-Side The following client code needs to be changed for the preceding IDL:

to:

In Summary Affects clients and requires minor code changes.

01 GRID-OPERATION PICTURE X(25).
 88 GRID-GET-HEIGHT VALUE
 "_get_height:IDL:grid:1.0".
 88 GRID-GET-WIDTH VALUE
 "_get_width:IDL:grid:1.0".
 88 GRID-IDL-SET VALUE
 "set:IDL:grid:1.0".
 88 GRID-IDL-GET VALUE
 "get:IDL:grid:1.0".
01 GRID-OPERATION-LENGTH PICTURE 9(09) BINARY
 VALUE 25.

* Try to read the height and width of the grid.
 set fq-grid-get-height to true
 call "ORBEXEC" using grid-obj
 grid-operation
 grid-height-args

* Try to read the height and width of the grid.
 set grid-get-height to true
 call "ORBEXEC" using grid-obj
 grid-operation
 grid-height-args
79

CHAPTER 6 | COBOL Migration Issues
Numeric Suffixes for Data Names

Overview This subsection summarizes the differences in the way that gencbl and the
Orbix 6.2 IDL Compiler add numeric suffixes to generate unique data names
for IDL identifier names. It discusses the following topics:

� The gencbl utility

� Orbix 6.2 IDL Compiler

� Migration Impact

The gencbl utility The gencbl utility generates unique data names by attaching numeric
suffixes to them (starting at -1). It used this method regardless of whether
the number was ever used. Therefore, in nested levels of IDL, some of the
generated data names appeared to skip numbers.

Refer to �Name Scoping and the COBOL Compilers� on page 97 for an
example of how this works.

Orbix 6.2 IDL Compiler The Orbix 6.2 IDL Compiler does not skip numbers in this way. Therefore,
some of the data names that it generates (especially where nested
sequences are used) are different from the names generated by gencbl.

Migration Impact Affects source code where nesting of sequences and other complex types
occurs.
 80

Name Mapping Issues
160-Character Limit for String Literals

Overview IDL typecodes are mapped to string literals in COBOL using a level 01 data
name and within it the typecodes as level 88 data names. However, the
IBM COBOL compiler does not allow string literals that exceed 160
characters.

This subsection discusses the following topics:

� The gencbl Utility Solution

� The Orbix 6.2 IDL Compiler Solution

� Sample IDL

� The gencbl Output

� The Orbix 6.2 IDL Compiler Output

� Migration Impact

� In Summary

The gencbl Utility Solution To get around this problem, an extra undocumented argument was supplied
(the -D argument) with gencbl (version 2.3.1 and later), to generate
typecodes in a non-OMG-compliant manner. To use these typecodes, some
minor changes were required to application source code for passing
sequences.

The Orbix 6.2 IDL Compiler
Solution

The Orbix 6.2 IDL Compiler resolves this issue by ensuring that the
typecode representations produced rarely exceed 160 characters, and thus
can always be defined as a 88 level item. The level 88 items produced are
not actually typecodes; they are unique strings representing the keys which
the COBOL runtime interprets to derive the typecode using the
idlmembernameX copybook at runtime.
81

CHAPTER 6 | COBOL Migration Issues
Sample IDL Consider the following IDL sample, called the SOLUTION member:

interface solution {
 struct PersonInfo {
 string FirstName;
 string MiddleName;
 string SurName;
 boolean Married;
 unsigned long
 Age;
 char Sex;
 unsigned long
 NoChildren;
 };
 struct WorkInfo {
 string JobTitle;
 string Department;
 string CompanyName;
 char Grade;
 float Salary;
 boolean HealthIns;
 boolean Overtime;
 boolean CompanyCar;
 boolean Expenses;
 unsigned
 long YearsService;
 string Miscdetls;
 };
 struct AddressInfo {
 short HouseNumber;
 string AddressLine1;
 string AddressLine2;
 string AddressLine3;
 string AddressLine4;
 string PostalCode;
 string City;
 string State;
 string Country;
 string Continent;
 };
 struct CustInfo {
 PersonInfo PersonDetls;
 AddressInfo AddressDetls;
 WorkInfo WorkDetls;
 };
 82

Name Mapping Issues
The gencbl Output The relevant section of the gencbl output for the preceding IDL is:

The typecode is produced as a level 01 item and not a level 88 as is the case
with the Orbix 6.2 IDL Compiler.

 typedef sequence <CustInfo> CustDetls;
 void AcceptCustInfot (
 out CustDetls myCustDetls
);
};

01 TC-CUSTDETLS.

 03 FILLER PICTURE X(160) VALUE

"S{R~Z~X{R~Z~X{0},X{0},X{0},X{b},X{ul},X{c},X{ul}},X{R~

- "Z~X{s},X{0},X{0},X{0},X{0},X{0},X{0},X{0},X{0},X{0}},X{R~Z~X

- "{0},X{0},X{0},X{c},X{f},X{b},X{b},X{b},X{b},X{".

 03 FILLER PICTURE X(12) VALUE "ul},X{0}}},0".

01 TC-CUSTDETLS-TYPE-LENGTH PICTURE 9(09) BINARY VALUE 172.
83

CHAPTER 6 | COBOL Migration Issues
The Orbix 6.2 IDL Compiler
Output

For the preceding IDL, the Orbix 6.2 IDL Compiler generates the following
typecode section in the main copybook:

Migration Impact Customers that used a non-OMG-compliant version of gencbl with the
alternative typecode mapping must now revert back to the OMG way of
coding their applications.

From the gencbl output which uses the -D argument, the code to set the
type in a sequence for the preceding IDL is:

From the Orbix 6.2 IDL Compiler output which is OMG compliant the code
to set the type in a sequence for the preceding IDL is:

**
 * Typecode section
 * This contains CDR encodings of necessary typecodes.
**
01 SOLUTION-TYPE PICTURE X(28).
COPY CORBATYP.
 88 SOLUTION-ADDRESSINFO VALUE
 "IDL:solution/AddressInfo:1.0".
 88 SOLUTION-CUSTDETLS VALUE
 "IDL:solution/CustDetls:1.0".
 88 SOLUTION-CUSTINFO VALUE
 "IDL:solution/CustInfo:1.0".
 88 SOLUTION VALUE
 "IDL:solution:1.0".
 88 SOLUTION-WORKINFO VALUE
 "IDL:solution/WorkInfo:1.0".
 88 SOLUTION-PERSONINFO VALUE
 "IDL:solution/PersonInfo:1.0".
01 SOLUTION-TYPE-LENGTH PICTURE S9(09) BINARY
 VALUE 28.

CALL "STRSET" USING SEQUENCE-TYPE OF ...my-sequence...
TC-CUSTDETLS-TYPE-LENGTH
TC-CUSTDETLS-TYPE.

SET SOLUTION-CUSTDETLS TO TRUE
CALL "STRSET" USING SEQUENCE-TYPE OF ...my-sequence...
SOLUTION-TYPE-LENGTH
SOLUTION-TYPE.
 84

Name Mapping Issues
In Summary Requires code changes to application source code using sequences.
85

CHAPTER 6 | COBOL Migration Issues
Maximum Length of COBOL Data Names

Overview This subsection summarizes the differences in the way that the gencbl
utility and the Orbix 6.2 IDL Compiler process IDL identifier names that
exceed 30 characters. It discusses the following topics:

� The gencbl Utility Approach

� Problems with the gencbl Utility Approach

� Orbix 6.2 IDL Compiler Approach

� Sample IDL

� Data Names Generated by gencbl

� Data Names Generated by the Orbix 6.2 IDL Compiler

� Migration Impact

� In Summary

The gencbl Utility Approach Because COBOL places a 30-character restriction on the length of data
names, a method to resolve this issue is provided with the gencbl utility. For
any identifiers exceeding 30 characters, this method truncates the identifier
name to the first 27 characters and attaches a three-character numeric
suffix.

Problems with the gencbl Utility
Approach

This method is prone to problems if the original IDL for a completed
application has to be subsequently modified, and the modifications involve
IDL identifiers exceeding 30 characters being added before existing
operations or arguments. In this case, the regenerated suffixes for the
various data names do not match the original suffixes generated. This
results in customers having to make undesirable source code changes.

Orbix 6.2 IDL Compiler Approach To avoid this problem, a new method has been implemented with the Orbix
6.2 IDL Compiler. This new method ensures that the same suffix is always
regenerated for a particular data name.
 86

Name Mapping Issues
Sample IDL Consider the following IDL:

Data Names Generated by gencbl The gencbl utility generated data names as follows, based on the preceding
IDL:

interface longname{
struct complex {
 long

thisIsAReallyLongFeatureNamewithAnotherReallyLongFeatureExten
sionAtTheEnd;

 long
yetAnotherReallyLongFeatureNamewithAnotherReallyLongFeatureEx
tension;

 long
ThirdLastYetAnotherReallyLongFeatureNamewithAnotherReallyLongFea

tureExtension;
};
 void initialise();
 void op1(in complex ii);
 complex op2(in complex ii, inout complex io, out complex oo);
};

01 LONGNAME-OP1-ARGS.
 03 II.
 05 THISISAREALLYLONGFEATURENAMEWI PICTURE S9(09) BINARY.
 05 YETANOTHERREALLYLONGFEATURENAM PICTURE S9(09) BINARY.
 05 THIRDLASTYETANOTHERREALLYLONGF PICTURE S9(09) BINARY.

01 LONGNAME-OP2-ARGS.
 03 II.
 05 THISISAREALLYLONGFEATURENAM000 PICTURE S9(09) BINARY.
 05 YETANOTHERREALLYLONGFEATURE001 PICTURE S9(09) BINARY.
 05 THIRDLASTYETANOTHERREALLYLO002 PICTURE S9(09) BINARY.
 03 IO.
 05 THISISAREALLYLONGFEATURENAM003 PICTURE S9(09) BINARY.
 05 YETANOTHERREALLYLONGFEATURE004 PICTURE S9(09) BINARY.
 05 THIRDLASTYETANOTHERREALLYLO005 PICTURE S9(09) BINARY.
 03 OO.
 05 THISISAREALLYLONGFEATURENAM006 PICTURE S9(09) BINARY.
 05 YETANOTHERREALLYLONGFEATURE007 PICTURE S9(09) BINARY.
 05 THIRDLASTYETANOTHERREALLYLO008 PICTURE S9(09) BINARY.
87

CHAPTER 6 | COBOL Migration Issues
Data Names Generated by the
Orbix 6.2 IDL Compiler

The Orbix 6.2 IDL Compiler generates data names as follows, based on the
preceding IDL:

Migration Impact This change means that completely different suffixes are generated where
this scenario applies with the result that any application code that
references these data names has to be changed to reference the data names
with the Orbix 6.2 suffixes.

In Summary Affects clients and servers where IDL identifiers exceed 30 characters.
Requires code changes.

01 LONGNAME-OP1-ARGS.
 03 II.
 05 THISISAREALLYLONGFEATUREN-E658 PICTURE S9(10) BINARY.
 05 YETANOTHERREALLYLONGFEATU-7628 PICTURE S9(10) BINARY.
 05 THIRDLASTYETANOTHERREALLY-E278 PICTURE S9(10) BINARY.
01 LONGNAME-OP2-ARGS.
 03 II.
 05 THISISAREALLYLONGFEATUREN-E658 PICTURE S9(10) BINARY.
 05 YETANOTHERREALLYLONGFEATU-7628 PICTURE S9(10) BINARY.
 05 THIRDLASTYETANOTHERREALLY-E278 PICTURE S9(10) BINARY.
 03 IO.
 05 THISISAREALLYLONGFEATUREN-E658 PICTURE S9(10) BINARY.
 05 YETANOTHERREALLYLONGFEATU-7628 PICTURE S9(10) BINARY.
 05 THIRDLASTYETANOTHERREALLY-E278 PICTURE S9(10) BINARY.
 03 OO.
 05 THISISAREALLYLONGFEATUREN-E658 PICTURE S9(10) BINARY.
 05 YETANOTHERREALLYLONGFEATU-7628 PICTURE S9(10) BINARY.
 05 THIRDLASTYETANOTHERREALLY-E278 PICTURE S9(10) BINARY.
 03 RESULT.
 05 THISISAREALLYLONGFEATUREN-E658 PICTURE S9(10) BINARY.
 05 YETANOTHERREALLYLONGFEATU-7628 PICTURE S9(10) BINARY.
 05 THIRDLASTYETANOTHERREALLY-E278 PICTURE S9(10) BINARY.
 88

Copybook Names Based on IDL Member Name
Copybook Names Based on IDL Member
Name

Overview Copybook names in Orbix 6.2 are generated based on the IDL member
name, instead of being based on the interface name, as is the case with
gencbl. The reason for this change is because the Orbix 6.2 IDL Compiler
can process any level of scoping in IDL members (that is, multiple levels of
nested modules and interfaces). If the same interface name is defined at
different levels within the same IDL member, it is impossible to base
copybook names on interface names.

In this section This section discusses the following topics:

Introduction to IDL Member Name Migration Issues page 90

IDL Member Name Different from its Interface Names page 92

More than One Interface in an IDL Member page 94

Length of IDL Member Names page 96
89

CHAPTER 6 | COBOL Migration Issues
Introduction to IDL Member Name Migration Issues

Overview This subsection describes migration issues relating to IDL member names. It
discusses the following topics:

� Sample IDL

� The gencbl utility

� The Orbix 6.2 IDL Compiler

� Migration Impact

Sample IDL For example, consider the following IDL member called myidl:

The gencbl utility The gencbl utility cannot correctly process the preceding IDL, because it
contains more than one level of module.

Because both interfaces share the same name, which is fred in the
preceding example, the generation of one copybook would overwrite the
other.

//myidl
module m1
{
 interface fred
 {
 void myop();
 };
 module m2
 {
 interface fred
 {
 void myop();
 };
 };
};
 90

Copybook Names Based on IDL Member Name
The Orbix 6.2 IDL Compiler The Orbix 6.2 IDL Compiler instead generates COBOL copybooks whose
names are based on the IDL member name, which is myidl in the preceding
example. Therefore, the definitions for all the interfaces contained within
this IDL member are produced in the MYIDL copybooks. (This is also how
the IDL compiler generates C++ and Java files.)

Migration Impact This has a migration impact if either of the following apply:

� IDL member names are different from the interface names they
contain.

� More than one interface is defined in an IDL member.

The migration impact for each of these situations is described in the
following subsections.
91

CHAPTER 6 | COBOL Migration Issues
IDL Member Name Different from its Interface Names

Overview This subsection summarizes the different outputs for gencbl and the Orbix
6.2 IDL Compiler for an IDL member that has one interface which has a
name different from the member name. It discusses the following topics:

� Sample IDL

� The gencbl Utility

� The Orbix 6.2 IDL Compiler

� Workaround

� In Summary

Sample IDL Consider the following IDL member, GRID, which defines an interface called
fred:

The gencbl Utility In the case of the gencbl utility, the generated copybook names are based
on the interface name, which is fred in the preceding example.

The Orbix 6.2 IDL Compiler In the case of the Orbix 6.2 IDL Compiler, the generated copybook names
are based on the IDL member name, which is grid in the preceding
example.

Workaround If your IDL member name is not the same as the interface name it contains,
you can use the -O argument with the Orbix 6.2 IDL Compiler to map the
names of the generated COBOL copybooks (which in Orbix 6.2 is based by
default on the IDL member name) to alternative names. This means you can
change the Orbix 6.2 default names to the gencbl generated names, and
thus avoid having to change the COPY statements (for example, from COPY
FRED to COPY GRID) in your application source code. The names of the
generated COBOL copybooks are then automatically changed to the

//grid.idl
interface fred
{
 void myop(in long mylong);
};
 92

Copybook Names Based on IDL Member Name
alternative name that you specify with the -O argument. Refer to the COBOL
Programmer�s Guide and Reference for an example of how to use the -O
argument.

In Summary Affects clients and servers. Requires minor code change or use of the
described workaround.
93

CHAPTER 6 | COBOL Migration Issues
More than One Interface in an IDL Member

Overview This subsection summarizes the different outputs for gencbl and the Orbix
6.2 IDL Compiler for an IDL member that has more than one interface, each
with different names. It discusses the following topics:

� The gencbl Utility

� The Orbix 6.2 IDL Compiler

� Sample IDL

� Compiler Output

� Migration Impact

� In Summary

The gencbl Utility The gencbl utility generates a set of copybooks for each interface definition,
and bases the name for each set of copybooks on the associated interface
name.

The Orbix 6.2 IDL Compiler The Orbix 6.2 IDL Compiler generates only one set of COBOL copybooks for
an IDL member, and it bases the name for that set of copybooks on the IDL
member name.

If an IDL member contains N interfaces (where N is greater than one), your
existing application code now contains N-1 redundant COPY statements.

Sample IDL Consider the following IDL member, called GRID, which contains the
following two interfaces:

interface grid
{
 void sizeofgrid(in long mysize1, in long
 mysize2);
};

interface block
{
 void area(in long myarea);
};
 94

Copybook Names Based on IDL Member Name
Compiler Output The differences in the way gencbl and the Orbix 6.2 IDL Compiler process
the preceding IDL can be outlined as follows:

Migration Impact Based on the preceding example, the BLOCK copybooks are redundant with
the Orbix 6.2 IDL Compiler. Therefore, the COPY statements for the BLOCK
copybook must be removed from the application code.

In Summary Affects clients and servers. Requires minor code change.

Table 7: COBOL Compiler Output for GRID IDL Member

The Orbix 6.2 IDL Compiler The gencbl Utility

Generates only one set of copybooks
that contain all the definitions for all
interfaces contained within the IDL
member. The copybook names are
based on the IDL member name. For
example:

GRID

GRIDX

GRIDD

Generates a set of copybooks for
each interface, based on each
interface name. For example:

GRID

GRIDX

GRIDD

BLOCK

BLOCKX

BLOCKD
95

CHAPTER 6 | COBOL Migration Issues
Length of IDL Member Names

Overview This subsection summarizes the different ways that gencbl and the Orbix
6.2 IDL compiler generate member names from IDL member names. It
discusses the following topics:

� The gencbl Utility

� The Orbix 6.2 IDL Compiler

� Migration Impact

The gencbl Utility The gencbl utility bases generated member names on the interface name. It
ensures that generated member names have a maximum of eight characters
including one of the following suffixes: SV, X, D, or Z.

The Orbix 6.2 IDL Compiler Generated member names are based on the IDL member name and are
restricted to a maximum of eight characters, including the suffix, which can
be one of the following: SV, X, D, or S.

Migration Impact If the IDL member name is longer than six characters, only the first six are
used for prefixes for the generated copybook member or source code
member.
 96

Name Scoping and the COBOL Compilers
Name Scoping and the COBOL Compilers

Overview This section summarizes the differences between how gencbl and the Orbix
6.2 IDL Compiler handle a situation where the same data names are
referenced within the same 01 level, even if the data names are fully
qualified.

IBM Error Code The IBM COBOL and Enterprise COBOL compilers produce an error
message similar to the following if the same data names are referenced
within the same 01 level, even if the data names are fully qualified:

Problem Scenarios The problem can arise in either of the following scenarios:

� If the same container name is used more than once.

� If the same fieldname is used more than once.

In This Section This section discusses the following topics:

IGYPS0037-S XXX was not a uniquely defined name. The definition
 to be used could not be determined from the context. The
 reference to the name was discarded.

Same Container Name Used More than Once page 98

Same Fieldname Used More than Once page 105
97

CHAPTER 6 | COBOL Migration Issues
Same Container Name Used More than Once

In This Section This subsection discusses migration issues relating to the IBM COBOL and
Enterprise COBOL compilers and container names. It discusses the following
topics:

� Sample IDL

� The gencbl Utility Output

� COBOL Compiler Problem

� Orbix 6.2 IDL Compiler Solution

� Orbix 6.2 IDL Compiler Output

� Migration Impact

� In Summary

Sample IDL Consider how CBObjectInfo is used in the following IDL:

Example 1: IDL Example for use of Structs (Sheet 1 of 2)

//IDL
module contain {

// CB Object

struct CBObjectInfo {
 string id;
 string lastChangedDateTime;
 string lastChangedUserID;
};

// Email Info Record

struct EmailAddressInfo {
 CBObjectInfo info;
 short addressType;
 string emailAddress;
 string availability;
};

typedef sequence <EmailAddressInfo> EmailAddressInfos;
 98

Name Scoping and the COBOL Compilers
// Phone Number Info Record

struct PhoneNumberInfo {
 CBObjectInfo info;
 short addressType;
 string phoneNumber;
 string availability;
};

typedef sequence <PhoneNumberInfo> PhoneNumberInfos;

// Street Address Info Record

struct StreetAddressInfo {
 CBObjectInfo info;
 short addressType;
 string addressString1;
 string addressString2;
 string addressString3;
 string city;
 string stateProvince;
 string country;
 string postalCode;
 string availability;
};

typedef sequence <StreetAddressInfo> StreetAddressInfos;

struct ContactPointInfo {
 CBObjectInfo info;
 string contactPointName;
 string timeZone;
 string description;
 string notes;
 EmailAddressInfos emailAddressList;
 PhoneNumberInfos phoneNumberList;
 StreetAddressInfos streetAddressList;
};
typedef sequence <ContactPointInfo> ContactPointInfos;

interface ContactPointInterface {
void createContactPoint (inout ContactPointInfo cpInfo);

 };
};

Example 1: IDL Example for use of Structs (Sheet 2 of 2)
99

CHAPTER 6 | COBOL Migration Issues
The gencbl Utility Output The gencbl utility generates the following based on the preceding IDL:

Example 2: gencbl output for IDL for use of Structs (Sheet 1 of 2)

*
* Operation : createContactPoint
* Parameters : inout struct ContactPointInfo cpInfo
*
01 CONTACTPOINTINTERFACE-CRE-ARGS.
 03 CPINFO.
 05 INFO.
 07 IDL-ID POINTER.
 07 LASTCHANGEDDATETIME POINTER.
 07 LASTCHANGEDUSERID POINTER.
 05 CONTACTPOINTNAME POINTER.
 05 TIMEZONE POINTER.
 05 DESCRIPTION POINTER.
 05 NOTES POINTER.
 05 EMAILADDRESSLIST-2.
 07 EMAILADDRESSLIST.
 09 INFO.
 11 IDL-ID POINTER.
 11 LASTCHANGEDDATETIME POINTER.
 11 LASTCHANGEDUSERID POINTER.
 09 ADDRESSTYPE PICTURE S9(04) BINARY.
 09 EMAILADDRESS POINTER.
 09 AVAILABILITY POINTER.
 05 EMAILADDRESSLIST-2-SEQUENCE.
 07 SEQUENCE-MAXIMUM PICTURE 9(09) BINARY.
 07 SEQUENCE-LENGTH PICTURE 9(09) BINARY.
 07 SEQUENCE-BUFFER POINTER.
 07 SEQUENCE-TYPE POINTER.
 05 PHONENUMBERLIST-2.
 07 PHONENUMBERLIST.
 09 INFO.
 11 IDL-ID POINTER.
 11 LASTCHANGEDDATETIME POINTER.
 11 LASTCHANGEDUSERID POINTER.
 09 ADDRESSTYPE PICTURE S9(04) BINARY.
 09 PHONENUMBER POINTER.
 09 AVAILABILITY POINTER.
 05 PHONENUMBERLIST-2-SEQUENCE.
 07 SEQUENCE-MAXIMUM PICTURE 9(09) BINARY.
 07 SEQUENCE-LENGTH PICTURE 9(09) BINARY.
 07 SEQUENCE-BUFFER POINTER.
 07 SEQUENCE-TYPE POINTER.
 100

Name Scoping and the COBOL Compilers
COBOL Compiler Problem In the preceding example, the IDL-ID under INFO under CPINFO is treated as
ambiguous by the IBM COBOL and Enterprise COBOL compilers, because of
the presence of other group levels under the same 01 level that are also
called INFO.

Orbix 6.2 IDL Compiler Solution The Orbix 6.2 IDL Compiler provides a solution to this problem, whereby it
attaches a numeric suffix (starting at -1, that is, 1 with a hyphen) to any
group level reference that is used more than once under the same 01 level.

 05 STREETADDRESSLIST-2.
 07 STREETADDRESSLIST.
 09 INFO.
 11 IDL-ID POINTER.
 11 LASTCHANGEDDATETIME POINTER.
 11 LASTCHANGEDUSERID POINTER.
 09 ADDRESSTYPE PICTURE S9(04) BINARY.
 09 ADDRESSSTRING1 POINTER.
 09 ADDRESSSTRING2 POINTER.
 09 ADDRESSSTRING3 POINTER.
 09 CITY POINTER.
 09 STATEPROVINCE POINTER.
 09 COUNTRY POINTER.
 09 POSTALCODE POINTER.
 09 AVAILABILITY POINTER.
 05 STREETADDRESSLIST-2-SEQUENCE.
 07 SEQUENCE-MAXIMUM PICTURE 9(09) BINARY.
 07 SEQUENCE-LENGTH PICTURE 9(09) BINARY.
 07 SEQUENCE-BUFFER POINTER.
 07 SEQUENCE-TYPE POINTER.

Example 2: gencbl output for IDL for use of Structs (Sheet 2 of 2)
101

CHAPTER 6 | COBOL Migration Issues
Orbix 6.2 IDL Compiler Output The Orbix 6.2 IDL Compiler generates the following COBOL code, based on
the preceding IDL:

Example 3: Orbix 6.2 Compiler output for Structs IDL (Sheet 1 of 3)

**
 * Operation: createContactPoint
 * Mapped name: createContactPoint
 * Arguments: <inout> contain/ContactPointInfo cpInfo
 * Returns: void
 * User Exceptions: none
**
01 IDL-CONTAIN-CONTACTP-E3BE-ARGS.
 03 CPINFO.
 05 INFO.
 07 IDL-ID POINTER
 VALUE NULL.
 07 LASTCHANGEDDATETIME POINTER
 VALUE NULL.
 07 LASTCHANGEDUSERID POINTER
 VALUE NULL.
 05 CONTACTPOINTNAME POINTER
 VALUE NULL.
 05 TIMEZONE POINTER
 VALUE NULL.
 05 DESCRIPTION POINTER
 VALUE NULL.
 05 NOTES POINTER
 VALUE NULL.
 05 EMAILADDRESSLIST-1.
 07 EMAILADDRESSLIST.
 09 INFO-1.
 11 IDL-ID POINTER
 VALUE NULL.
 11 LASTCHANGEDDATETIME POINTER
 VALUE NULL.
 11 LASTCHANGEDUSERID POINTER
 VALUE NULL.
 09 ADDRESSTYPE PICTURE S9(05)BINARY.
 09 EMAILADDRESS POINTER
 VALUE NULL.
 09 AVAILABILITY POINTER
 VALUE NULL.
 102

Name Scoping and the COBOL Compilers
 05 EMAILADDRESSLIST-SEQUENCE.
 07 SEQUENCE-MAXIMUM PICTURE 9(09) BINARY
 VALUE 0.
 07 SEQUENCE-LENGTH PICTURE 9(09) BINARY
 VALUE 0.
 07 SEQUENCE-BUFFER POINTER
 VALUE NULL.
 07 SEQUENCE-TYPE POINTER
 VALUE NULL.
 05 PHONENUMBERLIST-1.
 07 PHONENUMBERLIST.
 09 INFO-2.
 11 IDL-ID POINTER
 VALUE NULL.
 11 LASTCHANGEDDATETIME POINTER
 11 LASTCHANGEDUSERID POINTER
 VALUE NULL.
 09 ADDRESSTYPE PICTURE S9(05) BINARY.
 09 PHONENUMBER POINTER
 VALUE NULL.
 09 AVAILABILITY POINTER
 VALUE NULL.
 05 PHONENUMBERLIST-SEQUENCE.
 07 SEQUENCE-MAXIMUM PICTURE 9(09) BINARY
 VALUE 0.
 07 SEQUENCE-LENGTH PICTURE 9(09) BINARY
 VALUE 0.
 07 SEQUENCE-BUFFER POINTER NULL.
 07 SEQUENCE-TYPE POINTER
 VALUE NULL.
 05 STREETADDRESSLIST-1.
 07 STREETADDRESSLIST.
 09 INFO-3.
 11 IDL-ID POINTER
 VALUE NULL.
 11 LASTCHANGEDDATETIME POINTER
 VALUE NULL.
 11 LASTCHANGEDUSERID POINTER
 VALUE NULL.
 09 ADDRESSTYPE PICTURE S9(05) BINARY.

Example 3: Orbix 6.2 Compiler output for Structs IDL (Sheet 2 of 3)
103

CHAPTER 6 | COBOL Migration Issues
Migration Impact This change means that completely different suffixes are generated where
this scenario applies, with the result that any application code that
references these data names has to be changed to reference the data names
with the new suffixes.

In Summary Affects both client and server application code.

 09 ADDRESSSTRING1 POINTER
 VALUE NULL.
 09 ADDRESSSTRING2 POINTER
 VALUE NULL.
 09 ADDRESSSTRING3 POINTER
 VALUE NULL.
 09 CITY POINTER
 VALUE NULL.
 09 STATEPROVINCE POINTER
 VALUE NULL.
 09 COUNTRY POINTER
 VALUE NULL.
 09 POSTALCODE POINTER
 VALUE NULL.
 09 AVAILABILITY POINTER
 VALUE NULL.
 05 STREETADDRESSLIST-SEQUENCE.
 07 SEQUENCE-MAXIMUM PICTURE 9(09) BINARY
 VALUE 0.
 07 SEQUENCE-LENGTH PICTURE 9(09) BINARY
 VALUE 0.
 07 SEQUENCE-BUFFER POINTER
 VALUE NULL.
 07 SEQUENCE-TYPE POINTER
 VALUE NULL.

Example 3: Orbix 6.2 Compiler output for Structs IDL (Sheet 3 of 3)
 104

Name Scoping and the COBOL Compilers
Same Fieldname Used More than Once

In This Section This subsection describes migration issues relating to the IBM COBOL and
Enterprise COBOL compilers and fieldnames. It discusses the following
topics:

� Sample IDL

� Orbix 6.2 COBOL IDL Compiler Output

� Migration Impact

Sample IDL Consider the following IDL:

//IDL

interface sample
{
struct ClmSum {
short int_div_id;
};

typedef sequence<ClmSum,30> ClmSumSeq;

struct MemClmRsp {
string more_data_sw;
short int_div_id;
long claim_micro_sec_id;
ClmSumSeq MemClmList;
};

short getSummary(
out MemClmRsp MemClaimList);
}

105

CHAPTER 6 | COBOL Migration Issues
Orbix 6.2 COBOL IDL Compiler
Output

For the preceding IDL sample, the relevant COBOL output is the main
copybook:

Migration Impact The copybook that is generated, based on the preceding IDL, has two
references to int_div_id, but only one is accessible because of COBOL
name scoping rules.

This problem remains unresolved.

**
 * Operation: getSummary
 * Mapped name: getSummary
 * Arguments: <out> sample/MemClmRsp MemClaimList
 * Returns: short
 * User Exceptions: none
**
01 SAMPLE-GETSUMMARY-ARGS.
 03 MEMCLAIMLIST.
 05 MORE-DATA-SW POINTER
 VALUE NULL.
 05 INT-DIV-ID PICTURE S9(05) BINARY.
 05 CLAIM-MICRO-SEC-ID PICTURE S9(10) BINARY.
 05 MEMCLMLIST-1 OCCURS 30 TIMES.
 07 MEMCLMLIST.
 09 INT-DIV-ID PICTURE S9(05) BINARY.
 05 MEMCLMLIST-SEQUENCE.
 07 SEQUENCE-MAXIMUM PICTURE 9(09) BINARY
 VALUE 30.
 07 SEQUENCE-LENGTH PICTURE 9(09) BINARY
 VALUE 0.
 07 SEQUENCE-BUFFER POINTER
 VALUE NULL.
 07 SEQUENCE-TYPE POINTER
 VALUE NULL.
 03 RESULT PICTURE S9(05) BINARY.
 106

Typecode Name and Length Identifiers
Typecode Name and Length Identifiers

Overview This section summarizes the different output for gencbl and the Orbix 6.2
IDL Compiler for typecode and typecode length data names.

In this section This section discusses the following topics:

Comparing Compiler Output page 108

IDL Member Name Different from its Interface Name page 109

More than One Interface in an IDL Member page 112
107

CHAPTER 6 | COBOL Migration Issues
Comparing Compiler Output

Overview This subsection describes the migration issues relating to compiler outputs
for typecode and typecode length data names. It discusses the following
topics:

� The gencbl utility

� The Orbix 6.2 IDL Compiler

� Migration Impact

The gencbl utility The typecode and typecode length data names generated by gencbl use the
names interfacename-TYPE and interfacename-TYPE-LENGTH. This is not
suitable for a situation where an IDL member contains multiple nested
levels of modules and interfaces, because unique data names cannot be
generated in this case.

The Orbix 6.2 IDL Compiler Because the Orbix 6.2 IDL Compiler can process any level of scoping in an
IDL member, the generated data names are of the form
idlmembername-TYPE and idlmembername-TYPE-LENGTH. This ensures the
uniqueness of the data names.

Migration Impact However, this has a migration impact if either of the following apply:

� IDL member name is different from the interface name it contains.

� More than one interface is defined in an IDL member.

The migration impact for each of these situations is described in the
following subsections.
 108

Typecode Name and Length Identifiers
IDL Member Name Different from its Interface Name

Overview With gencbl the 01 typecode name and length fields are based on the
interface name. With the Orbix 6.2 IDL Compiler, 01 typecode name and
length fields are based on the IDL member name.

This subsection discusses the following topics:

� Sample IDL

� The gencbl Utility

� The Orbix 6.2 IDL Compiler

� Migration Impact

� In Summary

Sample IDL Consider the following IDL member, called TEST, with an interface named
sample:

//idl member is test.idl
interface sample
{
 typedef short House_Num;
 struct Address
 {
 string name;
 House_Num number;
 string address1;
 string address2;
 };
 typedef sequence<Address,30> AddressList;
 void myop(inout AddressList alladdresses);
};
109

CHAPTER 6 | COBOL Migration Issues
The gencbl Utility With gencbl, the 01 typecode name and length fields are based on the
interface name, that is, sample-TYPE and 01 sample-TYPE-LENGTH where
sample is the interface name. The gencbl output for the preceding IDL is as
follows:

*Typecode definitions used in the interface sample
*Use this data item for retrieving or setting the type
*information for ANYs or SEQUENCES.
*
01 SAMPLE-TYPE PICTURE X(87).
COPY CORBATYP.
 88 SAMPLE-HOUSE-NUM VALUE "s".
 88 SAMPLE-ADDRESSLIST VALUE

"S{R~sample::Address~name{0},number{
 -

"L~sample::House_Num~{s}},address1{0},address2{0}},30".
 88 SAMPLE-ADDRESS VALUE

"R~sample::Address~name{0},number{L~samp
 - "le::House_Num~{s}},address1{0},address2{0}".

01 SAMPLE-TYPE-LENGTH PICTURE 9(09) BINARY
 VALUE 87.
 110

Typecode Name and Length Identifiers
The Orbix 6.2 IDL Compiler With the Orbix 6.2 IDL Compiler 01 typecode name and length fields are
based on the IDL member name, that is test-TYPE and 01
test-TYPE-LENGTH, where test is the IDL member name. The Orbix 6.2
output in the main copybook by default for the preceding IDL is as follows:

Because TEST is the IDL member name, the 01 levels are prefixed with TEST.

The main copybook name is based on the IDL member name and cannot
exceed six characters, and in this case is called TEST.

Migration Impact If your IDL member name is not the same as the interface name it contains,
you can use the -O argument with the Orbix 6.2 IDL Compiler to make both
names the same and thereby avoid application code changes. The -O
argument allows you to change, for example, XXXX in XXXX-TYPE and XXXX in
XXXX-TYPE-LENGTH. For the preceding Orbix 6.2 IDL Compiler output to
avoid source code changes would mean changing TEST in TEST-TYPE and
TEST in TEST-TYPE-LENGTH to SAMPLE-TYPE and SAMPLE-TYPE-LENGTH. The
-O argument does not restrict you the use of either the interface name or the
IDL member name.

Refer to the COBOL Programmer�s Guide and Reference for an example of
how to use the -O argument.

In Summary Affects clients and servers. Requires code change or use of the -O argument.

**
* Typecode section
* This contains CDR encodings of necessary typecodes.

01 TEST-TYPE PICTURE X(26).
 COPY CORBATYP.
 88 SAMPLE-HOUSE-NUM VALUE
 "IDL:sample/House_Num:1.0".
 88 SAMPLE-ADDRESS VALUE
 "IDL:sample/Address:1.0".
 88 SAMPLE VALUE
 "IDL:sample:1.0".
 88 SAMPLE-ADDRESSLIST VALUE
 "IDL:sample/AddressList:1.0".
01 TEST-TYPE-LENGTH PICTURE S9(09) BINARY
 VALUE 26.
111

CHAPTER 6 | COBOL Migration Issues
More than One Interface in an IDL Member

In This Section This subsection describes the migration issues for typecode and typecode
length data names where there is more than one interface in an IDL
member. It discusses the following topics:

� The gencbl Utility

� The Orbix 6.2 IDL Compiler

� Sample IDL

� The gencbl output

� Orbix 6.2 IDL Compiler Output

� Migration Impact

� In Summary

The gencbl Utility With gencbl, the 01 typecode name and length fields are based on the
interface name, that is, sample-TYPE and sample-TYPE-LENGTH where
sample is the interface name.

The Orbix 6.2 IDL Compiler With the Orbix 6.2 IDL Compiler, 01 typecode name and length fields are
based on the IDL member name, that is test-TYPE and 01
test-TYPE-LENGTH, where test is the IDL member name.
 112

Typecode Name and Length Identifiers
Sample IDL For example, consider the following IDL member, called TEST, which
contains the two interfaces called sample and example respectively:

//idl member is test.idl test
interface sample
{
 typedef short House_Num;
 struct Address
 {
 string name;
 House_Num number;
 string address1;
 string address2;
 };
 typedef sequence<Address,30> AddressList;
 void myop(inout AddressList alladdresses);
};

interface example
{
 typedef long Account_Num;
 struct Account_Details
 {
 string name;
 Account_Num number;
 string address1;
 string address2;
 };
 typedef sequence<Account_Details,30> AccountList;
 void myop(inout AccountList allaccounts);
};
113

CHAPTER 6 | COBOL Migration Issues
The gencbl output The gencbl output for the example interface in TEST is as follows:

The gencbl output for the sample interface in TEST is as follows:

** Typecode definitions used in the interface xample
* Use this data item for retrieving or setting the type
* information for ANYs or SEQUENCES.
*
01 EXAMPLE-TYPE PICTURE X(90).
 COPY CORBATYP.
 88 EXAMPLE-ACCOUNT-NUM VALUE "l".
 88 EXAMPLE-ACCOUNTLIST VALUE

"S{R~Account_Details~name{0},number
 -"{L~example::Account_Num~{l}},address1{0},address2{0}},30".
 88 EXAMPLE-ACCOUNT-DETAILS VALUE

"R~Account_Details~name{0},numb
 -"er{L~example::Account_Num~{l}},address1{0},address2{0}".

01 EXAMPLE-TYPE-LENGTH PICTURE 9(09) BINARY
 VALUE 90.

* Typecode definitions used in the interface sample
* Use this data item for retrieving or setting the type
* information for ANYs or SEQUENCES.
*
01 SAMPLE-TYPE PICTURE X(79).
 COPY CORBATYP.
 88 SAMPLE-HOUSE-NUM VALUE "s".
 88 SAMPLE-ADDRESSLIST VALUE

"S{R~Address~name{0},number{L~sample
 -"::House_Num~{s}},address1{0},address2{0}},30".
 88 SAMPLE-ADDRESS VALUE

"R~Address~name{0},number{L~sample::Hous
 -"e_Num~{s}},address1{0},address2{0}".

01 SAMPLE-TYPE-LENGTH PICTURE 9(09) BINARY
 VALUE 79.
 114

Typecode Name and Length Identifiers
Orbix 6.2 IDL Compiler Output The Orbix 6.2 output in the main copybook (by default) for the preceding
IDL is as follows:

All the typecodes for the complete IDL member are represented under a
single 01 level.

Migration Impact Any references in application code to the type and type-length data names
must be changed to reflect the IDL compiler output in the main copybook.
The -M and -O arguments can assist in migration. Refer to the COBOL
Programmer�s Guide and Reference for an example of how to use the -M
and -O arguments.

In Summary Affects clients and servers using sequences or anys. Requires code changes.

**
 * Typecode section
 * This contains CDR encodings of necessary typecodes.
**
01 TEST-TYPE PICTURE X(31).
 COPY CORBATYP.
 88 SAMPLE-HOUSE-NUM VALUE
 "IDL:sample/House_Num:1.0".
 88 SAMPLE-ADDRESS VALUE
 "IDL:sample/Address:1.0".
 88 EXAMPLE-ACCOUNTLIST VALUE
 "IDL:example/AccountList:1.0".
 88 EXAMPLE-ACCOUNT-NUM VALUE
 "IDL:example/Account_Num:1.0".
 88 EXAMPLE-ACCOUNT-DETAILS VALUE
 "IDL:example/Account_Details:1.0".
 88 SAMPLE VALUE
 "IDL:sample:1.0".
 88 EXAMPLE VALUE
 "IDL:example:1.0".
 88 SAMPLE-ADDRESSLIST VALUE
 "IDL:sample/AddressList:1.0".
01 TEST-TYPE-LENGTH PICTURE S9(09)BINARY
 VALUE 31.
115

CHAPTER 6 | COBOL Migration Issues
Reserved COBOL and OMG Keywords

In This Section This section discusses the following topics:

Reserved COBOL Keywords for Module or Interface Names page 117

Use of Result as an Argument Name in IDL page 118

OMG Mapping Standard for Unions and Exceptions page 120

Note: The Orbix 6.2 IDL compiler supports the COBOL reserved word list,
pertaining to the Enterprise COBOL Compiler and the IBM OS/390
Compiler.
 116

Reserved COBOL and OMG Keywords
Reserved COBOL Keywords for Module or Interface Names

Overview This subsection describes the different ways that gencbl and the Orbix 6.2
IDL Compiler treat COBOL keywords used as module or interface names. It
discusses the following topics:

� The gencbl utility

� The Orbix 6.2 IDL Compiler

� Migration Impact

� In Summary

The gencbl utility The gencbl utility does not apply special treatment to a reserved COBOL
keyword used as an IDL interface or module name.

The Orbix 6.2 IDL Compiler In Orbix 6.2, if a reserved COBOL keyword is used as an IDL interface or
module name, the Orbix 6.2 IDL Compiler prefixes it with IDL-.

Migration Impact This has a migration impact for any customers that use reserved COBOL
keywords as IDL interface or module names. If any customers are using
reserved COBOL keywords, source code changes are required to their
applications to cater for IDL- prefixed names that are generated for
identifiers in Orbix 6.2.

In Summary Affects clients and servers where module or interface names are reserved
COBOL keywords.
117

CHAPTER 6 | COBOL Migration Issues
Use of Result as an Argument Name in IDL

Overview If your IDL uses RESULT as an argument name to an operation, and it also
returns a parameter, each has a data name generated at the 03 level, but
both data names are RESULT. These are not valid in COBOL, because two 03
level entries under the same 01 level entry cannot share the same name.
Refer to �Name Scoping and the COBOL Compilers� on page 97 for more
details.

This subsection discusses the following topics:

� The gencbl Solution

� Orbix 6.2 IDL Compiler Solution

� Migration Impact

� Sample IDL

� Orbix 6.2 IDL Compiler Data Names

� In Summary

The gencbl Solution Version 2.3.2 of gencbl resolved this issue by making RESULT a reserved
COBOL keyword for IDL argument names and prefixing the resulting
generated names with IDL-.

Orbix 6.2 IDL Compiler Solution The current Orbix 6.2 IDL Compiler treats RESULT as a reserved COBOL
keyword in all cases.

Migration Impact There is a possible, but small, migration impact involved for any customer
applications where IDL definitions are defined in the manner described at
the start of this section, and the latest gencbl version is not being used.
There is also a possible migration impact if the word RESULT is used as any
identifier in an IDL member.
 118

Reserved COBOL and OMG Keywords
Sample IDL Consider the following IDL called grid:

Orbix 6.2 IDL Compiler Data
Names

Based on the preceding IDL, the Orbix 6.2 IDL Compiler generates the
following data names for the operation:

In Summary Affects any application where the IDL uses result as described. Require
minor code change if latest gencbl version is not being used, or if the word
result is used as any identifier in an IDL member.

//IDL
interface grid {

 long myop(inout long result);
};

01 GRID-MYOP-ARGS.
 03 IDL-RESULT PICTURE S9(10) BINARY.
 03 RESULT PICTURE S9(10) BINARY.
119

CHAPTER 6 | COBOL Migration Issues
OMG Mapping Standard for Unions and Exceptions

Overview The OMG mapping standard uses the letters U and D as identifier names for
union and exception mappings (it uses both letters for each). There are two
possible implications if these letters are used as identifier names in IDL:

� It might lead to problems similar to the one described in �Name
Scoping and the COBOL Compilers� on page 97.

� These identifiers are treated as reserved keywords by the Orbix 6.2 IDL
Compiler and therefore prefixed by IDL- in the Orbix 6.2 IDL Compiler
output. Any application code that references these must be changed to
account for the new compiler output.

This subsection discusses the following topics:

� IDL Fieldname and Container Names

� Sample IDL

� The gencbl Utility

� The gencbl Utility Output

� Orbix 6.2 IDL Compiler Solution

� Orbix 6.2 IDL Compiler Output

� Migration Impact

IDL Fieldname and Container
Names

It is strongly recommended that an IDL field name or IDL container name is
not called U or D in conjunction with a union and exception respectively.

Sample IDL The following IDL sample illustrates the use of U and D as identifier names:

The gencbl Utility The gencbl utility does not treat the IDL identifier names D and U as
reserved COBOL keywords.

interface example
{
 void myop(inout long d,inout long u);
};
 120

Reserved COBOL and OMG Keywords
The gencbl Utility Output Based on the preceding sample IDL, gencbl produces the following:

Orbix 6.2 IDL Compiler Solution The Orbix 6.2 IDL Compiler treats U and D as COBOL reserved words and
therefore they are prefixed with IDL- in the compiler output.

Orbix 6.2 IDL Compiler Output For the preceding IDL the Orbix 6.2 IDL Compiler produces:

Migration Impact Application code that references the Orbix 2.3.x D and U data names must
change to reflect the Orbix 6.2 (IDL- prefixed) data names.

01 EXAMPLE-MYOP-ARGS.
 03 D PICTURE S9(09) BINARY.
 03 U PICTURE S9(09) BINARY.

01 EXAMPLE-MYOP-ARGS.
 03 IDL-D PICTURE S9(10) BINARY.
 03 IDL-U PICTURE S9(10) BINARY.

Note: The Orbix 6.2 IDL compiler supports the COBOL reserved word list,
pertaining to the Enterprise COBOL Compiler and the IBM OS/390
Compiler.
121

CHAPTER 6 | COBOL Migration Issues
Error Checking and Exceptions

In This Section This section discusses the following discusses:

COBOL-Specific Issue Relating to Error Checking page 123

Error Checking Generation at Runtime for Batch Servers page 125
 122

Error Checking and Exceptions
COBOL-Specific Issue Relating to Error Checking

Overview This subsection summarizes the differences between gencbl and the Orbix
6.2 IDL Compiler in regard to error checking. It discusses the following
topics:

� The gencbl Utility Error Checking Code

� Orbix 6.2 IDL Compiler Error Checking Code

� Migration Impact

The gencbl Utility Error Checking
Code

The gencbl utility provides an -E argument to generate error-checking code
in the generated server mainline and implementation code. The generated
error-checking code is used, for example, after each API call as follows:

Orbix 6.2 IDL Compiler Error
Checking Code

The Orbix 6.2 IDL Compiler generates this error-checking code slightly
differently in the generated server mainline and implementation code. For
example:

MOVE "ORBGET" TO WS-ERROR-FUNC.
PERFORM CHECK-STATUS.

SET WS-ORBGET TO TRUE.
PERFORM CHECK-STATUS.

Note: The Orbix 6.2 IDL Compiler generates error checking code by
default.
123

CHAPTER 6 | COBOL Migration Issues
A MOVE statement is not required in the preceding code example, because
the supplied CORBA static copybook contains entries such as the following for
all the APIs supplied with the product:

Migration Impact This change has no migration impact and only affects newly generated
server implementation and mainline code.

01 WS-API-CALLED PICTURE X(09) VALUE SPACES.
 88 WS-ANYFREE VALUE "ANYFREE".
 88 WS-ANYGET VALUE "ANYGET".
 88 WS-ANYSET VALUE "ANYSET".
 88 WS-COAERR VALUE "COAERR".
 88 WS-COAGET VALUE "COAGET".
 88 WS-COARUN VALUE "COARUN".
 88 WS-COAPUT VALUE "COAPUT".
 88 WS-COAREQ VALUE "COAREQ".
 88 WS-MEMALLOC VALUE "MEMALLOC".
 88 WS-MEMFREE VALUE "MEMFREE".
 124

Error Checking and Exceptions
Error Checking Generation at Runtime for Batch Servers

Overview This subsection summarizes the differences between gencbl and the Orbix
6.2 IDL Compiler in relation to the CHECK-STATUS paragraph used for error
checking. It discusses the following topics:

� The gencbl Utility

� The Orbix 6.2 IDL Compiler

� Migration Impact

The gencbl Utility The CHECK-STATUS paragraph is generated by gencbl for each server.

The Orbix 6.2 IDL Compiler The CHECK-STATUS paragraph is shipped as a static CHKERRS copybook, in
the orbixhlq.INCLUDE.COPYLIB in Orbix 6.2. The reason that the Orbix 6.2
IDL Compiler doesn�t generate this procedure is that, regardless of the IDL,
the procedure code is unchanged.

Migration Impact There is no migration impact, because all newly generated code uses the
static CHKERRS copybook and current customer applications use the old
method which is completely transparent to customers. However IONA
recommend you use the CHKERRS copybook which shows the system
exception encountered in a more user-friendly format.
125

CHAPTER 6 | COBOL Migration Issues
Nested Unions in IDL

Overview The Orbix 6.2 IDL Compiler can support any level of nested unions in IDL.
This subsection shows the Orbix 6.2 IDL Compiler output for sample IDL
with nested unions.

This section discusses the following topics:

� Sample IDL

� The gencbl utility output

� Orbix 6.2 IDL Compiler Output

� Migration Impact
 126

Nested Unions in IDL
Sample IDL The following sample IDL member, called NESTUNIN, contains nested
unions:

interface nestunin {

struct no_constr {
 long along;
};
struct has_constr {
 string astring;
};
struct has_constr2 {
 has_constr astrstr;
};
union innerunion switch(long) {
 case 1 : no_constr a;
 case 3: has_constr b;
 case 9: has_constr2 c;
 default: string f;
};
union outerunion switch(long) {
 case 1 : no_constr a;
 case 3: has_constr b;
 case 9: has_constr2 c;
 case 30: innerunion myu;
 default: string f;
};
 void opNoC (in outerunion arg);

};
127

CHAPTER 6 | COBOL Migration Issues
The gencbl utility output The gencbl utility outputs the following based on the preceding IDL:

01 NESTUNIN-OPNOC-ARGS.
 03 ARG.
 05 D PICTURE S9(09) BINARY.
 05 U.
 07 FILLER PICTURE X(04).
 05 FILLER REDEFINES U.
 07 A.
 09 ALONG PICTURE S9(09) BINARY.
 05 FILLER REDEFINES U.
 07 B.
 09 ASTRING POINTER.
 05 FILLER REDEFINES U.
 07 C.
 09 ASTRSTR.
 11 ASTRING POINTER.
 05 FILLER REDEFINES U.
 07 MYU.
 09 D PICTURE S9(09) BINARY.
 09 U.
 11 FILLER PICTURE X(04).
 09 FILLER REDEFINES U.
 11 A.
 13 ALONG PICTURE S9(09) BINARY.
 09 FILLER REDEFINES U.
 11 B.
 13 ASTRING POINTER.
 09 FILLER REDEFINES U.
 11 C.
 13 ASTRSTR.
 15 ASTRING POINTER.
 09 FILLER REDEFINES U.
 11 F POINTER.
 05 FILLER REDEFINES U.
 07 F POINTER.
 128

Nested Unions in IDL
Orbix 6.2 IDL Compiler Output The Orbix 6.2 IDL Compiler outputs the following based on the preceding
IDL:

The OMG-reserved letters, U and D, are used by the Orbix 6.2 IDL Compiler,
in the preceding example. In the first level of nesting, U and D are suffixed by
-1 by the Orbix 6.2 IDL Compiler.

01 NESTUNIN-OPNOC-ARGS.
 03 ARG.
 05 D PICTURE S9(10) BINARY.
 05 U.
 07 FILLER PICTURE X(16)
 VALUE LOW-VALUES.
 05 FILLER REDEFINES U.
 07 A.
 09 ALONG PICTURE S9(10) BINARY.
 05 FILLER REDEFINES U.
 07 B.
 09 ASTRING POINTER.
 05 FILLER REDEFINES U.
 07 C.
 09 ASTRSTR.
 11 ASTRING POINTER.
 05 FILLER REDEFINES U.
 07 MYU.
 09 D-1 PICTURE S9(10) BINARY.
 09 U-1.
 11 FILLER PICTURE X(08).
 09 FILLER REDEFINES U-1.
 11 A-1.
 13 ALONG PICTURE S9(10) BINARY.
 09 FILLER REDEFINES U-1.
 11 B-1.
 13 ASTRING POINTER.
 09 FILLER REDEFINES U-1.
 11 C-1.
 13 ASTRSTR-1.
 15 ASTRING POINTER.
 09 FILLER REDEFINES U-1.
 11 F POINTER.
 05 FILLER REDEFINES U.
 07 F POINTER.
129

CHAPTER 6 | COBOL Migration Issues
Migration Impact The gencbl utility output for nested unions does not cater for the situation
where the same container name is used more than once in an IDL member.
For problems that arise in this scenario refer to �Same Container Name
Used More than Once� on page 98. Customers using nested unions in their
IDL are required to change the nested D and U data names generated by
gencbl to make them unique.

From the preceding example, the Orbix 6.2 IDL Compiler output for nested D
and U data names are unique. If your workaround is not the same as the
Orbix 6.2 IDL Compiler solution, that is, adding a suffix -n where n is an
integer beginning at 1 for each level of nesting (the first nested union is
prefixed by -1 and so on), there is a migration impact.

Changes are required to application code that references identifier names in
nested unions to take into account the Orbix 6.2 IDL Compiler solution.
 130

Mapping for Arrays
Mapping for Arrays

Overview This section illustrates the differences between how gencbl and the Orbix
6.2 IDL Compiler treats arrays in IDL. It discusses the following topics:

� Sample IDL

� The gencbl Utility

� The gencbl Utility Output

� Orbix 6.2 IDL Compiler

� Orbix 6.2 IDL Compiler Output

Sample IDL Consider the following IDL member, called ARRAY:

The gencbl Utility The gencbl does not generates unique names at each level for multiple
nested arrays.

The gencbl Utility Output The gencbl utility outputs the following based on the preceding IDL:

interface jack
{
 typedef long arr1[5][4];
 typedef arr1 arr2[10][6];
 void op1(in arr2 p1);
};

01 JACK-OP1-ARGS.
 03 P1-1 OCCURS 10 TIMES.
 05 P1-2 OCCURS 6 TIMES.
 07 P1-1 OCCURS 5 TIMES.
 09 P1-2 OCCURS 4 TIMES.
 11 P1 PICTURE S9(09) BINARY.

Note: The gencbl utility does not generate unique names at each level.
This might lead to problems similar to those described in �Name Scoping
and the COBOL Compilers� on page 97.
131

CHAPTER 6 | COBOL Migration Issues
Orbix 6.2 IDL Compiler These issues are fully resolved with the Orbix 6.2 IDL Compiler, which
generates unique names for array data items.

Orbix 6.2 IDL Compiler Output The Orbix 6.2 IDL Compiler outputs the following based on the preceding
IDL:

The Orbix 6.2 IDL Compiler generates unique names at each level.

01 JACK-OP1-ARGS.
 03 P1-1 OCCURS 10 TIMES.
 05 P1-2 OCCURS 6 TIMES.
 07 P1-1-2 OCCURS 5 TIMES.
 09 P1-2-2 OCCURS 4 TIMES.
 11 P1 PICTURE S9(10) BINARY.
 132

Working Storage data Items and Group Moves
Working Storage data Items and Group Moves

Overview The Orbix 6.2 IDL Compiler has a new mapping for the IDL data types long,
short, unsigned long, and unsigned short. Working storage data item
definitions that use these data types are affected by this new mapping. This
change might affect group moves that use these Working Storage data item
definitions.

This section discusses the following topics:

� Mapping Changes

� Reason for Mapping Changes

� Sample IDL

� Orbix 2.3.x IDL to COBOL Mapping

� Orbix 6.2 IDL to COBOL Mapping

� Migration Impact

Mapping Changes The following table represents the changes to the Working Storage data item
definitions for the appropriate IDL data types:

Reason for Mapping Changes The mappings have been changed so that the COBOL runtime can marshal
the complete range of values for CORBA::Long, CORBA::ULong,
CORBA::Short, and CORBA::UShort respectively.

Table 8: COBOL Mapping Changes for IDL Data Types

IDL Data Type Orbix 6.2 IDL
Compiler Output

gencbl Output

long S9(10) BINARY S9(09) BINARY

unsigned long 9(10) BINARY 9(09) BINARY

short S9(5) BINARY S9(4) BINARY

unsigned short 9(5) BINARY 9(4) BINARY
133

CHAPTER 6 | COBOL Migration Issues
Sample IDL The following IDL sample illustrates the changes for group moves using the
specified data types:

Orbix 2.3.x IDL to COBOL
Mapping

The following code sample represents the Orbix 2.3.x mapping type:

Orbix 6.2 IDL to COBOL Mapping The following code sample represents the Orbix 6.2 mapping type

Migration Impact Any group move with Working Storage definitions from the gencbl mapping
type is subject to unpredictable results at runtime. All such cases should be
changed to reflect the new mapping.

//example idl member
 interface example
 {
 typedef long long_array[10];
 attribute long_array myarray;
 };

// gencbl generated code sample
WORKING-STORAGE SECTION.
 03 MY-LONG-ARRAY10 OCCURS 10.
 05 MY-LONGARRAY-ELEMENT PIC S9(9) BINARY.

 03 WS-SUB PIC S9(09) BINARY VALUE 0.

// Orbix 6.0 IDL Compiler generated code sample
01 EXAMPLE-MYARRAY-ARGS.
 03 RESULT-1 OCCURS 10 TIMES.
 05 RESULT PICTURE S9(10) BINARY.

*Loop incrementing WS-SUB

MOVE MY-LONG-ARRAY10(WS-SUB) TO
RESULT-1 OF EXAMPLE-MYARRAY-ARGS(WS-SUB).
 134

Mapping for IDL type Any
Mapping for IDL type Any

Overview The type any mapping for COBOL has changed to comply with the OMG
COBOL specification.

This section discusses the following topics:

� Sample IDL

� The gencbl Utility Mapping

� Orbix 6.2 Mapping

� Migration Impact

Sample IDL The following sample IDL illustrates this change:

The gencbl Utility Mapping The gencbl utility outputs the following code for the preceding IDL sample:

Orbix 6.2 Mapping Orbix 6.2 outputs the following code for the preceding IDL sample:

interface example
 {
 typedef any a_any;
 readonly attribute a_any aany;
 };

**
//Orbix COBOL 2.3 mapping
01 EXAMPLE-AANY-ARGS.
 03 RESULT.
 05 RESULT-TYPE POINTER.
 05 RESULT-VALUE POINTER.
 05 RESULT-RELEASE PICTURE 9(01).

01 EXAMPLE-AANY-ARGS.
 03 RESULT POINTER VALUE NULL.
135

CHAPTER 6 | COBOL Migration Issues
Migration Impact There is a migration impact only for applications which reference any of the
individual components of the original mapping, that is XXX-TYPE, XXX-VALUE,
and the XXX-RELEASE data items (this is not expected).
 136

CORBA Copybook Additions
CORBA Copybook Additions

Overview There have been several additions to the supplied CORBA copybook.

This section discusses the following topics:

� Migration Impact

� Workaround

� CORBA Copybook Definition Example

Migration Impact There is a possibility that some of the names might conflict with those
defined in you application. For a complete list of indentifier names please
refer to the copybook located in orbixhlq.INCLUDE.COPYLIB.

Workaround If any compile errors occur make the necessary changes to the application to
resolve them.

CORBA Copybook Definition
Example

The following definition is defined in the CORBA copybook:

01 ORBIX-EXCEPTION-TEXT.
 03 ERROR-TEXT PICTURE X(196).
 03 ERROR-TEXT-LEN PICTURE 9(009) BINARY
 VALUE 196.
137

CHAPTER 6 | COBOL Migration Issues
Parameter Passing of Object References in
IDL Operations

Overview The Orbix 6.2 COBOL runtime adheres to the memory management rules
more strictly than the Orbix 2.3.x COBOL product.

Migration Impact When migrating Orbix 2.3.x based applications using object references as
operation parameters you are advised to refer to the COBOL Programmer�s
Guide and Reference for further details about memory management, paying
particularly attention to when and where the OBJDUP and OBJREL APIs are
called.
 138

CORBA Object Location and Binding
CORBA Object Location and Binding

Overview This section summarizes the differences between Orbix 2.3.x object location
mechanisms and Orbix 6.2 object location mechanisms.

In This Section This section discusses the following topics:

Migration Overview and Example page 140

The Naming Service page 142

Object-String Conversion page 144
139

CHAPTER 6 | COBOL Migration Issues
Migration Overview and Example

In This Section This subsection provides a migration overview for using OBJSET and an
example of the differences.

This subsection discusses the following topics:

� Migration Impact

� Migration Impact

� Orbix 6.2 and OBJSET

� Orbix 2.3.x Object Location Mechanism Example

Migration Impact Calls to the OBJSET API which rely on a fabricated object reference are illegal
in Orbix 6.2. This API has been deprecated. The recommended replacement
API is STRTOOBJ (as specified in the COBOL OMG specification).

Orbix 2.3.x and OBJSET One way to locate an object in an Orbix 2.3.x application is to use the
OBJSET API (equivalent to _bind() in C++), with a fabricated object
reference constructed from the host name and server name in an Orbix
object key, and the port information in the daemon. The daemon uses this
information to locate (and activate if requested) the correct server. The
server can then use the marker to locate the correct object.

Orbix 6.2 and OBJSET If the application is calling OBJSET with a fabricated object reference (the
application can still use it with an IOR or corbaloc) it must be replaced with
one of the following object location mechanisms:

� Naming service (batch only), see �The Naming Service� on page 142.

� Object-string conversion, see �Object-String Conversion� on page 144.

� Calls to OBJRIR (batch only), see the COBOL Programmer�s Guide and
Reference.

All these alternatives are based on the use of CORBA standard interoperable
object references (IORs), the difference being in where the IORs are stored
and how they are retrieved by the client application.

Orbix 2.3.x Object Location
Mechanism Example

Example of the Orbix 2.3.x Object Location Mechanism:
 140

CORBA Object Location and Binding
MOVE SPACES TO WS-STRING-OBJ-REF
 STRING ":\"
 OR-HOST DELIMITED BY SPACE
 ":"
 OR-SERVER DELIMITED BY SPACE
 ":"
 OR-MARKER DELIMITED BY SPACE
 ":"
 OR-IR DELIMITED BY SPACE
 ":"
 OR-IRSRVR DELIMITED BY SPACE
 ":"
 OR-INTF DELIMITED BY SPACE
INTO WS-STRING-OBJ-REF
END-STRING

DISPLAY "OBJECT REFERECE = '" WS-STRING-OBJ-REF "'"
CALL "OBJSET" USING WS-STRING-OBJ-REF
 SERVER-OBJ
141

CHAPTER 6 | COBOL Migration Issues
The Naming Service

Overview The Naming Service is easy to understand and use if the application�s
naming graph is not too complex. The triplet of markerName, serverName,
hostName used by the OBJSET API to locate an object, is replaced by a
simple name\ in the Naming Service.

This subsection discusses the following topics:

� Access to the Naming Service

� Resolving Object Names

� URL Syntax and IOR Configuration

Access to the Naming Service All applications should use the interoperable Naming Service, which
provides access to future Naming Service implementations.

Access to the Naming Service can easily be wrapped. The only potential
drawback in using the Naming Service is that it might become a single point
of failure or performance bottleneck. If you use the Naming Service only to
retrieve initial object references, these problems are unlikely to arise.

Resolving Object Names An object�s name is an abstraction of the object location�the location
details are stored in the Naming Service. Use the following steps to resolve
the Object names:

URL Syntax and IOR
Configuration

The URL syntax that the Naming Service provides makes it easier to
configure IORs�and is similar to _bind() by letting you specify host, port,
and well known object key in readable format. An example of the syntax for
both types is outlined as follows:

� Stringified IOR syntax example:

Step Action

1 Call OBJRIR with NameService as its argument. This obtains an
initial reference to the Naming Service.

2 The client uses the Naming Service to resolve the names of
CORBA objects and receives object references in return.
 142

CORBA Object Location and Binding
�IOR:004301EF100...�

� URL type IOR syntax example:
�corbaloc::1.2@myhost:3075/NamingService�

With the URL syntax, corbaloc is the protocol name, the IIOP version
number is 1.2, the host name is myhost, and the port number is 3075.

Note: Orbix 6.2 requires you to register a stringified IOR against a well
known key with the Orbix 6.2 locator, which centralizes the use of
stringified IORs in a single place, and lets you widely distribute readable
URLs for clients.
143

CHAPTER 6 | COBOL Migration Issues
Object-String Conversion

Overview This subsection describes the migration impact of passing a fabricated
object string as its first parameter to OBJSET.

This subsection discusses the following topics:

� Migration impact using OBJSET

� CORBA-compliant string-object conversion functions

Migration impact using OBJSET If the application is passing a fabricated object string (equivalent to _bind()
in C++) as its first parameter to OBJSET, this string must now be of one of
the following formats:

� a stringified interoperable object reference (IOR).

� a corbaloc formatted URL string.

� an itmfaloc formatted URL string.

Refer to the STRTOOBJ API in the COBOL Programmers Guide Reference for
more details.

CORBA-compliant string-object
conversion functions

The COBOL runtime offers two CORBA-compliant conversion APIs:

� STRTOOBJ

� OBJTOSTR
 144

API Migration Issues
API Migration Issues

In this Section This section discusses the following topics:

Deprecated APIs page 146

ORBEXEC and USER Exception parameters page 147

ORBSTAT page 148

ORBALLOC page 149
145

CHAPTER 6 | COBOL Migration Issues
Deprecated APIs

Deprecated and Replacement
APIs

Table 9 lists the COBOL APIs that are deprecated in Orbix Mainframe 6.2. It
also lists their replacements where appropriate:

Refer to the COBOL Programmer�s Guide and Reference for full details of all
the COBOL APIs supported.

Table 9: Deprecated COBOL APIs and Their Replacements

Deprecated APIs Replacement APIs

OBJGET Not replaced

ORBALLOC MEMALLOC

ORBREGO ORBREG + OBJNEW

ORBFREE MEMFREE

STRSETSP STRSETP

OBJGETM OBJGETID

OBJSETM OBJNEW

OBJGETI OBJTOSTR

OBJSET STRTOOBJ

ORBGET COAGET

ORBINIT COARUN

ORBPUT COAPUT

ORBREQ COAREQ
 146

API Migration Issues
ORBEXEC and USER Exception parameters

Overview The ORBEXEC API function takes an extra parameter in Orbix 6.2.

This subsection discusses the following topics:

� ORBEXEC in Orbix 2.3.x

� ORBEXEC in Orbix 6.2

� Migration Impact

� In Summary

ORBEXEC in Orbix 2.3.x The ORBEXEC API function in Orbix 2.3.x takes three parameters.

ORBEXEC in Orbix 6.2 The ORBEXEC API function in Orbix 6.2 takes four parameters instead of
three. The fourth parameter is the user exception identifier.

Migration Impact Any existing application code that calls ORBEXEC must be modified to include
this extra parameter (the COBOL compiler does not check the number of
parameters that are passed to ORBEXEC.).

For any IDL that contains no user exception definitions, a dummy exception
block is generated by the IDL compiler. The user exception block defined as
a level 01 generated by the IDL compiler is then passed as the fourth
parameter to ORBEXEC. This change has been introduced to support user
exceptions in the COBOL runtime.

Refer to the COBOL Programmer�s Guide and Reference for further details
about the parameters of ORBEXEC.

In Summary Affects COBOL clients only. Requires minor code change.
147

CHAPTER 6 | COBOL Migration Issues
ORBSTAT

Overview The ORBSTAT API is not optional in Orbix 6.2.

This subsection discusses the following topics:

� ORBSTAT Functionality

� Orbix 2.3.x and ORBSTAT

� Orbix 6.2 and ORBSTAT

� Migration Impact

� Workaround

ORBSTAT Functionality The ORBSTAT API is used to register the ORBIX-STATUS-INFORMATION block
with the COBOL runtime. This level 01 structure
(ORBIX-STATUS-INFORMATION) is defined in the CORBA supplied copybook
and allows the runtime to report exceptions.

Orbix 2.3.x and ORBSTAT In Orbix 2.3.x, if ORBSTAT is not called and when the COBOL runtime
encountered a system exception the program just ignores the exception

Orbix 6.2 and ORBSTAT When the Orbix 6.2 COBOL runtime encounters a system exception and the
ORBIX-STATUS-INFORMATION block is not registered with the runtime, the
program terminates with the error below.

Migration Impact This change only affects applications that don�t already call the ORBSTAT
API, and that encounter a runtime exception. When this happens the
COBOL runtime outputs the following message and exits completely:

Workaround To workaround this problem perform the following steps:

1. Place the ORBSTAT API call in your application.

2. Compile and run the application.

An exception has occourred but ORBSTAT has not been called. Place
 the ORBSTAT API call in your application, compile and rerun.
 Exiting now.
 148

API Migration Issues
ORBALLOC

Overview The Orbix 6.2 IDL Compiler has changed the mapping for IDL data types,
long, unsigned long, short and unsigned short. These changes might
effect the use of the deprecated ORBALLOC API.

This subsection discusses the following topics:

� Mapping Changes

� Reason for Mapping Changes

� Migration Impact

� Workaround

Mapping Changes The following table represents the changes to the Working Storage data item
definitions for the appropriate IDL data types:

Reason for Mapping Changes The mappings have been changed so that the COBOL runtime can marshal
the complete range of values for CORBA::Long, CORBA::ULong,
CORBA::Short, and CORBA::UShort respectively.

Migration Impact The migration impact affects applications that call the deprecated ORBALLOC
API, which allocates the specified number of bytes at runtime, if the type(s)
ORBALLOC is allocating memory for contains one of more of the following:
9(10)BINARY, 9(5)BINARY, S9(10)BINARY or S9(05)BINARY and the exact
memory requirements are specified.

Table 10: ORBALLOC and Mapping Changes for IDL Data Types

IDL Data Type Orbix 6.2 IDL
Compiler Output

gencbl Output

long S9(10) BINARY S9(09) BINARY

unsigned long 9(10) BINARY 9(09) BINARY

short S9(5) BINARY S9(4) BINARY

unsigned short 9(5) BINARY 9(4) BINARY
149

CHAPTER 6 | COBOL Migration Issues
Workaround There are two scenarios for dealing with this, these are:

� If the application is using sequences, determine if the deprecated
ORBALLOC API is being called, if so, use the SEQALLOC API in place of it.

� Determine if the deprecated ORBALLOC API is being called, and if so,
increase the memory to be allocated to the Working Storage data items
by the appropriate amount.
 150

COBOL IMS Server Migration Issues
COBOL IMS Server Migration Issues

Overview This section describes the source code changes required when migrating
COBOL IMS Orbix 2.3.x servers to COBOL IMS Orbix 6.2 servers.

In This Section This section discusses the following topics:

Note: This section must be read in conjunction with the other COBOL
migration issues outlined in this document.

Server Mainline Program Requirement for IMS Servers page 152

The Linkage Section for IMS Servers page 156

Access to the Program Communication Block for IMS Servers page 162

Error Checking Generation at Runtime for IMS Servers page 164
151

CHAPTER 6 | COBOL Migration Issues
Server Mainline Program Requirement for IMS Servers

Overview A server mainline program is required for all IMS COBOL server programs
running in an Orbix Mainframe 6.2 application.

This subsection discusses the following topics:

� Migration Impact

� Migration Sample IDL

� Server Mainline for the Simple IDL

Migration Impact The migration impact is that every Orbix 2.3.x IMS COBOL server now
requires a server mainline to run inside IMS. The server mainline can be
generated by running the Orbix 6.2 IDL COBOL compiler and specifying the
:-S:-TIMS compiler arguments.

Refer to the COBOL Programmer�s Guide and Reference for more details of
compiler arguments.

Migration Sample IDL Consider the following IDL, called simple,

Server Mainline for the Simple IDL The compiler output for the Orbix 6.2 IDL compiler produces two files for
the simple IDL: a server implementation called SIMPLES and a server
mainline called SIMPLESV. The following is the server mainline source code
for IMS, SIMPLESV, produced by the Orbix 6.2 IDL compiler when the
compiler arguments :-S:-TIMS are specified.

module Simple
{
 interface SimpleObject
 {
 void
 call_me();
 };
};

Note: The server implementation is generated in IMS only if the
:-Z:-TIMS arguments are used with the Orbix 6.2 IDL compiler.
 152

COBOL IMS Server Migration Issues
Example 4: Server Mainline for the simple IDL with the Orbix 6.2 IDL
Compiler (Sheet 1 of 3)

**
* Description:
* This program is a IMS server mainline for interfaces
* described in SIMPLE
**
 IDENTIFICATION DIVISION.
 PROGRAM-ID. SIMPLESV.
 ENVIRONMENT DIVISION.
 DATA DIVISION.

 WORKING-STORAGE SECTION.

 COPY SIMPLE.
 COPY CORBA.
 COPY WSIMSPCB.

 01 ARG-LIST PICTURE X(01)
 VALUE SPACES.
 01 ARG-LIST-LEN PICTURE 9(09) BINARY
 VALUE 0.
 01 ORB-NAME PICTURE X(10)
 VALUE
 "simple_orb".
 01 ORB-NAME-LEN PICTURE 9(09) BINARY
 VALUE 10.
 01 SERVER-NAME PICTURE X(07)
 VALUE
 "simple ".
 01 SERVER-NAME-LEN PICTURE 9(09) BINARY
 VALUE 6.
 01 INTERFACE-LIST.
 03 FILLER PICTURE X(28)
 VALUE
 "IDL:Simple/SimpleObject:1.0 ".
 01 INTERFACE-NAMES-ARRAY REDEFINES INTERFACE-LIST.
 03 INTERFACE-NAME OCCURS 1 TIMES PICTURE X(28).
 01 OBJECT-ID-LIST.
 03 FILLER PICTURE X(27)
 VALUE
 "Simple/SimpleObject_object ".
01 OBJECT-ID-ARRAY REDEFINES OBJECT-ID-LIST.
 03 OBJECT-IDENTIFIER OCCURS 1 TIMES PICTURE X(27).
153

CHAPTER 6 | COBOL Migration Issues
**
* Object values for the Interface(s)
**
 01 SIMPLE-SIMPLEOBJECT-OBJ POINTER
 VALUE NULL.

 COPY LSIMSPCB.

 PROCEDURE DIVISION USING LS-IO-PCB, LS-ALT-PCB.

 INIT.
 PERFORM UPDATE-WS-PCBS.

 CALL "ORBSTAT" USING ORBIX-STATUS-INFORMATION.
 SET WS-ORBSTAT TO TRUE.
 PERFORM CHECK-STATUS.

 CALL "ORBARGS" USING ARG-LIST
 ARG-LIST-LEN
 ORB-NAME
 ORB-NAME-LEN.
 SET WS-ORBARGS TO TRUE.
 PERFORM CHECK-STATUS.

 CALL "ORBSRVR" USING SERVER-NAME
 SERVER-NAME-LEN.
 SET WS-ORBSRVR TO TRUE.
 PERFORM CHECK-STATUS.

Example 4: Server Mainline for the simple IDL with the Orbix 6.2 IDL
Compiler (Sheet 2 of 3)
 154

COBOL IMS Server Migration Issues
**
* Interface Section Block
**

* Generating Object Reference for interface Simple/SimpleObject
 CALL "ORBREG" USING SIMPLE-SIMPLEOBJECT-INTERFACE.
 SET WS-ORBREG TO TRUE.
 PERFORM CHECK-STATUS.

 CALL "OBJNEW" USING SERVER-NAME
 INTERFACE-NAME OF INTERFACE-NAMES-ARRAY(1)
 OBJECT-IDENTIFIER OF OBJECT-ID-ARRAY(1)
 SIMPLE-SIMPLEOBJECT-OBJ.
 SET WS-OBJNEW TO TRUE.
 PERFORM CHECK-STATUS.

 CALL "COARUN".
 SET WS-COARUN TO TRUE.
 PERFORM CHECK-STATUS.
 CALL "OBJREL" USING SIMPLE-SIMPLEOBJECT-OBJ.
 SET WS-OBJREL TO TRUE.
 PERFORM CHECK-STATUS.
 EXIT-PRG.
 GOBACK.

**
* Populate the working storage PCB definitions
**
 COPY UPDTPCBS.

**
* Check Errors Copybook
**
 COPY CERRSMFA.

Example 4: Server Mainline for the simple IDL with the Orbix 6.2 IDL
Compiler (Sheet 3 of 3)
155

CHAPTER 6 | COBOL Migration Issues
The Linkage Section for IMS Servers

Overview This subsection describes the differences between an Orbix 2.3.x IMS
COBOL server and an Orbix 6.2 IMS COBOL server with regard to how the
program communication block is exposed to Orbix applications.

This subsection discusses the following topics:

� Migration Impact

� Orbix 2.3.x Server Implementation for Simple IDL

� Orbix 6.2 Server Implementation for Simple IDL

� Linkage Section Migration

Migration Impact The linkage section of an Orbix 2.3.x server implementation must be
removed.

Orbix 2.3.x Server
Implementation for Simple IDL

The server implementation for the Orbix 2.3.x Compiler output for the
simple IDL is as follows:

Example 5: Orbix 2.3.x Compiler Output for the Simple IDL (Sheet 1 of
3)

**
* Identification Division
**
 IDENTIFICATION DIVISION.
 PROGRAM-ID. SIMPLES.

 ENVIRONMENT DIVISION.
 DATA DIVISION.
 WORKING-STORAGE SECTION.
 COPY SIMPLE.
 COPY CORBA.

 01 WS-INTERFACE-NAME PICTURE X(30).
 01 WS-INTERFACE-NAME-LENGTH PICTURE 9(09) BINARY
 VALUE 30.
 01 WS-ERROR-FUNC PICTURE X(09)
 VALUE SPACES.
 156

COBOL IMS Server Migration Issues
LINKAGE SECTION.
*
** IMS linkage section data items
*
 01 IOPCB.
 02 LTERM-NAME PIC X(8).
 02 FILLER PIC X(2).
 02 IOSTATUS PIC XX.
 02 FILLER PIC X(20).
 01 DBPCB.
 02 DBNAME PIC X(8).
 02 SEG-LEVEL-NO PIC X(2).
 02 DBSTATUS PIC XX.
 02 FILLER PIC X(20).
 01 ALTPCB.
 02 DEST-TRAN PIC X(8).
 02 FILLER PIC X(2).
 02 ALTSTATUS PIC XX.
 02 FILLER PIC X(20).

**
* Procedure Division
**
PROCEDURE DIVISION USING IOPCB ALTPCB DBPCB.

 ENTRY "DISPATCH".
 CALL "ORBSTAT" USING ORBIX-STATUS-INFORMATION.
 MOVE "ORBSTAT" TO WS-ERROR-FUNC.
 PERFORM CHECK-STATUS.
 CALL "ORBREQ" USING REQUEST-INFO.
 MOVE "ORBREQ" TO WS-ERROR-FUNC.
 PERFORM CHECK-STATUS.

* Resolve the pointer reference to the interface name which is
* the fully scoped interface name

 CALL "STRGET" USING INTERFACE-NAME
 WS-INTERFACE-NAME-LENGTH
 WS-INTERFACE-NAME.
 SET WS-STRGET TO TRUE.
 PERFORM CHECK-STATUS.

Example 5: Orbix 2.3.x Compiler Output for the Simple IDL (Sheet 2 of
3)
157

CHAPTER 6 | COBOL Migration Issues
**
* Interface(s) evaluation:
**
 MOVE SPACES TO SIMPLE-SIMPLEOBJECT-OPERATION.

 EVALUATE WS-INTERFACE-NAME
 WHEN 'Simple/SimpleObject'

* Resolve the pointer reference to the operation information
 CALL "STRGET" USING OPERATION-NAME
 SIMPLE-S-3497-OPERATION-LENGTH
 SIMPLE-SIMPLEOBJECT-OPERATION
 MOVE "STRGET" TO WS-ERROR-FUNC
 PERFORM CHECK-STATUS
 DISPLAY "Simple::" SIMPLE-SIMPLEOBJECT-OPERATION
 "invoked"
 END-EVALUATE.

COPY SIMPLED.

 GOBACK.

DO-SIMPLE-SIMPLEOBJECT-CALL-ME.
 CALL "ORBGET" USING SIMPLE-SIMPLEOBJECT-70FE-ARGS.
 MOVE "ORBGET" TO WS-ERROR-FUNC.
 PERFORM CHECK-STATUS.

 CALL "ORBPUT" USING SIMPLE-SIMPLEOBJECT-70FE-ARGS.
 MOVE "ORBPUT" TO WS-ERROR-FUNC.
 PERFORM CHECK-STATUS.

**
* Check Errors Section
**
 CHECK-STATUS SECTION.

 IF EXCEPTION-NUMBER NOT EQUAL 0 THEN
 DISPLAY "Server Impl: Call Failed in " WS-ERROR-FUNC
 DISPLAY "Server Impl: Exception Value is "
 EXCEPTION-NUMBER
 GOBACK
 END-IF.

Example 5: Orbix 2.3.x Compiler Output for the Simple IDL (Sheet 3 of
3)
 158

COBOL IMS Server Migration Issues
Orbix 6.2 Server Implementation
for Simple IDL

The following is the server implementation compiler output, SIMPLES, for
the Orbix 6.2 IDL compiler:

Example 6: Orbix 6.2 Server Implementation Code for Simple IDL (Sheet
1 of 2)

**
* Identification Division
**
 IDENTIFICATION DIVISION.
 PROGRAM-ID. SIMPLES.

 ENVIRONMENT DIVISION.
 DATA DIVISION.
 WORKING-STORAGE SECTION.
 COPY SIMPLE.
 COPY CORBA.
 COPY WSIMSPCB.

 01 WS-INTERFACE-NAME PICTURE X(30).
 01 WS-INTERFACE-NAME-LENGTH PICTURE 9(09) BINARY
 VALUE 30.

**
* Procedure Division
**
 PROCEDURE DIVISION.

 ENTRY "DISPATCH".

 CALL "COAREQ" USING REQUEST-INFO.
 SET WS-COAREQ TO TRUE.
 PERFORM CHECK-STATUS.

* Resolve the pointer reference to the interface name which is
* the fully scoped interface name

 CALL "STRGET" USING INTERFACE-NAME
 WS-INTERFACE-NAME-LENGTH
 WS-INTERFACE-NAME.
 SET WS-STRGET TO TRUE.
 PERFORM CHECK-STATUS.
159

CHAPTER 6 | COBOL Migration Issues
Linkage Section Migration The linkage section in the Orbix 2.3.x compiler output which is highlighted
in the �Orbix 2.3.x Server Implementation for Simple IDL� on page 156
must be omitted altogether. The Orbix 6.2 IDL compiler produces a linkage
section in the server mainline which appears as, COPY LSIMSPCB. The
copybook LSIMSPCB is of the format:

**
* Interface(s) evaluation:
**
 MOVE SPACES TO SIMPLE-SIMPLEOBJECT-OPERATION.

 EVALUATE WS-INTERFACE-NAME
 WHEN 'IDL:Simple/SimpleObject:1.0'

* Resolve the pointer reference to the operation information
 CALL "STRGET" USING OPERATION-NAME
 SIMPLE-S-3497-OPERATION-LENGTH
 SIMPLE-SIMPLEOBJECT-OPERATION
 SET WS-STRGET TO TRUE
 PERFORM CHECK-STATUS
 DISPLAY "Simple::" SIMPLE-SIMPLEOBJECT-OPERATION
 "invoked"
 END-EVALUATE.

 COPY SIMPLED.

 GOBACK.

 DO-SIMPLE-SIMPLEOBJECT-CALL-ME.
 CALL "COAGET" USING SIMPLE-SIMPLEOBJECT-70FE-ARGS.
 SET WS-COAGET TO TRUE.
 PERFORM CHECK-STATUS.

 CALL "COAPUT" USING SIMPLE-SIMPLEOBJECT-70FE-ARGS.
 SET WS-COAPUT TO TRUE.
 PERFORM CHECK-STATUS.

**
* Check Errors Copybook
**
 COPY CERRSMFA.

Example 6: Orbix 6.2 Server Implementation Code for Simple IDL (Sheet
2 of 2)
 160

COBOL IMS Server Migration Issues
LINKAGE SECTION.
 01 LS-IO-PCB.
 03 LS-IOPCB-LTERM-NAME PICTURE X(8).
 03 LS-IOPCB-DLI-RESERVE PICTURE X(2).
 03 LS-IOPCB-STATUS-CODE PICTURE X(2).
 03 LS-IOPCB-IN-PREFIX.
 05 LS-IOPCB-JULIAN-DATE PICTURE S9(7) COMP-3.
 05 LS-IOPCB-PCB-TIME-OF-DAY PICTURE S9(7) COMP-3.
 05 LS-IOPCB-MSG-SEQ PICTURE S9(7) COMP.
 03 LS-IOPCB-MOD-NAME PICTURE X(8).
 03 LS-IOPCB-RACF-ID PICTURE X(8).
 01 LS-ALT-PCB.
 03 LS-ALTPCB-DEST-NAME PICTURE X(8).
 03 LS-ALTPCB-RESERVED PICTURE X(2).
 03 LS-ALTPCB-STATUS-CODE PICTURE X(2).
161

CHAPTER 6 | COBOL Migration Issues
Access to the Program Communication Block for IMS Servers

Overview Orbix 2.3.x compiler generated code exposes the program communication
block in the server implementation. Orbix 6.2 IDL compiler generated code
exposes the program communication block in the server mainline. This data
is accessible from the Orbix 6.2 server implementation by using the
supplied WSIMSPCB and UPDTPCBS copybooks.

This subsection discusses the following topics:

� Orbix 6.2 Server Mainline Code

� The copybook WSIMSPCB Format

� The copybook UPDTPCBS Format

Orbix 6.2 Server Mainline Code The server mainline generated by the Orbix 6.2 IDL compiler allows access
to the program communication block data by populating the corresponding
working storage data from the linkage section definitions using the
paragraph UPDATE-WS-PCBS. The Working Storage data is defined in the
WSIMSPCB copybook, the Linkage Section definitions are defined in the
LSIMSPCB copybook and the UPDATE-WS-PCBS paragraph is defined in the
UPDTPCBS copybook. These three copybooks are shipped with the product in
orbixhlq.INCLUDE.COPYLIB.

For example, consider �Server Mainline for the Simple IDL� on page 152,
the working storage section contains COPY WSIMSPCB which is populated
from LSIMSPCB using the UPDATE-WS-PCBS paragraph defined in UPDTPCBS.

Note: If the server implementation requires access to the program
communication block data it must have a copy statement for the copybook
WSIMSPCB in its working storage section.
 162

COBOL IMS Server Migration Issues
The copybook WSIMSPCB Format The copybook WSIMSPCB has the format:

The copybook UPDTPCBS Format The copybook UPDTPCBS is of the format:

* Name: WSIMSPCB*
**
** Program communication data area for use in COBOL IMS server.*

 01 WS-IO-PCB IS EXTERNAL.
 03 WS-IOPCB-LTERM-NAME PICTURE X(8).
 03 WS-IOPCB-DLI-RESERVE PICTURE X(2).
 03 WS-IOPCB-STATUS-CODE PICTURE X(2).
 03 WS-IOPCB-IN-PREFIX.
 05 WS-IOPCB-JULIAN-DATE PICTURE S9(7) COMP-3.
 05 WS-IOPCB-PCB-TIME-OF-DAY PICTURE S9(7) COMP-3.
 05 WS-IOPCB-MSG-SEQ PICTURE S9(7) COMP.
 03 WS-IOPCB-MOD-NAME PICTURE X(8).
 03 WS-IOPCB-RACF-ID PICTURE X(8).
 01 WS-ALT-PCB IS EXTERNAL.
 03 WS-ALTPCB-DEST-NAME PICTURE X(8).
 03 WS-ALTPCB-RESERVED PICTURE X(2).
 03 WS-ALTPCB-STATUS-CODE PICTURE X(2).

* Name: UPDTPCBS*
**
*
* The following is used to move the PCB linkage-section defined
* data to the corresponding working-storage definitions for use
* in the server implementaion.
*
 UPDATE-WS-PCBS.
 MOVE LS-IOPCB-LTERM-NAME TO WS-IOPCB-LTERM-NAME.
 MOVE LS-IOPCB-DLI-RESERVE TO WS-IOPCB-DLI-RESERVE.
 MOVE LS-IOPCB-STATUS-CODE TO WS-IOPCB-STATUS-CODE.
 MOVE LS-IOPCB-JULIAN-DATE TO WS-IOPCB-JULIAN-DATE.
 MOVE LS-IOPCB-PCB-TIME-OF-DAY TO
 WS-IOPCB-PCB-TIME-OF-DAY.
 MOVE LS-IOPCB-MSG-SEQ TO WS-IOPCB-MSG-SEQ.
 MOVE LS-IOPCB-MOD-NAME TO WS-IOPCB-MOD-NAME.
 MOVE LS-IOPCB-RACF-ID TO WS-IOPCB-RACF-ID.
 MOVE LS-ALTPCB-DEST-NAME TO WS-ALTPCB-DEST-NAME.
 MOVE LS-ALTPCB-RESERVED TO WS-ALTPCB-RESERVED.
 MOVE LS-ALTPCB-STATUS-CODE TO WS-ALTPCB-STATUS-CODE.
163

CHAPTER 6 | COBOL Migration Issues
Error Checking Generation at Runtime for IMS Servers

Overview This subsections summarizes the differences between gencbl and the Orbix
6.2 IDL Compiler in relation to the CHECK-STATUS paragraph used for error
checking.

This subsection discusses the following topics:

� The gencbl Utility

� The Orbix 6.2 IDL Compiler

� Migration Impact

The gencbl Utility The CHECK-STATUS paragraph is generated by gencbl for each server when it
is run with the -E option.

The Orbix 6.2 IDL Compiler The CHECK-STATUS paragraph is shipped as a static copybook called
CERRSMFA, in the orbixhlq.INCLUDE.COPYLIB in Orbix 6.2. The reason that
the Orbix 6.2 IDL Compiler doesn�t generate this procedure is that,
regardless of the IDL, the procedure code is unchanged.

Migration Impact There is no migration impact, however IONA recommend you use the
CERRSMFA copybook which shows the system exception encountered in a
more user-friendly format.

Note: The CHECK-STATUS paragraph for IMS servers is different from
batch in the following way: the CHECK-STATUS paragraph does not set the
RETURN-CODE register, and calls GOBACK instead of STOP RUN if a system
exception occurs.
 164

COBOL IMS Client Migration Issues
COBOL IMS Client Migration Issues

Overview This section describes the source code changes required when migrating
COBOL IMS Orbix 2.3.x clients to COBOL IMS Orbix 6.2 clients.

In This Section This section discusses the following topics:

Note: This section must be read in conjunction with the other COBOL
migration issues outlined in this document.

The Linkage Section for IMS Clients page 166

Error Checking Generation at Runtime for IMS Clients page 168

Extra Copybooks in Orbix 6.2 for IMS Clients page 169
165

CHAPTER 6 | COBOL Migration Issues
The Linkage Section for IMS Clients

Overview The linkage section in an Orbix 2.3.x IMS client implementation and the
linkage section in an Orbix 6.2 IMS client implementation have different
definitions.

This subsection discusses the following topics:

� Migration impact

� Orbix 2.3.x client implementation sample

� Orbix 6.2 client implementation

Migration impact The linkage section of an Orbix 2.3.x client implementation must be
replaced with COPY LSIMSPCB, and replace PROCEDURE DIVISION USING
IOPCB. with PROCEDURE DIVISION USING LS-IO-PCB, LS-ALT-PCB.

Orbix 2.3.x client implementation
sample

The client implementation for the Orbix 2.3.x for the linkage section is as
follows:

Orbix 6.2 client implementation The client implementation for the Orbix 6.2 for the linkage section is as
follows:

where the contents of COPY LSIMSPCB is:

LINKAGE SECTION.

01 IOPCB.
 02 LTERM-NAME PICTURE X(8).
 02 FILLER PICTURE X(2).
 02 TPSTATUS PICTURE XX.
 02 FILLER PICTURE X(20).

PROCEDURE DIVISION USING IOPCB.

COPY LSIMSPCB.
PROCEDURE DIVISION USING LS-IO-PCB, LS-ALT-PCB.
 166

COBOL IMS Client Migration Issues
LINKAGE SECTION.
01 LS-IO-PCB.
 03 LS-IOPCB-LTERM-NAME PICTURE X(8).
 03 LS-IOPCB-DLI-RESERVE PICTURE X(2).
 03 LS-IOPCB-STATUS-CODE PICTURE X(2).
 03 LS-IOPCB-IN-PREFIX.
 05 LS-IOPCB-JULIAN-DATE PICTURE S9(7) COMP-3.
 05 LS-IOPCB-PCB-TIME-OF-DAY PICTURE S9(7) COMP-3.
 05 LS-IOPCB-MSG-SEQ PICTURE S9(7) COMP.
 03 LS-IOPCB-MOD-NAME PICTURE X(8).
 03 LS-IOPCB-RACF-ID PICTURE X(8).
01 LS-ALT-PCB.
 03 LS-ALTPCB-DEST-NAME PICTURE X(8).
 03 LS-ALTPCB-RESERVED PICTURE X(2).
 03 LS-ALTPCB-STATUS-CODE PICTURE X(2).
167

CHAPTER 6 | COBOL Migration Issues
Error Checking Generation at Runtime for IMS Clients

Overview This subsection summarizes the differences between an Orbix 2.3.x client
and an Orbix 6.2 client in relation to the CHECK-STATUS paragraph used for
error checking.

This subsection discusses the following topics:

� IMS clients in Orbix 2.3.x

� IMS clients in Orbix 6.2

� Migration impact

IMS clients in Orbix 2.3.x There is no copybook shipped for error-checking for IMS client code in Orbix
2.3.x. Customers are required to implement their own error checking
procedure.

IMS clients in Orbix 6.2 For IMS clients a CHKCLIMS copybook is shipped in the
orbixhlq.INCLUDE.COPYLIB in Orbix 6.2.

Migration impact There is no migration impact, however IONA recommend you use the
CHKCLIMS copybook which shows the system exception encountered in a
more user-friendly format.

Note: The CHECK-STATUS paragraph for IMS clients is different from batch
in the following way: the CHECK-STATUS paragraph does not set the
RETURN-CODE register, and calls GOBACK instead of STOP RUN if a system
exception occurs. It also writes a message to the IMS output message
queue to show which API has failed.
 168

COBOL IMS Client Migration Issues
Extra Copybooks in Orbix 6.2 for IMS Clients

Overview This subsection describes differences in the code format between Orbix
2.3.x and Orbix 6.2 in regard to IMS clients.

This subsection discusses the following topics:

� Migration impact

� Orbix 6.2 IMS client code

� Orbix 2.3.x IMS client code

Migration impact There is no migration impact. This subsection merely offers an explanation
for why extra copybooks are shipped with Orbix 6.2 that are not shipped
with Orbix 2.3.x.

The reason this code is shipped in copybooks in Orbix 6.2 is for ease of use
and non-replication of code because it is common code for any IMS client.

Orbix 6.2 IMS client code In Orbix 6.2 client code the following copy books are shipped:

Table 11: Extra Copybooks that ship with Orbix 6.2

Copybook Description

WSIMSCL This is relevant to IMS clients only. It contains a COBOL
data definition that defines the format of the message that
can be written by the paragraph contained in
orbixhlq.INCLUDE.COPYLIB(IMSWRITE). It also contains
COBOL data definitions for calling the GU (get unique) and
ISRT (insert) commands.

GETUNIQUE This is relevant to IMS clients only. It contains a COBOL
paragraph that can be called by the client, to retrieve
specific IMS segments. It does this by using the supplied
IBM routine (interface) CBLTDLI to make an IMS DC (data
communications) call that specifies the GU (get unique)
function command.
169

CHAPTER 6 | COBOL Migration Issues
In Orbix 6.2 these copybooks are located in orbixhlq.INCLUDE.COPYLIB.
This code is also included in the demonstrations.

Orbix 2.3.x IMS client code For Orbix 2.3.x this code is part of the demonstration code for the Orbix
2.3.x demonstrations.

IMSWRITE This is relevant to IMS clients only. It contains a COBOL
paragraph called WRITE-DC-TEXT, to write a segment to the
IMS output message queue. It does this by using the
supplied IBM routine (interface) CBLTDLI to make an IMS
DC (data communications) call that specifies the ISRT
(insert) function command.

Table 11: Extra Copybooks that ship with Orbix 6.2

Copybook Description
 170

COBOL CICS Server Migration Issues
COBOL CICS Server Migration Issues

Overview This section describes the source code changes required when migrating
COBOL CICS Orbix 2.3.x servers to COBOL CICS Orbix 6.2 servers.

In This Section This section discusses the following topics:

Note: This section must be read in conjunction with the other COBOL
migration issues outlined in this document.

Server Mainline Program Requirement for CICS Servers page 172

Access to the EXEC Interface Block Data Structure page 176

Error Checking Generation at Runtime for CICS Servers page 177
171

CHAPTER 6 | COBOL Migration Issues
Server Mainline Program Requirement for CICS Servers

Overview A server mainline program is required for all CICS COBOL programs running
in an Orbix Mainframe 6.2 application.

This subsection discusses the following topics:

� Migration Impact

� Migration Sample IDL

� Server Mainline for the Simple IDL

Migration Impact The migration impact is that every Orbix 2.3.x CICS COBOL server now
requires a server mainline to run inside CICS. The server mainline can be
generated by running the Orbix 6.2 IDL COBOL compiler and specifying the
:-S:-TCICS compiler arguments.

Refer to the COBOL Programmer�s Guide and Reference for more details of
compiler arguments.

Migration Sample IDL Consider the following IDL, called simple,

Server Mainline for the Simple IDL The compiler output for the Orbix 6.2 IDL compiler produces two files for
the simple IDL: a server implementation called SIMPLES and a server
mainline called SIMPLESV. The following is the server mainline source code
for CICS, SIMPLESV, produced by the Orbix 6.2 IDL compiler when the
compiler arguments :-S:-TCICS are specified.

module Simple
{
 interface SimpleObject
 {
 void
 call_me();
 };
};

Note: The server implementation is generated in CICS only if the
:-Z:-TCICS arguments are used with the Orbix 6.2 IDL compiler.
 172

COBOL CICS Server Migration Issues
Example 7: Server Mainline for the simple IDL with the Orbix 6.2 IDL
Compiler (Sheet 1 of 3)

**
* Description:
* This program is a CICS server mainline for interfaces
* described in SIMPLE
**
 IDENTIFICATION DIVISION.
 PROGRAM-ID. SIMPLESV.
 ENVIRONMENT DIVISION.
 DATA DIVISION.

 WORKING-STORAGE SECTION.

 COPY SIMPLE.
 COPY CORBA.

 01 ARG-LIST PICTURE X(01)
 VALUE SPACES.
 01 ARG-LIST-LEN PICTURE 9(09) BINARY
 VALUE 0.
 01 ORB-NAME PICTURE X(10)
 VALUE
 "simple_orb".
 01 ORB-NAME-LEN PICTURE 9(09) BINARY
 VALUE 10.
 01 SERVER-NAME PICTURE X(07)
 VALUE
 "simple ".
 01 SERVER-NAME-LEN PICTURE 9(09) BINARY
 VALUE 6.
 01 INTERFACE-LIST.
 03 FILLER PICTURE X(28)
 VALUE
 "IDL:Simple/SimpleObject:1.0 ".
 01 INTERFACE-NAMES-ARRAY REDEFINES INTERFACE-LIST.
 03 INTERFACE-NAME OCCURS 1 TIMES PICTURE X(28).
 01 OBJECT-ID-LIST.
 03 FILLER PICTURE X(27)
 VALUE
 "Simple/SimpleObject_object ".
01 OBJECT-ID-ARRAY REDEFINES OBJECT-ID-LIST.
 03 OBJECT-IDENTIFIER OCCURS 1 TIMES PICTURE X(27).
173

CHAPTER 6 | COBOL Migration Issues
**
* Object values for the Interface(s)
**
 01 SIMPLE-SIMPLEOBJECT-OBJ POINTER
 VALUE NULL.

 PROCEDURE DIVISION

 INIT.

 CALL "ORBSTAT" USING ORBIX-STATUS-INFORMATION.
 SET WS-ORBSTAT TO TRUE.
 PERFORM CHECK-STATUS.

 CALL "ORBARGS" USING ARG-LIST
 ARG-LIST-LEN
 ORB-NAME
 ORB-NAME-LEN.
 SET WS-ORBARGS TO TRUE.
 PERFORM CHECK-STATUS.

 CALL "ORBSRVR" USING SERVER-NAME
 SERVER-NAME-LEN.
 SET WS-ORBSRVR TO TRUE.
 PERFORM CHECK-STATUS.

Example 7: Server Mainline for the simple IDL with the Orbix 6.2 IDL
Compiler (Sheet 2 of 3)
 174

COBOL CICS Server Migration Issues
**
* Interface Section Block
**

* Generating Object Reference for interface Simple/SimpleObject
 CALL "ORBREG" USING SIMPLE-SIMPLEOBJECT-INTERFACE.
 SET WS-ORBREG TO TRUE.
 PERFORM CHECK-STATUS.

 CALL "OBJNEW" USING SERVER-NAME
 INTERFACE-NAME OF INTERFACE-NAMES-ARRAY(1)
 OBJECT-IDENTIFIER OF OBJECT-ID-ARRAY(1)
 SIMPLE-SIMPLEOBJECT-OBJ.
 SET WS-OBJNEW TO TRUE.
 PERFORM CHECK-STATUS.

 CALL "COARUN".
 SET WS-COARUN TO TRUE.
 PERFORM CHECK-STATUS.
 CALL "OBJREL" USING SIMPLE-SIMPLEOBJECT-OBJ.
 SET WS-OBJREL TO TRUE.
 PERFORM CHECK-STATUS.
 EXIT-PRG.
 GOBACK.

**
* Check Errors Copybook
**
 COPY CERRSMFA.

Note: The batch implementation program is the same as the CICS
implementation program except the CICS implementation program has a
COPY CERRSMFA instead of a COPY CHKERRS

Example 7: Server Mainline for the simple IDL with the Orbix 6.2 IDL
Compiler (Sheet 3 of 3)
175

CHAPTER 6 | COBOL Migration Issues
Access to the EXEC Interface Block Data Structure

Overview This subsection describes the migration impact for CICS COBOL servers
whose implementation requires access to the EXEC interface block (EIB)
data structure. It discusses the following topics:

� �Migration Impact�

� �Required Code�

Migration Impact Because Orbix 6.2 requires that all CICS COBOL servers have a server
mainline, the implementation program is now a sub-program that is entered
via a DISPATCH entry point. By default, the CICS program does not pass
along the address of the EIB structure. As a result, you must add some
additional code to your COBOL server implementation programs.

Required Code In Working Storage, include the following COPY statement:

At the start of your Procedure Division, after the DISPATCH entry point, add
the following code:

…
COPY WSCICSSV
…

Note: The WSCICSV contains the following line:

01 WS-EIB-POINTER USAGE IS POINTER VALUE NULL.

EXEC CICS ADDRESS
 EIB (WS-EIB-POINTER)
 NOHANDLE
END-EXEC.
SET ADDRESS OF DFHEIBLK
 TO WS-EIB-POINTER.
 176

COBOL CICS Server Migration Issues
Error Checking Generation at Runtime for CICS Servers

Overview This subsection summarizes the differences between gencbl and the Orbix
6.2 IDL Compiler in relation to the CHECK-STATUS paragraph used for error
checking.

This subsection discusses the following topics:

� The gencbl Utility

� The Orbix 6.2 IDL Compiler

� Migration Impact

The gencbl Utility The CHECK-STATUS paragraph is generated by gencbl for each server when it
is run with the -E option.

The Orbix 6.2 IDL Compiler The CHECK-STATUS paragraph is shipped as a static copybook called
CERRSMFA, in the orbixhlq.INCLUDE.COPYLIB in Orbix 6.2. The reason that
the Orbix 6.2 IDL Compiler doesn�t generate this procedure is that,
regardless of the IDL, the procedure code is unchanged.

Migration Impact There is no migration impact, however IONA recommend you use the
CERRSMFA copybook which shows the system exception encountered in a
more user-friendly format.

Note: The CHECK-STATUS paragraph for CICS servers is different from
batch in the following way: the CHECK-STATUS paragraph does not set the
RETURN-CODE register, and calls GOBACK instead of STOP RUN if a system
exception occurs.
177

CHAPTER 6 | COBOL Migration Issues
COBOL CICS Client Migration Issues

Overview This section describes the source code changes required when migrating
COBOL CICS Orbix 2.3.x clients to COBOL CICS Orbix 6.2 clients.

In This Section This section discusses the following topics:

Note: This section must be read in conjunction with the other COBOL
migration issues outlined in this document.

Error Checking Generation at Runtime for CICS Clients page 179

Extra Copybooks in Orbix Mainframe 6.2 page 180
 178

COBOL CICS Client Migration Issues
Error Checking Generation at Runtime for CICS Clients

Overview This subsection summarizes the differences between an Orbix 2.3.x client
and an Orbix 6.2 client in relation to the CHECK-STATUS paragraph used for
error checking.

This subsection discusses the following topics:

� CICS clients in Orbix 2.3.x

� CICS clients in Orbix 6.2

� Migration impact

CICS clients in Orbix 2.3.x There is no copybook shipped for error-checking for CICS client code in
Orbix 2.3.x. Customers are required to implement their own error checking
procedure.

CICS clients in Orbix 6.2 For CICS clients a CHKCLCIC copybook is shipped in the
orbixhlq.INCLUDE.COPYLIB in Orbix 6.2.

Migration impact There is no migration impact, however IONA recommend you use the
CHKCLCIC copybook which shows the system exception encountered in a
more user-friendly format.

Note: The CHECK-STATUS paragraph for CICS clients is different from
batch in the following way: the CHECK-STATUS paragraph does not set the
RETURN-CODE register, and calls GOBACK instead of STOP RUN if a system
exception occurs. It also writes a message to the CICS terminal to show
which API has failed.

Note: CHKCLCIC is relevant to CICS clients only. It contains a COBOL
paragraph that has been translated by the CICS TS 1.3 translator. This
paragraph can be called by the client, to check if a system exception has
occurred and report it.
179

CHAPTER 6 | COBOL Migration Issues
Extra Copybooks in Orbix Mainframe 6.2

Overview This subsection describes differences in the code format between Orbix
2.3.x and Orbix 6.2.

This subsection discusses the following topics:

� Migration impact

� Orbix 6.2 CICS client code

� Orbix 2.3.x CICS client code

Migration impact There is no migration impact. This subsection merely offers an explanation
for why extra copybooks are shipped with Orbix 6.2 that are not shipped
with Orbix 2.3.x.

The reason this code is shipped in copybooks in Orbix 6.2 is for ease of use
and non-replication of code because it is common code for any CICS client.

Orbix 6.2 CICS client code In Orbix 6.2 client code the following copy books are shipped:

In Orbix 6.2 these copybooks are located in orbixhlq.INCLUDE.COPYLIB.
This code is also included in the demonstrations.

Orbix 2.3.x CICS client code For Orbix 2.3.x this code is part of the demonstration code for the Orbix
2.3.x demonstrations.

Table 12: Extra Copybooks that ship with Orbix 6.2

Copybook Description

WSCICSCL This is relevant to CICS clients only. It contains a COBOL
data definition that defines the format of the message that
can be written by the paragraph contained in
orbixhlq.INCLUDE.COPYLIB(CICWRITE).

CICWRITE This is relevant to CICS clients only. It contains a COBOL
paragraph that has been translated by the CICS TS 1.3
translator. This paragraph can be called by the client, to
write any messages raised by the supplied demonstrations
to the CICS terminal.
 180

Miscellaneous
Miscellaneous

In This Section This section discusses miscellaneous migration issues.

This section discusses the following topics:

� Interface Repository Server

� Command Line arguments

� DISPATCH Reference

Interface Repository Server In Orbix 2.3.x, gencbl requires the Interface Repository (IFR) server to be
running to access the IDL source which is registered with the IFR server
using putidl.

In Orbix 6.2, the IDL COBOL compiler accesses the IDL source directly,
from the input IDL member (data set), and therefore does not need to
access the IFR. Hence IDL members can be accessed independently (and
IDL to COBOL development can proceed) without the need for any Orbix 6.2
services to be running.

Command Line arguments The command-line arguments for the Orbix 6.2 IDL Compiler are different in
some cases to the gencbl arguments. However, functionality common to
both compilers can be achieved.

DISPATCH Reference There is a minor code change in Orbix 6.2 for the DISPATCH reference used
in Orbix 2.3.x. In Orbix 2.3.x, clients required the DISPATCH reference to
compile and link a COBOL client with a COA. This reference is located in
either of the following sections of code:

IDENTIFICATION DIVISION.

PROGRAM-ID. "DISPATCH".

PROCEDURE DIVISION.

 ENTRY "DISPATCH".
181

CHAPTER 6 | COBOL Migration Issues
In Orbix 6.2 this reference is not required. There is no migration impact in
removing this reference.
 182

CHAPTER 7

PL/I Migration
Issues
This chapter describes the issues involved in migrating PL/I
applications from an Orbix 2.3-based IONA mainframe
solution to Orbix Mainframe 6.2.

In this Chapter This chapter discusses the following topics:

Fully Qualified Level 1 Data Names page 185

Maximum Length of PL/I Data Names page 188

IDL Constant Definitions Mapped to Fully Qualified Names page 192

Typecode Name and Length Identifiers page 195

Include Member names Based on the IDL Member name page 196

Reserved PL/I Keywords for Module or Interface Names page 203

Orbix PL/I Error Checking page 204

CORBA Object Location and Binding page 205

CORBA Include Member Additions page 211

API Migration Issues page 212

Server Accessor (Z Member) page 216
183

CHAPTER 7 | PL/I Migration Issues
PL/I IMS Server Migration Issues page 222

PL/I IMS Client Migration issues page 230

PL/I CICS Server Migration Issues page 236

PL/I CICS Client Migration Issues page 243

Miscellaneous page 244
 184

Fully Qualified Level 1 Data Names
Fully Qualified Level 1 Data Names

Overview This section summarizes the differences in the way that genpli and the
Orbix 6.2 IDL Compiler generate level 01 data names.

This section discusses the following topics:

� The genpli Utility and Data Names

� Orbix 6.2 IDL Compiler and Data Names

� Migration Impact

� Sample IDL

� The genpli Utility Output

� Orbix 6.2 IDL Compiler Output

� Workaround

� Using the -M Argument

� In Summary

The genpli Utility and Data Names The Orbix 2.3.x genpli utility by default uses only the local name as the
generated data name. The -L and -J arguments are supplied with genpli to
allow you to generate module-prefixed or interface-prefixed data names. In
practice these arguments are seldom used by customers. Also, genpli can
only support interfaces that are defined within a single module.

Orbix 6.2 IDL Compiler and Data
Names

The Orbix 6.2 IDL Compiler replaces the genpli utility. The Orbix 6.2 IDL
Compiler generates fully qualified names for PL/I level 01 data items. This
means that it includes both module and interface names as prefixes in PL/I
data names. It can therefore support any level of scoping in IDL members
(that is, multiple levels of nested modules and interfaces).

The ability of the Orbix 6.2 IDL Compiler to generate fully qualified names
ensures the uniqueness of each generated name when, for example, the
same operation name or attribute is used at a different scope within an IDL
member.
185

CHAPTER 7 | PL/I Migration Issues
Migration Impact Orbix 6.2 IDL Compiler generates data names that are different from those
generated by genpli, for example, if the -J and -L arguments are not
supplied to generate PL/I code from a given interface, or if the generated
name has to be truncated due to the PL/I restriction on the length of data
names.

By default, the Orbix 6.2 IDL Compiler provides the same functionality as
the -L and -J arguments provided with genpli. The -M argument provided
with the Orbix 6.2 IDL Compiler can be used to generate code similar to
that generated by genpli without the -L and -J arguments.

Sample IDL Consider the following IDL for example:

The genpli Utility Output The genpli utility generates the following PL/I code, based on the preceding
IDL:

Orbix 6.2 IDL Compiler Output By contrast, the Orbix 6.2 IDL Compiler generates the following PL/I code,
based on the preceding IDL:

Workaround Use the -M argument that is provided with the Orbix 6.2 IDL Compiler to
avoid having to make changes to your application source code. The -M
argument allows you to generate a mapping member that you can then use

//IDL
interface grid {
 void set(in short n, in short m, in long value);
};

dcl 1 idl_set_type based,
 3 n fixed bin(15) init(0),
 3 m fixed bin(15) init(0),
 3 idl_value fixed dec(8,2) init(0);

dcl 1 grid_idl_set_type based,
 3 n fixed bin(15) init(0),
 3 m fixed bin(15) init(0),
 3 idl_value fixed dec(8,2) init(0);
 186

Fully Qualified Level 1 Data Names
to map alternative names to your fully qualified data names. You can set
these alternative names in the mapping member to be the same as the PL/I
data names that are generated by genpli.

Using the -M Argument You must run the Orbix 6.2 IDL Compiler twice with the -M argument. The
first run generates the mapping member, complete with the fully qualified
names and the alternative name mappings. Initially, the alternative name
mappings are the same as the fully qualified names, so you must manually
edit the mapping member to change the alternative names to the names
that you want to use. Then run the -M argument again, this time to generate
your PL/I include member complete with the alternative data names that
you have set up in the specified mapping member.

Refer to the PL/I Programmer�s Guide and Reference for an example of how
to use the -M argument.

In Summary Affects both clients and servers. Requires use of the described workaround
or code changes.
187

CHAPTER 7 | PL/I Migration Issues
Maximum Length of PL/I Data Names

Overview This section summarizes the differences in the way that genpli and the
Orbix 6.2 IDL Compiler process IDL identifier names that exceed 30
characters.

This section discusses the following topics:

� The genpli Utility and long Data Names

� Problems with the genpli Method

� Orbix 6.2 IDL Compiler Solution

� Migration Impact

� Sample IDL

� The genpli utility Generated Data Names

� Orbix 6.2 IDL Compiler Generated Data Names

� In Summary

The genpli Utility and long Data
Names

Because genpli only supports the PL/I for MVS & VM compiler, a
31-character restriction is placed on the length of data names. The method
used by genpli to generate data names for identifiers exceeding 31
characters is to truncate the identifier name to the first 27 characters and
attaches a four-character numeric suffix, starting at 0000.

Problems with the genpli Method This method is prone to problems if the original IDL for a completed
application has to be subsequently modified, and the modifications involve
IDL identifiers exceeding 31 characters being added mapped to member
names. In such a case, the regenerated suffixes for the various data names
do not match the original suffixes generated. This results in customers
having to make undesirable source code changes.

Orbix 6.2 IDL Compiler Solution To avoid this problem, the Orbix 6.2 IDL Compiler implements a new
method. This new method ensures that the same suffix is always
regenerated for a particular data name.
 188

Maximum Length of PL/I Data Names
Migration Impact The Orbix 6.2 IDL Compiler method generates completely different suffixes
than the genpli suffixes for customer applications where such a scenario
applies.

The following example illustrates these changes.

Sample IDL Consider the following IDL:

// IDL
interface longname{
struct complex {
 long

thisIsAReallyLongFeatureNamewithAnotherReallyLongFeatureExten
sionAtTheEnd;

 long
yetAnotherReallyLongFeatureNamewithAnotherReallyLongFeatureEx
tension;

 long
ThirdLastYetAnotherReallyLongFeatureNamewithAnotherReallyLongFea

tureExtension;
};
 void initialise();
 void op1(in complex ii);
 complex op2(in complex ii, inout complex io, out complex oo);
};
189

CHAPTER 7 | PL/I Migration Issues
The genpli utility Generated Data
Names

The genpli utility generates data names as follows based on the preceding
IDL:

dcl 1 op1_type based,
 3 ii,
 5 thisIsAReallyLongFeatureNam0003 fixed bin(31) init(0),
 5 yetAnotherReallyLongFeature0004 fixed bin(31) init(0),
 5 ThirdLastYetAnotherReallyLo0005 fixed bin(31) init(0);

dcl 1 op2_type based,
 3 ii,
 5 thisIsAReallyLongFeatureNam0006 fixed bin(31) init(0),
 5 yetAnotherReallyLongFeature0007 fixed bin(31) init(0),
 5 ThirdLastYetAnotherReallyLo0008 fixed bin(31) init(0);

 3 io,
 5 thisIsAReallyLongFeatureNam0009 fixed bin(31) init(0),
 5 yetAnotherReallyLongFeature0010 fixed bin(31) init(0),
 5 ThirdLastYetAnotherReallyLo0011 fixed bin(31) init(0);

 3 oo,
 5 thisIsAReallyLongFeatureNam0012 fixed bin(31) init(0),
 5 yetAnotherReallyLongFeature0013 fixed bin(31) init(0),
 5 ThirdLastYetAnotherReallyLo0014 fixed bin(31) init(0);

 3 result,
 5 thisIsAReallyLongFeatureNam0015 fixed bin(31) init(0),
 5 yetAnotherReallyLongFeature0016 fixed bin(31) init(0),
 5 ThirdLastYetAnotherReallyLo0017 fixed bin(31) init(0);
 190

Maximum Length of PL/I Data Names
Orbix 6.2 IDL Compiler Generated
Data Names

The Orbix 6.2 IDL Compiler generates data names as follows based on the
preceding IDL:

In Summary Affects clients and servers where IDL identifiers exceed 31 characters.
Requires code changes.

dcl 1 longname_op1_type based,
 3 ii,
 5 thisIsAReallyLongFeatureNa_e658 fixed bin(31) init(0),
 5 yetAnotherReallyLongFeatur_7628 fixed bin(31) init(0),
 5 ThirdLastYetAnotherReallyL_e278 fixed bin(31) init(0);

dcl 1 longname_op2_type based,
 3 ii,
 5 thisIsAReallyLongFeatureNa_e658 fixed bin(31) init(0),
 5 yetAnotherReallyLongFeatur_7628 fixed bin(31) init(0),
 5 ThirdLastYetAnotherReallyL_e278 fixed bin(31) init(0);

 3 io,
 5 thisIsAReallyLongFeatureNa_e658 fixed bin(31) init(0),
 5 yetAnotherReallyLongFeatur_7628 fixed bin(31) init(0),
 5 ThirdLastYetAnotherReallyL_e278 fixed bin(31) init(0);

 3 oo,
 5 thisIsAReallyLongFeatureNa_e658 fixed bin(31) init(0),
 5 yetAnotherReallyLongFeatur_7628 fixed bin(31) init(0),
 5 ThirdLastYetAnotherReallyL_e278 fixed bin(31) init(0);

 3 result,
 5 thisIsAReallyLongFeatureNa_e658 fixed bin(31) init(0),
 5 yetAnotherReallyLongFeatur_7628 fixed bin(31) init(0),
 5 ThirdLastYetAnotherReallyL_e278 fixed bin(31) init(0);
191

CHAPTER 7 | PL/I Migration Issues
IDL Constant Definitions Mapped to Fully
Qualified Names

Overview IDL constant definitions are mapped, in Orbix 6.2, to fully qualified data
names, because the Orbix 6.2 IDL Compiler can process any level of
scoping in IDL members (that is, multiple levels of nested modules and
interfaces). Therefore, the same constant names can be used at different
scopes, and uniqueness of data names is imperative.

This section discusses the following topics:

� IDL Output Comparison

� Migration Impact

� Sample IDL

� The Orbix 6.2 IDL Compiler Mapping for Constants

� Legacy Support

� In Summary

IDL Output Comparison Table 13 lists the differences between the Orbix 6.2 IDL Compiler and the
genpli mapping for IDL constant definitions:

Table 13: PL/I Compiler Output for IDL Constant Definitions

Orbix 6.2 IDL Compiler The genpli Utility

Global
constant at
IDL member
level

dcl 1 global_FQN_consts,

 3 localname…

dcl 1 global_TEST_consts,

 3 localname…

Global
constant at
module level

dcl 1 FQN_consts,

 3 localname…

dcl 1 modulename_module_consts,

 3 localname…

Constant at
interface level

dcl 1 FQN_consts,

 3 localname…

dcl 1 interfacename_consts,

 3 localname…
 192

IDL Constant Definitions Mapped to Fully Qualified Names
In the preceding example, FQN represents the fully qualified name for the
module or interface where the constant is defined.

Migration Impact The module keyword that is generated by genpli is not used in Orbix 6.2,
because there is support for more than one level of module. With genpli,
only one level of module is supported. .

Sample IDL Consider the following IDL member, called TEST, which defines four
constants with the same name� myconstant �at different levels:

Note: The global keyword is still used, but in the case of genpli, refers
to all constant definitions defined in the Interface Repository. In the case of
Orbix 6.2 it refers to all constants defined at global scope in the IDL
member being processed.

Note: The Interface Repository server is not required by the Orbix 6.2 IDL
Compiler when generating PL/I definitions from IDL. For further details
refer to �Interface Repository Server� on page 244.

//test.idl
const long myconstant = 1;
module m1
{
 const long myconstant = 1;
 interface fred
 {
 const long myconstant = 1;
 void myop();
 };
 module m2
 {
 interface fred
 {
 const long myconstant = 1;
 void myop();
 };
 };
};
193

CHAPTER 7 | PL/I Migration Issues
The Orbix 6.2 IDL Compiler
Mapping for Constants

The Orbix 6.2 IDL Compiler mapping for the constants results in the
following data names:

Legacy Support It is not feasible to provide full legacy support in this case. However, you
can use the -M argument with the Orbix 6.2 IDL Compiler to control the FQN
(Fully Qualified Name) shown in the preceding example. You can also use
the -O argument with the Orbix 6.2 IDL Compiler to determine the name of
the generated include member, which defaults to the IDL member name
when it is first generated.

Refer to the PL/I Programmer�s Guide and Reference for an example of how
to use the -M and -O arguments.

In Summary Affects clients and servers. Requires code changes where constants are
used.

/*--*/
/* Constants in root scope: */
/*--*/
dcl 1 global_TEST_consts ,
 3 myconstant fixed bin(31) init(1);

/*--*/
/* Constants in m1: */
/*--*/
dcl 1 m1_consts ,
 3 myconstant fixed bin(31) init(1);

/*--*/
/* Constants in m1/fred: */
/*--*/
dcl 1 m1_fred_consts ,
 3 myconstant fixed bin(31) init(1);

/*--*/
/* Constants in m1/m2/fred: */
/*--*/
dcl 1 m1_m2_fred_consts ,
 3 myconstant fixed bin(31) init(1);
 194

Typecode Name and Length Identifiers
Typecode Name and Length Identifiers

Overview This sections summarizes the different output for genpli and the Orbix 6.2
IDL Compiler for typecode and typecode length data names.

This section discusses the following topics:

� The genpli Utility Output

� Orbix 6.2 IDL Compiler Output

� Migration Impact

The genpli Utility Output The typecodes and typecode length names generated by genpli used the
names interfacename_type and interfacename_type_length. This is
not suitable for a situation where an IDL member contains multiple nested
levels of modules and interfaces, because unique data names can not be
generated in this case.

Orbix 6.2 IDL Compiler Output Because the Orbix 6.2 IDL Compiler can process any level of scoping in an
IDL member (that is, multiple levels of nested modules and interfaces), the
generated data names are of the form idlmembername_type and
idlmembername_type_length. This ensures the uniqueness of the data
names.

Migration Impact However, this has a migration impact if either of the following apply:

� IDL member names are different from the interface names they
contain.

� More than one interface is defined in an IDL member.

Refer to �IDL Member names Different from Interface Names� on page 199
for details of the migration impact.

Refer to �More than One Interface in an IDL Member� on page 201 for
details of the migration impact.
195

CHAPTER 7 | PL/I Migration Issues
Include Member names Based on the IDL
Member name

Overview Include member names in Orbix 6.2 are generated based on the IDL
member name instead of being based on the interface name, as is the case
with genpli. The reason for this change is because the Orbix 6.2 IDL
Compiler can process any level of scoping in IDL members (that is, multiple
levels of nested modules and interfaces).

This section discusses the following topics:

� The genpli Utility

� Orbix 6.2 IDL Compiler

� Sample IDL

� Problem with The genpli Utility

� Orbix 6.2 IDL Compiler Solution

� Migration Impact

The genpli Utility Include member names are generated based on the interface name with
genpli.

Orbix 6.2 IDL Compiler Include member names are generated based on the IDL member name. This
is because the Orbix 6.2 IDL Compiler can process any level of scoping in
IDL members (that is, multiple levels of nested modules and interfaces).
Therefore, because the same interface name might be defined at different
levels within the same IDL member, this renders it impossible to base
include member names on interface names.
 196

Include Member names Based on the IDL Member name
Sample IDL For example, consider the following IDL member called myidl:

Problem with The genpli Utility The genpli utility can not process correctly the preceding IDL, because it
contains more than one level of module.

If the interface name is used to generate the include member name, it
generates a set of PL/I include members for each interface defined. But
because both interfaces share the same name, which is fred in the
preceding example, the generation of one set of include members overwrites
the other.

Orbix 6.2 IDL Compiler Solution The Orbix 6.2 IDL Compiler generates PL/I include member names based on
the IDL member name, which is myidl in the preceding example. Therefore,
the definitions for all the interfaces contained within this IDL member are
produced in the myidl include members. (This is also how the IDL compiler
generates C++ and Java files.)

Migration Impact This has a migration impact if either of the following apply:

� IDL member names are different from the interface names they
contain.

� More than one interface is defined in an IDL member.

The migration impact for each of these situations is described in the
following subsections;.

//myidl
module m1
{
 interface fred
 {
 void myop();
 };
 module m2
 {
 interface fred
 {
 void myop();
 };
 };
};
197

CHAPTER 7 | PL/I Migration Issues
Note: The Typecode and typecode length data name migration issue is
very similar to the include member names based on interface and module
name issue, hence these scenarios are dealt with in only one section.
 198

Include Member names Based on the IDL Member name
IDL Member names Different from Interface Names

In This Section This section discusses the following topics:

� Sample IDL

� Generated Include Member Name Comparison Table

� Genpli Utility-Generated Include Member Names

� Orbix 6.2 IDL Compiler-Generated Include Member Names

� Migration Impact

� In Summary

Sample IDL Consider the following IDL member called GRID, which defines an interface
called fred:

Generated Include Member Name
Comparison Table

The preceding IDL member results in the following include members being
generated:

Genpli Utility-Generated Include
Member Names

In the case of the genpli utility, the generated include Member names are
based on the interface name, which is fred in the preceding example.

//grid.idl
interface fred
{
 void myop(in long mylong);
};

Table 14: PL/I Compiler Output Comparison GRID Include Member Names

The genpli Utility Orbix 6.2

FREDD GRIDD

FREDM GRIDM

FREDR GRIDL

FREDT GRIDT

FREDX GRIDX
199

CHAPTER 7 | PL/I Migration Issues
Orbix 6.2 IDL Compiler-Generated
Include Member Names

In the case of the Orbix 6.2 IDL Compiler, the generated include member
names are based on the IDL member name, which is grid in the preceding
example.

Migration Impact If your IDL member name is not the same as the interface name it contains
you can use the -O argument with the Orbix 6.2 IDL Compiler to map the
name of the generated PL/I include members (which, in Orbix 6.2, is based
by default on the IDL member name) to an alternative name if your IDL
member name is not the same as the interface names it contains. This
means you can avoid having to change the %include statements (for
example, from %include FRED to %include GRID) in your application source
code.

Refer to the PL/I Programmer�s Guide and Reference for an example of how
to use the -O argument.

In Summary Affects clients and servers. Requires minor code change or use of the
described workaround.
 200

Include Member names Based on the IDL Member name
More than One Interface in an IDL Member

In This Section This section discusses the following topics:

� The genpli Utility

� Orbix 6.2 IDL Compiler

� Sample IDL

� IDL Output Comparison

� Migration Impact

� In Summary

The genpli Utility The genpli utility generates a set of include members for each interface
definition, and bases the name for each set of include members on the
associated interface name.

Orbix 6.2 IDL Compiler The Orbix 6.2 IDL Compiler generates only one set of include members for
an IDL member, and it bases the name for that set of include members on
the IDL member name. If an IDL member contains N interfaces (where N is
greater than one), your existing application code now contains N-1
redundant %include statements.

Sample IDL For example, consider the following IDL member, called GRID, which
contains the two interfaces called grid and block:

// grid.idl
interface grid
{
 void sizeofgrid(in long mysize1, in long
 mysize2);
};

interface block
{
 void area(in long myarea);
};
201

CHAPTER 7 | PL/I Migration Issues
 IDL Output Comparison The differences in the way genpli and the Orbix 6.2 IDL Compiler process
the preceding IDL can be outlined as follows:

Migration Impact Based on the preceding example, the BLOCK include members are redundant
with the Orbix 6.2 IDL Compiler. Therefore, the %include statements
pertaining to these must be removed from the application code.

In Summary Affects clients and servers. Requires minor code change.

Table 15: PL/I Compiler Deprecated IDL Generated Members and Their
Replacements

The Orbix 6.2 IDL Compiler The genpli utility

Generates only one set of include
members that contain all the
definitions for all interfaces
contained within the IDL member.
The include member names are
based on the IDL member name.
For example:

GRIDD
GRIDL
GRIDM
GRIDT
GRIDX

Generates a set of include
members for each interface, based
on each interface name. For
example:

GRIDD, BLOCKD

GRIDR, BLOCKR

GRIDM, BLOCKM

GRIDT, BLOCKT

GRIDX, BLOCKX
 202

Reserved PL/I Keywords for Module or Interface Names
Reserved PL/I Keywords for Module or
Interface Names

Overview This section illustrates the different ways that genpli and the Orbix 6.2 IDL
Compiler treat PL/I keywords used as module or interface names.

This section discusses the following topics:

� The genpli Utility

� Orbix 6.2 IDL Compiler

� Migration Impact

� In Summary

The genpli Utility If a reserved PL/I keyword is used as an IDL interface or module name, it is
not treated as a reserved word by genpli.

Orbix 6.2 IDL Compiler If a reserved PL/I keyword is used as an IDL interface or module name, it is
treated as a reserved word by the Orbix 6.2 IDL Compiler.

Migration Impact This has a migration impact for any customers that use reserved PL/I
keywords as IDL interface or module names. If any customers are using
reserved PL/I keywords, source code changes are required to their
applications to cater for IDL- prefixed names that are generated for
identifiers in Orbix 6.2.

In Summary Affects clients and servers where module or interface names are reserved
PL/I keywords. Requires code change or use of the workaround described in
�Fully Qualified Level 1 Data Names� on page 185 to resolve this issue
down to the operation names level.

Note: The Orbix 6.2 IDL compiler supports the PL/I-reserved words
pertaining to the IBM PL/I for MVS & VM version 1.1.1 and Enterprise PL/I
compilers.
203

CHAPTER 7 | PL/I Migration Issues
Orbix PL/I Error Checking

Overview This section summarizes the different between genpli and the Orbix 6.2
IDL Compiler in regard to the CHECK_ERRORS function.

This section discusses the following topics:

� The genpli Utility

� The Orbix 6.2 IDL Compiler

� Migration Impact

� In Summary

The genpli Utility The PL/I CHECK_ERRORS function is generated by genpli for each server.

The Orbix 6.2 IDL Compiler In Orbix 6.2, the member that contains the CHECK_ERRORS function is placed
into a static member called CHKERRS.

Migration Impact It is no longer necessary to generate an IDL-dependent member for error
checking. If your implementation code contains a %include
interfacenameR; statement, you must update it to read as %include
CHKERRS; instead.

In Summary Affects clients and servers. Requires minor code change.
 204

CORBA Object Location and Binding
CORBA Object Location and Binding

Overview This section summarizes the differences between Orbix 2.3.x object location
mechanisms and Orbix 6.2 object location mechanisms.

In This Section This section discusses the following topics:

Migration Overview and Example page 206

Naming Service page 208

Object-String Conversion page 210
205

CHAPTER 7 | PL/I Migration Issues
Migration Overview and Example

In This Section This section discusses the following topics:

� Migration Impact

� Orbix 2.3.x Object Location Mechanisms

� Orbix 6.2 Object Location Mechanisms

� Orbix 2.3.x Object Location Mechanism Example

Migration Impact Calls to the OBJSET API which rely on a fabricated object reference are illegal
in Orbix 6.2. This API has been deprecated. The recommended replacement
API is STR2OBJ (as specified in the PL/I OMG specification).

Orbix 2.3.x Object Location
Mechanisms

One way to locate an object in an Orbix 2.3.x application is to use the API
OBJSET (equivalent to _bind() in C++), with a fabricated object reference
constructed from the host name and server name in an Orbix object key, and
the port information in the daemon. The daemon uses this information to
locate (and activate if requested) the correct server. The server can then use
the marker to locate the correct object.

Orbix 6.2 Object Location
Mechanisms

If the application is calling OBJSET with the fabricated object reference (the
application can still use it with an IOR or corbaloc) it must be replaced it
with one of the following object location mechanisms:

� Naming service (batch only), see �Naming Service� on page 208.

� Object-string conversion, see �Object-String Conversion� on page 210.

� Calls to OBJRIR (batch only), see the PL/I Programmer�s Guide and
Reference.

All these alternatives are based on the use of CORBA standard interoperable
object references (IORs), the difference being in where the IORs are stored
and how they are retrieved by the client application.

Note: The OBJSET API is deprecated and the recommended replacement
API is STR2OBJ as specified by the OMG PL/I specification.
 206

CORBA Object Location and Binding
Orbix 2.3.x Object Location
Mechanism Example

Example of the Orbix 2.3.x Object Location Mechanism:

object_name=’:\pluto:grid:::IR:grid ’;
call objset(object_name,obj_ref);
207

CHAPTER 7 | PL/I Migration Issues
Naming Service

Overview The Naming Service is easy to understand and use if the application�s
naming graph is not too complex. The triplet of markerName, serverName,
hostName used by the OBJSET API to locate an object, is replaced by a
simple name\ in the Naming Service.

This section discusses the following topics:

� Access to the Naming Service

� Resolving Object Names

� URL Syntax and IOR Configuration

Access to the Naming Service All applications should use the interoperable Naming Service, which
provides access to future Naming Service implementations.

Access to the Naming Service can easily be wrapped. The only potential
drawback in using the Naming Service is that it might become a single point
of failure or performance bottleneck. If you use the Naming Service only to
retrieve initial object references, these problems are unlikely to arise.

Resolving Object Names An object�s name is an abstraction of the object location � the location
details are stored in the Naming Service. Use the following steps to resolve
Object names:

URL Syntax and IOR
Configuration

The URL syntax that the interoperable Naming Service provides makes it
easier to configure IORs�and is similar to _bind() by letting you specify
host, port, and well known object key in readable format. An example of the
syntax for both types is outlined as follows.

� Stringified IOR syntax example:

Step Action

1 Call OBJRIR with NameService as its argument. An initial
reference to the Naming Service is obtained.

2 The client uses the Naming Service to resolve the names of
CORBA objects and receives object references in return.
 208

CORBA Object Location and Binding
�IOR:004301EF100...�

� URL type IOR syntax example:
�corbaloc::1.2@myhost:3075/NamingService�

With the URL syntax, corbaloc is the protocol name, the IIOP version
number is 1.2, the host name is myhost, and the port number is 3075.

Note: Orbix 6.2 requires you to register a stringified IOR against a well
known key with the Orbix 6.2 locator, which centralizes the use of
stringified IORs in a single place, and lets you widely distribute readable
URLs for clients.
209

CHAPTER 7 | PL/I Migration Issues
Object-String Conversion

In This Section This section discusses the following topics:

� Migration impact using OBJSET

� CORBA-compliant String-object Conversion Functions

Migration impact using OBJSET If the application is passing a fabricated object string (equivalent to _bind()
in C++) as its first parameter to OBJSET, this string must now be of one of
the following formats:

� a stringified interoperable object reference (IOR).

� a corbaloc formatted URL string.

� an itmfaloc formatted URL string.

Refer to the STRT2OBJ API in the PL/I Programmers Guide Reference for
more details.

CORBA-compliant String-object
Conversion Functions

The PL/I runtime offers two CORBA-compliant string-object conversion APIs:

STR2OBJ

 OBJ2STR
 210

CORBA Include Member Additions
CORBA Include Member Additions

Overview There have been several additions to the supplied CORBA include member.

This section discusses the following topics:

� Migration Impact

� Workaround

Migration Impact There is a possibility that some of the new identifiers might conflict with
those defined in you application. For a complete list of identifiers, please
refer to the supplied include members located in
orbixhlq.INCLUDE.PLINCL(CORBA).

Workaround It might be necessary to change some of your PL/I data names if they
conflict with any of the new data names added to the PL/I CORBA include
member.
211

CHAPTER 7 | PL/I Migration Issues
API Migration Issues

In This Section This section contains the following subsections:

Deprecated APIs page 213

PODSTAT in Orbix 6.2 page 214

PODEXEC and User Exception parameters page 215
 212

API Migration Issues
Deprecated APIs

Deprecated and Replacement
APIs

Table 16 provides a list of the PL/I APIs that are deprecated in Orbix
Mainframe 6.2. In some cases, an API has been replaced with another. This
is outlined, where applicable.

Refer to the PL/I Programmer�s Guide and Reference for full details of all
the PL/I APIs supported.

Table 16: Deprecated PL/I APIs and Their Replacements

Deprecated APIs Replacement APIs

OBJGET OBJ2STR

OBJGETM OBJGTID

OBJGETO Not replaced

OBJLEN Not replaced

OBJLENO Not replaced

OBJSET STR2OBJ

OBJSETM Not replaced

PODALOC MEMALOC

PODEBUG MEMDBUG

PODEXEC (3 parameters) PODEXEC (4 parameters)

PODFREE MEMFREE

PODHOST Not Replaced

PODINIT PODRUN

PODRASS PODERR

PODREGI PODREG + OBJNEW
213

CHAPTER 7 | PL/I Migration Issues
PODSTAT in Orbix 6.2

Overview The PODSTAT API is not optional in Orbix 6.2.

This section discusses the following topics:

� PODSTAT Functionality

� Orbix 2.3.x and PODSTAT

� Orbix 6.2 and PODSTAT

� Migration Impact

� Workaround

PODSTAT Functionality The PODSTAT API is used to register the POD_STATUS_INFORMATION block with
the PL/I runtime. This structure (POD_STATUS_INFORMATION) is defined in the
CORBA supplied include member and allows the runtime to report
exceptions.

Orbix 2.3.x and PODSTAT In Orbix 2.3.x, if PODSTAT is not called and the PL/I runtime encounters an
exception, the runtime doesn�t exit, but just ignores the exception.

Orbix 6.2 and PODSTAT In Orbix 6.2, this is not the case. When the Orbix 6.2 PL/I runtime
encounters an exception, and the POD_STATUS_INFORMATION block is not
registered with the runtime, that is, the PODSTAT API is not called, the
runtime exits.

Migration Impact This change only affects applications that don�t call the PODSTAT API, and
that encounter a runtime. In this situation the PL/I runtime outputs the
following message and exits completely:

Workaround To workaround this problem perform the following steps:

1. Place the PODSTAT API call in your application.

2. Recompile and run the application.

An exception has occourred but PODSTAT has not been called. Place
 the PODSTAT API call in your application, compile and rerun.
 Exiting now.
 214

API Migration Issues
PODEXEC and User Exception parameters

In This Section This section discusses the following topics:

� PODEXEC in Orbix 2.3.x

� PODEXEC in Orbix 6.2

� Migration Impact

� In Summary

PODEXEC in Orbix 2.3.x The PODEXEC function in Orbix 2.3.x takes three parameters.

PODEXEC in Orbix 6.2 The PODEXEC function in Orbix 6.2 takes four parameters instead of three.
The fourth parameter is the user exception identifier.

Migration Impact Any existing application code that calls PODEXEC must be modified to include
this extra parameter. This change has been introduced to comply with the
OMG specification for PODEXEC.

For operations which do not have user expectations, the fourth parameter is
no_user_exceptions.

For operations which can return a user exception, the fourth parameter is
addr(IFNAME_user_exceptions) where IFNAME is the first six characters of
your interface name (or the name specified by the -O argument in the IDL
compiler if it is used).

In Summary Affects PL/I clients only. Requires minor code change.
215

CHAPTER 7 | PL/I Migration Issues
Server Accessor (Z Member)

In This Section This section discusses the differences between the Orbix 2.3.x server
implementation and the Orbix 6.2 server implementation in regard to the
server accessor (Z member).

This section discusses the following topics:

� Migration Impact

� Migration Sample IDL

� Orbix 2.3.x Compiler Output

� Orbix 6.2 Compiler Output

� Contents of the DISPINIT Member

Migration Impact For Orbix 6.2 applications, the server accessor is replaced. A new include
member, DISPINIT, has been added to the server implementation (that is,
the idlmembernameI member) to replace server accessor functionality. In
Orbix 2.3.x applications, genpli generates the server accessor (that is, the
idlmembernameZ member). The Orbix 6.2 IDL compiler does not generate an
idlmembernameZ member. The idlmembernameI member is coded differently
to the Orbix 2.3.x server implementation. These differences are:

� Every Orbix 6.2 server implementation requires this definition which
must be placed after the procedure statement.:

� The Orbix 6.2 server implementation has no parameters.

� For Orbix 6.2 the operation declaration for operations has been moved
into the DISPINIT member.

DISPTCH: ENTRY;
 216

Server Accessor (Z Member)
� For Orbix 6.2 a new include statement for the include member,
DISPINIT, has been added to the server implementation. The DISPINIT
member contains the core functionality of the server accessor, that is,
the call to PODREQ and the extraction of the operation name, which is
used by the select statement in the select include member.

Migration Sample IDL Consider the following IDL, called simple,

Note: Customers who are manually editing Orbix 2.3.x server
implementations when migrating to Orbix 6.2 need to be aware of the
differences in the two implementations that are described in the preceding
four bullet points.

module Simple
{
 interface SimpleObject
 {
 void
 call_me();
 };
};
217

CHAPTER 7 | PL/I Migration Issues
Orbix 2.3.x Compiler Output Server mainline output for the simple interface, SIMPLEZ, with the Orbix
2.3.x IDL compiler (for Batch) is as follows:

Server implementation output for the simple interface, SIMPLEI, with the
Orbix 2.3.x IDL compiler (for Batch and CICS) is as follows:

SIMPLEZ: PROC;

/*The following line enables the POD to link into this procedure*/
DISPTCH: ENTRY;

dcl operation char(256) init('');
dcl operation_length fixed bin(31) init(256);

dcl SIMPLEI ext entry(char(*));

dcl addr builtin;
dcl low builtin;
dcl sysnull builtin;

%include CORBA;
%include SIMPLER;

call podreq(reqinfo);
if check_errors('podreq') ^= completion_status_yes then return;

call strget(operation_name,
 operation,
 operation_length);
if check_errors('strget') ^= completion_status_yes then return;

call SIMPLEI(operation);

END SIMPLEZ;

Note: The IMS server implementation is identical to batch and CICS
except that it includes the extra line:

%include IMSPCB;
 218

Server Accessor (Z Member)
Example 8: Server implementation output for the simple interface,
SIMPLEI generated by genpli

SIMPLEI: PROC(OPERATION);

dcl OPERATION char(*);
dcl addr builtin;
dcl low builtin;
dcl sysnull
 builtin;
%include CORBA;
%include SIMPLER;
%include SIMPLEM;
/*================ Start of global user code =================*/
/*================= End of global user code ==================*/
%include SIMPLED;
/*--*/
/* */
/* Procedures for Operations */
/* */
/*--*/
/*--*/
/* Operation : call_me */
/*--*/
proc_call_me: PROC(P_ARGS);

 dcl p_args ptr;
 dcl 1 args aligned based(p_args)
 like call_me_type;
/*============= Start of operation specific code =============*/
/*============== End of operation specific code ==============*/

end proc_call_me;

end SIMPLEI;
219

CHAPTER 7 | PL/I Migration Issues
Orbix 6.2 Compiler Output Server implementation output for the simple interface, SIMPLEI, with the
Orbix 6.2 IDL compiler (for Batch, CICS and IMS) is as follows:

Example 9: Server implementation output for the simple interface,
SIMPLEI generated by the Orbix 6.2 IDL compiler (Sheet 1 of 2)

SIMPLEI: PROC;

/*The following line enables the runtime to call this procedure */
DISPTCH: ENTRY;

dcl (addr,low,sysnull) builtin;

%include CORBA;
%include CHKERRS;
%include SIMPLEM;
%include DISPINIT;

/* ================ Start of global user code ================ */
/* ================= End of global user code ================= */
/*---*/
/* */
/* Dispatcher : select(operation) */
/* */
/*---*/
%include SIMPLED;
/*---*/
/* Interface: */
/* Simple/SimpleObject */
/* */
/* Mapped name: */
/* Simple_SimpleObject */
/* */
/* Inherits interfaces: */
/* (none) */
/*---*/
/* Operation: call_me */
/* Mapped name: call_me */
/* Arguments: None */
/* Returns: void */
/*---*/
proc_Simple_SimpleObject_c_c904: PROC(p_args);
 220

Server Accessor (Z Member)
Contents of the DISPINIT Member The contents of the DISPINIT Member are:

dcl p_args ptr;
dcl 1 args aligned based(p_args)
 like Simple_SimpleObject_c_ba77_type;

/* ============ Start of operation specific code ============= */

/* ============ End of operation specific code =============== */

END proc_Simple_SimpleObject_c_c904;

END SIMPLEI;

Example 9: Server implementation output for the simple interface,
SIMPLEI generated by the Orbix 6.2 IDL compiler (Sheet 2 of 2)

Example 10: The contents of the DISPINIT Member

/**/
/*Copyright 2002 IONA Technologies PLC. All Rights Reserved. */
/* */
/* Member : DISPINIT */
/* Purpose : Retrieve the current server request and operation. */
/**/
/**/
/* reqinfo is used to store information about the current request*/
/**/
dcl 1 reqinfo,
 3 interface_name ptr init(sysnull()),
 3 operation_name ptr init(sysnull()),
 3 principal ptr init(sysnull()),
 3 target ptr init(sysnull());

dcl operation char(256);
dcl operation_length fixed bin(31) init(256);

call podreq(reqinfo);
if check_errors('podreq') ^= completion_status_yes then return;

call strget(operation_name,
 operation,
 operation_length);
if check_errors('strget') ^= completion_status_yes then return;
221

CHAPTER 7 | PL/I Migration Issues
PL/I IMS Server Migration Issues

Overview This section describes the source code changes required when migrating
PL/I IMS Orbix 2.3.x servers to PL/I IMS Orbix 6.2 servers.

In This Section This section discusses the following topics:

Note: This section must be read in conjunction with the other PL/I
migration issues outlined in this document.

Server Mainline Module page 223

Access to the Program Communication Block page 228
 222

PL/I IMS Server Migration Issues
Server Mainline Module

Overview In Orbix 2.3.x for IMS, a combined server mainline and accessor is
generated for all IMS PL/I server programs, as well as an optional server
implementation. In Orbix 6.2, by contrast, a server mainline (required) and
an optional combined server accessor and implementation is generated.

This section discusses the following topics:

� Migration Impact

� Migration Sample IDL

� Orbix 2.3.x Compiler Output

� Orbix 6.2 IDL Compiler Output

Migration Impact The migration impact is that every Orbix 2.3.x IMS PL/I server mainline
must be regenerated using the Orbix 6.2 IDL compiler. Refer to the PL/I
Programmer�s Guide and Reference for more details of compiler arguments.

Migration Sample IDL Consider the following IDL, called simple,

module Simple
{
 interface SimpleObject
 {
 void
 call_me();
 };
};
223

CHAPTER 7 | PL/I Migration Issues
Orbix 2.3.x Compiler Output Server mainline output for the simple interface, SIMPLEZ, with the Orbix
2.3.x IDL compiler is as follows:

Example 11:Server Mainline Output for the Simple Interface, SIMPLEZ
(Sheet 1 of 2)

SIMPLEZ: PROC OPTIONS(MAIN,NOEXECOPS);

/*The following line enables the POD to link to this procedure*/

DISPTCH: ENTRY;

dcl operation char(256) init('');
dcl operation_length fixed bin(31) init(256);
dcl emptyQ bit(1) init('0'B);

dcl SIMPLEI ext entry(char(*));

dcl addr builtin;
dcl low builtin;
dcl sysnull builtin;

%include CORBA;
%include SIMPLER;

dcl ws_interface char(256);
dcl ws_interface_len fixed bin(31) init(256);

alloc pod_status_information set(pod_status_ptr);

call podstat(pod_status_ptr);
if check_errors('podstat') ^= completion_status_yes then return;

do while (^emptyQ);
 call podreq(reqinfo);
 if check_errors('podreq') ^= completion_status_yes then return;

 call strget(interface_name,ws_interface,ws_interface_len);
 if check_errors('strget') ^= completion_status_yes then return;

 call strget(operation_name,
 operation,
 operation_length);
 if check_errors('strget') ^= completion_status_yes then return;
 224

PL/I IMS Server Migration Issues
Orbix 6.2 IDL Compiler Output The compiler output for the Orbix 6.2 IDL compiler produces one module for
the simple interface: a server mainline, SIMPLEV. If the -S argument is
supplied, a skeleton server implementation module, SIMPLEI, is also
generated.

By default, the Orbix 6.2 IDL compiler generates an io_pcb_ptr and an
alt_pcb_ptr parameter, and then the number of additional pcb pointers
specified on the command line. To aid migration of Orbix 2.3 PL/I server
code to Orbix 6.2, you can specify the -TIMSG option with the Orbix IDL
compiler, to prevent the generation of io_pcb_ptr and alt_pcb_ptr
identifiers.

select(ws_interface);
 when('Simple/SimpleObject') call SIMPLEI(operation);
 otherwise emptyQ='1'B; /* multi-tran test for IMS status QC*/
 end;
 end;

free pod_status_information;
END SIMPLEZ;

Example 11:Server Mainline Output for the Simple Interface, SIMPLEZ
(Sheet 2 of 2)

Example 12: The Server Mainline, SIMPLEV, for the simple interface
(Sheet 1 of 2)

SIMPLEV: PROC(IO_PCB_PTR,ALT_PCB_PTR) OPTIONS(MAIN NOEXECOPS);

dcl (io_pcb_ptr,alt_pcb_ptr) ptr;

dcl arg_list char(01) init('');
dcl arg_list_len fixed bin(31) init(0);
dcl orb_name char(10) init('simple_orb');
dcl orb_name_len fixed bin(31) init(10);
dcl srv_name char(256) var;
dcl server_name char(07) init('simple ');
dcl server_name_len fixed bin(31) init(6);

dcl Simple_SimpleObject_objid char(27)
init('Simple/SimpleObject_object ');

dcl Simple_SimpleObject_obj ptr;
dcl (addr,length,low,sysnull) builtin;
225

CHAPTER 7 | PL/I Migration Issues
The server implementation, SIMPLEI, for the simple interface is as follows:

%include CORBA;
%include CHKERRS;
%include IMSPCB;
%include SIMPLET;
%include SIMPLEX;
pcblist.io_pcb_ptr = io_pcb_ptr;
pcblist.alt_pcb_ptr = alt_pcb_ptr;

pcblist.num_db_pcbs = 0;
alloc pod_status_information set(pod_status_ptr);

call podstat(pod_status_ptr);
if check_errors('podstat') ^= completion_status_yes then return;

/* Initialize the server connection to the ORB */
call orbargs(arg_list,arg_list_len,orb_name,orb_name_len);
if check_errors('orbargs') ^= completion_status_yes then return;

call podsrvr(server_name,server_name_len);
if check_errors('podsrvr') ^= completion_status_yes then return;

/* Register interface : Simple/SimpleObject */
call podreg(addr(Simple_SimpleObject_interface));
if check_errors('podreg') ^= completion_status_yes then return;

call objnew(server_name,
 Simple_SimpleObject_intf,
 Simple_SimpleObject_objid,
 Simple_SimpleObject_obj);
if check_errors('objnew') ^= completion_status_yes then return;
/* Server is now ready to accept requests */
call podrun;
if check_errors('podrun') ^= completion_status_yes then return;
call objrel(Simple_SimpleObject_obj);
if check_errors('objrel') ^= completion_status_yes then return;

free pod_status_information;

END SIMPLEV;

Example 12:The Server Mainline, SIMPLEV, for the simple interface
(Sheet 2 of 2)
 226

PL/I IMS Server Migration Issues
Example 13: The Server Implementation, SIMPLEI, for the simple Interface

SIMPLEI: PROC;
/*The following line enables the runtime to call this procedure*/
DISPTCH: ENTRY;

dcl (addr,low,sysnull) builtin;
%include CORBA;
%include CHKERRS;
%include IMSPCB;
%include SIMPLEM;
%include DISPINIT;

/* =============== Start of global user code ==================*/
/* ================ End of global user code ===================*/
/*--*/
/* Dispatcher : select(operation) */
/*--*/
%include SIMPLED;
/*--*/
/* Interface: */
/* Simple/SimpleObject */
/* */
/* Mapped name: */
/* Simple_SimpleObject */
/* */
/* Inherits interfaces: */
/* (none) */
/*--*/
/* Operation: call_me */
/* Mapped name: call_me */
/* Arguments: None */
/* Returns: void */
/*--*/
proc_Simple_SimpleObject_c_c904: PROC(p_args);

dcl p_args ptr;
dcl 1 args aligned based(p_args)
 like Simple_SimpleObject_c_ba77_type;

/* =========== Start of operation specific code ============= */
/* ============ End of operation specific code ============== */

END proc_Simple_SimpleObject_c_c904;

END SIMPLEI;
227

CHAPTER 7 | PL/I Migration Issues
Access to the Program Communication Block

In This Section This section discusses the following topics:

� Server Implementation Code

� Server Mainline Code

� The Format of IMSPCB

Server Implementation Code Orbix 6.2 IDL compiler output server implementation code has access to the
program communication block through the static structures stored in
IMSPCB.

Server Mainline Code Orbix 6.2 IDL compiler output server mainline code allows access to the
program communication block by setting the addresses of the PCB pointers
to the structure pcblist, declared in IMSPCB. The number of database
pointers is also set.

The Format of IMSPCB IMSPCB has the format:

Note: The server implementation to access program communication
block data must have an include statement for IMSPCB added if the
:-S:-TIMS options are not used to generate the server implementation,
that is, if the server implementation migration changes are coded
manually.
 228

PL/I IMS Server Migration Issues
/**/
/* The PCBLIST allows access to the PCB pointers from anywhere*/
/* within the PL/I IMS server code */
/**/
DCL 1 PCBLIST STATIC EXT,
 3 IO_PCB_PTR PTR INIT(SYSNULL()),
 3 ALT_PCB_PTR PTR INIT(SYSNULL()),
 3 PCB_PTR(64) PTR INIT((64)SYSNULL()),
 3 NUM_DB_PCBS FIXED BIN(31) INIT(0);

DCL 1 IO_PCB BASED(PCBLIST.IO_PCB_PTR),
 3 LTERM CHAR(08),
 3 FILLER CHAR(02),
 3 STATUS_CODE CHAR(02),
 3 MSG_DATE FIXED DEC(7,0),
 3 MSG_TIME FIXED DEC(7,0),
 3 MSG_SEQ_NO FIXED BIN(31),
 3 MOD_NAME CHAR(08),
 3 USERID CHAR(08),
 3 GROUP_NAME CHAR(08);

DCL 1 ALT_PCB BASED(PCBLIST.ALT_PCB_PTR),
 3 LTERM CHAR(08),
 3 FILLER CHAR(02),
 3 STATUS_CODE CHAR(02);
229

CHAPTER 7 | PL/I Migration Issues
PL/I IMS Client Migration issues

Overview This section describes the source code changes required when migrating
PL/I IMS Orbix 2.3.x clients to PL/I IMS Orbix 6.2 clients.

In This Section This section discusses the following topics:

Note: This section must be read in conjunction with the other PL/I
migration issues outlined in this document.

Note: The DISPTCH reference must be removed from client code and
replaced with the line %client_only=’yes’;. Refer to �DISPTCH
Reference� on page 244 for further details.

Program Communication Block Definitions Modifications page 231

DLIDATA Include Member Modifications page 234

Error Checking Generation at Runtime for IMS Clients page 235
 230

PL/I IMS Client Migration issues
Program Communication Block Definitions Modifications

Overview Program communication block definitions in an Orbix 2.3.x client
implementation and program communication block definitions in an Orbix
6.2 client implementation are not the same.

This section discusses the following topics:

� Orbix 6.2 client implementation sample

� Orbix 2.3 client implementation sample

� Migration impact

Orbix 6.2 client implementation
sample

In Orbix 6.2, the program communication blocks are defined as:

/**/
/* The PCBLIST allows access to the PCB pointers from anywhere*/
/* within the PL/I IMS server code */
/**/
DCL 1 PCBLIST STATIC EXT,
 3 IO_PCB_PTR PTR INIT(SYSNULL()),
 3 ALT_PCB_PTR PTR INIT(SYSNULL()),
 3 PCB_PTR(64) PTR INIT((64)SYSNULL()),
 3 NUM_DB_PCBS FIXED BIN(31) INIT(0);
DCL 1 IO_PCB BASED(PCBLIST.IO_PCB_PTR),
 3 LTERM CHAR(08),
 3 FILLER CHAR(02),
 3 STATUS_CODE CHAR(02),
 3 MSG_DATE FIXED DEC(7,0),
 3 MSG_TIME FIXED DEC(7,0),
 3 MSG_SEQ_NO FIXED BIN(31),
 3 MOD_NAME CHAR(08),
 3 USERID CHAR(08),
 3 GROUP_NAME CHAR(08);
DCL 1 ALT_PCB BASED(PCBLIST.ALT_PCB_PTR),
 3 LTERM CHAR(08),
 3 FILLER CHAR(02),
 3 STATUS_CODE CHAR(02);
231

CHAPTER 7 | PL/I Migration Issues
Orbix 2.3 client implementation
sample

In Orbix 2.3.x the program communication blocks are defined as:

Migration impact Migration impact is to replace the code shown in the:

� Replace

with %include IMSPCB;

� Replace

with

� Replace

with

dcl iopcb_ptr ptr;
dcl 1 iopcb based(iopcb_ptr),
 3 lterm_name char(08),
 3 filler1 char(02),
 3 tpstatus char(02),
 3 filler2 char(20);

dcl iopcb_ptr ptr;
dcl 1 iopcb based(iopcb_ptr),
 3 lterm_name char(08),
 3 filler1 char(02),
 3 tpstatus char(02),
 3 filler2 char(20);

SIMPLEC: PROC(IOPCB_PTR) OPTIONS(MAIN, NOEXECOPS);
dcl iopcb_ptr ptr;

SIMPLEC: PROC(IO_PCB_PTR,ALT_PCB_PTR) OPTIONS(MAIN
NOEXECOPS);

dcl (io_pcb_ptr,alt_pcb_ptr) ptr;

call plitdli(three,get_unique,IOPCB_PTR,input_msg);
if tpstatus ^= '' then call write_dc_text('Segment read

failed',19);
 232

PL/I IMS Client Migration issues
%include GETUNIQ;
...
pcblist.io_pcb_ptr = io_pcb_ptr;
pcblist.alt_pcb_ptr = alt_pcb_ptr;
call get_uniq;
233

CHAPTER 7 | PL/I Migration Issues
DLIDATA Include Member Modifications

Overview This subsection describes migration for the DLIDATA include member from
Orbix 2.3.x to Orbix 6.2.

This subsection discusses the following topics:

� Orbix 2.3.x

� Orbix 6.2

� Migration impact

Orbix 2.3.x In Orbix 2.3.x, the definition dcl plitdli ext entry; is located in the
client mainline.

Orbix 6.2 In Orbix 6.2, the definition dcl plitdli ext entry; is located in the
DLIDATA include member.

Migration impact The Orbix 6.2 DLIDATA include member must be used and the definition
dcl plitdli ext entry; must be removed from the client mainline.
 234

PL/I IMS Client Migration issues
Error Checking Generation at Runtime for IMS Clients

Overview This sections summarizes the differences between an Orbix 2.3.x client and
an Orbix 6.2 client in relation to the CHECK_ERRORS function used for error
checking.

This section discusses the following topics:

� IMS clients in Orbix 2.3.x

� IMS clients in Orbix 6.2

� Migration impact

IMS clients in Orbix 2.3.x There is no member shipped for error-checking for IMS client code in Orbix
2.3.x. Customers are required to implement their own error checking
procedure.

IMS clients in Orbix 6.2 For IMS clients a static member called CHKCLIMS is shipped which contains
a CHECK_ERRORS function and is located in the orbixhlq.INCLUDE.COPYLIB in
Orbix 6.2.

Migration impact There is no migration impact, however IONA recommend you use the
CHKCLIMS member which shows the system exception encountered in a
more user-friendly format.
235

CHAPTER 7 | PL/I Migration Issues
PL/I CICS Server Migration Issues

Overview This section describes the source code changes required when migrating
PL/I CICS Orbix 2.3.x servers to PL/I CICS Orbix 6.2 servers.

In this section This section discusses the following topics:

Note: This section must be read in conjunction with the other PL/I
migration issues outlined in this document.

Server Mainline Program Requirements for CICS Servers page 237

Access to the EXEC Interface Block Data Structure page 242
 236

PL/I CICS Server Migration Issues
Server Mainline Program Requirements for CICS Servers

Overview In Orbix 2.3.x for CICS, a combined server mainline and accessor is
generated for all CICS PL/I server programs, as well as an optional server
implementation. In Orbix 6.2, in contrast, a server mainline (required) and
an optional combined server accessor and implementation is generated.

This subsection discusses the following topics:

� Migration Impact

� Migration Sample IDL

� Orbix 2.3.x Compiler Output

� Orbix 6.2 IDL Compiler Output

Migration Impact The migration impact is that every Orbix 2.3.x IMS PL/I server mainline has
to be regenerated using the Orbix 6.2 IDL compiler. Refer to the PL/I
Programmer�s Guide and Reference for more details of compiler arguments.

Also the Orbix 2.3.x server mainline for CICS contains a CICS program
pointer which is passed into the program. This pointer is not supported in
Orbix 6.2.

Migration Sample IDL Consider the following IDL, called simple,

module Simple
{
 interface SimpleObject
 {
 void
 call_me();
 };
};
237

CHAPTER 7 | PL/I Migration Issues
Orbix 2.3.x Compiler Output Server mainline output for the simple interface, SIMPLEZ, with the Orbix
2.3.x IDL compiler is as follows:

Example 14:Orbix 2.3.x Compiler Output for the simple IDL

SIMPLEZ: PROC OPTIONS(MAIN,NOEXECOPS);

/*The following line enables the POD to link to this procedure*/

DISPTCH: ENTRY;

dcl operation char(256) init('');
dcl operation_length fixed bin(31) init(256);

dcl SIMPLEI ext entry(char(*),ptr);
dcl PODCICS ext entry;

dcl addr builtin;
dcl low builtin;
dcl sysnull builtin;

%include CORBA;
%include SIMPLER;

alloc pod_status_information set(pod_status_ptr);

call podstat(pod_status_ptr);
if check_errors('podstat') ^= completion_status_yes then return;

call podreq(reqinfo);
if check_errors('podreq') ^= completion_status_yes then return;

call strget(operation_name,
 operation,
 operation_length);
if check_errors('strget') ^= completion_status_yes then return;

call SIMPLEI(operation,p_prgptr);

free pod_status_information;

END SIMPLEZ;
 238

PL/I CICS Server Migration Issues
Orbix 6.2 IDL Compiler Output The compiler output for the Orbix 6.2 IDL compiler produces a module for
the simple interface: a server mainline, SIMPLEV. If the -S argument is
supplied a combined server accessor and implementation module, SIMPLEI,
is also generated.

Example 15: The Server Mainline, SIMPLEV, for the simple interface
(Sheet 1 of 2)

SIMPLEV: PROC OPTIONS(MAIN NOEXECOPS);

dcl arg_list char(01) init('');
dcl arg_list_len fixed bin(31) init(0);
dcl orb_name char(10) init('simple_orb');
dcl orb_name_len fixed bin(31) init(10);
dcl srv_name char(256) var;
dcl server_name char(07) init('simple ');
dcl server_name_len fixed bin(31) init(6);

dcl Simple_SimpleObject_objid char(27)
 init('Simple/SimpleObject_object ');
dcl Simple_SimpleObject_obj ptr;
dcl (addr,length,low,sysnull) builtin;

%include CORBA;
%include CHKERRS;
%include SIMPLET;
%include SIMPLEX;
239

CHAPTER 7 | PL/I Migration Issues
The server accessor and implementation, SIMPLEI, is as follows:

alloc pod_status_information set(pod_status_ptr);

call podstat(pod_status_ptr);
if check_errors('podstat') ^= completion_status_yes then return;

/* Initialize the server connection to the ORB */
call orbargs(arg_list,arg_list_len,orb_name,orb_name_len);
if check_errors('orbargs') ^= completion_status_yes then return;

call podsrvr(server_name,server_name_len);
if check_errors('podsrvr') ^= completion_status_yes then return;

/* Register interface : Simple/SimpleObject */
call podreg(addr(Simple_SimpleObject_interface));
if check_errors('podreg') ^= completion_status_yes then return;

call objnew(server_name,
 Simple_SimpleObject_intf,
 Simple_SimpleObject_objid,
 Simple_SimpleObject_obj);
if check_errors('objnew') ^= completion_status_yes then return;
/* Server is now ready to accept requests */
call podrun;
if check_errors('podrun') ^= completion_status_yes then return;
call objrel(Simple_SimpleObject_obj);
if check_errors('objrel') ^= completion_status_yes then return;

free pod_status_information;

END SIMPLEV;

Example 15:The Server Mainline, SIMPLEV, for the simple interface
(Sheet 2 of 2)

Example 16:The Server Implementation, SIMPLEI, for the simple Interface
(Sheet 1 of 2)

SIMPLEI: PROC;

/*The following line enables the runtime to call this procedure*/
DISPTCH: ENTRY;

dcl (addr,low,sysnull) builtin;
 240

PL/I CICS Server Migration Issues
%include CORBA;
%include CHKERRS;
%include SIMPLEM;
%include DISPINIT

/* ============== Start of global user code ==================*/
/* ================= End of global user code =================*/

/*--*/
/* */
/* Dispatcher : select(operation) */
/* */
/*--*/
%include SIMPLED;

/*--*/
/* Interface: */
/* Simple/SimpleObject */
/* */
/* Mapped name: */
/* Simple_SimpleObject */
/* */
/* Inherits interfaces: */
/* (none) */
/*--*/
/*--*/
/* Operation: call_me */
/* Mapped name: call_me */
/* Arguments: None */
/* Returns: void */
/*--*/
proc_Simple_SimpleObject_c_c904: PROC(p_args);

dcl p_args ptr;
dcl 1 args aligned based(p_args)

likeSimple_SimpleObject_c_ba77_type;
/* ============ Start of operation specific code ============= */
/* ============= End of operation specific code ============= */

END proc_Simple_SimpleObject_c_c904;

END SIMPLEI;

Example 16: The Server Implementation, SIMPLEI, for the simple Interface
(Sheet 2 of 2)
241

CHAPTER 7 | PL/I Migration Issues
Access to the EXEC Interface Block Data Structure

Overview This subsection describes the migration impact for CICS PL/I servers whose
implementation requires access to the EXEC interface block (EIB) data
structure. It discusses the following topics:

� Migration Impact

� Required Code

Migration Impact Because Orbix 6.2 requires that all CICS PL/I servers have a server mainline,
the implementation program is now a sub-program that is entered via a
DISPTCH entry point. By default, the CICS program doe not pass along the
address of the EIB structure. Therefore, you must add some additional code
to your PL/I server implementation programs.

Required Code Add the following line of code after the DISPTCH entry point:

EXEC CICS ADDRESS EIB(DFHEIPTR);
 242

PL/I CICS Client Migration Issues
PL/I CICS Client Migration Issues

Overview This section describes the source code changes required when migrating
PL/I CICS Orbix 2.3.x clients to PL/I CICS Orbix 6.2 clients.

This section discusses the following topics:

� CICS clients in Orbix 2.3.x and error checking

� CICS clients in Orbix 6.2 and error checking

� Migration impact for error checking code

� DISPTCH reference

CICS clients in Orbix 2.3.x and
error checking

There is no member shipped for error-checking for CICS client code in Orbix
2.3.x. Customers are required to implement their own error checking
procedure.

CICS clients in Orbix 6.2 and error
checking

For CICS clients a static member called CHKCLCIC shipped which contains a
CHECK_ERRORS function and is located in the orbixhlq.INCLUDE.PLINCL in
Orbix 6.2.

Migration impact for error
checking code

There is no migration impact, however IONA recommend you use the
CHKCLCIC member which shows the system exception encountered in a
more user-friendly format.

DISPTCH reference The DISPTCH reference must be removed from client code and replaced with
the line %client_only=’yes’;. Refer to �DISPTCH Reference� on page 244
for further details.

Note: This section must be read in conjunction with the other PL/I
migration issues outlined in this document.

Note: CHKCLCIC is relevant to CICS clients only. It contains a PL/I function
that has been translated by the CICS TS 1.3 translator. This function can
be called by the client, to check if a system exception has occurred and
report it.
243

CHAPTER 7 | PL/I Migration Issues
Miscellaneous

In This Section This section duchesses the following topics:

� Interface Repository Server

� Command-Line Arguments

� DISPTCH Reference

� Inherited interfaces

� Orbix PL/I include file re-arrangement

� Generation of mapping files

Interface Repository Server In Orbix 2.3.x, genpli requires the Interface Repository (IFR) server to be
running to access the IDL source registered with the IFR server.

The Orbix 6.2 IDL Compiler accesses the IDL source directly, from the input
IDL member (data set), and therefore does not need to access the IFR.
Hence IDL members can be accessed independently (and IDL to PL/I
development can proceed) without the need for any Orbix 6.2 services to be
running.

Command-Line Arguments The command-line arguments for the Orbix 6.2 IDL Compiler are different in
some cases to the genpli arguments. However, functionality common to
both compilers can be achieved.

DISPTCH Reference Orbix 2.3.x required both clients and servers to have the label DISPTCH
defined at the start of the client program and server accessor code
(idlmembernameZ). For Orbix 6.2, you must remove this line, DISPTCH:
ENTRY, from the client code and replace it with:

%client_only=’yes’;

In Orbix 6.2 PL/I it is defined in the server implementation (the DISPTCH
label is still required by the server mainline) and can only be defined once in
a program.

The reason for making the change is that when your client program is
compiled, it then only pulls in client-specific functionality of the PL/I
runtime, resulting in smaller load module size.
 244

Miscellaneous
Inherited interfaces The IDL-PL/I generator now generates only one instance of a PL/I typedef
per IDL type. In previous releases, if a type was inherited, the PL/I generator
created a typedef for both the base class's instance of the type and also one
for each inherited type. This was unnecessary as both generated typedefs
would always be the same, apart from the name of the typedef. It also
resulted in the generation of large include files in the cases of IDL with
complex structs, for example. For programs where a pre-Orbix 6.2
generated server implementation is used and new include files need to be
generated, the -Li option has been introduced.

Orbix PL/I include file
re-arrangement

Three PL/I include members (CORBA, READIOR and SETUPCL) have been
reorganized, to decrease the number of instances where the compilation of
an Orbix PL/I program results in a return code of 4, due to the pre-processor
check for client_only. The reorganization has been designed so that there
would not be a migration hit for existing Orbix PL/I applications.
Additionally, a new include file, SETUPSV, has been added, to declare
client_only and set it to "no" in Orbix PL/I server applications. For further
details about the include members, see the Orbix PL/I Programmers Guide
and Reference.

Generation of mapping files In previous versions of the Orbix PL/I generator, if the -M option was
specified and the IDL had operation names that were identical in several
interfaces, no warning was produced if the names mapped to a non-unique
name. For example, no warning was produced if the generated mapping file
contained:

The Orbix 6.2 PL/I generator will still generate the preceding mapping file
but also outputs a warning about the generated mapping file. The generator
will also give a return code of 4, to alert the developer that two or more
operations have been mapped to the same name.

interfaceA/ping ping
interfaceB/ping ping
245

CHAPTER 7 | PL/I Migration Issues
 246

CHAPTER 8

Diagnostic Output
This chapter summarizes the differences between how
diagnostic data is output for Orbix 2.3.x and Orbix 6.2.

In this chapter This chapter discusses the following topics:

CORBA::Orbix::setDiagnostics () Availability page 248

Orbix Diagnostic Messages page 248

Orbix 6.2 Default Diagnostic Output page 248

Logging Severity Levels page 248

COBOL and PL/I page 248

Further Reading page 248
247

CHAPTER 8 | Diagnostic Output
CORBA::Orbix::setDiagnostics ()
Availability

CORBA::Orbix::setDiagnostics() is not available in Orbix 6.2, because it
is not CORBA-compliant. Instead, diagnostic output is controlled from
within the Orbix 6.2 configuration. This allows easy manipulation of
diagnostic output. In addition, the diagnostic output of each Orbix 6.2
plugin can be controlled separately, allowing for informative and selective
diagnostic output.

Orbix Diagnostic Messages The following table compares Orbix diagnostic messages to their equivalent
configuration settings in Orbix 6.2:

Orbix 6.2 Default Diagnostic
Output

By default, diagnostic output goes to standard error, but it can be directed to
a file with the local_log_stream configuration variable as follows:

plugins:local_log_stream:filename = /var/adm/Orbix2000.log

Logging Severity Levels There are four levels of logging severity within Orbix 6.2. These are:

� Informational

� Warning

� Error

� Fatal Error

COBOL and PL/I COBOL and PL/I now have the flexibility to control the diagnostic level.

Further Reading Refer to the CORBA Administrator�s Guide for further details on diagnostic
output.

Orbix Diagnostic Setting Orbix 6.2 Configuration Setting

setDiagnostics(0) No logging plug-ins loaded.

setDiagnostics(1) event_log:filters=["*=FATAL+ERROR"];

setDiagnostics(2) event_log:filters=["*=*"];

Note: setDiagnostics in the preceding example is specific to C++.

Note: The PL/I debug library is no longer shipped with Orbix 6.2.
 248

CHAPTER 9

CORBA Services
This chapter summarizes the differences in CORBA services
between Orbix 2.3.x and Orbix 6.2.

In this chapter This chapter discusses the following topics:

Naming Service page 250

Interface Repository page 251

IMS Adapter page 252

CICS Adapter page 254
249

CHAPTER 9 | CORBA Services
Naming Service

Backward compatibility The Orbix 6.2 Naming Service is backward compatible with Orbix 2.3.x in
two respects:

� Source code backward compatibility: source code that is written to
use the standard naming service interfaces can be migrated to Orbix
6.2 without modification.

� On-the-wire backward compatibility: Orbix 2.3.x applications can
interoperate with the Orbix 6.2 naming service. If you need to
interoperate Orbix 2.3.x applications, it is recommended that you
recompile the naming stub code from the Orbix 6.2 IDL files.

New interface Orbix 6.2 adds a new interface, CosNaming::NamingContextExt, which is
defined by the CORBA Interoperable Naming Service specification. This
interface adds support for using names in stringified format.

Load balancing The naming service load-balancing extensions provided in Orbix 2.3.x are
also present in Orbix 6.2. The Orbix 6.2 load-balancing interfaces are only
slightly different from Orbix 2.3.x, requiring small modifications to your
source code.
 250

Interface Repository
Interface Repository

Migration Migrating source code that uses the Interface Repository (IFR) to Orbix 6.2
is straightforward. Link the migrated application against the stub code
derived from the Orbix 6.2 version of the interface repository. No further
changes should be necessary.
251

CHAPTER 9 | CORBA Services
IMS Adapter

Overview In Orbix 2.3.x, Orbix IMS adapter functionality is controlled via a series of
command-line arguments that can be specified to the adapter at start-up. In
Orbix 6.2, Orbix IMS adapter functionality is controlled via a series of
configuration items in the adapter�s configuration domain.

This section provides a comparison table of the 2.3.x-based adapter
arguments and 6.2 adapter configuration items.

Differences in controlling
OTMA-based IMS adapter
functionality

Table 17 outlines the 2.3.x command-line arguments that correspond to the
6.2 configuration items for the purposes of controlling the functionality of
OTMA-based IMS adapters.

Table 17: Differences in Controlling OTMA-Based IMS Adapters

2.3.x Arguments 6.2 Configuration Items

-A plugins:imsa:display_timings = "yes";

-f plugins:imsa:mapping_file = " ";

-G plugins:ims_otma:xcf_group_name = "IMSG";

-X plugins:ims_otma:xcf_adapter_member_name =
"ORXIMSG";

-M plugins:ims_otma:xcf_ims_member_name =
"IMS";

-T plugins:ims_otma:xcf_tpipe_prefix = "ORX1";

-w plugins:ims_otma:timeout = "30";

-o plugins:ims_otma:output_segment_num = "2";

-l plugins:ims_otma:mq_length = "1024";

-p thread_pool:initial_threads = "8";
 252

IMS Adapter
Differences in controlling
APPC-based IMS adapter
functionality

Table 18 outlines the 2.3.x command-line arguments that correspond to the
6.2 configuration items for the purposes of controlling the functionality of
APPC-based IMS adapters.

Table 18: Differences in Controlling APPC-Based IMS Adapters

2.3.x Arguments 6.2 Configuration Items

-A plugins:imsa:display_timings = "yes";

-n plugins:ims_appc:ims_destination_name =
"ORBIXIMS";

-L plugins:ims_appc:appc_outbound_lu_name = " ";

-w plugins:ims_appc:timeout = "30";

-l plugins:ims_appc:mq_length = "1024";

-p thread_pool:initial_threads = "8";
253

CHAPTER 9 | CORBA Services
CICS Adapter

Overview In Orbix 2.3.x, Orbix CICS adapter functionality is controlled via a series of
command-line arguments that can be specified to the adapter at start-up. In
Orbix 6.2, Orbix CICS adapter functionality is controlled via a series of
configuration items in the adapter�s configuration domain.

This section provides a comparison table of the 2.3.x-based adapter
arguments and 6.2 adapter configuration items.

Differences in controlling
EXCI-based CICS adapter
functionality

Table 19 outlines the 2.3.x command-line arguments that correspond to the
6.2 configuration items for the purposes of controlling the functionality of
EXCI-based CICS adapters.

Table 19: Differences in Controlling EXCI-Based CICS Adapters

2.3.x Arguments 6.2 Configuration Items

-A plugins:cicsa:display_timings = "yes";

-f plugins:cicsa:mapping_file = " ";

-n plugins:cics_exci:applid = "CICSTS1";

-N plugins:cics_exci:pipe_name = "ORXPIPE1";

-m plugins:cics_exci:default_tran_id = "ORX1";

-l plugins:cics_exci:max_comm_area_length =
"32000";

-p thread_pool:initial_threads = "8";
 254

CICS Adapter
Differences in controlling
APPC-based CICS adapter
functionality

Table 20 outlines the 2.3.x command-line arguments that correspond to the
6.2 configuration items for the purposes of controlling the functionality of
APPC-based CICS adapters.

Table 20: Differences in Controlling APPC-Based CICS Adapters

2.3.x Arguments 6.2 Configuration Items

-A plugins:cicsa:display_timings = "yes";

-f plugins:cicsa:mapping_file = " ";

-n plugins:cics_appc:cics_destination_name =
"ORBIXCIC";

-L plugins:cics_appc:appc_outbound_lu_name =
"ORXLU02";

-w plugins:cics_appc:timeout = "6";

-l plugins:cics_appc:segment_length = "32767";

-p thread_pool:initial_threads = "8";
255

CHAPTER 9 | CORBA Services
 256

CHAPTER 10

Administrative
Tools
This chapter summarizes the differences between Orbix 2.3.x
and Orbix 6.2 administration tools.

In this chapter This chapter discusses the following topics:

Orbix 2.3.x Administration Tools page 258

Orbix 6.2 Administration Tools page 258

The itadmin Tool and z/OS page 258

z/OS UNIX System Services Single Command Line page 258

z/OS UNIX System Services Interactive Shell Mode page 258

z/OS Native page 259

Further Reading page 259
257

CHAPTER 10 | Administrative Tools
Orbix 2.3.x Administration Tools Orbix 2.3.x supplies various utilities to administer its various components.
Among these tools, for example, are putit and rmit used to administer the
implementation repository, putidl and rmidl are used to administer the
interface repository, and lsns and putns are used to administer the Naming
Service.

Orbix 6.2 Administration Tools Orbix 6.2 unifies all administrative commands under a single tool, itadmin,
that can manage all IONA services.

The itadmin Tool and z/OS The itadmin tool is used on z/OS in different ways depending on the
environment. There are three environments which dictate the way it is used.
These are:

� z/OS UNIX System Services:

♦ single command line.

♦ interactive shell mode.

� z/OS native:

♦ batch mode.

z/OS UNIX System Services Single
Command Line

On z/OS UNIX System Services the itadmin tool can be run on the
command line as in the following example:

z/OS UNIX System Services
Interactive Shell Mode

On z/OS UNIX System Services interactive shell mode, multiple itadmin
commands can be invoked within the same shell process. For example:

$ itadmin help
$ itadmin poa -help

$ itadmin
% poa list -active
% ifr show grid
% ns newnc
% exit
 258

z/OS Native On z/OS native, the itadmin tool can be run in batch by executing the IONA
supplied ORXADMIN PROC in your JCL. One or more itadmin commands can
be specified in the SYSIN DD concatenation. For example in the following
JCL excerpt:

Further Reading Refer to the CORBA Administrator�s Guide for further information about
using the itadmin tool.

//REG EXEC PROC=ORXADMIN
//SYSIN DD *
orbname create simple_orb
poa create -orbname simple_orb simple_persistent
/*
259

CHAPTER 10 | Administrative Tools
 260

CHAPTER 11

Interoperability
This chapter describes the issues relating to interoperability
when migrating from an Orbix 2.3-based IONA mainframe
solution to Orbix Mainframe 6.2.

In this chapter This chapter discusses the following topics:

Use of the Orbix Protocol page 262

GIOP Versions page 263

Launch and Invoke Rights page 265

Codeset Negotiation page 267
261

CHAPTER 11 | Interoperability
Use of the Orbix Protocol

Overview This section discusses migration from IONA�s proprietary Orbix protocol to
CORBA-compliant transport protocols.

This section discusses the following topics:

� Orbix 6.2 and Transport Protocols

� Migration Impact

Orbix 6.2 and Transport Protocols Orbix 6.2 supports only CORBA-compliant transport protocols such as IIOP.

Migration Impact If you have old (pre-Orbix 2.3.x) code that relies on the Orbix Protocol, or
code that calls CORBA::Orbix.bindUsingIIOP(0), you must change it to use
IIOP. Otherwise, the Orbix client cannot invoke on any Orbix 6.2
component.
 262

GIOP Versions
GIOP Versions

GIOP version of a connection The GIOP version used by a client-server connection is determined by the
client. When a client is about to open a connection to a CORBA object, the
client examines the version information in the object�s IOR:

� If the GIOP version in the IOR is greater than or equal to the default
GIOP version of the client, the client initiates a connection using the
client�s default GIOP version.

� Otherwise, the client initiates a connection using the GIOP version in
the IOR.

Effect of GIOP version The GIOP version of a connection is important, because some CORBA
features are not supported in early GIOP versions. Table 21 shows the
minimum GIOP version required for some CORBA features, according to the
CORBA specification.

Table 21: CORBA-Specified Minimum GIOP Versions

CORBA Feature CORBA-Specified Minimum
GIOP Version

fixed type 1.1

wchar and wstring types 1.1

codeset negotiation (Orbix 6.2 only) 1.1
263

CHAPTER 11 | Interoperability
Orbix-specific minimum GIOP
versions

Notwithstanding the CORBA-specified minimum GIOP versions, Orbix
allows some features to be used at a lower GIOP version (in some cases
requiring specific configuration variables to be set). Table 22 shows the
Orbix-specific minimum GIOP versions.

For more details on these CORBA features, see the following sections in the
Orbix 6.2 Migrating from Orbix 3.3. to Orbix 6.2 guide at
http://www.iona.com/support/docs/orbix/6.2/migrate.xml:

� "Fixed Data Type and Interoperability".

� "Use of wchar and wstring".

� "Introduction to Codeset Negotiation".

Table of default GIOP versions Table 19 shows the default GIOP versions for different Orbix clients when

opening a connection to a server.

Table 22: Orbix-Specific Minimum GIOP Versions

CORBA Feature Orbix-Specific Minimum GIOP
Version

fixed type 1.0

wchar and wstring types 1.0

codeset negotiation (Orbix 6.2 only) 1.1

Table 23: Default GIOP Version Used by Orbix Clients

Client Version Default GIOP Version

Orbix 3.0.1-82 1.0

OrbixWeb 3.2-15 1.0

Orbix 3.3 C++ Edition 1.1

Orbix 3.3 Java Edition 1.0

Orbix 6.2 1.1
 264

Launch and Invoke Rights
Launch and Invoke Rights

Overview When an Orbix 6.2 client attempts to open a connection to an Orbix 2.3.x
server you must ensure that the system is configured such that the Orbix 6.2
client has launch and invoke rights.

Role of launch and invoke rights In Orbix 2.3.x, the orbixd daemon process is responsible both for launching
servers and for redirecting client requests to servers. These two functions are
governed by launch rights and invoke rights, respectively.

Launch and invoke rights on Orbix 3.3 servers are based on the idea that
the client userID is transmitted along with request messages. The field of
the request message that contains the user ID is known as the Principal of
the invocation.

If launch and invoke rights are not configured correctly, the Orbix 6.2 client
raises a CORBA::OBJECT_NOT_EXIST system exception.

Setting launch rights The launch rights associated with an Orbix 3.3 server specify which users
are allowed to cause automatic launching of the server. Launch rights in
Orbix 3.3 are granted with the following form of chmodit:

Setting invoke rights The invoke rights associated with an Orbix 3.3 server are used to determine
which users are allowed to invoke on the server. Invoke rights are granted
using:

Orbix 6.2 and Orbix 3.3 The configuration must be altered for an Orbix 6.2 client invoking on an
Orbix 3.3 server. There are two possible approaches to fix the launch and
invoke rights:

� Alter the configuration of the Orbix 6.2 client.

� Relax the security on the orbixd daemon.

chmodit l+userID ServerName

chmodit i+userID ServerName
265

CHAPTER 11 | Interoperability
Alter the configuration of the Orbix
6.2 client

Four configuration variables must be made (or changed) in the Orbix 6.2
configuration file:

The policies:giop:interop_policy:send_locate_request option controls
whether Orbix 6.2 sends LocateRequest messages before sending initial
Request messages. This option must be set to "false" because
LocateRequest messages do not contain a Principal field.

The policies:giop:interop_policy:send_principal option controls
whether Orbix 6.2 sends Principal information containing the current user
name in GIOP 1.0 and GIOP 1.1 requests. The user name is matched
against the launch and invoke rights listed in the orbixd daemon, to
determine the permissions of the Orbix 6.2 client.

Relax the security on the orbixd
daemon

Alternatively, you can relax the security on the orbixd daemon so that all
clients have launch and invoke rights. For example, use the chmodit
command line utility to change the launch and invoke rights:

These commands give permission for any client to invoke or launch the
server ServerName. Permissions are granted even if the Principal value is left
blank in the incoming requests.

Orbix 6.2 Configuration File
policies:giop:interop_policy:send_locate_request = "false";
policies:giop:interop_policy:send_principal = "true";
policies:giop:interop_policy:enable_principal_service_context =
"true";
policies:giop:interop_policy:ignore_mesage_not_consumed =

"true";

Note: To allow Orbix 2.3.5 or higher Orbix servers interoperate with Orbix
6.2 clients, you must set the policies:giop:interop_policy:send_
locate_request configuration item to "false".

chmodit l+all ServerName

chmodit i+all ServerName
 266

Codeset Negotiation
Codeset Negotiation

Overview Codeset negotiation enables CORBA applications to agree on a common
character set for transmission of narrow and wide characters.

In this section This section discusses the following topics:

Introduction to Codeset Negotiation page 268

Configuring Codeset Negotiation page 269

Default Codesets page 270

Configuring Legacy Behavior page 273
267

CHAPTER 11 | Interoperability
Introduction to Codeset Negotiation

Overview The CORBA codeset conversion framework enables applications to ensure
that they communicate using compatible character formats for both narrow
characters, char, and wide characters, wchar.

Support for codeset negotiation Orbix 2000 (version 2.0 and later) and Orbix 6.2 support codeset
negotiation, as defined by the CORBA 2.4 specification.

Orbix 2.3.x does not support codeset negotiation.

Servers and codeset negotiation A server that supports codeset negotiation appends a list of supported
codesets (character formats) to the interoperable object references (IORs) it
generates. The codesets are placed in standard IOP::TAG_CODE_SETS
components in the IOR.

Clients and codeset negotiation A client that supports codeset negotiation examines an IOR to check the list
of codesets supported by the server. The client compares this list with its
own list of supported codesets and, if a match is found, the client chooses
the pair of transmission codesets (narrow character format and wide
character format) to use for that particular connection.

When sending a Request message, the client appends an IOP::CodeSets
service context that tells the server which codesets are used. The client
continues to include an IOP::CodeSets service context in Request messages
until the first Reply message is received from the server. Receipt of the first
server Reply message implicitly indicates that codeset negotiation is
complete. The same characters formats are used for subsequent
communication on the connection.
 268

Codeset Negotiation
Configuring Codeset Negotiation

Overview Orbix 6.2 features greatly enhanced support for internationalization and
codeset negotiation. In particular, it is now possible to specify explicitly the
codesets that a server exports in an IOR.

CORBA configuration variables Table 24 gives the configuration variables that are used to specify the
codesets for an Orbix 6.2 CORBA application.

Table 24: CORBA Codeset Configuration Variables (Orbix 6.2)

Configuration Variable Description

plugins:codeset:char:ncs = "<codeset>"; Specifies the native narrow character
codeset.

plugins:codeset:char:ccs = "<codeset1>", "<codeset2>", …]; Specifies the list of conversion narrow
character codesets supported.

plugins:codeset:wchar:ncs = "<codeset>"; Specifies the native wide character
codeset.

plugins:codeset:wchar:ccs = "<codeset1>", "<codeset2>",

…];

Specifies the list of conversion wide
character codesets supported.

plugins:codeset:always_use_default = "<boolean>"; Specifies that hardcoded default values
are used and the preceding variables are
ignored, if set in the same configuration
scope or higher.
269

CHAPTER 11 | Interoperability
Default Codesets

Overview This section describes the default codesets used by the Orbix 6.2 product.
The following default codesets are defined:

� CORBA C++ codesets for non-MVS platforms.

� CORBA C++ codesets for MVS platform.

� CORBA Java codesets for US-ASCII locale.

� CORBA Java codesets for Shift_JIS locale.

� CORBA Java codesets for EUC-JP locale.

� CORBA Java codesets for other locales.

Native and conversion codesets Native codesets are used by the application to pass char and wchar data to
the ORB.

Conversion codesets are used, where necessary, to facilitate interoperability
with other ORBs or platforms.

CORBA C++ codesets for
non-MVS platforms

Table 25 shows the default codesets for Orbix 6.2 C++ applications on
non-MVS platforms (Latin-1 locale).

In Orbix 6.2, the choice of native wide character codeset, UCS-2 or UCS-4,
is based on the size of CORBA::WChar (either 2 or 4 bytes). UCS-2 is used on
Windows. UCS-4 is used on most UNIX platforms.

Table 25: CORBA C++ Codesets (Non-MVS Platforms)

Codeset Type Codeset

Native codeset for char (NSC-C) ISO-8859-1

Conversion codesets for char (CCS-C) none

Native codeset for wchar (NCS-W) UCS-2 or UCS-4

Conversion codesets for wchar (CCS-W) UTF-16
 270

Codeset Negotiation
CORBA C++ codesets for MVS
platform

Table 26 shows the default codesets for Orbix 6.2 C++ applications on the

MVS platform.

CORBA Java codesets for
US-ASCII locale

Table 27 shows the codesets supported by Orbix 6.2 Java applications in a
US-ASCII locale.

CORBA Java codesets for
Shift_JIS locale

Table 28 shows the codesets supported by Orbix 6.2 Java applications in a
Shift_JIS locale.

Table 26: CORBA C++ Codesets (MVS Platform)

Codeset Type Codeset

Native codeset for char (NSC-C) EBCDIC

Conversion codesets for char (CCS-C) ISO-8859-1

Native codeset for wchar (NCS-W) UCS-2 or UCS-4

Conversion codesets for wchar (CCS-W) UTF-16

Table 27: CORBA Java Codesets (ISO-8859-1/Cp-1292/US-ASCII locale)

Codeset Type Codeset

Native codeset for char (NSC-C) ISO-8859-1

Conversion codesets for char (CCS-C) UTF-8

Native codeset for wchar (NCS-W) UTF-16

Conversion codesets for wchar (CCS-W) UCS-2

Table 28: CORBA Java Codesets (Shift_JIS locale)

Codeset Type Codeset

Native codeset for char (NSC-C) UTF-8

Conversion codesets for char (CCS-C) ISO-8859-1 or Shift_JIS or
euc_JP
271

CHAPTER 11 | Interoperability
CORBA Java codesets for EUC-JP
locale

Table 29 shows the codesets supported by Orbix 6.2 Java applications in
an EUC-JP locale.

CORBA Java codesets for other
locales

Table 30 shows the codesets supported by Orbix 6.2 Java applications in
other locales..

Native codeset for wchar (NCS-W) UTF-16

Conversion codesets for wchar (CCS-W) UCS-2 or Shift_JIS or euc_JP

Table 28: CORBA Java Codesets (Shift_JIS locale)

Codeset Type Codeset

Table 29: CORBA Java Codesets (EUC_JP locale)

Codeset Type Codeset

Native codeset for char (NSC-C) UTF-8

Conversion codesets for char (CCS-C) ISO-8859-1 or Shift_JIS or
euc_JP

Native codeset for wchar (NCS-W) UTF-16

Conversion codesets for wchar (CCS-W) UCS-2 or Shift_JIS or euc_JP

Table 30: CORBA Java Codesets (other locale)

Codeset Type Codeset

Native codeset for char (NSC-C) UTF-8

Conversion codesets for char (CCS-C) ISO-8859-1 or file encoding

Native codeset for wchar (NCS-W) UTF-16

Conversion codesets for wchar (CCS-W) UCS-2 or file encoding
 272

Codeset Negotiation
Configuring Legacy Behavior

Default behavior By default, the IOP::TAG_CODE_SETS tagged component is included in
generated IORs and the transmission codesets are negotiated by clients and
transmitted through an IOP::CodeSets service context. This is the
CORBA-defined behavior.

Legacy behavior Orbix 6.2 (all versions) also provides legacy behavior, to support the
scenario where wide character data is communicated between Orbix 6.2
and Orbix 3.3 Java Edition.

Disabling codeset negotiation The following configuration variable can be used to explicitly disable the
codeset negotiation mechanism:

The default is true.

This is a proprietary setting provided for interoperability with legacy
implementations, such as Orbix 3.3 Java Edition. The native codeset for
character data, ISO-8859-1 (Latin-1), is used and the overhead of full
negotiation is avoided. If wide character data is used, Orbix 6.2 reverts to
the UTF-16 transmission codeset.

Enabling wchar transmission on a
GIOP 1.0 connections

Passing wchar data over GIOP 1.0 can be enabled using the following
configuration variable:

The default is false.

The transmission of wchar data is not legal in GIOP 1.0, by default.

send_locate_request

Orbix 6.2 Configuration File
policies:giop:interop_policy:negotiate_transmission_codeset =
"false";

Orbix 6.2 Configuration File

policies:giop:interop_policy:allow_wchar_types_in_1_0 = "true";
273

CHAPTER 11 | Interoperability
 274

Part 3
Migrating from 5.1

In this part This part contains the following chapters:

Upgrading from Mainframe Edition 5.x page 277

CHAPTER 12

Upgrading from
Mainframe Edition
5.x
Migrating Orbix E2A Mainframe Edition 5.x-based
applications to Orbix Mainframe 6.2 is a simpler process than
migrating Orbix 2.3.x-based applications. Many differences
that exist between Orbix 2.3.x and Orbix 6.2 do not exist
between Orbix E2A 5.x and Orbix 6.2. Therefore, much fewer
changes are required to migrate an Orbix E2A 5.x Mainframe
Edition solution to Orbix Mainframe 6.2. This chapter outlines
the requirements for upgrading from an Orbix E2A Mainframe
Edition 5.x-based solution to Orbix Mainframe 6.2.

In this chapter This chapter discusses the following topics:

Installation Requirements page 279

Configuration Changes page 281

New Node Daemon page 289

Database Migration page 290
277

CHAPTER 12 | Upgrading from Mainframe Edition 5.x
C++ Migration page 291

COBOL Migration page 292

PL/I Migration page 293
 278

Installation Requirements
Installation Requirements

Overview This section outlines the installation requirements for migrating from an
Orbix E2A Mainframe Edition 5.x-based solution to Orbix Mainframe 6.2. It
discusses the following topics:

� Installing on native z/OS.

� Installing on UNIX System Services.

� Standard Customization Tasks.

� Other Customization Tasks.

� PDS names.

Installing on native z/OS Even though you have already installed a previous version of IONA's
mainframe product, you must perform in full the tasks described in the 6.2
version of the Mainframe Installation Guide that pertain to installing on
z/OS, because of the inherent differences between this and previous
versions.

You must perform all these installation tasks in the order in which they are
described in the Mainframe Installation Guide. Some tasks might not be
relevant to your setup, but this is highlighted where appropriate.

Installing on UNIX System
Services

If you choose to install Orbix Mainframe 6.2 on z/OS UNIX System Services
as well as on native z/OS, you must perform in full the tasks described in the
6.2 version of the Mainframe Installation Guide that pertain to installing on
z/OS UNIX System Services.

Standard Customization Tasks After successfully installing Orbix Mainframe 6.2 on z/OS (and on z/OS UNIX
System Services if you want), you must perform in full the standard
customization tasks described in the 6.2 version of the Mainframe
Installation Guide.

You must perform all these standard customization tasks in the order in
which they are described in the Mainframe Installation Guide. Some tasks
might not be relevant to your setup, but this is highlighted where
appropriate. See �Orbix Mainframe Configuration� on page 289 for
customization details relating to your Orbix Mainframe configuration file.
279

CHAPTER 12 | Upgrading from Mainframe Edition 5.x
Other Customization Tasks Depending on your setup, there are additional customization tasks that you
might also need to perform. These customization tasks relate to:

� Naming Service and Interface Repository customization.

� IMS adapter customization.

� CICS adapter customization.

If you need to perform any of these tasks, you must perform them in the
order in which they are described in the Mainframe Installation Guide.

PDS names In Orbix Mainframe 6.2, PDS naming conventions are different from those in
Orbix E2A 5.x. The differences can be summarized as follows:

Table 31: Differences in PDS Naming Conventions

5.x 6.2

COBOL CBL

JCL JCLLIB

LIB OBJLIB

LOAD LOADLIB

LPA LPALIB

PROCS PROCLIB

RUN LOADLIB
 280

Configuration Changes
Configuration Changes

Overview Orbix Mainframe 6.2 represents a major version upgrade, so Orbix 6.2
configuration is not backwards compatible with Orbix E2A 5.x configuration
domains. This means that you cannot run Orbix 6.2 programs, using an
Orbix E2A 5.x configuration file. This section outlines the changes that have
been made to Orbix configuration, with particular emphasis on the
configuration items relating to CICS and IMS integration.

This section discusses the following topics:

� Migrating Core Orbix Configuration.

� Insecure deployments.

� Secure deployments.

� Migrating Your IMS or CICS Configuration.

� IMS Server Adapter Configuration Changes.

� CICS Server Adapter Configuration Changes.

� IMS and CICS client adapter configuration changes.
281

CHAPTER 12 | Upgrading from Mainframe Edition 5.x
Migrating Core Orbix
Configuration

Many changes have been made to the core Orbix configuration infrastructure
in Orbix 6.2. These changes relate to new or modified settings for shared
library names, plug-in names, initial references, and other miscellaneous
items. Because of the extents of these changes, there is no easy way to
migrate an existing 5.x domain to the new Orbix 6.2 structure. The
deployment phase for new configuration domains has been improved,
however, to make the process more automated and to facilitate upgrades in
the future. See �Insecure deployments� and �Secure deployments� next for
more details. All feedback on the new configuration changes is welcome by
contacting support@iona.com. IONA�s aim here is that, for future releases,
customers will be able to simply replace the
HLQ.ORBIX62.CONFIG(ORXINTRL) file without having to re-configure or copy
your existing customized settings to IONA�s files.

Insecure deployments In the Orbix 6.2 release, all internal settings are now stored in
HLQ.ORBIX62.CONFIG(ORXINTRL). The old HLQ.ORBIX51.CONFIG(FILETMPL)
has now been renamed to BASETMPL in the HLQ.ORBIX62.CONFIG PDS. When
you deploy an insecure configuration, BASETMPL is copied to
HLQ.ORBIX62.DOMAINS(FILEDOMA) as in the 5.1 release. The
HLQ.ORBIX62.CONFIG(DEFAULT@) member now includes both
HLQ.ORBIX62.DOMAINS(FILEDOMA) and HLQ.ORBIX62.CONFIG(ORXINTRL). See
the Mainframe Installation Guide for more details of the customization
tasks that are required for Orbix Mainframe 6.2.

Secure deployments For a secure deployment, the process has been enhanced even further. The
HLQ.ORBIX62.CONFIG(TLSTMPL) now only contains the specific TLS settings
that you would need to use to make your system fully secure. By default,
IONA now deploys a fully secure environment instead of a semi-secure
environment. The new Security configuration also uses the concept of
reopening scopes by sitting on top of the ORXINTRL and BASETMPL files.
During the deployment process, HLQ.ORBIX62.CONFIG(BASETMPL) is copied
to the HLQ.ORBIX62.DOMAINS(TLSBASE), and HLQ.ORBIX62.CONFIG(TLSTMPL)
is copied to HLQ.ORBIX62.DOMAINS(TLSDOMA). The
HLQ.ORBIX62.CONFIG(DEFAULT@) would then include ORXINTRL, TLSBASE,
and TLSDOMA.

The DEPLOY process has also been enhanced so that you can provide the
name of your keyring ring during deployment. This is done during the
MAKECON step of the HLQ.ORBIX62.JCLLIB(DEPLOYT) job by updating the
 282

Configuration Changes
LOCAL_SSL_USER_SAF_KEYRING to the name of your keyring. The
corresponding configuration setting for this information has also been
changed from plugins:iiop_tls:racf_keyring to
plugins:systemssl_toolkit:saf_keyring.

See the Mainframe Installation Guide for more details of the customization
tasks that are required for Orbix Mainframe 6.2.

Migrating Your IMS or CICS
Configuration

Very few changes have been made to the configuration scopes that are
specific to the IMS server adapter and CICS server adapter. Therefore, most
of the customizations made in an Orbix E2A 5.x installation can be copied
directly to an Orbix 6.2 configuration. This includes configuration items
relating APPC, OTMA, XCF settings, and so on.

IMS and CICS client support has been re-designed and takes advantage of
dynamic type support offered in the CICS and IMS server adapters. The
iona_services.mfu scope has been removed and there are two new scopes:
iona_services.ims_client and iona_services.cics_client. Configuration details
are discussed below.

The default dynamic type support mechanism has been changed in Orbix
6.2 from the IFR to a file-based method. The following settings have been
updated for CICS and IMS server adapters and for client adapters:

� IMS server adapters:
plugins:imsa:repository_id = "type_info";

plugins:imsa:type_info:source = "DD:TYPEINFO";

� CICS server adapters:
plugins:cicsa:repository_id = "type_info";

plugins:cicsa:type_info:source = "DD:TYPEINFO";

� Client adapters:
plugins:client_adapter:repository_id = "type_info";

plugins:client_adapter:type_info:source = "DD:TYPEINFO";

To use this feature you will need to pass the -mfa:-inf flag to the Orbix IDL
compiler to generate type information. When you start the IMS server
adapter, you will need to update your JCL so that the DD card TYPEINFO
points to the data set where you stored your JCL All Orbix Mainframe
demonstrations are configured to use this process, so you can use any of
them as an example. Alternatively, you can change the repository_id
setting to "ifr" and remove the type_info:source setting, to continue
using the IFR.
283

CHAPTER 12 | Upgrading from Mainframe Edition 5.x
IMS Server Adapter Configuration
Changes

The IMS server adapter is configured within the iona_services.imsa scope.

The following configuration items have been modified since Orbix E2A 5.x:

The following configuration items are new in Orbix 6.2:

binding:client_binding_list In Orbix E2A 5.x, this list contained
bindings for the ESIOP_IMS interceptor.
This interceptor is not used by the IMS
server adapter in Orbix 6.2. Therefore, in
general, there is no need to specify this
variable anymore within the imsa scope.
You can use the setting from the global
scope instead.

initial_references:IT_MFA:
reference

In Orbix E2A 5.x, this reference was set in
the iona_services.imsa scope. In Orbix
6.2, this setting is now in the new
iona_utilities.imsa scope for use by
clients of the IMS server adapter (for
example, itadmin/ORXADMIN clients).

mf_subsystems This specifies the Orbix Mainframe
subsystem that is in use. In this
case, it must be set to "adapter".
This configuration item is required.
The IMS server adapter cannot
start if this item is not set to
"adapter".

plugins:imsa:imsraw_api_support This can be used to expose the
legacy, unscoped imsraw API. This
item is optional, and the default is
to expose the scoped
IT_MFA_IMS::imsraw API. Valid
values are scoped, unscoped, and
both.

plugins:ims_otma:use_sync_level_one This allows you to disable sync
level one processing in the IMS
server adapter�s communications
with IMS over OTMA. This item is
optional, and the default is to use
sync level one processing. Valid
values are "true" and "false".
 284

Configuration Changes
The following configuration item has been deprecated in Orbix 6.2:

plugins:imsa:check_security_
credentials

To illustrate integration with the
IONA Security Framework (iSF), a
sample iS2 configuration domain
is included in the TLS template
configuration. This variable is used
to instruct the IMS server adapter
to check for received credentials,
to determine the user ID to be
used for performing SAF checks.

This item should only be used in
an iS2-enabled configuration with
the use_client_principal
setting. This item is optional, and
the default is to not check security
credentials. Valid values are
"true" and "false".

plugins:portable_interceptor:
additional_dlls

This was used in Orbix E2A 5.x to
enable an existing Orbix program to load
a DLL containing a portable interceptor.
This item is no longer supported. See
the IMS Adapters Administrator�s Guide
for more details about how to add a
portable interceptor to the IMS server
adapter in Orbix 6.2.
285

CHAPTER 12 | Upgrading from Mainframe Edition 5.x
CICS Server Adapter
Configuration Changes

The CICS server adapter is configured within the iona_services.cicsa
scope.

The following configuration items have been modified since Orbix E2A 5.x:

The following configuration items are new in Orbix 6.2:

binding:client_binding_list In Orbix E2A 5.x, this list contained
bindings for the ESIOP_CICS interceptor.
This interceptor is not used by the CICS
server adapter in Orbix 6.2. Therefore, in
general, there is no need to specify this
variable anymore within the cicsa scope.
You can use the setting from the global
scope instead.

initial_references:IT_MFA:
reference

In Orbix E2A 5.x, this reference was set in
the iona_services.cicsa scope. In Orbix
6.2, this setting is now in the new
iona_utilities.cicsa scope for use by
clients of the CICS server adapter (for
example, itadmin/ORXADMIN clients).

mf_subsystems This specifies the Orbix Mainframe
subsystem that is in use. In this
case, it must be set to "adapter".
This configuration item is required.
The CICS server adapter cannot
start if this item is not set to
"adapter".

plugins:cicsa:cicsraw_api_support This can be used to expose the
legacy, unscoped cicsraw API.
This item is optional, and the
default is to expose the scoped
IT_MFA_CICS::cicsraw API. Valid
values are scoped, unscoped, and
both.
 286

Configuration Changes
The following configuration item has been deprecated in Orbix 6.2:

plugins:cics_exci:check_if_cics_
available

In Orbix E2A 5.x, the EXCI version
of the CICS server adapter
automatically attempted to contact
the CICS subsystem upon starting.
In Orbix 6.2, you can set this item
to "true" to maintain this
behavior. This item is optional,
and the default is to not have the
adapter check to see if CICS is
available upon starting. Valid
values are "true" and "false".

plugins:cicsa:check_security_
credentials

To illustrate integration with the
IONA Security Framework (iSF), a
sample iS2 configuration domain
is included in the TLS template
configuration. This variable is used
to instruct the CICS server adapter
to check for received credentials,
to determine the user ID to be
used for performing SAF checks.

This item should only be used in
an iS2-enabled configuration with
the use_client_principal
setting. This item is optional, and
the default is to not check security
credentials. Valid values are
"true" and "false".

plugins:portable_interceptor:
additional_dlls

This was used in Orbix E2A 5.x to
enable an existing Orbix program to load
a DLL containing a portable interceptor.
This item is no longer supported. See
the CICS Adapters Administrator�s
Guide for more details about how to add
a portable interceptor to the CICS server
adapter in Orbix 6.2.
287

CHAPTER 12 | Upgrading from Mainframe Edition 5.x
IMS and CICS client adapter
configuration changes

With Orbix Mainframe 6.2, the client adapter has been refactored into a
subsystem that can be loaded either as a standalone process or alongside
the CICS and IMS server adapters. By default, it is loaded as a standalone
process. This is controlled by the mf_subsystems = ["client_adapter"]
configuration item within the orbixhlq.CONFIG(ORXINTRL) configuration
file. You can choose to load the "client_adapter" subsystem alongside the
"adapter" subsystem, to have one process act as both a server adapter and
a client adapter. For more information see the CICS Adapters
Administrator�s Guide or the IMS Adapters Administrator�s Guide, or
contact support@iona.com.

Technically speaking, you could have an IMS client talk to a CICS client
adapter, or alternatively have a CICS client talk to an IMS client adapter, as
long the client adapter was configured to listen on the correct LU. The
demonstration configuration breaks them into two to provide a symmetrical
example and, as a convenience for users who might not want to have one
client adapter talking to both IMS and CICS.

Sample JCL to run the new client adapters is provided in
HLQ.ORBIX62.JCLLIB(CICSCA) and HLQ.ORBIX62.JCLLIB(IMSCA).
 288

New Node Daemon
New Node Daemon

Overview Orbix Mainframe 6.2 features a new node daemon, which has been
modified to provide more reliable monitoring of server processes. This
section outlines the various migration issues that this gives rise to. It
discusses the following topics:

� Wider deployment of node daemons.

� Incompatibility with old server binaries.

� Incompatibility of node daemon database.

Wider deployment of node
daemons

When upgrading your system to Orbix 6.2, it might be necessary to deploy a
node daemon to some hosts where, previously, none was required.

Prior to Orbix 6.0, a node daemon was required on a host only if you needed
the capability to automatically start (or restart) a CORBA server in response
to incoming invocations. Monitoring the state of a server process could be
performed by a single central node daemon, which monitored the server
through a remote connection.

With Orbix 6.2, a node daemon is required on every machine that hosts
servers with persistent POAs (a persistent POA is a POA whose
PortableServer::LifespanPolicy is set to PERSISTENT). Monitoring the state
of a server process through a local node daemon is more reliable than
monitoring by a remote node daemon.

Incompatibility with old server
binaries

Because the internal service interfaces for the locator, node daemon, and
POA have changed significantly, the new node daemon is incompatible with
old (pre-Orbix 6.0) server binaries. It is, therefore, necessary to rebuild old
application binaries before deploying them to an Orbix 6.2 configuration
domain.

Incompatibility of node daemon
database

You cannot copy an old node daemon database (usually located in
ASPInstallDir/var/DomainName/dbs/node_daemon) to a new Orbix 6.2
node daemon database, because the node daemon database schema has
changed significantly in Orbix 6.2.
289

CHAPTER 12 | Upgrading from Mainframe Edition 5.x
Database Migration

Migration impact You cannot copy Orbix E2A 5.1 database files to a new Orbix 6.2 database
structure, because the database schemas have changed significantly. As a
result, you must re-deploy your applications and re-register any named keys,
naming service entries, and IFR entries accordingly.
 290

C++ Migration
C++ Migration

C++ runtime support Orbix Mainframe 6.2 supports the IBM z/OS V1.4 ANSI C++ compiler, the
z/OS 1.5 ANSI C++ compiler, and the z/OS 1.6 ANSI C++ compiler.
Because IBM no longer supports the OS/390 V2R10 compiler, IONA has
also removed support and certification for this compiler in this release.

Environment targets Orbix Mainframe 6.2 supplies a C++ options file in
HLQ.ORBIX62.CONFIG(ORXCPPO) that includes the "TARGET" compiler option
of "ZOSV1R2". The "TARGET" compiler option enables the development of
applications on higher release levels of z/OS for subsequent use on platforms
that are running lower release levels of z/OS or OS/390. You can update the
ORXCPPO member with "ZOSV1R4", "ZOSV1R5" or "ZOSV1R6", as appropriate.
Alternatively, you can remove the "TARGET" option from the ORXCPPO
member. This means that it uses the "CURRENT" option by default, which
corresponds to the z/OS release on which your system is running. For more
information see the IBM publication: C/C++ User�s Guide.

Compiler options Orbix 6.2 uses the Run Time Type Identification (RTTI) z/OS compiler
option. This allows you to take advantage of C++ dynamic casting. In
previous releases of Orbix, this option was not used because the OS/390
V2R10 compiler did not support it.

Migrating your C++ applications Orbix Mainframe 6.2 is not binary compatible with Orbix Mainframe 5.1.
You must therefore rebuild your C++ applications when migrating to Orbix
Mainframe 6.2. To do this you must do the following:

1. The IDL configuration file in HLQ.ORBIX62.CONFIG(IDL) no longer
includes the "-xRTII" option on the PresetOptions. If you are using a
local copy of this file, ensure that you make the appopriate updates.

2. Update your compiler options to use RTTI. The
HLQ.ORBIX62.PROCLIB(ORXCPPO) file contains this option by default.
You may use it as an example.

3. Regenerate your IDL stub code and recompile your application.
291

CHAPTER 12 | Upgrading from Mainframe Edition 5.x
COBOL Migration

Migration of applications It is not necessary to fully rebuild your COBOL applications, to migrate them
from Orbix E2A Mainframe Edition 5.x to Orbix Mainframe 6.2. To migrate
your COBOL applications:

1. Re-link your applications with the Orbix 6.2 libraries. You do not need
to recompile them.

2. Update any JCL that you have stored in non-IONA libraries, to ensure
that your applications subsequently compile and link correctly with
Orbix Mainframe 6.2.

Generation of mapping files In previous versions of the Orbix COBOL generator, if the -M option was
specified and the IDL had operation names that were identical in several
interfaces, no warning was produced if the names mapped to a non-unique
name. For example, no warning was produced if the generated mapping file
contained:

The Orbix 6.2 COBOL generator will still generate the preceding mapping
file but also outputs a warning about the generated mapping file. The
generator will also produce a return code of 4, to alert the developer that two
or more operations have been mapped to the same name.

interfaceA/ping ping
interfaceB/ping ping
 292

PL/I Migration
PL/I Migration

Migration of applications It is not necessary to fully rebuild your PL/I applications, to migrate them
from Orbix E2A Mainframe Edition 5.x to Orbix Mainframe 6.2. To migrate
your PL/I applications:

1. Re-link your applications with the Orbix 6.2 libraries. You do not need
to recompile them.

2. Update any JCL that you have stored in non-IONA libraries, to ensure
that your applications subsequently compile and link correctly with
Orbix Mainframe 6.2.

Inherited interfaces The IDL-PL/I generator now generates only one instance of a PL/I typedef
per IDL type. In previous releases, if a type was inherited, the PL/I generator
created a typedef for both the base class's instance of the type and also one
for each inherited type. This was unnecessary as both generated typedefs
would always be the same, apart from the name of the typedef. It also
resulted in the generation of large include files in the cases of IDL with
complex structs, for example. For programs where a pre-Orbix 6.2
generated server implementation is used and new include files need to be
generated, the -Li option has been introduced.

Orbix PL/I include file
re-arrangement

Three PL/I include members (CORBA, READIOR and SETUPCL) have been
reorganized, to decrease the number of instances where the compilation of
an Orbix PL/I program results in a return code of 4, due to the pre-processor
check for client_only. The reorganization has been designed so that there
would not be a migration hit for existing Orbix PL/I applications.
Additionally, a new include file, SETUPSV, has been added, to declare
client_only and set it to "no" in Orbix PL/I server applications. For further
details about the include members, see the Orbix PL/I Programmers Guide
and Reference.
293

CHAPTER 12 | Upgrading from Mainframe Edition 5.x
Generation of mapping files In previous versions of the Orbix PL/I generator, if the -M option was
specified and the IDL had operation names that were identical in several
interfaces, no warning was produced if the names mapped to a non-unique
name. For example, no warning was produced if the generated mapping file
contained:

The Orbix 6.2 PL/I generator will still generate the preceding mapping file
but also outputs a warning about the generated mapping file. The generator
will also produce a return code of 4, to alert the developer that two or more
operations have been mapped to the same name.

interfaceA/ping ping
interfaceB/ping ping
 294

Part 4
Migrating from 6.0

In this part This part contains the following chapters:

Upgrading from Orbix Mainframe 6.0 page 299

CHAPTER 13

Upgrading from
Orbix Mainframe
6.0
Migrating Orbix 6.0 applications to Orbix Mainframe 6.2 is a
simpler process than migrating Orbix 2.3.x-based
applications. Many differences that exist between Orbix 2.3.x
and Orbix 6.2 do not exist between Orbix 6.0 and Orbix 6.2.
Therefore, much fewer changes are required to migrate an
Orbix Mainframe 6.0 solution to Orbix Mainframe 6.2. This
chapter outlines the requirements for upgrading from Orbix
Mainframe 6.0 to Orbix Mainframe 6.2.

In this chapter This chapter discusses the following topics:

Installation Requirements page 301

Configuration Changes page 303

Database Migration page 308

C++ Migration page 309

COBOL Migration page 311
299

CHAPTER 13 | Upgrading from Orbix Mainframe 6.0
PL/I Migration page 312

JCL Updates page 314
 300

Installation Requirements
Installation Requirements

Overview This section outlines the installation requirements for migrating from an
Orbix Mainframe 6.0 solution to Orbix Mainframe 6.2. It discusses the
following topics:

� Installing on native z/OS.

� Installing on UNIX System Services.

� Standard Customization Tasks.

� Other Customization Tasks.

� PDS names.

Installing on native z/OS Even though you have already installed a previous version of IONA's
mainframe product, you must perform in full the tasks described in the 6.2
version of the Mainframe Installation Guide that pertain to installing on
z/OS, because of the inherent differences between this and previous
versions.

You must perform all these installation tasks in the order in which they are
described in the Mainframe Installation Guide. Some tasks might not be
relevant to your setup, but this is highlighted where appropriate.

Installing on UNIX System
Services

If you choose to install Orbix Mainframe 6.2 on z/OS UNIX System Services
as well as on native z/OS, you must perform in full the tasks described in the
6.2 version of the Mainframe Installation Guide that pertain to installing on
z/OS UNIX System Services.

Standard Customization Tasks After successfully installing Orbix Mainframe 6.2 on z/OS (and on z/OS UNIX
System Services if you want), you must perform in full the standard
customization tasks described in the 6.2 version of the Mainframe
Installation Guide.

You must perform all these standard customization tasks in the order in
which they are described in the Mainframe Installation Guide. Some tasks
might not be relevant to your setup, but this is highlighted where
appropriate. See �Orbix Mainframe Configuration� on page 289 for
customization details relating to your Orbix Mainframe configuration file.
301

CHAPTER 13 | Upgrading from Orbix Mainframe 6.0
Other Customization Tasks Depending on your setup, there are additional customization tasks that you
might also need to perform. These customization tasks relate to:

� Naming Service and Interface Repository customization.

� IMS adapter customization.

� CICS adapter customization.

If you need to perform any of these tasks, you must perform them in the
order in which they are described in the 6.2 version of the Mainframe
Installation Guide.

PDS names In Orbix Mainframe 6.2, PDS naming conventions are different from those in
Orbix Mainframe 6.0. The differences can be summarized as follows:

Table 32: Differences in PDS Naming Conventions

6.0 6.2

COBOL CBL

JCL JCLLIB

LIB OBJLIB

LOAD LOADLIB

LPA LPALIB

PROCS PROCLIB

RUN LOADLIB
 302

Configuration Changes
Configuration Changes

Overview Orbix Mainframe 6.2 represents a minor version upgrade, so binary
compatibility has been maintained with the Orbix Mainframe 6.0 release.
Although this is a minor version upgrade, there have been many changes to
the configuration files which are not backwards compatible with Orbix 6.0.
This means that you cannot run Orbix 6.2 programs, using an Orbix 6.0
configuration file. The changes made to the Orbix 6.2 configuration files
have been designed to facilitate future migrations. This section outlines the
changes that have been made to Orbix 6.2 configuration.

This section discusses the following topics:

� Migrating Core Orbix Configuration.

� Insecure deployments.

� Secure deployments.

� Migrating Your IMS or CICS Configuration.

� IMS Server Adapter Configuration Changes.

� CICS Server Adapter Configuration Changes.

� IMS and CICS client adapter configuration changes.
303

CHAPTER 13 | Upgrading from Orbix Mainframe 6.0
Migrating Core Orbix
Configuration

Many changes have been made to the core Orbix configuration infrastructure
in Orbix 6.2. These changes relate to new or modified settings for shared
library names, plug-in names, initial references, and other miscellaneous
items. Because of the extents of these changes, there is no easy way to
migrate an existing 6.0 domain to the new Orbix 6.2 structure. The
deployment phase for new configuration domains has been improved,
however, to make the process more automated and to facilitate upgrades in
the future. See �Insecure deployments� and �Secure deployments� next for
more details. All feedback on the new configuration changes is welcome by
contacting support@iona.com. IONA�s aim here is that, for future releases,
customers will be able to simply replace the
HLQ.ORBIX62.CONFIG(ORXINTRL) file without having to re-configure or copy
your existing customized settings to IONA�s files.

Insecure deployments In the Orbix 6.2 release, all internal settings are now stored in
HLQ.ORBIX62.CONFIG(ORXINTRL). The old HLQ.ORBIX60.CONFIG(FILETMPL)
has now been renamed to BASETMPL in the HLQ.ORBIX62.CONFIG PDS. When
you deploy an insecure configuration, BASETMPL is copied to
HLQ.ORBIX62.DOMAINS(FILEDOMA) as in the 6.0 release. The
HLQ.ORBIX62.CONFIG(DEFAULT@) member now includes both
HLQ.ORBIX62.DOMAINS(FILEDOMA) and HLQ.ORBIX62.CONFIG(ORXINTRL). See
the Mainframe Installation Guide for more details of the customization
tasks that are required for Orbix Mainframe 6.2.

Secure deployments For a secure deployment, the process has been enhanced even further. The
HLQ.ORBIX62.CONFIG(TLSTMPL) now only contains the specific TLS settings
that you would need to use to make your system fully secure. By default,
IONA now deploys a fully secure environment instead of a semi-secure
environment. The new Security configuration also uses the concept of
reopening scopes by sitting on top of the ORXINTRL and BASETMPL files.
During the deployment process, HLQ.ORBIX62.CONFIG(BASETMPL) is copied
to the HLQ.ORBIX62.DOMAINS(TLSBASE), and HLQ.ORBIX62.CONFIG(TLSTMPL)
is copied to HLQ.ORBIX62.DOMAINS(TLSDOMA). The
HLQ.ORBIX62.CONFIG(DEFAULT@) would then include ORXINTRL, TLSBASE,
and TLSDOMA.

The DEPLOY process has also been enhanced so that you can provide the
name of your keyring ring during deployment. This is done during the
MAKECON step of the HLQ.ORBIX62.JCLLIB(DEPLOYT) job by updating the
 304

Configuration Changes
LOCAL_SSL_USER_SAF_KEYRING to the name of your keyring. The
corresponding configuration setting for this information has also been
changed from plugins:iiop_tls:racf_keyring to
plugins:systemssl_toolkit:saf_keyring.

See the Mainframe Installation Guide for more details of the customization
tasks that are required for Orbix Mainframe 6.2.

Migrating Your IMS or CICS
Configuration

Very few changes have been made to the configuration scopes that are
specific to the IMS server adapter and CICS server adapter. Therefore, most
of the customizations made in an Orbix 6.0 installation can be copied
directly to an Orbix 6.2 configuration. This includes configuration items
relating APPC, OTMA, XCF settings, and so on.

IMS and CICS client support has been re-designed and takes advantage of
dynamic type support offered in the CICS and IMS server adapters. The
iona_services.mfu scope has been removed and there are two new scopes:
iona_services.ims_client and iona_services.cics_client. Configuration details
are discussed below.

The default dynamic type support mechanism has been changed in Orbix
6.2 from the IFR to a file-based method. The following settings have been
updated for CICS and IMS server adapters and for client adapters:

� IMS server adapters:
plugins:imsa:repository_id = "type_info";

plugins:imsa:type_info:source = "DD:TYPEINFO";

� CICS server adapters:
plugins:cicsa:repository_id = "type_info";

plugins:cicsa:type_info:source = "DD:TYPEINFO";

� Client adapters:
plugins:client_adapter:repository_id = "type_info";

plugins:client_adapter:type_info:source = "DD:TYPEINFO";

To use this feature you will need to pass the -mfa:-inf flag to the Orbix IDL
compiler to generate type information. When you start the IMS server
adapter, you will need to update your JCL so that the DD card TYPEINFO
points to the data set where you stored your JCL All Orbix Mainframe
demonstrations are configured to use this process, so you can use any of
them as an example. Alternatively, you can change the repository_id
setting to "ifr" and remove the type_info:source setting, to continue
using the IFR.
305

CHAPTER 13 | Upgrading from Orbix Mainframe 6.0
IMS Server Adapter Configuration
Changes

No new configuration items have been introduced or modified for IMS since
version 6.0. The following configuration item has been deprecated in Orbix
6.2:

CICS Server Adapter
Configuration Changes

No new configuration items have been introduced or modified for CICS since
version 6.0. The following configuration item has been deprecated in Orbix
6.2:

plugins:portable_interceptor:
additional_dlls

This was used in Orbix 6.0 to enable an
existing Orbix program to load a DLL
containing a portable interceptor. This
item is no longer supported. See the
IMS Adapters Administrator�s Guide for
more details about how to add a
portable interceptor to the IMS server
adapter in Orbix 6.2.

plugins:portable_interceptor:
additional_dlls

This was used in Orbix 6.0 to enable an
existing Orbix program to load a DLL
containing a portable interceptor. This
item is no longer supported. See the
CICS Adapters Administrator�s Guide for
more details about how to add a
portable interceptor to the CICS server
adapter in Orbix 6.2.
 306

Configuration Changes
IMS and CICS client adapter
configuration changes

With Orbix Mainframe 6.2, the client adapter has been refactored into a
subsystem that can be loaded either as a standalone process or alongside
the CICS and IMS server adapters. By default, it is loaded as a standalone
process. This is controlled by the mf_subsystems = ["client_adapter"]
configuration item within the orbixhlq.CONFIG(ORXINTRL) configuration
file. You can choose to load the "client_adapter" subsystem alongside the
"adapter" subsystem, to have one process act as both a server adapter and
a client adapter. For more information see the CICS Adapters
Administrator�s Guide or the IMS Adapters Administrator�s Guide, or
contact support@iona.com.

Technically speaking, you could have an IMS client talk to a CICS client
adapter, or alternatively have a CICS client talk to an IMS client adapter, as
long the client adapter was configured to listen on the correct LU. The
demonstration configuration breaks them into two to provide a symmetrical
example and, as a convenience for users who might not want to have one
client adapter talking to both IMS and CICS.

Sample JCL to run the new client adapters is provided in
HLQ.ORBIX62.JCLLIB(CICSCA) and HLQ.ORBIX62.JCLLIB(IMSCA).
307

CHAPTER 13 | Upgrading from Orbix Mainframe 6.0
Database Migration

Migration impact In Orbix 6.0, when you deployed your locator and node daemon, several
databases were automatically created on z/OS UNIX System Services with
the following naming conventions:

� %{LOCAL_HFS_ROOT]/filedomain/dbs/locator

� %{LOCAL_HFS_ROOT}/filedomain/dbs/locator_priv

� %{LOCAL_HFS_ROOT}/filedomain/dbs/node_daemon

If you also deployed an IFR and a Naming Service, the following were also
created:

� %{LOCAL_HFS_ROOT]/filedomain/dbs/ifr

� %{LOCAL_HFS_ROOT}/filedomain/dbs/naming

These directory paths contain the database files corresponding to the
relevant service. On upgrading to Orbix 6.2, you can choose to either copy
these files or use them directly by using the same LOCAL_HFS_ROOT in 6.2
that you also used in 6.0. There have been some database schema changes
made internally in Orbix 6.2. Once Orbix 6.2 uses your Orbix 6.0 files for
the first time, Orbix 6.0 cannot use those files again. If you need to run
Orbix 6.0 and Orbix 6.2 in parallel, copy the files by copying
%{LOCAL_HFS_ROOT]/filedomain/dbs and all of its sub-components to a
new location, and then update the LOCAL_HFS_ROOT in Orbix 6.2
accordingly. If you are migrating directly to Orbix 6.2, IONA recommends
that you make a backup copy of your files before you begin.
 308

C++ Migration
C++ Migration

C++ runtime support Orbix Mainframe 6.2 supports the IBM z/OS V1.4 ANSI C++ compiler, the
z/OS 1.5 ANSI C++ compiler, and the z/OS 1.6 ANSI C++ compiler.
Because IBM no longer supports the OS/390 V2R10 compiler, IONA has
also removed support and certification for this compiler in this release.

Environment targets Orbix Mainframe 6.2 supplies a C++ options file in
HLQ.ORBIX62.CONFIG(ORXCPPO) that includes the "TARGET" compiler option
of "ZOSV1R2". The "TARGET" compiler option enables the development of
applications on higher release levels of z/OS for subsequent use on platforms
that are running lower release levels of z/OS or OS/390. You can update the
ORXCPPO member with "ZOSV1R4", "ZOSV1R5" or "ZOSV1R6", as appropriate.
Alternatively, you can remove the "TARGET" option from the ORXCPPO
member. This means that it uses the "CURRENT" option by default, which
corresponds to the z/OS release on which your system is running. For more
information see the IBM publication: C/C++ User�s Guide.

Compiler options Orbix 6.2 uses the Run Time Type Identification (RTTI) z/OS compiler
option. This allows you to take advantage of C++ dynamic casting. In
previous releases of Orbix, this option was not used because the OS/390
V2R10 compiler did not support it.
309

CHAPTER 13 | Upgrading from Orbix Mainframe 6.0
Migrating your C++ applications Orbix 6.2 is binary compatible with Orbix 6.0. However, to take advantage
of the C++ RTTI feature, binary compatibility had to be broken. Therefore,
you must rebuild and recompile your C++ applications to use the RTTI
feature. To do this you must do the following:

1. The IDL configuration file in HLQ.ORBIX62.CONFIG(IDL) no longer
includes the "-xRTII" option on the PresetOptions. If you are using a
local copy of this file, ensure that you make the appopriate updates.

2. Update your compiler options to use RTTI. The
HLQ.ORBIX62.PROCLIB(ORXCPPO) file contains this option by default.
You may use it as an example.

3. Regenerate your IDL stub code and recompile your application.
 310

COBOL Migration
COBOL Migration

Migration of COBOL applications It is not necessary to rebuild your COBOL applications when migrating from
Orbix Mainframe 6.0 to Orbix Mainframe 6.2. COBOL applications built
with Orbix Mainframe 6.0 will run without any updates in an Orbix
Mainframe 6.2 runtime environment.

Generation of mapping files In previous versions of the Orbix COBOL generator, if the -M option was
specified and the IDL had operation names that were identical in several
interfaces, no warning was produced if the names mapped to a non-unique
name. For example, no warning was produced if the generated mapping file
contained:

The Orbix 6.2 COBOL generator will still generate the preceding mapping
file but also outputs a warning about the generated mapping file. The
generator will also produce a return code of 4, to alert the developer that two
or more operations have been mapped to the same name.

interfaceA/ping ping
interfaceB/ping ping
311

CHAPTER 13 | Upgrading from Orbix Mainframe 6.0
PL/I Migration

Migration of PL/I applications It is not necessary to rebuild your PL/I applications when migrating from
Orbix Mainframe 6.0 to Orbix Mainframe 6.2. PL/I applications built with
Orbix Mainframe 6.0 will run without any updates in an Orbix Mainframe
6.2 runtime environment.

Inherited interfaces The IDL-PL/I generator now generates only one instance of a PL/I typedef
per IDL type. In previous releases, if a type was inherited, the PL/I generator
created a typedef for both the base class's instance of the type and also one
for each inherited type. This was unnecessary as both generated typedefs
would always be the same, apart from the name of the typedef. It also
resulted in the generation of large include files in the cases of IDL with
complex structs, for example. For programs where a pre-Orbix 6.2
generated server implementation is used and new include files need to be
generated, the -Li option has been introduced.

Orbix PL/I include file
re-arrangement

Three PL/I include members (CORBA, READIOR and SETUPCL) have been
reorganized, to decrease the number of instances where the compilation of
an Orbix PL/I program results in a return code of 4, due to the pre-processor
check for client_only. The reorganization has been designed so that there
would not be a migration hit for existing Orbix PL/I applications.
Additionally, a new include file, SETUPSV, has been added, to declare
client_only and set it to "no" in Orbix PL/I server applications. For further
details about the include members, see the Orbix PL/I Programmers Guide
and Reference.

Generation of mapping files In previous versions of the Orbix PL/I generator, if the -M option was
specified and the IDL had operation names that were identical in several
interfaces, no warning was produced if the names mapped to a non-unique
name. For example, no warning was produced if the generated mapping file
contained:

interfaceA/ping ping
interfaceB/ping ping
 312

PL/I Migration
The Orbix 6.2 PL/I generator will still generate the preceding mapping file
but also outputs a warning about the generated mapping file. The generator
will also produce a return code of 4, to alert the developer that two or more
operations have been mapped to the same name.
313

CHAPTER 13 | Upgrading from Orbix Mainframe 6.0
JCL Updates

Migratoin If you are using your own customized JCL or JCL procedures, you will need
to update them with the following details to use Orbix 6.2:

1. PDS names have changed in Orbix 6.2, as outlined in �PDS names� on
page 302. As a result, you will need to update any of your own JCL
that refers to these.

2. As discussed in �C++ Migration� on page 309, IONA requires that
you rebuild your C++ applications to take advantage of the RTTI
option. Ensure that the TARGET compiler option is set accordingly.

3. The Orbix IDL compiler has been updated to read IDL options from a
DD card, called IDLARGS. To take advantage of this new feature, you
will need to add the IDLARGS DD to your JCL. As an example, please
see the supplied ORXIDL procedure in HLQ.ORBIX62.PROCLIB(ORXIDL),
and any of the demonstration IDL compilations (that is,
HLQ.ORBIX62.DEMOS.CBL.BLD.JCLLIB(SIMPLIDL).

4. If you are processing transactions in a C++ client or server (that is,
two-phase commit processing), you will need to link in the following
side decks to your program:

See HLQ.ORBIX62.PROCLIB(ORXLINK) for an example.

5. The ARITH(EXTEND) option has been added to the supplied COBOL
compilation procedures (that is, ORXCBCCC, ORXCBCSC, ORXCBLCC,
ORXCBLSC) to support arithmetic extended types. This is required if you
are using fixed types greater than 18 digits. You only need to update
this if you plan on using fixed types greater than 18 digits.

6. The supplied PL/I compilation procedures have been enhanced to
accommodate the enterprise PL/I compiler. Support has also been
added for fixed 31 and long long support. To use these features you
will need to update the PL/I compiler options:
"LIMITS(FIXEDDEC(31),FIXEDBIN(63))' ". Sample procedures can be

// DD DSN=&ORBIX..LKED(ORXOTS),DISP=SHR
// DD DSN=&ORBIX..LKED(ORXOTSP),DISP=SHR
 314

JCL Updates
found in
HLQ.ORBIX62.PROCLIB(ORXPLCCC,ORXPLCSC,ORXPLICC,ORXPLISC). For
an example of usage, refer to any of the PL/I demonstrations (for
example, HLQ.ORBIX62.DEMOS.PLI.BLD.JCLLIB(SIMPLESB)). To use the
new enterprise compiler procedures, change the "PLIPRFX" to "IBMZ".

7. A new procedure called ORXICONV has been added to facilitate
converting files from one code page to another. Currently the procedure
is designed to convert members of a PDS. See
HLQ.ORBIX62.JCLLIB(UPDLICEN) for an example.

8. The MFACL JCL is no longer shipped in HLQ.ORBIX62.JCLLIB. This is
due to the re-design of the client adapters discussed in �Configuration
Changes� on page 303. If you have your own JCL to start your client
adapter, you will need to us the IMS or CICS server adapter and pass in
the ORB name with your client configuration details. See
�Configuration Changes� on page 303 for more details on these
re-design and configuration changes.
315

CHAPTER 13 | Upgrading from Orbix Mainframe 6.0
 316

Part 5
Migrating from Artix

Mainframe Developer 2.0

In this part This part contains the following chapters:

Upgrading from Artix Mainframe Developer 2.0 page 319

CHAPTER 14

Upgrading from
Artix Mainframe
Developer 2.0
The Artix Mainframe Developer 2.0 product has been
incorporated into Orbix Mainframe 6.2. This chapter outlines
the requirements for upgrading from Artix Mainframe
Developer 2.0 to Orbix Mainframe 6.2.

In this chapter This chapter discusses the following topics:

� �Existing applications� on page 320.

� �imsraw and cicsraw� on page 320.

� �Configuration changes� on page 320.

� �Demonstration code� on page 320.
319

CHAPTER 14 | Upgrading from Artix Mainframe Developer 2.0
Existing applications If you have existing applications in Artix Mainframe Developer 2.0, you must
recompile your IDL files to regenerate the file-based type information store.
Also, ensure that your mapping file is up to date.

imsraw and cicsraw If you are using imsraw or cicsraw, run the PREPSOAP job in
HLQ.ORBIX62.JCLLIB to regenerate the type information for those endpoints.

Configuration changes The Artix configuration file is now shipped in HLQ.ORBIX62.CONFIG(ARTIX).
Like the configuration changes made to Orbix 6.2, the Artix configuration file
also takes advantage of re-opening existing name spaces. To use the IMS or
CICS server adapter over HTTP, ensure that the comment character is
removed from the following line in your deployed configuration domain:

Update the configuration file with any specific changes for your site. You can
then start your IMS or CICS server adapters accordingly.

Demonstration code Artix demonstration code is supplied with your Orbix Mainframe 6.2
installation in HLQ.ORBIX62.DEMOS.ARTIX.*.

#include "HLQ.ORBIX62.CONFIG(ARTIX)";

Note: In a future release, the Artix configuration process will be refined
further, so that a copy is stored in the DOMAINS PDS. If you have
suggestions on how you would like to see this process defined, contact
support@iona.com.
 320

Index

A
addr(IFNAME_user_exceptions) 215
ATM 59
AutomaticWorkQueue policy 55

B
binary compatibility 10
bindUsingIIOP() 57
BOA

activation modes 45
and Orbix loaders 44
implementation 46
servers 48

C
callback objects 39
CBLTDLI 170
CERRSMFA 177
CHECK_ERRORS

CICS clients 243
IMS clients 235
PLI 204

CHECK-STATUS paragraph
CICS 177
IMS 168

CHKCLCIC 179
CHKCLIMS 168, 235
CHKERRS 204

CHECK-STATUS paragraph 125
CICS equivalent 175

CICS COBOL clients
error checking 179
extra copybook 180

CICS PLI client migration issues 243
CloseConnection message 59
COBOL keywords 73, 193

IDL indentifier names D and U 120
module and interface names 117

code generation toolkit 11
command-line arguments

and gencbl 181
and genpli 244
COMM_FAILURE exception 38, 59
compile errors 137
configuration

IIOP 58
ORB class 57
thread pools 54

configuration files 22
connection management 58
constant definitions See IDL constant definitions
conversion functions

PL/I 210
copybook names 89
COPY statement 92, 94
CORBA::ORB 37
CORBA::Orbix.setDiagnostics() 248
CORBA::Orbix object 37
CORBA::Request::operator 41
CORBA copybook 137
CORBA Environment parameter 36
CORBA include member 211
corbaloc

C++ 31
COBOL 140
PLI 206

D
data names 12

constant definitions (PLI) 192
IDL compiler 185
lenght of (PLI) 188
uniquness of 195

_default_POA() 44
Derived Interface Names 77
destroy() 37
diagnostic output 248
DII calls 41
DISPATCH reference 181
DISPINIT membe 217
DISPINIT Member contents 221
DLIDATA 234
dynamic invocation interface 41
1

INDEX
E
Enterprise COBOL compiler

container names 98
fieldnames 105
name scoping 97

Environment parameter, CORBA 36
event_log filters 248
exception handling 36
exceptions

and PODSTAT 214
COMM_FAILURE 38, 59
INV_OBJREF 37
no_user_exceptions 215
runtime reporting of 148
TRANSIENT 38

F
fabricated object references 140
factory object 46
file descriptors 53

connection management 58
filters, event_log 248
filters, Orbix 52
fixed block data sets 22
fixed type definitions 21
FQN

COBOL data names 64
derived interface names 77
IDL constant definitions (COBOL) 73
IDL constant definitions (PL/I) 194

G
generated member names 96
GETUNIQUE 169
global keyword

COBOL 72
PLI 193

global objects 37

H
HTTP 59

I
IBM COBOL compiler

container names 98
fieldnames 105
name scoping 97
 2
string literal character limit 81
IDL compiler 13

-J argument 185
-L argument 185
-M argument 65, 186
-M argument and FQN name 194
-O argument and COBOL 111
-O argument and PL/I 200
-O argument and PODEXEC 215
-S:-TCICS arguments (COBOL) 172
-S and TIMS arguments (COBOL) 152, 172
-S argument (PL/I) 225, 239
-Z:-TCICS arguments 172

IDL constant definitions
COBOL 73
PL/I 192

IDL file, more than one interface in 201
IDL filenames

different from interface names 199
include filename 196
length 96

IDL fixed type definitions 21
IFNAME 215
IFR 181
IIOP

and Orbix 262
connection management 58

IMS COBOL clients
error checking 168
extra copybooks 169
linkage section 166

IMSPCB module (PL/I) 228
IMS PLI clients

DLIDATA changes 234
error checking 235
program communication block 231

INCLUDE.COPYLIB 137
CHKERRS 125

INCLUDE.COPYLIB(CICWRITE) 180
INCLUDE.COPYLIB(IMSWRITE) 169
INCLUDE.PLINCL(CORBA) 211
include filenames, and IDL filename 196
include statement 200, 201
interface names

and PL/I keywords 203
COBOL keywords 117

interfacename-TYPE (COBOL) 108
interfacename_type (PLI) 195
Interface Repository 181

INDEX
INV_OBJREF exception 37
IOCallback functionality 59
IOR configuration 31
IOR syntax 31
itadmin tool 258
itmfaloc 144

J
JCL, and the itadmin tool 259

L
license file 22
load-balancing 45
loader architecture 44
local_log_stream configuration variable 248
local name 185
logging severity levels 248
long IDL data type, ORBALLOC 149
LSIMSPCB 160, 166

M
main() 37
ManualWorkQueue policy 55
maxConnectRetries() 57
MEMALLOC (COBOL) 146
MEMALOC

PLI 213
member names, length restriction 96
MEMDBUG 213
MEMFREE 213
memory management rules 138
module keyword

COBOL 73, 193
module names

and COBOL keywords 117
and PL/I keywords 203

modules, levels of 197
multicast protocol 59
multi-threaded clients 39
multi-threading capabilities 53

N
Naming Service

COBOL 142
PL/I 208

native exception handling 36
no_user_exceptions 215
O
OBJ2STR (PL/I) 213
OBJDUP 138
Object/Servant Lifecycles 46
object IDs 44
ObjectId_to_string() 32
object map (BOA) 44
object names, resolving

COBOL 142
PL/I 208

OBJECT_NOT_EXIST exception 37
object references 48

creating with POA 46
fabricated 140

OBJGET (COBOL) 146
OBJGET (PLI) 213
OBJGETI 146
OBJGETM 146, 213
OBJGETO 213
OBJGTID 213
OBJLEN 213
OBJLENO 213
OBJNEW 213
OBJREL 138
OBJSET 146, 213

COBOL 140
naming service 142
PL/I 206

OBJSETM 146, 213
OMG

mapping standard for unions and exceptions 120
ORBALLOC 149
ORB class 57
ORB_CTRL_MODEL 53
ORBEXEC, user exception parameter 147
ORBFREE 146
ORB_init() 37
Orbix.bindUsingIIOP(0) 262
Orbix 6.x ORB class 57
Orbix filters 52
Orbix IDL compiler See IDL compiler
Orbix loader architecture 44
Orbix locator daemon 31
Orbix object 37
Orbix Protocol 262
OrbixSecurity 53
ORBIX-STATUS-INFORMATION 148
ORBREGO 146
ORB_shutdown(1) 37
3

INDEX
ORBSTAT 148
ORXADMIN PROC 259

P
PCBLIST 229
piggybacking data 53
PL/I Data Names, maximum lenght of 188
PL/I keywords 203
PL/I runtime 214
POA

activation modes 45
AutomaticWorkQueue 55
implementation 46
multi-threading 53
servers 48
workqueue policies 55

POA names 13
POA policies 43

callback objects 39
overriding default 44

PODALOC 213
PODEBUG 213
PODERR 213
PODFREE 213
PODHOST 213
PODINIT 213
PODRASS 213
PODREG 213
PODREGI 213
PODRUN 213
PODSTAT 214
POD_STATUS_INFORMATION 214
PortableInterceptor interfaces 52
PortableServer 37
program communication block (PL/I) 228
proxy objects 37
putidl 181

and itadmin 258

R
Request::descriptor() 53
Request::operator 41
request logging 52
request processing 37
reserved COBOL keywords 117
reserved PL/I keyword 203
runtime reporting of exceptions 148
 4
S
security features 53
SEQALLOC 150
sequence numbers 22
servant implementation 25
servant locators 44
servants, object references 48
server accessor (PLI) 216
server names 13
ServiceContexts 53
shared memory transport protocol 59
short IDL data type, ORBALLOC 149
shutdown, ORB 37
SINGLE_THREAD_MODEL 53
SIOP 59
SOAP 59
STR2OBJ (PL/I) 206, 213
Stringified IOR syntax 31
string literal character limit 81
string markers 44
string-object

(COBOL) 144
PL/I 210

string_to_ObjectId() 32
STRSETSP 146
synchronization concerns 44

T
TCP/IP information, access to 53, 59
Temporary Storage labels 12
ThreadFilters mechanism 53
thread pools 54
tie approach 48
TRANSIENT exception 38
transport protocols 262
typecodes

COBOL mapping 81
PL/I mapping 195

U
UNIX, file descriptor limits and 59
unsigned long IDL data type, ORBALLOC 149
unsigned short IDL data type, ORBALLOC 149
UPDTPCBS copybook 163
URL syntax 31
user exceptions 147

and PODEXEC 215

INDEX
V
variable block data sets 22
_var type 50

W
Working Storage labels 12
WorkQueue policies 55
WSCICSCL 180
WSIMSCL 169
5

INDEX
 6

	Preface
	Overview
	Introduction
	Advantages of Orbix 6.2
	Migration Resources

	Migrating from 2.3.x
	Migration Possibilities and Main Differences
	Migration Possibilities
	C++ Applications
	COBOL and PL/I Applications

	Installation Requirements
	IDL Migration Issues
	The Opaque Type
	IDL Fixed Type Definitions
	IDL Defined in Fixed Block Data Sets
	imsraw and cicsraw IDL changes
	Orbix 6.2 C++ IDL Compiler Output

	C++ Migration Issues
	C++ Compiler Issues
	C++ Client Migration
	CORBA Object Location and Binding
	Interface Repository Interoperability
	IDL-to-C++ Mapping
	Client-Side CORBA Compliancy
	Callback Objects
	System Exception Semantics
	Dynamic Invocation Interface (DII)

	C++ Server Migration
	BOA to POA Migration
	Activation Modes
	Object/Servant Lifecycles
	Creating Object References Without Servants
	Function Signatures
	Exception-Safe Servant Implementations

	Migrating Proprietary 2.3 Features
	Orbix Filters and CORBA 2.3 Alternatives
	Transformers
	Orbix-Specific APIs
	Connection Management
	Callbacks and Bidirectional GIOP

	COBOL Migration Issues
	Name Mapping Issues
	Fully Qualified Level 01 Data Names
	Operation and Level 88 Data Names
	IDL Constant Definitions Mapped to Fully Qualified Names
	Derived Interface Names and Fully Qualified Names
	Numeric Suffixes for Data Names
	160-Character Limit for String Literals
	Maximum Length of COBOL Data Names

	Copybook Names Based on IDL Member Name
	Introduction to IDL Member Name Migration Issues
	IDL Member Name Different from its Interface Names
	More than One Interface in an IDL Member
	Length of IDL Member Names

	Name Scoping and the COBOL Compilers
	Same Container Name Used More than Once
	Same Fieldname Used More than Once

	Typecode Name and Length Identifiers
	Comparing Compiler Output
	IDL Member Name Different from its Interface Name
	More than One Interface in an IDL Member

	Reserved COBOL and OMG Keywords
	Reserved COBOL Keywords for Module or Interface Names
	Use of Result as an Argument Name in IDL
	OMG Mapping Standard for Unions and Exceptions

	Error Checking and Exceptions
	COBOL-Specific Issue Relating to Error Checking
	Error Checking Generation at Runtime for Batch Servers

	Nested Unions in IDL
	Mapping for Arrays
	Working Storage data Items and Group Moves
	Mapping for IDL type Any
	CORBA Copybook Additions
	Parameter Passing of Object References in IDL Operations
	CORBA Object Location and Binding
	Migration Overview and Example
	The Naming Service
	Object-String Conversion

	API Migration Issues
	Deprecated APIs
	ORBEXEC and USER Exception parameters
	ORBSTAT
	ORBALLOC

	COBOL IMS Server Migration Issues
	Server Mainline Program Requirement for IMS Servers
	The Linkage Section for IMS Servers
	Access to the Program Communication Block for IMS Servers
	Error Checking Generation at Runtime for IMS Servers

	COBOL IMS Client Migration Issues
	The Linkage Section for IMS Clients
	Error Checking Generation at Runtime for IMS Clients
	Extra Copybooks in Orbix 6.2 for IMS Clients

	COBOL CICS Server Migration Issues
	Server Mainline Program Requirement for CICS Servers
	Access to the EXEC Interface Block Data Structure
	Error Checking Generation at Runtime for CICS Servers

	COBOL CICS Client Migration Issues
	Error Checking Generation at Runtime for CICS Clients
	Extra Copybooks in Orbix Mainframe 6.2

	Miscellaneous

	PL/I Migration Issues
	Fully Qualified Level 1 Data Names
	Maximum Length of PL/I Data Names
	IDL Constant Definitions Mapped to Fully Qualified Names
	Typecode Name and Length Identifiers
	Include Member names Based on the IDL Member name
	IDL Member names Different from Interface Names
	More than One Interface in an IDL Member

	Reserved PL/I Keywords for Module or Interface Names
	Orbix PL/I Error Checking
	CORBA Object Location and Binding
	Migration Overview and Example
	Naming Service
	Object-String Conversion

	CORBA Include Member Additions
	API Migration Issues
	Deprecated APIs
	PODSTAT in Orbix 6.2
	PODEXEC and User Exception parameters

	Server Accessor (Z Member)
	PL/I IMS Server Migration Issues
	Server Mainline Module
	Access to the Program Communication Block

	PL/I IMS Client Migration issues
	Program Communication Block Definitions Modifications
	DLIDATA Include Member Modifications
	Error Checking Generation at Runtime for IMS Clients

	PL/I CICS Server Migration Issues
	Server Mainline Program Requirements for CICS Servers
	Access to the EXEC Interface Block Data Structure

	PL/I CICS Client Migration Issues
	Miscellaneous

	Diagnostic Output
	CORBA Services
	Naming Service
	Interface Repository
	IMS Adapter
	CICS Adapter

	Administrative Tools
	Interoperability
	Use of the Orbix Protocol
	GIOP Versions
	Launch and Invoke Rights
	Codeset Negotiation
	Introduction to Codeset Negotiation
	Configuring Codeset Negotiation
	Default Codesets
	Configuring Legacy Behavior

	Migrating from 5.1
	Upgrading from Mainframe Edition 5.x
	Installation Requirements
	Configuration Changes
	New Node Daemon
	Database Migration
	C++ Migration
	COBOL Migration
	PL/I Migration

	Migrating from 6.0
	Upgrading from Orbix Mainframe 6.0
	Installation Requirements
	Configuration Changes
	Database Migration
	C++ Migration
	COBOL Migration
	PL/I Migration
	JCL Updates

	Migrating from Artix Mainframe Developer 2.0
	Upgrading from Artix Mainframe Developer 2.0

