IONA

fgl Orbix®

Mainframe Migration
and Upgrade Guide

Version 6.2, May 2005

Making Software Work Together™

IONA, IONA Technologies, the IONA logo, Orbix, Orbix/E, Orbacus, Artix, Orchestrator,
Mobile Orchestrator, Enterprise Integrator, Adaptive Runtime Technology, Transparent
Enterprise Deployment, and Total Business Integration are trademarks or registered
trademarks of IONA Technologies PLC and/or its subsidiaries.

Java and J2EE are trademarks or registered trademarks of Sun Microsystems, Inc. in the
United States and other countries.

CORBA is a trademark or registered trademark of the Object Management Group, Inc. in
the United States and other countries. All other trademarks that appear herein are the
property of their respective owners.

While the information in this publication is believed to be accurate, IONA Technologies PLC makes no warranty of
any kind to this material including, but not limited to, the implied warranties of merchantability and fitness for a
particular purpose. IONA Technologies PLC shall not be liable for errors contained herein, or for incidental or
consequential damages in connection with the furnishing, performance or use of this material.

COPYRIGHT NOTICE

No part of this publication may be reproduced, stored in a retrigval system or transmitted, in any form or by any
means, photocopying, recording or otherwise, without prior written consent of IONA Technologies PLC. No third
party intellectual property right liability is assumed with respect to the use of the information contained herein.
IONA Technologies PLC assumes no responsibility for errors or omissions contained in this book. This publication
and features described herein are subject to change without notice.

Copyright © 2001-2005 IONA Technologies PLC. All rights reserved.

All products or services mentioned in this manual are covered by the trademarks, service marks, or product
names as designated by the companies who market those products.

Updated: 08-Jun-2005

Contents

List of Tables

Preface

Part 1 Overview

Chapter 1 Introduction
Advantages of Orbix 6.2
Migration Resources

Part 2 Migrating from 2.3.x

Chapter 2 Migration Possibilities and Main Differences
Migration Possibilities
C++ Applications
COBOL and PL/I Applications

Chapter 3 Installation Requirements

Chapter 4 IDL Migration Issues
The Opaque Type
IDL Fixed Type Definitions
IDL Defined in Fixed Block Data Sets
imsraw and cicsraw IDL changes
Orbix 6.2 C++ IDL Compiler Output

Xi

oh W

10
11
12

15

19
20
21
22
23
25

CONTENTS

Chapter 5 C++ Migration Issues

C++ Compiler Issues
C+ + Client Migration

CORBA Object Location and Binding
Interface Repository Interoperability
IDL-to-C++ Mapping

Client-Side CORBA Compliancy
Callback Objects

System Exception Semantics
Dynamic Invocation Interface (DII)

C++ Server Migration

BOA to POA Migration

Activation Modes

Object/Servant Lifecycles

Creating Object References Without Servants
Function Signatures

Exception-Safe Servant Implementations

Migrating Proprietary 2.3 Features

Orbix Filters and CORBA 2.3 Alternatives
Transformers

Orbix-Specific APls

Connection Management

Callbacks and Bidirectional GIOP

Chapter 6 COBOL Migration Issues

Name Mapping Issues

Fully Qualified Level 01 Data Names
Operation and Level 88 Data Names

IDL Constant Definitions Mapped to Fully Qualified Names
Derived Interface Names and Fully Qualified Names

Numeric Suffixes for Data Names
160-Character Limit for String Literals
Maximum Length of COBOL Data Names

Copybook Names Based on IDL Member Name
Introduction to IDL Member Name Migration Issues
IDL Member Name Different from its Interface Names

More than One Interface in an IDL Member
Length of IDL Member Names

27
28
29
30
35
36
37
39
40
41
42
43
45
46
48
49
50
51
52
56
57
58
60

61
63
64
68
72
77
80
81
86
89
90
92
94
96

Name Scoping and the COBOL Compilers
Same Container Name Used More than Once
Same Fieldname Used More than Once
Typecode Name and Length Identifiers
Comparing Compiler Output
IDL Member Name Different from its Interface Name
More than One Interface in an IDL Member
Reserved COBOL and OMG Keywords
Reserved COBOL Keywords for Module or Interface Names
Use of Result as an Argument Name in IDL
OMG Mapping Standard for Unions and Exceptions
Error Checking and Exceptions
COBOL-Specific Issue Relating to Error Checking
Error Checking Generation at Runtime for Batch Servers
Nested Unions in IDL
Mapping for Arrays
Working Storage data Items and Group Moves
Mapping for IDL type Any
CORBA Copybook Additions
Parameter Passing of Object References in IDL Operations
CORBA Object Location and Binding
Migration Overview and Example
The Naming Service
Object-String Conversion
API Migration Issues
Deprecated APIs
ORBEXEC and USER Exception parameters
ORBSTAT
ORBALLOC
COBOL IMS Server Migration Issues
Server Mainline Program Requirement for IMS Servers
The Linkage Section for IMS Servers
Access to the Program Communication Block for IMS Servers
Error Checking Generation at Runtime for IMS Servers
COBOL IMS Client Migration Issues
The Linkage Section for IMS Clients
Error Checking Generation at Runtime for IMS Clients
Extra Copybooks in Orbix 6.2 for IMS Clients

CONTENTS

97

98
105
107
108
109
112
116
117
118
120
122
123
125
126
131
133
135
137
138
139
140
142
144
145
146
147
148
149
151
152
156
162
164
165
166
168
169

CONTENTS

COBOL CICS Server Migration Issues
Server Mainline Program Requirement for CICS Servers
Access to the EXEC Interface Block Data Structure
Error Checking Generation at Runtime for CICS Servers
COBOL CICS Client Migration Issues
Error Checking Generation at Runtime for CICS Clients
Extra Copybooks in Orbix Mainframe 6.2
Miscellaneous

Chapter 7 PL/I Migration Issues
Fully Qualified Level 1 Data Names
Maximum Length of PL/I Data Names
IDL Constant Definitions Mapped to Fully Qualified Names
Typecode Name and Length Identifiers
Include Member names Based on the IDL Member name
IDL Member names Different from Interface Names
More than One Interface in an IDL Member
Reserved PL/l Keywords for Module or Interface Names
Orbix PL/I Error Checking
CORBA Object Location and Binding
Migration Overview and Example
Naming Service
Object-String Conversion
CORBA Include Member Additions
API Migration Issues
Deprecated APIs
PODSTAT in Orbix 6.2
PODEXEC and User Exception parameters
Server Accessor (Z Member)
PL/I IMS Server Migration Issues
Server Mainline Module
Access to the Program Communication Block
PL/I IMS Client Migration issues
Program Communication Block Definitions Modifications
DLIDATA Include Member Modifications
Error Checking Generation at Runtime for IMS Clients
PL/I CICS Server Migration Issues
Server Mainline Program Requirements for CICS Servers
Access to the EXEC Interface Block Data Structure

Vi

171
172
176
177
178
179
180
181

183
185
188
192
195
196
199
201
203
204
205
206
208
210
211
212
213
214
215
216
222
223
228
230
231
234
235
236
237
242

CONTENTS

PL/I CICS Client Migration Issues 243
Miscellaneous 244
Chapter 8 Diagnostic Output 247
Chapter 9 CORBA Services 249
Naming Service 250
Interface Repository 251

IMS Adapter 252

CICS Adapter 254
Chapter 10 Administrative Tools 257
Chapter 11 Interoperability 261
Use of the Orbix Protocol 262

GIOP Versions 263
Launch and Invoke Rights 265
Codeset Negotiation 267
Introduction to Codeset Negotiation 268

Configuring Codeset Negotiation 269

Default Codesets 270

Configuring Legacy Behavior 273

Part 3 Migrating from 5.1

Chapter 12 Upgrading from Mainframe Edition 5.x 277
Installation Requirements 279
Configuration Changes 281
New Node Daemon 289
Database Migration 290
C++ Migration 291
COBOL Migration 293

PL/I Migration 294

vii

CONTENTS

Part 4 Migrating from 6.0

Chapter 13 Upgrading from Orbix Mainframe 6.0 299
Installation Requirements 301
Configuration Changes 303
Database Migration 308
C++ Migration 309
COBOL Migration 311
PL/I Migration 312
JCL Updates 314

Part 5 Migrating from Artix Mainframe Developer 2.0

Chapter 14 Upgrading from Artix Mainframe Developer 2.0 319

Index 1

viii

List of Tables

Table 1:
Table 2:
Table 3:
Table 4.
Table 5:
Table 6:
Table 7:
Table 8:
Table 9:

Table 10:
Table 11:
Table 12:
Table 13:
Table 14:
Table 15:
Table 16:
Table 17:
Table 18:
Table 19:
Table 20:
Table 21:
Table 22:
Table 23:
Table 24
Table 25:
Table 26:

Migration Possibilities for z/0S

Differences in PDS Naming Conventions

C++ Compiler Output Comparison for UNIX System Services
POA Policy Types and Their Values for Callback Objects
Migrated System Exceptions

COBOL Compiler Output for IDL Constant Definitions

COBOL Compiler Output for GRID IDL Member

COBOL Mapping Changes for IDL Data Types

Deprecated COBOL APIs and Their Replacements
ORBALLOC and Mapping Changes for IDL Data Types

Extra Copybooks that ship with Orbix 6.2

Extra Copybooks that ship with Orbix 6.2

PL/I Compiler Output for IDL Constant Definitions

PL/I Compiler Output Comparison GRID Include Member Names
PL/I Compiler Deprecated IDL Generated Members and Their Replacements
Deprecated PL/I APIs and Their Replacements

Differences in Controlling OTMA-Based IMS Adapters
Differences in Controlling APPC-Based IMS Adapters
Differences in Controlling EXCI-Based CICS Adapters
Differences in Controlling APPC-Based CICS Adapters
CORBA-Specified Minimum GIOP Versions

Orbix-Specific Minimum GIOP Versions

Default GIOP Version Used by Orbix Clients

CORBA Codeset Configuration Variables (Orbix 6.2)

CORBA C++ Codesets (Non-MVS Platforms)

CORBA C++ Codesets (MVS Platform)

10

17

25

39

40

72

95
133
146
149
169
180
192
199
202
213
252
253
254
255
263
264
264
269
270
271

LIST OF TABLES

Table 27:
Table 28:
Table 29:
Table 30:
Table 31:
Table 32:

CORBA Java Codesets (1ISO-8859-1/Cp-1292/US-ASCII locale)
CORBA Java Codesets (Shift_JIS locale)

CORBA Java Codesets (EUC_JP locale)

CORBA Java Codesets (other locale)

Differences in PDS Naming Conventions

Differences in PDS Naming Conventions

271
271
272
272
280
302

Overview

Support

Audience

Related Documentation

Preface

This guide describes the issues that surround the migration of applications
from earlier IONA mainframe solutions to an Orbix Mainframe 6.2 solution.
Part 1 provides an introduction to Orbix Mainframe migration. The bulk of
this guide (Part 2) focuses on migrating from Orbix 2.3.x-based solutions,
because much fewer changes are required to migrate from Orbix E2A
Mainframe Edition 5.x. Part 3 describes Orbix E2A Mainframe Edition 5.x
migration issues. Part 4 describes Orbix Mainframe 6.0 migration issues.
Part 5 describes Artix Mainframe Developer 2.0 migration issues.

This guide describes migration issues relating specifically to COBOL and
PL/I applications in a native z/OS environment, and to C++ applications in
both a native z/OS and UNIX System Services environment.

If you need help with this or any other IONA products, contact IONA at
suppor t @ona. com Comments on IONA documentation can be sent to
docs- support @ona. com

This guide is intended for application programmers who want to migrate
their applications from earlier IONA mainframe solutions to an Orbix
Mainframe 6.2 solution. It is assumed that the reader is familiar with the
basic concepts of CORBA 2.6.

Orbix Mainframe 6.0 documentation includes the following related guides:
® CORBA Programmer’s Guide, C++

® CORBA Programmer’s Reference, C++

® COBOL Programmer’s Guide and Reference

Xi

mailto:support@iona.com
mailto:docs-support@iona.com

PREFACE

Organization of this Guide

Xii

® PL/I Programmer’s Guide and Reference
® CORBA Administrator’s Guide

® |IMS Adapters Administrator’s Guide

® CICS Adapters Administrator’s Guide

® Mainframe CORBA Concepts Guide

® Mainframe Security Guide

® Mainframe Management Guide

For the latest version of all IONA product documentation, see the IONA web
site at: http: // www. i ona. cond suppor t / docs

This guide is divided into two main parts as follows:
Part 1, “Overview”

Chapter 1, “Introduction”

This chapter introduces the main differences between previous IONA
mainframe solutions and Orbix Mainframe 6.2. It also summarizes the main
migration impact involved.

Part 2, “Migrating from 2.3.x”

Chapter 3, Installation Requirements

Orbix Mainframe 6.2 is substantially different from Orbix 2.3-based IONA
mainframe solutions in terms of the DLLs and build procedures it contains.
This chapter outlines the installation requirements for upgrading from an
Orbix 2.3.x-based IONA mainframe solution to Orbix Mainframe 6.2.

Chapter 4, “IDL Migration Issues”

This chapter discusses the main IDL differences between an Orbix
2.3-based IONA mainframe solution and Orbix Mainframe 6.2..

Chapter 5, “C++ Migration Issues”

This chapter describes the main issues involved in migrating C++
applications on native z/OS and on z/0OS UNIX System Services, from an
Orbix 2.3-based IONA mainframe solution to Orbix Mainframe 6.2.

Chapter 6, “COBOL Migration Issues”
This chapter describes the issues involved in migrating COBOL applications

from an Orbix 2.3.x-based IONA mainframe solution to Orbix Mainframe
6.2.

http://www.iona.com/docs

PREFACE

Chapter 7, “PL/l Migration Issues”

This chapter describes the issues involved in migrating PL/I applications
from an Orbix 2.3.x-based IONA mainframe solution to Orbix Mainframe
6.2.

Chapter 8, “Diagnostic Output”

This chapter summarizes the differences between how diagnostic data is
output for Orbix 2.3.x and Orbix 6.2.

Chapter 9, “CORBA Services”

This chapter summarizes the differences in CORBA services between Orbix
2.3.x and Orbix 6.2.

Chapter 10, “Administrative Tools”

This chapter summarizes the differences between Orbix 2.3.x and Orbix 6.2
administration tools.

Chapter 11, “Interoperability”

This chapter describes the issues relating to interoperability when migrating
from an Orbix 2.3-based IONA mainframe solution to Orbix Mainframe 6.2.
Part 3, “Migrating from 5.1”

Chapter 12, “Upgrading from Mainframe Edition 5.x”

This chapter outlines the requirements for upgrading from an Orbix E2A
Mainframe Edition 5.x-based solution to Orbix Mainframe 6.2.

Part 4, “Migrating from 6.0”

Chapter 13, “Upgrading from Orbix Mainframe 6.0”

This chapter outlines the requirements for upgrading from Orbix Mainframe
6.0 to Orbix Mainframe 6.2.

Part 5, Migrating from Artix Mainframe Developer 2.0

Chapter 14, “Upgrading from Artix Mainframe Developer 2.0”

The Artix Mainframe Developer 2.0 product has been incorporated into
Orbix Mainframe 6.2. This chapter outlines the requirements for upgrading
from Artix Mainframe Developer 2.0 to Orbix Mainframe 6.2.

xiii

PREFACE

Document Conventions This guide uses the following typographical conventions:

Constant wi dt h Constant width (courier font) in normal text represents
portions of code and literal names of items such as
classes, functions, variables, and data structures. For
example, text might refer to the OCRBA: : (oj ect class.

Constant width paragraphs represent code examples
or information a system displays on the screen. For
example:

#i ncl ude <stdio. h>

Italic Italic words in normal text represent emphasis and
new terms.

Code italic Italic words or characters in code and commands
represent variable values that you must supply; for
example:

install-dir/etc/domai ns

Code Bol d Code bold is used to highlight a piece of code within a
particular code sample.

This guide may use the following keying conventions:

No prompt When a command’s format is the same for multiple
platforms, no prompt is used.

% A percent sign represents the UNIX command shell
prompt for a command that does not require root
privileges.

$ A dollar sign represents the z/OS UNIX System

Services command shell prompt for a command that
does not require root privileges.

A number sign represents the UNIX command shell
prompt for a command that requires root privileges.

Horizontal or vertical ellipses in format and syntax
descriptions indicate that material has been
eliminated to simplify a discussion.

[] Brackets enclose optional items in format and syntax
descriptions.

Xiv

{1}

PREFACE

Braces enclose a list from which you must choose an
item in format and syntax descriptions.

XV

PREFACE

XVi

Part 1

Overview

In this part This part contains the following chapters:

Introduction page 3

In This Chapter

CHAPTER 1

Introduction

This chapter introduces the main differences between previous
IONA mainframe solutions and Orbix Mainframe 6.2. It also
provides an overview of the resources available to assist with
your migration to Orbix Mainframe 6.2.

This chapter discusses the following topics:

Advantages of Orbix 6.2 page 4

page 6

Migration Resources

CHAPTER 1 | Introduction

Advantages of Orbix 6.2

Overview

CORBA 2.6-compliant features

Orbix Mainframe 6.2 is IONA’s new product offering for the z/0S
environment. This release of Orbix Mainframe offers COBOL and PL/I
application support on native z/0S. It also offers C++ application support
on native z/0OS and z/0OS UNIX System Services.

The recommended path for customers upgrading to a new version of Orbix is
to move to Orbix 6.2. The extra features offered by Orbix can be divided into
the following categories:

® CORBA 2.6-compliant features.

® Unique features.

Orbix 6.2 is based on the CORBA 2.6 specification, which standardizes
almost every aspect of CORBA programming. Migrating your source code to
Orbix 6.2, therefore, represents a valuable investment because your code
will be based on a stable, highly standardized programming interface.

Because Orbix 6.2 contains a CORBA 2.6-compliant ORB, it offers the
following advantages over Orbix 2.x and Orbix 3.x (that is, all minor versions
of Orbix 2 and Orbix 3):

® Portable interceptor support.

® Codeset negotiation support.

® Value type support.

® Asynchronous method invocation (AMI) support.
® Persistent State Service (PSS) support.

® Dynamic any support.

Advantages of Orbix 6.2

Unique features Orbix 6.2 also offers some unique benefits over other commercial ORB
implementations, including:

ORB extensibility using IONA's patented Adaptive Runtime Technology
(ART).

Orbix 6.2 has a modular structure built on a micro-kernel architecture.
Required ORB modules, ORB plug-ins, are specified in a configuration
file and loaded at runtime, as the application starts up. The advantage
of this approach is that new ORB functionality can be dynamically
loaded into an Orbix application without rebuilding the application.

Improved performance.

The performance of Orbix 6.2 has been optimized, resulting in
performance that is faster than Orbix 2.x, Orbix 3.x, and OrbixWeb 3.x
in every respect.

CHAPTER 1 | Introduction

Migration Resources

Overview of resources

IONA is committed to assisting you with your migration effort, to ensure that
it proceeds as easily and rapidly as possible. The following resources are
currently available:

This migration and upgrade guide.

This technical document provides detailed guidance on converting to
Orbix Mainframe 6.2. It aims to provide comprehensive coverage of
migration issues, and to demonstrate how features supported in earlier
versions can be mapped to Orbix Mainframe 6.2 features.
Professional Services migration packages.

IONA's Professional Services organization has put together a set of
consultancy packages that facilitate rapid migration to Orbix
Mainframe 6.2. Details of Professional Services assessment and
migration packages are available at:

http://ww. i ona. coni nf o/ servi ces/ migration. htm

Part 2

Migrating from 2.3.x

In this part This part contains the following chapters:

Migration Possibilities and Main Differences page 9
Installation Requirements page 15
IDL Migration Issues page 19
C++ Migration Issues page 27
COBOL Migration Issues page 61
PL/I Migration Issues page 183
Diagnostic Output page 247
CORBA Services page 249
Administrative Tools page 257
Interoperability page 261

In This Chapter

CHAPTER 2

Migration
Possibilities and

Main Differences

This chapter introduces the migration possibilites when
upgrading from a 2.3.x-based IONA mainframe solution to
Orbix 6.2. It also provides an introductory overview of the main
migration impact involved for C++, COBOL and PL/I

applications.

This chapter discusses the following topics:

Migration Possibilities page 10
C++ Applications page 11
COBOL and PL/I Applications page 12

CHAPTER 2 | Migration Possibilities and Main Differences

Migration Possibilities

Overview

Summary

10

This section summarizes the migration possiblities available.

Table 1:

The migration possibilities with this release can be summarized as follows:

Migration Possibilities for z/OS

Migrate From

Migrate To

Orbix 2.3-based C++ on native
0S/390 and on 0S/390 UNIX
System Services.

Orbix Mainframe 6.2 C++ on
native z/OS and on z/0OS UNIX
System Services.

Orbix 2.3-based COBOL on native
0S/390.

Orbix Mainframe 6.2 COBOL on
native z/OS.

Orbix 2.3-based PL/I on native
0S/390.

Orbix Mainframe 6.2 PL/I on
native z/OS.

Note: This release of Orbix Mainframe is not binary compatible with the
Orbix 2.3.x based product. Therefore, when migrating applications, all IDL
must be compiled with the Orbix 6.2 IDL Compiler, the language-specific
mappings regenerated, and the applications recompiled and linked.

C++ Applications

C++ Applications

In This Section

BOA replacement

The Code Generation Toolkit

This section discusses the following topics:

® BOA replacement
® The Code Generation Toolkit

For C++ application programmers, most of the migration issues surround
rewriting a server to replace the basic object adapter (BOA) with the
portable object adapter (POA). Other issues are more subtle, especially
those specific to Orbix, which were used either to work around old
deficiencies of the CORBA specification, or to exploit value-added
extensions.

The code generation toolkit can be used to develop C++ applications on a
platform other than z/OS (for example, Windows or UNIX). Orbix Mainframe
does not support use of the code generation toolkit in either native z/OS or
UNIX System Services. However, you can use the code generation toolkit
off-host, with Orbix on Windows or UNIX, and then copy the generated code
to z/0S. Refer to the CORBA Code Generation Toolkit Guide for more
details.

11

CHAPTER 2 | Migration Possibilities and Main Differences

COBOL and PL/I Applications

In This Section This section discusses the following topics:
® The genchl and genpli Utilities
® Working Storage and Temporary Storage Labels
® Generated Data Names
® Orbix 6.2 IDL Compiler

The gencbl and genpli Utilities For COBOL and PL/I application programmers, the biggest difference
between Orbix 2.3-based IONA mainframe solutions and Orbix Mainframe
6.2 is the way in which you can generate COBOL and PL/I code from IDL
definitions. Orbix 2.3-based IONA mainframe solutions provide the genchbl
and genpl i utilities, which generate COBOL and PL/I code respectively from
IDL registered in the Interface Repository. These utilities are deprecated in
Orbix Mainframe 6.2.

Working Storage and Temporary For COBOL and PL/I applications, no extra code or changes to application

Storage Labels logic are required to achieve successful migration. All required changes to
existing COBOL or PL/I code involve updating the source Working Storage
labels generated by gencbl or the source Temporary Storage labels
generated by genpl i, to reflect the new labels generated by the Orbix 6.2
IDL Compiler.

Generated Data Names For COBOL and PL/I applications, most migration changes revolve around
the differences in the way the deprecated gencbl and genpl i utilities and
the Orbix 6.2 IDL Compiler generate data names. Therefore, the Orbix 6.2
IDL Compiler provides a number of arguments that you can use to facilitate
integration of your regenerated data names with the legacy code from Orbix
2.3. Refer to the COBOL Programmer’s Guide and Reference and the PL//
Programmer’s Guide and Reference for details of these arguments.

12

Orbix 6.2 IDL Compiler

COBOL and PL/I Applications

Orbix Mainframe 6.2 uses the Orbix 6.2 IDL Compiler to generate COBOL
and PL/I code from IDL definitions. The Orbix 6.2 IDL Compiler is easier to
use than the deprecated utilities. You simply have to run the Orbix 6.2 IDL
Compiler with a flag that acts as a plug-in to indicate that you want to
generate COBOL or PL/I code. The Orbix 6.2 IDL Compiler does not require
an Interface Repository to successfully generate code from IDL.

WARNING: Orbix Mainframe 6.2 supports one set of POA policies. In

Orbix Mainframe 6.2, POA names and server names are case sensitive and
must therefore match exactly.

13

CHAPTER 2 | Migration Possibilities and Main Differences

14

In this chapter

Installing on native z/0S

CHAPTER 3

Installation
Requirements

Orbix Mainframe 6.2 is substantially different from Orbix
2.3-based IONA mainframe solutions in terms of the DLLs and
build procedures it contains. This chapter outlines the
installation requirements for upgrading from an Orbix
2.3.x-based IONA mainframe solution to Orbix Mainframe 6.2.

This chapter discusses the following topics:

® “Installing on native z/0S” on page 15.

® “Installing on z/OS System Services” on page 16.
® “Standard Customization Tasks” on page 16.

® “Other Customization Tasks” on page 16.

® “Rebuilding Existing Applications” on page 17.

Even though you have already installed a previous version of IONA's
mainframe product, you must perform in full the tasks described in the 6.2
version of the Mainframe Installation Guide that pertain to installing on
z/0S, because of the inherent differences between this and previous
versions.

You must perform all these installation tasks in the order in which they are
described in the Mainframe Installation Guide. Some tasks might not be
relevant to your setup, but this is highlighted where appropriate.

15

CHAPTER 3 | Installation Requirements

Installing on z/OS System Services

Standard Customization Tasks

Other Customization Tasks

16

If you choose to install Orbix Mainframe 6.2 on z/OS UNIX System Services
as well as on native z/OS, you must perform in full the tasks described in the
6.2 version of the Mainframe Installation Guide that pertain to installing on
z/0S UNIX System Services.

After successfully installing Orbix Mainframe 6.2 on z/OS (and on z/OS UNIX
System Services if you want), you must perform in full the standard
customization tasks described in the 6.2 version of the Mainframe
Installation Guide.

You must perform all these standard customization tasks in the order in
which they are described in the Mainframe Installation Guide. Some tasks
might not be relevant to your setup, but this is highlighted where
appropriate.

Depending on your setup, there are additional customization tasks that you
might also need to perform. These customization tasks relate to:

® Naming Service and Interface Repository customization.
® |MS adapter customization.
® CICS adapter customization.

If you need to perform any of these tasks, you must perform them in the
order in which they are described in the Mainframe Installation Guide.

PDS names

Rebuilding Existing Applications

In Orbix Mainframe 6.2, PDS naming conventions are different from those in
Orbix 2.3.x-based solutions. The differences can be summarized as follows:

Table 2: Differences in PDS Naming Conventions

2.3.x 6.2

COBOL CBL

JCL JCLLIB

LIB OBJLIB

LOAD LOADLIB

LPA LPALIB

PROCS PROCLIB

RUN LOADLIB

If you have built applications using a previous version of IONA's mainframe

product, you must:

1. Recompile the IDL pertaining to these applications.

Note: See the relevant programmer's guide for the language you are
using for details of how to use the Orbix 6.2 IDL compiler.

2. Check the rest of this guide for details of specific code changes that
you might need to make to your applications.

3. Update any JCL that you have stored in non-IONA libraries, to ensure
that your applications subsequently compile and link correctly with

version 6.2.

Changing your applications and rebuilding them in this way is essential to
allow existing applications to function in accordance with the changes

inherent in version 6.2.

17

CHAPTER 3 | Installation Requirements

18

In this chapter

CHAPTER 4

IDL Migration
Issues

This chapter discusses the main IDL differences between an
Orbix 2.3-based IONA mainframe solution and Orbix
Mainframe 6.2.

This chapter discusses the following topics:

The Opaque Type page 20
IDL Fixed Type Definitions page 21
IDL Defined in Fixed Block Data Sets page 22
imsraw and cicsraw IDL changes page 23
Orbix 6.2 C++ IDL Compiler Output page 25

19

CHAPTER 4 | IDL Migration Issues

The Opaque Type

Migrating to Orbix 6.2 The object-by-value (OBV) specification, introduced in CORBA 2.3 and
supported in Orbix 6.2, replaces opaques.

20

IDL Fixed Type Definitions

IDL Fixed Type Definitions

In This Section

Orbix 6.2

Sample IDL

In summary

This section discusses the following topics:
® Orbix 6.2

® Sample IDL

® Insummary

The Orbix 6.2 IDL compiler complies with the CORBA 2.3 specification for
IDL fixed type definitions. Each fixed type definition must be specified as a
typedef.

The following IDL illustrates a fixed type definition that is specified as a
typedef:

//'1DL fixed type specified as a typedef
typedef fixed<2,2>t_interest;
attribute t_interest interest;

This issue relates to all languages and all platforms.

21

CHAPTER 4 | IDL Migration Issues

IDL Defined in Fixed Block Data Sets

Overview In the native z/OS environment, all IDL source stored in fixed block data sets
must be formatted to adhere to a particular length, because Orbix 6.2
ignores the last eight columns in each record.

This section discusses the following topics:
® Orbix6.2
® Workaround

Orbix 6.2 When Orbix 6.2 accesses fixed block data sets it ignores the last eight
columns in each record — which are usually reserved for sequence
numbers. For example, if your IDL data set is defined as a fixed block record
length 80, the characters after column 72 are ignored.

Note: This is also the case for other Orbix 6.2 fixed block data sets for
example configuration files and the license file.

Workaround If this problem occurs you can do one of the following:
® Move the IDL to variable block data sets.
® Edit the IDL to get around the restriction.

22

imsraw and cicsraw IDL changes

imsraw and cicsraw IDL changes

Overview This section discusses the impact of changes to i msrawand ci csraw DL
interfaces used with the IMS and CICS server adapters.

This section discusses the following topics:
® Details
® Migration impact

Details In this release, the i nsrawand ci csraw|DL interfaces have been modified in
the following ways:

® Theinsrawinterface is now scoped within a module called

I T_MA | MB.
® The ci csrawinterface is now scoped within a module called
I T_MFA C CS.
® Thedo_trans() operation has been removed from both i nsrawand
ci csraw.
Migration impact If you have existing i msrawor ci csrawclients that use the unscoped API,

these clients can no longer interoperate with the new, scoped i nsrawand
ci csrawinterface. To avoid the need to modify these existing clients, you
can configure the IMS and CICS server adapters as follows, to expose the
unscoped version of i nsrawand ci csraw:

pl ugi ns: i nsa: i msraw_api _support = "unscoped";

pl ugi ns: ci csa: ci csraw_api _support = "unscoped";

Valid values for the preceding configuration variables are:

scoped Expose only the scoped | T_MFA | M5: : i msraw or

I T_MFA A CS: : ci csrawAPI. This is the default setting.
unscoped Expose only the unscoped i nsrawor ci csraw API.
bot h Expose both scoped and unscoped versions of the API.

23

CHAPTER 4 | IDL Migration Issues

The associated IDL for both the scoped and unscoped APIs is available in
your Orbix installation. On native z/OS it is located in the

or bi xhl g. I NCLUDE. CRBI X@D. | DL PDS. On z/OS UNIX System Services it is
located in the i nstal | -dir/asp/6.0/idl/orbi x_pdk subdirectory.

24

Orbix 6.2 C++ IDL Compiler Output

Orbix 6.2 C++ IDL Compiler Output

Overview

IDL Compiler Output

Migration Impact

Most C+ + applications require the IDL compiler to generate both the client
stub and server skeleton files. These generated output files have changed
slightly in Orbix 6.2, and so too has the way the IDL compiler is invoked.
Refer to the CORBA Programmer’s Guide, C++ for more information on
how the IDL compiler is invoked.

This subsection discusses the following topics:

® |IDL Compiler Output.

® Migration Impact.

Table 3 summarizes compiler output for both Orbix 6.2 and Orbix 2.3.x for
an IDL file called the grid.idl ina UNIX System Services environment:

Table 3: C++ Compiler Output Comparison for UNIX System Services

Orbix 6.2 Orbix 2.3.x File Description
grid. hh grid. hh Common header file
gri dC cxx gri dC cxx Client stubs
gri ds. cxx grids. cxx Server skeletons
grids. hh Server header file

A server's servant implementation in Orbix 6.2 must contain #i ncl ude
gri ds. hh. Also, a server must be linked with gri dS. o and gri dC o. This
differs from Orbix 2.3.x where you only had to link with gri d. 0. This is
because in Orbix 2.3.x the last line of gri dS. cxx was always

#i nclude gridC cxx.

Existing makefiles need to be updated to take account of any new IDL
compiler options, and care must be taken to explicitly include the client stub
object file in the server’s link line.

Refer to the Orbix 6.2 demonstrations for details on how to upgrade your
makefile structure.

25

CHAPTER 4 | IDL Migration Issues

26

In this Chapter

CHAPTER 5

C+ + Migration
Issues

This chapter describes the main issues involved in migrating
C++ applications on native z/OS and on z/OS UNIX System
Services, from an Orbix 2.3-based IONA mainframe solution
to Orbix Mainframe 6.2.

This chapter discusses the following topics:

C++ Compiler Issues page 28
C++ Client Migration page 29
C++ Server Migration page 42
Migrating Proprietary 2.3 Features page 51

27

CHAPTER 5 | C++ Migration Issues

C++ Compiler Issues

C+ + runtime support

Environment targets

Compiler options

28

Orbix Mainframe 6.2 supports the IBM z/0S V1.4 ANSI C++ compiler, the
z/0S 1.5 ANSI C++ compiler, and the z/OS 1.6 ANSI C++ compiler.
Because IBM no longer supports the 0S/390 V2R10 compiler, IONA has
also removed support and certification for this compiler in this release.

Orbix Mainframe 6.2 supplies a C++ options file in

H.Q CRBI X62. OONFI G CRXCPPO that includes the " TARGET" compiler option
of "ZOBVIR2". The " TARGET" compiler option enables the development of
applications on higher release levels of z/OS for subsequent use on platforms
that are running lower release levels of z/0OS or 0S/390. You can update the
CRXCPPO member with " ZOBV1R4" , " ZCBVIRS" or " ZOSVIRG", as appropriate.
Alternatively, you can remove the " TARGET" option from the CRXCPPO
member. This means that it uses the " QURRENT" option by default, which
corresponds to the z/OS release on which your system is running. For more
information see the IBM publication: C/C++ User’s Guide.

Orbix 6.2 uses the Run Time Type Identification (RTTI) z/OS compiler
option. This allows you to take advantage of C++ dynamic casting. In
previous releases of Orbix, this option was not used because the 0S/390
V2R10 compiler did not support it. Therefore, IONA relied on proprietary
code to simulate this functionality. Because the current supported compilers
all provide the RTTI option, Orbix 6.2 now uses the C++ dynamic casting
(RTTI) option and no longer uses proprietary code.

C++ Client Migration

C+ + Client Migration

Overview This section discusses the following topics:

CORBA Object Location and Binding page 30
Interface Repository Interoperability page 35
IDL-to-C++ Mapping page 36
Client-Side CORBA Compliancy page 37
Callback Objects page 39
System Exception Semantics page 40
Dynamic Invocation Interface (DII) page 41

29

CHAPTER 5 | C++ Migration Issues

CORBA Object Location and Binding

Overview This subsection summarizes the differences between Orbix 2.3.x object
location mechanisms and Orbix 6.2 object location mechanisms. It
discusses the following topics:

® Migration Impact

¢ CORBA Naming Service

® Object-to-string conversion

® corbaloc URL

¢ ORB:resolve_initial_references

Migration Impact All calls to _bi nd() must be removed and replaced with one of the following
object location mechanisms:

® CORBA Naming Service.

® Object-to-string conversion.

® corbaloc URL.

® ORB::resolve_initial_references().

All these alternatives are based on the use of CORBA standard interoperable

object references (IORs), the difference being in where the I0Rs are stored
and how they are retrieved by the client application.

CORBA Naming Service The naming service is the recommended replacement for _bi nd() in most
applications. It is easy to understand and use if the application’s naming
graph is not too complex. Migration to the naming service is straightforward
on the client side. The triplet of nar ker Nane, server Nane, and host Nane,
used by the _bi nd() function to locate an object, is replaced by a simple
name in the naming service.

All applications should use the interoperable Naming Service, which
provides access to future Naming Service implementations.

Access to the Naming Service can easily be wrapped. The only potential
drawback in using the Naming Service is that it might become a single point
of failure or performance bottleneck. If you use the Naming Service only to
retrieve initial object references, these problems are unlikely to arise.

30

Object-to-string conversion

C++ Client Migration

When using the naming service, an object's name is an abstraction of the

object location and the actual location details are stored in the naming

service. Object names are resolved using these steps:

1. Aninitial reference to the naming service is obtained by calling
resol ve_initial _references() with NameServi ce as its argument.

2. The client uses the naming service reference to resolve the names of
CORBA objects, receiving object references in return.

Orbix 6.2 supports the CORBA Interoperable Naming Service, which is
backward-compatible with the old CORBA Naming Service and adds
support for stringified names.

The URL syntax that the Naming Service provides makes it easier to
configure IORs—and is similar to _bi nd() by letting you specify host, port,
and well known object key in readable format. An example of the syntax for
both types is outlined as follows:

® Stringified IOR syntax example:
“I CR 004301EF100. .."
® URL type IOR syntax example:
“corbal oc: : 1. 2@yhost : 3075/ Nam ngSer vi ce”

With the URL syntax, corbal oc is the protocol name, the I1OP version
number is 1. 2, the host name is nyhost, and the port number is 3075.

Note: If you are using the URL type IOR syntax, Orbix 6.2 requires you to
register the stringified IOR against a well known key with the Orbix 6.2
locator daemon. This centralizes the use of stringified IORs in a single
place, and lets you widely distribute readable URLs for clients.

CORBA offers two CORBA-compliant conversion functions:

CCRBA: : ORB: : obj ect _to_string()

CCRBA: : ORB: : string_to_object()

These functions can replace _bi nd(), because they allow a client to create
an IOR with information that is similar to _bi nd() . The Orbix 6.2 locator
daemon redirects the I0R, so it avoids the drawbacks of _bi nd() .

31

CHAPTER 5 | C++ Migration Issues

corbaloc URL

32

The obj ect _to_string() and string_to_object() functions allow you to
convert an object reference to and from the stringified interoperable object
reference (stringified IOR) format. These functions enable a CORBA object to
be located as follows:

1. A server generates a stringified IOR by calling
OCRBA: : CRB: : obj ect _to_string().

2. The server passes the stringified IOR to the client (for example, by
writing the string to a file).

3. The client reads the stringified IOR from the file and converts it back to
an object reference, using OORBA : CRB: : string_t o_obj ect ().

Orbix 6.2 uses a sequence of octets to compose an object’s ID. Orbix 2.3.x
uses string markers. CORBA provides helper methods called

string_to (bjectld() and Qbjectld to string() toconvert between the
two types, so migration from marker dependencies to Object IDs should be
straightforward.

Because they are not scalable, the obj ect _to_string() and
string_to_object () functions are generally not useful in a large-scale
CORBA system. Use them only to build initial prototypes or proof-of-concept
applications.

A corbaloc URL is a form of human-readable stringified object reference. If
you are migrating your clients to Orbix 6.2 but leaving your servers as Orbix
2.3 applications, the corbaloc URL offers a convenient replacement for
_bind().

To access an object in an Orbix 2.3 server from an Orbix 6.2 client, using a
corbaloc URL, perform the following steps:

1. Obtain the object key, ObjectKey, for the object in question, as follows:
i. Get the Orbix 2.3 server to print out the stringified IOR using, for
example, the OORBA: : CRB: : obj ect _to_string() operation. The
result is a string of the form | R 00...
ii. Use the Orbix 6.2 i or dunp utility to parse the stringified I0R.
Copy the string that represents the object key field, ObjectKey.
2. Construct a corbaloc URL of the following form (where DaenonHost and
DaenonPort are the Orbix daemon’s host and port respectively):

corbal oc: i i op: 1. 0@eenonHost : DaenonPor t / (hj ect Key%®0

C++ Client Migration

A null character, %00, is appended to the end of the (uj ect Key string,
because Orbix 2.3 applications expect object key strings to be
terminated by a null character.

3. In the source code of the Orbix 6.2 client, use the

QOCRBA : CRB: : string_to_object () operation to convert the corbaloc
URL to an object reference.

The general form of a corbaloc URL for this case is as follows:
corbal oc: iiop: @ CPVer si on@st : Port/ O bi x3Chj ect Key%®0

In the preceding example, the components of the corbaloc URL are as
follows:

® @ crPversi on—The maximum GIOP version acceptable to the server.

Can be either 1.0 or 1.1.

Host and Port—The daemon’s (or server's) host and port. The Host
can either be a DNS host name or an IP address in dotted decimal
format.

The O bi x3Qj ect Key takes the following general form:
:\ Host : Svr Nare: Mar ker : : | FRSvr Narre: | nt er f aceName%00

In the preceding example, the components of the Orbix 3 object key are as

follows:

® Host—The server host. The Host can either be a DNS host name or an
IP address in dotted decimal format.

® SvrName—The server name of the Orbix 2.3 server.

¢ narker—The CORBA object’s marker.

® | FRSvr Name—Can be either IR or IFR.

I nt er f aceName—The object’s IDL interface name.

Note: Constructing an Orbix 2.3 object key directly based on the
preceding format does not always work because some versions of Orbix
impose extra restrictions on the object key format. Extracting the object
key from the server-generated IOR is a more reliable approach. If you
encounter any difficulties with using corbaloc URLs, please contact
suppor t @ona. com

33

CHAPTER 5 | C++ Migration Issues

ORB:resolve_initial_references

34

The OCRBA: : CRB: :resol ve_initial _references() operation provides a
mechanism for obtaining references to basic CORBA objects (for example,
the naming service, the interface repository, and so on).

Orbix 6.2 allows the resol ve_i ni ti al _references() mechanism to be
extended, so it can use application-specific services along with typical ones
such as the Naming Service. For example, to access the BankAppl i cati on
service using resol ve_i nitial _references(), simply add the following
variable to the Orbix 6.2 configuration:

Obix 6.2 Configuration File
initial _references: BankAppl i cation:reference =
"1 OR 010347923849. . . "

Use this mechanism sparingly. The OMG defines the intended behavior of
resol ve_ini tial _references() and the arguments that can be passed to
it. A name that you choose now might later be reserved by the OMG. It is
generally better to use the naming service to obtain initial object references
for application-level objects.

C++ Client Migration

Interface Repository Interoperability

Overview Significant changes were made to the IDL definition of the Interface
Repository (IFR) between CORBA 2.2 and CORBA 2.3. The Orbix 6.2 IFR is
written to conform to the CORBA 2.4 specification and it has many
advantages over the Orbix 2.3 IFR.

If you have both Orbix 2.3 and Orbix 6.2 applications that use the IFR, it is
recommended that you change the Orbix 2.3 applications to use the Orbix
6.2 IFR.

Modifying Orbix 2.3 applications To change an Orbix 2.3 C++ application to use the Orbix 6.2 IFR, perform
to use the Orbix 6.2 IFR the following steps:

1. Take the IDL for the Orbix 6.2 IFR and generate stub code from it,
using the Orbix 2.3 IDL compiler.

2. Modify the source code of your Orbix 2.3 application to be consistent
with the IDL for the Orbix 6.2 IFR.

3. Link your Orbix 2.3 application with the IFR stub code generated in
step 1.

35

CHAPTER 5 | C++ Migration Issues

IDL-to-C+ + Mapping

Overview

The CORBA::Any Type

The CORBA::Environment
parameter

36

The definition of the IDL-to-C+ + mapping has changed little going from
Orbix 2.3 to Orbix 6.2 (apart from some extensions to support valuetypes).

Two notable changes are:
® The CORBA::Any Type.
® The CORBA::Environment parameter.

In Orbix 6.2, it is not necessary to use the type-unsafe interface to Any.

Recent revisions to the CORBA specification have filled the gaps in the

IDL-to-C+ + mapping that made these functions necessary. That is, the
following functions are deprecated in Orbix 6.2:

/] C++
// CCRBA: : Any Constructor.
Any(

OCRBA: : TypeCode_ptr tc,

voi d* val ue,

OORBA: : Bool ean rel ease = 0
)
// CCRBA:: Any::replace() function.
voi d repl ace(

OCRBA: : TypeCode_ptr,

voi d* val ue,

OORBA: : Bool ean rel ease = 0

In Orbix 2.3, the signatures of IDL calls contain the OORBA: : Envi r onment
parameter. In Orbix 6.2, the signatures of IDL calls do not contain the
QCRBA: : Envi ronnent parameter.

You must therefore remove OCRBA: : Envi ronnent parameters from servant
implementation classes. The OCRBA: : Envi ronment parameter is needed for
compilers that do not support native C++ exception handling, and as a
hook for some Orbix proprietary mechanisms.

C++ Client Migration

Client-Side CORBA Compliancy

Overview

Processing Requests

Clean Shutdown

Global Objects

CORBA::Orbix Object Support

Incorrect Raising of INV_OBJREF

Orbix 6.2 enforces strict compliance with the CORBA 2.3 specification. This
sub-section describes the main client-side CORBA compliancy issues that
should be encountered. It discusses the following topics:

® Processing Requests

¢ (Clean Shutdown

® Global Objects

® CORBA::Orbix Object Support

® Incorrect Raising of INV_OBJREF

® Incorrect Raising of COMM_FAILURE

Call cORBA : CRB i nit () before processing any requests.

Call OCRBA: : ORB: : shut down(1) and OCRBA : ORB: : destroy() before the
end of mai n() to ensure clean shutdown and to prevent resource leaks.

The global objects in Orbix 2.3.x means that all ORB initialization is
completed before mai n() is entered. Orbix 6.2 requires you to initialize the
ORB explicitly in your client and server mainlines.

The QOORBA : Orbi x object is not supported in Orbix 6.2. Because this
object is unavailable, you must convert Orbix 6.2 client code that uses this
convention to call methods on either CORBA: : GRB or Port abl eSer ver .

The I NV_CBIREF exception means that an object reference is corrupt or so
malformed that an ORB cannot locate it, or even its server. Customers who
use | \V_CBIREF to remove proxy objects from memory must now use
CBJECT_NOT_EXI ST.

An Orbix 6.2 application must raise the CBIECT_NOT_EX ST exception, to
indicate that an object does not exist after the client has successfully
contacted the server.

37

CHAPTER 5 | C++ Migration Issues

Incorrect Raising of
COMM_FAILURE

38

CORBA specifies to throw a COwW FAI LURE exception only when a network
error occurs after a request is made, but before the reply is received. Orbix
6.2 throws the TRANSI ENT exception when a connection to the server
cannot be established. The TRANSI ENT exception indicates that an object
reference is currently unusable but might work later. This distinction is

important to applications that catch COw FAI LURE explicitly to implement
connection retries.

C++ Client Migration

Callback Objects

Overview

POA Policies for Callback Objects

Multi-Threaded Clients

Callback objects must be contained in a POA like any other CORBA object.
This subsection discusses the following topics:

® POA Policies for Callback Objects
® Multi-Threaded Clients

Table 4 shows the most sensible POA policies for a POA that manages
callback objects.

Table 4: POA Policy Types and Their Values for Callback Objects

Policy Type Policy Value

Lifespan Policy TRANSI ENT

ID Assignment Policy SYSTEM | D

Servant Retention Policy RETAI N

Request Processing Policy USE_ACTI VE_CBJECT_MAP_QONLY

Note: By choosing a TRANSI ENT lifespan policy, you remove the need to
register the client with an Orbix 6.2 locator daemon.

These policies allow for easy management of callback objects and a
straightforward upgrade path.

Callback objects offer one of the few cases where the root POA has
reasonable policies, provided the client is multi-threaded (as it normally is
for callbacks) to support callbacks efficiently.

39

CHAPTER 5 | C++ Migration Issues

System Exception Semantics

Overview

System exceptions

Minor codes

40

Orbix 2.3.x clients that catch specific system exceptions might need to
change the exceptions they handle when they are migrated to Orbix 6.2.

Orbix 6.2 follows the latest CORBA standards for exception semantics.

Table 2 shows the two system exceptions most likely to affect existing code.

Table 5: Migrated System Exceptions

When This Happens

Orbix 2.3.x Raise

Orbix 6.2 Raise

server

Server object does not | | N\V_CBIREF CBJECT_NOT_EXI ST
exist
Cannot connect to COW FAI LURE TRANSI ENT

System exception minor codes are completely different between Orbix 2.3.x
and Orbix 6.2. Applications that examine minor codes need to be modified
to use Orbix 6.2 minor codes.

C++ Client Migration

Dynamic Invocation Interface (DII)

Overview

Orbix 2.3.x Dlls

Orbix 6.2 Dlls

Migration Impact

This subsection summarizes the differences in availability of DIl methods
between Orbix 2.3.x and Orbix 6.2. It discusses the following topics:

® Orbix 2.3.x Dlls
¢ Orbix 6.2 Dlls
® Migration Impact

Orbix-specific DIl methods are available in Orbix 2.3.x.

Orbix-specific DIl methods are not available in Orbix 6.2. Stub code
generated by Orbix 6.2 consists of sets of statically generated
CORBA-compliant DIl calls.

Code that uses OCRBA: : Request : : oper at or <<() methods and overloads
must be changed to use CORBA-compliant DIl methods.

41

CHAPTER 5 | C++ Migration Issues

C++ Server Migration

Overview Server code typically requires many more changes than client code. It is
relatively easy to migrate a BOA-based server to a POA-based server by
putting all objects in a simple POA that uses an active object map.
However, this approach is unable to exploit most of the functionality that a
POA-based server offers. It is worthwhile redesigning and rewriting servers
so they benefit fully from POA functionality.

In this Section This section discusses the following topics:
BOA to POA Migration page 43
Activation Modes page 45
Object/Servant Lifecycles page 46
Creating Object References Without Servants page 48
Function Signatures page 49
Exception-Safe Servant Implementations page 50

42

C++ Server Migration

BOA to POA Migration

Overview

Writing POA-based Code

Choosing POA Policies

Migrating an Orbix 2.3.x server largely consists of removing BOA-specific
code and replacing it with POA functionality. This subsection describes the
issues that you must consider. It discusses the following topics:

Writing POA-based Code
Choosing POA Policies
Object IDs versus Markers
Migrating Orbix Loaders
Servant Locators
Overriding the Default POA

Several resources and strategies are available for learning how to write
efficient POA-based code:

Enroll in an Orbix 6.2 training course.

Read Henning/Vinoski's Advanced CORBA Programming with C++.
Examine the demonstrations that are provided with your Orbix 6.2
installation.

Use the Orbix 6.2 code generation toolkit to generate test clients and
automate the more routine aspects of server programming.

Note: Orbix Mainframe does not support use of the code generation
toolkit in either native z/OS or UNIX System Services. However, you
can use the code generation toolkit off-host, with Orbix on Windows
or UNIX, and then copy the generated code to z/OS.

A POA that uses a servant manager, and especially a servant locator, can
assert great control over object life cycles. A POA can also implement a
default servant, which can simulate almost unlimited numbers of objects.

IONA’s Orbix 6.2 training course contains much advice, including a decision
flowchart on how to choose POA policies.

43

CHAPTER 5 | C++ Migration Issues

Object IDs versus Markers

Migrating Orbix Loaders

Servant Locators

Overriding the Default POA

44

Orbix 6.2 uses a sequence of octets to compose an object’s ID. Orbix 2.3.x
uses string markers. CORBA provides helper methods
string_to_(bjectld() and Qbjectld_to_string() toconvert between the
two types, so migration from marker dependencies to Object IDs should be
straightforward.

Orbix loader architecture is constrained by BOA limitations. The BOA always
maintains an object map internally. This can lead to duplicated efforts and
synchronization concerns, if you try to maintain your own object map for
caching and eviction.

A servant locator gives you full control over servant creation and routing of
CORBA requests to the appropriate servants. Servant locators also help you
avoid thread-related blockages.

The issues that surround implicit activation of objects in an unexpected POA
require careful consideration by anyone who works with Orbix 6.2. Orbix
6.2 genies offer several options to override _def aul t _PQA() that your own
code can emulate.

C++ Server Migration

Activation Modes

In This Section

BOA Activation Modes

POA Shared Modes

Migration Impact

Orbix 6.2 Enterprise Edition

This subsection describes migration issues relating to activation modes. It
discusses the following topics:

® BOA Activation Modes

® POA Shared Modes

® Migration Impact

® Orbix 6.2 Enterprise Edition

BOA activation modes—Shared, Unshared, Per-method and Persistent—are

used for a variety of reasons: to achieve multi-threaded behavior in a single-

threaded environment, to increase server reliability, and so on. All Orbix

2.3.x activation modes, except Shared, are typically used to achieve some

form of load balancing that is transparent to the client. The two most

popular modes are Shared and the Orbix-specific mode, Per-Client-Pid:

¢ Shared mode — enables all clients to communicate with the same
server implementation.

® Per-Client-Pid mode — enforces a one-to-one relationship between the
client process and server process, and is sometimes used to maximize
server availability.

The POA provides three shared activation modes:
®* always

¢ on-demand

® never

The choice of activation mode has almost no impact on BOA-based or
POA-based server code, so the migration path should be straightforward.

The Enterprise Edition of Orbix 6.2 includes transparent locator-based load
balancing over a group of replica POAs. This should answer the needs
currently addressed by most Orbix 2.3.x activation modes.

45

CHAPTER 5 | C++ Migration Issues

Object/Servant Lifecycles

Overview

Creating Object References with
POAs

BOA-based Implementation

POA-based Implementation

46

This subsection summarizes the differences in object reference creation
between BOAs and POAs. It discusses the following topics:

® Creating Object References with POAs
¢ BOA-based Implementation

® POA-based Implementation

® Migration Impact

Because the POA separates CORBA objects from servants, it offers markedly
different approaches to the creation of object references. For example, the
following IDL provides a factory object, openNewAccount (), for creating
Account objects:

interface Account {.}
interface Bank {
Account openNewAccount (i n string owner);

IE

A typical C++ BOA-based implementation of the Bank: : openNewAccount ()
method looks like this:

Account _ptr Bank_i:: openNewAccount (const char* owner)
{

Account _i * newAccl npl = new Account _i (owner);

St oreWt hAl | TheQt her Account s(newAccl npl) ;

return Account::_duplicat e(newAccl npl);

A POA-based implementation is slightly, but significantly, different:

Account _ptr Bank_i:: openNewAccount (const char* owner)
{

Account _i * newAccl npl = new Account _i (owner);

St oreWt hAl | TheQt her Account s(newAccl npl) ;

return newAccl npl ->_this();

C++ Server Migration

Migration Impact You do not need to manage the object reference. It is returned to the client
and forgotten until a client makes an invocation on it. The server then
determines which servant processes the request. You can delegate this work
to the POA, or you use a servant manager to do it yourself.

47

CHAPTER 5 | C++ Migration Issues

Creating Object References Without Servants

Overview

BOA-Based Servers

POA-Based Servers

Scalability of POA-Based Servers

Migration Impact

48

This subsection summarizes the differences in the way that BOAs and POAs
associate object references with servants. It discusses the following topics:

® BOA-Based Servers

® POA-Based Servers

® Scalability of POA-Based Servers
® Migration Impact

In BOA-based servers, the ti e approach helps to separate a CORBA object
from its servant. Because the POA enforces this separation, there is usually
no reason to use the ti e approach. It is useful only on the rare occasion
where a servant cannot inherit from third party classes, as mandated by
some object-oriented databases. In general, the ti e approach adds an extra
layer of unnecessary functionality.

A POA-based server lets you create CORBA object references without
creating their servant implementations. When created you can send these
references around your CORBA system and deal with processing invocations
on them at a later stage.

Creating CORBA object references without creating their servant
implementations lends itself to very scalable solutions. For example, you
can distribute all Account object references in a CORBA system and use a
default servant to process all the invocations on them, rather than
implement a unique servant for each object. This is logical as there typically
might be only several invocations on a given Account object each week.

You do not need to manage object references. An object reference is
returned to the client and forgotten until a client makes an invocation on it.
The server then determines which servant processes the request. You can
delegate this work to the POA, or you can use a servant manager to do it
yourself.

C++ Server Migration

Function Signatures

Changes to the signature

In Orbix 6.2, two significant changes have been made to C++ function
signatures:

® The OCRBA : Envi ronnent parameter has been dropped.
® New types are used for out parameters. An out parameter of T type is
now passed as a T_out type.

Consequently, when migrating C++ implementation classes you must
replace the function signatures that represent IDL operations and attributes.

49

CHAPTER 5 | C++ Migration Issues

Exception-Safe Servant Implementations

Overview This subsection describes migration issues relating to the _var type. It
discusses the following topics:

® CORBA 2.1 and Behavior of the _var Type.
® Exception-Safe Use of var Type.

CORBA 2.1 and Behavior of the The CORBA 2.1 specifications and earlier versions failed to consider the
_var Type behavior of the _var type during a servant method implementation that

might require the _var to give up the memory that it owns (usually under
exceptional circumstances).

Exception-Safe Use of _var Type =~ The CORBA 2.2 specification improved the C++ mapping by introducing
the _retn() method on _var classes. This method ensures exception-safe

usage of _var types and allows the _var to properly relinquish ownership
of its data.

For example:

/] C++

char* Fool npl : : get_string() throw CORBA: : Syst enException) {
OORBA: : String_var result = CORBA :string_dup("foo”);

/1 Now do sonething that mght throw a SystenException,

I/ for instance, nmake another OCRBA call.

/Il This is safe since result is a _var and cl eans

// up when it goes out of scope

return result. _retn(); // Gve up ownership to return

}

50

Migrating Proprietary 2.3 Features

Migrating Proprietary 2.3 Features

Overview This section discusses the issues that relate to migrating proprietary Orbix
2.3.x features to Orbix 6.2.

In this section This section discusses the following topics:
Orbix Filters and CORBA 2.3 Alternatives page 52
Transformers page 56
Orbix-Specific APls page 57
Connection Management page 58
Callbacks and Bidirectional GIOP page 60

51

CHAPTER 5 | C++ Migration Issues

Orbix Filters and CORBA 2.3 Alternatives

Overview This subsection summarizes, from the point of view of their purpose, the
CORBA 2.3 alternatives in Orbix 6.2 to Orbix filters. It discusses the
following topics:
® Orbix Filter Functions
® Request Logging
® Accessing a Client's TCP/IP Information
® Piggybacking Extra Data
® Multi-Threaded Request Processing
® Thread Pools
® Thread Pool Configuration Settings
® WorkQueue Policies

Orbix Filter Functions Orbix proprietary filter mechanisms serve many purposes. These include:
® Request logging.
® Accessing the client's TCP/IP information using
Request : : descriptor().
® Piggybacking extra data.
® Security using an Aut henti cationFilter.
® Multi-threading using a ThreadFi | ter.

The following sections discuss Orbix 6.2 alternatives.

Request Logging To achieve request logging capabilities, use Port abl el nt er cept or
interfaces to obtain access to a CORBA request at any stage of the
marshalling process. These interfaces offer much more than Orbix filters.
You can use them to add and examine service contexts. You can also use
them to examine the actual arguments to the request.

Note: The Portabl el ntercept or draft specification is still undergoing
review and might be subject to changes before final ratification.

52

Accessing a Client’s TCP/IP
Information

Security using an authentication
filter

Piggybacking Extra Data

Multi-Threaded Request
Processing

Migrating Proprietary 2.3 Features

Some clients use Orbix-specific extensions to access socket-level
information, such as the caller's IP address, to implement proprietary
security features. Methods such as GCRBA: : Request : : descriptor (),
however, are not available in Orbix 6.2, so alternatives must be found.

To provide security for your applications, it is recommended that you use an
implementation of the security service provided with the Orbix 6.2
Enterprise Edition off-host instead. See the Mainframe Security Guide for
more details.

Note: File descriptors are not exposed, because Orbix 6.2 transparently
supports protocols such as shared memory or multicast, which do not
necessarily have a concept of a file descriptor. Exposing a file descriptor
breaks this transparency and greatly constrains the flexibility of the ORB
and the application.

Some Orbix 2.3.x applications use authentication filters to implement
security features. In Orbix 6.2, it is recommended that you use the security
service that is made available with the Orbix 6.2 Enterprise Edition off-host.
See the Mainframe Security Guide for more details.

Piggybacking is a feature in Orbix 2.3.x that enables you to add and remove
extra arguments to a request message. Piggybacking extra data from client
to server should be changed to the CORBA 2.3-compliant approach of using
Servi ceCont ext s.

Orbix 2.3.x supports the Orbix ThreadFi | ters mechanism, which offers
multi-threading capabilities.

In Orbix 6.2, request processing conforms to the CORBA 2.4 specification.

Each POA can have its own threading policy:

® SINGE THREAD MXDEL ensures that all servant objects in that POA
have their functions called in a serial manner. In Orbix 6.2, servant
code is called only by the main thread; therefore, no locking or
concurrency-protection mechanisms need to be used.

® CORB_CTR._MXEL leaves the ORB free to dispatch CORBA invocations to
servants in any order and from any thread it chooses.

53

CHAPTER 5 | C++ Migration Issues

Thread Pools

Thread Pool Configuration
Settings

54

Because the CORBA 2.4 specification does not specify exactly what
happens when the CRB_CTRL_MODEL policy is chosen, Orbix 6.2 makes some
proprietary extensions to the threading model.

The multi-threaded processing of requests is controlled using the Orbix 6.2
work queue feature. Two kinds of work queue are provided by Orbix 6.2:

Automatic Work Queue: A work queue that feeds a thread pool. When
a POA uses an automatic work queue, request events are automatically
dequeued and processed by threads. The size of the thread pool is
configurable.

Manual Work Queue: A work queue that requires the developer to
explicitly dequeue and process events.

Manual work queues give developers greater flexibility when it comes
to multi-threaded request processing. For example, prioritized
processing of requests could be implemented by assigning high-priority
CORBA objects to one POA instance and low-priority CORBA objects to
a second POA instance. Given that both POAs are associated with
manual work queues, the developer can write threading code that
preferentially processes requests from the high-priority POA.

Thread pools are created and controlled through the ORB configuration. All
POAs with a policy of CRB_CTRL_MXDEL share a thread pool within the ORB.
By default, the thread pool starts with five threads, and adds new threads
when the number of outstanding requests exceeds the number of threads.
By default, there is no limit to the maximum number of threads.

The configuration settings for the thread pool are:

t hread_pool : hi gh_wat er _nar k
thread_pool : | ow wat er _nar k
thread_pool :initial_threads

t hread_pool : max_queue_si ze

These settings can be controlled through the Orbix 6.2 configuration.

WorkQueue Policies

Migrating Proprietary 2.3 Features

Orbix 6.2 also provides a proprietary Wr kQueue policy, which you can

associate with a POA and thereby control the flow of incoming requests for

that POA. You can implement your own Wr kQueue interface, or use

IONA-supplied Wr kQueue factories to create one of two Wr kQueue types:

® A Manual Wor kQueue, which requires the developer to explicitly
dequeue and process events.

® An Aut omat i cWor kQueue, which feeds a thread pool.

When a POA uses an Aut omat i cWr kQueue, request events are automatically

dequeued and processed by threads. Use one of the preceding thread pool

configuration settings listed to configure the size of the thread pool.

55

CHAPTER 5 | C++ Migration Issues

Transformers

Orbix 2.3.x

Orbix 6.2

56

Transformers are a deprecated feature of Orbix 2.3.x that allow you to apply
customized encryption to CORBA request messages. This could be used to
implement a primitive substitute for a security service.

In Orbix 6.2, transformers are not supported. It is recommended, instead,
that you use the security service that is made available with the enterprise
edition of Orbix 6.2. See the Mainframe Security Guide for more details.

Migrating Proprietary 2.3 Features

Orbix-Specific APls

In This Section

Availability of ORB Classes in
Orbix 2.3.x

Availability of ORB Classes in
Orbix 6.2

Migration Impact

This subsection describes migration issues relating to Orbix-specific APIs. It
discusses the following topics:

® Availability of ORB Classes in Orbix 2.3.x.

® Availability of ORB Classes in Orbix 6.2.

® Migration Impact.

The Orbix ORB class has many proprietary configuration Application
Programming Interfaces (APIs) and extensions, such as
maxConnect Ret ri es() and bi ndUsi ngl | CP() .

Proprietary Orbix ORB class APIs are not available in the Orbix 6.2 ORB
class.

In general, these calls are no longer necessary, or their functionality is
available through configuration.

57

CHAPTER 5 | C++ Migration Issues

Connection Management

Overview

IIOP Configuration Variables

ORBs and IIOP Connections

File Descriptor Limits

58

Orbix 6.2 provides an active connection manager that allows the ORB to
reclaim connections automatically, and thereby increases the number of
clients that can concurrently use a server beyond the limit of available file
descriptors.

This subsection discusses the following topics:

® |IOP Configuration Variables

® ORBs and IIOP Connections

® File Descriptor Limits

® File Descriptor Limits and Orbix 6.2

® TCP/IP Socket-Level Access

IIOP connection management is controlled by four configuration variables:

® plugins:iiop:inconng_connections:hard_|init setsthe maximum
number of incoming (server-side) connections allowed to 110P. IIOP
refuses new connections above this limit.

® plugins:iiop:inconm ng_connections:soft_|init determines when
IIOP starts to close incoming connections.

® plugins:iiop:outgoing_connections:hard |imt setsthe maximum
number of outgoing (client-side) connections allowed to 11OP. 11OP
refuses new outgoing connections above this limit.

® plugins:iiop:outgoing_connections:soft_|init determines when
IIOP starts to close outgoing connections.

The ORB first tries to close idle connections in least-recently-used order. If
there are no idle connections, the ORB closes busy connections in
least-recently-opened order.

Active connection management effectively remedies file descriptor limits
that have constrained previous Orbix applications. If a client is idle for a
period of time and the server ORB reaches its connection limit, it sends a

File Descriptor Limits and Orbix
6.2

TCP/IP Socket-Level Access

Migrating Proprietary 2.3 Features

GIOP d oseConnecti on message to the client and closes the connection.
Later, the same client can transparently re-establish its connection, to send
a request without throwing a CORBA exception.

Orbix 6.2 is configured to use the largest upper file descriptor on each
supported operating system (OS). On a UNIX OS it is possible to rebuild the
OS kernel to obtain a larger number. However, active connection
management should make this unnecessary.

File descriptors are not exposed, because Orbix 6.2 transparently supports
protocols such as shared memory or multicast, which do not necessarily
have a concept of a file descriptor. Exposing a file descriptor breaks this
transparency and greatly constrains the flexibility of the ORB and the
application.

Note: Orbix 2.3.x throws a COW FAl LURE exception on the first attempt
at re-connection; server code that anticipates this exception should be
reevaluated against Orbix 6.2 functionality.

Orbix 6.2 does not allow access to TCP/IP sockets or transport-level
information, nor does it mandate a TCP/IP transport layer. You can specify a
transport plug-in such as multicast, (which is connectionless), SOAP, HTTP,
ATM, and so on. The shared memory transport (SIOP), for example, does
not use file descriptors or sockets. Because Orbix 6.2 has no equivalent to
the Orbix | aCal I back functionality, you must migrate any code that uses it.

59

CHAPTER 5 | C++ Migration Issues

Callbacks and Bidirectional GIOP

Overview

Motivation for bi-directional 1IOP

Features

References

60

Orbix 6.2 introduces support for bidirectional GIOP, based on an OMG
standard. This is a new feature introduced since Orbix E2A ASP v 6.0.
Previously (in Orbix E2A ASP v5.x and v6.0), bidirectional GIOP was not
supported, or was not based on an OMG standard (Orbix 3.x and earlier).

Bidirectional GIOP was introduced in Orbix in order to overcome the
limitations of standard GIOP in relation to using callback objects through a
firewall.

IONA’s implementation of bidirectional GIOP has the following features:

1. Compliant with the modified bidirectional GIOP approach described in
the firewall submission.

2. Compatible with GIOP 1.2 (that is, not dependent on GIOP 1.4
Negot i at eSessi on messages).

3. Decoupled from IIOP, so that it can be used over arbitrary
connection-oriented transports (for example, SHMIOP).

4. Supports weak Bi Di rl ds initially.

5. Supports bidirectional invocations on legacy Orbix 2.3.x callback
object references in order to facilitate phased migration to Orbix 6.2.

For more details about the bidirectional GIOP support in Orbix 6.2, see the
following references:

® CORBA Programmer’s Guide
® Administrator’'s Guide

CHAPTER 6

COBOL Migration
|ssues

This chapter describes the issues involved in migrating COBOL
applications from an Orbix 2.3-based IONA mainframe
solution to Orbix Mainframe 6.2.

In this Chapter This chapter discusses the following topics:
Name Mapping Issues page 63
Copybook Names Based on IDL Member Name page 89
Name Scoping and the COBOL Compilers page 97
Typecode Name and Length Identifiers page 107
Reserved COBOL and OMG Keywords page 116
Error Checking and Exceptions page 122
Nested Unions in IDL page 126
Mapping for Arrays page 131
Working Storage data Items and Group Moves page 133
Mapping for IDL type Any page 135
CORBA Copybook Additions page 137

61

CHAPTER 6 | COBOL Migration Issues

62

Parameter Passing of Object References in IDL Operations page 138
CORBA Object Location and Binding page 139
API Migration Issues page 145
COBOL IMS Server Migration Issues page 151
COBOL IMS Client Migration Issues page 165
COBOL CICS Server Migration Issues page 171
COBOL CICS Client Migration Issues page 178
Miscellaneous page 181

Name Mapping Issues

Name Mapping Issues

In This Section

This section discusses the following topics:

Fully Qualified Level 01 Data Names page 64
Operation and Level 88 Data Names page 68
IDL Constant Definitions Mapped to Fully Qualified Names page 72
Derived Interface Names and Fully Qualified Names page 77
Numeric Suffixes for Data Names page 80
160-Character Limit for String Literals page 81
Maximum Length of COBOL Data Names page 86

63

CHAPTER 6 | COBOL Migration Issues

Fully Qualified Level 01 Data Names

Overview This subsection summarizes the differences in the way that gencbl and the
Orbix 6.2 Compiler generate level 01 data names. It discusses the following
topics:
® The gencbl Utility
® Orbix 6.2 IDL Compiler
® Sample IDL
® The genchl Utility Output
® Orbix 6.2 IDL Compiler Output
® Migration Impact
® Example of Using the -M Argument
® |In Summary

The gencbl Utility The gencbl utility uses only the interface name as a prefix for generated
data names. The gencbl utility can only support interfaces that are defined
within a single module. It can therefore not support multiple levels of nested
modules and interfaces.

Orbix 6.2 IDL Compiler The Orbix 6.2 IDL Compiler replaces the genchbl utility. The Orbix 6.2 IDL
Compiler generates fully qualified names for COBOL 01 level data items.
This means that it includes both module and interface names in COBOL
data names. It can therefore support any level of scoping in IDL members
(that is, multiple levels of nested modules and interfaces).

The ability of the Orbix 6.2 IDL Compiler to generate fully qualified names
ensures the uniqueness of each generated name when, for example, the
same operation name or attribute is used at a different scope within an IDL
member.

64

Sample IDL

The genchbl Utility Output

Orbix 6.2 IDL Compiler Output

Migration Impact

Name Mapping Issues

Consider the following IDL sample called the AMOIDULE member:
nmodul e Mynod

{
interface nyinter

{
}

voi d nyop(inout |ong nyl ong);

The gencbl utility outputs the following for the preceding IDL sample:

01 MY NTER MYCP- ARGS.
03 MYLONG PI CTURE S9(09) Bl NARY.

The module name is omitted from the 01 level data name.

Orbix 6.2 IDL Compiler outputs the following for the preceding IDL:

01 MYMOD- WYl NTER- MYCP- ARGS.
03 MYLONG PI CTURE S9(10) Bl NARY.

The Orbix 6.2 IDL Compiler includes Mynod in the 01 level data name

Use the - Margument that is provided with the Orbix 6.2 IDL Compiler to
avoid having to make changes to your application source code. The - M
argument allows you to generate a mapping member that you can then use
to map alternative names to your fully qualified data names. You can set
these alternative names in the mapping member to be the same as the
COBOL data names that were originally generated by gencbl .

You must run the Orbix 6.2 IDL Compiler twice, first with the - Mcreat eN
and then the - Mprocess argument. The first run generates the mapping
member, complete with the fully qualified names and the alternative name
mappings. The alternative name mappings generated are dependent on the
argument given to the - Mcr eat eN where Ncan have an integer value of
either 0, 1, or 2. At this point you can manually edit the mapping member (if
necessary) to change the alternative names to the names you want to use.

65

CHAPTER 6 | COBOL Migration Issues

Then run the - Mprocess argument again, this time to generate your COBOL
copybooks complete with the alternative data names in the specified
mapping member.

Refer to the COBOL Programmer’s Guide and Reference for an example of
how to use the - M argument.

Example of Using the -M The - Margument can be used to make the Orbix 6.2 compiler output the
Argument same as the gencbl output for the preceding IDL. The steps to do this are as
follows:
Step Action

1 | Create a mapping member for the IDL by running the mapping
member as follows:

/11 DLCBL EXEC CORXI DL,

I SOURCE-AMCDULE,

/1 | DL=&CRBI X. . DEMOS. | DL,

I CCPYLI B=&CRBI X. . DEMCS. CCBCL. GCPYLI B,
/1 | MPL=&CRBI X. . DEMCS. CCBCL. SRC,

/1 | DLPARME' - cobol : - Mcr eat eIMYNAP

/11 DLNAP DD D SP=SHR DSN=&CRBI X. . DEM36. CCBCL. MAP
This produces the following in the mapping member:
M/mod Mynod

M/mod/ nyi nter nyinter

Mynod/ nyi nt er/ nyop nyi nt er-nyop

66

Name Mapping Issues

Step Action

2 | Using the mapping member in step 1 and run the IDL compiler
again as follows:

/11 DLCBL EXEC ORXI DL,

/1 SOURCE=AMIDULE,

/1 | DL=&CRBI X. . DEMXS. | DL,

/1 CCPYLI B=&CRBI X. . DEMDS, QOBQL. CCPYLI B,
/1 | MPL=&CRBI X. . DEMCB. GQCBCAL. SRC,

11 | DLPARME' - cobol : - Mpr ocessMYNAP

//1DLMAP DD Dl SP=SHR DSN=&CRBI X. . DEMOS. QCBOL. MAP

This produces output which is the same as that generated by
gencbl for this operation section:

01 MYl NTER- MYCP- ARGS.
03 MYLONG Pl CTURE S9(10) Bl NARY.

In Summary Affects both clients and servers. Requires use of the - Margument, and if
necessary, code changes.

67

CHAPTER 6 | COBOL Migration Issues

Operation and Level 88 Data Names

Overview This subsection summarizes the differences in the way that gencbl and the
Orbix 6.2 IDL Compiler generate level 88 and level 01 data names for
operations and attributes defined in IDL. It discusses the following topics:

® The gencbl approach

® Orbix 6.2 IDL Compiler

® Migration Impact

® Sample IDL

® The gencbl Utility Output

® Orbix 6.2 IDL Compiler Output

® Example of Using the -M Argument
® |In Summary

The gencbl approach The gencbl utility does not use the fully qualified name, instead it uses the
interface name only as the first qualifier. You can use the - Margument with
the Orbix 6.2 IDL Compiler to mimic gencbl output.

Orbix 6.2 IDL Compiler Operation identifier names and associated level 88 data names are
generated with fully qualified names by default, because of the multiple
levels of nesting in IDL members that the Orbix 6.2 IDL Compiler supports.
The issue is similar to that discussed in “Fully Qualified Level 01 Data
Names” on page 64.

Migration Impact There is only a migration impact if the IDL contains modules.

Use the - Margument that is provided with the Orbix 6.2 IDL Compiler to
resolve the migration impact. The - M argument can be used to map the fully
qualified generated names (based on the IDL member name) to alternative
names that match those generated by genchl .

Refer to the COBOL Programmer’s Guide and Reference for an example of
how to use the - M argument.

68

Name Mapping Issues

Sample IDL Consider the following IDL, called the M\yMcD member:

nmodul e anodul e

{

interface fred

{

voi d nyop(in long al ong, i nout short ashort);

it

b
The genchbl Utility Output Based on the preceding IDL, gencbl outputs the following:
01 FRED- CPERATI ON Pl CTURE X(26) .
88 FRED MYCP VALLE "nyop: | DL: anodul e/ fred: 1. "

01 FRED- CPERATI ON- LENGTH Pl CTURE 9(09) Bl NARY VALLE 26.

Orbix 6.2 IDL Compiler Output Based on the preceding IDL, the Orbix 6.2 IDL Compiler outputs the
following:

01 AMCDULE- FRED- CPERATI CN Pl CTURE X(26) .
88 AMODULE- FRED- MYCP
VALUE "nyop:|DL: anodul e/ fred: 1. 0".
01 AMCDULE- FRED- CPERATI ON- LENGTH Pl CTURE 9(09) Bl NARY
VALLE 26.

69

CHAPTER 6 | COBOL Migration Issues

Example of Using the -M The - Margument be used can to make the Orbix 6.2 compiler output the
Argument same as the gencbl output for the preceding IDL by following the steps
below:
Step Action

1 | Create a mapping member for the IDL by running the mapping
member as follows:

/11DLCBL EXEC CRXI DL,

/1 SOURCE=MYMCD,

I I DL=&CRBI X. . DEMXS. | DL,

/1 QCPYLI B=&CRBI X. . DEMOS. CCBCL. COPYLI B,
I I MPL=&CRBI X. . DEMCS. CCBQL. SRC,

/1 | DLPARME' - cobol : - Mer eat e1MYNAPL'

//1 DLNAP DD Dl SP=SHR DSN=&CRBI X. . DEM35. CCBCL. VAP
This produces the following in the mapping member:
anodul e arodul e

anmodul e/ fred fred

anodul e/ f red/ nyop/ fred-nyop

70

In Summary

Name Mapping Issues

Step

Action

Use the mapping member in step 1 and run the IDL compiler
again as follows:

/11 DLCBL EXEC CORXI DL,

11 SOURCE=MYMD,

/1 | DL=&CRBI X. . DEMXS. | DL,

11 CCOPYLI B=&CRBI X. . DEMCS. CCBCL. CCPYLI B,
/1 | MPL=&CRBI X. . DEMOS. CQCBCOL. SRC,

11 | DLPARME' - cobol : - Mpr ocess MYNAPL'

//1DLMAP DD D SP=SHR DSN=&CRBI X. . DEMO5. CCBCL. NAP

This produces output which is the same as that generated by
gencbl for this operation section:

01 FRED- CPERATI ON Pl CTURE X(26) .
88 FRED MYCP VALLE "nyop: | DL: amodul e/ fred: 1. 0".
01 FRED- CPERATI ON- LENGTH Pl CTURE 9(09)

Bl NARY VALUE 26.

Affects clients and servers. Requires code change or use of the described
workaround.

71

CHAPTER 6 | COBOL Migration Issues

IDL Constant Definitions Mapped to Fully Qualified Names

Overview This subsection summarizes the differences in the way that gencbl and the
Orbix 6.2 IDL Compiler generate COBOL data names for IDL constant
definitions. It discusses the following topics:
® Mapping for Constants Comparison
® The genchl Utility
® Orbix 6.2 IDL Compiler
® Migration Impact
¢ Sample IDL
® Orbix 6.2 Generated Data Names
® |egacy Support
® |In Summary

Mapping for Constants The following are the differences between the Orbix 6.2 IDL Compiler and
Comparison genchl mapping for constants:

Table 6: COBOL Compiler Output for IDL Constant Definitions

Orbix 6.2 IDL Compiler gencbl Utility
Global constant 01 A.CBAL-i dI nenber nanme- QONSTS 01 interfacenanme- Q.CBAL- QONSTS
at IDL member 03 | ocal nane... 03 i nt erfacenare- | ocal anarre...
level
Global constant 01 FQ\- GONSTS 01 i nt er f acenare- MODULE- CONSTS
at module level 03 | ocal nane... 03 i nt erfacenare-1| ocal nane...
Constant at 01 FQ\- CONSTS 01 i nterfacename- CONSTANTS
interface level 03 | ocal nane... 03 i nterfacenane-| ocal nane. . .

In the preceding table, FQN represents the fully qualified name for the
module or interface where the constant is defined.

The genchbl Utility The gencbl utility uses only the interface name to map IDL constant
definitions to data names, because it only supports only one level of nesting
of modules in IDL.

72

Orbix 6.2 IDL Compiler

Migration Impact

Name Mapping Issues

IDL constant definitions are mapped to fully qualified data names in Orbix
6.2, because the Orbix 6.2 IDL Compiler can process any level of scoping in
IDL members (that is, multiple levels of nested modules and interfaces).
Therefore, the same constant names can be used at different scopes, and
uniqueness of data names is imperative.

The MDULE keyword that is generated by gencbl is not used in Orbix 6.2,
because there is support for more than one level of module. With gencbl ,
only one level of module is supported. .

Note: The @.CBAL keyword is still used, but in the case of genchl , refers
to all constant definitions defined in the Interface Repository. In the case of
Orbix 6.2 it refers to all constants defined at global scope in the IDL
member being processed.

Note: The Interface Repository server is not required by the Orbix 6.2 IDL
Compiler when generating COBOL definitions from IDL. For further details
refer to “Interface Repository Server” on page 181.

73

CHAPTER 6 | COBOL Migration Issues

Sample IDL Consider the following IDL member, called TEST, which defines four
constants with the same name — nyconst ant — at different levels:

//test.idl
const |ong nyconstant = 1;
nmodul e ml
{
const |ong nyconstant = 1;
interface fred

{
const long nyconstant = 1;
voi d nyop();
It
nodul e n2
{
interface fred
{
const |ong nyconstant = 1;
voi d nyop();
}
B

74

Name Mapping Issues

Orbix 6.2 Generated Data Names Based on the preceding IDL, the Orbix 6.2 IDL Compiler generates the
following data names:

D R R

* Constants in root scope:
LR R R RS SRR TR SRR RS EEEEEEEEEEEEEEEEREEEEEEEEEEEEEEEEEEEEEEE]
01 Q.CBAL- TEST- CONSTS.

03 MYCONSTANT Pl CTURE S9(10) BI NARY VALUE 1.

LR R R R SRR TR SRR RS EEEEEEEEEEEEEEEEREEEEEEEEEEEEEEEEEEEEEEE]

* Constants in ni:
khkkhkhkhkhkhkhhkhhkhkhkhhkhkdhhhhhhkhhdhhkhhkhkhkhkhhk bk bk hkhkhkdhkhhhkdkhhhkdrhkhkhkhkhhhkhhxkk
01 M- GONSTS.
03 MYCONSTANT Pl CTURE S9(10) Bl NARY
VALUE 1.

LR R R R EEEEE TR SRR RS EEEEEEEEEEEEEEEEREEEEEEEEEEEEEEEEEEEEEEE]

* Constants in ni/fred:
khkkhkhkhkhkhkhkhkhhhkhkhkdkhkdhhhhhhhhdhrhhkhkhkhkhhkhhkhkhkhdkhdhkhkhkhkdhhhdrhkhkhkhkhhhkhkkkk
01 M- FRED- CONSTS.
03 MYCONSTANT Pl CTURE S9(10) Bl NARY
VALLE 1.

LR R R R EEEEEEEEEEE RS EEEEEEEEEEEEEEEEREEEEEEEEEEEEEEEEEEEEEEE]

* Constants in ml/n2/fred:

LRSS R R RS SRR E SRR RS SRS SRR SRR SRR EE RS REEEEEEEEEEEEEE]

01 M- M- FRED- GONSTS.

03 MYCONSTANT Pl CTURE S9(10) Bl NARY
VALUE 1.
Legacy Support It is not feasible to provide full legacy support in this case. However, you

can use the - M argument with the Orbix 6.2 IDL Compiler to control the FQN
name shown in the preceding example. You can also use the - O argument
with the Orbix 6.2 IDL Compiler to determine the name of the generated
copybook, which defaults to the IDL member name. This only affects the
level 01 data name for Global constants; for example, if the - Oargument is
used with the name TESTS, that is, - OTESTS, the IDL compiler output
changes from:

01 LCBAL- TEST- QONSTS.
03 MYCONSTANT Pl CTURE S9(09) BI NARY VALUE 1.

to:

01 CBAL- TESTS- QONSTS.
03 MYCONSTANT Pl CTURE S9(09) Bl NARY VALUE 1.

75

CHAPTER 6 | COBOL Migration Issues

In Summary Affects clients and servers. Requires code changes where constants are
used.

76

Name Mapping Issues

Derived Interface Names and Fully Qualified Names

Overview

Migration Impact

This subsection summarizes the differences in the way that version v2r3m5b
(or higher) of gencbl and the Orbix 6.2 IDL Compiler generate level 88
entries for IDL operation names to process remote derived objects on the
client side.

Note: For users of a gencbl version earlier than version v2r3m5 no
changes are required, because the extra level 88 entry for each operation
name (incorporating the fully qualified name) is not included.

This subsection discusses the following topics:

® Migration Impact

® Sample IDL

® Main Copybook Sample for GRID using version v2r3m5 (or higher)
® Orbix 6.2 IDL Compiler Output

® Changes on the Client-Side

® |In Summary

For users of gencbl version v2r3mb5 (or higher) which generates a main
copybook that includes an extra level 88 entry for each operation name
(incorporating the fully qualified name) changes are required.

Applications that use fully qualified data names require changes to use the
original name. For the gri d example this would mean changing set
fg-grid-get-hei ght toset grid-get-height. The Orbix 6.2 IDL Compiler
does not generate the fully qualified data name, therefore client code that
references these fully qualified names needs to be changed to use the
original names.

77

CHAPTER 6 | COBOL Migration Issues

Sample IDL Consider the following sample IDL, with an interface called gri d
interface grid {
readonly attribute short height; // height of the grid
readonly attribute short wi dth; /] width of the grid

/1 1DL operations

/l set the element [n,n] of the grid, to val ue:
void set(in short n, in short m in |ong value);

[l return elenent [n,n] of the grid:
long get(in short n, in short m;

Main Copybook Sample for GRID The genchl version v2r3m5 (or higher) outputs the following for the
using version v2r3m5 (or higher) preceding IDL:

01 GR D- CPERATI ON Pl CTURE X(17).
88 (R D CET- HEl GHT VALLE " _get _height".
88 FQ (R D CET- HEl GHT VALLUE " _get_height: grid".
88 GR D GET- WDTH VALUE " _get _wi dth".
88 FQ &R D GET- WDTH VALLE "_get_wi dth:grid".
88 GR D | DL- SET VALUE "set".
88 FQ &R D-| DL- SET VALUE "set:grid".
88 R DI DL- GET VALLE "get".
88 R D | DL- GET VALUE "get".
88 FQ R DI DL- GET VALUE "get:grid".

Note the extra entry per operation.

78

Name Mapping Issues

Orbix 6.2 IDL Compiler Output The Orbix 6.2 IDL Compiler generates the following output for the grid

interface:
01 CR D CPERATI ON Pl CTURE X(25).
88 GR D GET- HEl GHT VALUE
"_get_height:IDL:grid:1.0".
88 CGR D GET- WDTH VALUE
"_get_width:1DL:grid:1.0".
88 GR D-| DL- SET VALUE
"set:|DL:grid:1.0".
88 GR DI DL- GET VALUE
"get:IDL:grid:1.0".
01 GR D CPERATI ON- LENGTH Pl CTURE 9(09) Bl NARY

VALLE 25.

There is no extra entry per operation, and each entry contains all the
necessary information in the level 88 string, that is, the operation name (and
the module and interface name) it relates to.

Changes on the Client-Side The following client code needs to be changed for the preceding IDL:
* Try to read the height and width of the grid.
set fqg-grid-get-hei ght to true
call " CRBEXEC usi ng gri d-obj

grid-operation
gri d- hei ght -args

to:

* Try to read the height and width of the grid.
set grid-get - hei ght to true
call " CRBEXEC usi ng gri d-obj
grid-operation
gri d- hei ght -args

In Summary Affects clients and requires minor code changes.

79

CHAPTER 6 | COBOL Migration Issues

Numeric Suffixes for Data Names

Overview

The gencbl utility

Orbix 6.2 IDL Compiler

Migration Impact

80

This subsection summarizes the differences in the way that gencbl and the
Orbix 6.2 IDL Compiler add numeric suffixes to generate unique data names
for IDL identifier names. It discusses the following topics:

® The gencbl utility
® Orbix 6.2 IDL Compiler
® Migration Impact

The gencbl utility generates unique data names by attaching numeric
suffixes to them (starting at -1). It used this method regardless of whether
the number was ever used. Therefore, in nested levels of IDL, some of the
generated data names appeared to skip numbers.

Refer to “Name Scoping and the COBOL Compilers” on page 97 for an
example of how this works.

The Orbix 6.2 IDL Compiler does not skip numbers in this way. Therefore,
some of the data names that it generates (especially where nested
sequences are used) are different from the names generated by gencbl .

Affects source code where nesting of sequences and other complex types
occurs.

Name Mapping Issues

160-Character Limit for String Literals

Overview

The genchbl Utility Solution

The Orbix 6.2 IDL Compiler
Solution

IDL typecodes are mapped to string literals in COBOL using a level 01 data
name and within it the typecodes as level 88 data names. However, the
IBM COBOL compiler does not allow string literals that exceed 160
characters.

This subsection discusses the following topics:
® The gencbl Utility Solution

® The Orbix 6.2 IDL Compiler Solution

¢ Sample IDL

® The genchl Output

® The Orbix 6.2 IDL Compiler Output

® Migration Impact

® |n Summary

To get around this problem, an extra undocumented argument was supplied
(the - Dargument) with gencbl (version 2.3.1 and later), to generate
typecodes in a non-OMG-compliant manner. To use these typecodes, some
minor changes were required to application source code for passing
sequences.

The Orbix 6.2 IDL Compiler resolves this issue by ensuring that the
typecode representations produced rarely exceed 160 characters, and thus
can always be defined as a 88 level item. The | evel 88 items produced are
not actually typecodes; they are unique strings representing the keys which
the COBOL runtime interprets to derive the typecode using the

i dl menber naneX copybook at runtime.

81

CHAPTER 6 | COBOL Migration Issues

Sample IDL Consider the following IDL sample, called the SCLUTI ON member:

interface solution {
struct Personlnfo {
string FirstNang;
string M ddl eNane;
string SurNane;
bool ean Marri ed;
unsi gned | ong

Age;
char Sex;
unsi gned | ong
NoChi | dr en;

IE

struct Wirklnfo {
string JobTitle;
string Department;
string ConpanyNang;
char Q ade;
f 1 oat Sal ary;
bool ean Heal t hl ns;
bool ean Overti ne;
bool ean ConpanyCar ;
bool ean Expenses;
unsi gned
| ong Year sServi ce;
string Mscdetls;

B

struct Addressinfo {
short HouseNunber ;
string AddressLi nel;
string AddressLi ne2;
string AddressLi ne3;
string AddressLi ne4;
string Post al Code;
string Aty;
string State;
string Country;
string Continent;

struct Qustlnfo {

Personl nfo PersonDetl s;
Addr essl nf o AddressDet | s;
Wr ki nf o Wr kDet | s;

82

Name Mapping Issues

typedef sequence <CQustl nfo> CQustDetls;
void Accept Qustlnfot (

out QustDetls nyQustDetls

)s

The gencbl Output The relevant section of the gencbl output for the preceding IDL is:

01 TG CUSTDETLS.

03 FILLER Pl CTURE X(160) VALUE
" S{R-Z~X{ R-Z~X{ 0} , X{ 0}, X{ O}, X{ b}, X{ul }, X{c}, X{ul }}, X{ R~

- "Z-X{s}, X O}, X(O}, X{ O}, X{ O}, X{ O}, X{ O}, X{ O}, X{ O} , X{ O} } , X{ R-Z~X
- "{0}, X0}, X0}, X{c}t, X}, X{b}, X{b}, X{b}, X{b}, X{".

03 FILLER PI CTURE X(12) VALUE "ul}, X{0}}},0".
01 TG CUSTDETLS TYPE- LENGTH Pl CTURE 9(09) Bl NARY VALUE 172.

The typecode is produced as a level 01 item and not a level 88 as is the case
with the Orbix 6.2 IDL Compiler.

83

CHAPTER 6 | COBOL Migration Issues

The Orbix 6.2 IDL Compiler For the preceding IDL, the Orbix 6.2 IDL Compiler generates the following
Output typecode section in the main copybook:

D R R

* Typecode section
* This contains CDR encodi ngs of necessary typecodes.

D R R X

01 SOLUTI ON- TYPE Pl CTURE X(28).
CCPY CCORBATYP.
88 SCLUTI ON- ADDRESS| NFO VALUE
"1 DL: sol uti on/ Addressl nfo: 1. 0".
88 SCLUTI O\ QUSTDETLS VALUE
"1 DL: sol ution/QustDetls:1.0".
88 SCLUTI O\ QUSTI NFO VALUE
"1 DL: sol ution/ Qust I nfo: 1.0".
88 SCLUTI ON VALUE
"l DL: sol ution:1.0".
88 SOLUTI ON- WIRKI NFO VALUE
"1 DL: sol ution/ Wrkl nfo: 1. 0".
88 SCLUTI O\ PERSON NFO VALUE
"1 DL: sol uti on/ Personl nfo: 1. 0".
01 SCA.UTI ON- TYPE- LENGTH Pl CTURE S9(09) Bl NARY
VALUE 28.
Migration Impact Customers that used a non-OMG-compliant version of gencbl with the

alternative typecode mapping must now revert back to the OMG way of
coding their applications.

From the gencbl output which uses the - D argument, the code to set the
type in a sequence for the preceding IDL is:

CALL "STRSET" USI NG SEQUENCE- TYPE CF ... ny-sequence. ..
TG QUSTDETLS- TYPE- LENGTH
TG CUSTDETLS- TYPE.

From the Orbix 6.2 IDL Compiler output which is OMG compliant the code
to set the type in a sequence for the preceding IDL is:

SET SCLUTI ONF CUSTDETLS TO TRUE

CALL "STRSET" USI NG SEQUENCE- TYPE CF ... ny-sequence. . .
SCLUTI ON- TYPE- LENGTH

SCLUTI ON- TYPE.

84

Name Mapping Issues

In Summary Requires code changes to application source code using sequences.

85

CHAPTER 6 | COBOL Migration Issues

Maximum Length of COBOL Data Names

Overview This subsection summarizes the differences in the way that the genchbl
utility and the Orbix 6.2 IDL Compiler process IDL identifier names that
exceed 30 characters. It discusses the following topics:

® The gencbl Utility Approach

® Problems with the gencbl Utility Approach

® Orbix 6.2 IDL Compiler Approach

® Sample IDL

® Data Names Generated by gencbl

® Data Names Generated by the Orbix 6.2 IDL Compiler
® Migration Impact

® |In Summary

The gencbl Utility Approach Because COBOL places a 30-character restriction on the length of data
names, a method to resolve this issue is provided with the gencbl utility. For
any identifiers exceeding 30 characters, this method truncates the identifier
name to the first 27 characters and attaches a three-character numeric
suffix.

Problems with the gencbl Utility This method is prone to problems if the original IDL for a completed

Approach application has to be subsequently modified, and the modifications involve
IDL identifiers exceeding 30 characters being added before existing
operations or arguments. In this case, the regenerated suffixes for the
various data names do not match the original suffixes generated. This
results in customers having to make undesirable source code changes.

Orbix 6.2 IDL Compiler Approach To avoid this problem, a new method has been implemented with the Orbix
6.2 IDL Compiler. This new method ensures that the same suffix is always
regenerated for a particular data name.

86

Name Mapping Issues

Sample IDL Consider the following IDL:
interface | ongname{
struct conpl ex {

| ong

t hi sl sAReal | yLongFeat ur eNarrewi t hAnot her Real | yLongFeat ur eExt en

si onAt TheEnd;
| ong

yet Anot her Real | yLongFeat ur eNamewi t hAnot her Real | yLongFeat ur eEx

t ensi on;
| ong

Thi r dLast Yet Anot her Real | yLongFeat ur eNanewi t hAnot her Real | yLongFea

t ur eExt ensi on;
ik
void initialise();
void opl(in conplex ii);

h

conpl ex op2(in conplex ii, inout conplex io, out conplex 00);

Data Names Generated by gencbl
IDL:

01 LONGNAME- CP1- ARGS.
03 I1.
05 TH SI SAREALL YLONGFEATURENAMVEW
05 YETANOTHERREALL YL ONGFEATURENAM
05 TH RDLASTYETANOTHERREALL YLONGF

01 LONGNAME- CP2- ARGS.

03 I1.
05 TH SI SAREALL YLONGFEATURENAMIOO
05 YETANOTHERREALLYLONGFEATUREOO1
05 TH RDLASTYETANOTHERREALLYLQD02

03 1Q
05 TH SI SAREALL YLONGFEATURENAMIO3
05 YETANOTHERREALL YLONGFEATUREOO4
05 TH RDLASTYETANOTHERREALLYLQDOS

03 @O
05 TH SI SAREALL YL ONGFEATURENAMDO6
05 YETANOTHERREALLYLONGFEATUREOO7
05 TH RDLASTYETANOTHERREALLYL(D08

PI CTURE S9(09)
Pl CTURE S9(09)
PI CTURE S9(09)

PI CTURE S9(09)
Pl CTURE S9(09)
PI CTURE S9(09)

Pl CTURE S9(09)
PI CTURE S9(09)
PI CTURE S9(09)

PI CTURE S9(09)
PI CTURE S9(09)
Pl CTURE S9(09)

The gencbl utility generated data names as follows, based on the preceding

Bl NARY.
Bl NARY.
Bl NARY.

Bl NARY.
Bl NARY.
Bl NARY.

Bl NARY.
Bl NARY.
Bl NARY.

Bl NARY.

Bl NARY.
Bl NARY.

87

CHAPTER 6 | COBOL Migration Issues

Data Names Generated by the
Orbix 6.2 IDL Compiler

The Orbix 6.2 IDL Compiler generates data names as follows, based on the
preceding IDL:

01 LONGNAME- CP1- ARGS.

03 11.

05 TH SI SAREALL YLONGFEATUREN- E658 Pl CTURE S9(10) Bl NARY.
05 YETANOTHERREALLYLONGFEATU- 7628 Pl CTURE SO(10) BI NARY.
05 TH RDLASTYETANOTHERREALLY- E278 Pl CTURE S9(10) Bl NARY.
01 LONGNAME- CP2- ARGS.
03 11.
05 TH SI SAREALLYLONGFEATUREN- E658 Pl CTURE S9(10) Bl NARY.
05 YETANOTHERREALLYLONGFEATU- 7628 Pl CTURE S9(10) Bl NARY.
05 TH RDLASTYETANOTHERREALLY- E278 Pl CTURE SO(10) BI NARY.
03 1Q
05 TH SI SAREALLYLONGFEATUREN- E658 Pl CTURE S9(10) Bl NARY.
05 YETANOTHERREALLYLONGFEATU- 7628 Pl CTURE S9(10) Bl NARY.
05 TH RDLASTYETANOTHERREALLY- E278 Pl CTURE S9(10) Bl NARY.
03 @2
05 TH SI SAREALL YLONGFEATUREN- E658 Pl CTURE SO(10) BI NARY.
05 YETANOTHERREALLYLONGFEATU- 7628 Pl CTURE S9(10) Bl NARY.
05 TH RDLASTYETANOTHERREALLY- E278 Pl CTURE S9(10) Bl NARY.
03 RESULT.
05 TH SI SAREALLYLONGFEATUREN- E658 Pl CTURE S9(10) Bl NARY.
05 YETANOTHERREALLYLONGFEATU- 7628 Pl CTURE S9(10) Bl NARY.
05 TH RDLASTYETANOTHERREALLY- E278 Pl CTURE SO(10) BI NARY.

Migration Impact This change means that completely different suffixes are generated where
this scenario applies with the result that any application code that
references these data names has to be changed to reference the data names

with the Orbix 6.2 suffixes.

Affects clients and servers where IDL identifiers exceed 30 characters.
Requires code changes.

In Summary

88

Copybook Names Based on IDL Member Name

Copybook Names Based on IDL Member
Name

Overview Copybook names in Orbix 6.2 are generated based on the IDL member
name, instead of being based on the interface name, as is the case with
genchl . The reason for this change is because the Orbix 6.2 IDL Compiler
can process any level of scoping in IDL members (that is, multiple levels of
nested modules and interfaces). If the same interface name is defined at
different levels within the same IDL member, it is impossible to base
copybook names on interface names.

In this section This section discusses the following topics:
Introduction to IDL Member Name Migration Issues page 90
IDL Member Name Different from its Interface Names page 92
More than One Interface in an IDL Member page 94
Length of IDL Member Names page 96

89

CHAPTER 6 | COBOL Migration Issues

Introduction to IDL Member Name Migration Issues

Overview This subsection describes migration issues relating to IDL member names. It
discusses the following topics:

® Sample IDL

® The gencbl utility

® The Orbix 6.2 IDL Compiler
® Migration Impact

Sample IDL For example, consider the following IDL member called nyi dl :

[/ nyi dl
nmodul e ni
{

interface fred

{

}
nodul e n?
{

voi d nyop();

interface fred

{
}

voi d nyop();

The gencbl utility The gencbl utility cannot correctly process the preceding IDL, because it
contains more than one level of module.

Because both interfaces share the same name, which is fred in the

preceding example, the generation of one copybook would overwrite the
other.

90

The Orbix 6.2 IDL Compiler

Migration Impact

Copybook Names Based on IDL Member Name

The Orbix 6.2 IDL Compiler instead generates COBOL copybooks whose
names are based on the IDL member name, which is nyi dI in the preceding
example. Therefore, the definitions for all the interfaces contained within
this IDL member are produced in the Mvl DL copybooks. (This is also how
the IDL compiler generates C++ and Java files.)

This has a migration impact if either of the following apply:

® |IDL member names are different from the interface names they
contain.

® More than one interface is defined in an IDL member.

The migration impact for each of these situations is described in the
following subsections.

91

CHAPTER 6 | COBOL Migration Issues

IDL Member Name Different from its Interface Names

Overview This subsection summarizes the different outputs for gencbl and the Orbix
6.2 IDL Compiler for an IDL member that has one interface which has a
name different from the member name. It discusses the following topics:
® Sample IDL
® The genchl Utility
® The Orbix 6.2 IDL Compiler
® Workaround

® |In Summary

Sample IDL Consider the following IDL member, GR D, which defines an interface called
fred:
[lgrid.idl
interface fred
{
voi d nyop(in | ong nyl ong);
b
The gencbl Utility In the case of the gencbl utility, the generated copybook names are based

on the interface name, which is fred in the preceding example.

The Orbix 6.2 IDL Compiler In the case of the Orbix 6.2 IDL Compiler, the generated copybook names
are based on the IDL member name, which is gri d in the preceding
example.

Workaround If your IDL member name is not the same as the interface name it contains,

you can use the - O argument with the Orbix 6.2 IDL Compiler to map the
names of the generated COBOL copybooks (which in Orbix 6.2 is based by
default on the IDL member name) to alternative names. This means you can
change the Orbix 6.2 default names to the gencbl generated names, and
thus avoid having to change the acPY statements (for example, from ocPY
FRED to GCPY GRI D) in your application source code. The names of the
generated COBOL copybooks are then automatically changed to the

92

In Summary

Copybook Names Based on IDL Member Name

alternative name that you specify with the - O argument. Refer to the COBOL
Programmer’s Guide and Reference for an example of how to use the -0
argument.

Affects clients and servers. Requires minor code change or use of the
described workaround.

93

CHAPTER 6 | COBOL Migration Issues

More than One Interface in an IDL Member

Overview This subsection summarizes the different outputs for gencbl and the Orbix
6.2 IDL Compiler for an IDL member that has more than one interface, each
with different names. It discusses the following topics:

® The gencbl Utility

® The Orbix 6.2 IDL Compiler
® Sample IDL

® Compiler Output

® Migration Impact

® |n Summary

The genchbl Utility The gencbl utility generates a set of copybooks for each interface definition,
and bases the name for each set of copybooks on the associated interface
name.

The Orbix 6.2 IDL Compiler The Orbix 6.2 IDL Compiler generates only one set of COBOL copybooks for

an IDL member, and it bases the name for that set of copybooks on the IDL
member name.

If an IDL member contains N interfaces (where Nis greater than one), your
existing application code now contains N- 1 redundant OCPY statements.

Sample IDL Consider the following IDL member, called &R D, which contains the
following two interfaces:

interface grid

{
voi d sizeofgrid(in |ong nysizel, in |ong
nysi ze2) ;
iE
interface bl ock
{
void area(in | ong nyarea);
ik

94

Copybook Names Based on IDL Member Name

Compiler Output The differences in the way gencbl and the Orbix 6.2 IDL Compiler process
the preceding IDL can be outlined as follows:

Table 7: COBOL Compiler Output for GRID IDL Member

The Orbix 6.2 IDL Compiler The gencbl Utility
Generates only one set of copybooks | Generates a set of copybooks for
that contain all the definitions for all each interface, based on each
interfaces contained within the IDL interface name. For example:
member. The copybook names are ®D
based on the IDL member name. For | o
example: R D
R D BLOXK
&R DX BLOCKX
GR DD BLOCKD

Migration Impact Based on the preceding example, the BLOOK copybooks are redundant with

the Orbix 6.2 IDL Compiler. Therefore, the GCPY statements for the BLOK
copybook must be removed from the application code.

In Summary Affects clients and servers. Requires minor code change.

95

CHAPTER 6 | COBOL Migration Issues

Length of IDL Member Names

Overview

The gencbl Utility

The Orbix 6.2 IDL Compiler

Migration Impact

96

This subsection summarizes the different ways that gencbl and the Orbix
6.2 IDL compiler generate member names from IDL member names. It
discusses the following topics:

® The gencbl Utility
® The Orbix 6.2 IDL Compiler
® Migration Impact

The gencbl utility bases generated member names on the interface name. It
ensures that generated member names have a maximum of eight characters
including one of the following suffixes: SV, X, D, or Z.

Generated member names are based on the IDL member name and are
restricted to a maximum of eight characters, including the suffix, which can
be one of the following: Sv, X, D, or S.

If the IDL member name is longer than six characters, only the first six are
used for prefixes for the generated copybook member or source code
member.

Name Scoping and the COBOL Compilers

Name Scoping and the COBOL Compilers

Overview

IBM Error Code

Problem Scenarios

In This Section

This section summarizes the differences between how gencbl and the Orbix
6.2 IDL Compiler handle a situation where the same data names are
referenced within the same 01 level, even if the data names are fully
qualified.

The IBM COBOL and Enterprise COBOL compilers produce an error
message similar to the following if the same data names are referenced
within the same 01 level, even if the data names are fully qualified:

1 GYPS0037-S XXX was not a uni quel y defined name. The definition
to be used could not be determned fromthe context. The
reference to the nanme was di scarded.

The problem can arise in either of the following scenarios:
® |f the same container name is used more than once.
® |f the same fieldname is used more than once.

This section discusses the following topics:

Same Container Name Used More than Once page 98

Same Fieldname Used More than Once page 105

97

CHAPTER 6 | COBOL Migration Issues

Same Container Name Used More than Once

In This Section This subsection discusses migration issues relating to the IBM COBOL and
Enterprise COBOL compilers and container names. It discusses the following
topics:
® Sample IDL
® The gencbl Utility Output
® COBOL Compiler Problem
® Orbix 6.2 IDL Compiler Solution
® Orbix 6.2 IDL Compiler Output
® Migration Impact
® |n Summary

Sample IDL Consider how CBvj ect I nf o is used in the following IDL:
Example 1: IDL Example for use of Structs (Sheet 1 of 2)

/11DL
nodul e contain {

/1 CB hj ect

struct OBMbj ectlnfo {
string id;
string | ast ChangedDat eTi ne;
string | ast ChangedUser | D;
B

// Email Info Record

struct Email Addressinfo {
CBj ect | nf o i nf o;
short addressType;
string enail Address;
string availability;

¥

typedef sequence <Enail Addressl nfo> Enai | Addr essl nf os;

98

Name Scoping and the COBOL Compilers

Example 1: IDL Example for use of Structs (Sheet 2 of 2)
/1 Phone Nunber Info Record

struct PhoneNunber | nfo {
CBMvj ect I nfo info;
short addressType;
string phoneNunber ;
string availability;

B
typedef sequence <PhoneNunber | nf 0> PhoneNunber | nf os;
|/l Street Address Info Record

struct StreetAddresslnfo {
CBMvj ect I nfo i nfo;
short addressType;
string addressStringl;
string addressString2;
string addressStrings3;
string city;
string stateProvince;
string country;
string post al Code;
string availability;

Ik
typedef sequence <Street Addressl nf o> Street Addr essl nf os;

struct ContactPointlnfo {
CBMvj ect I nfo i nf o;
string contact Poi nt Nang;
string tineZone;
string description;
string notes;
Enai | Addr essl nf os emai | Addr essLi st ;
PhoneNunber | nf os phoneNunber Li st ;
Street Addr essl nf os street AddressLi st;
ik
typedef sequence <Cont act Poi nt | nf o> Cont act Poi nt | nf os;

interface Contact Pointlnterface {
voi d creat eCont act Poi nt (i nout Contact Pointlnfo cplnfo);

}
IE

929

CHAPTER 6 | COBOL Migration Issues

The gencbl Utility Output

100

The genchbl utility generates the following based on the preceding IDL:

Example 2: gencbl output for IDL for use of Structs (Sheet 1 of 2)

E T

Par aneters :

Qperation : createContact Poi nt
i nout struct ContactPointlnfo cplnfo

01 GONTACTPQ NTI NTERFACE- CRE- ARGS.
03 CPINFQ
05 INFQ

07 1 DL-1D
07 LASTCHANGEDDATETI ME
07 LASTCHANGEDUSER D

05 CONTACTPQA NTNAMVE
05 TI MEZONE

05 DESCR PTI ON

05 NOTES

05 EVAl LADDRESSLI ST-2.

05

05

05

07 EMAl LADDRESSLI ST.
09 | NFQ
11 I1DL-1 D
11 LASTCHANGEDDATETI ME
11 LASTCHANGEDUSER D
09 ADDRESSTYPE
09 EMA LADDRESS
09 AVAI LABI LI TY
EMAl LADDRESSLI ST- 2- SEQUENCE.
07 SEQUENCE- M&XI MUM
07 SEQUENCE- LENGTH
07 SEQUENCE- BUFFER
07 SEQUENCE- TYPE
PHONENUVBERLI ST- 2.
07 PHONENUMBERLI ST.
09 | NFQ
11 I1DL-1 D
11 LASTCHANGEDDATETI ME
11 LASTCHANGEDUSER D
09 ADDRESSTYPE
09 PHONENUMBER
09 AVAI LABI LI TY
PHONENUVBERLI ST- 2- SEQUENCE.
07 SEQUENCE- MAXI MUM
07 SEQUENCE- LENGTH
07 SEQUENCE- BUFFER
07 SEQUENCE- TYPE

PQA NTER
PA NTER
PQA NTER
PQA NTER
PA NTER
PQA NTER
PA NTER

PO NTER
PQ NTER
PO NTER
Pl CTURE S9(04) Bl NARY.
PQ NTER
PQ NTER

Pl CTURE 9(09) BI NARY.
Pl CTURE 9(09) BI NARY.
PQ NTER
PO NTER

PO NTER
PQ NTER
PQ NTER

Pl CTURE S9(04) Bl NARY.
PO NTER
PQ NTER

Pl CTURE 9(09) BI NARY.
Pl CTURE 9(09) BI NARY.
PO NTER
PO NTER

Name Scoping and the COBOL Compilers

Example 2: gencbl output for IDL for use of Structs (Sheet 2 of 2)

05 STREETADDRESSLI ST- 2.
07 STREETADDRESSLI ST.

09 I NFQ
11 IDL-ID PA NTER
11 LASTCHANGEDDATETI ME PA NTER
11 LASTCHANGEDUSER D PA NTER
09 ADDRESSTYPE Pl CTURE S9(04) Bl NARY.
09 ADDRESSSTRI NGL PA NTER
09 ADDRESSSTR N& PA NTER
09 ADDRESSSTR NG3 PA NTER
09 ATY PA NTER
09 STATEPROVI NCE PA NTER
09 CONTRY PA NTER
09 PCSTALCCDE PA NTER
09 AVAI LABI LI TY PA NTER
05 STREETADDRESSLI ST- 2- SEQUENCE.
07 SEQUENCE- MAXI MM Pl CTURE 9(09) BI NARY.
07 SEQUENCE- LENGTH Pl CTURE 9(09) BI NARY.
07 SEQUENCE- BUFFER PA NTER
07 SEQUENCE- TYPE PA NTER
COBOL Compiler Problem In the preceding example, the I DL- I Dunder | NFOunder CPI NFQis treated as

ambiguous by the IBM COBOL and Enterprise COBOL compilers, because of
the presence of other group levels under the same 01 level that are also
called I NFO

Orbix 6.2 IDL Compiler Solution The Orbix 6.2 IDL Compiler provides a solution to this problem, whereby it
attaches a numeric suffix (starting at -1, that is, 1 with a hyphen) to any
group level reference that is used more than once under the same 01 level.

101

CHAPTER 6 | COBOL Migration Issues

Orbix 6.2 IDL Compiler Output The Orbix 6.2 IDL Compiler generates the following COBOL code, based on
the preceding IDL:

Example 3: Orbix 6.2 Compiler output for Structs IDL (Sheet 1 of 3)

LR EE RS R RS E SRR R SRR EEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEES]

* Qperation: cr eat eCont act Poi nt

* Mapped nare: cr eat eCont act Poi nt

* Argunents: <i nout > cont ai n/ Cont act Poi nt I nfo cpl nfo
* Returns: voi d

* User Exceptions: none
EEEE RS EES

01 | DL- GONTAI N- OONTACTP- E3BE- ARGS.

03 CPINFQ
05 INFQ
07 1 DL-1D PA NTER
VALUE NULL.
07 LASTCHANGEDDATETI ME PQ NTER
VALUE NULL.
07 LASTCHANGEDUSER D PA NTER
VALUE NULL.
05 CONTACTPQ NTNAVE PA NTER
VALUE NULL.
05 TI MEZONE PO NTER
VALUE NULL.
05 DESCR PTI ON PO NTER
VALUE NULL.
05 NOTES PA NTER
VALUE NULL.
05 EVAl LADDRESSLI ST-1.
07 EVAl LADDRESSLI ST.
09 INFO 1.
11 I1D-1D PA NTER
VALUE NULL.
11 LASTCHANCEDDATETI ME PO NTER
VALUE NULL.
11 LASTCHANGEDUSERI D PQA NTER
VALUE NULL.
09 ADDRESSTYPE Pl CTURE S9(05) Bl NARY.
09 ENVAl LADDRESS PQA NTER
VALUE NULL.
09 AVA LABI LI TY PQA NTER
VALUE NULL.

102

Name Scoping and the COBOL Compilers

Example 3: Orbix 6.2 Compiler output for Structs IDL (Sheet 2 of 3)

05 EVAI LADDRESSLI ST- SEQUENCE.
07 SEQUENCE- NAXI MM

07 SEQUENCE- LENGTH
07 SEQUENCE- BUFFER
07 SEQUENCE- TYPE
05 PHONENUMBERLI ST- 1.
07 PHONENUMBERLI ST.
09 I NFO 2.
11 I1DL-1D

11 LASTCHANGEDDATETI ME
11 LASTCHANGEDUSERI D

09 ADDRESSTYPE
09 PHONENUMBER

09 AVAl LABILITY

05 PHONENUMBERLI ST- SEQUENCE.
07 SEQUENCE- NAXI MM

07 SEQUENCE- LENGTH

07 SEQUENCE- BUFFER
07 SEQUENCE- TYPE

05 STREETADDRESSLI ST- 1.
07 STREETADDRESSLI ST.
09 I NFO 3.
11 IDL-ID
11 LASTCHANGEDDATETI ME
11 LASTCHANGEDUSERI D

09 ADDRESSTYPE

PI CTURE 9(09) Bl NARY
VALLE 0.

PI CTURE 9(09) Bl NARY
VALLE 0.
PO NTER
VALUE NULL.
PO NTER
VALUE NULL.

PO NTER
VALUE NULL.
PQ NTER
PA NTER
VALUE NULL.
Pl CTURE S9(05) Bl NARY.
PO NTER
VALUE NULL.
PO NTER
VALUE NULL.

Pl CTURE 9(09) Bl NARY
VALUE 0.
Pl CTURE 9(09) Bl NARY
VALLE 0.
PO NTER NULL.
PO NTER
VALUE NULL.

PA NTER
VALUE NULL.
PA NTER
VALUE NULL.
PO NTER
VALUE NULL.
Pl CTURE S9(05) Bl NARY.

103

CHAPTER 6 | COBOL Migration Issues

Example 3: Orbix 6.2 Compiler output for Structs IDL (Sheet 3 of 3)

09

09

09

09

09

09

09

09

05 STREETADDRESSLI ST- SEQUENCE

ADDRESSSTRI NGL

ADDRESSSTR N&

ADDRESSSTRI NG3

aTy

STATEPROVI NCE

OQOUNTRY

POSTALCCDE

AVAI LABI LI TY

07 SEQUENCE- MAXI MM

PA NTER
VALUE NULL.
PQA NTER
VALUE NULL.
PQ NTER
VALUE NULL.
PQA NTER
VALUE NULL.
PQA NTER
VALUE NULL.
PQA NTER
VALUE NULL.
PQA NTER
VALUE NULL.
PQA NTER
VALUE NULL.

Pl CTURE 9(09) BI NARY

VALLE 0.
07 SEQUENCE- LENGTH Pl CTURE 9(09) Bl NARY
VALUE 0.
07 SEQUENCE- BUFFER PO NTER
VALUE NULL.
07 SEQUENCE- TYPE PA NTER
VALUE NULL.
Migration Impact This change means that completely different suffixes are generated where

this scenario applies, with the result that any application code that
references these data names has to be changed to reference the data names
with the new suffixes.

In Summary Affects both client and server application code.

104

Name Scoping and the COBOL Compilers

Same Fieldname Used More than Once

In This Section

Sample IDL

This subsection describes migration issues relating to the IBM COBOL and
Enterprise COBOL compilers and fieldnames. It discusses the following
topics:

® Sample IDL

® Orbix 6.2 COBOL IDL Compiler Output

® Migration Impact

Consider the following IDL:
/11D

interface sanple

{
struct d nBum {

short int_div_id;

B
typedef sequence<d nBum 30> O nBunteq;

struct Mend nRsp {
string nore_data_sw,
short int_div_id;

long claimmcro_sec_id;
ad nBunBeq Mend nii st;

ik

short get Sunmar y(

out Mend niRsp Mend ai nii st);
}

105

CHAPTER 6 | COBOL Migration Issues

Orbix 6.2 COBOL IDL Compiler For the preceding IDL sample, the relevant COBOL output is the main

Output copybook:
RS R RS SRS SRS SR SRR RS EE R ER SRS E SR EEEREEEEEEEEEEEEEEEEEEEEEEEEEESS
* (peration: get Sunmary
* Mapped nane: get Sunmary
* Argunents: <out > sanpl e/ Mend nRsp Mend ai nii st
* Returns: short

* User Exceptions: none

D R R R X

01 SAWPLE- GETSUMVARY- ARGS.
03 MEMOLAI MLI ST.
05 MRE- DATA- SW

05 INT-D V-1D
05 CLAIM M CRO SEG- | D
05 MEMOLMLI ST-1
07 MEMOLMLI ST.
09 INT-D V-1D
05 MEMOLMLI ST- SEQUENCE.
07 SEQUENCE- MAXI MM

07 SEQUENCE- LENGTH
07 SEQUENCE- BUFFER
07 SEQUENCE- TYPE

03 RESULT

PA NTER
VALUE NULL.
Pl CTURE S9(05) Bl NARY.
Pl CTURE S9(10) Bl NARY.
OOCLRS 30 TI MES.

Pl CTURE S9(05) Bl NARY.

Pl CTURE 9(09) Bl NARY
VALUE 30.

PI CTURE 9(09) BI NARY
VALLE 0.
PO NTER
VALUE NULL.
PQ NTER
VALUE NULL.

PI CTURE S9(05) Bl NARY.

Migration Impact The copybook that is generated, based on the preceding IDL, has two

references to i nt _di v_i d, but only one is accessible because of COBOL
name scoping rules.

This problem remains unresolved.

106

Typecode Name and Length Identifiers

Typecode Name and Length ldentifiers

Overview

In this section

This section summarizes the different output for gencbl and the Orbix 6.2
IDL Compiler for typecode and typecode length data names.

This section discusses the following topics:

Comparing Compiler Output page 108
IDL Member Name Different from its Interface Name page 109
More than One Interface in an IDL Member page 112

107

CHAPTER 6 | COBOL Migration Issues

Comparing Compiler Output

Overview

The gencbl utility

The Orbix 6.2 IDL Compiler

Migration Impact

108

This subsection describes the migration issues relating to compiler outputs
for typecode and typecode length data names. It discusses the following
topics:

® The gencbl utility

® The Orbix 6.2 IDL Compiler

® Migration Impact

The typecode and typecode length data names generated by gencbl use the
names i nt er f acenane- TYPE and i nt er f acename- TYPE- LENGTH. This is not
suitable for a situation where an IDL member contains multiple nested
levels of modules and interfaces, because unique data names cannot be
generated in this case.

Because the Orbix 6.2 IDL Compiler can process any level of scoping in an
IDL member, the generated data names are of the form

i dl menber nane- TYPE and i dl nenber nane- TYPE- LENGTH. This ensures the
uniqueness of the data names.

However, this has a migration impact if either of the following apply:
® |DL member name is different from the interface name it contains.
® More than one interface is defined in an IDL member.

The migration impact for each of these situations is described in the
following subsections.

Typecode Name and Length Identifiers

IDL Member Name Different from its Interface Name

Overview With gencbl the 01 typecode name and length fields are based on the
interface name. With the Orbix 6.2 IDL Compiler, 01 typecode name and
length fields are based on the IDL member name.

This subsection discusses the following topics:
® Sample IDL

® The gencbl Utility

® The Orbix 6.2 IDL Compiler

® Migration Impact

® |n Summary

Sample IDL Consider the following IDL member, called TEST, with an interface named
sanpl e:

/lidl nenber is test.idl
interface sanple
{
typedef short House Num
struct Address
{
string name;
House_Num nunber ;
string addr ess1;
string addr ess2;
h
typedef sequence<Address, 30> AddressLi st;
voi d nyop(i nout AddressList alladdresses);

109

CHAPTER 6 | COBOL Migration Issues

The gencbl Utility With gencbl , the 01 typecode name and length fields are based on the
interface name, that is, sanpl e- TYPE and 01 sanpl e- TYPE- LENGTH where
sanpl e is the interface name. The gencbl output for the preceding IDL is as
follows:

*Typecode definitions used in the interface sanple
*ke this data itemfor retrieving or setting the type
*information for ANYs or SEQUENCES.

*

01 SAWPLE- TYPE Pl CTURE X(87).
QCPY CCORBATYP.
88 SAMWPLE- HOUSE- NUM VALUE "s".

88 SAMPLE- ADDRESSLI ST VALUE
"S{ R-sanpl e: : Addr ess~nane{ 0}, nunber {
"L~sanpl e: : House_Num-{ s} }, addr ess1{ 0}, addr ess2{ 0} }, 30".
88 SAWPLE- ADDRESS VALUE
"R-sanpl e: : Addr ess~nane{ 0}, nunber { L~sanp
- "l e:: House_Num-{s}}, addr ess1{ 0}, addr ess2{0}".

01 SAWPLE- TYPE- LENGTH Pl CTURE 9(09) Bl NARY
VALUE 87.

110

The Orbix 6.2 IDL Compiler

Migration Impact

In Summary

Typecode Name and Length Identifiers

With the Orbix 6.2 IDL Compiler 01 typecode name and length fields are
based on the IDL member name, that is t est - TYPE and 01

t est - TYPE- LENGTH, where test is the IDL member name. The Orbix 6.2
output in the main copybook by default for the preceding IDL is as follows:

E R R

* Typecode section
* This contains CDR encodi ngs of necessary typecodes.

D R

01 TEST- TYPE Pl CTURE X(26) .
CCPY CORBATYP.
88 SAMPLE- HOUSE- NUM VALUE
"1 DL: sanpl e/ House_Num 1. 0".
88 SAWPLE- ADDRESS VALUE
"1 DL: sanpl e/ Addr ess: 1. 0".
88 SAMPLE VALUE
"I DL: sanpl e: 1. 0".
88 SAMPLE- ADDRESSLI ST VALUE
"1 DL: sanpl e/ Addr essLi st: 1. 0".
01 TEST- TYPE- LENGTH Pl CTURE S9(09) BI NARY
VALUE 26.

Because TEST is the IDL member name, the 01 levels are prefixed with TEST.

The main copybook name is based on the IDL member name and cannot
exceed six characters, and in this case is called TEST.

If your IDL member name is not the same as the interface name it contains,
you can use the - O argument with the Orbix 6.2 IDL Compiler to make both
names the same and thereby avoid application code changes. The - O
argument allows you to change, for example, XXXXin XXXX- TYPE and XXXX in
XXXX- TYPE- LENGTH For the preceding Orbix 6.2 IDL Compiler output to
avoid source code changes would mean changing TEST in TEST- TYPE and
TEST in TEST- TYPE- LENGTH to SAMPLE- TYPE and SAMPLE- TYPE- LENGTH The
- Oargument does not restrict you the use of either the interface name or the
IDL member name.

Refer to the COBOL Programmer’s Guide and Reference for an example of
how to use the - O argument.

Affects clients and servers. Requires code change or use of the - Oargument.

111

CHAPTER 6 | COBOL Migration Issues

More than One Interface in an IDL Member

In This Section This subsection describes the migration issues for typecode and typecode
length data names where there is more than one interface in an IDL
member. It discusses the following topics:

® The gencbl Utility

® The Orbix 6.2 IDL Compiler

® Sample IDL

® The gencbl output

® Orbix 6.2 IDL Compiler Output
® Migration Impact

® |n Summary

The genchbl Utility With gencbl , the 01 typecode name and length fields are based on the
interface name, that is, sanpl e- TYPE and sanpl e- TYPE- LENGTH where
sanpl e is the interface name.

The Orbix 6.2 IDL Compiler With the Orbix 6.2 IDL Compiler, 01 typecode name and length fields are
based on the IDL member name, that is t est - TYPE and 01
t est - TYPE- LENGTH, where test is the IDL member name.

112

Typecode Name and Length Identifiers

Sample IDL For example, consider the following IDL member, called TEST, which
contains the two interfaces called sanpl e and exanpl e respectively:

//idl nenber is test.idl test
interface sanple
{
typedef short House_ Num
struct Address
{
string nane;
House_Num nunber ;
string addr ess1;
string addr ess2;
IE
typedef sequence<Address, 30> AddressLi st;
voi d nyop(i nout AddressList alladdresses);

IE

interface exanpl e
{
typedef |ong Account _Num
struct Account_Details
{
string nane;
Account _Num nunber ;
string addr ess1;
string addr ess2;
It
typedef sequence<Account Detail s, 30> Account Li st;
voi d nyop(i nout AccountlList allaccounts);

IE

113

CHAPTER 6 | COBOL Migration Issues

The gencbl output The gencbl output for the exanpl e interface in TEST is as follows:

** Typecode definitions used in the interface xanpl e
* Use this data itemfor retrieving or setting the type
* information for ANYs or SEQUENCES.

*

01 EXAMPLE- TYPE Pl CTURE X(90).
CCPY CCRBATYP.
88 EXAMPLE- ACOOUNT- NUM VALLE "1 ".

88 EXAMPLE- ACCOUNTLI ST VALUE
"S{ R-Account _Det ai | s~nane{ 0}, nunber
-"{L~exanpl e: : Account _Num-{|}}, addr ess1{ 0}, addr ess2{0} }, 30".
88 EXAMPLE- ACCOUNT- DETAI LS VALUE
"R-Account _Det ai | s~nanme{ 0} , nunb
-"er{L~exanpl e: : Account _Num-{| }}, addr ess1{0}, addr ess2{0}".

01 EXAVPLE- TYPE- LENGTH Pl CTURE 9(09) Bl NARY
VALUE 90.

The gencbl output for the sanpl e interface in TEST is as follows:

* Typecode definitions used in the interface sanpl e
* Wse this data itemfor retrieving or setting the type
* information for ANYs or SEQUENCES.

*

01 SAVPLE- TYPE Pl CTURE X(79).
QCPY CCRBATYP.
88 SAMPLE- HOUSE- NUM VALLE "s".

88 SAMPLE- ADDRESSLI ST VALUE
" S{ R-Addr ess~nane{ 0} , nunber { L~sanpl e
-"::House_Num-{s}}, addr ess1{0}, address2{0}}, 30".
88 SAMPLE- ADDRESS VALUE
" R-Addr ess~name{ 0} , nunber { L~sanpl e: : Hous
-"e_Num-{s}}, address1{ 0}, addr ess2{ 0} ".

01 SAWPLE- TYPE- LENGTH Pl CTURE 9(09) Bl NARY
VALUE 79.

114

Orbix 6.2 IDL Compiler Output

Migration Impact

In Summary

Typecode Name and Length Identifiers

The Orbix 6.2 output in the main copybook (by default) for the preceding
IDL is as follows:

D R R

* Typecode section
* This contai ns CDR encodi ngs of necessary typecodes.

D R

01 TEST- TYPE Pl CTURE X(31).
CCPY CORBATYP.
88 SAMPLE- HOUSE- NUM VALUE
"1 DL: sanpl e/ House_Num 1. 0".
88 SAMWPLE- ADDRESS VALUE
"1 DL: sanpl e/ Addr ess: 1. 0".
88 EXAMPLE- ACCOUNTLI ST VALUE
"| DL: exanpl e/ Account Li st: 1. 0".
88 EXAMPLE- ACCOUNT- NUM VALUE
"1 DL: exanpl e/ Account _Num 1. 0".
88 EXAMPLE- ACCOUNT- DETAI LS VALUE
"1 DL: exanpl e/ Account _Detail s: 1. 0".
88 SAWPLE VALUE
"I DL: sanpl e: 1. 0".
88 EXAWPLE VALUE
"I DL: exanpl e: 1. 0".
88 SAMWPLE- ADDRESSLI ST VALUE
"] DL: sanpl e/ Addr essLi st: 1. 0".
01 TEST- TYPE- LENGTH Pl CTURE S9(09) Bl NARY
VALLE 31.

All the typecodes for the complete IDL member are represented under a
single 01 level.

Any references in application code to the t ype and t ype- | engt h data names
must be changed to reflect the IDL compiler output in the main copybook.
The - Mand - Oarguments can assist in migration. Refer to the COBOL
Programmer’s Guide and Reference for an example of how to use the - M
and - O arguments.

Affects clients and servers using sequences or anys. Requires code changes.

115

CHAPTER 6 | COBOL Migration Issues

Reserved COBOL and OMG Keywords

In This Section This section discusses the following topics:

Reserved COBOL Keywords for Module or Interface Names page 117

Use of Result as an Argument Name in IDL page 118

OMG Mapping Standard for Unions and Exceptions page 120

Note: The Orbix 6.2 IDL compiler supports the COBOL reserved word list,
pertaining to the Enterprise COBOL Compiler and the IBM 0S/390
Compiler.

116

Reserved COBOL and OMG Keywords

Reserved COBOL Keywords for Module or Interface Names

Overview This subsection describes the different ways that gencbl and the Orbix 6.2
IDL Compiler treat COBOL keywords used as module or interface names. It
discusses the following topics:
® The gencbl utility
® The Orbix 6.2 IDL Compiler
® Migration Impact
® |n Summary

The gencbl utility The gencbl utility does not apply special treatment to a reserved COBOL
keyword used as an IDL interface or module name.

The Orbix 6.2 IDL Compiler In Orbix 6.2, if a reserved COBOL keyword is used as an IDL interface or
module name, the Orbix 6.2 IDL Compiler prefixes it with 1 DL-.

Migration Impact This has a migration impact for any customers that use reserved COBOL
keywords as IDL interface or module names. If any customers are using
reserved COBOL keywords, source code changes are required to their
applications to cater for | DL- prefixed names that are generated for
identifiers in Orbix 6.2.

In Summary Affects clients and servers where module or interface names are reserved
COBOL keywords.

117

CHAPTER 6 | COBOL Migration Issues

Use of Result as an Argument Name in IDL

Overview If your IDL uses RESULT as an argument name to an operation, and it also
returns a parameter, each has a data name generated at the 03 level, but
both data names are RESULT. These are not valid in COBOL, because two 03
level entries under the same 01 level entry cannot share the same name.
Refer to “Name Scoping and the COBOL Compilers” on page 97 for more
details.

This subsection discusses the following topics:
® The genchl Solution

® Orbix 6.2 IDL Compiler Solution

® Migration Impact

® Sample IDL

® Orbix 6.2 IDL Compiler Data Names

® |In Summary

The genchbl Solution Version 2.3.2 of gencbl resolved this issue by making RESULT a reserved
COBOL keyword for IDL argument names and prefixing the resulting
generated names with I DL-.

Orbix 6.2 IDL Compiler Solution The current Orbix 6.2 IDL Compiler treats RESULT as a reserved COBOL
keyword in all cases.

Migration Impact There is a possible, but small, migration impact involved for any customer
applications where IDL definitions are defined in the manner described at
the start of this section, and the latest gencbl version is not being used.
There is also a possible migration impact if the word RESULT is used as any
identifier in an IDL member.

118

Reserved COBOL and OMG Keywords

Sample IDL Consider the following IDL called gri d:

/11DL
interface grid {

| ong nyop(inout long result);

B
Orbix 6.2 IDL Compiler Data Based on the preceding IDL, the Orbix 6.2 IDL Compiler generates the
Names following data names for the operation:

01 GR D MYCP- ARGS.

03 I DL- RESULT Pl CTURE S9(10) BI NARY.
03 RESULT Pl CTURE S9(10) Bl NARY.
In Summary Affects any application where the IDL uses resul t as described. Require

minor code change if latest gencbl version is not being used, or if the word
resul t is used as any identifier in an IDL member.

119

CHAPTER 6 | COBOL Migration Issues

OMG Mapping Standard for Unions and Exceptions

Overview The OMG mapping standard uses the letters Uand D as identifier names for
union and exception mappings (it uses both letters for each). There are two
possible implications if these letters are used as identifier names in IDL:
® |t might lead to problems similar to the one described in “Name
Scoping and the COBOL Compilers” on page 97.

® These identifiers are treated as reserved keywords by the Orbix 6.2 IDL
Compiler and therefore prefixed by | DL- in the Orbix 6.2 IDL Compiler
output. Any application code that references these must be changed to
account for the new compiler output.

This subsection discusses the following topics:

¢ |IDL Fieldname and Container Names

® Sample IDL

® The gencbl Utility

® The gencbl Utility Output

® Orbix 6.2 IDL Compiler Solution

® Orbix 6.2 IDL Compiler Output

® Migration Impact

IDL Fieldname and Container It is strongly recommended that an IDL field name or IDL container name is
Names not called Uor Din conjunction with a union and exception respectively.
Sample IDL The following IDL sample illustrates the use of Uand D as identifier names:

interface exanple

{
voi d nyop(inout |ong d,inout |ong u);
b
The genchbl Utility The gencbl utility does not treat the IDL identifier names Dand U as

reserved COBOL keywords.

120

The genchbl Utility Output

Orbix 6.2 IDL Compiler Solution

Orbix 6.2 IDL Compiler Output

Migration Impact

Reserved COBOL and OMG Keywords

Based on the preceding sample IDL, gencbl produces the following:

01 EXAMPLE- MYCP- ARGS.
03 D Pl CTURE S9(09) Bl NARY.
03 U Pl CTURE S9(09) Bl NARY.

The Orbix 6.2 IDL Compiler treats Uand Das COBOL reserved words and
therefore they are prefixed with I DL- in the compiler output.

For the preceding IDL the Orbix 6.2 IDL Compiler produces:

01 EXAWPLE- MYCP- ARGS.
03 IDL-D Pl CTURE S9(10) BI NARY.
03 IDL-U Pl CTURE S9(10) BI NARY.

Application code that references the Orbix 2.3.x Dand U data names must
change to reflect the Orbix 6.2 (1 DL- prefixed) data names.

Note: The Orbix 6.2 IDL compiler supports the COBOL reserved word list,

pertaining to the Enterprise COBOL Compiler and the IBM 0S/390
Compiler.

121

CHAPTER 6 | COBOL Migration Issues

Error Checking and Exceptions

In This Section This section discusses the following discusses:
COBOL-Specific Issue Relating to Error Checking page 123
Error Checking Generation at Runtime for Batch Servers page 125

122

Error Checking and Exceptions

COBOL-Specific Issue Relating to Error Checking

Overview

The gencbl Utility Error Checking
Code

Orbix 6.2 IDL Compiler Error
Checking Code

This subsection summarizes the differences between gencbl and the Orbix
6.2 IDL Compiler in regard to error checking. It discusses the following
topics:

® The genchl Utility Error Checking Code

® Orbix 6.2 IDL Compiler Error Checking Code

® Migration Impact

The gencbl utility provides an - E argument to generate error-checking code
in the generated server mainline and implementation code. The generated
error-checking code is used, for example, after each API call as follows:

MOVE " CRBCET" TO W5 ERRCR- FUNC.
PERFCRM CHECK- STATUS.

The Orbix 6.2 IDL Compiler generates this error-checking code slightly
differently in the generated server mainline and implementation code. For
example:

SET W5- CRBCET TO TRUE
PERFCRM CHECK- STATUS.

Note: The Orbix 6.2 IDL Compiler generates error checking code by
default.

123

CHAPTER 6 | COBOL Migration Issues

A MDVE statement is not required in the preceding code example, because
the supplied OCORBA static copybook contains entries such as the following for
all the APIs supplied with the product:

01 W5 APl - CALLED PI CTURE X(09) VALUE SPACES.
88 W5- ANYFREE VALUE " ANYFREE'.

88 W& ANYCET VALUE " ANYCET" .
88 W5 ANYSET VALUE " ANYSET".
88 W5 CQAERR VALUE "QCQAERR'.
88 W& COACET VALUE " COAGET".
88 W5 COARUN VALUE " COARWN'.
88 W5 COAPUT VALUE " COAPUT™" .
88 W& COAREQ VALUE " CQAREQ'.
88 W& MEVALLCC VALUE " MEMALLCC'.
88 W& MEMFREE VALUE " MEMFREE'.
Migration Impact This change has no migration impact and only affects newly generated

server implementation and mainline code.

124

Error Checking and Exceptions

Error Checking Generation at Runtime for Batch Servers

Overview

The gencbl Utility

The Orbix 6.2 IDL Compiler

Migration Impact

This subsection summarizes the differences between gencbl and the Orbix
6.2 IDL Compiler in relation to the CHECK- STATUS paragraph used for error
checking. It discusses the following topics:

® The gencbl Utility

® The Orbix 6.2 IDL Compiler

® Migration Impact

The CHECK- STATUS paragraph is generated by gencbl for each server.

The GHECK- STATUS paragraph is shipped as a static CHKERRS copybook, in
the or bi xhl g. | NCLUDE. GOPYLI B in Orbix 6.2. The reason that the Orbix 6.2
IDL Compiler doesn't generate this procedure is that, regardless of the IDL,
the procedure code is unchanged.

There is no migration impact, because all newly generated code uses the
static GHKERRS copybook and current customer applications use the old
method which is completely transparent to customers. However IONA
recommend you use the GHKERRS copybook which shows the system
exception encountered in a more user-friendly format.

125

CHAPTER 6 | COBOL Migration Issues

Nested Unions in IDL

Overview The Orbix 6.2 IDL Compiler can support any level of nested unions in IDL.

This subsection shows the Orbix 6.2 IDL Compiler output for sample IDL
with nested unions.

This section discusses the following topics:
® Sample IDL

® The genchl utility output

® Orbix 6.2 IDL Compiler Output

® Migration Impact

126

Nested Unions in IDL

Sample IDL The following sample IDL member, called NESTUN N, contains nested
unions:

interface nestunin {

struct no_constr {
| ong al ong;

B

struct has_constr {
string astring;

B

struct has_constr2 {
has_constr astrstr;

b

uni on i nneruni on switch(long) {
case 1 : no_constr a;
case 3: has_constr b;
case 9: has_constr2 c;
default: string f;

b

uni on out eruni on switch(long) {
case 1 : no_constr a;
case 3: has_constr b;
case 9: has_constr2 c;
case 30: innerunion nyu;
default: string f;

b

voi d opNoC (in outerunion arg);

IE

127

CHAPTER 6 | COBOL Migration Issues

The gencbl utility output The gencbl utility outputs the following based on the preceding IDL:
01 NESTUN N- CPNOG- ARGS.
03 ARG
05 D Pl CTURE S9(09) Bl NARY.
05 U
07 FILLER Pl CTURE X(04).
05 FI LLER REDEFI NES U.
07 A
09 ALONG Pl CTURE S9(09) BI NARY.
05 FI LLER REDEFI NES U.
07 B
09 ASTR NG PA NTER
05 FI LLER REDEFI NES U.
07 C
09 ASTRSTR
11 ASTR NG PA NTER
05 Fl LLER REDEFI NES U.
07 WuU.
09 D Pl CTURE S9(09) Bl NARY.
09 U
11 F LLER Pl CTURE X(04).
09 Fl LLER REDEFI NES U.
11 A
13 ALONG Pl CTURE S9(09) BI NARY.
09 Fl LLER REDEFI NES U.
11 B
13 ASTRI NG PA NTER
09 Fl LLER REDEFI NES U.
11 C
13 ASTRSTR
15 ASTRI NG PA NTER
09 FI LLER REDEFI NES U.
11 F PA NTER
05 Fl LLER REDEFI NES U.
07 F PA NTER

128

Nested Unions in IDL

Orbix 6.2 IDL Compiler Output
IDL:

01 NESTUN N CPNOC- ARGS.
03 ARG
05 D

05

05

05

05

05

05

u.
07 FILLER

FI LLER REDEFI NES U.
07 A
09 ALONG
FI LLER REDEFI NES U.
07 B.
09 ASTRI NG
FI LLER REDEFI NES U.
07 C
09 ASTRSTR
11 ASTRI NG
FI LLER REDEFI NES U.
07 WU,
09 D1
09 U 1.
11 FILLER

09 FI LLER REDEFI NES

11 A 1.
13 ALONG

09 FI LLER REDEFI NES U-1.

11 B-1.
13 ASTRI NG

09 FI LLER REDEFI NES U-1.

11 G 1.

13 ASTRSTR- 1.
15 ASTRI NG
09 FI LLER REDEFI NES U-1.

11 F
FI LLER REDEFI NES U.
07 F

U 1.

The Orbix 6.2 IDL Compiler outputs the following based on the preceding

Pl CTURE S9(10) Bl NARY.

PI CTURE X(16)
VALUE LON VALLES,

Pl CTURE S9(10) Bl NARY.

PQA NTER

Pl CTURE S9(10) Bl NARY.

PI CTURE X(08).

Pl CTURE S9(10) Bl NARY.

PA NTER

PA NTER

PQA NTER

PO NTER

The OMG-reserved letters, Uand D, are used by the Orbix 6.2 IDL Compiler,
in the preceding example. In the first level of nesting, Uand Dare suffixed by
-1 by the Orbix 6.2 IDL Compiler.

129

CHAPTER 6 | COBOL Migration Issues

Migration Impact

130

The gencbl utility output for nested unions does not cater for the situation
where the same container name is used more than once in an IDL member.
For problems that arise in this scenario refer to “Same Container Name
Used More than Once” on page 98. Customers using nested unions in their
IDL are required to change the nested Dand Udata names generated by
gencbl to make them unique.

From the preceding example, the Orbix 6.2 IDL Compiler output for nested D
and U data names are unique. If your workaround is not the same as the
Orbix 6.2 IDL Compiler solution, that is, adding a suffix - n where n is an
integer beginning at 1 for each level of nesting (the first nested union is
prefixed by - 1 and so on), there is a migration impact.

Changes are required to application code that references identifier names in
nested unions to take into account the Orbix 6.2 IDL Compiler solution.

Mapping for Arrays

Mapping for Arrays

Overview This section illustrates the differences between how gencbl and the Orbix
6.2 IDL Compiler treats arrays in IDL. It discusses the following topics:
® Sample IDL
® The gencbl Utility
® The gencbl Utility Output
® Orbix 6.2 IDL Compiler
® Orbix 6.2 IDL Compiler Output

Sample IDL Consider the following IDL member, called ARRAY:

interface jack

{
typedef long arrl[5][4];
typedef arrl arr2[10][6];
void opl(in arr2 pl);
IE
The genchbl Utility The gencbl does not generates unique names at each level for multiple

nested arrays.

The genchbl Utility Output The gencbl utility outputs the following based on the preceding IDL:
01 JACK- CP1- ARGS.
03 P1-1 QOOLRS 10 TI MES.
05 P1-2 OOCURS 6 TI MES.
07 P1-1 QCOURS 5 TI MES.
09 P1-2 QOOLRS 4 Tl MES.
11 P1 Pl CTURE S9(09) Bl NARY.

Note: The genchbl utility does not generate unique names at each level.
This might lead to problems similar to those described in “Name Scoping
and the COBOL Compilers” on page 97.

131

CHAPTER 6 | COBOL Migration Issues

Orbix 6.2 IDL Compiler These issues are fully resolved with the Orbix 6.2 IDL Compiler, which
generates unique names for array data items.

Orbix 6.2 IDL Compiler Output The Orbix 6.2 IDL Compiler outputs the following based on the preceding

IDL:
01 JACK- CP1- ARGS.
03 P1-1 OCCURS 10 TI MES.
05 P1-2 OCCURS 6 Tl MES.
07 P1-1-2 OOCURS 5 TI MES.
09 P1-2-2 OCCURS 4 Tl MES.
11 P1 Pl CTURE S9(10) Bl NARY.

The Orbix 6.2 IDL Compiler generates unique names at each level.

132

Working Storage data Items and Group Moves

Working Storage data Items and Group Moves

Overview

Mapping Changes

Reason for Mapping Changes

The Orbix 6.2 IDL Compiler has a new mapping for the IDL data types I ong,
short, unsi gned | ong, and unsi gned short. Working storage data item

definitions that use these data types are affected by this new mapping. This
change might affect group moves that use these Working Storage data item

definitions.

This section discusses the following topics:

® Mapping Changes

® Reason for Mapping Changes

® Sample IDL

® Orbix 2.3.x IDL to COBOL Mapping
® Orbix 6.2 IDL to COBOL Mapping

® Migration Impact

The following table represents the changes to the Working Storage data item
definitions for the appropriate IDL data types:

Table 8: COBOL Mapping Changes for IDL Data Types

IDL Data Type

Orbix 6.2 IDL
Compiler Output

gencbl Output

long

S9(10) BINARY

S9(09) BINARY

unsigned long

9(10) BINARY

9(09) BINARY

short

S9(5) BINARY

S9(4) BINARY

unsigned short

9(5) BINARY

9(4) BINARY

The mappings have been changed so that the COBOL runtime can marshal
the complete range of values for OORBA: : Long, OCORBA: : ULong,

QOCRBA: : Short, and OORBA: : Ushort respectively.

133

CHAPTER 6 | COBOL Migration Issues

Sample IDL The following IDL sample illustrates the changes for group moves using the

specified data types:

//exanpl e id nenber
interface exanpl e

{
typedef |ong | ong_array[10];
attribute long_array nyarray;
g
Orbix 2.3.x IDL to COBOL The following code sample represents the Orbix 2.3.x mapping type:

Mapping

/1 gencbl generated code sanpl e
WORKI NG STORAGE SECTI ON
03 M- LONG ARRAY10 OCCURS 10.
05 MY- LONGARRAY- ELEMENT Pl C S9(9) BI NARY.

03 W5 SUB PI C S9(09) BI NARY VALUE 0.

Orbix 6.2 IDL to COBOL Mapping The following code sample represents the Orbix 6.2 mapping type

// Obix 6.0 IDL Conpil er generated code sanpl e
01 EXAVPLE- MYARRAY- ARGS.

03 RESULT-1 OCCURS 10 TI MES.

05 RESULT Pl CTURE S9(10) Bl NARY.

*Loop incrementing W5 SUB

MOVE MY- LONG ARRAY10(W5 SUB) TO
RESULT-1 CF EXAVPLE- MYARRAY- ARGS(W5 SUB) .

Migration Impact Any group move with Working Storage definitions from the gencbl mapping
type is subject to unpredictable results at runtime. All such cases should be

changed to reflect the new mapping.

134

Mapping for IDL type Any

Mapping for IDL type Any

Overview

Sample IDL

The gencbl Utility Mapping

Orbix 6.2 Mapping

The type any mapping for COBOL has changed to comply with the OMG
COBOL specification.

This section discusses the following topics:
¢ Sample IDL

® The gencbl Utility Mapping

® Orbix 6.2 Mapping

® Migration Impact

The following sample IDL illustrates this change:

interface exanpl e
{
typedef any a_any;
readonly attribute a_any aany;

b

The gencbl utility outputs the following code for the preceding IDL sample:

RS E RS S SR E S SRR RS SRS S SRR SRR EEEE R R SR EEEEEEEEEEEEEE]

/1 Crbix COBOL 2.3 nappi ng
01 EXAVPLE- AANY- ARGS.

03 RESULT.
05 RESULT- TYPE PQA NTER
05 RESULT- VALUE PO NTER
05 RESULT- RELEASE Pl CTURE 9(01).

Orbix 6.2 outputs the following code for the preceding IDL sample:

01 EXAWPLE- AANY- ARGS.
03 RESULT PQA NTER VALUE NULL.

135

CHAPTER 6 | COBOL Migration Issues

Migration Impact There is a migration impact only for applications which reference any of the
individual components of the original mapping, that is XXX- TYPE, XXX- VALUE,
and the XxX%- RELEASE data items (this is not expected).

136

CORBA Copybook Additions

CORBA Copybook Additions

Overview

Migration Impact

Workaround

CORBA Copybook Definition
Example

There have been several additions to the supplied CORBA copybook.
This section discusses the following topics:

® Migration Impact

® Workaround

® CORBA Copybook Definition Example

There is a possibility that some of the names might conflict with those
defined in you application. For a complete list of indentifier names please
refer to the copybook located in or bi xhl g. | NCLUDE. GCPYLI B.

If any compile errors occur make the necessary changes to the application to
resolve them.

The following definition is defined in the CORBA copybook:

01 CRBI X- EXCEPTI ON- TEXT.

03 ERRCR TEXT Pl CTURE X(196) .
03 ERRCR TEXT- LEN Pl CTURE 9(009) Bl NARY
VALUE 196.

137

CHAPTER 6 | COBOL Migration Issues

Parameter Passing of Object References in
IDL Operations

Overview The Orbix 6.2 COBOL runtime adheres to the memory management rules
more strictly than the Orbix 2.3.x COBOL product.

Migration Impact When migrating Orbix 2.3.x based applications using object references as
operation parameters you are advised to refer to the COBOL Programmer’s
Guide and Reference for further details about memory management, paying
particularly attention to when and where the CBJDUP and CBIREL APIs are
called.

138

CORBA Object Location and Binding

CORBA Object Location and Binding

Overview

In This Section

This section summarizes the differences between Orbix 2.3.x object location
mechanisms and Orbix 6.2 object location mechanisms.

This section discusses the following topics:

Migration Overview and Example page 140
The Naming Service page 142
Object-String Conversion page 144

139

CHAPTER 6 | COBOL Migration Issues

Migration Overview and Example

In This Section

Migration Impact

Orbix 2.3.x and OBJSET

Orbix 6.2 and OBJSET

Orbix 2.3.x Object Location
Mechanism Example

140

This subsection provides a migration overview for using GBISET and an
example of the differences.

This subsection discusses the following topics:

® Migration Impact

® Migration Impact

® Orbix 6.2 and OBJSET

® Orbix 2.3.x Object Location Mechanism Example

Calls to the CcBISET APl which rely on a fabricated object reference are illegal
in Orbix 6.2. This API has been deprecated. The recommended replacement
APl is STRTORJ (as specified in the COBOL OMG specification).

One way to locate an object in an Orbix 2.3.x application is to use the
CBJISET API (equivalent to _bind() in C++), with a fabricated object
reference constructed from the host name and server name in an Orbix
object key, and the port information in the daemon. The daemon uses this
information to locate (and activate if requested) the correct server. The
server can then use the marker to locate the correct object.

If the application is calling GBISET with a fabricated object reference (the

application can still use it with an IOR or corbaloc) it must be replaced with

one of the following object location mechanisms:

® Naming service (batch only), see “The Naming Service” on page 142.

® Object-string conversion, see “Object-String Conversion” on page 144.

® (Calls to IR R (batch only), see the COBOL Programmer’s Guide and
Reference.

All these alternatives are based on the use of CORBA standard interoperable

object references (IORs), the difference being in where the I0Rs are stored

and how they are retrieved by the client application.

Example of the Orbix 2.3.x Object Location Mechanism:

CORBA Object Location and Binding

MOVE SPACES TO W& STR NG CBJ- REF
STRING ":\"
CR-HOST DELIM TED BY SPACE

w.o

CR- SERVER DELI M TED BY SPACE

[Tl

OR MARKER DELI M TED BY SPACE
CR-I R DELI M TED BY SPACE

CR- | RSRVR DELI M TED BY SPACE
CR- | NTF DELI M TED BY SPACE
I NTO W5- STR NG CBJ- REF

END- STRI NG
D SPLAY "CBJECT REFERECE = '" W5-STRING GBJ-REF "' ™"
CALL "CBISET" USI NG W5 STR NG CBJ- REF

SERVER- CBJ

141

CHAPTER 6 | COBOL Migration Issues

The Naming Service

Overview

Access to the Naming Service

Resolving Object Names

URL Syntax and IOR
Configuration

142

The Naming Service is easy to understand and use if the application’s
naming graph is not too complex. The triplet of mar ker Nane, server Nang,
host Nane used by the CBISET API to locate an object, is replaced by a
simple nane\ in the Naming Service.

This subsection discusses the following topics:

® Access to the Naming Service

® Resolving Object Names

® URL Syntax and IOR Configuration

All applications should use the interoperable Naming Service, which
provides access to future Naming Service implementations.

Access to the Naming Service can easily be wrapped. The only potential
drawback in using the Naming Service is that it might become a single point
of failure or performance bottleneck. If you use the Naming Service only to
retrieve initial object references, these problems are unlikely to arise.

An object’s name is an abstraction of the object location—the location
details are stored in the Naming Service. Use the following steps to resolve
the Object names:

Step Action

1 | Call ®BIR Rwith NameServi ce as its argument. This obtains an
initial reference to the Naming Service.

2 | The client uses the Naming Service to resolve the names of
CORBA objects and receives object references in return.

The URL syntax that the Naming Service provides makes it easier to
configure IORs—and is similar to _bi nd() by letting you specify host, port,
and well known object key in readable format. An example of the syntax for
both types is outlined as follows:

® Stringified IOR syntax example:

CORBA Object Location and Binding

“I CR 004301EF100..."
® URL type IOR syntax example:
“corbal oc: : 1. 2@yhost : 3075/ Nani ngSer vi ce”

With the URL syntax, cor bal oc is the protocol name, the 110OP version
number is 1. 2, the host name is nyhost, and the port number is 3075.

Note: Orbix 6.2 requires you to register a stringified IOR against a well
known key with the Orbix 6.2 locator, which centralizes the use of

stringified IORs in a single place, and lets you widely distribute readable
URLs for clients.

143

CHAPTER 6 | COBOL Migration Issues

Object-String Conversion

Overview

Migration impact using OBJSET

CORBA-compliant string-object
conversion functions

144

This subsection describes the migration impact of passing a fabricated
object string as its first parameter to CBISET.

This subsection discusses the following topics:
® Migration impact using OBJSET

® CORBA-compliant string-object conversion functions

If the application is passing a fabricated object string (equivalent to _bi nd()
in C++) as its first parameter to GBISET, this string must now be of one of
the following formats:

® astringified interoperable object reference (IOR).

® acorbal oc formatted URL string.

® anitnfal oc formatted URL string.

Refer to the STRTOCBI API in the COBOL Programmers Guide Reference for
more details.

The COBOL runtime offers two CORBA-compliant conversion APIs:
® STRTOCBJ
® CBITCSTR

API Migration Issues

API Migration Issues

In this Section This section discusses the following topics:
Deprecated APIs page 146
ORBEXEC and USER Exception parameters page 147
ORBSTAT page 148
ORBALLOC page 149

145

CHAPTER 6 | COBOL Migration Issues

Deprecated APIs

Deprecated and Replacement Table 9 lists the COBOL APIs that are deprecated in Orbix Mainframe 6.2. It
APIs also lists their replacements where appropriate:

Table 9: Deprecated COBOL APIs and Their Replacements

Deprecated APIs Replacement APIs
CBIGET Not replaced
CRBALLCC MEMALLCC
CRBREQD CRBREG + CBINEW
CRBFREE MEMFREE
STRSETSP STRSETP

CBIGETM CBJGETI D
CBISETM CBINEW

CBIGETI CBITCSTR

CBISET STRTOCBJ

ORBGET OQOAGET

CRBIN T QOARWIN

CRBPUT QOAPUT

CRBREQ COAREQ

Refer to the COBOL Programmer’s Guide and Reference for full details of all
the COBOL APIs supported.

146

API Migration Issues

ORBEXEC and USER Exception parameters

Overview

ORBEXEC in Orbix 2.3.x

ORBEXEC in Orbix 6.2

Migration Impact

In Summary

The CRBEXEC API function takes an extra parameter in Orbix 6.2.
This subsection discusses the following topics:

® ORBEXEC in Orbix 2.3.x

® ORBEXEC in Orbix 6.2

® Migration Impact

® |n Summary

The CRBEXEC API function in Orbix 2.3.x takes three parameters.

The GRBEXEC API function in Orbix 6.2 takes four parameters instead of
three. The fourth parameter is the user exception identifier.

Any existing application code that calls CRBEXEC must be modified to include
this extra parameter (the COBOL compiler does not check the number of
parameters that are passed to CRBEXEC.).

For any IDL that contains no user exception definitions, a dummy exception
block is generated by the IDL compiler. The user exception block defined as
a level 01 generated by the IDL compiler is then passed as the fourth
parameter to CRBEXEC. This change has been introduced to support user
exceptions in the COBOL runtime.

Refer to the COBOL Programmer’s Guide and Reference for further details
about the parameters of CRBEXEC.

Affects COBOL clients only. Requires minor code change.

147

CHAPTER 6 | COBOL Migration Issues

ORBSTAT

Overview

ORBSTAT Functionality

Orbix 2.3.x and ORBSTAT

Orbix 6.2 and ORBSTAT

Migration Impact

Workaround

148

The ORBSTAT API is not optional in Orbix 6.2.
This subsection discusses the following topics:
® ORBSTAT Functionality

® Orbix 2.3.x and ORBSTAT

® Orbix 6.2 and ORBSTAT

® Migration Impact

® Workaround

The CRBSTAT API is used to register the CRBI X- STATUS- | NFCRVATI ON block
with the COBOL runtime. This level 01 structure

(CRBI X- STATUS- | NFCRVATI ON) is defined in the CORBA supplied copybook
and allows the runtime to report exceptions.

In Orbix 2.3.x, if CRBSTAT is not called and when the COBOL runtime
encountered a system exception the program just ignores the exception

When the Orbix 6.2 COBOL runtime encounters a system exception and the
CRBI X- STATUS- | NFCRVATI ON block is not registered with the runtime, the
program terminates with the error below.

This change only affects applications that don’t already call the CRBSTAT
API, and that encounter a runtime exception. When this happens the
COBOL runtime outputs the following message and exits completely:

An exception has occourred but ORBSTAT has not been called. Place
the ORBSTAT APl call in your application, conpile and rerun.
Exi ti ng now

To workaround this problem perform the following steps:
1. Place the CRBSTAT API call in your application.

2. Compile and run the application.

API Migration Issues

ORBALLOC

Overview

Mapping Changes

Reason for Mapping Changes

Migration Impact

The Orbix 6.2 IDL Compiler has changed the mapping for IDL data types,
I ong, unsi gned | ong, short and unsi gned short. These changes might
effect the use of the deprecated CRBALLCC API.

This subsection discusses the following topics:
® Mapping Changes

® Reason for Mapping Changes

® Migration Impact

® Workaround

The following table represents the changes to the Working Storage data item
definitions for the appropriate IDL data types:

Table 10: ORBALLOC and Mapping Changes for IDL Data Types

IDL Data Type Orbix 6.2 IDL gencbl Output
Compiler Output
long S9(10) BINARY S9(09) BINARY
unsigned long 9(10) BINARY 9(09) BINARY
short S9(5) BINARY S9(4) BINARY
unsigned short 9(5) BINARY 9(4) BINARY

The mappings have been changed so that the COBOL runtime can marshal
the complete range of values for GORBA: : Long, OCORBA: : ULong,
QCRBA: : Short, and QCRBA: : Ushort respectively.

The migration impact affects applications that call the deprecated CRBALLCC
API, which allocates the specified number of bytes at runtime, if the type(s)
CRBALLCC is allocating memory for contains one of more of the following:

9(10) BI NARY, 9(5) Bl NARY, S9(10) Bl NARY or S9(05) Bl NARY and the exact
memory requirements are specified.

149

CHAPTER 6 | COBOL Migration Issues

Workaround There are two scenarios for dealing with this, these are:
® If the application is using sequences, determine if the deprecated
CRBALLQC API is being called, if so, use the SEQALLOC API in place of it.
® Determine if the deprecated CRBALLOC APl is being called, and if so,
increase the memory to be allocated to the Working Storage data items
by the appropriate amount.

150

COBOL IMS Server Migration Issues

COBOL IMS Server Migration Issues

Overview This section describes the source code changes required when migrating
COBOL IMS Orbix 2.3.x servers to COBOL IMS Orbix 6.2 servers.

Note: This section must be read in conjunction with the other COBOL
migration issues outlined in this document.

In This Section This section discusses the following topics:
Server Mainline Program Requirement for IMS Servers page 152
The Linkage Section for IMS Servers page 156

Access to the Program Communication Block for IMS Servers page 162

Error Checking Generation at Runtime for IMS Servers page 164

151

CHAPTER 6 | COBOL Migration Issues

Server Mainline Program Requirement for IMS Servers

Overview A server mainline program is required for all IMS COBOL server programs
running in an Orbix Mainframe 6.2 application.

This subsection discusses the following topics:
® Migration Impact

® Migration Sample IDL

® Server Mainline for the Simple IDL

Migration Impact The migration impact is that every Orbix 2.3.x IMS COBOL server now
requires a server mainline to run inside IMS. The server mainline can be
generated by running the Orbix 6.2 IDL COBOL compiler and specifying the
:-S: - TI M5 compiler arguments.

Refer to the COBOL Programmer’s Guide and Reference for more details of
compiler arguments.

Migration Sample IDL Consider the following IDL, called si npl e,

nmodul e Sinple

{
interface Sinpl e(hj ect
{

voi d

call _me();

1

Server Mainline for the Simple IDL The compiler output for the Orbix 6.2 IDL compiler produces two files for
the si npl e IDL: a server implementation called SI MPLES and a server
mainline called SI MPLESV. The following is the server mainline source code
for IMS, SI MPLESV, produced by the Orbix 6.2 IDL compiler when the
compiler arguments : - S: - TI M5 are specified.

Note: The server implementation is generated in IMS only if the
:-Z - TI M5 arguments are used with the Orbix 6.2 IDL compiler.

152

Example 4: Server Mainline for the simple IDL with the Orbix 6.2 IDL

Compiler (Sheet 1 of 3)

COBOL IMS Server Migration Issues

RS SR RS SRR E S E RS S S SRR SRS R R E RS SR EEEEEEEEEEEEEE]

* Descri pti on:

* This programis a | M5 server mainline for interfaces
* described in S| MPLE

LR R R R R R R R R R R EEEE R EEEEEEEEEEEEEEEEEEE]

| DENTI FI CATI ON D V1 SI N

PROGRAM | D.

ENVI RONMVENT DM SI ON

DATA D'V SI ON

WORKI NG STCRAGE SECTI ON

CCPY SI MPLE.
CCPY CORBA
CCPY W MBPCB.
01 ARG LIST
01 ARG LI ST-LEN

01 CRB-NAME

"sinple_orb".

01 CRB- NAME-LEN
01 SERVER NAME

"sinpl e
01 SERVER- NAME- LEN

01 | NTERFACE- LI ST.
03 FILLER

PI CTURE X(01)

VALUE SPACES.

PI CTURE 9(09) BI NARY
VALUE 0.

Pl CTURE X(10)

VALUE

PI CTURE 9(09) Bl NARY
VALLE 10.

Pl CTURE X(07)

VALUE

Pl CTURE 9(09) Bl NARY
VALLE 6.

Pl CTURE X(28)
VALUE

"I DL: Sinpl e/ Sinpl eChject:1.0 “.
01 | NTERFACE- NAMES- ARRAY REDEFI NES | NTERFACE- LI ST.
03 | NTERFACE- NAME OOCURS 1 TIMES Pl CTURE X(28).

01 CBIECT-ID-LIST.
03 FILLER

Pl CTURE X(27)
VALUE

"Si npl e/ Si npl eChj ect _obj ect ".
01 CBIJECT- | D- ARRAY REDEFI NES CBJECT- | D- LI ST.
03 CBIJECT- | DENTI FI ER OOCURS 1 TIMES Pl CTURE X(27).

153

CHAPTER 6 | COBOL Migration Issues

154

Example 4: Server Mainline for the simple IDL with the Orbix 6.2 IDL
Compiler (Sheet 2 of 3)

IR RS SRS RS E S EEEE S E RS RS S SRR RS SRR RS R R R EEEEEEEEEEEEEEE]

* (bject values for the Interface(s)
RS R RS SRS SR SRS R R RS RS E R R SRR RS R EEEREEEEEEEEEEEEEEEEEEEEEEEEEESS
01 S| MPLE- S| MPLECBIECT- CBJ PO NTER

VALUE NULL.

QCPY LS| MSPCB.
PROCEDURE DIVI SICN USING LS-1 O PCB, LS ALT- PCB.

INT.
PERFCRM UPDATE- W5- PCBS.

CALL "CORBSTAT" USI NG CRBI X- STATUS- | NFCRVATI N
SET W5 CRBSTAT TO TRUE
PERFCRM CHECK- STATUS.

CALL "ORBARGS' USI NG ARG LI ST
ARG LI ST- LEN
CRB- NAME
CRB- NAMVE- LEN
SET W5 CRBARGS TO TRUE
PERFCRM CHECK- STATUS.

CALL "CRBSRVR' USI NG SERVER NAME
SERVER- NAME- LEN

SET W5- CRBSRVR TO TRLE

PERFCRM CHECK- STATUS.

COBOL IMS Server Migration Issues

Example 4: Server Mainline for the simple IDL with the Orbix 6.2 IDL
Compiler (Sheet 3 of 3)

RS SR RS SRR E S E RS S S SRR SRS R R E RS SR EEEEEEEEEEEEEE]

* |Interface Section Bl ock

D

* Cenerating bj ect Reference for interface S nple/Sinpl eChj ect
CALL "CORBREG' USI NG S| MPLE- S| MPLECBIECT- | NTERFACE.
SET W5 CRBREG TO TRUE.
PERFORM CHECK- STATUS.

CALL "CBINEW USI NG SERVER- NAME
| NTERFACE- NAME CF | NTERFACE- NAMES- ARRAY(1)
CBJECT- | DENTI FI ER CF CBJECT- | D- ARRAY(1)
S| MPLE- SI MPLECBIECT- CBJ.

SET W& CBINEWTO TRUE.

PERFCRM CHECK- STATUS.

CALL "COARWN'.
SET W5 COARUIN TO TRUE.
PERFCRM CHECK- STATUS.
CALL "CBIREL" USI NG SI MPLE- SI MPLECBJECT- CBJ.
SET Ws- GBJREL TO TRUE.
PERFCRM CHECK- STATUS.
EXI T- PRG
QCBACK.

LR R R RS EEEEE SRR EEEEE SRR EEEEREEEEEEEEEEEEEEEEEEEEEEE]

* Popul ate the working storage PCB defi nitions

RS SRS SRR E SRR RS SRS SRR SRR EEE RS SR EEEEEEEEEEEEEE]

QCPY UPDTPCBS.

RS E R EE S EEEEE S E S SRR S SRS SRR RS SR RS EEE RS SR EEEEEEEEEEEEEE]

* Check Errors Copybook

D R

QCPY CERRSMFA

155

CHAPTER 6 | COBOL Migration Issues

The Linkage Section for IMS Servers

Overview This subsection describes the differences between an Orbix 2.3.x IMS
COBOL server and an Orbix 6.2 IMS COBOL server with regard to how the
program communication block is exposed to Orbix applications.

This subsection discusses the following topics:

® Migration Impact

® Orbix 2.3.x Server Implementation for Simple IDL
® Orbix 6.2 Server Implementation for Simple IDL
® Linkage Section Migration

Migration Impact The linkage section of an Orbix 2.3.x server implementation must be
removed.

Orbix 2.3.x Server The server implementation for the Orbix 2.3.x Compiler output for the

Implementation for Simple IDL sinpl e IDL is as follows:

Example 5: Orbix 2.3.x Compiler Output for the Simple IDL (Sheet 1 of
3)

R RS RS RS S SRR RS SRR SRR RS SRR RS SRR EEEE R EEEEEEEEEEEEEEE]

* Jdentification D vision

KAKRK AN KA AN KA AN A A A A A Ak A Ak dkhkhkhkhkhkhhkhkhhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhhkhkhhkhkhkhkhkhkhhkhkhhk
| DENTI FI CATICN D'V SI ON
PROGRAM | D. S| MPLES.

ENVI RONVENT DM S| ON
DATA DV S| ON
WIRKI NG STCRAGE SECTI O\

QCPY S| MPLE.
OCPY CCRBA
01 W& | NTERFACE- NAME Pl CTURE X(30).
01 W5 | NTERFACE- NAME- LENGTH Pl CTURE 9(09) Bl NARY
VALLE 30.
01 W& ERRCR- FUNC Pl CTURE X(09)
VALUE SPACES.

156

COBOL IMS Server Migration Issues

Example 5: Orbix 2.3.x Compiler Output for the Simple IDL (Sheet 2 of
3)

LI NKAGE SECTI ON

*

** | M5 |inkage section data itens
*

01 | CPCB.
02 LTERMNAME PIC X(8).
02 FILLER PIC X(2).
02 | OSTATUS Pl C XX
02 FILLER Pl C X(20).
01 DBPCB.
02 DBNAME PIC X(8).

02 SEG LEVEL-NO PI C X(2).
02 DBSTATUS PI C XX

02 FI LLER Pl C X(20).
01 ALTPCB.

02 DEST-TRAN PIC X(8).

02 FI LLER PIC X(2).

02 ALTSTATUS PIC XX

02 FI LLER Pl C X(20).

D R

* Procedure D vision

LR R R RS EEEEEEEEEEEEEEEEEEEEEEEEEEREEEEEEEEEEEEEEEEEEEEEEE]

PROCEDURE D'V SI ON USI NG | CPCB ALTPCB DBPCB.

ENTRY "Dl SPATCH".
CALL "CRBSTAT" US| NG CRBI X- STATUS- | NFCRVATI O\
MOVE " CRBSTAT" TO W5 ERROR FUNC.

PERFCRM CHEQK- STATUS.

CALL "CRBREQ' US| NG REQUEST- | NFQ

MOVE " CRBREQ' TO V& ERRCR- FUNC.

PERFCRM CHEQK- STATUS.

* Resolve the pointer reference to the interface nane which is
* the fully scoped interface nane

CALL " STRGET" US| NG | NTERFACE- NAME
W&- | NTERFACE- NAME- LENGTH
WE- | NTERFACE- NAME.

SET W& STRGET TO TRUE

PERFCRM CHECK- STATUS.

157

CHAPTER 6 | COBOL Migration Issues

Example 5: Orbix 2.3.x Compiler Output for the Simple IDL (Sheet 3 of
3)

IR RS SRS RS E S EEEE S E RS RS S SRR RS SRR RS R R R EEEEEEEEEEEEEEE]

* Interface(s) evaluation:

D R R X

MOVE SPACES TO S| MPLE- SI MPLECBIECT- CPERATI ON

EVALUATE W5- | NTERFACE- NAME
WHEN ' Si npl e/ Si npl e(oj ect*

* Resol ve the pointer reference to the operation infornation

CALL "STRGET" USI NG CPERATI ON- NAME
S| MPLE- S- 3497- CPERATI ON- LENGTH
S| MPLE- S| MPLECBJECT- CPERATI ON

MOVE " STRGET" TO WS- ERRCR- FUNC

PERFCRM CHECK- STATUS

D SPLAY "Sinple::" Sl MLE- Sl MPLECBIJECT- CPERATI ON

"i nvoked"
END- EVALUATE.

QCPY S| MPLED.
GOBACK.

DO SI MPLE- SI MPLECBIECT- CALL- ME.
CALL " ORBCET" USI NG SI MPLE- SI MPLECBJECT- 70FE- ARGS.
MOVE " CRBGET" TO W5- ERROR FUNC.
PERFCRM CHECK- STATUS.

CALL " CORBPUT" USI NG SI MPLE- S| MPLECBJECT- 70FE- ARGS.
MOVE " CRBPUT" TO W5- ERROR FUNC.
PERFCRM CHECK- STATUS.

LR E RS RS EE RS RS EEES

* Check Errors Section

RS SRS RS S SRR RS RS EE RS E RS R RS EEEE R EEEEEEEEEEEEE RS

GHECK- STATUS SECTI CN

| F EXCEPTI ON NUMBER NOT EQUAL 0 THEN
DI SPLAY "Server Inpl: Call Failed in " W5 ERRCR FUNC
DI SPLAY "Server |npl: Exception Value is
EXCEPTI ON- NUMBER
QOBACK

END- | F.

158

Orbix 6.2 Server Implementation
for Simple IDL

COBOL IMS Server Migration Issues

The following is the server implementation compiler output, SI MPLES, for
the Orbix 6.2 IDL compiler:

Example 6: Orbix 6.2 Server Implementation Code for Simple IDL (Sheet
1of2)

LR R R RS SRR EE SRR S EEEEEEEEEEEEEEEEREEEEEEEEEEEEEEEEEEEEEEE]

* | dentification D vision

khkkhkhkhkhkhkdhkhkhhhkhkhkdkhkdhhhhhhkhhdhrhhkhkhkhhhhhkhkhkhdkhkdhkhhhkdkhdkhkdrhkhkhkdkhrhhkhkkkx
| DENTI FI CATI ON DM SI O\
PROGRAM | D. S| MPLES.
ENVI RONMENT DM S| ON

DATA D'V SI ON

WIRKI NG STCRAGE SECTI ON

CCPY SI MPLE.

QCPY CORBA

CCPY W&l MSPCB.

01 W5 | NTERFACE- NAVE Pl CTURE X(30) .

01 W& | NTERFACE- NAME- LENGTH Pl CTURE 9(09) Bl NARY
VALUE 30.

RS E R E S EEEEE RS E S SRR RS SRS SRR SRR EEEE RS SR EEEEEEEEEEEEEE]

* Procedure D vision

LR R R R R R R R R R R R EEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEE]

PROCEDURE DI VI SI ON
ENTRY " D SPATCH'.

CALL " COAREQY USI NG REQUEST- | NFQ
SET W& COAREQ TO TRUE
PERFCRM CHECK- STATUS.

* Resolve the pointer reference to the interface nane which is
* the fully scoped interface nane
CALL " STRGET" USI NG | NTERFACE- NAME
W\E- | NTERFACE- NAME- LENGTH
W& | NTERFACE- NAME.
SET W5 STRCET TO TRUE.
PERFCRM CHECK- STATUS.

159

CHAPTER 6 | COBOL Migration Issues

Example 6: Orbix 6.2 Server Implementation Code for Simple IDL (Sheet
20f2)

IR RS SRS RS E S EEEE S E RS RS S SRR RS SRR RS R R R EEEEEEEEEEEEEEE]

* Interface(s) evaluation:

D R R X

MOVE SPACES TO S| MPLE- SI MPLECBIECT- CPERATI ON

EVALUATE W5- | NTERFACE- NAME
WHEN ' | DL: Si npl e/ Si npl e(hj ect: 1. 0

* Resol ve the pointer reference to the operation infornation
CALL "STRGET" USI NG CPERATI ON- NAME
S| MPLE- S- 3497- CPERATI ON- LENGTH
S| MPLE- S| MPLECBJECT- CPERATI ON
SET W5 STRGET TO TRUE
PERFCRM CHECK- STATUS
D SPLAY "Sinple::" Sl MLE- Sl MPLECBIJECT- CPERATI ON

"i nvoked"
END- EVALUATE.
QCPY S| MPLED.
GOBACK.

DO Sl MPLE- SI MPLECBIECT- CALL- ME.
CALL " COACET" USI NG SI MPLE- SI MPLECBIECT- 70FE- ARGS.
SET W5 COAGET TO TRUE
PERFCRM CHECK- STATUS.

CALL " CoAPUT" USI NG SI MPLE- SI MPLECBJECT- 70FE- ARGS.
SET W5 COAPUT TO TRUE
PERFCRM CHECK- STATUS.

LR EE RS R R RS RS EE R SRR EE]

* Check Errors Copybook

R RS SRS RS SRR RS RS SRR RS S SRR RS E SRR R EEEEEEEEEEEEEEE]

QCPY CERRSMFA

Linkage Section Migration The linkage section in the Orbix 2.3.x compiler output which is highlighted
in the “Orbix 2.3.x Server Implementation for Simple IDL"” on page 156
must be omitted altogether. The Orbix 6.2 IDL compiler produces a linkage
section in the server mainline which appears as, GPY LSI MSPCB. The
copybook LSI MsPCB is of the format:

160

COBOL IMS Server Migration Issues

LI NKAGE SECTI ON

01 LS 10 PCB.
03 LS| CPCB- LTERW NAME PI CTURE X(8).
03 LS 1 OPCB- DLI - RESERVE PI CTURE X(2).
03 LS| OPCB- STATUS- OCDE PI CTURE X(2).
03 LS| GPCB- | N- PREFI X.
05 LS-1 CPCB- JULI AN- DATE PI CTURE S9(7) COWP-3.
05 LS | OPCB- PCB- TI ME- CF- DAY PI CTURE S9(7) COWP-3.
05 LS| CPCB- MBG SEQ PI CTURE S9(7) COWP.
03 LS| OPCB- MOD- NAME PI CTURE X(8).
03 LS | OPCB- RACF- | D PI CTURE X(8).
01 LS ALT- PCB.
03 LS ALTPCB- DEST- NAME PI CTURE X(8).
03 LS ALTPCB- RESERVED PI CTURE X(2).
03 LS ALTPCB- STATUS- CCDE Pl CTURE X(2).

161

CHAPTER 6 | COBOL Migration Issues

Access to the Program Communication Block for IMS Servers

Overview Orbix 2.3.x compiler generated code exposes the program communication
block in the server implementation. Orbix 6.2 IDL compiler generated code
exposes the program communication block in the server mainline. This data
is accessible from the Orbix 6.2 server implementation by using the
supplied Wsl MSPCB and UPDTPCBS copybooks.

This subsection discusses the following topics:
® Orbix 6.2 Server Mainline Code

® The copybook WSIMSPCB Format

® The copybook UPDTPCBS Format

Orbix 6.2 Server Mainline Code The server mainline generated by the Orbix 6.2 IDL compiler allows access
to the program communication block data by populating the corresponding
working storage data from the linkage section definitions using the
paragraph UPDATE- W&- PCBS. The Working Storage data is defined in the
V&l MBPCB copybook, the Linkage Section definitions are defined in the
LSl MsPCB copybook and the UPDATE- W& PCBS paragraph is defined in the
UPDTPCBS copybook. These three copybooks are shipped with the product in
or bi xhl g. | NCLUDE. GCPYLI B.

For example, consider “Server Mainline for the Simple IDL” on page 152,
the working storage section contains GCPY Wsl MSPCB which is populated
from LSI MBPCB using the UPDATE- V&- PCBS paragraph defined in UPDTPCBS.

Note: If the server implementation requires access to the program
communication block data it must have a copy statement for the copybook
W8l MSPCB in its working storage section.

162

The copybook WSIMSPCB Format

The copybook UPDTPCBS Format

COBOL IMS Server Migration Issues

The copybook W&l MSPCB has the format:

* Nane:

W5l MSPCB*

RS S SR SRS SRR E S SRR RS RS SRR SRR R R E RS SR EEEEEEEEEEEEEE]

** Program conmuni cation data area for use in OOBCL | M5 server.*

01 W51 O PCB | S EXTERNAL.
03 W& | CPCB- LTERW NAME

03
03

03 W& 1 CPCB- | N- PREFI X.
05 W5 | GPCB- JULI AN- DATE Pl CTURE S9(7) COWP-3.
05 W5 | CPCB- PCB- TI ME- O~ DAY PI CTURE S9(7) OOWP-3.

05 W& | CPCB- M5G- SEQ

03 W& | CPCB- MCD- NAVE
03 W&-| CPCB- RACF-I D

01 Ws-ALT-PCB | S EXTERNAL.

03 W5 ALTPCB- DEST- NAVE
03 W& ALTPCB- RESERVED

03 W& ALTPCB- STATUS- CCDE

W5- | CPCB- DLI - RESERVE
W5- | GPCB- STATUS- CCDE

Pl CTURE X(8).
Pl CTURE X(2).
Pl CTURE X(2).

PI CTURE S9(7) COWP.
Pl CTURE X(8).
Pl CTURE X(8).

Pl CTURE X(8).
Pl CTURE X(2).
Pl CTURE X(2).

The copybook UPDTPCBS is of the format:

* Nane:

UPDTPCBS*

LR R R RS SRR RS RS EEEEEEEEEEEEEEEEREEEEEEEEEEEEEEEEEEEEEEE]

UPDATE- W5- PCBS.

MOVE
MOVE
MOVE
MOVE
MOVE

LS- | CPCB- LTERM NAME
LS- |1 CPCB- DLI - RESERVE
LS- | CPCB- STATUS- CCDE
LS- | GPCB- JULI AN- DATE

The following is used to nove the PGB |inkage-section defined
data to the correspondi ng worki ng-storage definitions for use
in the server inplenentaion.

TO W5 | CPCB- LTERM NAME
TO W& | CPCB- DLI - RESERVE.
TO W& | CPCB- STATUS- CCDE.
TO W5 | CPCB- JULI AN- DATE

LS- | CPCB- PCB- TI ME- CF- DAY TO

LS- | CPCB- MG SEQ

LS- | CPCB- MCD- NAME

LS 1 CPCB- RACF-1 D

LS- ALTPCB- DEST- NAME
LS- ALTPCB- RESERVED
LS- ALTPCB- STATUS- CCDE

W&- | CPCB- PCB- TI M- CF- DAY.
TO W& | CPCB- MBG SEQ
TO W& | CPCB- MCD- NAMVE.
TO W& | CPCB- RACF- | D
TO W5 ALTPCB- DEST- NAME
TO W& ALTPCB- RESERVED.
TO W& ALTPCB- STATUS- CCDE.

163

CHAPTER 6 | COBOL Migration Issues

Error Checking Generation at Runtime for IMS Servers

Overview This subsections summarizes the differences between gencbl and the Orbix
6.2 IDL Compiler in relation to the GHECQK- STATUS paragraph used for error
checking.

This subsection discusses the following topics:
® The genchl Utility

® The Orbix 6.2 IDL Compiler

® Migration Impact

The genchbl Utility The CHECK- STATUS paragraph is generated by gencbl for each server when it
is run with the - E option.

The Orbix 6.2 IDL Compiler The CHECK- STATUS paragraph is shipped as a static copybook called
CERRSMFA, in the or bi xhl .1 NCLUDE. GCPYLI B in Orbix 6.2. The reason that
the Orbix 6.2 IDL Compiler doesn't generate this procedure is that,
regardless of the IDL, the procedure code is unchanged.

Note: The CHECK- STATUS paragraph for IMS servers is different from
batch in the following way: the CHECK- STATUS paragraph does not set the
RETURN- OCCE register, and calls GCBACK instead of STGP RUNif a system
exception occurs.

Migration Impact There is no migration impact, however IONA recommend you use the
CERRSMFA copybook which shows the system exception encountered in a
more user-friendly format.

164

COBOL IMS Client Migration Issues

COBOL IMS Client Migration Issues

Overview

In This Section

This section describes the source code changes required when migrating
COBOL IMS Orbix 2.3.x clients to COBOL IMS Orbix 6.2 clients.

Note: This section must be read in conjunction with the other COBOL
migration issues outlined in this document.

This section discusses the following topics:

The Linkage Section for IMS Clients page 166
Error Checking Generation at Runtime for IMS Clients page 168
Extra Copybooks in Orbix 6.2 for IMS Clients page 169

165

CHAPTER 6 | COBOL Migration Issues

The Linkage Section for IMS Clients

Overview The linkage section in an Orbix 2.3.x IMS client implementation and the
linkage section in an Orbix 6.2 IMS client implementation have different
definitions.

This subsection discusses the following topics:
® Migration impact

® Orbix 2.3.x client implementation sample
® Orbix 6.2 client implementation

Migration impact The linkage section of an Orbix 2.3.x client implementation must be
replaced with GCPY LSI MSPCB, and replace PROCEDURE DI VI SI ON USI NG
| OPCB. with PROCEDURE DM SION USING LS 1 O PCB, LS ALT- PCB.

Orbix 2.3.x client implementation The client implementation for the Orbix 2.3.x for the linkage section is as
sample follows:

LI NKAGE SECTI ON

01 |CPCB.
02 LTERVNAMVE PICTURE X(8).
02 FILLER Pl CTURE X(2).
02 TPSTATUS Pl CTURE XX.
02 FILLER Pl CTURE X(20).

PROCEDURE DI M SI ON US| NG | CPCB.

Orbix 6.2 client implementation The client implementation for the Orbix 6.2 for the linkage section is as
follows:

QCPY LSI MBPCB.
PROCEDURE DM SION USING LS-1 G- PCB, LS ALT-PCB.

where the contents of CCPY LSI MBPCB is:

166

LI NKAGE SECTI ON

01

01

LS-1 O PCB.

03 LS| CPCB- LTERM NAVE

03 LS-1 GPCB- OLI - RESERVE

03 LS| GPCB- STATUS- CCDE

03 LS| CPCB- | N- PREFI X.
05 LS-1 GPCB- JULI AN- DATE
05 LS| CPCB- PCB- Tl ME- COF- DAY
05 LS| CPCB- M5G SEQ

03 LS| GPCB- MID- NAME

03 LS| CPCB- RACF-1D

LS ALT- PCB.

03 LS- ALTPCB- DEST- NAMVE

03 LS ALTPCB- RESERVED

03 LS ALTPCB- STATUS- CCDE

COBOL IMS Client Migration Issues

PI CTURE X(8).
PI CTURE X(2).
PI CTURE X(2).

Pl CTURE S9(7)
Pl CTURE S9(7)
PI CTURE S9(7)

Pl CTURE X(8).
Pl CTURE X(8).

Pl CTURE X(8).
Pl CTURE X(2).
Pl CTURE X(2).

167

CHAPTER 6 | COBOL Migration Issues

Error Checking Generation at Runtime for IMS Clients

Overview This subsection summarizes the differences between an Orbix 2.3.x client
and an Orbix 6.2 client in relation to the GHEQK- STATUS paragraph used for
error checking.

This subsection discusses the following topics:
® |MS clients in Orbix 2.3.x

® |IMS clients in Orbix 6.2

® Migration impact

IMS clients in Orbix 2.3.x There is no copybook shipped for error-checking for IMS client code in Orbix
2.3.x. Customers are required to implement their own error checking
procedure.

IMS clients in Orbix 6.2 For IMS clients a QLI M5 copybook is shipped in the

or bi xhl g.I NCLUDE. CCPYLI B in Orbix 6.2.

Note: The CHECK- STATUS paragraph for IMS clients is different from batch
in the following way: the CHECQK- STATUS paragraph does not set the
RETURN- OCCE register, and calls GCBACK instead of STGP RN if a system
exception occurs. It also writes a message to the IMS output message
queue to show which API has failed.

Migration impact There is no migration impact, however IONA recommend you use the
GHKCLI Ms copybook which shows the system exception encountered in a
more user-friendly format.

168

COBOL IMS Client Migration Issues

Extra Copybooks in Orbix 6.2 for IMS Clients

Overview

Migration impact

Orbix 6.2 IMS client code

This subsection describes differences in the code format between Orbix
2.3.x and Orbix 6.2 in regard to IMS clients.

This subsection discusses the following topics:
® Migration impact

® Orbix 6.2 IMS client code

® Orbix 2.3.x IMS client code

There is no migration impact. This subsection merely offers an explanation
for why extra copybooks are shipped with Orbix 6.2 that are not shipped
with Orbix 2.3.x.

The reason this code is shipped in copybooks in Orbix 6.2 is for ease of use
and non-replication of code because it is common code for any IMS client.

In Orbix 6.2 client code the following copy books are shipped:

Table 11: Extra Copybooks that ship with Orbix 6.2

Copybook Description

VGl MBCL This is relevant to IMS clients only. It contains a COBOL
data definition that defines the format of the message that
can be written by the paragraph contained in

or bi xhl g.I NCLUDE. OCPYLI B(1 MBWR TE) . It also contains
COBOL data definitions for calling the QU (get unique) and
I SRT (insert) commands.

GETUN QUE | This is relevant to IMS clients only. It contains a COBOL
paragraph that can be called by the client, to retrieve
specific IMS segments. It does this by using the supplied
IBM routine (interface) CBLTDLI to make an IMS DC (data
communications) call that specifies the QU (get unique)
function command.

169

CHAPTER 6 | COBOL Migration Issues

Orbix 2.3.x IMS client code

170

Table 11: Extra Copybooks that ship with Orbix 6.2

Copybook

Description

I MBWR TE

This is relevant to IMS clients only. It contains a COBOL
paragraph called WR TE- DG TEXT, to write a segment to the
IMS output message queue. It does this by using the
supplied IBM routine (interface) CBLTDLI to make an IMS
DC (data communications) call that specifies the | SRT
(insert) function command.

In Orbix 6.2 these copybooks are located in or bi xhl g. | NCLUDE. GCPYLI B.
This code is also included in the demonstrations.

For Orbix 2.3.x this code is part of the demonstration code for the Orbix
2.3.x demonstrations.

COBOL CICS Server Migration Issues

COBOL CICS Server Migration Issues

Overview

In This Section

This section describes the source code changes required when migrating
COBOL CICS Orbix 2.3.x servers to COBOL CICS Orbix 6.2 servers.

Note: This section must be read in conjunction with the other COBOL
migration issues outlined in this document.

This section discusses the following topics:

Server Mainline Program Requirement for CICS Servers page 172

Access to the EXEC Interface Block Data Structure page 176

Error Checking Generation at Runtime for CICS Servers page 177

171

CHAPTER 6 | COBOL Migration Issues

Server Mainline Program Requirement for CICS Servers

Overview A server mainline program is required for all CICS COBOL programs running
in an Orbix Mainframe 6.2 application.

This subsection discusses the following topics:
® Migration Impact

® Migration Sample IDL

® Server Mainline for the Simple IDL

Migration Impact The migration impact is that every Orbix 2.3.x CICS COBOL server now
requires a server mainline to run inside CICS. The server mainline can be
generated by running the Orbix 6.2 IDL COBOL compiler and specifying the
:-S: - TA CS compiler arguments.

Refer to the COBOL Programmer’s Guide and Reference for more details of
compiler arguments.

Migration Sample IDL Consider the following IDL, called si npl e,

nmodul e Sinple

{
interface Sinpl e(hj ect
{

voi d

call _me();

1

Server Mainline for the Simple IDL The compiler output for the Orbix 6.2 IDL compiler produces two files for
the si npl e IDL: a server implementation called SI MPLES and a server
mainline called SI MPLESV. The following is the server mainline source code
for CICS, SI MPLESV, produced by the Orbix 6.2 IDL compiler when the
compiler arguments : - S - TQ CS are specified.

Note: The server implementation is generated in CICS only if the
:-Z -TA CS arguments are used with the Orbix 6.2 IDL compiler.

172

COBOL CICS Server Migration Issues

Example 7: Server Mainline for the simple IDL with the Orbix 6.2 IDL
Compiler (Sheet 1 of 3)

RS SR RS SRR E S E RS S S SRR SRS R R E RS SR EEEEEEEEEEEEEE]
* Descri pti on:

* This programis a ACS server nainline for interfaces

* described in SIMPLE

LR R R R R R R R R R R EEEE R EEEEEEEEEEEEEEEEEEE]
| DENTI FI CATION DM SI ON

PROGRAM | D S| MPLESV.

ENVI RONVENT DIV S| ON

DATA D'V SI ON

WORKI NG STCRAGE SECTI ON

QCPY S| MPLE.
CCPY CORBA
01 ARG LI ST Pl CTURE X(01)
VALUE SPACES.
01 ARG LI ST-LEN Pl CTURE 9(09) Bl NARY
VALLE 0.
01 CRB- NAME Pl CTURE X(10)
VALUE
"sinple_orb".
01 ORB- NAME-LEN Pl CTURE 9(09) Bl NARY
VALLE 10.
01 SERVER NAME Pl CTURE X(07)
VALUE
"sinple "
01 SERVER NAME- LEN Pl CTURE 9(09) Bl NARY
VALUE 6.
01 | NTERFACE- LI ST.
03 FILLER Pl CTURE X(28)
VALUE

"I DL: Sinpl e/ Si npl eCbj ect:1.0 “.
01 | NTERFACE- NAMES- ARRAY REDEFI NES | NTERFACE- LI ST.
03 | NTERFACE- NAME CCCOURS 1 TI MES PI CTURE X(28).
01 CBJECT-|D- LI ST.
03 FILLER Pl CTURE X(27)
VALUE
"Si npl e/ S npl eChj ect _obj ect "
01 CBJECT- | D- ARRAY REDEFI NES CBJECT- | D- LI ST.
03 CBJECT-| DENTI FI ER OOCURS 1 TI MES Pl CTURE X(27).

173

CHAPTER 6 | COBOL Migration Issues

174

Example 7: Server Mainline for the simple IDL with the Orbix 6.2 IDL
Compiler (Sheet 2 of 3)

IR RS SRS RS E S EEEE S E RS RS S SRR RS SRR RS R R R EEEEEEEEEEEEEEE]

* (bject values for the Interface(s)
RS R RS SRS SR SRS R R RS RS E R R SRR RS R EEEREEEEEEEEEEEEEEEEEEEEEEEEEESS
01 S| MPLE- S| MPLECBIECT- CBJ PO NTER

VALUE NULL.

PROCEDURE D'MVI SI ON
INT.

CALL "CORBSTAT" USI NG CRBI X- STATUS- | NFCRVATI ON
SET W5 CRBSTAT TO TRUE
PERFCRM CHECK- STATUS.

CALL "ORBARGS' USING ARG LI ST
ARG LI ST- LEN
CRB- NAME
CRB- NAMVE- LEN
SET W5 CRBARGS TO TRUE
PERFCRM CHECK- STATUS.

CALL "CRBSRVR' USI NG SERVER NAME
SERVER- NAME- LEN

SET W5- CRBSRVR TO TRE

PERFCRM CHECK- STATUS.

COBOL CICS Server Migration Issues

Example 7: Server Mainline for the simple IDL with the Orbix 6.2 IDL
Compiler (Sheet 3 of 3)

RS SR RS SRR E S E RS S S SRR SRS R R E RS SR EEEEEEEEEEEEEE]

* |Interface Section Bl ock

D

* Cenerating bj ect Reference for interface S nple/Sinpl eChj ect
CALL "CORBREG' USI NG S| MPLE- S| MPLECBIECT- | NTERFACE.
SET W5 CRBREG TO TRUE.
PERFORM CHECK- STATUS.

CALL "CBINEW USI NG SERVER- NAME
| NTERFACE- NAME CF | NTERFACE- NAMES- ARRAY(1)
CBJECT- | DENTI FI ER CF CBJECT- | D- ARRAY(1)
S| MPLE- SI MPLECBIECT- CBJ.

SET W& CBINEWTO TRUE.

PERFCRM CHECK- STATUS.

CALL "COARWN'.
SET W5 COARUIN TO TRUE.
PERFCRM CHECK- STATUS.
CALL "CBIREL" USI NG SI MPLE- SI MPLECBJECT- CBJ.
SET Ws- GBJREL TO TRUE.
PERFCRM CHECK- STATUS.
EXI T- PRG
QCBACK.

LR R R RS EEEEE SRR EEEEE SRR EEEEREEEEEEEEEEEEEEEEEEEEEEE]

* Check Errors Copybook

RS SRS SRR E SRR RS SRS SRR SRR EEE RS SR EEEEEEEEEEEEEE]

QCPY CERRSMFA.

Note: The batch implementation program is the same as the CICS
implementation program except the CICS implementation program has a
QCPY CERRSMFA instead of a QCPY GHKERRS

175

CHAPTER 6 | COBOL Migration Issues

Access to the EXEC

Overview

Migration Impact

Required Code

176

Interface Block Data Structure

This subsection describes the migration impact for CICS COBOL servers
whose implementation requires access to the EXEC interface block (EIB)
data structure. It discusses the following topics:

® “Migration Impact”

® “Required Code”

Because Orbix 6.2 requires that all CICS COBOL servers have a server
mainline, the implementation program is now a sub-program that is entered
via a Dl SPATCH entry point. By default, the CICS program does not pass
along the address of the EIB structure. As a result, you must add some
additional code to your COBOL server implementation programs.

In Working Storage, include the following OCPY statement:

QCPY WBA CSSV

Note: The WSCICSV contains the following line:
01 W5 El B- PO NTER USACE |'S PA NTER VALUE NULL.

At the start of your Procedure Division, after the DISPATCH entry point, add
the following code:

EXEC O CS ADDRESS
El B (V& B B-PA NTER)
NCHANDLE
END- EXEC.
SET ADDRESS CF DFHEI BLK
TO & El B- POl NTER

COBOL CICS Server Migration Issues

Error Checking Generation at Runtime for CICS Servers

Overview

The gencbl Utility

The Orbix 6.2 IDL Compiler

Migration Impact

This subsection summarizes the differences between gencbl and the Orbix
6.2 IDL Compiler in relation to the CHECK- STATUS paragraph used for error
checking.

This subsection discusses the following topics:

® The genchl Utility

® The Orbix 6.2 IDL Compiler

® Migration Impact

The CHECK- STATUS paragraph is generated by gencbl for each server when it
is run with the - E option.

The CHECK- STATUS paragraph is shipped as a static copybook called
CERRSMFA, in the or bi xhl g.I NCLUDE. GCPYLI B in Orbix 6.2. The reason that
the Orbix 6.2 IDL Compiler doesn't generate this procedure is that,
regardless of the IDL, the procedure code is unchanged.

Note: The CHECK- STATUS paragraph for CICS servers is different from
batch in the following way: the CHECK- STATUS paragraph does not set the
RETURN- OCCE register, and calls GBAXK instead of STGP RN if a system
exception occurs.

There is no migration impact, however IONA recommend you use the
CERRSMFA copybook which shows the system exception encountered in a
more user-friendly format.

177

CHAPTER 6 | COBOL Migration Issues

COBOL CICS Client Migration Issues

Overview This section describes the source code changes required when migrating
COBOL CICS Orbix 2.3.x clients to COBOL CICS Orbix 6.2 clients.

Note: This section must be read in conjunction with the other COBOL
migration issues outlined in this document.

In This Section This section discusses the following topics:
Error Checking Generation at Runtime for CICS Clients page 179
Extra Copybooks in Orbix Mainframe 6.2 page 180

178

COBOL CICS Client Migration Issues

Error Checking Generation at Runtime for CICS Clients

Overview

CICS clients in Orbix 2.3.x

CICS clients in Orbix 6.2

Migration impact

This subsection summarizes the differences between an Orbix 2.3.x client
and an Orbix 6.2 client in relation to the CHECK- STATUS paragraph used for
error checking.

This subsection discusses the following topics:
® CICS clients in Orbix 2.3.x

® CICS clients in Orbix 6.2

® Migration impact

There is no copybook shipped for error-checking for CICS client code in
Orbix 2.3.x. Customers are required to implement their own error checking
procedure.

For CICS clients a GKQ.d C copybook is shipped in the
or bi xhl g.I NCLUDE. GOPYLI B in Orbix 6.2.

Note: The CHECK- STATUS paragraph for CICS clients is different from
batch in the following way: the CHECK- STATUS paragraph does not set the
RETURN- OCCE register, and calls GBAXK instead of STGP RN if a system
exception occurs. It also writes a message to the CICS terminal to show
which API has failed.

There is no migration impact, however IONA recommend you use the
GHKCLA C copybook which shows the system exception encountered in a
more user-friendly format.

Note: GKa.a Cis relevant to CICS clients only. It contains a COBOL
paragraph that has been translated by the CICS TS 1.3 translator. This
paragraph can be called by the client, to check if a system exception has
occurred and report it.

179

CHAPTER 6 | COBOL Migration Issues

Extra Copybooks in Orbix Mainframe 6.2

Overview

Migration impact

Orbix 6.2 CICS client code

Orbix 2.3.x CICS client code

180

This subsection describes differences in the code format between Orbix
2.3.x and Orbix 6.2.

This subsection discusses the following topics:
® Migration impact

® Orbix 6.2 CICS client code

® Orbix 2.3.x CICS client code

There is no migration impact. This subsection merely offers an explanation
for why extra copybooks are shipped with Orbix 6.2 that are not shipped
with Orbix 2.3.x.

The reason this code is shipped in copybooks in Orbix 6.2 is for ease of use
and non-replication of code because it is common code for any CICS client.

In Orbix 6.2 client code the following copy books are shipped:

Table 12: Extra Copybooks that ship with Orbix 6.2

Copybook Description

VSO CSCL This is relevant to CICS clients only. It contains a COBOL
data definition that defines the format of the message that
can be written by the paragraph contained in

or bi xhl g. I NCLUDE. CCPYLI B(Q OAR TE) .

A O TE This is relevant to CICS clients only. It contains a COBOL
paragraph that has been translated by the CICS TS 1.3
translator. This paragraph can be called by the client, to
write any messages raised by the supplied demonstrations
to the CICS terminal.

In Orbix 6.2 these copybooks are located in or bi xhl g. | NCLUDE. CCPYLI B.
This code is also included in the demonstrations.

For Orbix 2.3.x this code is part of the demonstration code for the Orbix
2.3.x demonstrations.

Miscellaneous

Miscellaneous

In This Section

Interface Repository Server

Command Line arguments

DISPATCH Reference

This section discusses miscellaneous migration issues.
This section discusses the following topics:

® |Interface Repository Server

® Command Line arguments

® DISPATCH Reference

In Orbix 2.3.%, genchl requires the Interface Repository (IFR) server to be
running to access the IDL source which is registered with the IFR server
using putidl .

In Orbix 6.2, the IDL COBOL compiler accesses the IDL source directly,
from the input IDL member (data set), and therefore does not need to
access the IFR. Hence IDL members can be accessed independently (and
IDL to COBOL development can proceed) without the need for any Orbix 6.2
services to be running.

The command-line arguments for the Orbix 6.2 IDL Compiler are different in
some cases to the gencbl arguments. However, functionality common to
both compilers can be achieved.

There is a minor code change in Orbix 6.2 for the DI SPATCH reference used
in Orbix 2.3.x. In Orbix 2.3.x, clients required the DI SPATCH reference to
compile and link a COBOL client with a COA. This reference is located in
either of the following sections of code:

I DENTI FI CATI ON DI VI SI ON

PROGRAM | D. " DI SPATCH'.

PROCEDURE D' VI SI ON

ENTRY " DI SPATCH'.

181

CHAPTER 6 | COBOL Migration Issues

In Orbix 6.2 this reference is not required. There is no migration impact in
removing this reference.

182

In this Chapter

CHAPTER 7

PL/l Migration
Issues

This chapter describes the issues involved in migrating PL/I
applications from an Orbix 2.3-based IONA mainframe

solution to Orbix Mainframe 6.2.

This chapter discusses the following topics:

Fully Qualified Level 1 Data Names page 185
Maximum Length of PL/I Data Names page 188
IDL Constant Definitions Mapped to Fully Qualified Names page 192
Typecode Name and Length Identifiers page 195
Include Member names Based on the IDL Member name page 196
Reserved PL/I Keywords for Module or Interface Names page 203
Orbix PL/I Error Checking page 204
CORBA Object Location and Binding page 205
CORBA Include Member Additions page 211
API Migration Issues page 212
Server Accessor (Z Member) page 216

183

CHAPTER 7 | PL/I Migration Issues

184

PL/I IMS Server Migration Issues page 222
PL/I IMS Client Migration issues page 230
PL/I CICS Server Migration Issues page 236
PL/I CICS Client Migration Issues page 243
Miscellaneous page 244

Fully Qualified Level 1 Data Names

Fully Qualified Level 1 Data Names

Overview

The genpli Utility and Data Names

Orbix 6.2 IDL Compiler and Data
Names

This section summarizes the differences in the way that genpli and the
Orbix 6.2 IDL Compiler generate level 01 data names.
This section discusses the following topics:

® The genpli Utility and Data Names

® Orbix 6.2 IDL Compiler and Data Names

® Migration Impact

¢ Sample IDL

® The genpli Utility Output

® Orbix 6.2 IDL Compiler Output

® Workaround

® Using the -M Argument

® |n Summary

The Orbix 2.3.x genpl i utility by default uses only the local name as the
generated data name. The - L and - J arguments are supplied with genpl i to
allow you to generate module-prefixed or interface-prefixed data names. In
practice these arguments are seldom used by customers. Also, genpli can
only support interfaces that are defined within a single module.

The Orbix 6.2 IDL Compiler replaces the genpl i utility. The Orbix 6.2 IDL
Compiler generates fully qualified names for PL/I level 01 data items. This

means that it includes both module and interface names as prefixes in PL/I
data names. It can therefore support any level of scoping in IDL members

(that is, multiple levels of nested modules and interfaces).

The ability of the Orbix 6.2 IDL Compiler to generate fully qualified names
ensures the uniqueness of each generated name when, for example, the
same operation name or attribute is used at a different scope within an IDL
member.

185

CHAPTER 7 | PL/I Migration Issues

Migration Impact

Sample IDL

The genpli Utility Output

Orbix 6.2 IDL Compiler Output

Workaround

186

Orbix 6.2 IDL Compiler generates data names that are different from those
generated by genpl i , for example, if the -J and - L arguments are not
supplied to generate PL/I code from a given interface, or if the generated
name has to be truncated due to the PL/I restriction on the length of data
names.

By default, the Orbix 6.2 IDL Compiler provides the same functionality as
the -L and - J arguments provided with genpl i . The - Margument provided
with the Orbix 6.2 IDL Compiler can be used to generate code similar to
that generated by genpli without the -L and - J arguments.

Consider the following IDL for example:

/11DL
interface grid {
void set(in short n, in short m in |ong val ue);

IE

The genpl i utility generates the following PL/I code, based on the preceding
IDL:

dcl 1 idl _set_type based,

3n fixed bin(15) init(0),
3m fixed bi n(15) init(0),
3 idl_val ue fixed dec(8,2) init(0);

By contrast, the Orbix 6.2 IDL Compiler generates the following PL/I code,
based on the preceding IDL:

dcl 1 grid_idl_set_type based,

3n fixed bin(15) init(0),
3 m fixed bin(15) init(0),
3 idl_val ue fixed dec(8,2) init(0);

Use the - Margument that is provided with the Orbix 6.2 IDL Compiler to
avoid having to make changes to your application source code. The -M
argument allows you to generate a mapping member that you can then use

Using the -M Argument

In Summary

Fully Qualified Level 1 Data Names

to map alternative names to your fully qualified data names. You can set
these alternative names in the mapping member to be the same as the PL/I
data names that are generated by genpl i .

You must run the Orbix 6.2 IDL Compiler twice with the - Margument. The
first run generates the mapping member, complete with the fully qualified
names and the alternative name mappings. Initially, the alternative name
mappings are the same as the fully qualified names, so you must manually
edit the mapping member to change the alternative names to the names
that you want to use. Then run the - Margument again, this time to generate
your PL/I include member complete with the alternative data names that
you have set up in the specified mapping member.

Refer to the PL/I Programmer’s Guide and Reference for an example of how
to use the - Margument.

Affects both clients and servers. Requires use of the described workaround
or code changes.

187

CHAPTER 7 | PL/I Migration Issues

Maximum Length of PL/I Data Names

Overview

The genpli Utility and long Data
Names

Problems with the genpli Method

Orbix 6.2 IDL Compiler Solution

188

This section summarizes the differences in the way that genpli and the
Orbix 6.2 IDL Compiler process IDL identifier names that exceed 30
characters.

This section discusses the following topics:

® The genpli Utility and long Data Names

® Problems with the genpli Method

® Orbix 6.2 IDL Compiler Solution

® Migration Impact

® Sample IDL

® The genpli utility Generated Data Names

® Orbix 6.2 IDL Compiler Generated Data Names
® |n Summary

Because genpli only supports the PL/I for MVS & VM compiler, a
31-character restriction is placed on the length of data names. The method
used by genpli to generate data names for identifiers exceeding 31
characters is to truncate the identifier name to the first 27 characters and
attaches a four-character numeric suffix, starting at 0000.

This method is prone to problems if the original IDL for a completed
application has to be subsequently modified, and the modifications involve
IDL identifiers exceeding 31 characters being added mapped to member
names. In such a case, the regenerated suffixes for the various data names
do not match the original suffixes generated. This results in customers
having to make undesirable source code changes.

To avoid this problem, the Orbix 6.2 IDL Compiler implements a new
method. This new method ensures that the same suffix is always
regenerated for a particular data name.

Migration Impact

Sample IDL

Maximum Length of PL/I Data Names

The Orbix 6.2 IDL Compiler method generates completely different suffixes
than the genpl i suffixes for customer applications where such a scenario
applies.

The following example illustrates these changes.

Consider the following IDL:

/1 1D
interface | ongname{
struct conpl ex {
| ong
t hi sl sAReal | yLongFeat ur eNarrewi t hAnot her Real | yLongFeat ur eExt en
si onAt TheEnd;
| ong
yet Anot her Real | yLongFeat ur eNanewi t hAnot her Real | yLongFeat ur eEx
t ensi on;
| ong
Thi r dLast Yet Anot her Real | yLongFeat ur eNarmewi t hAnot her Real | yLongFea
t ur eExt ensi on;
b
void initialise();
voi d opl(in conplex ii);
conpl ex op2(in conplex ii, inout conplex io, out conpl ex 00);

he

189

CHAPTER 7 | PL/I Migration Issues

The genpli utility Generated Data The genpl i utility generates data names as follows based on the preceding
Names IDL:

dcl 1 opl_type based,
3ii,
5 thi sl sAReal | yLongFeat ureNan0003 fixed bin(31) init(0),
5 yet Anot her Real | yLongFeat ure0004 fixed bin(31) init(0),
5 Thi rdLast Yet Anot her Real | yLo0O005 fixed bin(31) init(0);

dcl 1 op2_type based,
3ii,
5 thi sl sAReal | yLongFeat ureNan®0006 fixed bin(31) init(0),
5 yet Anot her Real | yLongFeat ur e0007 fixed bin(31) init(0),
5 Thi rdLast Yet Anot her Real | yLo0O008 fixed bin(31) init(0);

3io,

5 thi sl sAReal | yLongFeat ureNan®0009 fixed bin(31) init(0),
5 yet Anot her Real | yLongFeat ure0010 fixed bin(31) init(0),
5 Thi rdLast Yet Anot her Real | yLo0O011 fixed bin(31) init(0);

3 oo,

5 thi sl sAReal | yLongFeat ureNan®012 fixed bin(31) init(0),
5 yet Anot her Real | yLongFeat ure0013 fixed bin(31) init(0),
5 Thi rdLast Yet Anot her Real | yLo0014 fixed bin(31) init(0);

3result,

5 thi sl sAReal | yLongFeat ureNan®015 fixed bin(31) init(0),
5 yet Anot her Real | yLongFeat ure0016 fixed bin(31) init(0),
5 Thi rdLast Yet Anot her Real | yLo0017 fixed bin(31) init(0);

190

Maximum Length of PL/I Data Names

Orbix 6.2 IDL Compiler Generated The Orbix 6.2 IDL Compiler generates data names as follows based on the
Data Names preceding IDL:

dcl 1 | ongnanme_opl_type based,
3ii,

5 thislsAReal | yLongFeat ureNa_e658 fixed bin(31) init(0),
5 yet Anot her Real | yLongFeat ur _7628 fixed bin(31) init(0),
5 Thi rdLast Yet Anot her Real | yL_e278 fixed bin(31) init(0);
dcl 1 | ongnanme_op2_type based,

3ii,

5 thislsAReal | yLongFeat ureNa_e658 fixed bin(31) init(0),
5 yet Anot her Real | yLongFeat ur _7628 fixed bin(31) init(0),
5 Thi rdLast Yet Anot her Real | yL_e278 fixed bin(31) init(0);
3io,

5 thislsAReal | yLongFeat ureNa_e658 fixed bin(31) init(0),
5 yet Anot her Real | yLongFeat ur_7628 fixed bin(31) init(0),
5 Thi rdLast Yet Anot her Real | yL_e278 fixed bin(31) init(0);
3 00,

5 thislsAReal | yLongFeat ureNa_e658 fixed bin(31) init(0),
5 yet Anot her Real | yLongFeatur _7628 fixed bin(31) init(0),
5 Thi rdLast Yet Anot her Real | yL_e278 fixed bin(31) init(0);
3 result,

5 thislsAReal | yLongFeat ureNa_e658 fixed bin(31) init(0),
5 yet Anot her Real | yLongFeat ur_7628 fixed bin(31) init(0),
5 Thi rdLast Yet Anot her Real | yL_e278 fixed bin(31) init(0);

In Summary Affects clients and servers where IDL identifiers exceed 31 characters.

Requires code changes.

191

CHAPTER 7 | PL/I Migration Issues

IDL Constant Definitions Mapped to Fully
Qualified Names

Overview IDL constant definitions are mapped, in Orbix 6.2, to fully qualified data
names, because the Orbix 6.2 IDL Compiler can process any level of
scoping in IDL members (that is, multiple levels of nested modules and
interfaces). Therefore, the same constant names can be used at different
scopes, and unigueness of data names is imperative.

This section discusses the following topics:

® |IDL Output Comparison

® Migration Impact

¢ Sample IDL

® The Orbix 6.2 IDL Compiler Mapping for Constants
® |egacy Support

® |In Summary

IDL Output Comparison Table 13 lists the differences between the Orbix 6.2 IDL Compiler and the
genpl i mapping for IDL constant definitions:

Table 13: PL/I Compiler Output for IDL Constant Definitions

Orbix 6.2 IDL Compiler The genpli Utility
Global dcl 1 gl obal _FQN consts, dcl 1 gl obal _TEST consts,
constant at 3 local nane... 3 | ocal nane...
IDL member
level
Global dcl 1 FQN consts, dcl 1 nodul enane_nodul e_const s,
constant at 3 |l ocal nane... 3 | ocal nane...
module level
Constant at dcl 1 FQN consts, dcl 1 interfacenanme_consts,
interface level 3 |l ocal nane... 3 | ocal nane...

192

IDL Constant Definitions Mapped to Fully Qualified Names

In the preceding example, FQN represents the fully qualified name for the
module or interface where the constant is defined.

Migration Impact The nodul e keyword that is generated by genpl i is not used in Orbix 6.2,
because there is support for more than one level of module. With genpl i,
only one level of module is supported. .

Note: The gl obal keyword is still used, but in the case of genpl i, refers
to all constant definitions defined in the Interface Repository. In the case of
Orbix 6.2 it refers to all constants defined at global scope in the IDL
member being processed.

Note: The Interface Repository server is not required by the Orbix 6.2 IDL
Compiler when generating PL/I definitions from IDL. For further details
refer to “Interface Repository Server” on page 244.

Sample IDL Consider the following IDL member, called TEST, which defines four
constants with the same name— nyconst ant —at different levels:

//test.idl
const |ong nyconstant = 1;
nmodul e nl
{
const |ong nyconstant = 1;
interface fred

{
const |long nyconstant = 1;
voi d nyop();
I
nodul e n2
{
interface fred
{
const |ong nyconstant = 1;
voi d nyop();
b
B

193

CHAPTER 7 | PL/I Migration Issues

The Orbix 6.2 IDL Compiler The Orbix 6.2 IDL Compiler mapping for the constants results in the
Mapping for Constants following data names:
/* __ */
/* Constants in root scope: */
/* __ */
dcl 1 global _TEST consts ,
3 nyconst ant fixed bin(31) init(1);
/* __ */
/* Constants in ni: */
/* __ */
dcl 1 ml_consts ,
3 nyconst ant fixed bin(31) init(1);
/* __ */
/* Constants in nmil/fred: */
/* __ */
dcl 1 nml_fred_consts ,
3 nyconst ant fixed bin(31) init(l);
/* __ */
/* Constants in nil/n2/fred: */
/* __ */
dcl 1 ml_nP_fred_consts ,
3 nyconst ant fixed bin(31) init(1);
Legacy Support It is not feasible to provide full legacy support in this case. However, you

can use the - Margument with the Orbix 6.2 IDL Compiler to control the FCN
(Fully Qualified Name) shown in the preceding example. You can also use
the - 0 argument with the Orbix 6.2 IDL Compiler to determine the name of
the generated include member, which defaults to the IDL member name
when it is first generated.

Refer to the PL/I Programmer’s Guide and Reference for an example of how
to use the - Mand - Oarguments.

In Summary Affects clients and servers. Requires code changes where constants are
used.

194

Typecode Name and Length Identifiers

Typecode Name and Length ldentifiers

Overview

The genpli Utility Output

Orbix 6.2 IDL Compiler Output

Migration Impact

This sections summarizes the different output for genpl i and the Orbix 6.2
IDL Compiler for typecode and typecode length data names.

This section discusses the following topics:
® The genpli Utility Output

® Orbix 6.2 IDL Compiler Output

® Migration Impact

The typecodes and typecode length names generated by genpl i used the
names i nt er f acename_t ype and i nt er f acename_t ype_| engt h. This is
not suitable for a situation where an IDL member contains multiple nested
levels of modules and interfaces, because unique data names can not be
generated in this case.

Because the Orbix 6.2 IDL Compiler can process any level of scoping in an
IDL member (that is, multiple levels of nested modules and interfaces), the
generated data names are of the form i dl nenber nane_t ype and

i dl menber nane_t ype_| engt h. This ensures the uniqueness of the data
names.

However, this has a migration impact if either of the following apply:

® |DL member names are different from the interface names they
contain.

® More than one interface is defined in an IDL member.

Refer to “IDL Member names Different from Interface Names” on page 199
for details of the migration impact.

Refer to “More than One Interface in an IDL Member” on page 201 for
details of the migration impact.

195

CHAPTER 7 | PL/I Migration Issues

Include Member names Based on the IDL
Member name

Overview Include member names in Orbix 6.2 are generated based on the IDL
member name instead of being based on the interface name, as is the case
with genpl i . The reason for this change is because the Orbix 6.2 IDL
Compiler can process any level of scoping in IDL members (that is, multiple
levels of nested modules and interfaces).

This section discusses the following topics:
® The genpli Utility

® Orbix 6.2 IDL Compiler

¢ Sample IDL

® Problem with The genpli Utility

® Orbix 6.2 IDL Compiler Solution

® Migration Impact

The genpli Utility Include member names are generated based on the interface name with
genpli .
Orbix 6.2 IDL Compiler Include member names are generated based on the IDL member name. This

is because the Orbix 6.2 IDL Compiler can process any level of scoping in
IDL members (that is, multiple levels of nested modules and interfaces).
Therefore, because the same interface name might be defined at different
levels within the same IDL member, this renders it impossible to base
include member names on interface names.

196

Sample IDL

Problem with The genpli Utility

Orbix 6.2 IDL Compiler Solution

Migration Impact

Include Member names Based on the IDL Member name

For example, consider the following IDL member called nyi dl :

/I 'nyi dI
nodul e ml
{

interface fred

{

IE
nodul e n2
{

voi d nyop();

interface fred

{
}

voi d nyop();

The genpl i utility can not process correctly the preceding IDL, because it
contains more than one level of module.

If the interface name is used to generate the include member name, it
generates a set of PL/I include members for each interface defined. But
because both interfaces share the same name, which is fred in the
preceding example, the generation of one set of include members overwrites
the other.

The Orbix 6.2 IDL Compiler generates PL/I include member names based on
the IDL member name, which is nyi dI in the preceding example. Therefore,
the definitions for all the interfaces contained within this IDL member are
produced in the nyi dl include members. (This is also how the IDL compiler
generates C++ and Java files.)

This has a migration impact if either of the following apply:

® |DL member names are different from the interface names they
contain.
® More than one interface is defined in an IDL member.

The migration impact for each of these situations is described in the
following subsections;.

197

CHAPTER 7 | PL/I Migration Issues

Note: The Typecode and typecode length data name migration issue is
very similar to the include member names based on interface and module
name issue, hence these scenarios are dealt with in only one section.

198

Include Member names Based on the IDL Member name

IDL Member names Different from Interface Names

In This Section

Sample IDL

Generated Include Member Name
Comparison Table

Genpli Utility-Generated Include
Member Names

This section discusses the following topics:

® Sample IDL

® Generated Include Member Name Comparison Table

® Genpli Utility-Generated Include Member Names

® Orbix 6.2 IDL Compiler-Generated Include Member Names
® Migration Impact

® |n Summary

Consider the following IDL member called GR D, which defines an interface
called fred:

//grid.idl
interface fred

{
Ik

voi d nyop(in | ong nyl ong);

The preceding IDL member results in the following include members being
generated:

Table 14: PL/I Compiler Output Comparison GRID Include Member Names

The genpli Utility Orbix 6.2
FREDD R DD
FREDM GR DM
FREDR R DL
FREDT R Dr
FREDX CR DX

In the case of the genpl i utility, the generated include Member names are
based on the interface name, which is fred in the preceding example.

199

CHAPTER 7 | PL/I Migration Issues

Orbix 6.2 IDL Compiler-Generated
Include Member Names

Migration Impact

In Summary

200

In the case of the Orbix 6.2 IDL Compiler, the generated include member
names are based on the IDL member name, which is gri d in the preceding
example.

If your IDL member name is not the same as the interface name it contains
you can use the - O argument with the Orbix 6.2 IDL Compiler to map the
name of the generated PL/I include members (which, in Orbix 6.2, is based
by default on the IDL member name) to an alternative name if your IDL
member name is not the same as the interface names it contains. This
means you can avoid having to change the % ncl ude statements (for
example, from % ncl ude FREDt0 % ncl ude GRI D) in your application source
code.

Refer to the PL/I Programmer’s Guide and Reference for an example of how
to use the - O argument.

Affects clients and servers. Requires minor code change or use of the
described workaround.

Include Member names Based on the IDL Member name

More than One Interface in an IDL Member

In This Section

The genpli Utility

Orbix 6.2 IDL Compiler

Sample IDL

This section discusses the following topics:
® The genpli Utility

® Orbix 6.2 IDL Compiler

® Sample IDL

® |DL Output Comparison

® Migration Impact

® |n Summary

The genpl i utility generates a set of include members for each interface
definition, and bases the name for each set of include members on the
associated interface name.

The Orbix 6.2 IDL Compiler generates only one set of include members for
an IDL member, and it bases the name for that set of include members on
the IDL member name. If an IDL member contains Ninterfaces (where Nis
greater than one), your existing application code now contains N- 1
redundant % ncl ude statements.

For example, consider the following IDL member, called GR D, which
contains the two interfaces called gri d and bl ock:

/] grid.idl
interface grid
{
voi d si zeofgrid(in |ong nysizel, in |ong
nysi ze2) ;
b
interface bl ock
{
void area(in | ong nyarea);
b

201

CHAPTER 7 | PL/I Migration Issues

IDL Output Comparison

Migration Impact

In Summary

202

The differences in the way genpl i and the Orbix 6.2 IDL Compiler process
the preceding IDL can be outlined as follows:

Table 15: PL/I Compiler Deprecated IDL Generated Members and Their

Replacements

The Orbix 6.2 IDL Compiler

The genpli utility

Generates only one set of include
members that contain all the
definitions for all interfaces

The include member names are
based on the IDL member name.
For example:

R DD
R DL
R DM
R DT
R DX

contained within the IDL member.

Generates a set of include
members for each interface, based
on each interface name. For
example:

R DD, BLOXKD
R DR BLOKR
R DV BLOXKXM
GR DT, BLOXKT
&R DX, BLOKX

Based on the preceding example, the BLOXK include members are redundant
with the Orbix 6.2 IDL Compiler. Therefore, the % ncl ude statements
pertaining to these must be removed from the application code.

Affects clients and servers. Requires minor code change.

Reserved PL/I Keywords for Module or Interface Names

Reserved PL/I Keywords for Module or
Interface Names

Overview

The genpli Utility

Orbix 6.2 IDL Compiler

Migration Impact

In Summary

This section illustrates the different ways that genpl i and the Orbix 6.2 IDL
Compiler treat PL/I keywords used as module or interface names.

Note: The Orbix 6.2 IDL compiler supports the PL/I-reserved words
pertaining to the IBM PL/I for MVS & VM version 1.1.1 and Enterprise PL/I
compilers.

This section discusses the following topics:
® The genpli Utility

® Orbix 6.2 IDL Compiler

® Migration Impact

® |n Summary

If a reserved PL/I keyword is used as an IDL interface or module name, it is
not treated as a reserved word by genpl i .

If a reserved PL/I keyword is used as an IDL interface or module name, it is
treated as a reserved word by the Orbix 6.2 IDL Compiler.

This has a migration impact for any customers that use reserved PL/I
keywords as IDL interface or module names. If any customers are using
reserved PL/I keywords, source code changes are required to their
applications to cater for I DL- prefixed names that are generated for
identifiers in Orbix 6.2.

Affects clients and servers where module or interface names are reserved
PL/I keywords. Requires code change or use of the workaround described in
“Fully Qualified Level 1 Data Names” on page 185 to resolve this issue
down to the operation names level.

203

CHAPTER 7 | PL/I Migration Issues

Orbix PL/I Error Checking

Overview

The genpli Utility

The Orbix 6.2 IDL Compiler

Migration Impact

In Summary

204

This section summarizes the different between genpli and the Orbix 6.2
IDL Compiler in regard to the CHECK_ERRCRS function.

This section discusses the following topics:

® The genpli Utility

® The Orbix 6.2 IDL Compiler

® Migration Impact

® |In Summary

The PL/I GHECK_ERRCRS function is generated by genpl i for each server.

In Orbix 6.2, the member that contains the CHECK_ERRCRS function is placed
into a static member called OHKERRS.

It is no longer necessary to generate an IDL-dependent member for error
checking. If your implementation code contains a % ncl ude

i nterfacenaneR statement, you must update it to read as % ncl ude
GKERRS; instead.

Affects clients and servers. Requires minor code change.

CORBA Object Location and Binding

CORBA Object Location and Binding

Overview

In This Section

This section summarizes the differences between Orbix 2.3.x object location
mechanisms and Orbix 6.2 object location mechanisms.

This section discusses the following topics:

Migration Overview and Example page 206
Naming Service page 208
Object-String Conversion page 210

205

CHAPTER 7 | PL/I Migration Issues

Migration Overview and Example

In This Section

Migration Impact

Orbix 2.3.x Object Location
Mechanisms

Orbix 6.2 Object Location
Mechanisms

206

This section discusses the following topics:

® Migration Impact

® Orbix 2.3.x Object Location Mechanisms

® Orbix 6.2 Object Location Mechanisms

® Orbix 2.3.x Object Location Mechanism Example

Calls to the GBISET API which rely on a fabricated object reference are illegal
in Orbix 6.2. This API has been deprecated. The recommended replacement
APl is STRRCBJ (as specified in the PL/I OMG specification).

One way to locate an object in an Orbix 2.3.x application is to use the API
CBISET (equivalent to _bind() in C++), with a fabricated object reference
constructed from the host name and server name in an Orbix object key, and
the port information in the daemon. The daemon uses this information to
locate (and activate if requested) the correct server. The server can then use
the marker to locate the correct object.

Note: The GBISET API is deprecated and the recommended replacement
APl is STR2CBJ as specified by the OMG PL/I specification.

If the application is calling GBISET with the fabricated object reference (the

application can still use it with an IOR or corbaloc) it must be replaced it

with one of the following object location mechanisms:

® Naming service (batch only), see “Naming Service” on page 208.

® Object-string conversion, see “Object-String Conversion” on page 210.

® Calls to ®BIR R (batch only), see the PL/I Programmer’s Guide and
Reference.

All these alternatives are based on the use of CORBA standard interoperable

object references (IORs), the difference being in where the IORs are stored
and how they are retrieved by the client application.

CORBA Object Location and Binding

Orbix 2.3.x Object Location Example of the Orbix 2.3.x Object Location Mechanism:
Mechanism Example

obj ect_nane=":\pluto:grid:::IRgrid ’;
call objset(object _nane, obj ref);

207

CHAPTER 7 | PL/I Migration Issues

Naming Service

Overview

Access to the Naming Service

Resolving Object Names

URL Syntax and IOR
Configuration

208

The Naming Service is easy to understand and use if the application’s
naming graph is not too complex. The triplet of mar ker Nane, server Nang,
host Nane used by the CBISET API to locate an object, is replaced by a
simple nane\ in the Naming Service.

This section discusses the following topics:
® Access to the Naming Service

® Resolving Object Names

® URL Syntax and IOR Configuration

All applications should use the interoperable Naming Service, which
provides access to future Naming Service implementations.

Access to the Naming Service can easily be wrapped. The only potential
drawback in using the Naming Service is that it might become a single point
of failure or performance bottleneck. If you use the Naming Service only to
retrieve initial object references, these problems are unlikely to arise.

An object’s name is an abstraction of the object location — the location
details are stored in the Naming Service. Use the following steps to resolve
Object names:

Step Action

1 | Call ®BIR Rwith NaneServi ce as its argument. An initial
reference to the Naming Service is obtained.

2 | The client uses the Naming Service to resolve the names of
CORBA objects and receives object references in return.

The URL syntax that the interoperable Naming Service provides makes it
easier to configure IORs—and is similar to _bi nd() by letting you specify
host, port, and well known object key in readable format. An example of the
syntax for both types is outlined as follows.

® Stringified IOR syntax example:

CORBA Object Location and Binding

“I CR 004301EF100..."
® URL type IOR syntax example:
“corbal oc: : 1. 2@yhost : 3075/ Nani ngSer vi ce”

With the URL syntax, cor bal oc is the protocol name, the 110OP version
number is 1. 2, the host name is nyhost, and the port number is 3075.

Note: Orbix 6.2 requires you to register a stringified IOR against a well
known key with the Orbix 6.2 locator, which centralizes the use of

stringified IORs in a single place, and lets you widely distribute readable
URLs for clients.

209

CHAPTER 7 | PL/I Migration Issues

Object-String Conversion

In This Section

Migration impact using OBJSET

CORBA-compliant String-object
Conversion Functions

210

This section discusses the following topics:
® Migration impact using OBJSET
® CORBA-compliant String-object Conversion Functions

If the application is passing a fabricated object string (equivalent to _bi nd()
in C++) as its first parameter to CBISET, this string must now be of one of
the following formats:

® astringified interoperable object reference (IOR).

® acorbal oc formatted URL string.

® anitnfal oc formatted URL string.

Refer to the STRT2CBJ APl in the PL/I Programmers Guide Reference for
more details.

The PL/I runtime offers two CORBA-compliant string-object conversion APIs:
STR2CBJ
CBJ2STR

CORBA Include Member Additions

CORBA Include Member Additions

Overview

Migration Impact

Workaround

There have been several additions to the supplied CORBA include member.
This section discusses the following topics:

® Migration Impact

® Workaround

There is a possibility that some of the new identifiers might conflict with
those defined in you application. For a complete list of identifiers, please
refer to the supplied include members located in

or bi xhl g. | NCLUDE. PLI NCL(CCRBA) .

It might be necessary to change some of your PL/I data names if they
conflict with any of the new data names added to the PL/I CORBA include
member.

211

CHAPTER 7 | PL/I Migration Issues

API Migration Issues

In This Section This section contains the following subsections:
Deprecated APIs page 213
PODSTAT in Orbix 6.2 page 214
PODEXEC and User Exception parameters page 215

212

API Migration Issues

Deprecated APIs

Deprecated and Replacement
APIs

Table 16 provides a list of the PL/I APIs that are deprecated in Orbix
Mainframe 6.2. In some cases, an API has been replaced with another. This

is outlined, where applicable.

Table 16: Deprecated PL/I APIs and Their Replacements

Deprecated APIs

Replacement APIs

CBICGET GBJ2STR
BIGETM CBJGTI D
CBIGETO Not replaced
CBJLEN Not replaced
CBILENO Not replaced
CBJSET STR2CBJ
CBISETM Not replaced
PCDALCC MENALCC
PCDEBUG MEMDBUG

PCDEXEC (3 parameters)

PCDEXEC (4 parameters)

PCDOFREE MEMFREE

PCDHOST Not Replaced
PCDINT PCDRUN

PCDRASS PCDERR

PCDREG PCDREG + CBINEW

Refer to the PL/I Programmer’s Guide and Reference for full details of all

the PL/I APIs supported.

213

CHAPTER 7 | PL/I Migration Issues

PODSTAT in Orbix 6.2

Overview

PODSTAT Functionality

Orbix 2.3.x and PODSTAT

Orbix 6.2 and PODSTAT

Migration Impact

Workaround

214

The PCDSTAT API is not optional in Orbix 6.2.
This section discusses the following topics:

® PODSTAT Functionality

® Orbix 2.3.x and PODSTAT

® Orbix 6.2 and PODSTAT

® Migration Impact

® Workaround

The PCDSTAT AP is used to register the POD_STATUS | NFCRVATI ON block with
the PL/I runtime. This structure (POD_STATUS_| NFCRVATI QN) is defined in the
CORBA supplied include member and allows the runtime to report
exceptions.

In Orbix 2.3.x, if PCDSTAT is not called and the PL/I runtime encounters an
exception, the runtime doesn’t exit, but just ignores the exception.

In Orbix 6.2, this is not the case. When the Orbix 6.2 PL/I runtime
encounters an exception, and the PCD_STATUS_| NFCRVATI ON block is not
registered with the runtime, that is, the PCDSTAT API is not called, the
runtime exits.

This change only affects applications that don't call the PCDSTAT API, and
that encounter a runtime. In this situation the PL/I runtime outputs the
following message and exits completely:

An exception has occourred but PCDSTAT has not been called. Place
the PCDSTAT APl call in your application, conpile and rerun.
Exi ti ng now

To workaround this problem perform the following steps:
1. Place the PCDSTAT API call in your application.

2. Recompile and run the application.

API Migration Issues

PODEXEC and User Exception parameters

In This Section

PODEXEC in Orbix 2.3.x

PODEXEC in Orbix 6.2

Migration Impact

In Summary

This section discusses the following topics:
® PODEXEC in Orbix 2.3.x

® PODEXEC in Orbix 6.2

® Migration Impact

® |n Summary

The PCDEXEC function in Orbix 2.3.x takes three parameters.

The PCDEXEC function in Orbix 6.2 takes four parameters instead of three.
The fourth parameter is the user exception identifier.

Any existing application code that calls PCDEXEC must be modified to include
this extra parameter. This change has been introduced to comply with the
OMG specification for PCDEXEC.

For operations which do not have user expectations, the fourth parameter is
no_user _excepti ons.

For operations which can return a user exception, the fourth parameter is
addr (1 FNAME _user _excepti ons) where | FNAMVE is the first six characters of
your interface name (or the name specified by the - Oargument in the IDL
compiler if it is used).

Affects PL/I clients only. Requires minor code change.

215

CHAPTER 7 | PL/I Migration Issues

Server Accessor (Z Member)

In This Section This section discusses the differences between the Orbix 2.3.x server
implementation and the Orbix 6.2 server implementation in regard to the
server accessor (Z member).

This section discusses the following topics:
® Migration Impact

® Migration Sample IDL

® Orbix 2.3.x Compiler Output

® Orbix 6.2 Compiler Output

® Contents of the DISPINIT Member

Migration Impact For Orbix 6.2 applications, the server accessor is replaced. A new include
member, DI SPI NI T, has been added to the server implementation (that is,
the i dl menber namel member) to replace server accessor functionality. In
Orbix 2.3.x applications, genpl i generates the server accessor (that is, the
i dl menber namez member). The Orbix 6.2 IDL compiler does not generate an
i dl menber naneZz member. The i dI menber nanel member is coded differently
to the Orbix 2.3.x server implementation. These differences are:
® Every Orbix 6.2 server implementation requires this definition which

must be placed after the procedure statement.:

DI SPTCH ENTRY,

® The Orbix 6.2 server implementation has no parameters.

® For Orbix 6.2 the operation declaration for operations has been moved
into the DI SPI N T member.

216

Server Accessor (Z Member)

® For Orbix 6.2 a new include statement for the include member,
D SPI NI T, has been added to the server implementation. The DDSPIN' T
member contains the core functionality of the server accessor, that is,
the call to PCDREQ and the extraction of the operation name, which is
used by the select statement in the select include member.

Note: Customers who are manually editing Orbix 2.3.x server
implementations when migrating to Orbix 6.2 need to be aware of the
differences in the two implementations that are described in the preceding
four bullet points.

Migration Sample IDL Consider the following IDL, called si npl e,

nmodul e Sinple

{ interface Sinpl e(hj ect
{

voi d

call _ne();

It

b

217

CHAPTER 7 | PL/I Migration Issues

Orbix 2.3.x Compiler Output Server mainline output for the si npl e interface, SI MPLEZ, with the Orbix
2.3.x IDL compiler (for Batch) is as follows:

SI MPLEZ: PRCC

/*The followi ng |ine enables the PCD to link into this procedure*/
Dl SPTCH ENTRY;

dcl operation char (256) init('");
dcl operation_| ength fixed bin(31) init(256);
dcl Sl MPLEI ext entry(char(*));

dcl addr builtin;

dcl | ow buil tin;

dcl sysnul | bui l tin;

% ncl ude CORBA;

% ncl ude S| MPLER,

call podreq(reqi nfo);
if check_errors(' podreqg') = conpl etion_status_yes then return;

call strget(operation_nane,

oper ati on,

operation_| ength);
if check_errors('strget') ~= conpl etion_status_yes then return;
call Sl MPLEl (operation);

END S| MPLEZ;

Server implementation output for the si npl e interface, SI MPLEI, with the
Orbix 2.3.x IDL compiler (for Batch and CICS) is as follows:

Note: The IMS server implementation is identical to batch and CICS

except that it includes the extra line:
% ncl ude | MSPCB;

218

Server Accessor (Z Member)

Example 8: Server implementation output for the simple interface,

SIMPLEI generated by genpli

SI MPLEI : PROC(CPERATI ON) ;

dcl COPERATI ON char (*);
dcl addr builtin;
dcl | ow bui l tin;
dcl sysnul |

buil tin;
% ncl ude CCRBA;

% ncl ude S| MPLER

% ncl ude S| MPLEM

| *================ Start of global user code
a4 End of gl obal user code
% ncl ude S| MPLED,

/*
/* Procedures for Qperations
/*

K e o e e eeieeao-.
K e o oo

/* Qperation : call_me

K e e e e eieeeiiaao-.

proc_call _me: PROQP_AR);

dcl p_args ptr;
dcl 1 args aligned based(p_args)

li ke call _me_type;

* |

*/

_________ */

*/
*/
*/

_________ */
_________ */

*/

_________ *[

end proc_cal | _rre;

end SI MPLHE ;

219

CHAPTER 7 | PL/I Migration Issues

Orbix 6.2 Compiler Output Server implementation output for the si npl e interface, SI MPLEI, with the
Orbix 6.2 IDL compiler (for Batch, CICS and IMS) is as follows:

Example 9: Server implementation output for the simple interface,
SIMPLEI generated by the Orbix 6.2 IDL compiler (Sheet 1 of 2)

SIMPLEl : PROC

/*The followi ng line enables the runtine to call this procedure */
D SPTCH ENTRY,;

dcl (addr, | ow, sysnul |) buil tin;

% ncl ude CCRBA;

% ncl ude CGHKERRS;
% ncl ude SI MPLEM
%nclude D SPINT;

| * ================ Start of global user code ================ */
4 End of gl obal user code */
/* ___ */
/* */
/* D spatcher : sel ect(operation) */
/* */
/* ___ */
% ncl ude S| MPLED,

/* ___ */
/* Interface: */
a4 Si npl e/ Si npl eChj ect */
/* */
/* Mapped narre: */
/* Si npl e_Si npl e(hj ect */
/* */
/* Inherits interfaces: */
/* (none) */
/* ___ */
/* Qperation: call _ne */
/* Mapped name: call_ne */
/* Argunents: None */
/* Returns: voi d */
/* ___ */

proc_Sinpl e_S npl ethj ect _c_c904: PROJ(p_args);

220

Contents of the DISPINIT Member

Server Accessor (Z Member)

Example 9: Server implementation output for the simple interface,
SIMPLE! generated by the Orbix 6.2 IDL compiler (Sheet 2 of 2)

dcl p_args ptr;
dcl 1 args al i gned based(p_ar gs)

l'i ke Sinple_ S npl ethject_c_ba77_type;
|* ============ Start of operation specific code ============= */
| * ============ End of oper at ion Speci fic code =============== */

END proc_Si npl e_Si npl eChj ect _c_c904;

END S| MPLHE ;

The contents of the DISPINIT Member are:

Example 10: The contents of the DISPINIT Member

/*'k**/
/*Copyright 2002 | ONA Technol ogies PLC. Al R ghts Reserved. */
/* */
/* Menber : DISPINT */
/* Purpose : Retrieve the current server request and operation. */

/**/

/**I

/* reqinfo is used to store information about the current request*/

/**/

dcl 1 reqinfo,

3 interface_nane ptr init(sysnull()),
3 operati on_nane ptr init(sysnull()),
3 princi pal ptr init(sysnull()),
3 target ptr init(sysnull());
dcl operation char (256) ;
dcl operation_| ength fixed bin(31) init(256);

call podreq(reqinfo);
if check_errors(' podreq') “~= conpletion_status_yes then return;

call strget(operation_nane,
oper ati on,
operation_| ength);
if check_errors('strget') ~= conpletion_status_yes then return;

221

CHAPTER 7 | PL/I Migration Issues

PL/l IMS Server Migration Issues

Overview This section describes the source code changes required when migrating
PL/I IMS Orbix 2.3.x servers to PL/I IMS Orbix 6.2 servers.

Note: This section must be read in conjunction with the other PL/I
migration issues outlined in this document.

In This Section This section discusses the following topics:
Server Mainline Module page 223
Access to the Program Communication Block page 228

222

PL/I IMS Server Migration Issues

Server Mainline Module

Overview In Orbix 2.3.x for IMS, a combined server mainline and accessor is
generated for all IMS PL/I server programs, as well as an optional server
implementation. In Orbix 6.2, by contrast, a server mainline (required) and
an optional combined server accessor and implementation is generated.
This section discusses the following topics:
® Migration Impact
® Migration Sample IDL
® Orbix 2.3.x Compiler Output
® Orbix 6.2 IDL Compiler Output

Migration Impact The migration impact is that every Orbix 2.3.x IMS PL/I server mainline
must be regenerated using the Orbix 6.2 IDL compiler. Refer to the PL/I
Programmer’s Guide and Reference for more details of compiler arguments.

Migration Sample IDL Consider the following IDL, called si npl e,

nmodul e Sinple

{
interface Sinpl e(hj ect
{
voi d
call _ne();

b

223

CHAPTER 7 | PL/I Migration Issues

Orbix 2.3.x Compiler Output

224

Server mainline output for the si npl e interface, SI MPLEZ, with the Orbix
2.3.x IDL compiler is as follows:

Example 11: Server Mainline Output for the Simple Interface, SIMPLEZ
(Sheet 1 of 2)

SI MPLEZ: PROC CPTI ONS(MAI N, NCEXEQCPS) ;
/*The following line enables the PCD to link to this procedure*/

D SPTGt ENTRY;

dcl operation char (256) init('");
dcl operation_| ength fixed bin(31) init(256);
dcl enptyQ bit(1) init('0 B);
dcl Sl MPLEI ext entry(char(*));

dcl addr bui l tin;

dcl | ow bui l tin;

dcl sysnul | builtin;

% ncl ude CORBA;

% ncl ude S| MPLER

dcl ws_interface char (256) ;

dcl ws_interface_|len fixed bin(31) init(256);

all oc pod_status_information set(pod_status_ptr);

call podstat(pod_status_ptr);
if check_errors('podstat') ~= conpl eti on_status_yes then return;

do while (“enptyQ;
call podreq(reginfo);
if check_errors('podreq) ~= conpl etion_status_yes then return;

call strget(interface_nane, ws_interface, ws_interface_len);
if check _errors('strget') "= conpl etion_status_yes then return;

cal | strget(operation_narre,
oper at i on,
operation_| ength);
if check_errors('strget') "= conpl etion_status_yes then return;

Orbix 6.2 IDL Compiler Output

PL/I IMS Server Migration Issues

Example 11: Server Mainline Output for the Simple Interface, SIMPLEZ
(Sheet 2 of 2)

sel ect (ws_i nterface);
when(' Sinpl e/ Si npl eChj ect') call SIMPLEl (operation);
otherwise enptyQ="1'B; /* multi-tran test for | M5 status QCt/
end;
end;

free pod_status_infornation;
END SI MPLEZ;

The compiler output for the Orbix 6.2 IDL compiler produces one module for
the si npl e interface: a server mainline, SI MPLEV. If the - S argument is
supplied, a skeleton server implementation module, SI MPLEI , is also
generated.

By default, the Orbix 6.2 IDL compiler generates an i o_pcb_ptr and an
alt _pcb_ptr parameter, and then the number of additional pcb pointers
specified on the command line. To aid migration of Orbix 2.3 PL/I server
code to Orbix 6.2, you can specify the - TI MsG option with the Orbix IDL
compiler, to prevent the generation of i o_pcb_ptr and al t _pcb_ptr
identifiers.

Example 12: The Server Mainline, SIMPLEV, for the simple interface
(Sheet 1 of 2)

SIMPLEV: PROX(1 O PCB_PTR ALT_PCB PTR) CPTI ONS(MAI N NCEXECCPS) ;

dcl (io_pcb _ptr,alt_pcb ptr) ptr;

decl arg_list char (01) init('");

dcl arg_list_len fixed bin(31) init(0);

dcl orb_nane char (10) init('sinple_orb');
dcl orb_nane_| en fixed bin(31) init(10);

dcl srv_nane char (256) var;

dcl server_nane char (07) init('sinple ');
dcl server_nane_| en fixed bin(31) init(6);

dcl Sinpl e_Sinpl ethj ect_objid char (27)
init('Snplel/S npl eChj ect_object ');

dcl Sinpl e_Si npl eChj ect _obj ptr;

dcl (addr,|ength,|ow sysnull) builtin;

225

CHAPTER 7 | PL/I Migration Issues

Example 12: The Server Mainline, SIMPLEV, for the simple interface
(Sheet 2 of 2)

% ncl ude OCRBA;

% ncl ude GHKERRS;

% ncl ude | MSPCB;

% ncl ude S| MPLET;

% ncl ude S| MPLEX;
pcblist.io_pcb_ptr = io_pcb_ptr;
pcblist.alt_pcb ptr = alt_pcb_ptr;

pcbl i st. numdb_pchs = 0;
al l oc pod_status_information set(pod status_ptr);

call podstat(pod_status_ptr);
if check errors('podstat') ~= conpl eti on_status_yes then return;

/* Initialize the server connection to the CRB */
call orbargs(arg_list,arg_list_len,orb_nane, orb_name_| en);
if check_errors('orbargs') "= conpl etion_status_yes then return;

cal |l podsrvr(server_nare, server_nane_| en);
if check_errors('podsrvr') ~= conpl etion_status_yes then return;

/* Register interface : Sinplel/Sinple(ject */
call podreg(addr(Si npl e_S npl e(hj ect _i nterface));
if check_errors(' podreg') ~= conpletion_status_yes then return;

call objnewserver_nane,

Sinpl e_Si npl eoj ect _intf,

Si npl e_Si npl ehj ect _obj i d,

S npl e_Si npl e(hj ect _obj) ;
if check_errors('objnew) ~= conpletion_status_yes then return;
/* Server is nowready to accept requests */
call podrun;
if check_errors('podrun') “~= conpl eti on_status_yes then return;
call objrel (S nple_Sinpl eChj ect_obj);
if check_errors('objrel') ~= conpl etion_status_yes then return;

free pod_status_infornation;

END S| MPLEV;

The server implementation, SI MPLEI , for the si npl e interface is as follows:

226

PL/I IMS Server Migration Issues

Example 13: The Server Implementation, SIMPLEI, for the simple Interface

SIMPLEl : PROC

/*The followi ng |ine enables the runtine to call this procedure*/

D SPTGHt ENTRY;

dcl (addr, | ow, sysnul|) bui l tin;
% ncl ude CCRBA;

% ncl ude GHKERRS;

% ncl ude | MSPCB;

% ncl ude SI MPLEM

%nclude DISPINT;

=== Start of global user code

*/

-— == End of gl obal user code

*/

¥ o e

/* D spatcher : sel ect(operation)

JF o e

% ncl ude S| MPLED,

K e e e e eeiieeao-

/* Interface:

/* Si npl e/ Si npl eoj ect
/*

/* Mapped nane:

/* Si npl e_Si npl ej ect

/*

/* Inherits interfaces:

/* (none)
[[¥cccccoocoococcoooooccocooooocoooooocooooo00oco 0000000
/* Qperation: call_ne

/* Mapped nanme: call_ne

/* Argurents: None

/* Returns: voi d

e e eeiieiaieoo--
proc_Si npl e_S npl eChj ect _c_c904: PROJ(p_args);

dcl p_args ptr;

dcl 1 args al i gned based(p_args)

l'i ke Sinple_Si npl eChj ect_c_ba77_type;

END proc_Si npl e_Si npl eChj ect _c_c904;

END S| MPLEI;

Start of operation specific code
End of operation specific code

*/
*/
*/

*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/

_________ */

227

CHAPTER 7 | PL/I Migration Issues

Access to the Program Communication Block

In This Section This section discusses the following topics:
® Server Implementation Code
® Server Mainline Code
® The Format of IMSPCB

Server Implementation Code Orbix 6.2 IDL compiler output server implementation code has access to the
program communication block through the static structures stored in
| VBPCB.

Server Mainline Code Orbix 6.2 IDL compiler output server mainline code allows access to the

program communication block by setting the addresses of the PCB pointers
to the structure pcbl i st, declared in | MSPCB. The number of database
pointers is also set.

Note: The server implementation to access program communication
block data must have an include statement for | MSPCB added if the
:-S: - TI M5 options are not used to generate the server implementation,
that is, if the server implementation migration changes are coded
manually.

The Format of IMSPCB | MSPCB has the format:

228

PL/I IMS Server Migration Issues

/**I

/* The PCBLI ST al |l ows access to the PCB pointers from anywhere*/

/* within the PL/I | M server code

*/

/**I

DCL 1 PCBLI ST STATI C EXT,

3 10 PCB_PTR I'NT(SYSNULL()),
3 ALT_PCB PTR I'NET(SYSNULL())
3 PCB PTR(64) I N T((64) SYSNULL())
3 NUM DB_PCBS FIXED BIN(31) INT(0);
DCL 1 | O PCB BASED(PCBLI ST. 1 0 PCB PTR),
3 LTERM CHAR(08) ,
3 FILLER CHAR(02) ,
3 STATUS OODE CHAR(02) ,
3 MBG DATE FI XED DEQ(7, 0),
3 MBG. TIME FI XED DEQ(7, 0),
3 MG SEQ NO FI XED BI N(31),
3 MD_NAVE CHAR(08) ,
3 USER D CHAR(08)
3 GROP_NAME CHAR(08) ;
DL 1 ALT_PCB BASED(PCBLI ST. ALT_PCB PTR),
3 LTERV CHAR(08)
3 FILLER CHAR(02),
3 STATUS OCDE CHAR(02) ;

229

CHAPTER 7 | PL/I Migration Issues

PL/l IMS Client Migration issues

Overview This section describes the source code changes required when migrating
PL/I IMS Orbix 2.3.x clients to PL/I IMS Orbix 6.2 clients.

Note: This section must be read in conjunction with the other PL/I
migration issues outlined in this document.

Note: The DI SPTCH reference must be removed from client code and
replaced with the line %l i ent _onl y="yes’ ;. Refer to “DISPTCH
Reference” on page 244 for further details.

In This Section This section discusses the following topics:

Program Communication Block Definitions Modifications page 231

DLIDATA Include Member Modifications page 234

Error Checking Generation at Runtime for IMS Clients page 235

230

PL/I IMS Client Migration issues

Program Communication Block Definitions Modifications

Overview

Orbix 6.2 client implementation
sample

Program communication block definitions in an Orbix 2.3.x client
implementation and program communication block definitions in an Orbix
6.2 client implementation are not the same.

This section discusses the following topics:

® Orbix 6.2 client implementation sample

® Orbix 2.3 client implementation sample

® Migration impact

In Orbix 6.2, the program communication blocks are defined as:

/**/

/* The PCBLI ST al |l ows access to the PCB pointers from anywhere*/
/* within the PL/lI | M server code */
/**/
DCL 1 PCBLI ST STATI C EXT,

3 10 PGB PTR PTR | N T(SYSNULL()),

3 ALT_PCB PTR PTR | Nl T(SYSNULL()),

3 PCB PTR(64) PTR I N T((64) SYSNULL()),

3 NUM DB PCBS FI XED BIN(31) INT(0);
DCL 1 |1 O PCB BASED(PCBLI ST. | O PCB PTR),
LTERV CHAR(08) ,
3 FILLER CHAR(02),
3 STATUS OODE CHAR(02),
3 MBG DATE FI XED DEQ(7, 0),
3 MBG_TI ME FI XED DEQ(7, 0),
3 MBG_SEQ NO FI XED BI N(31),
3
3
3

w

MCD_NAME CHAR(08)
USER D CHAR(08),
GROP_NAME CHAR(08) ;

DL 1 ALT_PCB BASED(PCBLI ST. ALT_PCB PTR),
3 LTERV CHAR(08),
3 FI LLER CHAR(02),
3 STATUS_OODE CHAR(02) ;

231

CHAPTER 7 | PL/I Migration Issues

Orbix 2.3 client implementation In Orbix 2.3.x the program communication blocks are defined as:
sample
dcl iopcb_ptr ptr;
dcl 1 iopcb based(iopcb_ptr),
3 [termnane char (08),
3fillerl char (02),
3 tpstatus char (02),
3 filler2 char (20) ;
Migration impact Migration impact is to replace the code shown in the:
® Replace
dcl iopcb_ptr ptr;
dcl 1 iopcb based(iopcb_ptr),
3 Itermnane char (08),
3fillerl char (02),
3 tpstatus char (02),
3 filler2 char (20);

with % ncl ude | MSPCB;
® Replace

SI MPLEC. PRO(1 CPCB_PTR) CPTI ONS(MAI N, NCEXECCPS) ;
dcl iopcb_ptr ptr;

with
SIMPLEC. PROY(| O PCB PTR ALT_PCB PTR) CPTI ONS(MAI N
NCEXEQCPS) ;
dcl (io_pcb_ptr,alt_pcb_ptr) ptr;
® Replace
call plitdli(three, get_uni que, | CPCB PTR i nput _nsgQ);
if tpstatus ~="'"' then call wite_dc_text (' Segment read

failed ,19);

with

232

PL/I IMS Client Migration issues

% ncl ude GETUN Q

pchlist.io_pcb_ptr
pcblist.alt_pcb _ptr
call get_unig;

i o_pcb_ptr;
alt_pcb_ptr;

233

CHAPTER 7 | PL/I Migration Issues

DLIDATA Include Member Modifications

Overview

Orbix 2.3.x

Orbix 6.2

Migration impact

234

This subsection describes migration for the DLI DATA include member from
Orbix 2.3.x to Orbix 6.2.

This subsection discusses the following topics:
® Orbix 2.3.x

® Orbix6.2

® Migration impact

In Orbix 2.3.x, the definition dcl plitdli ext entry; is located in the
client mainline.

In Orbix 6.2, the definition dcl plitdli ext entry; is located in the
DLI DATA include member.

The Orbix 6.2 DLI DATA include member must be used and the definition
dcl plitdli ext entry; must be removed from the client mainline.

PL/I IMS Client Migration issues

Error Checking Generation at Runtime for IMS Clients

Overview

IMS clients in Orbix 2.3.x

IMS clients in Orbix 6.2

Migration impact

This sections summarizes the differences between an Orbix 2.3.x client and
an Orbix 6.2 client in relation to the GHEQK_ERRCRS function used for error
checking.

This section discusses the following topics:

® |MS clients in Orbix 2.3.x

® |MS clients in Orbix 6.2

® Migration impact

There is no member shipped for error-checking for IMS client code in Orbix
2.3.x. Customers are required to implement their own error checking
procedure.

For IMS clients a static member called GHCLI M5 is shipped which contains
a GHEQK_ERRCRS function and is located in the or bi xhl g.1 NOLUDE. GCPYLI B in
Orbix 6.2.

There is no migration impact, however IONA recommend you use the
OKQLI M5 member which shows the system exception encountered in a
more user-friendly format.

235

CHAPTER 7 | PL/I Migration Issues

PL/I CICS Server Migration Issues

Overview This section describes the source code changes required when migrating
PL/I CICS Orbix 2.3.x servers to PL/I CICS Orbix 6.2 servers.

Note: This section must be read in conjunction with the other PL/I
migration issues outlined in this document.

In this section This section discusses the following topics:

Server Mainline Program Requirements for CICS Servers page 237

Access to the EXEC Interface Block Data Structure page 242

236

PL/I CICS Server Migration Issues

Server Mainline Program Requirements for CICS Servers

Overview

Migration Impact

Migration Sample IDL

In Orbix 2.3.x for CICS, a combined server mainline and accessor is
generated for all CICS PL/I server programs, as well as an optional server
implementation. In Orbix 6.2, in contrast, a server mainline (required) and
an optional combined server accessor and implementation is generated.
This subsection discusses the following topics:

® Migration Impact

® Migration Sample IDL

® Orbix 2.3.x Compiler Output

® Orbix 6.2 IDL Compiler Output

The migration impact is that every Orbix 2.3.x IMS PL/I server mainline has
to be regenerated using the Orbix 6.2 IDL compiler. Refer to the PL/I
Programmer’s Guide and Reference for more details of compiler arguments.

Also the Orbix 2.3.x server mainline for CICS contains a CICS program
pointer which is passed into the program. This pointer is not supported in
Orbix 6.2.

Consider the following IDL, called si npl e,

nodul e Sinple
{ interface Sinpl eChj ect
{
voi d
call _me();
IE

237

CHAPTER 7 | PL/I Migration Issues

Orbix 2.3.x Compiler Output

238

Server mainline output for the si npl e interface, SI MPLEZ, with the Orbix
2.3.x IDL compiler is as follows:

Example 14: Orbix 2.3.x Compiler Output for the simple IDL
SI MPLEZ: PRCC CPTI ONS(VAl N, NCEXEQCPS) ;
/*The following line enables the PCD to link to this procedure*/

D SPTGH ENTRY;

dcl operation char (256) init('");
dcl operation_| ength fixed bin(31) init(256);
dcl SI MPLEI ext entry(char(*),ptr);
dcl PCDA Cs ext entry;

dcl addr bui l tin;

dcl | ow bui l tin;

dcl sysnul | bui l tin;

% ncl ude CCRBA;
% ncl ude S| MPLER,

all oc pod_status_information set(pod_status_ptr);

call podstat(pod_status ptr);
if check_errors('podstat') ~= conpl eti on_status_yes then return;

call podreq(reqi nfo);
if check_errors(' podreqg') = conpl etion_status_yes then return;

call strget(operation_nane,

oper ation,

operation_| ength);
if check errors('strget') ~= conpl etion_status_yes then return;
call Sl MPLEl (operation, p_prgptr);

free pod_status_infornation;

END S| MPLEZ;

Orbix 6.2 IDL Compiler Output

PL/I CICS Server Migration Issues

The compiler output for the Orbix 6.2 IDL compiler produces a module for
the si npl e interface: a server mainline, SI MPLEV. If the - S argument is
supplied a combined server accessor and implementation module, SI MPLE ,
is also generated.

Example 15: The Server Mainline, SIMPLEV, for the simple interface
(Sheet 1 of 2)

SI MPLEV: PROC CPTI ONS(MAI N NCEXECCPS) ;

dcl arg_list char (01) init('");

dcl arg_list_len fixed bin(31) init(0);

dcl orb_narme char (10) init('sinple_orb');
dcl orb_nane_| en fixed bin(31) init(210);

dcl srv_nane char (256) var;

dcl server_nane char (07) init('sinple ');
dcl server_nane_| en fixed bin(31) init(6);

dcl Sinpl e_Sinpl e(oj ect _objid char (27)
init('Snplel/S npl eChj ect_object ');

dcl Sinpl e_Si npl eChj ect _obj ptr;
dcl (addr, | ength,|ow sysnull) bui I tin;
% ncl ude OORBA;

% ncl ude GHKERRS;
% ncl ude SI MPLET;
% ncl ude Sl MPLEX;

239

CHAPTER 7 | PL/I Migration Issues

Example 15: The Server Mainline, SIMPLEV, for the simple interface
(Sheet 2 of 2)

all oc pod_status_information set(pod status _ptr);

call podstat(pod_status_ptr);
if check errors('podstat') ~= conpl eti on_status_yes then return;

/* Initialize the server connection to the CRB */
call orbargs(arg_list,arg_list_len,orb_nane, orb_name_| en);
if check_errors('orbargs') ~= conpl eti on_status_yes then return;

call podsrvr(server_narme, server_nane_| en);
if check_errors(' podsrvr') ~= conpl eti on_status_yes then return;

/* Register interface : Sinplel/Sinple(ject */
call podreg(addr(Si npl e_S npl e(hj ect _i nterface));
if check_errors(' podreg') = conpletion_status_yes then return;

call objnewserver_nane,

Sinpl e_Si npl e(hj ect _intf,

Si npl e_Si npl ehj ect _obj i d,

Si npl e_Si npl e(hj ect _obj) ;
if check_errors(' objnew) ~= conpletion_status_yes then return;
/* Server is nowready to accept requests */
call podrun;
if check_errors(' podrun') ~= conpl etion_status_yes then return;
call objrel (S nple_Sinpl eChj ect_obj);
if check_errors('objrel') ~= conpl etion_status_yes then return;

free pod_status_infornation;
END SI MPLEV;
The server accessor and implementation, SI MPLEI , is as follows:

Example 16: The Server Implementation, SIMPLEI, for the simple Interface
(Sheet 1 of 2)

SIMPLEl : PROC

/*The following |ine enables the runtine to call this procedure*/
Dl SPTCH ENTRY;

dcl (addr, | ow, sysnul |) bui l tin;

240

PL/I CICS Server Migration Issues

Example 16: The Server Implementation, SIMPLEI, for the simple Interface
(Sheet 2 of 2)

% ncl ude CORBA

% ncl ude GHKERRS;
% ncl ude SI MPLEM
%nclude DISPINT

[* ============== Start of global user code */
/* End of gl obal user code * |
/* __ */
/* */
/* D spatcher : sel ect(operation) */
/* */
/* __ */
% ncl ude S| MPLED;

/* __ */
/* Interface: */
a4 Si npl e/ Si npl ehj ect */
/* */
/* Mapped narre: */
/* Si npl e_Si npl e(yj ect */
/* */
/* Inherits interfaces: */
/* (none) */
/* __ */
/* __ */
/* Qperation: call_ne */
/* Mapped narme: call_ne */
/* Argunents: None */
/* Returns: voi d */
/* __ */
proc_Si npl e_S npl ethj ect _c_c904: PROJ(p_args);

dcl p_args ptr;

dcl 1 args al i gned based(p_args)

|'i keSi npl e_Si npl eChj ect _c_ba77_type;

END proc_Si npl e_Si npl eChj ect _c_c904;

END S| MPLEl ;

241

CHAPTER 7 | PL/I Migration Issues

Access to the EXEC Interface Block Data Structure

Overview

Migration Impact

Required Code

242

This subsection describes the migration impact for CICS PL/I servers whose
implementation requires access to the EXEC interface block (EIB) data
structure. It discusses the following topics:

® Migration Impact
® Required Code

Because Orbix 6.2 requires that all CICS PL/I servers have a server mainline,
the implementation program is now a sub-program that is entered via a
DISPTCH entry point. By default, the CICS program doe not pass along the
address of the EIB structure. Therefore, you must add some additional code
to your PL/I server implementation programs.

Add the following line of code after the D SPTCH entry point:

EXEC O CS ADDRESS El B(DFHEI PTR) ;

PL/I CICS Client Migration Issues

PL/I CICS Client Migration Issues

Overview

CICS clients in Orbix 2.3.x and
error checking

CICS clients in Orbix 6.2 and error
checking

Migration impact for error
checking code

DISPTCH reference

This section describes the source code changes required when migrating
PL/I CICS Orbix 2.3.x clients to PL/I CICS Orbix 6.2 clients.

Note: This section must be read in conjunction with the other PL/I
migration issues outlined in this document.

This section discusses the following topics:

® CICS clients in Orbix 2.3.x and error checking
® CICS clients in Orbix 6.2 and error checking
® Migration impact for error checking code

® DISPTCH reference

There is no member shipped for error-checking for CICS client code in Orbix
2.3.x. Customers are required to implement their own error checking
procedure.

For CICS clients a static member called GCLQ C shipped which contains a
CHEQK_ERRCRS function and is located in the or bi xhl g.1 NCLUDE. PLI NCL in
Orbix 6.2.

There is no migration impact, however IONA recommend you use the
aKa.a ¢ member which shows the system exception encountered in a
more user-friendly format.

Note: aKcLd Cis relevant to CICS clients only. It contains a PL/I function
that has been translated by the CICS TS 1.3 translator. This function can
be called by the client, to check if a system exception has occurred and
report it.

The D sPTCH reference must be removed from client code and replaced with
the line %l i ent _onl y="yes’ ;. Refer to “DISPTCH Reference” on page 244
for further details.

243

CHAPTER 7 | PL/I Migration Issues

Miscellaneous

In This Section

Interface Repository Server

Command-Line Arguments

DISPTCH Reference

244

This section duchesses the following topics:
® |Interface Repository Server

® Command-Line Arguments

® DISPTCH Reference

® Inherited interfaces

® Orbix PL/I include file re-arrangement
® Generation of mapping files

In Orbix 2.3.x, genpl i requires the Interface Repository (IFR) server to be
running to access the IDL source registered with the IFR server.

The Orbix 6.2 IDL Compiler accesses the IDL source directly, from the input
IDL member (data set), and therefore does not need to access the IFR.
Hence IDL members can be accessed independently (and IDL to PL/I
development can proceed) without the need for any Orbix 6.2 services to be
running.

The command-line arguments for the Orbix 6.2 IDL Compiler are different in
some cases to the genpl i arguments. However, functionality common to
both compilers can be achieved.

Orbix 2.3.x required both clients and servers to have the label DI SPTCH
defined at the start of the client program and server accessor code

(i dI menber nanez). For Orbix 6.2, you must remove this line, DI SPTCH
ENTRY, from the client code and replace it with:

%l ient_only="yes’;
In Orbix 6.2 PL/I it is defined in the server implementation (the D SPTCH
label is still required by the server mainline) and can only be defined once in
a program.
The reason for making the change is that when your client program is

compiled, it then only pulls in client-specific functionality of the PL/I
runtime, resulting in smaller load module size.

Inherited interfaces

Orbix PL/I include file
re-arrangement

Generation of mapping files

Miscellaneous

The IDL-PL/I generator now generates only one instance of a PL/I typedef
per IDL type. In previous releases, if a type was inherited, the PL/I generator
created a typedef for both the base class's instance of the type and also one
for each inherited type. This was unnecessary as both generated typedefs
would always be the same, apart from the name of the typedef. It also
resulted in the generation of large include files in the cases of IDL with
complex structs, for example. For programs where a pre-Orbix 6.2
generated server implementation is used and new include files need to be
generated, the - Li option has been introduced.

Three PL/I include members (CORBA, READI CR and SETUPCL) have been
reorganized, to decrease the number of instances where the compilation of
an Orbix PL/I program results in a return code of 4, due to the pre-processor
check for client_only. The reorganization has been designed so that there
would not be a migration hit for existing Orbix PL/I applications.
Additionally, a new include file, SETUPSV, has been added, to declare
client_only and set it to "no" in Orbix PL/I server applications. For further
details about the include members, see the Orbix PL/I Programmers Guide
and Reference.

In previous versions of the Orbix PL/I generator, if the - Moption was
specified and the IDL had operation names that were identical in several
interfaces, no warning was produced if the names mapped to a non-unique
name. For example, no warning was produced if the generated mapping file
contained:

interfaceA ping ping
interfaceB/ping ping

The Orbix 6.2 PL/I generator will still generate the preceding mapping file
but also outputs a warning about the generated mapping file. The generator
will also give a return code of 4, to alert the developer that two or more
operations have been mapped to the same name.

245

CHAPTER 7 | PL/I Migration Issues

246

CHAPTER 8

Diagnostic Output

This chapter summarizes the differences between how
diagnostic data is output for Orbix 2.3.x and Orbix 6.2.

In this chapter This chapter discusses the following topics:
CORBA::Orbix::setDiagnostics () Availability page 248
Orbix Diagnostic Messages page 248
Orbix 6.2 Default Diagnostic Output page 248
Logging Severity Levels page 248
COBOL and PL/I page 248
Further Reading page 248

247

CHAPTER 8 | Diagnostic Output

CORBA::Orbix::setDiagnostics ()
Availability

Orbix Diagnostic Messages

Orbix 6.2 Default Diagnostic
Output

Logging Severity Levels

COBOL and PL/I

Further Reading

248

QCRBA: : O bi x: : set Di agnost i cs() is not available in Orbix 6.2, because it
is not CORBA-compliant. Instead, diagnostic output is controlled from
within the Orbix 6.2 configuration. This allows easy manipulation of
diagnostic output. In addition, the diagnostic output of each Orbix 6.2
plugin can be controlled separately, allowing for informative and selective
diagnostic output.

The following table compares Orbix diagnostic messages to their equivalent
configuration settings in Orbix 6.2:

Orbix Diagnostic Setting Orbix 6.2 Configuration Setting
set Di agnost i cs(0) No logging plug-ins loaded.
set D agnosti cs(1) event _| og: filters=["*=FATAL+ERRCR'] ;
set Di agnosti cs(2) event _log:filters=["*=*"];

By default, diagnostic output goes to standard error, but it can be directed to
a file with the 1 ocal _I og_st ream configuration variable as follows:

pl ugi ns: 1 ocal _| og_streamfil ename = /var/adm O bi x2000. | og

There are four levels of logging severity within Orbix 6.2. These are:

L Informational
o Warning
i Error

b Fatal Error

COBOL and PL/I now have the flexibility to control the diagnostic level.

Note: set D agnosti cs in the preceding example is specific to C+ +.

Note: The PL/I debug library is no longer shipped with Orbix 6.2.

Refer to the CORBA Administrator’s Guide for further details on diagnostic
output.

In this chapter

CHAPTER 9

CORBA Services

This chapter summarizes the differences in CORBA services
between Orbix 2.3.x and Orbix 6.2.

This chapter discusses the following topics:

Naming Service page 250
Interface Repository page 251
IMS Adapter page 252
CICS Adapter page 254

249

CHAPTER 9 | CORBA Services

Naming Service

Backward compatibility

New interface

Load balancing

250

The Orbix 6.2 Naming Service is backward compatible with Orbix 2.3.x in

two respects:

® Source code backward compatibility: source code that is written to
use the standard naming service interfaces can be migrated to Orbix
6.2 without modification.

® On-the-wire backward compatibility: Orbix 2.3.x applications can
interoperate with the Orbix 6.2 naming service. If you need to
interoperate Orbix 2.3.x applications, it is recommended that you
recompile the naming stub code from the Orbix 6.2 IDL files.

Orbix 6.2 adds a new interface, CosNani ng: : Nam ngCont ext Ext , which is
defined by the CORBA Interoperable Naming Service specification. This
interface adds support for using names in stringified format.

The naming service load-balancing extensions provided in Orbix 2.3.x are
also present in Orbix 6.2. The Orbix 6.2 load-balancing interfaces are only
slightly different from Orbix 2.3.x, requiring small modifications to your
source code.

Interface Repository

Interface Repository

Migration Migrating source code that uses the Interface Repository (IFR) to Orbix 6.2
is straightforward. Link the migrated application against the stub code
derived from the Orbix 6.2 version of the interface repository. No further
changes should be necessary.

251

CHAPTER 9 | CORBA Services

IMS Adapter

Overview In Orbix 2.3.x, Orbix IMS adapter functionality is controlled via a series of
command-line arguments that can be specified to the adapter at start-up. In
Orbix 6.2, Orbix IMS adapter functionality is controlled via a series of
configuration items in the adapter’s configuration domain.

This section provides a comparison table of the 2.3.x-based adapter
arguments and 6.2 adapter configuration items.

Differences in controlling Table 17 outlines the 2.3.x command-line arguments that correspond to the
OTMA-based IMS adapter 6.2 configuration items for the purposes of controlling the functionality of
functionality OTMA-based IMS adapters.

Table 17: Differences in Controlling OTMA-Based IMS Adapters

2.3.x Arguments 6.2 Configuration Items

-A pl ugi ns: i msa: di spl ay_timngs = "yes";

-f pl ugi ns: i msa: mappi ng_file =" ";

-G pl ugi ns: i ns_ot na: xcf _group_nane = "I M5G';

-X pl ugi ns: i ms_ot ma: xcf _adapt er _menber _nane =
" CRXI MSG';

-M pl ugi ns: i ns_ot na: xcf _i ns_nenber _nane =
"IMB;

-T pl ugi ns: i ns_ot ma: xcf _t pi pe_prefix = "CRX1";

-w pl ugi ns:i ms_ot na: ti meout = "30";

-0 pl ugi ns: i ms_ot na: out put _segment _num = "2";

-1 pl ugi ns:i ms_otna: my_| ength = "1024";

-p thread_pool :initial _threads = "8";

252

Differences in controlling
APPC-based IMS adapter
functionality

IMS Adapter

Table 18 outlines the 2.3.x command-line arguments that correspond to the
6.2 configuration items for the purposes of controlling the functionality of
APPC-based IMS adapters.

Table 18: Differences in Controlling APPC-Based IMS Adapters

2.3.x Arguments

6.2 Configuration Items

-A pl ugi ns: i nsa: di spl ay_timngs = "yes";
-n pl ugi ns: i ns_appc: i ms_desti nati on_name =
"CRBI XI M5";
-L pl ugi ns: i ns_appc: appc_out bound_| u_nane = " ";
-w pl ugi ns: i ns_appc: ti meout = "30";
-1 pl ugi ns: i ns_appc: ng_| ength = "1024";
-p thread pool :initial _threads = "8";

253

CHAPTER 9 | CORBA Services

CICS Adapter

Overview In Orbix 2.3.x, Orbix CICS adapter functionality is controlled via a series of
command-line arguments that can be specified to the adapter at start-up. In
Orbix 6.2, Orbix CICS adapter functionality is controlled via a series of
configuration items in the adapter’s configuration domain.

This section provides a comparison table of the 2.3.x-based adapter
arguments and 6.2 adapter configuration items.

Differences in controlling Table 19 outlines the 2.3.x command-line arguments that correspond to the
EXCl-based CICS adapter 6.2 configuration items for the purposes of controlling the functionality of
functionality EXCl-based CICS adapters.

Table 19: Differences in Controlling EXCI-Based CICS Adapters

2.3.x Arguments 6.2 Configuration Items

-A pl ugi ns: ci csa: di splay_tinings = "yes";

-f pl ugi ns: ci csa: mappi ng_file =" ";

-n pl ugi ns: ci cs_exci:applid = "d CSTSL";

-N pl ugi ns: ci cs_exci : pi pe_name = " CRXPI PE1";

-m pl ugi ns: ci cs_exci:default _tran_id = "CRX1";

-1 pl ugi ns: ci cs_exci : max_comm area_l ength =
"32000";

-p thread_pool :initial _threads = "8";

254

CICS Adapter

Differences in controlling Table 20 outlines the 2.3.x command-line arguments that correspond to the
APPC-based CICS adapter 6.2 configuration items for the purposes of controlling the functionality of
functionality APPC-based CICS adapters.

Table 20: Differences in Controlling APPC-Based CICS Adapters

2.3.x Arguments 6.2 Configuration Items

-A pl ugi ns: ci csa: di spl ay_timngs = "yes";

-f pl ugi ns: ci csa: mappi ng_file =" ";

-n pl ugi ns: ci cs_appc: ci cs_desti nati on_name =
"CRBI XA C';

-L pl ugi ns: ci cs_appc: appc_out bound_| u_nane =
" ORXLWO2";

-w pl ugi ns: ci cs_appc: ti neout = "6";

-1 pl ugi ns: ci cs_appc: segrent _| ength = "32767";

-p thread_pool :initial _threads = "8";

255

CHAPTER 9 | CORBA Services

256

CHAPTER 10

Administrative
Tools

This chapter summarizes the differences between Orbix 2.3.x
and Orbix 6.2 administration tools.

In this chapter This chapter discusses the following topics:
Orbix 2.3.x Administration Tools page 258
Orbix 6.2 Administration Tools page 258
The itadmin Tool and z/0OS page 258
z/0S UNIX System Services Single Command Line page 258
z/0S UNIX System Services Interactive Shell Mode page 258
z/0S Native page 259
Further Reading page 259

257

CHAPTER 10 | Administrative Tools

Orbix 2.3.x Administration Tools

Orbix 6.2 Administration Tools

The itadmin Tool and z/0S

z/0S UNIX System Services Single
Command Line

z/0S UNIX System Services
Interactive Shell Mode

258

Orbix 2.3.x supplies various utilities to administer its various components.
Among these tools, for example, are putit and rmt used to administer the
implementation repository, putidl and rmidl are used to administer the
interface repository, and | sns and put ns are used to administer the Naming
Service.

Orbix 6.2 unifies all administrative commands under a single tool, i t adnin,
that can manage all IONA services.

The i tadnin tool is used on z/OS in different ways depending on the
environment. There are three environments which dictate the way it is used.
These are:

® 7z/OS UNIX System Services:
+ single command line.
¢ interactive shell mode.
® 7/OS native:
¢ batch mode.

On z/0S UNIX System Services the i t adm n tool can be run on the
command line as in the following example:

$ itadm n hel p
$ itadm n poa -help

On z/0S UNIX System Services interactive shell mode, multiple i t adnin
commands can be invoked within the same shell process. For example:

$ itadmn

%poa list -active
%ifr show grid

% ns newnc

% exi t

z/0S Native

Further Reading

On z/0OS native, the i t adm n tool can be run in batch by executing the IONA
supplied GRXADM N PROC in your JCL. One or more i t admi n commands can
be specified in the SYSI N DD concatenation. For example in the following
JCL excerpt:

/1 REG EXEC PROC=CRXADM N

/ISYSIN DD *

orbnane create sinple_orb

poa create -orbnane sinpl e_orb sinple_persistent
/*

Refer to the CORBA Administrator’s Guide for further information about
using the i t adm n tool.

259

CHAPTER 10 | Administrative Tools

260

In this chapter

CHAPTER 11

Interoperability

This chapter describes the issues relating to interoperability
when migrating from an Orbix 2.3-based IONA mainframe
solution to Orbix Mainframe 6.2.

This chapter discusses the following topics:

Use of the Orbix Protocol page 262
GIOP Versions page 263
Launch and Invoke Rights page 265
Codeset Negotiation page 267

261

CHAPTER 11 | Interoperability

Use of the Orbix Protocol

Overview

Orbix 6.2 and Transport Protocols

Migration Impact

262

This section discusses migration from IONA's proprietary Orbix protocol to
CORBA-compliant transport protocols.

This section discusses the following topics:
® Orbix 6.2 and Transport Protocols
® Migration Impact

Orbix 6.2 supports only CORBA-compliant transport protocols such as 1OP.

If you have old (pre-Orbix 2.3.x) code that relies on the Orbix Protocol, or
code that calls OORBA: : O bi x. bi ndUsi ngl | CP(0) , you must change it to use
IIOP. Otherwise, the Orbix client cannot invoke on any Orbix 6.2
component.

GIOP Versions

GIOP Versions

GIOP version of a connection

Effect of GIOP version

The GIOP version used by a client-server connection is determined by the
client. When a client is about to open a connection to a CORBA object, the
client examines the version information in the object’s IOR:

® If the GIOP version in the IOR is greater than or equal to the default
GIOP version of the client, the client initiates a connection using the

client’s default GIOP version.

® Otherwise, the client initiates a connection using the GIOP version in

the IOR.

The GIOP version of a connection is important, because some CORBA
features are not supported in early GIOP versions. Table 21 shows the
minimum GIOP version required for some CORBA features, according to the

CORBA specification.

Table 21: CORBA-Specified Minimum GIOP Versions

CORBA Feature

CORBA-Specified Minimum

GIOP Version
fi xed type 1.1
wchar and wst ri ng types 1.1
codeset negotiation (Orbix 6.2 only) 1.1

263

CHAPTER 11 | Interoperability

Orbix-specific minimum GIOP
versions

Table of default GIOP versions

264

Notwithstanding the CORBA-specified minimum GIOP versions, Orbix
allows some features to be used at a lower GIOP version (in some cases
requiring specific configuration variables to be set). Table 22 shows the
Orbix-specific minimum GIOP versions.

Table 22: Orbix-Specific Minimum GIOP Versions

CORBA Feature Orbix-Specific Minimum GIOP
Version
fixed type 1.0
wchar and wst ri ng types 1.0
codeset negotiation (Orbix 6.2 only) 1.1

For more details on these CORBA features, see the following sections in the
Orbix 6.2 Migrating from Orbix 3.3. to Orbix 6.2 guide at

http: //ww. i ona. cond support/docs/ orbi x/ 6.2/ m grate. xni :

® "Fixed Data Type and Interoperability".

® "Use of wchar and wstring'".

® "Introduction to Codeset Negotiation".

Table 19 shows the default GIOP versions for different Orbix clients when

opening a connection to a server.

Table 23: Default GIOP Version Used by Orbix Clients

Client Version Default GIOP Version
Orbix 3.0.1-82 1.0
OrbixWeb 3.2-15 1.0
Orbix 3.3 C++ Edition 1.1
Orbix 3.3 Java Edition 1.0
Orbix 6.2 1.1

Launch and Invoke Rights

Launch and Invoke Rights

Overview

Role of launch and invoke rights

Setting launch rights

Setting invoke rights

Orbix 6.2 and Orbix 3.3

When an Orbix 6.2 client attempts to open a connection to an Orbix 2.3.x
server you must ensure that the system is configured such that the Orbix 6.2
client has launch and invoke rights.

In Orbix 2.3.x, the or bi xd daemon process is responsible both for launching
servers and for redirecting client requests to servers. These two functions are
governed by launch rights and invoke rights, respectively.

Launch and invoke rights on Orbix 3.3 servers are based on the idea that
the client user/D is transmitted along with request messages. The field of
the request message that contains the user ID is known as the Principal of
the invocation.

If launch and invoke rights are not configured correctly, the Orbix 6.2 client
raises a QORBA: : CBJECT_NOT_EXI ST system exception.

The launch rights associated with an Orbix 3.3 server specify which users
are allowed to cause automatic launching of the server. Launch rights in
Orbix 3.3 are granted with the following form of chmodit:

chnodi t | +user| D Server Name

The invoke rights associated with an Orbix 3.3 server are used to determine
which users are allowed to invoke on the server. Invoke rights are granted
using:

chnodi t i +userl D Server Name

The configuration must be altered for an Orbix 6.2 client invoking on an
Orbix 3.3 server. There are two possible approaches to fix the launch and
invoke rights:

® Alter the configuration of the Orbix 6.2 client.
® Relax the security on the or bi xd daemon.

265

CHAPTER 11 | Interoperability

Alter the configuration of the Orbix

6.2 client

Relax the security on the orbixd
daemon

266

Four configuration variables must be made (or changed) in the Orbix 6.2
configuration file:

Obix 6.2 Configuration File

pol i ci es: giop:interop_policy:send_ | ocate_request = "fal se";

pol i ci es: gi op: i nterop_policy:send_principal = "true";

pol i ci es: gi op: i nterop_pol i cy: enabl e_pri nci pal _servi ce_context =

"true";

pol i ci es: gi op: i nterop_pol i cy: i gnore_nesage_not _consuned =
"true";

The pol i ci es: gi op: i nterop_pol i cy: send_| ocat e_r equest option controls
whether Orbix 6.2 sends Locat eRequest messages before sending initial
Request messages. This option must be set to "f al se" because

Locat eRequest messages do not contain a Principal field.

Note: To allow Orbix 2.3.5 or higher Orbix servers interoperate with Orbix
6.2 clients, you must set the pol i ci es: gi op: i nt erop_pol i cy: send_
| ocat e_request configuration item to "fal se".

The pol i ci es: gi op: i nt er op_pol i cy: send_pri nci pal option controls
whether Orbix 6.2 sends Principal information containing the current user
name in GIOP 1.0 and GIOP 1.1 requests. The user name is matched
against the launch and invoke rights listed in the or bi xd daemon, to
determine the permissions of the Orbix 6.2 client.

Alternatively, you can relax the security on the or bi xd daemon so that all
clients have launch and invoke rights. For example, use the chnodi t
command line utility to change the launch and invoke rights:

chnodit | +all Server Nane
chnodit i+all Server Nane

These commands give permission for any client to invoke or launch the
server Server Name. Permissions are granted even if the Principal value is left
blank in the incoming requests.

Codeset Negotiation

Codeset Negotiation

Overview Codeset negotiation enables CORBA applications to agree on a common
character set for transmission of narrow and wide characters.

In this section This section discusses the following topics:
Introduction to Codeset Negotiation page 268
Configuring Codeset Negotiation page 269
Default Codesets page 270
Configuring Legacy Behavior page 273

267

CHAPTER 11 | Interoperability

Introduction to Codeset Negotiation

Overview

Support for codeset negotiation

Servers and codeset negotiation

Clients and codeset negotiation

268

The CORBA codeset conversion framework enables applications to ensure
that they communicate using compatible character formats for both narrow
characters, char, and wide characters, wchar .

Orbix 2000 (version 2.0 and later) and Orbix 6.2 support codeset
negotiation, as defined by the CORBA 2.4 specification.

Orbix 2.3.x does not support codeset negotiation.

A server that supports codeset negotiation appends a list of supported
codesets (character formats) to the interoperable object references (IORs) it
generates. The codesets are placed in standard | CP: : TAG OCDE_SETS
components in the IOR.

A client that supports codeset negotiation examines an IOR to check the list
of codesets supported by the server. The client compares this list with its
own list of supported codesets and, if a match is found, the client chooses
the pair of transmission codesets (narrow character format and wide
character format) to use for that particular connection.

When sending a Request message, the client appends an |1 CP: : CodeSet s
service context that tells the server which codesets are used. The client
continues to include an | OP: : CodeSet s service context in Request messages
until the first Repl y message is received from the server. Receipt of the first
server Repl y message implicitly indicates that codeset negotiation is
complete. The same characters formats are used for subsequent
communication on the connection.

Codeset Negotiation

Configuring Codeset Negotiation

Overview

CORBA configuration variables

Orbix 6.2 features greatly enhanced support for internationalization and
codeset negotiation. In particular, it is now possible to specify explicitly the
codesets that a server exports in an IOR.

Table 24 gives the configuration variables that are used to specify the

codesets for an Orbix 6.2 CORBA application.

Table 24:

CORBA Codeset Configuration Variables (Orbix 6.2)

Configuration Variable

Description

pl ugi ns: codeset : char: ncs = "<codeset >"; Specifies the native narrow character
codeset.

pl ugi ns: codeset : char: ccs = "<codeset 1>", "<codeset2>", .]; | Specifies the list of conversion narrow
character codesets supported.

pl ugi ns: codeset : wchar: ncs = "<codeset >"; Specifies the native wide character
codeset.

pl ugi ns: codeset : wchar: ccs = "<codeset 1>", "<codeset 2>", Specifies the list of conversion wide

R character codesets supported.

pl ugi ns: codeset : al ways_use_defaul t = "<bool ean>"; Specifies that hardcoded default values

are used and the preceding variables are
ignored, if set in the same configuration
scope or higher.

269

CHAPTER 11 | Interoperability

Default Codesets

Overview

Native and conversion codesets

CORBA C+ + codesets for
non-MVS platforms

270

This section describes the default codesets used by the Orbix 6.2 product.
The following default codesets are defined:

® CORBA C++ codesets for non-MVS platforms.
® CORBA C++ codesets for MVS platform.

® CORBA Java codesets for US-ASCII locale.

® CORBA Java codesets for Shift_JIS locale.

¢ CORBA Java codesets for EUC-JP locale.

® CORBA Java codesets for other locales.

Native codesets are used by the application to pass char and wchar data to
the ORB.

Conversion codesets are used, where necessary, to facilitate interoperability
with other ORBs or platforms.

Table 25 shows the default codesets for Orbix 6.2 C++ applications on
non-MVS platforms (Latin-1 locale).

Table 25: CORBA C++ Codesets (Non-MVS Platforms)

Codeset Type Codeset
Native codeset for char (NSC-C) ISO-8859-1
Conversion codesets for char (CCS-C) none
Native codeset for wchar (NCS-W) UCS-2 or UCS-4
Conversion codesets for wchar (CCS-W) | UTF-16

In Orbix 6.2, the choice of native wide character codeset, UCS-2 or UCS-4,
is based on the size of CORBA: : Wohar (either 2 or 4 bytes). UCS-2 is used on
Windows. UCS-4 is used on most UNIX platforms.

CORBA C+ + codesets for MVS
platform

CORBA Java codesets for
US-ASCII locale

CORBA Java codesets for
Shift_JIS locale

Codeset Negotiation

Table 26 shows the default codesets for Orbix 6.2 C+ + applications on the

MVS platform.

Table 26: CORBA C++ Codesets (MVS Platform)

Codeset Type Codeset
Native codeset for char (NSC-C) EBCDIC
Conversion codesets for char (CCS-C) ISO-8859-1

Native codeset for wchar (NCS-W)

UCS-2 or UCS-4

Conversion codesets for wchar (CCS-W)

UTF-16

Table 27 shows the codesets supported by Orbix 6.2 Java applications in a

US-ASCII locale.

Table 27: CORBA Java Codesets (ISO-8859-1/Cp-1292/US-ASCII locale)

Codeset Type Codeset
Native codeset for char (NSC-C) ISO-8859-1
Conversion codesets for char (CCS-C) UTF-8
Native codeset for wchar (NCS-W) UTF-16
Conversion codesets for wchar (CCS-W) | UCS-2

Table 28 shows the codesets supported by Orbix 6.2 Java applications in a

Shift_JIS locale.

Table 28: CORBA Java Codesets (Shift_JIS locale)

Codeset Type

Codeset

Native codeset for char (NSC-C)

UTF-8

Conversion codesets for char (CCS-C)

ISO-8859-1 or Shift_JIS or
euc_JP

271

CHAPTER 11 | Interoperability

CORBA Java codesets for EUC-JP
locale

CORBA Java codesets for other
locales

272

Table 28: CORBA Java Codesets (Shift_JIS locale)

Codeset Type

Codeset

Native codeset for wchar (NCS-W)

UTF-16

Conversion codesets for wchar (CCS-W)

UCS-2 or Shift_JIS or euc_JP

Table 29 shows the codesets supported by Orbix 6.2 Java applications in

an EUC-JP locale.

Table 29: CORBA Java Codesets (EUC_JP locale)

Codeset Type

Codeset

Native codeset for char (NSC-C)

UTF-8

Conversion codesets for char (CCS-C)

ISO-8859-1 or Shift_JIS or
euc_JP

Native codeset for wchar (NCS-W)

UTF-16

Conversion codesets for wchar (CCS-W)

UCS-2 or Shift_JIS or euc_JP

Table 30 shows the codesets supported by Orbix 6.2 Java applications in

other locales..

Table 30: CORBA Java Codesets (other locale)

Codeset Type

Codeset

Native codeset for char (NSC-C)

UTF-8

Conversion codesets for char (CCS-C)

ISO-8859-1 or file encoding

Native codeset for wchar (NCS-W)

UTF-16

Conversion codesets for wchar (CCS-W)

UCS-2 or file encoding

Codeset Negotiation

Configuring Legacy Behavior

Default behavior

Legacy behavior

Disabling codeset negotiation

Enabling wchar transmission on a
GIOP 1.0 connections

By default, the | CP: : TAG OCDE_SETS tagged component is included in
generated IORs and the transmission codesets are negotiated by clients and
transmitted through an |1 OP: : CodeSet s service context. This is the
CORBA-defined behavior.

Orbix 6.2 (all versions) also provides legacy behavior, to support the
scenario where wide character data is communicated between Orbix 6.2
and Orbix 3.3 Java Edition.

The following configuration variable can be used to explicitly disable the
codeset negotiation mechanism:

Obix 6.2 Configuration File
pol i ci es: gi op:interop_policy: negoti ate_transm ssi on_codeset =
"fal se";

The default is t rue.

This is a proprietary setting provided for interoperability with legacy
implementations, such as Orbix 3.3 Java Edition. The native codeset for
character data, ISO-8859-1 (Latin-1), is used and the overhead of full
negotiation is avoided. If wide character data is used, Orbix 6.2 reverts to
the UTF-16 transmission codeset.

Passing wchar data over GIOP 1.0 can be enabled using the following
configuration variable:

Obix 6.2 Configuration File
policies:giop:interop_policy:allowwhar_types_in_1 0 = "true";

The default is f al se.
The transmission of wchar data is not legal in GIOP 1.0, by default.
send_locate_request

273

CHAPTER 11 | Interoperability

274

Part 3
Migrating from 5.1

In this part This part contains the following chapters:

Upgrading from Mainframe Edition 5.x page 277

CHAPTER 12

Upgrading from
Mainframe Edition
5.X

Migrating Orbix E2A Mainframe Edition 5.x-based
applications to Orbix Mainframe 6.2 is a simpler process than
migrating Orbix 2.3.x-based applications. Many differences
that exist between Orbix 2.3.x and Orbix 6.2 do not exist
between Orbix E2A 5.x and Orbix 6.2. Therefore, much fewer
changes are required to migrate an Orbix E2A 5.x Mainframe
Edition solution to Orbix Mainframe 6.2. This chapter outlines
the requirements for upgrading from an Orbix E2A Mainframe
Edition 5.x-based solution to Orbix Mainframe 6.2.

In this chapter This chapter discusses the following topics:
Installation Requirements page 279
Configuration Changes page 281
New Node Daemon page 289
Database Migration page 290

277

CHAPTER 12 | Upgrading from Mainframe Edition 5.x

278

C++ Migration page 291
COBOL Migration page 292
PL/I Migration page 293

Installation Requirements

Installation Requirements

Overview

Installing on native z/0S

Installing on UNIX System
Services

Standard Customization Tasks

This section outlines the installation requirements for migrating from an
Orbix E2A Mainframe Edition 5.x-based solution to Orbix Mainframe 6.2. It
discusses the following topics:

® |nstalling on native z/OS.

® |Installing on UNIX System Services.

® Standard Customization Tasks.

® Other Customization Tasks.

® PDS names.

Even though you have already installed a previous version of IONA's
mainframe product, you must perform in full the tasks described in the 6.2
version of the Mainframe Installation Guide that pertain to installing on
z/0S, because of the inherent differences between this and previous
versions.

You must perform all these installation tasks in the order in which they are
described in the Mainframe Installation Guide. Some tasks might not be
relevant to your setup, but this is highlighted where appropriate.

If you choose to install Orbix Mainframe 6.2 on z/OS UNIX System Services
as well as on native z/0S, you must perform in full the tasks described in the
6.2 version of the Mainframe Installation Guide that pertain to installing on
z/0S UNIX System Services.

After successfully installing Orbix Mainframe 6.2 on z/OS (and on z/0OS UNIX
System Services if you want), you must perform in full the standard
customization tasks described in the 6.2 version of the Mainframe
Installation Guide.

You must perform all these standard customization tasks in the order in
which they are described in the Mainframe Installation Guide. Some tasks
might not be relevant to your setup, but this is highlighted where
appropriate. See “Orbix Mainframe Configuration” on page 289 for
customization details relating to your Orbix Mainframe configuration file.

279

CHAPTER 12 | Upgrading from Mainframe Edition 5.x

Other Customization Tasks

PDS names

280

Depending on your setup, there are additional customization tasks that you
might also need to perform. These customization tasks relate to:

® Naming Service and Interface Repository customization.
® |MS adapter customization.
® CICS adapter customization.

If you need to perform any of these tasks, you must perform them in the
order in which they are described in the Mainframe Installation Guide.

In Orbix Mainframe 6.2, PDS naming conventions are different from those in
Orbix E2A 5.x. The differences can be summarized as follows:

Table 31: Differences in PDS Naming Conventions

5.x 6.2

COBOL CBL

JCL JCLLIB

LIB OBJLIB

LOAD LOADLIB

LPA LPALIB

PROCS PROCLIB

RUN LOADLIB

Configuration Changes

Configuration Changes

Overview

Orbix Mainframe 6.2 represents a major version upgrade, so Orbix 6.2
configuration is not backwards compatible with Orbix E2A 5.x configuration
domains. This means that you cannot run Orbix 6.2 programs, using an
Orbix E2A 5.x configuration file. This section outlines the changes that have
been made to Orbix configuration, with particular emphasis on the
configuration items relating to CICS and IMS integration.

This section discusses the following topics:

Migrating Core Orbix Configuration.

Insecure deployments.

Secure deployments.

Migrating Your IMS or CICS Configuration.

IMS Server Adapter Configuration Changes.

CICS Server Adapter Configuration Changes.

IMS and CICS client adapter configuration changes.

281

CHAPTER 12 | Upgrading from Mainframe Edition 5.x

Migrating Core Orbix
Configuration

Insecure deployments

Secure deployments

282

Many changes have been made to the core Orbix configuration infrastructure
in Orbix 6.2. These changes relate to new or modified settings for shared
library names, plug-in names, initial references, and other miscellaneous
items. Because of the extents of these changes, there is no easy way to
migrate an existing 5.x domain to the new Orbix 6.2 structure. The
deployment phase for new configuration domains has been improved,
however, to make the process more automated and to facilitate upgrades in
the future. See “Insecure deployments” and “Secure deployments” next for
more details. All feedback on the new configuration changes is welcome by
contacting support @ona. com IONA’s aim here is that, for future releases,
customers will be able to simply replace the

HLQ CRBI X62. OONFI G CRXI NTRL) file without having to re-configure or copy
your existing customized settings to IONA's files.

In the Orbix 6.2 release, all internal settings are now stored in

H.Q CRBI X62. CONFI QU CRXI NTRL) . The old H.Q CRBI X51. CONFI G FI LETMPL)
has now been renamed to BASETMPL in the H.Q CRBI X62. CONFI GPDS. When
you deploy an insecure configuration, BASETMPL is copied to

H.Q CRBI X62. DOVAI NS(FI LEDOWR) as in the 5.1 release. The

H_LQ CRBI X62. CONFI G DEFAWLT@ member now includes both

H.Q CRBI X62. DOVAI NS(FI LEDOMR) and H.Q CRBI X62. OONFI G ORXI NTRL) . See
the Mainframe Installation Guide for more details of the customization
tasks that are required for Orbix Mainframe 6.2.

For a secure deployment, the process has been enhanced even further. The
HLQ CRBI X62. CONFI G TLSTMPL) now only contains the specific TLS settings
that you would need to use to make your system fully secure. By default,
IONA now deploys a fully secure environment instead of a semi-secure
environment. The new Security configuration also uses the concept of
reopening scopes by sitting on top of the ORXI NTRL and BASETMPL files.
During the deployment process, H.Q CRBI X62. CONFI @ BASETMPL) is copied
to the H.Q CRBI X62. DOVAI NS(TLSBASE) , and HL.Q ORBI X62. OONFI G TLSTMPL)
is copied to H.Q CRBI X62. DOVAI NS(TLSDOWY) . The

HLQ CRBI X62. CONFI Q DEFAULT@ would then include ORXI NTRL, TLSBASE,
and TLSDOVA.

The DEPLOY process has also been enhanced so that you can provide the
name of your keyring ring during deployment. This is done during the
NMAKEQON step of the H.Q CRBI X62. JOLLI B(DEPLOYT) job by updating the

Migrating Your IMS or CICS
Configuration

Configuration Changes

LOCAL_SSL_USER SAF_KEYR NGto the name of your keyring. The
corresponding configuration setting for this information has also been
changed from pl ugi ns:iiop_tls:racf_keyring to

pl ugi ns: syst enssl _t ool ki t: saf _keyri ng.

See the Mainframe Installation Guide for more details of the customization
tasks that are required for Orbix Mainframe 6.2.

Very few changes have been made to the configuration scopes that are
specific to the IMS server adapter and CICS server adapter. Therefore, most
of the customizations made in an Orbix E2A 5.x installation can be copied
directly to an Orbix 6.2 configuration. This includes configuration items
relating APPC, OTMA, XCF settings, and so on.

IMS and CICS client support has been re-designed and takes advantage of
dynamic type support offered in the CICS and IMS server adapters. The
iona_services.mfu scope has been removed and there are two new scopes:
iona_services.ims_client and iona_services.cics_client. Configuration details
are discussed below.

The default dynamic type support mechanism has been changed in Orbix
6.2 from the IFR to a file-based method. The following settings have been
updated for CICS and IMS server adapters and for client adapters:

® |MS server adapters:

pl ugi ns:insa: repository_id = "type_info";

pl ugi ns: i nsa: t ype_i nf o: source = " DD TYPEI NFO';
® CICS server adapters:

pl ugi ns: cicsa:repository_id = "type_info";

pl ugi ns: ci csa: type_i nfo: source = "DD. TYPEl NFO';
® Client adapters:

plugi ns: client_adapter:repository id = "type_info";

pl ugi ns: cl i ent _adapt er: type_i nf o: source = "DD TYPEI NFO';
To use this feature you will need to pass the - nf a: -i nf flag to the Orbix IDL
compiler to generate type information. When you start the IMS server
adapter, you will need to update your JCL so that the DD card TYPEI NFO
points to the data set where you stored your JCL All Orbix Mainframe
demonstrations are configured to use this process, so you can use any of
them as an example. Alternatively, you can change the repository_id
setting to "i fr" and remove the t ype_i nf o: sour ce setting, to continue
using the IFR.

283

CHAPTER 12 | Upgrading from Mainframe Edition 5.x

IMS Server Adapter Configuration
Changes

284

The IMS server adapter is configured within the i ona_ser vi ces. i msa scope.

The following configuration items have been modified since Orbix E2A 5.x:

bi ndi ng: cl i ent _bi ndi ng_l i st In Orbix E2A 5.x, this list contained

initial _references: | T_MA
ref erence

bindings for the ESIOP_IMS interceptor.
This interceptor is not used by the IMS
server adapter in Orbix 6.2. Therefore, in
general, there is no need to specify this
variable anymore within the i nsa scope.
You can use the setting from the global
scope instead.

In Orbix E2A 5.x, this reference was set in
the i ona_servi ces. i nsa scope. In Orbix
6.2, this setting is now in the new
iona_utilities.insascope for use by
clients of the IMS server adapter (for
example, i t adni n/CRXADM N clients).

The following configuration items are new in Orbix 6.2:

nf _subsyst ens

pl ugi ns: i nsa: i nsraw_api _support

This specifies the Orbix Mainframe
subsystem that is in use. In this
case, it must be set to "adapter".
This configuration item is required.
The IMS server adapter cannot
start if this item is not set to
"adapter".

This can be used to expose the
legacy, unscoped i nsrawAPI. This
item is optional, and the default is
to expose the scoped

I T_MFA | M5 ;i nsrawAPI. Valid
values are scoped, unscoped, and
bot h.

pl ugi ns: i ms_ot ma: use_sync_| evel _one This allows you to disable sync

level one processing in the IMS
server adapter's communications
with IMS over OTMA. This item is
optional, and the default is to use
sync level one processing. Valid
values are "true" and "fal se".

pl ugi ns: i nsa: check_security
credential s

Configuration Changes

To illustrate integration with the
IONA Security Framework (iSF), a
sample iS2 configuration domain
is included in the TLS template
configuration. This variable is used
to instruct the IMS server adapter
to check for received credentials,
to determine the user ID to be
used for performing SAF checks.

This item should only be used in
an iS2-enabled configuration with
the use_client_pri nci pal
setting. This item is optional, and
the default is to not check security
credentials. Valid values are
"true" and "fal se".

The following configuration item has been deprecated in Orbix 6.2:

pl ugi ns: portabl e_i nterceptor:
additional _dlls

This was used in Orbix E2A 5.x to
enable an existing Orbix program to load
a DLL containing a portable interceptor.
This item is no longer supported. See
the IMS Adapters Administrator’s Guide
for more details about how to add a
portable interceptor to the IMS server
adapter in Orbix 6.2.

285

CHAPTER 12 | Upgrading from Mainframe Edition 5.x

CICS Server Adapter
Configuration Changes

286

The CICS server adapter is configured within the i ona_servi ces. ci csa

scope.

The following configuration items have been modified since Orbix E2A 5.x:

bi ndi ng: cl i ent _bi ndi ng_l i st In Orbix E2A 5.x, this list contained

initial _references: | T_MA
ref erence

bindings for the ESIOP_CICS interceptor.
This interceptor is not used by the CICS
server adapter in Orbix 6.2. Therefore, in
general, there is no need to specify this
variable anymore within the ci csa scope.
You can use the setting from the global
scope instead.

In Orbix E2A 5.x, this reference was set in
the i ona_ser vi ces. ci csa scope. In Orbix
6.2, this setting is now in the new
iona_utilities.cicsascope for use by
clients of the CICS server adapter (for
example, i t adn n/CRXADM N clients).

The following configuration items are new in Orbix 6.2:

nf _subsyst ens

This specifies the Orbix Mainframe
subsystem that is in use. In this
case, it must be set to "adapter".
This configuration item is required.
The CICS server adapter cannot
start if this item is not set to
"adapter".

pl ugi ns: ci csa: ci csraw_api _support This can be used to expose the

legacy, unscoped ci csrawAPI.
This item is optional, and the
default is to expose the scoped

I T_MFA A CS::ci csrawAPI. Valid
values are scoped, unscoped, and
bot h.

Configuration Changes

pl ugi ns: ci cs_exci: check if _cics_ In Orbix E2A 5.x, the EXCI version

avai | abl e

pl ugi ns: ci csa: check_security_
credential s

of the CICS server adapter
automatically attempted to contact
the CICS subsystem upon starting.
In Orbix 6.2, you can set this item
to "true" to maintain this
behavior. This item is optional,
and the default is to not have the
adapter check to see if CICS is
available upon starting. Valid
values are "true" and "fal se".

To illustrate integration with the
IONA Security Framework (iSF), a
sample iS2 configuration domain
is included in the TLS template
configuration. This variable is used
to instruct the CICS server adapter
to check for received credentials,
to determine the user ID to be
used for performing SAF checks.

This item should only be used in
an iS2-enabled configuration with
the use_client_pri nci pal
setting. This item is optional, and
the default is to not check security
credentials. Valid values are
"true" and "fal se".

The following configuration item has been deprecated in Orbix 6.2:

pl ugi ns: portabl e_i nterceptor:
additional _dlls

This was used in Orbix E2A 5.x to
enable an existing Orbix program to load
a DLL containing a portable interceptor.
This item is no longer supported. See
the CICS Adapters Administrator’s
Guide for more details about how to add
a portable interceptor to the CICS server
adapter in Orbix 6.2.

287

CHAPTER 12 | Upgrading from Mainframe Edition 5.x

IMS and CICS client adapter
configuration changes

288

With Orbix Mainframe 6.2, the client adapter has been refactored into a
subsystem that can be loaded either as a standalone process or alongside
the CICS and IMS server adapters. By default, it is loaded as a standalone
process. This is controlled by the nf _subsystens = ["client_adapter”]
configuration item within the or bi xhl g. CONFI G ORXI NTRL) configuration
file. You can choose to load the "cl i ent _adapt er" subsystem alongside the
"adapt er" subsystem, to have one process act as both a server adapter and
a client adapter. For more information see the CICS Adapters
Administrator’s Guide or the IMS Adapters Administrator’s Guide, or
contact support @ona. com

Technically speaking, you could have an IMS client talk to a CICS client
adapter, or alternatively have a CICS client talk to an IMS client adapter, as
long the client adapter was configured to listen on the correct LU. The
demonstration configuration breaks them into two to provide a symmetrical
example and, as a convenience for users who might not want to have one
client adapter talking to both IMS and CICS.

Sample JCL to run the new client adapters is provided in
HLQ CRBI X62. JOLLI B(4 CSCA) and HLQ CRBI X62. JCLLI B(1 MBCA) .

New Node Daemon

New Node Daemon

Overview

Wider deployment of node
daemons

Incompatibility with old server
binaries

Incompatibility of node daemon
database

Orbix Mainframe 6.2 features a new node daemon, which has been
modified to provide more reliable monitoring of server processes. This
section outlines the various migration issues that this gives rise to. It
discusses the following topics:

® Wider deployment of node daemons.

® Incompatibility with old server binaries.

® Incompatibility of node daemon database.

When upgrading your system to Orbix 6.2, it might be necessary to deploy a
node daemon to some hosts where, previously, none was required.

Prior to Orbix 6.0, a node daemon was required on a host only if you needed
the capability to automatically start (or restart) a CORBA server in response
to incoming invocations. Monitoring the state of a server process could be
performed by a single central node daemon, which monitored the server
through a remote connection.

With Orbix 6.2, a node daemon is required on every machine that hosts
servers with persistent POAs (a persistent POA is a POA whose
PortableServer::LifespanPolicy is set to PERSISTENT). Monitoring the state
of a server process through a local node daemon is more reliable than
monitoring by a remote node daemon.

Because the internal service interfaces for the locator, node daemon, and
POA have changed significantly, the new node daemon is incompatible with
old (pre-Orbix 6.0) server binaries. It is, therefore, necessary to rebuild old
application binaries before deploying them to an Orbix 6.2 configuration
domain.

You cannot copy an old node daemon database (usually located in

ASPI nst al | Di r/ var/ Donmai nName/ dbs/ node_daenon) to a new Orbix 6.2
node daemon database, because the node daemon database schema has
changed significantly in Orbix 6.2.

289

CHAPTER 12 | Upgrading from Mainframe Edition 5.x

Database Migration

Migration impact You cannot copy Orbix E2A 5.1 database files to a new Orbix 6.2 database
structure, because the database schemas have changed significantly. As a

result, you must re-deploy your applications and re-register any named keys,
naming service entries, and IFR entries accordingly.

290

C++ Migration

C++ Migration

C+ + runtime support

Environment targets

Compiler options

Migrating your C+ + applications

Orbix Mainframe 6.2 supports the IBM z/0S V1.4 ANSI C++ compiler, the
z/0S 1.5 ANSI C++ compiler, and the z/0OS 1.6 ANSI C++ compiler.
Because IBM no longer supports the 0S/390 V2R10 compiler, IONA has
also removed support and certification for this compiler in this release.

Orbix Mainframe 6.2 supplies a C++ options file in

H.Q CRBI X62. OONFI G CRXCPPO that includes the " TARGET" compiler option
of "zGBVIR2". The "TARGET" compiler option enables the development of
applications on higher release levels of z/OS for subsequent use on platforms
that are running lower release levels of z/0S or 0S/390. You can update the
CRXCPPO member with " ZOSV1R4" , " ZCBVIRS" or " ZOBVIRG", as appropriate.
Alternatively, you can remove the " TARGET" option from the CRXCPPO
member. This means that it uses the " CURRENT" option by default, which
corresponds to the z/OS release on which your system is running. For more
information see the IBM publication: C/C++ User’s Guide.

Orbix 6.2 uses the Run Time Type Identification (RTTI) z/OS compiler
option. This allows you to take advantage of C++ dynamic casting. In
previous releases of Orbix, this option was not used because the 0S/390
V2R10 compiler did not support it.

Orbix Mainframe 6.2 is not binary compatible with Orbix Mainframe 5.1.
You must therefore rebuild your C++ applications when migrating to Orbix
Mainframe 6.2. To do this you must do the following:

1. The IDL configuration file in H.Q CRBI X62. GCNFI G I DL) no longer
includes the "-xRTI I " option on the PresetOptions. If you are using a
local copy of this file, ensure that you make the appopriate updates.

2. Update your compiler options to use RTTI. The
H.Q CRBI X62. PROCLI B(CRXCPPQ) file contains this option by default.
You may use it as an example.

3. Regenerate your IDL stub code and recompile your application.

291

CHAPTER 12 | Upgrading from Mainframe Edition 5.x

COBOL Migration

Migration of applications

Generation of mapping files

292

It is not necessary to fully rebuild your COBOL applications, to migrate them

from Orbix E2A Mainframe Edition 5.x to Orbix Mainframe 6.2. To migrate

your COBOL applications:

1. Re-link your applications with the Orbix 6.2 libraries. You do not need
to recompile them.

2. Update any JCL that you have stored in non-IONA libraries, to ensure
that your applications subsequently compile and link correctly with
Orbix Mainframe 6.2.

In previous versions of the Orbix COBOL generator, if the - Moption was
specified and the IDL had operation names that were identical in several
interfaces, no warning was produced if the names mapped to a non-unique
name. For example, no warning was produced if the generated mapping file
contained:

interfaceA ping ping
interfaceB/ ping ping

The Orbix 6.2 COBOL generator will still generate the preceding mapping
file but also outputs a warning about the generated mapping file. The
generator will also produce a return code of 4, to alert the developer that two
or more operations have been mapped to the same name.

PL/I Migration

PL/l Migration

Migration of applications

Inherited interfaces

Orbix PL/I include file
re-arrangement

It is not necessary to fully rebuild your PL/I applications, to migrate them

from Orbix E2A Mainframe Edition 5.x to Orbix Mainframe 6.2. To migrate

your PL/I applications:

1. Re-link your applications with the Orbix 6.2 libraries. You do not need
to recompile them.

2. Update any JCL that you have stored in non-IONA libraries, to ensure
that your applications subsequently compile and link correctly with
Orbix Mainframe 6.2.

The IDL-PL/I generator now generates only one instance of a PL/I typedef
per IDL type. In previous releases, if a type was inherited, the PL/I generator
created a typedef for both the base class's instance of the type and also one
for each inherited type. This was unnecessary as both generated typedefs
would always be the same, apart from the name of the typedef. It also
resulted in the generation of large include files in the cases of IDL with
complex structs, for example. For programs where a pre-Orbix 6.2
generated server implementation is used and new include files need to be
generated, the - Li option has been introduced.

Three PL/I include members (OCRBA, READI CR and SETUPCL) have been
reorganized, to decrease the number of instances where the compilation of
an Orbix PL/I program results in a return code of 4, due to the pre-processor
check for client_only. The reorganization has been designed so that there
would not be a migration hit for existing Orbix PL/I applications.
Additionally, a new include file, SETUPSV, has been added, to declare
client_only and set it to "no" in Orbix PL/I server applications. For further
details about the include members, see the Orbix PL/I Programmers Guide
and Reference.

293

CHAPTER 12 | Upgrading from Mainframe Edition 5.x

Generation of mapping files

294

In previous versions of the Orbix PL/I generator, if the - Moption was
specified and the IDL had operation names that were identical in several
interfaces, no warning was produced if the names mapped to a non-unique
name. For example, no warning was produced if the generated mapping file
contained:

interfaceAping ping
interfaceB/ ping ping

The Orbix 6.2 PL/I generator will still generate the preceding mapping file
but also outputs a warning about the generated mapping file. The generator
will also produce a return code of 4, to alert the developer that two or more
operations have been mapped to the same name.

Part 4
Migrating from 6.0

In this part This part contains the following chapters:

Upgrading from Orbix Mainframe 6.0 page 299

In this chapter

CHAPTER 13

Upgrading from
Orbix Mainframe
6.0

Migrating Orbix 6.0 applications to Orbix Mainframe 6.2 is a
simpler process than migrating Orbix 2.3.x-based
applications. Many differences that exist between Orbix 2.3.x
and Orbix 6.2 do not exist between Orbix 6.0 and Orbix 6.2.
Therefore, much fewer changes are required to migrate an
Orbix Mainframe 6.0 solution to Orbix Mainframe 6.2. This
chapter outlines the requirements for upgrading from Orbix
Mainframe 6.0 to Orbix Mainframe 6.2.

This chapter discusses the following topics:

Installation Requirements page 301
Configuration Changes page 303
Database Migration page 308
C++ Migration page 309
COBOL Migration page 311

299

CHAPTER 13 | Upgrading from Orbix Mainframe 6.0

300

PL/I Migration

page 312

JCL Updates

page 314

Installation Requirements

Installation Requirements

Overview

Installing on native z/0S

Installing on UNIX System
Services

Standard Customization Tasks

This section outlines the installation requirements for migrating from an
Orbix Mainframe 6.0 solution to Orbix Mainframe 6.2. It discusses the
following topics:

® |nstalling on native z/OS.

® |Installing on UNIX System Services.

® Standard Customization Tasks.

® Other Customization Tasks.

® PDS names.

Even though you have already installed a previous version of IONA's
mainframe product, you must perform in full the tasks described in the 6.2
version of the Mainframe Installation Guide that pertain to installing on
z/0S, because of the inherent differences between this and previous
versions.

You must perform all these installation tasks in the order in which they are
described in the Mainframe Installation Guide. Some tasks might not be
relevant to your setup, but this is highlighted where appropriate.

If you choose to install Orbix Mainframe 6.2 on z/OS UNIX System Services
as well as on native z/0S, you must perform in full the tasks described in the
6.2 version of the Mainframe Installation Guide that pertain to installing on
z/0S UNIX System Services.

After successfully installing Orbix Mainframe 6.2 on z/OS (and on z/0OS UNIX
System Services if you want), you must perform in full the standard
customization tasks described in the 6.2 version of the Mainframe
Installation Guide.

You must perform all these standard customization tasks in the order in
which they are described in the Mainframe Installation Guide. Some tasks
might not be relevant to your setup, but this is highlighted where
appropriate. See “Orbix Mainframe Configuration” on page 289 for
customization details relating to your Orbix Mainframe configuration file.

301

CHAPTER 13 | Upgrading from Orbix Mainframe 6.0

Other Customization Tasks

PDS names

302

Depending on your setup, there are additional customization tasks that you
might also need to perform. These customization tasks relate to:

® Naming Service and Interface Repository customization.

® |MS adapter customization.

® CICS adapter customization.

If you need to perform any of these tasks, you must perform them in the

order in which they are described in the 6.2 version of the Mainframe
Installation Guide.

In Orbix Mainframe 6.2, PDS naming conventions are different from those in
Orbix Mainframe 6.0. The differences can be summarized as follows:

Table 32: Differences in PDS Naming Conventions

6.0 6.2

COBOL CBL

JCL JCLLIB

LIB OBJLIB

LOAD LOADLIB

LPA LPALIB

PROCS PROCLIB

RUN LOADLIB

Configuration Changes

Configuration Changes

Overview

Orbix Mainframe 6.2 represents a minor version upgrade, so binary
compatibility has been maintained with the Orbix Mainframe 6.0 release.
Although this is a minor version upgrade, there have been many changes to
the configuration files which are not backwards compatible with Orbix 6.0.
This means that you cannot run Orbix 6.2 programs, using an Orbix 6.0
configuration file. The changes made to the Orbix 6.2 configuration files
have been designed to facilitate future migrations. This section outlines the
changes that have been made to Orbix 6.2 configuration.

This section discusses the following topics:

Migrating Core Orbix Configuration.

Insecure deployments.

Secure deployments.

Migrating Your IMS or CICS Configuration.

IMS Server Adapter Configuration Changes.

CICS Server Adapter Configuration Changes.

IMS and CICS client adapter configuration changes.

303

CHAPTER 13 | Upgrading from Orbix Mainframe 6.0

Migrating Core Orbix
Configuration

Insecure deployments

Secure deployments

304

Many changes have been made to the core Orbix configuration infrastructure
in Orbix 6.2. These changes relate to new or modified settings for shared
library names, plug-in names, initial references, and other miscellaneous
items. Because of the extents of these changes, there is no easy way to
migrate an existing 6.0 domain to the new Orbix 6.2 structure. The
deployment phase for new configuration domains has been improved,
however, to make the process more automated and to facilitate upgrades in
the future. See “Insecure deployments” and “Secure deployments” next for
more details. All feedback on the new configuration changes is welcome by
contacting support @ona. com IONA’s aim here is that, for future releases,
customers will be able to simply replace the

HLQ CRBI X62. OONFI G CRXI NTRL) file without having to re-configure or copy
your existing customized settings to IONA's files.

In the Orbix 6.2 release, all internal settings are now stored in

H.Q CRBI X62. CONFI G CRXI NTRL) . The old H.Q CRBI X60. CONFI G FI LETMPL)
has now been renamed to BASETMPL in the H.Q CRBI X62. CONFI GPDS. When
you deploy an insecure configuration, BASETMPL is copied to

H.Q CRBI X62. DOVAI NS(FI LEDOWR) as in the 6.0 release. The

H_LQ CRBI X62. CONFI G DEFAWLT@ member now includes both

H.Q CRBI X62. DOVAI NS(FI LEDOMR) and H.Q CRBI X62. OONFI G ORXI NTRL) . See
the Mainframe Installation Guide for more details of the customization
tasks that are required for Orbix Mainframe 6.2.

For a secure deployment, the process has been enhanced even further. The
HLQ CRBI X62. CONFI G TLSTMPL) now only contains the specific TLS settings
that you would need to use to make your system fully secure. By default,
IONA now deploys a fully secure environment instead of a semi-secure
environment. The new Security configuration also uses the concept of
reopening scopes by sitting on top of the ORXI NTRL and BASETMPL files.
During the deployment process, H.Q CRBI X62. CONFI @ BASETMPL) is copied
to the H.Q CRBI X62. DOVAI NS(TLSBASE) , and HL.Q ORBI X62. OONFI G TLSTMPL)
is copied to H.Q CRBI X62. DOVAI NS(TLSDOWY) . The

HLQ CRBI X62. CONFI Q DEFAULT@ would then include ORXI NTRL, TLSBASE,
and TLSDOVA.

The DEPLOY process has also been enhanced so that you can provide the
name of your keyring ring during deployment. This is done during the
NMAKEQON step of the H.Q CRBI X62. JOLLI B(DEPLOYT) job by updating the

Migrating Your IMS or CICS
Configuration

Configuration Changes

LOCAL_SSL_USER SAF_KEYR NGto the name of your keyring. The
corresponding configuration setting for this information has also been
changed from pl ugi ns:iiop_tls:racf_keyring to

pl ugi ns: syst enssl _t ool ki t: saf _keyri ng.

See the Mainframe Installation Guide for more details of the customization
tasks that are required for Orbix Mainframe 6.2.

Very few changes have been made to the configuration scopes that are
specific to the IMS server adapter and CICS server adapter. Therefore, most
of the customizations made in an Orbix 6.0 installation can be copied
directly to an Orbix 6.2 configuration. This includes configuration items
relating APPC, OTMA, XCF settings, and so on.

IMS and CICS client support has been re-designed and takes advantage of
dynamic type support offered in the CICS and IMS server adapters. The
iona_services.mfu scope has been removed and there are two new scopes:
iona_services.ims_client and iona_services.cics_client. Configuration details
are discussed below.

The default dynamic type support mechanism has been changed in Orbix
6.2 from the IFR to a file-based method. The following settings have been
updated for CICS and IMS server adapters and for client adapters:

® |MS server adapters:

pl ugi ns:insa: repository_id = "type_info";

pl ugi ns: i nsa: t ype_i nf o: source = " DD TYPEI NFO';
® CICS server adapters:

pl ugi ns: cicsa:repository_id = "type_info";

pl ugi ns: ci csa: type_i nfo: source = "DD. TYPEl NFO';
® Client adapters:

plugi ns: client_adapter:repository id = "type_info";

pl ugi ns: cl i ent _adapt er: type_i nf o: source = "DD TYPEI NFO';
To use this feature you will need to pass the - nf a: -i nf flag to the Orbix IDL
compiler to generate type information. When you start the IMS server
adapter, you will need to update your JCL so that the DD card TYPEI NFO
points to the data set where you stored your JCL All Orbix Mainframe
demonstrations are configured to use this process, so you can use any of
them as an example. Alternatively, you can change the repository_id
setting to "i fr" and remove the t ype_i nf o: sour ce setting, to continue
using the IFR.

305

CHAPTER 13 | Upgrading from Orbix Mainframe 6.0

IMS Server Adapter Configuration
Changes

CICS Server Adapter
Configuration Changes

306

No new configuration items have been introduced or modified for IMS since
version 6.0. The following configuration item has been deprecated in Orbix

6.2:

pl ugi ns: portabl e_i nterceptor:
additional _dlls

This was used in Orbix 6.0 to enable an
existing Orbix program to load a DLL
containing a portable interceptor. This
item is no longer supported. See the
IMS Adapters Administrator’s Guide for
more details about how to add a
portable interceptor to the IMS server
adapter in Orbix 6.2.

No new configuration items have been introduced or modified for CICS since
version 6.0. The following configuration item has been deprecated in Orbix

6.2:

pl ugi ns: portabl e_i nterceptor:
additional _dlls

This was used in Orbix 6.0 to enable an
existing Orbix program to load a DLL
containing a portable interceptor. This
item is no longer supported. See the
CICS Adapters Administrator’s Guide for
more details about how to add a
portable interceptor to the CICS server
adapter in Orbix 6.2.

IMS and CICS client adapter
configuration changes

Configuration Changes

With Orbix Mainframe 6.2, the client adapter has been refactored into a
subsystem that can be loaded either as a standalone process or alongside
the CICS and IMS server adapters. By default, it is loaded as a standalone
process. This is controlled by the nf _subsystens = ["client_adapter”]
configuration item within the or bi xhl g. CONFI G ORXI NTRL) configuration
file. You can choose to load the "cl i ent _adapt er" subsystem alongside the
"adapt er" subsystem, to have one process act as both a server adapter and
a client adapter. For more information see the CICS Adapters
Administrator’s Guide or the IMS Adapters Administrator’s Guide, or
contact support @ona. com

Technically speaking, you could have an IMS client talk to a CICS client
adapter, or alternatively have a CICS client talk to an IMS client adapter, as
long the client adapter was configured to listen on the correct LU. The
demonstration configuration breaks them into two to provide a symmetrical
example and, as a convenience for users who might not want to have one
client adapter talking to both IMS and CICS.

Sample JCL to run the new client adapters is provided in
H.Q CRBI X62. JALLI B(4 CSCA) and HLQ CRBI X62. JCLLI B(1 MBCA) .

307

CHAPTER 13 | Upgrading from Orbix Mainframe 6.0

Database Migration

Migration impact

308

In Orbix 6.0, when you deployed your locator and node daemon, several
databases were automatically created on z/OS UNIX System Services with
the following naming conventions:

® 9§ LOCAL_HFS ROOT]/fil edomai n/ dbs/ | ocat or

® 9§ LOCAL_HFS ROOT}/fil edomai n/ dbs/ | ocator _priv

® 9 LOCAL_HFS ROOT}/ fi |l edomai n/ dbs/ node_daenon

If you also deployed an IFR and a Naming Service, the following were also
created:

® 9§ LOCAL_HFS ROOT]/fi | edomain/ dbs/ifr

® o§LOCAL_HFS ROOT}/ fil edomai n/ dbs/ nam ng

These directory paths contain the database files corresponding to the
relevant service. On upgrading to Orbix 6.2, you can choose to either copy
these files or use them directly by using the same LOCAL_HFS RQOOT in 6.2
that you also used in 6.0. There have been some database schema changes
made internally in Orbix 6.2. Once Orbix 6.2 uses your Orbix 6.0 files for
the first time, Orbix 6.0 cannot use those files again. If you need to run
Orbix 6.0 and Orbix 6.2 in parallel, copy the files by copying

9% LOCAL_HFS_ROOT] / fi | edomai n/ dbs and all of its sub-components to a
new location, and then update the LOCAL_HFS ROOT in Orbix 6.2
accordingly. If you are migrating directly to Orbix 6.2, IONA recommends
that you make a backup copy of your files before you begin.

C++ Migration

C++ Migration

C++ runtime support

Environment targets

Compiler options

Orbix Mainframe 6.2 supports the IBM z/0S V1.4 ANSI C++ compiler, the
z/0S 1.5 ANSI C++ compiler, and the z/0OS 1.6 ANSI C++ compiler.
Because IBM no longer supports the 0S/390 V2R10 compiler, IONA has
also removed support and certification for this compiler in this release.

Orbix Mainframe 6.2 supplies a C++ options file in

H.Q CRBI X62. OONFI G CRXCPPO that includes the " TARGET" compiler option
of "zGBVIR2". The "TARGET" compiler option enables the development of
applications on higher release levels of z/OS for subsequent use on platforms
that are running lower release levels of z/0S or 0S/390. You can update the
CRXCPPO member with " ZOSV1R4" , " ZCBVIRS" or " ZOBVIRG", as appropriate.
Alternatively, you can remove the " TARGET" option from the CRXCPPO
member. This means that it uses the " CURRENT" option by default, which
corresponds to the z/OS release on which your system is running. For more
information see the IBM publication: C/C++ User’s Guide.

Orbix 6.2 uses the Run Time Type Identification (RTTI) z/OS compiler
option. This allows you to take advantage of C++ dynamic casting. In
previous releases of Orbix, this option was not used because the 0S/390
V2R10 compiler did not support it.

309

CHAPTER 13 | Upgrading from Orbix Mainframe 6.0

Migrating your C+ + applications Orbix 6.2 is binary compatible with Orbix 6.0. However, to take advantage
of the C++ RTTI feature, binary compatibility had to be broken. Therefore,
you must rebuild and recompile your C++ applications to use the RTTI
feature. To do this you must do the following:

1. The IDL configuration file in H.Q CRBI X62. CCNFI G | DL) no longer
includes the "-xRTI 1" option on the PresetOptions. If you are using a
local copy of this file, ensure that you make the appopriate updates.

2. Update your compiler options to use RTTI. The
HLQ CRBI X62. PROCLI B(CRXCPPQ) file contains this option by default.
You may use it as an example.

3. Regenerate your IDL stub code and recompile your application.

310

COBOL Migration

COBOL Migration

Migration of COBOL applications

Generation of mapping files

It is not necessary to rebuild your COBOL applications when migrating from
Orbix Mainframe 6.0 to Orbix Mainframe 6.2. COBOL applications built
with Orbix Mainframe 6.0 will run without any updates in an Orbix
Mainframe 6.2 runtime environment.

In previous versions of the Orbix COBOL generator, if the - Moption was
specified and the IDL had operation names that were identical in several
interfaces, no warning was produced if the names mapped to a non-unique
name. For example, no warning was produced if the generated mapping file
contained:

interfaceAlping ping
interfaceB/ping ping

The Orbix 6.2 COBOL generator will still generate the preceding mapping
file but also outputs a warning about the generated mapping file. The
generator will also produce a return code of 4, to alert the developer that two
or more operations have been mapped to the same name.

311

CHAPTER 13 | Upgrading from Orbix Mainframe 6.0

PL/l Migration

Migration of PL/I applications

Inherited interfaces

Orbix PL/I include file

re-arrangement

Generation of mapping files

312

It is not necessary to rebuild your PL/I applications when migrating from
Orbix Mainframe 6.0 to Orbix Mainframe 6.2. PL/I applications built with
Orbix Mainframe 6.0 will run without any updates in an Orbix Mainframe
6.2 runtime environment.

The IDL-PL/I generator now generates only one instance of a PL/I typedef
per IDL type. In previous releases, if a type was inherited, the PL/I generator
created a typedef for both the base class's instance of the type and also one
for each inherited type. This was unnecessary as both generated typedefs
would always be the same, apart from the name of the typedef. It also
resulted in the generation of large include files in the cases of IDL with
complex structs, for example. For programs where a pre-Orbix 6.2
generated server implementation is used and new include files need to be
generated, the - Li option has been introduced.

Three PL/I include members (CCRBA, READI CR and SETUPCL) have been
reorganized, to decrease the number of instances where the compilation of
an Orbix PL/I program results in a return code of 4, due to the pre-processor
check for client_only. The reorganization has been designed so that there
would not be a migration hit for existing Orbix PL/I applications.
Additionally, a new include file, SETUPSV, has been added, to declare
client_only and set it to "no" in Orbix PL/I server applications. For further
details about the include members, see the Orbix PL/I Programmers Guide
and Reference.

In previous versions of the Orbix PL/I generator, if the - Moption was
specified and the IDL had operation names that were identical in several
interfaces, no warning was produced if the names mapped to a non-unique
name. For example, no warning was produced if the generated mapping file
contained:

interfaceAping ping
interfaceB/ ping ping

PL/I Migration

The Orbix 6.2 PL/I generator will still generate the preceding mapping file
but also outputs a warning about the generated mapping file. The generator
will also produce a return code of 4, to alert the developer that two or more
operations have been mapped to the same name.

313

CHAPTER 13 | Upgrading from Orbix Mainframe 6.0

JCL Updates

Migratoin

314

If you are using your own customized JCL or JCL procedures, you will need
to update them with the following details to use Orbix 6.2:

1.

PDS names have changed in Orbix 6.2, as outlined in “PDS names” on
page 302. As a result, you will need to update any of your own JCL
that refers to these.

As discussed in “C++ Migration” on page 309, IONA requires that
you rebuild your C++ applications to take advantage of the RTTI
option. Ensure that the TARGET compiler option is set accordingly.

The Orbix IDL compiler has been updated to read IDL options from a
DD card, called | DLARGS. To take advantage of this new feature, you
will need to add the | DLARGS DD to your JCL. As an example, please
see the supplied CRXI DL procedure in H.Q CRBI X62. PROCLI B(CRXI L) ,
and any of the demonstration IDL compilations (that is,

H.Q CRBI X62. DEMOS. CBL. BLD. JCLLI B(SI MPLI OL) .

If you are processing transactions in a C+ + client or server (that is,
two-phase commit processing), you will need to link in the following
side decks to your program:

/1 DD DSN=&CRBI X . LKED(CRXATS) , DI SP=SHR
/1l DD DSN=&CRBI X. . LKED(CRXOTSP) , DI SP=SHR

See H.Q CRBI X62. PROCLI B{ ORXLI NK) for an example.

The AR TH EXTEND) option has been added to the supplied COBOL
compilation procedures (that is, CRXCBOOC, CRXCBCSC, CRXCBLCC,
CRXCBLSC) to support arithmetic extended types. This is required if you
are using fixed types greater than 18 digits. You only need to update
this if you plan on using fixed types greater than 18 digits.

The supplied PL/I compilation procedures have been enhanced to
accommodate the enterprise PL/I compiler. Support has also been
added for fixed 31 and long long support. To use these features you
will need to update the PL/I compiler options:

"LI M TS(FI XEDDEQ(31), FI XEDBI N(63))" ". Sample procedures can be

JCL Updates

found in

HLQ CRBI X62. PROCLI B ORXPLOCC, CRXPLCSC, CRXPLI OC, CRXPLI SC) . For
an example of usage, refer to any of the PL/I demonstrations (for
example, H.Q CRBI X62. DEMDS. PLI . BLD. JCLLI B(SI MPLESB)). To use the
new enterprise compiler procedures, change the "PLI PREX' to "I BMZ".

A new procedure called CRXI GONV has been added to facilitate
converting files from one code page to another. Currently the procedure
is designed to convert members of a PDS. See

H.Q CRBI X62. JOLLI B(UPDLI CEN) for an example.

The MFACL JCL is no longer shipped in H.Q CRBI X62. JCLLI B. This is
due to the re-design of the client adapters discussed in “Configuration
Changes” on page 303. If you have your own JCL to start your client
adapter, you will need to us the IMS or CICS server adapter and pass in
the ORB name with your client configuration details. See
“Configuration Changes” on page 303 for more details on these
re-design and configuration changes.

315

CHAPTER 13 | Upgrading from Orbix Mainframe 6.0

316

Part 5

Migrating from Artix
Mainframe Developer 2.0

In this part This part contains the following chapters:

Upgrading from Artix Mainframe Developer 2.0 page 319

In this chapter

CHAPTER 14

Upgrading from
Artix Mainframe
Developer 2.0

The Artix Mainframe Developer 2.0 product has been
incorporated into Orbix Mainframe 6.2. This chapter outlines
the requirements for upgrading from Artix Mainframe
Developer 2.0 to Orbix Mainframe 6.2.

This chapter discusses the following topics:
® ‘“Existing applications” on page 320.
® ‘“imsraw and cicsraw” on page 320.
® “Configuration changes” on page 320.
® “Demonstration code” on page 320.

319

CHAPTER 14 | Upgrading from Artix Mainframe Developer 2.0

Existing applications

imsraw and cicsraw

Configuration changes

Demonstration code

320

If you have existing applications in Artix Mainframe Developer 2.0, you must
recompile your IDL files to regenerate the file-based type information store.
Also, ensure that your mapping file is up to date.

If you are using i nsrawor ci csraw, run the PREPSQAP job in
HLQ CRBI X62. JCLLI B to regenerate the type information for those endpoints.

The Artix configuration file is now shipped in H.Q CRBI X62. CONFI Q ARTI X) .
Like the configuration changes made to Orbix 6.2, the Artix configuration file
also takes advantage of re-opening existing name spaces. To use the IMS or
CICS server adapter over HTTP, ensure that the comment character is
removed from the following line in your deployed configuration domain:

#i ncl ude "H.Q CRBI X62. CONFI GCARTI X) ";

Update the configuration file with any specific changes for your site. You can
then start your IMS or CICS server adapters accordingly.

Note: In a future release, the Artix configuration process will be refined
further, so that a copy is stored in the DOvAI NS PDS. If you have
suggestions on how you would like to see this process defined, contact
support @ona. com

Artix demonstration code is supplied with your Orbix Mainframe 6.2
installation in H.Q CRBI X62. DEMCS. ARTI X. *.

Index

A

addr(IFNAME_user_exceptions) 215
ATM 59

AutomaticWorkQueue policy 55

B
binary compatibility 10
bindUsingllOP() 57
BOA
activation modes 45
and Orbix loaders 44
implementation 46
servers 48

C
callback objects 39
CBLTDLI 170
CERRSMFA 177
CHECK_ERRORS
CICS clients 243
IMS clients 235
PLI 204
CHECK-STATUS paragraph
CICS 177
IMS 168
CHKCLCIC 179
CHKCLIMS 168, 235
CHKERRS 204
CHECK-STATUS paragraph 125
CICS equivalent 175
CICS COBOL clients
error checking 179
extra copybook 180
CICS PLI client migration issues 243
CloseConnection message 59
COBOL keywords 73, 193
IDL indentifier names D and U 120
module and interface names 117
code generation toolkit 11
command-line arguments
and gencbl 181
and genpli 244

COMM_FAILURE exception 38, 59
compile errors 137
configuration

IIOP 58

ORB class 57

thread pools 54
configuration files 22
connection management 58
constant definitions See IDL constant definitions
conversion functions

PL/1 210
copybook names 89
COPY statement 92, 94
CORBA::ORB 37
CORBA::Orbix.setDiagnostics() 248
CORBA::Orbix object 37
CORBA::Request::operator 41
CORBA copybook 137
CORBA Environment parameter 36
CORBA include member 211
corbaloc

C++ 31

COBOL 140

PLI 206

D
data names 12
constant definitions (PLI) 192
IDL compiler 185
lenght of (PLI) 188
uniquness of 195
_default_POA() 44
Derived Interface Names 77
destroy() 37
diagnostic output 248
DIl calls 41
DISPATCH reference 181
DISPINIT membe 217
DISPINIT Member contents 221
DLIDATA 234
dynamic invocation interface 41

INDEX

E
Enterprise COBOL compiler
container names 98
fieldnames 105
name scoping 97
Environment parameter, CORBA 36
event_log filters 248
exception handling 36
exceptions
and PODSTAT 214
COMM_FAILURE 38, 59
INV_OBJREF 37
no_user_exceptions 215
runtime reporting of 148
TRANSIENT 38

F

fabricated object references 140
factory object 46
file descriptors 53
connection management 58
filters, event_log 248
filters, Orbix 52
fixed block data sets 22
fixed type definitions 21
FQN
COBOL data names 64
derived interface names 77
IDL constant definitions (COBOL) 73
IDL constant definitions (PL/I) 194

G
generated member names 96
GETUNIQUE 169
global keyword
COBOL 72
PLI 193
global objects 37

H
HTTP 59

|

IBM COBOL compiler
container names 98
fieldnames 105
name scoping 97

string literal character limit 81
IDL compiler 13
-J argument 185
-L argument 185
-M argument 65, 186
-M argument and FQN name 194
-0 argument and COBOL 111
-0 argument and PL/I 200
-0 argument and PODEXEC 215
-S:-TCICS arguments (COBOL) 172

-S and TIMS arguments (COBOL) 152, 172

-S argument (PL/l) 225, 239

-Z:-TCICS arguments 172
IDL constant definitions

COBOL 73

PL/I 192
IDL file, more than one interface in 201
IDL filenames

different from interface names 199

include filename 196

length 96
IDL fixed type definitions 21
IFNAME 215
IFR 181
IIOP

and Orbix 262

connection management 58
IMS COBOL clients

error checking 168

extra copybooks 169

linkage section 166
IMSPCB module (PL/I) 228
IMS PLI clients

DLIDATA changes 234

error checking 235

program communication block 231
INCLUDE.COPYLIB 137

CHKERRS 125
INCLUDE.COPYLIB(CICWRITE) 180
INCLUDE.COPYLIB(IMSWRITE) 169
INCLUDE.PLINCL(CORBA) 211
include filenames, and IDL filename 196
include statement 200, 201
interface names

and PL/I keywords 203

COBOL keywords 117
interfacename-TYPE (COBOL) 108
interfacename_type (PLI) 195
Interface Repository 181

INV_OBJREF exception 37
|OCallback functionality 59
IOR configuration 31

IOR syntax 31

itadmin tool 258

itmfaloc 144

J
JCL, and the itadmin tool 259

L

license file 22
load-balancing 45
loader architecture 44

local_log_stream configuration variable 248

local name 185

logging severity levels 248

long IDL data type, ORBALLOC 149
LSIMSPCB 160, 166

M
main() 37
ManualWorkQueue policy 55
maxConnectRetries() 57
MEMALLOC (COBOL) 146
MEMALOC

PLI 213
member names, length restriction 96
MEMDBUG 213
MEMFREE 213
memory management rules 138
module keyword

COBOL 73, 193
module names

and COBOL keywords 117

and PL/I keywords 203
modules, levels of 197
multicast protocol 59
multi-threaded clients 39
multi-threading capabilities 53

N
Naming Service
COBOL 142
PL/I 208
native exception handling 36
no_user_exceptions 215

INDEX

o
OBJ2STR (PL/I) 213
OBJDUP 138
Object/Servant Lifecycles 46
object IDs 44
Objectld_to_string() 32
object map (BOA) 44
object names, resolving
COBOL 142
PL/I 208
OBJECT_NOT_EXIST exception 37
object references 48
creating with POA 46
fabricated 140
OBJGET (COBOL) 146
OBJGET (PLI) 213
OBJGETI 146
OBJGETM 146, 213
OBJGETO 213
OBJGTID 213
OBJLEN 213
OBJLENO 213
OBJNEW 213
OBJREL 138
OBJSET 146, 213
COBOL 140
naming service 142
PL/I 206
OBJSETM 146, 213
OMG
mapping standard for unions and exceptions 120
ORBALLOC 149
ORB class 57
ORB_CTRL_MODEL 53
ORBEXEC, user exception parameter 147
ORBFREE 146
ORB _init() 37
Orbix.bindUsinglIOP(0) 262
Orbix 6.x ORB class 57
Orbix filters 52
Orbix IDL compiler See IDL compiler
Orbix loader architecture 44
Orbix locator daemon 31
Orbix object 37
Orbix Protocol 262
OrbixSecurity 53
ORBIX-STATUS-INFORMATION 148
ORBREGO 146
ORB_shutdown(1) 37

INDEX

ORBSTAT 148
ORXADMIN PROC 259

P
PCBLIST 229
piggybacking data 53
PL/I Data Names, maximum lenght of 188
PL/I keywords 203
PL/I runtime 214
POA
activation modes 45
AutomaticWorkQueue 55
implementation 46
multi-threading 53
servers 48
workqueue policies 55
POA names 13
POA policies 43
callback objects 39
overriding default 44
PODALOC 213
PODEBUG 213
PODERR 213
PODFREE 213
PODHOST 213
PODINIT 213
PODRASS 213
PODREG 213
PODREGI 213
PODRUN 213
PODSTAT 214
POD_STATUS_INFORMATION 214
Portablelnterceptor interfaces 52
PortableServer 37
program communication block (PL/I) 228
proxy objects 37
putidl 181
and itadmin 258

R

Request::descriptor() 53
Request::operator 41

request logging 52

request processing 37

reserved COBOL keywords 117
reserved PL/l keyword 203

runtime reporting of exceptions 148

S
security features 53
SEQALLOC 150
sequence numbers 22
servant implementation 25
servant locators 44
servants, object references 48
server accessor (PLI) 216
server names 13
ServiceContexts 53
shared memory transport protocol 59
short IDL data type, ORBALLOC 149
shutdown, ORB 37
SINGLE_THREAD_MODEL 53
SIOP 59
SOAP 59
STR20BJ (PL/I) 206, 213
Stringified IOR syntax 31
string literal character limit 81
string markers 44
string-object

(COBOL) 144

PL/I 210
string_to_Objectld() 32
STRSETSP 146
synchronization concerns 44

T
TCP/IP information, access to 53, 59
Temporary Storage labels 12
ThreadFilters mechanism 53
thread pools 54
tie approach 48
TRANSIENT exception 38
transport protocols 262
typecodes

COBOL mapping 81

PL/I mapping 195

U
UNIX, file descriptor limits and 59
unsigned long IDL data type, ORBALLOC 149
unsigned short IDL data type, ORBALLOC 149
UPDTPCBS copybook 163
URL syntax 31
user exceptions 147
and PODEXEC 215

INDEX

vV

variable block data sets 22
_var type 50

w

Working Storage labels 12
WorkQueue policies 55
WSCICSCL 180
WSIMSCL 169

INDEX

	Preface
	Overview
	Introduction
	Advantages of Orbix 6.2
	Migration Resources

	Migrating from 2.3.x
	Migration Possibilities and Main Differences
	Migration Possibilities
	C++ Applications
	COBOL and PL/I Applications

	Installation Requirements
	IDL Migration Issues
	The Opaque Type
	IDL Fixed Type Definitions
	IDL Defined in Fixed Block Data Sets
	imsraw and cicsraw IDL changes
	Orbix 6.2 C++ IDL Compiler Output

	C++ Migration Issues
	C++ Compiler Issues
	C++ Client Migration
	CORBA Object Location and Binding
	Interface Repository Interoperability
	IDL-to-C++ Mapping
	Client-Side CORBA Compliancy
	Callback Objects
	System Exception Semantics
	Dynamic Invocation Interface (DII)

	C++ Server Migration
	BOA to POA Migration
	Activation Modes
	Object/Servant Lifecycles
	Creating Object References Without Servants
	Function Signatures
	Exception-Safe Servant Implementations

	Migrating Proprietary 2.3 Features
	Orbix Filters and CORBA 2.3 Alternatives
	Transformers
	Orbix-Specific APIs
	Connection Management
	Callbacks and Bidirectional GIOP

	COBOL Migration Issues
	Name Mapping Issues
	Fully Qualified Level 01 Data Names
	Operation and Level 88 Data Names
	IDL Constant Definitions Mapped to Fully Qualified Names
	Derived Interface Names and Fully Qualified Names
	Numeric Suffixes for Data Names
	160-Character Limit for String Literals
	Maximum Length of COBOL Data Names

	Copybook Names Based on IDL Member Name
	Introduction to IDL Member Name Migration Issues
	IDL Member Name Different from its Interface Names
	More than One Interface in an IDL Member
	Length of IDL Member Names

	Name Scoping and the COBOL Compilers
	Same Container Name Used More than Once
	Same Fieldname Used More than Once

	Typecode Name and Length Identifiers
	Comparing Compiler Output
	IDL Member Name Different from its Interface Name
	More than One Interface in an IDL Member

	Reserved COBOL and OMG Keywords
	Reserved COBOL Keywords for Module or Interface Names
	Use of Result as an Argument Name in IDL
	OMG Mapping Standard for Unions and Exceptions

	Error Checking and Exceptions
	COBOL-Specific Issue Relating to Error Checking
	Error Checking Generation at Runtime for Batch Servers

	Nested Unions in IDL
	Mapping for Arrays
	Working Storage data Items and Group Moves
	Mapping for IDL type Any
	CORBA Copybook Additions
	Parameter Passing of Object References in IDL Operations
	CORBA Object Location and Binding
	Migration Overview and Example
	The Naming Service
	Object-String Conversion

	API Migration Issues
	Deprecated APIs
	ORBEXEC and USER Exception parameters
	ORBSTAT
	ORBALLOC

	COBOL IMS Server Migration Issues
	Server Mainline Program Requirement for IMS Servers
	The Linkage Section for IMS Servers
	Access to the Program Communication Block for IMS Servers
	Error Checking Generation at Runtime for IMS Servers

	COBOL IMS Client Migration Issues
	The Linkage Section for IMS Clients
	Error Checking Generation at Runtime for IMS Clients
	Extra Copybooks in Orbix 6.2 for IMS Clients

	COBOL CICS Server Migration Issues
	Server Mainline Program Requirement for CICS Servers
	Access to the EXEC Interface Block Data Structure
	Error Checking Generation at Runtime for CICS Servers

	COBOL CICS Client Migration Issues
	Error Checking Generation at Runtime for CICS Clients
	Extra Copybooks in Orbix Mainframe 6.2

	Miscellaneous

	PL/I Migration Issues
	Fully Qualified Level 1 Data Names
	Maximum Length of PL/I Data Names
	IDL Constant Definitions Mapped to Fully Qualified Names
	Typecode Name and Length Identifiers
	Include Member names Based on the IDL Member name
	IDL Member names Different from Interface Names
	More than One Interface in an IDL Member

	Reserved PL/I Keywords for Module or Interface Names
	Orbix PL/I Error Checking
	CORBA Object Location and Binding
	Migration Overview and Example
	Naming Service
	Object-String Conversion

	CORBA Include Member Additions
	API Migration Issues
	Deprecated APIs
	PODSTAT in Orbix 6.2
	PODEXEC and User Exception parameters

	Server Accessor (Z Member)
	PL/I IMS Server Migration Issues
	Server Mainline Module
	Access to the Program Communication Block

	PL/I IMS Client Migration issues
	Program Communication Block Definitions Modifications
	DLIDATA Include Member Modifications
	Error Checking Generation at Runtime for IMS Clients

	PL/I CICS Server Migration Issues
	Server Mainline Program Requirements for CICS Servers
	Access to the EXEC Interface Block Data Structure

	PL/I CICS Client Migration Issues
	Miscellaneous

	Diagnostic Output
	CORBA Services
	Naming Service
	Interface Repository
	IMS Adapter
	CICS Adapter

	Administrative Tools
	Interoperability
	Use of the Orbix Protocol
	GIOP Versions
	Launch and Invoke Rights
	Codeset Negotiation
	Introduction to Codeset Negotiation
	Configuring Codeset Negotiation
	Default Codesets
	Configuring Legacy Behavior

	Migrating from 5.1
	Upgrading from Mainframe Edition 5.x
	Installation Requirements
	Configuration Changes
	New Node Daemon
	Database Migration
	C++ Migration
	COBOL Migration
	PL/I Migration

	Migrating from 6.0
	Upgrading from Orbix Mainframe 6.0
	Installation Requirements
	Configuration Changes
	Database Migration
	C++ Migration
	COBOL Migration
	PL/I Migration
	JCL Updates

	Migrating from Artix Mainframe Developer 2.0
	Upgrading from Artix Mainframe Developer 2.0

