IONA

fgl Orbix®

PL/I Programmer's Guide and

Reference
Version 6.2, May 2005

Making Software Work Together™

IONA Technologies PLC and/or its subsidiaries may have patents, patent applications,
trademarks, copyrights, or other intellectual property rights covering subject matter in
this publication. Except as expressly provided in any written license agreement from
IONA Technologies PLC, the furnishing of this publication does not give you any license
to these patents, trademarks, copyrights, or other intellectual property. Any rights not
expressly granted herein are reserved.

IONA, IONA Technologies, the IONA logo, Orbix, Orbix Mainframe, Orbix Connect, Artix,
Artix Mainframe, Artix Mainframe Developer, Mobile Orchestrator, Orbix/E, Orbacus,
Enterprise Integrator, Adaptive Runtime Technology, and Making Software Work
Together are trademarks or registered trademarks of IONA Technologies PLC and/or its
subsidiaries.

Java and J2EE are trademarks or registered trademarks of Sun Microsystems, Inc. in the
United States and other countries. CORBA is a trademark or registered trademark of the
Object Management Group, Inc. in the United States and other countries. All other
trademarks that appear herein are the property of their respective owners.

IONA Technologies PLC makes no warranty of any kind to this material including, but not limited to, the implied
warranties of merchantability and fitness for a particular purpose. IONA Technologies PLC shall not be liable for
errors contained herein, or for incidental or consequential damages in connection with the furnishing, perform-
ance or use of this material.

COPYRIGHT NOTICE

No part of this publication may be reproduced, stored in a retrigval system or transmitted, in any form or by any
means, photocopying, recording or otherwise, without prior written consent of IONA Technologies PLC. No third
party intellectual property right liability is assumed with respect to the use of the information contained herein.
IONA Technologies PLC assumes no responsibility for errors or omissions contained in this book. This publica-
tion and features described herein are subject to change without notice.

Copyright © 1998-2005 IONA Technologies PLC. All rights reserved.

All products or services mentioned in this manual are covered by the trademarks, service marks, or product
names as designated by the companies who market those products.

Updated: 18-May-2006

Contents

List of Figures
List of Tables

Preface

Part 1 Programmer’s Guide

Chapter 1 Introduction to Orbix
Why CORBA?
CORBA Objects
Object Request Broker
CORBA Application Basics
Orbix Plug-In Design
Orbix Application Deployment
Location Domains
Configuration Domains

Chapter 2 Getting Started in Batch
Overview and Setup Requirements
Developing the Application Interfaces

Defining IDL Interfaces

Generating PL/I Source and Include Members
Developing the Server

Writing the Server Implementation

Writing the Server Mainline

Building the Server
Developing the Client

Writing the Client

Building the Client

Xi

Xiii

XV

CONTENTS

Running the Application
Starting the Orbix Locator Daemon
Starting the Orbix Node Daemon
Running the Server and Client
Application Output

Application Address Space Layout

Chapter 3 Getting Started in IMS
Overview
Developing the Application Interfaces
Defining IDL Interfaces
Orbix IDL Compiler
Generated PL/I Include Members, Source, and Mapping Member
Developing the IMS Server
Writing the Server Implementation
Writing the Server Mainline
Building the Server
Preparing the Server to Run in IMS
Developing the IMS Client
Writing the Client
Building the Client
Preparing the Client to Run in IMS
Developing the IMS Two-Phase Commit Client
Writing the Client
Building the Client
Building the Servers
Preparing the Client to Run in IMS
Running the Demonstrations
Running a Batch Client against an IMS Server
Running an IMS Client against a Batch Server
Running an IMS Two-Phase Commit Client against Batch Servers

Chapter 4 Getting Started in CICS
Overview
Developing the Application Interfaces
Defining IDL Interfaces
Orbix IDL Compiler
Generated PL/I Include Members, Source, and Mapping Member

42
43
44
45
46
47

49
51
59
60
62
65
71
72
75
78
79
83
84
88
89
93
94

109
110
111
114
115
116
117

121

123
131
132
134
137

Developing the CICS Server
Writing the Server Implementation
Writing the Server Mainline
Building the Server
Preparing the Server to Run in CICS
Developing the CICS Client
Writing the Client
Building the Client
Preparing the Client to Run in CICS
Developing the CICS Two-Phase Commit Client
Writing the Client
Building the Client
Building the Servers
Preparing the Client to Run in CICS
Running the Demonstrations
Running a Batch Client against a CICS Server
Running a CICS Client against a Batch Server
Running a CICS Two-Phase Commit Client against Batch Servers

Chapter 5 IDL Interfaces

IDL
Modules and Name Scoping
Interfaces
Interface Contents
Operations
Attributes
Exceptions
Empty Interfaces
Inheritance of Interfaces
Multiple Inheritance
Inheritance of the Object Interface
Inheritance Redefinition
Forward Declaration of IDL Interfaces
Local Interfaces
Valuetypes
Abstract Interfaces
IDL Data Types
Built-in Data Types
Extended Built-in Data Types

CONTENTS

143
144
147
150
151
155
156
161
162
166
167
181
182
183
186
187
188
189

193
194
195
196
198
199
201
202
203
204
205
207
208
209
210
211
212
213
214
217

CONTENTS

Complex Data Types 220

Enum Data Type 221

Struct Data Type 222

Union Data Type 223
Arrays 225
Sequence 226
Pseudo Object Types 227
Defining Data Types 228
Constants 229
Constant Expressions 232
Chapter 6 IDL-to-PL/I Mapping 235
Mapping for Identifier Names 237
Mapping Very Long and Leading Underscored Names 239
Mapping for Basic Types 241
Mapping for Boolean Type 245
Mapping for Enum Type 246
Mapping for Octet and Char Types 247
Mapping for String Types 248
Mapping for Fixed Type 251
Mapping for Struct Type 254
Mapping for Union Type 255
Mapping for Sequence Types 258
Mapping for Array Type 261
Mapping for the Any Type 262
Mapping for User Exception Type 264
Mapping for Typedefs 268
Mapping for Operations 270
Mapping for Attributes 275
Mapping for Operations with a Void Return Type and No Parameters 281
Mapping for Inherited Interfaces 282
Mapping for Multiple Interfaces 290
Chapter 7 Orbix IDL Compiler 293
Running the Orbix IDL Compiler 294
Running the Orbix IDL Compiler in Batch 295
Running the Orbix IDL Compiler in UNIX System Services 300

Generated PL/I Source and Include Members 302

Vi

CONTENTS

Orbix IDL Compiler Arguments 305
Summary of the arguments 306
Specifying Compiler Arguments 308
-D Argument 311
-E Argument 312
-L Argument 314
-M Argument 316
-0 Argument 323
-S Argument 325
-T Argument 326
-V Argument 329
-W Argument 330

Orbix IDL Compiler Configuration 331
PL/I Configuration Variables 332
Adapter Mapping Member Configuration Variables 338
Providing Arguments to the IDL Compiler 341

Chapter 8 Memory Handling 345

Operation Parameters 346
Bounded Sequences and Memory Management 347
Unbounded Sequences and Memory Management 351
Unbounded Strings and Memory Management 356
Object References and Memory Management 360
The any Type and Memory Management 364
User Exceptions and Memory Management 369

Memory Management Routines 371

Part 2 Programmer’s Reference

Chapter 9 API Reference 377
API| Reference Summary 378

API Reference Details 384
ANYFREE 387

ANYGET 389

ANYSET 391

MEMALOC 393

MEMDBUG 394

vii

CONTENTS

viii

MEMFREE
OBJDUPL
OBJGTID
OBJNEW
OBJREL
OBJRIR
OBJ2STR
ORBARGS
PODERR
PODEXEC
PODGET
PODINFO
PODPUT
PODREG
PODREQ
PODRUN
PODSRVR
PODSTAT
PODTIME
PODTXNB
PODTXNE
PODVER
SEQALOC
SEQDUPL
SEQFREE
SEQGET
SEQINIT
SEQLEN
SEQLSET
SEQMAX
SEQREL
SEQSET
STRCON
STRDUPL
STRFREE
STRGET
STRLENG
STRSET
STRSETS

396
397
399
401
403
405
407
409
413
418
421
424
426
429
431
434
435
437
440
442
443
444
445
448
450
452
455
457
459
462
465
467
470
472
473
474
476
478
480

STR20BJ
TYPEGET
TYPESET
WSTRCON
WSTRDUP
WSTRFRE
WSTRGET
WSTRLEN
WSTRSET
WSTRSTS
CHECK_ERRORS
Deprecated and Removed APls

Part 3 Appendices

Appendix A POA Policies
Appendix B System Exceptions
Appendix C Installed Data Sets
Appendix D ORXCOPY Utility

Index

CONTENTS

481
486
489
491
493
494
496
498
500
502
503
506

511
515
519
523

527

CONTENTS

List of Figures

Figure 1:
Figure 2:
Figure 3:
Figure 4.
Figure b:
Figure 6:

The Nature of Abstract CORBA Objects

The Object Request Broker

Address Space Layout for an Orbix PL/I Application
Overview of IMS Transaction Layout

Overview of CICS Transaction Layout

Inheritance Hierarchy for PremiumAccount Interface

47
94
167
206

Xi

LIST OF FIGURES

Xii

List of Tables

Table 1:
Table 2:
Table 3:
Table 4.
Table 5:
Table 6:
Table 7:
Table 8:
Table 9:

Table 10:
Table 11:
Table 12:
Table 13:
Table 14:
Table 15:
Table 16:
Table 17:
Table 18:
Table 19:
Table 20:
Table 21:
Table 22:
Table 23:
Table 24
Table 25:
Table 26:

Supplied Code and JCL

Supplied Include Members

Generated Server Source Code Members
Generated PL/I Include Members
Supplied Code and JCL

Supplied Include Members

Generated PL/I Include Members
Generated Server Source Code Members
Generated IMS Server Adapter Mapping Member
Generated Type Information Member
The SIMPLEI Demonstration Module
The SIMPLEV Demonstration Module
The SIMPLEC Demonstration Module
Supplied Code and JCL

Supplied Include Members

Generated PL/I Include Members
Generated Server Source Code Members

Built-in IDL Data Types, Sizes, and Values

Mapping for Basic IDL Types

Generated Source Code and Include Members
CORBA Type Support Provided by -E Option
Example of Default Generated Data Names

Generated CICS Server Adapter Mapping Member
Generated CICS Server Adapter Mapping Member

Extended built-in IDL Data Types, Sizes, and Values

Example of Level-0-Scoped Generated Data Names

17
18
24
25
52
56
66
68
69
69
72
75
84
124
128
138
140
141
141
214
217
241
302
312
316
319

xiii

LIST OF TABLES

Table 27:
Table 28:
Table 29:
Table 30:
Table 31:
Table 32:
Table 33:
Table 34:
Table 35:
Table 36:
Table 37:
Table 38:
Table 39:
Table 40:
Table 41:
Table 42:
Table 43:
Table 44
Table 45:
Table 46:
Table 47:
Table 48:
Table 49:
Table 50:

Xiv

Example of Level-1-Scoped Generated Data Names
Example of Level-2-Scoped Generated Data Names
Example of Modified Mapping Names

Summary of PL/I Configuration Variables

Adapter Mapping Member Configuration Variables
Memory Handling for IN Bounded Sequences

Memory Handling for INOUT Bounded Sequences
Memory Handling for OUT and Return Bounded Sequences
Memory Handling for IN Unbounded Sequences

Memory Handling for INOUT Unbounded Sequences
Memory Handling for OUT and Return Unbounded Sequences
Memory Handling for IN Unbounded Strings

Memory Handling for INOUT Unbounded Strings

Memory Handling for OUT and Return Unbounded Strings
Memory Handling for IN Object References

Memory Handling for INOUT Object References

Memory Handling for OUT and Return Object References
Memory Handling for IN Any Types

Memory Handling for INOUT Any Types

Memory Handling for OUT and Return Any Types

Memory Handling for User Exceptions

Summary of Common Services and Their PL/I Identifiers
POA Policies Supported by PL/I Runtime

List of Installed Data Sets Relevant to PL/I

319
320
321
333
339
347
348
349
351
352
354
356
357
358
360
361
362
364
365
367
369
405
512
519

Audience

Supported compilers

Preface

Orbix is a full implementation from IONA Technologies of the Common
Object Request Broker Architecture (CORBA), as specified by the Object
Management Group (OMG). Orbix complies with the following
specifications:

®* CORBAZ2.6

® GIOP 1.2 (default), 1.1, and 1.0

Orbix Mainframe is IONA'’s implementation of the CORBA standard for the
z/0S platform. Orbix Mainframe documentation is periodically updated. New
versions between release are available at
http://www.iona.com/support/docs.

If you need help with this or any other IONA products, contact IONA at
suppor t @ona. com Comments on IONA documentation can be sent to
docs- support @ona. com

This guide is intended for PL/I application programmers who want to
develop Orbix applications in a native z/OS environment.

The supported compilers are:

®* |IBM PL/I for MVS & VM V1R1IM1.
® |IBM Enterprise PL/I for z/0S V3R2.
®* IBM Enterprise PL/I for z/OS V3R3.
¢ |IBM Enterprise PL/I for z/OS V3R4.

Xv

mailto:support@iona.com
mailto:docs-support@iona.com
http://www.iona.com/support/docs

PREFACE

Organization of this guide

Xvi

This guide is divided as follows:
Part 1, Programmer’s Guide

Chapter 1, Introduction to Orbix

With Orbix, you can develop and deploy large-scale enterprise-wide CORBA
systems in languages such as PL/I, COBOL, C++, and Java. Orbix has an
advanced modular architecture that lets you configure and change
functionality without modifying your application code, and a rich
deployment architecture that lets you configure and manage a complex
distributed system. Orbix Mainframe is IONA’s CORBA solution for the z/OS
environment.

Chapter 2, Getting Started in Batch

This chapter introduces batch application programming with Orbix, by
showing how to use Orbix to develop a simple distributed application that
features a PL/I client and server, each running in batch.

Chapter 3, Getting Started in IMS

This chapter introduces IMS application programming with Orbix, by
showing how to use Orbix to develop both an IMS PL/I client and an IMS PL/
| server. It also provides details of how to subsequently run the IMS client
against a PL/I batch server, and how to run a PL/I batch client against the
IMS server.

Chapter 4, Getting Started in CICS

This chapter introduces CICS application programming with Orbix, by
showing how to use Orbix to develop both a CICS PL/I client and a CICS PL/
| server. It also provides details of how to subsequently run the CICS client
against a PL/I batch server, and how to run a PL/I batch client against the
CICS server.

Chapter 5, IDL Interfaces

The CORBA Interface Definition Language (IDL) is used to describe the
interfaces of objects in an enterprise application. An object’s interface
describes that object to potential clients through its attributes and
operations, and their signatures. This chapter describes IDL semantics and
uses.

PREFACE

Chapter 6, IDL-to-PL/I Mapping

The CORBA Interface Definition Language (IDL) is used to define interfaces
that are exposed by servers in your network. This chapter describes the
standard IDL-to-PL/I mapping rules and shows, by example, how each IDL
type is represented in PL/I.

Chapter 7, Orbix IDL Compiler

This chapter describes the Orbix IDL compiler in terms of the JCL used to
run it, the PL/I members that it creates, the arguments that you can use
with it, and the configuration settings that it uses.

Chapter 8, Memory Handling

Memory handling must be performed when using dynamic structures such
as unbounded strings, unbounded sequences, and anys. This chapter
provides details of responsibility for the allocation and subsequent release of
dynamic memory for these complex types at the various stages of an Orbix
PL/I application. It first describes in detail the memory handling rules
adopted by the PL/I runtime for operation parameters relating to different
dynamic structures. It then provides a type-specific breakdown of the APIs
that are used to allocate and release memory for these dynamic structures.

Part 2, Programmer’s Reference

Chapter 9, API Reference

This chapter summarizes the API functions that are defined for the Orbix
PL/I runtime, in pseudo-code. It explains how to use each function, with an
example of how to call it from PL/I.

Part 3, Appendices

Appendix A, POA Policies

This appendix summarizes the POA policies that are supported by the Orbix
PL/I runtime, and the argument used with each policy.

Appendix B, System Exceptions

This appendix summarizes the Orbix system exceptions that are specific to
the Orbix PL/I runtime.

Appendix C, Installed Data Sets

This appendix provides an overview listing of the data sets installed with
Orbix Mainframe that are relevant to development and deployment of PL/I
applications.

Xvii

PREFACE

Related documentation

Additional resources

Typographical conventions

xviii

The document set for Orbix Mainframe includes the following related

documentation:

® The COBOL Programmer’s Guide and Reference, which provides
details about developing, in a native z/OS environment, Orbix COBOL
applications that can run in batch, CICS, or IMS.

® The CORBA Programmer’s Guide, C++ and the CORBA Programmer’s
Reference, C++, which provide details about developing Orbix
applications in C++ in various environments, including z/OS.

® The Mainframe Migration Guide, which provides details of migration
issues for users who have migrated from IONA’s Orbix 2.3-based
solution for z/OS to Orbix Mainframe.

The latest updates to the Orbix Mainframe documentation can be found at

http://wmw i ona. comd suppor t/ docs/ or bi x/ 6. 0/ mai nf r ane/ i ndex. xm .

The IONA knowledge base contains helpful articles, written by IONA
experts, about Orbix and other products. You can access the knowledge
base at the following location:

http://ww i ona. con support/ kb/

The IONA update center contains the latest releases and patches for IONA
products:

htt p: // waw. i ona. coni suppor t / updat e/

This guide uses the following typographical conventions:

Constant width Constant width (courier font) in normal text represents
portions of code and literal names of items such as
classes, functions, variables, and data structures. For
example, text might refer to the CORBA: : (j ect class.

Constant width paragraphs represent code examples
or information a system displays on the screen. For
example:

#i ncl ude <stdio. h>

http://www.iona.com/support/kb/
http://www.iona.com/support/update/
http://www.iona.com/support/docs/e2a/asp/5.1/mainframe/index.xml

Keying conventions

PREFACE

Italic Italic words in normal text represent emphasis and
new terms.

Italic words or characters in code and commands
represent variable values you must supply, such as
arguments to commands or path names for your
particular system. For example:

% cd /users/your_name

Note: Some command examples may use angle
brackets to represent variable values you must supply.
This is an older convention that is replaced with jtalic
words or characters.

This guide may use the following keying conventions:

No prompt When a command’s format is the same for multiple
platforms, a prompt is not used.

% A percent sign represents the UNIX command shell
prompt for a command that does not require root
privileges.

A number sign represents the UNIX command shell

prompt for a command that requires root privileges.

> The notation > represents the DOS, Windows NT,
Windows 95, or Windows 98 command prompt.

Horizontal or vertical ellipses in format and syntax
descriptions indicate that material has been
eliminated to simplify a discussion.

[1 Brackets enclose optional items in format and syntax
descriptions.

{} Braces enclose a list from which you must choose an
item in format and syntax descriptions.

| A vertical bar separates items in a list of choices
enclosed in { } (braces) in format and syntax
descriptions.

Xix

PREFACE

XX

Part 1

Programmer’s Guide

In this part This part contains the following chapters:

Introduction to Orbix page 3
Getting Started in Batch page 15
Getting Started in IMS page 49
Getting Started in CICS page 121
IDL Interfaces page 193
IDL-to-PL/I Mapping page 235
Orbix IDL Compiler page 293
Memory Handling page 345

In this chapter

CHAPTER 1

Introduction to
Orbix

With Orbix, you can develop and deploy large-scale
enterprise-wide CORBA systems in languages such as PL/l,
COBOL, C++, and Java. Orbix has an advanced modular
architecture that lets you configure and change functionality
without modifying your application code, and a rich
deployment architecture that lets you configure and manage
a complex distributed system. Orbix Mainframe is IONA’s
CORBA solution for the z/OS environment.

This chapter discusses the following topics:

Why CORBA? page 4
CORBA Application Basics page 8
Orbix Plug-In Design page 9
Orbix Application Deployment page 11

CHAPTER 1 | Introduction to Orbix

Why CORBA?

Need for open systems

Need for high-performance
systems

Open standard solution

Widely available solution

Today’s enterprises need flexible, open information systems. Most
enterprises must cope with a wide range of technologies, operating systems,
hardware platforms, and programming languages. Each of these is good at
some important business task; all of them must work together for the
business to function.

The common object request broker architecture—CORBA—provides the
foundation for flexible and open systems. It underlies some of the Internet’s
most successful e-business sites, and some of the world’s most complex and
demanding enterprise information systems.

Orbix is a CORBA development platform for building high-performance
systems. Its modular architecture supports the most demanding needs for
scalability, performance, and deployment flexibility. The Orbix architecture
is also language-independent, so you can implement Orbix applications in
PL/I, COBOL, C++, or Java that interoperate via the standard [IOP protocol
with applications built on any CORBA-compliant technology.

CORBA is an open, standard solution for distributed object systems. You can
use CORBA to describe your enterprise system in object-oriented terms,
regardless of the platforms and technologies used to implement its different
parts. CORBA objects communicate directly across a network using
standard protocols, regardless of the programming languages used to create
objects or the operating systems and platforms on which the objects run.

CORBA solutions are available for every common environment and are used
to integrate applications written in C, C++, Java, Ada, Smalltalk, COBOL,
and PL/I running on embedded systems, PCs, UNIX hosts, and mainframes.
CORBA objects running in these environments can cooperate seamlessly.
Through OrbixCOMet, IONA’s dynamic bridge between CORBA and COM,
they can also interoperate with COM objects. CORBA offers an extensive
infrastructure that supports all the features required by distributed business
objects. This infrastructure includes important distributed services, such as
transactions, messaging, and security.

Why CORBA?

CORBA Objects

Nature of abstract CORBA objects

Object references

IDL interfaces

CORBA objects are abstract objects in a CORBA system that provide
distributed object capability between applications in a network. Figure 1
shows that any part of a CORBA system can refer to the abstract CORBA
object, but the object is only implemented in one place and time on some
server of the system.

\) A server
~ _ \ implements a
CORBA object
Clients access
Yl CORBA objects
\ ——via object
~ / references

—

\ IDL interface definitions
~ _ / specify CORBA objects

Figure 1: The Nature of Abstract CORBA Objects

An object reference is used to identify, locate, and address a CORBA object.
Clients use an object reference to invoke requests on a CORBA object.
CORBA objects can be implemented by servers in any supported
programming language, such as PL/I, COBOL, C++, or Java.

Although CORBA objects are implemented using standard programming
languages, each CORBA object has a clearly-defined interface, specified in
the CORBA Interface Definition Language (IDL). The interface definition
specifies which member functions, data types, attributes, and exceptions
are available to a client, without making any assumptions about an object’s
implementation.

CHAPTER 1 | Introduction to Orbix

Advantages of IDL

With a few calls to an ORB’s application programming interface (API),
servers can make CORBA objects available to client programs in your
network.

To call member functions on a CORBA object, a client programmer needs
only to refer to the object’s interface definition. Clients use their normal
programming language syntax to call the member functions of a CORBA
object. A client does not need to know which programming language
implements the object, the object’s location on the network, or the operating
system in which the object exists.

Using an IDL interface to separate an object’s use from its implementation
has several advantages. For example, you can change the programming
language in which an object is implemented without affecting the clients
that access the object. You can also make existing objects available across a
network.

Why CORBA?

Object Request Broker

Overview

Role of an ORB

CORBA defines a standard architecture for object request brokers (ORB). An
ORB is a software component that mediates the transfer of messages from a
program to an object located on a remote network host. The ORB hides the
underlying complexity of network communications from the programmer.

An ORB lets you create standard software objects whose member functions
can be invoked by client programs located anywhere in your network. A
program that contains instances of CORBA objects is often known as a
server. However, the same program can serve at different times as a client
and a server. For example, a server program might itself invoke calls on
other server programs, and so relate to them as a client.

When a client invokes a member function on a CORBA object, the ORB
intercepts the function call. As shown in Figure 2, the ORB redirects the
function call across the network to the target object. The ORB then collects
results from the function call and returns these to the client.

Client Host Server Host

Server
Client @

Object Request Broker

Function
Call

Figure 2: The Object Request Broker

CHAPTER 1 | Introduction to Orbix

CORBA Application Basics

Developing application interfaces You start developing a CORBA application by defining interfaces to objects
in your system in CORBA IDL. You compile these interfaces with an IDL
compiler. An IDL compiler can generate PL/I, COBOL, C++, or Java from
IDL definitions. Generated PL/I and COBOL consists of server skeleton code,
which you use to implement CORBA objects.

Client invocations on CORBA When an Orbix PL/I client on z/OS calls a member function on a CORBA

objects object on another platform, the call is transferred through the PL/I runtime
to the ORB. (The client invokes on object references that it obtains from the
server process.) The ORB then passes the function call to the server.

When a CORBA client on another platform calls a member function on an
Orbix PL/I server object on z/OS, the ORB passes the function call through
the PL/I runtime and then through the server skeleton code to the target
object.

Orbix Plug-In Design

Orbix Plug-In Design

Overview

Plug-ins

ORB core

Orbix has a modular plug-in architecture. The ORB core supports abstract
CORBA types and provides a plug-in framework. Support for concrete
features like specific network protocols, encryption mechanisms, and
database storage is packaged into plug-ins that can be loaded into the ORB,
based on runtime configuration settings.

A plug-in is a code library that can be loaded into an Orbix application at
runtime. A plug-in can contain any type of code; typically, it contains
objects that register themselves with the ORB runtimes to add functionality.

Plug-ins can be linked directly with an application, loaded when an
application starts up, or loaded on-demand while the application is running.
This gives you the flexibility to choose precisely those ORB features that you
actually need. Moreover, you can develop new features such as protocol
support for direct ATM or HTTPNG. Because ORB features are configured
into the application rather than compiled in, you can change your choices
as your needs change without rewriting or recompiling applications.

For example, an application that uses the standard I1IOP protocol can be
reconfigured to use the secure SSL protocol simply by configuring a different
transport plug-in. There is no particular transport inherent to the ORB core;
you simply load the transport set that suits your application best. This
architecture makes it easy for IONA to support additional transports in the
future such as multicast or special purpose network protocols.

The ORB core presents a uniform programming interface to the developer:
everything is a CORBA object. This means that everything appears to be a
local PL/I, COBOL, C++, or Java object within the process, depending on
which language you are using. In fact it might be a local object, or a remote
object reached by some network protocol. It is the ORB’s job to get
application requests to the right objects no matter where they are located.

CHAPTER 1 | Introduction to Orbix

10

To do its job, the ORB loads a collection of plug-ins as specified by ORB
configuration settings—either on startup or on demand—as they are needed
by the application. For remote objects, the ORB intercepts local function
calls and turns them into CORBA requests that can be dispatched to a
remote object across the network via the standard IIOP protocol.

Orbix Application Deployment

Orbix Application Deployment

Overview

In this section

Orbix provides a rich deployment environment designed for high scalability.
You can create a location domain that spans any number of hosts across a
network, and can be dynamically extended with new hosts. Centralized
domain management allows servers and their objects to move among hosts
within the domain without disturbing clients that use those objects. Orbix
supports load balancing across object groups. A configuration domain
provides the central control of configuration for an entire distributed
application.

Orbix offers a rich deployment environment that lets you structure and
control enterprise-wide distributed applications. Orbix provides central
control of all applications within a common domain.

This section discusses the following topics:

Location Domains page 12

Configuration Domains page 13

11

CHAPTER 1 | Introduction to Orbix

Location Domains

Overview

Locator daemon

Node daemon

12

A location domain is a collection of servers under the control of a single
locator daemon. An Orbix location domain consists of two components: a
locator daemon and a node daemon.

Note: See the CORBA Administrator’s Guide for more details about
these.

The locator daemon can manage servers on any number of hosts across a
network. The locator daemon automatically activates remote servers through
a stateless activator daemon that runs on the remote host.

The locator daemon also maintains the implementation repository, which is
a database of available servers. The implementation repository keeps track
of the servers available in a system and the hosts they run on. It also
provides a central forwarding point for client requests. By combining these
two functions, the locator lets you relocate servers from one host to another
without disrupting client request processing. The locator redirects requests
to the new location and transparently reconnects clients to the new server
instance. Moving a server does not require updates to the naming service,
trading service, or any other repository of object references.

The locator can monitor the state of health of servers and redirect clients in
the event of a failure, or spread client load by redirecting clients to one of a
group of servers.

The node daemon acts as the control point for a single machine in the
system. Every machine that will run an application server must be running a
node daemon. The node daemon starts, monitors, and manages the
application servers running on that machine. The locator daemon relies on
the node daemons to start processes and inform it when new processes
have become available.

Orbix Application Deployment

Configuration Domains

Overview

Plug-in design

A configuration domain is a collection of applications under common
administrative control. A configuration domain can contain multiple location
domains. During development, or for small-scale deployment, configuration
can be stored in an ASCII text file, which is edited directly.

The configuration mechanism is loaded as a plug-in, so future configuration
systems can be extended to load configuration from any source such as
example HTTP or third-party configuration systems.

13

CHAPTER 1 | Introduction to Orbix

14

In this chapter

CHAPTER 2

Getting Started in
Batch

This chapter introduces batch application programming with
Orbix, by showing how to use Orbix to develop a simple
distributed application that features a PL/I client and server,
each running in its own region.

This chapter discusses the following topics:

Overview and Setup Requirements page 16
Developing the Application Interfaces page 22
Developing the Server page 29
Developing the Client page 37
Running the Application page 42
Application Address Space Layout page 47

Note: The example provided in this chapter does not reflect a real-world
scenario that requires the Orbix Mainframe, because the supplied client
and server are written in PL/I and running on z/OS. The example is
supplied to help you quickly familiarize with the concepts of developing a

batch PL/I application with Orbix.

15

CHAPTER 2 | Getting Started in Batch

Overview and Setup Requirements

Introduction This section provides an overview of the main steps involved in creating an
Orbix PL/I application. It describes important steps that you must perform
before you begin. It also introduces the supplied SI MPLE demonstration, and
outlines where you can find the various source code and JCL elements for it.

Steps to create an application The main steps to create an Orbix PL/I application are:

Step Action

1 | “Developing the Application Interfaces” on page 22.

2 | “Developing the Server” on page 29.

3 | “Developing the Client” on page 37.

This chapter describes in detail how to perform each of these steps.

The Simple demonstration This chapter describes how to develop a simple client-server application
that consists of:

® An Orbix PL/I server that implements a simple persistent POA-based
server.

® An Orbix PL/I client that uses the clearly defined object interface,
Si npl e(hj ect, to communicate with the server.

The client and server use the Internet Inter-ORB Protocol (IIOP), which runs
over TCP/IP, to communicate. As already stated, the SI MPLE demonstration
is not meant to reflect a real-world scenario requiring the Orbix Mainframe,
because the client and server are written in the same language and running
on the same platform.

The Demonstration Server The server accepts and processes requests from the client across the
network. It is a batch server that runs in its own region.

16

The demonstration client

Location of supplied code
and JCL

Overview and Setup Requirements

See “Location of supplied code and JCL” for details of where you can find an
example of the supplied server. See “Developing the Server” on page 29 for
more details of how to develop the server.

The client runs in its own region and accesses and requests data from the
server. When the client invokes a remote operation, a request message is
sent from the client to the server. When the operation has completed, a
reply message is sent back to the client. This completes a single remote
CORBA invocation.

See “Location of supplied code and JCL” for details of where you can find an
example of the supplied client. See “Developing the Client” on page 37 for
more details of how to develop the client.

All the source code and JCL components needed to create and run the batch
SI MPLE demonstration have been provided with your installation. Apart from
site-specific changes to some JCL, these do not require editing.

Table 1 provides a summary of the supplied code elements and JCL
components that are relevant to the batch SI MPLE demonstration (where
or bi xhl g represents your installation’s high-level qualifier).

Table 1: Supplied Code and JCL (Sheet 1 of 2)

Location

Description

or bi xhl g. DEMDS. | DL(S| MPLE)

This is the supplied IDL.

or bi xhl . DEMCS. PLI . SRO(S| MPLEV)

This is the source code for the batch server mainline
module.

or bi xhl q. DEMCS. PLI . SRO(S| MPLE)

This is the source code for the batch server
implementation module.

or bi xhl . DEMCS. PLI . SRO(S| MPLEQ)

This is the source code for the client module.

or bi xhl gq. JCLLI B(LOCATCR)

This JCL runs the Orbix locator daemon.

or bi xhl q. JCLLI B(NCDEDAEM)

This JCL runs the Orbix node daemon.

17

CHAPTER 2 | Getting Started in Batch

Table 1: Supplied Code and JCL (Sheet 2 of 2)

Location

Description

or bi xhl q. DEMOS. PLI . BLD. JCLLI B(S|

MPLI DL) This JCL runs the Orbix IDL compiler, to generate
PL/I source and include members for the batch
server. This JCL specifies the - vV compiler argument,
which stops generation of server mainline code by
default. The - S compiler argument, which generates
server implementation code, is disabled by default in
this JCL.

or bi xhl q. DEMOS. PLI . BLD. JCLLI B(S|

MPLECB) This JCL compiles the client module to create the
S| MPLE client program.

or bi xhl q. DEMOS. PLI . BLD. JCLLI B(S|

MPLESB) This JCL compiles and links the batch server
mainline and implementation modules to create the
S| MPLE server program.

or bi xhl q. DEMOS. PLI . RUN JCLLI B(S|

MPLESV) This JCL runs the server.

or bi xhl q. DEMOS. PLI . BLD. JCLLI B(S|

MPLECL) This JCL runs the client.

Note: Other code elements and JCL components are provided for the IMS
and CICS versions of the SI MPLE demonstration. See “Getting Started in
IMS” on page 49 and “Getting Started in CICS” on page 121 for more
details of these.

Supplied include members Table 2 provides a summary in alphabetic order of the various include
members that are supplied with your product installation. In Table 2,
servers means batch servers, and clients means batch clients. Again,
or bi xhl g represents your installation’s high-level qualifier.

Table 2: Supplied Include Members (Sheet 1 of 3)

Location

Description

or bi xhl g. | NCLUDE. PLI NCL(CHKERRS)

This contains a PL/I function that can be called both
by clients and servers to check if a system exception
has occurred, and to report that system exception.

18

Table 2:

Overview and Setup Requirements

Supplied Include Members (Sheet 2 of 3)

Location

Description

or bi xhl g.

I NCLUDE. PLI NCL(OORBA)

This contains common PL/I runtime variables that
can be used both by clients and servers. It includes
the corRBACOMinclude member by default. It also
includes the GCRBASV include member, if the client
program contains the line %l i ent _onl y="yes’ ; or
includes the SETUPCL member.

or bi xhl q.

I NCLUDE. PLI NOL(CORBACQN)

This contains common PL/I runtime function
definitions that can be used both by clients and
servers.

or bi xhl g.

I NCLUDE. PLI NOL(CCRBASV)

This contains PL/I runtime function definitions that
can be used by servers.

or bi xhl g.

I NCLUDE. PLI NCL(DI SPINIT)

This is used by servers. It retrieves the current
request information into the REQ NFOstructure via
PCDREQ From REQ NFOthe operation to be performed
by the server is retrieved via a call to STREET.

or bi xhl g.

I NCLUDE. PLI NCL(EXCNAME)

This is relevant to both batch clients and servers. It
contains a PL/I function called OCRBA_EXC NAME that
returns the system exception name for the system
exception being raised (that is, it maps Orbix
exceptions to human-readable strings). EXONAME is
used by GKERRS.

or bi xhl g.

I NCLUDE. PLI NOL(| ORREQ)

This is used by both clients and servers. It contains
declarations for storing an IOR file and its size.

or bi xhl g.

| NCLUDE. PLI NCL(READI CR)

This is used by clients. It declares the file | ORFI LE,
reads an IOR into | GRFI LE, and converts the PL/I
character string that is read into an unbounded
string. This string is subsequently used by the
CBJ2STR function, to create an object reference from
the IOR file that has been read. Additionally, it also
sets up several ON. ERRCR blocks that check the status
of I ORFI LE and catch any general errors that might
occur in the client.

19

CHAPTER 2 | Getting Started in Batch

Table 2: Supplied Include Members (Sheet 3 of 3)

Location Description

or bi xhl g. I NCLUDE. PLI NCL(SETUPQL) This is relevant to clients only. It contains
preprocessor statements used to prevent CORBASV
from being included in client-side programs. It should
be included before GORBA in every client module.

or bi xhl g. | NCLUDE. PLI NCL(SETUPSV) This is relevant to servers only. It contains
preprocessor statements used to ensure CORBASV is
included in server-side programs and to prevent
warnings that cl i ent _onl y has not been declared. It
should be included before OCRBA in every server
source module.

or bi xhl g. | NCLUDE. PLI NCL(URLSTR) This is relevant to clients only. It contains a PL/I
representation of the corbaloc URL IIOP string
format. A client can call STR2CBJ to convert the URL
into an object reference. See “STR20BJ” on

page 481 for more details.

Note: Even though batch applications can use this
include member, the supplied batch demonstration
does not use this.

or bi xhl gq. DEMOS. PLI . PLI NCL This PDS is used to store all batch include members
that are generated by the Orbix IDL compiler when
you run the supplied SI MPLI DL JCL for the batch
demonstration. It also contains helper procedures for
the bank, naming, and nested sequences
demonstrations.

Note: Any supplied include members that are not listed in Table 2 are
relevant only to CICS or IMS application development. See “Getting Started
in IMS” on page 49 or “Getting Started in CICS” on page 121 for more
details.

20

Checking JCL components

Overview and Setup Requirements

When creating the simple application, check that each step involved within
the separate JCL components completes with a condition code not greater
than 4. If the condition codes are greater than 4, establish the point and
cause of failure. The most likely cause is the site-specific JCL changes
required for the compilers. Ensure that each high-level qualifier throughout
the JCL reflects your installation.

21

CHAPTER 2 | Getting Started in Batch

Developing the Application Interfaces

Overview

Steps to develop application
interfaces

22

This section describes the steps you must follow to develop the IDL
interfaces for your application. It first describes how to define the IDL
interfaces for the objects in your system. It then describes how to generate
PL/I source and include members from IDL interfaces, and provides a
description of the members generated from the supplied Si npl eChj ect
interface.

The steps to develop the interfaces to your application are:

Step Action

1 | Define public IDL interfaces to the objects required in your
system.

See “Defining IDL Interfaces” on page 23.

2 | Use the crRxacPy utility to copy your IDL files to z/OS (if
necessary).

See “ORXCOPY Utility” on page 523.

3 | Use the Orbix IDL compiler to generate PL/I source and include
members from the defined IDL.

See “Generating PL/I Source and Include Members” on
page 24.

Developing the Application Interfaces

Defining IDL Interfaces

Defining the IDL

Explanation of the IDL

How the demonstration uses
this IDL

The first step in writing an Orbix program is to define the IDL interfaces for
the objects required in your system. The following is an example of the IDL
for the Si npl e(yj ect interface that is supplied in

or bi xhl g. DEMDS. | DL(S| MPLE) :

/1 1D
nmodul e Sinple
{
interface Sinpl e(hj ect
{
voi d
call _me();
i

The preceding IDL declares a Si npl ebj ect interface that is scoped (that is,
contained) within the Si npl e module. This interface exposes a single

cal | _me() operation. This IDL definition provides a language-neutral
interface to the CORBA Si npl e: : Si npl e(yj ect type.

For the purposes of this example, the Si npl etbj ect CORBA object is
implemented in PL/I in the supplied Si npl e server application. The server
application creates a persistent server object of the Si npl eQj ect type, and
publishes its object reference to a PDS member. The client application must
then locate the Si npl evj ect object by reading the IOR from the relevant
PDS member. The client invokes the cal I _me() operation on the

Si npl eoj ect object, and then exits.

23

CHAPTER 2 | Getting Started in Batch

Generating PL/l Source and Include Members

The Orbix IDL compiler You can use the Orbix IDL compiler to generate PL/I source and include
members from IDL definitions.

Note: If your IDL files are not already contained in z/OS data sets, you
must copy them to z/OS before you proceed. You can use the CRXGCPY

utility to do this. If necessary, see “ORXCOPY Utility” on page 523 for

more details.

Orbix IDL compiler configuration =~ The Orbix IDL compiler uses the Orbix configuration member for its settings.
The sI MPLI DL JCL that runs the compiler uses the configuration member
or bi xhl g. CONFI 1 DL) . See “Orbix IDL Compiler Configuration” on
page 331 for more details of this configuration member.

Running the Orbix IDL compiler The PL/I source for the batch server demonstration described in this chapter
is generated in the first step of the following job:

or bi xhl g. DEMDS. PLI . BLD. JCLLI B(SI MPLI DL)

Generated source code members Table 3 shows the server source code members that the Orbix IDL compiler
generates, based on the defined IDL:

Table 3: Generated Server Source Code Members

Member JCL Keyword Description
Parameter
i dl menber nanel 1 MPL This is the server implementation

source code member. It contains
procedure definitions for all the
callable operations.

The is only generated if you
specify the - S argument with the
IDL compiler.

24

Generated PL/I include members

Developing the Application Interfaces

Table 3: Generated Server Source Code Members
Member JCL Keyword Description
Parameter
i dl menber nameV | MPL This is the server mainline source

code member. It is generated by
default. However, you can use
the - v argument with the IDL
compiler, to prevent generation
of this member.

Note: For the purposes of this example, the SI MPLEI server
implementation and SI MPLEV server mainline are already provided in your
product installation. Therefore, the - S argument, which generates server
implementation code, is not specified in the supplied SI MPLI DL JCL. The
-V argument, which prevents generation of server mainline code, is
specified in the supplied JCL. See “Orbix IDL Compiler” on page 293 for
more details of the IDL compiler arguments used to generate, and prevent
generation of, server source code.

Table 4 shows the PL/I include members that the Orbix IDL compiler
generates, based on the defined IDL.

Table 4: Generated PL/I Include Members
Copybook JCL Keyword Description
Parameter
i dl menber nameD QCPYLI B This include member contains a

select statement that determines
which server implementation
procedure is to be called, based
on the interface name and
operation received.

25

CHAPTER 2 | Getting Started in Batch

Table 4: Generated PL/I Include Members

Copybook JCL Keyword Description
Parameter
i dl menber naneL QCPYLI B This include member contains

structures and procedures used
by the PL/I runtime to read and
store data into the operation
parameters.

This member is automatically
included in the i dl menber naneX
include member.

i dl menber naneM QCPYLI B This include member contains
declarations and structures that
are used for working with
operation parameters and return
values for each interface defined
in the IDL member. The
structures use the based PL/I
structures declared in the

i dl nenber naneT include
member.

This member is automatically
included in the i dI menber narel
include member.

i dl menber naneT QCPYLI B This include member contains
the based structure declarations
that are used in the

i dl nenber naneMinclude
member.

This member is automatically
included in the i dI menber naneM
include member.

26

How IDL maps to PL/I include
members

Member name restrictions

Developing the Application Interfaces

Table 4: Generated PL/I Include Members
Copybook JCL Keyword Description
Parameter

i dl nenber naneX QCPYLI B This include member contains
structures that are used by the
PL/I runtime to support the
interfaces defined in the IDL
member.
This member is automatically
included in the i dI nenber nanev
source code member.

i dl nrenber naneD QCPYLI B This include member contains a

select statement for calling the
correct procedure for the
requested operation.

This include member is
automatically included in the
i dl menber nanel source code
member.

Each IDL interface maps to a set of PL/| structures. There is one structure
defined for each IDL operation. A structure contains each of the parameters
for the relevant IDL operation in their corresponding PL/I representation. See
“IDL-to-PL/I Mapping” on page 235 for details of how IDL types map to
PL/I.

Attributes map to two operations (get and set), and readonly attributes map
to a single get operation.

Generated PL/I source code and include member names are all based on the
IDL member name. If the IDL member name exceeds six characters, the
Orbix IDL compiler uses only the first six characters of the IDL member
name when generating include member names. This allows space for
appending a one-character suffix to each generated member name, while
allowing it to adhere to the seven-character maximum size limit for PL/I
external procedure names, which are based by default on the generated
member names.

27

CHAPTER 2 | Getting Started in Batch

Location of demonstrationinclude You can find examples of the include members generated for the Si npl e
members demonstration in the following locations:

® orbixhl g. DEMDS. PLI . PLI NCL(S| MPLED)

® orbixhl g. DEM3S. PLI . PLI NOL(SI MPLEL)

® orhixhl g. DEMDS. PLI . PLI NCL(S| MPLEN)

® orbixhl g. DEMDS. PLI . PLI NCL(S| MPLET)

® orbixhl g. DEM3S. PLI . PLI NOL(SI MPLEX)

Note: These include members are not shipped with your product

installation. They are generated when you run the supplied SI MPLI DL JCL,
to run the Orbix IDL compiler.

28

Developing the Server

Developing the Server

Overview This section describes the steps you must follow to develop the batch server
executable for your application.

Steps to develop the server The steps to develop the server application are:

Step Action

1 | “Writing the Server Implementation” on page 30

2 | “Writing the Server Mainline” on page 33

3 | “Building the Server” on page 36.

29

CHAPTER 2 | Getting Started in Batch

Writing the Server Implementation

The server implementation
module

Example of the completed
SIMPLEI module

30

You must complete the server implementation by writing the logic that
implements each operation in the i dl menber namel source code member.
For the purposes of this example, you must write a PL/I procedure that
implements each operation in the SI MPLEI member.

When you specify the - S argument with the Orbix IDL compiler in this case,
it generates a skeleton module called SI MPLEI , which generates an empty
procedure for each attribute and operation within the interface.

The following is an example of the completed SI MPLEl module (with the
header comment block omitted for the sake of brevity):

Example 1: The SIMPLEI Demonstration Module (Sheet 1 of 2)
SI MPLEl : PRCC

/*The fol lowing line enables the runtime to call this procedure*/
D SPTCH ENTRY;

dcl (addr, | ow, sysnul |) bui I tin;

% ncl ude CCRBA;

% ncl ude CGHKERRS;
% ncl ude SI MPLEM
%nclude DSPINT;

[* ================ Start of gl obal user code

/* End of gl obal user code

/* ___ */
/* */
/* D spatcher : sel ect(operation) */
/* */
/* __ */

% ncl ude S| MPLED;

/* __ */
/* Interface: */
/* Si npl e/ Si npl e(hj ect */
s */

Developing the Server

Example 1: The SIMPLEI Demonstration Module (Sheet 2 of 2)

/* Mapped narre: */
/* Si npl e_Si npl ej ect */
/* */
/* Inherits interfaces: */
/* (none) */
/* __ */
/* __ */
/* Qperation: call _ne */
/* Mapped narre: call _ne */
/* Argunents: None */
/* Returns: voi d */
/* __ */

4 proc_Si npl e_Sinpl eChj ect_c_c904: PROO(p_args);

dcl p_args ptr;
5 dcl 1_args al i gned based(p_args)
li ke Sinple_ S npl eChj ect_c_ba77_type;
4 Start of operation code ============= */
6 put skip list('Qperation call_ne() called);
put ski p;
4 End of operation code ============== */

END proc_Si npl e_Si npl eChj ect _c_c904;

END SI MPLE! ;
Explanation of the The SI MPLEI module can be explained as follows:
SIMPLEI module 1. When an incoming request arrives from the network, it is processed by

the ORB and a call is made from the PL/I runtime to the D SPTCHentry
point.

2. Within the D SPIN T include member, PCDREQis called to provide
information about the current invocation request, which is held in the
REQ NFOstructure. PCDREQis called once for each operation invocation
after a request has been dispatched to the server. STRGET is then called
to copy the characters in the unbounded string pointer for the
operation name into the PL/I string that represents the operation name.

3. The SI MPLED include member contains a select statement that
determines which procedure within SI MPLEI is to be called, given the
operation name and interface name passed to SI MPLE! . It calls PCDGET

31

CHAPTER 2 | Getting Started in Batch

Location of the SIMPLEI
module

32

before the call to the server procedure, which fills the appropriate PL/I
structure declared in the main include member, SI MPLEM with the
operation’s incoming arguments. It then calls PCDPUT after the call to
the server procedure, to send out the operation’s outgoing arguments.

The procedural code containing the server implementation for the
cal | _ne operation.

Each operation has an argument structure and these are declared in
the typecode include member, SI MPLET. If an operation does not have
any parameters or return type, such as cal | _ne, the structure only
contains a structure with a dummy char.

This is a sample of the server implementation code for cal | _ne. It is
the only part of the SI MPLEI member that is not automatically
generated by the Orbix IDL compiler.

You can find a complete version of the SI MPLEI server implementation
module in or bi xhl q. DEMOS. PLI . SRQ{ S| MPLEI) .

Developing the Server

Writing the Server Mainline

The server mainline module

Example of the SIMPLEV
module

The next step is to write the server mainline module in which to run the
server implementation. The Orbix IDL compiler generates the server
mainline module, SI MPLEV, by default. However, you can prevent generation
of the server mainline module by specifying the - v argument with the IDL
compiler. The - v argument therefore allows you to prevent overwriting any
customized changes you might have already made to the server mainline.

The following is an example of the SI MPLEV module (with the header
comment block omitted for the sake of brevity):

Example 2: The SIMPLEV Demonstration Module (Sheet 1 of 2)

SI MPLEV: PROC GPTI ONS(MAI N) ;

dcl arg_list char (01) init(’");

dcl arg_list_len fixed bin(31) init(0);

dcl orb_nane char (10) init(’ sinple_orb);
dcl orb_nane_| en fixed bin(31) i nit(10);

dcl srv_nane char (256) var;

dcl server_nane char (07) init(’sinple ");
dcl server_nane_| en fixed bin(31) init(6);

dcl Sinpl e_Sinpl eCoj ect_obj ptr;

dcl D SPTCH ext entry;
dcl |1 GRFI LE file record out put;
dcl SYSPR NT file stream out put;

dcl (addr,length,|ow sysnull) builtin;

% ncl ude CORBA
% ncl ude GHKERRS;
% ncl ude | CRREC,
% ncl ude S| MPLET;
% ncl ude SI MPLEX;

al l oc pod_status_information set(pod _status_ptr);
call podstat(pod_status_ptr);
if check_errors(’ podstat’) ~= conpl etion_status_yes then return;

/* Initialize the server connection to the CRB */

33

CHAPTER 2 | Getting Started in Batch

34

Example 2: The SIMPLEV Demonstration Module (Sheet 2 of 2)

call orbargs(arg_list,arg_list_len,orb_nane, orb_name_| en);
if check_errors(’orbargs’) ~= conpl etion_status_yes then return;

call podsrvr(server_nanme, server_nane_| en);
if check_errors(’ podsrvr’) ~= conpl etion_status_yes then return;

/* Register interface : S nple/Sinpl ethj ect */
call podreg(addr(Si npl e_S npl e(hj ect _i nterface));
if check_errors(’ podreg’;) ~= conpletion_status_yes then return;

put skip list(’'Oeating the sinple_persistent object’);
call objnewserver_nane, Sinple_S npleject_intf,
Si npl e_Si npl eChj ect _objid, Sinple S npleject_obj);
if check_errors(’ objnew) ~= conpl etion_status_yes then return;

/* Wite out the ICR for each interface */
open file(l ORFILE);

call obj2str(S nple_Si npl eCbj ect_obj, iorrec_ptr);
if check_errors(’obj2str’) ~= conpl eti on_status_yes then return;

put skip list(’Witing out the object reference’);
call strget(iorrec_ptr, iorrec, iorrec_len);
if check_errors(’strget’) ~= conpl etion_status_yes then return;

wite file(ICRFILE) fron{iorrec);
close file(lCRFILE);

/* Server is nowready to accept requests */
put skip list('A@ving control to the ORB to process requests’);
put ski p;

call podrun;

if check_errors(’ podrun’) ~= conpl etion_status_yes then return;

call objrel (S npl e_S npl e(j ect _obj);
if check_errors(’objrel’) ~= conpl etion_status_yes then return;

free pod_status_infornation;

END S| MPLEV;

Explanation of the SIMPLEV
module

Location of the SIMPLEV
module

Developing the Server

The SI MPLEV module can be explained as follows:

1.

8.

PCDSTAT is called to register the PCD_STATUS | NFCRVATI CN block that is
contained in the GCRBA include member. Registering the

PCD_STATUS | NFCRVATI ON block allows the PL/I runtime to populate it
with exception information, if necessary. If conpl eti on_st at us is set to
zero after a call to the PL/I runtime, this means that the call has
completed successfully.

CRBARGS is called to initialize a connection to the ORB.

PCDSRVR is called to set the server name.

PCDREG is called to register the IDL interface, Si npl eQbj ect , with the
PL/I runtime.

CBINEWIs called to create a unique object reference from the server
name, interface name, and object ID for the server.

(BJ2STRs called to translate the object reference created by CBINEW
into a stringified IOR. The stringified IOR is then written to the | GRFI LE
member.

PCDRWN is called, to enter the CRB: : run() loop, to allow the ORB to
receive and process client requests.

CBIREL is called to ensure that the servant object is released properly.

See the preface of this guide for details about the compilers that this product
supports.

You can find a complete version of the SI MPLEV server mainline in
or bi xhl g. DEMCS. PLI . SRQ(S| MPLEV) .

35

CHAPTER 2 | Getting Started in Batch

Building the Server

Location of the JCL
Resulting load module

Server programming restrictions

36

Sample JCL used to compile and link the batch server mainline and server
implementation is in or bi xhl q. DEMOS. PLI . BLD. JCLLI B(S| MPLESB) .

When this JCL has successfully executed, it results in a load module that is
contained in or bi xhl g. DEMDS. PLI . LOADLI B(S| MPLESV) .

Although the server implementation code is compiled as part of the main
program, it effectively executes as a dynamically loaded procedure. The
fetch and release restrictions documented in the IBM publication: /BM PL/I
for MVS & VM Language Reference Release 1.1: SC26-3114 must be
observed. Failure to observe these restrictions can result in various errors,
including SOC4, S22C, and U4094 abends.

For example, all files to be used by the server program must be explicitly
opened before the first Orbix PL/I runtime call in the server mainline and
must be explicitly closed at the end of the server mainline.

Developing the Client

Developing the Client

Overview This section describes the steps you must follow to develop the client
executable for your application.

Note: The Orbix IDL compiler does not generate PL/I client stub code.

Steps to develop the client The steps to develop the client application are:

Step Action

1 | “Writing the Client” on page 38.

2 | “Building the Client” on page 41.

37

CHAPTER 2 | Getting Started in Batch

Writing the Client

The client program

Example of the SIMPLEC
program

38

The next step is to write the client program. This example uses the supplied
SI MPLEC client demonstration.

The following is an example of the SI MPLEC program

Example 3: The SIMPLEC Demonstration Program (Sheet 1 of 2)

SI MPLEC. PRCC CPTI ONS(MAILN) ;

%l ient_onl y="yes’;

dcl (addr, null, substr, sysnull) builtin;

dcl SYSIN file input;

dcl SYSPR NT file stream output;

dcl arg_list char (40) init(');

dcl arg_list_len fixed bin(31) init(38);

dcl orb_nane char (10) init(’ sinple_orb);
dcl orb_nane_| en fixed bin(31) init(10);

dcl Sinpl e_Si npl eChj ect _obj ptr;

% ncl ude CCRBA;

% ncl ude CGHKERRS;
% ncl ude SI MPLEM
% ncl ude Sl MPLEX;

% ncl ude SETUPCL; /* Various DO.s for the client */
% ncl ude | CRREC /* Describes the ICRfile type */
open file(l CRFILE) input; /* Qpen the server |CR nenber */
% ncl ude READ OR, /* Read in the server’'s IR */

/* CGeneral dient Setup */

/* Initialize the PL/I runtine status information block */
all oc pod_status_information set(pod_status_ptr);

call podstat(pod_status ptr);

/* Initialize our CRB */
call orbargs(arg_list, arg_list_len, orb_nane, orb_nane_|en);

Developing the Client

Example 3: The SIMPLEC Demonstration Program (Sheet 2 of 2)

/* Register the SinpleChject interface with the PL/I runtine */
call podreg(addr(Si npl e_S npl e(hj ect _i nterface));
if check_errors(’ podreg’) ~= conpl etion_status_yes then return;

/* Oreate an object reference fromthe server’'s IR */

/* so we can nake calls to the server */

call str2obj(iorrec_ptr, Sinple_ S npleChject_obj);

if check_errors(’objset’) ~= conpletion_status_yes then return;

/* Now we are ready to start making server requests */
put skip list(’'sinple_persistent deno’);
put skip list(’ ")

/* Call operation call_me */
/* As this is a very sinple function, there aren’t any */
/* paranmeters. So instead we pass in the generated dummy */
/* structure created for this operation. */
put skip list('Calling operation call_me...);
call podexec(S npl e_Si npl eChj ect _obj ,
Si npl e_Si npl ehj ect _cal | _me,
addr (S npl e_Si npl e(hj ect _c_ba77_args),
no_user _excepti ons);
if check_errors(’ podexec’) "= conpl etion_status_yes then return;

put skip list(’ Qperation call_me conpleted (no results to
display)’);

put ski p;

put skip list(’'End of the sinple_persistent deno’);

put skip;

/* Free the sinple_persistent object reference */
call objrel (Sinpl e_S npl e(hj ect _obj);
if check_errors(’objrel’) ~= conpletion_status_yest then return;

END S| MPLEC

39

CHAPTER 2 | Getting Started in Batch

Explanation of the SIMPLEC
program

Location of the SIMPLEC
program

40

The SI MPLEC program can be explained as follows:

1.

This preprocessor setting instructs the PL/I compiler not to include the
QCRBASV include member, which contains PL/I runtime functions that
are used only by the server. The GCRBA include member includes a
check for this setting.

The READ CRinclude member reads the IOR from the | GRFI LE member
and creates an unbounded string, called i orrec_ptr, which is used
later in the program to create an object reference from this IOR.

CRBARGS is called to initialize a connection to the ORB.
PCDREG is called to register the IDL interface with the PL/I runtime.

STR2CBJ is called to create an object reference to the server object
represented by the IOR. This must be done to allow operation
invocations on the server. The STR2CBJ call takes an interoperable
stringified object reference and produces an object reference pointer.
This pointer is used in all method invocations. See the CORBA
Programmer’s Reference, C++ for more details about stringified
object references.

After the object reference is created, PCDEXEC is called to invoke
operations on the server object represented by that object reference.
You must pass the object reference, the operation name, the argument
description packet, and the user exception buffer. If the call does not
have a user exception defined (as in the preceding example), the
no_user _except i ons variable is passed in instead. The operation name
must have at least one trailing space. The same argument description
is used by the server, and can be found in the

or bi xhl g. DEMDS. PLI . PLI NOL(S| MPLET) include member.

CBIREL is called to ensure that the servant object is released properly.

You can find a complete version of the SI MPLEC client module in
or bi xhl q. DEM3S. PLI . SR SI MPLEQ) .

Developing the Client

Building the Client

Location of the JCL Sample JCL used to compile and link the client can be found in the third
step of or bi xhl g. DEMDS. PLI . BLD. JOLLI B(S| MPLECB) .

Resulting load module When the JCL has successfully executed, it results in a load module that is
contained in or bi xhl g. DEMDOS. PLI . LOADLI B(SI MPLEQL) .

41

CHAPTER 2 | Getting Started in Batch

Running the Application

Introduction This section describes the steps you must follow to run your application. It
also provides an example of the output produced by the client and server.

Note: This example involves running a PL/I client and PL/I server. You
could, however, choose to run a PL/I server and a C+ + client, or a PL/I
client and a C+ + server. Substitution of the appropriate JCL is all that is
required in the following steps to mix clients and servers in different
languages.

Steps to run the application The steps to run the application are:

Step Action

1 | “Starting the Orbix Locator Daemon” on page 43 (if it has not
already been started).

2 | “Starting the Orbix Node Daemon” on page 44 (if it has not
already been started).

3 | “Running the Server and Client” on page 45.

42

Running the Application

Starting the Orbix Locator Daemon

Overview

JCL to start the Orbix locator
daemon

Locator daemon configuration

An Orbix locator daemon must be running on the server’s location domain
before you try to run your application. The Orbix locator daemon is a
program that implements several components of the ORB, including the
Implementation Repository. The locator runs in its own address space on
the server host, and provides services to the client and server, both of which
need to communicate with it.

When you start the Orbix locator daemon, it appears as an active job waiting
for requests. See the CORBA Administrator’s Guide for more details about
the locator daemon.

If the Orbix locator daemon is not already running, you can use the JCL in
or bi xhl q. JOLLI B(LOCATCR) to start it.

The Orbix locator daemon uses the Orbix configuration member for its
settings. The JCL that you use to start the locator daemon uses the
configuration member or bi xhl q. CONFI G DEFAULT@ .

43

CHAPTER 2 | Getting Started in Batch

Starting the Orbix Node Daemon

Overview

JCL to start the Orbix node
daemon

Node daemon configuration

44

An Orbix node daemon must be running on the server’s location domain
before you try to run your application. The node daemon acts as the control
point for a single machine in the system. Every machine that will run an
application server must be running a node daemon. The node daemon
starts, monitors, and manages the application servers running on that
machine. The locator daemon relies on the node daemons to start processes
and inform it when new processes have become available.

When you start the Orbix node daemon, it appears as an active job waiting
for requests. See the CORBA Administrator’s Guide for more details about
the node daemon.

If the Orbix node daemon is not already running, you can use the JCL in
or bi xhl q. JCLLI B(NCDEDAEN) to start it.

The Orbix node daemon uses the Orbix configuration member for its
settings. The JCL that you use to start the node daemon uses the
configuration member or bi xhl q. OCONFI G DEFAULT@ .

Running the Application

Running the Server and Client

JCL to run the server To run the supplied SI MPLESV server application, use the following JCL:

or bi xhl g. DEMDS. PLI . JOLLI B(S| MPLESV)

Note: You can use the z/OS STCP operator command to stop the server.

IOR member for the server When you run the server, it automatically writes its IOR to a PDS member
that is subsequently used by the client. For the purposes of this example,
the IOR member is contained in or bi xhl q. DEMDS. | GRS(S| MPLE) .

JCL to run the client After you have started the server and made it available to the network, you
can use the following JCL to run the supplied SI MPLECL client application:

or bi xhl g. DEMDS. PLI . RUN JCLLI B(S| MPLECL)

45

CHAPTER 2 | Getting Started in Batch

Application Output

Server output The following is an example of the output produced by the simple server:
Oreating the sinple_persistent object
Witing out the object reference

Gving control to the ORB to process Requests

Qperation call_ne() called

Client output The following is an example of the output produced by the simple client:

si npl e_per si st ent deno

Calling operation call ne...
Qperation call _ne conpleted (no results to display)

End of the sinple_persistent deno

Result If you receive the preceding client and server output, it means that you have
successfully created an Orbix PL/I client-server batch application.

46

Application Address Space Layout

Application Address Space Layout

Overview

Figure 3 is a graphical overview of the address space layout for an Orbix
PL/I application running in batch in a native z/OS environment. This is
shown for the purposes of example and is not meant to reflect a real-world

scenario requiring the Orbix Mainframe.

0S/390 Environment

Server Process (including TCP/IP)

Locator Daemon Process (including TCP/IP)

ORB

Locator Daemon ‘

PL/I Runtime

Server Mainline

Entry point for launch
includes calls to PODSTAT, ORBARGS,
PODSRVR, PODREG, OBJNEW, OBJ2STR,
and PODRUN

Node Daemon Process (including TCP/IP)

Node Daemon ‘

Server Implementation

DISPTCH - entry point for all IDL operations.

PODREQ is called to determine which PL/I
section (that is, IDL operations) to execute.

Each section includes PODGET (to move data
from PL/I runtime to temporary storage) and
PODPUT (to move data from temporary storage
to PL/I runtime).

Temporary Storage
used by PODGET
and PODPUT

Client Process (including TCP/IP)

ORB

PL/I Runtime

Client Implementation

PODSTAT, ORBARGS, PODREG, and
STR20BJ calls.

A PODEXEC call for each IDL operation to be
invoked on the CORBA object.

Temporary Storage used
by PODEXEC calls

Figure 3: Address Space Layout for an Orbix PL/I Application

CHAPTER 2 | Getting Started in Batch

Explanation of the server process

Explanation of the daemon
processes

Explanation of the client process

48

The server-side ORB, PL/I runtime, server mainline (launch entry point),
and server implementation are linked into a single load module referred to
as the "server". The PL/I runtime marshals data to and from the server
implementation’s operation structures, which means there is
language-specific translation between C++ and PL/I.

The server runs within its own address space. It uses the TCP/IP protocol to

communicate (through the server-side ORB) with both the client and the

locator daemon.

For an example and details of:

® The APIs called by the server mainline, see “Explanation of the
SIMPLEV module” on page 35 and “API Reference” on page 377.

® The APIs called by the server implementation, see “Explanation of the
SIMPLEI module” on page 31 and “API Reference” on page 377.

The locator daemon and node daemon each runs in its own address space.
See “Location Domains” on page 12 for more details of the locator and node
daemons.

The locator daemon and node daemon use the TCP/IP protocol to
communicate with each other. The locator daemon also uses the TCP/IP
protocol to communicate with the server through the server-side ORB.

The client-side ORB, PL/I runtime, and client implementation are linked into
a single load module referred to as the “client”. The client runs within its
own address space.

The client (through the client-side ORB) uses TCP/IP to communicate with
the server.

For an example and details of the APIs called by the client, see “Explanation
of the SIMPLEC program” on page 40 and “API Reference” on page 377.

In this chapter

CHAPTER 3

Getting Started in

IMS

This chapter introduces IMS application programming with
Orbix, by showing how to use Orbix to develop both an IMS
PL/I client and an IMS PL/I server. It also provides details of
how to subsequently run the IMS client against a PL/I batch
server, and how to run a PL/I batch client against the IMS
server. Additionally, this chapter shows how to develop an IMS
client that supports two-phase commit transactions.

This chapter discusses the following topics:

Overview page 51
Developing the Application Interfaces page 59
Developing the IMS Server page 71
Developing the IMS Client page 83
Developing the IMS Two-Phase Commit Client page 93
Running the Demonstrations page 114

49

CHAPTER 3 | Getting Started in IMS

Note: The client and server examples provided in this chapter
respectively require use of the IMS client and server adapters that are
supplied as part of the Orbix Mainframe. See the IMS Adapters
Administrator’s Guide for more details about these IMS adapters.

50

Overview

Overview

Introduction

Steps to create an application

The demonstration IMS server

This section provides an overview of the main steps involved in creating the
following Orbix PL/I applications:

® |MS server

® |MS client

¢ |MS two-phase commit client

It also introduces the following PL/I demonstrations that are supplied with

your Orbix Mainframe installation, and outlines where you can find the
various source code and JCL elements for them:

® SIMPLE IMS server
® SIMPLE IMS client
® DATAQL IMS two-phase commit client

The main steps to create an Orbix PL/I IMS application are:

1. “Developing the Application Interfaces” on page 59.

2. “Developing the IMS Server” on page 71.

3. “Developing the IMS Client” on page 83.

4. “Developing the IMS Two-Phase Commit Client” on page 93.

For the purposes of illustration this chapter demonstrates how to develop
both an Orbix PL/I IMS client and an Orbix PL/I IMS server. It then describes
how to run the IMS client and IMS server respectively against a PL/I batch
server and a PL/I batch client. Additionally, this chapter describes how to
develop an Orbix PL/I two-phase commit IMS client, and run it against two
C++ servers. The supplied demonstrations do not reflect real-world
scenarios requiring Orbix Mainframe, because the client and server are
written in the same language and running on the same platform.

The Orbix PL/I server developed in this chapter runs in an IMS region. It
implements a simple persistent POA-based obect. It accepts and processes
requests from an Orbix PL/I batch client that uses the object interface,

51

CHAPTER 3 | Getting Started in IMS

The demonstration IMS client

The demonstration IMS
two-phase commit client

Supplied code and JCL for IMS
application development

Si npl eQoj ect, to communicate with the server via the IMS server adapter.
The IMS server uses the Internet Inter-ORB Protocol (1I0P), which runs over
TCP/IP, to communicate with the batch client.

The Orbix PL/I client developed in this chapter runs in an IMS region. It uses
the clearly defined object interface, Si npl e(bj ect , to access and request
data from an Orbix PL/I batch server that implements a simple persistent
Si npl eChj ect object. When the client invokes a remote operation, a request
message is sent from the client to the server via the client adapter. When
the operation has completed, a reply message is sent back to the client
again via the client adapter. The IMS client uses [IOP to communicate with
the batch server.

The Orbix PL/I two-phase commit client developed in this chapter runs in an
IMS region. It uses the clearly defined object interface, Dat a, to access and
update data from two Orbix C++ batch servers. When the client invokes a
remote operation, a request message is sent from the client to one of the
servers via the client adapter. When the operation has completed, a reply
message is sent back to the client again via the client adapter. The IMS
client uses IIOP to communicate with the batch servers.

All the source code and JCL components needed to create and run the IMS
SI MPLE server and client demonstrations have been provided with your
installation. Apart from site-specific changes to some JCL, these do not
require editing.

Table 5 provides a summary of these code elements and JCL components
(where or bi xhl g represents your installation’s high-level qualifier).

Table 5: Supplied Code and JCL (Sheet 1 of 4)

Location

Description

or bi xhl g. DEMCS. | DL(S| MPLE)

This is the supplied IDL for the simple IMS client and server.

or bi xhl q. DEM35. | DL(DATA)

This is the supplied IDL for the IMS two-phase commit client.

52

Overview

Table 5: Supplied Code and JCL (Sheet 2 of 4)
Location Description

or bi xhl g. DEMS. | MB. PLI . SRC This is the source code for the IMS server mainline module, which

('SI MPLESV) is generated when you run the JCL in
or bi xhl g. DEMOS. | MB. PLI . BLD. JOLLI B(SI MPLI DL) . (The IMS
server mainline code is not shipped with the product. You must
run the SI MPLI DL JCL to generate it.)

or bi xhl g. DEMDS. | MB. PLI . SRC This is the source code for the IMS server implementation

(Sl MPLES) module.

or bi xhl g. DEMDS. | MB. PLI . SRC This is the source code for the IMS simple client module.

(S| MPLECL)

or bi xhl g. DEMDS. | MB. PLI . SRC This is the source code for the IMS two-phase commit client

(DATACL) module.

or bi xhl g. DEMOS. | M. PLI . BLD. JCLLI B This JCL runs the Orbix IDL compiler. See “Orbix IDL Compiler”

(SI MPLI DL) on page 62 for more details of this JCL and how to use it.

or bi xhl g. DEMOS. | M. PLI . BLD. JCLLI B This JCL compiles and links the IMS server mainline and IMS

(S| MPLESB) server implementation modules to create the SI MPLE server
program.

or bi xhl g. DEMOS. | M. PLI . BLD. JCLLI B This JCL compiles the IMS simple client module to create the

('Sl MPLECB) SI MPLE client program.

or bi xhl g. DEMOS. | M. PLI . BLD. JCLLI B This JCL compiles the IMS two-phase commit client module.

(DATACB)

or bi xhl g. DEMCS. | M8 PLI . BLD. JCLLI B This JCL obtains the IMS server's IOR (from the IMS server

(SIMPLICR) adapter). A client of the IMS server requires the IMS server's IOR,
to locate the server object.

53

CHAPTER 3 | Getting Started in IMS

Table 5:

Supplied Code and JCL (Sheet 3 of 4)

Location

Description

or bi xhl q. DEMCS. | MS. PLI . BLD. JCLLI B
(UPDTCONF)

This JCL adds the following configuration entry to the
configuration member:

initial_references: Sinpl ethj ect:reference="ICR..";

This configuration entry specifies the IOR that the IMS client uses
to contact the batch server. The IOR that is set as the value for
this configuration entry is the IOR that is published in

or bi xhl g. DEMOS. | CRS(SI MPLE) when you run the batch server.
The object reference for the server is represented to the
demonstration IMS client as a corbaloc URL string in the form
corbal oc: rir:/Sinpl eQuj ect. This form of corbaloc URL string
requires the use of the

initial_references: Sinpl e(hj ect:reference="ICR."
configuration entry.

Other forms of corbaloc URL string can also be used (for example,
the IIOP version, as demonstrated in the nested sequences
demonstration supplied with your product installation). See
“STR20BJ" on page 481 for more details of the various forms of
corbaloc URL strings and the ways you can use them.

or bi xhl gq. DEM36. | M5. PLI . BLD. JCLLI B
(DATAI CRS)

This JCL adds the following configuration entries to the
configuration member:

initial_references: Datathj ect A reference="1CR.";
initial_references: Datathj ect B:reference="1CR..";

These configuration entries specify the IORs that the IMS
two-phase commit client uses to contact the C++ batch servers.
The IORs that are set as the values for these configuration entries
are the IORs that are published in or bi xhl g. DEM3S. | CRS(DATAA)
and or bi xhl g. DEMDS. | CRS(DATAB) when you run the C++ batch
servers.

The object references for the servers are represented to the
demonstration IMS two-phase commit client as corbaloc URL
strings in the form corbal oc: ri r: / DATACj ect A and

cor bal oc: rir:/ DATAQyj ect B. This form of corbaloc URL string
requires the use of the i ni tial _ref erences:

Dat athj ect A reference="ICR." and i ni ti al _references:

Dat athj ect A ref erence="1CR." configuration items.

54

Overview

Supplied Code and JCL (Sheet 4 of 4)

Location Description

or bi xhl g. JCLLI B(1 MSCA) This JCL runs the IMS client adapter.

or bi xhl g. JCLLI B(1 M3A) This JCL runs the IMS server adapter.

or bi xhl g. DEMOS. CPP. BLD. JCLLI B This JCL builds the C+ + servers for the IMS two-phase commit

(DATASV) client.

or bi xhl g. DEMOS. CPP. RUN. JCLLI B This JCL runs the C++ server 'A’ for the IMS two-phase commit

(DATAA) client.

or bi xhl g. DEMDS. CPP. RUN. JCLLI B This JCL runs the C++ server 'B’ for the IMS two-phase commit

(DATAB) client.

or bi xhl g. DEM3S. CPP. GEN This PDS contains generated stub code for the C++ servers.

or bi xhl g. DEMOS. CPP. H This PDS contains C+ + header files.

or bi xhl g. DEMOS. CPP. HH This PDS contains IDL generated header files.

or bi xhl g. DEMDS. CPP. LQADLI B This PDS contains the C++ server module for the two-phase
commit IMS client.

or bi xhl g. DEMDS. CPP. SRC This PDS contains the C++ server module source code for the
two-phase commit IMS client.

or bi xhl g. DEMDS. CPP. TWOPCA This PDS contains the data store for the two-phase commit C+ +
server 'A’.

or bi xhl g. DEMDS. CPP. TWOPCB This PDS contains the data store for the two-phase commit C+ +

server 'B’.

55

CHAPTER 3 | Getting Started in IMS

Supplied include members Table 6 provides a summary in alphabetic order of the various include
members supplied with your product installation that are relevant to IMS
application development. Again, or bi xhl q represents your installation’s
high-level qualifier.

Table 6:

Supplied Include Members (Sheet 1 of 3)

Location

Description

or bi xhl g. | NCLUDE. PLI NCOL(GHKCLI Ms)

This is relevant to IMS clients only. It contains a PL/I function that
can be called by the client, to check if a system exception has
occurred, and to report that system exception.

or bi xhl g. | NCLUDE. PLI NCL(CHKERRS)

This is relevant to IMS servers. It contains a PL/I function that can
be called by the IMS server, to check if a system exception has
occurred, and to report that system exception.

or bi xhl g. | NCLUDE. PLI NOL(CCRBA)

This is relevant to both IMS clients and servers. It contains
common PL/I runtime variables. It includes the cCCRBACOMinclude
member by default. It also includes the CORBASV include member,
if the client module contains the line %Il i ent _onl y="yes’ ;.

or bi xhl g. | NCLUDE. PLI NOL(CCRBACOM)

This is relevant to both IMS clients and servers. It contains
common PL/I runtime function definitions that can be used both
by clients and servers.

or bi xhl g. | NCLUDE. PLI NCL(CORBASV)

This is relevant to IMS servers. It contains PL/I runtime function
definitions that can be used by servers.

or bi xhl g. | NCLUDE. PLI NCL(DI SPINI T)

This is relevant to IMS servers only. It retrieves the current request
information into the REQ NFOstructure via PCDREQ. From REQ NFO
the operation to be performed by the server is retrieved via a call
to STRCGET.

or bi xhl g. | NCLUDE. PLI NCL(DLI DATA)

This is relevant to IMS clients only. It contains structures to
facilitate reading from and writing to the IMS message queue via
i opch_ptr. It contains a a PL/I function called write_dc_t ext
that facilitates writing messages to the IMS output message
queue. It does this by using the supplied IBM routine (interface)
PLI TDLI to make an IMS DC (data communications) call that
specifies the common IMS function command | SRT (insert). The
DLI DATA member contains all the declarations needed for the
supplied PL/I client demonstration in IMS.

56

Overview

Table 6: Supplied Include Members (Sheet 2 of 3)

Location Description

or bi xhl g. | NCLUDE. PLI NCL(EXCNAME) This is relevant to both IMS clients and servers. It contains a PL/I
function called GCRBA_EXC _NAME that returns the system exception
name for the system exception being raised (that is, it maps Orbix
exceptions to human-readable strings). EXONAME is used by
CHKERRS and GHKALI VB,

or bi xhl g. | NCLUDE. PLI NCL(GETUIN Q This is relevant to IMS clients only. It contains a PL/I function that
can be called by the client, to retrieve specific IMS segments. It
does this by using the supplied IBM routine (interface) PLI TDLI to
make an IMS DC (data communications) call that specifies the QU
(get unique) function command.

or bi xhl g. | NCLUDE. PLI NCL(| MSPCB) This is relevant to IMS servers only. It is used in IMS server
modules. It contains three structures: pcbli st, i o_pcb, and
alt_pcb. The pcbli st structure is static, and it allows access to
the PCB pointers from anywhere within the PL/I IMS server code.
The i o_pcb and al t _pcb structures are based onto
pcblist.io_pcb_ptr and pcblist.alt_pch_ptr respectively.

Note: The supplied demonstration omits the line
% ncl ude | MSPCB, which means it does not make use of the
variables declared in this include member.

or bi xhl g. I NCLUDE. PLI NOL(URLSTR) This is relevant to clients only. It contains a PL/I representation of
the corbaloc URL IIOP string format. A client can call STR2CBJ to
convert the URL into an object reference. See “STR20BJ” on
page 481 for more details.

or bi xhl g. DEMOS. | M5. PLI . PLI NCL This PDS is used to store all IMS include members that are
generated when you run the JCL to run the Orbix IDL compiler for
the supplied demonstrations. It also contains helper procedures
for the nested sequences demonstration.

57

CHAPTER 3 | Getting Started in IMS

Table 6: Supplied Include Members (Sheet 3 of 3)

Location

Description

or bi xhl q. DEMS. | M5. MFAVAP

This PDS is relevant to IMS servers only. It is empty at installation
time. It is used to store the IMS server adapter mapping member
generated when you run the JCL to run the Orbix IDL compiler for
the supplied demonstrations. The contents of the mapping
member are the fully qualifed interface name followed by the
operation name followed by the IMS transaction name (for
example, (Si npl e/ Si npl eQoj ect, cal | _ne, SI MPLESV) . See the
IMS Adapters Administrator’s Guide for more details about
generating server adapter mapping members.

or bi xhl q. DEM3S. TYPEl NFO

This PDS is relevant to IMS servers only. It is empty at installation
time. It is used to store the type information that is generated
when you run the JCL to run the Orbix IDL compiler for the
supplied demonstrations. The contents of the type information
member describe the contents of the given IDL file from which it
was generated.

Checking JCL components

58

When creating the IMS simple client or server, or the IMS two-phase
commit client, check that each step involved within the separate JCL
components completes with a condition code not greater than 4. If the
condition codes are greater than 4, establish the point and cause of failure.
The most likely cause is the site-specific JCL changes required for the
compilers. Ensure that each high-level qualifier throughout the JCL reflects
your installation.

Developing the Application Interfaces

Developing the Application Interfaces

Overview This section describes the steps you must follow to develop the IDL
interfaces for your application. It first describes how to define the IDL
interfaces for the objects in your system. It then describes how to run the
IDL compiler. Finally it provides an overview of the PL/I include members,
server source code, and IMS server adapter mapping member that you can
generate via the IDL compiler.

Steps to develop application The steps to develop the interfaces to your application are:
interfaces

Step Action

1 | Define public IDL interfaces to the objects required in your
system.

See “Defining IDL Interfaces” on page 60.

2 | Use the crRxacPy utility to copy your IDL files to z/OS (if
necessary).

See “ORXCOPY Utility” on page 523.

3 | Run the Orbix IDL compiler to generate PL/I include members,
server source, and server mapping member.

See “Orbix IDL Compiler” on page 62.

59

CHAPTER 3 | Getting Started in IMS

Defining IDL Interfaces

Defining the IDL

Explanation of the IDL

How the demonstration uses this
IDL

60

The first step in writing any Orbix program is to define the IDL interfaces for
the objects required in your system. The following is an example of the IDL
for the Si npl e(yj ect interface that is supplied in

or bi xhl g. DEMDS. | DL(S| MPLE) :

/1 1D
nmodul e Sinple
{
interface Sinpl e(hj ect
{
voi d
call _me();
B

The preceding IDL declares a Si npl ebj ect interface that is scoped (that is,
contained) within the Si npl e module. This interface exposes a single

cal | _me() operation. This IDL definition provides a language-neutral
interface to the CORBA Si npl e: : Si npl e(hj ect type.

For the purposes of the demonstrations in this chapter, the Si npl e(hj ect
CORBA object is implemented in PL/I in the supplied simple server
application. The server application creates a persistent server object of the
Si npl ebj ect type, and publishes its object reference to a PDS member.
The client invokes the cal | _me() operation on the Si npl ebj ect object, and
then exits.

The batch demonstration client of the IMS demonstration server locates the
Si npl eQoj ect object by reading the interoperable object reference (IOR) for
the IMS server adapter from or bi xhl g. DEMS. | CRS(S| MPLE) . In this case,
the IMS server adapter IOR is published to or bi xhl g. DEMOS. | CRS(SI MPLE)
when you run or bi xhl g. DEMCS. | M5. PLI . BLD. JCLLI B(SI MPLI CR) .

The IMS demonstration client of the batch demonstration server locates the
Si npl ehj ect object by reading the IOR for the batch server from
or bi xhl g. DEMDS. | CRS(SI MPLE) . In this case, the batch server IOR is

Developing the Application Interfaces

published to or bi xhl g. DEM3S. | ORS(SI MPLE) when you run the batch server.
The object reference for the server is represented to the demonstration IMS
client as a corbaloc URL string in the form corbal oc: rir:/Si npl ehj ect .

61

CHAPTER 3 | Getting Started in IMS

Orbix IDL Compiler

The Orbix IDL compiler This subsection describes how to use the Orbix IDL compiler to generate
PL/I include members, server source, and the IMS server adapter mapping
member from IDL.

Note: If your IDL files are not already contained in z/OS data sets, you
must copy them to z/OS before you proceed. You can use the CRXGCPY

utility to do this. If necessary, see “ORXCOPY Utility” on page 523 for

more details.

Note: Generation of PL/I include members is relevant to both IMS client
and server development. Generation of server source and the IMS server
adapter mapping member is relevant only to IMS server development.

Orbix IDL compiler configuration ~ The Orbix IDL compiler uses the Orbix configuration member for its settings.
The sI MPLI DL JCL that runs the compiler uses the configuration member
or bi xhl g. CONFI 1 DL) . See “Orbix IDL Compiler” on page 293 for more
details.

Example of the SIMPLIDL JCL The following is the supplied JCL to run the Orbix IDL compiler for the IMS
S| MPLE demonstration:

//SIMPLIDL JCB (),

/1l CLASS=A,

/1 IMBGCLASS=X,

Il MBGA_EVEL=(1, 1),

/1 REQ ON=OM

/1 TI ME=1440,

/1l NOTI FY=&SYSU D,

/1 COND=(4, LT)

[/ ¥ccccocoocccccoocncccooo0oocco0on0ocooco0ooocoo0oooooooo0o0o o oo
//* Obix - Generate the PL/I I M server files for Sinple Deno
[[fl#c=ccccccccccccccccccccccccoccccocccoccoccoccoccoocoosoooooooo
/1 JALLI B ORDER=(or bi xhl . PROCLI B)

/1l | NCLUDE MEMBER=(CRXVARS)

/1l

62

Explanation of the SIMPLIDL JCL

Specifying what you want to
generate

Developing the Application Interfaces

/11 DLPLI EXEC CRXI DL,

/1 SCURCE=S| MPLE,

/1l | DL=&CRBI X. . DEMOS. | DL,

/1l QCPYLI B=&CRBI X. . DEMOS. | MB. PLI . PLI NCL,

/1 | MPL=&CRB| X. . DEM2S. | M5. PLI . SRC

I | DLPARME -pli:-TIMS -nfa:-tSI MPLESV: -i nf'
/1* | DLPARME' -pli: -V

//IDLMFA DD Dl SP=SHR DSN=&CRBI X. . DEM3S. | M5. MFAVAP
/11 DLTYPEl DD D SP=SHR DSN=&CRBI X. . DEMCS. TYPEl NFO

In the preceding JCL example, the lines | DLPARME' -pli: -V and

I DLPARVE' -pli:-TIMs -nfa:-tSIMPLESV: -i nf' are mutually exclusive. The

line | DLPARME' -pli:-TIMS -nfa: -t SIMPLESV: -i nf' is relevant to IMS server

development and generates:

® PU/I include members via the - pli argument.

® |MS server mainline code via the - TI M5 argument.

® |MS server adapter mapping member via the - nfa: -ttran_nane
arguments.

® Type information for the SI MPLE IDL member via the -i nf
sub-argument to the - nf a argument.

Note: Because IMS server implementation code is already supplied for
you, the - S argument is not specified by default.

The line 1 DLPARME' - pl i : -V in the preceding JCL is relevant to IMS client
development and generates only PL/I include members, because it only
specifies the - pl i : - vV arguments (The - v argument prevents generation of
PL/I server mainline source code.)

Note: The Orbix IDL compiler does not generate PL/I client source code.

To indicate which of these lines you want SI MPLI DL to recognize, comment
out the line you do not want to use, by placing an asterisk at the start of that
line. By default, as shown in the preceding example, the JCL is set to
generate PL/I include members, server mainline code, an IMS server adapter
mapping member, and type information for the SI MPLE IDL member.
Alternatively, if you choose to comment out the line that has the - pl i : - TI M8

63

CHAPTER 3 | Getting Started in IMS

-nfa:-tSIMPLESV: -i nf arguments, the IDL compiler only generates PL/I
include members.

See “Orbix IDL Compiler” on page 293 for more details of the Orbix IDL
compiler and the JCL used to run it.

Running the Orbix IDL compiler After you have edited the SI MpLI DL JCL according to your requirements, you
can run the Orbix IDL compiler by submitting the following job:

or bi xhl q. DEMCS. | M5, PLI . BLD. JCLLI B(SI MPLI DL)

64

Developing the Application Interfaces

Generated PL/I Include Members, Source, and Mapping

Member

Overview

Member name restrictions

How IDL maps to PL/I include
members

This subsection describes all the PL/I include members, server source, and
IMS server adapter mapping member that the Orbix IDL compiler can
generate from IDL definitions.

Note: The generated PL/I include members are relevant to both IMS
client and server development. The generated source and adapter mapping
member are relevant only to IMS server development. The IDL compiler
does not generate PL/I client source.

Generated PL/I source code, include, and mapping member names are all
based on the IDL member name. If the IDL member name exceeds six
characters, the Orbix IDL compiler uses only the first six characters of the
IDL member name when generating the other member names. This allows
space for appending a one-character suffix to each generated member
name, while allowing it to adhere to the seven-character maximum size limit
for PL/I external procedure names, which are based by default on the
generated member names.

Each IDL interface maps to a group of PL/I structures. There is one structure
defined for each IDL operation. A structure contains each of the parameters
for the relevant IDL operation in their corresponding PL/I representation. See
“IDL-to-PL/I Mapping” on page 235 for details of how IDL types map to
PL/I.

Attributes map to two operations (get and set), and readonly attributes map
to a single get operation.

65

CHAPTER 3 | Getting Started in IMS

Generated PL/I include members

66

Table 7 shows the PL/I include members that the Orbix IDL compiler
generates, based on the defined IDL.

Table 7:

Generated PL/I Include Members (Sheet 1 of 2)

Copybook

JCL Keyword
Parameter

Description

i dl menber naneD

CCPYLI B

This include member contains a
select statement that determines
which server implementation
procedure is to be called, based
on the interface name and
operation received.

i dl menber naneL

QCPYLI B

This include member contains
structures and procedures used
by the PL/I runtime to read and
store data into the operation
parameters.

This member is automatically
included in the i dl menber naneX
include member.

i dl menber naneM

CCPYLI B

This include member contains
declarations and structures that
are used for working with
operation parameters and return
values for each interface defined
in the IDL member. The
structures use the based PL/I
structures declared in the

i dl nenber naneT include
member.

This member is automatically
included in the i dI nenber nanel
include member.

Developing the Application Interfaces

Table 7: Generated PL/I Include Members (Sheet 2 of 2)

Copybook

JCL Keyword
Parameter

Description

i dl menber naneT

QCPYLI B

This include member contains
the based structure declarations
that are used in the

i dl nrenber naneMinclude
member.

This member is automatically
included in the i dl mnenber naneM
include member.

i dl menber naneX

CCPYLI B

This include member contains
structures that are used by the
PL/I runtime to support the
interfaces defined in the IDL
member.

This member is automatically
included in the i dl nenber naneVv
source code member.

i dl menber naneD

QCPYLI B

This include member contains a
select statement for calling the
correct procedure for the
requested operation.

This include member is
automatically included in the
i dl menber nanel source code
member.

67

CHAPTER 3 | Getting Started in IMS

Generated server source members Table 8 shows the server source code members that the Orbix IDL compiler
generates, based on the defined IDL.

Table 8: Generated Server Source Code Members

Member JCL Keyword Description
Parameter
i dl menber nanel I MPL This is the IMS server

implementation source code
member. It contains procedure
definitions for all the callable
operations.

This is only generated if you
specify both the -S and - TI M5
arguments with the IDL compiler.

i dl menber naneV I MPL This is the IMS server mainline
source code member. It is
generated by default. However,
you can use the -V argument
with the IDL compiler, to prevent
generation of this member.

Note: For the purposes of this example, the SI MPLEI server
implementation member is already provided in your product installation.
Therefore, the - S IDL compiler argument used to generate it is not
specified in the supplied SI MPLI DL JCL. The SI MPLEV server mainline is not
already provided, so the -V argument, which prevents generation of server
mainline code, is not specified in the supplied JCL. See “Orbix IDL
Compiler” on page 293 for more details of the IDL compiler arguments
used to generate, and prevent generation of, IMS server source code.

68

Generated server adapter
mapping member

Generated type information
member

Location of demonstration include
and mapping members

Developing the Application Interfaces

Table 9 shows the IMS server adapter mapping member that the Orbix IDL
compiler generates, based on the defined IDL.

Table 9: Generated IMS Server Adapter Mapping Member
Copybook JCL Keyword Description
Parameter
i dl menber naneA | DLMFA This is a simple text file that

determines what interfaces and
operations the IMS server
adapter supports, and the IMS
transaction names to which the
IMS server adapter should map
each IDL operation.

Table 10 shows the type information member that the Orbix IDL compiler
generates, based on the defined IDL..

Table 10: Generated Type Information Member

Copybook JCL Keyword Description
Parameter
i dl nenber naneB | DLTYPEI Type information describing the

operation signatures of the
interface whose IDL it was
generated from.

You can find examples of the include members, server source, and IMS
server adapter mapping member generated for the SI MPLE demonstration in
the following locations:

or bi xhl g. DEMOS. | MB. PLI . PLI NCL(S| MPLED)
or bi xhl q. DEMOS. | MB. PLI . PLI NCL(S| MPLEL)
or bi xhl q. DEM3S. | M5, PLI . PLI NCL(S| MPLEV)
or bi xhl g. DEM3S. | M5. PLI . PLI NCL(SI MPLET)
or bi xhl g. DEM3S. | M5. PLI . PLI NCL(SI MPLEX)
or bi xhl g. DEM3S. | MB. PLI . SRC(S| MPLEV)

or bi xhl q. DEMOS. | MB. PLI . SRQ(S| MPLE!)

or bi xhl q. DEM3S. | M5. MFANAP(S| MPLEA)

69

70

CHAPTER 3 | Getting Started in IMS

® orbi xhl g. DEMOS. TYPE! NFQ(S| MPLEB)

Note: Except for the SIMPLEI member, none of the preceding elements
are shipped with your product installation. They are generated when you

run or bi xhl g. DEMOS. | M8, PLI . BLD. JCLLI B(SI MPLI DL), to run the Orbix
IDL compiler.

Developing the IMS Server

Developing the IMS Server

Overview This section describes the steps you must follow to develop the IMS server
executable for your application. The IMS server developed in this example
will be contacted by the simple batch client demonstration.

Steps to develop the server The steps to develop the server application are:

Step Action

1 | “Writing the Server Implementation” on page 72.

“Writing the Server Mainline” on page 75.

2
3 | “Building the Server” on page 78.
4

“Preparing the Server to Run in IMS” on page 79.

71

CHAPTER 3 | Getting Started in IMS

Writing the Server Implementation

The server implementation
module

Example of the IMS SIMPLEI
module

72

You must implement the server interface by writing a PL/I implementation
module that implements each operation defined to the operation section in
the i dI menber naneT include member. For the purposes of this example, you
must write a PL/I procedure that implements each operation in the SI MPLET
include member. When you specify the - S and - TI M5 arguments with the
Orbix IDL compiler, it generates a skeleton server implementation module,
in this case called SI MPLEI, which is a useful starting point.

Note: For the purposes of this demonstration, the IMS server
implementation module, SI MPLEI, is already provided for you, so the -S
argument is not specified in the JCL that runs the IDL compiler.

The following is an example of the IMS SI MPLEl module (with the header
comment block omitted for the sake of brevity):

Table 11: The SIMPLEI Demonstration Module (Sheet 1 of 2)

SIMPLEl : PROC

/*The following |ine enables the runtine to call this procedure*/
Dl SPTCH ENTRY;

dcl (addr, | ow, sysnul |) buil tin;

% ncl ude CORBA;

% ncl ude GHKERRS;
% ncl ude DLI DATA;
% ncl ude | MSPCB;

% ncl ude SI MPLEM
%nclude D SPINT;

[* ==========—===== Start of gl obal user code =============== */
/* End of global user code ================ */
| o e eeeeeeeoooo *
/* */
/* D spatcher : sel ect(operation) */
/* */
% o e e ceeeecaeao- *

Developing the IMS Server

Table 11: The SIMPLEI Demonstration Module (Sheet 2 of 2)

3 %ncl ude SI MPLED,

/* __ */
/* Interface: */
/* Si npl e/ Si npl eoj ect */
/* */
/* Mapped nare: */
/* Si npl e_Si npl ej ect */
/* */
/* Inherits interfaces: */
/* (none) */
/* __ */
/* __ */
/* Qperation: call _ne */
/* Mapped narre: call _ne */
/* Argurents: None */
/* Returns: voi d */
/* __ */

4 proc_S npl e_Si npl eChj ect _c_c904: PROJ(p_args);

dcl p_args ptr;
5 dcl 1_args al i gned based(p_args)
li ke Sinple_S npl eChj ect _c_ba77_type;
[* ============ Start of operation specific code ============= */
6 put skip list(’Qperation call_me() called);
put ski p;
[* ============== End of operation specific code ============= */

END proc_Si npl e_Si npl eChj ect _c_c904;

END S| MPLEI;

Explanation of the IMS SIMPLElI The IMS SI MPLEI module can be explained as follows:

module 1. When an incoming request arrives from the network, it is processed by

the ORB and a call is made from the PL/I runtime to the D SPTCHentry
point.

Note: Although not used by the SI MPLE demonstation, DLI DATA and
I MBPCB provide a means of writing data to the IMS console and
access to the IMS PCB pointers read in and stored by the S| MPLEV
member.

73

CHAPTER 3 | Getting Started in IMS

Location of the IMS SIMPLEI
module

74

Within the DI SPI NI T include member, PCDREQs called to provide
information about the current invocation request, which is held in the
REQ NFOstructure. PCDREQis called once for each operation invocation
after a request has been dispatched to the server. STRGET is then called
to copy the characters in the unbounded string pointer for the
operation name into the PL/I string that represents the operation name.
The SI MPLED include member contains a select statement that
determines which procedure within SI MPLEI is to be called, given the
operation name and interface name passed to SI MPLE! . It calls PCDGET
before the call to the server procedure, which fills the appropriate PL/I
structure declared in the main include member, SI MPLEM with the
operation’s incoming arguments. It then calls PCDPUT after the call to
the server procedure, to send out the operation’s outgoing arguments.
The procedural code containing the server implementation for the

cal | _me operation.

Each operation has an argument structure and these are declared in
the typecode include member, SI MPLET. If an operation does not have
any parameters or return type, such as cal | _ne, the structure only
contains a structure with a dummy char.

This is a sample of the server implementation code for cal | _re. It is
the only part of the SI MPLEI member that is not automatically
generated by the Orbix IDL compiler.

Note: An operation implementation should not call PODGET or PCDPUT.
These calls are made within the SI MPLED include member generated by the
Orbix IDL compiler.

You can find a complete version of the IMS SI MPLEI server implementation
module in or bi xhl g. DEMDS. | M5. PLI . SRQ(SI MPLEI) .

Developing the IMS Server

Writing the Server Mainline

The server mainline module The next step is to write the server mainline module in which to run the
server implementation. For the purposes of this example, when you specify
the - TI M5 argument with the Orbix IDL compiler, it generates a module
called SI MPLEV, which contains the server mainline code.

Note: Unlike the batch server mainline, the IMS server mainline does not
have to create and store stringified object references (IORs) for the
interfaces that it implements, because this is handled by the IMS server
adapter.

Example of the IMS SIMPLEV The following is an example of the IMS SI MPLEV module:
module

Table 12: The SIMPLEV Demonstration Module (Sheet 1 of 2)

SI MPLEV: PROQ(1 O PCB PTR ALT_PCB _PTR) CPTI ONS(MAI N NCEXEQCPS) ;
dcl (io_pcb ptr,alt_pcb ptr) ptr;

dcl arg_list char (01) init(’");

dcl arg_list_len fixed bin(31) init(0);

dcl orb_nane char (10) init(’sinple_orb’);
dcl orb_nane_| en fixed bin(31) init(10);

dcl srv_nane char (256) var;

dcl server_nane char (07) init(’sinple ");
dcl server_pane_| en fixed bin(31) init(6);

dcl Sinpl e_Sinpl eChj ect_objid char(27)
init(Snplel/Snpl eChj ect_object’);
dcl Sinpl e_Si npl eChj ect _obj ptr;
dcl SYSPR NT file stream out put;
dcl (addr,length,low sysnull) builtin;

% ncl ude SETUPSV;
% ncl ude CCRBA;
% ncl ude GHKERRS;
% ncl ude | MBPCB;
% ncl ude SI MPLET;
% ncl ude SI MPLEX;

75

CHAPTER 3 | Getting Started in IMS

Table 12: The SIMPLEV Demonstration Module (Sheet 2 of 2)

pcblist.io_pcb ptr = io_pcb ptr;
pchlist.alt_pcb_ptr = alt_pcb _ptr;

pcbl i st. num db_pchs 0;

all oc pod_status_information set(pod_status_ptr);

1 call podstat(pod_status_ptr);
if check_errors(’ podstat’) ~= conpl eti on_status_yes then return;

/* Initialize the server connection to the CRB */
2 call orbargs(arg_list,arg_list_len,orb_name, orb_name_| en);
if check errors(’orbargs’) ~= conpl eti on_status_yes then return;

3 call podsrvr(server_nane, server_nane_|en);
if check_errors(’ podsrvr’) ~= conpl eti on_status_yes then return;

/* Register interface : S nple/Sinpl e(hj ect */
4 call podreg(addr(Sinple_ Sinpleject_interface));
if check_errors(’ podreg’;) ~= conpl etion_status_yes then return;

5 call objnew server_nane,
Sinpl e_Si npl ej ect _intf,
Si npl e_Si npl e(oj ect _obj i d,
Si npl e_Si npl eChj ect _obj) ;
if check_errors(’ objnew) ~= conpl etion_status_yes then return;

/* Server is nowready to accept requests */
6 call podrun;
if check_errors(’ podrun’) ~= conpl etion_status_yes then return;

7 call objrel (S npl e_Si npl e(j ect _obj);
if check_errors(’objrel’) ~= conpl etion_status_yes then return;

free pod_status_infornation;

END S| MPLEV;

Explanation of the IMS SIMPLEV ~ The IMS SI MPLEV module can be explained as follows:

module 1. PCDSTAT is called to register the PCD_STATUS | NFCRVATI CN block that is
contained in the OCRBA include member. Registering the
PCD_STATUS | NFCRVATI ON block allows the PL/I runtime to populate it

76

Location of the IMS SIMPLESV
module

7.

Developing the IMS Server

with exception information, if necessary. If conpl eti on_st at us is set to
zero after a call to the PL/I runtime, this means that the call has
completed successfully.

CRBARGS is called to initialize a connection to the ORB.

PCDSRVR is called to set the server name.

PCDREG is called to register the IDL interface, Si npl eQbj ect , with the
PL/I runtime.

CBINEWiIs called to create a persistent server object of the

Si npl ehj ect type, with an object ID of ny_si npl e_obj ect .

PCDRWN is called, to enter the CRB: : run() loop, to allow the ORB to
receive and process client requests. This then processes the CORBA
request that the IMS server adapter sends to IMS. If the transaction
has been defined as WFI, multiple requests can be processed in the
PCDRWN loop; otherwise, PCDRUN processes only one request.

CBJREL is called to ensure that the servant object is released properly.

See the preface of this guide for details about the compilers that this product
supports.

You can find a complete version of the IMS SI MPLEV server mainline module
in or bi xhl q. DEMDS. | MB. PLI . SRQ(SI MPLEV) after you have run

or bi xhl g. DEMOS. | MB. PLI . BLD. JCLLI B(SI MPLI DL) to run the Orbix IDL
compiler.

77

CHAPTER 3 | Getting Started in IMS

Building the Server

Location of the JCL Sample JCL used to compile and link the IMS server mainline and server
implementation is in or bi xhl g. DEMOS. | M5. PLI . BLD. JCLLI B(S| MPLESB) .

Resulting load module When this JCL has successfully executed, it results in a load module that is
contained in or bi xhl g. DEMDS. | M5, PLI . LQADLI B(SI MPLESV) .

78

Developing the IMS Server

Preparing the Server to Run in IMS

Overview This section describes the required steps to allow the server to run in an IMS
region. These steps assume you want to run the IMS server against a batch
client. When all the steps in this section have been completed, the server is
started automatically within IMS, as required.

Steps The steps to enable the server to run in an IMS region are:

Step Action

1 | Define a transaction definition for IMS.

Provide the IMS server load module to an IMS region.

2
3 | Generate mapping member entries for the IMS server adapter.
4

Add the interface’s operation signatures to the type information
repository, stored in the TYPEI NFOPDS.

5 | Obtain the IOR for use by the client program.

Step 1—Defining transaction A transaction definition must be created for the server, to allow it to run in
definition for IMS IMS. The following is the transaction definition for the supplied
demonstration:

APPLCTN GPSB=SI| MPLESV, X
PQVIYPE=(TP, , 2) , X
SOHDTYP=PARAL LEL

TRANSACT ~ CCDE=S| MPLESV, X
ED T=(ULQ)

Step 2—Providing load moduleto Ensure that the or bi xhl g. DEMOS. | M. PLI . LOADLI B PDS is added to the
IMS region STEPLIB for the IMS region that is to run the transaction, or copy the
SI MPLESV load module to a PDS in the STEPLIB of the relevant IMS region.

79

CHAPTER 3 | Getting Started in IMS

Step 3—Generating mapping
member entries

Step 4—Adding operation
signatures to type_info store

80

The IMS server adapter requires mapping member entries, so that it knows
which IMS transaction should be run for a particular interface and
operation. The mapping member entry for the supplied example is contained
in or bi xhl q. DEMOS. | M. MFAMAP(SI MPLEA) (after you run the IDL compiler)
and appears as follows:

(S npl e/ Si npl eCj ect, cal | _ne, S| MPLESV)

The generation of a mapping member for the IMS server adapter is
performed by the or bi xhl g. DEMOS. | M5. PLI . BLD. JCLLI B(SI MPLI DL) JCL.
The -nfa: -ttran_name argument with the IDL compiler generates the
mapping member. For the purposes of this example, t ran_name is replaced
with SI MPLESV. An | DLMFA DD statement must also be provided in the JCL,
to specify the PDS into which the mapping member is generated. See the
IMS Adapters Administrator’s Guide for full details about IMS server
adapter mapping members.

The IMS server adapter needs to be able to obtain operation signatures for
the PL/I server. For the purposes of this demonstration, the TYPEI NFOPDS is
used to store this type information. This type information is necessary so
that the adapter knows what data types it has to marshal into IMS for the
server, and what data types it can expect back from the IMS transaction.
This information is generated by supplying the -nfa: -i nf option to the IDL
compiler, for example, as used in the SI MPLI DL JCL used to generate the
source and include members for this demonstration..

Note: An IDL interface only needs to be added to the type information
store once.

Developing the IMS Server

Note: An alternative to using type information files is to use the Interface
Repository (IFR). This is an alternative method of allowing the IMS server
adapter to retrieve IDL type information. If you are using the IFR, you must
ensure that the relevant IDL for the server has been added to the IFR (that
is, registered with it) before the IMS server adapter is started.

To add IDL to the IFR, first ensure the IFR is running. You can use the JCL
in orbi xhl g. JOL(I FR) to start it. Then, in the JCL that you use to run the
Orbix IDL compiler, add the line // | DLPARVE -R to register the IDL. In
this case, ensure that all other // 1 DLPARM lines are commented out as
follows: //* | DLPARM..

Step 5—Obtaining the server The final step is to obtain the IOR that the batch client needs to locate the
adapter IOR IMS server adapter. Before you do this, ensure all of the following:
® The type_info store contains the relevant operation signatures (or, if
using the IFR, the IFR is running and contains the relevant IDL). See
“Step 4—Adding operation signatures to type info store” on page 80
for details of how to populate the type_info store.
® The IMS server adapter mapping member contains the relevant
mapping entries. For the purposes of this example, ensure that the
or bi xhl . DEMDS. | M5. MFAMAP(S| MPLEA) mapping member is being
used. See the IMS Adapters Administrator’s Guide for details about
IMS server adapter mapping members.
® The IMS server adapter is running. See the IMS Adapters
Administrator’s Guide for more details of how to start the IMS server
adapter, using the supplied JCL in or bi xhl g. JC_LI B(| M8A) JCL.

81

CHAPTER 3 | Getting Started in IMS

Now submit or bi xhl g. DEMCS. | M. PLI . BLD. JOLLI B(SI MPLI CR) , to obtain
the IOR that the batch client needs to locate the IMS server adapter. This
JCL includes the r esol ve command, to obtain the IOR. The following is an
example of the SI MPLI CRJCL:

/1 JOLLI B CRDER=(or bi xhl g. PROCLI B)
/1 I NCLUDE MEMBER=(CRXVARS)
1%

/1* Request the ICR for the I M5 'sinple persistent' server
//* and store it in a PDS for use by the client.

/1*

/1* Make the foll owi ng changes before running this JCO.:

/1*

//* 1. Change ' SET DOVAI N=' DEFAULT@ to your configuration
/1* donmai n narre.

[1*

/1l SET DOVAl N=' DEFAULLT@

/1*

/1 REG EXEC PROC=CRXADM N,

/1 PPARMVF nfa resol ve Sinplel/S npletject > DD ICR
/11 CR DD DSN=&CRBI X. . DEMOB. | CRS(SI MPLE) , DI SP=SHR

// ORBARGS DD *

-CRBnane iona_utilities.insa

/*

/11 TDOVAI N DD DSN=&CRBI XCFQ &DOVAI N) , DI SP=SHR

When you submit the SI MPLI CR JCL, it writes the IOR for the IMS server
adapter to or bi xhl g. DEMOS. | CRS(SI MPLE) .

82

Developing the IMS Client

Developing the IMS Client

Overview This section describes the steps you must follow to develop the IMS client
executable for your application. The IMS client developed in this example
will connect to the simple batch server demonstration.

Note: The Orbix IDL compiler does not generate PL/I client stub code.

Steps to develop the client The steps to develop and run the client application are:

Step Action

1 | “Writing the Client” on page 84.

2 | “Building the Client” on page 88.

3 | “Preparing the Client to Run in IMS” on page 89.

83

CHAPTER 3 | Getting Started in IMS

Writing the Client

The client program The next step is to write the client program, to implement the IMS client.
This example uses the supplied SI MPLEQL client demonstration.

Example of the SIMPLEC module The following is an example of the IMS SI MPLEC module:
Table 13: The SIMPLEC Demonstration Module (Sheet 1 of 3)
SIMPLEC PRCC (10 PCB PTR, ALT_PCB PTR) CPTI ONS(MAI N NCEXEQOPS) ;
dcl (io_pcb ptr, alt_pcb _ptr) ptr;
%l i ent _onl y="yes';

dcl (addr index,|ow substr, sysnull, | ength) bui l tin;

dcl arg_list char (40) init('");
dcl arg_list_len fixed bin(31) init(38);
dcl orb_nane char (10)
init(' sinple orb');
dcl orb_nane_| en fixed bin(31) init(10);
dcl sysprint file stream out put;
1 dcl sinple_url char (27)

init('corbaloc:rir:/S npleCoject ');
dcl sinple_ url_ptr ptr init(sysnull());
dcl S npl e_Si npl eChj ect _obj ptr;
% ncl ude CORBA;

% ncl ude | MSPCB;
2 % ncl ude DLI DATA
% ncl ude GETUN Q
3 % ncl ude CHKCLI MV5;
% ncl ude SI MPLEM
% ncl ude SI MPLEX;

pcblist.io pcb ptr = io_pcb ptr;

pcblist.alt_pcb _ptr = alt_pcb_ptr;

call get_unigq;

/* Initialize the PL/I runtime status information bl ock */
all oc pod_status_information set(pod_status_ptr);

84

Developing the IMS Client

Table 13: The SIMPLEC Demonstration Module (Sheet 2 of 3)

call podstat(pod_status _ptr);

/* Initialize our CRB */
call orbargs(arg |list,
arg_list_len,
orb_narre,
orb_nane_l en);
if check_errors('orbargs') ~= conpl etion_status_yes then
return;

/* Register the SinpleCject interface with the PL/I runtime */
cal | podreg(addr(Si npl e_S npl eChj ect _i nterface));
if check_errors('podreg') "= conpl etion_status_yes then

return;

/* Oreate an object reference fromthe server's IR */

/* so we can nake calls to the server */
call strset(sinple_url_ptr,
sinple_url,

length(sinple url));
if check_errors('strset') "= conpl etion_status_yes then
return;

call str2obj(sinple_url_ptr,Sinple_S npl eChj ect_obj);
if check_errors('str2obj') ~= conpletion_status_yes then
return;

/* Now we are ready to start making server requests */

put skip list('sinple_persistent deno');
put skip list(" ')

/* Call operation call_me */
/* As this is a very sinple function, there aren’t any */
/* paraneters. So instead we pass in the generated dummy */
/* structure created for this operation. */
put skip list('Calling operation call_me...");
call podexec(Si npl e_Si npl ethj ect _obj ,

Si npl e_Si npl e(hj ect _cal | _rre,

addr (S npl e_Si npl eChj ect _c_ba77_args),

no_user _excepti ons);
i f check_errors(' podexec') ~= conpl etion_status_yes then

return;

85

CHAPTER 3 | Getting Started in IMS

Explanation of the SIMPLEC

module

86

10

Table 13: The SIMPLEC Demonstration Module (Sheet 3 of 3)

put skip list('Qperation call_me conpleted (no results to

display)');
put skip;
put skip list('End of the sinple_persistent deno');
put skip;
dc_text = 'Sinple Transaction conpleted' ;

call wite_dc_text(dc_text, 38);

/* Free the sinple_persistent object reference */

call objrel (S npl e_Si npl eChj ect _obj);

if check_errors('objrel') ~= conpletion_status_yes then
return;

free pod_status_infornation;

END S| MPLEC,

The IMS SI MPLEC module can be explained as follows:

1.

si npl e_ur| defines a corbaloc URL string in the cor bal oc: ri r format.
This string identifies the server with which the client is to
communicate. This string can be passed as a parameter to STR2ZCBJ to
allow the client to retrieve an object reference to the server. See point 8
about STR2CBJ for more details.

The wite_dc_text function is provided in the DLI DATA include
member. This function allows messages generated by the
demonstrations to be written to the IMS message queue.

A special error-checking include member is used for IMS clients.
PCDSTAT is called to register the PCD_STATUS | NFCRVATI ON block that is
contained in the GCRBA include member. Registering the

PCD_STATUS_| NFORMVATI ON block allows the PL/I runtime to populate it
with exception information, if necessary. If conpl eti on_st at us is set to
zero after a call to the PL/I runtime, this means that the call has
completed successfully.

The check_errors function can be used to test the status of any Orbix
call. It tests the value of the excepti on_nunber in

pod_st at us_i nf or mat i on. If its value is zero, it means the call was
successful. Otherwise, check_errors prints out the system exception

Developing the IMS Client

number and message, and the program ends at that point. The
check_errors function should be called after every PL/I runtime call to
ensure the call completed successfully.

5. ORBARGS is called to initialize a connection to the ORB.

6. PCODREGIs called to register the IDL interface with the Orbix PL/I
runtime.

7. STRSET is called to create an unbounded string to which the stringified
object reference is copied.

8. STR@BJ is called to create an object reference to the server object. This
must be done to allow operation invocations on the server. In this case,
the client identifies the target object, using a corbaloc URL string in the
form corbal oc: rir:/Si npl eoj ect (as defined in point 1). See
“STR20BJ” on page 481 for more details of the various forms of
corbaloc URL strings and the ways you can use them.

9. After the object reference is created, PCDEXEC is called to invoke
operations on the server object represented by that object reference.
You must pass the object reference, the operation name, the argument
description packet, and the user exception buffer. If the call does not
have a user exception defined (as in the preceding example), the
no_user _except i ons variable is passed in instead. The operation name
must be terminated with a space. The same argument description is
used by the server. For ease of use, string identifiers for operations are
defined in the SI MPLET include member. For example, see
or bi xhl q. DEMDS. | M5. PLI . PLI NCL(S| MPLET) .

10. @BIREL is called to ensure that the servant object is released properly.

Location of the SIMPLEC module You can find a complete version of the IMS SI MPLEC client module in
or bi xhl q. DEMCS. | M. PLI . SRQ(S| MPLEC) .

87

CHAPTER 3 | Getting Started in IMS

Building the Client

JCL to build the client Sample JCL used to compile and link the client can be found in the third
step of or bi xhl . DEMDS. | M. PLI . BLD. JCLLI B(S| MPLEC) .

Resulting load module When the JCL has successfully executed, it results in a load module that is
contained in or bi xhl g. DEMDS. | M5, PLI . LQADLI B(SI MPLEC) .

88

Developing the IMS Client

Preparing the Client to Run in IMS

Overview This section describes the required steps to allow the client to run in an IMS
region. These steps assume you want to run the IMS client against a batch
server.

Steps The steps to enable the client to run in an IMS region are:

Step Action
1 | Define an APPC transaction definition for IMS.
2 | Provide the IMS client load module to an IMS region.
3 | Start the locator and node daemon on the server host.
4 | Add the interface’s operation signatures to the type information
repository.
5 | Start the batch server.
6 | Customize the batch server IOR.
7 | Configure and run the client adapter.

Step 1—Define transaction A transaction definition must be created for the client, to allow it to run in

definition for IMS IMS. The following is the transaction definition for the supplied

demonstration:

APPLCTN GPSB=SI| MPLECL, X
PGVIYPE=(TP, , 2) X
SOHDTYP=PARALLEL

TRANSACT ~ CCDE=S| MPLEQL, X
ED T=(ULQ)

89

CHAPTER 3 | Getting Started in IMS

Step 2—Provide client load
module to IMS region

Step 3—Start locator and node
daemon on server host

Step 4—Add operation signatures
to type_info store

90

Ensure that the or bi xhl g. DEMOS. | M. PLI . LOADLI B PDS is added to the
STEPLIB for the IMS region that is to run the transaction.

Note: If you have already done this for your IMS server load module, you
do not need to do this again.

Alternatively, you can copy the SI MPLEC load module to a PDS in the
STEPLIB of the relevant IMS region.

This step assumes that you intend running the IMS client against the
supplied batch demonstration server.

In this case, you must start all of the following on the batch server host (if
they have not already been started):

1. Start the locator daemon by submitting or bi xhl g. JCLLI B(LOCATCR) .
2. Start the node daemon by submitting or bi xhl q. JOLLI B(NCDEDAEM) .

See “Running the Server and Client” on page 45 for more details of running
the locator and node daemon on the batch server host.

The client adapter needs to be able to know what data types it can expect to
marshal from the IMS transaction, and what data types it should expect
back from the batch server. This can be done by creating a type information
file by running the IDL compiler with the -nfa: -i nf flag, which is included
in or bi xhl gq. DEMDS. | M5. PLI . BLD. JOLLI B(SI MPLI DL) . The type information
file contains descriptions of the interface’s operation signatures (that is,
information about the type and direction of the operation parameters, the
number of parameters, and whether or not an operation has a return type).

Before the client adapter is run, the TYPEI NFODD card needs to be updated

to the location of the TYPEI NFOPDS (for the purposes of this example, it
should be updated to or bi xhl q. DEMOS. TYPEI NFO)..

Note: An IDL interface only needs to be added to the type information
store once.

Step 5—Start batch server

Step 6—Customize batch server
IOR

Developing the IMS Client

Note: An alternative to using type information files is to use the Interface
Repository (IFR). This is an alternative method of allowing the client
adapter to obtain information about relevant data types. If you are using
the IFR, you must ensure that the relevant IDL for the server has been
added to the IFR (that is, registered with it) before the client adapter is
started.

To add IDL to the IFR, first ensure the IFR is running. You can use the JCL
in orbi xhl g. JOL(I FR) to start it. Then, in the JCL that you use to run the
Orbix IDL compiler, add the line // | DLPARVE -R to register the IDL. In
this case, ensure that all other // 1 DLPARM lines are commented out as
follows: //* | DLPARM..

This step assumes that you intend running the IMS client against the
demonstration batch server.

Submit the following JCL to start the batch server:
or bi xhl g. DEMCS. PLI . RUN JCLLI B(S| MPLESV)

See “Running the Server and Client” on page 45 for more details of running
the locator and node daemon on the batch server host.

When you run the demonstration batch server it publishes its IOR to a
member called or bi xhl q. DEMOS. | CRS(SI MPLE) . The demonstration IMS
client needs to use this IOR to contact the demonstration batch server.

The demonstration IMS client obtains the object reference for the
demonstration batch server in the form of a corbaloc URL string. A corbaloc
URL string can take different formats. For the purposes of this
demonstration, it takes the form cor bal oc: ri r:/ Si npl eQoj ect . This form of
the corbaloc URL string requires the use of a configuration variable,
initial _references: Sinpl eQoj ect : ref erence, in the configuration
domain. When you submit the JCL in

or bi xhl g. DEMDS. | MB. PLI . BLD. JCLLI B(UPDTCONF) , it automatically adds
this configuration entry to the configuration domain:

initial _references: S npl eChj ect:reference = "I CR.";

The IOR value is taken from the or bi xhl g. DEMDS. | GRS(S| MPLE) member.

91

CHAPTER 3 | Getting Started in IMS

Step 7—Configure and run client
adapter

92

See “STR20BJ" on page 481 for more details of the various forms of
corbaloc URL strings and the ways you can use them.

The client adapter must now be configured before you can start the client
(the IMS transaction). See the IMS Adapters Administrator’s Guide for
details of how to configure the client adapter.

When you have configured the client adapter, you can run it by submitting
or bi xhl gq. JCLLI B(| MSCA) :

Note: See “Running the Demonstrations” on page 114 for details of how
to run the sample demonstration.

Developing the IMS Two-Phase Commit Client

Developing the IMS Two-Phase Commit Client

Overview This section describes the steps you must follow to develop the IMS
two-phase commit client executable for your application. The IMS
two-phase commit client developed in this example will connect to two
demonstration C++ batch servers.

Steps to develop the client The steps to develop and run the client application are:

Step Action

1 | “Writing the Client” on page 94.

“Building the Client” on page 109.

2
3 | “Building the Servers” on page 110.
4 | “Preparing the Client to Run in IMS” on page 111.

93

CHAPTER 3 | Getting Started in IMS

Writing the Client

The client program

IMS transaction design

Overview of IMS transaction
layout

94

The next step is to write the IMS client transaction. This example uses the
supplied DATAC client demonstration.

An IMS transaction that uses two-phase commit can be broken down as
follows:

® Qperations that do not require two-phase commit.
® Qperations that require two-phase commit.

Read-only operations to local databases or remote servers do not require
two-phase commit processing. These operations should be performed first in
the IMS transaction ahead of the two-phase commit operations. The
rationale behind this is that if operations not requiring two-phase commit
processing fail, it might be pointless to perform operations that do require
two-phase commit processing.

Figure 4 provides an overview of IMS transaction layout.

Non-two-phase commit processing

(APPC sync level 0)

Two-phase commit processing

(APPC sync level 2)

Figure 4: Overview of IMS Transaction Layout

Designing an IMS two-phase
commit transaction

Commit or rollback scenarios

Developing the IMS Two-Phase Commit Client

When designing an IMS two-phase commit transaction, structure the
transaction as follows:

1. Begin the IMS transaction by performing standard Orbix Mainframe
IMS client initialization.

Issue an initial IMS Get Uni que call.

Perform the following loop until the IMS status code indicates that
there are no more segments:

¢ Perform operations that do not require two-phase commit. If any
of the operations fail, skip the two-phase commit processing.

. Call PCOTXNB to indicate the start of two-phase commit
processing.

+ Call PCDEXEC (perhaps multiple times) to send an update to a
remote server. If any of the calls fail, call rollback and skip any
updates to local resources.

¢ Make updates to local resources, such as updating a local
database. If any of the local updates fail, call rollback.

. Call PCDTXNE to indicate the end of the two-phase commit work.

¢ Perform any post two-phase commit work, such as sending a
message back to the user.

¢ Issue another Get Uni que call.
4. End loop.

When an IMS transaction makes updates to resources (that is, local
databases or remote CORBA servers) via the client adapter, the updates are
not made permanent until the two-phase commit has been successfully
processed. The trigger for starting the two-phase commit is when the IMS
transaction finishes its processing. The transaction does not immediately
end. Instead, it waits for the results of two-phase commit to decide whether
it should commit or roll back its updates to local resources.

The client adapter sends a "prepare" message to each remote server that has
been updated from the IMS transaction. Each server returns a vote to the
client adapter. A vote of "commit" indicates the remote server is willing to
commit its updates. A vote of "rollback" indicates the remote server has a
problem and that it wants to roll back the update.

95

CHAPTER 3 | Getting Started in IMS

96

The various scenarios that might arise are as follows:

Successful two-phase commit

If all returned votes are "commit", the client adapter calls the IBM API
SRROM T, to inform IMS that all remote servers are willing to commit
their updates. If the return code from SRRCM T is 0, the client adapter
sends a "commit" message to each remote server. Two-phase commit
processing is then completed and all resources are updated.

Rollback two-phase commit—Scenario 1

If the client adapter receives at least one returned vote of "rollback", all
updates should be rolled back. The client adapter calls the IBM API

SRRBACK, to inform IMS that there are problems. This causes the IMS
transaction to abend with a U0711 code to roll back any local updates.

Rollback two-phase commit—Scenario 2

If all returned votes are "commit", the client adapter calls the IBM API
SRROM T, to inform IMS that all remote servers are willing to commit
their updates. If the return code from SRROM T is not 0, the client
adapter sends a "rollback" message to each server. In this case, this
means that a resource other than the remote servers has voted
"rollback".

Rollback two-phase commit—Scenario 3

If the IMS transaction makes an update to a remote server, and the
update fails (because, for example, the server is not running), the
transaction calls "rollback" to undo any updates. The client adapter
receives the rollback signal and sends a "rollback" message to each
server.

Developing the IMS Two-Phase Commit Client

Example of the DATAC module The following is an example of the IMS DATAC module:
Example 4: The DATAC Demonstration Module (Sheet 1 of 10)
DATAC PROC(I O PCB PTR ALT_PCB PTR) CPTI ONS(MAI N NCEXECCPS) ;
dcl (io_pcb_ptr,alt_pcb_ptr) ptr;
%l i ent _onl y="yes';

dcl (addr,index,|ow string, substr, sysnull,|ength) bui l tin;

dcl arg_list char (40) init('");

dcl arg_list_len fixed bin(31) init(38);

dcl orb_nane char (9) init(' twpc_orb');

dcl orb_nane_| en fixed bin(31) init(9);

dcl sysprint file stream out put;

dcl data url A char (26)
init(' corbaloc:rir:/DataChjectA");

dcl data url B char (26)
init('corbaloc:rir:/DataChjectB"');

dcl data_url _ptr ptr init(sysnull());

dcl Dat aChj ect _obj A ptr;

dcl Dat athj ect _obj B ptr;

dcl read result_A fixed bin(31) init(0);

dcl update_result_A fixed bin(31) init(0);

dcl read result_B fixed bin(31) init(0);

dcl update_result_B fixed bin(31) init(0);

dcl good resul t fixed bin(31) init(l);

dcl 1 dc_text_area,

3 nsg_l ength fixed bin(31),
3 dc_text_nsg,
5 header char (42),
5 resul t char (08);
% ncl ude CORBA;

% ncl ude | MBPCB;

% ncl ude DLI DATA
% ncl ude CGHKCLI M5;
% ncl ude DATAM

% ncl ude DATAX;

97

CHAPTER 3 | Getting Started in IMS

98

Example 4: The DATAC Demonstration Module (Sheet 2 of 10)

pcblist.io _pcb ptr io_pcb ptr;
pcblist.alt_pcb ptr = alt_pcb_ptr;

/***/

/* */
/* Process, a two-phase commt transaction. The general flow */
/* of the transaction is as foll ows: */
/* */
/* initial Get ULhique (A) + initialize */
/* while |OPCB status is spaces */
/* begi n a transaction (PCOTXNB) */
/* read a value from"server A' (PCDEXEC */
/* send an update to "server A' (PCDEXEQ */
/* read a value from"server B' (PCDEXEC */
/* send an update to "server B' (PCDEXEQ */
/* if any request failed, rollback (ROLB) */
/* end the transacti on (PCOTXNE) */
/* insert (1SRT) a message to the | M5 message queue */
/* i ssue another QJ - which triggers the two-phase conmt*/
/* end-while */
/* */

[R KK Kk K ok K K kK kK Kk kR kK Rk R Kk X R Rk R Rk Rk Rk Rk kR kR kR Xk k [

call Initialize;

do until (io_pch.status_code =" "');
call Process_transaction;

end;

call Term nate;

/***/

/* */
/* Initialize */
/* */
/* Issue the initial Get Unique. Get references to server */
/* "A' and server "B. */
/* */

/***/
Initialize: PROC
call GET_UNQ

/* Initialize the PL/l runtine status information bl ock */

Developing the IMS Two-Phase Commit Client

Example 4: The DATAC Demonstration Module (Sheet 3 of 10)

all oc pod_status_information set(pod _status_ptr);
call podstat(pod_status_ptr);

/* Initialize our CRB */
put skip list('Initializing the CRB);
call orbargs(arg_list,
arg_list_len,
orb_nane,
orb_narme_l en);
if check_errors('orbargs') ~= conpl etion_status_yes then
return;

/* Register the interface with the PL/I runtinme */

put skip list('Registering the Interface');

call podreg(addr(Data_interface_interface));

i f check_errors('podreg') "= conpl etion_status_yes then return;

/* Set the pointer to the url A string. */
call strset(data url _ptr,
data_url A
I ength(data_url A));
if check_errors('strset') "= conpl etion_status_yes then return;

/* Cbtain object Areference fromthe url. */

call str2obj(data_url _ptr, DataCbj ect _obj A);

if check_errors('str2obj') ~= conpl etion_status_yes then
return;

/* Rel easing the menory. */

call strfree(data_ url _ptr);

if check_errors('strfree') ~= conpl etion_status_yes then
return;

/* Set the pointer to the urlB string. */
call strset(data url _ptr,
data_url B,
|l ength(data_url B));
if check_errors('strset') "= conpl etion_status_yes then return;

/* (btain object B reference fromthe url. */

call str2obj(data_ url _ptr, Dat aChj ect _obj B);

if check_errors('str2obj') ~= conpletion_status_yes then
return;

/* Rel easing the menory. */

929

CHAPTER 3 | Getting Started in IMS

Example 4: The DATAC Demonstration Module (Sheet 4 of 10)

call strfree(data url_ptr);
if check_errors('strfree') ~= conpl etion_status_yes then
return;

END Initialize;

/***/

/* */
/* Process_transaction */
/* */
/* Begin a two-phase commt transaction by calling podtxnb. */
/* Read a value from"server A'. Add 1 to the value and */
/* update "server A' with the new val ue. */
/* Read a value from"server B'. Add 1 to the value and */
/* update "server B' with the new val ue. */
/* */
/* Check that all requests we successful. If not, request */
/* a roll back. */
/* */
/* End the two-phase commit transaction by calling podtxne. */
/* */
/* |If all requests were successful, the next GJcall wll */
/* trigger the two-phase commit. */
/* */

[kK Kk K ok Kk ok K Kk ok Kk R Kk R R kK R ok X Rk R R kR Rk Rk ok Rk Rk kR Rk Xk k [

Process_transaction: PRCC

/* Begin a transaction. */

cal | podtxnb;

i f check_errors('podtxnb') ~= conpletion_status_yes then
return;

put skip list('Two-phase coomit transaction begins');

call read_val ue_A

if read result_A = good_result
t hen
do;
call update_val ue A
end;

if update_result_A = good_result

t hen
do;

100

Developing the IMS Two-Phase Commit Client

Example 4: The DATAC Demonstration Module (Sheet 5 of 10)

call read_val ue_B;
end;

if read result B = good_resul t

t hen
do;
call update_val ue_B;
end;
if read result A = good result &
update result_A = good result &
read_result_B = good_result &
update result_B = good resul t
t hen
do;

dc_text_area. dc_text_nsg. header =
' Two- phase commit transaction conpl eted' ;
dc_text_area.dc_text_nsg.result ="' ';
dc_text_area.nsg_l ength = 42;
put skip list('Al updates successful -');
put skip list('request commt');
end;
el se
do;
dc_text_area. dc_text_nsg. header =
' A probl emwas encountered - rolling back';
dc_text_area.dc_text_nsg.result ="' ';
dc_text_area.nsg_l ength = 44;
put skip list('Sone updates were not successful -');
put skip list('request rollback');
call roll back;
end;

/* End the transaction. */

cal |l podtxne;

i f check_errors('podtxne') ~= conpl etion_status_yes then
return;

put skip list('Two-phase comit transaction ends');

call insert;

call GET_UNQ

END Process_transacti on;

101

CHAPTER 3 | Getting Started in IMS

102

Example 4: The DATAC Demonstration Module (Sheet 6 of 10)

***/

/* */
/* read_val ue_A */
/* */
/* Read a value from"server A'. */
[*/

/***/

read_val ue_A: PRCC

cal | podexec(Dat aChj ect _obj A
read_operati on,
addr (read_operati on_args),
no_user _exceptions);

i f check_errors('podexec') = conpl etion_status_yes
t hen
do;
read_result_A = 1;
put skip list(' Successfully read a value fromServer A ');
put |ist(read_operation_args.idl _value);
end;

END read_val ue_A;

[kK Kk K ok Kk ok K Kk ok Kk R Kk R R kK R ok X Rk R R kR Rk Rk ok Rk Rk kR Rk Xk k [

/* */
/* updat e_val ue_A */
/* */
/* Request that "server A" update a val ue. */
/* */

[kK K kK ok Kk ok K Kk kK ok R Kk R Rk R Kk X Rk R Rk R Rk R Rk ok Rk ko Rk kR Rk ok ko k [

updat e_val ue_A: PRCC

wite operation_args.idl _value = read operation_args.idl _val ue
+ 15

put skip list('New value for server A ');

put |ist(wite_operation_args.idl _value);

cal | podexec(Dat aChj ect _obj A
wite_operation,
addr (write_operation_args),
no_user _excepti ons) ;

i f check_errors('podexec') = conpl etion_status_yes
t hen

Developing the IMS Two-Phase Commit Client

Example 4: The DATAC Demonstration Module (Sheet 7 of 10)

do;
update_result_A = 1;
put skip list('Server A has successfully updated the
val ue."');
end;

END updat e_val ue_A;

/***I

¥ =
/* read_val ue_B */
% s
/* Read a value from"server B'. */
[)

/***I

read_val ue_B: PRCC

cal | podexec(Dat aChj ect _obj B,
read_operati on,
addr (read_operati on_args),
no_user _excepti ons);

i f check_errors('podexec') = conpl etion_status_yes
t hen
do;
read_result_B = 1;
put skip list('Successfully read a value fromServer B. ');
put |ist(read operation_args.idl_value);
end;

END read_val ue_B;

/***I

/* */
/* updat e_val ue_B */
/* */
/* Request that "server B' update a val ue. */
/* */

/***I

updat e_val ue_B: PRCC

wite_operation_args.idl _value = read_operation_args.idl_val ue
+ 1;

put skip list('New value for server B ');

put list(wite_operation_args.idl _value);

103

CHAPTER 3 | Getting Started in IMS

104

Example 4: The DATAC Demonstration Module (Sheet 8 of 10)

cal | podexec(Dat aChj ect _obj B,
wite_operation,
addr (write_operation_args),
no_user _exceptions);

i f check_errors('podexec') = conpl etion_status_yes
t hen
do;
update result_B = 1;
put skip list('Server B has successfully updated the
val ue.");
end;

END updat e_val ue_B;

/***/

/*

/* GET_WN Q

/*

/* Issu a GET UNQUE cal | .
/*

/*

*/
*/
*/
*/
*/
*/

/***/

GT INQ PRI

dcl in_trancode char (08) init('");
dcl space_position fixed bin(31) init(0);

call plitdli(three, get_unique, pcblist.io_pcb_ptr,input_nsg);

space_position = index(in_line,' ');
i n_trancode = substr(in_line, 1, space_position);
if io_pch.status_code ="' ' &
i 0_pch. status_code ~= no_nore_nessages
t hen
do;

dc_text_area.dc_text_nsg. header =
"Segnent read FAILED with status code ';
dc_text_area.dc_text_nsg.result = io_pch. status_code;

call wite dc_text(string(dc_text_area.dc_text_nsg), 49);

end;

if io_pcb.status_code ="'
t hen

Developing the IMS Two-Phase Commit Client

Example 4: The DATAC Demonstration Module (Sheet 9 of 10)

do;
dc_text_area.dc_text_nsg. header = ' Qutput from
transaction: ';
dc_text_area.dc_text_nsg.result = in_trancode;
call wite_dc_text(string(dc_text_area.dc_text_nsg), 49);
end;
END GET_UN Q
/***/
/* */
/* Insert */
/* */
/* Issue an | NSERT call. */
/* */
/***/
| NSERT: PRCC

call wite_dc_text(string(dc_text_area.dc_text_nsg),
dc_text_area.nsg_| ength);

END | NSERT;

/***I

A “
/* Rol | back */
[l Ry
/* lssue a ROLLBACK cal | . */
/* */

/***I

RCLLBACK: PRCC,
call plitdli(two,rolb,pcblist.io_pcb_ptr);

if io_pcb.status_code ="' '
t hen
do;
put skip list('ROLLBACK FAILED with status code error of ');
put |ist(io_pch.status_code);
end;

END ROLLBACK;

/**/

/* */

105

CHAPTER 3 | Getting Started in IMS

Explanation of the DATAC module

106

Example 4: The DATAC Demonstration Module (Sheet 10 of 10)

/* Termnate */
/* */
/* Rel ease the references to "server A' and "server B'. */

/* */
/***/

Term nate: PRCC

cal | objrel (Datahj ect_obj A);
if check_errors('objrel') ~= conpl etion_status_yes then return;

cal |l objrel (Dat aChj ect _obj B);
if check_errors('objrel') ~= conpl etion_status_yes then return;

free pod_status_infornation;
END Ter m nat e;

END DATAC

The IMS DATAC module can be explained as follows:

1.

dat a-url A and dat a- ur| B define corbaloc URL strings in the

corbal oc: rir format. These strings identify the servers with which the
client is to communicate. The strings can be passed as parameters to
STR2CBY, to allow the client to retrieve an object reference to the server.
See point 6 about STR2CBJ for more details.

PCDSTAT is called to register the PCD- STATUS- | NFCRVATI ON block that is
contained in the GCRBA include member. Registering the

PCD- STATUS- | NFORVATI ON block allows the PL/I runtime to populate it
with exception information, if necessary.

If conpl et i on_st at us is set to zero after a call to the PL/I runtime, this
means that the call has completed successfully. You can use the
check_errors function to check the status of any Orbix call. It tests
the value of the except i on_nunber in pod_st at us_i nf or mati on. If its
value is zero, it means the call was successful. Otherwise,
check_errors prints out the system exception numbr and message,
and the program ends at that point. The check_err or s function should
be called after every PL/I runtime call, to ensure the call completed
successfully.

10.
11.

12.
13.

14.

Developing the IMS Two-Phase Commit Client

CRBARGS is called to initialize a connection to the ORB.

PCDREG is called to register the IDL interface with the Orbix PL/I
runtime.

STRSET is called to create an unbounded string to which the stringified
object reference to server 'A’ is copied.

STR2CBI is called to create an object reference to the server 'A’ object.
This must be done to allow operation invocations on the server. In this
case, the client identifies the target object, using a corbaloc URL string
in the form cor bal oc: ri r: / Dat athj ect A (as defined in point 1). See
“STR20BJ" on page 481 for more details of the various forms of
corbaloc URL strings and the ways you can use them.

STRSET is called to create an unbounded string to which the stringified
object reference to server 'B’ is copied.

STR2CBI is called to create an object reference to the server ‘B’ object.
This must be done to allow operation invocations on the server. In this
case, the client identifies the target object, using a corbaloc URL string
in the form cor bal oc: ri r: / Dat athj ect B (as defined in point 1). See
“STR20BJ"” on page 481 for more details of the various forms of
corbaloc URL strings and the ways you can use them.

PCDTXNB is called to indicate the start of two-phase commit processing.
The next APPC conversation with the client adapter, which is
established at the next call to PCDEXEC, will be at sync level 2.
PCDEXEC is called in this procedure to read a value from server 'A’.
PCDEXEC is called in this procedure to update a value from server 'A’.
Server 'A” will log that an update has been requested, but make no
actual changes.

PCDEXEC is called in this procedure to read a value from server 'B’.
PCDEXEC is called in this procedure to update a value from server 'B’.
Server 'B’ will log that an update has been requested, but make no
actual changes.

If any call to PCDEXEC was unsuccessful, ask IMS to initiate rollback
processing to undo the updates made by the servers. Server ‘A’ and 'B’
will destroy the log that was holding the potential updates. No actual
updates will be made.

107

CHAPTER 3 | Getting Started in IMS

15. PCDOTXNE is called to indicate the end of two-phase commit processing.
This requests that APPC deallocates the conversation. However, the
actual deallocation does not occur until the two-phase commit
processing has completed.

16. The IMS transaction ends. This triggers the start of two-phase commit
processing. The client adapter is notified that the IMS transaction has
initiated two-phase commit processing. The client adapter requests
that server 'A’ and server 'B’ prepare their updates. Each server replies
to the client adapter that they are either able or unable to commit the
update. If either server replies that they are unable to commit the
update, each server is asked to roll back and destroy the log that was
holding the potential update. If both servers reply that they are able to
commit the changes, the client adapter requests each server to commit
their changes. The APPC conversation between IMS and the client
adapter deallocates, and two-phase commit processing ends.

Location of the DATAC module You can find a complete version of the IMS DATAC client module in
or bi xhl g. DEM35. | M5. PLI . SRQ(DATAQC) .

108

Developing the IMS Two-Phase Commit Client

Building the Client

JCL to run the Orbix IDL compiler Before you can build the client, you must run the Orbix IDL compiler on the
IDL supplied in or bi xhl g. DEMDS. | DL(DATA) . Sample JCL to do this can be
found in or bi xhl g. DEMDS. PLI . | M5. BLD. JCLLI B(DATAI DL) .

JCL to build the client Sample JCL used to compile and link the client can be found in
or bi xhl g. DEMCS. | M. PLI . BLD. JOLLI B(DATACB) .

Resulting load module When the JCL has successfully executed, it results in a load module that is
contained in or bi xhl q. DEMDS. | M5. PLI . LOADLI B(DATACL) .

109

CHAPTER 3 | Getting Started in IMS

Building the Servers

JCL to run the Orbix IDL compiler Before you can build the servers, ensure that you have run the Orbix IDL
compiler on the IDL supplied in or bi xhl q. DEMCS. | DL(DATA) . Sample JCL to
do this can be found in or bi xhl gq. DEMOS. | M5. PLI . BLD. JCLLI B(DATAI DL) .

Note: If you have already built the client, this step should have already
been completed.

JCL to build the servers Sample JCL used to compile and link the servers can be found in
or bi xhl g. DEMCS. CPP. BLD. JCLLI B(DATASV) .

Resulting load module When the JCL has successfully executed, it results in a load module that is
contained in or bi xhl g. DEMOS. CPP. LQADLI B(DATASV) .

110

Developing the IMS Two-Phase Commit Client

Preparing the Client to Run in IMS

Overview This section describes the required steps to allow the client to run in an IMS
region. These steps assume you want to run the IMS client against a batch
server.

Steps The steps to enable the client to run in an IMS region are:

Step Action

1 | Define a transaction to IMS.

2 | Provide the IMS client load module to the IMS region.

3 | Start the locator, node daemon, and RRS OTSTM on the server
host.

4 | Start the batch servers.

5 | Customize the batch server IORs.

6 | Configure and run the client adapter.

Step 1—Define a transaction to A transaction definition must be created for the client, to allow it to run in
IMS IMS. The following is the transaction definition for the supplied
demonstration:

APPLCTN GPSB=DATACL, X
PQWIYPE=(TP, , 2), X
SCHDTYP=PARALLEL X
LANG=PLI
TRANSACT CCDE=DATACL, X
ED T=(WLO)
Step 2—Provide client load Ensure that the or bi xhl g. DEMOS. | M. PLI . LOADLI B PDS is added to the
module to IMS region STEPLIB for the IMS region that is to run the transaction.

111

CHAPTER 3 | Getting Started in IMS

Step 3—Start locator, node
daemon, and RRS OTSTM on
server

Step 4—Start batch servers

Step 5—Customize batch server
IORs

112

This step assumes that you intend running the IMS client against the
demonstration batch server.

In this case, you must start all of the following on the batch server host (if
they have not already been started):

1. Start the locator daemon by submitting or bi xhl g. JCLLI B(LOCATCR) .
2. Start the node daemon by submitting or bi xhl g. JOLLI B(NCDEDAEM) .
3. Start the RRS OTSTM server by submitting or bi xhl g. JCLLI B(OTSTM) .

See “Running the Server and Client” on page 47 for more details of running
the locator and node daemon on the batch server host.

See the chapter on Using OTS RRS Transaction Manager in the Mainframe
OTS Guide for more details of running the RRS OTSTM server.

This step assumes that you intend running the IMS client against the
demonstration batch servers.

Submit the or bi xhl g. DEMDS. CPP. RUN JCLLI B(DATAA) and
or bi xhl g. DEMDS. CPP. RUNL JCLLI B(DATAB) JCL to start the batch servers.

When you run the demonstration batch servers they publish their IORs to
or bi xhl g. DEMDS. | CRS(DATAA) and or bi xhl . DEMDS. | CRS(DATAB) .

The demonstration IMS client needs to use these IORs to contact the
demonstration batch servers. The demonstration IMS client obtains the
object reference for the demonstration batch servers in the form of a
corbaloc URL string. A corbaloc URL string can take different formats. For
the purposes of this demonstration, the corbalocs take the form

corbal oc: rir:/Dat ahj ect Aand corbal oc: rir:/ Dat aCbj ect B.

This form of the corbaloc URL string requires the use of the configuration
variables, i ni ti al _ref erences: Dat albj ect A r ef er ence and

initial _references: Dat abj ect B: r ef er ence, in the configuration domain.
When you submit the JCL in or bi xhl g. DEMOS. | M5. PLI . BLD. JCLLI B

(DATAI CRS) , it automatically adds these configuration entries to the
configuration domain:

initial _references: Dat athj ect A r ef erence
initial_references: Dat athj ect B: r ef erence

"TCRM;
"ICRY;

Developing the IMS Two-Phase Commit Client

The IOR values are taken from or bi xhl g. DEMOS. | ORS(DATAA) and
or bi xhl q. DEM35. | CRS(DATAB) .

See “STR20BJ” on page 481 for more details of the various forms of
corbaloc URL strings and the ways you can use them.

Step 6—Configure and run client The client adapter must now be configured before you can start the client
adapter (the IMS transaction). See the IMS Adapters Administrator’s Guide for
details of how to configure the client adapter.

When you have configured the client adapter, you can run it by submitting
or bi xhl g. JCQLLI B(| M5CA) .

Note: See “Running an IMS Two-Phase Commit Client against Batch
Servers” on page 117 for details of how to run the sample two-phase
commit client demonstration.

113

CHAPTER 3 | Getting Started in IMS

Running the Demonstrations

Overview This section provides a summary of what you need to do to successfully run
the supplied demonstrations.

In this section This section discusses the following topics:
Running a Batch Client against an IMS Server page 115
Running an IMS Client against a Batch Server page 116

Running an IMS Two-Phase Commit Client against Batch Servers
page 117

114

Running the Demonstrations

Running a Batch Client against an IMS Server

Overview

Steps

IMS server output

Batch client output

This subsection describes what you need to do to successfully run the
demonstration batch client against the demonstration IMS server. It also
provides an overview of the output produced.

The steps to run the demonstration IMS server against the demonstration

batch client are:

1. Ensure that all the steps in “Preparing the Server to Run in IMS” on
page 79 have been successfully completed.

2. Run the batch client as described in “Running the Server and Client”
on page 45.

The IMS server sends the following output to the IMS region:
Oreating the sinple_persistent object
Witing out the object reference

Gving control to the ORB to process Requests

Qperation call_ne() called

The batch client produces the following output:

si npl e_per si stent deno

Cal l'ing operation call_ne...
Qperation call _ne conpleted (no results to display)

End of the sinple_persistent deno

115

CHAPTER 3 | Getting Started in IMS

Running an IMS Client against a Batch Server

Overview This subsection describes what you need to do to successfully run the
demonstration IMS client against the demonstration batch server. It also
provides an overview of the output produced.

Steps The steps to run the demonstration IMS client against the demonstration
batch server are:
1. Ensure that all the steps in “Preparing the Client to Run in IMS” on
page 89 have been successfully completed.
2. Run the IMS client by entering the transaction name, SI MPLECL, in the
relevant IMS region.

IMS client output The IMS client sends the following output to the IMS region:

si npl e_per si stent deno

Calling operation call_ne...
Qperation call _ne conpleted (no results to display)

End of the sinple_persistent deno
The IMS client sends the following output to the IMS message queue:

Sinpl e transacti on conpl et ed

Batch server output The batch server produces the following output:
Oreating the sinple_persistent object
Witing out the object reference

Gving control to the ORB to process Requests

Qperation call_ne() called

116

Running the Demonstrations

Running an IMS Two-Phase Commit Client against Batch

Servers

Overview

Steps

IMS client output

This subsection describes what you need to do to successfully run the
demonstration IMS two-phase commit client against the demonstration
batch servers. It also provides an overview of the output produced.

Note: For instructions on recovery processing for any unsuccessful runs of
an application, see or bi xhl g. DEMDS. | M5. PLI . READVE(DATACL) .

The steps to run the demonstration IMS two-phase commit client against
the demonstration batch servers are:

1. Ensure that all the steps in “Preparing the Client to Run in IMS” on
page 111 have been successfully completed.

2. Run the IMS client by entering the transaction name, DATACL, in the
relevant IMS region.

The IMS client sends the following output to the IMS region:

Initializing the CRB

Regi stering the Interface

Two- phase commit transacti on begins

I nvoking: read:|DL: Data: 1.0

Successfully read a val ue fromserver A: 0000000001
New val ue for server A: 0000000002

Invoking: wite:|DL: Data: 1.0

Server A has successfully updated the val ue.

I nvoki ng: read: | DL: Data: 1.0

Successfully read a val ue fromserver B: 0000000001
New val ue for server B: 0000000002

Invoking: wite:|DL: Data: 1.0

Server B has successfully updated the val ue.

Al updates are successful -

request conmit

Two- phase commit transacti on ends

117

CHAPTER 3 | Getting Started in IMS

The IMS client sends the following output to the IMS message queue:

Qutput fromtransacti on: DATACL
Two- phase commit transacti on conpl et ed

Batch server 'A’ output Batch server 'A’ produces the following output:

OTS Recovery Deno Server

Initializing the CRB

Server IDis A

IR file is DD | CRS(DATAA)

Data file is DD DATA(DATAA)

Log file is DD DATA(LGCE)

Resol vi ng Transact i onCur r ent

Resol vi ng Root POA

Oeating POA with REQU RES OIS Pol i cy
Oeating POAw th |ifespan policy of PERSI STENT
CGreating POA with an I D assignnent of USER
Oeating Data servant and obj ect

Oeating POA for Resource objects

Readi ng data fromfil e DD DATA(DATAA)

Value is 1

Witing object reference to DD | CRS(DATAA)
Activation PQOA for Data object

Data servant read() called

Read-onl y access: not registering Resoure obj ect
Qurrent value is 1

Data servant wite() called

Getting coordinator for current transaction
Getting Transaction ldentifier

Oreating Resource servant

Acti vating Resource obj ect

Regi steri ng Resource object w th coordi nator
Activating the Resource PQA

Setting value to 2

Resource servant prepare() called

Voting to commit the transaction

Witing prepare record

Resource servant commit() called

Witing data to file DD DATA(DATAA)

Del eting prepare record

Deacti vati ng Resource obj ect

Resour ce servant destructed

118

Running the Demonstrations

Batch server 'B’ output Batch server 'B’ produces the following output:

OTS Recovery Deno Server

Initializing the CRB

Server IDis B

ICRfile is DD | CRS(DATAB)

Data file is DD DATA(DATAB)

Log file is DD DATA(LGGB)

Resol vi ng Transacti onCurr ent

Resol vi ng Root POA

Oreating POA with REQU RES OIS Pol i cy
Oeating POAw th |ifespan policy of PERS STENT
OGeating POA with an I D assi gnnent of USER
Creating Data servant and obj ect

Oeating POA for Resource objects

Reading data fromfile DD DATA(DATAB)

Value is 1

Witing object reference to DD | CRS(DATAB)
Activation POA for Data object

Data servant read() called

Read- onl y access: not registering Resoure object
Qurrent value is 1

Data servant wite() called

Getting coordinator for current transaction
Getting Transaction ldentifier

Oreating Resource servant

Activating Resource obj ect

Regi steri ng Resource obj ect with coordi nat or
Activating the Resource POA

Setting value to 2

Resour ce servant prepare() called

Voting to conmt the transaction

Witing prepare record

Resource servant commt() called

Witing data to file DD DATA(DATAB)

Del eting prepare record

Deacti vati ng Resource obj ect

Resour ce servant destruct ed

119

CHAPTER 3 | Getting Started in IMS

120

In this chapter

CHAPTER 4

Getting Started in
CICS

This chapter introduces CICS application programming with
Orbix, by showing how to use Orbix to develop both a CICS PL/I
client and a CICS PL/I server. It also provides details of how to
subsequently run the CICS client against a PL/I batch server,
and how to run a PL/I batch client against the CICS server.
Additionally, this chapter shows how to develop a CICS client
that supports two-phase commit transactions.

This chapter discusses the following topics:

Overview page 123
Developing the Application Interfaces page 131
Developing the CICS Server page 143
Developing the CICS Client page 155
Developing the CICS Two-Phase Commit Client page 166
Running the Demonstrations page 186

121

CHAPTER 4 | Getting Started in CICS

Note: The client and server examples provided in this chapter
respectively require use of the CICS client and server adapters that are
supplied as part of the Orbix Mainframe. See the CICS Adapters
Administrator’s Guide for more details about these CICS adapters.

122

Overview

Overview

Introduction

Steps to create an application

The demonstration CICS server

This section provides an overview of the main steps involved in creating the
following Orbix PL/I applications:

® CICS server

® CICS client

® CICS two-phase commit client

It also introduces the following PL/I demonstrations that are supplied with

your Orbix Mainframe installation, and outlines where you can find the
various source code and JCL elements for them:

® S MPLE CICS server
® sSIMPLE CICS client
® DATACCICS two-phase commit client

The main steps to create an Orbix PL/I CICS application are:

1. “Developing the Application Interfaces” on page 131.

2. “Developing the CICS Server” on page 143.

3. “Developing the CICS Client” on page 155.

4. “Developing the CICS Two-Phase Commit Client” on page 166.

For the purposes of illustration this chapter demonstrates how to develop
both an Orbix PL/I CICS client and an Orbix PL/I CICS server. It then
describes how to run the CICS client and CICS server respectively against a
PL/I batch server and a PL/I batch client. Additionally, this chapter
describes how to develop an Orbix PL/I two-phase commit CICS client, and
run it against two C+ + servers. The supplied demonstrations do not reflect
real-world scenarios requiring Orbix Mainframe, because the client and
server are written in the same language and running on the same platform.

The Orbix PL/I server developed in this chapter runs in a CICS region. It
implements a simple persistent POA-based obect. It accepts and processes
requests from an Orbix PL/I batch client that uses the object interface,

123

CHAPTER 4 | Getting Started in CICS

The demonstration CICS client

The demonstration CICS
two-phase commit client

Supplied code and JCL for CICS
application development

Si npl eQoj ect, to communicate with the server via the CICS server adapter.
The CICS server uses the Internet Inter-ORB Protocol (1I0P), which runs
over TCP/IP, to communicate with the batch client.

The Orbix PL/I client developed in this chapter runs in a CICS region. It uses
the clearly defined object interface, Si npl e(bj ect , to access and request
data from an Orbix PL/I batch server that implements a simple persistent
Si npl eChj ect object. When the client invokes a remote operation, a request
message is sent from the client to the server via the client adapter. When
the operation has completed, a reply message is sent back to the client
again via the client adapter. The CICS client uses IIOP to communicate with
the batch server.

The Orbix PL/I two-phase commit client developed in this chapter runs in a
CICS region. It uses the clearly defined object interface, Dat a, to access and
update data from two Orbix C++ batch servers. When the client invokes a
remote operation, a request message is sent from the client to one of the
servers via the client adapter. When the operation has completed, a reply
message is sent back to the client again via the client adapter. The CICS
client uses IIOP to communicate with the batch servers.

All the source code and JCL components needed to create and run the CICS
SI MPLE server and client demonstrations have been provided with your
installation. Apart from site-specific changes to some JCL, these do not
require editing.

Table 14 provides a summary of these code elements and JCL components
(where or bi xhl g represents your installation’s high-level qualifier).

Table 14: Supplied Code and JCL (Sheet 1 of 4)

Location

Description

or bi xhl g. DEMCS. | DL(S| MPLE)

This is the supplied IDL for the simple CICS client and server.

or bi xhl q. DEM35. | DL(DATA)

This is the supplied IDL for the CICS two-phase commit client.

124

Overview

Table 14: Supplied Code and JCL (Sheet 2 of 4)

Location Description

or bi xhl g. DEMOS. A CS. PLI . SRC This is the source code for the CICS server mainline module,

(SI MPLEV) which is generated when you run the JCL in
or bi xhl g. DEMSS. O CS. PLI . BLD. JOLLI B(SI MPLI DL) . (The CICS
server mainline code is not shipped with the product. You must
run the SI MPLI DL JCL to generate it.)

or bi xhl g. DEMDS. O CS. PLI . SRC This is the source code for the CICS server implementation

(SI MPLE) module.

or bi xhl g. DEM3S. A CS. PLI . SRC This is the source code for the CICS client module.

(SI MPLEQ)

or bi xhl g. DEM3S. A CS. PLI . SRC This is the source code for the CICS two-phase commit client

(DATAQ module.

or bi xhl g. DEMOS. O CS. PLI . BLD. JCLLI B This JCL runs the Orbix IDL compiler. See “Orbix IDL Compiler”

(SI MPLI DL) on page 134 for more details of this JCL and how to use it.

or bi xhl g. DEMOS. O CS. PLI . BLD. JCLLI B This JCL runs the Orbix IDL compiler for the CICS two-phase

(DATAI DL) commit client.

or bi xhl g. DEMOS. O CS. PLI . BLD. JCLLI B This JCL compiles and links the CICS server mainline and CICS

(S| MPLESB) server implementation modules to create the SI MPLE server
program.

or bi xhl g. DEMOS. O CS. PLI . BLD. JCLLI B This JCL compiles the CICS simple client module to create the

('Sl MPLECB) SI MPLE client program.

or bi xhl g. DEMOS. O CS. PLI . BLD. JCLLI B This JCL compiles the CICS two-phase commit client module.

(DATACB)

or bi xhl g. DEMOS. O CS. PLI . BLD. JCLLI B This JCL obtains the CICS server's IOR (from the CICS server

(SIMPLICR)

adapter). A client of the CICS server requires the CICS server's
IOR, to locate the server object.

125

CHAPTER 4 | Getting Started in CICS

Table 14: Supplied Code and JCL (Sheet 3 of 4)

Location

Description

or bi xhl q. DEMCS. O CS. PLI . BLD. JOLLI B
(UPDTCONF)

This JCL adds the following configuration entry to the
configuration member:

initial_references: Sinpl ethj ect:reference="ICR..";

This configuration entry specifies the I0R that the CICS client
uses to contact the batch server. The IOR that is set as the value
for this configuration entry is the IOR that is published in

or bi xhl g. DEMOS. | CRS(SI MPLE) when you run the batch server.
The object reference for the server is represented to the
demonstration CICS client as a corbaloc URL string in the form
corbal oc: rir:/Sinpl eQuj ect. This form of corbaloc URL string
requires the use of the

initial_references: Sinpl e(hj ect:reference="ICR."
configuration entry.

Other forms of corbaloc URL string can also be used (for example,
the IIOP version, as demonstrated in the nested sequences
demonstration supplied with your product installation). See
“STR20BJ" on page 481 for more details of the various forms of
corbaloc URL strings and the ways you can use them.

or bi xhl gq. DEM36. d CS. PLI . BLD. JCLLI B
(DATAI CRS)

This JCL adds the following configuration entries to the
configuration member:

initial_references: Datathj ect A reference="1CR.";
initial_references: Datathj ect B:reference="1CR..";

These configuration entries specify the IORs that the CICS
two-phase commit client uses to contact the C++ batch servers.
The I0Rs that are set as the value for these configuration entries
are the IORs that are published in or bi xhl g. DEM3S. | CRS(DATAA)
and or bi xhl g. DEMDS. | CRS(DATAB) when you run the C++ batch
servers.

The object references for the servers are represented to the
demonstration CICS two-phase commit client as corbaloc URL
strings in the form corbal oc: ri r: / DATAj ect A. and

cor bal oc: rir:/ DATAQyj ect B. This form of corbaloc URL string
requires the use of the i ni tial _ref erences:

Dat athj ect A reference="ICR." and i ni ti al _references:

Dat athj ect B: ref erence="1CR." configuration items.

126

Overview

Table 14: Supplied Code and JCL (Sheet 4 of 4)

Location Description

or bi xhl g. JOLLI B(Q CSCA) This JCL runs the CICS client adapter.

or bi xhl g. JCLLI B(Q CSA) This JCL runs the CICS server adapter.

or bi xhl g. DEMOS. CPP. BLD. JCLLI B This JCL builds the C+ + servers for the CICS two-phase commit

(DATASV) client.

or bi xhl g. DEMOS. CPP. BLD. JCLLI B This JCL runs the C++ server 'A’ for the CICS two-phase commit

(DATAA) client.

or bi xhl g. DEMOS. CPP. BLD. JCLLI B This JCL runs the C++ server 'B’ for the CICS two-phase commit

(DATAB) client.

or bi xhl g. DEMOS. CPP. GEN This PDS contains generated stub code for the C++ servers.

or bi xhl g. DEMOS. CPP. H This PDS contains C+ + header files.

or bi xhl g. DEMOS. CPP. HH This PDS contains IDL generated header files.

or bi xhl g. DEMDS. CPP. LQADLI B This PDS contains the C++ server module for the two-phase
commit CICS client.

or bi xhl g. DEMDS. CPP. SRC This PDS contains the C++ server module source code for the
two-phase commit CICS client.

or bi xhl g. DEMDS. CPP. TWOPCA This PDS contains the data store for the two-phase commit C+ +
server 'A’.

or bi xhl g. DEMDS. CPP. TWOPCB This PDS contains the data store for the two-phase commit C+ +

server 'B’.

127

CHAPTER 4 | Getting Started in CICS

Supplied include members Table 15 provides a summary in alphabetic order of the various include
members supplied with your product installation that are relevant to CICS
application development. Again, or bi xhl q represents your installation’s
high-level qualifier.

Table 15: Supplied Include Members (Sheet 1 of 2)

Location

Description

or bi xhl g. | NCLUDE. PLI NOL(GHKCLA ©

This is relevant to CICS clients only. It contains a PL/I function
that has been translated via the CICS TS 1.3 translator. This
function can be called by the client, to check if a system exception
has occurred and report it. It writes any messages raised by the
supplied demonstrations to the CICS terminal.

or bi xhl g. | NCLUDE. PLI NCL(GHKO CS)

This is relevant to CICS clients only. It contains the version of the
CHKCLCIC member before it was translated via the CICS TS 1.3

translator. It is used by the O CSTRAN job, to compile the GKa CS
member, using another version of the CICS translator.

or bi xhl g. | NCLUDE. PLI NOL(OHKERRS)

This is relevant to CICS servers. It contains a PL/I function that
can be called by the CICS server, to check if a system exception
has occurred, and to report that system exception.

or bi xhl g. | NCLUDE. PLI NCL(CCRBA)

This is relevant to both CICS clients and servers. It contains
common PL/I runtime variables. It includes the coRBACOMinclude
member by default. It also includes the GCRBASV include member,
if the client module contains the line %l i ent _onl y="yes’ ;.

or bi xhl g. | NCLUDE. PLI NCL(CCRBACCV)

This is relevant to both CICS clients and servers. It contains
common PL/I runtime function definitions that can be used both
by clients and servers.

or bi xhl g. | NCLUDE. PLI NCL(CORBASV)

This is relevant to CICS servers. It contains PL/I runtime function
definitions that can be used by servers.

or bi xhl g. | NCLUDE. PLI NCL(DI SPIN'T)

This is relevant to CICS servers only. It retrieves the current
request information into the REQ NFOstructure via PCDREQ From
REQ NFOthe operation to be performed by the server is retrieved
via a call to STRGET.

128

Overview

Table 15: Supplied Include Members (Sheet 2 of 2)

Location Description

or bi xhl g. | NCLUDE. PLI NCL(EXCNAME) This is relevant to both CICS clients and servers. It contains a PL/I
function called GCRBA_EXC _NAME that returns the system exception
name for the system exception being raised (that is, it maps Orbix
exceptions to human-readable strings). EXONAME is used by
CHKERRS and GKALA C.

or bi xhl g. I NCLUDE. PLI NOL(URLSTR) This is relevant to clients only. It contains a PL/I representation of
the corbaloc URL IIOP string format. A client can call STR2CBJ to
convert the URL into an object reference. See “STR20BJ” on
page 481 for more details.

or bi xhl g. DEMOS. A CS. PLI . PLI NCL This PDS is relevant to both CICS clients and servers. It is used to
store all CICS include members generated when you run the JCL
to run the Orbix IDL compiler for the supplied demonstrations. It
also contains helper procedures for use with the nested sequences
demonstration.

or bi xhl g. DEM3S. A CS. MFANAP This PDS is relevant to CICS servers only. It is empty at
installation time. It is used to store the CICS server adapter
mapping member generated when you run the JCL to run the
Orbix IDL compiler for the supplied demonstrations. The contents
of the mapping member are the fully qualifed interface name
followed by the operation name followed by the CICS APPC
transaction name or CICS EXCI program name (for example,
(Sinpl e/ Si npl evj ect, cal | _me, SI MPLESV) . See the CICS
Adapters Administrator’s Guide for more details about generating
CICS server adapter mapping members.

or bi xhl g. DEMOS. TYPEI NFO This PDS is relevant to CICS servers only. It is empty at
installation time. It is used to store the type information that is
generated when you run the JCL to run the Orbix IDL compiler for
the supplied demonstrations. The contents of the type information
member describe the contents of the given IDL file from which it
was generated.

129

CHAPTER 4 | Getting Started in CICS

Checking JCL components

130

When creating the CICS simple client or server, or the CICS two-phase
commit client, check that each step involved within the separate JCL
components completes with a condition code not greater than 4. If the
condition codes are greater than 4, establish the point and cause of failure.
The most likely cause is the site-specific JCL changes required for the
compilers. Ensure that each high-level qualifier throughout the JCL reflects
your installation.

Developing the Application Interfaces

Developing the Application Interfaces

Overview This section describes the steps you must follow to develop the IDL
interfaces for your application. It first describes how to define the IDL
interfaces for the objects in your system. It then describes how to run the
IDL compiler. Finally it provides an overview of the PL/I include members,
server source code, and CICS server adapter mapping member that you can
generate via the IDL compiler.

Steps to develop application The steps to develop the interfaces to your application are:
interfaces

Step Action

1 | Define public IDL interfaces to the objects required in your
system.

See “Defining IDL Interfaces” on page 132.

2 | Use the crRXaPy utility to copy your IDL files to z/OS (if
necessary).

See “ORXCOPY Utility” on page 523.

3 | Run the Orbix IDL compiler to generate PL/I include members,
server source, and server mapping member.

See “Orbix IDL Compiler” on page 134.

131

CHAPTER 4 | Getting Started in CICS

Defining IDL Interfaces

Defining the IDL

Explanation of the IDL

How the demonstration uses this
IDL

132

The first step in writing any Orbix program is to define the IDL interfaces for
the objects required in your system. The following is an example of the IDL
for the Si npl e(yj ect interface that is supplied in

or bi xhl g. DEMDS. | DL(S| MPLE) :

/1 1D
nmodul e Sinple
{
interface Sinpl e(hj ect
{
voi d
call _me();
B

The preceding IDL declares a Si npl ebj ect interface that is scoped (that is,
contained) within the Si npl e module. This interface exposes a single

cal | _me() operation. This IDL definition provides a language-neutral
interface to the CORBA Si npl e: : Si npl e(hj ect type.

For the purposes of the demonstrations in this chapter, the Si npl e(hj ect
CORBA object is implemented in PL/I in the supplied simple server
application. The server application creates a persistent server object of the
Si npl ebj ect type, and publishes its object reference to a PDS member.
The client invokes the cal | _me() operation on the Si npl ebj ect object, and
then exits.

The batch demonstration client of the CICS demonstration server locates the
Si npl eQoj ect object by reading the interoperable object reference (IOR) for
the CICS server adapter from or bi xhl g. DEM3S. | CRS(SI MPLE) . In this case,

the CICS server adapter IOR is published to or bi xhl g. DEM3S. | ORS(S| MPLE)
when you run or bi xhl q. DEMOS. O CS. PLI . BLD. JOLLI B(S| MPLI OR) .

The CICS demonstration client of the batch demonstration server locates the
Si npl ehj ect object by reading the IOR for the batch server from
or bi xhl g. DEMDS. | CRS(SI MPLE) . In this case, the batch server IOR is

Developing the Application Interfaces

published to or bi xhl g. DEM3S. | ORS(SI MPLE) when you run the batch server.
The object reference for the server is represented to the demonstration CICS
client as a corbaloc URL string in the form corbal oc: rir:/Si npl ehj ect .

133

CHAPTER 4 | Getting Started in CICS

Orbix IDL Compiler

The Orbix IDL compiler

Orbix IDL compiler configuration

Example of the SIMPLIDL JCL

134

This subsection describes how to use the Orbix IDL compiler to generate
PL/I include members, server source, and the CICS server adapter mapping
member from IDL.

Note: If your IDL files are not already contained in z/OS data sets, you
must copy them to z/OS before you proceed. You can use the CRXGCPY

utility to do this. If necessary, see “ORXCOPY Utility” on page 523 for

more details.

Note: Generation of PL/I include members is relevant to both CICS client
and server development. Generation of server source and the CICS server
adapter mapping member is relevant only to CICS server development.

The Orbix IDL compiler uses the Orbix configuration member for its settings.
The sI MPLI DL JCL that runs the compiler uses the configuration member
or bi xhl g. CONFI 1 DL) . See “Orbix IDL Compiler” on page 293 for more
details.

The following JCL runs the IDL compiler for the CICS SI MPLE demonstration:

//SIMPLIDL JCB (),

/1 QLASS=A

/1 VBGCLASS=X,

11 MVBGLEVEL=(1, 1),

/1 REG ON=OM

/1 TI ME=1440,

11 NOTI FY=&SYSU D,

/1 OOND=(4, LT)

[/ ¥ccccocoocccccooocncccooo0oocco0oo0ocococo0ooocoo0ooooooo 000000 oo

/1 JCLLI B ORDER=(or bi xhl q. PROCLI B)
/1 | NOLUDE MEMBER=(CRXVARS)

[+

//1DLPLI EXEC ORXI DL,

/1 SOURCE=S| MPLE,

/1 | DL=8CRBI X. . DEMDS. | DL,

Explanation of the SIMPLIDL JCL

/1l
Il
11
/1*
[1*

Developing the Application Interfaces

CCPYLI B=&CRBI X. . DEMDS. A CS. PLI . PLI NCL,

| MPL=&CRBI X. . DEMC5. A CS. PLI . SRC,

| DLPARME' -pli:-TACS -nfa: -t S| MPLESV: - i nf'
| DLPARME' -pli:-TACS -nfa: -t SMBV: -i nf'

| DLPARME' -pli:-V

//1DLMFA DD DI SP=SHR DSN=&CRBI X. . DEMCS. O CS. MFAVAP
// I DLTYPEl DD D SP=SHR DSN=&CRBI X. . DEM3S. TYPEl NFO

In the preceding JCL example, the | DLPARMIines can be explained as
follows:

The line | DLPARME' -pl i :-TA CS -nfa: -t SI MPLESV: -i nf' is relevant to

CICS server development for EXCI. This line generates:

. PL/I include members via the -pli argument.

¢ CICS server mainline code via the - TQ CS arguments.

¢ CICS server adapter mapping member via the
-nfa:-ttran_or_program name arguments.

+ Type information for the SI MPLE IDL member via the -i nf
sub-argument to the - nf a argument.

Note: Because CICS server implementation code is already supplied
for you, the - S argument is not specified by default.

The line I DLPARME' -pli:-TACS -nfa: -t SMBV: -i nf' is relevant to
CICS server development for APPC. This line generates the same items
as the IDLPARVF' -pli:-TACS -nfa: -t SI MPLESV: -i nf' . It is disabled
(that is, commented out with an asterisk) by default.

The line I DLPARME' - pli : -V is relevant to CICS client development
and generates only PL/I include members, because it only specifies the
-pli:-Varguments. (The - v argument prevents generation of PL/I
server mainline source code.) It is disabled (that is, commented out) by
default.

Note: The Orbix IDL compiler does not generate PL/I client source
code.

135

CHAPTER 4 | Getting Started in CICS

Specifying what you want to
generate

Running the Orbix IDL compiler

136

For the purposes of the demonstration, the | DLPARME - pl i : - TA CS
-nfa:-tSIMPLESV: -i nf' line is not commented out (that is, it is not
preceded by an asterisk) by default.

To indicate which one of the | DLPARMIines you want SI MPLI DL to recognize,
comment out the two | DLPARMIines you do not want to use, by ensuring an
asterisk precedes those lines. By default, as shown in the preceding
example, the JCL is set to generate PL/I include members, server mainline
code, a CICS server adapter mapping member for EXCI, and type
information for the SI MPLE IDL member.

See “Orbix IDL Compiler” on page 293 for more details of the Orbix IDL
compiler and the JCL used to run it.

After you have edited the SI MPLI DL JCL according to your requirements, you
can run the Orbix IDL compiler by submitting the following job:

or bi xhl g. DEMOS. O CS. PLI . BLD. JOLLI B(S| MPLI DL)

Developing the Application Interfaces

Generated PL/I Include Members, Source, and Mapping

Member

Overview

Member name restrictions

How IDL maps to PL/I include
members

This subsection describes all the PL/I include members, server source, and
CICS server adapter mapping member that the Orbix IDL compiler can
generate from IDL definitions.

Note: The generated PL/I include members are relevant to both CICS
client and server development. The generated source and adapter mapping
member are relevant only to CICS server development. The IDL compiler
does not generate PL/I client source.

Generated PL/I source code, include, and mapping member names are all
based on the IDL member name. If the IDL member name exceeds six
characters, the Orbix IDL compiler uses only the first six characters of the
IDL member name when generating the other member names. This allows
space for appending a one-character suffix to each generated member
name, while allowing it to adhere to the seven-character maximum size limit
for PL/I external procedure names, which are based by default on the
generated member names.

Each IDL interface maps to a set of PL/I structures. There is one structure
defined for each IDL operation. A structure contains each of the parameters
for the relevant IDL operation in their corresponding PL/I representation. See
“IDL-to-PL/I Mapping” on page 235 for details of how IDL types map to
PL/I.

Attributes map to two operations (get and set), and readonly attributes map
to a single get operation.

137

CHAPTER 4 | Getting Started in CICS

Generated PL/I include members

138

Table 16 shows the PL/I include members that the Orbix IDL compiler

generates, based on the defined IDL..

Table 16: Generated PL/I Include Members (Sheet 1 of 2)

Copybook

JCL Keyword
Parameter

Description

i dl menber naneD

CCPYLI B

This include member contains a
select statement that determines
which server implementation
procedure is to be called, based
on the interface name and
operation received.

i dl menber naneL

QCPYLI B

This include member contains
structures and procedures used
by the PL/I runtime to read and
store data into the operation
parameters.

This member is automatically
included in the i dl menber naneX
include member.

i dl menber naneM

CCPYLI B

This include member contains
declarations and structures that
are used for working with
operation parameters and return
values for each interface defined
in the IDL member. The
structures use the based PL/I
structures declared in the

i dl nenber naneT include
member.

This member is automatically
included in the i dI nenber nanel
include member.

Developing the Application Interfaces

Table 16: Generated PL/I Include Members (Sheet 2 of 2)

Copybook

JCL Keyword
Parameter

Description

i dl menber naneT

QCPYLI B

This include member contains
the based structure declarations
that are used in the

i dl nrenber naneMinclude
member.

This member is automatically
included in the i dl mnenber naneM
include member.

i dl menber naneX

CCPYLI B

This include member contains
structures that are used by the
PL/I runtime to support the
interfaces defined in the IDL
member.

This member is automatically
included in the i dl nenber naneVv
source code member.

i dl menber naneD

QCPYLI B

This include member contains a
select statement for calling the
correct procedure for the
requested operation.

This include member is
automatically included in the
i dl menber nanel source code
member.

139

CHAPTER 4 | Getting Started in CICS

Generated server source members Table 17 shows the server source code members that the Orbix IDL
compiler generates, based on the defined IDL.:

Table 17: Generated Server Source Code Members

Member JCL Keyword Description
Parameter
i dl menber nanel I MPL This is the CICS server

implementation source code
member. It contains procedure
definitions for all the callable
operations.

The is only generated if you
specify both the -Sand - Ta CS
arguments with the IDL compiler.

i dl menber naneV I MPL This is the CICS server mainline
source code member. It is
generated by default. However,
you can use the - v argument
with the IDL compiler, to prevent
generation of this member.

Note: For the purposes of this example, the SI MPLEI server
implementation member is already provided in your product installation.
Therefore, the - S IDL compiler argument used to generate it is not
specified in the supplied SI MPLI DL JCL. The SI MPLEV server mainline
member is not already provided, so the - V argument, which prevents
generation of server mainline code, is not specified in the supplied JCL.
See “Orbix IDL Compiler” on page 293 for more details of the IDL compiler
arguments used to generate, and prevent generation of, CICS server source
code.

140

Generated server adapter
mapping member

Generated type information
member

Location of demonstration include
and mapping member

Developing the Application Interfaces

Table 18 shows the CICS server adapter mapping member that the Orbix
IDL compiler generates, based on the defined IDL.

Table 18: Generated CICS Server Adapter Mapping Member

Copybook JCL Keyword Description
Parameter
i dl menber naneA | DLMFA This is a simple text file that

determines what interfaces and
operations the CICS server
adapter supports, and the CICS
APPC transaction names, or CICS
EXCI program names, to which
the CICS server adapter should
map each IDL operation.

Table 19 shows the type information member that the Orbix IDL compiler
generates, based on the defined IDL.

Table 19: Generated CICS Server Adapter Mapping Member

Copybook JCL Keyword Description
Parameter
i dl menber naneB | DLTYPEI Type information describing the

operation signatures of the
interface whose IDL it was
generated from.

You can find examples of the include members, server source, and CICS
server adapter mapping member generated for the SI MPLE demonstration in
the following locations:

or bi xhl q. DEM3S. A CS. PLI .
or bi xhl q. DEM3S. A CS. PLI .
or bi xhl gq. DEM3S. A CS. PLI .
or bi xhl q. DEM36. A CS. PLI .
or bi xhl q. DEM3S. A CS. PLI .
or bi xhl q. DEM3S. A CS. PLI .
or bi xhl q. DEM3S. A CS. PLI .

PLI NCL(S| MPLED)
PLI NCL('SI MPLEL)
PLI NCL('SI MPLEN)
PLI NCL('SI MPLET)
PLI NCL(S| MPLEX)
SRO(S| MPLEV)

SRO(S| MPLEI)

141

CHAPTER 4 | Getting Started in CICS

or bi xhl q. DEMOB. O CS. MFAVAP(S| MPLEA)
or bi xhl q. DEM3S. TYPEI NFQ(S| MPLEB)

Note: Except for the SI MPLEI member, none of the preceding elements
are shipped with your product installation. They are generated when you

run or bi xhl g. DEMCS. O CS. PLI . BLD. JCLLI B(SI MPLI DL), to run the Orbix
IDL compiler.

142

Developing the CICS Server

Developing the CICS Server

Overview This section describes the steps you must follow to develop the CICS server
executable for your application. The CICS server developed in this example
will be contacted by the simple batch client demonstration.

Steps to develop the server The steps to develop the server application are:

Step Action

1 | “Writing the Server Implementation” on page 144.

“Writing the Server Mainline” on page 147.

2
3 | “Building the Server” on page 150.
4

“Preparing the Server to Run in CICS” on page 151.

143

CHAPTER 4 | Getting Started in CICS

Writing the Server Implementation

The server implementation
module

Example of the CICS SIMPLEI
module

144

You must implement the server interface by writing a PL/I implementation
module that implements each operation defined to the operation section in
the i dI menber naneT include member. For the purposes of this example, you
must write a PL/I procedure that implements each operation in the SI MPLET
include member. When you specify the - S and - TO CS arguments with the
Orbix IDL compiler, it generates a skeleton server implementation module,
in this case called SI MPLEI, which is a useful starting point.

Note: For the purposes of this demonstration, the CICS server
implementation module, SI MPLEI, is already provided for you, so the -S
argument is not specified in the JCL that runs the IDL compiler.

The following is an example of the CICS SI MPLEI module (with the header
comment block omitted for the sake of brevity):

Example 5: The SIMPLEI Demonstration Module (Sheet 1 of 2)
SI MPLEl : PRCC

/*The following |ine enables the runtine to call this procedure*/
Dl SPTCH ENTRY;

dcl (addr, | ow, sysnul |) buil tin;

% ncl ude CORBA;

% ncl ude GHKERRS;
% ncl ude SI MPLEM
%nclude DSPINT;

[* ================ Start of global user code =============== */
/* End of gl obal user code ================ */
| % o e eieeioioo- *
/* */
/* D spatcher : sel ect(operation) */
[* */
| * o e e eeeeooo- */

% ncl ude S| MPLED;

Developing the CICS Server

Example 5: The SIMPLEI Demonstration Module (Sheet 2 of 2)

/* __ */
/* Interface: */
/* Si npl e/ Si npl eoj ect */
/* */
/* Mapped narre: */
/* Si npl e_Si npl ej ect */
/* */
/* Inherits interfaces: */
/* (none) */
/* __ */
/* __ */
/* Qperation: call _ne */
/* Mapped nare: call _ne */
/* Argunents: None */
/* Returns: voi d */
/* __ */

4 proc_Si npl e_Sinpl eChj ect _c_c904: PROO(p_args);

dcl p_args ptr;
5 dcl 1_args al i gned based(p_args)
li ke Sinple_S npl eChj ect_c_ba77_type;
/* Start of operation code ============= */
6 put skip list(' Qoeration call_me() called);
put ski p;
/* End of operation code ============== */

END proc_Si npl e_Si npl eChj ect _c_c904;

END S| MPLHE ;

Explanation of the CICS SIMPLEI The CICS SI MPLEl module can be explained as follows:

module 1. When an incoming request arrives from the network, it is processed by

the ORB and a call is made from the PL/I runtime to the D SPTCHentry
point.

2. Within the DI SPI N T include member, PCDREQis called to provide
information about the current invocation request, which is held in the
REQ NFOstructure. PCDREQs called once for each operation invocation
after a request has been dispatched to the server. STRGET is then called
to copy the characters in the unbounded string pointer for the
operation name into the PL/I string that represents the operation name.

145

CHAPTER 4 | Getting Started in CICS

Location of the CICS SIMPLEI
module

146

The SI MPLED include member contains a select statement that
determines which procedure within SI MPLEI is to be called, given the
operation name and interface name passed to SI MPLEI . It calls PCDGET
before the call to the server procedure, which fills the appropriate PL/I
structure declared in the main include member, SI MPLEM with the
operation’s incoming arguments. It then calls PCDPUT after the call to
the server procedure, to send out the operation’s outgoing arguments.

The procedural code containing the server implementation for the
cal | _me operation.

Each operation has an argument structure and these are declared in
the typecode include member, SI MPLET. If an operation does not have
any parameters or return type, such as cal | _ne, the structure only
contains a structure with a dummy char.

This is a sample of the server implementation code for cal | _ne. It is
the only part of the SI MPLEI member that is not automatically
generated by the Orbix IDL compiler.

Note: An operation implementation should not call PCDGET or PCDPUT.
These calls are made within the SI MPLED include member generated by the
Orbix IDL compiler.

You can find a complete version of the CICS SI MPLEI server implementation
module in or bi xhl q. DEMXS. A CS. PLI . SRO(SI MPLEI) .

Developing the CICS Server

Writing the Server Mainline

The server mainline module

Example of the CICS SIMPLEV
module

The next step is to write the server mainline module in which to run the
server implementation. For the purposes of this example, when you specify
the - TQ Cs argument with the Orbix IDL compiler, it generates a module
called SI MPLEV, which contains the server mainline code.

Note: Unlike the batch server mainline, the CICS server mainline does
not have to create and store stringified object references (IORs) for the
interfaces that it implements, because this is handled by the CICS server
adapter.

The following is an example of the CICS SI MPLEV module:

Example 6: The SIMPLEV Demonstration Module (Sheet 1 of 2)

SI MPLEV: PROC CPTI ONS(MAI N NCEXECCPS) ;

decl arg_list char (01) init('");

dcl arg_list_len fixed bin(31) init(0);

dcl orb_nane char (10) init(’sinple_orb);
dcl orb_nane_| en fixed bin(31) init(10);

dcl srv_nane char (256) var;

dcl server_nane char (07) init(’sinple ");
dcl server_nane_| en fixed bin(31) init(6);

dcl Sinpl e_Sinpl eChj ect_objid char(27)
init(’Snplel/S npl eChj ect_object ");
dcl Sinpl e_Si npl eChj ect _obj ptr;
dcl SYSPRI NT file stream out put;
dcl (addr,length,low sysnull) builtin;

% ncl ude SETUPSV;
% ncl ude CCRBA;

% ncl ude GHKERRS;
% ncl ude S| MPLET;
% ncl ude SI MPLEX;

al l oc pod_status_infornation set(pod_status_ptr);

147

CHAPTER 4 | Getting Started in CICS

Explanation of the CICS SIMPLEV
module

148

Example 6: The SIMPLEV Demonstration Module (Sheet 2 of 2)

call podstat(pod_status ptr);
if check_errors(’ podstat’) ~= conpl etion_status_yes then return;

/* Initialize the server connection to the CRB */
call orbargs(arg_list,arg_list_len,orb_nane, orb_name_| en);
if check_errors(’orbargs’) ~= conpl eti on_status_yes then return;

call podsrvr(server_nanme, server_nane_|en);
if check_errors(’ podsrvr’) ~= conpl eti on_status_yes then return;

/* Register interface : Sinple/S npl eChject */
call podreg(addr(Si npl e_S npl e(hj ect _i nterface));
if check errors(’ podreg’';) ~= conpl etion_status_yes then return;

call objnewserver_nane,
Sinpl e_Si npl e(oj ect _intf,
Si npl e_Si npl eoj ect _obj i d,
Si npl e_Si npl ehj ect _obj) ;
if check_errors(’ objnew) ~= conpletion_status_yes then return;

/* Server is nowready to accept requests */
call podrun;
if check_errors(’ podrun’) ~= conpl etion_status_yes then return;

call objrel (S npl e_Si npl eChj ect _obj);
if check_errors(’objrel’) ~= conpl etion_status_yes then return;

free pod_status_infornation;

END S| MPLEV,

The CICS SI MPLEV module can be explained as follows:

1. PCDSTAT is called to register the PCD_STATUS | NFCRVATI ON block that is
contained in the GCRBA include member. Registering the
PCD_STATUS | NFORVATI ON block allows the PL/I runtime to populate it
with exception information, if necessary. If conpl eti on_st at us is set to
zero after a call to the PL/I runtime, this means that the call has
completed successfully.
CRBARGS is called to initialize a connection to the ORB.
PCDSRVR is called to set the server name.

Developing the CICS Server

4. PODREGIs called to register the IDL interface, Si npl e(hj ect , with the
PL/I runtime.

5. CBINEWis called to create a persistent server object of the
Si npl ehj ect type, with an object ID of ny_si npl e_obj ect .

6. PCDRW s called, to enter the GRB: : run() loop, to allow the ORB to
receive and process client requests. This then processes the CORBA
request that the CICS adapter sends to CICS.

7. OBIREL is called to ensure that the servant object is released properly.

See the preface of this guide for details about the compilers that this product
supports.

Location of the CICS SIMPLEV You can find a complete version of the CICS SI MPLEV server mainline module

module in or bi xhl q. DEMOS. A CS. PLI . SRQ(SI MPLEV) after you have run
or bi xhl g. DEMOS. O CS. PLI . BLD. JCLLI B(SI MPLI DL) to run the Orbix IDL
compiler.

149

CHAPTER 4 | Getting Started in CICS

Building the Server

Location of the JCL Sample JCL used to compile and link the CICS server mainline and server
implementation is in or bi xhl g. DEMOS. Q CS. PLI . BLD. JCLLI B(S| MPLESB) .

Resulting load module When this JCL has successfully executed, it results in a load module that is
contained in or bi xhl g. DEMXS. O CS. PLI . LQADLI B(SI MPLESV) .

150

Developing the CICS Server

Preparing the Server to Run in CICS

Overview

Steps

Step 1—Defining program or
transaction definition for CICS

This section describes the required steps to allow the server to run in a CICS
region. These steps assume you want to run the CICS server against a batch
client. When all the steps in this section have been completed, the server is
started automatically within CICS, as required.

The steps to enable the server to run in a CICS region are:

Step Action

1 | Define an APPC transaction definition or EXCI program
definition for CICS.

2 | Provide the CICS server load module to a CICS region.

3 | Generate mapping member entries for the CICS server adapter.

4 | Add the interface’s operation signatures to the type information
repository, stored in the TYPEI NFOPDS.

5 | Obtain the IOR for use by the client program.

A CICS APPC transaction definition, or CICS EXCI program definition, must
be created for the server, to allow it to run in CICS. The following is the CICS
APPC transaction definition for the supplied demonstration:

DEFI NE

TRANSACTI ON\(SVBV)

GROUP(ORXAPPC)

DESCR PTI ON(O bi x APPC Si npl e deno transacti on)
PROGRAM S| MPLESV)

PRCFI LE(DFHO CSA)

TRANCLASS(DFHTCL00)

DTl MOUT(10)

SPURGE(YES)

TPURCGE(YES)

RESSEQ(YES)

151

CHAPTER 4 | Getting Started in CICS

Step 2—Providing load module to
CICS region

Step 3—Generating mapping
member entries

152

The following is the CICS EXCI program definition for the supplied
demonstration:

DEFI NE PROGRAM S| MPLESV)
GROUP(CRXDEMD)
DESCR PTI O\ O bi x Si npl e deno server)
LANGUAGE(LE370)
DATALCCATI ON(ANY)
EXECUTI ONSET(DPLSUBSET)

See the supplied or bi xhl g. JOLLI B(CRBI XCSD) for a more detailed example
of how to define the resources that are required to use Orbix with CICS and
to run the supplied demonstrations.

Ensure that the or bi xhl g. DEMOB. A CS. PLI . LOADLI B PDS is added to the
DFHRPL for the CICS region that is to run the transaction, or copy the
SI MPLESV load module to a PDS in the DFHRPL of the relevant CICS region.

The CICS server adapter requires mapping member entries, so that it knows
which CICS APPC transaction or CICS EXCI program should be run for a
particular interface and operation. The mapping member entry for the
supplied CICS EXCI server example is contained by default in

or bi xhl g. DEMDS. O CS. MFAMAP(SI MPLEA) after you run the IDL compiler. The
mapping member entry for EXCI appears as follows:

(S npl e/ Si npl eChj ect, cal | _ne, S| MPLESV)

Note: If instead you chose to enable the line in SI MPLI DL to generate a
mapping member entry for a CICS APPC version of the demonstration, that
mapping member entry would appear as follows:

(S npl e/ Si npl eCpj ect, cal | _ne, SVBY)

The generation of a mapping member for the CICS server adapter is
performed by the or bi xhl g. DEMOS. O CS. PLI . BLD. JOLLI B(SI MPLI DL) JCL.
The -nfa: -ttran_or_program name argument with the IDL compiler
generates the mapping member. For the purposes of this example,
tran_or_program nane is replaced with SI MPLESV. An | DLMFA DD statement
must also be provided in the JCL, to specify the PDS into which the
mapping member is generated. See the CICS Adapters Administrator’s
Guide for full details about CICS adapter mapping members.

Step 4—Adding operation
signatures to type_info store

Step 5—Obtaining the server
adapter IOR

Developing the CICS Server

The CICS server adapter needs to be able to obtain operation signatures for
the PL/I server. For the purposes of this demonstration, the TYPEI NFOPDS is
used to store this type information. This type information is necessary so
that the adapter knows what data types it has to marshal into CICS for the
server, and what data types it can expect back from the CICS APPC
transaction or CICS EXCI program. This information is generated by
supplying the - nf a: -i nf option to the Orbix IDL compiler, for example, as
used in the SI MPLI DL JCL that is used to generate the source and include
members for this demonstration..

Note: An IDL interface only needs to be added to the type information
store once.

Note: An alternative to using type information files is to use the Interface
Repository (IFR). This is an alternative method of allowing the CICS server
adapter to retrieve IDL type information. If you are using the IFR, you must
ensure that the relevant IDL for the server has been added to the IFR (that
is, registered with it) before the CICS server adapter is started.

To add IDL to the IFR, first ensure the IFR is running. You can use the JCL
in orbi xhl g. JOL(I FR) to start it. Then, in the JCL that you use to run the
Orbix IDL compiler, add the line // | DLPARVE -R to register the IDL. In
this case, ensure that all other // | DLPARM lines are commented out as
follows: //* | DLPARM..

The final step is to obtain the IOR that the batch client needs to locate the
CICS server adapter. Before you do this, ensure all of the following:

® The type_info store contains the relevant operation signatures (or, if
using the IFR, the IFR server is running and contains the relevant IDL).
See “Step 4—Adding operation signatures to type_info store” on
page 153 for details of how to populate the type_info store.

The CICS server adapter mapping member contains the relevant
mapping entries. For the purposes of this example, ensure that the

or bi xhl g. DEMCS. O CS. MFAMAP(S| MPLEA) mapping member is being
used. See the CICS Adapters Administrator’s Guide for details about
CICS server adapter mapping members.

153

CHAPTER 4 | Getting Started in CICS

154

® The CICS server adapter is running. See the CICS Adapters
Administrator’s Guide for more details of how to start the CICS server
adapter, using the supplied JCL in or bi xhl g. JCLLI B(Q CSA) .

Now submit or bi xhl g. DEMCS. O CS. PLI . BLD. JCLLI B(SI MPLI CR) , to obtain
the IOR that the batch client needs to locate the CICS server adapter. This
JCL includes the r esol ve command, to obtain the IOR. The following is an
example of the SI MPLI CRJCL:

/1 JOLLI B CRDER=(or bi xhl g. PROCLI B)
/1 I NCLUDE MEMBER=(CRXVARS)
1%

/1* Request the ICR for the A CS 'sinple persistent' server
//* and store it in a PDS for use by the client.

/1*

/1* Make the follow ng changes before running this JCL:

/1*

[1* 1. Change ' SET DOVAI N=' DEFAULT@ to your configuration
/1* domai n nane.

[1*

/1l SET DOVAI N=' DEFAULT@
/1*

/1 REG EXEC PROC=CRXADM N,

/1 PPARMVF nfa resol ve Sinplel/S npletject > DD ICR
/11 CR DD DSN=&CRBI X. . DEMOB. | CRS(SI MPLE) , DI SP=SHR

[/ ORBARGS DD *

-CRBnane iona_utilities.cicsa

/*

/11 TDOVAI N DD DSN=&CRBI XCFQ &DOVAI N) , DI SP=SHR

Developing the CICS Client

Developing the CICS Client

Overview This section describes the steps you must follow to develop the CICS client
executable for your application. The CICS client developed in this example
will connect to the simple batch server demonstration.

Note: The Orbix IDL compiler does not generate PL/I client stub code.

Steps to develop the client The steps to develop and run the client application are:

Step Action

1 | “Writing the Client” on page 156.

2 | “Building the Client” on page 161.

3 | “Preparing the Client to Run in CICS” on page 162.

155

CHAPTER 4 | Getting Started in CICS

Writing the Client

The client module

Example of the SIMPLEC module

156

The next step is to write the client module, to implement the CICS client.
This example uses the supplied SI MPLEQL client demonstration.

The following is an example of the CICS SI MPLEC module:
Example 7: The SIMPLEC Demonstration Module (Sheet 1 of 3)

SI MPLEC: PRCC CPTI ONS(MAI N NCEXECOPS) ;
%l i ent _onl y='yes';

dcl (addr, substr, sysnull, | ow, | engt h) bui l tin;
dcl arg_list char (40) init('");
dcl arg_list_len fixed bin(31) init(38);
dcl orb_nane char (10)
init(' sinple orb');

dcl orb_name_| en fixed bin(31) init(10);
dcl sysprint file stream out put;
dcl sinple_url char (27)

init('corbaloc:rir:/S npleCoject ');
dcl sinple_ url_ptr ptr init(sysnull());
dcl S npl e_Si npl eChj ect _obj ptr;
dcl MessageText char (79) init('");
% ncl ude OCRBA;

% ncl ude GHKCOLA C
% ncl ude S| M°PLEM
% ncl ude SI MPLEX;

/* Initialize the PL/I runtime status infornation bl ock */
all oc pod_status_information set(pod_status_ptr);
cal |l podstat(pod_status_ptr);

/* Initialize our CRB */

call orbargs(arg_list,
arg_list_len,
orb_nane,
orb_nane_| en);

Developing the CICS Client

Example 7: The SIMPLEC Demonstration Module (Sheet 2 of 3)

if check_errors('orbargs') ~= conpl etion_status_yes then
exec cics return;

/* Register the SinpleChject intf with the PL/I runtinme */

call podreg(addr(Si npl e_Si npl e(hj ect _interface));

i f check_errors('podreg') "= conpl etion_status_yes then
exec cics return;

/* Create an object reference fromthe server's URL */

/* so we can nake calls to the server */
call strset(sinple_url_ptr,
sinple_url,

I ength(sinple url));
if check_errors('strset') ~= conpl etion_status_yes then
exec cics return;
call str2obj(sinple_url_ptr,Sinple_S npl eChj ect_obj);
if check_errors('str2obj') ~= conpl etion_status_yes then
exec cics return;

/* Now we are ready to start making server requests */

put skip list('sinple_persistent deno');
put skip list(' ')

/* Call operation call_ne */

put skip list('Calling operation call_ne...");

call podexec(Si npl e_Si npl eChj ect _obj ,
Si npl e_Si npl eCoj ect _cal | _rre,
addr (S npl e_Si npl eChj ect _c_ba77_args),
no_user _excepti ons);

i f check_errors(' podexec') ~= conpl eti on_status_yes then

exec cics return;

put skip list('Cperation call_me conpleted (no results to
display)');

put ski p;

put skip list('End of the sinple_persistent deno');

put skip;

MessageText = ' Sinple Transaction conpl eted' ;

EXEC O CS SEND TEXT FROM (MessageText) LENGTH(79) FREEKB;

157

CHAPTER 4 | Getting Started in CICS

158

Example 7: The SIMPLEC Demonstration Module (Sheet 2 of 3)

i f check_errors('orbargs') ~= conpletion_status_yes then
exec cics return;

/* Register the SinpleChject intf with the PL/I runtinme */

cal |l podreg(addr(Si npl e_Si npl e(hj ect _interface));

i f check_errors('podreg') "= conpl etion_status_yes then
exec cics return;

/* Create an object reference fromthe server's URL */

/* so we can nake calls to the server */
call strset(sinple_ url_ptr,
sinple_url,

I ength(sinple_url));
if check_errors('strset') ~= conpl etion_status_yes then
exec cics return;
cal |l str2obj(sinple_url_ptr,Sinple_S npl eChj ect_obj);
if check_errors('str2obj') ~= conpletion_status_yes then
exec cics return;

/* Now we are ready to start maki ng server requests */

put skip list('sinple_persistent deno');
put skip list(" ')

/* Call operation call_ne */

put skip list('Calling operation call_ne...");

cal | podexec(Si npl e_Si npl ethj ect _obj ,
Si npl e_Si npl eCoj ect _cal | _rre,
addr (Si npl e_Si npl ethj ect _c_ba77_args),
no_user _excepti ons);

i f check_errors(' podexec') ”~= conpletion_status_yes then

exec cics return;

put skip list('Cperation call_me conpleted (no results to
display)");

put skip;

put skip list('End of the sinple_persistent deno');

put skip;

MessageText = ' Sinple Transaction conpl eted' ;

EXEC O CS SEND TEXT FROM (MessageText) LENGTH(79) FREEKB;

Explanation of the SIMPLEC

module

Developing the CICS Client

Example 7: The SIMPLEC Demonstration Module (Sheet 3 of 3)

/* Free the sinple_persistent object reference */

call objrel (S npl e_S npl eChj ect _obj);

if check_errors('objrel') ~= conpl etion_status_yes then
exec cics return;

free pod_status_information;
exec cics return;

END SI MPLEC,

The CICS s MPLEC module can be explained as follows:

1.

si npl e_ur| defines a corbaloc URL string in the corbal oc: rir format.
This string identifies the server with which the client is to
communicate. This string can be passed as a parameter to STR2CBJ to
allow the client to retrieve an object reference to the server. See point 6
about STR2CBJ for more details.

PCDSTAT is called to register the PCD_STATUS | NFCRVATI CN block that is
contained in the GCRBA include member. Registering the

PCD_STATUS | NFCRVATI ON block allows the PL/I runtime to populate it
with exception information, if necessary. If conpl eti on_st at us is set to
zero after a call to the PL/I runtime, this means that the call has
completed successfully.

The check_errors function can be used to test the status of any Orbix
call. It tests the value of the excepti on_nunber in

pod_st atus_i nformati on. If its value is zero, it means the call was
successful. Otherwise, check_errors prints out the system exception
number and message, and the program ends at that point. The
check_errors function should be called after every PL/I runtime call to
ensure the call completed successfully.

CRBARGS is called to initialize a connection to the ORB.

PCDREG is called to register the IDL interface with the Orbix PL/I
runtime.

STRSET is called to create an unbounded string to which the stringified
object reference is copied.

159

CHAPTER 4 | Getting Started in CICS

Location of the SIMPLEC module

160

STR2CRBI is called to create an object reference to the server object. This
must be done to allow operation invocations on the server. In this case,
the client identifies the target object, using a corbaloc URL string in the
form corbal oc: rir:/Si npl eoj ect (as defined in point 1). See
“STR20BJ" on page 481 for more details of the various forms of
corbaloc URL strings and the ways you can use them.

After the object reference is created, PCDEXEC is called to invoke
operations on the server object represented by that object reference.
You must pass the object reference, the operation name, the argument
description packet, and the user exception buffer. If the call does not
have a user exception defined (as in the preceding example), the
no_user _except i ons variable is passed in instead. The operation name
must be terminated with a space. The same argument description is
used by the server. For ease of use, string identifiers for operations are
defined in the SI MPLET include member. For example, see

or bi xhl g. DEMCS. A CS. PLI . PLI NCL(Sl MPLET) .

The EXEC A CS SEND statement is used to write messages to the CICS
terminal. The client uses this to indicate whether the call was
successful or not.

CBJREL is called to ensure that the servant object is released properly.

You can find a complete version of the CICS S| MPLEC client module in
or bi xhl gq. DEM3S. d CS. PLI . SRO(S| MPLEC) .

Developing the CICS Client

Building the Client

JCL to build the client Sample JCL used to compile and link the client can be found in the third
step of or bi xhl . DEMDS. A CS. PLI . BLD. JOLLI B(S| MPLECB) .

Resulting load module When the JCL has successfully executed, it results in a load module that is
contained in or bi xhl g. DEMOS. O CS. PLI . LQADLI B(SI MPLECL) .

161

CHAPTER 4 | Getting Started in CICS

Preparing the Client to Run in CICS

Overview

Steps

Step 1—Define transaction
definition for CICS

162

This section describes the required steps to allow the client to run in a CICS
region. These steps assume you want to run the CICS client against a batch

server.

The steps to enable the client to run in a CICS region are:

Step Action
1 | Define an APPC transaction definition for CICS.
2 | Provide the CICS client load module to a CICS region.
3 | Start the locator and node daemon on the server host.
4 | Add the interface’s operation signatures to the type information
repository.
5 | Start the batch server.
6 | Customize the batch server IOR.
7 | Configure and run the client adapter.

A CICS APPC transaction definition must be created for the client, to allow
it to run in CICS. The following is the CICS APPC transaction definition for
the supplied demonstration:

DEFI NE

TRANSACTI ON(SMZL)

GROUP(CRXDEMD)

DESCR PTION O bi x dient Sinple deno transaction)
PROGRAM S| MPLEQL)

PRCFI LE(DFHO CSA)

TRANCLASS(DFHTCLOO)

DTl MOUT(10)

SPURCE(YES)

TPURGE(YES)

RESSEC(YES)

Step 2—Provide client load
module to CICS region

Step 3—Start locator and node
daemon on server host

Step 4—Add operation signatures
to type_info store

Developing the CICS Client

See the supplied or bi xhl g. JCLLI B(GRBI XCSD) for a more detailed example
of how to define the resources that are required to use Orbix with CICS and
to run the supplied demonstrations.

Ensure that the or bi xhl g. DEMDS. O CS. PLI . LQADLI B PDS is added to the
DFHRPL for the CICS region that is to run the transaction.

Note: If you have already done this for your CICS server load module, you
do not need to do this again.

Alternatively, you can copy the SI MPLEQL load module to a PDS in the
DFHRPL of the relevant CICS region.

This step assumes that you intend running the CICS client against the
supplied batch demonstration server.

In this case, you must start all of the following on the batch server host (if
they have not already been started):

1. Start the locator daemon by submitting or bi xhl g. JOLLI B{ LOCATCR) .
2. Start the node daemon by submitting or bi xhl q. JOLLI B(NCDEDAEM) .

See “Running the Server and Client” on page 45 for more details of running
the locator and node daemon on the batch server host.

The client adapter needs to be able to know what data types it can expect to
marshal from the IMS transaction, and what data types it should expect
back from the batch server. This can be done by creating a type information
file by running the IDL compiler with the -nfa: -i nf flag, which is included
in or bi xhl g. DEMDS. O CS. PLI . BLD. JCLLI B(SI MPLI DL) . The type information
file contains descriptions of the interface’s operation signatures (that is,
information about the type and direction of the operation parameters, the
number of parameters, and whether or not an operation has a return type).

Before the client adapter is run, the TYPEI NFODD card needs to be updated
to the location of the TYPEI NFOPDS (for the purposes of this example, it
should be updated to or bi xhl q. DEM3S. TYPEI NFO)..

Note: An IDL interface only needs to be added to the type information
store once.

163

CHAPTER 4 | Getting Started in CICS

Step 5—Start batch server

Step 6—Customize batch server
IOR

164

Note: An alternative to using type information files is to use the Interface
Repository (IFR). This is an alternative method of allowing the client
adapter to obtain information about relevant data types. If you are using
the IFR, you must ensure that the relevant IDL for the server has been
added to the IFR (that is, registered with it) before the client adapter is
started.

To add IDL to the IFR, first ensure the IFR is running. You can use the JCL
in or bi xhl g. JOL(I FR) to start it. Then, in the JCL that you use to run the
Orbix IDL compiler, add the line // | DLPARVE -R to register the IDL. In
this case, ensure that all other // | DLPARM lines are commented out as
follows: //* | DLPARM..

This step assumes that you intend running the CICS client against the
demonstration batch server.

Submit the following JCL to start the batch server:
or bi xhl g. DEMSS. PLI . RUN JCLLI B(S| MPLESV)

See “Running the Server and Client” on page 45 for more details of running
the locator and node daemon on the batch server host.

When you run the batch server it publishes its IOR to a member called
or bi xhl g. DEMDS. | CRS(SI MPLE) . The CICS client needs to use this IOR to
contact the server.

The demonstration CICS client obtains the object reference for the
demonstration batch server in the form of a corbaloc URL string. A corbaloc
URL string can take different formats. For the purposes of this
demonstration, it takes the form cor bal oc: rir:/ Si npl eQuj ect . This form of
the corbaloc URL string requires the use of a configuration variable,
initial _references: Sinpl ethj ect : ref erence, in the configuration
domain. When you submit the JCL in

or bi xhl g. DEMOS. A CS. PLI . BLD. JOLLI B{ UPDTOONF) , it automatically adds
this configuration entry to the configuration domain:

initial _references: S npl eChj ect:reference = "ICR.";

The IOR value is taken from the or bi xhl g. DEMDS. | CRS(S| MPLE) member.

Developing the CICS Client

See “STR20BJ” on page 481 for more details of the various forms of
corbaloc URL strings and the ways you can use them.

Step 7—Configure and run client The client adapter must now be configured before you can start the client
adapter (the CICS transaction). See the CICS Adapters Administrator’s Guide for
details of how to configure the client adapter.

When you have configured the client adapter, you can run it by submitting
or bi xhl g. JCLLI B(Q CSCA) .

Note: See “Running the Demonstrations” on page 186 for details of how
to run the sample demonstration.

165

CHAPTER 4 | Getting Started in CICS

Developing the CICS Two-Phase Commit
Client

Overview This section describes the steps you must follow to develop the CICS
two-phase commit client executable for your application. The CICS
two-phase commit client developed in this example will connect to two
demonstration C++ batch servers.

Steps to develop the client The steps to develop and run the client application are:

Step Action

1 | “Writing the Client” on page 167.

“Building the Client” on page 181.

2
3 | “Building the Servers” on page 182.
4 | “Preparing the Client to Run in CICS” on page 183.

166

Developing the CICS Two-Phase Commit Client

Writing the Client

The client program

CICS transaction design

Overview of CICS transaction
layout

The next step is to write the CICS client transaction. This example uses the
supplied DATAC client demonstration.

A CICS transaction that uses two-phase commit can be broken down as
follows:

® Qperations that do not require two-phase commit.
® Qperations that require two-phase commit.

Read-only operations to local databases or remote servers do not require
two-phase commit processing. These operations should be performed first in
the CICS transaction ahead of the two-phase commit operations. The
rationale behind this is that if operations not requiring two-phase commit
processing fail, it might be pointless to perform operations that do require
two-phase commit processing.

Figure 5 provides an overview of CICS transaction layout.

Non-two-phase commit processing

Two-phase commit processing

Figure 5: Overview of CICS Transaction Layout

167

CHAPTER 4 | Getting Started in CICS

Designing a CICS two-phase
commit transaction

Commit or rollback scenarios

168

When designing a CICS two-phase commit transaction, structure the
transaction as follows:

1. Begin the CICS transaction by performing standard Orbix Mainframe
CICS client initialization.

2. Perform operations that do not require two-phase commit. If any of the
operations fail, skip the two-phase commit processing.

3. Call PCDTXNB to indicate the start of two-phase commit processing.

Call PCDEXEC (perhaps multiple times) to send an update to a remote
server. If any of the calls fail, call rollback and skip any updates to
local resources.

5. Make updates to local resources, such as updating a local database. If
any of the local updates fail, call rollback.

Call PCOTXNE to indicate the end of the two-phase commit work.
7. Call SYNCPO NT to initiate two-phase commit processing.

Perform any post two-phase commit work, such as sending a message
back to the user.

When a CICS transaction makes updates to resources (that is, local
databases or remote CORBA servers) via the client adapter, the updates are
not made permanent until the two-phase commit has been successfully
processed. The trigger for starting the two-phase commit is when the CICS
transaction calls SYNGPQ NT.

The client adapter sends a "prepare" message to each remote server that has
been updated from the CICS transaction. Each server returns a vote to the
client adapter. A vote of "commit" indicates the remote server is willing to
commit its updates. A vote of "rollback" indicates the remote server has a
problem and that it wants to roll back the update.

The various scenarios that might arise are as follows:

® Successful two-phase commit

If all returned votes are "commit", the client adapter calls the IBM API
SRROM T, to inform CICS that all remote servers are willing to commit
their updates. If the return code from SRRCM T is 0, the client adapter
sends a "commit" message to each remote server. Two-phase commit
processing is then completed and all resources are updated.

Developing the CICS Two-Phase Commit Client

Rollback two-phase commit—Scenario 1

If the client adapter receives at least one returned vote of "rollback", all
updates should be rolled back. The client adapter calls the IBM API
SRRBACK, to inform CICS that there are problems. This causes the
SYNCPQ NT call issued in the CICS transaction to complete with a
ROLLEDBACK code.

Rollback two-phase commit—Scenario 2

If all returned votes are "commit", the client adapter calls the IBM API
SRROM T, to inform CICS that all remote servers are willing to commit
their updates. If the return code from SRROM T is not 0, the client
adapter sends a "rollback" message to each server. In this case, this
means that a resource other than the remote servers has voted
"rollback".

Rollback two-phase commit—Scenario 3

If the CICS transaction makes an update to a remote server, and the
update fails (because, for example, the server is not running), the
transaction calls "rollback" to undo any updates. The client adapter
receives the rollback signal and sends a "rollback" message to each
server.

Example of the DATACL module The following is an example of the CICS DATAC module:

Example 8: The DATAC Demonstration Module (Sheet 1 of 9)

DATAC. PROC CPTI ONS(MAI N NCEXECCPS) ;

%l
dcl
dcl
dcl
dcl
dcl
dcl

dcl

i ent_onl y='yes';
(addr, | ow, substr, sysnul | , | engt h) bui I tin;
arg_list char (40) init('");
arg_list_len fixed bin(31) init(38);
orb_nane char (9) init('twpc_orb');
orb_nane_l en fixed bin(31) init(9);
syspri nt file stream out put;
data_url A char (26)

init('corbaloc:rir:/DataChjectA");

169

CHAPTER 4 | Getting Started in CICS

170

Example 8: The DATAC Demonstration Module (Sheet 2 of 9)

dcl data_ url B char (26)
init('corbaloc:rir:/DataChjectB"');

dcl data_ url _ptr ptr init(sysnull());

dcl Dat aChj ect _obj A ptr;

dcl Dat ahj ect _obj B ptr;

dcl read result_A fixed bin(31) init(0);

dcl update result_A fixed bin(31) init(0);

dcl read result_B fixed bin(31) init(0);

dcl update_result B fixed bin(31) init(0);

dcl good_result fixed bin(31) init(1);

dcl MessageText char(79) init('");

% ncl ude CORBA;

% ncl ude GKCLA G
% ncl ude DATAM
% ncl ude DATAX;

[R KK Kk K ok K K kK kK Kk kR kK Rk R Kk X R Rk R Rk Rk Rk Rk kR kR kR Xk k [

/* */
/* Process, a two-phase commt transaction. The general flow */
/* of the transaction is as follows: */
/* */
/* begin a transaction (PCOTXN\B) */
/* read a value from"server A' (PCDEXEC */
/* send an update to "server A' (PCDEXEC) */
/* read a value from"server B' (PCDEXEC) */
/* send an update to "server B' (PCDEXEC) */
/* if all requests were successful, commt (SYNCPA NT) */
/* otherw se roll them back (ROLLBACK) */
/* end the transaction (PCDTXNE) */
/* */

/***/

call Initialize;
call Process_transaction;
call Term nate;

exec cics return;

/***/

[*/
/* Initialize */
/* */
/* Get references to server "A' and server "B'. */

Developing the CICS Two-Phase Commit Client

Example 8: The DATAC Demonstration Module (Sheet 3 of 9)

/* */

/****************~k**~k***********~k**~k**************************/
Initialize: PROC

/* Initialize the PL/I runtine status information bl ock */
al l oc pod_status_information set(pod _status_ptr);
call podstat(pod_status_ptr);

/* Initialize our CRB */
put skip list('Initializing the CRB);
call orbargs(arg_list,
arg_list_len,
orb_nane,
orb_narme_l en);
if check_errors('orbargs') ~= conpl etion_status_yes then
return;

/* Register the interface with the PL/| runtine */

put skip list('Registering the Interface');

call podreg(addr(Data_interface_interface));

i f check_errors('podreg') "= conpl etion_status_yes then return;

/* Set the pointer to the url A string. */
call strset(data url _ptr,
data_url A
I ength(data_url A));
if check_errors('strset') "= conpl etion_status_yes then return;

/* Cbtain object Areference fromthe url. */

call str2obj(data_url _ptr, DataCbj ect _obj A);

if check_errors('str2obj') ~= conpl etion_status_yes then
return;

/* Rel easing the menory. */

call strfree(data_ url_ptr);

if check_errors('strfree') ~= conpl etion_status_yes then
return;

/* Set the pointer to the urlB string. */
call strset(data url _ptr,
data_url B,
|l ength(data_url B));
if check_errors('strset') "= conpl etion_status_yes then return;

171

CHAPTER 4 | Getting Started in CICS

Example 8: The DATAC Demonstration Module (Sheet 4 of 9)

/* Cbtain object Breference fromthe url. */

cal | str2obj(data_url_ptr, Dat athj ect _obj B);

if check_errors('str2obj') ~= conpletion_status_yes then
return;

/* Rel easing the menory. */

call strfree(data url_ptr);

if check_errors('strfree') ~= conpl etion_status_yes then
return;

END Initialize;

/***/

/* */
/* Process_transaction */
/* */
/* Begin a two-phase commt transaction by calling podtxnb. */
/* Read a value from"server A'. Add 1 to the value and */
/* update "server A" with the new val ue. */
/* Read a value from"server B'. Add 1 to the value and */
/* update "server B' with the new val ue. */
/* */
/* Check that all requests were successful. */
/* If so, request a conmt by calling SYNCPO NT. */
/* If not, back out the updates by calling ROLLBACK */
/* */
/* End the two-phase cormit transaction by calling podtxne. */
/* */

/***/

Process_transacti on: PROC

/* Begin a transaction. */

cal | podtxnb;

i f check_errors('podtxnb') ~= conpl etion_status_yes then
return;

put skip |ist('Two-phase coomit transaction begins');

call read_val ue_A

if read result_A = good_result
t hen
do;
call update_val ue_A
end;

172

Developing the CICS Two-Phase Commit Client

Example 8: The DATAC Demonstration Module (Sheet 5 of 9)

if update_result_A = good_resul t
t hen
do;
call read_val ue_B;
end;

if read result_B = good_resul t
t hen
do;
call update_val ue_B;
end;

if read_result_A good_result &
update _result_A = good _result &
read result_B good_result &
update _result_B = good_resul t
t hen
do;
MessageText =
' Two- phase commt transaction conpl eted' ;
put skip list('Al updates successful -');
put skip list('request commt');
call syncpoint;
end;
el se
do;
MessageText =
' A probl emwas encountered - rolling back';
put skip l'ist('Sonme updates were not successful -');
put skip list('request rollback');
call roll back;
end;

/* End the transaction. */

cal |l podtxne;

i f check_errors('podtxne') ~= conpl etion_status_yes then
return;

put skip list('Two-phase comit transaction ends');

exec cics send text from (MessageText |ength(79) freekb;

END Process_transacti on;

***I

173

CHAPTER 4 | Getting Started in CICS

174

Example 8: The DATAC Demonstration Module (Sheet 6 of 9)

e */
/* read_val ue_A */
% */
/* Read a value from"server A'.)
[*/

/***/

read_val ue_ A PRCC

cal | podexec(Dat aChj ect _obj A
read_operati on,
addr (read_operati on_args),
no_user _excepti ons);

i f check_errors('podexec') = conpl etion_status_yes
t hen
do;
read_result_A = 1;
put skip list(' Successfully read a value fromServer A ');
put |ist(read operation_args.idl_value);
end;

END read_val ue_A;

/***/

/* */
/* updat e_val ue_A */
/* */
/* Request that "server A' update a val ue. */
/* */

/***/

updat e_val ue_A: PRCC

wite_operation_args.idl _value = read_operation_args.idl_val ue
+ 1;

put skip list('New value for server A ');

put |ist(wite_operation_args.idl _value);

cal | podexec(Dat aChj ect _obj A
wite_operation,
addr (wri te_operation_args),
no_user _excepti ons);

i f check_errors('podexec') = conpl etion_status_yes
t hen
do;

Developing the CICS Two-Phase Commit Client

Example 8: The DATAC Demonstration Module (Sheet 7 of 9)

update result_A = 1;
put skip list('Server A has successfully updated the
val ue.");
end;

END updat e_val ue_A;

/***/

[l Ry
/* read_val ue_B */
/* */
/* Read a value from"server B'. */
/* */

/***/

read_val ue_B: PRCC

cal | podexec(Dat aChj ect _obj B,
read_operati on,
addr (read_operati on_args),
no_user _excepti ons);

i f check_errors('podexec') = conpl etion_status_yes
t hen
do;
read result B = 1;
put skip list('Successfully read a value fromServer B. ');
put |ist(read operation_args.idl_value);
end;

END read_val ue_B;

/***/

/* */
/* updat e_val ue_B */
/* */
/* Request that "server B' update a val ue. */
/* */

/***/

updat e_val ue_B: PRCC

wite operation_args.idl _value = read_operation_args.idl _val ue
+ 1;

put skip list('New value for server B. ');

put list(wite_ operation_args.idl _value);

175

CHAPTER 4 | Getting Started in CICS

176

Example 8: The DATAC Demonstration Module (Sheet 8 of 9)

cal | podexec(Dat aChj ect _obj B,
write_operation,
addr (wri te_operation_args),
no_user _exceptions);

i f check_errors('podexec') = conpl etion_status_yes
t hen
do;
update_result_B = 1;
put skip list('Server B has successful |y updated the
val ue.");
end;

END updat e_val ue_B;

[R KK Kk K ok Kk ok K kK Kk R Kk R Rk Rk X Rk R R kR Rk kR ok ok Rk ok kR kR kR ok ko k [

/*

/* Syncpoi nt

/*

/* lssue a SYNCPA NT cal | .
/*

/*

*/
*/
*/
*/
*/
*/

/***/

SYNCPA NT: PRCC,

dcl respl fixed bin(31);
dcl resp2 fixed bin(31);

exec cics syncpoi nt
resp(respl)
resp2(resp2);

i f respl = df hr esp(ROLLEDBACK)
t hen
do;
put skip list('Rollback requested by partner.');
' Two- phase commt - partner requested a roll back';
end;
el se
if respl A= df hr esp(NCRVAL)
t hen
do;
put skip list('Syncpoint has failed.");
end;

Developing the CICS Two-Phase Commit Client

Example 8: The DATAC Demonstration Module (Sheet 9 of 9)

END SYNCPQ NT;

/***I

¥ =
/* Rol | back)
% s
/* Issue a ROLLBACK cal | . */
[)

/***I

ROLLBACK: PRCC,

exec cics syncpoint rol |l back;

END RCLLBACK;

/**/
/* */
/* Term nate */
A “
/* Rel ease the references to "server A' and "server B'. */
[l Ry

[KK ok ke ok Kk ok K kK K kR R ok K K ok K ok Kk ok ok ok ok Kk ok R ok ok Kk kR Rk ok ok kR ok k[

Term nate: PROC

call objrel (DataCbhj ect _obj A);
if check_errors('objrel') ~= conpl etion_status_yes then return;

call objrel (DataChj ect _obj B);
if check_errors('objrel') ~= conpl etion_status_yes then return;

free pod_status_informnation;
END Ter m nat e;

END DATAC

Explanation of the DATAC module The CICS DATAC module can be explained as follows:

177

CHAPTER 4 | Getting Started in CICS

178

The CICS DATAC module can be explained as follows:

1.

data-url A and dat a- ur| B define corbaloc URL strings in the

corbal oc: rir format. These strings identify the servers with which the
client is to communicate. The strings can be passed as parameters to
STR2(CBJ, to allow the client to retrieve an object reference to the server.
See point 6 about STR2CBJ for more details.

PCDSTAT is called to register the PCD- STATUS- | NFCRVATI ON block that is
contained in the OCRBA include member. Registering the

PCD- STATUS- | NFCRVATI ON block allows the PL/I runtime to populate it
with exception information, if necessary.

If conpl et i on_st at us is set to zero after a call to the PL/I runtime, this
means that the call has completed successfully. You can use the
check_errors function to check the status of any Orbix call. It tests
the value of the except i on_nunber in pod_st at us_i nf or mat i on. If its
value is zero, it means the call was successful. Otherwise,
check_errors prints out the system exception number and message,
and the program ends at that point. The check_error s function should
be called after every PL/I runtime call, to ensure the call completed
successfully.

CORBARGS is called to initialize a connection to the ORB.

PCDREG is called to register the IDL interface with the Orbix PL/I
runtime.

STRSET is called to create an unbounded string to which the stringified
object reference to server 'A’ is copied.

STR2CRI is called to create an object reference to the server 'A’ object.
This must be done to allow operation invocations on the server. In this
case, the client identifies the target object, using a corbaloc URL string
in the form cor bal oc: ri r: / Dat aCbj ect A (as defined in point 1). See
“STR20BJ" on page 481 for more details of the various forms of
corbaloc URL strings and the ways you can use them.

STRSET is called to create an unbounded string to which the stringified
object reference to server 'B’ is copied.

STR2CRI is called to create an object reference to the server 'B’ object.
This must be done to allow operation invocations on the server. In this
case, the client identifies the target object, using a corbaloc URL string

10.
11.

12.
13.

14.

15.

16.

Developing the CICS Two-Phase Commit Client

in the form cor bal oc: ri r: / Dat athj ect B (as defined in point 1). See
“STR20BJ" on page 481 for more details of the various forms of
corbaloc URL strings and the ways you can use them.

PCDTXNB is called to indicate the start of two-phase commit processing.
The next APPC conversation with the client adapter, which is
established at the next call to PCDEXEC, will be at sync level 2.

PCDEXEC is called in this procedure to read a value from server 'A’.

PCDEXEC is called in this procedure to update a value from server 'A’.
Server 'A’ will log that an update has been requested, but make no
actual changes.

PCDEXEC is called in this procedure to read a value from server 'B’.

PCDEXEC is called in this procedure to update a value from server 'B’.
Server 'B’ will log that an update has been requested, but make no
actual changes.

If any call to PCDEXEC was unsuccessful, ask CICS to initiate rollback
processing to undo the updates made by the servers. Server ‘A’ and 'B’
will destroy the log that was holding the potential updates. No actual
updates will be made.

PCDTXNE is called to indicate the end of two-phase commit processing.
This requests that APPC deallocates the conversation. However, the
actual deallocation does not occur until the two-phase commit
processing has completed.

The CICS transaction calls SYNCPQ NT. This triggers the start of
two-phase commit processing. The client adapter is notified that the
CICS transaction has initiated two-phase commit processing. The
client adapter requests that server 'A’ and server 'B’ prepare their
updates. Each server replies to the client adapter that they are either
able or unable to commit the update. If either server replies that they
are unable to commit the update, each server is asked to roll back and
destroy the log that was holding the potential update. If both servers
reply that they are able to commit the changes, the client adapter
requests each server to commit their changes. Two-phase commit
processing ends.

179

CHAPTER 4 | Getting Started in CICS

Location of the DATAC module You can find a complete version of the CICS DATAC client module in
or bi xhl g. DEM3S. O CS. PLI . SRQ(DATAQ) .

180

Developing the CICS Two-Phase Commit Client

Building the Client

JCL to run the Orbix IDL compiler Before you can build the client, you must run the Orbix IDL compiler on the
IDL supplied in or bi xhl g. DEMDS. | DL(DATA) . Sample JCL to do this can be
found in or bi xhl g. DEMDS. O CS. PLI . BLD. JOLLI B(DATAI DL) .

JCL to build the client Sample JCL used to compile and link the client can be found in
or bi xhl g. DEMCS. O CS. PLI . BLD. JOLLI B(DATACB) .

Resulting load module When the JCL has successfully executed, it results in a load module that is
contained in or bi xhl g. DEMX5. O CS. PLI . LOADLI B(DATACL) .

181

CHAPTER 4 | Getting Started in CICS

Building the Servers

JCL to run the Orbix IDL compiler Before you can build the servers, ensure that you have run the Orbix IDL
compiler on the IDL supplied in or bi xhl q. DEMCS. | DL(DATA) . Sample JCL to
do this can be found in or bi xhl gq. DEMOS. O CS. PLI . BLD. JCLLI B(DATAI DL) .

Note: If you have already built the client, this step should have already
been completed.

JCL to build the servers Sample JCL used to compile and link the servers can be found in
or bi xhl g. DEMCS. CPP. BLD. JCLLI B(DATASV) .

Resulting load module When the JCL has successfully executed, it results in a load module that is
contained in or bi xhl g. DEMOS. CPP. LQADLI B(DATASV) .

182

Developing the CICS Two-Phase Commit Client

Preparing the Client to Run in CICS

Overview

Steps

Step 1—Define a transaction to

CICS

DEFI NE

This section describes the required steps to allow the client to run in a CICS
region. These steps assume you want to run the CICS client against a batch

server.

The steps to enable the client to run in a CICS region are:

Step

Action

1

Define a transaction to CICS.

2

Provide the CICS client load module to the CICS region.

3

Start the locator, node daemon, and RRS OTSTM on the server
host.

Start the batch servers.

Customize the batch server IORs.

Configure and run the client adapter.

A transaction definition must be created for the client, to allow it to run in

CICS. The following is the transaction definition for the supplied
demonstration:

TRANSACTI O\(DATC)
GROUP(CRXDEMD)

DESCR PTI OO bi x Aient Two-Phase Commt deno transaction)

PROGRAM DATACL)
PROFI LE(DFHO CSA)
TRANCLASS(DFHTCLOO)
DTl MOUT(10)

SPURGE(YES)

TPURGE(YES)

RESSEQ(YES)

183

CHAPTER 4 | Getting Started in CICS

Step 2—Provide client load
module to CICS region

Step 3—Start locator, node
daemon, and RRS OTSTM on
server

Step 4—Start batch servers

Step 5—Customize batch server
IORs

184

Ensure that the or bi xhl g. DEMS. A CS. PLI . LQADLI B PDS is added to the
DFHRPL for the CICS region that is to run the transaction.

Note: If you have already done this for your CICS server load module, you
do not need to do this again.

Alternatively, you can copy the DATACL load module to a PDS in the
DFHRPL of the relevant CICS region.

This step assumes that you intend running the CICS client against the
demonstration batch server.

In this case, you must start all of the following on the batch server host (if
they have not already been started):

1. Start the locator daemon by submitting or bi xhl g. JCLLI B(LOCATCR) .
2. Start the node daemon by submitting or bi xhl q. JOLLI B(NCDEDAEM) .
3. Start the RRS OTSTM server by submitting or bi xhl g. JCLLI B(OTSTM) .

See “Running the Server and Client” on page 47 for more details of running
the locator and node daemon on the batch server host.

See the chapter on Using OTS RRS Transaction Manager in the Mainframe
OTS Guide for more details of running the RRS OTSTM server.

This step assumes that you intend running the CICS client against the
demonstration batch servers.

Submit the or bi xhl g. DEMDS. CPP. RUN JCLLI B(DATAA) and
or bi xhl g. DEMDS. CPP. RUNL JCLLI B(DATAB) JCL to start the batch servers.

When you run the demonstration batch servers they publish their IORs to
or bi xhl g. DEMDS. | CRS(DATAA) and or bi xhl . DEMDS. | CRS(DATAB) .

The demonstration CICS client needs to use these IORs to contact the
demonstration batch servers. The demonstration CICS client obtains the
object reference for the demonstration batch servers in the form of a
corbaloc URL string. A corbaloc URL string can take different formats. For
the purposes of this demonstration, the corbalocs take the form

corbal oc: rir:/Dat athj ect Aand corbal oc: rir:/ Dat aCbj ect B.

Step 6—Configure and run client
adapter

Developing the CICS Two-Phase Commit Client

This form of the corbaloc URL string requires the use of the configuration
variables, i ni ti al _ref er ences: Dat aCbj ect A r ef er ence and

initial _references: Dat albj ect B: r ef er ence, in the configuration domain.
When you submit the JCL in or bi xhl . DEM3S. A CS. PLI . BLD. JOLLI B

(DATAI CRS) , it automatically adds these configuration entries to the
configuration domain:

initial _references: Dat athj ect A r ef erence
initial_references: Dat aCbj ect B: ref erence

"ICR;
"ICR

The I0R values are taken from or bi xhl q. DEMOS. | CRS(DATAA) and
or bi xhl . DEMCS. | ORS(DATAB) .

See “STR20BJ” on page 481 for more details of the various forms of
corbaloc URL strings and the ways you can use them.

The client adapter must now be configured before you can start the client
(the CICS transaction). See the CICS Adapters Administrator’s Guide for
details of how to configure the client adapter.

When you have configured the client adapter, you can run it by submitting
or bi xhl q. JCLLI B(Q CSCA) .

Note: See “Running a CICS Two-Phase Commit Client against Batch
Servers” on page 189 for details of how to run the sample two-phase
commit client demonstration.

185

CHAPTER 4 | Getting Started in CICS

Running the Demonstrations

Overview This section provides a summary of what you need to do to successfully run
the supplied demonstrations.

In this section This section discusses the following topics:
Running a Batch Client against a CICS Server page 187
Running a CICS Client against a Batch Server page 188

Running a CICS Two-Phase Commit Client against Batch Servers
page 189

186

Running the Demonstrations

Running a Batch Client against a CICS Server

Overview This subsection describes what you need to do to successfully run the
demonstration batch client against the demonstration CICS server. It also
provides an overview of the output produced.

Steps The steps to run the demonstration CICS server against the demonstration
batch client are:
1. Ensure that all the steps in “Preparing the Server to Run in CICS” on
page 151 have been successfully completed.
2. Run the batch client as described in “Running the Server and Client”
on page 47.

CICS server output The CICS server sends the following output to the CICS region:

Sinpl e::call _me i nvoked

Batch client output The batch client produces the following output:

Initializing the CRB

Regi stering the Interface

Readi ng obj ect reference fromfile
invoking Sinple::call_me

Si npl e deno conpl et e.

187

CHAPTER 4 | Getting Started in CICS

Running a CICS Client against a Batch Server

Overview This subsection describes what you need to do to successfully run the
demonstration CICS client against the demonstration batch server. It also
provides an overview of the output produced.

Steps The steps to run the demonstration CICS client against the demonstration
batch server are:
1. Ensure that all the steps in “Preparing the Client to Run in CICS” on
page 162 have been successfully completed.
2. Run the CICS client by entering the transaction name, SML, in the
relevant CICS region.

CICS client output The CICS client sends the following output to the CICS region:
Initializing the CRB
Regi stering the Interface
invoking Sinple::call_me
Si npl e deno conpl et e.
The CICS client sends the following output to the CICS terminal:

Sinpl e transacti on conpl et ed

Batch server output The batch server produces the following output:

Initializing the CRB

Regi stering the Interface

Creating the Cbject

Witing object reference to file

Gving control to the ORB to process Requests
Sinpl e::call _me invoked

188

Running the Demonstrations

Running a CICS Two-Phase Commit Client against Batch

Servers

Overview

Steps

CICS client output

This subsection describes what you need to do to successfully run the
demonstration CICS two-phase commit client against the demonstration
batch servers. It also provides an overview of the output produced.

Note: For instructions on recovery processing for any unsuccessful runs of
an application, see or bi xhl g. DEMDS. O CS. PLI . READVE(DATAC) .

The steps to run the demonstration CICS two-phase commit client against
the demonstration batch servers are:

1. Ensure that all the steps in “Preparing the Client to Run in CICS” on
page 183 have been successfully completed.

2. Run the CICS client by entering the transaction name, DATAC, in the
relevant CICS region.

The CICS client sends the following output to the CICS region:

Initializing the CRB

Regi stering the Interface

Two- phase commit transacti on begins

I nvoking: read:|DL: Data: 1.0

Successfully read a val ue fromserver A: 0000000001
New val ue for server A: 0000000002

Invoking: wite:|DL: Data: 1.0

Server A has successfully updated the val ue.

I nvoki ng: read: | DL: Data: 1.0

Successfully read a val ue fromserver B: 0000000001
New val ue for server B: 0000000002

Invoking: wite:|DL: Data: 1.0

Server B has successfully updated the val ue.

Al updates successful -

request conmit

Two- phase commit transacti on ends

189

CHAPTER 4 | Getting Started in CICS

The CICS client sends the following output to the CICS terminal:

Two- phase commit transacti on conpl et ed

Batch server 'A’ output Batch server 'A’ produces the following output:

OIS Recovery Deno Server

Initializing the CRB

Server IDis A

IR file is DD | CRS(DATAA)

Data file is DD DATA(DATAA)

Log file is DD DATA(LC®)

Resol vi ng Transact i onCur r ent

Resol vi ng Root PQA

Oeating POA with REQU RES OIS Pol i cy
Oeating POAw th |ifespan policy of PERSI STENT
QOeating POA with an I D assi gnnent of USER
Creating Data servant and obj ect

Oreating POA for Resource objects

Readi ng data fromfil e DD DATA(DATAA)

Value is 1

Witing object reference to DD | ORS(DATAA)
Activation POA for Data object

Data servant read() called

Read-onl y access: not registering Resoure object
Qurrent value is 1

Data servant wite() called

Getting coordinator for current transaction
Getting Transaction ldentifier

Oreating Resource servant

Acti vating Resource obj ect

Regi steri ng Resource object w th coordi nator
Activating the Resource PQA

Setting value to 2

Resource servant prepare() called

Voting to commit the transaction

Witing prepare record

Resource servant commit() called

Witing data to file DD DATA(DATAA)

Del eti ng prepare record

Deact i vati ng Resource obj ect

Resource servant destructed

190

Running the Demonstrations

Batch server 'B’ output Batch server 'B’ produces the following output:

OTS Recovery Deno Server

Initializing the CRB

Server IDis B

ICRfile is DD | CRS(DATAB)

Data file is DD DATA(DATAB)

Log file is DD DATA(LGGB)

Resol vi ng Transacti onCurr ent

Resol vi ng Root POA

Oreating POA with REQU RES OIS Pol i cy
Oeating POAw th |ifespan policy of PERS STENT
OGeating POA with an I D assi gnnent of USER
Creating Data servant and obj ect

Oeating POA for Resource objects

Reading data fromfile DD DATA(DATAB)

Value is 1

Witing object reference to DD | CRS(DATAB)
Activation POA for Data object

Data servant read() called

Read- onl y access: not registering Resoure object
Qurrent value is 1

Data servant wite() called

Getting coordinator for current transaction
Getting Transaction ldentifier

Oreating Resource servant

Activating Resource obj ect

Regi steri ng Resource obj ect with coordi nat or
Activating the Resource POA

Setting value to 2

Resour ce servant prepare() called

Voting to conmt the transaction

Witing prepare record

Resource servant commt() called

Witing data to file DD DATA(DATAB)

Del eting prepare record

Deacti vati ng Resource obj ect

Resour ce servant destruct ed

191

CHAPTER 4 | Getting Started in CICS

192

In this chapter

CHAPTER 5

IDL Interfaces

The CORBA Interface Definition Language (IDL) is used to
describe the interfaces of objects in an enterprise application.
An object’s interface describes that object to potential clients
through its attributes and operations, and their signatures.
This chapter describes IDL semantics and uses.

This chapter discusses the following topics:

IDL page 194
Modules and Name Scoping page 195
Interfaces page 196
IDL Data Types page 213
Defining Data Types page 228

193

CHAPTER 5 | IDL Interfaces

IDL

Overview

IDL standard mappings

Overall structure

IDL definition structure

194

An IDL-defined object can be implemented in any language that IDL maps
to, including C++, Java, PL/I, and COBOL. By encapsulating object
interfaces within a common language, IDL facilitates interaction between
objects regardless of their actual implementation. Writing object interfaces
in IDL is therefore central to achieving the CORBA goal of interoperability
between different languages and platforms.

CORBA defines standard mappings from IDL to several programming
languages, including C++, Java, PL/I, and COBOL. Each IDL mapping
specifies how an IDL interface corresponds to a language-specific
implementation. The Orbix IDL compiler uses these mappings to convert IDL
definitions to language-specific definitions that conform to the semantics of
that language.

You create an application’s IDL definitions within one or more IDL modules.
Each module provides a naming context for the IDL definitions within it.
Modules and interfaces form naming scopes, so identifiers defined inside an
interface need to be unique only within that interface.

In the following example, two interfaces, Bank and Account , are defined
within the BankDeno module:

nmodul e BankDeno

i{nterface Bank {
/...
b
interface Account {
/...
ik
ba

Modules and Name Scoping

Modules and Name Scoping

Resolving a name

Referencing interfaces

Nesting restrictions

To resolve a name, the IDL compiler conducts a search among the following
scopes, in the order outlined:

1. The current interface.
2. Base interfaces of the current interface (if any).

3. The scopes that enclose the current interface.

Interfaces can reference each other by name alone within the same module.
If an interface is referenced from outside its module, its name must be fully
scoped with the following syntax:

nodul e- nare: : i nt er f ace- nane

For example, the fully scoped names of the Bank and Account interfaces
shown in “IDL definition structure” on page 194 are, respectively,
BankDeno: : Bank and BankDeno: : Account .

A module cannot be nested inside a module of the same name. Likewise,
you cannot directly nest an interface inside a module of the same name. To
avoid name ambiguity, you can provide an intervening name scope as
follows:

modul e A

{

nodul e B

{
interface A {
/...

195

CHAPTER 5 | IDL Interfaces

Interfaces

In this section The following topics are discussed in this section:
Interface Contents page 198
Operations page 199
Attributes page 201
Exceptions page 202
Empty Interfaces page 203
Inheritance of Interfaces page 204
Multiple Inheritance page 205

Overview Interfaces are the fundamental abstraction mechanism of CORBA. An

interface defines a type of object, including the operations that object
supports in a distributed enterprise application.

Every CORBA object has exactly one interface. However, the same interface
can be shared by many CORBA objects in a system. CORBA object
references specify CORBA objects (that is, interface instances). Each
reference denotes exactly one object, which provides the only means by
which that object can be accessed for operation invocations.

Because an interface does not expose an object’s implementation, all
members are public. A client can access variables in an object’s
implementation only through an interface’s operations and attributes.

Operations and attributes An IDL interface generally defines an object’s behavior through operations
and attributes:
® Qperations of an interface give clients access to an object’s behavior.
When a client invokes an operation on an object, it sends a message to
that object. The ORB transparently dispatches the call to the object,

196

Account interface IDL sample

Code explanation

Interfaces

whether it is in the same address space as the client, in another
address space on the same machine, or in an address space on a
remote machine.

® An IDL attribute is short-hand for a pair of operations that get and,
optionally, set values in an object.

In the following example, the Account interface in the BankDeno module
describes the objects that implement the bank accounts:

nmodul e BankDeno
{
typedef float CashAmount; // Type for representing cash
typedef string Accountld; //Type for representing account ids
/...
interface Account {
readonly attribute Accountld account_id;
readonly attribute CashAmount bal ance;

voi d
wi t hdraw(i n CashAnount armount)
rai ses (InsufficientFunds);

voi d
deposi t (i n CashAmount anount);

This interface has two readonly attributes, Account I d and bal ance, which
are respectively defined as typedefs of the string and f1 oat types. The
interface also defines two operations, wi t hdraw() and deposit (), which a
client can invoke on this object.

197

CHAPTER 5 | IDL Interfaces

Interface Contents

IDL interface components An IDL interface definition typically has the following components.
® Operation definitions.
¢ Attribute definitions
® Exception definitions.
® Type definitions.
® Constant definitions.

Of these, operations and attributes must be defined within the scope of an
interface, all other components can be defined at a higher scope.

198

Interfaces

Operations

Overview

Operation components

Operations IDL sample

Operations of an interface give clients access to an object’s behavior. When
a client invokes an operation on an object, it sends a message to that object.
The ORB transparently dispatches the call to the object, whether it is in the
same address space as the client, in another address space on the same
machine, or in an address space on a remote machine.

IDL operations define the signature of an object’s function, which client
invocations on that object must use. The signature of an IDL operation is
generally composed of three components:

® Return value data type.
® Parameters and their direction.
® Exception clause.

An operation’s return value and parameters can use any data types that IDL
supports.

Note: Not all CORBA 2.3 IDL data types are supported by PL/I or
COBOL.

In the following example, the Account interface defines two operations,
wi t hdraw() and deposit(), and an | nsuf fi ci ent Funds exception:

nodul e BankDeno

{
typedef float CashAnmount; // Type for representing cash
/...
interface Account {
exception | nsufficientFunds {};
voi d
wi t hdraw(i n CashAmount anount)
rai ses (InsufficientFunds);
voi d
deposi t (i n CashAmount anount);
it
ik

199

CHAPTER 5 | IDL Interfaces

Code explanation

Parameter direction

Parameter-passing mode
qualifiers

One-way operations

200

On each invocation, both operations expect the client to supply an argument
for the amount parameter, and return voi d. Invocations on the wi t hdr aw()
operation can also raise the I nsuf fi ci ent Funds exception, if necessary.

Each parameter specifies the direction in which its arguments are passed
between client and object. Parameter-passing modes clarify operation
definitions and allow the IDL compiler to accurately map operations to a
target programming language. The PL/I runtime uses parameter-passing
modes to determine in which direction or directions it must marshal a
parameter.

There are three parameter-passing mode qualifiers:

in This means that the parameter is initialized only by the
client and is passed to the object.

out This means that the parameter is initialized only by the
object and returned to the client.

i nout This means that the parameter is initialized by the client

and passed to the server; the server can modify the value
before returning it to the client.

In general, you should avoid using i nout parameters. Because an i nout
parameter automatically overwrites its initial value with a new value, its
usage assumes that the caller has no use for the parameter’s original value.
Thus, the caller must make a copy of the parameter in order to retain that
value. By using the two parameters, i n and out , the caller can decide for
itself when to discard the parameter.

By default, IDL operations calls are synchronous—that is, a client invokes

an operation on an object and blocks until the invoked operation returns. If
an operation definition begins with the keyword, oneway, a client that calls
the operation remains unblocked while the object processes the call.

Note: The PL/I runtime does not support one-way operations.

Interfaces

Attributes

Attributes overview

Qualified and unqualified
attributes

IDL readonly attributes sample

Code explanation

An interface’s attributes correspond to the variables that an object
implements. Attributes indicate which variable in an object are accessible to
clients.

Unqualified attributes map to a pair of get and set functions in the
implementation language, which allow client applications to read and write
attribute values. An attribute that is qualified with the r eadonl y keyword
maps only to a get function.

For example the Account interface defines two readonly attributes,

Account | d and bal ance. These attributes represent information about the
account that only the object’s implementation can set; clients are limited to
readonly access:

nmodul e BankDeno
{
typedef float CashAmount; // Type for representing cash
typedef string Accountld; //Type for representing account ids
/...
interface Account {
readonly attribute Accountld account_id;
readonly attribute CashAmount bal ance;

voi d
wi t hdraw(i n CashAnount arnount)
rai ses (InsufficientFunds);

voi d
deposit (i n CashAmount anount);

The Account interface has two readonly attributes, Account 1 d and bal ance,
which are respectively defined as typedefs of the string and 1 oat types.
The interface also defines two operations, wi t hdraw() and deposit(),
which a client can invoke on this object.

201

CHAPTER 5 | IDL Interfaces

Exceptions

IDL and exceptions

The raises clause

Example of IDL-defined
exceptions

202

IDL operations can raise one or more CORBA-defined system exceptions.
You can also define your own exceptions and explicitly specify these in an
IDL operation. An IDL exception is a data structure that can contain one or
more member fields, formatted as follows:

exception exception-name {
[menber;] ...

IE

Exceptions that are defined at module scope are accessible to all operations
within that module; exceptions that are defined at interface scope are
accessible on to operations within that interface.

After you define an exception, you can specify it through a rai ses clause in
any operation that is defined within the same scope. A rai ses clause can
contain multiple comma-delimited exceptions:

return-val operation-name([parans-list])
rai ses(exception-nane[, exception-nane]);

The Account interface defines the I nsuf fi ci ent Funds exception with a
single member of the stri ng data type. This exception is available to any
operation within the interface. The following IDL defines the wi t hdr aw()
operation to raise this exception when the withdrawal fails:

nmodul e BankDeno

{
typedef float CashAmount; // Type for representing cash
/...
interface Account {
exception |InsufficientFunds {};
voi d
wi t hdraw(i n CashAnount armount)
rai ses (InsufficientFunds);
/...
i
b

Interfaces

Empty Interfaces

Defining empty interfaces IDL allows you to define empty interfaces. This can be useful when you wish
to model an abstract base interface that ties together a number of concrete

derived interfaces.

IDL empty interface sample In the following example, the CORBA Port abl eSer ver module defines the
abstract Servant Manager interface, which serves to join the interfaces for
two servant manager types, Servant Acti vat or and Ser vant Locat or :

nodul e Port abl eServer

{
i nterface Servant Manager {};
interface ServantActivator : Servant Manager {
/...
ik
interface ServantLocator : Servant Manager {
/...
it
ik

203

CHAPTER 5 | IDL Interfaces

Inheritance of Interfaces

Inheritance overview

Inheritance interface IDL sample

Code sample explanation

204

An IDL interface can inherit from one or more interfaces. All elements of an
inherited, or base interface, are available to the derived interface. An
interface specifies the base interfaces from which it inherits, as follows:

interface newinterface : base-interface[, base-interface]...

{3

In the following example, the Checki ngAccount and Savi ngsAccount
interfaces inherit from the Account interface, and implicitly include all its
elements:

nodul e BankDeno{
typedef float CashAmount; // Type for representing cash
interface Account {
/...
B

i nterface Checki ngAccount : Account {
readonly attribute CashAmount overdraftLimt;
bool ean or der CheckBook ();

i

interface Savi ngsAccount : Account {
float cal cul atelnterest ();
it
ba

An object that implements the Checki ngAccount interface can accept
invocations on any of its own attributes and operations as well as
invocations on any of the elements of the Account interface. However, the
actual implementation of elements in a Checki ngAccount object can differ
from the implementation of corresponding elements in an Account object.
IDL inheritance only ensures type-compatibility of operations and attributes
between base and derived interfaces.

Interfaces

Multiple Inheritance

Multiple inheritance IDL sample In the following IDL definition, the BankDeno module is expanded to include
the Preni umAccount interface, which inherits from the Checki ngAccount and
Savi ngsAccount interfaces:

nmodul e BankDeno {
interface Account {
/...

}

i nterface Checki ngAccount : Account {
/...

b

i nterface Savi ngsAccount : Account {
/...

IE

i nterface Prem umAccount :
Checki ngAccount, Savi ngsAccount {
/...
ik
ba

Multiple inheritance constraints Multiple inheritance can lead to nhame ambiguity among elements in the
base interfaces. The following constraints apply:
® Names of operations and attributes must be unique across all base
interfaces.
® |fthe base interfaces define constants, types, or exceptions of the same
name, references to those elements must be fully scoped.

Inheritance hierarchy diagram Figure 6 shows the inheritance hierarchy for the Account interface, which is
defined in “Multiple inheritance IDL sample” on page 205.

205

CHAPTER 5 | IDL Interfaces

| Account |

A

Checki ngAccount | Savi ngsAccount

A

Pr em unAccount

Figure 6: Inheritance Hierarchy for PremiumAccount Interface

206

Interfaces

Inheritance of the Object Interface

User-defined interfaces All user-defined interfaces implicitly inherit the predefined interface oj ect .
Thus, all (oj ect operations can be invoked on any user-defined interface.
You can also use (oj ect as an attribute or parameter type to indicate that
any interface type is valid for the attribute or parameter.

Object locator IDL sample For example, the following operation get AnyQbj ect () serves as an
all-purpose object locator:

interface bjectlLocator {
voi d get Any(hj ect (out Cbject obj);
b

Note: Itis illegal in IDL syntax to explicitly inherit the (oj ect interface.

207

CHAPTER 5 | IDL Interfaces

Inheritance Redefinition

Overview A derived interface can modify the definitions of constants, types, and
exceptions that it inherits from a base interface. All other components that
are inherited from a base interface cannot be changed.

Inheritance redefinition IDL In the following example, the Checki ngAccount interface maodifies the
sample definition of the I nsuf fi ci ent Funds exception, which it inherits from the
Account interface:

nodul e BankDeno

{
typedef float CashAnmount; // Type for representing cash
/...
interface Account {
exception |InsufficientFunds {};
/...
ik
i nterface Checki ngAccount : Account {
exception |nsufficientFunds {
CashAmount overdraftLinit;
b
IE
/..
ba

Note: While a derived interface definition cannot override base operations
or attributes, operation overloading is permitted in interface
implementations for those languages, such as C++, which support it.
However, PL/I does not support operation overloading.

208

Interfaces

Forward Declaration of IDL Interfaces

Overview

Forward declaration IDL sample

An IDL interface must be declared before another interface can reference it.
If two interfaces reference each other, the module must contain a forward
declaration for one of them; otherwise, the IDL compiler reports an error. A
forward declaration only declares the interface’s name; the interface’s actual
definition is deferred until later in the module.

In the following example, the Bank interface defines a creat e_account ()
and find_account () operation, both of which return references to Account
objects. Because the Bank interface precedes the definition of the Account
interface, Account is forward-declared:

nodul e BankDeno

{
typedef float CashAnount; // Type for representing cash
typedef string Accountld; //Type for representing account ids
/1 Forward decl aration of Account
interface Account;
/1 Bank interface...used to create Accounts
interface Bank {
exception Account Al readyExi sts { Accountld account_id; };
except i on Account Not Found { Accountld account_id; };
Account
find_account (i n Accountld account _id)
rai ses(Account Not Found) ;
Account
create_account (
in Accountld account _id,
in CashAmount initial_bal ance
) raises (AccountAl readyExists);
it
/1 Account interface.used to deposit, wthdraw, and query
/] avail abl e funds.
interface Account { //...
ik
b

209

CHAPTER 5 | IDL Interfaces

Local Interfaces

Overview An interface declaration that contains the IDL | ocal keyword defines a local
interface. An interface declaration that omits this keyword can be referred to
as an unconstrained interface, to distinguish it from local interfaces. An
object that implements a local interface is a local object.

Note: The PL/I runtime and the Orbix IDL compiler backend for PL/l do
not support local interfaces.

210

Interfaces

Valuetypes

Overview Valuetypes enable programs to pass objects by value across a distributed
system. This type is especially useful for encapsulating lightweight data
such as linked lists, graphs, and dates.

Note: The PL/I runtime and the Orbix IDL compiler backend for PL/I do
not support valuetypes.

211

CHAPTER 5 | IDL Interfaces

Abstract Interfaces

Overview An application can use abstract interfaces to determine at runtime whether
an object is passed by reference or by value.

Note: The PL/I runtime and the Orbix IDL compiler backend for PL/l do
not support abstract interfaces.

212

IDL Data Types

IDL Data Types

In this section

Data type categories

The following topics are discussed in this section:

Built-in Data Types page 214
Extended Built-in Data Types page 217
Complex Data Types page 220
Enum Data Type page 221
Struct Data Type page 222
Union Data Type page 223
Arrays page 225
Sequence page 226
Pseudo Object Types page 227

In addition to IDL module, interface, valuetype, and exception types, IDL

data types can be grouped into the following categories:

® Built-in types such as short, I ong, and fl oat .

¢ Extended built-in types such as | ong | ong and wstri ng.
® Complex types such as enum struct, and string.

® Pseudo objects.

Note: Not all CORBA 2.3 IDL data types are supported by PL/I or

COBOL.

213

CHAPTER 5 | IDL Interfaces

Built-in Data Types

List of types, sizes, and values

214

Table 20 shows a list of CORBA IDL built-in data types (where the < symbol
means ’less than or equal to’).

Table 20: Built-in IDL Data Types, Sizes, and Values

Data type Size Range of values

short < 16 bits 215 2151

unsigned short? < 16 bits 0..216.1

long < 32 bits —231 2311

unsigned long® < 32 bits 0..232.1

float < 32 bits IEEE single-precision floating
point numbers

double < 64 bits IEEE double-precision
floating point numbers

char < 8 bits ISO Latin-1

string Variable length ISO Latin-1, except NUL

string<bound>¢

Variable length

ISO Latin-1, except NUL

boolean Unspecified TRUE or FALSE
octet < 8 bits 0x0 to Oxff
any Variable length Universal container type

a. The PL/I range for the unsi gned short type is restricted to 0..2151,

b. The PL/I range for the unsigned long type is restricted to 0..2311

c. The PL/I range for a bounded string is restricted to a range of 1-32767

characters.

Integer types

Floating point types

Char type

String type

Bounded and unbounded strings

Octet type

IDL Data Types

With the exception of unsigned short, unsigned long , and bounded string
types, the full IDL range of values of each of the types listed in Table 20 can
be marshaled to and from the PL/I runtime. Due to a limitation of the PL/I
compiler for MVS & VM, the upper range of values for unsi gned short and
unsi gned | ong types are the same as those for short and | ong types.

The float and double types follow IEEE specifications for single-precision
and double-precision floating point values, and on most platforms map to
native IEEE floating point types.

The char type can hold any value from the ISO Latin-1 character set. Code
positions 0-127 are identical to ASCII. Code positions 128-255 are
reserved for special characters in various European languages, such as
accented vowels.

The string type can hold any character from the ISO Latin-1 character set,
except NUL. IDL prohibits embedded NUL characters in strings. Unbounded
string lengths are generally constrained only by memory limitations. A
bounded string, such as st ri ng<10>, can hold only the number of
characters specified by the bounds, excluding the terminating NUL character.
Thus, a st ring<6> can contain the six-character string, cheese.

The declaration statement can optionally specify the string’s maximum
length, thereby determining whether the string is bounded or unbounded:

string[length] nane

For example, the following code declares the Short Stri ng type, which is a
bounded string with a maximum length of 10 characters:

typedef string<10> Short String;
attribute ShortString shortNane; // max length is 10 chars

Due to the limitations in PL/I, a bounded string can have a maximum length
of 32767 characters.

Qct et types are guaranteed not to undergo any conversions in transit. This
lets you safely transmit binary data between different address spaces. Avoid
using the char type for binary data, inasmuch as characters might be

215

CHAPTER 5 | IDL Interfaces

Any type

216

subject to translation during transmission. For example, if a client that uses
ASCII sends a string to a server that uses EBCDIC, the sender and receiver
are liable to have different binary values for the string’s characters.

The any type allows specification of values that express any IDL type, which
is determined at runtime; thereby allowing a program to handle values
whose types are not known at compile time. An any logically contains a
TypeCode and a value that is described by the TypeCode. A client or server
can construct an any to contain an arbitrary type of value and then pass this
call in a call to the operation. A process receiving an any must determine
what type of value it stores and then extract the value via the TypeCode. See
the CORBA Programmer’s Guide, C++ for more details about the any type.

IDL Data Types

Extended Built-in Data Types

List of types, sizes, and values

Long long type

Table 21 shows a list of CORBA IDL extended built-in data types (where the

< symbol means 'less than or equal to’).

Table 21: Extended built-in IDL Data Types, Sizes, and Values

Data Type Size Range of Values

long long? < 64 bits 263, 2631

unsigned long long? < 64 bits 0..-204.1

long doubleP <79 bits |IEEE double-extended
floating point number, with
an exponent of at least 15
bits in length and signed
fraction of at least 64 bits.
| ong doubl e type is
currently not supported on
Windows NT.

wchar Unspecified Arbitrary codesets

wstring Variable Arbitrary codesets

length
fixed® Unspecified < 31significant digits

a. Due to compiler restrictions, the PL/I range of values for the | ong | ong and
unsi g?ed I ong | ong types is the same range as for a | ong type (that is,
-1).

0..2

b. Due to compiler restrictions, the PL/I range of values for the | ong doubl e
type is the same range as for a double type (that is, < 64 bits).

c. Due to compiler restrictions, the PL/I range of values for the fixed type is <

15 significant digits.

The 64-bit integer types, | ong | ong and unsi gned | ong | ong, support
numbers that are too large for 32-bit integers. Platform support varies. If
you compile IDL that contains one of these types on a platform that does not
support it, the compiler issues an error.

217

CHAPTER 5 | IDL Interfaces

Long double type

Wochar type

Wstring type

Fixed type

218

Like 64-bit integer types, platform support varies for the 1 ong doubl e type,
so usage can yield IDL compiler errors.

The wchar type encodes wide characters from any character set. The size of
a wchar is platform-dependent. Because Orbix currently does not support
character set negotiation, use this type only for applications that are
distributed across the same platform.

The wst ri ng type is the wide-character equivalent of the stri ng type. Like
string types, wstring types can be unbounded or bounded. Wide strings
can contain any character except NUL.

IDL specifies that the fi xed type provides fixed-point arithmetic values with
up to 31 significant digits. However, due to restrictions in the PL/| compiler
for MVS & VM, only up to 15 significant digits are supported.

You specify a fi xed type with the following format:
typedef fixed<digit-size,scal e> name

The format for the fixed type can be explained as follows:

® Thedigit-size represents the number's length in digits. The
maximum value for di gi t - si ze is 31 and it must be greater than
scal e. A fixed type can hold any value up to the maximum value of a
doubl e type.

® If scal e is a positive integer, it specifies where to place the decimal
point relative to the rightmost digit. For example, the following code
declares a fixed type, CashAmount , to have a digit size of 10 and a
scale of 2:

typedef fixed<10, 2> CashAnount;

Given this typedef, any variable of the CashAnount type can contain
values of up to (+/-)99999999.99.

Constant fixed types

Fixed type and decimal fractions

IDL Data Types

® If scal e is a negative integer, the decimal point moves to the right by
the number of digits specified for scal e, thereby adding trailing zeros
to the fixed data type’s value. For example, the following code declares
a fixed type, bi ghum to have a digit size of 3 and a scale of - 4:

typedef fixed <3,-4> bi g\Num
bi g\Num nyBi gNum

If nyBi gNumhas a value of 123, its numeric value resolves to 1230000.
Definitions of this sort allow you to efficiently store numbers with
trailing zeros.

Constant fixed types can also be declared in IDL, where di gi t - si ze and
scal e are automatically calculated from the constant value. For example:

module Grcle {
const fixed pi = 3.142857;
ik

This yields a fixed type with a digit size of 7, and a scale of 6.

Unlike IEEE floating-point values, the fi xed type is not subject to
representational errors. IEEE floating point values are liable to inaccurately
represent decimal fractions unless the value is a fractional power of 2. For
example, the decimal value 0.1 cannot be represented exactly in IEEE
format. Over a series of computations with floating-point values, the
cumulative effect of this imprecision can eventually yield inaccurate results.

The fi xed type is especially useful in calculations that cannot tolerate any
imprecision, such as computations of monetary values.

219

CHAPTER 5 | IDL Interfaces

Complex Data Types

IDL complex data types IDL provide the following complex data types:
® Enums.
¢ Structs.

® Multi-dimensional fixed-sized arrays.

® Sequences.

220

IDL Data Types

Enum Data Type

Overview

Enum IDL sample

Ordinal values of enum type

An enum (enumerated) type lets you assign identifiers to the members of a
set of values.

For example, you can modify the BankDeno IDL with the bal anceQur r ency
enum type:

nodul e BankDeno {
enum Qurrency {pound, dollar, yen, franc};

interface Account {
readonly attribute CashAmount bal ance;
readonly attribute Qurrency bal anceCurrency;
/...

IE

In the preceding example, the bal anceCQur r ency attribute in the Account
interface can take any one of the values pound, dollar, yen, orfranc.

The ordinal values of an enum type vary according to the language
implementation. The CORBA specification only guarantees that the ordinal
values of enumerated types monotonically increase from left to right. Thus,
in the previous example, dol | ar is greater than pound, yen is greater than
dol | ar, and so on. All enumerators are mapped to a 32-bit type.

221

CHAPTER 5 | IDL Interfaces

Struct Data Type

Overview

Struct IDL sample

222

A struct type lets you package a set of named members of various types.

In the following example, the Qust oner Det ai | s struct has several members.
The get Qust omer Det ai | s() operation returns a struct of the
Cust orer Det ai | s type, which contains customer data:

nodul e BankDeno{
struct QustonerDetails {
string custl D,
string | nare;
string fname;
short age;
/...

}s

interface Bank {
Qust orer Det ai | s get Qust orrer Det ai | s
(in string custlD);
/...

i
Note: A struct type must include at least one member. Because a struct

provides a naming scope, member names must be unique only within the
enclosing structure.

IDL Data Types

Union Data Type

Overview

Union declaration syntax

Discriminated unions

IDL union date sample

A union type lets you define a structure that can contain only one of several
alternative members at any given time. A union type saves space in
memory, because the amount of storage required for a union is the amount
necessary to store its largest member.

You declare a union type with the following syntax:

uni on nane switch (discrimnator) {
case | abel 1 : el enent - spec;
case | abel 2 : el enent - spec;
[1
case | abel n : el enent - spec;
[default : el enent-spec;]

All IDL unions are discriminated. A discriminated union associates a
constant expression (I abel 1.1 abel n) with each member. The
discriminator’s value determines which of the members is active and stores
the union’s value.

The following IDL defines a Dat e union type, which is discriminated by an
enum value:

enum dat eSt or age
{ nuneric, strMDDYY, strDDMWY };

struct DateStructure {
short Day;
short Mont h;
short Year;

IE

union Date switch (dateStorage) {
case nuneric: long digital Fornat;
case strMDDYY:
case strDDMWY: string stringFornat;
defaul t: DateStructure structFornat;

223

CHAPTER 5 | IDL Interfaces

Sample explanation

Rules for union types

224

Given the preceding IDL:

If the discriminator value for Dat e is numeric, the di gi t al For mat
member is active.

If the discriminator’s value is st r MVDDYY or st r DDMWY, the
stringFor mat member is active.

If neither of the preceding two conditions apply, the default

st ruct For mat member is active.

The following rules apply to union types:

A union’s discriminator can be i nt eger, char, bool ean or enum or an
alias of one of these types; all case label expressions must be
compatible with the relevant type.

Because a union provides a haming scope, member names must be
unique only within the enclosing union.

Each union contains a pair of values: the discriminator value and the
active member.

IDL unions allow multiple case labels for a single member. In the
previous example, the st ri ngFor mat member is active when the
discriminator is either st r MVDDYY or st r DDMWYY.

IDL unions can optionally contain a def aul t case label. The
corresponding member is active if the discriminator value does not
correspond to any other label.

IDL Data Types

Arrays

Overview

Array IDL sample

Array indexes

IDL supports multi-dimensional fixed-size arrays of any IDL data type, with
the following syntax (where di mensi on- spec must be a non-zero positive
constant integer expression):

[typedef] el ement-type array-nane [di nension-spec] ...

IDL does not allow open arrays. However, you can achieve equivalent
functionality with sequence types.

For example, the following piece of code defines a two-dimensional array of
bank accounts within a portfolio:

typedef Account portfoli o[MAX_ACCT_TYPES] [MAX_ACCTS]

Note: For an array to be used as a parameter, an attribute, or a return
value, the array must be named by a typedef declaration. You can omit a
typedef declaration only for an array that is declared within a structure
definition.

Because of differences between implementation languages, IDL does not
specify the origin at which arrays are indexed. For example, C and C+ +
array indexes always start at O, while PL/lI, COBOL, and Pascal use an origin
of 1. Consequently, clients and servers cannot exchange array indexes
unless they both agree on the origin of array indexes and make adjustments
as appropriate for their respective implementation languages. Usually, it is
easier to exchange the array element itself instead of its index.

225

CHAPTER 5 | IDL Interfaces

Sequence

Overview

Bounded and unbounded
sequences

Bounded and unbounded IDL
definitions

226

IDL supports sequences of any IDL data type with the following syntax:
[typedef] sequence < el ement-type[, nax-elements] > sequence- nane

An IDL sequence is similar to a one-dimensional array of elements;
however, its length varies according to its actual number of elements, so it
uses memory more efficiently.

For a sequence to be used as a parameter, an attribute, or a return value,
the sequence must be named by a typedef declaration, to be used as a
parameter, an attribute, or a return value. You can omit a typedef
declaration only for a sequence that is declared within a structure definition.

A sequence’s element type can be of any type, including another sequence
type. This feature is often used to model trees.

The maximum length of a sequence can be fixed (bounded) or unfixed

(unbounded):

® Unbounded sequences can hold any number of elements, up to the
memory limits of your platform.

® Bounded sequences can hold any number of elements, up to the limit
specified by the bound.

The following code shows how to declare bounded and unbounded
sequences as members of an IDL struct:

struct LimtedAccounts {
string bankSort Code<10>;
sequence<Account, 50> accounts; // nax sequence length is 50

%

struct UnlimtedAccounts {
string bankSort Code<10>;
sequence<Account > accounts; // no max sequence | ength

IE

IDL Data Types

Pseudo Object Types

Overview

CORBA defines a set of pseudo-object types that ORB implementations use
when mapping IDL to a programming language. These object types have
interfaces defined in IDL; however, these object types do not have to follow
the normal IDL mapping rules for interfaces and they are not generally
available in your IDL specifications.

Note: The PL/I runtime and the Orbix IDL compiler backend for PL/I do
not support all pseudo object types.

227

CHAPTER 5 | IDL Interfaces

Defining Data Types

In this section

Using typedef

Typedef identifier IDL sample

228

This section contains the following subsections:

Constants page 229

Constant Expressions page 232

With t ypedef , you can define more meaningful or simpler names for existing
data types, regardless of whether those types are IDL-defined or
user-defined.

The following code defines the t ypedef identifier, St andar dAccount , so that
it can act as an alias for the Account type in later IDL definitions:

nodul e BankDeno {
interface Account {
/...

}

typedef Account StandardAccount;

Defining Data Types

Constants

Overview

Integer constants

Floating-point constants

Character and string constants

IDL lets you define constants of all built-in types except the any type. To
define a constant’s value, you can use either another constant (or constant
expression) or a literal. You can use a constant wherever a literal is
permitted.

IDL accepts integer literals in decimal, octal, or hexadecimal:

const
const
const
const

short
| ong
| ong
| ong

11 = -99;

12 =0123; // Cctal 123, decinmal 83
long 13 = 0x123; // Hexadeci mal 123, deci mal 291
long 14 = +0xaB; // Hexadeci nal ab, decimal 171

Both unary plus and unary minus are legal.

Floating-point literals use the same syntax as C+ +:

const

const
const
const
const
const

f1 oat

doubl
| ong
doubl
doubl
doubl

fl1=3.1e-9; // Integer part, fraction part,
I/ exponent
e f2 =-3.14; // Integer part and fraction part
double f3 = .1 I/ Fraction part only
e f4 = 1. I/ Integer part only
e f5 =.1E12 // Fraction part and exponent
e f6 = 2E12 // Integer part and exponent

Character constants use the same escape sequences as C++:

Example 9:

const
const
const
const
const
const
const
const
const
const

char
char
char
char
char
char
char
char
char
char

List of character constants (Sheet 1 of 2)

Cl="c; // the character c

Q ='\007"; // ASA| BEL, octal escape
C3 = '"\x41'; // ASA|l A hex escape

G ='\n"; I/ newine

G ="\t I/ tab

B ="\Vv; /1 vertical tab

Cr ='\b'; /| backspace

G ="'\r'; // carriage return

Q = "\f'; /1l formfeed

Clo = "\a'; I/ alert

229

CHAPTER 5 | IDL Interfaces

Wide character and string
constants

Boolean constants

Octet constants

230

Example 9: List of character constants (Sheet 2 of 2)

const char C11 = "\\"'; /1 backsl ash

const char C12 = '\?'; /1 question mark

const char C13 = "\'"'; I/ single quote

// String constants support the same escape sequences as G+
const string S1 = "Quote: \""; /l string with doubl e quote
const string S2 = "hello world"; [/l sinple string

const string S3 = "hello" " world"; // concatenate

const string $4 = "\xA' "B'; /1 two characters

/I ("\xA and 'B),
/1 not the single character '\xAB

Wide character and string constants use C++ syntax. Use universal
character codes to represent arbitrary characters. For example:

const wchar C=1LX;
const wstring GREETING = L"Hel | o";
const wchar OMEGA = L'\ u03a9';

const wstring QVEGA STR = L"Qmrega: \u3A9";

IDL files always use the ISO Latin-1 code set; they cannot use Unicode or
other extended character sets.

Boolean constants use the FALSE and TRUE keywords. Their use is
unnecessary, inasmuch as they create unnecessary aliases:

/1l There is no need to define bool ean constants:
const CONTRADI CTlI ON = FALSE; /1 Pointless and confusing
const TAUTOLGGY = TRUE // Pointless and conf usi ng

Octet constants are positive integers in the range 0-255.

const octet QL = 23;
const octet @ = OxfO;

Octet constants were added with CORBA 2.3; therefore, ORBs that are not
compliant with this specification might not support them.

Fixed-point constants

Enumeration constants

Defining Data Types

For fixed-point constants, you do not explicitly specify the digits and scale.
Instead, they are inferred from the initializer. The initializer must end in d or
D. For example:

/1 Fixed point constants take digits and scale fromthe
/] initializer:

const fixed vall = 3D, /] fixed<l, 0>
const fixed val 2 = 03. 14d; /] fixed<3, 2>
const fixed val 3 = -03000.00D;, // fixed<4, 0>
const fixed val4 = 0.03D /1 fixed<3, 2>

The type of a fixed-point constant is determined after removing leading and
trailing zeros. The remaining digits are counted to determine the digits and
scale. The decimal point is optional.

Currently, there is no way to control the scale of a constant if it ends in
trailing zeros.

Enumeration constants must be initialized with the scoped or unscoped
name of an enumerator that is a member of the type of the enumeration. For
example:

enum Size { snall, nedium large }

const Size DFL_SI ZE = nedi um
const Size MAX SIZE = ::| arge;

Enumeration constants were added with CORBA 2.3; therefore, ORBs that
are not compliant with this specification might not support them.

231

CHAPTER 5 | IDL Interfaces

Constant Expressions

Overview

Arithmetic operators

Evaluating expressions for
arithmetic operators

Bitwise operators

232

IDL provides a number of arithmetic and bitwise operators. The arithmetic
operators have the usual meaning and apply to integral, floating-point, and
fixed-point types (except for % which requires integral operands). However,
these operators do not support mixed-mode arithmetic: you cannot, for
example, add an integral value to a floating-point value.

The following code contains several examples of arithmetic operators:

I/ You can use arithneti c expressions to define constants.
const long MN = -10;

const |ong MAX = 30;

const long DFLT = (MN + MAX) / 2;

// Can't use 2 here
const double TWCE Pl = 3.1415926 * 2.0;

/1 5% di scount
const fixed D SCOUNT = 0. 05D,
const fixed PRI CE = 99. 99D,

// Can't use 1 here
const fixed NET PRCE = PRCE * (1.0D - DI SCOUNT);

Expressions are evaluated using the type promotion rules of C++. The
result is coerced back into the target type. The behavior for overflow is
undefined, so do not rely on it. Fixed-point expressions are evaluated
internally with 31 bits of precision, and results are truncated to 15 digits.

Bitwise operators only apply to integral types. The right-hand operand must
be in the range 0-63. The right-shift operator, >>, is guaranteed to insert
zeros on the left, regardless of whether the left-hand operand is signed or
unsigned.

// You can use bitw se operators to define constants.
const long ALL_ONES = -1; [/ Oxffffffff
const long LHWNASK = ALL_ONES << 16; [/ Oxffff0000
const long RHWNASK = ALL_ONES >> 16; [/ Ox0000f f f

Defining Data Types

IDL guarantees two’s complement binary representation of values.

Precedence The precedence for operators follows the rules for C++. You can override
the default precedence by adding parentheses.

233

CHAPTER 5 | IDL Interfaces

234

In this chapter

CHAPTER 6

|IDL-to-PL/I
Mapping

The CORBA Interface Definition Language (IDL) is used to
define interfaces that are offered by servers on your network.
This chapter describes how the Orbix IDL compiler maps IDL
data types to PL/I. It shows, with examples, how each IDL type
is represented in PL/I.

This chapter discusses the following topics:

Mapping for Identifier Names page 237
Mapping Very Long and Leading Underscored Names page 239
Mapping for Basic Types page 241
Mapping for Boolean Type page 245
Mapping for Enum Type page 246
Mapping for Octet and Char Types page 247
Mapping for String Types page 248
Mapping for Fixed Type page 251
Mapping for Struct Type page 254

235

CHAPTER 6 | IDL-to-PL/l Mapping

236

Mapping for Union Type page 255
Mapping for Sequence Types page 258
Mapping for Array Type page 261
Mapping for the Any Type page 262
Mapping for User Exception Type page 264
Mapping for Typedefs page 268
Mapping for Operations page 270
Mapping for Attributes page 275

Mapping for Operations with a Void Return Type and No Parameters
page 281

Mapping for Inherited Interfaces page 282
Mapping for Multiple Interfaces page 290
Note the following points:

For the purposes of the examples shown in this chapter, the member
name for each example is the same as the interface name, unless
otherwise stated.

For the purposes of PL/I application development, Orbix closely follows
the IDL-to-PL/I mapping rules described in the OMG specification. To
provide compatibility for both PL/I compilers that Orbix supports, Orbix
generally only differs from these rules where the PL/I compiler for MVS
& VM does not support a particular feature, such as UNSI GQ\ED FI XED
Bl N(32) . See www. ong. or g for details about the IDL-to-PL/I mapping
specification.

See “IDL Interfaces” on page 193 for more details of the IDL types
discussed in this chapter.

Mapping for Identifier Names

Mapping for Identifier Names

Overview This section describes how IDL identifier names are mapped to PL/I.

Standard mapping rule The Orbix IDL compiler uses the following basic rule to generate PL/I
identifiers unless you use the - O argument to generate an alternative
naming scheme (see “-O Argument” on page 323 for more details):

nmodul eNane_i nt er f aceNane_| DLvar i abl eNae

Further guidelines The naming scheme for PL/I identifiers also adheres to the following

guidelines:

® |f the identifier is within a nested module, these module names are
prefixed to the nodul eNane_i nt er f aceName_| DLvar i abl eNarre format.

® Anidentifier name that exceeds 31 characters is abbreviated to its first
26 characters, and is appended with an underscore followed by a
four-character hash suffix.

® If an identifier name exceeds 31 characters and is a particular type
that already ends with a particular suffix (for example, an argument
block always ends in _args), the identifier name is abbreviated to its
first 21 characters, and is appended with an underscore followed by a
four-character hash suffix followed by its existing suffix. See “Mapping
Very Long and Leading Underscored Names” on page 239.

® Upper case characters map to upper case, and lower case characters
map to lower case. For example, nyNarre in IDL maps to nyNane in PL/I.

® |fthe identifier is a PL/I keyword, the identifier is mapped with anidl _
prefix. The Orbix IDL compiler supports the PL/I-reserved words
pertaining to the IBM PL/I for MVS & VM V1R1M1 and Enterprise PL/I
compilers.

® Thefirst and last lines of a procedure are always capitalized, except for
server implementation sub-procedures, which have a proc_ prefix.

237

CHAPTER 6 | IDL-to-PL/l Mapping

238

If you specify the - Mpr ocess option, the mappings specified for
mapping nodul enane/ i nt er f acenare are used instead. See “Orbix IDL
Compiler” on page 293 for more details.

Identifiers defined at IDL file level, outside any modules or interfaces,
have the IDL member name incorporated in their name. See “Example
on page 242 to see how such identifiers are mapped.

”

Mapping Very Long and Leading Underscored Names

Mapping Very Long and Leading Underscored

Names

Overview

Standard mapping rule

Example

This section describes how very long IDL identifier names, or identifiers
within a module with a very long name, are mapped to PL/I.

As stated in “Further guidelines” on page 237, if the identifier name exceeds
31 characters, and it is of a particular type that already ends with a
particular suffix (for example, an argument block always ends in _ar gs), this
suffix is included in the generated name. In this case, the identifier name is
abbreviated to its first 21 characters, and is appended with an underscore
followed by a four-character hash suffix followed by the existing suffix.

The example can be broken down as follows:
1. Consider the following IDL:

nodul e BankLoans {
interface Mrtgages {
fl oat cal cul at eMont hl yRepay(
in | ong anount Borr owed,
in float interestRate,
in short durationBorrowedFor);

IE

const float _special _rate=4.5;

I

2. Based on the preceding IDL, the Orbix IDL compiler generates the
operation structure name for cal cul at eMont hl yRepay as follows:

dcl 1 BanklLoans_Mortgages_c_ee9c_args aligned |ike
BankLoans_Mort gages_c_ee9c_t ype;

239

CHAPTER 6 | IDL-to-PL/l Mapping

Avoiding the standard rule

240

You can use the - Oargument with the Orbix IDL compiler, to avoid the
standard way in which identifier names are abbreviated. You can do this by
using the - Oargument to set up an alternative mapping entry in the
mapping member. For example, consider the following mapping member
entry:

BankLoans/ Mor t gages/ cal cul at eMont hl yRepay cal cul at eMont hl yRepay

Based on the preceding mapping member entry, the Orbix IDL compiler
generates the operation structure name for cal cul at eMont hl yRepay as
follows:

dcl 1 cal cul at eMont hl yRepay_args al i gned |ike
cal cul at eMont hl yRepay_t ype;

The mapping for the _speci al _r at e constant is as follows (in this case, the
Orbix IDL compiler removes the leading underscore from the mapped PL/I
name by default):

dcl 1 BankLoans_consts,
3 special _rate float dec(6) init(4.5e+00);

Mapping for Basic Types

Mapping for Basic Types

Overview

IDL-to-PL/l mapping
for basic types

This section describes how basic IDL types are mapped to PL/I.

Table 22 shows the mapping rules for basic IDL types. The CORBA typedef
name is provided for reference purposes only; the PL/I representation is used

directly.

Table 22: Mapping for Basic IDL Types

IDL Type CORBA Typedef Name PL/I
Representation
short CORBA-short FIXED BIN(15)
long CORBA-long FIXED BIN(31)

unsigned short

CORBA-unsigned-short

FIXED BIN(15)?

unsigned long

CORBA-unsigned-long

FIXED BIN(31)2

float CORBA-float FLOAT DEC(6)

double CORBA-double FLOAT DEC(16)

char CORBA-char CHAR(1)

boolean CORBA-boolean CHAR(1)

octet CORBA-octet CHAR(1)

enum CORBA-enum FIXED BIN(31)%P

fixed<d,s> Fixed<d,s> FIXED DEC(d,s)

any CORBA-any See “Mapping for
the Any Type” on
page 262.

long long CORBA-long-long FIXED BIN(xx)®

unsigned long long

CORBA-unsigned-long-long

FIXED BIN(xx)®€

241

CHAPTER 6 | IDL-to-PL/l Mapping

Table 22: Mapping for Basic IDL Types

IDL Type CORBA Typedef Name PL/I
Representation

wchar CORBA-wchar GRAPHIC

a. UNSI GNED FI XED BI Nis not supported by the PL/I compiler for MVS & VM.
Therefore, the maximum length of a PL/l unsi gned short is half that of the
CORBA-defined equivalent. The same applies for a PL/l unsi gned | ong
CORBA type.

b. The maximum number of digits allowed for the PL/I representation of an
enum is 31 bits.

c. The maximum number of digits allowed in a FI XED Bl Nis 31 bits if you are
using the IBM PL/I for MVS & VM compiler, or 63 bits if you specify the -E
option with the Orbix IDL compiler and are using a version of the IBM
Enterprise PL/I for z/OS compiler.

Example The example can be broken down as follows:
1. Consider the following IDL, stored in an IDL member called EXAMPLE:

const float outer_float = 19.76;

const doubl e outer_double = 123456. 789;

interface exanpl e {
t ypedef fixed<5, 2> fixed_5_2;
attribute short nyshort ;
attribute | ong nyl ong;
attribute unsigned short ushort;
attribute unsigned | ong ul ong;
attribute float nyfl oat ;
attribute doubl e nydoubl e;
attribute char nychar ;
attribute octet nyoct et ;
attribute fixed 5 2 nyfi xed52;
attribute | ong | ong nyl ongl ong;

attribute unsigned long | ong ul ongl ong;

const short intf_sh = 24
const wchar nywchar = L'X;
const wstring nywstring = L"Hello";

242

Mapping for Basic Types

modul e extras {
const | ong elong = 760224;
s

The preceding IDL maps to the following in the i dI renber nanemM
include member:

/* ___ */
/* Constants in root scope: */
/* ___ */
dcl 1 gl obal _EXAMPLE const s,

3 outer_fl oat fl oat dec(6) init(1l. 976e+01),

3 out er_doubl e float dec(16) init(1.23456789e+05);
/* ___ */
/* Constants in exanpl e: */
/* ___ */
dcl 1 exanpl e_consts,

3intf_sh fixed bin(15) init(24),

3 nywchar gr aphi c(01) init(graphic(’ X)),

3 nywstring gr aphi c(05) init(graphic(’Hello));
/* ___ */
/* Constants in extras: */
/* ___ */
dcl 1 extras_consts,

3 el ong fixed bin(31) init(760224),

The i dl mrenber naneMinclude member also declares storage for the
attributes.

Based on the preceding IDL in point 1, the definitions for the attributes
are generated in the i dl menber nameT include member as follows
(where generated comments have been omitted for the sake of brevity):

243

CHAPTER 6 | IDL-to-PL/l Mapping

244

dcl

dcl

dcl

dcl

dcl

dcl

dcl

dcl

dcl

dcl

dcl

exanpl e_nyshort _type based,

resul t

fixed bi n(15)

exanpl e_nyl ong_t ype_based,

resul t

fixed bin(31)

exanpl e_ushort _t ype based,

resul t

fixed bi n(15)

exanpl e_ul ong_t ype based,

resul t

fixed bin(31)

exanpl e_nyf| oat _t ype_based,

resul t

float dec(6)

exanpl e_nydoubl e_t ype based,

resul t

float bin(16)

exanpl e_nychar _t ype based,

resul t

char (01)

exanpl e_nyoct et _type_based,

resul t

char (01)

exanpl e_nyfi xed52_t ype based,

resul t

fixed dec(5,2)

exanpl e_nyl ongl ong_t ype based,

resul t

fixed bin(31)

exanpl e_ul ongl ong_t ype_based,

resul t

fixed bin(31)

init(0);

init(0);

init(0);

init(0);

init(0.0);

init(0.0);

init(’’);

init(lowl));

init(0);

init(0);

init(0);

Mapping for Boolean Type

Mapping for Boolean Type

Overview This section describes how booleans are mapped to PL/I.
IDL-to-PL/l mapping An IDL boolean type maps to a PL/I character data item. Two named
for booleans constants representing the true and false values are provided.
Example The example can be broken down as follows:

1. Consider the following IDL:

interface exanple {
attribute bool ean full;

b

2. The preceding IDL maps to the following PL/I:
/* Declared in the Obix PL/I OCRBA include file */
DOL OCRBA FALSE CHAR(01) INT(’0') STATIC
DOL OCRBA TRUE CHAR(01) INT(’1') STATICG
/* CGenerated output by the IDL conpiler */

dcl 1 exanple_full _type based,
3 result char (01) init(CORBA FALSE);

245

CHAPTER 6 | IDL-to-PL/l Mapping

Mapping for Enum Type

Overview This section describes how enums are mapped to PL/I.

IDL-to-PL/l mapping An IDL enum type maps to PL/I FI XED BI N(31) BI NARY named constants
for enums that are assigned an incrementing value starting from O.

Example The example can be broken down as follows:

1. Consider the following IDL:
interface weather {
enumtenp {cold, warm hot};

%

2. The preceding IDL maps to the following PL/I:

/* ___ */
/* Enum val ues in weat her/t enp: */
/* ___ */
dcl weat her _tenp_col d fixed bin(31) init(0) static;
dcl weat her _tenp_warm fixed bin(31) init(l) static;
dcl weat her _t enp_hot fixed bin(31) init(2) static;

3. It can be used as follows:

if todays_tenp = weather_tenp_col d then
put skip list('Brr, it is cold outside!");

246

Mapping for Octet and Char Types

Mapping for Octet and Char Types

Overview

IDL-to-PL/l mapping
for char types

IDL-to-PL/I mapping
for octet types

This section describes how octet and char types are mapped to PL/I.

Char data values that are passed between machines with different character
encoding methods (for example, ASCII, EBCDIC, and so on) are
appropriately converted. See “Example” on page 242 for an example of how
char types are mapped to PL/I.

Octet data values that are passed between machines with different
character encoding methods (for example, ASCII, EBCDIC, and so on) are
not converted. See “Example” on page 242 for an example of how octet
types are mapped to PL/I.

247

CHAPTER 6 | IDL-to-PL/l Mapping

Mapping for String Types

Overview

Bounded and unbounded
strings

Incoming bounded strings

Outgoing bounded strings

Incoming unbounded strings

248

This section describes how string types are mapped to PL/I. First, it
describes the various string types that are available.

Strings can be bounded or unbounded. Bounded strings are of a specified
size, while unbounded strings have no specified size. For example:

//1DL
string<8> a_bounded_string
string an_unbounded_stri ng

Bounded and unbounded strings are represented differently in PL/I. The
maximum length of a bounded string in PL/I is 32,767 characters.

Incoming strings are passed as I Nor | NOUT values by the PCDGET function
into the PL/I operation parameter buffer at the start of a PL/I operation.

An incoming bounded string is represented by a CHAR(n) data item, where n
is the bounded length of the string. Such strings have their nulls converted
to spaces, if they contain nulls.

Outgoing strings are copied as | NQUT, QUT, or RESULT values by the PCDPUT
function from the complete PL/I operation parameter buffer that is passed to
it at the end of a PL/I operation.

An outgoing bounded string has trailing spaces removed, and all characters
up to the bounded length (or the first null) are passed via PCOPUT. If a null is
encountered before the bounded length, only those characters preceding the
null are passed. The remaining characters are not passed.

Incoming strings are passed as | Nor | NOUT values by the PCDGET function
into the PL/I operation parameter buffer at the start of a PL/I operation.

Outgoing unbounded strings

Mapping for String Types

An incoming unbounded string is represented as a pointer data item. A
pointer is supplied that refers to an area of memory containing the string
data. This string is not directly accessible. You must call the STRGET function
to copy the data into a CHAR(n) data item, because the length of the
unbounded string is not known in advance. For example:

/* This is the supplied PL/I unbounded string pointer. */
dcl name ptr;

/* This is the PL/| representation of the string. */
dcl supplier_nane char (64);

/* This STRCGET call copies the characters in NAME to */
/* SUPPLI ER_ NAME */
call strget(nare, supplier_name, | engt h(supplier_nane));

If the unbounded string that is passed is too big for the supplied PL/I string,
an exception is raised and the PL/I string remains unchanged. If the
unbounded string is not big enough to fill the PL/I string, the rest of the PL/I
string is filled with spaces.

Outgoing strings are copied as | NOUT, QUT, or RESULT values by the PCDPUT
function from the complete PL/I operation parameter buffer that is passed to
it at the end of a PL/I operation.

A valid outgoing unbounded string must be supplied by the implementation
of an operation. This can be either a pointer that was obtained by an I Nor
I NOQUT parameter, or a string constructed by using the STRSET function. For
example:

/* This is the PL/| representation of the string containing a */
/* value that we want to pass back to the client using PCOPUT */
/* via an unbounded pointer string. */
dcl notes char (160);

/* This is the unbounded pointer string */
dcl cust_notes ptr;

/* This STRCGET call creates a copy of the string in the NOTES */

/* field and assigns the pointer value to */
call strset(cust_notes, notes,|ength(notes));

249

CHAPTER 6 | IDL-to-PL/l Mapping

Trailing spaces are removed from the constructed string. If trailing spaces
are required, you can use the STRSETS function, with the same argument
signature, to copy the specified number of characters, including trailing
spaces.

Example The following is an example of how strings are mapped to PL/I. The example
can be broken down as follows:

1. Consider the following IDL:

interface exanpl e {
attribute string nystring;
string<l0>get nane(in string code);

}

2. The Orbix IDL compiler generates the following PL/I, based on the
preceding IDL:

/* ___ */
[* Attribute: nystring */
/* Mapped name: nystring */
[* Type: string (read/wite) */
/* ___ */
dcl 1 exanpl e_nystring_type based,

3 result ptr init(sysnull());
/* ___ */
/* Qperation: get name */
/* Mapped name: get nane */
/* Argunents: <in> string code */
/* Returns: st ri ng<10> */
/* ___ */
dcl 1 exanpl e_get nane_t ype based,

3 code ptr init(sysnull()),

3 result char(10) init('");

250

Mapping for Fixed Type

Mapping for Fixed Type

Overview

IDL-to-PL/l mapping
for fixed types

Fixed-point decimal data type

Examples of the fixed-point
decimal data type

Explanation of the fixed-point
decimal data type

This section describes how fixed types are mapped to PL/I.

The IDL fixed type maps directly to PL/I packed decimal data with the
appropriate number of digits and decimal places (if any).

The fixed-point decimal data type is used to express in exact terms numeric
values that consist of both an integer and a fixed-length decimal fraction
part. The fixed-point decimal data type has the format <d, s>.

You might use it to represent a monetary value in dollars. For example:

fixed<9,2> net_worth; // up to $9, 999, 999.99, accurate to one
cent

fixed<9, 4> exchange_rate; // accurate to 1/10000 unit

fixed<4, -6> annual revenue; // in mllions

The format of the fixed-point decimal data type can be explained as follows:

1. The first number within the angle brackets is the total number of digits
of precision.

2. The second number is the scale (that is, the position of the decimal
point relative to the digits).
A positive scale represents a fractional quantity with that number of
digits after the decimal point. A zero scale represents an integral value.
A negative scale is allowed, and it denotes a number with units in
positive powers of ten (that is, hundreds, millions, and so on).

251

CHAPTER 6 | IDL-to-PL/l Mapping

Example of IDL-to-PL/I The example can be broken down as follows:
mapping for fixed types 1. Consider the following IDL:
//1DL
interface examle {
typedef fixed<5, 2> typesal ;
typdef fixed<4, 4> typet ax;
typedef fixed<3, -6> typem||;
typedef fixed<6, 3> typesnal | ;

attribute typesal salary;
attribute typetax taxrate;
attribute typem!|l mllions;
attribute typesnall snall;

}

2. Based on the preceding IDL, the Orbix IDL compiler generates the
following code (where comments are omitted for the sake of brevity):

dcl 1 exanpl e_sal ary_type based,
3 result fixed dec(5,2) init(0);

dcl 1 exanpl e_taxrate_type based,
3 result fixed dec(4,4) init(0);

dcl 1 exanple_mllions_type based,
3 result fixed dec(3,-6) init(0);

dcl 1 exanpl e_snal |l _type based,
3 result fixed dec(6,3) init(0);

252

Mapping for Fixed Type

3. Ifyou try to display a number such as exanpl e_m || i ons_args or
exanpl e_smal | _args (each of the identifiers with an _ar gs suffix is
declared as being | i ke the based variables shown in point 2), the
number is displayed as a floating point number; however, it is stored in
the normal fixed format. The following example illustrates this point:

exanpl e_sal ary_args. resul t =165. 78;
exanpl e_t axrat e_args. resul t =0. 9876;
exanpl e_m | | i ons_args. r esul t =23000000;
exanpl e_smal | _args. resul t =0. 041;

put skip list(’ Salary
put skip list(’ TaxRate
put skip list("MIlions
put skip list(’ Small

exanpl e_sal ary_args.result);

, exanpl e_taxrate_args.result);
exanple_mllions_args.result);
exanpl e_smal | _args.result);

4. Displaying the contents of each variable based on the preceding
statements then produces the following:

Salary = 165. 78
TaxRate = 0. 9876
MIllions = 23F+6
Snal | = 0. 004

Note: The maximum number of figures (not significant digits) allowed is
15 if you do not specify the - E option with the Orbix IDL compiler and you
are using the IBM PL/I for MVS & VM compiler. However, this is not an
issue if you specify the - E option with the Orbix IDL compiler and you are
using any version of the IBM Enterprise PL/I for z/OS compiler.

253

CHAPTER 6 | IDL-to-PL/l Mapping

Mapping for Struct Type

Overview

IDL-to-PL/l mapping
for struct types

Example of IDL-to-PL/I
mapping for struct types

254

This section describes how struct types are mapped to PL/I.

An IDL struct definition maps directly to a PL/I structure.

The example can be broken down as follows:
1. Consider the following IDL:

interface exanpl e {
struct nystruct {

| ong nmenber 1;
short menber 2;
bool ean nenber 3;

}i
attribute nystruct test;

}

2. Based on the preceding IDL, the Orbix IDL compiler generates the
following PL/I code for the t est attribute:

dcl 1 exanpl e_test_type based,

3 result,
5 menber 1 fixed bin(31) init(0),
5 menber 2 fixed bin(15) init(0),
5 menber 3 char (01) i ni t (CORBA FALSE);

Mapping for Union Type

Mapping for Union Type

Overview

IDL-to-PL/l mapping
for union types

Example of IDL-to-PL/I
mapping for union types

This section describes how union types are mapped to PL/I.

An IDL union maps to a PL/I structure that contains:
® Adiscriminator, d.

® The union data area, u.

® A PU/I structure for each union branch.

The example can be broken down as follows:
1. Consider the following IDL:

interface exanpl e {
union un switch(short) {

case 1: char case 1,
case 2: double case_2;
default: |ong def _case;

B
attribute un test;

}

2. Based on the preceding IDL, the definition for the attribute’s structure

is generated as follows in the i dl nenber naneT include member:

dcl 1 exanpl e_test_type based,

3 result,
5d fixed bin(15) init(0),
5u area(08);

The actual storage for the test attribute is generated as follows in the
i dl menber naneMinclude member:

/* ___ */
[* Attribute: test */
/* Mapped name: test */
/* Type: exanpl e/ un (read/wite) */
/* ___ */

dcl 1 exanple_test_attr aligned |ike exanpl e_test_type;

255

CHAPTER 6 | IDL-to-PL/l Mapping

Compiler restrictions

Using the union type

256

The union branches are generated as follows in the i dI menber nameM
include member:

/* __ */
/* Initialization Statenents for Union: */
4 exanpl e/ un */
/* */
/* Used In: */
/* exanpl e_test_attr.resul t */
/* __ */
dcl exanple_test _result_case 1 based(exanpl e _test _attr.result.u)
char (01) init('’);

dcl exanple_test_result_case 2 based(exanpl e_test_attr.result.u)
float dec(16) init(0.0);
dcl exanpl e_test_result_def_case
based(exanpl e_test _attr.resul t.u)
fixed bin(31) init(0);

Because the PL/I for MVS & VM compiler does not support unions directly,
the union branches (in the preceding example, case_1, case_2, and

def _case) are declared separately from the union structure. The union
branches use the storage defined by the exanpl e_test _attr.u
pseudo-union branch. This branch is allocated enough storage for the
largest union item. In the preceding example, the largest union item is
case_2, which is afloat dec (16) type, thus requiring 8 bytes of storage.

To use the union type, for example, to display the contents retrieved by
calling get on the attribute, you can use a sel ect statement as follows:

sel ect (exanpl e_test _attr. d)
when(1)
put skip list('Value of case 1 is:’,
exanpl e_test_result_case_ 1);
when(2)
put skip list(’Value of case 2:',
exanpl e_test_result_case_2);
ot herw se
put skip list(’Value of def _case is:’,
exanpl e_test _resul t_def_case);
end;

Mapping for Union Type

Setting up the attribute You can set up the test attribute as follows, for example, to set up the value
for the get call on the attribute (which is taken from the i dI menber nanel
server implementation module):

/* __ */
/* Attribute: test (get) */
/* Mapped name: test */
[* Type: exanpl e/un (read/wite) */
/* __ */
proc_exanpl e_get _test: PROJ p_args);

dcl p_args ptr;

dcl 1 args al i gned based(p_args)

|'i ke exanpl e_t est _type;
|* ============ Start of operation specific code ============ */
args.d=1; /* case_1 */
exanpl e_test _result_case 1= 7 ;
| * ============= End of oper ation Specifi c code ============= */

END proc_exanpl e_get _test;

257

CHAPTER 6 | IDL-to-PL/l Mapping

Mapping for Sequence Types

Overview The PL/I mapping for a sequence differs depending on whether the
sequence is bounded or unbounded. In both cases, however, a supporting
pointer that contains information about the sequence is generated. This
information includes the maximum length (accessed via SEQVAX), the length
of the sequence in elements (accessed via SEQLEN), and the contents of the
sequence (in the case of the unbounded sequence). After a sequence is
initialized, the sequence length is equal to zero. The first element of a
sequence is referenced as element 1. The _dat suffix contains the actual
sequence data.

Bounded Bounded sequence types map to a PL/I array and a supporting data item.
For example:

interface exanpl e {
t ypedef sequence<l ong, 10> seql ongl0;
attribute segl ongl0 nyseq;

}i

The preceding IDL maps to the following PL/I:

dcl 1 exanpl e_nyseq_t ype based,

3 result,
5 result_seq ptr init(sysnull()),
5 resul t_dat (10) fixed bin(31) init((10)0);
Unbounded Unbounded sequence types cannot map to a PL/I array, because the size of

the sequence is not known. In this case, a group item is created to hold one
element of the sequence, and the element is provided with a suffix of _buf .
A supporting pointer to the elements of the sequence is also created. For
example:

interface exanpl e {
t ypedef sequence<| ong> seql ong;
attribute seql ong nyseq;
b

258

PODGET—IN and INOUT modes

Mapping for Sequence Types

The preceding IDL maps to the following PL/I:

dcl 1 exanpl e_nyseq_type based,

3 result,
5 result_seq ptr init(sysnull()),
5 resul t _buf fixed bin(31) init(0);

Initial storage is assigned to the sequence via SEQALQC. Elements of an
unbounded sequence are not directly accessible. You can use SEQ&ET and
SEQBET to access specific elements in the sequence. You can use SEQLENto
find the length of the sequence. You can use SEQWAX to find the maximum
length of the sequence.

An unbounded sequence is represented as a pointer data item. A pointer is
supplied that refers to an area of memory containing the sequence. This is

not directly accessible. You must call the SEQGET function to copy a specified
element of the sequence into an accessible data area.

The following PL/I, based on the preceding IDL example, walks through all
the elements of a sequence:

/* Excerpt fromthe Msuffixed include file: */
dcl 1 exanpl e_nyseq_attr aligned |ike exanpl e_nyseq_type;

/* Code for traversing through the unbounded sequence of |ongs */
dcl el enent _num fixed bin(31) init(0);
dcl result_seq fixed bin(31) init(0);

call segl en(exanpl e_nyseq_args.result.result_seq,
result_seq_l en);

do element_num= 1 to result_seq_| en;
call seqget (exanpl e_nyseq_args.result.resul t_seq,
el enent _num
addr (exanpl e_nyseq_args.result.result_buf));
put skip list('H ement #,
el enent _num
' contains val ue’,
exanpl e_nyseq_args.resul t.resul t_buf);
end;

259

CHAPTER 6 | IDL-to-PL/l Mapping

PODPUT—OUT, INOUT, and
result only

260

A valid unbounded sequence must be supplied by the implementation of an
operation. This can be either a pointer that was obtained by an I N or | NOUT
parameter, or an unbounded sequence constructed by using the SEQALCC
function.

The SEQSET function is used to change the contents of a sequence element.
Based on the preceding example, the following code could be used to store
some initial values into all elements of the sequence.

The following example uses the attribute defined in the preceding IDL for
setting up the unbounded sequence of | ong types (note the

exanpl e_seql ong_t c is the sequence typecode, which is declared in the
i dl menber nameT include member):

dcl seq_size fixed bin(31) init(20);
del el enent _num fixed bin(31) init(0);

call seglen(result_seq,result_seq_len);
call seqal oc(exanpl e_nyseq_args.result.result_seq, seq_size,
exanpl e_seql ong_tc, |ength(exanpl e_seql ong_tc);

do element_num= 1 to seq_si ze;
result_buf=7*i; /* 7 tinmes multiplication table */
cal | seqset (exanpl e_nyseq_args.result.resul t_seq,
el enent _num
addr (exanpl e_nyseq_args.result.result_buf);
end;

Mapping for Array Type

Mapping for Array Type

Overview

IDL-to-PL/l mapping
for arrays

Example of IDL-to-PL/I
mapping for arrays

This section describes how arrays are mapped to PL/I.

An IDL array definition maps directly to a PL/I array. Each element of the
array is directly accessible.

Note: PL/I arrays are 1-indexed, and not 0-indexed as in C or C++. For
example, grid reference A(1, 2) in PL/I matches Al 2][3] in C++.

The example can be broken down as follows:

1. Consider the following IDL:
interface exanple {
typedef |ong nyl ong[2][5];
attribute nylong |ong_array;

}

2. Based on the preceding IDL, the Orbix IDL compiler generates the
following code in the i dI menber nameT include member:

dcl 1 exanpl e_| ong_array_type based,
3 result(2,5) fixed bin(31) init ((2*5)0);

The Orbix IDL compiler generates the following code in the
i dl nrenber nameMinclude member:

dcl 1 exanple_long_array_attr aligned |ike
exanpl e_| ong_array_type;

3. The following is an example of how the generated code can
subsequently be used:

exanpl e_long_array_args.result(1,3) = 22;

261

CHAPTER 6 | IDL-to-PL/l Mapping

Mapping for the Any Type

Overview This section describes how anys are mapped to PL/I.
IDL-to-PL/l mapping The IDL any type maps to a PL/I structure that provides information about
for anys the contents of the any, such as the type of the contents. A separate

character data item is also generated, which is large enough to hold the
longest type code string defined in the interface.

Example of IDL-to-PL/I The example can be broken down as follows:
mapping for anys 1. Consider the following IDL:

interface exanpl e {
typedef any nyany;
attribute nyany tenp;
B

2. Based on the preceding IDL, the Orbix IDL compiler generates the
following code in the i dI menber nameT include member:

dcl 1 exanpl e_tenp_type based,

3 result ptr init(sysnull());
dcl EXAMPLE t ypecode char (21) init(’");
dcl exanpl e_nyany tc char (21)

init(’1DL: exanpl e/ nyany: 1.0");
dcl EXAMPLE typecode length fixed bin(31) init(21);

In the preceding example, EXAMPLE_t ypecode is used as a variable when
setting the type of the any. The typecode identifier for the any, which is used
for sequences, is defined in the preceding example as exanpl e_nyany _tc.
The maximum length of all the typecodes defined in the IDL is 21, which is
defined via EXAMPLE_t ypecode_| engt h. In the preceding example, EXAMPLE
denotes the IDL member name, and exanpl e denotes the interface name.

262

Accessing and changing
contents of an any

Mapping for the Any Type

You cannot access the contents of the any type directly. Instead you can use
the ANYGET function to extract data from an any type, and use the ANYSET
function to insert data into an any type.

Before you call ANYGET, call TYPEGET to retrieve the type of the any into a
data item generated by the Orbix IDL compiler. This data item is large
enough to hold the largest type name defined in the interface. Similarly,
before you call ANYSET, call TYPESET to set the type of the any.

See “ANYGET” on page 389 and “TYPEGET” on page 486 for details and
an example of how to access the contents of an any. See “ANYSET” on
page 391 and “TYPESET” on page 489 for details and an example of how
to change the contents of an any.

263

CHAPTER 6 | IDL-to-PL/l Mapping

Mapping for User Exception Type

Overview This section describes how exceptions are mapped to PL/I.

IDL-to-PL/l mapping An IDL exception type maps to a PL/I structure and a character data item
for exceptions with a value that uniquely identifies the exception.

Example of IDL-to-PL/I The example can be broken down as follows:

mapping for exceptions 1. Consider the following IDL:

interface exanpl e {
exception bad {
| ong val uel;
string<32> reason;

B

exception worse {
short val ue2;
string<l6> errorcode;
string<32> reason;

B

voi d addNanme(i n string nane) raises(bad, worse);

}

2. Based on the preceding IDL, the Orbix IDL compiler generates the
following code in the i dI menber naneT include member:

dcl 1 exanpl e_addNane_t ype based,
3 idl _name ptr init(sysnull());

264

3.

Mapping for User Exception Type

The Orbix IDL compiler generates the following code in the
i dl nenber naneMinclude member:

/* ___ */
/* Qperation: addNarre */
/* Mapped narme: addNane */
/* Argunents: <in> string name */
/* Returns: voi d */
/* ___ */
dcl 1 exanpl e_addNanme_args aligned |ike

exanpl e_addNane_t ype;
/* ___ */
/* Defined User Exceptions */
/* ___ */
dcl 1 EXAMPLE user _excepti ons,

3 exception_id ptr,

3d fixed bin(31) init(0),

3u area(50);
dcl 1 exanpl e_bad_exc_d fixed bin(31) init(l);
dcl 1 exanpl e_worse_exc_d fixed bin(31) init(2);
dcl 1 exanpl e_bad_exc based(EXAMPLE user _excepti ons. u),

3 val uel fixed bin(31) init(0),

3 reason char (32) init(’");
dcl 1 exanpl e_worse_exc based(EXAMPLE user _excepti ons. u),

3 val ue2 fixed bin(15) init(0),

3 errorcode char (16) init(’"),

3 reason char (32) init(’);

Raising a user exception

of steps:

1.

The server can raise a user exception by performing the following sequence

It calls STRSET to set the except i on_i d identifier of the user exception
structure with the appropriate exception identifier defined in the

i dl menber naneT include member. The exception identifier in this case
is suffixed with _exi d.

It sets the d discriminator with the appropriate exception identifier
defined in the i dI renber naneMinclude member. The exception
identifier in this case is suffixed with _d.

It fills in the exception branch block associated with the exception.

265

CHAPTER 6 | IDL-to-PL/l Mapping

Example of Error Raising and
Checking

266

4. It calls PCDERR with the address of the user exception structure.

The example can be broken down as follows:

1. The following code shows how to raise the bad user exception defined
in the preceding example:

/* Server inplementation code */
if name=""' then
do;
st rset (EXAMPLE user _excepti ons. excepti on_i d,

Si npl e(oj ect _bad_exi d,

I engt h(S npl e(oj ect _bad_exi d));
EXAMPLE user _except i ons. d=exanpl e_bad_exc_d;
cal | poderr (addr (EXAMPLE user _exceptions));

end;

2. To test for the user exception, the client side tests the discriminator
value of the user exception structure after calling PCDEXEC on the server
function, which is able to raise a user exception. For example, the
following code shows how the client can test whether the server set an
exception after the call to addNane:

Example 10: C/ient Code to Test Exception (Sheet 1 of 2)

/* Call podexec to performoperation addNane. */
/* Note the user exception block in the fourth parameter. */
cal |l podexec(exanpl e_obj,

exanpl e_addNane,

exanpl e_addNane_ar gs,

addr (EXAMPLE user _excepti ons));

i f EXAMPLE user_exceptions.d *= 0 then
do;
/* a user exception has been thrown */
put skip list(’ Qperation addName threw a user exception!’);
put skip list(’ Dscrimnator: ', EXCEPT user_exceptions. d);

sel ect (EXAMPLE user _excepti ons. d);
when(exanpl e_bad_exc_d)
do;
put |ist(’Exception thrown: bad_exc');
put skip list(’valuel:’, exanpl e_bad_exc. val uel);
put skip list('reason:’, exanpl e_bad_exc.reason);
end;

Mapping for User Exception Type

Example 10: Client Code to Test Exception (Sheet 2 of 2)

when(exanpl e_wor se_exc_d)
do;
put list(’Exception thrown: worse_exc’);
put skip list(’value2:’, exanpl e_worse_exc. val ue2);
put skip list('errorcode:’,
exanpl e_wor se_exc. error code) ;
put skip list(’reason:’, exanpl e_worse_exc.reason);

end;
ot herw se
put |ist(’ Unrecogni zed exception!’);
end;
end;
else /* no exception has been thrown */
do;
put skip list(’ Qperation addName conpl et ed successful ly’);
end;

267

CHAPTER 6 | IDL-to-PL/l Mapping

Mapping for Typedefs

Overview

IDL-to-PL/l mapping
for typedefs

Example

268

This section describes how typedefs are mapped to PL/I.

Typdefs are supported in PL/I through the use of the based keyword. The
Orbix IDL compiler generates based declarations for attribute and operation
structures (to keep them generic), for struct types, and for other complex
types. It does not generate a based identifier in a one-to-one mapping with
the IDL unless all of the typedefs defined in the IDL are these types just
listed.

The reasons for this are partially to do with how the PL/I runtime uses them
to set up and retrieve data, and partially for ease of coding. In the case of
ease-of-coding, if an operation has two parameters, but is then changed to
have three parameters, only the based declaration needs to be updated,
because each of the uses of the particular operation are declared as being
I'i ke the based structure.

The example can be broken down as follows:
1. Consider the following IDL:

interface exanpl e {
typedef struct stru;
long a;
short b;
} msc;
typedef fixed<8, 2> currency;

attribute currency pounds;

Mapping for Typedefs

2. Based on the preceding IDL, the Orbix IDL compiler generates a based
identifier for the struct, stru, and for the attribute structure; however,
it does not generate a based identifier for the fixed type. The based
variables for the struct, stru, are generated in the i dl nenber naneT
include member as follows:

dcl 1 exanpl e_pounds_type based,

3 result fixed dec(8,2) init(0);
/* ___ */
/* Struct: exanpl e/stru */
/* ___ */
dcl 1 exanpl e_stru_type based,

3a fixed bin(31) init(0),

3b fixed bin(15) init(0);

3. The attribute’s structure is generated as follows in the i dI menber nameM
include member, which makes use of the attribute’s based structure:

dcl 1 exanpl e_pounds_attr aligned |ike exanpl e_pounds_type;

269

CHAPTER 6 | IDL-to-PL/l Mapping

Mapping for Operations

Overview

IDL-to-PL/l mapping for
operations

270

This section describes how operations are mapped to PL/I.

An IDL operation maps to a number of statements in PL/I as follows:

1.

A structure is created for each operation. This structure is declared in
the i dl nenber naneT include member as a based structure and contains
a list of the parameters and the return type of the operation. An
associated declaration, which uses this based structure, is declared in
the i dI menber nameMinclude member. Memory is allocated only for
non-dynamic types, such as bounded strings and longs. The top-level
identifier (that is, at dcl 1 level) for each operation declaration is
suffixed with _t ype in the i dl menber naneT include member, and with
_args in the i dl menber nameMinclude member, for example:

dcl 1 ny_operation_type based,
3 ny_argunent fixed bin(31) init(0);

A declaration is generated in the i dl menber nameT include member for
every IDL operation. The declaration contains the fully qualified
operation name followed by a space, which is used when calling
PCDEXEC to invoke that operation on a server. The following is an
example of a declaration based on the ny_oper at i on operation in the
test interface:

dcl test_ny_operation char(36)
init('ny_operation:|DL:test:1.0 ");

The operation declaration is also used in the i dI menber naneD include
member. It is used within the sel ect clause, which is used by the
server program to call the appropriate operation/attribute procedure
described next in point 4.

Example

Mapping for Operations

When you specify the - S argument with the Orbix IDL compiler, an
empty server procedure is generated in the i dl nenber nanel source
member for each IDL operation. (You must specify the - S argument, to

generate these operation/attribute procedures.)

The example can be broken down as follows:

1.

Consider the following IDL:

interface exanpl e

{
I ong ny_operationl(in | ong nylong);
short ny_operation2(in short nyshort);

}

Based on the preceding IDL, the following operation structures are

generated in the i dl menber nameT include member:

[[¥cccccooccocccocoococccooooccocooooocoooooooocooooooooooo
/* QCperation: ny_oper ati onl
/* Mapped nane: ny_oper ati onl
/* Argunents: <i n> | ong nyl ong
/* Returns: | ong
/* User Exceptions: none
[[¥cccccooccocccocoococccooooocooooooocoooo000occo000oocoo0 o
dcl 1 exanpl e_ny_operationl_type based,
3 nyl ong fixed bin(31)
3 result fixed bin(31)

% o e e eeieiaiieao-
/* Cperation: ny_oper at i on2
/* Napped nane: ny_oper at i on2
/* Argunents: <i n> short nyshort
/* Returns: short
/* User Exceptions: none
% o e e e
dcl 1 exanpl e_ny_operation2_type based,

3 nyshort fixed bin(15)

3 result fixed bin(15)

init(0),
init(0);

init(0),
init(0);

*/
*/
*/
*/
*/
*/
*/

*/
*/
*/
*/
*/
*/
*/

271

CHAPTER 6 | IDL-to-PL/l Mapping

272

3. Based on the preceding IDL, the following operation structures are
generated in the i dl menber nameMinclude member:

R T e T e ——_————
/* Qperation: ny_operationl

/* Mapped narre: ny_oper ati onl

/* Argunents: <i n> | ong nyl ong

/* Returns: | ong

/* User Exceptions: none

R L e e e

dcl 1 exanpl e_ny_operationl_args aligned |ike
exanpl e_ny_operati onl_type;

o e e e
/* Cperation: ny_oper at i on2

/* Mapped narre: ny_oper at i on2

/* Argunents: <i n> short nyshort

/* Returns: short

/* User Exceptions: none

o e e

dcl 1 exanpl e_ny_operation2_args aligned |ike
exanpl e_ny_oper ati on2_t ype;

4. The following is generated in the i dl menber nameT include member

/* Cperation List section
/* Contains a list of the interface's operations and
/* attributes.

dcl exanpl e_ny_operati onl char (30)
init(' ny_operationl:|DL:exanple:1.0 ");

dcl exanpl e_ny_oper ati on2 char (30)
init(' ny_operation2:|DL:exanple:1.0 ");

*/
*/
*/
*/
*/
*/
*/

*/
*/
*/
*/
*/
*/
*/

5.

Mapping for Operations

The following sel ect statement is also generated in the
i dl nenber naneD include member:

sel ect (operation);
when (exanpl e_ny_operationl) do;
cal |l podget (addr (exanpl e_ny_operationl_args));
if check_errors(' podget') "= conpl etion_status_yes
then return;

call proc_exanpl e_ny_operationl
(addr (exanpl e_ny_operationl_args));

cal | podput (addr (exanpl e_ny_operationl_args));
if check_errors('podput') "= conpl etion_status_yes
then return;
end;
when (exanpl e_ny_operation2) do;
call podget (addr (exanpl e_ny_operation2_args));
if check_errors('podget') "= conpl etion_status_yes
then return;

call proc_exanpl e_ny_operati on2
(addr (exanpl e_ny_operation2_args));

cal | podput (addr (exanpl e_ny_operation2_args));
if check_errors('podput') "= conpl etion_status_yes
then return;
end;
ot herw se do;
put skip list('ERROR Undefined Cperation ' ||
operation);
return;
end;
end;

The following skeleton procedures are generated in the
i dl menber namel member:

273

CHAPTER 6 | IDL-to-PL/l Mapping

274

/* ___ */
/* Qperation: ny_oper ati onl */
/* Mapped nare: ny_oper ati onl */
/* Argunents: <i n> | ong nyl ong */
/* Returns: | ong */
/* User Exceptions: none */
/* ___ */

proc_exanpl e_ny_operationl: PROJ p_args);

dcl p_args ptr;
dcl 1 args al i gned based(p_args)
|'i ke exanpl e_ny_operati onl_type;

== */

== Start of operation specific code ==

/* ___ */
/* Qperation: ny_oper at i on2 */
/* Mapped nare: ny_oper at i on2 */
/* Argunents: <i n> short nyshort */
/* Returns: short */
/* User Exceptions: none */
/* ___ */
proc_exanpl e_ny_operati on2: PROC(p_args);

dcl p_args ptr;

dcl 1 args al i gned based(p_args)

| i ke exanpl e_ny_operati on2_t ype;

= Start of operation specific code ==

END proc_exanpl e_ny_operati on2;

Mapping for Attributes

Mapping for Attributes

Overview

Similarity to mapping for
operations

IDL-to-PL/I mapping for attributes

This section describes how IDL attributes are mapped to PL/I.

The IDL mapping for attributes is very similar to the IDL mapping for
operations, but with the following differences:

IDL attributes map to PL/I with a _get _ and _set _ prefix. Two PL/I
declarations are created for each attribute (that is, one with a _get _
prefix, and one with a _set _ prefix). However, readonly attributes only
map to one declaration, with a _get _ prefix.

The top-level identifier (that is, at dcI 1 | evel) for each attribute
declaration in the i dIl menber nameMinclude member has a suffix of
_attr rather than a suffix of _args.

An attribute’s parameters are always treated as return types (that is, a
structure created for a particular attribute always contains just one
immediate sub-declaration, resul t).

An IDL attribute maps to a number of statements in PL/I as follows:

1.

A structure is created for each attribute. This structure is declared in
the i dl mrenber naneT include member as a based structure and contains
one immediate sub-declaration, resul t. If the attribute is a complex
type, the resul t declaration contains a list of the attribute’s
parameters as lower-level declarations. If the parameters are of a
dynamic type (for example, sequences, unbounded strings, or anys),
no storage is assigned to them. An associated declaration, which uses
this based structure, is declared in the i dl menber nameMinclude
member.

The top-level identifier (that is, at dcl 1 level) for each attribute
declaration is suffixed with _t ype in the i dl menber nameT include
member, and with _attr in the i dl menber nameMinclude member (that
is, FQN att ri but ename_t ype and FQN at tri but enane_attr).

275

CHAPTER 6 | IDL-to-PL/l Mapping

2. Two declarations are generated in the i dl nrenber naneT include
member for every IDL attribute, unless it is a readonly attribute, in
which case only one declaration is declared for it. A declaration
contains the fully qualified name followed by _get _ or (provided it is
not readonly) _set _, followed by the attribute name, followed by a
space, which is used when calling PCDEXEC to invoke that attribute on
on a server. For example, the following is an example of two
declarations based on the nyshort attribute in the exanpl e interface:

dcl exanpl e_get _nyshort char (29)
init(’_get_nyshort:|DL:exanple:1.0 ');

dcl exanpl e_set _nyshort char (29)
init(’_set_nyshort:|DL:exanple:1.0 ");

3. The attribute declaration is also used in the i dI menber nameD include
member. It is used within the sel ect clause, which is used by the
server program to call the appropriate operation/attribute procedure
described next in point 4.

4. When you specify the - S argument with the Orbix IDL compiler, an
empty server procedure is generated in the i dl nenber nanel source
member for each IDL attribute. (You must specify the - Sargument, to
generate these operation/attribute procedures.)

Example The example can be broken down as follows:
1. Consider the following IDL:

interface exanpl e

{

readonly attribute |ong nyl ong;
attribute short nyshort;
B

276

Mapping for Attributes

2. Based on the preceding IDL, the following attribute structures are
generated in the i dl menber naneT include member:

/* ___ */
/* Attribute: nyl ong */
/* Mapped narre: nyl ong */
[* Type: I ong (readonly) */
/* ___ */
dcl 1 exanpl e_nyl ong_type based,

3 result fixed bin(31) init(0),
/* ___ */
/[* Attribute: nyshort */
/* Mapped nane: nyshor t */
/* Type: short (read/wite) */
/* ___ */
dcl 1 exanpl e_nyshort _type based,

3 result fixed bin(15) init(0);

3. Based on the preceding IDL, the following attribute structures are
generated in the i dI nenber naneMinclude member:

/* ___ */
/* Attribute: nyl ong */
/* Mapped narre: nyl ong */
/* Type: | ong (readonly) */
/* ___ */
dcl 1 exanple_nylong_attr aligned |ike exanpl e_nyl ong_type;
/* ___ */
[* Attribute: nyshort */
/* Mapped nane: nyshor t */
/* Type: short (read/wite) */
/* ___ */

dcl 1 exanple_nyshort_attr aligned |ike exanpl _nyshort_type;

277

CHAPTER 6 | IDL-to-PL/l Mapping

278

4.

5.

The following is generated in the i dl menber nameT include member:

/* Cperation List section

/* Contains a list of the interface's operations and

[* attributes.

dcl exanpl e_get _nyl ong char (28)
init('_get_nylong:|DL:exanple:1.0 ');

dcl exanpl e_get _nyshort char (29)
init('_get_nyshort:|DL:exanple:1.0 ');

dcl exanpl e_set _nyshort char (29)
init('_set_nyshort:|DL:exanple:1.0 ');

The following sel ect statement is also generated in the
i dl menber nameD include member:

sel ect (operati on);
when (exanpl e_get _nyl ong) do;
cal | podget (addr (exanpl e_nyl ong_attr));

*/
*/
*/
*/
*/

if check_errors('podget') "= conpl etion_status_yes

then return;

call proc_exanpl e_get _nyl ong
(addr (exanpl e_nyl ong_attr));

cal | podput (addr (exanpl e_nyl ong_attr));

if check_errors('podput') "= conpl etion_status_yes

then return;
end;
when (exanpl e_get _nyshort) do;
cal | podget (addr (exanpl e_nyshort_attr));

if check_errors('podget') “~= conpl etion_st atus_yes

then return;

cal | proc_exanpl e_get _nyshort
(addr (exanpl e_nyshort _attr));

cal | podput (addr (exanpl e_nyshort_attr));

if check_errors('podput') "= conpl etion_status_yes

then return;
end;

Mapping for Attributes

when (exanpl e_set _nyshort) do;
call podget (addr (exanpl e_nyshort_attr));
if check_errors('podget') "= conpl etion_status_yes
then return;

call proc_exanpl e_set _nyshort
(addr (exanpl e_nyshort _attr));

call podput (addr (exanpl e_nyshort_attr));
if check_errors('podput') "= conpl etion_status_yes
then return;

end;

ot herw se do;
put skip list('ERROR No such operation:"')
put skip list(operation);
return;

end;

end;

6. The following skeleton procedures are generated in the
i dl menber nanel include member:

/* ___ */
[* Attribute: nyl ong (get) */
/* Mapped narre: nyl ong */
[* Type: | ong (readonly) */
/* ___ */

proc_exanpl e_get _nyl ong: PROQJ(p_args);

dcl p_args ptr;
dcl 1 args al i gned based(p_args)
|'i ke exanpl e_nyl ong_t ype;

END pr oc_exanpl e_get _nyl ong;

279

CHAPTER 6 | IDL-to-PL/l Mapping

280

/* ___ */
[* Attribute: nyshort (get) */
/* Mapped nare: nyshor t */
[* Type: short (read/wite) */
/* ___ */

proc_exanpl e_get _nyshort: PROJ(p_args);

dcl p_args ptr;
dcl 1 args al i gned based(p_args)
|'i ke exanpl e_nyshort _type;

Start of operation specific code
End of operation specific code

END proc_exanpl e_get _nyshort;

/* ___ */
/[* Attribute: nyshort (set) */
/* Mapped narre: nyshort */
[* Type: short (read/wite) */
/* ___ */
proc_exanpl e_set _nyshort: PROJ(p_args);

dcl p_args ptr;

dcl 1 args al i gned based(p_args)

|'i ke exanpl e_nyshort _type;

END proc_exanpl e_set _nyshort ;

END EXAWPLI ;

Mapping for Operations with a Void Return Type and No Parameters

Mapping for Operations with a Void Return
Type and No Parameters

Overview This section describes IDL operations that have a void return type and no
parameters are mapped to PL/I.

Example The example can be broken down as follows:
1. Consider the following IDL:

interface exanpl e

{

voi d nyoperation();

}il
2. The preceding IDL maps to the following PL/I:

/* ___ */
/* Cperation: nyoper at i on */
/* Napped nare: nyoper ati on */
/* Argunents: None */
/* Returns: voi d */
/* User Exceptions: none */
/* ___ */
dcl 1 exanpl e_nyoperation_type based,
3 filler_0001 char (01);

Note: The filler is included for completeness, to allow the application to
compile, but the filler is never actually referenced. The numeric suffix can
have any value. The other generated code segments are generated as
expected.

281

CHAPTER 6 | IDL-to-PL/l Mapping

Mapping for Inherited Interfaces

Overview

IDL-to-PL/I mapping for inherited
interfaces

Example

282

This section describes how inherited interfaces are mapped to PL/I.

Note: From Orbix 6.2 onwards, the IDL-to-PL/I plug-in no longer
generates typedefs for inherited types by default. This is because typedefs
generated for the base class are the same as those for any inherited class.
Use the - Li option if you want to generate typedefs for inherited typedefs
for the purposes of backwards compatibility with code generated by
previous versions of the IDL-to-PL/I plug-in.

An IDL interface that inherits from other interfaces includes all the attributes
and operations of those other interfaces. In the header of the interface being
processed, the Orbix IDL compiler generates an extra comment that
contains a list of all the inherited interfaces.

The example can be broken down as follows:
1. Consider the following IDL:

i nterface Account

{
attribute short nybaseshort;
voi d nybasefunc(in | ong nybasel ong);

}

interface Savi ngAccount : Account

{
attribute short nyshort;

voi d nyfunc(in |ong nylong);
B

2. The preceding IDL is mapped to the following PL/I in the
i dl menber nameD include member:

Example 11: The idImembernameD Example (Sheet 1 of 4)

sel ect (operati on);
when (Account _get nybaseshort) do;

Mapping for Inherited Interfaces

Example 11: The idImembernameD Example (Sheet 2 of 4)

cal | podget (addr (Account _nybaseshort_attr));
i f check_errors(' podget') ~= conpletion_status_yes
then return;

call proc_Account _get nybaseshort
(addr (Account _nybaseshort _attr));

cal | podput (addr (Account _nybaseshort_attr));
i f check_errors('podput') "= conpl etion_status_yes
then return;
end;
when (Account _set _nybaseshort) do;
cal | podget (addr (Account _nybaseshort_attr));
i f check_errors(' podget') ~= conpletion_status_yes
then return;

call proc_Account_set nybaseshort
(addr (Account _nybaseshort _attr));

cal | podput (addr (Account _nybaseshort_attr));
i f check_errors('podput') "= conpl etion_status_yes
then return;
end;
when (Account _nybasef unc) do;
cal | podget (addr (Account _nybasefunc_args));
i f check_errors(' podget') ~= conpletion_status_yes
then return;

cal | proc_Account _nybasef unc
(addr (Account _nybasef unc_args)) ;

cal | podput (addr (Account _nybasefunc_args));
i f check_errors('podput') "= conpl etion_status_yes
then return;
end;
when (Savi ngAccount _get _nyshort) do;
cal | podget (addr (Savi ngAccount _nyshort _attr));
i f check_errors(' podget') ~= conpletion_status_yes
then return;

cal | proc_Savi ngAccount _get _nyshort
(addr (Savi ngAccount _nyshort_attr));

cal | podput (addr (Savi ngAccount _nyshort _attr));
i f check_errors('podput') "= conpl etion_status_yes

283

CHAPTER 6 | IDL-to-PL/l Mapping

Example 11: The idImembernameD Example (Sheet 2 of 4)

cal | podget (addr (Account _nybaseshort_attr));
i f check_errors('podget') "= conpl etion_status_yes
then return;

call proc_Account _get nybaseshort
(addr (Account _nybaseshort _attr));

cal | podput (addr (Account _nybaseshort_attr));
i f check_errors('podput') "= conpl etion_status_yes
then return;
end;
when (Account _set _nybaseshort) do;
cal | podget (addr (Account _nybaseshort_attr));
i f check_errors('podget') "= conpl etion_status_yes
then return;

call proc_Account _set nybaseshort
(addr (Account _nybaseshort _attr));

cal | podput (addr (Account _nybaseshort_attr));
i f check_errors('podput') "= conpl etion_status_yes
then return;
end;
when (Account _nybasef unc) do;
cal | podget (addr (Account _nybasefunc_args));
i f check_errors('podget') "= conpl etion_status_yes
then return;

cal | proc_Account _nybasef unc
(addr (Account _nybasef unc_args));

cal | podput (addr (Account _nybasefunc_args));
i f check_errors('podput') ~= conpl etion_status_yes
then return;
end;
when (Savi ngAccount _get _nyshort) do;
cal | podget (addr (Savi ngAccount _nyshort_attr));
i f check_errors('podget') "= conpl etion_status_yes
then return;

cal | proc_Savi ngAccount _get _nyshort
(addr (Savi ngAccount _nyshort_attr));

cal | podput (addr (Savi ngAccount _nyshort_attr));
i f check_errors('podput') ~= conpl etion_status_yes

Mapping for Inherited Interfaces

Example 11: The idImembernameD Example (Sheet 2 of 4)

cal | podget (addr (Account _nybaseshort_attr));
i f check_errors(' podget') ~= conpletion_status_yes
then return;

call proc_Account _get nybaseshort
(addr (Account _nybaseshort _attr));

cal | podput (addr (Account _nybaseshort_attr));
i f check_errors('podput') "= conpl etion_status_yes
then return;
end;
when (Account _set _nybaseshort) do;
cal | podget (addr (Account _nybaseshort_attr));
i f check_errors(' podget') ~= conpletion_status_yes
then return;

call proc_Account_set nybaseshort
(addr (Account _nybaseshort _attr));

cal | podput (addr (Account _nybaseshort_attr));
i f check_errors('podput') "= conpl etion_status_yes
then return;
end;
when (Account _nybasef unc) do;
cal | podget (addr (Account _nybasefunc_args));
i f check_errors(' podget') ~= conpletion_status_yes
then return;

cal | proc_Account _nybasef unc
(addr (Account _nybasef unc_args)) ;

cal | podput (addr (Account _nybasefunc_args));
i f check_errors('podput') "= conpl etion_status_yes
then return;
end;
when (Savi ngAccount _get _nyshort) do;
cal | podget (addr (Savi ngAccount _nyshort _attr));
i f check_errors(' podget') ~= conpletion_status_yes
then return;

cal | proc_Savi ngAccount _get _nyshort
(addr (Savi ngAccount _nyshort_attr));

cal | podput (addr (Savi ngAccount _nyshort _attr));
i f check_errors('podput') "= conpl etion_status_yes

285

CHAPTER 6 | IDL-to-PL/l Mapping

Example 11: The idImembernameD Example (Sheet 3 of 4)

then return;
end;
when (Savi ngAccount _set _nyshort) do;
cal | podget (addr (Savi ngAccount _nyshort_attr));
i f check_errors('podget') "= conpl etion_status_yes
then return;

cal | proc_Savi ngAccount _set _nyshort
(addr (Savi ngAccount _nyshort_attr));

cal | podput (addr (Savi ngAccount _nyshort_attr));
i f check_errors('podput') "= conpl eti on_status_yes
then return;
end;
when (Savi ngAccount _nyfunc) do;
cal | podget (addr (Savi ngAccount _nyfunc_args));
i f check_errors('podget') "= conpl etion_status_yes
then return;

cal | proc_Savi ngAccount _nyfunc
(addr (Savi ngAccount _nyfunc_args));

cal | podput (addr (Savi ngAccount _nyfunc_args));
i f check_errors('podput') "= conpl etion_status_yes
then return;
end;
when (Savi ngAccount _get _nybaseshort) do;
cal | podget (addr (Savi ngAccount _nybaseshort_attr));
i f check_errors('podget') "= conpl etion_status_yes
then return;

cal | proc_Savi ngAccount _get _nyb_dc3a
(addr (Savi ngAccount _nybaseshort _attr));

cal | podput (addr (Savi ngAccount _nybaseshort _attr));
i f check_errors('podput') ~= conpl etion_status_yes
then return;
end;
when (Savi ngAccount _set _nybaseshort) do;
cal | podget (addr (Savi ngAccount _nybaseshort_attr));
i f check_errors('podget') "= conpl etion_status_yes
then return;

cal | proc_Savi ngAccount _set _nyb_8e2b
(addr (Savi ngAccount _nybaseshort _attr));

286

Mapping for Inherited Interfaces

Example 11: The idlmembernameD Example (Sheet 4 of 4)

cal | podput (addr (Savi ngAccount _nybaseshort _attr));
i f check_errors('podput') "= conpl etion_status_yes
then return;
end;
when (Savi ngAccount _nybasef unc) do;
cal | podget (addr (Savi ngAccount _nybasef unc_args));
i f check_errors(' podget') ~= conpletion_status_yes
then return;

cal | proc_Savi ngAccount _nybasef unc
(addr (Savi ngAccount _nybasef unc_args)) ;

cal | podput (addr (Savi ngAccount _nybasef unc_args));
i f check_errors('podput') "= conpl etion_status_yes
then return;
end;
ot herw se do;
put skip list('ERRCR Undefined operation ' ||
operation);
return;
end;
end;

3. The following code is contained in the i dI menber naneT include
member:

Example 12: The idImembernameT Example (Sheet 1 of 3)

/* ___ */
/* Interface: */
/* Account */
/* */
/* Mapped narre: */
/* Account */
/* */
/* Inherits interfaces: */
/* (none) */
/* ___ */
/* ___ */
/* Attribute: nybaseshor t */
/* Mapped name: nybaseshort */
[* Type: short (read/wite) */
/* __ */

287

CHAPTER 6 | IDL-to-PL/l Mapping

288

Example 12: The idImembernameT Example (Sheet 2 of 3)

dcl 1 Account _nybaseshort type based,

3 result fixed bin(15) init(0);
% o e e
/* Attribute: nybasef unc
/* Mapped narre: nybasef unc
/* Argunents: <i n> | ong nybasel ong
/* Returns: voi d
/* User Exceptions: none
| * o e
dcl 1 Account _nybasefunc_t ype based,

3 nybasel ong fixed bin(31) init(0);
o e e
/* Interface:
4 Savi ngAccount
/*
/* Mapped narre:
4 Savi ngAccount
/*
/* Inherits interfaces:
/* Account
o e e
[[¥cccccocoococccocooooocccooo0ooccoooa0oooco00oocooco0ooo 00D
/[* Attribute: nyshort
/* Mapped name: nyshort
/* Type: short (read/wite)
[[#¥cccccocoacooccoocmssooooooooo oo aoco0c SCcoScoocoooooooo
dcl 1 Savi ngAccount _nyshort_type based,

3 result fixed bin(15) init(0);
o e e e
/* Qperation: nyf unc
/* Mapped narre: nyf unc
/* Argunents: <in> | ong nyl ong
/* Returns: voi d
/* User Exceptions: none
o e i e
dcl 1 Savi ngAccount _nyfunc_type based,

3 nyl ong fixed bin(31) init(0);
[[¥cccccocoococccocooooocccooo0ooccoooa0oooco00oocooco0ooo 00D

/* Qperation List section
/* Contains a list of the interface's operations and
/* attributes.

*/
*/
*/
*/
*/
*/
*/

*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/

*/
*/
*/
*/
*/
*/
*/

*/
*/
*/
*/

Mapping for Inherited Interfaces

Example 12: The idImembernameT Example (Sheet 3 of 3)

dcl

dcl

dcl

dcl

dcl

dcl

dcl

Account _get _nybaseshort char (33)

init(' _get_nybaseshort:|DL: Account:1.0 ');
Account _set _nybaseshort char (33)
init('_set_nybaseshort:|DL: Account:1.0 ');
Account _nybasef unc char (27)

i nit(' nybasefunc:|DL: Account:1.0 ');

Savi ngAccount _get _nyshort char (35)

init(' _get_nyshort:|DL: Savi ngAccount:1.0 ");
Savi ngAccount _set _nyshort char (35)
init('_set_nyshort:|DL: Savi ngAccount:1.0 ');

Savi ngAccount _nyf unc char (29)
init('nyfunc:|DL: Savi ngAccount:1.0 ');

Savi ngAccount _get _nybaseshort char (39)

init(' _get_nybaseshort:|DL: Savi ngAccount: 1.0 ');
Savi ngAccount _set _nybaseshort char (39)
init('_set_nybaseshort:|DL: Savi ngAccount:1.0 ');
Savi ngAccount _nybasef unc char (33)

init(' nybasefunc:|DL: Savi ngAccount:1.0 ');

289

CHAPTER 6 | IDL-to-PL/I Mapping

Mapping for Multiple Interfaces

Overview This section describes how multiple interfaces are mapped to PL/I.

Example The example can be broken down as follows:
1. Consider the following IDL:

i nterface exanpl el

{

readonly attribute |ong nyl ong;
b
i nterface exanpl e2
{

readonly attribute |ong nyl ong;
}

290

2.

Mapping for Multiple Interfaces

The i dI renber nanel member includes i dl menber narmeD, to determine
which server operation procedure is to be called. For example:

sel ect (operation);
when (exanpl el _get nyl ong) do;
call podget (addr (exanpl el _nylong_attr));
if check_errors(' podget') "= conpl etion_status_yes
then return;

call proc_exanpl el_get _nyl ong
(addr (exanpl el_nyl ong_attr));

cal | podput (addr (exanpl el _nylong_attr));
if check_errors('podput') "= conpl etion_status_yes
then return;
end;
when (exanpl e2_get _nyl ong) do;
call podget (addr (exanpl e2_nylong_attr));
if check_errors('podget') "= conpl etion_status_yes
then return;

cal |l proc_exanpl e2_get _nyl ong
(addr (exanpl e2_nyl ong_attr));

cal | podput (addr (exanpl e2_nyl ong_attr));
if check_errors('podput') "= conpl etion_status_yes
then return;
end;
ot herw se do;
put skip list('ERROR Undefined operation ' ||
operation);
return;
end;
end;

291

CHAPTER 6 | IDL-to-PL/I Mapping

292

In this chapter

CHAPTER 7

Orbix IDL
Compiler

This chapter describes the Orbix IDL compiler in terms of how
to run it in batch and z/OS UNIX System Services, the PL/I
source code and include members that it creates, the
arguments that you can use with it, and the configuration

variables that it uses.

This chapter discusses the following topics:

Running the Orbix IDL Compiler page 294
Generated PL/I Source and Include Members page 302
Orbix IDL Compiler Arguments page 305
Orbix IDL Compiler Configuration page 331

Note: The supplied demonstrations include examples of JCL that can be
used to run the Orbix IDL compiler. You can modify the demonstration JCL
as appropriate, to suit your applications. Any occurrences of or bi xhl g in
this chapter are meant to represent the high-level qualifier for your Orbix
Mainframe installation on z/OS. If you are using z/OS UNIX System
Services, references to z/0S member names can be interchanged with
filenames, unless otherwise specified.

293

CHAPTER 7 | Orbix IDL Compiler

Running the Orbix IDL Compiler

Overview You can use the Orbix IDL compiler to generate PL/I source code and
include members from IDL definitions. This section describes how to run the
Orbix IDL compiler, both in batch and in z/0OS UNIX System Services.

In this section This section discusses the following topics:

Running the Orbix IDL Compiler in Batch page 295

Running the Orbix IDL Compiler in UNIX System Services page 300

294

Running the Orbix IDL Compiler

Running the Orbix IDL Compiler in Batch

Overview This subsection describes how to run the Orbix IDL compiler in batch. It
discusses the following topics:

“Orbix IDL compiler configuration” on page 295.
“Running the Orbix IDL compiler” on page 295.
“Example of the batch SIMPLIDL JCL” on page 296.
“Description of the JCL” on page 297.

“Obtaining IDL in batch” on page 297.

“ORXCOPY” on page 299.

Orbix IDL compiler configuration The Orbix IDL compiler uses the Orbix configuration member for its settings.
The JCL that runs the compiler uses the | DL member in the
or bi xhl g. OONFI G configuration PDS.

Running the Orbix IDL compiler For the purposes of this example, the PL/I source is generated in the first
step of the supplied or bi xhl q. DEMDS. PLI . BLD. JCLLI B(SI MPLI DL) JCL. This
JCL is used to run the Orbix IDL compiler for the simple persistent
POA-based server demonstration supplied with your installation.

295

CHAPTER 7 | Orbix IDL Compiler

Example of the batch SIMPLIDL The following is the supplied JCL to run the Orbix IDL compiler for the batch
JCL version of the simple persistent POA-based server demonstration:

[ISIMPLIDL JBB (),

/1 CLASS=A,

/1l MBGCLASS=X,

/1 MBALEVEL=(1, 1),

/1 REG ON=0M

/1l Tl ME=1440,

/1l NOTI FY=&SYSU D,

/1 COND=(4, LT)

] = o e e e eiieiaaoo-
[1* QO bix Cenerate the PL/I files for the Sinple Deno

] = o e e eiieiaioo-
/1 JCLLI B CRDER=(or bi xhl g. PROCLI B)

/1l | NCLUDE MEMBER=(CRXVARS)

/1*

/11 DLPLI EXEC CRXI DL,

/1l SQURCE=S| MPLE,

/1l | DL=&CRBI X. . DEMDS. | DL,

/1l QCPYLI B=&CRBI X. . DEMOS. PLI . PLI NCL,

/1l | MPL=&CRBI X. . DEMCS. PLI . SRC,

/1l | DLPARME' -pli: -V

The preceding JCL generates PL/I include members from an IDL member
called SI MPLE (see the SOURCE=SI MPLE line).

Note: PL/I include members are always generated by default when you
run the Orbix IDL compiler.

The preceding JCL specifies only the - v argument with the Orbix IDL
compiler (see the | DLPARMIine). This instructs the Orbix IDL compiler not to
generate the i dl nrenber naneV server mainline source code member. See
“Orbix IDL Compiler Arguments” on page 305 for more details.

Note: The preceding JCL is specific to the batch version of the supplied
simple persistent POA-based server demonstration, and is contained in
or bi xhl g. DEMDS. PLI . BLD. JCLLI B(SI MPLI DL) . For details of the JCL for
the CICS or IMS version of the demonstration see “Example of the
SIMPLIDL JCL” on page 62 or “Example of the SIMPLIDL JCL” on

page 134.

296

Description of the JCL

Obtaining IDL in batch

Running the Orbix IDL Compiler

The settings and data definitions contained in the preceding JCL can be
explained as follows:

CRBI X The high-level qualifier for your Orbix Mainframe installation,
which is set in or bi xhl g. PROCLI B{ CRXVARS) .

SOURCE The IDL member to be compiled.

| DL The PDS for the IDL member.
QCPYLIB The PDS for the PL/I include members generated by the Orbix IDL
compiler.

| MPL The PDS for the PL/I source code members generated by the
Orbix IDL compiler.

I DLPARM The plug-in to the Orbix IDL compiler to be used (in the preceding
example, it is the PL/I plug-in), and any arguments to be passed
to it (in the preceding example, there is one argument specified,
- V). See “Specifying Compiler Arguments” on page 308 for details
of how to specify the Orbix IDL compiler arguments as parameters
to it.

In batch, IDL resides in a data set or PDS member with the following
attributes:

Attribute Value
Record format Fixed block (FB)
Record length 80
Block size 27920 (the block size might vary,
depending on your installation standards)

Each record in the data set or PDS member should not exceed 71
characters. If a record is longer than 71 characters, the record must be
continued into the next record, as follows:

® Code the IDL record up to column 71.
® Put the "\" continuation character in column 72.
® Continue the IDL record beginning in column 1 of the next record.

297

CHAPTER 7 | Orbix IDL Compiler

The following is an example of the preceding points:

nodul e Banki ng
{

typedef float CashAnount; //Define a nanmed type to repr\

esent noney

When IDL is brought into the batch environment from another environment,
such as Windows or UNIX, the records in the IDL might be longer than 71
characters. To avoid having to edit the IDL manually to conform to the
continuation rules, use the following procedure to obtain IDL in batch:

1. Allocate a data set with the following attributes:

Attribute

Value

Record format

Variable Blocked (VB)

Record length 2052
Block size 27998
Space allocation units Tracks
First extent 1
Second extent 1

Data set type

Physical Sequential (PS)

2. Use File Transfer Protocol (FTP) to copy the IDL from Windows or

UNIX to this data set.

3. Run the CRXQCPY program to copy the IDL from the data set in point 2
into the IDL data set or PDS member. GRXCCOPY automatically formats
each line of IDL that is greater than 71 characters.

298

Running the Orbix IDL Compiler

ORXCOPY The following is an example of CRXCCPY:

/1 JCBNAME JCB ...
/1*
11 JCLLI B ORDER=(or bi xhl g. CRBI X62. PROCLI B)
/1l | NCLUDE MEMBER=(CRXVARS)
/1*
//* Copy froma variable-length record IDL file into
/1* the (fixed-length record) IDL file. Long
//* lines will be split across records with a
/1* backsl ash.
/1*
/13 EXEC PROC=CRXG
1 // PROCRAM-CRXCCPY,
/1 PPARVE' DD: | N DD; QUT(LONG
2 //IN DD D SP=SHR DSN=&CRBI X. . LONG | DL
3 //QJUT DD D SP=SHR DSN=&CRBI X. . DEMCS. | DL

The preceding code can be explained as follows:

1. The CRXCCPY program is used to copy the IDL from a variable length
data set into a fixed length PDS with long lines correctly formatted for
continuation.

2. &RBI X .LONG I DL is a variable length data set that contains IDL that
has been copied from Windows or UNIX via FTP.

3. &CRBI X .DEMS. I DL is a fixed length PDS. The IDL is copied from the
variable length data set into the PDS member called LONG Any line
that was originally longer than 71 characters is properly formatted for
continuation onto the next line.

299

CHAPTER 7 | Orbix IDL Compiler

Running the Orbix IDL Compiler in UNIX System Services

Overview

Orbix IDL compiler configuration

Prerequisites to running the Orbix
IDL compiler

Running the Orbix IDL compiler

300

This subsection describes how to run the Orbix IDL compiler in z/OS UNIX

System Services. It discusses the following topics:

® “Orbix IDL compiler configuration” on page 300.

“Prerequisites to running the Orbix IDL compiler” on page 300.
“Running the Orbix IDL compiler” on page 295.

Note: Even though you can run the Orbix IDL compiler in z7OS UNIX

System Services, Orbix does not support subsequent building of Orbix PL/I
applications in z/OS UNIX System Services.

The Orbix IDL compiler uses the Orbix IDL configuration file for its settings.
The configuration file is set via the | T_I DL_OONFI G_PATH export variable.

Before you can run the Orbix IDL compiler, enter the following command to

initialize your Orbix environment (where YOUR _CRBI X_| NSTALL represents the
full path to your Orbix installation directory):

cd $YOUR CRBI X_| NSTALL/ et c/ bi n
. defaul t-donai n_env. sh

Note: You only need to do this once per logon.

The general format for running the Orbix IDL compiler is:
id -pli[:-argumentl][:-argunent2][.] idlfilename.idl

In the preceding example, [: -argunent 1] and [: - ar gunent 2] represent
optional arguments that can be passed as parameters to the Orbix IDL

compiler, and i dl fi | enane represents the name of the IDL file from which
you want to generate the PL/I source and include files.

For example, consider the following command:

id -pli:-V sinple.idl

Running the Orbix IDL Compiler

The preceding command instructs the Orbix IDL compiler to use the

sinpl e.idl file. The Orbix IDL compiler always generates PL/I include files
by default, and the - v argument indicates that it should not generate an

i dl fil enameV server mainline source code file. See “Orbix IDL Compiler
Arguments” on page 305 for more details of Orbix IDL compiler arguments.
See “Generated PL/I Source and Include Members” on page 302 and “Orbix
IDL Compiler Configuration” on page 331 for more details of default
generated filenames.

301

CHAPTER 7 | Orbix IDL Compiler

Generated PL/l Source and Include Members

Overview This section describes the various PL/I source code and include members
that the Orbix IDL compiler can generate.

Generated members Table 23 provides an overview and description of the PL/I source code and
include members that the Orbix IDL compiler can generate, based on the
IDL member name.

Table 23: Generated Source Code and Include Members

Member Name Member Type Compiler Argument Description
Used to Generate

i dl menber nanel Source code -S This is the server implementation
source code member. It contains
procedure definitions for all the callable
operations. It is only generated if you
use the - Sargument.

i dl menber nameV Source code Generated by This is the server mainline source code
default member. It is generated by default
unless you specify the - v argument to
prevent generation of it.

i dl menber naneD Include member Generated by This is the select include member. It
default contains a select statement that
determines the appropriate
implementation function for the
attribute or operation being called.

i dl menber nameL Include member Generated by This is the alighment include member.
default It contains procedures to perform the
PL/I alignment calculations on behalf of
the PL/I runtime.

i dl renber naneM Include member Generated by This is the main include member. It
default stores all the PL/I structures and
declarations.

302

Generated PL/I Source and Include Members

Table 23: Generated Source Code and Include Members

Member Name

Member Type Compiler Argument Description

Used to Generate

i dl menber naneT

Include member Generated by

This is the typedef include member. It
default stores the based identifier information
(that is, the PL/I structure definitions for
which no storage is allocated).

i dl menber naneX

Include member Generated by This is the runtime include member. It
default contains information for the PL/I
runtime about the contents of each
interface.

Member name restrictions

If the IDL member name exceeds six characters, the Orbix IDL compiler uses
only the first six characters of that name when generating the source code
and include member names. This allows space for appending a
one-character suffix to each generated member name, while allowing it to
adhere to the seven-character maximum size limit for PL/I external
procedure names, which are based by default on the generated member
names. On native z/OS, member names are always generated in uppercase.
On z/0S UNIX System Services, filenames are generated in lowercase by
default. However, you can use the Al | CapsFi | enanes configuration variable
or the - Lc Orbix IDL compiler argument on z/OS UNIX System Services, to
generate filenames in uppercase instead. (Generating filenames in
uppercase on z/0OS UNIX System Services does not affect the case of file
extensions however.)

303

CHAPTER 7 | Orbix IDL Compiler

Filename extensions on z/0S If you are running the Orbix IDL compiler in z/0OS UNIX System Services, it is

UNIX System Services recommended (but not mandatory) that you specify certain extensions for
the generated filenames via the configuration variables in the Orbix IDL
configuration file. The recommended extension for both the server
implementation source code and server mainline source code filename is
.pli and can be set via the PLI Mbdul eExt ensi on configuration variable. The
recommended extension for all include filenames is . i nc and can be set via
the PLI I ncl udeExt ensi on configuration variable.

Note: The settings for PLI Mbdul eExt ensi on and PLI | ncl udeExt ensi on
are left blank by default in the Orbix IDL configuration file. See “PL/I
Configuration Variables” on page 332 for more details.

304

Orbix IDL Compiler Arguments

Orbix IDL Compiler Arguments

Overview This section describes the various arguments that you can specify as
parameters to the Orbix IDL compiler.

In this section This section discusses the following topics:
Summary of the arguments page 306
Specifying Compiler Arguments page 308
-D Argument page 311
-E Argument page 312
-L Argument page 314
-M Argument page 316
-0 Argument page 323
-S Argument page 325
-T Argument page 326
-V Argument page 329
-W Argument page 330

305

CHAPTER 7 | Orbix IDL Compiler

Summary of the arguments

Overview

Summary of general arguments

306

For the purposes of Orbix PL/I application development, the Orbix IDL
compiler arguments can be categorized as follows:

® General arguments not specific to the PL/I plug-in.
® Arguments specific to the PL/I plug-in and qualified by the - pli switch.

Note: Orbix IDL compiler arguments relating to other plug-ins are also
available, such as those concerned with COBOL, C+ + or Java application
development. See the relevant Orbix programmer’s guides for those
languages for more details of their associated arguments.

This subsection provides an introductory overview of both the general Orbix
IDL compiler arguments and those that are specific to the PL/I plug-in. Each
argument that is specific to the PL/I plug-in is explained in more detail
further on in this section.

The general Orbix IDL compiler arguments can be summarized as follows:

- Dnarre[=val ue] Defines the preprocessor's name.

-E Runs preprocessor only, prints on st dout .

-ldir Includes dir in search path for preprocessor.

-N Generates code for #i ncl ude files.

- Unane Undefines name for preprocessor.

-u Prints usage message and exits.q

-V Print version information and exits.

-v Traces compilation stages.

-w Suppresses IDL compiler warning messages.

-fl ags Lists all valid arguments to the Orbix IDL compiler.

Note: All these arguments are optional. This means that they do not have
to be specified as parameters to the Orbix IDL compiler.

Orbix IDL Compiler Arguments

Summary of PL/I plug-in The Orbix IDL compiler arguments that are specific to the PL/I plug-in can
arguments be summarized as follows:

-D Generate source code and include files into specified directories
rather than the current working directory.
Note: This is relevant to z/OS UNIX System Services only.

-E Enable Enterprise PL/I extended precision for long long types and
31-digit fixed types.

-L Limit code generation / legacy options.

-M Set up an alternative mapping scheme for data names.

-0 Override default include member names with a different name.
-S Generate server implementation source code.

-T Indicate whether server code is for batch, IMS, or CICS.

-V Do not generate the server mainline source code.

-W Generate message code as either put ski p or di spl ay.

Note: All these arguments are optional. This means that they do not have
to be specified as parameters to the Orbix IDL compiler.

307

CHAPTER 7 | Orbix IDL Compiler

Specifying Compiler Arguments

Overview

Specifying general compiler
arguments

Specifying PL/I plug-in arguments

308

This subsection describes how to specify the available arguments as

parameters to the Orbix IDL compiler, both in batch and in z/OS UNIX

System Services. It discusses the following topics:

® “Specifying general compiler arguments” on page 308.

® “Specifying compiler arguments in UNIX System Services” on
page 309.

General compiler arguments are those listed in “Summary of general
arguments” on page 306. These arguments must be separated by spaces.
For example:

-Dnane[=val ue] -E -Idir -N-UWUane -u -V -v -w

Compiler arguments specific to the PL/I plug-in are those listed in
“Summary of PL/I plug-in arguments” on page 307. They must be qualified
with the -pli switch. Each of these arguments must be preceded by a colon
(that is, ™:"), and there must be no spaces between any characters or any
arguments. For example:

-pli[:-Doption][dir]][:-E[:-L[option]]
[:-Moption][menbernanme]] [:-Qrenbernane][:-S][:-T[option]]
[:-M[:-Woption]]

Orbix IDL Compiler Arguments

Specifying both general and PL/I You can specify both general and PL/I plug-in arguments together as
plug-in arguments parameters to the Orbix IDL compiler. It does not matter whether you
specify general arguments first or PL/I plug-in arguments first. The main
thing to remember is that:
® General arguments must be separated with spaces.
® PU/I plug-in arguments must be qualified with the - pli switch, must
be preceded by a colon, and must not include any spaces between any
characters or arguments.
In the following example, general arguments are specified first, followed by
PL/I plug-in arguments:

-Dnane[=value] -E -Idir -N-Urane -u -V -v -w-pli[:-Doption][dir]][:-E[:-L[option]]
[:-Moption][menbernarme]] [:-Ovenbernane][:-S][:-T[option]][:-M[:-Woption]]'

Specifying compiler arguments in On native z/0S, to denote the arguments that you want to specify as

batch parameters to the Orbix IDL compiler, you can use the DD name, | DLPARV|
in the JCL that you use to run the Orbix IDL compiler. The parameters for
the | DLPARMentry in the JCL take the following format:

/1 | DLPARMF' - Dnanme[=val ue] -E -ldir -N-Uiane -u -V -v -w-pli[:-Doption][dir]][:-E
/1 [:-L[option]][:-Moption][nenbernane]][:-Orenbernane] [:-S][:-T[option]][:-V]
/1l [:-Woption]]*

See “Running the Orbix IDL Compiler” on page 294 for an example of the
supplied Sl mMPLI DL JCL that is used to run the Orbix IDL compiler for the
simple persistent POA-based server demonstration.

Specifying compiler arguments in The parameters to the Orbix IDL compiler take the following format on z/0S
UNIX System Services UNIX System Services:

-Dnane[=val ue] -E -Idir -N-Unane -u -V -v -w-pli[:-Doption][dir]][:-E[:-L[option]]
[:-Moption][menbernarme]] [:-Qrenbernane] [:-S][:-T[option]][:-V][:-Woption]]

309

CHAPTER 7 | Orbix IDL Compiler

Specifying default PL/I plug-in
arguments

310

It is possible to enable the Orbix IDL compiler to process PL/I plug-in
arguments by default, without having to specify those arguments when
running the Orbix IDL compiler. You can do this via settings in the Pl i scope
of the or bi xhl g. CONFI Q| DL) configuration member. See “Orbix IDL
Compiler Configuration” on page 331 for more details.

Orbix IDL Compiler Arguments

-D Argument

Overview

Specifying the -D argument

By default, when you run the Orbix IDL compiler in z/OS UNIX System
Services, it generates source code and include files into the current working
directory. You can use the PL/I plug-in argument, - D, with the Orbix IDL
compiler to redirect some or all of the generated output into alternative
directories.

Note: The PL/I plug-in argument, - D, is relevant only if you are running
the Orbix IDL compiler on z/OS UNIX System Services. It is ighored if you
specify it when running the Orbix IDL compiler on native z/OS.

The - DPL/I plug-in argument takes two components: a sub-argument that
specifies the type of file to be redirected, and the directory path into which
the file should be redirected. The three valid sub-arguments, and the file
types they correspond to, are as follows:

i Include files
m IDL map files
s Source code files

You must specify the directory path directly after the sub-argument. There
must be no spaces between the argument, sub-argument, and directory
path. For example, consider the following command that instructs the Orbix
IDL compiler to generate PL/I files based on the IDL in nyfile.idl, and to
place generated include files in / hone/ t o pl i /i ncl and generated source
code in / home/ tond pl i/ src:

idl -pli:-D/home/tompli/incl:-Ds/home/tonipli/src nyfile.idl

Alternatively, consider the following command that instructs the Orbix IDL
compiler to generate an IDL mapping file called nyfi | e. map, based on the
IDLin nyfile.idl, and to place that mapping file in / home/ t oni pl i / nap:

id -pli:-Dvhone/ton pli/map:-MreateOnyfile. map nyfile.idl

Note: See the rest of this section for more details of how to generate
source code and IDL mapping files.

311

CHAPTER 7 | Orbix IDL Compiler

-E Argument

Overview

Example

312

The PL/I plug-in argument, - E, enables extended precision support in the
IDL PL/I backend, for use by the Enterprise PL/I compiler. As shown in
Table 24, it provides support for true long long and 31-digit fixed types.

Table 24: CORBA Type Support Provided by -E Option

CORBA Type Without -E Option With -E Option
(unsigned) long long fixed bin(31) fixed bin(63)
maximum fixed type up to 15 digits up to 31 digits
precision

Note: As well as the above, the - E argument, when used with - TI M5,
alters the default list of include files within the server's mainline, to include
the I MSPCBE include file instead of | MBPCB. The | MSPCBE include file is
identical to | MBPCB, except that it also includes the assi gnabl e keyword in
the PCBLI ST struct, to allow the Enterprise PL/I compiler to compile
programs that include this file when the option DEFAULT(NONASS| G\ABLE)
is passed to the PL/I compiler.

For example, consider the following IDL:

interface extended_test

{
typedef fixed<31, 0> Fi xed_31_0;
attribute Fixed 31 0 ny_fixed;
attribute | ong | ong nyl ongl ong;
attribute unsigned |ong | ong nyul ongl ong;
b

Orbix IDL Compiler Arguments

By default (that is, without the use of the - E PL/I plug-in argument), the
preceding IDL would be mapped to the following PL/I:

dcl 1 extended test_ny fixed type based,

3 result fixed dec(15,0) init(0);
dcl 1 extended test_nyl ongl ong_t ype based,

3 result fixed bin(31) init(0);
dcl 1 extended_test_nyul ongl ong_t ype based,

3 result fixed bin(31) init(0);

Additionally, if the IDL contains long long or 31-digit fixed types but you do
not specify the - E PL/I plug-in argument, the Orbix IDL compiler issues the

following warning:

id: "DDIDLIN(EXTENDED)", line 3: Warning: Unsupported Type,
Fi xed type argunent too large - field size truncated.

Alternatively, if the if the IDL contains long long or 31-digit fixed types and
you do specify the - E PL/I plug-in argument, the Orbix IDL compiler
generates the following PL/I based on the preceding IDL:

dcl 1 extended test_ny_fixed_ type based,

3 result fixed dec(31,0) init(0);
dcl 1 extended test_nyl ongl ong_t ype based,

3 result fixed bin(63) init(0);
dcl 1 extended_test_nyul ongl ong_t ype based,

3 result fixed bin(63) init(0);

313

CHAPTER 7 | Orbix IDL Compiler

-L Argument

Overview The - L argument gives you control over the generation of typedefs and
typecodes. Its primary function is to reduce the amount of code generated to
keep within the 10,000 line limit of the PL/I for MVS & VM compiler, but it
also acts as a legacy flag for pre-Orbix 6.2 typedef generation. Qualifying the
- L argument with a sub-option of ¢ also allows you to generate z/OS UNIX
System Services filenames in all uppercase.

Qualifying the -L argument The - L argument must be qualified by c, i, s, u or su (that is, s and u
combined). These options work as follows:

C

su

314

Generate filenames in all uppercase instead of all
lowercase. This is relevant to z/0OS UNIX System Services
only.

Generate inherited typedefs (for pre-Orbix 6.2
compatibility). For example, by default, if interface B
inherits A, and A contains an operation Fred, a typedef is
generated for A/ fred only, because both B/ fred and

A fred have the same signature.

If - Li is specified, typedefs for both A/fred and B/ fred
are generated.

Generate only typecodes relating to sequences. Typedefs
are only used by anys, sequences and
CORBA::TypeCodes. If an application does not contain
anys or CORBA::TypeCodes, this option can greatly
reduce the number of typecodes generated.

Generate only typedefs that are referenced in the IDL.
For example, if an IDL file contains a typedef called
seq_short and seq_| ong, but only seq_short is used (for
example, an operation signature), only the seq_short
typedef is generated into the i di fi | enameT include
member.

This is a combination of the s and u options.

Specifying the -L argument

Specifying the -Lc argument

Orbix IDL Compiler Arguments

If you are running the Orbix IDL compiler in batch, the - L option is specified
as follows:

/1 1 DLPARVE -pli:-Lx",

If you are running the Orbix IDL compiler on z/OS UNIX System Services, the
- L option is specified as follows:

idl -pli:-Lx

In the preceding two examples, x represents the sub-option i, s, u or su.

If you want to generate z/OS UNIX System Services filenames in all
uppercase, you can specify the - Lc argument. For example:

idl -pli:Lc fred.idl

Based on the preceding command, the following files are then generated by
the Orbix IDL compiler on z/OS UNIX System Services (assuming that the
default extensions of .inc and . pli are used):

FREDD. i nc
FREDI . pl i
FREDL. i nc
FREDM i nc
FREDT. i nc
FREDV. pl i
FREDX. i nc

315

CHAPTER 7 | Orbix IDL Compiler

-M Argument

Overview

Example of data names
generated by default

316

PL/I data names generated by the Orbix IDL compiler are based on fully
qualified IDL interface names by default (that is,

| DLmodul ename(s) _I DLi nt er f acename_| DLvar i abl enarme). You can use the
- Margument with the Orbix IDL compiler to define your own alternative
mapping scheme for data names. This is particularly useful if your PL/I data
names are likely to exceed the 31-character restriction imposed by the PL/I
compiler.

The example can be broken down as follows:
1. Consider the following IDL:
modul e Banks{
nmodul e | ri shBanks{
interface Savi ngsBank{attribute short accountbal;};
interface National Bank{};
i nterface DepositBank{};
g

2. Based on the preceding IDL, the Orbix IDL compiler generates the data
names shown in Table 25 by default for the specified interfaces:

Table 25: Example of Default Generated Data Names

Interface Name Generated Data Name
Savi ngsBank Banks_|I ri shBanks_Savi ngsBank
Nat i onal Bank Banks_|I ri shBanks_Nat i onal Bank
Deposi t Bank Banks_|I ri shBanks_Deposi t Bank

By using the - Margument, you can replace the fully scoped names shown in
Table 25 with alternative data names of your choosing.

Defining IDLMAP DD card in
batch

Steps to generate alternative
names with the -M argument

Step 1—Generate the mapping
member

Orbix IDL Compiler Arguments

If you are running the Orbix IDL compiler in batch, and you want to specify
the - Margument as a parameter to it, you must define a DD card for | DLMAP
in the JCL that you use to run the Orbix IDL compiler. This DD card specifies
the PDS for the mapping members generated by the Orbix IDL compiler.
(There is one mapping member generated for each IDL member.) For
example, you might define the DD card as follows in the JCL (where

or bi xhl g represents the high-level qualifier for your Orbix Mainframe
installation):

/11 DLMAP DD DI SP=SHR, DSN=or bi xhl q. DEMOS. PLI . NAP

You can define a DD card for | DLMAP even if you do not specify the -M
argument as a parameter to the Orbix IDL compiler. The DD card is simply
ignored if the - Margument is not specified.

The steps to generate alternative data name mappings with the - Margument
are:

Step Action

1 | Run the Orbix IDL compiler with the - Mcreat e argument, to
generate the mapping member, complete with the fully qualified
names and their alternative mappings.

2 | Edit (if necessary) the generated mapping member, to change
the alternative name mappings to the names you want to use.

3 | Run the Orbix IDL compiler with the - Mpr ocess argument, to
generate PL/I include members with the alternative data names.

First, you must run the Orbix IDL compiler with the - Mcr eat e argument, to
generate the mapping member, which contains the fully qualified names
and the alternative name mappings.

If you are running the Orbix IDL compiler in batch, the format of the
command in the JCL used to run the compiler is as follows (where X
represents the scope level, and BANK is the name of the mapping member
you want to create):

| DLPARMF' - pl i : - Mer eat eXBANK

317

CHAPTER 7 | Orbix IDL Compiler

Generating mapping files into
alternative directories

Scoping levels with the -Mcreate
command

318

If you are running the Orbix IDL compiler in z/OS UNIX System Services, the
format of the command to run the compiler is as follows (where X represents
the scope level, bank. map is the name of the mapping file you want to
create, and nyfile.idl isthe name of the IDL file):

-pli:-Mreat exbank. map nyfile.idl

Note: The name of the mapping member can be up to six characters
long. If you specify a name that is greater than six characters, the name is
truncated to the first six characters. In the case of z/0S UNIX System
Services, you do not need to assign an extension of . map to the mapping
filename; you can choose to use any extension or assign no extension at
all.

If you are running the Orbix IDL compiler in z/OS UNIX System Services, the
mapping file is generated by default in the working directory. If you want to
place the mapping file elsewhere, use the - Dmargument in conjunction with
the - Mcr eat e argument. For example, the following command (where X
represents the scope level) creates a bank. nap file based on the nyfile.idl
file, and places it in the / hone/ t omi pl i / map directory:

-pli:-Dm hore/ton pli/map: - Mreat exbank. map nyfile.idl

See “-D Argument” on page 311 for more details about the - D argument.

As shown in the preceding few examples, you can specify a scope level with
the - Mcreat e command. This specifies the level of scoping to be involved in
the generated data names in the mapping member. The possible scope
levels are:

0 Map fully scoped IDL names to unscoped PL/I hames (that is, to the
IDL variable name only).

1 Map fully scoped IDL names to partially scoped PL/I names (that is,
to I DLi nt er f acename_| DLvar i abl enane). The scope operator, /, is
replaced with an underscore, _.

2 Map fully scoped IDL names to fully scoped PL/I names (that is, to
| DLnmodul ename(s) _I DLi nt er f acenane_I| DLvar i abl ename). The
scope operator, /, is replaced with an underscore, _.

Orbix IDL Compiler Arguments

The following provides an example of the various scoping levels. The
example can be broken down as follows:

1. Consider the following IDL:

modul e Banks{
nmodul e | ri shBanks{

i nterface Savi ngsBank{attribute short accountbal;};
i nterface National Bank{voi d deposit(in |ong

anount) ; };
b
b

2. Based on the preceding IDL example, a - Mcr eat eOBANK command
produces the BANK mapping member contents shown in Table 26.

Table 26: Example of Level-O-Scoped Generated Data Names

Fully Scoped IDL Names

Generated Alternative Names

deposi t

Banks Banks

Banks/ I ri shBanks I ri shBanks
Banks/ | ri shBanks/ Savi ngsBank Savi ngsBank
Banks/ | ri shBanks/ Savi ngsBank/ account bal
account bal

Banks/ | ri shBanks/ Nat i onal Bank Nat i onal Bank
Banks/ I ri shBanks/ Nat i onal Bank/ deposi t

Alternatively, based on the preceding IDL example, a - Mcr eat e1BANK
command produces the BANK mapping member contents shown in

Table 27.

Table 27: Example of Level-1-Scoped Generated Data Names

Fully Scoped IDL Names

Generated Alternative Names

Banks

Banks

Banks/ I ri shBanks

I ri shBanks

319

CHAPTER 7 | Orbix IDL Compiler

320

Table 27: Example of Level-1-Scoped Generated Data Names

Fully Scoped IDL Names

Generated Alternative Names

Banks/ | ri shBanks/ Savi ngsBank

Savi ngsBank

Banks/ | ri shBanks/ Savi ngsBank/
account bal

Savi ngsBank_account bal

Banks/ | ri shBanks/ Nat i onal Bank

Nat i onal Bank

Banks/ | ri shBanks/ Nat i onal Bank/
deposi t

Nat i onal Bank_deposi t

Alternatively, based on the preceding IDL example, a - Mcr eat e2BANK
command produces the BANK mapping member contents shown in

Table 28.

Table 28: Example of Level-2-Scoped Generated Data Names

Fully Scoped IDL Names

Generated Alternative Names

Banks

Banks

Banks/ | ri shBanks

Banks_|I ri shBanks

Banks/ | ri shBanks/ Savi ngsBank

Banks_| ri shBanks_Savi ngsBank

Banks/ | ri shBanks/ Savi ngsBank/
account bal

Banks_| ri shBanks_Savi ngsBank_
account bal

Banks/ | ri shBanks/ Nat i onal Bank

Banks_I ri shBanks_Nat i onal Bank

Banks/ | ri shBanks/ Nat i onal Bank/
deposi t

Banks_|I ri shBanks_Nat i onal Bank_
deposi t

Note: If two or more mapped names resolve to the same name, the Orbix
IDL compiler completes with a return code of 4 and outputs a warning

message similar to the following:

id: "dd:1DLINGMINTF)", line 40: \Wrning: name mappi ng cl ash,
ny_intf/ping clashes with other_intf/ping. Both map to ping

It is the programmer’s responsibility to ensure that the mapping file is
updated to ensure unigue mapped names.

Step 2—Change the alternative
name mappings

Step 3—Generate the PL/l include
members

Orbix IDL Compiler Arguments

You can manually edit the mapping member to change the alternative
names to the names that you want to use. For example, you might change
the mappings in the BANK mapping member as follows:

Table 29: Example of Modified Mapping Names

Fully Scoped IDL Names Modified Names
Banks/ | ri shBanks I ri shBanks
Banks/ | ri shBanks/ Savi ngsBank M/Bank
Banks/ | ri shBanks/ Nat i onal Bank M/Q her Bank
Banks/ | ri shBanks/ Savi ngsBank/ account bal Myaccount bal ance

Note the following rules:

® The fully scoped name and the alternative name meant to replace it
must be separated by one space (and one space only).

® |f the alternative name exceeds 31 characters, it is abbreviated to 31
characters, subject to the the normal PL/I mapping rules for identifiers.

® The fully scoped IDL names generated are case sensitive, so that they
match the IDL being processed. If you add new entries to the mapping
member, to cater for additions to the IDL, the names of the new entries
must exactly match the corresponding IDL names in terms of case.

When you have changed the alternative mapping names as necessary, run
the Orbix IDL compiler with the - Mpr ocess argument, to generate your PL/I
include members complete with the alternative data names that you have
set up in the specified mapping member.

If you are running the Orbix IDL compiler in batch, the format of the
command to generate PL/I include members with the alternative data
names is as follows (where BANK is the name of the mapping member you
want to create):

| DLPARMF' - pl i : - Mpr ocessBANK

321

CHAPTER 7 | Orbix IDL Compiler

322

If you are running the Orbix IDL compiler in z/OS UNIX System Services, the
format of the command to generate PL/I include members with the
alternative data names is as follows (where bank. map is the name of the
mapping file you want to create):

-pli: - Mrocessbank. map

Note: If you are running the Orbix IDL compiler in z/0OS UNIX System
Services, and you used the - Dmargument with the - Mereat e argument, so
that the mapping file is not located in the current working directory, you
must specify the path to that alternative directory with the - Mpr ocess
argument. For example, - pl i : - Mor ocess/ hone/ t ond pl i / map/ bank. map.

When you run the - Mor ocess command, your PL/I include members are
generated with the alternative data names you want to use, instead of with
the fully qualified data names that the Orbix IDL compiler generates by
default.

Orbix IDL Compiler Arguments

-0 Argument

Overview

Example of include members

generated by Orbix IDL compiler

PL/I source code and include member names generated by the Orbix IDL
compiler are based by default on the IDL member name. You can use the - O
argument with the Orbix IDL compiler to map the default source and include
member names to an alternative naming scheme, if you wish.

The - Oargument is, for example, particularly useful for users who have
migrated from IONA’s Orbix 2.3-based solution for z/OS, and who want to
avoid having to change the % ncl ude statements in their existing application
source code. In this case, they can use the - Oargument to automatically
change the generated source and include member names to the alternative
names they want to use.

Note: If you are an existing user who has migrated from IONA's Orbix
2.3-based solution for z/OS, see the Mainframe Migration Guide for more

details.

The example can be broken down as follows:
1. Consider the following IDL, where the IDL is stored in a member called
TEST:

interface sinple

{
voi d sizeofgrid(in long nysizel, in |ong
nysi ze2) ;
IiE
interface bl ock
{
void area(in |long nyarea);
I

2. Based on the preceding IDL, the Orbix IDL compiler generates the
following PL/I include members, based on the IDL member name:

. TESTD
. TESTL
. TESTM

323

CHAPTER 7 | Orbix IDL Compiler

Specifying the -0 argument

Limitation in size of
replacement name

324

If you are running the Orbix IDL compiler in batch, the following piece of
JCL, for example, changes the include member names from TEST to Sl MPLE:

/1l SOURCE=TEST
Il
/1 | DLPARME' - pl i : - O8I MPLE

If you are running the Orbix IDL compiler in z/OS UNIX System Services, the
following command, for example, changes the include member names from
TEST to SI MPLE:

-pli:-C8l MPLE test.idl

You must specify the alternative name directly after the - O argument (that
is, no spaces). Even if you specify the replacement name in lower case (for
example, si npl e instead of SI MPLE), the Orbix IDL compiler automatically

generates replacement names in upper case.

If the name you supply as the replacement exceeds six characters (in the
preceding example it does not, because it is SI MPLE), only the first six
characters of that name are used as the basis for the alternative member
names.

Orbix IDL Compiler Arguments

-S Argument

Overview

Specifying the -S argument

The - s argument generates skeleton server implementation source code
(that is, the i dI menber nanel member). This member provides a skeleton
implementation for the attributes and operation procedures to be
implemented. It is not generated by default by the Orbix IDL compiler. It is
only generated if you use the - S argument, because doing so overwrites any
server implementation code that has already been created based on that IDL
member name.

WARNING: Only specify the - S argument if you want to generate new
server implementation source code or deliberately overwrite existing code.

If you are running the Orbix IDL compiler in batch, the following piece of
JCL, for example, creates a server implementation member called SI MPLE ,
based on the S| MPLE IDL member:

/1l SCURCE=S| MPLE,
Il
/1 | DLPARME' -pli:-S

If you are running the Orbix IDL compiler in z/0OS UNIX System Services, the
following command, for example, creates a server implementation file called
SI MPLEI, based on the sinpl e.idl IDL file:

-pli:-S sinple.idl

Note: In the case of z/OS UNIX System Services, if you use the

PLI Modul eExt ensi on configuration variable to specify an extension for the
server implementation source code member name, this extension is
automatically appended to the generated member name. The preceding
commands generate batch server implementation code. If you want to
generate CICS or IMS server implementation code, see “-T Argument” on
page 326 for more details.

325

CHAPTER 7 | Orbix IDL Compiler

-T Argument

Overview

Qualifying parameters

326

The - T argument allows you to specify whether the server code you want to
generate is for use in batch, IMS, or CICS.

The -T argument must be qualified by NATI VE, | M, | M5G or A CS. For

example:

NATI VE

| MBx

I MBGX

Specifying - TNATI VE generates batch server mainline code.
Specifying - TNATI VE with - S generates batch server
implementation code.

Specifying - TNATI VE is the same as not specifying - T at all.
That is, unless you specify - TI Mx or TA CS, the IDL compiler
generates server code by default for use in native batch mode.

Note: If you specify - TNATI VE with -V, it prevents the
generation of batch server mainline code.

Specifying - Tl Mx generates IMS server mainline code.
Specifying - TI MBx with - S generates IMS server
implementation code.

Specifying - Tl M&x means that i o_pcb_ptr, alt _pcb_ptr, and
x number of extra pcb pointer parameters are added to the
server mainline. It also means that the line % ncl ude 1 MSPCB;
is added to the server mainline. Specifying - TI M5 is the same
as specifying - TI Ms0 (that is, if you do not specify a number,
no extra pcb pointer parameters are added).

If you also specify the - S argument with the compiler, the line
% ncl ude 1 MBPCB; is also added to the server implementation.
IORs for the interfaces that server implements are not written
to file, because the IMS adapter handles this.

Note: 1 MSPCB is a static include file that allows the server
implementation to access the IMS pointers that are passed in
the server mainline. If you specify - TI Mx with -V, it prevents
the generation of IMS server mainline code.

This is similar to the | Mex option but does not generate the
io_pch_ptr and alt_pch_ptr parameters. This option is
provided to aid migration from Orbix 2.3-based IMS servers,
which did not have these two parameter names.

Specifying the -TNATIVE
argument

Specifying the -TIMSx argument$S

Orbix IDL Compiler Arguments

acs Specifying - TA CS generates CICS server mainline code.
Specifying - TA CS with - S generates CICS server
implementation code.

Note: If you specify - TQ CSwith -V, it prevents the generation
of CICS server mainline code.

If you are running the Orbix IDL compiler in batch, the following piece of
JCL, for example, creates a batch PL/I server mainline member (called
TESTV) and a batch PL/I server implementation member (called TESTI),
based on the TEST IDL member:

/1l SOURCE=TEST,
/1
/1l | DLPARME' - pl i : - S: - TNATI VE

If you are running the Orbix IDL compiler in z/0OS UNIX System Services, the
following command, for example, creates a batch PL/I server mainline file
(called TESTV) and a batch PL/I server implementation file (called TESTI),
based on the test.idl IDL file:

-pli:-S: -TNATI VE test.idl
Note: Specifying - TNATI VE is the same as not specifying - T at all.

See “Developing the Server” on page 29 for an example of batch PL/I server
mainline and implementation members.

If you are running the Orbix IDL compiler in batch, the following piece of
JCL, for example, creates an IMS PL/I server mainline member (called
TESTV) with four PCB pointers, and an IMS PL/I server implementation
member (called TESTI), based on the TEST IDL member:

11l SCURCE=TEST,

/1l
/1l | DLPARME' -pli:-S: -TlI VA",

327

CHAPTER 7 | Orbix IDL Compiler

Specifying the -TCICS argument

328

If you are running the Orbix IDL compiler in z/OS UNIX System Services, the
following command, for example, creates an IMS PL/I server mainline file
(called TESTV) With four PCB pointers, and an IMS PL/I server
implementation file (called TESTI), based on the test.idl IDL file:

-pli:-S:-TIMA test.idl

See “Developing the IMS Server” on page 71 for an example of IMS PL/I
server mainline and implementation members.

If you are running the Orbix IDL compiler in batch, the following piece of
JCL, for example, creates a CICS PL/I server mainline member (called
TESTV) and a CICS PL/I server implementation member (called TESTI),
based on the TEST IDL member:

/1l SOURCE=TEST,
Il
/1 | DLPARME' -pli:-S:-TACS ,

If you are running the Orbix IDL compiler in z/OS UNIX System Services, the
following command, for example, creates a CICS PL/I server mainline file
(called TESTV) and a CICS PL/I server implementation file (called TESTI),
based on the test.idl IDL file:

-pli:-S-TACS test.idl

See “Developing the CICS Server” on page 143 for an example of CICS PL/I
server mainline and implementation members.

Orbix IDL Compiler Arguments

-V Argument

Overview

Specifying the -V argument

The - vargument prevents generation of server mainline source code (that is,
it prevents generation of the i dl menber nameV member). You typically use
this argument if you have added code that you do not want to be overwritten
(for example, code that produces server output indicating that the server is
ready to receive requests).

WARNING: If you do not specify the - Vargument, any previous version of
the server mainline source code member is overwritten.

If you are running the Orbix IDL compiler in batch, the following piece of
JCL, for example, only generates include members, based on the SI MPLE IDL
member, and prevents creation of a server mainline source code member
called SI MPLEV:

/1l SCURCE=S| MPLE,
Il
/1 | DLPARME' -pl i@ -V

If you are running the Orbix IDL compiler in z/OS UNIX System Services, the
following command, for example, only generates include files, based on the
sinpl e.idl IDL file, and prevents creation of a server mainline source code
file called SI MPLEV:

-pli:-V sinple.idl

Note: In the case of z/OS UNIX System Services, if you use the

PLI Modul eExt ensi on configuration variable to specify an extension for the
server mainline source code member name, this extension is automatically
appended to the generated member name when you do not specify the - v
argument. The preceding commands generate batch server
implementation code. If you want to generate CICS or IMS server
implementation code, see “-T Argument” on page 326 for more details.

329

CHAPTER 7 | Orbix IDL Compiler

-W Argument

Overview

Qualifying the -W argument

Specifying the -W argument

330

The - wargument allows you to specify whether you wish to have put skip
or di spl ay messages generated in the i dl fi | enaneD include member. The
default is put ski p.

The - wargument must be qualified by d or p. These options work as follows:
d Specifying - Wi generates di spl ay messages into the
i di fil enameDinclude member as follows:

display(’ Error! No such operation:’);
di spl ay(operation);

p Specifying - W generates put ski p messages into the
i di fil enameDinclude member as follows:

put skip list(’Error! No such operation:’);
put skip |ist(operation);

If you are running the Orbix IDL compiler in batch, the - Wargument is
specified as follows:

/1 | DLPARME -pli:-W

If you are running the Orbix IDL compiler on z/OS UNIX System Services, the
-W argument is specified as follows:

-pli:-W

In the preceding two examples, x represents the sub-option d or p.

Orbix IDL Compiler Configuration

Orbix IDL Compiler Configuration

Overview

In this section

This section describes the configuration variables relevant to the Orbix IDL
compiler - pli plug-in for PL/l source code and include member generation,
and the - nf a plug-in for IMS or CICS adapter mapping member generation.

Note: The -nfa plug-in is not relevant for batch application development.

This section discusses the following topics:

PL/I Configuration Variables page 332
Adapter Mapping Member Configuration Variables page 338
Providing Arguments to the IDL Compiler page 341

331

CHAPTER 7 | Orbix IDL Compiler

PL/I Configuration Variables

Overview

Configuration variables

Mandatory settings

332

The Orbix IDL configuration member contains settings for PL/I, along with
settings for C++ and several other languages. If the Orbix IDL compiler is
running in batch, it uses the configuration member located in

or bi xhl g. GONFI 1 D) . If the Orbix IDL compiler is running in z/0S UNIX
System Services, it uses the configuration file specified via the

| T_I DL_QOONFI G_PATH export variable.

The PL/I configuration is listed under Pli as follows:

Pli
{
Switch = "pli";
Shl i bName = " CRXBPLI “;
Shl i bMaj or Version = "x";
IsDefault = "NO';
Preset Options = "";
Mai nl ncl udeSuffix = "Q';
PL/1 nodul es and i ncl udes ext ensi ons

The default is .pli and .inc on NT and none for C& 390.
PLI Mbdul eExtension = "";
PLI I ncl udeExt ension = "";

IE

Note: Settings listed with a # are considered to be comments and are not
in effect. The default in relation to PL/I modules and includes extensions is
also none for z/OS UNIX System Services.

The Swi t ch, Shli bNarre, and Shl i bMaj or Ver si on variables are mandatory
and their default settings must not be altered. They inform the Orbix IDL
compiler how to recognize the PL/I switch, and what name the DLL plug-in
is stored under. The x value for Shl i bMaj or Ver si on represents the version
number of the supplied shl i bNane DLL.

User-defined settings

List of available variables

Orbix IDL Compiler Configuration

All but the first three settings are user-defined and can be changed. The
reason for these user-defined settings is to allow you to change, if you wish,
default configuration values that are set during installation. To enable a
user-defined setting, use the following format:

setting_nane = "val ue";

Table 30 provides an overview and description of the available configuration

variables.

Table 30: Summary of PL/I Configuration Variables (Sheet 1 of 3)

Variable Name

Description

Default

| sDef aul t

Indicates whether PL/I is the
language that the Orbix IDL
compiler generates by
default from IDL. If this is
set to YES, you do not need
to specify the -pli switch
when running the compiler.

Preset ot i ons

The PL/I plug-in arguments
that are passed by default
as parameters to the Orbix
IDL compiler. Any
arguments specified here do
not need to be specified in
the JCL or on the command
line when running the Orbix
IDL compiler.

PLI Modul eExt ensi on?

Extension for the server
source code filenames on
z/0OS UNIX System Services
or Windows NT.

Note: This is left blank by
default, and you can set it to
any value you want. The
recommended setting is

.pli.

333

CHAPTER 7 | Orbix IDL Compiler

334

Table 30: Summary of PL/I Configuration Variables (Sheet 2 of 3)

Variable Name

Description

Default

PLI I ncl udeExt ensi on?

Extension for PL/I include
filenames on z/OS UNIX
System Services or Windows
NT.

Note: This is left blank by
default, and you can set it to
any value you want. The
recommended setting is
.inc.

Mai nl ncl udeSuf fi x

Suffix for the main include
member name.

Typedef | ncl udeSuf fi x

Suffix for the typedef include
member name.

Runt i mel ncl udeSuf fi x

Suffix for the runtime
include member name.

Sel ect | ncl udeSuf fi x

Suffix for the select include
member name.

Ser ver Mai nMbdul eSuf fi x

Suffix for the server mainline
source code member name.

Server | npl Modul eSuf fi x

Suffix for the server
implementation source code
member name.

MaxFi xedDi gi ts

Maximum precision for the
FI XED DEQ MAL type.

15

Not Synbol

Symbol for the NOT operator.

O Synbol

Symbol for the CR operator.

Orbix IDL Compiler Configuration

Table 30: Summary of PL/I Configuration Variables (Sheet 2 of 3)

Variable Name

Description

Default

PLI I ncl udeExt ensi on?

Extension for PL/I include
filenames on z/OS UNIX
System Services or Windows
NT.

Note: This is left blank by
default, and you can set it to
any value you want. The
recommended setting is
.inc.

Mai nl ncl udeSuf fi x

Suffix for the main include
member name.

Typedef | ncl udeSuf fi x

Suffix for the typedef include
member name.

Runt i mel ncl udeSuf fi x

Suffix for the runtime
include member name.

Sel ect | ncl udeSuf fi x

Suffix for the select include
member name.

Ser ver Mai nMbdul eSuf fi x

Suffix for the server mainline
source code member name.

Server | npl Modul eSuf fi x

Suffix for the server
implementation source code
member name.

MaxFi xedDi gi ts

Maximum precision for the
FI XED DEQ MAL type.

15

Not Synbol

Symbol for the NOT operator.

O Synbol

Symbol for the CR operator.

335

CHAPTER 7 | Orbix IDL Compiler

336

Table 30: Summary of PL/I Configuration Variables (Sheet 3 of 3)

Variable Name Description Default

A | CapsFi | enanes Indicates whether to NO
generate filenames on z/0S
UNIX System Services in all
uppercase, if this is set to
YES.

This is equivalent to
specifying the - Lc option
with the Orbix IDL compiler.

Ent er pri seEnabl ed Enables Enterprise PL/I NO
options supported by the
PL/I generator, if set to YES.
If this is set to YES, it
overrides the

MaxFi xedDi gi t s setting.

This is equivalent to
specifying the - E option with
the Orbix IDL compiler.

MessageSt at enent Indicates whether to P
generate output messages
as di spl ay (if set to D) or
put ski p statements (if set
to P or not set at all).

This is equivalent to
specifying the - v or - W
option with the Orbix IDL
compiler.

a. This is ignored on native z/0S.

b. PL/I uses a double Rsymbol (that is, | |) as a string concatenation symbol.

The last nine variables shown in Table 30 on page 333 are not listed by
default in or bi xhl g. CONFI G I D) . If you want to change the value for a
variable name that is not listed by default, you must manually enter that
variable name and its corresponding value in or bi xhl g. CONFI G I DL) .

Orbix IDL Compiler Configuration

Note: Suffixes for member names can only be a single character. Use an
asterisk (that is, *) if no suffix is to be used for a particular source code or
include member.

337

CHAPTER 7 | Orbix IDL Compiler

Adapter Mapping Member Configuration Variables

Overview The - nf a plug-in allows the Orbix IDL compiler to generate:
® |IMS or CICS adapter mapping members from IDL, using the -t
argument.
® Type information members, using the -i nf argument.
The Orbix IDL configuration member contains configuration settings relating

to the generation of IMS or CICS adapter mapping members and type
information members.

Note: See the IMS Adapter Administrator’s Guide or CICS Adapter
Administrator’s Guide for more details about adapter mapping members
and type information members.

Configuration variables The IMS or CICS adapter mapping member configuration is listed under
MFANVappi ngs as follows:

MFAVappi ngs

Switch = "nfa";

Shli bName = " CRXBMFA';
Shl i bMyj or Version = "x";
IsDefault = "NO';

Preset Options = "";

Mappi ng & Type Info file suffix and ext. nmay be overridden
The default mapping file suffix is A

The default mapping file ext. is .map and none for O& 390
The default type info file suffix is B

The default type info file ext. is .inf and none for C&/ 390
MFAMappi ngExt ensi on "
MFAMBppi ngSuf i x
Typel nf oFi | eExt ensi on
Typel nf oFi | eSuf fi x

1
nn.

T H R H H R R HH

338

Mandatory settings

User-defined settings

List of available variables

Orbix IDL Compiler Configuration

The Swi tch, Shli bNane, and Shl i bMaj or Ver si on variables are mandatory
and their settings must not be altered. They inform the Orbix IDL compiler
how to recognize the adapter mapping member switch, and what name the
DLL plug-in is stored under. The x value for Shl i bMaj or Ver si on represents
the version number of the supplied Shl i bNarre DLL.

All but the first three settings are user-defined and can be changed. The
reason for these user-defined settings is to allow you to change, if you wish,
default configuration values that are set during installation. To enable a
user-defined setting, use the following format.

setting_nane = "val ue";

Table 31 provides an overview and description of the available configuration
variables.

Table 31: Adapter Mapping Member Configuration Variables

Variable Name Description Default

| sDef aul t Indicates whether the Orbix
IDL compiler generates
adapter mapping members by
default from IDL. If this is set
to YES, you do not need to
specify the - nf a switch when
running the compiler.

Preset (ot i ons The PL/I arguments that are
passed by default as
parameters to the Orbix IDL
compiler for the purposes of
generating adapter mapping
members. Any arguments
specified here do not need to
be specified in the JCL or on
the command line when
running the Orbix IDL
compiler.

339

CHAPTER 7 | Orbix IDL Compiler

Table 31: Adapter Mapping Member Configuration Variables

Variable Name Description Default

MFAMappi ngExt ensi on? Extension for the adapter map
mapping filename on z/0S
UNIX System Services or
Windows NT.

MFANVappi ngSuf fi x Suffix for the adapter mapping | A
member name. If you do not
specify a value for this, it is
generated with an A suffix by
default.

Typel nf oFi | eExt ensi ona Extension for the type i nf
information filename on z/0OS
UNIX System Services or
Windows NT.

Typel nf oFi | eSuf fi x Suffix for the type information B
member name. If you do not
specify a value for this, it is

generated with a B suffix by

default.

a. This is ignored on native z/0S.

340

Orbix IDL Compiler Configuration

Providing Arguments to the IDL Compiler

Overview

IDL compiler argument input to
ORXIDL

The Orbix IDL compiler configuration can be used to provide arguments to
the IDL compiler. Normally, IDL compiler arguments are supplied to the
CRXI DL procedure via the 1 DLPARMJCL symbolic, which comprises part of
the JCL PARM. The JCL PARM has a 100-character limit imposed by the
operating system. Large IDL compiler arguments, coupled with locale
environment variables, tend to easily approach or exceed the 100-character
limit. To help avoid problems with the 100-character limit, IDL compiler
arguments can be provided via a data set containing IDL compiler
configuration statements.

The CRXI DL procedure accepts IDL compiler arguments from three sources:

The or bi xhl g. CONFI QI DL) data set—This is the main Orbix IDL
compiler configuration data set. See “PL/l Configuration Variables” on
page 332 for an example of the Pli configuration scope. See “Adapter
Mapping Member Configuration Variables” on page 338 for an
example of the MFAMappi ngs configuration scope. The Pli and
MFANVappi ngs configuration scopes used by the IDL compiler are in

or bi xhl g. CONFI 1 DL) . IDL compiler arguments are specified in the
Preset Qpt i ons variable.

The I DLARGS data set—This data set can extend or override what is
defined in the main Orbix IDL compiler configuration data set. The

| DLARGS data set defines a Preset Qpt i ons variable for each
configuration scope. This variable overrides what is defined in the main
Orbix IDL compiler configuration data set.

The | DLPARMsymbolic of the CRXI DL procedure—This is the usual
source of IDL compiler arguments.

341

CHAPTER 7 | Orbix IDL Compiler

Using the IDLARGS data set

342

Because the | DLPARMsymbolic is the usual source for IDL compiler

arguments, it might lead to problems with the 100-character JCL PARM

limit. Providing IDL compiler arguments in the | DLARGS data set can help to

avoid problems with the 100-character limit. If the same IDL compiler

arguments are supplied in more than one input source, the order of

precedence is as follows:

® |IDL compiler arguments specified in the | DLPARMsymbolic take
precedence over identical arguments specified in the | DLARGS data set
and the main Orbix IDL compiler configuration data set.

® The Preset Qpti ons variable in the | DLARGS data set overrides the
Preset Opt ons variable in the main Orbix IDL compiler configuration
data set. If a value is specified in the Preset Opt ons variable in the
main Orbix IDL compiler configuration data set, it should be defined
(along with any additional IDL compiler arguments) in the
Preset Qpt i ons variable in the | DLARGS data set.

The | DLARGS data set can help when IDL compiles are failing due to the
100-character limit of the JCL PARM. Consider the following JCL:

/11 DLPLI EXEC CRXI DL,

Il SCOURCE=BANKDEMD,

/1 | DL=&CRBI X. . DEMOS. | DL,

/1l OCPYLI B=&CRBI X. . DEMCS. PLI . PLI NCL,
/1l | MPL=&CRBI X. . DEMD5. PLI . SRC,

/1 | DLPARME' - pl i : - Mpr ocessBANK: - CBANK

In the preceding example, all the IDL compiler arguments are provided in
the I DLPARMJCL symbolic, which is part of the JCL PARM. The JCL PARM
can also be comprised of an environment variable that specifies locale
information. Locale environment variables tend to be large and use up many
of the 100 available characters in the JCL PARM. If the 100-character limit

Defining multiple scopes in the
IDLARGS data set

Orbix IDL Compiler Configuration

is exceeded, some of the data in the | DLPARMJCL symbolic can be moved to
the | DLARGS data set to reclaim some of the JCL PARM space. The
preceding example can be recoded as follows:

/11 DLPLI EXEC CRXI DL,

/1l SOURCE=BANKDEMD,

/1l | DL=&CRBI X. . DEMCS. | DL,

/1 QCOPYLI B=&CRBI X. . DEMCS. PLI . PLI NCL,
/1l | MPL=&CRBI X. . DEM3S. PLI . SRC,

/1l | DLPARME' -pl i’

/1] DLARGS DD *

Pli {Presetptions = "-MrocessBANK - CBANK"; };
/*

The 1 DLPARMJCL symbolic retains the - pli switch. The rest of the | DLPARM
data is now provided in the | DLARGS data set, freeing up 21 characters of
JCL PARM space.

The | DLARGS data set contains IDL configuration file scopes. These are a
reopening of the scopes defined in the main IDL configuration file. In the
preceding example, the 1 DLPARMJCL symbolic contains a -pl i switch. This
instructs the IDL compiler to look in the Pl i scope of the | DLARGS dataset
for any IDL compiler arguments that might be defined in the Preset (ot i ons
variable. Based on the preceding example, it finds - Mpor ocessBANK: - CBANK.

The | DLARGS data set must be coded according to the syntax rules for the
main Orbix IDL compiler configuration data set. See “PL/l Configuration
Variables” on page 332 for an example of the Pl'i configuration scope. See
“Adapter Mapping Member Configuration Variables” on page 338 for an
example of the MFAMappi ngs configuration scope.

Note: A long entry can be continued by coding a backslash character
(that is, \) in column 72, and starting the next line in column 1.

The 1 DLARGS data set can contain multiple scopes. Consider the following
JCL that compiles IDL for a CICS server:

//1DLPLI EXEC ORXI DL,

/1 SOURCE=NSTSEQ

/1 | DL=&CRBI X. . DEMDS, | DL,

/1 OCPYLI B=&CRBI X. . DEMOS. O CS. PLI . PLI NCL,
/1 | MPL=&CRBI X. . DEMDS. O CS. PLI . SRG,

/1 I DLPARME' - pl i : - TOI CS - nf a: - t NSTSEGBV!

343

CHAPTER 7 | Orbix IDL Compiler

The 1 DLPARMJCL symbolic contains both a - pli and - nf a switch. The
preceding example can be recoded as follows:

/11 DLPLI EXEC CRXI DL,

/1 SOURCE=NSTSEQ

/1l | DL=&CRBI X. . DEMOS. | DL,

/1l QCPYLI B=&CRBI X. . DEMCS. A CS. PLI . PLI NCL,
/1l | MPL=&CRBI X. . DEMDS. O CS. PLI . SRC,

/1l | DLPARMVE' -pli -nfa'

/1] DLARGS DD *

Pli {PresetQptions = "-TA CS"; };

MFAMVappi ngs {Preset pti ons = "-t NSTSEQSV'; };

/*

The | DLPARMJCL symbolic retains the - pli and - nf a IDL compiler switches.
The IDL compiler looks for -pl i switch arguments in the Pli scope, and for
- nf a switch arguments in the MFAVAppI ngs scope.

344

In this chapter

CHAPTER 8

Memory Handling

Memory handling must be performed when using dynamic
structures such as unbounded strings, bounded and
unbounded sequences, and anys. This chapter provides details
of responsibility for the allocation and subsequent release of
dynamic memory for these complex types at the various stages
of an Orbix PL/I application. It first describes in detail the
memory handling rules adopted by the PL/I runtime for
operation parameters relating to different dynamic structures.
It then provides a type-specific breakdown of the APIs that are
used to allocate and release memory for these dynamic
structures.

This chapter discusses the following topics:

Operation Parameters page 346

Memory Management Routines page 371

Note: See “API Reference” on page 377 for full API details.

345

CHAPTER 8 | Memory Handling

Operation Parameters

Overview

In this section

346

This section describes in detail the memory handling rules adopted by the
PL/I runtime for operation parameters relating to different types of dynamic
structures, such as unbounded strings, bounded and unbounded sequences,
and any types. Memory handling must be performed when using these
dynamic structures. It also describes memory issues arising from the raising
of exceptions.

The following topics are discussed in this section:

Bounded Sequences and Memory Management page 347
Unbounded Sequences and Memory Management page 351
Unbounded Strings and Memory Management page 356
The any Type and Memory Management page 364
User Exceptions and Memory Management page 369

Operation Parameters

Bounded Sequences and Memory Management

Overview for IN parameters

Summary of rules for IN
parameters

Table 32 provides a detailed outline of how memory is handled for bounded
sequences that are used as i n parameters.

Table 32: Memory Handling for IN Bounded Sequences

Client Application Server Application

1. SEQINIT

2. write

3. PODEXEC—(send)
4. PODGET—(receive, allocate)
5. read

6. PODPUT—(free)

7. SEQFREE

The memory handling rules for a bounded sequence used as anin
parameter can be summarized as follows, based on Table 32:

1.

The client calls SEQ N T to initialize the sequence information block
and allocate memory for it.

The client initializes the sequence elements.

The client calls PCDEXEC, which causes the client-side PL/I runtime to
marshal the values across the network.

The server calls PCDGET, which causes the server-side PL/I runtime to
receive the sequence and implicitly allocate memory for it.

The server obtains the sequence value from the operation parameter
buffer.

The server calls PCDPUT, which causes the server-side PL/I runtime to
implicitly free the memory allocated by the call to PCDGET.

The client calls SEQFREE to free the memory allocated by the call to
SEQNT.

347

CHAPTER 8 | Memory Handling

Overview for INOUT parameters Table 33 provides a detailed outline of how memory is handled for bounded
sequences that are used as i nout parameters.

Table 33: Memory Handling for INOUT Bounded Sequences

Client Application Server Application

1. SEQINIT

2. write

3. PODEXEC—(send)
. PODGET—(receive, allocate)
. read

. SEQFREE

. SEQINIT

. write

. PODPUT—(send, free)

O OooNO O~

10. (free, receive, allocate)

11. read

12. SEQFREE
Summary of rules for INOUT The memory handling rules for a bounded sequence used as an i nout
parameters parameter can be summarized as follows, based on Table 33:

1. The client calls SEQ N T to initialize the sequence information block
and allocate memory for it.

The client initializes the sequence elements.

The client calls PCDEXEC, which causes the client-side PL/I runtime to
marshal the values across the network.

4. The server calls PCDGET, which causes the server-side PL/I runtime to
receive the sequence and implicitly allocate memory for it.

5. The server obtains the sequence value from the operation parameter
buffer.

6. The server calls SEQFREE to explicitly free the memory allocated for the
original i n sequence via the call to PODGET in point 4.

7. The server calls SEQ N T to initialize the replacement out sequence
and allocate memory for it.

8. The server initializes the sequence elements for the replacement out
sequence.

348

Overview for OUT and return
parameters

Operation Parameters

9. The server calls PCDPUT, which causes the server-side PL/I runtime to
marshal the replacement out sequence across the network and then
implicitly free the memory allocated for it via the call to SEQN T in
point 7.

10. Control returns to the client, and the call to PCDEXEC in point 3 now
causes the client-side PL/I runtime to:

i. Free the memory allocated for the original i n sequence via the
call to SEQ NI T in point 1.

ii. Receive the replacement out sequence.

iii. Allocate memory for the replacement out sequence.

Note: By having PCDEXECfree the originally allocated memory before
allocating the replacement memory means that a memory leak is
avoided.

11. The client obtains the sequence value from the operation parameter
buffer.

12. The client calls SEQFREE to free the memory allocated for the
replacement out sequence via the call to PCDEXEC in point 3.

Table 34 provides a detailed outline of how memory is handled for bounded
sequences that are used as out or ret ur n parameters.

Table 34: Memory Handling for OUT and Return Bounded Sequences

Client Application Server Application

1. PODEXEC—(send)
2. PODGET—(receive)

3. SEQINIT

4. write

5. PODPUT—(send, free)
6. (receive, allocate)
7. read

8. SEQFREE

349

CHAPTER 8 | Memory Handling

Summary of rules for OUT and
return parameters

350

The memory handling rules for a bounded sequence used as an out or

ret urn parameter can be summarized as follows, based on Table 34:

1. The client calls PCDEXEC, which causes the client-side PL/I runtime to
marshal the request across the network.

2. The server calls PCDGET, which causes the server-side PL/I runtime to
receive the client request.

3. The server calls SEQ N T to initialize the sequence and allocate
memory for it.

The server initializes the sequence elements.

5. The server calls PCDPUT, which causes the server-side PL/I runtime to
marshal the values across the network and implicitly free the memory
allocated to the sequence via the call to SEQNT.

6. Control returns to the client, and the call to PCDEXEC in point 1 now
causes the client-side PL/I runtime to receive the sequence and
implicitly allocate memory for it.

7. The client obtains the sequence value from the operation parameter
buffer.

8. The client calls SEGFREE, which causes the client-side PL/I runtime to
free the memory allocated for the sequence via the call to PCDEXEC.

Operation Parameters

Unbounded Sequences and Memory Management

Overview for IN parameters Table 35 provides a detailed outline of how memory is handled for
unbounded sequences that are used as i n parameters.

Table 35: Memory Handling for IN Unbounded Sequences

Client Application Server Application

1. SEQALOC

2. SEQSET?

3. PODEXEC—(send)
4. PODGET—(receive, allocate)
5. SEQGET

6. PODPUT—(free)

7. SEQFREE

a. SEQSET performs a deep copy from the element buffer into the sequence.
This means that if an element buffer contains dynamic data (for example, a
string or a sequence), the element buffer should be freed after calling
SEQSET, to prevent memory leaks. Memory should be handled as follows for
an unbounded sequence of strings, to prevent a leak:

1. Call STRSET to allocate an element in the element buffer.
2. Call SEQSET to copy the element into the sequence.
3. Call STRFREE to free the element buffer.

Summary of rules for IN The memory handling rules for an unbounded sequence used as anin
parameters parameter can be summarized as follows, based on Table 35:
1. The client calls SEQALOC to initialize the sequence information block

and allocate memory for both the sequence information block and the
sequence data.

The client calls SEQSET to initialize the sequence elements.

The client calls PCDEXEC, which causes the client-side PL/I runtime to
marshal the values across the network.

The server calls PCDGET, which causes the server-side PL/I runtime to
receive the sequence and implicitly allocate memory for it.

The server calls SEQEET to obtain the sequence value from the
operation parameter buffer.

351

CHAPTER 8 | Memory Handling

Overview for INOUT parameters

Summary of rules for INOUT
parameters

352

The server calls PCDPUT, which causes the server-side PL/I runtime to
implicitly free the memory allocated by the call to PCDGET.

The client calls SEQFREE to free the memory allocated by the call to
SEQALCC,

Table 36 provides a detailed outline of how memory is handled for
unbounded sequences that are used as i nout parameters.

Table 36: Memory Handling for INOUT Unbounded Sequences

Client Application Server Application

1. SEQALOC
2. SEQSET?
3. PODEXEC—(send)

10. (free, receive, allocate)
11. SEQGET
12. SEQFREE

4. PODGET—(receive, allocate)
5. SEQGET

6. SEQFREE

7. SEQALOC

8. SEQSET

9. PODPUT—(send, free)

a. SEQSET performs a deep copy from the element buffer into the sequence.

This means that if an element buffer contains dynamic data (for example, a
string or a sequence), the element buffer should be freed after calling
SEQSET, to prevent memory leaks. Memory should be handled as follows for
an unbounded sequence of strings, to prevent a leak:

1. Call STRSET to allocate an element in the element buffer.

2. Call SEQSET to copy the element into the sequence.

3. Call STRFREE to free the element buffer.

The memory handling rules for an unbounded sequence used as an i nout
parameter can be summarized as follows, based on Table 36:

1.

The client calls SEQALCC to initialize the sequence information block
and allocate memory for both the sequence information block and the
sequence data.

The client calls SEQSET to initialize the sequence elements.

10.

11.

12.

Operation Parameters

The client calls PCDEXEC, which causes the client-side PL/I runtime to

marshal the values across the network.

The server calls PCDGET, which causes the server-side PL/I runtime to

receive the sequence and implicitly allocate memory for it.

The server calls SEQEET to obtain the sequence value from the

operation parameter buffer.

The server calls SEQFREE to explicitly free the memory allocated for the

original i n sequence via the call to PODGET in point 4.

The server calls SEQALOC to initialize the replacement out sequence

and allocate memory for both the sequence information block and the

sequence data.

The server calls SEQSET to initialize the sequence elements for the

replacement out sequence.

The server calls PCDPUT, which causes the server-side PL/I runtime to

marshal the replacement out sequence across the network and then

implicitly free the memory allocated for it via the call to SEQALQC in

point 7.

Control returns to the client, and the call to PCDEXEC in point 3 now

causes the client-side PL/I runtime to:

i. Free the memory allocated for the original i n sequence via the
call to SEQALCC in point 1.

ii. Receive the replacement out sequence.

iii. Allocate memory for the replacement out sequence.

Note: By having PCDEXECfree the originally allocated memory before
allocating the replacement memory means that a memory leak is
avoided.

The client calls SEQEET to obtain the sequence value from the operation
parameter buffer.

The client calls SEQFREE to free the memory allocated for the
replacement out sequence in point 10 via the call to PODEXEC in point
3.

353

CHAPTER 8 | Memory Handling

Overview for OUT and return
parameters

Summary of rules for OUT and
return parameters

354

Table 37 provides a detailed outline of how memory is handled for
unbounded sequences that are used as out or ret urn parameters.

Table 37: Memory Handling for OUT and Return Unbounded Sequences

Client Application Server Application

1. PODEXEC—(send)
2. PODGET—(receive)

3. SEQALOC

4, SEQSET?

5. PODPUT—(send, free)
6. (receive, allocate)
7. SEQGET

8. SEQFREE

a. SEQSET performs a deep copy from the element buffer into the sequence.
This means that if an element buffer contains dynamic data (for example, a
string or a sequence), the element buffer should be freed after calling
SEQSET, to prevent memory leaks. Memory should be handled as follows for
an unbounded sequence of strings, to prevent a leak:

1. Call STRSET to allocate an element in the element buffer.
2. Call SEQSET to copy the element into the sequence.
3. Call STRFREE to free the element buffer.

The memory handling rules for an unbounded sequence used as an out or
ret urn parameter can be summarized as follows, based on Table 37:

1.

The client calls PCDEXEC, which causes the client-side PL/I runtime to
marshal the request across the network.

The server calls PCDGET, which causes the server-side PL/I runtime to
receive the client request.

The server calls SEQALQC to initialize the sequence and allocate
memory for both the sequence information block and the sequence
data.

The server calls SEQSET to initialize the sequence elements.

The server calls PCDPUT, which causes the server-side PL/I runtime to
marshal the values across the network and implicitly free the memory
allocated to the sequence via the call to SEQALCC.

Operation Parameters

Control returns to the client, and the call to PCDEXEC in point 1 now
causes the client-side PL/I runtime to receive the sequence and
implicitly allocate memory for it.

The client calls SEQEET to obtain the sequence value from the operation
parameter buffer.

The client calls SEQFREE, which causes the client-side PL/I runtime to
free the memory allocated for the sequence via the call to PCDEXEC.

355

CHAPTER 8 | Memory Handling

Unbounded Strings and Memory Management

Overview for IN parameters

Summary of rules for IN
parameters

356

Table 38 provides a detailed outline of how memory is handled for
unbounded strings that are used as i n parameters.

Table 38: Memory Handling for IN Unbounded Strings

Client Application

Server Application

1. STRSET
2. PODEXEC—(send)

6. STRFREE

3. PODGET—(receive, allocate)
4, STRGET
5. PODPUT—(free)

The memory handling rules for an unbounded string used as anin
parameter can be summarized as follows, based on Table 38:

1.

memory for it.

The client calls STRSET to initialize the unbounded string and allocate

The client calls PCDEXEC, which causes the client-side PL/I runtime to

marshal the values across the network.

The server calls PCDGET, which causes the server-side PL/I runtime to

receive the string and implicitly allocate memory for it.

parameter buffer.

The server calls STRGET to obtain the string value from the operation

The server calls PCDPUT, which causes the server-side PL/I runtime to

implicitly free the memory allocated by the call to PCDGET.

STRSET.

The client calls STRFREE to free the memory allocated by the call to

Overview for INOUT parameters

Summary of rules for INOUT
parameters

Operation Parameters

Table 39 provides a detailed outline of how memory is handled for
unbounded strings that are used as i nout parameters.

Table 39: Memory Handling for INOUT Unbounded Strings

Client Application Server Application

1. STRSET

2. PODEXEC—(send)
3. PODGET—(receive, allocate)
4. STRGET

5. STRFREE

6. STRSET

7. PODPUT—(send, free)

8. (free, receive, allocate)
9. STRGET

10. STRFREE

The memory handling rules for an unbounded string used as an i nout

parameter can be summarized as follows, based on Table 39:

1. The client calls STRSET to initialize the unbounded string and allocate
memory for it.

2. The client calls PCDEXEC, which causes the client-side PL/I runtime to
marshal the values across the network.

3. The server calls PCDGET, which causes the server-side PL/I runtime to
receive the string and implicitly allocate memory for it.

4. The server calls STRGET to obtain the string value from the operation
parameter buffer.

5. The server calls STRFREE to explicitly free the memory allocated for the
original i n string via the call to PCDGET in point 3.

6. The server calls STRSET to initialize the replacement out string and
allocate memory for it.

7. The server calls PCDPUT, which causes the server-side PL/I runtime to
marshal the replacement out string across the network and then

implicitly free the memory allocated for it via the call to STRSET in point
6.

357

CHAPTER 8 | Memory Handling

8. Control returns to the client, and the call to PCDEXEC in point 2 now
causes the client-side PL/I runtime to:

i. Free the memory allocated for the original i n string via the call to
STRSET in point 1.

ii. Receive the replacement out string.

iii. Allocate memory for the replacement out string.

Note: By having PCDEXECfree the originally allocated memory before
allocating the replacement memory means that a memory leak is
avoided.

9. The client calls STREET to obtain the replacement out string value from
the operation parameter buffer.

10. The client calls STRFREE to free the memory allocated for the
replacement out string in point 8 via the call to PCDEXEC in point 2.

Overview for OUT and return Table 40 provides a detailed outline of how memory is handled for
parameters unbounded strings that are used as out or ret urn parameters.

Table 40: Memory Handling for OUT and Return Unbounded Strings

Client Application Server Application

1. PODEXEC—(send)
2. PODGET—(receive)

3. STRSET

4. PODPUT—(send, free)
5. (receive, allocate)

6. STRGET

7. STRFREE
Summary of rules for OUT and The memory handling rules for an unbounded string used as an out or
return parameters ret urn parameter can be summarized as follows, based on Table 40:

1. The client calls PCDEXEC, which causes the client-side PL/I runtime to
marshal the request across the network.

2. The server calls PCDGET, which causes the server-side PL/I runtime to
receive the client request.

358

Operation Parameters

The server calls STRSET to initialize the string and allocate memory for
it.

The server calls PCDPUT, which causes the server-side PL/I runtime to
marshal the values across the network and implicitly free the memory
allocated to the string via the call to STRSET.

Control returns to the client, and the call to PCDEXEC in point 1 now
causes the client-side PL/I runtime to receive the string and implicitly
allocate memory for it.

The client calls STRGET to obtain the string value from the operation
parameter buffer.

The client calls STRFREE, which causes the client-side PL/I runtime to
free the memory allocated for the string in point 5 via the call to
PCDEXEC in point 1.

359

CHAPTER 8 | Memory Handling

Object References and Memory Management

Overview for IN parameters Table 41 provides a detailed outline of how memory is handled for object
references that are used as i n parameters.

Table 41: Memory Handling for IN Object References

Client Application Server Application

1. Attain object reference
2. PODEXEC—(send)
3. PODGET—(receive)

4. read
5. PODPUT
6. OBJREL
Summary of rules for IN The memory handling rules for an object reference used as an i n parameter
parameters can be summarized as follows, based on Table 41:

1. The client attains an object reference through some retrieval
mechanism (for example, by calling STR2CBJ or (BBIR R).

2. The client calls PCDEXEC, which causes the client-side PL/I runtime to
marshal the object reference across the network.

3. The server calls PCDGET, which causes the server-side PL/I runtime to
receive the object reference.

4. The server can now invoke on the object reference.

5. The server calls PCDPUT, which causes the server-side PL/I runtime to
implicitly free any memory allocated by the call to PCDGET.

6. The client calls GBIREL to release the object.

360

Overview for INOUT parameters

Summary of rules for INOUT
parameters

Operation Parameters

Table 42 provides a detailed outline of how memory is handled for object
references that are used as i n parameters.

Table 42: Memory Handling for INOUT Object References

Client Application Server Application

1. Attain object reference
2. PODEXEC—(send)

3. PODGET—(receive)
4. read
5. OBJREL
6. Attain object reference
7. OBJDUPL
8. PODPUT—(send)

9. (receive)

10. read

11. OBJREL

The memory handling rules for an object reference used as an i nout
parameter can be summarized as follows, based on Table 42:

1.

The client attains an object reference through some retrieval
mechanism (for example, by calling STRRCBJ or CBBIR R).

The client calls PCDEXEC, which causes the client-side PL/I runtime to
marshal the object reference across the network.

The server calls PODGET, which causes the server-side PL/I runtime to
receive the object reference.

The server can now invoke on the object reference.
The server calls GBJREL to release the original i n object reference.

The server attains an object reference for the replacement out
parameter through some retrieval mechanism (for example, by calling
STR2CBJ or (BIR R).

The server calls BBIDUPL to increment the object reference count and to
prevent the call to PCOPUT in point 8 from causing the replacement out
object reference to be released.

The server calls PCDPUT, which causes the server-side PL/I runtime to
marshal the replacement out object reference across the network.

361

CHAPTER 8 | Memory Handling

Overview for OUT and return
parameters

Summary of rules for OUT and
return parameters

362

9. Control returns to the client, and the call to PCDEXEC in point 2 now
causes the client-side PL/I runtime to receive the replacement out
object reference.

10. The client can now invoke on the replacement object reference.
11. The client calls GBIREL to release the object.

Table 43 provides a detailed outline of how memory is handled for object
references that are used as out or return parameters.

Table 43: Memory Handling for OUT and Return Object References

Client Application Server Application

1. PODEXEC—(send)
2. PODGET—(receive)
3. Attain object reference
4. OBJDUPL

5. PODPUT—(send)

6. (receive)
7. read

8. OBJREL

The memory handling rules for an object reference used as an out or return

parameter can be summarized as follows, based on Table 43:

1. The client calls PCDEXEC, which causes the client-side PL/I runtime to
marshal the request across the network.

2. The server calls PCDGET, which causes the server-side PL/I runtime to
receive the client request.

3. The server attains an object reference through some retrieval
mechanism (for example, by calling STR2GBJ or (BBIR R).

4. The server calls GBIDUPL to increment the object reference count and to
prevent the call to PCDPUT in point 5 from causing the object reference
to be released.

5. The server calls PCDPUT, which causes the server-side PL/I runtime to
marshal the object reference across the network.

6. Control returns to the client, and the call to PCDEXEC in point 1 now
causes the client-side PL/I runtime to receive the object reference.

Operation Parameters

7. The client can now invoke on the object reference.
8. The client calls GBIREL to release the object.

363

CHAPTER 8 | Memory Handling

The any Type and Memory Management

Overview for IN parameters Table 44 provides a detailed outline of how memory is handled for an any
type that is used as an i n parameter.

Table 44: Memory Handling for IN Any Types

Client Application Server Application

1. TYPESET
2. ANYSET
3. PODEXEC—(send)
4. PODGET—(receive, allocate)

5. TYPEGET
6. ANYGET
7. PODPUT—(free)
8. ANYFREE
Summary of rules for IN The memory handling rules for an object reference used as an i n parameter
parameters can be summarized as follows, based on Table 44:

1. The client calls TYPESET to set the type of the any.

2. The client calls ANYSET to set the value of the any and allocate memory
for it.

3. The client calls PCDEXEC, which causes the client-side PL/I runtime to
marshal the values across the network.

4. The server calls PCDGET, which causes the server-side PL/I runtime to
receive the any value and implicitly allocate memory for it.

The server calls TYPEGET to obtain the typecode of the any.

The client calls ANYGET to obtain the value of the any from the
operation parameter buffer.

7. The server calls PCDPUT, which causes the server-side PL/I runtime to
implicitly free the memory allocated by the call to PCDGET.

8. The client calls ANYFREE to free the memory allocated by the call to
ANYSET.

364

Overview for INOUT parameters

Summary of rules for INOUT
parameters

Operation Parameters

Table 45 provides a detailed outline of how memory is handled for an any
type that is used as an i nout parameter.

Table 45: Memory Handling for INOUT Any Types

Client Application Server Application

1. TYPESET
2. ANYSET
3. PODEXEC—(send)

4, PODGET—(receive, allocate)
5. TYPEGET
6. ANYGET
7. ANYFREE
8. TYPESET
9. ANYSET
10. PODPUT—(send, free)
11. (free, receive, allocate)
12. TYPEGET
13. ANYGET
14. ANYFREE

The memory handling rules for an object reference used as an i nout
parameter can be summarized as follows, based on Table 45:

1.
2.

The client calls TYPESET to set the type of the any.

The client calls ANYSET to set the value of the any and allocate memory
for it.

The client calls PCDEXEC, which causes the client-side PL/I runtime to
marshal the values across the network.

The server calls PODGET, which causes the server-side PL/I runtime to
receive the any value and implicitly allocate memory for it.

The server calls TYPEGET to obtain the typecode of the any.

The server calls ANYGET to obtain the value of the any from the
operation parameter buffer.

The server calls ANYFREE to explicitly free the memory allocated for the
original i n value via the call to PCDGET in point 4.

The server calls TYPESET to set the type of the replacement any.

365

CHAPTER 8 | Memory Handling

366

10.

11.

12.

13.

14.

The server calls ANYSET to set the value of the replacement any and

allocate memory for it.

The server calls PCDPUT, which causes the server-side PL/I runtime to

marshal the replacement any value across the network and then

implicitly free the memory allocated for it via the call to ANYSET in point

9.

Control returns to the client, and the call to PCDEXEC in point 3 now

causes the client-side PL/I runtime to:

i Free the memory allocated for the original any via the call to
ANYSET in point 2.

ii. Receive the replacement any.

iii. Allocate memory for the replacement any.

Note: By having PCDEXEC free the originally allocated memory before
allocating the replacement memory means that a memory leak is
avoided.

The client calls TYPEGET to obtain the typecode of the replacement
any.

The client calls ANYGET to obtain the value of the replacement any from
the operation parameter buffer.

The client calls ANYFREE to free the memory allocated for the
replacement out string in point 11 via the call to PCDEXEC in point 3.

Overview for OUT and return
parameters

Summary of rules for OUT and
return parameters

Operation Parameters

Table 46 provides a detailed outline of how memory is handled for an any
type that is used as an i nout parameter.

Table 46: Memory Handling for OUT and Return Any Types

Client Application Server Application

1. PODEXEC—(send)
2. PODGET—(receive)

3. TYPESET

4. ANYSET

5. PODPUT—(send, free)
6. (receive, allocate)
7. TYPEGET

8. ANYGET

9. ANYFREE

The memory handling rules for an object reference used as an out or return
parameter can be summarized as follows, based on Table 46:

1.

The client calls PCDEXEC, which causes the client-side PL/I runtime to
marshal the request across the network.

The server calls PCDGET, which causes the server-side PL/I runtime to
receive the client request.

The server calls calls TYPESET to set the type of the any.

The server calls ANYSET to set the value of the any and allocate memory
for it.

The server calls PCDPUT, which causes the server-side PL/I runtime to
marshal the values across the network and implicitly free the memory
allocated to the any via the call to ANYSET.

Control returns to the client, and the call to PCDEXEC in point 1 now
causes the client-side PL/I runtime to receive the any and implicitly
allocate memory for it.

The client calls TYPEGET to obtain the typecode of the any.

The client calls ANYGET to obtain the value of the replacement any from
the operation parameter buffer.

367

CHAPTER 8 | Memory Handling

9. The client calls ANYFREE, which causes the client-side PL/I runtime to
free the memory allocated for the any in point 6 via the call to PCDEXEC
in point 1.

368

Operation Parameters

User Exceptions and Memory Management

Overview Table 47 provides a detailed outline of how memory is handled for user
exceptions.

Table 47: Memory Handling for User Exceptions

Client Application Server Application

1. PODEXEC—(send)
2. PODGET—(receive, allocate)

3. write
4. PODERR
5. (free)
6. Free
Summary of rules The memory handling rules for raised user exceptions can be summarized as

follows, based on Table 47:

1. The client calls PCDEXEC, which causes the PL/I runtime to marshal the
client request across the network.

2. The server calls PCDGET, which causes the server-side PL/I runtime to
receive the client request and allocate memory for any arguments (if
necessary).

3. The server initializes the user exception block with the information for
the exception to be raised.

The server calls PODERR, to raise the user exception.
5. The server-side PL/I runtime automatically frees the memory allocated

for the user exception in point 3.

Note: The PL/I runtime does not, however, free the argument
buffers for the user exception. To prevent a memory leak, it is up to
the server program to explicitly free active argument structures,
regardless of whether they have been allocated automatically by the
PL/I runtime or allocated manually. This should be done before the
server calls PCDERR

369

CHAPTER 8 | Memory Handling

6. The client must explicitly free the exception ID in the user exception
header, by calling STRFREE. It must also free any exception data
mapping to dynamic structures (for example, if the user exception

information block contains a sequence, this can be freed by calling
SEQFREE).

370

Memory Management Routines

Memory Management Routines

Overview

Unbounded strings

Unbounded wide strings

This section provides examples of PL/I routines for allocating and freeing
memory for various types of dynamic structures. These routines are
necessary when sending arguments across the wire or when using
user-defined IDL types as variables within PL/I.

Use STRSET to allocate memory for unbounded strings, and STRFREE to
subsequently free this memory. For example:

/* allocation */

del ny_pli_string char(15) init(’ Testing 123');
dcl ny_corba_string ptr;

call strset(ny_pli_string, ny_corba_string,
I ength(ny_pli_string));

/* deletion */
call strfree(ny_corba_string);

Use WSTRSET to allocate memory for unbounded wide strings, and WETRFRE
to subsequently free this memory. For example:

/* allocation */
dcl ny_corba_wstring ptr;

call wstrset(ny_pli_graphic, ny_corba wstring,
ny_pl i _graphic_| ength);

/* deletion */
call wstrfre(ny_corba wstring);

371

CHAPTER 8 | Memory Handling

Typecodes

Bounded sequences

Unbounded sequences

372

As described in “IDL-to-PL/I Mapping” on page 235, typecodes are mapped
to a pointer. They are handled in PL/l as unbounded strings and should
contain a value corresponding to one of the typecode keys generated by the
Orbix IDL compiler. For example:

/* allocation */

dcl ny_typecode ptr;

call strset(ny_typecode ptr, ny_conpl ex_type,
| engt h(ny_conpl ex_type));

/* del etion */
call strfree(ny_typecode_ptr);

Use SEQ N T to initialize a bounded sequence. This dynamically creates a
sequence information block that is used internally to record state. Use
SECFREE to free this footprint before shutdown, to prevent memory leakage.
For example:

/* allocation */
call seqginit(ny_bseq attr.result.result_seq, ny_bseq_type,
| engt h(ny_bseq_type));

/* deletion */
call seqgfree(ny_bseq_ attr.result.result_seq);

SEQFREE deletes only the memory allocated via the calls to SEQ N T and
SEQALQC. Therefore, you should always free the inner sequence element data
first, and then the sequence itself. For example, when freeing a sequence of
sequence of strings, follow this order:

1. Use STRFREE to free the data elements for the inner sequence.
2. Use SEQFREE to free the inner sequence.
3. Use SEQFREE to free the outer sequence.

Use SEQALCC to initialize an unbounded sequence. This dynamically creates
a sequence information block that is used internally to record state, and
allocates the memory required for sequence elements.

You can use SEQSET and SEQGET to access the sequence elements. If an

attempt is made to add an element beyond the maximum size of the
sequence, SEQSET automatically resizes the sequence for you by adding

The any type

Memory Management Routines

1024 elements to the sequence maximum. If the sequence size grows larger
than 8K, the resize amount is calculated as follows:
sequence maximum + (1/8 * current sequence maximum).

Note: Additional overhead is incurred by your application each time a
resize occurs. This is because an allocation, a copy, and a free occur each
time. The larger your sequence, the larger your overhead. To avoid this
overhead, ensure you specify the sequence maximum in your application.

Use SEQFREE to free memory allocated via SEQALCC. For example:

/* allocation */
call segal oc(ny_useq_ attr.result.result_seq, ny_useq_nax,
ny_useq_type, |ength(ny_useq_type));

/* deletion */

call seqgfree(ny_useq attr.result.result_seq);

Note: SEQFREE does not recursively free inner element data, so you should
call inner element data before calling SEQFREE.

Use TYPESET to initialize the any information status block and allocate
memory for it. Then use ANYSET to set the type of the any. Use ANYFREE to
free memory allocated via TYPESET. This frees the flat structure created via
TYPESET and any dynamic structures that are contained within it. For
example:

dcl ny_corba_any ptr;
dcl ny_long fixed bin(31) init(123);

/* allocation */

call typeset(ny_corba_any ptr, CORBA TYPE LONG
| engt h(CORBA TYPE LONG)) ;

call anyset(ny_corba any ptr, addr(ny_long));

/* deletion */
call anyfree(ny_corba_any ptr);

373

CHAPTER 8 | Memory Handling

374

Part 2

Programmer’s Reference

In this part This part contains the following chapters:

API Reference page 377

In this chapter

CHAPTER 9

AP| Reference

This chapter summarizes the API functions that are defined
for the Orbix PL/I runtime, in pseudo-code. It explains how to
use each function, with an example of how to call it from PL/I.

This chapter discusses the following topics:

API Reference Summary page 378
API Reference Details page 384
Deprecated and Removed APIs page 506

377

CHAPTER 9 | API Reference

API| Reference Summary

Introduction This section provides a summary of the available API functions, in
alphabetic order. See “API Reference Details” on page 384 for more details
of each function.

Summary listing ANYFREE(i nout PTR any_poi nter)
/1 Frees menory allocated to an any.

ANYCGET(i n PTR any_poi nter,
out PTR any_data_buffer)
/1l Extracts data out of an any.

ANYSET(i nout PTR any_poi nter,
in PTR any_dat a_buffer)
/1 Inserts data into an any.

MEMALQOO(out PTR menory_poi nter,
in FI XED Bl N(31) nenory_si ze)
/1 Alocates nenory at runtime fromthe program heap.

MEMDBUJ i n PTR nmenory_poi nter,

in FI XED Bl N(15) menory_dunp_si ze,

in CHAR(*) text_string,

in FI XED Bl N(15) text_string_|l ength)
/1 Qutput a formatted nenory dunp for the specified bl ock of
/1 menory.

MEMFREE(i n PTR nmenory_poi nt er)
/1 Frees the nenory allocated at the address passed in.

CBJDUPL(in PTR obj ect _ref erence,
out PTR duplicate_obj _ref)
/1 Duplicates an object reference.

CBJGTI D(i n PTR obj ect _r ef erence,
out CHAR(*) object_id,
in FI XED Bl N(31) object_id_| ength)
/] Retrieves the object IDfroman object reference.

378

API Reference Summary

CBINEWi n CHAR(*) server_nare,
in CHAR(*) interface_nane,
in CHAR(*) object_id,
out PTR obj ect _reference)
/1 Creates a unique object reference.

CBJREL(i n PTR obj ect _ref erence)
/1 Rel eases an obj ect reference.

CBJR R(out PTR obj ect _ref erence,

in CHAR(*) desired_service)
/1 Returns an object reference to an object through which a
/1 service such as the Naming Service can be used.

CBJ2STR(i n PTR obj ect _ref erence,
out CHAR(*) object_string)
/!l Retrieves the object IDfroman ICR

CRBARGS(i n CHAR(*) argunent_string,
in FIXED BIN(31) argurnent_string_| ength,
in CHAR(*) orb_nane,
in FI XED B N(31) orb_nane_| engt h)
/1 Initializes a client or server connection to an CRB.

PCDERR(i n PTR user _excepti on_buf fer)
/1 Allows a PL/l server to raise a user exception for an
/1 operation.

PCDEXEQ(i n PTR obj ect _r ef erence,
in CHAR(*) operation_nane,
i nout PTR operation_buffer,
i nout PTR user_exception_buffer)
/1 Invokes an operation on the specified object.

PCDCET(i n PTR operati on_buffer)
/1 Marshals in and i nout argunents for an operation on the server
/1 side froman incom ng request.

PCDI NFQ(out PTR status_i nfo_pointer)
I/l Retrieves address of the PL/I runtinme status structure.

PCDPUT(out PTR oper ati on_buf f er)
/1l Marshals return, out, and inout argurments for an operation on
/1 the server side froman inconing request.

PCDREE i n PTR i nterface_description)
/1 Describes an IDL interface to the PL/I runtime

379

CHAPTER 9 | API Reference

PCDREQ(i n PTR request _detail s)
/1 Provides current request infornation.

PCDRUN
/1 Indicates the server is ready to accept requests.

PCDSRVR(i n CHAR(*) server _nhane,
in FI XED Bl N(31) server_nane_| engt h)
Il Sets the server nane for the current server process.

PCDSTAT(i n PTR status_buffer)
/1 Registers the status information bl ock.

PCDTI ME(i n FI XED BI N(15) ti meout _type,

in FI XED Bl N(31) tinmeout_val ue)
/1 Used by clients for setting the call timeout.
/1 Used by servers for setting the event tineout.

PCOTXN\B
/1 Indicates the beginning of a two-phase commt transaction.

PCOTXNE
/1 Indicates the end of a two-phase commt transaction.

PCDVER(out CHAR(*) runtime_i d_version,
out CHAR(*) runtime_conpile_tine_date)
/I Returns PL/1 runtime conpile-tine infornation.

SEQALOJ(out PTR sequence_control _dat a,

in FI XED Bl N(31) sequence_si ze,

in CHAR(*) typecode_key,

in FI XED Bl N(31) typecode_key_| engt h)
/1 Alocates nenory for an unbounded sequence.

SECDUPL(i n PTR sequence_cont rol _dat a,
out PTR dupl _seq_control _data)
/1 Duplicates an unbounded sequence control bl ock.

SEQFREE(i n PTR sequence_cont rol _dat a)
/1 Frees the nenory allocated to an unbounded sequence.

SEQGET(i n PTR sequence_control _dat a,
in FI XED Bl N(31) el enent_nunber,
out PTR sequence_dat a)
/1 Retrieves the specified el ement froman unbounded sequence.

380

API Reference Summary

SEQ N T(out PTR sequence_control _dat a,

in CHAR(*) typecode key,

in FI XED Bl N(31) typecode_key_ | ength)
/1 Initializes a bounded sequence

SEQEN(i n PTR sequence_control _data,
out FI XED BI N(31) sequence_si ze)
Il Retrieves the current length of the sequence

SEQLSET(i n PTR sequence_control _dat a,
in FI XED Bl N(31) new sequence_si ze)
/1 Changes the nunber of elements in the sequence

SEQVAX(i n PTR sequence_control _data,
out FI XED BI N(31) nax_sequence_si ze)
/1 Returns the maxi numset length of the sequence

SEQREL(i n PTR sequence_control _dat a,

in CHAR(*) typecode_key,

in Fl XED Bl N(31) typecode_key_| engt h)
/1l Frees the nenory allocated to an unbounded sequence and its
/1 contents

SEQSET(i n PTR sequence_control _dat a,

in FI XED Bl N(31) el enent_nunber,

i n PTR sequence_dat a)
/1 Places the specified data into the specified el enent of an
/1 unbounded sequence.

STROON(i nout PTR string_pointer,
in PTR addon_string_poi nter)
/1 Concatenates two unbounded stri ngs.

STROUPL(in PTR string_pointer,
out PTR duplicate_string_pointer)
/1 Duplicates a given unbounded string

STRFREE(in PTR string_poi nter)
/1l Frees the storage used by an unbounded string

STRGET(i n PTR string_pointer,
out CHAR(*) string,
in FI XED BI N(31) string_|l ength)
/1 Copies the contents of an unbounded string to a PL/I string

381

CHAPTER 9 | API Reference

STRLENGE i n PTR string_pointer,
out FI XED BIN(31) string_| ength)
/1 Returns the actual |ength of an unbounded string

STRSET(out PTR string_pointer,
in CHAR(*) string,
in FI XED BI N(31) string_|l ength)
/1 Creates an unbounded string froma CHAR(n) data item

STRSETS(out PTR string_pointer,
in CHAR(*) string,
in FIXED Bl N(31) string_length)
/1 Creates an unbounded string froma CHAR(n) data item

STR2CBI(i n PTR obj ect _string,
out PTR obj ect _reference)
/1 Creates an object reference froman interoperabl e object
reference (IOR).

TYPEGET(i n PTR any_poi nter,

out CHAR(*) typecode_key,

in FI XED Bl N(31) typecode_key_l engt h)
/] Extracts the type nane froman any.

TYPESET(i n PTR any_poi nter,

in CHAR(*) typecode_key,

in FI XED Bl N(31) typecode_key_l engt h)
/1l Sets the type nane of an any

WBTRCON(i nout PTR string_pointer,
in PTR addon_string_poi nter)
/1 Concat enates two unbounded wi de strings.

WSTRDUP(i n PTR stri ng_poi nter,
out PTR duplicate_string_pointer)
/1 Duplicates a given unbounded wi de string.

WBTFRE(i n PTR string_poi nter)
/1l Frees the storage used by an unbounded wi de string.

WBTRCGET(i n PTR string_pointer,

out GRAPH C(*) string,

in FI XED BI N(31) string_| ength)
/1 Copies the contents of an unbounded wide string to a PL/I
/1 graphic

382

Auxiliary function

API Reference Summary

WSTRLEN(i n PTR stri ng_poi nter,

out FI XED BIN(31) string_| ength)
/ Returns the nunber of characters held in the wide string
/1 (excluding trailing nulls).

WBTRSET(out PTR string_pointer,
in CHAR(*) string,
in FIXED BIN(31) string_|ength)
/1l Oreates an unbounded wi de string froma GRAPH (n) data item

WBTRSTS(out PTR string_pointer,
in CHAR(*) string,
in FI XED BIN(31) string_l ength)
/1l Oreates an unbounded wi de string froma GRAPH Q' n) data item

CHECK_ERRCRS(i n CHAR(*) functi on_nane)
RETURNS(FI XED BI N(31) error_nunber)
/1l Tests the conpletion status of the last PL/I runtime call.

383

CHAPTER 9 | API Reference

APl Reference Details

Introduction This section provides details of each available API function, in alphabetic
order.

In this section The following topics are discussed in this section:
ANYFREE page 387
ANYGET page 389
ANYSET page 391
MEMALOC page 393
MEMDBUG page 394
MEMFREE page 396
OBJDUPL page 397
OBJGTID page 399
OBJNEW page 401
OBJREL page 403
OBJRIR page 405
OBJ2STR page 407
ORBARGS page 409
PODERR page 413
PODEXEC page 418
PODGET page 421
PODINFO page 424
PODPUT page 426

384

API Reference Details

PODREG page 429
PODREQ page 431
PODRUN page 434
PODSRVR page 435
PODSTAT page 437
PODTIME page 440
PODTXNB page 442
PODTXNE page 443
PODVER page 444
SEQALOC page 445
SEQDUPL page 448
SEQFREE page 450
SEQGET page 452
SEQINIT page 455
SEQLEN page 457
SEQLSET page 459
SEQMAX page 462
SEQREL page 465
SEQSET page 467
STRCON page 470
STRDUPL page 472
STRFREE page 473
STRGET page 474
STRLENG page 476
STRSET page 478

385

CHAPTER 9 | API Reference

386

STRSETS page 480
STR20BJ page 481
TYPEGET page 486
TYPESET page 489
WSTRCON page 491
WSTRDUP page 493
WSTRFRE page 494
WSTRGET page 496
WSTRLEN page 498
WSTRSET page 500
WSTRSTS page 502
CHECK_ERRORS page 503

API Reference Details

ANYFREE

Synopsis

Usage

Description

Parameters

Example

ANYFREE(i nout PTR any_poi nter);
/1 Frees menory allocated to an any.

Common to clients and servers.

The ANYFREE function releases the memory held by an any type that is being
used to hold a value and its corresponding typecode. Do not try to use the
any type after freeing its memory, because doing so might result in a
runtime error.

When you call the ANYSET function, it allocates memory to store the actual
value of the any. When you call the TYPESET function, it allocates memory to
store the typecode associated with the value to be marshalled. When you
subsequently call ANYFREE, it releases the memory that has been allocated
via ANYSET and TYPESET.

The parameter for ANYFREE can be described as follows:

any_poi nt er This is an i nout parameter that is a pointer to the
address in memory where the any is stored.

The example can be broken down as follows:
1. Consider the following IDL:

interface test {
attribute any nyany;
}

2. Based on the preceding IDL, the Orbix IDL compiler generates the
following code in the i dl nenber naneT include member (where
i dl menber name represents the name of the IDL member that contains
the IDL definitions):

dcl 1 test_nyany_type based,
3 result ptr init(sysnull());

387

CHAPTER 9 | API Reference

See also

388

Based on the preceding IDL, the Orbix IDL compiler also generates the
following code, in the i dI nenber nameMinclude member:

dcl 1 test_nyany_attr aligned |ike test_nyany_type;

The following is an example of how to use ANYFREE in association with
the preceding code:

dcl short_val ue fixed bin(15) init(0);

/* Retrieve the short value out of the any type */
/* NB: W have determned the any type contained a CORBA */
/* short type through calling TYPEGET and testing its */
[* result. */
call anyget(test_nyany_attr.result, addr(short_val ue));
put skip list('nyany contains the value', short_val ue);

/* W are now finished using the any type, so free its */
/* storage. */

call anyfree(test_nyany attr.result);

“ANYSET” on page 391.
“TYPESET” on page 489.
“Memory Handling” on page 345.

API Reference Details

ANYGET

Synopsis

Usage

Description

Parameters

Example

ANYGET(i n PTR any_poi nter,
out PTR any_data_buffer);
/1l Extracts data out of an any.

Common to clients and servers.

The ANYGET function provides access to the buffer value that is contained in
an any. You should check to see what type of data is contained in the any,
and then ensure you supply a data buffer that is large enough to receive its
contents. Before you call ANYGET you can use TYPEGET to extract the type of
the data contained in the any.

The parameters for ANYGET can be described as follows:

any_poi nt er This is an i nout parameter that is a pointer to the
address in memory where the any is stored.

any_data_buffer This is an out parameter that is used to store the value
extracted from the any. The address of this buffer is
passed to ANYGET.

The example can be broken down as follows:
1. Consider the following IDL:

interface test {
attribute any nyany;
b

2. Based on the preceding IDL, the Orbix IDL compiler generates the
following code in the i dl menber naneT include member (where
i dl menber nane represents the name of the IDL member that contains
the IDL definitions):

dcl 1 test_nyany_type based,
3 result ptr init(sysnull());

389

CHAPTER 9 | API Reference

See also

390

Based on the preceding IDL, the Orbix IDL compiler also generates the
following code, in the i dI nenber nameMinclude member:

dcl 1 test_nyany_attr aligned |ike test_nyany_type;

3. The following is an example of how to use ANYGET in association with

the preceding code:

dcl short_val ue fixed bin(15) init(0);
dcl | ong_val ue fixed bin(31) init(0);

/* Retrieve the typecode of the any, so we know how to */
/* mani pul ate the data within it. */
call typeget(test_nyany attr, test_typecode,

test _typecode_| engt h);

sel ect (t est _t ypecode) ;
when(CORBA_SHORT) do;
/* Retrieve the short value out of the any. */
call anyget(test_nyany attr.result,
addr (short _val ue));
put skip list('nyany contains the val ue',
short _val ue);
end;
when(CORBA LONG do;
/* Retrieve the long val ue out of the any. */
call anyget(test_nyany attr.result,
addr (| ong_val ue));
put skip list('nyany contains the val ue',
| ong_val ue) ;
end;

end;

/* Now we are finished with the any, so free its storage */
call anyfree(test_nyany_attr.result);

“ANYSET"” on page 391.

API Reference Details

ANYSET

Synopsis

Usage

Description

Parameters

Example

ANYSET(i nout PTR any_poi nter,
in PTR any_dat a_buffer)
/1 Inserts data into an any.

Common to clients and servers.

The ANYSET function copies the supplied data, which is placed in the data
buffer by the application, into the any. ANYSET allocates the memory that is
required to store the value of the any. You must call TYPESET before calling
ANYSET, to set the typecode of the any. Ensure that this typecode matches
the type of the data being copied to the any.

The address of the data_buf f er is passed as an QUT parameter to ANYSET.

The parameters for ANYSET can be described as follows:

any_poi nt er This is an i nout parameter that is a pointer to the
address in memory where the any is stored.

any_dat a_buf fer This is an i n parameter that contains the data to be
copied to the any. The address of this buffer is passed to
ANYSET.

The example can be broken down as follows:
1. Consider the following IDL:

interface test {
attribute any nyany;
b

2. Based on the preceding IDL, the Orbix IDL compiler generates the
following code in the i dl nenber naneT include member (where
i dl menber nane represents the name of the IDL member that contains
the IDL definitions):

dcl 1 test_nyany_type based,
3 result ptr init(sysnull());

391

CHAPTER 9 | API Reference

Exceptions

See also

392

Based on the preceding IDL, the Orbix IDL compiler also generates the
following code, in the i dI nenber nameMinclude member:

dcl 1 test_nyany_attr aligned |ike test_nyany_type;

The following is an example of how to use ANYSET in association with
the preceding code:

dcl float_val ue float dec(6) init(3.14159);

/* The basi ¢ OCRBA typecodes are declared in the CORBA */
/* include file. Conplex types inthe IDL are defined in */
/* the T-suffixed include file generated for that |DL */
[* file. */
test_typecode = CCORBA TYPE FLQAT;

call typeset(test_nyany attr.result, test_typecode, 1);
call anyset(test_nyany attr.result, addr(float_val ue);

A QORBA: : BAD | NV_CRDER : TYPESET_NOT_CALLED exception is raised if the
typecode of the any has not been set via the TYPESET function.

“ANYGET” on page 389.
“TYPESET” on page 489.

API Reference Details

MEMALOC

Synopsis

Usage

Description

Parameters

Example

Exceptions

See also

MEMALOQ(out PTR nenory_poi nter,
in FIXED Bl N(31) nenory_si ze)
/1 Alocates nenory at runtime fromthe program heap.

Common to clients and servers.

The MEMALCC function allocates the specified number of bytes of memory
from the program heap at runtime, and returns a pointer to the start of this
memory block. MEMALOC is used to allocate space for dynamic structures.

The parameters for MEMALQC can be described as follows:
menory_poi nt er This is an out parameter that contains a pointer to
the allocated memory block.

nenory_si ze This is an i n parameter that specifies in bytes the
amount of memory that is to be allocated.

The following is an example of how to use MEMALCC in a client or server
program:

dcl menory_bl ock ptr init(sysnull());
dcl size_of _nenmory req fixed bin(31) init(32);

/* Alocate a block of 32 bytes of menmory */
call nenal oc(nenory_bl ock, size of nenory req);
if check_errors(' memal oc') "= conpl etion_status_yes then return;

A CCRBA : NO_ MEMIRY exception is raised if there is not enough memory
available to complete the request. In this case, the pointer will contain a null
value.

“MEMFREE" on page 396.

393

CHAPTER 9 | API Reference

MEMDBUG

Synopsis

Usage

Description

Parameters

Example

394

MEMDBUZ i n PTR memnory_poi nter,

in FI XED Bl N(15) merory_dunp_si ze,

in CHAR(*) text_string,

in FIXED Bl N(15) text_string_| ength)
/1 Qutput a formatted nenory dunmp for the specified bl ock of
/1 menory.

Common to clients and servers.

The MEMDBUG function allows you to output a specified formatted segment of
memory and a text description. It is used for debugging purposes only.

The parameters for MEMDBUG can be described as follows:

menory_poi nt er This is an i n parameter that contains a pointer to
the allocated memory block.

menory_dunp_si ze This is an i n parameter that specifies in bytes the
amount of memory that is to be allocated for the
memory dump.

text_string This is an i n parameter that contains the text string
relating to the memory dump.

text_string_length This is an i n parameter that specifies the length of
the text string.

The example can be broken down as follows:
1. The following code displays the contents of a struct, called ny_struct :

call nendbug(addr (ny_struct), 64,' Menory dunp of MY_STRUCT , 24);

2. The preceding call produces a result such as the following:

API Reference Details

DEBUG DUWP - MEMORY DUMP CF WY_STRUCT

00x3a598(00000) : 0000E3C5 E2E340D9 CSE2EAD3 E3E20000 '

RESULTS.'
00x3a598(00010) : 00E98572 009CB99A 0000FFFF 00004040
ZeE.......... '
00x3a598(00020) : 00000000 E2E3CLE3 C9E2E3C9 C3E20000
'..STATISTICS. .
00x3a598(00030) : 000046A2 A3998995 8700FFFF 40404000
‘..astrln9.. '

. TEST

395

CHAPTER 9 | API Reference

MEMFREE

Synopsis

Usage

Description

Parameters

Example

See also

396

MEMFREE(i n PTR nenory_poi nter)
/1 Frees the nenory allocated at the address passed in.

Common to clients and servers.

The MEMFREE function releases dynamically allocated memory, by means of a
a pointer that was originally obtained by using MEMALCC. Do not try to use
this pointer after freeing it, because doing so might result in a runtime error.

The parameter for MEMFREE can be described as follows:

menory_poi nt er This is an i n parameter that contains a pointer to
the allocated memory block.

The following is an example of how to use MEMFREE in a client or server
program:

dcl menory_bl ock ptr init(sysnull());
dcl size_of _nenmory req fixed bin(31) init(32);

call nenal oc(nenory_bl ock, size_ of _nenory_req);
if check errors(' nemal oc') "= conpl eti on_status_yes then return;

/* Finished using the block of nenory, so free it */
call nenfree(nenory_bl ock);

“MEMALOC” on page 393.

API Reference Details

OBJDUPL

Synopsis

Usage

Description

Parameters

CBJDUPL(i n PTR obj ect _ref erence,
out PTR duplicate_obj _ref)
/1 Duplicates an object reference.

Common to clients and servers.

The CBIDUPL function creates a duplicate reference to an object. It returns a
new reference to the original object reference and increments the reference
count of the object. It is equivalent to calling CORBA: : (hj ect: : _dupl i cate()
in C++. Because object references are opaque and ORB-dependent, your
application cannot allocate storage for them. Therefore, if more than one
copy of an object reference is required, you can use CBIDUPL to create a
duplicate.

The parameters for GBIDUPL can be described as follows:

obj ect _ref erence This is an i n parameter containing the valid object
reference.
dupl i cate_obj ref This is an out parameter containing the duplicate

object reference.

397

CHAPTER 9 | API Reference

Example

See also

398

The following code shows how CBIDUPL can be used within a server:

dcl 1 get_an_object_args,

3 result ptr init(sysnull());
dcl test_prg_object ptr init(sysnull());
dcl ny_obj ect ptr init(sysnull());

/* test_prg_object already set up fromearlier processing */
cal | podexec(test_prg_object,
get _an_obj ect,
get _an_obj ect _args,
no_user _excepti ons);
if check_errors(’objdupl’) "= conpl etion_status_yes then return;

/* Duplicate the returned object */
call objdupl (get_an_object_args.result, ny_object);
if check_errors(’objdupl’) "= conpl etion_status_yes then return;

/* Processing done with the duplicated object reference */
/* Finished using the duplicated object reference, so free it */

call objrel (ny_object);
if check_errors(’objrel’) ~= conpl etion_status_yes then return;

“OBJREL"” on page 403 and “Object References and Memory Management”
on page 360.

API Reference Details

OBJGTID

Synopsis

Usage

Description

Parameters

CBJGTI (i n PTR obj ect _ref erence,
out CHAR(*) object_id,
in FIXED Bl N(31) object_id_|ength)
/] Retrieves the object IDfroman object reference.

Specific to batch servers. Not relevant to CICS or IMS.

The CBIGTI Dfunction retrieves the object ID string from an object reference.
It is equivalent to calling POX : reference_to_id in C++.

The parameters for GBIGTI D can be described as follows:

obj ect _reference This is an i n parameter that contains the valid
object reference.

object_id This is an out parameter that is a bounded string
containing the object name relating to the specified
object reference. If this string is not large enough to
contain the object name, the returned string is
truncated.

obj ect _id_length This is an i n parameter that specifies the length of
the object name.

399

CHAPTER 9 | API Reference

Example The following code shows how CBJGTI D can be used within a client:
dcl object_id char (256) ;
dcl si npl e_obj ptr;

/* ICRis read fromthe file witten by the server */
% ncl ude READI CR

/* Oreate an object reference fromthe I CR */
call str2obj(iorrec_ptr, sinple_obj);
if check_errors('str2obj')”=conpletion_status_yes then return;

/* Retrieve the object ID fromthe object reference */
call objgtid(sinple_obj,object_id,|ength(object_id));
if check_errors('objgtid)”=conpletion_status_yes then return;

put skip list('Coject IDretrieved: ' || object_id);
Exceptions A OCORBA: : BAD PARAM : LENGTH TOO SMALL exception is raised if the length of
the string containing the object name is greater than the obj ect _i d_I ength
parameter.

A OCRBA : BAD PARAM : | NVALI D_CBJECT I D exception is raised if an Orbix
2.3 object reference is passed.

A OORBA: : BAD | NV_CRDER : SERVER NAME_NOT_SET exception is raised if
PCDSRWR is not called.

400

API Reference Details

OBJNEW

Synopsis

Usage

Description

Parameters

CBINEWi n CHAR(*) server_nane,
in CHAR(*) interface_nare,
in CHAR(*) object_id,
out PTR obj ect _reference)
/1 Creates a unique object reference.

Server-specific.

The cBINEWfunction creates a unique object reference that encapsulates the
specified object identifier and interface names. The resulting reference can
be returned to clients to initiate requests on that object. It is equivalent to
calling POX :create reference with_idin C++.

The parameters for CBINEwcan be described as follows:

server _nane This is an i n parameter that is a bounded string
containing the server name. This must be the same
as the value passed to PCDSRVR. This string must be
terminated by at least one space.

i nterface nane This is an i n parameter that is a bounded string
containing the interface name. This string must be
terminated by at least one space. The
i dl mrenber naneT include member contains a PL/I
declaration for each interface defined in the
relevant IDL member. These definitions are stored
in the Interface List section and have a _i ntf suffix.

object _id This is an i n parameter that is a bounded string
containing the object identifier name relating to the
specified object reference. This string must be
terminated by at least one space.

obj ect _reference This is an out parameter that contains the created
object reference.

401

CHAPTER 9 | API Reference

Example The following is an example of how CBINEWis typically used in a server
program (where I0OR variable declarations have been omitted for the sake of
brevity):
dcl server_nane char(06) init('SIMPLE");
dcl interface_nane char(18) init

("IDL:Sinple/Sinpleject: 1.0 ');
dcl ny_object_id char(10) init('Snple_ 01 "');
dcl ny_obj ect ptr init(sysnull());

/* Register our interface with the PL/I runtine */
call podreg(sinple_interface);

/* Now create an object reference for the server, so we */

/* can use it to create an ICR allowing clients to */

/* invoke operations on our server. */

call objnewserver_nane, interface nane, ny_object id,
ny_obj ect);

if check_errors('objnew) ~= conpletion_status_yes then return;

/* Oreate the ICR */
call obj2str(ny_object, iorrec_ptr);
if check errors(’obj2str’) ~= conpl eti on_status_yes then return;

/* Retrieve the string fromthe unbounded string */
call strget(iorrec_ptr, iorrec, iorrec_len);
if check_errors(’strget’) ~= conpl etion_status_yes then return;

/* Now we can wite out our server ICRstring to a file */
wite file(ICRFILE) fron{iorrec);

Exceptions A QORBA: : BAD PARAM : | NVALI D_SERVER NAME exception is raised if the
server name does not match the server name passed to CRBSRVR.

A OORBA: : BAD PARAM : NO CBJECT_| DENTI FI ER exception is raised if the
parameter for the object identifier name is an invalid string.

A QCORBA: : BAD | NV_CRDER : | NTERFACE_NOT_REQ STERED exception is raised
if the specified interface has not been registered via CRBREG

A OCRBA : BAD | NV_CRDER : SERVER NAME_NOT_SET exception is raised if
PCDSRVR is not called.

402

API Reference Details

OBJREL

Synopsis

Usage

Description

Parameters

CBJREL(i n PTR obj ect _reference)
/1 Rel eases an obj ect reference.

Common to clients and servers.

The GBIREL function indicates that the caller will no longer access the object
reference. It is equivalent to calling OCRBA : rel ease() in C++. CBIREL
decrements the reference count of the object reference.

The parameter for CBIREL can be described as follows:

obj ect _reference This is an i n parameter that contains the valid
object reference.

403

CHAPTER 9 | API Reference

Example The following is an example of how CBIREL is typically used in a server
program:

dcl 1 get_an_object_args,

3 result ptr init(sysnull());
dcl test_prg_object ptr init(sysnull());
dcl ny_obj ect ptr init(sysnull());

/* test_prg_object already set up fromearlier processing */
cal | podexec(test_prg_object,
get _an_obj ect,
get _an_obj ect _args,
no_user _excepti ons);
if check_errors('objdupl') "= conpletion_status_yes then return;

/* Duplicate the returned object */
call objdupl (get_an_object_args.result, ny_object);
if check_errors('objdupl') "= conpl etion_status_yes then return;

/* Processing done with the duplicated object reference */
/* Finished using the duplicated object reference, so free it */

call objrel (ny_object);
if check_errors('objrel') ~= conpl etion_status_yes then return;

See also “OBJDUPL” on page 397 and “Object References and Memory
Management” on page 360.

404

API Reference Details

OBJRIR

Synopsis

Usage

Description

Parameters

Exceptions

OBJR R(out PTR obj ect _ref erence,

in CHAR(*) desired_service)
/1 Returns an object reference to an object through which a
/1 service such as the Naming Service can be used.

Common to batch clients and servers. Not relevant to CICS or IMS.

The CBIR Rfunction returns an object reference, through which a service
(for example, the Interface Repository or a CORBAservice like the Naming
Service) can be used. For example, the Naming Service is accessed by using
a desi red_servi ce string with the "NameService " value. It is equivalent to
calling CRB: :resol ve_initial _references() in C++.

Table 48 shows the common services available, along with the PL/I
identifier assigned to each service. The PL/I identifiers are declared in the
CORBA include member.

Table 48: Summary of Common Services and Their PL/I Identifiers

Service PL/I Identifier
InterfaceRepository | FR_SERVI CE
NameService NAM NG_SERVI CE
TradingService TRAD NG SERVI CE

The parameters for GBJR Rcan be described as follows:

obj ect _reference This is an out parameter that contains an object
reference for the desired service.

desi red_service This is an i n parameter that is a string specifying
the desired service. This string is terminated by a
space.

A OCRBA: : ORB: : I nval i dNane exception is raised if the desi red_ser vi ce
string is invalid.

405

CHAPTER 9 | API Reference

Example

406

The following is an example of how to use CBJR Rin a client program, to
obtain the object reference to the NameService (which is then used to
retrieve the object reference for a server called Si npl e):

dcl name_ser vi ce_obj ptr init(sysnull());
dcl si npl e_obj ptr init(sysnull());

/* Retrieve the object reference for the NameService */
call objrir(name_service_obj, nam ng_service);
if check_errors('objrir') ~= conpl etion_status_yes then return;

/* The setting up of the resolve request to retrieve the */
/* object reference for the Sinple server is omtted here */
/* for brevity. */

/* Call resolve on the NaneService using the */
/* object reference retrieved via BBIRR */
call podexec(nane_service_obj,
Nam ngCont ext _r esol ve,
Nam ngCont ext _r esol ve_ar gs,
NAM NG user _excepti ons) ;
if check_errors(' podexec') ~= conpl eti on_status_yes then return;

/* Assign our sinple_obj to the object reference */
/* retrieved fromthe call to the NanmeServi ce. */
si npl e_obj =Nam ngCont ext _resol ve_args.resul t;

/* Now we have retrieved the object reference for our */

/* client, we can invoke calls on it. */
/* Qur exanpl e call bel ow does not take any parameters */
/* so no setup is required prior to invoking. */

call podexec(sinpl e_obj,
sinple_cal |l _ne,
addr (si npl e_cal | _me_args),
no_user _exceptions);
if check_errors(' podexec') ~= conpl eti on_status_yes then return;

API Reference Details

OBJ2STR

Synopsis

Usage

Description

Parameters

CBJ2STR(i n PTR obj ect _ref erence,

out CHAR(*) object_string)
/1 Retrieves the object IDfroman ICR

Common to batch clients and servers. Not relevant to CICS or IMS.

The aBJ2STRfunction creates an interoperable object reference (IOR) from a
valid object reference. The object reference string that is passed to CGBJI2STR
must be terminated with a null character. You can use the STRSET function
to create this string.

The parameters for GBJ2STR can be described as follows:

obj ect _ref erence This is an i n parameter that contains the object
reference.
obj ect_string This is an out parameter that contains the

stringified representation of the object reference
(that is, the IOR).

407

CHAPTER 9 | API Reference

Example The following example shows part of the server mainline code, generated in
the i dI menber nameSV member by the Orbix IDL compiler, with added
comments for clarity:

call obj new(server_nane,
Sinpl e_Si npl ehj ect _intf,
Si npl e_Si npl ehj ect _obj i d,
Si npl e_Si npl e(oj ect _obj) ;
if check _errors(’ objnew) ~= conpletion_status_yes then return;

/* Wite out the IR for each interface */
open file(l ORFILE);

call obj2str(S npl e_Si npl eChj ect _obj ,
iorrec_ptr);
if check_errors(’obj2str’) ~= conpl eti on_status_yes then return;

call strget(iorrect_ptr,iorrec,iorrec_|len);
if check_errors(’strget’) ”~= conpl etion_status_yes then return;

wite file(lCRFILE) FROMiorrec);
close file(lCRFILE);

See also “STR20BJ" on page 481.

408

API Reference Details

ORBARGS

Synopsis

Usage

Description

CRBARGS(i n CHAR(*) argunent_string,
in FI XED Bl N(31) argument_string_|l ength,
in CHAR(*) orb_nane,
in FI XED Bl N(31) orb_nane_| engt h)
// Initializes a client or server connection to an CRB.

Common to clients and servers.

The CRBARGS function initializes a client or server connection to the ORB. It
is equivalent to calling CCRBA : CRB_i nit () in C++. It first initializes an
application in the ORB environment and then it returns the ORB
pseudo-object reference to the application for use in future ORB calls.

Because applications do not initially have an object on which to invoke ORB
calls, GRB_i ni t () is a bootstrap call into the CORBA environment.
Therefore, the CRB_i ni t () call is part of the CORBA module but is not part of
the CORBA: : CRB class.

The arg_li st is optional and is usually not set. The use of the orb_nane is
recommended, because if it is not specified, a default ORB name is used.

The ORB identifier (specified via the - CRBi d argument) is defined by the
CORBA specification. It is intended to uniquely identify ORBs used within
the same process in a multi-ORB application. The value specified for -CRBi d
is set on ORB initialization during the call to OCORBA: : CRB_i nit () in C++.

When you are assigning ORB identifiers via ORBARGS, if the or b_nane
parameter has a value, any - CRBi d arguments in the ar gv are ignored.
However, all other ORB arguments in ar gv might be significant during the
ORB initialization process. If the or b_name parameter is null, the ORB
identifier is obtained from the - GRBi d argument of argv. If the orb_nane is
null and there is no - CRBi d argument in ar gv, the default ORB is returned in
the call.

Note: Orbix PL/I batch does not support the passing of arguments via
PPARM at runtime. However, if you want to pass an ORB name at
runtime, you can use a DD. CRBARGS instead.

409

CHAPTER 9 | API Reference

Parameters

ORB arguments

410

The parameters for CRBARGS can be described as follows:

argumnent _string

argumnent _string_l engt h

orb_nane

orb_name_| ength

This is an i n parameter that is a bounded string
containing the argument list of the
environment-specific data for the call. See “ORB
arguments” for more details.

This is an i n parameter that specifies the length
of the argument string list.

This is an i n parameter that is a bounded string
containing the ORB identifier for the initialized
ORB, which must be unique for each server
across a location domain. However, client-side
ORBs and other "transient" ORBs do not register
with the locator, so it does not matter what
name they are assigned.

This is an i n parameter that specifies the length
of the ORB identifier string.

Each ORB argument is a sequence of configuration strings or options of the

following form:

-CRBsuffix val ue

The suffix is the name of the ORB option being set. The value is the value to
which the option is set. There must be a space between the suffix and the
value. Any string in the argument list that is not in one of these formats is
ignored by the CRB i ni t () method.

Valid ORB arguments include:

- CRBboot _domai n val ue

- CRBdonai n val ue

-CRBi d val ue

This indicates where to get boot configuration
information.

This indicates where to get the ORB actual
configuration information.

This is the ORB identifier.

API Reference Details

- CRBnane val ue This is specific to Orbix CORBA ORBs and is
used to select a configuration scope from within
a configuration domain. The value specified for
- CRBnane is also set on ORB initialization, based
on the following logic:
1. If a-CRBnane value is passed as a
parameter to CRBARGS, use that value.

2. Check for the existence of the environment
variable | T_CRB_NAME, and use its value if
set.

3. Use the - R8I d value.

Example The following is an example of client code at ORB setup time:
dcl arg_list char (40) init('");
dcl arg_list_len fixed bin(31) init(0);
dcl orb_nane char (07) init('sinple ');
dcl orb_nane_| en fixed bin(31) init(6);
% ncl ude OCRBA;

% ncl ude GHKERRS;
% ncl ude SI MPLEM
% ncl ude Sl MPLEX;
% ncl ude SETUPCL; /* Various DCLs for the client */
% ncl ude | GRFl LE; /* Describes the ICR File type */

open file(lORFILE) input;
% ncl ude READ OR /* Read in the server's ICR */

/* Initialize the runtime status infornation bl ock for */
all oc pod_status_information set(pod_status_ptr);
call podstat(pod_status ptr);

/* Initialize the CRB connection with the nane 'sinple' */
call orbargs(arg_list, arg_list_Ien, orb_nane, orb _nane_|len);
if check_errors('orbargs') "= conpl etion_status_yes then return;

/* Register the interface with the PL/I runtine */

call podreg(addr(Si npl e_S npl e(hj ect _i nterface));
if check_errors(' podreg') ~= conpletion_status_yes then return;

411

CHAPTER 9 | API Reference

Note: The % ncl ude GHKERRS statement in the preceding example is used
in server and batch client programs. It is replaced with % ncl ude GHKCQLA C
in CICS client programs, and % ncl ude CHKCLI M5 in IMS client programs.

Exceptions A OCRBA : BAD | NV_CRDER : ADAPTER ALREADY_| NI Tl ALI ZED exception is
raised if CRBARGS is called more than once in a client or server.

412

API Reference Details

PODERR

Synopsis

Usage

Description

Parameters

PCDERR(i n PTR user _excepti on_buf fer)
/1 Allows a PL/l server to raise a user exception for an
/1 operation.

Server-specific.

The PCDERR function allows a PL/I server to raise a user exception for the
operation that supports the exception(s), which can then be picked up on
the client side via the user exception buffer that is passed to PCDEXEC for the
relevant operation. To raise a user exception, the server program must set
the except i on_i d, the d discriminator, and the appropriate exception buffer.

The server calls PCDERR instead of PCDPUT in this instance, and this informs
the client that a user exception has been raised. See “Memory Handling” on
page 345 for more details. Calling PCDERR does not terminate the server
program.

The client can determine if a user exception has been raised, by testing to
see whether the exception_id of the operation’s user_except i on_buf f er
passed to PCDEXEC is equal to zero after the call. See “PODEXEC” on

page 418 for an example of how a PL/I client determines if a user exception
has been raised.

The parameter for PCDERR can be described as follows:

user _excepti on_buf fer This is an i n parameter that contains the PL/I
representation of the user exceptions that the IDL
operations support. The address of the user
exception buffer is passed to PCDERR.

413

CHAPTER 9 | API Reference

Example The example can be broken down as follows:
1. Consider the following IDL:

interface test {
exception bad {
| ong val ue;
string<32> reason;

ik

exception critical {
short val ue_x;
st ri ng<31> l'i kel y_cause;
string<63> action_required,;

IE

I ong nyop(in |ong nunber) raises(bad, critical);

}

414

API Reference Details

Based on the preceding IDL, the Orbix IDL compiler generates the
following code for the user exception block, in the i dI nrenber nameM
include member (where i dI menber nare represents the name of the IDL
member that contains the IDL definitions):

/* ___ */
/* Defined User Exceptions */
/* ___ */
dcl 1 TEST user_exceptions,
3 exception_id ptr,
3d fixed bin(31) init(0),
3u ptr;
dcl 1 test_bad exc_d fixed bin(31) init(l);
dcl 1 test_critical_exc_d fixed bin(31) init(2);
dcl 1 test_bad exc based(TEST user _excepti ons. u),
3 idl _val ue fixed bin(31) init(0),
3 reason char (32) init('");

dcl 1 test_critical _exc
based(TEST_user _excepti ons. u),

3 val ue_x fixed bin(15) init(0),
3 likely_cause char (31) init('"),
3 action_required char (63) init('");

dcl TEST user _exceptions_area area(96);
TEST_user _exceptions.u = addr (TEST_user _excepti ons_area);

The following operation structure declaration is also generated in the
i dl menber naneMinclude member:

dcl 1 test_nyop_args aligned |ike test_nyop_type;

The body of the operation structure is generated as follows, in the
i dl menber naneT include member:

dcl 1 test_nyop_type based,

3 nunber fixed bin(31) init(0),
3 result fixed bin(31) init(0);

415

CHAPTER 9 | API Reference

3. The following piece of client code shows how the client calls PCDERR:

test_nyop_args. nunber = 42;
call podexec(test_obj, test_nyop, addr(test_nyop_args),
addr (TEST _user _excepti ons));

Because the nyop operation can throw user exceptions, the address of
the user exception structure is passed as the fourth parameter.

4. The following piece of server code shows how the server can set up
and throw an exception in the nyop operation:

i f nyop_args. nunber = 0 then

do;
/* Set the exception ID */
strset (TEST_user _excepti ons. exception_i d,

test_bad_exid, test_bad_|en);

/* Set the exception discrinmnator */
TEST user_exceptions.d = test_bad_exc_d;
test_bad_exc.idl _val ue = 9999;
test _bad_exc.reason = 'Input nust be greater than 0';
cal | poderr (TEST_user_exceptions);

end;

el se
do;

416

Exceptions

See also

API Reference Details

A test such as the following can be set up in the client code to check
for a user exception:

sel ect (TEST_user _exceptions. d);
when(no_exceptions_thrown) /* no user exception has */
/* been thrown */
put skip list('No exceptions thrown, return value is:'
test_nyop_args.result);
when(t est _bad_exc_d) do;
put skip list('User exception ''bad ' was thrown:');
put skip list('value returned was',
test_bad_exc.idl _val ue);
put skip list('reason returned was ' ||
test _bad_exc. reason);
end;
when(test_critical _exc_d) do;
put skip list('User exception '‘critical'' was
thrown:");
put skip list('value x returned was',
test_critical _exc.val ue_x);
put skip list('likely cause was ' ||
test_critical _exc.likely_cause);
put skip list('action_requiredis ' ||
test_critical _exc.action_required);
end;
end;

The appropriate CORBA exception is raised if an attempt is made to raise a
user exception that is not related to the invoked operation.

A OCRBA: : BAD PARAM : UNKNOMN_TYPEQCDE exception is raised if the typecode
cannot be determined when marshalling an any type or a user exception.

“PODEXEC” on page 418.

The BANK demonstration in or bi xhl g. DEMOS. PLI . SRC for a complete
example of how to use PCDERR

417

CHAPTER 9 | API Reference

PODEXEC

Synopsis

Usage

Description

Parameters

418

PCDEXEQ(i n PTR obj ect _reference,
in CHAR(*) operation_nare,
inout PTR operation_buffer,
i nout PTR user_exception_buffer)
/1 Invokes an operation on the specified object.

Client-specific.

The PCDEXEC function allows a PL/I client to invoke operations on the server
interface represented by the supplied object reference. All i n and i nout
parameters must be set up prior to the call. PCDEXEC invokes the specified
operation for the specified object, and marshals and populates the operation
buffer, depending on whether they are i n, out, i nout, or ret ur n arguments.

As shown in the following example, the client can test for a user exception
by examining the excepti on_i d of the operation’s user excepti on_buf f er
after calling PCDEXEC. A non-zero value indicates a user exception. A zero
value indicates that no user exception was raised by the operation that the
call to PCDEXEC invoked. If an exception is raised, you must reset the
discriminator of the user exception block to zero by setting the di scri m d to
no_user _excepti ons_t hr own.

The following example is based on the gri d demonstration. Some of the
referenced data items in the example are found in the GR DMand GRI DX
include members. The address of the operation_buffer is passed to
PCDEXEC in the third argument.

The parameters for PCDEXEC can be described as follows:

obj ect _reference This is an i n parameter that contains the valid
object reference. You can use STR2CBJ to create
this object reference.

API Reference Details

oper ati on_name This is an i n parameter that is a string
containing the operation name to be invoked.
This string is terminated by a space. It is defined
in the i dl renber naneM and i dl menber naneT
include members generated by the Orbix IDL
compiler.

oper at i on_buf f er This is an i nout parameter that contains a PL/I
structure of the data types that the operation
supports. The address of the buffer is passed to
PCDEXEC. It is defined in the i dI menber naneM
and i dl nenber nameT include members
generated by the Orbix IDL compiler.

user_exception_buffer Thisis aninout parameter that contains the
PL/I representation of the user exceptions that
the IDL operations support. The address of the
user exception buffer is passed to PCDEXEC. It is
defined in the i dI menber naneM and
i dl renber naneT include members generated by
the Orbix IDL compiler. If the operation can
throw a user exception, the address of the
associated user exception block is passed as this
parameter. Where a user exception has not been
defined, the NO USER EXCEPTI ONS null pointer
variable, which is defined in the CCRBA include
member, is used instead.

Example The example can be broken down as follows:
1. Consider the following IDL:

interface test {
string<32> cal |l _nme(in string<32> input_string);

}

2. Based on the preceding IDL, the Orbix IDL compiler generates the
following code in the i dl nenber naneT include member (where
i dl menber name represents the name of the IDL member that contains
the IDL definitions):

dcl 1 test_call_ne_type based,

3 input_string char (32) init('"),
3 result char (32) init('");

419

CHAPTER 9 | API Reference

Exceptions

See also

420

Based on the preceding IDL, the Orbix IDL compiler also generates the
following code, in the i dI nenber nameMinclude member:

dcl 1 test_call_ne_args aligned |like test_cal |l _me_type;

3. The following piece of client code shows how to call the cal | _ne
operation:

/* Register the test interface with the PL/I runtine */

call podreg(addr(test_interface));

if check errors(' podreg') ~= conpl etion_status_yes then return;
/* Oreate an object reference fromthe server's ICR */

call str2obj(iorrec_ptr,test_obj);

if check_errors('objset')”=conpletion_status_yes then return;

/* Set up the input arguments */
test_call_ne_args.input_string = 'hello';

/* W& are now ready to call operation call_ne */
call podexec(test_obj, test_call _ne,
addr (test _cal | _nme_args), no_user_exceptions);
if check_errors(' podexec') ~= conpl eti on_status_yes then return;

put skip list('result received back fromcall_me: ' ||
test_call_ne_args.result);

A OCORBA : BAD | NV_CRDER : | NTERFACE_NOT_REQ STERED exception is raised
if the client tries to invoke an operation on an interface that has not been
registered via CRBREG

A QORBA: : BAD PARAM : | NVALI D _Di SCR' M NATCR_TYPEQCDE exception is
raised if the discriminator typecode is invalid when marshalling a union
type.

A OCRBA: : BAD_PARAM : UNKNOMN_CPERATI ON exception is raised if the
operation is not valid for the interface.

A OCRBA: : BAD PARAM : UNKNOM_TYPEQCDE exception is raised if the typecode
cannot be determined when marshalling an any type or a user exception.

The BANK demonstration in or bi xhl g. DEM3S. PLI . SRCfor a complete
example of how to use PCDEXEC.

API Reference Details

PODGET

Synopsis

Usage

Description

Parameters

Example

PCDCET(i n PTR operati on_buffer)
/1 Marshals in and i nout argunents for an operation on the server
/1 side froman incom ng request.

Server-specific.

Each operation implementation must begin with a call to PCDGET and end
with a call to PCDPUT. Even if the operation takes no parameters and has no
return value, you must still call PCDGET and PCDPUT and, in such cases, pass
a dummy CHAR(1) data item, which the Orbix IDL compiler generates for
such cases.

PCDGET copies the incoming operation’s argument values into the complete
PL/I operation parameter buffer that is supplied. This buffer is generated
automatically by the Orbix IDL compiler. Only I Nand I NOUT values in this
structure are populated by this call.

The Orbix IDL compiler generates the call for PCDGET in the i dI nenber naneD
include member, for each attribute and operation defined in the IDL.

The parameter for PCDGET can be described as follows:

operation_buf fer This is an i n parameter that contains a PL/I
structure representing the data types that the
operation supports. The address of the buffer is
passed to PCDGET.

The example can be broken down as follows:
1. Consider the following IDL:

interface foo {
long bar(in short n, out short n);

}

421

CHAPTER 9 | API Reference

Exceptions

422

Based on the preceding IDL, the Orbix IDL compiler generates the
following structure definition in the i dl menber naneT include member
(where i dI renber nane represents the name of the IDL member that
contains the IDL definitions):

dcl

1 foo_bar_type based,

3n fixed bin(15) init(0),
3m fixed bi n(15) init(0),
3 result fixed bin(31) init(0);

The declaration in the i dl menber naneMinclude member is as follows:

dcl

1 foo_bar_args aligned |ike foo_bar_type;

A subset of the i dl nrenber naneD include member is as follows, with
comments added for clarity:

sel ect (i nterface);
when(foo_tc) do;

sel ect (operati on);
when (foo_bar) do;

/* Fill the foo_bar_args structure with the incomng */
/* data. The INvalue 'n' wll be filled. */
cal | podget (addr (foo_bar_args));

if check_errors('podget') "= conpl etion_status_yes then

return;
/* Now call the user inplenentation code for op */
/* foo_bar. */

call proc_foo_bar(addr(foo_bar_args));

/* Transnit the out value 'm and result of op */

/* foo_bar. */

cal | podput (addr (foo_bar_args));

i f check_errors('podput') ~= conpl etion_status_yes then
return;

end;
ot her wi se;

A OCRBA: : BAD | N\V_CRDER : ARGS_ALREADY_READ exception is raised if the i n
or i nout parameter for the request has already been processed.

See also

API Reference Details

A CCRBA : BAD PARAM : | NVALI D_Di SCR M NATCR_TYPECCDE exception is
raised if the discriminator typecode is invalid when marshalling a union
type.

A CCRBA: : BAD_PARAM : UNKNOMN_TYPECCDE exception is raised if the typecode
cannot be determined when marshalling an any type or a user exception.

“PODPUT” on page 426.

423

CHAPTER 9 | API Reference

PODINFO

Synopsis

Usage

Description

Parameters

Example

424

PCDI NFQ(out PTR status_i nfo_poi nter)
/1l Retrieves address of the PL/I runtine status structure.

Common to clients and servers.

The PCDI NFOfunction obtains the address of pod_st at us_i nf or mat i on. If
the buffer has not been allocated, it is assigned a null value. Assuming that
the buffer has been allocated elsewhere, and that it was followed
subsequently by a call to PCDSTAT, the call to PCDl NFOacts as if a call to
PCDSTAT has been made. This is because PCDI NFOrecalls the address of the
status_i nformation_buf fer through the pod_st atus_ptr (when it is used
as shown in the following example). PCDI NFO allows the same status buffer
to be used across multiple PL/I modules, which will be linked together later
when the application is compiled.

The parameter for PCDI NFOcan be described as follows::

status_info_pointer This is an out parameter that contains the address
of the PL/I runtime status information structure.

The following shows how pod_st at us_i nf or mat i on is set up in the PL/I
server mainline code, which the Orbix IDL compiler generates in the
i dl menber naneV module:

al l oc pod_status_information set(pod status_ptr);
call podstat(pod_status ptr);

The check_errors function uses pod_st at us_i nf or mat i on to determine
whether an error has occurred in the most recently called runtime function.
However, because the check_errors function can be included from any PL/I

API Reference Details

module, and not just from the server mainline, you must call PCD NFOto
connect the pod_st at us_i nf or mat i on buffer with the original buffer, via the
pod_status_ptr. This is shown in the following piece of code from
check_errors, with added comments for clarity:

/* pod_status_information i s based on pod_status_ptr */
/* podinfo retrieves the address of the bl ock of nemory */
/* it was originally assigned to in the server program */
call podinfo(pod_status ptr);

/* Now we have a link to the original status buffer */
exception_nunber = pod_status_i nfornation. excepti on_nunber;

if exception_nunber = 0 then

See also “PODSTAT” on page 437.

425

CHAPTER 9 | API Reference

PODPUT

Synopsis

Usage

Description

Parameters

Example

426

PCDPUT(out PTR oper ati on_buf f er)
/1 Marshals return, out, and inout argunents for an operation on
/1 the server side froman incom ng request.

Server-specific.

Each operation implementation must begin with a call to PCDGET and end
with a call to PCDPUT. The PCDPUT function copies the operation’s outgoing
argument values from the complete PL/I operation parameter buffer passed
to it. This buffer is generated automatically by the Orbix IDL compiler. Only
i nout, out, and the resul t out item are populated by this call.

You must ensure that all i nout, out, and resul t values are correctly
allocated (for dynamic types) and populated. If a user exception has been
raised before calling PCDPUT, no i nout , out, or resul t parameters are
marshalled, and nothing is returned in such cases. If a user exception has
been raised, PCDERR must be called instead of PCDPUT, and no i nout, out , or
resul t parameters are marshalled. See “PODERR” on page 413 for more
details.

The Orbix IDL compiler generates the call for PCDPUT in the i dI nenber naneD
include member for each attribute and operation defined in the IDL.

The parameter for PCDPUT can be described as follows:

oper ati on_buf f er This is an out parameter that contains a PL/I
structure of the data types that the operation
supports. The address of the buffer is passed to
PCDPUT.

The example can be broken down as follows:
1. Consider the following IDL:
interface foo {

long bar(in short n, out short nj;

}

Exceptions

API Reference Details

2. Based on the preceding IDL, the Orbix IDL compiler generates the
following structure definition in the i dl menber naneT include member
(where i dI renber nane represents the name of the IDL member that
contains the IDL definitions):

dcl 1 foo_bar_type based,

3n fixed bin(15) init(0),
3m fixed bi n(15) init(0),
3 result fixed bin(31) init(0);

3. The declaration in the i dIl nenber naneMinclude member is as follows:
dcl 1 foo_bar_args aligned |ike foo_bar_type;

4. A subset of the i dl nenber nanmeD include member is as follows, with
comments added for clarity:

sel ect (i nterface);
when(foo_tc) do;
sel ect (operati on);
when (foo_bar) do;
/* Fill the foo_bar_args structure with the incomng */
/* data. The INvalue 'n' wll be filled. */
cal | podget (addr(foo_bar_args));
if check_errors('podget') "= conpl etion_status_yes then

return;
/* Now call the user inplenentation code for op */
/* foo_bar. */

call proc_foo_bar(addr(foo_bar_args));

/* Transnit the out value 'm and result of op */
/* foo_bar. “
call podput (addr(foo_bar_args));
if check_errors(' podput') ~= conpl etion_status_yes then
return;
end;
ot herwi se;

A OCRBA : BAD | NV_CRDER : ARGS_NOT_READ exception is raised if the i n or
i nout parameters for the request have not been processed.

427

CHAPTER 9 | API Reference

A QORBA: : BAD PARAM : | NVALI D DI SCR' M NATCR_TYPEQCDE exception is
raised if the discriminator typecode is invalid when marshalling a union
type.

A OCRBA: : BAD_PARAM : UNKNOWN_TYPECCDE exception is raised if the typecode
cannot be determined when marshalling an any type or a user exception.

See also “PODGET” on page 421.

428

API Reference Details

PODREG

Synopsis

Usage

Description

Parameters

PCOREEin PTR i nterface_description)
/1 Describes an IDL interface to the PL/I runtime

Common to clients and servers.

The PCDREG function registers an interface with the PL/I runtime, by using
the interface description that is stored in the i dI menber nameX include
member, which the Orbix IDL compiler generates.

The Orbix IDL compiler generates an i dl menber naneX include member for
each IDL interface (where i dI menber nane represents the name of the IDL
member that contains the IDL definitions). The i dI menber naneX contains a
structure for each interface, which the Orbix IDL compiler populates with
information about the IDL. The PCDREG function uses this populated
interface information to register an interface with the PL/I runtime, for use in
subsequent calls to PCDGET and PCDPUT.

You must call PCDREGfor every interface that the client or server uses. In this
case, you must pass the address of the structure stored in the

i dl menber naneX include member for each interface, to register the
information about the interface with the PL/I runtime. The format for this
structure name is i nterface_name_i nter f ace.

The parameter for PCOREG can be described as follows:

i nterface_descriptionThisis anin parameter that contains the address of
the interface definition.

429

CHAPTER 9 | API Reference

Example The following code shows part of the setup for a typical PL/I client:

/* Location of the interface descriptor(s) for the */
/* IDL file WIDL, containing interface MIntf */
% ncl ude Myl DLX;

/* The server's ICRis read in, code onmtted for brevity */

/* Initialize the client's connection to the CRB */
call orbargs(arg_list,

arg_list_len,

orb_narre,

orb_nare_| en);

/* Register interface MIntf with the PL/I runtime */
call podreg(addr(M/iIntf_interface));
if check errors('podreg') ~= conpl etion_status_yes then return;

/* Oreate an object reference fromthe I CR */
call str2obj(iorrec_ptr, shlong_obj);
if check_errors('str2obj')”=conpletion_status_yes then return;

/* dient is nowready to start setting up calls to the server */

Exceptions A OORBA : BAD | NV_CRDER : | NTERFACE_ALREADY_REQ STERED exception is
raised if the client or server attempts to register the same interface more
than once.

430

API Reference Details

PODREQ

Synopsis

Usage

Description

PCDREQ(i n PTR request _detail s)
/1 Provides current request infornation.

Server-specific.

The server implementation module calls PCDREQto extract the relevant
information about the current request. PCDREQ provides information about
the current invocation request in a request information buffer, which is
defined as follows in the supplied D SPI N T include member:

dcl 1 reqinfo,

3 interface_name ptr;
3 operation_nane ptr;
3 pri nci pal ptr;
3 target ptr;

In the preceding structure, the first three data items are unbounded CORBA
character strings. You can use the STRGET function to copy the first three
data items into CHAR(n) buffers. The TARGET item is the PL/I object reference
for the operation invocation. After PCDREQis called, the structure contains
the following data:

I NTERFACE_NAME The name of the interface, which is stored as an
unbounded string.

CPERATI ON_NAME The name of the operation for the invocation request,
which is stored as an unbounded string.

PRI NCI PAL The name of the client principal that invoked the request,
which is stored as an unbounded string.
TARGET The object reference of the target object.

You can call PCDREQonly once for each operation invocation. PCOREQ must
be called after a request has been dispatched to a server, and before any
calls are made to access the parameter values. The DI SPI N T include
member contains a call to STRGET to retrieve the operation name from the
reqi nf o data item. You can make similar calls to retrieve the other variables
in reqi nfo.

431

CHAPTER 9 | API Reference

Parameters The parameter for PCDREQcan be described as follows:

request _details This is an i n parameter that contains a PL/I
structure representing the current request.

Example The example can be broken down as follows:

1. The following code is in the i dI menber nanel server implementation
module, generated by the Orbix IDL compiler (where i dI menber nanme
represents the name of the IDL member that contains the IDL
definitions):

/* Entry point to enable the Obix PL/I runtime to call */
/* out to the server inplementation for when a request */
/* cones in. */
D SPTGH ENTRY;

2. The