
OrbixNames
Programmer’s and
Administrator’s Guide

IONA Technologies PLC
February 1999

Orbix is a Registered Trademark of IONA Technologies PLC.
OrbixNames is a Trademark of IONA Technologies PLC.
While the information in this publication is believed to be accurate, IONA Technologies PLC makes no warranty of any kind
to this material including, but not limited to, the implied warranties of merchantability and fitness for a particular purpose.
IONA Technologies PLC shall not be liable for errors contained herein, or for incidental or consequential damages in
connection with the furnishing, performance or use of this material.
Java is a trademark of Sun Microsystems, Inc.
COPYRIGHT NOTICE
No part of this publication may be reproduced, stored in a retrieval system or transmitted, in any form or by any means,
photocopying, recording or otherwise, without prior written consent of IONA Technologies PLC. No third party intellectual
property right liability is assumed with respect to the use of the information contained herein. IONA Technologies PLC
assumes no responsibility for errors or omissions contained in this book. This publication and features described herein are
subject to change without notice.
© 1991-1999 IONA Technologies PLC. All rights reserved.

All products or services mentioned in this manual are covered by the trademarks, service marks, or product names as
designated by the companies that market those products.
M 2 2 5 7

iii

Contents

Preface vii
Audience vii
Organization of this Guide vii
Document Conventions viii

Part I Introduction

Chapter 1 Introduction to the CORBA Naming Service 3
The Interface to the Naming Service 4

Format of Names in the Naming Service 4
IDL Interfaces to the Naming Service 5

Using the Naming Service 6
Associating a Name with an Object 6
Using Names to Find Objects 6
Associating a Compound Name with an Object 7
Removing Bindings from the Naming Service 8

Convention for String Format of Names 9

Part II OrbixNames C++ Programmer’s Guide

Chapter 2 Programming with OrbixNames 13
Developing an OrbixNames Application 14

Making Initial Contact with the Naming Service 15
Binding Names to Objects 16
Resolving Object Names in Clients 19
Iterating through Context Bindings 21
Finding Unreachable Context Objects 23

Compiling and Running an Application 24
Configuring OrbixNames 25
Registering the OrbixNames Server 27
Options to the OrbixNames Server 28

Federation of Name Spaces 29

O r b i x N ame s P r o g r amme r ’ s a n d A d m in i s t r a t o r ’ s G u i d e

 iv

Chapter 3 Load Balancing with OrbixNames 35
The Need for Load Balancing 35
Introduction to Load Balancing in OrbixNames 37

The Interface to Object Groups in OrbixNames 38
Using Object Groups in OrbixNames 39

Example of Load Balancing with Object Groups 43
Defining the IDL for the Application 43
Creating an Object Group and Adding Objects 45
Creating Replicated Objects 53
Accessing the Objects from a Client 57

Part III OrbixNames Administrator’s Guide

Chapter 4 Using the OrbixNames Utilities 63
Managing Name Bindings 64

Using the Name Utilities 65
Syntax of the Name Management Utilities 70

Managing Object Groups 71
Using the Object Group Utilities 71
Syntax of the Object Group Utilities 73

Chapter 5 The OrbixNames Browser 75
Starting the OrbixNames Browser 75
Connecting to an OrbixNames Server 77
Disconnecting from an OrbixNames Server 77
Managing Naming Contexts 78

Creating a Naming Context 78
Modifying a Naming Context 80
Removing a Naming Context 80

Managing Object Names 81
Binding a Name to an Object 81
Modifying an Object Binding 83
Removing an Object Name 83

C o n t e n t s

v

Part IV OrbixNames Programmer’s Reference

CosNaming 87

CosNaming::BindingIterator 93

CosNaming::NamingContext 95

LoadBalancing 109

LoadBalancing::ObjectGroup 115

LoadBalancing::ObjectGroupFactory 119

LoadBalancing::RandomObjectGroup 123

LoadBalancing::RoundRobinObjectGroup 125

Index 127

O r b i x N ame s P r o g r amme r ’ s a n d A d m in i s t r a t o r ’ s G u i d e

 vi

vii

Preface
OrbixNames is IONA Technologies’ implementation of the CORBA Naming
Service. This service allows you to associate abstract names with CORBA
objects and to locate objects using those names.

Audience
This guide is intended for use by application programmers who wish to
familiarize themselves with the Naming Service, and OrbixNames in particular.
Before reading this guide, you should be familiar with the C++ programming
language and Orbix application programming.

Organization of this Guide
This guide is divided into the following parts:

Part I “Introduction”

This part introduces the CORBA Naming Service and describes the features of
the Naming Service specification.

Part II “OrbixNames C++ Programmer’s Guide”

Part II describes how you can use OrbixNames to take advantage of the CORBA
Naming Service in your applications. It also describes OrbixNames extensions to
this service that allow you to implement load balancing in CORBA servers.

Part III “OrbixNames Administrator’s Guide”

Part III describes the OrbixNames command-line utilities and graphical browser.
This allow administrators to access the CORBA Naming Service without writing
applications.

Part IV “OrbixNames Programmer’s Reference”

Part IV provides a complete reference for the programming interface to
OrbixNames, defined in the CORBA Interface Definition Language (IDL).

O r b i x N ame s P r o g r amme r ’ s a n d A d m in i s t r a t o r ’ s G u i d e

 viii

Document Conventions
This guide uses the following typographical conventions:

This guide may use the following keying conventions:

Constant width Constant width in normal text represents portions of code
and literal names of items such as classes, functions,
variables, and data structures. For example, text might refer
to the CORBA::Object class.

Constant width paragraphs represent code examples or
information a system displays on the screen. For example:

#include <stdio.h>

Italic Italic words in normal text represent emphasis and new
terms.

Italic words or characters in code and commands represent
variable values you must supply, such as arguments to
commands or path names for your particular system. For
example:

% cd /users/your_name

< > Some command examples use angle brackets to represent variable
values you must supply. This is an older convention.

......

Horizontal or vertical ellipses in format and syntax descriptions
indicate that material has been eliminated to simplify the discussion.

[] Brackets enclose optional items in format and syntax descriptions.

{ } Braces enclose a list from which you must choose an item in format
and syntax descriptions.

| A vertical bar separates items in a list of choices enclosed in { }
(braces) in format and syntax descriptions.

Part I

Introduction

3

 1
Introduction to the CORBA
Naming Service

OrbixNames is IONA Technologies’ implementation of the CORBA
Naming Service, a service that allows you to associate abstract
names with CORBA objects in your applications. This chapter
describes the features of the CORBA Naming Service.

The Naming Service is a standard service for CORBA applications, defined in the
Object Management Group’s (OMG) CORBAservices specification. The Naming
Service allows you to associate abstract names with CORBA objects and allows
clients to find those objects by looking up the corresponding names. This service
is both very simple and very useful.

A server that holds a CORBA object binds a name to the object by contacting
the Naming Service. To obtain a reference to the object, a client requests the
Naming Service to look up the object associated with a specified name. This is
known as resolving the object name. The Naming Service provides interfaces
defined in IDL that allow servers to bind names to objects and clients to resolve
those names.

Most CORBA applications make some use of the Naming Service. Locating a
particular object is a common requirement in distributed systems and the
Naming Service provides a simple, standard way to do this.

O r b i x N ame s P r o g r amme r ’ s a n d A d m in i s t r a t o r ’ s G u i d e

 4

The Interface to the Naming Service
The Naming Service maintains a database of names and the objects associated
with them. An association between a name and an object is called a binding. The
IDL interfaces to the Naming Service provide operations to access the database
of bindings. For example, you can create new bindings, resolve names, and delete
existing bindings.

OrbixNames is implemented as a normal Orbix server. This server contains
objects which support the standard IDL interfaces to the Naming Service. These
interfaces are defined in the IDL module CosNaming:

// IDL
module CosNaming {

// Naming Service IDL definitions.
...

};

Part IV of this guide, on page 85, provides a full reference for the definitions in
this module. The remainder of this chapter provides a brief overview of the
most commonly used definitions.

Format of Names in the Naming Service

In the CORBA Naming Service, names can be associated with two types of
object: a naming context or an application object. A naming context is an object
in the Naming Service within which you can resolve the names of other objects.

Naming contexts are organized into a naming graph, which may form a naming
hierarchy much like that of a filing system. Using this analogy, a name bound to a
naming context would correspond to a directory and a name bound to an
application object would correspond to a file.

The full name of an object, including all the associated naming contexts, is known
as a compound name. The first component of a compound name gives the name
of a naming context, in which the second component is accessed. This process
continues until the last component of the compound name has been reached.

The notion of a compound name is common in filing systems. For example, in
UNIX, compound names take the form /aaa/bbb/ccc; in Windows they take
the form c:\aaa\bbb\ccc. A compound name in the Naming Service takes a
more abstract form: an IDL sequence of name components.

I n t r o d u c t i o n t o t h e CORB A N am i n g S e r v i c e

5

Name components are not simple strings. Instead, a name component is defined
as an IDL structure, of type CosNaming::NameComponent, that holds two strings:

// IDL
// In module CosNaming.
typedef string Istring;

struct NameComponent {
Istring id;
Istring kind;

};

A name is a sequence of these structures:

typedef sequence<NameComponent> Name;

The id member of a NameComponent is a simple identifier for the object; the
kind member is a secondary way to differentiate objects and is intended to be
used by the application layer. For example, you could use the kind member to
distinguish the type of the object being referred to. The semantics you choose
for this member are not interpreted by OrbixNames.

Both the id and kind members of a NameComponent are used in name
resolution. Two names that differ only in the kind member of one
NameComponent are considered to be different names.

IDL Interfaces to the Naming Service

The IDL module CosNaming contains two interfaces that allow your applications
to access the Naming Service:

The remainder of this chapter describes how you use the NamingContext
interface to do simple Naming Service operations, such as binding names to your
application objects and resolving those names in your clients.

NamingContext Provides the operations that allow you to access the main
features of the Naming Service, such as binding and
resolving names.

BindingIterator Allows you to read each element in a list of bindings. Such
a list may be returned by operations of the
NamingContext interface.

O r b i x N ame s P r o g r amme r ’ s a n d A d m in i s t r a t o r ’ s G u i d e

 6

Using the Naming Service
The first step in using the Naming Service is to get a reference to the root
naming context. The root naming context is an object, of type
CosNaming::NamingContext, which acts as an entry point to all the bindings in
the Naming Service.

This section describes some of the operations you can call on the root naming
context, or other naming contexts created by you, to do basic Naming Service
tasks.

Associating a Name with an Object

The operation CosNaming::NamingContext::bind() allows you to bind a name
to an object in your application. This operation is defined as:

void bind (in Name n, in Object o)
raises (NotFound, CannotProceed,
 InvalidName, AlreadyBound);

To use this operation, you first create a CosNaming::Name structure containing
the name you want to bind to your object. You then pass this structure and the
corresponding object reference as parameters to bind().

Using Names to Find Objects

Given an abstract name for an object, you can retrieve a reference to the object
by calling CosNaming::NamingContext::resolve(). This operation is defined
as:

Object resolve (in Name n)
raises (NotFound, CannotProceed, InvalidName);

When you call resolve(), the Naming Service retrieves the object reference
associated with the specified CosNaming::Name value and returns it to your
application.

I n t r o d u c t i o n t o t h e CORB A N am i n g S e r v i c e

7

Associating a Compound Name with an Object

Figure 1.1 shows an example of a simple compound name.

Figure 1.1: Example of a Compound Name

In this figure, a name with identifier company (and no kind value) is bound to a
naming context in the Naming Service. This naming context contains one
binding: between the name staff and another naming context. The staff
naming context contains a binding between the name james and an application
object.

If you want to associate a compound name with an object, you must first create
the naming contexts that will allow you to build the compound name. For
example, to create the compound name shown in Figure 1.1:

1. Get a reference to the root naming context.

2. Use the root naming context to create a new naming context and bind
the name company to it. To do this, call the operation
CosNaming::NamingContext::bind_new_context(), passing the name
company as a parameter. This operation returns a reference to the newly
created naming context.

company

staff

james

O r b i x N ame s P r o g r amme r ’ s a n d A d m in i s t r a t o r ’ s G u i d e

 8

3. Call CosNaming::NamingContext::bind_new_context() on the
company naming context object, passing the name staff as a parameter.
This returns a reference to the new staff naming context.

4. Call CosNaming::NamingContext::bind() on the staff naming
context, to bind the name james to your application object.

The operation CosNaming::NamingContext::bind_new_context() is defined
as:

NamingContext bind_new_context (in Name n)
raises (NotFound, CannotProceed,
 InvalidName, AlreadyBound);

To create a new naming context and bind a name to it, create a
CosNaming::Name structure for the context name and pass it to
bind_new_context(). If the call is successful, the operation returns a reference
to your newly created naming context.

Removing Bindings from the Naming Service

If you want to remove the association between a name and an object in the
Naming Service, call the operation CosNaming::NamingContext::unbind().
This operation is defined as:

void unbind (in Name n)
raises (NotFound, CannotProceed, InvalidName);

This operation takes a single parameter that indicates the name to be removed
from the Naming Service.

The name passed as a parameter to unbind() may be associated with a naming
context or an application object. If you unbind the name of a context and your
applications have no further use for that context, you should delete the
corresponding naming context object. To do this, call
CosNaming::NamingContext::destroy() on a reference to the naming
context. This operation is defined as:

void destroy ()
raises (NotEmpty);

Before calling destroy() on a naming context object, remove any bindings
contained in the context.

I n t r o d u c t i o n t o t h e CORB A N am i n g S e r v i c e

9

Convention for String Format of Names
To make it easier to describe examples, this guide uses a string representation of
Naming Service names. This convention is specific to OrbixNames and is
illustrated by the following example1:

documents-dir.reports-dir.april97-txt

In this example, the ID value of the first name component is documents and the
kind value is dir. The next component has ID reports and kind dir, followed
by a component with ID april97 and kind txt. This string format is used
throughout the rest of this guide and is understood by the OrbixNames utilities
described in Chapter 4 on page 63.

Note: If the dash ‘-’ character is omitted from a name component, the kind field
is a zero length string. The forward slash character ‘/’ may be used to
escape the characters ‘-’ (dash), ‘.’ (period), and ‘/’ (forward slash).

1. The Object Management Group (OMG) is expected to introduce a standard string format for
Naming Service names. This standard will be adopted in a future release of OrbixNames.

O r b i x N ame s P r o g r amme r ’ s a n d A d m in i s t r a t o r ’ s G u i d e

 10

Part II

OrbixNames C++
Programmer’s Guide

13

 2
Programming with OrbixNames

This chapter describes how you can use OrbixNames to make objects
available in CORBA servers and to locate those objects in clients. The
examples in this chapter use the programming interface to the
Naming Service introduced in Chapter 1.

OrbixNames implements the CORBA Naming Service. To develop applications
that access the Naming Service, you must use two components of OrbixNames:

• The OrbixNames IDL files contain the IDL definitions for the interfaces to
the CORBA Naming Service and the load balancing features of
OrbixNames.

• The OrbixNames server is a normal Orbix server, provided by IONA
Technologies, that implements the functionality of the CORBA Naming
Service.

When you write a CORBA program that uses the Naming Service, this program
contacts the OrbixNames server using the OrbixNames IDL definitions. In this
way, any CORBA client or server that uses the Naming Service simply acts as a
client to the OrbixNames server. The examples in this chapter show how to
develop, compile, and run such programs.

O r b i x N ame s P r o g r amme r ’ s a n d A d m in i s t r a t o r ’ s G u i d e

 14

Developing an OrbixNames Application
Consider a software engineering company that maintains an administrative
database of personnel records which includes details of names, login names,
addresses, salaries, and holiday entitlements. These records are used for various
administrative purposes, and it is convenient to use the Naming Service to locate
an employee record by name. Figure 2.1 shows part of a naming context graph
designed for this purpose.

The nodes company, staff, engineering, and support represent naming
contexts. A name such as company.staff.paula-person names an application
object. The same object may have more than one name; for example, each
person is listed in the generic company.staff context and is also listed in a
particular division such as company.engineering or company.sales.

In addition, it is convenient to use abstract names so that, for example, the
person who is engineering manager can be found by looking up the name
company.engineering.manager.

Figure 2.1: A Naming Context Graph

john managerpaulajames paulajohn
support

james manager

engineering

company

staff

P r o g r amm in g w i t h O r b i x N ame s

15

Allowing different paths to the same object facilitates the many uses that might
be made of the Naming Service. For example, a payroll system might be
interested only in the company.staff context; the engineering manager might
want the holiday records for all of the employees with entries in the
company.engineering context to be written to a spreadsheet, and so on.

The remainder of this section shows some sample code based on the naming
context graph in Figure 2.1. The full source code for this example is available in
the directory demo/naming/staff of your OrbixNames installation.

Making Initial Contact with the Naming Service

Whether you are writing a client or server application, the first step in
communicating with the Naming Service is to obtain a reference to the root
naming context. There are two ways for an application to do this:

• The recommended way is to use the CORBA Initialization Service. This
approach is fully CORBA compliant. To use the Initialization Service, pass
the string NameService to the following C++ function call on the ORB:

// C++
// In class CORBA::ORB.
Object_ptr resolve_initial_references(

const char* identifier)

To obtain a reference to the naming context, the result must be
narrowed using the function CosNaming::NamingContext::_narrow().

The call to resolve_initial_references() succeeds if an OrbixNames
server is running on the local host or the locator is appropriately
configured as described in “Compiling and Running an Application” on
page 24.

The name of the OrbixNames server as registered in the Implementation
Repository is assumed to be NS by default. To contact an OrbixNames
server registered with a different name, the configuration entry
IT_NAMES_SERVER must identify that name, as described in “Configuring
OrbixNames” on page 25.

O r b i x N ame s P r o g r amme r ’ s a n d A d m in i s t r a t o r ’ s G u i d e

 16

• The second approach is to read the root naming context IOR from a
shared file. To do this, use the -I switch to specify a file name when
running the OrbixNames server, ns:

ns -I /sharedIORs/ns.ior

When you run the server in this way, it stores the root naming context
IOR in the specified file. You can use this file later to get the initial naming
context:

// C++
#include <Naming.hh>
...

char *rootIOR;
CORBA::Object_var objVar;
CORBA::ORB_var orbVar;

// Read the contents of file /sharedIORs/ns.ior
// into the string rootIOR.
...

try {
orbVar =

CORBA::ORB_init (argc, argv, "Orbix");
objVar = orbVar->string_to_object (rootIOR);

}
...

The resulting object reference must subsequently be narrowed using the
function CosNaming::NamingContext::_narrow().

Once you get a reference to the root naming context, you can look up names in
contexts held by the corresponding OrbixNames server. This allows you to
obtain a reference to a particular context or to an application object.

Binding Names to Objects

The following sample server code shows how to build the company and
company.staff naming contexts shown in Figure 2.1 on page 14. It then shows
how to bind the name company.staff.john-person to the object referenced
by the variable johnVar (which supports the IDL interface Person implemented
by class PersonImpl).

P r o g r amm in g w i t h O r b i x N ame s

17

// C++
// An Orbix server.
#include <Naming.hh>
...

int main () {
Person_var johnVar = new PersonImpl

("John", "Engineer");
CORBA::ORB_var orbVar;
CORBA::Object_var objVar;
CosNaming::NamingContext_var rootContext,

companyContext, staffContext;
CosNaming::Name_var name;
...

try {
orbVar =

CORBA::ORB_init (argc, argv, "Orbix");

// Find the initial naming context:
1 objVar = orbVar->

resolve_initial_references("NameService");
if (rootContext=CosNaming::

NamingContext::_narrow(objVar)) {
// A CosNaming::Name is simply a sequence
// of structs.

2 name = new CosNaming::Name(1);
name->length(1);
name[0].id =CORBA::string_dup("company");
name[0].kind = CORBA::string_dup("");

// (In one step) create a new context, and
// bind it relative to the initial
// context:

3 companyContext =
rootContext->bind_new_context(name);

4 name[0].id = CORBA::string_dup("staff");
name[0].kind = CORBA::string_dup("");

O r b i x N ame s P r o g r amme r ’ s a n d A d m in i s t r a t o r ’ s G u i d e

 18

// (In one step) create a new context, and
// bind it relative to the company
// context:

5 staffContext =
companyContext->bind_new_context(name);

6 name[0].id = CORBA::string_dup("john");
name[0].kind=CORBA::string_dup("person");

// Bind name to object johnVar in context
// company.staff:

7 staffContext->bind(name,johnVar);
} else { ... }

// Deal with failure to _narrow().
} // catch clauses not shown here.
...

}

This code is explained as follows:

1. The server calls CORBA::ORB::resolve_initial_references() to get a
reference to the root naming context.

2. The server creates a CosNaming::Name structure that contains a single
component with ID company and an empty kind value.

3. A call to bind_new_context() on the root context binds the newly
created name to a new context object. The new context object is directly
within the scope of the root naming context.

4. The server modifies the CosNaming::Name structure, assigning ID staff
and an empty kind value to the single name component.

5. The server calls bind_new_context() on a reference to the company
context object created in step 3. The Naming Service creates a new
context object and binds the name company.staff to it.

6. The server again modifies the CosNaming::Name structure, assigning ID
john and kind person to the single name component.

7. A call to bind() on the company.staff naming context associates the
name company.staff.john-person with the application object johnVar.

The server code builds up a naming graph by creating individual naming contexts
and then binding a name to the application object within the scope of those
contexts.

P r o g r amm in g w i t h O r b i x N ame s

19

Resolving Object Names in Clients

For a client, a typical use of the Naming Service is to find the initial naming
context and then to resolve a name to obtain an object reference. The following
code sample illustrates this. It finds the object named
company.engineering.manager-person and then prints the manager’s name.

The following IDL definition is assumed:

// IDL
interface Person {

readonly attribute name;
...

};

The client is written as:

// C++
// An Orbix client.
#include <Naming.hh>
...
int main (int argc, char** argv) {

CosNaming::NamingContext_var rootContext;
CosNaming::Name_var name;
Person_var personVar;
CORBA::Object_var objVar;
CORBA::ORB_var orbVar;

try {
orbVar =

CORBA::ORB_init (argc, argv, "Orbix");

// Find the initial naming context:
1 objVar = orbVar->

resolve_initial_references("NameService");
if (rootContext = CosNaming::

NamingContext::_narrow(objVar)) {

2 name = new CosNaming::Name(3);
name->length(3);
name[0].id = CORBA::string_dup("company");
name[0].kind = CORBA::string_dup("");
name[1].id = CORBA::string_dup

("engineering");

O r b i x N ame s P r o g r amme r ’ s a n d A d m in i s t r a t o r ’ s G u i d e

 20

name[1].kind = CORBA::string_dup("");
name[2].id = CORBA::string_dup("manager");
name[2].kind = CORBA::string_dup

("person");

3 objVar = rootContext->resolve(name);
4 if (personVar = Person::_narrow(objVar)) {

cout << personVar->name()
<< " is the engineering manager."
<< endl;

} else { ... }
// Deal with failure to _narrow().

} else { ... }
// Deal with failure to _narrow().

} // catch clauses not shown here.
...

}

This code is explained as follows:

1. The client calls CORBA::ORB::resolve_initial_references() to get a
reference to the root naming context.

2. The client creates a CosNaming::Name structure that contains three
name components. The client assigns this structure to represent the
compound name company.engineering.manager-person.

3. A call to resolve() on the root naming context returns the object
associated with the name company.engineering.manager-person. The
client resolves the entire compound name with a single call to the
Naming Service.

4. The object returned in step 3 is an application object that implements the
IDL interface Person, so the client narrows the returned object to type
Person.

P r o g r amm in g w i t h O r b i x N ame s

21

Iterating through Context Bindings

The following code sample shows a simple example of using the
BindingIterator interface to list the bindings in a context. This code lists the
bindings in the context company.staff:

// C++
CosNaming::NamingContext_var rootContext,
staffContext;
CosNaming::BindingList_var bList;
CosNaming::BindingIterator_var bIter;
CosNaming::Name_var name;
CORBA::Object_var objVar;
CORBA::ORB_var orbVar;

try {
orbVar =

CORBA::ORB_init (argc, argv, "Orbix");

// Find the initial naming context:
1 objVar = orbVar->

resolve_initial_references("NameService");
rootContext =

CosNaming::NamingContext::_narrow(objVar);
if (!CORBA::is_nil (rootContext)) {

2 name = new CosNaming::Name(2);
name->length(2);
name[0].id = CORBA::string_dup("company");
name[0].kind = CORBA::string_dup("");
name[1].id = CORBA::string_dup("staff");
name[1].kind = CORBA::string_dup("");

3 objVar = rootContext->resolve(name);
staffContext = CosNaming::

NamingContext::_narrow(objVar);

if (!CORBA::is_nil (staffContext)) {
const CORBA::ULong batchSize = 10;

4 staffContext->list(batchSize,bList,bIter);
CORBA::ULong i;

O r b i x N ame s P r o g r amme r ’ s a n d A d m in i s t r a t o r ’ s G u i d e

 22

5 for (i = 0; i < bList.length(); i++) {
cout << bList[i].binding_name[0].id

<< "-";
cout << bList[i].binding_name[0].kind

<< endl;
}

// If more than batchSize bindings in
// context, obtain them using next_n().

6 if (!CORBA::is_nil(bIter)) {
while(bIter->next_n(batchSize, bList) {

for (i=0; i < bList.length(); i++) {
cout << bList[i].

binding_name[0].id << "-"
cout << bList[i].

binding_name[0].kind
<< endl;

}
}

} else { ... }
// Deal with failure to _narrow().

} else { ... }
// Deal with failure to _narrow().

} // catch clauses not shown.

The information retrieved by this code may be useful to either a client or a
server. The functionality of this code is:

1. The application calls CORBA::ORB::resolve_initial_references() to
get a reference to the root naming context.

2. It then creates a CosNaming::Name structure that contains two name
components. The client assigns this structure to represent the compound
name company.staff, which is bound to a naming context.

3. The application calls resolve() on the root naming context to obtain a
reference to the company.staff context object.

4. A call to list() on this context object returns a list of at most ten
bindings contained in this context.

P r o g r amm in g w i t h O r b i x N ame s

23

5. The application examines each element in the list of bindings returned in
step 4.

6. If more than ten bindings are available in context company.staff, the
CosNaming::BindingIterator object bIter contains all the bindings not
returned in step 4. The application calls the operation next_n() to
retrieve a list of these additional bindings.

For more information about operation CosNaming::NamingContext::list(),
refer to “CosNaming::NamingContext::list()” on page 101. For more
information about the interface CosNaming::BindingIterator, refer to
“CosNaming::BindingIterator” on page 93.

Finding Unreachable Context Objects

Applications can create naming contexts with no associated name binding. If such
an application exits without destroying these contexts, the context objects
remain in the Naming Service but are unreachable and cannot be deleted. For
example, an application could do this by calling the operation
CosNaming::NamingContext::unbind() to unbind a context name, without
calling CosNaming::NamingContext::destroy() to destroy the corresponding
context object.

On start-up, OrbixNames automatically creates a naming context to handle this
problem. This context is named lost+found. If you create a context without
binding a name to it, or unbind a context name without destroying the context
object, OrbixNames gives the context a special name within the lost+found
context. The format of this name is as follows:

NC_number time

The number value is a random number assigned by OrbixNames. The time value
indicates the date and time at which the name was created in the lost+found
context. The combination of the number and time values uniquely identifies the
naming context in lost+found.

Of course, this naming format makes it almost impossible to determine which
context in lost+found came from which application. However, this is not
important because the lost+found context simply allows you to ensure that the
Bindings Repository does not become cluttered with unreachable context
objects. For example, you might want to destroy all contexts in lost+found
created before a certain date. This is quite straightforward. First, list the

O r b i x N ame s P r o g r amme r ’ s a n d A d m in i s t r a t o r ’ s G u i d e

 24

contents of lost+found using the OrbixNames lsns utility and then delete the
appropriate contexts using the OrbixNames rmns utility. These utilities are
described in the Chapter 4.

For example, the following command deletes the context object associated with
the name "NC_9Thu Dec 10 11-09-02 GMT+00-00 1998" in the lost+found
context:

rmns -x lost+found.NC_9Thu Dec 10 11-09-02 GMT+00-00 1998

Before you delete a context in lost+found, ensure that the context is no longer
required by your applications. For example, if an application uses
CosNaming::NamingContext::new_context() to create a context that it
intends to name later, the context is stored temporarily in lost+found, until the
application binds a name to it. You should take care to avoid deleting such
contexts. Deleting contexts created before a given date is one way to achieve
this.

The lost+found context is most useful during application testing, because
leaving unreachable contexts in the Naming Service is bad application behavior.
When coding your applications, try to ensure that they avoid doing this.

Compiling and Running an Application
This section describes how to build an application that uses OrbixNames, the
configuration variables that are required, how to register an OrbixNames server
in the Implementation Repository, and the options that are available on the
server executable.

The following steps are required to build an application that uses OrbixNames:

1. Generate stub code for the OrbixNames server by passing the
OrbixNames IDL file, NamingService.idl, through your IDL compiler.
Link your application with the client stub code. For example, you can run
the Orbix IDL compiler as follows:

idl NamingService.idl

This generates three files: NamingService.hh, NamingServiceC.cc, and
NamingServiceS.cc. Include the header file NamingService.hh in your
application code and link your application with the object code for
NamingServiceC.cc. Discard NamingServiceS.cc.

P r o g r amm in g w i t h O r b i x N ame s

25

If your application uses the load balancing features of OrbixNames,
described in Chapter 3 on page 35, you must also pass the other
OrbixNames IDL file, LoadBalancing.idl through your IDL compiler,
for example:

idl LoadBalancing.idl

Again, this generates three files: LoadBalancing.hh,
LoadBalancingC.cc, and LoadBalancingS.cc. Include the header file
LoadBalancing.hh in your application code and link your application
with the object code for LoadBalancingC.cc. Discard
LoadBalancingS.cc.

2. Register the OrbixNames server in the Implementation Repository as
described in “Registering the OrbixNames Server” on page 27.

3. Configure the Orbix locator to make the OrbixNames server known to
CORBA::ORB::resolve_initial_references(). Assuming that the
OrbixNames server is registered in the Implementation Repository with
the name NS on host alpha, this can be achieved by adding the following
line to the Orbix.hosts or orbix.hst file:

NS:alpha:

Configuring OrbixNames

When you install OrbixNames, the configuration file orbixnames3.cfg is added
to your system, in the OrbixNames config directory. This file contains the
configuration variables that relate to OrbixNames and it is included in the Orbix
configuration file iona.cfg, as described in the Orbix C++ Administrator’s Guide.

On UNIX, you can set the OrbixNames configuration variables in the
configuration file, for example using the Orbix Configuration Explorer described
in the Orbix C++ Administrator’s Guide, or as environment variables. On
Windows NT these values are set in either the configuration file or the system
registry.

O r b i x N ame s P r o g r amme r ’ s a n d A d m in i s t r a t o r ’ s G u i d e

 26

The relevant configuration variables are:

IT_NAMES_HOME This variable specifies the full path to the bin
directory of your Orbix installation.

IT_NAMES_IP_ADDR By default, a call to CORBA::ORB::
resolve_initial_reference("NameService")
expects the location of the OrbixNames server
to be specified in the Orbix locator configuration
files. You can also specify the IP address of the
server host by setting the variable
IT_NAMES_IP_ADDR. This value overrides the
Orbix locator.

If this value is set, IT_USE_HOSTNAME_IN_IOR
must be set to false.

IT_NAMES_PORT By default, an application contacts the
OrbixNames server using the port number
defined in the Orbix IT_DAEMON_PORT
configuration variable. However, if the
OrbixNames server uses another port, you can
override IT_DAEMON_PORT by setting the value of
IT_NAMES_PORT.

IT_NAMES_REPOSITORY_PATH This variable specifies the path name to the
Bindings Repository. The Bindings Repository is a
persistent repository of name bindings
maintained by the Naming Service. The results of
all update operations, such as bind(), rebind(),
and bind_new_context(), are committed to the
Bindings Repository.

An alternative approach is to use the ‘-r’ flag of
the naming service executable. This flag also
specifies a Bindings Repository and overrides
IT_NAMES_REPOSITORY_PATH.

P r o g r amm in g w i t h O r b i x N ame s

27

When setting the values of these variables in the file orbixnames3.cfg, define
each variable in the OrbixNames scope, that is OrbixNames.IT_NAMES_SERVER,
OrbixNames.IT_NS_HOSTNAME, OrbixNames.IT_NAMES_PATH, and so on.

Registering the OrbixNames Server

As a normal Orbix server, the OrbixNames server must be registered with the
Orbix Implementation Repository.

IT_NAMES_SERVER By default, a call to CORBA::ORB::
resolve_initial_reference("NameService")
expects an OrbixNames server to be registered
in the Implementation Repository with the name
NS.

If this variable is set,
resolve_initial_references() searches for
an OrbixNames server with the name specified.

IT_NAMES_SERVER_HOST By default, a call to CORBA::ORB::
resolve_initial_reference("NameService")
expects the location of the OrbixNames server
to be specified in the Orbix locator configuration
files. You can also specify the server host name
by setting the variable IT_NAMES_SERVER_HOST.
This value overrides the Orbix locator.

If this value is set, IT_USE_HOSTNAME_IN_IOR
must be set to true.

IT_USE_HOSTNAME_IN_IOR When OrbixNames stores an IOR in the
Bindings Repository, the host on which the
object runs is embedded in the IOR. If
IT_USE_HOSTNAME_IN_IOR is set to true, the
name of the host is embedded in the IOR; if it is
set to false, the IP address is embedded. The
default setting is true.

O r b i x N ame s P r o g r amme r ’ s a n d A d m in i s t r a t o r ’ s G u i d e

 28

As usual, the server is registered using either the Graphical Server Manager
utility or the putit utility. Using putit, a typical command to register an
OrbixNames server is:

putit NS "/orbix/bin/ns"

Once registered with the Implementation Repository, the server can be
activated by the Orbix daemon or launched manually.

You can terminate the OrbixNames server in the same way as any Orbix server;
that is by using the killit utility on UNIX, or the Graphical Server Manager
utility.

Options to the OrbixNames Server

The OrbixNames server executable is named ns; it takes the following options:

ns [-v] [-t <timeout>] [-r <repository path>] \
[-I <ns ior file>] [-l] [-h <hashtable size>] \
[-p <thread pool size>] [-e <cache size>]

The options are

-v Outputs version information. Specifying -v does not
cause the OrbixNames server to run.

-t <timeout> Specifies the period of time, in seconds, that the
server may remain idle before timing out. The
default timeout is infinite, that is, the server does
not time out.

-r Specifies the directory to be used as the Bindings
Repository. This overrides the value of
IT_NAMES_PATH, as set in Orbix.cfg (or the system
registry on Windows NT).

-I <ns ior file> Specifies a file where the server will store the root
context IOR as it starts up.

-l Starts the OrbixNames server in load balancing
mode. If you wish to use object groups, you must
start the server with this option.

P r o g r amm in g w i t h O r b i x N ame s

29

Federation of Name Spaces
The collection of all valid names recognized by the Naming Service is called a
name space. A name space is not necessarily located on a single OrbixNames
server, because a context in one OrbixNames server can be bound to a context
in another OrbixNames server on the same host or on a different host. The
name space provided by a Naming Service is the association or federation of the
name spaces of each individual OrbixNames server that comprises the Naming
Service.

Figure 2.2 shows a Naming Service federation that comprises two OrbixNames
servers running on different hosts. In this example, names relating to the
company’s engineering and PR divisions are served by one server, and names
relating to the company’s marketing division are served by a separate server. A
request to resolve a name starts in one OrbixNames server but may continue in

-h <hash table size> In OrbixNames, each naming context has an
associated hash table. A naming context uses this
table to store references to bindings the context
contains. The -h switch allows you to specify the
size of this hash table.

The default hash table size is 23. If you expect your
naming contexts to contain more than this number
of bindings, increase the hash table size to reduce
the number of times the hash table resizes. If you
expect less than this number, decrease the hash
table size to improve performance.

-p <thread pool size> The OrbixNames server is a multi-threaded
application. The -p switch sets the size of the
thread pool used to handle incoming requests. The
default value is 10.

-e <cache size> The OrbixNames server caches naming contexts in
memory to improve performance. The -e switch
specifies how many contexts should be cached. The
default value is 10.

O r b i x N ame s P r o g r amme r ’ s a n d A d m in i s t r a t o r ’ s G u i d e

 30

another server’s database. Clients do not have to be aware that more than one
server is involved in the resolution of a name, and they do not need to know
which server interprets which part of a compound name.

The following code sample shows how to create the naming context company on
host A and the naming context marketing, which is a sub-context of company,
on host B:

// C++
#include <Naming.hh>
...
int main (int argc, char** argv) {

const char* hostA = "A";
const char* hostB = "B";
char* ior;
CORBA::Object_var objVar;
CosNaming::NamingContext_var hostAContext,

hostBContext, companyContext,
marketingContext;

CosNaming::Name_var name;
CORBA::ORB_var orbVar;

try {
orbVar =

CORBA::ORB_init (argc, argv, "Orbix");

Figure 2.2: Naming Graph Spanning Two OrbixNames Servers

marketing

company

engineering PR

Host A

Host B

P r o g r amm in g w i t h O r b i x N ame s

31

1 // Read IOR for root context on host B
// from a file into the string ior.
// (Not shown.)
...
objVar = orbVar->string_to_object (ior);

hostBContext =
CosNaming::NamingContext::_narrow
(objVar);

2 name = new CosNaming::Name(1);
name->length(1);
name[0].id = CORBA::string_dup("marketing");
name[0].kind = CORBA::string_dup("");

3 marketingContext =
hostBContext->bind_new_context (name);

4 // Read IOR for root context on host A
// from a file into the string ior.
// (Not shown.)
...
objVar = orbVar->string_to_object (ior);

hostAContext =
CosNaming::NamingContext::_narrow
(objVar);

5 name[0].id = CORBA::string_dup("company");
name[0].kind = CORBA::string_dup("");

6 companyContext =
hostAContext->bind_new_context (name);

7 name[0].id = CORBA::string_dup("marketing");
name[0].kind = CORBA::string_dup("");

8 companyContext->bind_context (
name, marketingContext);

...
} // catch clauses not shown here.
...

}

O r b i x N ame s P r o g r amme r ’ s a n d A d m in i s t r a t o r ’ s G u i d e

 32

This code is explained as follows:

1. The application assumes that the IORs for the root naming contexts on
hosts A and B have been written to files, as described in “Making Initial
Contact with the Naming Service” on page 15. The application then
obtains a reference to the root naming context associated with the
OrbixNames server on host B.

2. The application creates a name structure with a single element. This
structure represents the name of the marketing context on host B.

3. A call to bind_new_context() creates a new context on host B and
binds the name marketing to it.

4. The application gets a reference to the root naming context associated
with the OrbixNames server on host A.

5. The application modifies the name structure to contain the name of the
company context.

6. A call to bind_new_context() creates a new context on host A and
binds the name company to it.

7. The application modifies the name structure to contain the name of the
marketing context, which is a sub-context of company on host A.

8. The operation bind_context(), called on the company context, binds
the name company-marketing to the object reference associated with
the marketing context on host B. If a client contacts the OrbixNames
server on host A and resolves a name in the company-marketing
context, the server on host B completes the name resolution.

You can also create a federated name space using the OrbixNames utilities.
These utilities are described in detail in the Chapter 4. To achieve the same
result as the code shown above, first use the putnewncns command to create
the company naming context on host A and the marketing naming context on
host B:

putnewncns -h A company
putnewncns -h B marketing

Next, instruct OrbixNames to copy the object reference for the marketing
context object to the file marketing.ior:

catns -h B marketing > marketing.ior

P r o g r amm in g w i t h O r b i x N ame s

33

Use the newncns to create a marketing context on host A:

newncns -h A marketing

Finally, associate the name of this context with the object reference of the
marketing context on host B:

putncns -h A company.marketing -f marketing.ior

O r b i x N ame s P r o g r amme r ’ s a n d A d m in i s t r a t o r ’ s G u i d e

 34

35

 3
Load Balancing with OrbixNames

Load balancing is a crucial requirement for many distributed
applications. This chapter describes the powerful, but easy-to-use
OrbixNames approach to load balancing in CORBA applications.

The Need for Load Balancing
The role of the CORBA Naming Service is critical in large-scale distributed
applications. The Naming Service acts as a central repository of objects, which
clients use to locate server applications. Administrators can relocate or upgrade
server applications by modifying the contents of the Naming Service. This
requires no coding modifications on the client side.

Figure 3.1 on page 36 shows a typical OrbixNames environment:

• The Bank server binds an object obj1, to a name name1, in the Naming
Service.

• Clients 1...N resolve this name by obtaining a proxy for obj1.

• Clients 1...N then invoke obj1 directly.

O r b i x N ame s P r o g r amme r ’ s a n d A d m in i s t r a t o r ’ s G u i d e

 36

Figure 3.1: Example of Typical OrbixNames Usage

As the number of deployed clients increases, the load on an individual server
may become excessive. To redress this problem, server load balancing through
replication may be required.

In the example shown in Figure 3.1, replication involves creating a new server
Bank_replica, which contains an object obj1_replica. This is an object
offering an identical service to obj1. The new server registers the replica object
in the Naming Service under the name name1_replica. Clients can choose to
resolve either name1 or name1_replica, to access either obj1 or
obj1_replica respectively. This approach is simple and practical, but requires a
significant amount of application-specific coding.

Code changes on the client side are especially problematic. For example, if the
clients are installed extensively in an enterprise, each installation will need to be
upgraded when clients are modified to select different replica objects. Similarly, if
two servers are insufficient, another server Bank_replica_2 will be required,
necessitating further code modifications.

This simple approach to replication does not scale very well because, unlike
upgrading or relocating servers, it involves code changes on the client side.
However, the Naming Service is a useful candidate for handling server
replication and OrbixNames provides a solution to the scalability problem.

L oa d B a l a n c i n g w i t h O r b i x N ame s

37

Introduction to Load Balancing in OrbixNames
The CORBA Naming Service defines a repository of names that map to objects.
A name maps to one object only. OrbixNames extends the CORBA Naming
Service model to allow a name to map to a group of objects. An object group is a
collection of objects that can increase or decrease in size dynamically. For
example, {obj1, obj1_replica, obj1_replica_2} would constitute an object
group.

Each object group has a selection algorithm. This algorithm is applied when a
client resolves the name associated with the object group. Two algorithms are
supported: round-robin selection and random selection.

OrbixNames supports object groups by introducing new IDL interfaces to the
Naming Service. These interfaces enable you to create object groups, add
objects to and remove objects from groups, and to find out which objects are
members of a particular group. If you want to take advantage of object groups,
you can use these interfaces in your servers to create and manipulate groups.
Your client code can remain unchanged.

Figure 3.2 illustrates the concept of binding a name to multiple objects using an
object group.

Figure 3.2: Associating a Name with an Object Group

 Name

 Name

 bind()

 Object 1

 Object

 Object 3

 Object 2

 Object Group

Pure CORBA
Naming Service

Optional
OrbixNames
Extension

O r b i x N ame s P r o g r amme r ’ s a n d A d m in i s t r a t o r ’ s G u i d e

 38

The Interface to Object Groups in OrbixNames

The IDL module LoadBalancing, defined in the IDL file LoadBalancing.idl,
provides access to the load balancing features of OrbixNames:

module LoadBalancing {
exception no_such_member{};
exception duplicate_member{};
exception duplicate_group{};
exception no_such_group{};
typedef string memberId;
typedef sequence<memberId> memberIdList;
typedef string groupId;
typedef sequence<groupId> groupList;

struct member {
Object obj;
memberId id;

};

interface ObjectGroup;
interface RoundRobinObjectGroup;
interface RandomObjectGroup;

interface ObjectGroupFactory {
RoundRobinObjectGroup createRoundRobin(in groupId id)

raises (duplicate_group);
RandomObjectGroup createRandom(in groupId id)

raises (duplicate_group);
ObjectGroup findGroup(in groupId id) raises (no_such_group);
groupList rr_groups();
groupList random_groups();

};

L oa d B a l a n c i n g w i t h O r b i x N ame s

39

interface ObjectGroup {
readonly attribute string id;

Object pick();
void addMember(in member mem) raises (duplicate_member);
void removeMember(in memberId id) raises (no_such_member);
Object getMember(in memberId id) raises (no_such_member);
memberIdList members();
void destroy();

};

interface RandomObjectGroup : ObjectGroup {};
interface RoundRobinObjectGroup : ObjectGroup {};

};

Part IV of this guide provides a complete reference for these definitions.

Using Object Groups in OrbixNames

Because object groups are designed to be transparent to clients, you generally
use the LoadBalancing module when writing servers. There are four common
tasks for which servers use this module:

• Creating a new object group and adding objects to it.

• Adding objects to an existing object group.

• Removing objects from an object group.

• Removing an object group.

The remainder of this section describes how to do each of these operations.

O r b i x N ame s P r o g r amme r ’ s a n d A d m in i s t r a t o r ’ s G u i d e

 40

Creating a New Object Group
To create a new object group and add objects to it:

1. Get a reference to a naming context, for example the root naming
context.

2. On the naming context object, call the operation
CosNaming::NamingContext::OBfactory(). This returns a reference to
a LoadBalancing::ObjectGroupFactory object.

3. On the object group factory, call the operation
LoadBalancing::ObjectGroupFactory::createRandom() or
LoadBalancing::ObjectGroupFactory::createRoundRobin() to
create an object group that uses the selection algorithm you want. Each
of these operations returns a reference to an object that inherits
interface LoadBalancing::ObjectGroup.

4. Use the operation LoadBalancing::ObjectGroup::addMember() to add
your application objects to the newly created object group.

5. Use the operation CosNaming::NamingContext::bind() to bind a name
to the LoadBalancing::ObjectGroup object in the usual way.

When creating the object group in step 3, you must specify a group identifier.
This identifier is a string value unique to that object group.

Similarly, when adding a member to the object group, you must provide a
reference to the object and a corresponding member identifier. This identifier is a
string value that must be unique within the object group.

In both cases, you decide the format of the identifier string. OrbixNames does
not interpret these identifiers.

Adding Objects to an Existing Object Group

Before adding objects to an existing object group, you must get a reference to
the corresponding LoadBalancing::ObjectGroup object. You can do this using
the group identifier or the name bound to the object group. This section uses
the group identifier.

L oa d B a l a n c i n g w i t h O r b i x N ame s

41

To add objects to an existing object group:

1. Get a reference to a naming context, for example the root naming
context.

2. On the naming context object, call the operation
CosNaming::NamingContext::OBfactory(). This returns a reference to
a LoadBalancing::ObjectGroupFactory object.

3. On the object group factory, call the operation
LoadBalancing::ObjectGroupFactory::findGroup(), passing the
identifier for the group as a parameter. This operation returns a
reference to the LoadBalancing::ObjectGroup object associated with
the object group.

4. Use the operation LoadBalancing::ObjectGroup::addMember() to add
your application objects to the object group.

Removing Objects from an Object Group
Removing an object from a group is quite straightforward if you know the object
group identifier and the member identifier for the object:

1. Get a reference to a naming context, for example the root naming
context.

2. On the naming context object, call the operation
CosNaming::NamingContext::OBfactory(). This returns a reference to
a LoadBalancing::ObjectGroupFactory object.

3. On the object group factory, call the operation
LoadBalancing::ObjectGroupFactory::findGroup(), passing the
identifier for the group as a parameter. This operation returns a
reference to the LoadBalancing::ObjectGroup object associated with
the object group.

4. On the object group, call the operation
LoadBalancing::ObjectGroup::removeMember() to remove the
required object from the group. You must specify the member identifier
for the object as a parameter to this operation.

If you already have a reference to the LoadBalancing::ObjectGroup object
associated with the object group, steps 1 to 3 are unnecessary.

O r b i x N ame s P r o g r amme r ’ s a n d A d m in i s t r a t o r ’ s G u i d e

 42

Removing an Object Group
If you do not have a reference to the object group you want to remove, do the
following:

1. Get a reference to the root naming context.

2. Use the root naming context to unbind the name associated with the
object group, by calling CosNaming::NamingContext::unbind() in the
usual way.

3. On the root naming context object, call the operation
CosNaming::NamingContext::OBfactory(). This returns a reference to
a LoadBalancing::ObjectGroupFactory object.

4. On the object group factory, call the operation
LoadBalancing::ObjectGroupFactory::findGroup(), passing the
identifier for the group as a parameter. This operation returns a
reference to the LoadBalancing::ObjectGroup object associated with
the object group.

5. On the object group, call the operation
LoadBalancing::ObjectGroup::destroy() to remove the group from
the Naming Service.

If you already have a reference to the target LoadBalancing::ObjectGroup
object, steps 3 and 4 are unnecessary.

Finding an Object Group without the Group Identifier

The procedures described in the previous sections assume that your application
gets a reference to an object group using the group identifier. You can also get a
reference to an object group if you know the name bound to the group in the
Naming Service. To do this, call the operation
CosNaming::NamingContext::resolve_object_group(). This operation is
described in detail on page 107.

L oa d B a l a n c i n g w i t h O r b i x N ame s

43

Example of Load Balancing with Object Groups
This section uses sample code to show how you can take advantage of object
groups in your CORBA applications. The example described here is a very
simple stock market system. In this example, a CORBA object has access to all
current stock prices. Clients request stock prices from this CORBA object and
display those prices to the user of the application.

In any realistic stock market application, there are potentially many stock prices
available and many clients that require price updates without delay. Given such a
high processing load, a single CORBA object may not be able to satisfy client
requirements. A simple solution to this problem is to replicate the CORBA
object, invisibly to the client, using object groups.

Sample code for the application described in this section is available in the
load_balancing demonstration directory of your OrbixNames installation.
This sample code may differ slightly from the code described in this section.

Defining the IDL for the Application

The architecture for the stock market system is shown in Figure 3.3 on page 44.
Two servers process client requests for stock price information. The server
stockmarketserver1 creates two CORBA objects for this purpose. Server
stockmarketserver2 creates an additional CORBA object which, from a client
perspective, provides exactly the same service as the objects in
stockmarketserver1.

The IDL for this application requires only a single interface definition. This
interface, called StockMarketFeed, is implemented by each of the three CORBA
objects.

O r b i x N ame s P r o g r amme r ’ s a n d A d m in i s t r a t o r ’ s G u i d e

 44

Interface StockMarketFeed is defined in the module ObjectGroupDemo:

// IDL
module ObjectGroupDemo {

interface StockMarketFeed {
enum feedFailureDetails {

service_interruption, stock_feed_terminated};

exception stock_unavailable {};
exception stock_feed_failure {

feedFailureDetails reason;
};

long read_stock (in string stock_name)
raises (stock_unavailable, stock_feed_failure);

};
};

Figure 3.3: Architecture of the Stock Market Example

S to ckM a rk e tFe ed 3

s toc km arke tse r ve r2

S tock M a rke tF ee d1

s toc km arke tse r ve r1

O b je c tG ro up

O rb ixN a m es

C lien t

C re a te g rou p

B ind n am e to g rou p

A dd S M F 1 and
S M F 2 to g roup

Ad d S M F 3 to g rou p

G et s to ck p ric es

R e so lv e g roup nam e

S tock M a rke tF ee d2

L oa d B a l a n c i n g w i t h O r b i x N ame s

45

The interface StockMarketFeed includes a single operation, read_stock(),
which returns the current price of the stock associated with a specified stock
name. A name is a string identifier unique to each stock. This operation can raise
the following exceptions:

Creating an Object Group and Adding Objects

After you define your IDL, the next step in developing an application is to
implement your interfaces. Using object groups has no effect on how you do
this, therefore this section assumes that you have defined a C++ class,
StockMarketFeedImpl, which implements the interface StockMarketFeed.

When you have implemented your IDL interfaces, you must develop a server
program that contains and manages your implementation objects. In our
application, we have two servers. The first, stockmarketserver1, creates two
StockMarketFeed implementation objects, creates an object group in the
Naming Service, and adds the implementation objects to this group. The second
server, stockmarketserver2, creates an additional StockMarketFeed
implementation object and adds this to the existing object group.

The source code for the main() routine of stockmarketserver1 is:

// C++
#include <stdlib.h>
#include <iostream.h>
#include "NamingService.hh"
#include "StockMarketFeedImpl.h"
#include "common.h"

int main () {
CosNaming::NamingContext_var root_context_var;
LoadBalancing::ObjectGroupFactory_var ogfactory_var;
LoadBalancing::ObjectGroup_var object_group_var;
ObjectGroupDemo::StockMarketFeed_var stock_market_feed1;
ObjectGroupDemo::StockMarketFeed_var stock_market_feed2;

stock_unavailable This exception is raised by read_stock() to indicate
that the specified stock name is not valid.

stock_feed_failure A stock_feed_failure indicates that an error
occurred in communications between the server and
the source of stock prices.

O r b i x N ame s P r o g r amme r ’ s a n d A d m in i s t r a t o r ’ s G u i d e

 46

CORBA::Object_var object_var;

CORBA::ORB_ptr orb_p;
CORBA::BOA_ptr boa_p;
CORBA::ORB_var orb_var;
CORBA::BOA_var boa_var;

// Initialize the ORB and BOA.
orb_var = CORBA::ORB_init (argc, argv, "Orbix");
boa_var = orb_var->BOA_init (argc, argv, "Orbix_BOA");
orb_p = orb_var;
boa_p = boa_var;

// Initialize the server name. (Not shown here.)
...

// Create implementation objects.
1 stock_market_feed1 = new StockMarketFeedImpl ();

stock_market_feed2 = new StockMarketFeedImpl ();

try {
// Get root context.

2 root_context_var = get_root_context ();
if (CORBA::is_nil (root_context_var))

return 1;

// Get object group factory from root context.
3 object_var = root_context_var->OBfactory ();

ogfactory_var =
LoadBalancing::ObjectGroupFactory::_narrow (object_var);

if (CORBA::is_nil ((LoadBalancing::ObjectGroupFactory_ptr)
ogfactory_var)) {
cerr << "Failed to get object group factory." << endl;
return 1;

}

// Create a group and bind a name to it.
LoadBalancing::groupId_var sms_group_identifier =

CORBA::string_dup ("StockMarketServices");
CORBA::String_var sms_object_group_name =

CORBA::string_dup ("stockmarketgroupserver");

L oa d B a l a n c i n g w i t h O r b i x N ame s

47

4 if (!(object_group_var =
create_group (ogfactory_var, sms_group_identifier,
sms_object_group_name, root_context_var)))
return 1;

// Add two stock market feed objects to the group.
5 if (!add_object_to_group (stock_market_feed1,

"StockMarketFeed1", object_group_var)) {
cerr << "Failed to add object to group." << endl;
return 1;

}

// Add two stock market feed objects to the group.
if (!add_object_to_group (stock_market_feed2,

"StockMarketFeed2", object_group_var)) {
cerr << "Failed to add object to group." << endl;
return 1;

}

// Handle client requests.
6 boa_var->impl_is_ready ("stockmarketserver1");

}
catch (CORBA::SystemException &se) {

cerr << "Unexpected exception:" << endl;
cerr << &se;
return 1;

}
catch (...) {

cerr << "Unknown exception." << endl;
return 1;

}

return 0;
}

O r b i x N ame s P r o g r amme r ’ s a n d A d m in i s t r a t o r ’ s G u i d e

 48

The functionality of this code is as follows:

1. The server creates two implementation objects of type
StockMarketFeedImpl.

2. The function get_root_context() returns a reference to the root
naming context in the Naming Service. The implementation of this
function is shown in “Getting the Root Naming Context”.

3. The server calls the operation OBfactory() on the root naming context.
This operation is implemented by the Naming Service and returns a
factory object, of type LoadBalancing::ObjectGroupFactory, which
the server can use to create object groups.

4. The server calls the function create_group(). This function uses the
object group factory to create a new group with the specified identifier. It
then binds a specified Naming Service name to this group. The
implementation of create_group() is shown in “Creating an Object
Group” on page 49.

5. The function add_object_to_group() adds the StockMarketFeedImpl
objects to the object group created in step 4. The implementation of this
function is shown in “Adding an Object to an Object Group” on page 52.

6. Finally, the server prepares to receive client requests by calling
CORBA::BOA::impl_is_ready() as usual.

Getting the Root Naming Context
The programs in this chapter use the following simple function to get a reference
to the root naming context:

// C++
#include <stdlib.h>
#include <iostream.h>
#include "NamingService.hh"

CosNaming::NamingContext_ptr get_root_context () {
CORBA::Object_var object_var;
CosNaming::NamingContext_ptr root_context_p;
CORBA::ORB_var orb_var;

try {
orb_var =

CORBA::ORB_init (argc, argv, "Orbix");

L oa d B a l a n c i n g w i t h O r b i x N ame s

49

object_var =
orb_var->resolve_initial_references ("NameService");

root_context_p =
CosNaming::NamingContext::_narrow (object_var);

}
catch (CORBA::SystemException &se) {

cerr << "Unexpected system exception:" << endl;
cerr << &se;
return CosNaming::NamingContext::_nil ();

}
catch (...) {

cerr << "Unknown exception." << endl;
return CosNaming::NamingContext::_nil ();

}

if (CORBA::is_nil (root_context_p)) {
cerr << "Narrow to root context failed." << endl;
return CosNaming::NamingContext::_nil ();

}

return root_context_p;
}

Creating an Object Group
In this example, the server calls the function create_group() to create an
object group and bind a Naming Service name to it. You can implement this
function as follows:

// C++
#include <stdlib.h>
#include <iostream.h>
#include "NamingService.hh"
#include "StockMarketFeedImpl.h"
...

LoadBalancing::ObjectGroup_ptr create_group (
LoadBalancing::ObjectGroupFactory_ptr factory_p,
LoadBalancing::groupId_var id,
CORBA::String_var name,
CosNaming::NamingContext_ptr context_p) {
LoadBalancing::ObjectGroup_ptr group_p;

O r b i x N ame s P r o g r amme r ’ s a n d A d m in i s t r a t o r ’ s G u i d e

 50

try {
1 group_p = factory_p->createRoundRobin (id);

2 if (!bind_name_to_group (name, group_p, context_p))
return 0;

}
catch (LoadBalancing::duplicate_group& dg) {

cout << "Group already exists." << endl;

try {
group_p = factory_p->findGroup (id);

}
catch (LoadBalancing::no_such_group& nsg) {

cerr << "Failed to find group." << endl;
return 0;

}
}

return group_p;
}

The function create_group() takes four parameters: a reference to the object
group factory, a string value used to identify the new group, a string value used
to create the name associated with all objects in the group, and a reference to
the naming context in which this name should be bound.

The function create_group() makes two important calls:

1. It calls the operation createRoundRobin() on the object group factory in
the Naming Service. This operation returns a new object group in which
objects are selected on a round-robin basis.

2. Function create_group() then calls bind_name_to_group(), a local
function that binds a Naming Service name to the newly created group.

Binding a Name to an Object Group

The function create_group() calls the function bind_name_to_group() to bind
a name to the object group. When a client resolves this name, it receives a
reference to one of the group’s member objects, selected by the Naming Service
in accordance with the group selection algorithm. The client does not know that
the name is actually bound to a group of objects.

L oa d B a l a n c i n g w i t h O r b i x N ame s

51

You can code bind_name_to_group() as follows:

// C++
int bind_name_to_group (

const char *name_str,
CORBA::Object_ptr object_p,
CosNaming::NamingContext_ptr context_p) {
CosNaming::Name_var group_name = new CosNaming::Name (2);
group_name->length (2);

// Bind name in context LoadBalancingDemo.
// Assume this context already exists.
group_name[0].id = CORBA::string_dup ("LoadBalancingDemo");
group_name[0].kind = CORBA::string_dup ("");
group_name[1].id = CORBA::string_dup (name_str);
group_name[1].kind = CORBA::string_dup ("");

try {
context_p->bind (group_name, object_p);

}
catch (CosNaming::NamingContext::NotFound) {

cerr << "NotFound exception." << endl;
return 0;

}
catch (CosNaming::NamingContext::CannotProceed) {

cerr << "CannotProceed exception." << endl;
return 0;

}
catch (CosNaming::NamingContext::InvalidName) {

cerr << "InvalidName exception." << endl;
return 0;

}
catch (CosNaming::NamingContext::AlreadyBound) {

cerr << "AlreadyBound exception." << endl;
return 0;

}
catch (CORBA::SystemException &se){

cerr << "Unexpected exception:" << endl;
cerr << &se << endl;
return 0;

}
return 1;

}

O r b i x N ame s P r o g r amme r ’ s a n d A d m in i s t r a t o r ’ s G u i d e

 52

The functionality of bind_name_to_group() is quite straightforward. This
function simply calls bind() on a naming context to associate a Naming Service
name with an object. In this case, the object’s true type is
LoadBalancing::ObjectGroup, so the name is associated with an object group.

In this example, the object group name is bound in the context
LoadBalancingDemo. The code assumes that this naming context already exists.
For example, you could create this context in the initialization code for
stockmarketserver1 or using the OrbixNames putnewncns utility, described in
Chapter 4 on page 63.

Adding an Object to an Object Group

After creating the object group, stockmarketserver1 adds its
StockMarketFeed implementation objects to the group. To do this, the server
calls the function add_object_to_group():

// C++
#include <stdlib.h>
#include <iostream.h>
#include "NamingService.hh"
#include "StockMarketFeedImpl.h"

int add_object_to_group (
ObjectGroupDemo::StockMarketFeed_ptr object_p,
const char* id,
LoadBalancing::ObjectGroup_ptr objectGroup_p) {

LoadBalancing::member memberDetails;

try {
1 memberDetails.obj =

ObjectGroupDemo::StockMarketFeed::_duplicate (object_p);
memberDetails.id = CORBA::string_dup (id);

2 objectGroup_p->addMember (memberDetails);
}

3 catch (LoadBalancing::duplicate_member& dm) {
cerr << "Member with id " << memberDetails.id

<< " already exists." << endl;
return 0;

}

L oa d B a l a n c i n g w i t h O r b i x N ame s

53

catch (CORBA::SystemException& se) {
cerr << "Unexpected exception:" << endl;
cerr << &se << endl;
return 0;

}
return 1;

}

The function add_object_to_group() takes three parameters: the object to be
added to the object group, a string that uniquely identifies the object within the
group, and a reference to the object group itself. The member identifier has no
effect on the naming of the object within the Naming Service. To obtain a
reference to the object, a client resolves the name bound to the object group.

The functionality of add_object_to_group() is as follows:

1. The server creates an IDL struct of type LoadBalancing::member
which contains two items: a reference to the StockMarketFeedImpl
object, and a string that identifies the object within the group.

2. The server adds the new member to the object group in the Naming
Service by calling the operation addMember() on the corresponding
LoadBalancing::ObjectGroup object.

3. If the string identifier of the new member clashes with an existing
member identifier, the operation addMember() throws an exception of
type LoadBalancing::duplicate_member to indicate this. In this case
addMember() does not update the contents of the object group in the
Naming Service.

Creating Replicated Objects

In this example, the server stockmarketserver2 replicates the behavior of
stockmarketserver1. To do this, it creates a new StockMarketFeed
implementation object which provides the same service to clients as the object
in stockmarketserver1. It then adds this object to the existing object group,
which is associated with the group identifier StockMarketServices and the
name LoadBalancingDemo-stockmarketgroupserver in the Naming Service.

O r b i x N ame s P r o g r amme r ’ s a n d A d m in i s t r a t o r ’ s G u i d e

 54

The source code for the main() routine of stockmarketserver2 is:

// C++
#include <stdlib.h>
#include <iostream.h>
#include "NamingService.hh"
#include "StockMarketFeedImpl.h"
#include "common.h"

int main () {
CosNaming::NamingContext_var root_context_var;
LoadBalancing::ObjectGroup_var group_var;
CORBA::Object_var object_var;
CORBA::String_var group_id;
ObjectGroupDemo::StockMarketFeed_var feed_object;

CORBA::ORB_ptr orb_p;
CORBA::BOA_ptr boa_p;
CORBA::ORB_var orb_var;
CORBA::BOA_var boa_var;

// Initialize the ORB and BOA.
orb_var = CORBA::ORB_init (argc, argv, "Orbix");
boa_var = orb_var->BOA_init (argc, argv, "Orbix_BOA");
orb_p = orb_var;
boa_p = boa_var;

// Initialize the server name. (Not shown here.)
...

group_id = CORBA::string_dup ("ObjectDemoGroup");
feed_object = new StockMarketFeedImpl ();

try {
1 group_var = find_group (group_id);

if (CORBA::is_nil (group_var)) {
cerr << "Failed to get object group." << endl;
return 1;

}

L oa d B a l a n c i n g w i t h O r b i x N ame s

55

// Add stock market feed object to the group.
2 if (!add_object_to_group (

feed_object, "StockMarketFeed3", group_var)) {
cerr << "Failed to add object to group." << endl;
return 1;

}

// Handle client requests.
3 boa_var->impl_is_ready ("stockmarketserver2");

}
catch (CORBA::SystemException &se) {

cerr << "Unexpected exception:" << endl;
cerr << &se;
return 1;

}
catch (...) {

cerr << "Unknown exception." << endl;
return 1;

}

return 0;
}

The functionality of this code is as follows:

1. The server calls the function find_group(), which contacts the Naming
Service to get a reference to the required object group. This function is
described in detail in “Finding an Existing Object Group” on page 56.

2. The server calls add_object_to_group() to make the object a member
of the existing object group.

3. The server prepares to receive client requests by calling
CORBA::BOA::impl_is_ready() as usual.

O r b i x N ame s P r o g r amme r ’ s a n d A d m in i s t r a t o r ’ s G u i d e

 56

Finding an Existing Object Group
The most important part of stockmarketserver2 is the function
find_group(), which retrieves a reference to an existing object group. One way
to do this is as follows:

// C++
#include <stdlib.h>
#include <iostream.h>
#include "NamingService.hh"
#include "StockMarketFeedImpl.h"
...

LoadBalancing::ObjectGroup_ptr find_group (
CORBA::String_var group_id) {

CosNaming::NamingContext_var root_context_var;
LoadBalancing::ObjectGroupFactory_var factory_var;
LoadBalancing::ObjectGroup_var group_var;
CORBA::Object_var object_var;

try {
// Get root context.

1 if (!(root_context_var = get_root_context ()))
return LoadBalancing::ObjectGroup::_nil ();

// Get object group factory from root context.
2 object_var = root_context_var->OBfactory ();

factory_var =
LoadBalancing::ObjectGroupFactory::_narrow (object_var);

if (CORBA::is_nil ((LoadBalancing::ObjectGroupFactory_ptr)
factory_var)) {
cerr << "Failed to get object group factory." << endl;
return LoadBalancing::ObjectGroup::_nil ();

}

3 group_var = factory_var->findGroup (group_id);
}

L oa d B a l a n c i n g w i t h O r b i x N ame s

57

catch (LoadBalancing::no_such_group &nsg) {
cerr << "no_such_group exception." << endl;
return LoadBalancing::ObjectGroup::_nil ();

}
catch (CORBA::SystemException &se) {

cerr << "Unexpected exception:" << endl;
cerr << &se;
return LoadBalancing::ObjectGroup::_nil ();

}

return LoadBalancing::ObjectGroup::_duplicate (group_var);
}

The functionality of this code is as follows:

1. A call to get_root_context() returns a reference to the root naming
context.

2. The server calls OBfactory() on the root naming context to get a
reference to an object group factory.

3. The server calls the operation findGroup() on the object group factory.
The operation findGroup() is defined on the interface
LoadBalancing::ObjectGroupFactory. Given a group identifier, this
operation returns a reference to the corresponding
LoadBalancing::ObjectGroup object.

Accessing the Objects from a Client

All objects in an object group provide the same service to clients. A client that
resolves a name in the Naming Service does not know if the name is bound to an
object group or a single object. The client receives a reference to one object
only. A client program resolves an object group name in exactly the same way as
it would resolve a name bound to just one object.

O r b i x N ame s P r o g r amme r ’ s a n d A d m in i s t r a t o r ’ s G u i d e

 58

For example, the main() routine of the stock market example client could look
like this:

// C++
#include <iostream.h>
#include <stdlib.h>
#include "ObjectGroupDemo.hh"
#include "NamingService.hh"

int main () {
CosNaming::NamingContext_var root_context_var;
ObjectGroupDemo::StockMarketFeed_var feed_var;
CORBA::Object_var object_var;
CosNaming::Name_var name;

// Create name to be resolved.
name = new CosNaming::Name(2);
name->length (2);
name[0].id = CORBA::string_dup ("LoadBalancingDemo");
name[0].kind = CORBA::string_dup ("");
name[1].id = CORBA::string_dup ("stockmarketgroupserver");
name[1].kind = CORBA::string_dup ("");

try {
// Get root context.
root_context_var = get_root_context ();

// Resolve name.
object_var = root_context_var->resolve (name);

if (CORBA::is_nil (object_var)) {
cerr << "Failed to resolve name." << endl;
return 1;

}

feed_var
= ObjectGroupDemo::StockMarketFeed::_narrow (object_var);

// Use stock market feed object. (Not shown.)
...

}

L oa d B a l a n c i n g w i t h O r b i x N ame s

59

catch (CosNaming::NamingContext::NotFound) {
cerr << "NotFound exception." << endl;
return 1;

}
catch (CosNaming::NamingContext::CannotProceed) {

cerr << "CannotProceed exception." << endl;
return 1;

}
catch (CosNaming::NamingContext::InvalidName) {

cerr << "InvalidName exception." << endl;
return 1;

}
catch (CORBA::SystemException &se){

cerr << "Unexpected exception:" << endl;
cerr << &se;
return 1;

}

return 0;
}

O r b i x N ame s P r o g r amme r ’ s a n d A d m in i s t r a t o r ’ s G u i d e

 60

Part III

OrbixNames
Administrator’s Guide

63

 4
Using the OrbixNames Utilities

OrbixNames provides a set of command line utilities that allow you
to monitor and manage the Naming Service externally to your
applications. This chapter describes these utilities.

The OrbixNames command line utilities allow you to manipulate the contents of
the Naming Service directly. It is often useful to do this. For example, the
utilities are especially convenient when testing applications that use the Naming
Service.

There are two general categories of OrbixNames utilities:

• The name management utilities allow you to create, delete, and examine
name bindings in the Names Repository.

• The object group management utilities allow you to create, delete, and
manage the contents of object groups.

This chapter examines both types of utility in detail.

O r b i x N ame s P r o g r amme r ’ s a n d A d m in i s t r a t o r ’ s G u i d e

 64

Managing Name Bindings
The name management utilities allow you to create and manipulate name
bindings directly from the command line. You can use these utilities to construct
and navigate a naming graph.

The name management utilities are:

The remainder of this uses these utilities to build a naming graph and populate it
with name bindings. The full syntax for the utilities is given in “Syntax of the
Name Management Utilities” on page 70.

Note: Many of these utilities take object references as command line
arguments. These object references are expected in the string format
returned from the function CORBA::ORB::object_to_string(). By
default, this string format represents an Interoperable Object Reference
(IOR). In this chapter, all object references are shown in native Orbix
format for convenience. To use IORs, do not specify the -orbixprot
option when running the utilities.

catns Given a name, outputs a reference to the object to which the
name is bound. If the object reference is an Interoperable
Object Reference (IOR), the reference is parsed and the
information displayed.

lsns Lists bindings in a context.

newncns Creates a new unbound context. You can subsequently bind a
name to the context using putns.

putns Binds a name to an object.

putncns Binds a name to an unbound context created using newncns.

putnewncns Creates a new context and binds a name to it.

reputns Rebinds a name to an object.

reputncns Rebinds a context, removing the original binding.

rmns Removes a name binding and optionally deletes a naming
context.

U s i n g t h e O r b i xN ame s U t i l i t i e s

65

Using the Name Utilities

This section uses the OrbixNames utilities to build the naming graph used in
Chapter 2. Figure 4.1 recalls the structure of this graph.

Creating Naming Contexts
The simplest way to create a naming context is to use the putnewncns utility.
For example, the following command creates a new context bound to the name
with the ID company and an empty kind value:

putnewncns -orbixprot company

The name is given in the format id-kind. The combination of ID and kind fields
must unambiguously specify the name.

Further examples are:

• Create a new naming context bound to the name company.engineering
(the context company must already exist).

putnewncns -orbixprot company.engineering

Figure 4.1: A Naming Context Graph

john managerpaulajames paulajohn
support

james manager

engineering

company

staff

O r b i x N ame s P r o g r amme r ’ s a n d A d m in i s t r a t o r ’ s G u i d e

 66

• Create a new context bound to the name
company.engineering.support (the context company.engineering
must already exist).

putnewncns -orbixprot company.engineering.support

You can also use the newncns utility to create an unbound context:

newncns -orbixprot
Created new UNBOUND Naming Context with object reference
:\host.iona.com:NS:NC_3::IR:CosNaming_NamingContext

A context created using newncns can be bound using the putncns utility. The
following command binds the new context to the name company.staff.

putncns -orbixprot company.staff \
":\host.iona.com:NS:NC_3::IR:CosNaming_NamingContext"

Creating Name Bindings
To bind a name to an object, use the putns utility. Given the naming context
graph show in Figure 4.1 on page 65, the examples in this section assume the
following object reference strings are associated with the application objects:

You can bind these objects to appropriate names within the company.staff
naming context as follows:

putns company.staff.james-person \
":\host.iona.com:staff:0::IR:Person" -orbixprot

putns company.staff.john-person \
":\host.iona.com:staff:1::IR:Person" -orbixprot

putns company.staff.paula-person \
":\host.iona.com:staff:2::IR:Person" -orbixprot

Each of these employee records has been assigned the kind record in the final
component of its name.

james :\host.iona.com:staff:0::IR:Person

john :\host.iona.com:staff:1::IR:Person

paula :\host.iona.com:staff:2::IR:Person

U s i n g t h e O r b i xN ame s U t i l i t i e s

67

To build the naming graph further, create additional bindings based on the
divisions that employees are assigned to:

putns company.engineering.john-person \
":\host.iona.com:staff:1::IR:Person" -orbixprot

putns company.engineering.paula-person \
":\host.iona.com:staff:2::IR:Person" -orbixprot

putns company.engineering.support.james-person \
":\host.iona.com:staff:0::IR:Person" -orbixprot

To allow an application to find the manager of a division easily, add the following
bindings:

putns company.engineering.manager-person \
":\host.iona.com:staff:2::IR:Person" -orbixprot

putns company.engineering.support.manager-person \
":\host.iona.com:staff:0::IR:Person" -orbixprot

Note that the names company.staff.paula-person,
company.engineering.paula-person and company.engineering.manager-
person now all resolve to the same object.

The naming contexts and name bindings created by the above sequence of
commands builds the complete naming graph shown in Figure 4.1 on page 65.

Listing Name Bindings

The utility lsns lists all the bindings in a naming context. The following command
lists the bindings in the context company.engineering in the OrbixNames
server on host alpha:

lsns -h alpha -orbixprot company.engineering
Contents of company.engineering

paula (Object)
support (Context)
john (Object)
manager (Object)

The type of the binding is also listed. A binding of type Object names an object;
a binding of type Context names a naming context, that is a node in the naming
graph that participates in name resolution.

O r b i x N ame s P r o g r amme r ’ s a n d A d m in i s t r a t o r ’ s G u i d e

 68

By default, only the ID of each name is listed by lsns. However, lsns supports a
-k switch that allows you see both the ID and kind in the listing:

lsns -h host -k -orbixprot company.engineering
Contents of company.engineering

paula-person (Object)
support- (Context)
john-person (Object)
manager-person (Object)

Regardless of whether the -k switch is specified, lsns can always accept a
command line argument in the id-kind format.

Finding Object References by Name

The catns utility outputs the object reference for the application object or
context object to which a name is bound. For example:

catns -orbixprot company.engineering
:\host.iona.com:NS:NC_1::IR:CosNaming_NamingContext

The names company.staff.paula-person and
company.engineering.manager-person resolve to the same object:

catns -orbixprot company.staff.paula-person
:\host.iona.com:staff:2::IR:Person

catns -orbixprot company.engineering.manager-person
:\host.iona.com:staff:2::IR:Person

Rebinding a Name to an Object or Naming Context

The reputns utility changes the binding for an object name. This is analogous to
the CosNaming::NamingContext::rebind() operation. For example, the name
company.engineering.paula-person and the name
company.engineering.manager-person currently resolve to the same object.
To give john responsibility for management, you can rebind the name
manager-person in the context company.engineering:

catns -orbixprot company.engineering.john-person
:\host.iona.com:staff:1::IR:Person
reputns -orbixprot \

company.engineering.manager-person \
":\host.iona.com:staff:1::IR:Person"

U s i n g t h e O r b i xN ame s U t i l i t i e s

69

The reputncns utility changes the binding for a naming context. This is
analogous to the CosNaming::NamingContext::rebind_context() operation.
To illustrate the use of this utility, first create a new context bound to the name
company.staff.supportStaff:

putnewncns -orbixprot company.staff.supportStaff

Suppose now that the context company.staff.suppportStaff should contain
the same information as company.engineering.support. Rather than
maintaining two separate contexts, a better option is to rebind the name
company.staff.supportStaff so that it points to the
company.engineering.support context:

catns -orbixprot company.engineering.support
":\host.iona.com:NS:NC_2::IR:CosNaming_NamingContext"

reputncns -orbixprot company.staff.supportStaff
":\host.iona.com:NS:NC_2::IR:CosNaming_NamingContext"

lsns -k -orbixprot company.staff.supportStaff
Contents of company.staff.supportStaff

james-person (Object)
manager-person (Object)

This sequence of commands leaves the context previously named by
company.staff.supportStaff unreachable; that is, the naming context object
exists in the Naming Service, but it has no corresponding name binding. In this
case, the naming context is assigned a name in the OrbixNames lost+found
context, as described in “Finding Unreachable Context Objects” on page 23.

Removing Name Bindings

The rmns utility removes a name binding. For example, the following commands
remove the manager bindings:

rmns -orbixprot company.engineering.manager-person
rmns -orbixprot \

company.engineering.support.manager-person

Take care not to leave naming contexts unreachable. For example:

rmns -orbixprot company.engineering

This command unbinds the name company.engineering and moves the
corresponding naming context object into the lost+found context.

O r b i x N ame s P r o g r amme r ’ s a n d A d m in i s t r a t o r ’ s G u i d e

 70

Syntax of the Name Management Utilities

The following is a summary of the command syntax for the name management
utilities:

catns [-v] [-h <host>] [-orbixprot] <name>

lsns [-v] [-h <host>] [-k] [-c] [-orbixprot] [name]

newncns [-v] [-h <host>] [-orbixprot]

putncns [-v] [-h <host>] [-orbixprot] \
<name> { <context-ref> | -f <file> }

putnewncns [-v] [-h <host>] [-orbixprot] <name>

putns [-v] [-h <host>] <name> \
{ <object-ref> | -f <file> } [-orbixprot]

reputncns [-v] [-h <host>] [-orbixprot] \
<name> { <context-ref> | -f <file> }

reputns [-v] [-h <host>] [-orbixprot] \
<name> { <object-ref> | -f <file> }

rmns [-v] [-h <host>] [-x] [-orbixprot] <name>

The common options are:

-h <host> Specifies the host on which the OrbixNames server is located. By
default, the utilities use the Initialization Service to locate the
server. The -h switch forces the utilities to use _bind() instead.

-f <file> Any utilities which take an object reference or context reference
as an argument can optionally specify a file, using this switch,
instead of putting the object reference on the command line itself.

-orbixprot Communicates with OrbixNames using the Orbix protocol. The
default is the CORBA Internet Inter-ORB Protocol (IIOP).

-v Outputs version information. Specifying -v does not cause the
utility to run.

-x This switch only applies when removing a naming context. This
switch unbinds the context and then destroys it.

U s i n g t h e O r b i xN ame s U t i l i t i e s

71

Managing Object Groups
In addition to the name management utilities, OrbixNames provides utilities that
allow you to manipulate object groups and their members. These utilities are:

Using the Object Group Utilities

This section provides examples of each of the object group utilities. When using
these utilities, you can identify a group by specifying the group identifier, with the
-i switch, or the name bound to the group, with the -n switch.

Creating and Deleting Object Groups
To create an object group and bind a name to it, use the new_group utility. For
example:

new_group marketing_file_server_group \
company.marketing.file_server -random

This command creates an object group with group identifier
marketing_file_server_group and binds it to the name
company.marketing.file_server. OrbixNames uses a random selection
algorithm to choose an object from this group.

new_group Creates an object group and binds it to a name in
OrbixNames.

del_group Deletes an object group.

cat_group Returns the stringified object reference of an object group.

list_members Lists the members of an object group.

add_member Adds a member to an object group.

del_member Deletes a member from an object group.

cat_member Returns the stringified object reference of a member of an
object group.

pick_member Selects a member of an object group.

O r b i x N ame s P r o g r amme r ’ s a n d A d m in i s t r a t o r ’ s G u i d e

 72

To associate a round-robin selection algorithm with the group, use the
-round_robin switch:

new_group engineering_file_server_group \
company.engineering.file_server -round_robin

To list all the existing object groups, use the list_groups utility:

list_groups

Round Robin Object Group List
engineering_file_server_group

Random Object Group List
marketing_file_server_group

To delete an object group, use the del_group utility:

del_group -i engineering_file_server_group

This command deletes the object group with identifier
engineering_file_server_group. Use the -i switch only if the group has no
associated name. If a name is bound to the group, specify this name using the -n
switch:

del_group -n company.marketing.file_server

Managing the Members of an Object Group
Each member of an object group requires a unique identifier. To add a member
to a group, use add_member. For example:

add_member -i engineering_file_server_group \
member_1 IOR string

This command adds a new member member_1 to the object group
engineering_file_server_group. You can also identify the object group using
the group name:

add_member -n company.engineering.file_server \
member_2 IOR string

U s i n g t h e O r b i xN ame s U t i l i t i e s

73

Use the list_members utility to list the members of an object group:

list_members -ncompany.engineering.file_server
member_1
member_2

Use the del_member utility to remove a member from an object group:

del_member -ncompany.engineering.file_server \
member_2

To retrieve the object reference associated with an object group member, use
the cat_member utility:

cat_member member_2 \
-ncompany.engineering.file_server

The pick_member utility cycles through the members of an object group:

pick_member -ncompany.engineering.file_server
First IOR string

pick_member -ncompany.engineering.file_server
Second IOR string

Syntax of the Object Group Utilities

This section summarizes the command syntax for the object group utilities:

add_member [-i <object group id> | -n <object group name>]
<member id> <obj> [-h <host>] [-orbixprot] [-v]

cat_group [-i <object group id> | -n <object group name>]
[-h <host>] [-orbixprot] [-v]

cat_member [-i <object group id> | -n <object group name>]
<member_id> [-h <host>] [-v]

del_group [-i <object group id> | -n <object group name>]
[-h <host>] [-v]

del_member -i <object group id> | -n <object group name>]
<member_id> [-h <host>] [-orbixprot] [-v]

list_groups [-h <host>] [-orbixprot] [-v]

O r b i x N ame s P r o g r amme r ’ s a n d A d m in i s t r a t o r ’ s G u i d e

 74

list_members [-i <object group id> | -n <object group name>]
[-h <host>] [-orbixprot] [-v]

new_group <object group id> <object group name>
{-random | -round_robin} [-h <host>] -orbixprot] [-v]

pick_member [-i <object group id> | -n <object group name>]
[-h <host>] [-orbixprot] [-v]

The common options are:

-h <host> Specifies the target host on which OrbixNames is running. This
switch defaults to the local host.

-v Outputs version information.

-i Identifies an object group by specifying the identifier.

-n Identifies an object group by specifying the name bound to it.

-orbixprot Communicates with the OrbixNames server using the Orbix
protocol. The default protocol is CORBA Internet Inter-ORB
Protocol (IIOP).

75

 5
The OrbixNames Browser

The OrbixNames browser provides a graphical interface to
OrbixNames. Like the OrbixNames utilities, the browser allows you
to monitor and manage the Naming Service externally to your
applications.

The OrbixNames browser provides full access to the contents of the Naming
Service. Using the browser, you can manipulate the contents of the Naming
Service directly. For example, you can create naming contexts, bind names to
objects, and examine the existing name bindings in the Naming Service.

Starting the OrbixNames Browser
On UNIX, start the OrbixNames browser by running the command nsgui,
located in the bin directory of your Orbix installation. On Windows, you can
run the OrbixNames browser from the Windows Start menu. The main
browser window appears as shown in Figure 5.1 on page 76.

O r b i x N ame s P r o g r amme r ’ s a n d A d m in i s t r a t o r ’ s G u i d e

 76

The browser interface includes the following elements:

• A menu bar.

• A toolbar.

• A navigation tree. This tree displays a graphical representation of the
names and naming contexts stored in OrbixNames.

• A log area. The log area displays information about OrbixNames
operations executed by the browser.

Figure 5.1: The Main OrbixNames Browser Window

T h e O r b i x N ame s B r ow s e r

77

Connecting to an OrbixNames Server
To connect to an OrbixNames server on a host in your network:

1. Select Host→Connect. The Connect to host dialog box appears as
shown in Figure 5.2.

2. In the Host Name text box, enter the name or IP address of the target
host.

3. Select OK. The browser navigation tree displays the current name
bindings for the OrbixNames server at the target host.

If you wish to connect to an OrbixNames server on a second host, first
disconnect from the server on the current host and then repeat these steps for
the new host.

Disconnecting from an OrbixNames Server
To disconnect from an OrbixNames server:

1. In the navigation tree, select the host icon.

2. Select Host→Disconnect. The browser disconnects from the host.

The OrbixNames browser does not request confirmation when you disconnect
from a host.

Figure 5.2: Connecting to an OrbixNames Server

O r b i x N ame s P r o g r amme r ’ s a n d A d m in i s t r a t o r ’ s G u i d e

 78

Managing Naming Contexts
The OrbixNames browser allows you to create new naming contexts, modify
existing naming contexts, and remove naming contexts from an OrbixNames
server.

Note that removing a naming context recursively removes all context and name
objects below that naming context.

Creating a Naming Context

To create a naming context:

1. In the browser navigation tree, navigate to the naming context within
which you wish to create the new context.

2. Select Context→Add Named Context. The Create new context
dialog box appears as shown in Figure 5.3.

3. In the Identifier Attribute text box, enter the identifier value for the
name of the new naming context.

4. In the Descriptive Attribute text box, enter the kind value for the
name of the new naming context.

Figure 5.3: Creating a New Naming Context

T h e O r b i x N ame s B r ow s e r

79

5. Select OK. In the main browser window, the navigation tree displays the
new naming context as shown in Figure 5.4. The browser labels the
naming context icon as follows:

identifier-kind (Context)

Note that a kind value for a name in the CORBA Naming Service cannot be null.
If you do not specify a kind value when assigning a name to a naming context, the
OrbixNames browser sets the kind to the null string.

Figure 5.4: Viewing a Naming Context in the Browser Navigation Tree

O r b i x N ame s P r o g r amme r ’ s a n d A d m in i s t r a t o r ’ s G u i d e

 80

Modifying a Naming Context
The OrbixNames browser allows you to change the object reference associated
with a specified naming context. Using this feature, you can link an existing
context name to a context object associated with another name.

To change the object reference associated with a naming context:

1. In the browser navigation tree, navigate to the naming context you wish
to modify.

2. Select Context→Rebind Context. The Move context dialog box
appears as shown in Figure 5.5.

3. From the Enter Context Object Reference drop-down list, select the
name of the target context to which you wish to link the current context.

4. Select OK.

5. In the main browser window, select Tools→RefreshTree. The
navigation tree shows that both contexts now contain the same objects.

Removing a Naming Context
To remove a naming context:

1. Fully expand the browser navigation tree below the naming context you
wish to remove.

2. Select the icon of the naming context you wish to remove.

3. Select Context→Remove Name Context. A confirmation dialog box
appears.

4. Select Yes to confirm the removal of the naming context.

Figure 5.5: Modifying a Naming Context

T h e O r b i x N ame s B r ow s e r

81

Managing Object Names
The OrbixNames browser allows you to bind a name to an object in a CORBA
application, modify the object binding for an existing name, and remove an object
name from an OrbixNames server.

Binding a Name to an Object

Before attempting to bind a name to an object, ensure that you have access to
the string form of the object reference. To get the string form of an object
reference, pass the object reference as a parameter to the function
CORBA::ORB::object_to_string() in the source code of your application.

To bind a name to an object:

1. Get the string form of a reference to the object

2. In the browser navigation tree, navigate to the naming context in which
you wish to create the object name.

3. Select Object→Add Name. The Create new name dialog box
appears as shown in Figure 5.6.

4. In the Identifier Attribute text box, enter the identifier value for the
new name.

Figure 5.6: Creating a Name Binding

O r b i x N ame s P r o g r amme r ’ s a n d A d m in i s t r a t o r ’ s G u i d e

 82

5. In the Descriptive Attribute text box, enter the kind value for the new
name.

6. Enter the object reference string in the top level of the Name
Reference drop-down list.

7. Select OK. In the main browser window, the navigation tree displays the
new object name as shown in Figure 5.7. The browser labels the object
icon as follows:

identifier-kind (Object)

If you do not specify a kind value when assigning a name to a CORBA object, the
OrbixNames browser sets the kind to the null string.

Figure 5.7: Viewing an Object Name in the Main Browser Window

T h e O r b i x N ame s B r ow s e r

83

Modifying an Object Binding

To change the object reference associated with a name in the CORBA Naming
Service:

1. In the browser navigation tree, navigate to the object you wish to modify.

2. Select Object→Move. The Move context dialog box appears as
shown in Figure 5.8.

3. Type the object reference string in the top level of the Enter Context
Object Reference drop-down list.

4. Select OK to confirm the new object binding.

Removing an Object Name

To remove an object name from the CORBA Naming Service:

1. In the browser navigation tree, navigate to the object you wish to modify.

2. Select Object→Remove Name. A confirmation dialog box appears.

3. Select Yes to confirm the removal of the name.

Figure 5.8: Modifying the Object Reference Associated with a Name

O r b i x N ame s P r o g r amme r ’ s a n d A d m in i s t r a t o r ’ s G u i d e

 84

Part IV

OrbixNames
Programmer’s Reference

87

CosNaming
Synopsis The CosNaming module, defined in the OrbixNames file NamingService.idl,

contains all IDL definitions for the CORBA Naming Service and some definitions
specific to Orbix. To access standard Naming Service functionality, use the
NamingContext and BindingIterator interfaces defined in this module. These
interfaces are described in detail in “CosNaming::NamingContext” on page 95,
and “CosNaming::BindingIterator” on page 93.

This chapter describes data types, other than the interfaces NamingContext and
BindingIterator, defined directly within the scope of the CosNaming module.

IDL // IDL
module CosNaming {

typedef string Istring;

struct NameComponent {
Istring id;
Istring kind;

};
typedef sequence<NameComponent> Name;

enum BindingType {nobject, ncontext};

struct Binding {
Name binding_name;
BindingType binding_type;

};
typedef sequence <Binding> BindingList;

interface BindingIterator;
interface NamingContext;

interface NamingContext {
enum NotFoundReason {missing_node, not_context, not_object};
exception NotFound {

NotFoundReason why;
Name rest_of_name;

};

O r b i x N ame s P r o g r amme r ’ s a n d A d m in i s t r a t o r ’ s G u i d e

 88

exception CannotProceed {
NamingContext cxt;
Name rest_of_name;

};

exception InvalidName {};
exception AlreadyBound {};
exception NotEmpty {};

void bind (in Name n, in Object obj)
raises (NotFound,CannotProceed,InvalidName,AlreadyBound);

void rebind (in Name n, in Object obj)
raises (NotFound, CannotProceed, InvalidName);

void bind_context (in Name n, in NamingContext nc)
raises (NotFound,CannotProceed,InvalidName,AlreadyBound);

void rebind_context (in Name n, in NamingContext nc)
raises (NotFound, CannotProceed, InvalidName);

Object resolve (in Name n)
raises (NotFound, CannotProceed, InvalidName);

void unbind (in Name n)
raises (NotFound, CannotProceed, InvalidName);

NamingContext new_context ();
NamingContext bind_new_context (in Name n)

raises (NotFound,CannotProceed,InvalidName,AlreadyBound);
void destroy () raises (NotEmpty);
void list (in unsigned long how_many,

 out BindingList bl,out BindingIterator bi);
Object resolve_object_group (in Name n)

raises (NotFound, CannotProceed, InvalidName);
Object OBfactory();

};

interface BindingIterator {
boolean next_one (out Binding b);
boolean next_n (in unsigned long how_many,

out BindingList bl);
void destroy ();

};
};

C o sN am in g

89

CosNaming::Binding

Synopsis struct Binding {
Name binding_name;
BindingType binding_type;

};

Description When browsing a naming graph in the Naming Service, an application can list the
contents of a given naming context, and determine the name and type of each
binding in it. To do this, the application calls the operation
CosNaming::NamingContext::list() on the target NamingContext object.
This operation returns a list of Binding structures, each structure representing
a single binding in the naming context.

A Binding structure contains two member fields:

Notes CORBA compliant.

See Also CosNaming::BindingList
CosNaming::BindingType
CosNaming::NamingContext::list()

CosNaming::BindingList

Synopsis typedef sequence<Binding> BindingList;

Description A value of this type contains a set of Binding structures, each of which
represents a single name binding. An application can list the bindings in a given
naming context using the CosNaming::NamingContext::list() operation, as
described in the entry for CosNaming::Binding. An out parameter of this
operation returns a value of type BindingList.

Notes CORBA compliant.

See Also CosNaming::Binding
CosNaming::BindingType
CosNaming::NamingContext::list()

binding_name The full compound name of the binding.

binding_type The binding type, indicating whether the name is bound to
an application object or a naming context.

O r b i x N ame s P r o g r amme r ’ s a n d A d m in i s t r a t o r ’ s G u i d e

 90

CosNaming::BindingType

Synopsis enum BindingType {nobject, ncontext};

Description There are two types of name binding in the CORBA Naming Service: names
bound to application objects, and names bound to naming contexts. Names
bound to application objects cannot be used in a compound name, except as the
last element in that name. Names bound to naming contexts can be used as any
component of a compound name and allow you to construct a naming graph in
the Naming Service.

The enumerated type BindingType represents these two forms of name
bindings. This type has two possible values:

Name bindings created using CosNaming::NamingContext::bind() or
CosNaming::NamingContext::rebind() are nobject bindings. Name bindings
created using the operations CosNaming::NamingContext::bind_context()
or CosNaming::NamingContext::rebind_context() are ncontext bindings.

Notes CORBA compliant.

See Also CosNaming::Binding
CosNaming::BindingList

CosNaming::Istring

Synopsis typedef string Istring;

Description Type Istring is a place holder for an internationalized string format, which
might be added to the CORBA Naming Service definitions by the OMG.

Notes CORBA compliant.

nobject Describes a name bound to an application object.

ncontext Describes a name bound to a naming context in the Naming
Service.

C o sN am in g

91

CosNaming::Name

Synopsis typedef sequence<NameComponent> Name;

Description A Name represents the name of an object in the Naming Service. If the object
name is defined within the scope of one or more naming contexts, the name is a
compound name. For this reason, type Name is defined as a sequence of name
components.

Two names that differ only in the contents of the kind field of one
NameComponent structure are considered to be different names.

Names with no components, that is sequences of length zero, are illegal.

Notes CORBA compliant.

See Also CosNaming::NameComponent

CosNaming::NameComponent

Synopsis struct NameComponent {
Istring id;
Istring king;

};

Description A NameComponent structure represents a single component of a name associated
with an object in the Naming Service. This structure has two fields:

The id field is intended for use purely as an identifier. The semantics of the kind
field are application-specific and the Naming Service makes no attempt to
interpret this value.

A name component is uniquely identified by the combination of both id and
kind fields. Two name components that differ only in the contents of the kind
field are considered to be different components.

Notes CORBA compliant.

See Also CosNaming::Name

id An identifier that corresponds to the name of the component.

kind An element that adds secondary type information to the component
name.

O r b i x N ame s P r o g r amme r ’ s a n d A d m in i s t r a t o r ’ s G u i d e

 92

93

CosNaming::BindingIterator
Synopsis The operation CosNaming::NamingContext::list() allows you to obtain a list

of bindings in a naming context. As described in “CosNaming::NamingContext”
on page 95, this operation allows you to specify a maximum number of bindings
to be returned. To provide access to all other bindings in the naming context,
the operation returns an object of type CosNaming::BindingIterator.

A CosNaming::BindingIterator object stores a list of name bindings and
allows you to access the elements of this list.

IDL // IDL
module CosNaming {

...

interface BindingIterator {
boolean next_one (out Binding b);
boolean next_n (in unsigned long how_many,

out BindingList bl);
void destroy ();

};
};

See Also CosNaming::Binding
CosNaming::BindingList
CosNaming::NamingContext::list()

CosNaming::BindingIterator::destroy()

Synopsis void destroy ();

Description The destroy() operation deletes the CosNaming::BindingIterator object on
which it is called.

Notes CORBA compliant.

O r b i x N ame s P r o g r amme r ’ s a n d A d m in i s t r a t o r ’ s G u i d e

 94

CosNaming::BindingIterator::next_n()

Synopsis boolean next_n (in unsigned long how_many,
out BindingList bl);

Description The next_n() operation returns the next how_many elements in the list of
bindings, subsequent to the last element returned by a call to next_n() or
next_one(). If less than how_many elements remain in the list, all the remaining
elements are returned.

Parameters

Return Value Returns true if one or more bindings are returned in parameter bl, returns
false if no more bindings remain.

Notes CORBA compliant.

See Also CosNaming::BindingIterator::next_one()

CosNaming::BindingIterator::next_one()

Synopsis boolean next_one (out Binding b);

Description The next_one() operation returns the next element in the list of bindings,
subsequent to the last element returned by a call to next_n() or next_one().

Parameters

Return Value Returns true if a binding is returned in parameter b, returns false if no more
bindings remain.

Notes CORBA compliant.

See Also CosNaming::BindingIterator::next_n()

how_many The maximum number of bindings to be returned in parameter
bl.

bl The returned list of name bindings.

b The returned name binding.

95

CosNaming::NamingContext
Synopsis The interface CosNaming::NamingContext provides the operations that

allow you to access the main features of the CORBA Naming Service, such as
binding and resolving names. This interface also includes the Orbix-specific
operations OBfactory() and resolve_object_group(), which you call
when using the load balancing features of OrbixNames described in Chapter 3.

IDL // IDL
module CosNaming {

...

interface BindingIterator;

interface NamingContext {
enum NotFoundReason {missing_node,

not_context, not_object};

exception NotFound {
NotFoundReason why;
Name rest_of_name;

};
exception CannotProceed {

NamingContext cxt;
Name rest_of_name;

};

exception InvalidName {};
exception AlreadyBound {};
exception NotEmpty {};

void bind (in Name n, in Object obj)
raises (NotFound, CannotProceed,
InvalidName,AlreadyBound);

void rebind (in Name n, in Object obj)
raises (NotFound, CannotProceed, InvalidName);

void bind_context (in Name n, in NamingContext nc)
raises (NotFound, CannotProceed,
InvalidName, AlreadyBound);

O r b i x N ame s P r o g r amme r ’ s a n d A d m in i s t r a t o r ’ s G u i d e

 96

void rebind_context (in Name n, in NamingContext nc)
raises (NotFound, CannotProceed, InvalidName);

Object resolve (in Name n)
raises (NotFound, CannotProceed, InvalidName);

void unbind (in Name n)
raises (NotFound, CannotProceed, InvalidName);

NamingContext new_context ();
NamingContext bind_new_context (in Name n)

raises (NotFound, CannotProceed,
InvalidName, AlreadyBound);

void destroy () raises (NotEmpty);
void list (in unsigned long how_many,

 out BindingList bl, out BindingIterator bi);
Object resolve_object_group (in Name n)

raises (NotFound, CannotProceed, InvalidName);
Object OBfactory();

};

...
};

Notes CORBA compliant.

See Also CosNaming

CosNaming::NamingContext::AlreadyBound

Synopsis exception AlreadyBound {};

Description If an application calls an operation that attempts to bind a name to an object or
naming context, but the specified name has already been bound, the operation
raises an exception of type AlreadyBound.

The following operations can raise this exception:

CosNaming::NamingContext::bind()
CosNaming::NamingContext::bind_context()
CosNaming::NamingContext::bind_new_context()

Notes CORBA compliant.

C o sN am in g : : N am i n g Co n t e x t

97

CosNaming::NamingContext::bind()

Synopsis void bind (in Name n, in Object obj)
rasies (NotFound, CannotProceed,
InvalidName, AlreadyBound);

Description The operation bind() creates a name binding, relative to the target naming
context, between a name and an object. If the name passed to this operation is a
compound name with more than one component, all except the last component
are used to find the sub-context in which to add the name binding. The contexts
associated with these components must already exist, otherwise the operation
raises a NotFound exception.

Parameters

Notes CORBA compliant.

See Also CosNaming::NamingContext::AlreadyBound
CosNaming::NamingContext::CannotProceed
CosNaming::NamingContext::InvalidName
CosNaming::NamingContext::NotFound
CosNaming::NamingContext::rebind()
CosNaming::NamingContext::resolve()

CosNaming::NamingContext::bind_context()

Synopsis void bind_context (in Name n, in NamingContext nc)
raises (NotFound, CannotProceed, InvalidName,

AlreadyBound);

Description The bind_context() operation creates a binding, relative to the target naming
context, between a name and another, specified naming context. This new
binding can be used in any subsequent name resolutions: the entries in naming
context nc can be resolved using compound names.

All but the final naming context specified in parameter n must already exist. This
operation raises an AlreadyBound exception if the name specified by n is
already in use.

n The name to be bound to the target object, relative to the naming
context on which the operation is called.

obj The application object to be associated with the specified name.

O r b i x N ame s P r o g r amme r ’ s a n d A d m in i s t r a t o r ’ s G u i d e

 98

The naming graph built using bind_context() is not restricted to being a tree:
it can be a general naming graph in which any naming context can appear in any
other naming context.

Parameters

Notes CORBA compliant.

See Also CosNaming::NamingContext::AlreadyBound
CosNaming::NamingContext::bind_new_context()
CosNaming::NamingContext::CannotProceed
CosNaming::NamingContext::InvalidName
CosNaming::NamingContext::new_context()
CosNaming::NamingContext::NotFound
CosNaming::NamingContext::rebind_context()
CosNaming::NamingContext::resolve()

CosNaming::NamingContext::bind_new_context()

Synopsis NamingContext bind_new_context (in Name n)
raises (NotFound, CannotProceed, InvalidName,

AlreadyBound);

Description The operation bind_new_context() creates a new NamingContext object in
the Naming Service and binds the specified name to it, relative to the naming
context on which the operation is called. This operation has the same effect as a
call to CosNaming::NamingContext::new_context() followed by a call to
CosNaming::NamingContext::bind_context().

The new name binding created by this operation can be used in any subsequent
name resolutions: the entries in the returned naming context can be resolved
using compound names.

n The name to be bound to the target naming context, relative to the
naming context on which the operation is called.

nc The NamingContext object to be associated with the specified name.
This object must already exist. To create a new NamingContext
object, call CosNaming::NamingContext::new_context().

C o sN am in g : : N am i n g Co n t e x t

99

All but the final naming context specified in parameter n must already exist. This
operation raises an AlreadyBound exception if the name specified by n is
already in use.

Parameters

Return Value Returns a reference to the newly created NamingContext object.

Notes CORBA compliant.

See Also CosNaming::NamingContext::AlreadyBound
CosNaming::NamingContext::bind_context()
CosNaming::NamingContext::CannotProceed
CosNaming::NamingContext::InvalidName
CosNaming::NamingContext::new_context()
CosNaming::NamingContext::NotFound

CosNaming::NamingContext::CannotProceed

Synopsis exception CannotProceed {
NamingContext cxt;
Name rest_of_name;

};

Description If a Naming Service operation fails due to an internal error, the operation raises
a CannotProceed exception. However, the application might be able to use the
information returned in this exception to complete the operation later. For
example, if you use a Naming Service federated across several hosts and one of
these hosts is currently unavailable, a Naming Service operation might fail until
that host is available again.

A CannotProceed exception includes two member fields:

n The name to be bound to the newly created naming context, relative to
the naming context on which the operation is called.

cxt The NamingContext object associated with the component
at which the operation failed.

rest_of_name The remainder of the compound name, after the binding for
the component at which the operation failed.

O r b i x N ame s P r o g r amme r ’ s a n d A d m in i s t r a t o r ’ s G u i d e

 100

The following operations can raise this exception:

CosNaming::NamingContext::bind()
CosNaming::NamingContext::bind_context()
CosNaming::NamingContext::bind_new_context()
CosNaming::NamingContext::rebind()
CosNaming::NamingContext::rebind_context()
CosNaming::NamingContext::resolve()
CosNaming::NamingContext::resolve_object_group()
CosNaming::NamingContext::unbind()

Notes CORBA compliant.

See Also CosNaming::Name
CosNaming::NamingContext

CosNaming::NamingContext::destroy()

Synopsis void destroy ()
raises (NotEmpty);

Description The operation destroy() deletes the NamingContext object on which it is
called. Beforing deleting a NamingContext in this way, ensure that it contains
no bindings. If you call destroy() on a NamingContext that contains existing
bindings, the operation raises a CosNaming::NamingContext::NotEmpty
exception.

To avoid leaving name bindings with no associated objects in the Naming
Service, call CosNaming::NamingContext::unbind() to unbind the context
name before calling destroy(). See the entry for
CosNaming::NamingContext::resolve() for information about the result
of resolving names of context objects that no longer exist.

Notes CORBA compliant.

See Also CosNaming::NamingContext::NotEmpty
CosNaming::NamingContext::resolve()
CosNaming::NamingContext::unbind()

C o sN am in g : : N am i n g Co n t e x t

101

CosNaming::NamingContext::InvalidName

Synopsis exception InvalidName {};

Description If an operation receives an in parameter of type CosNaming::Name for which
the sequence length is zero, the operation raises an InvalidName exception.

The following operations can raise this exception:

CosNaming::NamingContext::bind()
CosNaming::NamingContext::bind_context()
CosNaming::NamingContext::bind_new_context()
CosNaming::NamingContext::rebind()
CosNaming::NamingContext::rebind_context()
CosNaming::NamingContext::resolve()
CosNaming::NamingContext::resolve_object_group()
CosNaming::NamingContext::unbind()

Notes CORBA compliant.

CosNaming::NamingContext::list()

Synopsis void list (in unsigned long how_many,
out BindingList bl, out BindingIterator bi);

Description The operation list() returns a list of the name bindings in the naming context
on which the operation is called. The parameter how_many specifies the
maximum number of bindings that should be returned in the BindingList
parameter, bl.

The BindingList parameter is a sequence of Binding structures where each
Binding indicates the name and type of the binding—the type indicates
whether the name is that of an object, or whether it is the name of a node in the
naming graph which participates in name resolution.

If the naming context contains more than the requested number (how_many) of
bindings, the list() operation returns a BindingIterator which contains
the remaining bindings. This is returned in parameter bi. If the naming context
does not contain any additional bindings, the parameter bi is a nil object
reference.

O r b i x N ame s P r o g r amme r ’ s a n d A d m in i s t r a t o r ’ s G u i d e

 102

Parameters

Notes CORBA compliant.

See Also CosNaming::BindingIterator
CosNaming::BindingList

CosNaming::NamingContext::new_context()

Synopsis NamingContext new_context ();

Description The operation new_context() creates a new NamingContext object in the
Naming Service, without binding a name to it. After you create a naming context
with this operation, you can bind a name to it by calling
CosNaming::NamingContext::bind_context().

Return Value Returns a reference to the newly created NamingContext object. There is no
relationship between this object and the NamingContext object on which you
call the operation.

Notes CORBA compliant.

See Also CosNaming::NamingContext::bind_context()
CosNaming::NamingContext::bind_new_context()

CosNaming::NamingContext::NotEmpty

Synopsis exception NotEmpty {};

how_many The maximum number of bindings to be returned in parameter
bl.

bl A list of at most how_many bindings contained in the naming
context on which the operation is called.

bi A BindingIterator object that provides access to all remaining
bindings contained in the naming context on which the operation
is called.

C o sN am in g : : N am i n g Co n t e x t

103

Description An application can call the operation
CosNaming::NamingContext::destroy() to delete a naming context
object in the Naming Service. For this operation to succeed, the naming context
must contain no bindings. If bindings exist in the naming context, the operation
raises a NotEmpty exception.

Notes CORBA compliant.

CosNaming::NamingContext::NotFound

Synopsis exception NotFound {
NotFoundReason why;
Name rest_of_name;

};

Description Several operations in the interface CosNaming::NamingContext require an
existing name binding to be passed as an in parameter. If such an operation
receives a name binding that it determines is invalid, the operation raises a
NotFound exception. This exception contains two member fields:

The following operations can raise this exception:

CosNaming::NamingContext::bind()
CosNaming::NamingContext::bind_context()
CosNaming::NamingContext::bind_new_context()
CosNaming::NamingContext::rebind()
CosNaming::NamingContext::rebind_context()
CosNaming::NamingContext::resolve()
CosNaming::NamingContext::resolve_object_group()
CosNaming::NamingContext::unbind()

Notes CORBA compliant.

See Also CosNaming::NamingContext::NotFoundReason

why The reason why the name binding is invalid. See the entry for
CosNaming::NamingContext::NotFoundReason for
more details.

rest_of_name The remainder of the compound name following the
component that the operation determined to be invalid.

O r b i x N ame s P r o g r amme r ’ s a n d A d m in i s t r a t o r ’ s G u i d e

 104

CosNaming::NamingContext::NotFoundReason

Synopsis enum NotFoundReason {missing_node, not_context, not_object};

Description If an operation raises a NotFound exception, a value of enumerated type
NotFoundReason indicates the reason why the exception was raised:

Notes CORBA compliant.

See Also CosNaming::NamingContext::NotFound

CosNaming::NamingContext::OBfactory()

Synopsis Object OBfactory ();

Description The operation OBfactory() returns a reference to the object group factory in
the Naming Service. Before using the returned object, narrow it to type
LoadBalancing::ObjectGroupFactory. You can then use this object to
create new object groups and to find existing groups, as described in Chapter 3.

Return Value Returns a reference to the object group factory. To use this object reference,
first narrow it to type LoadBalancing::ObjectGroupFactory.

Notes OrbixNames specific.

See Also LoadBalancing
LoadBalancing::ObjectGroup
LoadBalancing::ObjectGroupFactory

missing_node A component of the name passed to the operation did not
exist in the Naming Service.

not_context The operation expected to receive a name bound to a
naming context, for example using
CosNaming::NamingContext::bind_context(), but
the name received did not satisfy this requirement.

not_object The operation expected to receive a name bound to an
application object, for example using
CosNaming::NamingContext::bind(), but the name
received did not satisfy this requirement.

C o sN am in g : : N am i n g Co n t e x t

105

CosNaming::NamingContext::rebind()

Synopsis void rebind (in Name n, in Object obj)
raises (NotFound, CannotProceed, InvalidName);

Description The operation rebind() creates a binding between a name that is already
bound in the target naming context and an object. The previous name is
unbound and the new binding is created in its place. As is the case with
CosNaming::NamingContext::bind(), all but the last component of a
compound name must exist, relative to the naming context on which you call the
operation.

Parameters

Notes CORBA compliant.

See Also CosNaming::NamingContext::bind()
CosNaming::NamingContext::CannotProceed
CosNaming::NamingContext::InvalidName
CosNaming::NamingContext::NotFound
CosNaming::NamingContext::resolve()

CosNaming::NamingContext::rebind_context()

Synopsis void rebind_context (in Name n, in NamingContext nc)
raises (NotFound, CannotProceed, InvalidName);

Description The rebind_context() operation creates a binding between a name that is
already bound in the context on which the operation is called, and a naming
context. The previous name is unbound and the new binding is made in its place.
As is the case for CosNaming::NamingContext::bind_context(), all but
the last component of a compound name must name an existing
NamingContext.

n The name to be bound to the specified object, relative to the naming
context on which the operation is called.

obj The application object to be associated with the specified name.

O r b i x N ame s P r o g r amme r ’ s a n d A d m in i s t r a t o r ’ s G u i d e

 106

Parameters

Notes CORBA compliant.

See Also CosNaming::NamingContext::bind_context()
CosNaming::NamingContext::CannotProceed
CosNaming::NamingContext::InvalidName
CosNaming::NamingContext::NotFound
CosNaming::NamingContext::resolve()

CosNaming::NamingContext::resolve()

Synopsis Object resolve (in Name n)
raises (NotFound, CannotProceed, InvalidName);

Description The resolve() operation returns the object reference bound to the specified
name, relative to the naming context on which the operation was called. The
first component of the specified name is resolved in the target naming context.

The return type is IDL Object, which maps to type CORBA::Object_ptr in
C++. You must narrow the result to the appropriate type before using it in your
application.

If the name n refers to a naming context, it is possible that the corresponding
NamingContext object no longer exists in the Naming Service. For example,
this could happen if you call CosNaming::NamingContext::destroy() to
destroy a context without first unbinding the context name. In this case,
resolve() raises a CORBA system exception.

Parameters

Return Value Returns a reference to the object associated with the specified name.

Notes CORBA compliant.

n The name to be bound to the specified naming context, relative to the
naming context on which the operation is called.

nc The naming context to be associated with the specified name.

n The name to be resolved, relative to the naming context on which the
operation is called.

C o sN am in g : : N am i n g Co n t e x t

107

See Also CosNaming::NamingContext::CannotProceed
CosNaming::NamingContext::InvalidName
CosNaming::NamingContext::NotFound
CosNaming::NamingContext::resolve_object_group()

CosNaming::NamingContext::resolve_object_group()

Synopsis Object resolve_object_group (in Name n)
raises (NotFound, CannotProceed, InvalidName);

Description The operation resolve_object_group() returns the
LoadBalancing::ObjectGroup object associated with a name binding.
Before using the returned object, narrow it to type
LoadBalancing::ObjectGroup. You can then use this object to manipulate
the contents of the object group, as described in Chapter 3.

The required LoadBalancing::ObjectGroup object must already exist and
the specified name must be bound to it. To create a
LoadBalancing::ObjectGroup object, first call the operation OBfactory()
on a naming context to create a LoadBalancing::ObjectGroupFactory
object, then use this object to create the required type of object group.

If the name passed to resolve_object_group() is bound to an object that is
not of type LoadBalancing::ObjectGroup, the operation returns the
associated object reference. However, if you then attempt to narrow this object
to type LoadBalancing::ObjectGroup, the narrow operation will fail.

Parameters

Return Value Returns a reference to the object group to which the specified name is bound.
To use this object reference, first narrow it to type
LoadBalancing::ObjectGroup.

Notes OrbixNames specific.

See Also LoadBalancing
LoadBalancing::ObjectGroup

n The name bound to the required object group, relative to the naming
context on which the operation is called.

O r b i x N ame s P r o g r amme r ’ s a n d A d m in i s t r a t o r ’ s G u i d e

 108

CosNaming::NamingContext::unbind()

Synopsis void unbind (in Name n)
raises (NotFound, CannotProceed, InvalidName);

Description The operation unbind() removes the binding between a specified name and
the object associated with it. Unbinding a name does not delete the application
object or naming context object associated with the name. For example, if you
wish to remove a naming context completely from the Naming Service, you
should first unbind the corresponding name, then delete the NamingContext
object by calling CosNaming::NamingContext::destroy().

Parameters

Notes CORBA compliant.

See Also CosNaming::NamingContext::CannotProceed
CosNaming::NamingContext::destroy()
CosNaming::NamingContext::InvalidName
CosNaming::NamingContext::NotFound

n The name to be unbound in the Naming Service, relative to the naming
context on which the operation is called.

109

LoadBalancing
Synopsis The module LoadBalancing, defined in the OrbixNames file

LoadBalancing.idl, provides access to the load balancing features of
OrbixNames described in Chapter 3. The definitions in this module are specific
to OrbixNames.

There are four IDL interfaces in the module LoadBalancing: ObjectGroup,
ObjectGroupFactory, RandomObjectGroup, and RoundRobinObjectGroup. This
chapter describes all data types defined directly within the scope of the
LoadBalancing module, other than these four interfaces. These four interfaces
are described in detail in subsequent chapters.

IDL // IDL
module LoadBalancing {

exception no_such_member{};
exception duplicate_member{};
exception duplicate_group{};
exception no_such_group{};

typedef string memberId;
typedef sequence<memberId> memberIdList;

struct member {
Object obj;
memberId id;

};

typedef string groupId;
typedef sequence<groupId> groupList;

interface ObjectGroup;
interface RoundRobinObjectGroup;
interface RandomObjectGroup;

O r b i x N ame s P r o g r amme r ’ s a n d A d m in i s t r a t o r ’ s G u i d e

 110

interface ObjectGroupFactory {
RoundRobinObjectGroup createRoundRobin (in groupId id)

raises (duplicate_group);
RandomObjectGroup createRandom (in groupId id)

raises (duplicate_group);
ObjectGroup findGroup (in groupId id)

raises (no_such_group);
groupList rr_groups();
groupList random_groups();

};

interface ObjectGroup {
readonly attribute string id;
Object pick();
void addMember (in member mem)

raises (duplicate_member);
void removeMember (in memberId id)

raises (no_such_member);
Object getMember (in memberId id)

raises (no_such_member);
memberIdList members();
void destroy();

};

interface RandomObjectGroup : ObjectGroup {};
interface RoundRobinObjectGroup : ObjectGroup {};

};

See Also CosNaming::NamingContext::OBfactory()
CosNaming::NamingContext::resolve_object_group()

LoadBalancing::no_such_group

Synopsis exception no_such_group {};

Description The operation LoadBalancing::ObjectGroupFactory::findGroup() returns
a reference to a specified object group. This operation takes the group identifier
as an in parameter and then searches for the group in the Naming Service. If no
group exists for the specified identifier, the operation raises a no_such_group
exception.

Notes OrbixNames specific.

L oa d B a l a n c i n g

111

LoadBalancing::no_such_member

Synopsis exception no_such_member {};

Description An operation that finds or removes an existing member of an object group takes
a member identifier as an in parameter. In such cases, the identifier must
correspond to an existing group member. If it does not, the operation raises a
no_such_member exception.

The following operations can raise this exception:

LoadBalancing::ObjectGroup::getMember();
LoadBalancing::ObjectGroup::removeMember();

Notes OrbixNames specific.

LoadBalancing::duplicate_group

Synopsis exception duplicate_group {};

Description An operation that creates an object group takes the new group identifier as a
parameter. If the group identifier is already used in the Naming Service, the
operation raises a duplicate_group exception.

The following operations can raise this exception:

LoadBalancing::ObjectGroupFactory::createRandom();
LoadBalancing::ObjectGroupFactory::createRoundRobin();

Notes OrbixNames specific.

LoadBalancing::duplicate_member

Synopsis exception duplicate_member {};

Description The operation LoadBalancing::ObjectGroup::addMember() adds a member
to an object group. This operation takes a parameter that specifies the object to
be added to the group, and the member identifier to be associated with the
object. If the member identifier is already used in the group, the operation raises
a duplicate_member exception.

Notes OrbixNames specific.

O r b i x N ame s P r o g r amme r ’ s a n d A d m in i s t r a t o r ’ s G u i d e

 112

LoadBalancing::groupId

Synopsis typedef string groupId;

Description Each object group has an associated identifier, of type groupId. The format of
this identifier is application specific and is not specified by OrbixNames.
However, the identifier for each group must be unique within the Naming
Service.

Notes OrbixNames specific.

See Also LoadBalancing::groupList

LoadBalancing::groupList

Synopsis typedef sequence<groupId> groupList;

Description The operations LoadBalancing::ObjectGroupFactory::random_groups()
and LoadBalancing::ObjectGroupFactory::rr_groups() allow you to obtain
a list of object groups in the Naming Service. These operations return a list of
group identifiers, as type groupList.

Notes OrbixNames specific.

See Also LoadBalancing::groupId
LoadBalancing::ObjectGroupFactory::random_groups()
LoadBalancing::ObjectGroupFactory::rr_groups()

LoadBalancing::member

Synopsis struct member {
Object obj;
memberId id;

};

Description An object group contains a set of member objects. For each object in the group,
the group maintains a reference to the object and an identifier that is unique
within the group. This information is stored in a member structure.

L oa d B a l a n c i n g

113

A member structure contains two fields:

Notes OrbixNames specific.

See Also LoadBalancing::memberId

LoadBalancing::memberId

Synopsis typedef string memberId;

Description Each object reference in an object group has an associated member identifier, of
type memberId. The format of this identifier is application specific and is not
specified by OrbixNames. However, each member identifier must be unique
within a given object group.

Notes OrbixNames specific.

See Also LoadBalancing::member
LoadBalancing::memberIdList

LoadBalancing::memberIdList

Synopsis typedef sequence<memberId> memberIdList;

Description The operation LoadBalancing::ObjectGroup::members() returns a list of the
member identifiers in a given object group. This list is returned as type
memberIdList, which is a sequence of memberId values.

Notes OrbixNames specific.

See Also LoadBalancing::memberId
LoadBalancing::ObjectGroup::members()

obj A reference to the member object.

id The member identifier for the object. This value must be unique within
the object group.

O r b i x N ame s P r o g r amme r ’ s a n d A d m in i s t r a t o r ’ s G u i d e

 114

115

LoadBalancing::ObjectGroup
Synopsis The interface LoadBalancing::ObjectGroup allows you to manage the

contents of an existing object group. This interface is usually accessed in server
applications.

This interface also supports the operation pick(), which OrbixNames calls
when a client resolves a name bound to an object group. This operation selects
a member of the group in accordance with the group selection algorithm.

The interfaces LoadBalancing::RandomGroup and
LoadBalancing::RoundRobinGroup inherit this interface.

IDL // IDL
module LoadBalancing {

...

interface ObjectGroup {
readonly attribute string id;

Object pick();
void addMember (in member mem)

raises (duplicate_member);
void removeMember (in memberId id)

raises (no_such_member);
Object getMember (in memberId id)

raises (no_such_member);
memberIdList members();
void destroy();

};

...
};

See Also CosNaming::NamingContext::resolve_object_group()
LoadBalancing::ObjectGroupFactory
LoadBalancing::RandomObjectGroup
LoadBalancing::RoundRobinObjectGroup

O r b i x N ame s P r o g r amme r ’ s a n d A d m in i s t r a t o r ’ s G u i d e

 116

LoadBalancing::ObjectGroup::addMember()

Synopsis void addMember (in member mem)
raises (duplicate_member);

Description An Orbix server calls the operation addMember() to add a member object to a
group. This operation takes an in parameter, of type member, that specifies the
member identifier and provides a reference to the object. The member identifier
must not already exist in the object group on which the operation is called. If the
identifier exists, addMember() raises a duplicate_member exception.

Parameters

Notes OrbixNames specific.

See Also LoadBalancing::member

LoadBalancing::ObjectGroup::destroy()

Synopsis void destroy ();

Description Calling operation destroy() on an object group completely removes that group
from the Naming Service. It is not necessary to remove the members of a group
before calling destroy().

Operation destroy() does not affect the name binding associated with the
group. Before calling destroy(), call CosNaming::NamingContext::unbind()
to remove the associated name binding.

Notes OrbixNames specific.

See Also CosNaming::NamingContext::unbind()

mem A structure containing a reference to the new member object and the
member identifier.

L o a dB a l an c i n g : : O b j e c t G r ou p

117

LoadBalancing::ObjectGroup::getMember()

Synopsis Object getMember (in memberId id)
raises (no_such_member);

Description An application calls the operation getMember() to obtain a reference to a
specific member object in an object group. This operation takes the member
identifier as an in parameter, of type memberId. If this identifier does not
correspond to an object in the group on which getMember() is called, the
operation raises a no_such_member exception.

Parameters

Return Value Returns a reference to the object associated with the specified member
identifier.

Notes OrbixNames specific.

See Also LoadBalancing::memberId

LoadBalancing::ObjectGroup::id

Synopsis readonly attribute string id;

Description This attribute stores the identifier of the object group. The format of this
identifier is application specific and is not specified by OrbixNames. However,
the group identifier must be unique within the Naming Service.

Notes OrbixNames specific.

LoadBalancing::ObjectGroup::members()

Synopsis memberIdList members ();

Description The operation members() returns a list of all members in the group on which it
is called. Only the identifier for each member is returned. To obtain a reference
to a member object associated with a specific identifier, call the operation
LoadBalancing::ObjectGroup::getMember().

id The identifier of the member object for which an object reference is
required.

O r b i x N ame s P r o g r amme r ’ s a n d A d m in i s t r a t o r ’ s G u i d e

 118

Return Value Returns a list of identifiers of all members in the object group.

Notes OrbixNames specific.

See Also LoadBalancing::memberIdList
LoadBalancing::ObjectGroup::getMember()

LoadBalancing::ObjectGroup::pick()

Synopsis Object pick();

Description The operation pick() selects a member of an object group and returns a
reference to the member object. In a round-robin selection object group, the
operation pick() implements a round-robin selection algorithm to choose a
member of the object group. In a random selection object group the operation
pick() randomly chooses a member of the group.

When a client resolves a Naming Service name that has been bound to an object
group, OrbixNames calls operation pick() to determine which member object
the name should resolve to.

Return Value Returns a reference to the object selected by OrbixNames.

Notes OrbixNames specific.

LoadBalancing::ObjectGroup::removeMember()

Synopsis void removeMember (in memberId id) raises (no_such_member);

Description An Orbix server calls the operation removeMember() to remove a member
object from a group. This operation takes an in parameter, of type memberId,
which specifies the identifier of the member object to be removed. If this
identifier does not correspond to an object in the group on which
removeMember() is called, the operation raises a no_such_member exception.

Parameters

Notes OrbixNames specific.

See Also LoadBalancing::memberId

id The identifier of the member to be removed.

119

LoadBalancing::
ObjectGroupFactory
Synopsis The interface LoadBalancing::ObjectGroupFactory allows you to create

object groups and find existing groups in the Naming Service. To obtain a
reference to a LoadBalancing::ObjectGroupFactory, call
CosNaming::NamingContext::OBfactory() on any
CosNaming::NamingContext object.

IDL // IDL
module LoadBalancing {

...

interface ObjectGroupFactory {
RoundRobinObjectGroup createRoundRobin (in groupId id)

raises (duplicate_group);
RandomObjectGroup createRandom (in groupId id)

raises (duplicate_group);
ObjectGroup findGroup (in groupId id)

raises (no_such_group);
groupList rr_groups();
groupList random_groups();

};

...
};

See Also CosNaming::NamingContext::OBfactory()
LoadBalancing::ObjectGroup

O r b i x N ame s P r o g r amme r ’ s a n d A d m in i s t r a t o r ’ s G u i d e

 120

LoadBalancing::ObjectGroupFactory::createRandom()

Synopsis RandomObjectGroup createRandom (in groupId id)
raises (duplicate_group);

Description This operation creates a new object group. When OrbixNames calls the
operation LoadBalancing::ObjectGroup::pick() to choose a member from
the resulting group, a random selection algorithm is used.

The operation createRandom() takes a group identifier as an in parameter. This
identifier must be unique within the Naming Service. If an existing group is
already associated with this identifier, the operation raises a
LoadBalancing::duplicate_group exception.

Parameters

Return Value Returns a reference to the RandomObjectGroup object for the newly created
group.

Notes OrbixNames specific.

See Also LoadBalancing::duplicate_group
LoadBalancing::groupId
LoadBalancing::RandomObjectGroup

LoadBalancing::ObjectGroupFactory::
createRoundRobin()

Synopsis RoundRobinObjectGroup createRoundRobin (in groupId id)
raises (duplicate_group);

Description This operation creates a new object group. When OrbixNames calls the
operation LoadBalancing::ObjectGroup::pick() to choose a member from
the resulting group, a round-robin selection algorithm is used.

The operation createRoundRobin() takes a group identifier as an in parameter.
This identifier must be unique within the Naming Service. If an existing group is
already associated with this identifier, the operation raises a
LoadBalancing::duplicate_group exception.

id The group identifier for the new object group. This value must be unique
within the Naming Service.

L o a dB a l an c i n g : : O b j e c t G r ou p F a c t o r y

121

Parameters

Return Value Returns a reference to the RoundRobinObjectGroup object for the newly
created group.

Notes OrbixNames specific.

See Also LoadBalancing::duplicate_group
LoadBalancing::groupId
LoadBalancing::RoundRobinObjectGroup

LoadBalancing::ObjectGroupFactory::findGroup()

Synopsis ObjectGroup findGroup (in groupId id)
raises (no_such_group);

Description An application calls the operation findGroup() to obtain a reference to a
specific object group. This operation takes the group identifier as an in
parameter, of type groupId. If this identifier does not correspond to an existing
object group in the Naming Service, the operation raises a no_such_group
exception.

Parameters

Return Value Returns a reference to the ObjectGroup object for the required group.

Notes OrbixNames specific.

See Also LoadBalancing::groupId
LoadBalancing::no_such_group

id The group identifier for the new object group. This value must be unique
within the Naming Service.

id The group identifier for the required object group.

O r b i x N ame s P r o g r amme r ’ s a n d A d m in i s t r a t o r ’ s G u i d e

 122

LoadBalancing::ObjectGroupFactory::random_groups()

Synopsis groupList random_groups ();

Description The operation random_groups() returns a list of all random groups that
currently exist in the Naming Service. Only the group identifiers are returned.
To obtain a reference to a group associated with a specific identifier, call the
operation LoadBalancing::ObjectGroupFactory::findGroup().

Return Value Returns a list of the identifiers of all random groups in the Naming Service.

Notes OrbixNames specific.

See Also LoadBalancing::groupList
LoadBalancing::ObjectGroupFactory::findGroup()

LoadBalancing::ObjectGroupFactory::rr_groups()

Synopsis groupList rr_groups ();

Description The operation rr_groups() returns a list of all round-robin groups that
currently exist in the Naming Service. Only the group identifiers are returned.
To obtain a reference to a group associated with a specific identifier, call the
operation LoadBalancing::ObjectGroupFactory::findGroup().

Return Value Returns a list of the identifiers of all round-robin groups in the Naming Service.

Notes OrbixNames specific.

See Also LoadBalancing::groupList
LoadBalancing::ObjectGroupFactory::findGroup()

123

LoadBalancing::
RandomObjectGroup
Synopsis The interface LoadBalancing::RandomObjectGroup represents an object

group in which OrbixNames applies a random selection algorithm when
choosing a member object. This interface is a simple specialization of
LoadBalancing::ObjectGroup, and adds no new attributes or operations.

IDL // IDL
module LoadBalancing {

...

interface RandomObjectGroup : ObjectGroup {
};

};

See Also LoadBalancing::ObjectGroup
LoadBalancing::ObjectGroup::pick()
LoadBalancing::RoundRobinObjectGroup

O r b i x N ame s P r o g r amme r ’ s a n d A d m in i s t r a t o r ’ s G u i d e

 124

125

LoadBalancing::
RoundRobinObjectGroup
Synopsis The interface LoadBalancing::RoundRobinObjectGroup represents an object

group in which OrbixNames applies a round-robin selection algorithm when
choosing a member object. This interface is a simple specialization of
LoadBalancing::ObjectGroup, and adds no new attributes or operations.

IDL // IDL
module LoadBalancing {

...

interface RoundRobinObjectGroup : ObjectGroup {
};

};

See Also LoadBalancing::ObjectGroup
LoadBalancing::ObjectGroup::pick()
LoadBalancing::RandomObjectGroup

O r b i x N ame s P r o g r amme r ’ s a n d A d m in i s t r a t o r ’ s G u i d e

 126

127

Index

A
add_member utility 71, 72, 73
add_object_to_group() function 48, 52
adding objects to object groups 40, 45, 48, 52, 72,

116
addMember() operation 40, 53, 111, 116
algorithms, selection 40, 72, 118

random 120, 122, 123
round-robin 120, 122, 125

AlreadyBound exception 96
associating names

with naming contexts 97, 98
with object groups 50
with objects 6, 16–18, 64, 66, 81, 97

B
bind() operation 6, 16–18, 90, 97
bind_context() operation 98
bind_name_to_group() function 50, 51
bind_new_context() operation 8, 18, 98
binding names

to naming contexts 97, 98
to object groups 50
to objects 6, 16–18, 64, 66, 81, 97

Binding structure 89, 101
BindingIterator interface 5, 23, 87, 93–94, 101
BindingList type 89, 101
Bindings Repository 26, 27
bindings. See name bindings 4
BindingType enumerated type 90
browser, OrbixNames 75–83

connecting to OrbixNames server 77
disconnecting from OrbixNames server 77
starting 75

C
caching in the OrbixNames server 29
cat_group utility 71, 73
cat_member utility 71, 73
catns utility 64, 68, 70
code examples 15
compiling OrbixNames applications 24
components 4, 91, 97

compound names 4, 7, 97
configuration

file 25
IT_NAMES_HOME variable 26
IT_NAMES_IP_ADDR variable 26
IT_NAMES_PATH variable 28
IT_NAMES_PORT variable 26
IT_NAMES_REPOSITORY_PATH variable 26
IT_NAMES_SERVER variable 15, 27
IT_NAMES_SERVER_HOST variable 27
IT_USE_HOSTNAME_IN_IOR variable 27
of locator for OrbixNames server 25
OrbixNames scope 27
server switches 28

contacting the Naming Service 6, 15, 16
contexts. See naming contexts
CORBA Initialization Service 15
CORBA module

BOA interface
impl_is_ready() operation 48, 55

ORB interface
resolve_initial_references() operation 15,

18, 22, 27
CORBA Naming Service. See Naming Service
CORBAservices specification 3
CosNaming module 4, 87–91

Binding structure 89, 101
BindingIterator interface 5, 23, 87, 93–94, 101

destroy() operation 93
next_n() operation 23, 94
next_one() operation 94

BindingList type 89, 101
BindingType enumerated type 90
Istring type 5, 90
Name type 5, 18, 22, 91
NameComponent structure 5, 91
NamingContext interface 5, 87, 95

AlreadyBound exception 96
bind() operation 6, 16–18, 90, 97
bind_context() operation 97, 98
bind_new_context() operation 18, 98
CannotProceed exception 99
destroy() operation 8, 100
InvalidName exception 101

O r b i x N ame s P r o g r amme r ’ s a n d A dm i n i s t r a t o r ’ s G u i d e

 128

CosNaming module (continued)
NamingContext interface (continued)

list() operation 22, 89, 93, 101
new_context() operation 24, 98, 102
NotEmpty exception 102
NotFound exception 103
NotFoundReason enumerated type 104
OBfactory() operation 40, 48, 95, 104, 119
rebind() operation 68, 90, 105
rebind_context() operation 105
resolve() operation 6, 22, 106
resolve_object_group() operation 42, 95,

107
unbind() operation 8, 100, 108, 116

NamingContext interface0
bind_new_context() operation 8

create_group() function 48, 49
createRandom() operation 40, 120
createRoundRobin() operation 50, 120
creating

name bindings 66, 81, 97
naming contexts 8, 64, 65, 78, 98, 102
object groups 40, 45, 49, 71, 104, 107, 120

D
del_group utility 71, 72, 73
del_member utility 71, 73
destroy() operation 8, 42, 93, 100, 116
duplicate_group exception 111
duplicate_member exception 53, 111

E
-e switch to the OrbixNames server 29
environment variables 25
examples

code 15
load balancing 43

F
-f switch to the OrbixNames utilities 70
factories, object group 40, 104, 119
federation of name spaces 29–33, 99
files, IDL 13, 24
find_group() function 56
findGroup() operation 41, 57, 110, 121
finding

members of object groups 117
object groups 42, 56, 107, 121
objects by name 6, 19–20, 64, 68

format of names 4, 9, 91
in lost+found naming context 23

G
get_root_context() function 48
getMember() operation 117
graphs, naming 98

example of 14
group identifiers 40, 42
groupId type 112
groupList type 112
groups, object. See object groups

H
-h switch to the OrbixNames server 29
-h switch to the OrbixNames utilities 70, 74
hash tables for naming contexts 29

I
-I switch to the OrbixNames server 16, 28
-i switch to the OrbixNames utilities 72, 74
id attribute 117
identifiers

in name components 5, 91
of object group members 40, 113
of object groups 40, 112, 117

IDL files, OrbixNames 13, 24
IIOP 70, 74
impl_is_ready() operation 48, 55
Implementation Repository 25
Initialization Service 15, 70
Internet Inter-ORB Protocol. See IIOP
Interoperable Object References. See IORs
InvalidName exception 101
IORs 27
Istring type 5, 90
IT_NAMES_HOME variable 26
IT_NAMES_IP_ADDR variable 26
IT_NAMES_PATH variable 28
IT_NAMES_PORT variable 26
IT_NAMES_REPOSITORY_PATH variable 26
IT_NAMES_SERVER variable 15, 27
IT_NAMES_SERVER_HOST variable 27
IT_USE_HOSTNAME_IN_IOR variable 27

K
-k switch to the OrbixNames utilities 68
killing the OrbixNames server 28

129

I n d e x

kind values in name components 5, 91

L
-l switch to the OrbixNames server 28
list() operation 22, 89, 93, 101
list_group utility 72
list_groups utility 73
list_member utility 71
list_members utility 73, 74
listing

bindings in a context 21–23, 64, 67, 89, 93, 101
members of object groups 73, 113, 117
object groups 72, 112, 122

load balancing 28, 35–59, 109
example of 43

LoadBalancing module 38, 109–113
duplicate_group exception 111
duplicate_member exception 53, 111
groupId type 112
groupList type 112
member structure 53, 112
memberId type 113
memberIdList type 113
no_such_group exception 110
no_such_member exception 111
ObjectGroup interface 40, 107, 109, 115–118

addMember() operation 40, 53, 111, 116
destroy() operation 42, 116
getMember() operation 117
id attribute 117
members() operation 113, 117
pick() operation 115, 118, 120
removeMember() operation 41, 118

ObjectGroupFactory interface 40, 109, 119–
122

createRandom() operation 40, 120
createRoundRobin() operation 40, 50, 120
findGroup() operation 41, 57, 110, 121
random_groups() operation 112, 122
rr_groups() operation 112, 122

RandomObjectGroup interface 109, 123
RoundRobinObjectGroup interface 109, 125

LoadBalancing.idl file 24, 38
locator, configuring for OrbixNames server 25
looking up names. See resolving names
lost+found naming context 23, 69
lsns utility 64, 67, 70

M
member structure 53, 112
memberId type 113
memberIdList type 113
members() operation 113, 117
members, object group 40, 72, 116

finding 117
identifiers 40, 72, 113
listing 73, 113, 117
removing 73, 118
viewing object references for 73

N
-n switch to the OrbixNames utilities 72, 74
name bindings 4

creating 6, 16–18, 66, 81, 97
listing in a context 21–23, 64, 67, 89, 93, 101
managing 64
removing 8, 64, 69, 83, 108
types 4, 89, 90

name management utilities 63–70
name spaces, federation of 29–33, 99
Name type 5, 18, 22, 91
NameComponent structure 5, 91
names

associating with naming contexts 97, 98
associating with objects 6, 16–18, 64, 66, 81, 97
compound 4, 7, 97
differentiating 5, 91
format in Naming Service 4, 91
IDL type of 5
of length zero 101
rebinding

to contexts 105
to objects 64, 68, 105

removing association with objects 8, 64, 69, 83,
108

resolving 6, 19–20, 64, 68, 106
string format of 9
unbinding 8, 64, 100, 108

naming contexts 4
associating names with 8, 97, 98
caching in the OrbixNames server 29
creating 8, 64, 65, 78, 98, 102
finding unreachable contexts 23
getting the root naming context 6, 15, 16, 48
hash tables for 29
listing bindings in 21–23, 64, 67, 89, 93, 101
lost+found 23, 69
rebinding names to 105

O r b i x N ame s P r o g r amme r ’ s a n d A dm i n i s t r a t o r ’ s G u i d e

 130

naming contexts (continued)
removing 8, 23, 64, 80, 100

naming graphs 98
example of 14

Naming Service
contacting 6, 15, 16
format of names 4
IDL definitions 13
interface to 4
introduction to 3

NamingContext interface 5, 87, 95
NamingService.idl file 24
ncontext binding type 90
new_context() operation 24, 98, 102
new_group utility 71, 74
newncns utility 64, 66, 70
next_n() operation 23, 94
next_one() operation 94
no_such_group exception 110
no_such_member exception 111
nobject binding type 90
NotEmpty exception 102
NotFound exception 103
NotFoundReason enumerated type 104

O
OBfactory() operation 40, 48, 95, 104, 119
object groups 37–59, 115

accessing from clients 57
adding objects to 40, 45, 52, 72, 116
binding names to 50
creating 40, 45, 49, 71, 104, 107, 120
factories for 40, 104, 119
finding 42, 56, 107, 121
finding members of 117
group identifiers 40, 112, 117
listing 72, 112, 122
listing members of 73, 113, 117
member identifiers 40, 113
removing 42, 71, 72, 116
removing objects from 41, 73, 118
selection algorithms 40, 72
utilities 63, 71–74

Object Management Group. See OMG
ObjectGroup interface 107, 109, 115–118
ObjectGroupDemo module 44
ObjectGroupFactory interface 40, 109, 119–122
objects

associating names with 6, 16–18, 64, 66, 97
finding by name 6, 19–20, 68

objects (continued)
rebinding names to 64, 83, 105
removing association with names 8, 69, 83, 108
removing from object groups 41

OMG 3
options to the OrbixNames server 28
Orbix protocol 70, 74
OrbixNames

browser 75–83
configuration file 25
IDL files 13, 24
server 13, 15, 25, 27

-e switch 29
-h switch 29
-I switch 16, 28
-l switch 28
-p switch 29
-r switch 28
switches to 28
-t switch 28
-v switch 28

utilities 9, 32, 63–74
add_member 71, 72, 73
cat_group 71, 73
cat_member 71, 73
catns 64, 68, 70
del_group 71, 72, 73
del_member 71, 73
list_group 72
list_groups 73
list_member 71
list_members 73, 74
lsns 64, 67, 70
new_group 71, 74
newncns 64, 66, 70
pick_member 71, 73, 74
putncns 64, 66, 70
putnewncns 64, 65, 70
putns 64, 66, 70
reputncns 64, 69, 70
reputns 64, 68, 70
rmns 64, 69, 70
syntax of 70, 73

version information 70, 74
OrbixNames scope in configuration files 27
OrbixNames server 27
-orbixprot switch to the OrbixNames utilities 64,

70, 74

131

I n d e x

P
-p switch to the OrbixNames server 29
pick() operation 115, 118, 120
pick_member utility 71, 73, 74
port for OrbixNames server 26
protocols

IIOP 70, 74
Orbix 70, 74

putncns utility 64, 66, 70
putnewncns utility 64, 65, 70
putns utility 64, 66, 70

R
-r switch to the OrbixNames server 28
random selection algorithm 120, 122, 123
random_groups() operation 112, 122
RandomObjectGroup interface 109, 123
rebind() operation 68, 90, 105
rebind_context() operation 105
rebinding names

to naming contexts 105
to objects 64, 68, 83, 105

registering the OrbixNames server 25, 27
registry, system 25, 28
removeMember() operation 41, 118
removing

members of object groups 73
name bindings 8, 64, 69, 83
naming contexts 8, 23, 64, 80, 100
object groups 42, 71, 72, 116
objects from object groups 41, 118

Repository, Bindings 26, 27
reputncns utility 64, 69, 70
reputns utility 64, 68, 70
resolve() operation 6, 22, 106
resolve_initial_references() operation 15, 18, 22,

27
resolve_object_group() operation 42, 95, 107
resolving names 6, 19–20, 64, 68, 106

of object groups 57
rmns utility 64, 69, 70
root naming context 6, 48
-round_robin switch to the OrbixNames

utilities 72
round-robin selection algorithm 72, 120, 122, 125
RoundRobinObjectGroup interface 109, 125
rr_groups() operation 112, 122

running
OrbixNames applications 24
the OrbixNames server 28

S
scoping configuration variables 27
selecting object group members 118
selection algorithms 118

random 120, 122, 123
round-robin 72, 120, 122, 125

server, OrbixNames 13, 15, 25, 27
connecting to 77
disconnecting from 77
-I switch 16
switches to 28

starting the OrbixNames server 28
stock market example 43
stopping the OrbixNames server 28
string format of names 9
switches

to the OrbixNames server 28
-e 29
-h 29
-I 28
-l 28
-p 29
-r 28
-t 28
-v 28

to the OrbixNames utilities 70
-f 70
-h 70, 74
-i 72, 74
-k 68
-n 72, 74
-orbixprot 64, 70, 74
-round_robin 72
-v 70, 74
-x 70

syntax
of object group utilities 73
of the name management utilities 70

system registry 25, 28

T
-t switch to the OrbixNames server 28
tables, hash 29
thread pool in OrbixNames server 29
types of name binding 89, 90

O r b i x N ame s P r o g r amme r ’ s a n d A dm i n i s t r a t o r ’ s G u i d e

 132

U
unbind() operation 8, 100, 116
unbinding names 8, 100
unreachable naming contexts 23
utilities 9

name management 63–70
catns 64, 68, 70
lsns 64, 67, 70
newncns 64, 66, 70
putncns 64, 66, 70
putnewncns 64, 65, 70
putns 64, 66, 70
reputncns 64, 69, 70
reputns 64, 68, 70
rmns 64, 69, 70
syntax of 70

object group 63, 71–74
add_member 71, 72, 73
cat_group 71, 73
cat_member 71, 73
del_group 71, 72, 73
del_member 71, 73
list_group 72
list_groups 73
list_member 71
list_members 73, 74
new_group 71, 74
pick_member 71, 73, 74
syntax of 73

OrbixNames 32, 63–74

V
-v switch to the OrbixNames server 28
-v switch to the OrbixNames utilities 70, 74
version information for OrbixNames 70, 74

X
-x switch to the OrbixNames utilities 70

Z
zero length names 101

	Preface
	Audience
	Organization of this Guide
	Document Conventions

	Part I Introduction
	1. Introduction to the CORBA Naming Service
	The Interface to the Naming Service
	Format of Names in the Naming Service
	IDL Interfaces to the Naming Service

	Using the Naming Service
	Associating a Name with an Object
	Using Names to Find Objects
	Associating a Compound Name with an Object
	Removing Bindings from the Naming Service

	Convention for String Format of Names

	Part II OrbixNames C++ Programmer’s Guide
	2. Programming with OrbixNames
	Developing an OrbixNames Application
	Making Initial Contact with the Naming Service
	Binding Names to Objects
	Resolving Object Names in Clients
	Iterating through Context Bindings
	Finding Unreachable Context Objects

	Compiling and Running an Application
	Configuring OrbixNames
	Registering the OrbixNames Server
	Options to the OrbixNames Server

	Federation of Name Spaces

	3. Load Balancing with OrbixNames
	The Need for Load Balancing
	Introduction to Load Balancing in OrbixNames
	The Interface to Object Groups in OrbixNames
	Using Object Groups in OrbixNames

	Example of Load Balancing with Object Groups
	Defining the IDL for the Application
	Creating an Object Group and Adding Objects
	Creating Replicated Objects
	Accessing the Objects from a Client

	Part III OrbixNames Administrator’s Guide
	4. Using the OrbixNames Utilities
	Managing Name Bindings
	Using the Name Utilities
	Syntax of the Name Management Utilities

	Managing Object Groups
	Using the Object Group Utilities
	Syntax of the Object Group Utilities

	5. The OrbixNames Browser
	Starting the OrbixNames Browser
	Connecting to an OrbixNames Server
	Disconnecting from an OrbixNames Server
	Managing Naming Contexts
	Creating a Naming Context
	Modifying a Naming Context
	Removing a Naming Context

	Managing Object Names
	Binding a Name to an Object
	Modifying an Object Binding
	Removing an Object Name

	Part IV OrbixNames Programmer’s Reference
	CosNaming
	CosNaming::BindingIterator
	CosNaming::NamingContext
	LoadBalancing
	LoadBalancing::ObjectGroup
	LoadBalancing:: ObjectGroupFactory
	LoadBalancing:: RandomObjectGroup
	LoadBalancing:: RoundRobinObjectGroup

	Index

