Orbix C++
Administrator’s Guide

IONA Technologies PLC
February 1999

Orbix is a Registered Trademark of IONA Technologies PLC.

While the information in this publication is believed to be accurate, IONA Technologies PLC makes no warranty of any kind
to this material including, but not limited to, the implied warranties of merchantability and fitness for a particular purpose.
IONA Technologies PLC shall not be liable for errors contained herein, or for incidental or consequential damages in
connection with the furnishing, performance or use of this material.

Java is a trademark of Sun Microsystems, Inc.

COPYRIGHT NOTICE

No part of this publication may be reproduced, stored in a retrieval system or transmitted, in any form or by any means,
photocopying, recording or otherwise, without prior written consent of IONA Technologies PLC. No third party intellectual
property right liability is assumed with respect to the use of the information contained herein. IONA Technologies PLC
assumes no responsibility for errors or omissions contained in this book. This publication and features described herein are
subject to change without notice.

Copyright © 1991-1999 by I0NA Technologies PLC. All rights reserved.

All products or services mentioned in this manual are covered by the trademarks, service marks, or product names as
designated by the companies who market those products.

M2230

Contents

Preface vii
Audience vii
Organization of this Guide viii
Document Conventions Xi

Part | Orbix Administration

Chapter | Overview of Orbix Administration 3
Components of the Orbix Architecture 4
Servers and the Implementation Repository 4

Clients and the Server Locator 5

The Interface Repository 7
Administration of Orbix Components 7
Chapter 2 Getting Started 9
Basic Orbix Configuration 10

The Orbix Configuration Files 10

Locating the Configuration Files 13

Locating the Orbix Library Directory on UNIX Platforms 14

Setting the Orbix Daemon Port 14

Locating the Implementation Repository 15

Specifying Your Local Internet Domain 15

Starting The Orbix Daemon 16
Registering a Server 17
Checking for an Orbix Daemon 18
Checking for Running Servers 18
Chapter 3 Managing the Implementation Repository 21
Implementation Repository Entries 22

Basic Implementation Repository Usage 23
Registering a Server on a Remote Host 23

Organizing Servers Into Hierarchies 23

Orbix C++ Administrator’s Guide

Removing a Registered Server

Listing Registered Servers

Displaying A Server Entry
Starting Servers Manually

Registering a Manual Server

Starting the Orbix Daemon for Unregistered Servers
Stopping Servers
Security of Registered Servers

Modifying Server Access

Changing the Owners of Registered Servers

Determining the User and Group IDs of Running Servers
Server Activation Modes

Registering Unshared Servers

Using Markers to Specify Named Objects

Registering Per-Method Servers

Secondary Activation Modes
Managing Server Port Selection

Registering Servers with Specified Ports

Controlling Port Allocation with Configuration Variables

Chapter 4 Managing the Server Locator

Locating Server Locator Files

The Server Locator Algorithm
Configuration File Formats

Using the serverhosts Command
Using the servergroups Command
Using the grouphosts Command

Chapter 5 Managing the Interface Repository

Configuring the Interface Repository
Registering the Interface Repository Server
Adding IDL Definitions

Reading the Interface Repository Contents
Removing IDL Definitions

24
25
25
26
26
27
27
28
28
29
30
31
32
32
34
35
36
36
37

39
40
40
4
42
43
44

47
48
48
49
50
50

Contents

Part Il Orbix GUI Tools

Chapter 6 The Orbix Configuration Explorer
Starting the Configuration Explorer
Configuring Common Settings
Configuring Orbix-Specific Settings
Customizing Your Configuration
Creating Configuration Variables
Creating Configuration Scopes
Creating Configuration Files

Chapter 7 The Orbix Server Manager
Starting the Server Manager
Connecting to an Implementation Repository
Creating a New Directory
Registering a Server
Providing Server Access Rights to Users
Specifying Server Activation Details
Modifying Server Registration Details
Launching a Persistent Server
Configuring the Server Manager

Chapter 8 The Interface Repository Browser
Starting the Interface Repository Browser
Connecting to an Interface Repository
Adding IDL to the Interface Repository
Viewing the Interface Repository Contents

Viewing Information about IDL Definitions

Viewing Source Code for IDL Definitions
Exporting IDL Definitions to a File
Configuring the Interface Repository Browser

53
54
55
58
59
60
62
63

65
66
67
69
71
73
75
78
79
80

83
84
85
86
87
89
89
90
91

Orbix C++ Administrator’s Guide

Part Ill Appendices

Appendix A Configuration Variables
Appendix B Orbix Daemon Options
Appendix C Command Reference

Appendix D Error Messages and Exceptions

Index

vi

95

99

101

123

129

Preface

Orbix is a software environment for building and integrating distributed, object-
oriented applications. This guide explains how to configure and manage the
components of the Orbix environment. Many Orbix components have
associated graphical user (GUI) interfaces. This guide describes the Orbix GUI
tools associated with Orbix configuration, the Implementation Repository, and
the Interface Repository.

Audience

Read this guide if you are responsible for any of the following tasks:
® Configuring an Orbix installation.
® Registering servers in the Orbix Implementation Repository.
¢ Adding IDL definitions to the Orbix Interface Repository.

This guide describes how you can use the command line and Orbix GUI tools to
do each of these tasks. It assumes that you are familiar with relevant sections of
the Orbix C++ Programmer’s Guide, and the Orbix C++ Programmer’s Reference.

vii

Orbix C++ Administrator’s Guide

Organization of this Guide

This guide is divided into 3 parts as follows:

Part |, Orbix Administration

Chapter |, “Overview of Orbix Administration”

This chapter introduces the main components of the Orbix environment.
You should read this chapter first to familiarize yourself with terminology
used throughout the guide.

Chapter 2, “Getting Started”

This is a quick start chapter on how to configure Orbix, start the Orbix
daemon process, and how to register a server that automatically starts
when it is needed.

Chapter 3, ““Managing the Implementation Repository”

This explains more about using the Implementation Repository including
registering servers, displaying and organising server entries, and security
issues.

Chapter 4, “Managing the Server Locator”

This chapter describes how to configure Orbix to find servers on other
hosts.

Chapter 5, “Managing the Interface Repository”

This chapter describes how to configure Orbix to store object interface
definitions so that applications can learn about them at runtime.

viii

Preface

Part Il, Orbix GUI Tools

Chapter 6, ‘“Overview of the Orbix GUI Tools”.

This chapter provides an overview of each of the Orbix GUI tools and
describes how you can run these tools. You should read this chapter first.

Chapter 6, “The Orbix Configuration Explorer”

This chapter describes how you can configure an Orbix installation using
the Orbix Configuration Tool.

Chapter 7, “The Orbix Server Manager”

This chapter describes how you can register servers in the Orbix
Implementation Repository using the Orbix Server Manager.

Chapter 8, “The Interface Repository Browser”

Chapter 8 describes how you can add IDL definitions to the Orbix
Interface Repository using the Interface Repository browser.

You should refer to the OrbixNames Programmer’s and Administrator’s
Guide for details of the OrbixNames Browser.

ix

Orbix C++ Administrator’s Guide

Part Ill, Appendices

Appendix A, “Configuration Variables”

This appendix shows the configuration variables that Orbix recognizes.

Appendix B, “Orbix Daemon Options”

This appendix describes the start-up options that the Orbix daemon can
use.

Appendix C, “Command Reference”

This describes the syntax and the options for each Orbix command you
can use.

Appendix D, “Error Messages and Exceptions”

This describes how to modify error messages, shows the error formats,
and lists tables of standard error messages that Orbix applications can
return.

Preface

Document Conventions

This guide uses the following typographical conventions:

Constant wi dth Constant width (courier font) in normal text represents

Italic

portions of code and literal names of items such as
classes, functions, variables, and data structures. For
example, text might refer to the CORBA: : (hj ect class.

Constant width paragraphs represent code examples or
information a system displays on the screen. For example:

#i ncl ude <stdio. h>

Italic words in normal text represent emphasis and new
terms.

Italic words or characters in code and commands
represent variable values you must supply, such as
arguments to commands or path names for your
particular system. For example:

% cd /users/ your_name

Note: Some command examples may use angle brackets
to represent variable values you must supply. This is an
older convention that is replaced with italic words or
characters.

This guide may use the following keying conventions:

No prompt

%

When a command’s format is the same for multiple
platforms, no prompt is used.

A percent sign represents the UNIX command shell
prompt for a command that does not require root
privileges.

A number sign represents the UNIX command shell
prompt for a command that requires root privileges.

The notation > represents the DOS, Windows NT, or
Windows 95 command prompt.

Orbix C++ Administrator’s Guide

Horizontal or vertical ellipses in format and syntax
descriptions indicate that material has been eliminated
to simplify a discussion.

[1] Brackets enclose optional items in format and syntax
descriptions.

{} Braces enclose a list from which you must choose an
item in format and syntax descriptions.

| A vertical bar separates items in a list of choices
enclosed in { } (braces) in format and syntax
descriptions.

Note: Unless otherwise stated, all examples in this guide apply to Orbix on
both UNIX and Windows platforms.

Part |

Orbix Administration

Overview of Orbix Administration

Orbix is a software environment that allows you to develop
distributed applications. This chapter introduces the main
components of the Orbix environment.

As described in the Orbix C++ Programmer’s Guide, Orbix allows you to build
distributed software systems composed of interacting objects. Orbix is a full
implementation of the Object Management Group (OMG) Common Object
Request Broker Architecture (CORBA).

An Orbix application consists of one or more client programs that communicate
with distributed objects located in server programs. Clients can communicate
with distributed objects from any host in a network through clearly-defined
interfaces specified in the CORBA Interface Definition Language (IDL).

Orbix mediates the communication between clients and distributed objects. This
mediation allows clients to communicate with objects without concern for
details such as:

® The hosts on which the objects exist.
® The operating system that these hosts run.
® The programming language used to implement the objects.

The Orbix architecture includes several configurable components that support
the mediation of communications between clients and objects.

Orbix C++ Administrator’s Guide

Components of the Orbix Architecture

An Orbix client invokes IDL operations on a distributed object using normal
C++ function calls, as if the object were located in the client’s address space.
Orbix converts these function calls to a series of network messages and sends
these messages to the server process that contains the target object. At the
server, Orbix receives these messages and translates them to function calls on
the target object, as shown in Figure I.I.

Client Host Server Host
Client Server
Application
Application Code
Code Object
’\/
= Operation
Orbix Call
Code
Orbix Code

i

Figure 1.1: An IDL Operation Call on a Distributed Object

Servers and the Implementation Repository

Each Orbix server program has a name, unique within its host machine. A server
can consist of one or more processes. When a client invokes a method on an
object, a server process containing the target object must be available. If the
process is not running, the Orbix daemon at the server host attempts to launch
the server process automatically.

To allow an Orbix daemon to manage the server processes running in the
system, Orbix provides an Implementation Repository. The Implementation
Repository maintains a mapping from a server’s name to the filename of the
executable code implementing that server. The server code must therefore be
registered with the Implementation Repository.

Overview of Orbix Administration

Client Host
Client
Application
Code @
— Initial
. peration
Orbix
Code | call

Coano

Server Host

Server

A

3
Orbix
Daemon

Ny 216

Implementation
Repository

Figure 1.2: Automatic Launch of an Orbix Server Process

As shown in Figure 1.2, the Orbix daemon launches a server process as follows:

I
2.

A client makes its first operation call to an object located in a server.

The Orbix daemon reads the server details from the Implementation
Repository, including the server launch command.

If the required server process is not running, the Orbix daemon executes
the server launch command.

To allow the daemon to launch server processes, you must maintain records in
the Implementation Repository for each server in your system.

Clients and the Server Locator

In order to communicate with a distributed object, a client program first obtains
a reference to that object. An object reference uniquely identifies an object
within a distributed system and includes such information as the name of the
server in which the object is located and the host on which the server runs.

If a client uses the Orbix bind mechanism to obtain an object reference, the
client can allow Orbix to determine at runtime the host on which the server
runs. Orbix uses its server locator to find a suitable host.

Orbix C++ Administrator’s Guide

A server with a given name can be supported on any number of hosts in the
distributed system. The Orbix server locator allows you to associate a set of
hosts with a server name using configuration files.

Client Host Server Host
Client Server
Application
| Code A
~——— < Initial — @
. Operation -
2"';"‘ Call Orbix
ode ‘ Daemon

Orbix
Daemon @ Implementation

Repository
Locator
Configuration
Files

Figure 1.3: The Orbix Server Locator Mechanism

s} B

Figure 1.3 illustrates the steps involved in using the server locator:

I. A client binds to an object in a server without specifying the host on
which the server runs. In this case, the “initial operation call” is an implicit
call made by Orbix when the client binds to the object.

2. The server locator mechanism is implemented in the Orbix daemon.
Orbix asks the Orbix daemon process on the client host to determine
the location of the server. The server locator reads its configuration files
to determine the name of the host on which the server runs.

3. Orbix binds to the target object at the host specified by the server
locator.

4. The Orbix daemon at the server host reads the server details from the
Implementation Repository.

Overview of Orbix Administration

5. If the required server process is not running, the Orbix daemon executes
the server launch command.

To allow the server locator to find a host for an Orbix server, you must add an
entry for that server to the server locator configuration files.

The Interface Repository

Orbix maintains object specifications by storing an object’s IDL interface in a
database called the Interface Repository. Some client applications use the
Interface Repository to determine object interfaces and all information about
those interfaces at runtime.

A client accesses the Orbix Interface Repository by contacting an Interface
Repository server. This is a standard Orbix server that provides a programming
interface, defined in IDL, to the Interface Repository.

To allow clients to obtain information about IDL definitions implemented in your
system, you must add those definitions to the Interface Repository.

Administration of Orbix Components

To allow Orbix applications to run in your network, you must do the following:

¢ Configure Orbix for your network and environment, using the Orbix
configuration files.

¢ Run the Orbix daemon process.
® Register servers in the Implementation Repository.

If your Orbix applications use the Orbix server locator or the Interface
Repository, you must also do the following:

® Maintain the server locator configuration files.

® Add IDL definitions to the Interface Repository.

Orbix C++ Administrator’s Guide

Part | of this guide, Orbix Administration, presents the configuration files and
command-line utilities that allow you to achieve each of these tasks.

Part Il of this guide, Orbix GUI Tools, presents the graphical user interfaces that
provide an alternative way to manage Orbix components.

Getting Started

Several components of Orbix require administration. This chapter
describes the basic Orbix administration steps required when running
Orbix applications.

Orbix administration involves the following basic steps:

.
2.

4.
5.

Configuring Orbix for your network and environment.

Starting the Orbix daemon (or bi xd) on each host that Orbix servers run
on.

Registering servers in the Implementation Repository so that Orbix can
start them when needed.

Starting client applications that make object requests.

Monitoring Orbix to fine tune it and your clients and servers.

Steps | and 2 apply when you first install Orbix and only occasionally after that.
Steps 3, 4, and 5 are iterative. This guide describes how to perform these steps.
This chapter first gives you a quick start to using Orbix and its environment of
distributed computing.

Orbix C++ Administrator’s Guide

Basic Orbix Configuration

This section describes the configuration settings you may need to modify before
starting the Orbix daemon. You can modify the main Orbix configuration
settings by editing the Orbix configuration files, or by setting environment
variables or by using the Orbix GUI tools. Refer to “The Orbix Configuration
Explorer” on page 53 for details of configuring Orbix using GUI tools.

The Orbix Configuration Files

10

The Orbix configuration files are located in the confi g directory of your Orbix
installation. By default, these are named as follows:

® jona.cfg
® comon. cfg
® orhix3.cfg

® orbi xnanes3. cfg

iona.cfg

The i ona. cf g file is the root configuration file used by Orbix. This file contains
links to all other IONA configuration files. You can edit this file to include links
to your customized configuration files. The default i ona. cf g file includes the
following information:

/1 In file iona.cfg
cfg dir = "d:\iona\lconfig\";

include cfg _dir + "comon.cfg";
include cfg dir + "orbix3.cfg";
include cfg_dir + "orbi xnanes3. cfg";

You should set the confi g_di r variable to <i ona_install _dir>\config\.

Getting Started

common.cfg

The common. cf g file contains a list of configuration variables that are common to
multiple IONA products. The configuration variables in this file are declared
within the scope Common{. . . }, for example:

11

In file common. cfg

Conmmon {

The port nunber for the O bix daenon.
| T_DAEMON_PORT = "1570";

The starting port number for daenon-run servers:
| T_DAEMON_SERVER BASE = "1570";

The full path name of the I nplenentation Repository
directory.
I T I MP_REP_PATH = cfg_dir + "Repositories\I|npRep";

The full path name of the Interface Repository
directory.
| T_INT_REP_PATH = cfg_dir + "Repositories\|IFR";

The full path name of the directory hol ding
the locator files.
| T_LOCATOR_PATH = cfg_dir;

The | ocal DNS donmi n nane.
| T_LOCAL_DOMAIN = "*"

The full path name to the JRE binary
executable that installs with O bix.
I T_JAVA | NTERPRETER="C: \ | ONA\ bi n\jre. exe";

The default classpath to be used when java

servers are automatically |aunched by the daenon.
| T_DEFAULT_CLASSPATH = cfg dir +

"; C:\ I ONA\ bi n\ bongo. zi p; C:\ | ONA\ bi n\ mar i nba. zi p;
C.\ I ONA\ bi n\ NScl asses. zi p; C\ I ONA\ bi n\utils. zi p;
C\AVIONA\bin\rt.jar; C\1ONA\ bin\orbi xweb. jar;
C.\ I ONA\ Tool s\ Nami ngServi ceGUI\NSGUI . jar";

Orbix C++ Administrator’s Guide

Note: You can also use the prefix Cormon. to refer to individual entries in this
file. For example, Conmon. | T_DAEMON_PORT.

After installation, the common. cf g file provides default settings for the main
environment variables required by Orbix. You can change these default settings
by manually editing the configuration file, or by using the Configuration Explorer,
or by setting a variable in the user environment. An environment variable, if set,
takes precedence over the value set in the configuration file. Environment
variables are not scoped with a Conmon. prefix.

Format of Configuration Files
Each line of the common. cf g configuration file has the following form:

<entry nane> =‘“<entry val ue>"

Each variable in your configuration file must start at the beginning of a line. Any
line that does not start with a variable that Orbix recognizes is ignored. You can
add comments to your configuration file in this way. Any entry value can use any
desired environment variable.

orbix3.cfg

This file contains configuration varibles that are specific to Orbix only. By
default, the configuration variables in this file are scoped with the Or bi x. prefix.
You can also use the scope Orbi x{...}.

/1 In file orbix3.cfg
The path nanme to the error nessages file.
O bi x. | T_ERRCRS = cfg_dir + "ErrorMsgs";

The maxi mum nunber of retries Orbix nakes to
connect to a server.
O bi x. | T_CONNECT_ATTEMPTS = "10";

Note: Orbix uses the | T prefix, which represents “IONA Technologies”, to
distinguish its configuration and environment variables.

12

Getting Started

The or bi xnames3. cf g file contains configuration variables that are specific to
OrbixNames. Refer to the OrbixNames Programmer’s and Administrator’s Guide
for more details.

Locating the Configuration Files

Orbix must be able to find its root configuration file before the Orbix daemon,
the IDL compiler, or application processes run. The Orbix confi g directory is
the default location for all configuration files. You can set a different directory or
configuration file by setting the | T_OCNFI G_PATH environment variable. If the

| T_CONFI G_PATH variable is a directory, that directory should contain the

i ona. cf g file. If the | T_OONFI G_PATH environment variable is the full path name
of a file, that file is used as the configuration file.

How Orbix Finds its Configuration
Orbix has a chain of configuration handlers that it looks in when asked for a

configuration parameter. These are as follows (in order):

[Envi ronment Handl er (I T_Environnent)] ->
[ScopedConfi gFil e Handl er (I T_ScopedConfigFile)] ->
[A dConfigFil eHandl er (1 T_ConfigFile)]

The Envi ronnment handler allows any configuration variables defined in your
environment to take precedence over those defined in configuration files or
other user-defined configuration handlers.

The ScopedConfi gFi | e handler does the following when searching for the root
configuration file (i ona. cf g by default):

® Checks the environment variable | T | ONA OQONFI G FI LE.
The configuration file does not need to be called i ona. cf g.

® Checks the environment variable | T_OONFI G PATHand appends
i ona. cf g.

® Searches for i ona. cf g in the same directory as the Orbix runtime
libraries.

® On Windows NT, checks the Registry to find where Orbix was installed
and appends confi g\i ona. cf g.

Orbix C++ Administrator’s Guide

® Tries the default installation locations (c: \ i ona on Windows NT, or
/ opt/iona on UNIX systems).

The G dCongfi gf i | e handler enables you to use O bi x. cf g files for
backwards compatibility. However, it is recommended that you use the default
files supplied with this version of Orbix.

Using the dumpconfig Utility

The dunpconfi g utility enables you to obtain information about your Orbix
configuration. This utility outputs the values of the configuration variables used
by Orbix, and the location of the Orbix configuration files in your system. It also
reports if there are any syntax errors in your configuration files that would
normally go unrecognized by Orbix. The dunpconfi g utility is especially useful if
you need to know where Orbix is being configured from.

The following sections describe more about the | T_DAEMON PCRT,

I T_| MP_REP_PATH and | T_LOCAL_DQVAl Nvariables. The

| T_DAEMON_SERVER BASE, | T_LOCATCR PATH, | T_ERRCRS, and

| T_I NT_REP_PATH variables are described in later chapters of the guide.

Locating the Orbix Library Directory on UNIX Platforms

On Solaris platforms, you must set the environment variable LD LI BRARY_PATH
to include the Orbix | i b directory before the Orbix daemon, the IDL compiler,
or the Orbix administration commands can run.

On HPUX platforms, you must set the SH.I B_PATH environment variable the
Orbix | i b directory.

Setting the Orbix Daemon Port

14

Orbix uses the daemon process or bi xd on each site running Orbix servers to
await incoming requests for server activation and to connect new clients to
existing server processes. This is not involved in subsequent client/server
communications.

The daemon uses one Internet port, and by default this port number is given by
the | T_DAEMON_PCRT entry in connon. cf g. This is a required variable.

Getting Started

The standard registered port number assigned to or bi xd by the Internet
Engineering Task Force (IETF) is the internet port number 1570. You must
ensure that the | T_DAEMON_PCRT number is the same for all of your network
hosts. However, when experimenting with the system, you may wish to install
more than one Orbix daemon on a specific machine to isolate a particular set of
servers. You must specify a different port for this daemon, by setting the
environment variable | T_DAEMON PCRT or by using a different root configuration
file i ona. cf g.

Locating the Implementation Repository

The data held in the Implementation Repository maps from server, application
object, and operation names to the path names of executable server files. The
location for storing this data is given by the required entry for

| T_I MP_REP_PATH in the comon. cf g configuration file. Each Orbix daemon has
an associated Implementation Repository.

Occasionally it might be useful for a group of programmers to have their own
Implementation Repository store on a particular host. For example, when
running a separate daemon with a different daemon port. You can specify a
different location by setting the | T_CONFI G_PATH to refer to a configuration file
that specifies a different location for the | T_| MP_REP_PATH entry or by setting
the | T_| MP_REP_PATH environment variable to override the one in the
configuration file.

Specifying Your Local Internet Domain

You can specify the name of the local Internet domain by using the
| T_LOCAL_DQOVAI Nvariable.

An example is:
| T_LOCAL_DOMAI N i ona. com

A value for this variable is not always required—however, it is advisable to
provide one. For example, it is required if both the host’s full name (for example,
al pha. i ona. con) and abbreviated name (for example, al pha) are used in Orbix
applications.

Orbix C++ Administrator’s Guide

Starting The Orbix Daemon

16

An Orbix daemon runs on each host to control aspects of the distributed
system. The daemon is responsible for the following tasks:

Starting servers when appropriate.
Connecting clients to servers.

Managing the Implementation Repository. The daemon accepts requests
from the Orbix Implementation Repository commands.

Searching for an appropriate server using the server locator. The daemon
also manages the configuration files for the server locator.

Providing information from the Interface Repository about the supported
interfaces for clients that request it.

A typical start of the Orbix daemon without options is as follows:

or bi xd

Running the Orbix Daemon as an NT Service

On Windows NT platforms, you can install the Orbix daemon as an NT service
as follows:

> orbixd -j

You must manually start the service on Windows NT platforms as follows:

I
2.
3.

Select Start - Settings — Control Panel - Services.
Highlight the Orbix daemon entry.

Click the Start button.

NT starts the service as <pat h>\ or bi xd -b.

To uninstall this service on Windows NT platforms, do the following:

> orbixd -w

Getting Started

Using the -o Option to the Orbix Daemon

You should use the - 0 option if you are running or bi xd as a super-user on
UNIX platforms. This option indicates that if the daemon runs with super-user
privileges, servers launched by the daemon should run using the specified user
ID instead of the root ID.

You should run or bi xd in this way for the following reasons:

® A client running as root on a remote machine could launch a server with
root privileges on a different machine. This poses a serious security risk
because a remote user could easily be faked. When the Orbix daemon is
launched as or bi xd - o userld, servers launched by the daemon run using
the specified user ID instead of the root ID.

® When the daemon has super-user capabilities, the permissions of servers
are indeterminate and depend on the permissions of the first remote user
to start a specific server. For example, on UNIX the files written by a
server may have different owners on different activations making it
possible that the server would be unable to read or write files in future
activations.

Refer to Appendix B, “Orbix Daemon Options” on page 99 for more details.

Note: Any changes you make to the configuration of Orbix do not take effect
until you restart the Orbix daemon.

Registering a Server

The putit utility registers servers with the Orbix Implementation Repository.
You can use the putit command in its simplest form as follows:

putit server_name command_line
For example:

putit BankSrv /usr/users/chris/banker

Orbix C++ Administrator’s Guide

The executable file / usr/ user s/ chri s/ banker is registered as the
implementation code for the server called BankSr v at the local host. You should
use the full path name and not a relative path name. This is because Orbix
interprets relative path names with respect to the Orbix daemon’s current
directory, not the putit user’s current directory.

The putit command does not execute the indicated file. The file is automatically
launched by Orbix in response to an incoming operation invocation.

Note: You should ensure that the server name specified in the putit command
matches exactly the server name used in the server application code.

Checking for an Orbix Daemon

Use the pi ngi t utility to determine if an Orbix daemon is running on a
particular host. For example:
pi ngit -h host name

If the Orbix daemon is running at the target host, pi ngi t displays a message to
indicate this. Otherwise, pi ngi t displays a CORBA COW FAl LURE exception
message.

Checking for Running Servers

18

Use the psi t utility to display information about all of the running servers that a
particular Orbix daemon knows about.

One line is output for each server process. Each line of output has the following
fields:

Nane The server name.

Mar ker The object marker pattern associated with the
process.

Code The data encoder used; for example, XDR.

Getting Started

Conms

Port

St at us
Per-Aient?
G5 pid

The communications protocol used; for example,
TCP.

The port number used by the communications
system.

One of “automatic”, “manual” or “inactive”.
Indicates whether the server is a per-client server.

The operating system process.

Orbix C++ Administrator’s Guide

20

Managing the Implementation
Repository

When you install server applications on a network host, you must
register those servers in the Orbix Implementation Repository. This
repository allows Orbix to direct client operation calls to objects in
servers and to start server processes when necessary. This chapter
describes how to manage servers in the Implementation Repository.

The chapter covers the following topics:
® The Implementation Repository and its entries.

® Basic usage of the Implementation Repository including registering
servers, organizing server entries, removing server entries, listing
registered servers, and displaying information about an entry.

® How to start a server manually.
® How to stop servers manually.

® The security of servers including how to change ownership of servers and
how to modify access control lists.

® How to register servers in specialized activation modes other than simply
one server process for all clients.

® How to manage the set of ports Orbix uses to run servers.

21

Orbix C++ Administrator’s Guide

This chapter explains how to manage the Implementation Repository using
Orbix command-line utilities. Refer to Chapter 7, “The Orbix Server Manager”
for details of how you can use Orbix GUI tools.

Implementation Repository Entries

22

The Implementation Repository maintains a mapping from a server’s name to
the filename of the executable code implementing that server. A server must be
registered with the Implementation Repository to make use of this mapping.
Orbix automatically starts the server (if it is not already running) when a client
binds to one of the server’s objects or when an operation invocation is made on
any object that names that particular server.

When a client first communicates with an object, Orbix uses the Implementation
Repository to identify an appropriate server to handle the connection. If a
suitable entry cannot be found in the Implementation Repository during a search
for a server, an error is returned to the client.

The Implementation Repository maintains its data in entries that include the
following information:

®* The server name.

Server names can be hierarchical so the Implementation Repository
supports directories.

® The server owner—usually the user who registered the server.
® The server permission values.

These specify which users have the right to launch the server and which
users have the right to invoke operations on objects in the server.

* One or more activation orders.

An activation order associates an object or group of objects with a launch
command. A launch command specifies how Orbix starts the server.

Managing the Implementation Repository

Basic Implementation Repository Usage

Use the putit command to create or modify an Implementation Repository
entry. For example, the following command registers a shared server called
“Fi rst Trust” on the local host, with the specified executable file:

putit FirstTrust /work/bank/banker

Activation occurs when any of the objects managed by the Fi r st Tr ust server is
used. In this example there is only one server process associated with this server
and all clients share the same server process.

Registering a Server on a Remote Host

The following command registers a shared server called “Fi r st Trust ” on the
remote host “al pha”, with the specified executable file and command-line
argument:

putit -h al pha FirstTrust
"/ wor k/ bank/ banker -v 1.1"

Note: If the server requires parameters and options, you should use quotes so
that the puti t command does not try to interpret them.

Using the - h hostname option enables you to use all the utility commands for
remote hosts. However, for simplicity, most of the examples in this guide do not
use this option and use the local host default instead.

Organizing Servers Into Hierarchies

Server names may be hierarchically structured, in the same way as UNIX file
names. Hierarchical server names are useful in structuring the name space of
servers in Implementation Repositories. You can create hierarchical directories
by using the nkdi rit command. For example, you can make a new banki ng
registration directory and make a registration within it as follows:

nkdi rit banki ng
putit banking/Berliner /usr/users/joelbanker

Thus banki ng/ Ber | i ner is a valid, hierarchical server name.

23

Orbix C++ Administrator’s Guide

The rndi rit command removes a registration directory. This command can
take a - Roption to recursively delete a directory and the Implementation
Repository entries and sub-directories within it. The rndi ri t command returns
an error if it is called without the - R option on a non-empty registration
directory.

For example:
Isit
Fi rst Trust
banki ng
ridirit banking

directory not enpty
rmdirit -R banking

This example uses the | sit command to display the Implementation Repository
entries and directories.

To move an entry in the hierarchy, first remove it with the rm t command and
then re-register it with the putit command.

Removing a Registered Server

24

Use the rmt command to remove an Implementation Repository entry. For
example, the following command removes a server entry:

rmt FirstTrust

This simplest format of the command removes the entry and all activation
orders for the server.

You can also use the rmt command to remove specific activation orders. Use
the - nar ker option for the shared or unshared activation modes to remove
specific activation orders for individual objects. Use the - net hod option for the
per-method call activation mode to remove specific activation orders for
individual methods. Activation modes are described in section “Server
Activation Modes” on page 31.

Managing the Implementation Repository

Listing Registered Servers

Use the | sit command to list registered servers and directories. For example:

Regi ster a server called International and
one called printer
putit International /usr/users/joelbanker
putit printer /usr/users/joe/print |aser
Regi ster a server called Berliner.
"Berlin 98-00-00" are paraneters for the
executable file.
putit Berliner

[usr/users/joel banker Berlin 98-00-00
I'sit

I nt ernati onal

Berl i ner

printer

Use the - Roption with the | sit command to recursively list all server entries in
the given directory and its subdirectories.

Displaying A Server Entry

Use the catit command to display information about a specific server’s
registration entry. The following example assumes the server Berl i ner is
registered from the previous example:

catit Berliner

nane: Berl i ner

Activation: shar ed

Oomer : smth

Launch: ;j ones; devel opers; fri ends;
| nvoke: ;all;

Per-client: fal se

Mar ker Launch_Conmand
* /usr/users/joel/ banker Berlin 98-00-00

The output includes the following:

nane Server name.

Activation Activation mode.

25

Orbix C++ Administrator’s Guide

Onner The user who put the in the entry.

Launch The users and groups who have permission to start
or launch the server.

I nvoke The users and groups who have permission to
invoke operations on an object controlled by the
server.

Per-cl i ent A per-client indicator that indicates whether a new
server is to be launched for each client that uses the
server.

The final output is a table of activation orders. An activation order is identified
with a marker. An asterisk (*) represents all objects and means that there is only
one activation order for the server entry.

Starting Servers Manually

Most servers are designed to have Orbix start them automatically when a client
uses an object. The majority of an administrator’s work therefore involves
registering servers in the Implementation Repository and managing the
registration entries in the repository. However, some servers do need to be
started before any clients attempt to use their objects.

Servers that are started by some mechanism external to Orbix are useful for a
number of reasons. For example, if a server takes a long time to initialize and it
starts when a client request a service, it may cause the client to timeout. In
addition, some servers that are meant to run as long-lived daemons may require
manual starting. Manual servers are also known as persistent servers in CORBA
terminology.

Registering a Manual Server

26

All servers that are registered in the shared mode can also be started manually.
Subsequent invocations on the objects are passed to the running process.

However, if you wish to prevent Orbix from starting a server and make it
manual-only, use the following command:

putit FirstTrust -persistent

Managing the Implementation Repository

This command registers a manual-only server called “Fi r st Trust” on the local
host. No start command is specified to puti t, because this server cannot be
started by Orbix automatically but can only start as a manual server.

The CORBA specification requires that unshared or per-method types of
servers fail if an attempt is made to start them manually. This means that manual
servers can only be registered as shared servers. Therefore, you cannot use the
- per si st ent option with either the - unshar ed or - per - net hod options of the
putit command. These unshared and per-method servers are described in
section “Server Activation Modes” on page 31.

Starting the Orbix Daemon for Unregistered Servers

In some circumstances, it can be useful not to register servers with the
Implementation Repository. Under normal operation, Orbix would know
nothing about these servers. However, if you invoke the Orbix daemon with the
- U option, it maintains an active record of unregistered Orbix servers and clients
that may use these servers:

orbixd -u

When Orbix is started this way, any server process can be started manually.
However, no access control is enforced and there is no record of the server in
the Implementation Repository.

Stopping Servers

Just as most servers start automatically when needed, they are usually designed
to stop automatically after some period. However, there may be other situations
where you need to manually stop a server.

The kil Iit command stops a server process by using the S| GTERMsignal.
I. For example, the following command stops the Ber | i ner server on the
host onega:
killit -h omega /Banki ng/ Berliner

2. When there is more than one server process, use the marker option and
argument to distinguish between different processes. To do this, use the
following ki | I i t command format:

killit -m marker server_name

27

Orbix C++ Administrator’s Guide

Security of Registered Servers

For each Implementation Repository entry, Orbix maintains two access control
lists (ACLs) as follows:

Launch The users or groups that can launch the associated server.

Users on this list, and users in groups on this list, can cause the
server to be launched by invoking on one of its objects.

Invoke The users and groups that can invoke operations on any object

controlled by the associated server.

The entries in the access control list can be user names or group names. The
owner of an Implementation Repository entry is always allowed to launch it and
invoke operations on its objects. A client normally needs both launch and invoke
access to use an automatically-launched server. The following sections describe
how to modify ACLs by adding groups and users or removing groups and users
from ACLs.

Modifying Server Access

Use the chnodi t command to modify the launch or invoke access control lists
(ACLs). For example:

28

The following command allows the user chri s to launch the server
Al l'i edBank:

chnodit AlliedBank | +chris

The following command grants the user chri s rights to launch any server
in the directory banks/ i nvest ment Banks:

chnodit -a banks/invest nent Banks | +chri s

The following command revokes j oe’s right to invoke all servers in the
Implementation Repository directory banks/ conmer ci al Banks:

chnodit -a banks/commerci al Banks i -j oe

There is also a pseudo-group named al | that you can use to implicitly
add all users to an ACL. The following command grants all users the right
to invoke the server banks/ comrer ci al Banks/ Al | i edBank:

chnodi t banks/ comer ci al Banks/ Al | i edBank i +al |

Managing the Implementation Repository

On UNIX, the group membership of a user is determined using the user’s
primary group as well as the user’s supplementary groups as specified in the /
et ¢/ group file.

Changing the Owners of Registered Servers

Only the owner of an Implementation Repository entry can use the chnodi t
command on that entry. The original owner is the one who uses the puti t
command to register the server. Use the chowni t command to change
ownership. For example, use the following command to change the ownership of
server Al | i edBank to user ntnanar a:

chownit -s AlliedBank ntnamara

An Implementation Repository directory may have more than one owner. An
ownership ACL is associated with each directory in the Implementation
Repository, and this ACL can be modified to give certain users or groups
ownership rights on a directory. Only a user on an ownership ACL has the right
to modify the ACL. Some other examples of changing ownership include the
following:

I. To add the group i ona to the ownership ACL on the Implementation
Repository directory banks/ i nvest nent Banks, use the following
command:

chownit -d banks/invest nent Banks + iona
2. To remove ntnanar a from the same ACL, do the following:
chownit -d banks/invest nent Banks - ntnamara

3. Orbix supports the pseudo-group al | that, when added to an ACL,
grants access to all callers. The following command grants all users the
ownership rights on directory banks/ comrer ci al Banks:

chownit -d banks/commerci al Banks + al |

Spaces are significant in this grammar; for example:
CORRECT chownit -d banks/invest nent Banks + iona
INCORRECT chownit -dbanks/investment Banks + iona
INCORRECT chownit -d banks/investment Banks +i ona

29

Orbix C++ Administrator’s Guide

Determining the User and Group IDs of Running Servers

30

On Windows platforms, the user ID (uid) and group ID (gid) of a server process
launched by the Orbix daemon are the same as those of the daemon itself.

On UNIX platforms, the effective ui d and gi d of a server process launched by
the Orbix daemon are determined as follows:

If or bi xd is not running as a super-user, such as root on UNIX, the uid
and gid of every activated server process is that of or bi xd itself.

If or bi xd is running as r oot , it attempts to activate a server with the uid
and gid of the, possibly remote, principal attempting to activate the
server.

If the principal is unknown (not a registered user) at the local machine on
which or bi xd is running, or bi xd attempts to run the new server with uid
and gid of a standard user called “or bi xusr”.

If there is no such standard user “or bi xusr ”, or bi xd attempts to run the
new server with uid and gid of a user “nobody”.

If there is no such user “nobody”, the activation fails and an exception is
returned to the caller.

The daemon must be able to execute the server’s executable file.

Note: If you are running or bi xd as super-user, you should use the - 0 option to

the Orbix daemon. This prevents a client running as a super-user on a
remote machine from launching a server with super-user privileges on
your machine. Refer to “Using the -o Option to the Orbix Daemon” on
page |7 for more details.

Managing the Implementation Repository

Server Activation Modes

Orbix provides a number of different modes for launching servers. You specify
the mode of a server when it is registered. Usually, clients are not concerned
with the activation details of a server or aware of what server processes are
launched. The following primary activation modes are supported by Orbix.

Shared Activation Mode

In this mode, all of the objects with the same server name on a given
machine are managed by the same server process on that machine. This
is the default activation mode.

If the process is already running when an application invocation arrives
for one of its objects, Orbix routes the invocation to that process;
otherwise Orbix launches a process.

Unshared Activation Mode

In this mode, individual objects of a server are registered with the
Implementation Repository. As each object is invoked, an individual
process is run for that particular object—one process is created per
active registered object. You can register each object managed by a
server with a different executable file, or any number of objects can share
the same executable file.

Per-method call Activation Mode

In this mode, individual operation na