Orbix C++
Programmer’s Guide

IONA Technologies PLC
February 1999

Orbix is a Registered Trademark of IONA Technologies PLC.

While the information in this publication is believed to be accurate, IONA Technologies PLC makes no warranty of any kind
to this material including, but not limited to, the implied warranties of merchantability and fitness for a particular purpose.
IONA Technologies PLC shall not be liable for errors contained herein, or for incidental or consequential damages in
connection with the furnishing, performance or use of this material.

Java is a trademark of Sun Microsystems, Inc.

COPYRIGHT NOTICE

No part of this publication may be reproduced, stored in a retrieval system or transmitted, in any form or by any means,
photocopying, recording or otherwise, without prior written consent of IO0NA Technologies PLC. No third party intellectual
property right liability is assumed with respect to the use of the information contained herein. [ONA Technologies PLC
assumes no responsibility for errors or omissions contained in this book. This publication and features described herein are
subject to change without notice.

Copyright © 1991-1999 by IONA Technologies PLC. All rights reserved.

Al products or services mentioned in this manual are covered by the trademarks, service marks, or product names as
designated by the companies who market those products.

M2230

Contents

Preface
Audience
Organization of the Orbix Documentation
Organization of this Guide
Document Conventions

Part | Introduction to Orbix

Chapter | Introduction to CORBA and Orbix
CORBA and Distributed Object Programming
The Role of an Object Request Broker
The Structure of a CORBA Application
The Structure of a Dynamic CORBA Application
Interoperability between Object Request Brokers
The Object Management Architecture
The CORBAservices
The CORBAfacilities
How Orbix Implements CORBA

Chapter 2 Getting Started With Orbix
Developing a Distributed Application
Defining IDL Interfaces
Compiling IDL Interfaces
Setting Up Configuration for the IDL Compiler
Running the IDL Compiler
Output from the IDL Compiler
The Client Stub Code
The Object Skeleton Code
Implementing the IDL Interfaces

Xiii
xiii
xiii
Xiv

XV

OO VOO NOULAWW

14
14
16
16
17
18
19
19
20

Orbix C++ Programmer’s Guide

Writing an Orbix Server Application
Initializing the ORB
Creating an Implementation Object
Receiving Client Requests
Writing an Orbix Client Application
Initializing the ORB
CORBA Object References
Getting a Reference to an Object
Invoking IDL Attributes and Operations
Compiling the Client and Server
Compiling the Client
Compiling the Server
Running the Application
Running the Orbix Daemon
Registering the Server
Running the Client
Summary of Programming Steps

Part Il Orbix Programming

Chapter 3 Introduction to CORBA IDL
IDL Modules and Scoping
Defining IDL Interfaces
Attributes in IDL Interface Definitions
Operations in IDL Interface Definitions
Inheritance of IDL Interfaces
Forward Declaration of IDL Interfaces
Overview of the IDL Data Types
IDL Basic Types
IDL Complex Types
IDL Pseudo Object Types
Defining Data Type Names and Constants

23
23
24
25
28
28
28
29
30
32
32
32
33
33
34
35
36

39
40
40
41
42
45
48
48
49
50
56
56

Contents

Chapter 4 The CORBA IDL to C++ Mapping 59
Overview of the Mapping 60
Mapping for Modules and Scoping 60

Alternative Mappings for Modules 6l
Mapping for Interfaces 62
Mapping for Attributes 63
Mapping for Operations 65
Mapping for Inheritance of IDL Interfaces 68
Object Reference Counts and Nil Object References 71
Mapping for IDL Data Types 74
Mapping for Basic Types 74
Mapping for Complex Types 75
Mapping for Enum 76
Mapping for Struct 76
Mapping for Union 78
Mapping for String 82
General Mapping for Sequences 84
Mapping for Unbounded Sequences 85
Mapping for Bounded Sequences 89
Bounded Sequence Examples 90
Mapping for Fixed 92
Mapping for Array 95
Mapping for Typedef 96
Mapping for Pseudo-Object Types 97
Memory Management and _var Types 98
Memory Management for Parameters 102
in Parameters 102
inout Parameters 104
out Parameters 108
Return Values 110

An Example of Applying the Rules for Object References 111

Chapter 5 Using and Implementing IDL Interfaces 113
Overview of an Example Application 113
Overview of the Programming Steps 114
Defining IDL Interfaces 114
Implementing IDL Interfaces 115

Defining Implementation Classes for IDL Interfaces 119

Orbix C++ Programmer’s Guide

Developing a Server Program
Writing a Server main() Function
Developing a Client Program
Alternatives to the Naming Service
Registering the Server
Execution Trace for the Example Application
Comparing the TIE and BOAImpl Approaches
Wrapping Existing Code
Providing Different Implementations of the Same Interface
Providing Different Interfaces to the Same Implementation
Comparison of the BOAImpl and TIE Approaches

Chapter 6 Making Objects Available in Orbix

Identifying CORBA Objects
Interoperable Object References
Orbix Object References
Assigning Markers to Orbix Objects
Using the CORBA Naming Service
The Interface to the Naming Service
Format of Names in the Naming Service
Making Initial Contact with the Naming Service
Associating Names with Objects
Using Names to Find Objects
Associating a Compound Name with an Object
Using the Naming Service in Orbix Example Applications
Transferring Object References
Passing Object References as Operation Parameters
Transferring Object Reference Strings
Binding to Orbix Objects

Chapter 7 Exception Handling in Orbix

vi

An Example of Raising and Handling Exceptions
The Generated C++ Code for User-Defined Exceptions
Handling Exceptions in a Client
Handling Specific System Exceptions
Throwing Exceptions in a Server
Information Available in System Exceptions
Throwing a System Exception

129
129
134
136
137
138
142
142
144
145
145

147
148
148
149
150
152
152
152
153
154
154
155
156
157
157
158
159

165
166
167
168
170
172
173
174

Contents

Chapter 8 Using Inheritance of IDL Interfaces 175
The IDL Interfaces 175

The Generated C++ Code 176
Implementation Class Hierarchies 177

The Implementation Classes 178

Using Inheritance in a Client 182
Multiple Inheritance of IDL Interfaces 183
Chapter 9 Orbix Connections and Events 187
Overview of the Direct API to Orbix 188
Initializing a Connection to the ORB 189

Obtaining Initial Object References 189

Managing Orbix Connections and Events 190
Establishing Connections between Clients and Servers 191

Event Processing in Orbix 194

Chapter 10 Advanced Programming Topics 199
Developing Collocated Clients and Servers 200
Testing for the Presence of Collocation 201

Writing Code for both Collocation and Distribution 201
Determining Locality of Objects 203
Casting from Interface to Implementation Class 204
Actions when Proxy Code is Unavailable 206
Multiple Implementations of an Interface 207
Multiple Interfaces per Implementation 208

Using the TIE Approach 209

Using the BOAImpl Approach 211

Passing Context Information to IDL Operations 212
Receiving Diagnostic Messages from Orbix 216

vii

Orbix C++ Programmer’s Guide

Part lll Dynamic Orbix Programming

Chapter |1 The TypeCode Data Type

Overview of the TypeCode Data Type

Implementation of TypeCode in Orbix
CORBA:TypeCode_ptr Constants
TypeCode Public Members
CORBA::TypeCode:IT_create()

Examples of Using TypeCode
Use of TypeCode in Type CORBA::Any
Use of TypeCode when Querying the Interface Repository

Chapter 12 The Any Data Type
Inserting Data into an Any with operator<<=()
Inserting a Basic Type
Inserting a User-Defined Type
Interpreting an any with operator>>=()
Interpreting a Basic Type
Interpreting a User-Defined Type
Other Ways to Construct and Interpret an Any
Inserting Values at Construction Time
Low Level Access to a CORBA::Any
Inserting and Extracting Array Types
Inserting and Extracting boolean, octet and char
Any Constructors, Destructor and Assignment
Any as a Parameter or Return Value

Chapter 13 Dynamic Invocation Interface

Using the DII
Programming Steps in Using the DII

The CORBA Approach to Using the DII
Setting up a Request
Setting up a Request Using _request()
Setting up a Request Using _create_request()
Using the Interface Repository when Setting Up a Request
Invoking a Request
Retrieving the Results of a Request

viii

219
220
222
222
223
224
224
224
225

227
228
229
229
231
231
232
233
233
236
238
239
240
241

243
244
245
246
246
247
249
252
253
255

Contents

Getting Information About a Request Object
The Orbix-Specific Approach to Using the DII

Setting Up a Request

Invoking a Request

Retrieving the Results of a Request

Additional Information About operator<<()

Chapter 14 Dynamic Skeleton Interface
Uses of the DSI
Using the DSI
Creating CORBA::Dynamiclmplementation Objects
Registering CORBA::Dynamiclmplementation Objects
Example of Using the DSI
Example of Using params()

Chapter |5 The Interface Repository
Configuring the Interface Repository
Runtime Information about IDL Definitions
The Structure of Interface Repository Data

Containment Relationships
Simple Types
Abstract Interfaces in the Interface Repository
Class Hierarchy and Abstract Base Interfaces
The Interface IRObject
Containment in the Interface Repository
The Contained Interface
The Container Interface
Containment Descriptions
Type Interfaces in the Interface Repository
Named Types
Unnamed Types
Retrieving Information about IDL Definitions
CORBA::Object::_get_interface()
Browsing or Listing a Repository
Finding an Object Using its Repository ID
Example of Using the Interface Repository
Repository IDs
Pragma Directives

255
256
256
258
259
260

265
266
267
267
268
270
272

275
276
276
277
279
280
281
282
282
283
286
287
289
292
293
295
296
296
296
299
299
301
302

ix

Orbix C++ Programmer’s Guide

Part IV Advanced Orbix Programming

Chapter 16 Filtering Operation Calls 307
Introduction to Per-process Filters 308
Pre-marshalling Filter Points 309
Post-marshalling Filter Points 309

Failure Points 310

Introduction to Per-Object Filters 312

Using Per-Process Filters 314

An Example Per-Process Filter 316

Installing a Per-Process Filter 318

Raising an Exception in a Filter 318

Piggybacking Extra Data to the Request Buffer 320

Defining an Authentication Filter 322

Using Per-Object Filters 323

IDL Compiler Switch to Enable Object Filtering 326

Chapter 17 Using Smart Proxy Classes 327
Management of Proxies by Proxy Factories 328

Generating Smart Proxies 329

A Simple Smart Proxy Example 332

The Account IDL Interface 332

Defining a New Proxy Class 332

Chapter 18 Callbacks from Servers to Clients 339
Implementing Callbacks in Orbix 339
Defining the IDL Interfaces 340
Implementing the IDL Interfaces 341
Writing the Client 345
Writing the Server 348
Preventing Deadlock in a Callback Model 350

Using Non-Blocking Operation Invocations 350

Using Multiple Threads of Execution 353

Callbacks and Bidirectional Connections 353

Contents

Chapter 19 Loading Objects at Runtime
Overview of Creating a Loader
Installing a Loader
Specifying a Loader for an Object
Loaders and Object Naming
Loading Objects
Saving Objects
Writing a Loader
Example Loader
The IDL Interface
Implementing the IDL
Coding the Loader
Loaders are Transparent to Clients

Chapter 20 Locating Servers at Runtime
The Default Locator
Default lookUp() Functionality
Writing a New Locator

Chapter 21 Using Opaque Types in IDL
Using Opaque Types
IDL Definitions
Mapping of Opaque Types to C++
Memory Management Rules
Implementing an Opaque Type
Implementing an Interface that uses an Opaque Type

Chapter 22 Transforming Requests
Transforming Request Data
The IT_reqTransformer Class
Registering a Transformer
An Example Transformer

Chapter 23 Using Threads with Orbix-MT
Benefits of Multi-threaded Clients and Servers
Multi-threaded Servers
Multi-threaded Clients

355
356
357
357
359
361
363
364
364
364
365
371
375

377
377
378
380

383
385
385
386
388
389
393

395
396
396
398
399

403
404
404
405

xi

Orbix C++ Programmer’s Guide

Comparison with Non-Blocking Calls
Thread Programming in Orbix

Compiling Orbix-MT Applications

Operating System Support for Creating Threads

Creating a Thread to Handle a Request
Concurrency Control
Models of Thread Support

Implementing Models of Thread Support
Changing the Thread Calls made by Orbix
Changing Internal Orbix Thread Creation

Chapter 24 Service Contexts in Orbix

The Orbix Service Context API
ServiceContextHandler Class
ORB Interfaces
ServiceContextList

Using Service Contexts in Orbix Applications
ServiceContext Per-Request Model
ServiceContext Per-Object Model
Main Components of the Service Context Model

Service Context Handlers and Filter points

Appendix A Orbix IDL Compiler Options

Index

xii

406
407
408
409
410
412
413
414
415
416

417
419
419
420
420
421
421
424
427
428

433

439

Preface

Orbix is a standards-based programming environment for building and
integrating distributed applications. Orbix is a full implementation of the Object
Management Group’s (OMG) Common Object Request Broker Architecture
(CORBA).

Audience

This guide is intended for use by application programmers who wish to
familiarize themselves with distributed programming with Orbix. This guide
addresses all levels of Orbix programming, from getting started to advanced
topics. Before reading this guide, you should be familiar with the C++
programming language.

Organization of the Orbix Documentation

The complete Orbix documentation set includes the following manuals:
® The Orbix C++ Programmer’s Guide provides a complete guide to Orbix
programming.

® The Orbix C++ Programmer’s Reference provides an exhaustive
reference for the Orbix application programming interface.

® The Orbix C++ Administrator’s Guide explains how to configure and

manage the components of the Orbix environment using the command
line and Orbix GUI tools.

xiii

Orbix C++ Programmer’s Guide

Organization of this Guide

xiv

The Orbix C++ Programmer’s Guide is divided into four parts as follows:

Part I, Introduction to Orbix

This part provides an overview of the OMG’s CORBA architecture and
describes briefly how Orbix implements this architecture. This part also
describes a simple example that enables you to get started with Orbix
programming. Read this part first to get a sense of how the Orbix programming
environment works.

Part Il, Orbix Programming

This part describes the core topics of Orbix programming that all programmers
need to know. Read this part to learn the main programming techniques that
most Orbix applications require.

Part Ill, Dynamic Orbix Programming

This part describes a special subset of Orbix programming components that
allow you to write dynamic applications. The concept of dynamic Orbix
programming is described in Part |1 |. Each chapter is dedicated to a single
dynamic Orbix component.

Part IV, Advanced Orbix Programming

Orbix extends the CORBA specification by adding features that allow you to
write more flexible distributed applications. Each chapter in this part describes
an advanced Orbix feature. Browse this part to discover the advanced features
available in Orbix and select the features that may be useful in your applications.

Preface

Document Conventions

This guide uses the following typographical conventions:

Constant wi dth

Italic

Constant width in normal text represents portions of
code and literal names of items such as classes, functions,
variables, and data structures. For example, text might
refer to the QCRBA: : (bj ect class.

Constant width paragraphs represent code examples or
information a system displays on the screen. For example:

#i ncl ude <stdi o. h>

Italic words in normal text represent emphasis and new
terms.

Italic words or characters in code and commands
represent variable values you must supply, such as
arguments to commands or path names for your
particular system. For example:

% cd / users/ your_name

Note: some command examples may use angle brackets
to represent variable values you must supply. This is an
older convention that is replaced with italic words or
characters.

This guide may use the following keying conventions:

No prompt

%

When a command’s format is the same for multiple
platforms, no prompt is used.

A percent sign represents the UNIX command shell
prompt for a command that does not require root
privileges.

A number sign represents the UNIX command shell
prompt for a command that requires root privileges.

The notation > represents the DOS, Windows NT, or
Windows 95 command prompt.

Xv

Orbix C++ Programmer’s Guide

Horizontal or vertical ellipses in format and syntax
descriptions indicate that material has been eliminated
to simplify a discussion.

[] Brackets enclose optional items in format and syntax
descriptions.

{} Braces enclose a list from which you must choose an
item in format and syntax descriptions.

| A vertical bar separates items in a list of choices
enclosed in { } (braces) in format and syntax
descriptions.

xvi

Part |

Introduction to Orbix

Introduction to CORBA and Orbix

Orbix is a software environment that allows you to build and integrate
distributed applications. Orbix is a full implementation of the Object
Management Group’s (OMG) Common Object Request Broker
Architecture (CORBA) specification. This chapter introduces CORBA
and describes how Orbix implements this specification.

CORBA and Distributed Object Programming

The diversity of modern networks makes the task of network programming very
difficult. Distributed applications often consist of several communicating
programs written in different programming languages and running on different
operating systems. Network programmers must consider all of these factors
when developing applications.

The Common Object Request Broker Architecture (CORBA) defines a
framework for developing object-oriented, distributed applications. This
architecture makes network programming much easier by allowing you to
create distributed applications that interact as though they were implemented in
a single programming language on one computer.

CORBA also brings the advantages of object-oriented techniques to a
distributed environment. It allows you to design a distributed application as a set
of cooperating objects and to re-use existing objects in new applications.

Orbix C++ Programmer’s Guide

The Role of an Object Request Broker

CORBA defines a standard architecture for Object Request Brokers (ORBs). An
ORB is a software component that mediates the transfer of messages from a
program to an object located on a remote network host. The role of the ORB is
to hide the underlying complexity of network communications from the
programmer.

An ORB allows you to create standard software objects whose member
functions can be invoked by client programs located anywhere in your network.
A program that contains instances of CORBA objects is often known as a server.

When a client invokes a member function on a CORBA object, the ORB
intercepts the function call. As shown in Figure I.l, the ORB redirects the
function call across the network to the target object. The ORB then collects
results from the function call and returns these to the client.

Client Host Server Host

Object
Client

Object Request Broker

Function
Call

Figure 1.1: The Object Request Broker

Introduction to CORBA and Orbix

The Nature of Objects in CORBA

CORBA objects are just standard software objects implemented in any
supported programming language. CORBA supports several languages, including
C++, Java, and Smalltalk.

With a few calls to an ORB’s application programming interface (API), you can
make CORBA objects available to client programs in your network. Clients can
be written in any supported programming language and can call the member
functions of a CORBA object using the normal programming language syntax.

Although CORBA objects are implemented using standard programming
languages, each CORBA object has a clearly-defined interface, specified in the
CORBA Interface Definition Language (IDL). The interface definition specifies
which member functions are available to a client, without making any
assumptions about the implementation of the object.

To call member functions on a CORBA obiject, a client needs only the object’s
IDL definition. The client does not need to know details such as the
programming language used to implement the object, the location of the object
in the network, or the operating system on which the object runs.

The separation between an object’s interface and its implementation has several
advantages. For example, it allows you to change the programming language in
which an object is implemented without changing clients that access the object.
It also allows you to make existing objects available across a network.

The Structure of a CORBA Application

The first step in developing a CORBA application is use CORBA IDL to define
the interfaces to objects in your system. You then compile these interfaces using
an IDL compiler.

An IDL compiler generates C++ from IDL definitions. This C++ includes client
stub code, which allows you to develop client programs, and object skeleton
code, which allows you to implement CORBA objects.

As shown in Figure 1.2 on page 6, when a client calls a member function on a
CORBA object, the call is transferred through the client stub code to the ORB.
If the client has not accessed the object before, the ORB refers to a database,

Orbix C++ Programmer’s Guide

known as the Implementation Repository, to determine exactly which object
should receive the function call. The ORB then passes the function call through
the object skeleton code to the target object.

Client Host Server Host
Object
Client ‘

Client Object
Stub Skeleton
Code Code

Function Object Request Broker

Call

Figure 1.2: Invoking on a CORBA Object

The Structure of a Dynamic CORBA Application

One difficulty with normal CORBA programming is that you have to compile the
IDL associated with your objects and use the generated C++ code in your
applications. This means that your client programs can only call member
functions on objects whose interfaces are known at compile-time. If a client
wishes to obtain information about an object’s IDL interface at runtime, it needs
an alternative, dynamic approach to CORBA programming.

The CORBA Interface Repository is a database that stores information about the
IDL interfaces implemented by objects in your network. A client program can
query this database at runtime to get information about those interfaces. The
client can then call member functions on objects using a component of the ORB
called the Dynamic Invocation Interface (DII), as shown in Figure 1.3 on page 7.

Introduction to CORBA and Orbix

Client Host Server Host
Object
Client ‘
Object
DIl Skeleton

Code

Function Object Request Broker

Call

Figure 1.3: Client Invoking a Function Using the DIl

CORBA also supports dynamic server programming. A CORBA program can
receive function calls through IDL interfaces for which no CORBA object exists.
Using an ORB component called the Dynamic Skeleton Interface (DSI), the
server can then examine the structure of these function calls and implement
them at runtime. Figure 1.4 on page 8 shows a dynamic client program
communicating with a dynamic server implementation.

Interoperability between Object Request Brokers

The components of an ORB make the distribution of programs transparent to
network programmers. To achieve this, the ORB components must
communicate with each other across the network.

In many networks, several ORB implementations coexist and programs
developed with one ORB implementation must communicate with those
developed with another. To ensure that this happens, CORBA specifies that
ORB components must communicate using a standard network protocol, called
the Internet Inter-ORB Protocol (IIOP).

Orbix C++ Programmer’s Guide

Client Host Server Host
Object
Client ‘
DIl DsI
Function Object Request Broker
Call

Figure 1.4: Function Call Using the DIl and DSI

The Object Management Architecture

An ORB is one component of the OMG’s Object Management Architecture
(OMA). This architecture defines a framework for communications between
distributed objects.

As shown in Figure 1.5 on page 9, the OMA includes four elements:
® Application objects.
®* The ORB.
®* The CORBAservices.
® The CORBATfacilities.

Application objects are objects that implement programmer-defined IDL
interfaces. These objects communicate with each other, and with the
CORBAservices and CORBAfacilities, through the ORB. The CORBAservices
and CORBA(facilities are sets of objects that implement IDL interfaces defined by
CORBA and provide useful services for some distributed applications.

Introduction to CORBA and Orbix

When writing Orbix applications, you may require one or more CORBAservices
or CORBAfacilities. This section provides a brief overview of these components

of the OMA.
Application Objects
o o §

O O A ® A O

A A A A

vVVYy Y VY VY A 4

Object Request Broker
A A A A A A A
Y VY Yy x
0O 00 vyo oo
CORBAservices CORBAfacilities

Figure 1.5: The Object Management Architecture

The CORBAservices

The CORBAservices define a set of low-level services that allow application
objects to communicate in a standard way. These services include the following:

® The Naming Service. Before using a CORBA object, a client program
must get an identifier for the object, known as an object reference. This
service allows a client to locate object references based on abstract,
programmer-defined object names.

® The Trader Service. This service allows a client to locate object
references based on the desired properties of an object.

® The Object Transaction Service. This service allows CORBA programs to
interact using transactional processing models.

Orbix C++ Programmer’s Guide

® The Security Service. This service allows CORBA programs to interact
using secure communications.

® The Event Service. This service allows objects to communicate using
decoupled, event-based semantics, instead of the basic CORBA
function-call semantics.

IONA Technologies implements several CORBAservices including all the
services listed above.

The CORBAfacilities

The CORBAfacilities define a set of high-level services that applications
frequently require when manipulating distributed objects. The CORBAfacilities
are divided into two categories:

®* The horizontal CORBAfacilities.
®* The vertical CORBAfacilities.

The horizontal CORBAfacilities consist of user interface, information
management, systems management, and task management facilities. The vertical
CORBA(facilities standardize IDL specifications for market sectors such as
healthcare and telecommunications.

How Orbix Implements CORBA

10

Orbix is an ORB that fully implements the CORBA 2 specification. By default, all
Orbix components and applications communicate using the CORBA standard
IIOP protocol.

The components of Orbix are as follows:

® The IDL compiler parses IDL definitions and produces C++ code that
allows you to develop client and server programs.

® The Orbix library is linked against every Orbix program and implements
several components of the ORB, including the DI, the DSI, and the core
ORB functionality.

Introduction to CORBA and Orbix

® The Orbix daemon is a process that runs on each server host and
implements several ORB components, including the Implementation
Repository.

® The Orbix Interface Repository server is a process that implements the
Interface Repository.

Orbix also includes several programming features that extend the capabilities of
the ORB. These features are described in Part IV, “Advanced Orbix
Programming”.

Orbix C++ Programmer’s Guide

12

Getting Started With Orbix

The chapter describes how to develop a distributed application using
Orbix. An example application illustrates the steps involved in the
development process. These include defining an IDL interface,
implementing this interface in C++, and developing a C++ client
application.

This chapter describes the basic programming steps required to create Orbix
objects, write server programs that expose those objects, and write client
programs that access those objects.

This chapter illustrates the programming steps using an example named

BankSi npl e. In this example, an Orbix server program implements two types of
objects: a single object implementing the Bank interface, and multiple objects
implementing the Account interface. A client program uses these clearly-defined
object interfaces to create and find accounts, and to deposit and withdraw
money.

On Windows and UNIX, the source code for the example described in this
chapter is available in the denps\ banksi npl e directory of your Orbix
installation.

On 0OS/390, the location of the source code is documented in

or bi xhl q. DEMOS. READMVE(BANKSI MP), where or bi xhl q represents your
installation’s high-level qualifier. This source code may differ slightly from the
code published in this guide.

13

Orbix C++ Programmer’s Guide

Developing a Distributed Application

To develop an Orbix application, you must perform the following steps:

I. ldentify the objects required in your system and define public interfaces
to those objects using CORBA Interface Definition Language (IDL).

2. Compile the IDL interfaces.
Implement the IDL interfaces using C++ classes.

4. Write a server program that creates instances of the implementation
classes.

5. Write a client program that accesses the server object.
6. Compile the client and server.

Run the application

Defining IDL Interfaces

Defining IDL interfaces to your objects is the most important step in developing
an Orbix application. These interfaces define how clients access objects
regardless of the location of those objects on the network.

An interface definition contains attributes and operations. Attributes allow clients
to get and set values on the object. Operations are functions that clients can call
on an object.

For example, the following IDL from the BankSi npl e example defines two
interfaces for objects representing a bank application. The interfaces are defined
inside an IDL module to prevent clashes with similarly-named interfaces defined
in subsequent examples.

The interfaces to the BankSi npl e example are defined in IDL as follows:

/1 1D
/1 In file banksinple.idl

1 nodul e BankSi npl e {
typedef float CashAnount;

2 interface Account;

14

Getting Started With Orbix

interface Bank {
Account create_account (in string nane);
Account find_account (in string name);

b

interface Account {
readonly attribute string nane;
readonly attribute CashAnpunt bal ance;

voi d deposit (in CashAnount arount);
voi d wi thdraw (i n CashAnpunt anount);
i
b

This code is explained as follows:

An IDL module is equivalent to a C++ namespace, and groups the
definitions into a common namespace. Using a module is not mandatory,
but is good practice.

This is a forward declaration to the Account interface. It allows you to
refer to Account in the Bank interface, before actually defining Account .

The Bank interface contains two operations: creat e_account () and
find_account (), allowing a client to create and search for an account.

The Account interface contains two attributes: nane and bal ance; both
are readonly. This means that clients can get the balance or name, but
cannot directly set them. If the readonl y keyword is omitted, clients can
also set these values.

The Account interface also contains two operations: deposi t () and

wi t hdraw() . The deposi t () operation allows a client to deposit money
in the account. The wi t hdraw() operation allows a client to withdraw
money from the account.

The parameters to these operations are labelled with the IDL keyword i n. This
means that their values are passed from the client to the object. Operation
parameters can be labelled as i n, out (passed from the object to the client) or
i nout (passed in both directions).

15

Orbix C++ Programmer’s Guide

Compiling IDL Interfaces

You must compile IDL definitions using the Orbix IDL compiler. Before running
the IDL compiler, ensure that your configuration is correct.

Setting Up Configuration for the IDL Compiler

16

You should ensure that the environment variable | T_OONFI G PATHis set to the
location of i ona. cf g, the root Orbix configuration file.

UNIX

On UNIX, if i ona. cf g is in directory / | ocal / i ona, perform the following steps:
I. Under sh enter:

% | T_CONFI G_PATH=/1 ocal /i ona
% export | T_CONFI G_PATH

or under csh enter:
% setenv | T_CONFI G PATH /I ocal /i ona

2. Set the environment variable LD LI BRARY PATHto include the location of
the Orbix | i b directory in a similar manner.

Windows

On Windows, if i ona. cf g is in directory C \i ona\ confi g, enter the following
at the DOS prompt:

> set | T_CONFI G PATH=C: \iona\config

0OS/390

On OS/390, you can specify the | T_GONFI G_PATH environment variable using
ENVAR in the list of runtime options preceding the arguments to any Language
Environment program. For example:

/1 STEP1 EXEC PGVEpr ognane.

/1l PARM=ENVAR(IT_CONFIG_PATH=TEST.PARMS(ORBIXCFG)")
I /arguments'

Getting Started With Orbix

Refer to the Orbix for 0S/390 Administrator’s Guide for full details about running
Orbix on OS/390.

Running the IDL Compiler

The IDL compiler checks the validity of the specification and generates C++
code that allows you to write client and server programs.

Windows and UNIX

To compile the Bank and Account interfaces defined in file banksi npl e. i dl, run
the IDL compiler as follows:

idl [options] banksinple.idl
The - B compiler option produces BOAImpl classes for the server. Refer to

Appendix A, “Orbix IDL Compiler Options” for a complete list of IDL compiler
options.

0OS/390

On OS/390, you can run the IDL compiler in batch or as a TSO command. All
the JCL procedures that are supplied by IONA are stored in or bi xhl q. PROCS.
The JCL to run the IDL compiler in batch is as follows:

/| STEP1 EXEC PROC=ORXI,

11 | NTERFACE=BANKSI MP,

11 | DLPARMS=" - B,

!/ | DL=or bi xhl q. DEMCS. | DL,
/1 HH=out put . pds. hh,

/1 STUBS=out put . pds. st ubs

The TSO command to run the IDL compiler on OS/390 is as follows:
CALL ' orbi xhl g. LQAD(1DL)’ ' -B orbi xhl g. DEMDS. | DL(BANKSI MP)’ ASI S

You must pass a fully-qualified data set name as an argument to the IDL
compiler. The IDL compiler reads the input from this PDS and then writes the
generated C++ files to it.

17

Orbix C++ Programmer’s Guide

Output from the IDL Compiler

The IDL compiler produces three C++ files that communicate with Orbix:

I. A common header file containing declarations used by both client and
server mode. This header file should be included in all client and server
programs.

2. A source file to be compiled and linked with servers (object skeleton
code).

3. A source file to be compiled and linked with clients (client stub code).

These source files contain C++ definitions that correspond to your IDL
definitions. These C++ definitions allow you to write C++ client and server
programs.

By default, these files are named as follows:

File Windows UNIX 0OS/390

Header file banksi npl e. hh banksi npl e. hh | out put . pds. hh(
BANKSI V)

Client stub code | banksi npl eC cpp | banksi npl eC. C |out put . pds. st ubs(
BANKSI MD)

Server skeleton |banksinpl eS. cpp | banksi npl eS. C |out put . pds. st ubs(

code BANKS! MB)

For clarity, this chapter assumes that the IDL compiler-generated files in the
denos\ banksi npl e directory of your Orbix installation are compiled using the
following command:

idl -B-c client.cxx -s server.cxx banksinpl e.idl

Using the - s and - ¢ switches means that the compiler output filenames are the
same for both Windows and UNIX:

File Description File

Header file banksi npl e. hh

Client stub code banksi npl e. cl i ent . cxx
Server skeleton code banksi npl e. server . cxx

These are the filenames used in this chapter.

18

Getting Started With Orbix

The Client Stub Code

The files banksi npl e. hh and banksi npl e. cl i ent . cxx define the C++ code
that a client uses to access a Bank object. This code is termed the client stub
code. For example, the banksi npl e. hh file for the BankS npl e IDL includes a
class to represent Bank and Account objects from a client’s point of view.

The IDL declarations for the Account interface include the C++ definitions in
the following code extract:

/1 C++
// In file banksinple.hh

// Autonatically generated by the | DL conpiler.
class Account: public virtual OCRBA: :Chject {
public:
// OCRBA support functions and error handling are
// onmitted here for clarity
virtual char * name ()
t hr ow (CORBA: : Syst enExcept i on);
virtual CashAmount bal ance ()
t hr ow (CORBA: : Syst enExcept i on);
virtual void deposit (CashAnount anount)
t hr ow (CORBA: : Syst enExcept i on);
virtual void wthdraw (CashAmount anount)
t hr ow (CORBA: : Syst enExcept i on);
};

The environment argument (the last argument passed to each method) is
omitted here.

This class represents the IDL Account interface in C++ allowing C++ clients to
treat Account objects like any other C++ object. The readonly nane and

bal ance attributes map to member functions of the same name. The deposi t ()
and wi t hdraw() operations map to C++ member functions with equivalent
parameters.

The Object Skeleton Code

The files banksi npl e. hh and banksi npl e. ser ver. cxx define the C++ code
that allows a server program to implement IDL interfaces and accept operation
calls from clients to objects. This code is known as the object skeleton code.

19

Orbix C++ Programmer’s Guide

These server-side skeletons receive CORBA calls and pass them onto
application code. When implementing a server using the BOAImpl approach, you
inherit from a BOAImpl class generated by the IDL compiler.

For the Account interface the BOAImpl class includes the following C++
definitions:

/] C++
/1 I'n file banksinpl e. hh

/1 Autonatically generated by | DL conpiler.
cl ass Account BQAI npl : public virtual Account {
publi c:
virtual char * name ()
throw (CCRBA: : Syst enException) = 0;
virtual CashAnount bal ance ()
throw (CCRBA: : Syst enException) = 0;
virtual void deposit (CashAnount anount)
throw (CCRBA: : Syst enException) = 0;
virtual void withdraw CashAnount anount)
t hrow (CCRBA: : Syst enException) = 0;
b
To implement the Account interface, you must inherit from this class and
override the pure virtual functions that represent IDL operations with
application code.

Implementing the IDL Interfaces

20

This example uses the CORBA BOAImpl approach to implementing an IDL
interface. It uses two classes to implement the Bank and Account IDL interfaces
in C++: BankSi npl e_Bankl npl and BankSi npl e_Account | npl . These classes
inherit the IDL compiler-generated BankSi npl e: : BankBQAl npl and

BankSi npl e: : Account BQAI npl classes. These base classes provide all the Orbix
functionality. All that remains is to override the abstract member functions that
represent the IDL operations.

For example, the code for BankSi npl e_Bankl npl is as follows:

/] C++
/1 I'n file BankSi npl e\ banksi npl e_banki npl . h
/1 Inplementation class for the Bank IDL interface.

Getting Started With Orbix

cl ass BankSinpl e_Bankl npl : public virtual BankSinpl e:: BankBQAl npl

{

public:

// WNapped | DL operati ons.
virtual BankSinple:: Account _ptr

create_account (const char * nane, CORBA : Environment &);
virtual BankSinple:: Account _ptr

find_account(const char * name, CORBA:: Environnent&);
/] C++ constructor and destructor.
BankSi npl e_Bankl npl () ;
virtual ~BankS npl e_Bankl npl ();

protect ed:

}s

static const int MAX ACOOUNTS;
BankS npl e: : Account _var * maccounts;

This code is explained as follows:

Inheriting from the BOAImpl class generated by the IDL compiler
provides Orbix functionality for the server objects.

Operations defined in IDL are implemented by corresponding operations
in C++. The IDL Account type is represented by an Account _ptr.

The constructor and destructor are normal C++ functions that can be
called by server code. Only IDL functions can be called remotely by
clients.

The accounts created by the bank are stored in an array of Account _var.
These are like pointers; for more information on Account _var, refer to
“CORBA Object References” on page 28.

You can implement the member functions of BankS npl e_Bankl npl as follows:

/1l Ct+
/1 In file banksinpl e_banki npl . cxx

#include “banksimple_bankimpl.n”
#include “banksimple_accountimpl.h”

const int BankSimple_Bankimpl:MAX_ACCOUNTS = 1000;
BankSimple_Bankimpl::BankSimple_Bankimpl() :
m_accounts(new BankSimple::Account_var[MAX_ACCOUNTS]) {

21

Orbix C++ Programmer’s Guide

22

/1l Make sure all accounts are nil.
for (int i =0; i < MAX_ACCONTS; ++i){
m accounts[i] = BankS npl e:: Account:: _nil();
}
}

BankSi npl e_Bankl npl : : ~BankSi npl e_Bankl npl () {
delete [] maccounts;

}

/1 Add a new account.
BankSi npl e: : Account _ptr BankSi npl e_Bankl npl : : creat e_account
(const char * name, CORBA :Environnment & {

int i =0;
for (; I < MAX_AGOOUNTS &% ! GORBA::is_nil (maccounts[i]);
{}
if (i < MAX_ACCONTS){
m accounts[i] = new BankSi npl e_Account | npl (narre, 0.0);
cout << “create_account: Created account with name: ”
<< name << end|
return BankSimple::Account::_duplicate(m_accounts]i]);

}
else{
cout << “create_account: failed, no space left!” << end|;
return BankSimple::Account::_nil();
}
}
/I Find a named account.

BankSimple::Account_ptr BankSimple_Bankimpl::find_account
(const char * name, CORBA::Environment &) {

inti=0;
for (;1 <MAX_ACCOUNTS &&(CORBA::is_nil(m_accountsli]) ||
stremp(hame, m_accounts[il->name()) = 0); ++i)

{}

if < MAX_ACCOUNTSY
cout << “find_account: found account named” << name << endl|;
return BankSimple::Account::_duplicate(m_accounts]i]);

++)

Getting Started With Orbix

el sef
cout << “find_account: no account named” << name << endl;
return BankSimple::Account::_nil();

}

The code is explained as follows:

. The maximum number of accounts that the bank can handle in this simple
implementation is set as a constant of 1000.
2. New accounts are created with a balance of zero.

3. When an Account reference is returned from create_account() and
find_account() operations, it must be duplicated. According to CORBA
memory management rules, this reference is released by the caller.

4. If an account cannot be created, nil is returned.

Refer to the banksimple\demos directory of your Orbix installation for the
corresponding code for BankSimple_Accountimpl

Writing an Orbix Server Application

To write a C++ program that acts as an Orbix server, perform the following
steps:

|. Initialize the server connection to the Orbix ORB, and to the Basic
Object Adaptor (BOA).

2. Create an implementation object. This is done by creating instances of
the implementation classes.

3. Allow Orbix to receive and process incoming requests from clients.

This section describes each of these programming steps in turn.

Initializing the ORB

Because Orbix uses the standard OMG IDL to C++ mapping, all servers and
clients must call CORBA::ORB _init() to initialize the ORB. This returns a
reference to the ORB object. The ORB methods defined by the standard can
then be invoked on this instance.

23

Orbix C++ Programmer’s Guide

/] C++
/] In file server.cxx

try {
/1 Initialize the ORB.
CORBA::ORB_var orb = CORBA::ORB_init(argc,argv,“Orbix");

}
catch (CORBA::Exception &e) {

cout << “Unexpected exception” << e << end|

}

In this code sample, the argc parameter refers to the number of arguments in
argv . The argv parameter is a sequence of configuration strings used if “Orbix”
is a null string; the string “Orbix” identifies the ORB. Refer to the Orbix C++
Programmer’s Reference for more information on CORBA: : CRB_ i nit ().

Orbix raises a C++ exception to indicate that a function call has failed. All
CORBA exceptions derive from OQORBA: : Except i on. Many Orbix functions (for
example, CRB_i ni t ()) and all IDL operations may raise a CORBA system
exception, of type CORBA: : Syst enExcept i on.

You must use C++ try/ cat ch statements to handle exceptions, as illustrated in
the preceding code sample. In the remainder of this chapter, try/ cat ch
statements are omitted for clarity.

Creating an Implementation Object

24

To create an implementation object, you must create an instance of your
implementation class in your server program. Typically a server program creates
a small number of objects in its mai n() function, and these objects may in turn
create further objects. In the BankSi npl e example, the server creates a single
bank object in its mai n() function. This bank object then creates accounts when
creat e_account () is called by the client.

For example, to create an instance of BankSi npl e: : Bank in your server nai n()
function, do the following:

/] C++
/] In file server.cxx

#include “banksimple_bankimpl.h”

Getting Started With Orbix

int min (...) {

// Oreate a bank inplenmentation object.
BankSi npl e: : Bank_var ny_bank = new BankSi npl e_Bankl npl ;

}

A server program can create any number of implementation objects for any
number of IDL interfaces.

Receiving Client Requests

When a server instantiates an Orbix object (for example, one inheriting from
the BOAImpl class), it is automatically registered with Orbix as a distributed
object. To make objects available to clients, the server must call the Orbix
function QCRBA: : BOA: : i npl _i s_ready() to complete its initialization and to
process operation calls from clients.

You can code a complete server nmai n() function as follows:

/] C++
/1 In file server.cxx

#include “banksimple_bankimpl.h”
#include “banksimple_accountimpl.h”
#include <it_ demo_nsw.h>

/I Server mainline.
int main (int argc, char * argv[]) {

try {
/I Use standard demo server options.
1 IT_Demo_ServerOptions serveropt(“IT_Demo/BankSimple/Bank™);
2 CORBA::ORB_var orb = CORBA::ORB_init(argc, argv, “Orbix”);

CORBA::BOA _var boa = orb->BOA_init(argc, argv, “Orbix_BOA");

/I Set diagnostics.
orb->setDiagnostics(serveropt.diagnostics());

/I Set server name.
3 orb->setServerName(serveropt.server_name());

25

Orbix C++ Programmer’s Guide

26

(&)]

}

/1 I'ndicate server should not quit while clients
/] are connect ed.

boa- >set NoHangup(1) ;

/1 Set up Naming Service Wappers (NSW.

| T_Dermo_NSW ns_wr apper ;

ns_wr apper . set NanePr ef i x(serveropt.context());
const char *bank_name = “BankSimple.Bank’;

/I Create a bank implementation object.
BankSimple::Bank_var my_bank = new BankSimple_Bankimpl;

/I Register server object with the Naming Service.

if (serveropt.bindns()) {
cout << “Binding objects in the Naming Service” << end|;
ns_wrapper.registerObject(bank_name, my_bank);

}

/I Server has completed initialization, wait for

/I incoming requests.

boa->impl_is_ready((char*)serveropt.server_name(),
serveropt.timeout());

/limpl_is_ready() returns only when Orbix times-out
/I an idle server.
cout << “server exiting” << endl;

catch (const CORBA::Exception &e) {

}

cerr << “Unexpected exception” << e << end|
return 1,

return O;

2

This code is explained as follows:

Create the standard server options for use throughout the
demonstration and set the server name to IT_Demo/BankSimple/Bank
The Orbix demos\demolib directory contains the standard server and
client options used by the Bank series examples in this book.

Initialize the ORB and BOA. The ORB object provides functionality
common to both clients and servers. The BOA (Basic Object Adapter)
object is derived from the ORB and provides additional server-side
functionality.

Getting Started With Orbix

The ORB and the BOA are different views of the same ORB APl—this
object is also available via the global variable CORBA: : O bi x. However,
use of this variable is not CORBA-defined and is discouraged.

. Set the server name using set Ser ver Narre(ser ver opt . server _narme()).
This is required by Orbix before exporting object references.

. Create a Naming Service Wrapper (NSW) object. To simplify the use of
the Naming Service, a Naming Service Wrapper is provided. This hides
the low-level detail of the CORBA Naming Service. Refer to “Using the
Naming Service in Orbix Example Applications” on page 156 for details of
the Naming Service wrapper functions.

5. Define a name prefix that is used for subsequent operations.

6. BankSi npl e. Bank is the name that the bank object is known by in the

Naming Service.

. The created BankSi npl e instance is ny_bank. This object implements an
instance of the IDL interface Bank. This is called directly from client
applications using the CORBA standard Internet Inter-ORB Protocol
(NOP).

. The server now registers its objects in the Naming Service using the
Naming Service wrapper function r egi st er Cbj ect ().

. The GORBA: : BOA: : i npl _i s_ready() operation is called to complete
server initialization. This takes a server name and a timeout value as
parameters. You can specify any name for your server; however, the
name should match the name used to register the server in the
Implementation Repository, and the argument used to call

set Server Nane() .

The timeout value indicates the period of time, in milliseconds, that the

i mpl _i s_ready() call should block for while waiting for an operation call
to arrive from a client. If no call arrives in this period, i npl _i s_r eady()
returns. If a call arrives, Orbix calls the appropriate member function on
the implementation object and the timeout counter starts again from
zero.

27

Orbix C++ Programmer’s Guide

Writing an Orbix Client Application

To write a C++ client program to an Orbix object, you must perform the
following steps:

|. Initialize the client connection to the ORB.
2. Get a reference to an object.

3. Invoke attributes and operations defined in the object’s IDL interface.

This section describes each of these steps in turn.

Initializing the ORB

All clients and servers must call CORBA: : ORB i ni t () to initialize the ORB. This
returns a reference to the ORB object. The ORB methods defined by the
standard can then be invoked on this instance.

CORBA Object References

A CORBA object reference identifies an object in your system. When an object
reference enters a client address space, Orbix creates a proxy object that acts as
a local representative for the remote implementation object. Orbix forwards
operation invocations on the proxy object to corresponding functions in the
implementation object.

Consider an object reference as a pointer that can point to an object in a remote
server process. Object references to an object of interface X are represented by
a type X_ptr, which behaves like a normal C++ pointer.

An object reference requires some memory in the client (the memory needed
by the proxy object), so you must release each reference when finished by
calling CORBA: : r el ease(). The QORBA: : rel ease() method releases the client
memory used by the object reference—it does not affect the remote server
object.

For interface X, the IDL compiler also generates a smart pointer class called

X var that automates memory management. X _var behaves just like X ptr,
except it releases the reference when it goes out of scope, or if a new reference
is assigned.

28

Getting Started With Orbix

Getting a Reference to an Object

The flexible CORBA-defined way to obtain object references is to use the
standard CORBA Naming Service. The CORBA Naming Service allows a name
to be bound to an object and allows that object to be found subsequently by
resolving that name within the Naming Service.

A server that holds an object reference can register it with the Naming Service,
giving it a name that can be used by other components of the system to find the
object. The Naming Service maintains a database of bindings between names and
object references. A binding is an association between a name and an object
reference. Clients can call the Naming Service to resolve a name, and this
returns the object reference bound to that name. The Naming Service provides
operations to resolve a name, to create new bindings, to delete existing bindings,
and to list the bound names.

A name is always resolved within a given naming context. The naming context
objects in the system are organized into a graph, which may form a naming
hierarchy, much like that of a file system. The following sample code shows how
the client uses the Naming Service wrapper functions to obtain an object
reference:

/] C++
/1 In file client.cxx

// Nam ng Service Setup.
// Oreate a Nam ng Service Wapper object.
| T_Deno_NSW ns_wr apper ;
1 ns_wr apper . set NanePr efi x(cl i entopt. context());

/] Get OCRBA object.
/1 Specify the object nane in the Naning Service.
2 const char *obj ect _nane = "BankS npl e. Bank";

/] Get a reference to the required object fromthe NSW
3 OCRBA: : (hj ect _var obj = ns_wr apper.resol veName(obj ect _nane) ;

// Narrow the object reference.

4 BankSi npl e: : Bank_var bank = BankSi npl e: : Bank: : _narrow(obj);
if (CORBA :is_nil(bank)) {

29

Orbix C++ Programmer’s Guide

}

cerr << "(pject \"" << object_name

<< "\"in the Nam ng Service" << endl

<< "\tis not of the expected type."<< endl;
return 1;

/l Start client menu | oop
BankMenu mai n_renu(bank) ;
mai n_nenu. start () ;

This code is described as follows:

Define a name prefix used by the Naming Service wrapper object for
subsequent operations.

BankSi mpl e. Bank is the name by which the bank object is known in the
Naming Service.

The method nswr apper : : r esol veNane() retrieves the object reference
from the Naming Service placed there by servers. The obj ect _name
parameter is the name of the object to resolve. This must match the
name used by the server when it calls regi ster Qbj ect ().

The return type from r esol veNane() is of type QCRBA: : (hj ect. You
must call _narrow() to safely cast down from the base class to the Bank
IDL class, before you can make invocations on remote Bank objects. The
client stub code generated for every IDL class contains the _narrow()
function definition for that class.

This creates and runs a main menu for Bank clients. This menu enables
you to find or create accounts by calling the appropriate C++ member
function on the object reference.

Invoking IDL Attributes and Operations

30

To access an attribute or an operation associated with an object, call the
appropriate C++ member function on the object reference. The client-side
proxy redirects this C++ call across the network to the appropriate member
function of the implementation object.

Getting Started With Orbix

The main BankSi npl e client program calls a simple interactive menu. This
enables you to call IDL operations on a Bank. The following code extracts show
the code called when you choose to create or find an account:

/] C++
/1 In file bankmenu. cxx

voi d BankMenu: : do_creat e() throw GORBA: : Syst enException) {

cout << “Enter account name: ” << flush;
CORBA::String_var name = IT_Demo_Menu::get_string();

BankSimple::Account_var account = m_bank->create_account(name);

/I Start a sub-menu with the returned account reference.
AccountMenu sub_menu(account);
sub_menu.start();

}

// do_find -- calls find account and runs account menu.
void BankMenu::do_find throw (CORBA::SystemException) {

cout << “Enter account name: “ << flush;
CORBA::String_var name = IT_Demo_Menu::get_string();

BankSimple::Account_var account = m_bank->find_account(name);
AccountMenu sub_menu(account)
sub_menu.start();

}

This code is explained as follows:

I. m_bank is a Bank_var —a C++ helper class automatically generated by
the IDL compiler from the Bank interface. This is used like a normal C++
pointer to call IDL operations just like C++ operations.

2. TheString var nane variable is used for the account name entered. The

caller is not responsible for releasing the memory—Stri ng_var
automatically does this when it goes out of scope.

Use the C++ arrow operator (- >) to access the operations defined in IDL
through a BankSi npl e: : Bank_var object. Call those member functions using
normal C++ calls and test for errors using C++ exception handling.

31

Orbix C++ Programmer’s Guide

Compiling the Client and Server

To build the client and server, you must compile and link the relevant C++ files
with the Orbix library. On UNIX, this is | i bor bi x; on Windows, this is
I TM . li b. These files are available in the Orbix | i b directory.

Note: For demonstration-specific functionality, you must also include
| i bdermo. a on UNIX and derol i b. I i b on Windows.

Compiling the Client
To build the client application, compile and link the following C++ files, and the
Orbix library:
® banksinpl e.client.cxx
® client.cxx
® banknmenu. cxx
® account nenu. cxx

cl i ent. cxx is the source file for the client mai n() function.

Compiling the Server

To build the server application, compile and link the following C++ files, and the
Orbix library.

® banksi npl e. server. cxx
® banksi npl e_banki npl . cxx
® banksi npl e_accounti npl . cxx
® server.cxx
server. cxx is the source file for the server mai n() function.

The Orbix denos\ banksi npl e directory includes a makefile that compiles and
links the bank client and server demonstration code.

32

Getting Started With Orbix

To build the executables, type one of the following in the denos\ banksi npl e
directory of your Orbix installation:

Windows > nnake
UNIX % nake

To build the executables on OS/390, run the job or bi xhl q. DEM3B. BU LD. JOL
(BANKSI MP) .

Running the Application

To run the application, do the following:

I. Run the Orbix daemon process (or bi xd) on the server host.
2. Register the server in the Orbix Implementation Repository.

3. Run the client program.

Running the Orbix Daemon

Before a client can access a server, the server must be registered with the Orbix
daemon. Before running the Orbix daemon, ensure that the environment
variable | T_OONFI G_PATHis set as described in “Setting Up Configuration for the
IDL Compiler” on page |6.

Windows and UNIX

You can run the Orbix daemon on the server host by typing or bi xd at the
command line or using the Start menu on Windows.

0OS/390

On OS/390, the daemon can be run as a batch job or a started task. Sample JCL
is supplied in or bi xhl q. JOL(CRBI XD) .

33

Orbix C++ Programmer’s Guide

Registering the Server

34

The Implementation Repository is the component of Orbix that stores
information about servers available in the system. Before running your
application, you must register your server in the Implementation Repository.

Windows and UNIX

To register the server(s), use either the Server Manager GUI tool or run the
Orbix putit command on the server host as follows:

putit server_name server_execut abl e

0OS/390

To register the server(s), you can execute utilities either by TSO call commands
or the Orbix ISPF panels. For example:

CALL orbi xhl q. LOAD(PUTI T) ' server_name execution_jcl_location” ASIS
On all platforms, ser ver _nane is the name of your server passed to
inpl _is_ready().

If a server binds names in the Naming Service, you may need to run it once to
allow it to set up the name bindings. Details of how to do this depend on the
server used. The demonstrations provide a makefile that do the necessary
server registration and set up names in the Naming Service.

To register the server, type one of the following:

Windows > nnake register
UNIX % make regi ster

On 0OS/390, the details for each demonstration are documented in a member of
or bi xhl q. DEM3S. READVE.

Getting Started With Orbix

Running the Client

When a client binds to an object in a server registered in the Implementation
Repository, the Orbix daemon automatically launches the server executable file.
Consequently, you can run the client without running the server in advance.

Before running the client, ensure that the environment variable | T_CONFI G_PATH
is set as described in “Setting Up Configuration for the IDL Compiler” on
page |6.

Windows and UNIX

Run the example client by entering cl i ent at the command-line prompt. The
client displays a text menu allowing you to choose the actions you want to take,
and then prompts you for the necessary information. The server outputs
messages when it processes incoming calls. You can see these messages by
looking at the application shell window launched by the Orbix daemon.

0OS/390
Run the example client using the following TSO command:

CALL or bi xhl g. DEMDS. LOAD(BANKCLNT)
'ENVAR(IT_CONFIG_PATH= or bi xhl ¢.PROCS(ORBIXCFG))/

The client displays a text menu allowing you to choose the actions you want to
take, and then prompts you for the necessary information. The server outputs
messages when it processes incoming calls. You can view these messages by
looking at the SYSPRINToutput.

35

Orbix C++ Programmer’s Guide

Summary of Programming Steps

36

To develop a distributed application with Orbix, do the following:

Identify the objects required in your system and define the public
interfaces to those objects using the CORBA Interface Definition
Language (IDL).

Compile the IDL interfaces.

Implement the IDL interfaces with C++ classes.

Write a server program that creates instances of the implementation
classes. This involves:

i. Initializing the ORB.
ii. Creating initial implementation objects.

iii. Allowing Orbix to receive and process incoming requests from
clients.

Write a client program that accesses the server objects. This involves:
i. Initializing the ORB.

ii. Getting a reference to an object.

ii. Invoking object attributes and operations.

Compile the client and server.

Run the application. This involves:

i. Running the Orbix daemon process.

ii. Registering the server in the Implementation Repository.

iii. Running the client.

Part |l

Orbix Programming

Introduction to CORBA IDL

The CORBA Interface Definition Language (IDL) is used to define
interfaces to objects in your network. This chapter introduces the
features of CORBA IDL and illustrates the syntax used to describe
interfaces.

The first step in developing a CORBA application is to define the interfaces to
the objects required in your distributed system. To define these interfaces, you
use CORBA IDL.

IDL allows you to define interfaces to objects without specifying the
implementation of those interfaces. To implement an IDL interface, you define a
C++ class that can be accessed through that interface and then you create
objects of that class within an Orbix server application.

In fact, you can implement IDL interfaces using any programming language for
which an IDL mapping is available. An IDL mapping specifies how an interface
defined in IDL corresponds to an implementation defined in a programming
language. CORBA applications written in different programming languages are
fully interoperable.

CORBA defines standard mappings from IDL to several programming languages,
including C++, Java, and Smalltalk. The Orbix IDL compiler converts IDL
definitions to corresponding C++ definitions, in accordance with the standard
IDL to C++ mapping.

39

Orbix C++ Programmer’s Guide

IDL Modules and Scoping

An IDL module defines a naming scope for a set of IDL definitions. Modules
allow you to group interface and other IDL type definitions in logical name

spaces. When writing IDL definitions, always use modules to avoid possible
name clashes.

The following example illustrates the use of modules in IDL:

/1 1D
nodul e BankSi nple {

interface Bank {

H

interface Account {

b

b

The interfaces Bank and Account are scoped within the module BankSi npl e.
IDL definitions are available directly within the scope in which you define them.
In other naming scopes, you must use the scoping operator (: :) to access these

definitions. For example, the fully scoped name of interfaces Bank and Account
are BankS npl e: : Bank and BankSi npl e: : Account respectively.

IDL modules can be reopened. For example, a module declaration can appear
several times in a single IDL specification if each declaration contains different
data types. In most IDL specifications, this feature of modules is not required.

Defining IDL Interfaces

An IDL interface describes the functions that an object supports in a distributed
application. Interface definitions provide all of the information that clients need
to access the object across a network.

40

Introduction to CORBA IDL

Consider the example of an interface that describes objects which implement
bank accounts in a distributed application. The IDL interface definition is as
follows:

//1DL
nodul e BankSi npl e {

/] Define a naned type to represent mnoney.
typedef float CashAnount;

/1 Forward declaration of interface Account.
interface Account;

i nterface Bank {

.

interface Account {
// The account owner and bal ance.
readonly attribute string nane;
readonly attribute CashAnmount bal ance;

/] Operations available on the account.
voi d deposit (in CashAmount anount);
voi d wi thdraw (i n CashAnpunt anount);

b
b
The definition of interface Account includes both attributes and operations.
These are the main elements of any IDL interface definition.

Attributes in IDL Interface Definitions

Conceptually, attributes correspond to variables that an object implements.
Attributes indicate that these variables are available in an object and that clients
can read or write their values.

In general, attributes map to a pair of functions in the programming language
used to implement the object. These functions allow client applications to read
or write the attribute values. However, if an attribute is preceded by the
keyword r eadonl y, then clients can only read the attribute value.

41

Orbix C++ Programmer’s Guide

For example, the Account interface defines the attributes name and bal ance.
These attributes represent information about the account which the object
implementation can set, but which client applications can only read.

Operations in IDL Interface Definitions

42

IDL operations define the format of functions, methods, or operations that
clients use to access the functionality of an object. An IDL operation can take
parameters and return a value, using any of the available IDL data types.

For example, the Account interface defines the operations deposi t () and
wi t hdraw() as follows:

//1DL
nodul e BankSi nple {
typedef float CashAnount;

interface Account {
/1 Operations avail able on the account.
voi d deposit(in CashAnmpbunt anpunt);
void withdraw(i n CashAmount anount);

b
b
Each operation takes a parameter and has a voi d return type.

Each parameter definition must specify the direction in which the parameter
value is passed. The possible parameter passing modes are as follows:

in The parameter is passed from the caller of the operation to
the object.

out The parameter is passed from the object to the caller.

i nout The parameter is passed in both directions.

Parameter passing modes clarify operation definitions and allow an IDL compiler
to map operations accurately to a target programming language.

Introduction to CORBA IDL

Raising Exceptions in IDL Operations

IDL operations can raise exceptions to indicate the occurrence of an error.
CORBA defines two types of exceptions:

® System exceptions are a set of standard exceptions defined by CORBA.

® User-defined exceptions are exceptions that you define in your IDL
specification.

Implicitly, all IDL operations can raise any of the CORBA system exceptions. No
reference to system exceptions appears in an IDL specification.

To specify that an operation can raise a user-defined exception, first define the
exception structure and then add an IDL r ai ses clause to the operation
definition. For example, the operation wi t hdraw() in interface Account could
raise an exception to indicate that the withdrawal has failed, as follows:

/1 1D
nodul e BankExcepti ons {
typedef float CashAnount;

interface Account {
exception InsufficientFunds {
string reason;

b

voi d wi thdraw(in CashAnount anount)
rai ses(| nsufficientFunds);

b
b
An IDL exception is a data structure that contains member fields. In the

preceding example, the exception | nsuf fi ci ent Funds includes a single member
of type string.

The rai ses clause follows the definition of operation wi t hdr aw() to indicate
that this operation can raise exception | nsuf fi ci ent Funds. If an operation can
raise more then one type of user-defined exception, include each exception
identifier in the r ai ses clause and separate the identifiers using commas.

43

Orbix C++ Programmer’s Guide

44

Invocation Semantics for IDL Operations

By default, IDL operations calls are synchronous, that is a client calls an
operation and blocks until the object has processed the operation call and
returned a value. The IDL keyword oneway allows you to modify these
invocation semantics.

If you precede an operation definition with the keyword oneway, a client that
calls the operation will not block while the object processes the call. For
example, you could add a oneway operation to interface Account that sends a
notice to an Account object, as follows:

nodul e BankSi nple {

interface Account {
oneway void notice(in string text);

b
b
Orbix does not guarantee that a oneway operation call will succeed; so if a
oneway operation fails, a client may never know. There is only one circumstance
in which Orbix indicates failure of a oneway operation. If a oneway operation call
fails before Orbix transmits the call from the client address space, then Orbix
raises a system exception.

A oneway operation can not have any out or i nout parameters and can not
return a value. In addition, a oneway operation can not have an associated
rai ses clause.

Passing Context Information to IDL Operations

CORBA context objects allow a client to map a set of identifiers to a set of

string values. When defining an IDL operation, you can specify that the operation
should receive the client mapping for particular identifiers as an implicit part of
the operation call. To do this, add a cont ext clause to the operation definition.

Consider the example of an Account object, where each client maintains a set of
identifiers, such as sys_ti me and sys_| ocati on that map to information that
the operation deposi t () logs for each deposit received. To ensure that this
information is passed with every operation call, extend the definition of

deposi t () as follows:

Introduction to CORBA IDL

/1 1DL
nodul e BankSi npl e {
typedef float CashAnount;

interface Account {
voi d deposit(in CashAmpunt anount)

” o

context(“sys_time”, “sys_location”);

g
g
A context clause includes the identifiers for which the operation expects to
receive mappings.

Note that IDL contexts are rarely used in practice.

Inheritance of IDL Interfaces

IDL supports inheritance of interfaces. An IDL interface can inherit all the
elements of one or more other interfaces.

For example, the following IDL definition illustrates two interfaces, called
CheckingAccount and SavingsAccount , that inherit from interface Account :

/I \DL
module BankSimple{
interface Account {

h

interface CheckingAccount : Account {
readonly attribute overdraftLimit;
boolean orderChequeBook ();

k

interface SavingsAccount : Account {
float calculatelnterest ();

¥
¥
Interfaces CheckingAccount and SavingsAccount implicitly include all elements
of interface Account .

45

Orbix C++ Programmer’s Guide

46

An object that implements Checki ngAccount can accept invocations on any of
the attributes and operations of this interface, and on any of the elements of
interface Account . However, a Checki ngAccount object may provide different
implementations of the elements of interface Account to an object that
implements Account only.

The following IDL definition shows how to define an interface that inherits both
Checki ngAccount and Savi ngsAccount :

/1 1DL
nodul e BankSi nple {
interface Account {

b
interface CheckingAccount : Account {
b
interface SavingsAccount : Account {
b

interface Preni umAccount
Checki ngAccount, Savi ngsAccount {

H
b
Interface Preni umAccount is an example of multiple inheritance in IDL.
Figure 3.1 on page 47 illustrates the inheritance hierarchy for this interface.

If you define an interface that inherits from two interfaces which contain a
constant, type, or exception definition of the same name, you must fully scope
that name when using that constant, type, or exception. An interface can not
inherit from two interfaces that include operations or attributes that have the
same name.

Introduction to CORBA IDL

| Account |

A

Checki ngAccount | Savi ngsAccount

I\

| Pr em umAccount |

Figure 3.1: Multiple Inheritance of IDL Interfaces

The Object Interface Type

IDL includes the pre-defined interface Qbj ect, which all user-defined interfaces
inherit implicitly. The operations defined in this interface are described in the
Orbix C++ Programmer’s Reference Guide.

While interface Qbj ect is never defined explicitly in your IDL specification, the
operations of this interface are available through all your interface types. In
addition, you can use Chj ect as an attribute or operation parameter type to
indicate that the attribute or operation accepts any interface type, for example:

/1 1D
interface ObjectLocator {

voi d get AnyCbj ect (out Cbject obj);
b

Note that it is not legal IDL syntax to inherit interface Chj ect explicitly.

47

Orbix C++ Programmer’s Guide

Forward Declaration of IDL Interfaces

In an IDL definition, you must declare an IDL interface before you reference it. A
forward declaration declares the name of an interface without defining it. This
feature of IDL allows you to define interfaces that mutually reference each
other.

For example, IDL interface Bank includes an operation of IDL interface type
Account, to indicate that Bank stores a reference to an Account object. If the
definition of interface Account follows the definition of interface Bank, you must
forward declare Account as follows:

/1 1DL

nodul e BankSi nple {
/!l Forward decl aration of Account.
interface Account;

interface Bank {
Account create_account (in string nane);
Account find_account (in string nanme);

}s
/!l Full definition of Account.
interface Account {

b
b
The syntax for a forward declaration is the keyword i nt er f ace followed by the
interface identifier.

Overview of the IDL Data Types

In addition to IDL module, interface, and exception types, there are three
general categories of data type in IDL:

® Basic types.
®* Complex types.
® Pseudo object types.

This section examines each category of IDL types in turn and also describes how
you can define new data type names in IDL.

48

Introduction to CORBA IDL

IDL Basic Types

The following table lists the basic types supported in IDL.

IDL Type

Range of Values

short

-215 2151 (16-bit)

unsi gned short

0...2%.1 (16-bit)

| ong 231 2 311 (32-bit)
unsigned long 0.2 32.1 (32-hit)
long long -2 632 633 (64-bit)

unsigned long long 0...-2

64 (64-bit)

express an arbitrary IDL type.

float IEEE single-precision floating point numbers.

double IEEE double-precision floating point numbers.

char An 8-bit value.

boolean TRUE or FALSE

octet An 8-bit value that is guaranteed not to undergo any
conversion during transmission.

any The any type allows the specification of values that can

The any data type allows you to specify that an attribute value, an operation

parameter, or an operation return value can contain an arbitrary type of value to
be determined at runtime. Type any is described in detail in Chapter 12, “The
Any Data Type” on page 227.

49

Orbix C++ Programmer’s Guide

IDL Complex Types

This section describes the IDL data types enum, struct, union, string, sequence,
array, and fixed.

Enum

An enumerated type allows you to assign identifiers to the members of a set of
values, for example:

/1 1D
nodul e BankSi nple {
enum Currency {pound, dollar, yen, franc};

interface Account {
readonly attribute CashAmount bal ance;
readonly attribute Currency bal anceCurrency;

b
b
In this example, attribute bal anceCurrency in interface Account can take any
one of the values pound, dol | ar, yen, or f ranc.

Struct

A struct data type allows you to package a set of named members of various
types, for example:

// 1DL
nodul e BankSi npl e{
struct QustomerDetails {
string nane;
short age;
b
interface Bank {

QustonerDetail s get CustonerDetails
(in string nane);

50

Introduction to CORBA IDL

In this example, the struct Qust oner Det ai | s has two members. The operation
get Qust oner Det ai | s() returns a struct of type Cust orrer Det ai | s that includes
values for the customer name and age.

Union

A union data type allows you to define a structure that can contain only one of
several alternative members at any given time. A union saves space in memory,
as the amount of storage required for a union is the amount necessary to store
its largest member.

All IDL unions are discriminated. A discriminated union associates a label value
with each member. The value of the label indicates which member of the union
currently stores a value.

For example, consider the following IDL union definition:

/1 1DL

struct DateStructure {
short Day;
short Mbont h;
short Year;

b

union Date switch (short) {
case 1: string stringFormat;
case 2: long digital Fornat;
default: DateStructure structFormt;
b
The union type Dat e is discriminated by a short value. For example, if this short
value is 1, then the union member stri ngFor mat stores a date value as an IDL
string. The default label associated with the member st ruct For nat indicates
that if the short value is not 1 or 2, then the struct For mat member stores a
date value as an IDL struct.

Note that the type specified in parentheses after the swi t ch keyword must be
an integer, char, boolean or enum type and the value of each case label must be
compatible with this type.

51

Orbix C++ Programmer’s Guide

52

String

An IDL string represents a character string, where each character can take any
value of the char basic type.

If the maximum length of an IDL string is specified in the string declaration, then
the string is bounded. Otherwise the string is unbounded.

The following example shows how to declare bounded and unbounded strings:

/1 1D
nodul e BankSi mpl e {
interface Account {
/1 A bounded string w th naxi mum|ength 10.
attribute string<l0> sort Code;

/1 An unbounded stri ng.
readonly attribute string nane;

b

Sequence

In IDL, you can declare a sequence of any IDL data type. An IDL sequence is
similar to a one-dimensional array of elements.

An IDL sequence does not have a fixed length. If the sequence has a fixed
maximum length, then the sequence is bounded. Otherwise, the sequence is
unbounded.

For example, the following code shows how to declare bounded and unbounded
sequences as members of an IDL struct:

/1 1DL
nodul e BankSi nple {
interface Account {

.

struct LimtedAccounts {
string bankSort Code<10>;
/1 Maxi mum | ength of sequence is 50.
sequence<Account, 50> accounts;

}s

Introduction to CORBA IDL

struct UnlimtedAccounts {
string bankSort Code<10>;
/1 No maxi mum | ength of sequence.
sequence<Account > accounts;

b
b
A sequence must be named by an IDL t ypedef declaration before it can be used
as the type of an IDL attribute or operation parameter. Refer to “Defining Data

Type Names and Constants” on page 56 for details. The following code
illustrates this:

/1 1DL
nodul e BankSi npl e {
t ypedef sequence<string> Custoner Seq;

interface Account {
voi d get Cust onerLi st (out Custoner Seq nanes);

};...
b

Arrays

In IDL, you can declare an array of any IDL data type. IDL arrays can be multi-
dimensional and always have a fixed size. For example, you can define an IDL
struct with an array member as follows:

/1 1DL
nodul e BankSi npl e {

interface Account {

.

struct CustonerAccountlnfo {
string nane;
Account accounts[3];

b

53

Orbix C++ Programmer’s Guide

interface Bank {
get Cust orer Account I nfo (in string name,
out Cust omer Account | nfo accounts);

In this example, struct Cust ormer Account | nf o provides access to an array of
Account objects for a bank customer, where each customer can have a
maximum of three accounts.

An array must be named by an IDL t ypedef declaration before it can be used as
the type of an IDL attribute or operation parameter. The IDL t ypedef
declaration allows you define an alias for a data type, as described in “Defining
Data Type Names and Constants” on page 56.

The following code illustrates this:

/1 1DL
nodul e BankSi nple {
interface Account {

b
typedef Account Account Array[100];

interface Bank {
readonly attribute Account Array accounts;

H
b
Note that an array is a less flexible data type than an IDL sequence, because an

array always has a fixed length. An IDL sequence always has a variable length,
although it may have an associated maximum length value.

54

Introduction to CORBA IDL

Fixed

The fixed data type allows you to represent number in two parts: a digit and a
scale. The digit represents the length of the number, and the scale is a non-
negative integer that represents the position of the decimal point in the number,
relative to the rightmost digit.

nodul e BankSi npl e {
t ypedef fixed<10, 4> ExchangeRat e;

struct Rates {
ExchangeRat e USRat e;
ExchangeRat e UKRat e;
ExchangeRat e | RRat e;
b
b
In this case, the ExchangeRat e type has a digit of size 10, and a scale of 4. This
means that it can represent numbers up to (+/-)999999.9999.

The maximum value for the digits is 31, and scale cannot be greater than digits.
The maximum value that a fixed type can hold is equal to the maximum value of
a doubl e.

Scale can also be a negative number. This means that the decimal point is moved
scale digits in a rightward direction, causing trailing zeros to be added to the
value of the fixed. For example, fixed <3, - 4> with a numeric value of 123
actually represents the number 1230000. This provides a mechanism for storing
numbers with trailing zeros in an efficient manner.

Note: Fixed <3, - 4> can also be represented as fixed <7, 0>.

Constant fixed types can also be declared in IDL. The digits and scale are
automatically calculated from the constant value. For example:

nmodule Circle {
const fixed pi = 3.142857;

b

This yields a fixed type with a digits value of 7, and a scale value of 6.

55

Orbix C++ Programmer’s Guide

IDL Pseudo Object Types

CORBA defines a set of pseudo object types that ORB implementations use
when mapping IDL to some programming languages. These object types have
interfaces defined in IDL but do not have to follow the normal IDL mapping for
interfaces and are not generally available in your IDL specifications.

You can use only the following pseudo object types as attribute or operation
parameter types in an IDL specification:

CORBA: : NanedVal ue

CORBA: : Princi pal

CORBA: : TypeCode
To use any of these three types in an IDL specification, include the file orb. i dl
in the IDL file as follows:

/1 1DL
#i ncl ude <orb.idl >

This statement indicates to the IDL compiler that types NanedVal ue, Pri nci pal ,
and TypeCode may be used. The file orb. i dl should not actually exist in your
system. Do not name any of your IDL files orb. i dl.

Defining Data Type Names and Constants

IDL allows you to define new data type names and constants. This section
describes how to use each of these features of IDL.

Data Type Names

The t ypedef keyword allows you define a meaningful or more simple name for
an IDL type. The following IDL provides a simple example of using this keyword:

/1 1D
nodul e BankSi nple {
interface Account {

,

typedef Account StandardAccount;
b

56

Introduction to CORBA IDL

The identifier St andar dAccount can act as an alias for type Account in
subsequent IDL definitions. Note that CORBA does not specify whether the
identifiers Account and St andar dAccount represent distinct IDL data types in
this example.

Constants

IDL allows you to specify constant data values using one of several basic data
types. To declare a constant, use the IDL keyword const, for example:

/1 1DL
nodul e BankSi npl e {
i nterface Bank {
const | ong MaxAccounts = 10000;
const float Factor = (10.0 - 6.5) * 3.91;

b
b
The value of an IDL constant cannot change. You can define a constant at any
level of scope in your IDL specification.

57

Orbix C++ Programmer’s Guide

58

The CORBA IDL to C++ Mapping

The CORBA Interface Definition Language (IDL) to C++ mapping
specifies how to write C++ programs that access or implement IDL
interfaces. This chapter describes this mapping in full.

CORBA separates the definition of an object’s interface from the
implementation of that interface. As described in Chapter 3, “Introduction to
CORBA IDL” on page 39, IDL allows you to define interfaces to objects. To
implement and use those interfaces, you must use a programming language such
as C, C++, Java, Ada, or Smalltalk.

The Orbix IDL compiler allows you to implement and use IDL interfaces in
C++. The compiler does this by generating C++ constructs that correspond to
your IDL definitions, in accordance with the standard CORBA IDL to C++
mapping.

This chapter describes the CORBA IDL to C++ mapping, as defined in the C++
mapping section of the OMG Common Object Request Broker Architecture. The
purpose of the chapter is to explain the rules by which the Orbix IDL compiler
converts IDL definitions into C++ code and how to use the generated C++
constructs.

This chapter contains a lot of detailed technical information that you require
when developing Orbix applications. However, you should not try to learn all
the technical details at once. Instead, read this chapter briefly to understand the
mappings for the main IDL constructs, such as modules, interfaces, and basic
types, and the C++ memory management rules associated with the mapping.
When writing applications, consult this chapter for detailed information about
mapping the specific IDL constructs you require.

59

Orbix C++ Programmer’s Guide

Overview of the Mapping

The major elements of the IDL to C++ mapping are:

® An IDL nodul e maps to a C++ nanespace of the same name. Alternative
mappings are provided for C++ compilers that do not support the
nanespace construct.

® AnIDLinterface maps toa C++ class of the same name.

® An IDL operation maps to a C++ member function in the corresponding
C++ class.

® An IDL attribute maps to a pair of overloaded C++ member functions in
the corresponding C++ class. These functions allow a client program to
set and read the attribute value.

Note that IDL identifiers map directly to identifiers of the same name in C++.
However, if an IDL definition contains an identifier that exactly matches a C++
keyword, the identifier is mapped to the name of the identifier preceded by an
underscore. An IDL identifier cannot begin with an underscore.

Mapping for Modules and Scoping

IDL modules map to C++ namespaces, where your C++ compiler supports
them. For example:

/1 1D
nodul e BankSi nple {
struct Details {

};...
}s

This maps to:

/] C++
namespace BankSi npl e {
struct Details {

};...
}s

60

The CORBA IDL to C++ Mapping

Outside of namespace BankSi npl e, the struct Det ai | s can be referred to as
BankSi npl e: : Det ai | s. Alternatively, a C++ usi ng directive allows you to refer
to Det ai | s without explicit scoping:

/] C++
usi ng namespace BankSi npl e;
Details d;

Alternative Mappings for Modules

Since namespaces have only recently been added to the C++ language, few
compilers support them. In the absence of support for namespaces, IDL modules
map to C++ classes that have no member functions or data. This allows IDL
scoped names to be mapped directly onto C++ scoped names. For example:

/1 1D
nodul e BankSi npl e {
i nterface Bank {

struct Details {

I3
i
I3
This maps to:
/] C++
cl ass BankSi npl e {
public:
class Bank : public virtual CORBA:: (bhject {
struct Details {
b
I3
i
You can use struct Det ai | s in C++ as follows:
/] C++

BankSi npl e: : Bank: : Detail s d;

61

Orbix C++ Programmer’s Guide

Mapping for Interfaces

62

Each IDL interface maps to a C++ class that defines a client programmer’s view
of the interface. This class lists the C++ member functions that a client can call
on objects that implement the interface.

Each IDL interface also maps to other C++ classes that allow a server
programmer to implement the interface using either the BOAImpl or TIE
approach. However, this chapter describes only the C++ class that describes
the client view of the interface, as this class is sufficient to illustrate the principles
of the mapping for interfaces.

Consider a simple interface to describe a bank account:

/1 1D
typedef float CashAnount;

interface Account {
readonly attribute CashAmount bal ance;
voi d deposit (in CashAmount anount);
void withdraw (in CashAnpbunt anount);

b
This maps to the following IDL C++ class:
/] C++
cl ass Account : public virtual CORBA: :(hject {
publi c:

virtual CashAmount bal ance();
virtual void deposit (in CashAnount anount);
virtual void withdraw (i n CashAmount anount);
b
Implicitly, all IDL interfaces inherit from interface CORBA: : (bj ect. Class
Account inherits from the Orbix class GORBA: : Obj ect, which maps the
functionality of interface CORBA: : (bj ect .

Class Account defines the client view of the IDL interface Account.
Conceptually, instances of class Account allow a client to access CORBA objects
that implement interface Account. However, an Orbix program should never
create an instance of class Account and should never use a pointer (Account *)
or a reference (Account &) to this class.

The CORBA IDL to C++ Mapping

Instead, an Orbix program should access objects of type Account through an
interface helper type. Two helper types are generated for each IDL interface: a
_var type and a _ptr type. For example, the helper types for interface Account
are Account _var and Account _ptr.

Conceptually, a _var type is a managed pointer that assumes ownership of the
data to which it points. This means that you can use a _var type such as
Account _var as a pointer to an object of type Account, without ever
deallocating the object memory. If a _var type goes out of scope or is assigned a
new value, Orbix automatically manages the memory associated with the
existing value of the _var type.

A _ptr type is more primitive and has similar semantics to a C++ pointer. In
fact, _ptr types in Orbix are currently implemented as C++ pointers. However,
it is important that you do not use this knowledge because this implementation
may change. For example, you should not attempt conversion to voi d*,
arithmetic operations and relational operations, including test for equality on

_ptr types.

The _var and _ptr types for an IDL interface allow a client to access IDL
attributes and operations defined by the interface. Examples of how to use the
_var and _ptr types are provided later in this section.

Mapping for Attributes

Each attribute in an IDL interface maps to two member functions in the
corresponding C++ class. Both member functions have the same name as the
attribute: one function allows clients to set the attribute’s value and the other
allows clients to read the value. A readonly attribute maps to a single member
function that allows clients to read the value.

Consider the following IDL interfaces:

/1 1DL

interface Account {
readonly attribute float bal ance;
attribute | ong account nunmber;

63

Orbix C++ Programmer’s Guide

The following code illustrates the mapping for attributes bal ance and
account Nunber :

[l C++
class Account : public virtual CORBA :(nject ({
publi c:
virtual CORBA :Fl oat bal ance(CORBA: : Envi ronment &) ;
vi rtual CORBA: : Long account Nunber (CORBA: : Envi r onrrent &) ;
virtual void account Nunber
(Long account Nunber, OCRBA: : Envi ronment &) ;

b
Note that the IDL type fl oat maps to CCRBA: : Fl oat, while type | ong maps to

QORBA: : Long. “Mapping for Basic Types” on page 74 provides a detailed
description of this mapping.

The following code illustrates how a client program could access attributes
bal ance and account nunber of an Account object:

/] C++

Account _var aVar;

CORBA: : Fl oat bal =0;

CORBA: : Long nunber =99;

/1 Code to bind aVar to an Account object onitted.

try {
/1 Get value of bal ance.
bal = aVar->bal ance();

/1 Set and get value of account Nunber.
aVar - >account nunber (nunber);
nunmber = aVar - >account nunber () ;

}
catch (CORBA::systenkException &se) {

}

64

The CORBA IDL to C++ Mapping

Mapping for Operations

Operations within an interface map to virtual member functions of the
corresponding C++ class. These member functions have the same name as the
relevant IDL operations. This mapping applies to all operations, including those
preceded by the IDL keyword oneway.

Consider the following IDL interfaces:

/1 1D
t ypedef float CashAnount;

interface Account {
voi d deposit(in CashAmpunt anount);
voi d wit hdraw(in CashAmount anount);

.

i nterface Bank {
Account create_account(in string nane);
b
The following code illustrates the mapping for IDL operations:

/] C++
class Account : public virtual CORBA: :(bject ({
public:
virtual void deposit (CashAmunt anount);
virtual void wi thdraw CashAnpbunt anount);

.

class Bank : public virtual CORBA:: (bhject {
public:
virtual Account_ptr create_account
(const char* nane);

b
The IDL operation creat e_account () has an object reference return type; that
is, it returns an Account object. In the corresponding C++ code for
creat e_account (), the IDL object reference return type is mapped to the type
Account _pt r. Note that you can assign the return value of function
creat e_account () to either an Account _ptr or an Account _var value.

65

Orbix C++ Programmer’s Guide

66

The following code illustrates how a client calls IDL operations on Account and
Bank objects:

/] C++
Account _var aVar;
Bank_var bVar;

/1 Code to bind bVar to a Bank object omitted.

try {
aVar = bVar->create_account(“Chris”);

aVar->deposit(100.00);

}
catch (CORBA::systemException &se) {

}

“Memory Management for Parameters” on page 102 provides more information
about the mapping for operation parameters.

Mapping for Exceptions

A user-defined IDL exception type maps to a C++ class that derives from class
QORBA: : User Except i on and that contains the exception’s data. For example,
consider the following exception definition:

/1 1DL
exception CannotCreate {
string reason;
short s;
b
This maps to the following C++:

/] C++
cl ass CannotCreate : public CORBA:: User Exception {
public:

CORBA: : String_ngr reason;

CORBA: : Short s;

Cannot Creat e(const char* _reason,
const CORBA::Short& _s);
Cannot Creat e();

The CORBA IDL to C++ Mapping

Cannot Cr eat e(const Cannot Create &);
~Cannot Creat e();

Cannot Create() &operator = (const CannotCreate &);
static Cannot Create* _narrow CORBA: : Exception *e);
b
The mapping defines a constructor with one parameter for each exception
member; this constructor initializes the exception member to the passed-in
value. In the example, this constructor has two parameters, one for each of the
fields r eason and s defined in the exception.

You can throw an exception of type Cannot Cr eat e in an operation
implementation as follows:

/] C++
/'l Server code.
throw CannotCreate(“My reason”, 13)

The default exception constructor performs no explicit member initialization.
The copy constructor, assignment operator, and destructor automatically copy
or free the storage associated with the exception. Exceptions are mapped
similarly to variable length structs in that each member of the exception must be
self-managing.

Mapping for Contexts

An operation that specifies a context clause is mapped to a C++ member
function in which an input parameter of type Context ptr follows all operation-
specific arguments. For example:

/I \DL
interface A {
void op(in unsigned long s)
context (“accuracy”, “base”);

67

Orbix C++ Programmer’s Guide

This interface maps to:

/1 C++

class A : public virtual CORBA:: (hject {

public:

virtual void op(CORBA::ULong s,
CORBA: : Context _ptr 1T_c);

b
The Cont ext _ptr parameter appears before the Envi ronnent parameter. This
order allows the Envi r onment parameter to have a default value.

Mapping for Inheritance of IDL Interfaces

This section describes the mapping for interfaces that inherit from other
interfaces. Consider the following example:

/1 1D
interface CheckingAccount : Account {
void setOverdraftLinmt(in float limt);

b
The corresponding C++ is:

/] C++

cl ass Checki ngAccount : public virtual Account ({
public:

virtual void setOverdraftLimt(
CORBA: : Float limt);
b

A C++ client program that uses the Checki ngAccount interface can call the
inherited deposi t () function:

/] C++
Checki ngAccount _var checki ngAc;

/1 Code for binding checki ngAc onitted.

checki ngAc- >deposi t (90. 97) ;

68

The CORBA IDL to C++ Mapping

Naturally, assignments from a derived to a base class object reference are
allowed, for example:

/] C++
Account _ptr ac = checki ngAc;

Note that you should not attempt to make normal or cast assignments in the
opposite direction—from a base class object reference to a derived class object
reference. To make such assignments, you should use the Orbix narrow
mechanism as described in “Narrowing Object References” on page 70.

Widening Object References

The C++ types generated for IDL interfaces support normal inheritance
conversions. For example, for the preceeding Account and Checki ngAccount
classes defined the following conversions from a derived class object reference
to a base class reference, known as widenings, are implicit:

® Checki ngAccount _ptr to Account _ptr
® Checki ngAccount _ptr to Chject_ptr
® Checki ngAccount _var to Account _ptr

® Checki ngAccount _var to Chject _ptr

Note: There is no implicit conversion between _var types. An attempt to
widen from one _var type to another causes a compile-time error.
Instead conversion between two _var types requires a call to
_duplicate().

Some widening examples are shown in the code below:

/] C++
Checki ngAccount _ptr cbPtr=;

/] Inplicit w dening:
Account _ptr aPtr = cPtr;

/] Inplicit w dening:
Obj ect _ptr objPtr = chtr;

69

Orbix C++ Programmer’s Guide

70

/1 Inplicit w dening:
objPtr = aPtr;

Checki ngAccount _var cVar = cPktr;

/1 cVar assunes ownership of cPtr.

abPtr = cVar;

/1l Inplicit wdening, cVar retains ownership of cPtr.

obj Ptr = cVar;
/1l Inplicit wdening, cVar retains ownership of cPtr.

Account _var av = cVar;
/1 1llegal, conpile-time error, cannot assign
/1 between _var variables of different types.

Account _var aVar = Checki ngAccount:: _duplicate(cVar);
/] aVar and cVar both refer to cPtr.
/] The reference count of cPtr is increnented.

Narrowing Object References

If a client program receives an object reference of type Account that actually
refers to an implementation object of type Checki ngAccount, the client can
safely convert the Account reference to a Checki ngAccount reference. This
conversion gives the client access to the operations defined in the derived
interface Checki ngAccount .

The process of converting an object reference for a base interface to a reference
for a derived interface is known as narrowing an object reference. To narrow an
object reference, you must use the _narrow() function that is defined as a

st at i c member function for each C++ class generated from an IDL interface.

For example, for interface T, the following C++ class is generated:

/] C++
class T : public virtual CORBA:: (hject {
static T_ptr _narrow(CORBA:: Object _ptr);

}s

The CORBA IDL to C++ Mapping

The following code shows how to narrow an Account reference to a
Checki ngAccount reference:

/] C++
Account _ptr aPtr;
Checki ngAccount _ptr caPtr;

/]l Code to bind aPtr to an object that inplenents
/'] Checki ngAccount omitted.

/1 Narrow aPtr to be a Checki ngAccount.
if (caPtr = Checki ngAccount::_narrowaPtr))

el se
/] Deal with failure of _narrow().
If the parameter passed to T: : _narrow() is not of class T or one of its derived
classes, T: : _narrow() returns a nil object reference. The _narrow() function
can also raise a system exception, and you should always check for this.

Each object reference in an address space has an associated reference count. A
successful call to _narrow() increases the reference count of an object
reference by one.

Object Reference Counts and Nil Object References

Each Orbix program may use a single object reference several times. To
determine whether an object reference is currently in use in a program, Orbix
associates a reference count with each reference. This section describes the
Orbix reference counting mechanism and explains how to test for nil object
references.

Object Reference Counts

In Orbix, the reference count of an object is the number of pointers to the
object that exist within the same address space. Each object is initially created
with a reference count of one.

71

Orbix C++ Programmer’s Guide

72

You can explicitly increase the reference count of an object by calling the
object’s _dupl i cat e() static member function. The QCRBA: : r el ease()
function on a pointer to an object reduces the object’s reference count by one,
and destroys the object if the reference count is then zero.

For example, consider the following server code:

/] C++

/1 Create a new Bank object:

Bank_ptr bPtr = new Bank_i;

/1 The reference count of the new object is 1.

Bank:: _duplicate(bPtr);
/1 The reference count of the object is 2.

CORBA: : rel ease(bPtr);
/1 The reference count of the object is 1.

Both implementation objects in servers, and proxies in clients have reference
counts. Calls to _dupl i cat e() and GORBA: : rel ease() by a client do not affect
the reference count of the target object in the server. Instead, each proxy has its
own reference count that the client can manipulate by calling _dupl i cate() and
QORBA: : rel ease() . Deletion of a proxy (by a call to CORBA: : rel ease() that
causes the reference count to drop to zero) does not affect the reference count
of the target object.

A server can delete an object (by calling CORBA : r el ease() an appropriate
number of times) even if one or more clients hold proxies for this object. If this
happens, subsequent invocations through the proxy causes an

OORBA: : | NV_CBIREF system exception to be raised.

Some operations implicitly increase the reference count of an object. For
example, if a client obtains a reference to the same object many times—for
example, using the Naming Service—this results in only one proxy being created
in that client’s address space. The reference count of this proxy is the number of
references obtained by the client.

To find the current reference count for an object, call the function _r ef Count ()
on the object reference. This function is defined in class CORBA: : (bj ect as
follows:

/] C++
/1 In class CORBA:: Obj ect.
CORBA: : ULong _ref Count ();

The CORBA IDL to C++ Mapping

You can call this function as follows:

/] C++
T ptr tPtr;

CORBA: : ULong count = tPtr->_ref Count();

Nil Object References

A nil object reference is a reference that does not refer to any valid Orbix
object. Each C++ class for an IDL interface defines a static function _ni |l () that
returns a nil object reference for that interface type.

For example, an IDL interface T generates the following C++:

/] C++
class T : public virtual CORBA: :Object {
static T_ptr _nil (CORBA:: Environnent&);

b
To obtain a nil object reference for T, do the following:

Il C++

/] Cbtain a nil object reference for T:

T ptr tPtr = T:: _nil();
The function i s_ni | (), defined in the CORBA namespace, determines whether an
object reference is nil. The functionis_nil () is declared as:

/] C++
/1 I'n CORBA nanespace.
Bool ean is_nil (Object_ptr obj);

The following call is guaranteed to be true:

/] C++
CORBA: : Bool ean result = CORBA::is_nil (T::_nil());

Note that calling i s_ni | () is the only CORBA-compliant way in which you can
check if an object reference is nil. Do not compare object references using
oper at or ==().

73

Orbix C++ Programmer’s Guide

Mapping for IDL Data Types

This section describes the mapping for each of the IDL basic types, constructed
types, and template types.

Mapping for Basic Types

74

The IDL basic data types have the mappings shown in the following table:

IDL C++

short CCORBA: : Shor't

| ong CORBA: : Long

I ong | ong CORBA: : LongLong
unsi gned short CORBA: : Ushort
unsi gned | ong CORBA: : ULong
unsi gned | ong | ong CORBA: : ULongLong
f1 oat CCRBA: : Fl oat
doubl e CCORBA: : Doubl e
char CORBA: : Char

bool ean CCORBA: : Bool ean
oct et CORBA: : Ot et
any CCRBA : Any

Each IDL basic type maps to a typedef in the CORBA module; for example, the IDL
type short maps to CORBA: : Short in C++. This is because on different
platforms, C++ types such as short and | ong may have different
representations.

The types GORBA: : Short, CORBA: : UShort, OCRBA: : Long, OCRBA: : ULong,
QCRBA: : LongLong, CCRBA: : ULongLong, CORBA: : Fl oat, and OCRBA: : Doubl e are
implemented using distinguishable C++ types. This enables these types to be
used to distinguish between overloaded C++ functions and operators.

The CORBA IDL to C++ Mapping

The IDL type bool ean maps to CORBA: : Bool ean which is implemented as a
typedef to the C++ type unsi gned char in Orbix. The mapping of the IDL
bool ean type to C++ defines only the values 1 (TRUE) and O (FALSE); other
values produce undefined behaviour.

The mapping for type any is described in Chapter 12, “The Any Data Type” on
page 227.

Mapping for Complex Types

The remainder of this section describes the mapping for IDL types enum, struct,
union, string, sequence, fixed, and array. This section also describes the mapping
for IDL typedefs and constants.

The mappings for IDL types struct, union, array, and sequence depend on
whether these types are fixed length or variable length. A fixed length type is one
whose size in bytes is known at compile time. A variable length type is one in
which the number of bytes occupied by the type can only be calculated at
runtime.

The following IDL types are considered to be variable length types:
® A bounded or unbounded string.
® A bounded or unbounded sequence.
® An object reference.
® A struct or union that contains a member whose type is variable length.
® An array with a variable length element type.
® A typedef to a variable length type.

® The type any.

75

Orbix C++ Programmer’s Guide

Mapping for Enum

An IDL enummaps to a corresponding C++ enum For example:

/1 1D
enum Col our {blue, green};

This maps to:

/] C++
enum Col our {blue, green,
I T__ENUM Col our = CORBA_ULONG MAX} ;

The additional constant | T__ENUM Col our is generated in order to force the
C++ compiler to use exactly 32 bits for values declared to be of the enumerated
type.

Mapping for Struct

76

An IDL struct maps directly to a C++ struct. Each member of the IDL struct
maps to a corresponding member of the C++ struct. The generated struct
contains an empty default constructor, an empty destructor, a copy constructor
and an assignment operator.

Fixed Length Structs

Consider the following IDL fixed length struct:

/1 1DL

struct AStruct {
long |;
float f;

}s

This maps to:

/] C++

struct AStruct {
CORBA: : Long | ;
CORBA: : Fl oat f;

}s

The CORBA IDL to C++ Mapping

Variable Length structs

Consider the following IDL variable length struct:

/1 1DL
interface A {

I3

struct Variabl eLengt hStruct {
short i;
float f;
string str;
A a;

3

This maps to a C++ struct as follows:

/] C++

struct Variabl eLengt hStruct {
CORBA: : Short i;
CORBA: : Fl oat f;
CORBA: : String_mgr str;
A ngr a;

i

Except for strings and object references, the type of the C++ struct member is
the normal mapping of the IDL member’s type.

String and object reference members of a variable length struct map to special
manager classes. Note these manager (_ngr) types are only used internally in
Orbix. You should not write application code that explicitly declares or names
manager classes.

The behaviour of manager types is the same as the normal mapping (char * for
stringand A ptr for an interface) except that the manager type is
responsible for managing the member’s memory. In particular, the assignment
operator releases the storage for the existing member and the copy constructor
copies the member’s storage.

77

Orbix C++ Programmer’s Guide

The implications of this are that the following code, for example, does not cause
a memory leak:

/] C++

Vari abl eLengt hStruct vl s;

char* s1 = CORBA: :string_alloc(5+1);
char* s2 = CORBA: :string_alloc(6+1);
strepy(sl, “first”);

strepy(s2, “second”);

vls.str = s1;

vls.str = s2; // No memory leak, s1 is released.

Mapping for Union

An IDL union maps to a C++ struct. Consider the following IDL declaration:

/I IDL

typedef long vector[100];
struct S { ... };

interface A;

union U switch(long) {
case 1: float f;
case 2: vector v;
case 3: string s;
case 4: S st;
default: A obj;

5

This maps to the following C++ struct:

/I C++
struct U {
public:
/I The discriminant.
CORBA::Long _d() const; 1)

/I Constructors, Destructor, and Assignment.

u(); @
U(const CORBA::Long); (2a)
U(const U &); (©)]
~U0); (4)
U& operator=(const U&); 5)

78

The CORBA IDL to C++ Mapping

/! Accessor and nodifier functions for

/] Basic type nenber:
CORBA: : Fl oat f () const;
voi d f(CORBA: : Fl oat | T_nenber);

/1 Array menber:
vector_slice* v() const;
voi d v(vector_slice* | T_nember);

/1 String menber:

const char* s() const;

voi d s(char* | T_menber);

voi d s(CORBA: : String_var | T_nenber);
voi d s(const char* | T_nenber);

/1 Struct menber:

S& st();

const S& st() const;

voi d st(const S& | T_menber);

/] Object reference nenber:

A ptr obj () const;

voi d obj (A _ptr | T_menber);
};

The Discriminant

The value of the discriminant indicates the type of the value that the union
currently holds. This is the value specified in the IDL union definition. The

(10)
(11)
(12)
(13)

(14)
(15)
(16)

(17)
(18)

function _d() (I) returns the current value of the discriminant.

Constructors, Destructor and Assignment

menbers.

The default constructor (2) does not initialize the discriminant and it does not

initialize any union members. Therefore, it is an error for an application to

access a union before setting it and Orbix does not detect this error. The Orbix
IDL Compiler generates an extra constructor (2a) that takes an argument of the

same type as the discriminant.

79

Orbix C++ Programmer’s Guide

80

The copy constructor (3) and assignment operator (5) perform a deep-copy of
their parameters; the assignment operator releases old storage if necessary and
then performs a deep copy. The destructor (4) releases all storage owned by the
union.

Accessors and Modifiers

For each member of the union, an accessor function is generated to read the
value of the member and, depending on the type of the member, one or more
modifier functions are generated to change the value of the member.

Setting the union value through a modifier function also sets the discriminant
and, depending on the type of the previous value, may release storage associated
with that value. An attempt to get a value through an accessor function that does
not match the discriminant results in undefined behaviour.

Only the accessor functions for struct, union, sequence, and any return a
reference to the appropriate type: thus, the value of this type may be modified
either by using the appropriate modifier function or by directly modifying the
return value of the accessor. Because the memory associated with these types is
owned by the union, the return value of an accessor function should not be
assigned to a _var type. A _var type would attempt to assume ownership of the
memory.

For a uni on member whose type is an array, the accessor function (8) returns a
pointer to the array slice (refer to “Mapping for Array” on page 95). The array
slice return type allows for read-write access for array members using
operator[]() defined for arrays.

For string uni on members, the char * modifier function (I1) first frees old
storage before taking ownership of the char* parameter; that is, the parameter
is not copied. The const char* modifier (13) and the Stri ng_var modifier (12)
both free old storage before the parameter’s storage is copied.

Since the type of a string literal is char * rather than const char*, the following
code would result in a delete error:

/] C++
{
U u;
u.s(“A String”);
/I Calls char* version of s. The string is
// not copied.

The CORBA IDL to C++ Mapping

} // Error: u destructor tries to delete
/I the string literal “A String”.

Note: The string (char *) is managed by a CORBA::String_mgr ~ whose
destructor calls delete. This results in undefined behaviour which the
C++ compiler is not required to flag.

Thus, an explicit cast to constchar* s required in the special case where a
string literal is passed to a string modifier function.

For object reference union members, the modifier function (18) releases the old
object reference and duplicates the new one. An object reference return value
from the accessor function (17) is not duplicated, because the union retains
ownership of the object reference.

Example Program

A C++ program may access the elements of a union as follows:

/I C++
U*u;

u=newU;
u->f(19.2);

/I And later:
switch (u->_d() {
case 1: cout << “f="<< u->f()
<< endl; break;

case 2 : cout << ‘v =" << u->V()
<< endl; break;

case 3: cout << s =" << u->s()
<< endl; break;
/I Do not free the retumned string.

case 4: cout << “st =" << X =" << u->st().x

<< “wn << uy =" << U'>St0.y
<< endl; break;

8l

Orbix C++ Programmer’s Guide

default: cout << “A =" << u->0bj() << endl; break;
/I Do not release the returned object
/I reference.

Mapping for String

IDL strings are mapped to character arrays that terminate with \ 0’ (the ASCII
NUL character). The length of the string is encoded in the character array itself
through the placement of the NUL character.

In addition, the CORBA namespace defines a class Stri ng_var that contains a
char * value and automatically frees the memory referenced by this pointer
when a String_var object is deallocated, for example, by going out of scope.

The String_var class provides operations to convert to and from char * values,
and operator[] () allows access to characters within the string.

Consider the following IDL:

/1 1DL
typedef string<l10> stringTen; // A bounded string.
typedef string stringlnf; // An unbounded string.

The corresponding C++ is:

/] C++

typedef char* stringTen;

typedef CORBA:: String_var stringTen_var;
typedef char* stringlnf;

typedef CORBA:: String_var stringlnf_var;

You can define instances of these types in C++ as follows:

/] C++
stringTen s1
stringlnf s2

0;
0;

/1l Or using the _var type:
CORBA: : stringTen_var svi;
CORBA: : stringl nf_var sv2;

At all times, a bounded string pointer, such as stri ngTen, should reference a
storage area large enough to hold its type’s maximum string length.

82

The CORBA IDL to C++ Mapping

Dynamic Allocation of Strings

To allocate and free a string dynamically, you must use the following functions
from the OQORBA namespace:

/1l C++

// 1n nanespace CCRBA.

char* string_all oc(CORBA :U.ong | en);
void string_free(char*);

Do not use the C++ newand del et e operators to allocate memory for strings

passed to Orbix from a client or server. However, you can use newand del ete
to allocate a string that is local to the program and is never passed to Orbix.

The string_all oc() function dynamically allocates a string, or returns a null
pointer if it cannot perform the allocation. The stri ng_free() function
deallocates a string that was allocated with string_al | oc(). For example:

/] C++

{
char* s = CORBA::string_alloc(10+1);
strepy(s, “0123456789");

CORBA::string_free(s);
}

The function CORBA::string_dup() copies a string passed to it: as a parameter

/I C++
char* string_dup(const char?*);

Space for the copy is allocated using string_alloc()

By using the CORBA::String_var types, you are relieved of the responsibility of
freeing the space for a string. For example:

/I C++

{
CORBA::String_var sVar = CORBA::string_alloc(10+1);

strepy(sVar, “0123456789");

} /I String held by sVar automatically freed here.

83

Orbix C++ Programmer’s Guide

Bounds Checking of String Parameters

Although you can define bounded IDL string types, C++ does not perform any
bounds checking to prevent a string from exceeding the bound. Since strings
map to char *, they are effectively unbounded.

Consequently, Orbix takes responsibility for checking the bounds of strings
passed as operation parameters. If you attempt to pass a string to Orbix that
exceeds the bound for the corresponding IDL string type, Orbix detects this
error and raises a system exception.

General Mapping for Sequences

84

The IDL data type sequence is mapped to a C++ class that behaves like an array
with a current length and a maximum length. A _var type is also generated for
each sequence.

The maximum length for a bounded sequence is defined in the sequence’s IDL
type and cannot be explicitly controlled by the programmer. Attempting to set
the current length to a value larger than the maximum length given in the IDL
specification is undefined. Orbix checks the length against maximum bound and,
if this is greater, does nothing.

For an unbounded sequence, the initial value of the maximum length can be
specified in the sequence constructor to allow control over the size of the initial
buffer allocation. The programmer may always explicitly modify the current
length of any sequence.

If the length of an unbounded sequence is set to a larger value than the current
length, the sequence data may be reallocated. Reallocation is conceptually
equivalent to creating a new sequence of the desired new length, copying the old
sequence elements into the new sequence, releasing the original elements, and
then assigning the old sequence to be the same as the new sequence. Setting the
length to a smaller value than the current length does not result in any
reallocation. The current length is set to the new value and the maximum
remains the same.

The CORBA IDL to C++ Mapping

Mapping for Unbounded Sequences

Consider the following IDL declaration:

I

I DL

t ypedef sequence<l| ong> unbounded;

The IDL compiler generates the following class definition:

I

C++

cl ass unbounded {
public:

b

unbounded() ;
unbounded(const unbounded&) ;

/1 This constructor uses existing space.

unbounded(
CORBA: : ULong nax,
CORBA: : ULong | engt h,
CORBA: : Long* dat a,
CORBA: : Bool ean rel ease = 0);

/1 This constructor allocates space.
unbounded(CORBA: : ULong mex) ;

~unbounded() ;
unbounded& oper at or =(const unbounded&);

static CORBA:: Long* allocbuf (
CORBA: : ULong nel ens) ;

static void freebuf (CORBA:: Long* data);
CORBA: : ULong maxi mum() const;

CORBA: : ULong | engt h() const;
voi d | engt h(CORBA: : ULong | en);

CORBA: : Long& operator[](
CORBA: : ULong | T_i);

const CORBA::Long& operator[](
CORBA: : ULong | T_i) const;

(4)

(6)
(7

(8)
(9)

(10)
(11)

(12)

(13)

85

Orbix C++ Programmer’s Guide

86

Constructors, Destructor and Assignment

The default constructor (1) sets the sequence length to 0 and sets the maximum
length to 0.

The copy constructor (2) creates a new sequence with the same maximum and
length as the given sequence, and copies each of its current elements.

Constructor (3) allows the buffer space for a sequence to be allocated externally
to the definition of the sequence itself. Normally sequences manage their own
memory. However, this constructor allows ownership of the buffer to be
determined by the r el ease parameter: O (false) means the caller owns the
storage, while 1 (true) means that the sequence assumes ownership of the
storage. If rel ease is t rue, the buffer must have been allocated using the
sequence al | ocbuf () function, and the sequence passes it to f reebuf () when
finished with it. In general, constructor (3) particularly with the rel ease
parameter set to 0, should be used with caution and only when absolutely
necessary.

For constructor (3), the type of the data parameter for st ri ngs and object
references is char* and A ptr (for interface A) respectively. In other words,
stri ng buffers are passed as char ** and object reference buffers are passed as
Aptr*.

Constructor (4) allows only the initial value of the maximum length to be set.
This allows applications to control how much buffer space is initially allocated by
the sequence. This constructor also sets the length to 0.

The destructor (5) automatically frees the allocated storage containing the
sequence’s elements, unless the sequence was created using constructor (3)
with the release parameter set to f al se. For sequences of strings,

QOORBA: : string_free() is called on each string; for sequences of object
references, OORBA: : rel ease() is called on each object reference.

Sequence Buffer Management: allocbuf() and freebuf()

The static member functions, al | ocbuf () (7) and fr eebuf () (8) control
memory allocation for sequence buffers when constructor (3) is used.

The function al | ocbuf () dynamically allocates a buffer of elements that can be
passed to constructor (3) in its dat a parameter; it returns a null pointer if it
cannot perform the allocation.

The CORBA IDL to C++ Mapping

The freebuf () function deallocates a buffer that was allocated with

al I ocbuf (). The freebuf () function ignores null pointers passed to it. For
sequences of array types, the return type of al | ocbuf () and the argument type
of f reebuf () are pointers to array slices (refer to “Mapping for Array” on
page 95).

When the r el ease flag is set to tr ue and the sequence element type is either a
string or an object reference, the sequence individually frees each element
before freeing the buffer. It frees stri ngs using string_free(), and it frees
object references using rel ease() .

Other Functions

The function maxi mun() (9) returns the total amount of buffer space currently
available. This allows applications to know how many items they can insert into
an unbounded sequence without causing a reallocation to occur.

The overloaded operators operator[] () (12, 13) return the element of the
sequence at the given index. They may not be used to access or modify any
element beyond the current sequence length. Before operator[] () is used on a
sequence, the length of the sequence must first be set using the modifier
function 1 engt h() (11) function, unless the sequence was constructed using
constructor (3).

For strings and object references, operat or[] () for a sequence returns a type
with the same semantics as the types used for the st ri ng and object reference
members of structs and arrays, so that assignment to the stri ng or object
reference sequence member releases old storage when appropriate.

Unbounded Sequences Example

This section shows how to create the unbounded sequence defined in the
following IDL:

/1 1D
t ypedef sequence<l| ong> unbounded;

87

Orbix C++ Programmer’s Guide

88

You can create an instance of this sequence in any of the following ways:

Using the default constructor:

/] C++
unbounded x;

The sequence length is set to 0 and the maximum length is set to 0. This
does not allocate any space for the buffer elements.
By specifying the initial value for the maximum length of the sequence:

/] C++
unbounded y(10);

The initial buffer allocation for this sequence is enough to hold ten
elements. The sequence length is set to 0, the maximum is set to 10.
Using the copy constructor:

/] C++
unbounded c = vy;

This copies y’s state into c. The buffer is copied, not shared.

Dynamically allocating the sequence using the C++ newoperator:

[l C++
unbounded* s1 = new unbounded;
unbounded* s2 = new unbounded(10);

del ete s1i;

del ete s2

By defining a _var type, you do not have to explicitly free the sequence
when you are finished with it. Like the mapped class, the _var type for a
sequence provides the operator[]().

/] C++
unbounded_var uVar = new unbounded;

uVar - >l engt h(10);

CORBA: : Long i ;
for (i=0; i<10; i++)
uvar[i] =i;

/I Do not call ‘delete uVvar'.

The CORBA IDL to C++ Mapping

® Allocating the buffer space externally to the definition of the sequence
itself.
Il C++
CORBA: : Long* data = unbounded:: al | ocbuf (10);
unbounded z(10, 10, data, 1);
CORBA: : Long i;
/] You can initialize the sequence as foll ows:
for (i=0; i<10; i++)
z[i] =1i;
z:: freebuf (dat a);
In this example, the last parameter to z’s constructor is 1. This indicates

that sequence assumes ownership of the buffer. The data buffer is freed
automatically when z goes out of scope.

If the last parameter were 0, the data buffer would have to be freed by
calling unbounded: : f r eebuf (dat a) .

It is not often necessary to use this form of sequence construction.

Mapping for Bounded Sequences
This section describes the mapping for bounded sequences. For example,
consider the following IDL:

/1 1D
t ypedef sequence<l| ong, 10> bounded;

The corresponding C++ code is as follows:

/] C++

cl ass bounded {

public:
bounded() ; (1)
bounded(const bounded&); (2)
bounded(CORBA: : ULong | engt h, (3)

CORBA: : Long* dat a,
CORBA: : Bool ean rel ease = 0);

~bounded() : (4)

bounded& operat or=(const bounded&); (5)

89

Orbix C++ Programmer’s Guide

static CORBA: :Long* allocbuf((6)
CORBA: : ULong nel ens) ;
static void freebuf (CORBA: : Long* data); (7)

CORBA: : ULong maxi nun() const; (8)

CORBA: : ULong | ength() const; (9)

voi d | engt h(CORBA: : ULong | en); (10)

CORBA: : Long& operator[]((11)
CORBA: : ULong IT_i);

const CORBA:: Long& operator[]((12)

CORBA: : ULong I T_i) const;
H
The mapping is as described for unbounded sequences except for the differences
indicated in the following paragraphs.

The maximum length is part of the type and cannot be set or modified.

The maxi nun{) function (8) always returns the bound of the sequence as given
in its IDL type declaration.

Bounded Sequence Examples

90

Consider the following IDL declaration:

/1 1D
typedef sequence<l ong, 10> boundedTen;

You can declare an instance of boundedTen in a variety of ways:

® Using the default constructor:

/] C++
boundedTen x;

The length of the sequence is set to 0 and the maximum length is set to
10. Space is allocated in the buffer for 10 elements.

® Using the copy constructor:

/] C++
boundedTen ¢ = x;

This copies X’s state into c. The buffer is copied, not shared.

The CORBA IDL to C++ Mapping

By dynamically allocating the sequence:

/] C++
boundedTen* w = new boundedTen;

CORBA: : Long i;
w- >| engt h(10);
for (i=0; i<10; i++)
(w[i] =i,
del ete w;
By defining a _var type, you do not have to explicitly free the sequence
when you are finished with it. Like the mapped class, the _var type for a
sequence provides the operat or[] (). For example:

/] C++
boundedTen_var wVar = new boundedTen;

CORBA: : Long i;
for (i=0; i<10; i++)
wvar[i] =1i;

/I Do not call ‘delete wVar’.

Using constructor (3) as follows:

/] C++
CORBA: : Long* data = boundedTen: : al | ocbuf (10);
CORBA: : Long i;

boundedTen z(10, data, 1); // 1 for true.

/1 You can initialize the sequence as foll ows
/] using the overl oaded operator[]():
for (i=0; i<10; i++)

z[i] =1i;
As for unbounded sequences, avoid this form of sequence construction
whenever possible. In this example, the r el ease parameter is set to 1
(true) to indicate that sequence z is to responsible for releasing the
buffer, dat a.

91

Orbix C++ Programmer’s Guide

Mapping for Fixed

The fixed type maps to a C++ template class, as shown in the following example:

/1 1DL
typedef fixed <10, 6> ExchangeRate;
const fixed pi=3.1415926;

/] C++
typedef CORBA _Fi xed<10, 6> ExchangeRate;
static const CORBA Fi xed
<(unsi gned short)7, (short)6> pi=3.1415926;

The fixed template class is defined as follows:

t enpl at e<unsi gned short d, short s> class CORBA Fixed {
publi c:

Fi xed(const int val =0);

Fi xed(const |ong doubl e val);
Fi xed(const Fi xed<d, s> val);
~Fi xed();

oper ator Fixed<d, s> () const;
oper at or doubl e() const;

Fi xed<d, s> operator=(const Fixed<d, s> val);

Fi xed<d, s> operator++();

Fi xed<d, s> operator++(int);

Fi xed<d, s> operator--();

Fi xed<d, s> operator--(int);

Fi xed<d, s>+() const;

Fi xed<d, s>-() const;

int operator!() const;

Fi xed<d, s> operator+=(const Fi xed<d, s> &val1);
Fi xed<d, s> operator-=(const Fi xed<d, s> &val1l);
Fi xed<d, s> operator*=(const Fi xed<d, s> &val1l);
Fi xed<d, s> operator/=(const Fi xed<d, s> &val1);

const unsi gned short Fixed Digits() const;
const short Fixed_Scal e() const;

92

The CORBA IDL to C++ Mapping

The class mainly consists of conversion and arithmetic operators to all the fixed
types. These types are for use as native numeric types and allow assignment
from and to other numeric types.

/] C++
doubl e rate=1.4234;
ExchangeRat e USRat e(rate);

USRate += 0. 1;
cout << “US Exchange Rate =" << USRate << end|;
/I outputs 0001.523400

The Fixed_Digits() and Fixed_Scale() operations return the digits and scale
of the fixed type.

A set of global operators for the fixed type is also provided.

Streaming Operators

The streaming operators for fixed are as follows:

ostream& operator<<(ostream& 0s, const Fixed<d, s> &val);
istreamé& operator<<(istream& is, Fixed<d, s> &val);

These operators allow native streaming to ostreams and input from istreams
This output is padded:

/I C++

ExchangeRate USRate(1.40);

cout << “US Exchange Rate = " << USRate << endl;
/I outputs 0001.400000

Arithmetic Operators
The arithmethic operators for fixed are as follows:

Fixed<d, s>operator + (const Fixed<d, s> &vall,

const Fixed<d, s> &val2);
Fixed<d, s> operator - (const Fixed<d, s> &vall,

const Fixed<d, s> &val2);
Fixed<d, s> operator * (const Fixed<d, s> &vall,

const Fixed<d, s> &val2);
Fixed<d, s> operator / (const Fixed<d, s> &vall,

const Fixed<d, s> &val2);

93

Orbix C++ Programmer’s Guide

These operations allow binary arithmetic operations between fixed types. For
example:

[l C++

ExchangeRat e USRat e(1. 453);
ExchangeRat e UKRat e(0. 84) ;
ExchangeRate diff;

di ff = USRat e- UKRat €;

cout << “difference between US rate and UK rate is ”
<< diff << endl;
/I outputs 0000.613000;

Logical Operators

The logical operators for fixed are as follows:

int operator > (const Fixed<d1, s1> &vall,

const Fixed<d2, s2> &val2);
int operator < (const Fixed<d1, s1> &vall,

const Fixed<d2, s2> &val2);
int operator >= (const Fixed<dl, s1> &vall,

const Fixed<d2, s2> &val2);
int operator >= (const Fixed<d1, s1> &vall,

const Fixed<d2, s2> &val2);
int operator == (const Fixed<d1, s1> &vall,

const Fixed<d2, s2> &val2);
int operator != (const Fixed<d1, s1> &vall,

const Fixed<d2, s2> &val2);

These operators provide logical arithmetic on fixed types. For example:

/I C++
ExchangeRate USRate(1.453);
ExchangeRate UKRate(0.84);

if (USRate <= UKRate)
{

h

/I Do stuff...

94

The CORBA IDL to C++ Mapping

Mapping for Array

An IDL array maps to a corresponding C++ array definition. A _var type for the
array and a _f or any type, which allows the array to be inserted into and
extracted from an any, are also generated.

All array indices in IDL and C++ run from 0 to <si ze- 1>. If the array element is
a string or an object reference, the mapping to C++ uses the same rule as for
structure members, that is, assignment to an array element releases the storage
associated with the old value.

Arrays as Out Parameters and Return Values

Arrays as out parameters and return values are handled via a pointer to an array
slice. An array slice is an array with all the dimensions of the original specified
except the first one; for example, a slice of a 2-dimensional array is a |-
dimensional array, a slice of a |-dimensional array is the element type.

The CORBA IDL to C++ mapping provides a typedef for each array slice type.

For example, consider the following IDL:

/1 1D
t ypedef |ong arraylLong[10] ;
typedef float arrayFl oat[5][3];

This generates the following array and array slice typedefs:

/] C++
t ypedef |ong arraylLong[10];
t ypedef |ong arraylLong_slice;

typedef float arrayFloat[5][3];
typedef float arrayFloat_slice[3];

Dynamic Allocation of Arrays

To allocate an array dynamically, you must use functions which are defined at the
same scope as the array type. For array T, these functions are defined as:

/] C++
T_slice* T alloc();
void T _free (T_slice*);

95

Orbix C++ Programmer’s Guide

The function T_al | oc() dynamically allocates an array, or returns a null pointer
if it cannot perform the allocation. The T_free() function deallocates an array
that was allocated with T_al | oc(). For example, consider the following array
definition:

/1 1D
typedef |ong vector[10];

You can use the functions vector_al | oc() and vector _free() as follows:

/] C++

vector_slice* aVector = vector_alloc();

/1 The size of the array is as specified

/1 in the IDL definition. It allocates a 10
/1 element array of CORBA::Long.

vector _free(aVector);

Mapping for Typedef
A typedef definition maps to corresponding C++ typedef definitions. For
example, consider the following typedef:

/1 1D
typedef |ong Custonerld;

This generates the following C++ typedef:

/] C++
typedef CORBA::Long Custonerld;

Mapping for Constants

Consider a global, file level, IDL constant such as:

/1 1DL
const | ong MaxLen = 4;

This maps to a file level C++ static const:

/] C++
static const CORBA::Long MaxLen = 4;

96

The CORBA IDL to C++ Mapping

An IDL constant in an interface or module maps toa C++ static const
member of the corresponding C++ class. For example:

/1 1D
i nterface Checki ngAccount : Account {
const float MaxOverdraft = 1000. 00;

i
This maps to the following C++:
/] C++
cl ass Checki ngAccount : public virtual Account ({
public:
stati c const CORBA:: Fl oat MaxOverdraft;
i

The following definition is also generated for the value of this constant, and is
placed in the client stub implementation file:
Il C++

const CORBA: : Fl oat
Checki ngAccount : : MaxOverdraft = 1000. 00;

Mapping for Pseudo-Object Types

For most pseudo-object types, the CORBA specification defines an operation to
create a pseudo-object. For example, the pseudo-interface CRB defines the
operations create_|ist() and create_operation_|list() to create an

NVLi st (an NVLi st describes the arguments of an IDL operation) and operation
creat e_envi ronnent () to create an Envi ronnent.

To provide a consistent way to create pseudo-objects, in particular, for those
pseudo-object types for which the CORBA specification does not provide a
creation operation, Orbix provides static | T_creat e() function(s) for all
pseudo-object types in the corresponding C++ class. These functions provide an
Orbix-specific means to create and obtain a pseudo-object reference. An
overloaded version of | T_creat e() is provided that corresponds to each C++
constructor defined on the class. | T_creat e() should be used in preference to
C++ operator newbut only where there is no suitable compliant way to obtain a
pseudo-object reference. Use of | T_creat e() in preference to new ensures
memory management consistency.

97

Orbix C++ Programmer’s Guide

The Orbix C++ Programmer’s Reference Guide gives details of the | T_creat e()
functions available for each pseudo-interface. The entry for | T_creat e() also
indicates the compliant way, if any, of obtaining an object reference to a
pseudo-object.

Memory Management and _var Types

This section describes the _var types that help you to manage memory
deallocation for some IDL types. The Orbix IDL compiler generates _var types
for the following:

® FEachinterface type.
® Typestring.

® All variable length complex data types; for example, an array or sequence
of stri ngs, and structs of variable data length.

® All fixed length complex data types, for consistency with variable length
types.

Conceptually, a_var type can be considered as an abstract pointer that assumes
ownership of the data to which it points.

For example, consider the following interface definition:

/1 1D
interface A {
void op();

b
The following C++ code illustrates the functionality of a _var type for this
interface:

/] C++
{
/1 Set aPtr to refer to an object:
A ptr aPtr
A var aVar

abPtr;

/1 Here, aVar assunmes ownership of aPtr.
/1 The object reference is not duplicated.

aVar - >op();

98

The CORBA IDL to C++ Mapping

/1l Here, aVar is released (its
/'l reference count decrenented).

The general form of the _var class for IDL type Tis:

/] C++
class T_var {
public:
T var();
T var(T_ptr 1T_p);
T_var(const T var& I T_s);
T_var & operator=(T_ptr 1T_p);
T_var & operator=(const T _var& I T_s);
~T_var();
T* operator->();

b

Constructors and Destructor

(1)
(2)
(3)
(4)
(5)
(6)
(7)

The default constructor (1) creates a T_var containing a null pointer to its data

or a nil object reference as appropriate. A T_var initialized using the default
constructor can always legally be passed as an out parameter.

Constructor (2) creates a T_var that, when destroyed, frees the storage pointed
to by its parameter. The parameter to this constructor should never be a null

pointer. Orbix does not detect null pointers passed to this constructor.

The copy constructor (3) deep-copies any data pointed to by the T_var

constructor parameter. This copy is freed when the T_var is destroyed or when

a new value is assigned to it.

The destructor frees any data pointed to by the T_var stri ngs and array types
are deallocated using the CORBA: : string_free() and S free() (for array of

type S) deallocation functions respectively; object references are released.

The following code illustrates some of these points:

/] C++
{

A var aVar = ...
String_var sVar = string_alloc(10);

aVar - >op() ;

99

Orbix C++ Programmer’s Guide

100

} /] Here, aVar is released,
/1l sVar is freed.

Assignment Operators

The assignment operator (4) results in any old data pointed to by the T_var
being freed before assuming ownership of the T* (or T_pt r) parameter. For
example:

/1 C++

/1 Set aVar to refer to an object reference.

A var aVar = ...

/1 Set aPtr to refer to an object reference.
A ptr abPtr = ...

/1 The follow ng assi gnnent causes the _ptr
/1 owned by aVar to be rel eased before aVar
/1 assumes ownership of aPtr.

avar = aPtr;

The normal assignment operator (5) deep-copies any data pointed to by the
T_var assignment parameter. This copy is destroyed when the T_var is
destroyed or when a new value is assigned to it.

/] C++

{
T var tlVar =
T var t2Var =

/1 The follow ng assi gnnent frees ti1Var and
/1 deep copies t2Var, duplicating its

/1 object reference.

t1Var = t2Var;

}

/1 Here, tilVar and t2Var are rel eased. They both /
/1 refer to the same object so the reference count
/1 of the object is decrenented twi ce.

The CORBA IDL to C++ Mapping

Assignment between _var types is only allowed between _var s of the same
type. In particular, no widening or narrowing is allowed. Thus the following
assignments are illegal:

/] C++

// Bis a derived interface of A
A var aVar = ...

B var bvar = ...

aVar bvar; // |LLEGAL.

bVar = aVar; // |LLEGAL.

You cannot create a T_var from a const T*, or assign a const T* toa T_var.
Recall that a T_var assumes ownership of the pointers passed to it and frees this
pointer when the T_var goes out of scope or is otherwise freed. This deletion
cannot be done on a const T*. To allow construction from a const T* or
assignment to a T_var, the T_var would have to copy the const object. This
copy is forbidden by the standard C++ mapping, allowing the application
programmer to decide if a copy is really wanted or not. Explicit copying of const
T* objects into T_var types can be achieved via the copy constructor for T, as
shown below:

/] C++
const T* t
T_var tVar = new T(*t);

operator->()

The overloaded operat or - >() (7) returns the T* or T_ptr held by the T_var,
but retains ownership of it. You should not call this function unless the T_var
has been initialized with a valid T* or T var.

For example:

/] C++
A var aVar;
/] First initialize aVar.
aVar = ... // Perhaps an object reference

/1 returned fromthe Nam ng Service.
/1 You can now call menber functions.
aVar - >op() ;

101

Orbix C++ Programmer’s Guide

The following are some examples of illegal code:

[l C++

A var aVar;

aVar->op(); // ILLEGAL! Attenpt to call function
// on uninitialized _var.

A ptr aPtr;

aPtr = aVar; // |LLEGAL! Attenpt to convert
/1 uninitialized _var. Obix does
// not detect this error.

The second example above is illegal because an uninitialized _var contains no
pointer, and thus cannot be converted toa _ptr type.

Memory Management for Parameters

When passing operation parameters between clients and objects in a distributed
application, you must ensure that memory leakage does not occur. Since main
memory pointers cannot be meaningfully passed between hosts in a distributed
system, the transmission of a pointer to a block of memory requires the block to
be transmitted by value and re-constructed in the receiver’s address space. You
must take care not to cause memory leakage for the original or the new copy.

This section explains the mapping for parameters and return values and explains
the memory management rules that clients and servers must follow to ensure
that memory is not leaked in their address spaces.

Passing basic types, enums, and fixed length structs as parameters is quite
straightforward in Orbix. However, you must be careful when passing strings
and other variable length data types, including object references.

in Parameters

When passing an i n parameter, a client programmer allocates the necessary
storage and provides a data value. Orbix does not automatically free this storage
on the client side.

102

The CORBA IDL to C++ Mapping

For example, consider the following IDL operation:

I

I DL

interface A {

,

interface B {

b

void op(in float f, in string s, in A a);

A client can call operation op() as follows:

/] C++

{

}

CORBA: : Float f = 12.0;

char* s = CORBA: :string_alloc(4);
strepy(s, “Two”);

A _PtraPtr= ...

B_ptr bPtr = ...

bPtr->op(f, s, aPtr);

string_free(s);
CORBA::release(aPtr);
CORBA::release(bPtr);

On the server side, the parameter is passed to the function that implements the
IDL operation. Orbix frees the parameter upon completion of the function call
in order to avoid a memory leak. If you wish to keep a copy of the parameter in

the server, you must copy it before the implementation function returns.

103

Orbix C++ Programmer’s Guide

This is illustrated in the following implementation function for operation op():

/] C++
void B i::op(CORBA: :Float f, const char* s,
A ptr a, CORBA: :Environnent&) ({

/! Retain in paraneters.

/1 Copy the string and naybe assign it to
/1 member dat a:

char* copy = string_alloc(strlen(s)+1);
strcpy(copy, s);

/1 Duplicate the object reference:
A:: _duplicate(a);

Note: A client program should not pass a NULL or uninitialized pointer for an
i n parameter type that maps to a pointer (*) or a reference to a pointer
(*&).

inout Parameters

104

In the case of i nout parameters, a value is both passed from the client to the
server and vice versa. Thus, it is the responsibility of the client programmer to
allocate memory for a value to be passed in.

In the case of variable length types, the value being passed back out from the
server is potentially longer than the value which was passed in. This leads to
memory management rules that you must examine on a type-by-type basis.

Object Reference inout Parameters

On the client side, the programmer must ensure that the parameter is a valid
object reference that actually refers to an object. In particular, when passing a
T_var as an i nout parameter, where T is an interface type, the T_var should be
initialized to refer to some object.

The CORBA IDL to C++ Mapping

If the client wishes to continue to use the object reference being passed in as an
i nout parameter, it must first duplicate the reference. This is because the server
can modify the object reference to refer to something else when the operation
is invoked. If this were to happen, the object reference for the existing object
would be automatically released.

On the server side, the object reference is made available to the programmer
for the duration of the function call. The object referenced is automatically
released at the end of the function call. If the server wishes to keep this
reference, it must duplicate it.

The server programmer is free to modify the object reference to refer to
another object. To do so, you must first release the existing object reference
using CORBA: : r el ease() . Alternatively, you can release the existing object
reference by assigning it to a local _var variable, for example:

/] C++
/] Server code.
void B_i::oplnout(CORBA:: Float& f,
char*& s, A ptré& a,
CORBA: : Envi ronment & {
A var aTenpVar = a;
a = ... I/ New object reference.

}

Any previous value held in the _var variable is properly deallocated at the end of
the function call.

String inout Parameters

On the client side, you must ensure that the parameter is a valid NUL-terminated
char*. It is your responsibility to allocate storage for the passed char*. This
storage must be allocated via string_al | oc().

After the operation has been invoked, the char * may point to a different area of
memory, since the server is free to deallocate the input string and reassign the
char* to point to new storage. It is your responsibility to free the storage when
it is no longer needed.

On the server side, the string pointed to by the char * which is passed in may be
modified before being implicitly returned to the client, or the char * itself may be
modified. In the latter case, it is your responsibility to free the memory pointed

105

Orbix C++ Programmer’s Guide

106

to by the char* before reassigning the parameter. In both cases, the storage is
automatically freed at the end of the function call. If the server wishes to keep a
copy of the string, it must take an explicit copy of it.

An alternative way to ensure that the storage for an i nout string parameter is
released is to assign it to a local _var variable, for example:

/] C++
/] Server code.
void B_i::oplnout (CORBA: :Float& f,
char*& s, A ptré& a,
CORBA: : Envi ronnent & {
String_var sTenpVar = s;
s = ... /Il New string.

}

Any previous value held in the _var variable is properly deallocated at the end of
the function call.

For unbounded strings, the server programmer is free to pass a string back to
the client that is longer than the string which was passed in. Doing so would, of
course, cause an automatic reallocation of memory at the client side to
accommodate the new string.

Sequence inout Parameters

On the client side, you must ensure that the parameter is a valid sequence of the
appropriate type. Recall that this sequence may have been created with either
‘rel ease=0’ (false) semantics or ‘r el ease=1’ (true) semantics. In the former
case, the sequence is not responsible for managing its own memory. In the latter
case, the sequence frees its storage when it is destroyed, or when a new value is
assigned into the sequence.

In all cases, it is the responsibility of the client programmer to release the
storage associated with a sequence passed back from a server as an i nout
parameter.

On the server side, Orbix is unaware of whether the incoming sequence
parameter was created with r el ease=0 or r el ease=1 semantics, since this
information is not transmitted as part of a sequence. Orbix must assume that
rel ease is set to 1, since failure to release the memory could result in a
memory leak.

The CORBA IDL to C++ Mapping

The sequence is made available to the server for the duration of the function
call, and is freed automatically upon completion of the call. If the server
programmer wishes to use the sequence after the call is complete, the sequence
must be copied.

A server programmer is free to modify the contents of the sequence received as
an i nout parameter. In particular, the length of the sequence that is passed back
to the client is not constrained by the length of the sequence that was passed in.

Where possible, use only sequences created with rel ease=1 as i nout
parameters.

Type any inout Parameters

The memory management rules for i nout parameters of type any are the same
as those for sequence parameters as described above.

There is a constructor for type CORBA : Any which has a r el ease parameter,
analogous to that of the sequence constructors (refer to Chapter 12, “The Any
Data Type” on page 227). However, the warning provided above in relation to
i nout sequence parameters does not apply to type any.

Other inout Parameters

For all other types, including variable length unions, arrays and structs, the rules
are the same.

The client must make sure that a valid value of the correct type is passed to the
server. The client must allocate any necessary storage for this value, except that
which is encapsulated and managed within the parameter itself. The client is
responsible for freeing any storage associated with the value passed back from
the server in the i nout parameter, except that which is managed by the
parameter itself. This client responsibility is alleviated by the use of _var types,
where appropriate.

The server is free to change any value which is passed to it as an i nout
parameter. The value is made available to the server for the duration of the
function call. If the server wishes to continue to use the memory associated with
the parameter, it must take a copy of this memory.

107

Orbix C++ Programmer’s Guide

out Parameters

108

A client program passes an out parameter as a pointer. A client may pass a
reference to a pointer with a null value for out parameters because the server
does not examine the value but instead just overwrites it.

The client programmer is responsible for freeing storage returned to it via a
variable length out parameter. The memory associated with a variable length
parameter is properly freed if a _var variable is passed to the operation.

For example, consider the following IDL:

/1 1D

struct Vari abl eLengthStruct {
string aString;

b

struct Fi xedLengt hStruct {
fl oat aFl oat;

}s

interface A {
void opQut(out float f,
out Fi xedLengthStruct fs,
out Vari abl eLengt hStruct vs);
b
The operation opQut () is implemented by the following C++ function:

/] C++

A i::opCQut(
CORBA: : Fl oat & f,
Fi xedLengt hStruct & fs,
Vari abl eLengt hStruct *& vs,
CORBA: : Envi ronnent & {

The CORBA IDL to C++ Mapping

A client calls this operation as follows:

/] C++

{

Fi xedLengt hStruct _var fs;

Vari abl eLengt hStruct _var vs;

A var aVar = ...;

aVar - >opQut (fs, vs);

aVar->opQut (fs, vs); // 1st results freed.

} // 2nd results freed.

The client must explicitly free memory if _var types are not used.

A fixed-length struct out parameter maps to a struct reference parameter. A
variable-length struct out parameter maps to a reference to a pointer to a
struct. Since the _var type contains conversion operators to both of these
types, the difference in the mapping for out parameters for fixed length and
variable length structs is hidden. If _var types are not used, you must use a
different syntax when passing fixed and variable length structs. For example:

/] C++

{

//You nust allocate nenory for a fixed
/11 ength struct
Fi xedLengt hStruct fs;

//No need to initialize menory for a variable
/11 ength struct

Vari abl eLengt hStruct* vs_p;

aVar - >opQut (fs, vs_p)

/1l Use fs and vs_p.

/'l Free pointer vs_p before passing it to
/1 Ai::opCQut() again.

del ete vs_p;

aVar - >opQut (*fs, vs_p);

/'l Use fs and vs_p.

109

Orbix C++ Programmer’s Guide

/1 Delete menory pointed to by vs_p
del ete vs_p;

}

On the server side, the storage associated with out parameters is freed by
Orbix when the function call completes. The programmer must retain a copy (or
duplicate an object reference) to retain the value. For example:

/] C++
A i::opCQut(
CORBA: : Fl oat & f,
Fi xedLengt hStruct & fs,
Vari abl eLengt hStruct *& vs,
CORBA: : Envi ronnent & {
/1 To retain the variable length struct:
Vari abl eLengt hStruct* nyVs =
new Vari abl eLengt hStruct (*vs);

}

In this example, you take a copy of the struct parameter by using the default
C++ copy constructor.

A server may not return a null pointer for an out parameter returned as a T* or
T* &—that is, for a variable length struct or union, a sequence, a variable length
or fixed length array, a string or any.

In all cases, the client is responsible for releasing the storage associated with the
out parameter when the value is no longer required. This responsibility can be
eased by associating the storage with a _var type, where appropriate, which
assumes responsibility for its management.

Return Values

110

The rules for managing the memory of return values are the same as those for
managing the memory of out parameters, with the exception of fixed-length
arrays. A fixed-length array out parameter maps to a C++ array parameter,
whereas a fixed-length array return value maps to a pointer to an array slice.
The server should set the pointer to a valid instance of the array. This cannot be
a null pointer. It is the responsibility of the client to release the storage
associated with the return value when the value is no longer required.

The CORBA IDL to C++ Mapping

An Example of Applying the Rules for Object References

An important example of the parameter passing rules arises in the case of object
references. Consider the following IDL definitions:

/1 1D
interface 11 {

b

interface 12 {
11 op(in 11 par);
b
The following implementation of operation | 2: : op() is incorrect:

/] C++
11 ptr 12::0p(l1_ptr par) {
return par;

}

If the object referenced by the parameter par does not exist in the server
process’s address space before the call, Orbix creates a proxy for this object
within that address space. This object initially has a reference count of one. At
the end of the call to | 2: : op(), this count is decremented twice—once because
par is an i n parameter, and once because it is also a return value. The code
therefore tries to return a reference that is found by attempting to access a
proxy that no longer exists—with undefined results.

A similar error in reference counts results if the object (or its proxy) referenced
by the parameter par already exists in the server process’s address space.

The correct coding of | 2: : op() is:

/] C++
11 ptr 12::0p(l1_ptr par) {
return | 1:: duplicate(par);

}

Orbix C++ Programmer’s Guide

112

Using and Implementing IDL
Interfaces

This chapter describes how servers create objects that implement
IDL interfaces, and shows how clients access these objects through
IDL interfaces. This chapter shows how to use and implement
CORBA objects through a detailed description of the banking
application introduced in Chapter 2, “Getting Started With Orbix”.

Overview of an Example Application

In the BankSi npl e example, an Orbix server creates a single distributed object
that represents a bank. This object manages other distributed objects that
represent customer accounts at the bank.

A client contacts the server by getting a reference to the bank object. This client
then calls operations on the bank object, instructing the bank to create new
accounts for specified customers. The bank object creates account objects in
response to these requests and returns them to the client. The client can then
call operations on these new account objects.

This application design, where one type of distributed object acts as a factory for
creating another type of distributed object, is very common in CORBA.

The source code for the example described in this chapter is available in the
denos\ banksi npl e directory of your Orbix installation.

113

Orbix C++ Programmer’s Guide

Overview of the Programming Steps

I. Define IDL interfaces to your application objects.
2. Compile the IDL interfaces.

3. Implement the IDL interfaces with C++ classes.
4

. Write a server program that creates instances of the implementation
classes. This involves:

i. Initializing the ORB.
ii. Creating initial implementation objects.

iii. Allowing Orbix to receive and process incoming requests from
clients.

5. Write a client program that accesses the server objects. This involves:
i. Initializing the ORB.
ii. Getting a reference to an object.
ii. Invoking object attributes and operations.
6. Compile the client and server.
Run the application. This involves:
i. Running the Orbix daemon process.
ii. Registering the server in the Implementation Repository.

iii. Running the client.

Defining IDL Interfaces

This example uses two IDL interfaces: an interface for the bank object created
by the server and an interface that allows clients to access the account objects
created by the bank.

The IDL interfaces are called Bank and Account, defined as follows:

/1 1D
/1 I n banksinpl e.idl

nodul e BankSi nple {

typedef float CashAmount;
interface Account;

114

Using and Implementing IDL Interfaces

// A factory for bank accounts.

i nterface Bank {
/] Create new account with specified name.
Account create_account(in string nane);
/1 Find the specified named account.
Account find_account(in string nane);

b

interface Account {
readonly attribute string nane;
readonly attribute CashAnmount bal ance;

voi d deposit(in CashAmpunt anmount);
voi d wi thdraw(in CashAmount anount);

b
b
The server creates a Bank object that accepts operation calls such as
creat e_account () from clients. The operation cr eat e_account () instructs
the Bank object to create a new Account object in the server. The operation
find_account () instructs the Bank object to find an existing Account object.

In this example, all of the objects (both Bank and Account objects) are created in
a single server process. A real system could use several different servers and
many server processes.

For details on how to compile your IDL interfaces, refer to “Compiling IDL
Interfaces” on page 14.

Implementing IDL Interfaces

This section describes in detail the mechanisms enabling you to define C++
classes to implement IDL interfaces. To implement an IDL interface, you must
provide a C++ class that includes member functions corresponding to the
operations and attributes of the IDL interface. Orbix supports two mechanisms
for relating an implementation class to its IDL interface:

® The BOAImpl approach.
® The TIE approach.

115

Orbix C++ Programmer’s Guide

Most server programmers use one of these approaches exclusively, but you can
use both in the same server. Client programmers do not need to be concerned
with which of these mechanisms is used.

The BOAImpl Approach to Implementing Interfaces

For each IDL interface, Orbix generates a C++ class with the same name. Orbix
also generates a second C++ class for each IDL interface, taking the name of the
interface with BQAI npl appended. For example, it generates the class

Account BOAI npl for the IDL interface Account, and the class BankBQAl npl for
the IDL interface Bank. To indicate that a C++ class implements a given IDL
interface, that class should inherit from the corresponding BOAImpl-class.

Each BOAImplI class inherits from a corresponding IDL Compiler-generated
C++ class; for example, Account BQAI npl inherits from Account . BOAImpl
classes inherit from each other in the same way that the corresponding IDL
interfaces do.

Account (IDL interface)

IDL Compiler Account (IDL C++ class)

\

Account BQAI npl

Account I npl (C++ class that you write to implement
the interface Account)

Figure 5.1: The BOAImpl Approach to Defining a C++ Implementation Class

116

Using and Implementing IDL Interfaces

The BOAImpl approach is shown in Figure 5.1 for the Account IDL interface.
For simplicity, the fully-scoped name (BankSi npl e: : Account) is not used.

The Orbix IDL compiler produces the C++ classes Account and

Account BQAI npl . You define a new class, Account | npl , that implements the
functions defined in the IDL interface. In addition to functions that correspond
to IDL operations and attributes, class Account | npl can contain user-defined
constructors, a destructor, and private and protected members.

Note: This guide uses the convention that interface Ais implemented by class
Al npl . It is not necessary to follow this naming scheme. In any case, some
applications might need to implement interface A several times.

The TIE Approach to Implementing Interfaces

Using the TIE approach, you can implement the IDL operations and attributes in
a class that does not inherit from the BOAImpl class. In this case, you must
indicate to Orbix that the class implements a particular IDL interface by using a
C++ macro to tie together your class and the IDL interface.

To use the TI E mechanism, the server programmer indicates that a particular
class implements a given IDL C++ class by calling a DEF_TI E macro, which has
the general form:

DEF_TI E_IDL C++ class name (implementation class name)

Each call to this macro defines a Tl E class. This class records that a particular
IDL C++ class is implemented by a particular implementation class. Consider the
macro call:

DEF_TI E_Account (Account | npl)

This generates a class named Tl E_Account (Account | npl) . Figure 5.2 shows the
TIE approach. For simplicity, the fully scoped name, BankSi npl e: : Account, is
not used.

117

Orbix C++ Programmer’s Guide

Account (IDL interface)

IDL compiler Account (IDL C++ class)

TI E_Account (Account | pl)

Account I mpl (C++ class that you write to
implement the interface Account)

Figure 5.2: The TIE Approach to Implementing Interfaces

DEF_TI E macros also work when interfaces are defined in IDL modules. For
example, if interface | is defined in module M the macros take the following
form:

DEF _TIE M I npl (implementation class name)
TIE_M I npl (implementation class name)

For example, interface Account is defined in module BankSi npl e and
implemented by C++ class Account | npl . The macros thus take the following
form:

® DEF TIE BankS npl e_Account (BankSi npl e_Account | npl)

This macro is called in the implementation header file (in this case,
banksi npl e_accounti npl . h).

® Tl E BankSi npl e_Account (BankSi npl e_Account | npl)

This macro is called in the implementation file (in this case,
banksi npl e_banki npl . cxx).

Refer to “Using the TIE Approach” on page 123 for more details.

118

Using and Implementing IDL Interfaces

Defining Implementation Classes for IDL Interfaces

This section illustrates both the BOAImpl and TIE approaches. Two
implementation classes are required:

BankSi npl e_Bankl npl Implements the Bank interface.

BankSi npl e_Account | npl Implements the Account interface.

Note: You can automatically generate a skeleton version of the class and
function definitions for BankSi npl e: : Bankl npl and
BankSi npl e: : Account | npl by specifying the - S switch to the IDL
compiler.

The - S switch produces two files. If the IDL definitions are in the file
banksi npl e. i dl, the skeleton definitions are placed in the following files:

banksi nmpl e_i h This is the class header file that defines the class.
This file declares the member functions that you
must implement. It can be renamed to

banksi npl e_banki npl . h.

banksi nple.ic This is the code file. It gives an empty body for
each member function and can be renamed to
banksi npl e_banki npl . cxx.

You can edit both files to provide a full implementation class. You must add
member variables, constructors, and destructors. Other member functions can
be added if required. You can use either the BOAImpl or the TIE approach to
relate the implementation classes to your IDL C++ classes.

Using the BOAImpl Approach

Using this approach, you should indicate that a class implements a specific IDL
interface by inheriting from the corresponding BOAImpl-class generated by the
IDL compiler:

/1l Ct+
/1 In file banksinpl e_accountinpl.h

#def i ne BANKSI MPLE_AGCOUNTI MPL_H_

19

Orbix C++ Programmer’s Guide

#include “banksimple.hh”

/I The Account implementation class.
class BankSimple_Accountimpl :
public virtual BankSimple::AccountBOAImpl {
public:
/I 'DL operations
virtual void deposit
(BankSimple::CashAmount amount, CORBA::Environment&);
virtual void withdraw
(BankSimple::CashAmount amount, CORBA::Environment&);

/I 'DL attributes
virtual char* name(CORBA::Environment&);
virtual void name
(const char * _new_value, CORBA::Environment&);
virtual BankSimple::CashAmount balance
(CORBA::Environment&);

/I C++ operations
BankSimple_Accountimpl

(const char* name, BankSimple::CashAmount balance);
virtual ~BankSimple_Accountimpl();

protected:
CORBA::String_var m_name;
BankSimple::CashAmount m_balance;

2

/I C++
Il In file banksimple_bankimpl.h.

#define BANKSIMPLE_BANKIMPL_H__
#include <banksimple.hh>

/I The Bank implementation class.
class BankSimple_Bankimpl : public virtual BankSimple::BankBOAImpl
{
public:
/I 'DL operations.
virtual BankSimple::Account_ptr
create_account(const char* name, CORBA::Environment&);

120

Using and Implementing IDL Interfaces

virtual BankSinple:: Account _ptr
find_account (const char* nane, QGORBA:: Environment&);

/| C++ operations.
BankSi npl e_Bankl npl () ;
virtual ~BankS npl e_Bankl npl ();

prot ect ed:

// This bank stores account in an array in nenory.
static const int MAX ACOOUNTS;

BankSi npl e: : Account _var* maccounts;

Note: The BOAImpl class is produced only if the - B switch is specified to the
IDL compiler.

Classes BankSi npl e_Bankl npl and BankSi npl e_Account | npl redefine each of
the functions inherited from their respective BOAImpl classes. They can also add
constructors, destructors, member functions and member variables. Virtual
inheritance is not strictly necessary in the code shown; it is used in case C++
multiple inheritance is required later. Any function inherited from the BOAImplI
class is virtual because it is defined as virtual in the BOAImpl class. Therefore, it
is not strictly necessary to explicitly mark them as virtual in an implementation
class (for example, BankSi npl e_Account | npl).

The accounts managed by a bank are stored in a array with members of type
BankSi npl e: : Account _var.

Outline of the Bank Implementation (BOAImpl Approach)

First, in BankSi npl e_Bankl npl : : creat e_account (), you should construct a
new BankSi npl e: : Bank object. The function creat e_account () corresponds
to an IDL operation, and its return value is of type BankS npl e: : Account _ptr:

/1l Ct+
/1 I'n file banksinpl e_banki npl . cxx.

/1 Add a new account .
BaBankSi npl e: : Account _ptr
BankSi npl e_Account | npl : : creat e_account

121

Orbix C++ Programmer’s Guide

122

(const char* name, QORBA::Environnent & ({

int i =0;
for (; i < MAX_AGOOUNTS & ! CORBA: :is_nil (maccounts[i]); ++)
{}

if (i < MAX_ACCONTS){
/!l Create an account with zero bal ance.
m account s[i] =new BankSi npl e_Account | npl (nane, 0.0);
cout <<“create_account: Created with name:” << name << endl;
return BankSimple::Account::_duplicate(m_accounts]i];

}

else {
/I Cannot create an account, return nil.
cout << “create_account: failed, no space left!” << end|;
return BankSimple::Account::_nil();

}

You must call BankSimple::Account::_duplicate() because Orbix calls
CORBA:release() ~ on any object returned as an out /inout parameter or as a
return value. The reference count on the new object is initially one, and
subsequently calling CORBA::release() without first calling
BankSimple::Account::_duplicate() results in deletion of the object.

Using the BOAImpl approach, the Bank implementation code is as follows:

/I C++
/I In file bankSimple_banklmpl.cxx.

/I lmplementation of the BankSimple::Bank interface.
#include “banksimple_bankimpl.h”
#include “banksimple_accountimpl.h”

/I Maximum number of accounts handled by the bank.
const int BankSimple_Bankimpl::MAX_ACCOUNTS = 1000;

/I BankSimple_Bankimpl constructor.
BankSimple_Bankimpl::BankSimple_Bankimpl():
m_accounts(new BankSimple::Account_varfMAX_ACCOUNTS]) {

Using and Implementing IDL Interfaces

// Make sure all accounts are nil.
for (int i =0; i < MXACOONTS;, ++) {

m accounts[i] = BankSinple::Account:: _nil();
}

// BankSi npl e_Bankl npl destructor.
BankSi npl e_Bankl npl : : ~BankSi npl e_Bankl npl () {
del ete [] maccounts;

}

/1 Add a new account .
BankSi npl e: : Account _ptr
BankSi npl e_Account | npl : : cr eat e_account
(const char* name, CORBA: : Environment & {

/1 Find a naned account
BankSi npl e: : Account _ptr
BankSi npl e_Bankl npl : : fi nd_account
(const char * name, CCRBA::Environnent & {

}

In this example, the possibility of making the server objects persistent is ignored.
You can do this by storing the account and bank data in files or in a database.
Refer to Chapter 19, “Loading Objects at Runtime” on page 355 for more
details.

Using the TIE Approach

Using the TIE Approach, an implementation class does not have to inherit from
any particular base class. Instead, a class implements a specific IDL interface by
using the DEF_TI E macro.

The DEF_TIE Macro

A version of the DEF_TI E macro is available for each IDL C++ class. The macro
takes one parameter—the name of a C++ class implementing this interface:

/1l Ct+
/1 In file banksinpl e_accountinpl.h

123

Orbix C++ Programmer’s Guide

124

cl ass BankS npl e_Account | npl {
/1 As before.

b
// DEF_TIE Macro call.
DEF_TI E BankS npl e_Account (BankSi npl e_Account | npl)

This macro call defines a Tl E class that indicates that class
BankSi mpl e_Account | npl implements interface BankSi npl e: : Account .

/] C++
/1 I'n file banksi npl e_bankinpl.h

cl ass BankS npl e_Bankl npl {
/1 As before.

b

// DEF_TIE Macro call.
DEF_TI E_BankSi npl e_Bank(BankSi npl e_Bankl npl)

This macro call defines a Tl E class which indicates that class
BankSi mpl e_Bank! npl implements interface BankSi npl e: : Bank.

The TIE Class

The TI E_BankSi npl e_Account (BankSi npl e_Account | npl) construct is a
preprocessor macro call that expands to the name of a C++ class representing
the relationship between the BankS npl e: : Account and

BankSi mpl e_Account | npl classes. This class is defined by the macro call
DEF_TI E_BankS npl e_Account (BankSi npl e_Account | npl). Its constructor
takes a pointer to a BankSi npl e_Account | npl object as a parameter.

The C++ class generated by calling the macro

Tl E_BankSi npl e_Account (BankSi npl e_Account | npl) has a name that is a
legal C++ identifier, but you do not need to use its actual name. You should use
the macro call Tl E BankSi npl e_Account (BankS npl e_Account | npl) when
you wish to use this class.

The TIE approach gives a complete separation of the class hierarchies for the IDL
Compiler-generated C++ classes and the class hierarchies of the C++ classes
used to implement the IDL interfaces.

Using and Implementing IDL Interfaces

Consider an IDL operation that returns a reference to an Account object; for
example, BankSi npl e: : Bank: : creat e_account (). In the IDL C++ class, this is
translated into a function returning an BankSi npl e: : Account _ptr.

However, using the TIE approach, the actual object to which a reference is
returned is of type BankS npl e_Account | npl . This is not a derived class of
BankSi npl e: : Account. Therefore, the server should create an object of type
TI E_BankSi npl e_Account (BankSi npl e_Account | npl). This Tl E object
references the BankSi npl e_Account | npl object, and a reference to the TI E
object should be returned by the function. This is because the class

Tl E_BankSi npl e_Account (BankSi npl e_Account | npl) is a derived class of
class BankSi npl e: : Account. All invocations on the TIE object are automatically
forwarded by it to the associated BankSi npl e_Account | npl object.

When you code the server you create the BankSi npl e_Account | npl object and
a Tl E object. The server should then use the Tl E object, rather than the

BankSi npl e_Account | npl object directly. A bank’s linked list of accounts, for
example, should then point to TIE objects, rather than directly pointing to the
BankSi npl e_Account | npl objects.

A TI E object automatically delegates all incoming operation calls to its
corresponding implementation object. For example, all invocations on a

TI E_Account (BankSi npl e_Account | npl) object are automatically passed to
the BankSi npl e_Account | npl object to which the Tl E object holds a pointer.

Note: By default, calling CORBA: : rel ease() on a Tl E object with a reference
count of one also deletes the referenced object. The Tl E object’s
destructor calls the del et e operator on the implementation object
pointer it holds. This is usually the desired behaviour; however, you can
use CCRBA: : BOA: : propagat eTl Edel et e() to specify whether the TI E
object should be deleted. Refer to the Orbix C++ Programmer’s
Reference for more details.

Using the TIE approach, the bank service header file might look as follows:

/1l C++
// In file banksinpl e_bankinpl . h

#def i ne BANKS| MPLE_BANKI MPL_H
#i ncl ude <banksi npl e. hh>

125

Orbix C++ Programmer’s Guide

cl ass BankS npl e_Bankl npl {
publi c:
/1 1 DL-defined operations.
virtual BankS npl e:: Account _ptr
creat e_account (const char * nane, CCRBA: : Environment&);

virtual BankS npl e:: Account _ptr

fi nd_account (const char * name, CORBA:: Environnent&);
/1 C++ operations.

BankSi npl e_Bankl npl ();

vi rtual ~BankSi npl e_Bankl! npl () ;

pr ot ect ed:
/1 This bank steored accounts in an array of Account_var.
static const int NMAX ACCOUNTS;
BankSi npl e: : Account _var* maccounts;

b

/1 I'ndicate that BankSi npl e_Bankl np i npl errent s
/1 1DL interface BankSi npl e:: Account .
DEF_TI E BankS npl e_Account (BankSi npl e_Bankl npl)

Outline of the Bank Implementation (TIE Approach)

An outline of the code for BankSi npl e_Bankl! npl : : creat e_account () is
shown below:

[l C++
/1 I'n file banksi npl e_banki npl . cxx

BankSi npl e: : Account _ptr BankSi npl e_Bankl npl : : creat e_account
(const char * name, CORBA : Environnment & ({

/] Ensure that a valid account nane is found.
int i =0;
for (; i < MAX_ACOOUNTS &&% CORBA :is_nil(maccounts[i]) ++) {

}

126

Using and Implementing IDL Interfaces

if (i < MAX_ACCONTS) {
/1 Create an account with zero bal ance.
m accounts[i] =
new Tl E_BankSi npl e_Account (BankSi npl e_Account | npl)
(new BankSi npl e_Account | npl (nane, 0.0));

}
el se {
/! Cannot create account, return nil.

}
};
The BankSi npl e: : Account _ptr is initialized to reference a Tl E object that
points in turn to the new BankSi npl e_Account | npl object.

Note: The object that a TIE object points to mustbe dynamically allocated using
C++ operator new By default, when a TIE object is destroyed, it deletes
the object that it points to. The object must therefore be dynamically
allocated.

Using the TIE approach, the Bank implementation class code is as follows:

/1l Ct+
/1 In file banksinpl e_banki npl . cxx

// Inplenentation of the BankSi nple:: Bank interface.
#include “banksimple_bankimpl.n”
#include “banksimple_bccountimpl.h”

const int BankSimple_Bankimpl::MAX_ACCOUNTS = 1000;

/I Constructor.
BankSimple_Bankimpl::BankSimple_Bankimpl():
m_accounts(new BankSimple::Account_var[MAX_ACCOUNTS]) {

/I Make sure all accounts are nil.
for (inti=0; i < MAX_ACCOUNTS; ++i) {
m_accounts][i] = BankSimple::Account::_nil();

}

127

Orbix C++ Programmer’s Guide

/1 Destructor.

BankSi npl e_Bankl npl : : ~BankSi npl e_Bankl npl () {
delete [] maccounts;

}

/1 Add a new account.

BankSi npl e: : Account _ptr
BankSi npl e_Account | npl : : creat e_account (const char *nane,

CORBA: : Enviroment &) {

int i =0;
for (; i < MAX_ACCOUNTS & !CORBA :is_nil (maccounts[i]); ++)
{}

if (i < MAX_ACCANTS) {
m account s[i]=
new Tl E_BankS npl e_Account (BankSi npl e_Account | npl)
(new BankSi npl e_Account | npl (nane, 0.0);
cout <<“create_account: Created with name:” << name << endl;
return BankSimple::Account::_duplicate(m_accounts]i];

}

else {
cout << “create_account: failed, no space left!” << end|;
return BankSimple::Account::_nil();

}

}

/I Find a named account
BankSimple::Account_ptr
BankSimple_Bankimpl::find_account (const char * name,
CORBA::Enviroment &) {
... Il Same as for BOAImpl approach.
}
¥

128

Using and Implementing IDL Interfaces

Developing a Server Program

To develop a server program, you must do the following:
® Create initial implementation objects for these interfaces.

® Make these objects available to clients, by allowing Orbix to receive and
process incoming requests from clients.

This section describes how you can write a server nai n() function that creates
a Bank implementation object and makes this object available to clients.

Writing a Server main() Function

This section shows the mai n() function of the banking application, using both
the BOAImpl and the TIE approaches. In this example, the server mai n()
function creates an implementation object of type Bank.

Using the BOAImpl Approach

The mai n() function for the server shows the creation of a Bank object. You
could write this as follows:

/] C++
/1 In file server. cxx.

#include <it_deno_nsw h>
#include “banksimple_bankimpl.n”
#inlcude “banksimple_accountimpl.h”

int main(int argc, char * argv])) {

try {
/I Process command line arguments and server options.

/l initialize the ORB and BOA (CORBA-defined).
CORBA::ORB_var orb = CORBA::Orb_init (argc, argv, “Orbix”);
CORBA::BOA_var boa = orb->BOA_init(argc, argv, “Orbix_BOA");

/I Set diagnostics as specified on the command line.
orb->setDiagnostics(serveropt.diagnostics());

129

Orbix C++ Programmer’s Guide

/1l Set server name (required to export object references).
or b- >set Ser ver Name(ser ver opt . server_nane());

/1 Indicate server should not quit when clients are
/1 connect ed.
boa- >set NoHangup(1) ;

/1 For correct |ICR generation, you nust call
/1 inpl_is_ready() before objects are created.
boa- >i npl _i s_ready((char*)serveropt. server_nane(), 0);

/!l Create a new Bank inpl ementation object.

BankSi npl e: : Bank_var ny_bank = new BankSi npl e_Bankl npl ;
/1 To sinplify the use of the naning service, a Nam ng
/1 Service Wapper (NSW is provided. Refer to

// DenoLib/I T DEMD NSW for further details.

/1 Define a NSWobject and define a name prefix to be
/1 used for subsequent operations.

| T_Dermo_NSW ns_wr apper :

ns_wr apper . set NanePr ef i x(serveropt.context());

/1 Specify the name that the bank object is known as in
/1 the nam ng servi ce.
const char *bank_name - “BankSimple.Bank’;

/I Create missing contexts and overwrite existing entries in

/I the naming serivce.

ns_wrapper.setBehaviourOptions
(IT_Demo_NSW::createMissingContexts);

ns_wrapper.setBehaviourOption
(IT_Demo_NSW::overwriteExistingObject)

/I'if unbind option is specified, unbind the server's
/I objects from the naming service and exit.
if (server.opt.unbindns()) {
cout << “Un-binding objects from the Naming Service”
<< endl;
ns_wrapper.removeObject(bank_name);
cout << “exiting...” << endl;
return O;

130

Using and Implementing IDL Interfaces

// 1f the bind option is specified on the comrand |i ne,
Il register the server’s object with the naming service.
if (serveropt.bindns()) {
cout << “Binding objects in the Naming Service”
<<endl
ns_wrapper.registerObject(bank_name, my_bank);

}

/I Server has completed initialization, and waits for

/I incoming requests.

boa->impl_is_ready((char*)serveropt.server_name(),
serveropt.timeout());

/limpl_is_ready() returns only when Orbix times-out an
/I idle server.
cout << “server exiting” << end|

}
catch (CORBA::Exception &e) {

cerr <<‘Unexpected exception” << e << end|;
return 1;

}

return O;

}

This server initializes a BankSimple::Bank_var object reference with a new
BankSimple_Banklmpl object. The BankSimple_Bankimpl object is created
using a default constructor.

Before creating the Bank object, the server initializes the ORB and BOA. The
server then calls impl_is_ready() to indicate that it has completed initialization
and is ready to receive operation requests on its objects.

Using the TIE Approach

The implementation of the server main() function is similar in the TIE approach.
The difference is that the server creates a TIE object in addition to a
BankSimple_Banklmpl object:

/I C++
/I In file server.cxx.

#include <BankSimple_Bankimpl.h>
#inlcude <BankSimple_Accountimpl.h>

131

Orbix C++ Programmer’s Guide

132

#i ncl ude <I' T _Deno_NSW h>
int main(int argc, char * argv[])) {

/l Create a new Bank inpl ementation object.
BankSi npl e: : Bank_var ny_bank =
new Tl E_BankS npl e_Bank(BankSi npl e_Bankl npl)
(new BankSi npl e_Bankl npl) ;

/1 Wait for incomng requests.

boa- >i mpl _i s_r eady((char*)serveropt. server_nane(),
serveropt.timeout());

cout << “server exiting” << endl;

This server main() initializes a BankSimple::Bank_var object reference with a
new TIE object. The BankSimple_Bankimpl object is created using a default
constructor. The accounts managed by a bank are stored in a list with members
of type BankSimple::Account_ptr . In this case, therefore, the linked list is
composed of TIE objects.

Initializing the Server

A server is normally coded so that it initializes itself and creates an initial set of
objects. It then calls boa->impl_is_ready() to indicate that it has completed its
initialization and is ready to receive operation requests on its objects.

impl_is_ready()

The impl_is_ready() function normally does not return immediately. It blocks
the server until an event occurs, handles the event, and re-blocks the server to
wait for another event. A server must call impl_is_ready() ; however, a client
must not call this function.

The impl_is_ready() function is declared as follows:

Il C++
/I In class CORBA::BOA.
void impl_is_ready (
const char* server_name =*“ ",
CORBA::ULong timeOut =
CORBA::Orbix::DEFAULT_TIMEOUT,

Using and Implementing IDL Interfaces

CORBA: : Environnment & | T_env =
CORBA: : def aul t _envi ronnment);

When a server is launched by Orbix, the server name is already known to Orbix
and therefore does not need to be passed to i npl _i s_ready(). However, when
a server is launched manually or externally to Orbix, the server name must be
communicated to Orbix before any Orbix services are used.

The normal way to do this is as the first parameter to i npl _i s_ready(). To
allow a server to be launched either automatically or manually, you should
specify the server _nane parameter.

By default, servers must be registered with Orbix, using the putit command. If
an unknown server name is passed to i npl _i s_ready(), the call is rejected.
However, you can configure the Orbix daemon (or bi xd) to allow unregistered
servers to be run manually. Refer to the Orbix C++ Administrator’s Guide for
details.

If you do not want to specify the ser ver _nane, but want to specify a non-default
ti meQut or Envi ronnent, you should pass a zero length string ("") for the value
of the server _nane parameter.

Theinpl _i s_ready() function returns only when a timeout occurs or an
exception occurs while waiting for or processing an event. The ti neout
parameter indicates the number of milliseconds to wait between events.

A timeout occurs if Orbix has to wait longer than the specified timeout for the
next event. A timeout of zero indicates that i npl _i s_ready() should time out
and return immediately without checking for any pending event. A timeout does
not cause i npl _i s_ready() to raise an exception.

Note: A server can time out either because it has no clients for the timeout
duration, or because none of its clients uses it for that period.

The default timeout can be passed explicitly as OCRBA: : CRB: : DEFAULT_TI MECUT.
You can specify an infinite timeout by passing CORBA: : CRB: : | NFI NI TE_TI MEQUT.

133

Orbix C++ Programmer’s Guide

Developing a Client Program

134

From the point of view of the client, the functionality provided by the

BankSi mpl e example is defined by the IDL interface definitions. A typical client
program locates a remote object, gets a reference to the object and then
invokes operations on the object.

These three concepts, object location, getting an object reference, and remote
invocations, are important concepts in distributed systems:

® Object location involves searching for an object in the available nodes.

® Getting a reference to an object—establishes the facilities required to
make remote invocations possible. In Orbix this involves the implicit
creation of a proxy—a reference to the proxy is then returned to the
client.

®* Remote invocations in Orbix occur when normal C++ function calls are
made on proxies.

These concepts are illustrated in this section. This client uses the Naming
Service Wrappers to find and get a reference to a Bank object. Remote function
invocations can then be made on the object. Alternatives to using the Naming
Service are discussed later in this section.

You should refer to Chapter 6, “Making Objects Available in Orbix” on page 147
for a detailed discussion.

The main BankSi npl e client program performs initialization and then starts a
simple interactive menu, enabling you to call IDL operations on a Bank. The
client uses the following files to make remote invocations:

® banknmenu. cxx
This calls operations on the Bank IDL interface.
® account nenu. cxx
This calls operations on the Account IDL interface.
The code for the client is as follows:
Il C++

/l Infile client.cxx

#i ncl ude <it_deno_streans. h>

Using and Implementing IDL Interfaces

#incl ude <it_deno_clientoptions. h>
#include <it_deno_nsw h>
#i ncl ude "bankmenu. h"

// QGonnects to bank object, and runs a sinple nmenu | oop
// to call operations on bank or accounts.
int main (int argc,char *argv[]) {

// ORB Setup - initialize the CRB.
OCRBA: : CRB_var orb = CORBA': CRB_init(argc, argv, "Qbix");

// Set the diagnostic |evel fromthe options
orb- >set Di agnostics(clientopt.diagnostics());

// Nam ng Service Setup
| T_Deno_NSW ns_wr apper ;
ns_wr apper . set NanePr efi x(cl i entopt. context());

// Get OCRBA object.
/1 Specify the object nane in the naning service.
const char *obj ect _nane = "BankS npl e. Bank";

// Get a reference to the required object fromthe NSW
OCRBA: : (hj ect _var obj = ns_wrapper.resol veName(obj ect _nane) ;

// Narrow the object reference.
BankSi npl e: : Bank_var bank = BankSi npl e: : Bank: : _narrow(obj);
if (CORBA :is_nil(bank)) {
cerr << "(pject \"" << object_name
<< "\"in the namng service" << endl
<< "\tis not of the expected type."<< endl;

return 1;

}

// Start client nenu | oop
BankMenu nai n_nenu(bank) ;
mai n_nenu. start();

135

Orbix C++ Programmer’s Guide

Alternatives to the Naming Service

136

Using the Naming Service is the CORBA-defined way to establish
communications with a particular object. There are two other ways that a client
can obtain a reference to an object it needs to communicate with:

® Using a return value or an out parameter to an IDL operation call.

® Using the Orbix-specific _bi nd() mechanism.

Using a Return Value or an Out Parameter

A client can also receive an object reference as a return value or as an out
parameter to an IDL operation call. This results in the creation of a proxy in the
client’s address space. Operation creat e_account (), for example, returns a
reference to an Account object, and a client that calls this operation can then
make operation calls on the new object.

Using _bind()

The following code sample shows how a client could obtain a reference to a
Bank object using the Orbix-specific _bi nd() operation:

try {
CORBA : CRB var orb =
CORBA::ORB_init(argc,argv,“Orbix”);
BankSimple::Bank_var bank =
BankSimple::Bank::_bind(“:IT_demo/BankSimple/Bank™);

}
catch (CORBA::Exception &e) {

cout << “Unexpected exception” << e << end|

}

The bind mechanism is implemented by the static member function _bind() of
C++ class BankSimple:Bank . This function takes a parameter that specifies the
location of the required implementation object in the system. Orbix can choose
any Bank object within the named server. The value returned by
BankSimple::Bank::_bind() is a remote object reference. This is a pointer to
a proxy object in the client address space. Refer to “Tabular Summary of
Parameters to _bind()” on page 163 for further information.

Using and Implementing IDL Interfaces

In general, a process must use the Naming Service or call _bi nd() at least once
in order to communicate with objects outside of its address space. However, it
should not overuse either the Naming Service or _bi nd(). For many
applications it is better for a server to make its objects known to its clients
through IDL interfaces provided by other objects.

Where possible, you should use a combination of the Naming Service and object
references returned through IDL operations to make objects available to clients
in your Orbix applications. The Orbix _bi nd() function is convenient, but is not
defined in the CORBA standard.

Registering the Server

The last step in developing and installing your application is to register the server
with the Implementation Repository.

The Orbix Implementation Repository records each server name and executable
filename. Registering a server enables the Orbix daemon (or bi xd) to launch a
server that is not running when one of its objects is used. If the Orbix daemon is
configured to allow unregistered servers, server registration is optional, and
server that is not known to Orbix can then be run manually. Its call to

OCRBA: : BQA: @i npl _i s_ready() must specify its server name. In addition, the
server must call to i npl _i s_ready() before any other calls to Orbix.

Every node in a network that runs servers must have access to an
Implementation Repository. Repositories can be shared using a network file
system.

You can register a server using either the Server Manager GUI tool or run the
Orbix putit command on the server host as follows:

putit server name server path [server command line arguments)
For example, on UNIX, the Bank server might be registered as follows:
% putit Bank /usr/users/joel/banker

The executable file / usr/ user s/ j oe/ banker is then registered as the
implementation code of the server named Bank at the current host. The putit
command does not run the executable; you can execute this explicitly from the
shell. Alternatively, it is launched automatically by Orbix in response to an
incoming operation invocation.

137

Orbix C++ Programmer’s Guide

For more information on registration and activation of servers, refer to the
Orbix C++ Administrator’s Guide.

Execution Trace for the Example Application

138

This section considers the events that occur when the Bank server and client are
run. The TIE approach is used to show the initial trace, and then the BOAImpl
approach is discussed.

First a server with the name "Bank" is registered in the Implementation
Repository. Then, when an invocation arrives from a client, Orbix launches the
server using the specified executable file; for example, / usr/ user s/ j oe/ banker .

The server process creates a new Tl E (of class TI E_Bank(Bankl npl)) for an
object of class BankSi npl e_Bankl! npl , and waits on
OORBA: : BOA : i npl _is_ready():

Il C++

/1 In file server.cxx.

#include “banksimple_bankimpl.h”
#inlcude “banksimple_accountimpl.h”
#include “IT_Demo_NSW.h"

int main(int argc, char * argv])) {

/I Create a new Bank implementation object.
BankSimple::Bank_var my_bank =
new TIE_BankSimple_Bank(BankSimple_Bankimpl)
(new BankSimple_Bankimpl);

/I Wait for imcoming requests.
boa->impl_is_ready((char*)serveropt.server_name(),

serveropt.timeout());
cout << “server exiting” << endl;

}

The state of the server, at the time of the impl_is_ready() call, is shown in
Figure 5.3. The server is now waiting for incoming requests. If impl_is_ready()
times out, the server terminates.

Using and Implementing IDL Interfaces

Server Process

BankSi npl e: : Bank_var ny_bank

BankSi npl e_Bankl npl

Bank TIE

Orbix Library Code

Figure 5.3: State of the Server at Launch

Now consider the client: it first binds to a Bank object, using the Naming
Service; for example:

/] C++
/1 In file client.cxx

int main (int argc,char *argv[]) {

// Nam ng Service Setup
| T_Deno_NSW ns_wr apper ;
ns_wr apper . set NanePr efi x(cl i entopt. context());

// Get OCRBA object.
/1 Specify the object nane in the naning service.
const char *obj ect _nane = "BankS npl e. Bank";

// Get a reference to the Bank object fromthe NSW
OCRBA: : (hj ect _var obj = ns_wr apper.resol veName(obj ect _nane) ;

// Narrow the object reference.
BankSi npl e: : Bank_var bank = BankSi npl e: : Bank: : _narrow(obj);

139

Orbix C++ Programmer’s Guide

The result is an automatically generated proxy object in the client, which acts as
a stand-in for the remote BankSi npl e_Bankl npl object in the server. The
object reference bank within the client is now a remote object reference as
shown in Figure 5.4.

The client programmer is not aware of the Tl E object. Nevertheless, all remote
operation invocations on our BankSi npl e_Bankl npl object go via the TIE.

Client Process Server Process

BankSi npl e: : Bank_var m bank BankSi npl e: : Bank_var ny_bank

Bank BankSi npl e_Bankl npl
proxy object

C Bank TIE)

Orbix Library Code Orbix Library Code

Figure 5.4: Client Binds to Bank Object (TIE Approach)

The client program proceeds by using the client menu to ask the bank to open a
new account:

/] C++
[/l I'n file banknmenu. cxx

BankSi npl e: : Account _var account
= m bank- >creat e_account (narre) ;

140

Using and Implementing IDL Interfaces

When the m bank- >cr eat e_account () call is made, the function

BankSi npl e: : Bankl npl : : creat e_account () is called (via the Tl E) within the
bank server. This generates a new BankSi npl e_Account | npl object and
associated Tl E object. The Tl E object is linked into the BankS npl e_Bankl! npl
object’s list of Accounts.

Finally, cr eat e_account () returns the Account reference back to the client. At
the client side, a new proxy is created for the Account object, and this is
referenced by the m_account variable (Figure 5.5).

Client Process Server Process
BankSi npl e: : Bank_var m bank BankSi npl e_Account | npl
object
Bank BankSi npl e_Bankl npl
proxy object
BankSi mpl e: : Account _var BankSi npl e: : Bank_var
m_account ny_bank -
_>(Bank TI E) Caccount T Ia
Orbix Library Code | Orbix Library Code

Figure 5.5: Client Accesses Account Object (TIE Approach)

141

Orbix C++ Programmer’s Guide

Using the BOAImpl approach, the final diagram is as shown in Figure 5.6.

Client Process Server Process
BankSi npl e: : Bank_var m bank BankSi npl e: : Bank_var ny_bank
Bank -
\—> proxy BankSi npl e_Bankl npl
object

BankSi npl e: : Account _var

m account
‘ > Account
proxy
Orbix Library Code | Orbix Library Code

BankSi npl e_Account | npl
object

Figure 5.6: Client Accesses Account Object (BOAImpl Approach)

Comparing the TIE and BOAImpl Approaches

This section highlights further ways you can use the TIE and BOAImpl
approaches to provide implementation classes, and compares both approaches.

Wrapping Existing Code

Orbix provides a mechanism to achieve application integration for both new and
existing applications. An application can allow other code to use its services by
providing a number of IDL interfaces and making these available to the overall
system. This allows you to write new applications by combining the facilities of
existing applications. Because the components of the system are objects whose
internals are hidden from their clients, these objects can provide the basis for

142

Using and Implementing IDL Interfaces

integrating with legacy systems. Over time, legacy systems can be replaced with
newer systems which nevertheless provide the same CORBA interfaces. One
aspect of this wrapping of existing code is the ability to implement an IDL
interface using existing C++ classes.

Using the TIE Approach

The TIE approach is clear on whether or not it supports wrapping existing code.
If the existing C++ class has exactly the correct member functions (each
function has exactly the correct name and correct parameter types), you must
call the appropriate DEF_TI E macro. In addition, you must also add the

OCRBA: : Envi ronnent parameter to the member functions because existing
code would not have this parameter. The existing code may have other functions
that do not correspond to IDL attributes or operations in the IDL interface in
question. However, if the existing C++ code does not have exactly the correct
member functions, the TIE approach cannot be used.

Using the BOAImpl Approach

To use the BOAImpl approach for existing code, you must use C++ multiple
inheritance to specify the relationship between the IDL C++ class and the
previously written implementation class. Instances of the derived class are then
valid implementations of the IDL interface. Figure 5.7 on page 144 shows how
you can use the BOAImpl approach to allow a pre-existing class to implement an
IDL interface. The programmer has already implemented a class, BankAccount,
which provides an implementation of each of the functions of the IDL interface.
To indicate that this class implements the IDL interface, a class

BankSi npl e_Account | npl has been defined that inherits from both the
BOAImpl-class and the class, BankAccount, which provides the functions. Class
BankSi npl e_Account | npl is the class which is said to implement the IDL
interface.

This is more difficult to code than the corresponding code for the TIE approach,
where a call to the appropriate DEF_TI E macro may be all that is required.
However, the BOAImpl approach is significantly more flexible in its use of
existing code. In particular, the code for class BankSi npl e_Account | npl can
manipulate any call that it receives before passing it on to the code for class
BankAccount . This manipulation can compensate for differences in function
names and parameters, and differences in function semantics.

143

Orbix C++ Programmer’s Guide

BankSi npl e: : Account (IDL interface)

IDL compiler — BankSi npl e: : Account (IDL C++ class)
|

\/

BankSi npl e: : Account BOAI npl BankSi npl e: : BankAccount o4y class
| already written to
implement the
interface)

o]

BankSi npl e: : Account | npl (C++ class defined using multiple
inheritance from the implementation
class and the BOAImpl-class)

Figure 5.7: BOAImpl Approach to Allow an Existing Class to Implement an IDL Interface

Providing Different Implementations of the Same Interface

Both the BOAImpl and TIE approaches allow you to provide a number of
different implementations of the same IDL interface—to provide more than one
implementation class for a given IDL interface. This is an important feature,
especially in a large heterogeneous distributed system. An object can then be
created as an instance of any one of the implementation classes. Client
programmers need not be aware of which class has been chosen.

144

Using and Implementing IDL Interfaces

Providing Different Interfaces to the Same Implementation

You can have a C++ implementation class that implements more than one IDL
interface. This class must declare all of the operations defined in all of the
interfaces it implements. In the TIE approach, this common class is tied to
different IDL interfaces using multiple DEF_TI E macro calls.

In the BOAImpl approach, this usually requires an IDL interface that derives
from all of the IDL interfaces in question.

Comparison of the BOAImpl and TIE Approaches

This section briefly compares the BOAImpl and TIE approaches to implementing
IDL interfaces in C++. In real terms, these do not differ greatly in their power,
and it is frequently a matter of personal taste which one is preferred. The TIE
and BOAImpl approaches can be freely mixed within the same server.

The TIE approach has a small advantage in that it allows an advanced feature
known as “per-object” filtering to be used. This allows you to specify additional
code that is to be executed when an invocation is made on a particular object;
from the same or a different address space. Both the BOAImpl and the TIE
approach enable you to specify additional code to be executed when an attribute
or operation invocation is made across an address space boundary; from a client/
server to a client/server on the same or a different host.

Refer to Chapter 16, “Filtering Operation Calls” on page 307 for more
information on using filters with Orbix.

145

Orbix C++ Programmer’s Guide

146

Making Objects Available in Orbix

A central requirement in a distributed object system is for clients to
be able to locate the objects they wish to use. This chapter describes
how you can make objects available in servers and locate those
objects in clients.

Before using a CORBA object, a client must establish contact with it. To do this,
the client must get an object reference for the required object. An object
reference is a unique value that tells an ORB where an object is and how to
communicate with it.

A problem for every CORBA application is how servers can make object
references available to clients and how clients can retrieve these references to
establish contact with objects. This chapter describes three solutions to this
problem:

® Using the CORBA Naming Service.

® Using a basic protocol to transfer object references between servers and
clients.

® Using the Orbix _bi nd() function.

These solutions are presented after a brief introduction to how object
references work in CORBA.

147

Orbix C++ Programmer’s Guide

Identifying CORBA Objects

Every CORBA object is identified by an object reference—a unique value that
includes all the information an ORB requires to locate and communicate with
the object. When a client gets a reference to an object, the ORB creates a proxy
in the client’s address space. When the client calls an operation on the proxy,
the ORB transmits the request to the target object.

Orbix supports two protocols for communications between clients and servers:

® The CORBA standard Internet Inter-ORB Protocol (IIOP), which is the
default protocol.

® The Orbix protocol.

Each of these communication protocols has its own object reference format.

Interoperable Object References

148

An object that is accessible using IIOP is identified by a CORBA interoperable
object reference (IOR). An IOR encodes various pieces of information about an
object, including:

® The Internet address of the object’s host.
® A port number used to communicate with the object.
® An object reference, in the format of the native ORB protocol.

For example, an IOR for an Orbix object includes the object’s full Orbix object
reference.

IORs are managed internally by the ORB. It is not necessary for you to know the
detailed structure of an IOR. However, you may wish to publish IORs in their
string format, as described in “Transferring Object Reference Strings” on

page 158.

Making Objects Available in Orbix

Orbix Object References

Every object created in an Orbix application has an associated Orbix object
reference. This object reference includes the following information:

An object name that is unique within the object’s server. This name is
known as the object’s marker.

The object’s server name.

The server’s host name.

For example, the object reference for a bank account would include the object’s
marker name, the name of the server that manages the account, and the name of
the server’s host. The bank server could, if necessary, create and name different
bank objects with different names, all managed by the same server.

In more detail, an Orbix object reference is fully specified by the following fields:

Object marker.

Server name.

Server host name.

IDL interface type of the object.

Interface Repository (IFR) server in which the interface definition is
stored.

IFR server host.

All Orbix objects inherit the C++ class QCRBA: : Obj ect . This interface supplies
several methods common to all object references, including
_object_to_string().Given an Orbix object reference, this function produces
a string that has the following format:

:\host:server _nane: marker: | FR host: | FR server: I DL interface

149

Orbix C++ Programmer’s Guide

Class GORBA: : bj ect also provides access to the individual fields of an object
reference string through the following set of accessor functions:

/] C++

/1 in class CORBA:: Object.

const char* _host (Environnent& env =
defaul t _envi ronnment) const;

const char* _inpl enentation(Environnent& env =
defaul t _envi ronnment) const;

const char* _narker (Environment& env =
defaul t _envi ronnment) const;

const char* _interfaceHost (Environnment& env =
defaul t _envi ronnment) const;

const char* _interfacel npl ementati on(
Envi ronnent & env =
defaul t _envi ronnment) const;

const char* _interfaceMarker(Environnent& env =
defaul t _envi ronnment) const;

In general, the IFR host name (i nt er f aceHost) and IFR server

(i nt er f acel npl emrent at i on) fields are set to default values. Orbix automatically
assigns the server host, server name, and IDL interface fields on object creation
and it is not generally necessary to update these values. Orbix also assigns a
marker value to each object, but you can choose alternative marker values in
order to name Orbix objects explicitly.

Assigning Markers to Orbix Objects

There are two ways to specify a marker for an object: by setting the marker
when creating the object or by calling the modifier function

QORBA: : (bj ect: : _mar ker (). If you do not specify a marker for an object,
Orbix automatically sets the marker value.

The method of assigning a marker when creating an object depends on the
approach used to implement the IDL interface:

® If you use the TIE approach, pass a marker name to the second parameter
(of type const char*) of a TIE constructor. For example:
Il C++
BankSi npl e: : Bank_var bVar = new Tl E_Bank

(BankSi npl e_Bankl npl)
(new BankSi npl e_Bankl npl, "Col | ege_G een");

150

Making Objects Available in Orbix

If you use the BOAImpl approach, pass a marker name to the first
parameter (of type const char*) of a BOAImpl constructor. For
example:
Il C++
cl ass BankSi npl e_Bankl nmpl : public virtual
BankBOAI mpl {
public:
BankSi npl e_Bankl mpl (const char* marker);

b

BankSi npl e_Bankl nmpl : : BankSi npl e_Bankl npl
(const char* narker) : BankBOAl npl (marker) {

}

Choosing Marker Names

A marker name chosen by Orbix consists of a string composed entirely of
numeric characters. You can ensure that your markers are different from those
chosen by Orbix by not using strings that consist entirely of numeric characters.
Marker names cannot contain the character “:’ or the null character.

An object’s interface name together with its marker name must be unique within
a server. If a chosen marker is already in use when an object is named, Orbix
silently assigns a different marker to the object. The object with the original
marker will be unaffected. There are two ways to test for this, depending on
how a marker is assigned to an object:

If _mar ker (const char*) is used, you can test for a f al se return value;
this indicates a name clash.

If the marker is assigned when creating a Tl E or when calling a BOAImpl
class constructor, you can test for a name clash by calling the
parameterless accessor function _narker () on the new object and
comparing the marker with the one you tried to assign. This approach is
necessary because the return value from the newoperator is non-zero if
there is a name clash.

151

Orbix C++ Programmer’s Guide

Using the CORBA Naming Service

The Naming Service allows you to associate abstract names with CORBA
objects and allows clients to find those objects by looking up the corresponding
names. A server that holds a CORBA object binds a name to the object by
contacting the Naming Service. To obtain a reference to the object, a client
contacts the Naming Service and resolves the specified name.

Most CORBA applications make some use of the Naming Service. Each copy of
Orbix includes a copy of OrbixNames, IONA Technologies’ implementation of
the Naming Service, so you can use the Naming Service in any of your
applications.

This section provides an overview of the Naming Service and briefly describes
how you use the standard interface to the Naming Service. Before using this
service, refer to the OrbixNames Programmer’s and Administrator’s Guide for
more detailed information.

The Interface to the Naming Service

The programming interface to the Naming Service is defined in IDL. A standard
set of IDL interfaces allow you to access all the Naming Service features.
OrbixNames, for example, is a normal Orbix server that contains objects that
implement these interfaces.

The Naming Service interfaces are defined in the IDL module CosNam ng:

/1 1D
nodul e CosNani ng {
/1 Nami ng Service |DL definitions.

,

Format of Names in the Naming Service

152

The Naming Service maintains a database of names and the objects associated
with them. In the Naming Service, names can be associated with two types of
objects: a naming context or an application object. A naming context is an object
in the Naming Service within which you can resolve the names of other objects.

Making Objects Available in Orbix

The full name of an object, including all the associated naming contexts, is known
as a compound name. The first component of a compound name gives the name
of a naming context, in which the second component is accessed. This process
continues until the last component of the compound name has been reached.

A name component is defined as an IDL structure, of type
CosNami ng: : NareConponent, that holds two strings:

/1 1D
/1 I'n nodul e CosNani ng.
typedef string |Istring;

struct NanmeConponent {
Istring id;
I string kind;
b
A name is a sequence of these structures:
t ypedef sequence<NaneConponent> Nane;

The i d member of a NameConponent is a simple identifier for the object; the
ki nd member is a secondary way to differentiate objects and is intended to be
used by the application layer. Both the i d and ki nd members of a
NaneConponent are used to differentiate names.

Making Initial Contact with the Naming Service

The IDL interface Nanm ngCont ext, defined in module CosNami ng, provides
access to most features of the Naming Service. The first step in using the
Naming Service is to get a reference to an object of this type.

Each Naming Service contains a special CosNani ng: : Nani ngCont ext object,
called the root naming context, that acts as an entry point to the service. The
root naming context allows you to create new naming contexts, bind names to
objects, resolve object names, and browse existing names.

To get a reference to the root naming context, pass the string NaneSer vi ce to
the following C++ function call on the ORB (the CORBA: : Or bi x object):

/] C++
/1 In class CORBA: : ORB.
Obj ect _ptr resolve_initial_references(
const char* identifier)

153

Orbix C++ Programmer’s Guide

You can then narrow the returned object reference using the function

CosNam ng: : Nam ngCont ext : : _narr ow(). Some configuration is required for
this to work, as described in the OrbixNames Programmer’s and Administrator’s
Guide.

Associating Names with Objects

Once you have a reference to the root naming context, you can begin to
associate names with objects. The operation

CosNam ng: : Nam ngCont ext : : bi nd() enables you to bind a name to an object
in your application. This operation is defined as:

void bind (in Name n, in Object 0)
rai ses (Not Found, Cannot Proceed,
I nval i dNanme, Al readyBound) ;

To use this operation, you first create a CosNani ng: : Nane structure containing
the name you want to bind to your object. You then pass this structure and the
corresponding object reference as parameters to bi nd().

Using Names to Find Objects

154

Given an abstract name for an object, you can retrieve a reference to the object
by calling CosNam ng: : Nam ngCont ext : : r esol ve(). This operation is defined
as:

Obj ect resolve (in Nane n)
rai ses (Not Found, Cannot Proceed, |nvalidName);

When you call resol ve(), the Naming Service retrieves the object reference
associated with the specified CosNam ng: : Nane value and returns it to your
application.

Making Objects Available in Orbix

Associating a Compound Name with an Object

If you want to use compound names for your objects, you must first create
naming contexts. For example, consider the compound name shown in
Figure 6.1.

company °

staff

james
Figure 6.1: An Example Compound Name

To create this compound name:

I. Create a naming context and bind a name with identifier conpany (and no
kind value) to it.

2. Create another naming context, in the scope of the conpany context, and
bind the name staff to it

3. Bind the name j anes to your application object in the scope of the st af f
context.

The operation CosNam ng: : Nam ngCont ext : : bi nd_new cont ext () enables
you to create naming contexts:

Nam ngCont ext bi nd_new _context (in Nane n)
rai ses (Not Found, CannotProceed,
I nval i dName, Al readyBound);

To create a new naming context and bind a name to it, create a

CosNam ng: : Nare structure for the context name and pass it to

bi nd_new cont ext (). If the call is successful, the operation returns a reference
to your newly-created naming context.

155

Orbix C++ Programmer’s Guide

Using the Naming Service in Orbix Example Applications

156

The code examples presented in other chapters of this guide use the Naming
Service. To simplify the code, these examples access the Naming Service through
a set of wrapper functions. These functions then communicate with the Naming
Service using the standard IDL interfaces.

The wrapper functions are defined in the class | T_Dend_nsw You can find the
declaration of this class in the file | T_Deno_nsw. h in the denos directory of your
Orbix installation.

The functions are:

r egi st er (oj ect () This function takes two parameters: a string format
name and an object reference. It converts the string to a
CosNam ng: : Nane structure and then binds this name to
the specified object. If you specify a compound name, the
naming contexts must already exist.

r esol veNarre() This function takes a string format name, converts it to
an equivalent CosNani ng: : Nane structure and attempts
to resolve this name in the Naming Service. It returns a
reference to the object associated with the name.

remove(j ect () This function removes the association between a name
and an object in the Naming Service.

set NarrePr ef i x() Function set NarmePr ef i X() allows you to shorten the
name parameters passed to r egi st er Qoj ect (),
r esol veNane(), and r enovej ect () . The specified
string prefix is added to the name parameter passed to
each subsequent call to these operations.

clear NamePrefix() This function clears the string prefix added to each name
parameter by set NanePrefi x().

The functions regi st er bj ect (), resol veNarre(), and renove(hj ect () take
object names as parameters. To avoid the creation of CosNam ng: : Narre
structures directly in sample code, these functions take name parameters in the
string format described in the OrbixNames Programmer’s and Administrator’s
Guide. This is a convenient way to format names and is also used by the
OrbixNames command-line utilities.

Making Objects Available in Orbix

Transferring Object References

There are two ways to pass object references directly between a server and a
client:

® Using IDL operation parameters.
® Using the string format of object references.

This section examines each in turn.

Passing Object References as Operation Parameters

IDL operations can return object references as parameters or return values; for
example:

/1 1DL
interface Account;

interface Bank {
/'l Create a new account.
Account create_account (in string nane);
/1l Find an existing account.
Account find_account (in string nane);

b
interface Account {

b
An object that implements interface Bank acts as a factory for the creation of

Account objects. The operations creat e_account () and find_account () pass
object references to clients as return values.

Of course, to receive an object reference from an operation, a client must first
be able to call the operation. This implies that the client already has a reference
to some object in the server. A common strategy in CORBA applications is to
make one or more server objects available through the Naming Service, or some
similar mechanism, and let these act as entry points to other server objects.

In fact, the Naming Service itself uses this strategy. A standard function call,
resol ve_initial _references() returns the root naming context and this
object acts as an entry point to all other objects in the service.

157

Orbix C++ Programmer’s Guide

Transferring Object Reference Strings

158

One way to pass an object reference from a server to a client without
establishing communications first, is to use object reference strings. As described
in “ldentifying CORBA Objects” on page 148, you can get the string form of an
object reference by calling the function CORBA: : ORB: : obj ect _to_string().
Given the string form of an object reference, an Orbix client can create a proxy
for that object by passing the string to the function

OORBA: : CRB: : string_to_object().

One simple protocol for passing an object reference from a server to a client is
as follows:

I. The server calls GORBA: : ORB: : obj ect _to_string() to get the string
format of an object reference.

2. The server writes this string to a location, for example a file, accessible by
both client and server.

3. The client reads the object reference string.

4. The client calls CORBA: : CRB: : string_t o_obj ect () to create a proxy.

For example, given an object reference string that identifies a
BankSi npl e: : Bank object, a client can create a proxy as follows:

/] C++
/1 Assign object reference string to bankString.
String_var bankString = ... ;

/1 Create proxy.
BankSi npl e: : Bank_var bVar =
CORBA: : Or bi x. string_to_object(bankString);

The function string_t o_obj ect () is overloaded to allow the individual fields of
a stringified object reference to be specified. See the entries for

QOORBA: : CRB: : string_to_object() inthe Orbix C++ Programmer’s Reference
for more details.

Making Objects Available in Orbix

Binding to Orbix Objects

The Orbix _bi nd() function finds a particular object using specific information
about the object’s location in a distributed system. For example, when calling
_bind() you can specify the exact object you require in a particular server on a
particular host. You can also omit some of this information and allow Orbix
some freedom in choosing the object.

Using _bi nd() is not recommended for most applications. This function is
presented here for completeness, but its use is deprecated and it may be
removed from future versions of Orbix.

Overview of the _bind() Function

The _bind() function is a static member function automatically generated by
the IDL compiler for each IDL C++ class. For interface BankSi npl e: : Bank, the
full declaration of _bi nd() is:

/] C++
static BankS npl e::Bank_ptr _bind
(const char* marker Server, const char* host, const
CCRBA : Context & CCORBA : Environnent& | T env =
OCRBA: : defaul t _envi ronnent) ;

Combining default parameters and overloading, _bi nd() can take the following
sets of parameters:

® marker Server, host, Cont ext, Envi ronment (the last is defaulted).
® narker Server, host, Envi ronment (the last is defaulted).

® Environnent (defaulted).

® narker Server, host.

® narker Server.

® A full object reference as returned by the function
OCRBA: : ORB: : obj ect _to_string().

®* No parameters.

The _bi nd() function supports polymorphic binds. This means that a call to
A::_bind() can be made to an object of interface B, if interface Ais a base
interface of or the same interface as interface B.

159

Orbix C++ Programmer’s Guide

160

The markerServer Parameter to _bind()

The nar ker Server parameter denotes a specific server name and object within
that server. It can be a string of the form:

marker. server_name

The marker identifies a specific object within the server. The server name is the
name with which the server is registered in the Implementation Repository.

If the server name is not given in the mar ker Server parameter, the server name
defaults to the name of the IDL C++ class for _bi nd(). For example, in a
parameterless call to BankSi npl e: : Bank: : _bi nd(), the server name defaults to
Bank. This means that the target server must have been registered with the
name Bank.

If the marker is not given, it defaults to that of any object, within the server
specified, that implements the interface given by the IDL C++ class name
specified. The chosen object may have been named explicitly by the programmer
or assigned a default marker name by Orbix.

If the string does not contain a *:’ character, the string is understood to be a
marker with no explicit server name. Since colon (:’) is used as a separator, it is
illegal for a marker or a server name to include a “’ character.

The _bi nd() function first looks for the object in the caller’s address space if:
® No server name is explicitly given.
® The server name and host name are that of the caller.

This means that there is a subtle difference between

/] C++
BankSi npl e: : Bank_ptr b =
BankSi npl e: : Bank: : _bi nd(" Col | ege_G een");

and

BankSi npl e: : Bank_ptr b =
BankSi npl e: : Bank: : _bi nd(" Col | ege_G een: Bank") ;

The former always first looks for the object in the caller’s address space; the
latter only does so if the caller is a server called Bank.

Making Objects Available in Orbix

Examples of the mar ker Ser ver parameter that could be used in a call to
BankSi npl e: : Bank: : _bi nd() are:

"Col | ege_Q een: Al B The ol | ege_G een object at the Al B server.
"Col | ege_Q een” The Gol | ege_QG een object at the Bank server.
"Col | ege_Qeen:" The (ol | ege_QG een object at the Bank server.

nwn

Any Bank object at the Bank server.
"Col | ege_G een: nyBank" The Col | ege_QG een object at the nyBank server.
": nyBank" Any Bank object at the nyBank server.

Finally, if the mar ker Ser ver parameter has at least two *: ’ characters within it, it
is not treated as a marker:server-name pair, but it is assumed to be the string
form of a full object reference. A full object reference string is returned by the
function QCRBA: : CRB: : obj ect _t o_string(), to which you can pass any Orbix
object as a parameter. A call to _bi nd() with a full object reference string is
similar to a call to the function CORBA: : ORB; : string_to_object().

The host Parameter to _bind()

The host parameter to _bi nd() specifies the Internet host name or the Internet
address of a node on which to find the server. An Internet address is assumed to
be a string of the form xxx. Xxx. xxx. xxX, where x is a decimal digit.

If a null string is provided, Orbix uses the locator to find the object’s server in the
distributed system. The Orbix locator allows the locations of servers to be
recorded, as is explained in Chapter 20, “Locating Servers at Runtime” on

page 377. This configuration information is then used during _bi nd(), provided
that the host parameter is not explicitly given.

161

Orbix C++ Programmer’s Guide

Example calls to _bind()

This section shows a selection of sample calls to _bi nd().

/] C++

/1 Bind to any Bank object in any "Bank" server.
/1 That object should inplenent the Bank | DL

/] interface.

BankSi npl e: : Bank_var bVar = BankS npl e: : Bank:: _bi nd();

/1 Bind to any Bank object in the "Bank" server
/1 at node al pha (in the current domain).

/1 That object should inplenent the Bank | DL
/1l interface.

BankSi npl e: : Bank_var bVar =

BankSi npl e: : Bank: : _bind ("", "al pha");

/1 Bind to the "Coll ege_G een" object within the
/1 "Bank" server at node al pha (in the current
/1 domain). That object should inplenent the

// Bank I DL interface.

BankSi npl e: : Bank_var bVar =

BankSi npl e: : Bank: : _bind ("Col | ege_G een", "al pha");

/1 Bind to the "Coll ege_G een" object (in server
/1 "Bank") somewhere within the network.

/1 Coll ege_G een should inplement the Bank

/1 1DL interface.

BankSi npl e: : Bank_var bVar =

BankSi npl e: : Bank: : _bi nd(" Col | ege_Green");

/1 Bind to the "Coll ege_Green" object in the "AlB"
/1 server sonewhere in the network. That object
/1 must inmplenment the Bank I DL interface.

BankSi npl e: : Bank_var bVar =

BankSi npl e: : Bank: : _bi nd(" Col | ege_Green: Al B");

/1 Bind to the "Coll ege_Green" object at the "AlB"

// server at node beta, in the internet dommin

/1 "mc.ie". That object should inplenent the Bank

/1 1DL interface.

BankSi npl e: : Bank_var bVar =

BankSi npl e: : Bank: : _bind ("Col |l ege_Geen: AIB', "beta.nt.ie");

162

Making Objects Available in Orbix

Tabular Summary of Parameters to _bind()

The following table summarizes the rules for a general-form call to _bi nd() :

/] C++
T1 var
tVar =

t Var ;
T2:: _bind("MS", "H', O;

T1

T1 must be the same or a base type of T2.

T2

T2 is an IDL interface name. It is not the name of a server, unless a
server is explicitly registered with the same name as an interface. The
object that is found must implement interface T2 or a derived
interface of this.

Mis a marker name—the name of an object within the specified
server. If Mis left blank, _bi nd() is allowed to find any object in the
specified server with a correct interface (T2 or a derived interface).

Sis a server name—a name used previously to register a server in the
Implementation Repository. If Sis left blank (that is, if the

mar ker Ser ver parameter to _bi nd() is the empty string, or has no
“:” character, or terminates with a “: ” character), the name T2 is
used as the server name. In this case, a server must have been

explicitly registered with the name T2.

This is an Internet host name or (if the string is in the format

XXX. XXX. XXX. XXX, where x is a decimal digit) an Internet address. If H
is the empty string, Orbix uses its locator to try to find the required
server.

This context is passed to the locator (Refer to “Locating Servers at
Runtime” on page 377); however, the built-in locator does not use its
context parameter.

163

Orbix C++ Programmer’s Guide

Binding and Exceptions

By default, _bi nd() raises an exception if the desired object is unknown to
Orbix. Doing so requires Orbix to ping that desired object in order to check its
availabilityl. The ping causes the target server process to be activated if
necessary, and it confirms that this server recognizes the target object.

You can improve efficiency by reducing the number of remote invocations. To
do this, call the function pi ngDuri ngBi nd() to disable the ping operation:

/] C++
/1 In class CORBA:: ORB.
QORBA: : O bi x. pi nghuringBi nd(0); // 0 for fal se.

The previous setting is returned. The Orbix C++ Programmer’s Reference
provides more details about this function.

When ping is disabled, binding to an unavailable object does not raise an
exception at that time. Instead, an exception is raised when the proxy object is
first used.

A program should always check for exceptions when calling _bi nd(), whether
or not pinging is enabled. Even when ping is disabled, this function can raise an
exception in some circumstances.

164

The ping operation is defined by Orbix and it has no effect on the target object. For the
Orbix protocol, it is defined by Orbix, for IIOP, it is a Locat eRequest .

Exception Handling in Orbix

The implementation of an IDL operation or attribute can throw an
exception to indicate that a processing error has occurred. This
chapter describes Orbix exception handling in detail, using an
example named BankExceptions. This example builds on the
concepts illustrated in the BankSimple example in Chapter 2 and
Chapter 5.

There are two types of exceptions that an IDL operation can throw:

® User-defined exceptions.
These exceptions are defined explicitly in your IDL definitions, and can
only be thrown by operations.

® System exceptions.
These are pre-defined exceptions that all operations and attributes can

throw.

This chapter describes user-defined exceptions and system exceptions in turn
and shows how to throw and catch these exceptions.

The examples in this chapter, and throughout this guide, assume that your C++
compiler supports C++ exception handling.

165

Orbix C++ Programmer’s Guide

An Example of Raising and Handling Exceptions

This chapter extends the BankSimple example so that the creat e_account ()
operation can raise an exception if the bank cannot create an Account object.
The source code for the example described in this chapter is available in the
denos\ bankexcept i ons directory of your Orbix installation.

The exception Cannot O eat e is defined within the Bank interface. This defines a
string member that indicates the reason that the Bank rejected the request:

/1 1D
/1 In file bankexceptions.idl

nodul e BankExceptions {
typedef float CashAnount;
interface Account;

interface Bank {
1 /1 User-defined exceptions.
exception CannotCreate { string reason; };
exception NoSuchAccount { string nane; };

Account create_account (in string nane)
2 rai ses (CannotCreate);
Account find_account (in string nane)
rai ses (NoSuchAccount);

b
interface Account {

/1 User-defined exception.
3 exception I nsufficientFunds { };

readonly attribute string nane;
readonly attribute CashAmount bal ance;

voi d deposit (in CashAmount anount);

void withdraw (in CashAnount anount)
rai ses (InsufficientFunds);

166

Exception Handling in Orbix

This IDL is explained as follows:
I. Cannot O eat e and NoSuchAccount are user-defined exceptions defined
for the Bank IDL interface.

2. Operation BankExcept i ons: : Bank: : creat e_account () can raise the
BankExcept i ons: : Bank: : Cannot O eat e exception. It can only raise
listed user-defined exceptions. It can raise any system-defined exception.

3. An exception does not need to have any data members.

Note: Read or write access to any IDL attribute can also raise any
system-defined exception.

The Generated C++ Code for User-Defined Exceptions

The IDL compiler generates the following C++ definition for the Cannot Creat e
user-defined exception from the Bank IDL definition:

/] C++
/1 In file bankexceptions. hh

cl ass CannotCreate : public CORBA::UserException {

public:
static const char* _ex;
CORBA: : String_mgr reason;

virtual CORBA::Exception* copy() const;
Cannot Create (const char * _reason);
virtual void _throwit ();
static CannotCreate* CALL SPEC narrow
(CORBA: : Exception *e);
Cannot Cr eat e(const CannotCreate &);
Cannot Create();
virtual ~CannotCreate();
Cannot Cr eat e& operator = (const Cannot Creat e&);
b
Exception BankExcept i ons: : Bank: : Cannot Or eat e is translated into a C++

class with the same name. Each C++ class corresponding to an IDL exception
has a constructor that takes a parameter for each member of the exception.

167

Orbix C++ Programmer’s Guide

Because the Cannot Cr eat e exception has one member (r eason, of type
st ring), class BankExcept i ons: : Bank: : Cannot Or eat e has a constructor that
allows that single member to be initialized.

Handling Exceptions in a Client

168

A client (or server) calling an operation that can raise a user exception should
handle that exception using an appropriate C++ cat ch clause. All clients should
also catch system exceptions. The BankSimple client calls the

creat e_account () operation as follows:

/] C++
[/l I'n file banknmenu. cxx

BankMenu: : BankMenu(BankExcept i ons: : Bank_ptr bank)
throw() : mbank (BankExceptions::Bank::_dupli cat e(bank))
{}

// do _create -- calls create_account and runs an account nenu
voi d BankMenu: : do_create() throw CORBA: : Syst enException) {

cout << “Enter account name: ” << flush;
CORBA::String_var name = IT_Demo_Menu::get_string();

try {
BankExceptions::Account_var account =
m_bank->create_account(name);

/I Start a sub-menu with the returned account reference

AccountMenu sub_menu(account);

sub_menu.start();
}
catch (const BankExceptions::Bank::CannotCreate

&cant_create)

{

cout << “Cannot create an account, reason:”

<< cant_create.reason << end|;

Exception Handling in Orbix

The handler for the BankExcepti ons: : Bank: : Cannot O eat e exception outputs
an error message and exits the program. The parameter to the cat ch clause is
passed by reference.

The oper at or<<() function defined on class Syst enExcept i on outputs a text
description of the individual system exception raised. This text is read from a
standard file, and can be modified for individual installations. Refer to the Orbix
C++ Programmer’s Reference for more details.

If the handler for the BankExcept i ons: : Bank: : Cannot O eat e exception does
not exit the program, you must be careful about the value of the variable

m bank. In particular, if an exception occurs in cr eat e_account (), the return
value of this operation call would be undefined, and hence m bank would be
undefined (as specified by the C++ exception model).I A simple way to address
this is shown in the following code segment, where the nil object reference value
is assigned to m bank, and this value is tested for before m bank is used after the
cat ch clauses:

/] C++
/1 In file banknmenu. cxx

/] Ensure the bank reference is valid.
1 if (CORBA :is_nil(mbank)) {
cout << “Cannot proceed - bank reference is nil”;

}
else {
/I Loop printing the menu and executing selections
try {
}
catch (const CORBA::SystemException& e) {
cout << “Unexpected exception:” << e << end;
}
}

I. Similarly, the C++ exception model specifies that the values of out and inout
parameters are undefined if an operation raises an exception.

169

Orbix C++ Programmer’s Guide

The i s_nil () function determines whether the object reference is nil. A nil
object reference is one that does not refer to any valid Orbix object. The
is_nil() function, defined in the CORBA namespace, is the only
CORBA-compliant way of ascertaining whether an object reference is nil.

Handling Specific System Exceptions

A client may also provide a handler for a specific system exception. For example,
to explicitly handle a CCRBA: : COMM FAI LURE exception that might be raised from
a call to create_account (), the client could write code as follows:

/] C++

#def i ne EXCEPTI ONS
#include “BankMenu.h”
#include <IT_Demo_Menu.h>

BankMenu::BankMenu(BankExceptions::Bank_ptr bank)
throw() : m_bank (BankExceptions::Bank::_duplicate(bank)) { }

void BankMenu::do_create() throw(CORBA::SystemException) {

cout << “Enter account name:” << flush;
CORBA::String_var name = IT_Demo_Menu::get_string();

try {
BankExceptions::Account_var account =
m_bank->create_account(name);

/I Start a sub-menu with the returned account reference
AccountMenu sub_menu(account);
sub_menu.start();
}
catch (CORBA:COMM_FAILURE& se) {
cout << “Communications failure exception”
<< endl << &se << end;
}
catch (CORBA::SystemExceptions& se) {
cout << “Unexpected system exception”
<< endl << &se << end;

170

Exception Handling in Orbix

cat ch(const BankExcepti ons:: Bank:: Cannot Oreate & cant_create) {
cout << “Cannot create an account, reason:”
<< cant_create.reason << endl;

}

The handler for a specific system exception must appear before the handler for
CORBA::SystemException . In C++, catch clauses are attempted in the order
specified, and the first matching handler is called. Because of implicit casting, a
handler for CORBA::SystemException ~ matches all system exceptions (because
all system exception classes are derived from class CORBA::SystemException).
Therefore it should normally appear after all handlers for specific system
exceptions.

To handle individual system exceptions as shown in the previous code fragment,
you must issue the #define EXCEPTIONS directive before including the
standard file <CORBA.h>

The specific definitions of these system exceptions are not normally included in
CORBA hin order to reduce the size of the file and also to enhance the speed of
C++ compilation. Refer to the Orbix C++ Programmer’s Reference for a list of
system exceptions.

You can use the message output by the oper at or <<() function on class
OCRBA: : Syst enExcepti on to determine the type of system exception that
occurred. A handler for an individual system exception is only required when
specific action is to be taken if that exception occurs.

171

Orbix C++ Programmer’s Guide

Throwing Exceptions in a Server

172

This section shows how to extend the definition of the function

BankExcept i ons_Bankl npl : : cr eat e_account () to raise an exception, using
the normal C++ t hr owstatement. The function newAccount () can be coded as
follows:

[l C++
/1 I'n file bankexceptions_banki npl . cxx

BankExcepti ons: : Account _ptr
BankExcepti ons_Bankl npl : : create_account (const char * nane,

{

OORBA: : Envi ronment &) t hr ow(BankExcept i ons: : Bank: : Cannot Or eat e)

int enpty = -1;
int exists = -1;
int i =0;
for (; i < MAX_AGOCONTS; ++i) {
if (CORBA :is_nil(maccounts[i])) {
enpty =i;
}
el se if (strenp(maccounts[i]->nane(), nane) == 0) {
exists =i;
br eak;
}
}
/1 Test for errors and throw an exception if a probl emoccurs.
if (exists I'=-1) {

cout << “create_account: failed because name exists” << endl;
throw BankExceptions::Bank::CannotCreate
(“Account with same name already exists.”);
}
else if (empty ==-1) {
cout <<“create_account: failed because no more space”<<end|;
throw BankExceptions::Bank::CannotCreate
(“No more space for new accounts.”);

}

/I No errors - create an account with zero balance.
m_accounts[empty] = new BankExceptions_Accountimpl(name, 0.0);
cout << “create_account: Created account with name:”

<< name << endl;

Exception Handling in Orbix

// Duplicate the returned reference.
return BankExceptions:: Account:: _duplicate(maccounts[enpty]);

}

This code uses the automatically-generated constructor of class

BankExcept i ons: : Bank: : Cannot O eat e to initialize the exception’s reason
member with the strings “Account with name al ready exi sts” and “No nore
space for new accounts”.

Information Available in System Exceptions

System exceptions have two member functions that you can use in some
applications:

* conpleted()

® ninor()

completed()

The conpl et ed() function returns an enumtype that indicates how far the
operation or attribute call progressed before the exception was raised. The

values are:

OOMPLETED _NO The system exception was raised before the operation or
attribute call began to execute.

OOMPLETED_YES The system exception was raised after the operation or

attribute call completed its execution.

COWPLETED MAYBE | It is uncertain whether or not the operation or attribute
call started execution, and, if it did, whether or not it
completed. For example, the status will be

COVPLETED NAYBE if a client’s host receives no indication
of success or failure after transmitting a request to a
target object on another host.

173

Orbix C++ Programmer’s Guide

minor()

The minor () function returns an unsi gned | ong value to give more details of
the particular system exception raised. For example, if the COMM FAI LURE system
exception is caught by a client, it can access the minor field of the system
exception to determine why this occurred. Each system exception has a set of
minor values associated with it, and those for COW FAl LURE include TI MEQUT
and STRING TOO Bl G

Throwing a System Exception

174

In some circumstances you may need to throw a system exception. You can
specify the system exception’s minor field and completion status using the
constructor:

/] C++
Syst enmExcepti on(ULong mi nor_id,
Conpl etionStatus conpl et ed_status);

The following line of code illustrates the use of this constructor by throwing a

OOMM_FAI LURE exception with minor code TI MEQUT and completion status
COMPLETED_NC

/] C++
t hr ow CORBA: : COMM FAI LURE(TI MEQUT, COVPLETED NO);

Using Inheritance of IDL Interfaces

This chapter describes how to implement inheritance of IDL
interfaces, using an example named BanklInherit. This example
builds on the concepts illustrated in the BankSimple and
BankExceptions examples in Chapter 5 and Chapter 7, respectively.

You can define a new IDL interface that uses functionality provided by an
existing interface. The new interface inherits or derives from the base interface.
IDL also supports multiple inheritance, allowing an interface to have several
immediate base interfaces. This chapter shows how to use inheritance in Orbix
using the BankInherit example.

A version of the source code for the example described in this chapter is
available in the denos\ banki nherit directory of your Orbix installation.

The IDL Interfaces

The IDL for the Banklnherit example demonstrates the use of single inheritance
of IDL interfaces:

/] DL
/1 In file bankinherit.idl

#i ncl ude "bankexceptions.idl"

nmodul e Bankl nherit {
i nterface CheckingAccount; // forward reference

175

Orbix C++ Programmer’s Guide

/1 BetterBank manufact ures checking accounts.
1 interface BetterBank : BankExceptions:: Bank {
2 /1 New operation to create new checki ng accounts.
Checki ngAccount create_checking (in string nane,
in BankExcepti ons: : CashAmount overdraft)
rai ses(Cannot Oreate) ;

|

/1 New Checki ngAccount interface.
3 i nterface Checki ngAccount : BankExceptions:: Account {
readonly attribute BankExceptions:: CashAnount overdraft;

b
b
This IDL can be explained as follows:

I. BetterBank inherits the operations of BankExcept i ons: : Bank and adds
a new operation to create checking accounts. You do not need to list the
account operations from BankExcept i ons: : Bank because these are now
inherited.

2. The new creat e_checki ng() operation added to interface Bett er Bank
manufactures Checki ngAccount s.

3. The new interface Checki ngAccount derived from interface

BankExcept i ons: : Account. Checki ngAccount has an overdraft limit,
and the implementation allows the balance to become negative.

The Generated C++ Code

The IDL compiler produces the following IDL C++ classes for the Bankl nheri t
IDL interface:

/] C++
/1 The file bankinherit.hh

#i ncl ude <CORBA. h>

cl ass Checki ngAccount: public virtual
BankExcepti ons: : Account {
// Various details for Orbix.
public:
// Various details for Orbix.

176

Using Inheritance of IDL Interfaces

virtual BankExceptions::CashAmount overdraft
(QORBA: : Envi ronment & T_env=CCRBA: : | T_chooseDef aul t Env() ;
};

class BetterBank: public virtual BankExceptions:: Bank{
// Various details for O bix.
public:
// Various details for O bix.

virtual Bankl nherit:: Checki ngAccount _ptr create_checki ng(
const char * name, BankExceptions:: CashAmount overdraft,
OORBA: : Environment & T_env = OCRBA: : | T_chooseDef aul t Env());
b

Implementation Class Hierarchies

The class hierarchy for IDL C++ classes produced by the IDL compiler directly
corresponds to the interface hierarchy given in the IDL source files. Figure 8.1
shows the inheritance hierarchy, using the BOAImpl approach. For simplicity,
this diagram omits some details (for example, an implementation class also
inherits from its corresponding IDL C++ class).

Account Account Account

Checki ngAccount Checki ngAccount Checki ngAccount _i npl

IDL Interfaces IDL C++ Classes Implementation Classes

Figure 8.1: IDL and Corresponding C++ Class Hierarchies

177

Orbix C++ Programmer’s Guide

The Implementation Classes

You can code the Checki ngAccount interface using the BOAImpl or the TIE
approach.

The BOAImpl Approach

Using the BOAImpl approach, you can implement the Checki ngAccount IDL
interface as follows:

/] C++
/1 I'n file bankinherit_accountinpl.h

#i ncl ude "banki nherit. hh"
#i ncl ude "bankexcepti ons_accounti npl . h"

cl ass Bankl nherit _Checki ngAccount | npl : public virtual
BankExcept i ons_Account I npl, public virtual
Bankl nheri t: : Checki ngAccount BQAl npl {

publi c:
/1 1 DL operation
virtual void withdraw
BankExcept i ons: : CashAmount anount , GORBA: : Envi r onnent &)
throw (BankExceptions: : Account: : I nsuf fi ci ent Funds);

/1 1DL attributes
vi rtual BankExcepti ons: : CashAmount
over draft (QORBA: : Envi r onnment &)

throw();

/|l C++ operations

Bankl nheri t _Checki ngAccount | npl (
const char* nane,

BankExcept i ons: : CashAmount bal ance,
BankExcepti ons: : CashAmount overdraft)
throw ();

vi rtual ~Bankl nherit_Checki ngAccount | npl () throw();

178

Using Inheritance of IDL Interfaces

prot ect ed:
BankExcept i ons: : CashAnount m overdraft;

};
Bankl nheri t _Checki ngAccount | npl is the application implementation class.

Using the BOAImpl approach, this class inherits from the IDL-generated
BOAImpl class.

You can implement the Bett er Bank IDL interface as follows:

[l G+,
// In file bankinherit_bankinpl.h

#i ncl ude "banki nherit. hh"
#i ncl ude "bankexcept i ons_banki npl . h"

cl ass Bankl nherit_BetterBanklnpl : public virtual
BankExcept i ons_Bankl npl , public virtual
Bankl nheri t:: Bett er BankBQAl npl {
public:
// 1DL operations
virtual Bankl nherit:: Checki ngAccount _ptr create_checki ng(
const char * name, BankExceptions:: CashAmount overdraft,
CCRBA: : Envi ronnent &)
t hr on(BankExcept i ons: : Bank: : Cannot Oreat e) ;

/| C++ operations
Bankl nherit_BetterBankl npl () throw();
virtual ~Banklnherit_BetterBanklnpl () throw();

};
Bankl nheri t _Bet t er Bankl npl is the application implementation class. Using

the BOAImpl approach, this class inherits from the IDL-generated BOAImpl
class.

179

Orbix C++ Programmer’s Guide

180

The creat e_checki ng() operation is implemented as follows:

[l C++
/1 I'n file bankinherit.bankinpl.cxx

#i ncl ude "banki nherit_banki npl . h"
#i ncl ude "banki nherit_accountinpl.h"

Bankl nherit: : Checki ngAccount _ptr
Bankl nherit_BetterBankl npl : : create_checki ng (
const char * name, BankExceptions::CashAnount overdraft,
QORBA: : Envi ronnment &) t hr ow(BankExcept i ons: : Bank: : Cannot Cr eat)

{
/1 Create an account with O bal ance using the BQAI npl approach.
Bankl nheri t: : Checki ngAccount _var new y_cr eat ed_checki ngaccount;
new y_creat ed_checki ngaccount
= new Bankl nherit _Checki ngAccount | npl (nane, 0.0, overdraft);
m account s[enpt y]
= Bankl nherit:: Checki ngAccount:: _dupl i cat e(
new y_creat ed_checki ngaccount) ;
/1 Duplicate the returned reference.
return Bankl nherit:: Checki ngAccount: : _duplicat e(
new y_creat ed_checki ngaccount) ;
}

The return statement is slightly different in cr eat e_checki ng() than for
creat e_account (). This is because you cannot call _duplicate() ona
Checki ngAccount object stored in the Account array. The temporary variable
new y_creat ed_checki ngaccount is used to get around this problem.

The TIE Approach

Using the TIE approach, the Checki ngAccount IDL interface could be
implemented as follows:

/] C++

cl ass Bankl nherit _Checki ngAccount | npl

public virtual BankExceptions_Account|mpl {
publi c:

/1 Same as for BQA npl.

Using Inheritance of IDL Interfaces

}

/! DEF _TIE nmacro call.
DEF_TI E_Bankl nheri t _Checki ngAccount (Bankl nheri t _Checki ngAccount | npl)

This code is explained as follows:

I. The class Bankl nherit _Checki ngAccount | npl inherits from
BankExcept i ons_Account | npl only. It does not need to inherit from
from the IDL-generated BOAImpl class.

2. Indicates that Bankl nherit _Checki ngAccount | npl implements
Bankl nheri t: : Checki ngAccount . This generates a TIE class
Tl E_Checki ngAccount (BankSi npl e_Checki ngAccount | npl).

The Bet t er Bank IDL interface can therefore be implemented as follows:

/] C++

cl ass Bankl nherit_Bett er Bankl npl

public virtual BankExceptions_Bankl npl {
public:

// Same as for BQA npl.

}
/! DEF _TIE nmacro call.
DEF_TI E_Bankl nherit _Bett er Bank(Bankl nherit_Bett er Bankl npl) ;

Using the TIE approach, you can implement the creat e_checki ng() operation
as follows:

/1l Ct+
Bankl nheri t:: Checki ngAccount _ptr
Bankl nherit _Bett er Bankl npl : : creat e_checki ng (

const char * name, BankExceptions:: CashAmount overdraft,
CCRBA: : Envi ronnent &)t hr ow(BankExcept i ons: : Bank: : Cannot Or eat €)

/] Create an account with zero bal ance using Tl E approach.
Bankl nheri t:: Checki ngAccount _var new y_creat ed_checki ngaccount ;

181

Orbix C++ Programmer’s Guide

new y_creat ed_checki ngaccount
= new Tl E_Bankl nherit _Checki ngAccount (
Bankl nheri t _Checki ngAccount | npl)
(new Bankl nheri t _Checki ngAccount | npl (nare, 0.0,
overdraft));

Using Inheritance in a Client

182

A client can proceed to manipulate Checki ngAccount s in a similar way to
Account s in, “Handling Exceptions in a Client” on page 168:

/] C++
[/l I'n file BankMenu. cxx

#i ncl ude "banknenu. h"
#i ncl ude <it_deno_nenu. h>

/1 BankMenu constructor, takes a Bank reference.
BankMenu: : BankMenu(Bankl nheri t:: Bett er Bank_ptr bank)
throw() : mbetterbank(Banklnherit::BetterBank::_duplicate(bank))

{}

/1 BankMenu destructor.
BankMenu: : ~BankMenu() throw(){
/1 Nothing to do - Bank_var autonatically rel eases reference

}

/l Start main menu | oop.
voi d
BankMenu: :start() throw() {
/] Ensure the bank reference is valid.
if (CORBA: :is_nil(mbetterbank)) {
cout << "Cannot proceed - bank reference is nil";
}
el se {
/1 Loop printing the menu and executing sel ections

Using Inheritance of IDL Interfaces

// Calls create_checking and runs an account menu.
voi d BankMenu: : do_cr eat e_checki ng() throw CORBA: : Syst enExcepti on) {
cout << "Enter account nanme: " << flush;
OCRBA: : String_var name = | T_Deno_Menu: :get_string();
try {
Bankl nheri t: : Checki ngAccount _var checki ngaccount =
m bet t er bank- >cr eat e_checki ng(nane, 100);

// Start a sub-nenu with the returned account reference
Account Menu sub_nenu(checki ngaccount);
sub_nenu.start();

}
cat ch (const BankExceptions:: Bank:: Cannot Or eat e&
cant_create) {
cout << "Cannot create an account, reason: "
<< cant_create.reason << endl;

}

// Calls find_account and runs an account nenu.
voi d BankMenu: : do_find() throw CORBA: : Syst enkException) {
// Same as for BankExcepti ons.

The client implementation is not affected by the approach used to implement the
server—either TIE or BOAImplI.

Multiple Inheritance of IDL Interfaces

IDL supports multiple inheritance as shown in the following example:

/1 1D

nodul e BankSi npl e {
t ypedef float CashAmount;
interface Account;

interface Bank {

}s

183

Orbix C++ Programmer’s Guide

interface Account {
readonly attribute string nane;
readonl y attribue CashAmount bal ance;

voi d deposit (i n CashAmount arount);
voi d wi thdraw(i n CashAnount anount);

b

/] Derived frominterface Account.
interface Checki ngAccount : BankSi npl e:: Account {
readonly attribute CashAmount overdraftLinit;

|

/1 Derived frominterface Account.
interface DepositAccount : BankSinpl e:: Account {
b

/1l Indirectly derived frominterface Account.
interface PreniumAccount : Checki ngAccount, DepositAccount {
b

}

The corresponding IDL C++ classes use multiple inheritance:

/] C++
/] The file "bank.hh".
#i ncl ude <CORBA. h>

cl ass BankSi npl e: : Account
public virtual CORBA::Object {
/1 As before.

}s

cl ass Checki ngAccount
public virtual BankSi nple::Account {
/'l As before.

}s

cl ass Deposit Account
public virtual BankSi nple::Account {
/1

}s

184

Using Inheritance of IDL Interfaces

cl ass Prem umAccount
public virtual CheckingAccount,
public virtual DepositAccount {
11

b

IDL forbids any ambiguity arising due to name clashes of operations and
attributes when two or more direct base interfaces are combined. This means
that an IDL interface cannot inherit from two or more interfaces with the same
operation or attribute name. You can, however, inherit two or more constants,
types or exceptions with the same name from more than one interface.
However, these must be qualified with the name of the interface (an IDL-scoped
name must be used).

185

Orbix C++ Programmer’s Guide

186

Orbix Connections and Events

Orbix applications need to control how Orbix processes events such
as operation calls and establishing connections between clients and
servers. To do this, applications communicate with the ORB through
a direct API that allows them to configure the behaviour of Orbix.
This chapter outlines this APl and describes how you can use it to
adapt the Orbix connection establishment and event processing
models.

This chapter acts as a guide to the main connection and event management
functions in Orbix. You should read this chapter for an overview of these

functions and refer to the Orbix C++ Programmer’s Reference for details of
particular functions required in your applications.

187

Orbix C++ Programmer’s Guide

Overview of the Direct APl to Orbix

188

On the client-side, the interface to Orbix is presented via the class CCRBA: : CRB.
On the server, the class CORBA: : BOA (a derived class of CORBA: : CRB) specifies
the interface to Orbix, as shown in Figure 9.1.

OCRBA: : CRB
(Client interface to Orbix)

OCRBA: : BOA
(Server interface to Orbix)

Figure 9.1: Interfaces to Orbix on Client and Server

The acronym BOA stands for Basic Object Adapter. An Object Adapter is the
CORBA term given to the environment in which server applications run. An
object adapter provides services such as:

® Registration of servers.

® Instantiation of objects at runtime and creation and management of
object references.

® Handling of incoming client calls.
® Dispatching of client requests to server objects.

The BOA or Basic Object Adapter is an object adapter specified by CORBA that
must be provided by every ORB. An ORB may optionally provide other object
adapters and a server may support a number of object adapters to serve
different types of requests.

Refer to the Orbix C++ Programmer’s Reference for the full interface to
QCRBA: : CRB and CCRBA: : BOA

Orbix Connections and Events

Initializing a Connection to the ORB

The CORBA standard defines how a client or server can obtain a reference to
the ORB so that they can communicate with it. The function defined for this
purpose is CORBA: : ORB_i ni t (), which you can use as follows:

/] C++

CORBA::ORB_ptr orb = CORBA::ORB_init(argc, argv, “Orbix”);

ORB_init() initializes a client or server’s connection to the ORB. It should not
be viewed as initializing the ORB itself because the ORB is pervasive rather than
just existing within the client or server. You can call any function defined on class
COCRBA: : CRB (for example, st ri ng_t o_obj ect ()) by using the pointer returned
from the CRB_ i ni t () call.

Servers should carry out a further step, to obtain a reference to the Object
Adapter, and in particular to the BOA:

/1l C++
CORBA::BOA_ptrboa =orb->BOA init(argc, argv, “Orbix_BOA");

CORBA::ORB::BOA _init() initializes a server’s connection to the BOA. An ORB
may also provide other object adapters—in this case, it should provide a
function to initialize a connection to each.

Functions such as i npl _i s_ready() defined on class OORBA: : BOA can be called
using the object reference returned from the BQA i ni t () call. On the client-
side, you do not need to perform these steps although, for compliance to the
CORBA standard, you may wish to add them.

Obtaining Initial Object References

Some object services and, in particular, the Interface Repository and the
CORBAservices, can only be used by first obtaining a reference to an initial
service object. The Naming Service provides a general purpose facility for doing
this. When using the Naming Service, you need some way to obtain a reference
to an initial Naming Service object.

189

Orbix C++ Programmer’s Guide

CORBA addresses this difficulty by providing two operations in interface CRB.
These provide the facilities of a simplified Naming Service, in which (flat, rather
than hierarchical) names can be resolved to obtain initial references to important
objects in the system:

nodul e CORBA {
interface ORB {

typedef string Objectld;
typedef sequence <Objectld> ObjectldList;

exception InvalidNanme {};
Obj ectldList list_initial_services();

Obj ect resolve_initial _references
(in njectld identifier)
rai ses (IlnvalidNane);
b
b

Only a small group of names are understood by
resol ve_initial _references(), and these are listed by
list_initial_services().Currently only strings “NameService” and
“InterfaceRepository” are supported. The function
resol ve_ini tial _references() returns an object reference, which must be
narrowed to the correct object type.

Managing Orbix Connections and Events

190

When an Orbix client first contacts a server, a single communication channel is
established between the client-server pair. This connection is then used for all
subsequent operation calls from the client to the server. The connection is
closed only when either the client or the server exits.

If the server makes operation calls, known as callbacks, to objects that exist in
the client, the connection usage depends on which communications protocol
you are using. If your applications communicate over the Orbix protocol, all
communications in both directions use a single client-server connection.
However, if your applications use the CORBA Internet Inter-ORB Protocol
(IIOP), Orbix opens a second connection from the server to the client when the

Orbix Connections and Events

server attempts its first callback operation. By default, all IOP operation calls are
only transmitted in one direction across a client-server connection as specified
by CORBA. Refer to the chapter “Callbacks from Servers to Clients” on

page 339 for more information on using callbacks in Orbix.

When a connection has been established between a client and server, you must
instruct Orbix to process incoming operation calls. Orbix does this by
monitoring the file descriptor associated with each client-server connection and
responding to events on the file descriptor.

This section highlights some of the Orbix functions that allow you to manage
Orbix connection establishment and event processing.

Establishing Connections between Clients and Servers

This section describes the following issues associated with establishing a
connection between a client and a server:

® Setting a timeout on a connection attempt.

® Specifying the number of connection attempt retries.

® Filtering bad connection attempts in servers.

® Reconnecting to a server that has crashed and restarted.

® Receiving callbacks from Orbix to application code when connections are
opened or closed.

Setting a Timeout on a Connection Attempt

By default, there is a timeout of 30 seconds for establishing connection from a
client to a server to confirm that both are operational. This timeout can be
changed using the function CORBA: : ORB: : connect i onTi meout ().

Under some circumstances, OCCRBA: : CRB: : connect i onTi neout () has no effect.
For example, if the server’s host is known but is down or unreachable, a TCP/IP
connect can block for a considerable time depending on the target operating
system. In these circumstances, you can use the function

OCRBA: : CRB: : abort Sl owConnect s() to abort connection attempts that exceed
the value specified in connect i onTi neout ().

191

Orbix C++ Programmer’s Guide

192

Specifying Connection Attempt Retries

If a connection cannot be made on the first attempt because the server cannot
be contacted, Orbix retries the attempt every two seconds until either the call
can be made or until there have been too many retries. You can use the function
QCRBA: : CRB: : maxConnect Retri es() to set the maximum number of retries
that should be attempted. The default number is 10.

Filtering Bad Connection Attempts

By default, an exception is raised if a bad connection is made to a server waiting
on the event handling functions (CORBA: : BOA: : i npl _i s_ready(),

QORBA: : BOA : obj _i s_ready(), OORBA: : BQA: : processEvent s()). Such bad
connections can be caused by, for example, a server that cannot interpret the
data that it accesses.

You may wish to allow Orbix to handle such attempts without raising an
exception. Refer to the Orbix C++ Programmer’s Reference entry for
QCRBA: : BQA : fi |l t er BadConnect At t enpt s() for details.

Reconnecting to a Failed Server

When a server exits while a client is still connected, the next invocation by the
client raises a system exception of type OCRBA: : COW FAI LURE If the client
attempts another invocation, Orbix automatically tries to re-establish the
connection.

This default behaviour can be changed by passing the value 1 (true) to the
function CCRBA: : ORB: : noReconnect nFai | ure(). Then, all client attempts to
contact a server subsequent to closure of the communications channel raises a
QOCRBA: : COMM_FAI LURE system exception.

Receiving Callbacks for New or Closed Connections

Orbix allows a client or server to receive a callback each time a connection to
another Orbix program is opened or closed. To receive such callbacks, first
define a class that inherits the Orbix class QORBA: : | T_| OCal | back. Class
QORBA: : | T_| OCal | back is defined as follows:

class I T_IOCall back {
public:

Orbix Connections and Events

/1 The follow ng functions are call ed when an
/1 Obix file descriptor opens or closes.
virtual void OrbixFDOpen(int fd) {};

virtual void OrbixFDO ose(int fd) {};

/1 The follow ng functions are call ed when
/] activity is detected on a foreign fd.

/'l Aregistered foreign fd is ready for reading.
virtual void Forei gnFDRead(int fd) {};

/'l Aregistered foreign fd is ready for witing.
virtual void Forei gnFDWite(int fd) {};

/'l A registered foreign fd has fired for

/'] excepti ons.

virtual void Forei gnFDExcept (int fd) {};

b

Your sub-class of CORBA: : | T_I CCal | back should override one or more of the
I T_I OCal | back member functions. For example, if you override
O bi xFDOpen() , this function is called each time a connection to your
application is opened. Similarly, if you override O bi xFDO ose(), this function is
called each time a connection to your application is closed. Both O bi xFDQpen()
and O bi xFDA ose() receive the file descriptor associated with the relevant
Orbix connection as a parameter.

When you implement a derived class of OORBA: : | T_| OCal | back, create an
instance of this class and register this object with Orbix by calling

CCORBA: : ORB: :regi st er I OCal | back(hj ect () on the ORB. This function is
described in the Orbix C++ Programmer’s Reference.

The functions For ei gnFDRead(), For ei gnFDW i t e(), and For ei gnFDExcept ()
allow you to integrate Orbix event processing with foreign event processing as
described in “Integrating the Orbix Event Loop with Foreign Events” on

page 194.

193

Orbix C++ Programmer’s Guide

Event Processing in Orbix

194

This section describes the following issues associated with processing Orbix
events:

® Orbix event processing functions.
® Integrating the Orbix event loop with foreign events.
® Ensuring that servers process events while clients are connected.

® Setting timeouts on operation calls from clients.

Orbix Event Processing Functions

The function i npl _i s_ready(), defined on class CORBA: : BOA, allows you to
initialize a server and start processing incoming connection attempts and
operation calls on existing connections. Class CORBA: : BQA also provides several
other event processing functions that allow you to handle incoming events in a
client or in a server that has already been initialized.

The relevant functions are CORBA: : BOA: : pr ocessNext Event (),

QCRBA: : BQA: : processEvent s() and CORBA: : BOA : obj _i s_ready(). You can
also test whether or not there is an outstanding event using

QCRBA: : BQA: : i sBEvent Pendi ng() . Refer to the relevant entries in class
QCRBA: : BQA of the Orbix C++ Programmer’s Reference for details.

Integrating the Orbix Event Loop with Foreign Events

When you call an Orbix event processing function, Orbix monitors all file
descriptors associated with its event loop. This file descriptor set includes each
file descriptor associated with an open connection from another Orbix program.

If you wish to integrate Orbix with another system that has an event processing
loop, you can do this by adding the file descriptors for the foreign system to the
Orbix event loop.

To add foreign file descriptors to the Orbix event loop, call one of the following
functions defined in class CCRBA: : CRB:

voi d addFor ei gnFD
(const int fd, unsigned char aState);
voi d addFor ei gnFDSet
(fd_set & theFDset, unsigned char aState);

Orbix Connections and Events

To remove foreign file descriptors from the Orbix event loop, call one of the
following functions:

voi d renoveForei gnFD
(const int fd, unsigned char aState);
voi d renoveForei gnFDSet
(fd_set& theFDset, unsigned char aState);

There are three sets of foreign file descriptors registered with the Orbix event
loop: one set is monitored for reads, another for writes, and the third for
exceptions. You can register a file descriptor in one or more of these sets. To
do this, specify the values FD_READ, FD WR TE, FD_EXCEPTI ON (or any logical
combination of these values) in the aSt at e parameter, passed each of the
registration functions.

When Orbix detects an event on a foreign file descriptor, it attempts to call a
function in your application code. To receive this callback, implement the class
OCRBA: : | T_I OCal | back, as described in “Receiving Callbacks for New or
Closed Connections” on page 192 and override one of the functions

For ei gnFDRead(), Forei gnFDWi te(), and For ei gnFDExcept ().

Note: If you wish to integrate foreign file descriptors with the Orbix event loop,
you must define the macro WANT_CRBI X_FDS before including the file
QCRBA. h.

Processing Events while Clients are Still Connected

By default, the event processing functions i npl _i s_ready(), obj _i s_ready(),
processEvent s() and processNext Event (), (defined in class CORBA: : BQR)
time out when a user-defined or defaulted period has elapsed between

events; for example, an incoming operation call, or a connection or
disconnection by a client.

Consequently, i npl _i s_ready() can time out when its clients are idle for a
period. A server may prefer to remain active while there are clients connected,
active or not. Then the server should make the following call:

/] C++
CORBA: : Or bi x. set NoHangup(1); // 1 for true.

195

Orbix C++ Programmer’s Guide

Refer to the entry for CORBA: : BOA: : set NoHangup() in the Orbix C++
Programmer’s Reference for full details.

Setting Timeouts on Operation Calls

An operation call that is not defined as oneway can be given a timeout specified
in milliseconds. If a reply is not received within the given timeout interval, the
invocation fails with a QORBA: : COW _FAI LURE exception.

The timeout for a call can be given by setting a value in an Envi r onrent, using
the following function:

/] C++
/1 In class CORBA:: Environnent.
voi d timeout (CORBA: : Long);

For example:

/] C++
CORBA: : Envi ronment env;
CORBA: : Long tineoutValue = ...;
Account _var aVar = ...;
try {

env. ti neout (ti nmeout Val ue);

aVar - >deposi t (12. 00, env);
}
catch (CORBA: : COW FAI LURE&) ({

cout << “---Timed out after” << timeoutValue

<< “msecs...” << endl;

}

catch (CORBA::SystemException& se) {
cout << “Unexpected exception:” << endl|
<< &Se;

}

The value set by the CORBA::Environment::timeout() function remains active
until reset for the environment for which it was set.

A timeout can also be specified ina _bind() call:

/| C++

CORBA::Environment env;
CORBA::Long timeoutValue = ...;
Bank_var bVar;

196

Orbix Connections and Events

try {
env.tineout (ti meout Val ue);

bVar = Bank::_bind(“:AIB","",env);
}
catch (CORBA::COMM_FAILURE&) {

cout << “--- Timed out after " << timeoutValue
<< “msecs...” << endl;

}

In this case, the timeout applies to the implicit ping call attempted during binding.

The timeout, if any, in an Environment variable can be read using the
parameterless function:

/I C++
/I In class CORBA::Environment.
CORBA::Long timeout()

As an alternative, timeouts can be set for all remote calls by calling the following
function on the ORB object:

/IC++
Il In class CORBA::ORB.
unsigned long defaultTxTimeout
(CORBA::ULong val = INFINITE_TIMEOUT,
CORBA::Environment &env = default_environment)

This function returns the previous value. The value set by this function is then
used for all remote calls. However, if a timeout is set in an Environment , it
supersedes any value set globally in the ORB. By default, no call has a timeout,
that is, the default timeout is infinite.

If a remote call establishes a connection between the client and server, then
there is a separate timeout on connection establishment that can be controlled
by the connectionTimeout() function defined in class CORBA::ORB The

timeouts specified by CORBA::ORB::defaultTxTimeout() or
CORBA::Environment::timeout() become effective once a connection is
established.

197

Orbix C++ Programmer’s Guide

198

10

Advanced Programming Topics

This chapter presents a number of advanced topics that have not
been covered in previous chapters.

The topics covered in this chapter are:

How to write applications where the client and server are collocated—
that is, within the same address space.

How to determine whether a specific object is local or remote.
How to obtain a pointer to an implementation class.

How to raise an exception if the correct proxy code is not available in a
client.

How multiple implementations can be provided for the same IDL
interface.

How an implementation class may implement multiple interfaces.
How to use the CORBA type Cont ext.

How to modify the level of diagnostic messages displayed by Orbix.

199

Orbix C++ Programmer’s Guide

Developing Collocated Clients and Servers

200

For some applications, it is useful to use IDL to define the interfaces between
objects, even if these objects are not distributed. Further, the objects in some
applications may or may not be distributed, depending on how the application is
configured by its installer. It is useful to be able to write application code that can
work efficiently in all these cases.

To address these issues, Orbix supports the collocation of client and server
objects within the same address space. When a bind call is made by a client or
server, Orbix will first look for the object in the caller’s address space, unless
the bind call specifies a remote host. If the target object is found in that address
space, subsequent calls on the object are very efficient. This is because direct
C++ function calls are used from the client to the server application code, and
the Orbix runtime is bypassed.

Collocation can be enforced by calling the following function:

/] C++
/1l In class CORBA:: ORB.
or b->col | ocated(1);

This call controls the lookup mechanism: it prevents binding to objects outside
the current process’s address space. This function returns the previous setting
as a OCRBA: : Bool ean.

If the target object cannot be found within the application’s address space, Orbix
normally tries to locate the object in the same or a different node. However, if
collocation is set, Orbix never tries to bind to an object outside of the caller’s
address space. If an object is not found in the caller’s address space, _bi nd()
raises a OCRBA: : | N\V_OBJREF system exception.

Calls to col | ocat ed(1) are normally made during the initialization of a
combined client/server. However, collocation can be unset (thereby reinstating
remote binding) at any time by calling col | ocat ed(0).

Advanced Programming Topics

Testing for the Presence of Collocation

A program can test whether or not collocation is currently set by making the
function call:

/] C++
/1 I'n class CORBA:: ORB.
CORBA: : Bool ean i sOn = orb->col | ocated();

This returns a CORBA : Bool ean value 1 (true) if collocation is set, and returns 0
(false) otherwise.

A program may wish to use this so that it can create local objects if collocation is
set, but not create these objects otherwise; in the latter case, it expects these
objects to be created and managed by a remote server.

Writing Code for both Collocation and Distribution

The following code works in both the collocated and the distributed case. Either
of these two cases can be selected at runtime, perhaps from a command-line
switch. The general strategy for a collocated application is to write a mainline
that first conducts the usual server-side initialization (and in particular creates
target Orbix objects for the server application—here just the Bank object), and
then continues with the mainline of the client application. In the distributed case,
some server, which is not shown here, is instead responsible for creating the
target objects.

/] C++
/] Only the TIE approach is shown.

/1 The BQAInpl approach is very simlar.
/'l Assume we have DEF_TI E_Bank(Bankl npl);

mai n(i nt argc, char** argv) {

Bank_var | ocal BankVar, renoteBankVar;
Account _var aVar;

201

Orbix C++ Programmer’s Guide

202

}

/1 Use, for exanple, the command |ine arguments
/! to decide whether or not to nake this call:
if (...) {
or b->col l ocated(1); // true
| ocal BankVar =
new Tl E_Bank(Bankl npl) (new Bankl npl ());

}
try {
/I The bind to ‘srv’ is done locally
/I if collocated; else remote bind:
remoteBankVar = Bank::_bind();
avar =
p->newAccount(“jack”);
aVar->makeLodgement(100.00);
cout << “pbalance is ”
<< aVar->balance() << endl;
}
catch (SystemException& se) {
cout << “Unexpected exception:” << endl|
<< &Se;

}
catch (...) {

}

An example of collocation is supplied in the Orbix3.0\demo\Cxx\colocate
directory of your Orbix installation.

Note: The example code shown here assumes that a remote server is

responsible for creating the target objects if collocation is not set.
Otherwise, it would be necessary to call impl_is_ready()

Advanced Programming Topics

Determining Locality of Objects

You can use the CCRBA: : (hj ect : : _i sRenot e() function to determine whether
or not a reference to an IDL C++ class is remote—that is, whether or not the

object it references is in a different address space on the same or a different

host). An example of its use is shown below:

I
11

C++
Bank server mainline.

mai n() {

Bank_var bvar; // 1DL C++ cl ass.

// The BQA npl approach.
bVar = new Bankl npl ;
bVar->_marker(“College_Green”);

/I The TIE approach.
/I bVar = new TIE_Bank(BankImpl)
I (new Bankimpl(), “College_Green”);

if ('bVar->_isRemote())
cout << “Object is local (as expected!)”);
/I else - IMPOSSIBLE: object *IS* local.

}
/I C++
/I Client mainline.
main() {

/I Bind to *any* Bank service.

Bank_var bVar = Bank::_bind();

if (bVar->_isRemote())

cout << “Object is remote (as expected!)”
<< endl;

/Il else object is local (or non-existent).

}

203

Orbix C++ Programmer’s Guide

Casting from Interface to Implementation Class

This section describes how to cast, when using the BOAImpl approach, from an
interface class to an implementation class written by a programmer. Although
this is not frequently required, it can be useful in some cases.

Consider interface Account, and the C++ implementation class Account | npl
defined as follows:

/] C++

class Accountlnpl : public virtual AccountBQAI mpl
{

b

The overall class hierarchy is shown in Figure 10.1.

Account (IDL interface)

IDL Compiler Account (IDL C++ class)

\

Account BQAI npl

Account | npl (C++ class written by you to implement
the interface Account)

Figure 10.1: Casting From Interface Class to Implementation Class Using the BOAImpl Approach

If you have an object reference for an Account, there is a difficulty casting this to
a pointer to an Account | npl . C++ prohibits this cast because the inheritance
between Account BQAl npl and Account is virtual.

204

Advanced Programming Topics

Casts from interface to implementation class are not frequently required,
because invoking a function on the Account object reference is sufficient.
However, you can add an extra member function (not defined in the IDL
interface) to the implementation class, and this is only available for use if you
have a pointer to the implementation class.

Orbix provides a DEREF() macro that, when called on a Tl E object, returns a
pointer to an implementation object. This macro implicitly calls the function
OCRBA: : (hj ect:: _deref (). To cast from an interface to an implementation
class using the BOAImpl approach, you should first redefine CORBA: : (hj ect : :
_deref () function in the implementation class:

/] C++
class Accountlnpl : public virtual AccountBQAI npl {

virtual void* _deref() { return this; }

b
You can then use the DEREF() macro to achieve the cast as follows:
/] C++
Account _ptr aPtr =;
Accountlnpl* p_i = (Accountlnpl*) DEREF(aPtr);

If _deref () is not redefined by Account | npl , then it inherits an implementation
that returns a pointer to the BOAImpl class.

Naturally, the need for the cast could be removed by defining the extra functions
as IDL operations in the IDL interface. However, this would make these
operations available to remote processes, possibly against the requirements of
the application. In addition, some C++ functions cannot be translated into IDL in
a straightforward way.

205

Orbix C++ Programmer’s Guide

Actions when Proxy Code is Unavailable

206

When a reference to a remote object enters a client or server address space,
Orbix constructs a proxy for that object. This proxy (a normal C++ object) is
constructed to execute the proxy code corresponding to the actual interface of
the true object it represents.

Hence, if a server object has an operation of the form:

/1 1D
/1 In sone interface.
void op(in Account a);

and if a reference to a remote Qur rent Account (a derived interface of Account)
is passed as a parameter to this operation, Orbix tries to set up a proxy for a
Qurrent Account in the server address space.

If the server was not linked with the IDL-compiler generated proxy code for
Qurrent Account , Orbix instead creates a proxy for an Account in the server
address space. This means that, Orbix uses the static rather than the dynamic
type of the parameter. The same applies when an object reference enters a
client.

If resorting to the static type is unacceptable, call the following function on the
ORB object, passing a f al se value for the first parameter:

/] C++

/1 1n class CORBA:: ORB.

unsi gned char resortToSt ati c(CORBA: : Bool ean,
CORBA: : Envi ronnent & env
= CORBA: : def aul t _envi ronnent)

This function returns the previous setting; the default setting is t r ue. Setting the
value to f al se means that Orbix raises an exception if the server or client is not
linked with the actual proxy code.

Advanced Programming Topics

Multiple Implementations of an Interface

There may be more than one implementation of the same IDL interface:

® In the BOAImpl approach, you can define multiple classes which inherit
from the same BOAImpl-class.

® In the TIE approach, you can declare further relationships using a
DEF_TI E macro.

For example, in the BOAImpl approach, the following provides a second
implementation class of the Bank interface:

/] C++
cl ass Buil di ngSoci et yl npl

public virtual BankBQAI mpl {
public:

Bui | di ngSoci etyl npl ();

virtual ~BuildingSocietylnpl();

// Functions for |DL operations.
Account _ptr newAccount (const char* nane,
CORBA: : Envi ronment & env =
CORBA: : def aul t _environnent);

voi d del et eAccount (Account _ptr a,
CORBA: : Environnent & env =
CORBA: : def aul t _environnent);
i
In the TIE approach, the following can be used:
/] C++

cl ass Buil di ngSoci etyl mpl {
public:
Bui | di ngSoci etyl npl ();
virtual ~BuildingSociety i();

/'l Functions for |IDL operations.
Account _ptr newAccount (const char* nane,
CORBA: : Envi ronment & env =
CORBA: : def aul t _evi ronment) ;

207

Orbix C++ Programmer’s Guide

voi d del et eAccount (Account _ptr a,
CORBA: : Envi ronnment & env =
CORBA: : def aul t _envi ronment);

}s

DEF_TI E_Bank(Bui | di ngSoci etyl npl)
/1 A class TIE Bank(Buil di ngSoci etyl npl).

Both of the Tl E classes, TI E_Bank(Bankl npl) and
Tl E_Bank(Bui | di ngSoci et yl npl), are now derived classes of the IDL C++
class Bank.

The argument to the constructor of TI E_Bank(Bankl npl) must be a
Bankl! npl *, and that of TI E_Bank(Bui | di ngSoci et yl npl) must be a
Bui | di ngSoci et yl npl *:
/1 C++
Bank_ptr blPtr = new Tl E_Bank(Bankl npl)
(new Bankl mpl) ;
Bank_ptr b2Ptr = new Tl E_Bank(Bui | di ngSoci etyl npl)
(new Bui | di ngSoci etyl npl);
Because the two Tl E classes are derived classes of (the IDL C++ class) Bank, the
pointers b1Ptr and b2Ptr can both refer to either of these two Tl E objects:

/] C++
biPtr = b2Ptr; // OK, blPtr now points to a
/1 Buil di ngSoci etyl npl TIE.

Multiple Interfaces per Implementation

In addition to being able to implement the same IDL interface using two or more
different implementation classes, the same implementation class can implement
two or more IDL interfaces, even if these IDL interfaces are not themselves
related by inheritance. Consider the following two interfaces:

/1 1D
/1 An IDL factory for bank accounts.
interface Bank {

exception Reject { string reason; };

Account newAccount (in string nane)
raises (reject);

208

Advanced Programming Topics

voi d del et eAccount (i n Account a);
b
/1 An IDL managenent interface for accounts.
i nterface Manager {

Account firstAccount();

Account next Account ();

voi d del et eAccount (i n Account a);

b
Here, Bank does not inherit from Manager, nor vice versa. The next two
sections show how the two interfaces Bank and Manager can be implemented by
the same C++ class, using the TIE approach and the BOAImpl approach,
respectively.

Using the TIE Approach

Using multiple interfaces for an implementation is more straightforward in the
TIE approach. First you should write a class that provides all of the functions in
the two interfaces:

/] C++
cl ass Bi gBankl mpl {
public:

Bi gBankl npl () ;

virtual ~BigBanklnpl ();

/'l Functions for |DL operations:
Account _ptr newAccount (const char* nane,
CORBA: : Envi ronment & env =
CORBA: : def aul t _environnent);
voi d del et eAccount (Account _ptr a,
CORBA: : Envi ronment & env =
CORBA: : def aul t _environnent);
Account _ptr firstAccount
(CORBA: : Envi ronment & env =
CORBA: : def aul t _environnent);
Account _ptr next Account
(CORBA: : Envi ronment & env =
CORBA: : def aul t _environnent);

209

Orbix C++ Programmer’s Guide

210

Now class Bi gBankl npl can implement the IDL interfaces Bank and Manager as
follows:

/] C++

/1 Indicate that Bank is inplenented by BigBanklnpl.
DEF_TI E_Bank(Bi gBankl npl)

/1 You now have a class Tl E_Bank(Bi gBankl npl).

/1 Indicate that Manager is inplenmented by Bi gBankl npl .
DEF_TI E_Manager (Bi gBankl npl)
/1 You now have a cl ass Tl E Manager (Bi gBankl npl).

An instance of Bi gBankl npl acts as an object of type Bank when it is accessed
through a Tl E of class Tl E_Bank(Bi gBankl npl) . An instance of Bi gBankl npl
acts as an object of type Manager when it is accessed through a Tl E of class

Tl E_Manager (Bi gBankl npl) .

In addition, note that the same object can provide both of these interfaces:

/] C++
/1 Use the sanme object to inplenment
/1 both Bank and Manager.

/1 The TI E approach.
Bank_ptr bPtr = new
TI E_Bank(Bi gBankl npl) (new Bi gBankl npl) ;
Manager _ptr nPtr = new Tl E_Manager (Bi gBankl npl)
((Bi gBankl npl *) DEREF(bPtr));

The DEREF() macro is applied to a reference to an IDL C++ class; and an
explicit type cast is required. If the reference denotes a local object, DEREF()
returns a reference to that object. If the reference is remote, DEREF() returns a
reference to the proxy.

You can determine whether or not a reference is remote by using the function
OORBA: : (hj ect::_i sRenote().

Advanced Programming Topics

Using the BOAImpl Approach

Using the BOAImpl approach, Bi gBankl npl should not be defined as follows:

/] C++

/'l Incorrect approach:

cl ass Bi gBankl nmpl : public virtual BankBOQOAI npl,
public virtual Manager BOAl nmpl {

.

If this definition is used, it would not be possible to determine whether an object
of type Bi gBankl npl was of type BankBQAl npl or Manager BOAl npl . This is
important if the two interfaces are not related by inheritance.

The natural solution is to define a new IDL interface that inherits from both
Bank and Manager, and for the C++ implementation class to inherit from the
BOAImpl class corresponding to that new interface.

If it is not possible to introduce the new IDL interface, you can proceed as
follows. Class Bi gBankl npl can inherit from one of the BOAImpl classes, for
example BankBQAI npl , but it should include functions to implement all of the
functions in Bank and Manager :

/] C++
cl ass Bi gBankl nmpl : public virtual BankBQOAI npl {
public:

Bi gBankl npl () ;

~Bi gBankl npl () ;

/1 Functions for Bank |DL operations:
Account _ptr newAccount (const char* nane,
CORBA: : Envi ronment & env =
CORBA: : def aul t _environnent);
voi d del et eAccount (Account _ptr a,
CORBA: : Envi ronment & env =
CORBA: : def aul t _environnent);
/1 Functions for Manager |DL operations:
Account _ptr firstAccount
(CORBA: : Envi ronnment & env =
CORBA: : def aul t _environnent);

211

Orbix C++ Programmer’s Guide

Account _ptr next Account
(CORBA: : Envi ronnment & env =
CORBA: : def aul t _envi ronment);
b

Calls on the Bank interface can go directly to an object of type Bi gBankl npl .
However, you need a second object to handle the Manager aspects. This object
should forward all function invocations to its corresponding Bi gBankl npl
object, which implements both the Bank and the Manager functions. It is clear,

therefore, that the TIE approach is easier to use when a single object needs to
have more than one unrelated interface.

Passing Context Information to IDL Operations

212

A context is a two-dimensional table that maps identifier strings to value strings.
A context may be defined in IDL as part of an operation specification. An
operation that specifies a context clause is mapped to a C++ member function
that takes an extra parameter (just before the Envi ronnent parameter). For
example, the following interface:

/1 1D
interface A {
void op(in unsigned |ong s)
context (“accuracy”, “base”);
%

maps to:

/| C++
class A {
public:
virtual void op(CORBA::ULong s,
CORBA::Context_ptr IT_c,
CORBA::Environment&
env = CORBA::default_environment);

Advanced Programming Topics

Instances of CORBA: : Cont ext are pseudo-objects. A client can create a Cont ext
as follows:

/] C++
CORBA: : Context _ptr ckPtr =
CORBA: : Context::create_context();

This creates an initially empty Cont ext object, to which identifier:string mappings
can be added, and that can be passed to a function that takes a Cont ext
parameter.

On the server side, Orbix constructs a new Cont ext from the value received in
the incoming operation request and calls the target object’s operation. Orbix
releases the context when the call returns. If the server requires that the
context be retained after the call, you should use _dupl i cate() to increase the
reference count of the context argument passed in the call.

You can obtain the default context for a process by calling
get _defaul t _context():

/] C++

/1 I'n class CORBA::ORB::get_default_context().
Context _ptr defC;

or b- >get _def aul t _cont ext (def C);

You must free the Cont ext allocated in def C

The default context provides a useful mechanism for sharing context changes
between different parts of a program. This context is initially empty.

Context Hierarchies

Cont ext objects can be nested in context hierarchies by specifying the par ent
parameter when creating a child Cont ext, or by using the creat e_chi | d()
function. Figure 10.2 on page 214 illustrates an example context hierarchy.

213

Orbix C++ Programmer’s Guide

cl high

c2 middle

/

c3 low

Figure 10.2: Hierarchy of Contexts

A hierarchy may be set up by specifying the parent context in the constructor; a
name can also be given to a context:

[l C++

Context _ptr cl =
CORBA::Context::IT_create(“high”);

Context_ptr c2 =
CORBA::Context::IT_create(“middle”, cl);

Context_ptr c3 =
CORBA::Context::IT_create(“low”, c2);

You must free the Context pseudo-object reference returned from the call to
IT_create() , or alternatively, assign it to a CORBA:Context var variable for
automatic management.

CORBA::Context::get_values()

CORBA::Context provides a function get_values() to retrieve the property
values in a Context ; it is defined as:

Il C++
/I In class CORBA::Context.
Status get_values(
const char* start_scope;
const Flags op_flags;
const char* prop_name;
NVList_ptr& values;
Environment& env = default_environment);

214

Advanced Programming Topics

You can use the st art _scope parameter to get _val ues() to specify that the
search for the values requested is to be made in a (direct or indirect) parent
context of the context on which the call is made. The call searches backwards
for a context with the specified name. If this is found, it searches for the specified
I denti fiers in that context. For example, the following code specifies that the
search for identifiers beginning with “sys ” should begin in the context named
middle :

/I C++

NVList_ptr listPtr = CORBA::NVList::IT_create();
if (1(c3->get_values(“middle”,
0, “sys_*", listPtr)))
/I Handle the error.
else {
/I Iterate through the NVList pointed
/I to by listPtr:

Alternatively, you could code this example to detect an exception raised by
get_values() if no entry is found.

If zero is passed as the first parameter to get values() , the search begins in the
context that is the target of the call. If no matching identifiers are found,
get values() returns zero (false).

CORBA::Context::get_values() has a parameter of type Flags . When the null
(zero) flag is passed to get values() , searching of identifiers propagates
upwards to parent contexts. If the Flags parameter passed to get values() is
CORBA::CTX_RESTRICT_SCOPEsearching is restricted to the specified start
scope or target Context object. Refer to the entry for class CORBA::Flags in
the Orbix C++ Programmer’s Reference for more details.

215

Orbix C++ Programmer’s Guide

Receiving Diagnostic Messages from Orbix

Orbix enables you to control the output of runtime diagnostic messages on both
the client and server. You can set three levels of diagnostics as follows:

Level Output
0 No diagnostics
I Simple diagnostics (this is the default)

2 Full diagnostics

Refer to the entry for CORBA: : ORB: : set D agnost i cs() in the Orbix C++
Programmer’s Reference for more details.

216

Part |l

Dynamic Orbix
Programming

The TypeCode Data Type

The IDL pseudo-object type TypeCode is used in CORBA to describe
arbitrary complex IDL types at runtime. This chapter describes how
you can manipulate TypeCode values.

The IDL data type TypeCode is used for two main purposes in CORBA systems:

® To describe the contents of an IDL value of type any. The TypeCode data
type forms an important part of the mapping from IDL type any to C++
type OCRBA: : Any. This is described in detail in Chapter 12, “The Any
Data Type” on page 227.

® Asa parameter from some of the operations of the Interface Repository.
This is described in Chapter 15, “The Interface Repository” on page 275.

In an IDL specification, you can use a TypeCode as an attribute type or as the
type of a parameter or return value to an operation. To make the TypeCode
data type available, your IDL must include the following directive:

#i ncl ude <orb.idl>

The IDL type TypeCode maps to a CCRBA: : TypeCode_pt r parameter in the C++
generated from your IDL definitions. The IDL TypeCode interface is
implemented by the Orbix C++ class CORBA: : TypeCode.

219

Orbix C++ Programmer’s Guide

Overview of the TypeCode Data Type

This section describes the standard IDL interface CORBA: : TypeCode, as well as
the C++ class CORBA : TypeCode.

Each TypeCode consists of the following:

* A kind.

The kind specifies the overall classification of the TypeCode: for example,
whether it is a basic type, a struct, a sequence, and so on.

® A sequence of parameters.

The parameters give the details of the type definition and are of type
QORBA: : Any. For example, the IDL type sequence<| ong, 20> has the kind
t k_sequence and has two parameters—the first parameter is a

QORBA: : Any that contains a TypeCode for | ong, the second parameter is
a OCRBA: : Any that contains the value 20.

The IDL interface for TypeCode is shown below. Refer to the Orbix C++
Programmer’s Reference for a full description of this interface. It includes an
operation ki nd() to query the kind of a TypeCode and an operation

par anet er () to access individual parameters of a TypeCode.

/1 1DL

/1 I n nmodul e CORBA.

enum TCKi nd {
tk_null, tk_void, tk_short, tk_long, tk_ushort,
tk_ulong, tk_float, tk_double, tk_bool ean, tk_char,
tk_octet, tk_any, tk_TypeCode, tk_Principal,
tk_objref, tk_struct, tk_union, tk_enum tk_string,
tk_sequence, tk_array, tk_alias, tk_except,
tk_l ongl ong, tk_ulonglong, tk_|ongdouble, tk_wchar,
tk_wstring, tk_fixed, tk_opaque

}

exception Bounds {};

pseudo interface TypeCode {
TCKi nd ki nd();
| ong param count ();
any parameter(in long index) rai ses(Bounds);
bool ean equal (i n TypeCode tc);

220

The TypeCode Data Type

The C++ signatures of these IDL operations are as follows:

/] C++

TCKi nd ki nd(CORBA: : Envi ronnment & env =
CORBA: : def aul t _environment) const;

CORBA: : Any par anet er (CORBA: : Long i ndex,
CORBA: : Envi ronnment & env =
CORBA: : def aul t _environment) const;

The par anet er () operation raises the exception Bounds if an attempt is made
to access a non-existent parameter. The number of parameters that a TypeCode
has varies with the kind of the TypeCode. This number is returned by the

par am count () operation of the TypeCode interface. The generated signature of
this operation is as follows:

/] C++
CORBA: : Long param count (CORBA: : Envi ronnent & env
= CORBA: : def aul t _environnment) const;

The parameters of each kind of TypeCode are listed in detail in the entry for
OCRBA: : TypeCode in the Orbix C++ Programmer’s Reference. Some examples
are as follows:

® A TypeCode of kind t k_struct has one parameter giving the struct name
and then two parameters for each member of the struct: the first giving
the member’s name and the second giving its TypeCode. A struct with N
members has 2N+1| parameters. Each parameter is contained in a
CCRBA: : Any.

® A TypeCode of kind t k_stri ng has one parameter—an integer giving the
maximum length of the string. A zero length indicates an unbounded
string. The parameter is contained in a CCRBA: : Any.

221

Orbix C++ Programmer’s Guide

Implementation of TypeCode in Orbix

The IDL type TypeCode is implemented by the C++ class OCRBA: : TypeCode. An
IDL operation with a parameter of type TypeCode is translated into a C++
member function with a parameter of type CORBA: : TypeCode_ptr. A
declaration for the object that it references can be generated by the IDL
compiler from named type definitions that appear in an IDL file—that is, from
the following types:

interface
t ypedef
struct

uni on
enum

CORBA::TypeCode_ptr Constants

222

For each user-defined type that appears in an IDL file, a CORBA: : TypeCode_pt r
can be generated. The TypeCode_ptr points to a TypeCode constant generated
by the IDL compiler. These constants have names of the form _tc_<t ype>
where <t ype> is the user-defined type. For example, consider the following IDL
specification:

interface Interesting {
typedef |ong | ongType;
struct Useful {
| ongType |;
b
b

The following CORBA: : TypeCode_pt r constants are generated for this definition:

_tc_Interesting
_tc_longType
_tc_Useful

Note: These definitions are only generated if you specify the - A switch to the
Orbix IDL compiler.

The TypeCode Data Type

A number of predefined CORBA: : TypeCode object reference constants are
always available to allow the user to access TypeCodes for standard types. Refer
to the entry for CORBA: : TypeCode in the Orbix C++ Programmer’s Reference
for a complete list. The following are some examples:

OCRBA: : _tc_fl oat is an object reference for a float TypeCode.
OCRBA: : _tc_string is an object reference for a string TypeCode.

COCRBA: : _tc_TypeCode is an object reference for a TypeCode TypeCode.

TypeCode Public Members

The C++ class CORBA: : TypeCode defines the following public members:

Constructors:

CORBA: : TypeCode();
CORBA: : TypeCode() (const CORBA:: TypeCode&);

A destructor.

oper at or =(), which allows assignment of objects of type
CCRBA: : TypeCode.

Function equal (), which allows comparison of objects of type
CCRBA: : TypeCode.

oper at or ==() and oper at or ! =, which make it easier to compare
objects. These operators are specific to the Orbix implementation of
TypeCode.

Function ki nd(), which returns a value of the enumerate type TCKi nd.

Function par am count (), which returns the number of parameters of the
CCRBA: : TypeCode.

Function par arret er (), which returns an individual parameter. This takes
the parameter index (the first parameter is at index - 1).

223

Orbix C++ Programmer’s Guide

CORBA::TypeCode::IT_create()
In addition to the public members listed above, the following function is provided
in the public interface to class CCRBA: : TypeCode:

static TypeCode_ptr | T _create(
const TypeCode_ptré& tc,
Envi ronnent & = defaul t _environment);

I T_create() is provided by Orbix to initialize a TypeCode pseudo-object
reference, because the CORBA standard does not specify a way to obtain a
TypeCode pseudo-object reference. Use of | T_create() is recommended in
preference to C++ operator new() in order to ensure memory management
consistency.

Examples of Using TypeCode

This section explains the following examples of using TypeCode in Orbix:
® Use of TypeCode in type CCRBA: : Any.
® Use of TypeCode when querying the Interface Repository.

Use of TypeCode in Type CORBA::Any

Consider an example IDL definition:

/1 1D

struct Exanple {
long I|;

b

If you compile this definition with the IDL compiler - A switch, the
QORBA: : TypeCode_ptr constant _t c_Exanpl e is generated.

Assume the following IDL operation:

/1 1D
interface Bar ({
void op(in any a);

}s

224

The TypeCode Data Type

A client program invokes the IDL operation op() as follows:

/] C++
// dient code.
Bar _var bVar;

CORBA: : Any a ;
/1 Initialize a. (Not shown in this chapter.)

bVar - >op(a);

On the server-side, you can query the actual type of the parameter to op() . For
example:

/] C++
/'l Server code.
voi d Bar_i::op(const CORBA::Any& a,
CORBA: : Envi ronment & {
CORBA: : TypeCode_ptr t = a.type();
if(t->equal (_tc_Exanple)) {
cerr << "Don't like struct Example!"
<< endl;

}

else... /I Continue processing here.

}

This is one of the most common uses of TypeCodes —namely, the runtime
querying of type information from a CCRBA: : Any.

Use of TypeCode when Querying the Interface Repository

The Orbix Interface Repository maintains information about IDL type
definitions, allowing information about definitions to be determined at runtime.
The ki nd() and par anet er () member functions of class CCRBA: : TypeCode can
be used to query the Interface Repository.

For example, when querying information about an operation of an interface, the
number of its arguments can be found, and then the TypeCode of each argument
can be determined. You can use the functions ki nd() and par aret er () on each
TypeCode to determine the details of the type of each argument. Chapter |5,
“The Interface Repository” on page 275 describes the use of the Interface
Repository in detail, including examples of using TypeCode.

225

Orbix C++ Programmer’s Guide

226

| 2

The Any Data Type

This chapter explains the IDL type any and the corresponding C++
class QCRBA: : Any, using an example. IDL type any indicates that
a value of an arbitrary type can be passed as a parameter or a return
value.

This chapter discusses different means of constructing and interpreting an any. It
first discusses the use of operator <<= (left-shift assign operator) and operator
>>= (right-shift assign operator). This approach is CORBA-defined, and is both
the simplest to use and the most type-safe. However, there are situations where
these operators cannot be used. This chapter also describes alternative
mechanisms for constructing and interpreting an any.

Consider the following interface:
/1 1D
interface AnyDenp {
voi d passSonet hingln (in any any_type_paraneter);

}

A client can construct an any to contain a type that can be specified in IDL, and
then pass this in a call to operation passSonet hi ngl n(). An application
receiving an any must determine the type of value stored by the any and then
extract the value.

227

Orbix C++ Programmer’s Guide

The IDL type any maps to the C++ class CCRBA: : Any. Refer to the Orbix C++
Programmer’s Reference for the full specification of this class. This class contains
some private member data, accessible via public accessor functions, that store
both the type of the any and its value. The type is stored as a QORBA: : TypeCode,
and the value is stored as a voi d*.

Inserting Data into an Any with operator<<=()

228

The C++ class GORBA: : Any contains a number of left-shift assign operators
(<<=) that enable you to assign a value to an any. An overloaded version of
oper at or <<=() is provided for each of the basic IDL types such as | ong,

unsi gned | ong, f | oat, doubl e, string and so on. In addition, the Orbix IDL
compiler can generate such an operator for each user-defined type that appears
in an IDL specification.

Note: Operators for user-defined type are generated only if the - A switch is
passed to the IDL compiler. Refer to Appendix A, “Orbix IDL Compiler
Options” on page 433 for more details.

The IDL definition for the example used in this chapter is as follows:

/1 1D
/1 In file anydeno.idl

/1 lllustrates user-defined types and anys.
typedef sequence<l ong> LongSequence;

interface AnyDenp {
/1 Takes in any type that can be specified in |DL.
void passSonethingln (in any any_type_paraneter);

/1 Passes out any type specified in IDL.
voi d get Sonet hi ngQut (out any any_type_paraneter);

/1 Passes in an any type and passes out an any
/1 containing a different type.
voi d passSonet hi ngl nQut (

inout any any_type_paraneter);

The Any Data Type

A version of the code for the example described in this chapter is available in
denos\ anydeno directory of your Orbix installation.

Inserting a Basic Type

Orbix provides a pre-defined overloaded version of oper at or <<=() for basic
IDL types such as | ong, unsi gned | ong, fl oat, doubl e stri ng and so on.

Assume that a client programmer wishes to pass an any containing an IDL short
(or, in C++, a OORBA: : Shor t) as the parameter to the passSonet hi ngl n()
operation. The client can use the following operator, which is a standard
member of the class CORBA: : Any:

voi d operat or<<=(CORBA: : Short s);

Inserting a User-Defined Type

If the client wishes to pass a more complex user-defined type, such as
LongSequence (in file anydeno. i dl), it can use the following generated
operators:

voi d operat or <<=(CORBA: : Any& a,
const LongSequence& t);

Using this operator, you can write the following code:

/] C++
/1 In file anydeno_menu. cxx.

/1 Builds an any containing a sequence of type
/'l LongSequence and then calls passSonet hi ngln.
voi d AnyDenoMenu: : do_send_sequence() {

try {
CORBA: : Any a;

/1 Build a sequence of |ength 2.
LongSequence sequence_to_insert(2);
sequence_to_insert.| ength(2);

/1 Insert a value into the sequence.
sequence_t o_insert[O0] 1;
sequence_to_insert[1] 2;

229

Orbix C++ Programmer’s Guide

230

/1 Use operator<<=() to insert the sequence
/1 into the any.
a <<= sequence_to_insert;

/1 Print out the contents of the sequence.

cout << "Call passSomethingln with sequence
contents:" << sequence_to_insert[0] <<" "
<< sequence_to_insert[1l] <<endl << endl;

/1 Now i nvoke passSonet hi ngl n.
m_any_denp- >passSonet hi ngln (a);

}

catch (CORBA:: SystenkException &YysEx) ({

}

These operators provide a type-safe mechanism for inserting data into an any.
The correct operator is called based on the type of the value being inserted.
Furthermore, if an attempt is made to insert a value that has no corresponding
IDL type, this results in a compile-time error.

Using the left-shift assign operator to insert a value into an any sets both the
value of the CCRBA: : Any and the CORBA: : TypeCode property for the

CORBA: : Any.

Each left-shift assign operator makes a copy of the value being inserted; for
example, in the case of object references, _dupl i cat e() is used. The

QORBA: : Any is then responsible for the memory management of the copy.

Previous values held by the CCRBA: : Any are properly deallocated; for example,
using OQORBA: : rel ease() in the case of object references.

Refer to “Other Ways to Construct and Interpret an Any” on page 233 for
details of how to insert boolean, char, array and octet values.

The Any Data Type

Interpreting an any with operator>>=()

The C++ class OORBA: : Any contains several right-shift assign operators (>>=)
that enable you to extract the value stored in an any. These operators
correspond to the basic IDL types such as | ong, unsi gned | ong, f| oat, doubl e,
stringand so on. As with oper at or <<=(), the IDL compiler can generate an
oper at or >>=() for each user-defined type that appears in an IDL specification.
These additional operators are only generated if the - A switch is specified to the
IDL compiler.

Interpreting a Basic Type

The following example illustrates the use of the right-shift assign operators to
extract the value stored in an any. Each oper at or >>=() returns a

OCRBA: : Bool ean value to indicate whether or not a value of the required type
can be extracted from the any. Each oper at or >>=() returns 1 if the any
contains a value whose CORBA: : TypeCode matches the type of the right-hand
parameter; and returns O otherwise. You can extract a value as follows:

/] C++
/1 In file anydeno_menu. cxx.

/1 Shows how an any is passed as an out paraneter.
voi d AnyDenoMenu: : do_get _any() {

1 CCRBA : Any* any_type_par anet er;

cout << "Call getSonethingQut" << endl;
m_any_deno- >get Sonmet hi ngQut (any_t ype_par aneter);

/'l Assumes that the server passes a string.
char* extracted_string = 0,

2 if (*any_type_paraneter >>= extracted_string) {
/] Print out the string.
cout << "any out paraneter contains a string with
value :" << extracted_string << endl << endl;

231

Orbix C++ Programmer’s Guide

el se {

/1 Error message.
cout << "unexpected val ue contained in any"
<< endl;

}

This code is explained as follows:

I. The OCRBA: : Any variable retains ownership of the memory it returns
when oper at or >>=() is called. Because the memory is managed by the
QORBA: : Any type there is no need for you to manage the memory.

2. The function oper at or >>=() is used to interpret the contents of the any
parameter. If successful, the operator causes the extracted pointer to
point to the memory storage managed by the any.

Interpreting a User-Defined Type

More complex, user-defined types can also be extracted using the right-shift
operators generated by the IDL compiler. For example, the LongSequence IDL
type from “Inserting a User-Defined Type” on page 229:

/1 1DL
typedef sequence<l ong> LongSequence;

You can extract a LongSequence from a GQORBA: : Any as follows:

voi d AnyDenoMenu: : do_get _any() {
CORBA: : Any* any_t ype_par anet er;

cout << "Call get Sonethi ngQut" << endl;

m_any_denp- >get Sonet hi ngQut (any_t ype_paraneter);

LongSequence* extracted_sequence = 0

if (*any_type_paraneter >>= extracted_sequence) {
cout << "any out paraneter contains a sequence

with value :" << extracted_sequence << endl
<< endl;

232

The Any Data Type

el se {
cout << "unexpected val ue contained in any"
<< endl ;

}

The generated right-shift operator for user-defined types takes a pointer to the
generated type as the right-hand parameter. If the call to the operator is
successful, this pointer points to the memory managed by the CORBA: : Any.

No attempt should be made to delete or otherwise free the memory managed
by the CORBA: : Any. Extraction into a _var variable violates this rule, because the
_var variable attempts to assume ownership of the memory. Furthermore, it is
an error to attempt to access the storage associated with a QORBA: : Any after
the CCRBA: : Any variable has been deallocated.

Other Ways to Construct and Interpret an Any

This section presents a number of other ways to construct and interpret an any.
You should use the >>=and <<= operators wherever possible, but there are
occasions when you must use a more complex approach.

Inserting Values at Construction Time

Instead of creating a CORBA: : Any variable using the default constructor, and then
inserting a value using oper at or <<=(), an application can specify the value and
its type when the GORBA: : Any is being constructed. This alternative constructor
has the following signature:

/] C++
Any(CORBA: : TypeCode_ptr tc, void* val ue,
CORBA: : Bool ean rel ease = 0);

This is not used normally, because it is more difficult to use than

oper at or <<=(), and because it is not type-safe. Specifically, the type of the value
passed to the val ue parameter may not match the type passed in parametert c.
A mismatch is not detected because the val ue parameter is of type voi d* and
this leads to subsequent errors.

233

Orbix C++ Programmer’s Guide

However, there are some types that must be inserted in this way, for example
bounded strings. Both bounded and unbounded IDL stri ngs map to char* in
C++, and hence both cannot be inserted using oper at or <<=(). This operator is
used to insert unbounded strings only. A GQORBA: : Any containing a bounded
string must be created using a specific constructor. You can use the function
QORBA: : Any: : repl ace() to make assignments. Refer to “Low Level Access to a
CORBA::Any” on page 236 for more details.

For example, you can construct a GORBA: : Any variable to contain a bounded
string as follows:

/] C++
/1 In file anydeno_nenu. cxx.

/1 Insert a bounded string into an any using the
/'l constructor.
voi d AnyDenoMenu: : do_send_bounded_string() {

try {
/1 Allocate the correct nmenory for the string.
1 char* string_to_insert =

CORBA: :string_alloc(string_length);
strcpy(string_to_insert,"Making Software
Wor k Together (TM");

/] Call to constructor.
2 OORBA: : Any a(_tc_BoundedString, &tring_to_insert, 1);

/1 I nvoke passSonet hi ngln as nornal.

cout << "Call passSomethingln with string val ue :
<< string_to_insert << endl << endl;

m_any_deno- >passSonet hi ngln (a);

}
catch (CORBA:: SystenException &ysEx) {

cerr << "System exception: Call passSonethingln
with a string failed" << endl;
cerr << &syskEx;

}

catch (CORBA:: Exception &ysEx) ({
cerr << "Exception: Call passSonmethingln with a
string failed" << endl;
cerr << &syskEx;

234

The Any Data Type

catch (...) {
cerr << "Unexpected exception: Call
passSonethingln with a string failed" << endl;

}

This code is explained as follows:

Because this example uses a bounded string, you must ensure that the
string is allocated the appropriate amount of memory. The constant
string_| engt h is defined in anydeno. i dl .

The first parameter to the CORBA: : Any constructor is a pseudo-object
reference for a QCRBA: : TypeCode. In this case, the constant
_tc_BoundedStri ng is passed. This constant is generated by the IDL
compiler.

The second parameter is a pointer to the value to be inserted into the
CCRBA: : Any; in this case string_t o_i nsert. This value should be of the
type specified by the OORBA: : TypeCode_ptr parameter. The behaviour is
undefined if the CORBA: : TypeCode_pt r and the val ue parameters do not
agree. When constructing CCRBA: : Anys for stri ng types, the second
parameter is of type char**.

The third parameter, r el ease, specifies which code assumes ownership
of the memory occupied by the value in the QORBA: : Any variable
(string_to_insert).If this is 1 (true), the OCRBA: : Any assumes
ownership of the storage pointed to by the val ue parameter. If this
parameter is O (false), the caller must manage the memory associated
with the val ue. The default is zero.

In this example, the OQORBA: : Any assumes ownership of the memory
associated with the variable string_t o_i nsert: the application code is
not required to free this memory.

235

Orbix C++ Programmer’s Guide

Low Level Access to a CORBA::Any

236

Class CORBA: : Any provides three type-unsafe functions enabling low level access
to an Any. These are defined as follows:

/] C++
voi d repl ace(CORBA: : TypeCode_ptr, void* val ue,
CORBA: : Bool ean rel ease = 0);

CORBA: : TypeCode_ptr type() const;

const voi d* val ue() const;

replace()

The repl ace() function is only intended for use with types that cannot use the
type-safe operator interface. It can be used at any time after construction of a
QORBA: : Any to replace the existing GORBA: : TypeCode and value. Like the
various <<= operators, it releases the previous QCRBA: : TypeCode and if
necessary, deallocates the storage previously associated with the val ue. The
rel ease parameter has the same semantics as the r el ease parameter of the
QORBA: : Any constructor described in “Inserting Values at Construction Time”
on page 233.

type()

The t ype() function returns an object reference for a CCRBA: : TypeCode that
describes the type of the QCRBA: : Any. As with all object references, the caller
must release the reference when it is no longer needed, or assign it to a
QORBA: : TypeCode_var variable for automatic management.

value()

The val ue() function returns a pointer to the data stored in the CCRBA: : Any,
or, if no value is stored, it returns the null pointer. This value may be cast to the
appropriate C++ type depending on the CORBA: : TypeCode of the CORBA: : Any.
The rules for the actual C++ type returned for each different IDL type are listed
in the entry for QCRBA: : Any in the Orbix C++ Programmer’s Reference.

The Any Data Type

If the OQORBA: : Any contains an object reference for an object whose type is
unknown at compile time, the t ype() function returns a reference for a
OCRBA: : TypeCode object that is equal to the _t c_obj ect typecode constant.
The val ue() function returns a voi d* that can be cast to a

OCRBA: : (hj ect _ptr*.

Example of Using type() and value()

The following example determines the type of an any by comparing the contents
of the any with the typecode constant for a bounded string:

/] C++
/1 In file anydeno_i npl . cxx.

voi d AnyDenol npl : : passSonet hi ngl n(
const CORBA:: Any& any_type_paraneter,
CORBA: : Envi ronment &)
t hr ow(CORBA: : Syst emException) {

CORBA: : TypeCode_ptr type= any_type_paraneter.type();

// Checks if the any contains a bounded string.
if (type->equal (_tc_BoundedString)) ({

/1l Returns a void pointer to the bounded string.
char** any_contents =

(char**)any_t ype_par anet er. val ue();
const char* bounded_string = *any_contents;

/1 Print out the contents.

cout << "passSonet hi ngln extracted a bounded
string of length " << strlen(bounded_string)
<< " and value " << bounded_string << endl

<< endl ;
}
el se {
/1l Error message.
cout << "passSonet hi ngln: unexpected val ue"
<< endl ;
}

237

Orbix C++ Programmer’s Guide

Orbix defines a typecode constant for each built-in type, and you can instruct

the IDL compiler to generate typecode constants for each user-defined type.

This is discussed in more detail in Chapter | |, “The TypeCode Data Type” on
page 219.

Refer to the Orbix C++ Programmer’s Reference for more details on the
repl ace(), type() and val ue() functions.

Inserting and Extracting Array Types

Recall that IDL arrays are mapped to regular C++ arrays. This presents a
problem for the type-safe operator interface to QORBA: : Any. C++ array
parameters decompose to a pointer to their first element, so you cannot use the
operators to insert or extract arrays of different lengths.

Nevertheless, arrays can be inserted and extracted using the operators, because
a distinct C++ type is generated for each IDL array—specifically to help with
insertion and extraction into or out of CORBA: : Any variables. The name of this
type is the name of the array followed by the suffix “_f orany”.

The following example shows type-safe manipulation of arrays and CORBA: : Anys:

/1 1DL
typedef long longArray[2][2];

/] C++
longArray_forany marray = { {14, 15}, {24, 25} };

/1 lInsertion:

CORBA: : Any a;

if (a <<= marray) {
cout << “Success!” << endl;

}

/I Extraction:
longArray_forany extractedValue;
if (a >>= extractedValue) {
cout << “Element [1][2] is "
<< extractedValue[1][2] << end];

238

The Any Data Type

These types, like the array _var types, provide an operator[]() to access the
array members, but the _f or any types do not delete any storage associated with
the array when they are themselves destroyed. This is a good match for the
semantics of oper at or >>=() . The CORBA: : Any retains ownership of the
memory returned by the operator. There is therefore no memory leak in this
code sample.

Inserting and Extracting boolean, octet and char

The standard CORBA IDL to C++ mapping does not require that the IDL types
bool ean, oct et and char map to distinct C++ types. Therefore, it is not
possible to insert and extract each of these using oper at or <<=() and

oper at or >>=() . Remember that the overloaded right-shift and left-shift
assignment operators are distinguished based on the type of the right-hand
argument.

In Orbix, the types bool ean and oct et map to the same underlying C++ type
(unsi gned char). Type char maps to a different type (C++ char), so a separate
operator could have been provided for it, but this would not be CORBA
compliant.

The distinction is achieved by using helper types that are nested within the C++
class OORBA: : Any. These helper types are struct s; refer to the entry for
CCRBA: : Any in the Orbix C++ Programmer’s Reference for details on their
syntax. Left-shift and right-shift assignment operators are provided for each of
these helper types.

These helper classes can be used as follows:

/] C++
CORBA: : Any a;

/1 Insert a boolean into the CORBA:: Any a:
CORBA: : Boolean b = 1;
a <<= CORBA:: Any::frombool ean(b);

/! Extract the bool ean.

CORBA: : Bool ean extractedVal ue;

if (a >>= CORBA:: Any::to_bool ean(extractedVal ue)){
cout << “Success!” << endl;

}

239

Orbix C++ Programmer’s Guide

/1 Insert an octet into the CORBA: :Any a:
CORBA: : Cctet o = 1;
a <<= CORBA:: Any::fromoctet(0);

/!l Extract the octet from a:

CORBA: : Cctet extractedVal ue;

if (a >>= CORBA:: Any::to_octet(extractedVal ue)) {
cout << “Success!” << endl;

}

/I Insert a char into the CORBA::Any a:
CORBA::Charc="'b’;
a <<= CORBA::Any::from_char(c);

/I Extract the char from a:

CORBA::Char extractedValue;

if (a >>= CORBA::Any::to_char(extractedValue)) {
cout << “Success!” << endl;

}

Any Constructors, Destructor and Assignment

240

In addition to the functionality already described, the C++ class CORBA::Any
also contains the following:

A default constructor.

This creates a CORBA: : Any with a OORBA: : TypeCode of kind t k_nul | and
no value.

A copy constructor.

This calls _dupl i cat e() on the CCRBA: : TypeCode_pt r of its QORBA: : Any
parameter and deep copies the parameter’s value.

A constructor for setting the type and value of an GORBA: : Any for
untyped values.

This is described in “Inserting Values at Construction Time” on page 233.

The Any Data Type

® An assignment operator.
This releases its own CORBA: : TypeCode_pt r and deallocates the memory
associated with its current value, if any. It then duplicates the
COCRBA: : TypeCode_pt r of its CORBA: : Any parameter and deep copies the
parameter’s value.

® A destructor.

This calls CORBA: : rel ease() on the CORBA: : TypeCode_ptr and
deallocates the memory associated with the value, if any.

Any as a Parameter or Return Value

The mappings for IDL any operation parameters and return value are illustrated
by the following IDL operation:

/1 1D
any op(in any al, out any a2, inout any a3);

This maps to:

Il C++
CORBA: : Any* op(const CORBA:: Any& al,
CORBA: : Any*& a2, CORBA:: Any& a3);

Because both return values and out parameters map to pointers to CCRBA: : Any,
a OCRBA: : Any_var class is provided that manages the memory associated with
this pointer. The OORBA: : Any_var class calls the C++ operator del et e on its
associated CCRBA: : Any* when it is itself destroyed; for example, by going out of
scope.

241

Orbix C++ Programmer’s Guide

242

K

Dynamic Invocation Interface

In a normal Orbix client program, the IDL interfaces that the client
can access are determined when the client is compiled. The Dynamic
Invocation Interface (Dll) allows a client to call operations on IDL
interfaces that were unknown when the client was compiled.

IDL is used to describe interfaces to CORBA objects, and the Orbix IDL
compiler generates the necessary support to enable clients to make calls to
remote objects. Specifically, the IDL compiler automatically builds the
appropriate code to manage proxies, to dispatch incoming requests within a
server, and to manage the underlying Orbix services.

Using this approach, the IDL interfaces that a client program can use are
determined when the client program is compiled. Unfortunately, this is too
limiting for a small but important subset of applications. These application
programs and tools require that they can use an indeterminate range of
interfaces: interfaces that perhaps were not even conceived at the time the
applications were developed. Examples include browsers, gateways,
management support tools and distributed debuggers.

Orbix supports the CORBA Dynamic Invocation Interface (DII), this allows an
application to issue requests for any interface, even if that interface was
unknown when the application was compiled.

The DIl allows invocations to be constructed at runtime by specifying the target
object reference, the operation or attribute name and the parameters to be
passed. A server receiving an incoming invocation request does not know
whether the client that sent the request used the normal, static approach or the
dynamic approach to compose the request.

243

Orbix C++ Programmer’s Guide

Using the DII

This chapter uses a banking example to demonstrate the use of the DII. This
example has the following IDL definitions:

/1 1DL
interface Account {
readonly attribute float bal ance;

voi d nakeDeposit(in float f);
voi d nmakeWthdrawal (in float f);

}s

interface Bank {
exception Reject {
string reason;

}s

/!l Create an account.
Account newAccount (in string owner,
inout float initialBalance) raises (Reject);

/'l Del ete an account.
voi d del eteAccount (in Account a);
H
To help illustrate the use of the DIl the operation Bank: : newAccount () has
been extended to take an i nout parameter denoting the initial balance.

The examples that follow show how you can make dynamic invocations by
constructing a Request object and then causing the specified operation or
attribute call to be made. The examples make the equivalent of the following call
to operation newAccount ():

/] C++

Bank_var bankVar = ...

CORBA: : Fl oat initial Balance = 1000. 00;
bankVar - >newAccount (" Chris", initial Bal ance);

244

Using the DII

Programming Steps in Using the DII

To make an invocation using the DI, do the following:

I. Get a reference to the target object.
2. Construct a Request object.
3. Populate the Request object with information about the invocation,

including the object reference, the name of the operation or attribute to
be called, and the parameters to the operation.

4. Invoke the request.

5. Retrieve the results of the operation.
There are two ways to use the DII:

® Using CORBA-defined functions

® Using the Orbix stream-like interface

The Orbix stream-like interface to the DIl is easier to use than the CORBA-
defined functions, but this interface is not CORBA-compliant.

There are two common types of client program that use the DII:

® A client interacts with the Interface Repository to determine a target

object’s interface, including the name and parameters of one or all of its
operations and then uses this information to construct DIl requests.

A client, such as a gateway, receives the details of a request to be made.
In the case of a gateway, this may arrive as part of a network package.
The gateway can then translate this into a DIl call, without checking the
details with the Interface Repository. If there is any mismatch, the

gateway will receive an exception from Orbix, and can report an error to
the caller.

Some client programs also use the DIl to call an operation with deferred
synchronous semantics, which is not possible using normal static operation calls.
Deferred synchronous calls are described in “Invoking a Deferred Synchronous
Request” on page 254.

245

Orbix C++ Programmer’s Guide

The CORBA Approach to Using the DIl

The first step in using the DIl is to obtain a reference to the target object for the
request. You can do this using any of the standard methods described in
Chapter 6, “Making Objects Available in Orbix”.

Note: All IDL interfaces inherit from type CORBA : (bj ect, so every object
reference can be represented using type CORBA: : (hj ect _pt r. Some
client programs may use a user-defined object reference type, but most
clients that use the DIl use the most-general type, CCRBA: : Chj ect _ptr.

The remainder of this section describes how you create and invoke a request
with the CORBA-compliant approach to using the DII.

Setting up a Request

There are two CORBA-compliant ways to construct a Request object:

I. Using the function _r equest () defined in class CORBA: : (bj ect. This is
declared as:

/] C++
typedef char* ldentifier;

Request _ptr _request(ldentifier operation,
Envi ronment & env = default _environnent);

A program that uses the function _request () must be linked with the
Interface Repository client library, as described in Chapter 15, “The
Interface Repository”.

2. Using the function _creat e_r equest () also defined in class
QCRBA: : (bj ect. This is declared as:

/1l C++

Status _create_request(
Context _ptr ctx,
const char* operation,
NVLi st _ptr arg_list,
NarmedVal ue_ptré& resul t,
Request _ptré& request,
Fl ags req_fI ags,

246

The CORBA Approach to Using the DII

Envi ronnent & env=defaul t _environnent);

Setting up a Request Using _request()

You can set up a request by invoking _r equest () on the target object and
specifying the name of the operation that is to be invoked. You can then
populate the Request object with the parameters to the call.

Creating the Request Object

To create a Request object, first obtain an object reference to the target object.
Call _request () on the target object as follows:

/] C++
/1l Cet object reference.
CORBA: : Obj ect _var target =
CORBA: : Orbi x::string_to_object(refStr);

/1 Create a Request object

/1 for operation newAccount ().

CORBA: : Request _var request =
target->_request ("newAccount");

The function _request () takes the name of the target operation or attribute as
a parameter. If you wish to call a get or set function for an attribute, then prefix
the attribute name with _get _ or _set _ as required.

Adding the Parameters to the Request Object
There are two steps in adding the parameters to the Request object:

I. Call the function CORBA : Request : : ar gunent s() to get an empty list of
name-value pairs corresponding to the parameters of the operation to be
called. This list is of type QORBA: : NVLi st , which is a list of
OCRBA: : NanedVal ue objects.

2. Add a CORBA : NanedVal ue object to the list for each operation
parameter value. The CCRBA: : NanedVal ue object stores the name of the
parameter and the corresponding value, represented as type CCRBA: : Any.

247

Orbix C++ Programmer’s Guide

You can get the empty parameter list for a request and create a
QORBA: : NanedVal ue object for each parameter as follows:

/1 C++
CORBA: : NarmedVal ue_ptr owner Arg;
CORBA: : NarmedVal ue_ptr bal anceArg;

ownerArg =

req- >ar gument s() - >add(CORBA: : ARG_I N) ;
bal anceArg =

req- >ar gunment s() - >add(CORBA: : ARG _| NOUT) ;

The function CORBA: : NVLi st : : add() creates a OORBA: : NanedVal ue and adds it
to the operation parameter list. It returns a CORBA: : NanedVal ue_ptr for the
newly created object. This object does not yet contain the required parameter
value.

You must specify the parameter passing mode when creating each of the
QORBA: : NanedVal ue objects. Specify these modes in the order in which the
parameters appear in the IDL definition for the operation.

The parameter passing modes are as follows:
CORBA: : ARG IN Input parameters (IDL i n).
CORBA: : ARG QUT Output parameters (IDL out).
CORBA: : ARG I NQUT Input/output parameters (IDL i nout).

To set the parameter values, get a pointer to the CORBA: : Any in each
OORBA: : NanedVal ue object in the parameter list and update it with the
corresponding value. To get the QCRBA: : Any value, use the

OORBA: : NanedVal ue: : val ue() function.

For example, to update the first parameter to the operation newAccount () do
the following:

CORBA: : Any* owner Val ue = owner Ar g- >val ue();

/1 Insert the paraneter val ue:
*owner Val ue <<= "Chris";

248

The CORBA Approach to Using the DII

To update the second parameter do the following:
CORBA: : Any* bal anceVal ue = bal anceAr g- >val ue();
/1 Insert the paraneter val ue:
*pal anceVal ue <<= 1000. 00;

At this point, the request has been constructed and is ready to be invoked.

Adding a Context Parameter to the Request

If the IDL operation has an associated IDL cont ext clause, then you can add a
Cont ext object can to the request. To do this, use the operation ct x() defined
on class Request . This function is described in the entry for class Request in the
Orbix C++ Programmer’s Reference.

Setting up a Request Using _create_request()

Another way to set up a request is to first create a list object, of type

CORBA: : NWLi st , containing the values of the operation parameters and then
invoke _create_request () on the target object, passing the request details to
this function.

Creating a List of Parameter Values
There are two steps in creating a list of parameter values:

I. Create an empty list of name-value pairs to contain the parameters. This
list is of type CORBA: : NVLi st , which is a list of CORBA: : NanedVal ue
objects.

2. Add a CORBA : NanedVal ue object to the list for each operation
parameter value. The CCRBA: : NanedVal ue object stores the name of the
parameter and the corresponding value, represented as type CCRBA: : Any.

249

Orbix C++ Programmer’s Guide

Create a OCRBA: : NVLi st and prepare the list to hold the parameter values as
follows:

/1 C++

CORBA: : NVLi st _ptr argli st;

CORBA: : NarmedVal ue_ptr owner Arg;
CORBA: : NarmedVal ue_ptr bal anceArg;

if (CORBA::Orbix.create_list(2, arglist) {
owner Arg = arglLi st->add(CORBA: : ARG I N) ;
bal anceArg = arglLi st->add(CORBA: : ARG_| NOUT) ;
}

The function OORBA: : NVLi st : : add() is described in “Adding the Parameters to
the Request Object” on page 247.

The CORBA: : NVLi st object assumes ownership of the memory for each
QOORBA: : NanedVal ue object in the list. You should not release the

QORBA: : NanedVal ue_ptr returned from CORBA: : NVLi st: : add() and you
should not assign the result to an _var variable.

To set the parameter values, insert each value into the CORBA: : Any associated
with the corresponding CCRBA: : NarredVal ue object, as described in “Adding the
Parameters to the Request Object” on page 247:

CORBA: : Any* owner Val ue = owner Ar g- >val ue();
CORBA: : Any* bal anceVal ue = bal anceArg- >val ue();

/1 Insert the parameter val ues.
*owner Val ue <<= "Chris";
*pal anceVal ue <<= 1000. 00;

250

The CORBA Approach to Using the DII

Creating the Request Object

The function _creat e_request () is defined in class CORBA: : (bj ect as follows:

[l C++

Status _create_request(
Context _ptr ctx,
const char* operation,
NVLi st_ptr arg_|list,
NamedVal ue_ptr & result,
Request _ptré& request,
Fl ags reqg_fI ags,
Environnent & env = defaul t _envi ronment);

The parameters to this function are as follows:

ctx

operation

arg |ist
resul t
request
req_fl ags

env

A pointer to the Cont ext object to be sent in the
request, if the operation has an associated IDL cont ext
clause.

The name of the operation to be called. If you wish to
call a get or set function for an attribute, specify the name
of the attribute preceded by the string _get_ or _set_.

The parameters to the operation.

The location for the return value.

The pointer to the new Request object to be created.
The flags for the request.

The Envi ronnent parameter for exception handling.

The return type Stat us is a typedef for QORBA: : ULong. Function
_creat e_request () returns a non-zero value to indicate success and a zero
value to indicate failure.

When calling _creat e_request (), you initialize parameters ct x, oper ati on,
arg_list,and req_flags in advance. You do not need to initialize parameters

result orrequest.

Once you call _creat e_request (), you must specify the TypeCode of the
operation return value. To do this, call CORBA: : Request: : set _return_t ype()
on the Request object, passing the TypeCode constant associated with the

return type.

251

Orbix C++ Programmer’s Guide

The example shown below constructs a Request for operation newAccount () :

[l C++

CORBA: : Request _ptr request;
CORBA: : NVLi st _ptr argli st;
CORBA: : NanmedVal ue_ptr result;

/1 Add paranmeter values to arglList.

/1 Construct the Request object.
if(target->_create_request(
CORBA: : Context::_nil (), "newAccount", argList,
result, request, 0)) {
request->set_return_type(_tc_Account);

/1 1nvoke the request.

Using the Interface Repository when Setting Up a Request

Both CORBA-compliant methods of setting up a Request object require that
you create a OCRBA: : NVLi st object containing the values of the operation
parameters. If you have obtained a description of an operation from the Orbix
Interface Repository, as described in Chapter 15, an alternative way to create
the QCRBA: : NVLi st object is available.

An operation is described in the Interface Repository by an object of type
OORBA: : Qper at i onDef . The function GORBA: : ORB: : creat e_operati on_list()
is defined as follows:

/] C++
Status create_operation_list(
Qper ati onDef _ptr operation,
NVLi st _ptr& new_|ist,
CORBA: : Envi ronnent & env = defaul t _environnent);

Call this function on the OCRBA: : O bi x object, passing a GORBA: : Qper at i onDef
object that describes the target operation and an empty CORBA: : NVLi st object.
This function updates the CCRBA: : NVLi st object with one element for each

argument. Each element is initialized with the correct parameter passing mode,

252

The CORBA Approach to Using the DII

Invoking a

the name of the argument, and an initial value of type CORBA: : Any. The value of
the CCRBA: : Any is not initialized.

To call OORBA: : ORB: : creat e_operation_|ist(), a client must be linked
against the Interface Repository client library, as described in Chapter 15, “The
Interface Repository”.

Request

Once the parameters are inserted, you can invoke a request as follows:

[l C++

try {
i f (request->i nvoke())
/1 Call to invoke() succeeded.
el se
/1 Call to invoke() fail ed.

}
cat ch (CORBA: : Syst enExcepti on& se) {

cout << "Unexpected Exception" << &se << endl;

}

Exceptions are handled in the same manner as for static function invocations.
However, user-defined exceptions are not currently supported.

Invoking a Request for a Oneway Operation

The function CCRBA: : Request : : i nvoke() calls the target operation and blocks
the client until the operation returns. You can not use invoke to call a oneway
operation. Instead, you must use the function

OCRBA: : Request : : send_oneway().

For example, if the Request object r equest was set up for a oneway operation

call, then you could invoke send_oneway() as follows:

[l C++

try {
request - >send_oneway() ;
}

cat ch (CORBA: : Syst enExcepti on& se) {
cout << "Unexpected Exception" << &se << endl; }

253

Orbix C++ Programmer’s Guide

Note: You can also use send_oneway() to invoke a normal, non-oneway,
operation. The effect of this is that the client is not blocked while the
operation call is being processed, but all return values, out, and i nout
parameters are discarded. This functionality is rarely required.

Invoking a Deferred Synchronous Request

The DIl allows you to make operation calls using deferred synchronous semantics.
Using these semantics, a client can call an operation, continue processing in
parallel with the operation, and then retrieve the operation results when
required.

To use this method of invoking a request, do the following:

I. Invoke the request by calling CORBA: : Request : : send_def erred() .
2. Continue processing in parallel with the operation.

3. If you wish to check if the result of the operation is available, call the
function CORBA: : Request : : pol | _response() on the Request object.
This function returns a non-zero value if a response has been received.

4. To get the result of the operation, call
OORBA: : Request : : get _response() on the Request object.

For more details on the functions CCRBA: : Request : : send_def erred(),
QCRBA: : Request : : pol | _response(),and QORBA: : Request : : get _response(),
see the entry for class CORBA: : Request in the Orbix C++ Programmer’s Reference.

Invoking Multiple Requests Simultaneously

Two functions defined on class CORBA: : CRB allow you to invoke multiple DII
requests simultaneously. To call multiple oneway operations simultaneously,
invoke the function OCRBA: : CRB: : send_mul ti pl e_request s_oneway() on the
QORBA: : O bi x object. To call multiple deferred synchronous operations, call
OORBA: : ORB: : send_mul ti pl e_requests_deferred() on the same object.
These functions are described in the entry for class CCRBA: : CRBin the Orbix C++
Programmer’s Reference.

254

The CORBA Approach to Using the DII

Retrieving the Results of a Request

When you invoke a request, the values of the out and i nout parameters are
automatically modified within the QORBA: : NVLi st that contains the parameter
values. The function OORBA: : Request : : ar gunent s() returns this list. To get
the parameter values, do the following:

I. Call argunent s() on the Request object to get the parameter list. This
function returns a CCRBA: : NVLi st _ptr.

2. Use the function CORBA: : NVLi st ::iten{) to return an element at a
particular index in the list and get the CORBA: : NanedVal ue objects
associated with the out and i nout parameters.

3. Call CCRBA : NanedVal ue: : val ue() to get a pointer to the QORBA: : Any
value for each parameter.

4. Extract the parameter values from the CCRBA: : Any.

The function OCRBA: : NVLi st : :iten() is described in the entry for class
CORBA: : NVLi st in the Orbix C++ Programmer’s Reference.

To get the return value of the operation, call the function resul t () on the
Request object. This function is defined in class CORBA: : Request as follows:

/] C++
CORBA: : NarmedVal ue_ptr resul t(Environnent & env
= defaul t _environnent);

This function returns a reference to a CORBA: : NanedVal ue. Before calling this
function, you must create the CORBA: : NanedVal ue object as follows:

CORBA: : NanmedVal ue_ptr nv =
CORBA: : NamedVal ue: : | T_create();

Use the val ue() function defined on CORBA : NanedVal ue to extract the
CORBA: : Any containing the return value of the operation, as for out and i nout
parameters.

Getting Information About a Request Object

Given a Request object, you can get the operation name and the target object
reference using the functions CCRBA: : Request : : oper ati on() and

CORBA: : Request : : target (), respectively. Chapter 16, “Filtering Operation
Calls” provides an example in which these functions are required.

255

Orbix C++ Programmer’s Guide

The Orbix-Specific Approach to Using the DII

As in the CORBA-compliant approach to using the DII, the first step in using the
Orbix-specific approach is to obtain a reference to the target object for the
request. You can do this using any of the standard methods described in
Chapter 6, “Making Objects Available in Orbix”.

The remainder of this section describes how you create and invoke a request
with the Orbix stream-like interface to the DII.

Setting Up a Request

Orbix allows you to instantiate a Request object using the normal C++
mechanisms. For example, you can create a Request object as follows:

/1 C++
CORBA: : Obj ect _ptr target;
/1 Get a reference for the target object.

CORBA: : Request request (target);

The Request constructor used in this example takes the target object reference
as a parameter.

The next step is to set the target operation name. To do this, call the function
QORBA: : Request : : set Qperati on() on the Request object, for example:

/1 C++
request . set Operation("newAccount");

Once you set the operation name, you must specify the TypeCode of the
operation return value. To do this, call CORBA: : Request : : set _return_type()
on the Request object, passing the TypeCode constant associated with the
return type. For example, to set the return type to Account, call

OORBA: : Request :: set _return_type() as follows:

/1 C++
request.set_return_type(_tc_Account);

You can then insert the values of the operation parameters into the request.
Orbix allows you to do this as if Request object were an I/O stream. Class
QORBA: : Request supports oper at or <<() for all of the IDL basic types, except
octet.

256

The Orbix-Specific Approach to Using the DII

For example, to insert the parameters for operation newAccount (), do the
following:

/]l C++

CORBA: : Fl oat initial Bal ance = 1000. 00

request << "Chris";

request << CORBA::inout Mbde << initial Bal ance;

The parameters must be inserted in the correct order. Orbix dynamically type-
checks the values when the request arrives at the remote object.

The default parameter passing mode is i n. You can specify the parameter passing
mode using one of the following manipulators:

OCRBA: @ i nMbde Input parameters (IDL i n).
COCRBA: : out Mode Output parameters (IDL out).
OCRBA: @ i nout Mode Input/output parameters (IDL i nout).

Using a manipulator changes the parameter attribute mode for all subsequent
parameters for this Request object or until another manipulator is used.

Adding a Context Parameter to the Request

You can also use oper at or <<() to specify a Cont ext object to be passed in a
request. Use this operator to pass the Cont ext object as the last parameter to
the request, as if the Cont ext object were an IDL i n parameter.

257

Orbix C++ Programmer’s Guide

Invoking a Request

Once you insert the operation parameters, you can invoke the request as
described in “Invoking a Request” on page 253. For example, the most common
way to invoke a request is to call CORBA: : Request : : i nvoke() as follows:

[l C++

try {
i f (request->invoke())
/1 Call to invoke() succeeded.
el se
/1 Call to invoke() failed.

}
catch (CORBA: : SystenException& se) {

cout << "Unexpected Exception" << &se << endl;

}

Resetting a Request Object

If you wish to invoke several DIl requests in a single program, you can use
several Request variables, using the appropriate operation settings for each.
Alternatively, you can use a single Request variable and reset this variable for
each request.

To reset an existing Request object, call OORBA: : Request : : reset (). You can
then set new values for the target object, for example as follows:

/1 C++

request.reset();

request . set Target (aPtr);

request . set Operation("mkeDeposit");

You can also do this as follows:

/1 C++
request.reset(aPtr, "nmakeDeposit");

You can then insert new operation parameters into the request. You should also
set the request return type, as described in “Creating the Request Object” on
page 251.

258

The Orbix-Specific Approach to Using the DII

Retrieving the Results of a Request

When the operation returns, you can examine the return value and output
parameters. If there are any out and i nout parameters, these are modified by
the call and no special action is required to access their values. For example,
after calling i nvoke() on a request to operation newAccount (), the actual
parameter i ni ti al Bal ance is updated automatically.

To get the operation return value, use the extraction operator, oper at or >>(),
as follows:

/] C++
Account _ptr aPtr;
CORBA: : Obj ect _ptr oPtr;

try {
/1 Call newAccount () using Request request.

/'l Extract the return val ue.
request >> oPtr;
if (aPtr = Account::_narrow(oPtr)) {
/1 Use the returned Account object reference.

}

cat ch (CORBA: : Syst enExcepti on& se) {
cout << "Unexpected System Exception"
<< &se << endl;

}
catch (...) {
cout << "Unexpected exception << endl;

Note: oper at or >>() is used to extract just the return value from the request
and not to extract the output parameters.

259

Orbix C++ Programmer’s Guide

Additional Information About operator<<()

As a further example of oper at or <<(), consider the following IDL operation:

/1 1D
long op(in long i, inout float f, out char c);

You can insert the parameters for this operation as follows:

[l C++
CORBA: : Request request;
CORBA: : Long i = 4L;

CORBA: : Float f1 = 8.9;
CORBA: : Char ch;

request << i
<< CORBA: :i nout Mode << f1
<< CORBA: : out Mode << ch;

Note that parameters to oper at or <<() are passed by reference, so you must
write:

<< f1l
rather than:
<< &f 1

Input (i n) parameters are not copied into the request argument list; so if the
values of the variables are changed between their insertion and invocation, the
new values are transmitted. In other words, oper at or <<() uses “call by
reference” semantics. Care must be taken to ensure that the parameters remain
in existence and have the desired values when the invocation of the Request is
actually made. An example of such an error would be to insert a local variable
within a function and to return from the function before the Request invocation
is made.

Parameters inserted using oper at or <<() are, by default, nameless. However,
you can explicitly give the parameter a name, using CCRBA: : arg():

Il C++
/1 lInsert paraneter "height".
request << CORBA::arg("height") << 65;

260

The Orbix-Specific Approach to Using the DII

The naming of parameters does not remove the requirement that parameters
must be inserted in the proper order. However, if the same parameter name is
used again, its previous value is replaced with the new value.

Note: ar g affects only a single use of oper at or <<(). The manipulators i nMode,
out Mode, and i nout Mode affect all subsequent uses of oper at or <<() ona
given Request object until the next mode change.

Inserting and Extracting Octets

An oct et cannot be inserted into or extracted from a Request using operators
<< and >>.

This restriction arises because both IDL oct et and bool ean map to the same
underlying C++ type. Since the type bool ean is used more frequently than

oct et, oper at or <<(unsi gned char) and oper at or >>(unsi gned char)
assume that their parameter is a bool ean; and this assumption may lead to
conversion errors between heterogeneous machines if the parameter is in fact
an octet.

To insert an oct et into a Request, use the function
OCRBA: : Request::insertCctet():

[l C++
CORBA: : octet 0 = OxA2;
request.insertCctet(0);

Use the function CORBA: : Request : : extract Cct et (oct et & to extract an
oct et return value.

Inserting and Extracting User-Defined Types

Two manipulators, OCRBA: : i nsert and QORBA: : ext ract, allow you to insert
and extract user-defined IDL types into and out of a Request object.

261

Orbix C++ Programmer’s Guide

The use of these manipulators for structs is illustrated in the code segment
below:

/1 1DL

struct Exanple {
| ong mi;
char ne;

}s

Il C++

CORBA: : Request request;

Exanmpl e e;

e.nl = 27; e.n2 ='c¢C’;

request << CORBA::insert(

_tc_Exanple, &, CORBA::inMde);

QOORBA: : i nsert uses the CORBA: : TypeCode constant generated by the IDL
compiler for each user-defined type. In this case, _t c_Exanpl e is the TypeCode

for the IDL struct Exanpl e. Refer to “The TypeCode Data Type” on page 219
for a full explanation of TypeCodes.

User-defined IDL types can be extracted from a Request using the
QOORBA: : extract manipulator:

[l C++

CORBA: : Request request;

st s1;

request >> CORBA: :extract(_tc_Exanple, &s1l);

The CORBA: ;i nsert and OCRBA: : ext ract manipulators also work for primitive
types.

Inserting and Extracting Arrays

To insert an array of basic types into a Request, one of the following functions
should be called on the Request object:

encodeChar Array/() encodeCct et Array()
encodeShort Array() encodeUshort Array()
encodelLongArray() encodeULongAr ray()
encodeFl oat Array() encodeBool eanArray/()

262

The Orbix-Specific Approach to Using the DII

Each is defined in class CORBA: : Request and takes a pointer to the first element
of the array, and the array length (as a GORBA: : ULong).

To extract an array, one of the following functions should be called on the
Request object:

decodeChar Array() decodeCct et Array()
decodeShort Array() decodeUshort Array()
decodelLongArray() decodeULongArray()
decodeFl oat Array() decodeBool eanArray()

Each takes a pointer which is updated to point to the first element of the array,
and a reference to a CORBA: : ULong which is updated to hold the length of the

array.

Restrictions on Some Compilers
On most compilers, a CCRBA: : Fl oat can be inserted as follows:

/]l C++
CORBA: : Float f =;
r << f;

However, for some compilers, it is necessary to cast the GORBA: : Fl oat as it is
being inserted:

Il C++
r << (CORBA: :Float)f;

Otherwise it may be implicitly cast to a C++ doubl e.
The latter form needs to be used when writing portable code.
Similarly, some compilers require an explicit cast to insert object references:

/] C++
CORBA: : Obj ect _ptr o = ...
r << (CORBA:: (Object_ptr)o;

263

Orbix C++ Programmer’s Guide

264

| 4

Dynamic Skeleton Interface

The Dynamic Skeleton Interface (DSI) is the server-side equivalent
of the DII. It allows a server to receive an operation or attribute
invocation on any object, even one with an IDL interface that is
unknown at compile time. The server does not need to be linked
with the skeleton code for an interface to accept operation
invocations on that interface.

Instead, a server can define a function that is informed of an incoming operation
or attribute invocation. That function determines the identity of the object being
invoked. The name of the operation and the types and values of each argument
must be provided by the user. The function can then carry out the task that is
being requested by the client, and construct and return the result.

Just as use of the DIl is significantly less common than use of the normal static
invocations, use of the DSl is significantly less common than use of the static
interface implementations. A client is not aware that a server is, in fact,
implemented using the DSI; it simply makes IDL calls as normal.

To process incoming operation or attribute invocations using the DSI, a server
must make a call to the ORB to indicate that it wishes to use the DSI for a
specified IDL interface. The same server can use the static interface
implementations to handle operation or attribute invocations on other
interfaces: however, it cannot use the DSI and static implementation on the
same interface.

265

Orbix C++ Programmer’s Guide

Uses of the DSI

266

The DSl has been explicitly designed to help programmers write gateways. Using
the DSI, a gateway can accept operation or attribute invocations on any specified
set of interfaces and pass them to another system. A gateway can be written to
interface between CORBA and some non-CORBA systems. The gateway would
need to know the protocol rules of non-CORBA system but it would be the
only part of the CORBA system that would require this knowledge. The rest of
the CORBA system would continue to make IDL calls as usual.

The IIOP protocol allows an object in one ORB to invoke on an object in
another ORB. Non-CORBA systems do not need to support this protocol. One
way to interface CORBA to such systems is to construct a gateway using the
DSI. This gateway would appear as a CORBA server that contains many CORBA
objects. In reality, the server would use the DSI to trap the incoming invocations
and translate them into calls to the non-CORBA system. A combination of the
DSl and DIl allows a process to be a bidirectional gateway. The process can
receive messages from the non-CORBA system and use the DIl to make
CORBA calls. It can use the DSI to receive requests from the CORBA system
and translate these into messages in the non-CORBA system.

Other uses of the DSl are also possible. For example, a server can contain a very
large number of non-CORBA objects that it wishes to make available to its
clients. One way to achieve this is to provide an individual CORBA object to act
as a front-end for each non-CORBA object. However, in some cases this
multiplicity of objects may cause too much overhead.

Another way is to provide a single front-end object that can be used to invoke
on any of the objects, probably by adding a parameter to each call that specifies
which non-CORBA object is to be manipulated. This would of course change the
client’s view because the client would not be able to invoke on each object
individually, treating it as a proper CORBA object.

The DSI can be used to achieve the same space saving as achieved when using a
single front-end object, but clients can be given the view that there is one
CORBA object for each underlying object. The server would indicate that it
wished to accept invocations on the IDL interface using the DSI, and, when
informed of such an invocation, it would identify the target object, the operation
or attribute being called, and the parameters (if any). It would then make the call
on the underlying non-CORBA object, receive the result, and return it to the
calling client.

Dynamic Skeleton Interface

Using the DSI

To use the DSI, you must perform the following steps in your server program:

I. Create one or more objects that have the

OCRBA: : Dynam cl npl enent at i on interface, and register these with
Orbix.

2. Register each of these objects to handle requests for a specified IDL
interface.

Creating CORBA::Dynamiclmplementation Objects

The IDL interface CORBA: : Dynam cl npl enent at i on is defined as follows:

/| Pseudo IDL

/1 I'n nmodul e CORBA.

pseudo interface Dynam cl npl ementation {

voi d i nvoke(inout ServerRequest request,
i nout Environnent env);

b
The single operation, i nvoke(), is informed of incoming operation and attribute
requests. It can use the Server Request parameter to determine what operation
or attribute is being invoked and on what object. This parameter is also used to
obtain i n and i nout parameters, and to return out and i nout parameters and
the return value to the caller. It can also be used to return an exception to the

caller. An implementation of i nvoke() is known as a Dynamic Implementation
Routine (DIR).

Interface Dynani cl npl enent ati on is invisible to clients. In particular, the
interfaces that they use do not inherit from it. If they were to inherit from
Dynam cl npl enent at i on, then the fact that the DSI is used at the server-side
would not be transparent to the clients.

267

Orbix C++ Programmer’s Guide

Registering CORBA::Dynamiclmplementation Objects

Once an instance of Dynami cl npl enent at i on has been created, it must be
registered to handle requests of a specified interface by calling the set | npl ()

operation on the GORBA: : O bi x object:

/1
/1

| DL
I'n nodul e CORBA.

interface BOA {

void setlnpl(in | nmplenentationDef inpl Def,
in Dynanmiclnmpl enrentation inpl);

,

The Ser ver Request object that is passed to

Dynami cl npl erent ati on: : i nvoke() is created by Orbix once it receives an
incoming request and recognizes it as one that is to be handled by the DSI. This
means that an instance of Dynam cl npl enent at i on has been registered to

handle the target interface.

The ServerRequest Data Type

The Ser ver Request type is defined in IDL as follows:
/1 Pesudo | DL

/1

I'n nodul e CORBA.

pseudo interface ServerRequest {

268

Identifier op_name();

Cont ext ctx();

any result();

voi d parans(inout NVList parns);

/1 The following are Orbix specific.
readonly attribute Object target;
readonly attribute Identifier operation;

/1 operation is the sane as op_nane()
attribute NVList argunents;

/1 arguments is closely related to parans()
attribute any exception;
attribute Environnent env;

Dynamic Skeleton Interface

Instances of this interface are pseudo-objects; this means that references to
them cannot be transmitted through IDL interfaces.

Because this is a recent addition to the CORBA standard, it was necessary to
make Orbix-specific extensions to it to address some inconsistencies in the
standard, and also to provide compatibility between type Request and

Ser ver Request .

The attributes and operations of Ser ver Request have the following meanings:

target

This is an object reference to the target object. Naturally, the
target object will not actually exist as a normal CORBA object,
so this is actually an object (of a derived type of

QORBA: : (hj ect) that is created by Orbix temporarily for the
duration of the call. The operations on this object can be used
to determine the marker of the target object, and its interface
name.

operation/

op_nane()

This attribute or operation gives the name of the operation
being invoked.

argunents /

This attribute or operation allows the i nvoke() operation to

par ans() specify the types of incoming arguments. The attribute
ar gunent s is explained in detail later in this section.

resul t This allows the i nvoke() operation to return the result of an
operation or attribute call to the caller. In C++, the result is
given as a pointer to a CORBA: : Any that holds the value to be
returned to the caller.

exception This allows the i nvoke() operation to return an exception to
the caller. In C++, the exception is given as a pointer to a
QORBA: : Any that holds the exception to be returned to the
caller.

env This returns the environment parameter (of type
QORBA: : Envi r onnent) associated with the call.

ctx This returns the context associated with the call.

269

Orbix C++ Programmer’s Guide

There are some special rules determining how you can call these attributes and

operations:

operation /
op_nhane()

This attribute/operation must be called at least once in each
execution of the i nvoke() function.

argurents /
par ans()

This attribute/operation must be called exactly once in each
execution of the i nvoke() function.

resul t

This must be called once for operations with non-void return
types and not at all for operations with voi d return types. If it
is called, the except i on attribute cannot be used.

exception

This can be called at most once. If it is called, the resul t
attribute cannot be used.

ctx

This can be called at most once. If it is called, it must be called
before the ar gunent s/par ans() attribute/operation is called.

The other attributes, t ar get, oper at i on and env, can be used at any time, and
any number of times.

Example of Using the DSI

To implement the Dynamic Implementation Routine, i nvoke(), you should first
declare a class that inherits from CORBA: : Dynam cl npl enent at i on; for

example:
/] C++
cl ass myDsSl
publ i ¢ CORBA: : Dynani cl npl ement ati on {
public:
virtual void invoke(CORBA:: ServerRequest &) ;
b

270

Dynamic Skeleton Interface

You must create an instance of this and register it using
CCRBA: : BQA: :set I npl ().

/1l C++
{
nyDSlI nyDSl i nst ance;
CORBA::Orbix.setimpl(“interfaceName”, myDSlinstance);

}

The following pseudo-code gives an outline of how to implement a simple
version of invoke() . It explicitly tests for operations called “fi rst Q” and
“second@”. An outline of the code for “first " is shown:

/1l C++
voi d nyDSl: : i nvoke(CORBA: : Server Request & r SrvReq,
CCRBA: : Envi ronnent & env,
OCRBA: : Environnent & | T_env = OCORBA: : def aul t _envi ronnent) {

OCRBA: : (hj ect _ptr theTarget = rSrvReq.target();
// Use _nmarker() to determine the marker of the
// target object.

const char* pCpNane = r SrvReq. op_nane();'

try {
if (stremp(pOpName, firstOp”) == 0) {
/I Access the in and inout parameters and
/I set up variables that will hold the
// out parameters. Both steps are achieved
/ using params(), explained later.

/I Carry out the required actions.
/I If anything goes wrong, use exception()
/I to pass an exception back to the caller.

/I Prepare to send the reply to the caller.

/I First construct a CORBA::Any object to
/'hold the value.

CORBA::Any* pResult = new CORBA::Any;

. OpNamethen holds the name of the invoked operation; if an attribute, say attr , is called, the
name will be “_set _attr” or“_get _attr”.

271

Orbix C++ Programmer’s Guide

/1 Secondly, insert the value into pResult,
/1 using operator<<=().
pResult <<= 24;

/1 Then use result() to give the result back:
rSrvReq. resul t (pResul t);

}
else if (stremp(pOpName, “secondOp”) ==0) {
/I Similar code as before.

}

}
catch (...) {

/I Use exception() to pass an exception
/I back to the caller.

/I Note that CORBA forbids invoke()

/I raising an exception.

}

Some real implementations of invoke() may not have a set of strings to
compare using strcmp() , but instead may need to look up some configuration
table, or determine how to proceed in some other way.

Example of Using params()

In the first example of using params() , it is assumed that there are two
arguments to the operation called, both in parameters of type short , and
named “n” and “n?, respectively. There is also a return value of type | ong.

272

Dynamic Skeleton Interface

The code to call par ans() and resul t () can then be as follows:

/1l C++
// Build the argurent |ist.
OCRBA: : NVLi st _ptr pArgList;

if (CORBA :QObix.create_|list(2, pArglist) {

CCRBA: : Short val ueC _n = 0;
CCRBA: : Short val ue _m= 0;
OCRBA: : Any* pFirst Any = new CORBA: : Any

(QORBA:: _tc_short, &alued_n, 0);
CCRBA: : Any pSecondAny = new CORBA: : Any

(QORBA:: _tc_short, &alued_m 0);
pArgList->add_value(“n”, *pFirstAny, CORBA::DSI_ARG_IN);
pArgList->add_value(“m”, *pSecondAny, CORBA::DSI_ARG_IN);

I Give the prepared argument list to the ServerRequest.
rSrvReq.params(pArgList);

/I Now, valueOf_n contains the value or parameter n.
/I And valueOf_m contains the value of parameter m.

/I Prepare the space for the reply:

CORBA::Long pValue;

/I Then execute the required code for the operation
/I that the client has called. Put the final value

/lin pValue.

/I Create the result.

CORBA::Any* pResult = new CORBA::Any;
pResult <<= pValue;
rSrvReq.result(pResult, IT_env);

273

Orbix C++ Programmer’s Guide

274

In the second example of using parans(), it is assumed that there are two
arguments to the operation that has been called, the first, named “n”, is an out
parameters of type short, and the second, named “n, is an i nout parameter of
type | ong. There is no return value. The code to call parans() can then be as
follows:

[l C++
/1 Build the argurent |ist.
OORBA: : NVLi st _ptr pArglList;

if (CORBA :Obix.create |list(2, pArglist) {
QORBA: : Short val ue>™* _n = 0;
QOORBA: : Long val uedf _m = 0;
OORBA: : Any* pFirst Any = new CORBA: : Any
(CORBA : _tc_short, &alued_n, 0);
OORBA: : Any* pSecondAny = new CCRBA: : Any
(CORBA : _tc_long, &alued_m 0);
pAr gLi st - >add_val ue
(“n”, *pFirstAny, CORBA::DSI_ARG_OUT);
pArgList->add_value
(“m”, *pSecondAny, CORBA::DSI_ARG_INOUT);

/I Give the prepared argument list to the ServerRequest:
rSrvReq.params(pArgList);

}

Once this code has been executed, the proper action of invoke() can be
carried out. During that time, the incoming value of the second parameter, m is
available in valueOf m . The values that valueOf n and valueOf m have at the
end of the function call will be passed back to the caller (as the out and inout
parameters, n and m respectively).

|15

The Interface Repository

This chapter describes the Interface Repository, the component of
Orbix that provides persistent storage of IDL modules, interfaces and
other IDL types. Orbix programs can query the Interface Repository
at runtime to obtain information about IDL definitions.

There are several ways to use the Interface Repository in your Orbix
applications. For example, you can iterate through the Interface Repository to
browse or list its contents. Alternatively, given an object reference, the object’s
type and all information about that type can be determined at runtime by calling
functions defined by the Interface Repository.

Such facilities are important for some tools, such as:
® Browsers that allow you to determine that types that have been defined
in the system, and to list the details of chosen types.
® CASE tools that aid software design, writing and debugging.

® Application level code that uses the Dynamic Invocation Interface (DII) to
invoke on objects whose types were unknown at compile time. This code
may need to determine the details of the object being invoked in order to
construct the request using the DII.

® A gateway that requires runtime type information about the type of an
object being invoked.

The Interface Repository provides a set of IDL interfaces to browse and list its
contents, and to determine the type information for a given object.

275

Orbix C++ Programmer’s Guide

Configuring the Interface Repository

Before writing applications to read the contents of the Interface Repository, you
must first install and configure the repository as described in the Orbix C++
Administrator’s Guide.

Orbix implements the Interface Repository using a standard Orbix server named
I FR To install the Interface Repository, you must run the Orbix daemon
process and register this server.

Orbix provides a command-line utility, called puti dl , that allows you to add IDL
definitions to the Interface Repository. The Orbix GUI tools also includes
graphical interface to the Interface Repository. Refer to the Orbix C++
Administrator’s Guide for more details.

Runtime Information about IDL Definitions

The Interface Repository maintains full information about the IDL definitions
that have been passed to it. A program can use the Interface Repository to
browse through the set of modules and interfaces, determining the name of each
module, the name of each interface and the full definition of that interface. A
program can also find a full IDL definition if given the name of a module,
interface, attribute, operation, struct, union, enum, typedef, constant or
exception.

For example, given any object reference, you can use the Interface Repository to
determine all of the information about that interface. In particular, you can
determine:

® The module in which the interface was defined, if any.
®* The name of the interface.
®* The interface’s attributes, and their definitions.

® The interface’s operations, and their full definition, including parameter,
context and exception definitions.

® The interface’s base interfaces.

A short example at the end of this chapter demonstrates the use of the Interface
Repository.

276

The Interface Repository

The Structure of Interface Repository Data

The data in the Interface Repository is best viewed as a set of CORBA objects
where one object is stored in the repository for each IDL type definition.
Objects in the Interface Repository support one of the following IDL interface
types, reflecting the IDL constructs they describe:

Repository

The type of the repository itself, in which all of its other
objects are nested.

Modul eDef

The interface for a Modul eDef definition. Each module has a
name and can contain definitions of any type (except
Reposi t ory).

I nt er f aceDef

The interface for an I nt er f aceDef definition. Each interface
has a name, a possible inheritance declaration, and can contain
definitions of type attribute, operation, exception, typedef and
constant.

At tri but eDef

The interface for an At tri but eDef definition. Each attribute
has a name and a type, and a mode that determines whether
or not it is readonly.

Qper at i onDef

The interface for an Qper ati onDef definition. Each operation
has a name, a return value, a set of parameters and, optionally,
rai ses and cont ext clauses.

Const ant Def

The interface for a Const ant Def definition. Each constant has
a name, a type and a value.

Except i onDef

The interface for an Excepti onDef definition. Each exception
has a name and a set of member definitions.

St ruct Def

The interface for a Struct Def definition. Each struct has a
name, and also holds the definition of each of its members.

Uhi onDef

The interface for a Uni onDef definition. Each union has a
name, and also holds a discriminator type and the definition of
each of its members.

ErmunDef

The interface for an EnunDef definition. Each enumhas a name,
and also holds its list of member identifiers.

A i asDef

The interface for a t ypedef statement in IDL. Each alias has a
name and a type that it maps to.

277

Orbix C++ Programmer’s Guide

PrimtiveDef |The interface for primitive IDL types. Objects of this type
correspond to a type such as short and | ong, and are pre-
defined within the Interface Repository.

Stri ngDef The interface for a st ri ng type. Each string type records its
bound. Objects of this type do not have a name. If they have
been defined using an IDL t ypedef statement, then they will
have an associated Al i asDef object. (Objects of this type
correspond to bounded strings.)

SequenceDef The interface for a sequence type. Each sequence type
records its bound (a value of zero indicates an unbounded
sequence type) and its element type. Objects of this type do
not have a name. If they have been defined using an IDL

t ypedef statement, then they will have an associated

Ali asDef object.

Arr ayDef The interface for an array type. Each array type records its
length and its element type. Objects of this type do not have a
name. If they have been defined using an IDL t ypedef
statement, then they will have an associated Al i asDef object.
Each ArrayDef object represents one dimension; multiple
ArrayDef objects are required to represent a multi-
dimensional array type.

In addition, the following abstract types (types without direct instances) are
defined:

| Rbj ect

| DLType
Typedef Def
Cont ai ned
Cont ai ner

Understanding these types is the key to understanding how to use the Interface
Repository.

278

The Interface Repository

Containment Relationships

You can interrogate any object of these types to determine their definitions.
They are organized in a natural manner according to the IDL interface. For
example, each I nter f aceDef object is said to contain objects representing the
interface’s constant, type, exceptions, attribute, and operation definitions. The
outermost object is of type Reposi tory.

The containment relationships between the Interface Repository types are as
follows:

A Reposi t ory can contain:

Const ant Def
Typedef Def
Except i onDef
I nt er f aceDef
Modul eDef

A Modul eDef can contain:

Const ant Def
Typedef Def
Except i onDef
Modul eDef

I nt er f aceDef

An I nt erfaceDef can contain:

Const ant Def
Typedef Def
Except i onDef
Attribut eDef
Qper at i onDef

Objects of type Modul eDef, | nt er f aceDef, Const ant Def , Except i onDef, and
Typedef Def can also appear outside of any module, directly within a repository.

You can determine the full interface definition given any object of the Interface
Repository types. For example, I nt er f aceDef defines operations or attributes
to determine an interface’s name, its inheritance hierarchy, and the description
of each operation and each attribute.

Refer to “The interfaces that use containment are of three different types:” on
page 285 for more information.

279

Orbix C++ Programmer’s Guide

Simple Types

280

The Interface Repository defines the following simple IDL definitions:

/1 1D

/1 1n nmodul e CORBA.

typedef string ldentifier;
typedef string ScopedNane;
typedef string Repositoryld;
typedef string VersionSpec;

enum DefinitionKind {
dk_none, dk_all,
dk_Attribute, dk_Constant,
dk_Exception, dk_Interface,
dk_Mbdul e, dk_Operation, dk_Typedef,
dk_Alias, dk_Struct, dk_Union, dk_Enum
dk_Primtive, dk_String, dk_Sequence, dk_Array,
dk_Reposi tory
b
An I dentifier is asimple name that identifies modules, interfaces, constants,
typedefs, exceptions, attributes, and operations.

A ScopedNane gives an entity’s name relative to a scope. A ScopedNane that
begins with “:: ” is an absolute scoped name. This is a name that uniquely
identifies an entity within a repository. For example, the name

1 Fi nance: : Account: : wi t hdraw A ScopedNane that does not begin with “: :”
is a relative scoped name. This is a name that identifies an entity relative to some
other entity. For example, wi t hdr awwithin the entity with the absolute scoped
name : : Fi nance: : Account.

A Reposi toryl dis a string that uniquely identifies an object within a repository,
or globally within a set of repositories if more than one is being used. The object
can be a constant, exception, attribute, operation, structure, union,
enumeration, alias, interface or module.

Type Ver si onSpec is used to indicate the version number of an Interface
Repository object. This means that it allows the Interface Repository to
distinguish two or more versions of a definition, each with the same name but
with details that evolve over time. However, the Interface Repository is not

The Interface Repository

required to support such versioning. It is not required to store more than one
definition with any given name. The Orbix Interface Repository currently does
not support versioning.

Each Interface Repository object has an attribute (called def _ki nd) of type
Def i ni ti onKi nd that records the kind of the Interface Repository object. For
example, the def _ki nd attribute of an i nt er f aceDef object is dk_i nt er f ace.
The enumerate constants dk_none and dk_al | have special meanings when
searching for objects in a repository.

Abstract Interfaces in the Interface Repository

There are five abstract interfaces defined for the Interface Repository, as

follows:
®* | RObject
® | DLType

* Typedef Def
® Contai ned
® Cont ai ner

These are of key importance in understanding the basic structure of the
Interface Repository, and provide basic functionality for each of the concrete
interface types.

281

Orbix C++ Programmer’s Guide

Class Hierarchy and Abstract Base Interfaces

The Interface Repository defines five abstract base interfaces (interfaces that
cannot have direct instances). These are used to define the other Interface
Repository types:

| RObj ect This is the base interface of all Interface Repository objects. Its
only attribute defines the kind of an Interface Repository object.

| DLType All Interface Repository interfaces that hold the definition of a
type directly or indirectly inherit from this interface.

Typedef Def | This is the base interface for all Interface Repository types that
can have names (except interfaces): structures, unions,
enumerations and aliases (results of IDL t ypedef definitions).

Cont ai ned | Many Interface Repository objects can be contained in others and
these all inherit from Cont ai ned. The exact meaning of
containment is explained later.

Cont ai ner | Some Interface Repository interfaces, such as Reposit ory,
Modul eDef and | nt er f aceDef, can contain other Interface
Repository objects. These interfaces inherit from Cont ai ner.

The interface hierarchy for all of the Interface Repository interfaces is shown in
Figure 15.1 on page 284.

The Interface IRObject

The interface | RObj ect is defined as follows:

/1 1DL
/1 I n nmodul e CORBA.
interface | RObject {
/1l read interface
readonly attribute DefinitionKind def_kind,

/!l write interface
void destroy ();
}s

282

The Interface Repository

This is the base interface of all Interface Repository types. The attribute

def _Kki nd is useful because it provides a simple way of determining the type of
an Interface Repository object. Other than defining an attribute and operation,
and acting as the base interface of other interfaces, | RObj ect plays no further
role in the Interface Repository.

You can delete an Interface Repository object by calling its dest roy()
operation. This also deletes any objects contained in the target object. It is an
error to call destroy() on a Repository or a PrimtiveDef object.

Containment in the Interface Repository

Definitions in the IDL language have a nested structure. For example, a module
can contain definitions of interfaces, and the interfaces themselves can contain
definitions of attributes, operations and many others. Consider the following
fragment of IDL:

/1 1DL
nodul e Fi nance {
interface Account {
readonly attribute float bal ance;
voi d deposit(in float anopunt);
void withdraw(in float anount);
b
interface Bank {
Account create_account ();
i
b
In this example the module Fi nance (represented in the Interface Repository as
a Modul eDef object) contains the two interface definitions Bank and Account
(each represented by an individual | nt er f aceDef object). These two interfaces
contain further definitions. For example, the interface Account contains a single
attribute and two operations.

283

Orbix C++ Programmer’s Guide

/1 Abstract

IRObject

readonly attribute DefinitionKind def_kind

/1 Abstract
1 Aostr act IDL Type readonly attribute TypeCode type; 1/ Abstract
Contained |attribute identifier name... Container
/1 Pbstract
TypedefDef
177 Base interface
/1 of all named
I// types (except
I// interfaces)
| Repository
ModuleDef I
I
I
| Set of named types. Set of unnamed types.
Const ant Def St ruct Def I nt er f aceDef PrimtiveDef
Except i onDef Uni onDef St ri ngDef
Attri but eDef EnunDef SequenceDef
Oper at i onDef Al i asDef Arr ayDef

Figure 15.1: The Hierarchy for Interface Repository Interfaces

284

The Interface Repository

The notion of containment is basic to the structure of the IDL definitions, and
the Interface Repository specification abstracts the properties of containment.
For example, an Interface Repository object (such as a Mbdul eDef or

I nt er f aceDef object) that can contain further definitions also needs a function
to list its contents. Similarly an Interface Repository object that can be contained
within another Interface Repository object may want to know the identity of the
object it is contained in. This leads naturally to the definition of two abstract
base interfaces Cont ai ner and Cont ai ned, which group together common
operations and attributes. Most of the objects in the repository are derived from
one or both of Cont ai ner or Cont ai ned (the exceptions are instances of
PrimtiveDef, StringDef, SequenceDef, and ArrayDef).

You can access a considerable part of the structure of the Interface Repository
by using the operations and attributes of Cont ai ner and Cont ai ned.
Understanding containment is crucial to understanding most of the Interface
Repository functionality.

The interfaces that use containment are of three different types:
® Interfaces that inherit only from Cont ai ner.
® Interfaces that inherit from both Cont ai ner and Cont ai ned.
® Interfaces that inherit only from Cont ai ned.

These are as follows:

Inheriting From Interface

Cont ai ner Reposi tory

Cont ai ner and Cont ai ned | Mdul eDef, I nt er f aceDef

Cont ai ned Const ant Def , Except i onDef,
Attribut eDef, Cperati onDef, Struct Def,
Uni onDef , Enundef, Al i asDef, Typedef Def

The Reposi t ory itself is the only interface that can be a pure Cont ai ner. There
is only one Reposi t ory object per Interface Repository server and it has all of
the other definitions nested inside it.

Objects of type Modul eDef and I nter faceDef can create additional layers of
nesting and therefore they derive from both Cont ai ner and Cont ai ned.

285

Orbix C++ Programmer’s Guide

The remaining types of objects have a simpler structure and derive just from
Cont ai ned. The last interface, Typedef Def, is unique in that it is an abstract
interface.

The Contained Interface

286

This section is limited to a discussion of the basic attributes and operations of
interface Cont ai ned. An outline of the Cont ai ned interface is as follows:

//1DL
typedef ldentifier string;

interface Contained : | RObject {
/1 Inconplete list of operations and
attributes. ..

attribute Identifier nane;
readonly attribute Container defined_in;

struct Description {
Defini ti onKi nd ki nd;
any val ue;
b
Description describe();
b

A basic attribute of any contained object is its nane. The attribute nane has the
type I denti fi er thatis just a t ypedef for a string. For example, the module
Fi nance is represented in the repository by a Modul eDef object. The inherited
Modul eDef : : nane attribute resolves to the string “Finance” . Similarly, an
OperationDef ~ object representing withdraw has an OperationDef::name that
resolves to “withdraw” . The Repository object itself evidently has no name,
because it does not inherit from Contained

Another basic attribute is Contained::defined_in that stores an object
reference to the Container in which the object is defined. This attribute is all
that is needed to express the idea of containment for a Contained object. The
attribute defined_in stores a uniquely defined Container reference because a
given definition appears only once in IDL. However, because of the possibility of

The Interface Repository

inheritance between interfaces, a given object may be contained in more than
one interface. In the following example, interface Cur r ent Account is derived
from interface Account :

/11DL

/1 in nodul e Finance

interface CurrentAccount : Account {

readonly attribute overDraftLimt;

b
The attribute balance is contained in interface Account and also contained in
interface Curr ent Account . However, the result of querying
Attribut eDef::defined_in() for the bal ance attribute will always return an
object for Account . This is because the definition of attribute bal ance appears
in the base interface Account.

A Cont ai ned object may include more than just containment information. For
example, an Qper at i onDef object has a list of parameters associated with it and
details of the return type. The operation Cont ai ned: : descri be() provides
access to these details by returning a generic Descri pti on structure (discussed
later).

The Container Interface

Some of the basic definitions for interface Cont ai ner are as follows:

/11DL

t ypedef sequence<Cont ai ned> Cont ai nedSeq;

enum DefinitionKind {dk_name, dk_all,
dk_Attribute, dk_Constant, dk_Exception,
dk_I nterface, dk_Mdul e, dk_Operation,
dk_Typedef, dk_Alias, dk_Struct, dk_Union,
dk_Enum dk_Primtive, dk_String, dk_Sequence,
dk_Array, dk_Repository};

interface Container : | RObject {
/1 Inconplete |list of operations and attributes

Cont ai nedSeq cont ent s(

in DefinitionKind linmt_type,
i n bool ean exclude_i nherited);

287

Orbix C++ Programmer’s Guide

288

Container::contents()

The content s() operation is the most basic operation associated with a

Cont ai ner . It returns a sequence of Cont ai ned objects that belong to the

Cont ai ner . By using contents(), it is possible to browse a Cont ai ner and
descend nested layers of containment. Once the appropriate Cont ai ned object
has been found, the details of its definition can be found by invoking

Cont ai ned: : descri be() to obtain a detailed Descri pti on of the object. The
use of Cont ai ner: : contents() coupled with Cont ai ned: : descri be()
provides a basic way of browsing the Interface Repository. However, there are a
number of approaches to browsing the Interface Repository that can be more
efficient. These more sophisticated search operations are discussed in
“Retrieving Information about IDL Definitions” on page 296.

The arguments to operation cont ent s() make use of Defi ni ti onKi nd. This is
an enumtype that is used to tag the different kinds of repository objects. In
addition to the interfaces for concrete repository objects there are three
additional tags: The tag dk_none matches no repository object, the tag dk_al |
matches any repository object, and the tag dk_Typedef matches any one of
dk_Ali as, dk_Struct, dk_Uni on, or dk_Enum The arguments to cont ent s()
can be described as follows:

linmt_type A tag of type Defi niti onKi nd that can be used to limit
the list of contents to certain kinds of repository
objects. A value of dk_al | lists all objects.

exclude_i nherited |Thisargumentis only relevant if the Cont ai ner happens
to be an I nt er f aceDef object. In the case of an

I nt er f aceDef, it determines whether or not inherited
definitions should be included in the contents listing.
TRUE indicates they should be excluded while FALSE
indicates they should be included.

The returned value is then a sequence of Cont ai ned objects that match the
given criteria.

There are a number of additional operations of the interface Cont ai ner that
enable efficient searching of the repository. Refer to the Orbix C++
Programmer’s Reference for details.

The Interface Repository

Containment Descriptions

The containment framework reveals which definitions are made within which
interface or module. However, each repository object, besides the possible
property of being a Cont ai ned or Cont ai ner, also retains the details of an IDL
definition. Calling descri be() on a Cont ai ned object returns a Descri pti on
struct holding these details.

Both interfaces Cont ai ned and Cont ai ner define their own version of a

Descri pti on struct which are, respectively, Cont ai ned: : Descri ption and
Cont ai ner: : Description. The Cont ai ner: : Descri ption structure differs
slightly from the Cont ai ned: : Descri pti on. Consider the following fragment of
the IDL interface for Gont ai ner:

//1DL
interface Container : | RObject {
/1l Inconplete listing of interface

struct Description {
Cont ai ned cont ai ned_obj ect;
DefinitionKi nd kind;
any val ue;
b
t ypedef sequence<Description> DescriptionSeq;
DescriptionSeq describe_content s(
in DefinitionKind linmt_type,
in bool ean exclude_inherited,
in long max_returned objects);

.

Note the extra member cont ai ned_obj ect appearing in this Descri pti on
structure.

Container::describe_contents()

The Cont ai ner: : Descri ptionis used by descri be_cont ent s(). This
operation effectively combines calling cont ent s() on the Cont ai ner plus calling
descri be() on each of the returned objects.

289

Orbix C++ Programmer’s Guide

290

The arguments to descri be_contents() are as follows:

limt_type

A tag of type Defi ni ti onKi nd which may be used to
limit the list of contents to certain kinds of
repository objects. A value of dk_al | lists all objects|

excl ude_inherited

This argument is only relevant if the Cont ai ner
happens to be an | nt er f aceDef object. For the case
of an | nt er f aceDef it determines whether or not
inherited definitions should be included in the
contents listing. TRUE indicates they should be
excluded while FALSE indicates they should be
included.

max_r et ur ned_obj ect s

Specifies the maximum length of the sequence
returned.

The descri be_cont ent s() operation returns a sequence of Descri ption
structures, one for each of the Cont ai ned objects found.

The Descri pti on structure itself serves as a wrapper for the detailed
description that is specific to a repository object. For example, the interface
Qoer ati onDef inherits the operation per ati onDef : : descri be.

OperationDesription

Associated with the (per ati onDef interface is the struct
Qoer ati onDescri ption. This has the following structure:

/1 1DL

struct OperationDescription {

Identifier

nane;

Repositoryld id;

Reposi toryld defined_in;

Ver si onSpec ver si on;

TypeCode result;

Oper at i onMbde node;

Cont ext | dSeq cont exts;

Par Descri ptionSeq paraneters;
ExcDescri ptionSeq exceptions;

The Interface Repository

This structure is not returned directly by the operation

Qper at i onDef : : descri be(). Initially it returns a Cont ai ned: : Descri pti on
wrapper. The first layer is tagged by Descri pti on: : ki nd, which equals
dk_Qperati on, and the substance of the Descri ption is in the

Descri ption:: val ue. The second layer is given by the val ue, which is an any.
Inside the any there is a TypeGode _t c_QperationDescri pti on and the value
of the any is the Qper at i onDescri pti on structure itself.

The various members of the (per ati onDescri pti on structure have the
following meaning:

nane

The name of the operation as it appears in the definition. For
example, the operation Account : : rakeWt hdr anal would have
the name “makeWithdrawal”

The id is just a Repositoryld for the OperationDef object. A
Repositoryld s basically a particular way of naming repository
objects.

defined_in

The member defined_in gives the Repositoryld for the
parent Container of the OperationDef object.

version

The version of type VersionSpec is used to indicate the
version number of an Interface Repository object. This would
allow the Interface Repository to distinguish two or more
versions of a definition which have the same name but with
details that evolve over time. The Orbix Interface Repository
currently does not support versioning.

result

The TypeCode of the result returned by the defined operation.

mode

The mode specifies whether the operation is normal (OP_NORMAL
or oneway (OP_ONEWAY

contexts

The member contexts is of type ContextldSeq that is a typedef
for a sequence of strings. The sequence lists the context
identifiers specified in the context clause of the operation.

parameters

The member parameters is a sequence of
ParameterDescription structures that give details of each
parameter to the operation.

exceptions

The member exceptions is a sequence of
ExceptionDescription structures giving details of the
exceptions specified in the raises clause of the operation.

291

Orbix C++ Programmer’s Guide

The Qper at i onDescri pti on provides all of the information present in the
original definition of the operation. As is the case with many aspects of the
Interface Repository, the CORBA specification provides for more than one way
of accessing this information. The interface Qper ati onDef also defines a number
of attributes that allow direct access to the members of the above structure.
Frequently, in a distributed environment it is more convenient to obtain the
complete description in a single step. This is why the Qper at i onDescri pti on
structure is provided.

Only those repository interfaces that inherit from Cont ai ned have an associated
description structure, and of those, not all have a unique description structure.

Specifically, the interfaces EnunDef, Uni onDef, Al i asDef, and St ruct Def all use
a similar sort of description called TypeDescri pti on.

The interface | nt er f aceDef is a special case because there is an extra
description structure associated with it called Ful | | nt er f aceDescri pti on. This
structure is provided in the light of the special importance of | nt er f aceDef
objects. It enables a full description of the interface plus all its contents to be
obtained in one step. The description is given as the return value of the special
operation | nt er f aceDef : : descri be_i nterface().

Type Interfaces in the Interface Repository

292

A number of repository interfaces are used to represent definitions of types in
the Interface Repository. These are the following interfaces:

® Struct Def
® Uni onDef
® EnunDef

* AiasDef

® InterfaceDef
® PrimtiveDef
® Stringbef

® SequenceDef
®* ArrayDef

The Interface Repository

This property is independent of and overlaps with the properties of
containment. It is useful to represent this property by having those objects
inherit from an abstract base interface which is called | DLType and is defined as
follows:

/1 1DL

/1 1In nmodul e CORBA.

interface | DLType : | RObject {
readonly attribute TypeCode type;

b
This base interface defines just a single attribute that gives the TypeCode of the
defined type. It is also useful for referring to the type interfaces collectively.

The type interfaces can be classified as either named or unnamed types.

Named Types

The named type interfaces are as follows:

® Struct Def
® Uni onDef
® EnunDef

® AliasDef

® |nterfaceDef.

For example, consider the following IDL definition:
/1 1DL
enum UD {UP, DOM};

This effectively defines a new type, UD, which may be used wherever an ordinary
type might appear. It is represented by an EnunDef object. More obviously, the
following IDL definition gives rise to the new type Account Narre:

t ypedef string Account Nare;

These two interfaces are examples of named types. That is, the definitions give
rise to a new type identifier, such as “UD” or “AccountName” , which may be
reused throughout the IDL file.

293

Orbix C++ Programmer’s Guide

A further distinction is made between | nt er f aceDef and the other named
types. The named types St ruct Def, Uni onDef, EnunDef, and Al i asDef are
grouped together by deriving from the abstract base interface Typedef Def . It is
important to note that interface Typedef Def does not directly represent an IDL
t ypedef . The interface Al i asDef (which derives from Typedef Def) is the
interface representing an IDL t ypedef. The abstract interface Typedef Def is
defined as follows:

/1 1DL
/1 1n nmodul e CORBA.
interface Typedef Def : Contained, |DLType {

};

The definition of Typedef Def is trivial and causes the four named interfaces to
derive from Cont ai ned in addition to | DLType. The interfaces inherit the
attribute Cont ai ned: : nane. This gives the name of the type, and the operation
Gont ai ned: : descri be().

For example, the definition of enumUDgives rise to an EnunDef object which has
an EnunDef : : nanme of “UD”. Calling EnumDef::describe() gives access to a
description of type TypeDescription . The type member of the

TypeDescription gives the TypeCode of the enum The TypedefDef interfaces
all share the same description structure, TypeDescription

The interface InterfaceDef is also a named type but it is a special case. Its
inheritance is given as follows:

/I IDL

/I In module CORBA.

interface InterfaceDef : Contained, Container,
IDLType {

%
Interface InterfaceDef has three base interfaces. Since IDL object references
can be used in just the same way as any ordinary type, IntefaceDef inherits
from IDLType . For example, the definition interface Account {...}; gives
rise to an InterfaceDef object. This object has an InterfaceDef::name which
is “Account” and this name may be reused as a type.

294

The Interface Repository

Unnamed Types

The unnamed type interfaces are as follows:
® PrimtiveDef
® StringDef
® SequenceDef
* ArrayDef

These interfaces are not strictly necessary but offer an approach to querying the
types in the repository that operates in parallel to the use of TypeCodes.

Therefore there are two independent approaches to querying types in the
repository. The traditional approach is to provide TypeCode attributes whenever
necessary so that all the types defined in the repository can be determined.
However, the Interface Repository also provides a complete object-oriented
approach for querying the types.

Consider the following example where the return type of get LongAddr ess
needs to be determined:

/1 1DL
interface Mailer {
sequence<string> get LongAddress();

b
The definition of get LongAddr ess() maps to an object of type Oper at i onDef in
the repository. One way of querying the return type is to call
Qper ati onDef: : resul t _def () that returns an object reference of type
| DLType. The type of object returned by resul t _def () can be determined by
getting the attribute Oper at i onDef : : def _ki nd that is inherited from | RCbj ect.

In this example the object reference is of type SequenceDef corresponding to
the sequence<st ri ng> return type. The returned SequenceDef object may be
further queried by getting the attribute SequenceDef: : el ement _t ype_def . This
returns an | DLType which isa Pri m ti veDef object. This Pri m tiveDef object,
in turn, has an attribute Pri mi ti veDef : : ki nd that has a value of pk_stri ng. At
this stage the return type has been fully determined to be a sequence<stri ng>.

The alternative approach is to obtain the TypeCode at the outset. This retrieves
the complete type information in a single step. For example, the Oper at i onDef
object associated with get LongAddr ess has an attribute

Qper at i onDef : : resul t, which gives the TypeCode of sequence<st ri ng>.

295

Orbix C++ Programmer’s Guide

Retrieving Information about IDL Definitions

There are three ways to retrieve information from the Interface Repository:

I. Given an object reference, its corresponding | nt er f aceDef object can
be found. From this, all of the details of the object’s interface definition
can be determined.

2. Obtain an object reference to a Reposi t ory, after which the full contents

can then be navigated.
3. Given a Reposi t oryl d, a reference to the corresponding object in the
Interface Repository can be obtained and interrogated.

These are explained in more detail in the following three subsections.

CORBA::Object::_get_interface()

Given an object reference to any CORBA obiject, say obj Var, an object
reference to an I nt er f aceDef object can be acquired as follows:

/] C++
/1 Must include <ifr.hh>
CORBA: : I nterfaceDef _var ifVar =
obj Var->_get _interface();

The member function _get _i nterface() returns a reference to an object
within the Interface Repository.

Browsing or Listing a Repository

Once a reference to a Reposi t ory object is obtained, the contents of that
repository can be browsed or listed. There are two ways to obtain such an
object reference.

Firstly, the resol ve_i niti al _references() operation can be called on the
ORB (of type OORBA: : CRB), passing the string “I nt er f aceReposi tory” as a

parameter. This returns an object reference of type CCRBA: : (bj ect, which can

then be narrowed to a CORBA: : Reposi t ory reference.

296

The Interface Repository

Alternatively, the Orbix _bi nd() function can be used, as follows:

/] C++
Reposi tory_var repVar =
Repository::_bind(*“:IFR”, “");

The operations that enable browsing of the Repository are provided by the
abstract interface Container . There are four provided, as follows:

® contents()

® describe_contents()
® | ookup()

® | ookup_narre()

The last two are particularly useful because they provide a facility for searching
the Reposi tory.

The IDL for the search operations is as follows:

/1 1DL
/1 1In nmodul e CORBA.
interface Container : | RObject {

Cont ai ned | ookup(i n ScopedNane search_nane);

Cont ai nedSeq | ookup_nane(
in Identifier search_nane,
in long levels_to_search,
in DefinitionKind linmt_type,
i n bool ean exclude_i nherited);

.

Container::lookup()

The operation | ookup() provides a simple search facility based on a
ScopedNane. For example, consider the case where Cont ai ner is a Modul eDef
object representing Fi nance. Passing the string “Account::balance” to
ModuleDef::lookup() then retrieves a reference to an AttributeDef object
representing balance . This is an example of using a relative ScopedName.
However, lookup() is not restricted to just searching a specific Container . By
passing an absolute ScopedName as an argument it is possible to search the
whole repository given any Container as a starting point. For example, given the

297

Orbix C++ Programmer’s Guide

298

I nterfaceDef for Account it is possible to pass the string
“:Finance::Bank::newAccount” to InterfaceDef::lookup to find the
newAccount operation lying within the scope of the interface Bank.

Container::lookup_name()

The operation lookup_name() provides a different approach to searching a
Container . Instead of the ScopedName it specifies only a simple name to search
for within the Container . Because more than one match is possible with a given
simple name, the lookup () operation can return a sequence of Contained
objects.

The parameters to lookup_name() are as follows:

search_name Specifies the simple name of the object to search for.
The Orbix implementation also allows the use of “”
which matches any simple name.

levels_to_search Specifies the number of levels of nesting to be included in
the search. If set to |, the search is restricted to the
current object. If set to -1, the search is unrestricted.

limit_type Limits the objects that are returned. If it is set to dk_all
all objects are returned. If set to the DefinitionKind

for a particular Interface Repository kind, only objects of
that kind are returned. For example, if operations are of
interest, limit_type can be set to dk_operation

exclude_inherited If set to TRUE, inherited objects are not returned. If set
to FALSE, all objects, including those inherited, are
returned.

Note: You cannot use the lookup_name() operation to search outside of the
given Container

The Interface Repository

Finding an Object Using its Repository ID

A Repository ID (of type OCRBA: : Reposi t oryl d) can be passed as a parameter
to the | ookup_i d() operation of an object reference for a repository (of type
QOCRBA: : Reposi t or y). This returns a reference to an object of type Cont ai ned,
and this can be narrowed to the correct object reference type.

Example of Using the Interface Repository

This section presents some sample code that uses the Interface Repository.The
following code prints the list of operation names and attribute names defined on
the interface of a given object:

/] C++

/1 The following three |ines nust appear near
/1 the top of the file:

11

#include <ifr. hh>

#include <IT_ifr.hh>

I T_InterfaceDef_var i Dunmy;

int i;

Reposi tory_var rVar;

Cont ai ned_var cVar;

I nt erfaceDef var interfaceVar;

InterfaceDef:: FulllnterfaceDescription_var full;

try {
// Bind to the | FR server:

rVar = Repository::_bind(“:IFR");

/I Get the interface definition:
cVar = lookup(“grid”);
interfaceVar = InterfaceDef::_narrow(cVar);

/I Get a full interface description:

full = interfaceVar->describe_interface();

/I Now print out the operation names:

cout << “The operation names are:” << endl;

for (i=0; i < full->operations.length(); i++)
cout << full->operations[i].name << endl|;

299

Orbix C++ Programmer’s Guide

/1 Now print out the attribute nanes:
cout << “The attribute names are:” << endl;
for (i=0; i < full->attributes.length(); i++)

cout << full->attributes]i].name << endl;

}
catch (...) {

}

All applications that use the Interface Repository must include the file ifr.hh
This file is available in the include directory of your Orbix installation. In
addition, you must link these applications against the Orbix library. This is

available in the lib directory of your Orbix installation.

The example can be extended by finding the OperationDef
operation called doit() . The Container::lookup_name()
follows:

/I C++
ContainedSeq_var opSeq;
OperationDef_var doitOpVar;

try {
cout << “Looking up operation doit()”
<< endl;
opSeq = interfaceVar->lookup_name(
“doit”, 1, dk_Operation, 0);
if (opSeqg->length() '=1) {
cout << “Incorrect result for lookup_name()”;

exit(1);
}else {
/I Narrow the result to be an OperationDef.
doitOpVar =
OperationDef::_narrow(opSeq[0]))
}
}
catch (...) {
}

300

object for an
can be used as

The Interface Repository

Repository IDs

Each Interface Repository object that describes an IDL definition has a
Repository ID. A Repository ID globally identifies an IDL module, interface,
constant, typedef, exception, attribute, or operation definition. A Repository ID
is simply a string that identifies the IDL definition.

Three formats for Repository IDs are defined by CORBA. However, Repository
IDs are not, in general, required to be in one of these formats. The formats
defined by CORBA are described next.

OMG IDL Format

This format is derived from the IDL definition’s scoped name. It contains three
components which are separated by colons (:) as follows:

IDL:<identifier/identifier/
identifier/...>: <version nunber>

® The first component identifies the Repository ID format as the OMG IDL

format.

® The second component consists of a list of identifiers. These identifiers
are derived from the scoped name by substituting /" instead of “.”

® The third component contains a version number with the following
format:

<maj or >. <m nor >
Consider the following IDL definitions:

/1 1D
interface Account {
attribute fl oat bal ance;
voi d deposit(in float anpunt);

b
The following is an IDL format Repository ID for the attribute
Account : : bal ance based on these definitions:

| DL: Account/ bal ance: 1.0

This is the format of the Repository ID that is used by default in Orbix.

301

Orbix C++ Programmer’s Guide

DCE UUID Format
The DCE UUID format is the following:

DCE: <UUI D>: <mi nor ver si on nunber >

LOCAL Format

Local format IDs are for local use within an Interface Repository and are not
intended to be known outside that repository. They have the following format:
LOCAL: <I D>

Local format Repository IDs may be useful in a development environment as a
way to avoid conflicts with Repository IDs using other formats.

Pragma Directives

302

You can control Repository IDs using pragma directives in an IDL source file.
These pragmas enable you to control the format of a Repository ID for IDL
definitions. At present Orbix supports the use of all three pragma directives: ID,
prefix and version.

ID Pragma
An ID pragma directive takes the format:
#pragma ID <name> “<id>"

The <name>can be a fully scoped name or an identifier whose scope is
interpreted relative to the scope in which the pragma directive is included. The
<id> is the repository ID string which is to be associated with the <name>.

Prefix Pragma
A Prefix pragma directive takes the format:
#pragma prefix “<string>"

The <string> sets the current prefix used in generating repository IDs. The
specified prefix applies to repository |IDs generated after the pragma until the
end of the current scope is reached or another prefix pragma is encountered.

The Interface Repository

Version Pragma

You can specify a version number for an IDL definition’s Repository ID (IDL
format) by using a version pragma. The version pragma directive takes the
format:

#pragma version <nanme> <mgj or >. <mi nor >

The <nane> can be a fully scoped name or an identifier whose scope is
interpreted relative to the scope in which the pragma directive is included.
Where no version pragma is specified for an IDL definition, the version number
for the definition defaults to 1.0.

For example, consider the following:

/1 1DL
nmodul e Engi neering {
interface conponent {
|
#pragma ID component “IDL:iona.com/component:1.0”

h

#pragma prefix “FirstTrust”
module Finance {

module Banking {
#pragma prefix “CorporateBanking”
interface Account {
%
%
module Stockmarket {
interface invest {
%
%

#pragma version Banking::Account 2.7

303

Orbix C++ Programmer’s Guide

304

These definitions yield the following Repository IDs:

:: Engi neering: : conponent | DL:iona. coni conponent: 1.0
:: Fi nance: : Banki ng: : Account | DL: Cor por at eBanki ng/ Account : 2. 7
1 Finance: : St ocknar ket : :invest |DL:FirstTrust/Fi nance/

St ocknarket/invest: 1.0

It is important to realize that pragma directives do not only affect Repository
IDs. If pragma directives are used to set the version of an interface, the version
number also becomes embedded in the string format of an object reference. A
client must bind to a server object whose interface has a matching version
number. If the IDL interface on the server side has no version, _bi nd() does not
require matching versions. In the present implementation of the Interface
Repository, you should use only one version number per Interface Repository.

Part IV

Advanced Orbix
Programming

16

Filtering Operation Calls

Orbix allows you to specify that additional code is to be executed
before or after the normal operation or attribute code. This support
is provided by allowing applications to create filters that can perform
security checks, provide debugging traps or information, maintain an
audit trail, and so on. Filters are an Orbix-specific feature.

There are two forms of filters:

® per-process filters

Per-process filters see all operation and attribute calls leaving or entering
a client’s or server’s address space, irrespective of the target object.

® per-object filters

Per-object filters apply to individual objects.

Both of these filter types are illustrated in Figure 16.1 on page 308.
“Introduction to Per-process Filters” on page 308 and “Introduction to Per-
Object Filters” on page 312 give a brief introduction to each. The remainder of
the chapter then describes each in detail.

Use of the Dynamic Invocation Interface does not by-pass the filtering
mechanism. Calls made using the DI result in the use of all appropriate outgoing
and incoming filters.

Note: Because of the Orbix-specific nature of filters, you cannot use filters with
non-IONA ORBs.

307

Orbix C++ Programmer’s Guide

Client or Server Process

/ Objects \

(. per-object filter
attached to object 02

chain of per-process
(OO0 s

Figure 16.1: Per-process and Per-object Filtering

Introduction to Per-process Filters

308

Per-process filters monitor all incoming and outgoing operation and attribute
requests to and from an address space. Each process can have a chain of such
filters, with each element of the chain performing its own actions. You can add a
new element to the chain by carrying out the following two steps:

® Define a class that inherits from class CORBA: : Fil ter.
® Create a single instance of the new class.

Each filter of the chain can monitor ten individual points during the transmission
and reception of an operation or attribute request. Refer to Figure 16.2 on
page 311.

Filtering Operation Calls

Pre-marshalling Filter Points

The four most commonly used filter points are as follows:

out request pre-marshal (in the caller’s address space)

This filter monitors the point before an operation or attribute request is
transmitted from the filter’s address space to any object in another
address space. Specifically, it monitors the point before the operation’s
parameters have been added to the request packet.

in request pre-marshal (in the target object’s address space)

This filter monitors the point where an operation or attribute request
has arrived at the filter’s address space, but before it has been processed.
Specifically, it monitors the point before the operation has been sent to
the target object and before the operation’s parameters have been
removed from the request packet.

out reply pre-marshal (in the target object’s address space)

This filter monitors the point after the operation or attribute request has
been processed by the target object, but before the result has been
transmitted to the caller’s address space. Specifically, it monitors the
point before an operation’s out parameters and return value have been
added to the reply packet.

in reply pre-marshal (in the caller’s address space)

This filter monitors the point after the result of an operation or attribute
request has arrived at the filter’s address space, but before the result has
been processed. Specifically, it monitors the point before an operation’s
return parameters and return value have been removed from the reply
packet.

Post-marshalling Filter Points

There are four similar post-marshalling monitor points:

out request post-marshal (in the caller’s address space)

This filter operates the same way as ‘out request pre-marshal’ but after
the operation’s parameters have been added to the request packet.

309

Orbix C++ Programmer’s Guide

Failure Points

310

in request post-marshal (in the target object’s address space)

This filter operates the same way as ‘in request pre-marshal’ but after the
operation’s parameters have been removed from the request packet.

out reply post-marshal (in the target object’s address space)

This filter operates the same way as ‘out reply pre-marshal’ but after the
operation’s out parameters and return value have been added to the
reply packet.

in reply post-marshal (in the caller’s address space)

This operates the same as ‘in reply pre-marshal’ but after the operation’s
out parameters and return value have been removed from the reply
packet.

Two additional monitor points deal with exceptional conditions:

out reply failure (in the target object’s address space)

This is called if the target object raises an exception or if any preceding
filter point (‘in request’ or ‘out reply’) raises an exception or uses its
return value to indicate that the call should not be processed any further.

in reply failure (in the caller’s address space)

This is called if the target object raises an exception or if any preceding
filter point (‘out request’, ‘in request’, ‘out reply’ or ‘in reply’) raises an

exception or uses its return value to indicate that the call should not be
processed any further.

Once an exception is raised or a filter point uses its return value to indicate that
the call should not be processed further, no further monitor points (other than
the two failure monitor points) are called. If this occurs in the caller’s address
space, in reply failure is called. If it occurs in the target object’s address space,
out reply failure and in reply failure are both called (in the target object’s and the
caller’s address spaces respectively).

All monitor points (eight marshalling points and two failure points) are shown in
Figure 16.2.

Filtering Operation Calls

Client Process Server Process

-

N N

nRequest Pr eMar shal

N

out Request Pr eMar shal i nRequest Post Mar shal
o — request o —0 >
Q out Request Post Mar shal
i nRepl yPost Mar shal eply out Repl yPost Mar shal ~ \object
-9 o ——®e o —1@
i nRepl yFai l ure i nRepl yPreMar shal out Repl yFai | ure

out Repl yPr eMar shal

o J

Figure 16.2: Per-process Monitor Points

A particular filter on the per-process filter chain may perform actions for any
number of these filter points, although it is common to handle four filter points,
for example:

® out request pre-marshal
® out reply pre-marshal

® in request pre-marshal
® in reply pre-marshal

In addition to monitoring incoming and outgoing requests, a filter on the client
side and a filter on the server side can co-operate to pass data between them, in
addition to the normal parameters of an operation (or attribute) call. For
example, the ‘out’ filter points of a filter in the client can be used to insert extra
data into the request package (for example, in ‘out request pre-marshal’); and
the ‘in’ filter points of a filter in the server can be used to extract this data (for
example, in ‘in request pre-marshal’).

Each filter point must indicate how the handling of the request should be
continued once the filter point itself has completed. In particular, a filter point
can determine whether or not Orbix is to continue to process the request or to
return an exception to the caller.

311

Orbix C++ Programmer’s Guide

Because per-process filters are applied only when an invocation leaves or arrives
at an address space, they are not informed of invocations between collocated

objects.

Example Usages of Per-Process Filter

In addition, there are two special forms of per-process filters, each with its own

special use:

Authentication filter

A filter that passes authentication information from a
client to a server. The ability to verify the identify of the
caller is a fundamental requirement for security.
Authentication filters are discussed in “Defining an
Authentication Filter” on page 322.

Thread filter

A filter that (optionally) creates lightweight threads when
an operation invocation arrives at a server. The filter
point i nRequest PreMar shal () actually creates the
thread. These filters are available in Orbix-MT only, refer
to Chapter 23, “Using Threads with Orbix-MT” on

page 403 for details.

Introduction to Per-Object Filters

Per-object filters are associated with a particular object, rather than with all
objects in an address space as in per-process filtering. Unlike per-process filters,
per-object filters apply even for intra-process operation requests.

The following filtering points are supported:

® per-object pre

This filter applies to operation invocations on a particular object—before
they are passed to the target object.

® per-object post

This filter applies to operation invocations on a particular object—after
they have been processed by the target object.

A per-object pre-filter can indicate, by raising an exception, that the actual
operation call should not be passed to the target object.

312

Filtering Operation Calls

Per-object filters are created by carrying out the following three steps:

I. Define a new class that implements all of the IDL operations and
attributes for the target object.

2. Create an instance of this new class. This instance behaves as a per-object
filter when it is installed.

3. Install this filter object as either a pre-filter or as a post-filter to a
particular target object.

It is important to realize that a per-object filter is either a pre-filter or a post-
filter. In contrast, a single per-process filter can perform actions for any or all of
its eight monitor points.

An object can have a chain of pre-filters and/or a chain of post-filters. For
example, a chain of pre-filters can be constructed by attaching a pre-filter to the
object, then attaching a pre-filter to that filter, and so on.

Note that per-object filtering can only be used if:

® The TIE approach has been used to associate the target object’s class
with its IDL C++ class.

® Per-object filtering was enabled when the corresponding IDL interface
was compiled by the IDL compiler (see “IDL Compiler Switch to Enable
Object Filtering” on page 326).

The parameters to an IDL operation request are readily available for both pre
and post per-object filters. Any i n and i nout parameters are valid for pre filters;
i n, out and i nout parameters and return values are valid for post filters. In
contrast, for per-process filters, parameters to the operation request are not in
general available.

The per-process ‘in request’ (both pre and post-marshal) filters are applied
before any per-object pre-filter. The per-object post-filters are applied before
any per-process ‘out reply’ (both pre and post-marshal) filters.

313

Orbix C++ Programmer’s Guide

Using Per-Process Filters

A per-process filter is installed by defining a derived class of class
QORBA: : Fi | t er, and re-defining one or more of its member functions:

out Request PreMar shal () Operates in the caller’s filter before outgoing
requests (before marshalling).

out Request Post Mar shal () Operates in the caller’s filter before outgoing
requests (after marshalling).

i nRequest Pr eMar shal () Operates in the receiver’s filter before
incoming requests (before marshalling).

i nRequest Post Mar shal () Operates in the receiver’s filter before
incoming requests (after marshalling).

out Repl yPr eMar shal () Operates in the receiver’s filter before
outgoing replies (before marshalling).

out Repl yPost Mar shal () Operates in the receiver’s filter before
outgoing replies (after marshalling).

i nRepl yPr eMar shal () Operates in the caller’s filter before incoming
replies (before marshalling).

i nRepl yPost Mar shal () Operates in the caller’s filter before incoming
replies (after marshalling).

out Repl yFai l ure() Operates in the receiver’s filter if a preceding
filter point raises an exception or indicates
that the call should not be processed further
or if the target object raises an exception.

i nRepl yFai | ure() Operates in the caller’s address space if the
target object raises an exception or a
preceding filter point raises an exception or
indicates that the call should not be
processed further.

314

Filtering Operation Calls

Each of these member functions takes two parameters; the marshalling member
functions (the functions not concerned with failure) return a CORBA: : Bool ean
value to indicate whether or not Orbix should continue to make the request.I

For example:

CORBA: : Bool ean
out Request Pr eMar shal (CORBA: : Request & r,
CORBA: : Envi ronnent &) ;

The failure functions, out Repl yFai | ure() and i nRepl yFai | ure(), have a void
return type.

You can obtain the details of the request being made by calling member
functions on the CORBA: : Request parameter. Examples of this are shown in “An
Example Per-Process Filter” on page 316. The CORBA: : Envi ronment variable
can be used to raise an exception if the C++ compiler does not support native
exceptions. Refer to the Orbix C++ Programmer’s Reference for full details of
these functions.

The constructor of class Fi | t er adds the newly created filter object into the
per-process filter chain. Direct instances of Fi | t er cannot be created (the
constructor is pr ot ect ed to enforce this). Derived classes of Fi | t er normally
have publ i ¢ constructors.

Note: Each function (except the two failure functions) returns a value to
indicate how the call should continue. Redefinitions of these functions in
a derived class should retain the same semantics for the return value as
specified in the relevant entries in the Orbix C++ Programmer’s
Reference.

You should define derived classes of Fi | t er and redefine some subset of the
member functions to carry out the required filtering. If any of the non-failure
monitoring functions is not redefined in a derived class of CORBA: : Fi | ter, then
the following implementation is inherited in all cases:

/] C++
{ return 1; } // Continue the call.

I. i nRequest PreMar shal () returns an i nt value.

315

Orbix C++ Programmer’s Guide

The failure filter functions inherit the following implementation:

/] C++
{ return; }

Note that the two ‘out reply’ marshalling filter points are used only if the
operation request is issued to the target object. The two ‘in reply’ marshalling
filter points are used only if the operation request is sent out of the caller’s
address space.

An Example Per-Process Filter

Consider the following simple example of a per-process filter:

/] C++
#i ncl ude <CORBA. h>
#i ncl ude <i ostream h>

cl ass ProcessFilter
public virtual CORBA: :Filter {
public:
CORBA: : Bool ean
out Request PreMar shal (CORBA: : Request & r,
CORBA: : Envi ronnent & {
CORBA: : String_var s;
s = (r.target())->_object_to_string();
cout << end| << “Request out-going to ”
<< s << “ with operation name ”
<< r.operation() << endl;
return 1; // Continue the call.
}
int inRequestPreMarshal(CORBA::Request& r,
CORBA::Environment&) {
CORBA::String_var s;
s = (r.target())->_object_to_string();
cout << end| << “Request incoming to ”
<< s << “ with operation name ”
<< r.operation() << endl;
return 1; // Continue the call.

}

CORBA::Boolean outReplyPreMarshal(
CORBA::Request& r,

316

Filtering Operation Calls

CORBA: : Envi ronment & {
cout << “ Incoming operation ”

<< r.operation()

<< “finished. ” << endl << endl;
return 1; // Continue the call.

}

CORBA::Boolean inReplyPreMarshal(
CORBA:Request&r,
CORBA::Environment&) {

cout << “Outgoing ” << r.operation()
<< “finished.” << end| << endl;
return 1; // Continue the call.

}

void outReplyFailure(
CORBA:Request&r,
CORBA::Environment&) {
cout << “Operation” << r.operation()
<< “raised exception.” << end| << endl;
return;

}

void inReplyFailure(
CORBA:Request& r,
CORBA::Environment&) {
cout << “Operation” << r.operation()
<< “raised exception.” << end| << endl;

return;
}
¥
Filter classes can have any name; but they must inherit from CORBA::Filter
CORBA:Filter has a protected default constructor; ProcessFilter is given a

default (no parameter) public constructor by C++.

The function target() can be applied to a Request to find the object reference
of the target object; and the function _object_to_string() can be applied to
an object reference to get a string form of an object reference. The function
operation() can be applied to a Request to find the name of the operation
being called.

317

Orbix C++ Programmer’s Guide

Installing a Per-Process Filter

To install this per-process filter, you need only create an instance of it, usually at
the file level:

/] C++
ProcessFilter nyFilter;

This object automatically adds itself to the per-process filter chain.

Raising an Exception in a Filter

Any of the per-process filter points can raise an exception in the normal manner.
For example, the i nRequest Post Mar shal () filter point can be changed to raise
a NO_PERM SSI ON'system exception:

/] C++
CORBA: : Bool ean
ProcessFilter::inRequest Post Marshal (
CORBA: : Request & r,
CORBA: : Envi ronnent & env) {
if (...) {
t hr ow CORBA: : NO_PERM SSI ON(
CORBA: : | NVOKE_DENI ED,
CORBA: : COWPLETED_NO) ;
/1 The NO_PERM SSI ON system exception
// has been raised here, with a m nor
/1l code of | NVOKE DENI ED, and a
/1 conpletion status of COVPLETED_NO.

Rules for Raising an Exception
The following rules apply when a filter point raises an exception:

® Per-process filters can raise only system exceptions. Any such exception
is propagated by Orbix back to the caller. However, raising an exception
in an i nRepl yPost Mar shal () filter point does not cause the exception to
be propagated: at that stage, the invocation is essentially already
completed and it is too late to raise an exception.

318

Filtering Operation Calls

If any filter point raises an exception, then no further filter points are
processed for that invocation, except for one or both of the failure filter
points, out Repl yFai | ure() and i nRepl yFai l ure().

If one of the following filter points:

out Request PreMar shal ()

out Request Post Mar shal ()

i nRequest Pr eMar shal ()

i nRequest Post Mar shal ()
raises an exception then the actual function call is not forwarded to the
target application object.

If the operation implementation raises a user exception and one of the
filter points

out Repl yFai | ure()

i nRepl yFai | ure()
raises a system exception, the system exception is raised in the calling
client (that is, the user exception is overwritten). You may wish to test
whether an exception has already been raised before raising one in the
filter. You can do this by testing the environment formal variable, for
example env, as follows:

Il C++

if (env.exception()) {
/] Have exception already.

}
If the operation implementation raises a system exception, no further
filter points, except one or both of out Repl yFai | ure() and
i nRepl yFai | ure() are called for this invocation.

319

Orbix C++ Programmer’s Guide

Piggybacking Extra Data to the Request Buffer

320

One of the out Request filter points in a client can add extra piggybacked data to
an outgoing request buffer—and this data is then made available to the
corresponding i nRequest filter point on the server side. In addition, one of the
‘out reply’ marshalling filter points on a server can add data to an outgoing reply.
This data is then made available to the corresponding i nRepl y filter point on the
client-side.

At each of the four ‘out’ marshalling monitor points, you can add data by using
oper at or<<() on the Request parameter, for example:

/] C++

CORBA: : Long | = 27L;
/1

r << 1;

This is the same oper at or <<() that is used in the DII. Refer to Chapter 13,
“Dynamic Invocation Interface” on page 243 for details.

At each of the ‘in’ marshalling monitor points, data can be extracted using
oper at or >>(), for example,

/1 C++

CORBA: : Long j ;

/1

r >> J X
This is a fundamental difference from the normal use of oper at or >>() for the
Dynamic Invocation Interface, as described in Chapter |3, “Dynamic Invocation
Interface” on page 243. In the dynamic invocation interface, oper at or >>() is
only used to determine the return value of an invocation. In particular, i nout
and out parameters are not obtained using oper at or >>(), but their values are
instead established using the out Mode and i nout Mode stream manipulators. In
contrast here, oper at or >>() can be used to extract piggybacked data from an
incoming request (or reply).

Filtering Operation Calls

Matching Insertion and Extraction Points

You must ensure that the insertion and extraction points match correctly,
as follows:

Insertion Point Extraction Point
outRequestPreMarshal() inRequestPreMarshal()
outReplyPreMarshal() inReplyPreMarshal()
outRequestPostMarshal() inRequestPostMarshal()
outReplyPostMarshal() inReplyPostMarshal()

For example, a value inserted by out Request Pr eMar shal () must be extracted
by i nRequest PreMar shal () . Unmatched insertions and extractions corrupt the
request buffer and potentially cause a program crash.

When only one filter is being used, its out Request Post Mar shal () function can
add piggybacked data that the corresponding i nRequest Post Mar shal ()
function, on the called side, does not remove. However, this would cause
problems if more than one filter is used.

Ensuring that Unexpected Extra Data is not Passed

When coding a filter that adds extra data to the request, care should be taken
not to include this data when communicating with a server that does not expect
it. Frequently, a filter should add extra data only if the target object is in one of
an expected set of servers.

For example, it is necessary to include the following code in
out Request PreMar shal () and out Request Post Mar shal () (assuming the
Request parameter is r):

/] C++

/'l First find the server nane.

CORBA: : | mpl enent at i onDef _ptr inpl;

impl = (r.target())->get _inplenentation();

if (strcmp(impl, “some_server”) == 0) {

/I Can add extra data.

}

321

Orbix C++ Programmer’s Guide

el se {
/1 Do not add any extra data.
}

The function OORBA: : (bj ect: : _get _i npl enent ati on() returns the server
name of an object reference (in this case, of the target object).

You should be particularly careful not to add data when communicating with the
Orbix daemon, | T_daenon. The Orbix library communicates with the daemon
process, and you should ensure that you do not pass extra data to the daemon.

Defining an Authentication Filter

322

Verification of the identity of the caller of an operation is a fundamental
component of a protection system. Orbix supports this by installing an
authentication filter in every process’s filter chain. This default implementation
transmits the name of the principal (user name) to the server when the channel
between the client and the server is first established and adds it to all requests at
the server side. A server object can obtain the user name of the caller by calling
the function:

/] C++
/1 In class CORBA:: BOA.
char* get_principal (Object_ptr,
Envi ronnent & env = default_environment);

on the CORBA: : O bi x object. The first parameter, of type Chj ect_ptr, is not
used.

The default authentication filter can be overridden by declaring a derived class of
QORBA: : Aut henti cati onFi | ter and creating an instance of this class. For
example, an alternative authentication filter may use a ticket-based
authentication system rather than passing the caller’s user name.

Filtering Operation Calls

Using Per-Object Filters

You can attach a pre and/or a post per-object filter to an individual object of a
given IDL C++ class. Consider the following IDL interface:

/1 1D
interface Inc {
unsi gned |l ong increnment(in unsigned | ong vin);
i
This maps to the following C++ class:

/] C++
class Inc : public virtual CORBA::Cbject {
virtual CORBA::ULong i ncrement(
CORBA: : ULong Vi n,
CORBA: : Envi ronnment & env =
CORBA: : def aul t _environnent);

b
You can implement interface | nc as follows:
Il C++

class Inclnmpl {
virtual CORBA::ULong i ncrement (
CORBA: : ULong Vi n,
CORBA: : Envi r onment &)
{ return (vin+l); }

b

DEF_TI E_I nc(I ncl mpl);

Note: To facilitate object-level filtering, you must use the Tl E approach.

If you have two objects of this type created, as follows:

/] C++
Inc_ptr i1l = new TIE_ I nc(Inclnpl) (new Inclmpl());
Inc_ptr i2 = new TIE_Inc(Inclnpl) (new Inclmpl());

you may wish to have pre and/or post-filtering on; for example, the specific
object referenced by i 1. To achieve this, you must define one or more
additional classes and additional Tl E classes.

323

Orbix C++ Programmer’s Guide

To perform pre-filtering, you could define a class (for example, Fi | t er Pre) to
have the same functions and parameters as a normal implementation class of the
corresponding IDL C++ class:

/] C++
class FilterPre {
public:
virtual CORBA:: ULong increment (
CORBA: : ULong Vi n,
CORBA: : Envi ronnent & {
cout << “*** PRE call with parameter ”
<< vin << endl;
return 0; // Here any value will do.
}
h

Similarly, to perform post-filtering, you could define a class (for example,
FilterPost) as follows:

/I C++
class FilterPost {
public:
virtual CORBA::ULong increment(
CORBA::ULong vin,
CORBA::Environment&) {
cout << “*** POST call with parameter "
<< vin << endl;
return O; // Any value will do.

g
In the examples shown here, a per-object filter cannot access the object it is
filtering. A filter can however do this by having a member variable that points to
the object it is filtering. You can set up this member using a constructor
parameter for the filter.

You need to create TIE classes for these filters:

/I C++
DEF_TIE_Inc(FilterPre)
DEF_TIE_Inc(FilterPost)

324

Filtering Operation Calls

To apply filters to a specific object, do the following:

/] C++

/] Create two filter objects.

Inc_ptr serverPre = new TIE_ Inc(FilterPre)
(new FilterPre());

Inc_ptr serverPost = new TIE Inc(FilterPost)
(new FilterPost());

/] Attach the two filter objects to
/'l the target object pointed to by il.
i1-> attachPre(serverPre);

i 1-> attachPost (serverPost);

It is not always necessary to attach both a pre and a post-filter to an object.

Attaching a pre-filter to an object that already has a pre-filter causes the old
filter to be removed and the new one to be attached. The same applies to a post
filter.

The functions _at t achPre() and _attachPost () return, respectively, the
previous pre-filter and post-filter, if any, attached to the object. The functions
_getPre() and _get Post () return a pointer to an object’s pre-filter and post-
filter, respectively.

To attach a chain of per-object pre-filters to an object, _attachPre() can be
used to attach the first pre-filter, and then it can be used again to attach a pre-
filter to the first pre-filter, and so on. The same applies to post-filters.

If a per-object pre-filter raises an exception in the normal way, the actual
operation call is not made. Normally, this exception is returned to the client to
indicate the outcome of the invocation. However, if the pre-filter raises the
exception CORBA: : FI LTER_SUPPRESS, no exception is returned to the caller—
the caller cannot tell that the operation call has not been processed as normal.

You can raise a FI LTER_SUPPRESS exception as follows:

/] C++

t hr ow CORBA: : FI LTER_SUPPRESS(
CORBA: : FI LTER_SUPPRESS | ND,
CORBA: : COVWPLETED_NO) ;

325

Orbix C++ Programmer’s Guide

In the preceding example, the same filter objects (those pointed to by

server Pre and ser ver Post) could be used to filter invocations to many objects.
Other filters, for example a filter holding a pointer to the object it is filtering, can
only be used to filter one object.

IDL Compiler Switch to Enable Object Filtering

Per-object filtering can be applied to an IDL interface only if it has been compiled

with the - F switch to the IDL compiler. By default, - F is not set, so object level
filtering is not enabled.

326

|7

Using Smart Proxy Classes

Smart Proxies are an Orbix-specific feature that allow you to
implement proxy classes manually, thereby enabling optimization of
client interaction with remote services. This chapter describes how
proxy objects are generated, and the general steps involved in
implementing smart proxy support for a given interface. It also
describes how to build a simple smart proxy, using an example that
builds on the BankSimple example from Chapter 2 and

Chapter 5.

It is sometimes beneficial to be able to implement proxy classes manually.
Although it is not expected that you do this if you are a client programmer
calling a remote interface; it is a useful option if you are implementing an
interface. You can provide smart proxy code, for example, to optimize how your
clients use the services provided.

A typical example would be to use a smart proxy to examine client requests
bound for server objects. The smart proxy forwards requests only if certain
criteria are met. The example used in this chapter uses a smart proxy to check if
there is sufficient funds in the account before forwarding the request to the
server.

This involves constructing a smart proxy for the Account interface. You can do
this by manually programming a class derived from the IDL C++ class Account
(generated by the IDL compiler). This inheritance is best considered in terms of
inheriting from the default proxy class generated by the IDL compiler.

327

Orbix C++ Programmer’s Guide

In fact, the IDL C++ class and the default proxy class are the same class, created
for every application that you write. The member functions of class Account
package requests for the target object; the member functions of a derived class
can provide optimized application specific coding.

You can then link client programs with this smart proxy code, but you do not
have to change them in any other way. When a proxy is created in a client’s
address space, a smart proxy is created rather than a default one.

Note: Use of the Dynamic Invocation Interface currently bypasses the smart
proxy mechanism. Calls made using the DIl do not result in invocations
on smart proxies.

This chapter first considers the details of how proxy objects are actually
generated, and the general steps needed to implement smart proxy support for a
given interface. It then describes how to build a simple smart proxy using an
example.

The source code for the example described in this chapter is available in the
denos\ banksmnart pr oxy directory of your Orbix installation.

Management of Proxies by Proxy Factories

328

This section begins describing how Orbix manages proxies. The Orbix IDL
compiler generates the following classes for each IDL interface:

®* An IDL C++ class—this is also the default proxy class.

® A default proxy factory class for that class.

The Default Proxy Class

The default proxy class gives the code for standard proxies for that IDL
interface. This proxy transmits requests to its real object and returns the results
it receives to the caller.

Using Smart Proxy Classes

The Default Proxy Factory Class

The proxy factory class produced by the IDL compiler creates these standard
proxies for its class, and there is a single global instance of this class linked into
the client code. This instance constructs a new standard proxy for its IDL
interface when requested by Orbix. The proxy factory class is termed the
default proxy factory class.

For example, the IDL compiler generates the following classes for IDL interface
BankSi npl e: : Account :

® BankS npl e: : Account

This is the IDL C++ class—it also acts as the default proxy class.
® BankS npl e: : Account Pr oxyFact or yd ass

This is the default proxy factory class for interface Account .
® BankS npl e: : Account Pr oxyFact ory

This is the single global instance of Account Pr oxyFact oryd ass.

Generating Smart Proxies

To provide smart proxies for an IDL interface you must:

|. Define the smart proxy class.
This must inherit from its IDL C++ class.
2. Define a proxy factory class.

This creates instances of the smart proxy class on request using
its New() member function.

3. Create a single instance of the proxy factory class.

Client programs must be linked with the smart proxy class and the proxy factory
class, and must create the instance of the proxy factory class. You should
normally provide a header file and a corresponding object file to carry out all of
these steps. This involves very minimal changes for clients—their normal
operation invocation code remains unchanged.

329

Orbix C++ Programmer’s Guide

330

When these steps are carried out, Orbix communicates with the factory
whenever it needs to create a proxy of that interface as follows:

When a reference to an object of that interface is passed back as an out
or i nout parameter or a return value, or when a reference to a remote
object enters an address space via an i n parameter.

When the interface’s _bi nd() function is called.

When CORBA: : O bi x. string_to_obj ect () is called with a stringified
object reference for a proxy of that interface.

Creating a Smart Proxy

The following steps describe in more detail the steps you must perform to
create a smart proxy:

Declare and implement the smart proxy class, derived from its IDL C++
class. The constructor of this class is used by the smart proxy factory,
in step 2.

Declare and implement a new proxy factory class, derived from the
default proxy factory class.

Orbix calls a proxy factory’s New() member function when it wishes to
create a proxy for a particular interface. The a new proxy factory class
should redefine the New() function to create new smart proxy objects
from the class in step |. Alternatively, it should return zero to indicate
that it is not willing to create a smart proxy.

Declare a global object of this new class.

The constructor of the base class automatically registers this new proxy
factory object with the factory manager in Orbix.

Smart Proxy Factory Chains

You can define more than one smart proxy class (and associated smart proxy
factory class) for a given IDL interface. Orbix maintains a linked list of all of the
proxy factories for a given IDL interface.

A chain of smart proxy factories is allowed for an IDL interface because the
same IDL interface might be provided by a number of different servers in the
system. It may be useful to have different smart proxy code to handle each
server, or set of servers.

Using Smart Proxy Classes

Each factory in turn can examine the marker and server name of the target
object for which the proxy is to be created, and decide whether to create a
smart proxy for it or to defer the request to the next proxy factory in the chain.
Initially, there is a single entry in this list—the default proxy factory class.

When a new proxy is required, Orbix calls all of the registered proxy factories
for the class until one of them successfully builds a new proxy. The only
guarantee on the order of use of smart proxy factories is that the factory
manager ensures that an interface’s default proxy factory object is the last
factory on the chain. Thus if no other proxy factory is willing to manufacture a
new proxy, a standard proxy is constructed.

The factory manager requests each proxy factory to manufacture a new proxy
via its New() member function. The first parameter to this function is the full
object reference of the target object:

/] C++
/]l Returns a pointer to the new snart proxy:
voi d* New(const char*, CORBA::Environment &)

The code for this function may need to extract the target object’s marker. One
way to extract the target object’s marker and server name is by constructing a
direct occurrence of CCRBA : (hj ect, passing the full object reference string as
a constructor parameter, and then calling _narker () and _i npl enent ati on()
on that temporary object.

The New() function can raise an exception, in the normal way. If the function
returns zero, but does not raise an exception, Orbix tries the next smart proxy
factory in the chain.

331

Orbix C++ Programmer’s Guide

A Simple Smart Proxy Example

This section describes a simple smart proxy class for interface Account, based
on the BankS npl e example.

The Account IDL Interface

The BankSi npl e IDL interface for Account is as follows:

/1 1D
/1 In file banksinple.idl

nodul e BankSi nple {
typedef float CashAnount;

interface Account {
readonly attribute string nane;
readonly attribute CashAmount bal ance;

void deposit(in float f);
void withdraw(in float f);

}
}s

Defining a New Proxy Class

This section defines a smart proxy class, named Snar t Account, for class
Account . Smar t Account objects check if the client has sufficient funds before the

wi t hdraw() operation reaches the server:

/] C++
/1 In file banksinple_smartaccount.h

#i ncl ude "banksi npl e. hh"

1 cl ass SmartAccount : public virtual
BankSi npl e: : Account {

332

Using Smart Proxy Classes

public:
/1 The required constructor:
Smar t Account (const char*);

/1l Functions for |IDL operations and attributes.
/] List only those which require a different
/] inplenmentation in the smart proxy class:
virtual void wthdraw
BankSi npl e: : CashAmount anount ,
OCRBA: : Envi ronnent & env = CCRBA: : def aul t _envi ronment) ;

b

This code is described as follows:

Class Smar t Account inherits from the default proxy code (the IDL C++
class) generated by the IDL compiler. It therefore inherits all of the code
required to make a remote invocation. Each Srart Account function can
call its base class function to make a remote call. Virtual inheritance is not
strictly necessary in the previous code sample. It is used in case C++
multiple inheritance is required later.

The constructor for the smart proxy class takes a full object reference
string as a parameter. It must pass this to the constructor of its default
proxy class.

The wi t hdraw() function is overridden because of the extra check

performed by the smart proxy to see if there are sufficient funds in the
account.

The corresponding implementation of the wi t hdr aw() function is as follows:

/] C++
/1 In file banksinple_smartaccount. cxx

#i ncl ude "banksi npl e_smartaccount. h"
#i ncl ude <i ostream h>

/'l Constructor.
Smart Account : : Smart Account (const char* OR)
BankSi npl e: : Account (OR) {}

/1 Inplenentation of the withdraw() function.
voi d Smart Account: :wi t hdraw(
BankSi npl e: : CashAmount anmount, CORBA: : Envi r onnment &)

{

333

Orbix C++ Programmer’s Guide

334

fl oat bal ance;

/] Check the account bal ance.
bal ance = BankSi npl e: : Account : : bal ance();

if ((balance-anpunt) < 0) {
cout <<"Smart Proxy detected insufficient funds
for withdraw operation."<<endl;
cout <<"Wthdraw operation not called"<<endl;
return;

}

BankSi npl e: : Account : : wi t hdraw(anount) ;

}

The Smar t Account () constructor calls the constructor of the IDL C++ class for
which it implements proxies (Account), passing it the string form of the object
reference for the remote object. This call is necessary because the constructor
of Account in turn calls the constructor of its base class CORBA: : (bj ect,
registering the proxy in the object table. The object table registers all objects in
an address space. Refer to QORBA: : ORB: : resi ze(hj ect Tabl e() in the Orbix
C++ Programmer’s Reference for more details.

The functions inherited from Account are used to make remote calls.

Defining a New Proxy Factory Class

The next step is to define a new proxy factory to generate smart proxies when
required. The default proxy factory produced by the IDL compiler for interface
Account is Account ProxyFact or yd ass—you should derive from this class, as
the following code shows:

/] C++
/1 In file banksinple_smartaccount.h

#i ncl ude "banksi npl e. hh"

cl ass Smart Account FactoryClass : public virtual
BankSi npl e: : Account Pr oxyFact oryCl ass {

Using Smart Proxy Classes

public:
/1 Constructor:
Smart Account Fact oryCl ass() : CORBA: : ProxyFactory(
BankSi npl e_Account _IR) {}

/1 The New() nmenber function is called when a
/] proxy is required.
virtual void* New (

const char* OR,

CORBA: : Envi ronment & {

/] Create and return a new smart proxy.

r et ur n(BankSi npl e: : Account _ptr)

new Smart Account (OR) ;

}
b
The member initialization list of the constructor of class
Smar t Account Fact or yd ass makes a call to the constructor of class
ProxyFact or y (the base class of Account Pr oxyFact or yd ass). The parameter
passed is BankSi npl e_Account _| R an automatically-defined macro.

Each default proxy factory class has a default constructor without any
parameters. The constructor of Smart Account Fact or yd ass therefore does
not need to be concerned with calling the constructor of

Account ProxyFact or yd ass; however, it must call the ProxyFact ory
constructor. Figure 17.1 shows the various class hierarchies involved.

Pr oxyFact ory OCRBA: : (bj ect
Account Pr oxyFact or yd ass Account
Smar t Account Fact or yd ass Smar t Account

Figure 17.1: Class Hierarchy for Smart Proxy Class

335

Orbix C++ Programmer’s Guide

336

The Smart Account Fact or yd ass: : New() function is called by Orbix to signal
that a smart proxy is to be created. Orbix passes it the object reference of the
object for which the proxy is required. The New() function dynamically
constructs the smart proxy, passing it the object reference. Orbix also passes
any other constructor parameters agreed on by the smart proxy and the smart
proxy factory.

Note: A member variable, m next, is defined in the default proxy factory class
for each interface. This is automatically maintained by Orbix and should
not be modified by any factory.

If an Account smart proxy factory needs to test whether or not it should create
a smart proxy, its New() function should do the following:

/] C++
if (...) /] Test condition onmtted here.
/1 The target object is one that you should
/Il create a smart proxy for.
return (BankSinpl e:: Account _ptr)
new Smart Account (OR);
el se
/1 Pass on the object reference paraneter to the
/1 next factory in the factory chain.
return O;

The factory can use the stringified object reference parameter to determine
whether it should create a smart proxy: it might determine this from the server
name of the object reference, or perhaps by communicating with the object’s
server. If the request is propagated as far as the default factory, it will create a
standard proxy.

In the code for Smart Pr oxyFact or yd ass above, all account proxies are built as
smart proxies. We could re-implement Smart Account Fact oryd ass: : New()
to build smart proxies only for particular remote servers. To do this,
Smar t Account Fact oryd ass: : New() should find the server name of the target
object to decide whether it should create a smart proxy, or pass the request to
the next factory in the linked list (and finally to the default proxy factory class
that constructs a standard proxy).

Using Smart Proxy Classes

Declaring a New Proxy Factory Class Instance
Finally, you need to declare a single instance of this new class:

/] C++
/1 In file banksinple_smartaccount. cxx
Smart Account Fact oryCl ass Snart Account Fact ory;

The constructor of the base class then registers this new factory—entering it
into the linked list of factories for interface Account.

337

Orbix C++ Programmer’s Guide

338

|8

Callbacks from Servers to Clients

Orbix clients usually invoke operations on objects in Orbix servers.
However, Orbix clients can also implement some of the functionality
associated with servers, and all servers can act as clients. This
flexibility increases the range of client-server architectures that you
can implement with Orbix. This chapter describes a common
approach to implementing callbacks in an Orbix application,
illustrated by a stock-trading example.

A callback is an operation invocation made from a server to an object
implemented in a client. Callbacks allow servers to send information to clients
without forcing clients to explicitly request the information.

Implementing Callbacks in Orbix

This chapter introduces a simple model for implementing callbacks in a
distributed system. It describes the following steps:

|. Defining the IDL interfaces for the system.
2. Implementing the IDL Interfaces.

3.

4. Writing the server.

Writing the client.

339

Orbix C++ Programmer’s Guide

Defining the IDL Interfaces

In the stock-trading example, the client invokes operations on the server and the
server invokes operations on the client. You must therefore define IDL
interfaces that allow each application to access the other. In the simplest case,
this involves two interfaces, for example:

/1 1DL
/1l In file stock.idl

/1 1 nplenented by the client.
interface StocklnfoCB {

,

/1 1 npl enented by the server.
interface RegStocklnfo {

,

In this example, the client application supplies an implementation of type
St ockl nf 0GB, while the server implements RegSt ockl nf o.

The server in this example cannot bind to the client implementation object,
because clients are not registered in the Orbix Implementation Repository.
Instead, the IDL definition provides a Regi st er () operation that allows the
client to explicitly pass an implementation object reference to the server.

The full IDL for the stock-trading example is as follows:

/1 1DL
/1l In file stock.idl

1 interface St ocklnfoCB {
oneway void NotifyPriceChange
(in string stocknane, in float newprice);

}s

340

Callbacks from Servers to Clients

2 interface RegStocklnfo {
voi d Register (in StocklnfoCB obj);
voi d Deregister (in StocklnfoCB obj);
3 void Notify (in float newprice);
i
This IDL is described as follows:

I. Stockl nf oCBis the callback interface implemented by the client. Its
Not i f yPri ceChange() operation is invoked by the server when a
stock price changes.

Not i f yPri ceChange() is a oneway operation. This means that the
server calling this operation does not block while the client object
processes the call. Orbix does not guarantee that a oneway operation call
will succeed; if a oneway operation fails, the client may not know. Refer
to “Preventing Deadlock in a Callback Model” on page 350 for more
details.

2. RegSt ockl nf o is the register interface implemented by the server. Its
Regi st er () and Der egi st er () operations enable clients that wish to
receive stock price callbacks to register or deregister for a given stock.

3. The Notify() operation is used by the server to notify clients of a stock
price change. Noti fy() calls the Noti f yPri ceChange() operation.

The source code for the example described in this chapter is available in the
Orbix denos\ cal | back directory.

Implementing the IDL Interfaces

You can use the BOAImpl or TIE approach to implementing IDL interfaces.
Using the BOAImpl approach, the implementation class for type RegSt ockl nf o
is as follows:

/] C++
/1 In file stock_inpl.h

#include <it_denp_streans. h>
#i ncl ude "stock. hh"

/1 I nplenentation class
cl ass RegStockl nfolnmpl : public RegStockl nfoBOAl npl {

341

Orbix C++ Programmer’s Guide

public:
/| C++ operations
RegSt ockl nf ol npl (char* initial nane);
~RegSt ockl nfol npl () ;

/1 1 DL operations
voi d Register (

St ockl nf oCB_ptr obj,

CORBA: : Envi ronnent &env)

t hrow (CORBA: : Syst enException);
voi d Deregister (

St ockl nf oCB_ptr obj,

CORBA: : Envi ronnent &env)

t hrow (CORBA: : Syst enException);

void Notify (
CORBA: : Fl oat newpri ce,
CORBA: : Envi ronnent &env)
t hrow (CORBA: : Syst enException);

pr ot ect ed:
/1 Alist of all the objects to call back.
St ockl nfoCB_ptr clientlist[20];

CORBA: : Long nunber _clients;
int max_nunber clients;
char* stocknane;
b
The implementation of the Regi st er () function for the RegSt ockl nf o interface
requires special attention:

/] C++
/1 In file stock_inpl.cxx

/l Called by a client wishing to receive
/1 stock price call backs.
voi d RegStocklnfol npl:: Register (StocklnfoCB ptr obj,
CORBA: : Envi ronnent &) throw (CORBA: : Syst enmExcepti on)
{
i f(number _clients > max_nunber_clients) {
cout << "Al'l server connections used for
cal | back purposes"

342

Callbacks from Servers to Clients

.

<<endl ;
return;
cout

nunber _client s++;

}

<< "Registering client for stocknane
<< st ocknane << endl;
clientlist[nunber_clients]
St ockl nfoCB: : _duplicate(obj);

This Regi st er () function receives an object reference from the client. When
this object reference enters the server address space, a proxy for the client’s
St ockl nf oCB object is created, as shown in Figure 18.1 The server uses this
proxy to call back to the client. The implementation of Regi ster() stores the
reference to the proxy for later use.

Orbix Client

Implementation
object for type
St ockl nf oCB

Proxy of type
RegSt ockl nf o

Regi ster()

Orbix Server

/

return

~

Proxy of type

St ockl nf oCB

Implementation
object for type
RegSt ockl nf o

/

Figure 18.1: Client Passes Implementation Object Reference to Server

Once the server creates the proxy in its address space, it can invoke

Not i f yPri ceChange() (using its Notify() operation) to respond to a change in

a stock price.

343

Orbix C++ Programmer’s Guide

The implementation of the Noti f y() function that calls Not i f yPri ceChange()
is as follows:

/] C++
/1 In file stock_inpl.cxx

/1 Called by the server when sending stock price
/1 updates (callbacks) to the client.
voi d RegStockl nfol npl:: Notify(
CORBA: : Fl oat newpri ce,
CORBA: : Envi ronnent &)
t hrow (CORBA: : Syst enException) {
i f (number _clients>0) {
for (int i=0; i < nunber_clients; i++) {
try {
clientlist[i]>NotifyPriceChange(
"1 ONAY" , newpri ce);
}
catch (const CORBA: : Exception &) {
cerr << "Unexpected exception: "
<< e << endl;

}

The Noti f yPri ceChange() invocation on the St ockl nf oCB proxy is routed to
the client implementation object as shown in Figure 18.2 on page 345.

The transmission of requests from server to client is possible because Orbix
maintains an open communications channel between client and server while
both processes are alive. The server can send the callback invocation directly to
the client and does not need to route it through an Orbix daemon. Therefore,
the client can process the callback event without being registered in the Orbix
Implementation Repository and without being given a server name.

344

Callbacks from Servers to Clients

Orbix Client Orbix Server

Not i f yPri ceChange()
\ routed to client
<l
-

/

~

Implementation implementation object

for type
St ockl nf oCB

Proxy of type

St ockl nf oCB

return

Implementation
for type
RegSt ockl nf o

Proxy of type
RegSt ockl nf o

- / .

/

Figure 18.2: Server Invoking Operation on Client Callback Object

Writing the Client

The code for the client nai n() function is as follows:

/] C++
/1 In file client.cxx.

#i ncl ude "stock. hh"
#i ncl ude "cal | back. h"

int main (int argc, char *argv[]) {

try {
// Basic Setup. Process command-|ine argunents.

// ORB Setup - initialize the CRB.
OCORBA: : CRB_var orb = CORBA:: CRB_init(argc, argv, "Qbix");
OCRBA: : BQA var boa = orb->BQOA init(argc, argv, "QO bix_BQOA");

// Set the diagnostic |evel fromthe options
orb- >set D agnostics(clientopt.diagnostics());

345

Orbix C++ Programmer’s Guide

}

/1 Namng Service Setup
/1 Resolve an obj ect using a Naning Service Wapper (NSW.
// See denolib/it_deno _nsw * for details.

/1 Create a Nam ng Service Wapper object and define a name
/1 prefix used for subsequent operations.

| T_Dermo_NSW ns_wr apper ;

ns_wr apper . set NanePr ef i x(cl i entopt.context());

/1 Get QOORBA object.
/1 Provide the object’s name in the Nam ng Servi ce.
const char *object_nane = "Cal | Back. Cal | Back";

/1 Use the NSWto obtain a reference to the required object.
OORBA: : (hj ect _var obj = ns_w apper.resol veNanme(obj ect _nane) ;

/1 Narrow the object reference.

RegSt ockl nfo_var stock = RegStockl nfo:: _narrow obj);

if (OCRBA: :is_nil(obj)) {
cerr << "(pject in naning service is not of expected
type"<< endl ;

}

/1 Performdeno-specific operations on the CORBA obj ect.
St ockl nf oCB var cbobj = new St ockl nf oCBI npl ();

cout << "Sending request for |QONAY stock prices"<<endl;
st ock- >Regi st er (cbobj) ;

/] dient is coded to recei ve ten call backs.
for (int i=0; i < 10; i++) {
boa- >pr ocessNext Event () ;
}
cout << "Sendi ng request deregi ster fromI| QNAY stock price
cal | backs "<<endl ;
st ock->Der egi st er (cbobj) ;

catch (CORBA: : Exception& e) {

346

cerr << "Unexpected exception" << e << endl;
cerr << "Deno failed" << endl;
exit(1);

Callbacks from Servers to Clients

cout << "Deno finished" << endl;

return O;

}

This client creates an implementation object of type St ockl nf oCBI npl . It then

invokes the Regi st er () function and connects to an object of type

RegSt ockl nf o in the server. At this point, the client holds an implementation
object of type St ockl nf oGB and a proxy for an object of type RegSt ockl nf o, as
shown in Figure 18.3.

To allow the server to invoke operations on the St ockl nf 0GB implementation
object, the client must pass this object reference to the server. Consequently,
the client then calls the operation Regi st er () on the RegSt ockl nf o proxy

object, as shown in Figure 18.3.

Orbix Client

/

Implementation

for type
St ockl nf oCB

Proxy of type
RegSt ockl nf o

~

Not i f yPri ceChange()

Pl
N
return
Regi ster()
'
< _____________________ -
return

Orbix Server

Proxy of type

St ockl nf oCB

Implementation
for type
RegSt ockl nf o

Figure 18.3: Client-Server Callback Interaction

347

Orbix C++ Programmer’s Guide

Writing the Server

The code for the server mai n() function is as follows:

/] C++
/1l In file server.cxx

#i ncl ude "stock_i npl.h"

int main(int argc, char * argv[]) {
try {

/1 ORB and BOA setup.
/1 Initialize the ORB and BOA
CORBA: : ORB var orb = CORBA:: ORB init
(argc, argv, "Obix");
CORBA: : BOA var boa = orb->BOA init
(argc, argv, "O bix_BOA");

/1 Set diagnostics and server narne.

/1 Server should not quit while clients
/] are connected.
boa- >set NoHangup(1) ;

boa- >i npl _i s_ready
((char*)serveropt.server_name(), 0);

/1 Create an inplenmentation object.
RegSt ockl nf o_var synbol
= new RegSt ockl nfol npl ("I ONAY") ;

/1 Nami ng Service setup as nornal .

/1 ORB/ BOA event processing

/1 Server conpleted its initialization,

/1 and waiting for incomng requests.

boa- >i npl _i s_ready
((char*)serveropt.server_nane(), 0);

348

Callbacks from Servers to Clients

/]l Set share price.
float shareprice = 18.5;

if (!serveropt.bindns()) {
for (int i=0; i<100;i++) {
if (boa->isEventPending()) {
boa- >pr ocessNext Event () ;
}
/] Calculate a new stock price
synbol - >Not i fy(shareprice);

/1l Share price increases by 25 cents
/1l on each iteration.
shareprice += .25;

/1 Sleep for 3 seconds.
Sl eep(3000);

}
}
cout << "server exiting" << endl;
}
catch (const CORBA:: Exception &e) {
cerr << "Unexpected exception: " << e << endl;
return 1;
}
return O;

}

This server creates an implementation object of type RegSt ockl nf o, and
registers this object in the Naming Service using a Naming Service Wrapper. It
then sets the share price and notifies the client of share price changes using the
Not i fy() operation. This calls the Noti f yPri ceChange() operation, which
calls back to the client.

The call to pr ocessNext Event () is made in case a client wishes to register or
deregister. This call has a zero timeout value. This means that the server is not
blocked; the call returns immediatelly if there is no pending event.

The server main thread must either sleep or do other processing to avoid
exiting.

349

Orbix C++ Programmer’s Guide

Note: You should only invoke set Server Nane() from the server. If a client
invokes set Server Name(), server operations on its callback object will
fail to connect.

Preventing Deadlock in a Callback Model

When an application invokes an IDL operation on an Orbix object, by default,
the caller is blocked until the operation returns. Deadlock can occur in a single-
threaded system where applications can both invoke and implement operations.

For example, in the stock trading application, a simple deadlock can occur if the
server attempts to call back to the client in the implementation of the function
Regi st er (). In this case, the client is blocked on the call to Regi st er () when
the server invokes Not i f yPri ceChange(). The Noti f yPri ceChange() call
blocks the server until the client reaches an event processing call and handles the
server request. Each application is blocked, pending the return of the other, as
shown in Figure 18.4 on page 351.

Unfortunately, it is not always possible to design a callback architecture where
simultaneous invocations between groups of processes are guaranteed never to
occur. However, there are alternative approaches to preventing deadlock in an
Orbix system.

The two primary approaches to preventing deadlock are as follows:
® Using non-blocking operation invocations.
® Using a multi-threaded event processing model.

These approaches are discussed in the two subsections that follow.

Using Non-Blocking Operation Invocations

There are two ways to invoke an IDL operation in an Orbix application without
blocking the caller:

® Declaring an IDL operation as oneway.

* Invoking the operation using the deferred synchronous approach
supported by the Dynamic Invocation Interface (DII).

350

Callbacks from Servers to Clients

Orbix Client 2,)Server blocked in Orbix Server

Regi ster ()
N pending retum of a
Not i f yPri ceChange() P
< roxy of type

St ockl nf oCB

\

Implementation

for type
St ockl nf oCB

Implementation
for type
RegSt ockl nf o

Proxy of type
RegSt ockl nf o

\

1.) Client blocked

pending retum of
/ Regi ster() \

Figure 18.4: Deadlock in a Callback Model

Declaring an IDL Operation as Oneway

You can declare an IDL operation oneway only if it has no out, or i nout
parameters and no return value. A oneway operation can only raise an exception
if a local error occurs before a call is transmitted. Consequently, the delivery
semantics for a oneway request are “best-effort” only. This means that a caller
can invoke a oneway request and continue processing immediately, but is not
guaranteed that the request arrives at the server.

You can avoid deadlock, as shown in Figure 18.4, by declaring either Regi ster ()
or Noti fyPri ceChange() as a oneway operation. The IDL for the stock trading
example is as follows:

/1 1DL
interface Stockl nfoCB {
oneway void NotifyPriceChange (in String nessage);

i
interface RegStocklnfo {

voi d Register (in StocklnfoCB objRef);
b

351

Orbix C++ Programmer’s Guide

352

In this case, the client’s call to Not i f yPri ceChange() returns immediately,
without waiting for the server’s implementation function call to return. This
allows the client to enter the Orbix event processing call. At this point, the
callback invocation from the server is processed and routed to the client’s
implementation of Regi ster (). When this function call returns, the server no
longer blocks and both applications wait again for incoming events.

Note: Using oneway operations does not prevent deadlock in SSL-enabled
callback applications because establishing SSL connections requires a
response from the client. This problem does not occur for multi-
threaded SSL-enabled application. Refer to the OrbixSLL C++
Programmer’s and Administrator’s Guide for details.

Using the Deferred Synchronous Approach

You can achieve a similar functionality by using the Orbix DIl deferred
synchronous approach to invoking operations. As described in Chapter 13,
“Dynamic Invocation Interface” on page 243, the DIl allows an application to
dynamically construct a function invocation at runtime, by creating a

OORBA: : Request object. You can then send the invocation to the target object
using one of a set of functions supported by the DII.

The section “Dynamic Skeleton Interface” on page 265 describes how to call the
following functions on an orb to invoke an operation without blocking the caller.
If any of the following functions are used, the caller can continue to process in
parallel with the target implementation function:

OORBA: : Request : : send_def erred()

OORBA: : Request : : send_oneway()

OORBA: : CRB: : send_nul ti pl e_requests_deferred()
OORBA: : CRB: : send_nul ti pl e_request s_oneway/()

Operation results can be retrieved at a later point in the caller’s processing, and
avoid deadlock as if the operation call is a oneway invocation.

Callbacks from Servers to Clients

Using Multiple Threads of Execution

An Orbix application can create multiple threads of execution. To prevent
deadlock, it can be useful to create a separate thread dedicated to handling
Orbix events. Refer to Chapter 23, “Using Threads with Orbix-MT” on
page 403 for details of how to create threads using Orbix.

If another thread in this application becomes blocked while invoking an
operation on a remote object, the event processing continues in parallel. The
remote operation can then safely call back to the multi-threaded application
without causing deadlock.

Event Processing Functions

Orbix applications can use event processing functions that do not implicitly
initialize the application server name. The client can safely call either the function
processEvent s() or the function processNext Event () on the ORB object.

These event processing functions are defined on Orbix class BOA If the client is
to receive callbacks, the client’s CRB object must be initialized as type BOA The
client call, for example, to, processEvent s() blocks while waiting for incoming
Orbix events. If the server invokes an operation on the St ockl nf oCB object
reference forwarded by the client, this call is processed by processEvent s()
and routed to the correct function in the client's implementation object.

Callbacks and Bidirectional Connections

If you use the Orbix protocol, the server sends its callbacks on the same
connection that the client initiated and used to make requests on the server.
This means that the client does not need to accept an incoming connection.

Standard IIOP, on the other hand, requires that the client accept a connection
from the server to allow the callbacks to be sent. Orbix introduces an optional
extension to IIOP to allow the protocol to use bidirectional connections.
Bidirectional connections allow clients to receive requests from servers on the
connection that the client originated to the server.

353

Orbix C++ Programmer’s Guide

354

To configure your client to use bidirectional connections, call

OORBA: : CRB: : support Bi directional Il CP() with the on parameter set to
true. This is defined as follows:

CORBA: : Bool ean supportBi directional I | OP(
CORBA: : Bool ean on,

Envi ronnent & env=defaul t _environnent);

By default, bidirectional IIOP is disabled. Refer to the Orbix C++ Programmer’s
Reference for more details on support Bi di recti onal I 1 CP().

|9

Loading Objects at Runtime

If a client invokes an IDL operation on an object that does not exist
in a server, Orbix returns an exception to the client. However, Orbix
also allows server programmers to create loaders that are
responsible for instantiating objects in response to client requests.
This chapter explains how to use loaders in Orbix, using an example
named BankPersistent. This example is based on the BankExceptions
example and builds on concepts already introduced.

When an operation invocation arrives at a process, Orbix searches for the
target object in the object table for that process. By default, if the object is not
found, Orbix returns an exception to the caller. However, if one or more loader
objects are installed in the process, these are informed about the object fault and
allowed to load the target object and resume the invocation transparently to the
caller. The loaders are C++ objects maintained in a chain, and are tried in turn
until one can load the object. If no loader can load the object, an exception is
returned to the caller.

355

Orbix C++ Programmer’s Guide

Loaders are not just called when a “missing object” is the target of a request;
they are also called when an object reference enters an address space. This can
arise in the following ways:

When a call to either _bi nd() or CORBA : O bi x. string_t o_obj ect ()
is made from within a process.

For a server,asanin parameter.

For a client (or a server making a function call), as an out or i nout
parameter, or a return value.

The loaders are given an opportunity to respond to such object faults by loading
the target object of the reference into the process address space. If no loader
can load the referenced object, Orbix constructs a proxy for the object.

Loaders can provide support for persistent objects. These are long-lived objects
stored on disk in the file system or in a database.

Overview of Creating a Loader

356

To create a loader, first define a derived class of OCCRBA: : Loader d ass. You can
then install a loader by creating a (dynamic) instance of that new class.

QORBA: : Loader d ass provides the following functions:

| oad()

Orbix uses this function to inform a loader of an object fault. The loader
is given the marker of the missing object so that it can identify the object
to load.

save()

When a process terminates, its loader(s) can save the objects in its
address space. To enable this, Orbix makes an individual call to save()
for each object managed by that loader. The save() function is also called
when an object is destroyed.

You can also explicitly call save() using the CORBA: : (bj ect: : _save()
function, defined on all Orbix objects.

record() and renane()

These functions are used to enable naming of objects when using loaders.
Refer to “Loaders and Object Naming” on page 359 for more details.

Loading Objects at Runtime

For full details of class CORBA: : Loader 4 ass, refer to the Orbix C++
Programmer’s Reference

Installing a Loader

You should remember three important points when creating a loader object:

A loader must be created dynamically using new() and should not be
deleted explicitly by application code. Otherwise an error occurs when
Orbix tries to delete the loader as the process terminates.

Static creation of loaders is not supported because of the possibility that
C++ may destroy a loader before Orbix calls that loader’s save()
function. This would affect each of the objects it controls.

If a loader’s constructor uses either of the functions

OCRBA: : ORB: : i sBasel nterface™ () or

CCORBA: : ORB: : basel nterfaces (), that loader must not be created
before the first line of the main function. This means that the loader
cannot be created directly at the file level or in the constructor of an
object created at the file level. Attempts to break this rule could lead to
calls on these functions before their underlying data structures are
initialized. This depends on the C++ compiler used.

The constructor of CORBA: : Loader A ass (the base class of all loaders)
takes a OORBA: : Bool ean parameter that must be non-zero if the new
loader’s | oad() function is to be called by Orbix. The default value of this
parameter is false.

Specifying a Loader for an Object

Each object is associated with a loader object that is informed when the object is
named or renamed and when the object is to be saved. If no loader is explicitly
specified for an object, it is associated with a default loader, implemented by
Orbix. This loader does not support persistence.

An object’s loader can be specified as the object is being created, using either the
TIE or the BOAImpl approach.

357

Orbix C++ Programmer’s Guide

Using the BOAImpl Approach

In the BOAImpl approach, you can specify a loader for an object by declaring the
implementation class constructor to take a pointer to the loader as a parameter.
You should then call this constructor, passing on this pointer as a parameter to
set the loader for the object. For example:

/] C++
/1 In file bankexceptions_bankinpl.h

cl ass BankExceptions_Banklnpl : public virtual
BankExcept i ons: : BankBQAl npl {
publi c:
/1 Constructor.
BankExcepti ons_Bankl npl (
CORBA: : Loader d ass* | oader) throw();

}
/1 In file bankexceptions_banki npl . cxx

/1 BankExceptions_Bankl npl constructor call
BankExcepti ons_Bankl npl : : BankExcepti ons_Bankl npl (
CORBA: : Loader d ass* | oader) throw()

m_account s(

new BankExcepti ons: : Account _var[MAX_ACCOUNTS]),

account _| oader (| oader)

You can obtain a pointer to an object’s loader by calling:

[l C++

/1 In class CORBA:: Obj ect.

CORBA: : Loader d ass* _I oader (
CORBA: : Environnment & env =
CORBA: : def aul t _envi ronment) ;

358

Loading Objects at Runtime

Using the TIE Approach

In the TIE approach, you can specify a loader for an object by passing a pointer
to the loader as a parameter to the TIE constructor. For example,

/] C++

/1l nyLoader is a pointer to a | oader object.

bank= new Tl E_BankExcepti ons_Bank(
BankExceptions_Bankl npl) (
new BankExceptions_Bankl npl (),// Object pointer
nyLoader); /1 Loader pointer

Loaders and Object Naming

When supporting persistent objects, it is often important to control the markers
that are assigned to them. For example, you often need to use an object’s
marker as a key to search for its persistent data. The format of these keys
depend on how the loader implements the persistence. Therefore, it is common
for loaders to choose object markers, or at least to be allowed to accept or
reject markers chosen by application level code.

Naming Objects

The two main ways to name objects when using loaders are as follows:
® Using the constructor.

® Using _marker().

Naming Objects Using the Constructor
Using the BOAImpl approach, you can pass the marker name to the BOAImpl
constructor, for example:

/] C++
/1 I'n file bankexceptions_accountinpl.cxx

/1 BankExcepti ons_Account | npl constructor

BankExcepti ons_Account | npl : : BankExcepti ons_Account | npl (
const char* nane,

BankExceptions:: CashAnpunt bal ance,

359

Orbix C++ Programmer’s Guide

360

const char* nmarker,

CORBA: : Loader d ass* | oader) throw()
BankExcepti ons: : Account BQAI npl (mar ker, | oader),
m bal ance(bal ance), m nanme(nane) {}

This constructor sets the marker as the account name and sets the loader for
the account object.

Naming Objects Using _marker()

QORBA: : (bj ect: : _mar ker (const char*) sets the target object’s marker name;
for example:

bank->_marker(“mybank”);

Refer to Chapter 6, “Making Objects Available in Orbix” on page 147 for more
details on naming objects in Orbix.

record() and rename()

Regardless of whether _marker () or the constructor is used, Orbix calls the
object’s loader to confirm the chosen name, thereby allowing the loader to
override the choice. When using the constructor, Orbix calls r ecord(). When
using _mar ker () Orbix calls renane() because the object already exists.

Orbix executes the following algorithm when an object is created, or an object’s
existing marker is changed:

® If the specified marker (char* pointer) is not null, Orbix checks whether
the name is already in use within the process. If it is not in use, the name
is suggested to the loader (by calling record() or renane()). The loader
can accept the name by not changing it. Alternatively, the loader can
reject it by changing it to a new name. If the loader changes the name,
Orbix again checks that the new name is not already in use within the
current process; if it is already in use, the object will not be correctly
registered.

® If no name is specified or if the specified name is already in use within the
current process, Orbix passes a nil char * pointer to the loader (by calling
record() or renane()) which must then choose a name. Orbix then
checks the chosen name; the object will not be correctly registered if this
chosen name is already in use.

Loading Objects at Runtime

If necessary, both record() and renane() can raise an exception. The
implementations of r enane() and record() in GORBA: : Loader d ass both
return without changing the suggested name. The implementation of | oad() and
save() perform no actions.

The Default Loader

The default loader is associated with all objects that are not explicitly associated
with a loader. This is an instance of CORBA: : Nul | Loader d ass, a derived class of
COCRBA: : Loader d ass. This class inherits | oad(), save() and renane() from
OCRBA: : Loader d ass. It implements recor d() so that if no marker name is
suggested it chooses one that is a string of decimal digits, different to any already
generated in the current process. The default loader does not support
persistence.

Loading Objects

When an object fault occurs, the | oad() function is called on each loader in the
chain until one successfully returns the address of the object, or until they all
return zero. Orbix cannot call the correct loader directly, because the object
does not yet exist in the address space.

The | oad() function performs the following tasks:
® It determines if the required object is to be loaded by the current loader.

® If the required object is to be loaded, it recreates the object and assigns it
the correct marker.

361

Orbix C++ Programmer’s Guide

The | oad() function is passed the following information:

The interface name.
The target object’s marker.

A COCRBA: : Bool ean value, set as follows depending on why the object
fault occurred:

1 Because of a call to _bi nd() or
OCRBA: : O bi x. string_to_obj ect() by the process that
contains the loader.

0 Because of an object fault on the target object of an incoming
operation invocation, or on an i n, out or i nout parameter
or return value.

An Envi ronnent parameter.

The interface name of the missing object is determined as follows:

362

If an object fault occurs because of the following call:
p = 11::_bind(<paraneters>);
the interface name in | oad() is “l 1”.
If the first parameter to the _bi nd() is a full object reference string,

Orbix returns an exception if the reference’s Interface field isnot 1 1 or a
derived interface of | 1.

Refer to the entry for OCRBA: : CRB: : obj ect _to_string() in the Orbix
C++ Programmer’s Reference for details on the string format of Orbix
object references.

If an object fault occurs during the following call:
p = CORBA:: O bix.string_to_object
(<full object reference string>);
the interface name in | oad() is extracted from the full object reference
string.
If a loader is called because of a reference entering an address space (as
an in, out orinout parameter, a return value, or as the target object of

an operation call), the interface name in | oad() is the interface name
extracted from the object reference.

Loading Objects at Runtime

Saving Objects

When a process terminates, Orbix iterates through all the objects in its object

table and calls the save() function on the loader associated with each object. A
loader may save the object to persistent storage (either by calling a function on
the object, or by accessing the object’s data and writing this data itself).

The save() function is also called on the loader associated with an object when
that object is destroyed. You can also explicitly call an object’s _save() function.
The _save() function simply calls the save() function on the object’s loader.
You must call _save() in the same address space as the target object—calling it
in a client process on a proxy has no effect.

The reason parameter to save() indicates why this function has been called. Its
possible values are as follows:

processTerninati on |The process is about to exit.

explicitcCall The object’s _save() function has been called.

obj ect Del eti on OCRBA: : rel ease() has been called on the object,
which previously had a reference count of 1.

If the reason is obj ect Del et i on, you would normally code a loader’s save()
function to delete the persistent representation of the object, as follows:

/] C++
if (reason == CORBA: :o0bjectDel etion)
/] Delete the persistent representation

On process termination, Orbix does not delete the objects themselves as it
iterates through its object table. Instead Orbix calls save() on each object’s
loader. It does, however, destroy the loader objects after they have been used.

363

Orbix C++ Programmer’s Guide

Writing a Loader

If you are writing a loader for a specific interface, you would typically perform
the following actions:

Redefine the | oad() function to do the main work of the loader—to load
the object on demand. The object’s marker is normally used to find the
object in the persistent store.

Redefine the save() function so that it saves its objects on process
termination, and also if _save() is called. This normally deletes an
object’s persistent storage if the save reason is obj ect Del eti on.

Redefine the recor d() and renane() functions. Often, r ecor d()
chooses the marker for a new object; and r enane() is written to prevent
an object’s marker being changed. However, record() and r enane() are
sometimes not redefined in a simple application, where the code that
chooses markers at the application level can be trusted to choose correct
values.

Example Loader

This section presents a simple loader example named BankPersistent. This
example builds on the BankExceptions example introduced in Chapter 7. The
code used in this example is available in the denos\ bankper si st ent directory of
your Orbix installation.

The IDL Interface

This example uses the BankExceptions IDL, as follows:

364

/1 1D
/1 In file bankexceptions.idl

nodul e BankExceptions {
typedef float CashAnount;
interface Account;

Loading Objects at Runtime

i nterface Bank {
/'l User-defined exceptions.
exception CannotCreate { string reason; };
exception NoSuchAccount { string nane; };

Account create_account (in string nane)
rai ses (CannotCreate);

Account find_account (in string nanme)
rai ses (NoSuchAccount);

b

interface Account {
/'l User-defined exception.
exception InsufficientFunds { };

readonly attribute string namne;
readonly attribute CashAnpunt bal ance;

voi d deposit (in CashAmount anount);
voi d wi thdraw (i n CashAnpunt anount)
rai ses (InsufficientFunds);
b
b

Implementing the IDL

This example uses the BOAImpl approach. Interfaces Account and Bank are
implemented by classes BankExcept i ons_Account | npl and
BankExcept i ons_Bankl npl, respectively.

Instances of class BankExcepti ons_Account | npl are made persistent using a
class named Loader inheriting from OORBA: : Loader d ass. A simple persistence
mechanism is used, with one file per account object. This section shows the
implementation of classes Account | npl and Bankl npl . The implementation of
class Loader is shown in “Coding the Loader” on page 371.

365

Orbix C++ Programmer’s Guide

366

Class Accountimpl

Class Account | npl is implemented as follows:

/] C++
/1 I'n file bankexceptions_accountinpl.h

#i ncl ude "bankexcepti ons. hh"

1 cl ass BankExceptions_Accountlnpl : public virtual
BankExcept i ons: : Account BQAl npl
{
public:

/1 | DL operations
virtual void deposit(BankExcepti ons:: CashAmount anount,
CCRBA: : Environnent & throw();

virtual void withdraw BankExceptions: : CashArount anount,
CORBA: : Envi r onnent &)
throw (BankExceptions: : Account:: I nsuf fi ci ent Funds);

/1 1DL attributes
virtual char* name(CCRBA: : Envi ronment & throw();

virtual void
name(const char * _new val ue, GORBA:: Environnent &)

throw();

vi rtual BankExcepti ons: : CashAmount
bal ance(CORBA: : Envi ronnent & throw();

/|l C++ operations

2 BankExcept i ons_Account | npl (

const char* nane,
BankExcept i ons: : CashAmount bal ance,
const char* narker,
OORBA: : Loader d ass* | oader) throw ();
vi rtual ~BankExcepti ons_Account| npl () throw();

3 static BankExceptions::Account _ptr Load(hj ect (

const char* marker, OORBA::Loaderd ass *)

throw();

Loading Objects at Runtime

virtual void Save(hj ect(char* file_name) throw();
virtual void* _deref() { return this;}

prot ect ed:
OCRBA: : String_var mnare;
BankExcepti ons: : CashAnount m bal ance;

// The followi ng are not inplemented:

BankExcept i ons_Account | npl (const
BankExcepti ons_Account | npl &) ;

BankExcept i ons_Account | npl & oper at or =(const
BankExcepti ons_Account | npl &) ;

}s

This code is explained as follows:

BankExcept i ons_Account | npl is the application implementation class,
inheriting from the IDL-generated BOAImpl class.

The BankExcept i ons_Account | mpl constructor sets the marker as the
account name and sets the loader for the account object.

The Loadbj ect () function is called from the | oad() function of the
loader. This is passed the name of the file to load the account from.

The Savehj ect () function writes the member variables of an account
to a specified file.

The _deref () function casts from the Account interface class to the
implementation class. A reference to the implementation class is required
because you cannot call non-IDL operations (in this case, SaveQvj ect ())
from an interface class. Refer to “Casting from Interface to
Implementation Class” on page 204 for more details.

367

Orbix C++ Programmer’s Guide

LoadObject()

The Load(hj ect () function is called from the | oad() function of the loader.
This loads an Account object from a specified file. Load(hj ect () can be coded
as follows:

/] C++
/1 I'n file bankexceptions_accounti npl . cxx

1 BankExceptions: : Account _ptr
BankExcept i ons_Account | npl : : Loadhj ect (
const char* narker, OORBA::Loaderd ass* | oader

) throw() {

char file_name[260];

2 char* envvar = getenv("l T_DEMD ACCONTS DI R');
if (envvar == NULL) {
envvar = "";
}

strcpy(fil e_nane, envvar);
strcat(file_nane, narker);
strcat(file_nane, ".ser");

ifstreamaccount _file(file_nane);
if (account_file) {
char | oaded_account _nane[100] ;
float | oaded_account bal ance;
account _file >> | oaded_account name
>> | oaded_account _bal ance;

/1 Now recreate the object
BankExceptions: : Account _var | oaded_account
= new BankExcepti ons_Account | npl (
| oaded_account _nane,
| oaded_account _bal ance,
mar ker, | oader);
return
BankExceptions: : Account: : _dupl i cat e(l oaded_account);

368

Loading Objects at Runtime

}

el se {
cerr << "Error loading file "<< file_name
<< endl;
return O;
}

This code is described as follows:

I. Loader: : | oad() must call Load(hj ect () because | oad() does not have
access to the Account private data members.

2. Save the file to <I T_DEMD ACCOUNTS_DI R><mar ker >. ser . By default
during make regi st er, the makefile sets the | T_DEMD ACCOUNTS_DI R
environment variable to the bankper si st ent demonstration directory.

SaveObject()

The Savej ect () function is called from the save() function of the loader.
This saves an Account object to a given file name when the server exits.

Save(hj ect () can be coded as follows:

/1l C++
/1 In file bankexceptions_banki npl . cxx

voi d BankExcepti ons_Account | npl : : SaveObj ect (

char* file_nane) throw()

{
of stream account _fil e(fil e_nane);
if (laccount_file) {
cerr << "Cannot open file " << file_nane
<< "for witing"<< endl;
cerr << "Object not saved" <<endl;
}
account _file << mnane << endl << m bal ance
<< endl;
if (laccount_file) {
cerr << "Cannot wite to file " << file_nane
<< endl;
cerr << "Object not saved" <<endl;
}
}

369

Orbix C++ Programmer’s Guide

Loader: : save() must call Save(hj ect () because save() does not have access
to the Account private data members

Class Bankimpl
Class Bankl npl is implemented as follows:

/] C++
#i ncl ude "bankexcepti ons. hh"
#i nclude "it_deno_nsw. h"

cl ass BankExceptions_Bankl mpl : public virtual
BankExcepti ons: : BankBQAI npl

{

public:

/1 1 DL operations
vi rtual BankExceptions:: Account _ptr
create_account (const char * nane,
CORBA: : Envi r onment &)
t hr ow(BankExcepti ons: : Bank: : Cannot Cr eate) ;

vi rtual BankExceptions::Account _ptr
find_account(const char * name, CORBA:: Environnent &)
t hr ow(BankExcepti ons: : Bank: : NoSuchAccount) ;

/1 C++ operations
BankExcepti ons_Bankl npl (CORBA: : Loader Cl ass* | oader)

throw();
virtual ~BankExceptions_Banklnmpl () throw();

pr ot ect ed:
/1 Size of maccounts array storing accounts.
static const int MAX ACCOUNTS;
/1 An array of Account_var
BankExcepti ons: : Account _var* m accounts;
CORBA: : Loader d ass* account | oader;

/1 The followi ng are not inplenented
BankExcepti ons_Bankl npl (
const BankExceptions_Bankl npl &) ;
BankExcepti ons_Bankl npl & oper at or =(const
BankExcepti ons_Bankl mpl &) ;

370

Loading Objects at Runtime

Coding the Loader

A single loader object, of class Loader, is created in the server mai n() function,
and each Account object created is assigned this loader. Each

BankExcept i ons_Bankl npl object holds a pointer to the loader object to
associate with each Account object when it is created. Accounts are assigned an
account name that acts as a marker for the object. The ability to choose markers
is an important feature for persistence.

Bank objects are not associated with an application level loader. These are

implicitly associated with the Orbix default loader. The server mainline creates a
loader and a bank as follows:

/] C++
// In file server. cxx.

/| Loaders nust be created dynam cally.
Loader* accountl| oader = new Loader ();
BankExceptions:: Bank_var ny_bank

= new BankExceptions_Bankl npl (account | oader) ;

Class Loader

Class Loader is the loader class for Account objects. This inherits from
OCRBA: : Loader d ass. You can implement class Loader as follows:

/] C++
/1 In file bankpersistent_| oader.h

cl ass Loader : public CORBA:: Loaderd ass {

public:
Loader () ;
virtual ~Loader();

/1 Load object with given interface and narker.
virtual CORBA:: Cbject_ptr |oad (
const char* object_interface,
const char* marker,
CORBA: : Bool ean i sBi nd,
CORBA: : Envi ronment &) ;

371

Orbix C++ Programmer’s Guide

/| Save obj ect.
virtual void save (
CORBA: : Obj ect *,
CORBA: : saveReason reason,
CORBA: : Envi ronnent &) ;
b
Class Loader redefines the | oad() and save() functions and inherits r enane()
and record() from QORBA: : Loader A ass.

The Loader member functions can be implemented as follows:

/] C++
/1 In file bankpersistent_I| oader.cxx

/1 The Loader constructor registers the | oader
/1 object as a |oader.
1 Loader: : Loader ()
: CORBA: : Loader d ass(1)

{}

/! Loader destructor
Loader: : ~Loader () {

}

2 /1 Loader: : | oad()
CORBA: : Obj ect _ptr Loader::load (
const char *object_interface,
const char *nmrker,
CORBA: : Bool ean, CORBA:: Envi ronnment &)

{
cout << "Loadi ng object " <<endl
<< "interface: " << object_interface
<< endl << "marker: " << nmarker <<endl ;
return BankExceptions_Account| npl:: LoadObj ect (
mar ker, this);
}

372

Loading Objects at Runtime

// Loader: : save()

voi d Loader: :save (
CORBA: : Obj ect _ptr obj,
CORBA: : saveReason reason,
CORBA: : Envi ronment &)

if (reason == CORBA: :explicitCall) {
char* file_nane = new char[260];

cout<< "Saving object ... " <<endl
<< "marker/fil enane: "
<< obj-> marker () <<endl ;

BankExceptions:: Account _var accountvar =
BankExcepti ons: : Account:: _narrow obj);

BankExcepti ons_Account | npl * account _to_save =
(BankExcepti ons_Account | npl *)
account var ->_deref ();

strcpy(file_name, getenv("|T_DEMD ACCOUNTS DR'));
strcat (fil e_name, obj->_marker ());
strcat(file_nane, ".ser");

account _to_save->SaveObj ect (file_name);

| T_Deno_NSW ns_wr apper ;

/] Set up object_nane of the form

/1 BankPer si st ent. <account name>

char object_name [100];

strcpy(object_name , "IT_Deno.BankPersistent.");
strcat (obj ect _nane, obj-> marker ());

ns_wr apper . set Behavi our Opti on(

I T_Denmo_NSW : cr eat eM ssi ngCont ext s) ;
ns_wr apper . set Behavi our Opti on(

I T_Deno_NSW : overwr it eExi stingObj ect);

373

Orbix C++ Programmer’s Guide

374

try{
ns_wr apper . regi st er Oj ect (
obj ect _name, accountvar);
}
catch (const CORBA:: Exception &) {
cout << "Unexpected exception" << e << endl;
t hrow,

}
CORBA: : r el ease(obj);

delete [] file_nane;
return;

}

This code is explained as follows:

The CORBA: : Loader d ass() constructor takes a parameter indicating
whether the loader being created should be included in the list of loaders
tried when an object fault occurs. By default, this value is false. The
Loader () constructor passes a value of 1 to the constructor. This
indicates that instances of Loader should be added to this list.

Orbix calls the Loader:: 1 oad() function when an object fault occurs on
an account object associated with this loader. This in turn calls
BankExcept i ons_Account | npl : : Loadhj ect ().

The Account | npl : : LoadChj ect () function assigns the correct marker
to the newly-created object. If it fails to do this, subsequent calls on the
same object result in further object faults and calls to the

Loader: : | oad() function.

You could use the Loader: : | oad() function to read the data itself,
rather than calling the static function Account I npl : : Load(bj ect ().
However, to construct the object, | oad() would be dependent on there
being a constructor on class Account | npl that takes all of an account’s
state as parameters. Because this is not the case for all classes, it is safer
to introduce a function such as Loadj ect ().

Equally, Loader : : save() could access the account’s data and write it out,
rather than calling Account | npl : : Save(hj ect () . However, it would
then be dependent on Account | npl providing access to all of its state.

Loading Objects at Runtime

In addition, defining LoadChj ect () and Save(hj ect () within class
Account | npl provides a useful split of functionality between the
application level class, Account | npl, and the loader class.

3. Orbix calls the save() function after the _save() is called on the
Account object by the bankexcepti ons_banki npl destructor. The
Account object is passed in the first parameter. This example only
handles the explicit call saveReason.

4. You must convert from CORBA: : Chj ect _ptr to an implementation
object because the Save(hj ect () function is not an IDL operation.

5. Save the file to <I T_DEMD ACCONTS DI R> <mar ker>. ser. The
environment variable | T_DEMD ACCOUNTS_Dl Ris set by the makefile when
make regi ster is executed.

6. Bind the object in the Naming Service. The Account object bound is not
used by the client. Instead, it is used by future server executions to check
if an account exists in persistent storage.

Loaders are Transparent to Clients

When using loaders, clients can make invocations in the normal way. For
example, a client that wishes to create a specific account can execute the
following:

/] C++
/] In file bankmenu. cxx

/] Call create_account() and run an account nenu
voi d BankMenu: : do_creat e()
t hr ow(CORBA: : Syst enExcepti on)
{
cout << "Enter account nane: " << flush;
CORBA: : String_var nane = | T_Deno_Menu: : get _string();

try
{

BankExceptions:: Account _var account =
m _bank- >cr eat e_account (nane) ;

375

Orbix C++ Programmer’s Guide

376

/] Start a sub-nmenu with the returned account
/1l reference
Account Menu sub_menu(account);
sub_menu.start();

}

catch (const BankExceptions:: Bank:: Cannot Cr eat e&

cant _create) {
cout << "Cannot create an account, reason: "
<< cant _create.reason << endl;

}

The | oad() function of the loader object is called if the target account is not
already present in the server. If the loader recognizes the object, it handles the
object fault by recreating the object from the saved data. If the load request
cannot be handled by that loader, the default loader is tried next and this always
indicates that it cannot load the object. This finally results in a

CORBA: : | NV_OBIREF exception being returned to the caller.

20

Locating Servers at Runtime

When _bi nd() is called with a null host name, Orbix uses the locator
to find the target object in the distributed system. This chapter
describes the default locator supplied with Orbix and explains how
to replace it with a user-defined locator implementation.

The Default Locator

The default Orbix locator mechanism searches for a server using the following
sequence of steps:

I. The locator first attempts to contact an Orbix daemon process at the
local (client) host. If no such process exists, the location attempt fails.

2. The locator invokes the method | ookUp() . This contacts the local Orbix
daemon and requests a list of host names for the specified server name.

3. The host names returned by the Orbix daemon are arranged in random
order. Orbix iterates through this list, attempting to verify the
registration of the server at each host in turn until it finds a host at which
the desired server is registered. The locator returns the first host at
which the desired server is registered.

If the location attempt fails, the _bi nd() call also fails and throws an Orbix
system exception. The location attempt succeeds when it locates a host at
which the server name passed to _bi nd() has been registered.

377

Orbix C++ Programmer’s Guide

Of course, this does not guarantee that the _bi nd() itself succeeds because
_bind() fully succeeds only when it successfully launches the server (if
necessary) and locates the specified object within the server.

For successful operation of the default locator, you must specify server names
and corresponding target hosts in advance. You must configure the default
locator with respect to the local Orbix daemon process, which manipulates the
locator configuration files. This configuration is described in the Orbix C++
Administrator’s Guide.

Default lookUp() Functionality

Although you do not normally need to make explicit use of the locator (because
it is used implicitly through calls to _bi nd()), it can sometimes be useful to do
so. A call to the locator specifies a server name (as const char*) and returns a
sequence of host names (as stri ngs). The locator interface is defined by class
CCORBA: : | ocat or A ass. You can use the locator as follows:

/] C++
char server[100];
/1 Then set this to the nane of required server.

/1 Initially enpty:
CORBA: : ORB: : | T_Stri ngSeq hosts;

try {
/1 The | ookUp() function takes a paraneter of
/1 type Context_ptr; we will pass the
/!l default context. To obtain the
// default context, call:
CORBA: : Or bi x. get _defaul t _context (ctx);
hosts =
CORBA: : | ocat or - > ookUp(server, 5, ctx);
}
catch(const CORBA:: Syst enExcepti on& se) {
cout << “Exception calling locator” << endl
<< &se;

378

Locating Servers at Runtime

CORBA: : ULong seglLen = hosts. | ength();
if (seqLen > 0) {
/'l Sequence of host nanes found ok.

/1 The sequence can be iterated over using:
CORBA: : ULong i ;

for (i=0; i < segLen; i++)
cout << hosts[i] << endl;

/'l The sequence wi |l be cleaned up (deleting
/1l the strings it contains) when it goes out of
/'l scope.

}
else { /1 Not found.

}

Note: The locator is pointed to by CORBA: : | ocat or . This usually points to the
default locator, but it can be assigned to a specialized locator. Refer to
“Writing a New Locator” on page 380 for more details.

Each string in the sequence of strings returned by | ookUp() gives the name of a
host that provides that server. The | ookUp() function returns an empty
sequence if no host names can be found for the specified server. If the call
succeeds, the program can choose any of the returned host names,' or perhaps
iterate over them attempting to bind to the required object at each in turn.
Receiving an exception on one of the binds indicates an error such as the host
not being available.

The second parameter to | ookUp() specifies the maximum number of hops that
can be used to fulfil a request, thereby limiting the number of hosts involved in a
search. The _bi nd() function uses the value CORBA: : _LOCATCR _HOPS, which you
can change if you wish to modify how _bi nd() uses | ookUp() . Explicit calls to

| ookUp() can specify any QCRBA: : ULong value, except that the constant value
OCRBA: : _MAX_LQOCATCR HOPS is used if a greater value is specified.

I. The default implementation of the locator randomizes the sequence before returning it. This is a
basic technique in load balancing to avoid swamping any one server.

379

Orbix C++ Programmer’s Guide

The | ookUp() function searches for a server by first testing if it has been
registered on the local host. If it is not, then the default locator searches for the
server using the location files described in the Orbix C++ Administrator’s Guide.

The following parameters can be passed to | ookUo():

Servi ceNang, MaxHops, Cont ext , Envi r onment

You can use the Cont ext parameter to pass information to the locator; for
example, to specify how to locate the required object, or to specify how to
choose between a set of servers with the specified name (as is the case in a
trader). The context passed in this parameter can be:

® A specific context object.

® The context obtained by calling CORBA: : CRB: : get _def aul t _cont ext ()
on the CCRBA: : O bi x object.

® An empty anonymous context obtained by calling
QORBA: : Context:: 1 T_create() with no parameters.

The default locator ignores the Cont ext parameter. The _bi nd() function
passes through its Cont ext argument when it calls | ookUp() .

Refer to “Parameters to lookUp()” on page 381 for a description of the
parameters to | ookUp().

Writing a New Locator

380

If the default search facility for servers is not appropriate, or if it needs to be
augmented for a given application, an alternative locator can be installed by:

® Defining a derived class of CORBA: : | ocat or d ass.
® Creating a single instance of the new class.

® Assigning the pointer CORBA: : | ocat or to point to that instance.

Note: A given process must have a single locator at all times. If the value of
OCRBA: : | ocat or is not changed, it references an object that implements
the default locator algorithm.

Locating Servers at Runtime

The locator is passed the name of the server being sought and it should return a
list of names of hosts on which that server is registered in the Implementation
Repository.

CCRBA: : | ocat or is defined as follows:

/] C++
class locatorClass {
protected:
| ocat orCl ass();
public:
virtual CORBA::ORB::|T_StringSeq | ookUp(
const char* Servi ceNane,
ULong MaxHops,
const Cont ext & cont ext,
Envi ronnment & env);

b
A call to _bi nd() of the form:
/] C++

I::_bind(“marker:server”, “*, c1);

results in a call to lookUp() of the form:

/I C++
lookUp(“server”, <max_hops>, cl);

where <max_hops> is determined by Orbix.

Parameters to lookUp()

The parameters of lookUp() are as follows:

ServiceName The name of the server being sought.

MaxHops In the default locator this is interpreted as the maximum
number of machines to search for the required server. An
interpretation similar to this one should be retained in a
user-defined locator if it is to be used without changing client
code that explicitly calls lookUp()

381

Orbix C++ Programmer’s Guide

382

cont ext A context parameter. This allows a client to pass extra
information to the locator; for example, constraints on how
to search for the server. A trader is an example of where this
is important: the context parameter can be used to define
properties to be used when deciding between a set of servers
with the same name.

env The standard variable that allows the function to raise an

exception.

It is often advisable that a locator randomises the sequence before returning it.
This is a basic technique in load balancing, to avoid swamping any one server.

When | ookW() is called while Orbix is searching for an object, Orbix continues
after the call as follows:

® The local host is used if it appears anywhere in the returned sequence.

® If not, the request is sent to each host in turn until the call completes
successfully or until an error occurs; unavailable hosts are skipped.

21

Using Opaque Types in IDL

Orbix provides an extension to IDL that allows you to define opaque
data types. You can pass opaque data types by value through an
IDL definition without any interference from Orbix. This chapter
describes how to use these Orbix-specific data types.

In accordance with the CORBA standard, Orbix objects are passed to and from
IDL operations by reference. All such objects are described by an interface

defined in IDL. Objects supporting an IDL interface are created in a server and
object references rather than actual copies of the objects are passed to clients.

This model is appropriate to the majority of applications that use an ORB.
However, in some circumstances, you may wish to pass objects across a
CORBA IDL interface by value rather than by reference. Passing an object by
value means that the internal state of the object is included in an operation
parameter or return value and a copy of the object is constructed in the
receiving process.

In addition, there has been demand for a mechanism that allows existing C++
objects to be passed across an IDL interface without the necessity to
retrospectively define IDL interfaces for these objects. Such a mechanism allows
the integration of IDL types with non-IDL data types within a CORBA
environment.

The opaque types mechanism described in this chapter addresses both of these
issues. A data type may be identified in IDL as opague by the introduction of a
new keyword, opaque. This means that nothing (except that it is a valid IDL
type) is known at the IDL level. A type defined to be opaque behaves like an
interface type. It can therefore be passed as a parameter or return value to an

383

Orbix C++ Programmer’s Guide

384

IDL operation, or used as an attribute type or as a member of a struct or
exception. An opaque type is always passed to and from IDL operations by value,
and you must supply a C++ class which implements the type. You must also
provide marshalling functions that define how the object’s state is packaged for
transmission across the network and unmarshalling functions that define how
the object’s state can be extracted by the receiving process.

Note: Because of the Orbix-specific nature of opaques, you cannot use opaque
types with the CORBA-defined Interface Repository.

Possible Alternative Solutions

IONA’s approach to passing objects between client and server processes by
value is to introduce a new type constructor at the IDL level.

You can achieve similar results without extending the IDL language. One
solution to transmitting an object by value is to define its state in an IDL st ruct
definition. This solution is unsatisfactory for two reasons: first, you must
separate state information from interface information; second, in the IDL
definitions, you should make explicit information that properly belongs to the
implementation.

A second solution is to pass an object’s state information in binary form as a
sequence<oct et >. This mechanism does not make explicit the type of the
information transmitted, so it does not violate the object’s privacy. However, no
marshalling or unmarshalling is performed on a sequence<oct et >, so byte-
swapping and other data-conversion becomes your responsibility. Furthermore,
in stripping the interface of type information, the ORB assumes the role of an
RPC package.

Using Opaque Types in IDL

Using Opaque Types

This section demonstrates how to use the opaque mechanism to pass a user-
defined type by value in IDL operations.

IDL Definitions

The example used defines an IDL interface Cal endar that makes use of the
opaque type Dat e. The IDL definitions are as follows:

// 1DL
/1l In, for exanple, file calendar.idl.
opaque Dat e;

interface Cal endar {
/I Today's date:
readonly attribute Date today;

/I How long from the given date until today ?
unsigned long daysSince(in Date d);
¥
The opaque data type is introduced by the keyword opaque . An opaque type can
be defined at file-level scope or within a module, at the same level as an interface
definition. Like a typedef definition, opaque introduces a new IDL type. In the
example, the new Date type is used as an attribute type and as an in parameter.

You can define the IDL definitions as follows:
idl -K calendar.idl

opaque is not a keyword in CORBA IDL, so the -K IDL compiler switch is used
to indicate that support for opaque types is required.

385

Orbix C++ Programmer’s Guide

Mapping of Opaque Types to C++

An opaque type declaration maps to an i ncl ude directive in the C++ header file
generated by the IDL compiler. For example, the declaration:

/1 1D
/1 In cal ender.idl.
opaque Date;

maps to:

/] C++
/1 In cal ender. hh.
#i ncl ude <cal ender O. h>;

In addition, the IDL compiler generates three operator prototypes for the
opaque data type as follows:

/1 C++
/1 I'n cal ender. hh.
CORBA: : Request & oper at or <<(

CORBA: : Request & const Date*);
CORBA: : Request & oper at or <<(

CORBA: : Request & Date*&);
CORBA: : Request & oper at or >>(

CORBA: : Request & Date*&);

To use the opaque type Dat e, you must define a C++ class Dat e in file

cal ender O h and implement these operators. The operator implementations
specify how to marshal and unmarshal the opaque type. These specify how to
stream the opaque object’s state into and out of a GORBA: : Request object so
that an object defined to be opaque can be transmitted over a network. Thus,
the mapping to C++ for the IDL definitions on page 385 is as follows:

/] C++
/1 In cal ender. hh.
#i ncl ude <cal ender O. h>;

/1 This operator is now deprecated refer to page 391.

CORBA: : Request & oper at or <<(
CORBA: : Request & const Date*);

386

Using Opaque Types in IDL

CORBA: : Request & oper at or <<(

CORBA: : Request & Date*&);
CORBA: : Request & oper at or >>(

CORBA: : Request & Date*&);

class Cal endar: public virtual CORBA:: (hject {
public:

b

virtual

/] Details onmtted.
Dat e* today(

CORBA: : Environnment & | T_env =

virtual
const

CORBA: : def aul t _environnent);
CORBA: : ULong daysSi nce(
Dat e* d,

CORBA: : Environnment & I T_env =

CORBA: : def aul t _environnent);

Mapping for Operation Parameters

The mapping for opaque types used as operation parameters and return values is

shown in the following table:

IDL

in

out

inout

return

T

T*

T &

T &

T*

387

Orbix C++ Programmer’s Guide

Memory Management Rules

388

The memory management rules for opaque types follow a strict pattern of their
own to allow as flexible use of opaques as possible. These rules are outlined as

follows:

in parameters

Client side You need to allocate storage and provide an appropriate value,
You should not pass an uninitialized pointer.
You must free the storage when it is no longer required, using
the C++ del et e operator.

Server side Orbix makes the parameter available for the duration of the

operation call.

You must copy the parameter if it is to be retained beyond the
lifetime of the operation call.

inout parameters

Client side You must allocate storage and provide an appropriate value.
You should not pass an uninitialized pointer-.
You must free the storage when it is no longer required, using
the C++ del et e operator.

Server side Orbix makes the parameter available for the duration of the

operation call.

You can change the value passed in. If the value passed in is
changed, the old value must be freed.

The value is not deallocated automatically by Orbix when the
operation completes.

Using Opaque Types in IDL

out parameters and return values

Client side In line with the rules for CORBA types, you cannot modify
the value passed back in an out parameter. A copy of the
value passed back can, of course, be modified.

You must free the storage associated with an out parameter,
when it is no longer required, using the C++ del ete
operator.

Server side You must allocate storage and perform initialization.

The value is not deallocated automatically by Orbix when the
operation completes.

You should not return an uninitialized pointer.

Implementing an Opaque Type

You must provide an implementation class for the opaque type. This class must
be defined in the file included in the generated. hh file.

A simple class definition for the Dat e class is as follows:

/] C++
// In file cal enderQ. h.
#i ncl ude <i ostream h>

class Date {
fri end CORBA: : Request & oper at or <<(
CORBA: : Request & const Date*);
fri end CORBA: : Request & oper at or <<(
CORBA: : Request & Dat e* &) ;
fri end CORBA: : Request & oper at or >>(
CORBA: : Request & Dat e* &) ;

protected:
short day, nmonth, year;
public:
Dat e() ;
Dat e(short d, short m short y);
void print();
b

389

Orbix C++ Programmer’s Guide

This class could be implemented as follows:

/] C++

/1 In, for exanple, date.cc.
#i ncl ude <i ostream h>
#include “calendar.hh”

#include “date.h”

Date::Date() {
/I Construct an object containing today’s date
/I (code not shown).

}

Date::Date(short d, short m, short yr) {
day = d;
month = m;
year = yr;

}

void Date::print() {
cout << day << “/” << month << “/" << year;

}

To complete the implementation, you must implement the marhsalling operators
as follows:

® The insertion operator, oper at or <<(), marshals the opaque object’s

state into a CORBA: : Request for transmission to a remote pr‘ocess.I

On the client side, the const version of this operator is used to marshal
i n parameters and the non-const version is used to marshal i nout
parameters. On the server side, the (non-const version of the) operator
is used to marshal i nout and out parameters and operation results.

® The extraction operator, oper at or >>(), unmarshals an opaque object
that is received from a remote process in a CORBA: : Request .

I. Class OORBA: : Request is used to package an operation request and to return out and
i nout parameters and results. For more details, see Chapter |3, “Dynamic Invocation
Interface” on page 243of this guide, and the entry for CORBA: : Request in the Orbix C++
Programmer’s Reference.

390

Using Opaque Types in IDL

On the client side, this operator is used to unmarshal i nout and out
parameters and results. On the server side, it is used to unmarshal i n and
i nout parameters.

Note: Recent revisions in the operator prototypes for opaques have
deprecated this operator. These revisions add more flexibility in terms of
memory management. However, this operator is still used here for
backwards compatibility.

The following is an implementation of these operators for the Dat e class:

/] C++
/1 Marshal ling operator for (client side)
/] in paraneters.
CORBA: : Request & oper at or <<(
CORBA: : Request & r, const Date* d) {
if (d) {
r << d->day;
r << d->nonth;
r << d->year;
} else {

return r;

}

/1 Marshal ling operator for (client and
/] server side) inout paraneters and (server
/] side) out paraneters.
CORBA: : Request & oper at or <<(
CORBA: : Request & r, Date*& d) {
if (d) {
r << d->day;
r << d->nonth;
r << d->year;
} else {

391

Orbix C++ Programmer’s Guide

392

}

}

/1 To avoid nenory |eak of inout and out
/| paraneters:
del ete d;

return r;

}

/1 Unmarshal Il ing operator for (client side) inout
/1 and out parameters and results and for (server
/1 side) in and inout paraneters.
CORBA: : Request & oper at or >>(

CORBA: : Request & r, Date*& d) {
d = new Dat €;
r >> d->day;
r >> d->nont h;
r >> d->year;
return r;

The order in which class Dat €’s members are inserted into the CORBA: : Request
is irrelevant. However, the unmarshalling operator must extract the members in
the same order as the order in which they are inserted.

Because a nil (zero) pointer might be passed in a parameter expecting an opaque
type, the insertion operators should ensure that appropriate zero values for
each member are inserted into the CORBA: : Request . If required to handle
marshalling errors, the insertion and extraction operators for an opaque type
may raise a OCRBA: : MARSHAL system exception.

Note: The non-const version of the marshalling operator, oper at or <<(),

should free the memory allocated to the opaque object (allocated in
oper at or >>()) in order to avoid a memory leak for i nout and out
parameters on the server side.

Using Opaque Types in IDL

Implementing an Interface that uses an Opaque Type

The implementation of the Cal endar interface is straightforward; the code is
shown below.

/] C++
#include “calendar.hh”
#include “date.h”

class Calendarimpl : public CalendarBOAImpl {
protected:
Date* day;
public:
Calendarimpl();
virtual Date* today(
CORBA::Environment& IT_env
= CORBA::default_environment);
virtual CORBA::ULong daysSince(
const Date* d,
CORBA::Environment& IT_env
= CORBA::default_environment);

k

Calendarimpl::Calendarimpl() {
day = 0;
}

Date* Calendarimpl::today(
CORBA::Environment&) {
Date* d = new Date;
return d;

}

CORBA::ULong Calendarlmpl::daysSince(
const Date* d, CORBA::Environment&){
/I Calculate number of days between this
/I date and date in d (code not shown).

}

393

Orbix C++ Programmer’s Guide

394

22

Transforming Requests

This chapter describes how you can use transformers to modify data
buffers containing Orbix operation call information, immediately
before and after transmission across the network. Transformers are
an Orbix-specific feature.

In Orbix, an operation invocation or an operation reply is transmitted between
a client and a server in a CORBA: : Request object. Using the Dynamic Invocation
Interface, a OORBA: : Request is explicitly created while a static invocation results
in the implicit creation of a CCRBA: : Request object.

This chapter describes how you can modify a CORBA: : Request ’s data buffer,
allowing a client or server process to specify what modifications to the buffer
should occur when requests or replies are transmitted to other processes. The
ability to modify this data directly preceding its transmission, or directly
subsequent to its reception means that you can add additional information to
the data stream; for example, information identifying the participants in the
communication. The data stream may be encrypted for security purposes and so
on. The process of modifying a CORBA: : Request’s data buffer is known as
transforming the data buffer.

The functionality provided by Request transformation is at a lower level than
that provided by filters, as described in Chapter 16 “Filtering Operation Calls”
on page 307. Transforming requests allows access to the actual data buffer
transmitted in a Request .

395

Orbix C++ Programmer’s Guide

Note: Because of the Orbix-specific nature of transformers, you cannot use
transformers with non-IONA ORBs.

Transforming Request Data

Transformation of a OORBA: : Request ’s data buffer is performed by a transformer
object. To obtain a new transformer object do the following:

I. Define a class that inherits from the class CORBA: : | T_r eqTr ansf or ner.
2. Create an instance of this class.
Register this instance with Orbix.
You can register the transformer object so that it performs
transformations on all communications to and from the process that
contains the transformer object. Alternatively, you can register the
transformer so that transformations are performed only on
communications to and from a particular server on a particular host that
contains the transformer.

Because transformations are applied when an operation invocation leaves or
arrives at an address space, no transformations are applied when the caller and
invoked object are collocated.

The IT_reqTransformer Class

The CORBA: : | T_r eqTr ansf or mer class defines the interface to transformer
objects. This class is defined as follows:
/1 C++

/1 1n class CORBA.
class I T_reqTransformer {

pr ot ect ed:
const char* mrenote_ host;
public:

vi rtual Bool ean transformn
Cct et *& dat a,
ULong& actual _sz,
ULong& al |l ocd_sz,

396

Transforming Requests

Bool ean send,
Boolean is_first);

virtual void free_buf(
unsi gned char* dat a,
ULong actual _sz,
ULong al l ocd_sz);
virtual const char* transformerror();

voi d set Renot eHost (const char* c);
b
A class derived from | T_r eqTr ansf or ner can access a OCRBA: : Request ’s data
and can therefore manipulate or transform the data as required. The derived
class must, at least, override the t ransf or () function. Refer to the Orbix C++
Programmer’s Reference for full details on the | T_r eqTr ansf or mer class.

The transform() function is called by Orbix immediately before transmitting
the data in a2 Request from an address space and immediately subsequent to
receiving a Request from another address space. The derived class can allocate
new storage to handle any alteration in the data size caused by the
transformation. If the derived class alters the method by which the data is stored
in buffers, you may also need to override the default f ree_buf () operation to
handle the release of this data. Before calling the t ransf or n{) function, Orbix
records the name of the host that initiates a request in the member

m renote_host .

The transforn() function may indicate that a TRANSFCRM ERR system exception
should be raised by Orbix by returning O (false) from transf orn{).

A derived class may implement the t ransf orm error () function to return a
string containing suitable error text. The string returned by this function forms
part of the error string output by the operator:

/] C++
friend ostream& operator <<(
ostream&, CORBA:: SystenException*);

when the TRANSFCRM ERR exception is caught. You must free the string returned
by transformerror (), using OORBA: :string free().

397

Orbix C++ Programmer’s Guide

Registering a Transformer

Orbix provides two functions to register a transformer object (an instance of
QORBA: : | T_reqTransf or mer). You can call both on the GORBA: : O bi x object.

The function:

/] C++
/1 In class CORBA:: ORB.
I T_reqTransformer* set MyReqTransf or mer (
I T_reqTransformer* transforner,
Envi ronnent & env = CORBA: : def aul t _envi ronment)

registers a transformer object as the default transformer for all Request s
entering and leaving an address space.

The function:

[l C++
/1l In class CORBA:: ORB.
voi d set ReqTr ansf or mer (
I T_reqTransformer* transforner,
const char* server,
const char* host = 0,
Envi ronnent & env = CORBA: : def aul t _envi ronment)

registers a transformer object for all Request s destined for a specific
server and host and for all Request s received from a specific server and
host. This function can be called more than once to register different
server/host pairs.

A transformer registered using set ReqTr ansf or nmer () overrides any default
transformer registered with set MyReqTr ansf or ner ().

Note: At most one transformation is applied to any Request —the default

transformation registered with set M/ReqTr ansf or ner () or overriding
specific transformation registered with set ReqTr ansf or ner ().

398

Transforming Requests

An Example Transformer

This section presents a simple example of a transformer that adds the name of
the sending host to a Request ’s buffer when sending a Request out of a process.
It also removes the host name from a Request ’s buffer when the process
receives a Request object that contains a operation reply.

The transformer is implemented by class Tr ansf or ner defined as follows:

/] C++
#i ncl ude <CORBA. h>
#i ncl ude <i ostream h>

#define ERR_STR “Transformer: bad transformation”

class Transformer :
public CORBA::IT_reqTransformer {
public:
virtual CORBA::Boolean transform(

CPRBA::Octet*& data,
CORBA::ULong& actual_sz,
CORBA::ULong& allocd_sz,
CORBA::Boolean send,
CORBA::Boolean first);

virtual const char* transform_error();

k

extern Transformer* transformer;

399

Orbix C++ Programmer’s Guide

The Transf or mclass overrides the functions t ransf or n{) and
transformerror() only. These are implemented as follows.

/] C++

unsi gned char Transforner::transform
CORBA: : Cct et *& dat a,
CORBA: : ULong& actual _sz,
CORBA: : ULong& al | ocd_sz,
CORBA: : Bool ean send,
CORBA: : Bool ean first) {

if (!first)
return 1;

unsi gned long i;

/1l mrenmote_host is set by Obix prior

/1 to invoking transform().

if (send) { // Sending.
unsi gned long shift = strlen(mrenote_host);
unsi gned char * old_data = dat a;

if ((shift + actual _sz) > allocd_sz) {
data = new unsigned char [shift + actual _sz];

}

for (i = shift + actual _sz -1; (i >= shift); i--)
data [i] = old_data [i - shift];

for (i =0; i < shift; i++)
data [i] = mrempte_host [i];

actual sz += shift;

if (data != ol d_data)
del ete[] ol d_dat a;
}
el se {
unsi gned long shift =
strl en(CORBA: : Or bi x. nyHost ());
char* this_host = new char[shift];
this_host = strdup(CORBA:: O bi x. myHost ());
for (i =0; i < shift; i++)

400

Transforming Requests

if (data [i] != this_host [i])
return O;

for (i =0; i < actual_sz - shift
data [i] = data [i + shift];

i ++)

)

actual sz -= shift;
del ete this_host;
}
cout << "---USER Transformreturning"
<< " actual sz: " << actual sz
<< " allocd sz: " << allocd sz
<< " send: " << (int)send << endl;
return 1;

const char* Transforner::transformerror() {
return ERR _STR;

}

// Create a Transforner:
Transforner* transformer = new Transforner;

The first parameter to the function transfor n() indicates whether the buffer
in dat a is the first in a sequence of buffers. In Orbix, a Request object being sent
from an address space can contain more than one data buffer while a Request
object received into an address space always contains just one buffer. In this
example, the first buffer is the only one modified by transforn{). The send
parameter indicates whether the Request is incoming or outgoing. The

transf or () function uses the send parameter to determine whether to add or
remove the host name to the Request’s buffer.

Registering the Transformer

Calling the following on the ORB registers this transformer as the default
transformer for a client or server process:

set MyReqTr ansf or mer (transf ormer);

401

Orbix C++ Programmer’s Guide

To register a transformer that acts on Request s going to or received from a
specific server on a specific host, make the following call on the ORB:

set ReqTr ansf or mer (
transformer, “myServer”, “alpha”);

402

23

Using Threads with Orbix-MT

This chapter presents details of Orbix-MT, the multi-threaded version
of Orbix. It explains the benefits of multi-threaded clients and servers,
and the mechanisms available for multi-threaded programming.

Normally, Orbix client and server programs contain one thread that starts
executing at the beginning of the program and continues until the program
terminates. Many modern operating systems allow a process to create
lightweight threads, with each thread having its own set of CPU registers and its
own stack. Each thread is independently scheduled by the operating system, so it
can run in parallel with the other threads in its process. The mechanisms for
creating and controlling threads differ between operating systems, but the
underlying concepts are common. The POSIX standard is supported by most
UNIX systems.

The programming steps required to create threads in Orbix are straightforward.
In addition, you can program many different models of thread support.

The example code in this chapter uses POSIX-compliant threads to illustrate
these concepts. The O bi x3. 0\ deno directory of your Orbix installation
provides analogous examples for the threads package available on your
operating system.

403

Orbix C++ Programmer’s Guide

Benefits of Multi-threaded Clients and Servers

Both clients and servers can benefit from multi-threading. However, the
advantages of multi-threading are more apparent for servers than for clients.

Multi-threaded Servers

404

For some servers, it is satisfactory to accept one request at a time and to
process each request to completion before accepting the next. Where
parallelism is not required by an application, there is little point in making such a
server multi-threaded. However, some servers would offer a better service to
their clients if they processed a number of requests in parallel. Parallelism of
such requests may be possible because a set of clients can concurrently use
different objects in the same server, or because some of the objects in the
server can be used concurrently by a number of clients.

Some operations can take a significant amount of time to execute, because they
are compute-bound, because they perform a large number of I/O operations, or
because they make invocations on remote objects. If a server can execute only
one such operation at a time, clients suffer because of long latencies before their
requests can be started. The main benefits of multi-threading are that the latency
of requests can be reduced, and the number of requests that a server can handle
over a given period of time can be higher. Multi-threading also enables you to
take advantage of multi-processor machines.

The simplest threading model is where a thread is created automatically for each
incoming operation/attribute request. Each thread executes the code for the
operation/attribute being called, executes the low level code that sends the reply
to the caller, and then terminates. Any number of such threads can run
concurrently in a server, and they can use normal concurrency control
techniques to prevent corruption of the server’s data. You must program this
protection at two levels: the underlying ORB library must be thread-safe so that
concurrent threads do not corrupt internal variables and tables; and the
application level must be made thread- safe by the programmer.

Threads are not without their costs, however. Firstly, it may be more efficient to
avoid creating a thread to execute a very simple operation. The overhead of
creating a thread may be greater than the potential benefit of parallelism.
Secondly, you must ensure that the application code is thread-safe.

Using Threads with Orbix-MT

Specifically, Solaris, Windows NT and POSIX threads are pre-emptive. This
means that they can be interrupted at any time and delayed while other threads
execute. Nevertheless, the benefits frequently outweigh the costs and multi-
threaded servers are considered essential for many applications.

A benefit of using Orbix is that the actual creation of threads in a server is very
simple, and therefore adds little or no cost for the programmer.

You can also explicitly create threads in servers, using the threading facilities of
the underlying operating system. You can do this so that a remote call can be
made without blocking the server. You can also do this within the code that
implements an operation or attribute, so that some complex algorithm can be
parallelized and performed by a number of threads. These threads can be in
addition to those created implicitly to handle each request.

Multi-threaded Clients

Multi-threaded clients can also be useful. A client can create a thread that makes
a remote operation call, rather than making that remote call directly. The result
is that the thread that makes the call blocks until the operation call has
completed, but the rest of the client can continue in parallel. “Comparison with
Non-Blocking Calls” on page 406 compares this approach with the use of non-
blocking calls made by single-threaded clients. Another advantage of a multi-
threaded client is that it can receive incoming operation requests to its objects
without having to poll for communication events; for example, it can receive
callbacks from a server.

Clients must create threads explicitly, using the threading facilities of the
underlying operating system; this is not difficult to perform. Naturally, you must
code multi-threaded clients to ensure they are thread-safe, using some
concurrency control mechanism. For servers, the difficulty of doing this depends
on the complexity of the data, the complexity of the concurrency control rules,
and the form of concurrency control mechanism being used.

405

Orbix C++ Programmer’s Guide

Comparison with Non-Blocking Calls

406

You can gain some of the benefits of using multiple threads by making operation
calls that do not block the caller. IDL oneway calls do not block their caller, and
you can make normal calls without blocking by using the DIl and the

send_def erred() function on a Request . Non-blocking calls can be made within
a client or a server.

However, there is little to recommend in using non-blocking calls. Using threads
is easier and more powerful than using non-blocking calls:

Easier

Threads provide an easier means of gaining concurrency. Consider a
client that wishes to carry out a number of actions, each requiring a
number of two-way operation requests. One way to do this is to make
the first two-way operation call associated with each action without
blocking, and to process the results in whatever order they arrive. In this
way, at any time, there is one outstanding (non-blocking) operation call
for each action. Once a reply arrives for the current operation call for an
action, the next call for that action can be made. The difficulty here is that
the client must loop to accept each reply, and it must maintain a table to
indicate the next request to make for each action. This is complex and
error-prone.

In contrast, the equivalent coding using threads is very simple. A thread
can be created for each action, and that action can make normal blocking
calls for each request that is to be made in turn.

More powerful

The real benefit of multi-threaded servers is the ability to handle calls
from a number of clients concurrently. This cannot be gained using non-
blocking calls.

Consider an attempt to do so. A single-threaded server can accept an
incoming operation request, and during the processing of this request it
can use a non-blocking call to make a request on a remote object.
Naturally, the server does not block while the remote object is
processing the call, but it cannot accept another incoming operation
request from the same or another client.

Using Threads with Orbix-MT

The only way that it can accept another operation call is to complete the

first call:' the call on whose behalf it has made the non-blocking remote
call. The server cannot accept another call until it has completed the
current one.

Nevertheless, non-blocking calls can sometimes be useful. Firstly, some
operating systems do not support threads; and secondly, although threads may
be available, it might not be possible to use them because an application is using
a library that is not thread-safe. Finally, for very simple uses in clients, the
complexity of using non-blocking calls is no greater than that of using threads.
Nevertheless, the real benefits of multi-threaded servers is the ability to handle
calls from different clients concurrently. This cannot be gained using non-
blocking calls.

Thread Programming in Orbix

Orbix-MT provides a thread-safe version of the Orbix libraries for use with the
underlying operating system’s threads package. At appropriate points within the
Orbix libraries, locking code has been added to ensure that the Orbix internal
data structures are correctly managed in a pre-emptive threading environment.
The Orbix libraries are thread-safe.

In addition to the locking code, the client and server library both create and use
threads internally. These threads are not exposed to application programmers,
and execute code within the library only.

Note: All existing application code written for the non-threaded Orbix libraries
continues to execute correctly if linked with the threaded Orbix libraries.
In addition, an Orbix-MT programmer can choose to ignore threads.

Although the threaded Orbix libraries create some threads internally, by default
there is only one thread to handle incoming requests: for example, a server only
handles one call at a time. To create a thread per incoming request, you must
install a filter that creates these threads. Refer to Chapter 16 “Filtering

I. By exiting the C++ member function that implements the operation.

407

Orbix C++ Programmer’s Guide

Operation Calls” on page 307 for details. This code is supplied, and can be used
without modification. It should be viewed as code that extends the ORB, rather
than as application level code.

You can use application level threads within a client application, or within a
server application, or within both. A non-threaded client can interact with a
threaded server, and vice-versa. Naturally, applications written using the
standard (non thread-safe) Orbix product can also interact with threaded
applications. Server applications can choose when to create threads, including in
response to incoming operation requests.

Compiling Orbix-MT Applications

408

This section describes the compilation switches required when building Orbix-
MT applications on Windows and UNIX platforms.

Windows Platforms

The Orbix libraries are built with the / MD switch, which links them with the
MSVCRT multi-threaded runtime libraries. You should also build your
applications using the / MD switch.

UNIX Platforms

To build an application using the thread-safe version of the Orbix libraries, it is
important to compile with - D_ REENTRANT. In fact, this is true for most threaded
applications. It ensures that the C++ compiler generates re-entrant code
correctly, and also selects the correct header file options:

% CC - D_REENTRANT f 0o0. cc

Your link line should link with the nt form of the Orbix libraries, and with the
appropriate library for the threads package used. The details vary depending on
the particular platform, so you should consult a Makef i | e provided in the

QO bi x3. 0/ deno directory for exact details.

Using Threads with Orbix-MT

UNIX examples are as follows:

Solaris

% CC - D REENTRANT -0 foo foo.cc \
-lorbixm -nt -Insl -Isocket

POSIX-Compliant

% CC - D REENTRANT -0 foo foo.cc \
-lorbixm -threads -1Irt

Operating System Support for Creating Threads

Before discussing the filter code that creates threads, this section shows the
code that is required on some operating systems to create a thread.

Windows NT

/] C++
#incl ude <process. h>
HANDLE Creat eThr ead(
LPSECURI TY_ATTRI BUTES | psa,
DWORD chSt ack,
LPTHREAD_START_ROUTI NE | pSt ar t Addr,
LPVO D | pbThr eadPar m
DWORD f dwCr eat e,
LPDWORD | pl DThr ead) ;

Solaris

/] C++

#i ncl ude <thread. h>

thr_create (void* stack_base, size_t stack_size,
voi d*(start_routine)(void*), void* arg,
I ong flags, thread_t* new_t hread)

POSIX-Compliant

/] C++

#i ncl ude <pt hread. h>

int pthread_create(pthread_t* tid,
pthread_attr_t*,
voi d*(start_routine)(void*), void* arg);

409

Orbix C++ Programmer’s Guide

If a client or server creates a thread to make a remote request, it can wait for
that thread to terminate using one of the following calls:

Windows NT Wi t For Si ngl eQhj ect ()
Solaris thr_join()
POSIX pthread j oi n()

Creating a Thread to Handle a Request

410

As explained in Chapter |6, a per process filter’s i nRequest PreMar shal ()
function can create a thread to handle an incoming request. The

i nRequest Pr eMar shal () function should use an underlying threads package—
for example, the Solaris threads package—to create a thread, and the thread
should then handle the request, usually by instructing Orbix to send the
invocation to the target object.

The i nRequest Pr eMar shal () function should return - 1 to Orbix to indicate
that it has created a thread that handles the call. Unlike the other filter points,

i nRequest PreMar shal () has a return type i nt. This allows it to return 1 to
indicate that the request is accepted and should be processed as normal; return
0 to indicate that the request should be rejected; or return - 1 to indicate that
the call is being handled by a separate thread.

The new filter class should inherit from GORBA: : Thr eadFi | t er, which in turn
derives from QORBA: : Fi | ter. The code below is the example thread filter that
creates a thread per request. The version shown uses the Solaris threading
facility.

/] C++
class CreatesThread : public CORBA:: ThreadFilter {
public:
/1 Only consider one nonitor point here.
virtual int inRequestPreMarshal
(CORBA: : Request &,
CORBA: : Envi ronnent &) ;
b

/1 Create the required single instance.
Creat esThread t hr eadDi spat cher;

Using Threads with Orbix-MT

/1 Define start function for new thread
static void* startThread(void* vp) {
/1 Tell Obix to resume processing a request.
CORBA: : Or bi x. conti nueThr eadDi spat ch
(*(CORBA: : Request *) vp) ;
return O;

}

/1 I nplenmentation of inRequestPreMarshal ().
int CreatesThread::inRequestPreMarshal
(CORBA: : Request & r,
CORBA: : Envi ronnent & {
/] Create a thread using the threads-package:
/I The thread entry point is ‘startThread’
thread_t tid;
thr_create(NULL, O, startThread, (void*)&r,
THR_DETATCHED, &tid);
/I Indicate to Orbix that a thread was created.
return -1;

}

CreatesThread::inRequestPreMarshal() is the first part of this code to
execute. It uses the Solaris function thr_create() to create the new thread,
specifying that the new thread is to execute the function startThread() . The
value -1 is returned to inform Orbix that a new thread has been created.

The role of startThread() is to instruct Orbix to continue to process the
operation or attribute request within the new thread. It does this by calling the
low-level Orbix function continueThreadDispatch() , passing it the Request
variable that represents the request being made. The request is passed to
startThread() as parameter vp, which although declared to be of type void* ,
is actually of type CORBA::Request* . The rules of the Solaris threading package
dictate that the function that a thread is to execute (startThread() in this case)
must take a void* parameter—passed as the fourth parameter to
thr_create().

411

Orbix C++ Programmer’s Guide

Concurrency Control

Although Orbix contains sufficient locks to ensure the thread-safety of its
internal variables and tables, and the low-level variables associated with each
Orbix object, you must add appropriate synchronisation code to the shared data
structures and objects created in an application. Refer to the appropriate system
programmer’s manual to understand how to do this for a particular threads
package.

Note: Orbix does not synchronize access to application level objects and
application data structures.

Thus, for example, if a server programmer creates a thread filter as described in
“Creating a Thread to Handle a Request” on page 410, it is possible that several
application level threads may try to access the same application object in the
server. In particular, if clients simultaneously request the server to invoke IDL
operations on the same target object within the server, that object will be
subject to concurrent access. You must thus take care that access to the state of
the target application object is synchronized as appropriate, by using locking
code built using the underlying threads package. For example:

/] C++
cl ass Foo {
short mcounter; // Sone state.
mutex t* mlock; // Mitex lock for state.
public:
Foo() {
m counter = 0;
mut ex_i nit(&ml ock, USYNC THREAD, NULL);
}
void increment () {
mut ex_| ock(&m | ock) ;
m_count er ++;
mut ex_unl ock(&m | ock) ;
}
b
Each OORBA: : (bj ect in Orbix includes an internal read/write lock used by

Orbix to synchronize concurrent access to the Orbix-specific state of that
object.

412

Using Threads with Orbix-MT

A read lock is acquired, for example, if a thread calls the

OCRBA: : (hj ect : : _ref Count () member function. Similarly, a write lock is
acquired for the duration of the _dupl i cat e() static member function on each
IDL C++ class. However this read/write lock is not acquired when any
application specific state of that object is accessed. For example, if an
implementation class derives from a BOAImpl class that in turn derives indirectly
from QCRBA: : (bj ect adds member variables, or if a smart proxy does likewise,
this additional state is not protected by the internal GCRBA: : (bj ect read/write
lock.

In principle, the internal CORBA: : (bj ect read/write lock could be made available
to derived BOAImpl classes. In practice, however, there is a possibility that
deadlock situations might occur because of interactions between the internal use
of this lock in Orbix, and the use made by a programmer in a derived class. For
this reason, access to the internal lock is discouraged.

Models of Thread Support

In addition to the thread per request model described in “Creating a Thread to
Handle a Request” on page 410, a derived class of ThreadFi | t er can be used to
program other models, such as the following:

Pool of Threads

In this model, a pool of threads is created to handle incoming requests. The size
of the pool puts some limit on the server’s use of resources, and in some cases
that is better than the unbounded nature of the thread per request model. Each
thread waits for an incoming request, and handles it before looping to repeat this
sequence.This can provide the best balance between concurrency and resource
usage.

Thread Per Client

In this model, a thread is created for each client process that is currently
connected to a server. Each thread handles the requests from one client
process, and ignores other requests. This may be useful if thread creation is too
expensive to have a thread created for each request; but of course it does give
the potential of having idle threads corresponding to clients that are currently

413

Orbix C++ Programmer’s Guide

not making requests to objects in the server. One particularly important use of
this model is for DBMS integration, where in some cases it is important to run all
of a client’s requests in the same thread. This is normally because it is necessary
to run consecutive requests from the same client in the same transaction.

Thread Per Object

In this model, a thread is created for each object (actually, for a subset of the
objects in the server). Each of these threads accept requests for one object only,
and ignores all others. This can be an important model in real-time processing,
where the threads associated with some objects need to be given higher
priorities that those associated with others.

Implementing Models of Thread Support

414

This section gives a brief outline of how you can implement these models.

Implementing Pool of Threads

To implement this model, you should create a pool of threads, and each thread
should wait on a shared semaphore. When a request arrives, the

i nRequest Pr eMar shal () function of the ThreadFi | t er should place a pointer
to the Request in an agreed variable, and signal the semaphore. Alternatively, a
queue can be used. One of the threads will awaken, and should call

cont i nueThr eadD spat ch() before looping to repeat the sequence.

Implementing Thread Per Client

There are two variations on how this should be implemented, depending on
whether or not a single client can make concurrent calls on objects in a server. If
a client can only make one call at a time, then the i nRequest Pr eMar shal ()
function should determine the identity of the caller, perhaps finding the file
descriptor on the server that the call was made through. It should then use this
to locate the corresponding thread. Specifically, a synchronisation variable (a
mutex or semaphore) is located; and this is signalled so that the thread will
awaken. The i nRequest PreMar shal () function should pass (a pointer to) the
Request object to the thread, so that it can call cont i nueThr eadDi spat ch().

Using Threads with Orbix-MT

If a client can make concurrent calls to the objects in the server,

i nRequest Pr eMar shal () should use a queue to communicate with the chosen
thread. It should add the Request to the correct thread’s queue, and signal a
semaphore to mark the fact that there is one more entry in the queue. There
should be one semaphore and one queue per thread, and each thread should
wait on its own semaphore.

Implementing Thread Per Object

To implement this model, you should create a thread for each (or a subset of)
the objects in the server. Each thread should have it’s own semaphore and
queue of requests, and it should wait on its own semaphore.

The i nRequest PreMar shal () function should add the Request to the correct
queue of requests, and signal the correct semaphore. When the thread awakens,
it should call cont i nueThr eadD spat ch() to process the topmost request, and
then loop to await the next one.

Changing the Thread Calls made by Orbix

As noted in “Operating System Support for Creating Threads” on page 409,
Orbix creates its own threads and synchronisation structures (mutexs,
semaphores and read/write locks) by calling the underlying threads package.
Within the Orbix source code, these calls are made via a C++ interface.
However, some threads packages—such as that of Solaris—provide for a
number of alternative parameters to the creation of locks and threads. For
example, in Solaris, locks can be created using the USYNC THREAD or
USYNC_PROCESS options. Refer, for example, to the rw_i nit (9F) nman page
entry.

The choice of parameters made in the Orbix source code to create threads and
locks for Solaris is contained in the Orbix multi-threaded library on Solaris,

I'i bor bi xnt.The coding of this file can be changed, if desired, for a particular
application. The new object file should then be included prior to the Orbix
libraries on the link line.

415

Orbix C++ Programmer’s Guide

Changing Internal Orbix Thread Creation

416

When you run an Orbix application, Orbix starts an internal thread that waits
for incoming connection attempts from other applications. This thread is known
as the listener thread. When the listener thread detects the first incoming
connection attempt, it starts another thread, known as a connection thread, that
accepts incoming requests from all connections and dispatches those requests to
your application code.

If required, you can configure Orbix to create more than one connection thread
in your application. This increases the use of parallelism in your application. The
function maxFDsPer Connect i onThr ead(), defined on class CORBA: : CRB, allows
you to specify the number of connections to be associated with each connection
thread.

This function is defined as follows:

/] C++
/1 1n class CORBA:: ORB
voi d nmaxFDsPer Connecti onThr ead(unsi gned | ong mex);

To specify the maximum number of connections associated with each
connection thread, call this function on the ORB object, passing an unsi gned
| ong value as the parameter max.

Orbix attempts to respond appropriately to the value passed to

maxFDsPer Connect i onThr ead(), but this is not guaranteed. For example, if you
pass a value lower than the current connection limit, Orbix will not shut down
existing threads that are processing more connections than the new limit.

To read the current limit, call the following function on the CCRBA: : O bi x
object:

/] C++
/1 1n class CORBA:: ORB
unsi gned | ong nmaxFDsPer Connecti onThr ead();

24

Service Contexts in Orbix

This chapter introduces service contexts in Orbix applications. Service
contexts are a CORBA-defined way of implicitly passing service-
specific information in IIOP requests and replies. This chapter
describes the Orbix APIs that enable you to supply and consume
context information.

Service contexts provide a mechanism for passing service-specific information as
hidden parameters in Internet Inter-ORB Protocol (IlIOP) message headers. The
CORBA interoperability specification defines service contexts as a sequence of
octets with an associated identity number. For example:

nmodul e I'1 0P {
t ypedef unsigned | ong Serviceld,;

struct ServiceContext {

1 Serviceld context id,;

2 sequence<oct et > cont ext _dat a;
I3

t ypedef sequence <Servi ceCont ext> Servi ceCont ext Li st;

const Serviceld Transacti onService = 0;
const Serviceld CodeSets = 1;

417

Orbix C++ Programmer’s Guide

The code is explained as follows:

I. The context_id is the means by which a particular service context is
recognized.
2. The cont ext _dat a or octet sequence is the data part of the context.
According to the General Inter-ORB Protocol (GIOP) specification, service

contexts are transmitted between clients and servers in GIOP Request Header s
and Repl yHeaders.

The Request Header _1_0 and Request Header _1_1 structs are defined in IDL as

follows:
nodul e A CP {

/I dCP 1.0

struct RequestHeader_1 0 {
| OP; : Servi ceCont ext Li st service_context;
unsi gned | ong request _i d;
bool ean r esponse_expect ed;
sequence<oct et > obj ect _key;
string oper at i on;
Pri nci pal requesting_princi pal ;

¥

/I dCP 1.1

struct RequestHeader_1 1 {
| OP; : Servi ceCont ext Li st service_context;
unsi gned | ong request _i d;
bool ean r esponse_expect ed;
oct et obj ect _key;
string oper at i on;
Pri nci pal requesting_princi pal ;

b

418

Service Contexts in Orbix

The Orbix Service Context API

The CORBA-compliant API for service contexts in Orbix comprises the
following external interfaces:

® The Servi ceCont ext Handl er class.
®* The ORB interfaces.
® The Servi ceCont ext Li st.

ServiceContextHandler Class

The Servi ceCont ext Handl er class is the base class used to define handlers for
a particular Servi ceCont ext ID you want to deal with. There is a handler
registered on the client and the server for each Ser vi ceCont ext you wish to
handle. The handlers are recognized by their ID, which corresponds to the ID of
the Servi ceCont ext they are handling.

The Servi ceCont ext Handl er class is defined as follows:

cl ass Servi ceCont ext Handl er {
public:
CCORBA(U ong) m ser vi ceCont ext | d;

Ser vi ceCont ext Handl er
(CORBA: : Uong SrvOntxtld, OORBA(Envi ronment env));
~Ser vi ceCont ext Handl er () ;

COCRBA: : Bool ean i ncom ngRequest Handl er

(QOORBA: : Request &req, CORBA: : Environment env);
CCRBA: : Bool ean out boundRequest Handl er

(OORBA: : Request &req, CORBA: : Environment env);
CCRBA: : Bool ean i ncom ngRepl yHand! er

(OORBA: : Request &req, CORBA: : Environment env);
CCRBA: : Bool ean out boundRepl yHand! er

(OORBA: : Request &req, CORBA: : Environment env);

419

Orbix C++ Programmer’s Guide

ORB Interfaces

ORB APIs are provided to allow services to supply and consume context
information at appropriate points in the process of sending and receiving
requests and replies.

Examples of ORB APIs are as follows:

OORBA: : CRB: : regi st er Per Request Ser vi ceCont ext
(Servi ceCont ext Handl er & xHandl er) ;
QORBA: : CRB: : unr egi st er Per Request Ser vi ceCont ext
(CORBA: : U ong GtxHandl erld);
OORBA: : CRB: : regi st er Per Qbj ect Ser vi ceCont ext
(Servi ceCont ext Handl er &Ct xHandl er,
CORBA: : (bj ect &handl edMoj ect) ;
QORBA: : CRB: : unr egi st er Per bj ect Ser vi ceCont ext
(CORBA: : U ong & xHandl er 1 d,
CORBA: : (bj ect &Handl edMoj ect) ;

ServiceContextList

The Servi ceCont ext Li st is a field in an IIOP message header containing all the
service context data associated with a particular request or reply. The
Servi ceCont ext Li st is implemented as a sequence of Ser vi ceCont ext s.

cl ass ServiceCont extList {
publi c:
/1 I'ncludes all of the normal sequence operators.

friend Per(pj ect Servi ceCont ext Handl er;
friend PerRequest Servi ceCont ext Handl er;

420

Service Contexts in Orbix

Using Service Contexts in Orbix Applications

The API for service contexts in Orbix is based on two usage models:

Ser vi ceCont ext per request.

This is where service contexts are handled on all requests and replies
entering and leaving a process.

Ser vi ceCont ext per object.

This is where only service context information is handled for requests
and replies going to or coming from a particular object.

The mechanism whereby a particular service context per request can be
implemented is discussed in detail here. An overview of the implementation of a
particular service context per object is also given.

ServiceContext Per-Request Model

Consider the following overview of implementing service contexts per request
in Orbix applications.

Client Side

To add service context information to all requests leaving a client, do the
following:

l.
2.

Call the useSer vi ceCont ext () method to switch on Ser vi ceCont ext s.

In the user code, derive some classes from the base class
Ser vi ceCont ext Handl er—for example, nyHandl er.

Create an instance of this class within the client passing it

Ser vi ceCont ext _i d.

Register this handler instance with the ORB using

OCRBA: : ORB: : r egi st er Per Request Ser vi ceCont ext Handl er

(nyHandl er, env).

This registration means that if any out-going requests now leave the
client, the method Servi ceCont ext Handl er: : out boundRequest () is
called. As a parameter, this method is passed a reference to the request
that caused the invocation.

421

Orbix C++ Programmer’s Guide

422

6. Depending on what the application wants to do, the request is
interrogated by the user handler class. For example, the user-handler
class may indicate that the operation name is f oobar and trigger another
process to be performed.

7. In the user code of nyHandl er : : out boundRequest (), create a new
instance of Servi ceCont ext . Populate the cont ext _dat a part of the
Servi ceCont ext with information and add it to the
Servi ceCont ext Li st.

This Ser vi ceCont ext Li st is marshalled with the request message and is
passed across the wire to the server. Once the handler method has
completed, the ORB possesses a copy of this newly-allocated memory.
This copy is deleted after the request has been marshalled.

Client Calls out boundRequest ()
for each Handler

SCL SC

nyHandl er () Request 4—.4—-

Register nyHandl er (1d);

ORB v
List of registered
Request Message handlers
SCL
-
-

SCL gets marshalled with
the request on the wire

-

Figure 24.1: Service Contexts Per Request: Client Side

Service Contexts in Orbix

Figure 24.1 on page 422 illustrates the operation of the service context per-
request model on the client side.

The design is similar on the server side in that it creates and registers handlers,
and re-implements the methods from the Servi ceCont ext Handl er class.

Server Side

To receive service context information from all requests entering a server, do
the following:

l.
2.

Call the useSer vi ceCont ext () method to switch on service contexts.

In the user code, derive some classes from the base class
Ser vi ceCont ext Handl er—for example, nyHandl er ().

Create an instance of this class within the server, passing it the
Ser vi ceCont ext _i d. You can use the same code on both the server and
client sides.

Register this handler instance with the ORB using
OCRBA: : ORB: : r egi st er Per Request Ser vi ceCont ext Handl er
(nyHandl er env).

This registration means that when a request comes into the server
address space, the Servi ceCont ext Li st in the request’s header is
unmarshalled and the incoming request methods are called on the
relevant handlers.

Using the i ncom ngRequest () method, take a copy of the
Servi ceCont ext required, extract whatever information is needed from
it, and call whatever code is necessary.

After the handler has returned, and all other Servi ceCont ext handlers
have completed, the request continues as normal.

Note: Replies are treated the same as requests. They activate the

out boundRepl y() and i ncom ngRepl y() handlers in the same manner.

423

Orbix C++ Programmer’s Guide

Figure 24.2 illustrates the operation of the service context per-request model on
the server side.

Server

nyHandl er ()
Request -

Calls I ncom ngRequest ()
for each handler

ORB Y

List of registered
R t M
equest Message handlers
Wire (unmarshalling)

-

Figure 24.2: Service Contexts Per Request: Server Side

ServiceContext Per-Object Model

Consider the following overview of implementing service contexts per object in
Orbix applications.

Client Side

Adding Ser vi ceCont ext s to requests leaving the client for a particular object
involves creating and registering handlers. In particular, this involves the
following:

I. Calling the regi st er Per Obj ect Ser vi ceCont ext Handl er () method.
This method passes over the handler and object reference.

424

Service Contexts in Orbix

2. Converting the object reference to a stringified object reference. After a
hashing algorithm is performed on it, it is inserted into a hash table.

3. Each entry in the hash table is made up of a key (stringified object
reference) and a value (list of handlers).

4. Calling the out boundRequest () method for each object reference where
any service context ID corresponds to a registered handler.

5. Each Servi ceCont ext in the Servi ceCont ext Li st has the same ID as
one of the handlers registered for that object.

6. With each request, only one Servi ceCont ext Li st gets marshalled and
sent across on the wire.

Figure 24.3 illustrates the operation of the service context per-object model on
the client side.

Client
Calls out BoundRequest ()
nyHand er () for each handler
Request |« -
Register SCL
nmyHandl er (1d);
ORB
v Hash List of
Request Message table handlers
SCL
Hash((hj Ref)
SCL gets marshalled with the Request on the wire
|

Figure 24.3: Service Contexts Per-Object: Client Side

425

Orbix C++ Programmer’s Guide

Server Side

Receiving Servi ceCont ext s from requests entering the server for a particular
object also involves creating and registering handlers. In particular, this involves
the following:

I. Obtaining an object reference and converting it into a stringified object
reference.

2. Performing a hashing algorithm on the stringified object reference and
searching for it in a populated list of handlers.

3. Calling the i ncom ngRequest () method for any service context ID that
corresponds to a registered handler.

Figure 24.4 illustrates the operation of the service context per-object model on
the server side.

Server

nyHand! er ()

Request ¢

Calls I ncom ngRequest ()

for each handler that has been

registered for this object
ORB |/

Hash List of
Request Message handlers

Wire (unmarshalling)

SCL

-
Hash(Cbj Ref)

Figure 24.4: Service Contexts Per Object: Server Side

426

Service Contexts in Orbix

Main Components of the Service Context Model

The Servi ceCont ext per-request and Ser vi ceCont ext per-object models
comprise a number of components. This section defines each of the components
and explains how they fit together.

ServiceContextHandler

This base class is for users to define their own handlers for a particular

Ser vi ceCont ext ID that they want to deal with. For each Servi ceCont ext you
wish to handle, there is a handler registered on the client and the server. The
handlers are recognized by their ID which corresponds to the ID of the

Ser vi ceCont ext they are handling.

PerRequestServiceContextHandler

This is a Ser vi ceCont ext Handl er that has been registered as a handler for all
requests on the client or server side. The user derives from the base class,
registers the handler, and the handler is recognized by its ID—which
corresponds to the ID of the Servi ceCont ext that it handles.

PerObjectServiceContextHandler

This is a Ser vi ceCont ext Handl er that has been registered as a handler for all
requests to a particular object on the client or server side. The user derives
from the base class, registers the handler, and the handler is recognized by its
ID—which corresponds to the ID of the Servi ceCont ext that it handles.

Note: The code in the handler describes what you would do with the service
context data in the service context.

427

Orbix C++ Programmer’s Guide

PerRequestServiceContextHandlerList

This is a list of service context handlers. For all requests or replies leaving an
address space, all the outbound methods in all handlers are called. This is
because you do not know which Ser vi ceCont ext to add to each request.

PerObjectServiceContextHandlerList

This works the same way as Per Request Ser vi ceCont ext Handl er Li st except
that only requests and replies pertaining to a particular object are tagged and
their Servi ceCont ext information investigated. This is actually a list indexed by
both the context ID and the QORBA: : (hj ect that it references.

Service Context Handlers and Filter points

428

Service context handlers interact with Orbix filter points. In Orbix, there are 10
filter points including the in reply and out reply failure filter points. Refer to
“Filtering Operation Calls” on page 307 for more details.

The service context mechanism provides four more points for interaction with
requests and replies in a typical invocation. Figure 24.5 on page 429 shows the
location of the Ser vi ceCont ext Handl er s in an invocation, the subsequent
reply, and the order in which they are called.

You should note the following:

® If an exception is thrown in any of the out Request () pre or post-
marshall filter points on the client side, the i ncom ngRepl yHandl er () is
not called.

® One-way calls do not return anything. Thus they do not call the client
side i nboundRepl yHandl er .

Service Contexts in Orbix

out Request Post Mar shal | i ncomi ngRequest Handl er

out Request PreMar shal | i nRequest Pr eMar shal |

out boundRequest Handl er ri nRequest Post Mar shal |

- ..

-——|
o—
o—

| = ¢

L _out boundRepl yHandl er
out Repl yPreMar shal |

out Repl yPost Mar shal |

i nRepl yFai l ure J J
i nRepl yPost Mar shal |
i nRepl yPr eMar shal |

i ncom ngRepl yHandl er | L outReplyFailure

Figure 24.5: Service Context Handlers and Filter Points

For an example of using service contexts, refer to the denos\ ser vi cecont ext
directory of your Orbix installation.

429

Orbix C++ Programmer’s Guide

430

Appendices

Appendix A

Orbix IDL Compiler Options

This appendix describes the command-line switches to the Orbix IDL compiler.
The IDL compiler command is i dl . This command accepts the following

switches:

IDL Compiler Switch

Description

-A

Required if the IDL file contains the definition of a struct,
uni on, sequence, or object reference, an instance of which
can be contained directly in an any—that is, returned by
QORBA: : Any: : val ue() . The structs defined by the
Interface Repository can be passed as a component of a
parameter of type any without specifying the - A switch.

Required if you use the BOAImpl approach to implement
the interfaces in the IDL file. The - B switch requests the
generation of BOAImpl classes for each interface. You can
use the TIE approach to implement any of the interfaces in
the IDL file whether or not the - B switch has been
specified.

Clients are not affected by whether or not - Bis specified.

- Bonly

The - Bonl y switch has the same effect as the - Bflag, but it
also represses the generation of TIE code.

- D <nane>

Predefine the macro nane to be 1 within the IDL file.

-D
<nane>=<def i ni ti on>

Predefine the macro <nane> to be <defi ni ti on>.

433

Orbix C++ Programmer’s Guide

Only run the Orbix IDL pre-processor. Do not pass the
output of the pre-processor to the Orbix IDL compiler,

but output the pre-processed file to the standard output.
By default, the output of the Orbix IDL pre-processor is
sent to the Orbix IDL compiler.

-F

Generate code that allows object-level filtering.

-K

Required if the IDL file uses the opaque type specifier.

-M<fil enane>

Required if more than one IDL file in an application uses
IDL sequences of the same type. The function definitions
for sequences are then output to the specified file. This file
must be compiled and then linked into the client and
server. Each run of the IDL compiler appends to the end
of the specified file, so this file should be deleted when the
directory is cleaned up.

-N Specifies that the IDL compiler is to compile and produce
code for included files (files included using the #i ncl ude
directive). Without the - N switch, included files are
compiled but no code is output.

-0 Generates a makefile rule, describing the dependencies.

-P <fil enane>

Allows the statements specified in <f i | ename> to be
executed before the standard proxy code. Its effect is to
insert a # ncl ude directive at the appropriate place in the
proxy code. <fi | ename> can be any string acceptable to
the #i ncl ude directive. A filename enclosed in angle
brackets (for example, <fi | e. h>) denotes a standard
include file; while a filename enclosed in quotes (for
example, "../../fil e.h") denotes a file elsewhere. In
some cases, this can be an alternative to writing smart
proxies.

434

Appendix A

-Q <dbl ntegrati on>

Provides support for integration with database
management systems. Valid values for <dbl nt egr ati on>
depend on the database management system as specified in
the relevant documentation provided with the database
adapter.

Specifies that the compiler is to produce files with the
initial coding of the implementation classes for the IDL
interfaces in the file. Two output files are produced as
follows:

<filenamePrefix>.ih

This gives the definition of the class and the declaration of
its member functions. The name of the class is the name of
the IDL interface with “==" appended. This name must be
changed before the file compiles.

<filenamePrefix>.ic

This gives the definition of the member functions—each
with a blank body. Once again, the name of the class needs
to be changed. The . i hfile #i ncl udes the normal header
file (by default . hh) produced by the compiler. The . i ¢ file
includes its corresponding . i h header file.

- U <nane>

Undefine the macro nane. If - Uis specified for a macro
name, that macro name is not defined even if - Dis used to
define it.

-c <extensi on>

Specifies the file extension to be used when generating the
client source file from the IDL file. The defaultis C. C C. cc
or C. cpp depending on the target C++ compiler.

Do not suppress code generation for sequence<oct et >
and sequence<stri ng> types. These are normally
suppressed because their code is included in <QORBA. h>,
and generation would lead to duplicate definitions. This
switch is rarely needed. You should also refer to the - i
switch.

435

Orbix C++ Programmer’s Guide

-h <ext ensi on>

Specifies the file extension to be used when generating the
header file for the IDL file. This is . hh by default.

Force insertion of sequence<oct et >/sequence<stri ng>
types into the IDL parse tree. This switch is normally be
used in conjunction with the -f switch. However, it is
rarely needed because CORBA h provides such support.

- m <pr ot ocol >

Specify the marshalling protocol to be used in operation
invocations. There are two protocols:

or bi xOnl y: The Orbix protocol.
i nter Q: The Internet Inter-ORB Protocol (IIOP).

-oc <pat h> Specify the target directory for the client stubs. This flag
overrides the - out switch.

-0s <pat h> Specify the target directory for the server stubs. This flag
overrides the - out switch.

-out <pat h> Specify the target directory for the client and server stubs.

The - oc and - os flags override the - out flag.

-s <extensi on>

Specify the file extension to be used when generating the
server source file from the IDL file. The default is S. G
S. cc or S. cpp depending on the target C++ compiler.

-two_arg_def _tie

Generate two argument version of the DEF_TI E_ macros.
This flag is required to associate scoped classes with your
TIE classes.

-t ypeCode Used with the - A switch to indicate that pre-Orbix 3.0
TypeCodes should be generated.
-V Output version information for the IDL compiler; and the

version number of the C++ compiler supported.

436

Index

Index

A

abortSlowConnects() 191
activation of servers |37
addForeignFD() 194
addForeignFDSet 194
allocbuf() 86
any 219,227
constructing 228
inout parameters |07
interpreting 231
mapping for 75
parameter 24|
AnyDemo example 227
ARGL_IN 248, 257
ARG_INOUT 248, 257
ARG_OUT 248, 257
arrays 53,95
dynamic allocation 95
slices 95
_attachPost() 325
_attachPre() 325
AttributeDef 279
attributes 14, 41
readonly |5

authentication filters 312, 322

BankExceptions example 166

BanklInherit example 175

BankPersistent example 364
BankSimple example 14, 113

Basic Object Adapter 188

basic types, in IDL 49, 74
mapping for 62

binding 136
and smart proxies 330
examples 162

host parameter to _bind() 161
markerServer parameter to _bind() 160

timeouts 196
use of locators 377
BOAImpl approach 119

compared to TIE approach 142

multiple interfaces per implementation 211

BOA_init() 189
bounded sequences 89
C

callbacks

avoiding deadlock 350
connection 192
examples 340

from servers to clients 339

implementing 339
casting

from interface to implementation class 204

object references 70
clients 4
example 134

example using inheritance 182

handling exceptions 168
multi-threaded 404
server timing out 195
collocation 200
compiler, IDL
switches 433
compiling
IDL 16

multi-threaded programs 408

complex types, in IDL 50
components |53
compound name 153
concurrency control 412
connection threads 416
connections 187

management in Orbix 190

connectionTimeout() 191
ConstantDef 279
constants 57, 96
containment 283
contexts 44, 67,212, 249
conversions

object references 69

439

Orbix C++ Programmer’s Guide

CORBA
introduction to 3
CORBA::
ARG_IN 248, 257
ARG_INOUT 248, 257
ARG_OUT 248, 257
IT_reqTransformer 396
ORB_init() 189
release() 72, 86
string_alloc() 83
string_free() 83
String_mgr 77
CORBA::Any
constructing 228
interpreting 231
low-level access 236
parameter 241
replace() 236
type() 236
value() 236
CORBA:BOA 188
CORBA::BOA:
filterBadConnectAttempts() 192
impl_is_ready() 192
isEventPending() 194
obj_is_ready() 192, 194
processEvents() 192, 194
processNextEvent() 194
setNoHangup() 196
CORBA::Context 67
CORBA::Context:
IT _create() 213

CORBA::Dynamiclmplementation 267

CORBA::Environment:
timeout() 196
CORBA::Filter 308, 315
CORBA:Filter:
_attachPost() 325
inReplyFailure() 314
inReplyPostMarshal() 314
inReplyPreMarshal() 314
inRequestPostMarshal() 314
inRequestPreMarshal() 314
outReplyFailure() 314
outReplyPostMarshal() 314
outReplyPreMarshal() 314
outRequestPostMarshal() 314
outRequestPreMarshal() 314
CORBA::Flags 215
CORBA::is_nil() 73

440

CORBA::LoaderClass:
load() 361
CORBA:locatorClass:
lookUp() 379-38I
CORBA::NamedValue 249
CORBA:NVList 249
CORBA::Object:
_attachPre() 325
_create_request() 246
_deref() 205
_get_implementation() 321
_implementation() 331
_isRemote() 203
_loader() 358
_marker() 331
_narrow() 70
_object_to_string() 316, 317
CORBA::Object::_get_interface() 296
CORBA::ORB 188
CORBA:ORB:
abortSlowConnects() 191
addForeignFD() 194
addForeignFDSet() 194
BOA_init() 189
connectionTimeOut() 191
create_list() 250
create_operation_list() 252
defaultTxTimeout() 197
get_default_context() 213
impl_is_ready() 132
list_initial_references() 190
maxConnectRetries() 192
noReconnectOnFailure() 192
removeForeignFD() 195
removeForeignFDSet() 195
resolve_initial_references() 190
resortToStatic() 206
setMyReqTransformer() 398
setReqTransformer() 398
string_to_object() 158, 356
CORBA::Request:
decodeBooleanArray() 263
decodeCharArray() 263
decodeFloatArray() 263
decodelLongArray() 263
decodeOctetArray() 263
decodeShortArray() 263
decodeULongArray() 263
decodeUShortArray() 263
encodeBooleanArray() 262

Index

encodeCharArray() 262
encodeFloatArray() 262
encodelongArray() 262
encodeOctetArray() 262
encodeShortArray() 262
encodeULongArray() 262
encodeUShortArray() 262
getOperation() 255
invoke() 253, 258
reset() 258
setOperation() 256, 258
setTarget() 258
target() 255,317
CORBA::ServerRequest 268
CORBA::TypeCode::
IT_create() 224
kind() 221
param_count() 221
parameter() 221
CORBA::UserException 66
CORBAfacilities 8, 10
CORBAservices 8,9
create_context() 213
create_list() 250
create-operation_list() 252
_create_request() 246

D
daemon |1, 137
deadlock

avoiding in callback models 350
decodeBooleanArray() 263
decodeCharArray() 263
decodeFloatArray() 263
decodelongArray() 263
decodeOctetArray() 263
decodeShortArray() 263
decodeULongArray() 263
decodeUShortArray() 263
default loader 357-361
default locator 377
defaultTxTimeout() 197

deferred synchronous invocations 352
deferred synchronous operations 254

DEF_TIE() 117

_deref() 205

diagnostics 216

DIl 6, 243-263, 307, 320
invoking multiple requests 254

using with the Interface Repository 252

DSI 7,265-274
dynamic allocation of
arrays 95
strings 83
dynamic CORBA programming 6

Dynamic Invocation Interface. See DIl
Dynamic Skeleton Interface. See DSI

Dynamiclmplementation 267

E
encodeBooleanArray() 262
encodeCharArray() 262
encodeFloatArray() 262
encodelongArray() 262
encodeOctetArray() 262
encodeShortArray() 262
encodeULongArray() 262
encodeUShortArray() 262
enums 50
error messages 216
event processing

in threads 353
Event Service 10
events 187, 190

integrating with foreign event loops 194

processing in Orbix 194
examples
AnyDemo 227
BankExceptions 166
Banklnherit 175
BankPersistent 364
BankSimple 14, 113
stock-trading 339
ExceptionDef 279
EXCEPTIONS 171
exceptions 43, 165
generated code |67
handling in clients 168
throwing 172
explicitCall 363

extracting structs, unions and sequences using

DIl 261

F
faults, object 355
filterBadConnectAttempts() 192
filters 307-325

adding data 311

and service contexts 428

441

Orbix C++ Programmer’s Guide

authentication 312 impl_is_ready() 27, 132, 192
IT_daemon 321 in parameters 102
per-object 323 mapping for 102
chain 308 memory management [02
post 312 inheritance 45, 175-185
pre 312 multiple inheritance 183
per-process 314 usage from a client 182
chain 315 writing implementation classes 178
example 316 initial references
in reply 309, 310 obtaining 189
in reply failure 310 initialisation 189
in request 310 inout parameters 104
out reply 310 any 107
out reply failure 310 mapping for 104
out request 309 memory management |04
relationship to DIl 307 object references 104
thread 312 sequences 106
FILTER_SUPPRESS 325 strings 105
fixed data types 55, 92 inReplyFailure() 314
fixed-length structs 76 inReplyPostMarshal() 314
Flags 215 inReplyPreMarshal() 314
forward declarations, in IDL 48 inRequestPostMarshal() 314
freebuf() 86 inRequestPreMarshal() 314, 410
FullinterfaceDescription 299 Interface Repository 6, |1, 219, 245, 275-304
function 72 class hierarchy 282
configuring 276
G containment 283

getting initial reference to 189
use of TypeCode 225
using with the DIl 252
InterfaceDef 279
interfaces 40-48
implementing

get_default_context() 213
_get_implementation() 321
_get_interface() 296
getOperation() 255

H steps involved |14
hops, locator 379-38I inheritance of 45
host parameter inheritance of type Object 47

to _blnd() 161 mapplng for 62

Internet Inter-ORB Protocol. See IIOP

| invocation semantics, for operations 44
IDL 14, 36, 39-57 invoke() 253, 258

compiler 5,10, 16 INVOKE_DENIED 318

options 433 isEventPending() 194

implementing interfaces 20 is_nil() 73

opaque 385 _isRemote() 203
IIOP 7, 10, 190 IT_CONFIG_PATH 16
implementation classes 23, 119 IT_create() 97, 224
Implementation Repository 6, 137, 381 IT_daemon 321
_implementation() 331 IT_IOCallback 192
implementing interfaces ITMilib 32

comparison of approaches 142 IT_reqTransformer 396

442

Index

K
kind() 221

L
liborbix 32
library
thread-safe 408
library, Orbix 10
listener threads 416
list_initial_references() 190
load() 361
_loader() 358
LoaderClass 356
loaders 355-376
default 357-361
dynamically creating 356
installing 357
object naming 359
locality of objects 203
locatorClass 380
_LOCATOR_HOPS 379
locators 377-382
default 377
hops 379-381
locks 412
lookUp() 379-381
parameters 381

M
macros
DEF_TIE() 117
DEREF() 205
EXCEPTIONS 171
WANT_ORBIX_FDS 195
manager classes 77
mapping 59-111
overview 60
_marker() 331

markerServer parameter to _bind() 160

marshalling 384
maxConnectRetries() 192
MaxHops 380-381

MAX_LOCATOR_HOPS 379

ModuleDef 279
modules 40, 60, 61
alternative mapping for 61

multiple implementations 207

multiple inheritance 183

multiple requests, invoking 254

N

NamedValue 56, 249
NameService 153
Naming Service 9

getting initial reference to 189

wrapper functions 156
_narrow() 70,71

narrowing object references 70

NO_PERMISSION 318

noReconnectOnFailure() 192

NVList 249

o

Object 47

object adapters 188
object faults 355

Object Management Architecture 8
Object Transaction Service 9

objectDeletion 363
_ObjectRef 149
methods

_object_to_string() 149

objects
creating 24
in CORBA 5

making available to clients 25

references to 28
inout parameters 104
narrowing 70
widening 69

_object_to_string() 149, 316,317

obj_is_ready() 192, 194
OMA 8

oneway operations 44, 351

calling with the DIl 253

opaque types, in IDL 383-393
memory management 388

operation() 316,317

OperationDef 279

operations 14, 42
invocation semantics 44

non-blocking operations 350

oneway operations 351
timeouts for 196
orb.idl 56,219
ORB_init() 189
Orbix library 32
orbixd I, 137
Orbix-MT 403

443

Orbix C++ Programmer’s Guide

out parameters

mapping for 108

memory management |08
output, from Orbix 216
outReplyFailure() 314
outReplyPostMarshal() 314
outReplyPreMarshal() 314
outRequestPostMarshal() 314, 321
outRequestPreMarshal() 314, 321

P

param_count() 221
parameter() 221
parameters 102

any 24l

in TypeCode 220

passing modes in IDL 15, 42
piggybacked data 320
pingDuringBind() 164

pinging 164
pragma directives 302
Principal 56

processEvents() 192, 194
processNextEvent() 194
processTermination 363
proxy 28, 136

code unavailable 206
proxy factories 328
pseudo object types, in IDL 56
putit 137

R
readonly attributes |5
record() 360
references, object 28, 69
registering

a request transformer 398

registerPerObjectServiceContext 420
registerPerRequestServiceContext 420

release 72
release() 86
removeForeignFD() 195
removeForeignFDSet() 195
rename() 360
replace() 236
Repository IDs 299
Request 317, 320
adding data to 320
creating 246

444

retrieving results 255
transforming request data 395
_request() 246
reset() 258
resolve_initial_references() 153, 190
resortToStatic() 206
retry attempts 192
return value
any 24l
return values |10
memory management |10

S
save() 361, 363
saving objects 363
scoping, in IDL 40
security 312
Security Service 10
sequences 52
bounded 89
buffers 86
inout parameters 106
ServerRequest 268
servers 4
activation 137
example 129
initialisation 132
multi-threaded 404
throwing exceptions 172
timing out 195
service contexts 417
and filter points 428
per-object 424
per-request 421
ServiceContextHandler 419
setMyReqTransformer() 398
setNoHangup() 196
setOperation() 256, 258
setReqTransformer() 398
setTarget() 258
skeleton code 5
slices, array 95
smart proxies 327
binding 330
generating 329
stock-trading example 339
String_mgr 77
strings 52, 82
bounds checking 84
dynamic allocation 83

Index

inout parameters 105 USYNC_THREAD 415
manager classes 77

string_to_object() 356, 362 \V4

String_var 82 value() 236

structs 50 variable-length structs 77
mapping for 76

stub code 5

system exceptions 170 A\
throwing 174 WANT_ORBIX_FDS 195

widening object references 69
T wrapping legacy code 142

target() 255,317
tc 222
threads 403
creating 408, 409
event processing in 353
implementing 414
internal Orbix-MT threads 416
models of thread support 413
pool of threads 413
thread per object 414
threads per client 413
throwing exceptions 172
TIE approach 117, 123
compared to BOAImpl approach 142
multiple interfaces per implementation 209
timeout() 196
timeouts
for connections 191
for operation calls 196
Trader Service 9
transformers
implementing 396
registering 398
transforming request data 395
type() 236
TypeCode 56,219, 262
TypeDef 279
typedefs 56, 96

U

unbounded sequences 85

unions 51, 78

unmarshalling 384
unregisterPerObjectServiceContext 420
unregisterPerRequestServiceContext 420
user-defined exceptions 167
UserException 66

USYNC_PROCESS 415

445

Orbix C++ Programmer’s Guide

446

	Preface
	Audience
	Organization of the Orbix Documentation
	Organization of this Guide
	Document Conventions

	Part I. Introduction to Orbix
	1. Introduction to CORBA and Orbix
	CORBA and Distributed Object Programming
	The Role of an Object Request Broker
	The Structure of a CORBA Application
	The Structure of a Dynamic CORBA Application
	Interoperability between Object Request Brokers

	The Object Management Architecture
	The CORBAservices
	The CORBAfacilities

	How Orbix Implements CORBA

	2. Getting Started With Orbix
	Developing a Distributed Application
	Defining IDL Interfaces
	Compiling IDL Interfaces
	Setting Up Configuration for the IDL Compiler
	Running the IDL Compiler
	Output from the IDL Compiler
	The Client Stub Code
	The Object Skeleton Code

	Implementing the IDL Interfaces
	Writing an Orbix Server Application
	Initializing the ORB
	Creating an Implementation Object
	Receiving Client Requests

	Writing an Orbix Client Application
	Initializing the ORB
	CORBA Object References
	Getting a Reference to an Object
	Invoking IDL Attributes and Operations

	Compiling the Client and Server
	Compiling the Client
	Compiling the Server

	Running the Application
	Running the Orbix Daemon
	Registering the Server
	Running the Client

	Summary of Programming Steps

	Part II. Orbix Programming
	3. Introduction to CORBA IDL
	IDL Modules and Scoping
	Defining IDL Interfaces
	Attributes in IDL Interface Definitions
	Operations in IDL Interface Definitions
	Inheritance of IDL Interfaces
	Forward Declaration of IDL Interfaces

	Overview of the IDL Data Types
	IDL Basic Types
	IDL Complex Types
	IDL Pseudo Object Types
	Defining Data Type Names and Constants

	4. The CORBA IDL to C++ Mapping
	Overview of the Mapping
	Mapping for Modules and Scoping
	Alternative Mappings for Modules

	Mapping for Interfaces
	Mapping for Attributes
	Mapping for Operations
	Mapping for Inheritance of IDL Interfaces
	Object Reference Counts and Nil Object References

	Mapping for IDL Data Types
	Mapping for Basic Types
	Mapping for Complex Types
	Mapping for Enum
	Mapping for Struct
	Mapping for Union
	Mapping for String
	General Mapping for Sequences
	Mapping for Unbounded Sequences
	Mapping for Bounded Sequences
	Bounded Sequence Examples
	Mapping for Fixed
	Mapping for Array
	Mapping for Typedef

	Mapping for Pseudo-Object Types
	Memory Management and _var Types
	Memory Management for Parameters
	in Parameters
	inout Parameters
	out Parameters
	Return Values
	An Example of Applying the Rules for Object References

	5. Using and Implementing IDL Interfaces
	Overview of an Example Application
	Overview of the Programming Steps
	Defining IDL Interfaces
	Implementing IDL Interfaces
	Defining Implementation Classes for IDL Interfaces

	Developing a Server Program
	Writing a Server main() Function

	Developing a Client Program
	Alternatives to the Naming Service

	Registering the Server
	Execution Trace for the Example Application
	Comparing the TIE and BOAImpl Approaches
	Wrapping Existing Code
	Providing Different Implementations of the Same Interface
	Providing Different Interfaces to the Same Implementation
	Comparison of the BOAImpl and TIE Approaches

	6. Making Objects Available in Orbix
	Identifying CORBA Objects
	Interoperable Object References
	Orbix Object References
	Assigning Markers to Orbix Objects

	Using the CORBA Naming Service
	The Interface to the Naming Service
	Format of Names in the Naming Service
	Making Initial Contact with the Naming Service
	Associating Names with Objects
	Using Names to Find Objects
	Associating a Compound Name with an Object
	Using the Naming Service in Orbix Example Applications

	Transferring Object References
	Passing Object References as Operation Parameters
	Transferring Object Reference Strings

	Binding to Orbix Objects

	7. Exception Handling in Orbix
	An Example of Raising and Handling Exceptions
	The Generated C++ Code for User-Defined Exceptions
	Handling Exceptions in a Client
	Handling Specific System Exceptions
	Throwing Exceptions in a Server
	Information Available in System Exceptions
	Throwing a System Exception

	8. Using Inheritance of IDL Interfaces
	The IDL Interfaces
	The Generated C++ Code

	Implementation Class Hierarchies
	The Implementation Classes
	Using Inheritance in a Client
	Multiple Inheritance of IDL Interfaces

	9. Orbix Connections and Events
	Overview of the Direct API to Orbix
	Initializing a Connection to the ORB
	Obtaining Initial Object References

	Managing Orbix Connections and Events
	Establishing Connections between Clients and Servers
	Event Processing in Orbix

	10. Advanced Programming Topics
	Developing Collocated Clients and Servers
	Testing for the Presence of Collocation
	Writing Code for both Collocation and Distribution

	Determining Locality of Objects
	Casting from Interface to Implementation Class
	Actions when Proxy Code is Unavailable
	Multiple Implementations of an Interface
	Multiple Interfaces per Implementation
	Using the TIE Approach
	Using the BOAImpl Approach

	Passing Context Information to IDL Operations
	Receiving Diagnostic Messages from Orbix

	Part III. Dynamic Orbix Programming
	11. The TypeCode Data Type
	Overview of the TypeCode Data Type
	Implementation of TypeCode in Orbix
	CORBA::TypeCode_ptr Constants
	TypeCode Public Members
	CORBA::TypeCode::IT_create()

	Examples of Using TypeCode
	Use of TypeCode in Type CORBA::Any
	Use of TypeCode when Querying the Interface Repository

	12. The Any Data Type
	Inserting Data into an Any with operator<<=()
	Inserting a Basic Type
	Inserting a User-Defined Type

	Interpreting an any with operator>>=()
	Interpreting a Basic Type
	Interpreting a User-Defined Type

	Other Ways to Construct and Interpret an Any
	Inserting Values at Construction Time
	Low Level Access to a CORBA::Any
	Inserting and Extracting Array Types
	Inserting and Extracting boolean, octet and char

	Any Constructors, Destructor and Assignment
	Any as a Parameter or Return Value

	13. Dynamic Invocation Interface
	Using the DII
	Programming Steps in Using the DII

	The CORBA Approach to Using the DII
	Setting up a Request
	Setting up a Request Using _request()
	Setting up a Request Using _create_request()
	Using the Interface Repository when Setting Up a Request
	Invoking a Request
	Retrieving the Results of a Request
	Getting Information About a Request Object

	The Orbix-Specific Approach to Using the DII
	Setting Up a Request
	Invoking a Request
	Retrieving the Results of a Request
	Additional Information About operator<<()

	14. Dynamic Skeleton Interface
	Uses of the DSI
	Using the DSI
	Creating CORBA::DynamicImplementation Objects
	Registering CORBA::DynamicImplementation Objects

	Example of Using the DSI
	Example of Using params()

	15. The Interface Repository
	Configuring the Interface Repository
	Runtime Information about IDL Definitions
	The Structure of Interface Repository Data
	Containment Relationships
	Simple Types

	Abstract Interfaces in the Interface Repository
	Class Hierarchy and Abstract Base Interfaces
	The Interface IRObject

	Containment in the Interface Repository
	The Contained Interface
	The Container Interface
	Containment Descriptions

	Type Interfaces in the Interface Repository
	Named Types
	Unnamed Types

	Retrieving Information about IDL Definitions
	CORBA::Object::_get_interface()
	Browsing or Listing a Repository
	Finding an Object Using its Repository ID

	Example of Using the Interface Repository
	Repository IDs
	Pragma Directives

	Part IV. Advanced Orbix Programming
	16. Filtering Operation Calls
	Introduction to Per-process Filters
	Pre-marshalling Filter Points
	Post-marshalling Filter Points
	Failure Points

	Introduction to Per-Object Filters
	Using Per-Process Filters
	An Example Per-Process Filter
	Installing a Per-Process Filter
	Raising an Exception in a Filter
	Piggybacking Extra Data to the Request Buffer
	Defining an Authentication Filter

	Using Per-Object Filters
	IDL Compiler Switch to Enable Object Filtering

	17. Using Smart Proxy Classes
	Management of Proxies by Proxy Factories
	Generating Smart Proxies
	A Simple Smart Proxy Example
	The Account IDL Interface
	Defining a New Proxy Class

	18. Callbacks from Servers to Clients
	Implementing Callbacks in Orbix
	Defining the IDL Interfaces
	Implementing the IDL Interfaces
	Writing the Client
	Writing the Server
	Preventing Deadlock in a Callback Model
	Using Non-Blocking Operation Invocations
	Using Multiple Threads of Execution

	Callbacks and Bidirectional Connections

	19. Loading Objects at Runtime
	Overview of Creating a Loader
	Installing a Loader
	Specifying a Loader for an Object

	Loaders and Object Naming
	Loading Objects
	Saving Objects
	Writing a Loader
	Example Loader
	The IDL Interface
	Implementing the IDL
	Coding the Loader
	Loaders are Transparent to Clients

	20. Locating Servers at Runtime
	The Default Locator
	Default lookUp() Functionality

	Writing a New Locator

	21. Using Opaque Types in IDL
	Using Opaque Types
	IDL Definitions
	Mapping of Opaque Types to C++
	Memory Management Rules
	Implementing an Opaque Type
	Implementing an Interface that uses an Opaque Type

	22. Transforming Requests
	Transforming Request Data
	The IT_reqTransformer Class
	Registering a Transformer

	An Example Transformer

	23. Using Threads with Orbix-MT
	Benefits of Multi-threaded Clients and Servers
	Multi-threaded Servers
	Multi-threaded Clients
	Comparison with Non-Blocking Calls

	Thread Programming in Orbix
	Compiling Orbix-MT Applications
	Operating System Support for Creating Threads
	Creating a Thread to Handle a Request

	Concurrency Control
	Models of Thread Support
	Implementing Models of Thread Support

	Changing the Thread Calls made by Orbix
	Changing Internal Orbix Thread Creation

	24. Service Contexts in Orbix
	The Orbix Service Context API
	Using Service Contexts in Orbix Applications
	ServiceContextHandler Class
	ORB Interfaces
	ServiceContextList
	Service Context Handlers and Filter points
	ServiceContext Per-Request Model
	ServiceContext Per-Object Model
	Main Components of the Service Context Model

	Appendix A. Orbix IDL Compiler Options
	Index

