
Orbix Code Generation
Toolkit Programmer’s
Guide
IONA Technologies PLC
February 1999

Orbix and OrbixWeb are Registered Trademarks of IONA Technologies PLC.
While the information in this publication is believed to be accurate, IONA Technologies PLC makes no warranty of any kind
to this material including, but not limited to, the implied warranties of merchantability and fitness for a particular purpose.
IONA Technologies PLC shall not be liable for errors contained herein, or for incidental or consequential damages in
connection with the furnishing, performance or use of this material.
Java is a trademark of Sun Microsystems, Inc. Visual Studio is a trademark of Microsoft Corp.
COPYRIGHT NOTICE
No part of this publication may be reproduced, stored in a retrieval system or transmitted, in any form or by any means,
photocopying, recording or otherwise, without prior written consent of IONA Technologies PLC. No third party intellectual
property right liability is assumed with respect to the use of the information contained herein. IONA Technologies PLC
assumes no responsibility for errors or omissions contained in this book. This publication and features described herein are
subject to change without notice.
Copyright © 1999 IONA Technologies PLC. All rights reserved.
All products or services mentioned in this manual are covered by the trademarks, service marks, or product names as
designated by the companies who market those products.
M 2 2 4 4

The Orbix Code Generation Tool contains the product CFE which is used subject to the following license:
Copyright 1992, 1993, 1994 Sun Microsystems, Inc. Printed in the United
States of America. All Rights Reserved.
This product is protected by copyright and distributed under the following license restricting its use.
The Interface Definition Language Compiler Front End (CFE) is made available for your use provided that you include this license and
copyright notice on all media and documentation and the software program in which this product is incorporated in whole or part.
You may copy and extend functionality (but may not remove functionality) of the Interface Definition Language CFE without charge,
but you are not authorized to license or distribute it to anyone else except as part of a product or program developed by you or
with the express written consent of Sun Microsystems, Inc. ("Sun").
The names of Sun Microsystems, Inc. and any of its subsidiaries or affiliates may not be used in advertising or publicity pertaining to
distribution of Interface Definition Language CFE as permitted herein.
This license is effective until terminated by Sun for failure to comply with this license. Upon termination, you shall destroy or return
all code and documentation for the Interface Definition Language CFE.
INTERFACE DEFINITION LANGUAGE CFE IS PROVIDED AS IS WITH NO WARRANTIES OF ANY KIND INCLUDING THE WARRANTIES OF
DESIGN, MERCHANTIBILITY AND FITNESS FOR A PARTICULAR PURPOSE, NONINFRINGEMENT, OR ARISING FROM A COURSE OF DEALING,
USAGE OR TRADE PRACTICE.
INTERFACE DEFINITION LANGUAGE CFE IS PROVIDED WITH NO SUPPORT AND WITHOUT ANY OBLIGATION ON THE PART OF Sun OR ANY
OF ITS SUBSIDIARIES OR AFFILIATES TO ASSIST IN ITS USE, CORRECTION, MODIFICATION OR ENHANCEMENT.
SUN OR ANY OF ITS SUBSIDIARIES OR AFFILIATES SHALL HAVE NO LIABILITY WITH RESPECT TO THE INFRINGEMENT OF COPYRIGHTS,
TRADE SECRETS OR ANY PATENTS BY INTERFACE DEFINITION LANGUAGE CFE OR ANY PART THEREOF.
IN NO EVENT WILL SUN OR ANY OF ITS SUBSIDIARIES OR AFFILIATES BE LIABLE FOR ANY LOST REVENUE OR PROFITS OR OTHER
SPECIAL, INDIRECT AND CONSEQUENTIAL DAMAGES, EVEN IF SUN HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.
Use, duplication, or disclosure by the government is subject to restrictions as set forth in subparagraph (c)(1)(ii) of the Rights in
Technical Data and Computer Software clause at DFARS 252.227-7013 and FAR 52.227-19.
Sun, Sun Microsystems and the Sun logo are trademarks or registered trademarks of Sun Microsystems, Inc.
SunSoft, Inc.
2550 Garcia Avenue
Mountain View, California 94043

The Orbix Code Generation contains the language Tcl which is used subject to the following license:
This software is copyrighted by the Regents of the University of California, Sun Microsystems, Inc., and other parties. The following
terms apply to all files associated with the software unless explicitly disclaimed in individual files.

The authors hereby grant permission to use, copy, modify, distribute, and license this software and its documentation for any purpose,
provided that existing copyright notices are retained in all copies and that this notice is included verbatim in any distributions. No
written agreement, license, or royalty fee is required for any of the authorized uses. Modifications to this software may be copyrighted
by their authors and need not follow the licensing terms described here, provided that the new terms are clearly indicated on the
first page of each file where they apply.

IN NO EVENT SHALL THE AUTHORS OR DISTRIBUTORS BE LIABLE TO ANY PARTY FOR DIRECT, INDIRECT, SPECIAL, INCIDENTAL, OR
CONSEQUENTIAL DAMAGES RISING OUT OF THE USE OF THIS SOFTWARE, ITS DOCUMENTATION, OR ANY DERIVATIVES THEREOF, EVEN IF
THE AUTHORS HAVE BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

THE AUTHORS AND DISTRIBUTORS SPECIFICALLY DISCLAIM ANY WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, AND NON-INFRINGEMENT. THIS SOFTWARE IS PROVIDED ON
AN "AS IS" BASIS, AND THE AUTHORS AND DISTRIBUTORS HAVE NO OBLIGATION TO PROVIDE MAINTENANCE, SUPPORT, UPDATES,
ENHANCEMENTS, OR MODIFICATIONS.

GOVERNMENT USE: If you are acquiring this software on behalf of the U.S. government, the Government shall have only "Restricted
Rights" in the software and related documentation as defined in the Federal Acquisition Regulations (FARs) in Clause 52.227.19 (c) (2).
If you are acquiring the software on behalf of the Department of Defense, the software shall be classified as "Commercial Computer
Software" and the Government shall have only "Restricted Rights" as defined in Clause 252.227-7013 (c) (1) of DFARs.
Notwithstanding the foregoing, the authors grant the U.S. Government and others acting in its behalf permission to use and distribute
the software in accordance with the terms specified in this license.

Contents
 Preface xiii
Audience xiii
Organization of this Guide xiv
Document Conventions xv

Part 1 Using the Orbix Code Generation Toolkit

Chapter 1 Overview of the Code Generation Toolkit 3
Architecture 3

IDLgen and Genies 4
Orbix Code Generation Toolkit Components 5
The Bundled Applications 6

Approaches to Using the Code Generation Toolkit 6
Known Limitations of Code Generation Toolkit 7

Chapter 2 Running the Demonstration Genies 9
Running Genies with IDLgen 9

Specifying the Application Location 10
Looking For Applications 11
Common Command Line Arguments 11

What are the Bundled Genies? 13
Demonstration Genies 14

stats.tcl 14
idl2html.tcl 15

Chapter 3 Ready-to-use Genies for Orbix C++ 17
Using the C++ Genie to Kickstart New Projects 17

Generating a Complete Client/Server Application 18
Generating a Partial Application 19
Command Line Options to Generate Parts of an Application 21
A Few Other Options 30

Generating Signatures of Individual Operations with cpp_op.tcl 31
v

O r b i x Co d e G e n e r a t i o n T oo l k i t P r o g r am me r ’ s G u i d e
Creating Print Functions for IDL Types with cpp_print.tcl 32
Creating Random Functions for IDL Types with cpp_random.tcl 34
Creating Equality Functions for IDL Types with cpp_equal.tcl 36
Configuration Settings 37

Chapter 4 Orbix C++ Client/Server Wizard 39
Using the Wizard 40

Starting the Wizard 40
Advanced Code Generation Options 42
Generating Client Code 44
Generating Server Code 45

Building Your CORBA C++ Application 47

Chapter 5 Ready-to-use Genies for OrbixWeb 49
Using the Java Genie to Kickstart New Projects 49

Generating a Complete Client/Server Application 50
Generating a Partial Application 51
Command Line Options to Generate Parts of an Application 53
A Few Other Options 61

Creating Print Functions for IDL Types with java_print.tcl 62
Creating Random Functions for IDL Types with java_random.tcl 64
Configuration Settings 66

Part 2 Developing Genies with the Orbix Code
Generation Toolkit

Chapter 6 Writing a Genie 69
Prerequisites for Developing Genies 69
Some Simple Examples 70

Hello World 70
Hello World with Command Line Arguments 70

Some Extensions Provided by IDLgen 71
Using Commands in Other Libraries 71
Writing to a File from Your Genie 72
Embedding Text in Your Application 74
 vi

C o n t e n t s
What are Bilingual Files? 76
Using Bilingual Files 77

Chapter 7 Processing an IDL File 81
IDL Files and IDLgen 81

Parsing the IDL File 82
Structure of the Parse Tree 83
Nodes of the Parse Tree 84
The Abstract Node node 86
The Abstract Node scope 87
Nodes Representing Built-in IDL Types 91
Typedefs and Anonymous Types 92
Visiting Hidden Nodes 94
Other Node Types 95

Traversing the Parse Tree with rcontents 95
Searching an IDL File with IDLgrep 95

Recursive Descent Traversal 100
Polymorphism in Tcl 100
Recursive Descent Traversal through Polymorphism 101

Processing User-defined Types 103
Recursive Structs and Unions 103

Chapter 8 Configuring your Genies 105
Command Line Arguments 105

Enhancing IDLgrep 105
Processing the Command Line 106
Searching for Command Line Arguments 108
More Examples of Command Line Processing 109
IDLgrep with Command Line Arguments 110
Using std/args.tcl 112

Using Configuration Files 113
Syntax of an IDLgen Configuration File 113
Reading the Contents of a Configuration File 114
The Standard Configuration File 116
IDLgrep with Configuration Files 116
vii

O r b i x Co d e G e n e r a t i o n T oo l k i t P r o g r am me r ’ s G u i d e
Chapter 9 Further Development Issues 119
Global Arrays 119

The $idlgen Array 120
The $pref Array 121
The $cache Array 124

Re-implementing IDLgen Commands 125
More Smart Source 126
More Output 127

Miscellaneous Utility Commands 128
idlgen_read_support_file 128
idlgen_support_file_full_name 130
idlgen_gen_comment_block 130
Idlgen_process_list 131
idlgen_pad_str 133

Recommended Programming Style 134
Organizing Your Files 134
Organizing Your Procedures 135
Writing Library Genies 136
Commenting Your Generated Code 140

Part 3 Orbix C++ Genies: Library Reference

Chapter 10 The C++ Development Library 143
Naming Conventions in API procedures 143

Naming Conventions for “is_var” 145
Naming Conventions for “gen_” 145
Indentation 147
$pref(cpp,…) Entries 148

Identifiers and Keywords 150
cpp_l_name 150
cpp_s_name 152
cpp_typecode_s_name 152
cpp_typecode_l_name 153

General Purpose Procedures 153
cpp_is_fixed_size 153
cpp_is_var_size 154
cpp_is_keyword 154
 viii

C o n t e n t s
cpp_assign_stmt 154
cpp_indent 156
cpp_nil_pointer 157
cpp_sanity_check_idl 157

Interfaces 158
cpp_impl_class 158
cpp_tie_class 159
cpp_boa_class_s_name 160
cpp_boa_class_l_name 161
cpp_smart_proxy_class 161

Signatures of Operations 162
Signatures of Attributes 163
Types and Signatures of Parameters 164

Client-Side Processing of Parameters 165
Server-Side Processing of Parameters 172

Processing Unions 182
cpp_branch_case_s_label 182
cpp_branch_case_l_label 184
cpp_branch_s_label 184
cpp_branch_l_label 184

Processing Arrays 185
Processing Anys 188

Inserting Values into an Any 188
Extracting Values from an Any 189

Chapter 11 Other Tcl Libraries for C++ Utility Functions 191
Tcl API of cpp_print 191

Example of Use 192
Tcl API of cpp_random 194

Example of Use 195
Tcl API of cpp_equal 197

Example of Use 198
Full API of cpp_equal 198
ix

O r b i x Co d e G e n e r a t i o n T oo l k i t P r o g r am me r ’ s G u i d e
Part 4 OrbixWeb Genies: Library Reference

Chapter 12 The Java Development Library 201
Naming Conventions in API procedures 201

Naming Conventions for “gen_” 202
Indentation 204
$pref(java,…) Entries 205

Identifiers and Keywords 206
java_l_name 207
java_s_name 208
java_typecode_s_name 209
java_typecode_l_name 209

General Purpose Procedures 210
java_is_keyword 210
java_assign_stmt 210
java_indent 211
java_nil_pointer 212

Interfaces 212
java_impl_class 212
java_tie_class 213
java_boa_class_s_name 214
java_boa_class_l_name 215
java_smart_proxy_class 215

Signatures of Operations 216
Signatures of Attributes 217
Types and Signatures of Parameters 218

Client-Side Processing of Parameters 219
Server-Side Processing of Parameters 224

Processing Unions 230
java_branch_case_s_label 230
java_branch_case_l_label 232
java_branch_s_label 232
java_branch_l_label 233

Processing Arrays 233
Processing Anys 236

Inserting Values into an Any 236
Extracting Values from an Any 237
 x

C o n t e n t s
Chapter 13 Other Tcl Libraries for Java Utility Functions 239
Tcl API of java_print 239

Example of Use 240
Tcl API of java_random 242

Example of Use 243
Tcl API of java_equal 246

Example of Use 246
Equality Functions 246

Appendices

Appendix A
User’s Reference 251

General Configuration Options 251
Configuration Options for C++ Genies 252
Configuration Options for Java Genies 254
Command Line Usage 256

Appendix B
Command Library Reference 261

File Output API 261
Configuration File API 262
Command Line Arguments API 268

Appendix C
IDL Parser Reference 271

IDL Parse Tree Nodes 272

Appendix D
Configuration File Grammar 289

 Index 293
xi

O r b i x Co d e G e n e r a t i o n T oo l k i t P r o g r am me r ’ s G u i d e
 xii

Preface
The Orbix Code Generation Toolkit is a flexible development tool that
increases programmer productivity by automating many repetitive coding tasks.
Out of the box, it is immediately useful for programmers who use Orbix, IONA
Technologies’ implementations of the Object Management Group’s (OMG)
Common Object Request Broker Architecture (CORBA).

The Orbix Code Generation Toolkit contains an IDL parser called IDLgen and
ready-made applications called genies that allow you to generate Java or C++
code from CORBA IDL files automatically. The Toolkit also contains libraries of
useful commands so that you can develop your own genies.

Audience
This guide is intended for programmers of Orbix or OrbixWeb based
applications or anyone who uses the CORBA Interface Definition Language
(IDL). Before reading this guide, you should be familiar with the overview of the
CORBA IDL as presented in the chapter “Introduction to CORBA IDL” in the
Orbix C++ Programmer’s Guide or the OrbixWeb Programmer’s Guide. This guide
also assumes a familiarity with C++ or Java.
xiii

O r b i x Co d e G e n e r a t i o n T oo l k i t P r o g r am me r ’ s G u i d e
Organization of this Guide
This guide is divided into five parts:

Part 1 Using the Orbix Code Generation Toolkit
This section of the guide is a user’s guide to the Orbix Code Generation Toolkit.
It provides an overview of the product and describes its constituent
components. It describes how to run the demonstration genies bundled with the
product and details the ready-to-run genies that allow to produce C++ and Java
code straight out of the box.

Part 2 Developing Genies with the Orbix Code Generation
Toolkit

This section of the guide takes an in depth look at the Orbix Code Generation
Toolkit and teaches you how to develop your own genies so that you can, if you
want, expand on the usefulness of the Orbix Code Generation Toolkit in a way
tailored to your own specific needs.

Part 3 Orbix C++ Genies: Library Reference
This section of the guide provides a comprehensive reference to the library
commands that you can use in your genies when you want to produce C++
code from CORBA IDL files.

Part 4 OrbixWeb Genies: Library Reference
This section of the guide provides a comprehensive reference to the library
commands that you can use in your genies when you want to produce Java code
from CORBA IDL files.

Appendices
The appendices provide reference material on configuration options, command
libraries, the IDL parser and configuration file grammar.
 xiv

P r e f a c e
Document Conventions
This guide uses the following typographical conventions:

This guide may use the following keying conventions:

Constant width Constant width (courier font) in normal text represents
portions of code and literal names of items such as
classes, functions, variables, and data structures. For
example, text might refer to the CORBA::Object class.

Constant width paragraphs represent code examples or
information a system displays on the screen. For example:

#include <iostream.h>

Constant width
(bold)

Constant width (courier font) in bold text represents
portions of code from Tcl bilingual files. See “What are
Bilingual Files?” on page 76.

Italic Italic words in normal text represent emphasis and new
terms.

Italic words or characters in code and commands
represent variable values you must supply, such as
arguments to commands or path names for your
particular system. For example:

% cd /users/your_name

No prompt When a command’s format is the same for multiple
platforms, no prompt is used.

% A percent sign represents the UNIX command shell
prompt for a command that does not require root
privileges.

A number sign represents the UNIX command shell
prompt for a command that requires root privileges.

> The notation > represents the DOS, Windows NT, or
Windows 95 command prompt.
xv

O r b i x Co d e G e n e r a t i o n T oo l k i t P r o g r am me r ’ s G u i d e
Note that the examples in this guide include file names in UNIX format.
However, unless otherwise stated, all examples in this guide apply to IDLgen on
both UNIX and Windows platforms.

...

.

.

.

Horizontal or vertical ellipses in format and syntax
descriptions indicate that material has been eliminated
to simplify a discussion.

[] Brackets enclose optional items in format and syntax
descriptions.

{ } Braces enclose a list from which you must choose an
item in format and syntax descriptions.

| A vertical bar separates items in a list of choices
enclosed in { } (braces) in format and syntax
descriptions.
 xvi

Part 1
Using the Orbix Code
Generation Toolkit

 1
Overview of the Code Generation
Toolkit

The Orbix Code Generation Toolkit is a powerful development tool
that can generate useful code automatically from IDL files.

You can use the Orbix Code Generation Toolkit to write your own code
generation scripts, or genies. These can, for example, generate C++ or Java
code from an IDL file, or translate an IDL file into another format, such as
HTML, RTF or LaTeX.

Several ready-to-run genies are bundled with the Orbix Code Generation
Toolkit. These bundled genies can, among other things, generate code from an
IDL file for the Orbix products and so can dramatically reduce development
time.

Architecture
As shown in the Figure 1.2, an IDL compiler typically contains three sub-
components. A parser processes an input IDL file and constructs an in-memory
representation called a parse tree. A back-end then traverses this parse tree and
generates, say, C++ or Java stub-code.
3

O r b i x Co d e G e n e r a t i o n T oo l k i t P r o g r am me r ’ s G u i d e
IDLgen and Genies

At the heart of the Orbix Code Generation Toolkit is an executable called
IDLgen which employs a variation of this architecture. The IDLgen executable
uses an IDL parser and parse tree, but instead of having a back-end which
generates stub-code, the back-end is an interpreter for a scripting language
called Tcl. The core Tcl interpreter provides the normal features of a language
such as flow-control statements, variables and procedures.

As shown in Figure 1.1, the Tcl interpreter inside IDLgen has been extended so
that the IDL parser and parse tree can be manipulated with Tcl commands. This
makes it possible to implement a customized back-end as a Tcl script. These
customized back-ends are called genies (which is short for “code generation
scripts”).

Figure 1.1: Standard IDL Compiler Components

ID L
File

Stub-code files

Back-end
code

 generator

P arse Tree

IDL c ompi l er

ID L
Parser
 4

O v e r v i e w o f t h e Co d e G e n e r a t i o n T oo l k i t
Orbix Code Generation Toolkit Components

The Orbix Code Generation Toolkit consists of three components:

1. The IDLgen executable: this is the engine at the heart of the Code
Generation Toolkit.

2. A number of pre-written genies: these genies generate useful starting
point code to help developers of Orbix applications.

3. Libraries of Tcl procedures: these libraries help users who want to write
their own genies. For example, there is a library which maps IDL
constructs into their C++ equivalents.

Figure 1.2: Code Generation Toolkit Components

G enie

G enerated files

Tcl
L ibrary

Tcl
Interpreter

P arse Tree

IDLgen

ID L
Parser

ID L
File
5

O r b i x Co d e G e n e r a t i o n T oo l k i t P r o g r am me r ’ s G u i d e
The Bundled Applications

IDLgen comes with a number of bundled genies that can be fed into IDLgen to
accomplish a number of different tasks. The genies are also provided in source
code form and so can be used as reference material when writing your own
genies. The full details of these genies are discussed in Chapter 3, “Ready-to-use
Genies for Orbix C++”.

Note: The bundled genies can be used straight away and a user does not need
to know anything about Tcl or programming in Tcl to use them.

Approaches to Using the Code Generation
Toolkit

The Code Generation Toolkit is a powerful addition to any CORBA
programmer’s toolkit. However it is not essential to master all the available
features of the Toolkit to make good use of it. As a starting point, it is a good
idea to get to know the capabilities of the bundled applications and decide
whether or not these can provide all that you want. If they cannot it is
straightforward to extend or write new genies that meet the exact requirements
of a task.

There are therefore two approaches to using Code Generation Toolkit:
development and non-development. This guide is split into two corresponding
parts:

• A user’s guide covering installation, configuration, and a full description of
the bundled applications.

• A developer’s guide describing how to write new genies.

The second part is only applicable if you wish to extend the bundled genies or
write your own.
 6

O v e r v i e w o f t h e Co d e G e n e r a t i o n T oo l k i t
Known Limitations of Code Generation Toolkit
The IDL parser within IDLgen has some known limitations which will be
addressed in a future release:

• It does not support the re-opening of modules.

• It does not support the following types: long long, unsigned long
long or fixed.

• It allows only one case label per union branch. For example, the following
is not allowed inside a union:

case 1: case 2: long a;

IDLgen does support opaque types.

Finally, the IDL specification permits the use of anonymous sequences and arrays
in some circumstances. For example, the following is legal IDL:

struct tree {
long data;

Line 1 sequence<tree> children;
};

Line 2 typedef sequence< sequence<long> > longSeqSeq;

struct foo {

Line 3 long bar[10];
};

The tree struct requires the use of an anonymous sequence (1) in order to
define a recursive type.

IDLgen provides full support for the use of anonymous sequences used in
recursive types. However, IDLgen does not provide full support for unnecessary
uses of anonymous types such as (2) or (3). IDLgen scripts can generate bad
code for such uses of unnecessary anonymous types. As such, we recommend
that you rewrite your IDL files to remove unnecessary anonymous types. For
example, the examples of anonymous types (2) and (3) above could be rewritten
as follows:

typedef sequence<long> longSeq;
typedef longSeq longSeqSeq;
7

O r b i x Co d e G e n e r a t i o n T oo l k i t P r o g r am me r ’ s G u i d e
typedef long longArray[10];
struct foo {

longArray bar;
};
 8

 2
Running the Demonstration
Genies

A number of ready-to-run genies are bundled with the Code
Generation Toolkit. This chapter describes these example genies.

IDLgen comes with a collection of genies that can accomplish a number of
diverse tasks. This chapter discusses how these genies work with IDLgen:

• How to run a genie.

• What genies are supplied.

• A description of the demonstration genies.

Running Genies with IDLgen
In general, you can run a genie through the IDLgen interpreter like this:

idlgen name-of-genie <args-to-genie>

For example, one of the demo genies converts IDL files to HTML. This genie is
held in the file idl2html.tcl. You can run it as follows:

idlgen idl2html.tcl bank.idl shop.idl acme.idl
idlgen: creating bank.html
idlgen: creating shop.html
idlgen: creating acme.html
9

O r b i x Co d e G e n e r a t i o n T oo l k i t P r o g r am me r ’ s G u i d e
Specifying the Application Location

The idlgen executable locates the specified genie file by searching a list of
directories. The list of these directories is defined in the standard configuration
file idlgen.cfg under the setting idlgen.genie_search_path. The default
setting for this is:

idlgen.genie_search_path = [
"."
,"./genie"
,install_root + "/genies"
,install_root + "/demo_genies"

];

This default setting is to search:

1. The current directory.

2. The genies directory under the current directory.

3. The genies directory under the installation directory of IDLgen.

4. The demos directory under the installation directory of IDLgen.

The order of these directories in the list is the order in which IDLgen searches
for the genie.

Note: You can alter this configuration setting to add additional directories. For
instance, if you write your own genies you could place them into a
separate directory and add this directory to
idlgen.genie_search_path.
 10

Ru n n i n g t h e D emo n s t r a t i o n G e n i e s
Looking For Applications

The idlgen executable provides a command line option that lists all of the
available genies, in all of the directories that are specified in the search path:

idlgen -list
available genies are...
cpp_genie.tcl cpp_print.tcl idl2html.tcl
cpp_op.tcl cpp_random.tcl stats.tcl

The -list option is useful if you cannot remember the name of an genie you
want to run. You can also pass a filter to the list command, to filter the available
genies. The filtering parameter ensures that only the genies whose names
contain the given text are shown.

To show all the genies whose names contain the text cpp use the list command
in this way:

idlgen -list cpp

matching genies are...

cpp_genie.tcl cpp_op.tcl cpp_print.tcl cpp_random.tcl

Common Command Line Arguments

The bundled genies have some common command line arguments. The simplest
one is the help command line argument -h:

idlgen idl2html.tcl -h

usage: idlgen idl2html.tcl [options] [file.idl]+
options are:
 -I<directory> Passed to preprocessor
 -D<name>[=value] Passed to preprocessor
 -h Prints this help message
 -v verbose mode
 -s silent mode

There are also command line arguments for passing information onto the IDL
preprocessor.

-I The include path for preprocessor.
11

O r b i x Co d e G e n e r a t i o n T oo l k i t P r o g r am me r ’ s G u i d e
For example:

idlgen idl2html.tcl -I/inc -I../std/inc bank.idl

or:

idlgen idl2html.tcl -I/inc -DDEBUG bank.idl

You may have to place quote marks around the parameters to these command
line arguments if they contain white space:

idlgen idl2html.tcl -I"/Program Files" bank.idl

The final couple of common command line arguments determine whether or not
the genies run in verbose or silent mode.

Running in verbose mode causes IDLgen to tell you what it is doing:

idlgen idl2html.tcl -v bank.idl

idlgen: creating bank.htm

The equivalent in silent mode is:

idlgen idl2html.tcl -s bank.idl

If neither of these command line settings are specified the default setting is
determined by the default.all.want_diagnostics value in the idlgen.cfg
configuration file. If this is set to yes then IDLgen defaults to verbose mode. If
this is set to no then IDLgen defaults to silent mode.

-D Any additional preprocessor symbols to define.
 12

Ru n n i n g t h e D emo n s t r a t i o n G e n i e s
What are the Bundled Genies?
The genies that are bundled with IDLgen can be grouped into a number of
categories:

This chapter describes the demo genies. Chapter 3, “Ready-to-use Genies for
Orbix C++” discusses the Orbix-specific genies. Chapter 5“Ready-to-use
Genies for OrbixWeb”discusses the OrbixWeb-specific genies.

For a full reference to all the genies please refer to Appendix A on page 251.
This describes all the configuration and command line options that are available.

Demonstration Genies

stats.tcl Provides statistical analysis of an IDL file’s content.

idl2html.tcl Converts IDL files into HTML files.

Orbix C++ Specific Applications

cpp_genie.tcl Generates code for Orbix from an IDL file.

cpp_op.tcl Generates code for new operations from an IDL
interface.

cpp_random.tcl Creates a number of functions that generate random
values for all the types present in an IDL file.

cpp_print.tcl Creates a number of functions that can display all the
data types present in an IDL file.

cpp_equal.tcl Creates utility functions that test IDL types for equality.

OrbixWeb Specific Applications

java_genie.tcl Generates code for Orbix from an IDL file.

java_random.tcl Creates a number of functions that generate random
values for all the types present in an IDL file.

java_print.tcl Creates a number of functions that can display all the
data types present in an IDL file.
13

O r b i x Co d e G e n e r a t i o n T oo l k i t P r o g r am me r ’ s G u i d e
Demonstration Genies
Two demonstration genies are shipped with IDLgen:

• stats.tcl

• idl2html.tcl

stats.tcl

This genie provides a number of statistics based on an IDL file’s content. This
genie prints out a summary of how many times each IDL construct (such as
interface, operation, attribute, struct, union, module, and so on)
appears in the specified IDL file(s).

For example:

idlgen stats.tcl bank.idl

statistics for ’bank.idl’

0 modules
5 interfaces
7 operations (1.4 per interface)
9 parameters (1.28571428571 per operation)
3 attributes (0.6 per interface)
0 sequence typedefs
0 array typedefs
0 typedef (not including sequences or arrays)
0 struct
0 fields inside structs (0 per struct)
0 unions
0 branches inside unions (0 per union)
1 exceptions
1 fields inside exceptions (1.0 per exception)
0 enum types
0 const declarations
5 types in total
 14

Ru n n i n g t h e D emo n s t r a t i o n G e n i e s
The statistics genie, by default, only processes the constructs it finds in the IDL
file specified. It does not take into consideration any IDL files that are referred
to with #include statements. You can use the -include command line option
process, recursively, all such IDL files as well. For example, the IDL file bank.idl
includes the IDL file account.idl:

// IDL
#include "account.idl"

interface Bank
{

...
};

You can gain statistics from both account.idl and bank.idl files together with
this command:

idlgen stats.tcl -include bank.idl

This genie serve two purposes:

• This genie provides objective information which can be used to help
estimate the time it will take to implement some task based on the IDL.

• The implementation of this genie provides a useful demonstration of how
to write genies that process IDL files.

idl2html.tcl

This genie takes an IDL file and converts it to an equivalent HTML file.

Consider this simple extract from an IDL file:

// IDL
interface bank {

exception reject {
string reason;

};
account newAccount(in string name)

raises(reject);
void deleteAccount(in account a)

raises(reject);
};

You can convert this IDL file to HTML by running it through IDLgen:
15

O r b i x Co d e G e n e r a t i o n T oo l k i t P r o g r am me r ’ s G u i d e
idlgen idl2html.tcl bank.idl

idlgen: creating bank.html

This is the resultant HTML file, when viewed in an appropriate HTML browser:

// HTML
interface bank {

exception reject {
string reason;

};
account newAccount(

 in string name)
 raises (bank::reject);

void deleteAccount(
 in account a)
 raises (bank::reject);
}; // interface bank

The underlined words are the hypertext links that, when selected, move you to
the definition of the specified type. For example, clicking on account makes the
definition for the account interface appear in the browser’s window.

There is one configuration setting in the standard configuration file for this genie:

default.html.file_ext File extension preferred by your web browser. This
is usually .html.
 16

 3
Ready-to-use Genies for Orbix C++

The Code Generation Toolkit is packaged with several genies for use
with the Orbix C++ product. This chapter explains what these genies
are and how to use them effectively.

Using the C++ Genie to Kickstart New Projects
Many people start a new project by copying some code from an existing project
and then editing this code to change the names of variables, signatures of
operations, and so on. This is boring and time-consuming work. The C++ genie
(cpp_genie.tcl) is a powerful utility which eliminates this task. If you have an
IDL file that defines the interfaces for your new project then the C++ genie can
generate a demonstration, client-server genie that contains all the starting point
code that you are likely to need for your project. In just a few seconds, the C++
genie can give your project a kickstart, and make you productive immediately.
17

O r b i x Co d e G e n e r a t i o n T oo l k i t P r o g r am me r ’ s G u i d e
Generating a Complete Client/Server Application

You can use the C++ genie to generate a complete client/server application. It
produces a makefile and a complete set of compilable code for both a client
and server for the specified interfaces. For example:

idlgen cpp_genie.tcl -all finance.idl

finance.idl:
idlgen: creating account_i.h
idlgen: creating account_i.cpp
idlgen: creating bank_i.h
idlgen: creating bank_i.cpp
idlgen: creating smart_account.h
idlgen: creating smart_account.cpp
idlgen: creating smart_bank.h
idlgen: creating smart_bank.cpp
idlgen: creating loader.h
idlgen: creating loader.cpp
idlgen: creating server.cpp
idlgen: creating client.cpp
idlgen: creating call_funcs.h
idlgen: creating call_funcs.cpp
idlgen: creating it_print_funcs.h
idlgen: creating it_print_funcs.cpp
idlgen: creating it_random_funcs.h
idlgen: creating it_random_funcs.cpp
idlgen: creating Makefile
idlgen: creating Makefile.inc

The generated client application calls every operation in the server application
and passes random values as parameters to the operations and attribute get/set
methods. The server application then passes random values back in the inout,
out, and return values of the operations.

To compile this application, ensure there is an Orbix daemon running and issue
the following commands:

% make1

% make putit
% client server_hostname

1. If you are using Microsoft Windows use nmake instead of make.
 18

R e ad y - t o - u s e G e n i e s f o r O r b i x C ++
The client application invokes every operation, invokes all the attribute’s get and
set methods and displays the whole process to standard output.

This client/server application can be used to accomplish any of the following:

• Demonstrating or testing an Orbix client/server application for a
particular interface or interfaces.

• Programmers can examine the generated code to see examples of how to
initialize and pass parameters, and how to perform memory management
of various IDL data types.

• A starting point for a programmer’s own application.

Generating a Partial Application

The genie can generate a whole client/server application or it can just generate
the parts desired by the programmer. To generate any kind of starting-point
code from an IDL file (or files) you must first choose which kinds of code you
wish to generate.

One area of repetitive coding in Orbix occurs when the programmer wishes to
write the classes that implement the interfaces in the IDL file. To generate the
skeleton implementation class for the account interface in the finance.idl file,
you can run the genie application in this way:

idlgen cpp_genie.tcl -interface -incomplete account finance.idl

finance.idl:
idlgen: creating account_i.h
idlgen: creating account_i.cpp

The -interface option tells the genie to generate the classes that implement
IDL interfaces. The -incomplete option means that such generated classes will
be “incomplete”, that is, their operations and attributes will have empty bodies
(rather than generated bodies which illustrate how to initialize parameters and
perform memory management). Specifying the name of an interface (account in
the above example) causes the genie to consider only that interface when
generating code.

The above command generates files account_i.h and account_i.cpp that
provide a skeleton class called account_i for implementing the account
interface. For example, assume that the account interface is defined as follows:
19

O r b i x Co d e G e n e r a t i o n T oo l k i t P r o g r am me r ’ s G u i d e
// IDL
interface account {

readonly attribute float balance;

void makeLodgement(in float f);
void makeWithdrawal(in float f);

};

The corresponding extract of generated code is:

// C++
class account_i : public virtual accountBOAImpl
{
public:

...
virtual void makeLodgement(

CORBA::Float f,
CORBA::Environment&_env =

CORBA::IT_chooseDefaultEnv())
throw(CORBA::SystemException);

virtual void makeWithdrawal(
CORBA::Float f,
CORBA::Environment&_env =

CORBA::IT_chooseDefaultEnv())
throw(CORBA::SystemException);

virtual CORBA::Float balance(
CORBA::Environment&_env =

CORBA::IT_chooseDefaultEnv())
...

};

This saves the developer the time it would normally take to write this class by
hand.
 20

R e ad y - t o - u s e G e n i e s f o r O r b i x C ++
You can either explicitly enable specific code-generation options or you can use
the -all option to turn them all on and then disable whichever options you do
not want. For instance, the previous example could have been typed as:

idlgen cpp_genie.tcl bank.idl -all -nosmart
-noloader -nomakefile -noclient -noserver

By default, any wildcards specified on the command line are matched only against
IDL interfaces in the specified file but if you specify the -include option then
the wild cards are matched against IDL interfaces in all the included IDL files too.

Command Line Options to Generate Parts of an Application

The C++ genie generates a complete application by generating different files,
such as a client mainline (client.cpp), server mainline (server.cpp), smart
proxies, classes that implement IDL interfaces, a makefile and so on. The C++
genie provides command line options to selectively turn the generation of each
type of code on and off. In this way, you can instruct the C++ genie to generate
as much or as little of an application as you want. Table 3.1 describes the various
command line options:

Command line
option

Purpose

-interface Generates the classes that implement the
interfaces in the IDL.

-smart Generates smart proxy classes.

-loader Generates a single loader class for all the
interfaces in an IDL.

-server Generate a simple server mainline.

-client Generate a simple client application.

-incomplete Generates skeletal clients and servers.

-makefile Generates a Makefile that can build the server
and client applications.

Table: 3.1: C++ Genie Command Line Options
21

O r b i x Co d e G e n e r a t i o n T oo l k i t P r o g r am me r ’ s G u i d e
These command line arguments are detailed in the following sections.

-interface: Classes that Implement Interfaces
You can generate the classes that implement the interfaces in an IDL file by using
the -interface option:

idlgen cpp_genie.tcl -interface bank.idl

This generates a class header and implementation code for each interface that
appears in the IDL file.

Consider the interface account that appears in the bank.idl file. The account
interface is implemented by a class of the same name but suffixed by _i.The
suffix is specified by the default.cpp.impl_class_suffix setting in the
idlgen.cfg configuration file. The account_i class is also created in a file of the
same name.

There are two mechanisms for implementing an interface: the TIE approach and
the BOAImpl approach. The genie allows you to specify which one is to be used.
The option -boa specifies the BOAImpl approach, for example:

idlgen cpp_genie.tcl -interface -boa bank.idl

The option -tie specifies the TIE approach, for example:

idlgen cpp_genie.tcl -interface -tie bank.idl

The default approach is specified by the default.cpp_genie.want_boa entry in
idlgen.cfg.

By default, an function called _this() is generated for each implementation
class. This operation provides a reference to the CORBA object. For interfaces
implemented using the BOA approach, _this() simply returns this. For
interfaces implemented using the TIE approach, _this() returns the back
pointer which was initialized in a static create() method (which is described in
the next paragraph). The _this() function makes it possible for a TIE object to
pass itself as a parameter to an IDL operation.

Note: The -nothis command-line option can be used to suppress the
generation of the _this() operation.
 22

R e ad y - t o - u s e G e n i e s f o r O r b i x C ++
Another related matter is how the constructors of a class that implements an
interface are used. In the code generated by the C++ genie, constructors are
protected and hence cannot be called directly from application code. Instead,
objects are created by calling a public static operation called _create(). If
the TIE approach is used for implementing interfaces, then the algorithm used in
the implementation of this operation is as follows:

// C++
foo_ptr foo_i::_create(const char *marker,

CORBA::LoaderClass *l=0)
{

foo_i* obj
foo_ptr tie_obj;

1 obj = new foo_i(marker, l);
2 tie_obj = new TIE_foo(foo_i)(obj, marker, l);
3 obj->m_this = tie_obj; // set the back ptr

return tie_obj;
}

The _create() operation calls the constructor (1). It then creates the TIE
wrapper object (2) and sets a back pointer from the implementation object to its
TIE wrapper (3). If the BOA approach is used instead then steps (2) and (3) are
omitted. By providing this _create() operation, you can ensure that there is a
consistent way for application code to create CORBA objects, irrespective of
whether the TIE or BOA approach is used.

Another matter to be aware of is how modules affect the name of the
implementation class. The C++ genie flattens interface names that appear in
modules.

Consider this short extract of IDL:

// IDL
module finance {

interface account {
...

};
};

The account interface here is implemented by a class finance_account_i. The
interface name has been flattened with the module name.
23

O r b i x Co d e G e n e r a t i o n T oo l k i t P r o g r am me r ’ s G u i d e
-smart: Smart Proxies

Use the -smart option to generate smart proxy classes for all the interfaces in
an IDL file:

idlgen cpp_genie.tcl -smart bank.idl

This generates a smart proxy class header and corresponding skeletal
implementation for each interface that appears in the IDL file.

Again, consider the interface account that appears in the bank.idl file. The
account interface will have a smart proxy class called smart_account. The
smart_ prefix is specified by the entry default.cpp.smart_proxy_prefix in
idlgen.cfg. The smart_account class is also created in a file of the same name
and with a class definition of the following form:

// C++
class smart_account : public virtual account
{
public:

smart_account(
char *OR,
CORBA::Boolean diagnostics);

virtual ~smart_account();

virtual void makeLodgement(
CORBA::Float f,
CORBA::Environment& _env =

CORBA::IT_chooseDefaultEnv())
throw(CORBA::SystemException);

virtual void makeWithdrawal(
CORBA::Float f,
CORBA::Environment& _env =

CORBA::IT_chooseDefaultEnv())
throw(CORBA::SystemException);

virtual CORBA::Float balance(
CORBA::Environment& _env =

CORBA::IT_chooseDefaultEnv())
};
 24

R e ad y - t o - u s e G e n i e s f o r O r b i x C ++
A corresponding smart proxy factory class is also created and appears in the
same file. In the case of the smart_account proxy class, the corresponding
factory class is of the form:

// C++
class smart_accountProxyFactoryClass
 : public virtual accountProxyFactoryClass
{
public:

smart_accountProxyFactoryClass(
CORBA::Boolean factoryDiagnostics,
CORBA::Boolean proxyDiagnostics);

virtual ~smart_accountProxyFactoryClass();

virtual void *New(
char *OR,
CORBA::Environment&);

virtual void *New(
ObjectReferenceImpl *OR,
CORBA::Environment&);

};

The constructor for this smart proxy factory takes two boolean parameters.
The first is used to turn diagnostic messages on and off in the New() operation of
the factory object. The second parameter is used to turn diagnostic messages on
and off in the operations of smart proxy objects. These diagnostic messages can
be useful both as a teaching aid and as a debugging aid.

A single instance of the smart proxy factory class is created at the end of the
generated source file, which in this case is the smart_account.cpp file:

smart_accountProxyFactoryClass
my_smart_accountProxyFactoryClass(1,1);

The parameters passed to the constructor of this smart proxy factory activate
both forms of diagnostics. You can edit these parameters to turn off the
diagnostics if required.
25

O r b i x Co d e G e n e r a t i o n T oo l k i t P r o g r am me r ’ s G u i d e
-loader: Loaders

Use the -loader option to generate a single loader class for all the interfaces in
an IDL file:

idlgen cpp_genie.tcl -loader bank.idl

This generates a single class that can be used as a loader for all the interface
types that exist in the processed IDL file.

The loader class is of the form:

// C++
class loader : public CORBA::LoaderClass
{
public:

loader(CORBA::Boolean printDiagnostics);
virtual ~loader();

virtual CORBA::Object_ptr load(
const char *it_interface,
const char *marker,
CORBA::Boolean isLocalBind,
CORBA::Environment&);

virtual void save(
CORBA::Object_ptr obj,
CORBA::saveReason reason,
CORBA::Environment&);

virtual void record(
CORBA::Object_ptr obj,
char *&marker,
CORBA::Environment&);

virtual CORBA::Boolean rename(
CORBA::Object_ptr obj,
char *&marker,
CORBA::Environment&);

};

Like the smart proxy factory, the constructor for a loader takes a boolean
parameter which is used to turn diagnostic messages on and off.
 26

R e ad y - t o - u s e G e n i e s f o r O r b i x C ++
Note: The creation of the loader is in the generated server.cpp main file and
uses a true value when creating the loader, thereby enabling diagnostic
messages. You can alter this if required.

The load() operation on this loader recreates an object by calling the static
create operation of the appropriate implementation class. The save()
operation on a loader delegates its responsibility by calling the _loaderSave()
operation on the specified object. Each implementation class generated by the
genie is given this operation _loaderSave().

-server: Server Mainline

Use the -server option to generate a simple server mainline:

idlgen cpp_genie.tcl -server bank.idl

This generates a file called server.cpp which is of the form:

// C++
int main(int argc, char **argv)
{

loader *srvLoader;
account_var obj1;
bank_var obj2;

CORBA::Orbix.setDiagnostics(1);

try {
CORBA::Orbix.impl_is_ready("bankSrv", 0);

} catch(CORBA::SystemException &ex) {
cerr << "impl_is_ready() failed" << endl

<< ex << endl;
exit(1);

}

obj1 = account_i::create("account-1");
obj2 = bank_i::create("bank-1");

try {
CORBA::Orbix.processEvents();

} catch(CORBA::SystemException &ex) {
cerr << "processEvents() failed" << endl
27

O r b i x Co d e G e n e r a t i o n T oo l k i t P r o g r am me r ’ s G u i d e
<< ex << endl;
exit(1);

}

return 0;
};

If a loader had been requested by using the -loader option:

idlgen cpp_genie.tcl -server bank.idl

The server code would have included the following lines:

// C++
loader* srvLoader = new loader(1);
obj1 = account_i::create("account-1",srvLoader);
obj2 = bank_i::create("bank-1",srvLoader);

-client: Client Application

Use the -client option to generate a simple client application:

idlgen cpp_genie.tcl -client bank.idl

This generates a source file client.cpp with a simple main(). The client first
binds to all of the objects in the server (one bind per interface that appears in
the IDL file). It then calls every operation and attribute get() and set() method
with random values for parameters.

The client source file is of the form:

// C++
int main(int argc, char **argv)
{

account_var obj1;
bank_var obj2;

parse_cmd_line_args(argc, argv);

CORBA::Orbix.setDiagnostics(1);

try {
obj1 = account::_bind(

"marker-1:bankSrv", host);
obj2 = bank::_bind("

marker-2:bankSrv", host);
 28

R e ad y - t o - u s e G e n i e s f o r O r b i x C ++
} catch(CORBA::SystemException &ex) {
cerr << "_bind() failed" << endl
<< ex << endl;
exit(1);

}

call_account_get_balance(obj1);
call_account_makeLodgement(obj1);
call_account_makeWithdrawal(obj1);
call_bank_newAccount(obj2);
call_bank_deleteAccount(obj2);

return 0;
}

-incomplete: Skeletal Clients and Servers
If the -client option is specified then, by default, the C++ genie generates a file
called call_funcs.cpp which contains functions to invoke all the operations
and attributes of objects in the server. These functions assign random values to
the parameters of operations. They also print out the values of parameters that
they send (and those that are received back as out parameters). Utility functions
to assign random values to IDL type are generated in the file
it_random_funcs.cpp, and utility functions to print the values of IDL type are
generated in the file it_print_funcs.cpp.

Likewise, if the -interface option is specified then, by default, the C++ genie
generates bodies of operations and attributes which print the values of in and
out parameters, and also assign random values for the out parameters.

These bodies of the generated server-side operations and the client-side calling
functions mean that the C++ genie can produce a complete application which
can be compiled and run straight away. This is very useful for quickly producing a
demo or proof-of-concept prototype. However, it also serves another useful
purpose: the generated code provides a working example of how to initialize
parameters (albeit with random values), invoke operations, throw and catch
exceptions, and perform memory management.

If you do not want the C++ genie to generate the bodies of operations,
attributes or the client-side calling functions then you can use the -incomplete
command-line option.
29

O r b i x Co d e G e n e r a t i o n T oo l k i t P r o g r am me r ’ s G u i d e
-makefile: Makefile

Use the -makefile option to obtain a makefile that can build the server and
client applications. The makefile also provides two other targets: clean and
putit.

make clean
make putit

The putit target registers the server in the Implementation Repository and the
clean target removes any files generated during compilation and linking.

A Few Other Options

There are a number of other miscellaneous command line arguments that may
come in useful. These are:

Note: For a full list of the command line options for the Orbix C++ Genie
please refer to the Appendix, under the section “User’s Reference” on
page 251.

Command line
argument

Purpose

-(no)var The default behavior in the generated code is to use
_var types whenever possible. This can be turned off
by using the -novar option. Using the _var types
make memory management easier.

-(no)any By default, the C++ genie does not generate code to
support the use of any or TypeCode for user-defined
types. This support can be turned on by using the -any
command-line option.

Table: 3.2: Miscellaneous Command Line Arguments
 30

R e ad y - t o - u s e G e n i e s f o r O r b i x C ++
Generating Signatures of Individual Operations
with cpp_op.tcl

The C++ genie is useful when starting a new project. However, IDL interfaces
often change during application development. For example, a new operation
might be added to an interface, or the signature of an existing operation might
be changed. Whenever such a change occurs, you have to update existing C++
code with the signatures of the new or modified operations. This is where the
cpp_op.tcl genie is useful. This genie prints the C++ signatures of specified
operations and attributes to a file. The user can then paste these operations
back into the target source files.

Imagine that the operation newAccount() is added to the interface bank. To
generate the new operation run the genie in this way:

idlgen cpp_op.tcl bank.idl "*::newAccount"

idlgen: creating tmp
Generating signatures for bank::newAccount

As this example shows, you can use wildcards to specify the names of operations
or attributes. If you do not explicitly specify any operations or attributes then
the wild card "*" is used by default (which causes the signatures of all operations
and attributes to be generated). By default, this genie writes the generated
operations into the file tmp. You can specify an alternative file name by using the
-o command-line option:

idlgen cppsig.tcl bank.idl -o ops.txt "*::newAccount"

idlgen: creating ops.txt
Generating signatures for bank::newAccount

By default, wild cards are matched only against the names of operations and
attributes in the specified file. If you specify the -include option then the
wildcards are matched against all operations and attributes in the included IDL
files too.
31

O r b i x Co d e G e n e r a t i o n T oo l k i t P r o g r am me r ’ s G u i d e
Creating Print Functions for IDL Types with
cpp_print.tcl

This genie generates utility functions to print IDL data types. It is run as follows:

idlgen cpp_print.tcl foo.idl

idlgen: creating it_print_funcs.h
idlgen: creating it_print_funcs.cpp

The names of the generated files are always it_print_funcs.{h,cpp},
regardless of the name of the input IDL file. The functions in these generated
files all have names of the form IT_print_XXX where XXX is the name of an IDL
type. To illustrate these print functions, consider the following IDL definitions:

// IDL
enum employee_grade {temporary, junior, senior};

struct EmployeeDetails {
string name;
long id;
double salary;
employee_grade grade;

};

typedef sequence<EmployeeDetails> EmployeeDetailsSeq;

When you run cpp_print.tcl on the file containing the above IDL types, utility
print functions are generated for all the user-defined IDL types in that IDL file
(and also for the built-in IDL types). The generated print utility function for the
EmployeeDetailsSeq type has the following signature:

void IT_print_EmployeeDetailsSeq(ostream &out,
 const EmployeeDetailsSeq &seq,
 int indent = 0);

The signatures of print functions for the other IDL types are similar. This
function takes three parameters. The first parameter is the ostream to be used
for printing. The second parameter is the IDL type to be printed. The final
parameter, indent, specifies the indentation level at which the IDL type is to be
printed. This parameter is ignored when printing simple types such as long,
 32

R e ad y - t o - u s e G e n i e s f o r O r b i x C ++
short, string, and so on. It is only used when printing a compound type such as
a struct, in which case the members inside the struct should be indented one
level deeper than the enclosing struct.

An example of using the print functions is shown below:

#include "it_print_funcs.h"

void foo_i::op(const EmployeeDetailsSeq &emp, ...)
{

if (m_do_logging) {
//--------
// Write parameter values to a log file.
//--------
cout << "op() called; ’emp’ = ";
IT_print_EmployeeDetailsSeq(m_log, emp, 1);
cout << endl;

}
... // Rest of operation.

}

The contents of the log file written by the above snippet of code might look like
the following:

op() called; ’emp’ parameter =
 sequence EmployeeDetailsSeq length = 2 {
 [0] =
 struct EmployeeDetails {
 name = "Joe Bloggs"
 id = 42
 salary = 29000
 grade = 'senior'
 } //end of struct EmployeeDetails
 [1] =
 struct EmployeeDetails {
 name = "Joan Doe"
 id = 96
 salary = 21000
 grade = 'junior'
 } //end of struct EmployeeDetails
 } //end of sequence EmployeeDetailsSeq
33

O r b i x Co d e G e n e r a t i o n T oo l k i t P r o g r am me r ’ s G u i d e
Aside from their use as a logging aid, these print functions can also be a very
useful debugging aid. For example, consider a client application that reads
information from a database, stores this information in an IDL struct and then
passes this struct as a parameter to an operation in a remote server. If you
wanted to confirm that the code to populate the fields of the struct from
information in a database was correct then you could use a generated print
function to examine the contents of the struct.

The C++ genie makes use of cpp_print.tcl so that the generated client and
server applications can print diagnostics showing the values of parameters that
are passed to operations.

Creating Random Functions for IDL Types with
cpp_random.tcl

This application generates utility functions to assign random values to IDL data
types. It is run as follows:

idlgen cpp_random.tcl foo.idl

idlgen: creating it_random_funcs.h
idlgen: creating it_random_funcs.cpp

The names of the generated files are always it_random_funcs.{h,cpp},
regardless of the name of the input IDL file. The functions in these generated
files all have names of the form IT_random_XXX where XXX is the name of an IDL
type. The functions generated for small IDL types (long, short, enum, and so
on) return the random value. Thus, you can write code as follows:

CORBA::Long l;
CORBA::Double d;
colour col; // an enum type
CORBA::String_var str;

l = IT_random_long();
d = IT_random_double();
col = IT_random_col();
str = IT_random_string();
 34

R e ad y - t o - u s e G e n i e s f o r O r b i x C ++
However, in the case of compound types (struct, union, sequence, and so
on), it would be inefficient to return the random value (since this would involve
copying a potentially large data-type on the stack). Instead, for these compound
types, the generated function assigns a random value directly to a reference
parameter. For example:

CORBA::Any any;
EmployeeDetails emp; // a struct
EmployeeDetailsSeq seq; // a sequence

IT_random_any(any);
IT_random_EmployeeDetails(emp);
IT_random_EmployeeDetailsSeq(seq);

Aside from the functions to assign random values for various IDL types, the
following are also defined in the generated files:

void IT_random_set_seed(unsigned long new_seed);
unsigned long IT_random_get_seed();
long IT_random_get_rand(unsigned long range = 65536UL);
void IT_random_reset_recursive_limits();

IT_random_set_seed() is used to set the seed for the random number
generator.

IT_random_get_seed() returns the current value of this seed.

IT_random_get_rand() returns a new random number in the specified range.

IDL allows the declaration of recursive types. For example:

struct tree {
long data;
sequence<tree> children;

};

When generating a random tree, the IT_random_tree() function calls itself
recursively. Care must be taken to ensure that the recursion terminates. This is
done by putting a limit on the depth of the recursion.
IT_random_reset_recursive_limits() is used to reset the limit for a
recursive struct, a recursive union and type any (which can recursively contain
other any objects).

The generated random functions can be a very useful prototyping tool. For
example, when developing a client-server application, you often want to
concentrate your efforts initially on developing the server. You can write a client
35

O r b i x Co d e G e n e r a t i o n T oo l k i t P r o g r am me r ’ s G u i d e
quickly that uses random values for parameters when invoking operations on the
server. In doing this, you will have a primitive client that can be used to test the
server. Then when you have made sufficient progress in implementing and
debugging the server, you can concentrate your efforts on implementing the
client application so that it uses non-random values for parameters.

The C++ genie makes use of cpp_random.tcl so that the generated client can
invoke operations (albeit with random parameter values) on objects in the
server.

Creating Equality Functions for IDL Types with
cpp_equal.tcl

The C++ language provides a built-in operator==() for the basic types such as
long and float. C++ also allows you to define operator==() in classes.
However, the OMG mapping from IDL to C++ does not specify that
operator==() is provided in the C++ data-types representing IDL types. Thus,
if EmployeeDetails is an IDL struct then, unfortunately, you cannot write
C++ code such as:

EmployeeDetails emp1;
EmployeeDetails emp2;
... // initialise emp1 and emp2
if (emp1 == emp2) { ... }

Instead, you have to write code which laboriously compares each field inside
emp1 and emp2. The cpp_equal.tcl application addresses this issue by
generating functions to test for equality of IDL data types. It is run as follows:

idlgen cpp_equal.tcl foo.idl

idlgen: creating it_equal_funcs.h
idlgen: creating it_equal_funcs.cpp

The names of the generated files are always it_equal_funcs.{h,cpp},
regardless of the name of the input IDL file. The functions in these generated
files all have names of the form IT_is_eq_XXX where XXX is the name of an IDL
type. You can use these functions as follows:

EmployeeDetails emp1;
EmployeeDetails emp2;
 36

R e ad y - t o - u s e G e n i e s f o r O r b i x C ++
... // initialise emp1 and emp2
if (IT_is_eq_EmployeeDetails(emp1,emp2)) { ... }

These equality testing functions are generated for type any, TypeCode, and every
IDL struct, union, sequence, array, and exception. The function
IT_is_eq_obj_refs()is provided to test the equality of two object references.

Configuration Settings
The configuration settings for the C++ genie are contained in the scope
default.cpp_genie in the idlgen.cfg configuration file.

Some other settings are not, technically speaking, settings specifically for the
C++ genie, but are settings used by the std/cpp_boa_lib.tcl library, which
maps IDL constructs to their C++ equivalents. As the C++ genie uses this
library extensively, its outputs are affected by these settings. They are held in the
scope default.cpp.

For a full listing of these settings please refer to Appendix A on page 251.
37

O r b i x Co d e G e n e r a t i o n T oo l k i t P r o g r am me r ’ s G u i d e
 38

 4
Orbix C++ Client/Server Wizard

The Orbix C++ Client/Server Wizard is a graphical user interface
that allows you to develop and compile an entire C++ application
from an IDL file – both client and server. It is easy to use: you just
point and click.

The Orbix C++ genie described in Chapter “Ready-to-use Genies for Orbix
C++” on page 17 allows you to develop C++ applications from the command-
line. But if you use Microsoft Visual Studio 6.0 in Windows to build your C++
applications, you do not even need to use the command-line.

The Orbix C++ Client/Server Wizard is a Windows tool that you can use
within the Visual Studio environment. It acts as a wrapper for the C++ genie,
and permits you to:

• Choose which IDL files you want to convert to C++.

• Convert them to C++ client or server files with the Orbix C++ genie.

• Build the files into a working application using Visual Studio’s normal build
mechanism.
39

O r b i x Co d e G e n e r a t i o n T oo l k i t P r o g r am me r ’ s G u i d e
Using the Wizard
Using the wizard to build a C++ application from an IDL file is a simple four
stage process:

1. Start the wizard from within Visual Studio.

2. Choose your IDL file.

3. Decide whether to generate client or server code.

4. Build the application with the generated code.

Starting the Wizard

The wizard files are inserted into your Developer Studio directory automatically
during the Orbix C++ installation process. Therefore to start the wizard:

1. Run Visual Studio.

2. Select File→New.

3. Select IONA Orbix C++ Client/Server Wizard in the Projects
window, giving your new project an appropriate name. The IONA
Orbix C++ Wizard – Step 1of 2 window is displayed as shown in
Figure 4.1.

4. Select Browse to choose the IDL file from which you want to generate
C++ code.

5. Select Client or Server, to generate C++ for client or server
application. If you want to generate a set of code for both types of
application, simply run the wizard twice.

6. Select Advanced if you want to set some advanced options.

7. Select Next to continue the process.
 40

O r b i x C+ + C l i e n t / S e r v e r W i z a r d
Figure 4.1: Client/Server Wizard: Browsing for IDL Files
41

O r b i x Co d e G e n e r a t i o n T oo l k i t P r o g r am me r ’ s G u i d e
Advanced Code Generation Options

When you select Advanced from the window shown in Figure 4.1, the
Advanced Code Generation Options window is displayed, as shown in
Figure 4.2:

You can set three options, which are described in Table 4.1:

Figure 4.2: Advanced Code Options Window

Advanced Code Option Effect

Only process IDL interfaces
in specified file

By default, the wizard generates code for
IDL interfaces fo the both the specified file
and all files in #include statements.
Choosing this option forces the IDL
compiler to generate stub or skeleton code
only for the specified IDL file, ignoring any
other IDL files from #include statements.

Table: 4.1: Advanced Code Options
 42

O r b i x C+ + C l i e n t / S e r v e r W i z a r d
Use ’ptr’ types (requires
memory management)

By default, all object references (both
proxies and implementation objects) in your
generated code are managed by the _var
type. The _var type is a smart pointer that
has the ability to manage the memory
associated with the object reference. You
can, however, choose to use the more
primitive _ptr type, which performs no
memory management on the object that it
refers to.

Generate support for ’anys’
and ’TypeCodes’

If your IDL constructs utilize the any
CORBA data type, then you should turn this
switch on to instruct the Orbix IDL
compiler to generate helper types and
methods to allow you to insert and extract
your complex types into and out of an any.

Advanced Code Option Effect

Table: 4.1: Advanced Code Options
43

O r b i x Co d e G e n e r a t i o n T oo l k i t P r o g r am me r ’ s G u i d e
Generating Client Code

When you generate an Orbix C++ client, you are presented with the window
shown in Figure 4.3. You can choose to generate Smart Proxy code for your
client by selecting Generate Smart Proxies.

Smart Proxies are useful enhancements that enable you to override client
requests made through IDL stubs. They can be added to and removed from your
project without any changes required to the usual client code. Smart Proxies are
typically used to implement features like client side caching, reporting or
monitoring.

Figure 4.3: Client Generation Options
 44

O r b i x C+ + C l i e n t / S e r v e r W i z a r d
Once you have chosen whether or not you would like to have Smart Proxies
generated, select the Finish button to complete the generation of your CORBA
client.

Generating Server Code

When you generate an Orbix C++ server, you are presented with the window
shown in Figure 4.4. You have several options to tailor the generated server
code.

Figure 4.4: Server Generation Options
45

O r b i x Co d e G e n e r a t i o n T oo l k i t P r o g r am me r ’ s G u i d e
By default, your implementation objects will use the BOAImpl approach to
associate them with their corresponding interfaces. This approach uses
inheritance to make the association. However you can choose to use the TIE
approach instead - this employs delegation to associate the implementation
objects with the IDL interfaces. The choice is purely one of personal preference
and has no implications for client code.

If you select Uses inheritance of implementation classes, your
implementation objects inherit from each other. For example, if you have an IDL
interface called Account and derived the CheckingAccount interface from it,
then the generated C++ implementation of the interface CheckingAccount
(usually called CheckingAccount_i) inherits its base functionality from the C++
implementation class Account_i.

You can choose to create loaders for your implementation objects by selecting
Generate Loaders. Loaders are very useful for serializing (reading or writing)
your objects to and from files or a database. The loader that is generated simply
delegates the "Loading" and "Saving" process to the actual implementation
objects that need to be serialized.

Once you have tailored your server options, select the Finish button to
complete the generation of your CORBA server.
 46

O r b i x C+ + C l i e n t / S e r v e r W i z a r d
Building Your CORBA C++ Application
Once you have made your decisions about how to build your client or server
code files, you can sit back and watch the Wizard generate your files, as shown
in Figure 4.5:

Figure 4.5: Building a C++ Project with the Wizard
47

O r b i x Co d e G e n e r a t i o n T oo l k i t P r o g r am me r ’ s G u i d e
Once this process is complete, your C++ files are available as a Visual Studio
project, where you can work with them as you choose, or just go ahead and
build a final application by selecting Build→Build.
 48

 5
Ready-to-use Genies for OrbixWeb

The Code Generation Toolkit is packaged with several genies for use
with IONA’s product OrbixWeb which maps CORBA IDL to the Java
language. This chapter explains what these genies are and how to
use them effectively.

Using the Java Genie to Kickstart New Projects
Many people start a new project by copying some code from an existing project
and then editing this code to change the names of variables, signatures of
operations, and so on. This is boring and time-consuming work. The Java genie
(java_genie.tcl) is a powerful utility which eliminates this task. If you have an
IDL file that defines the interfaces for your new project then the Java genie can
generate a demonstration, client-server application that contains all the starting-
point code that you are likely to need for your project. In just a few seconds, the
Java genie can give your project a kickstart, and make you productive
immediately.
49

O r b i x Co d e G e n e r a t i o n T oo l k i t P r o g r am me r ’ s G u i d e
Generating a Complete Client/Server Application

You can use the Java genie to generate a complete client/server application. It
produces a makefile and a complete set of compilable code for both a client
and server for the specified interfaces. For example:

idlgen java_genie.tcl -all -jp "myPackage" finance.idl

finance.idl: myPackage\
idlgen: creating accountImpl.java
idlgen: creating bankImpl.java
idlgen: creating Smartaccount.java
idlgen: creating Smartbank.java
idlgen: creating loader.java
idlgen: creating server.java
idlgen: creating client.java
idlgen: creating accountCaller.java
idlgen: creating bankCaller.java
idlgen: creating PrintFuncs.java
idlgen: creating RandomFuncs.java
idlgen: creating Makefile
idlgen: creating Makefile.inc

The generated client application calls every operation in the server application
and passes random values as parameters to the operations and attribute get/set
methods. The server application then passes random values back in the inout,
out and return values of the operations.

To compile this application, ensure there is an OrbixWeb daemon running and
issue the following commands:

make1

make putit
client server_hostname

The client application invokes every operation, invokes all the attribute’s get and
set methods and displays the whole process to standard output.

This client/server application can be used to accomplish any of the following:

1. If you are running IDLgen on Windows use nmake instead of make, or use the automatically
generated batch file.
 50

R e a d y - t o - u s e G e n i e s f o r O r b i xW e b
• Demonstrating or testing an OrbixWeb client/server application for a
particular interface or interfaces.

• Programmers can examine the generated code to see examples of how to
initialize and pass parameters.

• A starting point for a programmer’s own application.

Generating a Partial Application

The genie can generate a whole client/server application or it can just generate
the parts desired by the programmer. To generate any kind of starting-point
code from an IDL file (or files) you must first choose which kinds of code you
wish to generate.

One area of repetitive coding in OrbixWeb occurs when the programmer
wishes to write the classes that implement the interfaces in the IDL file. To
generate the skeleton implementation class for the account interface in the
finance.idl file, you can run the genie in this way:

idlgen java_genie.tcl -interface -incomplete account finance.idl

finance.idl:
idlgen: creating accountImpl.java

The -interface option tells the genie to generate the classes that implement
IDL interfaces. The -incomplete option means that such generated classes will
be “incomplete”, that is, their operations and attributes will have empty bodies
(rather than generated bodies which illustrate how to initialize parameters).
Specifying the name of an interface (account in the above example) causes the
genie to consider only that interface when generating code.

The above command generates the file accountImpl.java that provides a
skeleton class called accountImpl for implementing the account interface. For
example, assume that the account interface is defined as follows:

// IDL
interface account {

readonly attribute float balance;

void makeLodgement(in float f);
void makeWithdrawal(in float f);

};
51

O r b i x Co d e G e n e r a t i o n T oo l k i t P r o g r am me r ’ s G u i d e
The corresponding extract of generated code is:

// Java
public class accountImpl extends accountImplBase
{
...

public void makeLodgement(
float f,

throw(org.omg.CORBA.SystemException);

public void makeWithdrawal(
float f,

throw(org.omg.CORBA.SystemException);

public org.omg.CORBA.Float balance();
...

};

This saves the developer the time it would normally take to write this class by
hand.

You can either explicitly enable specific code-generation options or you can use
the -all option to turn them all on and then disable whichever options you do
not want. For instance, the previous example could have been typed as:

idlgen java_genie.tcl bank.idl -all -nosmart -noloader -nomakefile
-noclient -noserver -jp "myPackage"

By default, any wildcards specified on the command line are matched only against
IDL interfaces in the specified file but if you specify the -include option then
the wild cards are matched against IDL interfaces in all the included IDL files too.
 52

R e a d y - t o - u s e G e n i e s f o r O r b i xW e b
Command Line Options to Generate Parts of an Application

The Java genie generates a complete application by generating different files, such
as a client mainline (client.java), server mainline (server.java), smart
proxies, classes that implement IDL interfaces, a makefile and so on. The Java
genie provides command-line options to selectively turn the generation of each
type of code on or off. In this way, you can instruct the Java genie to generate as
much or as little of an application as you want. Table 5.1 summarizes the Java
genie command-line arguments:

These command line arguments are detailed in the following sections.

Command line
argument

Purpose

-interface Generates the classes that implement the
interfaces in the IDL.

-smart Generates smart proxy classes.

-loader Generates a single loader class for all the
interfaces in an IDL.

-server Generates a simple server mainline.

-client Generates a simple client application.

-incomplete Generates skeletal clients and servers.

-makefile Generates a makefile that can build the server
and client applications.

-batch Generates a batch file for compiling the Java
code under Windows. Use this option if nmake
is unavailable.

-jp Specifies the package into which the generated
Java code is placed. If you do not specify a
package, the generated code is placed into a
package called noPackage by default.

Table: 5.1: Java Genie Command Line Arguments
53

O r b i x Co d e G e n e r a t i o n T oo l k i t P r o g r am me r ’ s G u i d e
-interface: Classes that Implement Interfaces

You can generate the classes that implement the interfaces in an IDL file by using
the -interface option:

idlgen java_genie.tcl -interface bank.idl -jp "myPackage"

This generates a class and implementation code for each interface that appears in
the IDL file.

Consider the interface account that appears in the bank.idl file. The account
interface is implemented by a class of the same name but suffixed by Impl. The
suffix is specified by the default.java.impl_class_suffix setting in the
idlgen.cfg configuration file. The accountImpl class is also created in a file of
the same name.

There are two mechanisms for implementing an interface: the TIE approach and
the BOAImpl approach. The genie allows you to specify which one is to be used.
The option -boa specifies the BOAImpl approach, for example:

idlgen java_genie.tcl -interface -boa bank.idl -jp "myPackage"

The option -tie specifies the TIE approach, for example:

idlgen java_genie.tcl -interface -tie bank.idl -jp "myPackage"

The default approach is specified by the default.cpp_genie.want_boa entry in
idlgen.cfg.

This operation provides a reference to the CORBA object. For interfaces
implemented using the BOA approach, _this simply returns this. For
interfaces implemented using the TIE approach, _this returns the back pointer
which was initialized in a static _create operation (which is described in the
next paragraph). The _this operation makes it possible for a TIE object to pass
itself as a parameter to an IDL operation.

Note: The -nothis command-line option can be used to suppress the
generation of the _this operation.

Another related matter is how the constructors of a class that implements an
interface are used. In the code generated by the Java genie, constructors are
protected and hence cannot be called directly from application code. Instead,
 54

R e a d y - t o - u s e G e n i e s f o r O r b i xW e b
objects should be created by calling a public static operation called create.
If the TIE approach is used for implementing interfaces, then the algorithm used
in the implementation of this operation is as follows:

// Java
foo _create(String marker, LoaderClass l)
{

fooImpl obj
foo tie_obj;

1 obj = new fooImpl(marker, l);
2 tie_obj = new _tie_foo(obj, marker, ());
3 obj.m_this = tie_obj; // set the back ptr

return tie_obj;
}

The create operation calls the constructor (1). It then creates the TIE wrapper
object (2) and sets a back pointer from the implementation object to its TIE
wrapper (3). If the BOA approach is used instead then steps (2) and (3) are
omitted. By providing this _create operation, you can ensure that there is a
consistent way for application code to create CORBA objects, irrespective of
whether the TIE or BOA approach is used.

Another matter to be aware of is how modules affect the name of the
implementation class. The Java genie chooses to flatten interface names that
appear in modules.

Consider this short extract of IDL:

// IDL
module finance {

interface account {
...

};
};

The account interface here is implemented by a class accountImpl in the
package finance.
55

O r b i x Co d e G e n e r a t i o n T oo l k i t P r o g r am me r ’ s G u i d e
-smart: Smart Proxies

Use the -smart option to generate smart proxy classes for all the interfaces in
an IDL file:

idlgen java_genie.tcl -smart bank.idl

This generates a smart proxy class header and corresponding skeletal
implementation for each interface that appears in the IDL file.

Again, consider the interface account that appears in the bank.idl file. The
smart proxy class for the account interface is called Smartaccount. The Smart
prefix is specified by the default.java.smart_proxy_prefix entry in
idlgen.cfg. The Smartaccount class is also created in a file of the same name
with a class definition of the following form:

// Java
class Smartaccount extends _accountStub
{
public Smartaccount()

{ ... };

public void makeLodgement(
float f)
throws org.omg.CORBA.SystemException;
{ ... };

public void makeWithdrawal(
float f)
throws org.omg.CORBA.SystemException;
{ ... };

public Float balance()
};

A corresponding smart proxy factory class is also created and appears in the
same file. In the case of the Smartaccount proxy class, the corresponding
factory class is of the form:

// Java
class SmartaccountFactory extends ProxyFactory
{
public SmartaccountFactory(

org.omg.CORBA.Boolean factoryDiagnostics,
org.omg.CORBA.Boolean proxyDiagnostics);
 56

R e a d y - t o - u s e G e n i e s f o r O r b i xW e b
public void New(
org.omg.CORBA.portable.Delegate d);

};

A single instance of the smart proxy factory class is created at the end of the
generated source file, which in this case is the Smartaccount.java file.

SmartaccountFactory saf = new SmartaccountFactory(TRUE,TRUE);

-loader: Loaders
Use the -loader option to generate a single loader class for all the interfaces in
an IDL file:

idlgen java_genie.tcl -loader bank.idl

This generates a single class that can be used as a loader for all the interface
types that exist in the processed IDL file.

The loader class is of the form:

// Java
class loader extends IE.Iona.OrbixWeb.CORBA.LoaderClass
{
public loader(org.omg.CORBA.Boolean printDiagnostics);

public org.omg.CORBA.Object load(
String interface,
String marker,
boolean isLocalBind);

public void save(
org.omg.CORBA.Object obj,
org.omg.CORBA.saveReason reason);

public void record(
org.omg.CORBA.Object obj,
String marker);

public org.omg.CORBA.Boolean rename(
org.omg.CORBA.Object obj,
String marker);

};
57

O r b i x Co d e G e n e r a t i o n T oo l k i t P r o g r am me r ’ s G u i d e
Like the smart proxy factory, the constructor for a loader takes a boolean
parameter which is used to turn diagnostic messages on and off.

Note: The creation of the loader is in the generated server.java file and uses
a TRUE value when creating the loader, thereby enabling diagnostic
messages. You can alter this if required.

The load operation uses Java serialization to recreate previously saved objects.
If it cannot find a previously saved object it makes a new instance using _create.
The save method uses Java serialization to write an object to file.

-server: Server Mainline

Use the -server option to generate a simple server mainline:

idlgen java_genie.tcl -server bank.idl

This generates a file called server.java which is of the form:

// Java
int main(String args[])
{

loader srvLoader = null;
account obj1 = null;
bank bj2 = null;

orbRef = org.omg.CORBA.ORB.init(this, null);

try {
OrbRef.impl_is_ready("bankSrv", 0);

} catch(org.omg.CORBA.SystemException ex) {
System.err.println("impl_is_ready() failed");
ex.printStackTrace(System.err);
System.exit(1);

}

obj1 = accountImpl.create("account-1");
obj2 = bankImpl.create("bank-1");

try {
OrbRef.impl_is_ready("bankSrv", 0);

} catch(org.omg.CORBA.SystemException ex) {
 58

R e a d y - t o - u s e G e n i e s f o r O r b i xW e b
System.err.println("impl_is_ready() failed");
ex.printStackTrace(System.err);
System.exit(1);

}

return 0;
};

If a loader had been requested by using the -loader option:

idlgen java_genie.tcl -server bank.idl

The server code would have included the following lines:

// Java
loader srvLoader = new loader(TRUE);
obj1 = accountImpl.create("account-1",srvLoader);
obj2 = bankImpl.create("bank-1",srvLoader);

-client: Client Application

Use the -client option to generate a simple client application:

idlgen java_genie.tcl -client bank.idl

This generates a source file client.java with a simple main() function. The
client first binds to all of the objects in the server (one bind per interface that
appears in the IDL file). It then calls every operation and attribute get and set
method with random values for parameters.

The client source file is of the for

// Java
int main(String args[])
{

account obj1 = null;
bank obj2 = null;

parse_cmd_line_args(args);

OrbRef = org.omg.CORBA.ORB.init(this,null);

try {
obj1 = accountHelper._bind(

"marker-1:bankSrv", host);
obj2 = bankHelper._bind("
59

O r b i x Co d e G e n e r a t i o n T oo l k i t P r o g r am me r ’ s G u i d e
marker-2:bankSrv", host);
} catch(org.omg.CORBA.SystemException ex) {

System.err.println("_bind() failed");
ex.printStackTrace(System.err);
System.exit(1);;

}

accountCaller.get_balance(obj1);
accountCaller.makeLodgement(obj1);
accountCaller.makeWithdrawal(obj1);
accountCaller.newAccount(obj2);
accountCaller.deleteAccount(obj2);

return 0;
}

-incomplete: Skeletal Clients and Servers

If the -client option is specified then, by default, the Java genie generates a file
called call_funcs.java which contains functions to invoke all the operations
and attributes of objects in the server. These functions assign random values to
the parameters of operations. They also print out the values of parameters that
they send (and those that are received back as out parameters). Utility functions
to assign random values to IDL type are generated in the file
RandomFuncs.java, and utility functions to print the values of IDL type are
generated in the file PrintFuncs.java.

Likewise, if the -interface option is specified then, by default, the Java genies
generate bodies of operations and attributes which print the values of in and
out parameters, and also assign random values for the out parameters.

These bodies of the generated server-side operations and the client-side calling
functions mean that the Java genie can produce a complete application which can
be compiled and run straight away. This is very useful for quickly producing a
demo or proof-of-concept prototype. However, it also serves another useful
purpose: the generated code provides a working example of how to initialize
parameters (albeit with random values), invoke operations, throw and catch
exceptions, and perform memory management.

If you do not want the Java genie to generate the bodies of operations, attributes
or the client-side calling functions then you can use the -incomplete command-
line option.
 60

R e a d y - t o - u s e G e n i e s f o r O r b i xW e b
-makefile: Makefile

Use the -makefile option to obtain a makefile that can build the server and
client applications. The makefile also provides two other targets: clean and
putit.

make clean
make putit

The putit target registers the server in the Implementation Repository and the
clean target removes any files generated during compilation and linking.

-batch: Batch File

This option generates a batch file for compiling the Java code under Windows.
Use this option if nmake is unavailable.

A Few Other Options

There are a number of other miscellaneous command line arguments that may
come in useful. These are shown in Table 5.2:

Note: For a full list of the command line options for the Java genie please refer
to the Appendix, under the section “User’s Reference” on page 251.

Command line
argument

Purpose

-(no)any By default, the Java genie does not generate code to
support the use of any or TypeCode for user-defined
types. This support can be turned on by using the -any
command-line option.

-jp This option allows you to specify the package name for
your generated Java classes. The default name used is
noPackage.

Table: 5.2: Miscellaneous Command Line Arguments
61

O r b i x Co d e G e n e r a t i o n T oo l k i t P r o g r am me r ’ s G u i d e
Creating Print Functions for IDL Types with
java_print.tcl

The genie java_print.tcl generates utility functions to print IDL data types. It
is run as follows:

idlgen java_print.tcl foo.idl -jp "myPackage"

idlgen: creating PrintFuncs.java

The name of the generated file is PrintFuncs.java regardless of the name of
the input IDL file. The functions are generated in a Java class called
myPackage.Print<type Name>, and the print method is simply called <Type
Name>. To illustrate these print functions, consider the following IDL definitions:

// IDL
enum EmployeeGrade {temporary, junior, senior};

struct EmployeeDetails {
string name;
long id;
double salary;
EmployeeGrade grade;

};

typedef sequence<EmployeeDetails> EmployeeDetailsSeq;

When you run java_print.tcl on the file containing the above IDL types,
utility print functions are generated for all the user-defined IDL types in that IDL
file (and also for the built-in IDL types). The generated print utility function for
the EmployeeDetailsSeq type is placed in a class
myPackage.PrintEmployeeDetailsSeq. The method itself has the following
signature:

void EmployeeDetailsSeq(PrintStream &ut,
 EmployeeDetailsSeq seq,
 int indent);

This function takes three parameters. The first parameter is the stream to be
used for printing. The second parameter is the IDL type to be printed. The final
parameter, indent, specifies the indentation level at which the IDL type is to be
printed. This parameter is ignored when printing simple types such as long,
 62

R e a d y - t o - u s e G e n i e s f o r O r b i xW e b
short, stringand so on. It is only used when printing a compound type such as
a struct, in which case the members inside the struct should be indented one
level deeper than the enclosing struct.

An example using the print functions is shown below:

void op(EmployeeDetailsSeq emp, ...)
{

if (m_do_logging) {
//--------

// Write parameter values to a log file.
//--------

System.out.println("op() called; ’emp’ = ";
myPackage.PrintEmployeeDetailsSeq.EmployeeDetailsSeq(m_log,

emp, 1);
}
... // rest of operation

}

The contents of the log file written by the above snippet of code might look like
the following:

op() called; ’emp’ parameter =
 sequence EmployeeDetailsSeq length = 2 {
 [0] =
 struct EmployeeDetails {
 name = "Joe Bloggs"
 id = 42
 salary = 29000
 grade = 'senior'
 } //end of struct EmployeeDetails
 [1] =
 struct EmployeeDetails {
 name = "Joan Doe"
 id = 96
 salary = 21000
 grade = 'junior'
 } //end of struct EmployeeDetails
 } //end of sequence EmployeeDetailsSeq

Aside from their use as a logging aid, these print functions can also be a very
useful debugging aid. For example, consider a client application that reads
information from a database, stores this information in an IDL struct and then
passes this struct as a parameter to an operation in a remote server. If you
63

O r b i x Co d e G e n e r a t i o n T oo l k i t P r o g r am me r ’ s G u i d e
wanted to confirm that the code to populate the fields of the struct from
information in a database was correct then you could use a generated print
function to examine the contents of the struct.

The Java genie makes use of java_print.tcl so that the generated client and
server applications can print diagnostics showing the values of parameters that
are passed to operations.

Creating Random Functions for IDL Types with
java_random.tcl

The genie java_random.tcl generates utility functions to assign random values
to IDL data types. It is run as follows:

idlgen java_random.tcl foo.idl -jp "myPackage"

idlgen: creating RandomFuncs.java

The names of the generated file is RandomFuncs.java, regardless of the name of
the input IDL file. The functions are generated in a Java class called
idlgen.RandomFuncs<type Name>, and the print method is simply called
Random<Type Name>. The functions generated for small IDL types (long, short,
enum, and so on) return the random value. Thus, you can write code as follows:

int l;
Double d;
colour col; // an enum type
String str;

l = idlgen.RandomFuncs.Randomlong();
d = idlgen.RandomFuncs.Randomdouble();
col = idlgen.RandomFuncs.Randomcol();
str = idlgen.RandomFuncs.RandomString();

Aside from the functions to assign random values for various IDL types, the
following are also defined in the generated files:

void set_seed(long new_seed);
long get_seed();
long get_rand(long range);
void reset_recursive_limits();
 64

R e a d y - t o - u s e G e n i e s f o r O r b i xW e b
set_seed() is used to set the seed for the random number generator.

get_seed() returns the current value of this seed.

get_rand() returns a new random number in the specified range.

IDL allows the declaration of recursive types. For example:

struct tree {
long data;
sequence<tree> children;

};

When generating a random tree, the randomtree() function calls itself
recursively. Care must be taken to ensure that the recursion terminates. This is
done by putting a limit on the depth of the recursion.
resetrecursive.limits() is used to reset the limit for a recursive struct, a
recursive union and type any (which can recursively contain other any objects).

The generated random functions can be a very useful prototyping tool. For
example, when developing a client-server application, you often want to
concentrate your efforts initially on developing the server. You can write a client
quickly that uses random values for parameters when invoking operations on the
server. In doing this, you will have a primitive client that can be used to test the
server. Then when you have made sufficient progress in implementing and
debugging the server, you can concentrate your efforts on implementing the
client application so that it uses non-random values for parameters.

The Java genie makes use of java_random.tcl so that the generated client can
invoke operations (albeit with random parameter values) on operations in the
server.
65

O r b i x Co d e G e n e r a t i o n T oo l k i t P r o g r am me r ’ s G u i d e
Configuration Settings
The configuration settings for the Java genie are contained in the scopes:

• default.orbix

• default.java_genie

Some other settings are not, technically speaking, settings specifically for the Java
genie, but are settings used by the development libraries. As the Java genie uses
these command libraries extensively, its outputs are affected by these settings.
They are held in the scope:

• default.java

For a full listing of these settings please refer to Appendix A on page 251.
 66

Part 2
Developing Genies with
the Orbix Code

Generation Toolkit

 6
Writing a Genie

Earlier chapters discussed how to run the bundled genies. However,
You can do more with the Orbix Code Generation Toolkit than simply
run the genies. You can modify the bundled genies or write your own
to suit your own needs when developing CORBA systems.

As described earlier in this guide, the IDLgen interpreter is extension of Tcl.
Genies are Tcl scripts that use these extensions in parallel with the basic Tcl
commands and features. These extensions allow programmers to easily parse
IDL files and generate corresponding code of whatever specification they
require.

This chapter uses several examples to illustrate how to write a genie. Some of
the examples produce C++ code: however, the same principles apply for other
output, such as Java.

Prerequisites for Developing Genies
To develop your own genies you must have a good grasp of the following:

• The OMG IDL.

• Writing scripts in the Tcl language1.

1. There are several good guides to the Tcl language available. The first part of Tcl and the Tk Toolkit
by John K. Ousterhout provides an excellent introduction to the language.
69

O r b i x Co d e G e n e r a t i o n T oo l k i t P r o g r am me r ’ s G u i d e
If you wish to write your own genie which generates, for example, C++, then
you should have a good knowledge of C++ and be familiar with the IDL to C++
mapping specification.

Some Simple Examples
As IDLgen is a Tcl interpreter you can give it a Tcl script to interpret and it
processes it in the same way as any other Tcl interpreter2. Tcl script files are fed
into it and IDLgen outputs any results to the screen or to a file.

IDLgen can only interpret Tcl commands stored in a script file. IDLgen does not
have an interactive mode where a user can interactively type commands in.

Hello World

Consider this simple Tcl script:

Tcl
puts "Hello, World"

Running this through IDLgen gives the following result:

idlgen hello.tcl

Hello, World

Hello World with Command Line Arguments

IDLgen adheres to the Tcl conventions for command-line argument support.
This is demonstrated in this script:

Tcl
puts "argv0 is $argv0"
puts "argc is $argc"
foreach item $argv {

puts "Hello, $item"
}

2. While IDLgen is a Tcl interpreter, it does not have any of the common Tcl extensions built in,
such as Tk or Expect. You cannot use IDLgen to execute a Tk or Expect script.
 70

W r i t i n g a G e n i e
Running this through IDLgen gives us the following results:

idlgen arguments.tcl Fred Joe Mary

argv0 is arguments.tcl
argc is 3
Hello, Fred
Hello, Joe
Hello, Mary

Some Extensions Provided by IDLgen
IDLgen adds some new commands to the Tcl language. These new commands
support such tasks as:

• Parsing IDL files.

• Writing text into output files.

• Mapping IDL constructs onto programming language constructs.

This section will introduce you to some of the building blocks that make up
these extensions, in preparation for writing an application that tackles the more
complex areas of IDL parsing and code generation. Appendix B, “Command
Library Reference” provides a reference to these Tcl commands.

Using Commands in Other Libraries

Standard Tcl has a command called source. The source command is very much
like the #include compiler directive used in C++ and allows a Tcl script to use
commands defined (and implemented) in other Tcl scripts. For example, to use
the commands defined in the Tcl script foobar.tcl you can use the
source command as shown (the C++ equivalent is given for comparison):

Tcl
source foobar.tcl

// C++
#include "foobar.h"
71

O r b i x Co d e G e n e r a t i o n T oo l k i t P r o g r am me r ’ s G u i d e
The source command has one limitation compared to its C++ equivalent. It has
no search path for locating files. This has the obvious disadvantage of forcing the
coder to specify full directory paths for other Tcl scripts.

IDLgen provides an enhanced version of the source command that allows a file
to be sourced using a search path3. This command is called smart_source.

Tcl
smart_source "myfunction.tcl"
myfunction "I can use you now"

smart_source provides the following advantages over the simpler source
command:

• It locates the specified Tcl file through a search path. This search path is
specified in the IDLgen configuration file and is the same one used by
IDLgen when it looks for genies.

• It has a built-in preprocessor for bilingual files. Bilingual files are discussed
in the section “Embedding Text in Your Application” on page 74.

• It has a pragma once directive. This prevents repeated sourcing of library
files and aids in overriding Tcl commands. This is covered later on in the
guide, in the section “Re-implementing IDLgen Commands” on page 125.

Writing to a File from Your Genie

Tcl scripts normally use the puts command for writing output. The default
behavior of the puts command is to:

• Print a new line after its string argument.

• Print to standard output.

Both of these defaults can be overridden. For example, if the output is to go to a
file and no new line character is to be placed at the end of the output, you can
use the puts command in the following way:

Tcl
puts -nonewline $some_file_id "Hello, world"

3. The search path is given in the idlgen.genie_search_path item in the idlgen.cfg
configuration file. For more details please refer to “General Configuration Options” on page 251.
 72

W r i t i n g a G e n i e
However, this syntax is a little too verbose to be useful. As genies regularly need
to create output in the form of a text file, IDLgen provides some utility functions
for creating and writing files that provide a more concise syntax for writing text
to a file.

These utility functions are located in the script std/output.tcl, so to use them
you must smart_source them into your application. Here is a example, using
these alternative output commands:

Tcl
smart_source "std/output.tcl"
set class_name "testClass"
set base_name "baseClass"

open_output_file "example.h"
output "class $class_name : public virtual "
output "$base_name\n"
output "{\n"
output " public:\n"

output " ${class_name}() {\n"4

output " cout << \"$class_name CTOR\";\n"
output " }\n"
output "};\n"
close_output_file

When this script is run through IDLgen, it writes a file in the current directory
called example.h:

idlgen codegen.tcl

idlgen: creating example.h

The contents of this file are:

class testClass : public baseClass
{
 public:

testClass() {
cout << "testClass CTOR";

}
};

4. There are brackets placed around the class_name variable so that the Tcl interpreter does not
assume $class_name() is an array.
73

O r b i x Co d e G e n e r a t i o n T oo l k i t P r o g r am me r ’ s G u i d e
The three commands used to create a file are listed in Table 6.1.

Embedding Text in Your Application

Although the output command is concise, the example on page 72 is not easy to
read. The number of output commands tends to obscure the structure and
layout of the code being generated. It is better to place code in the Tcl script in
a way that allows the layout and structure to be retained, while still allowing the
flexibility of embedding Tcl commands and variables.

The Tcl language provides two ways that can be used to quote a large block of
text, such as in our coding example.

The first approach is to quote the text inside braces ("{ }")which allows the text
to be placed over several lines:

Tcl
smart_source "std/output.tcl"
set class_name "testClass"
set base_name "baseClass"

open_output_file "example.h"
output {
class $class_name : public virtual $base_name
{

public:
${class_name}() {

cout << "$class_name CTOR";

Command Result

open_output_file filename Opens the specified file for
writing. If the file does not exist
then it is created. If the file
exists it is over written.

output string Appends the given string to the
file currently open.

close_output_file Closes the currently open file.

Table: 6.1: Creating a File
 74

W r i t i n g a G e n i e
}
};}

Running this script through IDLgen gives us a new example.h:

class $class_name : public virtual $base_name
{

public:
${class_name}() {

cout << "$class_name CTOR";
}

};

This example is easier to read but it does not allow you to substitute variables.

The second approach is to provide a large chunk of text to the output
command by using quotes:

Tcl
smart_source "std/output.tcl"
set class_name "testClass"
set base_name "baseClass"

open_output_file "example.h"
output "
class $class_name : public virtual $base_name
{

public:
${class_name}() {

cout << \"$class_name CTOR\";
}

};"
close_output_file

Running this script through IDLgen results in this example.h:

class testClass : public virtual baseClass
{

public:
testClass() {

cout << "testClass CTOR";
}

};
75

O r b i x Co d e G e n e r a t i o n T oo l k i t P r o g r am me r ’ s G u i d e
This is much better than using braces as the variables are substituted correctly,
but the use of quote marks is hampered because the Tcl programmer must
remember that quote marks in the generated code must be prefixed with an
escape character:

cout << \"$class_name CTOR\";

This can be difficult for the programmer.

The best solution is to have the C++ code in exactly the same form as you
intend it to appear in the generated file and still have the ability to escape back
for variables and nested commands. Luckily, in IDLgen you can do this, with
bilingual files.

What are Bilingual Files?

A bilingual file contains a mixture of two languages; one language is Tcl and the
other is plain text. A preprocessor in IDLgen translates the plain text into
output commands.

This is our example as a bilingual Tcl script.

Tcl
smart_source "std/output.tcl"
open_output_file "example.h"
set class_name "testClass"
set base_name "baseClass"

[***
class @$class_name@ : public virtual @$base_name@
{

public:
@$class_name@() {

cout << "@$class_name@ CTOR";
}

}
***]
close_output_file
 76

W r i t i n g a G e n i e
As you can see from this example, plain text areas in bilingual scripts are marked
by using escape sequences. These escape sequences are shown in Table 6.2:

If you compare this to the same example without the use of a bilingual file, then
it should be obvious that the bilingual version is easier to read.

It is much easier to write genies with bilingual files, particularly if you have a
syntax-highlighting text editor which uses different fonts or colors to distinguish
the embedded text blocks of a bilingual file from the surrounding Tcl commands.
Bold font is used throughout the rest of this guide to help you distinguish text
blocks.

Note: Bilingual files normally have the extension .bi. This is not required, but it
is a convention used by all the genies bundled with the Orbix Code
Generation Toolkit.

Using Bilingual Files

Although bilingual files are a great benefit, there are a few things to watch out
for. For instance, if you want to print the @ symbol inside a textual block use this
technique:

Tcl
set at "@"
[***...
support@$at@iona.com

Escape Sequence Use

[*** To start a block of plain text.

***] To end a block of plain text.

@$variable@ To escape out of a block of plain
text to a variable.

@[nested command]@ To escape out of a block of plain
text to a nested command.

Table: 6.2: Bilingual File Escape Sequences
77

O r b i x Co d e G e n e r a t i o n T oo l k i t P r o g r am me r ’ s G u i d e
...***]

Similarly, if you want to print [*** or ***] in a file then print it in two parts (to
avoid it being treated as an escape sequence).

Comments can also be a problem as the bilingual file preprocessor does not
understand them. You cannot do this:

Tcl
#[***
#some text here
#***]

So instead, use an if statement to disable the plain-text block:

Tcl
if {0} {
[***
some text here
***]
}

A final point to note involves debugging. Debugging a bilingual file can sometimes
be a little awkward. IDLgen reports a line number where the problem exists but
because the bilingual file has been altered by the preprocessor this line number
may not correspond to where the problem actually lies.

This is where the bi2tcl utility can be useful. This utility takes a bilingual file and
replaces the embedded text with output commands, generating a new, but
semantically equivalent script. This can be useful for debugging purposes as it
easier to understand the run-time interpreter error messages if line numbers tie
together.

If you run the bilingual example used earlier through bi2tcl, a new file is
created with output commands rather than the plain text area:

bi2tcl codegen.bi codegen.tcl

The contents of the codegen.tcl file are the equivalent but slightly lengthy:

Tcl
smart_source "std/output.tcl"
open_output_file "example.h"
set class_name "testClass"
set base_name "baseClass"
output "class ";
output $class_name;
 78

W r i t i n g a G e n i e
output " : public virtual ";
output $base_name;
output "\n";
output "\{\n";
output " public:\n";
output " ";
output $class_name;
output "() \{\n";
output " cout << \"";
output $class_name;
output " CTOR\";\n";
output " \}\n";
output "\}\n";
close_output_file

The corresponding.bi and .tcl files are different sizes, so if a problem occurs
inside the plain text section of the script, the interpreter gives a line number
that, in certain cases, does not correspond to with the original bilingual script.
79

O r b i x Co d e G e n e r a t i o n T oo l k i t P r o g r am me r ’ s G u i d e
 80

 7
Processing an IDL File

The IDL parser is a core component of IDLgen. It allows IDL files to
be processed into a parse tree and used by the Tcl application.

This chapter describes how IDLgen parses an IDL file and stores the results as a
tree. This chapter details the structure of the tree and its nodes and
demonstrates how to build a sample IDL search genie idlgrep.tcl.
Appendix C, “IDL Parser Reference” provides a reference to the commands
discussed in this chapter.

IDL Files and IDLgen
The IDL parsing extension provided by IDLgen gives the programmer a rich API
that provides the mechanism to parse and process an IDL file with ease. When
an IDL file is parsed the parsed information is stored in an internal format called
a parse tree. The contents of this parse tree can then be manipulated by an
genie.

Consider this IDL, from finance.idl:

// IDL
interface Account {

readonly attribute long accountNumber;
readonly attribute float balance;
void makeDeposit(in float amount);

};

interface Bank {
81

O r b i x Co d e G e n e r a t i o n T oo l k i t P r o g r am me r ’ s G u i d e
Account newAccount();
};

Processing the contents of this IDL file involves two steps:

1. Processing the IDL file.

2. Traversing the parse tree.

Parsing the IDL File

The built-in IDLgen command idlgen_parse_idl_file provides the
functionality for parsing an IDL file. It takes two parameters, the first is the name
of the IDL file and the second (which is optional) is a list of preprocessor
directives that are passed to the IDL preprocessor.

Here is how you can use this command to process the IDL file finance.idl.

Tcl
if {![idlgen_parse_idl_file "finance.idl"]}{

exit 1
}
...# Continue with the rest of the application

If the IDL file is successfully parsed, the genie then has an internal representation
of the IDL file ready for examination.

Note: During the parsing process, if any warning or error messages are
generated they are printed to standard error. If the parsing fails the
idlgen_parse_idl_file command returns false.
 82

P r o c e s s i n g a n I D L F i l e
Structure of the Parse Tree

Once an IDL file has been processed successfully by the parsing command, the
root of the parse tree is placed into the global array variable $idlgen(root).

The parse tree is a representation of the IDL, with each node in the tree
representing an IDL construct. For instance, parsing the finance IDL file forms a
tree that looks like Figure 7.1.

Figure 7.1: The Finance IDL File’s Parse Tree

A genie can invoke operations on a node to obtain information about the
corresponding IDL construct or to transverse to other parts of the tree that are
related to the node the operation was performed on.

Assume that you have traversed the parse tree (how to do this is explained later
in the chapter), and have located the node representing the balance attribute.
You can find out the information associated with this node by invoking
operations on that node:

Tcl

$idlgen(root)
(finance.idl)

interface
(Bank)

interface
(Account)

attribute
(balance)

operation
(makeDeposit)

argument
(amount)

operation
(newAccount)

attribute
(accountNumber)
83

O r b i x Co d e G e n e r a t i o n T oo l k i t P r o g r am me r ’ s G u i d e
set type_node [$balance_node type]
puts [$type_node l_name]

> float

The operation used here is type, which returns a node that represents the type
of the attribute. This type operation is specific to attribute nodes and l_name
(which obtains the local name) is an operation that is common to all nodes.

Note: It is important to note that the parse tree also has all the contents of all
the IDL files from #include statements as well as the ones from the
parsed file.

You can use the node operation is_in_main_file to find out whether or not
a construct came from the original file:

Tcl
... # Assume interface_node has been initialised
set name [$interface_node l_name]
if {![$interface_node is_in_main_file]} {

puts "$name is in the main file"
} else {

puts "$name is not in the main file"
}

> Account is in the main file

Nodes of the Parse Tree

When creating the parse tree, IDLgen uses a different type of node for each kind
of IDL construct. For example an interface node is created to represent an IDL
interface, an operation node is created to represent an IDL operation and so on.
Each different type of node provides a number of operations. Some of these
operation, like the local name of the node, are common across all the types of
node:

Tcl
puts [$operation_node l_name]

> newAccount
 84

P r o c e s s i n g a n I D L F i l e
Some operations are specific to a particular type of node. For instance, a node
that represents an operation can be asked what the return type of that
operation is:

Tcl
set return_type_node [$operation_node return_type]
puts [$return_type_node l_name]

> Account

All the different types of node are arranged into an inheritance hierarchy as
shown in Figure 7.2:

Types shown in bold define new operations. For example, type field inherits
from type node and defines some new operations, while type char also inherits
from node but does not define any additional operations. There are two abstract
node types that do not represent any IDL constructs, but encapsulate the
common features of certain types of node. These two abstract node types are
called node and scope.

Figure 7.2: Inheritance Hierarchy for Node Types

FKDU
RFWHW
IORDW

GRXEOH
VKRUW

XVKRUW
ORQJ

XORQJ
ERROHDQ
2EMHFW

7\SHFRGH

ILHOG
XQLRQBEUDQFK
DUJXPHQW
DWWULEXWH
FRQVWDQW
W\SHGHI
HQXPBYDO
DUUD\
VHTXHQFH
VWULQJ
LQWHUIDFHBIZG

PRGXOH

VWUXFW
H[FHSWLRQ

HQXP

LQWHUIDFH
RSHUDWLRQ

XQLRQ

QRGH

VFRSH
85

O r b i x Co d e G e n e r a t i o n T oo l k i t P r o g r am me r ’ s G u i d e
The Abstract Node node

Every single type of node inherits the operations of node. These operations can
be used to find out about the common features of any construct.

Note: As Tcl is not an object-oriented programming language, these node
objects and their corresponding operations are described with a pseudo-
code notation.

Here is a pseudo-code definition of the abstract class node1:

class node {
string node_type()
string l_name()
string s_name()
list<string> s_name_list()
string file()
integer line()
boolean is_in_main_file()

}

This abstract node supplies operations that allow you to find out such things as:

• What is the name of the node? l_name().

• Which IDL file does this node appear in? file().

All types of node inherit directly or indirectly from this abstract node. For
instance, the node type that represents an argument of an operation inherits
from node. It supplies some additional operations on top of the ones the
abstract node supplies to allow the programmer to determine the type of the
argument and what the direction modifier is (in, inout or out).

Here is a pseudo code definition of the argument node type:

class argument : node {
node type()
string direction()

}

1. This is a partial definition of the abstract class node. Its complete definition can be found in
Appendix C, “IDL Parser Reference”.
 86

P r o c e s s i n g a n I D L F i l e
Assume that, in a genie, you have obtained a handle to the node that represents
the argument highlighted in this parsed IDL file:

// IDL
interface Account {

readonly attribute long accountNumber;
readonly attribute float balance;

void makeDeposit(in float amount);
};

This handle to the amount argument has been placed in a variable called
argument_node. To obtain information about the argument, the Tcl script
could use any of the operations provided by the abstract node class or by the
argument class:

Tcl
... # Some code to locate argument_node
puts "Node type is ’[$argument_node node_type]’"
puts "Local name is ’[$argument_node l_name]’"
puts "Scoped name is ’[$argument_node s_name]’"
puts "File is ’[$argument_node file]’"
puts "Appears on line ’[$argument_node line]’"
puts "Direction is ’[$argument_node direction]’"

idlgen arguments.tcl
Node type is ’argument’
Local name is ’amount’
Scoped name is ’Account::makeDeposit::amount’
File is ’finance.idl’
Appears on line ’5’
Direction is ’in’

The Abstract Node scope

The other abstract node is the scope node. The scope node represents
constructs that have scoping behavior — constructs that can contain other
constructs nested inside them. The operations provided by the scope node are
the ones that aid in traversing the parse tree.

For instance, a module construct can have interface constructs inside it. A
node that represented a module would therefore inherit from scope rather than
node.
87

O r b i x Co d e G e n e r a t i o n T oo l k i t P r o g r am me r ’ s G u i d e
Note: The scope node inherits from the abstract node node.

Here is a pseudo-code definition of the abstract class scope:

class scope : node {
node lookup(string name)
list<node> contents(

 list<string> constructs_wanted,
 function filter_func=true_func)

list<node> rcontents(
 list<string> constructs_wanted,
 list<string> recurse_into,
 function filter_func=true_func)

}

The interface or module constructs are concrete examples of node types that
inherit the operations of scope. An interface node type inherits from scope
and also extends the functionality of the scope node by providing a number of
additional operations. These additional operations allow the programmer to
determine which interfaces can be inherited. They also permit you to search for
and determine the ancestors of this interface.

The pseudo-code definition of the interface node is:

class interface : scope {
list<node> inherits()
list<node> ancestors()
list<node> acontents()

}

In a number of the previous examples, an operation was performed on a node
but no details were given about how that node was located. To locate this node,
a search operation can be performed on an appropriate scoping node (in this
case the root of the parse tree is used, as this is the primary scoping node that
most searches originate from):

Tcl
if {![idlgen_parse_idl_file "finance.idl"]} {

exit 1
}
set node [$idlgen(root) lookup "Account::balance"]
puts [$node l_name]
puts [$node s_name]
 88

P r o c e s s i n g a n I D L F i l e
idlgen lookup.tcl

balance
Account::balance

The job of the lookup operation is to locate a node by its fully or locally scoped
lexical name.

Locating Nodes with contents and rcontents

There are two more scope defined operations that can be used to locate nodes
in the parse tree. These two operations can be used to search for nodes that are
contained within a scoping node.

For example, to get to a list of the interface nodes from the root of the parse
tree you can use the contents operation:

Tcl
if {![idlgen_parse_idl_file "finance.idl"]} {

exit
}
set want {interface}
set node_list [$idlgen(root) contents $want]
foreach node $node_list {

puts [$node l_name]
}

idlgen contents.tcl

Account
Bank

This operation allows you to specify what type of constructs you wish to search
for, but it only searches for constructs that are directly under the given node (in
this case the root of the parse tree).

There is a recursive version of this operation that allows a deeper search to be
made. It does this by extending the search so that it recurses into other scoping
constructs.

Here is an example of the rcontents operation:

Tcl
if {![idlgen_parse_idl_file "finance.idl"]} {
89

O r b i x Co d e G e n e r a t i o n T oo l k i t P r o g r am me r ’ s G u i d e
exit
}
set want {interface operation}
set recurse_into {interface}

set node_list [$idlgen(root) rcontents $want $recurse_into]
foreach node $node_list {

puts "[$node node_type]: [$node s_name]"
}

idlgen contents.tcl

interface: Account
operation: Account::makeDeposit
interface: Bank
operation: Bank::findAccount
operation: Bank::newAccount

This small section of Tcl code gives the scoped names of all the interface
nodes that appear in the root scope and the scoped names of all the operation
nodes that appear in any interfaces.

The Pseudo Node all

For both contents and rcontents you can use a special pseudo node name to
represent all of the constructs you wish to look for or recurse into. This name is
all and you use it where you want to list the constructs:

Tcl
set everynode_in_tree [rcontents all all]

It is now very easy to write an genie that can visit (almost) every node in the
parse tree2:

Tcl
if {![idlgen_parse_idl_file "finance.idl"]} {

exit
}
set node_list [$idlgen(root) rcontents all all]

2. This example genie will visit most of the nodes in the parse tree. However, it will not visit any
hidden nodes. The section “Visiting Hidden Nodes” on page 94 discusses how to access the hidden
nodes in the parse tree.
 90

P r o c e s s i n g a n I D L F i l e
foreach node $node_list {
puts "[$node node_type]: [$node s_name]"

}

Try running the above script on an IDL file and see how the parse tree is
traversed and what node types exist. Remember to change the argument to the
parsing command to reflect the particular IDL file you wish to traverse.

Nodes Representing Built-in IDL Types

Nodes that represent the built-in IDL types can be accessed with the lookup
operation defined on the scope node type. For example:

Tcl
foreach type_name {string "unsigned long" char} {

set node [$idlgen(root) lookup $type_name]
puts "Visiting the ’[$node s_name]’ node"

}

idlgen basic_types.tcl

Visiting the ’string’ node
Visiting the ’unsigned long’ node
Visiting the ’char’ node

For convenience, IDLgen provides a utility command called
idlgen_list_builtin_types that returns a list of all nodes representing the
built-in types. You can use it as follows:

Tcl
foreach node [idlgen_list_builtin_types] {

puts "Visiting the [$node s_name] node"
}

It is rare for a script to process built-in types explicitly. However, nodes
representing built-in types are accessed during normal traversal of the parse
tree. For example, consider the following operation signature:

// IDL
interface Account {

...
void makeDeposit(in float amount);

};
91

O r b i x Co d e G e n e r a t i o n T oo l k i t P r o g r am me r ’ s G u i d e
If a script traverses the parse tree and encounters the node for the amount
parameter, then accessing the parameter’s type returns the node representing
the built-in type float:

#Tcl
... # Assume param_node has been initialised
set param_type [$param_node type]
puts "Parameter type is [$param_type s_name]"

idlgen param_type.tcl

Parameter type is float

Typedefs and Anonymous Types

Consider the following IDL declarations:

// IDL
typedef sequence<long> longSeq;
typedef long longArray[10][20];

The above segment of IDL apparently defines a sequence called longSeq and an
array called longArray. However, a close reading of the CORBA specification
reveals that all sequences and array types are anonymous. So the above segment
of IDL actually defines a typedef (called longSeq) for an anonymous sequence,
and another typedef (called longArray) for an anonymous array.

Here is a pseudo-code definition of the class typedef:

class typedef : node {
node base_type()

};

The base_type operation returns the node representing the typedef’s
underlying type. In the case of:

// IDL
typedef sequence<long> longSeq;

The base_type operation returns the node representing the anonymous
sequence.

When writing IDLgen scripts, sometimes you may want to strip away all the
layers of typedefs to get access to the raw underlying type. This can sometimes
result in code such as:
 92

P r o c e s s i n g a n I D L F i l e
Tcl
proc process_type {type} {

#--------
If "type" is a typdef node then get access to
the underlying type.
#--------
set base_type $type
while {[$base_type node_type] == "typedef"} {

set base_type [$base_type base_type]
}

#--------
Process it based on its raw type
#--------
switch [$base_type node_type] {
 struct { ... }
 union { ... }
 sequence { ... }
 array { ... }
 default { ... }
}

}

The need to write code to strip away layers of typedefs can arise frequently. To
eliminate this tedious coding task, IDLgen defines an operation called
true_base_type in the base class node. For most node types, this operation
simply returns the node directly. However, for typedef nodes, this operation
strips away all the layers of typedef, and returns the underlying type. Thus, the
above example could be rewritten more concisely as:

Tcl
proc process_type {type} {

set base_type [$type true_base_type]
switch [$base_type node_type] {
 struct { ... }
 union { ... }
 sequence { ... }
 array { ... }
 default { ... }
}

}

93

O r b i x Co d e G e n e r a t i o n T oo l k i t P r o g r am me r ’ s G u i d e
Visiting Hidden Nodes

As mentioned on page 90, using the all pseudo type as a parameter to the
rcontents command is a convenient way to visit most nodes in the parse tree.
For example:

Tcl
foreach node [$idlgen(root) rcontents all all] {

...
}

However, the above code segment does not visit the nodes that represent:

• Built-in IDL types such as long, short, boolean, or string.

• Anonymous sequences or anonymous arrays.

The all pseudo type does not really represent all types. However, it does
represent all types that most scripts want to explicitly process. However, it is
possible to visit these hidden nodes explicitly. For example, the following snippet
of code processes all the nodes in the parse tree, including anonymous
sequences or arrays and the built-in types.

Tcl
set want {all sequence array}
set list [$idlgen(root) rcontents $want all]
set everything [concat $list [idlgen_list_builtin_types]]
foreach node $everything {

...
}

 94

P r o c e s s i n g a n I D L F i l e
Other Node Types

Every construct in IDL maps to a particular type of node that either inherits
from the abstract node node or from the abstract scoping node scope. The
examples given have only covered a small number of the IDL constructs that are
available. The different types of nodes are arranged into an inheritance hierarchy
A full reference guide, which lists all of the node types and available operations,
can be found in Appendix C, “IDL Parser Reference”.

Traversing the Parse Tree with rcontents
This section discusses how to create IDLgrep, a genie that can search an IDL file,
looking for any constructs that matched a specified wild card. This genie is
similar to the UNIX grep utility, but is specifically for IDL files.

Searching an IDL File with IDLgrep

An example use of IDLgrep is to search the finance.idl for any construct that
begins with an ’a’ or an ’A’:

idlgen idlgrep.tcl finance.idl "[A|a]*"

Construct : interface
Local Name : Account
Scoped Name : Account
File : finance.idl
Line Number : 1

Construct : attribute
Local Name : accountNumber
Scoped Name : Account::accountNumber
File : finance.idl
Line Number : 2

Theses results are a little more verbose than a normal grep.
95

O r b i x Co d e G e n e r a t i o n T oo l k i t P r o g r am me r ’ s G u i d e
So what does the search genie actually need to do? It must examine the whole
parse tree and look for constructs that match the wild card criteria. It can
examine all the possible constructs in the IDL file, but let us restrict this genie to
search for the interface, operation, exception, and attribute constructs
only.

This is a first attempt at writing idlgrep:

Tcl
if {![idlgen_parse_idl_file "finance.idl"]} {

exit 1
}
set want {interface operation attribute exception}
set node_list [$idlgen(root) contents $want]
foreach node $node_list {

puts [$node s_name]
}

idlgen idlgrep.tcl

Account
Bank

This is not exactly what the genie should do. Using the contents operation on
the root scope obtains a list of all the interface, operation, and attribute
constructs that are in the root scope of the finance.idl file, and the root
scope only. This set of results is not really what is required as the search goes no
further than the root scope.

Refining the Search

The Tcl code on page 95 can manually move through the parse tree by using
further calls to contents but the rcontents operation is a more concise
solution. The types of constructs the genie is looking for only appear in module
and interface scopes, so the genie only needs to search those scopes.

This information is passed to the rcontents command in this way:

Tcl
if {![idlgen_parse_idl_file "finance.idl"]} {

exit 1
}
set want {interface operation attribute exception}
set recurse_into {module interface}
 96

P r o c e s s i n g a n I D L F i l e
set node_list [$idlgen(root) rcontents $want $recurse_into]
foreach node $node_list {

puts "[$node node_type] [$node s_name]"
}

idlgen idlgrep.tcl

interface Account
attribute Account::accountNumber
attribute Account::balance
operation Account::makeDeposit
interface Bank
operation Bank::findAccount
operation Bank::newAccount

Assume that another requirement for this utility is to allow a user to specify
whether or not the search should, or should not, consider files in the #include
statements. This can be accomplished with some code of the following form:

Tcl
foreach node [$result_node_list] {

if {![same_file_function $node]} {
continue; # not interested in this node

}
.. # Do some processing

}

Completing the Basic Search Tool

You can code this in a neater way by using a further feature of the rcontents
operation (this feature is also provided by contents). By passing an additional
parameter to rcontents command the resulting list of nodes can be filtered in-
line. This parameter is the name of a function which returns either true or
false depending on whether or not the node that was passed to it is to be
added to the search list returned by rcontents.

So to complete the basics of the grep style genie, this additional parameter is
added to the rcontents command as well as providing the wild card and IDL file
as command line parameters:

Tcl
proc same_file_function {node} {

return [$node is_in_main_file]
97

O r b i x Co d e G e n e r a t i o n T oo l k i t P r o g r am me r ’ s G u i d e
}
if {$argc != 2} {

puts "Usage idlgen.tcl <idlfile> <search_exp>"
exit 1

}
set search_for [lindex $argv 1]
if {![idlgen_parse_idl_file [lindex $argv 0]]} {
 exit
}
set want {interface operation attribute exception}
set recurse_into {module interface}
set node_list [$idlgen(root) rcontents $want $recurse_into
same_file_function]

foreach node $node_list {

if [string match $search_for [$node l_name]] {

puts "Construct : [$node node_type]"
puts "Local Name : [$node l_name]"
puts "Scoped Name : [$node s_name]"
puts "File : [$node file]"
puts "Line Number : [$node line]"
puts ""

}
}

Running the finished genie on the finance.idl file gives the following results:

idlgen idlgen.tcl finance.idl "[A¦a]*"

Construct : interface
Local Name : Account
Scoped Name : Finance::Account
File : finance.idl
Line Number : 22

Construct : attribute
Local Name : accountNumber
Scoped Name : Finance::Account::accountNumber
File : finance.idl
Line Number : 23

To further test the genie, you can try it on a larger IDL file:
 98

P r o c e s s i n g a n I D L F i l e
idlgen idlgen.tcl ifr.idl "[A¦a]*"

Construct : attribute
Local Name : absolute_name
Scoped Name : Contained::absolute_name
File : ifr.idl
Line Number : 73

Construct : interface
Local Name : AliasDef
Scoped Name : AliasDef
File : ifr.idl
Line Number : 322

Construct : interface
Local Name : ArrayDef
Scoped Name : ArrayDef
File : ifr.idl
Line Number : 343

Construct : interface
Local Name : AttributeDef
Scoped Name : AttributeDef
File : ifr.idl
Line Number : 366

This example may seem a little contrived, but the principles and techniques it
embodies are often used in other, more practical genies. What it shows is that a
small genie can achieve a lot. The next few chapters extend the ideas shown
here and allow better genies to be developed. For instance, idlgrep.tcl could
be easily improved by allowing the user to specify more than one IDL file on the
command line or allow further search options to be defined in a configuration
file. The commands to allow the programmer to achieve such tasks are discussed
in the next chapter.
99

O r b i x Co d e G e n e r a t i o n T oo l k i t P r o g r am me r ’ s G u i d e
Recursive Descent Traversal
The main method of traversal over the IDL parse tree is to use the scoping
nodes to locate and move to known nodes or known types of node. The
previous examples in this chapter show how a programmer can selectively move
down the parse tree and examine the sections that are relevant to the genie’s
domain. However a more complete traversal of the parse tree can be applicable
to certain genies.

One such blind, but complete, traversal technique is to use the rcontents
command:

Tcl
if {![idlgen_parse_idl_file "finance.idl"]} {

exit
}
set node_list [$idlgen(root) rcontents all all]
foreach node $node_list {

puts "[$node node_type]: [$node s_name]"
}

This search provides a long list of the nodes in the parse tree in the order of
traversal. However, the traversal structure of the parse tree is harder to extract
as this approach does not allow the parse tree to be analyzed on a node by node
basis as the traversal progresses.

Recursive descent is a general technique for processing all (or most) of the
nodes in the parse tree in a way that allows the nodes to be examined as the
traversal progresses. However, before explaining how to use recursive descent
in IDLgen scripts, it is necessary to first explain how polymorphism is used in
Tcl.

Polymorphism in Tcl

Consider this short application:

Tcl
proc eat_vegetables {} {

puts "Eating some veg"
}
proc eat_meat {} {
 100

P r o c e s s i n g a n I D L F i l e
puts "Eating some meat"
}
foreach item { meat vegetables vegetables } {

eat_$item
}

Running this application through IDLgen, provides the following result:

idlgen meatveg.tcl

Eating some meat
Eating some veg
Eating some veg

This demonstrates polymorphism using Tcl string substitution.

Recursive Descent Traversal through Polymorphism

Polymorphism through string substitution makes it easy to write recursive
descent scripts. Imagine an genie that converts an IDL file into another file
format. The target file is to be indented depending on how deep the IDL
constructs are in the parse tree.

// Converted IDL
module aModule
(

interface aInterface
(

void aOperation()
)

)

This kind of genie is perfect for the recursive descent mechanism. Look at the
key procedure that performs the polymorphism in this genie:

Tcl
proc process_scope {scope} {

foreach item [$scope contents all] {
process_[$item node_type] $item

}
}

As each scope node is examined it can be passed to the process_scope
procedure for further traversal. This procedure calls the appropriate node
processing procedure by appending the node type name to the string process_.
101

O r b i x Co d e G e n e r a t i o n T oo l k i t P r o g r am me r ’ s G u i d e
So if a node that represents a module is passed to the process_scope
procedure it calls a procedure called process_module. In our genie this
procedure does this:

Tcl
proc process_module {m} {

output "[indent] module [$m l_name]\n"
output "(\n"

increment_indent_level
process_scope $m;
decrement_indent_level

output "[indent])"
}

If the module contains interfaces, process_scope then calls a procedure called
process_interface for each interface (and so on):

Tcl
proc process_interface {i} {

output "[indent] interface [$i l_name]\n"
output "(\n"

increment_indent_level
process_scope $i;
decrement_indent_level

output "[indent])"
}

This genie can then start the traversal by simply calling the process_scope
procedure on the root of the parsed IDL file:

Tcl
process_scope $idlgen(root)

This example allows every construct in the IDL file to be examined and still
allows the programmer to be in control when it comes to the traversal of the
parse tree.
 102

P r o c e s s i n g a n I D L F i l e
Processing User-defined Types
The command idlgen_list_builtin_types returns a list of all the built-in IDL
types. IDLgen provides a similar command that returns a list of all the user-
defined IDL types:

idlgen_list_user_defined_types exception

This command takes one argument which should be either exception or any
other string (for example, no exception or “”). If the argument is exception
then user-defined exceptions are included in the list of user-defined types that
are returned. If the argument is any string other than exception then user-
defined exceptions are not included in the list of user-defined types that are
returned. An example of the usage of this command is as follows:

foreach type [idlgen_list_user_defined_types "exception"] {
process_[$type node_type] $type

}

Another utility command provided by IDLgen is:

idlgen_list_all_types exception

This command is a simple ‘wrapper’ around calls to
idlgen_list_builtin_types and idlgen_list_user_defined_types.

Recursive Structs and Unions
IDL permits the definition of recursive struct and recursive union types. A
struct or union is said to be recursive if it contains a member whose type is an
anonymous sequence of the enclosing struct or union. The following are
examples of recursive types:

struct tree {
long data;
sequence<tree> children;

};
union widget switch(long) {

case 1: string abc;
case 2: sequence<widget> xyz;

};
103

O r b i x Co d e G e n e r a t i o n T oo l k i t P r o g r am me r ’ s G u i d e
Some genies may have to do special-case processing for recursive types. IDLgen
provides the following utility functions to aid this task:

Function Operation

idlgen_is_recursive_type type Returns:

1: if type is a recursive type.

0: if type is not recursive.

For example, this command returns 1 for
both the tree and widget types.

idlgen_is_recursive_member member Returns:

1: if member (a field of a struct or a branch
of a union) has a recursive type.

0: if member does not have a recursive type.

For example, the children field of the above
tree is a recursive member, but the data
field is not.

idlgen_list_recursive_member_types Traverses the parse tree and returns a list of
all the anonymous sequences which are used
as types of recursive members. For the
above IDL definitions, this command returns
a list containing the anonymous
sequence<tree> and sequence<widget>
types used for the children member of
tree and the xyz member of widget,
respectively.

Table: 7.1: Utility Functions for Special-Case Processing
 104

 8
Configuring your Genies

Genies are as a rule, at their best when they are made flexible
through the use of preferences and user-defined options.

There are two related mechanisms that allow a user of IDLgen and genies to
specify their preferences and options. These two mechanisms are:

• Command-line arguments processing.

• Configuration file parsing.

This chapter discusses these two topics and describes how to make your genies
flexible through configuration. Appendix B, “Command Library Reference”
provides a reference to the commands discussed in this chapter.

Command Line Arguments
Most useful command-line programs take command-line arguments. As IDLgen
is predominately a command-line application, your genies will invariably use
command-line arguments as well. IDLgen supplies functionality to parse
command-line arguments easily.

Enhancing IDLgrep

Although the idlgrep.tcl application (which was described in the section
“Searching an IDL File with IDLgrep” on page 95) used command-line options it
assumed that the IDL file was the first parameter and the wild card was the
105

O r b i x Co d e G e n e r a t i o n T oo l k i t P r o g r am me r ’ s G u i d e
second. Instead of hard coding these settings, it would have been better to use a
more intelligent approach to command-line processing that did not make
assumptions about argument ordering. It would also be useful if this application
allowed multiple IDL files to be specified on the command-line.

Processing the Command Line

Taking these points into consideration, the first thing the IDLgrep genie must do
is find out which IDL files to process. It does this by using the built-in command
idlgen_getarg to search the command-line arguments for IDL files:

Tcl
set idl_file_list {}
set cl_args_format {

{".+\\.[iI][dD][lL]" 0 idl_file }
{"-h" 0 usage }

}
while {$argc > 0} {

Extract one option at a time from the command
line using ’idlgen_getarg’
idlgen_getarg $cl_args_format arg param symbol

switch $symbol {
 idl_file {lappend idl_file_list $arg}

usage {puts "Usage ..."; exit 1}
 default {puts "Unknown argument $arg"

 puts "Usage ..."
 exit 1
}

}
}

}
foreach file $idl_file_list {

puts $file
}

Note: Each time the idlgen_getarg command is run the $argc variable is
decremented and the command-line argument removed from $argv .
 106

C o n f i g u r i n g y ou r G e n i e s
The idlgen_getarg command works by examining the command-line for any
argument that matches the search criteria provided to it. It then extracts all the
information associated with the matched argument and assigns the results to the
given variables.

Here is an example of what the short piece of code with do with some IDL files
passed as command-line parameters:

idlgen idlgrep.tcl bank.idl ifr.IDL daemon.iDl

bank.idl
ifr.IDL
daemon.iDl

If the user wishes to see all of the command-line options available they can use
the -h option for help:

idlgen idlgrep.tcl -h

Usage...

Syntax for the idlgen_getarg Command
The idlgen_getarg command takes four parameters:

idlgen_getarg cl_args_format arg param symbol

The variable passed as the first parameter is a data structure which describes
which command-line arguments are being searched for. The next three
parameters are variable names that are assigned values by the idlgen_getarg
command, as described in Table 8.1.

idlgen_getarg
Arguments

Purpose

arg The text value of the command-line argument
that was matched on this run of the command.

param The parameter (if any) to the command-line
argument that was matched. For example, a
command-line option -search a* would have the
parameter a*.

Table: 8.1: idlgen_getarg Arguments
107

O r b i x Co d e G e n e r a t i o n T oo l k i t P r o g r am me r ’ s G u i d e
Note: There is no need to use smart_source to access the idlgen_getarg
command as it is a built-in command.

Searching for Command Line Arguments

This first parameter to the idlgen_getarg command is a data structure which
describes the syntax of the command-line arguments to search for. In the
example for the IDLgrep application, this first parameter was set to the
following:

Tcl
set cl_args_format {

{".+\\.[iI][dD][lL]" 0 idl_file }
{"-h" 0 usage }

}

This data structure is a list of lists. Each sub-list is used to specify the search
criteria for a type of command-line parameter.

The first element of this sub-list is a regular expression which specifies the
format of the command-line arguments. In the example, the first sub-list is
looking for any command-line argument that ends in .IDL or any case insensitive
equivalent of .IDL.

The second element of the sub-list is a boolean value that specifies whether or
not the command-line argument has a further parameter to it. A value 0
indicates that the command-line argument is self-contained. A value 1 indicates
that the next command-line argument is a parameter to the current one.

symbol The symbol for the command-line argument that
was specified in the format parameter. This can be
used to find out which command-line argument
was actually extracted.

idlgen_getarg
Arguments

Purpose

Table: 8.1: idlgen_getarg Arguments
 108

C o n f i g u r i n g y ou r G e n i e s
The third element of the sub-list is a reference symbol. This symbol is what
idlgen_getarg assigns to its fourth parameter if the regular expression element
matches a command-line argument. Typically, if the regular expression does not
contain any wild cards then the symbol is identical to the first element but if the
regular expression does contain wild cards then the symbol can be used later on
in the application to reference the command-line argument independently of its
physical value.

More Examples of Command Line Processing

Here is an another example of idlgen_getarg looping through some
command-line arguments:

Tcl
set inc_list {}
set idl_list {}
set extension "not specified"
set cmd_line_args_fmt {

{ "-I.+" 0 include }
{ "-ext" 1 ext }
{ ".+\\.[iI][dD][lL]" 0 idlfile }

}

while {$argc > 0} {
idlgen_getarg $cmd_line_args_fmt arg param symbol

switch $symbol {
 include { lappend inc_list $arg }
 ext { set extension $param }
 idlfile { lappend idl_list $arg }
 default { puts "Unknown argument $arg"

puts "Usage ..."
exit 1

}
}

}
foreach include_path $inc_list {

puts "Include path is $include_path"
}
foreach idl_file $idl_list {

puts "IDL file specified is $idl_file"
109

O r b i x Co d e G e n e r a t i o n T oo l k i t P r o g r am me r ’ s G u i d e
}
puts "Extension is $extension"

Running this application with appropriate command-line arguments gives:

idlgen cla.tcl bank.idl car.idl -ext cpp

IDL file specified is bank.idl
IDL file specified is car.idl
Extension is cpp

This is a different set of command-line parameters:

idlgen cla.tcl -I/home/iona -I/orbix/inc

Include path is /home/iona
Include path is /orbix/inc
Extension is not specified

IDLgrep with Command Line Arguments

To finish the IDL grep utility the search criteria must also be taken from the
command-line as well as obtaining the list of IDL files to process:

Tcl
set idl_file_list {}
set search_for "*"
set cl_args_format {

{".+\\.[iI][dD][lL]" 0 idl_file }
{-s 1 reg_exp}

}
while {$argc > 0} {

idlgen_getarg $cl_args_format arg param symbol

switch $symbol {
 idl_file { lappend idl_file_list $arg }

reg_exp { set search_for $param }
 default { puts "usage: ..."; exit }
}

}
foreach file $idl_file_list {

grep_file $file search_for
}

Here is the full listing for the grep_file procedure:
 110

C o n f i g u r i n g y ou r G e n i e s
proc grep_file {file searchfor} {
global idlgen

if {![idlgen_parse_idl_file $file]} {
return

}
set want {interface operation attribute exception}
set recurse_into {module interface}
set node_list [$idlgen(root) rcontents $want $recurse_into]
foreach node $node_list {

if [string match $searchfor [$node l_name]] {
puts "Construct : [$node node_type]"
puts "Local Name : [$node l_name]"
puts "Scoped Name : [$node s_name]"
puts "File : [$node file]"
puts "Line Number : [$node line]"
puts ""

}
}

}

Multiple IDL files can now be specified on the command-line, and the command-
line arguments can be placed in any order:

idlgen idlgrep2.tcl finance.idl -s "a*" ifr.idl

Construct : attribute
Local Name : accountNumber
Scoped Name : Account::accountNumber
File : finance.idl
Line Number : 21

Construct : attribute
Local Name : absolute_name
Scoped Name : Contained::absolute_name
File : ifr.idl
Line Number : 73
111

O r b i x Co d e G e n e r a t i o n T oo l k i t P r o g r am me r ’ s G u i d e
Using std/args.tcl

The std/args.tcl library provides a procedure, parse_cmd_line_args, which
processes the command-line arguments which are common to most genies. In
particular, it processes the following command-line arguments: -I, -D, -v, -s, -
dir, -h and IDL files. The example below illustrates how to use this library:

Tcl
smart_source "std/args.tcl"
parse_cmd_line_args idl_file options
if {![idlgen_parse_idl_file $idl_file $options]} {

exit 1
}
... # rest of genie

Upon success, the parse_cmd_line_args procedure returns the name of the
specified IDL file through the idl_file parameter, and preprocessor options
through the options parameter. However, if parse_cmd_line_args encounters
the -h option or any unrecognized option, or if there is no IDL file specified on
the command-line then it prints out a usage statement and calls exit to
terminate the genie. For example, if the above genie is saved to a file called
foo.tcl then it could be run as follows:

idlgen foo.tcl -h

usage: idlgen foo.tcl [options] file.idl
options are:
 -I<directory> Passed to preprocessor
 -D<name>[=value] Passed to preprocessor
 -h Prints this help message
 -v Verbose mode
 -s Silent mode (opposite of -v option)
 -dir <directory> Put generated files in <directory>

If you are writing a genie that needs only the above command-line arguments
then you can use std/args.tcl “as is” in your genie. If, however, your genie
requires some additional command-line arguments then you can copy std/
args.tcl and modify the copy so that it can process additional command-line
arguments. In this way, std/args.tcl provides a useful starting point for
command-line processing in your genies.
 112

C o n f i g u r i n g y ou r G e n i e s
Using Configuration Files
IDLgen and the bundled genies use information in a configuration to enhance the
range of options and preferences offered to a user. Some such configurable
options are:

• The search path for the smart_source command.

• Whether a user prefers the TIE or BOA approach when implementing an
interface.

• Which file extensions to use when generating C++ or Java files.

IDLgen’s core settings and preferences are stored in a standard configuration file
which, by default, is called idlgen.cfg. This file is also used for storing
preferences for the bundled applications. It is loaded automatically but the built-
in parser can be used to access other application-specific configuration files if the
requirement arises.

Syntax of an IDLgen Configuration File

A configuration file consists of a number of statements that assign a value to a
name. The name, like a Tcl variable, can have its value assigned to either a string
or a list. The syntax of such statements is summarized in Appendix D,
“Configuration File Grammar”.

A comment can appear anywhere and lasts to the end of the line:

This is a comment
x = "1" ;# Comment at the end

Use the = symbol to assign a string value to a name. Use a semi-colon to
terminate the assignment:

local_domain = "iona.com";

Use the + symbol to concatenate strings together. In this example the host
configuration item would have the value amachine.iona.com:

host = "amachine" + "." + local_domain;

Use the = symbol to assign a list to a name and put the items of the item inside
matching [and] symbols:

initial_cache = ["times", "courier"];
113

O r b i x Co d e G e n e r a t i o n T oo l k i t P r o g r am me r ’ s G u i d e
Use the + symbol to concatenate lists together. In this example the all
configuration item contains the list times, courier, arial, dingbats.

all = initial_cache + ["arial", "dingbats"];

Items in a configuration file can be scoped. This can, for instance, allow
configuration items of the same name to be stored in different scopes. In this
example, to access the value of dir, use the scoped named fonts.dir:

fonts {
dir = "/usr/lib/fonts";

};

Reading the Contents of a Configuration File

You can use the command idlgen_parse_config_file to open a
configuration file. The return value of this command is an object that can be used
to examine the contents of the configuration file.

Here is a pseudo-code definition for the operations that can be performed on
the return value of this configuration file parsing command:

class configuration_file {
enum setting_type {string, list, missing}

string filename()
list<string> list_names()
void destroy()
setting_type type(

string cfg_name)
string get_string(

string cfg_name)
void set_string(

string cfg_name,
string cfg_value)

list<string> get_list(
string cfg_name)

void set_list(
string cfg_item,
list<string> cfg_value)

}

 114

C o n f i g u r i n g y ou r G e n i e s
There are operations to list the whole contents of the configuration file
(list_names), query particular settings in the file (get_string, get_list) and
alter values in the configuration file (set_string, set_list).

This example Tcl program uses the parse command and manipulates the results
using some of these operations:

Tcl
if { [catch {

set cfg [idlgen_parse_config_file "shop.cfg"]
 } err] } {

puts stderr $err
exit

}
puts "The settings in ’[$cfg filename]’ are:"
foreach name [$cfg list_names] {

switch [$cfg type $name] {
string {puts "$name:[$cfg get_string $name]"}
list {puts "$name:[$cfg get_list $name]"}

 }
}
$cfg destroy

Note: You should free associated memory by using the destroy operation once
the configuration file has been completed.

Consider the case if the contents of the shop configuration file are as follows:

shop.cfg
clothes = ["jeans", "jumper", "coat"];

sizes {
waist = "32";
inside_leg = "32";

};

Running this application through IDLgen gives the following results:

idlgen shopcfg.tcl

The settings in ’shop.cfg’ are:
sizes.waist:32
sizes.inside_leg:32
115

O r b i x Co d e G e n e r a t i o n T oo l k i t P r o g r am me r ’ s G u i d e
clothes:jeans jumper coat

Note: For more detail about the commands and operations discussed in this
section please refer to the Appendix section “Configuration File API” on
page 262.

The Standard Configuration File

When IDLgen starts, it reads a configuration file specified by the
IDLGEN_CONFIG_FILE environment variable. The details of the configuration file
are then stored in a global variable called $idlgen(cfg). This variable can then
be accessed at any time by your own genies.

Note: There is no restriction on the name of the standard configuration file but
it is recommended that you follow the convention of naming it
idlgen.cfg.

IDLgrep with Configuration Files

Consider a new requirement to enhance IDLgrep once more to allow the user
to specify which IDL constructs they wish the search to include. The user may
also wish to specify which constructs to search into recursively. It would be time
consuming for the user to specify these details on the command-line, so it is
better to have these settings stored in the standard configuration file.

Assume that the standard configuration file has the following scoped entries in it:

idlgen.cfg
idlgrep {
 constructs = ["interface", "operation"];
 recurse_into = ["module", "interface"];
};

The following code from the grep_file1 procedure must be replaced:

Tcl

1. The full listing of this procedure can be found on page 111.
 116

C o n f i g u r i n g y ou r G e n i e s
set want {interface operation attribute exception}
set recurse_into {module interface}

The following code must be inserted as the replacement:

Tcl
set want [$idlgen(cfg) get_list "idlgrep.constructs"]
set recurse_into [$idlgen(cfg) get_list "idlgrep.recurse_into"]

Running IDLgen with the new variation of IDLgrep gives us this more precise
search:

idlgen idlgrep3.tcl finance.idl -s "A*"

Construct : interface
Local Name : Account
Scoped Name : Account
File : finance.idl
Line Number : 20

This is a good first step and gives the user a much more flexible application that
can be tailored to meet their further needs. A small shortcoming of this
application is that it assumes there is an entry in the in the configuration file. This
is a bad assumption and so the code needs to be improved. This will ensure a
more robust solution.

Here is the improved version that employs some more of the configuration file
operations:

Tcl
proc get_cfg_entry {cfg name default} {

set type [$cfg type $name]
switch $type {

missing {return $default}
default {return [$cfg get_$type $name]}

}
}
...
set want [get_cfg_entry $idlgen(cfg) "idlgrep.constructs" \

{interface operation}]
set recurse_into [get_cfg_entry $idlgen(cfg) \

"idlgen.recurse_into" {module interface}]
117

O r b i x Co d e G e n e r a t i o n T oo l k i t P r o g r am me r ’ s G u i d e
The operation type allows a programmer to determine whether the
configuration item exists or not and if it does exist, whether it is a list entry or
just a string entry. The improved code checks which is the case and provides a
default value if the configuration entry is missing.

Default Values
There is another way you can provide a default value; the get_string and
get_list operations can take an optional second parameter which is used as a
default if the entry is not found. An equivalent of the above code (ignoring the
possibility that the entry could be a string entry) is:

Tcl
set want [$idlgen(cfg) get_list "idlgrep.constructs" \

{interface module}]
set recurse_into [$idlgen(cfg) get_list "idlgen.recurse_into" \

module interface}]
 118

 9
Further Development Issues

This chapter details further development facets of IDLgen that will
help you write genies with more speed and efficiency.

This chapter described the following topics in detail:

• Global variable arrays used in IDLgen.

• Re-implementing IDLgen commands.

• A recommended programming style for genies.

Global Arrays
Commonly accessed information must be readily available and quick to access,
or else even coding simple things can become difficult. IDLgen employs a
number of global array variables to store such common information with the
added benefit that this approach aids in the reduction of name space pollution.

Some of these global variables have already been touched upon in previous
chapters. For example,$idlgen(root) was mentioned in “Structure of the Parse
Tree” on page 83 and is used to hold the results of parsing an IDL file.

Note: When using array variables make sure you do not place spaces inside the
parentheses, otherwise Tcl will treat it as a different array index than the
one you intended. For example, $variable(index) is not the same as
$variable(index).
119

O r b i x Co d e G e n e r a t i o n T oo l k i t P r o g r am me r ’ s G u i d e
The $idlgen Array

This array contains entries that are related to the core IDLgen executable.

$idlgen(root)
This variable holds the root of an IDL file parsed with the built in parser. For
example:

Tcl
if {![idlgen_parse_idl_file "finance.idl"]} {

exit
}
set node [$idlgen(root) lookup Account]

For more information refer to the Chapter “Processing an IDL File” on page 81.

$idlgen(cfg)
This variable represents all the configuration settings from IDLgen’s standard
configuration file idlgen.cfg:

Tcl
set version [$idlgen(cfg) get_string orbix.version_number]

For more information please refer to the section “Using Configuration Files” on
page 113.

$idlgen(exe_and_script_name)
This variable contains the name of the IDLgen executable together with the
name of the Tcl script being run. This variable is convenient for printing usage
statements:

Tcl
puts "Usage: $idlgen(exe_and_script_name) -f <file>"

idlgen globalvars.tcl

Usage: idlgen globalvars.tcl -f <file>
 120

F u r t h e r D e v e l o p men t I s s u e s
The $pref Array

It is best to avoid embedding coding preferences in a script which will be re-used
many times by different users. Genies usually consist of numerous procedures,
so you should keep individual procedures flexible. Passing numerous parameters
to each procedure is impractical so it is better to have a global repository of
coding preferences which can be examined by procedures.

IDLgen provides a number of mechanisms to support genie preference:

• Command line arguments.

• Configuration files.

Configuration files can be, in coding terms, time consuming to access. The
preference array caches the more common preferences found in a configuration
file. Users can specify values in the default scope of the standard configuration
file and they are placed in the $pref array during initialization of IDLgen. This
allows quick access to the main options without the overhead of using the
configuration file commands and operations. Command line arguments can then
override any of these more static preferences specified in configuration files.

This is an example configuration file with some entries in the default scope:

default {
trousers {

waist = "32";
inside_leg = "32";

};
jacket {

chest = "42";
colour = "pink";

};
};

The corresponding entries in the preference array are as follows:

$pref(trousers,waist)
$pref(trousers,inside_leg)
$pref(jacket,chest)
$pref(trousers,colour)
121

O r b i x Co d e G e n e r a t i o n T oo l k i t P r o g r am me r ’ s G u i d e
IDLgen automatically creates preference array values for all the default scoped
entries in the standard configuration file using this command:

Tcl
idlgen_set_preferences $idlgen(cfg)

Note: This command assumes that all names in configuration file containing is_
or want_ have boolean values. If such an entry has a value other than 0
or 1, or TRUE or FALSE, then an exception is thrown.

This command takes the default scoped entries from the specified
configuration file and copies them into the preference array. This command can
also be run on configuration files that have been processed explicitly by a
programmer:

Tcl
if { [catch {

set cf [idlgen_parse_config_file "shop.cfg"]
idlgen_set_preferences $cf
} err]

} else {
puts stderr $err
exit

}
}
parray pref

Running this script on the described configuration file results in the following
output:

idlgen prefs.tcl

pref(trousers,waist) = 32
pref(trousers,inside_leg) = 32
pref(jacket,chest) = 42
pref(trousers,colour) = pink
 122

F u r t h e r D e v e l o p men t I s s u e s
It is good practice to ensure that the defaults in a configuration file take
precedence over default values in a genie. This behavior can be accomplished by
using the Tcl info exists command to ensure that a preference is set only if it
does not exist in the configuration file.

if { ![info exists pref(trousers,waist)] } {
set pref(trousers,waist) "30"

}

You should extend the default scope of the configuration file when your genie
requires an additional preference entry or new category. You can complement
the extended scope by using the described commands to place quick access
preferences in the preferences array.

The procedures in the std/output.tcl library examine the entries described in
Table 9.1:

$pref(…) Array Entry Purpose

$pref(all,output_dir) A file generated with the
open_output_file command file is placed
in the directory specified by this entry. If
this entry has the value "." or "" (an
empty string) then the file is generated in
the current working directory. The default
value of this entry is an empty string.

$pref(all,want_diagnostics) If this has the value 1 then diagnostic
messages such as idlgen: creating
foo_i.h are written to standard output
whenever a genie generates an output file.

If this entry has the value 0 then no such
diagnostic messages are written. The -v
(verbose) command-line option sets this
entry to 1 and the -s (silent) command-line
option sets this entry to 0.

The default value of this entry is 1.

Table: 9.1: $pref(…) Array Entries
123

O r b i x Co d e G e n e r a t i o n T oo l k i t P r o g r am me r ’ s G u i d e
The $cache Array

If a procedure is called frequently, caching its result can speed up a genie.
Caching the results of frequently called procedures can speed up genies by up to
twenty per cent. Many of the commands supplied with IDLgen perform caching.
This mechanism is useful for speeding up your own genies.

Consider this simple procedure that takes three parameters and returns a
result:

Tcl
proc foobar {a b c} {

set result ...; # set to the normal body
of the procedure here

return $result
}

To cache the results in the cache array the procedure can be altered as below:

Tcl
proc foobar {a b c} {

global cache
if { [info exists cache(foobar,$a,$b,$c)]} {

return $cache(foobar,$a,$b,$c)
}
set result ...; # set to the normal body

of the procedurehere
set cache(foobar,$a,$b,$c) $result
return $result

}

You should only cache the results of idempotent procedures: that is, procedures
that always return the same result when invoked with the same parameters. For
example, a random-number generator function is not idempotent and hence its
result should not be cached.

Note: A side-effect of the idlgen_parse_idl_file command is that it
destroys $cache(...). This is to prevent a genie from having stale cache
information if it processes several IDL files.
 124

F u r t h e r D e v e l o p men t I s s u e s
Re-implementing IDLgen Commands
Consider a genie which uses a particular Tcl procedure extensively, but you
must now alter the its behavior. The genie uses this procedure a number of
times:

Tcl
proc say_hello {message} {

puts $message
}

There are a number of different ways you could alter the behavior of this
procedure:

• Re-code the procedure’s body.

• Replace all instances where the genie calls this procedure with calls to a
new procedure.

• Use a feature of the Tcl language that allows you to re-implement
procedures without affecting the original procedure.

The third option allows the genie to use the new implementation of the
procedure while still allowing the process to be reversed if required. The new
implementation of the procedure can be slotted in and out when required
without having to alter the calling code.

This is the new implementation of the say_hello procedure:

Tcl
proc say_hello {message} {

puts "Hello ’$message’"
}

If an genie used say_hello from the original script it can use the original
procedure’s functionality:

Tcl
smart_source "original.tcl"
say_hello Tony

idlgen application.tcl

Tony
125

O r b i x Co d e G e n e r a t i o n T oo l k i t P r o g r am me r ’ s G u i d e
However, to override the procedure the programmer only needs to
smart_source the new procedure instead:

Tcl
smart_source override.tcl
say_hello Tony

idlgen application.tcl

Hello ’Tony’

More Smart Source

When commands are re-implemented there is still a danger that a script might
smart_source the replaced command back in. This would cause the original
(and unwanted) version of command to be re-instated.

Tcl
smart_source "override.tcl"
smart_source "original.tcl" ;# Oops
say_hello Tony

idlgen application.tcl

Tony

Smart source provides a mechanism to prevent this. This mechanism is
accomplished is by using the pragma once directive to nullify repeated attempts
to smart_source a file.

For example, the following implementation prohibits the use of smart_source

multiple times on the original procedure. Here is the original implementation
with the new pragma directive added:

Tcl
smart_source pragma once
proc say_hello {message} {

puts $message
}

Here is the new implementation, but note that it uses smart_source on the
original file as well. This is to ensure that if anyone uses the new implementation
the old implementation is guaranteed not to override the new implementation
later on.
 126

F u r t h e r D e v e l o p men t I s s u e s
Tcl
smart_source "original.tcl"
smart_source pragma once

proc say_hello {message} {
puts "Hello ’$message’"

}

Now when the genie accidentally uses smart_source on the original procedure,
the new procedure is not overridden by the original.

Tcl
smart_source "override.tcl"
smart_source "original.tcl" ;# Will not override
say_hello Tony

idlgen application.tcl

Hello ’Tony’

More Output

IDLgen provides an alterative set of commands for the ones found in the script
std/output.tcl . This alternative set of commands is found in std/

sbs_output.tcl . The sbs prefix stands for Smart But Slower output. The Tcl
commands that are available in this alternative script have the same API as the
ones available in std/output.tcl but they have a different implementation.

The main advantage of using this alternative library of commands is that it can
dramatically cut down on the re-compilation time of a project that contains
auto-generated files. A change to an IDL file might affect only a few of the
generated files but if all the files are written out, the makefile of the project can
attempt to rebuild portions of the project unnecessarily.

The std/sbs_output.tcl commands only rewrite a file if the file has changed.
These overridden command are slower because they write a temporary file and
run a diff with the target file. This is typically10% slower than the equivalent
commands in std/output.tcl .
127

O r b i x Co d e G e n e r a t i o n T oo l k i t P r o g r am me r ’ s G u i d e
Miscellaneous Utility Commands
The following sections discuss miscellaneous utility commands provided by
IDLgen.

idlgen_read_support_file

Scripts often generate lots of repetitive code, and also copy some pre-written
code to the output file. For example, consider a script which generates utility
functions for converting IDL types into corresponding Widget types. Such a
script might be useful if you want to build a CORBA-to-Widget gateway, or are
adding a CORBA wrapper to an existing Widget-based application. Such a script
usually:

• Contains procedures that generate data-type conversion functions for
user-defined type such as structs, unions, sequences, and so on.

• Copies (to the output files) pre-written functions that perform data-type
conversion for built-in IDL types such as short, long, string, and so
on.

You can ensure that pre-written code is copied to an output file by taking
advantage of IDLgen’s bilingual capability: simply embed all the pre-written code
inside a text block as shown below:

proc foo_copy_pre_written_code {} {
[***

... put all the pre-written code here ...
***]
}

This approach works well if there is only a small amount of pre-written code, say
fifty lines. However, if there are several hundred lines of pre-written code then
this approach becomes unwieldy because the script can contain more lines of
embedded text than lines of Tcl code, which leads to an excessive amount of
scrolling in program editors when developing genies.

The idlgen_read_support_file command is provided to tackle this scalability
issue. It is used as follows:

proc foo_copy_pre_written_code {} {
output [idlgen_read_support_file "foo/pre_written.txt"]

}

 128

F u r t h e r D e v e l o p men t I s s u e s
The idlgen_read_support_file command searches for the specified file
relative to the directories in the script_search_path entry in the idlgen.cfg
configuration file (which makes it possible for you to keep pre-written code files
in the same directory as your genies). If idlgen_read_support_file cannot
find the file then it throws an exception. If it can find the file it reads the file and
returns its entire contents as a string. This string can then be used as a
parameter to the output command.

As shown in the above example, idlgen_read_support_file can be used to
copy chunks of pre-written text into an output file. However, you can also use it
to copy entire files, as the following example illustrates:

proc foo_copy_all_files {} {
foo_copy_file "pre_written_code.h"
foo_copy_file "pre_written_code.cc"
foo_copy_file "Makefile"

}

proc foo_copy_file {file_name} {
open_output_file $file_name
output [idlgen_read_support_file "foo/$file_name"]
close_output_file

}

Some programming projects can be divided into two parts:

• An genie that generates lots of repetitive code.

• Five or ten handwritten files containing non-repetitious code that cannot
be generated easily.

By using the idlgen_read_support_file command as shown in the above
example, it is possible to shrink-wrap such a project into an genie that both
generates the repetitious code and copies the hand-written files (including a
Makefile). Shrink-wrapped scripts are a very convenient format for distribution.
For example, suppose that different departments in your organization have
genies implemented using the Widget toolkit/database. If you have written an
genie that enables you to put a CORBA wrapper around an arbitrary Widget-
based genie then you can shrink-wrap this genie (and its associated pre-written
files) and distribute it to the different departments in your organization so that
they can easily use it to wrap their genies.
129

O r b i x Co d e G e n e r a t i o n T oo l k i t P r o g r am me r ’ s G u i d e
idlgen_support_file_full_name

This command is used as follows:

idlgen_support_file_full_name local_name

This command is related to idlgen_read_support_file, but instead of
returning the contents of the file, it just locates the file and returns its full
pathname. This command can be useful if you want to use the file name as a
parameter to a shell command executed with the exec command.

idlgen_gen_comment_block

Many organizations require that all source-code files contain a standard
comment, such as a copyright notice or disclaimer. If your organization has such
a policy then every genie you write must contain code to copy this copyright
notice into every generated file. You could use IDLgen’s bilingual capability to
embed the copyright notice inside a text block in all your genies. However, this
has several drawbacks. Firstly, copying this copyright notice into all your genies is
a boring, repetitive task. Secondly, if your organizations legal department
requests that the copyright notice be updated then you will have to manually
edit all your genies in order to update the text.

A better approach is to store the copyright notice in a well-known place, such as
a configuration file, and have your genies invoke a utility function which formats
the text as a comment and then writes it to the generated file. The
idlgen_gen_comment_block command is provided for this purpose. Let us
suppose that the default.all.copyright entry in the idlgen.cfg
configuration file is a list of strings containing the following text:

Copyright ACME Corporation 1998.
All rights reserved.

When IDLgen is started, the above configuration entry is automatically copied into
$pref(all,copyright). If a script contains the following commands:

set text $pref(all,copyright)
idlgen_gen_comment_block $text "//" "-"

then the following is written to the output file:

// ---
// Copyright ACME Corporation 1998.
// All rights reserved.
 130

F u r t h e r D e v e l o p men t I s s u e s
// ---

The idlgen_gen_comment_block command takes three parameters:

• The first parameter is a list of strings that denotes the text of the
comment to be written.

• The second parameter is the string used to start a one-line comment, for
example, // in C++ and Java, # in Makefiles and shell-scripts, and -- in
Ada.

• The third parameter is the character that is to used for the horizontal
lines that form a box around the comment.

Idlgen_process_list

Genies frequently process lists. If each item in a list is to be processed identically
then this can be achieved with a Tcl foreach loop:

foreach item $list {
process_item $item

}

However, some lists require slightly more complex logic. The classic case is a list
of parameters separated by commas. In this case, the foreach loop can be
written in the form:

set arg_list [$op contents {argument}]
set len [llength $arg_list]
set i 1
foreach arg $arg_list {

process_item $arg
if {$i < $len} { output "," }
incr i

}

This example shows that the requirement to generate a separator (for example,
a comma) between each item of a list requires substantially more code.
Furthermore, if empty lists require special-case logic then additional code is
required to handle them.

IDLgen provides the idlgen_process_list command to ease the burden of list
processing. This command takes six parameters:

idlgen_process_list list func start_str sep_str end_str empty_str
131

O r b i x Co d e G e n e r a t i o n T oo l k i t P r o g r am me r ’ s G u i d e
The idlgen_process_list command returns a string that is constructed as
follows:

If the list is empty then empty_str is returned. Otherwise:

1. idlgen_process_list initializes its result with start_str.

2. It then calls func repeatedly (each time passing it an item from list as a
parameter).

3. The strings returned from these calls are appended onto the result, along
with sep_str if the item being processed is not the last one in the list.

4. When all the items in list have been processed, end_str is appended
onto the result, which is then returned.

The start_str, sep_str, end_str and empty_str parameters have a default
value of "". Thus, you need specify explicitly only the parameters that you need.
The following code snippet illustrates how idlgen_process_list can be used:

proc l_name {node} {
return [$node l_name]

}
proc gen_call_op {op} {

set arg_list [$op contents {argument}]
set call_args [idlgen_process_list $arg_list \
 l_name "\n\t\t\t" ",\n\t\t\t"]

[***
try {

obj->@[$op l_name]@(@$call_args@);
} catch (...) { ... }

***]
}

If the above gen_call_op procedure is invoked on two operations, one that
takes three parameters and another that does not take any parameters, then the
output generated might be something like:

try {
obj->op1(

stock_id,
quantity,
unit_price);

} catch (...) { .. }
try {

obj->op2();
} catch (...) { ... }
 132

F u r t h e r D e v e l o p men t I s s u e s
idlgen_pad_str

The idlgen_pad_str command takes two parameters:

idlgen_pad_str string pad_len

This command calculates the length of the string parameter. If it is less than
pad_len then it adds spaces onto the end of string to make it pad_len
characters long. The padded string is then returned. This command can be used
to obtain vertical alignment of parameter/variable declarations. For example,
consider the following example:

foreach arg $op {
set type [[$arg type] s_name]
set name [$arg l_name]
puts "[idlgen_pad_str $type 12] $name;"

}

For a given operation, the output of the above code might be as follows:

long wages;
string names;
Finance::Account acc;
Widget foo;

As can be seen, the names of most of the parameters are vertically aligned.
However, the type name of the acc parameter is longer than 12 (the pad_len)
so acc is not properly aligned. Using a relatively large value for pad_len, such as
32, minimizes the likelihood of misalignment occurring. However, IDL does not
impose any limit on the length of identifiers, so it is impossible to pick a value of
pad_len large enough to guarantee alignment in all cases. For this reason, it is a
good idea for scripts to determine pad_len from, say, an entry in a
configuration file. In this way, users can modify it easily to suit their needs. Some
commands in the cpp_boa_lib.tcl library use
$pref(cpp,max_padding_for_types) for alignment of parameter and variable
declarations.
133

O r b i x Co d e G e n e r a t i o n T oo l k i t P r o g r am me r ’ s G u i d e
Recommended Programming Style
The bundled genies share a common programming style. In the following
sections, we highlight some aspects of this programming style and explain how
adopting the same style will help you when developing your own genies.

Organizing Your Files

The following code illustrates several recommendations for organizing the files in
your genies:

#--------
File: foo.tcl
#--------
smart_source "foo/args.tcl"
process_cmd_line_args idl_file preproc_opts

set ok [idlgen_parse_idl_file $idl_file $preproc_opts]
if {!$ok} { exit }

if {$pref(foo,want_client)} {
smart_source "foo/gen_client_cc.bi"
gen_client_cc

}

if {$pref(foo,want_server)} {
smart_source "foo/gen_server_cc.bi"
gen_server_cc

}

if {$pref(foo,want_impl_class)} {
smart_source "foo/gen_impl_class_h.bi"
smart_source "foo/gen_impl_class_cc.bi"
set want {interface)
set rec_into {module}
foreach i [$idlgen(root) rcontents $want $rec_into] {

gen_impl_class_h $i
gen_impl_class_cc $i

)
}

The above example demonstrates the following points:
 134

F u r t h e r D e v e l o p men t I s s u e s
• Do not define all the genie’s logic in a single file. Instead, write a small
mainline script that uses smart_source to access procedures in other
files. This helps to keep the genie code modular.

• If the mainline script of your genie is called foo.tcl then any associated
files should be in a sub-directory called foo. This helps to prevent
(file)name-space pollution. It also ensures that running the command
idlgen -list lists the foo.tcl genie but does not list any of the
associated files that are used to help implement foo.tcl.

• Procedures to process command-line arguments should be put into a file
called args.tcl (in the genie’s sub-directory). The results of processing
command-line arguments should be passed back to the caller either with
Tcl upvar parameters or with the $pref array (or a combination of
both). If you use the $pref array then use the name of the genie as a
prefix for entries in $pref. For example, the args.tcl procedures in the
cpp_genie.tcl genie uses the entry $pref(cpp_genie,want_client)
to indicate the value of the -client command-line option.

• If your genie has several options (such as -client, -server) for
selecting different kinds of code that can be generated then place the
procedures for generating each type of code into separate files and
smart_source a file only if the corresponding command-line option has
been provided. This speeds up the genie if only a few options have been
generated because it avoids unnecessary use of smart_source on files.

Organizing Your Procedures

The following code illustrates several recommendations for organizing the
procedures in your genies:

#--------
File: foo/gen_impl_class_cc.bi
#--------
...
proc gen_impl_class_cc {i} {

global pref
set file [cpp_impl_class $i]$pref(cpp,cc_file_ext)
open_output_file $file

gen_impl_class_cc_file_header
gen_impl_class_cc_constructor
135

O r b i x Co d e G e n e r a t i o n T oo l k i t P r o g r am me r ’ s G u i d e
gen_impl_class_cc_destructor

foreach op [$i contents {operation}] {
gen_impl_class_cc_operation $op

}
close_output_file

}

The above example demonstrates the following points:

1. Large procedures are broken into a collection of smaller procedures.

2. Avoid name space pollution of procedure names:

♦ Use a common prefix for names of all procedures defined in a file.

♦ You can use (an abbreviation of) the file name as the prefix.

3. Use gen_ as part of the prefix if the procedure outputs its result.

♦ Example: cpp_gen_operation_h outputs an operation’s signature.

4. Procedures without gen_ in their name return their result.

♦ Example: cpp_is_fixed_size returns a value.

Writing Library Genies

Let us suppose that your organization has many existing genies that are
implemented with the aid of a product called ACME (if it helps, think of ACME as
being DCE, DCOM, OSP, RogueWave, Oracle, ObjectStore or some other
product with which you are familiar). In order to aid the task of putting CORBA
wrappers around these genies, you decide to write a genie called idl2acme.tcl
that generates C++ conversion functions to convert IDL types to their ACME
counterparts, and vice versa. For example, if there is an IDL type called foo and
a corresponding ACME type called acme_foo then idl2acme.tcl generates the
following two functions:

void idl_to_acme_foo(const foo &from, acme_foo &to);
void acme_to_idl_foo(const acme_foo &from, foo &to);

The genie generates similar conversion functions for all IDL types. It can be run
as follows:

idlgen idl2acme.tcl some_file.idl

idlgen: creating idl2acme.h
idlgen: creating idl2acme.cc
 136

F u r t h e r D e v e l o p men t I s s u e s
The idl2acme.tcl script can look something like this:

#--------
File: idl2acme.tcl
#--------
smart_source "idl2acme/args.tcl"

parse_cmd_line_args file opts
set ok [idlgen_parse_idl_file $file $opts]
if {!$ok} { exit }

smart_source "std/sbs_output.tcl"
smart_source "idl2acme/gen_idl2acme_h.bi"
smart_source "idl2acme/gen_idl2acme_cc.bi"

gen_idl2acme_h
gen_idl2acme_cc

Calling a Genie from Other Genies

Although being able to run idl2acme.tcl as a stand-alone genie is useful, you
may decide that you would also like to call upon its functionality from inside
other genies. For example, you might modify a copy of the bundled
cpp_genie.tcl script in order to develop acme_genie.tcl which is a genie
tailored specifically for the needs of people who want to put CORBA wrappers
around existing ACME-based genies. In order to access the API of
idl2acme.tcl, the following lines of code can be embedded inside
acme_genie.tcl:

smart_source "idl2acme/gen_idl2acme_h.bi"
smart_source "idl2acme/gen_idl2acme_cc.bi"

gen_idl2acme_h
gen_idl2acme_cc

This might seem like an elegant approach to take. However, it suffers from two
defects:

• Scalability: in the above example, acme_genie.tcl requires just two
smart_source commands to get access to the API of idl2acme.tcl.
However, a more feature-rich library might have its functionality
implemented in, say ten or twenty files. Accessing the API of such a
library from inside acme_genie.tcl would require ten or twenty
137

O r b i x Co d e G e n e r a t i o n T oo l k i t P r o g r am me r ’ s G u i d e
smart_source commands, which is somewhat unwieldy. It is better if an
genie can access the API of a library with just one smart_source
command, regardless of how feature rich that library is.

• Lack of encapsulation: any genie that wants to access the API of
idl2acme.tcl must be aware of the names of files in the idl2acme
directory. If the names of these files ever change it will break other genies
that make use of them.

Both of these problems can be solved with the following convention. When
writing the idl2acme.tcl genie, create the following two files:

idl2acme/lib-full.tcl
idl2acme/lib-min.tcl

The idl2acme/lib-full.tcl file contains the necessary smart_source
commands to access the full API of the idl2acme library. Therefore an genie can
access this API with just one smart_source command.

The idl2acme/lib-min.tcl file contains the necessary smart_source
commands to access the minimal API of the idl2acme library. In general, the
difference between the full and minimal APIs varies from one library to another
and should be clearly specified in the library’s documentation.

The Full API
In the case of the idl2acme library, the full API might define five procedures:

gen_idl2acme_h
gen_idl2acme_cc
gen_acme_var_decl_stmt type name
gen_idl2acme_stmt type from_var to_var
gen_acme2idl_stmt type from_var to_var

These procedures are used as follows:

• The gen_idl2acme_h and gen_idl2acme_cc procedures generate the
idl2acme.h and idl2ame.cc files, respectively.

• The gen_acme_var_decl_stmt procedure generates a C++ variable
declaration of an ACME type corresponding to the specified IDL type.
 138

F u r t h e r D e v e l o p men t I s s u e s
• The gen_idl2acme_stmt procedure generates a C++ statement that
converts an IDL type to an ACME type and gen_acme2idl_stmt
procedure generates a C++ statement that performs the data-type
translation in the opposite direction.

The Minimal API

The minimal API (as exposed by idl2acme/lib-min.tcl) includes just the latter
three procedures. A genie can smart_source the minimal API to generate code
that makes calls to data-type conversion routines. A genie can access the full API
with smart_source if it also needs to generate the implementation of the data-
type conversion routines. The reason for providing both the full and minimal
libraries is that the minimal library is likely to contain only a small amount of
code (say, fifty lines of code) and hence can be accessed much faster with
smart_source than the full library which typically contains hundreds or
thousands of lines of code. Thus, genies that require only the minimal API can
start up faster.

The concept of a minimal API might not make sense for some libraries. In such
cases, only the full library should be provided.
139

O r b i x Co d e G e n e r a t i o n T oo l k i t P r o g r am me r ’ s G u i d e
Commenting Your Generated Code

As your genies have a high likelihood of containing code written in another
language, it is even more important to comment both sets of code when creating
genies.

Putting block comments into the generated code:

• Documents your IDLgen scripts.

• Documents the generated code.

• Shows the relationship between scripts and generated code.

• Is a very useful debugging aid.

The following is an example section of a Tcl (bilingual) script that has been
commented.

Tcl
proc gen_impl_class_cc_operation{ op } {
[***
//---
// Function: @[cpp_ident_s_name $op]@
// Description: Implements the corresponding
// IDL operation
//---
***]

cpp_gen_operation_cc $op ;# C++ signature of op
...

}

 140

Part 3
Orbix C++ Genies:
Library Reference

 10
The C++ Development Library

The Orbix Code Generation Toolkit comes with a rich C++
development library that makes it easy to create code generation
applications that map IDL onto C++ code.

The file std/cpp_boa_lib.tcl is a library of Tcl procedures that map IDL
constructs into their C++ counterparts. The term boa in the name of the library
indicates that this library is for the IDL-to-C++ mapping defined by the CORBA
specification of the BOA (Basic Object Adaptor).

Naming Conventions in API procedures
Abbreviations are commonly used in the names of procedures defined in the
std/cpp_boa_lib.tcl library. The following table lists these abbreviations and
their meanings:

Abbreviation Meaning

clt Client.

srv Server.

var Variable.

var_decl Variable declaration.

Table: 10.1: Abbreviations Used in Procedure Names
143

O r b i x Co d e G e n e r a t i o n T oo l k i t P r o g r am me r ’ s G u i d e
The names of all the procedures in std/cpp_boa_lib.tcl start with cpp_,
which implies "C++".

As an example, the following statement assigns the C++ signature of an
operation (for use in a .h file) to variable foo:

set foo [cpp_op_sig_h $op]

is_var Discussed below.

gen_ Discussed below.

par (or param) Parameter.

ref Reference.

stmt Statement.

mem Memory.

op Operation.

attr_acc An attribute’s accessor.

attr_mod An attribute’s modifier.

sig Signature.

_cc A .cc or .cpp file.

_h A .h file.

Abbreviation Meaning

Table: 10.1: Abbreviations Used in Procedure Names
 144

T h e C++ D e v e l o pmen t L i b r a r y
Naming Conventions for “is_var”

The mapping from IDL to C++ provides smart pointers whose names end in
_var. For example, an IDL struct called widget has a C++ smart pointer type
called widget_var. Sometimes, the syntactic details of declaring and using C++
variables depends on whether or not you are using these _var types. For this
reason, some of the procedures in std/cpp_boa_lib.tcl take a boolean
parameter called is_var, which indicates whether or not the variable being
processed was declared as a _var type.

Naming Conventions for “gen_”

Some procedures contain the term gen_ in their names. Such procedures
generate output. For example, cpp_gen_op_sig_h outputs the C++ signature of
an operation for use in a header file. Procedures whose names do not contain
gen_ return a value (which you can use as a parameter to the output command if
you wish).

Some procedures whose names do not contain gen_ also have gen_
counterparts. The reason for providing both forms of a procedure is to offer
flexibility in how you can write scripts. In particular, the procedures without
gen_ are easy to embed inside textual blocks (that is, text inside [*** and
***]), while their gen_ counterparts are sometimes easier to call from outside
of textual blocks. Some examples can help to illustrate this.

The following segment of code prints the C++ signatures of all the operations of
an interface for use in a .h file:

foreach op [$inter contents {operation}] {
output "\t[cpp_op_sig_h $op];\n"

}

Note that the output statement uses a TAB character (\t) to indent the
signature of the operation, and also follows the signature with a semicolon and
newline character. The printing of all this white space and syntactic baggage is
automated by the gen_ counterpart of this procedure, so the above code
snippet could be rewritten in the following, slightly more concise format:

foreach op [$inter contents {operation}] {
cpp_gen_op_sig_h $op

}

145

O r b i x Co d e G e n e r a t i o n T oo l k i t P r o g r am me r ’ s G u i d e
The cpp_gen_ procedures tend to be useful inside foreach loops to, for
example, declare operation signatures or variables. However, when generating
the bodies of operations in .cpp files, it is likely that you will be making use of a
textual block. In such cases, it can be a nuisance to have to exit the textual block
just to call a Tcl procedure and then enter another textual block to print more
text. For example:

[***
//--------
// Function: ...
//--------
***]
cpp_gen_op_sig_cc $op
[***
{

... // body of the operation
}
***]

The use of procedures without gen_ can often eliminate the need to toggle in
and out of textual blocks. For example, the above segment of code can be
written in the following, more concise form:

[***
//--------
// Function: ...
//--------
@[cpp_op_sig_cc $op]@
{

... // body of the operation
}
***]
 146

T h e C++ D e v e l o pmen t L i b r a r y
Indentation

Consistent indentation is important for code clarity. However, there are no
universally accepted rules for indentation: some programmers use two spaces
for each level of indentation, while other programmers use four or eight spaces,
or a TAB character.

If the procedures in std/cpp_boa_lib.tcl obeyed a particular indentation
policy, say, four spaces for each level of indentation, then this would suit C++
programmers who use the same indentation policy in their applications. It would,
however, be frustrating for people who prefer a different indentation policy. To
avoid this problem, the white space to be used for one level of indentation is
held in the variable $pref(cpp,indent). Any procedure in std/
cpp_boa_lib.tcl that needs to print some indentation uses the string specified
in $pref(cpp,indent).

The default value for $pref(cpp,indent) is \t, but you can change it to a
different value such as four or eight spaces.

Some procedures take a parameter called ind_lev. This parameter is an integer
that specifies the indentation level at which output should be generated. To
illustrates this, consider the following code:

Tcl
set name "foo"
set type [$idlgen(root) lookup "string"]
set is_var 1
for {set ind_lev 0) ($ind_lev < 3) (incr ind_lev} {

cpp_gen_var_decl $name $type $is_var $ind_lev
}

The cpp_gen_var_decl procedure declares a variable of the specified name and
type, at the specified level of indentation. The output from the above code
would look something like:

CORBA::String_var foo;
CORBA::String_var foo;

CORBA::String_var foo;
147

O r b i x Co d e G e n e r a t i o n T oo l k i t P r o g r am me r ’ s G u i d e
$pref(cpp,…) Entries

Some entries in the $pref(…) array are used to specify various user preferences
for the generation of C++ code. All of these entries are given default values by
std/cpp_boa_lib.tcl , but the default values can be over-ridden by
corresponding entries in the idlgen.cfg file or by explicit assignment in a Tcl
script.

$pref(...) Array Entry Purpose

$pref(cpp,h_file_ext) Specifies the filename extension to be on
header files. Its default value is .h .

$pref(cpp,cc_file_ext) Specifies the filename extension to be on
code files. Its default value is .cc .

$pref(cpp,indent) Specifies the amount of white space to be
used for one level of indentation. Its default
value is \t .

$pref(cpp,impl_class_suffix) Specifies the suffix that is used to obtain the
name of a class that implements an IDL
interface. Its default value is _i .

$pref(cpp,smart_proxy_prefix) Specifies the prefix that is used to obtain the
name of a smart proxy class for an IDL
interface. Its default value is smart_ .

$pref(cpp,want_throw) A boolean value that specifies whether or not
the C++ signatures of operations and
attributes should have a throw clause. Its
default value is 1. It should be set to 0 only if
generating C++ code for an old C++
compiler that does not support exceptions.

Table: 10.2: $pref(...) Array Entries
 148

T h e C++ D e v e l o pmen t L i b r a r y
$pref(cpp,want_named_env) A boolean value that specifies whether the
CORBA::Environment parameter at the end
of the C++ signature of an operation or
attribute should have a name or should be an
anonymous parameter. If you are generating
C++ bodies of operations/attributes that do
not access the CORBA::Environment
parameter then setting
$pref(cpp,want_named_env) to 0 prevents
C++ compilers from warning that this
parameter is not used. Its default value is 0.

$pref(cpp,env_param_name) Specifies the name of the
CORBA::Environment parameter in the C++
signatures of operations and attributes. This
name is used only if
$pref(cpp,want_named_env) is 0. Its default
value is _env.

$pref(cpp,attr_mod_param_name) Specifies the name of the parameter in the
C++ signature of an attribute’s modifier
operation. Its default value is _new_value.

$pref(cpp,ret_param_name) Specifies the name of the variable that is to
be used to hold the return value from a non-
void operation call. Its default value is
_result.

$pref(cpp,max_padding_for_types) This is used to pad out C++ type names
when declaring variables or parameters. This
padding helps to ensure that the names of
variables/parameters are vertically aligned,
which makes code easier to read. Its default
value is 32.

$pref(...) Array Entry Purpose

Table: 10.2: $pref(...) Array Entries
149

O r b i x Co d e G e n e r a t i o n T oo l k i t P r o g r am me r ’ s G u i d e
As the rules for mapping IDL to C++ code are clearly defined it is easy to
encapsulate these rules into procedures in the Tcl language. These procedures
and those specific to Orbix code generation comprise the C++ development
library for IDLgen and make genies easy to develop.

Identifiers and Keywords
It is illegal to use the underscore character as the first character when choosing
operation names in IDL because the generated code for the interface can
contain class functions that conflict with the operations defined at the
CORBA::Object level. When writing or generating code from the IDL interface
make sure that the IDL identifiers do not conflict with the built in language
keywords.

Consider this unusual, but valid, interface:

// IDL
interface strange {

string for(in long while);
};

The interface maps to a C++ class with a class method defined as:

// C++
char* _for(const CORBA::Long _while);

There are a number of procedures that help map the IDL data types to their
language equivalents.

cpp_l_name

This command is used as follows:

cpp_l_name node

This procedure returns the C++ mapping of a node’s local name. This is usually
the node’s local name itself, but is prefixed with an underscore if the local name
conflicts with a C++ keyword. Also, if the node happens to be a built-in type
then the result is the C++ mapping of the type.

For example, consider this IDL:

// IDL
 150

T h e C++ D e v e l o pmen t L i b r a r y
interface for {
exception new {};
void while(in octet goto);

};

If each construct (node) of this IDL is run through the cpp_l_name procedure
the returned value is as follows:

The cpp_l_name procedure also maps the built-in IDL data types to the
corresponding C++ typedefs. For example the basic data types map as follows:

for
new
while

_for
_new
_while

short
long
unsigned short
unsigned long
float
double
char
boolean
octet
Object

CORBA::Short
CORBA::Long
CORBA::UShort
CORBA::ULong
CORBA::Float
CORBA::Double
CORBA::Char
CORBA::Boolean
CORBA::Octet
CORBA::Object
151

O r b i x Co d e G e n e r a t i o n T oo l k i t P r o g r am me r ’ s G u i d e
cpp_s_name

This command is used as follows:

cpp_s_name node

This procedure is similar to the cpp_l_name procedure. The difference is that it
returns the-fully scoped name rather than the local name. If the IDL on page 150
in run through cpp_s_name the result is as follows:

Built in IDL types are mapped as they are in the cpp_l_name procedure.

cpp_typecode_s_name

This command is used as follows:

cpp_typecode_s_name type

This procedure returns the fully-scoped C++ name of the typecode for the
specified type. Typecodes are usually formed by prefixing the name of the type
with _tc_, but there are some exceptions. In particular, the typecodes for the
built-in types (long, short and so on) are defined inside the CORBA module.

Examples of the fully-scoped names of C++ typecodes for IDL types:

for
new
while

_for
_for::_new
_for::_while

cow _tc_cow

farm::cow farm::_tc_cow

long CORBA::_tc_long
 152

T h e C++ D e v e l o pmen t L i b r a r y
cpp_typecode_l_name

This command is used as follows:

cpp_typecode_l_name type

This procedure returns the local C++ name of the typecode for the specified
type. Typecodes are usually formed by prefixing the name of the type with _tc_,
but there are some exceptions. In particular, the typecodes for the built-in types
(long, short and so on) are defined inside the CORBA module.

Examples of the local names of C++ typecodes for IDL types:

General Purpose Procedures
There are also a number of general purpose procedures that can be used to help
write code generation applications.

cpp_is_fixed_size

This command is used as follows:

cpp_is_fixed_size type

The mapping of IDL to C++ has the concept of fixed size types and variable size
types. This command returns a boolean value that indicates whether or not the
specified type is fixed size.

This command is called internally from other commands in the std/
cpp_boa_lib.tcl library. However, it is unlikely that you will need to make use
of it directly in your own applications.

cow tc_cow

farm::cow _tc_cow

long CORBA::_tc_long
153

O r b i x Co d e G e n e r a t i o n T oo l k i t P r o g r am me r ’ s G u i d e
cpp_is_var_size

This command is used as follows:

cpp_is_var_size type

The mapping of IDL to C++ has the concept of fixed size types and variable size
types. This command returns a boolean value that indicates whether or not the
specified type is variable size.

This command is called internally from other commands in the std/
cpp_boa_lib.tcl library. However, it is unlikely that you will need to make use
of it directly in your own applications.

cpp_is_keyword

This command is used as follows:

cpp_is_keyword name

This command returns a boolean value that indicates whether or not the
specified name is a C++ keyword. For example:

Tcl
cpp_is_keyword “new”; # returns 1
cpp_is_keyword “cow”; # returns 0

This command is called internally from other commands in the std/

cpp_boa_lib.tcl library. However, it is unlikely that you will need to make use
of it directly in your own applications.

cpp_assign_stmt

This command is used as follow:

cpp_assign_stmt type name value ind_lev ?scope?

This command returns a C++ statement that assigns the specified value to the
variable of the specified name and type . The assignment performs a deep copy.
For example, if type is a string or interface then a string_dup() or
_duplicate() , respectively, is performed on the value . The ind_lev and
scope parameters are ignored for all assignment statements, except those
involving arrays. In the case of array assignments, a for loop is generated to
perform an element-wise copy of the array’s contents. The reason why the
 154

T h e C++ D e v e l o pmen t L i b r a r y
ind_lev (indentation level) parameter is required is that the returned for-loop
spans several lines of code, and these lines of code need to be indented
consistently. The scope parameter is a boolean (with a default value 1) that
specifies whether or not an extra scope (that is, a pair of braces ("{}”) should
surround the for loop. This extra level of scoping makes the generated code
look ugly, but it works around a scoping-related bug in some C++ compilers.

There is a gen_ counterpart to the cpp_assign_stmt command:

cpp_gen_assign_stmt type name value ind_lev ?scope?

The following example illustrates the use of this gen_ command:

Tcl
set is_var 0
set ind_lev 1
[***
void some_func()
{
***]
foreach type $type_list {

set name "my_[$type l_name]"
set value "other_[$type l_name]"
cpp_gen_assign_stmt $type $name $value $ind_lev 0

}
 [***
} // some_func()
***]

If the variable type_list contains the types string, widget (a struct) and
long_array then the above Tcl code will generate the following:

// C++
void some_func()
{

my_string = CORBA::string_dup(other_string);
my_widget = other_widget;
for (CORBA::ULong i1 = 0; i1 < 10; i1 ++) {

my_long_array[i1] = other_long_array[i1];
}

} // some_func()
155

O r b i x Co d e G e n e r a t i o n T oo l k i t P r o g r am me r ’ s G u i d e
Note that the cpp_gen_assign_stmt command (and its gen_ counterpart)
expect the name and value parameters to be references (rather than pointers).
For example, if the variable my_widget is a pointer to a struct (rather than an
actual struct) then the name parameter to cpp_gen_assign_stmt should be
*my_widget instead of my_widget.

The for loop used in the assignment to my_long_array declares the index
variable i1 inside the body of the for loop. The C++ specification states that
variable i1 is visible only inside the body of the for loop. However, some C++
compilers do not correctly scope the visibility of such index variables which can
result in i1 being visible outside body of the for loop. If the Tcl script generated
assignment statements for several array variables then the (buggy) C++
compiler would complain of the variable i1 being declared multiple times. To
work around this problem in some compilers, the cpp_assign_stmt command
(and its gen_ counterpart) takes a boolean parameter called scope. If this is set
to 1 (which is its default value) then an extra pair of braces (“{}”) are placed
around the for-loop. This extra level of scoping limits the visibility of index
variables used in the for-loops and thus prevents redeclaration of variable
i1 error messages from buggy compilers.

cpp_indent

This command is used as follows:

cpp_indent number

This command returns a string which is the string $pref(cpp,indent)
concatenated with itself the specified number of times. For example:

#Tcl
puts “[cpp_indent 1]One”
puts “[cpp_indent 2]Two”
puts “[cpp_indent 3]Three”

This produces output in the following form:

One
Two

Three
 156

T h e C++ D e v e l o pmen t L i b r a r y
cpp_nil_pointer

This command is used as follows:

cpp_nil_pointer type

This command returns a C++ expression that is a nil pointer (or a nil object
reference) for the specified type. It should be used only for types that might be
heap-allocated, that is, struct, exception, union, sequence, array, string,
Object, interface or TypeCode. If used for any other types, for example, a
long, then this command throws an exception.

This procedure can be used to initialise pointer variables. Note that there will
rarely be a need to use this command if you make use of _var types in your
applications.

cpp_sanity_check_idl

Unfortunately, the mapping of IDL-to-C++ has some loopholes. For example,
consider the following type:

typedef sequence< sequence<long> > longSeqSeq;

The mapping states that the IDL type longSeqSeq maps into a C++ class with
the same name. However, the mapping does not state how the embedded
anonymous sequence (emphasised in the above example) is mapped to C++.
This means that each CORBA vendor can map this anonymous type in a
proprietary manner. The net effect of loopholes like these in the mapping from
IDL to C++ is that use of these anonymous types can hinder portability of C++
code. This portability problem can be overcome by using extra typedef
declarations in IDL files. For example, the above snippet of IDL could be
rewritten as shown below:

typedef sequence<long> longSeq;
typedef sequence<longSeq> longSeqSeq;

The cpp_sanity_check_idl command traverses the parse tree looking for
unnecessary anonymous types which cause portability problems in C++. If it
finds any then it prints out a message which warns the user of the portability
problems in the IDL file. An example of using this command is shown below:

smart_source "std/args.tcl"
smart_source "std/cpp_boa_lib.tcl"
parse_cmd_line_args file options
157

O r b i x Co d e G e n e r a t i o n T oo l k i t P r o g r am me r ’ s G u i d e
if {![idlgen_parse_idl_file $file $options]} {
exit 1
}
cpp_sanity_check_idl
... # rest of script

Interfaces
One of the major encapsulating constructs in IDL is the interface. This maps to
an appropriately named class in C++. There are a number of procedures that aid
in generating code for interfaces.

cpp_impl_class

This command is used as follows:

cpp_impl_class interface_node

This procedure returns the name of a C++ class that can be used to implement
a given IDL interface. The class name is constructed by getting the fully scoped
name of the IDL interface and replacing all occurrences of :: with _ (that is,
flattening the namespace). It also appends $pref(cpp,impl_class_suffix) on
to the end. The default value for this is _i.

Tcl
set class [cpp_impl_class $inter]
[***
class @$class@ {

public:
@$class@();

};
***]

For example, the following interface definitions result in the generation of the
corresponding C++ code.

// IDL
interface cow {

...
};

// C++
class cow_i {

public:
cow_i();

};
 158

T h e C++ D e v e l o pmen t L i b r a r y
cpp_tie_class

This command is used as follows:

cpp_tie_class interface_node

This procedure returns the name of the TIE macro corresponding to the given
IDL interface.

Tcl
set class [cpp_impl_class $inter]
[***
class @$class@ {

public:
@$class@();

};

DEF_@[cpp_tie_class $inter]@(@$class@)
***]

For example, the following interface definitions result in the generation of the
corresponding C++ code.

// IDL
module farm {

interface cow {
...

};
};

// C++
class farm_cow_i {

public:
farm_cow_i();

};

// IDL
interface cow {

...
};

// C++
class cow_i {

public:
cow_i();

};
DEF_TIE_cow(cow_i)

// IDL
module farm{

interface cow {
...

};
};

// C++
class farm_cow_i {

public:
farm_cow_i();

};
DEF_TIE_farm_cow(farm_cow_i)
159

O r b i x Co d e G e n e r a t i o n T oo l k i t P r o g r am me r ’ s G u i d e
cpp_boa_class_s_name

This command is used as follows:

cpp_boa_class_s_name interface_node

This command returns the fully scoped name of the BOA class that can be used
to implement an IDL interface.

Tcl
set class [cpp_impl_class $inter]
[***
class @$class@ : public virtual

@[cpp_boa_class_s_name $inter]@ {
public:

@$class@();
};

***]

For example, the following interface definitions results in the generation of the
corresponding C++ code.

// IDL
interface cow {

...
};

// C++
class cow_i : public virtual

cowBOAImpl {
public:

cow_i();
};

// IDL
module farm{

interface cow{
...}

}

// C++
class farm_cow_i : public
virtual

farm::cowBOAImpl {
public:

cow_i();
};
 160

T h e C++ D e v e l o pmen t L i b r a r y
cpp_boa_class_l_name

This command is used as follows:

cpp_boa_class_l_class interface_node

This command returns the local name of the BOA class that can be used to
implement an IDL interface.

Note that this command is rarely used; the cpp_boa_class_s_name is normally
used instead.

cpp_smart_proxy_class

This command is used as follows:

cpp_smart_proxy_class interface_node

This procedure returns the name of a C++ class that can be used when
constructing a smart proxy class for a given IDL interface. The class name is
constructed by obtaining the fully-scoped name of the IDL interface and
replacing all occurrences of :: with _ (that is, flattening the namespace). It also
prefixes the interface name with $pref(cpp,impl_class_suffix). The default
value for this is smart_ .

Tcl
set sproxyc [cpp_smart_proxy_class $inter]
set proxyc [cpp_s_name $inter]
[***
class @$sproxyc@ :public virtual @$proxyc@ {

public:
@$sproxyc@();

};
***]

For example, the following interface definitions result in the generation of the
corresponding C++ code.

// IDL
interface cow {

...
};

// C++
class smart_cow : virtual public cow {

public:
smart_cow();

};
161

O r b i x Co d e G e n e r a t i o n T oo l k i t P r o g r am me r ’ s G u i d e
Signatures of Operations
The following set of commands is used to obtain the C++ signature of an
operation:

cpp_op_sig_h operation_node
cpp_gen_op_sig_h operation_node
cpp_op_sig_cc operation_node ?class_name?
cpp_gen_op_sig_cc operation_node ?class_name?

The gen_ variants of these commands generate output, while the non- gen_
variants return the C++ signature as a string (which you can then output if you
want).

The _h variants of these commands return/generate C++ signatures suitable for
use in a header (.h) file, while the _cc variants return/generate C++ signatures
suitable for use in an implementation (.cc) file. The _cc variants take an optional
class_name parameter. If this parameter is not specified it is calculated as:

set class_name [cpp_impl_class [$op defined_in]]

This is usually the desired class name. However, the ability to use an alternative
class name is provided in case you want to generate signatures of operations for,
as an example, smart proxies or some other support class.

// IDL
module farm {

interface cow {
...

};
};

// C++
class smart_farm_cow : virtual public
farm::cow {

public:
smart_farm_cow();

};
 162

T h e C++ D e v e l o pmen t L i b r a r y
Signatures of Attributes
The following set of commands are used to obtain the C++ signatures of
accessor and modifier functions for attributes:

cpp_attr_acc_sig_h attribute_node
cpp_gen_attr_acc_sig_h attribute_node
cpp_attr_mod_sig_h attribute_node
cpp_gen_attr_mod_sig_h attribute_node
cpp_attr_acc_sig_cc attribute_node ?class_name?
cpp_gen_attr_acc_sig_cc attribute_node ?class_name?
cpp_attr_mod_sig_cc attribute_node ?class_name?
cpp_gen_attr_mod_sig_cc attribute_node ?class_name?

You can determine which command to use by the different elements in the
command name. Table 10.3 describes the different name elements:

Element in command name Command use

acc Variants are for attribute accessor
functions.

mod Variants are for attribute modifier
functions.

gen_ Variants of these commands generate
output.

non- gen_ Variants return the C++ signature as a
string (which you can then output if you
want).

_h Variants of these commands return/
generate C++ signatures suitable for use
in a header (.h) file.

Table: 10.3: Attribute Signature Commands
163

O r b i x Co d e G e n e r a t i o n T oo l k i t P r o g r am me r ’ s G u i d e
Types and Signatures of Parameters
Previous sections have discussed commands that can be used to generate C++
signatures of IDL operations and attribute accessor/modifier functions.
However, sometimes you may want more control over the construction of an
operation’s signature. In order to do this, you need to be able to determine the
type or signature of individual parameters. The following commands are provided
for this purpose:

cpp_param_type op_or_arg
cpp_param_type type dir
cpp_param_sig op_or_arg
cpp_param_sig name type dir

The cpp_param_type command returns the C++ type of a parameter of the
specified type and direction (dir). For example, the following snippet of Tcl
prints out const char *:

Tcl
set type [$idlgen(root) lookup "string"]
set dir "in"

_cc Variants return/generate C++ signatures
suitable for use in an implementation
(.cc) file. The _cc variants take an
optional class_name parameter. If this
parameter is not specified then it is
calculated as:

set class_name [cpp_impl_class
[$op defined_in]]

This is usually the desired class name.
However, the ability to use an alternative
class name is provided in case you want to
generate attribute signatures for, as an
example, smart proxies or some other
support class.

Element in command name Command use

Table: 10.3: Attribute Signature Commands
 164

T h e C++ D e v e l o pmen t L i b r a r y
puts "[cpp_param_type $type $dir]"

The cpp_param_sig command returns the C++ signature of a parameter of the
specified name, type and direction (dir). The signature is composed of the
C++ type and the parameter’s name. For example, consider the following
snippet of Tcl code:

Tcl
set type [$idlgen(root) lookup "string"]
set dir "in"
puts "[cpp_param_sig "foo" $type $dir]"

The output generated from the above code is:

const char * foo;

There is some whitespace padding between the parameter’s type and name. The
amount of padding is determined by $pref(cpp,max_padding_for_types).
This padding is used to ensure vertical alignment of parameter names. You can
use an argument node or an operation node (the latter indicating the
operation’s return type) instead of specifying type and dir separately.

Client-Side Processing of Parameters

The std/cpp_boa_lib.tcl library provides commands to manipulate client-side
variables that are used as parameters to, or the return value of, an operation
call. The commands provided are as follows:

cpp_clt_par_decl arg_or_op is_var
cpp_clt_par_ref arg_or_op is_var
cpp_clt_free_mem_stmt arg_or_op is_var
cpp_clt_need_to_free_mem arg_or_op is_var

Some of the above commands have gen_ counterparts:

cpp_gen_clt_par_decl arg_or_op is_var ind_lev
cpp_gen_clt_free_mem_stmt arg_or_op is_var ind_lev

In all of the above commands, the arg_or_op parameter can be either an
argument node or an operation node in the parse tree. If arg_or_op is an
argument node then the above commands apply to a parameter of an operation
call. Conversely, if arg_or_op is an operation node then the above commands
apply to the return value of an operation call.
165

O r b i x Co d e G e n e r a t i o n T oo l k i t P r o g r am me r ’ s G u i d e
The cpp_clt_par_decl command returns a C++ declaration of a variable that
can be used as a parameter to (or return value of) an operation. For most
parameter declarations, is_var is ignored and space for the parameter is
allocated on the stack. However, if the parameter is a string or an object
reference being passed in any direction, or if it is one of several types of out
parameter then it must be heap allocated, and the is_var parameter determines
whether the parameter will be declared as a _var (smart pointer) type or as a
raw pointer.

The cpp_clt_par_ref command returns a reference to the value of the
specified parameter (or return value) of an operation. The returned reference is
either of the form foo or *foo, depending on how the parameter was declared
by the cpp_clt_par_decl command.

The cpp_clt_free_mem_stmt command returns a C++ statement that frees
the memory associated with the specified parameter (or return value) of an
operation. If there is no need to free memory for the parameter (for example, if
is_var is 1 or the parameter’s type/direction does not require any memory
management) then this command returns an empty string.

The cpp_clt_need_to_free_mem command returns a boolean indicating
whether or not there is any need to free the memory of the specified parameter
(or return value) of an operation.

The examples in the following subsections illustrate the use of these commands.
In each of the examples, the following IDL is assumed:

// IDL
struct widget {long a;};
typedef sequence<long> longSeq;
typedef long long_array[10];

interface foo {
longSeq op(

in widget p_widget,
inout string p_string,
out longSeq p_longSeq,
out long_array p_long_array);

};
 166

T h e C++ D e v e l o pmen t L i b r a r y
Declaring Variables to Hold Parameters and the Return
Value
The Tcl script below illustrates how to declare C++ variables to be used as
parameters to (and the return value of) an operation call:

Tcl
set op [$idlgen(root) lookup "foo::op"]
set is_var 0
set ind_lev 1
set arg_list [$op contents {argument}]
[***

//--------
// Declare parameters for operation
//--------

***]
foreach arg $arg_list {

Line 1 cpp_gen_clt_par_decl $arg $is_var $ind_lev
}

Line 2 cpp_gen_clt_par_decl $op $is_var $ind_lev

Notice how the command cpp_gen_clt_par_decl is used to declare variables
for both parameters (line 1) and the return value (line 2). The above Tcl code
produces the following C++:

//--------
// Declare parameters for operation
//--------
widget p_widget;

Line 3 char * p_string;

Line 4 longSeq* p_longSeq;

long_array p_long_array;

Line 5 longSeq* _result;

The name of the C++ variable declared for holding the return value (line 5) is
determined by $pref(cpp,ret_param_name). Its default value is _result. The
C++ variables declared in lines 3, 4 and 5 are raw pointers. This is because in
the calls to cpp_gen_clt_par_decl, the is_var parameter had the value 0
(false). If is_var was 1 (true) then the variables declared at lines 3, 4 and 5
would have been _var types.
167

O r b i x Co d e G e n e r a t i o n T oo l k i t P r o g r am me r ’ s G u i d e
Initializing Input Parameters

The Tcl script below illustrates how to initialize in and inout parameters:

Tcl
[***

//--------
// Initialize "in" and "inout" parameters
//--------

***]

Line 1 foreach arg [$op args {in inout}] {
set type [$arg type]

Line 2 set arg_ref [cpp_clt_par_ref $arg $is_var]
set value "other_[$type s_uname]"

Line 3 cpp_gen_assign_stmt $type $arg_ref $value $ind_lev 0
}

The foreach-loop (line 1) iterates over all the in and inout parameters. The
command cpp_clt_par_ref (line 2) is used to obtain a reference to a
parameter, and this reference can then be used to initialize the parameter with
the cpp_gen_assign_stmt command (line 3). The above Tcl code produces the
following C++:

//--------
// Initialize "in" and "inout" parameters
//--------
p_widget = other_widget;
p_string = CORBA::string_dup(other_string);

Invoking an IDL Operation
Continuing on the example, the Tcl script below illustrates how to invoke an
IDL operation, passing parameters and assigning the return value to a variable:

Tcl

Line 1 set ret_assign [cpp_ret_assign $op]
set op_name [cpp_l_name $op]
set start_str "\n\t\t\t"
set sep_str ",\n\t\t\t"

Line 2 set call_args [idlgen_process_list $arg_list \
 cpp_l_name $start_str $sep_str]
 168

T h e C++ D e v e l o pmen t L i b r a r y
[***
//--------
// Invoke the operation
//--------
try {

Line 3 @$ret_assign@obj->@$op_name@(@$call_args@);
} catch(CORBA::Exception &ex) {

... // handle the exception
}

***]

The above Tcl code produces the following C++:

//--------
// Invoke the operation
//--------
try {

Line 4 _result = obj->op(

Line 5 p_widget,

Line 6 p_string,

Line 7 p_longSeq,

Line 8 p_long_array);
} catch(CORBA::Exception &ex) {

... // handle the exception
}

Two points are worth noting about the Tcl script that produced the above
output:

• The text _result = (line 4 of the C++ code) is produced by the
command [cpp_ret_assign $op] (at lines 1 and 3 in the Tcl script). If
the operation invoked does not have a return type then
[cpp_ret_assign $op] returns an empty string.

• You can format the parameters to an operation call (lines 5-8 in the C++
code) with the command idlgen_process_list (used at lines 2 and 3 in
the Tcl script). This command is discussed in “Idlgen_process_list” on
page 131.
169

O r b i x Co d e G e n e r a t i o n T oo l k i t P r o g r am me r ’ s G u i d e
Processing Output Parameters and the Return Value

The techniques used to process output parameters are similar to those used to
process input parameters, as the Tcl script below illustrates:

Tcl
[***

//--------
// Process the returned parameters
//--------

***]

Line 1 foreach arg [$op args {out inout}] {
set type [$arg type]
set name [cpp_l_name $arg]

Line 2 set arg_ref [cpp_clt_par_ref $arg $is_var]
[***

process_@[$type s_uname]@(@$arg_ref@);
***]
}
set ret_type [$op return_type]
if {[$ret_type l_name] != "void"} {

Line 3 set ret_ref [cpp_clt_par_ref $op $is_var]
[***

process_@[$ret_type s_uname]@(@$ret_ref@);
***]
}

The foreach-loop at line 1 iterates over all the out and inout parameters.
Notice how the cpp_clt_par_ref command can be used to obtain references
to both parameters (line 2) and the return value (line 3). The above Tcl code
produces the following C++:

//--------
// Process the returned parameters
//--------
process_string(p_string);
process_longSeq(*p_longSeq);
process_long_array(p_long_array);
process_longSeq(*_result);
 170

T h e C++ D e v e l o pmen t L i b r a r y
Memory Management

The Tcl script below illustrates how to free memory associated with the
parameters and return value of an operation call:

Tcl
[***

//--------
// Free memory associated with parameters
//--------

***]
foreach arg $arg_list {

set name [cpp_l_name $arg]

Line 1 cpp_gen_clt_free_mem_stmt $arg $is_var $ind_lev
}

Line 2 cpp_gen_clt_free_mem_stmt $op $is_var $ind_lev

Notice how the command cpp_gen_clt_free_mem_stmt is used to free
memory both for parameters (line 1) and the return value (line 2). The above Tcl
code produces the following C++:

//--------
// Free memory associated with parameters
//--------
CORBA::string_free(p_string);
delete p_longSeq;
delete _result;

It can be seen in the produced output that statements to free memory are
generated only if needed. For example, there is no memory-freeing statement
generated for p_widget or p_long_array because these parameters had their
memory allocated on the stack rather than on the heap. Also, if the is_var
parameter had the value 1 (indicating that the parameters and _result variable
had been declared as _var types, that is, smart pointers) then no memory-
freeing statements would have been generated.

Processing Implicit Parameters to Attributes
Recall that the cpp_clt_par_decl command is defined as follows:

cpp_clt_par_decl arg_or_op is_var
171

O r b i x Co d e G e n e r a t i o n T oo l k i t P r o g r am me r ’ s G u i d e
This command is used to declare a client-side variable to be used as a parameter
to (or return value of) an operation. Similar functionality is needed to declare a
client-side variable to be used as the implicit parameter to (or return value of) an
attribute. This additional functionality is obtained by implementing the
cpp_clt_par_decl command in a way that allows it to be invoked with either
two arguments (as indicated above) or with four arguments, as shown below:

cpp_clt_par_decl name type dir is_var

In this case, the argument arg_or_op has been replaced with three arguments
that specify the attribute’s name, type and direction (dir). The dir argument
should be in or return, for an attribute’s modifier and accessor, respectively.
This convention of replacing arg_or_op with three arguments is also used in the
other commands for the client-side processing of parameters. Thus, the full
collection of commands for processing the implicit parameter/return value for an
attribute is:

cpp_clt_par_decl name type dir is_var
cpp_clt_par_ref name type dir is_var
cpp_clt_free_mem_stmt name type dir is_var
cpp_clt_need_to_free_mem name type dir is_var

It also applies to the gen_ counterparts:

cpp_gen_clt_par_decl name type dir is_var ind_lev
cpp_gen_clt_free_mem_stmt name type dir is_var ind_lev

Server-Side Processing of Parameters

The std/cpp_boa_lib.tcl library provides the following commands to process
parameters (and the return value) inside the body of an operation:

cpp_srv_ret_decl op ?alloc_mem?
cpp_srv_par_alloc arg_or_op
cpp_srv_par_ref arg_or_op
cpp_srv_free_mem_stmt arg_or_op
cpp_srv_need_to_free_mem rg_or_op

Some of the above commands have gen_ counterparts:

cpp_gen_srv_ret_decl op ind_lev ?alloc_mem?
cpp_gen_srv_par_alloc arg_or_op ind_lev
cpp_gen_srv_free_mem_stmt arg_or_op ind_lev
 172

T h e C++ D e v e l o pmen t L i b r a r y
In all of the above commands, the arg_or_op parameter can be either an
argument node or an operation node in the parse tree. If arg_or_op is an
argument node then the above commands apply to a parameter of an operation
call. Conversely, if arg_or_op is an operation node then the above commands
apply to the return value of an operation.

The cpp_srv_ret_decl command returns a C++ declaration of a variable that
holds the return value of an operation. If the operation does not have a return
value then this command returns an empty string. Assuming that the operation
does have a return value, if alloc_mem is 1 then the variable declaration also
allocates memory to hold the return value, if necessary. If alloc_mem is 0 then
no allocation of memory occurs, and instead you can allocate the memory later
with the cpp_srv_par_alloc command. The default value of alloc_mem is 1.

The cpp_srv_par_alloc command returns a C++ statement to allocate
memory for an out parameter (or return value), if needed. If there is no need to
allocate memory then this command returns an empty string.

The cpp_srv_par_ref command returns a reference to the value of the
specified parameter (or return value) of an operation. The returned reference is
either $name or *$name, depending on whether the parameter is passed by
reference or by pointer.

The cpp_srv_free_mem_stmt command returns a C++ statement that frees the
memory associated with the specified parameter (or return value) of an
operation. If there is no need to free memory for the parameter then this
command returns an empty string. Note that there are only two cases in which a
server should free the memory associated with a parameter:

• When assigning a new value to an inout parameter, it may be necessary
to release the previous value of the parameter.

• If the body of the operation decides to throw an exception after having
allocated memory for out parameters and the return value, then the
operation should free the memory of these parameters (and return value)
and also assign nil pointers to these out parameters for which memory
had previously been allocated. Note that if the exception is thrown
before having allocated memory for the out parameters and the return
value, then no memory management is necessary.

The cpp_srv_need_to_free_mem command returns a boolean indicating
whether or not there is any need to free the memory of the specified parameter
(or return value) of an operation.
173

O r b i x Co d e G e n e r a t i o n T oo l k i t P r o g r am me r ’ s G u i d e
The examples in the following subsections illustrate the use of these commands.
In each of the examples, the following IDL is assumed (this is the same IDL used
previously in “Client-Side Processing of Parameters” on page 165):

// IDL
struct widget {long a;};
typedef sequence<long> longSeq;
typedef long long_array[10];

interface foo {
longSeq op(

in widget p_widget,
inout string p_string,
out longSeq p_longSeq,
out long_array p_long_array);

};

Declaring the Return Value and Allocating Memory for
Parameters

The following Tcl script declares a local variable that can hold the return value of
the operation. It then allocates memory for out parameters and the return
value, if required.

Tcl
set op [$idlgen(root) lookup "foo::op"]
set ret_type [$op return_type]
set is_var 0
set ind_lev 1
set arg_list [$op contents {argument}]
if {[$ret_type l_name] != "void"} {
[***

//--------
// Declare a variable to hold the return value.
//--------

Line 1 @[cpp_srv_ret_decl $op 0]@;

***]
}
[***

//--------
// Allocate memory for "out" parameters
 174

T h e C++ D e v e l o pmen t L i b r a r y
// and the return value, if needed.
//--------

***]
foreach arg [$op args {out}] {

cpp_gen_srv_par_alloc $arg $ind_lev
}

Line 2 cpp_gen_srv_par_alloc $op $ind_lev

The output of the above Tcl is as follows:

//--------
// Declare a variable to hold the return value.
//--------
longSeq* _result;

//--------
// Allocate memory for "out" parameters
// and the return value, if needed.
//--------
p_longSeq = new longSeq;
_result = new longSeq;

Note that the declaration of the _result variable (line 1) is separated from the
allocation of memory for it (line 2). This gives us an opportunity to throw
exceptions before allocating memory, which eliminates memory management
responsibilities associated with throwing an exception. If you prefer to allocate
memory for the _result variable in its declaration then change line 1 of the Tcl
script so that it passes 1 as the value of the alloc_mem parameter, and then
delete line 2 of the Tcl script because it is no longer needed. If you make these
changes then the declaration of _result is changed to:

longSeq* _result = new longSeq;

Initializing Output Parameters and the Return Value
The next Tcl script iterates over all the inout and out parameters, and the
return value, to assign values to them. Comments follow after the script:

Tcl
[***

//--------
// Assign new values to "out" and "inout"
// parameters, and the return value, if needed.
//--------
175

O r b i x Co d e G e n e r a t i o n T oo l k i t P r o g r am me r ’ s G u i d e
***]
foreach arg [$op args {inout out}] {

set type [$arg type]

Line 1 set arg_ref [cpp_srv_par_ref $arg]
set name2 "other_[$type s_uname]"
if {[$arg direction] == "inout"} {

Line 2 cpp_gen_srv_free_mem_stmt $arg $ind_lev
}

Line 3 cpp_gen_assign_stmt $type $arg_ref $name2 \
$ind_lev 0

}
if {[$ret_type l_name] != "void"} {

Line 4 set ret_ref [cpp_srv_par_ref $op]
set name2 "other_[$ret_type s_uname]"

Line 5 cpp_gen_assign_stmt $ret_type $ret_ref \
 $name2 $ind_lev 0
}

The command cpp_srv_par_ref (lines 1 and 4) can be used to obtain a
reference to both parameters and the return value. For example, in the IDL
operation used in this example, the parameter p_longSeq is passed by pointer.
Thus, a reference to this parameter is *p_longSeq. A reference to a parameter
(or the return value) can then be used as to initialize it with the
cpp_gen_assign_stmt command (lines 3 and 5).

It is sometimes necessary to first free the old value associated with an inout
parameter before assigning it a new value. This can be achieved by using the
cpp_gen_srv_free_mem_stmt command (line 2). However, note that this
should be done only for inout parameters; hence the use of an if statement
around this command.

The output generated by the above Tcl code is as follows:

//--------
// Assign new values to "out" and "inout"
// parameters, and the return value, if needed.
//--------
CORBA::string_free(p_string);
p_string = CORBA::string_dup(other_string);
*p_longSeq = other_longSeq;
for (CORBA::ULong i1 = 0; i1 < 10; i1 ++) {
 176

T h e C++ D e v e l o pmen t L i b r a r y
p_long_array[i1] = other_long_array[i1];
}
*_result = other_longSeq;

Memory Management when Throwing Exceptions

If an operation decides to throw an exception after it has already allocated
memory for out parameters and the return value, then some memory
management duties must be carried out before throwing the exception. These
duties are illustrated in the following Tcl code:

Tcl
[***

if (an_error_occurs) {
//--------
// Before throwing an exception, we must
// free the memory of heap-allocated "out"
// parameters and the return value,
// and also assign nil pointers to these
// "out" parameters.
//--------

***]
foreach arg [$op args {out}] {

Line 1 set free_mem_stmt [cpp_srv_free_mem_stmt $arg]
if {$free_mem_stmt != ""} {

set name [cpp_l_name $arg]
set type [$arg type]

[***
@$free_mem_stmt@;

Line 2 @$name@ = @[cpp_nil_pointer $type]@;
***]

}
}

Line 3 cpp_gen_srv_free_mem_stmt $op 2
[***

throw some_exception;
}

***]
177

O r b i x Co d e G e n e r a t i o n T oo l k i t P r o g r am me r ’ s G u i d e
The above script illustrates how the cpp_srv_free_mem_stmt and
cpp_gen_srv_free_mem_stmt commands (lines 1 and 3, respectively) can be
used to free memory associated with out parameters and the return value. Nil
pointers can be assigned to out parameters by using the cpp_nil_pointer
command (line 2).

The output of this Tcl script is as follows:

if (an_error_occurs) {
//--------
// Before throwing an exception, we must
// free the memory of heap-allocated "out"
// parameters and the return value,
// and also assign nil pointers to these
// "out" parameters.
//--------
delete p_longSeq;
p_longSeq = 0;
delete _result;
throw some_exception;

}

Processing Implicit Parameters to Attributes

Recall that the cpp_srv_par_alloc command is defined as follows:

cpp_srv_par_alloc arg_or_op

This command is used to allocate memory, if necessary, for an out parameter or
return value of an operation. Similar functionality is needed to allocate memory
for the return value of the accessor function for an attribute. This additional
functionality is obtained by implementing the cpp_srv_par_alloc command in a
way which allows it to be invoked with either one argument (as indicated above)
or with three arguments, as shown below:

cpp_srv_par_alloc name type dir

In this case, the argument arg_or_op has been replaced with three arguments
that specify the attribute’s name, type and direction (dir). The dir argument
should be return for an attribute’s accessor. This convention of replacing
arg_or_op with several arguments is also used in the other commands for the
server-side processing of parameters. Thus, the full collection of commands for
processing the implicit parameter/return value for an attribute is:
 178

T h e C++ D e v e l o pmen t L i b r a r y
cpp_srv_ret_decl name type ?alloc_mem?
cpp_srv_par_alloc name type dir
cpp_srv_par_ref name type dir
cpp_srv_free_mem_stmt name type dir
cpp_srv_need_to_free_mem type dir

It also applies to the gen_ counterparts:

cpp_gen_srv_ret_decl name type ind_lev ?alloc_mem?
cpp_gen_srv_par_alloc name type dir ind_lev
cpp_gen_srv_free_mem_stmt name type dir ind_lev

Processing Instance Variables and Local Variables

Previous sections have discussed how to process variables used for parameters
and the return value of an operation call. However, not all variables are used as
parameters. For example, a C++ class that implements an IDL interface may
contain some instance variables that are not used as parameters; or the body of
an operation may declare some local variables that are not used as parameters.
This section discusses commands for processing such variables. The following
commands are provided:

cpp_var_decl name type is_var
cpp_var_free_mem_stmt name type is_var
cpp_var_need_to_free_mem type is_var

The cpp_var_decl command returns a C++ variable declaration with the
specified name and type. For most variables, the is_var parameter is ignored
and the variable is allocated on the stack. However, if the variable is a string or
an object reference then it must be heap allocated, and the is_var parameter
determines whether the variable will be declared as a _var (smart pointer) type
or as a raw pointer. Note that all variables declared via cpp_var_decl are
references and hence can be used directly with cpp_assign_stmt.

The cpp_var_free_mem_stmt command returns a C++ statement that frees the
memory associated with the variable of the specified name and type. If there is
no need to free memory for the variable (for example, if is_var is 1 or the
variable’s type does not require any memory management) then this command
returns an empty string.

The cpp_var_need_to_free_mem command returns a boolean indicating
whether or not there is any need to free memory with a variable of the specified
type.
179

O r b i x Co d e G e n e r a t i o n T oo l k i t P r o g r am me r ’ s G u i d e
There are also some gen_ counterparts to some of the above commands:

cpp_gen_var_decl name type is_var ind_lev
cpp_gen_var_free_mem_stmt name type is_var ind_lev

The following example illustrates the use of these gen_ commands:

Tcl
set is_var 0
set ind_lev 1
[***
void some_func()
{

// Declare variables
***]
foreach type $type_list {

set name "my_[$type l_name]"
cpp_gen_var_decl $name $type $is_var $ind_lev

}
[***

// Initialize variables
***]
foreach type $type_list {

set name "my_[$type l_name]"
set value "other_[$type l_name]"
cpp_gen_assign_stmt $type $name $value $ind_lev 0

}
[***

// Memory management
***]
foreach type $type_list {

set name "my_[$type l_name]"
cpp_gen_var_free_mem_stmt $name $type $is_var $ind_lev

}
[***
} // some_func()
***]

If the variable type_list contains the types string, widget (a struct) and
long_array then the above Tcl code generates the following:

// C++
void some_func()
 180

T h e C++ D e v e l o pmen t L i b r a r y
{
// Declare variables
char * my_string;
widget my_widget;
long_array my_long_array;

// Initialize variables
my_string = CORBA::string_dup(other_string);
my_widget = other_widget;
for (CORBA::ULong i1 = 0; i1 < 10; i1 ++) {

my_long_array[i1] = other_long_array[i1];
}

// Memory management
CORBA::string_free(my_string);

} // some_func()

Note that the cpp_gen_var_free_mem_stmt command generated memory-
freeing statements only for the my_string variable. This is because the other
variables were stack-allocated and hence did not require their memory to be
freed. Modifying the Tcl code so that is_var is set to 1 would change the type of
my_string from char * to CORBA::String_var and would have suppressed the
memory-freeing statement for that variable.
181

O r b i x Co d e G e n e r a t i o n T oo l k i t P r o g r am me r ’ s G u i d e
Processing Unions
When generating C++ code to process an IDL union, it is common to use a
C++ switch statement to process the different cases of the union. The
commands cpp_branch_case_s_label and cpp_branch_case_l_label are
provided to help with this task. However, sometimes you may want to process
an IDL union using a different C++ construct, such as an if-then-else
statement. The slightly lower-level commands cpp_branch_s_label and
cpp_branch_l_label are provided to help with this task.

cpp_branch_case_s_label

This command is used as follows:

cpp_branch_case_s_label union_branch

This command returns a string in the form case label where label is the
(fully-scoped) label for that branch of the union, or the string default if it is the
default branch in the union. As an example, consider the following IDL:

// IDL
module m {

enum colour {red, green, blue};

union foo switch(colour) {
case red: long a;
case green: string b;
default: short c;

};
};

The following Tcl script generates a C++ switch statement to process the
union:

Tcl
set union [$idlgen(root) lookup "m::foo"]
[***
void some_func()
{

switch(u._d()) {
***]
foreach branch [$union contents {union_branch}] {

set name [cpp_l_name $branch]
 182

T h e C++ D e v e l o pmen t L i b r a r y
set case_label [cpp_branch_case_s_label $branch]
[***

@$case_label@:
... // process u.@$name@()
break;

***]
}; # foreach
[***

};
} // some_func()
***]

The code generated from the above Tcl is as follows:

// C++
void some_func()
{
switch(u._d()) {
case m::red:

... // process u.a()
break;

case m::green:
... // process u.b()
break;

default:
... // process u.c()
break;

};
} // some_func()

The command cpp_branch_case_s_label works irrespective of the type of the
union’s discriminant. For example, if the discriminant is, say, type long then this
command will return a string of the form case 42 (where 42 is the value of the
case label), or if the discriminant is type char then this command will return a
string of the form case ’a’ .
183

O r b i x Co d e G e n e r a t i o n T oo l k i t P r o g r am me r ’ s G u i d e
cpp_branch_case_l_label

This command is used as follows:

cpp_branch_case_l_label union_branch

It works almost identically to cpp_branch_case_s_label except that it
produces the non-scoped label of the union’s case. For example, instead of
returning case m::red, it returns case red.

cpp_branch_s_label

This command is used as follows:

cpp_branch_s_label union_branch

It works almost identically to cpp_branch_case_s_label except that the case
prefix is not included in the returned value.

Note that the command cpp_branch_case_s_label is slightly easier to use if
you are generating a C++ switch statement to process a union. The command
cpp_branch_s_label could, however, be used if you wanted to generate a C++
if-then-else statement to process a union.

cpp_branch_l_label

This command is used as follows:

cpp_branch_l_label union_branch

It works almost identically to cpp_branch_s_label except that it produces the
non-scoped value of the union’s case. For example, instead of returning m::red,
it returns red.
 184

T h e C++ D e v e l o pmen t L i b r a r y
Processing Arrays
Arrays are usually processed in C++ by using a for-loop to access each element
in the array. For example, consider the following definition of an array:

// IDL
typedef long long_array[5][7];

Assume that two variables, foo and bar, are both of type long_array. C++
code to perform an element-wise copy from bar into foo might be written as
follows:

// C++
void some_func()
{

Line 1 CORBA::ULong i1;

Line 1 CORBA::ULong i2;

Line 2 for (i1 = 0; i1 < 5; i1 ++) {

Line 2 for (i2 = 0; i2 < 7; i2 ++) {

Line 3 foo[i1][i2] = bar[i1][i2];

Line 4 }

Line 4 }
}

In order to write a Tcl script to generate the above C++ code, you need Tcl
commands that declare the index variables (lines marked 1), generate the header
of the for-loop (lines marked 2), provide the index for each element of the array
([i1][i2] in the above example, as used in line 3), and generate the footer of the
for-loop (lines marked 4). The following commands provide exactly these
capabilities:

cpp_array_decl_index_vars arr pre ind_lev
cpp_array_for_loop_header arr pre ind_lev ?decl?
cpp_array_elem_index arr pre
cpp_array_for_loop_footer arr indent

In each of these commands, the following conventions hold:

• arr denotes an array node in the parse tree.
185

O r b i x Co d e G e n e r a t i o n T oo l k i t P r o g r am me r ’ s G u i d e
• pre is the prefix to use when constructing the names of index variables.
For example, the prefix i is used to get index variables called i1 and i2.

• ind_lev is the indentation level at which the for-loop is to be created. In
the above C++ example, the for loop is indented one level from the left
side of the page.

As a concrete example, the following Tcl script generates the for-loop shown
previously:

Tcl
set typedef [$idlgen(root) lookup "long_array"]
set a [$typedef true_base_type]

Line 5 set indent [cpp_indent [$a num_dims]]

Line 3 set index [cpp_array_elem_index $a "i"]
[***
void some_func()
{

Line 1 @[cpp_array_decl_index_vars $a "i" 1]@

Line 2 @[cpp_array_for_loop_header $a "i" 1]@

Line 3 @$indent@foo@$index@ = bar@$index@;

Line 4 @[cpp_array_for_loop_footer $a 1]@
}
***]

The amount of indentation to be used inside the body of the for-loop (at line 3)
is calculated by using the number of dimensions in the array as a parameter to
the cpp_indent command (line 5).

The cpp_array_for_loop_header command takes a boolean parameter called
decl, which has a default value of 0. If decl has the value 1 then the index
variables will be declared inside the header of the for-loop. Thus, functionally
equivalent (but slightly shorter) C++ code can be written as follows:

// C++
void some_func()
{

for (CORBA::Ulong i1 = 0; i1 < 5; i1 ++) {
for (CORBA::Ulong i2 = 0; i2 < 7; i2 ++) {

foo[i1][i2] = bar[i1][i2];
 186

T h e C++ D e v e l o pmen t L i b r a r y
}
}

}

The Tcl script to generate this is also slightly shorter (because it does not need
to use the cpp_array_decl_index_vars command):

Tcl
set typedef [$idlgen(root) lookup "long_array"]
set a [$typedef true_base_type]
set indent [cpp_indent [$a num_dims]]
set index [cpp_array_elem_index $a "i"]
[***
void some_func()
{

@[cpp_array_for_loop_header $a "i" 1 1]@
@$indent@foo@$index@ = bar@$index@;
@[cpp_array_for_loop_footer $a 1]@

}
***]

For completeness, some of the array processing commands have “gen._”
counterparts:

cpp_gen_array_decl_index_vars arr pre ind_lev
cpp_gen_array_for_loop_header arr pre ind_lev ?decl?
cpp_gen_array_for_loop_footer arr indent
187

O r b i x Co d e G e n e r a t i o n T oo l k i t P r o g r am me r ’ s G u i d e
Processing Anys
The commands to process type any are split into two categories:

• Those used to insert a value into an any.

• Those used to extract a value from an any.

Inserting Values into an Any

Use the cpp_any_insert_stmt command to generate code that inserts a value
into an any :

cpp_any_insert_stmt type any_name value

This command returns the C++ statement that inserts the specified value of
the specified type into the any called any_name. An example of its use is as
follows:

Tcl
foreach type $type_list {

set var_name my_[$type s_uname]
[***
@[cpp_any_insert_stmt $type "an_any" $var_name]@;
***]
}

If the variable type_list contains the types widget (a struct), boolean and
long_array, the above Tcl code will generate the following:

// C++
an_any <<= my_widget;
an_any <<= CORBA::Any::from_boolean(my_boolean);
an_any <<= long_array_forany(my_long_array);
 188

T h e C++ D e v e l o pmen t L i b r a r y
Extracting Values from an Any

The following commands are provided to help you write Tcl scripts that extract
values from an any:

cpp_any_extract_var_decl type name
cpp_any_extract_var_ref type name
cpp_any_extract_stmt type any_name name

The cpp_any_extract_var_decl command is used to declare a variable into
which values from an any will be extracted. The parameters to this command
are the variable’s type and name. Note that if the value to be extracted from the
any is a small value (such as a short, long, boolean, and so on), then the
variable is declared as a normal variable of the specified type. However, if the
value is of a larger type (struct, sequence, and so on) then the variable is
declared as a pointer to the specified type.

The cpp_any_extract_var_ref command returns a reference to the value in
the specified variable (called name and of the specified type). The returned
reference is either $name or *$name, depending on how the variable was
declared by the cpp_any_extract_var_decl command.

The cpp_any_extract_var_ref command is used to extract a value of the
specified type from the any called any_name into the variable called name.

The following example illustrates the use of these commands:

Tcl
 foreach type $type_list {
 set var_name my_[$type s_uname]
 [***

@[cpp_any_extract_var_decl $type $var_name]@;
 ***]
 }
 output "\n"
 foreach type $type_list {
 set var_name my_[$type s_uname]

set var_ref [cpp_any_extract_var_ref $type $var_name]
 [***

if (@[cpp_any_extract_stmt $type "an_any" $var_name]@) {
process_@[$type s_uname]@(@$var_ref@);

 }
 ***]
 }
189

O r b i x Co d e G e n e r a t i o n T oo l k i t P r o g r am me r ’ s G u i d e
If the variable type_list contains the types widget (a struct), boolean and
long_array then the above Tcl code generates the following C++:

// C++
widget * my_widget;
CORBA::Boolean my_boolean;
long_array_slice* my_long_array;

if (an_any >>= my_widget) {
process_widget(*my_widget);

}
if (an_any >>= CORBA::Any::to_boolean(my_boolean)) {

process_boolean(my_boolean);
}
if (an_any >>= long_array_forany(my_long_array)) {

process_long_array(my_long_array);
}

 190

 11
Other Tcl Libraries for C++ Utility
Functions

This chapter describes some further Tcl libraries available for use in
your genies.

The stand-alone genies cpp_print.tcl, cpp_random.tcl and cpp_equal.tcl
are discussed in Chapter 3 “Ready-to-use Genies for Orbix C++”. Aside from
being available as stand-alone genies, cpp_print.tcl, cpp_random.tcl and
cpp_equal.tcl also provide libraries of Tcl commands that can be called from
within other genies. This chapter discusses the APIs of these libraries.

Tcl API of cpp_print
The minimal API of the cpp_print library is made available by the following
command:

smart_source "cpp_print/lib-min.tcl"

The minimal API defines the following command:

cpp_print_func_name type

This command returns the name of the print function for the specified type.

If you want access to the full API of the cpp_print library then use the following
command:

smart_source "cpp_print/lib-full.tcl"
191

O r b i x Co d e G e n e r a t i o n T oo l k i t P r o g r am me r ’ s G u i d e
The full library includes the commands from the minimal library and defines the
following commands:

gen_cpp_print_func_h
gen_cpp_print_func_cc full_any

These commands generate the files it_print_funcs.h and
it_print_funcs.cc, respectively. The full_any parameter to
gen_cpp_print_func_cc is explained below.

The Orbix runtime system has built-in TypeCodes for the basic IDL types such
as long, short, string, and so on. However, by default, the Orbix IDL
compiler does not generate TypeCodes for user-defined IDL types. Without
these TypeCodes, you cannot insert a user-defined type into an any. This is not
usually a problem because most CORBA applications do not use either
TypeCode or any, and by not generating these extra TypeCodes, the IDL
compiler reduces unnecessary code for most applications. If you want to write
an genie that does insert user-defined IDL types into an any, you must specify
the ‘-A’ command-line option to the IDL compiler so that it will generate the
necessary TypeCodes.

Among the functions generated by gen_cpp_print_func_cc are
IT_print_any() and IT_print_TypeCode(). When generating these functions,
gen_cpp_print_func_cc generates code that uses TypeCodes of user-defined
IDL types only if the -A option is to be given to the IDL compiler. The full_any
parameter must be 1 if the -A option is to be given to the IDL compiler.
Otherwise, full_any should have the value 0.

Example of Use

The following script illustrates how to use all the API commands of the
cpp_print library. Lines marked with "*" are relevant to the usage of the
cpp_print library.

Tcl
smart_source "std/sbs_output.tcl"
smart_source "std/cpp_boa_lib.tcl"

* smart_source "cpp_print/lib-full.tcl"

if {$argc != 1} {
puts "usage: ..."; exit 1

}

 192

O t h e r T c l L i b r a r i e s f o r C + + U t i l i t y F u n c t i o n s
set file [lindex $argv 0]
set ok [idlgen_parse_idl_file $file]
if {!$ok} { exit }

#--------
Generate it_print_funcs.{h,cc}
#--------

* gen_cpp_print_funcs_h

* gen_cpp_print_funcs_cc 1

#--------
Generate a file which contains
calls to the print functions
#--------
set h_file_ext $pref(cpp,h_file_ext)
set cc_file_ext $pref(cpp,cc_file_ext)
open_output_file "example_func$cc_file_ext"

set type_list [idlgen_list_all_types "exception"]
[***
#include "it_print_funcs@$h_file_ext@

void example_func()
{

//--------
// Declare variables of each type
//--------

***]
foreach type $type_list {

set name my_[$type s_uname]
[***

@[cpp_variable_decl $name $type 1]@;
***]
}; # foreach type

[***

... //Initialize variables

//--------
// Print out the value of each variable
193

O r b i x Co d e G e n e r a t i o n T oo l k i t P r o g r am me r ’ s G u i d e
//--------
***]
foreach type $type_list {

* set print_func [cpp_print_func_name $type]

* set name my_[$type s_uname]
[***

cout << "@$name@ =";
@$print_func@(cout, @$name@, 1);
cout << endl;

***]
}; # foreach type

[***
} // end of example_func()
***]
close_output_file

The source code of the C++ genie provides a larger example of the use of the
cpp_print library.

Tcl API of cpp_random
The minimal API of the cpp_random library is made available by the following
command:

smart_source "cpp_random/lib-min.tcl"

The minimal API defines the following commands:

cpp_random_assign_stmt type name
cpp_gen_random_assign_stmt type name ind_lev

The cpp_random_assign_stmt command returns a string representing a C++
statement that assigns a random value to the variable with the specified type and
name. The command cpp_gen_random_assign_stmt outputs the statement at
the indentation level specified by ind_lev.

If you want access to the full API of the cpp_random library then use the
following command:

smart_source "cpp_random/lib-full.tcl"
 194

O t h e r T c l L i b r a r i e s f o r C + + U t i l i t y F u n c t i o n s
The full library includes the command from the minimal library and additionally
defines the following commands:

gen_cpp_random_func_h
gen_cpp_random_func_cc full_any

These commands generates the files it_random_funcs.h and
it_random_funcs.cc, respectively. The full_any parameter to
gen_cpp_print_func_cc must have the value 1 if the -A command-line option is
to be given to the IDL compiler. Otherwise, full_any should be 0.

Example of Use

The following script illustrates how to use all the API commands of the
cpp_random library. This example is an extension of the example shown in the
section “TCL API of cpp_print”. Lines marked with "+" are relevant to the use of
the cpp_random library, while lines marked with "*" are relevant to the use of
the cpp_print library.

Tcl
smart_source "std/sbs_output.tcl"
smart_source "std/cpp_boa_lib.tcl"

* smart_source "cpp_print/lib-full.tcl"

+ smart_source "cpp_random/lib-full.tcl"

if {$argc != 1} {
puts "usage: ..."; exit

}
set file [lindex $argv 0]
set ok [idlgen_parse_idl_file $file]
if {!$ok} { exit }

#--------
Generate it_print_funcs.{h,cc}
#--------

* gen_cpp_print_funcs_h

* gen_cpp_print_funcs_cc 1

#--------
Generate it_random_funcs.{h,cc}
195

O r b i x Co d e G e n e r a t i o n T oo l k i t P r o g r am me r ’ s G u i d e
#--------

+ gen_cpp_random_funcs_h

+ gen_cpp_random_funcs_cc 1

#--------
Generate a file which contains
calls to the print and random functions
#--------
set h_file_ext $pref(cpp,h_file_ext)
set cc_file_ext $pref(cpp,cc_file_ext)
open_output_file "example_func$cc_file_ext"

set type_list [idlgen_list_all_types "exception"]
[***

* #include "it_print_funcs@$h_file_ext@

+ #include "it_random_funcs@$h_file_ext@

void example_func()
{

//--------
// Declare variables of each type
//--------

***]
foreach type $type_list {

set name my_[$type s_uname]
[***

+ @[cpp_variable_decl $name $type 1]@;
***]
}; # foreach type

[***

//--------
// Assign random values to each variable
//--------

***]
foreach type $type_list {

set name my_[$type s_uname]
[***

@[cpp_random_assign_stmt $type $name]@;
 196

O t h e r T c l L i b r a r i e s f o r C + + U t i l i t y F u n c t i o n s
***]
}; # foreach type

[***

//--------
// Print out the value of each variable
//--------

***]
foreach type $type_list {

* set print_func [cpp_print_func_name $type]
set name my_[$type s_uname]

[***
cout << "@$name@ =";

* @$print_func@(cout, @$name@, 1);
cout << endl;

***]
}; # foreach type

[***
} // end of example_func()
***]
close_output_file

The source-code of the C++ genie provides a larger example of the use of the
cpp_random library.

Tcl API of cpp_equal
The minimal API of the cpp_equal library is made available by the following
command:

smart_source "cpp_equal/lib-min.tcl"

The minimal API defines the following commands:

cpp_equal_expr type name1 name2
cpp_not_equal_expr type name1 name2
197

O r b i x Co d e G e n e r a t i o n T oo l k i t P r o g r am me r ’ s G u i d e
These commands return a string representing a C++ boolean expression that
tests the two specified variables name1 and name2 of the same type for
(in)equality.

Example of Use

An example of the use of cpp_equal_expr and cpp_not_equal_expr is as
follows:

foreach type [idlgen_list_all_types “exception”] {
set name1 “my_[$type s_uname]_1”;
set name2 “my_[$type s_uname]_2”;

[***
if (@[cpp_equal_expr $type $name1 $name2] @) {

cout << “values are equal” << endl;
}

***]
}; # foreach type

Full API of cpp_equal

If you want access to the full API of the cpp_equal library then use the following
command:

smart_source "cpp_equal/lib-full.tcl"

The full library includes the commands from the minimal library and additionally
defines the following commands:

gen_cpp_equal_func_h
gen_cpp_equal_func_cc full_any

These commands generates the files it_equal_funcs.h and
it_equal_funcs.cc, respectively. The full_any parameter to
gen_cpp_equal_func_cc should be 1 if the -A command-line option is to be
given to the IDL compiler. Otherwise, full_any should be 0.
 198

Part 4
OrbixWeb Genies: Library
Reference

 12
The Java Development Library

The Orbix Code Generation Toolkit comes with a rich Java
development library that makes it easy to create genies to map IDL
onto Java code.

The file std/java_boa_lib.tcl is a library of Tcl procedures that map IDL
constructs into their Java counterparts.

Naming Conventions in API procedures
Abbreviations are commonly used in the names of procedures defined in the
std/java_boa_lib.tcl library. The following table lists these abbreviations and
their meanings:

Abbreviation Meaning

clt Client.

srv Server.

gen_ Discussed below.

par (or param) Parameter.

ref Reference.

Table: 12.1: Abbreviations Used in Procedure Names
201

O r b i x Co d e G e n e r a t i o n T oo l k i t P r o g r am me r ’ s G u i d e
The names of all the procedures in std/java_boa_lib.tcl start with java_,
which implies Java.

As an example, the following statement assigns the Java signature of an operation
to variable foo:

set foo [java_op_sig $op]

Naming Conventions for “gen_”

Some procedures contain gen_ in their names. Such procedures generate
output. For example, java_gen_op_sig outputs the Java signature of an
operation. Procedures whose names do not contain gen_ return a value (which
you can use as a parameter to the output command if you wish).

Some procedures whose names do not contain gen_ also have gen_
counterparts. The reason for providing both forms of a procedure is to offer
flexibility in how you can write genies. In particular, the procedures without
gen_ are easy to embed inside textual blocks (that is, text inside [*** and ***]),
while their gen_ counterparts are sometimes easier to call from outside of
textual blocks. Some examples can help to illustrate this.

The following segment of code prints the Java signatures of all the operations of
an interface:

foreach op [$inter contents {operation}] {
output "\t[java_op_sig $op];\n"

}

stmt Statement.

mem Memory.

op Operation.

attr_acc An attribute’s accessor.

attr_mod An attribute’s modifier.

sig Signature.

Abbreviation Meaning

Table: 12.1: Abbreviations Used in Procedure Names
 202

T h e J a v a D e v e l o pmen t L i b r a r y
Note that the output statement uses a TAB character (’\t’) to indent the
signature of the operation, and also follows the signature with a semicolon and
newline character. The printing of all this white space and syntactic baggage is
automated by the gen_ counterpart of this procedure, so the above code
snippet could be rewritten in the following, slightly more concise format:

foreach op [$inter contents {operation}] {
java_gen_op_sig $op

}

The java_gen_ procedures tend to be useful inside foreach loops to, for
example, declare operation signatures or variables. However, when generating
the bodies of operations in .java files, it is likely that you will be making use of a
textual block. In such cases, it can be a nuisance to have to exit the textual block
just to call a Tcl procedure and then enter another textual block to print more
text. For example:

[***
//--------
// Function: ...
//--------
***]
java_gen_op_sig $op
[***
{

... // body of the operation
}
***]

The use of non-gen_ procedures can often eliminate the need to toggle in and
out of textual blocks. For example, the above segment of code can be written in
the following, more concise form:

[***
//--------
// Function: ...
//--------
@[java_op_sig $op]@
{

... // body of the operation
}
***]
203

O r b i x Co d e G e n e r a t i o n T oo l k i t P r o g r am me r ’ s G u i d e
Indentation

Consistent indentation is important for code clarity. However, there are no
universally accepted rules for indentation: some programmers use two spaces
for each level of indentation, while other programmers use four or eight spaces,
or perhaps use a TAB character.

If the procedures in std/java_boa_lib.tcl obeyed a particular indentation
policy, say, four spaces for each level of indentation, then this would suit Java
programmers who use the same indentation policy in their genies. It would,
however, be frustrating for people who prefer a different indentation policy. To
avoid this problem, the amount of white space to be used for one level of
indentation is held in the variable $pref(java,indent). Any procedure in std/
java_boa_lib.tcl which needs to print some indentation uses the string
specified in $pref(java,indent).

The default value for $pref(java,indent) is three spaces, but you can change it
to be a different value such as four or eight spaces.

Some procedures take a parameter called ind_lev. This parameter is an integer
which specifies the indentation level at which output should be generated. To
illustrates this, consider the following code:

Tcl
set name "foo"
set type [$idlgen(root) lookup "string"]
for {set ind_lev 0) ($ind_lev < 3) (incr ind_lev} {

java_param_decl $name $type $ind_lev
}

The java_param_decl procedure declares a variable of the specified name and
type, at the specified level of indentation. The output from the above code
would look something like:

String foo;
String foo;

String foo;
 204

T h e J a v a D e v e l o pmen t L i b r a r y
$pref(java,…) Entries

Some entries in the $pref(…) array are used to specify various user preferences
for the generation of Java code. All of these entries are given default values by
std/java_boa_lib.tcl , but the default values can be over-ridden by
corresponding entries in the idlgen.cfg file or by explicit assignment in a genie.

$pref(...) Array Entry Purpose

$pref(java,java_file_ext) Specifies the filename extension to be on Java
files. Its default value is .java .

$pref(java,indent) Specifies the amount of white space to be
used for one level of indentation. Its default
value is two spaces.

$pref(java,impl_class_suffix) Specifies the suffix that is used to obtain the
name of a class that implements an IDL
interface. Its default value is Impl .

$pref(java,smart_proxy_prefix) Specifies the prefix that is used to obtain the
name of a smart proxy class for an IDL
interface. Its default value is Smart .

$pref(java,want_throw) A boolean value that specifies whether or not
the Java signatures of operations and
attributes should have a throw clause. Its
default value is 1.

$pref(java,attr_mod_param_name) Specifies the name of the parameter in the
Java signature of an attribute’s modifier
operation. Its default value is _new_value

$pref(java,ret_param_name) Specifies the name of variable which is to be
used to hold the return value from a non-
void operation call. Its default value is
_result .
205

O r b i x Co d e G e n e r a t i o n T oo l k i t P r o g r am me r ’ s G u i d e
The rules for mapping IDL to Java code are clearly specified so it is easy to
encapsulate these rules into procedures in the Tcl language. These procedures
and those specific to OrbixWeb code generation comprise the Java development
library for IDLgen and make genies easy to develop.

Identifiers and Keywords
You cannot use the underscore character as the first character when choosing
operation names in IDL, because the generated code for the interface can
contain class functions that conflict with the operations defined at the
CORBA::Object level. When writing or generating code from the IDL interface
make sure that the IDL identifiers do not conflict with the built-in language
keywords.

Consider this unusual, but valid, interface:

// IDL
interface strange {

string for(in long while);
};

The interface maps to a Java class with a class method defined as:

// Java
String for(int while);

There are a number of procedures that help in mapping the IDL data types to
their language equivalents.

$pref(java,max_padding_for_types) This is used to pad out Java type names when
declaring variable or parameters. This
padding helps to ensure that the names of
variables/parameters are vertically aligned,
which makes code easier to read. Its default
value is 32.

$pref(...) Array Entry Purpose

Table: 12.2: $pref(...) Array Entries
 206

T h e J a v a D e v e l o pmen t L i b r a r y
java_l_name

This command is used as follows:

java_l_name node

This procedure returns the Java mapping of a node’s local name. This is usually
the node’s local name itself, but it is prefixed with an underscore if the local
name conflicts with a Java keyword. Also, if the node happens to be a built-in
type then the result is the Java mapping of the type.

For example, consider this IDL:

// IDL
interface for {

exception new {};
void while(in octet goto);

};

If each construct (node) of this IDL is run through the java_l_name procedure
the returned value is as follows:

The java_l_name procedure also maps the built in IDL data types to the
corresponding Java types. For example, the basic data types map as follows:

for
new
while

_for
_new
_while

short short

ushort short

long int

ulong int

longlong long

ulonglong long

float float

double double

boolean boolean

char char

octet byte
207

O r b i x Co d e G e n e r a t i o n T oo l k i t P r o g r am me r ’ s G u i d e
java_s_name

This command is used as follows:

java_s_name node

This procedure performs the same kind of functionality as the java_l_name
procedure. The difference is that it returns the fully-scoped name rather than
the local name. If the IDL on page 207 in run through java_s_name the result is
as follows:

So for example consider this IDL:

//IDL
module outer{

interface inner{...
};

};

This maps as follows:

Built-in IDL types are mapped as they are in the java_l_name procedure.

string java.lang.String

wstring_t java.lang.String

any org.omg.CORBA.Any

wchar_t char

void void

Object org.omg.CORBA.Object

TypeCode org.omg.CORBA.TypeCode

Principal java.lang.String

NamedValue org.omg.CORBA.NamedValue

for
new
while

_for
_for._new
_for._while

java_s_name node outer.inner

java_l_name node inner
 208

T h e J a v a D e v e l o pmen t L i b r a r y
java_typecode_s_name

This command is used as follows:

java_typecode_s_name type

This procedure returns the fully-scoped Java name of the typecode for the
specified type. Typecodes are usually formed by suffixing the name of the type
with Helper.type(), but there are some exceptions. In particular, the
typecodes for the built-in types (long, short, and so on) are defined inside the
CORBA module.

Examples of the fully-scoped names of Java typecodes for IDL types:

java_typecode_l_name

This command is used as follows:

java_typecode_l_name type

This procedure returns the local Java name of the typecode for the specified
type. Typecodes are usually formed by suffixing the name of the type with
Helper.type(), but there are some exceptions. In particular, the typecodes for
the built-in types (long, short and so on) are defined inside the CORBA
module.

Examples of the local names of Java typecodes for IDL types:

cow cowHelper.type()

farm::cow farm.cowHelper.type()

long ORB.init().get_primitive_tc(org.omg.C
ORBA.TCKind._tk_long)

cow cowHelper.type()

farm::cow farm.cowHelper.type()

long org.omg.CORBA.ORB.init().get_primitive
_tc(org.omg.CORBA.TCKind._tk_long)
209

O r b i x Co d e G e n e r a t i o n T oo l k i t P r o g r am me r ’ s G u i d e
General Purpose Procedures
There are also a number of general purpose procedures that can be used to help
write genies.

java_is_keyword

This command is used as follows:

java_is_keyword name

This command returns a boolean value that indicates whether or not the
specified name is a Java keyword. For example:

Tcl
java_is_keyword "new"; # returns 1
java_is_keyword "cow"; # returns 0

This command is called internally from other commands in the std/
java_boa_lib.tcl library. However, it is unlikely that you will need to make
use of it directly in your own genies.

java_assign_stmt

This command is used as follows:

java_assign_stmt type name value ind_lev ?scope?

This command returns a Java statement that assigns the specified value to the
variable of the specified name and type. The ind_lev and scope parameters are
ignored for all assignment statements, except those involving arrays. In the case
of array assignments, a for loop is generated to perform an element-wise copy
of the array’s contents. The reason why the ind_lev (indentation level)
parameter is required is that the returned for loop spans several lines of code
and these lines of code need to be indented consistently. The scope parameter
is unused.

There is a gen_ counterpart to the java_assign_stmt command:

java_gen_assign_stmt type name value ind_lev ?scope?

The following example illustrates the use of this gen_ command:

#Tcl
 210

T h e J a v a D e v e l o pmen t L i b r a r y
set ind_lev 1
[***
void some_func()
{
***]
foreach type $type_list {

set name "my_[$type l_name]"
set value "other_[$type l_name]"
java_gen_assign_stmt $type $name $value $ind_lev 0

}
 [***
} // some_func()
***]

If the variable type_list contains the types string, widget (a struct) and
long_array then the above Tcl code generates the following:

// Java
void some_func()
{

my_string = other_string;
my_widget = other_widget;
for (int i1 = 0; i1 < 10; i1 ++) {

my_long_array[i1] = other_long_array[i1];
}

} // some_func()

java_indent

This command is used as follows:

java_indent number

This command returns a string which is the string $pref(java,indent)
concatenated with itself the specified number of times. For example:

#Tcl
puts "[java_indent 1]One"
puts "[java_indent 2]Two"
puts "[java_indent 3]Three"

This produces output in the following form:

One
Two
211

O r b i x Co d e G e n e r a t i o n T oo l k i t P r o g r am me r ’ s G u i d e
Three

java_nil_pointer

This command is used as follows:

java_nil_pointer type

This command returns a Java expression that is a nil pointer (or a nil object
reference) for the specified type.

It should be used only for types that might be heap-allocated, that is, struct,
exception, union, sequence, array, string, Object, interface or TypeCode.
If used for any other types, for example, a long, then this command throws an
exception.

Interfaces
One of the major encapsulating constructs in IDL is the interface. This maps to
an appropriately named class in Java. There are a number of procedures that aid
in generating code for interfaces.

java_impl_class

This command is used as follows:

java_impl_class interface_node

This procedure returns the name of a Java class that can be used to implement
the specified IDL interface. The class name is constructed by getting the fully
scoped name of the IDL interface and replacing all occurrences of :: with . (that is
flattening the namespace). It also appends $pref(java,impl_class_suffix) on
to the end. The default value for this is Impl.

Tcl
set class [java_impl_class $inter]
set base [java_boa_class_s_name $inter]
[***
package @[java_package_name $inter]@;
class @$class@ extends @$base@ {

public @$class@(){
 212

T h e J a v a D e v e l o pmen t L i b r a r y
... };
};
***]

For example, the following interface definitions result in the generation of the
corresponding Java code.

java_tie_class

This command is used as follows:

java_tie_class interface_node

This procedure returns the name of the Java class corresponding to the given
IDL interface using the TIE approach.

Tcl
set class [java_impl_class $inter]
[***
package @$[java_package_name $inter]@
class @$class@ implements @[java_tie_class]@{

public @$class@(){
...};

};
***]

// IDL
interface cow {

...
};

// Java
class cowImpl extends cowImplBase{

public cowImpl(){
... };
};

// IDL
module farm {

interface cow {
...

};
};

// Java
package farm
class cowImpl extends cowImplBase{

public cowImpl(){
... };
};
213

O r b i x Co d e G e n e r a t i o n T oo l k i t P r o g r am me r ’ s G u i d e
For example, the following interface definitions result in the generation of the
corresponding Java code.

java_boa_class_s_name

This command is used as follows:

java_boa_class_s_name interface_node

This command is exactly the same as java_tie_class except that this
procedure returns the fully scoped name of the BOA class that can be used to
implement an IDL interface. For example:

Tcl
set class [java_impl_class if_node]
[***
class @$class@ extends @[java_boa_class_s_name if_node]@ {

public @$class@(){
... };
};

***]

// IDL
interface cow {

...
};

//Java
class cowImpl implements
cowOperations{

public cowImpl(){
...};
};

// IDL
module farm{

interface cow {
...

};
};

// Java
package farm
class cowImpl implements
cowOperations{

public cowImpl(){
... };
};
 214

T h e J a v a D e v e l o pmen t L i b r a r y
The following interface definition results in the generation of the corresponding
Java code.

java_boa_class_l_name

This command is used as follows:

java_boa_class_l_class interface_node

This procedure returns the local name of the BOA class that can be used to
implement an IDL interface.

Note that this command is rarely used; the java_boa_class_s_name is normally
used instead.

java_smart_proxy_class

This command is used as follows:

java_smart_proxy_class interface_node

This procedure returns the name of a Java class that can be used when
constructing a smart proxy class for a given IDL interface. The class name is
constructed by obtaining the fully-scoped name of the IDL interface and
replacing all occurrences of :: with . (that is, flattening the namespace). It also
prefixes the interface name with $pref(java,impl_class_suffix). The
default entry for this is Smart.

Tcl
set sproxyc [java_smart_proxy_class $inter]
set proxyc [java_s_name $inter]
[***
package @[java_package_name $inter]@;
class @$sproxyc@ extends @proxyc@{

public @$sproxyc@(){

// IDL
interface cow {

...
};

// Java
class cowImpl extends
cowImplBase {

public cowImpl(){
... };
};
215

O r b i x Co d e G e n e r a t i o n T oo l k i t P r o g r am me r ’ s G u i d e
... };
};
***]

For example, the following interface definitions result in the generation of the
corresponding Java code.

Signatures of Operations
The following commands are used to obtain the Java signature of an operation:

java_op_sig operation_node ?class_name?
java_gen_op_sig operation_node ?class_name?

The gen_ variant generates output, while the non-gen_ variant returns the Java
signature as a string (which you can then output if you want).

These commands take an optional class_name parameter. If this parameter is
not specified, it is calculated as:

set class_name [java_impl_class [$op defined_in]]

This is usually the desired class name. However, the ability to use an alternative
class name is provided in case you want to generate signatures of operations for,
as an example, smart proxies or some other support class.

// IDL
interface cow {

...
};

// Java
class Smartcow extends cow {

public Smartcow(){
... };
};

// IDL
module farm {

interface cow {
...

};
};

// Java
package farm
class Smartcow extends cow {

public Smartcow(){
... };
};
 216

T h e J a v a D e v e l o pmen t L i b r a r y
Signatures of Attributes
The following set of commands is used to obtain the Java signatures of accessor
and modifier functions for attributes:

java_attr_acc_sig_ attribute_node ?class_name?
java_gen_attr_acc_sig attribute_node ?class_name?
java_attr_mod_sig attribute_node ?class_name?
java_gen_attr_mod_sig attribute_node ?class_name?

You can determine which command to use by the different elements in the
command name. Table 12.3 describes the different name elements:

Element in command name Command use

 acc Variants are for attribute accessor
functions.

mod Variants are for attribute modifier
functions.

gen_ Variants of these commands generate
output.

non-gen_ Variants return the Java signature as a
string (which you can then output if you
want).

Table: 12.3: Attribute Signature Commands
217

O r b i x Co d e G e n e r a t i o n T oo l k i t P r o g r am me r ’ s G u i d e
Types and Signatures of Parameters
Previous sections have discussed commands that can be used to generate Java
signatures of IDL operations and attribute accessor/modifier functions.
However, sometimes you may want more control over the construction of an
operation’s signature. In order to do this, you need to be able to determine the
type or signature of individual parameters. The following commands are provided
for this purpose:

java_param_type op_or_arg
java_param_type type dir
java_param_sig arg
java_param_sig name type dir

The java_param_type command returns the Java type of a parameter of the
specified type and direction (dir). For example, the following snippet of Tcl
prints out String:

Tcl
set type [$idlgen(root) lookup "string"]
set dir "in"
puts "[java_param_type $type $dir]"

The java_param_sig command returns the Java signature of a parameter of the
specified name, type and direction (dir). The signature is composed of the Java
type and the parameter’s name. For example, consider the following snippet of
Tcl code:

Tcl
set type [$idlgen(root) lookup "string"]
set dir in"
puts "[java_param_sig “foo” $type $dir]"

The output generated from the above code is:

String foo;

There is some white-space padding between the parameter’s type and name.
The amount of padding is determined by
$pref(java,max_padding_for_types). This padding is used to ensure vertical
alignment of parameter names.

You can use an argument node or an operation node (the latter indicating the
operation’s return type) in these commands instead of specifying type and dir
separately.
 218

T h e J a v a D e v e l o pmen t L i b r a r y
Client-Side Processing of Parameters

The std/java_boa_lib.tcl library provides commands to manipulate client-
side variables that are used as parameters to, or the return value of, an
operation call. The commands provided are as follows:

java_clt_par_decl name type dir
java_clt_par_ref arg_or_op

Some of the above commands have gen_ counterparts:

java_gen_clt_par_decl arg_or_op is_var ind_lev

In all of the above commands, the arg_or_op parameter can be either an
argument node or an operation node in the parse tree. If arg_or_op is an
argument node then the above commands apply to a parameter of an operation
call. Conversely, if arg_or_op is an operation node then the above commands
apply to the return value of an operation call.

The java_clt_par_decl command returns a Java declaration of a variable that
can be used as a parameter to (or return value of) an operation. However, if the
parameter is of a out or inout type the parameter is declared as a Holder type.

The java_clt_par_ref command returns a reference to the value of the
specified parameter (or return value) of an operation.

The examples in the following subsections illustrate the use of these commands.
In each of the examples, the following IDL is assumed:

// IDL
struct widget {long a;};
typedef sequence<long> longSeq;
typedef long long_array[10];

interface foo {
longSeq op(

in widget p_widget,
inout string p_string,
out longSeq p_outlongSeq,
out long_array p_long_array,
in longSeq p_inlongSeq;
219

O r b i x Co d e G e n e r a t i o n T oo l k i t P r o g r am me r ’ s G u i d e
Declaring Variables to Hold Parameters and the Return
Value
The Tcl script below illustrates how to declare Java variables to be used as
parameters to (and the return value of) an operation call:

Tcl
set op [$idlgen(root) lookup "foo::op"]
set ind_lev 1
set arg_list [$op contents {argument}]
[***

//--------
// Declare parameters for operation
//--------

***]
foreach arg $arg_list {

Line 1 java_gen_clt_par_decl $arg $ind_lev
}

Line 2 java_gen_clt_par_decl $op $ind_lev

Notice how the command java_gen_clt_par_decl is used to declare variables
for both parameters (line 1) and the return value (line 2). The above Tcl code
produces the following Java:

//--------
// Declare parameters for operation
//--------
widget p_widget;
StringHolder p_string;
longSeqHolder p_outlongSeq;
long_arrayHolder p_long_array;
longSeqHolder _result;
int[] p_outlongseq

The name of the Java variable declared for holding the return value is determined
by $pref(java,ret_param_name). Its default value is _result.

Initializing Input Parameters

The Tcl script below illustrates how to initialize in and inout parameters:

Tcl
[***
 220

T h e J a v a D e v e l o pmen t L i b r a r y
//--------
// Initialize "in" and "inout" parameters
//--------

***]

Line 1 foreach arg [$op args {in inout}] {
set type [$arg type]

Line 2 set arg_ref [java_clt_par_ref $arg $is_var]
set value "other_[$type s_uname]"

Line 3 java_gen_assign_stmt $type $arg_ref $value $ind_lev 0
}

The foreach-loop (line 1) iterates over all the in and inout parameters. The
command java_clt_par_ref (line 2) is used to obtain a reference to a
parameter, and this reference can then be used to initialize the parameter with
the java_gen_assign_stmt command (line 3). The above Tcl code produces
the following Java:

//--------
// Initialize "in" and "inout" parameters
//--------
p_widget = other_widget;
p_string = other_string;

Invoking an IDL Operation
Continuing on the example, the Tcl script below illustrates how to invoke an
IDL operation, passing parameters and assigning the return value to a variable:

Tcl

Line 1 set ret_assign [java_ret_assign $op]
set op_name [java_l_name $op]
set start_str "\n\t\t\t"
set sep_str ",\n\t\t\t"

Line 2 set call_args [idlgen_process_list $arg_list \
java_l_name $start_str $sep_str]
[***
//--------
// Invoke the operation
//--------
try {
221

O r b i x Co d e G e n e r a t i o n T oo l k i t P r o g r am me r ’ s G u i d e
Line 3 @$ret_assign@obj.@$op_name@(@$call_args@);
} catch(org.omg.CORBA.Exception ex) {

... // handle the exception
}
***]

The above Tcl code produces the following Java:

//--------
// Invoke the operation
//--------
try {

Line 4 _result = obj.op(

Line 5 p_widget,

Line 6 p_string,

Line 7 p_longSeq,

Line 8 p_long_array);
} catch(org.omg.CORBA.Exception ex) {

... // handle the exception
}

Two points are worth noting about the Tcl script that produced the above
output:

• The text _result = (line 4 of the Java code) is produced by the
command [java_ret_assign $op] (at lines 1 and 3 in the Tcl script). If
the operation invoked does not have a return type then
[java_ret_assign $op] returns an empty string.

• You can format the parameters to an operation call (lines 5-8 in the Java
code) with the command idlgen_process_list (used at lines 2 and 3 in
the Tcl script). This command is discussed in “Idlgen_process_list” on
page 131.

Processing Output Parameters and the Return Value

The techniques used to process output parameters are similar to those used to
process input parameters, as the Tcl script below illustrates:

Tcl
[***

//--------
 222

T h e J a v a D e v e l o pmen t L i b r a r y
// Process the returned parameters
//--------

***]

Line 1 foreach arg [$op args {out inout}] {
set type [$arg type]
set name [java_l_name $arg]

Line 2 set arg_ref [java_clt_par_ref $arg]
[***

process_@[$type s_uname]@(@$arg_ref@);
***]
}
set ret_type [$op return_type]
if {[$ret_type l_name] != "void"} {

Line 3 set ret_ref [java_clt_par_ref $op]
[***

process_@[$ret_type s_uname]@(@$ret_ref@);
***]
}

The foreach loop at line 1 iterates over all the out and inout parameters.
Notice how the java_clt_par_ref command can be used to obtain references
to both parameters (line 2) and the return value (line 3). The above Tcl code
produces the following Java:

//--------
// Process the returned parameters
//--------
process_string(p_string);
process_longSeq(p_longSeq);
process_long_array(p_long_array);
process_longSeq(_result);

Processing Implicit Parameters to Attributes

Recall that the java_clt_par_decl command is defined as follows:

java_clt_par_decl arg_or_op

This command is used to declare a client-side variable to be used as a parameter
to (or return value of) an operation. Similar functionality is needed to declare a
client-side variable to be used as the implicit parameter to (or return value of) an
223

O r b i x Co d e G e n e r a t i o n T oo l k i t P r o g r am me r ’ s G u i d e
attribute. This additional functionality is obtained by implementing the
java_clt_par_decl command in a way that allows it to be invoked with either
two arguments (as indicated above) or with four arguments, as shown below:

java_clt_par_decl name type dir is_var

In this case, the argument arg_or_op has been replaced with three arguments
that specify the attribute’s name, type and direction (dir). The dir argument
should be in or return, for an attribute’s modifier and accessor, respectively.
This convention of replacing arg_or_op with three arguments is also used in the
other commands for the client-side processing of parameters. Thus, the full
collection of commands for processing the implicit parameter/return value for an
attribute is:

java_clt_par_decl name type dir
java_clt_par_ref name type dir

It also applies to the gen_ counterparts:

java_gen_clt_par_decl name type dir ind_lev

Server-Side Processing of Parameters

The std/java_boa_lib.tcl library provides the following commands to
process parameters (and the return value) inside the body of an operation:

java_srv_ret_decl op
java_srv_par_alloc arg_or_op
java_srv_par_ref arg_or_op

Some of the above commands have gen_ counterparts:

java_gen_srv_ret_decl op ind_lev ?alloc_mem?
java_gen_srv_par_alloc arg_or_op ind_lev

In all of the above commands, the arg_or_op parameter can be either an
argument node or an operation node in the parse tree. If arg_or_op is an
argument node then the above commands apply to a parameter of an operation
call. Conversely, if arg_or_op is an operation node then the above commands
apply to the return value of an operation.

The java_srv_ret_decl command returns a Java declaration of a variable that
holds the return value of an operation. If the operation does not have a return
value then this command returns an empty string.
 224

T h e J a v a D e v e l o pmen t L i b r a r y
The java_srv_par_alloc command returns a Java statement to create a
Holder class for an out parameter (or return value), if needed. If there is no
need to allocate memory then this command returns an empty string.

The java_srv_par_ref command returns a reference to the value of the
specified parameter (or return value) of an operation.

The examples in the following subsections illustrate the use of these commands.
In each of the examples, the following IDL is assumed (this is the same IDL used
previously in “Client-Side Processing of Parameters” on page 219):

// IDL
struct widget {long a;};
typedef sequence<long> longSeq;
typedef long long_array[10];

interface foo {
longSeq op(

in widget p_widget,
inout string p_string,
out longSeq p_longSeq,
out long_array p_long_array);

};

Declaring the Return Value and Creating Memory for
Parameters
The following Tcl script declares a local variable that can hold the return value of
the operation. It then allocates memory for out parameters and the return
value, if required.

Tcl
set op [$idlgen(root) lookup "foo::op"]
set ret_type [$op return_type]
set ind_lev 1
set arg_list [$op contents {argument}]
if {[$ret_type l_name] != "void"} {
[***

//--------
// Declare a variable to hold the return value.
//--------

Line 1 @[java_srv_ret_decl $op 0]@;
225

O r b i x Co d e G e n e r a t i o n T oo l k i t P r o g r am me r ’ s G u i d e
***]
}
[***

//--------
// Create memory for "out" parameters
// and the return value, if needed.
//--------

***]
foreach arg [$op args {out}] {

java_gen_srv_par_alloc $arg $ind_lev
}

Line 2 java_gen_srv_par_alloc $op $ind_lev

The output of the above Tcl is as follows:

//Java
//--------
// Declare a variable to hold the return value.
//--------
int[] _result;

//--------
// Allocate memory for "out" parameters
// and the return value, if needed.
//--------
p_longSeq = new int[];
_result = new int[];

Note that the declaration of the _result variable is separated from the creation
of memory for it. If you prefer to allocate memory for the _result variable in its
declaration then the declaration of _result is changed to:

int[] _result = new longSeq;
 226

T h e J a v a D e v e l o pmen t L i b r a r y
Initializing Output Parameters and the Return Value

The next Tcl script iterates over all the inout and out parameters, and the
return value, to assign values to them. Comments follow after the script:

Tcl
[***

//--------
// Assign new values to "out" and "inout"
// parameters, and the return value, if needed.
//--------

***]
foreach arg [$op args {inout out}] {

set type [$arg type]

Line 1 set arg_ref [java_srv_par_ref $arg]
set name2 "other_[$type s_uname]"
if {[$arg direction] == "inout"} {

java_gen_assign_stmt $type $arg_ref $name2 \
$ind_lev 0
}
if {[$ret_type l_name] != "void"} {

Line 2 set ret_ref [java_srv_par_ref $op]
set name2 "other_[$ret_type s_uname]"
java_gen_assign_stmt $ret_type $ret_ref \

 $name2 $ind_lev 0
}

The command java_srv_par_ref (lines 1 and 2) can be used to obtain a
reference to both parameters and the return value.

The output generated by the above Tcl code is as follows:

//--------
// Assign new values to "out" and "inout"
// parameters, and the return value, if needed.
//--------
p_string = other_string;
p_longSeq = other_longSeq;
for (i1 = 0; i1 < 10; i1 ++) {

p_long_array[i1] = other_long_array[i1];
}
_result = other_longSeq;
227

O r b i x Co d e G e n e r a t i o n T oo l k i t P r o g r am me r ’ s G u i d e
Processing Implicit Parameters to Attributes

Recall that the java_srv_par_alloc command is defined as follows:

java_srv_par_alloc arg_or_op

This command is used to allocate memory, if necessary, for an out parameter or
return value of an operation. Similar functionality is needed to allocate memory
for the return value of the accessor function for an attribute. This additional
functionality is obtained by implementing the java_srv_par_alloc command in
a way which allows it to be invoked with either one argument (as indicated
above) or with three arguments, as shown below:

java_srv_par_alloc name type dir

In this case, the argument arg_or_op has been replaced with three arguments
that specify the attribute’s name, type and direction (dir). The dir argument
should be return for an attribute’s accessor. This convention of replacing
arg_or_op with several arguments is also used in the other commands for the
server-side processing of parameters. Thus, the full collection of commands for
processing the implicit parameter/return value for an attribute is:

java_srv_ret_decl name type ?alloc_mem?
java_srv_par_alloc name type dir
java_srv_par_ref name type dir

It also applies to the gen_ counterparts:

java_gen_srv_ret_decl name type ind_lev ?alloc_mem?
java_gen_srv_par_alloc name type dir ind_lev
 228

T h e J a v a D e v e l o pmen t L i b r a r y
Processing Instance Variables and Local Variables

Previous sections have discussed how to process variables used for parameters
and the return value of an operation call. However, not all variables are used as
parameters. For example, a Java class that implements an IDL interface may
contain some instance variables that are not used as parameters; or the body of
an operation may declare some local variables that are not used as parameters.
This section discusses commands for processing such variables. The following
command is provided:

java_var_decl name type dir

The java_var_decl command returns a Java variable declaration with the
specified name and type.

There is also a gen_ counterparts to the above command:

java_gen_var_decl name type dir ind_lev

The following example illustrates the use of these gen_ commands:

Tcl
set ind_lev 1
[***
void some_method()
{

// Declare variables
***]
foreach type $type_list {

set name "my_[$type l_name]"
java_gen_var_decl $name $type $ind_lev

}
[***

// Initialize variables
***]
foreach type $type_list {

set name "my_[$type l_name]"
set value "other_[$type l_name]"
java_gen_assign_stmt $type $name $value $ind_lev 0

}
[***
} // some_func()
***]
229

O r b i x Co d e G e n e r a t i o n T oo l k i t P r o g r am me r ’ s G u i d e
If the variable type_list contains the types string, widget (a struct) and
long_array then the above Tcl code generates the following:

// Java
void some_method()
{

// Declare variables
String my_string
widget my_widget;
int[] my_long_array;

// Initialise variables
my_string = other_string;
my_widget = other_widget;
for (i1 = 0; i1 < 10; i1 ++) {

my_long_array[i1] = other_long_array[i1];
}

} // some_func()

Processing Unions
When generating Java code to process an IDL union, it is common to use a Java
switch statement to process the different cases of the union. The commands
java_branch_case_s_label and java_branch_case_l_label are provided to
help with this task. However, sometimes you may want to process an IDL union
using a different Java construct, such as an if-then-else statement. The slightly
lower-level commands java_branch_s_label and java_branch_l_label are
provided to help with this task.

java_branch_case_s_label

This command is used as follows:

java_branch_case_s_label union_branch

This command returns a string in the form "case label" where label is the
(fully-scoped) label for that branch of the union, or the string “default” if it is
the default branch in the union. As an example, consider the following IDL:

// IDL
module m {
 230

T h e J a v a D e v e l o pmen t L i b r a r y
enum colour {red, green, blue};

union foo switch(colour) {
case red: long a;
case green: string b;
default: short c;

};
};

The following Tcl script generates a Java switch statement to process the union:

Tcl
set union [$idlgen(root) lookup "m::foo"]
[***
void some_method()
{

switch(u._discriminator()) {
***]
foreach branch [$union contents {union_branch}] {

set name [java_l_name $branch]
set case_label [java_branch_case_s_label $branch]

[***
@$case_label@:

... // process u.@$name@()
break;

***]
}; # foreach
[***

};
} // some_func()
***]

The code generated from the above Tcl is as follows:

// Java
void some_method()
{
switch(u._discriminator()) {
case m.red().value():

... // process u.a()
break;

case m.green().value():
... // process u.b()
break;

default:
231

O r b i x Co d e G e n e r a t i o n T oo l k i t P r o g r am me r ’ s G u i d e
... // process u.c()
break;

};
} // some_func()

The command java_branch_case_s_label works for any type of the union’s
discriminant. For example, if the discriminant is, say, type long then this
command will return a string of the form “case 42” (where 42 is the value of
the case label), or if the discriminant is type char then this command returns a
string of the form "case ’a’" .

java_branch_case_l_label

This command is used as follows:

java_branch_case_s_label union_branch

It works almost identically to java_branch_case_s_label except that it
produces the non-scoped label of the union’s case. For example, instead of
returning case m.foo.red().value(), it returns case foo.red().value().

java_branch_s_label

This command is used as follows:

java_branch_s_label union_branch

It works almost identically to java_branch_case_s_label except that the case
prefix is not included in the returned value.

Note that the command java_branch_case_s_label is slightly easier to use if
you are generating a Java switch statement to process a union. The command
java_branch_s_label could, however, be used if you wanted to generate a Java
if-then-else statement to process a union.
 232

T h e J a v a D e v e l o pmen t L i b r a r y
java_branch_l_label

This command is used as follows:

java_branch_l_label union_branch

It works almost identically to java_branch_s_label except that it produces
the non-scoped value of the union’s case. For example, instead of returning
m.red, it returns red.

Processing Arrays
Arrays are usually processed in Java by using a for-loop to access each element
in the array. For example, consider the following definition of an array:

// IDL
typedef long long_array[5][7];

Assume that two variables, foo and bar, are both of type long_array. Java code
to perform an element-wise copy from bar into foo might be written as follows:

// Java
void some_func()
{

Line 1 int i1;

Line 1 int i2;

Line 2 for (i1 = 0; i1 < 5; i1 ++) {

Line 2 for (i2 = 0; i2 < 7; i2 ++) {

Line 3 foo[i1][i2] = bar[i1][i2];

Line 4 }

Line 4 }
}

In order to write a Tcl script to generate the above Java code, you need Tcl
commands that declare the index variables (lines marked 1), generate the header
of the for loop (lines marked 2), provide the index for each element of the array
233

O r b i x Co d e G e n e r a t i o n T oo l k i t P r o g r am me r ’ s G u i d e
([i1][i2] in the above example, as used in line 3), and generate the footer of the
for loop (lines marked 4). The following commands provide exactly these
capabilities:

1. java_array_decl_index_vars arr pre ind_lev

2. java_array_for_loop_header arr pre ind_lev ?decl?

3. java_array_elem_index arr pre

4. java_array_for_loop_footer arr indent

In each of these commands, the following conventions hold:

• arr denotes an array node in the parse tree.

• pre is the prefix to use when constructing the names of index variables.
For example, the prefix i is used to get index variables called i1 and i2.

• ind_lev is the indentation level at which the for-loop is to be created. In
the above Java example, the for loop is indented one level from the left
side of the page.

As a concrete example, the following Tcl script generates the for loop shown
previously:

Tcl
set typedef [$idlgen(root) lookup "long_array"]
set a [$typedef true_base_type]

Line 5 set indent [java_indent [$a num_dims]]

Line 3 set index [java_array_elem_index $a "i"]
[***
void some_method()
{

Line 1 @[java_array_decl_index_vars $a "i" 1]@

Line 2 @[java_array_for_loop_header $a "i" 1]@

Line 3 @$indent@foo@$index@ = bar@$index@;

Line 4 @[java_array_for_loop_footer $a 1]@
}
***]

The amount of indentation to be used inside the body of the for-loop (at line 3)
is calculated by using the number of dimensions in the array as a parameter to
the java_indent command (line 5).
 234

T h e J a v a D e v e l o pmen t L i b r a r y
The java_array_for_loop_header command takes a boolean parameter called
decl which has a default value of 0. If decl has the value 1, the index variables
will be declared inside the header of the for-loop. Thus, functionally equivalent
(but slightly shorter) Java code can be written as follows:

// Java
void some_method()
{

for (int i1 = 0; i1 < 5; i1 ++) {
for (int i2 = 0; i2 < 7; i2 ++) {

foo[i1][i2] = bar[i1][i2];
}

}
}

The Tcl script to generate this is also slightly shorter (because it does not need
to use the java_array_decl_index_vars command):

Tcl
set typedef [$idlgen(root) lookup "long_array"]
set a [$typedef true_base_type]
set indent [java_indent [$a num_dims]]
set index [java_array_elem_index $a "i"]
[***
void some_func()
{

@[java_array_for_loop_header $a "i" 1 1]@
@$indent@foo@$index@ = bar@$index@;
@[java_array_for_loop_footer $a 1]@

}
***]

For completeness, some of the array processing commands have gen_
counterparts:

java_gen_array_decl_index_vars arr pre ind_lev
java_gen_array_for_loop_header arr pre ind_lev ?decl?
java_gen_array_for_loop_footer arr indent
235

O r b i x Co d e G e n e r a t i o n T oo l k i t P r o g r am me r ’ s G u i d e
Processing Anys
The commands to process type any are split into two categories:

• Those used to insert a value into an any.

• Those used to extract a value from an any.

Inserting Values into an Any

Use the java_any_insert_stmt command to generate code that inserts a value
into an any:

java_any_insert_stmt type any_name value

This command returns the Java statement that inserts the specified value of the
specified type into the any called any_name. An example of its use is as follows:

Tcl
foreach type $type_list {

set var_name my_[$type s_uname]
[***
@[java_any_insert_stmt $type "an_any" $var_name]@;
***]
}

If the variable type_list contains the types widget (a struct), boolean and
long_array then the above Tcl code will generate the following:

// Java
widgetHelper.insert(my_widget, an_any);
AnyHelper.insert_boolean(my_boolean, an_any);
long_arrayHelper.insert(an_any, my_long_array);
 236

T h e J a v a D e v e l o pmen t L i b r a r y
Extracting Values from an Any

The following commands are provided to help you write Tcl scripts that extract
values from an any:

java_any_extract_var_decl type name
java_any_extract_var_ref type name
java_any_extract_stmt type any_name name

The java_any_extract_var_decl command is used to declare a variable into
which values from an any will be extracted. The parameters to this command
are the variable’s type and its name.

The java_any_extract_var_ref command returns a reference to the value in
the specified variable (called name and of the specified type).

The java_any_extract_stmt command is used to extract a value of the
specified type from the any called any_name into the variable called name.

The following example illustrates the use of these commands:

Tcl
[***
try {
***]

foreach type $type_list {
set var_name my_[$type s_uname]

[***
@[java_any_extract_var_decl $type $var_name]@;
***]
}
output "\n"
foreach type $type_list {

set var_name my_[$type s_uname]
set var_ref [java_any_extract_var_ref $type $var_name]

[***
@[java_any_extract_stmt $type "an_any" $var_name]@) {
process_@[$type s_uname]@(@$var_ref@);
***]
}
[***
};
catch(exception e){

Systemout.println("Error: extract from any.");
237

O r b i x Co d e G e n e r a t i o n T oo l k i t P r o g r am me r ’ s G u i d e
e.printStackTrace();
};
***]

If the variable type_list contains the types widget (a struct), boolean, and
long_array, the above Tcl code generates the following:

// Java
try {

widget my_widget;
org.omg.CORBA.Boolean my_boolean;
int[] my_long_array;

my_widget = widgetHelper.extract(an_any);
process_widget(my_widget);

my_boolean = AnyHelper.extractBoolean(an_any);
process_boolean(my_boolean);

my_long_array = long_arrayHelper.extract(an_any);
process_long_array(my_long_array);

}
catch(exception e){

Systemout.println("Error: extract from any.");
e.printStackTrace();

};
 238

 13
Other Tcl Libraries for Java Utility
Functions

This chapter describes some further Tcl libraries available for use in
your genies.

The stand-alone genies java_print.tcl, java_random.tcl and
java_equal.tcl are discussed in Chapter 3 “Ready-to-use Genies for Orbix
C++”. Aside from being available as stand-alone genies, java_print.tcl,
java_random.tcl and java_equal.tcl also provide libraries of Tcl commands
that can be called from within other genies. This chapter discusses the APIs of
these libraries.

Tcl API of java_print
The minimal API of the java_print library is made available by the following
command:

smart_source "java_print/lib-min.tcl"

The minimal API defines the following command:

java_print_func_name type

This command returns the name of the print function for the specified type.

If you want access to the full API of the java_print library then use the
following command:

smart_source "java_print/lib-full.tcl"
239

O r b i x Co d e G e n e r a t i o n T oo l k i t P r o g r am me r ’ s G u i d e
The full library includes the commands from the minimal library and defines the
following command:

gen_java_print_func full_any

This command generates several files.

gen_java_print_func generates the class PrintFuncs.Java in the package
Idlgen. All the print functions, such as printany() and printTypeCode(), for
the IDL basic types are members of the PrintFuncs.Java class.

In addition to the PrintFuncs.Java class, another Java class is generated for
each of the IDL types in your source IDL file. This class is called Print<type
name> and contains a method with the same name as the IDL type name. This
class is contained in the package Idlgen.<type package name>. For example,
the following IDL produces corresponding Java print class:

When generating PrintFuncs.Java, gen_java_print_func generates code
that uses TypeCodes of user-defined IDL types only if the -A option is to be
given to the IDL compiler.

Example of Use

The following script illustrates how to use all the API commands of the
java_print library. Lines marked with "*" are relevant to the usage of the
java_print library.

Tcl
smart_source "std/sbs_output.tcl"
smart_source "std/java_boa_lib.tcl"

* smart_source "java_print/lib-full.tcl"

if {$argc != 1} {

//IDL
module outer{

interface inner{
struct mystruct{

...
}

}

}

//Java

idlgen.outer.inner.Printmystruct
 240

O t h e r T c l L i b r a r i e s f o r J a v a U t i l i t y F u n c t i o n s
puts "usage: ..."; exit 1
}
set file [lindex $argv 0]
set ok [idlgen_parse_idl_file $file]
if {!$ok} { exit }

#--------
Generate it_print_funcs.{h,cc}
#--------

* gen_java_print_funcs 1

#--------
Generate a file which contains
calls to the print functions
#--------
set java_file_ext $pref(java,java_file_ext)
open_output_file "example_func$java_file_ext"

set type_list [idlgen_list_all_types "exception"]
[***
package @[java_package_name ""]@
public class Example{

public static void func() {
//--------
// Declare variables of each type
//--------

***]
foreach type $type_list {

set name my_[$type s_uname]
[***

@[java_variable_decl $name $type 1]@;
***]
}; # foreach type

[***

... //Initialize variables

//--------
// Print out the value of each variable
//--------

***]
241

O r b i x Co d e G e n e r a t i o n T oo l k i t P r o g r am me r ’ s G u i d e
foreach type $type_list {

* set print_func [java_print_func_name $type]

* set name my_[$type s_uname]
[***

System.out.println("@$name@ =");
@$print_func@(cout, @$name@, 1);

***]
}; # foreach type

[***
} // end of func()

} //end of class
***]
close_output_file

The source code of the Java genie provides a larger example of the use of the
java_print library.

Tcl API of java_random
The minimal API of the java_random library is made available by the following
command:

smart_source "java_random/lib-min.tcl"

The minimal API defines the following commands:

java_random_assign_stmt type name
java_gen_random_assign_stmt type name ind_lev

The java_random_assign_stmt command returns a string representing a C++
statement that assigns a random value to the variable with the specified type and
name. The command java_gen_random_assign_stmt outputs the statement at
the indentation level specified by ind_lev.

If you want access to the full API of the java_random library then use the
following command:

smart_source "java_random/lib-full.tcl"

The full library includes the command from the minimal library and additionally
defines the following commands:
 242

O t h e r T c l L i b r a r i e s f o r J a v a U t i l i t y F u n c t i o n s
gen_java_random_func full_any

gen_java_random_func generates the class RandomFuncs.Java in the package
Idlgen. All the random functions, such as randomany() and
randomTypeCode(), for the IDL basic types are members of the
RandomFuncs.Java class.

In addition to the RandomFuncs.Java class, another Java class is generated for
each of the IDL types in your source IDL file. This class is called Random<type
name> and contains a method with the same name as the IDL type name. This
class is contained in the package Idlgen.<type package name>. For example,
the following IDL produces corresponding Java print class:

Example of Use

The following script illustrates how to use all the API commands of the
java_random library. This example is an extension of the example shown in the
section “TCL API of java_print”. Lines marked with "+" are relevant to the use of
the java_random library, while lines marked with "*" are relevant to the use of
the java_print library.

Tcl
smart_source "std/sbs_output.tcl"
smart_source "std/java_boa_lib.tcl"

* smart_source "java_print/lib-full.tcl"

+ smart_source "java_random/lib-full.tcl"

if {$argc != 1} {
puts "usage: ..."; exit

}
set file [lindex $argv 0]
set ok [idlgen_parse_idl_file $file]

//IDL
module outer{

interface inner{
struct mystruct{

...
}

}

}

//Java

idlgen.outer.inner.Randommystruct
243

O r b i x Co d e G e n e r a t i o n T oo l k i t P r o g r am me r ’ s G u i d e
if {!$ok} { exit }

#--------
Generate PrintFuncs.Java
#--------

* gen_java_print_funcs 1

#--------
Generate RandomFuncs.Java
#--------

+ gen_java_random_funcs 1

#--------
Generate a file which contains
calls to the print and random functions
#--------
set java_file_ext $pref(java,java_file_ext)
open_output_file "Example$java_file_ext"

set type_list [idlgen_list_all_types "exception"]
[***
package @[java_package_name ""]@
public class Example{

public static void func(){

void Example()
{

//--------
// Declare variables of each type
//--------

***]
foreach type $type_list {

set name my_[$type s_uname]
[***

+ @[java_variable_decl $name $type 1]@;
***]
}; # foreach type

[***

//--------
 244

O t h e r T c l L i b r a r i e s f o r J a v a U t i l i t y F u n c t i o n s
// Assign random values to each variable
//--------

***]
foreach type $type_list {

set name my_[$type s_uname]
[***

@[java_random_assign_stmt $type $name]@;
***]
}; # foreach type

[***

//--------
// Print out the value of each variable
//--------

***]
foreach type $type_list {

* set print_func [java_print_func_name $type]
set name my_[$type s_uname]

[***
System.out.println("@$name@ =");

* @$print_func@(cout, @$name@, 1);

***]
}; # foreach type

[***
} // end of Example()

}
***]
close_output_file

The source-code of the C++ genie provides a larger example of the use of the
java_random library.
245

O r b i x Co d e G e n e r a t i o n T oo l k i t P r o g r am me r ’ s G u i d e
Tcl API of java_equal
The minimal API of the java_equal library is made available by the following
command:

smart_source "java_equal/lib-min.tcl"

The minimal API defines the following commands:

java_equal_expr type name1 name2
java_not_equal_expr type name1 name2

These commands return a string representing a Java Boolean expression that
tests the two specified variables name1 and name2 of the same type for
(in)equality.

Example of Use

An example of the use of java_equal_expr and java_not_equal_expr is as
follows:

foreach type [idlgen_list_all_types “exception”] {
set name1 “my_[$type s_uname]_1”;
set name2 “my_[$type s_uname]_2”;

[***
if (@[java_equal_expr $type $name1 $name2] @) {

System.out.println("values are equal");
}

***]
}; # foreach type

Equality Functions

Unlike cpp_print and cpp_random there is no full cpp_equal API. The equality
functions used by IDLgen are implemented in a pre-written class called
EqualFuncs. This Java class uses Java Reflection (Java’s Runtime Type Information
System) to perform the comparisons. For example, any two CORBA objects can
be compared by calling:

IT_is_eq_object(Object obj1, Object obj2);

The methods in this class can only be used for CORBA types as they make
assumptions about classes based on the way the IDL compiler generates code.
 246

O t h e r T c l L i b r a r i e s f o r J a v a U t i l i t y F u n c t i o n s
As the equality functions use Java Reflection they cannot distinguish between the
mappings of certain IDL types, for example:

//IDL
typedef sequence <long> apples;
typedef sequence <unsigned long> oranges;

Both the above typedefs map to a Java int[], so if the Java instance of apples
and oranges contain the same number of elements and the same values the
equality functions return TRUE. It is the responsibility of the programmer to
ensure that the parameters to the equality functions are of the same type.
247

O r b i x Co d e G e n e r a t i o n T oo l k i t P r o g r am me r ’ s G u i d e
 248

Appendices

Appendix A
User’s Reference

This appendix presents reference material about all the configuration
and usage details for IDLgen and for the genies provided with the
Orbix Code Generation Toolkit.

General Configuration Options
Table 13.1 describes the general purpose configuration options available in
standard configuration file idlgen.cfg.

Configuration Option Description

idlgen.install_root Set this to the installation directory
IDLgen is installed in.

idlgen.genie_search_path Search order used by the
smart_source command.

idlgen.tmp_dir Directory that IDLgen should use
when creating temporary files.

default.all.want_diagnostics Setting for diagnostics:

1: Genies print diagnostic messages.

0: Genies stay silent.

default.orbix.install_root Set this to be the installation directory
where Orbix has been installed.

Table: 13.1: Configuration File Options
251

O r b i x Co d e G e n e r a t i o n T oo l k i t P r o g r am me r ’ s G u i d e
Configuration Options for C++ Genies
Table 13.2 describes the configuration options specific to C++ genies in the
standard configuration file idlgen.cfg:

default.orbix.version_number Set this to your version of Orbix.
Supported values are 2.2, 2.3, and 3.0.

default.orbix.is_multi_threaded Setting:

1: if you have multi-threaded Orbix.

0: if you have single-threaded Orbix.

Note: Orbix is multi-threaded on most
platforms.

default.html.file_ext File extension preferred by your web
browser (“.html” for most platforms).

Configuration Option Purpose

idlgen.preprocessor Location of a C++
preprocessor. You should not
have to change this entry.

idlgen.preprocessor_args Arguments to pass to the
preprocessor. You should not
have to change this entry.

Table: 13.2: Configuration File Options for C++ Genies

Configuration Option Description

Table: 13.1: Configuration File Options
 252

U s e r ’ s R e f e r e n c e
default.cpp_genie.want_boa Sets the approach used when
writing C++ classes that
implement IDL interfaces:

1: Use the BOA approach.

0: Use the TIE approach.

default.cpp_genie.want_this Do you want the generated
C++ class to have a _this()
function?

default.cpp.cc_file_ext File extension preferred by your
C++ compiler (for example,
“.cc”, “.cpp”, “.cxx”, or “.C”).

default.cpp.h_file_ext File extension preferred by your
C++ compiler. This is usually
“.h”.

default.cpp.impl_class_suffix Suffix for your C++ classes that
implement IDL interfaces.

default.cpp.smart_proxy_prefix Prefix for your C++ classes that
implement smart proxies for
IDL interfaces.

default.cpp.want_throw This allows you to set throw
clauses on the C++ signatures
of IDL operations and attributes.
Setting:

1: Your C++ compiler supports
exceptions.

0: Your C++ compiler does not
support exceptions.

Configuration Option Purpose

Table: 13.2: Configuration File Options for C++ Genies
253

O r b i x Co d e G e n e r a t i o n T oo l k i t P r o g r am me r ’ s G u i d e
Configuration Options for Java Genies
Table 13.2 describes the configuration options specific to Java genies in the
standard configuration file idlgen.cfg:

default.cpp.want_named_env This allows the
CORBA::Environment

parameter at the end of
operation and attribute
signatures to be named. Setting:

1: Named.

0: Anonymous.

Configuration Option Purpose

default.java.java_install_dir Location of Java compiler. For
example: “d:\jdk1.1”.

default.java.java_file_ext File extension preferred by your
Java compiler.

default.java.java_class_ext Class name extension preferred
by your Java compiler.

default.java.serialized_file_ext File extension for loaders.

default.java.serialized_dir Directory to store serialized
files.

default.java.server_name Default server name.

default.java.impl_class_suffix Suffix for your Java classes that
implement IDL interfaces.

Table: 13.3: Configuration File Options for Java Genies

Configuration Option Purpose

Table: 13.2: Configuration File Options for C++ Genies
 254

U s e r ’ s R e f e r e n c e
default.java.smart_proxy_prefix Prefix for your Java classes that
implement smart proxies for
IDL interfaces.

default.java.smart_proxy_factory_suff
ix

Suffix for your Java classes that
implement smart proxy factories
for IDL interfaces.

default.java.print_prefix Prefix for your java classes that
implement print methods for
IDL types.

default.java.random_prefix Prefix for your java classes that
implement random methods for
IDL types.

default.java.want_throw_sys_except This allows you to set throw
clauses on the Java signatures of
IDL operations and attributes.
Setting:

1: Your Java compiler supports
exceptions.

0: Your Java compiler does not
support exceptions.

default.java.impl_is_ready_timeout The timeout value to pass to
impl_is_ready.

default.java.final Generate final classes and
methods.

default.java.nohangup Set to True if you want the
server to remain alive while a
client is connected.

default.java.appendLog Set to True if you want the
server logs to be appended.

Configuration Option Purpose

Table: 13.3: Configuration File Options for Java Genies
255

O r b i x Co d e G e n e r a t i o n T oo l k i t P r o g r am me r ’ s G u i d e
Command Line Usage
This section summarizes the command-line arguments used by the genies
bundled with the Orbix Code Generation Toolkit.

stats

idlgen stats.tcl [options] [file.idl]+

The command line options are:

idl2html

idlgen idl2html.tcl [options] [file.idl]+

The command line options are:

-I<directory> Passed to preprocessor.

-D<name>[=value] Passed to preprocessor.

-h Prints a help message.

-include Count statistics for files in #include
statement too.

-I<directory> Passed to preprocessor.

-D<name>[=value] Passed to preprocessor.

-h Prints help message.

-v Verbose mode (default).

-s Silent mode.
 256

U s e r ’ s R e f e r e n c e
Orbix C++ Genies

cpp_genie

idlgen cpp_genie.tcl [options] file.idl [interface wildcard]*

The command line options are:

-I<directory> Passed to preprocessor.

-D<name>[=value] Passed to preprocessor.

-h Prints help message.

-v Verbose mode (default).

-s Silent mode.

-include Process interfaces in files in #include
statement too.

-boa Use the BOA approach.

-tie Use the TIE approach (opposite of -boa
option).

-(no)interface Generate implementation of IDL interfaces.

-(no)smart Generate smart proxies for IDL interfaces.

-(no)loader Generate skeleton loader classes.

-(no)client Generate skeleton client class.

-(no)server Generate skeleton server class.

-(no)makefile Generate a Makefile to build all the
generated files.

-all Shorthand for specifying all of the options:

-interface, -client, -server, -makefile,
-loader, and -smart.

-(no)var Use _var types in the generated code. This
is the default.

-(no)any Generate support for any and TypeCode.
The default is not to support these types.
257

O r b i x Co d e G e n e r a t i o n T oo l k i t P r o g r am me r ’ s G u i d e
cpp_op

idlgen cpp_op.tcl [options] file.idl [operation or attribute
wildcard]*

The command line options are:

-(in)complete Generate complete applications. This is the
default. If incomplete applications are
chosen, the client application does not
invoke any operations and the server
application does not return random values.

-merge Generate "marker merge" comments (not
default). This allows any amendments to this
IDL interface to be reflected in the code by
the use of the Orbix Code Amend script.

-(no)inherit Use inheritance of implementation classes
(default).

-(no)_this Generate operation _this() in
implementation class.

-I<directory> Passed to preprocessor.

-D<name>[=value] Passed to preprocessor.

-h Prints help message.

-v Verbose mode (default).

-s Silent mode.

-o file Writes the output to the specified file.

-include Process operations and attributes in files in
#include statements too.
 258

U s e r ’ s R e f e r e n c e
cpp_print

idlgen cpp_print.tcl [options] file.idl

The command line options are:

cpp_random

idlgen cpp_random.tcl [options] file.idl

The command line options are:

-I<directory> Passed to preprocessor.

-D<name>[=value] Passed to preprocessor.

-h Prints help message.

-(no)any Generate code to support any and
TypeCode. The default is not to generate
print functions for these types.

-I<directory> Passed to preprocessor.

-D<name>[=value] Passed to preprocessor.

-h Prints help message.

-(no)any Generate code to support any and
TypeCode. The default is not to generate
random functions for these types.
259

O r b i x Co d e G e n e r a t i o n T oo l k i t P r o g r am me r ’ s G u i d e
cpp_equal

idlgen cpp_equal.tcl [options] file.idl

The command line options are:

-I<directory> Passed to preprocessor.

-D<name>[=value] Passed to preprocessor.

-h Prints help message.

-(no)any Generate code to support any and
TypeCode. The default is not to generate
equal functions for these types.
 260

Appendix B
Command Library Reference

This appendix presents reference material on all the commands that
the Code Generation Toolkit provides in addition to of the standard
Tcl interpreter.

File Output API
The following commands provide support for file output.

Location std/output.tcl For normal output.

std/sbs_output.tcl For Smart But Slow output.

open_output_file

Synopsis open_output_file filename

Description Opens the specified file for writing.

Notes If the file already exists it is overwritten.

Example open_output_file "my_code.cpp"

See Also close_output_file
output

close_output_file
Synopsis close_output_file

Description Closes the currently opened file.

Notes Throws an exception if there is no currently opened file.

Example close_output_file
261

O r b i x Co d e G e n e r a t i o n T oo l k i t P r o g r am me r ’ s G u i d e
See Also close_output_file
flush_output

output

Synopsis output string

Description Writes the specified string to the currently open file.

Notes Throw an exception if there is no currently opened file.

Example output "Write a line to a file"

See Also close_output_file
open_output_file

Configuration File API
This section lists and describes all the operations associated with configuration
files. These commands are discussed in Chapter 8, “Configuring your Genies”.

Conventions A pseudo-code notation is used for the operation definitions of the configuration
file variable that results in parsing a configuration file:

class derived_node : base_node {
return_type operation(param_type param_name)

}

idlgen_parse_config_file
Synopsis idlgen_parse_config_file filename

Description Parses the given configuration file. If parsing fails the command throws an
exception, the text of which indicates the problem. If parsing is successful this
command returns a handle to a Tcl object which is initialized with the contents
of the specified configuration file. The pseudo-code representation of the
resultant object is:

class configuration_file {
enum setting_type {string, list, missing}

string filename()
list<string> list_names()
 262

Co mmand L i b r a r y R e f e r e n c e
void destroy()
setting_type type(

string cfg_name)
string get_string(

string cfg_name)
void set_string(

string cfg_name,
string cfg_value)

list<string> get_list(
string cfg_name)

void set_list(
string cfg_name,
list<string> cfg_value)

}

Notes None.

Example if { [catch {
set my_cfg_file [idlgen_parse_config_file "mycfg.cfg"]

} err] } {
puts stderr $err
exit

}

See Also destroy
filename

destroy

Synopsis $cfg destroy

Description Frees any memory taken up by the parsed configuration file.

Notes None.

Example $my_cfg_file destroy

See Also idlgen_parse_config_file

$cfg filename

Synopsis $cfg filename

Description Returns the name of the configuration file which was parsed.

Notes None.
263

O r b i x Co d e G e n e r a t i o n T oo l k i t P r o g r am me r ’ s G u i d e
Example $my_cfg_file filename
> mycfg.cfg

See Also idlgen_parse_config_file

list_names
Synopsis $cfg list_names

Description Returns a list which contains the names of all the entries in the parsed
configuration file.

Notes No assumptions should be made about the order of names in the returned list.

Example puts "[$my_cfg_file filename] contains the following entries..."

foreach name [$my_cfg_file list_names] {
puts "\t$name"

}
> orbix.version
> orbix.is_multithreaded
> cpp.file_ext

See Also filename

type
Synopsis $cfg type

Description A configuration file entry can have a value that is either a string or a list of
strings. This command is used to determine the type of the value associated with
the name.

Notes If the specified name is not in the configuration file this command returns
missing.

Example switch [$my_cfg_file type "foo.bar"] {
string { puts "The ’foo.bar’ entry is a string" }
list { puts "The ’foo.bar’ entry is a list" }
missing { puts "There is no ’foo.bar’ entry" }

}

See Also list_names
 264

Co mmand L i b r a r y R e f e r e n c e
get_string

Synopsis $cfg get_string name [default_value]

Description Returns the value of the specified name. If there is no name entry then the
default value (if supplied) is returned.

Notes An exception is thrown if any of the following errors occur:

• There is no entry for name and no default value was supplied.

• The entry for name exists but is of type list.

Example puts [$my_cfg get_string "foo_bar"]
> my_value

See Also get_list

set_string

get_list
Synopsis $cfg get_list name [default_list]

Description Returns the list value of the specified name. If there is no name entry then the
default list (if supplied) is returned.

Notes An exception is thrown if any of the following errors occur:

• There is no entry for name and no default list was supplied.

• The entry for name exists but is of type string.

Example foreach item [$my_cfg get_list my_list] { puts $item }
> value1
> value2
> value3

See Also get_string

set_list
265

O r b i x Co d e G e n e r a t i o n T oo l k i t P r o g r am me r ’ s G u i d e
set_string

Synopsis $cfg set_string name value

Description Assigns value to the specified name.

Notes If the entry name already exists it is overridden. The updated configuration
settings are not written back to the file.

Example $my_cfg set_string "foo.bar" "another_value"

See Also get_string

set_list

Synopsis $cfg set_list name value

Description Assigns value to the specified name.

Notes If the entry name already exists, it is overridden. The updated configuration
settings are not written back to the file.

Example $my_cfg set_list my_string ["this", "is", "a", "list"]

See Also get_list
 266

Co mmand L i b r a r y R e f e r e n c e
idlgen_set_preferences

Synopsis idlgen_set_preferences $cfg

Description This procedure iterates over all the entries in the specified configuration file and
for each entry that exists in the default scope it creates an entry in the $pref
array. For example, the $cfg entry default.foo.bar = "apples" results in
$pref(foo,bar) being set to "apples".

Notes This procedure assumes that all names in the configuration file containing is_ or
want_ have boolean values. If such an entry has a value other than 0 or 1, an
exception is thrown.

During initialization, IDLgen executes the statement:

idlgen_set_preferences $idlgen(cfg)

As such, default scoped entries in the IDLgen configuration file is always copied
into the $pref array.

Example if { [catch {
set my_cfg [idlgen_parse_config_file "mycfg.cfg"]
idlgen_set_preferences $my_cfg

} err] } {
puts stderr $err
exit

}

See Also idlgen_parse_config_file
267

O r b i x Co d e G e n e r a t i o n T oo l k i t P r o g r am me r ’ s G u i d e
Command Line Arguments API
This sections details commands that support command-line parsing. These
commands are discussed in Chapter 8, “Configuring your Genies”.

idlgen_getarg
Synopsis idlgen_getarg $format arg param symbol

Description Extracts the command line arguments from $argv using a user-defined search
data structure.

Notes Format must be of the following form:

set format {
{"regular expression" [0|1] symbol}
...
...

}

Example set cmd_line_args_format {
{ "-I.+" 0 -I }
{ "-D.+" 0 -D }
{ "-v" 0 -v }
{ "-h" 0 usage }
{ "-ext" 1 -ext }
{ ".+\\.[iI][dD][lL] 0 idl_file }

}

while { $argc > 0 } {

format (in) A data structure describing which command-line
parameters you wish to extract.

argument (out) The command-line argument that was matched on this
run of the command.

parameter (out) The parameter (if any) of the command-line argument
that was matched.

symbol (out) The symbol for the command-line argument that was
specified in the format parameter. This can be used to
find out which command-line argument was actually
extracted.
 268

Co mmand L i b r a r y R e f e r e n c e
idlgen_getarg $cmd_line_args_format arg param symbol

switch $symbol {
 -I -
 -D { puts "Preprocessor directive: $arg"}
 idlfile { puts "IDL file: $arg" }

-v { puts "option: -v" }
-ext { puts "option: -ext; parameter $param" }
usage { puts "usage: ..."

 exit 1
}

default { puts "unknown argument $arg"}
 puts "usage: ...

exit 1
}

}

See Also idlgen_parse_config_file
269

O r b i x Co d e G e n e r a t i o n T oo l k i t P r o g r am me r ’ s G u i d e
 270

Appendix C
IDL Parser Reference

This appendix presents reference material on all the commands that
the Code Generation Toolkit provides to parse IDL files and
manipulate the results.

Location Built-in commands.

idlgen_parse_idl_file

Synopsis idlgen_parse_idl_file file preprocessor_directives

Description Parses the specified IDL file with the specified preprocessor-directives being
passed to the preprocessor. The preprocessor_directives parameter is
optional. Its default value is an empty list.

Notes If parsing is successful the root node of the parse tree is placed into the global
variable $idlgen(root), and idlgen_parse_idl_file returns 1 (true). If
parsing fails then error messages are written to standard error and
idlgen_parse_idl_file returns 0.

Example # Tcl
if { [idlgen_parse_idl_file "bank.idl" {-DDEBUG}]}{

puts "parsing succeeded"
} else {

puts "parsing failed"
}

See Also IDL Parse Tree Nodes.
271

O r b i x Co d e G e n e r a t i o n T oo l k i t P r o g r am me r ’ s G u i d e
IDL Parse Tree Nodes
This section lists and describes all the possible node types that can be created
from parsing an IDL file.

Conventions This section uses the following typographical conventions:

1. A pseudo-code notation is used for the operation definitions of the
different nodes that can exist in the parse tree:

class derived_node : base_node {
return_type operation(param_type param_name)

}

Abstract classes are in italics.

2. In the examples given the highlighted line in the IDL corresponds to the
node used in the Tcl script. In this example, the module finance is the
node referred to in the Tcl script as the variable $module.

// IDL
module Finance {

interface Account {
...

};

};

Tcl
puts [$module l_name]
> Finance
 272

I D L P a r s e r R e f e r e n c e
Table of Node Types

All the different types of nodes are arranged into an inheritance hierarchy as
shown in Figure 13.1:

Types shown in bold define new operations. For example, type field inherits
from type node and defines some new operations, while type char also inherits
from node but does not define any additional operations. There are two abstract
node types that do not represent any IDL constructs, but encapsulate the
common features of certain types of node. These two abstract node types are
called node and scope.

node

Synopsis This is the abstract base type for all the nodes in the IDL parse tree. For
example, the nodes interface, module, attribute, long are all sub-types of
node.

Definition class node {
string node_type()
string l_name()
string s_name()

Figure 13.1: Inheritance Hierarchy for Node Types

FKDU
RFWHW
IORDW

GRXEOH
VKRUW

XVKRUW
ORQJ

XORQJ
ERROHDQ
2EMHFW

7\SHFRGH

ILHOG
XQLRQBEUDQFK
DUJXPHQW
DWWULEXWH
FRQVWDQW
W\SHGHI
HQXPBYDO
DUUD\
VHTXHQFH
VWULQJ
LQWHUIDFHBIZG

PRGXOH

VWUXFW
H[FHSWLRQ

HQXP

LQWHUIDFH
RSHUDWLRQ

XQLRQ

QRGH

VFRSH
273

O r b i x Co d e G e n e r a t i o n T oo l k i t P r o g r am me r ’ s G u i d e
string s_uname()
list<string> s_name_list()
string file()
integer line()
boolean is_in_main_file()
node defined_in()
node true_base_type()
list<string> pragma_list()
boolean is_imported()

}

Example // IDL
module Finance {

node_type The name of parse-tree node’s class.

l_name Local name of the node, for example, balance.

s_name Fully scoped name of the node, for example
account::balance.

s_uname Fully scoped name of the node, but with all
occurrences of "::" replaces with and underscore. For
example account_balance.

s_name_list Fully scoped name of the node in list form.

defined_in The node of the enclosing scope.

true_base_type For almost all node types, this operation returns a
handle to the node itself. However, for a typedef
node, this operation strips off all the layers of typedef
and returns a handle to the underlying type. See the
discussion in “Typedefs and Anonymous Types” on
page 92.

file IDL file which contained the node.

line Line number in the IDL file where the construct was
defined.

pragma_list A list of the relevant pragmas in the IDL file.

is_in_main_file True if not in an IDL file referred to in an #include
statement.

is_imported Opposite of is_in_main_file.
 274

I D L P a r s e r R e f e r e n c e
exception noFunds {
string reason;

};

};

scope

Synopsis Abstract base type for all the scoping constructs in the IDL file. An IDL
construct is a scope if it can contain other IDL constructs. For example, a
module is a scope because it can contain the declaration of other IDL types.
Likewise, a struct is a scope because it contains the fields of the struct.

Definition class scope : node {
node lookup(string name)
list<node> contents(

list<string> constructs_wanted,
function filter_func = "")

list<node> rcontents(
list<string> constructs_wanted,
list<string> recurse_nto,
function filter_func = "")

}

Methods

Tcl
puts [$node node_type]
puts [$node l_name]
puts [$node s_name]
puts [$node s_uname]
puts [$node s_name_list]
set module [$node defined_in]
puts [$module l_name]

> exception
> noFunds
> Finance::noFunds
> Finance_noFunds
> Finance noFunds

> Finance

lookup name

Get a handle to the named node.

contents node_types [func]

proc func { node } {
return 1 if node is to be included
return 0 if node is to be excluded
}

275

O r b i x Co d e G e n e r a t i o n T oo l k i t P r o g r am me r ’ s G u i d e
Example // IDL
module finance {

exception noFunds {
string reason;

};
interface account {

...
};

};

Obtain a list of handles to all the nodes that match the types
in the node_types list. An optional function name func can
be provided for extra filtering. This function must take one
parameter and return either true or false. The parameter is
the handle to a located node, the function can then return
true if it wants that node in the results list or false if it is to
be excluded.

rcontents node_types scope_types [func]

Exactly the same as contents but also recursively traverses
any contained scopes as specified in the scope_types list.
The pseudo-type all can be used as a value for the
constructs_wanted and recurse_into parameters of the
contents and rcontents operations.

Tcl
set exception [$finance lookup noFunds]
puts [$exception l_name]

foreach node [$finance contents {all}] {
puts [$node l_name]

}

foreach node [$finance rcontents {all} {exception}]
{

puts [$node l_name]
}

> noFunds

> noFunds
account

> noFunds
reason
account
 276

I D L P a r s e r R e f e r e n c e
Built-in IDL types

Synopsis All the built-in IDL types (long, short, string, and so on) are represented by types
which inherit from node and do not define any additional operations.

Definition class char : node {}
class octet : node {}
class float : node {}
class double : node {}
class short : node {}
class ushort : node {}
class long : node {}
class boolean : node {}
class Object : node {}
class TypeCode : node {}
class NamedValue : node {}
class Principal : node {}

Example // IDL
interface bank {

void findAccount(in long accNumber, inout branch brchObj);

};

argument
Synopsis An individual argument to an operation.

Definition class argument : node {
node type()
string direction()

}

Example // IDL
interface bank {

void findAccount(in long accNumber, inout branch brchObj);

Tcl
puts [$long_type l_name] > long

type The data type of the argument.

direction The passing direction of the argument: in, out or inout.
277

O r b i x Co d e G e n e r a t i o n T oo l k i t P r o g r am me r ’ s G u i d e
};

array

Synopsis An anonymous array type.

Definition class array : node {
node elem_type()
list<integer> dims()

}

Example // IDL
module finance {

typedef long longArray[10][20];

};

attribute

Synopsis An attribute.

Definition class attribute : node {
boolean is_readonly()
node type()

}

Tcl
puts [$argument direction]
set type [$argument type]
puts [$type l_name]
puts [$argument l_name]

> in

> long
> accNumber

elem_type The data type of the array.

dims The dimensions of the array.

Tcl
set type [$array base_type]
puts [$type l_name]
puts [$array dims]
puts [$array l_name]

> long
> 10 20
> longArray

is_readonly Determines whether the attribute is read only or not.

type The type of the attribute.
 278

I D L P a r s e r R e f e r e n c e
Example // IDL
interface bank {

attribute readonly string bankName;

};

constant

Synopsis A const.

Definition class constant : node {
string value()
node type()

}

Description

Example // IDL
module finance {

const long bankNumber= 57;

};

Tcl
puts [$attribute is_readonly]
set type [$attribute type]
puts [$type l_name]
puts [$attribute l_name]

> 1

> string
> bankName

value The value of the constant.

type The data type of the constant.

Tcl
puts [$const value]
set type [$const type]
puts [$type l_name]
puts [$const l_name]

> 57

> long
> bankNumber
279

O r b i x Co d e G e n e r a t i o n T oo l k i t P r o g r am me r ’ s G u i d e
enum_val

Synopsis A single entry in an enumeration.

Definition class enum_val : node {
string value()
string type()

}

Example // IDL

enum colour {red, green, blue};

enum
Synopsis The enumeration.

Definition class enum : scope {
}

Example // IDL

enum colour{red, green, blue};

exception

Synopsis An exception.

Definition class exception : scope {
}

Example // IDL
module finance{

exception noFunds {
string reason;

value The value of the enumerated entry.

type A name given to the whole enumeration.

Tcl
puts [$enum_val value]
puts [$enum_val l_name]
puts [[$enum_val type] l_name]

> 2
> blue
> colour

Tcl
puts [$enum s_name] > colour
 280

I D L P a r s e r R e f e r e n c e
float amountExceeded;
};

};

field

Synopsis A field is an item inside an exception or structure.

Definition class field : node {
node type()

}

Example // IDL
struct cardNumber {

long binNumber;
long accountNumber;

};

interface
Synopsis An interface.

Definition class interface : scope {
list<node> inherits()
list<node> ancestors()
list<node> acontents(

list<string> constructs_wanted
function filter_func = "")

}

Description

Tcl
puts [$exception l_name] > noFunds

type The type of the field.

Tcl
set type [$field type]
puts [$type l_name]
puts [$field l_name]

> long
> binNumber

inherits The list of interfaces this one derives from.
281

O r b i x Co d e G e n e r a t i o n T oo l k i t P r o g r am me r ’ s G u i d e
Notes An interface is an ancestor of itself.

Example // IDL
module finance {

interface bank {
...

};

};

interface_fwd
Synopsis A forward declaration of an interface.

Definition class interface : node {
node full_definition()

}

Example // IDL
interface bank;
...
interface bank {

account findAccount(in string accountNumber);

};

ancestors The list of all the interfaces that are ancestors of this one.

acontents Like the normal scope::contents command but searches
ancestor interfaces as well.

Tcl
puts [$interface l_name] > bank

full_definition The actual interface.

Tcl
set interface [$interface_fwd full_definition]
set operation [$interface lookup "findAccount"]
puts [$operation l_name] > findAccount
 282

I D L P a r s e r R e f e r e n c e
module

Synopsis A module.

Definition class module : scope {
}

Example // IDL
module finance {

interface bank {
...

};

};

operation

Synopsis An interface operation.

Definition class operation : scope{
node return_type()
boolean is_oneway()
list<node> raises_list()
list<string> context_list()
list<node> args(

list<string> dir_list,
function filter_func = "")

}

Tcl
puts [$module l_name] > finance

return_type The return type of the operation.

is_oneway Determines whether the operation is a oneway or not.

raises_list A list of handles to the exceptions that can be raised.

context_list A list of the context strings.
283

O r b i x Co d e G e n e r a t i o n T oo l k i t P r o g r am me r ’ s G u i d e
Example // IDL
interface bank
{

long newAccount(in string accountName)
 raises(duplicate, blacklisted) context("branch");

};

sequence

Synopsis An anonymous sequence.

Definition class sequence : node {
node elem_type()
integer max_size()

}

Example // IDL
module finance {

typedef sequence<long, 10> longSeq;

args The operation class is a subtype of scope and hence it
inherits the contents operation. Invoking contents on an
operation returns a list of all the argument nodes
contained in the operation. Sometimes you may want to
get back a list of only the arguments which are passed in a
particular direction. The args operation allows you to
specify a list of directions for which you want to inspect
the arguments. For example, specifying {in inout} for the
dir_list parameter causes args to return a list of all the
in and inout arguments.

Tcl
set type [$operation return_type]
puts [$type l_name]
puts [$operation is_oneway]
puts [$operation l_name]
puts [$operation context_list]

> long
> 0
> newAccount
> branch

elem_type The type of the sequence.

max_size The maximum size, if the sequence is bounded. Otherwise
the value is 0.
 284

I D L P a r s e r R e f e r e n c e
};

string

Synopsis A bounded or unbounded string data type.

Definition class string : node {
integer max_size()

}

Example // IDL
struct branchDetails{

string<100> branchName;

};

struct

Synopsis A structure.

Definition class struct : scope {
}

Example // IDL
module finance {

Tcl
set typedef [$idlgen(root) lookup
"Finance::longSeq"]
set seq [$typedef base_type]
set elem_type [$seq elem_type]
puts [$elem_type l_name]
puts [$typedef l_name]
puts [$seq max_size]
puts [$seq l_name]

> long
> longSeq
> 10
> <anonymous_sequence>

max_size The maximum size if the string is bounded. Otherwise the
value is 0.

Tcl
set type [$field type]
puts [$field l_name]
puts [$type max_size]
puts [$type l_name]

> branchName
> 100
> string
285

O r b i x Co d e G e n e r a t i o n T oo l k i t P r o g r am me r ’ s G u i d e
struct branchCode
{

string cateogory;
long zoneCode;

};

};

typedef
Synopsis A type definition.

Definition class typedef : node {
node base_type()

}

Example // IDL
module finance
{

typedef sequence<account, 100> bankAccounts;

};

union

Synopsis A union.

Definition class union : scope {
node disc_type()

}

Example // IDL
union accountType switch(long) {

Tcl
puts [$structure s_name] > finance::branchCode

base_type The data type of the typedef.

Tcl
set $sequence [$typedef base_type]
puts [$sequence max_size]
puts [$typedef l_name]

> 100
> bankAccounts

disc_type The data type of the discriminant.
 286

I D L P a r s e r R e f e r e n c e
case 1: string accountName;
case 2: long accountNumber;
default: account accountObj;

};

union_branch

Synopsis A single branch in a union.

Definition class union_branch : node {
string l_label()
string s_label()
string s_label_list()
string type()

}

Example // IDL
module finance {

union accountType switch(long) {
case 1: string accountName;
case 2: long accountNumber;
default: account accountObj;

};

};

Tcl
puts [$union l_name]
set type [$union disc_type]
puts [$type l_name]

> accountType

> long

l_label The case label.

s_label The scoped case label.

s_label_list The scoped label in list form.

type The data type of the branch.

Tcl
set type [$union_branch type]
puts [$type l_name]
puts [$union_branch l_name]
puts [$union_branch l_label]
puts [$union_branch s_label]

> long
> accountNumber
> 2
> 2
287

O r b i x Co d e G e n e r a t i o n T oo l k i t P r o g r am me r ’ s G u i d e
 288

Appendix D
Configuration File Grammar

This appendix summarizes the syntax of the the configuration file
used with the Code Generation Toolkit.

config_file = [statement]*

statement = named_scope ‘;’
| assign_statement ‘;’

named_scope = identifier ‘{‘ [statement]* ‘}’

assign_statement = identifier ‘=’ string_expr
| identifier ‘=’ array_expr

string_expr = string [‘+’ string]*

array_expr = array [‘+’ array]*

string = “...”
| identifier

array = ‘[‘ string_expr [‘,’ string_expr]* ‘]’
| identifier

identifier = [[a-z] | [A-Z] | [0-9] | ‘_’ | ‘-’ | ‘:’ | ‘.’
]*

Comments start with # and extend to the end of the line.
289

O r b i x Co d e G e n e r a t i o n T oo l k i t P r o g r am me r ’ s G u i d e
 290

Index

Index
Symbols
$cache array 124
$cfg filename command 263
$idlgen array 120
$idlgen(cfg) variable 116, 120
$idlgen(exe_and_script_name) variable 120
$idlgen(root) variable 120
$pref array 121
*** See escape sequences
@ See escape sequences

A
abstract nodes

node type 86
allocating memory 174, 225
anonymous sequences 7
anys 188, 236
API

cpp_equal library 197
cpp_print library 191
cpp_random library 194
java_equal library 246
java_print library 239
java_random library 242

applications
C++ signatures 161, 162
embedding text 74
Java signatures 215, 216

argument class 277
array class 278
arrays 185, 233

$pref 121
global 119

attribute class 278
attribute signatures 163, 217

B
bilingual files 76

@symbol 77
debugging 78
escape sequence 77

BOA approach 113
C
C++ development library 143
C++ genie 17

command line arguments 21
configuration 37

client applications
generating 59
generating C++ 28

close_output_file command 261
Code Generation Toolkit

packaged C++ genies 17
command-line arguments

genies 11
configuration

C++ genie 37
Java genie 66

configuration files
$idlgen(cfg) 120
$pref array 121
common preferences 121
grammar 289
operations on 115
standard file 116
syntax 113

configuring IDLgen
reference 251, 252, 254

constant class 279
contents operation 89
copyright notices 130
cpp_any_extract_stmt command 189
cpp_any_extract_var_ref command 189
cpp_any_insert_stmt command 188
cpp_array_for_loop_header command 186
cpp_assign_stmt command 154
cpp_boa_class_l_name command 161
cpp_boa_class_s_name command 160
cpp_branch_case_s_label command 182
cpp_branch_l_label command 184
cpp_clt_free_mem_stmt command 166
cpp_clt_need_to_free_mem command 166
cpp_clt_par_decl command 166
cpp_clt_par_ref command 166
cpp_equal API library 197
cpp_equal.tcl 36
293

O r b i x C o d e G e n e r a t i o n To o l k i t P r o g r amme r ’ s G u i d e
cpp_gen_ procedures 146
cpp_genie.tcl 17, 257

-(no)any 30
-(no)var 30
-client 28
command line arguments 21
configuration 37
generating complete C++ application 18
generating partial C++ application 19
-incomplete 29
-interface 22
-loader 26
-makefile 30
-server 27
-smart 24

cpp_impl_class command 158
cpp_indent command 156
cpp_is_fixed_size command 153
cpp_is_keyword command 154
cpp_is_var_size command 154
cpp_l_name command 150
cpp_nil_pointer command 157
cpp_op.tcl 31, 258
cpp_print API library 191
cpp_print.tcl 32, 259
cpp_random API library 194
cpp_random.tcl 34, 259, 260
cpp_sanity_check_idl command 157
cpp_smart_proxy_class command 161
cpp_srv_par_alloc command 178
cpp_tie_class command 159
cpp_typecode_l_name command 153
cpp_typecode_s_name command 152
cpp_var_decl command 179
cpp_var_free_mem_stmt command 179
cpp_var_need_to_free_mem command 179

D
demo genies

description 14
idl2html.tcl 14
stats.tcl 14

destroy command 263

E
enum class 280
enum_val class 280
equality functions

generating C++ 36
 294
escape sequences 77
exception class 280
exceptions 177

F
field class 281
file

writing to from Tcl 72

G
gen_ 145, 202
genies

C++ genie 17
caching results 124
calling other genies 137
command-line arguments 11
commenting 140
cpp_equal.tcl 36
cpp_genie.tcl 17
cpp_op.tcl 31
cpp_print.tcl 32
cpp_random.tcl 34
demos 14
full API 138
introduction 9
Java genies 49
java_genie.tcl 49
java_print.tcl 62
java_random.tcl 64
libraries 136
minimal API 139
Orbix C++ tools 17
organising files 134
packaged C++ 17
running 9
searching for 11
types available 13
writing 69

get_list command 115, 265
get_string command 265
get_string operation 115
global arrays 119

H
hidden nodes 94

I
idempotent procedures 124

I n d e x
IDL files
and IDLgen 81
parsing 82
root 120
searching 95

IDL parser 81
IDL types

represented by nodes 91
idl2html.tcl 15, 256
IDLfiles

$idlgen(root) 120
IDLgen

and IDL files 81
and Tcl 70
bundled applications 6
default values 118
global arrays 119
IDL parser 81
output 127
reference material 251
re-implementing commands 125
search path 72
standard configuration file 116
Tcl extensions 71

IDLGEN_CONFIG_FILE environment
variable 116

idlgen_gen_comment_block command 130
idlgen_getarg command 106, 268

command line arguments 107
idlgen_pad_str command 133
idlgen_parse_config_file command 262
idlgen_parse_idl_file command 271
idlgen_process_list command 131
idlgen_read_support_file command 128
idlgen_set_default_preferences command 267
IDLgrep 95

with configuration files 116
implicit parameters 178, 228
ind_lev parameter 147, 204
interface class 281
interface node 84

pseudo code definition 88
interface_fwd class 282
interfaces

generating 54
generating C++ 22

is_var 145

J
Java development library 201
Java genie 49
command line arguments 53
configuration 66

java_any_extract_stmt command 237
java_any_extract_var_ref command 237
java_any_insert_stmt command 236
java_array_for_loop_header command 235
java_assign_stmt command 210
java_boa_class_l_name command 215
java_boa_class_s_name command 214
java_branch_case_s_label command 230
java_branch_l_label command 233
java_clt_par_decl command 219
java_clt_par_ref command 219
java_equal API library 246
java_gen_ procedures 203
java_genie.tcl 49

-(no)any 61
-client 59
command line arguments 53
configuration 66
generating complete Java application 50
generating partial application 51
-incomplete 60
-interface 54
-loader 57
-makefile 61
-server 58
-smart 56

java_impl_class command 212
java_indent command 211
java_is_keyword command 210
java_l_name command 207
java_nil_pointer command 212
java_print API library 239
java_print.tcl 62
java_random API library 242
java_smart_proxy_class command 215
java_srv_par_alloc command 228
java_tie_class command 213
java_typecode_l_name command 209
java_typecode_s_name command 209
java_var_decl command 229

L
library

C++ development 143
Java development 201

library genies 136
list_names command 264
295

O r b i x C o d e G e n e r a t i o n To o l k i t P r o g r amme r ’ s G u i d e
list_names operation 115
lists

processing 131
loaders

generating 57
generating C++ 26

M
makefile

generating 61
generating for C++ 30

module class 283

N
naming conventions 143, 201
nodes 84

abstract nodes 86, 87
all 90, 94
contents operation 89
gaining list 89
hidden nodes 94
inheritance 86
interface node 84
node type 86
node type reference 273
node types listed 95
operation node 84
rcontents operation 89
representing IDL types 91
scope type 87
scope type reference 275
true_base_type operation 93

O
opaque types 7
open_output_file command 261
operation class 283
operation node 84
Orbix C++ Client/Server Wizard 39

client options 44
server options 45

output command 262
output files

copying pre-written code to 128
output from IDLgen 127

P
parameters

client-side processing 165, 219
 296
server-side processing 172, 224
signatures 164, 218

parse tree
structure 83

parse trees
introduction 81
nodes 84
rcontents operation 95
recursive descent traversal 100
user-defined IDL types 103

polymorphism
in Tcl 100

Preface xiii
print functions

generating 62
generating C++ 32

procedures
organising 135
re-implementing 125

programming style 134

R
random functions

generating 64
generating C++ 34

rcontents operation 89
traversing the parse tree 95

recursive descent traversal 100
polymorphism 101

recursive struct and union types 103

S
scope type 87
search path 72
sequence class 284
server mainline

generating 58
generating C++ 27

set_list command 115, 266
set_string command 115, 266
signatures

generating for C++ operations 31
skeletal clients and servers

generating 60
generating C++ 29

smart pointers 145
smart proxies

generating 56
generating C++ 24

I n d e x
wizard option 44
smart_source 126
stats.tcl 14, 256
std/cpp_boa_lib.tcl 143
std/java_boa_lib.tcl 201
string class 285
strings

padding 133
struct class 285
structs

recursive 103

T
Tcl 69

bilingual files 76
command line arguments 70
embedding text 74
interpreting scripts 70
polymorphism 100
pragma once 72
puts 72
search path 72
simple example 70
smart_source 72
source 71
using quotes 75
writing to a file 72

TIE approach 113
true_base_type operation 93
type command 264
typedef class 286

U
union

recursive 103
union class 286
union_branch class 287
unions 182, 230
user-defined IDL types

processing 103

V
variables

instance and local 179, 229

W
wizard, See Orbix C++ Client/Server Wizard
297

	Preface
	Audience
	Organization of this Guide
	Document Conventions

	Part I. Using the Orbix Code Generation Toolkit
	1. Overview of the Code Generation Toolkit
	Architecture
	IDLgen and Genies
	Orbix Code Generation Toolkit Components
	The Bundled Applications

	Approaches to Using the Code Generation Toolkit
	Known Limitations of Code Generation Toolkit

	2. Running the Demonstration Genies
	Running Genies with IDLgen
	Specifying the Application Location
	Looking For Applications
	Common Command Line Arguments

	What are the Bundled Genies?
	Demonstration Genies
	stats.tcl
	idl2html.tcl

	3. Ready-to-use Genies for Orbix C++
	Using the C++ Genie to Kickstart New Projects
	Generating a Complete Client/Server Application
	Generating a Partial Application
	Command Line Options to Generate Parts of an Application
	A Few Other Options

	Generating Signatures of Individual Operations with cpp_op.tcl
	Creating Print Functions for IDL Types with cpp_print.tcl
	Creating Random Functions for IDL Types with cpp_random.tcl
	Creating Equality Functions for IDL Types with cpp_equal.tcl
	Configuration Settings

	4. Orbix C++ Client/Server Wizard
	Using the Wizard
	Starting the Wizard
	Advanced Code Generation Options
	Generating Client Code
	Generating Server Code

	Building Your CORBA C++ Application

	5. Ready-to-use Genies for OrbixWeb
	Using the Java Genie to Kickstart New Projects
	Generating a Complete Client/Server Application
	Generating a Partial Application
	Command Line Options to Generate Parts of an Application
	A Few Other Options

	Creating Print Functions for IDL Types with java_print.tcl
	Creating Random Functions for IDL Types with java_random.tcl
	Configuration Settings

	Part II. Developing Genies with the Orbix Code Generation Toolkit
	6. Writing a Genie
	Prerequisites for Developing Genies
	Some Simple Examples
	Hello World
	Hello World with Command Line Arguments

	Some Extensions Provided by IDLgen
	Using Commands in Other Libraries
	Writing to a File from Your Genie
	Embedding Text in Your Application
	What are Bilingual Files?
	Using Bilingual Files

	7. Processing an IDL File
	IDL Files and IDLgen
	Parsing the IDL File
	Structure of the Parse Tree
	Nodes of the Parse Tree
	The Abstract Node node
	The Abstract Node scope
	Nodes Representing Built-in IDL Types
	Typedefs and Anonymous Types
	Visiting Hidden Nodes
	Other Node Types

	Traversing the Parse Tree with rcontents
	Searching an IDL File with IDLgrep

	Recursive Descent Traversal
	Polymorphism in Tcl
	Recursive Descent Traversal through Polymorphism

	Processing User-defined Types
	Recursive Structs and Unions

	8. Configuring your Genies
	Command Line Arguments
	Enhancing IDLgrep
	Processing the Command Line
	Searching for Command Line Arguments
	More Examples of Command Line Processing
	IDLgrep with Command Line Arguments
	Using std/args.tcl

	Using Configuration Files
	Syntax of an IDLgen Configuration File
	Reading the Contents of a Configuration File
	The Standard Configuration File
	IDLgrep with Configuration Files

	9. Further Development Issues
	Global Arrays
	The $idlgen Array
	The $pref Array
	The $cache Array

	Re-implementing IDLgen Commands
	More Smart Source
	More Output

	Miscellaneous Utility Commands
	idlgen_read_support_file
	idlgen_support_file_full_name
	idlgen_gen_comment_block
	Idlgen_process_list
	idlgen_pad_str

	Recommended Programming Style
	Organizing Your Files
	Organizing Your Procedures
	Writing Library Genies
	Commenting Your Generated Code

	Part III. Orbix C++ Genies: Library Reference
	10. The C++ Development Library
	Naming Conventions in API procedures
	Naming Conventions for “is_var”
	Naming Conventions for “gen_”
	Indentation
	$pref(cpp,…) Entries

	Identifiers and Keywords
	cpp_l_name
	cpp_s_name
	cpp_typecode_s_name
	cpp_typecode_l_name

	General Purpose Procedures
	cpp_is_fixed_size
	cpp_is_var_size
	cpp_is_keyword
	cpp_assign_stmt
	cpp_indent
	cpp_nil_pointer
	cpp_sanity_check_idl

	Interfaces
	cpp_impl_class
	cpp_tie_class
	cpp_boa_class_s_name
	cpp_boa_class_l_name
	cpp_smart_proxy_class

	Signatures of Operations
	Signatures of Attributes
	Types and Signatures of Parameters
	Client-Side Processing of Parameters
	Server-Side Processing of Parameters

	Processing Unions
	cpp_branch_case_s_label
	cpp_branch_case_l_label
	cpp_branch_s_label
	cpp_branch_l_label

	Processing Arrays
	Processing Anys
	Inserting Values into an Any
	Extracting Values from an Any

	11. Other Tcl Libraries for C++ Utility Functions
	Tcl API of cpp_print
	Example of Use

	Tcl API of cpp_random
	Example of Use

	Tcl API of cpp_equal
	Example of Use
	Full API of cpp_equal

	Part IV. OrbixWeb Genies: Library Reference
	12. The Java Development Library
	Naming Conventions in API procedures
	Naming Conventions for “gen_”
	Indentation
	$pref(java,…) Entries

	Identifiers and Keywords
	java_l_name
	java_s_name
	java_typecode_s_name
	java_typecode_l_name

	General Purpose Procedures
	java_is_keyword
	java_assign_stmt
	java_indent
	java_nil_pointer

	Interfaces
	java_impl_class
	java_tie_class
	java_boa_class_s_name
	java_boa_class_l_name
	java_smart_proxy_class

	Signatures of Operations
	Signatures of Attributes
	Types and Signatures of Parameters
	Client-Side Processing of Parameters
	Server-Side Processing of Parameters

	Processing Unions
	java_branch_case_s_label
	java_branch_case_l_label
	java_branch_s_label
	java_branch_l_label

	Processing Arrays
	Processing Anys
	Inserting Values into an Any
	Extracting Values from an Any

	13. Other Tcl Libraries for Java Utility Functions
	Tcl API of java_print
	Example of Use

	Tcl API of java_random
	Example of Use

	Tcl API of java_equal
	Example of Use
	Equality Functions

	Appendices
	Appendix A. User’s Reference
	Appendix B. Command Library Reference
	Appendix C. IDL Parser Reference
	Appendix D. Configuration File Grammar

	Index
	Index

