
orbixcomgst.book Page 1 Tuesday, April 27, 1999 1:33 PM
OrbixCOMet Desktop
Getting Started
IONA Technologies PLC
April 1999

orbixcomgst.book Page 2 Tuesday, April 27, 1999 1:33 PM
Orbix is a Registered Trademark of IONA Technologies PLC.
OrbixCOMet (TM) is a Trademark of IONA Technologies PLC.
While the information in this publication is believed to be accurate, IONA Technologies PLC makes no warranty of any kind
to this material including, but not limited to, the implied warranties of merchantability and fitness for a particular purpose.
IONA Technologies PLC shall not be liable for errors contained herein, or for incidental or consequential damages in
connection with the furnishing, performance or use of this material.

Microsoft, Windows, Windows NT and Windows 95 are either trademarks or registered trademarks of Microsoft Corporation.

COPYRIGHT NOTICE
No part of this publication may be reproduced, stored in a retrieval system or transmitted, in any form or by any means,
photocopying, recording or otherwise, without prior written consent of IONA Technologies PLC. No third party intellectual
property right liability is assumed with respect to the use of the information contained herein. IONA Technologies PLC
assumes no responsibility for errors or omissions contained in this book. This publication and features described herein are
subject to change without notice.

Copyright © 1998, 1999 by IONA Technologies PLC. All rights reserved.

All products or services mentioned in this manual are covered by the trademarks, service marks, or product names as
designated by the companies who market those products.

M 2 2 9 0

Contents

orbixcomgst.book Page 4 Tuesday, April 27, 1999 1:33 PM
Introduction 5
Installing OrbixCOMet 6
Using OrbixCOMet 7
Application Programming 8
Dual Interface Support 13
COM Interface Support 15
DCOM Trouble-Shooting 19
3

O r b i x COM e t D e s k t op G e t t i n g S t a r t e d

orbixcomgst.book Page 5 Tuesday, April 27, 1999 1:33 PM
 4

I n t r od u c t i o n

orbixcomgst.book Page 5 Tuesday, April 27, 1999 1:33 PM
Introduction
This book describes the basics for getting started on OrbixCOMet.
OrbixCOMet combines the best of both the Object Management Group (OMG)
Common Object Request Broker Architecture (CORBA) and Microsoft DCOM
standards. It provides a high performance bi-directional dynamic bridge that
enables two-way integration between DCOM/Automation and CORBA
applications.

OrbixCOMet is designed to allow COM developers—who use tools like Visual
C++, Visual Basic, PowerBuilder, Delphi or Active Server Pages on the Windows
desktop—to access CORBA applications running on Windows, UNIX or
OS/390 (formerly MVS) environments. It means COM developers can use the
tools familiar to them to build heterogeneous systems that use both COM and
CORBA components within a COM environment.

Audience

This book is intended for use by application programmers who wish to get
started in using OrbixCOMet to develop Orbix applications on the Windows
desktop environment. After you have read this book, you can refer to the
OrbixCOMet Desktop Programmer’s Guide and Reference for more details.

Requirements

OrbixCOMet requires Windows NT 4.0 with SP4. If you are installing
OrbixCOMet on a machine with an existing Orbix installation that includes the
OLE support module, OLE support will be disabled by the OrbixCOMet setup
program. Alternatively, you can do this by typing the following command in the
%ORBIX%\bin directory:

oleregit IOLEM23C.DLL /UNREGSERVER

Note: In this book, %ORBIX% represents your Orbix installation directory, and
%ORBIXCOMET% represents your OrbixCOMet installation directory.
5

O r b i x COM e t D e s k t op G e t t i n g S t a r t e d

orbixcomgst.book Page 6 Tuesday, April 27, 1999 1:33 PM
Refer to “DCOM Trouble-Shooting” on page 19 before you start any
development. It contains important information about verifying that DCOM is
correctly set up on your machine. You should also refer to the OrbixCOMet
Desktop Programmer’s Guide and Reference for information about topics such
as IDL/Automation and IDL/COM mapping, implementing clients, error handling
and callbacks. You should also read the OrbixCOMet Desktop Release Notes
before you start any development.

Installing OrbixCOMet
To install OrbixCOMet from CD-ROM:

1. From the \NT directory of the CD-ROM, run autorunc.exe .

Depending on the CD-ROM you are using, you might first be presented
with a screen containing a list of products that you can install. If so, select
the Install OrbixCOMet button.

2. Follow the on-screen instructions.

During the installation you are asked for a valid OrbixCOMet licence code that
should be included in your product package. If you supply an invalid code, the
installation defaults to a 21-day evaluation licence. You can contact
shipping@iona.com if you need to obtain a new licence code.

You are presented with the following list of components that can be installed:

Run-time Files These are the binaries that constitute the bridge.

Documents This includes on-line technical documentation.

Development Utilities This consists of command line tools and the type store
GUI tool.

Demonstrations These are sample programs that show how to use the
bridge.

Orbix Files This includes the Orbix 3.0c runtime.

DCOM test application This validates that DCOM is correctly installed.
 6

U s i n g O r b i x C OMe t

orbixcomgst.book Page 7 Tuesday, April 27, 1999 1:33 PM
You should only select the “Orbix Files” component if Orbix 3.0c is not already
installed on the machine. If the patch level of an installed version of Orbix 3.0
differs from the patch level of the Orbix 3.0 runtime that is supplied with
OrbixCOMet, refer to the OrbixCOMet Desktop Release Notes for further
information regarding installation.

For details about OrbixCOMet configuration, refer to the OrbixCOMet Desktop
Programmer’s Guide and Reference.

Using OrbixCOMet
Unlike IONA’s previous offering of a static OLE Automation/CORBA bridge,
OrbixCOMet is a fully dynamic bridge. This means there is no special code
generation step with OrbixCOMet. Instead of generating a broker, you are only
required to supply type information. In short, using OrbixCOMet simply involves
configuring the bridge to pick up the correct type information for each interface/
complex type that your applications use.

Server-Side Requirements

OrbixCOMet requires no code changes to existing CORBA servers. You can
simply register the server executable by using either the putit command or the
server manager utility srvmgr . The following is an example of using putit :

[c:\]putit grid %ORBIXCOMET%\demos\corbasrv\grid\server.exe

At this point, you should ensure that the Interface Repository (and the Naming
Service if you wish to use it from your application) is also registered.

Registering Type Information

Because OrbixCOMet is a purely dynamic DCOM/CORBA bridge, it is driven by
type information, either from COM type libraries or from a CORBA Interface
Repository. The example provided in this book uses the Interface Repository.
Register your OMG IDL file using the following command:

[c:\] putidl %ORBIXCOMET%\demos\corbasrv\grid\grid.idl

This launches the Interface Repository if it is not already running.
7

O r b i x COM e t D e s k t op G e t t i n g S t a r t e d

orbixcomgst.book Page 8 Tuesday, April 27, 1999 1:33 PM
Note: This example assumes you are using Orbix as your server-side object
request broker (ORB). Refer to the OrbixCOMet Desktop Programmer’s
Guide and Reference for details about using other ORBs on your server
side.

Application Programming
You can develop your client-server applications in any language that supports
COM or Automation. The examples shown in the following subsections use
PowerBuilder and Visual Basic.

Writing a Client Using PowerBuilder

This section describes the development of a simple client-server application
using OrbixCOMet. The example can be found in:

%ORBIXCOMET%\demos\PB6\grid

Filenames mentioned in this section refer to files contained in this directory.

Global Data
Start by declaring the following global data:

OleObject bridge
OleObject fact
OleObject grid_client

Connecting to the Orbix Grid Server from PowerBuilder

The following code is executed when you click the Connect button on the GUI
screen for the grid demonstration:

// Powerscript
// create the CORBA factory object
fact = CREATE OleObject
 8

Ap p l i c a t i o n P r o g r amm in g

orbixcomgst.book Page 9 Tuesday, April 27, 1999 1:33 PM
//DCOM on the wire - see OrbixCOMet Desktop
// Programmer’s Guide and Reference
//bridge = CREATE OleObject
//bridge.ConnectToNewObject("IT_CCIExWrap.IT_CCIExWrap.1")
//fact = bridge.IT_CreateRemoteFactory(server_name.Text)

// IIOP on the wire (requires bridge on client machine)
// the CORBA.Factory object may be created in the normal
// fashion
fact.ConnectToNewObject(“CORBA.Factory”)

// Exception parameter in case a CORBA exception occurs
OleObject ex
ex = CREATE OleObject

grid_client = CREATE OleObject
grid_client = fact.GetObject("grid:grid:" + server_name.Text,

BYREF ex)

height_val.Text = string(grid_client.Height)
width_val.Text = string(grid_client.Width)

connect_button.Enabled = False
unplug_button.Enabled = True
set_button.Enabled = True
get_button.Enabled = True

The preceding code results in the creation of an instance of a CORBA.Factory
object. After a CORBA.Factory object has been returned, a particular object is
requested by calling the GetObject() method on the factory. (Refer to the
OrbixCOMet Desktop Programmer’s Guide and Reference for the MIDL
definition for DICORBAFactory, or examine ItStdAuto.idl in
%ORBIXCOMET%\idl .)

GetObject()

The OMG COM/CORBA Interworking document at WWW.OMG.ORG specifies that
GetObject() should take a string as one parameter and return a pointer to the
IDispatch interface on the created object. However, it does not specify the
format for the string.
9

O r b i x COM e t D e s k t op G e t t i n g S t a r t e d

orbixcomgst.book Page 10 Tuesday, April 27, 1999 1:33 PM
In OrbixCOMet, the formats for the parameter to GetObject() are as follows:

• Old format for backwards compatibility with the Orbix/ActiveX
Integration product:

“broker.interface[[[:marker]:server]:host]”

(Broker is ignored.)

• COMet format:

“interface[[[:marker]:server]:host]”

• Tagged format:

“interface:TAG:Tag data”

where TAG is one of the following:

• Simple Format:

“interface”

This assumes the server name is the same as the interface. It also assumes
the Orbix locator is used to find the hostname. If there is no Orbix
daemon running in the client machine, the configuration setting for
Comet.Config.COMET_DAEMON_HOST in the OrbixCOMet configuration
file should point at a machine where a daemon is running with its locator
configured.

Note: If the interface has been scoped (for example, “Module::Interface”),
the interface token would be “Module/Interface” .

IOR The data is the hexadecimal string for the
stringified IOR. For example:

fact.GetObject(“employee:IOR:
123456789......”)

NAME_SERVICE The data is the NAME_SERVICE compound name
separated by “. ” For example:

fact.GetObject(“employee:NAME_SERVICE:
IONA.employees.PD.Ronan”)
 10

Ap p l i c a t i o n P r o g r amm in g

orbixcomgst.book Page 11 Tuesday, April 27, 1999 1:33 PM
Disconnecting

When disconnecting, it is important to release all references to objects in the
bridge, so that the process will terminate. In the grid demonstration, this action
is performed by the following subroutine:

grid_client.DisconnectObject()
DESTROY grid_client
fact.DisconnectObject()
DESTROY fact
bridge.DisconnectObject()
DESTROY bridge

Writing a Client Using Visual Basic

This section describes the development of a simple client-server application
using OrbixCOMet. The example can be found in:

%ORBIXCOMET%\demos\VB6\grid

Filenames mentioned in this section refer to files contained in this directory.

Global Data

Start by declaring the following global data:

Dim bridge As Object
Dim fact As Object
Dim gridDisp As Object

Connecting to the Orbix Grid Server from Visual Basic
The following code is executed when you click the Connect button on the GUI
screen for the grid demonstration:

‘ Visual Basic
Private Sub Connect_Click()

‘ DCOM on the wire - see later
‘ Set bridge =
‘ CreateObject("IT_CCIExWrap.IT_CCIExWrap.1")
‘ Set fact =
‘ bridge.IT_CreateRemoteFactory(bridgeHost.Text)
11

O r b i x COM e t D e s k t op G e t t i n g S t a r t e d

orbixcomgst.book Page 12 Tuesday, April 27, 1999 1:33 PM
‘ IIOP on the wire
Set fact = CreateObject(“CORBA.Factory”)
Set gridDisp = fact.GetObject("grid:grid:" &

server_name.Text)

width_val.Caption = gridDisp.Width
height_val.Caption = gridDisp.Height
Command1.Enabled = False
Command2.Enabled = True
SetButton.Enabled = True
GetButton.Enabled = True

End Sub

The preceding code results in the creation of an instance of a CORBA.Factory
object. After a CORBA.Factory object has been returned, a particular object is
requested by calling the GetObject() method on the factory. (Refer to the
OrbixCOMet Desktop Programmer’s Guide and Reference for the MIDL
definition for DICORBAFactory , or examine ItStdAuto.idl in the
%ORBIX_COMET%\idl directory.) Finally, a particular object is requested by
GetObject() .

GetObject()
Refer to “GetObject()” on page 9 for more details.

Disconnecting
When disconnecting, it is important to release all references to objects in the
bridge, so that the process will terminate. In the grid demonstration, this action
is performed by the following subroutine:

Private Sub Disconnect_Click()
Set gridDisp = Nothing
Set fact = Nothing
Set bridge = Nothing

End Sub
 12

Du a l I n t e r f a c e S u p p o r t

orbixcomgst.book Page 13 Tuesday, April 27, 1999 1:33 PM
Running the Application

To run the application:

1. Run the client gridClt.EXE .

2. Specify the hostname in the appropriate single-line-edit and click
Connect. This contacts the C++ grid server and obtains the width and
height of the grid.

3. Enter x and y coordinates.

4. Click Set to modify values in the grid, or Get to obtain values from the
grid.

5. Click Disconnect when you are finished.

Using OrbixCOMet with Internet Explorer

The concepts of using OrbixCOMet with Internet Explorer are very similar to
those for Visual Basic and PowerBuilder. For further details refer to the
OrbixCOMet Desktop Programmer’s Guide and Reference.

Dual Interface Support
OrbixCOMet supports dual interfaces, allowing methods to be called directly
though the vtable entries. (The vtable is a function table that contains entries
that correspond to each operation defined in the interface.) The vtable allows a
controller to perform early binding or late binding if required. To avail of this
feature, a type library is necessary for the controller. OrbixCOMet provides a
type library generation tool ts2tlb.exe (“TypeStore2TLB”) that produces type
libraries based on type information provided by the user. You can choose to run
the ts2tlb tool either from the command line or from the GUI interface
OrbixCOMet tools screen. (Refer to the OrbixCOMet Desktop Programmer’s
Guide and Reference for more details about using development support tools.)

Note: You must register your OMG IDL with the Interface Repository before
ts2tlb can produce a type library.
13

O r b i x COM e t D e s k t op G e t t i n g S t a r t e d

orbixcomgst.book Page 14 Tuesday, April 27, 1999 1:33 PM
The usage string for ts2tlb is as follows:

Usage:
ts2tlb [options] <type name> [[<type name>] ...]
 -f : file name (defaults to <type name #1>.tlb)
 -l : library name (defaults to IT_Library_<type name #1>
 -p : prefix parameter names with "it_"
 -i : Pass a pointer to interface Foo as IDispatch*
 rather than DIFoo* - necessary for some controllers
 -v : Print this message

Tip : use tlibreg.exe to register your type library!!

For example, the following command would create a file “grid.tlb” , library
name “IT_grid” , for the grid interface:

[c:\] ts2tlb -f grid.tlb -l IT_grid grid

When viewed with oleview, it appears as follows:

[odl,...]
interface DIgrid : IDispatch {
 [id(0x00000001)]
 HRESULT _stdcall get(
 [in] short n,
 [in] short m,
 [out, optional] VARIANT* excep_OBJ,
 [out, retval] long* val);
 [id(0x00000002)]
 HRESULT _stdcall set(
 [in] short n,
 [in] short m,
 [in] long value,
 [out, optional] VARIANT* excep_OBJ);
 [id(0x00000003), propget]
 HRESULT _stdcall height([out, retval] short* val);
 [id(0x00000004), propget]
 HRESULT _stdcall width([out, retval] short* val);
 };

Note: All UUIDs are generated using the MD5 algorithm specified in the OMG
COM/CORBA Interworking document at WWW.OMG.ORG.
 14

C OM I n t e r f a c e S u p p o r t

orbixcomgst.book Page 15 Tuesday, April 27, 1999 1:33 PM
In Visual Basic, having created a reference to the type library, it would be used as
follows:

Dim custGrid As IT_grid.DIgrid

For more complicated interfaces (for example, those that pass user-defined
types as parameters), ts2tlb will attempt to resolve all those types from the
disk cache and/or the Interface Repository. It will fail to produce a type library if
any of the types it looks for are not found.

Finally, if you wish to register your type library in the system registry, the
tlibreg.exe utility is provided for this purpose. It can also be used to
unregister a type library.

COM Interface Support
In addition to providing Automation/CORBA support, OrbixCOMet also
provides support for COM custom interfaces. It adheres to the standards for
mapping CORBA data types to COM that are laid down in the OMG COM/
CORBA Interworking document at WWW.OMG.ORG. This support is aimed primarily
at C/C++ programmers writing COM clients who wish to make use of the full
set of COM types, rather than being restricted to Automation-compatible types.
COM interfaces are described in MIDL (a derivative of DCE IDL), which is then
compiled to produce marshalling code for the interface. OrbixCOMet provides
a tool called ts2idl.exe (“TypeStore2IDL”) that produces MIDL based on type
information provided by the user. You can choose to run the ts2idl tool either
from the command line or from the GUI interface OrbixCOMet tools screen.
(Refer to the OrbixCOMet Desktop Programmer’s Guide and Reference for more
details about using development support tools.)

Note: You must register your OMG IDL with the Interface Repository before
ts2idl can produce valid MIDL.
15

O r b i x COM e t D e s k t op G e t t i n g S t a r t e d

orbixcomgst.book Page 16 Tuesday, April 27, 1999 1:33 PM
The usage string for ts2idl is as follows:

Usage:
ts2idl [options] <type name> [[<type name>] ...]
Options:

-b : Pass object references as type Object in OMG IDL
-c : Don’t connect to the IFR (e.g. if cache is fully primed)
-r : Resolve referenced types
-m : Generate MIDL <default>
-p : Generate makefile for proxy/stub DLL
-f : <filename>
-v : Print this message

Tip : use -p to generate a makefile for the marshalling DLL!!

For example, the following command would create a MIDL file “grid.idl” for
the grid interface:

[c:\] ts2idl -f grid.idl grid

Note: For more complicated interfaces that employ user-defined types, you can
use the -r switch to completely resolve these types and to produce
MIDL for them also.

The generated MIDL is:

[object,...]
 interface Igrid : IUnknown
 {
 HRESULT get([in] short n,
 [in] short m,
 [out] long *val);
 HRESULT set([in] short n,
 [in] short m,
 [in] long value);
 HRESULT _get_height([out] short *val);
 HRESULT _get_width([out] short *val);
 };

#endif

The -p switch is a useful labour-saving device that generates a makefile for
compiling the IDL file and producing a DCOM proxy/stub DLL.
 16

C OM I n t e r f a c e S u p p o r t

orbixcomgst.book Page 17 Tuesday, April 27, 1999 1:33 PM
Using COM Interfaces with OrbixCOMet

Generating MIDL from OMG IDL is the first step in writing a COM client to
contact a CORBA server.

Next, the MIDL must be compiled by the MIDL compiler. This produces C/C++
interface definitions to be used within the application, and a proxy/stub DLL to
marshal the custom interface. This procedure is standard practice when writing
COM applications. Ts2idl.exe provides a useful labour-saving -p switch that
can produce a makefile for building the proxy/stub DLL.

For example, the following command produces a grid.mk file in addition to the
grid.idl file shown earlier:

[c:\] ts2idl -p -f grid.idl grid

The grid.mk file contains information on how to build the DLL and also how to
register it. (Visual C++ 6.0 is required in order to build this marshalling DLL.)

By this stage, you are ready to write your COM client code. The basic operation
of the client will be to:

1. Create an instance of an object that implements ICORBAFactory (which is
the COM version of the interface encountered earlier when writing
clients in Visual Basic, PowerBuilder, and so on).

2. Call GetObject() to return an IUnknown* .

3. Call QueryInterface to obtain a pointer to the custom interface (Igrid
in this example) and call the methods.

The following sections take each of these steps in turn and describe how to
write a C++ COM client.

Refer to the %ORBIXCOMET%\demos\com\grid directory for a complete code
listing.

Step 1: Creating the CORBA Factory

You can obtain an ICORBAFactory* by using CoCreateInstanceEx() as normal.
Once again, you have the option to load the bridge in-process, or have it
launched as a local server. (It is also possible to launch it on a remote machine.
This simple demonstration does not show this but it is simply a matter of passing
a filled-in COSERVERINFO parameter to CoCreateInstanceEx() .) In this example,
17

O r b i x COM e t D e s k t op G e t t i n g S t a r t e d

orbixcomgst.book Page 18 Tuesday, April 27, 1999 1:33 PM
the choice is made at runtime, depending on how the client was started. The
CORBA server to be contacted is called grid and it is registered on the machine
advice.iona.com . For example:

HRESULT hr = NOERROR;
IUnknown *pUnk = NULL;
ICORBAFactory *pCORBAFact = NULL;
DWORD ctx;

// our custom interface
Igrid *pIBasic = NULL;
MULTI_QI mqi;

// Call to CoInitialize(), some error handling
// and so on omitted for clarity

memset (&mqi, 0x00, sizeof (MULTI_QI));
mqi.pIID = &IID_ICORBAFactory;

if(bOutOfProc)
ctx = CLSCTX_LOCAL_SERVER;

else
ctx = CLSCTX_INPROC_SERVER;

hr = CoCreateInstanceEx (IID_ICORBAFactory, NULL,
 ctx, NULL, 1, &mqi);
CheckHRESULT("CoCreateInstanceEx()", hr, FALSE);
pCORBAFact = (ICORBAFactory*)mqi.pItf;

Step 2: Calling GetObject()

The call to GetObject() looks similar to that used from Visual Basic:

hr = pCORBAFact->GetObject(“grid:grid:advice.iona.com”,&pUnk);
if(!CheckErrInfo(hr, pCORBAFact, IID_ICORBAFactory))
{
 pCORBAFact->Release();
 return;
}
pCORBAFact->Release();
 18

DC O M T r o u b l e - S h o o t i n g

orbixcomgst.book Page 19 Tuesday, April 27, 1999 1:33 PM
Note: CheckErrorInfo() is a utility function used by the demonstrations to
check the thread’s ErrorInfo object after each call. This is useful for
obtaining information about, for example, a CORBA system exception
that was raised during the course of a call.

Step 3: QueryInterface and Method Calls
Finally, you can obtain a pointer to the custom interface Igrid via a
QueryInterface() and make calls to set or get values in the grid. For example:

short width, height;
Igrid *pIF= 0;
hr = pUnk->QueryInterface(IID_Igrid,
 (PPVOID)& pIF);

if(!CheckErrInfo(hr, pUnk, IID_Igrid))
{
 pUnk->Release();
 return;
}
hr = pIF->_get_width(&width);
CheckErrInfo(hr, pIF, IID_Igrid);
cout << "width is " << width << endl;
hr = pIF->_get_height(&height);
CheckErrInfo(hr, pIF, IID_Igrid);
cout << "height is " << height << endl;
pIF->Release();

DCOM Trouble-Shooting
In %ORBIXCOMET%\dcomapp there are two directories called testDll and
testExe . These are pure DCOM applications that are completely independent
of Orbix and OrbixCOMet. Their purpose is to allow verification of a DCOM
installation on a given machine. Because they are pure DCOM only, they remove
one variable from the equation when trouble-shooting is in operation.

Each application has a simple server written using ATL, and an associated Visual
Basic client.
19

O r b i x COM e t D e s k t op G e t t i n g S t a r t e d

orbixcomgst.book Page 20 Tuesday, April 27, 1999 1:33 PM
testExe

First consider the application in %ORBIXCOMET%\dcomapp\testExe .

The directory should look something like the following:

20/02/98 20:01 <DIR> client
21/02/98 16:29 <DIR> server
20/02/98 20:01 <DIR> vbclient

The server directory contains an ATL server, the binary for which can be found
is %ORBIXCOMET%\bin\IT_DcomApp.exe . (You can build the server from scratch
in the server directory, if you so wish. The source is provided.) Register the
server with the following command:

[c:\iona\comet\bin] IT_DcomApp /regserver

A simple Visual Basic client for the application can be found in the vbclient
directory. When you run the client, if the window shown in Figure 1 appears on
the screen, the test is successful. If, as is likely, you intend to use OrbixCOMet
with clients and servers on different machines, you should run these tests
between those machines.

Figure 1: IT_DCOMApp Test Client—Successful Operation
 20

DC O M T r o u b l e - S h o o t i n g

orbixcomgst.book Page 21 Tuesday, April 27, 1999 1:33 PM
Figure 2: IT_DCOMApp Test Client—Error Launching Server

If the window shown in Figure 1 on page 20 does not appear, or if an error
occurs as shown in Figure 2, refer to “Miscellaneous Configuration Tips” on
page 22.

testDll

The purpose of this application is to verify that surrogates work correctly on
your machine. (You should test this if you want to use OrbixCOMet out-of-
process.)

To do this:

1. Using OLEVIEW, launch the IT_DcomTestDLL class. This opens the OLE/
COM Object Viewer screen.

2. From the Object pulldown menu, select CoCreateInstance flags of
CLXCTX_INPROC_SERVER.

3. If this test fails, refer to “Miscellaneous Configuration Tips” on page 22.
21

O r b i x COM e t D e s k t op G e t t i n g S t a r t e d

orbixcomgst.book Page 22 Tuesday, April 27, 1999 1:33 PM
Miscellaneous Configuration Tips

1. Verify that the server is actually registered, using OLEVIEW if possible.

2. If OLEVIEW is available, try launching the application from within OLEVIEW,
and specify CoCreateInstance flags of CLSCTX_LOCAL_SERVER.

3. If you are using the surrogate process, use dcomcnfg to ensure that the
Default Authentication Level is set to Connect and the Default
Impersonation Level is set to Identify .

4. On Windows NT, use the \winnt35\system32\eventvwr.exe event
viewer to look for logged DCOM events. Figure 3 on page 23 shows a
typical example of a logged error.

5. You can find the OrbixCOMet Knowledge Base at:

http://www.iona.com/support/kb/OrbixCOMet

6. You can find the DCOM mailing list archive at:
http://microsoft.ease.lsoft.com/archives.index.html

7. You can look up frequently asked questions about COM security at:

http://support.microsoft.com/support/kb/articles/
q158/5/08.asp
 22

DC O M T r o u b l e - S h o o t i n g

orbixcomgst.book Page 23 Tuesday, April 27, 1999 1:33 PM
Figure 3: Typical Example of a Logged Error
23

O r b i x COM e t D e s k t op G e t t i n g S t a r t e d

orbixcomgst.book Page 24 Tuesday, April 27, 1999 1:33 PM
 24

	Introduction
	Audience
	Requirements

	Installing OrbixCOMet
	Using OrbixCOMet
	Server-Side Requirements
	Registering Type Information

	Application Programming
	Writing a Client Using PowerBuilder
	Writing a Client Using Visual Basic
	Using OrbixCOMet with Internet Explorer

	Dual Interface Support
	COM Interface Support
	Using COM Interfaces with OrbixCOMet

	DCOM Trouble-Shooting
	Miscellaneous Configuration Tips

