OrbixNames
Programmer’s and
Administrator’s Guide

IONA Technologies PLC
June 1999

Orbix is a Registered Trademark of IONA Technologies PLC.

OrbixNames is a Trademark of IONA Technologies PLC.

While the information in this publication is believed to be accurate, IONA Technologies PLC makes no warranty of any kind
to this material including, but not limited to, the implied warranties of merchantability and fitness for a particular purpose.
IONA Technologies PLC shall not be liable for errors contained herein, or for incidental or consequential damages in
connection with the furnishing, performance or use of this material.

Java is a trademark of Sun Microsystems, Inc.

COPYRIGHT NOTICE

No part of this publication may be reproduced, stored in a retrieval system or transmitted, in any form or by any means,
photocopying, recording or otherwise, without prior written consent of IO0NA Technologies PLC. No third party intellectual
property right liability is assumed with respect to the use of the information contained herein. [ONA Technologies PLC
assumes no responsibility for errors or omissions contained in this book. This publication and features described herein are
subject to change without notice.

© 1991-1999 I0NA Technologies PLC. All rights reserved.

Al products or services mentioned in this manual are covered by the trademarks, service marks, or product names as
designated by the companies that market those products.

M2284

Contents

Preface
Audience
Organization of this Guide
Document Conventions

Part | Introduction

Chapter | Introduction to the CORBA Naming Service
The Interface to the Naming Service
Format of Names in the Naming Service
IDL Interfaces to the Naming Service
Using the Naming Service
Associating 2 Name with an Object
Using Names to Find Objects
Associating a Compound Name with an Object
Removing Bindings from the Naming Service
Convention for String Format of Names

Part Il OrbixNames C++ Programmer’s Guide

Chapter 2 C++ Programming with OrbixNames
Developing an OrbixNames Application
Making Initial Contact with the Naming Service
Binding Names to Objects
Resolving Object Names in Clients
Iterating through Context Bindings
Finding Unreachable Context Objects
Compiling and Running an Application
Configuring OrbixNames
Registering the OrbixNames Server
Options to the OrbixNames Server

(- ¢ JCN I NI NI - T, T G g V8 }

13
14
15
16
19
20
23
24
25
25
26

OrbixNames Programmer’s and Administrator’s Guide

Running OrbixNames in a Secure System
Configuring SSL Support in OrbixNames
Writing the OrbixNames IOR to a File
Configuring Clients to Read the OrbixNames IOR
Running the OrbixNames Server
Running the OrbixNames Utilities

Federation of Name Spaces

Chapter 3 Load Balancing with OrbixNames Using C++
The Need for Load Balancing
Introduction to Load Balancing in OrbixNames
The Interface to Object Groups in OrbixNames
Using Object Groups in OrbixNames
Example of Load Balancing with Object Groups
Defining the IDL for the Application
Creating an Object Group and Adding Objects
Creating Replicated Objects
Accessing the Objects from a Client

Part Il OrbixNames Java Programmer’s Guide

Chapter 4 Java Programming with OrbixNames
Developing an OrbixNames Application
Making Initial Contact with the Naming Service
Binding Names to Objects
Resolving Object Names in Clients
Iterating through Context Bindings
Finding Unreachable Context Objects
Compiling and Running an Application
Compiling and Running the demo Application
Configuring OrbixNames
Registering the OrbixNames Server
Options to the OrbixNames Server
Running OrbixNames in a Secure System
Configuring SSL Support in OrbixNames
Writing the OrbixNames IOR to a File
Configuring Clients to Read the OrbixNames IOR

28
28
30
31
31
32
32

37
37
39
40
41
44
44
46
55
58

63
64
65
66
69
71
73
74
75
76
76
76
78
79
8l
8l

Running the OrbixNames Server 82

Running the OrbixNames Utilities 83
Federation of Name Spaces 83
Chapter 5 Load Balancing with OrbixNames Using Java 85
The Need for Load Balancing 85
Introduction to Load Balancing in OrbixNames 87
The Interface to Object Groups in OrbixNames 88

Using Object Groups in OrbixNames 89
Example of Load Balancing with Object Groups 92
Defining the IDL for the Application 92
Creating an Object Group and Adding Objects 94
Creating Replicated Objects 103
Accessing the Objects from a Client 106

Part IV OrbixNames Administrator’s Guide

Chapter 6 Using the OrbixNames Utilities 113
Managing Name Bindings 114

Using the Name Uctilities 115

Syntax of the Name Management Uctilities 120

Managing Object Groups 122

Using the Object Group Utilities 122

Syntax of the Object Group Utilities 124

Chapter 7 The OrbixNames Browser 127
Starting the OrbixNames Browser 128
Connecting to an OrbixNames Server 129
Connecting to a Secure OrbixNames Server 130
Disconnecting from an OrbixNames Server 133
Managing Naming Contexts 134
Creating a Naming Context 134

Modifying 2 Naming Context 134

Removing a Naming Context 136

Managing Object Names 136

Binding a Name to an Object 137

OrbixNames Programmer’s and Administrator’s Guide

Modifying an Object Binding
Removing an Object Name
Navigating the OrbixNames Browser Button Bar

Part V. OrbixNames Programmer’s Reference

CosNaming
CosNaming::Bindinglterator
CosNaming::NamingContext
LoadBalancing
LoadBalancing::ObjectGroup
LoadBalancing::ObjectGroupFactory
LoadBalancing::RandomObjectGroup

LoadBalancing::RoundRobinObjectGroup

vi

139
139
140

143

149

151

165

171

175

179

181

Part VI Appendices

Appendix A Configuration Variables

Index

185

189

vii

OrbixNames Programmer’s and Administrator’s Guide

viii

Preface

OrbixNames is IONA Technologies’ implementation of the CORBA Naming
Service. This service allows you to associate abstract names with CORBA
objects and to locate objects using those names.

Audience

This guide is intended for use by application programmers who wish to
familiarize themselves with the Naming Service, and OrbixNames in particular.
Before reading this guide, you should be familiar with either the C++ or the Java
programming language and Orbix application programming.

Organization of this Guide

This guide is divided into the following parts:
Part I, “Introduction”

This part introduces the CORBA Naming Service and describes the features of
the Naming Service specification.

Part I, “OrbixNames C++ Programmer’s Guide”

Part Il describes how C++ programmers can use OrbixNames to take advantage
of the CORBA Naming Service in their applications. It also describes
OrbixNames extensions to this service that facilitate the implemention of load
balancing in CORBA servers.

Part Ill, “OrbixNames Java Programmer’s Guide”

Part Il describes how Java programmers can use OrbixNames to take advantage
of the CORBA Naming Service in their applications. It also describes
OrbixNames extensions to this service that facilitate the implemention of load
balancing in CORBA servers.

OrbixNames Programmer’s and Administrator’s Guide

Part IV, “OrbixNames Administrator’s Guide”

Part IV describes the OrbixNames command-line utilities and graphical browser.
This allow administrators to access the CORBA Naming Service without writing

applications.

Part V, “OrbixNames Programmer’s Reference”

Part V provides a complete reference for the programming interface to
OrbixNames, defined in the CORBA Interface Definition Language (IDL).

Part VI, “Appendices”

Part VI describes the configuration options available for OrbixNames.

Document Conventions

This guide uses the following typographical conventions:

Constant w dth

Italic

Constant width in normal text represents portions of code
and literal names of items such as classes, functions,
variables, and data structures. For example, text might refer
to the OCRBA: : (bj ect class.

Constant width paragraphs represent code examples or
information a system displays on screen. For example:

#i ncl ude <stdi o. h>

Italic words in normal text represent emphasis and new
terms.

Italic words or characters in code and commands represent
variable values you must supply, such as arguments to
commands or path names for your particular system. For
example:

% cd /user s/ your_name

Preface

This guide may use the following keying conventions:

<>

[]
{}

Some command examples use angle brackets to represent variable
values you must supply. This is an older convention.

Horizontal or vertical ellipses in format and syntax descriptions
indicate that material has been eliminated to simplify the discussion.
Brackets enclose optional items in format and syntax descriptions.

Braces enclose a list from which you must choose an item in format
and syntax descriptions.

A vertical bar separates items in a list of choices enclosed in { }
(braces) in format and syntax descriptions.

OrbixNames Programmer’s and Administrator’s Guide

xii

Part |

Introduction

Introduction to the CORBA
Naming Service

OrbixNames is IONA Technologies’ implementation of the CORBA
Naming Service, a service that allows you to associate abstract
names with CORBA objects in your applications. This chapter
describes the features of the CORBA Naming Service.

The Naming Service is a standard service for CORBA applications, defined in the
Object Management Group’s (OMG) CORBAservices specification. The Naming
Service allows you to associate abstract names with CORBA objects and allows
clients to find those objects by looking up the corresponding names. This service
is both very simple and very useful.

A server that holds a CORBA object binds a name to the object by contacting
the Naming Service. To obtain a reference to the object, a client requests the
Naming Service to look up the object associated with a specified name. This is
known as resolving the object name. The Naming Service provides interfaces
defined in IDL that allow servers to bind names to objects and clients to resolve
those names.

Most CORBA applications make some use of the Naming Service. Locating a
particular object is a common requirement in distributed systems and the
Naming Service provides a simple, standard way to do this.

OrbixNames Programmer’s and Administrator’s Guide

The Interface to the Naming Service

The Naming Service maintains a database of names and the objects associated

with them. An association between a name and an object is called a binding. The
IDL interfaces to the Naming Service provide operations to access the database
of bindings. For example, you can create new bindings, resolve names, and delete

existing bindings.

OrbixNames is implemented as a normal Orbix server. This server contains
objects which support the standard IDL interfaces to the Naming Service. These

interfaces are defined in the IDL module CosNami ng:

/1 1D
nodul e CosNani ng {
/1 Nami ng Service |DL definitions.

,

Part V of this guide on page 145 provides a full reference for the definitions in
this module. The remainder of this chapter provides a brief overview of the

most commonly used definitions.

Format of Names in the Naming Service

In the CORBA Naming Service, names can be associated with two types of
object: a naming context or an application object. A naming context is an object
in the Naming Service within which you can resolve the names of other objects.

Naming contexts are organized into a naming graph, which may form a naming
hierarchy much like that of a filing system. Using this analogy, a name bound to a
naming context would correspond to a directory and a name bound to an

application object would correspond to a file.

The full name of an object, including all the associated naming contexts, is known
as a compound name. The first component of a compound name gives the name
of a naming context, in which the second component is accessed. This process
continues until the last component of the compound name has been reached.

The notion of a compound name is common in filing systems. For example, in
UNIX, compound names take the form / aaa/ bbb/ ccc; in Windows they take
the form C: \ aaa\ bbb\ ccc. A compound name in the Naming Service takes a

more abstract form: an IDL sequence of name components.

Introduction to the CORBA Naming Service

Name components are not simple strings. Instead, a name component is defined
as an IDL structure, of type CosNani ng: : NaneConponent, that holds two strings:

/1 1D
/1 I'n nodul e CosNani ng.
t ypedef string Istring;

struct NanmeConponent {
Istring id;
I string kind;
b
A name is a sequence of these structures:
t ypedef sequence<NaneConponent> Nane;

The i d member of a NameConponent is a simple identifier for the object; the
ki nd member is a secondary way to differentiate objects and is intended to be
used by the application layer. For example, you could use the ki nd member to
distinguish the type of the object being referred to. The semantics you choose
for this member are not interpreted by OrbixNames.

Both the i d and ki nd members of a NameConponent are used in name
resolution. Two names that differ only in the ki nd member of one
NaneConponent are considered to be different names.

IDL Interfaces to the Naming Service

The IDL module CosNam ng contains two interfaces that allow your applications
to access the Naming Service:

Nam ngCont ext Provides the operations that allow you to access the main
features of the Naming Service, such as binding and
resolving names.

Bindinglterator Allows you to read each element in a list of bindings. Such
a list may be returned by operations of the
Nanm ngCont ext interface.

The remainder of this chapter describes how you use the Nam ngCont ext
interface to do simple Naming Service operations, such as binding names to your
application objects and resolving those names in your clients.

OrbixNames Programmer’s and Administrator’s Guide

Using the Naming Service

The first step in using the Naming Service is to get a reference to the root
naming context. The root naming context is an object, of type

CosNam ng: : Nam ngCont ext , which acts as an entry point to all the bindings in
the Naming Service.

This section describes some of the operations you can call on the root naming
context, or other naming contexts created by you, to do basic Naming Service
tasks.

Associating a Name with an Object

The operation CosNam ng: : Nam ngCont ext : : bi nd() allows you to bind a name
to an object in your application. This operation is defined as:
void bind (in Name n, in Object 0)
rai ses (Not Found, Cannot Proceed,
I nval i dNanme, Al readyBound) ;

To use this operation, you first create a CosNani ng: : Nane structure containing
the name you want to bind to your object. You then pass this structure and the
corresponding object reference as parameters to bi nd().

Using Names to Find Objects

Given an abstract name for an object, you can retrieve a reference to the object
by calling CosNam ng: : Nam ngCont ext : : r esol ve(). This operation is defined
as:

Obj ect resolve (in Nane n)
rai ses (Not Found, Cannot Proceed, |nvalidName);

When you call resol ve(), the Naming Service retrieves the object reference
associated with the specified CosNam ng: : Nane value and returns it to your
application.

Introduction to the CORBA Naming Service

Associating a Compound Name with an Object

Figure 1.1 shows an example of a simple compound name.

company °

staff

james

Figure 1.1: Example of a Compound Name

In this figure, a name with identifier conpany (and no kind value) is bound to a
naming context in the Naming Service. This naming context contains one
binding: between the name st af f and another naming context. The st af f
naming context contains a binding between the name j anes and an application
object.

If you want to associate a compound name with an object, you must first create
the naming contexts that will allow you to build the compound name. For
example, to create the compound name shown in Figure |.1:

I. Get a reference to the root naming context.

2. Use the root naming context to create a new naming context and bind
the name conpany to it. To do this, call the operation
CosNam ng: : Nam ngCont ext : : bi nd_new _cont ext (), passing the name
conpany as a parameter. This operation returns a reference to the newly
created naming context.

OrbixNames Programmer’s and Administrator’s Guide

3. Call GosNam ng: : Nam ngCont ext : : bi nd_new _cont ext () on the
conpany naming context object, passing the name st af f as a parameter.
This returns a reference to the new st af f naming context.

4. Call CosNam ng: : Nam ngCont ext : : bi nd() on the st af f naming
context, to bind the name j anmes to your application object.

The operation CosNam ng: : Nam ngCont ext : : bi nd_new cont ext () is defined
as:

Nam ngCont ext bi nd_new context (in Nane n)
rai ses (Not Found, Cannot Proceed,
I nval i dNanme, Al readyBound) ;

To create a new naming context and bind a name to it, create a

CosNam ng: : Nane structure for the context name and pass it to

bi nd_new cont ext (). If the call is successful, the operation returns a reference
to your newly created naming context.

Removing Bindings from the Naming Service

If you want to remove the association between a name and an object in the
Naming Service, call the operation CosNani ng: : Nam ngCont ext : : unbi nd() .
This operation is defined as:

void unbind (in Nanme n)
rai ses (Not Found, Cannot Proceed, | nvalidName);

This operation takes a single parameter that indicates the name to be removed
from the Naming Service.

The name passed as a parameter to unbi nd() may be associated with a naming
context or an application object. If you unbind the name of a context and your
applications have no further use for that context, you should delete the
corresponding naming context object. To do this, call

CosNam ng: : Nam ngCont ext : : destroy() on a reference to the naming
context. This operation is defined as:

voi d destroy ()
rai ses (Not Enpty);

Before calling destroy() on a naming context object, remove any bindings
contained in the context.

Introduction to the CORBA Naming Service

Convention for String Format of Names

To make it easier to describe examples, this guide uses a string representation of
Naming Service names. This convention is specific to OrbixNames and is
illustrated by the following examplel:

docunents-dir.reports-dir.april 97-txt

In this example, the ID value of the first name component is docurent s and the
kind value is di r. The next component has ID reports and kind di r, followed
by a component with ID apri | 97 and kind t xt . This string format is used
throughout the rest of this guide and is understood by the OrbixNames utilities
described in Chapter 6 on page | 13.

Note: If the dash ‘-’ character is omitted from a name component, the kind field
is a zero length string. The forward slash character ‘/’ may be used to
escape the characters ‘-’ (dash), .’ (period), and ‘/’ (forward slash).

I. The Object Management Group (OMG) is expected to introduce a standard string format for
Naming Service names. This standard will be adopted in a future release of OrbixNames.

OrbixNames Programmer’s and Administrator’s Guide

10

Part |l

OrbixNames C++
Programmer’s Guide

C++ Programming with
OrbixNames

This chapter describes how you can use OrbixNames to make objects
available in CORBA servers and to locate those objects in clients. The
examples in this chapter use a C++ programming interface to the
Naming Service introduced in Chapter .

OrbixNames implements the CORBA Naming Service. To develop applications
that access the Naming Service, you must use two components of OrbixNames:

® The OrbixNames IDL files contain the IDL definitions for the interfaces to
the CORBA Naming Service and the load balancing features of
OrbixNames.

® The OrbixNames server is a normal Orbix server, provided by IONA
Technologies, that implements the functionality of the CORBA Naming
Service.

When you write a CORBA program that uses the Naming Service, this program
contacts the OrbixNames server using the OrbixNames IDL definitions. In this
way, any CORBA client or server that uses the Naming Service simply acts as a
client to the OrbixNames server. The examples in this chapter show how to
develop, compile, and run such programs.

13

OrbixNames Programmer’s and Administrator’s Guide

Developing an OrbixNames Application

Consider a software engineering company that maintains an administrative
database of personnel records which includes details of names, login names,
addresses, salaries, and holiday entitlements. These records are used for various
administrative purposes, and it is convenient to use the Naming Service to locate
an employee record by name. Figure 2.1 shows part of a naming context graph
designed for this purpose.

engineering

support

james john paula john paula manager

james manager

Figure 2.1: A Naming Context Graph

The nodes conpany, st af f, engi neeri ng, and support represent naming
contexts. A name such as conpany. st af f. paul a- per son names an application
object. The same object may have more than one name; for example, each
person is listed in the generic conpany. st af f context and is also listed in a
particular division such as conpany. engi neeri ng or conpany. sal es.

In addition, it is convenient to use abstract names so that, for example, the
engineering manager can be found by looking up the name
conpany. engi neeri ng. nanager .

14

C++ Programming with OrbixNames

Allowing different paths to the same object facilitates the many uses that might
be made of the Naming Service. For example, a payroll system might be
interested only in the conpany. st aff context; the engineering manager might
want the holiday records for all of the employees with entries in the

conpany. engi neer i ng context to be written to a spreadsheet, and so on.

The remainder of this section shows some sample code based on the naming
context graph in Figure 2.1. The full source code for this example is available in
the directory deno/ nam ng/ st af f of your OrbixNames installation.

Making Initial Contact with the Naming Service

Whether you are writing a client or server application, the first step in
communicating with the Naming Service is to obtain a reference to the root
naming context. There are two ways for an application to do this:

® The recommended way is to use the CORBA Initialization Service. This

approach is fully CORBA compliant. To use the Initialization Service, pass
the string NarmeSer vi ce to the following C++ function call on the ORB:

Il C++

/1 I'n class CORBA:: ORB.

Obj ect _ptr resolve_initial_references(

const char* identifier)

The result must be narrowed using the function
CosNam ng: : Nam ngCont ext : : _narrow() to obtain a reference to the
naming context.

The call toresol ve_i nitial _references() succeeds if an OrbixNames
server is running on the local host or the locator is appropriately
configured as described in “Compiling and Running an Application” on
page 24.

The name of the OrbixNames server as registered in the Implementation
Repository is assumed to be NS by default. To contact an OrbixNames
server registered with a different name, the configuration entry

I T_NAMES_SERVER must identify that name, as described in “Configuring
OrbixNames” on page 25.

® The second approach is to read the root naming context IOR from a
shared file. To do this, use the - | switch to specify a file name when
running the OrbixNames server, NS:

15

OrbixNames Programmer’s and Administrator’s Guide

ns -1 /sharedl ORs/ns.ior
When you run the server in this way, it stores the root naming context
IOR in the specified file. You can use this file later to get the initial naming
context:

/] C++
#i ncl ude <Nani ng. hh>

char *rootl| OR;
CORBA: : Obj ect _var obj Var;
CORBA: : ORB_var orbVar;

/! Read the contents of file /sharedl ORs/ns.ior
/1 into the string rootl OR

try {
orbVar =

CORBA: : ORB_init (argc, argv, "Obix");
obj Var = orbVar->string_to_object (rootlOR);

The resulting object reference must subsequently be narrowed using the
following call:
CosNani ng: : Nani ngGontext: : _narrow().

Once you get a reference to the root naming context, you can look up names in

contexts held by the corresponding OrbixNames server. This allows you to
obtain a reference to a particular context or to an application object.

Binding Names to Objects

The following sample server code shows how to build the conpany and
conpany. st af f naming contexts shown in Figure 2.1 on page 4. It then shows
how to bind the name conpany. st af f . j ohn- per son to the object referenced
by the variable j ohnVar (which supports the IDL interface Per son implemented
by class Per sonl npl).

/] C++

16

C++ Programming with OrbixNames

/! An Orbix server.
#i ncl ude <Nanmi ng. hh>

int min () {
Per son_var johnVar = new Personl npl
("John", "Engineer");
CORBA: : ORB_var orbVar;
CORBA: : Obj ect _var obj Var;
CosNani ng: : Nam ngCont ext _var root Cont ext,
conpanyCont ext, st affContext;
CosNani ng: : Nane_var nane;

try {
orbVar =

CORBA: : ORB_init (argc, argv, "Orbix");

/1 Find the initial nam ng context:

obj Var = orbVar->
resolve_initial_references("NameService");

i f (rootCont ext=CosNani ng::

Nam ngCont ext:: _narrow(obj Var)) {
/1 A CosNaming::Nane is sinply a sequence
/'l of structs.
name = new CosNami ng:: Nane(1);
name- >l engt h(1);
name[0] .id =CORBA: : string_dup("conmpany");
name[0] . kind =
CORBA: : string_dup("conpany");

/1 (I'n one step) create a new context, and
/1 bind it relative to the initial
/] context:
companyCont ext =
r oot Cont ext - >bi nd_new_cont ext (nane) ;

name[0] .id = CORBA::string dup("staff");
name[0] . kind = CORBA: :string_dup("staff");

/1 (I'n one step) create a new context, and

/1l bind it relative to the conpany
/] context:

17

OrbixNames

Programmer’s and Administrator’s Guide

18

st af f Context =
conpanyCont ext - >bi nd_new_cont ext (nane) ;

name[0].id = CORBA: :string_dup("john");
name[0] . ki nd=CORBA: : string_dup("person");

/1 Bind nanme to object johnVar in context
/1 conpany. staff:
st af f Cont ext - >bi nd(nane, j ohnVar) ;

} else { ... }

/1 Deal with failure to _narrow().

} // catch cl auses not shown here.

This code is explained as follows:

The server calls CORBA: : CRB: :resol ve_initial _references() togeta
reference to the root naming context.

The server creates a CosNam ng: : Nare structure that contains a single
component with ID conpany and conpany kind value.

A call to bi nd_new cont ext () on the root context binds the newly
created name to a new context object. The new context object is directly
within the scope of the root naming context.
The server modifies the CosNam ng: : Nane structure, assigning ID st af f
and an empty kind value to the single name component.
The server calls bi nd_new cont ext () on a reference to the conpany
context object created in step 3. The Naming Service creates a new
context object and binds the name conpany. st af f to it.
The server again modifies the CosNam ng: : Name structure, assigning ID
j ohn and kind per son to the single name component.

A call to bi nd() on the conpany. st af f naming context associates the
name conpany. st af f . j ohn- per son with the application object j ohnVar .

The server code builds up a naming graph by creating individual naming contexts
and then binding a name to the application object within the scope of those

C++ Programming with OrbixNames

Resolving Object Names in Clients

For a client, a typical use of the Naming Service is to find the initial naming
context and then to resolve a name to obtain an object reference. The following
code sample illustrates this. It finds the object named

conpany. engi neer i ng. nanager - per son and then prints the manager’s name.

The following IDL definition is assumed:

/1 1DL
interface Person {
readonly attribute name;

b
The client is written as:

/] C++
// An Orbix client.
#i ncl ude <Nami ng. hh>

int main (int argc, char** argv) {
CosNani ng: : Nam ngCont ext _var root Cont ext ;
CosNani ng: : Nane_var nane;
Per son_var personVar;
CORBA: : Obj ect _var obj Var;
CORBA: : ORB_var orbVar;

try {
orbVar =

CORBA: : ORB_init (argc, argv, "Orbix");

/1 Find the initial nam ng context:
1 obj Var = orbVar->
resolve_initial_references("NameService");
if (rootContext = CosNam ng::
Nam ngCont ext :: _narrow(obj Var)) {

2 name = new CosNami ng:: Nane(3);
name- >l engt h(3);
name[0] .id = CORBA::string_dup("conmpany");
name[0] . kind = CORBA: : string_dup("");
name[1] .id = CORBA::string_dup
("engi neering");

19

OrbixNames Programmer’s and Administrator’s Guide

name[1] . ki nd = CORBA: :string_dup("");

name[2].id = CORBA: :string_dup("nanager");

name[2] . ki nd = CORBA: : string_dup
("person");

3 obj Var = root Cont ext - >r esol ve(nane) ;
4 if (personVar = Person::_narrow objVar)) {
cout << personVar->namne()
<< " is the engineering nanager."
<< endl;
} else { ... }
/1 Deal with failure to _narrow().
} else { ...}

/1 Deal with failure to _narrow().

} // catch cl auses not shown here.

This code is explained as follows:

I. The client calls OCCRBA: : CRB: : resol ve_initial _references() to get a
reference to the root naming context.

2. The client creates a CosNam ng: : Nane structure that contains three
name components. The client assigns this structure to represent the
compound name conpany. engi neer i ng. manager - per son.

3. A call toresol ve() on the root naming context returns the object
associated with the name conpany. engi neer i ng. manager - per son. The
client resolves the entire compound name with a single call to the
Naming Service.

4. The object returned in step 3 is an application object that implements the
IDL interface Per son. The client now narrows the returned object to
type Per son.

Iterating through Context Bindings
The following code sample shows a simple example of using the

Bi ndi ngl t er at or interface to list the bindings in a context. This code lists the
bindings in the context conpany. st af f:

20

C++ Programming with OrbixNames

/] C++

CosNami ng: : Nam ngCont ext _var root Cont ext,
st af f Cont ext ;

CosNami ng: : Bi ndi ngLi st_var bLi st;

CosNami ng: : Bi ndi nglterator_var blter;
CosNami ng: : Nane_var nane;

CORBA: : Obj ect _var obj Var;

CORBA: : ORB_var orbVar;

try {

orbVar =

11

CORBA: : ORB_init (argc, argv, "Orbix");

Find the initial nam ng context:

obj Var = orbVar->

resolve_initial_references("NameService");

root Cont ext =

if

CosNani ng: : Nam ngCont ext : : _narrow(obj Var);
(!'CORBA: :is_nil (rootContext)) {
name = new CosNami ng:: Nane(2);
name- >l engt h(2);
name[0] .id = CORBA::string_dup("conmpany");
name[0] . ki nd = CORBA: : string_dup("");
name[1] .id = CORBA::string dup("staff");
name[1] . ki nd = CORBA: : string_dup("");
obj Var = r oot Cont ext - >resol ve(nane) ;
st af f Context = CosNami ng::

Nam ngCont ext: : _narr ow(obj Var);

if (!CORBA::is_nil (staffContext)) {
const CORBA: : ULong bat chSi ze = 10;

st af f Cont ext - >l i st (bat chSi ze, bLi st, bl ter);
CORBA: : ULong i ;
for (i =0; i <bList.length(); i++ {
cout << bList[i].binding_nane[0].id
<< "M
cout << bList[i].binding_nane[0].kind
<< endl ;

}

/1 |f more than batchSize bindings in
/] context, obtain themusing next_n().

21

OrbixNames Programmer’s and Administrator’s Guide

22

if ('/CORBA::is_nil(blter)) {
whil e(blter->next_n(batchSi ze, bList) {
for (i=0; i < bList.length(); i++) {
cout << bList[i].
bi ndi ng_nane[0].id << "-"
cout << bList[i].
bi ndi ng_nan®e[0] . ki nd

<< endl;

}
} else { ... }

/1 Deal with failure to _narrow().

} else { ... }

/1 Deal with failure to _narrow().

} /] catch cl auses not shown.

The information retrieved by this code may be useful to either a client or a

server. The functionality of this code is:

I. The application calls OCRBA: : CRB: : resol ve_i ni ti al _references() to

get a reference to the root naming context.

2. It then creates a CosNam ng: : Name structure that contains two name
components. The client assigns this structure to represent the compound
name conpany. st af f, which is bound to a naming context.

3. The application calls r esol ve() on the root naming context to obtain a

reference to the company. st af f context object.

4. Acalltolist() on this context object returns a list of at most ten

bindings contained in this context.

5. The application examines each element in the list of bindings returned in

step 4.

6. If more than ten bindings are available in context conpany. st af f, the
CosNam ng: : Bi ndi ngl t er at or object bl t er contains all the bindings not
returned in step 4. The application calls the operation next _n() to

retrieve a list of these additional bindings.

For more information about operation GosNanmi ng: : Nam ngContext : : list(),
refer to “CosNaming::NamingContext:list()” on page 157. For more
information about the interface CosNami ng: : Bi ndi ngl t er at or, refer to

“CosNaming::Bindinglterator” on page 149.

C++ Programming with OrbixNames

Finding Unreachable Context Objects

Applications can create naming contexts with no associated name binding. If such
an application exits without destroying these contexts, the context objects
remain in the Naming Service but are unreachable and cannot be deleted. For
example, an application could do this by calling the operation

CosNam ng: : Nam ngCont ext : : unbi nd() to unbind a context name, without
calling CosNam ng: : Nam ngCont ext : : destroy() to destroy the corresponding
context object.

On start-up, OrbixNames automatically creates a naming context to handle this
problem. This context is named | ost +f ound. If you create a context without
binding a name to it, or unbind a context name without destroying the context
object, OrbixNames gives the context a special name within the | ost +f ound
context. The format of this name is as follows:

NC _number time

The nunber value is a random number assigned by OrbixNames. The ti ne value
indicates the date and time at which the name was created in the | ost +f ound
context. The combination of the nunber and ti me values uniquely identifies the
naming context in | ost +f ound.

Of course, this naming format makes it almost impossible to determine which
context in | ost +f ound came from which application. However, this is not
important because the | ost +f ound context simply allows you to ensure that the
Bindings Repository does not become cluttered with unreachable context
objects. For example, you might want to destroy all contexts in | ost +f ound
created before a certain date. This is quite straightforward. First, list the
contents of | ost +f ound using the OrbixNames | sns utility and then delete the
appropriate contexts using the OrbixNames r ms utility. These utilities are
described in Chapter 6.

For example, the following command deletes the context object associated with
the name "NC 9Thu Dec 10 11-09- 02 GWMII+00-00 1998" in the | ost +f ound
context:

rms -Xx | ost+found. NC 9Thu Dec 10 11-09-02 GVI+00-00 1998

Before you delete a context in | ost +f ound, ensure that the context is no longer
required by your applications. For example, if an application uses

CosNam ng: : Nam ngCont ext : : new_cont ext () to create a context that it
intends to name later, the context is stored temporarily in | ost +f ound until the

23

OrbixNames Programmer’s and Administrator’s Guide

application binds a name to it. You should take care to avoid deleting such
contexts. Deleting contexts created before a given date is one way to achieve
this.

The | ost +f ound context is most useful during application testing, because
leaving unreachable contexts in the Naming Service is bad application behavior.
When coding your applications, try to ensure that they avoid doing this.

Compiling and Running an Application

This section describes how to build an application that uses OrbixNames, the
configuration variables that are required, how to register an OrbixNames server
in the Implementation Repository, and the options that are available on the
server executable.

The following steps are required to build an application that uses OrbixNames:

I. Generate stub code for the OrbixNames server by passing the
OrbixNames IDL file, Nam ngServi ce. i dI, through your IDL compiler.
Link your application with the client stub code. For example, you can run
the Orbix IDL compiler as follows:

idl Nam ngService.idl

This generates three files: Nam ngSer vi ce. hh, Nam ngSer vi ceC. cc, and
Nam ngSer vi ceS. cc. Include the header file Nam ngSer vi ce. hh in your
application code and link your application with the object code for

Nani ngSer vi ceC. cc. Discard Nam ngSer vi ceS. cc.

If your application uses the load balancing features of OrbixNames,
described in Chapter 3 on page 37, you must also pass the other
OrbixNames IDL file, LoadBal anci ng. i dI , through your IDL compiler,
for example:
idl LoadBal anci ng.i dl

Again, this generates three files: LoadBal anci ng. hh,
LoadBal anci ngC. cc, and LoadBal anci ngS. cc. Include the header file
LoadBal anci ng. hh in your application code and link your application
with the object code for LoadBal anci ngC. cc. Discard
LoadBal anci ngS. cc.

2. Register the OrbixNames server in the Implementation Repository as
described in “Registering the OrbixNames Server” on page 25.

24

C++ Programming with OrbixNames

3. Configure the Orbix locator to make the OrbixNames server known to
OCRBA: : CRB: :resol ve_i ni tial _references(). Assuming that the
OrbixNames server is registered in the Implementation Repository with
the name NS on host al pha, this can be achieved by adding the following
line to the O bi x. host s or or bi x. hst file:

NS: al pha:

Configuring OrbixNames

When you install OrbixNames, the configuration file or bi xnames3. cf g is added
to your system, in the OrbixNames confi g directory. This file contains the

configuration variables that relate to OrbixNames and it is included in the Orbix
configuration file i ona. cf g, as described in theOrbix C++ Administrator’s Guide.

On UNIX, you can set the OrbixNames configuration variables in the

or bi xnames3. cf g configuration file using the Orbix Configuration Explorer
described in the Orbix C++ Administrator’s Guide. They may also be set as
environment variables. On Windows NT these values are set in either the
configuration file or the system registry.

When setting the values of these variables in the file or bi xnanes3. cf g, define
each variable in the O bi xNaes scope, that is O bi xNarres. | T_NAMES_SERVER
O bi xNames. | T_NS_HOSTNAME, O bi xNanes. | T_NAMES_PATH, and so on.

For a comprehensive description of OrbixNames and common configuration
variables, refer to Appendix A, “Configuration Variables”.

Registering the OrbixNames Server
As a normal Orbix server, the OrbixNames server must be registered with the
Orbix Implementation Repository.

As usual, the server is registered using either the Graphical Server Manager
utility or the putit utility. Using puti t, a typical command to register an
OrbixNames server is:

putit NS "/orbix/bin/ns"

Once registered with the Implementation Repository, the server can be
activated by the Orbix daemon or launched manually.

25

OrbixNames Programmer’s and Administrator’s Guide

You can terminate the OrbixNames server in the same way as any Orbix server;
that is, by using the ki | i t utility on UNIX, or the Graphical Server Manager
utility.

Options to the OrbixNames Server

The OrbixNames server executable is named ns; it takes the following options:
ns [-v] [-r <repository path>] \
[-1 <ns ior file>] [-]I] [-h <hashtable size>] \
[-p <thread pool size>] [-e <cache size>] [-]j]
[-sem secure] [-secure]

The options are

-V Outputs version information. Specifying - v does not
cause the OrbixNames server to run.

-r Specifies the directory to be used as the Bindings
Repository. This overrides the value of
| T_NAMES PATH as set in O bi x. cf g (or the system
registry on Windows NT).

-l <ns ior file> Specifies a file where the server will store the root
context IOR as it starts up.

- Starts the OrbixNames server in load balancing
mode. If you wish to use object groups, you must
start the server with this option.

-h <hash tabl e size> In OrbixNames, each naming context has an
associated hash table. A naming context uses this
table to store references to bindings the context
contains. The - h switch allows you to specify the
size of this hash table.

The default hash table size is 23. If you expect your
naming contexts to contain more than this number
of bindings, increase the hash table size to reduce
the number of times the hash table resizes. If you
expect less than this number, decrease the hash
table size to improve performance.

26

C++ Programming with OrbixNames

-p <thread pool

-e <cache size>

-sem secure

-Secure

Si ze> The OrbixNames server is a multithreaded

application. The - p switch sets the size of the
thread pool used to handle incoming requests. The
default value is 10.

The OrbixNames server caches naming contexts in
memory to improve performance. The - e switch
specifies how many contexts should be cached. The
default value is 10.

The OrbixNames server is a Java application. On

platforms other than Solaris, you can instruct the
server to pass command-line switches directly to

the Java interpreter. To do this, use the -j switch
to the OrbixNames server.

For example, to increase the virtual memory used
by the interpreter when running OrbixNames, start
the server as follows:

ns -j -mx9000000

The default OrbixNames server possesses no
security. This switch forces the server to accept
both secure (SSL) and insecure (non-SSL)
connections. You will be prompted for a password
that should correspond to the SSL certificates
referenced in the OrbixNames section of the

or bi xssl . cfg configuration file.

The default OrbixNames server possesses no
security. This switch forces the server to accept
Secure Sockets Layer (SSL) connections only. You
will be prompted for a password that should
correspond to the SSL certificates referenced in the
OrbixNames section of the or bi xssl . cfg
configuration file.

27

OrbixNames Programmer’s and Administrator’s Guide

Running OrbixNames in a Secure System

OrbixSSL enables you to create Orbix and OrbixWeb applications that
communicate using Secure Sockets Layer (SSL) security. If you run secure
applications that use OrbixNames, the OrbixNames server must also
communicate using SSL.

When running OrbixNames with OrbixSSL, you must:
Configure SSL support in OrbixNames.
Write the OrbixNames Interoperable Object Reference (IOR) to a file.

Configure clients to read the OrbixNames IOR from a file.

A w N~

Run the OrbixNames server.
5. If required, run the OrbixNames utilities.

This section briefly describes each of these steps. Refer to the OrbixSSL
documentation for more information about OrbixSSL and SSL security.

Configuring SSL Support in OrbixNames

As described in the OrbixSSL documentation, the OrbixSSL configuration file,
or bi xssl . cf g, controls how a program uses SSL. To configure the use of SSL in
OrbixNames, you must add several configuration values to or bi xssl . cf g.

Adding SSL Security to OrbixNames

First, you must instruct OrbixNames to use SSL. To do this, add the following
text to the OrbixSSL configuration file:
O bi xNames {

Server {
| T_SECURI TY_PCLI CY = "SECURE";

}s
}s

The configuration variable O bi xNanes. | T_SECUR TY_PCLI CY can take one of
the following values:

SECURE The OrbixNames server accepts only secure communications.

28

C++ Programming with OrbixNames

I NSECURE The OrbixNames server accepts only insecure
communications.

SEM _SEQURE The OrbixNames server accepts both secure and insecure
communications.

If you do not set this variable in the configuration file, OrbixNames does not use
SSL security. If you set the value to SECURE, you must then configure SSL
authentication.

Configuring SSL Authentication in OrbixNames

SSL authentication allows one SSL program to verify the identity of another.
Each authenticated program has an associated certificate and a private key that it
uses to prove its identity. Each certificate is signed by a Certification Authority
(CA) that guarantees that the certificate is valid. By default, only OrbixSSL server
programs are authenticated.

To ensure that the OrbixNames server can prove its identity during
authentication, you must specify the location of the OrbixNames certificate and
private key files in the OrbixSSL configuration file. By default, OrbixNames uses
the certificate file or bi x_nanes and the private key file or bi x_narres. j pk, both
located in the OrbixSSL certi fi cat es/ servi ces directory.

To configure OrbixNames to use these files, add the following settings to the
OrbixSSL configuration file:

O bi xNames {
Server {
| T_CERTI FI CATE_FI LE = " OrbixSSL directoryl
certs/services/orbix_nanes";
| T_PRI VATEKEY_FI LE = " OrbixSSL directoryl
certs/services/orbix_names.jpk"
b
b
Replace the OrbixSSL directory value with the actual directory in which
OrbixSSL is installed. In a fully secure system, where you do not use the
OrbixSSL demonstration certificates, you must change these settings to
associate your chosen certificate and private key with OrbixNames.

29

OrbixNames Programmer’s and Administrator’s Guide

Adding Client Authentication to OrbixNames

If required, OrbixNames can authenticate programs that connect to it. In this
case, the communicating program must have an associated certificate and the
certificate must be signed by a trusted CA.

If you want to enable client authentication by OrbixNames, add the following
setting to the OrbixSSL configuration file:
O bi xNames {

Server {
| T_AUTHENTI CATE_CLI ENTS = "TRUE";

b

b
To specify the file that contains the list of trusted CAs, add the following:

O bi xNames {

Server {

I T_CA LI ST_FILE = "OrbixSSL directory!
/ca_lists/denp_ca list _1";

b

b

In a fully secure system, change this setting to your actual certificate list file.

Configuring the SSL Port for the OrbixNames Server

When the OrbixNames server is SSL-enabled, it requires an additional port on
which it listens for incoming secure communications. To set this port value, add
the following variable to the OrbixNames configuration file:

O bi xNames {
I T_SSL_II OP_LI STEN_PORT = " portnumber";

}s

Replace the portnumber value with any available port number.

Writing the OrbixNames IOR to a File

Before running the OrbixNames server with OrbixSSL, you must instruct the
server to publish its IOR to a file. To do this, use the -1 switch as follows:

ns -1 filename

30

C++ Programming with OrbixNames

This causes the server to write its IOR to the file specified in filename.

Configuring Clients to Read the OrbixNames IOR

After the OrbixNames server writes its IOR to a file, you must configure your
clients to read this IOR when making contact with the CORBA Naming Service.

For Orbix clients, add the following setting to the OrbixNames configuration

file:
Common {
Servi ces {
NameService = "IOR";
b
b

In this case, IOR is the OrbixNames IOR copied from file. For OrbixWeb clients,
add the following to the OrbixNames configuration file:

Or bi xWeb {
I T_I NI TI AL_REFERENCES = " NaneService IOR";
b
When the client calls resol ve_i nitial _references() to obtain a reference to
the OrbixNames server, these settings ensure that it uses the correct IOR. The
only way that clients can contact a secure OrbixNames server is by using
resol ve_initial _references() in this manner.

Running the OrbixNames Server

To use security with OrbixNames, you must launch the OrbixNames server
manually. It cannot be launched automatically. For example, run the server as
follows:

ns

To gain access to its private key, OrbixNames must supply the pass phrase that
was used to encrypt the key. When you start the server, it instructs you to
enter this pass phrase. If you use the OrbixSSL demonstration certificates and
private keys, enter the pass phrase denopasswor d. Otherwise, enter the correct
pass phrase for the private key specified in the

O bi xNarres. Server. | T_PRI VATEKEY_FI LE configuration value in

or bi xssl . cf g.

31

OrbixNames Programmer’s and Administrator’s Guide

When running the OrbixNames server, you can override the security setting
specified by the O bi xNarres. Server. | T_SECUR TY_PCLI CY variable in
or bi xssl . cfg.

To do this, use the - secur e switch or -i nsecur e switch, for example:

ns -insecure

Running the OrbixNames Utilities

Using a secure OrbixNames server, you can run only the C++ OrbixNames
utilities, for example | sns. You cannot run the Java utilities. For example, | snsj
cannot use SSL security.

If the OrbixNames server uses client authentication, the utilities must be able to
supply a certificate and gain access to a private key. During installation, each
utility is configured to use the or bi x demonstration certificate from the
OrbixSSL certi fi cat es/ servi ces directory. The OrbixSSL C++ Programmer’s
and Administrator’'s Guide describes how to replace this certificate and update
the utilities with a new private key pass phrase.

Federation of Name Spaces

The collection of all valid names recognized by the Naming Service is called a
name space. A name space is not necessarily located on a single OrbixNames
server, because a context in one OrbixNames server can be bound to a context
in another OrbixNames server on the same host or on a different host. The
name space provided by a Naming Service is the association or federation of the
name spaces of each individual OrbixNames server that comprises the Naming
Service.

Figure 2.2 shows a Naming Service federation that comprises two OrbixNames
servers running on different hosts. In this example, names relating to the
company’s engineering and PR divisions are served by one server, and names
relating to the company’s marketing division are served by a separate server. A
request to resolve a name starts in one OrbixNames server, but may continue in
another server’s database. Clients do not have to be aware that more than one
server is involved in the resolution of a name, and they do not need to know
which server interprets which part of a compound name.

32

C++ Programming with OrbixNames

Host A

Host B

company

marketing
engineering

Figure 2.2: Naming Graph Spanning Two OrbixNames Servers

The following code sample shows how to create the naming context conpany on
host Aand the naming context nar ket i ng, which is a sub-context of conpany,
on host B:

/] C++
#i ncl ude <Nanmi ng. hh>

int main (int argc, char** argv) {

const char* hostA = "A";
const char* hostB = "B";
char* ior;

CORBA: : Obj ect _var obj Var;

CosNani ng: : Nam ngCont ext _var host ACont ext,
host BCont ext, conpanyCont ext,
mar ket i ngCont ext ;

CosNani ng: : Nane_var nane;

CORBA: : ORB_var orbVar;

try {
orbVar =

CORBA: : ORB_init (argc, argv, "Orbix");
/!l Read IOR for root context on host B
/] froma file into the string ior.

/1 (Not shown.)

obj Var = orbVar->string_to_object (ior);

33

OrbixNames

Programmer’s and Administrator’s Guide

34

host BCont ext =
CosNami ng: : Nanmi ngCont ext: : _narrow
(obj Var);

name = new CosNami ng:: Nanme(1);
name- >| engt h(1) ;
name[0].id = CORBA: :string_dup("narketing");
name[0] . kind = CORBA: :string_dup("");
mar ket i ngCont ext =
host BCont ext - >bi nd_new_cont ext (nane);

/! Read IOR for root context on host A
/1 froma file into the string ior.
/1 (Not shown.)

obj Var = orbVar->string_to_object (ior);
host ACont ext =
CosNami ng: : Nanmi ngCont ext: : _narrow

(obj var);

name[0].id = CORBA: :string_dup("conpany");
name[0] . ki nd = CORBA: :string_dup("");

companyCont ext =
host ACont ext - >bi nd_new_cont ext (nane);

naITE[0] .id = CORBA: :stri ng_dup(" mar ket i ngu) :
name[0] . ki nd = CORBA: :string_dup("");

conpanyCont ext - >bi nd_cont ext (
name, marketi ngCont ext);

} // catch cl auses not shown here.

This code is explained as follows:

C++ Programming with OrbixNames

I. The application assumes that the IORs for the root naming contexts on
hosts A and B have been written to files, as described in “Making Initial
Contact with the Naming Service” on page |5. The application then
obtains a reference to the root naming context associated with the
OrbixNames server on host B.

2. The application creates a name structure with a single element. This
structure represents the name of the mar keti ng context on host B.

3. A call to bi nd_new cont ext () creates a new context on host B and
binds the name mar ket i ng to it.

4. The application gets a reference to the root naming context associated
with the OrbixNames server on host A

5. The application modifies the name structure to contain the name of the
conpany context.

6. A call to bi nd_new cont ext () creates a new context on host A and
binds the name conpany to it.

7. The application modifies the name structure to contain the name of the
mar ket i ng context, which is a sub-context of conpany on host A

8. The operation bi nd_cont ext (), called on the conpany context, binds
the name conpany- nar ket i ng to the object reference associated with
the mar ket i ng context on host B. If a client contacts the OrbixNames
server on host A and resolves a name in the conpany- mar ket i ng
context, the server on host B completes the name resolution.

You can also create a federated name space using the OrbixNames utilities.
These utilities are described in detail in Chapter 6. To achieve the same result as
the code above, firstuse the put newncns command to create the conpany
naming context on host Aand the narketi ng naming context on host B:

put newncns -h A conpany
put newncns -h B narketing

Next, instruct OrbixNames to copy the object reference for the nar ket i ng
context object to the file marketing.ior:

catns -h B marketing > marketing.ior

Finally, associate the name of this context with the object reference of the
mar ket i ng context on host B:

putncns -h A conpany.nmarketing -f marketing.ior

35

OrbixNames Programmer’s and Administrator’s Guide

36

Load Balancing with OrbixNames
Using C++

Load balancing is a crucial requirement for many distributed
applications. This chapter describes the powerful, but easy-to-use
OrbixNames approach to load balancing in CORBA applications.

The Need for Load Balancing

The role of the CORBA Naming Service is critical in large-scale distributed
applications. The Naming Service acts as a central repository of objects, which
clients use to locate server applications. Administrators can relocate or upgrade
server applications by modifying the contents of the Naming Service. This
requires no coding modifications on the client side.

Figure 3.1 on page 38 shows a typical OrbixNames environment:

® The Bank server binds an object obj 1, to a name nanel, in the Naming
Service.

® dients 1...Nresolve this name by obtaining a proxy for obj 1.

® dients 1...Ntheninvoke obj 1 directly.

37

OrbixNames Programmer’s and Administrator’s Guide

Client |
objl proxy invoke ()
OrbixNames
Client 2 BANK Server

objlproxy | resolve ()\ ’/_- h

namel | objl

name2 | obj2

Client N

objl proxy

Figure 3.1: Example of Typical OrbixNames Usage

As the number of deployed clients increases, the load on an individual server
may become excessive. To redress this problem, server load balancing through
replication may be required.

In the example shown in Figure 3.1, replication involves creating a new server
Bank_repl i ca, which contains an object obj 1_repl i ca. This is an object
offering an identical service to obj 1. The new server registers the replica object
in the Naming Service under the name narel_repl i ca. Clients can choose to
resolve either nanel or nanel repli ca, to access either obj 1 or

obj 1_repl i ca respectively. This approach is simple and practical, but requires a
significant amount of application-specific coding.

Code changes on the client side are especially problematic. For example, if the
clients are installed extensively in an enterprise, each installation will need to be
upgraded when clients are modified to select different replica objects. Similarly, if
two servers are insufficient, another server Bank_r epl i ca_2 will be required,
necessitating further code modifications.

This simple approach to replication does not scale very well because, unlike
upgrading or relocating servers, it involves code changes on the client side.
However, the Naming Service is a useful candidate for handling server
replication and OrbixNames provides a solution to the scalability problem.

38

Load Balancing with OrbixNames Using C++

Introduction to Load Balancing in OrbixNames

The CORBA Naming Service defines a repository of names that map to objects.
A name maps to one object only. OrbixNames extends the CORBA Naming
Service model to allow a name to map to a group of objects. An object group is a
collection of objects that can increase or decrease in size dynamically. For
example, {obj 1, obj 1_replica, obj1_replica_2} would constitute an object
group.

Each object group has a selection algorithm. This algorithm is applied when a
client resolves the name associated with the object group. Two algorithms are
supported: round-robin selection and random selection.

Pure CORBA
Name - Object Naming Service
> ~ -
Name I L /Object | N
| . \
F— — — L g Object 2 \
| \ Object 3,
L — — _\T _____ e
OrbixNames N Y
Extension ™ __ Object Group -

—_— i

Figure 3.2: Associating a Name with an Object Group

OrbixNames supports object groups by introducing new IDL interfaces to the
Naming Service. These interfaces enable you to create object groups, add
objects to and remove objects from groups, and to find out which objects are
members of a particular group. If you want to take advantage of object groups,
you can use these interfaces in your servers to create and manipulate groups.
Your client code can remain unchanged.

Figure 3.2 illustrates the concept of binding a name to multiple objects using an
object group.

39

OrbixNames Programmer’s and Administrator’s Guide

The Interface to Object Groups in OrbixNames

40

The IDL module LoadBal anci ng, defined in the IDL file LoadBal anci ng. i dl,
provides access to the load balancing features of OrbixNames:

nodul e LoadBal anci ng {

excepti on no_such_nenber{};

excepti on duplicate_nenber{};

exception duplicate_group{};

excepti on no_such_group{};

typedef string nenberl d;

typedef sequence<nenber| d> nenberl dLi st;
typedef string groupld;

typedef sequence<groupl d> groupli st;

struct nenber {
(bj ect obj ;
nenberld id;
b

interface hjectG oup;
i nterface RoundRobi nChj ect G oup;
i nterface RandonChj ect G oup;

interface hject@oupFactory {
RoundRobi n(bj ect G oup cr eat eRoundRobi n(in groupld id)
rai ses (duplicate_group);
Randon(hj ect @ oup creat eRandon{i n groupld id)
rai ses (duplicate_group);
(bj ect Goup findGoup(in groupld id) raises (no_such_group);
grouplLi st rr_groups();
grouplLi st random gr oups();
b
interface ject@oup {
readonly attribute string id;

(bj ect pick();

voi d addMenber (i n nenber men) raises (duplicate_menber);
voi d renoveMenber (i n nmenberld id) raises (no_such_nenber);
(bj ect get Menber (in nmenberld id) rai ses (no_such_nenber);
nmenber | dLi st menbers();

voi d destroy();

Load Balancing with OrbixNames Using C++

i nterface Randomhj ect Goup : (oject@oup {};
i nterface RoundRobi nChj ect Goup : (bject Goup {};

}s

Part IV of this guide provides a complete reference for these definitions.

Using Object Groups in OrbixNames

Because object groups are designed to be transparent to clients, you generally
use the LoadBal anci ng module when writing servers. There are four common
tasks for which servers use this module:

Creating a new object group and adding objects to it.
Adding objects to an existing object group.
Removing objects from an object group.

Removing an object group.

The remainder of this section describes how to do each of these operations.

Creating a New Object Group

To create a new object group and add objects to it:

Get a reference to a naming context, for example the root naming
context.

On the naming context object, call the operation
CosNam ng: : Nam ngCont ext : : (Bf act ory(). This returns a reference to
a LoadBal anci ng: : Cbj ect G oupFact or y object.

On the object group factory, call the operation

LoadBal anci ng: : Cbj ect @ oupFact ory: : creat eRandom() or

LoadBal anci ng: : Chj ect G oupFact ory: : cr eat eRoundRobi n() to
create an object group that uses the selection algorithm you want. Each
of these operations returns a reference to an object that inherits
interface LoadBal anci ng: : Gbj ect G oup.

Use the operation LoadBal anci ng: : Cbj ect G oup: : addMenber () to add
your application objects to the newly created object group.

Use the operation CosNam ng: : Nam ngCont ext : : bi nd() to bind a name
to the LoadBal anci ng: : (bj ect G oup object in the usual way.

41

OrbixNames Programmer’s and Administrator’s Guide

42

When creating the object group in step 3, you must specify a group identifier.
This identifier is a string value unique to that object group.

Similarly, when adding a member to the object group, you must provide a
reference to the object and a corresponding member identifier. This identifier is a
string value that must be unique within the object group.

In both cases, you decide the format of the identifier string. OrbixNames does
not interpret these identifiers.

Adding Objects to an Existing Object Group

Before adding objects to an existing object group, you must get a reference to
the corresponding LoadBal anci ng: : Cbj ect G oup object. You can do this using
the group identifier or the name bound to the object group. This section uses
the group identifier.

To add objects to an existing object group:

I. Get a reference to a naming context, for example the root naming
context.

2. On the naming context object, call the operation
GosNanmi ng: : Nam ngCont ext : : OBf act or y() . This returns a reference to
a LoadBal anci ng: : Gbj ect G oupFact or y object.

3. On the object group factory, call the operation
LoadBal anci ng: : (bj ect G oupFact ory: : fi nd@ oup(), passing the
identifier for the group as a parameter. This operation returns a
reference to the LoadBal anci ng: : Cbj ect @& oup object associated with
the object group.

4. Use the operation LoadBal anci ng: : Chj ect G oup: : addMenber () to add
your application objects to the object group.

Removing Objects from an Object Group

Removing an object from a group is quite straightforward if you know the object
group identifier and the member identifier for the object:

I. Get a reference to a naming context, for example the root naming
context.

Load Balancing with OrbixNames Using C++

2. On the naming context object, call the operation

CosNam ng: : Nam ngCont ext : : (Bf act ory(). This returns a reference to
a LoadBal anci ng: : Cbj ect G oupFact or y object.

On the object group factory, call the operation

LoadBal anci ng: : Chj ect G oupFact ory: : fi nd@ oup(), passing the
identifier for the group as a parameter. This operation returns a
reference to the LoadBal anci ng: : Oj ect G oup object associated with
the object group.

On the object group, call the operation

LoadBal anci ng: : Chj ect @ oup: : removeMenber () to remove the
required object from the group. You must specify the member identifier
for the object as a parameter to this operation.

If you already have a reference to the LoadBal anci ng: : Cbj ect G oup object
associated with the object group, steps | to 3 are unnecessary.

Removing an Object Group

If you do not have a reference to the object group you want to remove, do the
following:

l.
2.

Get a reference to the root naming context.

Use the root naming context to unbind the name associated with the
object group, by calling CosNami ng: : Nam ngCont ext : : unbi nd() in the
usual way.

On the root naming context object, call the operation

CosNam ng: : Nam ngCont ext : : (Bf act ory(). This returns a reference to
a LoadBal anci ng: : Cbj ect G oupFact or y object.

On the object group factory, call the operation

LoadBal anci ng: : Chj ect G oupFact ory: : fi nd@ oup(), passing the
identifier for the group as a parameter. This operation returns a
reference to the LoadBal anci ng: : (j ect G oup object associated with
the object group.

On the object group, call the operation
LoadBal anci ng: : Chj ect G oup: : destroy() to remove the group from
the Naming Service.

If you already have a reference to the target LoadBal anci ng: : (bj ect G oup
object, steps 3 and 4 are unnecessary.

43

OrbixNames Programmer’s and Administrator’s Guide

Finding an Object Group without the Group ldentifier

The procedures described in the previous sections assume that your application
gets a reference to an object group using the group identifier. You can also get a
reference to an object group if you know the name bound to the group in the
Naming Service. To do this, call the operation

CosNam ng: : Nam ngCont ext : : r esol ve_obj ect _group() . This operation is
described in detail on page 163.

Example of Load Balancing with Object Groups

This section uses sample code to show how you can take advantage of object
groups in your CORBA applications. The example described here is a very
simple stock market system. In this example, a CORBA object has access to all
current stock prices. Clients request stock prices from this CORBA object and
display those prices to the user of the application.

In any realistic stock market application, there are potentially many stock prices
available and many clients that require price updates without delay. Given such a
high processing load, a single CORBA object may not be able to satisfy client
requirements. A simple solution to this problem is to replicate the CORBA
object, invisibly to the client, using object groups.

Sample code for the application described in this section is available in the
| oad_bal anci ng demonstration directory of your OrbixNames installation.
This sample code may differ slightly from the code described in this section.

Defining the IDL for the Application

The architecture for the stock market system is shown in Figure 3.3 on page 45.
Two servers process client requests for stock price information. The server

st ockmar ket ser ver 1 creates two CORBA objects for this purpose. Server

st ockmar ket ser ver 2 creates an additional CORBA object which, from a client
perspective, provides exactly the same service as the objects in

st ocknar ket ser ver 1.

The IDL for this application requires only a single interface definition. This
interface, called St ockMar ket Feed, is implemented by each of the three CORBA
objects.

44

Load Balancing with OrbixNames Using C++

OrbixNames

stockmarketserverl
Create group @

/ Bind name to group @

4

ObjectGroup

StockMarketFeed 1 ®

Add SMF1 and

SMF2 to group
StockMarketFeed?2

»
>

®

Resolve group name

v ® Get stock prices /;

Client

stockmarketserver2

4

StockMarketFeed3

Figure 3.3: Architecture of the Stock Market Example

Interface St ockMar ket Feed is defined in the module Cbj ect G oupDeno:

/1 1D
nmodul e (bj ect G oupDeno {
interface StockMarket Feed {
enum f eedFai |l urebetail s {
service_interruption, stock_feed terninated};

exception stock_unavail abl e {};
exception stock_feed failure {
feedFail ureDetai |l s reason;

}s

I ong read_stock (in string stock_namne)
rai ses (stock_unavail able, stock feed_failure);

45

OrbixNames Programmer’s and Administrator’s Guide

The interface St ockMar ket Feed includes a single operation, r ead_st ock(),
which returns the current price of the stock associated with a specified stock
name. A name is a string identifier unique to each stock. This operation can raise
the following exceptions:

stock_unavai | abl e This exception is raised by r ead_st ock() to indicate
that the specified stock name is not valid.

stock_feed failure A stock_feed fail ure indicates that an error
occurred in communications between the server and
the source of stock prices.

Creating an Object Group and Adding Objects

After you define your IDL, the next step in developing an application is to
implement your interfaces. Using object groups has no effect on how you do
this, therefore this section assumes that you have defined a C++ class,

St ockMar ket Feedl npl , which implements the interface St ockMar ket Feed.

When you have implemented your IDL interfaces, you must develop a server
program that contains and manages your implementation objects. In our
application, we have two servers. The first, st ockmar ket ser ver 1, creates two
St ockMar ket Feed implementation objects, creates an object group in the
Naming Service, and adds the implementation objects to this group. The second
server, st ocknar ket ser ver 2, creates an additional St ockMar ket Feed
implementation object and adds this to the existing object group.

The source code for the mai n() routine of st ocknar ket ser ver 1 is:

/] C++

#i ncl ude <stdlib. h>

#i ncl ude <i ostream h>

#i ncl ude "Nani ngServi ce. hh"

#i ncl ude " St ockMar ket Feedl npl . h"
#i ncl ude "common. h"

int min () {
GosNani ng: : Nani ngCont ext _var root_context _var;
LoadBal anci ng: : Cbj ect G oupFactory_var ogfactory_var;
LoadBal anci ng: : Cbj ect G oup_var obj ect _group_var;
(bj ect G oupDeno: : St ockMar ket Feed_var st ock_mar ket _f eedl;
(bj ect G oupDeno: : St ockMar ket Feed_var st ock_mar ket _f eed?2;

46

Load Balancing with OrbixNames Using C++

OCRBA: : (hj ect _var obj ect _var;

OCORBA: : CRB_ptr orb_p;
OCRBA: : BQA ptr boa_p;
CCRBA: : CRB var orb var;
CCRBA: : BQA var boa var;

// lInitialize the CRB and BOA

orb_ var = CCRBA:: CRB_init (argc, argv, "Qbix");
boa_var = orb_var->BOA init (argc, argv, "Obix_BAA");
orb_p = orb_var;

boa_p = boa_var;

// Initialize the server nane. (Not shown here.)

// Create inplenentation objects.
stock_market _feedl = new St ockMar ket Feedl npl ();
stock_market _feed2 = new St ockMar ket Feedl npl () ;

try {
/] Get root context.

root _context_var = get_root_context ();
if (CORBA :is_nil (root_context_var))
return 1;

// Get object group factory fromroot context.
obj ect _var = root_context _var->CBfactory ();
ogf actory_var =
LoadBal anci ng: : Chj ect G oupFact ory:: _narrow (obj ect_var);

if (CORBA :is_nil ((LoadBal ancing:: Chject @ oupFactory_ptr)
ogf actory_var)) {
cerr << "Failed to get object group factory." << endl;
return 1;

}

// Oreate a group and bind a nane to it.
LoadBal anci ng: : groupl d_var sns_group_identifier =
OCRBA: : string_dup ("StockMarket Servi ces");
OCRBA: : String_var sns_obj ect_group_nane =
OCRBA: : string_dup ("stocknarket groupserver");
if (!(object_group_var =

47

OrbixNames Programmer’s and Administrator’s Guide

48

}

11
if

11
if

}

11

create_group (ogfactory var, sns_group_identifier,
sns_obj ect _group_nane, root_context_var)))
return 1;

Add two stock market feed objects to the group.
(!add_object_to_group (stock_market_feedl,

" St ockMar ket Feed1", object_group_var)) {

cerr << "Failed to add object to group." << endl;
return 1;

Add two stock market feed objects to the group.
(!add_object_to_group (stock_mnarket_feed2,

" St ockMar ket Feed2", obj ect _group_var)) {

cerr << "Failed to add object to group." << endl;
return 1;

Handl e client requests.

boa_var->i npl _i s_ready ("stockmarketserverl");

catch (GORBA:: Syst enExcepti on &se) {

cerr << "Unexpected exception:" << endl;
cerr << &se;

return 1;

}
catch (...) {

}

cerr << "Unknown excepti on.

<< endl ;

return 1;

return O;

Load Balancing with OrbixNames Using C++

The functionality of this code is as follows:

The server creates two implementation objects of type
St ockMar ket Feed! npl .

The function get _root _cont ext () returns a reference to the root
naming context in the Naming Service. The implementation of this
function is shown in “Getting the Root Naming Context”.

The server calls the operation GBf act ory() on the root naming context.
This operation is implemented by the Naming Service and returns a
factory object, of type LoadBal anci ng: : Qoj ect G oupFact or y, which
the server can use to create object groups.

The server calls the function creat e_group(). This function uses the
object group factory to create a new group with the specified identifier. It
then binds a specified Naming Service name to this group. The
implementation of creat e_group() is shown in “Creating an Object
Group” on page 50.

The function add_obj ect _t o_group() adds the St ockMar ket Feed! npl
objects to the object group created in step 4. The implementation of this
function is shown in “Adding an Object to an Object Group” on page 53.

Finally, the server prepares to receive client requests by calling
CCORBA: : BQOA: i npl _i s_ready() as usual.

Getting the Root Naming Context

The programs in this chapter use the following simple function to get a reference
to the root naming context:

/] C++

#i ncl ude <stdlib. h>

#i ncl ude <i ostream h>

#i ncl ude "Nani ngServi ce. hh"

CosNani ng: : Nami ngContext _ptr get_root_context () {
OCRBA: : (hj ect _var obj ect _var;
CosNani ng: : Nani ngCont ext _ptr root _cont ext_p;
CCRBA: : CRB var orb var;

try {

orb var =

49

OrbixNames Programmer’s and Administrator’s Guide

CORBA: : ORB_init (argc, argv, "Obix");
obj ect _var =
orb_var->resol ve_initial _references ("NanmeService");

root _context_p =
CosNani ng: : Nani ngCont ext : : _narrow (obj ect _var);
}
catch (GORBA:: Syst enExcepti on &se) {
cerr << "Unexpected system excepti on:
cerr << &se;
return CosNam ng: : Nam ngContext:: _nil ();

n

<< endl ;

}
catch (...) {
cerr << "Unknown exception." << endl;
return CosNam ng: : Nam ngContext:: _nil ();
}

if (CORBA :is_nil (root_context_p)) {
cerr << "Narrow to root context failed. " << endl;
return CosNam ng: : Nam ngContext:: _nil ();

}

return root_context_p;

Creating an Object Group

In this example, the server calls the function creat e_gr oup() to create an
object group and bind a Naming Service name to it. You can implement this
function as follows:

[l C++

#i ncl ude <stdlib. h>

#i ncl ude <i ostream h>

#i ncl ude "Nani ngServi ce. hh"

#i ncl ude " St ockMar ket Feedl npl . h"

LoadBal anci ng: : Cbj ect Goup_ptr create_group (
LoadBal anci ng: : Cbj ect G oupFactory_ptr factory_p,
LoadBal anci ng: : groupl d_var id,

OORBA: : String_var nane,
CosNani ng: : Nani ngCont ext _ptr context _p) {

50

Load Balancing with OrbixNames Using C++

LoadBal anci ng: : Chj ect G oup_ptr group_p;

try {
group_p = factory_p->creat eRoundRobi n (id);

if (!bind_name_to_group (name, group_p, context_p))
return O;

}
cat ch (LoadBal anci ng: : dupl i cat e_group& dg) {

cout << "Group already exists." << endl;

try {
group_p = factory_p->findGoup (id);

cat ch (LoadBal anci ng: : no_such_group& nsg) {

cerr << "Failed to find group." << endl;
return O;

}

return group_p;

The function creat e_group() takes four parameters: a reference to the object
group factory, a string value used to identify the new group, a string value used
to create the name associated with all objects in the group, and a reference to

the naming context in which this name should be bound.

The function creat e_gr oup() makes two important calls:

I. It calls the operation cr eat eRoundRobi n() on the object group factory in
the Naming Service. This operation returns a new object group in which
objects are selected on a round-robin basis.

2. Function creat e_group() then calls bi nd_name_t o_group(), a local
function that binds a Naming Service name to the newly created group.

51

OrbixNames Programmer’s and Administrator’s Guide

52

Binding a Name to an Object Group

The function creat e_gr oup() calls the function bi nd_nare_t o_gr oup() to bind
a name to the object group. When a client resolves this name, it receives a
reference to one of the group’s member objects, selected by the Naming Service
in accordance with the group selection algorithm. The client does not know that
the name is actually bound to a group of objects.

You can code bi nd_name_t o_group() as follows:

[l C++
int bind_name_to_group (
const char *name_str,
OORBA: : (hj ect _ptr obj ect _p,
CosNani ng: : Nani ngCont ext _ptr context _p) {
CosNani ng: : Nane_var group_nane = new CosNani ng: : Narme (2);
group_name->l ength (2);

/! Bind nanme in context LoadBal anci ngDeno.

/1 Assune this context already exists.

group_nane[0].id = GORBA: :string_dup ("LoadBal anci ngDeno");
group_nane[0] . kind = CORBA: :string_dup ("");
group_nane[1].id = CORBA: :string_dup (nane_str);
group_nane[1] . kind = CORBA: :string_dup ("");

try {
cont ext _p->bi nd (group_nane, object_p);
}

catch (CosNam ng: : Nam ngQCont ext : : Not Found) {
cerr << "Not Found exception." << endl;
return O;

}

catch (CosNam ng: : Nam ngQCont ext : : Cannot Pr oceed) {
cerr << "Cannot Proceed exception." << endl;
return O;

}

catch (CosNam ng: : Nam ngContext : : | nval i dNane) {
cerr << "lnvalidName exception." << endl;
return O;

}

catch (CosNam ng: : Nami ngQont ext : : Al r eadyBound) {
cerr << "Al readyBound exception." << endl;
return O;

Load Balancing with OrbixNames Using C++

}
cat ch (CORBA: : Syst enException &se){

cerr << "Unexpected exception:" << endl;
cerr << &e << endl;
return O;

}

return 1;

}

The functionality of bi nd_nane_t o_group() is quite straightforward. This
function simply calls bi nd() on a naming context to associate a Naming Service
name with an object. In this case, the object’s true type is

LoadBal anci ng: : Chj ect G oup, so the name is associated with an object group.

In this example, the object group name is bound in the context

LoadBal anci ngDeno. The code assumes that this naming context already exists.
For example, you could create this context in the initialization code for

st ockmar ket server 1. Alternatively, you could use the OrbixNames

put newncns or put newncnsj utilities, described in Chapter 6 on page | 13.

Adding an Object to an Object Group

After creating the object group, st ocknar ket server 1 adds its
St ockMar ket Feed implementation objects to the group. To do this, the server
calls the function add_obj ect _t o_group():

/1l Ct+

#incl ude <stdlib. h>

#i ncl ude <i ostream h>

#i ncl ude "Nani ngServi ce. hh"

#i ncl ude " St ockMar ket FeedI npl . h"

int add_object_to_group (
(bj ect G oupDeno: : St ockMar ket Feed_ptr obj ect _p,
const char* id,
LoadBal anci ng: : Cbj ect G oup_ptr object Goup_p) {

LoadBal anci ng: : menber menber Detai | s;

try {
nmenber Detai | s. obj =

(bj ect G oupDeno: : St ockMar ket Feed: : _dupl i cate (object_p);
menber Detai |l s.id = CORBA: :string_dup (id);

53

OrbixNames Programmer’s and Administrator’s Guide

54

obj ect G oup_p- >addMenber (nenberDetails);

}
catch (LoadBal anci ng: : dupl i cat e_nmenber & dm {
cerr << "Menber with id " << nenberDetails.id
<< " already exists." << endl;
return O;

}
catch (GORBA:: Syst enExcepti on& se) {

cerr << "Unexpected exception:" << endl;
cerr << &se << endl;
return O;

}

return 1;

The function add_obj ect _t o_group() takes three parameters: the object to be
added to the object group, a string that uniquely identifies the object within the
group, and a reference to the object group itself. The member identifier has no
effect on the naming of the object within the Naming Service. To obtain a
reference to the object, a client resolves the name bound to the object group.

The functionality of add_obj ect _t o_group() is as follows:

I. The server creates an IDL st ruct of type LoadBal anci ng: : menber
which contains two items: a reference to the St ockMar ket FeedI npl
object, and a string that identifies the object within the group.

2. The server adds the new member to the object group in the Naming
Service by calling the operation addMenber () on the corresponding
LoadBal anci ng: : (bj ect G oup object.

3. If the string identifier of the new member clashes with an existing
member identifier, the operation addMenber () throws an exception of
type LoadBal anci ng: : dupl i cat e_menber to indicate this. In this case
addMenber () does not update the contents of the object group in the
Naming Service.

Load Balancing with OrbixNames Using C++

Creating Replicated Objects

In this example, the server st ocknar ket ser ver 2 replicates the behavior of
st ockmar ket server 1. To do this, it creates a new St ockMar ket Feed

implementation object that provides the same service to clients as the object in

st ockmar ket server 1. It then adds this object to the existing object group,
which is associated with the group identifier St ockMar ket Ser vi ces and the

name LoadBal anci ngDerno- st ockmar ket gr oupser ver in the Naming Service.

The source code for the mai n() routine of st ockmar ket server 2 is:

/] C++

#i ncl ude
#i ncl ude
#i ncl ude
#i ncl ude
#i ncl ude

int main

<stdlib. h>

<i ostream h>

" Nam ngSer vi ce. hh"

" St ockMar ket Feedl! npl . h"
" common. h"

O {

CosNani ng: : Nam ngCont ext _var root _cont ext_var;
LoadBal anci ng: : Cbj ect G oup_var group_var;

CCRBA:
CCRBA:

: Chj ect _var object_var;
:String_var group_id;

(bj ect G oupDeno: : St ockMar ket Feed_var feed_obj ect ;

CCRBA:
CCRBA:
CCRBA:
CCRBA:

/1 Ini

:CRB_ptr orb_p;
:BQA ptr boa_p;
:ORB var orb var;
:BQA var boa var;

tialize the CRB and BOA

orb var = CCRBA:: CRB_init (argc, argv, "Qbix");

boa_var = orb_var->BOA init (argc, argv, "Obix_BAA");

orb_p
boa_p

/1 Ini

= orb_var;
= boa_var;

tialize the server name. (Not shown here.)

group_id = QORBA: :string_dup ("Cbject DemoG oup");
f eed_obj ect = new St ockMar ket Feedl npl () ;

try {

55

OrbixNames Programmer’s and Administrator’s Guide

}

group_var = find_group (group_id);

if (CORBA :is_nil (group_var)) {
cerr << "Failed to get object group." << endl;
return 1,

/1 Add stock market feed object to the group.

if (!add_object_to_group (
feed_obj ect, "StockMarketFeed3", group_var)) {
cerr << "Failed to add object to group." << endl;
return 1;

}

/1 Handl e client requests.
boa_var->i npl _i s_ready ("stockmarketserver2");

catch (GORBA: : Syst enExcepti on &se) {

}

cerr << "Unexpected exception:" << endl;
cerr << &se;
return 1,

catch (...) {

}

cerr << "Unknown exception." << endl;
return 1,

return O;

The functionality of this code is as follows:

56

The server calls the function fi nd_gr oup(), which contacts the Naming
Service to get a reference to the required object group. This function is
described in detail in “Finding an Existing Object Group” on page 57.

The server calls add_obj ect _t o_group() to make the object a member
of the existing object group.

The server prepares to receive client requests by calling
QCRBA: : BOA: :inpl _is_ready() as usual.

Load Balancing with OrbixNames Using C++

Finding an Existing Object Group

The most important partof st ocknar ket ser ver 2 is the function fi nd_gr oup(),
which retrieves a reference to an existing object group. One way to do this is as
follows:

/1l Ct+

#incl ude <stdlib. h>

#i ncl ude <i ostream h>

#i ncl ude "Nani ngServi ce. hh"

#i ncl ude " St ockMar ket FeedI npl . h"

LoadBal anci ng: : Chj ect G oup_ptr find_group (
OCRBA: : String_var group_id) {

CosNani ng: : Nam ngCont ext _var root _context_var;
LoadBal anci ng: : Cbj ect @ oupFact ory_var factory_var;
LoadBal anci ng: : Chj ect G oup_var group_var;

OCRBA: : (hj ect _var obj ect _var;

try {
/] Get root context.

if (!(root_context_var = get_root_context ()))
return LoadBal anci ng: : Gbject Goup::_nil ();

// Get object group factory fromroot context.
obj ect _var = root_context _var->CBfactory ();

factory var =
LoadBal anci ng: : Chj ect G oupFact ory:: _narrow (obj ect_var);

if (CORBA :is_nil ((LoadBal ancing:: Chject @ oupFactory_ptr)
factory_var)) {
cerr << "Failed to get object group factory." << endl;
return LoadBal anci ng: : Gbject Goup::_nil ();

}

group_var = factory_var->find@oup (group_id);

57

OrbixNames Programmer’s and Administrator’s Guide

catch (LoadBal anci ng: : no_such_group &nsg) {
cerr << "no_such_group exception." << endl;
return LoadBal ancing:: Cbj ect@oup::_nil ();
}
catch (GORBA:: Syst enExcepti on &se) {
cerr << "Unexpected exception:" << endl;
cerr << &se;
return LoadBal ancing:: Cbj ect@oup::_nil ();
}

return LoadBal anci ng: : Cbj ect G oup: : _duplicate (group_var);

}

The functionality of this code is as follows:

I. A call to get _root_context () returns a reference to the root naming
context.

2. The server calls CBf actory() on the root naming context to get a
reference to an object group factory.

3. The server calls the operation fi nd& oup() on the object group factory.
The operation fi ndG oup() is defined on the interface
LoadBal anci ng: : (bj ect G oupFact ory. Given a group identifier, this
operation returns a reference to the corresponding
LoadBal anci ng: : (bj ect G oup object.

Accessing the Objects from a Client

58

All objects in an object group provide the same service to clients. A client that
resolves a name in the Naming Service does not know if the name is bound to an
object group or a single object. The client receives a reference to one object
only. A client program resolves an object group name in exactly the same way as
it resolves a name bound to just one object.

For example, the mai n() routine of thestock market example client could look
like this:

/] C++

#i ncl ude <i ostream h>

#incl ude <stdlib. h>

#i ncl ude " Cbj ect G oupDeno. hh"
#i ncl ude "Nani ngServi ce. hh"

Load Balancing with OrbixNames Using C++

int min () {
CosNani ng: : Nam ngCont ext _var root _cont ext_var;
(bj ect G oupDeno: : St ockMar ket Feed_var feed_var;
OCRBA: : (hj ect _var obj ect _var;
CosNani ng: : Nane_var nare;

/1 Oeate name to be resol ved.

name = new CosNanm ng: : Nane(2);

name- >l ength (2);

name[0] .id = QORBA: : string_dup ("LoadBal anci ngDenmo");
name[0] . ki nd = CORBA: :string_dup ("");

name[1].id = QORBA:: string_dup ("stocknarketgroupserver");
nare[1] . ki nd = CORBA: :string_dup ("");

try {
/] Get root context.

root _context_var = get_root_context ();

/1 Resol ve nane.
obj ect _var = root_context_var->resol ve (namne);

if (CORBA :is_nil (object_var)) {
cerr << "Failed to resolve nane." << endl;
return 1;

}

feed var

= (bj ect G oupDeno: : St ockMar ket Feed: : _narrow (obj ect _var);

/1 Use stock market feed object. (Not shown.)

}

cat ch (CosNam ng: : Nam ngCont ext : : Not Found) {
cerr << "Not Found exception." << endl;
return 1;
}
cat ch (CosNam ng: : Nam ngCont ext : : Cannot Proceed) {
cerr << "Cannot Proceed exception." << endl;
return 1;

59

OrbixNames Programmer’s and Administrator’s Guide

60

catch (CosNam ng: : Nam ngContext : : | nval i dNane) {

cerr << "lnvali dName exception." << endl;
return 1;

}

catch (GORBA:: Syst enExcepti on &se){
cerr << "Unexpected exception:" << endl;

cerr << &se;
return 1;

}

return O;

Part |l

OrbixNames Java
Programmer’s Guide

Java Programming with
OrbixNames

This chapter describes how you can use OrbixNames to make objects
available in CORBA servers and to locate those objects in clients. The
examples in this chapter use a Java programming interface to the
Naming Service introduced in Chapter .

OrbixNames implements the CORBA Naming Service. To develop applications
that access the Naming Service, you must use two components of OrbixNames:

® The OrbixNames IDL files contain the IDL definitions for the interfaces to
the CORBA Naming Service and the load balancing features of
OrbixNames.

® The OrbixNames server is a normal Orbix server, provided by IONA
Technologies, that implements the functionality of the CORBA Naming
Service.

When you write a CORBA program that uses the Naming Service, this program
contacts the OrbixNames server using the OrbixNames IDL definitions. In this
way, any CORBA client or server that uses the Naming Service simply acts as a
client to the OrbixNames server. The examples in this chapter show how to
develop, compile, and run such programs.

63

OrbixNames Programmer’s and Administrator’s Guide

Developing an OrbixNames Application

Consider a software engineering company that maintains an administrative
database of personnel records which includes details of names, login names,
addresses, salaries, and holiday entitlements. These records are used for various
administrative purposes, and it is convenient to use the Naming Service to locate
an employee record by name. Figure 4.1 shows part of a naming context graph
designed for this purpose.

engineering

support

james john paula john paula manager

james manager

Figure 4.1: A Naming Context Graph

The nodes conpany, st af f, engi neeri ng, and support represent naming
contexts. A name such as conpany. st af f. paul a- per son names an application
object. The same object may have more than one name; for example, each
person is listed in the generic conpany. st af f context and is also listed in a
particular division such as conpany. engi neeri ng or conpany. sal es.

In addition, it is convenient to use abstract names so that, for example, the
engineering manager can be found by looking up the name
conpany. engi neeri ng. nanager .

64

Java Programming with OrbixNames

Allowing different paths to the same object facilitates the many uses that might
be made of the Naming Service. For example, a payroll system might be
interested only in the conpany. st aff context; the engineering manager might
want the holiday records for all of the employees with entries in the

conpany. engi neer i ng context to be written to a spreadsheet, and so on.

The remainder of this section shows some sample code based on the naming
context graph in Figure 4.1. The full source code for this example is available in
the directory deno/ nam ng/ st af f of your OrbixNames installation.

Making Initial Contact with the Naming Service

Whether you are writing a client or server application, the first step in
communicating with the Naming Service is to obtain a reference to the root
naming context. There are two ways for an application to do this:

The recommended way is to use the CORBA Initialization Service. This
approach is fully CORBA compliant. To use the Initialization Service, pass
the string NameSer vi ce to the following Java function call on the ORB:
/1 Java
/1 I'n class org. omg. CORBA. ORB
org. ong. CORBA. Obj ect resolve_initial _references
(String identifier)
The result must be narrowed using
CosNam ng. Nam ngQont ext Hel per. narrow() to obtain a reference to
the naming context.

The call toresol ve_i nitial _references() succeeds if an OrbixNames
server is running on the local host or the locator is appropriately
configured as described in “Compiling and Running an Application” on
page 74.

The name of the OrbixNames server as registered in the Implementation
Repository is assumed to be NS by default. To contact an OrbixNames
server registered with a different name, the configuration entry

I T_NAMES_SERVER must identify that name, as described in “Configuring
OrbixNames” on page 76.

The second approach is to read the root naming context IOR from a
shared file. To do this, use the - | switch to specify a file name when
running the OrbixNames server, NS:

65

OrbixNames Programmer’s and Administrator’s Guide

ns -1 /sharedl ORs/ns.ior
When you run the server in this way, it stores the root naming context
IOR in the specified file. You can use this file later to get the initial naming
context:

/] Java
i mport org. ong. CORBA. ORB;

String rootl OR
or g. ong. CORBA. Obj ect obj Ref;

/! Read the contents of file /sharedl ORs/ns.ior
/1 into the string rootl OR ..

try {
ORB orb = ORB.init(args, null);
obj Ref = orb.string_to_object(rootlOR);

The resulting object reference must subsequently be narrowed using the
following call:

GosNani ng. Nam ngCont ext Hel per . narrow().

Once you get a reference to the root naming context, you can look up names in
contexts held by the corresponding OrbixNames server. This allows you to
obtain a reference to a particular context or to an application object.

Binding Names to Objects

The following sample server code shows how to build the conpany and
conpany. st af f naming contexts shown in Figure 4.1 on page 64. It then shows
how to bind the name conpany. st af f . j ohn- per son to the object referenced
by the variable j ohnVar (which supports the IDL interface Per son implemented
by class Per sonl npl).

/1 Java
/1 An Orbi xWeb server

i mport org. ong. CORBA. ORB;
i mport org.ong. CosNam ng. *

66

Java Programming with OrbixNames

public class javaserverl {

static Nam ngContext rootContext = null;

stati c Nami ngContext conpanyContext = null;

static Nam ngContext staffContext = null;
static org.ong. CORBA.ORB orb = null;
public static void main (String args[]) {

orb = ORB.init (args,null);

/] find the initial nam ng context
try {
org. ong. CORBA. Obj ect i nit NCRef =
orb.resolve_initial_references ("NaneService");
r oot Cont ext = Nani ngCont ext Hel per. narrow

(i nitNCRef);
}
catch() {}
/] catch clause not inplenmented here
Per sonl npl enent ati on john = null;
Per sonl npl enentati on colm= null;

Per sonl npl enent ati on john = null;

try {
j ohn = new Per sonl npl enent ati on

("John", "Engi neer");
}
catch() {}
/] catch clause not inplenmented here

/1 A NaneConponent[] is an array of structs
NameConponent[] nanme = new NameConponent [1];
name[1] = new NaneConponent

(n Con.panyn , " COITpany") :

/1 Try to resolve the "conpany" context
/1 in the root context
try {
r oot Cont ext. resol ve (nane);
}

catch() {}

67

OrbixNames Programmer’s and Administrator’s Guide

68

/1 catch clause not inplemented here

/1 |f conpany context does not exist, then
/] create a new context.
/] Bind it relative to the initial context
try {
companyCont ext =
root Cont ext . bi nd_new_cont ext (nane) ;

}
/1 Modify nane, assign "staff"
name[1] = new NaneConponent ("staff","staff");
try {

// Create a new context, and bind it
/]l relative to the initial context
st af f Context =
conpanyCont ext . bi nd_new_cont ext (nane) ;

}

narme[1] = new NaneConponent ("john","person");

/1 Bind nanme to john object
/1 in context conpany.staff

try {
st af f Cont ext . bi nd (name, john);
}

This code is explained as follows:

The server calls or g. ong. CORBA. Obj ect
resol ve_ini tial _references() to get a reference to the root
naming context.

The server creates a NaneConponent [] structure that contains a single
component with ID conpany and conpany kind value.

A call to bi nd_new cont ext () on the root context binds the newly
created name to a new context object. The new context object is directly
within the scope of the root naming context.

Java Programming with OrbixNames

4. The server modifies the NaneConponent [] structure, assigning ID
staff and a st af f kind value to the single name component.

5. The server calls bi nd_new cont ext () on a reference to the cormpany
context object created in step 3. The Naming Service creates a new
context object and binds the name conpany. staff to it.

6. The server again modifies the NaneConponent [] structure, assigning ID
j ohn and kind per son to the single name component.

7. A call to bi nd() on the conpany. st af f naming context associates the
name conpany. st af f. j ohn- per son with the application object j ohn

The server code builds up a naming graph by creating individual naming contexts
and then binding a name to the application object within the scope of those
contexts.

Resolving Object Names in Clients

For a client, a typical use of the Naming Service is to find the initial naming
context and then to resolve a name to obtain an object reference. The following
code sample illustrates this. It finds the object named

conpany. engi neer i ng. nanager - per son and then prints the manager’s name.

The following IDL definition is assumed:

/1 1DL
interface Person {
readonly attribute nane;

,

The client is written as:

[/l Java
/1 An Orbi xWeb client

i mport org. ong. CORBA. ORB;
i mport | E.lona. Orbi x\Web. CosNani ng. *;

public class javaclientl {

static Nam ngContext rootContext = null;

69

OrbixNames Programmer’s and Administrator’s Guide

static nanesStaff.Person personRef = null;
static org. ong. CORBA. ORB orb = nul | ;

public static void main(String[] args) {
Nam ngCont ext root Context = null;
orb = ORB.init (args,null);

/1 find initial nam ng context
try {
1 or g. ong. CORBA. Obj ect initNCRef =
orb.resolve_initial _references ("NaneService");
root Cont ext = Nami ngCont ext Hel per. narr ow
(initNCRef);

}
catch() {}
/1 catch clause not inplemented here

2 NameConponent [] nane = new NaneConponent[3];
or g. ong. CORBA. Obj ect obj Ref = null;

name[0] = new NameConponent
("conpany", "conmpany");
name[1] = new NameConponent
("engi neering", "engi neering");
name[2] = new NameConponent
("manager", "person");

3 obj Ref = root Cont ext.resol ve (nane);
4 personRef = nanesSt af f. Per sonHel per. narr ow
(obj Ref);

/I Haven't dealt with failures to narrow()
printDetails (personRef);

This code is explained as follows:

I. The client calls org.omg.CORBA.Object
resolve_initial_references () to get a reference to the root
naming context.

70

Java Programming with OrbixNames

2. The client creates a NaneConponent [] structure that contains three
name components. The client assigns this structure to represent the
compound name conpany. engi neeri ng. nanager - per son.

3. Acall toresol ve() on the root naming context returns the object
associated with the name conpany. engi neer i ng. manager - per son. The
client resolves the entire compound name with a single call to the
Naming Service.

4. The object returned in step 3 is an application object that implements the
IDL interface Per son.The client now narrows the returned object to type

Per son.

Iterating through Context Bindings

The following code sample shows a simple example of using the
Bi ndi ngl t er at or interface to list the bindings in a context. This code lists the
bindings in the context conpany. st af f:

[/l Java
// dient code extract
// List all the staff context:

Bi ndi ngLi st Hol der bLi st =new Bi ndi ngLi st Hol der () ;
Bi ndi ngl t erat or Hol der biterHol der

= new Bi ndi nglteratorHol der ();
Bi ndi ngHol der bi ndi ng = new Bi ndi ngHol der ();

1 NameConponent[] name = new NanmeConponent[2];
name[0] = new NanmeConponent

("COITpany", ann..panyn);
name[1] = new NameConponent ("Staff", "Staff");
2 obj Ref = root Context.resolve (name);

st af f Cont ext = Nam ngCont ext Hel per. narrow
(obj Ref) ;

3 staffContext.list (3,bList, biterHol der);

Systemout.println
("\Contents of staff context:");

71

OrbixNames Programmer’s and Administrator’s Guide

72

Systemout. println
("The length of the list is "
+ bLi st.val ue. |l ength);
Systemout. println
(bLi st.val ue[0] . bi ndi ng_nane[0].id);
Systemout. println
(bLi st.val ue[1] . bi ndi ng_nane[0] .id);
Systemout. println
(bLi st.val ue[2] . bi ndi ng_nanme[0] .id);
System out. println
("\nPrint the renmining objects");

/1 print the renaining objects
if (biterHolder.value !'= null) {
while (biterHol der.val ue. next _one (binding))
Systemout. println
(bi ndi ng. val ue. bi ndi ng_nane[0].id);

The information retrieved by this code may be useful to either a client or a
server. The functionality of this code is:

The application creates a CosNani ng: : Nane structure that contains two
name components. The client assigns this structure to represent the
compound name conpany. st af f, which is bound to a naming context.

The application calls r esol ve() on the root naming context to obtain a
reference to the company. st af f context object.

A call to li st () on this context object returns a list of at most three
bindings contained in this context.

The application begins to output each element in the list of bindings
returned in step 3.

If more than three bindings are available in context conpany. st af f, the
Bi ndi ngl t er at or Hol der object bi t er Hol der contains all the
bindings not returned in step 3. While bi t er Hol der . val ue is not null,
the application calls the operation bi t er Hol der . val ue. next _one to
retrieve a list of these additional bindings.

For more information about operation GosNanmi ng: : Nam ngContext : : list(),
refer to “CosNaming::NamingContext::list()” on page 157. For more
information about the interface CosNami ng: : Bi ndi ngl t er at or, refer to
“CosNaming::Bindinglterator” on page 149.

Java Programming with OrbixNames

Finding Unreachable Context Objects

Applications can create naming contexts with no associated name binding. If such
an application exits without destroying these contexts, the context objects
remain in the Naming Service but are unreachable and cannot be deleted. For
example, an application could do this by calling the operation

CosNam ng: : Nam ngCont ext : : unbi nd() to unbind a context name, without
calling CosNam ng: : Nam ngCont ext : : destroy() to destroy the corresponding
context object.

On start-up, OrbixNames automatically creates a naming context to handle this
problem. This context is named | ost +f ound. If you create a context without
binding a name to it, or unbind a context name without destroying the context
object, OrbixNames gives the context a special name within the | ost +f ound
context. The format of this name is as follows:

NC _number time

The nunber value is a random number assigned by OrbixNames. The ti ne value
indicates the date and time at which the name was created in the | ost +f ound
context. The combination of the nunber and ti me values uniquely identifies the
naming context in | ost +f ound.

Of course, this naming format makes it almost impossible to determine which
context in | ost +f ound came from which application. However, this is not
important because the | ost +f ound context simply allows you to ensure that the
Bindings Repository does not become cluttered with unreachable context
objects. For example, you might want to destroy all contexts in | ost +f ound
created before a certain date. This is quite straightforward. First, list the
contents of | ost +f ound using the OrbixNames | sns utility and then delete the
appropriate contexts using the OrbixNames r ms utility. These utilities are
described in Chapter 6.

For example, the following command deletes the context object associated with
the name "NC 9Thu Dec 10 11-09- 02 GWMII+00-00 1998" in the | ost +f ound
context:

rms -Xx | ost+found. NC 9Thu Dec 10 11-09-02 GVI+00-00 1998

Before you delete a context in | ost +f ound, ensure that the context is no longer
required by your applications. For example, if an application uses

CosNam ng: : Nam ngCont ext : : new_cont ext () to create a context that it
intends to name later, the context is stored temporarily in | ost +f ound until the

73

OrbixNames Programmer’s and Administrator’s Guide

application binds a name to it. You should take care to avoid deleting such
contexts. Deleting contexts created before a given date is one way to achieve
this.

The | ost +f ound context is most useful during application testing, because
leaving unreachable contexts in the Naming Service is bad application behavior.
When coding your applications, try to ensure that they avoid doing this.

Compiling and Running an Application

This section describes how to build an application that uses OrbixNames, the
configuration variables that are required, how to register an OrbixNames server
in the Implementation Repository, and the options that are available on the
server executable.

The following steps are required to build an application that uses OrbixNames:

I. Generate stub code for the OrbixNames server by passing the
OrbixNames IDL file, Nam ngServi ce. i dI, through your IDL compiler.
Link your application with the client stub code. For example, you can run
the Orbix IDL compiler as follows:

idl Nam ngService.idl

This generates several Java constructs that implement Java classes and
interfaces to serve specific roles. You may choose to use either the TIE
or the ImplBase approach. For further details, refer to “OrbixWeb IDL
Compilation” in the OrbixWeb Programmer’s Guide.

If your application uses the load balancing features of OrbixNames,
described in Chapter 3 on page 37, you must also pass the other
OrbixNames IDL file, LoadBal anci ng. i dI , through your IDL compiler,
for example:

idl LoadBal anci ng.i dl

Again, this generates several Java constructs for use during application
implementation. Refer to “OrbixWeb IDL Compilation” in the OrbixWeb
Programmer’s Guide for further information.

2. Register the OrbixNames server in the Implementation Repository as
described in “Registering the OrbixNames Server” on page 76.

74

Java Programming with OrbixNames

3. Configure the Orbix locator to make the OrbixNames server known to

org. ong. CORBA. Obj ect resolve_initial_references().
Assuming that the OrbixNames server is registered in the
Implementation Repository with the name NS on host al pha, this can be
achieved by adding the following line to the O bi x. host s or or bi x. hst
file:

NS: al pha:

Compiling and Running the demo Application

This section outlines how to build a demonstration program that uses the Naming Service.
It describes what configuration variables are required, how to register a naming server in
the Implementation Repository and what options are available on the naming server
executable.

Building the OrbixWeb Naming Service Demonstration
Application

The Naming Service demonstration program is located in the \ denos\ nanesSt af f
directory of your OrbixVWeb installation.

Use the following steps for running the demonstration application:

To build the application on Solaris use gmake; on Windows run the
conpi | e. bat batch program.

Register the Naming Service by entering the following command:
putit -j NS IE lona. O bi xV¢b. CosNam ng. NS

Register the St af f server by entering the following command:
putit -j Staff namesStaff.javaserverl

Start the Java server by running the j avaser ver 1 script on Solaris or
j avaserver 1. bat on Windows. This launches the Naming Service and
populates it with names.

Start the Java client by running the j avacl i ent 1 script on Solaris or
javaclient 1. bat on platforms. This establishes a connection with the
Naming Service and resolves the names bound by the Java server.

75

OrbixNames Programmer’s and Administrator’s Guide

Configuring OrbixNames

When you install OrbixNames, the configuration file or bi xnanmes3. cf g is added
to your system, in the OrbixNames conf i g directory. This file contains the

configuration variables that relate to OrbixNames and it is included in the Orbix
configuration file i ona. cf g, as described in theOrbixWeb Administrator’s Guide.

On UNIX, you can set the OrbixNames configuration variables in the

or bi xnanmes3. cf g configuration file using the Orbix Configuration Explorer
described in the OrbixWeb Administrator’s Guide. They may also be set as
environment variables. On Windows NT these values are set in either the
configuration file or the system registry.

When setting the values of these variables in the file or bi xnanes3. cf g, define
each variable in the O bi xNames scope, that is O bi xNanes. | T_NAVES SERVER,
Q bi xNames. | T_NS_HOSTNAME, Or bi xNanes. | T_NAMES PATH and so on.

For a comprehensive description of OrbixNames and common configuration
variables, refer to Appendix A, “Configuration Variables”.

Registering the OrbixNames Server
As a normal Orbix server, the OrbixNames server must be registered with the
Orbix Implementation Repository.

As usual, the server is registered using either the Graphical Server Manager
utility or the puti t utility. Using putitj, a typical command to register an
OrbixNames server is:

putitj NS "/orbix/bin/ns"

Once registered with the Implementation Repository, the server can be
activated by the Orbix daemon or launched manually.

You can terminate the OrbixNames server in the same way as any Orbix server;
that is, by using the ki | I'i tj utility on UNIX, or the Graphical Server Manager
utility.

Options to the OrbixNames Server

The OrbixNames server executable is named ns; it takes the following options:

ns [-v] [-r <repository path>] \

76

Java Programming with OrbixNames

[-1 <ns ior file>] [-I] [-h <hashtable size>] \
[-p <thread pool size>] [-e <cache size>] [-]]
[-sem secure] [-secure]

The options are

-V

-l <ns ior file>

-h <hash table s

-p <thread pool

-e <cache size>

i ze>

si ze>

Outputs version information. Specifying - v does not
cause the OrbixNames server to run.

Specifies the directory to be used as the Bindings
Repository. This overrides the value of

| T_NAMES_PATH as set in Or bi x. cf g (or the system
registry on Windows NT).

Specifies a file where the server will store the root
context IOR as it starts up.

Starts the OrbixNames server in load balancing
mode. If you wish to use object groups, you must
start the server with this option.

In OrbixNames, each naming context has an
associated hash table. A naming context uses this
table to store references to bindings the context
contains. The - h switch allows you to specify the
size of this hash table.

The default hash table size is 23. If you expect your
naming contexts to contain more than this number
of bindings, increase the hash table size to reduce
the number of times the hash table resizes. If you
expect less than this number, decrease the hash
table size to improve performance.

The OrbixNames server is a multithreaded
application. The - p switch sets the size of the
thread pool used to handle incoming requests. The
default value is 10.

The OrbixNames server caches naming contexts in
memory to improve performance. The - e switch
specifies how many contexts should be cached. The
default value is 10.

77

OrbixNames Programmer’s and Administrator’s Guide

-sem secure

-Secure

The OrbixNames server is a Java application. On
platforms other than Solaris, you can instruct the
server to pass command-line switches directly to
the Java interpreter. To do this, use the -j switch
to the OrbixNames server.

For example, to increase the virtual memory used
by the interpreter when running OrbixNames, start
the server as follows:

ns -j -mx9000000

The default OrbixNames server possesses no
security. This switch forces the server to accept
both secure (SSL) and insecure (non-SSL)
connections. You will be prompted for a password
that should correspond to the SSL certificates
referenced in the OrbixNames section of the

or bi xssl . cf g configuration file.

The default OrbixNames server possesses no
security. This switch forces the server to accept
Secure Sockets Layer (SSL) connections only. You
will be prompted for a password that should
correspond to the SSL certificates referenced in the
OrbixNames section of the or bi xssl . cfg
configuration file.

Running OrbixNames in a Secure System

OrbixSSL enables you to create Orbix and OrbixWeb applications that
communicate using Secure Sockets Layer (SSL) security. If you run secure
applications that use OrbixNames, the OrbixNames server must also

communicate using SSL.

When running OrbixNames with OrbixSSL, you must:

I. Configure SSL support in OrbixNames.

2. Write the OrbixNames Interoperable Object Reference (IOR) to a file.

3. Configure clients to read the OrbixNames IOR from a file.

78

Java Programming with OrbixNames

4. Run the OrbixNames server.
5. If required, run the OrbixNames utilities.

This section briefly describes each of these steps. Refer to the OrbixSSL
documentation for more information about OrbixSSL and SSL security.

Configuring SSL Support in OrbixNames

As described in the OrbixSSL documentation, the OrbixSSL configuration file,
or bi xssl . cf g, controls how a program uses SSL. To configure the use of SSL in
OrbixNames, you must add several configuration values to or bi xssl . cf g.

Adding SSL Security to OrbixNames

First, you must instruct OrbixNames to use SSL. To do this, add the following
text to the OrbixSSL configuration file:

O bi xNames {
Server {
| T_SECURI TY_PCLI CY = " SECURE";

b
b

The configuration variable O bi xNanes. | T_SECQUR TY_PCLI CY can take one of
the following values:
SEQURE The OrbixNames server accepts only secure communications.

I NSECURE The OrbixNames server accepts only insecure
communications.

SEM _SEQURE The OrbixNames server accepts both secure and insecure
communications.

If you do not set this variable in the configuration file, OrbixNames does not use
SSL security. If you set the value to SECURE, you must then configure SSL
authentication.

79

OrbixNames Programmer’s and Administrator’s Guide

80

Configuring SSL Authentication in OrbixNames

SSL authentication allows one SSL program to verify the identity of another.
Each authenticated program has an associated certificate and a private key that it
uses to prove its identity. Each certificate is signed by a Certification Authority
(CA) that guarantees that the certificate is valid. By default, only OrbixSSL server
programs are authenticated.

To ensure that the OrbixNames server can prove its identity during
authentication, you must specify the location of the OrbixNames certificate and
private key files in the OrbixSSL configuration file. By default, OrbixNames uses
the certificate file or bi x_names and the private key file or bi x_nanes. j pk, both
located in the OrbixSSL certi fi cat es/ servi ces directory.

To configure OrbixNames to use these files, add the following settings to the
OrbixSSL configuration file:

O bi xNames {
Server {
| T_CERTI FI CATE_FI LE = " OrbixSSL directoryl
certs/services/orbix_nanmes";
| T_PRI VATEKEY_FI LE = " OrbixSSL directoryl/
cert s/ services/ or bi x_names. j pk"
b
b
Replace the OrbixSSL directory value with the actual directory in which
OrbixSSL is installed. In a fully secure system, where you do not use the
OrbixSSL demonstration certificates, you must change these settings to
associate your chosen certificate and private key with OrbixNames.

Adding Client Authentication to OrbixNames

If required, OrbixNames can authenticate programs that connect to it. In this
case, the communicating program must have an associated certificate and the
certificate must be signed by a trusted CA.

If you want to enable client authentication by OrbixNames, add the following
setting to the OrbixSSL configuration file:

O bi xNames {
Server {
| T_AUTHENTI CATE_CLI ENTS = "TRUE";

}s

Java Programming with OrbixNames

b
To specify the file that contains the list of trusted CAs, add the following:

O bi xNames {
Server {
I T_CA LI ST_FILE = "OrbixSSL directory!
/ca_lists/denp_ca |ist_1";
I3
i

In a fully secure system, change this setting to your actual certificate list file.

Configuring the SSL Port for the OrbixNames Server

When the OrbixNames server is SSL-enabled, it requires an additional port on
which it listens for incoming secure communications. To set this port value, add
the following variable to the OrbixNames configuration file:

O bi xNames {
I T_SSL_I |1 OP_LI STEN_PORT = " portnumber" ;
i

Replace the portnumber value with any available port number.

Writing the OrbixNames IOR to a File
Before running the OrbixNames server with OrbixSSL, you must instruct the
server to publish its IOR to a file. To do this, use the - | switch as follows:
ns -1 filename

This causes the server to write its IOR to the file specified in filename.

Configuring Clients to Read the OrbixNames IOR
After the OrbixNames server writes its IOR to a file, you must configure your
clients to read this IOR when making contact with the CORBA Naming Service.

For Orbix clients, add the following setting to the OrbixNames configuration
file:

Common {
Services {

8l

OrbixNames Programmer’s and Administrator’s Guide

NaneService = "IOR";
s
b
In this case, IOR is the OrbixNames IOR copied from file. For OrbixWeb clients,
add the following to the OrbixNames configuration file:

O bi x\eb {
I T_I NI TI AL_REFERENCES = "NaneServi ce IOR";
b
When the client calls resol ve_i ni ti al _references() to obtain a reference to
the OrbixNames server, these settings ensure that it uses the correct IOR. The
only way that clients can contact a secure OrbixNames server is by using
resol ve_initial _references() in this manner.

Running the OrbixNames Server

To use security with OrbixNames, you must launch the OrbixNames server
manually. It cannot be launched automatically. For example, run the server as
follows:

ns

To gain access to its private key, OrbixNames must supply the pass phrase that
was used to encrypt the key. When you start the server, it instructs you to
enter this pass phrase. If you use the OrbixSSL demonstration certificates and
private keys, enter the pass phrase denopasswor d. Otherwise, enter the correct
pass phrase for the private key specified in the

QO bi xNares. Server. | T_PR VATEKEY_FI LE configuration value in

or bi xssl . cfg.

When running the OrbixNames server, you can override the security setting
specified by the O bi xNarres. Server. | T_SECUR TY_PCLI CY variable in
or bi xssl . cfg.

To do this, use the - secur e switch or -i nsecur e switch, for example:

ns -insecure

82

Java Programming with OrbixNames

Running the OrbixNames Utilities

Using a secure OrbixNames server, you can run only the C++ OrbixNames
utilities, for example | sns. You cannot run the Java utilities. For example, | snsj
cannot use SSL security.

If the OrbixNames server uses client authentication, the utilities must be able to
supply a certificate and gain access to a private key. During installation, each
utility is configured to use the or bi x demonstration certificate from the
OrbixSSL certi fi cat es/ servi ces directory. The OrbixSSL C++ Programmer’s
and Administrator’s Guide describes how to replace this certificate and update
the utilities with a new private key pass phrase.

Federation of Name Spaces

The collection of all valid names recognized by the Naming Service is called a
name space. A name space is not necessarily located on a single OrbixNames
server, because a context in one OrbixNames server can be bound to a context
in another OrbixNames server on the same host or on a different host. The
name space provided by a Naming Service is the association or federation of the
name spaces of each individual OrbixNames server that comprises the Naming
Service.

Figure 4.2 shows a Naming Service federation that comprises two OrbixNames
servers running on different hosts. In this example, names relating to the
company’s engineering and PR divisions are served by one server, and names
relating to the company’s marketing division are served by a separate server. A
request to resolve a name starts in one OrbixNames server, but may continue in
another server’s database. Clients do not have to be aware that more than one
server is involved in the resolution of a name, and they do not need to know
which server interprets which part of a compound name.

You can create a federated name space using the OrbixNames utilities. These
utilities are described in detail in Chapter 6. To implement the Figure 4.2
federated namespace, use the put newncns command to create the conpany
naming context on host Aand the narketi ng naming context on host B:

put newncnsj -h A conpany
put newncnsj -h B narketing

83

OrbixNames Programmer’s and Administrator’s Guide

Host A

Host B

company

marketing
engineering

Figure 4.2: Naming Graph Spanning Two OrbixNames Servers

Next, instruct OrbixNames to copy the object reference for the market i ng
context object to the file mar keting. i or:

catnsj -h B marketing > narketing.ior

Finally, associate the name of this context with the object reference of the
mar ket i ng context on host B:

putncns -h A conpany. marketing -f marketing.ior

84

Load Balancing with OrbixNames
Using Java

Load balancing is a crucial requirement for many distributed
applications. This chapter describes the powerful, but easy-to-use
OrbixNames approach to load balancing in CORBA applications.

The Need for Load Balancing

The role of the CORBA Naming Service is critical in large-scale distributed
applications. The Naming Service acts as a central repository of objects, which
clients use to locate server applications. Administrators can relocate or upgrade
server applications by modifying the contents of the Naming Service. This
requires no coding modifications on the client side.

Figure 5.1 on page 86 shows a typical OrbixNames environment:

® The Bank server binds an object obj 1, to a name nanel, in the Naming
Service.

® dients 1...Nresolve this name by obtaining a proxy for obj 1.

® dients 1...Ntheninvoke obj 1 directly.

85

OrbixNames Programmer’s and Administrator’s Guide

Client |
objl proxy invoke ()
OrbixNames
Client 2 BANK Server

objlproxy | resolve ()\ ’/_- h

namel | objl

name2 | obj2

Client N

objl proxy

Figure 5.1: Example of Typical OrbixNames Usage

As the number of deployed clients increases, the load on an individual server
may become excessive. To redress this problem, server load balancing through
replication may be required.

In the example shown in Figure 5.1, replication involves creating a new server
Bank_repl i ca, which contains an object obj 1_repl i ca. This is an object
offering an identical service to obj 1. The new server registers the replica object
in the Naming Service under the name narel_repl i ca. Clients can choose to
resolve either nanel or nanel repli ca, to access either obj 1 or

obj 1_repl i ca respectively. This approach is simple and practical, but requires a
significant amount of application-specific coding.

Code changes on the client side are especially problematic. For example, if the
clients are installed extensively in an enterprise, each installation will need to be
upgraded when clients are modified to select different replica objects. Similarly, if
two servers are insufficient, another server Bank_r epl i ca_2 will be required,
necessitating further code modifications.

This simple approach to replication does not scale very well because, unlike
upgrading or relocating servers, it involves code changes on the client side.
However, the Naming Service is a useful candidate for handling server
replication and OrbixNames provides a solution to the scalability problem.

86

Load Balancing with OrbixNames Using Java

Introduction to Load Balancing in OrbixNames

The CORBA Naming Service defines a repository of names that map to objects.
A name maps to one object only. OrbixNames extends the CORBA Naming
Service model to allow a name to map to a group of objects. An object group is a
collection of objects that can increase or decrease in size dynamically. For
example, {obj 1, obj 1_replica, obj1_replica_2} would constitute an object
group.

Each object group has a selection algorithm. This algorithm is applied when a
client resolves the name associated with the object group. Two algorithms are
supported: round-robin selection and random selection.

Pure CORBA
Name - Object Naming Service
> ~ -
Name I L /Object | N
| . \
F— — — L g Object 2 \
| \ Object 3,
L — — _\T _____ e
OrbixNames N Y
Extension ™ __ Object Group -

—_— i

Figure 5.2: Associating a Name with an Object Group

OrbixNames supports object groups by introducing new IDL interfaces to the
Naming Service. These interfaces enable you to create object groups, add
objects to and remove objects from groups, and to find out which objects are
members of a particular group. If you want to take advantage of object groups,
you can use these interfaces in your servers to create and manipulate groups.
Your client code can remain unchanged.

Figure 5.2 illustrates the concept of binding a name to multiple objects using an
object group.

87

OrbixNames Programmer’s and Administrator’s Guide

The Interface to Object Groups in OrbixNames

88

The IDL module LoadBal anci ng, defined in the IDL file LoadBal anci ng. i dl,
provides access to the load balancing features of OrbixNames:

nodul e LoadBal anci ng {

excepti on no_such_nenber{};

excepti on duplicate_nenber{};

exception duplicate_group{};

excepti on no_such_group{};

typedef string nenberl d;

typedef sequence<nenber| d> nenberl dLi st;
typedef string groupld;

typedef sequence<groupl d> groupli st;

struct nenber {
(bj ect obj ;
nenberld id;
b

interface hjectG oup;
i nterface RoundRobi nChj ect G oup;
i nterface RandonChj ect G oup;

interface hject@oupFactory {
RoundRobi n(bj ect G oup cr eat eRoundRobi n(in groupld id)
rai ses (duplicate_group);
Randon(hj ect @ oup creat eRandon{i n groupld id)
rai ses (duplicate_group);
(bj ect Goup findGoup(in groupld id) raises (no_such_group);
grouplLi st rr_groups();
grouplLi st random gr oups();
b
interface ject@oup {
readonly attribute string id;

(bj ect pick();

voi d addMenber (i n nenber men) raises (duplicate_menber);
voi d renoveMenber (i n nmenberld id) raises (no_such_nenber);
(bj ect get Menber (in nmenberld id) rai ses (no_such_nenber);
nmenber | dLi st menbers();

voi d destroy();

Load Balancing with OrbixNames Using Java

i nterface Randomhj ect Goup : (oject@oup {};
i nterface RoundRobi nChj ect Goup : (bject Goup {};

}s

Part IV of this guide provides a complete reference for these definitions.

Using Object Groups in OrbixNames

Because object groups are designed to be transparent to clients, you generally
use the LoadBal anci ng module when writing servers. There are four common
tasks for which servers use this module:

Creating a new object group and adding objects to it.
Adding objects to an existing object group.
Removing objects from an object group.

Removing an object group.

The remainder of this section describes how to do each of these operations.

Creating a New Object Group

To create a new object group and add objects to it:

Get a reference to a naming context, for example the root naming
context.

On the naming context object, call the operation
CosNam ng: : Nam ngCont ext : : (Bf act ory(). This returns a reference to
a LoadBal anci ng: : Cbj ect G oupFact or y object.

On the object group factory, call the operation

LoadBal anci ng: : Cbj ect @ oupFact ory: : creat eRandom() or

LoadBal anci ng: : Chj ect G oupFact ory: : cr eat eRoundRobi n() to
create an object group that uses the selection algorithm you want. Each
of these operations returns a reference to an object that inherits
interface LoadBal anci ng: : Gbj ect G oup.

Use the operation LoadBal anci ng: : Cbj ect G oup: : addMenber () to add
your application objects to the newly created object group.

Use the operation CosNam ng: : Nam ngCont ext : : bi nd() to bind a name
to the LoadBal anci ng: : (bj ect G oup object in the usual way.

89

OrbixNames Programmer’s and Administrator’s Guide

90

When creating the object group in step 3, you must specify a group identifier.
This identifier is a string value unique to that object group.

Similarly, when adding a member to the object group, you must provide a
reference to the object and a corresponding member identifier. This identifier is a
string value that must be unique within the object group.

In both cases, you decide the format of the identifier string. OrbixNames does
not interpret these identifiers.

Adding Objects to an Existing Object Group

Before adding objects to an existing object group, you must get a reference to
the corresponding LoadBal anci ng: : Cbj ect G oup object. You can do this using
the group identifier or the name bound to the object group. This section uses
the group identifier.

To add objects to an existing object group:

I. Get a reference to a naming context, for example the root naming
context.

2. On the naming context object, call the operation
GosNanmi ng: : Nam ngCont ext : : OBf act or y() . This returns a reference to
a LoadBal anci ng: : Gbj ect G oupFact or y object.

3. On the object group factory, call the operation
LoadBal anci ng: : (bj ect G oupFact ory: : fi nd@ oup(), passing the
identifier for the group as a parameter. This operation returns a
reference to the LoadBal anci ng: : Cbj ect @& oup object associated with
the object group.

4. Use the operation LoadBal anci ng: : Chj ect G oup: : addMenber () to add
your application objects to the object group.

Removing Objects from an Object Group

Removing an object from a group is quite straightforward if you know the object
group identifier and the member identifier for the object:

I. Get a reference to a naming context, for example the root naming
context.

Load Balancing with OrbixNames Using Java

2. On the naming context object, call the operation

CosNam ng: : Nam ngCont ext : : (Bf act ory(). This returns a reference to
a LoadBal anci ng: : Cbj ect G oupFact or y object.

On the object group factory, call the operation

LoadBal anci ng: : Chj ect G oupFact ory: : fi nd@ oup(), passing the
identifier for the group as a parameter. This operation returns a
reference to the LoadBal anci ng: : Oj ect G oup object associated with
the object group.

On the object group, call the operation

LoadBal anci ng: : Chj ect @ oup: : removeMenber () to remove the
required object from the group. You must specify the member identifier
for the object as a parameter to this operation.

If you already have a reference to the LoadBal anci ng: : Cbj ect G oup object
associated with the object group, steps | to 3 are unnecessary.

Removing an Object Group

If you do not have a reference to the object group you want to remove, do the
following:

l.
2.

Get a reference to the root naming context.

Use the root naming context to unbind the name associated with the
object group, by calling CosNami ng: : Nam ngCont ext : : unbi nd() in the
usual way.

On the root naming context object, call the operation

CosNam ng: : Nam ngCont ext : : (Bf act ory(). This returns a reference to
a LoadBal anci ng: : Cbj ect G oupFact or y object.

On the object group factory, call the operation

LoadBal anci ng: : Chj ect G oupFact ory: : fi nd@ oup(), passing the
identifier for the group as a parameter. This operation returns a
reference to the LoadBal anci ng: : (j ect G oup object associated with
the object group.

On the object group, call the operation
LoadBal anci ng: : Chj ect G oup: : destroy() to remove the group from
the Naming Service.

If you already have a reference to the target LoadBal anci ng: : (bj ect G oup
object, steps 3 and 4 are unnecessary.

91

OrbixNames Programmer’s and Administrator’s Guide

Finding an Object Group without the Group ldentifier

The procedures described in the previous sections assume that your application
gets a reference to an object group using the group identifier. You can also get a
reference to an object group if you know the name bound to the group in the
Naming Service. To do this, call the operation

CosNam ng: : Nam ngCont ext : : r esol ve_obj ect _group() . This operation is
described in detail on page 163.

Example of Load Balancing with Object Groups

This section uses sample code to show how you can take advantage of object
groups in your CORBA applications. The example described here is a very
simple stock market system. In this example, a CORBA object has access to all
current stock prices. Clients request stock prices from this CORBA object and
display those prices to the user of the application.

In any realistic stock market application, there are potentially many stock prices
available and many clients that require price updates without delay. Given such a
high processing load, a single CORBA object may not be able to satisfy client
requirements. A simple solution to this problem is to replicate the CORBA
object, invisibly to the client, using object groups.

Sample code for the application described in this section is available in the
| oad_bal anci ng demonstration directory of your OrbixNames installation.
This sample code may differ slightly from the code described in this section.

Defining the IDL for the Application

The architecture for the stock market system is shown in Figure 5.3 on page 93.
Two servers process client requests for stock price information. The server

st ockmar ket ser ver 1 creates two CORBA objects for this purpose. Server

st ockmar ket ser ver 2 creates an additional CORBA object which, from a client
perspective, provides exactly the same service as the objects in

st ocknar ket ser ver 1.

The IDL for this application requires only a single interface definition. This
interface, called St ockMar ket Feed, is implemented by each of the three CORBA
objects.

92

Load Balancing with OrbixNames Using Java

OrbixNames

stockmarketserverl
Create group @

/ Bind name to group @

4

ObjectGroup

StockMarketFeed 1 ®

Add SMF1 and

SMF2 to group
StockMarketFeed?2

»
>

®

Resolve group name

v ® Get stock prices /;

Client

stockmarketserver2

StockMarketFeed3

Figure 5.3: Architecture of the Stock Market Example

Interface St ockMar ket Feed is defined in the module Cbj ect G oupDeno:

/1 1D
nmodul e (bj ect G oupDeno {
interface StockMarket Feed {
enum f eedFai |l urebetail s {
service_interruption, stock_feed terninated};

exception stock_unavail abl e {};
exception stock_feed failure {
feedFail ureDetai |l s reason;

}s

I ong read_stock (in string stock_namne)
rai ses (stock_unavail able, stock feed_failure);

93

OrbixNames Programmer’s and Administrator’s Guide

The interface St ockMar ket Feed includes a single operation, r ead_st ock(),
which returns the current price of the stock associated with a specified stock
name. A name is a string identifier unique to each stock. This operation can raise
the following exceptions:

stock_unavai | abl e This exception is raised by r ead_st ock() to indicate
that the specified stock name is not valid.

stock_feed failure A stock_feed fail ure indicates that an error
occurred in communications between the server and
the source of stock prices.

Creating an Object Group and Adding Objects

After you define your IDL, the next step in developing an application is to
implement your interfaces. Using object groups has no effect on how you do
this, therefore this section assumes that you have defined a Java class,

St ockMar ket Feedl npl , which implements the interface St ockMar ket Feed.

When you have implemented your IDL interfaces, you must develop a server
program that contains and manages your implementation objects. In our
application, we have two servers. Two St ockMar ket Feed implementation
objects are created by St ockMar ket Ser ver 1, which extends the base

St ockMar ket Ser ver class. This creates an object group in the Naming Service,
and adds the implementation objects to this group. The second server,

St ockMar ket Ser ver 2, also extends St ockMar ket Ser ver, creates an additional
St ockMar ket Feed implementation object and adds this to the existing object
group.

The key parts of the St ockMar ket Ser ver class are:

/1 Java
/1 St ockMar ket Server. java

inport org.ony. CORBA *;
inport org.ong. CosNam ng. *;

inport |E. |ona.O bi xWb. O bi x\éb;
inport |E. |ona.O bi xWb. LoadBal anci ng. *;

i nport Denvs. LoadBal anci ng. (bj ect G oupDeno. *;

94

Load Balancing with OrbixNames Using Java

i nport
Denos. LoadBal anci ng. (bj ect & oupDeno. St ockMar ket FeedPackage. *;

public class StockMarket Server
{

/] Creates and registers the StockMarket Feed
/]l objects that go into the round-robin |oad
/1 bal anci ng obj ect group.
private void registerStockMar ket Feeds(ORB or b,
Obj ect G oup object_group, int nunber_of _feeds,
int start_feed_nunber) throws Exception

{

for (int i = 0; i < number_of _feeds; i++)

/] Create the stock market feed object
/1 and connect to the orb
1 St ockMar ket Feedl npl st ock_f eed = new
St ockMar ket Feedl npl (SM5_STOCK_MARKET_FEED PREFI X
+ String.valued (start_feed nunber + i));
orb. connect (st ock_f eed);

/]l Create the Load Bal anci ng

/1 round-robin object group

private Qbject Goup get Qbject Goup()
t hr ows Excepti on

{
2 root _nam ng_cont ext = get Root Cont ext () ;
resol ved_obj =
root _nami ng_cont ext. resol ve(hame_conponents) ;
}

/] Get the ObjectGoupFactory,
/] return Qbject GoupFactory
private Object G oupFactory get Obj ect G oupFact ory()
t hr ows Excepti on
{
/'l Get the Object Goup Factory object
/1

95

OrbixNames Programmer’s and Administrator’s Guide

96

or g. ong. CORBA. (hj ect obj ect =
get Root Cont ext (). GBf actory();
Obj ect G oupFact ory obj ect _group_factory =
Obj ect Gr oupFact or yHel per. narr ow obj ect) ;

return object_group_factory;

/1 StockMar ket Server constructor
publ i c St ockMar ket Ser ver

(ORB orb, String server_nane,
int nunber_of feeds, int start_feed_nunber)
throws Exception

/1 Create a round-robin object group
/1 for |oad bal anci ng
(bj ect G oup obj ect _group =
cr eat eRoundRobi nChj ect G oup(or b,
SMB_GROUP_| DENTI FI ER, SM5_COBJECT_GROJP_NAME) ;

/1 Creates and regi sters the StockMarket Feed
/1 objects that go into the round-robin | oad
/1 bal anci ng obj ect group.
regi st er St ockMar ket Feeds(or b, obj ect _group,
nunber _of _feeds, start_feed nunber);

/1 Handl e client requests
_Orbi xWeb. CRB(orb). i npl _i s_ready(server_nare, 0);

Load Balancing with OrbixNames Using Java

The functionality of this code is as follows:

The server creates implementation objects of type
St ockMar ket Feed! npl .

The function get Root Cont ext () returns a reference to the root naming
context in the Naming Service. The implementation of this function is
shown in “Getting the Root Naming Context”.

The server calls the operation GBf act ory() on the root naming context.
This operation is implemented by the Naming Service and returns a
factory object, of type LoadBal anci ng. Obj ect Gr oupFact ory, which
the server can use to create object groups.

The server calls the function cr eat eRoundRobi n(bj ect G oup(). This
function uses the object group factory to create a new group with the
specified identifier. It then binds a specified Naming Service name to this
group. The implementation of cr eat eRoundRobi nChj ect G oup() is
shown in “Creating an Object Group” on page 99.

The function r egi st er St ockMar ket Feeds() adds the

St ockMar ket Feedl npl objects to the object group created in step 4. The
implementation of this function is shown in “Adding an Object to an
Object Group” on page 101.

Finally, the server prepares to receive client requests by calling
_ O bi xV¢b. CRB(orb).inpl _i s_ready.

Getting the Root Naming Context

The programs in this chapter use the following simple function to get a reference
to the root naming context:

/1 Java

/| Stocknar ket Server . java

// Gets the root context in the Nam ng Service
private Nam ngCont ext get Root Context ()

{

t hrows Exception

if (mroot_naning_context == null)

or g. ong. CORBA. (bj ect nami ng_context_obj = null;

/1 Get the object reference.
/1l

97

OrbixNames Programmer’s and Administrator’s Guide

98

try
{
di spl ayMessage(" get Root Cont ext () :

Getting NaneService obj ect reference");
nam ng_cont ext _obj =
morb. resolve_initial _references("NaneService");
di spl ayMessage(" get Root Cont ext ():
Got NaneServi ce object reference");
}
cat ch (org. omg. CORBA. CRBPackage. | nval i dNane i n)

{
t hr ow new Except i on(get Ser ver Nane()

+ " - Could not retrieve NameService reference");

}

cat ch (org. onmg. CCRBA. Syst enException se)

{

t hr ow new Except i on(get Ser ver Nane()

+ " - Error retrieving NaneService reference: "
+ se. get Message());

}

i f (namng_context_obj == null)

{

t hr ow new Exception(get Server Nane() +
" - orb.resolve_initial_references(\"NameService\")
returned a null object reference");

}

// Narrow the object reference.
/1
try

{
di spl ayMessage(" get Root Cont ext () :

Narrowi ng (bj ect reference to Nami ngContext");
m r oot _nam ng_cont ext =
Nam ngCont ext Hel per. nar row(nani ng_cont ext _obj) ;
di spl ayMessage(" get Root Cont ext () :
Have narrowed Nam ngContext reference");
}
cat ch (SystenException se)
{
t hr ow new Exception(get Server Nane() +
" - Nanmi ngCont ext Hel per.narrow() failed: "
+ se. get Message());

Load Balancing with OrbixNames Using Java

}
if (mroot_namng_context == null)
{
t hr ow new Excepti on(get Server Nane()
+ " - Nam ngCont ext Hel per. narrow()
returned a null object reference");
}

}

return mroot_nam ng_context;

}

Creating an Object Group

In this example, the server calls the function cr eat eRoundRobi nChj ect G- oup()
to create an object group and bind a Naming Service name to it. You can
implement this function as follows:

/1 Java
/1 St ockMar ket Server . java

// Create the Load Bal anci ng round-robin object group
private (bjectGoup creat eRoundRobi nChj ect G oup(ORB orb, String
group_identifier, String group_nane)
t hrows Exception
{
(bj ect G oup obj ect _gr oup;
(bj ect G oupFactory obj ect _group_factory =
get j ect G oupFact ory();

try
{
obj ect _group =
obj ect _group_factory. cr eat eRoundRobi n(group_i dentifier);
bi ndNameTohj ect G oup(orb, group_name, object_group);

}
catch (duplicate_group dg)
{
di spl ayMessage(" Chj ect Group " + group_identifier
+ " already exists, trying to findit ...");
try
{

99

OrbixNames Programmer’s and Administrator’s Guide

100

obj ect _group =
obj ect _group_factory. fi nd@ oup(group_identifier);
}

cat ch (no_such_group nsg)

{
t hr ow new Except i on(get Ser ver Nane()

+" - Couldn’'t find Chject Goup" +group_identifier);
}

}

return obj ect _group;

The function cr eat eRoundRobi nChj ect & oup() takes four parameters: a

reference to the object group factory, a string value used to identify the new
group, a string value used to create the name associated with all objects in the
group, and a reference to the naming context in which this name should be

bound.

The function cr eat eRoundRobi nChj ect & oup() makes two important calls:

It calls the operation cr eat eRoundRobi n() on the object group factory in
the Naming Service. This operation returns a new object group in which
objects are selected on a round-robin basis.

Function cr eat eRoundRobi nQbj ect G oup() then calls

bi ndNaneTooj ect G oup(), a local function that binds a Naming Service
name to the newly created group.

Binding a Name to an Object Group

The function cr eat eRoundRobi nChj ect G oup() calls the function

bi ndNaneTo(hj ect G oup() to bind a name to the object group. When a client
resolves this name, it receives a reference to one of the group’s member
objects, selected by the Naming Service in accordance with the group selection
algorithm. The client does not know that the name is actually bound to a group
of objects.

You can code bi ndNaneTo(hj ect G oup() as follows:

/1 Java

/1 St ockMar ket Server. java

/1 Binds a new Chject Goup to a nane in the

/1 Namng Service that the clients can refer to and bind to

Load Balancing with OrbixNames Using Java

private voi d bi ndNameToChj ect G oup(CRB orb,
String object_group_nane, Cbject@ oup object_group)
t hrows Exception

/] create a sequence of names for the resol ve
NanmeCGonponent [] nanme_conponents =
new NameConponent []

{
new NameConponent (LOAD BALANCI NG CONTEXT_NAME, ""),

new NameConponent (obj ect _group_nane, "")

b

// Get the root context in the Naning service
di spl ayMessage(" bi ndi ng name " + LQAD BALANC NG CONTEXT_NAME
+ "+" + object_group_name + " ...");
get Root Cont ext () . bi nd(name_conponent's, obj ect_group);
}

The functionality of bi ndNaneToChj ect & oup() is quite straightforward. This
function simply calls get Root Cont ext (). bi nd() on a naming context to
associate a Naming Service name with an object. In this case, the object’s true
type is LoadBal anci ng: : Obj ect & oup, so the name is associated with an object
group.

In this example, the object group name is bound in the context

LQAD BALANCI NG CONTEXT_NAME. The code assumes that this naming context
already exists. For example, you could create this context in the initialization
code for St ockMar ket Ser ver. Alternatively, you could use the OrbixNames
put newncns or put newncnsj utilities, described in Chapter 6 on page | 13.

Adding an Object to an Object Group

After creating the object group, St ockMar ket Ser ver adds its St ockMar ket Feed
implementation objects to the group. To do this, the server calls the function
regi st er St ockMar ket Feeds():

/1 Java

/] St ockMar ket Server . java

/| Creates and registers the StockMarket Feed obj ects

// that go into the round-robin | oad bal anci ng obj ect group.

101

OrbixNames Programmer’s and Administrator’s Guide

private void regi sterStockMar ket Feeds(CORB or b,
(bj ect G oup obj ect _group, int nunber_of _feeds,
int start_feed_nunber)
t hrows Exception
{
for (int i =0; i < nunber_of_feeds; i++)
{
/] Create the stock market feed object and connect to the orb
1 St ockMar ket Feedl npl stock_feed =
new St ockMar ket Feed! npl (SM5_STOCK MARKET_FEED PREFI X
+ String.val ued (start_feed_nunber + i));
or b. connect (stock_feed);

2 nenber new nenber =
new nenber (st ock_feed, SM5 STOCK MARKET FEED PREFI X
+ String.val ued (start _feed_nunber + i));

// Add stock market feed object to this object group
di spl ayMessage(" addi ng menber " + new nenber.id +
" to object group " + object_group.id());
try
{
3 obj ect _gr oup. addMenber (new_nenber) ;

}
4 catch (duplicate_nenber dm

{
/1 Rermove existing duplicate and
/!l then try to add our nenber again

try
{

obj ect _gr oup. r emoveMenber (new_nenber . i d);

obj ect _gr oup. addMenber (new_nenber) ;
}
catch (no_such_renber nsn)
{

t hrow new Excepti on(get Server Nanme() +

" - problemadding nenber " + new nenber.id
+ " in object group " + object_group.id());

}
catch (duplicate_nermber dn2)
{

102

Load Balancing with OrbixNames Using Java

t hr ow new Excepti on(get Server Nane()
+ " - probl em addi ng menber + new nenber.id
+ " in object group " + object_group.id());

The function r egi st er St ockMar ket Feeds() takes four parameters: the server’s
ORB, the object group, the number of stock market feed objects added by this
server, and the starting number for the first stock market feed object added. The
member identifier new nenber . i d has no effect on the naming of the object
within the Naming Service. To obtain a reference to the object, a client resolves
the name bound to the object group.

The functionality of r egi st er St ockMar ket Feeds() is as follows:

I. The server creates a new St ockMar ket Feedl npl object, connecting it to
the ORB using connect ().

2. The server creates an IDL struct of type LoadBal anci ng: : menber which
contains two items: a reference to the previously created
St ockMar ket Feedl npl object, and a string that identifies the object
within the group.

3. The server adds the new member to the object group in the Naming
Service by calling the operation addMenber () on the corresponding
LoadBal anci ng: : Cbj ect G oup object.

4. If the string identifier of the new member clashes with an existing
member identifier, the operation addMenber () throws an exception of
type LoadBal anci ng: : dupl i cat e_nenber to indicate this. In this case
addMenber () does not update the contents of the object group in the
Naming Service, and the catch cause checks various possible reasons for
failure.

Creating Replicated Objects

In this example, St ockMar ket Server 1 and St ockMar ket Ser ver 2 extend

St ockMar ket Server and implement the creation of the required stock market

feeds. To do this, they create new St ockMar ket Feed implementation objects by
calling their St ockMar ket Ser ver superclass and inheriting the Naming Service-

related functions originally defined there.

103

OrbixNames Programmer’s and Administrator’s Guide

/] Java
/1 StockMarket Serverl - 2 server feeds
i nport org. ony. CORBA ORB;

public class StockMarket Server1
ext ends St ockMar ket Ser ver

{
public static void main(String args[])
{
try
{
/] initialize the CRB
org.ony. CORBA ORB orb = CRB.init(args,null);
// Oreate a new server and let it go ...
1 new St ockMar ket Server 1(orb);
}
catch (Exception ex)
{
ex. print StackTrace();
Systemexit(1);
}
}

/1 Stock market server 1 constructor.
publ i c StockMarket Serverl (CRB orb)
t hrows Exception

{

2 super (orb, "stockmarketserverl", 2, 1);

}
}

/] Java

/1 StockMarket Server2 - 1 feed

public class StockMarket Server 2
ext ends St ockMar ket Ser ver

{

3 new St ockMar ket Server 2(orb);

publ i c St ockMar ket Server2 (CRB orb)

104

Load Balancing with OrbixNames Using Java

t hrows Exception

{

super (orb, "stockmarketserver2', 1, 3);

}
}

The functionality of this code is as follows:

I. Create the new St ockMar ket Ser ver 1 object.

2. Constructor for the new St ockMar ket Server 1 object that specifies two
St ockMar ket Feedl npl objects through its superclass.

3. Create the new St ockMar ket Ser ver 2 object.

4. Constructor for the new St ockMar ket Ser ver 2 object that specifies one
St ockMar ket Feedl npl object through its superclass.

Finding an Existing Object Group

A key part of St ockMar ket Ser ver is the function fi nd_group(), which
retrieves a reference to an existing object group. The function
cr eat eRoundRobi n(hj ect G oup() acconplishes this as foll ows:

/1 Java
/] St ockMar ket Server . java
.../l Oeates the Load Bal anci ng round-robi n object group
private (bjectGoup creat eRoundRobi nChj ect G oup(ORB orb, String
group_identifier, String group_nane)
t hrows Exception
{
(bj ect G oup obj ect _group;
(bj ect G oupFactory obj ect _group_factory =
get j ect G oupFact ory();

try
{
obj ect _group =
obj ect _group_factory. cr eat eRoundRobi n(group_i dentifier);
bi ndNameTo(hj ect G oup(orb, group_name, object_group);

}
catch (duplicate_group dg)
{
di spl ayMessage(" Chj ect Group " + group_identifier

+ " already exists, trying to findit ...");

105

OrbixNames Programmer’s and Administrator’s Guide

try
{
1 obj ect _group =
obj ect _group_factory. fi nd@ oup(group_identifier);
}

cat ch (no_such_group nsg)

{
t hr ow new Except i on(get Ser ver Nane()

+" - Couldn’'t find Chject Goup" +group_identifier);
}
}

return obj ect _group;

}

The functionality of this code is as follows:

I. The server calls the operation fi nd@ oup() on the object group factory.
The operation fi ndG oup() is defined on the interface
LoadBal anci ng: : (bj ect G oupFact ory. Given a group identifier, this
operation returns a reference to the corresponding
LoadBal anci ng: : (bj ect G oup object.

Accessing the Objects from a Client

All objects in an object group provide the same service to clients. A client that
resolves a name in the Naming Service does not know if the name is bound to an
object group or a single object. The client receives a reference to one object
only. A client program resolves an object group name in exactly the same way as
it resolves a name bound to just one object.

For example, the stock market example client could look like this:

/] Java
/] StockMarketdient

inport org.ony. CORBA *;
inport org.ong. CosNam ng. *;
inport |E. |ona.O bi xWb. LoadBal anci ng. *;
i nport Denvs. LoadBal anci ng. (bj ect G oupDeno. *;
i nport Denvs. LoadBal anci ng. bj ect G oupDeno.
St ockMar ket FeedPackage. *;

public class StockMarketd i ent

106

Load Balancing with OrbixNames Using Java

{
public static void main(String args[])
{
try
{
/1l
/1 initialize the ORB
org.ony. CORBA CRB orb = CRB.init(args,null);
/1l
/I Create a newclient and let it go ...
new St ockMarketd ient (orb);
}
catch (Exception ex)
{
ex. print StackTrace();
}
}

// Reads and displ ays the stock prices for the list of stocks.
public void readStockPrices(String[] stock_nanes_list)

t hrows Exception
{

St ockMar ket Feed st ock_narket feed;
String stock_narre;
int stock_price = 0;
}
/1 Get a StockMarket Feed.
private StockMarket Feed get St ockMar ket Feed()

t hrows Exception

St ockMar ket Feed stock _narket feed;
or g. ong. CORBA. (bj ect resol ved_obj ;

// Pick the next StockMarket Feed object fromthe object group
resol ved_obj = get (hj ect G oup() . pi ck();

mecurrent _feed_id = get| dFor Menber (resol ved_obj) ;

107

OrbixNames Programmer’s and Administrator’s Guide

if (resolved_obj == null)
{
t hr ow new Excepti on(" get St ockMar ket Feed() -
Resol ved object isnull ...");

}

st ock_nar ket _feed = St ockMar ket FeedHel per. narrow(resol ved_obj);

return stock _narket feed;

}

/1 Get the Cbject Goup containing our StockMarket Feeds.
private Cbject Goup get Chj ect G oup()
t hrows Exception
{
if (mobject_group == null)
{
Nam ngCont ext root _nam ng_cont ext ;
or g. ong. CORBA. (vj ect resol ved_obj ;

// create a sequence of names for the resolve
NarmeConponent [] name_conponents =
new NameConponent []
{
new NaneConponent (LOAD BALANCI NG CONTEXT_NAME, ""),
new NaneConponent (GROUP_SERVER NAME, "")

};

// Get the root context in the Naning service
root _nam ng_cont ext = get Root Cont ext ()

resol ved_obj =
root _nam ng_cont ext . resol ve(nane_conponent s) ;

if (resolved_obj == null)

{
t hr ow new Exception("get bj ect G oup() -

Resol ved object isnull ...");

}

m obj ect _group = oj ect G oupHel per. narrow(resol ved_obj);

108

Load Balancing with OrbixNames Using Java

return mobject_group;

/] Gets the root context in the Namng Service
privat e Nani ngCont ext get Root Cont ext ()
t hrows Exception

{
if (mroot_naning_context == null)

{
or g. ong. CORBA. (bj ect nami ng_context_obj = null;

/1 Get the object reference.

try
{
nam ng_context _obj =
morb. resol ve_initial _references("NaneService");

}

/1 Narrow the object reference.
try
{

m r oot _nam ng_context =
Nam ngCont ext Hel per . nar r ow(nan ng_cont ext _obj);

}

return mroot_nan ng_context;

}

// Returns the ID for a group menber.
private String get!| dFor Menber (org. onmg. CCRBA. (hj ect menber _obj)

{

try

{
String[] nenber_ids = get(bj ect Goup(). menbers();
for (int i =0; i < menber_ids.length; i++)
{

if (getChj ect Goup().get Menber (menber _ids[i]).
toString().equal s(menber_obj.toString()))
{

return menber _ids[i];

109

OrbixNames Programmer’s and Administrator’s Guide

}
}
}

return " Unknown";

}

110

Part IV

OrbixNames
Administrator’s Guide

Using the OrbixNames Utilities

OrbixNames provides a set of command line utilities that allow you
to monitor and manage the Naming Service externally to your
applications. This chapter describes these utilities.

The OrbixNames command line utilities allow you to manipulate the contents of
the Naming Service directly. It is often useful to do this. For example, the
utilities are especially convenient when testing applications that use the Naming
Service.

There are two general categories of OrbixNames utilities:

® The name management utilities allow you to create, delete, and examine
name bindings in the Names Repository.

® The object group management utilities allow you to create, delete, and
manage the contents of object groups.

This chapter examines both types of utility in detail.

113

OrbixNames Programmer’s and Administrator’s Guide

Managing Name Bindings

The name management utilities allow you to create and manipulate name
bindings directly from the command line. You can use these utilities to construct
and navigate a naming graph. The name management utilities are available as both
native and Java executables with similar functionality.

Note: One important difference between the native and Java executable name
management utilities is that the Java versions cannot communicate with
an SSL-enabled OrbixNames server. Refer to “Syntax of the Name
Management Uctilities” on page 120 for further details.

The name management utilities are:

Nat i ve

catns

| sns

newncns

put ns

put ncns

put newncns
r eput ns
r eput ncns

rms

114

Java

cat nsj

| snsj

newncnsj

put nsj

put ncnsj

put newncnsj
r eput nsj
r eput ncnsj

r rmsj

Functionality

Given a name, outputs a reference to the object
to which the name is bound. If the object
reference is an Interoperable Object Reference
(IOR), the reference is parsed and the
information displayed.

Lists bindings in a context.

Creates a new unbound context. You can
subsequently bind a name to the context using
put ns or put nsj .

Binds a name to an object.

Binds a name to an unbound context created
using Newncns or newncns;j .

Creates a new context and binds a name to it.
Rebinds a name to an object.
Rebinds a context, removing the original binding.

Removes a name binding and optionally deletes a
naming context.

Using the OrbixNames Utilities

The remainder of this uses these utilities to build a naming graph and populate it
with name bindings. The full syntax for the utilities is given in “Syntax of the
Name Management Utilities” on page 120. Examples use the native name

management utilities; you may generally substitute the “j” java name management
utilities throughout.

Note: Many of these utilities take object references as command line
arguments. These object references are expected in the string format
returned from the function CORBA : CRB: : obj ect _to_string(). By
default, this string format represents an Interoperable Object Reference
(IOR). In this chapter, all object references are shown in native Orbix
format for convenience. To use IORs, do not specify the - or bi xpr ot
option when running the utilities.

Using the Name Utilities

This section uses the OrbixNames utilities to build the naming graph used in
Chapters 2 and 4. Figure 6.1 recalls the structure of this graph.

engineering

support

james john paula john paula manager

james manager

Figure 6.1: A Naming Context Graph

115

OrbixNames Programmer’s and Administrator’s Guide

116

Creating Naming Contexts

The simplest way to create a naming context is to use the put newncns utility.
For example, the following command creates a new context bound to the name
with the ID conpany and an empty kind value:

put newncns -orbi xprot conpany
The name is given in the format i d- ki nd. The combination of ID and kind fields

must unambiguously specify the name.

Further examples are:

® Create a2 new naming context bound to the name conpany. engi neer i ng
(the context conpany must already exist).

put newncns -orbi xprot conpany. engi neering
® Create a new context bound to the name

conpany. engi neeri ng. support (the context conpany. engi neeri ng
must already exist).

put newncns -orbi xprot conpany. engi neeri ng. support
You can also use the newncns utility to create an unbound context:

newncns - or bi xpr ot
O eated new UNBOUND Nanming Context with object reference
2\ host.iona.com NS: NC _3:: | R CosNani ng_Nam ngCont ext

A context created using newncns can be bound using the put ncns utility. The
following command binds the new context to the name conpany. staf f.

put ncns -orbi xprot conpany.staff \
":\host.iona.com NS: NC_3:: IR CosNam ng_Nani ngCont ext "

Creating Name Bindings

To bind a name to an object, use the put ns utility. Given the naming context
graph show in Figure 6.1 on page |15, the examples in this section assume the
following object reference strings are associated with the application objects:

j ames :\host.iona.comstaff:0::1R Person
j ohn :\host.iona.comstaff:1::1R Person
paul a :\host.iona.comstaff:2::1R Person

Using the OrbixNames Utilities

You can bind these objects to appropriate names within the cormpany. st af f
naming context as follows:

put ns comnpany. staff.janmes-person \
":\host.iona.comstaff:0::1R Person" -orbixprot

put ns conpany. st af f. j ohn- person \
":\host.iona.comstaff:1::1R Person" -orbixprot

put ns comnpany. st af f. paul a- person \
":\host.iona.comstaff:2::1R Person" -orbixprot

Each of these employee records has been assigned the kind recor d in the final
component of its name.

To build the naming graph further, create additional bindings based on the
divisions that employees are assigned to:
put ns conpany. engi neeri ng.j ohn- person \
":\host.iona.comstaff:1::1R Person" -orbixprot

put ns company. engi neeri ng. paul a- person \
":\host.iona.comstaff:2::1R Person" -orbixprot

put ns comnpany. engi neeri ng. support.janes- person \
":\host.iona.comstaff:0::1R Person" -orbixprot

To allow an application to find the manager of a division easily, add the following
bindings:

put ns company. engi neeri ng. manager - person \
":\host.iona.comstaff:2::1R Person" -orbixprot

put ns comnpany. engi neeri ng. support. manager - person \
":\host.iona.comstaff:0::1R Person" -orbixprot

Note that the names conpany. st af f . paul a- per son,

conpany. engi neer i ng. paul a- per son and conpany. engi neer i ng. nanager -
per son now all resolve to the same object.

The naming contexts and name bindings created by the above sequence of
commands builds the complete naming graph shown in Figure 6.1 on page | 15.

117

OrbixNames Programmer’s and Administrator’s Guide

Listing Name Bindings

The utility | sns lists all the bindings in a naming context. The following command
lists the bindings in the context conpany. engi neeri ng in the OrbixNames
server on host al pha:

I sns -h al pha -orbixprot conpany. engi neering
Cont ent s of conpany. engi neering
paul a (Object)
support (Context)
john (Object)
manager (Qbject)
The type of the binding is also listed. A binding of type Cbj ect names an object;

a binding of type Cont ext names a naming context, that is a node in the naming
graph that participates in name resolution.

By default, only the ID of each name is listed by | sns. However, | sns supports a
-k switch that allows you see both the ID and kind in the listing:

I sns -h host -k -orbixprot conpany.engi neering
Cont ent s of conpany. engi neering
paul a- person (Obj ect)
support- (Context)
john-person ((hject)
manager - per son (Obj ect)
Regardless of whether the - k switch is specified, | sns can always accept a
command line argument in the i d- ki nd format.

Finding Object References by Name

The cat ns utility outputs the object reference for the application object or
context object to which a name is bound. For example:

catns -orbixprot conpany. engi neeri ng
s\ host.iona. com NS: NC_1:: | R CosNani ng_Namni ngCont ext

The names conpany. st af f . paul a- per son and
conpany. engi neer i ng. manager - per son resolve to the same object:

catns -orbixprot conpany. st af f. paul a- person
:\host.iona.comstaff:2::1R Person

catns -orbixprot conpany. engi neeri ng. manager - per son
s\ host.iona.comstaff:2::1R Person

118

Using the OrbixNames Utilities

Rebinding a Name to an Object or Naming Context

The r eput ns utility changes the binding for an object name. This is analogous to
the CosNam ng: : Nam ngCont ext : : r ebi nd() operation. For example, the name
conpany. engi neer i ng. paul a- per son and the name

conpany. engi neer i ng. nanager - per son currently resolve to the same object.
To give j ohn responsibility for management, you can rebind the name
manager - per son in the context conpany. engi neeri ng:

cat ns -orbixprot conpany. engi neering.john-person
:\host.iona.comstaff:1::1R Person
reputns -orbixprot \
conpany. engi neeri ng. nanager - per son \
":\host.iona.comstaff:1::IR Person"

The reput ncns utility changes the binding for a naming context. This is
analogous to the CosNam ng: : Nam ngCont ext : : r ebi nd_cont ext () operation.
To illustrate the use of this utility, first create a new context bound to the name
conpany. st af f . support St af f:

put newncns -orbixprot conpany. staff.support Staff

Suppose now that the context conpany. st af f. suppport St af f should contain
the same information as conpany. engi neer i ng. suppor t. Rather than
maintaining two separate contexts, a better option is to rebind the name
conpany. st af f. support St af f so that it points to the

conpany. engi neeri ng. support context:

catns -orbi xprot comnpany. engi neeri ng. support
":\host.iona.com NS: NC_2::|R: CosNam ng_Nami ngCont ext"

reput ncns -orbi xprot conpany. staff.support Staff
":\host.iona.com NS: NC_2:: | R CosNam ng_Nami ngCont ext"

Isns -k -orbixprot conpany.staff.supportStaff
Contents of conpany. staff. support Staff

j ames- person (Object)

manager - person (Qhj ect)

This sequence of commands leaves the context previously named by
conpany. st af f. support St af f unreachable; that is, the naming context object
exists in the Naming Service, but it has no corresponding name binding. In this

19

OrbixNames Programmer’s and Administrator’s Guide

case, the naming context is assigned a name in the OrbixNames | ost +f ound
context, as described in “Finding Unreachable Context Objects” on page 23
(C++) or on page 73 (Java).

Removing Name Bindings

The rms utility removes a name binding. For example, the following commands
remove the manager bindings:

rmms -orbi xprot conpany. engi neeri ng. nanager - per son
rmms -orbi xprot \
conpany. engi neeri ng. support. nanager - per son

Take care not to leave naming contexts unreachable. For example:
rmms - orbi xprot conpany. engi neeri ng

This command unbinds the name conpany. engi neeri ng and moves the
corresponding naming context object into the | ost +f ound context.

Syntax of the Name Management Utilities
The following is a summary of the command syntax for the name management
utilities:
catns [-v] [-s] [-h <host>] [-orbixprot] <name>

catnsj [-v] [-h <host>] [-orbixprot] <nanme>

Isns [-v] [-S] [-h <host>] [-K] [-c] [-orbixprot] [nare]
Isnsj [-v] [-h <host>] [-K] [-c] [-orbixprot] [nane]

newncns [-v] [-s] [-h <host>] [-orbixprot]
newncnsj [-v] [-h <host>] [-orbixprot]

putncns [-v] [-s] [-h <host>] [-orbixprot] \
<nane> { <context-ref>| -f <file>}

putnensj [-v] [-h <host>] [-orbixprot] \
<nane> { <context-ref>| -f <file>}

putnewncns [-v] [-s] [-h <host>] [-orbixprot] <name>
put newncnsj [-v] [-h <host>] [-orbixprot] <nane>

putns [-v] [-s] [-h <host>] <name> \

120

Using the OrbixNames Utilities

{ <object-ref>| -f <file>} [-orbixprot]
putnsj [-v] [-h <host>] <nane> \
{ <object-ref>| -f <file>} [-orbixprot]

reputncns [-v] [-s] [-h <host>] [-orbixprot] \
<nane> { <context-ref> | -f <file>}

r eput ncnsj

[-v] [-h <host>] [-orbixprot] \

<nane> { <context-ref> | -f <file>}

reputns [-v] [-s] [-h <host>] [-orbixprot] \
<nane> { <object-ref>| -f <file>}

reputnsj [-v] [-h <host>] [-orbixprot] \
<nane> { <object-ref>| -f <file>}

rmms [-v] [-s] [-h <host>] [-Xx] [-orbixprot] <nane>
rmmsj [-v] [-h <host>] [-x] [-orbixprot] <name>

The common options are:

-h <host>
-f <file>
- or bi xprot
-s
-V
- X

Specifies the host on which the OrbixNames server is located. By
default, the utilities use the Initialization Service to locate the
server. The - h switch forces the utilities to use _bi nd() instead.

Any utilities which take an object reference or context reference
as an argument can optionally specify a file, using this switch,
instead of putting the object reference on the command line itself.

Communicates with OrbixNames using the Orbix protocol. The
default is the CORBA Internet Inter-ORB Protocol (IIOP).

Required for all the native (that is, non-Java) utilities to
communicate with an SSL-enabled OrbixNames server. The utility
will prompt for a password. OrbixSSL must have been installed
and the OrbixSSL-specific updat e utility executed. Refer to the
OrbixSSL documentation for further information.

Outputs version information. Specifying - v does not cause the
utility to run.

This switch only applies when removing a naming context. This
switch unbinds the context and then destroys it.

121

OrbixNames Programmer’s and Administrator’s Guide

Managing Object Groups

In addition to the name management utilities, OrbixNames provides utilities that
allow you to manipulate object groups and their members. The object group
management utilities are available as both native and Java executables with
similar functionality.

These utilities are:

Nat i ve Java Functionality

new_gr oup new_gr oupj Creates an object group and binds it to a
name in OrbixNames.

del _group del _groupj Deletes an object group.

cat _group cat _groupj Returns the stringified object reference of an
object group.

l'ist_menbers |ist_nenbersj Lists the members of an object group.

add_nenber add_nenberj Adds a member to an object group.

del _nenber del _renber j Deletes a member from an object group.

cat _nmenber cat _nenber | Returns the stringified object reference of a

member of an object group.

pi ck_nenber pi ck_nmenberj Selects a member of an object group.

Using the Object Group Utilities

This section provides examples of each of the object group utilities. When using
these utilities, you can identify a group by specifying the group identifier, with the
-i switch, or the name bound to the group, with the - n switch.

Creating and Deleting Object Groups

To create an object group and bind a name to it, use the new gr oup utility. For
example:

new_group marketing file_server_group \
conpany. mar keting.fil e_server -random

122

Using the OrbixNames Utilities

This command creates an object group with group identifier

mar ket ing_fil e_server_group and binds it to the name

conpany. mar ket i ng. fil e_server. OrbixNames uses a random selection
algorithm to choose an object from this group.

To associate a round-robin selection algorithm with the group, use the
-round_r obi n switch:

new_group engi neering_file_server_group \
conpany. engi neering. file_server -round_robin

To list all the existing object groups, use the | i st _groups utility:
list_groups
Round Robin Ohject Group List
engi neering_file_server_group

Random Obj ect G oup Li st
mar keting_file_server_group

To delete an object group, use the del _gr oup utility:
del _group -i engineering_file_server_group

This command deletes the object group with identifier

engi neering_fil e_server_group. Use the -i switch only if the group has no
associated name. If a name is bound to the group, specify this name using the - n
switch:

del _group -n conpany. narketing.file_server

Managing the Members of an Object Group

Each member of an object group requires a unique identifier. To add a member
to a group, use add_nenber . For example:

add_nenber -i engineering file_server_group \
member _1 IOR string

This command adds a new member menber _1 to the object group
engi neering_fil e_server_group. You can also identify the object group using
the group name:

add_nenber -n conpany. engineering.file_server \
member _2 IOR string

Use the | i st _menber s utility to list the members of an object group:

123

OrbixNames Programmer’s and Administrator’s Guide

Iist_menbers -nconpany. engineering.file_server
menber 1
menber 2

Use the del _nenber utility to remove a member from an object group:

del _nmenber -nconpany. engineering.file_server \
menber 2

To retrieve the object reference associated with an object group member, use
the cat _nenber utility:

cat _nenber nenber_ 2 \
-nconpany. engi neering.file_server

The pi ck_rrenber utility cycles through the members of an object group:

pi ck_menber - nconpany. engi neering.file_server
First IOR string

pi ck_menber - nconpany. engi neering.file_server
Second IOR string

Syntax of the Object Group Utilities

This section summarizes the command syntax for the object group utilities:

add_menber [-i <object group id> | -n <object group nane>]
<menber id> <obj> [-h <host>] [-orbixprot] [-V]

cat_group [-i <object group id>| -n <object group nane>]
[-h <host>] [-orbixprot] [-V]

cat_menber [-i <object group id>| -n <object group nane>]
<menber _id> [-h <host>] [-V]

del _group [-i <object group id> | -n <object group nane>]
[-h <host>] [-V]

del _menber -i <object group id> | -n <object group nane>]
<nenber _i d> [-h <host>] [-orbixprot] [-V]

list_groups [-h <host>] [-orbixprot] [-V]

list_nenbers [-i <object group id>| -n <object group name>]
[-h <host>] [-orbixprot] [-V]

124

Using the OrbixNames Utilities

new _group <object group id> <object group name>
{-random| -round_robin} [-h <host>] -orbixprot] [-V]

pi ck_menber [-i <object group id> | -n <object group nane>]
[-h <host>] [-orbixprot] [-V]
The common options are:
-h <host > Specifies the target host on which OrbixNames is running. This
switch defaults to the local host.
-V Outputs version information.
-i Identifies an object group by specifying the identifier.
-n Identifies an object group by specifying the name bound to it.

- or bi xpr ot Communicates with the OrbixNames server using the Orbix
protocol. The default protocol is CORBA Internet Inter-ORB
Protocol (IIOP).

125

OrbixNames Programmer’s and Administrator’s Guide

126

The OrbixNames Browser

The OrbixNames Browser provides a graphical interface to
OrbixNames. Like the OrbixNames utilities, the browser allows you
to monitor and manage the Naming Service externally to your
applications.

The OrbixNames Browser provides full access to the contents of the Naming
Service. Using the browser, you can manipulate the contents of the Naming
Service directly. For example, you can create naming contexts, bind names to
objects, create and modify object groups, and examine the existing name
bindings in the Naming Service.

127

OrbixNames Programmer’s and Administrator’s Guide

Starting the OrbixNames Browser

On UNIX, start the OrbixNames Browser by running the command nsgui ,
located in the bi n directory of your Orbix installation. On Windows, you can
run the OrbixNames Browser from the Windows Start menu. The main
browser window appears as shown in Figure 7.1.

| E R

EFRCilegaty)

—
Figure 7.1: The Main OrbixNames Browser Window
The browser interface includes the following elements:
®* A menu bar.
* A toolbar.

® A navigation tree. This tree displays a graphical representation of the
names and naming contexts stored in OrbixNames.

128

The OrbixNames Browser

Connecting to an OrbixNames Server

To connect to an OrbixNames server on a host in your network:

I. Select Connect - Connect Name Service, as shown in Figure 7.2.

;58 Mames Browser

Browser

iBEOnmEChMarmEeE SEmice

Figure 7.2: Activating the Naming Service Connection

2. The Connect to Naming Service dialog box appears as shown in
Figure 7.3.

Hoyl Hame [F Adires e
Pl Kb
||"'IJ [Bt o Dl P ot B b By e |

Cafnicl | Caiedl |

Figure 7.3: Connecting to an OrbixNames Server

3. In the Host Name (IP Address) text box, enter the name or IP
address of the target host.

129

OrbixNames Programmer’s and Administrator’s Guide

4. Select Connect. The browser navigation tree displays an unexpanded
view of the current name bindings for the OrbixNames server at the
target host, as shown in Figure 7.4.

=T Carreci Fr =]

I?|E|| ':J| JI 1\.|'-| 'E_r|
- N

= et =ind
[(s B
+ Ll Fovas e S Eee
Ll Wiy

b

Figure 7.4: Current Bindings For a Selected Host

If you wish to connect to an OrbixNames server on a second host, repeat these
steps for the new host. You do not need to disconnect from the original host.

Connecting to a Secure OrbixNames Server

Naming Services may be Secure Sockets Layer-enabled to provide security.
Refer to the OrbixSSL documentation for further information.

130

The OrbixNames Browser

Note: OrbixSSL must be installed to allow connection to secure Naming
Services and other SSL-enabled CORBA services that will only accept
secure connections.

To connect to a secure OrbixNames server on a host in your network:

|I. Select Connect -~ Connect Name Service, as before.

2. The Connect to Naming Service dialog box appears as shown in
Figure 7.5.

Lonrsmcl 1o Memng Soreee

Fudl hame [IF AR

B Huimba

|'='=: [™ Betas Defmyd Port Smperiy = |

gomnect | cancen |

Figure 7.5: Connecting to an OrbixNames Server

3. In the Host Name (IP Address) text box, enter the name or IP
address of the target host.

4. Click the Security>> button. The Connect to Naming Service dialog
box expands to display SSL-specific security options, as shown in
Figure 7.6. If the Security>> button is ghosted, then a suitable SSL
security layer has not been installed.

5. Select the Make secure connection tickbox to request a secure
connection. The location of the trusted Certificate Authority Certificates
is set in the Configuration Explorer as | T_CA LI ST_FILE

6. If the secure Naming Service requests a client certificate, select the
Connect using the following client certificate tickbox, then click Browse
to locate a suitable certificate file.

7. You may select a Java RSA private key using the appropriate Browse
option.

8. You may also enter the RSA password for the private key file in the
appropriate text box.

131

OrbixNames Programmer’s and Administrator’s Guide

i E r L]
RIS N

F. prewe

Pl thaviliEi

pem T Bt Datnatran

e pwip Cplerme
L TR e S ET O STRESTIT SRSl = e e T L e
T Wik o cprsachan

| il

Figure 7.6: Connection to Naming Service Security Options

9. Select Connect. The browser navigation tree displays the current name
bindings for the OrbixNames server at the target host.

Note: You may have only one secure connection active at any one time.
Therefore, although you may have multiple insecure connections active in
addition to a single secure connection, attempting a second secure
connection will result in an exception. You must first disconnect from the
original secure connection.

132

The OrbixNames Browser

Disconnecting from an OrbixNames Server

To disconnect from an OrbixNames server:

In the navigation tree, select the host icon for the Naming Service you
wish to disconnect from.

Select Connect - Disconnect Name Service. A Warning dialog box
is displayed, as shown in Figure 7.8.

8 Warning E3

@ Do you want to disconnect ‘™S on 0129891570

o |

Figure 7.7: Disconnecting from the Naming Service

Select Yes to disconnect from the indicated Naming Service host.

Alternatively, clicking the secondary mouse button while a Naming
Service host is selected will bring up a context dialog box, as shown in
Figure 7.8. This also allows connection or disconnection.

iz Mames Browser

Browser connect Edit Help

t5] Create Mame Context
{8 Delete W ame Contest

“@y Create Narme
iy Dt WEme

Figure 7.8: Context-Sensitive Connection Dialog

133

OrbixNames Programmer’s and Administrator’s Guide

Managing Naming Contexts

The OrbixNames Browser allows you to create new naming contexts, modify
existing naming contexts, and remove naming contexts from an OrbixNames

server.

Note that removing a naming context recursively removes all context and name
objects below that naming context.

Creating a Naming Context

To create a naming context:

6.

In the browser navigation tree, navigate to the naming context within
which you wish to create the new context.

Select Edit -~ Create Name Context. A new context is displayed as
shown in Figure 7.9.

Enter a context name in the Ctxt. Name text box.
If you wish, you can enter a context ki nd in the Kind text box.

Paste an object reference into the Reference text box. If you do not
paste a reference, one will be created for you.

Click the Apply button. The new context’s details are displayed.

Note that a ki nd value for a name in the CORBA Naming Service cannot be null.
If you do not specify a ki nd value when assigning a name to a naming context,
the OrbixNames Browser sets the ki nd to the null string.

Modifying a Naming Context

134

The OrbixNames Browser allows you to change the object reference associated
with a specified naming context. Using this feature, you can link an existing
context name to a context object associated with another name.

To change the object reference associated with a naming context:

In the browser navigation tree, navigate to the naming context you want
to modify.

To change either the name or the kind of the naming context, enter a
new name into either the Ctxt. Name or the Kind text box.

The OrbixNames Browser

Erra e Carreci e
ﬂl!l | .1.||',';.|| I-.l"-..l 'h;l

bela

=8 BTk Rl
] kb= karvd
F- L] O3 Gl L

O Mama rn T T

|
Py e bl D il] i il

Croevms Cwlmic

Tl Bt Bl W O s P

Figure 7.9: Creating a New Naming Context

Tz wiormsior B sxpecsly gl wren e oot
Fsbrew’ 8

saph

b

3. To change the object reference, paste a new object reference into the
Reference text box, as shown in Figure 7.10.

Reference:

Figure 7.10: The Reference Text Box in the Context Details

4. Click the Apply button. The context’s new details are displayed.

Context Details:

I0R: DDDDDDDDDDDDD028494440336f6d6?2ﬂ
TE6T2E430£734e0l0db80e072f 46104690
436£6e740578743a312e30000000000L000

000000005840001000000000018777330313

The ohject reference field denctes the target object.
You can copyipaste object references toffrom this field.

5. You can select Edit — Refresh to ensure that the navigation tree shows
the updated context details.

135

OrbixNames Programmer’s and Administrator’s Guide

Removing a Naming Context

To remove a naming context:

I
2.

Select the icon of the naming context you want to remove.

Select Edit -~ Delete Name Context. A confirmation dialog box
appears.

Select Yes to confirm the removal of the naming context.

Alternatively, clicking the secondary mouse button while a naming
context is selected will bring up a context dialog box, as shown in
Figure 7.11. This allows the creation or deletion of the selected naming
context.

;gd Names Browser

Browser Connect Edit Help

B

EQ ME on012989:1570
(& lost+found
=-{3] ObjectGroups
=@

I

oy IIE 5] Create Name Context
@ Roun T2 Delete Name Context
gfm Create Mame
oy DElete HEme

Figure 7.11: Context-Sensitive Naming Context Dialog

Managing Object Names

The OrbixNames Browser allows you to bind a name to an object in a CORBA
application, modify the object binding for an existing name, and remove an object
name from an OrbixNames server.

136

The OrbixNames Browser

Binding a Name to an Object

Before attempting to bind a name to an object, ensure that you have access to

the string form of the object reference. To get the string form of an object
reference, pass the object reference as a parameter to the function
OCRBA: : CRB: : obj ect _to_string() in the source code of your application.

To bind a name to an object:

I. Get the string form of a reference to the object.

2. In the browser navigation tree, navigate to the naming context in which
you want to create the object name.

3. Select Edit —~ Create Name. A new name binding appears as shown in

Figure 7.12.

PE ol [T
£|‘I'.| .'..l'-'-ll hl\jll
B H9 o B 15
(i b
+ 2l ThwEey
T
Wy W Bk
-
4 (] il
Ll]

Hwm a3y
el |
Py e e

T 101 P (1O 1L

Ll L]
wii
o vy
Tomr mrmon S e pmerPe v wmEAAY
Fr-r-l
Tl |
i |

Figure 7.12: Creating a Name Binding

4. In the Name text box, enter the identifier value for the new i d.

5. In the Kind text box, enter your desired ki nd value.

137

138

OrbixNames Programmer’s and Administrator’s Guide

6. Paste the object reference string into the Reference text box.

7. Click the Apply button. The new object details are displayed, similar to
the display in Figure 7.13.

If you do not specify a ki nd value when assigning a name to a CORBA object,
the OrbixNames browser sets the ki nd to the null string.

= gl Frarce-Sutir

y
= gl By S

e =
Wil e
Py e binall, e il Pl b il

| Vo il Ol | Br vwad o 0F Dy
Ralimare TP rrrrrrrrrrrrrr'-;lr;.-'-gn;iu-.;ﬂ
T2 et d i T4 f I el I ad MRl n £ T2EE
THEFR AN IRCRIERH AL IRRRRITLATTIRET
'l..'l_:.:'lrrrrrrrrrr_r-:rrrrrrl:rrrr.--.r_l:j
T® mea muu:—m

el Cy Cosli O ORI [

peal [Gi AR Enmn ora pex fETR
e fE
Tron i PR e AR Lo 1 1
| frasdsarceg_Risinasierime

Figure 7.13: Viewing an Object Name in the Main Browser Window

The OrbixNames Browser

Modifying an Object Binding

To change the object reference associated with a name in the CORBA Naming
Service:

l.
2.

In the browser navigation tree, navigate to the object you want to modify.

To change the i d, select the Name text box and enter the identifier
value for the new name. To change the ki nd, select the Kind text box
enter the kind value for the new name.

To change the object reference, paste the new object reference string
into the Reference text box.

Click the Apply button to confirm the new object binding.

Removing an Object Name

To remove an object name from the CORBA Naming Service:

H W

In the browser navigation tree, navigate to the object you want to modify.
Select Edit — Delete Name. A confirmation dialog box appears.
Select Yes to confirm the removal of the name.

Alternatively, clicking the secondary mouse button while a naming
context is selected will bring up a context dialog box, as shown in
Figure 7.14. This allows the deletion of the selected object binding..

o
a8 Names Browser

Browser Connect Edit Help
& [m @[] W] b

=B NS an 012989:1570

{31 ObjectGroups Marne
=-{3 Finance-Sectar -
oo [EEE

&3 RoundRok @ Connect MName Service
?& [ECOhnEcME e SEvite

ol Createlarm e Cauritesd £
) DElete Mame Context

Wy, CreateHarme
¥ Delete Name

Figure 7.14: Context-Sensitive Object Binding Dialog

139

OrbixNames Programmer’s and Administrator’s Guide

Navigating the OrbixNames Browser Button Bar

The OrbixNames Browser includes a number of “button bar” tool icons that
allow quick access to Naming Service functions.

Icon Description

&

Connect to a Naming Service host.

Disconnect from the selected Naming
Service host.

#

2 || || |2 ||E |2

Create a naming context.

Delete a naming context.

Create an object binding.

Delete an object binding.

Refresh the naming tree.

140

Part V

OrbixNames
Programmer’s Reference

CosNaming

Synopsis

IDL

The CosNam ng module, defined in the OrbixNames file Nam ngServi ce. i dl,
contains all IDL definitions for the CORBA Naming Service and some definitions
specific to Orbix. To access standard Naming Service functionality, use the
Nani ngCont ext and Bi ndi ngl t er at or interfaces defined in this module. These
interfaces are described in detail in “CosNaming::NamingContext” on page 151,
and “CosNaming::Bindinglterator” on page 149.

This chapter describes data types, other than the interfaces Nam ngCont ext and
Bi ndi ngl t er at or, defined directly within the scope of the CosNani ng module.

/1 1D
nmodul e CosNani ng {
typedef string Istring;

struct NameConponent {
Istring id;
I string kind;
b
t ypedef sequence<NaneConponent > Nane;

enum Bi ndi ngType {nobj ect, ncontext};

struct Binding {
Narre bi ndi ng_nane;
Bi ndi ngType bi ndi ng_t ype;
b
t ypedef sequence <Bi ndi ng> Bi ndi nglLi st ;

interface Bindinglterator;
i nterface Nam ngCont ext ;

i nterface Nam ngCont ext {
enum Not FoundReason { m ssi ng_node, not_cont ext, not_object};
exception Not Found {
Not FoundReason why;
Nane rest of nane;

}s

143

OrbixNames Programmer’s and Administrator’s Guide

|

excepti on Cannot Proceed {
Nam ngCont ext cxt;
Nane rest_of nane;

|

exception InvalidName {};
excepti on A readyBound {};
exception NotEnpty {};

void bind (in Nare n, in Cbject obj)

rai ses (Not Found, Cannot Proceed, | nval i dNane, Al r eadyBound) ;
void rebind (in Nane n, in Cbject obj)

rai ses (Not Found, Cannot Proceed, |nvali dNane);
voi d bind_context (in Name n, in Nam ngContext nc)

rai ses (Not Found, Cannot Proceed, | nval i dNane, Al r eadyBound) ;
voi d rebind_context (in Nane n, in Nam ngContext nc)

rai ses (Not Found, Cannot Proceed, |nvali dNane);
(bj ect resolve (in Nane n)

rai ses (Not Found, Cannot Proceed, |nvali dNane);
voi d unbind (in Nane n)

rai ses (Not Found, Cannot Proceed, |nvali dNane);

Nam ngCont ext new context ();
Nam ngCont ext bi nd_new context (in Nane n)

rai ses (Not Found, Cannot Proceed, | nval i dNane, Al r eadyBound) ;
voi d destroy () raises (NotEmty);
void list (in unsigned | ong how many,

out BindingList bl,out Bindinglterator bi);

(bj ect resol ve_object_group (in Nane n)

rai ses (Not Found, Cannot Proceed, |nvali dNane);
(bj ect CBfactory();

interface Bindinglterator {

b
b

144

bool ean next _one (out Binding b);

bool ean next _n (i n unsigned | ong how nany,
out Bi ndingList bl);

voi d destroy ();

CosNaming

Synopsis

Description

Notes
See Also

Synopsis

Description

Notes
See Also

CosNaming::Binding

struct Binding {

Narre bi ndi ng_nane;

Bi ndi ngType bi ndi ng_t ype;
};
When browsing a naming graph in the Naming Service, an application can list the
contents of a given naming context, and determine the name and type of each
binding in it. To do this, the application calls the operation
CosNami ng: : Nam ngCont ext : : i st () on the target Nam ngCont ext object.
This operation returns a list of Bi ndi ng structures, each structure representing
a single binding in the naming context.

A Bi ndi ng structure contains two member fields:

bi ndi ng_nane The full compound name of the binding.

bi ndi ng_t ype The binding type, indicating whether the name is bound to
an application object or a naming context.

CORBA compliant.

CosNani ng: : Bi ndi ngLi st

CosNani ng: : Bi ndi ngType

CosNani ng: : Nanmi ngContext: :1ist()

CosNaming::BindingList
t ypedef sequence<Bi ndi ng> Bi ndi ngLi st ;

A value of this type contains a set of Bi ndi ng structures, each of which
represents a single name binding. An application can list the bindings in a given
naming context using the CosNani ng: : Nam ngCont ext : : | i st () operation, as
described in the entry for CosNani ng: : Bi ndi ng. An out parameter of this
operation returns a value of type Bi ndi ngLi st.

CORBA compliant.

CosNani ng: : Bi ndi ng

CosNani ng: : Bi ndi ngType

CosNani ng: : Nami ngContext: :list()

145

OrbixNames Programmer’s and Administrator’s Guide

CosNaming::BindingType
Synopsis enum Bi ndi ngType {nobj ect, ncontext};

Description There are two types of name binding in the CORBA Naming Service: names
bound to application objects, and names bound to naming contexts. Names
bound to application objects cannot be used in a compound name, except as the
last element in that name. Names bound to naming contexts can be used as any
component of a compound name and allow you to construct a naming graph in
the Naming Service.

The enumerated type Bi ndi ngType represents these two forms of name
bindings. This type has two possible values:

nobj ect Describes a name bound to an application object.
ncont ext Describes a name bound to a naming context in the Naming
Service.

Name bindings created using CosNami ng: : Nam ngCont ext : : bi nd() or
CosNam ng: : Nam ngCont ext : : r ebi nd() are nobj ect bindings. Name bindings
created using the operations CosNam ng: : Nam ngCont ext : : bi nd_cont ext ()
or CosNani ng: : Nam ngCont ext : : r ebi nd_cont ext () are ncont ext bindings.

Notes CORBA compliant.

See Also GosNanmi ng: : Bi ndi ng
GosNani ng: : Bi ndi ngLi st

CosNaming::lIstring
Synopsis typedef string Istring;

Description Type I string is a place holder for an internationalized string format, which
might be added to the CORBA Naming Service definitions by the OMG.

Notes CORBA compliant.

146

CosNaming

Synopsis

Description

Notes
See Also

Synopsis

Description

Notes
See Also

CosNaming::Name

t ypedef sequence<NaneConponent > Nane;

A Nane represents the name of an object in the Naming Service. If the object
name is defined within the scope of one or more naming contexts, the name is a
compound name. For this reason, type Nane is defined as a sequence of name
components.

Two names that differ only in the contents of the ki nd field of one
NaneConponent structure are considered to be different names.

Names with no components, that is sequences of length zero, are illegal.
CORBA compliant.
CosNani ng: : NaneConponent

CosNaming::NameComponent

struct NameConponent {
Istring id;
Istring king;
b
A NanmeConponent structure represents a single component of a name associated
with an object in the Naming Service. This structure has two fields:

id An identifier that corresponds to the name of the component.

ki nd An element that adds secondary type information to the component
name.

The i d field is intended for use purely as an identifier. The semantics of the ki nd
field are application-specific and the Naming Service makes no attempt to
interpret this value.

A name component is uniquely identified by the combination of both i d and
ki nd fields. Two name components that differ only in the contents of the ki nd
field are considered to be different components.

CORBA compliant.
CosNani ng: : Nane

147

OrbixNames Programmer’s and Administrator’s Guide

148

CosNaming::Bindinglterator

Synopsis The operation GosNami ng: : Nam ngCont ext : : | i st () allows you to obtain a list
of bindings in a naming context. As described in “CosNaming::NamingContext”
on page 151, this operation allows you to specify a maximum number of bindings
to be returned. To provide access to all other bindings in the naming context,
the operation returns an object of type CosNani ng: : Bi ndi ngl t er at or.

A CosNam ng: : Bi ndi ngl t er at or object stores a list of name bindings and
allows you to access the elements of this list.

IDL /1 1D
nmodul e CosNani ng {

interface Bindinglterator {
bool ean next_one (out Binding b);
bool ean next_n (in unsigned | ong how nany,
out BindingList bl);
voi d destroy ();
};
};
See Also CosNanmi ng: : Bi ndi ng
CosNani ng: : Bi ndi ngLi st
CosNani ng: : Nanmi ngContext: :1ist()

CosNaming::Bindinglterator::destroy()
Synopsis voi d destroy ();

Description The destroy() operation deletes the GosNam ng: : Bi ndi ngl t er at or object on
which it is called.

Notes CORBA compliant.

149

OrbixNames Programmer’s and Administrator’s Guide

Synopsis

Description

Parameters

Return Value

Notes
See Also

Synopsis

Description

Parameters

Return Value

Notes
See Also

150

CosNaming::Bindinglterator::next_n()

bool ean next _n (i n unsigned | ong how nany,
out BindingList bl);

The next _n() operation returns the next how_nmany elements in the list of
bindings, subsequent to the last element returned by a call to next _n() or
next _one(). If less than how_nany elements remain in the list, all the remaining
elements are returned.

how_many The maximum number of bindings to be returned in parameter
bl .
bl The returned list of name bindings.

Returns t rue if one or more bindings are returned in parameter bl , returns
fal se if no more bindings remain.

CORBA compliant.

GosNani ng: : Bi ndi ngl terat or : : next _one()

CosNaming::Bindinglterator::next_one()

bool ean next _one (out Binding b);

The next _one() operation returns the next element in the list of bindings,
subsequent to the last element returned by a call to next _n() or next _one().

b The returned name binding.

Returns t rue if a binding is returned in parameter b, returns f al se if no more
bindings remain.

CORBA compliant.
CosNani ng: : Bi ndi ngl terator::next_n()

CosNaming::NamingContext

Synopsis

IDL

The interface GosNam ng: : Nam ngCont ext provides the operations that allow
you to access the main features of the CORBA Naming Service, such as binding
and resolving names. This interface also includes the Orbix-specific operations
OBf act ory() and resol ve_obj ect _group(), which you call when using the
load balancing features of OrbixNames described in Chapter 3 (C++) or
Chapter 5 (Java).

/1 1D
nmodul e CosNani ng {

interface Bindinglterator;

i nterface Nam ngCont ext {
enum Not FoundReason { m ssi ng_node,
not _context, not_object};

exception Not Found {
Not FoundReason why;
Nane rest of nane;

b

exception Cannot Proceed {
Nam ngCont ext cxt;
Nane rest of nane;

}s

exception Inval i dName {};
exception A readyBound {};
exception Not Empty {};

void bind (in Nane n, in Cbject obj)
rai ses (Not Found, Cannot Proceed,
I nval i dNarre, Al r eadyBound) ;
void rebind (in Nane n, in (bject obj)
rai ses (Not Found, CannotProceed, |nvalidNare);
voi d bind_context (in Name n, in NaningContext nc)
rai ses (Not Found, Cannot Proceed,

151

OrbixNames Programmer’s and Administrator’s Guide

Notes
See Also

Synopsis

Description

Notes

152

I nval i dNarre, Al readyBound) ;
voi d rebind_context (in Nane n, in Nam ngContext nc)
rai ses (Not Found, Cannot Proceed, |nvali dNane);
(bj ect resolve (in Nane n)
rai ses (Not Found, Cannot Proceed, |nvali dNane);
voi d unbind (in Nane n)
rai ses (Not Found, Cannot Proceed, |nvali dNane);

Nam ngCont ext new context ();
Nam ngCont ext bi nd_new context (in Nane n)

rai ses (Not Found, Cannot Proceed,

I nval i dNarre, Al readyBound) ;
voi d destroy () raises (NotEmty);
void list (in unsigned | ong how many,

out BindingList bl, out Bindinglterator bi);

(bj ect resol ve_object _group (in Nane n)

rai ses (Not Found, Cannot Proceed, |nvali dNane);
(bj ect CBfactory();

b
CORBA compliant.
GosNani ng

CosNaming::NamingContext::AlreadyBound

excepti on Al readyBound {};

If an application calls an operation that attempts to bind a name to an object or
naming context, but the specified name has already been bound, the operation
raises an exception of type Al r eadyBound.

The following operations can raise this exception:

CosNami ng: : Nani ngCont ext : : bi nd()
CosNami ng: : Nani ngCont ext : : bi nd_cont ext ()
CosNami ng: : Nani ngCont ext : : bi nd_new_cont ext ()

CORBA compliant.

CosNaming::NamingContext

Synopsis

Description

Parameters

Notes
See Also

Synopsis

Description

CosNaming::NamingContext::bind()

void bind (in Nane n, in Cbject obj)
rai ses (Not Found, Cannot Proceed,
I nval i dNare, Al r eadyBound) ;

The operation bi nd() creates a name binding, relative to the target naming
context, between a name and an object. If the name passed to this operation is a
compound name with more than one component, all except the last component
are used to find the sub-context in which to add the name binding. The contexts
associated with these components must already exist, otherwise the operation
raises a Not Found exception.

n The name to be bound to the target object, relative to the naming
context on which the operation is called.

obj The application object to be associated with the specified name.

CORBA compliant.

CosNani ng: : Nam ngCont ext : : Al readyBound
CosNani ng: : Nani ngCont ext : : Cannot Pr oceed
CosNani ng: : Nani ngCont ext : : | nval i d\are
CosNani ng: : Nani ngCont ext : : Not Found
CosNani ng: : Nam ngCont ext : : r ebi nd()
CosNani ng: : Nani ngCont ext : : resol ve()

CosNaming::NamingContext::bind_context()

voi d bind_context (in Name n, in NaningContext nc)
rai ses (Not Found, CannotProceed, |nvalidNare, Al readyBound);

The bi nd_cont ext () operation creates a binding, relative to the target naming
context, between a name and another, specified naming context. This new
binding can be used in any subsequent name resolutions: the entries in naming
context nc can be resolved using compound names.

All but the final naming context specified in parameter n must already exist. This
operation raises an Al r eadyBound exception if the name specified by n is already
in use.

153

OrbixNames Programmer’s and Administrator’s Guide

The naming graph built using bi nd_cont ext () is not restricted to being a tree: it
can be a general naming graph in which any naming context can appear in any
other naming context.

Parameters
n The name to be bound to the target naming context, relative to the
naming context on which the operation is called.
nc The Nam ngCont ext object to be associated with the specified name.
This object must already exist. To create a new Nam ngCont ext object,
call CosNani ng: : Nam ngQCont ext : : new_cont ext ().
Notes CORBA compliant.
See Also GosNanmi ng: : Nam ngCont ext : : Al r eadyBound
GosNani ng: : Nani ngCont ext : : bi nd_new_cont ext ()
GosNani ng: : Nani ngCont ext : : Cannot Pr oceed
GosNani ng: : Nani ngCont ext : : | nval i dName
GosNani ng: : Nani ngCont ext : : new_cont ext ()
CosNani ng: : Nani ngCont ext : : Not Found
GosNani ng: : Nani ngCont ext : : r ebi nd_cont ext ()
GosNani ng: : Nani ngCont ext : : resol ve()
CosNaming::NamingContext::bind_new_context()
Synopsis Nani ngCont ext bi nd_new cont ext (in Nane n)

rai ses (Not Found, Cannot Proceed, |nvali dNane, Al readyBound);

Description The operation bi nd_new cont ext () creates a new Nam ngCont ext object in
the Naming Service and binds the specified name to it, relative to the naming
context on which the operation is called. This operation has the same effect as a
call to CosNani ng: : Nam ngCont ext : : new_cont ext () followed by a call to
GosNani ng: : Nani ngCont ext : : bi nd_cont ext ().

The new name binding created by this operation can be used in any subsequent
name resolutions: the entries in the returned naming context can be resolved
using compound names.

All but the final naming context specified in parameter n must already exist. This
operation raises an Al r eadyBound exception if the name specified by n is already
in use.

154

CosNaming::NamingContext

Parameters

Return Value
Notes
See Also

Synopsis

Description

N The name to be bound to the newly created naming context, relative to
the naming context on which the operation is called.

Returns a reference to the newly created Nam ngCont ext object.
CORBA compliant.

CosNani ng: : Nam ngCont ext : : Al readyBound

CosNani ng: : Nam ngCont ext : : bi nd_cont ext ()

CosNani ng: : Nani ngCont ext : : Cannot Pr oceed

CosNani ng: : Nani ngCont ext : : | nval i d\are

CosNani ng: : Nam ngCont ext : : new_cont ext ()

CosNani ng: : Nani ngCont ext : : Not Found

CosNaming::NamingContext::CannotProceed

exception Cannot Proceed {
Nam ngCont ext cxt;
Nane rest_of nane;

};

If a Naming Service operation fails due to an internal error, the operation raises
a Cannot Proceed exception. However, the application might be able to use the
information returned in this exception to complete the operation later. For
example, if you use a Naming Service federated across several hosts and one of
these hosts is currently unavailable, a Naming Service operation might fail until
that host is available again.

A Cannot Proceed exception includes two member fields:

cxt The Nam ngCont ext object associated with the component at
which the operation failed.

rest_of _name The remainder of the compound name, after the binding for
the component at which the operation failed.

155

OrbixNames Programmer’s and Administrator’s Guide

The following operations can raise this exception:
CosNami ng: : Nani ngCont ext : : bi nd()
CosNami ng: : Nani ngCont ext : : bi nd_cont ext ()
CosNami ng: : Nani ngCont ext : : bi nd_new_cont ext ()
CosNami ng: : Nanmi ngCont ext : : rebi nd()
CosNami ng: : Nani ngCont ext : : rebi nd_cont ext ()
CosNami ng: : Nanmi ngCont ext : : resol ve()
CosNami ng: : Nani ngCont ext : : resol ve_obj ect _group()
CosNami ng: : Nanmi ngCont ext : : unbi nd()

Notes CORBA compliant.

See Also GosNani ng: : Nane
GosNani ng: : Nani ngCont ext

CosNaming::NamingContext::destroy()

Synopsis void destroy ()
rai ses (Not Enpty):

Description The operation dest roy() deletes the Nam ngCont ext object on which it is
called. Beforing deleting a Nam ngCont ext in this way, ensure that it contains no
bindings. If you call destroy() on a Nam ngCont ext that contains existing
bindings, the operation raises a CosNam ng: : Nam ngCont ext : : Not Enpt y
exception.

To avoid leaving name bindings with no associated objects in the Naming
Service, call CosNami ng: : Nani ngCont ext : : unbi nd() to unbind the context
name before calling dest roy() . See the entry for

GosNanmi ng: : Nami ngCont ext : : resol ve() for information about the result of
resolving names of context objects that no longer exist.

Notes CORBA compliant.

See Also CosNanmi ng: : Nam ngCont ext : : Not Enpt 'y
GosNani ng: : Nani ngCont ext : : resol ve()
GosNani ng: : Nani ngCont ext : : unbi nd()

156

CosNaming::NamingContext

Synopsis

Description

Notes

Synopsis

Description

CosNaming::NamingContext::InvalidName

exception Inval i dName {};

If an operation receives an i n parameter of type CosNani ng: : Nane for which
the sequence length is zero, the operation raises an | nval i dName exception.
The following operations can raise this exception:

CosNami ng: : Nam ngCont ext : : bi nd()

CosNami ng: : Nami ngCont ext : : bi nd_cont ext ()

CosNami ng: : Nam ngCont ext : : bi nd_new_cont ext ()

CosNami ng: : Nam ngCont ext: : r ebi nd()

CosNami ng: : Nam ngCont ext: : rebi nd_cont ext ()

CosNami ng: : Nam ngCont ext: : resol ve()

CosNami ng: : Nam ngCont ext: : resol ve_obj ect _group()

CosNami ng: : Nam ngCont ext : : unbi nd()

CORBA compliant.

CosNaming::NamingContext::list()

void list (in unsigned | ong how many,
out BindingList bl, out Bindinglterator bi);

The operation | i st () returns a list of the name bindings in the naming context
on which the operation is called. The parameter how_nmany specifies the
maximum number of bindings that should be returned in the Bi ndi ngLi st
parameter, bl .

The Bi ndi ngLi st parameter is a sequence of Bi ndi ng structures where each
Bi ndi ng indicates the name and type of the binding—the type indicates whether
the name is that of an object, or whether it is the name of a node in the naming
graph which participates in name resolution.

If the naming context contains more than the requested number (how _nmany) of
bindings, the | i st () operation returns a Bi ndi ngl t er at or which contains the
remaining bindings. This is returned in parameter bi . If the naming context does
not contain any additional bindings, the parameter bi is a nil object reference.

157

OrbixNames Programmer’s and Administrator’s Guide

Parameters
how many The maximum number of bindings to be returned in parameter
bl.
bl A list of at most how_nmany bindings contained in the naming
context on which the operation is called.
bi A Bi ndi ngl t er at or object that provides access to all remaining
bindings contained in the naming context on which the operation
is called.
Notes CORBA compliant.
See Also GosNanmi ng: : Bi ndi ngl t er at or
GosNani ng: : Bi ndi ngLi st
CosNaming::NamingContext::new_context()
Synopsis Nani ngCont ext new context ();

Description The operation new cont ext () creates a new Nani ngQont ext object in the
Naming Service, without binding a name to it. After you create a naming context
with this operation, you can bind a name to it by calling
GosNani ng: : Nani ngCont ext : : bi nd_cont ext ().

Return Value Returns a reference to the newly created Nam ngCont ext object. There is no
relationship between this object and the Nanmi ngCont ext object on which you
call the operation.

Notes CORBA compliant.

See Also GosNanmi ng: : Nam ngCont ext : : bi nd_cont ext ()
GosNani ng: : Nani ngCont ext : : bi nd_new_cont ext ()

CosNaming::NamingContext::NotEmpty
Synopsis exception Not Enpty {};

158

CosNaming::NamingContext

Description

Notes

Synopsis

Description

Notes
See Also

An application can call the operation CosNani ng: : Nam ngQont ext : : destroy()
to delete a naming context object in the Naming Service. For this operation to
succeed, the naming context must contain no bindings. If bindings exist in the
naming context, the operation raises a Not Enpt y exception.

CORBA compliant.

CosNaming::NamingContext::NotFound

exception Not Found {

Not FoundReason why;

Nare rest_of _nare;
};
Several operations in the interface GosNami ng: : Nam ngCont ext require an
existing name binding to be passed as an i n parameter. If such an operation
receives a name binding that it determines is invalid, the operation raises a
Not Found exception. This exception contains two member fields:

why The reason why the name binding is invalid. See the entry for
GosNanm ng: : Nam ngCont ext : : Not FoundReason for more
details.

rest_of _nane The remainder of the compound name following the
component that the operation determined to be invalid.

The following operations can raise this exception:

CosNami ng: : Nam ngCont ext : : bi nd()

CosNami ng: : Nam ngCont ext : : bi nd_cont ext ()

CosNami ng: : Nam ngCont ext : : bi nd_new_cont ext ()
CosNami ng: : Nam ngCont ext : : r ebi nd()

CosNami ng: : Nam ngCont ext: : rebi nd_cont ext ()
CosNami ng: : Nam ngCont ext: : resol ve()

CosNami ng: : Nam ngCont ext: : resol ve_obj ect _group()
CosNami ng: : Nam ngCont ext : : unbi nd()

CORBA compliant.
CosNani ng: : Nani ngCont ext : : Not FoundReason

159

OrbixNames Programmer’s and Administrator’s Guide

Synopsis

Description

Notes
See Also

Synopsis

Description

Return Value

Notes
See Also

160

CosNaming::NamingContext::NotFoundReason

enum Not FoundReason { ni ssi ng_node, not_context, not_object};

If an operation raises a Not Found exception, a value of enumerated type
Not FoundReason indicates the reason why the exception was raised:

m ssi ng_node A component of the name passed to the operation did not
exist in the Naming Service.

not _cont ext The operation expected to receive a name bound to a
naming context, for example using
GosNam ng: : Nam ngCont ext : : bi nd_cont ext (), but the
name received did not satisfy this requirement.

not _obj ect The operation expected to receive a name bound to an
application object, for example using
GosNanm ng: : Nam ngCont ext : : bi nd(), but the name
received did not satisfy this requirement.

CORBA compliant.
GosNani ng: : Nani ngCont ext : : Not Found

CosNaming::NamingContext::OBfactory()
(bj ect Bfactory ();

The operation OBf act ory() returns a reference to the object group factory in
the Naming Service. Before using the returned object, narrow it to type
LoadBal anci ng: : Gbj ect G oupFact ory. You can then use this object to create
new object groups and to find existing groups, as described in Chapter 3 (C++)
or Chapter 5 (Java).

Returns a reference to the object group factory. To use this object reference,
first narrow it to type LoadBal anci ng: : Qoj ect G oupFact ory.

OrbixNames specific.

LoadBal anci ng
LoadBal anci ng: : Cbj ect G oup
LoadBal anci ng: : Cbj ect G oupFact ory

CosNaming::NamingContext

Synopsis

Description

Parameters

Notes
See Also

Synopsis

Description

CosNaming::NamingContext::rebind()

void rebind (in Nane n, in (bject obj)
rai ses (Not Found, CannotProceed, |nvalidNare);

The operation rebi nd() creates a binding between a name that is already bound
in the target naming context and an object. The previous name is unbound and
the new binding is created in its place. As is the case with

CosNam ng: : Nam ngCont ext : : bi nd(), all but the last component of a
compound name must exist, relative to the naming context on which you call the
operation.

n The name to be bound to the specified object, relative to the naming
context on which the operation is called.

obj The application object to be associated with the specified name.

CORBA compliant.

CosNani ng: : Nani ngCont ext : : bi nd()

CosNani ng: : Nani ngCont ext : : Cannot Pr oceed
CosNani ng: : Nani ngCont ext : : | nval i d\are
CosNani ng: : Nani ngCont ext : : Not Found
CosNani ng: : Nani ngCont ext : : resol ve()

CosNaming::NamingContext::rebind_context()

voi d rebind_context (in Nane n, in Nam ngContext nc)
rai ses (Not Found, CannotProceed, |nvalidNare);

The rebi nd_cont ext () operation creates a binding between a name that is
already bound in the context on which the operation is called, and a naming
context. The previous name is unbound and the new binding is made in its place.
As is the case for CosNam ng: : Nam ngCont ext : : bi nd_cont ext (), all but the
last component of a compound name must name an existing Nam ngCont ext .

161

OrbixNames Programmer’s and Administrator’s Guide

Parameters

Notes
See Also

Synopsis

Description

Parameters

Return Value

Notes

162

n The name to be bound to the specified naming context, relative to the
naming context on which the operation is called.

nc The naming context to be associated with the specified name.

CORBA compliant.

GosNani ng: : Nani ngCont ext : : bi nd_cont ext ()
CosNani ng: : Nani ngCont ext : : Cannot Pr oceed
CosNani ng: : Nani ngCont ext : : | nval i dName
GosNani ng: : Nani ngCont ext : : Not Found
GosNani ng: : Nani ngCont ext : : resol ve()

CosNaming::NamingContext::resolve()

(bj ect resolve (in Nane n)
rai ses (NotFound, Cannot Proceed, |nvalidNare);

The resol ve() operation returns the object reference bound to the specified
name, relative to the naming context on which the operation was called. The
first component of the specified name is resolved in the target naming context.

The return type is IDL (bj ect, which maps to type OCRBA: : Chj ect _ptr in C++
or to type or g. ong. CCRBA (bj ect in Java. You must narrow the result to the
appropriate type before using it in your application.

If the name n refers to a naming context, it is possible that the corresponding
Nam ngCont ext object no longer exists in the Naming Service. For example, this
could happen if you call CosNam ng: : Nam ngQont ext : : destroy() to destroy a
context without first unbinding the context name. In this case, r esol ve() raises
a CORBA system exception.

n The name to be resolved, relative to the naming context on which the
operation is called.

Returns a reference to the object associated with the specified name.

CORBA compliant.

CosNaming::NamingContext

See Also

Synopsis

Description

Parameters

Return Value

Notes
See Also

CosNani ng: : Nani ngCont ext : : Cannot Pr oceed

CosNani ng: : Nanmi ngCont ext : : | nval i dNarre

CosNani ng: : Nani ngCont ext : : Not Found

CosNani ng: : Nam ngCont ext : : r esol ve_obj ect _gr oup()

CosNaming::NamingContext::resolve_object_group()

(bj ect resol ve_obj ect _group (i n Nane n)
rai ses (Not Found, CannotProceed, |nvalidNare);

The operation r esol ve_obj ect _group() returns the

LoadBal anci ng: : Chj ect G oup object associated with a name binding. Before
using the returned object, narrow it to type LoadBal anci ng: : Cbj ect G oup.
You can then use this object to manipulate the contents of the object group, as
described in Chapter 3 (C++) or Chapter 5 (Java).

The required LoadBal anci ng: : (bj ect G oup object must already exist and the
specified name must be bound to it. To create a LoadBal anci ng: : Qbj ect G oup
object, first call the operation CBf act ory() on a naming context to create a
LoadBal anci ng: : Chj ect G oupFact or y object, then use this object to create
the required type of object group.

If the name passed to resol ve_obj ect _group() is bound to an object that is
not of type LoadBal anci ng: : Cbj ect @ oup, the operation returns the
associated object reference. However, if you then attempt to narrow this object
to type LoadBal anci ng: : Cbj ect G oup, the narrow operation will fail.

n The name bound to the required object group, relative to the naming
context on which the operation is called.

Returns a reference to the object group to which the specified name is bound.
To use this object reference, first narrow it to type
LoadBal anci ng: : Chj ect G oup.

OrbixNames specific.

LoadBal anci ng
LoadBal anci ng: : Chj ect G oup

163

OrbixNames Programmer’s and Administrator’s Guide

CosNaming::NamingContext::unbind()

Synopsis void unbind (in Nane n)
rai ses (NotFound, Cannot Proceed, |nvalidNare);

Description The operation unbi nd() removes the binding between a specified name and the
object associated with it. Unbinding a name does not delete the application
object or naming context object associated with the name. For example, if you
wish to remove a naming context completely from the Naming Service, you
should first unbind the corresponding name, then delete the Nani ngCont ext
object by calling CosNam ng: : Nam ngCont ext : : destroy().

Parameters
n The name to be unbound in the Naming Service, relative to the naming
context on which the operation is called.
Notes CORBA compliant.
See Also GosNanmi ng: : Nam ngQCont ext : : Cannot Pr oceed

GosNani ng: : Nani ngCont ext : : destroy()
CosNani ng: : Nani ngCont ext : : | nval i dName
GosNani ng: : Nani ngCont ext : : Not Found

164

LoadBalancing

Synopsis

IDL

The module LoadBal anci ng, defined in the OrbixNames file

LoadBal anci ng. i dl , provides access to the load balancing features of
OrbixNames described in Chapter 3 (C++) or Chapter 5 (Java). The definitions
in this module are specific to OrbixNames.

There are four IDL interfaces in the module LoadBal anci ng: Chj ect G oup,

(bj ect G oupFact or y, Randonmhj ect & oup, and RoundRobi nChj ect G oup. This
chapter describes all data types defined directly within the scope of the

LoadBal anci ng module, other than these four interfaces. These four interfaces
are described in detail in subsequent chapters.

/1 1D

nmodul e LoadBal anci ng {
exception no_such_nenber{};
exception duplicate_nmenber{};
exception duplicate_group{};
exception no_such_group{};

t ypedef string nenberl d;
t ypedef sequence<nenber | d> nenber | dLi st;

struct nenber {
Chj ect obj ;
nmenber | d id;
b

t ypedef string groupld;
t ypedef sequence<groupl d> groupli st;

interface bj ect G oup;

i nt erface RoundRobi nChj ect G oup;
i nt erface RandonChj ect G oup;

165

OrbixNames Programmer’s and Administrator’s Guide

interface hject@oupFactory {

RoundRobi n(bj ect G oup cr eat eRoundRobi n (in groupld id)
rai ses (duplicate_group);

Randonthj ect @ oup createRandom (in groupld id)
rai ses (duplicate_group);

(bj ect Goup findGoup (in groupld id)
rai ses (no_such_group);

grouplLi st rr_groups();

grouplLi st random gr oups();

b

interface ject@oup {

readonly attribute string id,;

(bj ect pi ck();

voi d addMenber (in nenber nen)
rai ses (duplicate_menber);

voi d renoveMenber (in menberld id)
rai ses (no_such_menber);

(bj ect get Menber (in nenberld id)
rai ses (no_such_menber);

nmenber | dLi st menbers();

voi d destroy();

b

interface RandonChj ect Goup : ChjectGoup {};
interface RoundRobi nCbj ect Goup : bjectGoup {};
b
See Also GosNanmi ng: : Nami ngCont ext : : OBf act or y()
GosNani ng: : Nani ngCont ext : : r esol ve_obj ect _group()

LoadBalancing::no_such_group

Synopsis excepti on no_such_group {};

Description The operation LoadBal anci ng: : Cbj ect G oupFact ory: : f i nd@ oup() returns
a reference to a specified object group. This operation takes the group identifier
as an i n parameter and then searches for the group in the Naming Service. If no
group exists for the specified identifier, the operation raises a no_such_group
exception.

Notes OrbixNames specific.

166

LoadBalancing

Synopsis

Description

Notes

Synopsis

Description

Notes

Synopsis

Description

Notes

LoadBalancing::no_such_member

exception no_such_nenber {};

An operation that finds or removes an existing member of an object group takes
a member identifier as an i n parameter. In such cases, the identifier must
correspond to an existing group member. If it does not, the operation raises a
no_such_nenber exception.

The following operations can raise this exception:

LoadBal anci ng: : Obj ect G oup: : get Menber () ;
LoadBal anci ng: : Obj ect G oup: : r enroveMenber () ;

OrbixNames specific.

LoadBalancing::duplicate_group

exception duplicate _group {};

An operation that creates an object group takes the new group identifier as a
parameter. If the group identifier is already used in the Naming Service, the
operation raises a dupl i cat e_gr oup exception.

The following operations can raise this exception:

LoadBal anci ng: : Cbj ect G oupFact ory: : cr eat eRandom() ;
LoadBal anci ng: : Chj ect G oupFact ory: : cr eat eRoundRobi n() ;

OrbixNames specific.

LoadBalancing::duplicate_member

exception duplicate_nenber {};

The operation LoadBal anci ng: : Cbj ect G oup: : addMenber () adds a member
to an object group. This operation takes a parameter that specifies the object to
be added to the group, and the member identifier to be associated with the
object. If the member identifier is already used in the group, the operation raises
a dupl i cat e_menber exception.

OrbixNames specific.

167

OrbixNames Programmer’s and Administrator’s Guide

LoadBalancing::groupld
Synopsis typedef string groupld;

Description Each object group has an associated identifier, of type gr oupl d. The format of
this identifier is application specific and is not specified by OrbixNames.
However, the identifier for each group must be unique within the Naming

Service.
Notes OrbixNames specific.
See Also LoadBal anci ng: : gr oupLi st

LoadBalancing::groupList

Synopsis typedef sequence<groupl d> groupli st;

Description The operations LoadBal anci ng: : Gbj ect G oupFact ory: : r andom gr oups()
and LoadBal anci ng: : Gbj ect G oupFact ory: : rr_groups() allow you to obtain
a list of object groups in the Naming Service. These operations return a list of
group identifiers, as type gr ouplLi st.

Notes OrbixNames specific.

See Also LoadBal anci ng: : gr oupl d
LoadBal anci ng: : Cbj ect G oupFact ory: : r andom gr oups()
LoadBal anci ng: : Cbj ect G oupFactory: :rr_groups()

LoadBalancing::member

Synopsis struct nenber {
(bj ect obj ;
nenberld id;
b

Description An object group contains a set of member objects. For each object in the group,
the group maintains a reference to the object and an identifier that is unique
within the group. This information is stored in a menber structure.

168

LoadBalancing

Notes
See Also

Synopsis

Description

Notes
See Also

Synopsis

Description

Notes
See Also

A nenber structure contains two fields:

obj A reference to the member object.

id The member identifier for the object. This value must be unique within
the object group.

OrbixNames specific.

LoadBal anci ng: : menber | d

LoadBalancing::memberld

t ypedef string nenberl d;

Each object reference in an object group has an associated member identifier, of
type nenber | d. The format of this identifier is application specific and is not
specified by OrbixNames. However, each member identifier must be unique
within a given object group.

OrbixNames specific.

LoadBal anci ng: : menber
LoadBal anci ng: : menber | dLi st

LoadBalancing::memberldList

t ypedef sequence<nenber | d> nenber | dLi st;

The operation LoadBal anci ng: : Obj ect G oup: : menber s() returns a list of the
member identifiers in a given object group. This list is returned as type
menber | dLi st, which is a sequence of nenber | d values.

OrbixNames specific.

LoadBal anci ng: : menber | d
LoadBal anci ng: : Chj ect G oup: : menber s()

169

OrbixNames Programmer’s and Administrator’s Guide

170

LoadBalancing::ObjectGroup

Synopsis The interface LoadBal anci ng: : (oj ect G oup allows you to manage the
contents of an existing object group. This interface is usually accessed in server
applications.

This interface also supports the operation pi ck(), which OrbixNames calls
when a client resolves a name bound to an object group. This operation selects
a member of the group in accordance with the group selection algorithm.

The interfaces LoadBal anci ng: : Randon@ oup and
LoadBal anci ng: : RoundRobi n@G oup inherit this interface.

IDL /1 1D
nmodul e LoadBal anci ng {

interface (oject@oup {
readonly attribute string id,;

(hj ect pick();

voi d addMenber (in nenber mnen)
rai ses (duplicate_menber);

voi d renoveMenber (in nenberld id)
rai ses (no_such_mnenber);

(bj ect get Menber (in menberld id)
rai ses (no_such_mnenber);

menber | dLi st nenbers();

voi d destroy();

.

See Also CosNanmi ng: : Nam ngCont ext : : r esol ve_obj ect _group()
LoadBal anci ng: : Cbj ect G oupFact ory
LoadBal anci ng: : Randonthj ect G oup
LoadBal anci ng: : RoundRobi nChj ect G- oup

171

OrbixNames Programmer’s and Administrator’s Guide

LoadBalancing::ObjectGroup::addMember()

Synopsis voi d addMenber (in renber nen)
rai ses (duplicate_menber);

Description An Orbix server calls the operation addMenber () to add a member object to a
group. This operation takes an i n parameter, of type nenber, that specifies the
member identifier and provides a reference to the object. The member identifier
must not already exist in the object group on which the operation is called. If the
identifier exists, addMenber () raises a dupl i cat e_nenber exception.

Parameters
mem A structure containing a reference to the new member object and the
member identifier.
Notes OrbixNames specific.
See Also LoadBal anci ng: : menber
LoadBalancing::ObjectGroup::destroy()
Synopsis void destroy ();

Description Calling operation dest roy() on an object group completely removes that group
from the Naming Service. It is not necessary to remove the members of a group
before calling dest roy() .

Operation dest roy() does not affect the name binding associated with the
group. Before calling dest roy(), call CosNani ng: : Nanmi ngQont ext : : unbi nd()
to remove the associated name binding.

Notes OrbixNames specific.

See Also GosNanmi ng: : Nam ngQCont ext : : unbi nd()

172

LoadBalancing::ObjectGroup

Synopsis

Description

Parameters

Return Value

Notes
See Also

Synopsis

Description

Notes

Synopsis

Description

LoadBalancing::ObjectGroup::getMember()

(bj ect get Menber (in nenberld id)
rai ses (no_such_mnenber);

An application calls the operation get Menber () to obtain a reference to a
specific member object in an object group. This operation takes the member
identifier as an i n parameter, of type menber | d. If this identifier does not
correspond to an object in the group on which get Menber () is called, the
operation raises a no_such_menber exception.

id The identifier of the member object for which an object reference is
required.

Returns a reference to the object associated with the specified member
identifier.

OrbixNames specific.

LoadBal anci ng: : menber | d

LoadBalancing::ObjectGroup::id
readonly attribute string id;

This attribute stores the identifier of the object group. The format of this
identifier is application specific and is not specified by OrbixNames. However,
the group identifier must be unique within the Naming Service.

OrbixNames specific.

LoadBalancing::ObjectGroup::members()

menber | dLi st nenbers ();

The operation nenbers() returns a list of all members in the group on which it
is called. Only the identifier for each member is returned. To obtain a reference
to a member object associated with a specific identifier, call the operation
LoadBal anci ng: : Chj ect G oup: : get Menber ().

173

OrbixNames Programmer’s and Administrator’s Guide

Return Value Returns a list of identifiers of all members in the object group.
Notes OrbixNames specific.

See Also LoadBal anci ng: : nenber | dLi st
LoadBal anci ng: : Cbj ect G oup: : get Merber ()

LoadBalancing::ObjectGroup::pick()
Synopsis (bj ect pi ck();

Description The operation pi ck() selects a member of an object group and returns a
reference to the member object. In a round-robin selection object group, the
operation pi ck() implements a round-robin selection algorithm to choose a
member of the object group. In a random selection object group the operation
pi ck() randomly chooses a member of the group.

When a client resolves a Naming Service name that has been bound to an object
group, OrbixNames calls operation pi ck() to determine which member object
the name should resolve to.

Return Value Returns a reference to the object selected by OrbixNames.

Notes OrbixNames specific.

LoadBalancing::ObjectGroup::removeMember()

Synopsis voi d renoveMenber (in nenberld id) raises (no_such_nenber);

Description An Orbix server calls the operation r enbveMenber () to remove a member
object from a group. This operation takes an i n parameter, of type menber | d,
which specifies the identifier of the member object to be removed. If this
identifier does not correspond to an object in the group on which
removeMenber () is called, the operation raises a no_such_mnenber exception.

Parameters

id The identifier of the member to be removed.
Notes OrbixNames specific.
See Also LoadBal anci ng: : menber | d

174

LoadBalancing::
ObjectGroupFactory

Synopsis The interface LoadBal anci ng: : bj ect G oupFact or y allows you to create
object groups and find existing groups in the Naming Service. To obtain a
reference to a LoadBal anci ng: : (bj ect G oupFact ory, call
CosNanm ng: : Nam ngCont ext : : OBf act ory() on any
CosNam ng: : Nam ngCont ext object.

IDL /1 1D
nmodul e LoadBal anci ng {

interface (bj ect G oupFactory {

RoundRobi nChj ect G oup creat eRoundRobin (in groupld id)
rai ses (duplicate_group);

Randon(bj ect G oup creat eRandom (i n groupld id)
rai ses (duplicate_group);

Chj ect Goup findGoup (in groupld id)
rai ses (no_such_group);

groupLi st rr_groups();

grouplLi st random groups();

.

See Also CosNanmi ng: : Nam ngCont ext : : OBf act ory()
LoadBal anci ng: : Chbj ect G oup

175

OrbixNames Programmer’s and Administrator’s Guide

Synopsis

Description

Parameters

Return Value

Notes
See Also

Synopsis

Description

176

LoadBalancing::ObjectGroupFactory::createRandom()

Randonthj ect @ oup createRandom (in groupld id)
rai ses (duplicate_group);

This operation creates a new object group. When OrbixNames calls the
operation LoadBal anci ng: : bj ect G oup: : pi ck() to choose a member from
the resulting group, a random selection algorithm is used.

The operation cr eat eRandon() takes a group identifier as an i n parameter. This
identifier must be unique within the Naming Service. If an existing group is
already associated with this identifier, the operation raises a

LoadBal anci ng: : dupl i cat e_gr oup exception.

id The group identifier for the new object group. This value must be unique
within the Naming Service.

Returns a reference to the Randon(hbj ect G oup object for the newly created
group.
OrbixNames specific.

LoadBal anci ng: : dupl i cat e_gr oup
LoadBal anci ng: : gr oupl d
LoadBal anci ng: : Randonthj ect G oup

LoadBalancing::ObjectGroupFactory::
createRoundRobin()

RoundRobi nChj ect G oup cr eat eRoundRobi n (in groupld id)
rai ses (duplicate_group);

This operation creates a new object group. When OrbixNames calls the
operation LoadBal anci ng: : (bj ect G oup: : pi ck() to choose a member from
the resulting group, a round-robin selection algorithm is used.

The operation cr eat eRoundRobi n() takes a group identifier as an i n parameter.
This identifier must be unique within the Naming Service. If an existing group is
already associated with this identifier, the operation raises a

LoadBal anci ng: : dupl i cat e_gr oup exception.

LoadBalancing:: ObjectGroupFactory

Parameters

Return Value

Notes
See Also

Synopsis

Description

Parameters

Return Value
Notes
See Also

id The group identifier for the new object group. This value must be unique
within the Naming Service.

Returns a reference to the RoundRobi n(hj ect G oup object for the newly
created group.

OrbixNames specific.

LoadBal anci ng: : dupl i cat e_gr oup
LoadBal anci ng: : groupl d
LoadBal anci ng: : RoundRobi nChj ect G- oup

LoadBalancing::ObjectGroupFactory::findGroup()

Chj ect Goup findGoup (in groupld id)
rai ses (no_such_group);

An application calls the operation fi ndG oup() to obtain a reference to a
specific object group. This operation takes the group identifier as an i n
parameter, of type gr oupl d. If this identifier does not correspond to an existing
object group in the Naming Service, the operation raises a no_such_group
exception.

id The group identifier for the required object group.

Returns a reference to the (bj ect & oup object for the required group.
OrbixNames specific.

LoadBal anci ng: : groupl d
LoadBal anci ng: : no_such_gr oup

177

OrbixNames Programmer’s and Administrator’s Guide

Synopsis

Description

Return Value
Notes
See Also

Synopsis

Description

Return Value
Notes
See Also

178

LoadBalancing::ObjectGroupFactory::random_groups()

grouplLi st random groups ();

The operation random gr oups() returns a list of all random groups that
currently exist in the Naming Service. Only the group identifiers are returned.
To obtain a reference to a group associated with a specific identifier, call the
operation LoadBal anci ng: : bj ect G- oupFact ory: : fi ndG oup().

Returns a list of the identifiers of all random groups in the Naming Service.
OrbixNames specific.

LoadBal anci ng: : gr oupLi st
LoadBal anci ng: : Cbj ect G oupFactory: : fi ndG oup()

LoadBalancing::ObjectGroupFactory::rr_groups()
groupLi st rr_groups ();

The operation rr_groups() returns a list of all round-robin groups that
currently exist in the Naming Service. Only the group identifiers are returned.
To obtain a reference to a group associated with a specific identifier, call the
operation LoadBal anci ng: : bj ect G- oupFact ory: : fi ndG oup().

Returns a list of the identifiers of all round-robin groups in the Naming Service.
OrbixNames specific.

LoadBal anci ng: : gr oupLi st
LoadBal anci ng: : Cbj ect G oupFactory: : fi ndG oup()

LoadBalancing::
RandomObjectGroup

Synopsis The interface LoadBal anci ng: : RandontChj ect G oup represents an object
group in which OrbixNames applies a random selection algorithm when
choosing a member object. This interface is a simple specialization of

LoadBal anci ng: : (bj ect G oup, and adds no new attributes or operations.

IDL /1 1DL
nmodul e LoadBal anci ng {

i nterface RandonChj ect Goup : Cbj ect G oup {
};
};
See Also LoadBal anci ng: : (hbj ect & oup
LoadBal anci ng: : Cbj ect G oup: : pi ck()
LoadBal anci ng: : RoundRobi nChj ect G- oup

179

OrbixNames Programmer’s and Administrator’s Guide

180

LoadBalancing::
RoundRobinObjectGroup

Synopsis The interface LoadBal anci ng: : RoundRobi nChbj ect G oup represents an object
group in which OrbixNames applies a round-robin selection algorithm when
choosing a member object. This interface is a simple specialization of
LoadBal anci ng: : (bj ect G oup, and adds no new attributes or operations.

IDL /1 1DL
nmodul e LoadBal anci ng {

i nterface RoundRobi nChj ect Goup : hj ect Goup {
};
};
See Also LoadBal anci ng: : (hbj ect & oup
LoadBal anci ng: : Cbj ect G oup: : pi ck()
LoadBal anci ng: : Randonthj ect G oup

181

OrbixNames Programmer’s and Administrator’s Guide

182

Part VI

Appendices

Appendix A
Configuration Variables

There are two forms of Orbix configuration variables: those that are common
to multiple IONA products and variables that are specific to OrbixNames only.

Common Configuration Variables

You can set the following variables using the Configuration Explorer GUI tool,
or by editing the conmon. cf g configuration file, or as environment variables.

Variable Description
| T_DAEMON_PCRT TCP port number for the Orbix daemon.
| T_DAEMON_SERVER BASE The starting TCP port number for servers launched by the

Orbix daemon.

| T_DAEMON_SERVER RANGE The number set in this variable is used together with that
set in | T_DAEMON SERVER BASE to determine the range of
port numbers available for Orbix servers.

I T | MP_REP_PATH The full path name of the Implementation Repository
directory.

| T_I NT_REP_PATH The full path name of the Interface Repository directory.

| T_LOCAL_DOVAIN The name of the local internet domain; for example,
i ona. com

| T_LOCATCR _PATH The full path name of the directory holding the locator files.

185

OrbixNames Programmer’s and Administrator’s Guide

OrbixNames-Specific Configuration Variables

You can set the following variables using the Configuration Explorer GUI tool,
or by editing the or bi xnames3. cf g configuration file, or as environment

variables:

Variable

Description

| T_NAVES_HOME

This variable specifies the full path to the bi n directory of
your Orbix installation.

| T_NAMVES_| P_ADDR

By default, a call to CORBA: : CRB: :

resol ve_initial _reference("NaneService") expects
the location of the OrbixNames server to be specified in
the Orbix locator configuration files. You can also specify
the IP address of the server host by setting the variable

I T_NAMES | P_ADDR This value overrides the Orbix
locator.

If this value is set, | T_USE HOSTNAME | N | ORmust be set
to f al se.

| T_NAVES_PCRT

By default, an application contacts the OrbixNames server
using the port number defined in the Orbix

| T_DAEMON _PORT configuration variable. However, if the
OrbixNames server uses another port, you can override

| T_DAEMON _PORT by setting the value of | T_NAMES_PCRT.

| T_NAVES_REPCS| TCRY_PATH

This variable specifies the path name to the Bindings
Repository. The Bindings Repository is a persistent
repository of name bindings maintained by the Naming
Service. The results of all update operations, such as

bi nd(), rebi nd(), and bi nd_new cont ext (), are
committed to the Bindings Repository.

An alternative approach is to use the ‘- r’ flag of the naming
service executable. This flag also specifies a Bindings
Repository and overrides | T_NAMES REPCS| TCRY_PATH

186

Variable

Description

| T_NAMES_SERVER

By default, a call to OCRBA: : CRB: :

resol ve_initial _reference("NaneService") expects
an OrbixNames server to be registered in the
Implementation Repository with the name NS.

If this variable is set, resol ve_ini tial _references()
searches for an OrbixNames server with the name
specified.

| T_NAMES_SERVER HOST

By default, a call to OCRBA: : CRB: :

resolve_initial _reference("NaneService") expects
the location of the OrbixNames server to be specified in
the Orbix locator configuration files. You can also specify
the server host name by setting the variable

I T_NAMES SERVER HOST. This value overrides the Orbix

locator.

If this value is set, | T_USE HOSTNAME | N | CRmust be set
totrue.

| T_USE_HOSTNAME | N | OR

When OrbixNames stores an IOR in the Bindings
Repository, the host on which the object runs is embedded
in the IOR. If | T_USE HOSTNAME | N | CRis set to t r ue, the
name of the host is embedded in the IOR; if it is set to

f al se, the IP address is embedded. The default setting is
true.

I T_NS_HASH TABLE_ S| ZE

This variable specifies the size of the hash table associated
with each naming context to store references to bindings.
By default, this variable is set to 23.

You can also alter this value when executing the
OrbixNames server using the
-h <hash tabl e size> flag.

187

OrbixNames Programmer’s and Administrator’s Guide

Variable

Description

| T_NAVES_TI MEQUT

This specifies the amount of time, in seconds, that the
server may remain idle before timing out. The default value
is - 1, or infinite. This means that the server does not time
out.

You can also alter this value when executing the
OrbixNames server using the -t <ti meout > flag.

I T_NAMES_DI AGNCSTI CS

This variable specifies the diagnostic level used by
OrbixWeb within the naming service. The default value is
0, with a maximum value of 255.

| T_NAVES THREAD POCL_SI ZE

This variable sets the size of the thread pool used to handle
incoming requests to the multi-threaded OrbixNames
server. The default value of this variable is 11.

You can also alter this value when executing the
OrbixNames server using the - p <thread pool size>
flag.

| T_NAVES_CACHE_SI ZE

This variable sets the number of naming contexts that
should be cached in memory by the OrbixNames server.
The default value of this variable is 10.

You can also alter this value when executing the
OrbixNames server using the - e <cache si ze> flag.

Note: Entries in IONA configuration files are scoped with a prefix; for example,
Cormon. | T_DAEMON PCRT or
O bi xNanes. | T_NAMES REPCSI TORY_PATH. Environment variables are

not scoped.

For further details of Orbix-specific configuration variables, refer to the Orbix
C++ Administrator’s Guide or the OrbixWeb Administrator’s Guide.

188

Index

A
add_member utility 122, 123, 124
add_object_to_group() function 49, 53, 101
adding objects to object groups 42, 46, 49, 53, 90,
94, 101, 123, 172

addMember() operation 41, 54, 89, 103, 167, 172
algorithms, selection 41, 89, 123, 174

random 176, 178, 179

round-robin 176, 178, 181
AlreadyBound exception 152
associating names

with naming contexts 153, 154

with object groups 52, 100

with objects 6, 16—18, 66—69, 114, 116, 137,

153

authentication, SSL 29, 79

authenticating clients 30, 80

B
bind() operation 6, 16—18, 66—69, 146, 153
bind_context() operation 154
bind_name_to_group() function 51, 52, 53, 100,
101
bind_new_context() operation 8, 18, 68, |54
binding names
to naming contexts 153, 154
to object groups 52, 100
to objects 6, 16—18, 6669, 114, 116, 137, 153
Binding structure 145, 157
Bindinglterator interface 5, 22, 143, 149-150, 157
BindingList type 145, 157
Bindings Repository 186, 187
bindings. See name bindings 4
BindingType enumerated type 146
browser, OrbixNames [27-140
connecting to OrbixNames server 129
disconnecting from OrbixNames server 133
starting 128

C

CA 29,80

caching in the OrbixNames server 27, 77
cat_group utility 122, 124

cat_member utility 122, 124
catns utility 114, 118, 120
catnsj utility 114, 120
certificates 29, 80
Certification Authority 29, 80
client authentication 30, 80
code examples 15, 65
compiling OrbixNames applications 24, 74
components 4, 147, 153
compound names 4, 7, 153
configuration
file 25,76
IT_NAMES_CACHE_SIZE variable 188
IT_NAMES_DIAGNOSTICS variable 188
IT_NAMES_HOME variable 186
IT_NAMES_IP_ADDR variable 186
IT_NAMES_PATH variable 26, 77
IT_NAMES_PORT variable 186
IT_NAMES_REPOSITORY_PATH variable 186
IT_NAMES_SERVER variable 15, 65, 187
IT_NAMES_SERVER_HOST variable 187
IT_NAMES_THREAD_POOL_SIZE
variable 188
IT_NAMES_TIMEOUT variable 188
IT_NS_HASH_TABLE_SIZE variable 187
IT_USE_HOSTNAME_IN_IOR variable 187
of locator for OrbixNames server 25, 75
OrbixNames scope 25,76
server switches 26, 76
SSL
IT_AUTHENTICATE_CLIENTS variable 30,
80
IT_CA_LIST_FILE variable 30, 81
IT_CERTIFICATE_FILE variable 29, 80
IT_PRIVATEKEY_FILE variable 29, 80
IT_SECURITY_POLICY variable 28, 79
contacting the Naming Service 6, |5, 16, 65, 66
contexts. See naming contexts
CORBA Initialization Service 15, 65
CORBA module
BOA interface
impl_is_ready() operation 49, 56
ORB interface
resolve_initial_references() operation 15,22,

189

OrbixNames Programmer’s and Administrator’s Guide

65, 68
CORBA Naming Service. See Naming Service
CORBAservices specification 3
CosNaming module 4, 143-147
Binding structure 145, 157
Bindinglterator interface 5, 22, 143, 149150,
157
destroy() operation 149
next_n() operation 22, 72, 150
next_one() operation 150
BindingList type 145, 157
BindingType enumerated type 146
Istring type 5, 146
Name type 5, 18, 22, 68, 69, 72, 147
NameComponent structure 5, 147
NamingContext interface 5, 143, 151
AlreadyBound exception 152
bind() operation 6, 16—18, 66—69, 146, 153
bind_context() operation 153, 154
bind_new_context() operation 18, 68, 154
CannotProceed exception 155
destroy() operation 8, 156
InvalidName exception 157
list() operation 22, 72, 145, 149, 157
new_context() operation 23,73, 154, 158
NotEmpty exception 158
NotFound exception 159
NotFoundReason enumerated type 160
OBfactory() operation 41, 49, 89, 97, 151,
160, 175
rebind() operation 119, 146, 161
rebind_context() operation 161
resolve() operation 6, 22,72, 162
resolve_object_group() operation 44, 92,
151, 163
unbind() operation 8, 156, 164, 172
NamingContext interface0
bind_new_context() operation 8
create_group() function 49, 50, 51, 97, 99, 100
createRandom() operation 41, 89, 176
createRoundRobin() operation 51, 100, 176
creating
name bindings 116, 137, 153
naming contexts 8, | 14, 116, 134, 154, 158
object groups 41, 46, 50, 51, 89, 94, 122, 160,
163, 176

D

del_group utility 122, 123, 124
del_member utility 122, 124

190

destroy() operation 8, 43, 91, 149, 156, 172
domains 185

duplicate_group exception 167
duplicate_member exception 54, 103, 167

E
-e switch to the OrbixNames server 26, 27,77,
78
environment variables 25, 76
examples
code 15, 65
load balancing 44, 92

F
-f switch to the OrbixNames utilities 121
factories, object group 41, 89, 160, 175
federation of name spaces 32-35, 83-84, 155
files, IDL 13, 24, 63,74
find_group() function 57, 105
findGroup() operation 42, 58, 90, 106, 166, 177
finding
members of object groups 173
object groups 44, 57, 92, 105, 163, 177
objects by name 6, 19-20, 69-71, 1271, | 14,
118
format of names 4, 9, 147
in lost+found naming context 23, 73

G

get_root_context() function 49, 97
getMember() operation 173
graphs, naming 154

example of 14, 64
group identifiers 42, 44, 90, 92
groupld type 168
grouplist type 168
groups, object. See object groups

H

-h switch to the OrbixNames server 26, 77
-h switch to the OrbixNames utilities 121, 125
hash tables for naming contexts 26, 77

-| switch to the OrbixNames server 15, 26, 65, 77

-i switch to the OrbixNames utilities 123, 125
id attribute 173
identifiers

Index

in name components 5, 147

of object group members 42, 90, 169

of object groups 42, 90, 168, 173
IDL files, OrbixNames 13, 24, 63, 74
IIOP 121, 125
impl_is_ready() operation 49, 56
Implementation Repository 25, 75

directory path 185
Initialization Service 15, 65, 121
-insecure switch to the OrbixNames server 32,

82

internet domains 185
Internet Inter-ORB Protocol. See IIOP
Interoperable Object References. See IORs
InvalidName exception 157
IORs 187
Istring type 5, 146
IT_AUTHENTICATE_CLIENTS variable 30, 80
IT_CA_LIST_FILE variable 30, 81
IT_CERTIFICATE_FILE variable 29, 80
IT_DAEMON_PORT 185
IT_DAEMON_SERVER_BASE 185
IT_DAEMON_SERVER_RANGE 185
IT_IMP_REP_PATH 185
IT_INT_REP_PATH 185
IT_LOCAL_DOMAIN 185
IT_LOCATOR_PATH 185
IT_NAMES_CACHE_SIZE variable 188
IT_NAMES_DIAGNOSTICS variable 188
IT_NAMES_HOME variable 186
IT_NAMES_IP_ADDR variable 186
IT_NAMES_PATH variable 26, 77
IT_NAMES_PORT variable 186
IT_NAMES_REPOSITORY_PATH variable 186
IT_NAMES_SERVER variable 15, 65, 187
IT_NAMES_SERVER_HOST variable 187
IT_NAMES_THREAD_POOL_SIZE variable 188
IT_NAMES_TIMEOUT variable 188
IT_NS_HASH_TABLE_SIZE variable 187
IT_PRIVATEKEY_FILE variable 29, 80
IT_SECURITY_POLICY variable 28, 79
IT_USE_HOSTNAME_IN_IOR variable 187

K

-k switch to the OrbixNames utilities 118
keys, private 29, 80

killing the OrbixNames server 26, 76
kind values in name components 5, 147

L
-| switch to the OrbixNames server 26, 77
libraries 75
list() operation 22, 72, 145, 149, 157
list_group utility 123
list_groups utility 124
list_member utility 122
list_members utility 123, 124
listing
bindings in a context 20-22, 71-72, 1 14, 118,
145, 149, 157
members of object groups 123, 169, 173
object groups 123, 168, 178
load balancing 26, 37-60, 77, 85-12, 165
example of 44, 92
LoadBalancing module 40, 88, 165-169
duplicate_group exception 167
duplicate_member exception 54, 103, 167
groupld type 168
grouplist type 168
member structure 54, 103, 168
memberld type 169
memberldList type 169
no_such_group exception 166
no_such_member exception |67
ObjectGroup interface 41, 89, 163, 165, 71—
174
addMember() operation 41, 54,89, 103, 167,
172
destroy() operation 43,91, 172
getMember() operation 173
id attribute 173
members() operation 169, 173
pick() operation 171, 174, 176
removeMember() operation 43,91, 174
ObjectGroupFactory interface 41, 89, 165,
175-178
createRandom() operation 4l, 89, 176
createRoundRobin() operation 41, 51, 89,
100, 176
findGroup() operation 42, 58, 90, 106, 166,
177
random_groups() operation 168, 178
rr_groups() operation 168, 178
RandomObjectGroup interface 165, 179
RoundRobinObjectGroup interface 165, 18I
LoadBalancing.idl file 24, 40, 74, 88
locator, configuring for OrbixNames server 25,
75
looking up names. See resolving names

191

OrbixNames Programmer’s and Administrator’s Guide

lost+found naming context 23, 73, 120
Isns utility 114, 118, 120
Isnsj utility 114, 120

M

member structure 54, 103, 168
memberld type 169
memberldList type 169
members() operation 169, 173
members, object group 42, 90, 123, 172
finding 173
identifiers 42, 90, 123, 169
listing 123, 169, 173
removing 124, 174
viewing object references for 124

N
-n switch to the OrbixNames utilities 123, 125
name bindings 4
creating 6, 1618, 6669, 116, 137, 153
listing in a context 20-22,71-72, 114, 118, 145,
149, 157
managing |14
removing 8, | 14, 120, 139, 164
types 4, 145, 146
name management utilities |13—121
name spaces, federation of 32-35, 83-84, 155
Name type 5, 18, 22, 68, 69, 72, 147
NameComponent structure 5, 147
names
associating with naming contexts 153, 154
associating with objects 6, 16—18, 66—69, |14,
116,137, 153
compound 4,7, 153
differentiating 5, 147
format in Naming Service 4, 147
IDL type of 5
of length zero 157
rebinding
to contexts 161
to objects 114, 119, 161
removing association with objects 8, 114, 120,
139, 164
resolving 6, 19-20, 69-71, 22-71, 114, 118, 162
string format of 9
unbinding 8, 114, 156, 164
naming contexts 4
associating names with 8, 153, 154
caching in the OrbixNames server 27,77

192

creating 8, 114, 116, 134, 154, 158
finding unreachable contexts 23, 73
getting the root naming context 6, |5, 16, 49,
65, 66, 97
hash tables for 26, 77
listing bindings in 20-22, 71-72, 114, 118, 145,
149, 157
lost+found 23,73, 120
rebinding names to 161
removing 8, 23,73, 114, 136, 156
naming graphs 154
example of 14, 64
Naming Service
applications
compiling 75
running 75
contacting 6, |5, 16, 65, 66
format of names 4
IDL definitions 13, 63
interface to 4
introduction to 3
NamingContext interface 5, 143, I51
NamingService.idl file 24, 74
ncontext binding type 146
new_context() operation 23, 73, 154, 158
new_group utility 122, 125
new_groupj utility 122
newncns utility 114, 116, 120
newncnsj utility 114, 120
next_n() operation 22, 72, 150
next_one() operation 150
no_such_group exception 166
no_such_member exception |67
nobject binding type 146
NotEmpty exception 158
NotFound exception 159
NotFoundReason enumerated type 160

o
OBfactory() operation 41, 49, 89, 97, 151, 160,
175
object groups 39-60, 87-22, 171
accessing from clients 58, 106
adding objects to 42, 46, 53, 90, 94, 101, 123,
172
binding names to 52, 100
creating 41, 46, 50, 51, 89, 94, 122, 160, 163,
176
factories for 41, 89, 160, 175
finding 44, 57, 92, 105, 163, 177

Index

finding members of 173
group identifiers 42, 90, 168, 173
listing 123, 168, 178
listing members of 123, 169, 173
member identifiers 42, 90, 169
removing 43, 91, 122, 123, 172
removing objects from 42, 90, 124, 174
selection algorithms 41, 89, 123
utilities 113, 122—125
Object Management Group. See OMG
ObjectGroup interface 163, 165, 171-174
ObjectGroupDemo module 45, 93
ObjectGroupFactory interface 41, 89, 165, 175-

178
objects
associating names with 6, 16—18, 66—69, |14,
116, 153

finding by name 6, 19-20, 69-71, 2271, 118
rebinding names to |14, 139, 161
removing association with names 8, 120, 139,
164
removing from object groups 42, 90
OMG 3
options to the OrbixNames server 26, 76
Orbix protocol 121, 125
OrbixNames
browser 127-140
configuration file 25, 76
IDL files 13,24, 63,74
server 13, 15,24, 25, 63, 65, 74, 76
-e switch 26,27,77,78
-h switch 26, 77
-1 switch 15, 26, 65, 77
-insecure switch 32, 82
-l switch 26, 77
-p switch 27,77
-r switch 26, 77
running securely 30, 31, 81, 82
-secure switch 32, 82
switches to 26, 76
-v switch 26, 77
utilities 9, 35, 83, 113—-125
add_member 122, 123, 124
cat_group 122, 124
cat_member 122, 124
catns 114,118, 120
catnsj 114, 120
del_group 122, 123, 124
del_member 122, 124
list_group 123

list_groups 124

list_member 122

list_members 123, 124

Isns 114,118, 120

Isnsj 114, 120

new_group 122, 125

new_groupj 122

newncns |14, 116, 120

newncnsj |14, 120

pick_member 122, 124, 125

putncns |14, 116, 120

putnecnsj 114,120

putnewncns |14, 116, 120

putnewncnsj 120

putns |14, 116, 120

putnsj 114, 121

reputncns |14, 119, 121

reputnecnsj |14, 121

reputns |14, 119, 121

reputnsj |14, 121

rmns |14, 120, 121

rmnsj 114, 121

running securely 32, 83

syntax of 120, 124
version information 121, 125

OrbixNames scope in configuration files 25, 76

-orbixprot switch to the OrbixNames
utilities 115, 121, 125
OrbixSSL 28-32, 78-83

P

-p switch to the OrbixNames server 27, 77

pick() operation 171, 174, 176
pick_member utility 122, 124, 125
port for OrbixNames server 186
ports

for Orbix daemon 185

for servers 185
private keys 29, 80

protocols
IIOP 121,125
Orbix 121, 125

putncns utility 114, 116, 120
putncns;j utility 114, 120
putnewncns utility 114, 116, 120
putnewncnsj utility 120

putns utility 114, 116, 120
putnsj utility 114, 121

193

OrbixNames Programmer’s and Administrator’s Guide

R

-r switch to the OrbixNames server 26, 77
random selection algorithm 176, 178, 179
random_groups() operation 168, 178
RandomObjectGroup interface 165, 179
rebind() operation 119, 146, 161
rebind_context() operation 161
rebinding names
to naming contexts |61
to objects 114, 119, 139, 16l
registering the OrbixNames server 25, 75, 76
registry, system 25, 26, 76, 77
removeMember() operation 43, 91, 174
removing
members of object groups 124
name bindings 8, |14, 120, 139
naming contexts 8, 23,73, |14, 136, 156
object groups 43,91, 122, 123, 172
objects from object groups 42, 90, 174
Repository, Bindings 186, 187
reputncns utility 114, 119, 121
reputncns;j utility 114, 121
reputns utility 114, 119, 121
reputnsj utility 114, 121
resolve() operation 6, 22,72, 162
resolve_initial_references() operation 15, 22, 65,

68

resolve_object_group() operation 44, 92, 151,
163

resolving names 6, 19-20, 69-71, 2271, 114, 118,
162

of object groups 58, 106
rmns utility 114, 120, 121
rmnsj utility 114, 121
root naming context 6, 49, 97
-round_robin switch to the OrbixNames
utilities 123
round-robin selection algorithm 123, 176, 178,
181
RoundRobinObjectGroup interface 165, 181
rr_groups() operation 168, 178
running
OrbixNames applications 24, 74
the OrbixNames server 26,76

S

-s switch to the OrbixNames utilities 121
scoping configuration variables 25, 76

-secure switch to the OrbixNames server 32, 82
security, SSL 28-32, 78-83

194

selecting object group members 174
selection algorithms 174
random 176, 178, 179
round-robin 123, 176, 178, 181
server locator
directory path 185
server, OrbixNames 13, 15, 24, 25, 63, 65, 74, 76
connecting to 129
disconnecting from 133
-l switch 15, 65
running securely 30, 31, 81, 82
switches to 26, 76
SSL security 28-32, 78-83
authentication 29, 79
starting the OrbixNames server 26, 76
stock market example 44, 92
stopping the OrbixNames server 26, 76
string format of names 9
switches
to the OrbixNames server 26, 76
-e 26,27,77,78
-h 26,77
-l 26,77
-l 26,77
-p 27,77
-r 26,77
-v 26,77
to the OrbixNames utilities 120
-f 121
-h 121, 125
-i 123, 125
-k 118
-n 123, 125
-orbixprot 115, 121, 125
-round_robin 123

-s 121

-v 121, 125

-x 121
syntax

of object group utilities 124
of the name management utilities 120
system registry 25, 26, 76, 77

T
tables, hash 26, 77

thread pool in OrbixNames server 27, 77
types of name binding 145, 146

OrbixNames Programmer’s and Administrator’s Guide

U Z
unbind() operation 8, 156, 172 zero length names 157
unbinding names 8, 156
unreachable naming contexts 23, 73
utilities 9
name management |13-121
catns 114,118, 120

catnsj |14, 120
Isns 114,118, 120
Isnsj 114, 120

newncns |14, 116, 120
newncnsj |14, 120
putncns 114, 116, 120
putnensj |14, 120
putnewncns |14, 116, 120
putnewncnsj 120
putns |14, 116, 120
putnsj 114, 121
reputncns 114, 119, 121
reputncnsj |14, 121
reputns |14, 119, 121
reputnsj 114, 121
rmns |14, 120, 121
rmnsj 114, 121
syntax of 120
object group 113, 122-125
add_member 122, 123, 124
cat_group 122, 124
cat_member 122, 124
del_group 122, 123, 124
del_member 122, 124
list_group 123
list_groups 124
list_member 122
list_members 123, 124
new_group 122, 125
new_groupj 122
pick_member 122, 124, 125
syntax of 124
OrbixNames 35, 83, 113—-125
running securely 32, 83

\

-v switch to the OrbixNames server 26, 77
-v switch to the OrbixNames utilities 121, 125
version information for OrbixNames 121, 125

X

-x switch to the OrbixNames utilities 121

195

	Preface
	Audience
	Organization of this Guide
	Document Conventions

	Part I. Introduction
	1. Introduction to the CORBA Naming Service
	The Interface to the Naming Service
	Format of Names in the Naming Service
	IDL Interfaces to the Naming Service

	Using the Naming Service
	Associating a Name with an Object
	Using Names to Find Objects
	Associating a Compound Name with an Object
	Removing Bindings from the Naming Service

	Convention for String Format of Names

	Part II. OrbixNames C++ Programmer’s Guide
	2. C++ Programming with OrbixNames
	Developing an OrbixNames Application
	Making Initial Contact with the Naming Service
	Binding Names to Objects
	Resolving Object Names in Clients
	Iterating through Context Bindings
	Finding Unreachable Context Objects

	Compiling and Running an Application
	Configuring OrbixNames
	Registering the OrbixNames Server
	Options to the OrbixNames Server

	Running OrbixNames in a Secure System
	Configuring SSL Support in OrbixNames
	Writing the OrbixNames IOR to a File
	Configuring Clients to Read the OrbixNames IOR
	Running the OrbixNames Server
	Running the OrbixNames Utilities

	Federation of Name Spaces

	3. Load Balancing with OrbixNames Using C++
	The Need for Load Balancing
	Introduction to Load Balancing in OrbixNames
	The Interface to Object Groups in OrbixNames
	Using Object Groups in OrbixNames

	Example of Load Balancing with Object Groups
	Defining the IDL for the Application
	Creating an Object Group and Adding Objects
	Creating Replicated Objects
	Accessing the Objects from a Client

	Part III. OrbixNames Java Programmer’s Guide
	4. Java Programming with OrbixNames
	Developing an OrbixNames Application
	Making Initial Contact with the Naming Service
	Binding Names to Objects
	Resolving Object Names in Clients
	Iterating through Context Bindings
	Finding Unreachable Context Objects

	Compiling and Running an Application
	Compiling and Running the demo Application
	Configuring OrbixNames
	Registering the OrbixNames Server
	Options to the OrbixNames Server

	Running OrbixNames in a Secure System
	Configuring SSL Support in OrbixNames
	Writing the OrbixNames IOR to a File
	Configuring Clients to Read the OrbixNames IOR
	Running the OrbixNames Server
	Running the OrbixNames Utilities

	Federation of Name Spaces

	5. Load Balancing with OrbixNames Using Java
	The Need for Load Balancing
	Introduction to Load Balancing in OrbixNames
	The Interface to Object Groups in OrbixNames
	Using Object Groups in OrbixNames

	Example of Load Balancing with Object Groups
	Defining the IDL for the Application
	Creating an Object Group and Adding Objects
	Creating Replicated Objects
	Accessing the Objects from a Client

	Part IV. OrbixNames Administrator’s Guide
	6. Using the OrbixNames Utilities
	Managing Name Bindings
	Using the Name Utilities
	Syntax of the Name Management Utilities

	Managing Object Groups
	Using the Object Group Utilities
	Syntax of the Object Group Utilities

	7. The OrbixNames Browser
	Starting the OrbixNames Browser
	Connecting to an OrbixNames Server
	Connecting to a Secure OrbixNames Server
	Disconnecting from an OrbixNames Server
	Managing Naming Contexts
	Creating a Naming Context
	Modifying a Naming Context
	Removing a Naming Context

	Managing Object Names
	Binding a Name to an Object
	Modifying an Object Binding
	Removing an Object Name
	Navigating the OrbixNames Browser Button Bar

	Part V. OrbixNames Programmer’s Reference
	CosNaming
	CosNaming::Binding
	CosNaming::BindingList
	CosNaming::BindingType
	CosNaming::Istring
	CosNaming::Name
	CosNaming::NameComponent

	CosNaming::BindingIterator
	CosNaming::BindingIterator::destroy()
	CosNaming::BindingIterator::next_n()
	CosNaming::BindingIterator::next_one()

	CosNaming::NamingContext
	CosNaming::NamingContext::AlreadyBound
	CosNaming::NamingContext::bind()
	CosNaming::NamingContext::bind_context()
	CosNaming::NamingContext::bind_new_context()
	CosNaming::NamingContext::CannotProceed
	CosNaming::NamingContext::destroy()
	CosNaming::NamingContext::InvalidName
	CosNaming::NamingContext::list()
	CosNaming::NamingContext::new_context()
	CosNaming::NamingContext::NotEmpty
	CosNaming::NamingContext::NotFound
	CosNaming::NamingContext::NotFoundReason
	CosNaming::NamingContext::OBfactory()
	CosNaming::NamingContext::rebind()
	CosNaming::NamingContext::rebind_context()
	CosNaming::NamingContext::resolve()
	CosNaming::NamingContext::resolve_object_group()
	CosNaming::NamingContext::unbind()

	LoadBalancing
	LoadBalancing::no_such_group
	LoadBalancing::no_such_member
	LoadBalancing::duplicate_group
	LoadBalancing::duplicate_member
	LoadBalancing::groupId
	LoadBalancing::groupList
	LoadBalancing::member
	LoadBalancing::memberId
	LoadBalancing::memberIdList

	LoadBalancing::ObjectGroup
	LoadBalancing::ObjectGroup::addMember()
	LoadBalancing::ObjectGroup::destroy()
	LoadBalancing::ObjectGroup::getMember()
	LoadBalancing::ObjectGroup::id
	LoadBalancing::ObjectGroup::members()
	LoadBalancing::ObjectGroup::pick()
	LoadBalancing::ObjectGroup::removeMember()

	LoadBalancing:: ObjectGroupFactory
	LoadBalancing::ObjectGroupFactory::createRandom()
	LoadBalancing::ObjectGroupFactory:: createRoundRobin()
	LoadBalancing::ObjectGroupFactory::findGroup()
	LoadBalancing::ObjectGroupFactory::random_groups()
	LoadBalancing::ObjectGroupFactory::rr_groups()

	LoadBalancing:: RandomObjectGroup
	LoadBalancing:: RoundRobinObjectGroup

	Part VI. Appendices
	Appendix A. Configuration Variables

	Index

