
IONA Technologies PLC
September 2000

Orbix Administrator’s
Guide C++ Edition

Orbix is a Registered Trademark of IONA Technologies PLC.
While the information in this publication is believed to be accurate, IONA Technologies PLC makes no warranty of any kind
to this material including, but not limited to, the implied warranties of merchantability and fitness for a particular purpose.
IONA Technologies PLC shall not be liable for errors contained herein, or for incidental or consequential damages in
connection with the furnishing, performance or use of this material.
Java is a trademark of Sun Microsystems, Inc.

COPYRIGHT NOTICE
No part of this publication may be reproduced, stored in a retrieval system or transmitted, in any form or by any means,
photocopying, recording or otherwise, without prior written consent of IONA Technologies PLC. No third party intellectual
property right liability is assumed with respect to the use of the information contained herein. IONA Technologies PLC
assumes no responsibility for errors or omissions contained in this book. This publication and features described herein are
subject to change without notice.

Copyright © 2000 IONA Technologies PLC. All rights reserved.

All products or services mentioned in this manual are covered by the trademarks, service marks, or product names as
designated by the companies who market those products.

M 2 4 6 6

Contents
 Preface 7
Audience 7
Organization of this Guide 8
Document Conventions 10

Part I Orbix C++ Administration

Chapter 1 Overview of Orbix Administration 1
Components of the Orbix Architecture 2

Servers and the Implementation Repository 2
The Interface Repository 3

Administration of Orbix Components 4

Chapter 2 Getting Started 5
Basic Orbix Configuration 6

The Orbix Configuration Files 6
Locating the Configuration Files 9
Locating the Orbix Library Directory on UNIX Platforms 10
Setting the Orbix Daemon Port 10
Locating the Implementation Repository 11
Specifying Your Local Internet Domain 11

Starting The Orbix Daemon 12
Registering a Server 13
Checking for an Orbix Daemon 14
Checking for Running Servers 14
Configuring Orbix for Multi-Homed Hosts 15

Multi-Homed Configuration Variables 16
Configuring Orbix for Multiple Network Cards on Independent Networks 17

Chapter 3 Managing the Implementation Repository 19
Implementation Repository Entries 20
Basic Implementation Repository Usage 21
3

O r b i x A d m in i s t r a t o r ’ s G u i d e C + + E d i t i o n
Registering a Server on a Remote Host 21
Organizing Servers Into Hierarchies 21
Removing a Registered Server 22
Listing Registered Servers 23
Displaying A Server Entry 23

Starting Servers Manually 24
Registering a Manual Server 24
Starting the Orbix Daemon for Unregistered Servers 25

Stopping Servers 25
Security of Registered Servers 26

Modifying Server Access 26
Changing the Owners of Registered Servers 27
Determining the User and Group IDs of Running Servers 28

Server Activation Modes 29
Registering Unshared Servers 30
Using Markers to Specify Named Objects 30
Registering Per-Method Servers 32
Secondary Activation Modes 33

Managing Server Port Selection 34
Registering Servers with Specified Ports 34
Controlling Port Allocation with Configuration Variables 35
Registering SSL-Enabled Servers 35
Using the putit SSL Parameters 37

Chapter 4 Managing the Interface Repository 39
Configuring the Interface Repository 40
Registering the Interface Repository Server 40
Adding IDL Definitions 41
Reading the Interface Repository Contents 42
Removing IDL Definitions 42

Part II Orbix C++ GUI Tools

Chapter 5 The Orbix Configuration Explorer 45
Starting the Configuration Explorer 46
Configuring Common Settings 47
Configuring Orbix-Specific Settings 50
 4

C o n t e n t s
Customizing Your Configuration 51
Creating Configuration Variables 52
Creating Configuration Scopes 54
Creating Configuration Files 55

Chapter 6 The Orbix Server Manager 57
Starting the Server Manager 58
Connecting to an Implementation Repository 59
Creating a New Directory 61
Registering a Server 63

Providing Server Access Rights to Users 65
Specifying Server Activation Details 67

Modifying Server Registration Details 70
Launching a Persistent Server 71
Configuring the Server Manager 72

Part III Appendices

Appendix A
Configuration Variables 79

Appendix B
Orbix Daemon Options 85

Appendix C
Command Reference 89

Appendix D
Error Messages and Exceptions 107

 Index 111
5

O r b i x A d m in i s t r a t o r ’ s G u i d e C + + E d i t i o n
 6

Preface
Orbix is a software environment for building and integrating distributed, object-
oriented applications. This guide explains how to configure and manage the
components of the Orbix environment. Many Orbix components have
associated graphical user (GUI) interfaces. This guide describes the Orbix GUI
tools associated with Orbix configuration, the Implementation Repository, and
the Interface Repository.

Orbix documentation is periodically updated. New versions between releases
are available at this site:

http://www.iona.com/docs/orbix/orbix33.html

If you need assistance with Orbix or any other IONA products, contact IONA
at support@iona.com. Comments on IONA documentation can be sent to
doc-feedback@iona.com.

Audience
Read this guide if you are responsible for any of the following tasks:

• Configuring an Orbix installation.

• Registering servers in the Orbix Implementation Repository.

• Adding IDL definitions to the Orbix Interface Repository.

This guide describes how you can use the command line and Orbix GUI tools.
It assumes that you are familiar with relevant sections of the Orbix Programmer’s
Guide C++ Edition, and the Orbix Reference Guide. Before reading this guide,
you should read the Introduction to Orbix C++ Edition manual.
7

O r b i x A d m in i s t r a t o r ’ s G u i d e C + + E d i t i o n
Organization of this Guide
This guide is divided into three parts as follows:

Part 1, Orbix C++ Administration

Chapter 1, “Overview of Orbix Administration”

This chapter introduces the main components of the Orbix environment.

You should read this chapter first to familiarize yourself with terminology

used throughout the guide.

Chapter 2, “Getting Started”

This is a quick start chapter on how to configure Orbix, start the Orbix

daemon process, and how to register a server that automatically starts

when it is needed.

Chapter 3, “Managing the Implementation Repository”

This explains more about using the Implementation Repository including

registering servers, displaying and organising server entries, and security

issues.

Chapter 4, “Managing the Interface Repository”

This chapter describes how to configure Orbix to store object interface

definitions so that applications can learn about them at runtime.

Part II, Orbix C++ GUI Tools

Chapter 5, “The Orbix Configuration Explorer”

This chapter describes how you can configure an Orbix installation using

the Orbix Configuration Tool.
 8

P r e f a c e
Chapter 6, “The Orbix Server Manager”

This chapter describes how you can register servers in the Orbix

Implementation Repository using the Orbix Server Manager.

Part III, Appendices

Appendix A, “Configuration Variables”

This appendix shows the configuration variables that Orbix recognizes.

Appendix B, “Orbix Daemon Options”

This appendix describes the start-up options that the Orbix daemon can

use.

Appendix C, “Command Reference”

This describes the syntax and the options for each Orbix command you

can use.

Appendix D, “Error Messages and Exceptions”

This describes how to modify error messages, shows the error formats,

and lists tables of standard error messages that Orbix applications can

return.
9

O r b i x A d m in i s t r a t o r ’ s G u i d e C + + E d i t i o n
Document Conventions
This guide uses the following typographical conventions:

This guide may use the following keying conventions:

Constant width Constant width (courier font) in normal text represents
portions of code and literal names of items such as
classes, functions, variables, and data structures. For
example, text might refer to the CORBA::Object class.

Constant width paragraphs represent code examples or
information a system displays on the screen. For example:

#include <stdio.h>

Italic Italic words in normal text represent emphasis and new
terms.

Italic words or characters in code and commands
represent variable values you must supply, such as
arguments to commands or path names for your
particular system. For example:

% cd /users/your_name

Note: Some command examples may use angle brackets
to represent variable values you must supply. This is an
older convention that is replaced with italic words or
characters.

No prompt When a command’s format is the same for multiple
platforms, no prompt is used.

% A percent sign represents the UNIX command shell
prompt for a command that does not require root
privileges.

A number sign represents the UNIX command shell
prompt for a command that requires root privileges.

> The notation > represents the DOS, Windows NT, or
Windows 95 command prompt.
 10

P r e f a c e
Note: Unless otherwise stated, all examples in this guide apply to Orbix on
both UNIX and Windows platforms.

...

.

.

.

Horizontal or vertical ellipses in format and syntax
descriptions indicate that material has been eliminated
to simplify a discussion.

[] Brackets enclose optional items in format and syntax
descriptions.

{ } Braces enclose a list from which you must choose an
item in format and syntax descriptions.

| A vertical bar separates items in a list of choices
enclosed in { } (braces) in format and syntax
descriptions.
11

O r b i x A d m in i s t r a t o r ’ s G u i d e C + + E d i t i o n
 12

Part I
Orbix C++

Administration

 1
Overview of Orbix Administration

Orbix is a software environment that allows you to develop
distributed applications. This chapter introduces the main
components of the Orbix environment.

As described in the Orbix Programmer’s Guide C++ Edition, Orbix allows you to

build distributed software systems composed of interacting objects. Orbix is a

full implementation of the Object Management Group (OMG) Common Object

Request Broker Architecture (CORBA).

An Orbix application consists of one or more client programs that communicate

with distributed objects located in server programs. Clients can communicate

with distributed objects from any host in a network through clearly-defined

interfaces specified in the CORBA Interface Definition Language (IDL).

Orbix mediates the communication between clients and distributed objects. This

mediation allows clients to communicate with objects without concern for

details such as:

• The hosts on which the objects exist.

• The operating system that these hosts run.

• The programming language used to implement the objects.

The Orbix architecture includes several configurable components that support

the mediation of communications between clients and objects.
1

O r b i x A d m in i s t r a t o r ’ s G u i d e C + + E d i t i o n
Components of the Orbix Architecture
An Orbix client invokes IDL operations on a distributed object using normal

C++ function calls, as if the object were located in the client’s address space.

Orbix converts these function calls to a series of network messages and sends

these messages to the server process that contains the target object. At the

server, Orbix receives these messages and translates them to function calls on

the target object, as shown in Figure 1.1.

Servers and the Implementation Repository

Each Orbix server program has a name, unique within its host machine. A server

can consist of one or more processes. When a client invokes a method on an

object, a server process containing the target object must be available. If the

process is not running, the Orbix daemon at the server host attempts to launch

the server process automatically.

To allow an Orbix daemon to manage the server processes running in the

system, Orbix provides an Implementation Repository. The Implementation

Repository maintains a mapping from a server’s name to the filename of the

executable code implementing that server. The server code must therefore be

registered with the Implementation Repository.

Figure 1.1: An IDL Operation Call on a Distributed Object
 2

Ov e r v i ew o f O r b i x A d m i n i s t r a t i o n
As shown in Figure 1.2, the Orbix daemon launches a server process as follows:

1. A client makes its first operation call to an object located in a server.

2. The Orbix daemon reads the server details from the Implementation

Repository, including the server launch command.

3. If the required server process is not running, the Orbix daemon executes

the server launch command.

To allow the daemon to launch server processes, you must maintain records in

the Implementation Repository for each server in your system.

The Interface Repository

Orbix maintains object specifications by storing an object’s IDL interface in a

database called the Interface Repository. Some client applications use the

Interface Repository to determine object interfaces and all information about

those interfaces at runtime.

A client accesses the Orbix Interface Repository by contacting an Interface

Repository server. This is a standard Orbix server that provides a programming

interface, defined in IDL, to the Interface Repository.

Figure 1.2: Automatic Launch of an Orbix Server Process
3

O r b i x A d m in i s t r a t o r ’ s G u i d e C + + E d i t i o n
To allow clients to obtain information about IDL definitions implemented in your

system, you must add those definitions to the Interface Repository.

Administration of Orbix Components
To allow Orbix applications to run in your network, you must do the following:

• Configure Orbix for your network and environment, using the Orbix

configuration files.

• Run the Orbix daemon process.

• Register servers in the Implementation Repository.

Part I Orbix C++ Administration presents the configuration files and command-line

utilities that allow you to achieve each of these tasks.

Part II Orbix C++ GUI Tools presents the graphical user interfaces that provide an

alternative way to manage Orbix components.
 4

 2
Getting Started

Several components of Orbix require administration. This chapter
describes the basic Orbix administration steps required when running
Orbix applications.

Orbix administration involves the following basic steps:

1. Configuring Orbix for your network and environment.

2. Starting the Orbix daemon (orbixd) on each host that Orbix servers run

on.

3. Registering servers in the Implementation Repository so that Orbix can

start them when needed.

4. Starting client applications that make object requests.

5. Monitoring Orbix to fine tune it and your clients and servers.

Steps 1 and 2 apply when you first install Orbix and only occasionally after that.

Steps 3, 4, and 5 are iterative. This guide describes how to perform these steps.

This chapter first gives you a quick start to using Orbix and its environment of

distributed computing.
5

O r b i x A d m in i s t r a t o r ’ s G u i d e C + + E d i t i o n
Basic Orbix Configuration
This section describes the configuration settings you may need to modify before

starting the Orbix daemon. You can modify the main Orbix configuration

settings by editing the Orbix configuration files, or by setting environment

variables or by using the Orbix GUI tools. Refer to “The Orbix Configuration

Explorer” on page 45 for details of configuring Orbix using GUI tools.

The paths in the following examples are for an NT installation. Configuration

files for Unix should use the Unix syntax for directories. All values provided

must be enclosed in double quotes (“ “). Each line, except for blank lines and

comments, must be terminated with a semi-colon (;).

The Orbix Configuration Files

The Orbix configuration files are located in the config directory of your Orbix

installation. By default, these are named as follows:

• iona.cfg

• common.cfg

• orbix3.cfg

• orbixnames3.cfg

iona.cfg
The iona.cfg file is the root configuration file used by Orbix. This file contains

links to all other IONA configuration files. You can edit this file to include links

to your customized configuration files. The default iona.cfg file includes the

following information:

// In file iona.cfg
cfg_dir = "d:\iona\config\";

include cfg_dir + "common.cfg";
include cfg_dir + "orbix3.cfg";
include cfg_dir + "orbixnames3.cfg";

You should set the config_dir variable to <iona_install_dir>\config\.
 6

G e t t i n g S t a r t e d
common.cfg

The common.cfg file contains a list of configuration variables that are common to

multiple IONA products. The configuration variables in this file are declared

within the scope Common{...}, for example:

// In file common.cfg
Common {

The port number for the Orbix daemon.
IT_DAEMON_PORT = "1570";

The starting port number for daemon-run servers:
IT_DAEMON_SERVER_BASE = "1570";

The full path name of the Implementation
#Repository directory.
IT_IMP_REP_PATH = cfg_dir + "Repositories\ImpRep";

The full path name of the Interface Repository
#directory.
IT_INT_REP_PATH = cfg_dir + "Repositories\IFR";

The local DNS domain name.
IT_LOCAL_DOMAIN = "";

The full path name to the JRE binary
executable that installs with Orbix.
IT_JAVA_INTERPRETER="C:\IONA\bin\jre.exe";

The default classpath to be used when java
servers are automatically launched by the daemon.
IT_DEFAULT_CLASSPATH = cfg_dir +
";C:\IONA\bin\bongo.zip;C:\IONA\bin\marimba.zip;
 C:\IONA\bin\NSclasses.zip;C:\IONA\bin\utils.zip;
 C:\IONA\bin\rt.jar;C:\IONA\bin\orbixweb.jar;
 C:\IONA\Tools\NamingServiceGUI\NSGUI.jar";

};

Note: You can also use the prefix Common. to refer to individual entries in this

file. For example, Common.IT_DAEMON_PORT.
7

O r b i x A d m in i s t r a t o r ’ s G u i d e C + + E d i t i o n
After installation, the common.cfg file provides default settings for the main

environment variables required by Orbix. You can change these default settings

by manually editing the configuration file, or by using the Configuration Explorer,

or by setting a variable in the user environment. An environment variable, if set,

takes precedence over the value set in the configuration file. Environment

variables are not scoped with a Common. prefix.

Format of Configuration Files

Each line of the common.cfg configuration file has the following form:

<entry name> = “<entry value>”

Each variable in your configuration file must start at the beginning of a line. Any

line that does not start with a variable that Orbix recognizes is ignored. You can

add comments to your configuration file in this way. Any entry value can use any

desired environment variable.

orbix3.cfg
This file contains configuration varibles that are specific to Orbix only. By

default, the configuration variables in this file are scoped with the Orbix. prefix.

You can also use the scope Orbix{...}.

// In file orbix3.cfg
The path name to the error messages file.
Orbix.IT_ERRORS = cfg_dir + "ErrorMsgs";

The maximum number of retries Orbix makes to
connect to a server.
Orbix.IT_CONNECT_ATTEMPTS = "10";

Note: Orbix uses the IT prefix, which represents “IONA Technologies”, to

distinguish its configuration and environment variables.

The orbixnames3.cfg file contains configuration variables that are specific to

OrbixNames. Refer to the OrbixNames Programmer’s and Administrator’s Guide

for more details.
 8

G e t t i n g S t a r t e d
Locating the Configuration Files

Orbix must be able to find its root configuration file before the Orbix daemon,

the IDL compiler, or application processes run. The Orbix config directory is

the default location for all configuration files. You can set a different directory or

configuration file by setting the IT_CONFIG_PATH environment variable. If the

IT_CONFIG_PATH variable is a directory, that directory should contain the

iona.cfg file. If the IT_CONFIG_PATH environment variable is the full path name

of a file, that file is used as the configuration file.

How Orbix Finds its Configuration
Orbix has a chain of configuration handlers that it looks in when asked for a

configuration parameter. These are as follows (in order):

[Environment Handler (IT_Environment)] ->
[ScopedConfigFile Handler (IT_ScopedConfigFile)] ->
[OldConfigFileHandler (IT_ConfigFile)]

The Environment handler allows any configuration variables defined in your

environment to take precedence over those defined in configuration files or

other user-defined configuration handlers.

The ScopedConfigFile handler does the following when searching for the root

configuration file (iona.cfg by default):

• Checks the environment variable IT_IONA_CONFIG_FILE.

The configuration file does not need to be called iona.cfg.

• Checks the environment variable IT_CONFIG_PATH and appends

iona.cfg.

• Searches for iona.cfg in the same directory as the Orbix runtime

libraries.

• On Windows NT, checks the Registry to find where Orbix was installed

and appends config\iona.cfg.

• Tries the default installation locations (c:\iona on Windows NT, or

/opt/iona on UNIX systems).

The OldConfigFileHandler enables you to use Orbix.cfg files for

backwards compatibility. However, it is recommended that you use the default

files supplied with this version of Orbix.
9

O r b i x A d m in i s t r a t o r ’ s G u i d e C + + E d i t i o n
The following sections describe more about the IT_DAEMON_PORT,

IT_IMP_REP_PATH, and IT_LOCAL_DOMAIN variables. The

IT_DAEMON_SERVER_BASE, IT_ERRORS, and IT_INT_REP_PATH variables are

described in later chapters of the guide.

Locating the Orbix Library Directory on UNIX Platforms

On Solaris platforms, you must set the environment variable LD_LIBRARY_PATH

to include the Orbix lib directory before the Orbix daemon, the IDL compiler,

or the Orbix administration commands can run.

On HPUX platforms, you must set the SHLIB_PATH environment variable to

include the Orbix lib directory.

In addition, you need to force the program to first search for libraries using the

SHLIB_PATH environment variable by using the chatr command (see the

chatr(1) man page).

The SHLIB_PATH environment variable must be given precedence for searching

over the internal build list.

Setting the Orbix Daemon Port

Orbix uses the daemon process orbixd on each site running Orbix servers to

await incoming requests for server activation and to connect new clients to

existing server processes. This is not involved in subsequent client/server

communications.

The daemon uses one Internet port, and by default this port number is given by

the IT_DAEMON_PORT entry in common.cfg. This is a required variable.

The standard registered port number assigned to orbixd by the Internet

Engineering Task Force (IETF) is the internet port number 1570. You must

ensure that the IT_DAEMON_PORT number is the same for all of your network

hosts.

However, when experimenting with the system, you may wish to install more

than one Orbix daemon on a specific machine to isolate a particular set of

servers. In this case you must specify a different port for each daemon, by setting

the environment variable IT_DAEMON_PORT or by using a different root

configuration file iona.cfg.
 10

G e t t i n g S t a r t e d
Locating the Implementation Repository

The data held in the Implementation Repository maps from server, application

object, and operation names to the path names of executable server files. The

location for storing this data is given by the required entry for

IT_IMP_REP_PATH in the common.cfg configuration file. Each Orbix daemon has

an associated Implementation Repository.

Occasionally it might be useful for a group of programmers to have their own

Implementation Repository store on a particular host. For example, when

running a separate daemon with a different daemon port. You can specify a

different location by setting the IT_CONFIG_PATH to refer to a configuration file

that specifies a different location for the IT_IMP_REP_PATH entry or by setting

the IT_IMP_REP_PATH environment variable to override the one in the

configuration file.

Specifying Your Local Internet Domain

You can specify the name of the local Internet domain by using the

IT_LOCAL_DOMAIN variable.

An example is:

IT_LOCAL_DOMAIN iona.com

A value for this variable is not always required—however, it is advisable to

provide one. For example, it is required if both the host’s full name (for example,

alpha.iona.com) and abbreviated name (for example, alpha) are used in Orbix

applications.

Using the dumpconfig Utility

The dumpconfig utility enables you to obtain information about your Orbix

configuration. This utility outputs the values of the configuration variables used

by Orbix, and the location of the Orbix configuration files in your system. It also

reports if there are any syntax errors in your configuration files that would

normally go unrecognized by Orbix. The dumpconfig utility is especially useful if

you need to know where Orbix is being configured from.
11

O r b i x A d m in i s t r a t o r ’ s G u i d e C + + E d i t i o n
Starting The Orbix Daemon
An Orbix daemon runs on each host to control aspects of the distributed

system. The daemon is responsible for the following tasks:

• Starting servers when appropriate.

• Connecting clients to servers.

• Managing the Implementation Repository. The daemon accepts requests

from the Orbix Implementation Repository commands.

• Providing information from the Interface Repository about the supported

interfaces for clients that request it.

A typical start of the Orbix daemon without options is as follows:

orbixd

Running the Orbix Daemon as an NT Service

On Windows NT platforms, you can install the Orbix daemon as an NT service

as follows:

> orbixd -j

You must manually start the service on Windows NT platforms as follows:

1. Select Start→Settings→Control Panel→Services.

2. Highlight the Orbix daemon entry.

3. Click the Start button.

NT starts the service as <path>\orbixd -b.

To uninstall this service on Windows NT platforms, do the following:

> orbixd -w
 12

G e t t i n g S t a r t e d
Using the -o Option to the Orbix Daemon

You should use the -o option if you are running orbixd as a super-user on

UNIX platforms. This option indicates that if the daemon runs with super-user

privileges, servers launched by the daemon should run using the specified user

ID instead of the root ID.

You should run orbixd in this way for the following reasons:

• A client running as root on a remote machine could launch a server with

root privileges on a different machine. This poses a serious security risk

because a remote user could easily be faked. When the Orbix daemon is

launched as orbixd -o userId, servers launched by the daemon run using

the specified user ID instead of the root ID.

• When the daemon has super-user capabilities, the permissions of servers

are indeterminate and depend on the permissions of the first remote user

to start a specific server. For example, on UNIX the files written by a

server may have different owners on different activations making it

possible that the server would be unable to read or write files in future

activations.

Refer to Appendix B, “Orbix Daemon Options” on page 85 for more details.

Note: Any changes you make to the configuration of Orbix do not take effect

until you restart the Orbix daemon.

Registering a Server
The putit utility registers servers with the Orbix Implementation Repository.

You can use the putit command in its simplest form as follows:

putit server_name command_line

For example:

putit BankSrv /usr/users/chris/banker
13

O r b i x A d m in i s t r a t o r ’ s G u i d e C + + E d i t i o n
The executable file /usr/users/chris/banker is registered as the

implementation code for the server called BankSrv at the local host. You should

use the full path name and not a relative path name. This is because Orbix

interprets relative path names with respect to the Orbix daemon’s current

directory, not the putit user’s current directory.

The putit command does not execute the indicated file. The file is automatically

launched by Orbix in response to an incoming operation invocation.

Note: You should ensure that the server name specified in the putit command

matches exactly the server name used in the server application code.

Checking for an Orbix Daemon
Use the pingit utility to determine if an Orbix daemon is running on a

particular host. For example:

pingit -h host_name

If the Orbix daemon is running at the target host, pingit displays a message to

indicate this. Otherwise, pingit displays a CORBA COMM_FAILURE exception

message.

Checking for Running Servers
Use the psit utility to display information about all of the running servers that a

particular Orbix daemon knows about.

One line is output for each server process. Each line of output has the following

fields:

Name The server name.

Marker The object marker pattern associated with the

process.

Code The data encoder used; for example, XDR.
 14

G e t t i n g S t a r t e d
Configuring Orbix for Multi-Homed Hosts
Some machines have multiple hostnames or IP addresses (for example, those

using multiple DNS aliases or multiple network cards). These machines are often

termed multi-homed hosts. A multi-homed host is a host with one or more IP

addresses.

Orbix is multi-home aware and can be used successfully with various different

network and multi-homed package configurations. There are a number of basic

configuration changes that need to be made. For all versions of Orbix the

configuration is divided between two configuration variables, IT_LOCAL_HOST

and IT_LOCAL_ADDR_LIST.

IT_LOCAL_HOST sets the host name a server will use in any IOR that it exports.

Setting it to anything other than one hostname or IP address is not supported.

IT_LOCAL_ADDR_LIST is used to make a server or client aware of its multi-

homed settings. This is a colon-separated list of IP addresses, or hostnames, on

which the Orbix servers and the Orbix daemon orbixd can expect to receive

invocations.

For Orbix to enable its multi-home capabilities it is also necessary to use the

configuration variable IT_ENABLE_MULTI_HOMED_SUPPORT, which must be

available to the ORB at startup.

The following example indicates how you should set up the multi-homed

configuration on Orbix:

In the file orbix3.cfg

Comms The communications protocol used; for example,

TCP.

Port The port number used by the communications

system.

Status One of “automatic”, “manual” or “inactive”.

Per-Client? Indicates whether the server is a per-client server.

OS-pid The operating system process.
15

O r b i x A d m in i s t r a t o r ’ s G u i d e C + + E d i t i o n
Orbix{
IT_ENABLE_MULTI_HOMED_SUPPORT = "YES";
IT_LOCAL_HOST = "10.1.1.0";
IT_LOCAL_ADDR_LIST = "10.1.1.0:10.1.2.0";
};

Orbix will use the IP addresses returned by gethostbyname() by default so it

may not be necessary to enable the multi-homed capabilities, but, if

gethostbyname() does not return all IP addresses, you will need to use the

variables above.

Multi-Homed Configuration Variables

IT_LOCAL_HOST

The local host hostname that a server will use in any IOR it exports.

IT_LOCAL_ADDR_LIST

A colon-separated list of IP addresses from which the server is willing to accept

connections.

IT_ENABLE_MULTI_HOMED_SUPPORT

Set this variable to “YES” to enable Orbix for multi-homed machines. It is

disabled by default.

For a complete list of Orbix C++ configuration parameters, refer to

Appendix A, “Configuration Variables”.
 16

G e t t i n g S t a r t e d
Configuring Orbix for Multiple Network Cards on
Independent Networks

It is possible to configure a machine with multiple network cards which are

interfaces for separate networks. This example is illustrated in Figure 2.1.

Figure 2.1: Simple Example of a Multi-homed Host

The multi-homed host (Host 1) can be on any of the networks in Figure 2.1. All

of the networks are completely independent of each other, and any hosts on any

of these networks are unaware of those on the other network(s).

The recommended configuration settings for the above example are:

Orbix{
IT_ENABLE_MULTI_HOMED_SUPPORT = "YES";
// MUST resolve in all domains to the IP address
// used to connect.
// No need to set if this is the same as the
// default name.
IT_LOCAL_HOST = "host1";
IT_LOCAL_ADDR_LIST ="card1_IP_address:

card2_IP_address:card3_IP_address";
};

and
17

O r b i x A d m in i s t r a t o r ’ s G u i d e C + + E d i t i o n
Orbix{
IT_ENABLE_MULTI_HOMED_SUPPORT = "YES";
// MUST resolve in all domains to the IP address
// used to connect.
// This will more than likely will common alias.
IT_LOCAL_HOST = "host1";
IT_LOCAL_ADDR_LIST = "card1_host_name:

card2_host_name:card3_host_name";
};
 18

 3
Managing the Implementation
Repository

When you install server applications on a network host, you must
register those servers in the Orbix Implementation Repository. This
repository allows Orbix to direct client operation calls to objects in
servers and to start server processes when necessary. This chapter
describes how to manage servers in the Implementation Repository.

The chapter covers the following topics:

• The Implementation Repository and its entries.

• Basic usage of the Implementation Repository including registering

servers, organizing server entries, removing server entries, listing

registered servers, and displaying information about an entry.

• How to start a server manually.

• How to stop servers manually.

• The security of servers including how to change ownership of servers and

how to modify access control lists.

• How to register servers in specialized activation modes other than simply

one server process for all clients.

• How to manage the set of ports Orbix uses to run servers.
19

O r b i x A d m in i s t r a t o r ’ s G u i d e C + + E d i t i o n
This chapter explains how to manage the Implementation Repository using

Orbix command-line utilities. Refer to Chapter , “The Orbix Server Manager”

for details of how you can use Orbix GUI tools.

Implementation Repository Entries
The Implementation Repository maintains a mapping from a server’s name to

the filename of the executable code implementing that server. A server must be

registered with the Implementation Repository to make use of this mapping.

Orbix automatically starts the server (if it is not already running) when a client

binds to one of the server’s objects or when an operation invocation is made on

any object that names that particular server.

When a client first communicates with an object, Orbix uses the Implementation

Repository to identify an appropriate server to handle the connection. If a

suitable entry cannot be found in the Implementation Repository during a search

for a server, an error is returned to the client.

The Implementation Repository maintains its data in entries that include the

following information:

• The server name.

Server names can be hierarchical so the Implementation Repository

supports directories.

• The server owner—usually the user who registered the server.

• The server permission values.

These specify which users have the right to launch the server and which

users have the right to invoke operations on objects in the server.

• One or more activation orders.

An activation order associates an object or group of objects with a launch

command. A launch command specifies how Orbix starts the server.
 20

M an ag i n g t h e Imp l em en t a t i o n R e po s i t o r y
Basic Implementation Repository Usage
Use the putit command to create or modify an Implementation Repository

entry. For example, the following command registers a shared server called

“FirstTrust” on the local host, with the specified executable file:

putit FirstTrust /work/bank/banker

Activation occurs when any of the objects managed by the FirstTrust server is

used. In this example there is only one server process associated with this server

and all clients share the same server process.

Registering a Server on a Remote Host

The following command registers a shared server called “FirstTrust” on the

remote host “alpha”, with the specified executable file and command-line

argument:

putit -h alpha FirstTrust
"/work/bank/banker -v 1.1"

Note: If the server requires parameters and options, you should use quotes so

that the putit command does not try to interpret them.

Using the -h hostname option enables you to use all the utility commands for

remote hosts. However, for simplicity, most of the examples in this guide do not

use this option and use the local host default instead.

Organizing Servers Into Hierarchies

Server names may be hierarchically structured, in the same way as UNIX file

names. Hierarchical server names are useful in structuring the name space of

servers in Implementation Repositories. You can create hierarchical directories

by using the mkdirit command. For example, you can make a new banking

registration directory and make a registration within it as follows:

mkdirit banking
putit banking/Berliner /usr/users/joe/banker

Thus banking/Berliner is a valid, hierarchical server name.
21

O r b i x A d m in i s t r a t o r ’ s G u i d e C + + E d i t i o n
The rmdirit command removes a registration directory. This command can

take a -R option to recursively delete a directory and the Implementation

Repository entries and sub-directories within it. The rmdirit command returns

an error if it is called without the -R option on a non-empty registration

directory.

For example:

lsit
FirstTrust
banking

rmdirit banking
directory not empty

rmdirit -R banking

This example uses the lsit command to display the Implementation Repository

entries and directories.

To move an entry in the hierarchy, first remove it with the rmit command and

then re-register it with the putit command.

Removing a Registered Server

Use the rmit command to remove an Implementation Repository entry. For

example, the following command removes a server entry:

rmit FirstTrust

This simplest format of the command removes the entry and all activation

orders for the server.

You can also use the rmit command to remove specific activation orders. Use

the -marker option for the shared or unshared activation modes to remove

specific activation orders for individual objects. Use the -method option for the

per-method call activation mode to remove specific activation orders for

individual methods. Activation modes are described in section “Server

Activation Modes” on page 29.
 22

M an ag i n g t h e Imp l em en t a t i o n R e po s i t o r y
Listing Registered Servers

Use the lsit command to list registered servers and directories. For example:

Register a server called International and
one called printer
putit International /usr/users/joe/banker
putit printer /usr/users/joe/print laser
Register a server called Berliner.
"Berlin 98-00-00" are parameters for the
executable file.
putit Berliner

/usr/users/joe/banker Berlin 98-00-00
lsit

International
Berliner
printer

Use the -R option with the lsit command to recursively list all server entries in

the given directory and its subdirectories.

Displaying A Server Entry

Use the catit command to display information about a specific server’s

registration entry. The following example assumes the server Berliner is

registered from the previous example:

catit Berliner
name: Berliner
Activation: shared
Owner: smith
Launch: ;jones;developers;friends;
Invoke: ;all;
Per-client: false

Marker Launch_Command
* /usr/users/joe/banker Berlin 98-00-00

The output includes the following:

name Server name.

Activation Activation mode.
23

O r b i x A d m in i s t r a t o r ’ s G u i d e C + + E d i t i o n
The final output is a table of activation orders. An activation order is identified

with a marker. An asterisk (*) represents all objects and means that there is only

one activation order for the server entry.

Starting Servers Manually
Most servers are designed to have Orbix start them automatically when a client

uses an object. The majority of an administrator’s work therefore involves

registering servers in the Implementation Repository and managing the

registration entries in the repository. However, some servers do need to be

started before any clients attempt to use their objects.

Servers that are started by some mechanism external to Orbix are useful for a

number of reasons. For example, if a server takes a long time to initialize and it

starts when a client request a service, it may cause the client to timeout. In

addition, some servers that are meant to run as long-lived daemons may require

manual starting. Manual servers are also known as persistent servers in CORBA

terminology.

Registering a Manual Server

All servers that are registered in the shared mode can also be started manually.

Subsequent invocations on the objects are passed to the running process.

However, if you wish to prevent Orbix from starting a server and make it

manual-only, use the following command:

putit FirstTrust -persistent

Owner The user who put the in the entry.

Launch The users and groups who have permission to start

or launch the server.

Invoke The users and groups who have permission to

invoke operations on an object controlled by the

server.

Per-client A per-client indicator that indicates whether a new

server is to be launched for each client that uses the

server.
 24

M an ag i n g t h e Imp l em en t a t i o n R e po s i t o r y
This command registers a manual-only server called “FirstTrust” on the local

host. No start command is specified to putit, because this server cannot be

started by Orbix automatically but can only start as a manual server.

The CORBA specification requires that unshared or per-method types of

servers fail if an attempt is made to start them manually. This means that manual

servers can only be registered as shared servers. Therefore, you cannot use the

-persistent option with either the -unshared or -per-method options of the

putit command. These unshared and per-method servers are described in

section “Server Activation Modes” on page 29.

Starting the Orbix Daemon for Unregistered Servers

In some circumstances, it can be useful not to register servers with the

Implementation Repository. Under normal operation, Orbix would know

nothing about these servers. However, if you invoke the Orbix daemon with the

-u option, it maintains an active record of unregistered Orbix servers and clients

that may use these servers:

orbixd -u

When Orbix is started this way, any server process can be started manually.

However, no access control is enforced and there is no record of the server in

the Implementation Repository.

Stopping Servers
Just as most servers start automatically when needed, they are usually designed

to stop automatically after some period. However, there may be other situations

where you need to manually stop a server.

The killit command stops a server process by using the SIGTERM signal.

1. For example, the following command stops the Berliner server on the

host omega:

killit -h omega /Banking/Berliner

2. When there is more than one server process, use the marker option and

argument to distinguish between different processes. To do this, use the

following killit command format:

killit -m marker server_name
25

O r b i x A d m in i s t r a t o r ’ s G u i d e C + + E d i t i o n
Security of Registered Servers
For each Implementation Repository entry, Orbix maintains two access control

lists (ACLs) as follows:

The entries in the access control list can be user names or group names. The

owner of an Implementation Repository entry is always allowed to launch it and

invoke operations on its objects. A client normally needs both launch and invoke

access to use an automatically-launched server. The following sections describe

how to modify ACLs by adding groups and users or removing groups and users

from ACLs.

Modifying Server Access

Use the chmodit command to modify the launch or invoke access control lists

(ACLs). For example:

1. The following command allows the user chris to launch the server

AlliedBank:

chmodit AlliedBank l+chris

2. The following command grants the user chris rights to launch any server

in the directory banks/investmentBanks:

chmodit -a banks/investmentBanks l+chris

3. The following command revokes joe’s right to invoke all servers in the

Implementation Repository directory banks/commercialBanks:

chmodit -a banks/commercialBanks i-joe

4. There is also a pseudo-group named all that you can use to implicitly

add all users to an ACL. The following command grants all users the right

to invoke the server banks/commercialBanks/AlliedBank:

chmodit banks/commercialBanks/AlliedBank i+all

Launch The users or groups that can launch the associated server.

Users on this list, and users in groups on this list, can cause the

server to be launched by invoking on one of its objects.

Invoke The users and groups that can invoke operations on any object

controlled by the associated server.
 26

M an ag i n g t h e Imp l em en t a t i o n R e po s i t o r y
On UNIX, the group membership of a user is determined using the user’s

primary group as well as the user’s supplementary groups as specified in the

/etc/group file.

Changing the Owners of Registered Servers

Only the owner of an Implementation Repository entry can use the chmodit

command on that entry. The original owner is the one who uses the putit

command to register the server. Use the chownit command to change

ownership. For example, use the following command to change the ownership of

server AlliedBank to user mcnamara:

chownit -s AlliedBank mcnamara

An Implementation Repository directory may have more than one owner. An

ownership ACL is associated with each directory in the Implementation

Repository, and this ACL can be modified to give certain users or groups

ownership rights on a directory. Only a user on an ownership ACL has the right

to modify the ACL. Some other examples of changing ownership include the

following:

1. To add the group iona to the ownership ACL on the Implementation

Repository directory banks/investmentBanks, use the following

command:

chownit -d banks/investmentBanks + iona

2. To remove mcnamara from the same ACL, do the following:

chownit -d banks/investmentBanks - mcnamara

3. Orbix supports the pseudo-group all that, when added to an ACL,

grants access to all callers. The following command grants all users the

ownership rights on directory banks/commercialBanks:

chownit -d banks/commercialBanks + all

Spaces are significant in this grammar; for example:

CORRECT chownit -d banks/investmentBanks + iona

INCORRECT chownit -dbanks/investmentBanks + iona

INCORRECT chownit -d banks/investmentBanks +iona
27

O r b i x A d m in i s t r a t o r ’ s G u i d e C + + E d i t i o n
Determining the User and Group IDs of Running Servers

On Windows platforms, the user ID (uid) and group ID (gid) of a server process

launched by the Orbix daemon are the same as those of the daemon itself.

On UNIX platforms, the effective uid and gid of a server process launched by

the Orbix daemon are determined as follows:

1. If orbixd is not running as a super-user, such as root on UNIX, the uid

and gid of every activated server process is that of orbixd itself.

If orbixd is running as root, it attempts to activate a server with the uid

and gid of the, possibly remote, principal attempting to activate the

server.

2. If the principal is unknown (not a registered user) at the local machine on

which orbixd is running, orbixd attempts to run the new server with

uid and gid of a standard user called “orbixusr”.

3. If there is no such standard user “orbixusr”, orbixd attempts to run the

new server with uid and gid of a user “nobody”.

If there is no such user “nobody”, the activation fails and an exception is

returned to the caller.

The daemon must be able to execute the server’s executable file.

Note: If you are running orbixd as super-user, you should use the -o option to

the Orbix daemon. This prevents a client running as a super-user on a

remote machine from launching a server with super-user privileges on

your machine. Refer to “Using the -o Option to the Orbix Daemon” on

page 13 for more details.
 28

M an ag i n g t h e Imp l em en t a t i o n R e po s i t o r y
Server Activation Modes
Orbix provides a number of different modes for launching servers. You specify

the mode of a server when it is registered. Usually, clients are not concerned

with the activation details of a server or aware of what server processes are

launched. The following primary activation modes are supported by Orbix.

Shared Activation Mode

In this mode, all of the objects with the same server name on a given

machine are managed by the same server process on that machine. This

is the default activation mode.

If the process is already running when an application invocation arrives

for one of its objects, Orbix routes the invocation to that process;

otherwise Orbix launches a process.

Unshared Activation Mode

In this mode, individual objects of a server are registered with the

Implementation Repository. As each object is invoked, an individual

process is run for that particular object—one process is created per

active registered object. You can register each object managed by a

server with a different executable file, or any number of objects can share

the same executable file.

Per-method call Activation Mode

In this mode, individual operation names are registered with the

Implementation Repository. Inter-process calls can be made to these

operations—and each invocation results in the launch of an individual

process. A process is launched to handle each individual operation call,

and the process is destroyed once the operation has completed. You can

specify a different executable file for each operation, or any number of

operations can share the same executable file.
29

O r b i x A d m in i s t r a t o r ’ s G u i d e C + + E d i t i o n
The shared mode is most common. The unshared and per-method modes are

rarely used. Refer to your server documentation to determine the correct

activation modes to use.

Registering Unshared Servers

The -unshared option registers a server in the unshared activation mode. For

example:

putit -unshared
NationalTrust /financial/banks/banker

This command registers an unshared server called “NationalTrust” on the

local host, with the specified executable file. Each activation for an object goes to

a unique server process for that particular object. However, all users accessing a

particular object share the same server process.

Using Markers to Specify Named Objects

Each Orbix object has a unique object reference that includes the following

information:

• A name that is usually referred to as a marker.

An object’s interface name and its marker uniquely identify the object

within a server. A server programmer can choose the marker names for

objects or they can be assigned automatically by Orbix.

• A server name identifying the server in which the object is located.

• A host name identifying the host on which the server is located.

For example, the object reference for a bank account would include the bank

account name (marker name), the name of the server that manages the account,

and the name of the server’s host.

Since objects can be named, shared and unshared server activation policies can

specify individual object marker names. For example:

1. putit -marker College_Green
 NationalBank /financial/banks/banker

This command registers a shared server called “NationalBank” on the

local host, with the specified executable file. However, activation only
 30

M an ag i n g t h e Imp l em en t a t i o n R e po s i t o r y
occurs for the object whose marker matches “College_Green”. There is

at most one server process resulting from this registration request;

although you can make other -marker registrations for server

NationalBank. All users share the same server process.

2. putit -unshared -marker College_Green
 FirstNational /banks/FNbank_CG

putit -unshared -marker St_Stephens_Green
FirstNational /banks/FNbank_STG

The first command registers an unshared server called “FirstNational”

on the local host with the specified executable files and the second adds

an activation order (marker and launch command) for the

“St_Stephens_Green” marker. However, activation only occurs for

objects whose marker name is “College_Green” or

“St_Stephens_Green” and each activation for a specific object goes to a

unique server process for that particular object. All users of a specific

object share the same server process.

Using Pattern Matching
You can use pattern matching in activation policies when seeking to identify

which server process to communicate with. In particular, you can register a

server activation policy for a subset of the server’s objects. Since the number of

objects named can get very large, pattern matching also means you do not have

to specify a separate policy for every possible object. You specify this object

subset by using wildcard characters in a marker pattern. The pattern matching is

based on regular expressions, similar to UNIX regular expressions.

You can use pattern matching to specify a set of objects for shared or unshared

servers. For example, some registrations can be used as a means of sharing work

between server processes in this case, between two processes:

putit -marker '[0-4]*'
NationalBank /work/bank/NBBank

putit -marker '[5-9]*'
NationalBank /work/bank/NBBank

If these two commands are issued, server NationalBank can have up to two

active processes; one launched for objects whose markers begin with the digits 0

through 4 and the other for markers beginning with digits 5 through 9.
31

O r b i x A d m in i s t r a t o r ’ s G u i d e C + + E d i t i o n
Refer to the entry for the putit command in Appendix C, “Command

Reference” for a complete list of recognized patterns with examples.

Use the rmit command with -marker option to modify a server entry. This

allows you to remove a specific activation order for a server without removing

the entire server entry. You can also use pattern matching with the rmit

command’s marker option.

Registering Per-Method Servers

A per-method server processes each operation call in a separate process.

1. The following command registers a per-method server called

“NationalTrust” on the local host with the specified executable file. The

activation occurs only if the operation makeWithdrawal() is called.

putit -per-method -method makeWithdrawal
 NationalTrust /financial/NTbank

2. If the -method option is used, Orbix assumes that the server is a per-

method server.

putit -method makeDeposit
NationalTrust /financial/NTbank

You can specify patterns for methods so that operation names matching a

particular pattern causes Orbix to use a particular server activation. The

use of pattern matching allows a group of server processes to share a

workload between them, whereby each server process is responsible for

a range of methods. The pattern matching is based on regular expressions

similar to UNIX regular expressions.

3. The following command registers a per-method server called

“FirstTrust” on the local host with the specified executable file.

putit -per-method FirstTrust
-method 'make*' /financial/banker

The activation is to occur only if an operation matching the pattern

“make*” is being called, for example makeDeposit() or

makeWithdrawal(). A separate process is activated for each method call.

Note: You can only use method pattern matching in the per-method activation

mode, thus the -per-method option is redundant.
 32

M an ag i n g t h e Imp l em en t a t i o n R e po s i t o r y
Use the rmit command with -method option to modify a per-method server

entry. This allows you to remove a specific activation order for a server without

removing the entire server entry. You can also use pattern matching with the

rmit command’s -method option.

Secondary Activation Modes

For each of the primary activation modes, a server can be launched in one of the

secondary activation modes described as follows:

Multiple-client Activation Mode

In this mode, activations of the same server by different users share the

same process, in accordance with the selected primary activation mode.

This is the default secondary activation mode. No putit option is

required to specify this mode when registering a server.

Per-client Activation Mode

In this mode, activations of the same server by different users cause a

different process to be launched for each end-user.

Use the putit -per-client option to register a server in this secondary

activation mode.

Per-client-process Activation Mode

In this mode, activations of the same server by different client processes

cause a different process to be created for each such client process.

Use the putit -per-client-pid option to register a server in this

secondary activation mode. For example, the following command

registers a shared, per-client-process server:

putit -per-client-pid
FirstTrust /work/bank/banker
33

O r b i x A d m in i s t r a t o r ’ s G u i d e C + + E d i t i o n
Activation occurs when any of the objects managed by the FirstTrust

server are used; there is a separate server process for each different

client process.

Managing Server Port Selection
When the Orbix daemon activates a server, the server is activated by the Orbix

daemon, it is assigned a port so that clients can communicate with it. There are

two ways to control the port numbers assigned to a server:

• Registering the server with a specified port number.

• Using configuration variables to control port numbers.

This section describes each of these approaches.

Registering Servers with Specified Ports

When registering a server, you can specify the port on which the server should

listen using the -port option to putit. For example, to specify that shared

server FirstTrust should communicate on port 1597, do the following:

putit -port 1597 FirstTrust /work/bank/banker

By default, all Orbix applications communicate over the CORBA standard

Internet Inter-ORB Protocol (IIOP). The -port option is very important for

such applications.

If an Orbix server that communicates over IIOP publishes an object reference,

for example using the CORBA Naming Service, this reference is valid while the

server continues to run. However, if the server exits and then recreates the

same object, the published object reference is not valid unless the server always

runs on the same port. If your servers require this functionality, you should

register them using the -port option.
 34

M an ag i n g t h e Imp l em en t a t i o n R e po s i t o r y
Controlling Port Allocation with Configuration Variables

You can control the range of server port numbers chosen by the Orbix daemon

by using the configuration entries IT_DAEMON_SERVER_BASE and

IT_DAEMON_SERVER_RANGE. The IT_DAEMON_SERVER_BASE must be set and the

recommended value is 1590. You do not have to set IT_DAEMON_SERVER_RANGE

which has a default value of 50.

When the Orbix daemon starts a server, the first server port assigned is

IT_DAEMON_SERVER_BASE plus 1, and the last assigned is

IT_DAEMON_SERVER_BASE plus IT_DAEMON_SERVER_RANGE. For example, using

the default values the server ports range from 1591 to 1640.

Once the end of the range is reached, orbixd recycles the range in an attempt

to find a free port. If no free port is found, an IMP_LIMIT system exception is

raised to the client application attempting an invocation to the server.

You can set IT_DAEMON_SERVER_BASE and IT_DAEMON_SERVER_RANGE values by

using their entries in the common.cfg configuration file, or by setting the

corresponding environment variables. Values you set must be greater that 1024

and you should make sure that they do not conflict with other services. Make

sure the range you choose is greater than the maximum number of servers you

expect to run on the host.

Registering SSL-Enabled Servers

To register servers that are SSL-enabled use the putit utility with the additional

SSL syntax highlighted below.

This is the full putit command syntax:

putit [-v] [-h <host>] [-per-client | -per-client-pid]
[[-shared | -unshared] [-marker <marker>]]
[-j | -java [-classpath <classpath> | -addpath <path>]]
[-oc <ORBclass> -os <ORBSingletonClass>] [-jdk2]
| [-per-method [-method <method>]]
[-port <iiop portnumber>]
[-n <number of servers>] [-l]
[-ssl_secure | -ssl_semi_secure [-ssl_client_auth] [-
ssl_support_null_enc | -ssl_support_null_enc_only] [-
ssl_support_null_auth | -ssl_support_null_auth_only]]
<serverName> [<commandLine> | -persistent]
35

O r b i x A d m in i s t r a t o r ’ s G u i d e C + + E d i t i o n
The ssl parameters are described in Table 3.1. To use them, you must specify

either –ssl_secure or –ssl_semi_secure first.

putit Flag Description

-ssl_client_auth Indicates that the server authenticates clients.

-ssl_support_null_enc This indicates that the NULL encryption SSL ciphersuites

(which do not support confidentiality) are supported by

the server.

-ssl_support_null_enc_only This indicates that only the server supports the NULL

encryption SSL ciphersuites.

-ssl_secure This is the minimal flag needed to indicate that the server

is SSL-enabled. If this flag or –ssl_semi_secure are not

supplied then the server is insecure, and no SSL related

data should be written to the IR. One of these two flags

must be supplied before any other SSL flag is acceptable.

An error should be presented to the user if they are not.

-ssl_semi_secure This indicates a SEMI_SECURE server policy. If this flag or

–ssl_secure are not supplied to putit then the policy is

INSECURE and no SSL-related datashould be written to the

IR. One of these two flags must be supplied before any

other SSL flag is acceptable. An error should be presented

to the user if they are not.

-ssl_support_null_auth This flag indicates that the server supports null

authentication. OrbixSSL servers do not currently support

this; nevertheless you can code the flag now to save time

in the future.

-ssl_support_null_auth_only This flag indicates that the server supports null

authentication. OrbixSSL servers do not currently support

this; nevertheless you can code the flag now to save time

in the future.

Table 3.1: putit SSL Parameters
 36

M an ag i n g t h e Imp l em en t a t i o n R e po s i t o r y
Using the putit SSL Parameters

There are four groups of SSL parameters. If you want to use them, you must use

one from Group 1, followed by one or none from each of the other three

groups:

Group 1
-ssl_secure
-ssl_semi_secure

Group 2
-ssl_support_null_enc
-ssl_support_null_enc_only
<NOTHING>

Group 3
-ssl_support_null_auth
-ssl_support_null_auth_only
<NOTHING>

Group 4
-ssl_client_auth
<NOTHING>

As OrbixSSL supports per server process security policy settings, those settings

specified by putit apply to all objects created by the server.

The most common use cases are:

Putit –ssl_secure demo/grid grid.exe
Putit –ssl_secure –ssl_client_auth demo/grid grid.exe
Putit –ssl_semi_secure demo/grid grid.exe

The following might be less common:

Putit –ssl_semi_secure –ssl_client_auth demo/grid grid.exe
37

O r b i x A d m in i s t r a t o r ’ s G u i d e C + + E d i t i o n
 38

 4
Managing the Interface Repository

The Interface Repository is the component of Orbix that stores
information about IDL definitions and allows clients to retrieve this
information at runtime. This chapter describes how to manage the
contents of the Interface Repository.

The Interface Repository maintains full information about the IDL definitions

implemented in your system. Given an object reference, a client can determine

at runtime the object’s type and all information about that type by using the

Interface Repository. Clients can also browse contents of the Interface

Repository.

To allow a client to obtain information about a set of IDL definitions, you must

add those definitions to the Interface Repository. Orbix supports commands

that allow you to add IDL definitions to the repository, read the contents of the

repository, and remove definitions from it. Each of these commands accesses

the Interface Repository through the Interface Repository server.
39

O r b i x A d m in i s t r a t o r ’ s G u i d e C + + E d i t i o n
Configuring the Interface Repository
The Interface Repository has its own directory, which is specified by the

IT_INT_REP_PATH entry in the common.cfg configuration file or as an

environment variable. IT_INT_REP_PATH is a required variable.

You must configure the Interface Repository before the IDL compiler or

applications can use it. To configure the Interface Repository, do the following:

1. Specify a value for the IT_INT_REP_PATH entry in the common.cfg file or

as an environment variable. For example:

IT_INT_REP_PATH /orbix/IntRep

2. Create the corresponding directory if it does not already exist.

mkdir /orbix/IntRep

3. If the Orbix daemon is running, stop it and then restart it so that it

recognizes the new configuration variable:

orbixd

Registering the Interface Repository Server
The Interface Repository is accessed through an Orbix server. The interfaces to

the Interface Repository objects are defined in IDL and you must register the

Interface Repository server using the putit command. For example:

putit IFR /orbix/ifr/bin/IFR

Orbix expects that the server is registered with the name IFR as a shared

server. The Interface Repository’s executable file is in the bin directory with the

name IFR.

The Interface Repository server can be launched by the Orbix daemon, or it can

be launched manually. For example, the server executable file can be explicitly

run as a background process:

/orbix/ifr/bin/IFR

This has the advantage that the Interface Repository can initialize itself before

any other processes need to use it.
 40

Man a g i n g t h e I n t e r f a c e R e po s i t o r y
The server executable file can take the following options:

Adding IDL Definitions
The Orbix utility putidl allows you to enter all the definitions in a single IDL

source file into the Interface Repository. This utility provides a simple and safe

way to add IDL definitions to the repository.

For example, the following command adds the definitions in the file

banksimple.idl to the Interface Repository:

putidl banksimple.idl

The putidl utility parses the definitions in the file banksimple.idl and

integrates the definitions into the repository. If the file banksimple.idl uses

definitions already registered in the repository, putidl checks that the

definitions are used consistently before updating the repository contents.

If you modify the file banksimple.idl, you can update the contents of the

Interface Repository by repeating the putidl command.

Although putidl takes an IDL file as an argument, the Interface Repository does

not store information about the file itself. The Interface Repository has no

knowledge of the file associated with specific IDL definitions. This means that

you cannot remove definitions based on the file in which they were declared.

For this reason, it is important that you use modules in your IDL definitions to

group definitions in logical units.

-h Print a summary of switches.

-L Immediately load data from the Interface Repository data

directory. The default is not to do this, but instead to load

each file on demand at runtime as it is required.

-t time Specify the timeout in seconds for the Interface Repository

server. The default timeout is infinite.

-v Print version information about the Interface Repository.
41

O r b i x A d m in i s t r a t o r ’ s G u i d e C + + E d i t i o n
Reading the Interface Repository Contents
The readifr utility allows you to read a specified IDL definition from the

Interface Repository. For example, to view the definition of interface Bank

defined in module Finance, do the following:

readifr Finance::Bank

This utility prints the IDL definition to the standard output.

If you use readifr to view an IDL interface definition, you can instruct it to also

display all derived interfaces. To do this, specify the -d option, for example:

readifr -d Finance::Bank

Removing IDL Definitions
The rmidl utility allows you to remove an IDL definition from the Interface

Repository. This utility takes a fully scoped name for an IDL definition as an

argument.

For example, to remove information about the IDL operation

create_Account() defined on interface Bank in module Finance, do the

following:

rmidl Finance::Bank::create_Account()

The rmidl command removes definitions recursively. For example, to remove

the module Finance and all definitions within this module, do the following:

rmidl Finance
 42

Part II
Orbix C++ GUI Tools

 5
The Orbix Configuration Explorer

Components of an Orbix system are configured using a number of
configuration files, as described in Chapter 2, “Getting Started”. The
Orbix Configuration Explorer allows you to configure Orbix
components without modifying the configuration files directly.

The Orbix configuration files configure the main components of Orbix, and each

Orbix installation has at least one copy of each file. The Orbix Configuration

Explorer allows you to modify any Orbix configuration file on your system.

The configuration files include settings that affect the configuration of Orbix and

settings that affect the configuration of other Orbix products, for example

OrbixNames. The Orbix Configuration Explorer allows you to modify all these

settings, and to create additional settings. This tool integrates all Orbix

configuration in a single user interface.

By default, the Configuration Explorer allows you to configure settings that are:

• Common to multiple IONA products.

• Orbix-specific

• OrbixNames-specific
45

O r b i x A d m in i s t r a t o r ’ s G u i d e C + + E d i t i o n
Starting the Configuration Explorer
You can run the Configuration Explorer from the Windows Start menu, or by

entering configurationexplorer at the command line. The Configuration

Explorer appears as shown in Figure 5.1.

Figure 5.1: Orbix Configuration Explorer
 46

Th e O r b i x Co n f i g u r a t i o n E x p l o r e r
This tool includes the following elements:

• A menu bar.

• A toolbar.

• A navigation tree.

The navigation tree displays icons that represent each configuration file

and configuration scope.

• A text box.

The Name textbox displays the name of the current configuration file or

scope.

• A text pane.

The text pane control contains a Name column and a Value column as

shown in Figure 5.2 on page 48. Each row corresponds to individual

configuration file entries. The text pane enables you to view and modify

these entries.

At startup, the Orbix Configuration Explorer opens the iona.cfg root

configuration file. By default, this file is located in the config directory of your

Orbix installation. The Configuration Explorer navigation tree displays icons that

represent the configuration files included in iona.cfg as shown in Figure 5.1 on

page 46.

Configuring Common Settings
To configure settings that are common to multiple IONA products, select the

Common icon in the navigation tree. This icon represents the Common

configuration scope in the file common.cfg. The Common variables stored in the

default common.cfg configuration file then appear in the text pane, as shown in

Figure 5.2 on page 48.
47

O r b i x A d m in i s t r a t o r ’ s G u i d e C + + E d i t i o n
Figure 5.2: Common Configuration Settings
 48

Th e O r b i x Co n f i g u r a t i o n E x p l o r e r
The default Common configuration settings are as follows:

To update any of these settings, do the following:

1. Select the variable in the text pane.

2. Double-click on this variable in the Value column

3. Enter your new setting.

4. Select the Apply button to save your setting to the appropriate

configuration file.

You cannot undo settings that you have saved to file.

IT_DAEMON_PORT The TCP port number on which the

Orbix daemon receives communications

from clients.

IT_DAEMON_ SERVER_ BASE The first TCP port number assigned by

the daemon to a server. Each server

listens on a single port number for client

connection attempts.

IT_IMP_REP_PATH The full path name of the Orbix

Implementation Repository directory.

IT_INT_REP_PATH The full path name of the Orbix Interface

Repository directory.

IT_LOCAL_DOMAIN The Internet domain name for your local

network.

IT_JAVA_INTERPRETER The full path name to the Java Runtime

Environment binary executable. This

installs with Orbix by default.

IT_DEFAULT_CLASSPATH The default classpath used when Java

servers are automatically launched by the

daemon.
49

O r b i x A d m in i s t r a t o r ’ s G u i d e C + + E d i t i o n
Configuring Orbix-Specific Settings
To configure settings that apply to Orbix only, select the Orbix icon in the

navigation tree. This icon represents the Orbix configuration scope in the file

orbix3.cfg. The Orbix variables stored in the default orbix3.cfg

configuration file then appear in the text pane, as shown in Figure 5.3.

Figure 5.3: Configuring Orbix-Specific Settings
 50

Th e O r b i x Co n f i g u r a t i o n E x p l o r e r
By default, the Orbix configuration settings include the following:

To update these settings, do the following:

1. Select the variable in the text pane.

2. Double-click on this variable in the Value column to enter your setting.

3. Select the Apply button to save your setting to the appropriate

configuration file.

You can also modify OrbixNames-specific configuration variables by following

these steps. Refer to the OrbixNames Programmer’s and Administrator’s Guide

for details of configuration variables that are specific OrbixNames.

Customizing Your Configuration
By default, the Orbix Configuration Explorer displays the configuration variables

contained in the default configuration files. You can use the Orbix Configuration

Explorer to customize your configuration by:

• Creating configuration variables.

• Creating configuration scopes.

• Creating configuration files.

IT_ERRORS The full path name of the Orbix error

messages file.

IT_CONNECT_ATTEMPTS If a client fails to connect to a server,

Orbix retries the connection attempt

every two seconds until the client

succeeds. This value specifies the

maximum number of retry attempts.
51

O r b i x A d m in i s t r a t o r ’ s G u i d e C + + E d i t i o n
Creating Configuration Variables

By default, the Configuration Explorer displays a default subset of the available

configuration variables. You can also create additional configuration variables, as

shown in Figure 5.4.

Figure 5.4: Creating Configuration Variables

To create a configuration variable, perform the following steps:

1. Select the Create Configuration Variable button, shown in Figure 5.5

on page 53.

2. Double-click the new entry in the Name column of the text pane.

3. Enter a name for your configuration setting.
 52

Th e O r b i x Co n f i g u r a t i o n E x p l o r e r
4. Double-click the entry in the Value column.

5. Enter a value for your configuration variable

6. Select the Apply button to save your setting to the appropriate

configuration file.

Figure 5.5: Creating and Deleting Configuration Variables

Valid Names for Configuration Variables and Scopes

You can use the following characters when naming configuration variables and

scopes:

["_", "-"], ["a"-"z","A"-"Z"], ["0"-"9"]

Note: You cannot uses spaces when naming configuration variables and

configuration scopes.

There are no restrictions on the valid characters for configuration values.

Deleting Configuration Variables

You cannot delete the configuration variables included in the default

configuration files. You can only change the values of these variables. However,

you can delete any additional variables that you may have created.

To delete a configuration variable, do the following:

1. Select the setting to be deleted from the text pane.

2. Select the Delete Configuration Variable button, shown in Figure 5.5.

3. Select the Apply button to save your setting to the appropriate

configuration file.

Refer to Appendix A, “Configuration Variables” on page 79 for a complete list of

both common and Orbix-specific configuration variables.
53

O r b i x A d m in i s t r a t o r ’ s G u i d e C + + E d i t i o n
Creating Configuration Scopes

The Configuration Explorer displays the configuration variables contained in the

default configuration files. You can customize your configuration by creating

additional configuration scopes. Configuration scopes are containers for

configuration variables. Refer to “The Orbix Configuration Files” on page 6 for

more details.

In the navigation tree, user-defined configuration scopes are displayed as

branching from default configuration scope icons, as shown in Figure 5.6 on

page 55.

To create a user-defined configuration scope, do the following:

1. Select Edit→Create Scope from the menu bar. Alternatively, you can

use the Create Scope toolbar.

2. In the Name text box, enter the name of your configuration scope.

3. Select the Apply button to save your setting to the appropriate

configuration file.

You can then create new configuration variables within your configuration

scope, as described in “Creating Configuration Variables” on page 52.

Deleting Configuration Scopes

You cannot delete the default configuration scopes included in the default

configuration files. However, you can delete any additional scopes that you may

have created.

To delete a configuration scope, do the following:

1. From the navigation tree, select the scope to be deleted.

2. Select the Edit→Delete Scope menu option. Alternatively, you can use

the Delete Scope button on the toolbar.

Select the Apply button to save your setting to the appropriate configuration

file.
 54

Th e O r b i x Co n f i g u r a t i o n E x p l o r e r
Figure 5.6: Creating Configuration Scopes

Creating Configuration Files

You can extend the Configuration Explorer to display custom configuration files.

To create a configuration file you should edit your iona.cfg file to include the

additional configuration file. An icon associated with this configuration file then

appears in the Configuration Explorer navigation tree.

You can then create new configuration scopes and variables within your new

configuration file as usual, as described in “Creating Configuration Variables” on

page 52 and “Creating Configuration Scopes” on page 54.
55

O r b i x A d m in i s t r a t o r ’ s G u i d e C + + E d i t i o n
 56

 6
The Orbix Server Manager

The Implementation Repository is the component of Orbix that
maintains registration information about servers and controls their
activation. The Orbix Server Manager allows you to manage the
Implementation Repository.

The Implementation Repository maintains a mapping from a server name to the

executable code that implements that server. In an Orbix system, the Orbix

daemon on each host has an associated Implementation Repository. The

Implementation Repository allows the daemon to launch server processes in

response to operation calls from Orbix clients.

The Orbix Server Manager allows you to do the following:

• Browse an Implementation Repository.

• Register new servers.

• Modify existing server registration details.

The Orbix Programmer’s Guide C++ Edition describes the Implementation

Repository in detail. This chapter assumes that you are familiar with this

description.
57

O r b i x A d m in i s t r a t o r ’ s G u i d e C + + E d i t i o n
Starting the Server Manager
You can run the Server Manager from the Windows Start menu or by entering
srvmgr at the command line. The main Server Manager window appears as

shown in Figure 6.1.

Figure 6.1: Server Manager Main Window
 58

T h e O r b i x S e r v e r M a n a g e r
The Server Manager window includes the following elements:

• A menu bar.

• A toolbar.

• A navigation tree.

This tree displays a graphical representation of the contents of an

Implementation Repository.

• A server information pane.

If you select an item in the navigation tree, the pane to the right of the

tree displays detailed information about that item. Information about

servers is displayed in a tabbed folder.

• A status bar.

You can use the toolbar icons in place of the menu options described in this

chapter.

Connecting to an Implementation Repository
To connect to an Implementation Repository, do the following:

1. Select Host→Connect. The Connect to Host dialog box appears, as

shown in Figure 6.2.

Figure 6.2: Connect to Host Dialog Box
59

O r b i x A d m in i s t r a t o r ’ s G u i d e C + + E d i t i o n
2. In the Host Name text box, enter the name or IP address of the host

on which the required Orbix daemon runs. The default is the local host.

3. In the Port Number text box, enter the TCP/IP port number on which

the Orbix daemon runs. To make a port number the default, select the
Set as Default Port check box. The default port number is initially set

to 1570.

4. Select the Connect button. The main Server Manager window displays

the contents of the Implementation Repository. For example, Figure 6.3

shows an Implementation Repository on the local host.

You can disconnect from an Implementation Repository at any time. To

disconnect, in the main window, select the required host and then select

Host→Disconnect.

Figure 6.3: Connection to an Implementation Repository
 60

T h e O r b i x S e r v e r M a n a g e r
Creating a New Directory
The Implementation Repository supports the concept of directories. This allows

you to structure server names hierarchically, and organize the contents of an

Implementation Repository.

To create an Implementation Repository directory, do the following:

1. Select the Implementation Repository on the appropriate host.

2. Select Directory→New. The Directory Name text box appears in

the right hand pane of the main window, as shown in Figure 6.4 on

page 62.

3. In the Directory Name text box, enter the name of the new directory.

4. Select the Apply button. The main Server Manager window now includes

the new directory when displaying the contents of the Implementation

Repository. For example, if you create a Bank directory, this directory is

displayed in the directory tree after the Apply button is selected. This is

shown in Figure 6.4 on page 62.

To delete a directory, select the directory in the main Server Manager

window and then select Directory→Delete.
61

O r b i x A d m in i s t r a t o r ’ s G u i d e C + + E d i t i o n
Figure 6.4: Creating a New Directory
 62

T h e O r b i x S e r v e r M a n a g e r
Registering a Server
To register a server, do the following:

1. Select the Implementation Repository directory in which you wish to

register the server. For example, to register a server in directory Bank,

select the icon for this directory in the main window.

2. Select Server→New. A tabbed folder appears in the right pane of the

main window as shown in Figure 6.5 on page 64. This folder is used to

record a server’s registration details.

3. Enter the server name in the Server Name text box on the General
tab.

4. If the server is an Java server, select the OrbixWeb Server check box.

5. By default, only the user who registers the server can run clients that

launch the server or invoke operations on server objects.

To provide server access rights to other users, select the Rights tab. The

Rights tab is described in “Providing Server Access Rights to Users” on

page 65.

6. The default server primary activation mode is shared. The default

secondary activation mode is normal.

To modify the server activation details, select the Activation tab. The

Activation tab is described in “Specifying Server Activation Details” on

page 67.
63

O r b i x A d m in i s t r a t o r ’ s G u i d e C + + E d i t i o n
Figure 6.5: Registering a New Server
 64

T h e O r b i x S e r v e r M a n a g e r
Providing Server Access Rights to Users

During server registration, you can provide server access rights to other users

by selecting the Rights tab in the main window. The Rights tab appears as

shown in Figure 6.6 on page 66.

Orbix offers two types of access rights:

• Launch rights

• Invoke rights

Launch rights allow clients owned by a specified user to cause the Orbix daemon

to activate the server.

Invoke rights allow clients owned by a specified user to invoke operations on

objects in the server.

To provide launch or invoke rights to a user, do the following:

1. In the appropriate area, enter the user identifier in the text box. To grant

these rights to all users, enter the user name all.

2. Select Add.

To remove launch or invoke rights for a user, do the following:

1. In the appropriate user list, select the required user identifier.

2. Select Remove.

When you have added or removed the required users from the access rights

lists, select Apply to commit the changes.
65

O r b i x A d m in i s t r a t o r ’ s G u i d e C + + E d i t i o n
Figure 6.6: Providing Server Access Rights
 66

T h e O r b i x S e r v e r M a n a g e r
Specifying Server Activation Details

During server registration, you can specify the server activation details by

selecting the Activation tab in the Server Manager main window. The

Activation tab appears as shown in Figure 6.7.

Figure 6.7: Specifying Server Activation Details
67

O r b i x A d m in i s t r a t o r ’ s G u i d e C + + E d i t i o n
Activation Modes

To specify a server’s primary activation mode, use the radio buttons in the

Activation Mode section of the Activation tab. The default server primary

activation mode is shared.

To specify a server’s secondary activation mode select the Advanced button in

the Activation Mode section. This launches the Secondary Activation
Modes dialog box, as shown in Figure 6.8. The default secondary activation

mode is normal.

A server registered in shared activation mode can have an associated maximum

number of processes. The Orbix daemon launches up to the specified number of

processes for that server.

Each new client connection results in a new server process until the maximum

number of processes is available. Subsequent client connections are routed to

existing server processes using a round-robin algorithm. This provides a

primitive form of load-balancing for shared servers.

To specify the number of processes associated with a shared server, enter a

positive integer value in the Max. number of processes associated with
this server text box.

Figure 6.8: Secondary Activation Modes
 68

T h e O r b i x S e r v e r M a n a g e r
You can associate a well-known TCP/IP port number with servers that

communicate using the CORBA-defined Internet Inter-ORB Protocol (IIOP). To

specify a well-known IIOP port for a server, select the Use a Well known
IIOP Port check box and enter a value in the Port Number text box.

When you have specified the server activation details, select OK to confirm

these details.

Launch Commands
The Commands section on the Activation tab allows you to modify the

launch commands associated with a server. Launch commands depend on the

server activation mode, as follows:

Shared Activation Mode

If the server activation mode is shared:

1. Enter the server launch command in the Command text box.

2. Enter a * character in the Marker text box.

3. Select Add.

UnShared Activation Mode

If the server activation mode is unshared:

1. Enter a marker pattern in the Marker text box.

2. Enter the launch command for this marker pattern in the Command

text box.

3. Select Add.

Repeat this process for each marker pattern you wish to register.

Note: A server registered in the Implementation Repository must have at least

one launch command.
69

O r b i x A d m in i s t r a t o r ’ s G u i d e C + + E d i t i o n
Per-method Activation Mode

If the server activation mode is per-method:

1. Enter a method name in the Marker text box.

2. Enter the launch command for this method in the Command text box.

3. Select Add.

Repeat this process for each method you wish to register.

Modifying Server Registration Details
When you register a server, the Orbix daemon creates a server registration

record in the Implementation Repository. This record stores detailed

information about the server.

To modify a server registration record, do the following:

1. Select the server you wish to modify.

The Server Manager displays the tabbed folder containing all the

registration details for the selected server.

2. Select the required tab from the following:

® General
® Activation
® Rights

3. Enter the value in the appropriate section of the tab, as described in

“Registering a Server” on page 63.

4. Select the Apply button.
 70

T h e O r b i x S e r v e r M a n a g e r
Launching a Persistent Server
Orbix allows you to launch shared servers manually. A manually-launched server

is known as a persistent server.

To launch a persistent server process, do the following:

1. Select the server you wish to launch. The server must be registered in

shared mode.

2. Select Server→Launch. If successful, this starts the server executable

file specified in the server launch command. The icon for the selected

server displays a green traffic light while the server process runs, as

shown in Figure 6.9.

To kill a shared server process, select Server→Kill.

Figure 6.9: Launching a Persistent Server
71

O r b i x A d m in i s t r a t o r ’ s G u i d e C + + E d i t i o n
Configuring the Server Manager
To configure the Server Manager, do the following:

1. In the main Server Manager window, select Server
Manager→Options. The Options dialog box appears, as shown in

Figure 6.10.

2. By default, the Server Manager does not connect to an Orbix daemon at

startup. To specify that the Server Manager should connect to the Orbix

daemon at the local host, select the Connect to your local host on
startup check box.

3. The Server Manager allows you to register C++ or Java servers. By

default, the Server Manager assumes that all servers are C++ servers.

To change this default, select Create Java Servers by default.

Figure 6.10: The Options Dialog Box
 72

T h e O r b i x S e r v e r M a n a g e r
4. You can also select the transport protocol used. The default protocol is

IIOP (Internet Inter-Orb Protocol). To change this default, select the

check box labelled Set the transport protocol to use Orbix.

5. To enable on-line help, enter the Location of your internet browser

in the text box provided.

6. Select OK to commit the new configuration.

Note: The main Server Manager window refreshes itself automatically,

reflecting updates as they occur. This means that the Refresh Time

option, used in earlier versions of the Orbix Server Manager, is no longer

necessary.
73

O r b i x A d m in i s t r a t o r ’ s G u i d e C + + E d i t i o n
 74

Part III
Appendices

Appendix A
Configuration Variables

There are two forms of Orbix configuration variables: those that are common

to multiple IONA products and variables that are specific to Orbix only.

Common Configuration Variables
You can set the following variables as environment variables using the

Configuration Explorer GUI tool, or by editing the common.cfg configuration

file. Alternatively, you can modify some of these configuration variables at

runtime using the SetConfigValue() series of APIs, and you must preface the

configuration variable with “Common.”, e.g. Common.IT_DAEMON_PORT.

Variable Description

IT_DAEMON_PORT TCP port number for the Orbix daemon.

IT_DAEMON_SERVER_BASE The starting TCP port number for servers

launched by the Orbix daemon.

IT_DAEMON_SERVER_RANGE The number set in this variable is used together

with that set in IT_DAEMON_SERVER_BASE to

determine the range of port numbers available

for Orbix servers.

IT_DEFAULT_CLASSPATH This is a colon-separated list of full path names

specifying the location of class files for the Java

Interpreter. Default value points to the

CLASSPATH environment variable.

IT_IMP_REP_PATH * The full path name of the Implementation

Repository directory.
79

O r b i x A d m in i s t r a t o r ’ s G u i d e C + + E d i t i o n
* These configuration variables can be set using the SetConfigValue() API.

See “CORBA::ORB::SetConfigValue()” on page 221 of the Orbix C++
Programmer’s Reference.

Orbix-Specific Configuration Variables
You can set the following variables using the Configuration Explorer GUI tool,

or by editing the common.cfg configuration file. Alternatively, you can modify the

configuration variables at runtime using the SetConfigValue() series of APIs,

and you must preface the configuration variable with “Orbix.”, e.g.

Orbix.IT_CONNECT_ATTEMPTS.

IT_INT_REP_PATH * The full path name of the Interface Repository

directory.

IT_JAVA_INTERPRETER The number set in this variable is used together

with that set in IT_DAEMON_SERVER_BASE to

determine the range of port numbers available

for Orbix servers.

IT_LOCAL_DOMAIN The name of the local internet domain, for

example, iona.com.

Variable Description

IT_ACT_POLICY * The activation policy (or mode) to be used for launching

servers.

IT_COLLOCATED Set to TRUE if a client is using a collocated server object.

IT_CONNECT_ATTEMPTS * The maximum number of retries Orbix makes to connect a

client to a server. The value specified is only used if the API

function

CORBA::ORB::maxConnectRetries(CORBA::ULong) is

called with a value of zero for the parameter.

Variable Description
 80

C o n f i g u r a t i o n V a r i a b l e s
IT_DAEMON_PROTOCOL Defines the protocol that Orbix uses to talk to the

daemon. Valid values are POOP (Orbix protocol) or IIOP.

This may be required for clients connecting to servers

through a firewall. You should use this variable carefully and

should not use it with _bind().

IT_DEFAULT_CODE The default encoder to be used, for example, XDR.

IT_DEFAULT_COMMS The default communications protocol to be used, for

example, TCP/IP.

IT_DEF_NUM_NW_THREADS The initial number of threads used in the new threading

model for the internal network thread pool.

IT_DIAGNOSTICS_LEVEL Controls the level of the diagnostic messages reported by

Orbix.

IT_ENABLE_ANON_BIND_SUPPORT * Allows a client built using an earlier version of Orbix to use

anonymous binds omitting the marker name.

IT_ENABLE_MULTI_HOMED_SUPPORT Enables multi-homed support for machines with multiple IP

addresses. This is disabled by default and impacts on

performance when enabled.

IT_ERRORS * The full path name of the error messages file.

IT_FD_WARNING_NUMBER * The number of file descriptors, which when exceeded, will

cause an IOCallback warning to be generated if a callback

has been registered. See

CORBA::IT_IOCallback::AtFDLowLimit()

IT_FD_STOP_LISTENING_POINT * The number of file descriptors, which when exceeded, will

stop the server from listening for new connections. An

associated IOCallback warning may be generated if a

callback has been registered. See

CORBA::IT_IOCallback::StopListeningAtFDHigh() and

CORBA::IT_IOCallback::ResumeListeningBelowFDHigh

().

IT_GIOP_VERSION The version number of the GIOP protocol to be used.

Variable Description
81

O r b i x A d m in i s t r a t o r ’ s G u i d e C + + E d i t i o n
IT_IIOP_PORT The port number to be used for server client connections

when using IIOP.

IT_IIOP_VERSION The IIOP version of IORs generated by Orbix servers, and

IIOP messages understood by Orbix. Valid values are 10

and 11, representing IIOP 1.0 and IIOP 1.1, respectively.

The default value is 11.

IT_LISTEN_QUEUE_SIZE * The internal listener thread’s queue size.

IT_LOCAL_ADDR_LIST This is a colon-seperated list of IP addresses, or hostnames,

on which Orbix servers and the Orbix daemon (orbixd)

can expect to receive invocations. This variable is used as a

part of multi-homed support.

IT_LOCAL_HOST The name of the local host that is used in any IOR that is

exported.

IT_MARKER_PATTERN * Contains the marker pattern name that caused the server

to be launched.

IT_ONEWAY_RESPONSE_REQUIRED * A boolean variable that specifies if an IIOP reply is expected

for an outgoing IIOP request containing a oneway

operation.

A response to a oneway is useful when you wish to catch

system exceptions, or to enable the client to receive IIOP

replies with LOCATION_FORWARD status. The default value is

FALSE.

IT_SERVER_CODE * The name of the encoder to be used by this server, for

example, XDR.

IT_SERVER_COMMS * The name of the communications protocol to be used by

this server, for example, TCP/IP.

IT_SERVER_MARKER * Contains the server marker name that caused the server to

be launched.

Variable Description
 82

C o n f i g u r a t i o n V a r i a b l e s
* These configuration variables can be set using the SetConfigValue() API.

See “CORBA::ORB::SetConfigValue()” on page 221 of the Orbix C++
Programmer’s Reference.

Note: Entries in IONA configuration files are scoped with a prefix; for example,

Common.IT_DAEMON_PORT or Orbix.IT_CONNECT_ATTEMPTS.

Environment variables are not scoped. The scoped entries are also used

by the SetConfigValue() and GetConfigValue() APIs.

For details of OrbixNames-specific configuration variables, refer to the

OrbixNames Programmer’s and Administrator’s Guide.

IT_SERVER_METHOD * Contains the server method name that caused the server

to be launched.

IT_SERVER_NAME * Used to set the name of the server.

IT_SERVER_PORT * The port number being used by the server when listening

for new connections.

IT_USE_HOST_IN_IOR Specifies whether the hostname or the host's IP address

will appear in any exported IORs.

IT_USE_ORBIX3_STYLE_SYS_EXC * Used to determine if Orbix 3.x style exceptions or new

interoperable exceptions should be used. Specifically, it is

used to determine if an OBJ_NOT_EXIST exception or an

INV_OBJREF exception should be raised when an object is

not found for a given IOR. It is also used to distinguish

COMM_FAILURE and TRANSIENT errors.

IT_USE_REVERSE_LOOKUP * Specifies if reverse lookup (i.e. determining the hostname

from an IP address) is enabled.

Variable Description
83

O r b i x A d m in i s t r a t o r ’ s G u i d e C + + E d i t i o n
 84

Appendix B
Orbix Daemon Options

The daemon process, orbixd, takes the following options:

-c filename Specifies the log file to use for check-point information.

In the event that a daemon is terminated, this allows a

new daemon to recover information about existing

running servers.

Unless an absolute path name is specified, the file is

placed in a directory relative to that from which the

daemon is launched.

-f filename (NT-only) Redirects 'stdout' to the file when Orbix

Daemon is started as an NT service. Unless an absolute

path name is specified, the file is placed in a directory

relative to that from which the daemon install

command is given.

-i filename Outputs the daemon’s interoperable object reference

(IOR) to the specified file.

Unless an absolute path name is specified, the file is

placed in a directory relative to that from which the

daemon is launched.

-j (NT-only) Installs the daemon as an NT service. The

service must be started manually using the Services

Control Panel. This starts the daemon with

<path>\orbixd -b.
85

O r b i x A d m in i s t r a t o r ’ s G u i d e C + + E d i t i o n
-l number (UNIX-only) Specifies the maximum number of socket

descriptors, and thus, the maximum number of

connections to the daemon.

This option does not exist on AIX machines.

By default, the maximum number of descriptors is

determined by the system’s limit. This is normally 64,

although this can be increased by a system

administrator. The current maximum number that can

be set is 1024.

-o userId (UNIX only) Indicates that if the daemon runs with

super-user privileges, servers launched by the daemon

should run using the specified user ID instead of the

root ID. Without this switch, a client running as root

on a remote machine could launch a server with root

privileges on a different machine.

Using the -o switch reduces the security risks

associated with easily faked remote user IDs, If the

remote user is not root, the server is launched under

the user ID of the client process sending the request.

This is the default when the -o switch is not used.

-p Runs the daemon in protected mode. In this mode,

only clients running as the same user as the daemon are

allowed to modify the Implementation Repository. No

updates are accepted from remote hosts.

-r time Specifies the frequency (in seconds) at which orbixd’s

child processes should be reaped. The default is 60

seconds.

-s Runs the daemon in silent mode. By default the daemon

outputs some trace information.

-t Outputs more than the default trace information while

the daemon is running.

-u Allows invocations on a manually-launched

unregistered server. This means that the manually-

launched (persistent) server does not have to be

registered in the Implementation Repository.
 86

-x number Sets the time limit in seconds for establishing that a

connection to the daemon is fully operational. The

default is 30 seconds.

-v Outputs the daemon version number and a summary of

the configuration details that a new daemon process

would use. Specifying -v does not cause a new daemon

to be run.

-w (NT only) Uninstalls the daemon as an NT service.
87

O r b i x A d m in i s t r a t o r ’ s G u i d e C + + E d i t i o n
 88

Appendix C
Command Reference

This appendix acts as a reference for the command-line interface to Orbix. The

commands described in this appendix allow you to manage the Implementation

Repository and the Interface Repository.

Command Summary
The following table shows the available commands:

Purpose Commands

Configuration dumpconfig

Server Registration putit, rmit

Listing Server Information lsit, psit, catit

Process Management pingit, killit

Implementation Repository

Directories

mkdirit, rmdirit

Security chownit, chmodit

Interface Repository

Management

putidl, readifr, rmidl
89

O r b i x A d m in i s t r a t o r ’ s G u i d e C + + E d i t i o n
This appendix describes each command in alphabetical order.

catit
The catit command outputs full information about a given Implementation

Repository entry.

Syntax
catit [-v] [-h host] [-x] server_name

Options

chmodit
The chmodit command modifies access control for a server. For example, use it

to grant launch and invoke rights on a server to users other than the server

owner.

Syntax
chmodit [-v] [-h host]

{ server | -a directory }
{ i{+,-}{user, group}|

 l{+,-}{user, group} }

-v Outputs the command version information.

-h host Indicates which host to use.

-x Display the port number / number of servers associated with this

server. This information would have been registered with the putit

utility using the -port/ -n switch
 90

Co mmand R e f e r e n c e
Options

By default, only the owner of an Implementation Repository entry can launch or

invoke the registered server. However, launch and invoke access control lists

(ACLs) are associated with each entry in the Implementation Repository and you

can modify these ACLs to give certain users or groups the right to launch or

invoke a specific server, or a directory of servers.

There is also a pseudo-group name called all that you can use to implicitly add

all users to an access control list.

chownit
The chownit command makes changes to the ownership of Implementation

Repository entries and directories.

Syntax
chownit [-v] [-h host]

{ -s server_name new_owner |
 -d directory { +, - } {user, group} }

-v Outputs the command version information.

-h host Indicates which host to use.

-a The -a option specifies that a user or group is to be added to

an access control list (ACL) for a directory of servers.

i+
i-

By specifying the i option, you can add a user or group to (i+)

or removed from (i-) the invoke ACL.

l+
l-

By specifying the l option, you can add a user or group to (l+)

or removed from (l-) the launch ACL.
91

O r b i x A d m in i s t r a t o r ’ s G u i d e C + + E d i t i o n
Options

Only the current owner of an Implementation Repository entry has the right to

change its ownership.

An Implementation Repository directory can have more than one owner. An

ownership access control list (ACL) is associated with each directory in the

Implementation Repository, and this ACL can be modified to give certain users

or groups ownership rights on a directory. Only a user on an ownership ACL

has the right to modify the ACL.

Note: Spaces are significant in this grammar. Spaces must exist between an

option and its argument, and on either side of the + or - that follows a

directory.

Orbix supports the pseudo-group all which, when added to an ACL, grants

access to all callers.

dumpconfig
The dumpconfig utility outputs the values of the configuration variables used by

Orbix, and the location of the Orbix configuration files in your system. It also

reports if there are any syntax errors in your configuration files.

Syntax
dumpconfig [-v]

-v Outputs the command version information.

-h host Indicates which host to use.

-s The -s option enables you to change the ownership of an

Implementation Repository entry.

-d The -d option modifies the ACL on a directory allowing you to

add (+) or remove (-) a user or group from the list of owners of a

directory.
 92

Co mmand R e f e r e n c e
Options

killit
The killit command kills (stops) a running server process.

Syntax
killit [-v] [-h host] [-m marker] server_name

Where there is more than one server process, use the marker parameter to

select between different processes. You require the marker parameter when

killing a process in the unshared mode.

The killit command uses the SIGTERM signal. This command does not remove

the entry from the Implementation Repository.

lsit
The lsit command lists entries in an Implementation Repository directory.

Syntax
lsit [-v] [-h host] [-R] [directory]

-v Outputs the command version information.

-v Outputs the command version information.

-h host Indicates which host to use.

-m Specifies a marker value to identify a specific object, or set of

objects, to which the killit command applies.
93

O r b i x A d m in i s t r a t o r ’ s G u i d e C + + E d i t i o n
Options

mkdirit
The mkdirit command creates a new registration directory.

Syntax
mkdirit [-v] [-h host] directory

Options

Hierarchical names are extremely useful in structuring the name space of servers

in Implementation Repositories.

pingit
The pingit command tries to contact an Orbix daemon to determine if it is

running.

Syntax
pingit [-v] [-h host]

Options

-v Outputs the command version information.

-h host Indicates which host to use.

-R Recursively lists all subdirectories and entries.

-v Outputs the command version information.

-h host Indicates which host to use.

-v Outputs the command version information.

-h host Indicates which host to use.
 94

Co mmand R e f e r e n c e
psit
The psit command outputs a list of server processes known to an Orbix

daemon.

Syntax
psit [-v] [-h host]

Options

One line is output for each server process. Each line has values for the following

fields:

Name Marker Code Comms Port Status Per-Client? OS-pid

The fields are as follows:

-v Outputs the command version information.

-h host Indicates which host to use.

Name The server name.

Marker The object marker pattern associated with the

process.

Code The data encoder used; for example, xdr.

Comms The communications protocol used; for example,

tcp.

Port The port number used by the communications

system.

Status One of “automatic”, “manual” or “inactive”.

Per-Client? Indicates whether the server is a per-client server.

OS-pid The operating system process.
95

O r b i x A d m in i s t r a t o r ’ s G u i d e C + + E d i t i o n
putidl
The putidl command allows you to add a set of IDL definitions to the Interface

Repository. This command takes the name of an IDL file as an argument. All IDL

definitions within that file are added to the repository.

The Interface Repository server must be available for this command to succeed.

Syntax
putidl {[-?] | [-v] [-h host] [-s] file}

Options

putit
The putit command creates an entry in the Implementation Repository that

represents how Orbix can start a server.

Syntax
putit [-v] [-h host] [-per-client | -per-client-pid]

[[-shared | -unshared] [-marker marker]]
[-per-method [-method method]]
[-j | -java [-classpath classpath | -addpath path]]
[-oc ORB_class -os ORB_singleton_class] [-jdk2]
[-port iiop portnumber]
[-n number_of_servers] [-l]
serverName [<commandLine> | -persistent]

-? Displays the allowed options for this command.

-v Outputs the command version information.

-h host Indicates the host at which the Interface Repository server is

available.

-s Indicates that the command should run in silent mode.
 96

Co mmand R e f e r e n c e
Options

Executing putit without any arguments outputs a summary of its options. The

options are as follows:

-v Outputs the utility’s version information without

executing the command. This option is available on

all of the utilities.

-h host Specifies the host name on which to execute the

putit command. By default, the command is

executed on the local host.

-per-client Specifies that a separate server process is used for

each user. You can use this activation mode with

the shared, unshared, or per-method modes.

-per-client-pid Specifies that a separate server process is used for

each client process. You can use this activation

mode with the shared, unshared, or per-method

modes.

-shared Specifies that all active objects managed by a given

server on a given machine are contained in the

same process. This is the default mode.

-unshared Specifies that as an object for a given server is

invoked, an individual process is activated to handle

all requests for that object. Each object managed by

a server can (but does not have to) be registered

with a different executable file—as specified in

commandLine.
97

O r b i x A d m in i s t r a t o r ’ s G u i d e C + + E d i t i o n
-java The -java switch is an extension of the standard

Orbix putit command. This indicates that the

specified server should be launched via the Java

interpreter. You can truncate this switch to -j.

-oc ORB_class Passes -Dorg.omg.CORBA.ORBClass=ORB_class to

the Java interpreter. You should use this switch

with the -os switch.

For OrbixWeb servers, the parameter to this

switch should be as follows:

 IE.Iona.OrbixWeb.CORBA.ORBClass.

You should pass this string to the Java interpreter

before the server class name.

-os ORB_singleton_class Passes -Dorg.omg.CORBA.ORBSingletonClass=

ORB_singleton_class to the Java interpreter. You

should use this switch with the -oc switch.

For OrbixWeb servers the parameter to this

switch should be

IE.Iona.OrbixWeb.CORBA.ORBSingletonClass.

This string must be passed to the Java interpreter

before the servers class name.

The -os and -oc switches provide foreign ORB

support.
 98

Co mmand R e f e r e n c e
-jdk2 Passes the following system properties to the Java

interpreter:

Dorg.omg.CORBA.ORBClass=
IE.Iona.OrbixWeb.CORBA.ORB

-Dorg.omg.CORBA.ORBSingletonClass=
IE.Iona.OrbixWeb.CORBA.singletonORB

You must pass this string to the Java interpreter

before the server class name. You should use this

switch for OrbixWeb servers being executed by

JDK1.2.

-per method Specifies that each invocation to a server results in

a process being activated to handle that request.

Each method can (but does not have to) be

registered with a different executable file—as

specified in command_line.

-port port Specifies a well-known port number for a server so

that Orbix, if necessary, activates a server that

communicates on the specified port number. Often

required by servers that communicate over the

CORBA Internet Inter-ORB Protocol (IIOP).
99

O r b i x A d m in i s t r a t o r ’ s G u i d e C + + E d i t i o n
The following options apply to the shared mode:

The following option applies to the shared and unshared modes:

The following option applies to the per-method mode:

-n number_of_servers This switch is applicable only to servers registered in

shared activation mode. It instructs the daemon to

launch up to the specified number of servers. Each

new client connection results in a new server being

launched as long as the number of clients is less than

the number specified in number_of_servers. When

the number of clients equals the number of servers

specified in number_of_servers, new clients are

connected to running servers using a round robin

algorithm.

The default number of servers is 1.

-persistent Specifies that the server can only be launched

persistently, that is, manually. The server is never

automatically launched by Orbix.

If the -u option is passed to the Orbix daemon, such

servers do not have to be registered in the

Implementation Repository.

-marker marker Specifies a marker value to identify a specific object, or

set of objects, to which the putit applies.

Marker names specified using putit cannot contain

white space.

-method method Specifies a method name to identify a specific method,

or set of methods, to which the putit applies.
 100

Co mmand R e f e r e n c e
Notes

The putit command is often used in its simplest form:

putit server_name command_line

The command_line is an absolute path name specifying the executable file that

implements the server. Any command-line parameters to be given to the

executable file are appended after the absolute path name in the putit

command. These parameters are given to the server every time it is run by

Orbix. However, the parameters must be given explicitly if the executable file is

executed manually.

The default settings for putit mean that the simplest form of the command is

equivalent to any of the following:

putit -shared server_name command_line

putit -shared -marker '*' server_name command_line

putit -marker '*' server_name command_line

By default, putit uses the Implementation Repository on the local host. By

default, putit uses the shared activation mode. Therefore, on any given host, all

objects with the specified server name are controlled by the same process. By

default also, putit registers a server in the multiple-client activation mode. This

means that all client processes bind to the same server process.

Server Activation Modes

Activation modes control how servers are implemented when they become

processes of the underlying operating system.The primary activation modes are

shared, unshared, and per-method:

• In shared mode, all of the objects with the same server name on a given

machine are managed by one process on that machine. If a server is

registered in shared mode, it can also be launched manually prior to any

invocation on its objects.

• In unshared mode, individual objects are registered with the

Implementation Repository, and a process is launched for each such

object.
101

O r b i x A d m in i s t r a t o r ’ s G u i d e C + + E d i t i o n
• In per-method mode, individual operations are registered with the

Implementation Repository, and each invocation on an operation results

in a separate process.

You should note the following:

• The default activation mode is shared.

• For a given server name, you can select only one of shared, unshared, or

per-method.

• For each of the modes shared or unshared, a server can be registered in a

secondary activation mode:

® multiple-client

® per-client

® per-client-process

The default is multiple-client activation, with the effect that a server

process is shared between multiple principals and multiple client

processes.

Per-client activation results in a separate server process for each principal

(end-user). Per-client-process activation results in a separate server

process for each separate client process. Per-client and per-client-

process activation is orthogonal to shared, unshared and per-method

modes.

• Manually-launched servers behave in a similar way to shared activation

mode servers. If a server is registered as unshared or per-method, the

server fails if it is launched manually. This is in line with the CORBA

specification.

Note: Per-method servers are activated for a single IDL operation call. As a

result, the per-client flag is ignored for per-method servers.
 102

Co mmand R e f e r e n c e
Pattern Matching for Markers and Methods

Pattern matching specifies a set of objects for the -marker option, or a set of

methods for the -method option. Pattern matching allows a group of server

processes to share a workload between them, whereby each server process is

responsible for a range of object marker values. The pattern matching is based

on regular expressions, as follows:

A SET, as presented above, is composed of characters and ranges. A range is

specified using a hyphen character -.

Finally, since each of the characters *?!^-[]\ is special, in the sense that it is

interpreted by the pattern matching algorithm; each of them can be preceded by

a \ character to suppress its interpretation.

Examples of patterns are:

* Matches any sequence of characters.

? Matches any single character.

[SET] Matches any characters belonging to the specified set, for

example, [abc].

[!SET] Matches any characters not belonging to the specified set, for

example, [!abc].

[^SET] Equivalent to [!SET], for example, [^abc].

hello matches “hello”.

he* matches any text beginning with “he”, for example,

“he”, “help”, “hello”.

he? matches any three character text beginning with

“he”, for example, “hec”.

[abc] matches “a”, “b” or “c”.

he[abc] matches “hea”, “heb” or “hec”.

[a-zA-Z0-9] matches any alphanumeric character.

[!a-zA-Z0-9] matches any non alphanumeric character.

_[gs]et_balance matches _get_balance and _set_balance.

make* matches makeDeposit and makeWithdrawal.
103

O r b i x A d m in i s t r a t o r ’ s G u i d e C + + E d i t i o n
If an activation order exists in an Implementation Repository entry for a specific

object marker or method and another exists for an overlapping set of markers

or methods, the particular server that is activated for a given object is non-

deterministic. This means that no attempt is made to find an entry registered for

best or exact match.

readifr
The readifr command allows you to view an IDL definition stored in the

Interface Repository. This command takes the fully scoped name of the IDL

definition as an argument and displays that definition. Calling readifr with no

arguments lists the contents of the entire Interface Repository.

The Interface Repository server must be available for this command to succeed.

Syntax
readifr {[-?] | [-v] [-h host] [-d] [-t] [-c] [definition_name]}

Options

-? Displays the allowed options for this command.

-v Outputs the command version information.

-h host Indicates the host at which the Interface Repository server is

available.

-d Displays all derived types of an IDL interface.

-c Indicates that the command should not prompt the user for input.

This is useful when running readifr with no other arguments.
 104

Co mmand R e f e r e n c e
rmdirit
The rmdirit command removes a registration directory.

Syntax
rmdirit [-v] [-h host] [-R] directory

Options

The rmdirit command returns an error if it is called without the -R option on

a non-empty registration directory.

rmidl
The rmidl command allows you to remove an IDL definition from the Interface

Repository. This command takes the fully scoped name of the IDL definition as

an argument.

The Interface Repository server must be available for this command to succeed.

Syntax
rmidl {[-?] | [-v] [-h host] definition_name}

-v Outputs the command version information.

-h host Indicates which host to use.

-R Recursively deletes the directory and all of the Implementation

Repository entries and sub-directories within it.
105

O r b i x A d m in i s t r a t o r ’ s G u i d e C + + E d i t i o n
Options

rmit
Removes an Implementation Repository entry or modifies an entry.

Syntax
rmit [-v] [-h host]

[-marker marker | -method method] server_name

Options

This command does not kill any currently running processes associated with a

server.

You can use pattern matching for markers and methods as described in the

putit command reference. Refer to putit on page 96.

-? Displays the allowed options for this command.

-v Outputs the command version information.

-h host Indicates the host at which the Interface Repository server is

available.

-v Outputs the command version information.

-h host Indicates which host to use.

-marker marker Specifies a marker value to identify a specific object, or

set of objects, to which the rmit command applies.

-method method Specifies a method name to identify a specific method, or

set of methods, to which the rmit applies.
 106

Appendix D
Error Messages and Exceptions

Orbix has an external text file containing an explanation of all error messages,

both for IDL compiler errors and system exceptions. Orbix outputs error

messages from the file named by the IT_ERRORS environment variable or entry

in the orbix3.cfg configuration file. This file contains Orbix-specific

configuration variables.

Setting Error Messages
The standard error file can be edited for a particular installation if required. For

example, by translating all of the text into French or German, or by providing

more verbose explanations of errors than those provided in the standard Orbix

release.

Each error is assigned a unique number, and the file contains a line for each

error in the form:

error_number: error_message_text

Rather than changing the standard file distributed with the Orbix release, you

can specify an alternative file by using the IT_ERRORS entry in the orbix3.cfg

configuration file. You can also specify a file on a per user basis by setting the

value of the IT_ERRORS environment variable to a file which contains the list of

system error messages.

Within the IT_ERRORS file, comments can be inserted using “//”, and “\” can be

used as a continuation character if the message needs to extend past the end of

a line. IDL compiler errors have been divided into pre-processing, syntax and

semantic errors, and their error numbers are arranged within these divisions.
107

O r b i x A d m in i s t r a t o r ’ s G u i d e C + + E d i t i o n
System Exceptions Defined by CORBA
The following table lists the system exceptions defined in the CORBA

specification:

Identifier Exception Description

10000 UNKNOWN The unknown exception.

10020 BAD_PARAM An invalid parameter was passed.

10040 NO_MEMORY Dynamic memory allocation failure.

10060 IMP_LIMIT Violated implementation limit.

10080 COMM_FAILURE Communication failure.

10100 INV_OBJREF Invalid object reference.

10120 NO_PERMISSION No permission for attempted operation.

10140 INTERNAL ORB internal error.

10160 MARSHAL Error marshalling parameter/result.

10180 INITIALIZE ORB initialization failure.

10200 NO_IMPLEMENT Operation implementation unavailable.

10220 BAD_TYPECODE Bad TypeCode.

10240 BAD_OPERATION Invalid operation.

10260 NO_RESOURCES Insufficient resources for request.

10280 NO_RESPONSE Response to request not yet available.

10300 PERSIST_STORE Persistent storage failure.

10320 BAD_INV_ORDER Routine invocations out of order.

10340 TRANSIENT Transient failure; reissue the request.

10360 FREE_MEM Cannot free memory.

10380 INV_IDENT Invalid identifier syntax.

10400 INV_FLAG Invalid flag was specified.

10420 INTF_REPOS Error accessing interface repository.
 108

E r r o r M e s s a g e s a n d E x c e p t i o n s
System Exceptions Specific to Orbix
The following table lists system exceptions specific to Orbix:

10440 BAD_CONTEXT Error processing context object.

10460 OBJ_ADAPTOR Failure detected by object adaptor.

10480 DATA_CONVERSION Data conversion error.

Identifier Orbix Exception Description

10500 FILTER_SUPPRESS Suppress exception raised in per-object

pre-filter.

10540 ASCII_FILE ASCII file error.

10560 LICENCING Licensing error.

10600 IIOP IIOP error.

10620 NO_CONFIG_VALUE No configuration value set for one of the

mandatory configuration entries.

Identifier Exception Description
109

O r b i x A d m in i s t r a t o r ’ s G u i d e C + + E d i t i o n
 110

Index
<$NopageSee alsoAppendix A Configuration
Variables 16

A
access control lists 26, 91
access rights to servers 63, 65
activation modes 29–34, 101

multiple-client 33
per-client 15, 33, 95
per-client-process 33
per-method 29, 32
setting 63, 67
shared 29
unshared 29, 30

activation orders for servers 24
administration, overview 4, 5

C
catit 23, 90
chmodit 26, 90
chownit 27, 91
COMM_FAILURE exception from pingit 14
common.cfg

modifying 47
opening in Configuration Explorer 47

Common.IT_INT_REP_PATH 80
Common.IT_JAVA_INTERPRETER 80
communications protocols 15, 95
config 9
Configuration Explorer 45, 51

adding configuration files 55
adding configuration scopes 54
adding configuration variables 52
deleting configuration scopes 54
deleting configuration variables 53
modifying configuration values 47, 50
opening iona.cfg 47
valid names 53
valid values 53

configuration files
common.cfg 47
iona.cfg 47
orbix3.cfg 50

configuration, basic steps 6
connection attempts 51
connection retries 80
connection timeout 87
CORBA 1
customizing configuration 51

D
daemon

configuring
Orbix port value 49
server base port value 49

daemon. See Orbix daemon
data encoders 14, 95
default classpath 49
directories in Implementation Repository 21
distributed objects 1
domains 11, 49, 80
dumpconfig 11, 92
dynamic libraries 10

E
entries in Implementation Repository 20
environment variables 9
error messages 107

file 81
errors file 51
exceptions 107

G
gids 28
group identifiers 28

H
hierarchical server names 21

I
IDL 1
IDL definitions

adding to Interface Repository 41
removing from Interface Repository 42

IETF 10
IFR server 40
111

O r b i x A dm i n i s t r a t o r ’ s G u i d e C ++ E d i t i o n
IIOP 69
server ports 34
well-known ports for servers 99

Implementation Repository 2, 11, 19–??, 57–73
changing owners of servers 27
connecting to 59
deleting directories 61
directories 21
directory path 79
disconnecting from 60
listing details of servers 23
listing registered servers 23
location of 49
modifying server registration details 70
permissions to servers 26
registering servers 21, 63, 69
removing server registrations 22
role of Orbix daemon 12

IMP_LIMIT 35
Interface Repository 3, 39–42

adding IDL definitions 41
configuring 40
location of 49
reading contents 42
removing IDL definitions 42
role of Orbix daemon 12
server 40

command line options 41
internet domains 11, 49, 80
invoke permissions to servers 26
invoke rights to servers 65
iona.cfg

opening in Configuration Explorer 47
IOR for Orbix daemon 85
IT_ACT_POLICY 80
IT_COLLOCATED 80
IT_CONFIG_PATH 9, 11
IT_CONNECT_ATTEMPTS 51, 80
IT_DAEMON_PORT 10, 49, 79
IT_DAEMON_PROTOCOL 81
IT_DAEMON_SERVER_BASE 35, 49, 79
IT_DAEMON_SERVER_RANGE 35, 79
IT_DEFAULT_CLASSPATH 49, 79
IT_DEFAULT_CODE 81
IT_DEFAULT_COMMS 81
IT_DEF_NUM_NW_THREADS 81
IT_DIAGNOSTICS_LEVEL 81
IT_ENABLE_ANON_BIND_SUPPORT 81
IT_ENABLE_MULTI_HOMED_SUPPORT 81
IT_ERRORS 51, 81, 107
 112
IT_FD_STOP_LISTENING_POINT 81
IT_GIOP_VERSION 81
IT_IIOP_PORT 82
IT_IIOP_VERSION 82
IT_IMP_REP_PATH 11, 49, 79
IT_INT_REP_PATH 40, 49
IT_JAVA_INTERPRETER 49
IT_LISTEN_QUEUE_SIZE 82
IT_LOCAL_ DOMAIN 49
IT_LOCAL_ADDR_LIST 82
IT_LOCAL_DOMAIN 11, 80
IT_LOCAL_HOST 82
IT_MARKER_PATTERN 82
IT_ONEWAY_RESPONSE_REQUIRED 82
IT_SERVER_CODE 82
IT_SERVER_COMMS 82
IT_SERVER_MARKER 82
IT_SERVER_METHOD 83
IT_SERVER_NAME 83
IT_SERVER_PORT 83
IT_USE_HOST_IN_IOR 83
IT_USE_ORBIX3_STYLE_SYS_EXC 83
IT_USE_REVERSE_LOOKUP 83

K
killit 25, 93

L
launch commands for servers 69
launch permissions to servers 26
launch rights to servers 65
LD_LIBRARY_PATH 10
library path 10
listing registered servers 23
lsit 22, 23, 93

M
manually-started servers 24
mkdirit 21, 94
Multi-homed

configuration variables 16
multi-homed hosts 15
multiple-client activation mode 33

N
nobody, user identifier 28

I n d e x
O
OMG 1
Orbix

architecture components 2
daemon port 10

Orbix daemon
checking for 14
check-point information 85
command options 85
security risks 13
starting 12
trace information 86

Orbix.IT_FD_WARNING_NUMBER 81
orbix3.cfg

modifying 50
opening in Configuration Explorer 50

orbixd 2
port number 10
running 12
running as super-user 13, 86
running in protected mode 86
running in silent mode 86
See also Orbix daemon
version information 87

orbixusr, user identifier 28
owners, changing for servers 27

P
pattern matching, when registering servers 31
per-client activation mode 15, 33, 95
per-client-process activation mode 33
per-method activation mode 29, 32
permissions for servers 20
persistent servers 24, 71, 86
pingit 14, 94
port numbers

for servers 69
for the Orbix daemon 49

ports
for Orbix daemon 10, 79
for servers 15, 34, 79, 95, 99

process identifiers 14
protected mode 86
protocols 15, 95
psit 14
putidl 41, 96
putit 13, 21, 96
Q
quick start to Orbix administration 5

R
readifr 42, 104
reading contents of the Interface Repository 42
registering servers 13, 21
regular expressions 31
rmdirit 22, 105
rmidl 42, 105
rmit 22, 32, 33, 106
running orbixd in 86

S
security 13

of servers 26
Server Manager 57–73

configuring 72
connecting to an Implementation Repository 59
deleting directories 61
disconnecting from an Implementation

Repository 60
killing persistent servers 71
launching persistent server 71
launching persistent servers 71
modifying server details 70
registering servers 63, 69

specifying access rights 65
specifying activation modes 67, 69

starting 58
servers 14

access control lists 26
access rights 63, 65
activation modes 29–34, 63
activation orders 20
details of registration 23
details of running servers 15, 95
for Interface Repository 40
hierarchical names 21
IIOP port numbers 69
IIOP ports 99
invoke permissions 26
killing 71
launch commands 69
launch permissions 26
launching persistently 71
listing 23
managing 19
modifying registration details 70
113

O r b i x A dm i n i s t r a t o r ’ s G u i d e C ++ E d i t i o n
names of 20
owners of 20, 27
permissions for 20, 26
ports 34
process identifiers 14
registering 13, 21, 63, 69
registry 63
removing registration of 22
starting 12
starting manually 24
stopping 25

shared activation mode 29
silent mode, running orbixd in 86
starting

the Server Manager 58
starting servers 12
stopping servers 25
super-user, running orbixd as 13, 86

T
TCP/IP 15, 95
tools

Configuration Explorer 45
Server Manager 57–73

trace information from Orbix daemon 86

U
uids 28
unshared activation mode 29, 30
user identifiers 28

V
version number, of Orbix 87

X
XDR 14, 95
 114

	Preface
	Audience
	• Configuring an Orbix installation.
	• Registering servers in the Orbix Implementation Repository.
	• Adding IDL definitions to the Orbix Interface Repository.

	Organization of this Guide
	Part 1, Orbix C++ Administration
	Chapter�1, “Overview of Orbix Administration”
	This chapter introduces the main components of the Orbix environment. You should read this chapte...

	Chapter�2, “Getting Started”
	This is a quick start chapter on how to configure Orbix, start the Orbix daemon process, and how ...
	Chapter�3, “Managing the Implementation Repository”
	This explains more about using the Implementation Repository including registering servers, displ...

	Chapter�4, “Managing the Interface Repository”
	This chapter describes how to configure Orbix to store object interface definitions so that appli...

	Part II, Orbix C++ GUI Tools
	Chapter�5, “The Orbix Configuration Explorer”
	This chapter describes how you can configure an Orbix installation using the Orbix Configuration ...

	Chapter�6, “The Orbix Server Manager”
	This chapter describes how you can register servers in the Orbix Implementation Repository using ...

	Part III, Appendices
	Appendix�A, “Configuration Variables”
	This appendix shows the configuration variables that Orbix recognizes.

	Appendix�B, “Orbix Daemon Options”
	This appendix describes the start-up options that the Orbix daemon can use.

	Appendix�C, “Command Reference”
	This describes the syntax and the options for each Orbix command you can use.

	Appendix�D, “Error Messages and Exceptions”
	This describes how to modify error messages, shows the error formats, and lists tables of standar...

	Document Conventions
	Constant width (courier font) in normal text represents portions of code and literal names of ite...
	Constant width paragraphs represent code examples or information a system displays on the screen....
	Italic
	Italic words in normal text represent emphasis and new terms.
	Italic words or characters in code and commands represent variable values you must supply, such a...
	Note: Some command examples may use angle brackets to represent variable values you must supply. ...
	No prompt
	When a command’s format is the same for multiple platforms, no prompt is used.
	%
	A percent sign represents the UNIX command shell prompt for a command that does not require root ...
	#
	A number sign represents the UNIX command shell prompt for a command that requires root privileges.
	>
	The notation > represents the DOS, Windows NT, or Windows 95 command prompt.

	Horizontal or vertical ellipses in format and syntax descriptions indicate that material has been...
	[]
	Brackets enclose optional items in format and syntax descriptions.
	{ }
	Braces enclose a list from which you must choose an item in format and syntax descriptions.
	|
	A vertical bar separates items in a list of choices enclosed in { } (braces) in format and syntax...
	Part I Orbix C++ Administration

	1
	Overview of Orbix Administration
	Orbix is a software environment that allows you to develop distributed applications. This chapter...
	• The hosts on which the objects exist.
	• The operating system that these hosts run.
	• The programming language used to implement the objects.

	Components of the Orbix Architecture
	Figure 1.1: An IDL Operation Call on a Distributed Object
	Servers and the Implementation Repository
	Figure 1.2: Automatic Launch of an Orbix Server Process
	2. The Orbix daemon reads the server details from the Implementation Repository, including the se...
	3. If the required server process is not running, the Orbix daemon executes the server launch com...

	The Interface Repository

	Administration of Orbix Components
	• Configure Orbix for your network and environment, using the Orbix configuration files.
	• Run the Orbix daemon process.
	• Register servers in the Implementation Repository.

	Getting Started
	Basic Orbix Configuration
	The Orbix Configuration Files
	iona.cfg
	common.cfg
	Format of Configuration Files

	orbix3.cfg

	Locating the Configuration Files
	How Orbix Finds its Configuration

	Locating the Orbix Library Directory on UNIX Platforms
	Setting the Orbix Daemon Port
	Locating the Implementation Repository
	Specifying Your Local Internet Domain
	Using the dumpconfig Utility

	Starting The Orbix Daemon
	Running the Orbix Daemon as an NT Service
	Using the -o Option to the Orbix Daemon

	Registering a Server
	Checking for an Orbix Daemon
	Checking for Running Servers
	Configuring Orbix for Multi-Homed Hosts
	Multi-Homed Configuration Variables
	Configuring Orbix for Multiple Network Cards on Independent Networks
	3
	Managing the Implementation Repository
	When you install server applications on a network host, you must register those servers in the Or...
	The chapter covers the following topics:
	• The Implementation Repository and its entries.
	• Basic usage of the Implementation Repository including registering servers, organizing server e...
	• How to start a server manually.
	• How to stop servers manually.
	• The security of servers including how to change ownership of servers and how to modify access c...
	• How to register servers in specialized activation modes other than simply one server process fo...
	• How to manage the set of ports Orbix uses to run servers.

	This chapter explains how to manage the Implementation Repository using Orbix command-line utilit...

	Implementation Repository Entries
	The Implementation Repository maintains a mapping from a server’s name to the filename of the exe...
	When a client first communicates with an object, Orbix uses the Implementation Repository to iden...
	The Implementation Repository maintains its data in entries that include the following information:
	• The server name.
	• The server owner—usually the user who registered the server.
	• The server permission values.
	• One or more activation orders.

	Basic Implementation Repository Usage
	Use the putit command to create or modify an Implementation Repository entry. For example, the fo...
	Activation occurs when any of the objects managed by the FirstTrust server is used. In this examp...
	Registering a Server on a Remote Host
	The following command registers a shared server called “FirstTrust” on the remote host “alpha”, w...
	Using the -h hostname option enables you to use all the utility commands for remote hosts. Howeve...

	Organizing Servers Into Hierarchies
	Server names may be hierarchically structured, in the same way as UNIX file names. Hierarchical s...
	Thus banking/Berliner is a valid, hierarchical server name.
	The rmdirit command removes a registration directory. This command can take a -R option to recurs...
	For example:
	This example uses the lsit command to display the Implementation Repository entries and directories.
	To move an entry in the hierarchy, first remove it with the rmit command and then re-register it ...

	Removing a Registered Server
	Use the rmit command to remove an Implementation Repository entry. For example, the following com...
	This simplest format of the command removes the entry and all activation orders for the server.
	You can also use the rmit command to remove specific activation orders. Use the -marker option fo...

	Listing Registered Servers
	Use the lsit command to list registered servers and directories. For example:
	Use the -R option with the lsit command to recursively list all server entries in the given direc...

	Displaying A Server Entry
	Use the catit command to display information about a specific server’s registration entry. The fo...
	The output includes the following:
	Server name.
	Activation mode.
	The user who put the in the entry.
	The users and groups who have permission to start or launch the server.
	The users and groups who have permission to invoke operations on an object controlled by the server.
	A per-client indicator that indicates whether a new server is to be launched for each client that...

	The final output is a table of activation orders. An activation order is identified with a marker...

	Starting Servers Manually
	Most servers are designed to have Orbix start them automatically when a client uses an object. Th...
	Servers that are started by some mechanism external to Orbix are useful for a number of reasons. ...
	Registering a Manual Server
	All servers that are registered in the shared mode can also be started manually. Subsequent invoc...
	However, if you wish to prevent Orbix from starting a server and make it manual-only, use the fol...
	This command registers a manual-only server called “FirstTrust” on the local host. No start comma...
	The CORBA specification requires that unshared or per-method types of servers fail if an attempt ...

	Starting the Orbix Daemon for Unregistered Servers
	In some circumstances, it can be useful not to register servers with the Implementation Repositor...
	When Orbix is started this way, any server process can be started manually. However, no access co...

	Stopping Servers
	Just as most servers start automatically when needed, they are usually designed to stop automatic...
	The killit command stops a server process by using the SIGTERM signal.
	2. When there is more than one server process, use the marker option and argument to distinguish ...

	Security of Registered Servers
	For each Implementation Repository entry, Orbix maintains two access control lists (ACLs) as foll...
	Launch
	The users or groups that can launch the associated server. Users on this list, and users in group...
	Invoke
	The users and groups that can invoke operations on any object controlled by the associated server.

	The entries in the access control list can be user names or group names. The owner of an Implemen...
	Modifying Server Access
	Use the chmodit command to modify the launch or invoke access control lists (ACLs). For example:
	2. The following command grants the user chris rights to launch any server in the directory banks...
	3. The following command revokes joe’s right to invoke all servers in the Implementation Reposito...
	4. There is also a pseudo-group named all that you can use to implicitly add all users to an ACL....
	On UNIX, the group membership of a user is determined using the user’s primary group as well as t...

	Changing the Owners of Registered Servers
	Only the owner of an Implementation Repository entry can use the chmodit command on that entry. T...
	An Implementation Repository directory may have more than one owner. An ownership ACL is associat...
	2. To remove mcnamara from the same ACL, do the following:
	3. Orbix supports the pseudo-group all that, when added to an ACL, grants access to all callers. ...
	CORRECT
	INCORRECT
	INCORRECT

	Determining the User and Group IDs of Running Servers
	On Windows platforms, the user ID (uid) and group ID (gid) of a server process launched by the Or...
	On UNIX platforms, the effective uid and gid of a server process launched by the Orbix daemon are...
	2. If the principal is unknown (not a registered user) at the local machine on which orbixd is ru...
	3. If there is no such standard user “orbixusr”, orbixd attempts to run the new server with uid a...
	The daemon must be able to execute the server’s executable file.

	Server Activation Modes
	Orbix provides a number of different modes for launching servers. You specify the mode of a serve...
	Shared Activation Mode
	Unshared Activation Mode
	Per-method call Activation Mode
	The shared mode is most common. The unshared and per-method modes are rarely used. Refer to your ...

	Registering Unshared Servers
	The -unshared option registers a server in the unshared activation mode. For example:
	This command registers an unshared server called “NationalTrust” on the local host, with the spec...

	Using Markers to Specify Named Objects
	Each Orbix object has a unique object reference that includes the following information:
	• A name that is usually referred to as a marker.
	• A server name identifying the server in which the object is located.
	• A host name identifying the host on which the server is located.

	For example, the object reference for a bank account would include the bank account name (marker ...
	Since objects can be named, shared and unshared server activation policies can specify individual...
	2. putit -unshared -marker College_Green FirstNational /banks/FNbank_CG
	Using Pattern Matching
	You can use pattern matching in activation policies when seeking to identify which server process...
	You can use pattern matching to specify a set of objects for shared or unshared servers. For exam...
	If these two commands are issued, server NationalBank can have up to two active processes; one la...
	Refer to the entry for the putit command in Appendix�C, “Command Reference” for a complete list o...
	Use the rmit command with -marker option to modify a server entry. This allows you to remove a sp...

	Registering Per-Method Servers
	A per-method server processes each operation call in a separate process.
	2. If the -method option is used, Orbix assumes that the server is a per- method server.
	3. The following command registers a per-method server called “FirstTrust” on the local host with...
	Use the rmit command with -method option to modify a per-method server entry. This allows you to ...

	Secondary Activation Modes
	For each of the primary activation modes, a server can be launched in one of the secondary activa...
	Multiple-client Activation Mode
	Per-client Activation Mode
	Per-client-process Activation Mode

	Managing Server Port Selection
	When the Orbix daemon activates a server, the server is activated by the Orbix daemon, it is assi...
	• Registering the server with a specified port number.
	• Using configuration variables to control port numbers.

	This section describes each of these approaches.
	Registering Servers with Specified Ports
	When registering a server, you can specify the port on which the server should listen using the -...
	By default, all Orbix applications communicate over the CORBA standard Internet Inter-ORB Protoco...
	If an Orbix server that communicates over IIOP publishes an object reference, for example using t...

	Controlling Port Allocation with Configuration Variables
	You can control the range of server port numbers chosen by the Orbix daemon by using the configur...
	When the Orbix daemon starts a server, the first server port assigned is IT_DAEMON_SERVER_BASE pl...
	Once the end of the range is reached, orbixd recycles the range in an attempt to find a free port...
	You can set IT_DAEMON_SERVER_BASE and IT_DAEMON_SERVER_RANGE values by using their entries in the...

	Registering SSL-Enabled Servers
	To register servers that are SSL-enabled use the putit utility with the additional SSL syntax hig...
	This is the full putit command syntax:
	The ssl parameters are described in Table�3.1. To use them, you must specify either –ssl_secure o...
	putit Flag
	Description
	-ssl_client_auth
	Indicates that the server authenticates clients.
	-ssl_support_null_enc
	This indicates that the NULL encryption SSL ciphersuites (which do not support confidentiality) a...
	-ssl_support_null_enc_only
	This indicates that only the server supports the NULL encryption SSL ciphersuites.
	-ssl_secure
	This is the minimal flag needed to indicate that the server is SSL-enabled. If this flag or –ssl_...
	-ssl_semi_secure
	This indicates a SEMI_SECURE server policy. If this flag or –ssl_secure are not supplied to putit...
	-ssl_support_null_auth
	This flag indicates that the server supports null authentication. OrbixSSL servers do not current...
	-ssl_support_null_auth_only
	This flag indicates that the server supports null authentication. OrbixSSL servers do not current...
	Table 3.1: putit SSL Parameters

	Using the putit SSL Parameters
	There are four groups of SSL parameters. If you want to use them, you must use one from Group 1, ...
	Group 1
	Group 2
	Group 3
	Group 4
	As OrbixSSL supports per server process security policy settings, those settings specified by put...
	The most common use cases are:
	The following might be less common:

	4
	Managing the Interface Repository
	The Interface Repository is the component of Orbix that stores information about IDL definitions ...
	The Interface Repository maintains full information about the IDL definitions implemented in your...
	To allow a client to obtain information about a set of IDL definitions, you must add those defini...

	Configuring the Interface Repository
	The Interface Repository has its own directory, which is specified by the IT_INT_REP_PATH entry i...
	You must configure the Interface Repository before the IDL compiler or applications can use it. T...

	Registering the Interface Repository Server
	The Interface Repository is accessed through an Orbix server. The interfaces to the Interface Rep...
	Orbix expects that the server is registered with the name IFR as a shared server. The Interface R...
	The Interface Repository server can be launched by the Orbix daemon, or it can be launched manual...
	This has the advantage that the Interface Repository can initialize itself before any other proce...
	The server executable file can take the following options:
	Print a summary of switches.
	Immediately load data from the Interface Repository data directory. The default is not to do this...
	Specify the timeout in seconds for the Interface Repository server. The default timeout is infinite.
	Print version information about the Interface Repository.

	Adding IDL Definitions
	The Orbix utility putidl allows you to enter all the definitions in a single IDL source file into...
	For example, the following command adds the definitions in the file banksimple.idl to the Interfa...
	The putidl utility parses the definitions in the file banksimple.idl and integrates the definitio...
	If you modify the file banksimple.idl, you can update the contents of the Interface Repository by...
	Although putidl takes an IDL file as an argument, the Interface Repository does not store informa...

	Reading the Interface Repository Contents
	The readifr utility allows you to read a specified IDL definition from the Interface Repository. ...
	This utility prints the IDL definition to the standard output.
	If you use readifr to view an IDL interface definition, you can instruct it to also display all d...

	Removing IDL Definitions
	The rmidl utility allows you to remove an IDL definition from the Interface Repository. This util...
	For example, to remove information about the IDL operation create_Account() defined on interface ...
	The rmidl command removes definitions recursively. For example, to remove the module Finance and ...
	Part II Orbix C++ GUI Tools

	5
	The Orbix Configuration Explorer
	Components of an Orbix system are configured using a number of configuration files, as described ...
	The Orbix configuration files configure the main components of Orbix, and each Orbix installation...
	The configuration files include settings that affect the configuration of Orbix and settings that...
	By default, the Configuration Explorer allows you to configure settings that are:
	• Common to multiple IONA products.
	• Orbix-specific
	• OrbixNames-specific

	Starting the Configuration Explorer
	You can run the Configuration Explorer from the Windows Start menu, or by entering configuratione...
	Figure 5.1: Orbix Configuration Explorer

	This tool includes the following elements:
	• A menu bar.
	• A toolbar.
	• A navigation tree.
	• A text box.
	• A text pane.

	At startup, the Orbix Configuration Explorer opens the iona.cfg root configuration file. By defau...

	Configuring Common Settings
	To configure settings that are common to multiple IONA products, select the Common icon in the na...
	Figure 5.2: Common Configuration Settings

	The default Common configuration settings are as follows:
	IT_DAEMON_PORT
	The TCP port number on which the Orbix daemon receives communications from clients.
	IT_DAEMON_ SERVER_ BASE
	The first TCP port number assigned by the daemon to a server. Each server listens on a single por...
	IT_IMP_REP_PATH
	The full path name of the Orbix Implementation Repository directory.
	IT_INT_REP_PATH
	The full path name of the Orbix Interface Repository directory.
	IT_LOCAL_DOMAIN
	The Internet domain name for your local network.
	IT_JAVA_INTERPRETER
	The full path name to the Java Runtime Environment binary executable. This installs with Orbix by...
	IT_DEFAULT_CLASSPATH
	The default classpath used when Java servers are automatically launched by the daemon.

	To update any of these settings, do the following:
	2. Double-click on this variable in the Value column
	3. Enter your new setting.
	4. Select the Apply button to save your setting to the appropriate configuration file.
	You cannot undo settings that you have saved to file.

	Configuring Orbix-Specific Settings
	To configure settings that apply to Orbix only, select the Orbix icon in the navigation tree. Thi...
	Figure 5.3: Configuring Orbix-Specific Settings

	By default, the Orbix configuration settings include the following:
	IT_ERRORS
	The full path name of the Orbix error messages file.
	IT_CONNECT_ATTEMPTS
	If a client fails to connect to a server, Orbix retries the connection attempt every two seconds ...

	To update these settings, do the following:
	2. Double-click on this variable in the Value column to enter your setting.
	3. Select the Apply button to save your setting to the appropriate configuration file.
	You can also modify OrbixNames-specific configuration variables by following these steps. Refer t...

	Customizing Your Configuration
	By default, the Orbix Configuration Explorer displays the configuration variables contained in th...
	• Creating configuration variables.
	• Creating configuration scopes.
	• Creating configuration files.

	Creating Configuration Variables
	By default, the Configuration Explorer displays a default subset of the available configuration v...
	Figure 5.4: Creating Configuration Variables

	To create a configuration variable, perform the following steps:
	2. Double-click the new entry in the Name column of the text pane.
	3. Enter a name for your configuration setting.
	4. Double-click the entry in the Value column.
	5. Enter a value for your configuration variable
	6. Select the Apply button to save your setting to the appropriate configuration file.
	Figure 5.5: Creating and Deleting Configuration Variables

	Valid Names for Configuration Variables and Scopes
	You can use the following characters when naming configuration variables and scopes:
	There are no restrictions on the valid characters for configuration values.

	Deleting Configuration Variables
	You cannot delete the configuration variables included in the default configuration files. You ca...
	To delete a configuration variable, do the following:
	2. Select the Delete Configuration Variable button, shown in Figure�5.5.
	3. Select the Apply button to save your setting to the appropriate configuration file.
	Refer to Appendix�A, “Configuration Variables” on page�79 for a complete list of both common and ...

	Creating Configuration Scopes
	The Configuration Explorer displays the configuration variables contained in the default configur...
	In the navigation tree, user-defined configuration scopes are displayed as branching from default...
	To create a user-defined configuration scope, do the following:
	2. In the Name text box, enter the name of your configuration scope.
	3. Select the Apply button to save your setting to the appropriate configuration file.
	You can then create new configuration variables within your configuration scope, as described in ...

	Deleting Configuration Scopes
	You cannot delete the default configuration scopes included in the default configuration files. H...
	To delete a configuration scope, do the following:
	2. Select the EditÆDelete Scope menu option. Alternatively, you can use the Delete Scope button o...
	Select the Apply button to save your setting to the appropriate configuration file.
	Figure 5.6: Creating Configuration Scopes

	Creating Configuration Files
	You can extend the Configuration Explorer to display custom configuration files. To create a conf...
	You can then create new configuration scopes and variables within your new configuration file as ...

	6
	The Orbix Server Manager
	The Implementation Repository is the component of Orbix that maintains registration information a...
	• Browse an Implementation Repository.
	• Register new servers.
	• Modify existing server registration details.

	Starting the Server Manager
	Figure 6.1: Server Manager Main Window
	• A menu bar.
	• A toolbar.
	• A navigation tree.
	• A server information pane.
	• A status bar.

	Connecting to an Implementation Repository
	1. Select HostÆConnect. The Connect to Host dialog box appears, as shown in Figure�6.2.
	Figure 6.2: Connect to Host Dialog Box

	2. In the Host Name text box, enter the name or IP address of the host on which the required Orbi...
	3. In the Port Number text box, enter the TCP/IP port number on which the Orbix daemon runs. To m...
	4. Select the Connect button. The main Server Manager window displays the contents of the Impleme...
	Figure 6.3: Connection to an Implementation Repository

	Creating a New Directory
	1. Select the Implementation Repository on the appropriate host.
	2. Select DirectoryÆNew. The Directory Name text box appears in the right hand pane of the main w...
	3. In the Directory Name text box, enter the name of the new directory.
	4. Select the Apply button. The main Server Manager window now includes the new directory when di...
	Figure 6.4: Creating a New Directory

	Registering a Server
	1. Select the Implementation Repository directory in which you wish to register the server. For e...
	2. Select ServerÆNew. A tabbed folder appears in the right pane of the main window as shown in Fi...
	3. Enter the server name in the Server Name text box on the General tab.
	4. If the server is an Java server, select the OrbixWeb Server check box.
	5. By default, only the user who registers the server can run clients that launch the server or i...
	To provide server access rights to other users, select the Rights tab. The Rights tab is describe...
	6. The default server primary activation mode is shared. The default secondary activation mode is...

	To modify the server activation details, select the Activation tab. The Activation tab is describ...
	Figure 6.5: Registering a New Server

	Providing Server Access Rights to Users
	• Launch rights
	• Invoke rights
	1. In the appropriate area, enter the user identifier in the text box. To grant these rights to a...
	2. Select Add.
	1. In the appropriate user list, select the required user identifier.
	2. Select Remove.
	Figure 6.6: Providing Server Access Rights

	Specifying Server Activation Details
	Figure 6.7: Specifying Server Activation Details
	Activation Modes
	Figure 6.8: Secondary Activation Modes

	Launch Commands
	Shared Activation Mode
	1. Enter the server launch command in the Command text box.
	2. Enter a * character in the Marker text box.
	3. Select Add.

	UnShared Activation Mode
	1. Enter a marker pattern in the Marker text box.
	2. Enter the launch command for this marker pattern in the Command text box.
	3. Select Add.

	Per-method Activation Mode
	1. Enter a method name in the Marker text box.
	2. Enter the launch command for this method in the Command text box.
	3. Select Add.

	Modifying Server Registration Details
	1. Select the server you wish to modify.
	The Server Manager displays the tabbed folder containing all the registration details for the sel...
	2. Select the required tab from the following:
	3. Enter the value in the appropriate section of the tab, as described in “Registering a Server” ...
	4. Select the Apply button.

	Launching a Persistent Server
	1. Select the server you wish to launch. The server must be registered in shared mode.
	2. Select ServerÆLaunch. If successful, this starts the server executable file specified in the s...
	Figure 6.9: Launching a Persistent Server

	Configuring the Server Manager
	1. In the main Server Manager window, select Server ManagerÆOptions. The Options dialog box appea...
	Figure 6.10: The Options Dialog Box

	2. By default, the Server Manager does not connect to an Orbix daemon at startup. To specify that...
	3. The Server Manager allows you to register C++ or Java servers. By default, the Server Manager ...
	To change this default, select Create Java Servers by default.
	4. You can also select the transport protocol used. The default protocol is IIOP (Internet Inter-...
	5. To enable on-line help, enter the Location of your internet browser in the text box provided.
	6. Select OK to commit the new configuration.
	Part III Appendices

	Appendix A Configuration Variables
	Common Configuration Variables
	Variable
	Description
	TCP port number for the Orbix daemon.
	The starting TCP port number for servers launched by the Orbix daemon.
	The number set in this variable is used together with that set in IT_DAEMON_SERVER_BASE to determ...
	This is a colon-separated list of full path names specifying the location of class files for the ...
	The full path name of the Implementation Repository directory.
	The full path name of the Interface Repository directory.
	The number set in this variable is used together with that set in IT_DAEMON_SERVER_BASE to determ...
	The name of the local internet domain, for example, iona.com.

	Orbix-Specific Configuration Variables
	Variable
	Description
	The activation policy (or mode) to be used for launching servers.
	Set to TRUE if a client is using a collocated server object.
	The maximum number of retries Orbix makes to connect a client to a server. The value specified is...
	Defines the protocol that Orbix uses to talk to the daemon. Valid values are POOP (Orbix protocol...
	The default encoder to be used, for example, XDR.
	The default communications protocol to be used, for example, TCP/IP.
	The initial number of threads used in the new threading model for the internal network thread pool.
	Controls the level of the diagnostic messages reported by Orbix.
	Allows a client built using an earlier version of Orbix to use anonymous binds omitting the marke...
	Enables multi-homed support for machines with multiple IP addresses. This is disabled by default ...
	The full path name of the error messages file.
	The number of file descriptors, which when exceeded, will cause an IOCallback warning to be gener...
	The number of file descriptors, which when exceeded, will stop the server from listening for new ...
	The version number of the GIOP protocol to be used.
	The port number to be used for server client connections when using IIOP.
	The IIOP version of IORs generated by Orbix servers, and IIOP messages understood by Orbix. Valid...
	The internal listener thread’s queue size.
	This is a colon-seperated list of IP addresses, or hostnames, on which Orbix servers and the Orbi...
	The name of the local host that is used in any IOR that is exported.
	Contains the marker pattern name that caused the server to be launched.
	A boolean variable that specifies if an IIOP reply is expected for an outgoing IIOP request conta...
	A response to a oneway is useful when you wish to catch system exceptions, or to enable the clien...
	The name of the encoder to be used by this server, for example, XDR.
	The name of the communications protocol to be used by this server, for example, TCP/IP.
	Contains the server marker name that caused the server to be launched.
	Contains the server method name that caused the server to be launched.
	Used to set the name of the server.
	The port number being used by the server when listening for new connections.
	Specifies whether the hostname or the host's IP address will appear in any exported IORs.
	Used to determine if Orbix 3.x style exceptions or new interoperable exceptions should be used. S...
	Specifies if reverse lookup (i.e. determining the hostname from an IP address) is enabled.

	Appendix B Orbix Daemon Options
	Specifies the log file to use for check-point information. In the event that a daemon is terminat...
	Unless an absolute path name is specified, the file is placed in a directory relative to that fro...
	(NT-only) Redirects 'stdout' to the file when Orbix Daemon is started as an NT service. Unless an...
	Outputs the daemon’s interoperable object reference (IOR) to the specified file.
	Unless an absolute path name is specified, the file is placed in a directory relative to that fro...
	(NT-only) Installs the daemon as an NT service. The service must be started manually using the Se...
	(UNIX-only) Specifies the maximum number of socket descriptors, and thus, the maximum number of c...
	This option does not exist on AIX machines.
	By default, the maximum number of descriptors is determined by the system’s limit. This is normal...
	(UNIX only) Indicates that if the daemon runs with super-user privileges, servers launched by the...
	Using the -o switch reduces the security risks associated with easily faked remote user IDs, If t...
	Runs the daemon in protected mode. In this mode, only clients running as the same user as the dae...
	Specifies the frequency (in seconds) at which orbixd’s child processes should be reaped. The defa...
	Runs the daemon in silent mode. By default the daemon outputs some trace information.
	Outputs more than the default trace information while the daemon is running.
	Allows invocations on a manually-launched unregistered server. This means that the manually- laun...
	Sets the time limit in seconds for establishing that a connection to the daemon is fully operatio...
	Outputs the daemon version number and a summary of the configuration details that a new daemon pr...
	(NT only) Uninstalls the daemon as an NT service.
	Appendix C Command Reference
	This appendix acts as a reference for the command-line interface to Orbix. The commands described...
	Command Summary
	The following table shows the available commands:
	Purpose
	Commands

	Configuration
	dumpconfig

	Server Registration
	putit, rmit

	Listing Server Information
	lsit, psit, catit

	Process Management
	pingit, killit

	Implementation Repository Directories
	mkdirit, rmdirit

	Security
	chownit, chmodit

	Interface Repository Management
	putidl, readifr, rmidl
	This appendix describes each command in alphabetical order.

	catit
	The catit command outputs full information about a given Implementation Repository entry.
	Syntax
	Options
	Outputs the command version information.
	Indicates which host to use.
	Display the port number / number of servers associated with this server. This information would h...

	chmodit
	The chmodit command modifies access control for a server. For example, use it to grant launch and...
	Syntax
	Options
	Outputs the command version information.
	Indicates which host to use.
	The -a option specifies that a user or group is to be added to an access control list (ACL) for a...
	By specifying the i option, you can add a user or group to (i+) or removed from (i-) the invoke ACL.
	By specifying the l option, you can add a user or group to (l+) or removed from (l-) the launch ACL.
	By default, only the owner of an Implementation Repository entry can launch or invoke the registe...
	There is also a pseudo-group name called all that you can use to implicitly add all users to an a...

	chownit
	The chownit command makes changes to the ownership of Implementation Repository entries and direc...
	Syntax
	Options
	Outputs the command version information.
	Indicates which host to use.
	The -s option enables you to change the ownership of an Implementation Repository entry.
	The -d option modifies the ACL on a directory allowing you to add (+) or remove (-) a user or gro...
	Only the current owner of an Implementation Repository entry has the right to change its ownership.
	An Implementation Repository directory can have more than one owner. An ownership access control ...
	Orbix supports the pseudo-group all which, when added to an ACL, grants access to all callers.

	dumpconfig
	The dumpconfig utility outputs the values of the configuration variables used by Orbix, and the l...
	Syntax
	Options
	Outputs the command version information.

	killit
	The killit command kills (stops) a running server process.
	Syntax
	Outputs the command version information.
	Indicates which host to use.
	Specifies a marker value to identify a specific object, or set of objects, to which the killit co...
	Where there is more than one server process, use the marker parameter to select between different...
	The killit command uses the SIGTERM signal. This command does not remove the entry from the Imple...

	lsit
	The lsit command lists entries in an Implementation Repository directory.
	Syntax
	Options
	Outputs the command version information.
	Indicates which host to use.
	Recursively lists all subdirectories and entries.

	mkdirit
	The mkdirit command creates a new registration directory.
	Syntax
	Options
	Outputs the command version information.
	Indicates which host to use.
	Hierarchical names are extremely useful in structuring the name space of servers in Implementatio...

	pingit
	The pingit command tries to contact an Orbix daemon to determine if it is running.
	Syntax
	Options
	Outputs the command version information.
	Indicates which host to use.

	psit
	The psit command outputs a list of server processes known to an Orbix daemon.
	Syntax
	Options
	Outputs the command version information.
	Indicates which host to use.
	One line is output for each server process. Each line has values for the following fields:
	The fields are as follows:

	Name
	The server name.
	Marker
	The object marker pattern associated with the process.
	Code
	The data encoder used; for example, xdr.
	Comms
	The communications protocol used; for example, tcp.
	Port
	The port number used by the communications system.
	Status
	One of “automatic”, “manual” or “inactive”.
	Per-Client?
	Indicates whether the server is a per-client server.
	OS-pid
	The operating system process.

	putidl
	The putidl command allows you to add a set of IDL definitions to the Interface Repository. This c...
	The Interface Repository server must be available for this command to succeed.
	Syntax
	Options
	Displays the allowed options for this command.
	Outputs the command version information.
	Indicates the host at which the Interface Repository server is available.
	Indicates that the command should run in silent mode.

	putit
	The putit command creates an entry in the Implementation Repository that represents how Orbix can...
	Syntax
	Options
	Executing putit without any arguments outputs a summary of its options. The options are as follows:
	Outputs the utility’s version information without executing the command. This option is available...
	Specifies the host name on which to execute the putit command. By default, the command is execute...
	Specifies that a separate server process is used for each user. You can use this activation mode ...
	Specifies that a separate server process is used for each client process. You can use this activa...
	Specifies that all active objects managed by a given server on a given machine are contained in t...
	Specifies that as an object for a given server is invoked, an individual process is activated to ...
	The -java switch is an extension of the standard Orbix putit command. This indicates that the spe...
	-oc ORB_class
	Passes -Dorg.omg.CORBA.ORBClass=ORB_class to the Java interpreter. You should use this switch wit...
	For OrbixWeb servers, the parameter to this switch should be as follows:
	IE.Iona.OrbixWeb.CORBA.ORBClass.
	You should pass this string to the Java interpreter before the server class name.
	-os ORB_singleton_class
	Passes -Dorg.omg.CORBA.ORBSingletonClass= ORB_singleton_class to the Java interpreter. You should...
	For OrbixWeb servers the parameter to this switch should be IE.Iona.OrbixWeb.CORBA.ORBSingletonCl...
	The -os and -oc switches provide foreign ORB support.
	-jdk2
	Passes the following system properties to the Java interpreter:
	You must pass this string to the Java interpreter before the server class name. You should use th...

	Specifies that each invocation to a server results in a process being activated to handle that re...
	Specifies a well-known port number for a server so that Orbix, if necessary, activates a server t...
	The following options apply to the shared mode:

	This switch is applicable only to servers registered in shared activation mode. It instructs the ...
	The default number of servers is 1.
	Specifies that the server can only be launched persistently, that is, manually. The server is nev...
	If the -u option is passed to the Orbix daemon, such servers do not have to be registered in the ...
	The following option applies to the shared and unshared modes:

	Specifies a marker value to identify a specific object, or set of objects, to which the putit app...
	Marker names specified using putit cannot contain white space.
	The following option applies to the per-method mode:

	Specifies a method name to identify a specific method, or set of methods, to which the putit appl...

	Notes
	The putit command is often used in its simplest form:
	The command_line is an absolute path name specifying the executable file that implements the serv...
	The default settings for putit mean that the simplest form of the command is equivalent to any of...
	By default, putit uses the Implementation Repository on the local host. By default, putit uses th...

	Server Activation Modes
	Activation modes control how servers are implemented when they become processes of the underlying...
	You should note the following:
	Pattern Matching for Markers and Methods
	Pattern matching specifies a set of objects for the -marker option, or a set of methods for the -...
	Matches any sequence of characters.
	Matches any single character.
	Matches any characters belonging to the specified set, for example, [abc].
	Matches any characters not belonging to the specified set, for example, [!abc].
	Equivalent to [!SET], for example, [^abc].
	A SET, as presented above, is composed of characters and ranges. A range is specified using a hyp...
	Finally, since each of the characters *?!^-[]\ is special, in the sense that it is interpreted by...
	Examples of patterns are:

	matches “hello”.
	matches any text beginning with “he”, for example, “he”, “help”, “hello”.
	matches any three character text beginning with “he”, for example, “hec”.
	matches “a”, “b” or “c”.
	matches “hea”, “heb” or “hec”.
	matches any alphanumeric character.
	matches any non alphanumeric character.
	matches _get_balance and _set_balance.
	matches makeDeposit and makeWithdrawal.
	If an activation order exists in an Implementation Repository entry for a specific object marker ...

	readifr
	The readifr command allows you to view an IDL definition stored in the Interface Repository. This...
	The Interface Repository server must be available for this command to succeed.
	Syntax
	Options
	Displays the allowed options for this command.
	Outputs the command version information.
	Indicates the host at which the Interface Repository server is available.
	Displays all derived types of an IDL interface.
	Indicates that the command should not prompt the user for input. This is useful when running read...

	rmdirit
	The rmdirit command removes a registration directory.
	Syntax
	Options
	Outputs the command version information.
	Indicates which host to use.
	Recursively deletes the directory and all of the Implementation Repository entries and sub-direct...
	The rmdirit command returns an error if it is called without the -R option on a non-empty registr...

	rmidl
	The rmidl command allows you to remove an IDL definition from the Interface Repository. This comm...
	The Interface Repository server must be available for this command to succeed.
	Syntax
	Options
	Displays the allowed options for this command.
	Outputs the command version information.
	Indicates the host at which the Interface Repository server is available.

	rmit
	Removes an Implementation Repository entry or modifies an entry.
	Syntax
	Options
	Outputs the command version information.
	Indicates which host to use.
	Specifies a marker value to identify a specific object, or set of objects, to which the rmit comm...
	Specifies a method name to identify a specific method, or set of methods, to which the rmit applies.
	This command does not kill any currently running processes associated with a server.
	You can use pattern matching for markers and methods as described in the putit command reference....

	Appendix D Error Messages and Exceptions
	Setting Error Messages
	System Exceptions Defined by CORBA
	Identifier
	Exception
	Description
	10000
	UNKNOWN
	The unknown exception.
	10020
	BAD_PARAM
	An invalid parameter was passed.
	10040
	NO_MEMORY
	Dynamic memory allocation failure.
	10060
	IMP_LIMIT
	Violated implementation limit.
	10080
	COMM_FAILURE
	Communication failure.
	10100
	INV_OBJREF
	Invalid object reference.
	10120
	NO_PERMISSION
	No permission for attempted operation.
	10140
	INTERNAL
	ORB internal error.
	10160
	MARSHAL
	Error marshalling parameter/result.
	10180
	INITIALIZE
	ORB initialization failure.
	10200
	NO_IMPLEMENT
	Operation implementation unavailable.
	10220
	BAD_TYPECODE
	Bad TypeCode.
	10240
	BAD_OPERATION
	Invalid operation.
	10260
	NO_RESOURCES
	Insufficient resources for request.
	10280
	NO_RESPONSE
	Response to request not yet available.
	10300
	PERSIST_STORE
	Persistent storage failure.
	10320
	BAD_INV_ORDER
	Routine invocations out of order.
	10340
	TRANSIENT
	Transient failure; reissue the request.
	10360
	FREE_MEM
	Cannot free memory.
	10380
	INV_IDENT
	Invalid identifier syntax.
	10400
	INV_FLAG
	Invalid flag was specified.
	10420
	INTF_REPOS
	Error accessing interface repository.
	10440
	BAD_CONTEXT
	Error processing context object.
	10460
	OBJ_ADAPTOR
	Failure detected by object adaptor.
	10480
	DATA_CONVERSION
	Data conversion error.

	System Exceptions Specific to Orbix
	Identifier
	Orbix Exception
	Description
	10500
	FILTER_SUPPRESS
	Suppress exception raised in per-object pre-filter.
	10540
	ASCII_FILE
	ASCII file error.
	10560
	LICENCING
	Licensing error.
	10600
	IIOP
	IIOP error.
	10620
	NO_CONFIG_VALUE
	No configuration value set for one of the mandatory configuration entries.

	Index

