Orbix Administrator’s
Guide Java Edition

IONA Technologies PLC
September 2000

Orbix is a Registered Trademark of IONA Technologies PLC.

While the information in this publication is believed to be accurate, IONA Technologies PLC makes no warranty of any kind
to this material including, but not limited to, the implied warranties of merchantability and fitness for a particular purpose.
IONA Technologies PLC shall not be liable for errors contained herein, or for incidental or consequential damages in
connection with the furnishing, performance or use of this material.

Java is a trademark of Sun Microsystems, Inc.

COPYRIGHT NOTICE

No part of this publication may be reproduced, stored in a retrieval system or transmitted, in any form or by any means,
photocopying, recording or otherwise, without prior written consent of I0NA Technologies PLC. No third party intellectual
property right liability is assumed with respect to the use of the information contained herein. IONA Technologies PLC
assumes no responsibility for errors or omissions contained in this book. This publication and features described herein are
subject to change without notice.

Copyright © 1991-2000 IONA Technologies PLC. All rights reserved.

Al products or services mentioned in this manual are covered by the trademarks, service marks, or product names as
designated by the companies who market those products.

M2473

Contents

Preface
Audience
Organization of this Guide
Document Conventions

Part |

Orbix Java Administration

Chapter | Overview of Orbix Java Administration
Components of the Orbix Java Architecture
Servers and the Implementation Repository

The Interface Repository
Administration of Orbix Components

Chapter 2 Configuring Orbix Java
Accessing Configuration Parameters
Configuration Parameter Formats
Using Orbix Java Configuration Files
Configuring Root Settings
Configuring Common Parameters

Configuring Orbix Java-Specific Parameters

Using Configuration API Calls
Accessing Configuration ltems
Accessing Configuration Properties
Accessing Configuration Files

Using Command-Line Arguments
Using Java System Properties

Multi-Homed Hosts

Multi-Homed Configuration Variables

vii
vii
vii

HWNDN -

© Vv owow~Noo

10
I
I
12
13
13
14

Orbix Administrator’s Guide Java Edition

Chapter 3 Managing the Implementation Repository

Implementation Repository Entries
Basic Implementation Repository Usage
Registering a Server using Putitj
Registering a Server on a Remote Host
Organizing Servers into Hierarchies
Removing a Registered Server
Listing Registered Servers
Displaying a Server Entry
Contacting an Orbix Java Daemon
Starting Servers Manually
Registering a Manual Server
(orbixd)
Starting the Orbix Java Daemon for Unregistered Servers
Stopping Servers
Security of Registered Servers
Modifying Server Access
Changing Owners of Registered Servers
Determining the User and Group IDs of Running Servers
(orbixd)
Server Activation Modes
Registering Unshared Servers
(orbixd)
Using Markers to Specify Named Objects
Registering Per-Method Servers
(orbixd)
Secondary Activation Modes
Managing Server Port Selection
Registering Servers with Specified Ports
(orbixd)
Controlling Port Allocation with Configuration Variables
Activation Issues Specific to IIOP Servers

Chapter 4 Managing the Interface Repository

Configuring the Interface Repository
Registering the Interface Repository Server
Adding IDL Definitions

Reading the Interface Repository Contents

15
16
17
17
19
20
20
21
21
22
23

23
24
25
25
26
26

27
28

30
30

32
33
34

34
34
35

37
38
38
39
40

Contents

Removing IDL Definitions 40
Chapter 5 Using Orbix Java on the Internet 43
About Wonderwall 43
Using the Wonderwall with Orbix Java as a Firewall Proxy 44
Orbix Java Configuration Parameters Used to Support the Wonderwall 45
Using the Wonderwall as an Intranet Request Router 48
Applet Signing Technology 49
Overview 49

Part Il

Orbix Java GUI Tools

Chapter 6 Orbix Java Configuration Explorer 53
Starting the Configuration Explorer 54
Configuring Common Settings 55
Configuring Orbix Java-Specific Settings 58
Customizing Your Configuration 59

Creating Configuration Variables 60
Creating Configuration Scopes 62
Creating Configuration Files 63

Chapter 7 The Orbix Java Server Manager 65
Starting the Orbix Java Server Manager 66
Connecting to an Implementation Repository 67
Creating a New Directory 69
Registering a Server 71

Providing Server Access Rights to Users 73
Specifying Server Activation Details 75
Modifying Server Registration Details 78
Launching a Persistent Server 79
Configuring the Server Manager 80

Orbix Administrator’s Guide Java Edition

Chapter 8 The Interface Repository Browser 83
Starting the Interface Repository Browser 84
Connecting to an Interface Repository 85
Adding IDL to the Interface Repository 86
Viewing the Interface Repository Contents 87

Viewing Information about IDL Definitions 89

Viewing Source Code for IDL Definitions 89

Exporting IDL Definitions to a File 90

Configuring the Interface Repository Browser 91
Part lll

Appendices

System Exceptions Defined by CORBA 133

Index 135

vi

Preface

The Orbix Administrator's Guide Java Edition describes the command-line
utilities and GUI tools used during Orbix Java setup and administration.

Orbix documentation is periodically updated. New versions between releases
are available at this site:

htt p: // waw. i ona. com docs/ or bi x/ or bi x33. ht ni

If you need assistance with Orbix Java or any other IONA products, contact
IONA at support @ona. com Comments on IONA documentation can be sent
to doc- f eedback@ ona. com

Audience

The Orbix Administrator’s Guide Java Edition is designed as an introduction for
Orbix Java administrators and programmers. It is assumed that you are familiar
with relevant sections of the Orbix Programmer’s Guide Java Edition and the
Orbix Programmer’s Reference Java Edition .

Organization of this Guide

This guide is divided into the following three parts:

Part I, Orbix Java Administration

Chapter |, “Overview of Orbix Java Administration”

This chapter introduces the main components of the Orbix Java environment.
You should read this chapter first to familiarize yourself with terminology used
throughout the guide.

vii

Orbix Administrator’s Guide Java Edition

viii

Chapter 2, “Getting Started”

This is a quick start chapter on how to configure Orbix Java, start the Orbix Java
daemon process, and how to register a server that automatically starts when it is
needed.

Chapter 3, “Configuring Orbix Java”

This chapter describes how to configure Orbix Java and how to use the Orbix
Java configuration Advanced Programming Interfaces (APIs).

Chapter 4, “Managing the Implementation Repository”

This chapter explains more about using the Implementation Repository including
registering servers, displaying and organizing server entries, and security issues.

Chapter 5, “Managing the Interface Repository”

This chapter describes how to configure Orbix Java to store object interface
definitions so that the applications can learn about them at runtime.

Chapter 6, “Using Orbix Java on the Internet”

This chapter describes how client applets can overcome security restrictions
using IONA’s Orbix Wonderwall or signed applets.

Part Il, Orbix Java GUI Tools

Chapter 7, “Orbix Java Configuration Explorer”

This chapter describes how you can configure an OrbxWeb installation using the
Orbix Java Configuration Tool.

Chapter 8, “The Orbix Java Server Manager”

This chapter describes how you can register servers in the Implementation
Repository using the Orbix Java Server Manager.

Chapter 9, “The Interface Repository Browser”

This chapter describes how you can add IDL definitions to the Interface
Repository using the Interface Repository browser.

Preface

Part Ill, Appendices

Appendix A, “Configuration Parameters”

This appendix shows the configuration parameters that Orbix Java recognizes.

Appendix B, “Orbix Java Daemon Options”

This appendix describes the start-up options that the Orbix Java daemon can
use.

Appendix C, “Orbix Java Command-Line Utilities

This appendix describes the syntax and the options for each Orbix Java
command you can use.

Appendix D, “System Exceptions”

This appendix outlines the system exceptions defined by CORBA, and the
system exceptions that are specific to Orbix Java.

ix

Orbix Administrator’s Guide Java Edition

Document Conventions

This guide uses the following typographical conventions:

Constant w dth

Italic

Constant width (courier font) in normal text represents
portions of code and literal names of items such as
classes, functions, variables, and data structures. For
example, text might refer to the CCORBA: : (bj ect class.

Constant width paragraphs represent code examples or
information a system displays on the screen. For example:

#i ncl ude <stdi o. h>

Italic words in normal text represent emphasis and new
terms.

Italic words or characters in code and commands
represent variable values you must supply, such as
arguments to commands or path names for your

particular system. For example:

% cd / users/your_name

Note: some command examples may use angle brackets
to represent variable values you must supply.

This guide may use the following keying conventions:

No prompt

%

When a command’s format is the same for multiple
platforms, no prompt is used.

A percent sign represents the UNIX command shell
prompt for a command that does not require root
privileges.

A number sign represents the UNIX command shell
prompt for a command that requires root privileges.

The notation > represents the DOS, Windows NT, or
Windows 95 command prompt.

Horizontal or vertical ellipses in format and syntax
descriptions indicate that material has been eliminated
to simplify a discussion.

Preface

[]

{}

Brackets enclose optional items in format and syntax
descriptions.

Braces enclose a list from which you must choose an
item in format and syntax descriptions.

A vertical bar separates items in a list of choices
enclosed in { } (braces) in format and syntax
descriptions.

Orbix Administrator’s Guide Java Edition

xii

Part |

Orbix Java Administration

Overview of Orbix Java
Administration

Orbix Java is a software environment that allows you to develop
distributed applications. This chapter introduces the main
components of the Orbix Java environment.

As described in the Orbix Programmer’s Guide Java Edition , Orbix Java allows you to
build distributed software systems composed of interacting objects. Orbix Java is
a full implementation of the Object Management Group (OMG) Common
Object Request Broker Architecture (CORBA).

An Orbix Java application consists of one or more client programs that
communicate with distributed objects located in server programs. Clients can
communicate with distributed objects from any host in a network through
clearly-defined interfaces specified in the CORBA Interface Definition Language
(IDL).

Orbix mediates the communication between clients and distributed objects. This
mediation allows clients to communicate with objects without concern for
details such as:

® The hosts on which the objects exist.
® The operating system that these hosts run.
® The programming language used to implement the objects.

The Orbix architecture includes several configurable components that support
the mediation of communications between clients and objects.

Orbix Administrator’s Guide Java Edition

Components of the Orbix Java Architecture

An Orbix Java client invokes IDL operations on a distributed object using normal
Java function calls, as if the object were located in the client’s address space.
Orbix Java converts these function calls to a series of network messages and
sends these messages to the server process that contains the target object. At
the server, Orbix Java receives these messages and translates them to function
calls on the target object, as shown in Figure I.1.

Client Host Server Host
Client Server
Application
Application Code
Code Object
%
"I Operation
Orbix Call
Code
Orbix Code
Network

Figure 1.1: An IDL Operation Call on a Distributed Object

Servers and the Implementation Repository

Each Orbix Java server program has a name, unique within its host machine. A
server can consist of one or more processes. When a client invokes a method
on an object, a server process containing the target object must be available. If
the process is not running, the Orbix Java daemon at the server host attempts to
launch the server process automatically.

To allow an Orbix Java daemon to manage the server processes running in the
system, Orbix Java provides an Implementation Repository. The Implementation
Repository maintains a mapping from a server’s name to the filename of the
executable code implementing that server. The server code must therefore be
registered with the Implementation Repository.

Overview of Orbix Java Administration

Client Host Server Host

Client Server

Application
Code @ A

] Initial EEE——
Operation - 19

Orbix ‘ Call Orbix

Code Daemon
e

Implementation
Repository

Figure 1.2: Automatic Launch of an Orbix Server Process

As shown in Figure 1.2, the Orbix Java daemon launches a server process as
follows:

I. A client makes its first operation call to an object located in a server.

2. The Orbix Java daemon reads the server details from the Implementation
Repository, including the server launch command.

3. If the required server process is not running, the Orbix Java daemon
executes the server launch command.

To allow the daemon to launch server processes, you must maintain records in
the Implementation Repository for each server in your system.

The Interface Repository

Orbix Java maintains object specifications by storing an object’s IDL interface in a
database called the Interface Repository. Some client applications use the
Interface Repository to determine object interfaces and all information about
those interfaces at runtime.

A client accesses the Interface Repository by contacting an Interface Repository
server. This is a standard Orbix Java server that provides a programming
interface, defined in IDL, to the Interface Repository.

Orbix Administrator’s Guide Java Edition

To allow clients to obtain information about IDL definitions implemented in your
system, you must add those definitions to the Interface Repository.

Administration of Orbix Components

To allow Orbix Java applications to run in your network, you must do the
following:

® Configure Orbix Java for your network and environment, using the Orbix
Java configuration files.

® Run the Orbix Java daemon process.
® Register servers in the Implementation Repository.

Part I of this guide, Orbix Java Administration, presents the configuration files and
command-line utilities that allow you to achieve each of these tasks.

Part Il of this guide, Orbix Java GUI Tools, presents the graphical user interfaces
that provide an alternative way to manage Orbix components.

Configuring Orbix Java

You may need to change the default Orbix Java configuration
settings. Orbix Java provides several mechanisms to aid
configuration. This chapter describes the Orbix Java configuration
format and how to use the Orbix Java configuration APIs.

You may need to change default configuration settings for a variety of reasons,
including the following:

® Enabling or disabling parts of the functionality.
® Altering the use of specific port numbers.
® Optimizing the size of tables used to track objects in servers.

® Reducing the number of classes downloaded for use in applets.

Orbix Administrator’s Guide Java Edition

Accessing Configuration Parameters

You can get and set the values of Orbix Java configuration parameters using the
following mechanisms.

® Using the Configuration Explorer to access configuration files.
® Using Orbix Java system properties.

® Using an applet’s <par an> HTML tag.

® Using an application’s command-line parameters.

® Using Java system properties; for example, loaded from a file.

Configuration Parameter Formats

The various configuration parameter-retrieval mechanisms need to use slightly
different formats to store the parameters and their values. In the examples that
follow, the string | T_PARAMETER represents the Orbix Java configuration
parameter being set, while val ue represents the value it is set to.

Mechanism Format

Configuration Files Q bi xVeb {
| T_PARAMETER=val ue

}
System Properties - DO bi xVéb. | T_PARAMETER=val ue

Applet Tags <PARAM NAME=" Or bi x\Wéb. | T_PARAMETER'
VALUE="val ue" >

The applet tags must be used in the HTML
document that loads the applet, between the
<APPLET> and </ APPLET> HTML tags.
Command-Line - O bi xWb. | T_PARAMETER=val ue
Arguments

Configuring Orbix Java

Note: You can use the OCDEBASE attribute of the <APPLET> tag to specify the
location of files required by the applet. These include packages such
or g. ong. CORBA and the Orbix Java configuration files. Refer to
“Developing Applets with Orbix Java” in the Orbix Programmer’s Guide
Java Edition . You will need to use the ARCH VE attribute to specify the
Orbix Java runtime O bi x\Wb. j ar.

Scoped Configuration Format

Configuration parameters common to multiple IONA products are scoped
within the Conmon prefix; for example, Conmon. | T_DAEMON_PCRT. Orbix Java-
specific configuration parameters are scoped within the O bi xWb prefix; for
example, O bi xWb. | T_HTTP_TUNNEL_PCRT.

Using Orbix Java Configuration Files

By default, the Orbix Java configuration files are located in the confi g directory
of your installation. Orbix Java provides a convenient configuration editor in the
form of the Orbix Java Configuration Explorer GUI tool. Refer to “Orbix Java
Configuration Explorer” on page 53 for details. This is the recommended way to
access Orbix Java configuration files.

By default, the configuration files are named as follows:

®* jona.cfg

® common. cfg

® orbi xweb3. cfg

® orbi xnanes3. cfg

® orbix3.cfg

For backwards compatibility, Orbix Java can also use O bi x\#b. properti es and
O bi x. cf g files that shipped with previous versions of Orbix Java.

Orbix Administrator’s Guide Java Edition

Configuring Root Settings

You can configure your root settings by editing the i ona. cf g file. This is the
root configuration file used by Orbix Java. This file uses the i ncl ude command
to link to all other IONA configuration files. You can also edit this file to include
links to customized configuration files.

The default, i ona. cf g file contains the following information:

/1 In file iona.cfg
cfg dir = "d:\iona\config\";

include cfg_dir + "common. cfg";
include cfg dir + "orbixnanmes3.cfg";
include cfg_dir + "orbixweb3.cfg";
include cfg_dir + "orbix3.cfg";
include cfg_dir + "orbixweb3.cfg";

You should set the cf g_di r parameter to <i ona_install _di r>\config\.

Configuring Common Parameters

You can configure your common settings by editing the conmon. cf g file.This file
contains a list of configuration parameters that are common to multiple IONA
products. The configuration parameters in this file are declared within the scope
Common{.. . . }, for example:

/1 In file commn.cfg

Common {
The port nunber for the O bix daenon.
| T_DAEMON_PORT = "1570";

The starting port number for daenopn-run servers.
| T_DAEMON_SERVER BASE = "1570";

The full path name of the Inplenmentation Repository
directory.
I T | MP_REP_PATH = cfg_dir + "Repositories\|npRep";

The full path name of the Interface Repository
directory.
I T_INT_REP_PATH = cfg_dir + "Repositories\|FR";

Configuring Orbix Java

The |l ocal DNS domai n nane.
I T LOCAL DOVAIN = "";

The full path nane to the JRE binary
executable that installs with O bix.
I T_JAVA | NTERPRETER="C:\ | ONA\ bi n\j re. exe";

The default classpath used when Java servers

are automatically |launched by the daenon.

| T_DEFAULT_CLASSPATH = cfg_dir +

"; C:\ I ONA\ bi n\ bongo. zi p; C:\ | ONA\ bi n\ mari nba. zi p;

C:\ | ONA\ bi n\ NScl asses. zi p; C:\ I ONA\ bi n\uti | s. zi p;

C:\IONA\bin\rt.jar; C:\1ONA\ bi n\ or bi xweb. jar;

C:\ | ONA\ Tool s\ Nani ngServi ceGUI\ NSGUI . j ar";

b

You can also use the prefix Common. to refer to individual entries in this file. For
example, Conmon. | T_DAEMON_PORT.

After installation, the comon. cf g file provides default settings for the main
environment parameters required by Orbix Java. You can change these default
settings by manually editing the configuration file, or by using the Configuration
Explorer, or by setting a parameter in the user environment. An environment
parameter, if set, takes precedence over the value set in the configuration file.
Environment parameters are not scoped with a Conmon. prefix.

Configuring Orbix Java-Specific Parameters

You can configure your Orbix Java-specific settings by editing the

or bi xweb3. cf g file. This file contains configuration parameters that are specific
to Orbix Java only. The configuration parameters in this file are declared within
the scope O bi xVe¢b{...}.

You can also use the prefix O bi xXW&b. to refer to individual entries in this file.
For example, Or bi xWeb. | T_ANY_BUFFER_SI ZE.

Note: Orbix Java uses the | T prefix, which represents “IONA Technologies”, to
distinguish its configuration parameters.

Orbix Administrator’s Guide Java Edition

The or bi xnanes3. cf g file contains configuration parameters that are specific to
OrbixNames. Refer to the OrbixNames Programmer’s and Administrator’s Guide for
more details.

Finding Orbix Java Configuration Information

The dunpconfi g utility enables you to obtain information about your Orbix
configuration. This utility outputs the values of the configuration parameters
used by Orbix Java, and the location of the Orbix Java configuration files in your
system. It also reports if there are any syntax errors in your configuration files
that would normally go unrecognized by Orbix Java. The dunpconfi g utility is
especially useful if you need to know where Orbix Java is being configured from.

The orbi xdj -V command also enables you to obtain information about your
Orbix Java configuration. This outputs the current values of the configuration
parameters used by Orbix Java.

Using Configuration API Calls

You can get and set Orbix Java configuration variables using the methods
provided in class | E. | ona. O bi x\b. Feat ures. O bGonfi g. Orbix Java
configuration is on a per-ORB basis, allowing support for multiple ORBs.

Accessing Configuration Items

You can use the following methods to get and set specific configuration
parameters by passing the name of the parameter as a string:

public String getConfigltem String);

public synchronized void setConfigltem(String, String);

Note: Because Orbix Java configuration is on a per-ORB basis, O bGonf i g calls
should be made on the object returned by calling confi g() on the
selected ORB; for example,
nyQrb. config().getConfigltem(“I T_BIND USING IICP").

10

Configuring Orbix Java

Accessing Configuration Properties
You can use the following methods to get and set multiple configuration
parameters at once, using the j ava. uti |l . Properti es object:

public synchronized Properties getConfiguration();

public synchroni zed voi d set Configuration(Properties);

The get Conf i gurati on() method returns the configuration parameters that
you set programmatically.

To set configuration, you must first set your configuration parameters
programmatically and then pass your Properti es object to the
set Confi gurati on() method.

Accessing Configuration Files
You can use the following method to set your configuration from a specified
configuration file:
public synchroni zed voi d setConfiguration(String);
Your specified configuration file must be included on the classpath.
To obtain all of the currently set parameters, use the following method:
public Hasht abl e get ConfigFil e();

There is also an API call available for emergency use, if you accidentally delete
your configuration file. A call to this APl returns a string containing the default
values:

public String defaul tConfigFile()

Refer to the Orbix Programmer’s Reference Java Edition for more details on class
O bConfi g.

Using Orbix Java System Properties

You can use the GRB. i ni t () call to configure Orbix Java using system
properties. The CRB. i ni t () method is a standard part of the OMG Java
mapping, and should be used by all Orbix Java applications and applets.

Orbix Administrator’s Guide Java Edition

The API calls are as follows:

org. ong. CORBA. ORB. i nit (Appl et app, Properties
props);

org.ong. CORBA. ORB.init (String[] args, Properties
props);

org.ong. CORBA. ORB.init (Properties props);

org.ong. CORBA.ORB.init ();

Note: Calling ORB. i ni t () without parameters returns a singleton ORB with
restricted functionality. Refer to the class ong. or g. CCRBA. ORB in the
Orbix Programmer’s Reference Java Fdition .

If any of the parameters are null, they are not used for configuration. If the props
parameter is null, the default system properties are used instead.

You should pass the initialization method for applets a t hi s parameter,
representing the applet object itself. This allows the Orbix Java code to search
for Orbix Java-specific applet tags.

Using Command-Line Arguments

The call to initialize Orbix Java from an application’s nai n() method is as
follows. This sample code also illustrates how an application that wishes to use
other command-line arguments can skip over the ORB parameters, since the
Orbix Java arguments all start with the string " - O bi x\eb. ".

// Initialize the ORB.
org.ong. CORBA. ORB.init (args, null);
/1 Now read in the comand-I|ine paraneters, and
/1 ignore any of the OrbixWb ones.
for (int i =0; i < args.length; i++) {
String ignore = "-OrbixWb.";
if (args[i].length() < ignore.length() ||
I'(args[i].substring (O,
ignore.length())).equal sl gnoreCase
(ignore)){

12

Configuring Orbix Java

/1 This is a non-OrbixWeb comand-Iine
/] paraneter, take appropriate action.

}
}
/1l Your application initialization code can now
/'l continue. ..

An alternative is to simply parse your own command-line argument format and
set the parameters using the API calls. However, the above command-line
parsing mechanism provides a built-in way to do this.

Using Java System Properties

You can also use the Java system properties to pass configuration parameters.
However, there is no standard way to set Java system properties. The DK, for
example, uses a file containing a list of the property names and values, and most
web browsers do not allow properties to be set at all. The most useful way to
use this functionality is by passing in parameters using the JDK Java interpreter’s
- D command-line switch, or Microsoft JView’s / d: switch. This approach
supplements the command-line argument support.

Refer to Appendix A, “Orbix Java Configuration Variables” for a full table of
Orbix Java configuration parameters.

Multi-Homed Hosts

A multi-homed host is a host with one or more IP addresses. Versions of
OrbixWeb 3.2 Patch 10 and upward are multi-home aware and can be used
successfully with various network and multi-home package configurations.

For example, it is possible to configure a machine with many network cards
which are interfaces to completley independent networks. This example is
illustrated in Figure 2.1.

13

Orbix Administrator’s Guide Java Edition

Hostl

Host 2

TP

@ Host3

Host 4

Figure 2.1: Simple Example of a Multi-homed host

Host | can be on any of the networks in Figure 2.1. All of the networks are
completely independent of each other, and any hosts on any of these networks
are unaware of those on the other network(s).

Multi-Homed Configuration Variables

14

| T_LOCAL_HOSTNAVE
The local hostname that a server will use in any IOR that it exports.
| T_ENABLE_MULTI _HOVED SUPPORT

Set to “TRUE”, this variable enables Orbix Java 3.3 for multi-homed machines. It
is disabled by default.

For a complete list of Orbix Java configuration parameters, refer to Appendix A,
“Orbix Java Configuration Variables”.

Managing the Implementation
Repository

When you install server applications on a network host, you must
register those servers in the Implementation Repository. This
repository allows Orbix Java to direct client operation calls to objects
in servers and to start server processes when necessary. This chapter
describes how to manage servers in the Implementation Repository
using the Orbix Java command-line utilities.

The chapter covers the following topics:

The Implementation Repository and its entries.

Basic usage of the Implementation Repository including registering
servers, organizing server entries, removing server entries, listing
registered servers, and displaying information about an entry.

How to start a server manually.
How to stop servers manually.

The security of servers, including how to change ownership of servers,
and how to modify access control lists (ACLs).

How to register servers in specialized activation modes rather than
simply one server process for all clients.

How to manage the set of ports Orbix Java uses to run servers.

15

Orbix Administrator’s Guide Java Edition

This chapter explains how to manage the Implementation Repository using
Orbix Java command-line utilities. Refer to “The Orbix Java Server Manager” on
page 65 for details of how you can use Orbix Java GUI tools.

Implementation Repository Entries

16

The Implementation Repository maintains a mapping from a server’s name to
the filename of the executable code implementing that server. A server must be
registered with the Implementation Repository to make use of this mapping.
Orbix Java automatically starts the server (if it is not already running) when a
client binds to one of the server’s objects, or when an operation invocation is
made on any object that names that particular server.

When a client first communicates with an object, Orbix Java uses the
Implementation Repository to identify an appropriate server to handle the
connection. If a suitable entry cannot be found in the Implementation Repository
during a search for a server, an error is returned to the client.

The Implementation Repository maintains its data in entries that include the
following information:

® The server name.

Because server names can be hierarchical, the Implementation Repository
supports directories.

® The server owner—usually the user who registered the server.
® The server permission values.

These specify which users have the right to launch the server, and which
users have the right to invoke operations on objects in the server.

®* One or more activation orders.

An activation order associates an object or group of objects with a launch
command. A launch command specifies how Orbix Java starts the server.

Managing the Implementation Repository

Basic Implementation Repository Usage

Use the putitj command to register or modify an Implementation Repository
entry. The general form of the putitj command is as follows:

putitj sw tches server_nane command_li ne

where <conmand | i ne> is usually an absolute path name specifying an
executable file that implements the server. This can also be a shell command or
script.

Note: The availability of a given feature depends on which Orbix Java daemon is
running or bi xd or or bi xdj . Features labelled or bi xd are currently not
supported by or bi xdj . Refer to the Orbix Programmer’s Guide Java Fdition
for details of the differences between or bi xd and or bi xdj .

Registering a Server using Putit;j

Orbix Java servers are implemented as Java classes and should be registered
using the - j ava switch to puti tj . This switch allows you to specify a class name
(and an optional classpath) as follows:

putitj sw tches server_name -java
cl ass_nanme cl ass _argunents

This command specifies that the Orbix Java daemon, when launching the server,
should invoke the Java interpreter on the specified bytecode. Any command-line
parameters to the target class are appended after the class name in the puti tj
command. These parameters are passed to the server every time it is run by
Orbix Java. However, the parameters must be stated explicitly if the server is
launched manually.

Specifying a Classpath for an Orbix Java Server

The Orbix Java configuration variable | T_DEFAULT_CLASSPATH specifies the
default classpath used by the Orbix Java daemon when launching all Java servers.
The putitj command enables you to override | T_DEFAULT_CLASSPATHfor a
given server.

17

Orbix Administrator’s Guide Java Edition

18

To do this, you should register the server with the - cl asspat h switch, followed
by the full class path for that server:

putitj switches server_nanme -java
-classpath full _classpath
cl ass_nanme cl ass_argunents

For example:

putitj BankSrv -java -cl asspath
/vol /jdk/ cl asses:/orbi xweb/ cl asses Bankerd ass

Specifying a Partial Classpath for an Orbix Java Server

As an alternative, Orbix Java also allows a partial classpath to be specified during
server registration. This partial class path will be appended to the value of

| T_DEFAULT_CLASSPATH if the Orbix Java daemon attempts to launch the
specified server. Use the - addpat h switch to specify a partial class path:

putitj switches server_nane -java
-addpath partial _cl asspath
cl ass_nanme cl ass_ar gunents

For example, you can achieve the functionality of the - cl asspat h example given
above by setting | T_DEFAULT_CLASSPATH to the value / vol /j dk/ cl asses and
registering the server BankSrv as follows:

putitj BankSrv -java -addpath
/ or bi xweb/ cl asses Banker Cl ass

Specifying the Location of the Java Interpreter

The Orbix Java daemon must be able to locate the Java interpreter to launch Java
servers registered in the Implementation Repository. To enable this, you must
set the value of the configuration variable | T_JAVA | NTERPRETER in the
conmon. cf g file, as described in “Configuring Orbix Java” on page 5.

Managing the Implementation Repository

Passing Parameters to the Java Interpreter

Conceptually, the classpath details, class name and class arguments specified
during the registration of an Orbix Java server are passed directly to the Java
Interpreter when the server is launched. If specific parameters also need to be
passed to the Java interpreter, you can add these to the putitj command as
follows:

putitj sw tches server_name -java
-- interpreter_sw tches cl ass_nane
cl ass_paraneters

The string after the - - switch is passed to the Java interpreter instead of the
standard class name and class arguments. You must insert a space after the - -
switch, as shown in the following example:

putitj -java GidSrv -- -ns200m - mx200m
grid.javaserverl

Although registering a full Java Interpreter command as an executable file for an
Orbix Java server appears to achieve similar functionality, this is not an
acceptable alternative. The -j ava switch significantly alters the internal server
launch strategy of the Orbix Java daemon, and an Orbix Java server should not
be registered without this switch.

Registering a Server on a Remote Host

The following command registers a shared server called Fi r st Tr ust on the
remote host al pha, with the specified class name:

putitj -h alpha FirstTrust -java Bankd ass argl

Using the - h hostname option enables you to use all the commands for remote
hosts. However, for simplicity, most of the examples in this guide do not use this
option and use the local host default instead.

The following command registers the same shared server and also sets the
“O bi xVeb. set D agnost i cs” property to “255”.

putitj -h alpha FirstTrust -java
-- - DO bi xXWb. set Di agnost i cs=255 Bankd ass

19

Orbix Administrator’s Guide Java Edition

Organizing Servers into Hierarchies

Server names can be hierarchically structured, in the same way as UNIX
filenames. Hierarchical server names are useful in structuring the name space of
servers in Implementation Repositories. You can create hierarchical directories
by using the nkdi ritj command. For example, you can make a new banki ng
registration directory and make a registration within it as follows:

nkdiritj banking

putitj banking/Berliner -java BankC ass

Thus banki ng/ Berl i ner is a valid, hierarchical server name.

The rndiritj command removes a registration directory. This command can
take a - Roption to recursively delete a directory and the Implementation
Repository entries and subdirectories within it. The rndi ri tj command returns
an error if it is called without the - Roption on a non-empty registration
directory.
For example:
Isit]
Fi rst Trust
banki ng
rmdiritj banking
directory not enpty
rmdiritj -R banking
This example uses the | sitj command to display the Implementation
Repository entries and directories.

To move an entry in the hierarchy, first remove it with the rmtj command and
then re-register it with the putitj command.

Removing a Registered Server

20

Use the rm tj command to remove an Implementation Repository entry. For
example, the following command removes a server entry:

rmtj FirstTrust

This simplest format of the command removes the entry and all activation
orders for the server.

Managing the Implementation Repository

You can also use the rnitj command to remove specific activation orders. Use
the - mar ker option for the shared or unshared activation modes to remove
specific activation orders for individual objects. Use the - met hod option for the
per-method call activation mode to remove specific activation orders for
individual methods. Activation modes are described in “Server Activation
Modes” on page 28.

Listing Registered Servers

Use the | sitj command to list registered servers and directories. For example,
if you have registered a server called | nt er nati onal and another called
printer:

putitj International -java
-classpath /usr/users/joe banker
putitj printer -java |laser

the output of the | si tj command is as follows:

I nt ernati onal
printer

Use the - Roption with the | si tj command to recursively list all server entries
in the given directory and its subdirectories.

Displaying a Server Entry

Use the catitj command to display information about a specific server’s
registration entry. The following example assumes that the | nt er nat i onal
server is registered as in the previous example, and that catitj |nternational
is entered at the command line:

Details for server : International
Conmms. Protocol :tep
Code . cdr
Activati on Mode . shared
Ownner : j bl oggs
Launch ocall;
| nvoke ocall;

21

Orbix Administrator’s Guide Java Edition

Mar ker Launch Conmand

###ORBlI XVEB### banker

The output can include the following:

Onner The user who put in the entry.

Launch The users and groups who have permission to start
or launch the server.

I nvoke The users and groups who have permission to
invoke operations on an object controlled by the
server.

Per-client Indicates whether a new server is to be launched for
(orbi xd) each client that uses the server.

The final output is a table of activation orders. An activation order is identified
with a marker. An asterisk (¥) represents all objects and means that there is only
one activation order for the server entry.

Contacting an Orbix Java Daemon

Use the pi ngi t] utility to contact an Orbix Java daemon to determine if it is
running on a specified host. This outputs a success or failure message, as
appropriate; for example:

[New Connection (joe.dublin.iona.ie, | T _daenon,*,, pid=230)]
Trying to contact daenon at joe.dublin.iona.ie and it is running.

22

Managing the Implementation Repository

Starting Servers Manually

Most servers are designed to have Orbix Java start them automatically when a
client uses an object. The majority of an administrator’s work therefore involves
registering servers in the Implementation Repository and managing the
registration entries in the repository. However, some servers do need to be
started before any clients attempt to use their objects.

Servers that are started by some mechanism external to Orbix Java are useful
for a number of reasons. For example, if a server takes a long time to initialize
and it starts when a client requests a service, it may cause the client to timeout.
In addition, some servers that are meant to run as long-lived daemons may
require manual starting. Manually launched servers are also known as persistent
servers in CORBA terminology.

Registering a Manual Server

(orbixd)

All servers registered in the shared mode can also be started manually.
Subsequent invocations on the objects are passed to the running process.
However, if you wish to prevent Orbix Java from starting a server and make it
manual-only, use the following command:

putitj FirstTrust -persistent

This command registers a manual-only server called Fi rst Trust on the local
host. No start command is specified to puti tj, because this server cannot be
started by Orbix Java automatically and can only start as a manual server.

The CORBA specification requires that unshared or per-method types of server
fail if an attempt is made to start them manually. This means that manual servers
can only be registered as shared servers. Therefore, you cannot use the

- per si st ent option with either the - unshared or - per - net hod options of the
putitj command. These unshared and per-method servers are described in
“Server Activation Modes” on page 28.

23

Orbix Administrator’s Guide Java Edition

Starting the Orbix Java Daemon for Unregistered Servers

24

In some circumstances, it can be useful not to register servers in the
Implementation Repository. Under normal operation, Orbix Java would know
nothing about these servers. However, if you invoke the Orbix Java daemon
with the - u option, it maintains an active record of unregistered Orbix Java
servers and clients that may use these servers, for example:

or bi xdj -u

When Orbix Java is started this way, any server process can be started manually.
However, no access control is enforced and there is no record of the server in
the Implementation Repository. The daemon does not check if this is a server
name known to it.

A disadvantage of this approach is that an unregistered server is not known to
the daemon. This means that the daemon cannot automatically invoke the Java
interpreter on the server bytecode when a client binds to, or invokes an
operation on, one of its objects. If a client invocation is to succeed, the server
must be launched in advance of the invocation.

In a Java context, a more significant disadvantage of this approach is that the
Orbix Java daemon is involved in initial communications between the client and
server, even though the server is not registered in the Implementation
Repository. This restriction applies to all Orbix Java servers that communicate
over the standard Orbix communications protocol, and limits such servers to
running on hosts where an Orbix Java daemon process is available.

Refer to “Activation Issues Specific to IIOP Servers” on page 35 for more
information on unregistered servers.

Managing the Implementation Repository

Stopping Servers

Just as most servers start automatically when needed, they are usually designed
to stop automatically after a specified time. However, there may be other
situations where you need to manually stop a server.

Thekillitj command stops a server process by using the S| GTERMsignal.

I. For example, the following command stops the Berl i ner server on the
host onega:

killitj -h omega Banki ng/ Berliner

2. When there is more than one server process, use the marker option and
argument to distinguish between different processes. To do this, use the
following kil litj command format:

killitj -mmarker server_nane

Security of Registered Servers

For each Implementation Repository entry, Orbix Java maintains two access
control lists (ACLs) as follows:

Launch The users or groups that can launch the associated server.
Users on this list, and users in groups on this list, can cause the
server to be launched by invoking on one of its objects.

Invoke The users and groups that can invoke operations on any object
controlled by the associated server.

The entries in the ACL can be user names or group names. The owner of an
Implementation Repository entry is always allowed to launch it and invoke
operations on its objects. A client normally needs both launch and invoke access
to use an automatically launched server. The following sections describe how to
modify ACLs by adding groups and users to ACLs, or removing groups and users
from AClLs.

Note: The Java daemon (or bi xdj) does not support access rights for user
groups. An exception to this is the pseudo-user group al | .

25

Orbix Administrator’s Guide Java Edition

Modifying Server Access

Use the chnodi tj command to modify the launch or invoke ACLs. For example:
I. The following command allows the user chri s to launch the server
Al'l'i edBank:
chnoditj Al liedBank | +chris

2. The following command grants the user chri s rights to launch any server
in the directory banks/ i nvest nent Banks:

chnoditj -a banks/investment Banks | +chris

3. The following command revokes j oe’ s right to invoke all servers in the
Implementation Repository directory banks/ commer ci al Banks:
chnoditj -a banks/commerci al Banks i-joe
4. There is also a pseudo-group named al | that you can use to implicitly
add all users to an ACL. The following command grants all users the right
to invoke the server banks/ comrer ci al Banks/ Al | i edBank:

chnodi tj banks/ commerci al Banks/ Al l i edBank i +al |
On UNIX, the group membership of a user is determined via the user’s primary

group as well as the user’s supplementary groups as specified in the / et c/ gr oup
file.

Changing Owners of Registered Servers

26

Only the owner of an Implementation Repository entry can use the chrodi t
command on that entry. The original owner is the one who uses the putit]j
command to register the server. Use the chowni tj command to change
ownership. For example, use the following command to change the ownership of
server Al | i edBank to user ntnanar a:

chownitj -s AlliedBank ncnanara

An Implementation Repository directory can have more than one owner. An
ownership ACL is associated with each directory in the Implementation
Repository, and this ACL can be modified to give certain users or groups
ownership rights on a directory. Only a user on an ownership ACL has the right
to modify the ACL.

Managing the Implementation Repository

Some other examples of changing ownership are as follows:

To add the group i ona to the ownership ACL on the Implementation
Repository directory banks/ i nvest nent Banks, use the following
command:

chownitj -d banks/investnmentBanks + iona
To remove ntnanar a from the same ACL, do the following:
chownitj -d banks/investment Banks - ntnanara

Orbix Java supports the pseudo-group al | . This grants access to all
callers when added to an ACL. The following command grants all users
ownership rights on directory banks/ conmer ci al Banks:

chownitj -d banks/commerci al Banks + all

Spaces are significant in this command. For example, the following
command is correct:

chowni tj -d banks/investment Banks + iona
However, the following command is incorrect:
chowni tj -dbanks/i nvest ment Banks + iona

Refer to Appendix C, “Orbix Java Command-Line Utilities” for a complete list of
the Orbix Java utilities and their switches.

Determining the User and Group IDs of Running Servers

(orbixd)

On Windows platforms, the user ID ui d and group ID gi d of a server process
launched by the Orbix Java daemon are the same as those of the daemon itself.

On UNIX platforms, the effective ui d and gi d of a server process launched by
the Orbix Java daemon are determined as follows:

If or bi xd is not running as a superuser, such as root on UNIX, the ui d
and gi d of every activated server process is that of or bi xd itself.

If or bi xd is running as r oot , it attempts to activate a server with the ui d
and gi d of the (possibly remote) principal attempting to activate the
server.

If the princi pal is unknown (not a registered user) at the local machine
on which or bi xd is running, or bi xd attempts to run the new server with
ui d and gi d of a standard user called or bi xusr.

27

Orbix Administrator’s Guide Java Edition

® If there is no such standard user or bi xusr, or bi xd attempts to run the
new server with ui d and gi d of a user “nobody”.

® If there is no such user nobody, the activation fails and an exception is
returned to the caller.

The daemon must be able to execute the server’s executable file.

You should not run or bi xd as r oot . This would allow a client running as r oot
on a remote machine to launch a server with root privileges on a different
machine.

You can avoid this security risk by setting the set - ui d bit of the or bi xd
executable and giving ownership of the executable to a user called, for example,
or bi xusr who does not have root privileges. Then or bi xd, and any server
launched by the daemon, do not have root privileges. Any servers that must be
run with different privileges can have the set - ui d bit set on the executable file.

Server Activation Modes

28

Orbix Java provides a number of different modes for launching servers. You
specify the mode of a server when it is registered. Usually, clients are not
concerned with the activation details of a server or aware of what server
processes are launched. The following primary activation modes are supported
by Orbix Java.

Note: The availability of a given activation mode depends on which Orbix Java
daemon is running or bi xd or or bi xdj . Activation modes labelled or bi xd
are currently not supported by the Orbix Java daemon or bi xdj .

Managing the Implementation Repository

Shared Activation Mode

In this mode, all of the objects with the same server name on a given
machine are managed by the same server process on that machine. This is
the default activation mode.

If the process is already running when an application invocation arrives
for one of its objects, Orbix Java routes the invocation to that process;
otherwise, Orbix Java launches a process.

Unshared Activation Mode
(orbixd)

In this mode, individual objects of a server are registered with the
Implementation Repository. As each object is invoked, an individual
process is run for that particular object—one process is created for each
active registered object. You can register each object managed by a
server with a different executable file, or any number of objects can share
the same executable file.

Per-Method Activation Mode
(orbixd)

In this mode, individual operation names are registered with the
Implementation Repository. Inter-process calls can be made to these
operations—and each invocation results in the launch of an individual
process. A process is launched to handle each individual operation call,
and the process is destroyed once the operation has completed. You can
specify a different executable file for each operation, or any number of
operations can share the same executable file.

The shared activation mode is the most commonly used. The unshared and per-
method modes are rarely used. Refer to your server documentation to
determine the correct activation modes to use.

29

Orbix Administrator’s Guide Java Edition

Registering Unshared Servers

(orbixd)

The - unshar ed option registers a server in the unshared activation mode. For
example:

putitj -unshared National Trust -java banker

This command registers an unshared server called Nat i onal Tr ust on the local
host, with the specified executable file. Each activation for an object goes to a
unique server process for that particular object. However, all users accessing a
particular object share the same server process.

Using Markers to Specify Named Objects

30

Each Orbix Java object has a unique object reference that includes the following
information:

® A name that is usually referred to as a marker.

An object’s interface name and its marker uniquely identify the object
within a server. A server programmer can choose the marker names for
objects or they can be assigned automatically by Orbix Java.

® A server name identifying the server in which the object is located.
® A host name identifying the host on which the server is located.

For example, the object reference for a bank account would include the bank
account name (marker name), the name of the server that manages the account,
and the name of the server’s host.

Server activation policies can specify individual object marker names; this is
because objects can be named shared and unshared.

For example:
1. putitj -marker Coll ege_Geen National Bank -java Bankd ass

This command registers a shared server called Nat i onal Bank on the
local host, with the specified executable file. However, activation only
occurs for the object whose marker matches Col | ege_G een. There is,
at most, one server process resulting from this registration request;
although you can make other - mar ker registrations for server

Nat i onal Bank. All users share the same server process.

Managing the Implementation Repository

2. putitj -unshared -nmarker Col | ege_Q een FirstNational

-java Bankd ass
putitj -unshared -narker St_Stephens_QG een

FirstNational -java Bankd ass
The first command registers an unshared server called Fi r st Nat i onal
on the local host with the specified executable files. The second adds an
activation order (marker and launch command) for the
St _St ephens_QG een marker. However, activation only occurs for objects
whose marker name is Col | ege_G een or St _St ephens_Gr een and each
activation for a specific object goes to a unique server process for that
particular object. All users of a specific object share the same server
process.

Using Pattern Matching

You can use pattern matching in activation policies when seeking to identify
which server process to communicate with. Specifically, you can register a
server activation policy for a subset of the server’s objects. Because the number
of objects named can become very large, pattern matching also means you do
not have to specify a separate policy for every possible object. You specify this
object subset by using wildcard characters in a marker pattern. The pattern
matching is based on regular expressions, similar to UNIX regular expressions.

You can use pattern matching to specify a set of objects for shared or unshared
servers. For example, some registrations can be used as a means of sharing work
between server processes; in this case, between two processes:

putitj -marker '[0-4]*’ National Bank -java NBBank
putitj -marker '[5-9]*’ National Bank -java NBBank

If these two commands are issued, server Nati onal Bank can have up to two
active processes; one launched for objects whose markers begin with the digits 0
through 4, and the other for markers beginning with digits 5 through 9.

Refer to the entry for the putitj command in Appendix C, “Orbix Java
Command-Line Utilities” for a complete list of recognized patterns with
examples.

Use the rm tj command with - nar ker option to modify a server entry. This
allows you to remove a specific activation order for a server without removing
the entire server entry. You can also use pattern matching with the rmi tj
command’s marker option.

31

Orbix Administrator’s Guide Java Edition

Registering Per-Method Servers

(orbixd)

32

A per-method server processes each operation call in a separate process.

The following command registers a per-method server called
Nati onal Trust on the local host with the specified executable file. The
activation occurs only if the operation makeW t hdr awal () is called.
putitj -per-method -method makeWt hdrawal
Nat i onal Trust -java NTbank
If the - net hod option is used, Orbix Java assumes that the server is a per-
method server.
putitj -method makeDeposit National Trust
-j ava NTbank
You can specify patterns for methods so that operation names matching a
particular pattern cause Orbix Java to use a particular server activation.
The use of pattern matching allows a group of server processes to share
a workload between them, whereby each server process is responsible
for a range of methods. The pattern matching is based on regular
expressions similar to UNIX regular expressions.
The following command registers a per-method server called
Fi rst Trust on the local host with the specified executable file:
putitj -per-method FirstTrust -method ' make*’
-j ava banker
The activation is to occur only if an operation matching the pattern make*
is being called, for example makeDeposit () or makeWt hdrawal (). A
separate process is activated for each method call.

Note:

You can only use method pattern matching in the per-method activation
mode, thus the - per - net hod option is redundant.

Use the rm tj command with - net hod option to modify a per-method server
entry. This allows you to remove a specific activation order for a server without
removing the entire server entry. You can also use pattern matching with the
rmtj command’s - net hod option.

Managing the Implementation Repository

Secondary Activation Modes

For each of the primary activation modes, a server can be launched in one of the
secondary activation modes described as follows:

Multiple-Client Activation Mode

In this mode, activations of the same server by different users share the same
process, in accordance with the selected primary activation mode. This is the
default secondary activation mode. No putitj option is required to specify this
mode when registering a server.

Per-Client Activation Mode
(orbixd)

In this mode, activations of the same server by different users cause a different
process to be launched for each end-user.

Use the putitj -per-client option to register a server in this secondary
activation mode.

Per-Client-Process Activation Mode
(orbixd)

In this mode, activations of the same server by different client processes cause a
different process to be created for each client process.

Use the putitj -per-client-pid option to register a server in this secondary
activation mode. For example, the following command registers a shared, per-
client-process server:

putitj -per-client-pid FirstTrust -java banker

Activation occurs when any of the objects managed by the Fi r st Trust server
are used; there is a separate server process for each different client process.

33

Orbix Administrator’s Guide Java Edition

Managing Server Port Selection

When the Orbix Java daemon activates a server, it is assigned a port so that
clients can communicate with it. There are two ways to control the port
numbers assigned to a server:

® Registering the server with a specified port number.
® Using configuration variables to control port numbers.

This section describes each of these approaches.

Registering Servers with Specified Ports

(orbixd)

When registering a server, you can specify the port on which the server should
listen using the - port option to putitj. For example, to specify that shared
server First Trust should communicate on port 1597, enter the following:

putitj -port 1597 FirstTrust
-java -cl asspat h /work/bank banker

By default, all Orbix Java applications communicate over the CORBA standard
Internet Inter-ORB Protocol (IIOP). The - port option is very important for
such applications.

If an Orbix Java server that communicates over IIOP publishes an object
reference, (for example, using the CORBA Naming Service) this reference is
valid while the server continues to run. However, if the server exits and then
recreates the same object, the published object reference is not valid unless the
server always runs on the same port. If your servers require this functionality,
you should register them using the - port option.

Controlling Port Allocation with Configuration Variables

34

You can control the range of server port numbers chosen by the Orbix Java
daemon by using the configuration entries | T_DAEMCN_SERVER BASE and

| T_DAEMON _SERVER RANGE in the comon. cf g configuration file. The

| T_DAEMON SERVER BASE must be set and the recommended value is 2000. You
do not have to set | T_DAEMON SERVER RANGE, which has a default value of 2000.

Managing the Implementation Repository

When the Orbix Java daemon starts a server, the first server port assigned is
| T_DAEMON _SERVER BASE plus 1, and the last assigned is
| T_DAEMON SERVER BASE plus | T_DAEMON SERVER RANGE

Once the end of the range is reached, or bi xd recycles the range in an attempt
to find a free port. If no free port is found, an | MP_LI M T system exception is
raised to the client application attempting an invocation to the server.

You should set | T_ DAEMON SERVER BASE and | T_ DAEMON SERVER RANGE values
using the Orbix Java Configuration Explorer—refer to page 53 for details. You
should ensure that the values you set do not conflict with other services. Make
sure the range you choose is greater than the maximum number of servers you
expect to run on the host.

Activation Issues Specific to IIOP Servers

You do not have to register all Orbix Java servers communicating over IIOP in
the Implementation Repository. An IIOP server can publish Interoperable
Object References (IORs) for the implementation objects it creates, and then
await incoming client requests on those objects without contacting an Orbix Java
daemon.

Unregistered IIOP servers are important in a Java domain. This is because they
can be completely independent of any supporting processes that may be
platform-specific. In particular, any server that relies on the or bi xd daemon to
establish initial connections depends on the availability of the daemon on specific
platforms. However, you can overcome this problem by using the Java daemon,
or bi xdj , which is platform-independent. An Orbix Java unregistered IIOP server
is completely self-contained and platform-independent.

However, an unregistered IIOP server does have an important disadvantage. The
TCP/IP port number on which a server communicates is embedded in each IOR
that a server creates. If the port is dynamically allocated to a server process on
start-up, the port may differ between different processes for a single server. This
may invalidate |ORs created by a server if, for example, the server is killed and
relaunched. Orbix Java addresses this problem by allowing you to assign a well-
known IIOP port number to the server.

These issues are discussed in more detail in the Orbix Programmer’s Guide Java
Fdition .

35

Orbix Administrator’s Guide Java Edition

36

Managing the Interface Repository

The Interface Repository is the component of Orbix Java that stores
information about IDL definitions and allows clients to retrieve this
information at runtime. This chapter describes how to manage the
contents of the Interface Repository.

The Interface Repository maintains full information about the IDL definitions
implemented in your system. Given an object reference, a client can determine
at runtime the object’s type and all information about that type by using the
Interface Repository. Clients can also browse contents of the Interface
Repository.

To allow a client to obtain information about a set of IDL definitions, you must
add those definitions to the Interface Repository. Orbix supports commands
that allow you to add IDL definitions to the repository, read the contents of the
repository, and remove definitions from it. Each of these commands accesses
the Interface Repository through the Interface Repository server.

This chapter explains how to manage the Interface Repository using Orbix
command-line utilities. Refer to “The Interface Repository Browser” on page 83
for details of how you can use Orbix GUI tools.

37

Orbix Administrator’s Guide Java Edition

Configuring the Interface Repository

The Interface Repository has its own directory, which is specified by the
| T_I NT_REP_PATH entry in the conmon. cf g configuration file.

You must configure the Interface Repository before the IDL compiler or
applications can use it. To configure the Interface Repository, do the following:

I. Specify a value for the | T_| NT_REP_PATH entry in the common. cf g file
using the Orbix Java Configuration Explorer GUI tool. For example:
I T_I NT_REP_PATH / or bi x/ | nt Rep
2. Create the corresponding directory if it does not already exist.
nkdi r /orbix/|ntRep

3. If the Orbix Java daemon is running, stop it and then restart it so that it
recognizes the new configuration variable.

Registering the Interface Repository Server

The Interface Repository is accessed through an Orbix Java server. The
interfaces to the Interface Repository objects are defined in IDL and you must
register the Interface Repository server using the putitj command. For
example:

putitj IFR /opt/ional/bin/ifr

Orbix Java expects that the server is registered with the name | FRas a shared
server. The Interface Repository’s executable file is in the bi n directory with the
name | FR

The Interface Repository server can be launched by the Orbix daemon, or it can
be launched manually. For example, the server executable file can be explicitly
run as a background process:

/opt/ional/bin/ifr

This has the advantage that the Interface Repository can initialize itself before
any other processes need to use it.

38

Managing the Interface Repository

The | FR server executable file takes the following options:

-? Print a summary of switches.
-h Specify an IFR server host name.
-L Immediately load data from the Interface Repository data

directory. The default is not to do this, but instead to load
each file on demand at runtime as it is required.

-t seconds Specify the timeout in seconds for the Interface Repository
server. The default timeout is infinite.

-v Print version information about the Interface Repository.

Adding IDL Definitions

The Orbix Java utility puti dl allows you to enter all the definitions in a single
IDL source file into the Interface Repository. This utility provides a simple and
safe way to add IDL definitions to the repository.

For example, the following command adds the definitions in the file
banksi npl e. i dl to the Interface Repository:

putidl banksinple.idl

The puti dl utility parses the definitions in the file banksi npl e. i dl and
integrates the definitions into the repository. If the file banksi npl e. i dl uses
definitions already registered in the repository, puti dl checks that the
definitions are used consistently before updating the repository contents.

If you modify the file banksi npl e. i dl, you can update the contents of the
Interface Repository by repeating the putidl command.

Although puti dl takes an IDL file as an argument, the Interface Repository does
not store information about the file itself. The Interface Repository has no
knowledge of the file associated with specific IDL definitions. This means that
you cannot remove definitions based on the file in which they were declared.
For this reason, it is important that you use modules in your IDL definitions to
group definitions in logical units.

39

Orbix Administrator’s Guide Java Edition

The syntax for the putidlj command is:

putidl { [-?] | [-v] [-h <hostname>]
[-s <filenane for output>]
[-l1<path>] <IDL file nane> }

Refer to “Orbix Java Command-Line Utilities” on page |15 for a full description
of each option.

Reading the Interface Repository Contents

The readi f r utility allows you to read a specified IDL definition from the
Interface Repository. For example, to view the definition of interface Bank
defined in module Fi nance, enter the following:

readi fr Finance:: Bank?!
This utility prints the IDL definition to the standard output.

If you use readi fr to view an IDL interface definition, you can instruct it to also
display all derived interfaces. To do this, specify the - d option, for example:

readi fr -d Fi nance: : Bank

You can also invoke readi fr with no arguments, in which case the default is to
output the whole repository. Because the repository may be very large, you are
prompted to confirm this operation.

Removing IDL Definitions

The rm dl utility allows you to remove an IDL definition from the Interface
Repository. This utility takes a fully scoped name for an IDL definition as an
argument.

For example, to remove information about the IDL operation
creat e_Account () defined on interface Bank in module Fi nance, do the
following:

rm dl Finance: : Bank: : create_Account ()

I. The C++ scoping operator is used in IFR scoped names.

40

Managing the Interface Repository

The rm dl command removes definitions recursively. For example, to remove
the module Fi nance and all definitions within this module, do the following:

rmdl Fi nance

You should only use the rmi dl utility to remove old or incorrect entries.

Note: Refer to “Orbix Java Command-Line Utilities” on page 115 for a full
description of the Orbix Java utilities and their options.

41

Orbix Administrator’s Guide Java Edition

42

Using Orbix Java on the Internet

Orbix Java client applets are, like any applet, subject to security
restrictions imposed by the browser in which they execute. The most
fundamental of these restrictions include the inability to access local
disks and the inability to contact an arbitrary Internet host. This
chapter describes how client applets can get around these restrictions
in a secure manner. The first technique involves IONA’s Orbix
Wonderwall, which is a full IIOP firewall proxy. The second technique
involves the use of signed applets.

About Wonderwall

Orbix Java provides inbuilt support for Orbix Wonderwall. You can use the
Wonderwall in two main ways:

® Asa full firewall proxy that can filter, control and log your IOP traffic.

® As a simple intranet request-routing server that passes IlOP messages
from your applet, via the Web server, to the target server.

43

Orbix Administrator’s Guide Java Edition

External Network

|

|

|

|

| I
a1 Orbi

| Wonderwall| jop rsel):f’:\:a

| Server | W

|

|

|

|

IDL

Internal Network

Figure 5.1: Using Orbix Java and Wonderwall

Using the Wonderwall with Orbix Java as a
Firewall Proxy

To run the Wonderwall in a traditional secure mode, use the file secure. cf.
The Wonderwall command is as follows:

iiopproxy -config secure.cf

This mode of operation requires that the target objects and operations be listed in the
configuration file. For further details, refer to the Wonderwall Administrator’s Guide
This provides a guide to using Wonderwall’s access control lists and object
specifiers.

44

Using Orbix Java on the Internet

Orbix Java Configuration Parameters Used to Support the

Wonderwall

Orbix Java has automatic inbuilt support for the Wonderwall. This means that if
a connection attempt fails using the default direct socket connection mechanism,
Orbix Java can transparently attempt to connect to any [IOP servers via the
Wonderwall. This also means that Wonderwall can be used to:

Provide HTTP Tunnelling for Orbix Java-powered Java applets and
applications.

Provide automatic intranet routing capability for Orbix Java-powered
applets, to avoid browser security restrictions.

Use Orbix Java applications and applets with the Wonderwall, with no
code changes.

Configuring Orbix Java to Use the Wonderwall

To use the Wonderwall with Orbix Java, you must supply Orbix Java with the
location of the Wonderwall. You should use the following configuration
parameters:

Orbi xWb. | T_I | OP_PROXY_HOST
This contains the name of the host on which the Wonderwall is running.
O bi xWb. | T_I | OP_PROXY_PORT

This contains the [IOP port on which the Wonderwall is running.

You can set these configuration parameters using any of the following:

The Orbix Java Configuration Tool.
The Confi g. set Configlten() call

Other Orbix Java configuration mechanisms, such as applet tags, system
properties or command-line options.

45

Orbix Administrator’s Guide Java Edition

46

For example, the following is a fragment of a HTML file that uses applet-tag
parameters:

<APPLET code=QGi dAppl et. cl ass hei ght =300 wi dt h=400>
<par am nane="C bi x\Wb. | T_I | GP_PROXY_HOST"val ue =
"wanal | . i ona. conf >
<par am nane="C bi x\b. | T_I | CP_PROXY_PCRT" val ue="1570" >
</ APPLET>

Configuring Orbix Java to Use HTTP Tunnelling

HTTP Tunnelling is a mechanism for traversing client-side firewalls. Each [IOP
Request message is encoded in HT TP base-64 encoding, and a HTTP form query
is sent to the Wonderwall, containing the IOP message as query data. The IIOP
Reply is then sent as a HTTP response.

Using HTTP Tunnelling allows your applets to be used behind a client’s firewall,
even when a direct connection, or even a DNS lookup of the Wonderwall
hostname, is impossible.

To use HTTP Tunnelling, you must use the CRB. i nit () API call to initialize
Orbix Java. The call to initialize Orbix Java from inside an applet's i nit ()
method is as follows:

public void init () {
/] Initialize the ORB.
| E. Il ona. Orbi xWWb. CORBA. ORB.init (this, null);

/1 Continue applet initialization.

}

This allows Orbix Java to retrieve the codebase from which the applet was
loaded. The codebase is then used to find the Wonderwall’s interface for HTTP
Tunnelling, a pseudo-CGl-script called “/ cgi - bi n/ tunnel ”. For more
information on use of the codebase in Java, see the Javasoft Web site, at
http://ww: j avasoft.con .

The Wonderwall should be used as the Web server that provides the applet’s
classes, because an untrusted Java applet is only permitted to connect to the
Web server named in the codebase parameter.

Using Orbix Java on the Internet

However, you can provide the HTML and images for your main Web site from
another Web server, such as Apache, IIS or Netscape, and simply refer to the
Wonderwall Web server in the applet tag, as follows:

<APPLET code=Gri dAppl et.cl ass
codebase=http://waal | .iona. conl Qi dAppl et/ cl asses
hei ght =300 wi dt h=400>

</ APPLET>

With this setup, your HTML and images are loaded from the main Web site
WA | ona. com yet your applet code is loaded from wnal | . i ona. com As a
result the applet is permitted to open connections to that host. For greater
efficiency, you should make a ZI P, JARand/or CAB file containing the classes used
by your applet, and store these on the main Web site also. The Web browser
downloads these from the main site, and does not need to load the classes from
the Wonderwall site. This is a generally recommended practice, even if you are
not using Wonderwall.

You can also provide a Wonderwall set-up to support HTTP Tunnelling on the
same machine as the real HTTP server. This requires that the Wonderwall runs
on a different port from the main server. Some sites may only allow outgoing
HTTP traffic on port 80, the standard port, so this could restrict the potential
audience for your applet slightly.

You should ensure that the applet’s classes are available in the directory you
named in the codebase URL. In the example above, this would be Gri dAppl et/
cl asses. This directory path is relative to the directory named in the htt p-
fil es parameter of your Wonderwall configuration file.

If you wish an application to use HTTP Tunnelling, or would prefer to override
an applet’s HTTP Tunnelling setup, the following three configuration parameters
are provided:

* QObixVeb. | T_HTTP_TUNNEL_HOST

This contains the name of the host on which the Wonderwall is running.
* QObixVb. | T_HTTP_TUNNEL_PORT

This contains the HT TP port on which the Wonderwall is running.
* Qbi xV¢b. | T_HTTP_TUNNEL_PROTO

This contains the protocol used.

47

Orbix Administrator’s Guide Java Edition

Note: Currently the only protocol value supported for HTTP Tunnelling is
“htt p”. Refer to “Configuring Orbix Java to Use the Wonderwall” on
page 45 for more details on how to set these parameters. HTTPS
tunnelling is not supported by Orbix Java.

The Wonderwall supports HTTP 1.1 and HTTP 1.0’s Keep-Alive extension. This
means that more than one HTTP request can be sent across TCP connections
between the client and the Wonderwall (or between a HTTP proxy and the
Wonderwall). This greatly increases the efficiency of HTTP.

Manually Configuring Orbix Java to Test Tunnelling

In order to test HTTP Tunnelling or IIOP via the Wonderwall, Orbix Java
provides two more configuration parameters:

* QbixVéb. | T_I | CP_PROXY_PREFERRED
* O bi xVéb. | T_HTTP_TUNNEL_PREFERRED

If you set either of these parameters to t r ue, the relevant connection
mechanism is tried first, before the direct connection is attempted. IIOP
Proxying takes precedence over HT TP Tunnelling, so if you enable both of these
parameters, [IOP Proxying is tried.

Using the Wonderwall as an Intranet Request

Router

48

The Wonderwall can also be used as an intranet request router for [IOP,
providing a means by which your Orbix Java applets can contact servers that
reside on hosts other than the host on which your Web server is running. The
file i ntranet. cf is used in this configuration, so the Wonderwall command is as
follows:

iiopproxy -config intranet. cf

Refer to the Wonderwall Administrator’s Guide for more details on using the
Wonderwall as an intranet request router.

Using Orbix Java on the Internet

This mode of operation requires no configuration. Using the Wonderwall, any
server can be connected to, and any operation can be called.

Applet Signing Technology

Overview

For security reasons, an applet is prevented from accessing the local file system
and connecting to a host other than the host from which it was downloaded.
Often these restrictions must be relaxed, in order for an applet to be fully
functional. It is possible to achieve this using signed applet technology.

A signed applet has a digital signature which is interpreted as a sign of good
intent. An applet that has been signed with a trusted digital signature may
therefore be treated more permissively by a browser, and may even be granted
the permission of a full application.

The following section provides a brief overview of signed applet technology.
More detailed information is available on-line in the IONA Knowledge Base. See
the IONA Web site at: ht t p: / / waw. i ona. cond

There is no single standard implementation of applet-signing technology,
however the implementations offered by Netscape and Microsoft are widely
adopted. Specific details of these vendors implementations are available from
their corporate Web sites. In this section, discussion is limited to the
implementation independent characteristics of the technology.

How Applets are Signed

Applets may be signed using public key cryptography technology. Distributors of
the applet must digitally sign the applet with their private key. When a signed
applet is downloaded by a browser, it can determine the identity of the signing
entity by consulting a Certification Authority. A Certification Authority is a
trusted third party that verifies the identify of a key holder. The browser may
also determine whether the applet has been tampered with. Assuming there are
no problems, the browser may assume that the applet is not malicious, and grant
it extended privileges.

49

Orbix Administrator’s Guide Java Edition

50

The user must ultimately grant the applet these extended privileges, either by
configuring browser security settings or responding at runtime to individual
requests for privileges from the applet. In some circumstances it may be the case
that an applet does not function correctly unless it is granted extended
privileges.

The benefits of signed applet technology to the Orbix Java applet programmer
include the following:

® The ability to contact any host.
® The ability to cache information locally on disk.
® The ability to access system properties.

It is common for the applet, other classes it requires and associated files to be
bundled into a single ar chi ve file. In this case, it is the archive that is signed and
downloaded to the browser, thereby reducing download time.

Looking Ahead

It is expected that browsers will be able to support multiple archives in the
future. Deployment should then become more flexible and efficient as
applications can be split into a number of archives, each containing classes
pertaining to a particular area of functionality. For example, an Orbix Java applet
may be split into archives containing the Orbix Java runtime, the Java classes
generated by the IDL compiler, the applet code and finally third party archives.

The Orbix Java installation includes Microsoft CAB (signed) and Netscape JAR
(unsigned) compatible archives. They can be found in the cl asses directory of
your Orbix Java installation.

Part |l

Orbix Java GUI Tools

Orbix Java Configuration Explorer

Components of an Orbix Java system are configured using a number
of configuration files, as described in Chapter 2, “Configuring Orbix
Java”. The Orbix Java Configuration Explorer allows you to configure
Orbix Java components without modifying the configuration files
directly.

The Orbix Java configuration files configure the main components of Orbix Java,
and each Orbix Java installation has at least one copy of each file. The Orbix Java
Configuration Explorer allows you to modify any Orbix Java configuration file on
your system.

The configuration files include settings that affect the configuration of Orbix Java
and settings that affect the configuration of other Orbix Java products; for
example OrbixNames. The Orbix Java Configuration Explorer allows you to
modify all these settings, and to create additional settings. This tool integrates all
Orbix Java configuration in a single user interface.

By default, the Configuration Explorer allows you to configure settings that are:
¢ Common to multiple IONA products.
® Orbix Java-specific.

® OrbixNames-specific.

53

Orbix Administrator’s Guide Java Edition

Starting the Configuration Explorer

You can run the Orbix Configuration Explorer from the Windows Start menu,
or by entering conf i gurati onexpl or er at the command line. The
Configuration Explorer appears as shown in Figure 6.1.

=, Configuration Explorer

Explarer Edit Help

.:|?‘:| ‘E?l

EI@ lona
-8 common
&g, orbinames3
(- 2 orbixweh 3
-2, arhia

Feady

Figure 6.1: Orbix Java Configuration Explorer

54

Orbix Java

Configuration Explorer

This tool includes the following elements:

A menu bar.
A toolbar.

A navigation tree.

The navigation tree displays icons that represent each configuration file

and configuration scope.

A textbox.

The Name textbox displays the name of the current configuration file or

scope.

A textpane.

The textpane control contains a Name column and a Value column as
shown in Figure 6.2 on page 56. Each row corresponds to individual
configuration file entries. The text pane enables you to view and modify

these entries.

At startup, the Orbix Java Configuration Explorer opens the i ona. cf g root
configuration file. By default, this file is located in the confi g directory of your
Orbix Java installation. The Configuration Explorer navigation tree displays icons
that represent the configuration files included in i ona. cf g as shown in

Figure 6.1 on page 54.

Configuring Common Settings

To configure settings that are common to multiple IONA products, select the
Common icon in the navigation tree. This icon represents the Cormon

configuration scope in the file common. cf g. The Conmon variables stored in the
default common. cf g configuration file then appear in the text pane, as shown in
Figure 6.2 on page 56.

55

Orbix Administrator’s Guide Java Edition

=, Configuration Explorer

Explorer Edit Help

AR

=8 lora Marne: [Commaon | X
=@ common
I | Marme | walue
0, orbixnames3 | |IT_DAEMON_PORT 1570

&, orhixweh3 IT_DAEMORM_SERVER_BASE 2000

Cel-iss o IT_IMP_REP_PATH diiohalconfigiRepasitories
[T_INT_REP_FPATH dlionalconfigiRepositories
[T_LOCATOR_PATH ddionatconfion
[T_LOCAL_DOMAIN duhlin.iona.ie

T_JAvA_INTERPRETER dAJDET T Bbinjava. exelbit

dlionaicanfigh,dJDKT .13

Feady

Figure 6.2: Common Configuration Settings

56

Orbix Java Configuration Explorer

The default Common configuration settings are as follows:

| T_DAEMCN_PORT

| T_DAEMIN_ SERVER BASE

I T_| MP_REP_PATH

I T_I NT_REP_PATH

| T_LOCAL_DOMAI N

I T_JAVA | NTERPRETER

| T_DEFAULT_CLASSPATH

The TCP port number on which the
Orbix Java daemon receives
communications from clients.

The first TCP port number assigned by
the daemon to a server. Each server
listens on a single port number for client
connection attempts.

The full path name of the Orbix Java
Implementation Repository directory.

The full path name of the Orbix Java
Interface Repository directory.

The Internet domain name for your local
network.

The full path name to the Java Runtime
Environment binary executable. This
installs with Orbix Java by default.

The default classpath used when Java
servers are automatically launched by the
daemon.

To update any of these settings, do the following:

I. Select the variable in the text pane.

Enter your new setting.

Hw

configuration file.

Double-click on this variable in the Value column.

Select the Apply button to save your setting to the appropriate

You cannot undo settings that you have saved to file.

57

Orbix Administrator’s Guide Java Edition

Configuring Orbix Java-Specific Settings

To configure settings that apply to Orbix Java only, select the Orbix Java icon
in the navigation tree. This icon represents the O bi xX\&b configuration scope in
the file or bi xweb3. cf g. The O bi x\&b variables stored in the default

or bi xweb3. cf g configuration file then appear in the text pane, as shown in

Figure 6.3.

=, Configuration Explorer

Explarer Edit Help

IS [=] E3

AR
E'@ lona Mame: IDrhi}a‘nﬁIeb =qq.l by
-8 comman |
B orbixnamess Mame |_value
- &, othisweb3 T_OBJECT COMMECT _TIMEQUT -1 =
0 WIEEER | | T_OBJECT_TABLE_LOAD_FACTOR 0.75
B orbid IT_OBJECT_TABLE_SIZE 8090
IT_Jiva_COMPILER d1JDK1 1.8
IT_CLASSPATH_SWITCH -classpath
IT_SYSTEM_PROPERTY_SWITCH -
IT_DEFAULT_TIMEQUT 0000
IT_CONNECT_TABLE_SIZE_DEFAULT 100
IT_ACCEPT_CONMECTIONS true
IT_CONNECTION_TIMEOUT 00000 [+

Al | |

Feady

Figure 6.3: Configuring Orbix Java-Specific Settings

58

Orbix Java Configuration Explorer

For example, the Orbix Java configuration settings include the following:

I T_JAVA_COWPI LER The path to the Java compiler
executable.

I T_CLASSPATH_ SW TCH The switch used by the Java
interpreter to specify a classpath.

To update these settings, do the following:

I. Select the variable in the text pane.
2. Double-click on this variable in the Value column to enter your setting.

3. Select the Apply button to save your setting to the appropriate
configuration file.

You can also modify configuration variables specific to other Orbix Java
components by following these steps. Refer to the OrbixNames Programmer's and
Administrator’s Guidefor details of configuration variables that are specific
OrbixNames.

Customizing Your Configuration

By default, the Orbix Java Configuration Explorer displays the configuration
variables contained in the default configuration files. You can use the Orbix Java
Configuration Explorer to customize your configuration by:

® Creating configuration variables.
® Creating configuration scopes.

® Creating configuration files.

59

Orbix Administrator’s Guide Java Edition

Creating Configuration Variables

=, Configuration Explorer

By default, the Configuration Explorer displays a default subset of the available
configuration variables. You can also create additional configuration variables, as
shown in Figure 6.4.

Explorer Edit Help
| w | @
=88 1ona Mame: |Orbixiiel =1.| %
=8 common —
g, orhixnames3 Mame | value
Elﬁi' arhimaeab 3 IT_IMPL_READY_IF_COMMECTED true ;I
Drhixdat IT_MARSHAL_MNMULLE Ok true
B Orbi IT_MON_COPYING_ANYS false
IT_REGQ_CACHE_SIFE 10
[T_SECURITY_AUTHEMTICATE_CLIEMTS false
IT_SECURITY_HANDSHAKE_TIMEOUT
[T_SEMD_FRAGMEMTS false
IT_LSE_BIDIR_IOPF false
Kl y
Apply | |
Feady

60

Figure 6.4: Creating Configuration Variables

To create a configuration variable, perform the following steps:

I. Select the Create Configuration Variable button, shown in Figure 6.5
on page 61.

2. Double-click the new entry in the Name column of the text pane.

Enter a name for your configuration setting.

Orbix Java Configuration Explorer

4. Double-click the entry in the Value column.
Enter a value for your configuration variable

6. Select the Apply button to save your setting to the appropriate
configuration file.

Create Configuration Variable —— — Delete Configuration Variable

Figure 6.5: Creating and Deleting Configuration Variables

Valid Names for Configuration Variables and Scopes

You can use the following characters when naming configuration variables and
scopes:

[n_n’ n_n]’ ["a"'"Z","A"'"Z"], [non_ngn]

Note: You cannot use spaces when naming configuration variables and
configuration scopes.

There are no restrictions on the valid characters for configuration values.

Deleting Configuration Variables

You cannot delete the configuration variables included in the default
configuration files. You can only change the values of these variables. However,
you can delete any additional variables that you may have created.

To delete a configuration variable, do the following:

I. Select the setting to be deleted from the text pane.
2. Select the Delete Configuration Variable button, shown in Figure 6.5.

3. Select the Apply button to save your setting to the appropriate
configuration file.

Refer to Appendix A, “Orbix Java Configuration Variables” on page 95 for a
complete list of both common and Orbix Java-specific configuration variables.

61

Orbix Administrator’s Guide Java Edition

Creating Configuration Scopes

62

The Configuration Explorer displays the configuration variables contained in the
default configuration files. You can customize your configuration by creating
additional configuration scopes. Configuration scopes are containers for
configuration variables. Refer to “Using Orbix Java Configuration Files” on

page 7 for more details.

In the navigation tree, user-defined configuration scopes are displayed as
branching from default configuration scope icons, as shown in Figure 6.6 on
page 63.

To create a user-defined configuration scope, do the following:

I. Select Edit -~ Create Scope from the menu bar. Alternatively, you can
use the Create Scope toolbar.

2. In the Name text box, enter the name of your configuration scope.

3. Select the Apply button to save your setting to the appropriate
configuration file.

You can then create new configuration variables within your configuration
scope, as described in “Creating Configuration Variables” on page 60.

Deleting Configuration Scopes

You cannot delete the default configuration scopes included in the default
configuration files. However, you can delete any additional scopes that you may
have created.

To delete a configuration scope, do the following:

I. From the navigation tree, select the scope to be deleted.

2. Select the Edit — Delete Scope menu option. Alternatively, you can use
the Delete Scope button on the toolbar.

Select the Apply button to save your setting to the appropriate configuration
file.

Orbix Java Configuration Explorer

.. Configuration Explorer [_ (O]
Explorer Edit Help

E---@Inna Marme: m |

-G8 common Ll
w41, orhbnames3 Marme Walue |
= & orbioweh3

- Orbixiveh

[#]-4e= arhix3

Apply | |

Feady

Figure 6.6: Creating Configuration Scopes

Creating Configuration Files

You can extend the Configuration Explorer to display custom configuration files.
To create a configuration file you should edit your i ona. cf g file to include the

additional configuration file. An icon associated with this configuration file then

appears in the Configuration Explorer navigation tree.

You can then create new configuration scopes and variables within your new
configuration file as usual, as described in “Creating Configuration Variables” on
page 60 and “Creating Configuration Scopes” on page 62.

63

Orbix Administrator’s Guide Java Edition

64

The Orbix Java Server Manager

The Implementation Repository is the component of Orbix Java that
maintains registration information about servers and controls their
activation. The Orbix Java Server Manager allows you to manage the
Implementation Repository.

The Implementation Repository maintains a mapping from a server name to the
executable code that implements that server. In an Orbix Java system, the Orbix
Java daemon on each host has an associated Implementation Repository. The
Implementation Repository allows the daemon to launch server processes in
response to operation calls from Orbix Java clients.

The Orbix Java Server Manager allows you to do the following:
® Browse an Implementation Repository.
® Register new servers.
® Modify existing server registration details.

The Orbix Programmer’s Guide Java Fdition describes the Implementation
Repository in detail. This chapter assumes that you are familiar with this
description.

65

Orbix Administrator’s Guide Java Edition

Starting the Orbix Java Server Manager

To start the Orbix Java Server Manager, choose the Server Manager option in
the Orbix Java menu. Alternatively, enter srvmgr at the command line.

The main Server Manager window appears as shown in Figure 7.1.

E'-;_,% Server Manager M=l

File Host Server Directory ServerManager Help

] @)% dd| @ 7

Feady

Figure 7.1: Server Manager Main Window

66

The Orbix Java Server Manager

The Server Manager window includes the following elements:

A menu bar.
A toolbar.
A navigation tree.

This tree displays a graphical representation of the contents of an
Implementation Repository.

A server information pane.

If you select an item in the navigation tree, the pane to the right of the
tree displays detailed information about that item. Information about
servers is displayed in a tabbed folder.

A status bar.

You can use the toolbar icons in place of the menu options described in this
chapter.

Connecting to an Implementation Repository

To connect to an Implementation Repository, do the following:

Select Host/Connect.
The Connect dialog box appears, as shown in Figure 7.2.

E%Eunnect to Host |

Host Mame (P Address)
|I|:|[:alh|:|st

Part Murmhber
[1a70 [~ Setas Default Port

Zonnect | Cancel |

Figure 7.2: Connect Dialog Box

67

Orbix Administrator’s Guide Java Edition

2. In the Host Name text box, type the name or IP address of the host on
which the required Orbix Java daemon runs. The default is the local host.

3. In the Port Number text box, type the TCP/IP port number on which
the Orbix Java daemon runs. To make a port number the default, click
the Set as Default Port check box. The default port number is initially
set to 1570.

4. Click Connect.

The main Server Manager window then displays the contents of the
Implementation Repository. For example, Figure 7.3 shows an
Implementation Repository on the local host.

You can disconnect from an Implementation Repository at any time. To
disconnect, in the main window, select the required host and then select Host/
Disconnect.

E'-;_,% Server Manager M=l

File Host Server Directory Server anager Help

a[E| 8| o] wls] 2

Q localhost 1570

Host Mame: localhost

Fort Mo: 1570

Connection successil

Figure 7.3: Connection to an Implementation Repository

68

The Orbix Java Server Manager

Creating a New Directory

The Implementation Repository supports the concept of directories. This allows
you to structure server names hierarchically, and organize the contents of an
Implementation Repository.

To create an Implementation Repository directory, do the following:

I. Select the Implementation Repository on the appropriate host.
2. Select Directory/New.

The Directory Name text box appears in the right hand pane of the
main window, as shown in Figure 7.4 on page 70.

3. Type the name of the new directory in the Directory Name text box.
4. Click Apply.
The main Server Manager window now includes the new directory when
displaying the contents of the Implementation Repository. For example, if
you create a Bank directory, this directory is displayed in the directory

tree after the Apply button is clicked. This is shown in Figure 7.4 on
page 70.

To delete a directory, select the directory in the main Server Manager
window and then select Directory/Delete.

69

Orbix Administrator’s Guide Java Edition

E'-;_,% Server Manager M=l

File Host Server Directory Serverbanager Help

B localhost1571

----- & wehChat Directary Mame: |Elank
----- & collocatedany
----- & counterFactory
----- & counterFactory?
----- & counterFactory

----- B filter

----- & NCManager
----- B remote

----- & testany
----- B gridServer

..... .
Al | ©

Connection successiul

Figure 7.4: Creating a New Directory

70

The Orbix Java Server Manager

Registering a Server

To register a server, do the following:

Select the Implementation Repository directory in which you wish to
register the server. For example, to register a server in directory Bank,
select the icon for this directory in the main window.

Select Server/New.

A tabbed folder appears in the right pane of the main window as shown in
Figure 7.5 on page 72. This folder is used to record a server’s registration
details.

Enter the server name in the Server Name text box on the General
tab.

If the server is an Orbix Java server, click the Orbix Java Server check
box.

By default, only the user who registers the server can run clients that
launch the server or invoke operations on server objects.

To provide server access rights to other users, click the Rights tab. The
Rights tab is described in “Providing Server Access Rights to Users” on
page 73.

The default server primary activation mode is shared. The default
secondary activation mode is normal.

To modify the server activation details, click the Activation tab. The
Activation tab is described in “Specifying Server Activation Details” on
page 75.

71

Orbix Administrator’s Guide Java Edition

E'-;_,% Server Manager M=l

File Host Server Directory Server Manager Help

B localhost 1571 General | activation | Rights |

----- & vebChat
----- & collocatedany Server Detail
----- 4] counterFactory

----- & counterFactony2 Server Mame Im
""" B8 counterFactory3

----- B filter

Dwyner Imstephen

_____ B NCManager [v This is an OrbixYeh serer

----- B remote

----- & testany
----- B ridServer

y Apply |

Connection successiul

Figure 7.5: Registering a New Server

72

The Orbix Java Server Manager

Providing Server Access Rights to Users

During server registration, you can provide server access rights to other users
by clicking the Rights tab in the main window. The Rights tab appears as shown
in Figure 7.6 on page 74.

Orbix Java offers two types of access rights:
® Launch rights
® Invoke rights

Launch rights allow clients owned by a specified user to cause the Orbix Java
daemon to activate the server.

Invoke rights allow clients owned by a specified user to invoke operations on
objects in the server.

To provide launch or invoke rights to a user, do the following:

I. In the appropriate area, type the user identifier in the text box. To grant
these rights to all users, type the user name al | .

2. Click Add.
To remove launch or invoke rights for a user, do the following:

I. In the appropriate user list, select the required user identifier.

2. Click Remove.

When you have added or removed the required users from the access rights
lists, click Apply to commit the changes.

73

Orbix Administrator’s Guide Java Edition

E'-;_,% Server Manager M=l

File Host Server Directory ServerManager Help

Bl iocalhost1571 Generall Activation Rights |
----- & webChat

----- & collocatedAny ~Launch rights
----- & counterFactory
----- & counterFactoryz UgerNamel

----- & counterFactory3 Members
----- B filter - ! —

----- & Mk
= EEmnvE
& oridDsl 1 |

----- 4] MCManager

----- & remote _
..... B stafi - lnvoke rights

User Marme

----- B testany Members [, Add

..... ... Bank REmE"-'IE |

o0 | [
4] | , LAY, |

Connection successiul

Figure 7.6: Providing Server Access Rights

74

The Orbix Java Server Manager

Specifying Server Activation Details

During server registration, you can specify the server activation details by
clicking the Activation tab in the Server Manager main window. The
Activation tab appears as shown in Figure 7.7.

E'-;_,% Server Manager

File

Server

=]

Directory Server Manager Help

Host

..... E WehChat
----- & collocatedany
----- & counterFactory

----- & fiter

----- 4] MHCManager
----- B remote

A |

E |acalhost1571

----- 4] counterFactong2
----- 4] counterFactony3

General Activation |Rights|
~Activation Mode

& Shared Server
Max. number of processes associated with this senver: |1
[Usge awell knowr [IOF port Fort Murmber |

 Unshared Server

" PerMethod Advanced...
-Commands
Command: I Browse. ..
harker: I
Members

* hamesStaff javaserver]

.@

Connection successiul

Sl

Figure 7.7: Specifying Server Activation Details

75

Orbix Administrator’s Guide Java Edition

76

Activation Modes

To specify a server’s primary activation mode, use the radio buttons in the
Activation Mode section of the Activation tab. The default server primary
activation mode is shared.

To specify a server’s secondary activation mode click the Advanced button in
the Activation Mode section. This launches the Secondary Activation
Modes dialog box, as shown in Figure 7.8. The default secondary activation
mode is normal.

Eéf’i Secondary Activation Modes

- Secondary Activation Mode

& MNormal Server
" Per Client Server

" Per Client PID Server

Ok Cancel

Figure 7.8: Secondary Activation Modes

A server registered in shared activation mode can have an associated maximum
number of processes. The Orbix Java daemon launches up to the specified
number of processes for that server.

Each new client connection results in a new server process until the maximum
number of processes is available. Subsequent client connections are routed to
existing server processes using a round-robin algorithm. This provides a
primitive form of load balancing for shared servers.

To specify the number of processes associated with a shared server, enter a
positive integer value in the Max. number of processes associated with
this server text box.

The Orbix Java Server Manag

er

You can associate a well-known TCP/IP port number with servers that

communicate using the CORBA-defined Internet Inter-ORB Protocol (IIOP). To
specify a well-known IIOP port for a server, click the Use a Well known IIOP

Port check box and enter a value in the Port Number text box.

When you have specified the server activation details, click OK to confirm these

details.

Note: The Orbix Java daemon currently supports shared primary activation
mode and normal secondary activation mode only.

Launch Commands

The Commands section on the Activation tab allows you to modify the
launch commands associated with a server. A registered server must have at
least one launch command.

Launch commands depend on the server activation mode, as follows:

Shared Activation Mode
If the server activation mode is shared:

|. Enter the server launch command in the Command text box.
2. Enter a * character in the Marker text box.
3. Click Add.

Unshared Activation Mode
If the server activation mode is unshared:

I. Enter a marker pattern in the Marker text box.

2. Enter the launch command for this marker pattern in the Command
text box.

3. Click Add.

Repeat this process for each marker pattern you wish to register.

77

Orbix Administrator’s Guide Java Edition

Per-Method Activation Mode
If the server activation mode is per-method:
|I. Enter a method name in the Marker text box.

2. Enter the launch command for this method in the Command text box.
3. Click Add.

Repeat this process for each method you wish to register.

Modifying Server Registration Details

When you register a server, the Orbix Java daemon creates a server registration
record in the Implementation Repository. This record stores detailed
information about the server.

To modify a server registration record, do the following:

I. Select the server you wish to modify.

The Server Manager displays the tabbed folder containing all the
registration details for the selected server.

2. Select the required tab from the following:
+ General
+ Activation
+ Rights
3. Enter the value in the appropriate section of the tab, as described in
“Registering a Server” on page 71.

4. Click the Apply button.

78

The Orbix Java Server Manager

Launching a Persistent Server

Orbix Java allows you to launch shared servers manually. A manually-launched
server is known as a persistent server.

To launch a persistent server process, do the following:
I. Select the server you wish to launch.
The server must be registered in shared mode.
2. Select Server/Launch.

If successful, this starts the server executable file specified in the server
launch command. The icon for the selected server displays a green traffic
light while the server process runs, as shown in Figure 7.9.

To kill a shared server process, select Server/Kill.

Eg,iﬁewer Manager |_ O] x|
File Host Server Directory SererbManadger Help
AT @ | % o]] 7
=8 localhost1571 &l | General | astivation | Rights |

----- & wiehChat

----- B collocatedany Server Detail

----- B counterFactory

----- B counterFactory?2 Sener Name Igrid

----- B counterFactory3

..... & filter ,

Cwyner Crbivteh_Lser

______ & i ot o

----- & oridDsl [

""" & master [+ This is an Crbix\Web server

----- B NCManager —

----- B remote —

B -

4 I _*IJ oy |

Figure 7.9: Launching a Persistent Server

79

Orbix Administrator’s Guide Java Edition

Configuring the Server Manager

To configure the Server Manager, do the following:

I. In the main Server Manager window, select Server Manager/Options.
The Options dialog box appears, as shown in Figure 7.10.

Eéf’i Options |

[| Connect to your local host on startup.
[v Create Java servers by default

[Setthe transport protocol to Orbix (uses 0P otherwise)

Location of your Internet broswser (needed to display on-line help)

] Cancel

Figure 7.10: The Options Dialog Box

2. By default, the Server Manager does not connect to an Orbix Java
daemon at startup. To specify that the Server Manager should connect to
the Orbix Java daemon at the local host, click the Connect to your
local host on startup check box.

3. The Server Manager allows you to register Orbix or Orbix Java servers.
By default, the Server Manager assumes that servers are Orbix Java
servers.

To change this default, check Create Java servers by default.

80

The Orbix Java Server Manager

4. You can also select the transport protocol used. The default protocol is
IIOP (Internet Inter-Orb Protocol). To change this default, click the check
box labelled Set the transport protocol to Orbix.

5. To enable online help, enter the Location of your Internet browser
in the text box provided.

6. Click OK to commit the new configuration.

Note: The main Server Manager window refreshes itself automatically,
reflecting updates as they occur. This means that the Refresh Time

option, used in earlier versions of the Server Manager, is no longer
necessary.

8l

Orbix Administrator’s Guide Java Edition

82

The Interface Repository Browser

The Interface Repository provides persistent storage of IDL
definitions and allows CORBA applications to retrieve information
about those definitions at runtime. The Interface Repository Browser
allows you to manage IDL definitions in the Interface Repository.

Some CORBA applications, for example applications that use the Dynamic
Invocation Interface (DII) to invoke operations, require runtime access to
information about IDL definitions. The Interface Repository allows you to store
IDL definitions for retrieval by these applications.

The Interface Repository Browser allows you to add IDL definitions to the
Interface Repository and view information about those definitions. CORBA
applications can retrieve information about those definitions using standard IDL
interfaces implemented by the Interface Repository.

The Interface Repository Browser also allows you to export IDL definitions
from the Interface Repository to a file. This feature makes the Interface
Repository Browser a useful development tool for managing the availability of
IDL definitions in your system.

The Orbix Programmer’s Guide Java Fdition describes the Interface Repository in
detail. The remainder of this chapter assumes that you are familiar with this
description.

83

Orbix Administrator’s Guide Java Edition

Starting the Interface Repository Browser

You can start the Interface Repository Browser from the Windows Start menu.
Alternatively, enter the or bi xi fr command at the command line.

The main Interface Repository Browser window appears as shown in Figure 8.1.

= Orbix IFR Browser M=l 3
Host File Edit “iew Toolz Help

12 i Jee1 e ot [

| Kind | Type | Mode Returm I

Fieady

Figure 8.1: The Main Interface Repository Browser Window

The browser interface includes the following elements:
®* A menu bar.

®* A tool bar.

® A navigation tree. This tree displays a graphical representation of the
contents of an Implementation Repository.

A multi-columned list box. This list box displays information about IDL
definitions selected in the navigation tree.

® A status bar.

84

The Interface Repository Browser

Note: You can use the tool bar icons in place of the menu options described in
this chapter.

Connecting to an Interface Repository

The Interface Repository is implemented as an Orbix server. The Orbix
Programmer’s Guide Java Edition describes how you make an Interface Repository
server available to your system.

To connect to an Interface Repository server, do the following:

I. Select Host/Connect. The Connect dialog box appears as shown in
Figure 8.2.

Location of Interface Repoziton host: k. |

Cancel |

Figure 8.2: The Connect Dialog Box

2. In the text box, enter the name or IP address of the host on which the
Interface Repository server runs.

3. Click OK. The navigation tree in the main browser window displays the
contents of the Interface Repository.

85

Orbix Administrator’s Guide Java Edition

Adding IDL to the Interface Repository

The Interface Repository Browser allows you to import IDL definitions from a
source file. This is a safe mechanism for adding IDL definitions to the Interface
Repository which maintains the Interface Repository in a consistent state.

To add IDL definitions to the Interface Repository, do the following:

I. Select File/Import. The standard Open File dialog box for your
operating system appears.

2. In the dialog box, enter the name of the source file in which your IDL is
defined.

3. Click OK. In the main browser window, the navigation tree control
displays the contents of the Interface Repository including the new IDL
definitions.

Consider the following example IDL source file:

/1 1D

interface Gid {
readonly attribute short hei ght;
readonly attribute short width;

long get (in short row, in short col);
void set (in short row, in short col, in |ong val ue);

b
If you import this file into an empty Interface Repository, the main browser
window appears as shown in Figure 8.3 on page 87.

86

The Interface Repository Browser

[Orbix IFR Browser [[O] x|
Host File Edt “iew Tools Help
[se =1 &l Az olBdE & [%|@l x|t 2]
El--a “ShomerIFR B | MName | Kind | Tupe | Mode | Return
¢ n paramneter shart in
@ m paramneter shrt in
@ wvale parameter long in

Ready

Figure 8.3: IDL Definitions in the Interface Repository Browser

Viewing the Interface Repository Contents

The navigation tree in the main browser window represents the contents of the
Interface Repository in terms of containment relationships. As described in the

Orbix Programmer's Guide Java £dition , the Interface Repository uses containment
relationships to represent the nested structure of IDL definitions.

Consider the following example IDL source file:

/1 1D
nodul e Fi nance {
interface Account {
readonly attribute float bal ance;
voi d makeDeposit (in float anpunt);
void makeWthdrawal (in float anmount);

b

87

Orbix Administrator’s Guide Java Edition

interface Bank {
Account newAccount ();
b
b
If you import this file into an Interface Repository, the browser navigation tree
illustrates that the definition of module Fi nance contains interfaces Account and
Bank which in turn contain attribute and operation definitions, as shown in

Figure 8.4.
[Orbix IFR Browser _ (O] =]
Host File Edit Wiew Tools Help
[France -1 B A% O B2y &f|@f x|t 2]
ﬂ “h B | Mame | Kind |T_l,lpe Mode Fietum
E}‘f!;' W2 Account interface
- BG Account mE Bank interface
-4 balance
= & makeDepost
© ol amount
B & makeithdrawal
Lo amoUnt
E}l[: Bank
o & newdccount

Feady

Figure 8.4: Containment Relationships in the Interface Repository Browser

88

The Interface Repository Browser

Viewing Information about IDL Definitions

The list box in the main browser window displays information about selected
IDL definitions. To view information about an IDL definition, select the
navigation tree icon of the container in which the definition is contained. The list
box displays information about the contents of the container, including the type
and name of each contained definition.

For example, if you select the icon for module Fi nance, the list box displays
information about the IDL interface definitions contained within this module, as
shown in Figure 8.4.

Viewing Source Code for IDL Definitions

To view the source for an IDL definition, do the following:

I. Navigate to the required IDL definition.

2. Select View/View CORBA IDL. The View Interface Definition
Language dialog box displays the IDL source associated with the
selected definition.

For example, if you view the source for interface Bank, the View Interface
Definition Language dialog box appears as shown in Figure 8.5.

89

Orbix Administrator’s Guide Java Edition

= View Interface Definition Language E2

Interface Repoziton: r\\hnmer\IFH Definition: Fank

interface Bank, ;I
i

Finance::Accaunt newdccaunt]];

<]

of
Close |

Figure 8.5: The View Interface Definition Language Dialog Box

Exporting IDL Definitions to a File

The Interface Repository Browser allows you to save an IDL definition to a file.
To export an IDL definition from the Interface Repository to a file, do the
following:

I. Navigate to the required IDL definition.

2. Select File/Export. The standard Save File As dialog box for your
operating system appears.

3. In the dialog box, enter the name of the target file in which you wish to
save the IDL definition.

4. Click OK to save the definition to the specified file.

90

The Interface Repository Browser

Configuring the Interface Repository Browser

To configure the Interface Repository Browser, do the following:

I. Select Network/Options. The Interface Repository Options dialog
box appears as shown in Figure 8.6.

[Interface Repository Options |

[Connect to local Fepositany on startup!

Figure 8.6: The Interface Repository Options Dialog Box

2. By default, the main browser window refreshes every seven seconds. To
modify this refresh time, enter a positive integer value in the Refresh
Time text box.

3. By default, the browser does not connect to an Interface Repository at
startup. To specify that the browser should connect to the Interface
Repository at the local host, click the Connect to local host on
startup button.

4. Click OK to commit the new configuration.

Note that you can manually refresh the main browser window at any time. To
do this, select View/Refresh.

91

Orbix Administrator’s Guide Java Edition

92

Part Il

Appendices

Appendix A
Orbix Java Configuration Variables

There are two types of Orbix Java configuration variables: those that are
common to multiple IONA products, and variables that are specific to Orbix
Java only.

Common Configuration variables

You can set the following variables as environment variables using the
Configuration Explorer GUI tool, or by editing the conmon. cf g configuration

file.
Variable Type Description
| T_DAEMON_PCRT Integer TCP port number for the Orbix Java
daemon.
| T_DAEMON SERVER BASE Integer A server that is launched in separate

processes listens on its own port. This is
the value of the first port, and
subsequently allocated ports increment
by | until the | T_DAEMON SERVER RANGE
is exceeded, at which point the port
allocation wraps.

If a port cannot be allocated, a
OOMM _FAI LURE exception is thrown.

The default is 2000.

Table A.1: Common Configuration variables

95

Orbix Administrator’s Guide Java Edition

96

Variable Type Description

| T_DAEMON SERVER RANGE Integer Refer to the entry for
| T_DAEMON_ SERVER BASE.

The default value is 2000.

| T_DEFAULT_QLASSPATH String This is the classpath the daemon uses to
find Java servers when launching them.
You can supplement this on a per-server
basis using the - addpat h variable to
putitj.

There is no default.

I T | MP_REP_PATH String The full path name of the
Implementation Repository directory.

I T_I NT_REP_PATH String The full path name of the Interface
Repository directory.

I T_JAVA | NTERPRETER String The path to the Java interpreter
executable. Used by the "owj ava" tool
when starting servers or other Java
applications. Also used by the Orbix Java
daemon when starting servers.

| T_LOCAL_DOVAIN String The name of the local Internet domain;

for example, i ona. com

Table A.1: Common Configuration variables

Orbix Java Configuration Variables

Orbix Java-Specific Configuration variables

You can set these variables using the Configuration Explorer GUI tool, or by
editing the or bi xweb3. cf g configuration file.

The available configuration variables are listed here in alphabetical order.
Infrequently-used variables are marked with an asterisk (*); these generally do

not need to be changed.

Variable

Type

Description

| T_ACCEPT_CONNECTI ONS

Boolean

Allow connections to be opened from
remote ORBs so that operations can be
called on this ORB’s objects.

The default value is t r ue. (*)

| T_ALWAYS CHECK LOCAL_CBJS

Boolean

A true value here indicates that when
an object reference arrives, always
check to see if this is a reference for a
local object.

The default value is f al se. (*)

| T_ANY_BUFFER Sl ZE

Integer

The initial size of the internal buffer
used for marshalling anys.

The default value is 512. (¥)

Table A.2: Orbix Java-Specific Configuration Variables

97

Orbix Administrator’s Guide Java Edition

Variable

Type

Description

I T_BI ND_I | CP_VERS| ON

String

This controls the IOR (Interoperable
Object Reference) version used in

bi nd() calls. Orbix Java supplies a
separate version control for bi nd()
calls because they create their own
IORs, and do not return IORs created
by servers.

This defaults to 10 (version 1.0). You
should only set this to 11 if you are sure
that the target server supports IIOP
I.1.

Note: Whatever value is set for

I T_BIND_ || OP_VERSI ON, the same
value must be set for

| T_DEFAULT || OP_VERSI ON.

IT_BIND USING | | CP

Boolean

Use the IIOP protocol to bi nd()
instead of the Orbix protocol.

The default is t r ue.

| T_BUFFER Sl ZE

Integer

The initial size of the internal buffer
used for marshalling operation
variables.

The default value is 8192. (¥)

| T_CLASSPATH SW TCH

String

The switch used by the Java interpreter
to specify a classpath. Used by the

owj ava tool when starting servers or
other Java applications.

This defaults to - cl asspat h. (¥)

Table A.2: Orbix Java-Specific Configuration Variables

98

Orbix Java Configuration Variables

Variable Type Description

| T_CONNECTI ON_CRDER String Specifies the order in which clients try
different connect mechanisms to
servers. You can specify di rect,

i i opproxy or http. If SSL is enabled,
the SSL version of the connection
mechanism is used.

The default is i i oppr oxy.

| T_CONNECTI ON_TABLE _PER THREAD Boolean | This variable allows you to specify a
connection table for each thread as
opposed to for each ORB.This prevents
multi threaded HTTP connections from
being locked.

This setting is independent of the

I T_MLTI _THREADED SERVER variable.
You must set both to t rue for multi
threaded HTTP to work.

The default is f al se.

| T_CONNECTI ON_TI MECUT Integer The time (in milliseconds) an existing
connection from client to server is kept
alive to be used for further invocations.

The default is 300000. (¥)

| T_CONNECT _TABLE Sl ZE DEFAULT Integer The initial size of the connection table.

This is a soft maximum. The number of
connections can temporarily exceed
this level but Orbix Java will periodically
try to close older connections to bring
the number down below this level.

This defaults to 100. (*)

Table A.2: Orbix Java-Specific Configuration Variables

99

Orbix Administrator’s Guide Java Edition

Variable

Type

Description

| T_DETECT APPLET_SANDBOX

Boolean

If set to t rue, always try to detect
whether the ORB is being used in an
applet. If the applet sandbox is
detected, do not perform operations
that cause a Securi t yExcept i on, such
as accessing system properties.

The default value is t r ue. (¥)

| T_DEFAULT | | CP_VERSI CN

String

This controls the IIOP version
embedded in IORs produced in Orbix
Java servers. It indicates what versions
of IIOP the target supports, and also
the version of messages sent by a client
(as long as it is less than or equal to that
of the target).

Set to 10 (IIOP version 1.0) by default.
You must set this to 11 in servers to
allow clients to use IIOP fragmentation.

Note: | T_DEFAULT | | OP_VERSI ON
must be set the same value as
I T_BIND | | OP_VERSI ON

IT D _OCPY_ARGS

Boolean

Whether the DIl should copy
invocation arguments.

Set this to f al se to optimize stub
marshalling for large messages.

This defaults to f al se. (*)

| T_DSI _OCPY_ARGS

Boolean

Whether the DSI should copy
invocation arguments.

The default value is f al se. (*)

Table A.2: Orbix Java-Specific Configuration Variables

100

Orbix Java Configuration Variables

Variable

Type

Description

| T_ENABLE_MULTI _HQOVED SUPPCRT

Boolean

If set to “TRUE”, this will enable Orbix
Jave for multi-homed machines.

This defaults to “FALSE”.

| T_HTTP_TUNNEL_HOST

String

The TCP/IP hostname used by a client
to contact a Wonderwall [IOP proxy
for HTTP tunnelling.

| T_HTTP_TUNNEL_PCRT

Integer

The TCP/IP port used by a client to
contact a Wonderwall IIOP proxy for
HTTP tunnelling.

This defaults to 0.

| T_HTTP_TUNNEL_PREFERRED

Boolean

Whether HTTP tunnelling should be
used in preference to any other
connection mechanism.

This defaults to f al se.

| T_HTTP_TUNNEL_PROTO

String

The HTTP protocol used by a client to
contact a Wonderwall IIOP proxy for
HTTP tunnelling (usually ht t p).

I T_11OP_LI STEN PCRT

Integer

A server’s well-known port; the port to
listen for client invocations using IIOP.

The default value is 0. (*)

I T_I | OP_PROXY_HOST

String

The TCP/IP hostname used by a client
to contact a Wonderwall [IOP proxy
for IIOP proxy connections.

I T_I | OP_PROXY_PORT

Integer

The TCP/IP port used by a client to
contact a Wonderwall IIOP proxy for
IIOP proxy connections.

This has a default value of 0.

Table A.2: Orbix Java-Specific Configuration Variables

101

Orbix Administrator’s Guide Java Edition

Variable

Type

Description

I T_I1 OP_PROXY_PREFERRED

Boolean

Indicates whether connecting using
IIOP proxying via a Wonderwall should
be used in preference to any other
connection mechanism.

This defaults to f al se.

| T_I MPL_READY_| F_OONNECTED

Boolean

Specifies whether the Orbix Java
runtime should inform the daemon that
the server is ready by calling

impl _is_ready() when the server
calls ORB. connect ().

This defaults to t r ue.

I T_IMPL_I' S_READY_TI MEOUT

Integer

When an in-process server is launched,
the Java daemon waits to be informed
that the server is active before allowing
the causative client request to proceed.
Refer to the Orbix Programmers Guide
Java Kditionfor further details.

It waits a maximum of this amount of
time, specified in milliseconds.

The default is 30000 milliseconds (30
seconds).

I T_I N TI AL_ REFERENCES

String

A list of IORs for initial service objects,
as returned by the ORB operation
list_initial _references().ltis
specified in a "name value name value..."
format.

For example, "NameSer vi ce

ICR [I OR for_nam ng_servi ce]
Tr adi ngSer vi ce

IR [ICR for_Trader] "

Table A.2: Orbix Java-Specific Configuration Variables

102

Orbix Java Configuration Variables

Variable Type Description

I T_I ORS_USE DNS Boolean | Indicates whether [IOP object
references use DNS hostnames or IP
addresses. A t rue value here indicates
that they should use DNS hostnames.

This defaults to true. (¥)

I T_JAVA COWI LER String The path to the Java compiler
executable. Used by the owj avac tool
when building the Orbix Java demos.

I T_JW SYSTEM PROPERTY_SW TCH String This allows the Java daemon to be run
on different JVMs.

It facilitates the different switches that
different Java Interpreters support to
pass system properties to the JVM.

The default is - Dfor the JDK. You
should set this to / d: for Microsoft’s
JView.

| T_KEEP_ALI VE_ FORWARDER OONN Boolean | Whether the connection from the
client to the Orbix Java daemon should
be kept alive after a bi nd() call.

The default is t rue. (*)

I T_LI STENER PR ORI TY Integer The priority of the server-side
connection-listener thread.

The default value is 5. (*)

I T LOCAL DOVAI N String The name of the local DNS domain.

Table A.2: Orbix Java-Specific Configuration Variables

103

Orbix Administrator’s Guide Java Edition

Variable

Type

Description

| T_LOCAL_HOSTNAME

String

The name of the local host. You do not
need to set this normally, but it can be
useful if you wish to control the interface on
which incoming connections are accepted.

The default value is null.

| T_LOCATE_ATTEMPTS

Integer

The number of attempts to locate the
server using LOCATE _FCRMARD.

The default value is 5. (*)

I T_MARSHAL_NULLS OK

Boolean

Allow Java nul | s to be used to
represent null IDL strings and anys.

This variable enables APl compatibility
with pre-OMG standard versions of
Orbix Java and Orbix C++.

The default is f al se.

I T_MLTl _THREADED SERVER

Boolean

Whether this instance of the Java
runtime can contain multiple servers in
the one process.

This defaults to f al se. (*)

| T_NAVES_HASH TABLE LOAD FACTCR

Float

Percentage of table elements used
before a resize. The default value is 0. 5.

| T_NAVES_HASH TABLE Sl ZE

Integer

The initial size for the Naming Service
hash table. This value must be a prime
number.

The default value is 23.

Table A.2: Orbix Java-Specific Configuration Variables

104

Orbix Java Configuration Variables

Variable Type Description

I T_NAMES REPCSI TCRY_PATH String This represents the default location of
the Naming Service repository entries.

This is set to the following directory by
default:

<install dir>/config/ NamesRep

| T_NAMES SERVER String The name of the Name Server that is
registered with the Implementation
Repository.

I T_NAMVES TI MEQUT Integer The default timeout, set to the
following:

-1(1 T- 1T NFINETE_TI MEQUT)

| T_NAMES SERVER HOST String The TCP/IP hostname of the host
where the CORBA Naming Service is
installed.

IT_NS I P_ADDR String The IP address of the host where the

CORBA Naming Service is installed. If
this is not set, the

I T_NAMES SERVER HOST variable is
used instead. (*)

I T_NS_PCRT Integer The TCP/IP port of the host running
the CORBA Naming Service.

The default value is 1570.

| T_OBIJECT_CONNECT_TI MEQUT Integer The amount of time an object is
available after connect () is called.

The default value of - 1 means
indefinitely. (*)

Table A.2: Orbix Java-Specific Configuration Variables

105

Orbix Administrator’s Guide Java Edition

Variable

Type

Description

| T_CBJECT TABLE LQAD FACTCR

Float

The load factor of the server object
table. Once this proportion of objects
has been registered, it is resized.

This has a default of 0. 75. (¥)

| T_CBJECT TABLE S| ZE

Integer

The initial size of the internal table used
to register Orbix Java objects in a
server.

The default value is 1789. (¥)

| T_ORBI XD_| | CP_PCRT

Integer

The TCP/IP port number on which the
Orbix Java daemon can be contacted
when using IIOP. Provided to support
legacy daemons requiring a separate
port for each protocol.

The default is 1570.

| T_CORBI XD_PCRT

Integer

The TCP/IP port number on which the
Orbix Java daemon should be contacted
when using the Orbix protocol.

The default is 1570.

| T_READER PR CRI TY

Integer

The priority of the server-side request-
reader thread.

The default is 3. (*)

| T_REQ CACHE_SI ZE

Integer

The initial size of the internal cache for
outgoing requests and the cache for
outgoing replies. This is resized as
necessary.

The default is 10. (*)

Table A.2: Orbix Java-Specific Configuration Variables

106

Orbix Java Configuration Variables

Variable

Type

Description

| T_SEND_FRAGVENTS

Boolean

If this is set to tr ue and the target
server supports [IOP version |.| or
higher, messages that exceed

| T_BUFFER S| ZE are sent as fragments.

This defaults to f al se.

| T_TRADI NG SERVER

String

The server name for the CORBA
Trader service. (*)

| T_USE_ALI AS_TYPECCDE

Boolean

When set to tr ue creates an alias
TypeCode.

This defaults to f al se.

ITUEBDRIIC

Boolean

Whether bidirectional [IOP
connections should be used to support
callbacks through firewalls.

This is set to f al se by default.

| T_USE_EXTENDED CAPABI LI TI ES

Boolean

Orbix Java provides built-in support for
Netscape’s Capabilities API. If this is
enabled, connections can be opened to
any host using IIOP, Orbix protocol or
SSL-IOP, when a valid Netscape Object
Signing certificate is used.

This is set to t r ue by default. (¥)

Table A.2: Orbix Java-Specific Configuration Variables

107

Orbix Administrator’s Guide Java Edition

Variable

Type

Description

| T_USE_ORBI X_COMP_CBJREF

Boolean

When this is set to f al se, the default
TypeCode alias is used for object
references. This is | DL: CORBA/
(hject: 1.0

When this is set to t rue, the following
TypeCode alias is used for object
references: | DL: ong. or g/ CORBA/
(hject: 1.0

The default is f al se.

| T_USE_ORB_THREADGROP

Boolean

This variable is only for use with
applets.

When set to t r ue, this causes Orbix
Java to place any threads it creates into
an "ORB threadgroup", a top-level
thread-group.

This allows ORB threads to be
separated from application threads, and
is especially useful in Netscape-signed
applets. In the JVM, multiple instances of
the same applet sharing the same ORB
object can interfere with each others
operation.

This is set to t r ue by default. (*)

config

String

The configuration file to use. By default,
the first configuration file found in the
classpath, or the first found in the
OCDEBASE directory for applets is used.

pi ngDuri ngBi nd

Boolean

Whether a client should try to ping the
server during a bi nd() call.

This is set to t r ue by default. (*)

Table A.2: Orbix Java-Specific Configuration Variables

108

Orbix Java Configuration Variables

Variable

Type

Description

set D agnosti cs

Integer

Specifies the Orbix Java diagnostics
level output to st dout. You should
enter a value in the range 0- 255.

The default value is 1.

useDef aul ts

Boolean

If this is set to true, Orbix Java does
not output a warning if the
configuration file cannot be found.

Table A.2: Orbix Java-Specific Configuration Variables

109

Orbix Administrator’s Guide Java Edition

Note: The entries in IONA configuration files are scoped with a prefix; for
example, Common{. ..} or O bi xV¢b{...}.

For details of OrbixNames-specific configuration variables, refer to the
OrbixNames Programmer's and Administrator's Guide

110

Appendix B

Orbix Java Daemon Options

Orbixd Options

The Orbix Java daemon process, or bi xd, takes the following options:

- ¢ filename

-i filename

-r seconds

Specifies the log file to use for check-point information.
In the event that a daemon is terminated, this allows a
new daemon to recover information about existing
running servers.

Unless an absolute pathname is specified, the file is
placed in a directory relative to that from which the
daemon is launched.

Outputs the daemon’s interoperable object reference
(IOR) to the specified file.

Unless an absolute pathname is specified, the file is
placed in a directory relative to that from which the
daemon is launched.

Runs the daemon in protected mode. In this mode,
only clients running as the same user as the daemon are
allowed to modify the Implementation Repository. No
updates are accepted from remote hosts.

Specifies the frequency (in seconds) at which or bi xd’s
child processes should be reaped. The default is 60
seconds.

Runs the daemon in silent mode. By default, the
daemon outputs some trace information.

Outputs more than the default trace information while
the daemon is running.

Orbix Administrator’s Guide Java Edition

-X seconds

Orbixdj Options

Allows invocations on a manually-launched
unregistered server. This means that the manually-
launched (persistent) server does not have to be
registered in the Implementation Repository.

Sets the time limit in seconds for establishing that a
connection to the daemon is fully operational. The
default is 30 seconds.

Outputs the daemon version number and a summary of
the configuration details that a new daemon process
would use. Specifying - v does not cause a new daemon
to be run.

Displays the switches to or bi xd.

The Orbix Java daemon process, or bi xdj , takes the following options:

-inProcess

-t ext Consol e

- noPr ocessRedi r ect

112

By default, the Java daemon activates servers
in a separate process. This is termed out-of-
process activation.

If this switch is set, the Java daemon starts
servers in a separate thread. This is termed in-
process activation.

By default, the Java daemon launches a GUI
console.

Adding this switch causes the Java daemon to
use the invoking terminal as the console.

By default, the st dout and st derr streams
of servers activated in a separate process are
redirected to the Java daemon console.

Specifying this switch causes the output
streams to be hidden.

Allows the use of unregistered persistently-
launched servers.

Orbix Java Daemon Options

Prints a detailed description of the
configuration parameters used by the Java
daemon on start-up.

The Java daemon then exits.

Causes the Java daemon to print a summary
of the configuration it runs with.

The Java daemon then exits.

Displays the switches to or bi xdj .

113

Orbix Administrator’s Guide Java Edition

114

Appendix C
Orbix Java Command-Line Utilities

This appendix acts as a reference for the command-line interface to Orbix Java.
The utilities described in this appendix allow you to manage the Implementation
Repository and the Interface Repository.

Utility Summary
The following table shows the available command-line utilities:

Purpose Utility
Server Registration putitj,rmtj
Listing Server Information Isitj, psitj,catitj
Process Management pingitj,killitj
Implementation Repository nkdiritj,rmdiritj
Directories
Security chowni tj, chnodi tj
Interface Repository putidl,readifr, rmdl
Management
Configuration Information dunpconfig

Table C.1: Orbix Java Command-Line Utilities

115

Orbix Administrator’s Guide Java Edition

This appendix describes each command-line utility in alphabetical order.

Note: To get help on any utility, enter the utility name followed by the - ? or
the - hel p switch. For example, putitj -?.

catitj

The catit]j utility outputs full information about a given Implementation

Repository entry.

Syntax

catitj [-v] [-h host] server_name

Options

-V Outputs the utility version information.

-h host Outputs information about an entry on a specific machine.
chmoditj

The chnodi tj utility modifies access control for a server. For example, you can
use it to grant launch and invoke rights on a server to users other than the
server owner.

Syntax
chnoditj [-v] [-h host]
{ server | -a directory }

{ i{+ -}{user, group}|
I {+, -}{user, group} }

116

Orbix Java Command-Line Utilities

chownitj

Options

-V Outputs the utility version information.

-h host Modify an entry on a specific host.

-a Specify that a user or group is to be added to an access control
list (ACL) for a directory of servers.

i + Add a user or group to the invoke ACL.

1= Remove a user or group from the invoke ACL.

1+ Add a user or group to the launch ACL.

I- Remove a user or group from the launch ACL.

By default, only the owner of an Implementation Repository entry can launch or
invoke the registered server. However, launch and invoke ACLs are associated
with each entry in the Implementation Repository, and you can modify these
ACLs to give certain users or groups the right to launch or invoke a specific
server or a directory of servers.

There is also a pseudo-group name called al | that you can use to implicitly add
all users to an ACL.

The chowni tj utility makes changes to the ownership of Implementation
Repository entries and directories.

Syntax

chownitj [-v] [-h host]
{ -s server_name new_owner |
-d directory { +, - } {user, group} }

117

Orbix Administrator’s Guide Java Edition

Options

-V Outputs the utility version information.

-h host Indicates which host to use.

-s Changes the ownership of an Implementation Repository
entry.

-d Modifies the ACL on a directory, allowing you to add (+) or

remove (-) a user or group from the list of directory owners.

Only the current owner of an Implementation Repository entry has the right to
change its ownership.

An Implementation Repository directory can have more than one owner. An
ownership ACL is associated with each directory in the Implementation
Repository, and this ACL can be modified to give certain users or groups
ownership rights on a directory. Only a user on an ownership ACL has the right
to modify the ACL.

Note: Spaces are significant in this command. Spaces must exist between an
option and its argument, and on either side of the + or - that follows a
directory.

Orbix Java supports the pseudo-group al | which, when added to an ACL, grants
access to all callers.

dumpconfig

118

The dunpconfi g utility outputs the values of the configuration variables used by
Orbix, and the location of the Orbix configuration files in your system. It also
reports if there are any syntax errors in your configuration files.

Orbix Java Command-Line Utilities

killitj

Isitj

Syntax
dunpconfig [-V]

Options

-V Outputs the utility version information.

Thekillitj utility kills (stops) a running server process.

Syntax

killitj [-v] [-h host] [-mnmarker] server_nane

-V Outputs the utility version information.

-h host Kills a server on a specific machine.

—-m Specifies a marker value to identify a specific object, or set of

objects, to which the ki I i tj utility applies.

Where there is more than one server process, use the marker parameter to
select between different processes. You must specify the - mmarker parameter
when killing a process in the unshared mode.

Thekillit] utility uses the S| GTERMsignal. This utility does not remove the
entry from the Implementation Repository.

The I sit] utility lists entries in an Implementation Repository directory.

Syntax
Isitj [-v] [-h host] [-R directory

19

Orbix Administrator’s Guide Java Edition

mkdirit;j

pingitj

120

Options

-V Outputs the utility version information.

-h host Lists entries on a specific host.

-R Recursively lists all subdirectories and entries.

The nkdiritj utility creates a new registration directory.

Syntax
nkdiritj [-v] [-h host] directory

Options
-V Outputs the utility version information.
-h host Creates a new directory on a specific host.

Hierarchical names are extremely useful in structuring the name space of servers
in Implementation Repositories.

The pingi tj utility tries to contact an Orbix Java daemon to determine if it is
running.

Syntax
pingitj [-v] [-h host]

Options
-V Outputs the utility version information.
-h host Pings a specific host machine.

Orbix Java Command-Line Utilities

psitj

The psi tj utility outputs a list of server processes known to an Orbix Java
daemon.

Syntax
psitj [-v] [-h host]

Options
-V Outputs the utility version information.
-h host Lists server processes on the specified host.

One line is output for each server process. Each line has values for the following
fields:

Narmre Marker Code Comms Port Status Per-dient? G5 pid

The fields are as follows:

Narre The server name.

Mar ker The object marker pattern associated with the
process; for example, *.

Code The data encoder used; for example, cdr.

Conms The communications protocol used; for example,
tcp.

Por t The port number used by the communications
system.

St at us This can be aut o, manual or i nacti ve.

Per-dient? Indicates whether the server is a per-client server.

Gs-pid The operating system process.

121

Orbix Administrator’s Guide Java Edition

putidl
The puti dl utility allows you to add a set of IDL definitions to the Interface
Repository. This utility takes the name of an IDL file as an argument. All IDL
definitions within that file are added to the repository.
The Interface Repository server must be available for this utility to succeed.
Syntax
putidl {[-?] | [-v] [-h host] [-s] file}
Options
-? Displays the allowed options for this command.
-V Outputs the utility version information.
-h host Indicates the host at which the Interface Repository server is
available.
-S Indicates that the utility should run in silent mode.
putitj

The putit]j utility creates an entry in the Implementation Repository that
represents how Orbix Java can start a server.

Note: The availability of a given putitj switch depends on which Orbix Java
daemon is used or bi xd or or bi xdj . Switches labelled or bi xd are not
currently supported by the Java daemon or bi xdj .

122

Orbix Java Command-Line Utilities

Syntax

putitj [-v] [-h host] [-per-client | -per-client-pid]
[-shared | -unshared] [-narker nmarker]
[-per-method [-method nmet hod]
[-j | -java] [-classpath classpath | -addpath path]
[-oc ORB class] [-0s ORB_singleton_class] [-jdk2]
[-port iiop portnunber][-1] [-persistent]
[-nservers | -n number_of _servers]
serverNane [-- command_| i ne_parameters]

Options

Executing puti tj without any arguments outputs a summary of its options. The

options are as follows:

-V

-h host

-per-client

(orbixd)

-per-client-pid

(orbixd)

-shared

-unshar ed
(orbixd)

Outputs the utility’s version information without
executing the command. This option is available on
all of the utilities.

Specifies the hostname on which to execute the
putitj command. By default, this utility is executed
on the local host.

Specifies that a separate server process is used for
each user. You can use this activation mode with
the shared, unshared, or per-method modes.

Specifies that a separate server process is used for
each client process. You can use this activation
mode with the shared, unshared, or per-method
modes.

Specifies that all active objects managed by a given
server on a given machine are contained in the
same process. This is the default mode.

Specifies that as an object for a given server is
invoked, an individual process is activated to handle
all requests for that object. Each object managed by
a server can (but does not have to) be registered
with a different executable file—as specified in
command_| i ne.

123

Orbix Administrator’s Guide Java Edition

124

-java

—classpath
full classpath

—addpath
partial classpath

-oc ORB class

- 0s

ORB_singleton_class

The - j ava switch indicates that the specified server
should be launched via the Java interpreter. You can
truncate this switch to -j .

You can only use this switch in conjunction with the
- j ava switch. Specifies a full class path to be passed
to the Java interpreter when the server is launched.
Overrides the default value

| T_DEFAULT_CLASSPATHin common. cf g.

You can only use this switch in conjunction with the
- j ava switch. Specifies a partial class path to be
appended to the default value

| T_DEFAULT_CLASSPATHwhen the Orbix Java
daemon attempts to launch the server.

Passes - Dor g. ong. OCRBA. ORBA ass=0ORB_cl ass
to the Java interpreter. You should use this switch
with the - 0s switch.

For Orbix Java servers, the parameter to this
switch should be as follows:

I E. I ona. O bi x\&b. CORBA. CRB.

You should pass this string to the Java interpreter
before the server class name.

Passes - Dor g. ong. OORBA. ORBSi ngl et ond ass=
ORB_singleton_class to the Java interpreter. You
should use this switch with the - oc switch.

For Orbix Java servers the parameter to this switch
should be

| E. 1 ona. O bi x\b. CCRBA. si ngl et onCRB.

This string must be passed to the Java interpreter
before the server class name.

The - 0s and - oc switches provide foreign ORB
support.

Orbix Java Command-Line Utilities

-j dk2

- per net hod
(orbixd)

—port port
(orbixd)

-- parameters

Passes the following system properties to the Java
interpreter:

Dor g. ong. CCRBA. CRBA ass=
I E. | ona. O bi x\&bh. CORBA. CRB

- Dor g. ong. GORBA. ORBSI ngl et ond ass=
| E. 1 ona. O bi xWéb. GORBA. si ngl et onCRB

You must pass this string to the Java interpreter
before the server class name. You should use this
switch for Orbix Java servers being executed by
JDK1.2.

Allows you to register pre-Orbix 2.3 servers using
the putitj command.

Specifies that each invocation to a server results in a
process being activated to handle that request. Each
method can (but does not have to) be registered
with a different executable file—as specified in
command_line.

Specifies a well-known port number for a server so
that Orbix Java, if necessary, activates a server that
communicates on the specified port number. Often
required by servers that communicate over the
CORBA Internet Inter-ORB Protocol (IIOP).

Allows the addition of extra command-line
parameters to be passed to a server.

All parameters specified after the - - switch are
ignored by the puti tj utility and passed to the
daemon as the launch command. For example,

putitj -j testServer
-- -DC bi xV¢b. set D agnost i cs=255
packageNane. cl assNare

125

Orbix Administrator’s Guide Java Edition

126

The following options apply to the shared mode:

-nservers
number_of servers
(orbixd)

- per si st ent
(orbixd)

This switch is applicable only to servers registered in
shared activation mode. It instructs the daemon to
launch up to the specified number of servers. Each
new client connection results in a new server being
launched as long as the number of clients is less than
the number specified in number_of_servers. When
the number of clients equals the number of servers
specified in number_of_servers, new clients are
connected to running servers using a round robin
algorithm.

The default number of servers is 1. You can truncate
the - nservers switch to - n.

Specifies that the server can only be launched
persistently (that is, manually). The server is never
automatically launched by Orbix Java.

If the - u option is passed to the Orbix Java daemon,
such servers do not have to be registered in the
Implementation Repository.

The following option applies to the shared and unshared modes:

- nmarker marker

Specifies a marker value to identify a specific object, or
set of objects, to which the putitj applies.

Marker names specified using putitj cannot contain
white space.

Orbix Java Command-Line Utilities

The following option applies to the per-method mode:

- et hod method

(orbixd)

Server Activation Modes

Activation modes control how servers are implemented when they become

Specifies a method name to identify a specific method,
or set of methods, to which the putitj applies.

processes of the underlying operating system. The primary activation modes are

as follows:

Shared

Unshared

Per-Method

In shared mode, all of the objects with the
same server name on a given machine are
managed by one process on that machine.

If a server is registered in shared mode, it
can also be launched manually prior to any
invocation on its objects.

This is the default activation mode.

In unshared mode, individual objects are
registered with the Implementation
Repository, and a process is launched for
each object.

In per-method mode, individual operations
are registered with the Implementation
Repository, and each invocation on an
operation results in a separate process.

You should note the following:

® For a given server name, you can select only one of shared, unshared, or
per-method.

127

Orbix Administrator’s Guide Java Edition

® For each of the modes shared or unshared, a server can be registered in a
secondary activation mode:

+ multiple-client
+ per-client
+ per-client-process

The default is multiple-client activation. This means that a server process
is shared between multiple principals and multiple client processes.

Per-client activation results in a separate server process for each principal
(end-user). Per-client-process activation results in a separate server
process for each separate client process. Per-client and per-client-
process activation are independent from shared, unshared and per-
method modes. You can combine these activation modes in an arbitrary
manner; for example, you can combine per-client with shared, unshared
or with per-method.

® Manually-launched servers behave in a similar way to shared activation
mode servers. If a server is registered as unshared or per-method, the
server fails if it is launched manually. This is in line with the CORBA
specification.

Note: Per-method servers are activated for a single IDL operation call. As a
result, the per-client flag is ignored for per-method servers.

Pattern Matching for Markers and Methods

Pattern matching specifies a set of objects for the - mar ker option, or a set of
methods for the - net hod option. Pattern matching allows a group of server
processes to share a workload between them, whereby each server process is
responsible for a range of object marker values. The pattern matching is based
on regular expressions, as follows:

* Matches any sequence of characters.

? Matches any single character.

128

Orbix Java Command-Line Utilities

[SET] Matches any characters belonging to the specified set; for
example, [abc] .

[! SET] Matches any characters not belonging to the specified set; for
example, [! abc].

[~NSET] Equivalent to [! SET] ; for example, [“abc] .

A SET, as presented above, is composed of characters and ranges. A range is
specified using a hyphen character -.

Lastly, because each of the characters *?! ~-[]\ is special, in the sense that it is
interpreted by the pattern matching algorithm; each can be preceded by a \
character to suppress its interpretation.

Examples of patterns are:

hell o matches “hel | 0”.

he* matches any text beginning with “he”; for example,
“he”, “hel p”, “hel | 0”.

he? matches any three character text beginning with
“he”; for example, “hec”.

[abc] matches “a”, “b” or “c”.

he[abc] matches “hea”, “heb” or “hec”.

[a-zA-Z0- 9] matches any alphanumeric character.

['a-zA Z0-9] matches any non-alphanumeric character.

_[gs] et_bal ance matches _get _bal ance and _set _bal ance.

make* matches nmakeDeposi t and makeW t hdr awal .

If an activation order exists in an Implementation Repository entry for a specific
object marker or method, and another exists for an overlapping set of markers
or methods, the particular server that is activated for a given object is non-
deterministic. This means that no attempt is made to find an entry registered for
best or exact match.

129

Orbix Administrator’s Guide Java Edition

readifr

The readi f r utility allows you to view an IDL definition stored in the Interface
Repository. This utility takes the fully scoped name of the IDL definition as an
argument and displays that definition. Calling r eadi f r with no arguments lists
the contents of the entire Interface Repository.

The Interface Repository server must be available for this utility to succeed.
Syntax

readifr [-?] | [-v] [-h host] [-d] [-c] definition_nane
Options

-? Displays the allowed options for this command.

-V Outputs the utility version information.

-h host Indicates the host at which the Interface Repository server is

available.
-d Displays all derived types of an IDL interface.
rmdirit;j

The rndiritj utility removes an Implementation Repository registration
directory.

Syntax

rndiritj [-v] [-h host] [-R directory
Options

-V Outputs the utility version information.

-h host Indicates the host from which the directory is deleted.

-R Recursively deletes the directory, and all the Implementation

Repository entries and subdirectories within it.

130

Orbix Java Command-Line Utilities

The rndi ritj utility returns an error if it is called without the - Roption on a
registration directory that is not empty.

The rm dl utility allows you to remove an IDL definition from the Interface
Repository. This utility takes the fully scoped name of the IDL definition as an
argument.

The Interface Repository server must be available for this utility to succeed.

Syntax

rmdl [-?] | [-v] [-h host] definition_name

Options

-? Displays the allowed options for this command.

-V Outputs the utility version information.

-h host Indicates the host at which the Interface Repository server is

available.

131

Orbix Administrator’s Guide Java Edition

rmitj

132

Removes an Implementation Repository entry or modifies an entry.

Syntax
rmtj [-v] [-h host]
[-marker marker | -method met hod] server_nane
Options
-V Outputs the utility version information.
-h host Indicates the host to use.
- mar ker marker Specifies a marker value to identify the object, or set of

objects, to which the rm tj utility applies.

- met hod method Specifies a method name to identify the method, or set of
methods, to which the rmi tj applies.

This utility does not kill any currently running processes associated with a
server.

You can use pattern matching for markers and methods as described in the
putitj utility reference on page 122.

Appendix D

System Exceptions

The following tables shows the system exceptions defined by CORBA,

and the system exceptions that are specific to Orbix Java.

System Exceptions Defined by CORBA

Exception Description

BAD CONTEXT Error processing context object.
BAD | N\V_CRDER Routine invocations out of order.
BAD CPERATI ON Invalid operation.

BAD PARAM An invalid parameter was passed.
Bounds Bounds exception.

BAD TYPEQCDE Bad TypeCode.

QOW FAI LURE Communication failure.

DATA_CONVERSI CN

Data conversion error.

IMP_LIMT Violated implementation limit.
INITIALI ZE ORB initialization failure.

| NTERNAL ORB internal error.

| NTF_REPCS Error accessing Interface Repository.
I NV_I DENT Invalid identifier syntax.

Table D.1: CORBA System Exceptions

133

Orbix Administrator’s Guide Java Edition

Exception Description

I N\V_FLAG Invalid flag was specified.

I N\V_CBIREF Invalid object reference.

MARSHAL Request marshalling error.

NO_MEMCRY Dynamic memory allocation failure.
NO_PERM SSI ON No permission for attempted operation.
NO_| MPLEMENT Operation implementation unavailable.
NO_RESCURCES Insufficient resources for request.
NO_RESPONSE Response to request not yet available.
OBJ_ADAPTCR Failure detected by object adaptor.
PERS| ST_STCRE Persistent storage failure.

TRANSACTI ON Transaction exception.

TRANSI ENT Transient failure—reissue request.
UNKNON The unknown exception.

Table D.1: CORBA System Exceptions

System Exceptions Specific to Orbix Java

134

Orbix Java Exception

Description

FI LTER_SUPPRESS

Suppress exception raised in per-object
pre-filter.

Table D.2: Orbix Java-Specific System Exceptions

Index

A

access control lists 25, |17
access rights to servers 71,73
activation modes 28-33, 127

multiple-client 33

per-client 33, 121

per-client-process 33

per-method 29, 32

setting 71,75

shared 29

unshared 29, 30
activation orders for servers 22
adding IDL to the Interface Repository 86
administration, overview 4
applets

signed 49

C
catitj 21, 116
chmoditj 26, 116
chownitj 26, 117
clients
applets
security issues 49
common.cfg 8
modifying 55
opening in Configuration Explorer 55
communications protocols 121
config 108
configuration
APl calls 10
parameters
getting 6, 10
setting 6, 10
Configuration Explorer 53, 59
adding configuration files 63
adding configuration scopes 62
adding configuration variables 60
deleting configuration scopes 62
deleting configuration variables 61
modifying configuration values 55, 58
opening iona.cfg 55
valid names 61
valid values 61

configuration files

common.cfg 8, 55

iona.cfg 8, 55

orbixweb3.cfg 9, 58
connecting

to an Interface Repository 85
connection timeout 112
CORBA |
customizing configuration 59

D

daemon
configuring

port value 57

server base port value 57
data encoders 121
default classpath 57
defaultConfigFile() 11
directories in Implementation Repository 20
distributed objects |
domains 57, 96
dumpconfig 118

E

Exceptions
system exceptions 133
exporting IDL to files 90

G

getConfigFile() 11
getConfigltem() 10
getConfiguration() 11
gids 27

group identifiers 27

H

hierarchical server names 20
HTTP Tunnelling 46

|
IDL |
IDL definitions

135

Orbix Administrator’s Guide Java Edition

adding to Interface Repository 39
removing from Interface Repository 40
IFR server 38
Iop 77
server ports 34
well-known ports for servers 125

Implementation Repository 2, 15-35, 65-81

basic usage |7
changing owners of servers 26
connecting to 67
deleting directories 69
directories 20
directory path 96
disconnecting from 68
entries 16
listing details of servers 21
listing registered servers 21
location of 57
modifying server registration details 78
permissions to servers 25
registering servers 19,71, 77
removing server registrations 20
IMP_LIMIT 35
Interface Repository 3, 3741
adding IDL definitions 39
configuring 38
exporting 90
location of 57
reading contents 40
removing IDL definitions 40
server 38
command-line options 39
Interface Repository Browser 83-91
adding IDL definitions 86
configuring 91

connecting to an Interface Repository 85

exporting IDL to files 90
IDL
adding 86
viewing 87, 89
refreshing 91
starting 84
viewing IDL definitions 87-90
Internet domains 57, 96
invoke permissions to servers 25
invoke rights to servers 73
iona.cfg 8
opening in Configuration Explorer 55
IOR for Orbix Java daemon |11
IT_ACCEPT_CONNECTIONS 97

136

IT_ALWAYS_CHECK_LOCAL_OBJS 97
IT_ANY_BUFFER_SIZE 97
IT_BIND_IIOP_VERSION 98
IT_BIND_USING_IIOP 98
IT_BUFFER_SIZE 98
IT_CLASSPATH_SWITCH 59, 98
IT_CONNECTION_ORDER 99
IT_CONNECTION_TABLE_PER_THREAD 99
IT_CONNECTION_TIMEOUT 99
IT_CONNECT_TABLE_SIZE_DEFAULT 99
IT_DAEMON_PORT 57, 95
IT_DAEMON_SERVER_BASE 34, 57, 95
IT_DAEMON_SERVER_RANGE 34, 96
IT_DEFAULT_CLASSPATH 17, 18,57, 96
IT_DEFAULT_IIOP_VERSION 100
IT_DETECT_APPLET_SANDBOX 100
IT_DII_COPY_ARGS 100
IT_DSI_COPY_ARGS 100
IT_ENABLE_MULTI_HOMED_SUPPORT 101
IT_HTTP_TUNNEL_HOST 10l
IT_HTTP_TUNNEL_PORT 101
IT_HTTP_TUNNEL_PREFERRED 101
IT_HTTP_TUNNEL_PROTO 10l
IT_IIOP_LISTEN_PORT 101
IT_IOP_PROXY_HOST 101
IT_IOP_PROXY_PORT 101
IT_IIOP_PROXY_PREFERRED 102
IT_IMPL_IS_READY_TIMEOUT 102
IT_IMPL_READY_IF_CONNECTED 102
IT_IMP_REP_PATH 57, 96
IT_INITIAL_REFERENCES 102
IT_INT_REP_PATH 38,57, 96
IT_IORS_USE_DNS 103
IT_JAVA_COMPILER 59, 103
IT_JAVA_INTERPRETER 18, 57, 96
IT_JAVA_SYSTEM_PROPERTY_SWITCH 103
IT_KEEP_ALIVE_FORWARDER_CONN 103
IT_LISTENER_PRIORITY 103
IT_LOCAL_DOMAIN 57, 96, 103
IT_LOCAL_HOSTNAME 104
IT_LOCATE_ATTEMPTS 104
IT_MARSHAL_NULLS_OK 104
IT_MULTI_THREADED_SERVER 104
IT_NAMES_HASH_TABLE_LOAD_FACTOR 10
4
IT_NAMES_HASH_TABLE_SIZE 104
IT_NAMES_REPOSITORY_PATH 105
IT_NAMES_SERVER 105
IT_NAMES_SERVER_HOST 105
IT_NAMES_TIMEOUT 105

Index

IT_NS_IP_ADDR 105 orbixd 2

IT_NS_PORT 105 running in protected mode |11
IT_OBJECT_CONNECT_TIMEOUT 105 running in silent mode 111
IT_OBJECT_TABLE_LOAD_FACTOR 106 version information 112
IT_OBJECT_TABLE_SIZE 106 orbixusr, user identifier 27
IT_ORBIXD_IIOP_PORT 106 orbixweb3.cfg 9
IT_ORBIXD_PORT 106 modifying 58
IT_READER_PRIORITY 106 owners, changing for servers 26
IT_REQ_CACHE_SIZE 106

IT_SEND_FRAGMENTS 107 P

IT_TRADING_SERVER 107
IT_USE_ALIAS_TYPECODE 107
IT_USE_BIDIR_IIOP 107
IT_USE_EXTENDED_CAPABILITIES 107
IT_USE_ORBIX_COMP_OBJREF 108
IT_USE_ORB_THREADGROUP 108

pattern matching, when registering servers 31
per-client activation mode 33, 121
per-client-process activation mode 33
per-method activation mode 29, 32
persistent servers 23,79, 112
pingDuringBind 108

pingitj 22, 120
K port numbers
killitj 25, 119 for servers 77
for the Orbix Java daemon 57
L ports

for Orbix Java daemon 95

for servers 34, 121, 125
protected mode

running orbixd in |11
protocols 121

launch commands for servers 77
launch permissions to servers 25
launch rights to servers 73
listing registered servers 21

Isitj 20, 21, 119 putidl 39, 122
putitj 17, 122

M specifying classpath 17
manually-started servers 23 specifying partial classpath 18
mkdiritj 20, 120
multi-homed

configuration variables 14 R

hosts. 13 readifr 40, 130

reading contents of the Interface Repository 40
registering servers |9
regular expressions 31

multiple-client activation mode 33

N rmdiritj 20, 130
nobody, user identifier 28 rmidl 40, 131
rmitj 20, 31, 32, 132
o
OMG | S
Orbix security
architecture components 2 of servers 25
Orbix Java daemon Server Manager 65-8I
check-point information 111 configuring 80
command options |11 connecting to an Implementation Repository 67
contacting 22 deleting directories 69
starting for unregistered servers 24 disconnecting from an Implementation
trace information 111 Repository 68

137

Orbix Administrator’s Guide Java Edition

killing persistent servers 79 Server Manager 65-81
launching persistent servers 79 toolbar 66
modifying server details 78 trace information from Orbix Java daemon 111
registering servers 71, 77
specifying access rights 73 ¥
specifying activation modes 75, 77 uids 27
starting 66 unregistered servers |12

servers L 25 unshared activation mode 29, 30
access control lists useDefaults 109

access rights 71,73
activation modes 28-33, 71
activation orders 16

user identifiers 27

details of registration 21 v))

details of running servers 121 version number, of Orbix Java |12
for Interface Repository 38

hierarchical names 20 \"."4

IIOP port numbers 77 Wonderwall 43

!lOP ports |.25. configuring 45

invoke permissions 25 configuring Orbix Java for use 45
killing 79

launch commands 77 X

launch permissions 25

launching persistently 79 XDR 121
listing 21

managing |5 Z
modifying registration details 78 91

names of 16

owners of 16, 26
permissions for 16, 25
ports 34

registering 19, 71, 77
removing registration of 20
starting manually 23

stopping 25
setConfigltem() 10
setConfiguration() |1

setDiagnostics 109
shared activation mode 29
silent mode, running orbixd in |11
starting
the Interface Repository Browser 84
the Server Manager 66
stopping servers 25

T
TCP/IP 121
toolbar 66
tools

Configuration Explorer 53
Interface Repository Browser 83-91

138

	Preface
	Audience
	Organization of this Guide
	Document Conventions

	Part I
	Orbix Java Administration
	Overview of Orbix Java Administration
	Components of the Orbix Java Architecture
	Servers and the Implementation Repository
	The Interface Repository

	Administration of Orbix Components

	Configuring Orbix Java
	Accessing Configuration Parameters
	Configuration Parameter Formats

	Using Orbix Java Configuration Files
	Configuring Root Settings
	Configuring Common Parameters
	Configuring Orbix Java-Specific Parameters

	Using Configuration API Calls
	Accessing Configuration Items
	Accessing Configuration Properties
	Accessing Configuration Files

	Using Command-Line Arguments
	Using Java System Properties

	Multi-Homed Hosts
	Multi-Homed Configuration Variables

	Managing the Implementation Repository
	Implementation Repository Entries
	Basic Implementation Repository Usage
	Registering a Server using Putitj
	Registering a Server on a Remote Host
	Organizing Servers into Hierarchies
	Removing a Registered Server
	Listing Registered Servers
	Displaying a Server Entry
	Contacting an Orbix Java Daemon

	Starting Servers Manually
	Registering a Manual Server (orbixd)
	Starting the Orbix Java Daemon for Unregistered Servers

	Stopping Servers
	Security of Registered Servers
	Modifying Server Access
	Changing Owners of Registered Servers
	Determining the User and Group IDs of Running Servers (orbixd)

	Server Activation Modes
	Registering Unshared Servers (orbixd)
	Using Markers to Specify Named Objects
	Registering Per-Method Servers (orbixd)
	Secondary Activation Modes

	Managing Server Port Selection
	Registering Servers with Specified Ports (orbixd)
	Controlling Port Allocation with Configuration Variables

	Activation Issues Specific to IIOP Servers

	Managing the Interface Repository
	Configuring the Interface Repository
	Registering the Interface Repository Server
	Adding IDL Definitions
	Reading the Interface Repository Contents
	Removing IDL Definitions

	Using Orbix Java on the Internet
	About Wonderwall
	Using the Wonderwall with Orbix Java as a Firewall Proxy
	Orbix Java Configuration Parameters Used to Support the Wonderwall

	Using the Wonderwall as an Intranet Request Router
	Applet Signing Technology
	Overview

	Part II
	Orbix Java GUI Tools
	Orbix Java Configuration Explorer
	Starting the Configuration Explorer
	Configuring Common Settings
	Configuring Orbix Java-Specific Settings
	Customizing Your Configuration
	Creating Configuration Variables
	Creating Configuration Scopes
	Creating Configuration Files

	The Orbix Java Server Manager
	Starting the Orbix Java Server Manager
	Connecting to an Implementation Repository
	Creating a New Directory
	Registering a Server
	Providing Server Access Rights to Users
	Specifying Server Activation Details

	Modifying Server Registration Details
	Launching a Persistent Server
	Configuring the Server Manager

	The Interface Repository Browser
	Starting the Interface Repository Browser
	Connecting to an Interface Repository
	Adding IDL to the Interface Repository
	Viewing the Interface Repository Contents
	Viewing Information about IDL Definitions
	Viewing Source Code for IDL Definitions

	Exporting IDL Definitions to a File
	Configuring the Interface Repository Browser

	Part III
	Appendices
	Appendix A Orbix Java Configuration Variables
	Appendix B Orbix Java Daemon Options
	Appendix C Orbix Java Command-Line Utilities
	Appendix D System Exceptions
	System Exceptions Defined by CORBA

	Index

