OrbixCOMet Desktop
Programmer’s Guide and
Reference

IONA Technologies PLC
September 2000

Orbix is a Registered Trademark of IONA Technologies PLC.
OrbixCOMet (TM) is a Trademark of IONA Technologies PLC.

While the information in this publication is believed to be accurate, IONA Technologies PLC makes no warranty of any kind
to this material including, but not limited to, the implied warranties of merchantability and fitness for a particular purpose.
IONA Technologies PLC shall not be liable for errors contained herein, or for incidental or consequential damages in
connection with the furnishing, performance or use of this material.

COPYRIGHT NOTICE

No part of this publication may be reproduced, stored in a retrieval system or transmitted, in any form or by any means,
photocopying, recording or otherwise, without prior written consent of IONA Technologies PLC. No third party intellectual
property right liability is assumed with respect to the use of the information contained herein. IONA Technologies PLC
assumes no responsibility for errors or omissions contained in this book. This publication and features described herein are
subject to change without notice.

Copyright © 1998, 2000 IONA Technologies PLC. All rights reserved.

All products or services mentioned in this manual are covered by the trademarks, service marks, or product names as
designated by the companies who market those products.

M2423

Contents

Preface
Audience
Contact Information
Organization of this Guide
Document Conventions

Part | Introduction

Chapter | Introduction to OrbixCOMet
Two-way Interworking
Transparent Interworking
The Interworking Model
How OrbixCOMet Implements the Interworking Model
Bridge
Automation Client
COM Client
COM Library
CORBA Server
CORBA Client
Automation Server
COM Server

Chapter 2 Usage Models and Bridge Locations
Automation Client to CORBA Server
COM Client to CORBA Server
CORBA Client to COM or Automation Server

Xiii
xiii
xiii
Xiv
Xix

SCWVwOVVOVOOUA AW

oo

I
12
14
16

OrbixCOMet Programmer’s Guide and Reference

Part Il Programmer’s Guide

Chapter 3 Getting Started
Server-Side Requirements
Registering OMG IDL Type Information
Implementing Automation Clients
Writing a Client Using PowerBuilder
Writing a Client Using Visual Basic
Running the Client Application
Using DCOM On-the-Wire with OrbixCOMet
DCOM Security
The Surrogate Executable
Using OrbixCOMet with Internet Explorer
Automation Dual Interface Support
Implementing COM Clients
Generating COM IDL Definitions from OMG IDL
Writing COM Clients
Priming the OrbixCOMet Type Store Cache
DCOM Trouble-Shooting
Miscellaneous Configuration Tips

Chapter 4 Developing a Client in Automation
The Telephone Book Example
Creating a Type Library
Implementing the Client
Obtaining a Reference to a CORBA Object
The Visual Basic Client Code in Detail
The PowerBuilder Client Code in Detail
Building the Client
Running the Client

Chapter 5 Developing a Client in COM
The Telephone Book Example
Obtaining a COM IDL Interface
Building a Proxy/Stub DLL

21
21
22
22
23
26
28
29
30
31
31
34
36
36
37
40
40
43

45
46
47
47
48
50
52
54
54

55
56
57
57

Contents

Implementing the Client
Obtaining a Reference to a CORBA Object
Using CoCreatelnstance()
The COM C++ Client Code in Detail
Building the Client
Running the Client

Chapter 6 Implementing CORBA Clients
Interfaces to the ORB
Obtaining Object References
The (D)ICORBAFactory Interface
The Naming Service
IDL Operations
Interworking Interfaces on Objects
Implementing CORBA Clients in Automation
Late Binding
Early Binding
Narrowing Object References
A Visual Basic Client Program
Implementing CORBA Clients in COM
COM Apartments and Threading
Narrowing Object References
A COM C++ Client Program

Chapter 7 Exposing DCOM Servers to CORBA Clients

The Supplied DCOM Server

Building the DCOM Server and Proxy Stub DLLs

Priming the Type Store

Registering the Server

Generating OMG IDL

Writing a Client to Talk to the DCOM Server

CORBA Client Example Using Composable Support
Connection and Usage with the Custsur Executable

Chapter 8 Implementing CORBA Servers
Steps to Implementing a CORBA Server
Defining and Registering OMG IDL Interfaces
Generating a Type Library or COM IDL

58
58
60
60
62
63

65
66
68
68
70
74
75
76
76
76
77
78
82
82
82
83

89
90
90
91
91
92
94
95
97

99

99
100
101

OrbixCOMet Programmer’s Guide and Reference

Generating Server Skeleton Code 101
Implementing the Server Interfaces 102
Implementing the Account Interface 102
Implementing the CurrentAccount Interface 103
Implementing the Bank Interface 104
Registering the Server with OrbixCOMet 105
Running the Server 108
Registering the CORBA Server in the Implementation Repository 108
Chapter 9 Exception Handling 109
CORBA Exceptions 110
Example of a User Exception 110
Exception Properties 112
Exception Handling in Automation 113
Exception Handling in Visual Basic 114

Inline Exception Handling 115
Exception Handling in COM 118
Catching COM Exceptions 118

Using Direct-to-COM Support in Visual C++ 19
Raising an Exception in a Server 120
Automation Exceptions 120

COM Exceptions 121
Chapter 10 Implementing Client Callbacks 123
Defining OMG IDL Interfaces 124
Generating Skeleton Code for Callback Objects 125
Writing a Client 125
Visual Basic 125
PowerBuilder 126

COM C++ 126
Writing the Server 128
Implementing the RegisterCallback Interface 128
Invoking the Operation to Notify the Client 129
Registering the Callback Object Server 131
Visual Basic 131
PowerBuilder 131

COM C++ 132

vi

Conten

ts

Chapter |11 SSL Support
Enabling SSL in an OrbixCOMet Application
OrbixCOMet SSL Handler DLLs
Secure CORBA Clients Accessing Existing DCOM Servers
Specifying the Custsur.exe Certificate
Specifying the Corresponding Private-Key Password
OrbixCOMet Type Store Manager and the Secure IFR

Chapter 12 Deploying an OrbixCOMet Application
Deployment Models
Bridge on Each Client Machine
Bridge on Server Machine
Bridge on Intermediary Machine
Internet Deployment
Deployment Steps
Installing Your Application Runtime
Installing the Development Language Runtime
Installing the Orbix Runtime
Installing the OrbixCOMet Runtime
Minimizing the Client-Side Footprint
Using Handler DLLs
Creating and Registering Handler DLLs
Loading Handler DLLs at Runtime
Managing Handler DLLs

Chapter 13 Development Support Tools

The Central Role of the Type Store
The Caching Mechanism of the Type Store
The OrbixCOMet Tools GUI Screen
Location of the Command-Line Utilities
Adding New Information to the Type Store

Using the GUI Tool

Using the Command-Line Utilities
Deleting the Type Store Contents

Using the GUI Tool

Using the Command-Line Utilities

133
134
135
136
137
138
138

139
139
140
142
144
146
146
147
147
147
149
151
153
153
154
154

157
158
159
160
161
161
162
163
166
166
166

vii

OrbixCOMet Programmer’s Guide and Reference

Rebuilding the Type Store

Using the GUI Tool

Using the Command-Line Utilities
Dumping the Type Store Contents
Creating an IDL File

Using the GUI Tool

Using the Command-Line Utilities
Creating a Type Library

Using the GUI Tool

Using the Command-Line Utilities
Generating a Handler DLL
Generating Server Stub Code and Support for Callbacks
Replacing an Existing DCOM Server

Part lll Programmer’s Reference

Chapter 14 OrbixCOMet API Reference

viii

Automation Interfaces
DIOrbixServerAPI
DCollection
DICORBAAny
DICORBAFactory
DICORBAFactoryEx
DICORBAODbject
DICORBAStruct
DICORBASystemException
DICORBATypeCode
DICORBAUnion
DICORBAUSserException
DIForeignComplexType
DIForeignException
DIObject
DIObjectinfo
DIOrbixObject
DIOrbixORBObject
DIOrbixSSL
DIORBObject

167
167
167
167
168
168
170
171
172
173
174
176
177

181
181
181
184
184
189
191
192
194
195
196
199
200
200
201
201
201
202
205
218
220

Contents

IForeignObject 221

COM Interfaces 223
IOrbixServerAPI 223
ICORBA_Any 225
ICORBAFactory 227
ICORBAODbject 228
ICORBA_TypeCode 230
ICORBA_TypeCodeExceptions 234
IForeignObject 235
IMonikerProvider 236
I0rbixObject 237
I0rbixORBObject 239
IOrbixSSL 250
IORBObject 252
Chapter 15 Introduction to OMG IDL 255
OMG IDL Interfaces 255
Oneway Operations 257
Context Clause 258
Modules 258
Exceptions 258
Inheritance 259
The Basic Types of OMG IDL 262
Constructed Types 263
Structures 263
Enumerated Types 264

Unions 264
Arrays 265
Template Types 265
Sequences 265

Strings 266
Constants 267
Typedef Declaration 267
Forward Declaration 268
Scoped Names 268
The Preprocessor 268
The Orb.idl Include File 269

ix

OrbixCOMet Programmer’s Guide and Reference

Chapter 16 CORBA-to-Automation Mapping 271
Basic Types 272
Strings 273
Interfaces 274

Attributes 275
Operations 277
Inheritance 278
Complex Types 282
Creating Constructed OMG IDL Types 283
Structs 283
Unions 285
Sequences 287
Arrays 290
Exceptions 291
The Any Type 293
Context Clause 293
Object References 293
Modules 295
Constants 296
Enumerated Types 296
Scoped Names 297
Typedefs 298

Chapter 17 Automation-to-CORBA Mapping 299
Basic Types 300
Strings 301
Interfaces 301

Properties and Methods 302

Inheritance 303
SafeArrays 304
Exceptions 304
Variant Types 305
Object References 305
Enumerated Types 306
Typedefs 307

Contents

Chapter 18 CORBA-to-COM Mapping 309
Basic Types 310
Strings 310
Interfaces 311

Attributes 312
Operations 313
Inheritance 314

Complex Types 317
Creating Constructed OMG IDL Types 317
Structs 317
Unions 319
Sequences 320
Arrays 321
Exceptions 322
The Any Type 325
Context Clause 326
Object References 326
Modules 327
Constants 328
Enumerated Types 328
Scoped Names 330
Typedefs 331

Chapter 19 COM-to-CORBA Mapping 333
Basic Types 334
Strings 335
Interfaces 336

Properties and Methods 336
Inheritance 338
Complex Types 339
Structs 339
Unions 340
Pointers 342
Arrays 342
Exceptions 343
Variant Types 345
Constants 346
Enumerated Types 346

xi

OrbixCOMet Programmer’s Guide and Reference

Scoped Names 347
Typedefs 348
Chapter 20 System Exceptions 351
Exceptions Defined by CORBA 351
Orbix-Specific Exceptions 352
Chapter 21 OrbixCOMet Configuration 353
OrbixCOMet Keys 353
Common Keys 360
Orbix Keys 361
Chapter 22 OrbixCOMet Utility Options 363
Typeman Options 363
Ts2idl Options 365
Ts2tlb Options 366
Ts2sp Options 367
Aliassrv Options 368
Custsur Options 368
Tlibreg Options 369
Index 371

xii

Preface

OrbixCOMet combines the best of both the Object Management Group (OMG)
Common Object Request Broker Architecture (CORBA) and Microsoft COM
standards. It provides a high performance bidirectional dynamic bridge, which
enables two-way integration between COM/Automation and CORBA
applications.

OrbixCOMet is designed to allow COM programmers—who use tools like
Visual C++, Visual Basic, PowerBuilder, Delphi or Active Server Pages on the
Windows desktop—to easily access CORBA applications running on Windows,
UNIX, or OS/390 environments. It means COM programmers can use the tools
familiar to them to build heterogenous systems that use both COM and CORBA
components within a COM environment. OrbixCOMet is also designed to allow
CORBA programmers to build, using COM programming tools, heterogenous
systems that use both CORBA and COM components within a CORBA
environment.

Audience

This guide is intended for use by CORBA and COM application programmers
who wish to familiarise themselves with using OrbixCOMet to develop and
deploy distibuted applications that combine CORBA and COM components
within their own native object environment.

Contact Information

Orbix documentation is periodically updated. New versions between releases
are available at this site:

http://ww i ona. cond docs/ or bi x/ or bi x33. ht m

If you need assistance with Orbix or any other IONA products, contact IONA
at support @ona. com Comments on IONA documentation can be sent to
doc- f eedback@ ona. com

xiii

OrbixCOMet Desktop Programmer’s Guide and Reference

Organization of this Guide

This guide is divided into three main parts.

Part |, Introduction

Chapter |, “Introduction to OrbixCOMet”

The COM/CORBA Interworking specification defines a model for transparent
two-way interworking between the Object Management Group (OMG)
Common Object Request Broker Architecture (CORBA) and Microsoft COM/
Automation environments. OrbixCOMet implements the COM/CORBA
Interworking specification by enabling two-way interworking between CORBA
and COM/Automation objects. This chapter explains what interworking means.
It also introduces the components involved in OrbixCOMet’s implementation of
the interworking model, and the concepts and terminology used throughout this
guide.

Chapter 2, “Usage Models and Bridge Locations”

You can use OrbixCOMet to develop and deploy distributed applications that
combine COM/Automation and CORBA in different ways. These combinations
are called usage models. You can build client-server applications based on the
following two usage models: a COM or Automation client that calls objects in a
CORBA server, and a CORBA client that calls objects in a COM or Automation
server. This chapter explains how OrbixCOMet supports these usage models.

Part Il, Programmer’s Guide

Xiv

Chapter 3, “Getting Started”

This chapter is provided as a quick means to getting started in application
programming with OrbixCOMet. It explains the basics you need to know to
develop a simple OrbixCOMet application, using PowerBuilder or Visual Basic,
where an Automation client can invoke on an existing CORBA server. It also
provides an introduction to writing COM clients, using OrbixCOMet.

Preface

Chapter 4, “Developing a Client in Automation”

This chapter expands on what you learned in Chapter 3, “Getting Started”. It

uses the example of a distributed telephone book application to show how to
write Automation clients that can communicate with an existing CORBA C++
server, using PowerBuilder and Visual Basic.

Chapter 5, “Developing a Client in COM”

This chapter expands on what you learned in Chapter 3, “Getting Started”. It
uses the example of a distributed telephone book application to show how to
write a COM C++ client that can communicate with an existing CORBA C++
server.

Chapter 6, “Implementing CORBA Clients”

This chapter is aimed at CORBA programmers who want to implement CORBA
clients, using Automation-based tools such as Visual Basic and PowerBuilder, and
COM-based tools such as C++.

Chapter 7, “Exposing DCOM Servers to CORBA Clients”

This chapter explains how to expose an existing DCOM server to CORBA
clients. This functionality is particularly important in allowing a CORBA client to
talk to applications such as Excel, Word, Access, and so on.

Chapter 8, “Implementing CORBA Servers”

You can use OrbixCOMet to implement CORBA servers, using Automation-
based tools such as PowerBuilder or Visual Basic. These servers can accept
requests from standard COM/Automation clients as well as from CORBA
clients. This chapter explains how to use OrbixCOMet to implement a CORBA
server.

Xv

OrbixCOMet Desktop Programmer’s Guide and Reference

xvi

Chapter 9, ‘“Exception Handling”

Exception handling is an important aspect of programming an OrbixCOMet
application. Remote method calls are much more complex to transmit than local
method calls, so there are many more possibilities for error. This chapter
explains how CORBA exceptions can be handled in a client, and how a server
can raise a user exception.

Chapter 10, “Implementing Client Callbacks”

Usually, CORBA clients invoke operations on objects in CORBA servers.
However, CORBA clients can implement some of the functionality associated
with servers, and all servers can act as clients. A callback invocation is a
programming technique that takes advantage of this. This chapter describes
client callbacks.

Chapter 11, “SSL Support”

SSL support with OrbixCOMet opens up the domain of SSL-secured CORBA
programs to COM/Automation clients and servers. Using SSL with your
OrbixCOMet applications means on-the-wire communication using [IOP is
secure.

Chapter 12, “Deploying an OrbixCOMet Application”

This chapter provides examples of the various deployment models you can
adopt when deploying a distributed application, using OrbixCOMet. It also
describes the steps you must follow to deploy a distributed OrbixCOMet

application.

Chapter 13, “Development Support Tools”

OrbixCOMet is a high-performance bridge that stores OMG IDL and MIDL type
information at the bridging location in an ORB-neutral binary format. The
OrbixCOMet type store holds a cache of this type information, which is used by
the dynamic bridge during runtime of your OrbixCOMet applications. This
chapter describes the type store and the central role it plays in terms of the
development support tools supplied with OrbixCOMet. It also describes the
GUI and command-line versions of the development support tools that allow
you to maintain the type store cache, and to create IDL files, type libraries,

Preface

handler DLLs, and server stub code from existing type store information. Finally,
it describes the tools that you can use to replace an existing COM or
Automation server with a CORBA server.

Part lll, Programmer’s Reference

Chapter 14, “OrbixCOMet API Reference”

This chapter describes the application programming interface (API) for
OrbixCOMet, which is defined in MIDL. It is divided into two main sections. The
first section provides the API reference for Automation. The second section
provides the API reference for COM.

Chapter 15, “Introduction to OMG IDL”

This chapter describes the CORBA Interface Definition Language (OMG IDL)
that is used to describe the interfaces to objects in Orbix

Chapter 16, “CORBA-to-Automation Mapping”

CORBA types are defined in OMG IDL. Automation types are defined in
Microsoft IDL (MIDL). To allow interworking between Automation clients and
CORBA servers, Automation clients must be presented with MIDL versions of
the interfaces exposed by CORBA objects. Therefore, it must be possible to
translate CORBA types to MIDL. This chapter outlines the CORBA-to-
Automation mapping rules.

Chapter 17, “Automation-to-CORBA Mapping”

Automation types are defined in Microsoft IDL (MIDL). CORBA types are
defined in OMG IDL. To allow interworking between CORBA clients and
Automation servers, CORBA clients must be presented with OMG IDL versions
of the interfaces exposed by Automation objects. Therefore, it must be possible
to translate Automation types to OMG IDL. This chapter outlines the
Automation-to-CORBA mapping rules.

xXvii

OrbixCOMet Desktop Programmer’s Guide and Reference

xviii

Chapter 18, “CORBA-to-COM Mapping”

CORBA types are defined in OMG IDL. COM types are defined in Microsoft IDL
(MIDL). To allow interworking between COM clients and CORBA servers,
COM clients must be presented with MIDL versions of the interfaces exposed
by CORBA objects. Therefore, it must be possible to translate CORBA types to
MIDL. This chapter outlines the CORBA-to-COM mapping rules.

Chapter 19, “COM-to-CORBA Mapping”

COM types are defined in Microsoft IDL (MIDL). CORBA types are defined in
OMG IDL. To allow interworking between CORBA clients and COM servers,
CORBA clients must be presented with OMG IDL versions of the interfaces
exposed by COM objects. Therefore, it must be possible to translate COM
types to OMG IDL. This chapter outlines the COM-to-CORBA mapping rules.

Chapter 20, “System Exceptions”

This chapter describes system exceptions that are defined by CORBA or specific
to Orbix.

Chapter 21, “OrbixCOMet Configuration”

This chapter describes the keys that are of interest to OrbixCOMet
configuration, and their associated default values. It includes details of
configuration entries that are either specific to OrbixCOMet or common to
multiple IONA products

Chapter 22, “OrbixCOMet Utility Options”

This chapter describes the various options that are available with each of the
OrbixCOMet command-line utilities.

Preface

Document Conventions

This guide uses the following typographical conventions:

Constant wi dth

Italic

Bold

Constant width (courier font) in normal text represents
portions of code and literal names of items such as
classes, functions, variables, and data structures. For
example, text might refer to the CORBA: : (j ect class.

Constant width paragraphs represent code examples or
information a system displays on the screen. For example:

#i ncl ude <stdio. h>

Italic words in normal text represent emphasis and new
terms.

Italic words or characters in code and commands
represent variable values you must supply, such as
arguments to commands or pathnames for your particular
system. For example:

% cd /users/ your_name

Note: some command examples may use angle brackets
to represent variable values you must supply. This is an
older convention that is replaced with jtalic words or
characters.

Bold text represents the names of GUI items, such as
screens, fields, menu options, and buttons.

This guide may use the following keying conventions:

No prompt

%

When a command’s format is the same for multiple
platforms, no prompt is used.

A percent sign represents the UNIX command shell
prompt for a command that does not require root
privileges.

A number sign represents the UNIX command shell
prompt for a command that requires root privileges.

OrbixCOMet Desktop Programmer’s Guide and Reference

XX

[]

{}

The notation > represents the DOS, Windows NT, or
Windows 98 command prompt.

Ellipses in format and syntax descriptions indicate that
material has been eliminated to simplify a discussion.

Brackets enclose optional items in format and syntax
descriptions.

Braces enclose a list from which you must choose an
item in format and syntax descriptions.

A vertical bar separates items in a list of choices
enclosed in { } (braces) in format and syntax
descriptions.

Part |

Introduction

Introduction to OrbixCOMet

The COM/CORBA Interworking specification defines a model for
transparent two-way interworking between the Object Management
Group (OMG) Common Object Request Broker Architecture
(CORBA) and Microsoft COM/Automation environments.
OrbixCOMet implements the COM/CORBA Interworking
specification by enabling two-way interworking between CORBA and
COM/Automation objects. This chapter explains what interworking
means. It also introduces the components involved in OrbixCOMet’s
implementation of the interworking model, and the concepts and
terminology used throughout this guide.

Subsequent chapters explain how to use OrbixCOMet’s implementation of the
interworking model to build distributed applications that combine the CORBA
and COM/Automation object models.

Note: OrbixCOMet is not a CORBA C++ server-side implementation
product. Any C++ server examples provided in this book are supplied
for reference purposes only. It is assumed you already have a CORBA
server implementation product. The examples provided are for use with
the Orbix for Windows product.

OrbixCOMet Desktop Programmer’s Guide and Reference

Two-way Interworking

Two-way interworking means that CORBA and COM/Automation applications
integrate seamlessly. For example:

® A COM or Automation client can call objects in a CORBA server.
Because both COM and CORBA support distribution, the client and
server can be on different machines.

® A CORBA client can call objects in a COM or Automation server. Again,
the client and server can be on different machines.

You can implement CORBA clients and CORBA servers on any operating
system and in any language supported by a CORBA implementation. Orbix
supports a range of operating systems, such as Windows, UNIX, and OS/390. It
also supports a range of programming languages, such as C++, Java, and (using
OrbixCOMet) all COM and Automation-based languages.

By providing two-way interworking, OrbixCOMet supports application
integration across network boundaries, different operating systems, and different
programming languages. In particular, it allows you to create new applications,
written specifically for the Windows desktop, to interact with existing
applications that might be running on Windows or another platform.

OrbixCOMet supports both the Internet Inter-ORB Protocol (IIOP) and
Microsoft DCOM protocol. This means any IIOP-compliant Object Request
Broker (ORB) can interact with an OrbixCOMet application.

Transparent Interworking

Transparency in the interworking mechanism means transparency between the
COM/Automation and CORBA object models. For example:

® A client working in the CORBA model can treat a COM or Automation
object as if it were a CORBA object. This is because the object has an
OMG IDL interface that the CORBA client can understand.

Introduction to OrbixCOMet

® A client working in the COM model can treat a CORBA object as if it
were a COM or Automation object. This is because the object has a
COM IDL interface that the COM or Automation client can understand.

Transparency allows clients to work with their familiar object model. They do
not have to know that the objects they are using belong to another object
system.

The Interworking Model

The COM/CORBA Interworking specification defines the interworking model that
specifies how the integration between the COM/Automation and CORBA
object models is achieved. Figure |.1 is an overview of the interworking model.

Object model A (client) Object model B (server)

Object reference in A ‘

View of |_ Target
Target A

object ' Object
Object reference in B

Bridge
Figure 1.1: The Interworking Model

A client in one object system wants to send a request to an object in the other
system. The interworking specification provides a bridge that acts as an
intermediary between the two object systems. The bridge provides the
mappings that are required between the object systems. It provides these

mappings transparently, so the client can make requests in its familiar object
model.

To implement the bridge, the interworking model provides an object called a
view in the client’s system. The view object exposes the interface of the target
object in the model understood by the client. Figure 1.3 on page 8 shows how
this is implemented in OrbixCOMet.

OrbixCOMet Desktop Programmer’s Guide and Reference

The client makes requests on the view object. The bridge maps these into
requests in the server’s object model, and forwards these requests to the target
objects across the system boundary. The workings of the bridge are transparent
to the client.

How OrbixCOMet Implements the
Interworking Model

OrbixCOMet combines the best of both the OMG CORBA and Microsoft
DCOM standards. It provides a high performance bi-directional dynamic bridge
that enables two-way integration between COM/Automation and CORBA
applications.

For a CORBA programmer, OrbixCOMet provides the expected development
paradigm for ORB applications. The CORBA programmer starts with an OMG
IDL specification. Using OrbixCOMet, a CORBA programmer can develop:

® CORBA clients, using COM-based tools such as C++, or Automation-
based tools such as Visual Basic or PowerBuilder.

¢ CORBA servers, using Automation-based tools such as Visual Basic or
PowerBuilder.

OrbixCOMet does not facilitate development of CORBA C++ servers. You can
use the Orbix C++ product to implement CORBA C++ servers.

For a COM programmer, OrbixCOMet provides access to CORBA applications
that are running on Windows, UNIX or OS/390 environments. Using
OrbixCOMet, a COM programmer can use familiar COM-based and
Automation-based tools to build heterogeneous systems that use both COM
and CORBA components within a COM environment.

OrbixCOMet, therefore, presents a programming model that is familiar to the
programmer. Figure 1.2 on page 7 shows the components involved in
OrbixCOMet’s implementation of the interworking model for allowing COM or
Automation clients to make calls on objects in a CORBA server. Similarly, the
interworking model allows for CORBA clients to make calls on objects in a
COM or Automation server. Refer to “Usage Models and Bridge Locations” on
page | | for more details of how you can combine the two object models.

Introduction to OrbixCOMet

| |
1 1
1 1
Automation | |
Client | |
1 1
Visual Basic, : X
Power Builder : :
and so on. |
| ; CORBA
! ! Server
! COMet : Unix, MVS, NT,
: Java
! and so on.
! v
COM !
Client
C++,VJ++,
and so on.

Type
Store

Machine / Process
Boundary

Figure 1.2: OrbixCOMet’s Implementation of the Interworking Model

OrbixCOMet Desktop Programmer’s Guide and Reference

Bridge

COM Interface ?
O COM Orbix _|
Automation Interface Object Object
Bridge View Object

The OrbixCOMet bridge is implemented as a set of DLLs that are capable of
dynamically mapping requests between the two object models. Two-way
interworking requires the bridge to provide the mappings and perform
translation between CORBA and COM/Automation types.

The bridge uses another OrbixCOMet component, called the type store, as
shown in Figure 1.2 on page 7. The type store provides information to the
bridge about all the COM/Automation and CORBA types in your system. It
holds a cache of all type information in a neutral binary format. Refer to
“Managing the Type Store” on page 365 for more details about the workings of
the type store.

As shown in Figure 1.3, a view object in the bridge contains both a COM/
Automation object interface and an Orbix object interface. This means the
bridge can expose an appropriate COM/Automation or CORBA interface to its
clients. The bridge is not involved in requests sent between clients and servers
of a single object model.

Figure 1.3: An OrbixCOMet Bridge View Object

Introduction to OrbixCOMet

Automation Client

COM Client

COM Library

An Automation client can use OrbixCOMet to communicate with a
CORBA server. This is a regular Automation client written in a language
such as Visual Basic, PowerBuilder, Excel, MFC, or any other
Automation-compatible language.

A COM client can use OrbixCOMet to communicate with a CORBA
server. This is a pure COM client written in C++ or any language that
supports COM clients.

This is part of the operating system that provides the COM and
Automation infrastructure.

CORBA Server

A CORBA server can be contacted by COM or Automation clients, using
OrbixCOMet. This is a normal CORBA server written in any language
and running on any platform supported by an ORB. (Depending on the
location of the OrbixCOMet bridge in your system, the CORBA server
might need to be running on Windows NT. Refer to “Usage Models and
Bridge Locations” on page || for more details.)

If you use OrbixCOMet to develop a CORBA server, it must be written
in an Automation-based language such as Visual Basic or PowerBuilder.

OrbixCOMet Des

ktop Programmer’s Guide and Reference

CORBA Client

A CORBA client can use OrbixCOMet to communicate with a COM or
Automation server. This is a normal CORBA client written in any
language and running on any platform supported by an ORB. (Depending
on the location of the OrbixCOMet bridge in your system, the client
platform might need to be running on Windows NT. Refer to “Usage
Models and Bridge Locations” on page || for more details.)

If you use OrbixCOMet to develop a CORBA client, it must be written in
a COM-based language such as C++, or an Automation-based language
such as Visual Basic or PowerBuilder.

Automation Server

COM Server

10

An Automation server can be contacted by CORBA clients, using
OrbixCOMet. This is a regular Automation server written in Visual Basic,
PowerBuilder, Excel, MFC, or any other Automation-compatible
language.

A COM server can be contacted by CORBA clients, using OrbixCOMet.

This is a pure COM server written in C++ or any language that supports
COM servers.

2

Usage Models and Bridge
Locations

You can use OrbixCOMet to develop and deploy distributed
applications that combine COM/Automation and CORBA in different
ways. These combinations are called usage models. You can build
client-server applications based on the following two usage models:
a COM or Automation client that calls objects in a CORBA server,
and a CORBA client that calls objects in a COM or Automation server.
This chapter explains how OrbixCOMet supports these usage
models.

Note: Refer to “Deploying an OrbixCOMet Application” on page |39 for more
details and examples of the various ways you can use OrbixCOMet when
deploying your applications.

OrbixCOMet Desktop Programmer’s Guide and Reference

Automation Client to CORBA Server

12

This section describes a usage model involving an Automation client and a
CORBA server. Figure 2.1 shows a graphical overview of this usage model.

Automation Client CORBA Server

DCOM N q 1IOP
L
Automation Interface Pointer
(IDispatch pointer)

Bridge

Target
CORBA
Object

Automation View

(a real Automation Object) CORBA Object Reference

Figure 2.1: Automation Client to CORBA Server

The Automation Client

Using this model, an Automation client can use the DCOM protocol to
communicate with a CORBA server. The client in Figure 2.1 can make method
calls on an Automation view object in the bridge, using an | D spat ch pointer.
The bridge makes a corresponding operation call on the target object in the
CORBA server, using a CORBA object reference.

An Automation client can use dual interfaces instead of straight | D spat ch
interfaces. The use of either of these determines whether early binding or late
binding is allowed. (Refer to “Implementing CORBA Clients in Automation” on
page 76 for more details.)

The dynamic marshalling engine of OrbixCOMet allows for automatic mapping
of | D spat ch pointers to CORBA interfaces and object references at runtime.

The client does not need to know that the target object is a CORBA object. An
Automation client can be written in any Automation-based programming
language, such as Visual Basic or PowerBuilder.

Usage Models and Bridge Locations

The CORBA Server

The CORBA server presents an OMG IDL interface to its objects. The server
application can be developed (or already exist) on platforms other than
Windows NT. However, if you choose to locate the bridge on the server
machine, the server must be running on Windows NT. It can be written in any
language supported by a CORBA implementation, such as C++, Java, or any
Automation-based language.

The Bridge

The bridge can be located on the Automation client, on the CORBA server (in

this case, the server must be running on Windows NT), or on an intermediary

machine. It acts as an Automation server, because it accepts requests from the

Automation client. The bridge also acts as a CORBA client, because it translates
requests from the Automation client into requests on the CORBA server.

If the bridge is not located on the client machine, an Automation client always
uses DCOM to communicate with the bridge. The bridge always uses [IOP to
communicate with a CORBA server.

OrbixCOMet Desktop Programmer’s Guide and Reference

COM Client to CORBA Server

14

This section describes a usage model involving a COM client and a CORBA
server. Figure 2.2 shows a graphical overview of this usage model.

COM Client CORBA Server
Bridge Tar
get
DCOM N 1IOP CORBA
Object
COM Interface Pointer
COM View)
(a real COM Object) CORBA Object Reference

Figure 2.2: COM Client to CORBA Server

The COM Client

Using this model, a COM client can use the DCOM protocol to communicate
with a CORBA server. The client in Figure 2.2 makes method calls on a COM
view object in the bridge, using a COM interface pointer. The bridge makes a
corresponding operation call on the target object in the CORBA server, using a
CORBA object reference.

The dynamic marshalling engine of OrbixCOMet allows for automatic mapping
of COM interface pointers to CORBA interfaces and object references at
runtime.

The client does not need to know that the target object is a CORBA object. A
COM client can be written in C++ or any language that supports COM clients.

Usage Models and Bridge Locations

The CORBA Server

The CORBA server presents an OMG IDL interface to its objects. The server
application can be developed (or already exist) on platforms other than
Windows NT. (However, if you choose to locate the bridge on the server
machine, the server must be running on Windows NT.) It can be written in any
language supported by a CORBA implementation, such as C++, Java, or any
Automation-based language.

The Bridge

The bridge can be located on the COM client, on the CORBA server (in this
case, the server must be running on Windows NT), or on an intermediary
machine. It acts as a COM server, because it accepts requests from the COM
client. The bridge also acts as a CORBA client, because it translates requests
from the COM client into requests on the CORBA server.

If the bridge is not located on the client machine, a COM client always uses
DCOM to communicate with the bridge. The bridge always uses IIOP to
communicate with a CORBA server.

OrbixCOMet Desktop Programmer’s Guide and Reference

CORBA Client to COM or Automation Server

This section describes usage models involving a CORBA client and a COM or
Automation server. Figure 2.3 and Figure 2.4 show a graphical overview of these

usage models.
Automation Server

CORBA Client
Bridge
Target
1op » DCOM Automation
Object
CORBA Object Reference
CORBA View_ Automation Interface Pointer
(a real CORBA object) (IDispatch Pointer)

Figure 2.3: CORBA Client to Automation Server

COM Server

CORBA Client

Target
COoM
Object

Bridge
| DCOM

O 1IOP q
CORBA Object Reference)\/

CORBA View,)
(a real CORBA object) COM Interface Pointer

Figure 2.4: CORBA Client to COM Server

16

Usage Models and Bridge Locations

The CORBA Client

Using this model, a CORBA client can use the CORBA IIOP protocol to
communicate with a COM or Automation server. The client makes method calls
on a CORBA view object in the bridge, using a CORBA object reference. The
bridge makes a corresponding operation call on the target object in the COM or
Automation server, using an Automation (I Di spat ch) or COM interface
pointer.

The dynamic marshalling engine of OrbixCOMet allows for automatic mapping
of CORBA interfaces and object references to Automation (I b spat ch) and
COM interface pointers.

The client does not need to know that the target object is a COM or
Automation object. A CORBA client can be developed on any platform including
UNIX, Windows NT, and Windows 98. (However, if you choose to locate the
bridge on the client machine, the client must be running on Windows NT). It can
be written in any language supported by a CORBA implementation, such as C++,
Java, or any Automation-based language.

The COM or Automation Server

The COM or Automation server presents a COM IDL interface to its objects.
An Automation server can be written in any Automation-based language. A
COM server can be written in C++ or any language that supports COM servers.

The Bridge

The bridge can be located on the CORBA client (in this case, however, the client
must be running on Windows NT), on the COM or Automation server, or on an
intermediary machine. It acts as a CORBA server, because it accepts requests
from CORBA clients. The bridge also acts as a COM or Automation client,
because it translates CORBA operation calls into COM or Automation method
calls on the server.

A CORBA client always uses [IOP to communicate with the bridge. The bridge
always uses DCOM to communicate with a COM or Automation server.

OrbixCOMet Desktop Programmer’s Guide and Reference

18

Part |l

Programmer’s Guide

Getting Started

This chapter is provided as a quick means to getting started in
application programming with OrbixCOMet. It explains the basics
you need to know to develop a simple OrbixCOMet application, using
PowerBuilder or Visual Basic, where an Automation client can invoke
on an existing CORBA server. It also provides an introduction to
writing COM clients, using OrbixCOMet.

Subsequent chapters provide further details about using OrbixCOMet for
application development. Refer to “OrbixCOMet Configuration” on page 353
for details about how to configure your system.

As already explained in “How OrbixCOMet Implements the Interworking
Model” on page 6, OrbixCOMet is a fully dynamic bridge that enables two-way
integration between COM/Automation and CORBA applications. Using
OrbixCOMet simply involves configuring the bridge to pick up the correct type
information that you supply for each interface or complex type that your
applications use. Refer to “Priming the OrbixCOMet Type Store Cache” on
page 40 for details.

Server-Side Requirements

OrbixCOMet requires no code changes to existing CORBA servers. You can
simply register the server executable with the Orbix Implementation
Repository, using the putit command.

21

OrbixCOMet Desktop Programmer’s Guide and Reference

The following is an example of how to use putit to register the supplied grid
demonstration server, where i nstal | - di r represents the Orbix installation
directory:

putit grid install-dir\denos\QOwet\ corbasrv\grid\server. exe

You should also ensure that the Interface Repository (I FR) server (and the
Naming Service, if you want to use it from your application) is registered in the
Implementation Repository. This allows the daemon to launch these servers
automatically, if necessary. Refer to the Orbix C++ documentation set for more
details about registering servers.

Registering OMG IDL Type Information

OrbixCOMet is a purely dynamic bridge between COM/Automation and
CORBA that is driven by type information derived from either a CORBA
Interface Repository or Automation type libraries. The example in this chapter
uses the Interface Repository. You must register your OMG IDL in the Interface
Repository, using the puti dl command. The following is an example of how to
register the supplied gri d. i dl file that contains the gri d interface:

putidl install-dir\denos\OQOvet\corbasrv\gridigrid.idl

The Orbix daemon can launch the | FRserver automatically, if it is not already
running when you run put i dl . (This is assuming the | FR server has been
registered with the Orbix daemon in the Implementation Repository.)

Note: This chapter assumes you are using Orbix as your server-side object
request broker (ORB). Details about using other ORBs on your server
side are provided later in this guide.

Implementing Automation Clients

22

This section describes how to develop a simple Automation client, using
PowerBuilder and Visual Basic, that can communicate with a CORBA server.
The supplied CORBA server implements a grid object, and the Automation
client can communicate with the server to get and set values in the grid.

Getting Started

Writing a Client Using PowerBuilder

This section describes the development of a simple client application, using
PowerBuilder with OrbixCOMet. You can find this example in i nstal | -
di r\ demos\ QOMet \ PB\ gr i d. The client interface is as shown in Figure 3.1.

; IS [=] E3

Bridge Host | |

rid Dirmensions Current Cell ;

Height ® Cell i el

]
Width |:| | || |
“alue I:I

......... - unnectl o | Set | o |

Figure 3.1: PowerBuilder Client for the OrbixCOMet Grid Demonstration

The following subsections describe the programming steps to develop this
PowerBuilder client. Any filenames mentioned in this section refer to files
contained in the i nstal | - di r\ denos\ COVet \ PB\ gri d directory.

Global Data

Start by declaring the following global data:

/1 Power Bui | der

A eObj ect bridge

A ehj ect fact

A eMbject grid_client

23

OrbixCOMet Desktop Programmer’s Guide and Reference

24

Connecting to the Orbix Grid Server from PowerBuilder

The following code is executed when you select the Connect button on the
screen shown in Figure 3.1 on page 23:

/1 Powerscri pt
/1l create the OORBA factory object
fact = CREATE d e(vj ect

// DM on the wire

/1bridge = CREATE d e(hj ect

/1 'bri dge. Connect ToNew(hj ect ("1 T_OJ ExWap. | T_OCJ ExW ap. 1")
//fact = bridge.|T_O eat eRenot eFact ory(server_narme. Text)

/1 11CP on the wire (requires bridge on client nachine)
/1 the OCORBA Factory object may be created in the nornal
/1 fashion

f act . Connect ToNew(hj ect (“ CORBA. Fact ory”)

/1 Exception paraneter in case a CCRBA exception occurs
A e(hj ect ex
ex = CREATE A e(j ect

grid _client = CREATE d e(hj ect
grid client = fact. Getoject("grid:grid_marker:gridSvr" +
server _nhane. Text, BYREF ex)

hei ght _val . Text = string(grid_client.Height)
width val . Text = string(grid client.Wdth)

connect _but t on. Enabl ed = Fal se
unpl ug_but t on. Enabl ed = True
set _button. Enabl ed = True

get _button. Enabl ed = True

The preceding code results in the creation of an instance of a GCRBA Fact ory
object. After a GORBA. Fact ory object has been returned, a particular object is
requested by calling the Get Qbj ect () method on the CORBA factory. (Refer to
“DICORBAFactory” on page 189 for a description of DI CCRBAFact ory.
Alternatively, examine i nstal | -di r\COvet\idl\ltStdAuto.idl.)

Getting Started

Obtaining a Reference to a CORBA Object

The (DI CCRBAFact ory interface contains a Get (bj ect () method that allows a
client to obtain references to CORBA objects. The OMG COM/CORBA
Interworking specification at ww. ong. or g defines the (D) CCRBAFact ory
interface, and specifies that Get (hj ect () should take a string as one parameter,
and return a pointer to the | b spat ch interface on the created object.
However, it does not specify the format for the Get (hj ect () parameter string.
In OrbixCOMet, the parameter to Get Chj ect () can take either of the following
formats:

® OrbixCOMet format:
“interface: narker: server: host"
® Tagged format:
"interface: TAG Tag data"
TAG can be either of the following:
IR In this case, Tag dat a is the hexadecimal string for the
stringified | OR For example:
fact. Get (bj ect ("enpl oyee: | OR 123456789..")

NAME_SERVI CE In this case, Tag dat a is the Naming Service compound
name separated by “. ” For example:

fact. Get (bj ect (" enpl oyee: NAME_SERVI CE
| ONA enpl oyees. PD. TonY)

Note: If the interface is scoped (for example, " Mdul e: : I nt er f ace"), the
interface token is " Modul e/ I nt er f ace”.

25

OrbixCOMet Desktop Programmer’s Guide and Reference

Disconnecting

When disconnecting, it is important to release all references to objects in the
bridge, to allow the process to terminate. In the gri d demonstration, this is
performed by the following subroutine:

/1 Power Bui | der

grid_client.Di sconnect vj ect ()
DESTROY grid_client

fact. Di sconnect Obj ect ()
DESTROY f act

bri dge. Di sconnect Obj ect ()
DESTROY bri dge

Writing a Client Using Visual Basic

This section describes the development of a simple client application, using
Visual Basic with OrbixCOMet. You can find this example in:

i nstal | -dir\denos\ COvet\ VB\ gri d
The client interface is as shown in Figure 3.2 on page 27.

The following subsections describe the programming steps to develop this Visual
Basic client. Any filenames mentioned in this section refer to files contained in
theinstal | - di r\ denos\ COMet\ VB\ gri d directory.

Global Data

Start by declaring the following global data:

Vi sual Basic

Di m bridge As (bject
Dim fact As Object
Dimgri dDi sp As (bj ect

26

Getting Started

. OrbixDCOM Gnd Demo

OrbizxDCOM Gnd
Demo

¥ |Digpatch Hast I
Width Height I

et [t

| D fetet) =i

Figure 3.2: Visual Basic Client for the OrbixCOMet Grid Demonstration

Connecting to the Orbix Grid Server from Visual Basic

The following code is executed when you select the Connect button on the
screen shown in Figure 3.2:

Vi sual Basic
Private Sub Connect_Qick()

' DCOM on the wire - see later

' Set bridge =
Creat eCbj ect ("1 T_CCl EXW ap. | T_CCl ExXW ap. 1")
Set fact =
bri dge. | T_Cr eat eRenot eFact ory(bri dgeHost . Text)

" 110P on the wire

Set fact = CreateObject("CORBA Factory")

Set gridDisp = fact. GetObject("grid:grid_marker:
gridSvr:" & server_nane. Text)

27

OrbixCOMet Desktop Programmer’s Guide and Reference

wi dt h_val . Caption = gridD sp. Wdth
hei ght _val . Capti on = gri dDi sp. Hei ght
Commandl. Enabl ed = Fal se
Command2. Enabl ed = True
Set But t on. Enabl ed = True
Cet Butt on. Enabl ed = True

End Sub

The preceding code results in the creation of an instance of a CORBA Fact ory
object. After a GORBA. Fact ory object has been returned, a particular object is
requested by calling the Get (bj ect () method on the factory. (Refer to
“DICORBAFactory” on page 189 for a description of Dl CCRBAFact ory.
Alternatively, examine i nstal | - di r\ QOvet\i dl\ It StdAuto.idl.)

Obtaining a Reference to a CORBA Object
Refer to “Obtaining a Reference to a CORBA Object” on page 25 for details.

Disconnecting

When disconnecting, it is important to release all references to objects in the
bridge, to allow the process to terminate. In the gri d demonstration, this is
performed by the following subroutine:

Vi sual Basic
Private Sub Di sconnect_Cick()
Set gridb sp = Nothing
Set fact = Nothing
Set bridge = Nothing
End Sub

Running the Client Application

28

To run the client application:

I. If you are using PowerBuilder, run gri d. exe. If you are using Visual Basic,
run vbgri d. exe. This opens the relevant client GUI interface shown in
Figure 3.1 on page 23 or Figure 3.2 on page 27.

2. Specify the hostname in the appropriate field and select Connect. This
contacts the supplied gri d C++ server, and obtains the width and height
of the grid.

Getting Started

3. Type x andy values for the grid coordinates.

4. Select Set to modify values in the grid, or Get to obtain values from the
grid.
5. Select Disconnect when you are finished.

Using DCOM On-the-Wire with OrbixCOMet

The examples provided in “Implementing Automation Clients” on page 22 have
all created an instance of the GORBA. Fact ory object in the client’s address space
(that is, in-process to the client). This section describes how you can use
OrbixCOMet to write applications that launch the OrbixCOMet bridge out-of-
process, either on the client machine or on a remote machine.

A DLL called GO ExW apper . dI | is provided with your OrbixCOMet
installation. This DLL exposes the functionality of the CoCr eat el nst anceEx()
DCOM method to PowerBuilder, Visual Basic, and Delphi programmers. The
CoCr eat el nst anceEx() method allows you to specify the machine on which the
OrbixCOMet bridge should be launched, thus allowing use of DCOM on-the-
wire. You can of course use IIOP on-the-wire instead. Both configurations are
equally easy to use from the client programmer’s point of view. The decision
about which protocol is to be used can be made at runtime. It is simply a matter
of whether the bridge is launched as an in-process server, a local server, or a
remote server.

For example, consider the following Visual Basic code, which implements a check
button (i npr ocess) to let the user decide whether to launch the bridge in-
process to the client (and therefore use IIOP on-the-wire) or out-of-process
(and therefore use DCOM on-the-wire):

Private Sub ConnectBtn_dick()
Oh Error GoTo errortrap
I f inprocess. Value <> Checked Then
Di m wr apper As bj ect
set wrapper = CreateObject
("1 T_CO ExWap. | T_CCl ExXW ap. 1")
set obj Factory = wapper.| T_Creat eRenpt eFactory
(Host Nane. Text)
set w apper = Not hing
El se
set obj Factory = Create(bject (" CORBA. Factory")

29

OrbixCOMet Desktop Programmer’s Guide and Reference

End | f

i nprocess. Enabl ed = Fal se

Set srvhj = obj Factory. Get Cbj ect("grid:

grid_marker:gridSvr:" & HostNane. Text)

StartBtn. Enabl ed = True

Connect Bt n. Enabl ed = Fal se

Exit Sub
errortrap:

MsgBox (Err.Description & ", in " & Err. Source)
End Sub

In the preceding example, the same hostname is supplied to the Get (bj ect ()
call and the | T_Or eat eRenot eFact ory call. This is purely to keep the example
simple. Remember that the hostname passed to Get (bj ect (), as shown in the
preceding example, specifies the host on which the CORBA server you want to
contact is registered. The hostname passed to | T_O eat eRenot eFact ory in the
preceding example specifies the host on which you want to create an instance of
the GCRBA. Fact ory object (that is, the host (local or remote) on which you
want to launch the bridge). In practice, the two hosts can be different.

When | T_Cr eat eRenot eFact or y() is used as in the preceding example, the
OrbixCOMet DLLs are hosted by a surrogate executable called cust sur . exe
(found in the i nstal | - di r\ QOVet \ bi n directory) on the local or remote host.
Furthermore, the code in OO ExXW apper . DLL is completely independent of
Orbix, and can therefore be used on dedicated DCOM client machines. This is
of particular use when you are using OrbixCOMet with Internet Explorer.
When a user accesses a given web page that references the wrapper object, the
DLL is downloaded automatically to the client’s machine. Using OrbixCOMet in
this manner requires no configuration changes on the client’s machine. Refer to
“Using OrbixCOMet with Internet Explorer” on page 3| for more details.

DCOM Security

30

Using DCOM on-the-wire to another machine requires that DCOM security
issues are addressed. Security can be dealt with by using DOOMINFG EXE, or
programmatically via APl security functions, or using a combination of both
approaches. Refer to “DCOM Trouble-Shooting” on page 40 for details of some
DCOM-only applications shipped with OrbixCOMet that you can use to
experiment with configuring DCOM. However, a full treatment of COM

Getting Started

security is outside the scope of this guide. Refer to the COM security FAQ at
http://support. m crosoft.com support/kb/articl es/ql58/5/08. asp for
more details.

The Surrogate Executable

As already mentioned, when the bridge is launched out-of-process, the
OrbixCOMet DLLs are not hosted by the default surrogate, DLLHCST. exe.
Instead, they are hosted by a surrogate process, cust sur . exe, which is found in
theinstal | - di r\ GOwet\ bi n directory. This is indicated by the following
registry value that is set during installation:

HKEY_COLASSES ROOT\ Appl D\ { ABB553C5- 3B72- 110F- BBFG- 444553540000}
[Di]l Surrogate] = install-dir\COWet\bin\custsur.exe

Using OrbixCOMet with Internet Explorer

Note: Before reading this section, ensure you have read “Using DCOM On-the-
Wire with OrbixCOMet” on page 29.

The OO ExW apper . DLL file supplied with OrbixCOMet wraps the DCOM
GoQ eat el nst anceEx() method. This DLL can be referenced in HTML files,
using the GBJECT tag. The reference supplies attribute values that specify the
object name, object location, object type, and so on. The CCDEBASE attribute
identifies the code base for the object by supplying a URL. (The machine name
might need to be modified in the HTML file before the demonstration can
work.) The QLASS | Dattribute identifies the object implementation. The syntax
for this attribute is QLS| D cl ass-i denti fi er for registered ActiveX controls.

For example:

<CBJECT | D="bridge" <

CLASS| D="CLSI D. 3DA5B35F- F2FG- 1100- 8D97- 0060970557AC"

change this to reflect the location of GO ExWapper.dll on your
machi ne

QCDEBASE="\\ machi ne- nane\i nst al | - di r\ GOwet \ bi n\ A ExW apper . dl | "

>

</ CBJECT>

31

OrbixCOMet Desktop Programmer’s Guide and Reference

32

When the HTML file is first downloaded, the OO ExW apper . DLL is also
retrieved and registers itself on your machine (provided you agree, of course).
This allows use of OrbixCOMet from client machines, with no configuration
effort required on the client’s part. The only requirement is that you must
configure OrbixCOMet on the server side with respect to type information,
access permissions, and so on, and place a HTML file on a server. This HTML file
can contain VBScript or JavaScript for calling methods on the remote CORBA
objects. DCOM is used on the wire. For example, the following VBScript
example is used for connecting to the gri d object on the "advi ce. i ona. cont
machine, and obtaining the height and the width of the grid:

<SCR PT LANGUAGE="VBScri pt">
<l--

DmQid
D mfact

Sub bt nConnect _Oncl i ck
| bl St atus. Val ue = "Connecting.."

DOOMon the wire...

The paraneter shoul d be the nane of the

machi ne where the bridge is |ocated.

Set fact = bridge.| T_O eat eRenot eFact ory("advi ce. i ona. cont')

#11CP on the wire
Set fact = O eate(ject ("CCORBA Factory")

Set @id = fact.Getject("grid:grid marker:gridSvr:" &
server _nane. Text)

| bl St at us. Val ue " Cbt ai ni ng di nensi ons.."

sleWdth.Value = Gid.width
sl eHei ght. Val ue = Gri d. hei ght
| bl St atus. Val ue = "Connected.."
End Sub
>
</ SCR PT>

You can find the full version of the preceding example in i nstal | -
di r\ dermos\ COMet \i e\ gri d\ gri ddeno. ht m To use this example, you must set
your Internet Explorer security settings to "medium" in your Windows Control

Getting Started

Panel. That is all you need to do. A security setting of “medium” means that you
are prompted whenever executable content is being downloaded. You do not
need to have Orbix installed. You can now open the gri ddeno. ht m file located
ininstal | -dir\denos\ QOWvet\ | E

You must edit the following lines in the gri ddeno. ht mfile, to specify the name
of the machine that you want to be contacted when the demonstration is
downloaded:

QCDEBASE="\\ machi ne- nane\i nstal | - di r\ QOvet \ bi N\ O ExW apper . dl | "
and

Set fact = bridge. | T_O eatel nst anceEx("{A8B553C5- 3B72- 11CF- BBFG
444553540000}", "nmachi ne- nane")

or
Set fact = bridge.|T_O eat eRenot eFact or y(" machi ne- nane")

| T_O eat el nst anceEx in the preceding example takes a stringified CLSID as the
first parameter, which in this case is the CLSID for the CORBA factory. On the
other hand, the CLSID for QCRBA Factory is hard-coded in the
implementations of | T_O eat eRenot eFact ory().

When these changes have been made, this file can be accessed from any
Windows NT 4.0 or Windows 95 machine with Internet Explorer. Neither
Orbix nor OrbixCOMet are required on the client side for this demonstration
to work.

The first time the page is accessed, a dialog box opens to tell you that unsigned
executable content is being downloaded. This is acceptable in this case. You
should be presented with a simple GUI, similar to the Visual Basic or
PowerBuilder GUI screens in Figure 3.1 on page 23 and Figure 3.2 on page 27.
To use the demonstration:

I. Select Connect.

2. Type x and y values for the grid coordinates.

3. Select Set to modify values in the grid, or Get to obtain values from the

grid.
4. Select Disconnect when you are finished.

33

OrbixCOMet Desktop Programmer’s Guide and Reference

Automation Dual Interface Support

Some Automation controllers (for example, Visual Basic) provide the option of
using either straight | D spat ch interfaces or dual interfaces for invoking on a
server. OrbixCOMet supports the use of dual interfaces. The use of dual
interfaces means that client invocations can be routed directly through the
vtable.! This is known as early binding, because interfaces are known at compile
time. The alternative to early binding is /ate binding, where client invocations are
routed dynamically through | Di spat ch interfaces at runtime.

The advantage of using dual interfaces and early binding is that it helps to avoid
the | Di spat ch marshalling overhead at runtime that can be associated with late
binding. (Refer to “Implementing CORBA Clients in Automation” on page 76 for
more details about early and late binding.) The use of dual interfaces requires the
use of a type library. If you want to use dual interfaces in an Automation client
that is to communicate with a CORBA server, you must create a type library,
based on the OMG IDL type information implemented by the target CORBA
server. OrbixCOMet provides a type library generation tool, t s2t | b, which
produces type libraries, based on OMG IDL type information in the
OrbixCOMet type store. In this way, Automation clients can be presented with
an Automation view of the target CORBA objects.

The following t s2t | b command creates a gri d. t| b type library in the I T_gri d
library, based on the OMG IDL gri d interface:

ts2tlb -f grid.tlb -1 IT_grid grid

Refer to “Development Support Tools” on page 157 for full details about
ts2t| b and creating type libraries from OMG IDL.

Note: Ensure your OMG IDL is registered with the Interface Repository, using
puti dl , before you add it to the type store and use t s2t | b to create an
Automation type library from it. Refer to “Development Support Tools”
on page |57 for more details.

34

The vtable is a standard feature of object-oriented programming. It is a function table that
contains entries corresponding to each operation defined in an interface.

Getting Started

The generated type library, based on the OMG IDL gri d interface, appears as
follows when viewed using oleview:

[odl, .]
interface Digrid : 1D spatch {
[i d(0x00000001)]
HRESULT _stdcall get([in] short n, [in] short m
[out, optional] VAR ANT* excep_OBJ,
[out, retval] long* val);
[i d(0x00000002)]
HRESULT _stdcall set([in] short n, [in] short m
[in] long val ue,
[out, optional] VAR ANT* excep_OBJ);
[i d(0x00000003), propget]
HRESULT _stdcall height([out, retval] short* val);
[i d(0x00000004), propget]
HRESULT _stdcall wi dth([out, retval] short* val);
b

Note: All UUIDs are generated using the MD5 algorithm specified in the OMG
COM/CORBA Interworking specification at www. ong. or g.

Having created a reference to the type library, it can be used in Visual Basic, for
example, as follows:

Vi sual Basic
DimcustGid As | T_grid.Digrid

For more complicated OMG IDL interfaces (for example, those that pass user-
defined types as parameters), t s2t | b attempts to resolve all those types from
the disk cache, the Interface Repository, or both. It cannot produce a type
library if any of the types it looks for are not found.

Finally, if you want to register the generated type library in the Windows
registry, use the supplied t1i br eg utility. You can also use t1i breg to
unregister a type library. Refer to “OrbixCOMet Utility Options” on page 363
for more details about t | i br eg.

35

OrbixCOMet Desktop Programmer’s Guide and Reference

Implementing COM Clients

OrbixCOMet provides support for COM customized interfaces. It adheres to
the standards laid down in the OMG COM/CORBA Interworking specification at
wwv. ong. or g for mapping CORBA data types to COM. This support is aimed
primarily at C++ programmers writing COM clients who want to make use of
the full set of COM types, rather than being restricted to types that are
compatible with Automation. Refer to “CORBA-to-COM Mapping” on page 309
for details of the mapping rules.

Generating COM IDL Definitions from OMG IDL

36

COM interfaces are defined in COM IDL (a derivative of DCE IDL), which is
compiled to produce marshalling code for the interface. The first step in
implementing a COM client that can communicate with a CORBA server is to
generate the COM IDL definitions required by the COM client from the existing
OMG IDL for the CORBA objects. OrbixCOMet provides a t s2i dl utility that
produces COM IDL, based on OMG IDL type information contained in the
OrbixCOMet type store. In this way, COM clients can be presented with a
COM view of the target CORBA objects.

The following t s2i dl command createsagrid.idl COM IDL file, based on the
OMG IDL gri d interface:
ts2idl -f grid.idl grid

For more complicated OMG IDL interfaces that employ user-defined types, you
can specify a -r option with t s2i dl, to completely resolve those types and to
produce COM IDL for them also.

Refer to “Development Support Tools” on page 157 for full details about
ts2i dl and creating COM IDL definitions from OMG IDL.

Note: Ensure your OMG IDL is registered with the Interface Repository, using
puti dl, before you add it to the type store and use t s2i dl to create
COM IDL from it. Refer to “Development Support Tools” on page 157
for more details.

Getting Started

The generated COM IDL, based on the OMG IDL gri d interface, is as follows:

[object, .]
interface lgrid : | Unknown

{
HRESULT get([in] short n,

[in] short m
[out] long *val);
HRESULT set ([in] short n,
[in] short m
[in] long val ue);
HRESULT _get _height([out] short *val);
HRESULT _get _wi dth([out] short *val);
b
#endi f

Writing COM Clients

After generating the required COM IDL definitions from OMG IDL, you must
compile the COM IDL, using the MIDL compiler. This produces the C++
interface definitions to be used within the application, and a proxy/stub DLL to
marshal the customized interface. This procedure is standard practice when
writing COM applications. The - p option with t s2i dl is a useful labor-saving
device that can produce a makefile for building the proxy/stub DLL. For example,
the following command produces a gri d. nk file as well as the gri d. i dl file
already shown in “Generating COM IDL Definitions from OMG IDL” on
page 36:

ts2idl -p -f grid.idl grid
The gri d. nk file contains information on how to build and register the DLL.
You need Visual C++ 6.0, to build this marshalling DLL.

You are now ready to write your COM client code. The basic operation of the
client is to:

I. Create an instance of an object that implements | CCRBAFact or y, which is
the COM version of the Dl CCRBAFact or y interface encountered already
in “Implementing Automation Clients” on page 22.

2. Call Get pj ect () to get a pointer to the | Unknown interface of the COM
view of the CORBA object.

37

OrbixCOMet Desktop Programmer’s Guide and Reference

38

3. Call Querylnterface() to geta pointer to the customized interface,
which is 1 gri d in this example, and call the relevant methods.

The following subsections take each of these steps in turn and describe how to
write a COM C++ client. You can find the complete client demonstration in
i nstall -dir\denos\ COvet \ com gri d.

Creating the CORBA Factory

You can get a pointer to | CORBAFact or y by using CoOr eat el nst anceEx() as
normal. You can load the OrbixCOMet bridge in-process to your COM client,
launch it as a local server (out-of-process) on the client machine, or launch it on
a remote machine. (This demonstration does not show how to launch the bridge
remotely, but it simply involves passing a COSERVER NFO parameter to

CoCr eat el nst anceEx().) In this example, the choice is made at runtime,
depending on how the client is started. The CORBA server to be contacted is
called gri d, and is registered on the advi ce. i ona. com machine. For example:

HRESULT hr = NOERRCR;

| Unknown *pUnk = NULL;

| CORBAFactory *pCORBAFact = NULL;
DWORD ct x;

/1 our custominterface

lgrid *pl Basi ¢ = NULL;
MULTI _Q ngi ;

/] Call to Colnitialize(), some error handling
/1 and so on omtted for clarity

menset (&mgi, 0x00, sizeof (MULLTI_Q));
ngi . pl 1D = & | D_| CORBAFact ory;

i f(bQut O Proc)
ctx = CLSCTX_ LOCAL_SERVER;
el se
ctx = CLSCTX_| NPROC_SERVER;
hr = CoCreatel nstanceEx (I11D_|I CORBAFactory, NULL,
ctx, NULL, 1, &mi);
CheckHRESULT(" CoCr eat el nst anceEx()", hr, FALSE);
pCORBAFact = (| CORBAFactory*)ngi.pltf;

Getting Started

Calling GetObject()

The call to Get (hj ect () looks similar to the Visual Basic example:

hr = pQORBAFact - >CGet Chj ect ("grid: grid_marker: gridSvr:
advi ce. i ona. cont, &Unk) ;
i f(!CheckErrlnfo(hr, pCORBAFact, |1 D | CORBAFactory))
{
pCORBAFact - >Rel ease() ;
return;

}
pCCRBAFact - >Rel ease() ;

Note: CheckErrorlnfo() is a utility function used by the demonstrations to
check the thread’s Error | nf o object after each call. This is useful for
obtaining information about, for example, a CORBA system exception
raised during the course of a call.

Calling Queryinterface() and Relevant Methods

Finally, you can obtain a pointer to the customized | gri d interface, using a call
to Queryl nterface(), and then make calls to set or get values in the grid. For
example:

short width, height;
lgrid *pl F= 0;
hr = pUnk->Querylnterface(lID Ilgrid, (PPvQD& pl F);
i f(!CheckErrinfo(hr, pUnk, 11D Igrid))
{

pUnk- >Rel ease();

return;
}
hr = pl F->_get _wi dt h(&wi dt h);
CheckErrinfo(hr, plF, IIDIgrid);
cout << "widthis " << width << endl;
hr = pl F->_get _hei ght (&hei ght) ;
CheckErrinfo(hr, plF, IIDIgrid);
cout << "height is " << height << endl;
pl F->Rel ease();

39

OrbixCOMet Desktop Programmer’s Guide and Reference

Priming the OrbixCOMet Type Store Cache

When you are ready to run your application for the first time, you have the
option of improving the runtime performance by adding the type information
required by the application to the OrbixCOMet type store. This is also called
priming the type store cache. Priming the cache means the type store already
holds the required type information in memory before you run your application.
Therefore, the application does not have to contact the Interface Repository for
each IDL type required, or COM type libraries for each COM IDL type required.

Priming the type store cache is a useful but optional step that is only relevant
before the first run of an application that will be using type information
previously unseen by the type store. On exiting an application, new entries in the
memory cache are written to persistent storage and are automatically reloaded
the next time the application is executed. Therefore, the cache can satisfy all
subsequent queries for previously obtained type information.

Refer to “Development Support Tools” on page |57 for details about the
workings of the OrbixCOMet type store cache and how to prime it.

DCOM Trouble-Shooting

40

Theinstal | -di r\ GOvet \ dconapp directory contains two subdirectories, called
test D | and t est Exe. These contain pure DCOM applications that are
completely independent of Orbix and OrbixCOMet. Their purpose is to allow
verification of a DCOM installation on a given machine. Because they are pure
DCOM only, they remove one variable from the equation when trouble-
shooting is in operation. Each application has a simple server, written using ATL
(active template library), and an associated Visual Basic client.

The testExe Application

Theinstall -di r\ COvet\ dcomapp\ t est Exe directory should look something
like the following:

20/ 02/98 20:01 <Dl R> client
21/ 02/ 98 16: 29 <Dl R> server
20/ 02/98 20:01 <Dl R> vbcl i ent

Getting Started

i, IT_DCOMApp Test Client Hi=] E3

|

Fortune

The subdirectories can be described as follows:

The server subdirectory contains an ATL server, the binary for which
can be found in i nstal | -di r\ GOVt \ bi n\ | T_DcomApp. exe. You can
build the server from scratch in the server directory, if you wish. (The
source is provided.) Register the server, using the following command:
install-dir\COVet\bin:\> | T _DcomApp /regserver

The vbcl i ent subdirectory contains a simple Visual Basic client for the
application. When you run the client, the test has completed successfully
if the window shown in Figure 3.3 on page 4| appears. If, as is likely, you
intend to use OrbixCOMet with clients and servers on different
machines, you should run these tests between those machines.

The cl i ent subdirectory contains a simple COM C++ client for the
application.

IIIIIThis fortune intentionally left blank -])1

E it |

Figure 3.3: IT_DCOMApp Test Client—Successful Operation

If the window shown in Figure 3.3 does not appear, or if an error occurs as
shown in Figure 3.4 on page 42, refer to “Miscellaneous Configuration Tips” on
page 43.

41

OrbixCOMet Desktop Programmer’s Guide and Reference

i, IT_DCOMApp Test Client [(O] =]

"Furlune
Activel component can't create object, in Project], 429 |
Exit

Figure 3.4: IT_DCOMApp Test Client—Error Launching Server

The testDIl Application

The testD | application verifies that surrogates work correctly on your
machine. You should test this if you want to use OrbixCOMet out-of-process.

To do this:

I. Use OLEM EWto launch the | T_Dconiest DLL class. This opens the OLE/
COM Object Viewer screen.

2. From the Object pulldown menu, select CoCr eat el nst ance flags of
CLXCTX_| NPROC_SERVER

3. If this test fails, refer to “Miscellaneous Configuration Tips” next.

42

Getting Started

Miscellaneous Configuration Tips

This section outlines the steps you should follow if your test does not complete
successfully:

I
2.

Verify that the server is actually registered, using CLEVI EWif possible.

If CLEVI EWis available, try launching the application from within CLEVI EW
and specify GoCr eat el nst ance flags of CLSCTX_LOCAL_SERVER

If you are using the surrogate process, use dcontnf g to ensure that the
Default Authentication Level is set to Connect, and the Default
Impersonation Level is set to | denti fy.

On Windows NT, use the \ wi nnt \ syst enB2\ event vwr . exe event
viewer to look for logged DCOM events. Figure 3.5 on page 44 shows a
typical example of a logged error.

Consult the OrbixCOMet Knowledge Base at:

http://ww. i ona. com support/ kb

Consult the DCOM mailing list archive at:

http://mcrosoft. ease. | soft. coni archi ves. i ndex. ht m
Consult the frequently asked questions about COM security at:

http://support.mcrosoft.conisupport/kb/articles/
gl58/ 5/ 08. asp

43

OrbixCOMet Desktop Programmer’s Guide and Reference

Event Detail
[ate: 23/04./38 Ewent |D: 10000
Tirne: 132018 Source: DCOM
Uszer: Adrminiztrator Type: Error
Computer: PHOBIA Category: Mone
Deszcription:
Unable to start a DCOM Server: J

{830075E0-707F-1101-8E04-006097 05574, The erar:

"The zyztem cannat find the file specified. *

Happened while starting this command:
CACOMETSRCATSZIDLSRVADEBUGAT S2IDLSRY. EXE -Embedding

I
=)

f o

Cloze | Previous Memt Help |

Figure 3.5: Typical Example of a Logged Error

44

Developing a Client in Automation

This chapter expands on what you learned in “Getting Started” on
page 2. It uses the example of a distributed telephone book
application to show how to write Automation clients that can
communicate with an existing CORBA C++ server, using
PowerBuilder and Visual Basic.

You can find versions of the Automation client application described in this
chapter at the following locations, where i nstal | - di r represents the Orbix
installation directory:

Visual Basic i nstal |l -dir\denos\ COWet \ VB\ PhoneBook
PowerBuilder i nstal | -di r\ denos\ COMet \ PB\ PhoneBook
Internet Explorer i nstal | -dir\denos\ COvet\ | E\ PhoneBook

The server application is implemented in C++ and its code is located in the

i nstal | -dir\ denmos\ COwvet \ cor basr v\ phonebook directory. You do not need
to understand how the server is implemented, to follow the examples in this
chapter.

This chapter assumes that you are familiar with the CORBA Interface Definition
Language (OMG IDL). Refer to “Introduction to OMG IDL” on page 255 for
more details.

45

OrbixCOMet Desktop Programmer’s Guide and Reference

The Telephone Book Example

46

Figure 4.1 illustrates the components of a telephone book application. The
CORBA server contains an object that supports the PhoneBook interface. Your
task is to implement the Automation client that will make requests on the
PhoneBook object.

CORBA Server

Automation
Client

PhoneBook
Object

COMet ——p |

numberOfEntries () Orbix Object
addNumber () (Implemented in C++)
lookupNumber ()

Figure 4.1: Telephone Book Example

“How OrbixCOMet Implements the Interworking Model” on page 6 explained
that a client makes method calls on a view object in the OrbixCOMet bridge.
The principal task of the Automation client in this example is to obtain a
reference to an Automation PhoneBook view object in the bridge. The
PhoneBook view object exposes an Automation DI PhoneBook interface,
generated from the OMG IDL PhoneBook interface. (Refer to “CORBA-to-
Automation Mapping” on page 271 for details of how CORBA types are mapped
to Automation.) When the client makes method calls on the PhoneBook view
object, the bridge forwards the client requests to the target CORBA PhoneBook
object.

Developing a Client in Automation

Creating a Type Library

“Automation Dual Interface Support” on page 34 has already explained that
when using an Automation client, you have the option in some controllers (for
example, Visual Basic) of using straight | D spat ch interfaces or dual interfaces,
which determines whether your application can use early or late binding. If you
want to use dual interfaces, you must create a type library. In this case, you want
to create an Automation client that can communicate with a CORBA server, so
you must create a type library that is based on the OMG IDL interfaces exposed
by the CORBA server. You can create a type library, based on existing OMG
IDL information in the type store, using either the GUI or command-line version
of the OrbixCOMet t s2t | b utility. Refer to “Development Support Tools” on
page 157 for more details.

Implementing the Client

This section describes how to implement the client, using Visual Basic and
PowerBuilder. The client presents the interface shown in Figure 4.2.

. Phone List Search Client M=l E3

Marmne I Lonkip

Fhone Mo. I el

Number of Entries in Directon ; pdate

pLLL

Hast Connect

Figure 4.2: Using the Phone List Search Client Application

47

OrbixCOMet Desktop Programmer’s Guide and Reference

Obtaining a Reference to a CORBA Object

Visual Basic

PowerBuilder

48

This section includes Visual Basic and PowerBuilder examples of the client code
used to obtain a reference to a CORBA object.

D m (pj Factory As (bj ect

D m phoneBookChj As (bj ect

Set (hj Factory = O eat e(hj ect (" CORBA. Factory")

Set phoneBookChj = (hj Fact ory. Get (hj ect (" PhoneBook:
PhoneBook_nar ker : PhoneBookSrv: " & host. Text)

QA eChj ect hj Factory

QA e(hj ect phoneBookj

bj Fact ory = CREATE d e(j ect
(bj Fact ory. Connect ToNew(hj ect (" GORBA. Fact ory")

phoneBook(hj CREATE 4 e(hj ect
phoneBook(yj bj Fact ory. Get (oj ect (" PhoneBook: PhoneBook_nar ker :
PhoneBookSrv: " & host. Text)

In the preceding Visual Basic and PowerBuilder examples:

I. The client first instantiates a CORBA object factory in the bridge. The
CORBA object factory is a factory for creating view objects. It is assigned
the CORBA. Fact ory ProglD.

2. The client then calls Get (oj ect () on the CORBA object factory. It
passes the name of the PhoneBook object in the CORBA server in the
parameter for Get bj ect () . In this case, the parameter for Get Qoj ect ()
takes the following format:

i nterface: marker : server: host

Refer to “Obtaining a Reference to a CORBA Obiject” on page 25 for full
details of the format of the parameter for Get (hj ect ().

The purpose of the call to Get Qbj ect () is to achieve the connection between
the client’s phoneBook(Chj object reference and the target PhoneBook object in
the server. Figure 4.3 on page 49 shows how the call to Get Obj ect () achieves
this.

Developing a Client in Automation

Automation Client

Ref. Ref.
to to To PhoneBook
Factory PhoneBook object in remote

v CORBA server
~

S
3~ 2/
-~
\

< &

Automation
View
DIPhoneBook

-

Bridge

Figure 4.3: Binding to the Phone Book Object

In Figure 4.3, Get Ovj ect ():

I. Creates an Automation view object in the OrbixCOMet bridge that
implements the DI PhoneBook dual interface.

2. Binds the Automation view object to the CORBA implementation object
named in the string parameter for Get (bj ect ().

3. Returns a reference to the view object.

After the call to Get Ooj ect (), the client in this example can use the
phoneBook(hj object reference to invoke operations on the target PhoneBook
object in the server.

49

OrbixCOMet Desktop Programmer’s Guide and Reference

The Visual Basic Client Code in Detail

50

This section provides a more detailed Visual Basic example of the client
application. It shows how the Visual Basic code extracts shown in “Obtaining a
Reference to a CORBA Object” on page 48 fit into the following steps to
implement the Visual Basic client.

® General declarations.

¢ Creating the form.

¢ Connecting to the CORBA server.

® Invoking operations on the PhoneBook object.

® Unloading the form.

General Declarations
Declare a reference to the object factory and to the phonebookChj Automation
view object:

D m Qoj Factory As (bj ect
D m phoneBookChj As (hj ect

Creating the Form

Create an instance of the CORBA object factory when the Visual Basic form is
created, and assign it the OCRBA. Fact ory ProglD:

Private Sub Form Load()
Set bj Factory = CreateCbject (" CORBA. Factory")
End Sub

Connecting to the CORBA Server

Implement the Connect button, call Get (hj ect () on the CORBA object
factory, and pass the name of the PhoneBook object as the parameter to
Get oj ect ():

Private Sub ConnectBtn_Qick()

Set phoneBook(hj = (bj Fact ory. Get (hj ect (" PhoneBook:
PhoneBoook_nar ker : PhoneBookSrv: " & host. Text)

End Sub

Developing a Client in Automation

In the preceding code, the implementation of the Connect button connects to
the PhoneBook object in the CORBA server. After the call to Get (bj ect (), the
client can use the phoneBook(j object reference to invoke operations on the
target PhoneBook object in the server. This is illustrated next in “Invoking
Operations on the PhoneBook Object”.

Invoking Operations on the PhoneBook Object

Implement the Add, LookUp, and Update buttons, which call the OMG IDL
operations on the PhoneBook object in the CORBA server:

Private Sub AddBtn_d i ck()
| f phoneBookObj . addNurnber (Per sonal Nane. Text,
Number . Text) Then
MsgBox "Added " & Personal Nane. Text & "
successful | y"
El se ...
End |f

Update the display of the current nunber of
entries in the phonebook
Ent r yCount . Capti on = phoneBookQbj . nunber O Entri es
End Sub

Private Sub LookupBtn_Q i ck()
Di m num
num = phoneBookQbj . | ookupNunber (Per sonal Nane. Text)

End Sub

Private Sub UpdateBtn_Q i ck()
Update the display for the nunber of entries
in the renote phonebook
Ent ryCount . Capti on = phoneBookQbj . nunber OF Entri es
End Sub

51

OrbixCOMet Desktop Programmer’s Guide and Reference

Unloading the Form

Release the CORBA object factory and the Automation view object, using the
For m Unl oad() subroutine:

Private Sub Form Unl oad(Cancel As |nteger)
Set nbj Factory = Not hi ng
Set phoneBookObj = Not hi ng

End Sub

The PowerBuilder Client Code in Detail

52

This section provides a more detailed PowerBuilder example of the client
application. It shows how the PowerBuilder code extracts shown in “Obtaining a
Reference to a CORBA Obiject” on page 48 fit into the following steps to
implement the PowerBuilder client.

® General declarations.

® Loading the window.

¢ Connecting to the CORBA server.

® Invoking operations on the PhoneBook object.

¢ Unloading the window.

General Declarations

Declare global variables for the object factory and the phonebookChj
Automation view object:

QA e(hj ect (hj Factory
d e(hj ect phoneBookj

Loading the Window

Create an instance of the CORBA object factory within the open event for the
Phone List Search Client window, and assign it the GORBA. Fact ory ProglD:

bj Fact ory = CREATE d e(j ect
(bj Fact ory. Connect ToNew(hj ect (" GORBA. Fact ory")

Developing a Client in Automation

Connecting to the CORBA Server

Implement the clicked event for the Connect button, call Get (bj ect () on the
CORBA object factory, and pass the name of the PhoneBook object as the
parameter to Get Cbj ect ():

phoneBookChj = Chj Fact ory. Get (bj ect (" PhoneBook: PhoneBook_mar ker :
PhoneBookSrv: " + sl e_host. Text)

In the preceding code, the clicked event for the Connect button connects to
the PhoneBook object in the CORBA server. After the call to Get Ooj ect (), the
client can use the phoneBook(bj object reference to invoke operations on the
target PhoneBook object in the server. This is illustrated next in “Invoking
Operations on the PhoneBook Object”.

Invoking Operations on the PhoneBook Object

Implement the clicked event for the Add, LookUp, and Update buttons,
which call the OMG IDL operations on the PhoneBook object in the CORBA
server:

/1 Add Button
If sle_phone. Text <> and sl e_nare. Text <> t hen
I f phoneBook(hj . addNunber (sl e_nane. Text, sl e_phone. Text) Then
MessageBox ("Success!", "Added " + sle_nane. Text
+ " successfully.™)
EntryCount . Text = Stri ng(phoneBookQhj . nunber O Entri es)

End If
End if

/1 Lookup Button
if sle_nane. Text <> "" then

Result = phoneBookQhj . | ookupNunber (sl e_narre)
end if

/1 Update Button
EntryCount . Text = String(phoneBookQj . nunber Of Entri es)

53

OrbixCOMet Desktop Programmer’s Guide and Reference

Unloading the Window

Release the CORBA object factory and the Automation view object when
unloading the window.

bj Fact ory. D sconnect (hj ect ()
DESTROY (bj Factory
DESTROY phoneBook(hj

Building the Client

You can now build your client executable as normal for the language you are

using.

Running the Client

54

To run the client:

Ensure the Orbix daemon is running on the CORBA server’s host. If you
have Orbix for Windows installed, you can run the Orbix daemon from
the Orbix Programs group on the Windows Start menu.

Register the CORBA server with the Implementation Repository on the
server’s host, using puti t. (Usually, it is not necessary to register a
server, if the server has been written and registered by someone else.)
You can use putit as follows:

putit PhoneBookSrv your _pat h\ phonebook. exe

In this case, your _pat h represents the full pathname of the directory
containing the server’s executable file. Refer to the Orbix documentation
set for more information about the putit command.

Run the client.

On the Phone List Search Client screen, type the server’s hostname
in the Host textbox, and select Connect. You can now add and look up
telephone book entries.

If your client is inactive for some time, the PhoneBookSr v server is timed-

out and exits. It is reactivated automatically if the client issues another
request.

Developing a Client in COM

This chapter expands on what you learned in “Getting Started” on
page 2. It uses the example of a distributed telephone book
application to show how to write a COM C++ client that can
communicate with an existing CORBA C++ server.

You can find a version of the COM client application described in this chapter in
i nstal | - di r\ denos\ COvet \ com phonebook, where i nstal | -dir represents
the Orbix installation directory. This directory contains Visual C++ COM client
code.

The CORBA server application is implemented in C++ and its code is located in
theinstal | -di r\ denos\ COwet \ cor basr v\ phonebook directory of your
OrbixCOMet installation. You do not need to understand how the CORBA
server is implemented, to follow the example in this chapter.

This chapter assumes that you are familiar with the CORBA Interface Definition
Language (OMG IDL). Refer to “Introduction to OMG IDL” on page 255 for
more details.

55

OrbixCOMet Desktop Programmer’s Guide and Reference

The Telephone Book Example

56

Figure 5.1 illustrates the components of a telephone book application. The
CORBA server contains an object that supports the PhoneBook interface. Your
task is to implement the COM client that will make requests on the PhoneBook
object.

CORBA Server

COM Client COMet —p |

PhoneBook
Object

numberOfEntries () Orbix Object
addNumber () (Implemented in C++)
lookupNumber ()

Figure 5.1: Telephone Book Example

“How OrbixCOMet Implements the Interworking Model” on page 6 explained
that a client makes method calls on a view object in the OrbixCOMet bridge.
The principal task of the COM client in this example is to obtain a reference to a
COM PhoneBook view object in the bridge. The PhoneBook view object exposes
the COM | PhoneBook interface, generated from the OMG IDL PhoneBook
interface. (Refer to “CORBA-to-COM Mapping” on page 309 for details of how
CORBA types are mapped to COM.) When the client makes method calls on
the PhoneBook view object, the bridge forwards the client requests to the target
CORBA PhoneBook object.

Developing a Client in COM

Obtaining a COM IDL Interface

“Generating COM IDL Definitions from OMG IDL” on page 36 has already
explained that the normal procedure for writing a client in COM is to first obtain
a COM IDL definition for the object interface. In this case, you want to create a
COM client that can communicate with a CORBA server, so you must create
COM IDL definitions that are based on the OMG IDL interfaces exposed by the
CORBA server. You can generate COM IDL, based on existing OMG IDL
information in the type store, using either the GUI or command-line version of
the OrbixCOMet t s2i dlI utility. Refer to “Development Support Tools” on
page 157 for details.

Building a Proxy/Stub DLL

If the OrbixCOMet bridge is not being loaded in-process to your COM client
application, you must create a standard DCOM proxy DLL for the interfaces you
are using. This is necessary to allow the DCOM protocol to correctly make a
connection to the remote OrbixCOMet bridge from the client. You can use the
supplied t s2i dl utility to create the sources for the proxy/stub DLL. For this
example, use the following command:

ts2idl -f PhoneBook.idl -s -p PhoneBook

When you are generating a COM IDL file from the command line, the - p switch
allows you to create a Visual C++ makefile that you can use to compile your
proxy/stub DLL. For this example, this makefile is called Phonebookps. MK and is
located in the i nstal | - di r\ denos\ COvet \ COM PhoneBook directory.

Refer to “Development Support Tools” on page |57 to find out more about
generating smart proxy DLLs and server stub code.

57

OrbixCOMet Desktop Programmer’s Guide and Reference

Implementing the Client

This section describes how to implement the client, using COM C++.

Obtaining a Reference to a CORBA Object

58

The following code shows how the COM C++ client obtains a reference to a
CORBA object:

/| General Declarations
I Unknown * pUnk=NULL;
| PhoneBook *pl PhoneBook=NULL;

/1 Connecting to the QORBA Factory

hr = CoO eat el nstanceEx (I1D_| GORBAFact ory,
NULL, ctx, NUL, 1, &mi);

pCORBAFact = (| CCRBAFactory*)ngi . pltf;

/1 Connecting to the CORBA Server

nenset (szMar ker Server Host, '\ 0", 128) ;

sprint f (szMar ker Server Host, " PhoneBook: PhoneBook_nar ker :
PhoneBookSrv: 96", host nane);

hr
hr

pCCRBAFact - >Get (hj ect (szMar ker Ser ver Host , &Unk) ;
pUnk->Queryl nt er face(1| D_| PhoneBook, (PPVA D) &l PhoneBook) ;

In the preceding example:

I. The client first instantiates a CORBA object factory in the bridge. The
CORBA object factory is a factory for creating view objects. It is assigned
the I 1 D_| OCRBAFact ory IID.

2. The client then calls Get (bj ect () on the CORBA object factory. It
passes the name of the PhoneBook object in the CORBA server in the
parameter for Get (oj ect () . In this case, the parameter for Get (hj ect ()
takes the following format:

i nterface: marker: server: host

Refer to “Obtaining a Reference to a CORBA Object” on page 25 for full
details of the format of the parameter for Get Obj ect ().

Developing a Client in COM

Note: If the interface is scoped (for example, " Mdul e: : | nt er f ace"), the
interface token is " Modul e/ I nt er f ace”.

The purpose of the call to Get (hj ect () is to get a pointer to the | Unknown
interface (pUnk) of the COM view of the target PhoneBook object. Figure 5.2
shows how the call to Get (j ect () achieves this.

COM Client
Ref. Ref.
to to To PhoneBook
Factory PhoneBook object in remote

v CORBA server
~
N 2
\ 3~ N /
~

COM View
IPhoneBook

Bridge

Figure 5.2: Binding to the Phone Book Object

In Figure 5.2, Get vj ect ():

I. Creates a COM view object in the OrbixCOMet bridge that implements
the COM | PhoneBook interface.

2. Binds the COM view object to the CORBA PhoneBook implementation
object named in the parameter for Get Chj ect ().

3. Sets the pointer specified by the second parameter (pUhk) to point to the
| Unknown interface of the COM view object.

59

OrbixCOMet Desktop Programmer’s Guide and Reference

After the call to Get Chj ect (), the client in this example can obtain a pointer to
the | PhoneBook interface (pl PhoneBook) by performing a Queryl nt er f ace()
on the pointer to the | Unknown interface of the COM view object. The client
can then use the pl PhoneBook object reference to invoke operations on the
target PhoneBook object in the server.

Using CoCreatelnstance()

The OCRBA. Fact or y object allows you to obtain a reference to a CORBA object
in a manner that is compliant with the OMG specification. However,
OrbixCOMet also allows a COM client to connect directly to a CORBA server,
using the standard CoOr eat el nst ance() COM API call. Refer to “Implementing
CORBA Clients in COM” on page 82 for more details.

The COM C++ Client Code in Detail

60

This section provides a more detailed example of the COM C++ client
application, using Visual C++ 6.0. It shows how the code extracts shown in
“Obtaining a Reference to a CORBA Object” on page 58 fit into the following
steps to implement the COM C++ client:

® Include statements.

® General declarations.

® Connecting to the CORBA factory.
® Connecting to the CORBA server.

® Invoking operations on the PhoneBook object.

Includes

Include the phoneBook. h header file created from the COM IDL file, which was
generated from the OMG IDL for the CORBA object in the type store:

/1 Header file created fromthe COMIDL file
/1 generated by the TypeStore Manager Tool
/1

#i ncl ude "phoneBook. h"

Developing a Client in COM

General Declarations

Declare a reference to the CORBA object factory and to a PhoneBook COM
view object:

I Unknown *pUnk = NULL;
| PhoneBook *pl PhoneBook = NULL;
| CORBAFact ory *pCORBAFact = NULL;
char szMarker Server Host [128] ;

Connecting to the CORBA Factory

Use the DCOM CoCr eat el nst anceEx() call to create a remote instance of the
CORBA object factory on the client machine, and assign it the
|1 D | CCRBAFact ory IID:

hr = CoOreatel nstanceEx (I1D_| CORBAFactory,
NULL, ctx, NULL, 1, &nmi);
pCORBAFact = (| CCRBAFact ory*) nui . pltf;

Connecting to the CORBA Server

Call Get oj ect () on the CORBA object factory, and pass the name of the
PhoneBook object as the parameter:

nenset (szMar ker Server Host, '\ 0", 128) ;

sprintf(szMarker Server Host, " PhoneBook: PhoneBook_nar ker :
PhoneBookSrv: 9", host nane);

hr
hr

pCCRBAFact - >Get (hj ect (szMar ker Ser ver Host , &Unk) ;
pUnk->Queryl nt er face(Il | D_| PhoneBook, (PPVA D) &pl PhoneBook) ;

After the call to Get vj ect (), the client in this example can obtain a pointer to
the | PhoneBook interface (pl PhoneBook) by performing a Queryl nt er f ace()
on the pointer to the | Unknown interface of the COM view object. The client
can then use the pl PhoneBook object reference to invoke operations on the
target PhoneBook object in the server. This is illustrated next in “Invoking
Operations on the PhoneBook Object”.

61

OrbixCOMet Desktop Programmer’s Guide and Reference

Invoking Operations on the PhoneBook Object

The following code shows how to invoke operations on the PhoneBook object in
the CORBA server, to add a number to the telephone book, and look up
entries:

bool ean | Added=0;
cout << "About to add | ONA Freephone USA' << endl;
hr = pl F->addNunber ("1 ONA Freephone USA', 6724948, & Added);

i f (I Added)

cout << "Successfully added the nunber" << endl;
el se

cout << "Failed to add the nunber" << endl;

/1 see how nmany entries there are in the phonebook

| ong nNunEnt ri es=0;

hr = pl F->_get _nunber f Entri es(&NunEntri es);

cout << "There are " << nNunEntries << " entries" << endl;

/1 then | ookup a coupl e of nunbers nunber

| ong phoneNunber =0;

pl F- > ookupNunber ("1 ONA Fr eephone USA', &phoneNunber);

cout << "The nunber for | ONA Freephone USA is " << phoneNunber <<
endl ;

Building the Client

62

You can now build your client executable as normal by running the makefile.

Developing a Client in COM

Running the Client

To run the client:

Ensure that the Orbix daemon is running on the CORBA server’s host. If
you have Orbix for Windows installed, you can run the Orbix daemon
from the Orbix Programs group on the Windows Start menu.

Register the CORBA server with the Implementation Repository on the
server’s host, using puti t. (Usually, it is not necessary to register a
server, if the server has been written and registered by someone else.)

You can use putit as follows:
putit PhoneBookSrv your _pat h\ phonebook. exe

In this case, your _pat h represents the full pathname of the directory
containing the server’s executable file. Refer to the Orbix documentation
set for more information about the putit command.

Run the client. It should produce output like the following:

%86 App begi nning --

%86 Usi ng i n-process server

[392: New |1 OP Connection (axiom 1570)]

[392: New |1 OP Connection (192.122.221.51:1570)]
[392: New I 1 OP Connection (axiom 1607)]

[392: New || OP Connection (192.122.221.51:1607)]
[392: New |1 OP Connection (axiom 1611)]

[392: New |1 OP Connection (192.122.221.51:1611)]
About to add | ONA Freephone USA

Successful | y added the nunber

There are 11 entries

The nunber for | ONA Freephone USA is 6724948

%86 Test end

63

OrbixCOMet Desktop Programmer’s Guide and Reference

64

Implementing CORBA Clients

This chapter is aimed at CORBA programmers who want to
implement CORBA clients, using Automation-based tools such as
Visual Basic and PowerBuilder, and COM-based tools such as C++.

The topics covered in this chapter include:

® How programs communicate with the ORB to obtain services or to
modify the ORB’s default behavior.

¢ Obtaining object references.

® The interworking interfaces that CORBA and COM/Automation view
objects support.
® How a client can narrow an object reference when the object referred to

is a derived type of the client’s reference type.

® How a CORBA client can obtain a reference to an object in a CORBA
server. This chapter describes a number of ways, including the use of the
Naming Service.

This chapter shows how to implement Visual Basic, PowerBuilder and COM
C++ client examples for the bank server that is developed in “Implementing
CORBA Servers” on page 99.

65

OrbixCOMet Desktop Programmer’s Guide and Reference

Interfaces to the ORB

An OrbixCOMet program can obtain a reference to the ORB, to communicate
with it and to modify its settings. This functionality is provided by the following
interfaces:

66

(D) CRBMhj ect

These interfaces contain a set of methods defined by the COM/CORBA
Interworking specification. These methods provide clients with access to
the operations on the ORB pseudo-object, and allow a client to request
the ORB to perform some action.

(D! CRBObj ect include methods to convert an Interoperable Object
Reference (IOR) to a string known as a stringified IOR, and to convert a
stringified IOR back into an IOR. It also contains methods that allow a
client to obtain an object reference through which a component of the
ORB (for example, the Interface Repository or one of the CORBA
services) can be used.

(D)l O bi xCRBYj ect

These interfaces contain all the methods contained in the compliant

(D) CRBMhj ect interfaces along with a set of methods that provide access
to OrbixCOMet-specific features for controlling the ORB and requesting
the ORB to perform some action.

(D! O bi xCRBMhj ect include methods to configure Orbix dynamically, to
optimize calls when the client and server are located in the same process,
to help with interface matching, and to control the diagnostic level. They
also include a set of methods that allow a client to control connections to
a server.

Refer to “OrbixCOMet APl Reference” on page 181 for a full description of
(D) CRBMhj ect and (D)l O bi xCRBMHj ect .

The ORB has the OORBA GRB. 2 ProglID. The code examples in the following
subsections show how you can obtain and use a reference to the ORB.

Implementing CORBA Clients

Visual Basic

D mtheCRB as CORBA O bi x. DI O bi xORBMhj ect
Set theCRB = Oreat e(hj ect (" CORBA CRB. 2")

You can now make calls such as:

Do not output any di agnostic nessages:
t heCRB. Set Di agnostics O ' No di agnostics

PowerBuilder

delhject theOb
theGb = CREATE A e(j ect
t heOr b. Connect ToNew(hj ect (" CORBA. CRB. 2")

You can now make calls such as:

/1 Do not check that target object exists when binding:
t heGRB. Pi nglur i ngBi nd(Fal se)

COM C++

/1l Access to |QObixCORBhject is via | CRBMyj ect
| CRBMhj ect* poOb = NULL;
| O bi xCRBhj ect *poCr bi xOb = NUL;

ngi.plID = & ID | CRBM ect;

hr = CoOreatel nstanceEx(11D | ORB(hj ect, NULL, ctx,
NULL, 1, &mi);
CheckHRESULT(" CoOreat el nstanceEx 11D I GRBhject”, hr, FALSE);

poQb = (I CRBOj ect*)nyi . pltf;

hr = poQrb->Querylnterface(llD_| O bi xCRBMj ect,
(voi d**) &poOrbi xOrb);

CheckHRESULT(" Queryl nterface |1 GRB(hj ect for 11D | O bi xCRBOhj ect
hr, FALSE);

poQb -> Release ();

BOCLEAN bRet Val = FALSE ;
hr = poQbixOb -> PingDuringBi nd (bRetVal, &RetVal);
CheckHRESULT(" Pi nghuri ngBi nd", hr, FALSE);

n
)

67

OrbixCOMet Desktop Programmer’s Guide and Reference

Obtaining Object References

Normally, a client’s first task is to locate an object reference in a server. The
following are some of the ways in which a client can obtain an object reference:

¢ The (D) GCRBAFact ory interface.
¢ The Naming Service.
® |IDL operations.

The following subsections discuss each of these in turn.

The (D)ICORBAFactory Interface

68

The COM/CORBA Interworking specification defines the Dl CORBAFact or y and
| QORBAFact ory interfaces, which provide the Get Obj ect () and

O eat e(hj ect () methods to allow a client to obtain references to CORBA
objects.

GetObject()

The COM IDL definition for Get Qoj ect () is as follows:

// M I DL
interface DIOORBAFactory : | D spatch {

HRESULT Get (hj ect ([in] BSTR obj ect Nane,
[optional,in,out] VAR ANT* |T_EX,
[retval ,out] ID spatch** IT retval);

}

As explained in “Developing a Client in Automation” on page 45 and
“Developing a Client in COM” on page 55, Get (bj ect () performs the following
functions:

I. It creates a COM/Automation view in the bridge. This means it creates an
object that presents a COM/Automation view of the target CORBA
object to the client.

2. It binds the view to the CORBA implementation object in the server.

3. It returns a reference to the view to the caller.

Implementing CORBA Clients

Parameter to GetObject()

The parameter to Get bj ect () is a string that identifies the target object by
specifying its Orbix object name or its IOR. The parameter string can take either
of the following formats:

®* "interface: narker: server: host"

* "interface: TAG Tag data"

The components of the string can be described as follows:

interface This is the IDL interface that the target object should
support.
mar ker This is the name of the target Orbix object. Every Orbix

object has a name that is either chosen by Orbix or set
(usually) at the time the object is created. See

Set (oj ect | npl () and DI O bi x(oj ect : : Mar ker () for
details.

server This is the name of the Orbix server in which the object is
implemented. This is the name of the server that is
registered with the Implementation Repository.

host This is the Internet hostname or Internet address of the
host on which the server is located. If the string is in the
format xxx. Xxx. Xxx. xxx, where x is a decimal digit, it is
interpreted as an Internet address.

TAG Two types of TAGare allowed. Each type has a different form
of Tag dat a. Valid TAGtypes are:

® | OR—In this case, the Tag dat a is the hexadecimal string
for the stringified IOR. For example:
fact. Get (oj ect (" enpl oyee: | OR 123456789..")

®* NAME_SERVI CE—lIn this case, the Tag dat a is the Naming

Service compound name separated by “. . For example:
fact. Get oj ect (" enpl oyee: NAME_SERVI CE:
| ONA. enpl oyees. PD. Ton')

69

OrbixCOMet Desktop Programmer’s Guide and Reference

CreateObject()

The COM IDL defintion for O eat e(hj ect () is as follows:

/] oM 1 DL
interface DIOCORBAFactory : | D spatch {
HRESULT Oreate(j ect([in] BSTR factoryNane,
[optional ,in,out] VAR ANT* |T_EX,
[retval ,out] ID spatch** IT retval);

In OrbixCOMet, Dl CCRBAFact ory: : O eat e(hj ect () behaves in the same way
as Dl CORBAFact ory: : Get bj ect () . Therefore, it can be used exactly as
described for Get (hj ect ().

The Naming Service

70

A CORBA server can assign a name to an object, and register the name and the
object with the Naming Service. (The Naming Service is one of the CORBA
services defined by the OMG.) A client that knows the object name can resolve
it in the Naming Service to obtain a reference to the object. You need an
implementation of the Naming Service, such as OrbixNames, to use this method.
Refer to the OrbixNames Programmer’s and Administrator’s Guide for details of
the Naming Service terminology used here and for full details of how to use
OrbixNames. In this case, a simple example of using the Naming Service from
OrbixCOMet is provided.

An object registered with the Naming Service has a name that is defined in OMG
IDL as follows:

/1 OMG | DL
nmodul e CosNani ng {

typedef string Istring;
struct NaneConponent {
Istring id;
I string Kind;
b
typedef sequence<NaneConponent > Nane;

Implementing CORBA Clients

Visual Basic

To locate an object using the Naming Service, your client must create a
CosNani ng: : Nane that names the desired object. The client must then resolve
the name with the Naming Service.

Creating a CosNaming::Name

In the following code examples, assume that the client wants to bind to a Bank
object that is registered with the name Cormer ci al . Trust.

Note: The following code examples create an IDL sequence of NaneConponent s
to construct a CosNanm ng: : Nane. Refer to “CORBA-to-Automation
Mapping” on page 271 and “CORBA-to-COM Mapping” on page 309 for
more details of how to create an OMG IDL sequence in an Automation
or COM application.

The following is a Visual Basic example:

Vi sual Basic
D mobj Factory as D CCRBA O bi x. D CORBAFact ory
Set obj Factory = O eat e(hj ect (" CORBA. Fact ory")

'Oreate a CosNam ng: : Name sequence of Name Conponents
D m bankNarre as (bj ect
Set bankNane = obj Fact ory. O eat eType(Not hi ng, " CosNam ng/ Narre")

"Init the CosNam ng: : Name sequence to store 2 Nane Conponents
bankNarre. Count = 2

' Popul at e each Nane Component in the sequence
bankNare(0).id = "Comrerci al "
bankNarme(0).kind = ""

bankNarre(1).id = "Trust"

bankNare(1) . kind = ""

71

OrbixCOMet Desktop Programmer’s Guide and Reference

PowerBuilder The following is a PowerBuilder example:

COM C++

72

/1 Power Bui | der

// Oreate an enpty CosNaning:: Nane sequence

bankName = CREATE A e(hj ect

bankName = (bj Fact ory. Cr eat eType(Not hi ng, " CosNam ng/ Narre")

/llnitialize the sequence, to store 2 Nane Conponents
bankNare. Count = 2

/1 Popul at e each NameConponent in the sequence
bankNarre. getiten(0).id = "Conmerci al "
bankNare. getiten{0).kind = ""

bankNare. getiten{1).id = "Trust"

bankNane. getiten(1).kind = ""

Refer to “Creating Constructed OMG IDL Types” on page 283 for details of
how to use O eat eType() .

The following is a COM C++ example:

/] OOM C++

/1 Oreate an enpty sequence of CosNam ng:: NameConponent s
CosNani ng_Nane bankNane;

CosNani ng_NaneConponent BankNarmeConp;

/1 Initialize the sequence, to store 2 Name Conponents
bankNane. cbvaxS ze = 2;
bankNare. cbLengt hUsed = 2;
bankNane. pVal ue = new CosNam ng_NaneConponent
[bankNare. cbLengt hUsed] ;

/1 Popul ate each Nane Component in the sequence
BankNaneConp. i d=" Conmerci al *;

BankNanmeConp. ki nd="";

bankNare. pVal ue[0] =BankNaneConp;

BankNarmeConp. i d="Trust";

BankNameConp. ki nd="";

bankNane. pVal ue[1] =BankNarreConp;

Implementing CORBA Clients

Visual Basic

PowerBuilder

Resolving the Name

The client obtains a reference to the target object by resolving the name of the
object in the Naming Service. This section provides code examples showing how
to do this.

The following is a Visual Basic example:

D m nyNS as DI CosNam ng_Nam ngCont ext

D mNSQhj as (j ect

D mtheCRB as CORBA O bi x. D O bi xCRB(hj ect
Set theCRB = Oreat e(hj ect (" CORBA CRB. 2")

Set nyNS = (bj Fact ory. Get hj ect (". NaneSer vi ce")
Set NSCbj = nyNS. resol ve(bankNarre)

Set theBank = NSObj

The first step is to obtain a reference to a Nam ngCont ext , usually the Naming
Service’s root context. The client then calls r esol ve() on the Nam ngCont ext,
to obtain a reference to the object. The object reference that is returned by the
call to resol ve() must be narrowed, to obtain a reference to the desired
interface. (Refer to “Narrowing Object References” on page 77 for details.)

The following is a PowerBuilder example:

d e(hj ect hj Factory

(bj Fact ory = CREATE d e(vj ect
d e(hj ect theCRB

t heORB = CREATE A e(hj ect

nyNS
nyNS

CREATE A e(yj ect
(bj Fact ory. Get (bj ect (. NaneSer vi ce")

NSChj = nyNS. resol ve(bankNare)
t heQRB. Connect ToNew(hj ect (" CCRBA. CRB. 2")

t heBank = t heCRB. Nar r ow(NSChj , " Bank™)

73

OrbixCOMet Desktop Programmer’s Guide and Reference

COM C++

The following is a COM C++ example. In this case, the desired interface is
obtained, using Queryl nt er f ace(), after you have called Resol ve():

| CosNam ng_Nam ngCont ext nyNS;
I Unknown *NSChj ;
I bank *pl Basi ¢ = NULL;

hr = pOCORBAFact - >Get (hj ect (". NaneServi ce", &nyNS);
i f(!CheckErrinfo(hr, pOCRBAFact, |1 D _| CORBAFactory))
{

pOCORBAFact - >Rel ease() ;

return;

}
pOCRBAFact - >Rel ease() ;

NShj =nyNS- >Resol ve(bankNane) ;
hr = NSQbj - >Queryl nterface(llD_| bank, (PPVA D)&pl Basic);
i f(!CheckErrinfo(hr, NSCbj, 11D |Ibank))

{
NSQhj - >Rel ease() ;
return;
}
NSQhj - >Rel ease() ;
try
{
pl Basi c- >newAccount (..
}
catch(.){

IDL Operations

74

A typical client first obtains a reference to an object by binding to the object via
(D)| CORBAFact ory: : Get oj ect () or (D)l CCRBAFact ory: : Or eat e(hj ect (), or
by using the Naming Service. This object is known as a root object. A client
might need to obtain references to more than one root object. Thereafter, the
client usually obtains other object references through its interaction with the
root object(s).

A client can obtain an object reference from an IDL operation’s return value,
from an i nout or out parameter, or from an attribute value. When a client
receives an object reference in one of these ways, an Automation or COM view

Implementing CORBA Clients

is created in the bridge, and a reference to the Automation or COM view is
returned to the client. The following example, taken from a Visual Basic client of
the bank server, illustrates this method:

"Visual Basic

D mfact As CORBA O bi x. Dl CCRBAFact or yEx
D m bank@j As (bj ect

D maccount D sp As (bj ect

Set fact = O eateChject ("CORBA Factory")
Set bankChj = fact. Get bj ect ("bank: bank_mar ker : bank: " +
Cor baSer ver . Text)

"CGet an object reference as a return val ue
Set account b sp = bankChj . newAccount (Narrebox. Text, ex)

"Use the object reference
account D sp. makeLodgenent (Anount . Text)
Bal ance. Capti on = account O sp. Bal ance

A more complete version of the code is provided in “A Visual Basic Client
Program” on page 78.

Interworking Interfaces on Objects

Orbix objects support the interface defined in their IDL file. All Orbix objects
also support the following interfaces:

(D) CORBAChj ect Support for these interfaces is mandated by the COM/
CORBA Interworking specification. These interfaces include
important functions to convert object references to string
format, and to convert object reference strings to object
references.

(DI O bi xChj ect OrbixCOMet provides a number of additional methods
that are supported by all Orbix objects. These include
functions to bind to an object in an Orbix server, find the
object’s marker name, close the underlying
communications connection to the server, and determine
whether the communications channel between the client
and server is open.

75

OrbixCOMet Desktop Programmer’s Guide and Reference

A COM or Automation view object supports the additional (D)I For ei gnQhj ect
interfaces. The purpose of these interfaces is to provide a way for the view to
find the foreign object reference in a proxy. (In this case, the term foreign refers
to the CORBA system.)

Refer to “OrbixCOMet API Reference” on page 181 for details of all interfaces
supported in OrbixCOMet.

Implementing CORBA Clients in Automation

This section provides further details of how to use Automation to implement a
client program that can act like a CORBA client of a CORBA server.

Late Binding

Late (or dynamic) binding is the assignment of types to variables at runtime. It
involves the use of the | D spat ch interface on an Automation object. Late
binding means that all invocations through the object require the parameters to
be marshalled through | D spat ch, and then to CORBA.

Early Binding

76

Early (or static) binding is the assignment of types to variables at compile time. If
you make a call on an early bound object, you avoid the | D spat ch marshalling
overhead. This improves performance, most notably when the bridge is loaded

in-process to your client application.

The code examples in “Developing a Client in Automation” on page 45 use late
binding (via the | D spat ch interface) and declare all references as (bj ect . In this
chapter, because Visual Basic allows early binding by calling methods directly
through the vtable, the types are specified in the declarations.

For example, to obtain a reference to a view of the Dl Account type, declare a
reference, account vj , as follows:

Vi sual Basic
Di m account Obj As | T_Li brary_bank. DI Account

Implementing CORBA Clients

Narrowing Object References

Visual Basic

PowerBuilder

A client that holds a reference to a view can assign the reference to a derived
interface, if the implementation object referred to is an instance of the derived
interface. CORBA refers to such an assignment as narrowing the object
reference. For example, suppose the client holds a reference to an Account
view, but knows that the implementation object is actually a Checki ngAccount .
This section shows how clients can obtain a Checki ngAccount interface pointer.

The following is a Visual Basic example of how to narrow object references:

D mcurrent Account D sp As | T_Li brary_bank. D current Account
D maccountDi sp As | T_Li brary_bank. Dl account
Dmorb As OCRBA O bi x. D O bi xCRBMhj ect

"(btain an account ref.
Set accountDisp = ...

"Is it actually a current account ?
Set current Account D sp = account Di sp

If currentAccountDi sp |I's Nothing Then
" Narrow Fail ed
Endl f

The following is a PowerBuilder example of how to narrow object references:
/1 Exanple of explicit narrowin a late bound I D spatch client
deChject orb

orb = CREATE ol e(hj ect

or b. Connect ToNew(hj ect (" CORBA. CRB. 2")

d eChj ect hj Account

[/ Get Account obj ect
Cbj Account = ...

d e(pj ect (hj Qurrent Account
Cbj Qurrent Account = orb. Narrow ("current Account”, Cbj Account)
If isNull (QobjQurrentAccount) Then

/1 Narrow fail ed

End | f

77

OrbixCOMet Desktop Programmer’s Guide and Reference

Note: Refer to the entry for D O bi x(oj ect: : Narrow() in “OrbixCOMet API
Reference” on page 18I for an alternative way of narrowing an object
reference.

A Visual Basic Client Program

This section shows the code for a Visual Basic client of the bank server that is
developed in “Implementing CORBA Servers” on page 99. The code in this
section is based on the Bank form in Figure 6.1 on page 79.

The bank server presents the following interface to its clients:

i nterface account {
readonly attribute float bal ance;

voi d nmakeLodgenent (in float f);
voi d makeWthdrawal (in float f);

}s

i nterface currentAccount : account {
readonly attribute float overdraftLimt;

}s

i nterface bank {
exception reject {string reason;};

account newAccount (in string name) raises (reject);

current Account newQurrent Account (in string nane,
infloat limt) raises (reject);

voi d del eteAccount (in account a);

78

Implementing CORBA Clients

Bank. x|

Host | Connect
Server Mame: IbankS T
Marker: I [WEEamnest

Qe

e EEaTE |

I e

Dwerdraft Limit; [HE [etafs |

Armount: $| [V Emns |
Balance: $| Withdraw |
Owerdraft Limit: $| Dejete besourt |

Figure 6.1: Bank Form Presenting the User’s View of the Bank Service

General Declarations

D m Qpj Factory As QORBA O bi x. Dl CCRBAFact ory
D m bankCbj As | T_Li brary_bank. D Bank
O m bankAccount As | T_Li brary_bank. D Account

Note: If your Automation client requires type libraries to be registered, you
must add a reference to the type library for early binding. In Visual Basic,
use Proj ect >Ref er ences to add references. Refer to “Creating a Type
Library” on page 171 for more details of how to create a type library.

79

OrbixCOMet Desktop Programmer’s Guide and Reference

80

Creating the Form

The For m Load() subroutine, which is called when the Bank form is loaded,
creates a CORBA object factory in the bridge, which is used to create
Automation views.

Private Sub Form Load()

Set (bj Factory = O eat e(hj ect (" OCORBA. Fact ory")
End Sub

Connecting to the CORBA Server

Private Sub cmdConnect Qi ck()
Oh Error GoTo errorTrap
Set bankChj = (bj Factory. Get (hj ect ("Bank: " & _
nmarker. Text & ":" & server_npane. Text & _
' & host _name. Text)

errorTrap:
MsgBox (Err.Description & " occurred in " & Err. Source)
End Sub

In this case, when a user selects the Connect button in Figure 6.1 on page 79,
the client connects to the bank server on the host named in the Host textbox,
and uses the Dl CORBAFact ory: : Get bj ect () method to bind to the Bank
object whose marker is specified in the Marker textbox.

It is important to handle errors that might be raised by the call to Get (hj ect ().
A call to Get j ect (), or any other remote call, might fail for a number of
reasons, because of the complexity of making a call across a network. CORBA
exceptions raised in the server are mapped to Automation exceptions by the
bridge. (Refer to “Exceptions” on page 291 for more details.) In Visual Basic,
these exceptions can be trapped, using the On Error statement, and they can be
handled, using the standard Vi sual Basi c Err object. “Exception Handling” on
page 109 explains CORBA exceptions, and alternative ways of handling them in a
client.

Implementing CORBA Clients

Invoking Operations on Remote CORBA Objects

The following example shows a newAcc_Q i ck() subroutine that responds to
user requests to create bank accounts. The IDL definitions specify that the
Bank: : newAccount () operation can raise the Bank: : Rej ect user exception, if
the bank fails to create an account. In the following code, this exception is
trapped using the On Error statement:

Private Sub newAcc_d i ck()
Oh Error To errorTrap

If Nanebox. Text = "" Then
MsgBox("Enter Account Oaner’s Nane")
Exit Sub

End | f

Set account D sp = bankCbj . newAccount (Nanmebox. Text)
nmakeD. Enabl ed = True

del et eAcc. Enabl ed = True

newAcc. Enabl ed = Fal se

Exit Sub

errorTrap:
MsgBox("Error: " & Err.Description & " in " & Err. Source)
Err.d ear
Resune Next

End Sub

“Exception Handling” on page 109 shows a better way to handle this exception
that provides more information to the user.

Disconnecting from the CORBA Server
Release the views in the bridge when the user disconnects from the bank server:
Private Sub cndD sconnect _Q i ck()

Set bankChj = Not hi ng

Set bankAccount = Not hi ng
End Sub

8l

OrbixCOMet Desktop Programmer’s Guide and Reference

Exiting the Application
Release the CORBA object factory when the user exits the application:

Private Sub Form Unl oad(Cancel As |nteger)
Set (bj Factory = Not hi ng
End Sub

Implementing CORBA Clients in COM

This section provides further details of how to use COM C++ to implement a
client program that can act like a CORBA client of a CORBA server.

COM Apartments and Threading

COM and Automation view objects exposed by the bridge are marked with the
Bot h attribute in the registry. This means these objects can be hosted in either
an apartment-threaded or free-threaded client application. Refer to the
Microsoft DCOM documentation for a fuller discussion of COM apartments and
threading models.

Narrowing Object References

In CORBA, the process of converting a base object to a more derived instance is
called narrowing an object reference. CORBA provides an API for doing this to
ensure that C-style casts, which are type unsafe, are not needed.

When using the COM mapping, CORBA objects do not explicitly need to be
narrowed to a derived interface. If the object is actually an instance of the
derived type, it is sufficient to make a call to Queryl nt er f ace(), using the IID of
the derived interface. If Queryl nt er face() fails, this object cannot be validly
converted to an instance of the derived type.

82

Implementing CORBA Clients

A COM C++ Client Program

This section shows the code for a COM C++ client of the bank server that is
developed in “Implementing CORBA Servers” on page 99.

The bank server presents the following interface to its clients:

i nterface account {
readonly attribute float bal ance;

voi d nmakeLodgenent (in float f);
voi d makeWthdrawal (in float f);

}

interface current Account : account {
readonly attribute float overdraftLinit;

}

i nterface bank {
exception reject {string reason;};

account newAccount (in string name) raises (reject);

current Account newQurrent Account (in string nane,
infloat limt) raises (reject);

voi d del et eAccount (in account a);

}
Includes
/1 I nclude

#i ncl ude <i ostream h>
#i ncl ude <stdio. h>

#i ncl ude <oai dl . h>

#i ncl ude "bank. h"

83

OrbixCOMet Desktop Programmer’s Guide and Reference

General Declarations

// General Declaration

HRESULT hr =NCERRCR,

I Unknown * pUnk=NULL;

| CCRBAFact ory * pCCRBAFact =NULL;

// our custominterface
| bank *pl Basi c=NULL;
MLTI _Q ngi;

Connecting to the CORBA Factory

/1l 1n Process

nmenset (&mi, 0x00, sizeof (MLTI_Q));

ngi . pl 1D = & 1 D_| CORBAFact ory;

hr =CoQr eat el nst anceEx (11D | CORBAFactory, NULL,
CLSCTX | NPROC SERVER NULL, 1, &ngi);

CheckHRESULT(" CoOr eat el nst anceEx()", hr, FALSE);

pOCRBAFact = (| GORBAFactory*)ngi . pltf;

/1 Qut Process

menset (&ngi, O0x00, sizeof (MLTI_Q));

ngi . pl 1D = & | D | CORBAFact ory;

hr = CoQO eatel nstanceEx (11D _| QORBAFactory, NUL,
CLSCTX _LOCAL_SERVER | QLSCTX REMOTE_SERVER
NULL, 1, &nyi);

CheckHRESULT(" CoCr eat el nst anceEx()", hr, FALSE);

pCCRBAFact = (| GORBAFactory*)ngi . pltf;

Connecting to the CORBA Server

hr = pCCRBAFact - >Get (hj ect (" bank: bank_mar ker : bankSvr: " &
host nane, &Unk) ;

i f(!CheckErrinfo(hr, pCCRBAFact, |1D | CORBAFactory))

{
pCOCRBAFact - >Rel ease();
return;

}
pOCRBAFact - >Rel ease() ;

84

Implementing CORBA Clients

hr = pUnk->Queryl nterface(llD_| bank, (PPVA D) &pl Basi c);

i f(!CheckErrinfo(hr, pUnk, 11D_|bank))

{
pUnk- >Rel ease();

return;

pUnk- >Rel ease() ;

Invoking Operations on Remote CORBA Objects
bool doQperati ons(Ilbank *pl F)

{

HRESULT hr = NCERRCR

| account *pAcc = O;

| current Account *pQurrAcc = 0;

LPSTR firstNane = "Ronan", secondNanme = "John";

bool bExit=fal se;

Cout << "--mmmmmimia oo doQperations begin ----------
<< endl ;

hr = pl F->newAccount (firstNane, &pAcc, NUL);

bExi t =CheckErrInfo(hr, plF, 11D_|Ibank);

pri nt Account | nf o(pAcc) ;

hr = pl F->del et eAccount (pAcc) ;

bExi t =CheckErrInfo(hr, plF, 11D_Ibank);

pAcc- >Rel ease();

hr = pl F->newQurr ent Account (secondNane, 1000, &pQurrAcc,

NULL) ;

bExi t =CheckErrInfo(hr, plF, 11D_Ibank);

pri nt Account I nf o(pQurr Acc) ;

hr = pl F->del et eAccount (pQurr Acc) ;

bExi t =CheckErrInfo(hr, plF, 11D_|Ibank);

pQur r Acc- >Rel ease() ;

COUt << M-mmmmmmiao o doQperations end ------------

endl ;

return bExit;

}

voi d printAccount|nfo(laccount *pAcc)

{

85

OrbixCOMet Desktop Programmer’s Guide and Reference

HRESULT hr = NCERRCR

I current Account *pQurrAcc = 0;

I O bi x(oj ect *pQ bi xCbj = 0;

float bal ance = 0, overdraft = 0, deposit = 1000000;

cout << M------o--- printAccountInfo begin ---------- " << endl;

i f (SUCCEEDED(pAcc- >Queryl nterface(l 1D | O bi x(hj ect,
(PPVA D) &QC bi xChj)))

{
LPSTR marker = 0, host = O;
hr = pQ bi xChj ->_get _Mar ker (&mar ker) ;
CheckErrInfo(hr, pQbixCj, 1D |CbixChject);
cout << "Qur narker is " << marker << endl;
CoTaskMentr ee(nmar ker) ;
hr = pQ bi xChj - > get _Host (&host) ;
CheckErrlInfo(hr, pQbixCoj, 11DI1CObixMject);
cout << "Qur host is " << host << endl;
CoTaskMentr ee(host) ;
pQr bi xChj - >Rel ease() ;

}

el se

cout << "FAIL: Q for 11D ICbixChject failed" << endl;
cout << "Calling makeLodgenent ()" << endl;

hr = pAcc->makelLodgenent (deposit);

CheckErriInfo(hr, pAcc, I1D |account);

cout << "Calling _get_bal ance()" << endl;

hr = pAcc->_get _bal ance(&bal ance);

CheckErrinfo(hr, pAcc, 11D laccount);

cout << "bal ance was " << bal ance << endl;

i f(bal ance != deposit)

cout << "FAIL: balance is not correct" << endl;

/1 now use Querylnterface() to see if we have really been
/1 given a Qurrent Accout (this is like doing a _narrowin

/1 CORBA)

i f (SUCCEEDED(pAcc->Queryl nterface(llD_I current Account,
(PPVA D) &CQurr Acc)))

{
cout << "W& have a current Account” << endl;
hr = pQurrAcc-> get_overdraftLimt(&wverdraft);
CheckErrlnfo(hr, pQurrAcc, |1D_|currentAccount);

86

Implementing CORBA Clients

cout << "Qur overdraft limt is " << overdraft << endl;

/1 call a couple of nmethods fromour base interface,
[l i.e. account
cout << "Cal ling makelLodgenent ()" << endl;
hr = pQurr Acc- >makelLodgenent (deposi t);
CheckErrinfo(hr, pQurrAcc, I1D |currentAccount);
cout << "Calling _get_balance()" << endl;
hr = pQurrAcc->_get _bal ance(&bal ance) ;
CheckErrinfo(hr, pCQurrAcc, 11D IcurrentAccount);
cout << "bal ance was " << bal ance << endl;
i f(bal ance != 2*deposit)
cout << "FAIL: current account’s balance is not correct!"
<< endl ;
pQurr Acc- >Rel ease() ;

/Il finally, just to prove that all the above happened to
/1l the same object, call account:: bal ance
cout << "Calling _get_bal ance()" << endl;
hr = pAcc->_get _bal ance(&bal ance) ;
CheckErrinfo(hr, pAcc, I1D_laccount);
cout << "bal ance was " << bal ance << endl ;
i f(bal ance != 2*deposit)
cout << "FAIL: balance is not correct" << endl;
}
cout << M-------o-o-o--o-- printAccountinfo end ---------------
" << endl;

}

Disconnecting from the CORBA Server

hr = pl Basi c- >del et eAccount (pAcc) ;
CheckErrInfo(hr, plBasic, |1D_|bank);
pAcc- >Rel ease() ;

pl Basi c- >Rel ease() ;

Exiting the Application
Golninitialize();

87

OrbixCOMet Desktop Programmer’s Guide and Reference

88

Exposing DCOM Servers to
CORBA Clients

This chapter explains how to expose an existing DCOM server to
CORBA clients. This functionality is particularly important in allowing
a CORBA client to talk to applications such as Excel, Word, Access,
and so on.

It used to be the case that programmers wishing to expose DCOM objects to
CORBA clients had to use the (DI O bi xSer ver APl interface to register their
DCOM objects with the bridge. However, this is no longer required. You can
now expose DCOM objects to CORBA clients without needing to write any
such wrapper code. In addition, the existing DCOM server remains unchanged.

The main steps to expose DCOM servers to CORBA clients are:

Build and register the DCOM server and any proxy/stub DLLs.
Prime the OrbixCOMet type store with the correct type library.

Register the supplied surrogate server executable (cust sur. exe) in the
Implementation Repository, under a given server name.

Generate OMG IDL definitions from COM IDL, using t s2i dl .

Write a CORBA client to bind to the server and call operations.

This chapter describes how to perform each of these steps.

89

OrbixCOMet Desktop Programmer’s Guide and Reference

The Supplied DCOM Server

IONA ships some pure DCOM applications with OrbixCOMet in the i nstal | -
di r\ QOvet \ dcomapp directory, where i nstal | -di r represents the Orbix
installation directory. These are primarily intended to serve as diagnostic tools
that allow trouble-shooting of DCOM installations, without the added variable of
a COM/CORBA bridge. A DCOM (local) server called f ort une is provided in
theinstal | - di r\ QOvet \ dcomapp\ t est Exe\ ser ver directory. This server is
written using ATL and exposes objects supporting the following COM IDL
interface:

[
obj ect,
uui d(F7B6A75D- 90BF- 11D1- 8E10- 0060970557AC) ,
dual ,
hel pstring("11T_Dconilest Interface"),
poi nt er _def aul t (uni que)

]
interface |1 T_DconfTest : |Dispatch

{
[propget, id(1), helpstring("property fortune")]
HRESULT fortune([out, retval] BSTR *pVal);
b
This chapter uses the example of the f or t une server. When you run the COM
C++ client supplied in the i nstal | - di r\ GOMet \ dcomapp\ t est exe\ cl i ent
directory, the output is as follows:

[instal | -dir\QOvet\ dcomapp\testexe\client]client advice
Your fortune is :

This fortune intentionally left blank :-) :-)

Building the DCOM Server and Proxy Stub DLLs

Build the supplied DCOM server executable, using the following command in the
instal | -di r\ COvet \ dconmapp\ t est exe\ ser ver directory:

nmake -f | T_DcomApp. nak

90

Exposing DCOM Servers to CORBA Clients

Build the supplied proxy stub DLLs, using the following command in the
instal |l -di r\ COvet \ dcormapp\ t est exe\ ser ver directory:

nmake -f | T_DcomAppps. nk

At this point, you might wish to check the server's operation, using the DCOM
client supplied in i nstal | - di r\ COvet \ dconmapp\ t est exe\ cl i ent.

Priming the Type Store

When talking to a CORBA server from COM/Automation, the Interface
Repository must be populated with the required OMG IDL definitions, so that
the OrbixCOMet type store can obtain them the first time an application is run.
Alternatively, you can populate the type store in advance, which is also known as
priming the type store. You can use the following command to prime the type
store:

typeman -e typenane

Because you want to contact a DCOM server, all the marshalling code is based
on the type library (in this case, | T_DcomApp. t | b). You must prime the type
store with this type library as follows:

typerman -e install-dir\COvet\dcomapp\test exe\ server\|T_DcomPpp.tlb

Note: You must supply the full path to the type library. Refer to “Development
Support Tools” on page 157 for full details about the type store and how
to prime it.

Registering the Server

The next step is to decide on a CORBA server name, and to create an entry in
the Orbix Implementation Repository under that name. In this case, the server
name is f or t une, which is an arbitrary choice. OrbixCOMet supplies a generic
Orbix server, cust sur. exe, that can masquerade as any server, receiving
CORBA requests and making the corresponding call on the correct DCOM
server. You must specify cust sur. exe as the server executable when creating

91

OrbixCOMet Desktop Programmer’s Guide and Reference

the entry in the Implementation Repository. The cust sur. exe server has a dual
personality, because it can also act as a DCOM surrogate executable. This makes
it a generic DCOM server as well as a generic Orbix server.

Enter the following in the i nstal | - di r\ QOMet \ bi n directory, to register the
DCOM f ort une server in the Implementation Repository.

putit fortune "install-dir\QOwet\bin\custsur.exe -t 10000"

In the preceding example, the -t option with cust sur is specified as a parameter
to the command, to provide a default timeout (in milliseconds) for the server.
Refer to “OrbixCOMet Utility Options” on page 363 for more details about the
options available with cust sur.

To expose the server to CORBA, you simply need to:
® Register the type library.

® Register cust sur. exe in the Implementation Repository under a server
name.

Generating OMG IDL

92

For a CORBA client to invoke requests on a DCOM server, the CORBA client
must be presented with a CORBA view of the server objects. This means that
you must generate the OMG IDL definitions required by the CORBA client from
the existing COM IDL for the DCOM server objects. You can use the t s2i dl
utility supplied with OrbixCOMet to create OMG IDL from existing COM IDL
type information held in the OrbixCOMet type store. The t s2i dl utility
generates OMG IDL from COM IDL, by applying the standard mapping rules
described in “COM-to-CORBA Mapping” on page 333.

The following command creates an OMG IDL file, f ort une. i dl , from the COM
IDL interface shown in “The Supplied DCOM Server” on page 90:

ts2idl -i -r -f fortune.idl |T _DOOVAPPLI b:: | T _DconTest

The generated OMG IDL file, f ort une. i dl , has two interfaces in this case (that
is, | T_DOOMAPPLI b: : | 1 T_DconTest and a coclass pseudo interface called

| T_DOOVAPPLI b: : | T_DconTlest). Both of these interfaces are scoped within a
module called | T_DOOVAPPLI b, which is the internal type library name. You can
check this using oleview if you wish.

Exposing DCOM Servers to CORBA Clients

The generated OMG IDL for fortune. i dl is as follows:

/1 OM5 1 DL

/1 within nodul e | T_DCOVAPPLI b

interface |1 T_DconTest : CosLifeCycle:: LifeCycl ethj ect,
CORBA QM : Conposabl e

{

}

readonly attribute string fortune;

/1 manufactured interface for cocl ass

interface | T_DconTest : CoslLifeCycle:: LifeCycl etj ect,
CCORBA OOM : Conposabl e

{

}s

There are several points to note here:

readonly attribute | T_DOOVAPPLI b:: 11 T_DconTest it_defaul t;

® The original propget (f ortune) of the BSTR type maps to a readonly
attribute of the st ri ng type. This is as expected.

® All mapped interfaces inherit from CosLi f eCycl e: : Li f eCycl e(hj ect,
which is one of the interfaces specified in the CORBA lifecycle service.
This is because of the different ways that DCOM and CORBA handle
reference counting.

DCOM uses distributed reference counting. This means that when all
outstanding references to an object are released (even for references
held by remote clients), the server object's reference count falls to zero
and the object is destroyed. When all objects in a DCOM server have
been destroyed, the server shuts down.

CORBA uses a different approach. Client calls to _dupl i cat e() and

rel ease() should in no way affect the reference count of an object in the
server. This can present problems in a COM/CORBA bridge that
launches DCOM servers in response to requests from CORBA clients,
because the bridge does not know when to release DCOM interface
pointers. The solution to this problem lies in the lifecycle interfaces,
especially the CosLi f eCycl e: : Li f eCycl e(j ect: : renove() method.
When a CORBA client has finished with a particular object reference, it
should call renove() to release the DCOM interface pointer in the
bridge, and thus allow the DCOM server to shut down, if necessary.

93

OrbixCOMet Desktop Programmer’s Guide and Reference

® A coclass pseudo interface is generated. Coclasses are a COM IDL
feature that provide a listing of the interfaces that an object supports. The
object itself is identified by its CLSID, which is provided in its UUID
attribute, and each interface is marked with either "default” or "source"
attributes. In the COM IDL example in this chapter, || T_DconTest is the
default interface for the | T_DconTest coclass, which is the object that
serves up fortune strings. | | T_DconTest is represented by a readonly
attribute on the pseudo coclass object. Any other interfaces supported by
the coclass object (in this example, there are no others) are also
represented by readonly attributes. You should think of these coclasses
as your initial point of contact; for example, these are what you bind to
from an Orbix client.

¢ All interfaces inherit from Conposabl e, as mandated by the COM/CORBA
Interworking specification. This allows CORBA programmers to navigate
between the various interfaces supported by the COM object, in the
absence of an inheritance relationship between those interfaces.

Writing a Client to Talk to the DCOM Server

94

You can write a client to talk to the DCOM server in the same way that you
write any other CORBA client. First, you should obtain an initial object
reference. The following example uses _bi nd() to do this, but you can also use
cust sur . exe to generate IORs for CORBA clients. (Refer to “Connection and
Usage with the Custsur Executable” on page 97 for more details). After
obtaining an IOR, a client can then invoke operations on the server. For
example:

Il G+
usi ng nanespace | T_DOOVAPPLI b;

| T_Dconfest _var dconTest Var ;
Il T_DconTest _var defaul t Var;

/1 _bind to the cocl ass pseudo object in server "fortune" on host
/1 "advi ce.iona. cont
dconTestVar = | T _DconTest:: bind(":fortune", "advice.iona.con!);

Exposing DCOM Servers to CORBA Clients

/1 now get the default interface of the coclass - |1 T_Dconfest
/1 in our case

def aul t Var = dconTest Var->it_defaul t();

if(!'OCORBA :is_nil(defaultVar))

{
cout << "got default interface...calling fortune()" << endl;
/1 call fortune()
cout << "fortune is " << defaultVar->fortune() << endl;
/1 lifecycle support - signal that we are finished with
/1 this objref
def aul t Var - >r enove() ;
}

/1l lifecycle support - after this call, the DOOMserver will
/1 have shut down...
dconTest Var - >r emove() ;

If you examine the task list while running this client, you can see that

| T_DcomApp. exe appears briefly and disappears after the second call to
remove() . This means that the DCOM server is correctly shut down, because of
the lifecycle support.

CORBA Client Example Using Composable Support

This section provides an example of a CORBA client of the DCOM f ort une
server that uses conposabl e support (rather than the pseudo coclass object
support described in the preceding example):

#i ncl ude "fortune. hh"

#i ncl ude <i ostream h>

#i ncl ude <stdlib. h>

int main (int argc, char **argv) {

if (argc < 2) {

cout << "usage: " << argv[0] << " <hostnane>" << endl;
exit (-1);

}

try {

usi ng nanespace | T_DOOVAPPLI b;

OCRBA: : (hj ect _var pQhj ;

95

OrbixCOMet Desktop Programmer’s Guide and Reference

| T_Dcontest _var dconTest Var ;
I T_DconTest _var defaul t Var;
dconfTest Var = I T_DconTest::_bind(":fortune", argv[1]);

cout << "_bind succeeded; calling query_interface()." <<
endl ;
pQhbj = dconTest Var->query_i nterface
("1 T_DOOVAPPLI b: : I I T_DconTest ") ;
if(I'OCORBA :is_nil (p(j))

{
defaul tVar = 11T _DconTest::_narrow pQoj);
i f(QORBA :is_nil(defaultVar))
cerr << "got nil obj ref after g_i()" << endl;
el se
{
cout << “fortune is ” << defaultVar->fortune() << endl;
def aul t Var - >r enove() ;
}
}

/1 1ifecycle support
dconTest Var - >r emove() ;
} catch (CGORBA: : SystentExcepti on &ysEx) {
cerr << “lUnexpected system exception” << endl;
cerr << &syskEx;
exit(1);
} catch(.) {
// an error occurred while trying to bind to the | T_DconTest
/1 object.
cerr << "Bind to object failed" << endl;
cerr << "lUnexpected exception"” << endl;
exit(1);
}

return O;

96

Exposing DCOM Servers to CORBA Clients

Connection and Usage with the Custsur Executable

You can use cust sur . exe to generate IORs for CORBA clients. The following

options are available with cust sur:

-g This generates an IOR.

-m This specifies the marker name.
-i This specifies the interface name.
-s This specifies the server name.

-f This specifies the filename.

For example, the following command generates an IOR for the | T_Dconilest
interface in the f ort une server, and writes it to the fortune. i or file:

custsur -g -i | T_DcomApplib::1T_DconTest
-s fortune -f c:\tenp\fortune.ior

The following is an example of a CORBA client using the IOR generated in the

preceding command:

ifstreamin(argv[1l], ios::nocreate);

// read in the ICR then do a string_to_object

if(lin.is_open())

{
cerr << "Unable to open file " << argv[1] << endl;
return 1;

oo

in>>ior;

in.close();

/1 Initialize the GRB.
orb = CCRBA : (RB init(argc, argv);

obj Var = orb->string_to object(ior);
i f(OORBA: :is_nil(objVar))
{

cerr << "string_to_object() returned a nil objref" << endl;

return 1;

97

OrbixCOMet Desktop Programmer’s Guide and Reference

dconTest Var= | T_DOOVAPPLI b: : | T_DconTest : : _narrow(obj Var) ;
i f(QORBA :is_nil(dconTest Var))
{

cerr << " _parrow() returned a nil objref" << endl;
return 1;

}

cout << "About to get the default interface " << endl;
def aul t Var = dconilest Var ->i t _defaul t();

if('OORBA :is_nil(defaultVar))

{
cout << "got default interface...calling fortune()" << endl;
cout << "fortune is " << defaultVar->fortune() << endl;
/1 lifecycle support
def aul t Var - >r enove() ;
}

/1 1ifecycle support
dconTest Var - >r emove() ;

98

Implementing CORBA Servers

You can use OrbixCOMet to implement CORBA servers, using
Automation-based tools such as PowerBuilder or Visual Basic. These
servers can accept requests from standard COM or Automation
clients as well as from CORBA clients. This chapter explains how to
use OrbixCOMet to implement a CORBA server.

Note: OrbixCOMet is designed to support development of CORBA servers,
using PowerBuilder or Visual Basic only. It does not facilitate automatic
generation of C++ server skeleton code. If you want to implement a
CORBA C++ server, use the Orbix C++ product.

Steps to Implementing a CORBA Server

The steps to implement a CORBA server, using OrbixCOMet, are:
I. Define and register the OMG IDL interfaces for the objects in your
system.

2. Generate a corresponding type library or COM IDL definitions, using the
supplied OrbixCOMet development tools.

3. Generate PowerBuilder or Visual Basic server skeleton code, using the
supplied OrbixCOMet development tools.

99

OrbixCOMet Desktop Programmer’s Guide and Reference

4. Implement the OMG IDL interfaces by implementing a class in your
chosen development language, exactly as you would for a normal
Automation server.

5. Register your server with OrbixCOMet to make it appear as a CORBA
server to CORBA clients.

6. Register your server in the Implementation Repository, so that it can be
activated by the Orbix daemon (if necessary) when a CORBA client
invokes on it.

This chapter describes how to perform each of these steps. You can find a Visual
Basic version of the server in the i nstal | -di r\ demos\ QOMWet \ VB\ bankSr v
directory, where i nstal | -dir represents the Orbix installation directory.

Defining and Registering OMG IDL Interfaces

100

A CORBA server presents an OMG IDL interface to its clients. The first step in
implementing a CORBA server is to define the OMG IDL interfaces for the
objects required in your system.

The OMG IDL example provided with your OrbixCOMet installation represents
a bank and its accounts, as follows:

interface account {
readonly attribute float bal ance;

voi d nakeLodgement (in float f);
voi d nmakeWthdrawal (in float f);

I

interface current Account : account{
readonly attribute float overdraftLimt;

h
The next step is to register your OMG IDL interfaces with the Interface
Repository. This is necessary to allow OMG IDL type information to be added
to the OrbixCOMet type store cache. The type store manager utility, t yperan,
searches the Interface Repository whenever it encounters any OMG IDL type
information not currently held in the type store cache. Regardless of how new

Implementing CORBA Servers

OMG IDL type information is added to the cache (that is, manually before
running an application, or automatically at application runtime), that type
information must be obtained from the Interface Repository.

Use the puti dl utility to register your OMG IDL with the Interface Repository.
For example, the following command registers a bank. i dl file contained in a
c: \ bank directory:

c:\bank> putidl bank.idl

Generating a Type Library or COM IDL

An Automation implementation for each interface in your OMG IDL file must be
provided in your server. Each object that you implement must have methods and
properties that correspond exactly to those in the OMG IDL interface
definition, according to the standard mapping rules. Refer to “CORBA-to-
Automation Mapping” on page 271 and “CORBA-to-COM Mapping” on

page 309 for details of these rules.

To determine what the signature of each method in your server implementation
should be, you must generate one of the following from your OMG IDL type
information in the type store:

® A type library, created using t s2t 1 b.
¢ A COMIDL file, created using t s2i dl .

Refer to “Development Support Tools” on page 157 for details about using
ts2tlbandts2idl.

Generating Server Skeleton Code

Generating skeleton code automates the task of translating your OMG IDL
interface definitions into equivalent definitions in your implementation language.
It also ensures that all parameters are available in order, and that they are
passing the correct types. For more details about generating server skeleton
code, refer to “Development Support Tools” on page |57.

101

OrbixCOMet Desktop Programmer’s Guide and Reference

Implementing the Server Interfaces

To implement the OMG IDL interfaces, you implement a class in your chosen
implementation language (that is, Visual Basic or PowerBuilder), exactly as you
would for a normal Automation server.

The interfaces defined in your OMG IDL file define the interface that (remote)
CORBA clients use to interact with your server objects. You must provide
implementations of these interfaces, and each of their operations and attributes,
in your chosen implementation language.

You might also need to implement supporting classes, functions or subroutines
to complete your application. In the following Visual Basic example, the
Account s and Qur rent Account s collections are needed to maintain a collection
of Account and Qur rent Account objects owned by the bank.

In the code examples in the following subsections, the additions to the generated
code are shown in bold text.

Implementing the Account Interface

102

Private accBal ance As Single
Private accOwmer As String

Public Property Let bal ance(ByVal var_bal ance As Single)
accBal ance = var_bal ance
End Property

Public Property Get bal ance() As Single
bal ance = accBal ance
End Property

Public Property Let owner(ByVal var_owner As String)
accOmer = var_owner
End Property

Public Property Get owner() As String
owner = accOmner
End Property

Implementing CORBA Servers

Publ i ¢ Sub makelLodgenent (ByVal var_anount As Single, Qotional
I T Ex As Variant)
accBal ance = accBal ance + var_anount
frmBankSrv. Detai |l s. Addltem "rmade | odgenent : bal ance
is" & accBal ance
End Sub

Public Sub makeWt hdrawal (ByVal var_anount As Single,
ptional I T_Ex As Variant)
' Check that the withdrawal does not
' exceed the bal ance:
If ((accBal ance - var_amount) >= 0) Then _
accBal ance = accBal ance - var_anount

End Sub

Private Sub Qass_Initialize()
accBal ance = 0
End Sub

Implementing the CurrentAccount Interface

The Qurrent Account interface inherits from Account. To implement the
Qurrent Account interface, you must reimplement the properties and methods
inherited from Account. You must also implement the overdraft Li m t
property that the Qurrent Account interface adds.

Private parent Acc As New Account
Private accLimt As Single

Public Property Let overdraftLimt(ByVal var_overdraftLint As
Si ngl e)

accLimt = var_overdraftLimt
End Property

Public Property Get overdraftLinmt() As Single
overdraftLimt = accLimt
End Property

Public Property Get bal ance()

bal ance = parent Acc. bal ance
End Property

103

OrbixCOMet Desktop Programmer’s Guide and Reference

Public Property Let owner(ByVal owner As String)
par ent Acc. owner = owner
End Property

Public Property Get owner() As String
owner = parent Acc. owner
End Property

Publ i ¢ Sub nakeLodgerrent (ByVal anount As Single, ptional I T Ex As
Vari ant)

par ent Acc. makeLodgenment anount
End Sub

Publ i c Sub makeWt hdrawal (ByVal anount As Singl e,
ptional I T_Ex As Variant)
' Check that the w thdrawal does not exceed
' the bal ance including overdraftlimt:
I f ((parentAcc. balance - (amount - overdraftLinmit))>= 0)
Then _
par ent Acc. bal ance = parent Acc. bal ance - amount
End Sub

Implementing the Bank Interface

The newAccount () and newQur r ent Account () operations on the Bank interface
raise an exception if the bank fails to create an account. The code to raise an
exception is not included in this example. “Exception Handling” on page 109
deals with this topic in detail.

Private Accounts As New Accounts
Private Qurrent Accounts As New Qurrent Account s
Private obj Factory As OORBA O bi x. Dl CCRBAFact or yEx

Publ i ¢ Function newAccount (ByVal var_owner As String, ptional
IT Ex As Variant) As (bject
D mexcp As BankSrv. Dl bank_rej ect

If frnBankSrv. Account Al readyExi st s(var_owner) Then

frmBankSrv. Detai |l s. Addl t em " Account al ready exists for
Qustoner : " & var_owner

104

Implementing CORBA Servers

Set excp = obj Fact ory. O eat eType(Not hi ng,
"BankSrv. Bank_Rej ect")
excp. reason = "Account already exists!!!"
I T_Ex = excp
H se
Set newAccount = Accounts. Add(var_owner)
frnBankSrv. Detail s. Addltem "Created new account for
Custoner : " & newAccount.owner
End If

End Function

Publ i c Sub del et eAccount (ByVal var_owner As (hject, optional |T_Ex
As Variant)

Account s. Renove var _owner. owner

Current Account s. Renove var _owner. owner

fr mBankSrv. RenoveAccount (var_owner. owner)

frmBankSrv. Details. Addltem "Account deleted for : " &
var _owner . owner

End Sub

Publ i c Sub del et eAccount (ByVal var_owner As String, ptional ByRef
IT Ex As Variant)
Account s. Renove var _owner

End Sub

Publi c Function getAccount (ByVal var_owner As String, Optional
ByRef I T Ex As Variant) As (bj ect
Set get Account = Accounts.|temvar_owner)

End Sub

Registering the Server with OrbixCOMet

When you have implemented your OMG IDL interfaces, you have developed an
Automation server. To make your Automation server appear as a CORBA
server, you must instantiate your implementation Automation object and
register it with OrbixCOMet. (If it makes sense for your application, you might
want to create more than one implementation object.)

105

OrbixCOMet Desktop Programmer’s Guide and Reference

Visual Basic

This section shows how to use Visual Basic to tranform an Automation server to
a CORBA server.

Dmorb As (hj ect
D m bankobj As New Bank
D mserver APl As (bj ect

Private Sub Form Load()
On Error oTo errorTrap
Set orb = O eatehj ect ("CORBA CRB. 2")

Set server APl = orb. Get Server AP|
Set orb = Not hi ng

Cal | server APl . Set hj ect | npl ("bank", "", bankQbj)
Cal | server APl . Acti vat e(" bank")
Exit Sub

errorTrap:
MsgBox (Err.Description & " in " & Err. Source)
Err.dear

End Sub

Private Sub Form Unl oad(Cancel As |nteger)
Cal | server APl . Deacti vat e(" bank")
Set server APl = Not hi ng

End Sub

PowerBuilder

This section demonstrates how to use PowerBuilder to transform an
Automation server to a CORBA server.

Note: In PowerBuilder, your implementation (user) objects must be exposed
with valid ProglDs, using the PowerBuilder pbgenr eg. exe tool. From
PowerBuilder 6.0, pbgenr eg is accessible from the PowerBuilder menu.

106

Implementing CORBA Servers

I/l Get a reference to the | TServer APl obj ect
deChject orb

orb = CREATE A e(j ect

or b. Connect ToNew(hj ect (" CORBA. CRB. 2")
Server APl =or b. Get Server API ()

/1 Instantiate a Bank object.

/1 You first need to use PBGENREG EXE to expose the Bank
/1 object with the ProglD ' bank. bankl npl Cbj ect'

d e(j ect bank(hj

bankChj = CREATE A e(j ect

bankQbj . Connect ToNewhj ect (" bank. bankl npl Coj ect ™)

/1 Register bankChj with the Bridge.
server APl . set (bj ect | npl ("bank", "", bankQoj)

/1 Activate the server so that bank(bj
/1 can receive inconing calls fromQORBA clients.
server APl . Acti vat e("bank")

/] Deactivate the server when fini shed.
server APl . Deact i vat e(" bank™)

The preceding Visual Basic and PowerBuilder examples instantiate a bank object,
and register it with the bridge by calling Set Chj ect | npl () on the bridge’s
| TServer APl interface.

Set oj ect | npl () specifies the IDL interface that the registered object supports
in its first parameter, and specifies the object’s marker in its second parameter.
No marker is specified in this example. Therefore, Orbix chooses the marker
for the bank object.

The next step is to activate the server, so that any objects registered with the
bridge can receive incoming requests from CORBA clients. In this case, the call
to Activat e() gives the server the name bank. This is also the name with which
the server is to be registered in the Implementation Repository. (Refer to
“Registering the CORBA Server in the Implementation Repository” on page 108
for more details.)

When your application no longer needs to receive CORBA client requests, you
can deactivate the server by calling Deacti vate().

107

OrbixCOMet Desktop Programmer’s Guide and Reference

Running the Server

You can now build your server executable as normal for the language you are
using. Your server project name is used as the first part of the ProglD for your
server’s Automation objects.

Registering the CORBA Server in the
Implementation Repository

Your server executable must be registered in the Implementation Repository.
This means the Orbix daemon can know how to activate the server, if the server
is not already running when a CORBA client makes a request on one of its
objects.

You must register your server with the name that was specified in the call to
Activate() in “Registering the Server with OrbixCOMet” on page 105. In this
example, the server must therefore be registered with the name bank.

You can register your server as follows, using putit, where executabl e file
is the full path to the server program:

putit bank executable_file

108

Exception Handling

Exception handling is an important aspect of programming an
OrbixCOMet application. Remote method calls are much more
complex to transmit than local method calls, so there are many more
possibilities for error. This chapter explains how CORBA exceptions
can be handled in a client, and how a server can raise a user
exception.

CORBA defines a standard set of system exceptions that can be raised by the
ORB during the transmission of remote operation calls, and reported to a client
or server. These exceptions range from reporting network problems to failure
to marshal operation parameters.

CORBA also allows users to define application-specific exceptions that allow an
application to define the set of exception conditions associated with it. These
exceptions are defined in the r ai ses clause of an OMG IDL operation. Refer to
the Orbix C++ documentation set for more details.

Applications do not (and should not) explicitly raise system exceptions.
However, they should handle system exceptions and user exceptions
appropriately.

109

OrbixCOMet Desktop Programmer’s Guide and Reference

CORBA Exceptions

A client application should handle user exceptions, defined in an OMG IDL
rai ses clause, that can be raised by a call to an OMG IDL operation.

A client should also handle system exceptions that can be raised by
OrbixCOMet itself, either during a remote invocation or through calls to
OrbixCOMet. OrbixCOMet might raise a system exception if, for example, it
encounters a problem with the network.

Example of a User Exception

110

Recall the Bank interface defined in “Implementing CORBA Servers” on page 99:

// QM5 1 DL
interface Bank {

exception Reject {
string reason;

b
Account newAccount (in string owner) raises (Reject);

In this case, the newAccount operation raises a single Rej ect exception. An
operation can raise more than one exception. For example:

Account newAccount (in string owner) raises (Reject, Bankd osed);

If the bank fails to create an account (for example, because the owner already
has an account at the bank), the newAccount () operation raises the Rej ect user
exception. The Rej ect exception contains one member, of the st ri ng type,
that is used to specify the reason why the request for a new account was
rejected.

The newAccount () operation can, of course, raise a system exception if
OrbixCOMet encounters some problem during the operation invocation.
However, system exceptions are not listed in a r ai ses clause, and user code
should never raise a system exception.

Exception Handling

The Automation view of these OMG IDL definitions is as follows:

/1 M |1 DL
interface D Bank : 1D spatch {
HRESULT newAccount ([in] BSTR owner,
[optional ,out] VAR ANT* |T_E,
[retval,out] ID spatch** I T retval);

}

interface D Bank_Reject : D OCORBAUser Exception {
[propput] HRESULT reason([in] BSTR reason);
[propget] HRESUWLT reason([retval,out] BSTR* IT retval);

The COM view of these OMG IDL definitions is as follows:

/1 QMG 1 DL
i nterface |bank: | Unknown
{
typedef struct tagbank_reject

{
LPSTR r eason;

} bank_reject;
HRESULT del et eAccount ([in] laccount *a);
HRESULT newAccount ([in, string] LPSTR nane,
[out] laccount **val,
[in,out,unique] bankExceptions **ppException);
HRESULT newQurrent Account ([in, string] LPSTR nane,
[in] float limt,
[out] IcurrentAccount **val,
[in,out, unique] bankExceptions **ppException);
b
Refer to “CORBA-to-Automation Mapping” on page 271 for details of how
OMG IDL interfaces and exceptions map to Automation. Refer to “CORBA-to-
COM Mapping” on page 309 for details of how OMG IDL interfaces and
exceptions map to COM.

OrbixCOMet Desktop Programmer’s Guide and Reference

Exception Properties

112

System exceptions and user exceptions have a number of properties that allow
you to find information about an exception that has occurred. Both system
exceptions and user exceptions expose the (D) | For ei gnExcept i on interface,
which is defined as follows:

i nterface D Forei gnException : D Forei gnConpl exType {
[propget] HRESULT EX naj or Code(
[retval ,out] long* I T retval);
[propget] HRESULT EX | d(
[retval ,out] BSTR* IT retval);
b

The methods can be described as follows:

EX_maj or Code() This indicates the category of exception raised. It can be
any of the following, defined in the | TStdInterfaces.tlb
file:

EXCEPTI ON_NO
EXCEPTI ON_USER
EXCEPTI ON_SYSTEM

EX_1d() This indicates the type of exception raised. For example,
QCRBA: : COW FAI LURE is an example of a system
exception. Bank: : Rej ect is an example of a user
exception (based on the Bank interface in “Example of a
User Exception” on page |10).

System exceptions also have the following additional properties, which are
defined in the (D) | GORBASyst enExcept i on interface:

i nterface D OCCORBASyst enException : D Forei gnException {
[propget] HRESUWLT EX_ni nor Code(
[retval ,out] long* IT retval);
[propget] HRESULT EX conpl eti onSt at us(
[retval ,out] long* IT retval);

Exception Handling

The methods can be described as follows:

EX conpl etionStat us() This indicates the status of the operation at the time
the system exception is raised. The status can be as
follows:

QOWPLETION_YES ~ This means the operation had
completed before the exception
was raised.

QAWPLETI ON_NO This means the operation had
not completed before the
exception was raised.

QOVPLETI ON_NAYBE This means the operation was
initiated, but it cannot be
determined if it completed.

EX_m nor Code() This returns a code describing the type of system
exception that has occurred. A minor code can be
looked up in the error messages file, ERRVBGS, to find
a textual description of the code.

Exception Handling in Automation

CORBA exceptions are mapped to Automation exceptions by the bridge. This
allows exceptions that are raised by calls to CORBA objects to be handled in
whatever way your development tool handles Automation exceptions.

User exceptions can define members as part of their OMG IDL definition. For
example, in “Example of a User Exception” on page | 10, the Rej ect exception
contains one member, which is called r eason and is of the st ri ng type.
However, using Automation’s native exception handling, exception members
cannot be accessed by a caller.

113

OrbixCOMet Desktop Programmer’s Guide and Reference

Exception Handling in Visual Basic

114

In Visual Basic, exceptions can be trapped using the On Error GoTo clause and
handled using the standard Err object.

For example:

" Misual Basic

D m account Cbj As BankBri dge. Dl Account
D m bankChj As BankBri dge. D Bank

Ch Error Goto errorTrap

(btain a reference to a Bank object:
Set bankChj = ...
Set account bj = bank(hj . newAccount (owner)

Exit Sub
errorTrap:
MsgBox(Err. Description & _
' occurred in " & Err.Source)
End Sub

The details of any exception that occurs are available as properties of the
standard Err object. (Refer to your Visual Basic documentation for full details of
the Err object.) For example:

® Err.Description provides details of the exception, including the name
of the exception; for example, CORBA: : COMM FAI LURE or Bank: : Rej ect.
For a user exception, an example of the string in Err. Descri pti on is:
OCRBA Wser Exception :[Bank:: Reject]
For a system exception, an example is:

OCRBA Syst em Exception : [OCRBA : COW FAl LURE]
m nor code [10087][NJ

® Err. Sour ce indicates the operation that raised the exception; for
example, Bank. newAccount .

Exception Handling

Inline Exception Handling

The second approach to handling exceptions in an Automation client is to use
the exception parameter directly. As already described in “Exceptions” on
page 291, an OMG IDL operation maps to an Automation method that has an
additional optional parameter.

For example:

interface Account {

voi d makeDeposit(in float anount,
out float bal ance);

b
This maps to:
/1l COM 1 DL

interface D Account : |Dispatch {

HRESULT nakeDeposi t (
[in] float amount,
[out] float* bal ance,
[optional, in, out] VAR ANT* |IT_EX);
}

A client can pass this parameter in a method call, and check to see if it contains
an exception after the call. To use exceptions in this manner, however, the

| T_Ex parameter must first be initialized to Not hi ng in the client code, as
follows:

DmIT_Ex As (hj ect
Set | T_Ex = Nothing

If this optional exception parameter is used, OrbixCOMet does not translate
any CORBA exceptions that might occur during the call into an Automation
exception. Instead, the optional exception parameter is populated with rich
error information relating to any CORBA exception that occurs. The error-
handling code must be written inline. The ability to handle user exceptions inline
is useful, because user exceptions can be thrown to indicate logical errors rather
than unrecoverable errors.

115

OrbixCOMet Desktop Programmer’s Guide and Reference

116

However, it allows the caller to get additional information about a user
exception that has occurred. A user exception can define one or more members
that translate to COM IDL methods that can be used by the caller to extract this
additional information. (Refer to “CORBA-to-Automation Mapping” on

page 271 and “Automation-to-CORBA Mapping” on page 299 for details of the
mapping between OMG IDL and COM IDL user exceptions.)

Standard Automation exception handling is disabled when the exception
parameter is passed in a method. This allows the value of the exception to be
examined inline.

Assume that newAccount () can raise the user exception, Rej ect, defined as
follows:

/1 QMG 1DL
i nterface Bank {
exception Reject {
string reason;

b
3
You can use type information to check the type of exception that occurred:

" Misual Basic
D mex As Variant
Set ex = Nothi ng

"(ptional exception param passed, therefore GOvet will not convert
"a OORBA Exception into an Automati on exception
Set account D sp = bankChj . newAccount (Nanebox. Text, ex)

"D d any exception occur ?
I f ex. EX maj or Code <> CORBA CRBI X. EXCEPTI ON_NO Then
"Is it a user exception occur ?
If TypedF ex |'s OCORBA CRBI X DI GORBAUser Exception Then

" Wi ch user exception ?
If Typed ex |s IT_Library bank. D bank_reject Then
D mexRej ect As | T_Library_bank. Dl bank_r ej ect
Set exReject = ex
MsgBox exReject.EX Id, , "User Exception BEx_Id :"
MsgBox exRej ect. | NSTANCE repositoryld, , "User
Exception | NSTANCE repositoryld :"

Exception Handling

MsgBox exRej ect.reason, , "lUser Exception reason :"
End If

"Is it a systemexception ?

H self TypeCf ex |I's CORBA CRBI X D CCRBASyst enExcepti on Then
D m exSyst enExcepti on As OCRBA CRBI X. Dl CORBASyst enExcept i on
Set exSyst enException = ex

MsgBox "System exception has occurred : " &
exSyst enExcepti on. EX | d

Sel ect Case exSyst enExcepti on. EX conpl eti onSt at us
Case OORBA CRBI X. COWPLETI ON_MAYBE
MsgBox " Systemexception Conpl etion Status : Maybe "
Case COORBA CRBI X. COWPLETI ON_NO
MsgBox " System exception Conpletion Status : No "
Case OORBA (CRBI X. COMPLETI ON_YES
MsgBox " System exception Conpl etion Status : Yes "

Case H se
MsgBox "Unknown System exception Conpl etion Status”
End Sel ect
End I f
End | f

Note: In the preceding example, ex is declared as a Vari ant type, and it is
initalized to Not hi ng. This sets up a variant that contains an object equal
to nothing. This is the correct way to interface from Visual Basic to
OrbixCOMet when using late binding in an Automation client.

117

OrbixCOMet Desktop Programmer’s Guide and Reference

Exception Handling in COM

This section describes exception handling in COM. As already explained in
“Exceptions” on page 322, a CORBA exception maps to a COM IDL interface
and an exception structure that appears as the last parameter of any mapped
operation.

Catching COM Exceptions

The bridge translates the exception into a standard COM exception. There are
two parts to the exception. The first part, HRESULT, gives the class of exception.
The second part is a human-readable form of the exception, exposed through
the | Error | nf o interface. For example:

HRESULT hRes;
IErrorinfo *plErrinfo = O;
| SupportErrorinfo *pl SupportErrinfo = 0O;

i f (SUCCEEDED(hr))
return TRUE

i f (SUCCEEDED(punk->Queryl nterface(l1D_| SupportErrorl nfo,
(PPVA D) &pl Support Errinfo)))
{

i f (SUCCEEDED(pl Support Err 1 nfo->I nt erfaceSupportsErrorlnfo
(riid)))
{

hRes = GetErrorinfo(0, &l Errinfo);
if(hRes == S K
{
p! Errl nf o- >Get Sour ce(&src);
p! Errl nf o- >Get Descri pti on(&desc);
nbsrc = WBTR2ZCHAR(src) ;
nbdesc = WSTR2CHAR(desc) ;
SysFreeString(src);
SysFreeString(desc);
nbrsg = new char [strlen(nbsrc) + strlen(nbdesc)+strlen
(" ")+l
sprintf(nbnmsg, "% : %", nbsrc, nbdesc);
pl Errl nf o- >Rel ease() ;
CheckHRESULT(nbnsg, hr);

118

Exception Handling

del ete [] nbsrc;
del ete [] nbdesc;
del ete [] nbnsg;
}
el se
cout << "No error object found" << endl;

}

pl Support Err | nf o- >Rel ease{};
}
CheckHRESULT("Error : ", hr);

Using Direct-to-COM Support in Visual C++

In this case, CORBA exceptions are mapped to the standard _com err or
exception. For example:

try
{

short h, w

D bankPtr bank;

Dl account Ptr acc;

D QCRBAFactoryPtr fact;

fact. Oreatel nstance(" CORBA Factory");

bank = fact->Get (bj ect ("bank: bank_mar ker : bankSvr: ", NJLL);
acc = bank->newAccount ("Ronan", NULL);

cout << "Q(reated new account 'Ronan'" << endl;

acc- >nakelLodgenent (100, NULL);

cout << "Deposited $100" << endl;

cout << "New bal ance is " << acc->Cetbal ance() << endl;
bank- >del et eAccount (acc, NULL);

cout << "Del eted account" << endl ;

E:atch (_comerror &e)

{ print_error(e);

catch (.)

{ cerr << "Caught unknown exception " << endl;
}

119

OrbixCOMet Desktop Programmer’s Guide and Reference

Raising an Exception in a Server

When an OMG IDL operation definition specifies a r ai ses clause, the server’s
implementation of that operation should raise the exception(s) specified in an
appropriate way.

In the Bank example, the implementation of the OMG IDL newAccount ()
operation raises the Rej ect exception when it fails to create an account.

To raise the exception, create an exception object, using the
(D) | CCRBAFact or yEx: : Or eat eType() method. (Refer to “Creating
Constructed OMG IDL Types” on page 283 and page 317 for more details.)

If the OMG IDL exception defines members, you must assign appropriate data to
these members, to provide details about the exception to the caller. You must
then assign the exception to the | T_ex parameter, which transmits system and
user exceptions back to the caller. It is good practice to exit the function
immediately after raising an exception.

Automation Exceptions

120

The following is a Visual Basic example of how to raise an exception:

Vi sual Basic
D m Qoj Factory As QCORBA O bi x. Dl CCRBAFact ory

Publ i ¢ Function newAccount (_
ByVal var_owner As String, _
ptional ByRef | T Ex As Variant) As (bj ect

If .. owner has account at the bank
If Not IsMssing(l T_Ex) Then
D mexcep As BankBri dge. Dl Bank_Rej ect
Set excep = (bj Factory. O eat eType(Not hi ng, _
"Bank/ Rej ect")
excep. reason = "Account already exists!"
Set I T_Ex = excep
Exit Function
End | f
El se ..." create new account

End Function

Exception Handling

COM Exceptions

The following is a COM C++ example of how to raise an exception:

[/ OOM ++
try
{

short h, w

Dl bankPtr bank;

Dl account Ptr acc;

Dl QCRBAFactoryPtr fact;

fact. O eatel nstance(" CORBA Factory");

bank = fact->Get (bj ect (" bank: bank_mar ker : bankSvr", NULL);
acc = bank->newAccount ("Ronan", NULL);

cout << "Created new account 'Ronan'" << endl;

acc- >makelLodgenent (100, NULL);

cout << "Deposited $100" << endl;

cout << "New bal ance is " << acc->Get bal ance() << endl;
bank- >del et eAccount (acc, NULL);

cout << "Del eted account" << endl;

}
catch (_comerror &e)
{
print_error(e);
}
catch (.)
{
cerr << "Caught unknown exception " << endl;
}

121

OrbixCOMet Desktop Programmer’s Guide and Reference

122

10

Implementing Client Callbacks

Usually, CORBA clients invoke operations on objects in CORBA
servers. However, CORBA clients can implement some of the
functionality associated with servers, and all servers can act as clients.
A callback invocation is a programming technique that takes
advantage of this. This chapter describes client callbacks.

A callback is an operation invocation made from a server to an object that is
implemented in a client. A callback allows a server to send information to clients
without forcing clients to explicitly request the information.

Callbacks are typically used to allow a server to notify a client to update itself.
For example, in the bank application, clients might maintain a local cache to hold
the balance of accounts for which they hold references'. Each client that uses
the server’s account object maintains a local copy of its balance. If the client
accesses the balance attribute, the local value is returned if the cache is valid. If
the cache is invalid, the remote balance is accessed and returned to the client,
and the local cache is updated.

When a client makes a deposit to, or withdrawal from, an account, it invalidates
the cached balance in the remaining clients that hold a reference to that account.
These clients must be informed that their cached value is invalid. To do this, the
real account object in the server must notify (that is, call back) its clients
whenever its balance changes.

I. A bridge holds an Orbix proxy as well as a COM or Automation view for each implementation
object to which it has a reference. The client could maintain a cache by implementing a smart proxy.
Refer to the Orbix documentation set for details about writing smart proxies.

123

OrbixCOMet Desktop Programmer’s Guide and Reference

To implement callbacks, you must:
¢ Define the OMG IDL interfaces for the server objects and client objects.
¢ Generate the skeleton code for the callback objects.
® Write a client.
® Write a server.
® Register the server in the Implementation Repository.

The following sections describe each of these steps in turn.

Defining OMG IDL Interfaces

124

The client implements an interface that the server uses to call back clients. A
suitable interface might be defined as:

/1 OM5 I DL
interface NotifyCall back{
oneway void notifydient();

}

The notifyQient () operation is declared to be oneway, because it is
important that the server is not blocked when it calls back its clients.

The server implements an interface that allows it to maintain a list of clients that
should be notified of changes in its objects’ data. A suitable interface might be
defined as:

/1 QM5 1 DL
i nterface RegisterCall back{
void registerient(in NotifyCallback client);
void unregisterQient(in NotifyCallback client);
}

Theregi sterdient() operation registers a client with the server. The
parameter to regi sterd i ent () is of the Noti f yCal | back type, so that the
client can pass a reference to itself to the server. The server can maintain this
reference in a list of clients that should be notified of events of interest.

The unregi sterdient () operation tells the server that the client is no longer
interested in receiving callbacks. The server can then remove the client from its
list of interested clients.

Implementing Client Callbacks

Generating Skeleton Code for Callback Objects

As in the case of creating a server, you should generate the skeleton code for
the callback objects. Refer to “Generating Server Stub Code and Support for
Callbacks” on page 176 for details of how to do this. Generating the skeleton
code for the callback objects ensures that your interfaces have the correct
parameters, in the correct order, and so on.

Writing a Client

To write a client, you must implement the Not i f yCal | back interface for the
client objects. You can use the generated skeleton code for the callback objects
as a template, as if the client were a CORBA server.

Visual Basic

The following is an example of a Visual Basic client:

Dmclientj as New NotifyCal | back

D m Qpj Factory As (bj ect
Set (bj Factory = O eat e(hj ect (" CCRBA. Fact ory")

D mserverj as clientBridge. D Regi sterCal |l back

Set serverhj = (bj Factory. Get (hj ect (" Cal | Back: Cal | Back_nar ker :
cal | backSvr:" & Host nane. Text)

server(pj.registerAient clientj

..." Your code goes here

Public Sub notifydient(Qptional ByRef IT_Ex As Variant)

End Sub

In the preceding example, the client creates an implementation object,
client (oj, of the Noti fyCal | back type. It binds to an object of the

Regi st er Cal | back type in the server. At this point, the client holds an
implementation object for the Noti f yCal | back type, and a reference to an
Automation view object, ser ver (b , for an object of the Regi st er Cal | back

type.

125

OrbixCOMet Desktop Programmer’s Guide and Reference

To allow the server to invoke operations on the Not i f yCal | back object, the
client must pass a reference to its implementation object to the server. Thus, the
client calls the regi sterd i ent () operation on the server (oj view object, and
passes it a reference to its implementation object, cl i ent Qbj .

Because it implements an interface, the client is acting as a server. However, the
client does not have to register its implementation object with the bridge, and it
is not registered in the Implementation Repository. Therefore, the server
cannot bind to the client’s implementation object.

PowerBuilder

COM C++

126

The following is an example of a PowerBuilder client:

d e(pj ect NotifyCall back
QA e(hj ect (hj Factory

bj Fact ory = CREATE d e(j ect
server hj = CREATE A e(hj ect

server (hj = (bj Fact ory. Get (hj ect (" Cal | Back: Cal | Back_rmar ker :
cal | backSvr : Host Nane")
server bj . Regi ster (Noti fyCal | back)

In the preceding example, Not i f yCal | back and (bj Fact ory are global variables.

The following is an example of a COM C++ client:
| Cal | Back *pl F = NULL;

hr = CoO eat el nstanceEx (11D | CORBAFactory, NULL, ctx, NUL, 1,
&nui) ;
CheckHRESULT(" CoCr eat el nst anceEx()", hr, FALSE);

pCORBAFact = (| CORBAFactory*)ngi . pltf;

/1 connect to the target OORBA server

nenset (szMar ker Server Host, '\ 0', 128);

sprint f (szMar ker Server Host, "Cal | Back: Cal | Back_mar ker :
cal | backSvr: %", hostnane);

Implementing Client Callbacks

hr = pQORBAFact - >CGet (hj ect (szMar ker Ser ver Host , &Unk) ;
i f(!CheckErrlInfo(hr, pCORBAFact, || D_| GORBAFactory))
{

pCOCRBAFact - >Rel ease() ;

return;

}
pOCRBAFact - >Rel ease() ;

hr = pUnk->Queryl nterface(l1D_| Cal | Back, (PPVA D) &plF);
i f(!CheckErrinfo(hr, pUnk, 11D_ICallBack))
{

pUnk->Rel ease();

return;

}
pUnk- >Rel ease() ;

/Il Oreate our inplenentation for the call back object
| COMCal | Backl npl * pol npl = | GOMCal | Backl npl : : Oreate();

/1 make the call to the server passing in our object
pl F- >Regi st er (pol npl) ;

/1 wait around until we explicitly quit for the none consol e

/1 application
St art QQvBer ver LOCP(10000) ;
pol npl - >Rel ease();

127

OrbixCOMet Desktop Programmer’s Guide and Reference

Writing the Server

The server application is implemented as a normal OrbixCOMet server, as
described in “Implementing CORBA Servers” on page 99. In particular, you
must:

¢ Implement the Regi st er Cal | back interface.
® Invoke the notifydient() operation.

The following subsections describe each of these steps in turn.

Implementing the RegisterCallback Interface

128

You must provide an implementation class for the Regi st er Cal | back interface,
using the skeleton code generated for the callback objects as a template. The
implementation of the regi ster Qi ent () operation receives an object
reference from the client. When this object reference enters the server address
space, a COM or Automation view for the client’s Not i f yCal | back object is
created in the server’s bridge. The server uses this view to call back to the client.
The implementation of Regi sterd i ent () should store the reference to the
view for this purpose.

Visual Basic

The following is a Visual Basic example of how to implement the
Regi st er Cal | back interface:

Public Sub registerdient(ByVal var_client As (bject,
ptional ByRef | T _Ex As Variant)
I/l Store reference to var_client

End Sub
Public Sub unregisterdient(ByVal var_client As (bject,
ptional ByRef IT_Ex As Variant)

/1 Rerove reference to var_client

End Sub

Implementing Client Callbacks

PowerBuilder

The following is a PowerBuilder example of how to implement the
Regi st er Cal | back interface:

// Oreate two functions passing a user object
registerdient (...
unregisterdient (...

COM C++

The following is a COM C++ example of how to implement the
Regi st er Cal | back interface:

void Cal I Back i::Register (1dientChject * obj)

{ cout << "in Server, about to call back to client" << endl;
/1 Register reference

}

void Cal |l Back_i:: UnRegister (1dient(hject * obj)

{ cout << "in Server, about to call back to client" << endl;
/'l Renove the reference

}

Invoking the Operation to Notify the Client

After the view is created in the server address space, the server can invoke the
notifydient () operation on the view. For example, the server might initiate
this call in response to an incoming event (such as a request to make a deposit
to, or withdrawal from, a bank account).

The callback can be sent directly to the client. The callback does not need to be
routed through an Orbix daemon, so the client does not have to be registered in
the Implementation Repository. Therefore, the server cannot bind to the client’s
implementation object.

129

OrbixCOMet Desktop Programmer’s Guide and Reference

130

Visual Basic

The following is a Visual Basic example of how to invoke notifyQient():

D mcal | backQoj as serverBridge. D NotifyCal | back

Get the reference to the client fromthe server's stored data
Set cal | backChj = ...

Call back to client
cal | back@j . noti fydient

PowerBuilder

The following is a PowerBuilder example of how to invoke noti fydient():

/] Get the reference to the client fromthe server’s stored data
A ehj ect Cal | backj

Cal | back@j . Connect ToNew(hj ect (..)

Cal | back@j . notify()

COM C++

The following is a COM C++ example of how to invoke notifydient():
try
{

}
cat ch (CCRBA(Syst enException) & 0OEX)

obj ->opl("This is the server calling");

cout << oEx;

}
catch (.)
{
cout << "Unknown exception" << endl;
}

cout << "in Server, back fromclient" << endl;

Implementing Client Callbacks

Registering the Callback Object Server

Finally, the server instantiates an object of the Regi st er Cal | back type, registers
the object with the bridge, and activates itself as a CORBA server.

Visual Basic

The following is a Visual Basic example:

D mserverhj As New Regi st erCal | back
D mserver APl as (bj ect

Set server APl = Oreate(hj ect("serverBridge. | TServer APl ")
server APl . Set (bj ect | npl (" Regi sterCal | back", "", server(j)
server APl . Activate("Cal | backServer")

The server should be registered in the Implementation Repository, with the
name specified in the Acti vat e() call.

PowerBuilder

The following is a PowerBuilder example:

I/l Get a reference to the | TServer APl obj ect

d e(hj ect server APl

server APl = CREATE 4 e(hj ect

server APl . Connect ToNewChj ect (" server Bri dge. | TServer APl ")

// Instantiate a Bank object.

/1 You first need to use PBGENREG EXE to expose the

/1 object with the Progl D' Cal |l backSrv. Cal | backl npl hj ect’
d eChj ect yj

hj = CREATE d e(yj ect

(bj . Connect ToNewhj ect (" Cal | backSrv. Cal | backl npl Cbj ect ™)
/!l Register (hj with the Bridge.

server APl . set vj ect | npl ("Regi sterCal | back”, " ", j)

I/ Activate the server so that bankj

/1l can receive inconing calls fromQORBA clients.
server APl . Activate("Cal | backServer™")

131

OrbixCOMet Desktop Programmer’s Guide and Reference

COM C++

132

// Deactivate the server when finished
server APl . Deacti vat e(" Cal | backServer")

The following is a COM C++ example:

Cal | Back_i * m pQbj =new Cal | Back_i ();

I O bi xCRBChj ect * poCr b=0;

hr = CoQO eatel nstance(l1D_| O bi xCRBMhj ect, NULL, ctx,
11 D_| Obi xCRBOhj ect, (voi d**) &oQb);

CheckHRESULT(" Connecting to CRB', hr, FALSE);

I O bi xServer APl * poAPI =0;

hr = poQ b->CGet Server APl (&poAPI) ;

CheckHRESULT("getting Server API", hr, FALSE);

poCr b- >Rel ease();

Il register our CCMobject as the CORBA interface 'dient (hj ect’
poAPI - >set (hj ect | npl (" Regi sterCal | back", " ", mpQj);

poAPI - >Act i vat e(" Cal | backServer");
poAPI - >Rel ease();

del ete mpQyj ;

SSL Support

SSL support with OrbixCOMet opens up the domain of SSL-secured
CORBA programs to COM/Automation clients and servers. Using SSL
with your OrbixCOMet applications means on-the-wire
communication using IIOP is secure.

The recommended OrbixCOMet deployment scenario for COM or Automation
clients is to use OrbixCOMet in-process and connect to secure CORBA
servers. In this scenario, all on-the-wire communication is performed using SSL-
secured IIOP. This means OrbixCOMet applications using SSL can avail of the
cornerstone security attributes of authentication, privacy and integrity, with the
need for little or no extra code.

The use of secure [IOP between OrbixCOMet and CORBA clients and servers
does not require any changes to deployment scenarios where DCOM on-the-

wire is also used (that is, where OrbixCOMet is used out-of-process by COM

or Automation clients).

The key attribute of an SSL-secured application is its association with an X.509
certificate. This association is established for each application by specifying an
X.509 certificate file and supplying the password of the private key stored within
the certificate. Therefore, an OrbixCOMet application can be initalized as an SSL
application if it has access to a certificate, and the password for the certificate's
private key.

133

OrbixCOMet Desktop Programmer’s Guide and Reference

Note: OrbixCOMet SSL is only available with OrbixOTM 3.0 and later versions.
This chapter assumes you have a prior knowledge of OrbixSSL. (Refer to
the OrbixSSL C++ Programmer’s and Administrator’s Guide for full
details.)

Enabling SSL in an OrbixCOMet Application

134

SSL support is added to OrbixCOMet applications, using a combination of API
calls to the OrbixCOMet (D)l O bi xSSL interface, and by specifying configuration
information within the O bi xCOMet SSL configuration scope in the OrbixSSL
configuration file (O bi xSSL. cf g). In the case of CORBA clients talking to
existing DCOM servers, SSL support can be added simply by using

QO bi xOOMWet SSL configuration scope settings.

The OrbixCOMet (D)l O bi xSSL interface can be used by OrbixCOMet
applications to specify the password and certificate combination that is used to
enable SSL for the application. A reference to the (D)l O bi xSSL interface is
obtained by a call to Get O bi XxSSL() on the (D)I O bi xCRBMj ect interface. The
following is an example of how to do this in a Visual Basic client:

DO mobj SSL As CCRBA O bi x. D O bi xSSL
D mstrPassword as String
Set obj SSL = orb. Get O bi xSSL()
obj SSL. I ni t SSL
strPassword = | nput Box("Enter Password ", "", "")
obj SSL. Set Pri vat eKeyPassword strPassword
obj SSL. Set Securi t yNane
"C:\lona\ O bi xSSL\ certificates\denos\denoclient"
Set obj SSL = Not hi ng

The process of specifying the private key password and X.509 certificate is more
usually effected by calling (D)l O bi xSSL: : Set Pri vat eKeyPasswor d, and then
specifying a configuration scope parameter to (D)l O bi xSSL: | ni t ScopeSSL. For
example:

obj SSL. I ni t Scope(" O bi xCOMet SSL. Denos")

SSL Support

The parameter specified in the call to | ni t Scope() identifies a scope in the

QO bi xSSL. cf g file, which contains a specification of the SSL security policy
settings to be implemented by OrbixSSL on behalf of users of this policy. (Refer
to the OrbixSSL C++ Programmer’s and Administrator’s Guide for more details
about configuration scopes.)

The configuration scope specified usually contains a value for

| T_CERTI FI CATE_FI LE, which determines the certificate that SSL associates
with the application after the call to | ni t ScopeSSL. Scopes and policies can be
specified on a per-application basis in the O bi xSSL. cf g file.

The following example taken from O bi xSSL. cf g shows the specification of the
certificate associated with the scope O bi xCOwvet SSL. Denos:

QO bi xCOwvet SSL

{
This cert is used by O bi xCOWt SSL clients and
servers
Denos
{
Password for the denpserver cert is
"denmpopassword”
| T_CERTI FI CATE_FI LE= _denps_cert_path +
"deno_server";
s
b

Regardless of whether Set Securi t yNane or | ni t ScopeSSL is used to specify
the certificate, the password must be specified first, using

Set Pri vat eKeyPasswor d. You should ensure that private key passwords are
never hard-coded in your applications. Instead, where necessary, users should be
prompted to enter private key passwords at runtime. As with all OrbixSSL
applications, OrbixCOMet clients and servers are required to perform their SSL
initialization before they bind to secure CORBA servers or register themselves
as secure CORBA servers.

OrbixCOMet SSL Handler DLLs

OrbixCOMet handler DLLs can be used to inject extra SSL functionality into
OrbixCOMet applications. OrbixSSL provides the facility to register a C++
callback function that is invoked by OrbixSSL during client and server

135

OrbixCOMet Desktop Programmer’s Guide and Reference

authentication. This callback function is passed details of the X.509 certificate of
the application being connected to. Customized checks can then be made on the
certificate in the implementation of the callback function. If the callback function
returns TRUE, it is signifying to SSL that the certificate is acceptable. If it returns
FALSE, OrbixSSL aborts the connection attempt and throws an authorization
failure exception.

The SSLHandl er demonstration in the i nstal | - di r\ denos\ GOVt \ cor basr v
directory (where i nstal | -dir represents the Orbix installation directory)
contains an example of an OrbixCOMet SSL handler DLL. This handler DLL is
used by the secure COM gri d client and the secure Visual Basic Bank client, to
perform customized validation of the certificates being presented by their
respective servers. (Refer to “Using Handler DLLs” on page 153 for details.)

Handler DLLs are activated from within Automation clients simply by calling the
LoadHand!l er method on (D)l O bi xORBMhj ect . For example:

or b. LoadHand!l er "mySSL”

Secure CORBA Clients Accessing Existing
DCOM Servers

136

OrbixCOMet SSL support also enables secure CORBA clients to connect to
existing DCOM servers (that is, third-party DCOM servers). Currently,
OrbixCOMet facilitates CORBA clients connecting to third-party DCOM
servers, using the OrbixCOMet generic custom surrogate program

(cust sur . exe), which acts in this scenario like a CORBA server. If the CORBA
client is secure, OrbixCOMet (hosted by cust sur) must initialize itself as a
secure CORBA server.

The current f or t une demonstration CORBA client makefile registers cust sur
as a CORBA server with the following command:

putit fortune "install-dir\QOwet\bin\custsur.exe -t 20000"
(-t : Specify server tinme out in mlliseconds)

To instruct an instance of cust sur to initialize itself as a secure CORBA server,
the -1 switch must be passed to cust sur as a command-line parameter. For
example, to make the f or t une server secure, add the -1 switch as follows:

putit fortune "install-dir\QOwet\bin\custsur.exe -1 -t 20000"

SSL Support

To run the f ort une server persistently, add the -1 switch to the command line
in addition to the - s switch, which is required to specify the server name:

C\IONA O bi xQOwet _3. 0\ custsur.exe -1 -s “fortune” -t 20000

Specifying the Custsur.exe Certificate

In secure mode, cust sur is like any other CORBA server, in that it must be
associated with an X.509 certificate and have access to the private-key password
for the certificate.

The association between a certificate and an instance of cust sur (acting as a
particular CORBA server) is made via the entries in the

QO bi xOOMet SSL. Qust Sur scope within the OrbixSSL configuration scope

(O bi xSSL. cf g). This scope has a separate entry for each CORBA server that
cust sur is configured to impersonate. Each configuration scope is identified by
the CORBA server name. Therefore, in the preceding example, when cust sur is
asked to initialize itself securely as the f ort une CORBA server, it looks for a
certificate and other SSL security policy configuration information within the

QO bi xOOMet SSL. Qust Sur . f or t une configuration scope.

Q bi xCOvet SSL
{
This policy is used by CustSur (hosting COWt)
#in its role as a generic Secure CORBA Server to
CORBA Clients. The nested entries at this scope
detail the SSL configuration for each CORBA
Server CustSur has been registered to i npersonate.
Cust Sur
{
This Policy is used by CustSur registered as
the fortune CORBA Server fortune
{
| T_CERTI FI CATE_FI LE= _denos_cert_path +
\"denoserver\";"

137

OrbixCOMet Desktop Programmer’s Guide and Reference

Specifying the Corresponding Private-Key Password

Secure CORBA servers have two options for retrieving passwords at runtime.
The first is that the server prompts the user to specify the private-key password
for its certificate when it is launched. The other option is that the server
receives a password from the OrbixSSL key distribution mechanism (KDM) at
server start-up. The cust sur utility supports both of these methods.

The KDM is a persistent CORBA server supplied with OrbixSSL. (Refer to the
OrbixSSL C++ Programmer’s and Administrator’s Guide for more details about
the KDM.) It provides a mechanism whereby passwords can be securely supplied
to servers at start-up. This negates the requirement for user intervention (that
is, prompting the user to enter a password). Entries can be added to the KDM
database, using the OrbixSSL put KDM utility. For example:

put KDM f ort une denmopassword

The KDM maintains an encrypted database that stores server names and private
key password pairs. It must be started persistently before the Orbix daemon is
started. When the Orbix daemon launches a server, it checks with the KDM to
see if an entry exists for that server. If an entry does exist, the password is
passed to the OrbixSSL runtime in the server. The SSL initialization code in an
SSL-enabled application determines whether or not a password has been
received from the KDM via the Orbix daemon at start-up. The

(DI O bi xSSL: HasPasswor d method returns f al se if no password has been
obtained from the KDM. The start-up code for cust sur uses the return value of
HasPasswor d to determine whether it needs to prompt the user for the private-
key password of the certificate.

OrbixCOMet Type Store Manager and the
Secure IFR

138

In a secure CORBA environment, the Interface Repository is configured to run
as an SSL-secured CORBA server. The OrbixCOMet type store manager

(t ypenman. exe) retrieves type information from the Interface Repository.
Therefore, in an SSL-secured environment, t ypenan must also be configured to
run securely. You can use the COVet . TypeMan. TYPEMAN_SSL_ENABLED
configuration variable to make t ypenan SSL-enabled. Refer to “OrbixCOMet
Configuration” on page 353 for more details.

| 2

Deploying an OrbixCOMet
Application

This chapter provides examples of the various deployment models
you can adopt when deploying a distributed application, using
OrbixCOMet. It also describes the steps you must follow to deploy
a distributed OrbixCOMet application.

Deployment Models

OrbixCOMet supports communication using the DCOM protocol and the
CORBA IIOP protocol. You therefore have a great degree of flexibility in terms
of how you can combine your COM/Automation and CORBA applications.
“Usage Models and Bridge Locations” on page | | has already described the
various ways you can combine COM/Automation and CORBA clients and
servers. It has also introduced the concept of being able to install the
OrbixCOMet bridge anywhere in your system.

This section provides further examples of the various OrbixCOMet deployment
models and bridge locations available. As a general rule of thumb, remember:

® The machine(s) on which the OrbixCOMet bridge is located must be
running on Windows.

® A client uses its associated protocol to communicate with the bridge
(that is, IIOP for CORBA, DCOM for COM/Automation). The bridge
uses the server’s associated protocol to communicate with the server.

139

OrbixCOMet Desktop Programmer’s Guide and Reference

Bridge on Each Client Machine

In this model, the OrbixCOMet bridge is installed on each client machine.
Figure 12.1 shows COM or Automation clients communicating with a CORBA
server. In this case, the recommended deployment scenario is to load the bridge
in-process to each client. Alternatively, the bridge could be loaded out-of-
process on each client machine, but in this case you should use straight

| D spat ch interfaces instead of dual interfaces, because there are limitations to
using OrbixCOMet out-of-process with dual interfaces.

COM/Automation Client Machine 1
(NT or 98)

Client Program
(Visual Basic, Power OrbixCOMet
Builder, and so on)

CORBA Server Machine

(NT, UNIX, 0S/390 and so on)
CoM loP
— 1 |
Object \ Server
Application
COM/Automation Client Machine 2
CORBA
(NT or 98) Object
/
Client Program /

(Visual Basic, Power OrbixCOMet
Builder, and so on)

1HOP

COM
Object | T |

Figure 12.1: COM/Automation to CORBA with Bridge on Each Client Machine

140

Deploying an OrbixCOMet Application

Figure 12.2 shows CORBA clients communicating with a COM or Automation
server. In this case, each CORBA client must be running on Windows, and the

bridge is always loaded out-of-process. Each CORBA client uses [IOP to

communicate with the bridge, and the bridge uses DCOM to communicate with
the COM or Automation server.

CORBA Client Machine 1

(NT or 98 only)

Client Program

1HoP

OrbixCOMet

CORBA
Object

CORBA Client Machine 2
(NT or 98 only)

Client Program

OrbixCOMet
1OP
L — N
CORBA
Object

DCOM

bcomM

COM/Automation
Server Machine
(NT or 98)

Server
Program

COM
Object

Figure 12.2: CORBA to COM/Automation with Bridge on Each Client Machine

141

OrbixCOMet Desktop Programmer’s Guide and Reference

Bridge on Server Machine

In this model, OrbixCOMet is only installed on your server machine. In
Figure 12.3, COM or Automation clients use DCOM to communicate with the
bridge on the server machine.

COM/Automation

Client Machine 1
(NT or 98)

Client Program
(Visual Basic, Power
Builder, and so on)

CORBA Server Machine
(NT or 98 only)
—1 | bcom

) Server
OrbixCOMet Application
) \
COM/Automation | ——
Client Machine 2 com | <1 nop \ CORBA
(NT or 98) / Object Object
Client Program /
(Visual Basic, Power
Builder, and so on) DCOM
——//

Figure 12.3: COM/Automation to CORBA with Bridge on Server Machine

142

Deploying an OrbixCOMet Application

In Figure 12.4, CORBA clients use IIOP to communicate with the bridge on the
server machine. The bridge uses DCOM to communicate with the COM or
Automation server program. The number of DCOM clients that can be
supported in the model shown in Figure 12.3 is considerably less than the
number of CORBA clients that can be supported in the model shown in

Figure 12.4.

CORBA Client Machine 1
(NT, UNIX, and so on)

Client Program

COM/Automation Server Machine

(NT or 98)
-] \\
lop . Server
OrbixCOMet Program
CORBA Client Machine 2 \
(NT, UNIX, and so on) /\\
CORBA bcom coMm
Object Object
Client Program //
11OP
R L —

Figure 12.4: CORBA to COM/Automation with Bridge on Server Machine

143

OrbixCOMet Desktop Programmer’s Guide and Reference

Bridge on Intermediary Machine

In this model, the bridge is shared by multiple clients. It is installed on a single
separate machine that must be running on Windows.

COM/Automation
Client Machine 1
(NT or 98)

Client Program
(Visual Basic, Power
Builder, and so on)

CORBA Server
OrbixCOMet Bridge Machine
Machine (NT, UNIX, 0$/390
——11| DCOM (NT or 98) and so on)
Server
OrbixCOMet Application
COM/Automati \
utomation
Client Machine 2 com 4 hoe CORBA
(NTor98) * | Object Object
Client Program /
(Visual Basic, Power
Builder, and so on) DCOM
__//

Figure 12.5: COM/Automation to CORBA with Bridge on Intermediary Machine

144

Deploying an OrbixCOMet Application

In Figure 12.5, COM or Automation clients use DCOM to communicate with
the bridge, and the bridge uses IIOP to communicate with the CORBA server.

In Figure 12.6, CORBA clients use IIOP to communicate with the bridge, and the
bridge uses DCOM to communicate with the COM or Automation server.

CORBA Client Machine 1
(NT, UNIX, and so on)

Client Program

OrbixCOMet Bridge COM/Automation
Machine Server Machine
s (NT or 98) (NT or 98)
1IOP Server
OrbixCOMet Program
DCOM
CORBA Client Machine 2 \ P e
(NT, UNIX, and so on) v .
CORBA - CQM
Object Object
Client Program /
1IOP
//

Figure 12.6: CORBA to COM/Automation with Bridge on Intermediary Machine

145

OrbixCOMet Desktop Programmer’s Guide and Reference

In Figure 12.5 on page 144, you only need to be able to create a remote instance
of the CORBA object factory on your client machines. This is normally done
using the DCOM CoQ eat el nst anceEx() method. OrbixCOMet provides a
simple wrapper (called OO ExW apper . dl |) for this function for any languages,
such as Visual Basic Script or PowerBuilder, that do not directly support this
DCOM call. When using multiple DCOM clients with a single bridge, as shown
in Figure 12.5, the setting of the QOvet . Typenan. TYPEMAN READONLY
configuration variable is particularly important. Refer to “OrbixCOMet
Configuration” on page 353 for details.

Internet Deployment

When deploying an OrbixCOMet application on the Internet, you can choose
from the following options:

¢ Download the entire OrbixCOMet bridge to the client machine. To do
this, you can bundle the bridge files, for example, in a single CAB file. In
this case, your ActiveX control uses [IOP to communicate with your
Internet server.

¢ Download only the DLLs and leave the bridge on the Internet server. In

this case, your ActiveX control uses DCOM to communicate with your
Internet server.

The setting of the GOkt . Typenan. TYPEMAN_ READONLY configuration variable is
particularly important for internet deployment. Refer to “OrbixCOMet
Configuration” on page 353 for details.

Deployment Steps

To install an application developed with OrbixCOMet you must install:
® Your application’s runtime.
® The development language’s runtime.
® The Orbix runtime.

® The OrbixCOMet runtime.

146

Deploying an OrbixCOMet Application

You must also set the OrbixCOMet configuration variables required by your
OrbixCOMet application at the location where the OrbixCOMet runtime is
installed. These are described in “OrbixCOMet Configuration” on page 353.

Installing Your Application Runtime

The components associated with your OrbixCOMet application consist of:

® Your application executables.

® Any other DLLs needed by your application.

Installing the Development Language Runtime

The runtime requirements for your development language normally consist of:
® Runtime libraries (such as Visual Basic or PowerBuilder runtime libraries).
® Support libraries (such as Roguewave tools or extra libraries).

Details of the runtime requirements of your development language can be found
in the documentation set for the specific development language.

Installing the Orbix Runtime

Regardless of the model you adopt in deploying your OrbixCOMet applications,
the Orbix runtime requirements remain the same. This section describes the
Orbix-specific files, libraries, and executables required to run your OrbixCOMet
applications.

Orbix Daemon

The Orbix daemon, or bi xd, is always required on the server host. Ensure the
daemon is running on your server before you try to run your application. Refer
to the Orbix C++ documentation set for details of how to start the daemon.

147

OrbixCOMet Desktop Programmer’s Guide and Reference

148

Orbix Configuration Files

The following Orbix configuration files are held in the i nstal | -di r\config
directory, where i nstal | - di r represents the Orbix installation directory:

* |ONAcfg
® Obix.cfg

® common. cfg

The configuration files are required both on the client and server hosts. You
must modify the configuration entries in these files appropriately for your
system. When specifying a pathname for a specific directory, you must provide
the full pathname and ensure that it is valid. The Orbix daemon must have read/
write permissions on the directories specified in these pathnames. (Refer to
“OrbixCOMet Configuration” on page 353 for details about the various
configuration files and entries.)

You can make these available to OrbixCOMet by placing them in a confi g
subdirectory under the directory that is pointed to by the registry entry | ONA
Technol ogi es\ | T_I NSTALLATI CN_DI R You must also set the | T_OONFI G_PATH
environment variable to point to this confi g subdirectory.

Environment Variables
You must set the following environment variables:

I T_CONFI G_PATH Set this to the directory containing your configuration files.
PATH Set this to include the Orbix \ bi n directory.

Error Messages File

You can use the | T_ERRCRS configuration variable to specify the location of the
Orbix Er ror Msgs file.

Orbix Executables

If you are using the Interface Repository, the | FR exe is required. You can
locate your | FRserver anywhere in your system: on the client machine, on its
own dedicated machine, on the dedicated OrbixCOMet bridge machine (if
applicable), or on the server machine. The OrbixCOMet bridge does not care

Deploying an OrbixCOMet Application

where the Interface Repository is located, as long as it can be accessed using
IIOP. You can use the TYPEMAN | FR_HOST configuration variable to specify the
location of the Interface Repository in your system.

Depending on your system requirements, other Orbix executables (for example,
I'sit,putit, rmt,and so on) might also be required. These utilities are
normally only used for system administration purposes after application setup.
Refer to the Orbix Administrator’s Guide C++ Edition for more details of these
utilities.

Orbix Runtime Libraries

Theinstal | -dir\bin directory includes the following required Orbix runtime
libraries:

* | TM Mx.DLL
* | TGMx.DLL
* | TCDRWx. DLL
e | TOLMkx.DLL
* | TLI Mx.DLL
* | TLMWx. DLL

Installing the OrbixCOMet Runtime

The OrbixCOMet runtime environment requires considerably less disk space
than a full installation of OrbixCOMet on a development machine. This section
describes the requirements for installing the OrbixCOMet runtime.

OrbixCOMet Runtime Libraries and Support Files

Theinstal | -di r\ GOVt \ bi n directory includes the following required
OrbixCOMet runtime libraries and support files:

* OO ExWapper.dl | *
® custsur.exe

o |TOlx.dll *

® |TGeneric.dl| *

149

OrbixCOMet Desktop Programmer’s Guide and Reference

® |TMsc.dll

* |TStdhjs.dll *
* |TStdPS.dIl *

® |Tts2tlb.dll

® | TUnknown. dlI |

* TSMdlI
* TSMog.dl|
* itpud.dll

® | TSSLW apper. DLL

Note: The files marked with an asterisk (*) in the preceding list must be
explicitly registered with COM. You can register all the files
simultaneously, by running the r egconet . bat file in the i nstal | -
di r\ GOMet \ bi n directory. Alternatively, you can register each file
individually, using the regsvr32 dl | name command.

The cust sur . exe file is only required if OrbixCOMet is being used out-of-
process from DCOM clients. However, you should distribute the entire
contents of the i nstal | - di r\ QOvet \ bi n directory, to ensure that you have all
the required files.

OrbixCOMet Configuration File

Theinstal | -dir\config\Q bi xCOMet . cf g is required both on the client and
server hosts. This is placed in the same \ confi g directory as the Orbix
configuration files, as already described in “Orbix Configuration Files” on

page 148.

You must modify the configuration entries in this file appropriately for your
system. When specifying a pathname for a specific directory, you must provide
the full pathname and ensure that it is valid. The Orbix daemon must have read/
write permissions on the directories specified in these pathnames. Refer to
“OrbixCOMet Configuration” on page 353 for details about the various
configuration entries in this file.

150

Deploying an OrbixCOMet Application

Type Libraries

If your client references any type libraries, they must be installed on the client
machine, and registered in the Windows registry. You can register a type library,
using the supplied t| i br eg utility. Refer to “Creating a Type Library” on

page 171 for more details.

Handler DLLs

If you have built any handler DLLs, you must deploy and register them on each
machine where you have installed OrbixCOMet. Refer to “Using Handler DLLs”
on page 153 for more details of how to register your handler DLLs.

DCOM

If the OrbixCOMet bridge is on a separate machine, your client must be able to
make the DCOM CoQr eat el nst anceEx() call to create a remote instance of
the CORBA object factory on your client machine. To do this, however, some
Automation controllers (for example, Visual Basic 5.0) require that the

O ExW apper . dl | supplied with OrbixCOMet is installed and registered on
the client machine. The GO ExWapper . dl | file wraps the call to

GoQ eat el nst anceEx() and allows Automation clients to communicate with a
remote OrbixCOMet bridge, using DCOM. You can register this DLL as follows:

c:\> regsvr32 CCl ExWapper.dl|

Note: Visual Basic 6.0 allows you to pass an extra host parameter to
O eat ehj ect (), which bypasses the need for OO ExW apper . dI | .

Minimizing the Client-Side Footprint

In certain scenarios, OrbixCOMet allows you to deploy your client application,
without requiring any OrbixCOMet footprint on the client machine. This is
normally referred to as a zero install configuration. This means that you can use
a centralized installation of the OrbixCOMet bridge for your clients, which
provides the deployment option of using DCOM as the wire protocol for
communication between the client and the bridge.

151

OrbixCOMet Desktop Programmer’s Guide and Reference

152

Internet-Based Deployment

This deployment scenario allows you to download your client application over
the Internet. Because OrbixCOMet supports the DCOM wire protocol, your
web-based clients can use DCOM to communicate with your installation of
OrbixCOMet, which then forwards the calls to the appropriate CORBA server.

If your scripting language supports the creation of a remote DCOM object, no
OrbixCOMet runtime needs to be downloaded to that machine. Currently, the
main scripting language is VB-Script, which does not have this capability. For this
reason, OrbixCOMet includes a simple wrapper DLL called GO ExW apper . DLL,
which is a small (less than 40K) ActiveX that that can be automatically
downloaded with your web page, and allows connection to a remote instance of
the OrbixCOMet bridge. The examples provided in the i nstal | -

di r\dermos\ QOMet \ | E directory show how this can be achieved.

Automation-Based Clients

If you are developing client applications that use Automation late binding (that is,
the | D spat ch interface), you can choose to use DCOM-on-the-wire. In this
scenario, you do not need any OrbixCOMet installation on your client machine,
provided the Automation language supports connection to a remote DCOM
object (which in this case is the OrbixCOMet bridge).

As in the case of Internet-based deployment, you can use the supplied
OO ExW apper . DLL to limit the OrbixCOMet footprint to less than 40K.

If you are using early binding (that is, dual interfaces), you must include the
Automation type library that you created, using the conet cf g GUI tool or the
t s2t| b command-line utility. This allows DCOM to use the standard type
library, Mar shal | er, to manage the client-side marshalling of your client.

COM-Based Clients

The normal DCOM deployment rules state that you must deploy and register a
proxy/stub DLL for all the COM interfaces that your client uses. OrbixCOMet
can automatically generate the MIDL definitions and makefile, which are needed
to create this DLL, using the corret cf g GUI tool or the t s2i dl command-line
utility.

Deploying an OrbixCOMet Application

If your COM client application uses the standard OrbixCOMet interfaces, such
as | CCRBAFact ory, you must also include the OrbixCOMet proxy/stub DLL.
This is called | TSt dPS. DLL and is located in the i nstal | -di r\ COMet\ bi n
directory.

If your COM client uses pure DCOM calls, you must register forwarding entries
in your client-side registry, to indicate the OrbixCOMet CORBA location
information for your CORBA server. The extra registry entries can be created,
using the OrbixCOMet SrvAl i as tool. For deployment purposes, an additional
tool Al i asSrv, can be used to restore these settings during installation. See the
instal | -di r\ denos\ QOvet \ COM coOr eat e demonstration for details. (Refer to
“Replacing an Existing DCOM Server” on page 177 for more details.))

Using Handler DLLs

An important feature of OrbixCOMet is the way it facilitates the use of
customized handlers to inject extra functionality into your applications at
runtime. Handlers normally implement functionality such as smart proxies,
filters, transformers, and iocallbacks for connection events. You can use the
LoadHandl er () method on the (D) O bi xORB(bj ect API to load additional
handlers into memory during runtime of your OrbixCOMet applications, and
thus avail of the extra functionality that those handlers provide.

Creating and Registering Handler DLLs

Before you can load a hander into an OrbixCOMet application, you must first
generate some code that wraps the handler file and encapsulates it into a
Windows DLL. OrbixCOMet provides a t s2sp command line utility that
generates and builds handler DLLs. This utility can also register handler DLLs
with the Windows registry and OrbixCOMet. Refer to “Development Support
Tools” on page 157 for full details about using the t s2sp utility to create handler
DLLs.

153

OrbixCOMet Desktop Programmer’s Guide and Reference

Loading Handler DLLs at Runtime

After a handler DLL has been built and registered, it can be loaded for use by a
COM or Automation client. The following code example is taken from a Visual
Basic client that loads a handler DLL called nyQOMet Fi l ter:

Di m obj ORB As DI Or bi xORBObj ect
Di m obj Factory As DI CORBAFact or yEx
Set obj ORB = Creat e(bj ect (" CORBA. ORB. 2")

"explicitly load the handl er
obj ORB. LoadHandl er ("nmyCOWetFilter")

This adds the functionality implemented by nyCOMet Fi | t er into the application
process for use by the ORB runtime.

Managing Handler DLLs

154

When a DLL file is being referenced by a process, a read-only restriction is
placed on the DLL, to prevent it from being deleted or modified by another
process. This restriction can also prevent you from rebuilding a DLL until it is
released by the process that has loaded it. A typical scenario for this is when you
use Active Server Page (ASP) scripts to access your CORBA server. Some
Microsoft applications, such as Internet Explorer and Excel, tend to hold onto
any DLLs that have been loaded using calls to O eat e(hj ect ().

To release a handler DLL, you must shut down and restart the application that is
holding a reference to the DLL. If you cannot shut down the application itself,
you should restart the machine on which it is running. If you are using Visual
Basic, it is possible to force a handler DLL to be released by using code that
forces OrbixCOMet to shut down. For example:

D m obj CRB As DI O bi xCRB(bj ect
D mobj Factory As D OCRBAFact or yEx

Set obj ORB = Oreat e(hj ect (" CCRBA. CRB. 2")
obj ORB. Start Up
obj ORB. Set Confi gVal ue " QOMET_SHUTDOM PQLI CY', "Explicit"

Set obj Factory = O eat e(hj ect (" GORBA. Factory")
obj CRB. LoadHandl er (" Your Handl er")
nyChj = obj Factory. Get (hj ect (..)

Deploying an OrbixCOMet Application

obj CRB. Shut Down
Set obj Factory = Not hi ng
Set obj CRB = Not hi ng

In the preceding example, the OrbixCOMet runtime is stopped after the call to
Shut Down, and you cannot make any more calls through OrbixCOMet for the
rest of the application run.

Handler DLLs generated by OrbixCOMet include a O | Mai n() method that you
can use to perform initialization or deletion procedures when the DLL is loaded
or unloaded. D | Mai n() contains a r eason parameter. When Windows attaches
your handler DLL to a process, it calls D | Mai n() and passes a value of
DLL_PROCESS ATTACH to the reason parameter. Similarly, when Windows
releases a DLL, it calls D | Mai n() and passes a value of DLL_PROCESS DETACH to
the r eason parameter. The following is an example of how D | Mai n() is
implemented:

BOCL APl ENTRY D | Mai n(HANDLE hl nst, ULCNG reason, LPVA D) {
if (reason == DLL_PROCESS ATTACH {
/1 performyour handl er-specific initialization
/'l here

}

else if (reason == DLL_PROCESS DETACH) {

/1 performyour handl er-specific destruction or
// garbage col |l ection here

}
return TRUE

}

You should avoid any thread-specific calls within DLLMai n() . This is because
Windows suspends all threads, except the currently running thread, on entry to
that function. You do not have to use DLLMai n() to perform initialization and
deletion procedures. You could instead use a static object within the DLL,
where the constructor of the static object performs initialization, and the
destructor of the static object performs termination. Refer to the
demonstrations in the deno\ cor basrv directory for an example.

155

OrbixCOMet Desktop Programmer’s Guide and Reference

156

13

Development Support Tools

OrbixCOMet is a high-performance bridge that stores OMG IDL and
type library information at the bridging location in an ORB-neutral
binary format. The OrbixCOMet type store holds a cache of this type
information, which is used by the dynamic bridge during runtime of
your OrbixCOMet applications. This chapter describes the type store
and the central role it plays in terms of the development support
tools supplied with OrbixCOMet. It also describes the GUI and
command-line versions of the development support tools that allow
you to maintain the type store cache, and to create IDL files, type
libraries, handler DLLs, and server stub code from existing type store
information. Finally, it describes the tools that you can use to replace
an existing COM or Automation server with a CORBA server.

Both a GUI version and command-line version of the development support tools
are supplied with OrbixCOMet. The GUI tool and command-line utilities
provide the same functionality. You can choose to use just one or the other, or
you can use both if you wish. However, if you are using both, changes made to
the type store via the command line are not automatically reflected on the GUI
interface. Refer to “The OrbixCOMet Tools GUI Screen” on page 160 for
details of how to refresh the GUI interface to see command-line changes.

157

OrbixCOMet Desktop Programmer’s Guide and Reference

The Central Role of the Type Store

Figure 13.1 is a graphical overview of the central role played by the type store in
the use of the OrbixCOMet development utilities. As shown in Figure 13.1, the
t ypeman utility manages the information in the type store, while other utilities
use the type store information to generate the new type definitions and code
that are required for the development of distributed COM/CORBA applications.

putidl midl.exe

Interface Type
Repository Library
typeman typeman
ts2idl
OMG
Stub code
tsZth tsZsp generator tdeI\lADL
Type Handler COM
Library DLLs IDL
\p

Figure 13.1: OrbixCOMet Type Store and the Development Utilities

158

Development Support Tools

The Caching Mechanism of the Type Store

As shown in Figure 13.1 on page 158, OMG IDL files define the IDL interfaces
for CORBA objects. You can store OMG IDL in the Interface Repository in
binary format, using the puti dl command. Similarly, COM IDL files define the
IDL interfaces for COM or Automation objects. When you run the COM IDL
compiler, m dl . exe, it automatically creates a type library that stores the COM
IDL in binary format.

OrbixCOMet uses the type information available in the Interface Repository and
type libraries. However, a possible performance bottleneck might result at
application runtime if OrbixCOMet had to contact the Interface Repository for
each OMG IDL definition, and contact type libraries for each COM IDL
definition. This is because every query might involve multiple remote
invocations. To avoid any bottleneck, OrbixCOMet uses a memory and disk
cache of type information. This means it only has to query the Interface
Repository once for each OMG IDL definition, and query the type library once
for each COM IDL definition.

The typenan utility converts OMG IDL and COM IDL type information into an
ORB-neutral binary format, and caches it in memory. The type information can
consist of module names, interface names, or data types. At application runtime,
when OrbixCOMet is marshalling information, and method invocations are being
made, the type store cache holds the required type information in memory. The
type information is handled on a first in-first out basis in the memory cache. This
means the most recently accessed information becomes the most recent in the
queue. On exiting the application process, or when the memory cache size limit
has been reached, new entries in the memory cache are written to persistent
storage, and are reloaded on the next run of an OrbixCOMet application.

The memory cache and disk cache are quite separate. Initially, on starting up, the
memory cache is primed with the most recently accessed elements of the disk
cache. (The number of elements in the memory cache depends on the
configuration settings, as described in “OrbixCOMet Configuration” on

page 351.) When lookups are performed, if the required type information is not
already in the memory cache, typenan pulls it out of the disk cache. If the
required type information is not already in the memory or disk cache, t yperman
pulls it out of the Interface Repository or type library (depending on whether it
is an OMG IDL or COM IDL type definition). The related type information then
becomes the most recent item in the queue in the type store memory cache.

159

OrbixCOMet Desktop Programmer’s Guide and Reference

The OrbixCOMet Tools GUI Screen

Note: You can ignore this section if you intend using the command-line utilities
only. However, you must use the GUI tool if you want to generate server

stub code from existing type store information.

If you are using the GUI tool, the OrbixCOMet tools screen in Figure 13.2 is
always your initial starting point. To open the OrbixCOMaet tools screen,
enter conet cf g on the command line, or select the COMet tools option on

the Windows Start-IONA-Orbix3.3 menu path.

E¥: 0rbixCOMet tools

 TypeStore Content

s

I [x] B3

 Types to uze

<= Hemoye |

[Intertace] and

Rebuld TypeStore

LonkilE | J

Refresh Display | Delete TypeStore |

[Ereate| L |

[Ereate Smart Eraqy |

[Ereate TILE |
SEnen St Eods |

Digk Cache Size: 2000

tdemory Cache Size: 250

About .. |

Exit |

v

160

Figure 13.2: OrbixCOMet Tools Screen

Development Support Tools

On the OrbixCOMet tools screen, the TypeStore Contents panel lists all
the type information that is currently held in the type store cache. All type
information is held in the cache in an ORB-neutral binary format, regardless of
whether it has originated from OMG IDL files or type libraries. It can consist of
module names, interface names, or data types.

From this screen, you can perform the following tasks:
¢ Add new information to the type store.
¢ Delete the type store contents.
¢ Rebuild the type store.
® Create an OMG IDL file from cached type library information.

® Create a COM IDL file or type library from cached OMG IDL
information.

® Create PowerBuilder or Visual Basic server stub code.

If you are using both the GUI tool and the command-line utilities, changes made
to the type store cache via the t ypenan command-line utility do not appear
automatically in the TypeStore Contents panel on the OrbixCOMet tools
screen, shown in Figure 13.2 on page 160. In this case, select the Refresh
Display button to reflect any changes that you have made via the command line.

Location of the Command-Line Utilities

The command-line utilities described in this chapter are located in the i nstal | -
di r\ GOwet \ bi n directory, where i nstal | -di r represents the Orbix
installation directory.

Adding New Information to the Type Store

“The Caching Mechanism of the Type Store” on page 159 has described how the
type store cache can obtain its information on an as-needed basis at application
runtime. However, users can choose to add the required type information to
the cache before the first run of an application. This is known as priming the
cache, and it can lead to a notable performance improvement.

161

OrbixCOMet Desktop Programmer’s Guide and Reference

Priming the cache is a useful but optional step that helps to optimize the first run
of an OrbixCOMet application that is using previously unseen OMG IDL or
COM IDL types. After OrbixCOMet has obtained the type information from the
Interface Repository or type library, either through cache priming or during the
first run of an application, all subsequent queries for that type information are
satisfied by the cache.

As shown in Figure 13.1 on page 158, you can add both OMG IDL and type
library information to the type store, using either the GUI tool or the command-
line utilities.

Note: An OMG IDL interface must be registered in the Interface Repository,

using puti t, before you can add it to the OrbixCOMet type store. This
is because t ypenan queries the Interface Repository for OMG IDL type
information not currently held in the type store cache.

Using the GUI Tool

Use the OrbixCOMet tools screen shown in Figure 13.2 on page 160. To add
new information to the type store:

162

Enable the LookUp button in either of the following ways:

+ In the field beside the LookUp button, enter the name of an OMG
IDL interface that you want to add.

+ Select the browse button, which is marked by an ellipsis (that is, ..).
This provides you with a dialog box containing a list of type library
names. Select a type library name to return it to the field.

Select the LookUp button. If you have entered an OMG IDL interface
name, OrbixCOMet searches both the type store cache and the Interface
Repository for the specified name. If the relevant name is not already in
the cache, and it is found in the Interface Repository, it is then
automatically added to the cache. Similarly, if you have selected a type
library name, OrbixCOMet searches the type store cache for the
specified name. If the relevant name is not already in the cache, it is then
automatically added to the cache.

Development Support Tools

Using the Command-Line Utilities

The t ypenan utility adds information to the type store cache. For example, the
following command adds the gri d interface to the type store:

typeman -e grid

You can call up the usage string for t yperman as follows:
typeman -?

The usage string for t ypenan is:

TypeMan [fil enane | -e name| uui d| TLBNane] [-v[s[i] method]]
[opti ons]

filename: Nane of input text file.
-e: Look up entry (nanme, {uuid} or type library pathnane).
-c[n][u]: List disk cache contents, n: Natural order,
u: display uuid.
-wnj: Delete (wpe) cache contents. [nj: Delete uuid-
napper contents.
-f: List type store data files.
-r: Resolve all references (use to generate static
bri dge conpatibl e nanes for OCORBA sequences).
-i: Aways connect to |FR (for perfornance conparisons).
-v[s[i] method]: Log v-table for interface/struct.
[s:search for method] .
[i]: Ignore case. Use -v with -e option.
-b: Log mem cache hash-tabl e bucket sizes.
-h: Log cache hits/m sses.
-z: Log mem cache size after each addition.
-I[+ tIbjunion]: Log TS basic contents ['+ shows new s/
del ete's]. tlb: TypeLi b, union: Logs OM5 | DL
for unions.

-?2: Primng input file format info.

Refer to “OrbixCOMet Utility Options” on page 361 for details of each of the
options available with t ypenan.

163

OrbixCOMet Desktop Programmer’s Guide and Reference

164

Priming the Type Store with an Individual Entry

To prime the type store with the type information for an individual entry, specify
one of the following with the t ypeman command:

®* An OMG IDL typename.
® A fully qualified type library pathname.
¢ The UUID of a COM IDL interface.
For example, to prime the cache with the OMG IDL nynodul e: : nygri d

interface, enter:
typeman -e nynodul e::nygrid

In this case, the - e option instructs t ypenan to query the Interface Repository
for the specified nygri d interface, and then add it to the type store. Ensure that
you enter the fully scoped name of the OMG IDL type, as shown.

Note: Remember, OMG IDL interfaces must be registered in the Interface
Repository, using putit, before you can add them to the OrbixCOMet
type store. If t ypenan cannot find the relevant interfaces in the Interface
Repository, it cannot add the relevant type information to the cache.

To prime the cache with the nyt ypel i b type library, held in c: \t enp, enter:
typeman -e c:\tenmp\nytypelib

In this case, the - e option instructs t ypenan to prime the cache with the type
information for nyt ypel i b. The full path to the type library must be entered.

To prime the cache with the UUID of a COM IDL interface, enter:
typeman -e {UU D

In this case, replace UJ Dwith the actual UUID. Remember to enclose the UUID
in opening and closing braces, as shown.

Development Support Tools

Priming the Type Store with Multiple Entries

To prime the type store with multiple entries simultaneously, create a text file
that lists any number and combination of the following:

* OMG IDL typenames.
® Fully qualified type library pathnames.
* COM IDL UUIDs.

You can call the text file any name you want (for example, pri ne. t xt). Each
entry in the text file must be on a separate line. For example:

MyAccount

/1 This is a conment about nytypelib
c:\tenp\nytypelib

/1 This is a coment about the UUI D
{00020813- 0000- 0000- CO00- 00000000046}
Chat:: Chatd i ent

Chat : : Chat Ser ver

As shown in the preceding example, OMG IDL typenames must be fully scoped,
type library pathnames must be supplied in full, and UUIDs must be enclosed in
opening and closing braces. You can comment out a line by putting // at the
start of it. If you insert a double blank line, it is treated as the end of the text file.
The - 22 option with t ypenan allows you to view the format that the text file
entries should take.

After you have created the text file, enter the following command (assuming you
have called the file pri ne. t xt), to prime the cache with the type information
relating to the text file entries:

typeman prine. txt

This can be a convenient way of managing the cache, and repriming it with a
modified list of types. Refer to “Rebuilding the Type Store” on page 167 for
more details.

165

OrbixCOMet Desktop Programmer’s Guide and Reference

Deleting the Type Store Contents

You can delete the entire contents of the type store, using either the GUI tool
or the command-line utilities. It is not possible to selectively delete only some
type store entries. To delete entries, you must delete the entire cache.

Using the GUI Tool

To delete the entire contents of the type store, select the Delete TypeStore
button on the OrbixCOMet tools screen shown in Figure 13.2 on page 160.

Using the Command-Line Utilities

Either of the following commands deletes the entire contents of the type store:
typeman -wm

or
del c:\tenp\typeman. *

In this case, the second command assumes the t ypenan data files are held in
c:\tenp. (The COVet . TypeMan. TYPEMAN CACHE FI LE configuration variable
determines where the data files are stored. Refer to “OrbixCOMet
Configuration” on page 351 for more details.) The t ypenan data files include:

typenan. _dc This is the disk cache data file.

typeman.idc This is the disk cache index.

typenman. edc This is the disk cache empty record index.

typeman. map This is the UUID name mapper.

Note: The t ypenan -w command does not delete the t ypenan. map file. You
must enter t ypenan -wm to ensure that this file is also deleted.

166

Development Support Tools

Rebuilding the Type Store

You can rebuild the type store from a record of existing entries, using either the
GUI tool or the command-line utilities.

Using the GUI Tool

To automatically rebuild the type store from a record of existing entries, select
the Rebuild TypeStore button on the OrbixCOMet tools screen shown in
Figure 13.2 on page 160.

Using the Command-Line Utilities

Rebuilding the type store from the command line involves first deleting the type
store contents as described in “Deleting the Type Store Contents” on page |66,
and then re-priming the cache, using the t ypenan utility. If you wish, you can
create a single text file that contains all the Interface Repository and type library
entries that you want to add. Refer to “Priming the Type Store with Multiple
Entries” on page 165 for more details.

Dumping the Type Store Contents

The t ypenan utility is also a useful diagnostic utility, in that it allows for dumping
the contents of the type store cache. For example, the following command
prints the methods of the gri d interface in alphabetical order and also in vtable
order (this order is determined by the COM/CORBA Interworking specification at
WA, Ong. or g):

[c:\] typeman -e grid -v

MXB/ Narre or | FR [ook up: grid

Narre sorted V-table Dspld Ofset
get get 1 0

hei ght get set 2 1

set hei ght 3 2

width get wi dt h 4 3

167

OrbixCOMet Desktop Programmer’s Guide and Reference

Note: The second column in the preceding example denotes attribute get
operations. The absence of hei ght set and wi dt h set implies that
these are read-only attributes.

Creating an IDL File

The normal procedure for writing a CORBA client to contact a COM or
Automation server is to first obtain an OMG IDL definition of the target COM
or Automation interface, which the CORBA client can understand. Similarly, the
normal procedure for writinga COM or Automation client to contact a CORBA
server is to first obtain a COM IDL definition of the target CORBA interface,
which the COM or Automation client can understand. As shown in Figure 13.1
on page 158, you can generate OMG IDL definitions from existing type library
information in the type store, and you can generate COM IDL definitions from
existing OMG IDL information in the type store. You should ensure that each
IDL file contains a module, to minimize manual lookups.

Note: Creating COM IDL in this way allows you to create a standard DCOM
proxy/stub DLL that can be installed with a COM or Automation client
application. This means you do not have to install any CORBA
components on the client machine. The distribution model is exactly the
same as it would be for a standard DCOM application. This means it
includes a COM or Automation client and a proxy/stub DLL.

Using the GUI Tool

168

To create an IDL file from the OrbixCOMaet tools screen in Figure 13.2 on

page |160:

[. If you want to create an OMG IDL file, select an item of COM IDL type
information from the TypeStore Contents panel. If you want to create
a COM IDL file, select an item of OMG IDL type information from the
TypeStore Contents panel.

Development Support Tools

2. Select the Add button. This adds the item to the Types to use panel.

Repeat steps | and 2 until you have added all the items of type
information that you want to include in the IDL file.

3. Select the Create IDL button. This opens the OrbixCOMet ts2idl
client screen shown in Figure 13.3.

B¥: 0ibixCOMet ts2idl client
DL types
Generate DL
& Micrasoft IDL
¥ Fesolve References " OMG IDL
I [
[-
Save Az Copy Al Clear Cloze |

Figure 13.3: Creating an IDL File

4. If you are creating a COM IDL file from OMG IDL type information,
select the Microsoft IDL radio button. If you are creating an OMG IDL
file from COM IDL type information, select the OMG IDL radio button.

169

OrbixCOMet Desktop Programmer’s Guide and Reference

5. If you want to:

+ Ensure IDL is created for all dependent types not defined within the
scope of (for example) your interface, select the Resolve
References check box.

+ Copy the contents of the IDL file to your development environment,
select the Copy All button.

+ Refresh the screen, select the Clear button.
+ Assign an IDL filename, select the Save As button.
6. Select the Generate IDL button. This creates the IDL file.

Using the Command-Line Utilities

170

The ts2i dl utility creates an IDL file from existing type information in the type
store. For example, the following command creates a gri d. i dl file, based on
the gri d interface:

ts2idl -f grid.idl grid

You can call up the usage string for t s2i dl as follows:
ts2idl -v

The usage string for t s2i dl is:

Usage:
ts2idl [options] <type nane | type library name> [[<type nane>] .]
pti ons:
-b : Pass object references as type (hject in QM5 | DL.
-c : Don't connect to the IFR (e.g. if cache is fully prined).
-r : Resol ve referenced types.
-i : Generate QM5 | DL.
-m: CGenerate COM I DL (default).
-p : Cenerate nakefile for proxy/stub DLL.
-s : Force inclusion of standard types (I1TStdcon.idl / orb.idl).
-f . <filename>.
-v @ Print this message.

Tip: We -p to generate a makefile for the narshalling DLL.

Refer to “OrbixCOMet Utility Options” on page 361 for details of each of the
options available with t s2i dI .

Development Support Tools

For more complicated interfaces that use user-defined types, you can use the - r

option with t s2i dI , to completely resolve those user-defined types and produce
COM IDL for them also.

You can use the - b option when generating OMG IDL, based on type library
information stored in the type store. The purpose of the - b option is to keep
the number of generated lines of OMG IDL to a minimum. It specifies that
interface pointers, which are passed as parameters to operations described in
the type library, are mapped as the CORBA: : (bj ect type in the generated OMG
IDL, rather than as their dynamic type. Use the - b option in conjunction with the
-1 option. For an example of its use, see the supplied Excel CORBA client in the
i nstal | -di r\ denos\ GOMet \ cor bacl i ent\ excel directory.

Creating a Type Library

When using an Automation client, you have the option in some controllers (for
example, Visual Basic) of using straight | D spat ch interfaces or dual interfaces. If
you want to develop an Automation client to contact a CORBA server, and the
Automation client will only use straight | D spat ch interfaces, there is no need
to create a type library from existing OMG IDL information in the type store.
This is because OrbixCOMet automatically copies the related type information
into the type store when it performs a lookup on the target CORBA object,
using Get Chj ect ().

The following is a Visual Basic example of how an Automation client can use
Get (oj ect () to get an object reference to a CORBA object:

Vi sual Basic requesting an Autonation object
reference to OM5 I DL interface nod: : CorbaSrv
srvobj = factory. Get (bj ect (" mod/ Cor baSrv: mar ker :

server : host name")

However, if you want to develop an Automation client that uses dual interfaces,
you must create a type library from existing OMG IDL information in the type
store, using either the GUI tool or the command-line utilities.

171

OrbixCOMet Desktop Programmer’s Guide and Reference

Using the GUI Tool

To create a type library from the OrbixCOMet tools screen in Figure 13.2 on
page 160:

rr Typehbrary Generator

Library Mame

From the TypeStore Contents panel, select an item of OMG IDL type
information on which you want to base type library.

Select the Add button. This adds the item to the Types to use panel.
Repeat steps | and 2 until you have added all the items of type
information that you want to include in the type library.

Select the Create TLB button. This opens the Typelibrary
Generator screen shown in Figure 13.4.

— Interface prototypes appear as:

Typelibrary pathname

= |Dizpatch only.

* |nterface name.

Generate TLE | Cloze |

T | [Applyidentifier prefis ta avaid narme clashes.

172

Figure 13.4: Creating a Type Library from OMG IDL

In the Library Name field, type the internal library name. This can be
the same as the type library pathname if you wish, but ensure that the
library does not have the same name as any of the types that it contains.

In the Typelibrary pathname field, type the full pathname for the type
library.

Development Support Tools

6. If you want interface prototypes to:
+ Appear as | D spat ch, select the IDispatch only radio button.

+ Use the specific interface name, select the Interface name radio
button.

7. To apply an identifier prefix to avoid name clashes, select the
corresponding check box. This helps to avoid potential name clashes
between OMG IDL and COM IDL keywords.

8. Select the Generate TLB button. This creates the type library.

Using the Command-Line Utilities

The t s2t1 b utility creates a type library from existing OMG IDL type
information in the type store. For example, the following command creates a
grid.tlbfileinthe | T_grid library, based on the OMG IDL gri d interface:

ts2tlb -f grid.tlb -1 I1T_grid grid
You can call up the usage string for t s2t| b as follows:
ts2tlb -v
The usage string for t s2t1 b is:

Usage:
ts2tl b [options] <type nane> [[<type nanme>] .]
-f : File name (defaults to <type name #1>.tlb).
-l ¢ Library nane (defaults to I T_Library_<type nane #1>).
-p : Prefix parameter names with "it_"
-i . Pass a pointer to interface Foo as |D spatch*
rather than D Foo* - necessary for sone controllers.
-v @ Print this message.

Tip: Use tlibreg.exe to register your type library.

Refer to “OrbixCOMet Utility Options” on page 361 for details of each of the
options available with t s2t | b.

173

OrbixCOMet Desktop Programmer’s Guide and Reference

Generating a Handler DLL

174

OrbixCOMet is shipped with a set of pre-built DLLs that act as a dynamic bridge
between CORBA and COM environments. OrbixCOMet also allows you to
generate additional DLLs to encapsulate any extra handler code that you might
have developed and want to load into your OrbixCOMet applications at
runtime, to provide extra functionality. Handlers can implement functionality
such as smart proxies, filters, transformers, and iocallbacks for connection
events. The (D) | O bi xCRB(hj ect interface contains a LoadHand! er () method
that can load handler DLLs into memory when you are running an OrbixCOMet
application. (Refer to “DIOrbixORBObject” on page 205 or
“IOrbixORBObject” on page 239 for more details about LoadHandl er ().)

Proxy objects are an Orbix-specific feature that are implemented in the stub
code for the client process. A normal proxy marshals the i n and i nout
parameters from the client request, transmits the request package to the
implementation object in the server, receives the reply package back from the
server, and unmarshals the out and i nout parameters, and return value, for use
by the client. In other words, it fools the client into thinking that the distributed
object is local to the client process. A smart proxy goes further in that it can also
act as a cache of low-level state information and attribute values from the
distribution object in the server.

If the OrbixCOMet bridge is not being loaded in-process to your COM client
application, you must create a standard DCOM proxy DLL for the interfaces you
are using. This is necessary, to allow DCOM to correctly make a connection to
the remote OrbixCOMet bridge from the client.

The t s2sp command-line utility generates handler DLLs from existing type
information in the type store. For example, the following command generates a
handler DLL called dientFilterH dl |, based on the original handler code
contained in M/Fi | ter. cpp:

ts2sp -n nyCOvetFilter -p dientFilter -f MFilter.cpp

In the preceding example, the - p option instructs t S2sp to generate a makefile
called ientFilter.mak. You can then use this makefile to build the handler
DLL, as follows:

nnmake -f CientFilter. nak

Development Support Tools

The preceding command builds the handler DLL, assigns it the filename
QientFilterHdl I, and registers it in the Windows registry. (Remember, to
build a handler DLL, you must have an Orbix development system and Visual
C++ installed.)

The - p option also creates some support code in dientFilter.cppand
AientFilter. h. This support code is used by the generated handler DLL to
register itself with OrbixCOMet. The handler DLL registers itself, using the
name you supply with the - n option to t s2sp (in this case, nyCOMet Fi | t er) and
the full path to the DLL. This allows OrbixCOMet to subsequently recognize it
as a valid handler.

You can call up the usage string for t s2sp as follows:
ts2sp -v
The usage string for t s2sp is:

Usage:
ts2sp <options> interfacel [.interfaceN
-v @ Show this screen.
-n <keyname> : Keyname of handl er DLL.
-m: Do not overwite the nakefile.
-p <project>: Specify project nane (nane of .nak file etc.).
-f <file>: Specify additional source file (files
i npl ementing the smart proxies).
-d <output dir>: (optional) Specify output directory
(default to current directory).

NOTE: Any additional source files are assuned to be in the
directory indicated by the -d option.

Refer to “OrbixCOMet Utility Options” on page 361 for details of each of the
options available with t s2sp.

175

OrbixCOMet Desktop Programmer’s Guide and Reference

Generating Server Stub Code and Support for
Callbacks

When you want your application to be a server application or to have callback
functionality, you must provide an implementation for the server objects or
callback objects. You can use the GUI tool to generate stub code for Visual Basic
and PowerBuilder servers. (Refer to the OrbixCOMet Release Notes for details
of the programming language versions supported by this release).

To create server stub code from the OrbixCOMet tools GUI screen in
Figure 13.2 on page 160:

I. From the TypeStore Contents panel, select an item of type
information you want to include in the server stub code.
2. Select the Add button. This adds the item to the Types to use panel.

Repeat these steps until you have added all the items of type information
that you want to include in the server stub code.

3. Select the Server Stub Code button. This opens the Server Stub
Code Generator screen shown in Figure 13.5.

!:{:SEIH'EI Stub Code Generator =] g3
Output Directory Language
| S [M5-DOS_E] I @& Hisual Basic 50 ciass fie [CLS]

= Powerbuilder 6.0 user-object impart file [SEL]

Generate Cloge

Figure 13.5: Generating Server Stub Code

4. Select the radio button corresponding to the language you are using.
5. Select the target directory where you want the code to be saved.

6. Select the Generate button. This generates the stub code.

176

Development Support Tools

Replacing an Existing DCOM Server

At some stage, it might become necessary to replace an existing COM or
Automation server with a CORBA server, without the opportunity to modify
existing COM or Automation clients. However, such clients are not aware of
the (D) | CORBAFact ory interface that has so far been the usual way for clients to
obtain initial references to CORBA objects. The solution is to allow such clients
to continue to use their normal CoCr eat el nst anceEx() or O eat e(hj ect ()
calls. This means you must retrofit the bridge to serve these clients’ activation
requests. In other words, you must alias the bridge to the legacy COM or
Automation server. This ensures that when the client is subsequently run, the
bridge is activated in response to the client’s CoOr eat el nst anceEx() or

QO eat e(hj ect () calls.

OrbixCOMet supplies a srvAl i as utility, which you can enter at the command
line, to open the Server Aliasing Registry Editor screen shown in

Figure 13.6 on page 178. The screen in Figure 13.6 allows you to place some
entries in the registry, to allow server ‘aliasing’. You must enter the CLSID for
the server to be replaced and then supply, in the appropriate text box, the string
that would be passed to (D) | CORBAFact ory: : Get (bj ect () if the CORBA
factory were being used. This string is then stored in the registry under a

QOMet | nf o subkey, under the server’s CLSID entries. In addition,

| Tunknown. dl | is registered as the server executable. Nothing else is required.

The srvAl i as utility allows users to save the new registry entries in binary
format, so that an accompanying al i assr v utility can be used at application
deployment time to restore the entries on the destination machine. For
example, given a file called r epl ace. r eg, which contains the modified registry
entries, the following command aliases the specified CLSID to OrbixCOMet:

aliassrv -r replace.reg -c {F7B6A75E- 90BF- 11D1- 8E10- 0060970557AC

The next time a DCOM client of the server is run, OrbixCOMet is used instead.
See theinstal | -di r\ dermos\ COvet \ cor basr v\ r epl ace directory for an
example of srval i as and al i assrv in action.

177

OrbixCOMet Desktop Programmer’s Guide and Reference

. Server Aliazing Regizstry Editor
CLSID: I {F7BEATRE-S0BF-1101-8E10-006097 05574}
Description IEIrI:ui:-c Replace Server dermo
v Create key Loadkey | Restare
ProglD IIT_I:II comTest|T_DoomT est
GetObject Sking IIIT_I:?I comT estreplace]
Aliaz | Delete | Cave

Figure 13.6: Aliasing the Bridge

178

Part |l

Programmer’s Reference

| 4

OrbixCOMet API Reference

This chapter describes the application programming interface (API)
for OrbixCOMet, which is defined in COM IDL. It is divided into two
main sections. The first section provides the API reference for

Automation. The second section provides the APl reference for COM.

Automation Interfaces

This section describes the Automation API interfaces.

DIOrbixServerAPI

Note: You no longer need to use Dl O bi xSer ver APl to register your DCOM
objects with the bridge. (Refer to “Exposing DCOM Servers to CORBA
Clients” on page 89 for more details.) Because the use of this interface is
deprecated, it is mainly used for backwards compatibility purposes.

Synopsis [ol eaut omati on, dual , uui d(...)]
interface DO bixServer APl : | D spatch
{
HRESULT Activate ([in] BSTR cServer Nane,
[optional ,in,out] VAR ANT *IT_EX);
HRESULT Deactivate ([in] BSTR cServerNane,
[optional ,in,out] VARIANT *IT_EX);

181

OrbixCOMet Desktop Programmer’s Guide and Reference

Description

Methods

182

HRESULT D spat chEvents ([optional,in,out] VAR ANT *IT_EX);

HRESULT Set (hj ect | npl

[in] BSTR cMarker,

([in] BSTR cl Face,

[in] VAR ANT pol npl,

[optional,in,out] VARIANT *IT_EX);
HRESULT ActivatePersistent ([optional,in,out] VARIANT *IT_Ex);
HRESULT Set (bj ect | npl Persistent ([in] BSTR cl Face,

[in] BSTR cnarker,

[in] BSTR cServer,

[in] VAR ANT pol npl,
[in] BSTR cl CRFi | eNane,
[optional ,in,out] VARIANT *IT_Ex);

}s

A bridge exposes an Automation interface, which allows the bridge to act as a
CORBA server. This interface can be obtained, using the Ser ver APl ProgID.

The Automation server should instantiate an object of this type and use it to
control the Automation server’s behavior as a CORBA server.

Activate()

This activates an Automation server as a
CORBA server, using the cSer ver Nare
parameter. This name should be the same name
that is used to register the application in the
Implementation Repository, using puti t.

After Acti vate() is called, your server is ready
to receive incoming requests from CORBA
clients.

You should register all your implementation
objects, using Set Cbj ect | npl (), before calling
Activate().

OrbixCOMet APl Reference

Deacti vat e()

D spat chEvent s()

Set Cbj ect | npl ()

Acti vat ePer si stent ()

Set (hj ect | npl Persi stent ()

This deactivates your application as a CORBA
server. After Deacti vat e() is called, your
application can no longer process incoming
requests from CORBA clients.

The cSer ver Nare parameter contains the name
of the CORBA server. The server must be
registered with this name in the Implementation
Repository.

This causes any outstanding CORBA events to
be dispatched to a client or server application
for processing. It might be necessary to call this
method in a client application, if the client is
asynchronously receiving callbacks from a server
object. This depends primarily on your
development environment.

This registers an Automation object with the
bridge. The poi npl parameter identifies the
Automation object and exposes it to the
CORBA object space as the interface contained
in the A Face parameter, with the Orbix
marker contained in the cMar ker parameter.
(Markers are used to uniquely identify different
instances of the same interface.) If no marker is
passed, Orbix automatically selects a unique
marker for the object. The marker names
chosen by Orbix consist of a string composed
entirely of decimal digits. To ensure that a new
marker is different from any chosen by Orbix,
do not use marker strings that consist entirely
of digits. Marker names cannot contain a colon

€,

:” or a null character.

This allows servers to be started, without the
Orbix daemon.

See Set (bj ect | npl (). The A CRFi | eNane
parameter indicates where to write the |OR for
the object.

183

OrbixCOMet Desktop Programmer’s Guide and Reference

DCollection

Synopsis

Description

[ol eaut onati on, dual , uui d(. . .)]
interface DColl ection : D Forei gnConpl exType {

}s

[propget,id(100)] HRESULT Count ([retval ,out] long* I T retval);
[propput,id(100)] HRESUWLT Count([in] long val);
[propget,id(0)] HRESULT Item([in] |ong index,

[retval ,out] VARIANT* | T retval);
[propput,id(0)] HRESULT Item([in] |ong index,

[in] VAR ANT val);
[id(101)] HRESUWLT getltem ([in] |ong index,

[retval ,out] VARIANT* I T retval);
[id(102)] HRESWLT setltem ([in] long index, [in] VAR ANT val);
[id(-4)] HRESWT _Newknun{[out,retval] |Unknown** |T retval);

Automation interfaces that result from the translation of an OMG IDL sequence
support the DQol | ect i on interface.

Methods
Count () This sets or gets the number of items in a collection (that is, the
number of items in the sequence).
Iten() This returns the collection member at the specified index, using
propget, or inserts an item into the collection at the specified
index, using pr opput .
Getlten() This returns the collection member at the specified index.
Setlten() This inserts an item into the collection at the specified index.
UuID { E977F909- 3B75- 11CF- BBFG 444553540000}
Notes Automation/CORBA-compliant.
DICORBAAny
Synopsis t ypedef enum {

184

tk_null, tk_void, tk_short, tk_long, tk_ushort,
tk_ulong, tk float, tk_double, tk octet, tk_any,
tk_typeCode, tk_principal, tk _objref, tk_struct,
tk_union, tk_enum tk_string, tk_sequence, tk_array,
tk_alias, tk _except, tk_bool ean, tk_char

OrbixCOMet APl Reference

Description

} CORBATCKI nd;

[ol eaut onati on, dual , uui d(. ..)]
interface D CORBAAny : Dl Forei gnConpl exType {
[id(0), propget] HRESULT val ue([retval,out] VAR ANT*
IT retval);
[id(0), propput] HRESULT val ue([in] VAR ANT val);
[propget] HRESWLT kind([retval ,out] OORBATCKi nd* IT retval);

/!l tk_ objref, tk struct, tk_union, tk_ alias, tk_except
[propget] HRESUWLT id([retval,out] BSTR* I T retval);
[propget] HRESUWLT nane([retval ,out] BSTR* I T retval);

I/l tk_struct, tk_union, tk_enum tk_except
[propget] HRESULT menber _count([retval ,out] long* IT retval);
HRESULT nenber _nane([in] |ong index,
[retval ,out] BSTR* I T retval);
HRESULT nenber _type([in] |ong index,
[retval,out] VARIANT* | T retval);

/1 tk_union
HRESULT nenber _| abel ([in] |ong index,
[retval ,out] VAR ANT* IT retval);
[propget] HRESULT di scrininator_type(
[retval ,out] VARIANT* IT retval);
[propget] HRESUWLT default _index([retval,out] long* IT retval);

/1 tk_string, tk_array, tk_sequence
[propget] HRESUWLT length([retval,out] long* IT retval);

I/l tk_array, tk_sequence, tk_ alias

[propget] HRESULT content _type(

[retval ,out] VAR ANT* IT retval);

b
The OMG IDL any type translates to the D CORBAAny Automation interface.
Details about the type of value stored by an any can be found, using the methods
defined on Dl CCRBAANny. The particular methods that can be called on a
Dl CORBAANY depend on the kind of value it contains. The kind of value that the
Dl QORBAANy contains can be found, using the ki nd() method. This method
returns an enumerated value of the CCRBATCKi nd type. For example, a

185

OrbixCOMet Desktop Programmer’s Guide and Reference

Methods

186

D GCRBAANy containing a struct is of the t k_st ruct kind; a Dl CORBAAny
containing an object is of the t k_obj ref kind; a DI CORBAANY containing a
t ypedef is of the tk_al i as kind.

A BadKi nd exception is raised if a method is called on D CCRBAAny that is not
appropriate to the kind of value it contains.

val ue()

ki nd()

id()

These propput and propget methods can be
called on every kind of Dl CORBAANy.

The propget method returns the actual value
stored in D CCRBAANy.

The propput method inserts a value into a
DI CCRBAANY.

This can be called on every kind of DI CORBAAny.

It finds the type of OMG IDL definition described
by the any. It returns an enumerated value of the
QCRBATCKi nd type. For example, an any that
contains a sequence is of the t k_sequence kind.
Once the kind of value stored by the any is
known, the methods that can be called on the any
are determined.

This can be called on a Dl OORBAAny of the
tk_objref, tk_struct, tk_union,tk_enum
tk_alias, ortk_except kind. If called on a

Dl GORBAANy of a different kind, it raises a Badki nd
exception.

It returns the Interface Repository ID that globally
identifies the type.

This method requires runtime access to the
Interface Repository.

OrbixCOMet APl Reference

nare()

nenber _count ()

nenber _nane()

This can be called on a Dl GCORBAAny of the
tk_objref, tk_struct, tk_union,tk_enum
tk_alias, or tk_except kind. If called on a

Dl OORBAANY of a different kind, it raises a BadKi nd
exception.

It returns the name that identifies the type. The
returned name does not contain any scoping
information.

This can be called on a Dl CORBAAny of the
tk_struct, tk_union, tk_enum or tk_except. If
called on a D QCRBAAny of a different kind, it raises
a BadKi nd exception.

It returns the number of members that make up
the type.

This can be called on a Dl GCORBAAny of the
tk_struct, tk_union, tk_enum or tk_except. If
called on a Dl OCRBAANy of a different kind, it raises
a BadKi nd exception.

The menber _nane() method returns the name of
the member specified in the i ndex parameter. The
returned name does not contain any scoping
information.

A Bounds exception is raised if the i ndex
parameter is greater than or equal to the number
of members that make up the type. The index
starts at O.

187

OrbixCOMet Desktop Programmer’s Guide and Reference

188

menber _t ype()

nmenber _| abel ()

di scrinmnator_type()

def aul t _i ndex()

This can be called on a Dl OORBAAny of the
tk_struct, tk_uni on, ortk_except kind. If called
on a Dl OCRBAANy of a different kind, it raises a
BadKi nd exception.

It returns the type of the member identified by the
i ndex parameter.

A Bounds exception is raised if the i ndex
parameter is greater than or equal to the number
of members that make up the type. The index
starts at O.

This can be called on a D OCCRBAAny of the
t k_uni on kind. If called on a Dl GCORBAANY of a
different kind, it raises a BadKi nd exception.

The nenber _| abel () method returns the case
label of the union member identified by the i ndex
parameter. (The case label is an integer, char,
boolean, or enum type.)

A Bounds exception is raised if the i ndex
parameter is greater than or equal to the number
of members that make up the type. The index
starts at 0.

This can be called on a Dl GCORBAANy of the
t k_uni on kind. If called on a Dl CORBAANy of a
different kind, it raises a BadKi nd exception.

It returns the type of the union’s discriminator.

This can be called on a Dl OORBAAny of the
t k_uni on kind. If called on a Dl CORBAAny of a
different kind, it raises a BadKi nd exception.

The def aul t _i ndex() method returns the index
of the default member; it returns - 1 if there is no
default member.

OrbixCOMet APl Reference

| engt h() This can be called on a Dl GCORBAAny of the
tk_string, tk_sequence, or tk_array kind.

For a bounded string or sequence, | engt h()
returns the value of the bound; a return value of 0
indicates an unbounded string or sequence. For an
array, | engt h() returns the length of the array.

content _type() This can be called on a Dl CORBAAny of the
tk_sequence, tk_array, or tk_al i as kind. If
called on an any of a different kind, it raises a
BadKi nd exception.

For a sequence or array, cont ent _t ype() returns
the type of element contained in the sequence or
array. For an alias, cont ent _t ype() returns the
type aliased by the typedef definition.

UuID { ABB553C4- 3B72- 11CF- BBFG 444553540000}
Notes Automation/CORBA-compliant.
DICORBAFactory

Synopsis [ol eaut omati on, dual , uuid(...)]

Description

interface DI OCORBAFactory : | D spatch

{
HRESULT Oreate(hj ect([in] BSTR factoryNane,

[optional ,in,out] VAR ANT* |T_EX,
[retval ,out] ID spatch** IT retval);
HRESULT Get (hj ect ([in] BSTR obj ect Nane,
[optional ,in,out] VAR ANT* |T_EX,
[retval ,out] ID spatch** I T retval);

}

Dl GCRBAFact ory is a factory class that provides a way to obtain a reference to a
CORBA object. The Automation/CORBA-compliant ProglD for this class is
CCRBA Factory

In OrbixCOMet, the name CCORBA. Fact ory. O bi x is also registered as an alias
for GCRBA. Fact ory. This allows access to the Orbix instance after a subsequent
installation of an ORB other than Orbix.

189

OrbixCOMet Desktop Programmer’s Guide and Reference

Methods

190

O eat e(hj ect ()
Get oj ect ()

This is the same as Get (hj ect ().

The OMG COM/CORBA Interworking specification at

wWwwy. ong. or g specifies that Get (bj ect () should take a
string as one parameter and return a pointer to the

I D spat ch interface on the created object. However, it
does not specify the format for the string. In OrbixCOMet,
the parameter to Get (bj ect () can take either of the
following formats:

® jnterface: marker: server: host

®* interface: TAG Tag data
The components of the string can be described as follows:

i nt er f ace—This is the IDL interface that the target
object supports. If the interface is scoped (for example,
"Modul e: : I nterface") the interface token is

“Modul e/ I nterface".

mar ker —This is the name of the target Orbix object.
Every Orbix object has a name that is either chosen by
Orbix or set (usually) at the time the object is created.
See SetObjectimpl() and DIOrbixObject::Marker() for
details.

server—This is the name of the Orbix server in which
the object is implemented. This is the name of the
server that is registered with the Implementation
Repository.

host —This is the Internet hostname or Internet

address of the host on which the server is located. If
the string is in the format xxx. xxx. xxx, where x is a
decimal digit, it is interpreted as an Internet address.

OrbixCOMet APl Reference

TAG—Two type of TAGare allowed. Each type has a
different form of Tag dat a. Valid TAGtypes are:

® | CR—lIn this case, the Tag dat a is the hexadecimal

string for the stringified IOR. For example:
fact. Get (hj ect (" enpl oyee: | OR 123456789..")

® NAME _SERVI CE—In this case, the Tag data is the
Naming Service compound name separated by ". ". For
example:

fact. Get (oj ect (" enpl oyee: NAME_SERVI CE

I ONA enpl oyees. PD. Tont)

UuID {204F6241- 3AEG 11CF BBFG 444553540000}
Notes Automation/CORBA-compliant.
DICORBAFactoryEx

Synopsis [ol eaut omati on, dual , uui d(...)]

Description

i nterface D CCORBAFact oryEx : D OCORBAFactory {
HRESULT OreateType([in] |D spatch* scopi ngQhj,
[in] BSTR typeNane,
[optional,in,out] VAR ANT* | T_EX,
[retval ,out] VAR ANT* IT retval);
HRESULT OreateTypeByld([in] |D spatch* scopi ngQj,
[in] BSTR repl D,
[optional ,in,out] VAR ANT* |T_EX,
[retval ,out] VARANT* IT retval);
b
Dl GCRBAFact or yEx is a factory class that allows creation of Automation objects,
which represent the OMG IDL st ruct, uni on, and except i on complex types.

You can create an object representing an OMG IDL complex type in a client, to
pass it as aninorinout parameter to an OMG IDL operation. You can create
an object representing an OMG IDL complex type in a server, to return it as an
out orinout parameter, or return value, from an OMG IDL operation.

The methods of Dl CORBAFact or yEx can be called on an instance of the
Dl QCRBAFact ory interface.

191

OrbixCOMet Desktop Programmer’s Guide and Reference

Methods

O eat eType() This creates an Automation object that is an instance
of an OMG IDL complex type.

The scopi ngQhj parameter indicates the scope in
which the type contained in the t ypeNane parameter
should be interpreted. Global scope is indicated by
passing the Not hi ng parameter.

QO eat eTypeByl d() This creates an instance of a complex type, based on
its repository ID. The repository ID can be
determined, using a call to Dl For ei gnConpl exType: :
| NSTANCE repositoryl IX).

This method requires runtime access to the IFR.
UuID { ABB553C5- 3B72- 11CF BBFG- 444553540000}
Notes Automation/CORBA-compliant.
DICORBAODbject
Synopsis [ol eaut omati on, dual , uui d(...)]

192

interface DIOORBAMhj ect : |Dispatch {

HRESULT GetlInterface([optional,in,out] VAR ANT* |T_Ex,
[retval ,out] ID spatch** IT retval);

HRESULT Getlnplenentation([optional,in,out] VAR ANT* |T_Ex,
[retval ,out] BSTR* I T retval);

HRESUWLT IsA([in] BSTR repositorylD
[optional,in,out] VAR ANT* |IT_EX,
[retval ,out] VAR ANT_BOOL* | T_retval);

HRESULT IsN I ([optional,in,out] VAR ANT* |T_EX,
[retval ,out] VAR ANT_BOOL* | T retval);

HRESULT | sEqui val ent ([in] |D spatch* obj,
[optional,in,out] VAR ANT* |T_EX,
[retval ,out] VAR ANT _BOOL* |IT retval);

HRESULT NonExi stent ([optional,in,out] VAR ANT* | T_EX,
[retval ,out] VAR ANT_BOOL* |IT retval);

HRESULT Hash([in] |ong maxi num
[optional,in,out] VAR ANT* |T_Ex,
[retval ,out] long* IT retval);

OrbixCOMet APl Reference

Description

Methods

All CORBA objects expose the DI CORBAMhj ect interface. It provides a number
of Automation/CORBA-compliant methods that all CORBA (and hence, Orbix)

objects support.

GetInterface()

Get | npl erment at i on()

I sA()

IsN1()

| sEqui val ent ()

NonExi st ent ()

This returns a reference to an object in the IFR
that provides type information about the target
object. This method requires runtime access to
the IFR.

This finds the name of the target object’s server, as
registered in the Implementation Repository. For a
local object in a server, it is that server’s name, if it
is known. For an object created in a client
program, it is the process identifier of the client
process.

This returns t r ue if the object is either an instance
of the type specified by the reposi toryl D
parameter, or an instance of a derived type of the
type contained in the r eposi t or yl D parameter.
Otherwise, it returns f al se.

This returns t r ue if an object reference is nil.
Otherwise, it returns f al se.

This returns t r ue if the target object reference is
known to be equivalent to the object reference in
the obj parameter.

A return value of f al se indicates that the object
references are distinct; it does not necessarily
mean that the references indicate distinct objects.

This returns t r ue if the object has been destroyed.
Otherwise, it returns f al se.

193

OrbixCOMet Desktop Programmer’s Guide and Reference

Hash()

Every object reference has an internal identifier
associated with it—a value that remains constant
throughout the lifetime of the object reference.

Hash() returns a hashed value, determined via a
hashing function, from the internal identifier. Two
different object references can yield the same
hashed value. However, if two object references
return different hash values, these object
references are for different objects.

The Hash() function allows you to partition the
space of object references into sub-spaces of
potentially equivalent object references.

The maxi numparameter specifies the maximum
value that is to be returned by the Hash() method.
For example, by setting maxi numto 7, the object
reference space is partitioned into a maximum of
eight sub-spaces (because the lower bound of the
function is 0).

UulID {204F6244- 3AEG 11CF- BBFG 444553540000}
Notes Automation/CORBA-compliant.

See Also D O bi x(oj ect

DICORBAStruct

Synopsis [ol eaut onati on, dual , uui d(. ..)]

Description

uuiD
Notes

194

interface DIOCCORBAStruct : D Forei gnConpl exType {};

An Automation interface that results from the translation of an OMG IDL struct
supports the Dl CORBAst ruct interface. Its purpose is to identify that the

interface is translated from an OMG IDL struct.
{ ABB553Cl1- 3B72- 11CF- BBFG 444553540000}
Automation/CORBA-compliant.

OrbixCOMet APl Reference

DICORBASystemException

Synopsis

Description

Methods

UuID
Notes

[ol eaut onati on, dual , uui d(. ..)]
i nterface D OORBASyst enException : D Forei gnException {
[propget] HRESUWLT EX ninor Code([retval ,out] long* IT retval);
[propget] HRESULT EX conpl eti onSt at us(
[retval ,out] long* IT retval);

}

An Automation interface that represents a system exception supports the
Dl GCRBASyst enExcept i on interface. (System exceptions are not defined in

OMG IDL)

EX_ni nor Code()
EX_conpl eti onSt at us()

This describes the system exception.

This indicates the status of the operation at the
time the exception occurred. Possible return
values are:

COWPLETION.YES = 0

COWPLETI ON NO = 1

COMPLETI ON_MAYBE = 2

The COVPLETI ON_YES value indicates that the

operation had completed before the exception
was raised.

The GOMPLETI ON_NOvalue indicates that the
operation had not completed before the exception
was raised.

The value COMPLETI ON_NMAYBE indicates that the
operation was initiated, but it cannot be
determined at what stage the exception occurred.

{ ABB553C9- 3B72- 11CF- BBFG 444553540000}
Automation/ CORBA-compliant.

195

OrbixCOMet Desktop Programmer’s Guide and Reference

DICORBATypeCode

Synopsis [ol eaut omati on, dual , uui d(...)]
i nterface D OCORBATypeCode : Di Forei gnConpl exType {
[propget] HRESUWLT kind ([retval ,out] CCRBA TCKind * val);
/1 tk_objref, tk_struct,
/1 tk_union, tk_alias,
/1 tk_except
[propget] HRESUWLT id ([retval,out] BSTR * val);
[propget] HRESULT nane ([retval,out] BSTR * val);

[/l tk_struct, tk_union,
/1 tk_enum tk_except
[propget] HRESUWLT nenber_count ([retval,out] |ong* val);
HRESULT nenber_name ([in] |ong index,
[retval ,out] BSTR* val);
HRESULT nenber _type ([in] |ong index,
[retval ,out] D CORBATypeCode** val);

/1 tk_union

HRESULT nenber_| abel ([in] |ong index,
[retval ,out] VAR ANT* val);

[propget] HRESUWLT discrimnator_type ([retval,out] |D spatch **
val);

[propget] HRESUWLT default_index ([retval,out] long* val);

/1l tk_string, tk_array,
/1 tk_sequence
[propget] HRESUWLT length ([retval,out] long* val);

/1l tk_array, tk_sequence,

/1l tk_alias
[propget] HRESULT content _type ([retval,out] |ID spatch** val);
h

Description An Automation interface that results from the translation of an OMG IDL
typecode definition supports the Dl CORBATypeCode interface.

Methods

ki nd() This can be called on all typecodes. It finds the type of
OMG IDL definition described by a typecode. It
returns an enumerated value.

196

OrbixCOMet APl Reference

id()

name()

menber _count ()

menber _nane()

This can be called on a Dl OCCRBATypeCode of the
tk_obj ref, tk_struct, tk_union, tk_enum
tk_alias, ortk_except kind.If called on a

Dl OORBATypeCode of a different kind, it raises a
BadKi nd exception.

It returns the IFR repository ID that globally identifies
the type.

This method requires run-time access to the IFR.

This can be called on a Dl OCCRBATypeCode of the
tk_obj ref, tk_struct, tk_union, tk_enum
tk_alias, ortk_except kind. If called on a

Dl GCRBATypeCode of a different kind, it raises a
BadKi nd exception.

It returns the name that identifies the type. The
returned name does not contain any scoping
information.

This can be called on a D GORBATypeCode of the
tk_struct,tk_union,tk_enumortk_except kind. If
called on a Dl OORBATypeCode of a different kind, it
raises a BadKi nd exception.

It returns the number of members that make up the
type.

This can be called on a Dl CORBATypeCode of the
tk_struct, tk_uni on,tk_enumortk_except kind. If
called on a Dl CCRBATypeCode of a different kind, it
raises a BadKi nd exception.

The nenber _name() method returns the name of the
member identified by the i ndex parameter. The
returned name does not contain any scoping
information.

A Bounds exception is raised if the i ndex parameter is
greater than or equal to the number of members that
make up the type. The index starts at 0.

197

OrbixCOMet Desktop Programmer’s Guide and Reference

198

nenber _t ype()

nenber _| abel ()

di scrimnator_type

def aul t _i ndex

This can be called on a DI CCRBATypeCode of the
tk_struct, tk_union, ortk_except kind. If called on
a DI OCRBATypeCode of a different kind, it raises a
BadKi nd exception.

It returns the type of the member identified by the
i ndex parameter.

A Bounds exception is raised if the i ndex parameter is
greater than or equal to the number of members that
make up the type. The index starts at 0.

This can be called on a D OCRBATypeCode of the
t k_uni on kind. If called on a Dl CORBATypeCode of a
different kind, it raises a BadKi nd exception.

The nenber _| abel () method returns the case label
of the union member identified by the i ndex
parameter. (The case label is an integer, char, boolean,
or enum type.)

A Bounds exception is raised if the i ndex parameter is
greater than or equal to the number of members that
make up the type. The index starts at 0.

This can be called on a Dl OCRBATypeCode of the
t k_uni on kind. If called on a Dl OCCRBATypeCode of a
different kind, it raises a BadKi nd exception.

It returns the type of the union’s discriminator.

This can be called on a DI CCRBATypeCode of the
t k_uni on kind. If called on a Dl CORBATypeCode of a
different kind, it raises a BadKi nd exception.

The def aul t _i ndex() method returns the index of
the default members; it returns - 1 if there is no default
member.

OrbixCOMet APl Reference

I ength This can be called on a Dl CCRBATypeCode of the
tk_string, tk_sequence, or tk_array kind.

For a bounded string or sequence, | engt h() returns
the bound; a return value of 0 indicates an unbounded
string or sequence.

For an array, | engt h() returns the length of the array.

content _type This can be called on a Dl CORBATypeCode of the
tk_sequence, tk_array, or tk_al i as kind. If called
on a Dl OORBATypeCode of a different kind, it raises a
BadKi nd exception.

For a sequence or array, cont ent _type() returns the
type of element contained in the sequence or array.
For an alias, it returns the type aliased by the typedef

definition.
UuID { ABB553C3- 3B72- 11CF- BBFG 444553540000}
Notes Automation/CORBA-compliant.
DICORBAUnion
Synopsis [ol eaut omati on, dual , uuid(...)]

Description

Methods

UvuID
Notes

i nterface D CORBAUNni on : Dl Forei gnConpl exType {
[id(400)] HRESWLT Wnion_d ([retval ,out] VARIANT * val);
b

An Automation interface that results from the translation of an OMG IDL union
definition supports the DI CCRBAUNI on interface.

Uni on_d() This returns the current value of the union’s
discriminant.

{ ABB553C2- 3B72- 11CF- BBFG 444553540000}
Automation/CORBA-compliant.

199

OrbixCOMet Desktop Programmer’s Guide and Reference

DICORBAUserException

Synopsis

Description

UuiD
Notes

[ol eaut onati on, dual , uui d(. . .)]
i nterface D CORBAUser Exception : Dl Forei gnException {};

An Automation interface that results from the translation of an OMG IDL
exception definition supports the Dl CCRBAUser Except i on interface. Its purpose
is to identify that the interface is translated from an OMG IDL exception.

{ A8B553C8- 3B72- 11CF- BBFG 444553540000}
Automation/CORBA-compliant.

DIForeignComplexType

Synopsis

Description

Methods

uUuiD
Notes

200

[ol eaut omati on, dual , uui d(...)]
i nterface D Forei gnConpl exType : | D spatch {
[propget] HRESULT | NSTANCE repositoryl d(
[retval ,out] BSTR* IT_ retval);
HRESULT | NSTANCE cl one([in] |ID spatch* obj,
[optional,in,out] VAR ANT* |T_EX,
[retval ,out] ID spatch** IT retval);
h
An Automation interface that results from the translation of OMG IDL complex
types (for example, st ruct, uni on, or excepti on) supports the
D For ei gnConpl exType interface.

I NSTANCE repositoryld() This returns the repository ID of a complex
type.

I NSTANCE_cl one() This creates a new instance that is an identical
copy of the target instance.

Note: Both of these methods are deprecated since CORBA 2.2. The approved
way to get a repository ID is through Dl (bj ect | nf o: : uni que_i d(), and
then use DI bj ect I nfo::clone().

{ A8B5530- 3B72- 11CF- BBFG 444553540000}
Automation/CORBA-compliant.

OrbixCOMet APl Reference

DIForeignException

Synopsis [ol eaut omat i on, dual , uui d(...)]
i nterface Dl Forei gnException : D Forei gnConpl exType {
[propget] HRESULT EX naj or Code([retval ,out] long* IT retval);
[propget] HRESULT EX Id([retval ,out] BSTR* IT_retval);
Description An Automation interface that represents either a user-defined or system
exception supports the Dl For ei gnExcept i on interface.

Methods
EX_maj or Code() This defines the category of exception raised.
Possible return values are:
I T_NoExcepti on
I T_User Excepti on
| T_Syst enExcepti on
EX_1d() This returns a unique string that identifies the
exception.
UvuID { ABB553C7- 3B72- 11CF- BBFC 444553540000}
Notes Automation/CORBA-compliant.
DIObject
Synopsis [ol eaut omati on, dual , uui d(...)]

interface D(hject : ID spatch {};
Description This is the object wrapper for the OMG IDL Qvj ect type.

UuiD {49703179- 4414- a552- 1ddf - 90151ac3b54b}
Notes Automation/CORBA-compliant.
DIObjectinfo

Synopsis [ol eaut omati on, dual , uui d(...)]

interface D CbjectInfo : D CORBAFact or yEx {
HRESULT type_name ([in] |IDi spatch* target,
[optional ,in,out] VARIANT * |T_EX,

201

OrbixCOMet Desktop Programmer’s Guide and Reference

[retval ,out] BSTR* typeNane);
HRESULT scoped_nane ([in] |D spatch* target,
[optional,in,out] VARIANT * | T_EX,
[retval ,out] BSTR* repositorylD);
HRESULT unique_id ([in] |D spatch* target,
[optional,in,out] VARIANT * |T_EX,
[retval ,out] BSTR* uniquel D;
HRESULT clone ([in] ID spatch * target,
[optional,in,out] VARIANT * | T_EX,
[retval ,out] ID spatch ** result(j);
b
Description This allows you to retrieve information about a composite data type (such as a
uni on, struct ure or excepti on) that is held as an | Di spat ch pointer.

Methods
type_nane() This retrieves the simple type name of the data type.
scoped_nane() This retrieves the scoped name of the data type.
uni que_i d() This retrieves the repository ID of the data type.
cl one() This creates a new instance that is identical to the
target instance.
uuib {6dd1b940- 21a0- 11d1- 9d47- 00a024a73e4f }
Notes Automation/CORBA-compliant.
DIOrbixObject
Synopsis [ol eaut omati on, dual , uui d(. ..)]

interface D Obi x(hject : D CORBAMj ect {

HRESULT Bind([optional,in] VAR ANT narker,

[optional ,in] VAR ANT host,

[optional ,in,out] VARIANT * I T_EX,

[retval ,out] short* |IT_retval);
[propget] HRESULT Marker([retval ,out] BSTR* narker);
[propput] HRESUWLT Marker([in] BSTR narker);
[propget] HRESULT Host([retval,out] BSTR* marker);
[propput] HRESUWLT Host ([in] BSTR narker);
HRESULT d oseChannel ();

202

OrbixCOMet APl Reference

HRESULT Fil eDescriptor([optional,in,out] VARIANT *I T_EXx,

[retval ,out] short * rval);

HRESULT HasVal i dQpenChannel ([optional,in,out] VAR ANT *IT_Ex,

[retval ,out] VAR ANT_BOCL * val);

[propget] HRESULT InterfaceNane([retval,out] BSTR * narre);

Description This allows Orbix-specific operations to be performed on the object.

Methods
Bi nd()

This provides a way to bind to an object in an Orbix
server. It can be used as an alternative to

Dl CORBAHj ect : : Get (hj ect () with the

mar ker : server : host parameter.

The mar ker Ser ver parameter has the format
nar ker : server.

See DI OCCRBAMHj ect : : Get (oj ect () for an
explanation of how the values set in mar ker, ser ver,
and host affect the search for the object.

The following Visual Basic example shows how to
use Bi nd() to obtain a reference to an Orbix object
called m(which supports the Ainterface) in the s
server on the h host:

Qeate a viewfor the target Ohix
object in the bridge

D mReal Ref as DA

Set Real Ref as CreateChject("A")

Set a reference of type
CORBA_Or bi x. DI Or bi xChj ect pointing
to the view
D m Bi nder as OCORBA O bi x. D O bi x(bj ect
Set Binder = Real Ref

Call Bind() to bind the viewto the
target object and rel ease the
DI O bi xObj ect reference

Binder.Bind "ms", "h"

Set Binder = Not hi ng

Real Ref . someQper at i on(..)

203

OrbixCOMet Desktop Programmer’s Guide and Reference

204

Mar ker ()

Host ()

The propget method finds the object’s marker
name.

The propput method sets the object’s marker name.

When setting the object’s marker, if you choose a
marker that is already in use for an object of the
same interface within the server, OrbixCOMet
assigns a different marker to the object. (The object
with the original marker is not affected.) You might
want to check for this when assigning a new marker.

The propput method should be used with care.
Every incoming request to a server is dispatched to
the appropriate object within the server, based on
the marker included in the request. Thus, if an
object is made known to a remote client (refer to
“Obtaining Object References” on page 68 for
details of the various ways you can do this), and the
object’s marker is subsequently changed within the
server by a call to Marker (), a subsequent request
from the remote client fails because the client is
using the original value of the marker. Thus, you
should change the marker name of an object before
knowledge of the existence of the object is passed
from the server to any client.

A marker should not consist entirely of digits, and it
cannot contain a colon or null character.

This returns the host on which the object’s server is
located.

OrbixCOMet APl Reference

d oseChannel ()

Fi | eDescriptor()

This requests Orbix to close the underlying
communications connection to the server. This
function is intended as an optimization, so that a
connection between a client and server that is rarely
used is not kept open for long periods when not in
use.

The channel is automatically reopened when an
invocation is made on the object. If the client holds
proxies for other objects in the same server, the
channel is closed for all such proxies; it is
automatically reopened when a subsequent
invocation is made on one of these proxies

This retrieves the file descriptor of the object.

HasVal i dQpenChannel () This determines whether the communications

I nt er f aceNarre

channel between the client and server is open.

(This channel can be closed to avoid having an
unnecessary connection left open for long periods
between an idle client and server. The channel is
automatically reopened when an invocation is made
on the object.)

This returns the interface name of the object.

UuID { 036A6A33- 0BB3- CF47- 1DCB- A2CAEAG6417A}
Notes Orbix-specific.
See Also Dl OORBAMHj ect

DIOrbixORBObject

Synopsis [ol eaut omati on, dual , uui d(...)]
interface D O bi xCRBChj ect : D CRBhj ect {
HRESULT ConnectionTimeout ([in] |ong timeout,
[optional ,in,out] VAR ANT* |T_EX,
[retval,out] long* IT retval);
HRESULT MaxConnect Retries([in] |ong nuniries,
[optional,in,out] VAR ANT* | T_EX,

[retval, out]

long* I T retval);

205

OrbixCOMet Desktop Programmer’s Guide and Reference

HRESULT Pi ngDuringBi nd([in] VAR ANT_BOCL pi ng(n,
[optional ,in,out] VAR ANT* |T_EX,
[retval ,out] VAR ANT_BOCOL* | T_retval);

HRESULT ReSi ze(bj ect Tabl e([in] |ong size,
[optional ,in,out] VAR ANT* |IT_EX);

HRESULT NoReconnect OnFai | ure([in] VAR ANT_BOOL O f On,
[optional,in,out] VAR ANT* |T_EX,
[retval ,out] VAR ANT _BOOL* |IT retval);

HRESULT Recl ai nCal | backStore([optional,in,out] VAR ANT*
I T_EX);

HRESULT Abort S owConnects([in] VAR ANT_BOOL OnCf f,
[optional ,in,out] VAR ANT *IT_Ex,
[retval ,out] VAR ANT BOOL *IT retval);

HRESULT ActivateCvHandl er([in] BSTR identifier,
[optional,in,out] VARIANT *I T_Ex);

HRESULT Deacti vat eCvHandl er([in] BSTR i dentifier,
[optional ,in,out] VARIANT *IT_Ex);

HRESULT ActivateQutputHandl er([in] BSTR identifier,
[optional ,in,out] VARIANT *IT_EX);

HRESULT Pl aceCvHandl er After([in] BSTR handl er,
[in] BSTR after Thi sHandl er,
[optional ,in,out] VARIANT *IT_Ex);

HRESULT Pl aceCvHand! er Bef ore([in] BSTR handl er,
[in] BSTR beforeThi sHandl er,
[optional ,in,out] VARIANT *IT Ex);

HRESULT Deacti vat eQut put Handl er ([in] BSTR identifier,
[optional,in,out] VARIANT *IT_EX);

HRESULT Basel nterfacesCf ([in] BSTR deri ved,
[optional ,in,out] VAR ANT *IT_Ex,
[retval ,out] VARIANT** | T retval);

HRESULT | sBaselnterfacef ([in] BSTR deri ved,
[in] BSTR maybeBase,
[optional ,in,out] VAR ANT *|T_Ex,
[retval ,out] VARIANT BOOL * IT retval);

HRESULT d oseChannel ([in] long fd,
[optional,in,out] VARIANT *IT_EX);

HRESULT Col l ocated([in] VAR ANT_BOOL OnOFf,
[optional,in,out] VARIANT *IT_EX,
[retval ,out] VARIANT BOOL * I T retval);

HRESULT Def aul t TXTi meout ([in] |ong timeout,
[optional,in,out] VARIANT *IT_Ex,
[retval ,out] long* IT retval);

206

OrbixCOMet APl Reference

HRESULT EagerListeners([in] VAR ANT_BOOL OnCFf,
[optional ,in,out] VARIANT *IT_Ex,
[retval ,out] VARIANT_BOCOL * | T_retval);
HRESULT Get ConfigVal ue([in] BSTR name, [out] BSTR *val ue,
[optional ,in,out] VAR ANT *IT_Ex,
[retval ,out] VARIANT_BOOL * I T retval);
HRESULT Set ConfigVal ue([in] BSTR nane, [in] BSTR val ue,
[optional,in,out] VAR ANT *IT_Ex,
[retval ,out] VARIANT_BOCOL * | T_retval);
HRESULT Qutput ([in] VAR ANT value, [in] short |evel,
[optional ,in,out] VAR ANT *IT_Ex);
HRESULT ReinitialiseConfig([optional,in,out] VARIANT *I T _Ex);
HRESULT Set D agnostics([in] short |evel,
[optional,in, out] VAR ANT *IT_Ex,
[retval,out] short * IT_retval);
HRESULT StartUp([optional,in,out] VAR ANT *IT_Ex,
[retval ,out] VAR ANT_BOCL * I T retval);
HRESULT Shut Down([optional,in,out] VAR ANT *IT_EX,
[retval ,out] VARIANT BOCL * | T retval);
HRESULT Get Server APl ([optional,in,out] VAR ANT *IT_EX,
[retval ,out] ID spatch ** I T retval);
HRESULT LoadHandl er ([i n] BSTR handl er Nane,
[optional ,in,out] VAR ANT *IT_EX);
HRESULT Narrow([in] 1D spatch * poQhj,
[in] BSTR cNewl FaceNane,
[optional,in,out] VAR ANT *IT_Ex,
[retval ,out] ID spatch ** poDerived(j);
HRESULT Get O bi xSSL([optional,in,out] VAR ANT *IT_Ex,
[retval ,out] ID spatch ** I T retval);
HRESULT Rel easeCORBAVi ew([in] | Dispatch * poQhj,
[in] VAR ANT_BOCL 1ToDestructi on,
[optional,in,out] VAR ANT *IT_Ex,
[retval ,out] VAR ANT_ BOCL * I T retval);
HRESULT WseTransientPort([in] VAR ANT_BOOL OnCf f,
[optional,in,out] VAR ANT *IT_Ex,
[retval ,out] VARIANT BOCL * I T retval);
b
Description D O bi xORB(hj ect provides Orbix-specific methods that allow programmers to
control some aspects of the ORB (Orbix) or request the ORB to perform
actions. These methods augment the Automation/CORBA-compliant methods
defined in the Dl CRB(hj ect interface.

207

OrbixCOMet Desktop Programmer’s Guide and Reference

Methods

208

The ORB has the ProglD, CCRBA. CRB. 2, which is the Automation/CORBA.-
compliant name. In Orbix COMet, the name CCRBA CRB. Or bi X is registered as
an alias for OCRBA. ORB. 2. This allows access to the Orbix instance after a
subsequent installation of an ORB other than Orbix.

Gonnect i onTi meout ()

This sets the time limit, in seconds, for
establishing that a connection from a client to a
server is fully operational. The default is 30
seconds. This should be adequate in most cases.

The value set by this method comes into effect
if, for example, the server crashes after the
transport (for example, TCP/IP) connection has
been made, but before the full Orbix
connection has been established.

The value set by Connect i onTi neout () is
independently used by the

Abor t Sl owConnect () method, when setting up
the transport connection.

If clients of a single-threaded server are
continually timed-out because the server is
busy, it might be that existing connections are
being favored over new connection attempts.
The Eager Li st ener s() method addresses this
problem.

OrbixCOMet APl Reference

MaxConnect Ret ri es()

ReSi ze(hj ect Tabl e()

If an operation call cannot be made on the first
attempt, because the transport (for example,
TCP/IP) connection cannot be established,
Orbix retries the attempt every two seconds
until either the call can be made or there have
been too many retries. The

MaxConnect Retri es() method sets the
maximum number of retries. The default
number of retries is ten.

As an alternative, the | T_OONNECT_ATTEMPTS
entry in the Orbix configuration file, or as an
environment variable, can be used to control
the maximum number of retries. The value set
by MaxConnect Retri es() takes precedence
over this. The | T_CONNECT_ATTEMPTS value is
only used if it is set to zero.

All Orbix implementation objects in an address
space are registered in its object table, which is
a hash table that maps from object identifiers to
the location of objects in virtual memory. It is
important that this table is not too small for the
number of objects in a process, because long
overflow chains lead to inefficiencies. The
default size of the object table is defined as the
following value in the GCRBA h file:

CORBA CBJECT TABLE S| ZE DEFAULT

If you anticipate that a program will handle a
much larger number of objects than the default
size (which is about 1,000), you can use this
function to resize the table.

209

OrbixCOMet Desktop Programmer’s Guide and Reference

210

Pi ngDuri ngBi nd()

By default, _bi nd() raises an exception if the
object on which the _bi nd() is attempted is
unknown to Orbix. Doing so requires Orbix to
ping the desired object. The ping operation is
defined by Orbix and has no affect on the target
object. The pinging causes the target server
process to be activated, if necessary, and
confirms that this server recognizes the target
object. Pinging can be enabled, using

Pi ngDur i ngBi nd(), by passing 1 to the pi ngCn
parameter. Pinging can be disabled by passing O
to pi ngOn. The previous setting is returned in
the | T_retval parameter.

You might wish to disable pinging to improve
efficiency by reducing the overall number of
remote invocations. In this case, Orbix checks
the object’s availability only when a method is
invoked on the object, and not when the bind
attempt is made.

If Pi ngDuri ngBi nd(f al se) is called:

® A _bind() to an unavailable object does
not immediately raise an exception, but
subsequent requests using the object
reference returned from _bi nd() do fail
and raise a QCRBA: : | N\V_CBIREF system
exception.

¢ |f a hostname is specified to _bi nd(), the
_bi nd() itself does not make any remote
calls; it simply sets up a proxy with the
required fields.

® If a hostname is not specified, Orbix uses its
locator to find a suitable server, but
_bind() does not interact with that server
to determine if the required object exists
within it.

OrbixCOMet APl Reference

NoReconnect OnFai | ur e()

Recl ai mCal | backSt or e()

Abor t Sl owConnect s()

When an Orbix client first contacts a server, a
single communications channel is established
between the client and server. This connection
is used for all subsequent communications
between the client and server. The connection
is closed only when the client or the server
exits.

When a server exits while a client is still
connected, the next invocation by the client
raises a system exception of the

QCRBA: : OOW FAI LURE type. If the client
attempts another invocation, Orbix
automatically tries to re-establish the
connection.

This default behavior can be changed by passing
the value O (false) to

NoReconnect OnFai | ur e() . In this case, all
client attempts to contact a server, after the
communications channel has been closed, raise
a OCRBA : GOMM FAI LURE system exception.

When an Automation object is passed as a
callback object to a server, Orbix creates
internal structures to facilitate the callback.
When this facility is no longer required, you can
call Recl ai nCal | backSt ore() to free the
memory allocated by Orbix.

This aborts TCP/IP connection attempts that
exceed the timeout specified in

D O bi xCRBMyj ect:: Connecti onTi neout ().
The default value for this timeout is 30 seconds.

A TCP/IP connection can block for a
considerable time if a node, known to the local
node, is inactive or unreachable.

Set OnO f to 1 to abort slow connection
attempts.

211

OrbixCOMet Desktop Programmer’s Guide and Reference

212

Acti vat eCvHandl er ()

Deact i vat eCvHandl er ()

Act i vat eQut put Handl er ()

P aceCvHandl er After ()

P aceCvHandl er Bef or e()
Deact i vat eQut put Handl er ()

Thia activates the configuration value handler
specified in the i denti fi er parameter.

You must call Rei ni tial i seConfig() before
modifications by this function can take effect.

Refer to the Orbix documentation set for
information on configuration handlers.

This deactivates the configuration value handler
specified in the i denti fi er parameter.

You must call Rei ni ti al i seConfig() before
modifications by this function can take effect.

Refer to the Orbix documentation set for
information on configuration handlers.

This activates the output handler specified in
the i dentifier parameter.

Refer to the Orbix documentation set for
information on output handlers.

This modifies the order in which configuration
handlers are called. If not explicitly rearranged,
configuration handlers are called in reverse
order to that in which they are instantiated in
an application.

You must call Rei ni ti al i seConfig() before
modifications by this function can take effect.

Refer to the Orbix documentation set for
information on configuration handlers.

See Pl aceCvHandl er After ().

This deactivates the output handler specified in
theidentifier parameter.

Refer to the Orbix documentation set for
information on output handlers.

OrbixCOMet APl Reference

Basel nt er f acesCf ()

| sBasel nt er face™ ()

d oseChannel ()

This returns a list of interfaces that are base
interfaces of the interface specified in the
deri ved parameter. The interface specified in
the deri ved parameter is included in the list,
because it is considered a base interface of
itself.

This determines whether the interface specified
in the naybeBase parameter is a base interface
of the interface specified in the deri ved
parameter.

| sBasel nt er f ace(() returns 1 if the
interface specified in the maybeBase parameter
is a base interface of the interface specified in
the derived parameter (or if the same
interface is specified in both the deri ved and
maybeBase parameter). Otherwise, it returns 0.

This requests Orbix to close the underlying
communications connection to the server. This
method is intended as an optimization so that a
connection between a client and server that is
rarely used is not kept open for long periods
when not in use.

The channel is automatically reopened when an
invocation is made on the object. If the client
holds proxies for other objects in the same
server, the channel is closed for all such
proxies; it is automatically reopened when a
subsequent invocation is made on one of these
proxies.

213

OrbixCOMet Desktop Programmer’s Guide and Reference

Col | ocat ed()

Def aul t TXTi meout ()

Get Confi gVal ue()

Set Conf i gVal ue()

Qut put ()

214

This determines whether collocation is
enforced.

Set OnCi f to 1 to disallow binding to objects
outside the address space of the current
process.

Set OnO' f to 0, to allow binding to objects
outside the address space of the current
process. This is the default.

This sets the timeout for all remote calls and
returns the previous setting.

By default, there is no timeout set for remote
calls; that is, the default timeout is infinite.

The value set by this method is ignored when
making a connection between a client and a
server. It comes into effect only when the
connection has been established.

This obtains the value of the configuration entry
in nane.

Refer to the Orbix documentation set for
information on configuration values.

This sets the value of the configuration entry
specified in nane for this process only. (It does
not set the configuration entry in the Orbix
configuration file.)

This outputs application’s diagnostic and other
output via the active output handlers.

Unless overridden by an implementation of the
QCORBA: : CRB: : User Qut put C++ class, all
output is directed to the standard output
stream via the default output handler,

| TSt dQut Handl er .

Refer to the Orbix documentation set for
information on output handlers.

OrbixCOMet APl Reference

Eager Li st ener s()

ReinitialiseConfig()

By default, established connections to a server
are given priority over requests for new
connections. As a result, busy single-threaded
servers (for example, processing long-running
operations) might not service new connection
attempts; consequently, clients attempting to
make a connection might be continually timed-
out.

Eager Li st ener s() allows equal fairness to be
given to both established connections and to
new connection attempts. This avoids
discrimination against new connections.

This feature is not necessary in multithreaded
versions of Orbix.

Set OnO'f to 1 to enable eager listening. This
means that attempts to establish new
connections are given equal priority to
processing existing connections.

Set OnO' f to O to give priority to established
connections.

Eager Li st ener s() returns the previous
setting.

This effects modifications to the arrangement
or activation of configuration value handlers.

It must be called in order for changes made by
Activat eCvHandl er (),

Decact i vat eCvHandl er (),

Pl aceCvHandl er Bef ore(), and

Pl aceCvHandl er After () to take effect.

Refer to the Orbix documentation set for
information on configuration handlers.

215

OrbixCOMet Desktop Programmer’s Guide and Reference

216

Set D agnosti cs()

Start W()

Shut Down()

LoadHandl er ()

This controls the level of diagnostic messages
output to the cout stream by the Orbix
libraries. The previous setting is returned. The
level values are:

Level |—Output no diagnostics.
Level 2—Output simple diagnostics (default).
Level 3—Output full diagnostics.

Diagnostic messages are output for events such
as operation requests, connections, and
disconnections from a client.

An interleaved history of activity across the
distributed system can be obtained from the full
diagnostic output. This is done by redirecting
the diagnostic messages from both the client
and the server to files, and then sorting a
merged copy of these files.

This initializes the bridge. Invoking this method
is optional. If StartUp() is not invoked, the
bridge is automatically initialized when the first
object is created. However, it is a CORBA
guideline that an ORB should be initialized
before being used. Therefore, you should call
this method before doing anything else (that is,
before you make any calls to Get (hj ect () or
O eat eType() on D CORBAFact ory.

This shuts down the bridge. Invoking this
method might be necessary, if you are
experiencing hang-on-exit problems. After this
method is called, no more invocations can be
made using CORBA.

This forces OrbixCOMet to load the specified
handler DLL into memory. Handlers can
contain smart proxies, filters, transformers, and
so on.

OrbixCOMet APl Reference

Nar row()

Get O bi xSSL()

Rel easeCCRBAVI ew()

UseTr ansi ent Port ()

A client that holds an object reference for an
object of one type, and knows that the
(remote) implementation object is a derived
type, can narrow the object reference to the
derived type.

The following Visual Basic code shows how to
use this function:

Set obj Fact =
O eat e(hj ect (" QORBA. Factory")
Set orb =
O eat e(hj ect (" CCRBA. CRB. 2")
Set aChj = obj Fact. Gt hject ("A" +
ior)
Set chj = orb. Narrow(athj, "C')
If cCbj I's Nothing Then
MsgBox "Error: narrow failed"
End If

This obtains a pointer to the Dl O bi XxSSL
interface when Orbix SSL support is being used.

This is used by clients to free the CORBA view
of a DCOM callback object when receipt of
callbacks in no longer required.

This is a wrapper around the Orbix call of the
same name. It places a transient port number,

instead of the Orbix daemon’s port number, in
any exported IORs.

UuID { 036A6A33- 0BB3- CF47- 1DCB- A2CAEACG417A

Notes Orbix-specific.

217

OrbixCOMet Desktop Programmer’s Guide and Reference

DIOrbixSSL

Synopsis [ol eaut omati on, dual , uui d(...)]
interface DObixSSL : |Dispatch {
HRESULT InitSSL([optional,in,out] VAR ANT *IT_EX,
[retval ,out] int* nRet);
HRESULT | ni t ScopeSSL([in] BSTR cPol i cyNane,
[optional,in,out] VAR ANT *|T_EX,
[retval ,out] int* nRet);
HRESULT Set SecurityNanme([in] BSTR cCert Nane,
[optional ,in,out] VAR ANT *|T_Ex,
[retval ,out] int* nRet);
HRESULT Get SecurityName([optional,in,out] VAR ANT *IT_Ex,
[retval ,out] BSTR* cCert Nare);
HRESULT Set Pri vat eKeyPassword([i n] BSTR cPassword,
[optional,in,out] VARIANT *IT_EX,
[retval ,out] int* nRet);
HRESULT HasPassword([optional,in,out] VAR ANT *IT_Ex,
[retval ,out] VARIANT BOOL *IT retval);
h
Description D O bi xSSL provides support for integrating SSL support into OrbixCOMet

applications. A reference to this interface is retrieved, using a call to the
CGet O bi xSSL() method on the (D) O bi xORBMhj ect interface.

Methods

I ni t SSL() This initializes the SSL library. It must be called by
each OrbixCOMet SSL-enabled application before
any attempts are made to bind to CORBA clients
or servers, and before any calls to other
D O bi xSSL methods.

218

OrbixCOMet APl Reference

UuID

I ni t ScopeSSL()

Set Securi t yNane()

Get SecurityName()

Set Pri vat eKeyPasswor d()

HasPasswor d

This instructs SSL to implement the SSL policies
included in the configuration scope

(O bi xSSL. cf g) specified in the cPol i cyNare
parameter. (For further details, refer to

I T_SSL: :initScope in the OrbixSSL C++
Programmer’s and Administrator’s Guide.) The
specified configuration scope can contain a value
for | T_CERTI FI CATE_FI LE, which specifies the
location of an X.509 certificate file. As a result of
the call to | ni t ScopeSSL, the identified certificate
is initialized by the SSL runtime, and is associated
with the application.

This method is passed the location of a file
containing an X.509 certificate and private key to
be associated with an OrbixCOMet SSL-enabled
application. (For further details, refer to

I T_SSL: : set Securi t yNane in the OrbixSSL C++
Programmer’s and Administrator’s Guide.)

This retrieves the security name of the certificate
being used by an OrbixCOMet SSL-enabled
application.

This specifies the pass phrase to be used to unlock
the private key of an X.509 certificate. The private
key is stored in an X.509 certificate in encrypted
PEM format with a secret pass phase. The private-
key pass phrase is required to unlock the private
key. The private-key pass phrase is generally
chosen by the system administrator when creating
the application certificate signing request.

This determines whether the server has received
a private-key pass phrase from the server key
distribution mechanism (KDM). If the server has
not received a pass phrase, a valid password must
be supplied, using Set Pri vat eKeyPasswor d.

{57f1303I -f e22-1 | d2- af 83- 00a024d8995c}

219

OrbixCOMet Desktop Programmer’s Guide and Reference

DIORBObject

Synopsis [ol eaut omati on, dual , uui d(...)]
interface DORBMhj ect : ID spatch {
HRESULT (hj ect ToString([in] |D spatch* obj,
[optional,in,out] VAR ANT* |T_EX,
[retval ,out] BSTR* IT retval);
HRESULT StringToQhj ect ([in] BSTR ref,
[optional,in,out] VAR ANT* |T_EX,
[retval ,out] ID spatch** | T_retval);
HRESULT Getlnitial References([optional,in,out] VAR ANT*
I T_Ex,
[retval ,out] VARIANT* IT retval);
HRESULT Resol vel nitial Reference([in] BSTR nane,
[optional,in,out] VAR ANT* |T_EX,
[retval ,out] ID spatch** | T_retval);
HRESULT Get OCRBAhj ect ([in] I D spatch* obj,
[optional,in,out] VAR ANT* |T_EX,
[retval ,out] ID spatch** IT retval);
1
Description The D CRBObj ect interface provides Automation/CORBA-compliant methods
that request the ORB to perform actions.

The ORB has the CORBA GRB. 2 Prog|D.

In OrbixCOMet, the CORBA. GRB. O bi x name is registered as an alias for
QORBA. GRB. 2. This allows access to the Orbix instance after a subsequent
installation of an ORB other than Orbix.

Methods
Chj ect ToString() This converts the target object’s reference to
an IOR.
StringTooj ect () This accepts a string produced by

(hj ect ToStri ng() and returns the
corresponding object reference.

220

OrbixCOMet APl Reference

Getlnitial Ref erences()

Resol vel ni ti al Ref erence()

Get CCRBAMYj ect ()

The IFR and the CORBA services can only be
used by first obtaining a reference to an object
through which the service can be used. The
Automation/CORBA standard defines

Get I ni tial Ref erences() as a way to list the
available services.

(CORBA services are optional extensions to
ORB implementations that are specified by
CORBA. They include the Naming Service and
Event Service.)

This returns an object reference through which
a service (for example, the IFR or one of the
CORBA services) can be used. The nane
parameter specifies the desired service. A list of
supported services can be obtained, using

D CRBMhj ect:: Getlnitial References().

This returns an object that allows access to the
methods defined on the D CORBAMHj ect
interface.

UuiD {204F6246- 3AEG 11CF- BBFGC 444553540000}
Notes Automation/CORBA-compliant.

See Also D O bi xCRBMyj ect

IForeignObject

Synopsis interface | Forei gnCoj ect : | Unhknown {

HRESULT Get For ei gnRef erence([in] obj System Ds syst em Ds,
[out] long* system D,
[out] BSTR* obj Ref);

HRESULT Get Repositoryld([out] BSTR* repositoryld);

s

Description The | For ei gnbj ect interface must be supported by all view objects.

221

OrbixCOMet Desktop Programmer’s Guide and Reference

Methods

uUuiD
Notes

222

As well as having an Automation view, a bridge holds an Orbix proxy for each
implementation object for which the client holds a reference. The
| For ei gnQhj ect interface provides a way for a view to find the foreign object

reference in a proxy.

Get For ei gnRef er ence()

Get Reposi toryl d()

This extracts an object reference from a proxy
in string form.

The system Ds parameter is an array of long
values, where a value in the array identifies an
object system (for example, CORBA) for which
the caller is interested in obtaining object
references. The value for the CORBA object
system is the long value, 1. If the proxy is a proxy
for an object in more than one object system,
the order of IDs in the systeni Ds array
indicates the caller’s order of preference.

The out parameter, syst eni D, identifies an
object system for which the proxy can produce
an object reference. If the proxy can produce a
reference for more than one object system, the
order of preference specified in the syst enl Ds
parameter is used to determine the value
returned in this parameter.

The out parameter, obj Ref, contains the object
reference in string form. In the case of the
CORBA object system, this is a stringified
interoperable object reference (IOR).

This returns an IFR identifier for the object. This
method requires runtime access to the IFR.

{204f 6242- 3aec- 11cf - bbf c- 444553540000}
Automation/CORBA-compliant.

OrbixCOMet APl Reference

COM Interfaces

This section describes the COM API interfaces.

IOrbixServerAPI

Note: You no longer need to use | O bi xSer ver APl to register your DCOM
objects with the bridge. (Refer to “Exposing DCOM Servers to CORBA
Clients” on page 89 for more details.) Because the use of this interface is
deprecated, it is mainly used for backwards compatibility purposes.

Synopsis [object, uuid(...)]
interface | O bixServer APl : | Unknown
{
HRESULT Activate ([in] LPSTR cServerNane);
HRESULT Deactivate ([in] LPSTR cServerNane);
HRESULT Di spat chEvents ();
HRESULT Set (hj ectinmpl ([in] LPSTR d Face,
[in] LPSTR cMarker,
[in] IUnknown* pol npl);
HRESULT ActivatePersistent ([optional,in,out] VAR ANT *IT_Ex);
HRESULT Set (bj ect I npl Persistent ([in] LPSTR cl Face,
[in] LPSTR cnarker,
[in] LPSTR cSrv,
[in] IUnknown *pol npl,
[in] LPSTR cl ORFi | eNane);
b
Description A bridge exposes a COM interface, which allows the bridge to act as a CORBA
server. This interface can be obtained, using the Ser ver APl ProglD.

The COM server should instantiate an object of this type and use it to control
the COM server’s behavior as a CORBA server.

223

OrbixCOMet Desktop Programmer’s Guide and Reference

Methods
Activate()

Deact i vat e()

D spat chEvent s()

224

This activates a COM server as a CORBA
server, using the cSer ver Nane parameter. This
name should be the same name that is used to
register the application in the Implementation
Repository, using puti t.

After Acti vat e() is called, your server is ready
to receive incoming requests from CORBA
clients.

You should register all your implementation
objects, using Set (bj ect | npl (), before calling
Activate().

This deactivates your application as a CORBA
server. After Deacti vat e() is called, your
application can no longer process incoming
requests from CORBA clients.

The cSer ver Nane parameter contains the name
of the CORBA server. The server must be
registered with this name in the Implementation
Repository.

This causes any outstanding CORBA events to
be dispatched to a client or server application
for processing. It might be necessary to call this
method in a client application if the client is
asynchronously receiving callbacks from a
server object. This depends primarily on your
development environment. Single-threaded
development environments require this to
correctly dispatch incoming events.

OrbixCOMet APl Reference

Set oj ect I npl ()

Activat ePersi stent ()

Set (hj ect | npl Per si stent ()

This registers a COM object with the bridge.
The poi npl parameter identifies the COM
object and exposes it to the CORBA object
space as the interface contained in the A Face
parameter with the Orbix marker contained in
the cMar ker parameter. (Markers are used to
uniquely identify different instances of the same
interface.) If no marker is passed, Orbix
automatically selects a unique marker for the
object. The marker names chosen by Orbix
consist of a string composed entirely of decimal
digits. To ensure that a new marker is different
from any chosen by Orbix, do not use marker
strings that consist entirely of digits. Marker
names cannot contain a colon *“:” or a null
character.

This allows servers to be started, without the
Orbix daemon.

See Set (j ect | npl (). The A CRFi | eNane
parameter indicates where to write the IOR for
the object.

UuID {127e2a6c¢- c1f e- b9f 2- 1d63- f b97cf c58b84}

Notes Orbix-specific.

ICORBA_Any

Synopsis typedef [public,vl enunj enum CCRBAAnyDat aTagEnum {

anySi npl eVal Tag=0,
anyAnyVal Tag,
anySeqVal Tag,
anyStruct Val Tag,
anyUni onVal Tag,
any(hj ect Val Tag

} CCRBAANny Dat aTag;

interface | CORBA ANY;
i nterface | CORBA TypeCode;

225

OrbixCOMet Desktop Programmer’s Guide and Reference

typedef uni on CORBAAnyDat alhi on swi t ch(CCRBAAnyDat aTag whi chCne) {
case anyAnyVal Tag:
| CORBA_Any *anyVal ;
case anySeqVal Tag:
struct tagMul tiVal {
[string, uni que] LPSTR repositoryld;
unsi gned | ong cbMaxS ze;
unsi gned | ong cblLengt hised;
[size_i s(cbMaxSi ze), | engt h_i s(cbLengt hiUsed) , uni que]
uni on CCRBAAnyDat alni on * pVal ;
} multival;
case anyUni onVal Tag:
struct taglni onval {
[string, unique] LPSTR repositoryld |ong disc;
uni on CCRBAAnyDat alni on * pval ;
} unionval ;
case any(bj ect Val Tag:
struct tagChjectVal {
[string, uni que] LPSTR repositoryld VAR ANT val ;
} obj ectVal ;
case anySi npl eVal Tag:
VAR ANT si npl eVal ;
} OORBAAnyDat a;
[object,uuid(...), pointer_defaul t(unique)]
interface | GCORBA Any : | Unknown

{
HRESULT _get _val ue([out] VAR ANT * val);
HRESULT _put_val ue([in] VAR ANT val);
HRESULT _get CCRBAAnyDat a([out] CCRBAAnyData * val);
HRESULT _put _CCRBAAnyDat a([in] OORBAAnyData val);
HRESULT _get typeCode([out] | QORBA TypeCode ** tc);
h

Description The OMG IDL any type translates to the | CCRBAAny COM interface.
Methods

_get _val ue() This returns the value of a CORBA any.

_put _val ue() This sets the value of a CORBA any.

_get _CCRBAAnyDat a() This returns the data stored in the CORBA any.
_put _CCRBAAnyDat a() This sets the data stored in the CORBA any.
_get _typeCode() This returns the type of the any.

226

OrbixCOMet APl Reference

UuUID

Notes

ICORBAFactory

Synopsis [object,uuid(...)]

Description

Methods

{74105f 50- 3c68- 11cf - 9588- aa0004004a09}
COM/CORBA-compliant.

interface | CORBAFactory : | Unknown

{

HRESULT CreateChject ([in] LPSTR factoryName, [out] |Unknown **

val);

HRESULT Get (hj ect ([in] LPSTR obj ect Narre, [out] | Unknown **

val);

}

This supports general, simple mechanisms for creating new CORBA object
instances and accessing existing instances of CORBA object references by name.

Get oj ect ()

The OMG COM/CORBA Interworking specification at
W, ong. or g specifies that Get (bj ect () should take a
string as one parameter and return a pointer to the

I D spat ch interface on the created object. However, it
does not specify the format for the string. In
OrbixCOMet, the formats for the parameter to

Get (vj ect () are as follows:

® interface: marker: server: host

® interface: TAG Tag data
The components of the string can be described as follows:

i nt er f ace—This is the IDL interface that the target
object supports. If the interface is scoped (for
example, "Mdul e: : I nter f ace"), the interface token
is "Modul e/ I nter face".

mar ker —This is the name of the target Orbix object.
Every Orbix object has a name that is either chosen by
Orbix or set (usually) at the time the object is created.
See SetObjectimpl() and DIOrbixObject::Marker() for
details.

227

OrbixCOMet Desktop Programmer’s Guide and Reference

server —This is the name of the Orbix server in
which the object is implemented. This is the name of
the server that is registered with the Implementation
Repository.

host —This is the Internet hostname or Internet

address of the host on which the server is located. If
the string is in the format xxx. Xxx. xxx, where x is a
decimal digit, it is interpreted as an Internet address.

TAG—Two types of TAGare allowed. Each type has a
different form of Tag dat a. Valid TAG types are:

® | CR—In this case, the Tag dat a is the hexadecimal

string for the stringified IOR. For example:
fact. Get (bj ect ("enpl oyee: | OR 123456789..")

* NAME_SERVI CE—lIn this case, the Tag dat a is the
Naming Service compound name separated by ". ". For
example:

fact. Get (hj ect (" enpl oyee: NAME_SERVI CE:

| CNA enpl oyees. PD. Ton')

O eat e(oj ect () This is the same as Get (j ect ().

uuIiD {204F6240- 3AEC 11CF- BBFG 444553540000}
Notes COM/CORBA-compliant.
ICORBAODbject

Synopsis [obj ect, uuid(...)]

228

i nterface | CORBAChj ect : | Unknown

{

HRESULT GetlInterface ([out] |Unknown ** val);

HRESULT Getlnpl enentation ([out] LPSTR * val);

HRESULT IsA ([in] LPSTR repositoryl D, [out] bool ean* val);
HRESULT IsN | ([out] bool ean* val);

HRESULT | sEquival ent ([in] |Ulknown* obj, [out] bool ean* val);
HRESULT NonExi stent ([out] bool ean* val);

HRESULT Hash ([in] long maxi num [out] |ong* val);

OrbixCOMet APl Reference

Description

Methods

This allows COM clients access to operations on the CORBA object references.

GetInterface()

Get | npl ement ati on()

I sA()

IsN1()

I sEqui val ent ()

NonExi st ent ()

This returns a reference to an object in the IFR that
provides type information about the target object.
This method requires runtime access to the IFR.

This finds the name of the target object’s server, as
registered in the Implementation Repository. For a
local object in a server, it is that server’s name, if it is
known. For an object created in a client program, it is
the process identifier of the client process.

This returns t r ue if the object is either an instance of
the type specified by the r eposi t or yl| Dparameter, or
an instance of a derived type of the type in the
reposi t or yl D parameter. Otherwise, it returns

fal se.

This returns t r ue if an object reference is nil.
Otherwise, it returns f al se.

This returns tr ue if the target object reference is
known to be equivalent to the object reference in the
obj parameter.

A return value of f al se indicates that the object
references are distinct; it does not necessarily mean
that the references indicate distinct objects.

This returns t r ue if the object has been destroyed.
Otherwise, it returns f al se.

229

OrbixCOMet Desktop Programmer’s Guide and Reference

Hash()

Every object reference has an internal identifier
associated with it—a value that remains constant
throughout the lifetime of the object reference.

Hash() returns a hashed value, determined via a
hashing function, from the internal identifier. Two
different object references can yield the same hashed
value. However, if two object references return
different hash values, these object references are for
different objects.

The Hash() method allows you to partition the space
of object references into sub-spaces of potentially
equivalent object references.

The maxi numparameter specifies the maximum value
that is to be returned from the Hash() method. For
example, by setting maxi mnumto 7, the object
reference space is partitioned into a maximum of eight
sub-spaces (because the lower bound of the function
is 0).

UulID {204F6243- 3AEG 11CF- BBFG 444553540000}
Notes COM/CORBA-compliant.

ICORBA_TypeCode

Synopsis [uuid(...), object,

poi nt er _def aul t (uni que)]

i nterface | CORBA TypeCode : | Unknown

{

HRESULT equal

([in] | CORBA TypeCode * pTc,
[out] bool ean * pval,
[out] CCRBA TypeCodeExceptions ** ppExcept);

HRESULT kind ([out] OORBA TQKind * pval,

[out] OCRBA TypeCodeExceptions ** ppExcept);

HRESULT id ([out] LPSTR* pld,

[out] COCRBA TypeCodeExceptions ** ppExcept);

HRESULT nare ([out] LPSTR * pNane,

[out] CCRBA TypeCodeExceptions ** ppExcept);

HRESULT nenber _count ([out] unsigned | ong * pCount,

230

[out] OCRBA TypeCodeExceptions ** ppExcept);

OrbixCOMet APl Reference

}

HRESULT nenber _nane ([in] unsigned | ong nl ndex,

[out] LPSTR * pNane,

[out] CCRBA TypeCodeExceptions ** ppExcept
HRESULT nenber _type ([in] unsigned | ong nl ndex,

[out] | CORBA TypeCode ** pRetval,

[out] OORBATypeCodeExceptions ** ppExcept);
HRESULT nenber _| abel ([in] unsigned | ong nl ndex,

[out] | GORBA Any ** pRetval,

[out] CCRBA TypeCodeExceptions ** ppExcept);
HRESULT discrimnator_type ([out] | CORBA TypeCode ** pRetval,

[out] CCRBA TypeCodeExceptions ** ppExcept);
HRESULT default_index ([out] unsigned long * pRetval,

[out] OCRBA TypeCodeExceptions ** ppExcept);
HRESULT length ([out] unsigned | ong * nLen,

[out] CCRBA TypeCodeExceptions ** ppExcept);
HRESULT content _type ([out] | CCRBA TypeCode ** pRetval,

[out] CCRBA TypeCodeExceptions ** ppExcept);

Description This describes arbitrary complex OMG IDL type structures at runtime.

Methods

equal () This returns tr ue if the typecodes are equal.

Otherwise, it returns f al se.

ki nd() This can be called on all typecodes. It finds the

type of OMG IDL definition described by the
typecode. It returns an enumerated value of the
QORBATCKi nd type. For example, a typecode that
contains a sequence is of the t k_sequence kind.
Once the kind of value stored by the typecode is
known, the methods that can be called on the
typecode are determined.

231

OrbixCOMet Desktop Programmer’s Guide and Reference

id()

name()

menber _count ()

menber _nane()

232

This can be called on an | CCRBA TypeCode of the
tk_obj ref, tk_struct, tk_uni on, tk_enum
tk_alias, ortk_except kind. If called on an

| OCRBA _TypeCode of a different kind, it raises a
BadKi nd exception.

It returns the IFR repository ID that globally
identifies the type.

This method requires runtime access to the IFR.

This can be called on an | CCRBA TypeCode of the
tk_obj ref, tk_struct, t k_uni on, tk_enum
tk_alias, or tk_except kind. If called on an

| OORBA TypeCode of a different kind, it raises a
BadKi nd exception.

It returns the name that identifies the type. The
returned name does not contain any scoping
information.

This can be called on an | GORBA TypeCode of the
tk_struct, tk_uni on, tk_enum or t k_except
kind. If called on an | CORBA TypeCode of a
different kind, it raises a BadKi nd exception.

It returns the number of members that make up
the type.

This can be called on an | OCCRBA TypeCode of the
tk_struct, tk_uni on, t k_enum or t k_except
kind. If called on an | CCRBA TypeCode of a
different kind, it raises a BadKi nd exception.

The nenber _nanme() method returns the name of
the member specified in the nl ndex parameter.
The returned name does not contain any scoping
information.

A Bounds exception is raised if the nl ndex is
greater than or equal to the number of members
that make up the type. The index starts at 0.

OrbixCOMet APl Reference

nmenber _t ype()

nenber _| abel ()

di scrimnator_type()

def aul t _i ndex()

This can be called on an | OORBA TypeCode of the
tk_struct, tk_union, ortk_except kind. If called
on an | QORBA TypeCode of a different kind, it
raises a BadKi nd exception.

It returns the type of the member specified in the
nl ndex parameter.

A Bounds exception is raised if the nl ndex
parameter is greater than or equal to the number
of members that make up the type. The index
starts at O.

This can be called on an | OCCRBA TypeCode of the
t k_uni on kind. If called on an | CCRBA TypeCode
of a different kind, it raises a BadKi nd exception.

The nenber _| abel () method returns the case
label of the union member specified in the nl ndex
parameter. (The case label is an integer, char,
boolean, or enum type.)

A Bounds exception is raised if the nl ndex is
greater than or equal to the number of members
that make up the type. The index starts at 0.

This can be called on an | GORBA TypeCode of the
t k_uni on kind. If called on an | OCCRBA TypeCode
of a different kind, it raises a BadKi nd exception.

It returns the type of the union’s discriminator.

This can be called on an | OORBA TypeCode of the
t k_uni on kind. If called on an | GORBA TypeCode
of a different kind, it raises a BadKi nd exception.

The def aul t _i ndex() method returns the index
of the default member; it returns - 1 if there is no
default member.

233

OrbixCOMet Desktop Programmer’s Guide and Reference

Il engt h() This can be called on an | OCCRBA TypeCode of the
tk_string, tk_sequence, or tk_array kind.

For a bounded string or sequence, | engt h()
returns the bound value. A return value of 0
indicates an unbounded string or sequence.

For an array, | engt h() returns the length of the
array.

content _type() This can be called on an | OCCRBA TypeCode of the
tk_sequence, tk_array, or tk_ali as kind. If
called on an any of a different kind, it raises a
BadKi nd exception.

For a sequence or array, cont ent _t ype() returns
the type of element contained in the sequence or
array. For an alias, it returns the type aliased by the
typedef definition.

Uuib { 9556EA21- 3889- 11cf - 9586AA0004004A09}
Notes COM/CORBA-compliant.

ICORBA_TypeCodeExceptions

Synopsis typedef struct tagTypeCodeBounds {long 1;} TypeCodeBounds;
typedef struct tagTypeCodeBadKi nd {long 1;} TypeCodeBadKi nd;

[object, uuid(...), pointer_default(unique)]
i nterface | CORBA TypeCodeExceptions : | Unhknown

{
HRESULT _get _Bounds([out] TypeCodeBounds * pExcepti onBody);
HRESULT _get BadKi nd([out] TypeCodeBadKi nd * pExcepti onBody);
h
typedef struct tagOORBA TypeCodeExcepti ons
{

OCRBA Excepti onType type;

LPSTR reposi toryl d;

| CCRBA TypeCodeExcepti ons *pUser Excepti on;
} OCORBA TypeCodeExcept i ons;

234

OrbixCOMet APl Reference

Description

This allows exceptions that can occur with an | CORBA _TypeCode at runtime to
be raised.

Methods

_get _Bounds() This returns a Bounds exception, which results if the
nl ndex parameter is greater than or equal to the
number of members that make up the type.

_get _BadKi nd() This returns a BadKi nd exception, which results from
performing a method call on an | CCRBA TypeCode
that has the wrong kind for that method.

UuID {9556ea20- 3889- 11cf - 9586- aa00040042a09}
Notes COM/CORBA-compliant.
IForeignObject

Synopsis typedef [public] struct objSystem Ds {

Description

unsi gned | ong cbMaxSi ze;
unsi gned | ong cblLengt hised;
[size_i s(cbMaxSi ze), |ength_is(cbLengthUsed), unique]
long * pVal ue;
} obj Syst em Ds;

[object, uuid(...), pointer_default(unique)]
interface | Forei gn(oj ect : | Unknown

{
HRESULT Get Forei gnRef erence ([in] obj System Ds systeni Ds,

[out] long * systeni D,
[out] LPSTR * obj Ref);
HRESULT Get Uni queld ([out] LPSTR * uniquel d);
b
This provides bridges access to object references from foreign object systems
that are encapsulated in proxies.

235

OrbixCOMet Desktop Programmer’s Guide and Reference

Methods

UuiD
Notes

Get For ei gnRef er ence()

Get Uni quel d()

This extracts an object reference in string form
from a proxy.

The syst eni Ds parameter is an array of long values,
where a value in the array identifies an object
system (for example, CORBA) for which the caller
is interested in obtaining object references. The
value for the CORBA object system is the long
value, 1. If the proxy is a proxy for an object in
more than one object system, the order of IDs in
the syst en Ds array indicates the caller’s order of
preference.

The out parameter, syst eni D, identifies an object
system for which the proxy can produce an object
reference. If the proxy can produce a reference for
more than one object system, the order of
preference specified in the syst ent Ds parameter is
used to determine the value returned in this
parameter.

The out parameter, obj Ref, contains the object
reference in string form. In the case of the CORBA
object system, this is a stringified interoperable
object reference (IOR).

This returns a unique identifier for the object.

{204f 6242- 3aec- 11cf - bbf c- 444553540000}

COM/CORBA-compliant.

IMonikerProvider

Synopsis

236

[obj ect,

uuid(...)]

interface | Moni ker Provi der : | Unknown

{

HRESULT get _noni ker ([out] | Moniker ** val);

b

OrbixCOMet APl Reference

Description This allows COM clients to persistently save object references for later use,
without needing to keep the view in memory.

The moniker returned by | Moni ker Provi der must support at least the

| Moni ker and | Per si st St or age interfaces. To allow object reference monikers
to be created with one COM/CORBA interworking solution, and later restored
using another, | Persi st : : Get d ass| Dmust return the following CLSI D

{a936c802- 33f b- 11cf - a9d1- 00401c606e79}

Methods
get _noni ker () This returns a COM moniker that allows the CORBA
object to be converted to persistent form for storage
in a file, and so on. Once stored to persistent form
using this moniker, the CORBA object can be
reconnected to again, using the standard COM
moniker semantics.
UuibD {ecce76f e- 39ce- 11cf - 8e92- 080000970dac7}
Notes COM/CORBA-compliant.
10rbixObject
Synopsis [object, uuid(...)]
interface | O bi xChject : | GORBAMHj ect
{
HRESULT _get _Marker ([out] LPSTR *marker);
HRESULT _put_Marker ([in] LPSTR narker);
HRESULT _get _Host ([out] LPSTR *narker);
HRESULT _put_Host ([in] LPSTR marker);
HRESULT d oseChannel ();
HRESULT Fil eDescriptor ([out] short * rval);
HRESULT HasVal i dQpenChannel ([out] bool ean * val);
HRESULT _get _InterfaceNane ([out] LPSTR * nane);
¥

Description This allows Orbix-specific operations to be performed on the object.

237

OrbixCOMet Desktop Programmer’s Guide and Reference

Methods

_get _Marker ()
_put _Marker ()

_get_Host ()
_put _Host ()

d oseChannel ()

Fi | eDescriptor ()

HasVal i dQpenChannel ()

_get _InterfaceNane()

238

Both _get _Marker and _put _Marker allow you to
access the marker on the object. (Refer to

| CORBAFact ory: : Get (bj ect () on page 227 for
more details.)

Both _get _Host and _put _Host allow you to access
the host part of the object reference (that is, the host
on which the object lives).

This requests Orbix to close the underlying
communications connection to the server. This
method is intended as an optimization, so that a
rarely used connection between a client and server is
not kept open for long periods while not in use.

The channel is automatically reopened when an
invocation is made on the object. If the client holds
proxies for other objects in the same server, the
channel is closed for all such proxies. The channel is
automatically reopened when a subsequent
invocation is made on one of these proxies.

This gets the set of file descriptors scanned by Orbix
to detect incoming events. Programmers who are
using libraries or systems that depend on the UNIX
sel ect () system call might need to know which file
descriptors are scanned by Orbix.

This method is defined only if the following
preprocessor directive is issued in the C++ file
before including CCRBA. h.

This determines whether the communications
channel between the client and server is open.

(This channel can be closed to avoid having an
unnecessary connection left open for long periods
between an idle client and server. The channel is
automatically reopened when an invocation is made
on the object.)

This returns the interface name of the object.

OrbixCOMet APl Reference

UuibD { 036A6A34- 0BB3- CF47- 1DCB- A2CAEACB417A
Notes Orbix-specific.
10rbixORBObject
Synopsis [object, uuid(...)]
interface | O bi xCRB(hj ect : | ORBMhj ect
{

HRESULT ConnectionTimeout ([in] |ong tineout,
[out] long* IT_retval);

HRESULT MaxConnect Retries ([in] |ong nuniries,
[out] long* IT retval);

HRESULT Pi ngDuringBind ([in] BOOLEAN ping On,
[out] BOCOLEAN* | T_retval);

HRESULT ReSi ze(hj ect Table ([in] |ong size);

HRESULT NoReconnect OnFai l ure ([in] BOOLEAN Cf f On,
[out] BOOLEAN* | T_retval);

HRESULT Abort Sl owConnects ([in] BOOLEAN OnCrf,
[out] BOCLEAN *IT retval);

HRESULT ActivateCvHandl er ([in] LPSTR identifier);

HRESULT DeactivateCvHandl er ([in] LPSTR identifier);

HRESULT ActivateQut putHandl er ([in] LPSTR identifier);

HRESULT Pl aceCvHandl er After ([in] LPSTR handl er,
[in] LPSTR afterThi sHandl er);

HRESULT Pl aceCvHandl erBefore ([in] LPSTR handl er,
[in] LPSTR beforeThi sHandl er);

HRESULT Deactivat eQut put Handl er ([in] LPSTR identifier);

HRESULT Basel nterfacesCt ([in] LPSTR derived,
[out] VARIANT* | T retval);

HRESULT | sBasel nterfaced ([in] LPSTR derived,
[in] LPSTR rmaybeABase,
[out] BOOLEAN * | T retval);

HRESULT d oseChannel ([in] long fd);

HRESULT Col | ocated ([in] BOCLEAN OnCff,
[out] BOOLEAN *IT_retval);

HRESULT Defaul t TxTi neout ([in] |ong timeout,
[out] long* IT retval);

HRESULT EagerListeners ([in] BOOLEAN OnOff,
[out] BOOLEAN * | T retval);

239

OrbixCOMet Desktop Programmer’s Guide and Reference

Description

240

}

HRESULT Get ConfigValue ([in] LPSTR narre,

[out] LPSTR *val ue,
[out] BOOLEAN * I T retval);

HRESULT Set ConfigVal ue ([in] LPSTR narre,

[in] LPSTR val ue,

[out] BOOLEAN * I T retval);
HRESULT Qutput ([in] LPSTR val ue,

[in] short level);

HRESULT ReinitialiseConfig ();

HRESULT SetDi agnostics {[in] short |evel,
[out] short * IT retval);

HRESULT StartUp ([out] BOOLEAN * IT retval);

HRESULT ShutDown ([out] BOCLEAN * | T retval);

HRESULT Get Server APl ([retval,out] IDspatc ** I T retval);

HRESULT LoadHandl er ([in] LPSTR keyNarre);

HRESULT Get Orbi xSSL([optional,in,out] VAR ANT *IT_Ex,
[retval ,out] ID spatch ** | T retval);

HRESULT Rel easeCCORBAVi ew([in] | D spatch * poChj,
[in] VAR ANT_BOOL 1ToDestructi on,
[optional,in,out] VARIANT *IT_EX,

[retval ,out] VARIANT BOOL * IT retval);

HRESULT WseTransientPort([in] VAR ANT_BOO. OnCrf,
[optional ,in,out] VAR ANT *IT_Ex,

[retval ,out] VARIANT BOOL * IT retval);

The | O bi xCRBOyj ect interface provides Orbix-specific methods that allow
programmers to control some aspects of the ORB (Orbix) or request the ORB
to perform actions.

The ORB has the ProglD, CCRBA. CRB. 2, which is the COM/CORBA-compliant
name. In OrbixCOMet, the CORBA. CRB. O bi x name is registered as an alias for
CORBA. GRB. 2. This allows access to the Orbix instance after a subsequent
installation of an ORB other than Orbix.

OrbixCOMet APl Reference

Methods

Connecti onTi neout ()

MaxCGonnect Ret ri es()

This sets the time limit, in seconds, for
establishing that a connection from a client to a
server is fully operational. The default is 30
seconds. This should be adequate in most cases.

The value set by this method comes into effect
if, for example, the server crashes after the
transport (for example, TCP/IP) connection has
been made, but before the full Orbix connection
has been established.

The value set by Connect i onTi meout () is
independently used by Abort Sl owConnect (),
when setting up the transport connection.

If clients of a single-threaded server are
continually timed-out because the server is busy,
it might be that existing connections are being
favored over new connection attempts. The
Eager Li st ener s() method addresses this
problem.

If an operation call cannot be made on the first
attempt, because the transport (for example,
TCP/IP) connection cannot be established,
Orbix will retries the attempt every two
seconds until either the call can be made or
there have been too many retries. The
MaxConnect Ret ri es() method sets the
maximum number of retries. The default
number of retries is ten.

As an alternative, the | T_CONNECT_ATTEMPTS
entry in the Orbix configuration file, or as an
environment variable, can be used to control
the maximum number of retries. The value set
by MaxConnect Retri es() takes precedence
over this. The | T_CONNECT_ATTEMPTS value is
only used if it is set to zero.

241

OrbixCOMet Desktop Programmer’s Guide and Reference

242

Pi ngDur i ngBi nd()

By default, _bi nd() raises an exception if the
object on which the _bi nd() is attempted is
unknown to Orbix. Doing so requires Orbix to
ping the desired object. The ping operation is
defined by Orbix and has no effect on the target
object. The pinging causes the target server
process to be activated, if necessary, and
confirms that this server recognizes the target
object. Pinging can be enabled, using

Pi ngDur i ngBi nd(), by passing 1 to the pi ngOn
parameter. Pinging can be disabled by passing 0
in pi ngOn. The previous setting is returned in
the | T_retval parameter.

You might wish to disable pinging to improve
efficiency by reducing the overall number of
remote invocations. In this case, Orbix checks
the object’s availability only when a method is
invoked on the object, and not when the bind
attempt is made.

If Pi ngDuri ngBi nd(f al se) is called:

® A _bind() to an unavailable object does not
immediately raise an exception, but
subsequent requests using the object
reference returned from _bi nd() do fail and
raise a GORBA : | NV_CBJREF system
exception.

¢ |f a hostname is specified to _bi nd(), the
_bi nd() itself does not make any remote
calls; it simply sets up a proxy with the
required fields.

¢ |f a hostname is not specified, Orbix uses its
locator to find a suitable server, but _bi nd()
does not interact with that server to
determine if the required object exists
within it.

OrbixCOMet APl Reference

ReSi ze(hj ect Tabl e()

NoReconnect CnFai | ure()

All Orbix implementation objects in an address
space are registered in its object table—a hash
table that maps from object identifiers to the
location of objects in virtual memory. It is
important that this table is not too small for the
number of objects in a process, because long
overflow chains lead to inefficiencies. The
default size of the object table is defined as the
following value in the GCRBA h file:

OCRBA_ CBJECT TABLE_S| ZE DEFAULT

If you anticipate that a program will handle a
much larger number of objects than the default
size (which is about 1,000), you can use this
function to resize the table.

When an Orbix client first contacts a server, a
single communications channel is established
between the client and server. This connection
is used for all subsequent communications
between the client and server. The connection
is closed only when the client or the server
exits.

When a server exits while a client is still
connected, the next invocation by the client
raises a system exception of

QORBA: : GOW FAI LURE type. If the client
attempts another invocation, Orbix
automatically tries to re-establish the
connection.

This default behavior can be changed by passing
the value O (false) to NoReconnect OnFai | ure().
In this case, all client attempts to contact a
server, after the communications channel has
been closed, raise a CCRBA: : COW FAI LURE
system exception.

243

OrbixCOMet Desktop Programmer’s Guide and Reference

Abort Sl owConnect s()

Acti vat eCvHandl er ()

Deact i vat eCvHandl er ()

Act i vat eQut put Handl er ()

244

This aborts TCP/IP connection attempts that
exceed the timeout specified in

D O bi xCRBMyj ect : : Connect i onTi nmeout ().
The default value for this timeout is 30 seconds.

A TCP/IP connect can block for a considerable
time if a node, known to the local node, is
inactive or unreachable.

Set OnO f to 1 to abort slow connection
attempts.

This activates the configuration value handler
specified in the i denti fi er parameter.

You must call Rei ni tial i seConfig() before
modifications by this method can take effect.

Refer to the Orbix documentation set for
information on configuration handlers.

This deactivates the configuration value handler
specified in the i denti fi er parameter.

You must call Rei ni tialiseConfig() before
modifications by this method can take effect.

Refer to the Orbix documentation set for
information on configuration handlers.

This activates the output handler specified in the
i dentifier parameter.

Refer to the Orbix documentation set for
information on output handlers.

OrbixCOMet APl Reference

P aceCvHandl er After ()

Pl aceCvHandl er Bef or e()
Deact i vat eQut put Handl er ()

Basel nter f acesCf ()

| sBasel nt erfaced ()

This modifies the order in which configuration
handlers are called. If not explicitly rearranged,
configuration value handlers are called in
reverse order to that in which they are
instantiated in an application.

You must call Rei ni ti al i seConfig() before
modifications by this method can take effect.

Refer to the Orbix documentation set for
information on configuration handlers.

See Pl aceCvHand| er After.

This deactivates the output handler specified in
theidentifier parameter.

Refer to the Orbix documentation set for
information on output handlers.

This returns a list of interfaces that are base
interfaces of the interface specified in the

deri ved parameter. The interface specified in
the deri ved parameter is included in the list,
because it is considered a base interface of itself.

This determines whether the maybeABase
interface is a base interface of the interface
specified in the deri ved parameter.

| sBasel nt erfaced () returns 1 if maybeABase
is a base interface of the interface specified in
the deri ved parameter (or if the same interface
is specified in both the deri ved and maybeABase
parameter). Otherwise, it returns 0.

245

OrbixCOMet Desktop Programmer’s Guide and Reference

A oseChannel () This requests Orbix to close the underlying
communications connection to the server. This
function is intended as an optimization, so thata
rarely used connection between a client and
server is not kept open for long periods while
not in use.

The channel is automatically reopened when an
invocation is made on the object. Note that if
the client holds proxies for other objects in the
same server, the channel is closed for all such
proxies; it is automatically reopened when a
subsequent invocation is made on one of these
proxies.

ol | ocat ed() This determines whether collocation is
enforced.

Set OnC f to 1, to disallow binding to objects
outside the address space of the current
process.

Set (nC' f to O, to allow binding to objects
outside the address space of the current
process. This is the default setting.

Def aul t TxTi neout () This sets the timeout for all remote calls and
returns the previous setting.

By default, there is no timeout value set for
remote calls; that is, the default timeout is
infinite.

The value set by this method is ignored when
making a connection between a client and a
server. It comes into effect only when the
connection has been established.

246

OrbixCOMet APl Reference

Eager Li st ener s()

Get Confi gVal ue()

Set Confi gVal ue()

By default, established connections to a server
are given priority over requests for new
connections. As a result, busy single-threaded
servers (for example, processing long-running
operations) might not service new connection
attempts; consequently, clients attempting to
make a connection might be continually timed-
out.

Eager Li st ener s() allows equal fairness to be
given to both established connections and to
new connection attempts. This avoids
discrimination against new connections.

This feature is not necessary in multithreaded
versions of Orbix.

Set OnO' f to 1 to enable eager listening. This
means that attempts to establish new
connections are given equal priority to
processing existing connections.

Set OnO' f to O to give priority to established
connections.

Eager Li st ener s() returns the previous setting.

This obtains the value of the configuration entry
specified in the nane parameter.

Refer to the Orbix documentation set for
information on configuration values.

This sets the value of the configuration entry
specified in the narme parameter for this process
only. (It does not set the configuration entry in
the Orbix configuration file.)

247

OrbixCOMet Desktop Programmer’s Guide and Reference

248

Qut put ()

ReinitialiseConfig()

Set D agnosti cs()

This outputs the application’s diagnostic and
other output via the active output handlers.

Unless overridden by an implementation of the
QORBA: : CRB: : Wser Qut put C++ class, all output
is directed to the standard output stream via the
default output handler, | TSt dQut Handl er.

Refer to the Orbix documentation set for
information on output handlers.

This effects modifications to the arrangement or
activation of configuration value handlers.

It must be called for changes made by
Acti vat eCvHandl er (),

Decact i vat eCvHandl er (),

Pl aceCvHand| er Bef ore(), and

Pl aceCvHandl er After () to take effect.

Refer to the Orbix documentation set for
information on configuration handlers.

This controls the level of diagnostic messages
output to the cout stream by the Orbix
libraries. The previous setting is returned. The
level values are:

Level |—Output no diagnostics.
Level 2—Output simple diagnostics (default).
Level 3—Output full diagnostics.

Diagnostic messages are output for events such
as operation requests, connections, and
disconnections from a client.

An interleaved history of activity across the
distributed system can be obtained from the full
diagnostic outpu. This is done by redirecting the
diagnostic messages from both the client and the
server to files, and then sorting a merged copy
of these files.

OrbixCOMet APl Reference

StartU()

Shut Down()

Get Server APl ()

LoadHandl er ()

Get O bi xSSL()

Rel easeCORBAVI ew()

UseTr ansi ent Port ()

This initializes the ORB. Invoking this method is
optional. If St art Up is not invoked, the ORB is
automatically initialized when the first object is
created. However, it is a CORBA guideline that
an ORB should be initialized before being used.
Therefore, you should call this method before
doing anything else (that is, before you make any
calls to Get (bj ect or O eat eType on

| CORBAFact or y).

This shuts down the bridge. Invoking this
method might be necessary if you are
experiencing hang-on-exit problems. After this
method is called, no more invocations can be
made using CORBA.

This returns a COM/Automation interface that
allows you to turn your application into a
CORBA server.

This forces OrbixCOMet to load the specified
handler DLL into memory. Handlers can contain
smart proxies, filters, transformers, and so on.

This obtains a pointer to the | O bi xSSL
interface when Orbix SSL support is being used.

This is used by clients to free the CORBA view
of a DCOM callback object when receipt of
callbacks in no longer required.

This is a wrapper around the Orbix call of the
same name. It places a transient port number,
instead of the Orbix daemon’s port number, in
any exported IORs.

UuID {4ea7b110- 1a93- f 447- 1dc7- c8c8b25be06f }

Notes Orbix-specific.

249

OrbixCOMet Desktop Programmer’s Guide and Reference

10rbixSSL

Synopsis [obj ect, uui d(adecd691-f d88- 11d2- af 83- 00a024d8995c¢) |

interface | Obi xSSL :
HRESULT | ni t SSL([out]

I Uhknown {
int* nRet);

HRESULT | ni t ScopeSSL([in] LPSTR cPol i cyNane,

[out] int* nRet);

HRESULT Set SecurityNane([in] LPSTR cCert Narre,

[out] int* nRet);

HRESULT Get SecurityName([out] LPSTR* cCert Nane);
HRESULT Set Pri vat eKeyPassword([in] LPSTR cPassword,

[out] int* nRet);

HRESULT HasPassword([out] BOOLEAN* bRet);

}

Description | O bi xSSL provides support for integrating SSL support into OrbixCOMet
COM applications. A reference to this interface is retrieved, using a call to
Get O bi xSSL() on the | O bi xCRBMhj ect interface.

Methods

I ni t SSL()

I ni t ScopeSSL()

250

This initializes the SSL library. It must be called
by each OrbixCOMet SSL-enabled application
before any attempts are made to bind to
CORBA clients or servers, and before any calls
to other | O bi XSSL methods.

This instructs SSL to implement the SSL policies
included in the configuration scope

(O bi xSSL. cf g) specified in the cPol i cyNane
parameter. (For further details, refer to

I T_SSL: :initScope in the OrbixSSL C++
Programmer’s and Administrator’s Guide.) The
specified configuration scope can contain a
value for | T_CERTI FI CATE_FI LE, which
specifies the location of an X.509 certificate file.
As a result of the call to | ni t ScopeSSL, the
identified certificate is initialized by the SSL
runtime, and is associated with the application.

OrbixCOMet APl Reference

Set Securit yName()

Get Securi t yNane()

Set Pri vat eKeyPasswor d()

HasPasswor d

UuID

This method is passed the location of a file that
contains an X.509 certificate and private key to
be associated with an OrbixCOMet SSL-
enabled application. (For further details, refer
to | T_SSL: : set Securi t yNane in the OrbixSSL
C++ Programmer’s and Administrator’s Guide.)

This retrieves the security name of the
certificate being used by an OrbixCOMet SSL-
enabled application.

This specifies the pass phrase to be used to
unlock the private key of an X.509 certificate.
The private key is stored in an X.509 certificate
in encrypted PEM format with a secret pass
phase. The private-key pass phrase is required
to unlock the private key. The private-key pass
phrase is generally chosen by the system
administrator when creating the application
certificate signing request.

This determines whether the server has
received a private-key pass phrase from the
server key distribution mechanism (KDM). If
the server has not received a pass phrase, a
valid password must be supplied, using

Set Pri vat eKeyPasswor d.

{adecd691-f d88- | | d2- af 83- 00a024d8995c}

251

OrbixCOMet Desktop Programmer’s Guide and Reference

IORBODbject

Synopsis [public] typedef struct tagOORBA CORB(hj ect|dList {
unsi gned | ong cbMaxSi ze;
unsi gned | ong cbLengt hUsed;
[size_i s(cbMaxSi ze), |ength_is(cbLengt hUsed), unique]
LPSTR *pVal ue;
} OORBA CORB(hj ect | dLi st;

[object, uwuid(...)]
interface | CRB(hj ect : | Unknown

{
HRESULT hj ect ToString ([in] | Wknow* obj,
[out] LPSTR* val);
HRESULT StringToChject ([in,string] LPSTR cStr,
[out] IUWnknown ** val);
HRESULT Getlnitial References ([out] CCRBA CRBOhj ect | dList*
val);
HRESWLT Resol velnitial Reference ([in,string] LPSTR nane,
[out] IUWnknown** |T_retval);
h
Description This provides COM clients with access to the operations on the ORB pseudo-
object.
Methods
(bj ect ToStri ng() This converts the target object’s reference to a

string. An Orbix stringified object reference has
the following format:

:\ host : server Nare: nar ker: | FR host :
| FR_server: i nt er f aceMar ker

The fields can be described as follows:

® host —This is the hostname of the
target.

252

OrbixCOMet APl Reference

oj ect ToStri ng()
(cont i nued)

ser ver Name—This is the name of the
target object’s server. This is the name
used to register the server in the
Implementation Repository. It is also the
name specified to

CORBA: : BQA @i npl _i s_ready(),
OCRBA: : BQA : obj ect _i s_ready(), or
set by set Server Nare() . For a local
object in a server, this is the server’s
name (if it is known); otherwise, it is the
identifier of the process. The server
name is known if the server is launched
by the Orbix daemon, or if the server is
launched manually and the server name
is passed to i npl _i s_ready(), or if the
server name has been set by

OCRBA: : CRB: : set Server Narre() .

mar ker —This is the object’s marker
name. This can be chosen by the
application, or it is a string of digits
chosen by Orbix.

I FR_host —This is the name of a host

running an IFR that stores the target
object’s OMG IDL definition. Normally,
this is blank.

| FR_server—This is the " | FR' string.

i nterface_Marker—This is the target
object’s interface. If called on a proxy,
this might not be the object’s true (most
derived) interface: it can be a base
interface.

This method can also produce stringified IOR if
IIOP is being used.

253

OrbixCOMet Desktop Programmer’s Guide and Reference

StringTohj ect ()

Getlnitial References()

Resol vel ni ti al Ref erence()

UuUID

Notes COM/CORBA-compliant.

254

This converts the stringified object reference,
obj _ref_string, to an object reference.

(See (hj ect ToStri ng for a description of the
fields in a stringified object reference.)

The IFR and the CORBA services can only be
used by first obtaining an object reference to an
object through which the service can be used.
The Automation/CORBA standard defines

Get I nitial Ref erences() as a way to list the
services that are available.

(CORBA services are optional extensions to
ORB implementations that are specified by
CORBA. They include the Naming Service and
Event Service.)

This returns an object reference through which
a service (for example, the IFR or one of the
CORBA services) can be used. The nane
parameter specifies the desired service. A list of
supported services can be obtained using

D CRBMhj ect: : Get I niti al Ref erences().

{204F6245- 3AEC 11CF- BBFG 444553540000}

15

Introduction to OMG IDL

This chapter describes the CORBA Interface Definition Language
(OMG IDL), which is used to describe the interfaces to CORBA
objects.

The OMG IDL language is part of the Object Management Group (OMG)
Common Object Request Broker Architecture (CORBA) specification. OMG
IDL is not a programming language, because it cannot be used to implement the
interfaces that are defined in it. The use of OMG IDL does not replace the roles
of programming languages such as C++, OLE Automation, Visual Basic,
Smalltalk, Java, and Ada. An advantage of OMG IDL is that it allows interfaces to
be defined independently of the languages used to implement and use these
interfaces. It therefore makes it easy to support language interoperability.

OMG IDL does not have many complex features. This makes it an easy language
to learn, and helps programmers to write clear interfaces.

OMG IDL Interfaces

An OMG IDL interface provides a description of the functionality that is
provided by an object. An interface definition provides all of the information
needed to develop clients that use the interface. An interface definition typically
specifies the attributes and operations belonging to that interface, as well as the
parameters of each operation. Defining the interfaces between components is
the most important aspect of distributed system design. Interfaces, therefore,
are the single most important feature of OMG IDL.

255

OrbixCOMet Desktop Programmer’s Guide and Reference

Consider a simple banking application that manages bank accounts. A user of an
account object wants to make deposits and withdrawals. An account object also
needs to hold the balance of the account and perhaps the name of the account’s
owner. A sample interface is as follows:

// QM5 I DL
i nterface Account {
/] Attributes to hold the bal ance and the nane
/1 of the account's owner.
attribute float bal ance;
readonly attribute string owner;

/1 The operations defined on the interface.
voi d makeDeposit(in float anount,
out float newBal ance);
voi d makeWthdrawal (in float anount,
out float newBal ance);
1
The Account interface defines the bal ance and owner attributes; these are
properties of an Account object. The bal ance attribute can take values of the
fl oat type, which is one of the basic types of OMG IDL and represents a
floating point type (such as 102. 31). The owner attribute is of the stri ng type
and is defined as r eadonl y.

Two operations, nakeDeposi t () and nakeWt hdr awal (), are provided. Each of
these has two parameters of the f | oat type. Each parameter must specify the
direction in which the parameter is passed. The possible parameter-passing

modes are:
in The parameter is passed from the caller (client) to the called object.
out The parameter is passed from the called object to the caller.

inout The parameter is passed in both directions.

256

I. An attribute declaration typically maps to two functions in the programming language: one to
retrieve the value of the attribute, and the other to set the value of the attribute. The r eadonl y
keyword specifies that there is only a function to retrieve the value. A r eadonl y attribute does not
have to be a constant: two reads of an attribute, where there is an interleaving operation call, can
return different values.

Introduction to OMG IDL

In this example, anount is passed as an i n parameter to both functions, and the
new balance is returned as an out parameter. The parameter-passing mode must
be specified for each parameter, and it is used both to improve the “self-
documentation” of an interface and to help guide the code to which the OMG
IDL is subsequently translated.

Line comments are introduced with the // characters, as shown in the following
example. Comments spanning more than one line are delimited by / * and */.
For example:

// QMG | DL

/* This commrent
spans nore than
one line. */

Multiple OMG IDL interfaces can be defined in a single source file, but it is
common to define each interface in its own file.

Oneway Operations

Normally, the caller of an operation is blocked while the call is being processed
by the receiver. However, an OMG IDL operation can be defined to be onevay,
so that the caller is not blocked and can continue in parallel to the server. For
example, you can provide a oneway operation on the Account interface to send
a notice to the account:

/1 QMG 1 DL
interface Account {
/] Details as before.
/1 Send notice to account.
oneway void notice(in string notice);

b
A oneway operation must specify a voi d return type. It cannot have out or
i nout parameters, or a rai ses clause.

Oneway operations are supported because it is sometimes important to be able
to communicate with a remote object without waiting for a reply. A oneway
operation differs from a normal operation (that is, an operation not designated
as oneway) that has no out or i nout parameters and a voi d return type. Calls to
the normal operation block until the operation request has been performed.

257

OrbixCOMet Desktop Programmer’s Guide and Reference

Context Clause

Modules

The use of context is not specified in the COM/CORBA Interworking
specification. Contexts are therefore deprecated.

An interface can be defined within a module. This allows interfaces and other
OMG IDL type definitions to be grouped in logical units. This can be convenient,
because names defined within a module do not clash with names defined outside
the module (that is, a module defines a naming scope). This allows sensible
names for interfaces and other definitions to be chosen, without clashing with
other names.

The following example illustrates the use of a module (where the interfaces

related to banks are defined within a module called Fi nance):

// QM5 1 DL
nodul e Fi nance {
interface Bank {

b
interface Account {
b

h

The full (or scoped) name of Account is then Fi nance: : Account.

Exceptions

258

An OMG IDL operation can raise an exception, indicating that an error has
occurred. To illustrate exceptions, the banking application is now extended by
providing a Bank interface, as follows:

/1 QMG I DL
interface Bank {
exception Reject {
string reason;

Introduction to OMG IDL

b
exception TooMany {}; // Too nany accounts.
Account newAccount (i n string nane)
rai ses (Reject, TooMany);
voi d del et eAccount (i n Account a);

|

The Bank interface defines two operations:

newAccount () This creates an account whose owner is the person or
company whose name is passed as the parameter. The
operation returns a reference to an Account object.

del et eAccount () This deletes the account.

The newAccount () operation uses the rai ses expression to specify that it can
raise two exceptions, called Rej ect and TooMany. The Rej ect and TooMany
exceptions are defined within the Bank interface. The Rej ect exception defines
a member of the stri ng type, which is used to specify the reason why the bank
rejected the request to create a new account. The TooMany exception does not
define any members.

As well as user-defined exceptions, a set of standard exceptions is defined by
CORBA. These correspond to standard runtime errors that can occur during
the execution of a request. Refer to “System Exceptions” on page 35| for more
details.

Exceptions provide a clean way to allow an operation to raise an error to a
caller. It allows an operation to specify that it can raise a set of possible error
conditions. Because OMG IDL provides a separate syntax for exceptions, this
can be translated into exception handling code in programming languages that
support them (such as C++ and Ada).

Inheritance

The banking application example also needs to consider that there are many
types of bank account (for example, checking (or current) accounts and savings
accounts). Both checking accounts and savings accounts share the properties of
an account and respond to the same operations, but these operations have
different behavior. They can also have additional properties and operations.

259

OrbixCOMet Desktop Programmer’s Guide and Reference

260

The relationships among these interfaces can be described in a type hierarchy as
shown in Figure 15.1. The Account interface is called a base interface of

Checki ngAccount and Savi ngsAccount . The Checki ngAccount and

Savi ngsAccount interfaces are called derived interfaces of Account .

account

checking account savings account

Figure 15.1: Inheritance

You can define Checki ngAccount interface as follows:

// QM5 1 DL

i nterface Checki ngAccount : Account {
readonly attribute overdraftLimt;
bool ean or der ChequeBook() ;

b

It defines one attribute, overdraft Li m t, but it inherits the bal ance and owner
attributes defined in its base interface, Account . Similarly, it inherits the
makeDeposi t () and makeWt hdr aval () operations from Account, and defines a
new or der Chequebook() operation. An implementation of the

Checki ngAccount interface can provide code that is different to an
implementation of the Account interface.

You can define the Savi ngsAccount interface as follows:

/1 OMG 1 DL
i nterface SavingsAccount : Account {
float cal culatelnterest();

}s

Introduction to OMG IDL

An interface can be derived from any number of base interfaces. This is known
as multiple inheritance. For example, a premium account might have the
properties of both a checking account and a savings account. This means it is an
interest-earning account that can also have a check book. Thus, the multiple
inheritance hierarchy is as shown in Figure 15.2.

account

TN

checking account savings account

premium account

Figure 15.2: Multiple Inheritance

The Savi ngsAccount interface is defined as follows:

/1 M5 1 DL
i nterface SavingsAccount : Account {
float cal cul atelnterest();
b
The Prem unAccount interface can then be defined as follows:

/1 OM5 1 DL

i nterface Prem unmAccount : Checki ngAccount, Savi ngsAccount {
/1 New attributes and operations defined here.

¥

If an interface inherits from two interfaces that contain a definition (constant,
type, or exception) of the same name, references to this interface in the derived
interface will be ambiguous unless the name of the definition is qualified by its
interface name (that is, unless a scoped name is provided). It is illegal to inherit
from two interfaces with the same operation or attribute name.

261

OrbixCOMet Desktop Programmer’s Guide and Reference

OMG IDL inheritance differs considerably from C++ inheritance. The latter has
variations such as private, protected, public, and virtual that are not reflected in
OMG IDL. Public virtual inheritance in C++ is similar to OMG IDL inheritance.
An instance of a derived interface must behave as an instance of all of its base
interfaces. All the attributes and operations on base interfaces are available on
instances of a derived interface.

The Basic Types of OMG IDL

Table 15.1 lists the basic types supported in OMG IDL.

Type

OMG IDL Identifier

Description

Floating point fl oat IEEE single-precision
floating point numbers.
doubl e IEEE double-precision
numbers.

Integer | ong —231...231-1 (32hit)
short —215...215-1 (16bit)
unsi gned | ong 0...232-1 (32bit)
unsi gned short 0...216-1 (16bit)

Char char An 8-bit quantity.

Boolean bool ean TRUE or FALSE

Octet oct et An 8-bit quantity that is

guaranteed not to
undergo any conversion
during transmission.

Any any The any type allows the

specification of values that
can express an arbitrary
OMG IDL type.

262

Table 15.1: OMG IDL Basic Types

Introduction to OMG IDL

Note: There is no i nt type in OMG IDL, and char cannot be qualified by
unsi gned.

The any type allows an interface to specify that a parameter or result type can
contain an arbitrary type of value that is to be determined at runtime. For
example:

/I OM5 |1 DL
interface | {
void op(in any a);
|
A process that receives an any type must determine what type of value it
contains, and then extract the value.

Constructed Types

As well as the basic types listed in Table 15.1 on page 262, OMG IDL provides
three constructed types: struct, union, and enum.

Structures

A struct data type allows related items to be packaged together. For example:

// QMG | DL

struct Personal Details {
string nane;
short age;

s

interface Bank {

exception Reject {
string reason;

b

Account newAccount (i n string nane,
in short age) raises (Reject);

Per sonal Det ai | s get Per sonal Det ai | s(
in string name);

voi d del eteAccount (i n account a);

263

OrbixCOMet Desktop Programmer’s Guide and Reference

The Personal Det ai | s struct has two members: nane of the stri ng type, and
age of the short type. The get Per sonal Det ai | s() operation returns one of
these structs.

Enumerated Types

Unions

264

An enumerated type allows the members of a set of values to be depicted by
identifiers. For example:

/I QMG 1 DL
enumcolor { red, green, blue, yellow white };

This is more readable than defining col or as a short type. The order in which
the identifiers are named in the specification of an enumerated type defines the
relative order of the identifiers. This order can be used by a specific
programming language mapping that allows two enumerators to be compared.

The OMG IDL union type provides a space-saving type whereby the amount of
storage required for a union is the amount necessary to store its largest
element. A tag field is used to specify which member of a union instance is
currently assigned a value. For example:

/1l QMG | DL
uni on token switch (long) {
case 1 : long |;
case 2 : float f;
default: string str;
b
The identifier following the uni on keyword defines a new legal type. A union
type can also be named using a typedef declaration.

OMG IDL unions must be discriminated. This means the uni on header must
specify a tag field that determines which union member is assigned a value. In the
preceding example, the tag is called t oken and is of the | ong type. Each
expression that follows the case keyword must be compatible with the tag type.
The type specified in parentheses after the swi t ch keyword must be an integer,
char, boolean, or enum type. A default case can appear at most once in a uni on
declaration.

Introduction to OMG IDL

Arrays

OMG IDL provides multi-dimensional fixed-size arrays to hold lists of elements
of the same type. The size of each dimension should be specified in the
definition. Some sample array types are as follows:

/1 OM5 1 DL
/1 A 1-di mensi onal array.
Account bankAccount s[100] ;

/1 A 2-dinmensional array.
short gridArr[10][20];

The bankAccount s and gri dArr types can be used, for example, to define
parameters to an operation.

Template Types

Sequences

OMG IDL provides two template types, sequence and st ri ng, which are
described in the following subsections.

An OMG IDL sequence type allows lists of items to be passed between objects.
A sequence is similar to a one-dimensional array. It has two characteristics: a
maximum size that is fixed at compile time, and a length that is determined at
runtime. A sequence differs from an array, because a sequence is not of fixed
size (although a bounded sequence has a fixed maximum size). Therefore, a
sequence is a more flexible data type, and should be used instead of an array,
except when the list of elements to be passed is always of the same size.

A sequence can be bounded or unbounded, depending on whether the
maximum size is specified. For example, the following type declaration defines a
bounded sequence, vectorTen, of size 10:

/1 QMG 1 DL
sequence<| ong, 10> vector Ten;

This means that the vect or Ten sequence can be of any length up to the bound
(that is, 10).

265

OrbixCOMet Desktop Programmer’s Guide and Reference

Strings

266

The following type declaration defines an unbounded sequence:

/1l QMG 1D
sequence<l ong> vect or;

A sequence that is used within an interface definition must be named by a
typedef declaration before it can be used as the type of an attribute definition or
as a parameter to an operation. For example:

/1 QMG I DL
typedef sequence<l ong, 10> vector Ten;

attribute vectorTen vector;

/1 The following definition is not allowed:
attribute sequence<l ong, 10> illegal Vector;

A sequence that appears within a struct or union definition does not have to be
named.

The string type has already been used. It is similar to a sequence of char types. A
string can be bounded or unbounded, depending on whether its length is
specified in the declaration. A length can be specified for a string, as shown in the
following example:

// OM5 I DL
interface Bank {
/]l Qher details as before.

/1 A bounded string.
attribute string sortCode<10>;

/1 An unbounded stri ng.
attribute string address;

Introduction to OMG IDL

Constants

A constant can be defined as follows:

// QMG | DL

interface Bank {
const | ong MaxAccounts = 100000;
/] Rest of definition here.

b
The value of an OMG IDL constant cannot change. Constants can be defined in

an interface or module, or at global or file-level scope (outside of any interface
or module).

Constants of the | ong, unsi gned | ong, short, unsi gned short, char,
bool ean, f | oat, doubl e, and stri ng type can be declared. Constants of the
oct et type cannot be declared.

Typedef Declaration

A typedef declaration can be used to define a meaningful or simpler name for a
basic or user-defined type. For example, the following defines si ze as a synonym
for short:

/1 QMG I DL
typedef short si ze;

The following is a parameter declaration, using si ze:

/1 QM5 1 DL

in size i

The following is a parameter declaration, using short, which is equivalent to the
preceding declaration:

// QMG | DL
in short i

Similarly, assume you make the following typedef declaration:

/1 QMG 1 DL
t ypedef Account Accounts[100];

267

OrbixCOMet Desktop Programmer’s Guide and Reference

This allows a subsequent definition (for example, as a member of a structure):

// OMG IDL
Account s bankAccount s;

Forward Declaration

An interface must be declared before it is referenced. A forward declaration
declares the name of an interface without defining it. This allows the definition of
interfaces that mutually reference each other. The syntax is the keyword

i nt er f ace followed by the identifier that names the interface. For example:

/I OM5 1 DL
i nterface Bank;

The interface definition must appear later in the specification.

Scoped Names

An OMG IDL file forms a naming scope in which an identifier is defined and can
be referred to. Every OMG IDL identifier must be unique within a scope, but an
identifier can be reused in distinct scopes. An interface is considered to
represent a distinct scope. Thus, names defined within an interface do not clash
with names defined outside that interface (for example, in another interface or
at file level). The following type definitions also represent distinct scopes:
module, structure, union, operation, and exception. The following type
definitions are treated as being scoped: types, constants, enums, exceptions,
interfaces, attributes, and operations.

A qualified or scoped name has the format scoped_nane: : i denti fi er. Within
a scope, a name can be used in its unqualified form.

The Preprocessor

268

OMG IDL provides preprocessing directives that allow macro substitution,
conditional compilation, and source file inclusion. The OMG IDL preprocessor is
based on the C++ preprocessor. For example, the #i ncl ude directive allows an
OMG IDL file to be included in other files.

Introduction to OMG IDL

As is also the case with a C++ include file, the following directives should be
used in an OMG IDL file that might potentially be included in many other OMG
IDL files:

#i f ndef <sone_uni que_nane>
#def i ne <some_uni que_name>

Body of the idl file.

#endi f

Other preprocessing directives available in OMG IDL are #def i ne, #undef,
#i ncl ude, #i f, #i f def , #i f ndef, #el i f, #el se, #endi f, #def i ned, #error, and
#pr agna.

The Orb.idl Include File

The interface names for the CORBA NanedVal ue, Pri nci pal , and TypeCode
pseudo types are available in an OMG IDL file, only if it includes the following
directive:

#i ncl ude <orb.idl>

The oj ect interface name, which is the implicit base interface of all interfaces,
is available in all files.

269

OrbixCOMet Desktop Programmer’s Guide and Reference

270

16

CORBA-to-Automation Mapping

CORBA types are defined in OMG IDL. Automation types are defined
in Microsoft IDL (COM IDL). To allow interworking between
Automation clients and CORBA servers, Automation clients must be
presented with COM IDL versions of the interfaces exposed by
CORBA objects. Therefore, it must be possible to translate CORBA
types to COM IDL. This chapter outlines the CORBA-to-Automation
mapping rules.

For the purposes of illustration, this chapter describes a textual mapping
between OMG IDL and COM IDL. OrbixCOMet itself does not require this
textual mapping to take place, because it includes a dynamic marshalling engine.
The textual mappings shown in this chapter are actually performed by
OrbixCOMet at application runtime.

271

OrbixCOMet Desktop Programmer’s Guide and Reference

Basic Types

OMG IDL basic types map to compatible types in Automation. Table 6.1 shows
the mapping rules for each basic type.

OMG IDL Description COMIDL Description
bool ean Unsigned char, 8-bit VAR ANT_BOCL 16-bit integer
0 = FALSE 0 = FALSE
1= TRE "1 =TRE
char 8-bit quantity u 12 8-bit unsigned integer
doubl e IEEE 64-bit float doubl e IEEE 64-bit float
fl oat IEEE 32-bit float f1 oat IEEE 32-bit float
| ong 32-bit integer [ong 32-bit integer
oct et 8-bit quantity uil 8-bit unsigned integer
short | 6-bit integer short | 6-bit integer
unsi gned | ong 32-bit integer | ong 32-bit integer
unsi gned short 16-bit integer | ong 32-bit integer

Table 16.1: CORBA-to-Automation Mapping Rules for Basic Types

a. U 1 is supported in Windows 32-bit programs.

The types supported by OMG IDL and Automation do not correspond exactly,
because Automation offers a more limited support for basic types. For example,
Automation does not support unsigned types (that is, unsi gned short or

unsi gned | ong). In some cases, the mapping rules involve a type promotion, to
avoid data loss (for example, translating OMG IDL unsi gned short to
Automation | ong.) In other cases, the mapping rules involve a type demotion
(for example, translating OMG IDL unsi gned | ong to Automation | ong.)

272

CORBA-to-Automation Mapping

Strings

An Automation view interface provides an Automation client with an
Automation view of a CORBA object. An operation of an Automation view
interface uses the mappings shown in Table 16.1 on page 275, to perform
bidirectional translation of parameters and return types between Automation
and CORBA. It translates i n parameters from Automation to CORBA, and
translates out parameters from CORBA back to Automation. Because there is
not an exact correspondence between the types supported by Automation and
CORBA, the following translations performed by an Automation view operation
result in a runtime error:

® Translating an i n parameter of the Automation | ong type to the OMG

IDL unsi gned | ong type, if the value of the Automation | ong parameter
is a negative number.

¢ Demoting an i n parameter of the Automation | ong type to the OMG
IDL unsi gned short type, if the value of the Automation | ong
parameter is either negative or greater than the maximum value of the
OMG IDL unsi gned short type.

® Demoting an out parameter of the OMG IDL unsi gned | ong type back
to the Automation | ong type, if the value of the OMG IDL unsi gned
| ong parameter is greater than the maximum value of the Automation
| ong type.

OMG IDL bounded and unbounded strings map to an Automation BSTR For
example:

// OMG | DL

/1 This definition nmght appear within a struct
/1 definition.

string nane<20>;

string address;

This maps to:

// COM | DL
BSTR nane;
BSTR addr ess;

A runtime error occurs if a BSTR exceeds the full length of a bounded string.

273

OrbixCOMet Desktop Programmer’s Guide and Reference

Interfaces

274

An OMG IDL interface maps to an Automation view interface. The following is
an example of an OMG IDL interface, Bank:

/1 OMG | DL
interface Bank

{

/1 Attributes and operations here;

I
This maps to the Automation view interface, Dl Bank:

// COM | DL
/] Definitions that are not of interest here.

[ol eautomati on, dual, uuid(.)]
interface DI Bank : |Dispatch

{

/1 Properties and met hods here.

}

As shown in Figure 16.1 on page 275, the Automation view in the bridge
supports the Dl Bank interface. Any Automation controller can use the D Bank
interface to invoke operations on the Automation view. The view forwards the
request to the target Bank object in the CORBA server.

The D Bank interface is an Automation dual interface. A dual interface is a COM
vtable-based interface that derives from | D spat ch. This means that its methods
can be either late-bound, using | D spat ch: : | nvoke, or early-bound through
the vtable portion of the interface.

The Automation view supports the following interfaces:
® | Uhknown and | D spat ch, required by all Automation objects.
® D Forei gnj ect, required by all views.
* D CCRBAMyj ect, required by all CORBA objects.
* D O bi x(oj ect, supported by all Orbix objects.

CORBA-to-Automation Mapping

IUnknown

I

IDispatch O——
IForeignObject O——
DICORBAODbject 0——
DIOrbixObject O—
DIBank O

Figure 16.1: Automation View of the Bank Interface

Attributes

An OMG IDL attribute maps to an Automation property, as follows:

® A normal attribute maps to a property that has a method to set the value
and a method to get the value.

® Avreadonly attribute maps to a property that only has a method to get
the value.

For example:

// OMG | DL
i nterface Account
{
attribute float bal ance;
readonly attribute string owner;
voi d makeLodgerent (in float amount, out float bal ance);
voi d makeWthdrawal (in float anount, out float bal ance);

275

OrbixCOMet Desktop Programmer’s Guide and Reference

This maps to:

/]l COM I DL

[ol eautontion, dual, uuid(.)]
interface D Account : |Dispatch
{

HRESULT nakeLodgenent ([in] float amount,
[out] float * bal ance,
[optional, out] VAR ANT * excep_CBJ);
HRESULT nakeWthdrawal ([in] float anount,
[out] float * bal ance,
[optional, out] VAR ANT * excep_CBJ);
[propget] HRESULT bal ance([retval ,out] float * val);
[propput] HRESULT bal ance ([in] float bal ance);
[propget] HRESULT owner([retval ,out] BSTR * val);
}

The get method returns the attribute value contained in the [retval , out]
parameter.

Visual Basic The following is a Visual Basic example of how to set and get the balance of an
account object, account oj :

Set accountChj = ...' Get a reference to an Account object.
D mnyBal ance as Single

Set the bal ance of account (bj :
account (oj . bal ance = 150. 22

Get the bal ance of account (bj :
nyBal ance = account (j . bal ance

PowerBuilder The following is a PowerBuilder example of how to set and get the balance of
an account object, account Cbj :

...l Gt a reference to an Account object.
i nteger nyBal ance

nyBal ance = account (j . bal ance
account (bj . bal ance nyBal ance

276

CORBA-to-Automation Mapping

Operations

An OMG IDL operation maps to an Automation method. For example:

/1 OM5 1 DL

interface Account {
voi d makeDeposit(in float anount, out float bal ance);
float cal cul atelnterest();

};
This maps to:
/1l COM 1 DL

[ol eaut omati on, dual , uuid(.), hel pstring("Account")]
interface D Account : |Dispatch {
[id(100)] HRESWLT makeDeposit ([in] float it_amount,
[in,out] float *it_bal ance,
[optional,in,out] VARIANT *IT_Ex);
[id(101)] HRESWLT cal cul atelnterest (
[optional ,in,out] VAR ANT *IT_Ex,
[retval ,out] float *IT retval);

}

The following mapping rules apply for the parameter-passing modes:
¢ AnOMGIDLIin parameter maps to an Automation [i n] parameter.
®* An OMG IDL out parameter maps to an Automation [out] parameter.

® An OMG IDL i nout parameter maps to an Automation [i n, out]
parameter.

The following mapping rules apply for return types:
®* An OMG IDL voi d return type does not need any translation.

®* An OMG IDL return type that is not voi d maps to an Automation
[retval, out] parameter. A CORBA operation’s return value is
therefore mapped to the last argument in the corresponding operation of
the Automation view interface.

® All operations on Automation view interface have an optional out
parameter of the VAR ANT type. This parameter appears before the
return type and is used to return exception information. Refer to
“Exceptions” on page 291 for more information.

277

OrbixCOMet Desktop Programmer’s Guide and Reference

® |f the CORBA operation has no return value, the optional out parameter
of the VAR ANT type is the last parameter in the corresponding
Automation operation. If the CORBA operation does have a return value,
the optional parameter appears directly before the return value in the
corresponding Automation operation. This is because the return value
must always be the last parameter.

The following is a Visual Basic example, based on the generated definitions in the
preceding COM IDL example:

Dminterest, anount As Single
' CGet areference to an Account object:

account (bj . makeDeposit anount, bal ance
i nterest = account (j . cal cul at el nt er est

Inheritance

278

This section describes the CORBA-to-Automation mapping rules for single
inheritance and multiple inheritance.

Single Inheritance

A hierarchy of singly-inherited OMG IDL interfaces maps to an identical
hierarchy of Automation view interfaces. The following is an example of an
interface, account, and its derived interface, checki ngAccount :

/1 QMG 1 DL
{
i nterface account
{
attribute float bal ance;
readonly attribute string owner;
voi d makeLodgenent (in float amount, out float bal ance);
voi d makeWthdrawal (in float anount, out float theBal ance);
b
i nterface checki ngAccount : account
{

readonly attribute float overdraftLimt;
bool ean or der ChequeBook() ;

}s

CORBA-to-Automation Mapping

This maps to the following Automation view interfaces:

/1 M |1 DL
[ol eautonation, dual, uuid(.)]
i nterface account: | D spatch

{
HRESULT nakeLodgerent ([in] float amount,
[out] float * bal ance),
[optional, out] VAR ANT * excep_(BJ);
HRESULT nmakeWthdrawal ([in] float amount,
[out] float * bal ance),
[optional, out] VAR ANT * excep_CBJ);
[propget] HRESUWLT bal ance([retval,out] float * val);
[propput] HRESUWLT bal ance([in] float bal ance);
[propget] HRESWLT owner([retval ,out] BSTR * val);
b

[ol eaut onmati on, dual, uuid(.)]
i nterface checki ngAccount: account

{
HRESULT or der ChequeBook ([optional, out] VAR ANT * excep_CBJ,
[retval, out] short * val);
[propget] HRESULT overdraftLimt ([retval, out] short * val);

Multiple Inheritance

Automation does not support multiple inheritance. Therefore, a direct mapping
of a CORBA inheritance hierarchy using multiple inheritance is not possible. This
mapping splits such a hierarchy, at the points of multiple inheritance, into
multiple singly-inherited strands.

The mechanism for determining which interfaces appear on which strands is
based on a left-branch traversal of the inheritance tree. Figure 16.2 on page 280
is an example of a CORBA interface hierarchy.

In Figure 16.2, the hierarchy can be read as follows:
® Account and Si npl e derive from Bank.
® (Checki ngDet ai | s derives from Account and Si npl e.

® M scel | aneous derives from Checki ngDet ai | s.

279

OrbixCOMet Desktop Programmer’s Guide and Reference

280

Bank

/N

Account Simple

\

CheckingDetails

Miscellaneous

Figure 16.2: Example of a CORBA Interface Hierarchy

In this example, Checki ngDet ai | s is the point of multiple inheritance. The
CORBA hierarchy maps to two Automation single inheritance hierarchies (that
is, Bank-Account -Checki ngDet ai | s and Bank-Si npl). The leftmost strand is
considered the main strand, which is Bank-Account -Checki ngDet ai | s. To
accomodate access to all of the object’s methods, the operations of the
secondary strands are aggregated into the interface of the main strand at points
of multiple inheritance. The operations of Si npl e are therefore added to
Checki ngDet ai | s. This means Checki ngDet ai | s has all the methods of the
hierarchy, and an Automation controller holding a reference to

Checki ngDet ai | s can access all the methods of the hierarchy without having to
call Queryl nterface.

CORBA-to-Automation Mapping

The following OMG IDL represents a hierarchy based on the example shown in
Figure 16.2 on page 280:

/1 QvG I DL
{

i nterface Bank

{
}s

i nterface Account : Bank

{

h
interface Sinple : Bank
{

b
i nterface CheckingbDetails : Account, Sinple
{

b
i nterface Mscellaneous : CheckingDetails

{
}s

voi d oBank();

voi d pAccount ();

voi d QpSi npl e();

voi d QpChecki ngDetai | s();

void oM scel | aneous() ;

b
This maps to the following two Automation view hierarchies:

/1 QM1 DL

/1 strand 1: Bank- Account - Checki ngDetai | s
[ol eautonati on, dual, uuid(.)]

i nterface Bank: 1D spatch

{
}

[ol eautonati on, dual, uuid(.)]
i nterface Account: Bank

{
}

HRESULT pBank([optional, out] VAR ANT * excep_CBJ);

HRESULT pAccount ([optional, out] VAR ANT * excep_CBJ);

281

OrbixCOMet Desktop Programmer’s Guide and Reference

[ol eaut omation, dual, uuid(.)]
i nterface Checkingbetail s: Account

{

/1 Aggregated operations of Sinple

HRESULT pSi npl e([optional, out] VAR ANT * excep_CBJ);

/1 Normal operations of CheckingDetails

HRESULT QpChecki ngDetai |l s([optional, out] VAR ANT* excep_(BJ);
}

/1 strand 2: Bank- Si npl e
[ol eaut omation, dual, uuid(.)]
interface S npl e: Bank

{
}

HRESULT pSi npl e([optional, out] VAR ANT * excep_CBJ);

Complex Types

Translation is straightforward where there is a direct Automation counterpart
for a CORBA type. However, Automation has no data type corresponding to a
user-defined complex type. CORBA complex types are therefore mapped to
Automation view interfaces. Each element in the complex type maps to a
property in the Automation view, with a get method to retrieve its value, and a
set method to alter its value. This section describes the CORBA-to-Automation
mapping rules for the following complex types:

® Structs
¢ Unions
® Sequences
® Arrays
® Exceptions

® The any type

282

CORBA-to-Automation Mapping

Creating Constructed OMG IDL Types

Structs

OMG IDL constructed types such as st ruct, uni on and except i on map to
pseudo-Automation interfaces. The Automation/CORBA Interworking standard
chose this translation, because Automation does not allow Automation
constructed types as valid parameter types. Pseudo-objects, which implement
pseudo-Automation interfaces, do not expose the | For ei gn(hj ect interface.
Instead, the matching Automation interface for a constructed type exposes the
Dl For ei gnConpl exType interface.

To create a complex OMG IDL type, you can use the O eat eType() method
that is defined on the D QORBAFact or yEx interface. The O eat eType() method
creates an Automation object that is an instance of an OMG IDL constructed
type.
The prototype for O eat eType() is:

CreateType([in] IDi spatch* scope, [in] BSTR typenane)
The parameters for O eat eType() can be explained as follows:

® The scope parameter refers to the scope in which the type should be
interpreted. To indicate global scope, pass Not hi ng to this parameter.

® The typenane parameter is the name of the complex type you want to
create.

You can create an object that represents an OMG IDL constructed type in a
client, to pass it as an i n or i nout parameter to an OMG IDL operation. You
can create an object that represents an OMG IDL constructed type in a server,
to return it as an out or i nout parameter, or return value, from an OMG IDL
operation.

Refer to “Structs” on page 283, “Unions” on page 285, and “Exceptions” on
page 291 for examples of how to use O eat eType() to create structs, unions,
and exceptions.

An OMG IDL struct maps to an Automation interface of the same name that
supports the Dl GCORBASt r uct interface. Dl CCRBASt r uct, in turn, derives from
the Dl For ei gnConpl exType interface. D QORBASt r uct does not define any
methods. It is used to identify that the interface is mapped from a struct.

283

OrbixCOMet Desktop Programmer’s Guide and Reference

284

For example:

// QM5 I DL
struct AccountDetails
{
| ong nunber ;
fl oat bal ance;
b
This is mapped as if it were defined as:
// OM5 I DL
interface AccountDetails
{
attribute | ong nunber;
attribute float bal ance;
s

Figure 16.3 shows the Automation view of the translation.

1Unknown

I

I Dispatch O—
DIForeignComplexType O—

DICORBAStruct 0——

DIlAccountDetails O

Figure 16.3: Automation View of the OMG IDL AccountDetails Struct

The following is a Visual Basic example, based on the preceding IDL definition:

D m Qoj Factory As QORBA O bi x. Dl OCRBAFact or yEx
D mdetails As BankBridge. D Account Detail s

Set details = hj Factory. O eat eType(Not hi ng, "Account Det ai | s")
detail s. bal ance = 1297. 66
detai | s. nunber = 109784

CORBA-to-Automation Mapping

Unions

An OMG IDL union maps to an Automation interface that exposes the

Dl GCRBAUNI on interface. DIl GORBAUNI on, in turn, derives from the

D For ei gnConpl exType interface. Dl CORBAUNI on does not define any methods.
It is used to identify that the interface is mapped from a union.

The DI GCRBAUNI on2 interface is defined, to describe CORBA union types that
support multiple case labels for each union branch. This provides two additional
accessors, as follows:

/1 COM 1 DL
[ol eaut onmati on, dual, uuid(.)]
i nterface D CORBAUNI on2: DI GORBAULNI on

{
HRESULT SetVal ue([in] long disc, [in] VAR ANT val);
[propget, id(-4)]
HRESULT QurrentVal ue([out, retval] VAR ANT * val);
b

The Set Val ue() method can be used to set the discriminant and value
simultaneously. The Qurrent Val ue() method uses the current discriminant
value to initialize the VAR ANT with the union element. All mapped unions should
support the DI GCRBALNi on2 interface.

The following is an example of an OMG IDL union type:

/1 OM5 1 DL
interface A {.};

union U switch(long) {
case 1: long |;
case 2: float f;
default: A obj;

b
This maps to the following Automation pseudo-union:
// CoM I DL

interface DU : D GORBALhi on2{
[propget] HRESULT get UNON d([retval,out] long * val);
[propget] HRESUWLT 1([retval,out] long * 1);
[propget] HRESULT 1([in] long 1);
[propget] HRESULT f([retval,out] float * f);
[propget] HRESWLT f([in] float f);

285

OrbixCOMet Desktop Programmer’s Guide and Reference

[propget] HRESUWLT A([retval ,out] DA ** val);

[propget] HRESUWLT A([in] DA * val);
In this case, the mapped Automation dual interface derives from the
D GCRBAULNI on2 interface. The UNON_d property returns the value of the
discriminant. The discriminant indicates the type of value that the union holds. In
this example, the value of UN CN d is 2, if the union Ucontains a f| oat .

For each member of the union, a property is generated in the matching COM
IDL interface to read the value of the member and to set the value of the
member. The property to set the value of a union member also sets the value of
the discriminant. Do not try to read the value of a member, using a method that
does not match the type of the discriminant.

The mapping for the OMG IDL default label is ignored, if the cases are
exhaustive over the permissible cases (for example, if the switch type is
bool ean, and a case TRUE and case FALSE are both defined).

Figure 16.4 shows the Automation view of the translation of the OMG IDL U
union.

IUnknown

I

IDispatch O——
D I ForeignComplexType O—
DICORBAUnion 0—

DICORBAUnion20

Figure 16.4: Automation View of an OMG IDL Union

286

CORBA-to-Automation Mapping

The following Visual Basic example is based on the preceding COM IDL:

D m Qpj Factory As QCRBA O bi x. Dl OORBAFact or yEx
D mnyWnhion As DU

Set nyUni on = (bj Factory. Or eat eType(Not hi ng, "U")
nybnion.s = "This is a string"

Sel ect Case(mnmyUni on. UNTCN_d())
Case 1: MsgBox ("Wiion (long):" & Str$(nylhion.l)
Case 2: MsgBox ("Wnion (float):" & Str$(nyUnion.f)
Case Hse : MsgBox ("Union contains object reference")
End Sel ect

Sequences

An OMG IDL sequence maps to either an Automation SafeArray or an OLE
collection. The COVet . Mappi ng. Use SAFEARRAYMappi ng configuration value
determines the type of mapping in effect. It is set to "yes" by default, which
means sequences map to SafeArrays. If it is set to " no", sequences map to OLE
collections. You should set this configuration value only once in your application.

For example, the following is the For m Load of a Visual Basic application:

Vi sual Basic
D morb as object

Set orb = Oreatehj ect ("CORBA. CRB. 2")
or b. Set Conf i gVal ue(" COMvet . Mappi ng. UseSAFEARRAYMappi ng", "yes")

SafeArrays

If the COMet . Mappi ng. UseSAFEARRAYMappI ng configuration value is set to
"yes", an OMG IDL sequence maps to a VAR ANT type containing an
Automation SafeArray. An OMG IDL bounded sequence maps to a fixed-size
SafeArray. If you pass a SafeArray that contains a different number of elements
than that required by the bounded sequence, it is automatically resized to the
correct size. An OMG IDL unbounded sequence maps to an empty SafeArray
that can grow or shrink to any size. The

QOMVet . Mappi ng. SAFEARRAYS CCNTAI N_VAR! ANTS configuration value maps a
sequence of any type to a SafeArray of VAR ANT types containing the real type.

287

OrbixCOMet Desktop Programmer’s Guide and Reference

288

OLE Collections

If the GOVet . Mappi ng. Use SAFEARRAYMappi ng configuration value is set to " no",
an OMG IDL bounded or unbounded sequence maps to a VAR ANT type
containing an OLE collection object that exposes the DCol | ecti on interface.
Each collection object exposes the following DCol | ect i on Automation
properties and methods:

Method |Type Description
Count Read/Write Property type | This gets or sets the number of
elements in the collection.
[tem Read/Write Parameterized | This gets or sets access to individual
Property type elements in the collection.

As an alternative to the | t emproperty, each sequence object also exposes the
following methods for use in controllers that do not support parameterized
properties:

Method | Type Description

getltem |Method This gets or sets the number of
elements in the collection.

setltem |Method This gets or sets access to individual
elements in the collection.

Refer to “OrbixCOMet API Reference” on page 181 for a full description of the
COM IDL definitions for the DCol | ect i on interface.

The following is an example of an OMG IDL bounded and unbounded sequence:

/1 OM5 1 DL
nmodul e MbdBank {
interface Transaction {.};

/1 A bounded sequence
typedef sequence<Transaction, 30> Transacti onLi st;

interface Account {
readonly attribute TransactionLi st statenent;
readonly attribute float bal ance;

CORBA-to-Automation Mapping

/1 An unbounded sequence
t ypedef sequence<Account > Account Li st;

i nterface Bank {
readonly attribute AccountList personal Accounts;
Account Li st sort Accounts(in AccountList toSort)

b
};
This maps to:
// COM I DL

typedef [public] VAR ANT MbdBank_Transacti onLi st

[ol eautonation, dual, uuid(.)]
i nterface D MbdBank_Transaction: |D spatch {}

typedef [public] VAR ANT MbdBank_Account Li st;

[ol eautomation, dual, uuid(.)]
i nterface D MbdBank_Account: |Di spatch {

[propget] HRESULT statement ([retval, out] |D spatch**
I T retval);
[propget] HRESUWLT bal ance ([retval, out] float* IT retval);

[ol eaut onation, dual, uuid(.)]
i nterface D MbdBank_Bank: |Dispatch {

}

[propget] HRESUWLT personal Accounts ([retval, out]
ID spatch** IT retval);

HRESULT sortAccounts ([in] ID spatch* toSort,
[optional, out] VAR ANT* |IT_EX,
[retval, out] ID spatch** IT retval);

The following Visual Basic example is based on the preceding COM IDL:

D mnyBank As | T_Li brary_Bank. D ModBank_Bank

D m nyAccounts As Vari ant

D mtnpAccount As | T_Library_Bank. D MbdBank_Account
D m nyBal ance As Singl e

289

OrbixCOMet Desktop Programmer’s Guide and Reference

(btain a reference to a Bank obj ect
Set nyBank = ...
Set nyAccounts = CRBFactory. O eat eType (Not hing,
" MbdBank/ Account sLi st™)

For Each acc in nyAccounts
acc. bal ance = 0. 00
Next acc

Access a menber of nyAccounts
nyBal ance = nyAccount s(4) . bal ance

(btain a reference to a nenber of nyAccounts
Set tnpAccount = nyAccounts(7)
nyBal ance = tnpAccount. bal ance

Arrays

The mapping for an OMG IDL array is similar to that for an OMG IDL sequence.
OMG IDL arrays map to either Automation SafeArrays or OLE collections.

SafeArrays

Multidimensional OMG IDL arrays map to VAR ANT types containing
multidimensional SafeArrays. The order of dimensions in the OMG IDL array
from left to right corresponds to the ascending order of dimensions in the
SafeArray. An error occurs if the number of dimensions in an input SafeArray
does not match the CORBA type.

OLE Collections

Only single dimension arrays can be supported when mapping to OLE
collections.

290

CORBA-to-Automation Mapping

Exceptions

The CORBA model uses exceptions to report error information. Exceptions are
classified into two categories as follows:

I. System exceptions can be raised by any operation. A standard set of
system exceptions is defined by CORBA, and Orbix provides a number of
additional system exceptions. These system exceptions are listed in
“System Exceptions” on page 351.

2. User exceptions are defined in OMG IDL, and an OMG IDL operation
can optionally specify that it might raise a specific set of user exceptions.
An OMG IDL operation can also raise a system exception, but this is not
defined at the OMG IDL level.

User Exceptions

An OMG IDL user-defined exception maps to an Automation interface that has
a corresponding property for each member of the exception. The Automation
interface derives from the DI CORBAUser Except i on interface. For example:

/I MG 1 DL
exception Rej ect

{
s

This maps to:
/1 QoM DL

[ol eaut onation, dual, uuid(.)]
interface Direject : D OORBAUser Exception

{
}

Figure 16.5 on page 292 provides an Automation view of the translation of the
Bank: : Rej ect exception. Refer to “System Exceptions” on page 351 for more
details about exceptions.

string reason;

[propget] HRESULT reason([retval,out] BSTR reason);

291

OrbixCOMet Desktop Programmer’s Guide and Reference

292

1Unknown

I

I Dispatch O—
DIForeignComplexType O——
DIForeignException O—

DICORBAUserException 0—

DIBank_Reject O

Figure 16.5: Automation View of Bank_Reject

System Exceptions

A CORBA system exception maps to the DI CCRBASyst enExcept i on
Automation interface, which derives from D For ei gnExcept i on. For example:

// COM | DL
[ol eaut omation, dual, uuid(.)]
i nterface D OORBASyst entException : D Forei gnException

{
[propget] HRESWLT EX mi nor Code([retval ,out] long * val);

[propget] HRESWLT EX conpl etionStatus([retval,out] |ong *val);
b
The EX_m nor Code attribute defines the type of system exception raised, while
EX_conpl eti onSt at us has one of the following numeric values:

OOMPLETI ON_YES = 0
COMPLETION.NO = 1
COMPLETI ON_NMAYBE = 2

These values are specified as an enum in the type library information, as follows:

typedef enum { COVPLETI ON_YES, COVPLETI ON_NO,
COVPLETI ON_NMAYBE}
CORBA_Conpl eti onSt at us;

This interface is explained in “DICORBASystemException” on page 195.

CORBA-to-Automation Mapping

The Any Type

The OMG IDL any type maps to an OLE VAR ANT type. If the any contains a
simple data type, this maps to a VAR ANT containing a corresponding simple type,
as shown in Table 16.] on page 272. If the any contains a complex type, the
VAR ANT contains an | Di spat ch view of the CORBA type. If the any contains a
CORBA sequence or array type, the VAR ANT contains either an Automation
SafeArray or an OLE Collection, depending on the setting of the

QOMet . Mappi ng. UseSAFEARRAYMappi ng configuration value.

Context Clause

There is no standard CORBA-to-Automation mapping specified for OMG IDL
contexts.

Object References

When an OMG IDL operation returns an object reference, or passes an object
reference as an operation parameter, this is mapped as a reference to an
| D spat ch interface in COM IDL. For example:

/1 OM5 1 DL
interface Sinple

{

b
i nterface (bj Ref Test

{

attribute short shortTest;

attribute S nple sinpleTest;
Sinple sinpleM(in Sinple inTest, out S nple outTest,
inout Sinple inoutTest);

293

OrbixCOMet Desktop Programmer’s Guide and Reference

294

This maps to:

/] oM 1 DL

[ol eaut omation, dual, uuid(.)]

interface DSinple : |D spatch

{
[propget] HRESULT shortTest([retval,out] short * val);
[propput] HRESUWLT shortTest([in] short shortTest);

b

[ol eaut onati on, dual, uuid(.)]

interface D Cbj Ref Test : 1D spatch

{
HRESUWLT sinpleM([in] D Sinple *inTest,
[out] D S nple **out Test,
[in,out] D S nple **inoutTest,
[optional,out] VAR ANT * excep_CBJ,
[retval ,out] DiSinple ** val);
[propget] HRESUWLT sinpleTest([retval,out] DS nple ** val);
[propput] HRESUWLT sinpleTest ([in] D Sinple * sinpleTest);
b

An Automation view interface must expose the | For ei gnQbj ect interface in
addition to the interface that is isomorphic to the mapped CORBA interface.
| For ei gnQhj ect provides a mechanism to extract a valid CORBA object
reference from a view object.

Consider an Automation view object, B, that is passed as an i n parameter to an
operation, M, in view A. Operation M must somehow convert view B to a valid
CORBA object reference. The sequence of events involving

| For ei gnChj ect : : Get For ei gnRef er ence is as follows:

I. The client calls Automation-View-A::M, passing an | D spat ch-derived
pointer to Automation-View-B.

2. Automation-View-A::M calls | D spat ch: : Queryl nt er f ace for
| For ei gn(hj ect .

3. Automation-View-A::M calls | For ei gnQhj ect : : Get For ei gnRef er ence
to get the reference to the CORBA object of type B.

4. Automation-View-A::M calls CORBA-Stub-A::M with the reference,
narrowed to interface type B, as the object reference i n parameter.

CORBA-to-Automation Mapping

Visual Basic

Modules

Visual Basic

The following is a Visual Basic example, based on the preceding mapping rules
for object references:

D m bankCbj As BankBri dge. D Bank
D m account Cbj As BankBri dge. D Account

Get a reference to a Bank object
Set bankChj = ...

Get a reference to an Account object as a return val ue
Set account j = bankChj . newAccount "John"

Use the returned object reference
account (bj . makeDeposit 231. 98

finished, delete the account
bankobj . del et eAccount account (bj

An OMG IDL definition contained within the scope of an OMG IDL module
maps to its corresponding Automation definition, by prefixing the name of the
Automation type definition with the name of the module. For example:

/I M5 1 DL

nodul e Fi nance {
i nterface Bank {

b
b
This maps to:
/1 M I1DL

[ol eaut omation, dual, uuid(.), hel pstring("Fi nance_Bank")]
interface D Finance_Bank : |D spatch {

}

The following Visual Basic example shows how the mapped definition is
subsequently used:

D m bank@j As D Fi nance_Bank

295

OrbixCOMet Desktop Programmer’s Guide and Reference

Constants

Visual Basic

PowerBuilder

There is no Automation definition generated for an OMG IDL constant
definition, because Automation does not have the concept of a constant.
However, code can be generated for an Automation controller, if appropriate.

If an OMG IDL constant is contained within an interface or module, its
translated name is prefixed by the name of the interface or module in the
Automation controller language. (Refer to “Scoped Names” on page 297 for
more details.) For example, the following is an example of an OMG IDL constant
definition:

/1 OMG | DL
const |ong Max = 1000;

The preceding constant definition can be represented in Visual Basic as follows:

Vi sual Basic
"In .BAS file
d obal Const Max = 1000

The preceding constant definition can be represented in PowerBuilder as
follows:

/| Power Bui | der
CONSTANT | ong Max=100

Enumerated Types

296

A CORBA enum maps to an Automation enum. For example:

/1 QG I DL
{

enumcol or { white, blue, red };
interface foo

{
}s

void opl(in color col);

CORBA-to-Automation Mapping

This maps to:

/1 M |1 DL

typedef [public,vl_enunj { white, blue, red } color;
[ol eaut onmati on, dual, uuid(.)]

i nterface foo: | D spatch

{
HRESULT opl([in] color col, [optional, out] VAR ANT *
excep_QBJ);

}

Because Automation maps enum parameters to the platform’s integer type, a
runtime error occurs in the following situations:

® [f the number of elements in the CORBA enum exceeds the maximum
value of an integer.

® [f an actual parameter applied to the mapped parameter in the
Automation view interface exceeds the maximum value of the enum.

If an OMG IDL enum is contained within an interface or module, its translated
name is prefixed with the name of the interface or module in the Automation
controller language. (Refer to “Scoped Names” on page 297 for more details.) If
the enum is declared at global OMG IDL scope, the name of the enum should
also be included in the constant name.

Scoped Names

An OMG IDL scoped name maps to an Automation identifier where the scope
operator, : :, is replaced with _ (that is, an underscore). For example:

/1 QMG 1 DL
nodul e Fi nance {
interface Bank {
struct Personnel Record {

1
voi d addRecord(in Personnel Record r); ...
b
¥
This yields the scoped name, Fi nance: : Bank: : Per sonnel Recor d, which maps
to the Automation identifier, Fi nance_Bank_Per sonnel Recor d.

297

OrbixCOMet Desktop Programmer’s Guide and Reference

Typedefs

298

The mapping of an OMG IDL typedef to Automation depends on the OMG IDL
type for which the typedef is defined.

There is no translation provided for typedefs for the basic OMG IDL types listed
in Table 16.1 on page 272. Therefore, a Visual Basic programmer cannot make
use of these typedef definitions for basic types. For example:

/1 QM5 1 DL
nmodul e MyModul ef
nmodul e Modul e2{
nodul e Modul e3{
interface foo{};
b
b
b
typedef M/Modul e: : Modul e2: : Modul e3: : foo bar;

This can be used as follows in Visual Basic:

Vi sual Basic
Dma as hject
Set a = theQb. Get j ect (" MyModul e/ Modul e2/ Modul e3/ f oo: nmar ker :
server : host nare")
the obj ect
Set a = Not hi ng
' Ceate the object using a typedef alias
Set a = theQb. Get (bj ect ("bar: mar ker : server: host name")

A typedef definition is most often used for array and sequence definitions.

|7

Automation-to-CORBA Mapping

Automation types are defined in Microsoft IDL (COM IDL). CORBA
types are defined in OMG IDL. To allow interworking between
CORBA clients and Automation servers, CORBA clients must be
presented with OMG IDL versions of the interfaces exposed by
Automation objects. Therefore, it must be possible to translate
Automation types to OMG IDL. This chapter outlines the Automation-
to-CORBA mapping rules.

For the purposes of illustration, this chapter describes a textual mapping
between COM IDL and OMG IDL. OrbixCOMet itself does not require this
textual mapping to take place, because it includes a dynamic marshalling engine.
The textual mappings shown in this chapter are actually performed by
OrbixCOMet at application runtime.

299

OrbixCOMet Desktop Programmer’s Guide and Reference

Basic Types

Automation basic types map to compatible types in OMG IDL. Table 17.1 shows
the mapping rules for each basic type.

COMIDL Description OMG IDL Description

VAR ANT_BQOCL 1 6-bit integer bool ean Unsigned char, 8-bit
0 = FALSE 0 = FALSE
-1 = TRUE | = TRUE

uil 8-bit unsigned integer oct et 8-bit quantity

short | 6-bit integer short | 6-bit integer

doubl e IEEE 64-bit float doubl e IEEE 64-bit float

f1 oat IEEE 32-bit float fl oat IEEE 32-bit float

| ong 32-bit integer | ong 32-bit integer

BSTR Length-prefixed string string Null terminated 8-bit

character array

QURRENCY 8-byte fixed-point OOM : Qurrency | OMG IDL struct currency
number

DATE 64-bit floating point doubl e IEEE 64-bit float

SOCDE Built-in error type | ong 32-bit integer

300

Table 17.1: Automation-to-CORBA Mapping Rules for Basic Types

A CORBA view interface provides a CORBA client with a CORBA view of an
Automation object. An operation of a CORBA view interface uses the mappings
shown in Table |7.1, to perform bidirectional translation of parameters and
return types between CORBA and Automation. It translates i n parameters
from CORBA to Automation, and translates out parameters from Automation

back to CORBA.

Automation-to-CORBA Mapping

Because there is not an exact correspondence between the types supported by
CORBA and Automation, the following translations performed by a CORBA
view operation result in a runtime error:

® Translating an i n parameter of the OMG IDL CCM : Qurrency type to
the Automation QURRENCY type, if the supplied GCM : Qur r ency value
does not translate to a meaningful Automation CURRENCY value.

® Translating an i n parameter of the OMG IDL doubl e type to the

Automation DATE type, if the OMG IDL double value is negative or
converts to an impossible date.

Strings

An Automation BSTR maps to an OMG IDL string. For example:

// COM | DL
BSTR addr ess;

This maps to:

/1 OMG | DL

/1 This definition nmight appear within a struct
/1 definition.

string address;

Interfaces

An Automation interface maps to an OMG IDL interface. For example:

/1 QM1 DL
[odl, dual, uuid(.)]
interface account : |D spatch

{
}

[propget] HRESUWLT bal ance([retval,out] float * ret);

301

OrbixCOMet Desktop Programmer’s Guide and Reference

This maps to:

// OMG IDL
i nterface account

{
¥
If the Automation interface does not have a parameter with the [ret val , out]

attributes, its return type maps to the | ong type. This allows COM SOCDE values
to be passed through to the CORBA client.

readonly attribute float bal ance;

Properties and Methods

302

The following mapping rules apply for Automation properties and methods:

¢ An Automation method maps to an OMG IDL operation.

® An Automation property that has a method to get the value, and a
method to set the value, maps to a normal OMG IDL attribute.

¢ An Automation property that only has a method to get the value maps to
a readonl y OMG IDL attribute.

For example:

// M I DL
[odl, dual, uuid(.)]
interface Daccount : |D spatch {

[propput] HRESULT bal ance ([in] float bal ance);
[propget] HRESULT bal ance ([retval ,out] float * ret);
[propget] HRESULT owner ([retval,out] BSTR * ret);
HRESULT nakeLodgenent ([in] float amount,

[out] float * bal ance,

[optional, out] VAR ANT * excep_(BJ);
HRESULT nakeWthdrawal ([in] float anount,

[out] float * bal ance,

[optional, out] VAR ANT * excep_CBJ);

Automation-to-CORBA Mapping

This maps to:

/1l QM5 | DL
i nterface account
attribute float bal ance;
readonly attribute string owner;
| ong nakelLodgerent (i n float anount, out float bal ance);
| ong makeWthdrawal (in float amount, out float bal ance);
¥
The following mapping rules apply for the parameter-passing modes:
® An Automation [i n] parameter maps to an OMG IDL i n parameter.
® An Automation [out] parameter maps to an OMG IDL out parameter.

® An Automation [i n, out] parameter maps to an OMG IDL i nout
parameter.

Inheritance

A hierarchy of Automation interfaces maps to an identical hierarchy of OMG
IDL view interfaces. For example, the following is an example of an account
interface, and its derived checki ngAccount interface:

/1 CGOM | DL
[odl, dual, uuid(.)]
i nterface account: | D spatch
{
[propput] HRESUWLT bal ance([in] float bal ance);
[propget] HRESUWLT bal ance([retval ,out] float * ret);
[propget] HRESWLT owner([retval ,out] BSTR * ret);
HRESULT nakelLodgenent ([in] float anount,
[out] float * bal ance);
HRESULT nmakeWt hdrawal ([in] float anount,
[out] float * bal ance);
¥
i nterface checki ngAccount: account
{
[propget] HRESULT overdraftLimt ([retval,out] short * ret);
HRESULT or der ChequeBook([retval ,out] short * ret);
b

303

OrbixCOMet Desktop Programmer’s Guide and Reference

This maps to:

/1 OM5 | DL
i nterface account
{
attribute float bal ance;
readonly attribute string owner;
| ong makelLodgenent (in float anount, out float bal ance);
I ong makeWthdrawal (in float anount, out float theBal ance);

H

i nterface checki ngAccount: account

{
readonly attribute short overdraftLimt;
short or der ChequeBook() ;

h

SafeArrays

The following Automation-to-CORBA mapping rules apply for SafeArraysI:
® An Automation SafeArray maps to an OMG IDL unbounded sequence.

® When SafeArrays are i n parameters, the view method uses the SafeArray
API to dynamically repackage the SafeArray as an OMG IDL sequence.

® When arrays are out parameters, the view method uses the SafeArray
API to dynamically repackage the OMG IDL sequence as a SafeArray.

Exceptions

The following Automation-to-CORBA mapping rules apply for exceptions:
® Automation system error codes map to OMG IDL standard exceptions.

® Automation user-defined error codes map to OMG IDL user exceptions.

I. An Automation SafeArray is an array of other types that contains (in addition to the data)
information about the size of each element, the number of dimensions, and the size of each
dimension.

304

Automation-to-CORBA Mapping

® An Automation method with a HRESULT return value and an argument

marked as a [ret val]| maps to an OMG IDL method whose return value
is mapped from the [retval] argument.

® An Automation method with a HRESULT return value and no argument

marked as a [retval] maps to a CORBA interface with a long return
value.

Variant Types

An Automation VAR ANT type maps to the OMG IDL any type. If the VAR ANT
type contains a DATE or CURRENCY element, these are mapped as shown in “Basic
Types” on page 300.

Object References

The following COM IDL defines a si npl e interface and another interface that
references si npl e as an i n parameter, an out parameter, an i nout parameter,
and a return value:

// QoM | DL

[odl, dual, uuid(.)]

interface Sinple: |D spatch

{
[propget] HRESUWLT shortTest([retval, out] short * val);
[propput] HRESUWLT shortTest([in] short val);

}

[odl, dual, uuid(.)]
interface (bj Ref Test: | D spatch

{
[propget] HRESULT sinpleTest([retval, out] Sinple ** val);
[propput] HRESULT sinpleTest([in] S nple *pSi npl eTest);
HRESULT sinpleQo([in] Sinple *inTest, [out] S nple **out Test,
[in,out] Sinple **inoutTest, [retval, out] Sinple **val);
}

305

OrbixCOMet Desktop Programmer’s Guide and Reference

This maps to:
/1 OMG 1 DL
interface Sinple
{
attribute short shortTest;
¥
i nterface (hj Ref Test
{
attribute Sinple sinpleTest;
Sinple sinple®(in Sinple inTest, out S nple outTest,
i nout Sinple inoutTest);
h

Enumerated Types

306

An Automation enum maps to an OMG IDL enum. For example:

/] COM 1 DL
typedef enumcol or {red=2, green=0, blue=1};
[odl, dual, wuuid(.)]
interface foo: |D spatch{
HRESULT op1([in] color col);

}
This maps to:
/I QMG | DL

enumcol or { green, blue, red };
i nterface foof
I ong opl(in color col);

b

Automation enumerators can have explicitly assigned values. In CORBA, rather

than being explicitly assigned, enum values start at zero and increase in

increments of one. Because OMG IDL does not support explicitly tagged
enumerators, the CORBA view of an Automation object must maintain the
mapping of the values of the enumerators. Therefore, Automation enums with
explicitly assigned values map to OMG IDL enums in ascending order of their

value, to preserve the order of the enumerators.

Automation-to-CORBA Mapping

Typedefs

An Automation typedef maps to an OMG IDL typedef. For example:

/1 M| DL
typedef [public] BSTR cust Nare;

This maps to:

/1 OMG I DL
typedef string custNane;

The only exception to this is an Automation enum that is required to be a
typedef. For example:

/1 QM1 DL
typedef enum{red, green, blue} color;
[odl, dual, uuid(.)]
interface foo: |D spatch{
HRESULT opl([in] color col,
[optional ,out] VARIANT * excep_CBJ);

}
This maps to:
/1l QMG | DL

enum col or {red, green, blue};
interface foo

{
}

void opl(in color col);

307

OrbixCOMet Desktop Programmer’s Guide and Reference

308

|8

CORBA-to-COM Mapping

CORBA types are defined in OMG IDL. COM types are defined in
Microsoft IDL (COM IDL). To allow interworking between COM
clients and CORBA servers, COM clients must be presented with
COM IDL versions of the interfaces exposed by CORBA objects.
Therefore, it must be possible to translate CORBA types to COM
IDL. This chapter outlines the CORBA-to-COM mapping rules.

For the purposes of illustration, this chapter describes a textual mapping
between OMG IDL and COM IDL. OrbixCOMet itself does not require this
textual mapping to take place, because it includes a dynamic marshalling engine.
The textual mappings shown in this chapter are actually performed by
OrbixCOMet at runtime.

309

OrbixCOMet Desktop Programmer’s Guide and Reference

Basic Types

OMG IDL basic types map to compatible types in COM. Table 18.1 shows the

mapping rules for each basic type.

OMG IDL Description COMIDL Description
bool ean Unsigned char, 8-bit bool ean | 6-bit integer

0 = FALSE 0 = FALSE

1= TRE 1= TRE
char 8-bit quantity char 8-bit quantity
doubl e IEEE 64-bit float doubl e IEEE 64-bit float
fl oat IEEE 32-bit float float IEEE 32-bit float
| ong 32-bit integer | ong 32-bit integer
oct et 8-bit quantity unsi gned char 8-bit quantity
short | 6-bit integer short | 6-bit integer

unsi gned | ong

32-bit integer

unsi gned | ong

32-bit integer

unsi gned short

1 6-bit integer

unsi gned short

1 6-bit integer

unsi gned char

8-bit quantity

unsi gned char

8-bit quantity

Table 18.1: CORBA-to-COM Mapping Rules for Basic Types

Strings

An OMG IDL string maps to a COM IDL LPSTR which is a null-terminated 8-bit
character string. The following subsections describe the mappings for bounded
and unbounded strings.

310

CORBA-to-COM Mapping

Unbounded Strings

The following is a definition for an OMG IDL unbounded string:

/1 OM5 1 DL
typedef string UNBOUNDED STR NG

This maps to:

// QM | DL
typedef [string, unique] char * UNBOMNNDED STR NG

Bounded Strings

The following is a definition for an OMG IDL bounded string:

// QMG | DL
const long N = ...
typdef string<N>BOUNDED STRI NG

This maps to:

/1 COM 1 DL
const long N = ...
typdef [string, unique] char (*BAUNDED STRING [N;

Interfaces

An OMG IDL Reposi toryld maps to a COM IDL I | D (Interface ID) that is
similar to the DCE UUJ D (or identical in the case of Windows32-bit programs).

The mapping is achieved by using a derivative of the RSA Data Security Inc. MD5
Message-Digest algorithm. The Reposi t or yl d is fed into the algorithm to
produce a 128-bit hash identifier.

When the Reposi toryl disa DCE UJ D the DCE UJ Dis used as the | | Dfor a
COM view of a CORBA interface.

When the Reposi toryl d is not a DCE UJ D, the | | Dgenerated from the
Reposi t oryl d is used for a COM view of a CORBA interface.

311

OrbixCOMet Desktop Programmer’s Guide and Reference

Attributes

312

An OMG IDL attribute maps to a COM IDL attribute, as follows:

® A normal attribute maps to a property that has a method to set the value
and a method to get the value.

® Avreadonly attribute maps to a property that only has a method to get
the value.

For example:

// QM5 I DL
struct CQustonerDat a
{

Qustonerld 1d;

string Nane;

string SurNare;
h

#pragma | D "BANK : Account” "I DL: BANK/ Account: 3. 1"
i nterface Account

{
readonly attribute float Bal ance;
float Deposit(in float amount) raises(lnvalidAmount);
float Wthdrawal (in float anmount) rai ses(! nsuf Funds,
I nval i dAnount) ;
float dose();
h

#pragma | D "BANK : Qustoner" "I DL: BANK/ Cust oner: 1. 2"
i nterface Qustormer

{
attribute QustonerData Profile:
b
In this case, the read-write Prof i | e attribute maps to the following COM IDL:
/1 COM 1 DL

[obj ect, uui d(..), poi nter _defaul t (uni que)]

interface | BANK Qustoner: | Unknown

{
HRESULT _get _Profile([out] BANK QustorerData * val);
HRESULT _put_Profile([in] BANK QustonerData * val);

}s

CORBA-to-COM Mapping

The readonly Bal ance attribute maps to the following COM IDL:

// QM | DL

[obj ect, uui d(..)]

interface | BANK Account: | Unknown
{

}

The get method returns the attribute value contained in the [out] parameter.

HRESULT _get_Bal ance([out] float * val);

Operations

An OMG IDL operation maps to a COM IDL method. For example:

/1 OM5 1 DL
#pragma | D "BANK : Tel | er” "1 DL: BANK/ Tel l er: 1. 2"
interface Teller

{
Account CpenAccount (in float StartingBal ance,
i n Account Types Account Type);
void Transfer(in Account Accountl, in Account Account?2,
in float Avount) raises (InSufFunds);
b
This maps to:
/1 QoM 1 DL

[obj ect, uui d(..}, poi nt er _def aul t (uni que)]
interface | BANK Tel |l er: | Unknown
{
HRESULT penAccount ([in] float StartingBal ance,
[in] 1BANK Account Types Account Type,
[out] I BANK Account ** ppi NewAccount);
HRESULT Transfer([in] | BANK Account * Accountl,
[in] 1BANK Account * Account2, [in] float Amount,
[out] BANK Tel |l er Exceptions ** ppException);
b
The following mapping rules apply for parameters and return types:
®* An OMG IDL i n parameter maps toa COM IDL [i n] parameter.

®* An OMG IDL out parameter maps to a COM IDL [out] parameter.

313

OrbixCOMet Desktop Programmer’s Guide and Reference

® An OMG IDL i nout parameter maps to a COM IDL [in, out]
parameter.

®* An OMG IDL return type maps to a COM IDL [out] parameter as the
last parameter in the signature.

Inheritance

CORBA and COM have different models for inheritance. CORBA interfaces can
be multiply inherited, but COM does not support multiple interface inheritance.
The CORBA-to-COM mapping rules for an interface hierarchy are as follows:

¢ Each OMG IDL interface that does not have a parent maps to a COM IDL
interface derived from the | Unknown interface.

¢ Each OMG IDL interface that inherits from a single parent maps to a
COM IDL interface deriving from the mapping for the parent interface.

¢ Each OMG IDL interface that inherits from multiple parents is mapped to
a COM IDL interface derived from the | Unknown interface. This COM
IDL interface then aggregates both base interfaces.

® For each CORBA interface, the mapping for operations precedes the
mapping for attributes.

Figure 18.1 on page 315 shows a CORBA interface hierarchy. In this hierarchy:

® Account and Si npl e derive from Bank.
® (Checki ngDet ai | s derives from Account and Si npl e.
® M scel | aneous derives from Checki ngDet ai | s.

The following OMG IDL represents the interface hierarchy in Figure 18.1:

// OMG DL
i nterface Bank

{
voi d opBank();
attribute long val;

b
i nterface Account: Bank
{

voi d opAccount ();
b

314

CORBA-to-COM Mapping

interface S nple: Bank
{

b
i nterface Checki ngDetail s: Account, Si npl e

{

voi d opSi npl e();

voi d opChecki ngDet ai | s();

|
interface Test
{
voi d opTest();
|

i nterface M scel | aneous: Checki ngDet ai | s, Test

{
s

voi d opM scel | aneous();

Bank

/N

Account Simple

\

CheckingDetails

Miscellaneous

Figure 18.1: Example of a CORBA Interface Hierarchy

315

OrbixCOMet Desktop Programmer’s Guide and Reference

316

This maps to the following COM IDL:

// COM | OL
[obj ect, uuid(..)]
interface | Bank: | Unknown

{
HRESULT opBank();
HRESULT get val ([out] long * val);
HRESULT set val ([in] long val);

h

[{object,uuid(.)]
interface | Account: |Bank

{

1

[obj ect, uui d(..)]
interface IS nple: |Bank
{

1
[obj ect, uui d(.)]
i nterface | CheckingDetails: |Unknown

{

b
[obj ect, uui d(..)]
interface | Test: | Unknown

{

b
[obj ect, uui d(..)]
interface I Mscellaneous: | Uhknown

{
}s

HRESULT opAccount ();

HRESULT opSi npl e() ;

HRESULT opChecki ngbet ai | s();

HRESULT opTest ();

HRESULT opM scel | aneous() ;

Note: When the interface defined in OMG IDL is mapped to its corresponding
statements in COM IDL, the name of the interface is preceded by the
letter | . If the interface is scoped by OMG IDL modules, using : :, this is
replaced by an underscore (for example, f 0o: : bar maps to | f oo_bar).

CORBA-to-COM Mapping

Complex Types

OMG IDL includes a number of types that do not have counterparts in COM
IDL. This section describes the CORBA-to-COM mapping rules for the
following complex types:

e Structs

® Unions

® Sequences
® Arrays

* Anys

Creating Constructed OMG IDL Types

Structs

OMG IDL constructed types such as st ruct, uni on, sequence and excepti on
map to corresponding struct types in COM IDL.

To create a complex OMG IDL type, you should simply instantiate an instance of
its COM IDL st ruct type. You must create an object representing an OMG IDL
constructed type in a client, to pass it as an i n or i nout parameter to an OMG
IDL operation. You can create an object representing an OMG IDL constructed
type in a server, to return it as an out or i nout parameter, or return value, from
an OMG IDL operation.

An OMG IDL struct maps to a COM IDL struct. For example:

/1 OM5 | DL

typedef ...TO;
typedef ...T1,
typedef ...T2;

typedef ...Tn;
struct STRUCTURE
{

TO no;

T1 nt;

317

OrbixCOMet Desktop Programmer’s Guide and Reference

T2 ng;

.TnnN;
b

This maps to:

/] oM 1 DL

typedef ...TO;
typedef ...T1;
typedef ...T2;

typedef ...Tn;
typedef struct

{
TO nO;
T1 ni;
T2 ng;
Tn ni\
}
STRUCTURE;

Self-referential data types are expanded in the same manner. For example:

[l QMG I DL
struct A

{
}s

This maps to:

/1 OOV I DL
typedef struct A

{

sequence<A> vi,;

struct

{
unsi gned | ong cbMaxSi ze;
unsi gned | ong cblLengt hised;
[size_i s(cbMaxSi ze), |ength_is(cbLengt hUsed), unique]
struct A * pVal ue;

} v

PA

318

CORBA-to-COM Mapping

Unions

A discriminated union in OMG IDL maps to an encapsulated union in COM IDL.
For example:

// OMG I DL
enum UNL CN_DI SCR M NATCR
{
dChar =0;
dShort,
dLong,
dFl oat,
dDoubl €} ;
uni on UNION CF CHAR AND AR THVETI C
switch (UN ON D SCR M NATCR)

{
case dChar: char c;
case dShort: short s;
case dLong: long |;
case dFloat: float f:
case dDoubl e: doubl e d;
default: octet v[8];
b
This maps to:
// QM | DL

typedef enum [v1_enum publ i c]

dchar =o,
dshort,
dLong,
dFl oat ,
dDoubl e,

} UN ON D SCR M NATCR,

typedef union switch (UN ON D SCR M NATCR DCE_d)
{
case dChar: char c;
case dShort: short s;
case dLong: long |;
case dFloat: float f;
case dDoubl e: doubl e d;
default: byte v[8];
} UNON G- CHAR AND AR TH

319

OrbixCOMet Desktop Programmer’s Guide and Reference

Sequences

CORBA sequences have no direct corresponding type in COM. A CORBA
sequence can be bounded (that is, of fixed length) or unbounded (that is, of
variable length). A CORBA sequence maps to a COM structure. This section
describes the CORBA-to-COM mapping rules for bounded and unbounded
sequences.

Unbounded Sequences

The following is an OMG IDL unbounded sequence of some type, T:

/1 OM5 1 DL
typedef ...T;
typedef sequence<T> UNBOUNDED SEQUENCE;

This maps to:

// COM I DL
typedef ...U
typedef struct

{

unsi gned | ong cbMaxSi ze;
unsi gned | ong cbLengt hUsed;
[size_i s(cbMaxSi ze), | ength_i s(cbLengt hUsed),
uni que] U * pVal ue;
} UNBOUNDED SEQUENCE;

In the preceding example, the encoding for the unbounded OMG IDL sequence
of type T is that of a COM IDL struct containing a unique pointer to a
conformant array of type U, where Uis the COM IDL mapping of T. The
enclosing struct in the COM IDL mapping is necessary, to provide a scope in
which extent and data bounds can be defined.

Bounded Sequences

The following is an OMG IDL bounded sequence of some T type, which can
grow to be N size):

/[l MG 1D

const long N = ..

typedef ... T;

typedef sequence<T, N> BONDED SEQUENCE CF N

320

CORBA-to-COM Mapping

Arrays

This maps to:

/1 M |1 DL

const long N = ...
typedef ...U

t ypedef struct

{
unsi gned | ong reserved;
unsi gned | ong cblLengt hiked;
[l'ength_i s(cbLengt hUsed)] U Value N
} BOUNDED SEQUENCE CF N

The maximum size of the bounded sequence is declared in the declaration of the
array. A [si ze_i s()] attribute is therefore not needed.

OMG IDL arrays map to corresponding COM arrays. The array element types
follow their standard mapping rules. The following is an OMG IDL array of some
type, T:

/1 CM5 1 DL

const long N = ...
typedef ... T;

typedef T ARRAY CF T[N ;

This maps to a COM IDL array of type U

/1 M1 DL

const long N = ...
typedef ...U

typedef U ARRAY_ CF UN;

In this example, the COM IDL array of type Uis the result of mapping the OMG
IDLT into COM IDL.

Note: If the ellipsis (that is, ..) in the OMG IDL example represents oct et, the
ellipsis in the COM IDL example must be byt e. That is why the types of
the array elements have different names in the two texts.

321

OrbixCOMet Desktop Programmer’s Guide and Reference

Exceptions

322

The CORBA model uses exceptions to report error information. Exceptions are
classified into two categories:

I. System exceptions can be raised by any operation. A standard set of
system exceptions is defined by CORBA, and Orbix provides a number of
additional system exceptions. These system exceptions are listed in
“System Exceptions” on page 351.

2. User exceptions are defined in OMG IDL. An OMG IDL operation can
optionally specify that it might raise a specific set of user exceptions. An

OMG IDL operation might also raise a system exception, but this is not
defined at the OMG IDL level.

User Exceptions

An OMG IDL user-defined exception maps to a COM IDL interface and an
exception structure that appears as the last parameter of any operation mapped
from OMG IDL to COM IDL.

For example, if an operation in M/Mbdul e: : Myl nt er f ace raises a user
exception, an exception structure named MyMddul e_M/I nt er f aceExcept i ons is
created. This is then mapped as an output parameter to COM IDL.

The following OMG IDL shows the definition of the format used to represent
user exceptions:

// OM5 I DL
nodul e BANK

{

exception InsufficientFunds {fl oat bal ance};
exception InvalidArunt {float anmount};

i nterface Account

{
exception Not Aut hori zed{};
float Deposit(in float Arount) raises(lnvalidAnount);
float Wthdraw(in float Amount) raises(IlnvalidAmount,
Not Aut hori zed) ;
b

CORBA-to-COM Mapping

This maps to:

/1 CGOM 1 DL
struct BANK | nsuffi ci ent Funds

fl oat bal ance;

b
struct BANK | nval i dAnount
{
float anount;
b
struct BANK Account _Not Aut hori zed
{
b
i nterface | BANK Account User Excepti ons: | Unknown
{
HRESULT get _I nsufficient Funds([out] BANK I nsuffi ci ent Funds *
except i onBody) ;
HRESULT get _I nval i dAnount ([out] BANK | nval i dAmount *
except i onBody) ;
HRESULT get _Not Aut hori zed([out] BANK Account _Not Aut hori zed *
except i onBody) ;
b

typedef struct

{

Excepti onType type;

LPSTR reposi toryld;

| BANK_Account User Excepti ons * pi User Excepti on;
} BANK Account Excepti ons

System Exceptions

A CORBA system exception maps to a COM interface defined as follows:

/1 QM1 DL

SetErrorInfo(C, NULL); //Initialize the thread-1ocal error object
try

{

/1 Call the OCRBA operation

catch(..)

323

OrbixCOMet Desktop Programmer’s Guide and Reference

O eateErrorlnfo(&pl OeateErrorlnfo);

pl O eat eErr or | nf o- >Set Sour ce(..);

pl O eat eEr ror | nf o- >Set Descri ption(..);

pl OeateErrorlnfo->Set GJ I .);

pl O eat eErrorl nfo->Querylnterface(l 1D | Errorlnfo,
&pl Errorl nfo);

pl O eateErrorl nfo->Set Errorlnfo(Q, pl Errorlnfo);

pl Error | nf o- >Rel ease() ;

pl O eat eError | nf o- >Rel ease() ;

}

A client to a COM view accesses the error object as follows:

/1 OOM C++
/1 After obtaining a pointer to an interface on the COMvi ew, the
/1l client does the followi ng one tine
pl M/Mapped| nt er f ace- >Queryl nterface(l1D_| Support Errorlnfo,
&pl Support Errorlnfo);
hr = pl Support Errorl nf o- >l nt erf aceSupport sErrorlnfo
(11 D_M/Mapped! nt er f ace) ;
BOOL bSupportsErrorinfo = (hr == NCERROR ? TRUE : FALSE);

/l Call to the OOM operation...
HRESULT hr Qperation = pl M/Mapped! nt erf ace->...

i f (bSupportsErrorlnfo)

{
HRESULT hr = GetErrorinfo(Q &l Errorlnfo);
/1 S FALSE neans that error data is not avail able
/1 NOERRCR neans it is available
if (hr == NO ERROR
{
pl Error | nf o- >Get Source(..);
// Has repository id and mnor code
I/ hrQperation has the conpl etion status encoded into it
pl Error| nf o- >Get Descri ption(..);
}
}

324

CORBA-to-COM Mapping

The Any Type

The OMG IDL any type does not map directly to COM. It maps to the following
interface definition:

/1 COM DL

typedef [v1_enum public]

enum CCORBAAny Dat aTagEnun{

anySi npl eVal Tag=0,

anyAnyVal Tag,
anySeqgVal Tag,
anySt ruct Val Tag,
anyUhi onVal Tag

} CORBAAnyDat aTag;

t ypedef uni on CCRBAAnyDat alhi on
swi t ch(GCCRBAAnyDat aTag whi ch(ne) {

case anyAnyVal Tag: | OCRBA Any *anyVal ;

case anySeqval Tag:

case anyStruct Val Tag:

struct {
[string, unique] char * repositoryld;
unsi gned | ong cbMaxSi ze;
unsi gned | ong cbLengt h- Used;
[size_i s(cbMaxSi ze), | engt h_i s(cbLengt hUsed) , uni que]
uni on CCRBAAnyDat Uni on *pVal ;

mul tiVal ;
case anyUni onVal Tag;
struct{
[string, unique] char * repositoryld;
| ong di sc;
uni on CCRBAAnyDat alni on *val ue;
uni onVval ;
case any(hj ect Val Tag:
struct{
[string, unique] char * repositoryld;
VAR ANT val ;
obj ect Val ;

case anySinpl eVal Tag: //A| other types
VAR ANT si npl eVal ;
} CORBAAnyDat a;
Luuidf L]

325

OrbixCOMet Desktop Programmer’s Guide and Reference

interface | GCORBA Any: | Unknown

{
HRESULT _get _val ue([out] VAR ANT * val);
HRESULT _put_val ue([in] VAR ANT val);
HRESULT _get CCRBAAnyDat a([out] CCRBAAnyData * val);
HRESULT _put _CCRBAAnyDat a([in] OCRBAAnyData val) ;
HRESULT _get _typeCode([out] | CORBA TypeCode ** tc);
}

Context Clause

There is no standard CORBA-to-COM mapping specified for OMG IDL
contexts.

Object References

When an OMG IDL operation returns an object reference, or passes an object
reference as an operation parameter, this is mapped to a reference to an
| Unknown-based interface in COM IDL. For example:

/1 QMG I DL
interface Account {

}s

interface Bank {
Account newAccount (in string nane);
del et eAccount (i n Account a);

b
This maps to:
// oM 1Dl

[object, uuid(.)]
interface IBank : | UWdknown {
HRESULT newAccount ([in] LPSTR it_nane,
[out] IAccount ** value);
HRESULT del et eAccount ([in] | Account * account);

b

326

CORBA-to-COM Mapping

The following COM C++ code is based on the preceding COM IDL definition:

// Get a pointer to the Bank interface (plF) using the Get (hject()
/1 method of | CORBAFactory

HRESULT hr = NCERRCR,

LPSTR szNane = "John Smth";

fl oat bal ance = 0, deposit = 10.0;

| Account *pAcc = O;

hr = pl F->newAccount (szNane, &pAcc, NUL);
hr = pAcc- >makelLodgenent (deposit);
hr = pAcc->_get _bal ance(&al ance) ;

cout << "bal ance is" << bal ance << endl;
hr = pl F->del et eAccount (pAcc) ;
pAcc- >Rel ease() ;

Modules

An OMG IDL definition contained within the scope of an OMG IDL module
maps to its corresponding COM IDL definition, by prefixing the name of the
COM IDL type definition with the name of the module. For example:

[/ QM5 | DL
nodul e Fi nance {
i nterface Bank {

b
b
This maps to:
[object, uuid(.), helpstring("Fi nance_Bank")]
interface | F nance_Bank : | Unknown {

}

327

OrbixCOMet Desktop Programmer’s Guide and Reference

Constants

An OMG IDL const type maps to a COM IDL const type. For example:

// QM5 I DL

const short S = ..

const long L = ..

const unsigned short US = ...
const unsigned long WL = ..
const float F = ..

const double D = ..,

const char C= ..

const boolean B = ..

const string STR = ".7;

This maps to:

// QM | OL

const short S = ..,

const long L = ..,

const unsigned short US = ...
const unsigned long WL = ..,
const float F = ..

const double D= ..

const char C = .,

const bool ean B
const LPSTR STR = “.;

Enumerated Types

A CORBA enum maps to a COM enum. For example:

/1 QM5 1 DL
interface MiIntf

{
}s

enumA or_ Bor C{AB G;

328

CORBA-to-COM Mapping

This maps to:

// CoM I DL
[uuvid(.), .1
interface | MIntf
{
typedef [vl_enum public]
enumM/Intf_Aor_ Bor_ C{MIntf_A=0 MIntf_B MiIntf_CG
Mintf_Aor_B or_C
b
CORBA has enums that are not explicitly tagged with values. On the other hand,
COM IDL supports enums that are explicitly tagged with values. Therefore, any
language mapping that permits two enums to be compared, or which defines

successor or predecessor functions on enums, must conform to the ordering of
the enums as specified in OMG IDL.

CORBA observes scoping of enum declarations, but COM ignores such scoping
and always treats an enum declaration as though it were globally defined. To
avoid potential name clashes, translated enums in COM IDL are prefixed with
the enclosing type in which they are declared. Therefore, in the preceding
example, the OMG IDL A or _B or _Cenum is mapped to M/Intf_A or_B or_C

The COM IDL keyword, v1_enum is required for an enum to be transmitted as
32-bit values. Microsoft recommends that this keyword is used on 32-bit
platforms, because it increases the efficiency of marshalling and unmarshalling
data when such an enum is embedded in a structure or union.

CORBA supports enums with up to 232 identifiers, but COM IDL only supports
2'® identifiers. Truncation might therefore result.

329

OrbixCOMet Desktop Programmer’s Guide and Reference

Scoped Names

An OMG IDL scoped name must be fully qualified in COM IDL to prevent
accidental name collisions. For example:

/1 QMG I DL
nodul e Bank {
interface ATM {
enum type {CHECKS, CASH ;
struct DepositRecord {
string account;
float anount;

type ki nd;
b
voi d deposit(in DepositRecord val);
h
This maps to:
QoM 1 DL

[uuid(.), object]
i nterface | BANK_ATM | Unknown {
typedef [v1l enun] enum BANK ATMtype
{ BANK_ATM CHECKS, BANK_ATM CASH} BANK_ATM type;
typedef struct

{
LPSTR account ;
fl oat anount;
BANK_ATM t ype ki nd;
}

BANK_ATM Deposi t Recor d;
HRESULT deposit (i n BANK_ATM Deposit Record * val);

330

CORBA-to-COM Mapping

Typedefs

A CORBA typedef maps to a COM IDL typedef. A typedef is most often used
for array and sequence definitions. For example:

/1 OM5 1 DL

interface Account {.};

typedef sequence<Account, 100> AccountLi st;
This maps to:

[object, LUD.)]
interface | Account : |Unknown {.};
Typedef struct {

} Account Li st;

331

OrbixCOMet Desktop Programmer’s Guide and Reference

332

|9

COM-to-CORBA Mapping

COM types are defined in Microsoft IDL (COM IDL). CORBA types
are defined in OMG IDL. To allow interworking between CORBA
clients and COM servers, CORBA clients must be presented with
OMG IDL versions of the interfaces exposed by COM objects.
Therefore, it must be possible to translate COM types to OMG IDL.
This chapter outlines the COM-to-CORBA mapping rules.

For the purposes of illustration, this chapter describes a textual mapping
between COM IDL and OMG IDL. OrbixCOMet itself does not require this
textual mapping to take place, because it includes a dynamic marshalling engine.
The textual mappings shown in this chapter are actually performed by
OrbixCOMet at application runtime.

333

OrbixCOMet Desktop Programmer’s Guide and Reference

Basic Types

COM basic types map to corresponding types in CORBA. Table 19.1 shows the

mapping rules for each basic type.

COMIDL Description OMG IDL Description

bool ean Unsigned char, 8-bit bool ean Unsigned char, 8-bit
0 = FALSE 0 = FALSE
1 =TRE 1 =TRE

byt e oct et 8-bit quantity

char 8-bit quantity char 8-bit quantity

doubl e IEEE 64-bit float doubl e IEEE 64-bit float

fl oat IEEE 32-bit float f1 oat IEEE 32-bit float

| ong 32-bit integer [ong 32-bit integer

short | 6-bit integer short | 6-bit integer

unsi gned | ong

32-bit integer

unsi gned | ong

32-bit integer

unsi gned short

1 6-bit integer

unsi gned short

16-bit integer

334

Table 19.1: COM-to-CORBA Mapping Rules for Basic Types

COM-to-CORBA Mapping

Strings

Table 19.2 shows the COM-to-CORBA mapping rules for strings.

COMIDL OMG IDL | Description

LPSTR [st ri ng, uni que] char * string Null-terminated 8-bit character string.
BSTR string Null-terminated | 6-bit character sting.
LPWATR [stri ng, uni que] wchar t* string Null-terminated unicode string.

Table 19.2: COM IDL to OMG IDL String Mappings

An error occurs if a COM server returns a BSTR containing embedded nulls to a
CORBA client.

Unbounded Strings

The following is a COM IDL statement for an unbounded string:

/1 QM1 DL
typedef [string, unique] char * UNBOUNDED STR NG

This maps to:

/1 QMG I DL
typedef string UNBOUNDED STR NG

Bounded Strings

The following is a COM IDL statement for a bounded string:

// QM1 DL
const long N = ..
typedef [string,unique] char (* BOUNDED STRING [N;

This maps to:

// QM5 | DL
const long N = .,
typedef string<N> BOMNDED STR NG

335

OrbixCOMet Desktop Programmer’s Guide and Reference

Unicode Unbounded Strings

The following is a COM IDL statement for a unicode unbounded string:

/1 OOV I DL
typedef [string,unique] LPWSTR UNBOUNDED UN CCDE_STR NG

This maps to:

// QM5 1 DL
typedef string UNBOUNDED UN CCDE_STRI NG

Unicode Bounded String

The following is a COM IDL statement for a unicode bounded string:

/] COM 1 DL
const long N = ..
typedef [string,unique] wchar t*(BOUNDED UN CCDE_ STRING [N ;

This maps to:

// QM5 I DL
const long N = ..
typedef string<N> BOUNDED UN CCDE_STR NG

Interfaces

This section describes the COM-to-CORBA mapping rules for interfaces. A
COM interface maps to an OMG IDL interface.

Properties and Methods

The following mapping rules apply for COM properties and methods:
¢ A COM method maps to an OMG IDL operation.

* A COM property that has a method to get the value, and a method to set
the value, maps to a normal OMG IDL attribute.

® A COM property that only has a method to get the value maps to a
readonly OMG IDL attribute.

336

COM-to-CORBA Mapping

For example:

/1 M |1 DL
interface | Foo: | Unknown
{
HRESULT stringify([in] VAR ANT val ue, [out,retval] LPSTR *
pszVal ue);
HRESULT permute([inout] short * val ue);
HRESULT tryPermute([inout] short * value, [out] long *
newval ue) ;
/1 f is a propget/propput pair
[propget] HRESULT f([out] float* val);
[propput] HRESWLT f([in] float val);
/11 is a propget only
HRESULT I ([out,retval] |ong* val);
/1 bis a propput only
[propput] HRESUWLT b([in] bool ean val);

b
This maps to:
/1 QMG | DL

typedef | ong HRESULT;
i nterface | Foo

{
string stringify(in any val ue) raises (CQOM ERRCR OOM ERRCREX) ;
voi d pernmute(inout short val ue);
voi d tryPernute(i nout short value, out |ong newval ue);
attribute float f;
readonly attribute long I;
attribute bool ean b;

b

The following mapping rules apply for parameters and return types:
¢ ACOMIDL[in] parameter maps to an OMG IDL i n parameter.
®* ACOMIDL[out] parameter maps to an OMG IDL out parameter.

®* ACOMIDL[inout] parameter maps to an OMG IDL i n, out
parameter.

* ACOMIDL[retval,out] parameter maps to an OMG IDLreturn
value.

337

OrbixCOMet Desktop Programmer’s Guide and Reference

All COM interfaces must have a HRESULT return type (which is essentially a
typedef to a | ong type) that is used in COM for exception reporting. Because
CORBA has a richer exception hierarchy, the HRESULT types are not included in
the mapping. Instead, they are mapped to equivalent CORBA system exceptions.

Inheritance

338

CORBA and COM have different models for inheritance. CORBA interfaces can
be multiply inherited, but COM does not support multiple interface inheritance.

OCRBA: : Conposi t e is a general purpose interface that is used to provide a
standard mechanism for accessing multiple interfaces from a client, even though
those interfaces are not related by inheritance. It is defined in CORBA as
follows:

/1 PIDL
{
interface Conposite
{
(hj ect query_interface(in Repositoryld whi che);
b
i nterface Conposabl e: Conposite
{
Conposite primary_interface();
b

b

The root of a COM interface inheritance tree, when mapped to CORBA, is
multiply inherited from OCRBA: : Conposabl e and

CoslLi f eCycl e: : Li f eCycl eChj ect . Any COM method parameters that require
I Unknown interfaces as arguments are mapped in OMG IDL to object references
of the QORBA: : (hj ect type.

The following is a COM IDL definiton for an interface, | Foo:

/1 QoM 1 DL

interface | Foo: | Unknown
{
HRESULT inquire([in] |UWiknown *obj);
}s

COM-to-CORBA Mapping

This maps to:

/1 QMG I DL
interface | Foo: OCRBA: : Conposabl e, CosLi f eCycl e: : Li f eCycl ehj ect

{
b

void inquire(in Cbject obj);

Complex Types

This section describes the COM-to-CORBA mapping rules for the following
complex types:

® Structs
* Unions
® Pointers
® Arrays

® Exceptions
® Variants

COM constructed types such as struct, uni on, and array map to the
corresponding CORBA constructed types. This is outlined in the following
subsections.

Structs

A COM IDL struct maps to a corresponding struct in OMG IDL. Each field in the
struct is mapped according to the mapping rules for its type. For example:

// COM I DL

struct foo {
long I|;
LPTSTR s;

339

OrbixCOMet Desktop Programmer’s Guide and Reference

This maps to:

/1 OMG | DL

struct foo {
long |;
string s;

I

Unions

This section describes the COM-to-CORBA mapping rules for encapsulated and
non-encapsulated unions.

Encapsulated Unions

The following is an example of a COM IDL encapsulated union:

/]l COM I DL
typedef enum
{
dchar,
dShort,
dLong,
dFl oat ,
dDoubl e} UNI ON_DI SCRI M NATCR;
typedef union switch (UNI ON_DI SCRI M NATOR _d)
{
case dChar: char c;
case dShort: short s;
case dLong: long I;
case dFl oat: float f;
case dDoubl e: doubl e d;
default: byte v[8];
} UNI ON_OF_CHAR_AND_ARI THVETI C;

This maps to:

// OMG | DL
enum UNI ON_DI SCRI M NATCR
{
dChar,
dShort,
dLong,

340

COM-to-CORBA Mapping

dFl oat ,
dDoubl e
}s
uni on UNI ON_OF_CHAR AND ARI THVETI C

swi t ch(UNI ON_DI SCRI M NATCR)

{

case dChar: char c;

case dShort: short s;

case dLong: long |;

case dFl oat: float f;

case dDoubl e: doubl e d;

default: octet v[8];

}s

Non-Encapsulated Unions

COM IDL non-encapsulated unions (and COM IDL encapsulated unions with
non-constant discriminators) map to the OMG IDL any type. For example:

/1 COM I DL
typedef [swi tch_type(short)] union
tagUNI ON_OF_CHAR_AND_ARI THMETI C

{

[case(0)] char c;

[case(1)] short s;

[case(2)] long I;

[case(3)] float f;

[case(4)] double d;

[default] byte v[8];

} UNI ON_OF_CHAR_AND_ARI THVETI C;

This maps to:

/1 OMG I DL
typedef any UNION_OF CHAR AND_ARI THVETI C;

Note: The type of the OMG IDL any is determined at runtime during
conversion of the COM IDL union.

341

OrbixCOMet Desktop Programmer’s Guide and Reference

Pointers

Arrays

342

The following mapping rules apply for pointers:

A COM IDL reference pointer maps to a CORBA sequence containing
one element.

A COM IDL unique pointer (with no aliases or cycles) maps to a CORBA
sequence containing zero or one elements.

A COM IDL full pointer (with no aliases or cycles) maps to a CORBA
sequence containing zero or one elements.

A runtime error occurs in the following situations:

If a COM client passes a full pointer containing aliases or cycles to a
CORBA server.

If a COM server attempts to return a full pointer containing aliases or
cycles to a CORBA client.

This section describes the COM-to-CORBA mapping rules for arrays.

Fixed Arrays

A COM IDL fixed-length array maps to an OMG IDL fixed-length array. The
type of the array element is mapped according to the mapping rules for that
type. For example:

/1 COM I DL

const long N = .;

typedef ... U;

typedef U ARRAY_COF_N N ;
typedef float DTYPE[O..10];

This maps to:
/[l OMG | DL
const long N = .;
typedef ... T;

typedef T ARRAY_OF N N ;
typedef float DTYPE 11];

COM-to-CORBA Mapping

Non-Fixed Arrays
A COM IDL non-fixed-length array maps to an OMG IDL sequence. For
example:

/1 COM | DL
typedef short BTYPE[]; // Equivalent to [*];
typedef char CTYPE[*];

This maps to:

/1 OMG I DL
t ypedef sequence<short> BTYPE;
t ypedef sequence<char> CTYPE;

Exceptions

This section describes the COM-to-CORBA mapping rules for exceptions.

System Exceptions

COM system exception codes are defined with the FAQ LI TY_NULL and
FAQ LI TY_RPC facility codes, which map to CORBA standard exceptions.
Table 19.3 lists the mappings from COM FAQ LI TY_NULL exceptions to

CORBA.
COM CORBA
EQUTCFMEMORY NO_MEMCRY
E | NVALI DARG BAD PARAM
E_NOTI MPL NO | MPLEMENT
EFAL UNKNO
E_ACCESSDEN ED NO_PERM SSI ON
E_UNEXPECTED UNKNO
E_ABCRT UNKNO
E_PA NTER BAD PARAM

Table 19.3: Mapping from COM FACILITY_NULL to CORBA Standard Exceptions

343

OrbixCOMet Desktop Programmer’s Guide and Reference

COM CORBA

E_HANDLE BAD_PARAM

Table 19.3: Mapping from COM FACILITY_NULL to CORBA Standard Exceptions

Table 19.4 list the mappings from COM FAQ LI TY_RPC exceptions to CORBA.
(All FAQ LI TY_RPC exceptions not listed in Table 19.4 map to the CORBA

standard exception, COM)

COM CORBA

RPC E CALL_CANCELED TRANSI ENT
RPC_E_CANTPOST | NSENDCALL COW FAI LURE
RPC E_CANTCALLQUT | NEXTERNALCALL | COW FAI LURE
RPC_E_CONNECTI ON_TERM NATED NV_CBIREF
RPC E_SERVER Dl ED | N\V_CBIREF
RPC E_SERVER Dl ED DNE I N\V_CBIREF
RPC E_| NVALI D_DATAPACKET COW FAI LURE
RPC E_CANTTRANSM T _CALL TRANSI ENT
RPC E_CLI ENT_CANTMARSHAL_DATA MARSHAL
RPC E CLI ENT_CANUNVARSHAL DATA | MARSHAL
RPC_E_SERVER CANTMARSHAL_DATA MARSHAL
RPC_E_SERVER CANTUNVARSHAL_DATA | NARSHAL

RPC E_| NVALI D_DATA COW FAI LURE
RPC E_| N\VALI D_PARAMVETER BAD PARAM
RPC E_CANTCALLCUT AGAI N COW FAI LURE
RPC E SYS CALL _FAI LED NO RESOURCES

Table 19.4: Mapping from COM FACILITY_RPC to CORBA Standard Exceptions

COM-to-CORBA Mapping

COM CORBA

RPC E_OQUT_CF_RESOURCES NO RESOURCES
RPC E_NOT_REQ STERED NO | MPLEMENT
RPC_E_Dl SCONNECTED | \V_OBIREF
RPC_E_RETRY TRANS! ENT
RPC E_SERVERCALL_REJECTED TRANS! ENT
RPC E_NOT_REQ STERED NO | MPLEMENT

Table 19.4: Mapping from COM FACILITY_RPC to CORBA Standard Exceptions

User Exceptions

COM user-defined exception codes map to CORBA user exceptions and

require the use of the rai ses clause in OMG IDL. The following OMG IDL
statement represents such a user exception:

/1 OMG | DL

exception COM ERROR {long hresult;};

Variant Types

A COM VAR ANT type maps to the OMG IDL any type. The allowable VAR ANT
types are currently limited to the data types supported by Automation. Refer to

the documentation for your COM client language for details of the types

supported in a VAR ANT.

An error occurs at runtime if a CORBA client returns an inconvertible any type

to a COM server.

345

OrbixCOMet Desktop Programmer’s Guide and Reference

Constants
A COM IDL constant maps to a corresponding OMG IDL constant. For
example:
/] COM I DL
const short S = .

const long L = .;

const unsigned short US = .;
const unsigned long UL = .
const float F = .

const double D = .;

const char C = .

const boolean B = ..;

const string STR = "..%;

This maps to:

/1 OMG | DL

const short S = .;

const long L = .;

const unsigned short US = .;
const unsigned long LS = ..
const float F = ..

const double D = .

const char C = .;

const boolean B = ..

const string STR = "..%;

Enumerated Types

A COM IDL enum maps to an OMG IDL enum. For example:

/1 COM DL
typedef [vl_enun]j enumtagA or_B or_C {A=2, B=3, C=1}
Aor Bor C

This maps to:

/1 MG 1D
enumA or_B or_C{C A B};

346

COM-to-CORBA Mapping

COM enumerators can have explicitly assigned values. In CORBA, rather than
being explicitly assigned, enum values start at zero and increase in increments of
one. Because OMG IDL does not support explicitly tagged enumerators, the
CORBA view of a COM object must maintain the mapping of the values of the
enumerators. Therefore, COM enums with explicitly assigned values are mapped
to OMG IDL enums in ascending order of their value, to preserve the order of
the enumerators.

Scoped Names

COM IDL considers all definitions to be at global scope. Therefore, to avoid
collisions across interfaces when translating from COM IDL to OMG IDL,
nested data types are treated as if they have been prefixed with the name of the
scoping level.

For example:

interface | A | Unknown

{
typedef enum {ONE, TWO THREE} Count;

HRESULT f([in] GCount val); }
This is mapped as if it were defined as follows:

typdef enum{A ONE, A TW) A THREE} A Count;
interface I A | Unknown

{
}

HRESULT f([in] A Count val);

347

OrbixCOMet Desktop Programmer’s Guide and Reference

Typedefs

A COM IDL typedef maps to an OMG IDL typedef. For example:

/l GV | DL
interface | Account : |Unknown {.};
Typedef struct {

} Account Li st;

348

COM-to-CORBA Mapping

This maps to:

// OMG I DL
interface Account {.};

typedef sequence<Account, 100> AccountLi st;

349

OrbixCOMet Desktop Programmer’s Guide and Reference

350

20

System Exceptions

This chapter describes system exceptions that are defined by CORBA
or specific to Orbix.

Exceptions Defined by CORBA

Identifier |Exception Description

10000 UNKNOAN The unknown exception.

10020 BAD_PARAM An invalid parameter was passed.
10040 NO_MEMORY Dynamic memory allocation failure.
10060 IMP_LIMT Violated implementation limit.

10080 OOW FAI LURE Communication failure.

10100 I N\V_CBIREF Invalid object reference.

10120 NO PERM SSI N | No permission for attempted operation.
10140 | NTERNAL ORB internal error.

10160 MARSHAL Error marshalling parameter/result.
10180 INTIALI ZE ORB initialization failure.

10200 NO_| MPLEMENT Operation implementation unavailable.
10220 BAD TYPECCDE Bad TypeCode.

10240 BAD CPERATI ON | Invalid operation.

351

OrbixCOMet Desktop Programmer’s Guide and Reference

10260 NO_RESOURCES Insufficient resources for request.
10280 NO_RESPONSE Response to request not yet available.
10300 PERSI ST_STCORE | Persistent storage failure.

10320 BAD | N\V_CRDER Routine invocations out of order.
10340 TRANSI ENT Transient failure—reissue request.
10360 FREE_MEM Cannot free memory.

10380 I NV_I DENT Invalid identifier syntax.

10400 I NV_FLAG Invalid flag was specified.

10420 | NTF_REPCS Error accessing Interface Repository.
10440 BAD CONTEXT Error processing context object.
10460 CBJ_ADAPTCR Failure detected by object adaptor.
10480 DATA _CONVERSI ON | Data conversion error.

Table 20.1: CORBA-Defined Exceptions

Orbix-Specific Exceptions

Identifier |Exception Description

10500 FI LTER_SUPPRESS | Suppress exception raised in per-object pre-
filter.

10520 LOCATCR Locator error.

10540 ASA | _FI LE ASCII file error.

10560 LI CENG NG Licencing error.

10580 VXWIRKS EX VxWorks error.

10600 (Ne IIOP error.

10620 NO_CONFI G_VALLE | No configuration value set for one of the
mandatory configuration entries.

352

Table 20.2: Orbix-Specific Exceptions

21

OrbixCOMet Configuration

This chapter describes the keys that are of interest to OrbixCOMet
configuration, and their associated default values. It includes details
of configuration entries that are either specific to OrbixCOMet or
common to multiple IONA products.

OrbixCOMet Keys

This section describes the configuration variables specific to OrbixCOMet,
which are held in the i nstal | -di r\ confi g\ or bi xcorret . cf g file (where
install-dir represents the Orbix installation directory). The configuration
variables are declared within various scopes within the COMVet { ..} scope. As
shown in this section, you can also use the COWet . Scope nane. prefix to refer
to individual entries in the configuration file.

Key QOwvet . Confi g. COVET_HANDLER LOCATI ON=" QQvet \ Handl er s"

Description This key is used to specify handler DLLs for smart proxies, filters, transformers,
I/O callbacks, and so on (for example, calls to configure Orbix dynamically). It
specifies a key, stored in HKEY_CLASSES ROOT, which indicates where these
DLLs are located. The default value is " COMet \ Handl er DLLs". It is placed in
HKEY_CLASSES ROOT, so that users without administrative privileges can read
and modify the values. The values look like the following:

[HKEY_CLASSES ROOT\ COMWet \ Handl er DLLS]
grid="c:\foo\bar.dlI"
bank="c:\foo\bar2.dlI"

353

OrbixCOMet Desktop Programmer’s Guide and Reference

Key

Description

Key

Description

Key

Description

Key

Description

354

QOwet . Confi g. COMET_ROOT="i nst al | - di r\ COMet \ bi n"

This is the full pathname of the OrbixCOMet installation directory. This is used
by the Uninstall package to indicate where OrbixCOMet is located. In this
example, i nstal | -di r represents the Orbix installation directory.

COvet . Conf i g. COMET_SHUTDOM PCLI CY="inplicit"

Valid values are:
“inplicit" This is the default setting. It means that OrbixCOMet

shuts down the first time D | Canunl oadNow is about
to return a yes value.

"explicit" This means that you must make a call to
QORB: : Shut Down(), to force OrbixCOMet to shut
down.

" none" This means that OrbixComet does not shut down the

ORB when it thinks it is about to unload. That is, the
DLL is not unloaded when D | Canunl oadNow s called
by the COM runtime. Visual Basic and Internet
Explorer do this to cache the DLLs.

A problem can arise, however, if the DLL is re-used,
because Orbix has already been shut down.

"atExit" This means that the OrbixCOMet bridge only shuts
down at process-exit time. This is the recommended
setting when running applications in the Visual Basic
development environment.

QOMet . Conf i g. COMET_UPDATE LEVEL="3- 3- 00"

This includes information about the version and patch level of OrbixCOMet.
You should quote this value whenever posting to support @ ona. com

COMet . Conf i g. CALL_BACK_TI MER DELAY="10"

This sets the interval, in milliseconds, for the OrbixCOMet event timer. The
default value is 10, but this can be reduced to improve performance on faster
machines. This value is only used with client callbacks, or when CORBA clients
are communicating with DCOM servers.

OrbixCOMet Configuration

Key

Description

Key

Description

Key

Description

Key

Description

Key

Description

COMet . Conf i g. FORCE. PROXY="yes"

This specifies whether OrbixCOMet should perform a ColnMar shal | nt er f ace
on interface pointers for DCOM callback objects. If this value is set to "yes", it
forces the creation of a proxy for unmarshalling the callback object. You should
only set this value to "no" if problems are being experienced with callbacks.

QOwet . Mappi ng. UseSAFEARRAYMappi ng="yes"

The Automation mapping for OMG IDL sequences and arrays is to Automation
compatible SafeArrays, as described in the COM/CORBA Interworking
specification. Existing code from the Orbix Desktop product used the alternative
mapping, to collections. This mapping to collections has been deprecated in the
current specification, but it is supported in OrbixCOMet for existing users. To
specify that the collections mapping should be used, set this value to "no".

QOvet . Mappi ng. SAFEARRAYS _CONTAI N_ VAR ANTS="yes"

There is a problem in Visual Basic when dealing with SafeArrays as out
parameters. Visual Basic does not correctly check the V_VT type of the
SafeArray contents, and automatically assumes that they are of the VAR ANT
type. When constructing the out parameter, OrbixCOMet cannot tell if the
parameter type has been declared (using the di mstatement) as the real type
from the type library or simply as SAFEARRAY. This key determines whether
OrbixCOMet should treat, for example, a sequence of | ong types as mapping to
a SafeArray of | ong types, or to a SafeArray of VAR ANT types where each

VAR ANT contains a | ong type.

COMet . Mappi ng. KEYWIRDS="gri d, D al ogBox, bar, Foobar, height"

This allows you to enter a list of words that you want prefixed with | T_cl ash,
to avoid clashes when using t s2i dl to generate IDL definitions.

COMet . Mappi ng. AUTCEVENTS=" No"

This allows you to choose the method of handling and dispatching incoming
Orbix events to COM or Automation clients and servers. In this context, an
Orbix event is a call from a CORBA client to a COM or Automation server, or

355

OrbixCOMet Desktop Programmer’s Guide and Reference

Key

Description

356

a callback from a CORBA server to a COM or Automation client. In both cases,
the incoming call to the COM or Automation client or server must be retrieved
and dispatched to the appropriate COM or Automation object. Valid values are

" No" This means it is the COM or Automation
programmer’s responsibility to ensure processing of
incoming Orbix events. This is achieved by
periodically calling the D spat chEvent s() method in
the (D)| O bi xSer ver APl interface, usually via a timer
on the application’s main thread.

" Yes" This means OrbixCOMet automatically retrieves and
dispatches the events, using a dedicated thread.

"W nMode" This means OrbixComet automatically converts
incoming Orbix events into messages that are sent to
the message queue of the COM or Automation
application. The application’s message pump then
dispatches these requests. This setting is a hybrid of
the "yes" and "no" values, in that Orbix events are
dispatched automatically by the application thread that
is processing the application’s message pump.

QOMet . Mappi ng. ALLON ANCN MARKERS="no"

In the case of When you have a CORBA client communicating with a DCOM
server, anonymous binds to CORBA wrappers have been deprecated. Instead,
ts2i dl generates a string of the const type, which takes the following form:

#ifndef | T OOVET ANCN.
#define _| T _COVET_ANON_

const string I T_ANON = "I T_COMET_ANCN';

#endi f

Markers used in calls to _bi nd() should begin with this string. The following are
examples of valid markers:

"| T_COMET_ANON'

"1 T_COVET_ANONL"

"1 T_COMET_ANCN excel (oj "

Because of this, the default for the GOVet . Mappi ng. EXTRA REF_CCORBAVI EW

configuration variable is now "no", in contrast to previous releases. For
backwards compatibility, anonymous binds are allowed if the

OrbixCOMet Configuration

Key

Description

Key

Description

Key

Description

QOMet . Mappi ng. ALLON ANON_MARKERS configuration variable is set to "yes",
but this is not recommended in most cases. (A possible exception to this might
be with the use of the (D)I O bi xSer ver APl interface.)

QOMet . Debug. Messagelevel =" 255, c:\tenp\ conet. | og"

This can take any value in the range 0-255. The higher the value, the more
logging information is available. In the preceding example, a value of 255 means
that all messages are logged, in the specified conet . | og file.

QOMwet . TypeMan. TYPEMAN CACHE FI LE="c: \t enp\ t yperan. _dc"

OrbixCOMet uses a memory and disk cache for efficient access of type
information. This entry specifies the name and location of the file used.

QOwet . TypeMan. TYPEMAN DI SK_CACHE S| ZE="2000"
QOwvet . TypeMan. TYPENAN MEM CACHE S| ZE=" 250"

These two keys specify the maximum number of entries allowed in the disk
cache/memory cache. When these values are exceeded, entries can be flushed
from the cache. The nature of the applications using the bridge will affect the
values these keys should have. However, as a general rule, the disk cache size
should be about eight to ten times greater than the the memory cache.
Furthermore, to avoid unnecessary swapping into and out from disk, you should
ensure the memory cache size is no smaller than 100. An “entry” in this case
corresponds to a user-defined type. For example, a union defined in OMG IDL
would result in one entry in the cache. An interface containing the definition of a
structure would result in two entries. A good rule of thumb is that 1000 cache
entries (given a representative cross section of user-defined types) would
correspond to approximately 2 MB of disk space. Therefore, the default disk
cache size of 2000 allows for a maximum disk cache file size of approximately 4
MB. When the cache is primed with type libraries for DCOM servers, the size
could be considerably larger. It depends on the size of the type libraries, and this
can vary considerably. Typically, a primed type library will be over three times
the size of the original type library because the information is stored in a format
that optimizes speed.

357

OrbixCOMet Desktop Programmer’s Guide and Reference

Key

Description

Key

Description

Key

Description

Key

Description

358

COMet . TypeMan. TYPEMAN | FR HOST=""

To allow for ease of deployment and for an easy upgrade path (for example,
when new interfaces are exposed by a server implementor), a common
requirement is to use a central Interface Repository (IFR). This raises the need
to get OrbixCOMet to use an IFR on a machine other than that on which
OrbixCOMet is installed. If it is preferable that an IFR on another machine
should be used, simply create an entry in the or bi x. hst file for use by the
locator and specify the host that should be contacted. For example, to use the
IFR on the advi ce. i ona. commachine, the or bi x. hst file looks like

| FR advi ce. i ona. com

However, use of the Orbix locator requires an or bi xd on the local machine.
This might not always be the case, and OrbixCOMet allows for this by providing
the TYPEMAN | FR_HCBT configuration file entry that can be used to specify the
host on which the IFR should be contacted. The value for this key should specify
the host in question.

QOMet . TypeMan. TYPEMAN | FR | OR_FI LENAMVE=""

This key only needs to be set if you are using the stand-alone COMetIFR that
ships with OrbixCOMet. This is the full pathname to the file containing the
stringified version of the COMetlFR Interoperable Object Reference (IOR).

QOMet . TypeMan. TYPEMAN | FR NS_NAME=""

This is the name of the IFR in the Naming Service. This is needed if you are using
the Naming Service to resolve the IFR. You should register an IOR for the IFR in
the Naming Service under a compound name. This key should contain that
compound name.

QOwvet . TypeMan. TYPEMAN_READCNLY="no"

This key determines whether typeman has read-only rights. This setting is
particularly important when there are multiple DCOM clients of OrbixCOMet
sharing the bridge on a single intermediary machine. It is also important for
internet deployment. The t ypenan -e * command instructs t yperman to read
the entire contents of the Interface Repository into the type store. You should
set this configuration variable to " no" before priming the type store. You should
set it to "yes" after priming the type store.

OrbixCOMet Configuration

Key

Description

Key

Description

Key

Description

Key

Description

QOMet . TypeMan. TYPEMAN LOGE NG=" none”

This key determines how the OrbixCOMet type store manager, t ypenan, logs
information about the type store contents. Valid values are:

" None" This is the default value.

"stdout " This sends output to the screen. Use this option only
with t ypenan.

" DBMon" This sends output to DBMbn. exe.

"file" This sends output to the file specified by the
QOwet . Typenman. TYPEMAN LOG FI LE configuration
variable.

QOMwet . TypeMan. TYPEMAN LOG FI LE="c: \ tenp\t ypenan. | og"

If the value of the TYPEMAN LO33 NG configuration variable is set to "fi | ", this
key specifies the full path to that output file for t yperman logging instructions.

COMet . TypeMan. TYPEMAN SSL_ENABLED="yes"

In a secure CORBA environment, the Interface Repository is configured to run
as an SSL-secured CORBA server. The OrbixCOMet type store manager

(t ypenan. exe) retrieves type information from the Interface Repository.
Therefore, in an SSL-secured environment, t ypeman must also be configured to
run securely. You can use this configuration variable to indicate that typeman is
SSL-enabled.

QOwet . Servi ces. NaneSer vi ce=""

This is the full pathname to the file containing the IOR for the Naming Service.
This is needed if you are using the Naming Service to resolve the IFR. You can
use this in conjunction with the COWet . TypeMan. TYPEMAN | FR_NS_NAME
configuration variable.

359

OrbixCOMet Desktop Programmer’s Guide and Reference

Common Keys

Key

Description

Key
Description
Key
Description
Key
Description
Key
Description
Key

Description

Key
Description

Key

Description

360

This section describes the configuration variables that are common to multiple
IONA products, including OrbixCOMet. They are held in the

\'i ona\ conf i g\ conmon. cf g file and are declared within the scope Common{. . . }.
As shown in this section, you can also use the prefix Conmon. to refer to
individual entries in this file.

Common. | T_DAEMON_PCRT="1570"

This is the TCP port number that OrbixCOMet will use to contact an Orbix
daemon.

Common. | T_DAEMON_SERVER BASE="1570"

This is the starting port number for servers launched by the Orbix daemon.
Gormmon. | T_| MP_REP_PATH=cfg_dir + "Repositories\I|npRep"

This is the full pathname of the Implementation Repository directory.
Common. | T_I NT_REP_PATH=cfg_dir + "Repositories\|FR'

This is the full pathname of the Interface Repository directory.

Cormmon. | T_LOCATCR PATH=cfg_dir

This is the full pathname of the directory holding the locator files.

Cormon. | T_LOCAL_DOMAI N=""

This is the name of the local Internet domain. This should be the same for both
the client and server sides. An empty value is a valid value.

Cormmon. | T_JAVA | NTERPRETER="i nstal | -di r\ bi n\j re. exe"
This is the full pathname to the JRE binary executable that installs with Orbix.

GCormmon. | T_DEFAULT_CQLASSPATH=cf g_dir + "instal | -di r\bi n\ bongo. zi p;
install -dir\bin\marinba. zi p; i nstal | -di r\ bi n\ NScl asses. zi p;
install-dir\bin\utils.zip;install-dir\bin\rt.jar;

instal | -di r\bi n\orbi xweb.jar;install -

di r\ Tool s\ Nam ngServi ceGJ\NSQJ . j ar"

This the default classpath to be used when Java servers are automatically
launched by the daemon.

OrbixCOMet Configuration

Note: After installation, the common. cf g file provides default settings for the
main environment variables required. You can change these default
settings by manually editing the configuration file, or by using the
Configuration Explorer, or by setting a variable in the user environment.
If an environment variable is set, it takes precedence over the value set in
the configuration file. Environment variables are not scoped with a
Conmon. prefix.

Orbix Keys

This section describes configuration variables that are common to both Orbix
and OrbixCOMet. They are held in the \'i ona\ confi g\ or bi x3. cf g file and are
declared within the O bi x{ .} scope. By default, the configuration variables in
this file are scoped with the O bi x. prefix.

Key Qbix. | T ERRCRS=cfg dir + "ErrorMgs"
Description This is the pathname for the error messages file.
Key Q bi x. | T_CONNECT_ATTEMPTS=" 10"

Description This is the maximum number of retries that Orbix makes to connect to a server.

361

OrbixCOMet Desktop Programmer’s Guide and Reference

362

22

OrbixCOMet Utility Options

This chapter describes the various options that are available with
each of the OrbixCOMet command-line utilities.

Typeman Options

The t ypenan utility manages the OrbixCOMet type store. The options available
with t ypeman are:

-b

This allows you to view the bucket sizes in the memory cache hash
table.

This allows you to view the contents of the type store disk cache. You
can specify - cn to view the contents in the order in which they have
been added to the cache. You can specify - cu to view the UUID of
each type listed. (Every type in the type store has an associated UUID,
regardless of whether it has originated from a type library or the
Interface Repository. OrbixCOMet generates UUIDs for OMG IDL
types, using the MD5 algorithm, as specified by the OMG.)

This allows you to set the number of allowable entries in the disk
cache. You must qualify - d with a number, which indicates the number
of allowable entries. The default is 2000. This value should normally be
ten times larger than the value specified with the - moption, which sets
the number of allowable entries in the memory cache.

363

OrbixCOMet Desktop Programmer’s Guide and Reference

364

This instructs t ypenan to search the Interface Repository or a type
library for a specific item of type information, and then add it to the
type store cache. You must qualify - e with an OMG IDL interface
name, a full type library pathname, the UUID of a COM IDL interface,
or the name of a text file that lists the aforementioned in any
combination. Refer to “Adding New Information to the Type Store”
on page 161 for details of how to specify each.

If you specify an OMG IDL interface name that is not already in the
cache, t ypenman looks up the Interface Repository. If you specify a type
library pathname or UUID that is not already in the cache, t yperman
looks up the relevant type library. Regardless of where the type
information originates, t yperman then copies it to the type store cache.

This allows you to view the type store data files. These include the disk
cache data file (t yperman. _dc), the disk cache index file (t ypenan. i dc),
the disk cache empty record index file (t ypenan. edc), and the UUID

name mapper file (t yperman. nap).

This instructs t ypenan to display " Cache m ss" on the screen, if a
type it is looking for is not already in the cache. If the type is already in
the cache, typeman displays " Mem cache hit" on the screen.

This instructs t ypenan to always query the Interface Repository for an
item of OMG IDL type information. This can be used to compare the
performance of different ORBs and so on.

This logs the type store basic contents to the screen. Enter -1 + to log
newly added and deleted entries. Enter -1 tlb to log type library
information. Enter -1 uni on to log OMG IDL information for unions.

This generates static bridge compatible names for OMG IDL
sequences.

This allows you to view the v-table contents for an interface or struct.
This option provides output such as the following:

Narre sorted V-tabl e D spl d Cff set
bal ance get nakelLodgenent 1 0
nmakelLodgenent nakeWt hdrawnal 2 1
nakeW t hdr awnal bal ance 3 2
overdraftLimt get overdraftLimt 4 3

OrbixCOMet Utility Options

-2

-?2

This deletes the type store contents. This means it deletes the disk
cache data file (t yperman. _dc), the disk cache index file (t ypenan. i dc),
and the disk cache empty record index file (t yperman. edc). If you also
want to delete the UUID name mapper file (t ypenan. map), you must
enter - wm instead. Deleting the type store contents is useful when you
want to reprime the cache. You might want to reprime the cache, for
example, if it contains type information for an interface that has
subsequently been modified.

This allows you to view the actual size to which the memory cache
temporarily grows when t ypenan is loading in a containing type (such
as a module) to retrieve a contained type (such as an interface within
that module).

This outputs the usage string for t ypenan.

This allows you to view the format of the entries that you can include
in a text file, which you can specify with the - e option, if you want to
prime the cache with any number and combination of type names, type
library pathnames, and COM IDL UUIDs simultaneously.

Ts2idl Options

The ts2idl utility allows you to create OMG IDL definitions, based on existing
type library information in the type store. Similarly, it allows you to create COM
IDL definitions, based on existing OMG IDL type information in the type store.
The options available with t s2i dI are:

-b

You can use this option when generating OMG IDL, based on type
library information in the type store. It specifies that interface pointers
that are passed as parameters to operations described in the type
library are to be mapped as the OCRBA: : (hj ect type in the generated
OMG IDL, rather than as their dynamic type. Use - b in conjunction
with -r.

You can use this option when generating COM IDL, based on OMG
IDL information in the type store. It instructs t s2i dl not to query the
Interface Repository for the specified OMG IDL interface. In this case,
ts2i dl only searches the type store for the relevant information.

365

OrbixCOMet Desktop Programmer’s Guide and Reference

-f Use this to specify the name of the IDL file to be created. You must
qualify this option with the filename (for example, grid.idl). In turn,
you must qualify the filename with the name of the item of type
information on which it is being based. For example:

ts2idl -f grid.idl grid

-i This instructs t s2i dl to generate an OMG IDL file, based on type
library information in the type store.

-m This instructs t s2i dl to generate a COM IDL file, based on OMG IDL
information in the type store. This is a default option. You do not have
to specify - m to create a COM IDL file. Unless you explicitly specify -
i, to create OMG IDL, t s2i dl assumes you want to create a COM
IDL file.

-p You can use this option when generating COM IDL, based on OMG
IDL information in the type store. It is a useful labor-saving device that
produces a makefile for building the proxy/stub DLL, which
subsequently marshals requests from the COM client to CORBA
objects.

-r You can use this option when generating COM IDL, based on OMG
IDL information in the type store. It can be used for generating COM
IDL, based on complicated OMG IDL interfaces that employ user-
defined types. The -r option completely resolves those types and
produces COM IDL for them.

-s This forces inclusion of standard types from | TSt dcon. i dl and
orb.idl.
-V This outputs the usage string for t s2i dl . You can also use - ? for this.

Ts2tlb Options

The ts2t 1 b utility allows you to create a type library, based on existing OMG
IDL type information in the type store. The options available with t s2t1 b are:

-f Use this to specify the name of the type library to be created. You
must qualify this option with the type library filename. The default is to
use the type name on which the type library is based, with a . t| b suffix
(for example, gri d. t| b).

366

OrbixCOMet Utility Options

-p
-V

This indicates that interface prototypes are to appear as | D spat ch,
instead of using the specific interface name. If you do not specify this
option, the specific interface name is used.

Use this to specify the internal library name in which the type library is
to be created. You must qualify this option with the library name. The
default is to use the type name on which the type library is based, with
an | T_Li brary_ prefix (for example | T_Li brary_gri d).

This prefixes parameter names with it _.

This outputs the usage string for t s2t | b. You can also use - ? for this.

Ts2sp Options

The t s2sp utility allows you to create handler DLLs to encapsulate any extra
handler code that you might have developed and want to use at runtime, to
inject extra functionality into your applications. The options available with t s2sp

are:

-d

You can use this option to specify the output directory to which you
want the generated handler DLL to be saved. If you specify - d, you
must qualify it with the full path to the directory you want to use. If
you do not specify - d, the generated handler DLL is saved to the
current directory in which you run the t s2sp command.

This allows you to specify the original source file on which the handler
DLL is to be based. You must qualify this option with the filename
(including extension) of the original source file.

Use this to specify the internal library name in which the type library is
to be created. You must qualify this option with the library name. The
default is to use the type name on which the type library is based, with
an | T_Li brary_ prefix (for example | T_Li brary_gri d).

This specifies the keyname of the handler DLL. You must qualify - n
with the keyname.

This instructs t s2sp to generate a makefile, which can then be used to
be build the handler DLL. You must qualify - p with the name of the
makefile. (For example, if you enter -p QientFilter, thets2sp
utility generates a makefile called Qi entFi | ter. mak.)

367

OrbixCOMet Desktop Programmer’s Guide and Reference

-V This outputs the usage string for t s2sp. You can also use - ? for this.

Aliassrv Options

The al i assrv utility is used in association with the srvA i as GUI tool to allow
you to replace a legacy DCOM server with a CORBA server. Refer to
“Replacing an Existing DCOM Server” on page |77 for more details. The options
available with al i assrv are:

-C This indicates the CLSID of the legacy DCOM server that is being
replaced. You must qualify this option with the actual CLSID enclosed
in opening and closing braces (that is, { and }).

-d This deletes the registry key denoted by the specified CLSID. You
must qualify - d with the - ¢ option and CLSID.

-r This aliases the specified CLSID to OrbixCOMet, so the next time you
run a DCOM client of the legacy server whose CLSID is specified,
OrbixCOMet is used instead of the legacy server. You must qualify - r
with the name of the file that contains the modified registry entries, to
restore the registry entries on the destination machine. For example:

aliassrv -r replace.reg -c {QLSI D}

-V This outputs the usage string for t s2sp. You can also use - ? for this.

Custsur Options

The cust sur. exe is a generic surrogate program that hosts the OrbixCOMet
DLLs when the bridge is loaded out-of-process. You can use cust sur to
generate IORs for non-Orbix clients. The options available with cust sur are:
-f This specifies the filename to which the IOR is to be written.

-g This instructs cust sur to generate an IOR.

-i This specifies the interface name for which the IOR is to be created.
-m This specifies the marker name.

-s This specifies the name of the server.

368

OrbixCOMet Utility Options

-t This specifies a time-out value, in milliseconds, for the server being
implemented by cust sur.

-v This outputs the usage string for t s2sp. You can also use - ? for this.

Tlibreg Options

The tt | i breg. exe utility allows you to register and unregister a type library that
you have generated from OMG IDL, using t s2t | b. The tlibreg utility registers
the type library with the Windows registry. The options available with t1i breg

are:

-u This unregisters a type library. You must qualify this option with the
full type library pathname.

-V This outputs the usage string for t s2sp. You can also use - ? for this.

369

OrbixCOMet Desktop Programmer’s Guide and Reference

370

Index

A
AbortSlowConnects() 211, 244
Activate() 182, 224
ActivateCVHandler() 212, 244
ActivateOutputHandler() 212, 244
ActivatePersistent() 183, 225
activating CORBA servers 107
adding information to type store 163
algorithm, MD5 35
aliassrv 177
options 368
anys 185, 226
mapping from CORBA to Automation 293
mapping from CORBA to COM 325
APl 181
arrays
mapping from COM to CORBA 342
mapping from CORBA to Automation 290
mapping from CORBA to COM 321
OMG IDL definition 265
attributes 256
mapping from CORBA to Automation 275
mapping from CORBA to COM 312
Automation clients
implementing in PowerBuilder 23, 52
implementing in Visual Basic 26, 50
introduction to 9
Automation interfaces
DCollection 184
DICORBAAny 184
DICORBAFactory 189
DICORBAFactoryEx 191
DICORBAODbject 192
DICORBAStruct 194
DICORBASystemException 195
DICORBATypeCode 196
DICORBAUnion 199
DICORBAUserException 200
DIForeignComplexType 200
DIForeignException 201
DIObject 201
DIObjectinfo 201
DIOrbixObject 202
DIOrbixORBObject 205

DIOrbixServerAP| 181
DIOrbixSSL 218
DIORBObject 220
IForeignObject 221
I0rbixSSL 250
Automation servers |0

B
base interfaces, finding 213
BaselnterfacesOf() 213, 245
basic types 262
mapping from Automation to CORBA 300
mapping from COM to CORBA 334
mapping from CORBA to Automation 272
mapping from CORBA to COM 310
Bind() 203
binding
early 76
late 76
PingDuringBind() 210, 242
to objects 203
View to target 48, 49, 59
bridge 5, 8

C

caching mechanism 159

callbacks 123-132
implementing 123
ReclaimCallbackStore() 211

catching COM exceptions |18

clients
Automation, using PowerBuilder 23, 52
Automation, using Visual Basic 26, 50
collocation 214, 246
COM, using C++ 36, 55
CORBA, using COM C++ 65
CORBA, using PowerBuilder 65
CORBA, using Visual Basic 65
implementing in Automation 45
implementing in COM C++ 55
implementing in CORBA 65
writing 94, 125

client-side footprint [51

clone() 202

371

OrbixCOMet Desktop Programmer’s Guide and Reference

CloseChannel() 205, 213, 238, 246 ConnectionTimeout() 208, 241
CoCreatelnstance() 60 EagerListeners() 215, 247
Collocated() 214, 246 MaxConnectRetries() 209, 241
collocation 214, 246 NoReconnectOnFailure() 211, 243
COM apartments and threading 82 ConnectionTimeout() 208, 241
COM clients constants 267
implementing 36 mapping from COM to CORBA 346
implementing in C++ 36, 55 mapping from CORBA to Automation 296
introduction to 9 mapping from CORBA to COM 328
COM interfaces constructed types 263
ICORBA_Any 225 creating 191, 317
ICORBA_TypeCode 230 mapping from CORBA to COM 317
ICORBA_TypeCodeExceptions 234 content_type() 189, 199, 234
ICORBAFactory 227 context 293, 326
ICORBAObject 228 CORBA clients
IForeignObject 235 implementing in Automation 76
IMonikerProvider 236 implementing in COM 82
IOrbixObject 237 introduction to 10
10rbixORBObject 239 CORBA exceptions
IOrbixServerAPl 223 handling in Automation 113
IORBObject 252 handling in COM 118
COM library 9 properties of |12
COM servers 10 raising in a server 120
cometcfg 160 CORBA servers
command-line utilities implementing 102
locating 161 introduction to 9
options 363 CORBA.ORB.2 208
commands CORBA.ORB.Orbix 208
aliassrv 177 Count() 184
custsur 97 CreateObiject() 70, 190, 228
srvAlias 177 CreateType() 192, 283
tlibreg 35 CreateTypeByld() 192
ts2idl 170 creating
ts2sp 174 constructed types 191,317
ts2tlb 173 exceptions 191, 317
typeman 163 handler DLLs 153
configuration IDL files 57, 168
GetConfigValue() 214, 247 structs 191, 317
ReinitialiseConfig() 215, 248 type libraries 47, 171
SetConfigValue() 214, 247 unions 191, 317
configuration handlers custsur 31, 89
activating 212, 244 options 368
deactivating 212, 244
order of 212, 245 D
configuration keys DCollection 184
common 360 Deactivate() 183, 224
Orbix 361 DeactivateCVHandler() 212, 244
coﬁr::':ingMet 353 DeactivateOutputHandler() 212, 245
deactivating CORBA servers |07
AbortSlowConnects() 211, 244 default indgex() 188, 198, 233

372

Index

DefaultTxTimeout() 214, 246
deleting type store contents 166
deploying applications 139-155
deployment models 139-146
bridge on each client machine 140
bridge on server machine 142
bridge shared by multiple clients 144
internet 146
Developing 45, 55
development utilities 157
diagnostics
output() 248
SetDiagnostics() 216, 248
DICORBAAny 184
DICORBAFactory 68, 189
DICORBAFactoryEx 191, 283
DICORBAO®bject 75, 192
DICORBAStruct 194, 283
DICORBASystemException |12, 195, 292
DICORBATypeCode 196
DICORBAUnion 199, 285
DICORBAUserException 200
DIForeignComplexType 200, 283
DIForeignException 112, 201
DIObject 201
DIObjectinfo 201
DIOrbixObject 75, 202
DIOrbixORBObject 66, 205
DIOrbixServerAPI 89, 181
DIOrbixSSL 218
DIORBObject 66, 220
discriminator_type() 188, 198, 233
DispatchEvents() 183, 224
dual interfaces 34
Dumping 167

E

EagerListeners() 215, 247

early binding 76

enums 264
mapping from Automation to CORBA 306
mapping from COM to CORBA 346
mapping from CORBA to Automation 296
mapping from CORBA to COM 328

equal() 231

equivalence, of object references 193

Err object 114

EX_completionStatus() 195

EX_1d() 201

EX_majorCode() 201

EX_minorCode() 195

exception handling 109-120
inline 115

exceptions 109-120, 258
creating 191, 317
handling in Automation |13
handling in COM 118
mapping from COM to CORBA 343
mapping from CORBA to Automation 291
mapping from CORBA to COM 322
properties of |12
raising in a server 120

exposing DCOM servers to CORBA clients 89

F

factory

See object factory
FileDescriptor() 205, 238
forward declaration 268

G

generating handler DLLs 174
generating skeleton code 176
for callbacks 125
for servers 101
generating UUIDs 35
get_BadKind() 235
get_Bounds() 235
get CORBAAnyData() 226
get_Host() 238
get_InterfaceName() 238
get_Marker() 238
get_moniker() 237
get_typeCode() 226
get_value() 226
GetConfigValue() 214, 247
GetCORBAODbject() 221
GetForeignReference() 222, 236
Getlmplementation() 193, 229
GetlnitialReferences() 221, 254
Getlnterface() 193, 229
Getltem() 184
GetObject() 68, 190, 227
example 48, 125
parameter to 69
GetOrbixSSL() 217, 249
GetRepositoryld() 222
GetSecurityName() 219, 251
GetServerAPI() 249

373

OrbixCOMet Desktop Programmer’s Guide and Reference

GetUniqueld() 236 application runtime 147
development language runtime 147
H Orbix runtime 147

OrbixCOMet runtime 149
INSTANCE_clone() 200
INSTANCE_ repositoryld() 200
InterfaceName() 205
interfaces 255

finding base interfaces 213, 245

IDL, implementing 102

mapping from Automation to CORBA 301

handler DLLs
creating 153
generating 174
loading at runtime |54
managing 154
registering 153
handling exceptions
in Automation 113

in COM 118 mapping from COM to CORBA 336
Hash() 194, 230 mapping from CORBA to Automation 274
HasPassword() 219, 251 mapping from CORBA to COM 311
HasValidOpenChannel() 205, 238 to CORBA objects 75
Host() 204 to ORB 66

internet deployment 146
Internet Explorer 31

| interworking
ICORBA_Any 225 concepts 4
ICORBA_TypeCode 230 interfaces on objects 75
ICORBA_TypeCodeExceptions 234 model 5
ICORBAFactory 68, 227 interworking model
ICORBAODbject 75, 228 implementation of 6
id() 186, 197,232 IOrbixObject 75, 237
IDL files IOrbixORBObject 66, 239

creating from type store 36 IOrbixServerAPl 89, 223
IDL operations 74 IOrbixSSL 250
IDL, creating from type store 168 IORBObject 66, 252
IForeignObject 221, 235 IsA() 193,229
IMonikerProvider 236 IsBaselnterfaceOf() 213, 245
implementation repository 54, 63 IsEquivalent() 193, 229

registering CORBA servers 108 IsNil() 193, 229
Implementing 22, 36, 65 Item() 184
implementing

Automation clients 45-54 K

callbacks 123

COM client 55-63 kind() 186, 196, 231

CORBA clients in Automation 76

CORBA clients in COM 82 L

CORBA servers 102 late binding 76

interfaces 102 length() 189, 199, 234

server for client callbacks 128 libraries, Orbix runtime 147
inheritance 259 libreg

mapping from CORBA to COM 314 options 369
InitScopeSSL() 219, 250 LoadHandler() 216, 249
InitSSL() 218, 250 loading handler DLLs at runtime 154
inline exception handling

in Automation |15 M
installing managing handler DLLs |54

374

Index

mapping from Automation to CORBA
basic types 300
enums 306
interfaces 301
methods 302
object references 305
properties 302
safearrays 304
strings 301
typedefs 307
variants 305

mapping from COM to CORBA
arrays 342
basic types 334
constants 346
enums 346
exceptions 343
interfaces 336
methods 336
pointers 342
properties 336
scoped names 347
strings 335
structs 339
typedefs 348
unions 340
variants 345

mapping from CORBA to Automation
anys 293
arrays 290
attributes 275
basic types 272
constants 296
enums 296
exceptions 291
interfaces 274
modules 295
object references 293
operations 277
scoped names 297
sequences 287
strings 273
structs 283
typedefs 298
unions 285

mapping from CORBA to COM
anys 325
arrays 321
attributes 312
basic types 310

constants 328

constructed types 317

enums 328

exceptions 322

inheritance 314

interfaces 311

modules 327

object references 326

operations 313

scoped names 330

sequences 320

strings 310

structs 317

typedefs 331

unions 319
marker() 204
markers, setting 204
MaxConnectRetries() 209, 241
MDS5 algorithm 35
member_count() 187, 197, 232
member_label() 188, 198, 233
member_name() 187, 197, 232
member_type() 188, 198, 233
methods

mapping from Automation to CORBA 302

mapping from COM to CORBA 336
minimizing client-side footprint 151
modules 258

mapping from CORBA to Automation 295

mapping from CORBA to COM 327

N

name() 187, 197,232

Naming Service 70

Narrow() 78,217

narrowing object references 77, 82
nil object references 193
NonExistent() 193, 229
NoReconnectOnFailure() 211, 243

o

object factory 48, 58
object references
binding 203
converting to strings 220, 252
equivalent 193
finding 68-75
getting foreign 222, 236
mapping from Automation to CORBA 305

375

OrbixCOMet Desktop Programmer’s Guide and Reference

mapping from CORBA to Automation 293
mapping from CORBA to COM 326
narrowing 77, 82
nil 193
obtaining 68-75
object table, resizing 209, 243
objects
instantiating in bridge 107
interface to CORBA 75
registering with OrbixCOMet 105
ObjectToString() 220, 252
obtaining a reference to a CORBA object
in Automation 48
in COM 58
obtaining a reference to the ORB 66
obtaining object references 68
OMG IDL 255-269
arrays 265
attributes 256
basic types 262
constants 267
constructed types 263
enums 264
exceptions 258
forward declaration 268
inheritance 259
interfaces 255
modules 258
oneway operations 257
operations 256
orb.idl 269
scoped names 268
sequences 265
strings 266
structs 263
typedefs 267
unions 264
OMG IDL preprocessor 268
OMG IDL template types
sequences 265
strings 266
operations 256
mapping from CORBA to Automation 277
mapping from CORBA to COM 313
oneway 257
ORB
interface to 66
obtaining reference to 66
orb.idl 269
Orbix

376

interface to 66
runtime 147

Orbix object name
specifying 69

output handlers
activating 212, 244
deactivating 212, 245

Output() 214, 248

P
parameter to GetObiject() 69
PingDuringBind() 210, 242
PlaceCVHandlerAfter() 212, 245
PlaceCVHandlerBefore() 212, 245
pointers
mapping from COM to CORBA 342
preprocessor 268
priming the type store 163
properties
mapping from Automation to CORBA 302
mapping from COM to CORBA 336
of exceptions 112
put_CORBAAnyData() 226
put_Host() 238
put_Marker() 238
put_value() 226
putit 54, 63
putit command 108

qualified names 268

R

raising an exception in a server 120
rebuilding the type store 167
ReclaimCallbackStore() 211
references

See object references 193
registering a type library 35, 369
registering CORBA servers 54, 63, 108
registering handler DLLs 153
registering objects 105
ReinitialiseConfig() 215, 248
ReleaseCORBAView() 217, 249
replacing DCOM servers with CORBA

servers 177, 368

ReSizeObjectTable() 209, 243
ResolvelnitialReference() 221, 254
running a server 108

Index

runtime
application 147
language 147
Orbix 147
OrbixCOMet 149

S

safearrays
mapping from Automation to CORBA 304
scoped names 268
mapping from COM to CORBA 347
mapping from CORBA to Automation 297
mapping from CORBA to COM 330
scoped_name() 202
sequences 265
mapping from CORBA to Automation 287
mapping from CORBA to COM 320
servers
activating 107, 182, 224
collocation 214, 246
deactivating 107, 183, 224
implementing for client callbacks 128
implementing in CORBA 99-108
registering 54, 63
SetConfigValue() 214, 247
SetDiagnostics() 216, 248
Setltem() 184
SetObjectimpl() 183, 225
SetObjectimplPersistent() 183, 225
SetPrivateKeyPassword() 219, 251
SetSecurityName() 219, 251
ShutDown() 216, 249
specifying the Orbix object name 69
srvAlias 177, 368
SSL
enabling 134
handler DLLs 135
StartUp() 216, 249
stringified object references 220, 252
strings 266
mapping from Automation to CORBA 301
mapping from COM to CORBA 335
mapping from CORBA to Automation 273
mapping from CORBA to COM 310
StringToObject() 220, 254
structs 263
creating 191, 317
mapping from COM to CORBA 339
mapping from CORBA to Automation 283
mapping from CORBA to COM 317

stub code
generating 176

surrogateSee custsur

system exception properties |12

system exceptions
defined by CORBA 351
mapping from CORBA to Automation 292
mapping from CORBA to COM 323
Orbix-specific 352

T
tag field 264
template types
sequences 265
strings 266
timeouts
for remote calls 214, 246
tlibreg 35
toolsSee commands
ts2idl 170
options 365
ts2sp 174
options 367
ts2tlb 173
options 366
type 8
type libraries
creating from type store 34, 171
type store
adding new information to 161
caching mechanism 159
central role of 158
creating IDL files from 168
deleting contents of 166
dumping contents of 167
introduction to 8
rebuilding 167
type_name() 202
typedefs 267
mapping from Automation to CORBA 307
mapping from COM to CORBA 348
mapping from CORBA to Automation 298
mapping from CORBA to COM 33|
typeman 163
options 363

U
Union_d() 199
unions 264

377

OrbixCOMet Desktop Programmer’s Guide and Reference

creating 191, 317
discriminated 264
mapping from COM to CORBA 340
mapping from CORBA to Automation 285
mapping from CORBA to COM 319
unique_id() 202
usage models | 1-17
Automation client to CORBA server 12
COM client to CORBA server 14
CORBA client to COM/Automation server 16
user exceptions
mapping from CORBA to Automation 291
mapping from CORBA to COM 322
UseTransientPort() 217, 249
using OrbixCOMet with Internet Explorer 31
utilitiesSee commands
utility options 363
UUIDs, generating 35

\'4
value() 186
variants
mapping from Automation to CORBA 305
mapping from COM to CORBA 345
views 5
obtaining reference to in Automation 46
obtaining reference to in COM 56

w

writing a client 94, 125

378

	Preface
	Audience
	Contact Information
	Organization of this Guide
	Part I, Introduction
	Part II, Programmer’s Guide
	Part III, Programmer’s Reference

	Document Conventions

	Introduction to OrbixCOMet
	Two-way Interworking
	Transparent Interworking
	The Interworking Model
	How OrbixCOMet Implements the Interworking Model
	Bridge
	Automation Client
	COM Client
	COM Library
	CORBA Server
	CORBA Client
	Automation Server
	COM Server

	Usage Models and Bridge Locations
	Automation Client to CORBA Server
	COM Client to CORBA Server
	CORBA Client to COM or Automation Server

	Getting Started
	Server-Side Requirements
	Registering OMG IDL Type Information
	Implementing Automation Clients
	Writing a Client Using PowerBuilder
	Writing a Client Using Visual Basic
	Running the Client Application

	Using DCOM On-the-Wire with OrbixCOMet
	DCOM Security
	The Surrogate Executable

	Using OrbixCOMet with Internet Explorer
	Automation Dual Interface Support
	Implementing COM Clients
	Generating COM IDL Definitions from OMG IDL
	Writing COM Clients

	Priming the OrbixCOMet Type Store Cache
	DCOM Trouble-Shooting
	Miscellaneous Configuration Tips

	Developing a Client in Automation
	The Telephone Book Example
	Creating a Type Library
	Implementing the Client
	Obtaining a Reference to a CORBA Object
	The Visual Basic Client Code in Detail
	The PowerBuilder Client Code in Detail

	Building the Client
	Running the Client

	Developing a Client in COM
	The Telephone Book Example
	Obtaining a COM IDL Interface
	Building a Proxy/Stub DLL
	Implementing the Client
	Obtaining a Reference to a CORBA Object
	Using CoCreateInstance()
	The COM C++ Client Code in Detail

	Building the Client
	Running the Client

	Implementing CORBA Clients
	Interfaces to the ORB
	Obtaining Object References
	The (D)ICORBAFactory Interface
	The Naming Service
	IDL Operations

	Interworking Interfaces on Objects
	Implementing CORBA Clients in Automation
	Late Binding
	Early Binding
	Narrowing Object References
	A Visual Basic Client Program

	Implementing CORBA Clients in COM
	COM Apartments and Threading
	Narrowing Object References
	A COM C++ Client Program

	Exposing DCOM Servers to CORBA Clients
	The Supplied DCOM Server
	Building the DCOM Server and Proxy Stub DLLs
	Priming the Type Store
	Registering the Server
	Generating OMG IDL
	Writing a Client to Talk to the DCOM Server
	CORBA Client Example Using Composable Support
	Connection and Usage with the Custsur Executable

	Implementing CORBA Servers
	Steps to Implementing a CORBA Server
	Defining and Registering OMG IDL Interfaces
	Generating a Type Library or COM IDL
	Generating Server Skeleton Code
	Implementing the Server Interfaces
	Implementing the Account Interface
	Implementing the CurrentAccount Interface
	Implementing the Bank Interface

	Registering the Server with OrbixCOMet
	Running the Server
	Registering the CORBA Server in the Implementation Repository

	Exception Handling
	CORBA Exceptions
	Example of a User Exception
	Exception Properties
	Exception Handling in Automation
	Exception Handling in Visual Basic
	Inline Exception Handling

	Exception Handling in COM
	Catching COM Exceptions
	Using Direct-to-COM Support in Visual C++

	Raising an Exception in a Server
	Automation Exceptions
	COM Exceptions

	Implementing Client Callbacks
	Defining OMG IDL Interfaces
	Generating Skeleton Code for Callback Objects
	Writing a Client
	Visual Basic
	PowerBuilder
	COM C++

	Writing the Server
	Implementing the RegisterCallback Interface
	Invoking the Operation to Notify the Client

	Registering the Callback Object Server
	Visual Basic
	PowerBuilder
	COM C++

	SSL Support
	Enabling SSL in an OrbixCOMet Application
	OrbixCOMet SSL Handler DLLs
	Secure CORBA Clients Accessing Existing DCOM Servers
	Specifying the Custsur.exe Certificate
	Specifying the Corresponding Private-Key Password

	OrbixCOMet Type Store Manager and the Secure IFR

	Deploying an OrbixCOMet Application
	Deployment Models
	Bridge on Each Client Machine
	Bridge on Server Machine
	Bridge on Intermediary Machine
	Internet Deployment

	Deployment Steps
	Installing Your Application Runtime
	Installing the Development Language Runtime
	Installing the Orbix Runtime
	Installing the OrbixCOMet Runtime
	Minimizing the Client-Side Footprint

	Using Handler DLLs
	Creating and Registering Handler DLLs
	Loading Handler DLLs at Runtime
	Managing Handler DLLs

	Development Support Tools
	The Central Role of the Type Store
	The Caching Mechanism of the Type Store
	The OrbixCOMet Tools GUI Screen
	Location of the Command-Line Utilities
	Adding New Information to the Type Store
	Using the GUI Tool
	Using the Command-Line Utilities

	Deleting the Type Store Contents
	Using the GUI Tool
	Using the Command-Line Utilities

	Rebuilding the Type Store
	Using the GUI Tool
	Using the Command-Line Utilities

	Dumping the Type Store Contents
	Creating an IDL File
	Using the GUI Tool
	Using the Command-Line Utilities

	Creating a Type Library
	Using the GUI Tool
	Using the Command-Line Utilities

	Generating a Handler DLL
	Generating Server Stub Code and Support for Callbacks
	Replacing an Existing DCOM Server

	OrbixCOMet API Reference
	Automation Interfaces
	DIOrbixServerAPI
	DCollection
	DICORBAAny
	DICORBAFactory
	DICORBAFactoryEx
	DICORBAObject
	DICORBAStruct
	DICORBASystemException
	DICORBATypeCode
	DICORBAUnion
	DICORBAUserException
	DIForeignComplexType
	DIForeignException
	DIObject
	DIObjectInfo
	DIOrbixObject
	DIOrbixORBObject
	DIOrbixSSL
	DIORBObject
	IForeignObject

	COM Interfaces
	IOrbixServerAPI
	ICORBA_Any
	ICORBAFactory
	ICORBAObject
	ICORBA_TypeCode
	ICORBA_TypeCodeExceptions
	IForeignObject
	IMonikerProvider
	IOrbixObject
	IOrbixORBObject
	IOrbixSSL
	IORBObject

	Introduction to OMG IDL
	OMG IDL Interfaces
	Oneway Operations
	Context Clause
	Modules
	Exceptions
	Inheritance
	The Basic Types of OMG IDL
	Constructed Types
	Structures
	Enumerated Types
	Unions

	Arrays
	Template Types
	Sequences
	Strings

	Constants
	Typedef Declaration
	Forward Declaration

	Scoped Names
	The Preprocessor
	The Orb.idl Include File

	CORBA-to-Automation Mapping
	Basic Types
	Strings
	Interfaces
	Attributes
	Operations
	Inheritance

	Complex Types
	Creating Constructed OMG IDL Types
	Structs
	Unions
	Sequences
	Arrays
	Exceptions
	The Any Type
	Context Clause

	Object References
	Modules
	Constants
	Enumerated Types
	Scoped Names
	Typedefs

	Automation-to-CORBA Mapping
	Basic Types
	Strings
	Interfaces
	Properties and Methods
	Inheritance

	SafeArrays
	Exceptions
	Variant Types
	Object References
	Enumerated Types
	Typedefs

	CORBA-to-COM Mapping
	Basic Types
	Strings
	Interfaces
	Attributes
	Operations
	Inheritance

	Complex Types
	Creating Constructed OMG IDL Types
	Structs
	Unions
	Sequences
	Arrays
	Exceptions
	The Any Type
	Context Clause

	Object References
	Modules
	Constants
	Enumerated Types
	Scoped Names
	Typedefs

	COM-to-CORBA Mapping
	Basic Types
	Strings
	Interfaces
	Properties and Methods
	Inheritance

	Complex Types
	Structs
	Unions
	Pointers
	Arrays
	Exceptions
	Variant Types

	Constants
	Enumerated Types
	Scoped Names
	Typedefs

	System Exceptions
	Exceptions Defined by CORBA
	Orbix-Specific Exceptions

	OrbixCOMet Configuration
	OrbixCOMet Keys
	Common Keys
	Orbix Keys

	OrbixCOMet Utility Options
	Typeman Options
	Ts2idl Options
	Ts2tlb Options
	Ts2sp Options
	Aliassrv Options
	Custsur Options
	Tlibreg Options

