
IONA Technologies PLC
September 2000

OrbixEvents Programmer’s 
Guide



Orbix is a Registered Trademark of IONA Technologies PLC.
While the information in this publication is believed to be accurate, IONA Technologies PLC makes no warranty of any kind 
to this material including, but not limited to, the implied warranties of merchantability and fitness for a particular purpose. 
IONA Technologies PLC shall not be liable for errors contained herein, or for incidental or consequential damages in 
connection with the furnishing, performance or use of this material.
Java is a trademark of Sun Microsystems, Inc.

COPYRIGHT NOTICE
No part of this publication may be reproduced, stored in a retrieval system or transmitted, in any form or by any means, 
photocopying, recording or otherwise, without prior written consent of IONA Technologies PLC. No third party intellectual 
property right liability is assumed with respect to the use of the information contained herein. IONA Technologies PLC 
assumes no responsibility for errors or omissions contained in this book. This publication and features described herein are 
subject to change without notice.

Copyright © 2000 IONA Technologies PLC. All rights reserved. 

All products or services mentioned in this manual are covered by the trademarks, service marks, or product names as 
designated by the companies who market those products.

M 2 4 7 4



Contents
 Preface vii
Document Conventions x

Chapter 1   Introduction to the CORBA Event Service 1
Communications using the CORBA Event Service 2
Initiating Event Communication 5

The Push Model 6
The Pull Model 7
Mixing the Push and Pull Models in a Single System 8

Types of Event Communication 9

Chapter 2   The Programming Interface to the Event Service 11
The Programming Interface for Untyped Events 12

Registration of Suppliers and Consumers with an Event Channel 12
Transfer of Untyped Events Through an Event Channel 17
Event Channel Administration Interfaces 19

The Programming Interface for Typed Events 21
Registration of Suppliers and Consumers with a Typed Event Channel 22
Transfer of Typed Events Through an Event Channel 24
Typed Event Channel Administration Interfaces 26

Chapter 3   OrbixEvents 29
Overview of OrbixEvents 29
Components of OrbixEvents 31

Chapter 4   Programming with the Untyped Push Model 33
Overview of an Example Application 33
Developing an Untyped Push Supplier 34

Obtaining a ProxyPushConsumer from an Event Channel 35
Connecting a PushSupplier Object to an Event Channel 36
Pushing Events to an Event Channel 37
The Push Supplier Application 38

Developing an Untyped Push Consumer 40
iii



O r b i x E v e n t s  P r o g r amme r ’ s  G u i d e
Obtaining a ProxyPushSupplier from an Event Channel 41
Connecting a PushConsumer Object to an Event Channel 41
Monitoring Incoming Operation Calls 44
The Push Consumer Application 45

Chapter 5   Programming with the Typed Push Model 47
Overview of an Example Application 47
Developing a Typed Push Supplier 49

Obtaining a TypedProxyPushConsumer from an Event Channel 50
Connecting a PushSupplier Object to an Event Channel 51
Obtaining a Typed Push Consumer from a ProxyPushConsumer 52
Pushing Events to an Event Channel 53
A Typed Push Supplier Application 54

Developing a Typed Push Consumer 56
Obtaining a ProxyPushSupplier from an Event Channel 57
Connecting a TypedPushConsumer Object to an Event Channel 57
Monitoring Incoming Operation Calls 60
A Typed Push Consumer Application 61

Chapter 6   Programming with the Untyped Pull Model 63
Overview of an Example Application 64
Developing an Untyped Pull Consumer 64

Obtaining a ProxyPullSupplier from an Event Channel 65
Connecting a PullConsumer Object to an Event Channel 65
Pulling Events from an Event Channel 67
An Untyped Pull Consumer Application 68

Developing an Untyped Pull Supplier 70
Obtaining a ProxyPullConsumer from an Event Channel 70
Connecting a PullSupplier Object to an Event Channel 71
Monitoring Incoming Operation Calls 73
An Untyped Pull Supplier Application 74

Chapter 7   Compiling and Running an OrbixEvents Application 77
Compiling the IDL Definitions for the Event Service 77
Compiling an OrbixEvents Application 78
Running an OrbixEvents Application 79

The OrbixEvents Server 79
Running your Application 80
 iv



C o n t e n t s
Lifetime of Proxy Objects 80

Chapter 8   OrbixEvents Configuration 83
The OrbixEvents Server Command Lines 84
Assigning Identifiers to Event Channels 87

Appendix A   
Event Service IDL Definitions 89

CosEvents.idl File Contents 89
The CosEventComm Module 89
The CosTypedEventComm Module 90

CosEventsAdmin.idl File Contents 90
The CosEventChannelAdmin Module 90
The CosTypedEventChannelAdmin Module 92

OrbixEvents.idl File Contents 93
The OrbixEventsAdmin Module 93

Appendix B   
Configuration File Settings 95

Appendix C   
OrbixEventsAdmin::ChannelManager 101

 Index 107
v



O r b i x E v e n t s  P r o g r amme r ’ s  G u i d e
 vi



Preface
OrbixEvents implements the Common Object Request Broker Architecture 
(CORBA) Event Service which is defined as part of the CORBAservices 
specification. The CORBAservices specification extends the core CORBA 
specification with a set of services commonly required in Object Request Broker 
(ORB) applications. OrbixEvents supports the Internet Inter-ORB Protocol 
(IIOP) for interoperable communications between CORBA implementations. 
Consequently, any IIOP-compliant ORB may interact with OrbixEvents.

Orbix documentation is periodically updated. New versions between releases 
are available at this site:

http://www.iona.com/docs/orbix/orbix33.html

If you need assistance with Orbix or any other IONA products, contact IONA 
at support@iona.com. Comments on IONA documentation can be sent to 
doc-feedback@iona.com.

Audience
The OrbixEvents Programmer’s Guide is intended for use by ORB application 
programmers who want to take advantage of the application communications 
model defined by the CORBA Event Service specification. This guide provides a 
detailed description of the Event Service communications model and describes 
how OrbixEvents implements this model.

This guide assumes that you are familiar with both the C++ programming 
language and with CORBA distributed programming. An OrbixEvents 
installation requires an existing Orbix or OrbixWeb installation but familiarity 
with either of these ORB implementations is not strictly necessary.
vii



O r b i x E v e n t s  P r o g r amme r ’ s  G u i d e
Organization of this Guide
The OrbixEvents Programmer’s Guide consists of the following chapters and 
appendices. 

Chapter 1, “Introduction to the CORBA Event Service”

This chapter provides an introduction to the concepts of OrbixEvents. In 
particular, it introduces the communications model defined by the CORBA 
Event Service specification.

Chapter 2, “The Programming Interface to the Event 
Service”
The interfaces to the CORBA Event Service are defined in IDL. This chapter 
describes these interfaces in detail.

Chapter 3, “OrbixEvents”

This chapter provides an overview of how OrbixEvents implements the CORBA 
Event Service specification. 

Chapter 4, “Programming with the Untyped Push Model”

This chapter describes how to develop an OrbixEvents application that uses the 
Push model to transmit untyped events. 

Chapter 5, “Programming with the Typed Push Model”

This chapter describes how to develop of an OrbixEvents application that uses 
the Push model to transfer typed events.

Chapter 6, “Programming with the Untyped Pull Model”

This chapter describes how to develop of an OrbixEvents application that uses 
the Pull model to transfer untyped events.
 viii



P r e f a c e
Chapter 7, “Compiling and Running an OrbixEvents 
Application”

This chapter explains how to compile and run an OrbixEvents application.

Chapter 8, “OrbixEvents Configuration”
The configuration overhead associated with OrbixEvents is minimal. However, 
Chapter 8, “OrbixEvents Configuration” addresses some issues associated with 
configuring an OrbixEvents based application. 

Appendix A, “Event Service IDL Definitions”
CORBA defines the programming interface to the Event Service in IDL. The IDL 
definitions associated with the CORBA Event Service are referenced throughout 
this guide. Appendix A lists these definitions in full.

Appendix B, “Configuration File Settings”
This appendix lists the configuration settings that you can adjust with the Orbix 
configuration tool.

Appendix C, “OrbixEventsAdmin::ChannelManager”

OrbixEvents extends the CORBA programming interface to allow you to create 
and manage event channels within an OrbixEvents server. Appendix C describes 
this interface.
ix



O r b i x E v e n t s  P r o g r amme r ’ s  G u i d e
Document Conventions
This guide uses the following typographical conventions:

This guide may use the following keying conventions:

Constant width Constant width (courier font) in normal text represents 
portions of code and literal names of items such as 
classes, functions, variables, and data structures. For 
example, text might refer to the CORBA::Object class.

Constant width paragraphs represent code examples or 
information a system displays on the screen. For example:

#include <stdio.h>

Italic Italic words in normal text represent emphasis and new 
terms.

Italic words or characters in code and commands 
represent variable values you must supply, such as 
arguments to commands or path names for your 
particular system. For example:

% cd /users/your_name

No prompt When a command’s format is the same for multiple 
platforms, no prompt is used.

% A percent sign represents the UNIX command shell 
prompt for a command that does not require root 
privileges.

# A number sign represents the UNIX command shell 
prompt for a command that requires root privileges.

> The notation > represents the DOS, Windows NT, or 
Windows 95 command prompt.

...

.

.

. 

Horizontal or vertical ellipses in format and syntax 
descriptions indicate that material has been eliminated 
to simplify a discussion.
 x



P r e f a c e
[ ] Brackets enclose optional items in format and syntax 
descriptions.

{ } Braces enclose a list from which you must choose an 
item in format and syntax descriptions.

| A vertical bar separates items in a list of choices 
enclosed in { } (braces) in format and syntax 
descriptions.
xi



O r b i x E v e n t s  P r o g r amme r ’ s  G u i d e
 xii



 1
Introduction to the CORBA Event 
Service

The CORBA Event Service specification defines a model of 
communication that allows an application to send an event that will 
be received by any number of objects. The model provides two 
approaches to initiating event communication. For each of these 
approaches, event communication can take two forms. This chapter 
introduces the terminology and concepts that are used throughout 
this guide.

OrbixEvents implements the CORBA Event Service specification. This 
specification defines a model for communications between ORB applications 
that supplements the direct operation call system that client/server applications 
normally use.

This chapter introduces the basic concepts of the CORBA Event Service 
communications model. Later chapters will describe the programming interface 
in detail and show how to implement applications that use the CORBA Event 
Service using OrbixEvents.
1



O r b i x E v e n t s  P r o g r amme r ’ s  G u i d e
Communications using the CORBA Event 
Service

Figure 1.1 illustrates the standard CORBA model for communication between 
distributed applications. 

In this model, a client application calls an IDL operation on a specified object in a 
server. The client waits for the call to complete and then receives confirmation 
of the return status. For any operation call there is a single client and a single 
server, and each must be available for the call to succeed.

This simple, one-to-one communication model is fundamental to the CORBA 
architecture. However, some ORB applications need a more complex, indirect 
communication style. The CORBA Event Service defines a communication 
model that allows an application to send a message to objects in other 
applications without any knowledge about the objects that receive the message. 

The CORBA Event Service introduces the concept of events to CORBA 
communications. An event originates at an event supplier and is transferred to 
any number of event consumers. Suppliers and consumers are completely 
decoupled: a supplier has no knowledge of the number of consumers or their 
identities, and consumers have no knowledge of which supplier generated a 
given event.

Figure 1.1: CORBA Model for Basic Client/Server Communications

6HUYHU

��&OLHQW LQYRNHV RSHUDWLRQ

��2SHUDWLRQ UHWXUQV

&OLHQW

7DUJHW
2EMHFW
 2



I n t r o d u c t i o n  t o  t h e  COR BA  E v e n t  S e r v i c e
In order to support this model, the CORBA Event Service introduces to 
CORBA a new architectural element, called an event channel. An event channel 
mediates the transfer of events between the suppliers and consumers as follows:

1. The event channel allows consumers to register interest in events, and 
stores this registration information.

2. The channel accepts incoming events from suppliers.

3. The channel forwards supplier-generated events to registered 
consumers.

Suppliers and consumers connect to the event channel and not directly to each 
other (Figure 1.2). From a supplier’s perspective, the event channel appears as a 
single consumer; from a consumer’s perspective, the event channel appears as a 
single supplier. In this way, the event channel decouples suppliers and 
consumers. 

Any number of suppliers can issue events to any number of consumers using a 
single event channel. There is no correlation between the number of suppliers 
and the number of consumers, and new suppliers and consumers can be easily 
added to the system. In addition, any supplier or consumer can connect to more 
than one event channel.

Figure 1.2: Suppliers and Consumers Communicating through an Event Channel

(YHQW SURSDJDWLRQ

(YHQW FKDQQHO

6XSSOLHU

6XSSOLHU

6XSSOLHU

&RQVXPHU

&RQVXPHU

&RQVXPHU

&RQVXPHU
3



O r b i x E v e n t s  P r o g r amme r ’ s  G u i d e
A typical example that uses an event-based communication model is that of a 
spreadsheet cell. Many documents may be linked to a spreadsheet cell and these 
documents need to be notified when the cell value changes. However, the 
spreadsheet software should not need knowledge of each document linked to 
the cell. When the cell value changes, the spreadsheet software should be able 
to issue an event which is automatically forwarded to each connected document.

CORBA defines the Event Service at a level above the ORB architecture. 
Suppliers, consumers and event channels may be implemented as ORB 
applications, while events are defined using standard IDL operation calls. 
Suppliers, consumers and event channels each implement clearly defined IDL 
interfaces that support the steps required to transfer events in a distributed 
system.

Figure 1.3 illustrates an example implementation of event propagation in a 
CORBA system. In this example, suppliers are implemented as CORBA clients; 
the event channel and consumers are implemented as CORBA servers. An event 
occurs when a supplier invokes a clearly defined IDL operation on an object in 
the event channel application. The event channel propagates the event by 
invoking a similar operation on objects in each of the consumer servers. To 
make this possible, the event channel application stores a reference to each of 
the consumer objects, for example, in an internal list.

Figure 1.3: An Example Implementation of Event Propagation

(YHQW FKDQQHO

&RQVXPHU

&RQVXPHU

&RQVXPHU

6XSSOLHU

�� 6XSSOLHU FDOOV RSHUDWLRQ
RQ HYHQW FKDQQHO

�� (YHQW FKDQQHO FDOOV RSHUDWLRQ
RQ HDFK FRQVXPHU
 4



I n t r o d u c t i o n  t o  t h e  COR BA  E v e n t  S e r v i c e
This is not the only way in which the concept of events can map to a CORBA 
system. In particular, the CORBA Event Service identifies two approaches to 
initiating the propagation of events, and these affect the implementation 
architecture. “Initiating Event Communication” on page 5 addresses this topic in 
detail.

“Types of Event Communication” on page 9 discusses how events can map to 
IDL operation calls, and describes how you can associate data with an event 
using IDL operation parameters. 

Initiating Event Communication
CORBA specifies two approaches to initiating the transfer of events between 
suppliers and consumers. These approaches are called the Push model and the 
Pull model. In the Push model, suppliers initiate the transfer of events by sending 
those events to consumers. In the Pull model, consumers initiate the transfer of 
events by requesting those events from suppliers.

This section illustrates each approach in turn, and then describes how these 
models can be mixed in a single system.
5



O r b i x E v e n t s  P r o g r amme r ’ s  G u i d e
The Push Model

In the Push model, a supplier generates events and actively passes them to a 
consumer. In this model, a consumer passively waits for events to arrive. 
Conceptually, suppliers in the Push model correspond to clients in normal 
CORBA applications, and consumers correspond to servers.

Figure 1.4 illustrates a Push model architecture in which push suppliers 
communicate with push consumers through an event channel.

In this architecture, a supplier initiates the transfer of an event by invoking an 
IDL operation on an object in the event channel. The event channel invokes a 
similar operation on an object in each consumer that has registered with the 
channel.

Figure 1.4: Push Model Suppliers and Consumers Communicating through an 
Event Channel
 6



I n t r o d u c t i o n  t o  t h e  COR BA  E v e n t  S e r v i c e
The Pull Model

In the Pull model, a consumer actively requests that a supplier generate an event. 
In this model, the supplier waits for a pull request to arrive. When a pull request 
arrives, event data is generated by the supplier and returned to the pulling 
consumer. Conceptually, consumers in the Pull model correspond to clients in 
normal CORBA applications and suppliers correspond to servers.

Figure 1.5 illustrates a Pull model architecture in which pull consumers 
communicate with pull suppliers through an event channel.

In this architecture, a consumer initiates the transfer of an event by invoking an 
IDL operation on an object in the event channel application. The event channel 
then invokes a similar operation on an object in each supplier. The event data is 
returned from the supplier to the event channel and then from the channel to 
the consumer which initiated the transfer.

Figure 1.5: Pull Model Suppliers and Consumers Communicating through an 
Event Channel

(YHQW SURSDJDWLRQ

(YHQW FKDQQHO

3XOO VXSSOLHU

3XOO FRQVXPHU

3XOO FRQVXPHU

3XOO FRQVXPHU

3XOO FRQVXPHU

3XOO VXSSOLHU

3XOO VXSSOLHU
7



O r b i x E v e n t s  P r o g r amme r ’ s  G u i d e
Mixing the Push and Pull Models in a Single System

Because suppliers and consumers are completely decoupled by an event channel, 
the Push and Pull models can be mixed in a single system. For example, suppliers 
may connect to an event channel using the Push model, while consumers 
connect using the Pull model as shown in Figure 1.6.

In this case, both suppliers and consumers must participate in initiating event 
transfer. A supplier invokes an operation on an object in the event channel to 
transfer an event to the channel. A consumer then invokes another operation on 
an event channel object to transfer the event data from the channel. Unlike the 
case in which consumers connect using the Push model, the event channel takes 
no initiative in forwarding the event. The event channel stores events supplied by 
the push suppliers until some pull consumer requests an event, or until a push 
consumer connects to the event channel.

Figure 1.6: Push Model Suppliers and Pull Model Consumers in a Single System

(YHQW SURSDJDWLRQ

(YHQW FKDQQHO

3XVK VXSSOLHU

3XOO FRQVXPHU

3XOO FRQVXPHU

3XOO FRQVXPHU

3XOO FRQVXPHU

3XVK VXSSOLHU

3XVK VXSSOLHU
 8



I n t r o d u c t i o n  t o  t h e  COR BA  E v e n t  S e r v i c e
Types of Event Communication
The CORBA Event Service maps an event to a successfully completed sequence 
of operation calls. The operations and the sequence of calls are clearly defined 
for both Push and Pull models, and data about an event can be passed as 
operation parameters or return values. This data is specific to each application 
and is generally not interpreted by implementations of the CORBA Event 
Service, such as OrbixEvents.

Event communication can take one of the two forms, typed or untyped.

Untyped Event Communication

In untyped event communication, an event is propagated by a series of 
generic push() or pull() operation calls. The push() operation takes a 
single parameter which stores the event data. The event data parameter 
is of type any, which allows any IDL defined data type to be passed 
between suppliers and consumers. The pull() operation has no 
parameters but transmits event data in its return value, which is also of 
type any. Clearly, in both cases, the supplier and consumer applications 
must agree about the contents of the any parameter and return value if 
this data is to be useful. 

Typed Event Communication

In typed event communication, a programmer defines application-specific 
IDL interfaces through which events are propagated. Rather than using 
push() and pull() operations and transmitting data using an any, a 
programmer defines an interface that suppliers and consumers use for the 
purpose of event communication. The operations defined on the 
interface may contain parameters defined in any suitable IDL data type. In 
the Push model, event communication is initiated simply by invoking 
operations defined on this interface. The Pull model is more complex 
because event communication is initiated by invoking operations on an 
interface that is specially constructed from the application-specific 
interface that the programmer defines. Event communication is initiated 
by invoking operations on the constructed interface.
9



O r b i x E v e n t s  P r o g r amme r ’ s  G u i d e
The form that event communication takes is independent of the method of 
initiating event transfer. As a consequence, the Push model can be used to 
transmit typed events or untyped events, and the Pull model can be used to 
transmit typed or untyped events. 
 10



 2
The Programming Interface to the 
Event Service

The CORBA Event Service specification defines a set of interfaces 
that support the Push and Pull models of initiating the transfer of 
events in both typed and untyped format. This chapter gives details 
of these interfaces. The CORBA Event Service specification defines 
the roles of consumer, supplier and event channel by describing IDL 
interfaces that each must support. The operations on these 
interfaces allow consumers and suppliers to register with an event 
channel to enable the propagation of events. 

The CORBA Event Service includes IDL interfaces for both untyped and typed 
events in both the Push and Pull event models. This chapter describes in detail 
the IDL interfaces defined for the CORBA Event Service to support these 
models. 

You can find a complete listing of all interfaces relating to the CORBA Event 
Service in Appendix A, “Event Service IDL Definitions”.
11



O r b i x E v e n t s  P r o g r amme r ’ s  G u i d e
The Programming Interface for Untyped Events
The CORBA Event Service for untyped events defines interfaces for suppliers, 
consumers and event channels. It also defines a number of administration 
interfaces that allow suppliers and consumers to register with an event channel 
to allow the transfer of events between them.

Registration of Suppliers and Consumers with an Event 
Channel

A supplier connects to an event channel to indicate that it wishes to transfer 
events to consumers through that channel. A consumer connects to an event 
channel to register its interest in any events supplied through that channel. 
When a supplier or consumer no longer wishes to send or receive events, the 
application may disconnect itself from the event channel. In some cases, the 
event channel may need to disconnect a supplier or consumer explicitly.

The CORBA Event Service defines a set of interfaces that supports untyped 
event transfer using the Push and Pull models. These interfaces are described in 
the remainder of this section. 

The Push Model for Untyped Events

Four IDL interfaces support connection to and disconnection from event 
channels using the Push model: 

PushSupplier
PushConsumer 
ProxyPushConsumer
ProxyPushSupplier

The interfaces PushSupplier and ProxyPushConsumer allow suppliers to supply 
events to an event channel.

The interfaces PushConsumer and ProxyPushSupplier are specific to 
consumers, allowing them to receive events from an event channel.
 12



T h e  P r o g r amm i n g  I n t e r f a c e  t o  t h e  E v e n t  S e r v i c e
These four interfaces are defined in IDL as follows:

// IDL
module CosEventComm {

exception Disconnected { 
};

interface PushConsumer {
void push (in any data) raises (Disconnected);
void disconnect_push_consumer ();

};

interface PushSupplier {
void disconnect_push_supplier();

};
};

module CosEventChannelAdmin {
exception AlreadyConnected {
};

exception TypeError {
};

interface ProxyPushConsumer : CosEventComm::PushConsumer {
void connect_push_supplier (

in CosEventComm::PushSupplier push_supplier)
raises (AlreadyConnected);

};
  

interface ProxyPushSupplier : CosEventComm::PushSupplier {
void connect_push_consumer (

in CosEventComm::PushConsumer push_consumer)
raises (AlreadyConnected, TypeError);

};

...
};
13



O r b i x E v e n t s  P r o g r amme r ’ s  G u i d e
Connecting a Supplier

A supplier initiates connection to an event channel by obtaining a reference to an 
object of type ProxyPushConsumer in the channel. The supplier application may 
wish to be notified if the event channel terminates the connection. If so, the 
supplier then invokes the operation connect_push_supplier() on that object, 
passing a reference to an object of type PushSupplier as an operation 
parameter. If the ProxyPushConsumer is already connected to a PushSupplier, 
connect_push_supplier() will raise the exception AlreadyConnected. 

Connecting a Consumer

A consumer first obtains a reference to a ProxyPushSupplier object 
implemented in the event channel. In order to register its interest in events from 
the channel, the consumer then invokes the operation 
connect_push_consumer() on the ProxyPushSupplier object. The consumer 
passes a reference to an object of type PushConsumer to the operation call.

If ProxyPushSupplier is already connected to a PushConsumer, 
connect_push_consumer() will raise the exception AlreadyConnected.

Figure 2.1: Push Supplier and Push Consumer Connecting to an Event Channel in the 
Untyped Model

3XVK &RQVXPHU

ProxyPushConsumer

ProxyPushSupplier

PushConsumer

connect_push_supplier() connect_push_consumer()

PushSupplier

3XVK 6XSSOLHU (YHQW &KDQQHO
 14



T h e  P r o g r amm i n g  I n t e r f a c e  t o  t h e  E v e n t  S e r v i c e
Figure 2.1 illustrates how a supplier and consumer connect to an event channel. 
Note that there are no dependencies between the connection of the supplier and 
the connection of the consumer.

The Pull Model for Untyped Events

A similar set of IDL interfaces supports connection to and disconnection from 
event channels in the Pull model. These interfaces are:

PullSupplier
PullConsumer 
ProxyPullConsumer
ProxyPullSupplier

The interfaces PullConsumer and ProxyPullSupplier allow consumers to 
request events from an event channel. 

The interfaces PullSupplier and ProxyPullConsumer allow an event channel 
to request events from suppliers. 

The Pull model interfaces are defined in IDL as follows:

// IDL
module CosEventComm {

exception Disconnected { 
};

interface PullSupplier {
any pull () raises (Disconnected);
any try_pull (out boolean has_event) raises (Disconnected);
void disconnect_pull_supplier();

};

interface PullConsumer {
void disconnect_pull_consumer ();

};
};

module CosEventChannelAdmin {
exception AlreadyConnected {
};

exception TypeError {
15



O r b i x E v e n t s  P r o g r amme r ’ s  G u i d e
};

interface ProxyPullSupplier : CosEventComm::PullSupplier {
void connect_pull_consumer (

in CosEventComm::PullConsumer pull_consumer)
raises (AlreadyConnected);

};
  

interface ProxyPullConsumer : CosEventComm::PullConsumer {
void connect_pull_supplier (

in CosEventComm::PushSupplier pull_supplier)
raises (AlreadyConnected, TypeError);

};

...
};

Connecting a Consumer

In the Pull model, the transfer of events is initiated by consumers. A consumer 
initiates connection to an event channel by obtaining a reference to an object of 
type ProxyPullSupplier in the channel. The consumer application may wish to 
be notified if the event channel terminates the connection. If so, it invokes the 
operation connect_pull_consumer() on the ProxyPullSupplier object, 
passing a reference to an object of type PullConsumer as an operation 
parameter. If the ProxyPullSupplier is already connected to a PullConsumer, 
connect_pull_consumer() raises the exception AlreadyConnected.

Connecting a Supplier

To connect to an event channel, a pull supplier first obtains a reference to a 
ProxyPullConsumer object implemented in the event channel. The supplier then 
invokes the operation connect_pull_supplier() on the ProxyPullConsumer 
object, passing a reference to an object of type PullSupplier as the operation 
parameter. If the ProxyPullConsumer is already connected to a PullSupplier, 
connect_pull_supplier() raises the exception AlreadyConnected. 

Figure 2.2 illustrates how a pull supplier and pull consumer connect to an event 
channel. Note that there are no dependencies between the connection of the 
supplier and the connection of the consumer.
 16



T h e  P r o g r amm i n g  I n t e r f a c e  t o  t h e  E v e n t  S e r v i c e
Transfer of Untyped Events Through an Event Channel

The transfer of events from a supplier through an event channel to a consumer 
follows a simple pattern. Events originate at a supplier. In the Push model, a 
supplier pushes events into the event channel which in turn pushes the events to 
registered consumers. In the Pull model, consumers take the active role by 
requesting events from the event channel; the event channel, in turn, requests 
events from registered suppliers. Both methods of transfer are described for 
untyped events in the remainder of this section.

The Push Model

The supplier initiates event transfer by invoking the operation push() on a 
ProxyPushConsumer object in the event channel, passing the event data as a 
parameter of type any. The event channel then invokes a push() operation on 
the PushConsumer object in each registered consumer, again passing the event 
data as an operation parameter. Conceptually, this transfer is as shown in 
Figure 2.3.

Note that the supplier views the event channel as a single consumer and has no 
knowledge of the actual consumers. Likewise, the consumer views the event 
channel as a single supplier. In this way, the channel decouples the supplier and 
consumer.

Figure 2.2: Pull Supplier and Pull Consumer Connecting to an Event Channel in the 
Untyped Model

3XOO &RQVXPHU

PullSupplier

3XOO 6XSSOLHU (YHQW &KDQQHO

ProxyPullConsumer

ProxyPullSupplier

PullConsumer

connect_pull_supplier() connect_pull_consumer()
17



O r b i x E v e n t s  P r o g r amme r ’ s  G u i d e
The Pull Model
The consumer initiates event transfer in the Pull model. The consumer initiates 
event transfer in one of two ways as described below.

1. pull() 

The consumer invokes the pull() operation on a ProxyPullSupplier 
object in the event channel. 

The event channel, if it does not already have an event, invokes a pull() 
operation on the PullSupplier object in each registered supplier. 

The pull() operation blocks until an event is available; the operation 
then returns the event data in its return value which is of type any. Thus, 
the consumer application blocks until the event channel can supply an 
event. The event channel, in turn, blocks until some supplier supplies an 
event to the channel. 

2. try_pull() 

The consumer invokes the try_pull() operation on a 
ProxyPullSupplier object in the event channel. 

The event channel, in turn, invokes a try_pull() operation on the 
PullSupplier object in each registered supplier.

If no supplier has an event available, try_pull() sets its boolean 
has_event parameter to false and returns immediately. If an event is 
available from some supplier, try_pull() sets the has_event parameter 
to true and returns the event data in its return value which is of type any.

Figure 2.3: Transfer of an Event Through an Event Channel to a Consumer using the 
Untyped Push Model

3XVK &RQVXPHU

ProxyPushConsumer PushConsumer

push() push()

3XVK 6XSSOLHU (YHQW &KDQQHO
 18



T h e  P r o g r amm i n g  I n t e r f a c e  t o  t h e  E v e n t  S e r v i c e
Conceptually, the transfer of an event using the Pull model is as shown in 
Figure 2.4.

Note that, as in the Push model, the channel decouples suppliers and consumers. 
The consumer views the event channel as a single supplier and has no knowledge 
of the actual suppliers. Likewise, the supplier views the event channel as a single 
consumer. 

Event Channel Administration Interfaces

The CORBA Event Service specification defines a set of interfaces that support 
event channel administration. The role of these interfaces is to allow a supplier 
or consumer to make initial contact with an event channel and to provide a set 
of standardized operations so that a supplier may obtain a ProxyPushConsumer 
or ProxyPullConsumer and a consumer may obtain a ProxyPushSupplier or 
ProxyPullSupplier object reference.

Figure 2.4: Transfer of an Event Through an Event Channel to a Consumer using the 
Untyped Pull Model

3XOO &RQVXPHU

ProxyPullSupplier

pull()/
try_pull()

pull()/
try_pull()

PullSupplier

3XOO 6XSSOLHU (YHQW &KDQQHO
19



O r b i x E v e n t s  P r o g r amme r ’ s  G u i d e
Each event channel supports the interface EventChannel, which is defined as 
follows:

// IDL
module CosEventChannelAdmin {

...

interface EventChannel {
ConsumerAdmin for_consumers ();
SupplierAdmin for_suppliers ();
void destroy ();

};
};

If a supplier or consumer wishes to connect to an event channel, it must first 
obtain a reference to an EventChannel object in that channel. Typically, the 
event channel will publish a reference for this object, for example using the 
CORBA Naming Service.

A supplier then invokes the operation for_suppliers() on the EventChannel 
object. This operation returns a reference to an object of type SupplierAdmin, 
which is defined as follows:

// IDL
module CosEventChannelAdmin {

interface SupplierAdmin {
ProxyPushConsumer obtain_push_consumer ();
ProxyPullConsumer obtain_pull_consumer ();

};

...
};

To obtain a reference to a ProxyPushConsumer object in the event channel, the 
supplier invokes the operation obtain_push_consumer() on the 
SupplierAdmin object. At this point, the supplier is ready to connect to the 
channel and begin transferring events using the Push model.

The supplier invokes the operation obtain_pull_consumer() on the 
SupplierAdmin object if it wishes to obtain a ProxyPullConsumer. The supplier 
is then ready to connect to the channel and to transfer events using the Pull 
model.
 20



T h e  P r o g r amm i n g  I n t e r f a c e  t o  t h e  E v e n t  S e r v i c e
Similarly, a consumer invokes the operation for_consumers() on an 
EventChannel object in order to obtain a reference to an object of type 
ConsumerAdmin, which is defined as follows:

// IDL
module CosEventChannelAdmin {

interface ConsumerAdmin {
ProxyPushSupplier obtain_push_supplier ();
ProxyPullSupplier obtain_pull_supplier ();

};

...
};

If the consumer is using the Push model, it then invokes the operation 
obtain_push_supplier() to obtain a reference to a ProxyPushSupplier. If 
the consumer is using the Pull model, it invokes the operation 
obtain_pull_supplier() to obtain a reference to a ProxyPullSupplier 
object in the event channel. 

The consumer is then free to register its interest in events propagated through 
the channel.

The Programming Interface for Typed Events
As described in “Types of Event Communication” on page 9, events can be 
communicated in untyped form or in typed form. As OrbixEvents supports the 
Push model for Typed events, this section describes the Push model only.

Using typed event communication, you can define application-specific IDL 
interfaces through which events can be propagated. You are not restricted to 
using the operation push() to transfer events, and you do not have to pack 
operation parameters into an IDL any. 

The operations you specify in your interfaces may define in parameters to allow 
suppliers to transmit event data. However, since event propagation is uni-
directional, these operations may not define inout or out parameters; they 
must have a void return value and may not have a raises clause. These 
restrictions are the same as the restrictions on oneway operations. However, 
you do not have to define the operations to be oneway.
21



O r b i x E v e n t s  P r o g r amme r ’ s  G u i d e
The model for typed event communication closely follows the model for 
untyped events. Typed suppliers connect to a proxy consumer in the event 
channel and typed consumers connect to a proxy supplier. 

Suppliers and consumers must agree on the interface they will use to transfer 
events. To illustrate this, recall the example of the spreadsheet in 
“Communications using the CORBA Event Service” on page 2. Many documents 
can be linked to a spreadsheet cell and these need to be notified of changes to 
the cell value. The spreadsheet software notifies interested documents of a 
change to a cell value by generating an event that is forwarded to each 
connected document. An interface that supports notification of changes to a cell 
value might be defined as follows:

// IDL 
interface SpreadsheetCell {

void value_changed (in float new_value);
...

};

In this example, documents that are linked to a cell are notified by the 
spreadsheet software which supplies the event 
SpreadsheetCell::value_changed() whenever the value of a cell changes. 
The interface SpreadsheetCell may define other operations that may be used 
to supply events to connected documents. 

Registration of Suppliers and Consumers with a Typed Event 
Channel

This section describes how suppliers and consumers register with an event 
channel in the typed model. The sequence of steps is very similar to that 
described for the untyped model.

The Typed Push Model 

Four IDL interfaces support connection to and disconnection from event 
channels using the typed Push model: 

PushSupplier 
TypedPushConsumer 
ProxyPushSupplier 
TypedProxyPushConsumer
 22



T h e  P r o g r amm i n g  I n t e r f a c e  t o  t h e  E v e n t  S e r v i c e
The interfaces PushSupplier and TypedProxyPushConsumer allow suppliers to 
supply events to an event channel. 

The interfaces TypedPushConsumer and ProxyPushSupplier allow consumers 
to receive events from an event channel.

PushSupplier and ProxyPushSupplier are as described for the untyped Push 
model in “Registration of Suppliers and Consumers with an Event Channel” on 
page 12. 

The interfaces TypedPushConsumer and TypedProxyPushConsumer inherit from 
their counterparts in the untyped Push model. They are defined as follows:

// IDL
module CosTypedEventComm {

interface TypedPushConsumer : CosEventComm::PushConsumer {
Object get_typed_consumer ();

};
};

module CosTypedEventChannelAdmin {
interface TypedProxyPushConsumer :

CosEventChannelAdmin::ProxyPushConsumer,
CosTypedEventComm::TypedPushConsumer {

};
};

A typed push supplier initiates connection to an event channel by obtaining a 
reference to a TypedProxyPushConsumer object in the event channel. The 
supplier invokes the operation connect_push_supplier() on the 
TypedProxyPushConsumer object, passing a reference to an object of type 
PushSupplier as an operation parameter. 
23



O r b i x E v e n t s  P r o g r amme r ’ s  G u i d e
A typed push consumer obtains a reference to a ProxyPushSupplier object in 
the event channel and invokes the operation connect_push_consumer() on 
that object, passing an object of type TypedPushConsumer as the operation 
parameter. Figure 2.5 illustrates how a supplier and consumer connect to the 
event channel. 

Transfer of Typed Events Through an Event Channel 

Once connected to an event channel, suppliers initiate the transfer of typed 
events in the Push model.

The Typed Push Model
At this point, the typed push supplier is connected to the event channel as 
described in “Registration of Suppliers and Consumers with a Typed Event 
Channel” on page 22; specifically, it is connected to a TypedProxyPushConsumer 
object in the event channel. 

The TypedProxyPushConsumer object is specific to the type of events supplied 
by the supplier; that is, the supplier and the event channel agree on the type of 
events supplied by the supplier and accepted by the channel. This agreement is 
reached when the TypedProxyPushConsumer object is set up using the event 
channel administration interfaces; these interfaces are described in “Typed Event 
Channel Administration Interfaces” on page 26. 

Figure 2.5: Push Supplier and Push Consumer Connecting to an Event Channel using 
the Typed Model

3XVK &RQVXPHU

TypedProxyPushConsumer

ProxyPushSupplier

TypedPushConsumer

connect_push_supplier() connect_push_consumer()

PushSupplier

3XVK 6XSSOLHU (YHQW &KDQQHO
 24



T h e  P r o g r amm i n g  I n t e r f a c e  t o  t h e  E v e n t  S e r v i c e
To set up the transfer of events into the channel, the supplier invokes the 
operation get_typed_consumer() on the TypedProxyPushConsumer object. 
The operation get_typed_consumer() returns an object reference that 
supports the interface for which the TypedProxyPushConsumer was created. In 
this example, this is the interface SpreadsheetCell. The return type from 
get_typed_consumer() is CORBA::Object. Therefore, the supplier must 
narrow this object reference to obtain a reference of the type for which it 
supplies events – in this case, SpreadsheetCell. Having obtained this object 
reference, the supplier supplies events to the event channel simply by invoking 
operations defined in interface SpreadsheetCell on the object reference 
returned by get_typed_consumer(). Data associated with the event, if any, is 
supplied using the operations’ in parameters. Conceptually, the transfer is as 
shown in Figure 2.6, where SpreadsheetCell::value_changed() events are 
generated by the supplier.

Typed push suppliers send messages to consumers even though these suppliers 
do not know anything about the consumers that receive these messages. The 
flow of information is unidirectional — from suppliers to consumers. Therefore, 
data associated with an event can be sent by a supplier in an operation’s in 
parameters, but no data can be returned because no operation reply can be 
received by the supplier. Thus, operations invoked by the supplier may not have 
inout or out parameters; they must have a void return value; and they cannot 
have a raises clause. (These same restrictions apply to oneway operations in 
the standard CORBA model.)

Figure 2.6: Transfer of an Event Through an Event Channel to a Consumer Using the 
Typed Push Model

3XVK &RQVXPHU

TypedProxyPushConsumer TypedPushConsumer

value_changed() value_changed()

3XVK 6XSSOLHU (YHQW &KDQQHO
25



O r b i x E v e n t s  P r o g r amme r ’ s  G u i d e
Typed Event Channel Administration Interfaces

To support typed event communication, the CORBA Event Service specification 
provides a set of administration interfaces similar to those provided for the 
administration of untyped event channels. Where appropriate, these interfaces 
use IDL inheritance to indicate that they are specializations of corresponding 
interfaces in the untyped model. 

The interface to a typed event channel is described by the interface 
TypedEventChannel, which is defined as follows:

// IDL
module CosTypedEventChannelAdmin {

interface TypedEventChannel {
TypedConsumerAdmin for_consumers ();
TypedSupplierAdmin for_suppliers ();
void destroy ();

};

};

To connect to a typed event channel, a supplier or consumer must first obtain a 
reference to a TypedEventChannel object in that channel. As for the untyped 
model, the event channel will typically publish a reference for this object, for 
example, using the CORBA Naming Service.

A supplier then invokes the operation for_suppliers() on the 
TypedEventChannel object. This operation returns a reference to an object of 
type TypedSupplierAdmin, which is defined as follows:

// IDL
module CosTypedEventChannelAdmin {

exception InterfaceNotSupported {
};

exception NoSuchImplementation {
};

typedef string Key;
 26



T h e  P r o g r amm i n g  I n t e r f a c e  t o  t h e  E v e n t  S e r v i c e
interface TypedSupplierAdmin : 
CosEventChannelAdmin::SupplierAdmin {

TypedProxyPushConsumer obtain_typed_push_consumer (
in Key supported_interface)
raises (InterfaceNotSupported);

ProxyPullConsumer obtain_typed_pull_consumer (
in Key uses_interface)
raises (NoSuchImplementation);

};

...
};

The next step is for apush supplier invokes the operation 
obtain_typed_push_consumer() on the TypedSupplierAdmin object to obtain 
a reference to a TypedProxyPushConsumer object in the event channel. 

Once the supplier has a TypedSupplierAdmin object, it is ready to connect to 
the channel and begin transferring events.

Similarly, a consumer invokes the operation for_consumers() on an 
TypedEventChannel object to obtain a reference to an object of type 
TypedConsumerAdmin, which is defined as follows:

// IDL
module CosTypedEventChannelAdmin {

exception InterfaceNotSupported {
};

exception NoSuchImplementation {
};

typedef string Key;

interface TypedConsumerAdmin :
CosEventChannelAdmin::ConsumerAdmin {

ProxyPushSupplier 
obtain_typed_push_supplier (

in Key uses_interface)
raises (NoSuchImplementation);

};
27



O r b i x E v e n t s  P r o g r amme r ’ s  G u i d e
...
};

The push consumer invokes the operation obtain_typed_push_supplier() to 
obtain a reference to a ProxyPushSupplier. The consumer is then free to 
register its interest in events propagated through the channel.
 28



 3
OrbixEvents

OrbixEvents implements the CORBA Event Service specification. This 
chapter provides an overview of OrbixEvents and its components.

Overview of OrbixEvents
OrbixEvents is implemented as an Orbix server application supporting both 
untyped and typed events.

To create a CORBA Event Service application using OrbixEvents, you must 
implement suppliers and consumers using an Object Request Broker (ORB), 
such as Orbix for C++ or OrbixWeb. These suppliers and consumers 
communicate through an OrbixEvents server. 

An OrbixEvents server can implement one or more conceptual event channels. 
The criteria that determine the number of event channels required by your 
application architecture are specific to that application. Some applications may 
transfer each of several event types through a single channel, while others may 
have multiple channels that act as alternative sources of a single event type.

Figure 3.1 illustrates an example architecture in which suppliers and consumers 
communicate through two event channels implemented in a single OrbixEvents 
server. Note that any given supplier or consumer can connect to multiple event 
channels simultaneously. In addition, a supplier or consumer can connect to 
event channels in multiple OrbixEvents servers, if required.
29



O r b i x E v e n t s  P r o g r amme r ’ s  G u i d e
An OrbixEvents server maintains an EventChannel object, a SupplierAdmin 
object and a ConsumerAdmin object for each untyped event channel it 
implements. (The server maintains the corresponding typed versions, 
TypedSupplierAdmin and TypedConsumerAdmin, of these objects for a typed 
event channel.) An ORB application contacts an event channel by obtaining a 
reference to the corresponding EventChannel object. The application then uses 
this object to retrieve a reference to the SupplierAdmin or the ConsumerAdmin 
object, depending on whether the application is a supplier or consumer.

The SupplierAdmin object creates and manages ProxyPushConsumer objects 
for a single untyped event channel. For each supplier that connects to the 
channel, the SupplierAdmin creates a ProxyPushConsumer object which the 
supplier can use to generate events. Similarly, the ConsumerAdmin object creates 
and manages a ProxyPushSupplier object for each consumer that connects to 
the event channel. The typed admin objects create typed versions of these 
objects in typed event channels.

Figure 3.1: Example OrbixEvents Architecture with Two Event Channels

(YHQW SURSDJDWLRQ

(YHQW FKDQQHO �

(YHQW FKDQQHO �

2UEL[(YHQWV VHUYHU

3XVK VXSSOLHU

3XVK FRQVXPHU

3XVK FRQVXPHU

3XVK FRQVXPHU

3XVK FRQVXPHU

3XVK VXSSOLHU

3XVK VXSSOLHU

&KDQQHO PDQDJHU
 30



O r b i x E v e n t s
Each OrbixEvents server also maintains a channel manager object. The channel 
manager supports an interface OrbixEventsAdmin::ChannelManager that is 
specific to OrbixEvents. The ChannelManager object allows you to create event 
channels in the OrbixEvents server. The ChannelManager interface is described 
in full in Appendix C, “OrbixEventsAdmin::ChannelManager”.

Components of OrbixEvents
An OrbixEvents consumer or supplier is a normal ORB application that 
communicates with an OrbixEvents server using standard IDL operation calls.

Consequently, the components of your OrbixEvents implementation include:

• The binary file for the OrbixEvents server. 

The OrbixEvents server is named es; it is located in the bin directory of 
your Orbix installation.

• The complete IDL definitions for the CORBA Event Service. 

The IDL definitions for the CORBA Event Service are contained in these 
files in the idl directory:

IDL File Contents

cosevents.idl This file contains the CosEventComm and 
CosTypedEventComm modules.

coseventsadmin.idl This file contains the CosEventChannelAdmin and 
CosTypedEventChannelAdmin modules.

orbixevents.idl This file contains the OrbixEventsAdmin module.

Table 3.1: OrbixEvents IDL Files
31



O r b i x E v e n t s  P r o g r amme r ’ s  G u i d e
 32



 4
Programming with the Untyped 
Push Model

To illustrate the Push model communicating untyped events, this 
chapter develops a simple application.

As described in Chapter 1, “Introduction to the CORBA Event Service”, 
OrbixEvents allows you to develop Object Request Broker (ORB) applications 
that communicate using the CORBA Event Service communications model. 
From a programmer’s perspective, the event channel is the key element of a 
CORBA Event Service application. 

This chapter describes an example ORB application that illustrates how you can 
use OrbixEvents to develop Push model suppliers and consumers that 
communicate untyped events through event channels. 

Overview of an Example Application
The example described in this chapter consists of a push supplier and a push 
consumer, each of which connects to a single event channel. The supplier 
repeatedly pushes an event to the event channel and the data associated with 
each event takes the form of a string. The event channel propagates each event 
to the consumer, which simply displays the event data. This application is a 
simple example, but it illustrates a series of development tasks that apply to all 
OrbixEvents applications.
33



O r b i x E v e n t s  P r o g r amme r ’ s  G u i d e
To develop an OrbixEvents application, you must implement the suppliers and 
consumers as normal ORB applications that communicate with the event 
channel through IDL interfaces. OrbixEvents fully implements the event channel, 
which is created in the OrbixEvents server application. The IDL definitions for 
the CORBA Event Service are supplied with OrbixEvents.

This chapter describes the implementation of a supplier and consumer using 
Orbix for C++ as the development ORB. However, the OrbixEvents server 
fully supports the CORBA Internet Inter-ORB Protocol (IIOP), so you may 
develop OrbixEvents applications using any IIOP-compatible ORB.

Developing an Untyped Push Supplier
As described in “Transfer of Untyped Events Through an Event Channel” on 
page 17, a push supplier initiates the transfer of an event by pushing the event 
into an event channel. The event channel then takes responsibility for forwarding 
the event to each registered consumer.

This section describes how you can implement a push supplier as an Orbix 
application that communicates with a single event channel in an OrbixEvents 
server. This application acts as a client to several IDL interfaces implemented in 
the OrbixEvents event channel and acts as a server to the interface 
PushSupplier, which it implements.

There are three main programming steps in developing a push supplier:

1. Obtain a reference for a ProxyPushConsumer object from the event 
channel.

“Obtaining a ProxyPushConsumer from an Event Channel” on page 35 
explains this step in detail.

2. Invoke the operation connect_push_supplier() on the 
ProxyPushConsumer object, to connect a PushSupplier implementation 
object to the event channel.

“Connecting a PushSupplier Object to an Event Channel” on page 36 
explains this step.

3. Invoke the push() operation on the ProxyPushConsumer object to 
initiate the transfer of each event.

“Pushing Events to an Event Channel” on page 37 explains this step.
 34



P r o g r amm in g  w i t h  t h e  U n t y p e d  P u s h  Mo de l
“The Push Supplier Application” on page 38 shows how these steps fit into a full 
Push supplier application.

Obtaining a ProxyPushConsumer from an Event Channel

A push supplier needs to obtain a reference for a ProxyPushConsumer object in 
an event channel in order to transfer events to the channel for later distribution 
to consumers. The supplier transfers events by invoking the operation push() 
on the target ProxyPushConsumer object.

In order to obtain a ProxyPushConsumer object reference from an event 
channel, a supplier must implement the following programming steps:

1. Obtain a reference to an EventChannel object in the OrbixEvents 
server.

2. Invoke the operation for_suppliers() on the EventChannel object, in 
order to obtain a SupplierAdmin object reference.

3. Invoke the operation obtain_push_consumer() on the SupplierAdmin 
object. This operation returns a ProxyPushConsumer object reference.

In OrbixEvents, every event channel has an associated event channel identifier 
which can be used to retrieve the channel’s EventChannel object reference. 
When using the Orbix _bind() call, you can specify the channel identifier as the 
EventChannel object marker value. Chapter 8, “OrbixEvents Configuration” 
describes in detail how you can associate an identifier with an OrbixEvents event 
channel. For example:

// C++
EventChannel_var channelVar;
char *serverHost;
...

try {
channelVar = EventChannel::_bind ("Channel_1:ES",

serverHost);
}
catch (...) {

// Handle exception.
...

}

Note that the server name for the OrbixEvents server is ES.
35



O r b i x E v e n t s  P r o g r amme r ’ s  G u i d e
Connecting a PushSupplier Object to an Event Channel

When the supplier has retrieved the EventChannel object reference and used 
this to obtain a ProxyPushConsumer, the supplier needs to connect an 
implementation of the PushSupplier interface to the event channel. As 
described in “Registration of Suppliers and Consumers with an Event Channel” 
on page 12, this interface is defined as follows:

// IDL
module CosEventComm {

...

interface PushSupplier {
void disconnect_push_supplier ();

};
};

The role of this interface is to allow the event channel to disconnect the supplier 
by invoking the operation disconnect_push_supplier(). This may happen if 
the event channel closes down.

In our example, the supplier implements the PushSupplier interface by defining 
the class PushSupplier_i, for example as follows:

// C++
#include <CORBA.h>
#include <cosevents.hh>
#include <coseventsadmin.hh>
...

class PushSupplier_i 
: public virtual CosEventComm::PushSupplierBOAImpl {

public:
unsigned char m_disconnected;

PushSupplier_i () {
m_disconnected = 0;

}

 36



P r o g r amm in g  w i t h  t h e  U n t y p e d  P u s h  Mo de l
void disconnect_push_supplier (
CORBA::Environment& env = CORBA::default_environment) {
m_disconnected = 1;

}
};

This class uses a simple flag mechanism to indicate the connection state of the 
supplier. The supplier connects an object of this type to an event channel by 
calling the operation connect_push_supplier() on the ProxyPushConsumer 
object.

Pushing Events to an Event Channel

The following code extract from the example supplier program is a simple 
demonstration of initiating the transfer of events:

// C++
while (!psImpl.m_disconnected) {

CORBA::Any a;
a <<= eventDataString;
ppcVar->push (a);

}

In this example, the supplier repeatedly pushes an event to the event channel by 
calling the operation push() on a ProxyPushConsumer object. The supplier 
represents the event data using a simple string, but this is not necessary in 
general. The operation push() takes a parameter of type any for the event data, 
so you may represent this data using any IDL type.

Note that our supplier stops sending events only when it receives an incoming 
disconnect_push_supplier() operation call from the event channel. As an 
alternative, the supplier could explicitly disconnect from the event channel by 
invoking the operation disconnect_push_consumer() on the event channel 
ProxyPushConsumer object.
37



O r b i x E v e n t s  P r o g r amme r ’ s  G u i d e
The Push Supplier Application

The three main programming steps in the development of push supplier 
applications have been described in detail. 

The following source code illustrates how each of these steps fits in to the full 
push supplier application. 

// C++
#include <CORBA.h>
#include <cosevents.hh>
#include <coseventsadmin.hh>
#include <PushSupplier_i.h>
...

int main(int argc, char** argv) {
char* eventDataString = "Hello World!";
CosEventChannelAdmin::EventChannel_var ecVar;
CosEventChannelAdmin::SupplierAdmin_var saVar;
CosEventChannelAdmin::ProxyPushConsumer_var ppcVar;
PushSupplier_i psImpl;
char *serverHost;

try {
//
// Step 1. Get a ProxyPushConsumer object reference.
//

// Obtain an event channel reference.
try {

ecVar = EventChannel::_bind ("Channel_1:ES",
serverHost);

}
catch (...) {

// Handle exception.
...
}

if (CORBA::is_nil (ecVar))
return 1;

// Obtain a supplier administration object.
saVar = ecVar->for_suppliers ();
 38



P r o g r amm in g  w i t h  t h e  U n t y p e d  P u s h  Mo de l
// Obtain a proxy push consumer.
ppcVar = saVar->obtain_push_consumer ();

// 
// Step 2. Connect a push supplier implementation object.
//
ppcVar->connect_push_supplier (&psImpl);

//
// Step 3. Push events to the event channel.
//
while (!psImpl.m_disconnected) {

CORBA::Any a;
a <<= eventDataString;
ppcVar->push (a);
CORBA::Orbix.processNextEvent (1000);

}

// When finished, disconnect the consumer.
ppcVar->disconnect_push_consumer();

} 
catch (...) {

// Handle exception
...
return 1;

}
return 0;

}

39



O r b i x E v e n t s  P r o g r amme r ’ s  G u i d e
Developing an Untyped Push Consumer
A push consumer receives events from an event channel, with no knowledge of 
the suppliers from which those events originated. An event channel propagates 
an event to a push consumer by invoking the operation push() on a 
PushConsumer implementation object in the consumer application. As such, the 
main functionality of a push consumer is associated with registering a 
PushConsumer object with an event channel and receiving incoming operation 
calls on that object.

To develop a push consumer application, you must implement the following 
steps:

1. Obtain a reference for a ProxyPushSupplier object from the event 
channel.

“Obtaining a ProxyPushSupplier from an Event Channel” on page 41 
explains this step.

2. Connect a PushConsumer implementation object to the event channel, by 
invoking the operation connect_push_consumer() on the 
ProxyPushSupplier object.

“Connecting a PushConsumer Object to an Event Channel” on page 41 
explains this step.

3. Monitor incoming operation calls.

“Monitoring Incoming Operation Calls” on page 44 explains this step.

“The Push Consumer Application” on page 45 shows how these steps fit in to a 
full Push consumer application. 
 40



P r o g r amm in g  w i t h  t h e  U n t y p e d  P u s h  Mo de l
Obtaining a ProxyPushSupplier from an Event Channel

Each push consumer connected to an event channel receives every event raised 
by every supplier connected to the channel. However, consumers have no 
knowledge of the suppliers. Consumers simply connect to an object in the event 
channel which acts as a single source of events. 

This object is responsible for storing a PushConsumer object reference for each 
connected consumer and invoking the push() operation on each of these 
references when a supplier transmits an event. The event channel object which 
stores consumer references is of type ProxyPushSupplier. The first task in 
developing a push consumer application is to obtain a reference to this object.

There are three stages in obtaining a ProxyPushSupplier object reference:

1. Obtain a reference to an EventChannel object in the event channel.

2. Invoke the operation for_consumers() on the EventChannel object to 
obtain a ConsumerAdmin object reference.

3. Invoke the operation obtain_push_supplier() on the ConsumerAdmin 
object. This operation returns a ProxyPushSupplier object reference.

You may implement the first of these steps in exactly the manner described for 
push supplier applications in “Obtaining a ProxyPushConsumer from an Event 
Channel” on page 35. The remaining steps involve normal operation invocations.

Connecting a PushConsumer Object to an Event Channel

When a consumer has obtained a reference to the ProxyPushSupplier object 
in an event channel, the next step is to register a PushConsumer implementation 
object with the ProxyPushSupplier. The event channel uses the PushConsumer 
object to propagate events to the consumer.

As described in “Registration of Suppliers and Consumers with an Event 
Channel” on page 12, the CORBA Event Service specification defines the 
interface PushConsumer as follows:

// IDL
module CosEventComm {

interface PushConsumer {
oneway void push (in any data) raises (Disconnected);
void disconnect_push_consumer ();

};
41



O r b i x E v e n t s  P r o g r amme r ’ s  G u i d e
...
};

When an event arrives at an event channel, the channel ProxyPushSupplier 
object invokes the operation push() on each connected consumer, passing the 
event data as an any parameter. The disconnect_push_consumer() operation 
allows an event channel to disconnect a consumer, for example if the channel 
closes down.
 42



P r o g r amm in g  w i t h  t h e  U n t y p e d  P u s h  Mo de l
Our consumer uses the following example implementation of this interface:

// C++
class PushConsumer_i 

: public virtual CosEventComm::PushConsumerBOAImpl {

public:
unsigned char m_disconnected;

PushConsumer_i(){
m_disconnected = 0;

}

virtual void disconnect_push_consumer (
CORBA::Environment& env = CORBA::default_environment){
m_disconnected = 1;

}

virtual void push (CORBA::Any& any,
CORBA::Environment& env = CORBA::default_environment){
char* msg;

if (a >>= msg)
cout << "Event received: event data = " << msg << endl;

else
cout << 

"Event received with unexpected event data type."
<< endl;

}
};

This class includes a trivial implementation of the push() operation, through 
which the consumer receives events. In normal OrbixEvents applications, this 
operation requires a more complex implementation which reacts appropriately 
to incoming events. The exact requirements for implementing the push() 
operation are application specific.
43



O r b i x E v e n t s  P r o g r amme r ’ s  G u i d e
Monitoring Incoming Operation Calls

The main role of the consumer is to receive events from the event channel in 
the form of IDL operation calls. Consequently, the consumer must monitor and 
process any incoming calls. The example Orbix consumer application does this 
by repeatedly calling processNextEvent() on the CORBA::Orbix object, as 
follows:

// C++
while (!pcImpl.m_disconnected) {

CORBA::Orbix.processNextEvent ();
}

The function processNextEvent() handles a single incoming operation call and 
then returns. 

If the consumer receives an invocation on the operation 
disconnect_push_consumer(), then the implementation of this operation sets 
the value pcImpl.m_disconnected to one and breaks the consumer’s event 
processing loop. Consequently, our consumer receives all events until the event 
channel explicitly forces it to disconnect. 

As an alternative, the consumer could explicitly disconnect itself from the event 
channel when it no longer wishes to receive events. The consumer does this by 
invoking disconnect_push_supplier() on the event channel 
ProxyPushSupplier object.
 44



P r o g r amm in g  w i t h  t h e  U n t y p e d  P u s h  Mo de l
The Push Consumer Application

The three main programming steps in the development of push consumer 
applications have been described in detail. 

The following source code illustrates how each of these steps fits in to the full 
push consumer application. 

// C++
#include <CORBA.h>
#include <cosevents.hh>
#include <coseventsadmin.hh>
#include <PushConsumer_i.h>

int main(int argc, char** argv) {
CosEventChannelAdmin::EventChannel_var ecVar;
CosEventChannelAdmin::ConsumerAdmin_var caVar;
CosEventChannelAdmin::ProxyPushSupplier_var ppsVar;
PushConsumer_i pcImpl;
char *serverHost;

try {
//
// Step 1. Get a ProxyPushSupplier object reference.
//

// Obtain an event channel reference.
try {
ecVar = EventChannel::_bind ("Channel_1:ES",

serverHost);
}
catch (...) {

// Handle exception.
...

}
if (CORBA::is_nil (ecVar))

return 1;

// Obtain a consumer administration object.
caVar = ecVar->for_consumers ();

// Obtain a proxy push supplier.
ppsVar = caVar->obtain_push_supplier ();
45



O r b i x E v e n t s  P r o g r amme r ’ s  G u i d e
//
// Step 2. Connect a push consumer implementation object.
//
ppsVar->connect_push_consumer (&pcImpl);

//
// Step 3. Monitor incoming operation calls.
//
while (!pcImpl.m_disconnected) {

CORBA::Orbix.processNextEvent ();
}

// When finished, disconnect the supplier.
ppsVar->disconnect_push_supplier();

} 
catch (...) {

// Handle exception.
...
return 1;

}
return 0;

}

 46



 5
Programming with the Typed Push 
Model

To illustrate the use of the Push model to transmit typed events, this 
chapter develops a simple example.

This chapter describes how to develop an ORB application using the CORBA 
Event Service typed communications model that allows programmers to define 
an application-specific IDL interface. Callers can invoke operations defined on 
this interface to push events into an event channel. The parameters defined on 
these operations can specify the IDL data types to be used to pass data on each 
event so the programmer is not restricted to passing data in an any. 

As described in Chapter 2, “The Programming Interface to the Event Service”, 
typed push model suppliers and consumers communicate through event 
channels. 

Overview of an Example Application
Consider a Stock Price application that reports the sales price of stock. The 
application that reports the sales price is a supplier of events. As well as 
reporting the price of stock, it may also generate events when the price of a 
particular stock exceeds a given threshold, when sales activity on the stock rises 
above a certain level, and so on. 
47



O r b i x E v e n t s  P r o g r amme r ’ s  G u i d e
Many different applications might be interested in receiving the events generated 
by the Stock Price application. These applications are consumers of events. 
Consumers might include stock brokers, insider trading watchdogs, government 
departments, and so on.

A suitable interface, supported by consumers of events for a Stock Price 
application, might be defined as follows:

// IDL
interface StockPrice
{

void quote (in float new_price);
};

Using this interface, a supplier application supplies events by invoking the 
quote() operation. The data associated with each event indicates the new price 
for the stock and takes the form of a float.

The simplified example that is described in this chapter consists of a push 
supplier and a push consumer, each of which connects to a single event channel. 
The supplier repeatedly pushes StockPrice::quote() events to the event 
channel. The event channel propagates each event to the consumer, which will 
simply display the event data. This application is simple, but it illustrates a series 
of development tasks that apply to all OrbixEvents applications using the typed 
push model.

Because event communication is unidirectional, operations defined on interface 
StockPrice must obey the same restrictions as oneway operations, although 
they do not need to be explicitly declared oneway. Thus, the operations’ 
parameters must be in parameters; the return value must be void; and the 
operation cannot have a raises clause.

When developing an OrbixEvents application, you must implement the suppliers 
and consumers as normal ORB applications that communicate with the event 
channel through IDL interfaces. OrbixEvents fully implements the event channel, 
which is created in the OrbixEvents server application. The IDL definitions for 
the CORBA Event Service are supplied with OrbixEvents.

This chapter examines the implementation of a supplier and consumer using 
Orbix for C++ as the development ORB. However, the OrbixEvents server 
fully supports the CORBA Internet Inter-ORB Protocol (IIOP), so you may 
develop OrbixEvents applications using any IIOP-compatible ORB.
 48



P r og r amm i n g  w i t h  t h e  T y p e d  P u s h  Mo de l
Developing a Typed Push Supplier
As described in Chapter 2, “The Programming Interface to the Event Service”, a 
push supplier initiates the transfer of an event by pushing the event into an event 
channel. The event channel then takes responsibility for forwarding the event to 
each registered consumer.

This section describes how you can implement a typed push supplier as an Orbix 
application that communicates with a single event channel in an OrbixEvents 
server. This application acts as a client to several IDL interfaces implemented in 
the OrbixEvents event channel and acts as a server to the interface 
PushSupplier, which it implements.

There are four main programming steps in developing a typed push supplier:

1. Obtain a reference for a TypedProxyPushConsumer object from the 
event channel.

“Obtaining a TypedProxyPushConsumer from an Event Channel” on 
page 50 explains this step in detail.

2. Invoke the operation connect_push_supplier() on the 
TypedProxyPushConsumer object, to connect a PushSupplier 
implementation object to the event channel.

“Connecting a PushSupplier Object to an Event Channel” on page 51 
explains this step.

3. Invoke the operation get_typed_consumer() on the 
TypedProxyPushConsumer object and narrow the returned 
CORBA::Object object reference to the appropriate application-specific 
type. “Obtaining a Typed Push Consumer from a ProxyPushConsumer” 
on page 52 explains this step.

4. Invoke an appropriate operation defined on the application-specific 
interface on the object reference obtained in Step 3 to initiate the 
transfer of each event.

“Pushing Events to an Event Channel” on page 53 explains this step.
49



O r b i x E v e n t s  P r o g r amme r ’ s  G u i d e
Obtaining a TypedProxyPushConsumer from an Event 
Channel

A typed push supplier needs to obtain a reference for a 
TypedProxyPushConsumer object in an event channel in order to transfer events 
to the channel for later distribution to consumers. 

To obtain a TypedProxyPushConsumer object reference from an event channel, 
a supplier must implement the following programming steps:

1. Obtain a reference to a TypedEventChannel object in the event channel.

2. Invoke the operation for_suppliers() on the TypedEventChannel 
object, in order to obtain a TypedSupplierAdmin object reference.

3. Invoke the operation obtain_typed_push_consumer() on the 
TypedSupplierAdmin object, passing the name of the interface for which 
the typed consumer is required as a parameter to the operation. This 
operation returns a TypedProxyPushConsumer object reference.

These steps are defined in the CORBA Event Service specification and apply to 
all Event Service implementations. 

In OrbixEvents, every event channel has an associated event channel identifier 
which can be used to retrieve the channel’s TypedEventChannel object 
reference. When using the Orbix _bind() call, you may specify the channel 
identifier as the TypedEventChannel object marker value. Chapter 8, 
“OrbixEvents Configuration” describes in detail how you can associate an 
identifier with an OrbixEvents event channel. For example:

// C++
TypedEventChannel_var channelVar;
char *serverHost;
...

try {
channelVar = TypedEventChannel::

_bind ("Typed_Channel_1:ES", serverHost);
}
catch (...) {

// Handle exception.
...

}

Note that the server name for the OrbixEvents server is ES.
 50



P r og r amm i n g  w i t h  t h e  T y p e d  P u s h  Mo de l
Connecting a PushSupplier Object to an Event Channel

When the supplier has retrieved the TypedEventChannel object reference and 
used this to obtain a TypedProxyPushConsumer, the supplier needs to connect 
an implementation of the PushSupplier interface to the event channel. As 
described in Chapter 2, “The Programming Interface to the Event Service”, this 
interface is defined as follows:

// IDL
module CosEventComm {

...

interface PushSupplier {
void disconnect_push_supplier ();

};
};

The role of this interface is to allow the event channel to disconnect the supplier 
by invoking the operation disconnect_push_supplier(). This may happen if 
the event channel closes down.

In our example, the supplier implements the PushSupplier interface by defining 
the class TypedPushSupplier_i, for example as follows:

// C++
#include <CORBA.h>
#include <cosevents.hh>
#include <coseventsadmin.hh>
...

class TypedPushSupplier_i 
: public virtual CosEventComm::PushSupplierBOAImpl {

public:
unsigned char m_disconnected;

TypedPushSupplier_i () {
m_disconnected = 0;

}

51



O r b i x E v e n t s  P r o g r amme r ’ s  G u i d e
void disconnect_push_supplier (
CORBA::Environment& env = CORBA::default_environment) {
m_disconnected = 1;

}
};

This class uses a simple flag mechanism to indicate the connection state of the 
supplier. The supplier connects an object of this type to an event channel by 
calling the operation connect_push_supplier() on the 
TypedProxyPushConsumer object.

Obtaining a Typed Push Consumer from a 
ProxyPushConsumer

To send typed events, the supplier must obtain a reference to an object in the 
event channel that supports the StockPrice interface. The supplier does this by 
invoking the operation get_typed_consumer() on the ProxyPushConsumer 
object it got from the event channel. 

// C++
CORBA::Object_var objVar;
...
objVar = tppcVar->get_typed_consumer();

get_typed_consumer() returns an object reference of type CORBA::Object. 
Therefore, the supplier must narrow this object reference to a reference of type 
StockPrice.

// C++
if (stockVar = StockPrice::_narrow (objVar)) {

...
else // call to _narrow() failed.

The supplier will use this object reference to push events to the event channel.
 52



P r og r amm i n g  w i t h  t h e  T y p e d  P u s h  Mo de l
Pushing Events to an Event Channel

The following code extract from the example supplier program shows how the 
supplier initiates the transfer of events. 

// C++
while (!tpsImpl.m_disconnected) {

stockVar->quote (24.60);
}

In this example, the supplier repeatedly pushes an event to the event channel by 
calling the operation quote() on a TypedProxyPushConsumer object. The 
TypedProxyPushConsumer object implements the StockPrice interface that the 
supplier and consumer have agreed will be used to communicate typed events 
between them. The quote() operation takes one parameter of type float 
which contains the price of the stock item. 

Note that our supplier stops sending events only when it receives an incoming 
disconnect_push_supplier() operation call from the event channel. 

As an alternative, the supplier could explicitly disconnect from the event channel 
by invoking the operation disconnect_push_consumer() on the event channel 
TypedProxyPushConsumer object.
53



O r b i x E v e n t s  P r o g r amme r ’ s  G u i d e
A Typed Push Supplier Application

The following source code implements a typed push supplier which supplies 
StockPrice::quote() events. It illustrates how the four programming steps 
described in detail in the preceding subsections fit in to a typed push supplier 
application. 

// C++
#include <CORBA.h>
#include <cosevents.hh>
#include <coseventsadmin.hh>
#include "StockPrice_i.h"
...

int main(int argc, char** argv) {
CosTypedEventChannelAdmin::TypedEventChannel_var tecVar;
CosTypedEventChannelAdmin::TypedSupplierAdmin_var tsaVar;
CosTypedEventChannelAdmin::TypedProxyPushConsumer_var tppcVar;
CORBA::Object_var objVar;
TypedPushSupplier_i tpsImpl;
StockPrice_var stockVar("IONAY", 24);
char *serverHost;

try {
//
// Step 1. Get a TypedProxyPushConsumer object reference.
//

// Obtain an typed event channel reference.
try {

tecVar = TypedEventChannel::
_bind ("Typed_Channel_1:ES", serverHost);

}
catch (...) {

// Handle exception.
...

}
if (CORBA::is_nil (tecVar))

return 1;

// Obtain a supplier administration object.
saVar = tecVar->for_suppliers ();
 54



P r og r amm i n g  w i t h  t h e  T y p e d  P u s h  Mo de l
// Obtain a typed proxy push consumer.
tppcVar = saVar->obtain_typed_push_consumer ("StockPrice");

// 
// Step 2. Connect a push supplier implementation object.
//
tppcVar->connect_push_supplier (&tpsImpl);

//
// Step 3. Obtain a typed push consumer object reference.
//
objVar = tppcVar->get_typed_consumer();

if (stockVar = StockPrice::_narrow (objVar)) {
//
// Step 4. Push events to the event channel.
//
while (!tpsImpl.m_disconnected) {

stockVar->quote (24.60);
CORBA::Orbix.processNextEvent (1000);

}
} else cout << "Attempt to _narrow() failed." << endl;

// When finished, disconnect the consumer.
tppcVar->disconnect_push_consumer();

} 
catch (...) {

// Handle exception
...
return 1;

}
return 0;

}

55



O r b i x E v e n t s  P r o g r amme r ’ s  G u i d e
Developing a Typed Push Consumer
A typed push consumer receives events from an event channel, with no 
knowledge of the suppliers from which those events originated. The event 
channel, in turn, receives events from push suppliers in the form of operation 
invocations on the interface agreed between the suppliers and the event channel. 
An event channel propagates an event to a typed push consumer by invoking the 
operation it has received on a TypedPushConsumer implementation object in the 
consumer application. As such, the main functionality of a typed push consumer 
is associated with registering a TypedPushConsumer object with an event 
channel and receiving incoming operation calls on that object.

To develop a typed push consumer application, you must implement the 
following steps:

1. Obtain a reference for a ProxyPushSupplier object from the event 
channel.

“Obtaining a ProxyPushSupplier from an Event Channel” on page 57 
explains this step.

2. Connect a TypedPushConsumer implementation object to the event 
channel, by invoking the operation connect_push_consumer() on the 
ProxyPushSupplier object, passing an object of type 
TypedPushConsumer as an operation parameter.

“Connecting a TypedPushConsumer Object to an Event Channel” on 
page 57 explains this step.

3. Monitor incoming operation calls.

“Monitoring Incoming Operation Calls” on page 60 explains this step.

“A Typed Push Consumer Application” on page 61 show how these steps fit in 
to a full typed push consumer application.
 56



P r og r amm i n g  w i t h  t h e  T y p e d  P u s h  Mo de l
Obtaining a ProxyPushSupplier from an Event Channel

Each typed push consumer connected to an event channel receives every event 
raised by every supplier connected to the channel. However, consumers have no 
knowledge of the suppliers. Consumers simply connect to an object in the event 
channel which acts as a single source of events. 

This object is responsible for storing a TypedPushConsumer object reference for 
each connected consumer and propagating the operation invocation it receives 
on each of these references when a supplier transmits an event. The event 
channel object which stores consumer references is of type 
ProxyPushSupplier. The first task in developing a push consumer application is 
to obtain a reference to this object.

There are three stages in obtaining a ProxyPushSupplier object reference:

1. Obtain a reference to a TypedEventChannel object in the event channel.

2. Invoke the operation for_consumers() on the TypedEventChannel 
object, in order to obtain a TypedConsumerAdmin object reference.

3. Invoke the operation obtain_typed_push_supplier() on the 
TypedConsumerAdmin object and pass the name of the interface agreed 
between the event channel and the typed consumer as a parameter. This 
operation returns a ProxyPushSupplier object reference.

You may implement the first of these steps in exactly the manner described for 
typed push supplier applications in “Obtaining a TypedProxyPushConsumer 
from an Event Channel” on page 50. The remaining steps involve normal 
operation invocations.

Connecting a TypedPushConsumer Object to an Event 
Channel

When a typed consumer has obtained a reference to the ProxyPushSupplier 
object in an event channel, the next step is to register a TypedPushConsumer 
implementation object with the ProxyPushSupplier. The event channel uses 
the TypedPushConsumer object to propagate events to the consumer.
57



O r b i x E v e n t s  P r o g r amme r ’ s  G u i d e
As described in Chapter 2, “The Programming Interface to the Event Service”, 
the CORBA Event Service specification defines the interface 
TypedPushConsumer as follows:

// IDL
module CosTypedEventComm {

interface TypedPushConsumer : CosEventComm::PushConsumer {
Object get_typed_consumer ();

};
...

};

When an event arrives at an event channel in the form of an invocation on any of 
the operations defined on the interface agreed between the supplier and 
consumer, the channel ProxyPushSupplier object propagates the operation call 
by invoking the same operation on each connected consumer. The 
disconnect_push_consumer() operation allows an event channel to disconnect 
a consumer, for example, if the channel closes down.

Our typed consumer uses the following example implementation of this 
interface:

// C++
class StockPrice_i : public virtual StockPriceBOAImpl {

protected:
CORBA::Float m_price;
char* m_company;

public:
CORBA::Boolean m_disconnected;

StockPrice_i (char* company, 
CORBA::Float price, 
CORBA::Environment& env = CORBA::default_environment){
m_disconnected = 0;
m_price = price;
m_company = new char[strlen(company)+1];
strcpy(m_name, company);

}

virtual void disconnect_push_consumer (
CORBA::Environment& env = CORBA::default_environment){
m_disconnected = 1;

}

 58



P r og r amm i n g  w i t h  t h e  T y p e d  P u s h  Mo de l
virtual void push (CORBA::Any& any,
CORBA::Environment& env = CORBA::default_environment){
throw CORBA::NO_IMPLEMENT;

}

virtual CORBA::Object get_typed_consumer (
CORBA::Environment& env = CORBA::default_environment){
return this;

}

virtual void quote (CORBA::Float new_price, 
CORBA::Environment& env = CORBA::default_environment) { 
m_price = new_price;
cout << endl

<< "Stock: " << m_company << "now at "
<< new_price << endl << endl; 

}
};

The StockPrice interface defined the operation, quote(). Class StockPrice_i 
implements this operation through which the consumer receives events. 

Because TypedPushConsumer inherits from PushConsumer, it must provide an 
implementation of the push() operation defined on interface PushConsumer. In 
this example, class StockPrice_i provides a null implementation of push(), 
which simply raises the standard CORBA exception CORBA::NO_IMPLEMENT. 
This restricts suppliers to using typed communication with this consumer. 
Alternatively, class StockPrice_i could implement push() so that a supplier 
could use untyped as well as typed event communication with the consumer, 
passing a changed stock price in the push() operation’s any parameter.
59



O r b i x E v e n t s  P r o g r amme r ’ s  G u i d e
Monitoring Incoming Operation Calls

The main role of the typed consumer is to receive events from the event 
channel in the form of IDL operation calls. Consequently, the consumer must 
monitor and process any incoming calls. The example Orbix consumer 
application does this by repeatedly calling processNextEvent() on the 
CORBA::Orbix object, as follows:

// C++
while (!stockPriceImpl.m_disconnected) {

CORBA::Orbix.processNextEvent ();
}

The function processNextEvent() handles a single incoming operation call and 
then returns. 

If the consumer receives an invocation on the operation 
disconnect_push_consumer(), then the implementation of this operation sets 
the value stockPriceImpl.m_disconnected to one and breaks the consumer’s 
event processing loop. Consequently, our consumer receives all events until the 
event channel explicitly forces it to disconnect. 

As an alternative, the consumer could explicitly disconnect itself from the event 
channel when it no longer wishes to receive events. The consumer does this by 
invoking disconnect_push_supplier() on the event channel 
ProxyPushSupplier object.
 60



P r og r amm i n g  w i t h  t h e  T y p e d  P u s h  Mo de l
A Typed Push Consumer Application

The three main programming steps in the development of a typed push 
consumer applications have been described in detail. 

The following source code illustrates how each of these steps fits in to the full 
typed push supplier application. The application obtains a typed proxy push 
supplier for the interface StockPrice and then waits for events.

// C++
#include <CORBA.h>
#include <cosevents.hh>
#include <coseventsadmin.hh>
#include "TypedPushConsumer_i.h"
#include "StockPrice_i.h"

int main(int argc, char** argv) {
CosTypedEventChannelAdmin::TypedEventChannel_var tecVar;
CosTypedEventChannelAdmin::TypedConsumerAdmin_var tcaVar;
CosTypedEventChannelAdmin::ProxyPushSupplier_var ppsVar;
StockPrice_i stockPriceImpl;
char *serverHost

try {
//
// Step 1. Get a ProxyPushSupplier object reference.
//

// Obtain a typed event channel reference.
try {

tecVar = TypedEventChannel::_bind (
"Typed_Channel_1:ES", serverHost);

}
catch (...) {

// Handle exception.
...

}
if (CORBA::is_nil (tecVar))

return 1;

// Obtain a typed consumer administration object.
tcaVar = tecVar->for_consumers ();
61



O r b i x E v e n t s  P r o g r amme r ’ s  G u i d e
// Obtain a typed proxy push supplier for 
// the interface StockPrice.
ppsVar = tcaVar->obtain_typed_push_supplier ("StockPrice");

//
// Step 2. Connect a typed push consumer 
// implementation object.
//
ppsVar->connect_push_consumer (&stockPriceImpl);

//
// Step 3. Monitor incoming operation calls.
//
while (!stockPriceImpl.m_disconnected) {

CORBA::Orbix.processNextEvent ();
}

// When finished, disconnect the supplier.
tppsVar->disconnect_push_supplier();

} 
catch (...) {

// Handle exception.
...
return 1;

}
return 0;

}

 62



 6
Programming with the Untyped 
Pull Model

To illustrate the Pull model to transfer untyped events, this chapter 
develops a simple application. 

As described in Chapter 1, “Introduction to the CORBA Event Service”, 
OrbixEvents allows you to develop Object Request Broker (ORB) applications 
that communicate using the CORBA Event Service communications model. 
From a programmer’s perspective, the event channel is the key element of a 
CORBA Event Service application. 

This chapter describes an example ORB application that illustrates how you can 
use OrbixEvents to develop pull model suppliers and consumers that 
communicate untyped events through event channels. 
63



O r b i x E v e n t s  P r o g r amme r ’ s  G u i d e
Overview of an Example Application
The example described in this chapter consists of a pull supplier and a pull 
consumer, each of which connects to a single event channel. The consumer 
repeatedly pulls an event from the event channel. The data associated with each 
event takes the form of a string, and the consumer simply displays the data as it 
receives it. The event channel, in turn, pulls the data from a pull supplier. This 
application is straightforward, but it illustrates a series of development tasks that 
apply to all OrbixEvents applications.

When developing an OrbixEvents application, you must implement the suppliers 
and consumers as normal ORB applications that communicate with the event 
channel through IDL interfaces. OrbixEvents fully implements the event channel, 
which is created in the OrbixEvents server application. The IDL definitions for 
the CORBA Event Service are supplied with OrbixEvents.

This chapter examines the implementation of a supplier and consumer using 
Orbix for C++ as the development ORB. However, the OrbixEvents server 
fully supports the CORBA Internet Inter-ORB Protocol (IIOP), so you may 
develop OrbixEvents applications using any IIOP-compatible ORB.

Developing an Untyped Pull Consumer
As described in “Transfer of Typed Events Through an Event Channel” on 
page 24, a pull consumer initiates the transfer of an event by requesting the 
event from the event channel. The event channel, if it does not already have an 
event to meet the request, requests an event from each registered supplier and 
then passes an event to the pull consumer. A pull consumer may poll for an 
event if it does not want to block while waiting for an event to become available.

To develop a pull consumer application, you must implement the following steps:

1. Obtain a ProxyPullSupplier object from the event channel.

2. Invoke the operation connect_pull_consumer() on the 
ProxyPullSupplier object, to connect a PullConsumer implementation 
object to the event channel.

3. Invoke try_pull() operations on the ProxyPullSupplier object to 
initiate the transfer of each event. (As an alternative you can also use the 
pull() operation. try_pull() is preferred however.)
 64



P r og r amm i n g  w i t h  t h e  U n t y p ed  P u l l  M o de l
Obtaining a ProxyPullSupplier from an Event Channel

A pull consumer connected to an event channel receives an event only when it 
explicitly requests one. The consumer has no knowledge of the suppliers; it 
simply connects to an object in the event channel that acts as a single source of 
events. 

This object is responsible for storing a PullSupplier object reference for each 
connected supplier and invoking a try_pull() or pull() operation on each of 
these object references when a consumer requests an event using try_pull() 
or pull() respectively. The event channel object which stores supplier 
references is of type ProxyPullSupplier. The first task in developing a push 
consumer application is to obtain a reference to this object.

As illustrated in our example pull consumer application, a pull consumer obtains 
a reference to a ProxyPullSupplier by implementing the following steps:

1. Obtain a reference to an EventChannel object in the event channel.

2. Invoke the operation for_consumers() on the EventChannel object in 
order to obtain a ConsumerAdmin object.

3. Invoke the operation obtain_pull_supplier() on the 
ConsumerAdmin object. This operation returns a ProxyPullSupplier 
object reference.

You may implement the first of these steps exactly as described for push supplier 
applications in “Obtaining a ProxyPushConsumer from an Event Channel” on 
page 35. The remaining steps involve normal operation invocations.

Connecting a PullConsumer Object to an Event Channel

When the consumer has obtained a reference to a ProxyPullSupplier object 
from the event channel, it needs to connect an implementation of the 
PullConsumer interface to the event channel. As described in “The Pull Model 
for Untyped Events” on page 15, this interface is defined as follows:

// IDL
module CosEventComm {

...

interface PullConsumer {
void disconnect_pull_consumer ();
65



O r b i x E v e n t s  P r o g r amme r ’ s  G u i d e
};
};

The purpose of this interface is to allow the event channel to disconnect the 
PullConsumer by invoking the operation disconnect_pull_consumer(). This 
may be necessary if the event channel closes down.

In our example, the consumer application implements the PullConsumer 
interface by defining the class PullConsumer_i and implementing it as follows:

#include <CORBA.h>
#include <cosevents.hh>
#include <coseventsadmin.hh>
...

class PullConsumer_i
: public virtual CosEventComm::PullConsumerBOAImpl {

public:
CORBA::Boolean m_disconnected;

PullConsumer_i () {
m_disconnected = 0;

}

void disconnect_pull_consumer (
CORBA::Environment& env = CORBA::default_environment) {
m_disconnected = 1;

}
};

Class PullConsumer_i uses a simple flag mechanism to indicate the connection 
state of the consumer. The consumer connects an object of this type to an event 
channel by calling the operation connect_pull_consumer() on the 
ProxyPullSupplier object.
 66



P r og r amm i n g  w i t h  t h e  U n t y p ed  P u l l  M o de l
Pulling Events from an Event Channel

The following code extract from the example consumer program shows a simple 
way of initiating the transfer of events using the try_pull() operation:

CORBA::Boolean got_event;
...
while (!pcImpl.m_disconnected) {

event = ppsVar->try_pull(got_event);
if (got_event) {

if (*event >>= eventDataString) {
cout << eventDataString << endl;
delete [] eventDataString;
delete event;

} else {
cout << "Error: Pulled bad data" << endl;

}
} else {

cout << "Event channel did not supply event" << endl;
}
CORBA::Orbix.processNextEvent (1000);

}

In this example, the consumer repeatedly pulls an event from the event channel 
using the try_pull() operation on a ProxyPullSupplier object in the channel. 
In this example, the event supplied in the any return value of the try_pull() 
operation is a string; in general, the type contained in this any is application 
dependent. 

The try_pull() operation pulls events without blocking. The pull() operation 
causes the consumer application to block until a event is supplied by the channel. 
If you are using a multi-thread safe ORB such as Orbix-MT or OrbixWeb, you 
could also create an application thread dedicated to pulling events from the 
channel without blocking the consumer application. The following code extract 
illustrates the use of pull():

// C++
while (!pcImpl.m_disconnected) {

event = ppsVar->pull();
if (*event >>= eventDataString) {

cout << eventDataString << endl;
delete [] eventDataString;
delete event;
67



O r b i x E v e n t s  P r o g r amme r ’ s  G u i d e
} else {
cout << "Error: Pulled bad data" << endl;

}
CORBA::Orbix.processNextEvent (1000);

}

The consumer stops pulling events only when it receives an incoming 
disconnect_pull_consumer() operation call from the event channel. 
Alternatively, the consumer could explicitly disconnect from the event channel 
by invoking the operation disconnect_pull_supplier() on the 
ProxyPullSupplier object in the event channel.

An Untyped Pull Consumer Application

The following source code illustrates the implementation of a simple pull 
consumer that pulls events using the try_pull() operation:

// C++
#include <CORBA.h>
#include <cosevents.hh>
#include <coseventsadmin.hh>
#include <PullConsumer_i.h>
...
int main(int argc, char** argv) {

CosEventChannelAdmin::EventChannel_var ecVar;
CosEventChannelAdmin::ConsumerAdmin_var caVar;
CosEventChannelAdmin::ProxyPullSupplier_var ppsVar;
CORBA::Any* event;
char* eventDataString;
PullConsumer_i pcImpl;
CORBA::Boolean got_event;
char *serverHost;

try 
//
// Step 1. Get a ProxyPullSupplier object reference.
//

// Obtain an event channel reference.
try {

ecVar = EventChannel::_bind ("Channel_1:ES",
 68



P r og r amm i n g  w i t h  t h e  U n t y p ed  P u l l  M o de l
serverHost);
}
catch (...) {

// Handle exception.
...
}

if (CORBA::is_nil (ecVar))
return 1;

// Obtain a consumer administration object.
caVar = ecVar->for_consumers ();

// Obtain a proxy pull supplier.
ppsVar = saVar->obtain_pull_supplier ();

//
// Step 2. Connect a pull consumer implementation object.
//
ppsVar->connect_pull_consumer (&pcImpl);

//
// Step 3. Pull events from the event channel.
//
while (!pcImpl.m_disconnected) {

event = ppsVar->try_pull(got_event);
if (got_event){

if(*event >>= eventDataString){ 
cout << eventDataString << endl;
delete[] eventDataString;
delete event;

} else {
cout << "Error: Pulled bad data" << endl;

else {
cout << "Event channel did not supply event" << endl;

}
CORBA::Orbix.processNextEvent (1000);

}
} 
catch (...) {

// Handle exception.
...
return 1;
69



O r b i x E v e n t s  P r o g r amme r ’ s  G u i d e
}
return 0;

}

“Obtaining a ProxyPullSupplier from an Event Channel” on page 65, “Connecting 
a PullConsumer Object to an Event Channel” on page 65, and “Pulling Events 
from an Event Channel” on page 67 explain the details of each step in the 
implementation of a PullConsumer with reference to this source code.

Developing an Untyped Pull Supplier
A pull supplier supplies events on request to an event channel and has no 
knowledge of the consumers to which these events will be propagated. The 
event channel requests an event from a pull supplier in order to fulfil a request 
for an event by a pull consumer. An event channel requests an event by invoking 
the pull() or try_pull() operations on a PullSupplier object in the supplier 
application. A supplier application, therefore, must register a PullSupplier 
object with an event channel and receive incoming operation calls on that object.

To develop a pull supplier application, you must implement the following steps:

1. Obtain a reference for a ProxyPullConsumer in the event channel.

2. Connect a PullSupplier implementation object to the event channel by 
invoking the operation connect_pull_supplier() on the 
ProxyPullConsumer object.

3. Monitor incoming operation calls.

Obtaining a ProxyPullConsumer from an Event Channel

When a pull consumer requests an event, the event channel to which it is 
connected in turn requests an event from each connected pull supplier if it does 
not already have an event stored in the channel. The suppliers have no 
knowledge of the consumers requesting events; they simply connect to an object 
in the event channel.

This object is responsible for storing a PullSupplier object reference for each 
connected supplier, and invoking the pull() or try_pull() operation on each 
of these references when a consumer requests an event. The event channel 
 70



P r og r amm i n g  w i t h  t h e  U n t y p ed  P u l l  M o de l
object which stores supplier references is of type ProxyPullConsumer. The first 
task in developing a pull supplier application is to obtain a reference to this 
object. 

As illustrated in our example supplier source code, this reference is obtained by 
implementing the following steps:

1. Obtain a reference to an EventChannel object in the event channel.

2. Invoke the operation for_suppliers() on the EventChannel object in 
order to obtain a SupplierAdmin object.

3. Invoke the operation obtain_pull_consumer() on the 
SupplierAdmin object. This operation returns a ProxyPullConsumer 
object reference.

You may implement the first of these steps exactly as described for push supplier 
applications in “Obtaining a ProxyPushConsumer from an Event Channel” on 
page 35. The remaining steps involve normal operation invocations.

Connecting a PullSupplier Object to an Event Channel

When a supplier has obtained a reference to a ProxyPullConsumer object in an 
event channel, the next step is to register a PullSupplier implementation 
object with the ProxyPullConsumer. 

As described in “The Pull Model for Untyped Events” on page 15, the CORBA 
Event Service specification defines the interface PullSupplier as follows:

// IDL
module CosEventComm {

interface PullSupplier {
any pull () raises (Disconnected);
any try_pull (out boolean has_event) raises (Disconnected);
void disconnect_pull_supplier();

};
...

};

When a request for an event arrives at an event channel in the form of a pull() 
or try_pull() operation from a pull consumer, the channel 
ProxyPullConsumer object invokes a corresponding pull() or try_pull() 
operation on each connected supplier. 
71



O r b i x E v e n t s  P r o g r amme r ’ s  G u i d e
The disconnect_pull_supplier() operation allows the event channel to 
disconnect a supplier, for example, if the event channel closes down.

Our example supplier implements this interface as follows:

// C++
class PullSupplier_i :

public virtual CosEventComm::PullSupplierBOAImpl {

protected:
unsigned char m_generate_event;

public:
CORBA::Boolean m_disconnected;

PullSupplier_i () {
m_disconnected = 0;
m_have_event = 0;

}

virtual void disconnect_pull_supplier (
CORBA::Environment& env = CORBA::default_environment){
m_disconnected = 1;

}

virtual CORBA::Any* pull (
CORBA::Environment& env = CORBA::default_environment){
CORBA::Any a;
char* eventDataString = "Hello World!";
if (!m_disconnected) {

a <<= eventDataString;
return a;

} else {
throw CosEventComm::Disconnected;
return 0;

}
}

virtual CORBA::Any* try_pull ( 
CORBA::Boolean& has_event,
CORBA::Environment& env = CORBA::default_environment){

// This trivial implementation of try_pull()
// supplies an event on every alternate call.
 72



P r og r amm i n g  w i t h  t h e  U n t y p ed  P u l l  M o de l
CORBA::Any a;
char* eventDataString = "Hello World!";
if (!m_disconnected) {

if (m_generate_event) {
a <<= eventDataString;
m_has_event = 1;
m_generate_event = 0;
return a;

}
else {

m_has_event = 0;
m_generate_event = 1;

}
} 

} else {
throw CosEventComm::Disconnected;
return 0;

}
}

};

This class includes trivial implementations of the pull() and try_pull() 
operations which deal with requests for events. The exact requirements for 
implementing these operations are application specific; a real OrbixEvents 
application would probably require more complex implementations. 

Monitoring Incoming Operation Calls

A pull supplier application receives requests for events from an event channel in 
the form of pull() and try_pull() operation calls; the event channel may also 
disconnect the supplier by invoking the operation 
disconnect_pull_supplier(). The supplier must, therefore, monitor and 
process incoming operation calls. The example pull supplier application does this 
by repeatedly calling processNextEvent() on the CORBA::Orbix object, as 
follows:

while (!psImpl.m_disconnected) {
CORBA::Orbix.processNextEvent (1000);

}

73



O r b i x E v e n t s  P r o g r amme r ’ s  G u i d e
The function processNextEvent() handles a single incoming operation call and 
then returns. This example uses a timeout value of 1000 milliseconds, but any 
finite value would be appropriate.

If the supplier receives a disconnect_pull_supplier() operation invocation, 
then the implementation of this operation sets the value 
psImpl.m_disconnected to one and breaks the supplier’s event processing 
loop. In this way, our supplier receives operation invocations until the event 
channel explicitly asks it to disconnect. A supplier could explicitly disconnect 
itself from the event channel when it no longer wants to supply events, by 
invoking the operation disconnect_pull_consumer() on the event channel 
ProxyPullConsumer object.

An Untyped Pull Supplier Application

The following code implements an example pull supplier:

// C++
#include <CORBA.h>
#include <cosevents.hh>
#include <coseventsadmin.hh>
#include <PullSupplier_i.h>

int main(int argc, char** argv) {
char *eventChannelName = "Channel_1"
CosEventChannelAdmin::EventChannel_var ecVar;
CosEventChannelAdmin::SupplierAdmin_var saVar;
CosEventChannelAdmin::ProxyPullConsumer_var ppcVar;
PullSupplier_i psImpl;

try {
//
// Step 1. Get a ProxyPullConsumer object reference.
//

// Obtain an event channel reference.
try {

ecVar = EventChannel::_bind ("Channel_1:ES",
serverHost);

}
catch (...) {

// Handle exception.
 74



P r og r amm i n g  w i t h  t h e  U n t y p ed  P u l l  M o de l
...
}

if (CORBA::is_nil (ecVar))
return 1;

// Obtain a supplier administration object.
saVar = ecVar->for_suppliers ();

// Obtain a proxy pull consumer.
ppcVar = saVar->obtain_pull_consumer ();

//
// Step 2. Connect a pull supplier implementation object.
//
ppcVar->connect_pull_supplier (&psImpl);

//
// Step 3. Monitor incoming operation calls.
//
while (!psImpl.m_disconnected) {

CORBA::Orbix.processNextEvent (1000);
}

} 
catch (...) {

// Handle exception.
...
return 1;

}
return 0;

}

75



O r b i x E v e n t s  P r o g r amme r ’ s  G u i d e
 76



 7
Compiling and Running an 
OrbixEvents Application

You will need to compile the IDL definitions for the Event Service as 
well as compile and build your application. This chapter describes 
how to do this.

Compiling the IDL Definitions for the Event 
Service

The CORBA standard IDL interfaces for CORBA Event Service suppliers, 
consumers and event channels are defined in the files cosevents.idl, 
coseventsadmin.idl, and orbixevents.idl in the idl directory of 
your OrbixEvents installation. These are the contents of the IDL files:

IDL File Contents

cosevents.idl This file contains the CosEventComm and 
CosTypedEventComm modules.

coseventsadmin.idl This file contains the CosEventChannelAdmin and 
CosTypedEventChannelAdmin modules.

orbixevents.idl This file contains the OrbixEventsAdmin module.

Table 7.1: OrbixEvents IDL Files
77



O r b i x E v e n t s  P r o g r amme r ’ s  G u i d e
Although the programming steps required to develop a supplier or consumer 
depend on your development ORB, the first step generally involves using an IDL 
compiler to compile these definitions.

Using Orbix you can invoke the command-line IDL compiler as follows:

idl cosevents.idl, 
idl coseventsadmin.idl
idl orbixevents.idl

This compilation command generates these C++ files:

The .cpp extension is only used in some environments; extensions such as .cc 
may also be produced.

Compiling an OrbixEvents Application
An OrbixEvents supplier or consumer application is simply a standard ORB 
application that communicates with an event channel server through a set of IDL 
interfaces. In addition, both suppliers and consumers implement IDL interfaces 
and therefore act as ORB servers.

To compile an OrbixEvents application, you should follow the server 
compilation steps associated with your development ORB. For example, the 
following steps are required to build an Orbix application that communicates 
with an OrbixEvents event channel:

cosevents.hh, 
coseventsadmin.hh 
orbixevents.hh

Header files that include the C++ view of the IDL 
definitions. These files must be included in all 
supplier and consumer applications.

coseventsS.cpp A source file that includes both client stub code and 
server skeleton code for the IDL definitions. This file 
must be compiled and linked with each supplier and 
consumer application.

coseventsadminC.cpp
orbixeventsC.cpp

Source files that include client stub code for the IDL 
definitions. These files must be compiled and linked 
with each supplier and consumer application.
 78



C o mp i l i n g  a n d  R u n n i n g  a n  O r b i x E v e n t s  A p p l i c a t i o n
1. Compile the IDL definitions accessed by your application, including those 
in the files cosevents.idl, coseventsadmin.idl, and orbixevents.idl 
as described in “Compiling the IDL Definitions for the Event Service” on 
page 77.

2. Compile any IDL generated C++ files required by your application, 
including the files coseventsS.cpp, coseventsadminC.cpp, and 
orbixeventsC.cpp.

3. Compile all other C++ source files associated with your application.

4. Link the object files from steps 2 and 3 with the appropriate Orbix 
libraries.

Running an OrbixEvents Application
OrbixEvents supplies a server that supports untyped events and typed events. 
These servers are implemented as Orbix server applications and consequently 
require an installation of Orbix or OrbixWeb. Before running an OrbixEvents 
application, you must first register the OrbixEvents server you want to use with 
the Orbix Implementation Repository.

The OrbixEvents Server

The OrbixEvents server is implemented by the application es in the bin 
directory of your OrbixEvents installation. In its most basic form, the command 
line for this application appears as follows:

es channel_id

By default, the channels created in this way are for untyped events. You can 
specify a list of typed event channels with the command-line argument 
typed_events (see “The OrbixEvents Server Command Lines” on page 84). The 
channel_id is an identifier for an event channel implemented in the server. An 
OrbixEvents server may implement several event channels. In this case, each 
event channel must have an associated channel identifier and the list of identifiers 
that the server implements immediately follows the es command. For example, 
you may specify multiple event channels as follows:

es channel_id_1 channel_id_2 ...
79



O r b i x E v e n t s  P r o g r amme r ’ s  G u i d e
Event channels can have any name, but cannot be prefixed by otrmp//, otsfp//
or otmcp// as these indicate multicast event channels that are supported by the 
OrbixTalk 3.0 Gateway.

By default, you must register the OrbixEvents untyped events server with the 
Implementation Repository using the server name ES. For example, to register a 
server that implements a single event channel named Channel_1, you can use 
the Orbix putit command as follows1:

putit ES "/home/events/bin/es Channel_1"

The exact registration command depends on your application requirements. 
However, you must register the server in shared activation mode and you must 
not specify the -n, -per-client or -per-client-pid switches to putit during 
the registration.

Running your Application

Once you have registered the OrbixEvents server, you can run your supplier 
and consumer applications. In the examples in Chapter 4, “Programming with 
the Untyped Push Model”, Chapter 5, “Programming with the Typed Push 
Model”, and Chapter 6, “Programming with the Untyped Pull Model” the order 
in which you run the consumer and supplier applications has no effect on the 
system functionality. You do not need to register the example suppliers or the 
example consumers in this guide in the Orbix Implementation Repository.

Lifetime of Proxy Objects

The event server creates a new proxy object when requested for one. This 
object persists until:

1. Disconnect is invoked upon it.

2. The event channel is destroyed. 

3. The IIOP connection is closed.

4. An attempt by the (Typed)ProxyPushSuppliers to 
get_typed_consumer() fails.

1.   You can, alternatively, use the Orbix Server Manager GUI tool to register an 
OrbixEvents server.
 80



C o mp i l i n g  a n d  R u n n i n g  a n  O r b i x E v e n t s  A p p l i c a t i o n
The proxy is destroyed in all these cases. It is not possible perform another 
invocation on the object after that, including push(), pull(), try_pull(), 
connect(), or disconnect(). If an attempt is made to perform an operation on 
the destroyed proxy, an INVALID OBJECT REFERENCE exception is thrown.

If a PullConsumer has invoked pull() upon a ProxyPullSupplier, and 
meanwhile disconnect_pull_supplier() is invoked upon the 
ProxyPullSupplier, the pull() throws a Disconnected exception some time 
after (depending on the pull_prod_interval configuration value).

If you attempt to connect an invalid object to a proxy object (where an 
exception other than INVALID OBJECT REFERENCE is thrown), the proxy is not 
destroyed.
81



O r b i x E v e n t s  P r o g r amme r ’ s  G u i d e
 82



 8
OrbixEvents Configuration

An OrbixEvents server must be available at each host where event 
channels are required. This chapter describes how to register an 
OrbixEvents server and how to create event channels within the 
server. 

OrbixEvents is implemented as a single Orbix server application supporting both 
untyped and typed events.

To create an application that communicates with OrbixEvents, you develop a 
normal ORB application which acts as a client to the appropriate OrbixEvents 
server. Consequently, OrbixEvents imposes minimal configuration requirements 
beyond those of the ORB used to develop your application. 

As described in Chapter 7, “Compiling and Running an OrbixEvents 
Application”, the OrbixEvents server is implemented by the application es in the 
bin directory of your Orbix installation.

To make the OrbixEvents server available, you need to register the server with 
the Orbix Implementation Repository. For example, using the Orbix putit 
utility you could register the server as follows:

putit ES server_launch_command

To register an OrbixEvents server, you need to specify a launch command. “The 
OrbixEvents Server Command Lines” on page 84 describes the server command 
line in detail. 

You can create event channels within an OrbixEvents server by specifying the 
channel identifiers in the server’s command line. 
83



O r b i x E v e n t s  P r o g r amme r ’ s  G u i d e
“Assigning Identifiers to Event Channels” on page 87 describes how to assign 
channel identifiers.

You can configure many basic OrbixEvents settings using the Orbix 
configuration tool. Appendix B, “Configuration File Settings”, details these 
configuration file variables.

The OrbixEvents Server Command Lines
The server’s command line allow you to configure how the server is launched. It 
takes the following form:

es [-parameter | channel name]

Where the parameter is one of the command-line parameters listed in 
Table 8.1.

Each event channel implemented by the server must have an associated channel 
identifier. The list of channel identifiers that the server implements immediately 
follows the es command. “Assigning Identifiers to Event Channels” on page 87 
describes the role of event channel identifiers in the OrbixEvents server and 
how these identifiers allow you to establish initial contact with an event channel.

The es command takes the following optional command-line switches:

Command-line Parameter Effect

untyped_channels Subsequent channel names are treated as 
untyped. This is the default.

typed_channels Subsequent channel names are treated as typed.

not_orbix_server Do not call CORBA::Orbix.setServerName() 
or CORBA::Orbix.impl_is_ready().

server_name The name passed to 
CORBA::Orbix.setServerName() and   
CORBA::Orbix.impl_is_ready(). Default is 
"ES".

Table: 8.1: Event Server Command-line Options
 84



O r b i x E v e n t s  C o n f i g u r a t i o n
srv_timeout Millisecond time passed to single call to 
processEvents(). Default is INFINITE.

default_tx_timeout Millisecond time passed to 
CORBA::Orbix.defaultTxTimeout(). Default 
is INFINITE.

use_transient_port CORBA::Orbix.useTransientPort(1) is called.

set_diagnostics Value of 0, 1, 2 or 3 passed to 
CORBA::Orbix.setDiagnostics(). Default is 
0.

robust Invocations to destroy on typed or untyped 
events channel will fail if any Proxies exist.

always_try_pull_on_suppliers If a PullConsumer calls pull() on a 
ProxyPullSupplier then, by default, all 
ProxyPullConsumers call pull() on their 
connected PullSuppliers. If this parameter is 
set then ProxyPullConsumers call try_pull() 
on their connected PullSuppliers. Note that 
if a PullConsumer calls try_pull() on a 
ProxyPullSupplier then all 
ProxyPullConsumers will always call 
try_pull() on their connected 
PullSuppliers.

pull_prod_interval When a PullConsumer calls pull() on a 
ProxyPullSupplier, this parameter sets the 
interval between:

New ProxyPullConsumers calling pull() on 
their connected PullSuppliers.

All ProxyPullConsumers calling try_pull() on 
their connected PullSuppliers.

Command-line Parameter Effect

Table: 8.1: Event Server Command-line Options
85



O r b i x E v e n t s  P r o g r amme r ’ s  G u i d e
As described in Chapter 3, “OrbixEvents”, an OrbixEvents server maintains a 
channel manager object to manage the event channels within the OrbixEvents 
server. Your application can invoke operations on the channel manager object, 
for example, to create and destroy event channels within the OrbixEvents 
server. 

The channel manager object supports the interface 
OrbixEventsAdmin::ChannelManager. This interface is described in 
Appendix C, “OrbixEventsAdmin::ChannelManager”.

You can use _bind() to obtain the OrbixEventsAdmin::ChannelManager 
object reference as follows:

// C++
OrbixEventsAdmin::ChannelManager_var cm;
char* serverHost;
...
try {

channelManagerVar = 

try_pull_duration When a PullConsumer calls try_pull() on a 
ProxyPullSupplier then this is the duration 
that try_pull() blocks, awaiting an event, 
before returning with has_event set to FALSE.

 -nonames Do not place the name 
OrbixEventsAdminChannelManager in root 
context of Name Service. (Default places it in 
root context if Name Service is running.)

I or i OrbixEventsAdmin IOR is written to a file 
OrbixEventsAdmin.ref.

v Version information and opal configuration 
values.

? Usage information.

D Dump current configuration settings.

Command-line Parameter Effect

Table: 8.1: Event Server Command-line Options
 86



O r b i x E v e n t s  C o n f i g u r a t i o n
OrbixEventsAdmin::ChannelManager::_bind(
"ChannelManager:ES", serverHost);

}
catch (...) {

// Handle exception.
...

}

Assigning Identifiers to Event Channels
Each event channel in an OrbixEvents server has an associated channel identifier, 
which is unique within that server. You can specify the identifiers of the event 
channels that an OrbixEvents server implements in one of two ways:

1. As arguments to the server command line (see “The OrbixEvents Server 
Command Lines” on page 84). 

2. As a parameter to the 
OrbixEventsAdmin::ChannelManager::create() operation (see 
Appendix C, “OrbixEventsAdmin::ChannelManager”).

An event channel identifier is a string value that takes the form:

[context{.context}:]channel_name

An event channel can have any name, but cannot be prefixed by otrmp//, 
otsfp//, or otmcp// as these indicate multicast channels that are supported by 
the OrbixTalk Gateway.

The server uses the channel identifier as the marker value for a (typed or 
untyped) EventChannel object associated with the channel. The name 
associated with an EventChannel object consists of a sequence of name 
components corresponding to each component of the channel identifier.
87



O r b i x E v e n t s  P r o g r amme r ’ s  G u i d e
 88



Appendix A
Event Service IDL Definitions

This appendix lists the IDL definitions in the CORBA Event Service modules as 
specified by the CORBA standard.

OrbixEvents implements the definitions in the modules listed in the files 
cosevents.idl, coseventsadmin.idl, and orbixevents.idl in the idl 
directory of your OrbixEvents installation.

CosEvents.idl File Contents

The CosEventComm Module

// IDL

module CosEventComm
{

exception Disconnected { };

  interface PushConsumer
  {
    void push (in any data) raises (Disconnected); 
    void disconnect_push_consumer ();
  };

  interface PushSupplier
  {
    void disconnect_push_supplier();
  };

  interface PullSupplier
  {
89



O r b i x E v e n t s  P r o g r amme r ’ s  G u i d e
    any pull () raises (Disconnected);
    any try_pull (out boolean has_event) raises (Disconnected);
    void disconnect_pull_supplier();
  };

  interface PullConsumer
  {
    void disconnect_pull_consumer();
  };
};

The CosTypedEventComm Module

//IDL
module CosTypedEventComm
{

  interface TypedPushConsumer : CosEventComm::PushConsumer
  {
    Object get_typed_consumer();
  };

  interface TypedPullSupplier : CosEventComm::PullSupplier
  {
    Object get_typed_supplier();
  };
};

CosEventsAdmin.idl File Contents

The CosEventChannelAdmin Module

//IDL
module CosEventChannelAdmin
{

  exception AlreadyConnected {};
 90



E v e n t  S e r v i c e  I D L  D e f i n i t i o n s
  exception TypeError {};

  interface ProxyPushConsumer : CosEventComm::PushConsumer
  {
    void connect_push_supplier ( in CosEventComm::PushSupplier 
push_supplier )
           raises (AlreadyConnected);
  };

  interface ProxyPullSupplier : CosEventComm::PullSupplier
  {
    void connect_pull_consumer ( in CosEventComm::PullConsumer 
pull_consumer )
           raises (AlreadyConnected);
  };

  interface ProxyPullConsumer : CosEventComm::PullConsumer
  {
    void connect_pull_supplier ( in CosEventComm::PullSupplier 
pull_supplier )
           raises (AlreadyConnected, TypeError);
  };

  interface ProxyPushSupplier : CosEventComm::PushSupplier
  {
    void connect_push_consumer ( in CosEventComm::PushConsumer 
push_consumer )
           raises (AlreadyConnected, TypeError);
  };

  interface ConsumerAdmin
  {
    ProxyPushSupplier obtain_push_supplier ();
    ProxyPullSupplier obtain_pull_supplier ();
  };

  interface SupplierAdmin
  {
    ProxyPushConsumer obtain_push_consumer ();
    ProxyPullConsumer obtain_pull_consumer ();
  };

  interface EventChannel
91



O r b i x E v e n t s  P r o g r amme r ’ s  G u i d e
{
ConsumerAdmin for_consumers ();
SupplierAdmin for_suppliers ();
void destroy ();
};

};

The CosTypedEventChannelAdmin Module

module CosTypedEventChannelAdmin
{

  exception InterfaceNotSupported {};
  exception NoSuchImplementation {};
  typedef string Key;

  interface TypedProxyPushConsumer :
    CosEventChannelAdmin::ProxyPushConsumer,
    CosTypedEventComm::TypedPushConsumer {};

  interface TypedProxyPullSupplier :
    CosEventChannelAdmin::ProxyPullSupplier,
    CosTypedEventComm::TypedPullSupplier {};

  interface TypedSupplierAdmin :
    CosEventChannelAdmin::SupplierAdmin
  {
    TypedProxyPushConsumer obtain_typed_push_consumer
    (
      in Key supported_interface
    ) raises(InterfaceNotSupported);

    CosEventChannelAdmin::ProxyPullConsumer 
obtain_typed_pull_consumer
    (
      in Key uses_interface
    ) raises(NoSuchImplementation);
  };

  interface TypedConsumerAdmin :
 92



E v e n t  S e r v i c e  I D L  D e f i n i t i o n s
CosEventChannelAdmin::ConsumerAdmin
{

TypedProxyPullSupplier obtain_typed_pull_supplier
(
in Key supported_interface
) raises(InterfaceNotSupported);

CosEventChannelAdmin::ProxyPushSupplier 
obtain_typed_push_supplier

(
in Key uses_interface
) raises(NoSuchImplementation);

};

interface TypedEventChannel
{

TypedConsumerAdmin for_consumers();
TypedSupplierAdmin for_suppliers();
void destroy();
};

};

OrbixEvents.idl File Contents

The OrbixEventsAdmin Module

//IDL
module OrbixEventsAdmin
{
  exception duplicateChannel{ };   // Channel already exists
  exception noSuchChannel{ };     // Invalid channel or channel

//doesn’t exist

  interface ChannelManager
  {
    typedef sequence<string> stringSeq;

    CosEventChannelAdmin::EventChannel create
    (
93



O r b i x E v e n t s  P r o g r amme r ’ s  G u i d e
      in string  channel_id
    ) raises (duplicateChannel);  
  
    CosEventChannelAdmin::EventChannel find
    (
      in string channel_id
    ) raises (noSuchChannel);

    string findByRef
    (
      in CosEventChannelAdmin::EventChannel channel_ref
    )
    raises (noSuchChannel);

    stringSeq list();

    CosTypedEventChannelAdmin::TypedEventChannel createTyped
    (
      in string  channel_id
    ) raises (duplicateChannel);  

    CosTypedEventChannelAdmin::TypedEventChannel findTyped
    (
      in string channel_id
    ) raises (noSuchChannel);

    string findByTypedRef
    (
      in CosTypedEventChannelAdmin::TypedEventChannel channel_ref
    )
    raises (noSuchChannel);

    stringSeq listTyped();
  };
};
 94



Appendix B
Configuration File Settings

The OrbixEvents configuration file variables are contained in the 
scope OrbixOTM.OrbixEvents. You can adjust these settings with the 
Orbix configuration tool.

Variable Effect

IT_BATCH_SIZE Transmission batch size. The number of 
fragments sent per batch. Increasing this may 
increase the throughput for large messages.

Default is 10 

IT_EVENTS_NOT_ORBIX_SERVER When this variable is set to YES, then 
OrbixEvents does not call impl_is_ready(). 
Default is NO. For example:

IT_EVENTS_NOT_ORBIX_SERVER = "NO";

IT_EVENTS_PULL_PROD_TYPE When a PullConsumer executes a pull() on 
the ProxyPullSupplier provided by the 
event server, this variable determines whether 
to attempt pull() or try_pull() on any 
PullSuppliers connected. Default is PULL, 
and the alternative is TRY_PULL. For example:

IT_EVENTS_PULL_PROD_TYPE = "PULL";

Table B.1: OrbixEvents Configuration Variables
95



O r b i x E v e n t s  P r o g r amme r ’ s  G u i d e
IT_EVENTS_PULL_PROD_INTERVAL This value sets the interval in milliseconds 
between each attempted try-pull() or 
pull() on connected PullSuppliers. 
Default is 1000. For example:

IT_EVENTS_PULL_PROD_INTERVAL = "1000";

IT_EVENTS_SERVER_NAME Server name used in call to 
impl_is_ready(). Default is ES. For 
example:

IT_EVENTS_SERVER_NAME = "ES";

IT_EVENTS_TRY_PULL_DURATION Determines how long in milliseconds a 
PullConsumer waits for an event after 
executing a try_pull() on the 
ProxyPullSupplier provided by the event 
server. Default is 100. For example:

IT_EVENTS_TRY_PULL_DURATION = "100";

IT_DEFAULT_TX_TIMEOUT Timeout value in milliseconds passed to 
defaultTxTimeout(). Default is infinite. For 
example:

IT_DEFAULT_TX_TIMEOUT = 60000;

IT_INITIAL_TYPED_EVENT_CHANNELS This variable causes OrbixEvents to create 
typed events channels created at start-up with 
the channel name provided. Default is "". For 
example:

IT_INITIAL_TYPED_EVENT_CHANNELS = 
test_channel;

Variable Effect

Table B.1: OrbixEvents Configuration Variables
 96



C o n f i g u r a t i o n  F i l e  S e t t i n g s
IT_INITIAL_UNTYPED_EVENT_CHANNELS This variable causes OrbixEvents to create 
untyped events channels created at start-up 
with the channel name provided. Default is "". 
For example:

IT_INITIAL_UNTYPED_EVENT_CHANNELS = 
test_channel;

IT_LOG_CONSOLE Console log output flag. Sets whether logging 
will be shown on the console. Set to 0 if you 
do not wish logging to be sent to the console.

Default is 1

IT_LOG_FLAGS logging level flags. This allows configurable 
logging for certain parts of the EventServer. 
Flags include: “USR, EVT, ERR, WARN, INFO, 
EVD, ITF, DLV, SFP, EVD, RMP, DEP, DB, 

FRAG, CPT, IMA, FT, TIM” 

Default is USR,EVT,ERR

IT_LOG_LEVEL System logging output level. The level 
determines the amount System logging 
information displayed. For example:

IT_LOG_LEVEL = 9;

0 is none. 16 is high. 32 is maximum.

Default is 0

IT_LOG_SYSLOG System log file output flag.When set to 1 logs 
will output to file of the form <app 
name>.<YYMMDD>_<HH.MM.SS>.pid<NNN>.txt 

Default is 0

IT_LOG_TID System logging show thread id flag.

Default is 0

Variable Effect

Table B.1: OrbixEvents Configuration Variables
97



O r b i x E v e n t s  P r o g r amme r ’ s  G u i d e
IT_MAX_MSG_SIZE_KB Max kilobytes message size. Sets a limit to the 
size of messages that can be sent. If you 
attempt to send a message that exceeds this 
limit, an exception is raised, and the message is 
not sent. 

Default is 200 

IT_MAX_PEND_KB Maximum Kilobytes waiting to be sent. Sets 
the size limit of the pending message queue. 
Messages are added to the pending queue by a 
push or pull operation. Messages are removed 
from the queue by the flow control mechanism 
as it sends message fragments. Once the queue 
becomes full, remote method invocations 
block until space becomes available in the 
queue. 

Default is 1280 

IT_MAX_RECV_KB Maximum kilobytes queued at receiver. When 
a consumer is executing code other than the 
Orbix event loop, messages arrive and are 
queued at the receiver. They are not 
dispatched to the appropriate user function 
until Orbix processes events in its event loop. 
The limit to the amount of data queued at a 
consumer is set with this variable. 

Default is 1280.

Variable Effect

Table B.1: OrbixEvents Configuration Variables
 98



C o n f i g u r a t i o n  F i l e  S e t t i n g s
IT_MAX_SENT_KB Maximum kilobytes retained for retries. 
Specifies the upper limit to the sent message 
queue size in Kilobytes. Once the limit is 
reached, the oldest fragments are removed to 
make space as required for the new message 
fragments to be added to the queue.

Default is 1280

IT_ROBUST_EVENT_CHANNELS When this variable is set to YES, event 
channels are not destroyed by calls to 
destroy() if Proxies exist. Default is NO. For 
example:

IT_ROBUST_EVENT_CHANNELS = "NO";

IT_SERVER_TIMEOUT Timeout value in milliseconds passed to 
processEvents(). Default is infinite.

IT_SERVER_TIMEOUT = 60000;

IT_SET_DIAGNOSTICS Value passed to setDiagnostics(). Default is 
1. Valid values are 0, 1 and 2. For example:

IT_SET_DIAGNOSTICS = "0";

IT_USE_TRANSIENT_PORT When this variable is set to YES, OrbixEvents 
calls useTransientPort(1). Default is NO. 
For example:

IT_USE_TRANSIENT_PORT = "NO";

IT_WRITE_IOR When this variable is set to YE", 
OrbixEventsAdmin IOR is written to the file 
OrbixEventsAdmin.ref. Default is NO. For 
example:

IT_WRITE_IOR = "NO";

Variable Effect

Table B.1: OrbixEvents Configuration Variables
99



O r b i x E v e n t s  P r o g r amme r ’ s  G u i d e
 100



Appendix C
OrbixEventsAdmin::ChannelManager

OrbixEvents provides the event channel administration interface, 
ChannelManager, defined in the module OrbixEventsAdmin, to allow you to 
create and manipulate multiple event channels within an OrbixEvents server. 

The ChannelManager object in an OrbixEvents server is named 
"ChannelManager". You can obtain a reference to the ChannelManager by using 
_bind(). 

Synopsis // IDL
module OrbixEventsAdmin {

exception duplicateChannel{ };
exception noSuchChannel{ };

interface ChannelManager
{

typedef sequence<string> stringSeq;

CosEventChannelAdmin::EventChannel create (
in string  channel_id) raises 
(duplicateChannel);

CosEventChannelAdmin::EventChannel find(
in string channel_id)
raises (noSuchChannel);

string findByRef(
in CosEventChannelAdmin::EventChannel

channel_ref)
raises (noSuchChannel);

stringSeq list();

CosTypedEventChannelAdmin::TypedEventChannel
createTyped(
in string  channel_id)
101



O r b i x E v e n t s  P r o g r amme r ’ s  G u i d e
raises (duplicateChannel);

CosTypedEventChannelAdmin::TypedEventChannel
findTyped(
in string channel_id)
raises (noSuchChannel);

string findByTypedRef(
in CosTypedEventChannelAdmin::TypedEventChannel

channel_ref)
raises (noSuchChannel);

stringSeq listTyped();
};
};

ChannelManager::create()

Synopsis CosEventChannelAdmin::EventChannel create (
in string channel_id, 

raises duplicateChannel);

Description Creates an event channel.

Parameters

ChannelManager::createTyped()

Synopsis CosTypedEventChannelAdmin::TypedEventChannel createTyped(
in string  channel_id)

raises (duplicateChannel);  

channel_id The channel identifier for the event channel. The 
exception duplicateChannel is raised if the channel 
identifier specified in channel_id names an existing 
channel.

“Assigning Identifiers to Event Channels” on page 87 
describes the format of channel identifiers.
 102



O r b i x E v e n t s A dm i n : : C h a n n e lM a n a g e r
Description Creates a Typed Event Channel

Parameters

ChannelManager::find()

Synopsis CosEventChannelAdmin::EventChannel find (
in string channel_id)

raises (noSuchChannel);

Description Finds the event channel associated with the channel identifier channel_id.

Parameters

ChannelManager::findByRef()

Synopsis string findByRef (
in CosEventChannelAdmin::EventChannel channel_ref)

raises (noSuchChannel);

Description Finds the channel identifier of the event channel specified in channel_ref.

Parameters

Channel_id The channel identifier for the typed event channel. 
The exception duplicatedChannel is raised if the 
channel identifier specified in channel_id names an 
existing channel.

channel_id The channel identifier for the event channel. The 
exception noSuchChannel is raised if the channel 
identifier specified in channel_id does not exist.

“Assigning Identifiers to Event Channels” on page 87 
describes the format of channel identifiers.

channel_ref The object reference for the event channel. If 
channel_ref does not exist within the event server, 
findByRef() raises the exception noSuchChannel.
103



O r b i x E v e n t s  P r o g r amme r ’ s  G u i d e
ChannelManager::findByTypedRef()

Synopsis string findByTypedRef(
in CosTypedEventChannelAdmin::TypedEventChannel channel_ref )

raises (noSuchChannel);

Description Finds the channel identifier of the typed event channel specified in channel_ref.

Parameters

ChannelManager::findTyped()

Synopsis CosTypedEventChannelAdmin::TypedEventChannel findTyped(
in string  channel_id)

raises (noSuchChannel); 

Description Finds the typed event channel associated with the channel identifier channel_id.

Parameters

ChannelManager::list()

Synopsis stringSeq list ();

Description Lists the event channels contained within the channel manager’s event server.

ChannelManager::listTyped()

Synopsis stringSeq listTyped(); 

channel_ref The object reference of the event channel. If 
channel_ref does not exist within the event server, 
findByTypedRef raises the exception 
noSuchChannel.

channel_id The channel identifier for the typed event channel. 
The exception noSuchChannel is raised if the channel 
identifier specified in channel_id does not exist.
 104



O r b i x E v e n t s A dm i n : : C h a n n e lM a n a g e r
Description Lists the Typed Event Channel contained within the Channel Manager’s event 
server.
105



O r b i x E v e n t s  P r o g r amme r ’ s  G u i d e
 106



Index
A
administration

of event channels 19
of typed event channels 26

applications
compiling 78
running 79

B
binding

to an event channel 50

C
channel manager 31, 86, 101
ChannelManager 31
compiling

applications 78
IDL definitions for the Event Service 77

configuration
of server 83

configuration file 95
connecting consumers to event channels 41, 65
connecting suppliers to event channels 36, 71
connecting typed consumers to event channels 57
connecting typed suppliers to event channels 51
ConsumerAdmin 21, 41, 65

obtain_pull_supplier() 65
obtain_push_supplier() 21, 41

consumers
connecting to event channels 41, 65
disconnecting from event channels 67
introduction to 2
pull model

developing 64–67
push model

developing 40–44
receiving events 44
receiving typed events 60
typed

connecting to event channels 57
typed push model

developing 56–62
CORBA Event Service. See Event Service
CosEventChannelAdmin 13, 15, 20
CosEventComm 13, 15
creating

event channels 84

D
developing

pull consumers 64–67
pull suppliers 70–74
push consumers 40–44
push suppliers 34–39
typed push consumers 56–62
typed push suppliers 49–55

disconnecting
consumers from event channels 67
suppliers from event channels 37
typed suppliers from event channels 53

E
es command 79
event channels

administration interfaces 19
creating 84
identifiers 87
implementation of 29
introduction to 3
registering suppliers and consumers 12
transfer of events 17
typed administration interfaces 26

Event Service
IDL definitions

compiling 77
overview 2–10
programming interface 11

EventChannel 20, 35, 41, 65, 71
for_consumers() 20, 41, 65
for_suppliers() 20, 35, 71

events
approaches to initiating 5

mixing push and pull models 8
pull model 7
push model 6

example application 4, 48
example pull model application 64
107



O r b i x E v e n t s  P r o g r amme r ’ s  G u i d e
example push model application 33
introduction to 2
pulling from an event channel 67
pushing to a typed event channel 53
pushing to an event channel 37
receiving in consumers 44
receiving in typed consumers 60
relationship to operation calls 9
requesting from suppliers 73
transfer through an event channel 17
typed and untyped 9

F
for_consumers() 20, 41, 57, 65
for_suppliers() 20, 35, 50, 71

I
identifiers

for event channels 87
IDL interface to the Event Service 11

compiling 77
IIOP 78
Implementation Repository 79
initiating event transfer 5

mixing push and pull models 8
pull model 7
push model 6

Internet Inter-ORB Protocol. See IIOP

O
obtain_pull_consumer() 20, 71
obtain_pull_supplier() 21, 65
obtain_push_consumer() 20
obtain_push_supplier() 21, 41
obtain_typed_push_consumer() 26, 50
obtain_typed_push_supplier() 27, 57
OrbixEventsAdmin 31

P
ProxyPullConsumer 15

retrieving from event channels 70
ProxyPullSupplier 15

retrieving from event channels 65
ProxyPushConsumer 13

retrieving from event channels 35, 50
ProxyPushSupplier 13

retrieving from event channels 41, 57
pull model

for initiating events 7
 108
pull() 67
PullConsumer 15

implementing in a consumer 66
implementing in consumers 66
try_pull() 70

PullSupplier 15, 71
implementing in suppliers 72

push model
for initiating events 6

push() 37
PushConsumer 13, 41

implementing in consumers 43
PushSupplier 13

implementing in a typed supplier 51
implementing in suppliers 36

putit 79

R
running applications 79

S
server

configuration 83
implementation of event channels 29
registering in the Implementation 

Repository 79
SupplierAdmin 20, 35, 71

obtain_pull_consumer() 20, 71
obtain_push_consumer() 20, 35

suppliers
connecting to event channels 36, 71
disconnecting from event channels 37
introduction to 2
pull model

developing 70–74
push model

developing 34–39
receiving requests for events 73
typed

connecting to event channels 51
disconnecting from event channels 53

typed push model
developing 49–55

T
try_pull() 70
typed consumers 56–62

connecting to event channels 57
receiving events 60



I n d e x
typed event channels
administration interfaces 26

typed events 9
typed suppliers

connecting to event channels 51
disconnecting from event channels 53

TypedConsumerAdmin 27, 57
obtain_typed_push_supplier() 27, 57

TypedEventChannel 50, 57
for_consumers() 57
for_suppliers() 50

TypedProxyPushConsumer
retrieving from event channels 50

TypedPushConsumer 58
implementing in typed consumers 58

TypedSupplierAdmin 26, 50
obtain_typed_push_consumer() 26, 50

U
untyped events 9
109


	Preface
	Document Conventions

	Introduction to the CORBA Event Service
	Communications using the CORBA Event Service
	Initiating Event Communication
	The Push Model
	The Pull Model
	Mixing the Push and Pull Models in a Single System

	Types of Event Communication

	The Programming Interface to the Event Service
	The Programming Interface for Untyped Events
	Registration of Suppliers and Consumers with an Event Channel
	Transfer of Untyped Events Through an Event Channel
	Event Channel Administration Interfaces

	The Programming Interface for Typed Events
	Registration of Suppliers and Consumers with a Typed Event Channel
	Transfer of Typed Events Through an Event Channel
	Typed Event Channel Administration Interfaces


	OrbixEvents
	Overview of OrbixEvents
	Components of OrbixEvents

	Programming with the Untyped Push Model
	Overview of an Example Application
	Developing an Untyped Push Supplier
	Obtaining a ProxyPushConsumer from an Event Channel
	Connecting a PushSupplier Object to an Event Channel
	Pushing Events to an Event Channel
	The Push Supplier Application

	Developing an Untyped Push Consumer
	Obtaining a ProxyPushSupplier from an Event Channel
	Connecting a PushConsumer Object to an Event Channel
	Monitoring Incoming Operation Calls
	The Push Consumer Application


	Programming with the Typed Push Model
	Overview of an Example Application
	Developing a Typed Push Supplier
	Obtaining a TypedProxyPushConsumer from an Event Channel
	Connecting a PushSupplier Object to an Event Channel
	Obtaining a Typed Push Consumer from a ProxyPushConsumer
	Pushing Events to an Event Channel
	A Typed Push Supplier Application

	Developing a Typed Push Consumer
	Obtaining a ProxyPushSupplier from an Event Channel
	Connecting a TypedPushConsumer Object to an Event Channel
	Monitoring Incoming Operation Calls
	A Typed Push Consumer Application


	Programming with the Untyped Pull Model
	Overview of an Example Application
	Developing an Untyped Pull Consumer
	Obtaining a ProxyPullSupplier from an Event Channel
	Connecting a PullConsumer Object to an Event Channel
	Pulling Events from an Event Channel
	An Untyped Pull Consumer Application

	Developing an Untyped Pull Supplier
	Obtaining a ProxyPullConsumer from an Event Channel
	Connecting a PullSupplier Object to an Event Channel
	Monitoring Incoming Operation Calls
	An Untyped Pull Supplier Application


	Compiling and Running an OrbixEvents Application
	Compiling the IDL Definitions for the Event Service
	Compiling an OrbixEvents Application
	Running an OrbixEvents Application
	The OrbixEvents Server
	Running your Application
	Lifetime of Proxy Objects


	OrbixEvents Configuration
	The OrbixEvents Server Command Lines
	Assigning Identifiers to Event Channels

	Appendix A Event Service IDL Definitions
	Appendix B Configuration File Settings
	Appendix C OrbixEventsAdmin::ChannelManager
	Index

