
IONA Technologies PLC
September 2000

OrbixOTS Programmer’s
and Administrator’s Guide

Orbix is a Registered Trademark of IONA Technologies PLC.
While the information in this publication is believed to be accurate, IONA Technologies PLC makes no warranty of any kind
to this material including, but not limited to, the implied warranties of merchantability and fitness for a particular purpose.
IONA Technologies PLC shall not be liable for errors contained herein, or for incidental or consequential damages in
connection with the furnishing, performance or use of this material.
Java is a trademark of Sun Microsystems, Inc.

COPYRIGHT NOTICE
No part of this publication may be reproduced, stored in a retrieval system or transmitted, in any form or by any means,
photocopying, recording or otherwise, without prior written consent of IONA Technologies PLC. No third party intellectual
property right liability is assumed with respect to the use of the information contained herein. IONA Technologies PLC
assumes no responsibility for errors or omissions contained in this book. This publication and features described herein are
subject to change without notice.

Copyright © 2000 IONA Technologies PLC. All rights reserved.

All products or services mentioned in this manual are covered by the trademarks, service marks, or product names as
designated by the companies who market those products.

M 2 4 7 6

Contents
 Preface xiii
Audience xiii
Organization of this Guide xiii
Document Conventions xv

Part I Introduction and Administration

Chapter 1 Introduction to OrbixOTS 3
OrbixOTS Features 4
Basics of Transactions 4
Distributed Transaction Processing (DTP) 5
What Happens During a Transaction 6
A Two-Phase Commit 8
The Components of OrbixOTS 9

C++ Server Components 9
C++ Client Components 10

Java Components 11
Overview of the OMG OTS 12

The Object Transaction Service 12
The Object Concurrency Control Service 15

Chapter 2 OrbixOTS Configuration and Administration 17
Running the otsadmin Tool 18
Administering Transactions 20

Listing Transactions in a Server 20
Rolling Back Transactions 22
Completing Transactions 22

otsadmin and SSL 23
Logging in OrbixOTS 23

Running the otsmklog Tool 24
Server Initialization 25
Raw Disk Logs 26
iii

O r b i x O T S P r o g r amme r ’ s a n d A dm in i s t r a t o r ’ s G u i d e
Using Volumes and Mirrors 26
Using Another Server’s Log 29

Controlling Servers 30
Tracing Clients and Servers 30

Querying for Trace Settings 30
Turning Tracing On 31
Dumping Trace Diagnostics 31

Part II Programming

Chapter 3 Getting Started Programming OrbixOTS 35
Overview 35
Specifying Transactional Classes 36
Writing an OrbixOTS Server 37

Initializing a Server 37
Implementing Transactional Classes 41

Writing an OrbixOTS Client 44
Initializing a Client 44
Doing a Transaction 46
Terminating a Client 48

Completing an Application 48
Compiling and Linking a Server 48
Compiling and Linking a Client 49
Running the TransBank Application 50

Chapter 4 Programming with the Java Classes 53
Architecture 53
Specifying Transactional Classes 55
Writing a Java Server 56
Writing a Transactional Java Client 58
Building and Running a Java Server/Client 59
 iv

C o n t e n t s
Part III Advanced Programming

Chapter 5 Controlling Transactions 63
An Overview of Transaction Programming Models 64
Using Direct Context Management 65

Creating Transactions 65
Ending Transactions 66

Using Explicit Transaction Propagation 67
Suspending and Resuming Transactions 68
Nested Transactions 69
Threads and Transactions 72
Miscellaneous Operations 75

Transaction Status 75
Transaction Relationship Operations 76
Transaction Names 78
Hash Functions 78

Chapter 6 Writing a Recoverable Resource 81
Introduction 81

Recoverable Objects 81
Recoverable Servers 82
The Data Log 83

Resource Objects 84
Participating in the 2PC Protocol 87
Failure and Recovery 91

Nested Transactions 93
The commit_subtransaction() Operation 94
The rollback_subtransaction() Operation 95
Registering SubtransactionAwareResource Objects 95

Concurrency 96
Requirements for Recoverable Objects 97
Requirements for Resource Objects 98

Heuristic Outcomes 98
Resource Object Lifecycle 99

Chapter 7 Concurrency Control 103
Locks and Lock Sets 104
v

O r b i x O T S P r o g r am m e r ’ s a n d A dm in i s t r a t o r ’ s G u i d e
Implicit and Explicit Lock Sets 104
Lock Modes 105
Two-Phase Locking 110

Multiple Possession Semantics 113
Using the OCCS 114

Lock Modes and Exceptions 115
Implicit Lock Sets 115
Explicit Lock Sets 118
Creating Lock Set Objects 119
Dropping Locks 120

Chapter 8 Advanced XA Programming 121
Overview of XA 121
Integrating an XA Resource Manager 123
Concurrency Issues 126

Resource Manager Locks 126
Concurrency Modes 127
Single Association versus Multiple Associations 128

Explicit Propagation 131
Synchronizing Cache Data 132

The before_completion() Operation 133
The after_completion() Operation 133
Registering a Synchronization Object 133
Concurrency Issues 134

Nested Transactions 134
Other Issues 137

Resource Manager APIs 137
Database Cursors 138

Part IV Programmer’s Reference

Chapter 9 OrbixOTS Reference Overview 141
Interfaces 142
Java Classes 144
 vi

Chapter 10 The Classes Client, Restart, and Server 145
OrbixOTS::Client Class 147

OrbixOTS::Client::shutdown() 148
OrbixOTS::Client::exit() 148
OrbixOTS::Client::getDefaultTransactionPolicy() 149
OrbixOTS::Client::init() 149
OrbixOTS::Client::IT_create() 149
OrbixOTS::Client::setDefaultTransactionPolicy() 150
OrbixOTS::Client::setInterfaceTransactionPolicy() 150
OrbixOTS::Client::setObjectTransactionPolicy() 151

OrbixOTS::Restart Class 152
OrbixOTS::Restart::IT_create() 153
OrbixOTS::Restart::recovery() 153

OrbixOTS::Server Class 153
OrbixOTS::Server::ConcurrencyMode Enumeration 159
OrbixOTS::Server::shutdown() 160
OrbixOTS::Server::exit() 160
OrbixOTS::Server::getDefaultTransactionPolicy() 160
OrbixOTS::Server::get_transaction_factory() 161
OrbixOTS::Server::get_lockset_factory() 161
OrbixOTS::Server::impl_is_ready() 161
OrbixOTS::Server::init() 162
OrbixOTS::Server::IT_create() 163
OrbixOTS::Server::logDevice() 163
OrbixOTS::Server::logServer() 164
OrbixOTS::Server::mirrorRestartFile() 164
OrbixOTS::Server::recoverable() 165
OrbixOTS::Server::register_xa_rm() 166
OrbixOTS::Server::restartFile() 167
OrbixOTS::Server::serverName() 167
OrbixOTS::Server::setDefaultTransactionPolicy() 168
OrbixOTS::Server::setInterfaceTransactionPolicy() 168
OrbixOTS::Server::setObjectTransactionPolicy() 169

Chapter 11 CosTransactions Module 171
Introduction 171

Overview of Classes 172
General Data Types 173
Status Enumeration Type 173
Vote Enumeration Type 174
General Exceptions 175
vii

O r b i x O T S P r o g r am m e r ’ s a n d A dm in i s t r a t o r ’ s G u i d e
CosTransactions::Control Class 178
Control::get_coordinator() 179
Control::get_parent() 180
Control::get_terminator() 180
Control::get_top_level() 181
Control::id() 181

CosTransactions::Coordinator Class 182
Coordinator::create_subtransaction() 183
Coordinator::get_parent_status() 184
Coordinator::get_status() 185
Coordinator::get_top_level_status() 185
Coordinator::get_transaction_name() 186
Coordinator::get_txcontext() 186
Coordinator::hash_top_level_tran() 187
Coordinator::hash_transaction() 187
Coordinator::is_ancestor_transaction() 188
Coordinator::is_descendant_transaction() 188
Coordinator::is_related_transaction() 189
Coordinator::is_same_transaction() 190
Coordinator::is_top_level_transaction() 191
Coordinator::register_resource() 191
Coordinator::register_subtran_aware() 192
Coordinator::register_synchronization() 193
Coordinator::rollback_only() 194

CosTransactions::Current Class 194
Current::begin() 196
Current::commit() 196
Current::get_control() 197
Current::get_status() 197
Current::get_transaction_name() 198
Current::IT_Create() 198
Current::resume() 198
Current::rollback() 199
Current::rollback_only() 199
Current::set_timeout() 200
Current::suspend() 201

CosTransactions::RecoveryCoordinator Class 201
RecoveryCoordinator::replay_completion() 202

CosTransactions::Resource Class 202
CosTransactions::SubtransactionAwareResource Class 205
CosTransactions::Synchronization Class 207
CosTransactions::Terminator Class 209
 viii

Terminator::commit() 209
Terminator::rollback() 210

CosTransactions::TransactionalObject Base Class 211
CosTransactions::TransactionFactory Class 212

TransactionFactory::create() 212
TransactionFactory::recreate() 213

Chapter 12 Concurrency Control Classes 215
Introduction 215

Overview of the Classes 217
Lock Mode Enumeration Data Type 217

CosConcurrencyControl Base Class 219
CosConcurrencyControl::LockCoordinator Class 220

LockCoordinator::drop_locks() 220
CosConcurrencyControl::LockSet Class 221

LockSet::lock() 222
LockSet::try_lock() 223
LockSet::unlock() 223
LockSet::change_mode() 224
LockSet::get_coordinator() 225

CosConcurrencyControl::LockSetFactory Class 226
LockSetFactory::create() 226
LockSetFactory::create_related() 227
LockSetFactory::create_transactional() 227
LockSetFactory::create_transactional_related() 228

CosConcurrencyControl::TransactionalLockSet Class 229
TransactionalLockSet::lock() 230
TransactionalLockSet::try_lock() 231
TransactionalLockSet::unlock() 231
TransactionalLockSet::change_mode() 232
TransactionalLockSet::get_coordinator() 233

Chapter 13 Java Classes 235
Introduction 235

Overview of the Classes 236
The OtsEnv, Client and Server Classes 237

OtsEnv Class 237
OtsEnv.init() 238
OtsEnv.shutdown() 238
OtsEnv.exit() 238
ix

O r b i x O T S P r o g r am m e r ’ s a n d A dm in i s t r a t o r ’ s G u i d e
OtsEnv.setDefaultTransactionPolicy() 239
OtsEnv.getDefaultTransactionPolicy() 239
OtsEnv.setInterfaceTransactionPolicy() 239
OtsEnv.setObjectTransactionPolicy() 240
OtsEnv.setDefaultFactory() 240
OtsEnv.setGCPeriod() 241

Client Class 242
Client.IT_create() 242
Client.IT_create() 242

Server Class 243
Server.IT_create() 243
Server.IT_create() 243

TransactionPolicy Class 244
Current Class 244

Current.begin() 245
Current.commit() 246
Current.get_control() 246
Current.get_status() 246
Current.get_transaction_name() 247
Current.IT_create() 247
Current.IT_create() 247
Current.resume() 248
Current.rollback() 248
Current.rollback_only() 248
Current.set_timeout() 249
Current.suspend() 249

Control Class 250
Control.get_coordinator() 251
Control.get_parent() 251
Control.get_terminator() 251
Control.get_top_level() 252
Control::id() 252
Control::id() 253

Coordinator Class 253
Coordinator.create_subtransaction() 254
Coordinator.get_parent_status() 255
Coordinator.get_status() 256
Coordinator.get_top_level_status() 256
Coordinator.get_transaction_name() 257
Coordinator::get_txcontext() 257
Coordinator.hash_top_level_tran() 257
Coordinator.hash_transaction() 258
 x

Coordinator.is_ancestor_transaction() 258
Coordinator.is_descendant_transaction() 259
Coordinator.is_related_transaction() 259
Coordinator.is_same_transaction() 260
Coordinator.is_top_level_transaction() 260
Coordinator::register_synchronization() 261
Coordinator.rollback_only() 261

Terminator Class 262
Terminator.commit() 263
Terminator.rollback() 263

TransactionalObject Base Class 264
TransactionFactory Class 264

TransactionFactory.create() 264
Status Enumeration Class Type 265
Common Exceptions 267

Chapter 14 Threading Transactions 271
TranPthread Class 271

TranPthread::Create() 272
TranPthread::Background() 273
TranPthread::Join() 274

Appendix A The DTP Reference Model 275

Appendix B The OrbixOTS Transaction Factory 277

Appendix C OrbixOTS Configuration Variables 283

 Index 289
xi

O r b i x O T S P r o g r am m e r ’ s a n d A dm in i s t r a t o r ’ s G u i d e
 xii

Preface
OrbixOTS is an implementation of the CORBA Object Transaction Service
(OTS). As a CORBA Service, the OTS is an integral part of the the Object
Management Group (OMG) vision of truly reusable and reliable object-based
software components. OrbixOTS was developed in collaboration with the
Transarc Corporation to bring the powerful computing concept of transaction
processing to distributed objects.

Orbix documentation is periodically updated. New versions between releases
are available at this site:

http://www.iona.com/docs/orbix/orbix33.html

If you need assistance with Orbix or any other IONA products, contact IONA
at support@iona.com. Comments on IONA documentation can be sent to
doc-feedback@iona.com.

Audience
This book is for administrators and programmers.

Programmers should have the following knowledge:

• Experience of the C++ or Java languages.

• Experience with Orbix programming.

• Knowledge of transaction concepts.

• If using the Java classes, experience with Orbix Java programming.

Organization of this Guide
This guide is divided into the following parts:
xiii

O r b i x O T S P r o g r am m e r ’ s a n d A dm in i s t r a t o r ’ s G u i d e
Part I Introduction and Administration

This part reviews the basics of transactions, describes what happens during a
transaction, and gives a basic overview of the architecture of OrbixOTS.

This part also has a chapter on OrbixOTS administration.

Part II Programming
This part describes how to start programming with OrbixOTS and includes
discussions on specifying transactional classes and writing OrbixOTS servers and
clients. It also describes basic programming with the Java classes.

Part III Advanced Programming
Topics in this part include such things as controlling transactions, writing a
recoverable resource, advanced XA programming, and concurrency.

Part IV Programmer’s Reference
This reference covers details of modules, interfaces, and classes for OrbixOTS.

Appendix A, “The DTP Reference Model”

This appendix describes the Distributed Transaction Processing (DTP)
Reference Model.

Appendix B, “The OrbixOTS Transaction Factory”

This describes the otstf tool which can be used to develop Java applications
without writing any C++ code.

Appendix C, “OrbixOTS Configuration Variables”

This appendix describes the OrbixOTS configuration values.
 xiv

P r e f a c e
Document Conventions
This guide uses the following typographical conventions:

This guide uses the following conventions for user interface instructions:

Constant width Constant width (courier font) in normal text represents
portions of code and literal names of items such as
classes, functions, variables, and data structures. For
example, text might refer to the CORBA::Object class.

Constant width paragraphs represent code examples or
information a system displays on the screen. For example:

#include <stdio.h>

Italic Italic words in normal text represent emphasis and new
terms.

Italic words or characters in code and commands
represent variable values you must supply, such as
arguments to commands or path names for your
particular system. For example:

% cd /users/your_name

Note: some command examples may use angle brackets
to represent variable values you must supply. This is an
older convention that is replaced with italic words or
characters.

Entering commands When instructed to “enter” or “issue” a command,
type the command and then press Return. For
example, the instruction “Enter the ls command”
means type the ls command and then press the Return
key.

Clicking items When instructed to “click” an item from a set of
buttons or other options, use the mouse or keyboard
to choose that item.

Selecting items When instructed to “select” a menu, menu item, or
multiple items, use the mouse or keyboard to highlight
the item on the screen.
xv

O r b i x O T S P r o g r am m e r ’ s a n d A dm in i s t r a t o r ’ s G u i d e
This guide may use the following keying conventions:

No prompt When a command’s format is the same for multiple
platforms, no prompt is used.

% A percent sign represents the UNIX command shell
prompt for a command that does not require root
privileges.

A number sign represents the UNIX command shell
prompt for a command that requires root privileges.

> The notation > represents the DOS, Windows NT, or
Windows 95 command prompt.

Return key The notation “Return key” refers to the key that is
labelled with the word Return, the word Enter, or the
left arrow.

...

.

.

.

Horizontal and vertical ellipses in format and syntax
descriptions indicate that material has been eliminated
to simplify a discussion.

< > Angle brackets enclose the names of keys on the
keyboard. Also, the notation <Ctrl-x> (where x is the
name of a key) indicates a control-character sequence.
For example, <Ctrl-c> means hold down the <Ctrl>
key while you press the <c> key.

[] Brackets enclose optional items in format and syntax
descriptions.

{ } Braces enclose a list from which you must choose an
item in format and syntax descriptions.

| A vertical bar separates items in a list of choices
enclosed in { } (braces) in format and syntax
descriptions.
 xvi

Part I
Introduction and
Administration

 1
Introduction to OrbixOTS

This chapter provides a brief overview of transaction processing
concepts and standards, and gives a broad outline of the functionality
that OrbixOTS can provide.

Orbix, IONA Technologies’ flagship product, gives separate software objects the
power to interact freely even if they are on different platforms or written in
different languages. OrbixOTS adds to this power by permitting those
interactions to be transactions.

What is a transaction? Ordinary, non-transactional software processes can
sometimes proceed and sometimes fail, and sometimes fail after only half
completing their task. This can be a disaster for certain applications. The most
common example is a bank fund transfer: imagine a failed software call that
debited one account but failed to credit another. A transactional process, on the
other hand, is secure and reliable as it is guaranteed to succeed or fail in a
completely controlled way. “Basics of Transactions” on page 4 discusses the
transaction concept in detail.

This chapter introduces OrbixOTS and demonstrates how it can improve
software development in your enterprise.
3

O r b i x O T S P r o g r am m e r ’ s a n d A dm in i s t r a t o r ’ s G u i d e
OrbixOTS Features
OrbixOTS offers the following features for object-oriented, distributed,
transaction-processing applications:

• Complete implementation of the Object Management Group’s Object
Transaction Service (OMG OTS).

• C++ and Java classes for developing OrbixOTS applications.

• Integration of XA-compliant databases.

• Complete implementation of the OMG Object Concurrency Control
Service (OCCS).

Basics of Transactions
The classical illustration of a transaction is that of funds transfer in a banking
application. This involves two operations: a debit of one account and a credit of
another (perhaps after extracting an appropriate fee). To combine these
operations into a single unit of work, the following properties are required:

• If the debit operation fails, the credit operation should fail, and vice-versa:
that is, they should both work or both fail.

• The total amount of money in the system should be the same, before and
after each transaction.

• The system goes through an inconsistent state during the process
(between the debit and the credit). This inconsistent state should be
hidden from other parts of the application.

• It is implicit that committed results of the whole operation are
permanently stored.

 These points illustrate the so-called ACID properties of a transaction:

Atomic A transaction is an all or nothing procedure—individual
updates are assembled and either all committed or all
aborted (rolled back) simultaneously when the transaction
completes.
 4

I n t r o d u c t i o n t o O r b i x O T S
Thus a transaction is an operation on a system that takes it from one persistent,
consistent state to another.

Distributed Transaction Processing (DTP)
OrbixOTS is an implementation of the Object Transaction Service (OTS), which
is an OMG standard for a CORBA transaction manager. The design is based on
the distributed transaction processing reference model of The X/Open
Company, Ltd. Distributed Transaction Processing (DTP) gives a transactional
mechanism to update two or more independent data resources.

An external entity, usually called a transaction manager, provides the framework
that allows a transaction to span more then one application, process, or
machine. It does this by keeping track of the resources involved in the
transaction. It coordinates transaction completion by contacting those resources
individually when issued with a commit or rollback instruction from the client
that originated the transaction.

OMG OTS improves on the DTP reference model with two ehancements:

• The procedural XA and TX interfaces have been replaced with a set of
CORBA interfaces defined in IDL.

• All inter-component communication is mandated to be via CORBA
invocations on instances of these interfaces.

Thus the DTP reference standard has been upgraded to an object-oriented
model, and interprocess communication mechanisms have been defined to give a
common standard for vendor interoperability.

See Appendix A, “The DTP Reference Model” for more background informtion
on distributed transaction processing.

Consistent A transaction is a unit of work that takes a system from one
consistent state to another.

Isolated While a transaction is executing, its partial results are hidden
from other entities accessing the system.

Durable The results of a transaction are persistent.
5

O r b i x O T S P r o g r am m e r ’ s a n d A dm in i s t r a t o r ’ s G u i d e
What Happens During a Transaction
This section gives a broad overview of how OrbixOTS is involved in
coordinating a typical distributed transaction. Figure 1.1 through Figure 1.4
depict a hypothetical situation where two servers, each with its own database,
are distributed using OrbixOTS. The servers can be on different machines or in
different processes on the same machine.

Suppose that a client wants to use an object that requires that the two servers
each update their respective databases. OrbixOTS mediates between the
applications, ensuring that the database updates are performed atomically.
OrbixOTS is shown here as separate from the applications—this is conceptual:
it is actually distributed between the applications. Thus calls that here seem to
be between processes, may in fact be local.

1. A client begins a transaction by making a call on OrbixOTS (Figure 1.1).
The client is now in the context of a created transaction.

2. The client next invokes Server A and B over Orbix, by making a call on a
transactional object (Figure 1.2 on page 7). These invocations can be in
parallel by using separate threads if necessary. These calls carry with them
knowledge of the transaction that has begun. Servers A and B are said to
be participants in the global transaction.

3. The servers proceed to update their databases, but do not commit the
updates; OrbixOTS is responsible for performing the commit.

Figure 1.1: Client Begins a Transaction

Client

Server BServer A

OrbixOTS

Orbix

1. Client begins a transaction

DatabaseDatabase
 6

I n t r o d u c t i o n t o O r b i x O T S
A server typically communicates with the database via an XA resource
manager (not shown). Resource managers are typically registered with
OrbixOTS in server startup by using a special operation.

As an alternative to using an XA resource manager, the server can create
a resource object for each transaction upon the first invocation. The
server then registers these resource objects with OrbixOTS prior to
database updates.

4. The client now requests completion of the transaction by invoking the
commit operation on OrbixOTS (Figure 1.3).

Figure 1.2: Client Invokes Servers

Figure 1.3: Client Requests a Commit of the Transaction

Client

Server BServer A

OrbixOTS

Orbix

2. Client invokes servers

3. Each server updates its
database

Database Database

Client

Server BServer A

OrbixOTS

Orbix

4. Client commits transaction

5. OrbixOTS coordinates the
commit or rollback

DatabaseDatabase
7

O r b i x O T S P r o g r am m e r ’ s a n d A dm in i s t r a t o r ’ s G u i d e
5. OrbixOTS coordinates the commit or rollback. OrbixOTS completes the
transaction with all resource managers, using a two-phase commit
protocol.

A Two-Phase Commit
The OrbixOTS transaction manager uses a two-phase commit protocol (2PC
protocol) to commit a transaction to the relevant resources: first, all resources
for the transaction are asked to prepare the transaction and return a vote to
indicate whether they are willing to make the changes durable. Based on the
responses received from this phase, the transaction manager begins the second
phase of completion: if all resources voted to commit, then they are asked to
commit in turn; if one or more resources voted to rollback, then all the others
are requested to rollback. In this way atomicity is assured.

Figure 1.4: A Two-Phase Commit

Server BServer A

OrbixOTS

Orbix

Phase 2: OrbixOTS commits or rolls back the transaction

Phase 1: OrbixOTS prepares servers and each server votes

1

22

1

 8

I n t r o d u c t i o n t o O r b i x O T S
The Components of OrbixOTS
OrbixOTS has a modular architecture that includes such services as distributed
transactions (via a Transaction Manager) and an XA Manager that uses the XA
protocol to integrate applications with databases or queuing systems. All
interprocess communication takes place using Orbix. The architecture includes
the OMG Object Concurrency Control Service (OCCS), and services for
logging and failure recovery. The components differ for C++ and Java
applications.

C++ Server Components

Figure 1.5 illustrates the OTS C++ server components.

Transaction Manager

The transaction manager is implemented as a linked-in library, therefore,
transactional applications have an instance of the transaction manager that
cooperates to implement distributed transactions. This architecture has the
advantage that the transaction manager is linked-in (and there is no dedicated
“transaction server”). There is no central point of failure. Application or
resource failures during the two-phase commit protocol will block the
committing transaction, but will not stop new transactions from executing.

The transaction manager provides a full implementation of the OMG OTS
interface, which includes several advanced features. For example, nested
transactions are supported, and both clients and servers can be multithreaded.

Figure 1.5: OrbixOTS C++ Server Components

Orbix Transaction
Manager

Application-Specific Server Code

XA
Manager

OCCS RecoveryLogging
9

O r b i x O T S P r o g r am m e r ’ s a n d A dm in i s t r a t o r ’ s G u i d e
XA Manager

OrbixOTS provides resource manager support for the X/Open XA interface.
Many products support the XA interface including Oracle, Sybase, and Informix
relational databases, as well as IBM’s MQ Series queuing product.

OCCS

The OCCS is an advanced locking service that fully supports nested transactions
and works in cooperation with the transaction manager. The OCCS
implementation component is linked into the application that is acquiring the
locks. Hence, the OCCS is not a true distributed locking service, but because
the interfaces are defined using CORBA IDL, servers can be developed that
export the OCCS interface to provide a server that effectively implements a
distributed locking service.

Logging
Logging provides a durable record of the progress of transactions so that
OrbixOTS servers can recover from failure. OrbixOTS permits both ordinary
files and raw devices to be used for transaction logs. A transaction log can be
expanded at runtime and it can be mirrored for redundancy. Also, an OrbixOTS
server can provide a logging service for other recoverable servers.

Recovery
The transaction log is used during recovery after a crash to restore the state of
transactions that were in progress at the time of the crash.

C++ Client Components

The simpler client OrbixOTS architecture (See Figure 1.6 on page 11) includes
only the components for interprocess communication and distributed
transactions.

OrbixOTS also includes a set of CORBA IDL interfaces for administering
transactional servers. The OrbixOTS administration interfaces are used by a
command-line tool that allows users to query the active transactions at a server,
rollback active transactions, and force the outcome of prepared transactions,
among other things.
 10

I n t r o d u c t i o n t o O r b i x O T S
Java Components
OrbixOTS includes Java classes built with Orbix Java Edition, and a C++
transaction factory server tool that exports the C++ server component
interfaces employed by the Java servers.

Figure 1.6: The Client Components

Figure 1.7: The Java Components

Orbix Transaction
Manager

Application-Specific
Client Code

OrbixWeb CosTransaction
Stubs

Java Code

Orbix Transaction
Manager

C++ Transaction Factory Tool

OCCS
11

O r b i x O T S P r o g r am m e r ’ s a n d A dm in i s t r a t o r ’ s G u i d e
Java clients can initiate transactions, and Java servers can implement transactional
interfaces. The transaction factory manages the transaction on behalf of the Java
server. See Appendix B, “The OrbixOTS Transaction Factory”. In OMG
terminology, Java OTS servers are “transactional servers”. The Java servers can
also be recovered if they implement a resource.

Overview of the OMG OTS
OrbixOTS supports the OMG Object Transaction Service (OTS) and the Object
Concurrency Control Service (OCCS). The following is an overview of both
services which introduces the main interfaces, concepts, and terms used in
OrbixOTS documentation.

The Object Transaction Service

The OTS provides distributed transaction processing similar to the X/Open DTP
model. The X/Open model is supported by allowing X/Open XA compliant
resource managers to participate in OTS transactions. In addition, the OTS
provides a set of IDL interfaces for controlling transactions and to allow multiple
objects distributed over a network to participate in transactions.

The OTS also supports sub-transactions in which transactions can be nested in a
top-level transaction. A sub-transaction can roll back without causing its parent
to be rolled back. This means that a transaction is isolated from the failures of its
sub-transactions. This results in greater control over the granularity of failure
when programming with transactions. A single top-level transaction and all of its
sub-transactions are called a transaction family (each sub-transaction has a single
parent transaction and a transaction may have several child transactions).

The following is a list of the main interfaces supported by the OTS. All interfaces
are part of the IDL module CosTransactions.

OTS Interface Function

Control Represents a single top-level or nested transaction.
Objects supporting this interface provide access to
the transaction’s coordinator and terminator options.

Table 1.8: OTS Interfaces
 12

I n t r o d u c t i o n t o O r b i x O T S
Coordinator Provides operations to register objects that
participate in the transaction. There are three types of
object that can participate in a transaction: resource
objects and synchronisation objects participate in top-
level transactions; sub-transaction-aware resource
objects participate in nested transactions. XA
resource managers can also participate but the
Coordinator interface is not used for this
purpose.The Coordinator interface also provides an
operation to create nested transactions and for
obtaining information about transactions.

Current A pseudo IDL interface that provides the concept of a
current transaction that is associated with the current
thread of control. Operations are provided to create
new transactions (top-level or nested) and to commit
or roll back the current transaction.The Current
interface supports a subset of the operations provided
by the Coordinator and Terminator interfaces.

RecoveryCoordinator Used in certain failure cases to complete a commit
protocol for a registered resource object.

Resource Represents a participant in a transaction. Objects
supporting this interface are registered with a
transaction’s coordinator object, and are then invoked
at key points in the transaction’s commit protocol or
when the transaction rolls back.

SubtransactionAwareResource Represents a participant in a sub-transaction. Objects
supporting this interface are registered with a sub-
transaction’s coordinator object and are then invoked
when the transaction commits or rolls back.

OTS Interface Function

Table 1.8: OTS Interfaces
13

O r b i x O T S P r o g r am m e r ’ s a n d A dm in i s t r a t o r ’ s G u i d e
The OTS supports two modes of controlling transactions: direct and indirect. In
the direct mode, top-level transactions are created using a transaction factory,
and are committed or rolled-back using a terminator object. Nested transactions
are created using a coordinator object. Applications directly access the OTS
objects representing the transaction, which provides a high degree of flexibility
but can be difficult to manage. With the indirect mode, transactions are created,
committed and rolled-back using a current pseudo object. Compared with the
explicit mode, use of the current pseudo object makes control of transactions
much easier. The current object here is used to represent the current
transaction, and the transaction is implicitly associated with the current thread-
of-control. When a transaction is created, if there is no current transaction, a
top-level transaction is created. Otherwise a sub-transaction is created.

Similarly, the OTS supports two modes of passing information about
transactions between clients and servers: explicit and implicit. In the explicit
mode, each IDL operation includes a reference to the transaction’s control

Synchronization Provides a means of synchronising transient data with
an X/Open XA resource manager. Objects supporting
this interface are registered with a transaction’s
coordinator object, and are then invoked before the
start of the commit protocol and at the end of the
commit protocol.

Terminator Provides a means of directly committing or rolling
back a transaction.

TransactionalObject An empty interface that serves to mark interfaces as
being transactional.

Any object that supports this interface is implicitly
associated with the transaction performing
invocations on it.

TransactionFactory Provides a means of directly creating top-level
transactions. Each OrbixOTS server has a single
transaction factory object.

OTS Interface Function

Table 1.8: OTS Interfaces
 14

I n t r o d u c t i o n t o O r b i x O T S
object. Thus client applications must explicitly pass information about the
transaction to the server. The implicit mode makes use of the current object to
pass information to any object supporting the TransactionalObject interface.
Thus, client applications do not need to do anything to ensure that the
information is passed to the server.

Taken together, the indirect and implicit modes provide the simplest mechanism
for programming with transactions. These modes have the further advantage of
the automatic participation of registered X/Open XA resource managers in
transactions. The direct and explicit modes are more difficult to manage but
provide greater flexibility.

The Resource and SubtransactionAwareResource interfaces are provided so
that applications can implement their own recoverable resources. These allow
objects to become full participants in a transaction’s distributed two-phase-
commit protocol.

The Object Concurrency Control Service

In addition to the transaction service, OrbixOTS also provides an
implementation of the OMG Object Concurrency Control Service (OCCS). This
service mediates between concurrent transactions attempting to access a shared
resource.

The OCCS uses locks as the basis of its concurrency control. There are several
lock modes that include support for read/write locking and hierarchical locking.
Transactions acquire locks on lock-set objects which are associated with a
shared resource.

The IDL module CosConcurrencyControl provides the following interfaces:

CosConcurrencyControl
Interfaces

Function

LockCoordinator Each lock-set object has a lock coordinator
that provides a means of dropping all locks
at once.

Table 1.9: OCCS Interfaces
15

O r b i x O T S P r o g r am m e r ’ s a n d A dm in i s t r a t o r ’ s G u i d e
The OCCS is typically used to provide concurrency control for applications that
implement their own recoverable resources using the
CosTransactions::Resource interface.

LockSet Represents an implicit lock set. Requests to
acquire or release a lock are made on behalf
of the current transaction.

LockSetFactory Provides a means of creating lock-set
objects (both implicit and explicit).

Each OrbixOTS server contains a single
lock-set factory object.

TransactionalLockSet Represents an explicit lock-set.

Requests to acquire or release a lock are
made on behalf of the transaction whose
coordinator reference is explicitly passed as
a parameter to the operation.

CosConcurrencyControl
Interfaces

Function

Table 1.9: OCCS Interfaces
 16

 2
OrbixOTS Configuration and
Administration

You can set the basic OrbixOTS configuration values using the
standard Orbix configuration mechanism. But OrbixOTS also
provides you with otsadmin–a powerful tool that allows you to
administer OrbixOTS servers.

The basic OrbixOTS uses the same configuration mechanism as Orbix and by
convention the variables are contained in the orbixots.cfg file. These
variables may be set using the Orbix configuration tool and are described in
Appendix C, “OrbixOTS Configuration Variables”on page 283. But you can also
fine-tune OrbixOTS with its administration tool, otsadmin.

The otsadmin tool provides administrative functions in four different areas:

• The ability to list the transactions that a server “knows” about, to abort
these transactions, and to force a prepared transaction to complete.

• The ability to work on the server’s transaction log. This allows the log to
be expanded and replicated.

• The ability to control OrbixOTS servers.

• The ability to trace the execution of a server with diagnostics.

This chapter also describes the transaction log used by OrbixOTS servers.
17

O r b i x O T S P r o g r am m e r ’ s a n d A dm in i s t r a t o r ’ s G u i d e
Running the otsadmin Tool
The OrbixOTS administration tool is called otsadmin. This tool can be run in
either interactive or non-interactive modes. To use the interactive mode by
simply running the tool–enter the comand otsadmin at the command-line. You
are prompted for commands which execute until you issue the quit command.
For example:

% otsadmin
otsadmin> list tran -server Bank
…
otsadmin> abort tran 123 -server Bank
otsadmin> quit

To run otsadmin in the non-interactive mode, specify the command with
complete command-line arguments. For example:

% otsadmin abort tran 123 -server Bank

Commands are directed to a particular OrbixOTS server, which should be
running when you issue the command. However, if the server is not running but
is registered to start automatically (as a non-persistent server), then issuing a
command against that server will cause the server to start. Use the -server
option to specify the name of the server. As an alternative, you can set the
environment variable ENCINA_SERVER_NAME. For example:

% ENCINA_SERVER_NAME=Bank
% export ENCINA_SERVER_NAME
% otsadmin list tran

To specify a server running on a differnet host use the -host option. For
example:

% otsadmin list tran -server bank -host cherub

You can abbreviate command names so long as the abbreviation is unambiguous.
For example, you can abbreviate the list tran command as
l t. Use the help command to obtain information about a particular command.
For example:

otsadmin> help force tran
 18

O r b i x O T S C o n f i g u r a t i o n a n d A d m i n i s t r a t i o n
Table 2.1 shows a complete list of the otsadmin commands:

Command Brief Description

abort tran Abort a transaction.

add mirror Add a volume mirror.

dump component Dump recent traces for a component.

dump ringbuffer Dump recent trace to a file.

exit Exit from the otsadmin tool.

expand mirror Add space to a volume mirror.

expand vol Expand a volume to the maximum of underlying
mirrors.

force tran Finish a transaction.

help Display help message for a given command.

list tran List unfinished transactions.

list vol List all server volumes.

query mirror Obtain information about a volume mirror.

query trace Query trace mask settings.

query tran Obtain information about a transaction.

query vol Obtain information about a volume.

quit Exit from the otsadmin tool.

remove mirror Remove a volume mirror.

shutdown server Shuts down the server.

trace specification Add a trace specification.

Table 2.1: The otsadmin Commands
19

O r b i x O T S P r o g r am m e r ’ s a n d A dm in i s t r a t o r ’ s G u i d e
Administering Transactions
You can use the otsadmin tool to list and query the transactions that a server
knows about, to abort running transactions, and to force the completion of
prepared transactions.

Listing Transactions in a Server

Use the list tran command to list all transactions that a server knows about.
This command displays, for each transaction, the transaction’s local identifier and
its current state. The local identifier is an integer value and is used to identify the
transaction in the other otsadmin commands. Table 2.2 lists the possible
transaction states and their meanings:

State Meaning

abort_complete The transaction has been rolled-back and all participants
have been informed, but the outcome may not have been
reported to the transaction originator. (For example,
because there may have been heuristic outcomes.)

aborted The transaction has been rolled-back.

aborting The transaction is in the process of being rolled-back.

active The transaction is currently active in the server.

before_abort The transaction has been rolled-back but has not yet
started the rollback protocol.

commit_complete The transaction has committed and all participants have
been informed, but the outcome may not have been
reported to the transaction originator. (For example,
there may have been heuristic outcomes.)

committed The transaction has been committed.

committing The transaction is in the process of being committed

finished The transaction has completed.

Table 2.2: Transaction States
 20

O r b i x O T S C o n f i g u r a t i o n a n d A d m i n i s t r a t i o n
Several of these states only exist for short periods and are unlikely to be visible
with the list tran command. The following example shows the list tran
command being used to list all transactions that the server named Bank knows
about:

otsadmin> list tran -server Bank
12 inactive (H)
17 active (W)
25 commit_complete
26 inactive
29 prepared

Transactions currently holding an OCCS lock are marked with “(H)” and
transactions waiting for an OCCS lock are marked with “(W)” (see transactions
12 and 17 in the above list).

To obtain more information about a particular transaction use the query tran
command. This takes, as an argument, the local identifier of the transaction being
queried. The following example queries transaction 12:

otsadmin> query tran 12 -server Bank
globalId: 00010000010c0102420b21fe6a346d61676f
beginner: 0102420b21fe6a346d61676f

This displays information such as the global identifier, globalId, for the
transaction. (Similar to the XID in XA). beginner specifies the ID for the
application that started the transaction.

inactive The transaction is not currently active in the server.

none The server knows about the transaction, but the server is
not a participant in the transaction.

prepared The transaction has been prepared.

preparing The transaction is in the process of being prepared.

present The transaction is active in the server but is not (yet) a
participant in the transaction.

unknown The transaction has an unknown state.

State Meaning

Table 2.2: Transaction States
21

O r b i x O T S P r o g r am m e r ’ s a n d A dm in i s t r a t o r ’ s G u i d e
Rolling Back Transactions

You use the abort tran command to rollback a running transaction. The effect
is the same as when an application calls the rollback() function. This takes as
its argument the local identifier of the transaction to be rolled-back. The
following example rolls-back the transaction whose local identifier is 17:

otsadmin> abort tran 17 -server Bank

This command also allows a complete transaction family to be rolled-back by
passing the -family option:

otsadmin> abort tran 17 -family -server Bank

Only transactions that are not yet in the prepared phase of the two-phase
commit (2PC) protocol may be rolled-back using this command.

Completing Transactions

When a transaction has completed the prepare phase of its 2PC protocol, you
can use the force tran command to force the transaction to either commit or
rollback. This can be useful if for some reason the 2PC protocol cannot be
completed in a timely manner. By forcing the transaction to complete, resources
used by the transaction can be released. Use the force tran command only
rarely, such as after a crash.

WARNING: Use the force tran command with caution as it can result in data
inconsistencies.

Pass to the command the local identifier of the transaction you want completed.
The default behaviour forces the transaction to rollback. For example:

otsadmin> force tran 29 -server Bank

To force a transaction to commit instead of rolling back, use -commitdesired .
For example:

otsadmin> force tran 29 -commitdesired -server Bank

Finally, to force a transaction to complete without necessarily informing all
participants, use the -finish option. For example:

otsadmin> force tran 29 -finish -server Bank
 22

O r b i x O T S C o n f i g u r a t i o n a n d A d m i n i s t r a t i o n
otsadmin and SSL
To manage transactions running in SSL enabled OTS servers, a client certificate
and private key are required for the otsadmin tool. The otsadmin tool is built
as an OrbixSSL client. Refer to the OrbixSSL C++ Programmer’s and
Administrator’s Guide for general information on creating and administering SSL
applications.

A configuration variable must be set to enable OrbixSSL to locate the otsadmin
certificate. This variable is called IT_CERTIFICATE_FILE and is located in the
OrbixOTS.otsadmin scope of the OrbixSSL configuration file. For example, if
the otsadmin certifcate is located in a file called /opt/iona/config/
repositories/certs/services/orbixots, there must be a section of the
OrbixSSL configuration file like this:

OrbixOTS {
otsadmin {

IT_CERTIFICATE_FILE="/opt/iona/config/repositories/certs/
services/orbixots";

};
};

OrbixSSL private keys are usually password protected. If the otsadmin private
key file requires a password, this can be embedded into the otsadmin
executable using the OrbixSSL update utility. For example, if the certificate file is
protected using demopassword as the password:

update otsadmin demopassword 0

Logging in OrbixOTS
Each recoverable OrbixOTS server1 requires a transaction log which is used to
record the progress of transactions. The transaction log is only used to record
the state of transactions; no application-specific data is stored in these logs. For
example, when using a database, the database has its own log data for records

1. A recoverable server is one that manages its own resources using the Resource interface, is
integrated with an XA resource manager, or acts as a coordinator for transactions.
23

O r b i x O T S P r o g r am m e r ’ s a n d A dm in i s t r a t o r ’ s G u i d e
that are modified during a transaction. The log is used after a crash during
recovery to restore the state of transactions that were in progress at the time of
the crash.

OrbixOTS permits the use of both ordinary files and raw devices for transaction
logs. The recommended minimum size for the transaction log is 8 Mb. Note that
logs never really “fill up” as records of completed transactions are no longer
needed. This is true whether the transaction rolls back or commits.

A transaction log can be expanded at runtime and mirrored to provide
redundancy.

Finally, a C++ server can provide a logging service to other recoverable servers.

Running the otsmklog Tool

The otsmklog tool simplifies OTS log, mirror and restart file creation. You can
use it to create log files of specific sizes with specific names in specific locations.
It also initializes the log by default.

Note, however, that initializing an existing log file or deleting restart or mirror
files can destroy valuable logging data, and so disable application recovery in the
event of a failure.

Usage:

otsmklog [-?hqv] { -p | [-rn] [-s X[K|k|M|m] [-t <restartfile>] [-
m <restartmirrorfile>] } <file>

Options:

-s <size> Specify the size of the log. If this option is not
supplied the default is 8 Mb. The size may be
specifed in kilobytes or megabytes by
appending "K" or "M" to the size
respectively.

-r Replace an existing file.

-q Quiet mode, do not emit completion status.

-t Specify the name of the restart file.

-m Specify the name of the mirror restart file.
 24

O r b i x O T S C o n f i g u r a t i o n a n d A d m i n i s t r a t i o n
Here are some examples of how to use otsmklog:

• Create and initialize a log file called /local/logs/ots.log using the
default names for the restart and mirror files. The files created are /
local/logs/ots.log,ots.restart and ots.restartmirror:

otsmklog/local/logs/ots.log

• Create and initialize a log file called /disk1/ots.log using /disk2/
ots.r1 as the restart file and /disk3/ots.r2 as the mirror file:
otsmklog -t /disk2/ots.r1 -m /disk3/ots.r2 /disk1/
ots.log

• Replace but do not initialize an existing log file called ots.log:

otsmklog -n -r ots.log

• Initialize a raw disk partition called /dev/rdsk/c01t0d0s2:

otsmklog -p /dev/rdsk/c01t0d0s2

It is recommended that full paths be used for log files created using otsmklog
rather than relative paths. This is because the path is recorded in the restart
files. Log files used for transaction logs should be at least 4Mbytes; the
recommended size is 8Mbytes.

Server Initialization

During initialization of a recoverable server, information about the transaction
log must be specified. The information consists of the path for the log device and
the paths for two restart files. The restart files contain information about the
log, including the path for the files it uses. Initially the restart files do not exist,
but, once they exist, the path for the log device may be omitted. Deleting the
restart files causes the log file to be reinitialized. There are always two restart

-p Initialize an existing uninitialized log file or
partition.

-n Suppress log file initialization.

-h|? Display this help text.

-v Display version information.
25

O r b i x O T S P r o g r am m e r ’ s a n d A dm in i s t r a t o r ’ s G u i d e
files for redundancy. If one of the restart files is lost, the other restart file is used
to recreate the lost file. “Initializing a Server” on page 37 shows how a
programmer initializes an OrbixOTS server.

Raw Disk Logs

A transaction log can be either an ordinary file or a raw disk device. When using
ordinary files, the operating system may buffer the output. This can lead to data
loss if a crash occurs. However, raw disk devices bypass any operating system
buffering. It is recommended that you use ordinary files only during
development, and that you use raw disk devices in a production system.

In addition, to reduce the chances of accidental or deliberate corruption of log
files, both the log files and the restart files should be owned by the user running
the server, and only that user should be able to write to the files or remove
them.

Using Volumes and Mirrors

A server’s transaction log may be mapped to a set of files or raw disk devices.
The transactional log is implemented as a logical volume, which is an abstraction
of physical storage. A logical volume is mapped to one or more physical
volumes. (See Figure 2.3.)

Using multiple physical volumes allows the transaction log to be mirrored to add
redundancy. A physical volume can consist of multiple ordinary files, raw disk
partitions, or a combination of both. An OrbixOTS server (with a log) will
always have one logical volume. It can use the Toolkit VOL component for other
things such as a data log. In this case there may be more than one volume.

For clarity, the examples in this section all use ordinary files. However, raw disk
partitions could be used instead with no changes.

Listing Logical Volumes

You can use the otsadmin tool to obtain information about the transaction log
used by a recoverable OrbixOTS server. Use the list vol command to list the
logical volumes in use by the server. (The logical volume for the transaction log
is always named logVol.) For example:
 26

O r b i x O T S C o n f i g u r a t i o n a n d A d m i n i s t r a t i o n
% otsadmin list vol -server Bank
logVol

Querying for Details About Volumes

Use the query vol command to obtain information about the logVol volume:

% otsadmin query vol -server Bank logVol
Volume information for logVol:
Volume size (in pages): 1016
Log free space (in pages): 768
Volume mirrors:
logVol_mirror0

The information consists of the size of the volume, the free space in the log, and
the names or the physical volumes in use. Initially each server has a single
physical volume called logVol_mirror0.

Figure 2.3: Using Volumes and Mirrors

2UEL[276
6HUYHU

7UDQVDFWLRQ�/RJ

0LUURU���0LUURU���

'HYLFH�%'HYLFH�$ 'HYLFH�&

5HDG�:ULWH

0LUURUHG

5HDG�:ULWH

/RJLFDO�9ROXPH

3K\VLFDO
9ROXPHV

/RJ�'HYLFHV
�5DZ�SDUWLWLRQV�RU
RUGLQDU\�ILOHV�
27

O r b i x O T S P r o g r am m e r ’ s a n d A dm in i s t r a t o r ’ s G u i d e
Note: Although the physical volume here is called logVol_mirror0, there is no
mirroring done at this stage.

Use the query mirror command to obtain information about a particular
physical volume or mirror:

% otsadmin query mirror -server Bank logVol_mirror0
Volume mirror logVol_mirror0 occupies the following disks:
/logs/BANK_1.log

Extending a Log’s Size
Extending the size of the transaction log requires two steps:

1. First, the underlying mirrors must be expanded. Assuming there is a file
called /logs/BANK_2.log, the “logVol_mirror0” volume is expanded
by using the expand mirror command:

% otsadmin expand mirror -server Bank \
logVol_mirror0 /logs/BANK_2.log

Now if you query the mirror, the extra file is shown:

% otsadmin query mirror -server Bank
logVol_mirror0
Volume mirror logVol_mirror0 occupies the
following disks:
/logs/BANK_1.log
/logs/BANK_2.log

2. The second step is to expand the logical volume with the expand vol
command:

% otsadmin expand vol -server Bank logVol

Now if you query the logical volume, the extra space has been added:
% otsadmin query vol -server Bank logVol
Volume information for logVol:
Volume size (in pages): 1520
Log free space (in pages): 1280
Volume mirrors:
logVol_mirror0
 28

O r b i x O T S C o n f i g u r a t i o n a n d A d m i n i s t r a t i o n
Adding a Mirror

You use the add mirror command to add a mirror to the transaction log for
extra redundancy. The following example assumes that there is a file called
/logs/BANK_3.log:

% otsadmin add mirror -server Bank logVol logVol_mirror1 \
/logs/BANK_3.log

For consistency the name “logVol_mirror1” was used for the mirror. Note
that the two logs and the two restart files should be on separate disks in a
production system.

Now if you query the transaction log volume, the new mirror is listed:

% otsadmin query vol -server Bank logVol
Volume information for logVol:
Volume size (in pages): 1520
Log free space (in pages): 1280
Volume mirrors:
logVol_mirror0
logVol_mirror1

Note that adding a mirror does not increase the size of the logical volume.

Removing a Mirror
Finally, use the remove mirror command to remove a mirror:

% otsadmin remove mirror -server Bank logVol logVol_mirror0

Using Another Server’s Log

An OrbixOTS server can use the transaction log of another OrbixOTS server
provided that both servers are running on the same host. Use the logServer
attribute to specify the name of the server to use. See “Recoverable Servers” on
page 82 for details of how to progam a server to take advantage of this feature.
29

O r b i x O T S P r o g r am m e r ’ s a n d A dm in i s t r a t o r ’ s G u i d e
Controlling Servers
The otsadmin tool provides the shutdown server command to shutdown a
server:

otsadmin>shutdown server -server Bank

This causes the server to call the OrbixOTS::Server::exit() operation.

Tracing Clients and Servers
You can use the otsadmin tool to request an OrbixOTS server to output
diagnostics. Each component in OrbixOTS has a trace mask that controls what
diagnostics (if any) are output.

Querying for Trace Settings

Use the query trace command to list the components that can be traced and
to see their current trace masks:

otsadmin> query trace -server Bank
log: none
tran: none
bde: none
sutils: none
tranLog_log: none
tranLog_tran: none
restart: none
vol: none
util: none
ots: none

This output indicates that there are ten components and each of the trace masks
is empty, so there is no diagnostic output.
 30

O r b i x O T S C o n f i g u r a t i o n a n d A d m i n i s t r a t i o n
Turning Tracing On

Use the trace specification command to turn on tracing on one or more
components. For example, the following command turns on all tracing for the
ots component and basic tracing for the tran component:

otsadmin> trace specification tran=basic,ots=all -server Bank

The trace specification command takes one parameter: a comma-separated
list of component names and the desired tracing level for that component. If you
issue the query trace command again you can see the desired result:

otsadmin> query trace -server Bank
log: none
tran: entry param 0x10000700
bde: none
sutils: none
tranLog_log: none
tranLog_tran: none
restart: none
vol: none
util: none
ots: event entry param internal_param internal_entry 0xffffffa0

You can use environment variables ENCINA_TRACE and ENCINA_TRACE_VERBOSE
before a server runs to specify a trace. For example:

% ENCINA_TRACE="ots=all,tran=basic"
% ENCINA_TRACE_VERBOSE=1
% export ENCINA_TRACE
% export ENCINA_TRACE_VERBOSE

ENCINA_TRACE specifies the trace specification and ENCINA_TRACE_VERBOSE is
used to turn tracing on (1) and off (0). You can also trace clients by using these
variables.

Dumping Trace Diagnostics

The dump ringbuffer command writes the contents of the ring-buffer (an
internal structure that holds recent trace diagnostics) to a file. For example, use
the following command to write the ring-buffer to the file TRACE:

otsadmin> dump ringbuffer TRACE -server Bank
31

O r b i x O T S P r o g r am m e r ’ s a n d A dm in i s t r a t o r ’ s G u i d e
Normally, the ring-buffer is appended to the output file. However, if you use the
-overwrite option, the existing file (if any) is overwritten.

If you use the -binary option, the output is stored in a shorter binary form.

Note that when an OrbixOTS server crashes, the current contents of the ring-
buffer are output to a file called EncinaTraceBuffer.PID, where PID is the
process identifier of the server.

You can use the dump component command to copy the trace diagnostics for a
particular component to the ring-buffer. For example, to copy the ots
component trace diagnostics, use the following command:

otsadmin> dump component ots -server Bank
 32

Part II
Programming

 3
Getting Started Programming
OrbixOTS

This chapter describes how to do a transaction with OrbixOTS. It
includes the basic steps needed to develop a distributed application
with OrbixOTS. The chapter shows the most typical use of OrbixOTS:
XA database integration using the indirect/implicit mode.

This chapter assumes that you are familiar with creating client and server
applications with Orbix.

Overview
Servers and clients are implemented as objects in OrbixOTS applications. The
OrbixOTS interface supplies a server class and a client class that you use to
initialize servers and clients. This chapter describes how to do the following key
tasks:

1. Specify transactional classes with the Interface Definition Language (IDL).
You use the IDL to define the interface to transactional objects.

2. Write an OrbixOTS server. After initializing a server, you can use
operations to register XA resource managers, make server objects
available to clients, and listen for client requests.

3. Write an OrbixOTS client. The transaction demarcation is in the client.
You begin a transaction, do application-specific operations within the
transaction, and commit or rollback the transaction.
35

O r b i x O T S P r o g r am m e r ’ s a n d A dm in i s t r a t o r ’ s G u i d e
4. Complete a sample application by compiling, linking, and running it.

Specifying Transactional Classes
You define interfaces for objects in OrbixOTS applications in a similar way to
those defined for Orbix applications. Objects that participate in transactions or
make transactional requests on other objects are called transactional objects.
You use the CORBA Interface Definition Language (IDL) to specify interfaces to
transactional objects. The operations defined by an object’s interface are used to
communicate between the client and server.

You use the Orbix IDL compiler to generate the C++ code classes for each
interface.

The following code shows example interface definitions for transactional objects.
This TransBank application is a simple OrbixOTS application that shows the
transfer of money between two bank accounts:

//IDL code
1 #include <OrbixOTS.idl>

exception DBError { string reason; };
const long AccountNameLen = 20;
typedef string<AccountNameLen> AccountName;

2 interface TransAccount : CosTransactions::TransactionalObject {
 void makeLodgement(in float amount)
 raises (DBError);

 void makeWithdrawal(in float amount)
 raises (DBError);

 void query(out AccountName accName, out float accBalance)
 raises (DBError);
};

interface TransBank : CosTransactions::TransactionalObject {
 typedef sequence<long> AccountNumSeq;

 TransAccount newAccount(in AccountName accName,
in float accBalance,
out long accNumber)
 36

Ge t t i n g S t a r t e d P r o g r amm i n g O r b i x O T S
 raises (DBError);

 TransAccount lookupAccount(in long accNumber)
 raises (DBError);

 void getAllAccounts(out AccountNumSeq accounts)
 raises (DBError);
};

The code is described as follows:

1. The interface file for a transactional object must include OrbixOTS.idl,
the IDL file that defines the OMG OTS interfaces.

2. You generally make an object transactional by specifying that its interface
is derived from the class CosTransactions::TransactionalObject.

You implement this interface when you write the OrbixOTS server in the next
section.

Note: The use of oneway operations within a transaction is not permitted.
Interfaces inheriting from TransactionalObject should not use the
oneway keyword.

Writing an OrbixOTS Server
This section covers the basic issues involved in writing OrbixOTS servers. It
describes how to create server objects and how to implement the server’s
interface for transaction objects.

Initializing a Server

This section describes how to initialize and terminate an OrbixOTS server
application. OrbixOTS server applications typically perform the following basic
steps:

1. Create one OrbixOTS server class instance to manage the server.

2. Register any resource managers required by the server (optional).

3. Create one or more CORBA server objects.
37

O r b i x O T S P r o g r am m e r ’ s a n d A dm in i s t r a t o r ’ s G u i d e
4. Listen for requests.

5. Terminate the server.

The following example illustrates typical code for a simple server that uses
Oracle’s XA interface. Note that OrbixOTS provides the OrbixOTS.hh header
file for use with C++ applications. This header file automatically includes the
Object Transaction Service (OTS) and the Object Concurrency Control Service
(OCCS) interface declarations.

//C++ code
#include <iostream.h>
#include <stdio.h>
#include <OrbixOTS.hh>
#include "TransBank_i.hh"
extern struct xa_switch_t xaosw;// The Oracle XA switch.

main(){
...

1 OrbixOTS::Server_var ots = OrbixOTS::Server::IT_create();
ots->serverName("TransBank/oracle");
ots->logDevice("ots.log");
ots->restartFile("ots.r1");
ots->mirrorRestartFile("ots.r2");
...
// Build an XA open string. Requires an Oracle account &
// password.

2 int rm_id = ots->register_xa_rm(&xaosw, openString, "", 0);
3 ots->init();

...
 try {

4 ots->impl_is_ready();
 } catch (const CORBA::SystemException &sysEx) {
 cerr << "Unexpected system exception" << endl;
 cerr << sysEx << endl;
 ots->exit(1);
 } catch (...) {
 cerr << "Exception raised" << endl;
 ots->exit(1);
 }

5 ots->shutdown();
}

The code is described as follows:
 38

Ge t t i n g S t a r t e d P r o g r amm i n g O r b i x O T S
1. The server application creates an instance of the OrbixOTS::Server
pseudo interface to represent the application server. Only one instance is
permitted per server application. You specify startup information
explicitly for servers using the following attributes:

If you do not use logging, a server could not recover if a failure were to
occur. However, the restart files and log are not required. If the server is
a shared Orbix server (started dynamically via the Orbix daemon), the
server name is not required either.

2. After the server instance is created, a server can register any resource
managers that it requires. This step is optional. The function
OrbixOTS::Server::register_xa_rm() registers XA-compliant
resource managers and makes the server recoverable. This example
registers Oracle as an XA resource manager with OrbixOTS. If no XA-
compliant resource managers are required for the application but you still
want the server to be recoverable, you can instead use the function
OrbixOTS::Server::recoverable().

The four parameters are the XA switch, the database open string, the
close string, and a boolean specifying whether the XA library can support
multiple threads. This application does not support multiple threads so 0
is passed.

3. The next step is to initialize the underlying OrbixOTS components and
services by calling the OrbixOTS::Server::init() function. This must
be done after any XA resources have been registered.

serverName A name for the server. This is the name
usually passed to
CORBA::Orbix::impl_is_ready().

logDevice A name of an available file or device that the
server can use to log information.

restartFile Name for one of the server’s restart files.
This file contain information about the log. If
this file already exists, the log parameter is
not required. If you run the server for the
first time and this file does not exist, the log
is formatted and the file is created.

mirrorRestartFile Name for a copy of the server’s restart file.
39

O r b i x O T S P r o g r am m e r ’ s a n d A dm in i s t r a t o r ’ s G u i d e
Typical Orbix programming requires that the server create one or more
server objects (bank) to handle incoming requests. To create a server
object in an OrbixOTS server application, you simply create an instance
of the implementation class you defined for the TransBank interface.

4. After server objects are created, you must start the server listening for
requests. You can use either the OrbixOTS::Server::impl_is_ready()
function or the CORBA::Orbix.impl_is_ready() function that Orbix
provides to start the server listening.

The OrbixOTS::Server::impl_is_ready() function takes an optional
parameter that sets the concurrency mode for the server and creates a
pool of threads for OrbixOTS requests. This parameter determines
whether transactions and incoming requests are serialized at the server.
Modes include:
concurrent
serializeRequests
serializeRequestsAndTransactions

The default value is serializeRequestsAndTransactions which permits
only one transaction to access the server at a time. This is the most
restrictive concurrency mode and used in this example. Passing in the
value concurrent permits concurrent requests and transactions at the
server.

If the server has not already called the OrbixOTS::Server::init()
function, the OrbixOTS::Server::impl_is_ready() function initializes
OrbixOTS before the server begins listening for requests. As no timeout
is specified, the default is used.

5. Terminating a server stops the server from listening for incoming
requests and stops the underlying OrbixOTS services. Many servers are
shut down administratively, but some shut down because of a system
failure. If you need to terminate the server application in your program,
use the OrbixOTS::Server::shutdown() function. This function shuts
OTS down cleanly.

The example code also shows the exit() function being used to
terminate a server application when an exception is thrown. OrbixOTS
applications use the standard C++ try-catch exception-handling
mechanism to throw (raise) and catch exceptions when error conditions
occur, rather than testing status values to detect errors. This exception-
 40

Ge t t i n g S t a r t e d P r o g r amm i n g O r b i x O T S
handling mechanism is also used to integrate CORBA exceptions into
OrbixOTS.

Implementing Transactional Classes

To implement the transactional classes for the interface, you must define a C++
class and class functions corresponding to the interface definition in the IDL file.

OrbixOTS servers can use either of the Orbix approaches to implement the IDL
interface. These are the Basic Object Adapter implementation (BOAImpl) or the
TIE approaches. If you use the BOA approach, your implementation class must
inherit from the BOA class defined in the header file generated by the IDL
compiler. Refer to the Orbix documentation for details on using these
approaches.

The following code implements the interfaces in TransBank.idl. The code
shows an example class definition that uses the BOAImpl approach. This is
standard Orbix coding.

#include "TransBank.hh"

class TransBank_i : public virtual TransBankBOAImpl {
public:
 TransBank_i();
 virtual ~TransBank_i();
 TransAccount_ptr newAccount(const char* accName,

float accBalance,
 CORBA::Long& accNumber,
 CORBA::Environment& IT_env)

 throw (DBError);

 TransAccount_ptr lookupAccount(CORBA::Long accNumber,
CORBA::Environment& IT_env)

 throw (DBError);

 void getAllAccounts(AccountNumSeq*& accounts,
 CORBA::Environment& IT_env)
 throw (DBError);
};

class TransAccount_i : public virtual TransAccountBOAImpl {
public:
41

O r b i x O T S P r o g r am m e r ’ s a n d A dm in i s t r a t o r ’ s G u i d e
 TransAccount_i(CORBA::Long accNumber);

 virtual ~TransAccount_i();

 void makeLodgement(CORBA::Float amount,
CORBA::Environment& IT_env)

 throw (DBError);

 void makeWithdrawal(CORBA::Float amount,
CORBA::Environment& IT_env)

 throw (DBError);

 void query(AccountName& accName, CORBA::Float& accBalance,
 CORBA::Environment& IT_env)

 throw (DBError);

private:
 // Account number used as a key in SQL statements to access the
 // account’s data.
 CORBA::Long m_accountNumber;
};

You must include the header file (TransBank.hh) generated by the IDL
compiler. The code defines the TransAccountBOAImpl class from which
TransAccount_i is derived. The implementation class must provide virtual
function definitions for the functions specified in the interface. It can also define
additional member functions, data, constructors, and destructors.

The file TransBank_i.cc contains C++ code that implements the functions of
the TransAccount_i class. This code is standard C++ code not shown here.

The functions that actually access the database are defined in the db_bank.h file
as follows:

/* C code */
#define DB_ACC_NAME_LEN 20
#define DB_SUCCESS ((char*)0)
char* db_create_account(char* accName, float accBalance,
 long* accNumber);
char* db_lookup_account(long accNumber);
char* db_query_account(long accNumber, char accName[],
 float* accBalance);
char* db_make_lodgement(long accNumber, float amount);
char* db_num_accounts(int* num_accounts);
 42

Ge t t i n g S t a r t e d P r o g r amm i n g O r b i x O T S
char* db_get_accounts(long accounts[], int max_accounts);
void db_free_error(char* error);

These are declarations for functions that provide access to the database. Access
is done with embedded SQL and each function returns a status string indicating
the result of the SQL code.

For example, this is the db_lookup_account() function for Oracle:

/* Check that an account exists. */
char* db_lookup_account(long accNumber)
{
 EXEC SQL BEGIN DECLARE SECTION;
 long db_accNum;
 EXEC SQL END DECLARE SECTION;

 /* Fill out the database variable. */
 db_accNum = accNumber;

 /* Just check that the account exists. */

 EXEC SQL
 SELECT ACC_NUM
 FROM ACCOUNTS
 WHERE ACC_NUM = :db_accNum;

 /* Check for any errors. */
 if (sqlca.sqlcode != 0) {
 return get_sql_error();

 } else {
 return DB_SUCCESS;
 }
}

On success, the value DB_SUCCESS is returned; on failure, the string contains a
text description of the error. These functions are implemented as standard
embedded SQL code.
43

O r b i x O T S P r o g r am m e r ’ s a n d A dm in i s t r a t o r ’ s G u i d e
Writing an OrbixOTS Client
Applications use transaction processing to ensure that data remains correct,
consistent, and persistent. Transaction processing in an object-oriented
distributed environment enables distributed objects to meet the same
requirements. This section describes how to write an OrbixOTS client
application that manages a transaction. In addition to performing tasks that are
specific to your application, OrbixOTS client applications must perform the
following basic steps:

1. Initialize the underlying OrbixOTS services for the client.

2. Do a transaction that includes:

i. Begin a transaction.

ii. Perform server requests within a transaction.

iii. End a transaction.

3. Terminate the client application.

Each of these steps are described in turn in the following subsections.

Initializing a Client

The following code demonstrates the initialization programming required before
a client begins a transaction.

#include <iostream.h>
#include <stdlib.h>
#include <ctype.h>

1 #include <OrbixOTS.hh>
#include "TransBank.hh"

static void newAccount(TransBank_var bank);
static void queryAccount(TransBank_var bank);
static void doLodgement(TransBank_var bank);
static void doWithdrawal(TransBank_var bank);
static void doTransfer(TransBank_var bank);
static void displayAccounts(TransBank_var bank);

main(int argc, char* argv[])
{
 TransBank_var bank; // pointer to the bank object used in demo
 44

Ge t t i n g S t a r t e d P r o g r amm i n g O r b i x O T S
 ...
CORBA::ORB orb = CORBA::ORB_init()

2 OrbixOTS::Client_var ots = OrbixOTS::Client::IT_create();
3 ots->init();
4 CORBA::Object_var obj =

orb->resolve_initial_references(“TransactionCurrent”);
CosTransactions::Current_ptr current =

CosTransactions::Current::_narrow(obj);
5 current->set_timeout(30);

 ...

The code is described as follows:

1. Applications must include the appropriate header files to define the data
types, classes, functions, macros, and constructs used in OrbixOTS and
the runtime environment. OrbixOTS provides the OrbixOTS.hh header
file for use with C++ applications.

2. Create client pseudo object using the function
OrbixOTS::Client::IT_create().

3. Initialize the client pseudo object using the function
OrbixOTS::Client::init(). This initializes all of the necessary
underlying OrbixOTS components and services.

4. Obtain a reference to the OTS Current object.

5. OrbixOTS transactions have a finite (and configurable) timeout. If the
transaction is not completed within this time, it is automatically rolled
back. In addition, some XA interfaces implement a timeout, so that those
transactional objects that use XA resource managers can have their work
automatically rolled back if the transaction is not completed within the
timeout period.

After the typical Orbix client is initialized during execution, it uses an instance of
the client stub class, called a client proxy object, to bind to a remote object. The
client stub includes member functions for the operations defined in the interface.
Once a proxy object is bound to a remote object, calling a function on the proxy
object invokes the corresponding function on the remote object.

The client stub also defines a member function for each operation defined in the
interface. If the interface is defined in the IDL file as transactional, the functions
must be called within the scope of a transaction; otherwise, an exception will be
thrown.
45

O r b i x O T S P r o g r am m e r ’ s a n d A dm in i s t r a t o r ’ s G u i d e
Doing a Transaction

After initialization, the client can begin a distributed transaction and make
remote calls within the transaction. The following code shows a typical use of
the Current class member functions to begin and end a transaction. This is an
example of the indirect-implicit model of programming. The indirect-implicit model
is the preferred way to manage a transaction because it allows OrbixOTS to
manage a transaction in a consistent manner. The direct-explicit programming
model is very flexible, but it requires more complex and careful programming.

void doTransfer(TransBank_var bank)
{
 TransAccount_var srcAccount;
 TransAccount_var destAccount;
 CORBA::Long srcAccNumber;
 CORBA::Long destAccNumber;
 CORBA::Float amount;

 // Do input
 ...
 try {
 // Create a transaction

1 current->begin();

 // Lookup the accounts
 srcAccount = bank->lookupAccount(srcAccNumber);
 destAccount = bank->lookupAccount(destAccNumber);

 // Perform the transfer
2 srcAccount->makeWithdrawal(amount);

 destAccount->makeDeposit(amount);

 // Commit the transaction.
3 current->commit(TRUE);

 cout << " Done." << endl;
 cout << " Transferred " << amount
 << " from account " << srcAccNumber
 << " to account " << destAccNumber << endl;

 } catch (CORBA::TRANSACTION_ROLLEDBACK) {
 cerr << " Unable transfer (transaction rolledback)" << endl;
 46

Ge t t i n g S t a r t e d P r o g r amm i n g O r b i x O T S

} catch (const DBError ex) {

4 // Call rollback to disassociate transaction from thread.
 current->rollback();
}

... // additional exceptions caught

The code is described as follows:

1. Clients can begin a transaction by calling the function
CosTransactions::Current::begin(). The function does not return a
value. The Current object can be used to manage different concurrent
transactions, one per calling thread.

Use code such as the following to obtain an instance of the current
object:
CORBA::ORB_var orb = ...
CORBA::Object_var obj =

orb->resolve_initial_references
 (“TransactionCurrent”);

CosTransactions: :Current ::_narrow(obj);

2. The application-specific functions lookupAccount(), makeWithdrawal(),
makeDeposit(), and balance() execute within the scope of the
transaction. If a call to any of these functions throws an exception (either
explicitly or as a result of a communications failure, for example), the
exception can be caught at the client and the transaction is rolled back.

3. Call the CosTransactions::Current::commit() function to commit the
current transaction. This call ends the transaction and starts the two-
phase commit processing. The transaction is committed only if all of the
participants in the transaction agree to commit. This particular example
has only one participating server.

The association between the transaction and the client process ends
when the client calls this function or the
CosTransactions::Current::rollback() function.

4. Call the CosTransactions::Current::rollback() function to roll back
the current transaction.
47

O r b i x O T S P r o g r am m e r ’ s a n d A dm in i s t r a t o r ’ s G u i d e
Terminating a Client

When a client finishes all transaction related activities it must shutdown
OrbixOTS before exiting. This is done using the
OrbixOTS::Client::shutdown() operation:

OrbixOTS::Client_var ots = ...
ots->shutdown();

This operation must be used to ensure all the underlying OrbixOTS services are
terminated cleanly. All outstanding transactions in progress are completed
(either committed or rolled back).

Alternatively the client can use the operation OrbixOTS::Client::exit()
which shuts down OrbixOTS and exits. The operation takes one argument,
which is an integer status value that is returned to the calling environment.

Completing an Application
A Makefile is provided to build the TransBank application. However, this
section explains some details about compiling and linking server and client
portions of an OrbixOTS application. This section ends by showing how to run
the TransBank application.

Compiling and Linking a Server

A simple server application is made up of the following:

• A source file for the server (Server.cc) that listens for remote requests;
this file must include the header file defining the implementation class for
the server interface (TransBank.hh).

• A source file that implements the functions for the server interface
(TransBank_i.cc).

• A server stub file generated by the IDL compiler (TransBankS.cc).

• Other application files that implement the interface (db_bank.h,
oracle_bank.pc).
 48

Ge t t i n g S t a r t e d P r o g r amm i n g O r b i x O T S
Build the server application by compiling the source file for the server, the
source file for the implementation class, and the server stub file and linking them
with the appropriate OrbixOTS libraries.

Server applications must link with the following libraries:

• EncinaServerOrbix

• EncServer_nodce

• Encina_nodce

• Orbix multithreaded library orbixmt

Before an OrbixOTS server runs, you must specify a name for the server. If the
server is started dynamically via the Orbix daemon, you specify the server name
by registering the server with the Orbix implementation repository. If the server
is started manually (CORBA persistent server), you must specify the server
name in the code by using the serverName attribute of the OrbixOTS::Server
pseudo object.

Compiling and Linking a Client

A simple client application is made up of the following:

• A source file for the client that initiates remote requests
(SimpleClient.cc). This file must include the IDL-generated header file
containing the client class definition corresponding to the interface name
(TransBank.hh).

• A client stub file generated by the IDL compiler (TransBankC.cc).

Build the client application by compiling the source file for the client and the
client stub file, and linking them with the appropriate OrbixOTS libraries. Note
that the files with.cc and.hh extensions denote C++ source and header files.
Client applications must link with the following libraries:

• EncinaClientOrbix

• Encina_nodce

• Orbix multithreaded library orbixmt

Before you run a client application, the server must be registered with the Orbix
daemon.
49

O r b i x O T S P r o g r am m e r ’ s a n d A dm in i s t r a t o r ’ s G u i d e
Running the TransBank Application

After you build the TransBank application, follow these steps at the command
prompt to run it. This example uses the Oracle version of the application and
assumes that a local Oracle installation exists. You run other versions in a similar
manner.

1. Create the Oracle tables:

% sqlplus scott/tiger @initdb.sql

This creates two tables ACCOUNTS and ACCOUNT_NUMBER and populates
the ACCOUNTS table with some bank accounts. You can view the two
accounts numbered 1002 and 1003.
% sqlplus scott/tiger
SQL> select * from ACCOUNTS where ACC_NUM = 1002
or ACC_NUM = 1003;

 ACC_NUM ACC_NAME ACC_BALANCE
---------- -------------------- -----------
 1003 Linda 400
 1002 John 300

2. Create the OrbixOTS transaction log:

otsmklog ots.log

This creates the file ots.log, which is used by OrbixOTS to keep track
of the progress of transactions. Note that in a production system a raw
device should be used instead of an ordinary file.

3. Register the server with Orbix:

% putit TransBank/oracle -persistent

4. Run the server:
% oraclesrv &

Note that starting the server the first time may be a slow process
because the transaction log needs to be initialized.

5. Run the client and transfer 50 units from account 1002 to account 1003
(user input is in bold):

% ./clients/simpleclt oracle

 ** OrbixOTS TransBank Demo
 ** SimpleClient/implicit
 50

Ge t t i n g S t a r t e d P r o g r amm i n g O r b i x O T S

 * New Account [n]
 * Query Account [q]
 * Make Lodgement [l]
 * Make Withdrawal [w]
 * Transfer [t]
 * Display Accounts [d]
 * Exit [e]

 Enter choice: t

TRANSFER

 Enter source account number : 1002
 Enter destination account number : 1003
 Enter amount to transfer : 50

 Done.
 Transferred 50 from account 1002 to account 1003

6. Examine the database to verify that the transfer was successful.
% sqlplus scott/tiger
SQL> select * from ACCOUNTS where ACC_NUM = 1002
or ACC_NUM = 1003;

 ACC_NUM ACC_NAME ACC_BALANCE
---------- -------------------- -----------
 1003 Linda 450
 1002 John 250
51

O r b i x O T S P r o g r am m e r ’ s a n d A dm in i s t r a t o r ’ s G u i d e
 52

 4
Programming with the Java
Classes

OrbixOTS provides support for Java clients and servers using
OrbixWeb. This allows Java clients to create, commit, and rollback
transactions and to invoke operations on OrbixOTS Java servers.

This chapter examines the architecture of Java OrbixOTS and describes how to
perform distributed transaction operations in Java with Orbix OTS. It also
describes the steps involved in building a distributed transactional Java
application.

This chapter assumes that you are familiar with specifying transactional
interfaces using IDL (see Chapter “Getting Started Programming OrbixOTS” on
page 35) and that you are familiar with creating simple distributed client server
applications with OrbixWeb professional.

Architecture
Servers and clients are implemented as objects in OrbixOTS Java applications.
OrbixOTS for Java provides a client and server implementation in the
IE.Iona.OrbixWeb.CosTransactions package that allows clients and servers
to initialize OTS and participate in distributed transactions.

The architecture of a Java OrbixOTS application is shown in Figure 4.1. Java
clients must make use of one or more OrbixOTS C++ servers both to create
transactions and to coordinate distributed transactions. The steps are:
53

O r b i x O T S P r o g r am m e r ’ s a n d A dm in i s t r a t o r ’ s G u i d e
1. The Java client uses an OrbixOTS “factory” server to create and
terminate transactions. This can be done using both the direct mode
(using the TransactionFactory and Terminator interfaces) and the
indirect mode (using the Current interface).

2. Once a transaction has been created, the Java client can invoke
operations on objects in an OrbixOTS Java server.

3. When the Java client commits or rolls-back the transaction, the factory
server coordinates the 2PC protocol which will involve the recoverable
server.

Figure 4.1: Architecture for Java Applications

Unlike the scenario when SimpleServer is implemented in C++, the separation
between the factory server and the Java server is physical—they cannot be the
same object because OrbixOTS Java servers do not support a local
implementation of the TransactionFactory interface.
 54

P r o g r amm i n g w i t h t h e J a v a C l a s s e s
Specifying Transactional Classes
You define interfaces for objects in OrbixOTS applications in a similar manner as
for Orbix applications. Objects that participate in transactions or make
transactional requests on other objects are called transactional objects. You use
the CORBA Interface Definition Language (IDL) to specify interfaces to
transactional objects. The operations defined by an object’s interface are used to
communicate between the client and server.

You use the OrbixWeb IDL compiler to generate the Java code classes for each
interface.

The following code shows example interface definitions for transactional objects.
This TransBank application is a simple OrbixOTS application showing the
transfer of money between two bank accounts and a query operation to retrieve
the account’s name and current balance:

//IDL code
1 #include <OrbixOTS.idl>
2 exception DBError { string reason; };

const long AccountNameLen = 20;
typedef string<AccountNameLen> AccountName;

3 interface TransAccount : CosTransactions::TransactionalObject {
 void makeLodgement(in float amount)
 raises (DBError);

 void makeWithdrawal(in float amount)
 raises (DBError);

 void query(out AccountName accName, out float accBalance)
 raises (DBError);
};

4 interface TransBank : CosTransactions::TransactionalObject {
 typedef sequence<long> AccountNumSeq;
 TransAccount newAccount(in AccountName accName, in float

 accBalance,
 out long accNumber)

 raises (DBError);

 TransAccount lookupAccount(in long accNumber)
55

O r b i x O T S P r o g r am m e r ’ s a n d A dm in i s t r a t o r ’ s G u i d e
 raises (DBError);

 void getAllAccounts(out AccountNumSeq accounts)
 raises (DBError);
};

The code is described as follows:

1. The interface file for a transactional object must include OrbixOTS.idl,
the IDL file that defines the OMG OTS interfaces.

2. The exception DBError is used to indicate some sort of failure in the
backend. All operations can raise a DBError. It contains a single string
that represents a textual description of the error.

3. You generally make an object transactional by specifying that its interface
is derived from the class CosTransactions::TransactionalObject.

4. A description of a simple transactional bank. This interface allows new
accounts to be created and existing accounts to be looked up. All
accounts are identified by a unique account number. There is also an
operation to retrieve a list of all accounts in the bank.

Writing a Java Server
This section describes the basic steps involved in writing a Java server. You can
implement a normal Java transactional server by following these steps:

1. Create a server instance.

2. Create an implementation object.

3. Perform recovery for any resource that you implement (optional).

4. Listen for requests.

5. Terminate the server.

OrbixOTS for Java provides a JAR file called OrbixOTS.jar with all the classes
required for programming with transactions. It contains the IDL compiler
generated stub code for the Object Transaction Service (OTS) and the Object
Concurrency Control Service (OCCS). The corresponding classes must be
imported into your code in the normal way to make them available by name. The
following code sample demonstrates the steps required in creating a server
instance;
 56

P r o g r amm i n g w i t h t h e J a v a C l a s s e s
1 import IE.Iona.OrbixWeb.CosTransactions.Server;
public static void main(...) {

ORB orb = ORB.init(...);
2 Server ots = Server.IT_Create();
3 ots.init();

4 //do recovery now
// process events
...

5 ots.shutdown();
}

The following comments refer to numbered lines in the code sample above:

1. Import the Server class from the package
IE.Iona.OrbixWeb.CosTransactions to make it accessible by name. All
the OrbixOTS proprietary interfaces are in the IE.* packages and the
standard interfaces can be found in the corresponding org.omg.*
packages.

2. Create a non-initialized instance of the Server class using the static
Server.IT_create() method. Only one instance of this class is
permitted per ORB. In this case the Server instance is associated with
the default ORB _Corba.Orbix. Another variant of IT_create() takes an
ORB instance as a parameter.

3. Initialize the Java OTS Server instance. This installs the required
interceptors for transactional context propagation and creates an
instance of the transaction current interface. This step must be
completed before you attempt transactional operations.

4. If the server implemented a recoverable resource then it should do
recovery of that resource at this stage; before you make the server
available to clients. See Chapter 6, “Writing a Recoverable Resource” for
more details on writing recoverable servers.

5. The server is about to exit because event processing has returned in the
main thread. The OrbixOTS Java server instance is shut down in this
example. The shutdown()operation rolls back any outstanding
transactions in the server.
57

O r b i x O T S P r o g r am m e r ’ s a n d A dm in i s t r a t o r ’ s G u i d e
Writing a Transactional Java Client
This section describes the basic steps involved in writing a Java client. You can
implement a normal Java transactional client by following these steps:

1. Create a client instance.

2. Obtain a reference to the TransactionCurrent.

3. Perform transactions.

4. Terminate the client.

The following code sample demonstrates the steps required in creating an
OrbixOTS for a Java transactional client.

1 import IE.Iona.OrbixWeb.CosTransactions.Client;
import org.omg.CosTransactions.Current;
import org.omg.CosTransactions.CurrentHelper;

public static void main(...) {
ORB orb = ORB.init(...);

2 Client ots = Client.IT_Create();
3 ots.init();

Object current_object = null;
4 current_object =

orb.resolve_initial_references("TransactionCurrent");
Current current = CurrentHelper.narrow(current_object);

5 current.begin();
// do some transactional work

 ...
6 current.commit(false);

7 ots.shutdown();
}

The following comments refer to numbered lines in the code sample above:

1. Import the appropriate packages to make classes easily accessible by
name.
 58

P r o g r amm i n g w i t h t h e J a v a C l a s s e s
2. Create a non-initialized instance of the Client class using the static
Client.IT_create() method. Only one instance of this class is
permitted per ORB. In this case the client instance is associated with the
default ORB _Corba.Orbix.

3. Initialize the Java OTS Client instance. This installs the required
interceptors for transactional context propagation and creates an
instance of the transaction current interface. This step must be
completed before attempting transactional operations.

4. Obtain a reference to the TransactionCurrent pseudo object through
resolve_initial_references(). This is the CORBA standard way to
obtain such a reference. The instance returned is a CORBA object, and
so must be narrowed to the CosTransaction current type using the
helper class.

5. Begin a transaction using TransactionCurrent. This is the simplest way
to create a transaction. The client then invokes operations on
transactional servers. In this implicit/indirect mode the transaction is
automatically propagated to the servers by the OTS.

6. Commit the transaction, when all transactional operations are complete.
commit() has a false parameter, indicating that heuristic outcomes are
not of interest for this transaction.

7. Terminate the OTS client before exiting. This ensures that all outstanding
transactions (if any) are rolled back.

The OrbixWeb Programmer’s Guide contains more information on
resolve_initial_references().

Building and Running a Java Server/Client
You can build and run a transactional Java application in the same way as a non-
transactional OrbixWeb application with two exceptions:

1. You must start a TransactionFactory (otstf - see Appendix B, “The
OrbixOTS Transaction Factory”).

2. You must ensure that the OrbixOTS for Java supplied JAR file
(OrbixOTS.jar) is in your classpath.

There is no need to compile the CosTransactions.idl file as the stubs and
skeletons are already in the supplied JAR file.
59

O r b i x O T S P r o g r am m e r ’ s a n d A dm in i s t r a t o r ’ s G u i d e
Use the -jP command-line argument when using the OrbixWeb IDL compiler to
generate code for your own Idl interfaces. This specifies the package prefix for
the CosTransactions interface. The generated code contained in the supplied
JAR file places standard interfaces in the org.omg.* package, therefore, it is
necessary to specify that this is the case to the IDL compiler. For example:

idl <additional options> -jPCosTransacitons=org.omg <new
transactional interface>.idl

This ensures that references to TransactionalObject in your code refer to the
stubs/skeletons in the supplied JAR file.
 60

Part III
Advanced Programming

 5
Controlling Transactions

This chapter covers a number of programming topics in OrbixOTS
transaction programming.

Topic include the following:

• An overview of a do-it-yourself style of transaction programming that
includes direct transaction context management, explicit transaction
propagation, and manual resource manager registration.

• Using the direct model of transaction context management.

• Using the explicit model of transaction propagation.

• Suspending and resuming transactions.

• Nested transactions.

• Threading transactions.
63

O r b i x O T S P r o g r am m e r ’ s a n d A dm in i s t r a t o r ’ s G u i d e
An Overview of Transaction Programming
Models

When programming with OrbixOTS, you can adopt one of two transaction
programming models:

“all-in-OrbixOTS” Programming Model
The all-in-OrbixOTS model is associated with indirect context management,
implicit transaction propagation, and automatic (via XA) resource manager
registration. This model has many advantages, including:

• Uses the XA interface or native database support.

• Uses a linked OrbixOTS library.

• Recovery is automatic.

• It is easy to upgrade an interface by simply inheriting from the
TransactionalObject.

The features of the all-in-OrbixOTS model are shown in the example in “Getting
Started Programming OrbixOTS” on page 35.

“do-it-yourself” Programming Model
The do-it-yourself (DIY) model uses direct context management, explicit
propagation, and manual resource registration. The advantages of this model
include:

• It is possible to have parts of an application not linked with the OrbixOTS
library.

• Improved efficiency when applications use multiple databases. For
example, the all-in-OrbixOTS model may lead to unnecessary overhead.

• Tunable and flexible resource manager registration.

Later sections in this chapter describe how to use features of the do-it-yourself
style. These include using the TransactionFactory class for direct transaction
context management and using function parameters for explicit transaction
propagation.
 64

C on t r o l l i n g T r a n s a c t i o n s
Using Direct Context Management
OrbixOTS provides two interfaces for creating transactions: the Current
pseudo object, or the TransactionFactory. Use of the Current interface is
simpler, but it does require that the process be linked with an OrbixOTS library.
Internally, the Current interface may call the TransactionFactory, but this is
not necessarily the case. Because of this potential relationship, the OMG OTS
specification labels the use of TransactionFactory as direct context
management; the use of Current is referred to as indirect context management.

Creating Transactions

There is a significant difference between these two styles of transaction creation.
This becomes more apparent in discussions of the two styles of transaction
propagation: explicit and implicit. (See “Using Explicit Transaction Propagation”
on page 67.)

Normally, server objects are created before the server begins listening for
requests from clients. Server objects can also be created dynamically; you can
use a factory object to create server objects while the server is listening for
requests. A factory object is designed to create other objects that are managed
by the server.

The create() function for the TransactionFactory as follows:

// Get a reference to a Transaction Factory
CosTransactions::TransactionFactory_var factory =

CosTransactions::TransactionFactory::
 _bind(“TransactionFactory:SomeServer”, “SomeHost”);

// Create a transaction
CosTransactions::Control_var myControl =

factory->create(60);

In this example, a TransactionFactory proxy is bound to an object exposed by
an OrbixOTS Transaction Manager identified by the server name, SomeServer,
on which the create function is subsequently called (60 indicates a transaction
timeout of 60 seconds). An object of type Control is returned; this represents
the created transaction.
65

O r b i x O T S P r o g r am m e r ’ s a n d A dm in i s t r a t o r ’ s G u i d e
Ending Transactions

There are two ways for the transaction to end: either indirectly, using the
Current interface, or directly, using the Terminator interface. There are also
two types of completion: commit and rollback, both possible via either interface.
The following code shows how to directly terminate a transaction by rolling it
back.

// rollback the transaction
CosTransactions::Terminator_var myTerminator =

myControl->get_terminator();
myTerminator->rollback();

Transactions can be rolled back by the runtime system or by any participant in a
distributed transaction. Communications or data access failures are the most
common cause of runtime system aborts.

A remote server object may instead simply mark the transaction for rollback by
calling rollback_only() on Current (indirect) or on Coordinator (direct).
You typically use rollback_only() if your server is not the originator of the
transaction. This does not actually rollback the transaction, but it ensures that
even if the originating server calls commit(), the only possible outcome for the
transaction is a rollback. However, this function is rarely needed because
OrbixOTS permits the server to call the rollback() function directly.

Make sure that your application ends each transaction once, and only once, by
either committing or rolling back the transaction. This is particularly important if
your application uses nested transactions. For example, if a manager function
aborts a nested transaction instead of raising an exception, the current thread is
disassociated from the nested transaction and associated with the parent
transaction. In addition, execution of the statements in the try block enclosing
the nested transaction continues until an exception is thrown. If no exception is
thrown before the Current::commit() function at the end of the try block is
invoked, the function attempts to commit the parent transaction. To ensure that
your application behaves as expected, you must manage the transaction context
of the current thread carefully.
 66

C on t r o l l i n g T r a n s a c t i o n s
Using Explicit Transaction Propagation
The OrbixOTS interface defines classes for two transaction propagation modes:
implicit and explicit. In the implicit mode, the client implicitly passes the
transaction context that defines a transaction to an object by associating the
context with the calling thread. This model is used in the example in “Getting
Started Programming OrbixOTS” on page 35. In the explicit mode, the
transaction context must be passed explicitly to an object as a parameter in a
function call.

The implicit mode provides a simpler interface for coding transactional
applications than the explicit mode. Because most applications use the preferred
implicit mode, the primary focus of this guide is on using this mode. This section
provides only a brief introduction to the explicit mode.

In the explicit mode, the remote object’s IDL simply includes an input parameter
of type Control in functions that involve transactional updates. The Control
associated with a transaction begun using the Current class can be obtained by
calling get_control() on Current. The server object then uses the passed
object to register its interest in transaction completion. The following example
shows a fictional explicitOTSServer interface with one transactional function,
doUpdate().

// IDL
// Explicit interface example
interface explicitOTSServer
{

...
void doUpdate(in CosTransactions::Control ctrl,in short value);
...

}

The explicit mode requires that the interface designer know which functions
may need to be performed in the context of a transaction. Considerable
repercussions can occur if an existing interface is to be made transactional, as
many functions may have to be changed to accommodate an extra parameter.
On the other hand, the explicit interface allows individual functions to be made
transactional, and has the advantage that neither the transaction receiver nor
propagator need be linked with an OrbixOTS library.
67

O r b i x O T S P r o g r am m e r ’ s a n d A dm in i s t r a t o r ’ s G u i d e
The implicit mode does not change the signatures of existing functions, but it
does require that all functions of a given interface be made transactional, and
that the relevant processes be linked with an OrbixOTS library to implement
the Current interface and the transaction propagation functionality.

Suspending and Resuming Transactions
You can suspend a transaction by invoking the Current::suspend() function in
the context of the current transaction. The function returns a pointer of type
Control_ptr, which is a pointer to a Control class instance. The Control
instance represents the transaction context associated with the current thread.
Note that the resources that a transaction is accessing remain locked while the
transaction is suspended.

To resume the suspended transaction, call the Current::resume() function,
passing it the pointer returned when the transaction was suspended. The
following code shows an example of suspending and resuming a transaction.

CosTransactions::Control_var control;

try {
 current->begin();
 account->debit(amount);
 control = current->suspend();
 // do some nontransactional work
 ...
 current->resume(control);
 current->commit();
 }
catch(...) {
 current->rollback();
 cout << "An exception was caught." << endl;
}

Sometimes the work done during the transaction’s suspend state can be work
on a different transaction. Thus, the suspend() and resume() functions give you
a way to work on multiple transactions within the same thread of execution.

The resume() operation can only be called on two occasions:
 68

C on t r o l l i n g T r a n s a c t i o n s
• Following a previous call to suspend(). Once resume() has been called,
subsequent calls to resume() will fail, raising the
CosTransactions::InvalidControl exception. This means that the
resume() operation cannot be used to create several threads that
participate in the same transaction because only one of the threads can
successfully call resume(). The reason for this is that OrbixOTS
implements “checked XA” behaviour that prevents transactions from
being committed while there are outstanding threads running in the
transaction. After a transaction has been resumed, you can make a new
sequence of suspend and resume calls. Multiple threads in a transaction
are permitted in OrbixOTS for C++, but you must use the TranPthread
class described in “Threads and Transactions” on page 72.

• resume() can also be called following a call to
TransactionFactory::recreate(). See “Explicit Propagation” on
page 131 for details on using this operation.

Nested Transactions
This section provides an introduction to nested transaction and how they are
created in both the indirect and direct approaches. It also describes some
miscellaneous operations for getting information about transactions and testing
relationships between transactions. The additional operations provided by the
Coordinator and Current interfaces are also described.

OrbixOTS fully supports nested transactions. In the nested transaction model,
the work done by a single transaction can be broken down into a series of sub-
transactions. These sub-transactions can have their own sub-transactions and so
on. The advantage of nested transactions is that the failure of a sub-transaction
does not cause the whole transaction to fail. Thus the application can decide to
repeat the work in another sub-transaction or to take alternative action.
69

O r b i x O T S P r o g r am m e r ’ s a n d A dm in i s t r a t o r ’ s G u i d e
Figure 5.1: Two Transaction Families

The nested transaction model introduces the concept of transaction families.
Two such families are shown in Figure 5.1. There are two top-level transactions
T1 and T2. Transaction T1 has two child transactions T1_a and T1_b. Likewise,
the child transactions of T2 are T2_a and T2_b. The sub-transaction T1_a also
has a child transaction T1_c. Each child transaction has a single parent
transaction. The parent of T1_c is T1_a and the parent of T2_b is T2.

The way in which sub-transactions are created depends on whether the indirect
or direct approach is used. The indirect approach (using the Current interface)
is the simplest. Here, sub-transactions are created by making nested calls to
Current::begin(). For example, the following code first creates a top-level
transaction (assuming there is no current transaction) and then creates a sub-
transaction:

// Create top-level transaction.
current->begin();
…
// Create nested transaction.
current->begin();
…

T1_c

T1_a T1_b

T1

T2_a T2_b

T2
 70

C on t r o l l i n g T r a n s a c t i o n s
if (…) {
 // Commit current nested transaction.
 current->commit(1);
} else {
 // Rollback current nested transaction.
 current->rollback();
}
// Commit top-level transaction.
current->commit(1);

This code also shows the sub-transactions being either committed or rolled
back. If the sub-transaction is rolled back, all work done by the sub-transaction is
undone. However, the top-level transaction continues and, when it commits all
of its work (excluding the work done by the sub-transaction), is made
permanent.

In the direct approach top-level transactions are created using a transaction
factory. However, the create_subtransaction()operation is used to create
1subtransactions, supported by the Coordinator interface.

Example code for the direct approach is as follows:

CosTransactions::TransactionFactory_var factory =
CosTransactions::TransactionFactory::
 _bind(“TransactionFactory:SomeServer”, “SomeHost”);

…
// Create nested transaction.
CosTransactions::Control_var c2;
CosTransactions::Coordinator_var coord;
coord = c1->get_coordinator();
c2 = coord->create_subtransaction();
…
CosTransactions::Terminator_var t2;
t2 = c2->get_terminator();
if (…) {
 // Commit nested transaction.
 t2->commit(1);
} else {
 // Rollback nested transaction.
 t2->rollback();
}
// Commit top-level transaction.
CosTransactions::Terminator_var t1;
t1 = c1->get_terminator();
71

O r b i x O T S P r o g r am m e r ’ s a n d A dm in i s t r a t o r ’ s G u i d e
t1->commit(1);

Threads and Transactions
Some problems that an application must solve are best done using multiple
threads to exploit the available concurrency. You can also break transactions
into several sub-tasks that can be executed in parallel. There are two simple
ways in which concurrency can be introduced to a transaction:

• Creating a top-level transaction that consists of several concurrent
threads.

• Creating a top-level transaction that consists of several concurrent
nested transactions (each of these nested transactions can in turn be
composed of several concurrent nested transactions).

These concurrent transaction models are supported in OrbixOTS by the
TranPthread class. This class allows you to start threads that can either join an
existing transaction or run in an new top-level or nested transaction. The
TranPthread class is declared as follows:

class TranPthread
{

public:
void
Create(

void* (*start_func)(void *),
void* arg,
int start_new_tran = 0

);
void
Background(

void* (*start_func)(void *),
void* arg,
int start_new_tran = 0

);
void*
Join();
};
 72

C on t r o l l i n g T r a n s a c t i o n s
A thread is created by invoking the Create() operation on an instance of this
class. start_func is a pointer to a function that is the entry point for the new
thread. This function takes a single parameter of type void* and returns a
void*. The value passed to this function is the value of the second argument to
the Create() operation, arg. The parameter start_new_tran indicates
whether a new transaction is to be created: a zero value (default) means a new
transaction is not created and the thread participates in the current transaction,
if any; a non-zero value means the thread executes within a new transaction.

The Join() operation waits for the thread to exit and returns the return value
of the thread’s start function. You must use Join() when creating threads that
participate in an existing transaction. Join()ensures that the threads have
completed before the transaction can be committed.

The Background() operation is similar to Create() except that the threads
created are detached and the Join() operation cannot be used. As it is not
possible to determine when the thread has completed, do not use the
Background() operation to create threads that participate in an existing
transaction.

As an example of how to use the TranPthread class, the following code creates
a transaction and then creates ten threads that participate in the transaction.
Note that the Join() operation is used to wait for all threads to complete
before the transaction is allowed to commit.

// Start function for threads.
void*
thread_main(

void* arg
)
{

// Do work on behalf of the current transaction.
// ...
CosTransactions::Current_var current = ...
return 0;

}
void
main(

int argc,
char** argv

)
{

// Application initialization
73

O r b i x O T S P r o g r am m e r ’ s a n d A dm in i s t r a t o r ’ s G u i d e
// ...
CosTransactions::Current_var current = ...
TranPthread thread[10];
// Create a transaction.
current->begin();
// Create 10 threads, all of which participate
// in the current transaction.
int i;
for (i = 0; i < 10; i++)
{

thread[i].Create(thread_main, 0);
}
// Wait for threads to finish
for (i = 0; i < 10; i++)
{

thread[i].Join();
}
// Commit the transaction.
current->commit(1);
}

Table 5.2 summarizes the effect of the start_new_tran parameter of the
Create() operation on the new thread, depending on whether there is a
current transaction or not.

Current
Transaction ?

start_new_tran
parameter

Effect on New Thread

No 0 Runs in no transaction.

No 1 Runs in new top-level
transaction.

Yes 0 Runs in current transaction.

Yes 1 Runs in new nested transaction.

Table 5.2: Effect of the start_new_tran Parameter
 74

C on t r o l l i n g T r a n s a c t i o n s
Miscellaneous Operations
The Coordinator interface provides several useful operations relating to getting
information about transactions and the relationships between transactions.
Some of the operations are also supported by the Current interface.

Transaction Status

The operation Coordinator::get_status() returns the current status of a
transaction.

The values returned by this operation and their meaning are shown in Table 5.3.

Status Meaning

StatusMarkedRollback The transaction has been marked to be
rolled back.

StatusRolledBack The transaction has completed rolling
back.

StatusActive The transaction is active. This is the case
after the transaction has started and
before the start of the commit protocol or
before the transaction has rolled back.

StatusNoTransaction There is no transaction.

StatusRollingBack The transaction is in the process of being
rolled back.

StatusCommitted The transaction has completed its commit
protocol.

StatusPrepared The transaction has completed the first
phase of its commit protocol.

StatusUnknown The exact state of the transaction is
unknown at this point.

Table 5.3: Transaction Status Values
75

O r b i x O T S P r o g r am m e r ’ s a n d A dm in i s t r a t o r ’ s G u i d e
Below is example code showing how to obtain the status of a transaction:

CosTransactions::Coordinator_var coord = …
CosTransactions::Status status;
status = coord->get_status();
if (status == CosTransactions::StatusActive) {
 //
} else if (status == CosTransactions::StatusNoTransaction) {
 //
} else if

There are two additional status operations for use within transaction families.
The get_top_level_status() operation returns the status of the top-level
transaction in a transaction family. The status of a transaction’s parent can be
obtained by using the operation get_parent_status().

The get_status() operation is also supported by the Current interface.

Transaction Relationship Operations

There are several operations that test the relationship between two
transactions. Each of these operations takes as a parameter a reference for the
coordinator of a transaction.

StatusCommitting The transaction is in the process of
committing.

StatusPreparing The transaction is in the process of the
first phase of its commit protocol.

is_same_transaction() Returns true if both coordinator objects
represent the same transaction.

Otherwise returns false.

is_related_transaction() Returns true if both coordinator objects
represent transactions in the same
transaction family.

Otherwise returns false.

Status Meaning

Table 5.3: Transaction Status Values
 76

C on t r o l l i n g T r a n s a c t i o n s
For example, the following code tests if the transaction represented by the
coordinator c1 is an ancestor of the transaction represented by the coordinator
object c2.

CosTransactions::Coordinator_var c1 =
CosTransactions::Coordinator_var c2 =
if (c1->is_ancestor_transaction(c2)) {
 // c1 is an ancestor of c2
} else {
 // c1 is not an ancestor of c2
}

To illustrate these relationship operations, Table 5.4 shows the results of some
relationship tests between the transactions shown.

is_ancestor_transaction() Returns true if the transaction represented
by the target coordinator object is an
ancestor of the transaction represented by
the coordinator parameter.

Otherwise returns false.

A transaction is an ancestor to itself and a
parent transaction is an ancestor to its child
transactions.

is_descendant_transaction() Returns true if the transaction represented
by the target coordinator object is a
descendant of the transaction represented
by the coordinator parameter. Otherwise
returns false. A transaction is a descendant
of itself and a child transaction is a
descendant of its parent.

Transactions Same? Related? Ancestor? Descendant?

T1 and T1 Yes Yes Yes Yes

T1 and T2 No No No No

Table 5.4: Relationship between Transactions
77

O r b i x O T S P r o g r am m e r ’ s a n d A dm in i s t r a t o r ’ s G u i d e
Transaction Names

A string representation of a transaction is obtained from the operation
get_transaction_name(). This can be used for debugging:

CosTransactions::Coordinator_var coord = …
CORBA::String_var name;
name = coord->get_transaction_name();
cout << "Transaction name is " << name << endl;

The Current interface also supports the get_transaction_name() operation.

Hash Functions

There are some situations where it is necessary to maintain data on a per
transaction basis. The is_same_transaction() operation may be used to
compare two transactions, but for efficiency the Coordinator interface provides
two hash operations.

The hash_transaction() operation returns a hash code for the transaction
represented by the target Coordinator object. Coordinator objects for the
same transaction always return the same hash code. Hash codes are uniformly
distributed over the range of a CORBA unsigned long type.

CosTransactions::Coordinator_var coord =
CORBA::Ulong hashCode;
hashCode = coord->hash_transaction();

T1 and T1_a No Yes Yes No

T1 and T1_c No Yes Yes No

T1_a and T1 No Yes No Yes

T1_a and T1_b No Yes No No

T1_c and T2_b No No No No

Transactions Same? Related? Ancestor? Descendant?

Table 5.4: Relationship between Transactions
 78

C on t r o l l i n g T r a n s a c t i o n s
Note that hash codes are not guaranteed to be unique. The
hash_transaction() operation should be used in conjunction with the
is_same_transaction() operation when mapping from a transaction to the
transaction specific data.

The second hash operation is hash_top_level_tran(), which returns a hash
code for the top-level transaction within a transaction family.
79

O r b i x O T S P r o g r am m e r ’ s a n d A dm in i s t r a t o r ’ s G u i d e
 80

 6
Writing a Recoverable Resource

OrbixOTS provides a set of interfaces that support the
implementation of recoverable resources, as opposed to supporting
integration of XA-compliant resource managers.

Introduction
This chapter describes how a recoverable resource can participate in the two-
phase-commit (2PC) protocol of a transaction and provides guidelines for
recovering from failure. Adding support for nested transactions,
synchronisation, and heuristic outcomes is also covered.

Recoverable Objects

A recoverable resource may be many things, ranging from a simple object or set
of objects to a large relational or object-oriented database. For illustration we
assume here that a recoverable resource is a single object representing an
account in a bank. However, the guidelines presented here are applicable to all
recoverable resources, whatever their nature. The term recoverable object
used in this text can refer to any recoverable resource. (Recoverable object is
used instead of recoverable resource to prevent confusion with the resource
object used to participate in the 2PC of a transaction.)
81

O r b i x O T S P r o g r am m e r ’ s a n d A dm in i s t r a t o r ’ s G u i d e
The IDL for our bank account might be as follows:

interface Account : CosTransactions::TransactionalObject {
void lodge(in float amount);
void withdraw(in float amount);
float balance();

};

Here we are using the TransactionalObject interface to provide implicit
propagation of transaction contexts. Explicit propagation can be used by
including a reference to a Control object as a parameter in each operation.

Recoverable Servers

Similar to an OrbixOTS server that uses an XA resource manager, a server that
supports recoverable objects requires a transaction log to record the progress
of transactions. Additional work is required to support recovery after a failure.

Providing access to a transaction log is done by setting the attributes of the
OrbixOTS::Server pseudo object. Thus a local log may be specified using the
following code:

ots->logDevice("OTS.log");
ots->restartFile("r1");
ots->mirrorRestartFile("r2");

Alternatively, you can use the transaction log belonging to an existing OrbixOTS
server registered under the name TM, by using the following code:

ots->logServer("TM");

Note, when using a log server in this way, you should not set the attributes
logDevice, restartFile, or mirrorRestartFile. The log server must be
running on the local host; using a log server on another host is not permitted.

The OrbixOTS::Server pseudo object provides the operation recoverable()
to indicate that the server is recoverable and requires a transaction log. This
operation is passed a reference to a sub-class of OrbixOTS::Restart which
provides a call-back operation used during the recovery phase.
 82

Wr i t i n g a R e c o v e r a b l e R e s ou r c e
The following code declares a restart class called Restart_i and redefines the
recovery() call-back operation:

class Restart_i : public virtual OrbixOTS::Restart {
public:
 // Implementation specific members omitted.
 // Redefinition of the recovery call-back operation.
 void recovery();
};

Now the server can be registered as recoverable using an instance of
Restart_i:

OrbixOTS::Restart_var restart = new Restart_i();
ots->recoverable(restart);

Later when the OrbixOTS::Server::init() operation is invoked, recovery
processing is initiated and the Restart_i::recovery() operation will be called.
Notice that this means recovery processing is done before
OrbixOTS::Server::impl_is_ready() is called and therefore before the
server can process invocations.

The Data Log

The transaction log maintained by OrbixOTS records and stores the progress of
transactions. To implement a recoverable resource, some mechanism is also
required to store information on modifications made to the resources so that
these modifications may be reapplied after a failure. Thus a server supporting
recoverable resources requires a stable data log that is logically separate from
the transaction log.

Note that the term data log is used here for clarity and does not preclude an
implementation using any other suitable stable storage mechanism.
83

O r b i x O T S P r o g r am m e r ’ s a n d A dm in i s t r a t o r ’ s G u i d e
Resource Objects
Support for recoverable objects is provided primarily by the interface
CosTransactions::Resource. This interface provides a means for a
recoverable object to participate in a transaction’s 2PC protocol.

The Resource interface is defined as follows:

// In module CosTransactions.
interface Resource {
 Vote prepare()
 raises (HeuristicMixed,
 HeuristicHazard);

 void rollback()
 raises (HeuristicCommit,
 HeuristicMixed,
 HeuristicHazard);

 void commit()
 raises (NotPrepared,
 HeuristicRollback,
 HeuristicMixed,
 HeuristicHazard);

 void commit_one_phase()
 raises (HeuristicHazard);

 void forget();
};

The prepare() operation allows the resource to vote in the outcome of the
transaction and to prepare for an eventual commit. The commit() and
rollback() operations are called when the transaction is committed or rolled-
back. A guide to implementing these operations is given in section, “Participating
in the 2PC Protocol” on page 87.

Resource objects become participants in a transaction by registering with that
transaction. To illustrate this, assume our resource object is implemented by the
class Resource_i and is declared as follows (using the BOAImpl approach):

class Resource_i : public virtual CosTransactions::ResourceBOAImpl
{

 84

Wr i t i n g a R e c o v e r a b l e R e s ou r c e
public:
 // Resource_i specific members omitted.

 CosTransactions::Vote prepare(CORBA::Environment&)
 throw (CosTransactions::HeuristicMixed,
 CosTransactions::HeuristicHazard);

 void rollback(CORBA::Environment&)
 throw (CosTransactions::HeuristicCommit,
 CosTransactions::HeuristicMixed,

 CosTransactions::HeuristicHazard);

 void commit(CORBA::Environment&)
 throw (CosTransactions::NotPrepared,
 CosTransactions::HeuristicRollback,

 CosTransactions::HeuristicMixed,
 CosTransactions::HeuristicHazard);

 void commit_one_phase(CORBA::Environment&)
 throw (CosTransactions::HeuristicHazard);

 void forget(CORBA::Environment&);
};

To register an instance of this class, the Coordinator::register_resource()
operation is invoked, passing the resource object’s reference as the parameter.
The following code illustrates resource registration by showing part of the
implementation of the deposit() operation on our account interface
implemented by the class Account_i:

void Account_i::deposit(const float amount, CORBA::Environment&)
{
 if (/* transaction not already involved */) {
 CosTransactions::Resource_var resource;
 CosTransactions::Control_var control;
 CosTransactions::Coordinator_var coord;
 CosTransactions::RecoveryCoordinator_ptr recCoord;

// Get a reference to the coordinator for the
// current transaction
// (current is a reference to the Current pseudo
// object).
 resource = new Resource_i();
85

O r b i x O T S P r o g r am m e r ’ s a n d A dm in i s t r a t o r ’ s G u i d e
 control = current->get_control();
 coord = control->get_coordinator();

 // Register the resource.
 recCoord = coord->register_resource(resource);
 }

// Perform deposit ...
}

The register_resource() operation returns a reference to a recovery
coordinator (specified in the CosTransactions::RecoveryCoordinator
interface). This has a single operation, replay_completion(), which is used in
certain failure situations and is discussed in “Failure and Recovery” on page 91.

A resource object may only be registered once so a test is required to
determine whether the current transaction has already accessed the recoverable
object. To support this, the CosTransactions::Coordinator interface
provides two operations: is_same_transaction() and hash_transaction().
The is_same_transaction() operation takes a coordinator object and returns
true if both coordinators represent the same transaction. The
hash_transaction() operation returns a uniformly distributed hash code for
the transaction to help reduce the number of times is_same_transaction()
needs to be called.

During recovery after a server failure, resource objects registered with
incomplete transactions need to be recreated so the 2PC protocol can
complete. OrbixOTS uses the resource object's marker to associate it with a
particular transaction and during recovery the same marker must be used when
the resource object is recreated. This requires that the markers used for
resource objects be unique across server failures. One approach is to use the
string returned by the operation get_transaction_name() (provided by the
Current and Coordinator interfaces) in addition to some per-recoverable
object unique identifier (such as an account number in our example).

At any given time, a recoverable object may be associated with multiple resource
objects–one for each transactions currently accessing the resource. They are
managed by OrbixOTS and are deleted when they are no longer required.
 86

Wr i t i n g a R e c o v e r a b l e R e s ou r c e
Participating in the 2PC Protocol

Once a resource object has been registered with a transaction, it will participate
in the 2PC protocol of the transaction. This means it must implement each of
the operations in the Resource interface. Below is a description of the
requirements for these operations and guidelines for a typical implementation.

Note: When OrbixOTS invokes these operations, the current transaction is
not available via the Current pseudo object. This is because the 2PC
protocol operations are normally invoked from a thread not associated
with the transaction. If an operation requires access to information about
the transaction, the resource object or recoverable object must maintain
a reference to the transaction’s Control or Coordinator object.

The prepare() Operation
This operation allows the resource object to vote in the 2PC protocol of the
transaction and to prepare the recoverable object for eventual commitment. It is
called at most once by OrbixOTS.

Voting is done by returning one of the three values VoteReadOnly,
VoteRollback, or VoteCommit which are enumerated in the
CosTransactions::Vote type:

VoteReadOnly This indicates that the resource object does not want to
be further involved in the 2PC protocol. After returning
VoteReadOnly, the resource object can forget about
the transaction.

A typical use of this vote is when the recoverable object
associated with the resource object was not modified
during the transaction. For example, if balance() is the
only operation invoked on an account object then the
resource might return VoteReadOnly.
87

O r b i x O T S P r o g r am m e r ’ s a n d A dm in i s t r a t o r ’ s G u i d e
Typically, if the resource object returns VoteCommit, information must be
stored in the data log so that after a server failure, the resource object can fulfil
its obligations as a participant in the transaction. The actual information stored
depends on the recoverable object, but the following is a general guide to what
is required:

• The name of the transaction associated with the resource object. This
can be obtained using the get_transaction_name() operation provided
by the Coordinator object.

• The marker for the resource.

• The string form of the reference for the recovery coordinator returned
when the resource object was registered (obtained using
CORBA::ORB::object_to_string()).

• Sufficient information to redo any modifications made to the resource
object during the transaction. This might be a complete copy of the data,
a copy of the modified parts, or a list of the operations that caused the
modifications. In the bank account example, we could store the new
balance of the account or the fact that the operations deposit(120) and
withdraw(50) were invoked.

VoteRollback This indicates that the resource object has decided to
rollback the transaction. If one or more resource
objects return this value, the transaction will always be
rolled-back. After returning VoteRollback the resource
object will not be further involved in the 2PC protocol
and can forget about the transaction.

VoteCommit This indicates that the resource object is prepared to
commit its part of the transaction. This does not
guarantee that the transaction will eventually commit as
it may be rolled-back due to factors such as another
resource voting to roll-back or the failure of some other
component.

A resource object returning VoteCommit has a
responsibility to ensure that a subsequent invocation on
the commit() operation will succeed even after the
failure of a server.
 88

Wr i t i n g a R e c o v e r a b l e R e s ou r c e
Once a resource has been prepared and has returned VoteCommit, it may invoke
the operation replay_completion() on the recovery coordinator object as a
hint that the 2PC protocol has not been completed. This is necessary during
recovery after a server failure and in other failure scenarios. See section, “Failure
and Recovery” on page 91 for details.

The prepare() operation may raise one of the exceptions HeuristicMixed or
HeuristicHazard. Most resource objects have no need to raise these
exceptions. See section, “Heuristic Outcomes” on page 98 for more about
heuristic exceptions.

The rollback() Operation
When a transaction is rolled-back, this operation is invoked on all resource
objects registered with the transaction that were not prepared or were
prepared and returned VoteCommit. A resource object should expect
rollback() to be invoked multiple times, including after a server failure. If the
resource object has forgotten about the transaction, no action is required.

Typically an implementation of rollback() does the following:

• Undoes any changes made to the recoverable object associated with the
resource. This requires that the resource or recoverable object has some
mechanism of undoing modifications; for example, by creating a backup
the first time the recoverable object is modified by the transaction.

• Writes an entry to the data log indicating that the transaction has been
rolled back. (The name of the transaction or the marker of the resource
object may be used for identification purposes.)

• Cleans up all traces of the transaction from the resource object and the
recoverable object.

The rollback() operation may raise one of the exceptions HeuristicCommit,
HeuristicMixed, or HeuristicHazard. The former is raised when the resource
actually wants to commit the transaction; the latter two are not normally
required for most resource objects.
89

O r b i x O T S P r o g r am m e r ’ s a n d A dm in i s t r a t o r ’ s G u i d e
The commit() Operation

After the prepare phase of the 2PC protocol, the transaction is committed if all
resources registered with the transactions returned either VoteCommit or
VoteReadOnly, and no external factors caused the transaction to be rolled-
back. During the commit phase, the commit() operation is invoked on resources
that returned VoteCommit. A resource object should expect commit() to be
invoked multiple times, including after a server failure. If the resource object has
forgotten about the transaction, no action is required.

Typically an implementation of commit() does the following:

• Makes permanent any modifications made to the recoverable object
associated with the resource.

• Writes an entry to the log indicating that the transaction has been
committed. (The name of the transaction or the marker of the resource
object may be used for identification purposes.)

• Cleans up all traces of the transaction from the resource object and the
recoverable object.

If the resource object was not prepared (that is, the prepare() operation was
not invoked), then the exception NotPrepared should be raised. In addition, the
commit() operation may raise one of the exceptions HeuristicRollback,
HeuristicMixed, or HeuristicHazard. The former is raised when the resource
actually wants to rollback the transaction; the latter two are not normally
required for most resources.

The commit_one_phase() Operation
The OTS specification optionally allows an implementation to invoke this
operation if there is only one resource object registered with the transaction.
There is no prepare phase. Currently OrbixOTS does not implement this
option, so commit_one_phase() is never invoked. However, this option may be
provided in a future release so an implementation should be provided. A
resource object should expect commit_one_phase() to be invoked multiple
times, including after a server failure. If the resource has forgotten about the
transaction, no action is required.

Typically an implementation of commit_one_phase() does the following:
 90

Wr i t i n g a R e c o v e r a b l e R e s ou r c e
• Makes permanent any modification made to the recoverable object
associated with the resource.

• Cleans up all traces of the transaction from the resource object and the
recoverable object.

If the resource object cannot commit the modifications, the standard system
exception TRANSACTION_ROLLEDBACK should be raised. In addition the
commit_one_phase() operation may raise the exception HeuristicHazard.

The forget() Operation
If a resource object raises a heuristic exception, it must remember the exception
raised so that subsequent calls to commit(), commit_one_phase(), and
rollback() return a consistent outcome. This must also survive server failures.
The information should therefore be recorded in the data log. The forget()
operation is invoked when knowledge of heuristic exceptions is no longer
required.

A typical implementation of forget() cleans up all traces of the transaction
from the resource object and the recoverable object.

Failure and Recovery

A participant in a transaction must be able to recover from failures. Once a
resource object returns VoteCommit from its prepare() operation, it has an
obligation to see that the 2PC protocol is completed. The mechanism to do this
is provided by the replay_completion() operation of the interface
RecoveryCoordinator.

Recall that when a resource object is registered with a transaction (see
“Resource Objects” on page 84), the register_resource() operation returns
a reference to a recovery coordinator for that resource. Any resource that has
been prepared, should invoke this operation if the 2PC protocol has not been
completed. (For example, the commit() or rollback() operations have not
been called.)

Note: The replay_completion() operation is non-blocking and does not force
the coordinator to complete the transaction. It is only treated as a hint.
91

O r b i x O T S P r o g r am m e r ’ s a n d A dm in i s t r a t o r ’ s G u i d e
Remote Server Failure

Assume that the resource is registered with a coordinator in a remote server
and the decision has been made to rollback the transaction but this has not
propagated to the local server. If the remote server fails, there will be no record
of the transaction after a restart. The OTS uses presumed rollback semantics, so
the rollback() operation will not be called. This is an optimisation that allows a
coordinator not to log anything before the commit decision. If there is no
record of the transaction at restart, the transaction is presumed to have been
rolled-back.

By invoking the replay_completion() operation, the resource object can
determine the correct outcome in this case. This also needs to be done after the
failure of the local server.

Local Server Failure
If a recoverable server fails, it is necessary to perform recovery for those
resources whose associated transaction has an unknown outcome. This typically
occurs when the server crashes after the resource objects have been prepared,
but before the commit or rollback decision has been propagated to all resource
objects.

Recall that when making a server recoverable (“Recoverable Servers” on
page 82), the OrbixOTS::Server::recoverable() operation is called and
passed the reference to a restart object. When a recoverable server is restarted,
OrbixOTS processes the transaction log, determines those transactions that
require completion, and recreates the recovery coordinators for those
transactions. When this is complete, the recovery() operation is invoked on
the restart object.

When the recovery() operation returns, OrbixOTS expects that all resource
objects for incomplete transactions are recreated and in a state to receive
invocations on their commit() or rollback() operations. If you follow the
guidelines presented in the section, “Participating in the 2PC Protocol” on
page 87, then this can be done by processing the data log and finding those
resource objects for which there is a prepare record but no commit or rollback
record. Then for each resource object the following is done:

• The resource object is recreated using its original maker. The resource
object’s marker is obtained from the data log.
 92

Wr i t i n g a R e c o v e r a b l e R e s ou r c e
• The recoverable object associated with the resource object is brought
back to the state it was in during the prepare phase of the transaction. In
our bank account example, this can be done by reading the current state
of the account and applying the modification information stored in the
data log.

• Rebind to the resource object’s recovery coordinator. The reference for
the recovery coordinator is obtained from the data log. If during the
rebind the recovery coordinator does not exist, then it can be presumed
that the transaction has been rolled-back.

The following is outline code for binding to the recovery coordinator and
completing the transaction:

try {
 // Rebind to the object reference (ref is the stringified
 // reference).
 CORBA::ORB_var orb = ...
 CORBA::Object_var obj =

 orb->string_to_object(ref) ;
 // Narrow the object reference.
 CosTransactions::RecoveryCoordinator_ptr recCoord =

 CosTransactions::RecoveryCoordinator::_narrow(obj);
 // Restart the completion of the 2PC protocol.
 recCoord->replay_completion(resource);
} catch (CORBA::OBJECT_NOT_EXIST ex) {
 // No recovery coordinator so assume the transaction has
 //rolled-back.
 resource->rollback();
} catch (CosTransactions::NotPrepared ex) {
 // Resource was not prepared so rollback.
 resource->rollback();
} catch (...) {
 // ...
}

Nested Transactions
OrbixOTS fully supports nested transactions (also known as sub-transactions)
that provide a means of isolating failure. A transaction of several nested
transactions that can independently fail without causing the whole transaction to
93

O r b i x O T S P r o g r am m e r ’ s a n d A dm in i s t r a t o r ’ s G u i d e
be rolled-back can achieve this. A nested transaction itself can be composed of
several nested transactions. The effects of a nested transaction are only made
durable if all ancestor transactions (including the top-level transaction) commit.

The CosTransactions::Resource object provides a means for a recoverable
object to participate in the 2PC protocol of a top-level transaction. Because
nested transactions do not require a 2PC protocol (that is, there is no prepare
phase), an alternative interface is required. A specialization of the Resource
interface called CosTransactions::SubtransactionAwareResource is used.
The interface is declared as follows:

// IDL (in module CosTransactions)
interface SubtransactionAwareResource : Resource
{

void
commit_subtransaction(

in Coordinator parent
);
void
rollback_subtransaction();

};

You can register an object supporting the SubtransactionAwareResource
interface with a nested transaction using either the register_subtran_aware()
operation or the register_resource() operation. As with objects supporting
the Resource interface, the object can only be registered with a single
transaction.

The commit_subtransaction() Operation

The commit_subtransaction() operation is called when the nested
transaction is committed. commit_subtransaction() accepts a reference to
the coordinator object of the parent transaction as a parameter. The resource
object usually just cleans up all traces of the transaction from the resource and
recoverable objects. Any modifications made by the nested transaction are not
made durable at this state. However, modifications should be made available to
the parent transaction so they can be made durable when the top-level
transaction commits.
 94

Wr i t i n g a R e c o v e r a b l e R e s ou r c e
The rollback_subtransaction() Operation

This operation is invoked when the nested transaction rolls-back. In this case,
any modifications made by the nested transaction should be undone.

Registering SubtransactionAwareResource Objects

You can invoke the register_subtran_aware() operation on a nested
transaction’s coordinator object to register an object supporting the
SubtransactionAwareResource interface with the transaction. For example,
assuming the class SubTranResourceImpl supports the
SubtransactionAwareResource interface, the following C++ code registers an
instance of the object as a participant in the current transaction:

// C++
try
{

CosTransactions::Current_var current = …
CosTransactions::Control_var control;
CosTransactions::Coordinator_var coord;

control = current->get_control();
coord = control->get_coordinator();

CosTransactions::SubtransactionAwareResource_var resource;
resource = new SubTranResourceImpl();
// Register the resource object to be notified when the
// sub-transaction completes.
coord->register_subtran_aware(resource);

}
catch (CosTransactions::NotSubtransaction)
{

// Current transaction is not a nested transaction.
// …

}
catch (CosTransactions::Inactive)
{

// Current transaction is inactive.
// …

}
catch (…)
95

O r b i x O T S P r o g r am m e r ’ s a n d A dm in i s t r a t o r ’ s G u i d e
{
// …

}

If the transaction is not a nested transaction, register_subtran_aware() raises
the CosTransactions::NotSubtransaction exception. Also, if the transaction
is not currently active, the exception CosTransactions::Inactive is raised.

Since the SubtransactionAwareResource interface is a specialization of the
Resource interface, the operation register_resource() can also be used. In
this case, the object is notified when the nested transaction completes and when
the top-level transaction commits. For example:

// C++
// Register the resource object to be notified when the
// sub-transaction completes and when the top-level enclosing
// transaction completes.
CosTransactions::RecoveryCoordinator_var recCoord;
recCoord = register_resource(resource);

When using the register_resource() operation, the operations specific to the
Resource interface (for example prepare(), commit() and rollback()) are
only called when the top-level enclosing transaction completes. If a nested
transaction commits, the effects of the transaction may subsequently be undone
if the top-level transaction rolls back.

Concurrency
If your server permits concurrent or interleaved transactions (that is, one of the
serialization modes concurrent or serializeRequests is used), then some
form of synchronization to the recoverable object is required so that the
isolation property can be ensured. OrbixOTS provides an implementation of the
OMG Object Concurrency Control Service (OCCS) which may be used for
synchronization. This section discusses the requirements for using OCCS with a
recoverable object.

Using the OCCS puts extra requirements on both the implementation of
recoverable objects and resource objects.

A full description of the OCCS is given in Chapter 7 “Concurrency Control” on
page 103.
 96

Wr i t i n g a R e c o v e r a b l e R e s ou r c e
Requirements for Recoverable Objects

The number of lock-sets required by a recoverable object and the modes in
which they are acquired will vary depending on the nature of the resource. For
clarity, we just consider our bank account object which requires a single lock-set
and standard read/write locking.

During initialization of the recoverable object the lock-set is created. This is
done using a LockSetFactory object whihc is obtained by the
get_lockset_factory() operation provided by the OrbixOTS::Server class.
This is illustrated with the following code (assuming m_lock is a LockSet
reference):

OrbixOTS::Server_var ots = ...
CosConcurrencyControl::LockSetFactory_var factory =

ots->get_lockset_factory();

m_Lock = factory->create ();

Then at the start of each operation a lock must be acquired in the appropriate
mode. For example, the balance() operation must acquire a read lock:

float Account_i::balance(CORBA::Environment&)
{
 // Acquire read lock
 m_Lock->lock(CosConcurrencyControl::read);

 // Register a resource object (if first access by a
 // transaction).

 float bal = ...
 return bal;
}

Note that the lock is not released when the operation returns. This is necessary
to ensure other transactions do not see any intermediate results before the
transaction completes.

Note: Using lock-sets in the implicit mode only provides synchronization for
transactions. If your recoverable object permits concurrency within
transactions, then additional synchronization is required.
97

O r b i x O T S P r o g r am m e r ’ s a n d A dm in i s t r a t o r ’ s G u i d e
Requirements for Resource Objects

Any locks held on a recoverable object need to be dropped when the
transaction completes. This is done by invoking the drop_locks() operation on
the lock coordinator. The lock coordinator is obtained by invoking the
get_coordinator() operation on the lock set object. This is illustrated with the
following code:

CosTransactions::Coordinator_var coord =
CosConcurrencyControl::LockCoordinator_var lockCoord;

// Get the lock coordinator from the lock set object.
lockCoord = m_Lock->get_coordinator(coord);

// Drop all locks.
lockCoord->drop_locks();

Locks should be dropped when a transaction commits and when a transaction
rolls back.

Heuristic Outcomes
Heuristic outcomes arise when a resource unilaterally decides to commit or
rollback its part of the transaction, possibly conflicting with the eventual
outcome decided by the transaction’s coordinator. For example, after a failure a
resource may make a heuristic decision after a timeout period to free up access
to resources. Heuristic outcomes are reported by raising one of the heuristic
exceptions, which will be reported to the transaction’s originator. (Provided the
report-heuristics parameter passed to the commit() operation is true.)
 98

Wr i t i n g a R e c o v e r a b l e R e s ou r c e
There are four heuristic exceptions:

A resource object that makes a heuristic decision is obligated to remember the
decision so that subsequent calls to either commit() or rollback() have
consistent results. The decision must survive server failures so it must be stored
in the data log. The forget() operation is called when the resource object no
longer needs to remember the heuristic decision.

Heuristic outcomes may also arise when a transaction is forced to either commit
or rollback by an administrator using the otsadmin tool.

Resource Object Lifecycle
This section describes the possible invocation sequences that OTS can make on
a resource object in order to summarize the responsibilities of a resource
object. At the end of each invocation sequence, the resource object is no longer
involved in the transaction and system resources used by the resource object
can be released.

Operations marked with a + can be invoked one or more times. This can
happen, for example, if a failure occurs before the OTS has received the
response to the invocation. For example, in invocation sequence 3, the OTS
invokes the commit() operation again if it does not receive the response to the
first commit() operation (for example, due to a communications failure or an
application crash). This continues until the OTS retrieves a valid response.

HeuristicRollback This may be raised in the commit() operation to
indicate that all updates to the recoverable object
have been rolled-back.

HeuristicCommit This may be raised in the rollback() operation
to indicate that all updates to the recoverable
object have been committed.

HeuristicMixed This indicates that some updates have been
committed while others have been rolled-back.

HeuristicHazard This indicates that a heuristic decision has been
made but it is not known which updates have been
committed or rolled-back.
99

O r b i x O T S P r o g r am m e r ’ s a n d A dm in i s t r a t o r ’ s G u i d e
1. rollback()

This occurs when the transaction is rolled back before the resource object
participates in the transaction’s commit protocol. This can happen, for example,
if the transaction is explicitly rolled-back, the transaction times-out, or another
resource object voted to rollback the transaction.

2. prepare() → VoteReadOnly | VoteCommit

In this case the resource object returns either VoteReadOnly or VoteCommit in
response to OTS invoking prepare(). These return values mean that the
resource is no longer involved in the transaction.

3. prepare() →VoteCommit, commit() +
The resource object returns VoteCommit from the prepare() operation
indicating that the resource has taken the necessary steps to eventually commit
its part of the transaction. The OTS coordinator has collected the votes from all
other resources and made the decision to commit the transaction.

4. prepare() → VoteCommit, commit() + → raise heuristics,
forget() +

This sequence is the same as sequence 3 except that the resource, before
receiving the commit() invocation, decides to rollback the transaction. The OTS
coordinator decides to commit the transaction, and when the OTS eventually
invokes the commit() operation, the resource responds by raising one of the
heuristic exceptions HeuristicRollback, HeuristicMixed, or
HeuristicHazard. Finally the OTS invokes the forget() operation indicating
that the resource object is no longer involved in the transaction.

5. prepare() → VoteCommit, rollback() +

The resource object returns VoteCommit from the prepare() operation, but for
some reason the OTS coordinator has decided to rollback the transaction. This
can occur, for example, if another resource object returned VoteRollback, or
because of some other failure.
 100

Wr i t i n g a R e c o v e r a b l e R e s ou r c e
6. prepare() → VoteCommit, rollback() + → raise heuristics,
forget() +
This sequence is the same as sequence 5 except that the resource, before
receiving the rollback() invocation, decides to commit the transaction. The
OTS coordinator decides to rollback the transaction, and when the OTS
eventually invokes the rollback() operation, the resource object responds by
raising one of the heuristic exceptions HeuristicCommit, HeuristicMixed, or
HeuristicHazard. Finally the OTS invokes the forget()operation indicating
that the resource object is no longer involved in the transaction.

7. commit_one_phase() +

The resource object is the only resource registered with the transaction and the
OTS coordinator has decided to use the one-phase-commit (1PC) protocol.

8. commit_one_phase() + → raise heuristics, forget() +

This sequence is the same as sequence 7 except the resource object raises the
heuristic exception HeuristicHazard. The OTS then invokes the forget()
operation indicating that the resource object is no longer involved in the
transaction.

9. commit() → raises NotPrepared

This sequence indicates an OTS commit protocol error. A foreign OTS
coordinator has invoked the commit() operation before the prepare()
operation. The resource object responds by raising the NotPrepared exception.

10. rollback() + heuristics

This is a resource protocol error. The rollback() operation is invoked and the
resource raises a heuristic exception. Heuristic exceptions can be raised by the
rollback() operation only if the resource object was previously prepared.
101

O r b i x O T S P r o g r am m e r ’ s a n d A dm in i s t r a t o r ’ s G u i d e
11. prepare() → raise heuristics

In this case the prepare() operation raises one of the heuristic exceptions
HeuristicMixed or HeuristicHazard. Normally a resource object never needs
to raise heuristic exceptions from the prepare() operation. This situation is
provided in the OTS specifications for an implementation technique called
interposition.

Interposition allows a distributed transaction to be represented as a tree of
transactions with one superior transaction (the root of the tree) and several
subordinate transactions. Each subordinate transaction registers a resource
object with its parent. Interposition allows the 2PC protocol to be spread over a
number of servers rather than being the sole responsibility of a single server, and
so prevents a single OTS server from becoming a bottleneck in the system.

An interposed resource object must be able to raise heuristic exceptions in its
prepare() operation, because one of its subordinate resource objects can raise
a heuristic exception during the rollback() operation. OrbixOTS uses the
interposition technique for handling foreign OTS transactions; for native
transactions a similar but more efficient technique is used. Interposition also
explains why the commit() and rollback() operations can raise the
HeuristicMixed and HeuristicHazard exceptions.
 102

 7
Concurrency Control

This chapter describes the Object Concurrency Control Service
(OCCS) that is provided with OrbixOTS to control access to shared
resources by concurrent transactions. Examples of how to use the
OCCS C++ mapping are included.

OrbixOTS includes an implementation of the OMG Object Concurrency
Control Service (OCCS). This can be used to control concurrent transactions as
they access a shared set of resources. Though the OCCS is a separate service, it
is tightly integrated with the transaction service. The following sections describe
the OCCS and demonstrate how it is used.

Note that XA resource managers provide their own concurrency control and
the OCCS is typically not required. The OCCS is useful when using the
Resource interface to implement recoverable resources.
103

O r b i x O T S P r o g r am m e r ’ s a n d A dm in i s t r a t o r ’ s G u i d e
Locks and Lock Sets
The OCCS uses locks to control concurrent transactions. Before a transaction
can access a shared resource a lock must be acquired on behalf of the
transaction. Several lock modes are supported to increase the level of
concurrency. If a transaction tries to acquire a lock in a mode that conflicts with
a lock held by another transaction, the request is either denied or blocked until
the conflict is resolved.

Figure 7.1: Associating Lock Sets and Resources

A lock set is a collection of locks that is associated with a resource, as shown in
Figure 7.1. This association is made by the application and reflects the granularity
of resources. For example, a resource could be a single object or a collection of
objects. The former permits more concurrency but requires more locks, while
the latter has fewer locks but greatly reduces the degree of concurrency.

Implicit and Explicit Lock Sets

Similar to the way in which transaction contexts can be propagated from a client
to a server implicitly or explicitly, the OCCS provides implicit and explicit lock
sets. With implicit lock sets, all operations are performed on behalf of the

Lock
Lock

Lock
Lock

Lock

LockSet

Shared
Resource
 104

C o n cu r r e n c y C o n t r o l
current transaction. With explicit lock sets, the identifier of the transaction, in
the form of a reference to a coordinator object, is passed as a parameter to the
operations.

The OCCS also allows implicit lock sets to be used outside of a transaction.
Here, the requests are made on behalf of the current thread of control.

Lock Modes

The OCCS supports five different lock modes: read, write, upgrade, intention-
read, and intention-write. Table 7.2 shows the conflict matrix for each mode
(where l indicates a conflict). A conflict occurs when a transaction requests a
lock and at least one unrelated transaction holds a lock in a conflicting mode.
Requests to acquire a lock that result in a conflict will either fail or cause the
request to block.

Table 7.2: Lock Mode Conflict Matrix

Standard multiple-readers/single-writer transactions are supported with read
and write locks. The upgrade lock is used to overcome a common deadlock
scenario. Intention read and write locks are used to support locking hierarchies
of resources. These lock modes are discussed in more detail in the sections that
follow.

Requested Mode

Granted Mode IR R U IW W

Intention Read (IR) l

Read (R) l l

Upgrade (U) l l l

Intention Write (IW) l l l

Write (W) l l l l l
105

O r b i x O T S P r o g r am m e r ’ s a n d A dm in i s t r a t o r ’ s G u i d e
Read/Write Locking

The OCCS supports conventional read/write locking which allows multiple
readers but only a single writer. Transactions that want to read a resource must
acquire a read lock, which will succeed only if there are no other transactions
holding a write lock on the resource. Transactions that want to update a
resource must acquire a write lock, which will succeed only if there are no other
transactions holding either a read or a write lock on the resource.

Standard read/write locking can easily lead to deadlock when two or more
transactions attempt to first read a resource and then later update the same
resource. This is illustrated below where two transactions T1 and T2 acquire
read and write locks on a resource x.

Due to the order in which each transaction acquires the locks and the order in
which the transactions are interleaved, a deadlock situation arises. Each
transaction is attempting to acquire a write lock which is conflicting with the
read lock held by the other transaction.

Table 7.3: Read/Write/Upgrade Conflict Matrix

T1 T2

x.lock(R)

x.lock(R)

x.lock(W)

BLOCKS!

x.lock(W)

BLOCKS!

Requested Mode

Granted Mode R U W

Read (R) l

Upgrade (U) l l

Write (W) l l l
 106

C o n cu r r e n c y C o n t r o l
To overcome this problem the OCCS supports upgrade locks. An upgrade lock
is similar to a read lock except that it conflicts with itself. Table 7.3 shows the
conflict matrix for read, write and upgrade locks. The resulting scenario is
illustrated as follows:

Here, each transaction acquires an upgrade lock in anticipation that it will
eventually want to acquire a write lock. Since an upgrade lock conflicts with
itself, the transaction T2 is blocked trying to acquire the upgrade lock and T1
proceeds to acquire a write lock. When T1 releases its locks, T2 is granted the
upgrade lock and can then acquire the write lock. Note that an upgrade lock
does not prevent other transactions from acquiring read locks and reading the
resource.

Hierarchical Locking
Many resources are hierarchical in nature. Consider the directory/file hierarchy
in file systems and the database/table/row hierarchy in relational databases. The
hierarchical nature of these resources may be exploited to reduce the number
of locks that must be acquired for certain operations. To simplify the discussion
consider the two-level hierarchy shown in Figure 7.4 on page 108, where there
is a parent node P with 100 child nodes C1…C100.

Consider the following four transactions that want to perform certain
operations:

T1: Update C1

T2: Update C2

T3: Read C3

T4: Read all children (C1…C100)

T1 T2

x.lock(U)

x.lock(U)
BLOCKS!

x.lock(W)
release locks UNBLOCKS

x.lock(W)
107

O r b i x O T S P r o g r am m e r ’ s a n d A dm in i s t r a t o r ’ s G u i d e
Using conventional locking, the first three transactions would acquire a read or
write lock on the child node being accessed. Transaction T4 would have to
acquire a read lock on the parent node and a read lock on each of the child
nodes. In this example, T4 would acquire 101 locks but in a real database there
might be thousands of records that need to be locked.

Figure 7.4: Hierarchical resources

A better solution is to have multiple granularity locks so that a read lock could
be acquired on all child nodes. Here, T4 could just acquire a read lock on the
parent node P. However, this still allows T1 and T2 write access to the child
nodes C1 and C2, so these transactions would have to acquire a write lock on
P. This naïve solution severely restricts concurrency, since locks are effectively
held at the highest level. In a database this would mean acquiring read and write
locks on the database itself!

The correct solution is to use intention locks, which provide variable granularity
locks suitable for hierarchical resources. There are two types of intention locks:
intention-read and intention-write locks.

P

…

 108

C o n cu r r e n c y C o n t r o l
Table 7.5 shows the conflict matrix for read, write and intention locks without
upgrade locks.

Table 7.5: Intention Lock Conflict Matrix

When using intention locks to access a hierarchy, the order in which locks are
acquired is always from the top down, as shown in Figure 7.6. Transaction T1
first acquires an intention-write lock in the parent node P and then acquires a
write lock on the child node C1. Similarly, T2 acquires an intention-write lock on
P and a write lock on C2. Both transactions are granted access since they are
working on different child nodes and intention-write locks do not conflict.
Transaction T3 acquires an intention-read lock on P and a read lock on C3.
Again there is no conflict, since all three transaction are accessing different child
nodes and intention-read locks do not conflict with intention-write locks.
Finally, T4 attempts to acquire a read lock on P, which is equivalent to acquiring
read locks on all child nodes. This causes a conflict because a read lock conflicts
with intention-write locks. When transactions T1 and T2 complete and drop
their locks, T4 will be granted the read lock.

Requested Mode

Granted Mode IR R IW W

Intention Read (IR) l

Read (R) l l

Intention Write (IW) l l

Write (W) l l l l
109

O r b i x O T S P r o g r am m e r ’ s a n d A dm in i s t r a t o r ’ s G u i d e
Figure 7.6: Hierarchical Locking using Intention Locks

Two-Phase Locking

When several transaction are run concurrently, the effect must be the same as
running the transactions in some serial order. This is known as the serializability
property. When using the OCCS (or any other concurrency control mechanism
that uses locks) there is a simple technique that must be followed to ensure
serializability, known as two-phase-locking (2PL).

T1 T2 T3 T4

P.lock(IW)

C1.lock(W)

P.lock(IW)

C2.lock(W)

P.lock(IR)

C3.lock(R)

P.lock(R)

BLOCKS!
 110

C o n cu r r e n c y C o n t r o l
Figure 7.7: Standard Locking

Figure 7.7 shows how 2PL works. There are two phases: the growing phase and
the shrinking phase. All locks are acquired during the growing phase and no locks
may be released. As soon as one lock is released the shrinking phase starts. In
this second phase, locks can only be released and no new locks can be acquired.

A simpler variation on standard-2PL is strict-2PL which is shown in Figure 7.8.
Here all locks are released when the transaction commits (or rolls-back) and no
locks are released during the transaction. This is supported in the OCCS with a
lock coordinator object that can release all locks held by a transaction. Strict-
2PL decreases the level of concurrency between transactions, because locks are
held for longer times.

Time

L

oc
ks

 H
el

d

growing
phase

shrinking
phase

(a) Standard-2PL

comit/
rollback

point
111

O r b i x O T S P r o g r am m e r ’ s a n d A dm in i s t r a t o r ’ s G u i d e
Figure 7.8: Strict Two Phase Locking

Note that using standard-2PL can weaken the isolation property. Consider a
transaction that acquires a write lock on a resource, modifies the resource and
then releases the write lock. Another transaction can then read the modified
resource and view the intermediate results of an incomplete transaction. For
this reason, strict-2PL should be used in preference to standard-2PL unless your
application can tolerate the weaker isolation levels.

Time

L

oc
ks

 H
el

d

growing
phase

commit/
rollback

point

(b) Strict-2PL
 112

C o n cu r r e n c y C o n t r o l
Multiple Possession Semantics
The OCCS locking model provides multiple possession semantics. This means
that a transaction may hold multiple locks in a lock set at any one time. In
addition, a transaction may hold several locks in the same mode. Effectively a
count is maintained per lock mode for each transaction holding locks in a lock
set.

Table 7.9: Multiple Possession Semantics

To illustrate multiple possession semantics Table 7.9 shows the internals of a
lock set as two transactions acquire and release locks over a short period.

Note: * x2 means the operation is repeat.ed

Note the following points:

Lock Set
Transaction T1 Transaction T2

Operation IR R U IW W IR R U IW W
- - - - - - - - - -

T1: lock(IR) 1 - - - - - - - - -
T1: lock(W) 1 - - - 1 - - - - -
T1: release(W) 1 - - - - - - - - -
T2: lock(R) x2 1 - - - - - 2 - - -
T1: lock(IR) 2 - - - - - 2 - - -
T2: lock(U) 2 - - - - - 2 1 - -
T1: lock(R) x3 2 3 - - - - 2 1 - -
T1: unlock(IR) 1 3 - - - - 2 1 - -
T1: unlock(R) x2 1 1 - - - - 2 1 - -
T2: lock(W) - denied 1 1 - - - - 2 1 - -
T1: unlock(R) 1 - - - - - 2 1 - -
T2: lock(IW) 1 - - - - - 2 1 1 -
T2: drop locks 1 - - - - - - - - -
113

O r b i x O T S P r o g r am m e r ’ s a n d A dm in i s t r a t o r ’ s G u i d e
1. Transaction T1 starts by acquiring an intention read lock and a write lock.
This is permitted because conflicts only occur between unrelated
transactions.

2. When transaction T1 acquires the write lock, its intention read lock is
not released.

3. Transaction T2 acquires two read locks and transaction T1 acquires
another intention read lock. This increases the count of locks held for
these transactions.

4. When T1 unlocks a single intention read lock, the lock set still contains
one intention read lock for T1 because its count is decreased to 1. When
T1 unlocks its final read lock, the lock is released and its count is
decreased to 0.

5. Transactions T2’s attempt to acquire a write lock is denied since this
conflicts with the read and intention read lock held by T1.

6. When T2 drops its locks, all locks held by T1 are released.

Using the OCCS
The OCCS, like the transaction service, is implemented as a library and not as an
external server program. The IDL for the OCCS is contained in the
CosConcurrencyControl module and a C++ implementation for the IDL
interfaces is available in all OrbixOTS servers. Within IDL files, the
CosConcurrencyControl module may be accessed by including the file
OrbixOTS.idl. Within server source files the C++ mapping is accessible by
including the file OrbixOTS.hh.
 114

C o n cu r r e n c y C o n t r o l
Lock Modes and Exceptions

The enumeration type lock_mode defines the five lock modes, as shown in
Figure 7.10. There is one exception named LockNotHeld, which is used when a
request to release a lock is made by a transaction that does not hold the lock.

Figure 7.10: Lock Modes and Exceptions

Implicit Lock Sets

The interface LockSet in Figure 7.11 is used for implicit lock sets. Operations
are provided to acquire and release locks on a lock set object on behalf of the
current transaction. There is also an operation to get a reference to the
transaction’s lock coordinator so that all locks held by the transaction may be
dropped when the transaction completes. Implicit lock sets are created using a
lock set factory; see “Creating Lock Set Objects” on page 119.

// IDL (module CosConcurrencyControl)
enum lock_mode {
 read,
 write,
 upgrade,
 intention_read,
 intention_write
};

exception LockNotHeld{};
115

O r b i x O T S P r o g r am m e r ’ s a n d A dm in i s t r a t o r ’ s G u i d e
Figure 7.11: IDL for Implicit Lock Sets

The operation lock() acquires a single lock in a specific mode. If the lock mode
conflicts with another lock held by another unrelated transaction, the operation
blocks until the conflict is resolved or until the requesting transaction rolls back.

The following code illustrates acquiring a read lock for the current transaction:

CosConcurrencyControl::LockSet_ptr lockset = ...
lockset->lock(CosConcurrencyControl::read);

A lock() operation that blocks causes the request to be added to a queue.
When the conflict is resolved, requests on the queue are serviced in a first-in
first-out (FIFO) order.

If blocking when there is a conflict is unacceptable, the operation try_lock()
can be used. This attempts to acquire a single lock in a specific mode, but if there
is a conflict, a value of FALSE is returned. A return value of TRUE means that the
lock was successfully acquired. For example, the following code attempts to
acquire an upgrade lock:

CosConcurrencyControl::LockSet_ptr lockset = ...
lockset->try_lock(CosConcurrencyControl::upgrade);

// IDL (module CosConcurrencyControl)
interface LockSet {

 void lock(in lock_mode mode);

 boolean try_lock(in lock_mode mode);

 void unlock(in lock_mode mode)
 raises(LockNotHeld);

 void change_mode(in lock_mode held_mode,
in lock_mode new_mode)

 raises(LockNotHeld);

 LockCoordinator get_coordinator(in CosTransactions::Coordinator which);
};
 116

C o n cu r r e n c y C o n t r o l
The operation unlock() releases a single lock in a specific mode. Note that
because a transaction may hold several locks in the same mode, calling unlock()
does not always release the lock. If the transaction does not hold a lock in the
specified mode, the exception LockNotHeld is raised. The following code
releases a single write lock on behalf of the current transaction:

CosConcurrencyControl::LockSet_ptr lockset = ...
try {
 lockset->unlock(CosConcurrencyControl::write);
}
catch (CosConcurrencyControl::LockNotHeld) {
...
}

Releasing all locks held by the current transaction is done by invoking an
operation on the transaction’s lock coordinator. The get_coordinator()
operation is used to obtain a reference to the lock coordinator. See “Dropping
Locks” on page 120 for details.

Lastly, the operation change_mode() is provided to change the mode of a single
lock. Both the original mode and the new mode are specified, and if the
transaction does not hold a lock in the original mode the exception
LockNotHeld is raised. For example, to change an upgrade lock to a write lock
the following code may be used:

CosConcurrencyControl::LockSet_ptr lockset = ...
try {
 lockset->change_mode(CosConcurrencyControl::upgrade,
 CosConcurrencyControl::write);
}
catch (CosConcurrencyControl::LockNotHeld) {
...
}

117

O r b i x O T S P r o g r am m e r ’ s a n d A dm in i s t r a t o r ’ s G u i d e
Explicit Lock Sets

Explicit lock sets are supported by the TransactionalLockSet interface shown
in Figure 7.12. This provides the same operations as the interface LockSet,
except the operations lock(), try_lock(), unlock() and change_mode() all
take an extra parameter that is a reference to the transaction coordinator on
whose behalf the operations are performed. Explicit lock sets are created using a
lock set factory; refer to “Creating Lock Set Objects” on page 119 for details.

Figure 7.12: IDL for Explicit Lock Sets

The following code shows how an intention read lock is acquired on an explicit
lock set:

CosConcurrencyControl::TransactionalLockSet_ptr lockset = ...
CosTransactions::Coordinator_ptr coord = ...
lockset->lock(coord, CosConcurrencyControl::intention_read);

// IDL (module CosConcurrencyControl)
interface TransactionalLockSet {

 void lock(in CosTransactions::Coordinator which,
in lock_mode mode);

 boolean try_lock(in CosTransactions::Coordinator which,
 in lock_mode mode);

 void unlock(in CosTransactions::Coordinator which,
 in lock_mode mode)

 raises(LockNotHeld);

 void change_mode(in CosTransactions::Coordinator which,
 in lock_mode held_mode,
 in lock_mode new_mode)
 raises(LockNotHeld);

 LockCoordinator get_coordinator(in CosTransactions::Coordinator which);
};
 118

C o n cu r r e n c y C o n t r o l
Creating Lock Set Objects

Implicit and explicit lock sets are created using a lock set factory provided by the
LockSetFactory interface, shown in Figure 7.13. Two operations are
supported: create() returns a reference to a new implicit lock set object, and
create_transactional() returns a reference to a new explicit lock set object.

Figure 7.13: IDL for Lock Set Factory

Each OrbixOTS server has a lock set factory object which can be obtained using
the get_lockset_factory() operation provided by the OrbixOTS::Server
class. Creating a lock set object involves first obtaining the lock set factory
reference and invoking either create() or create_transactional(). This is
illustrated with the following code:

OrbixOTS::Server_var ots = ...
CosConcurrencyControl::LockSetFactory_var Factory =

 ots->get_lockset_factory();

// Create an implicit lock set object.
CosConcurrencyControl::LockSet_ptr lockset =

 factory->create();

// Create an explicit lock set object.
CosConcurrencyControl::LockSet_ptr lockset2 =

 factory->create_transactional();

// IDL (module CosConcurrencyControl)
interface LockSetFactory {

 LockSet create();

 TransactionalLockSet create_transactional();
 …
};
119

O r b i x O T S P r o g r am m e r ’ s a n d A dm in i s t r a t o r ’ s G u i d e
Dropping Locks

The LockCoordinator interface shown in Figure 7.14 provides a means of
dropping all locks held by a transaction. This is useful when using strict-2PL,
where it is necessary to drop all locks when a transaction completes. Refer to
“Two-Phase Locking” on page 110 for further information on this topic. The
lock coordinator object is obtained by invoking the operation
get_coordinator() on a lock set object.

Figure 7.14: IDL for Lock Coordinator

The following code illustrates dropping all locks held by a transaction in an
implicit lock set. Note that when calling the get_coordinator() operation, a
reference to the transaction's coordinator must be passed as a parameter.

CosTransactions::Coordinator_ptr coord = ...
CosConcurrencyControl::LockSet_ptr lockset = ...
CosConcurrencyControl::LockCoordinator_var lockCoord;

// Get the lock coordinator from the lock set object.
lockCoord = lockset->get_coordinator(coord);

// Drop all locks.
lockCoord->drop_locks();

Note that with nested transactions, locks should only be released when the sub-
transaction rolls back. When a sub-transaction commits, its locks are inherited
by the parent transaction.

// IDL (module CosConcurrencyControl)
interface LockCoordinator {
 void drop_locks();
};
 120

 8
Advanced XA Programming

OrbixOTS allows resources such as databases and messaging
systems to be easily integrated if they provide an XA interface. This
text discusses the XA interface and shows how an XA resource
manager is integrated with OrbixOTS. Other issues are also discussed
including concurrency, using explicit propagation, caching data, and
support for nested transactions.

Overview of XA
Figure 8.1 on page 122 shows a three tier application in which the OrbixOTS
server in the middle makes use of two XA-compliant resource managers. For
example, resource manager A could be a relational database and resource
manager B could be a message queue system. The clients can create
transactions, invoke operations on the server which may access both of the
resource managers and commit the transaction. Because both resource mangers
support the XA protocol, the integrity of their data is insured.

To OrbixOTS, the XA protocol consists of ten functions (provided by the
resource manger in a library) which are called at certain times. The names of the
ten functions and their purpose is given. Refer to the XA specification for
complete information.
121

O r b i x O T S P r o g r am m e r ’ s a n d A dm in i s t r a t o r ’ s G u i d e
Figure 8.1: XA Resource Managers and OrbixOTS

XA Operation Purpose

xa_open() Opens the connection to the resource manager.
This is called during initialization.

xa_close() Closes the connection to the resource manager.

xa_start() Informs the resource manager that a thread or
process has started working on behalf of a
transaction.

xa_end() Informs the resource manager that a thread or
process has finished working on behalf of a
transaction.

xa_rollback() Rolls-back modifications to the resource made by
a transaction.

xa_prepare() Prepares the resource manager for eventual
commitment of a transaction. The resource
manager returns its vote.

xa_commit() Commits modifications to the resource made by a
transaction.

Table 8.2: The XA Protocol Functions

 OrbixOTS
 Server

XA Compliant
Resource
Manager

(B)

XA Compliant
Resource
Manager

(A)

OrbixOTS
C++/Java

Client

OrbixOTS
C++/Java

Client

•
•
•

XA protocol
CORBA
requests

XA
library (A)

XA
library (B)
 122

Ad v a n c e d XA P r o g r amm in g
These XA functions are called automatically by OrbixOTS when the implicit/
indirect programming model is used.

Integrating an XA Resource Manager
Integrating an XA resource manager with an OrbixOTS server is done via the
OrbixOTS::Server::register_xa_rm() operation:

CORBA::Long register_xa_rm(const xa_switch_t* xasw,
 const char* openString,
 const char* closeString,
 const CORBA::Boolean isThreadAware

This operation must be invoked before the OrbixOTS::Server::init()
operation is invoked. It returns an integer that is the local resource manager
identifier.

The parameters to the operation are shown in Table 8.3.

xa_recover() Retrieves the identifiers of transactions for which
the resource manager needs to know the final
outcome. This is called during initialization.

xa_forget() Informs the resource manager that a heuristic
decision may be forgotten.

xa_complete() Completes an asynchronous call.

Parameter Description

xasw A pointer to a variable of type xa_switch_t which
contains pointers to the resource manager’s XA
functions. Refer to your resource manager
documentation for the name of this variable.

Table 8.3: The register_xa_rm()Parameters

XA Operation Purpose

Table 8.2: The XA Protocol Functions
123

O r b i x O T S P r o g r am m e r ’ s a n d A dm in i s t r a t o r ’ s G u i d e
The xa_switch_t structure looks like this:

struct xid_t {
 long formatID;
 long gtrid_length;
 long bqual_length;
 char data[128];
};

typedef struct xid_t XID;

openString A string used to initialize the connection to the
resource manager. This is passed as a parameter to
the xa_open() function. Refer to your resource
manager documentation for the correct value of
this string.

closeString A string used to close the connection to the
resource manager. This is passed as a parameter to
the xa_close() function. Refer to your resource
manager documentation for the correct value of
this string.

isThreadAware A boolean that indicates whether the XA library
supplied by the resource manager is thread-safe.
See “Single Association versus Multiple
Associations” on page 128 for a discussion of this
parameter.

Parameter Description

Table 8.3: The register_xa_rm()Parameters
 124

Ad v a n c e d XA P r o g r amm in g
struct xa_switch_t {
char name[32];
long flags;
long version;
int (*xa_open_entry)(char*, int, long);
int (*xa_close_entry)(char*, int, long);
int (*xa_start_entry)(XID*, int, long);
int (*xa_end_entry)(XID*, int, long);
int (*xa_rollback_entry)(XID*, int, long);
int (*xa_prepare_entry)(XID*, int, long);
int (*xa_commit_entry)(XID*, int, long);
int (*xa_recover_entry)(XID*, long, int, long);
int (*xa_forget_entry)(XID*, int, long);
int (*xa_complete_entry)(int*,int*,int,long);

};

Use of the register_xa_rm() operation is illustrated in the following code,
which integrates an Oracle database with OrbixOTS:

const char* openString = "Oracle_XA+Acc=P/scott/tiger+SesTm=60";
const char* closeString = "";
OrbixOTS::Server_var ots = ...
CORBA::Long rm_id;

rm_id = ots->register_xa_rm(&xaosw, openString, closeString, 0);

The parameters are described as follows:

• The name of the XA switch variable provided by the Oracle XA library is
xaosw.

• The open string consists of the connection name, the account user
(scott), and password (tiger) and a session timeout of 60 seconds.

• The close string is empty.

• The XA library is not thread-safe.

Note: For automatic management of an XA resource manager, implicit
propagation must be used. Explicit propagation can be used, but this
requires extra programming. See “Explicit Propagation” on page 131.
125

O r b i x O T S P r o g r am m e r ’ s a n d A dm in i s t r a t o r ’ s G u i d e
Concurrency Issues
There are a number of issues involving concurrency that need special attention
when integrating XA resource managers. These are the use of resource manager
locks, the server’s concurrency mode, and thread-aware XA libraries.

Resource Manager Locks

Each resource manager is responsible for synchronizing access to its data.
Typically this means that locks are acquired when data is accessed, and these
locks are only released when the transaction holding the locks completes (either
commits or rolls-back). This can lead to deadlock if locks are acquired out of
sequence (see Table 8.4). Applications should follow the resource manager’s
guidelines to avoid these situations.

Unless a cache is being used (see “Synchronizing Cache Data” on page 132) the
application itself does not normally have to provide concurrency control for
accessing resource manager data.

Transaction 1 Transaction 2

lock resource A

lock resource B

lock resource B
BLOCKS!

lock resource A
BLOCKS!

Table 8.4: Deadlock with Resource Manager Locks
 126

Ad v a n c e d XA P r o g r amm in g
Concurrency Modes

OrbixOTS servers support three different concurrency modes. These are:

The concurrency mode is specified as a parameter to the
OrbixOTS::Server::impl_is_ready() operation. For example, a fully
concurrent OrbixOTS server uses code such as the following:

OrbixOTS::Server_var ots = ...
...
ots->impl_is_ready(OrbixOTS::Server::concurrent);

serializeRequestsAndTransactions

This is the most conservative mode and hence the default.
Once a transaction enters the server, that transaction has
exclusive access to the server until the transaction
completes (either commits or rolls back). In addition,
concurrent requests from the same transaction are
serialized.

Using this mode is simple because neither requests nor
transactions are interleaved at the server. Hence there is
no need for any concurrency control within the server.

serializeRequests

This mode falls half way between concurrent and
serializeRequestsAndTransactions. Requests are
serialized but transactions may be interleaved.

concurrent

This is the most liberal of the modes. Both requests and
transactions can be interleaved in the server. This mode is
implemented using a pool of threads that are used to
dispatch requests.

Using this mode requires careful programming because
code that accesses the resource manager (for example,
embedded SQL or a propriety application programming
interface) must be thread-safe.
127

O r b i x O T S P r o g r am m e r ’ s a n d A dm in i s t r a t o r ’ s G u i d e
Single Association versus Multiple Associations

A thread becomes associated with a resource manager when xa_start() is
called and the association continues until xa_end() is called. In addition, calls to
functions such as xa_prepare(), xa_commit(), and xa_rollback() cause the
current thread to be associated with the resource manager for the duration of
the function call. An XA library that permits multiple threads to be associated at
any one time with the resource manager is said to support multiple associations;
otherwise only a single association is supported.

When registering an XA resource manager with OrbixOTS, the isThreadAware
parameter to the register_xa_rm() operation indicates whether the XA
library supports multiple associations. A value of 1 (true) means the XA library is
thread-aware and thus supports multiple associations. A value of 0 (false) means
the XA library is not thread-aware and only supports a single association.

If the isThreadAware parameter is 0 (false), OrbixOTS uses a lock to serialize
access to the XA library. This lock is acquired when xa_start() is called, and
released with xa_end() is called. Thus the XA lock is held for the duration of a
request, which effectively serializes all requests.

Using the concurrency modes concurrent or serializeRequests with a single
association XA library can easily lead to deadlock.
 128

Ad v a n c e d XA P r o g r amm in g
Consider two transactions trying to update a resource manager (see Table 8.5).

The first transaction, transaction 1, acquires a resource manager lock and
updates some data. The second transaction, transaction 2, tries to acquire the
same resource manager lock but fails because this lock is already held by
transaction 1. This causes transaction 2 to block while holding the XA lock.
Then transaction 1 tries to update the data again, but is blocked while trying to
acquire the XA lock. Further, other transactions will also be blocked even if they
are not accessing the resource manager. Eventually the resource manager may
timeout its lock and cause transaction 2 to be rolled back.

This situation does not occur with the serializeRequestsAndTransactions
concurrency mode because transaction 2 would not be allowed to acquire the
XA lock until transaction 1 completed.

Transaction 1 Transaction 2

acquire XA lock

acquire RM lock
update RM

release XA lock

acquire XA lock

acquire RM lock
BLOCKS!

acquire XA lock
BLOCKS!

Table 8.5: Deadlock with Single Association XA Library
129

O r b i x O T S P r o g r am m e r ’ s a n d A dm in i s t r a t o r ’ s G u i d e
The following grid shows the recommended concurrency modes to use with
single and multiple associations:

Some of the differences between single association and multiple associations are
illustrated in Table 8.7. This shows the XA functions being called during
initialization, servicing of two concurrent requests and the 2PC protocol. For
the single association library, the xa_open() function is called once and the two
requests are serialized. The multiple associations library calls xa_open() each
time a new thread accesses the resource manager and the two requests are
interleaved.

Associations serializeRequests &
serializeRequestsAndTransactions

concurrent

 Single recommended not recommended

 Multiple not recommended recommended

Table 8.6: Concurrency Modes and Associations

Activity Single
Association

Multiple Associations

Thread 1 Thread 2 Thread 3 Thread 4

1. Server
initialization

xa_open()
xa_recover()

xa_open()
xa_recover()

2. Two
concurrent
invocations

xa_start()
xa_end()
xa_start()
xa_end()

xa_open()
xa_start()

xa_end()

xa_open()
xa_start()
xa_end()

3. 2PC
commit
protocol

xa_prepare()
xa_commit()

xa_open()
xa_prepare()
xa_commit()

Table 8.7: Single Association Versus Multiple Associations
 130

Ad v a n c e d XA P r o g r amm in g
Explicit Propagation
When using implicit propagation, the thread performing the invocation on the
server side is associated with the current transaction. With explicit propagation,
there is no such association which means that OrbixOTS cannot automatically
make the required XA function calls. Thus, using explicit propagation requires
extra work on the server side to create the association between the current
thread and the transaction. The following code sample shows the steps required:

void TransAccount_i::makeLodgement(CORBA::Float amount,
CosTransactions::Control_ptr control)
{
 // Get coordinator object from control object.
 CosTransactions::Coordinator_var coord;

1 coord = control->get_coordinator();

 // Get the transaction propagation context.
 CosTransactions::PropagationContext_var context;

2 context = coord->get_txcontext();

 // Get a reference to the local transaction factory.
OrbixOTS::Server_var ots = ...

3 CosTransactions::TransactionFactory_var factory =
ots->get_transaction_factory();

 // Recreate the transaction locally.
4 control = factory->recreate(context);

 // Associate the current thread with the transaction
 // Assume current is a reference to the Current pseudo object

5 current->resume(control);

6 // Perform deposit(lodgement) operation as normal.
 ...

 // Disassociate the current thread from the transaction.
7 CosTransactions::Control_var control2;

 control2=current->suspend();

}

131

O r b i x O T S P r o g r am m e r ’ s a n d A dm in i s t r a t o r ’ s G u i d e
The steps are explained as follows:

1. Use the control object (passed as a parameter) to get the coordinator
object.

2. The coordinator object is then used to get the transaction’s propagation
context using the get_txcontext() operation.

3. Get a reference to the local transaction factory using the
get_transaction_factory() operation provided by the
OrbixOTS::Server class.

4. Recreate the transaction locally using the recreate() operation
provided by the transaction factory.

5. Associate the new local transaction with the current thread using the
resume() operation provided by the Current pseudo object.

6. Perform the operation as normal. All accesses to the XA resource
manager will take place in the context of the transaction.

7. Disassociate the current thread from the transaction using the
suspend() operation provided by the Current pseudo object.

This approach is not a recommended for typical situations because extra remote
invocations are required, as well as the extra coding.

Synchronizing Cache Data
In the discussion of using XA resource managers, we have assumed that the
server application always contacts the resource manager each time it needs to
access any data. However, it is likely that applications will cache data in the
server to increase performance. This raises the problem of what to do when the
transaction is committed. When an XA resource manager is involved, the 2PC
protocol only involves the resource manager; any data in the cache is ignored.

To solve this problem, OrbixOTS supports the interface
CosTransactions::Synchronization. An object implementing the
Synchronization interface is registered with a transaction coordinator and is
invoked both before and after the 2PC protocol. This is the interface:

// In CosTransactions module.
interface Synchronization : TransactionalObject {
 void before_completion();
 void after_completion(in Status s);
 132

Ad v a n c e d XA P r o g r amm in g
};

The before_completion() Operation

This operation is invoked before the 2PC protocol is started, at the coordinator
with which the synchronization object is registered. This means that it is invoked
before any XA resource managers have been prepared.

An implementation may flush all cache data to the resource manager so that
when the 2PC protocol commences, the data in the resource manager is
correct.

Raising a system exception will cause the transaction to be rolled back. The
transaction may also be rolled back by invoking one of the operations
rollback() or rollback_only() on the Current pseudo object.

The after_completion() Operation

This operation is invoked after all commit and rollback responses have been
received by the coordinator with which the synchronization object is registered.
It is passed the current status of the transaction so the operation can know
whether the transaction has committed or rolled-back.

An implementation can use this operation to release locks held on the cache.
Raising a system exception in this operation has no effect on the outcome of the
transaction.

Registering a Synchronization Object

A synchronization object is registered using the register_synchronization()
operation provided by the Coordinator interface. Assuming the class
Synchronization_i implements the Synchronization interface, the following
code may be used:

// Get a reference to the coordinator for the current transaction.
CosTransactions::Current_var current = ...
CosTransactions::Control_var control =

 current->get_control();
CosTransactions::Coordinator_var coord =

 control->get_coordinator();
133

O r b i x O T S P r o g r am m e r ’ s a n d A dm in i s t r a t o r ’ s G u i d e
// Create a synchronization object and register it with
// the transaction in the code example.
CosTransactions::Synchronization_var sync =

new Synchronization_i(...);
coord->register_synchronization (sync);

The register_synchronization() operation raises the Inactive exception if
the transaction has already been prepared. Note that a synchronization object
must only be registered once for a given transaction. Thus the application code
should maintain a list of currently active transactions, and only register a new
synchronization object the first time a transaction accesses the cache.

Concurrency Issues

Using a cache with an XA resource manager may require that the application
deal with concurrent transactions. This arises if the serialization modes
concurrent or serializeRequests are used. Two possible strategies are:

• Synchronize access to the cache using some locking mechanism. The
OCCS implementation provided with OrbixOTS may be used here.

• Provide a cache for each transaction. For this, the application must map
between transactions and caches (using the is_same_transaction()
and hash_transaction() operations provided by the Coordinator
interface, for example), and check when a new transaction is involved so
a new cache can be created.

Nested Transactions
The X/Open DTP model does not support the notion of nested transactions.
However, OrbixOTS supports the use of nested transactions with XA resource
managers with some restrictions. Each transaction in a family must be mapped to
XA style transactions, and there are four different models to choose from.
Setting the mapping model is done with the tmxa_SetNestingModel()
operation provided by the Encina toolkit. (This and other tmxa functions call
Encina directly.)

#include <tmxa/tmxa.h>
#include <tran/tran.h>
 134

Ad v a n c e d XA P r o g r amm in g
tmxa_status_t tmxa_SetNestingModel(tran_tid_t tid, int scope,
 int nestingModel)

The return value is TMXA_SUCCESS if the operation succeeded or an error code if
the operation failed. The first two parameters (tid and scope) must have the
values TRAN_TID_NUL and TMXA_NEW_TOP_LEVEL_TIDS respectively. The
nestingModel parameter specifies the mapping model and can be one of the
following four values:

TMXA_DIFFERENT_GTRID

Each transaction in a family is mapped to a unique global XA transaction.
This is the default model.

TMXA_SAME_XID

All transactions in a family are mapped to the same global XA transaction.

TMXA_DIFFERENT_BQUAL_INDEPENDENT

All transactions in a family are mapped to the same global XA transaction,
but each transaction has a different branch qualifier. Each branch may
commit or rollback independently.

TMXA_DIFFERENT_BQUAL_LINKED

All transactions in a family are mapped to the same global XA transaction,
but each transaction has a different branch qualifier. All branches share
the same outcome.

Each model effects the ACID properties of transactions and the choice of model
will depend on the nature of the application.

Note: Using nested transactions with XA resource managers should be
approached with caution, and only after the consequences of doing so in
your application have been studied in detail.
135

O r b i x O T S P r o g r am m e r ’ s a n d A dm in i s t r a t o r ’ s G u i d e
One-Phase-Commit Optimization
The X/Open XA specification includes a one-phase-commit (1PC) protocol as an
optimization. This means that only one registered XA resource manager is
involved in committing a transaction. By default OrbixOTS does not use this
optimized protocol, but under certain conditions it can be turned on in a server
using the tmxa_SetUsesOnlyLocalXaWork() function provided as part of the
Encina toolkit:

#include <tmxa/tmxa.h>
tmxa_status_t tmxa_SetUsesOnlyLocalXaWork(

tran_tid_t tid,
int scope,
int onlyLocalXaFlag);

This function returns TMXA_SUCCESS if it is successful; otherwise it returns one
of the following Encina errors:

TMXA_INVALID_PARAM
TMXA_NO_MORE_MEMORY,
TMXA_NOT_INITIALIZED
TMXA_TOO_MANY_TIDS

There are two conditions that must be met before this function can be used:

1. There are no CosTransaction::Resource objects registered with
transactions.

2. All XA resource managers involved in the transaction are registered with
a single OrbixOTS server.

The tmxa_SetUsesOnlyLocalXaWork() function can be used even if a server has
several registered XA resource managers. The 1PC/XA optimization only takes
effect if all but one of the resource managers returns XA_RDONLY (indicating a
read-only transaction) from the xa_prepare() function.

The following code shows how to turn on the 1PC/XA optimization, which
should be done after initializing the OTS:

tmxa_status_t status;
status = tmxa_SetUsesOnlyLocalXaWork(0,

TMXA_NEW_TOP_LEVEL_TIDS,
TMXA_ONLY_LOCAL_XA_WORK);

if (status != TMXA_SUCCESS)
{ // Error, function failed…
}

 136

Ad v a n c e d XA P r o g r amm in g
This turns on the 1PC/XA optimization for all new top-level transactions.
Passing a value of TMXA_NOT_ONLY_LOCAL_XA_WORK for the third parameter turns
off the 1PC/XA optimization. This function can also be used for a specific
transaction. For example, the following code turns off the 1PC/XA optimization
for the current transaction:

CosTransactions::Current_var current = …
CosTransactions::Control_var control;
control = current->get_control();
// Get Encina transaction identifier
tran_tid_t = control->id();
tmxa_status_t status;
status = tmxa_SetUsesOnlyLocalXaWork(

tid,
TMXA_THIS_TID,
TMXA_NOT_ONLY_LOCAL_XA_WORK);

This can be used, for example, if the application wants to register a resource
object with the transaction.

Other Issues
Two final issues to mention include resource manager APIs and database
cursors.

Resource Manager APIs

There are some restrictions on the use of a resource manager’s API when
integrating it with OrbixOTS.

All calls to create and terminate transactions must be done using OrbixOTS
APIs, and not using the resource manager’s API. For example, transactions can
be created using the begin() operation provided by the Current pseudo object
but never using an embedded SQL BEGIN statement.

Any connections to the resource manager are established during the xa_open()
function using the value of the openString parameter to the operation
register_xa_rm(). Thus, resource manager APIs that establish connections
must not be used.
137

O r b i x O T S P r o g r am m e r ’ s a n d A dm in i s t r a t o r ’ s G u i d e
If an administrator uses manual intervention to force incompleted transactions
to commit or rollback, this must be done using the OrbixOTS otsadmin tool
and never using tools provided by the resource manager. This is to ensure that
OrbixOTS has a consistent view of the state of its transactions.

Database Cursors

Due to the way OrbixOTS uses the xa_start() and xa_end() functions,
database cursors cannot be used across invocation boundaries. For example,
once xa_end() is called, any open cursors are invalidated.
 138

Part IV
Programmer’s Reference

 9
OrbixOTS Reference Overview

Figure 9.1 illustrates the IDL interfaces defined by the OTS specification, with an
indication of the entities that use them.

The transaction originator is the component of the system that needs to begin
and complete transactions, as well as invoke recoverable servers. These are
processes that contain objects whose state changes need to be managed
atomically with distributed transactions.

Figure 9.1: OTS IDL Interfaces

Transaction originator Recoverable server

Object Transaction Service

Current

Factory
Control
Terminator

Resource
SubTransactionAwareResource

Synchronization

Control
Coordinator
RecoveryCoordinator

Current
141

O r b i x O T S P r o g r am m e r ’ s a n d A dm in i s t r a t o r ’ s G u i d e
Interfaces
The text following describes each interface in turn. Each interface is defined in a
module called CosTransactions.

Current
This pseudo-interface allows a transaction client to begin and complete
transactions. It also provides operations for suspending and resuming
transactions by which a thread can associate and disassociate itself from active
transactions. Use of the Current pseudo-object can be seen as an indirect way
of accessing the “real” transactional interfaces, in the following sections.

Control
Instances of this interface represent the transaction. It is simply an encapsulation
of two other objects which provide operations for transaction manipulation: a
Coordinator and a Terminator. Two operations are supported that return
references to these contained objects.

Coordinator
This interface provides a variety of operations for obtaining information about
the transaction. It also exposes the rollback_only() operation, by which the
transaction may be marked for rollback, but not actually rolled back. The main
function of Coordinator is to allow a recoverable object to register a Resource
(or SubtransactionAwareResource) to be called back on transaction
completion.

Terminator

The Terminator object associated with a transaction provides two operations to
complete the transaction: commit() and rollback().

Resource

The Resource interface is called by the OTS on transaction completion. It
exposes operations supporting a two-phase commit protocol: prepare(),
commit(), rollback(), forget(), and commit_one_phase().
 142

O r b i x O T S R e f e r e n c e O v e r v i ew
TransactionalObject

This empty interface is used by the OTS to determine if the transaction context
should be implicitly transferred to a remote object. If the remote object inherits
from TransactionalObject then the OTS transparently “piggy-backs” the
transaction information to be extracted by the OTS library at the other end.

TransactionFactory

This interface serves as a transaction (or, more specifically, Control) creation
factory.

SubtransactionAwareResource
This is similar to a Resource, in that it is implemented by the user of the OTS,
and is called back on transaction completion—however it is specific to
completion of a nested transaction.

RecoveryCoordinator
A reference to a RecoveryCoordinator is returned to a transactional object
when a Resource is registered with the Coordinator. The server should save
this reference as it can be used to resolve transactions that are in doubt. After
the transaction is prepared, the server can call replay_completion() on this
object as a hint to the coordinator that commit() or rollback() have not been
called yet.

Synchronization
This callback object is implemented by the OTS user, and is registered with the
Coordinator in exactly the same fashion as a Resource object. The OTS
informs it of transaction completion, as for a Resource. However the operations
it implements do not involve a two-phase commit; instead the two operations
before_completion() and after_completion() are called before and after
the two-phase commit process. Synchronization objects are intended for use
with caching systems to inform them when to flush the cache to a more
permanent store, and can drive the release of locks acquired through an OCCS
interface.
143

O r b i x O T S P r o g r am m e r ’ s a n d A dm in i s t r a t o r ’ s G u i d e
Java Classes
OrbixOTS provides a set of Java classes for use with the Orbix Java Edition
object request broker. Orbix Java Edition allows you to build distributed
applications in the Java language. The OrbixOTS Java interfaces allow you to
write Java client and server applications that begin and control transactions by
using the Java-language implementation of the OTS IDL.
 144

 10
The Classes Client, Restart, and
Server

There are three interfaces in the OrbixOTS module: Client, Restart
and Server. The Client class initializes clients. The Server class
initializes server applications, manages server objects, and registers
various resources. OrbixOTS also provides a Restart class for
restarting servers.

The Client interface is used in C++ OrbixOTS clients, and provides the
following functionality:

• Initialization

• Termination

• Setting transaction policies on objects and interfaces

The Server and Server interfaces are used in C++ OrbixOTS servers and
provides the following functionality:

• Initialization

• Termination

• Specification of local or remote logging

• Integration of XA-compliant resource managers

• Recovery support
145

O r b i x O T S P r o g r am m e r ’ s a n d A dm in i s t r a t o r ’ s G u i d e
• Setting transaction policies on objects and interfaces

• Getting references to local transaction factory and lock set factory
objects

The header file provided with OrbixOTS that defines client and server
functionality is OrbixOTS.hh. The following is the pseudo IDL code for the
OrbixOTS module:

module OrbixOTS {
 interface Client {
 void init();
 void exit(in long status);
 };
 interface Restart {
 void recovery();
 };
 interface Server {
 attribute string serverName;
 attribute string logDevice;
 attribute string restartFile;
 attribute string mirrorRestartFile;
 attribute string logServer;
 long register_xa_rm(in any xasw,

 in string openString,
 in string closeString,
 in boolean isThreadAware);

 void recoverable(in Restart obj);
 void init();
 enum ConcurrencyMode {
 concurrent,
 serializeRequests,
 serializeRequestsAndTransactions
 };
 void impl_is_ready(in ConcurrencyMode mode);
 void exit(in long status);
 };
};

The OrbixOTS classes provide the following functionality:

OrbixOTS::Client This class initializes and terminates client applications.
 146

Th e C l a s s e s C l i e n t , R e s t a r t , a n d S e r v e r
OrbixOTS::Client Class
Synopsis The CORBA specification defines a standard set of Client methods and IONA

adds a number of IONA-specific methods.

CORBA class OrbixOTS::Client : public CORBA::IT_PseudoIDL {
public:

Client();
virtual ~Client();
static Client_ptr IT_create(

CORBA::Environment& IT_env = CORBA::IT_chooseDefaultEnv());
static void init(

CORBA::Environment& IT_env = CORBA::IT_chooseDefaultEnv())
throw (CORBA::SystemException);

static void exit(const CORBA::Long status = 0,
CORBA::Environment& IT_env=CORBA::IT_chooseDefaultEnv());

};

IONA enum TransactionPolicy {
 transactionRequired,
 transactionAllowed,
 };

static void setObjectTransactionPolicy(
 CORBA::Object_ptr obj,
 TransactionPolicy policy = transactionRequired);
static void setInterfaceTransactionPolicy(
 const char *interface,
 TransactionPolicy policy = transactionRequired);
static TransactionPolicy
 setDefaultTransactionPolicy(TransactionPolicy policy);
static TransactionPolicy
 getDefaultTransactionPolicy();

OrbixOTS::Restart This class performs recovery for servers that are
registered as recoverable.

OrbixOTS::Server This class initializes and terminates server applications,
registers resources, and registers servers as
recoverable.
147

O r b i x O T S P r o g r am m e r ’ s a n d A dm in i s t r a t o r ’ s G u i d e
Description The OrbixOTS::Client class represents a client application. This class
encapsulates functions for initializing and terminating a client application. Because
the member functions are static functions, it is not necessary to create an
instance of the class to use in initializing or terminating a client application.

Class Members
OrbixOTS::Client::exit()
OrbixOTS::Client::getDefaultTransactionPolicy()
OrbixOTS::Client::init()
OrbixOTS::Client::IT_Create()
OrbixOTS::Client::setDefaultTransactionPolicy()
OrbixOTS::Client::setInterfaceTransactionPolicy()
OrbixOTS::Client::setObjectTransactionPolicy()
OrbixOTS::Client::shutdown()

See Also “OrbixOTS::Server Class” on page 153

OrbixOTS::Client::shutdown()

Synopsis static void shutdown ()
throw (CORBA::SystemException);

Description Shuts down the OTS and rolls back all outstanding transactions.

See Also “OrbixOTS::Client::exit()” on page 148

OrbixOTS::Client::exit()

Synopsis static void exit(const CORBA::Long status = 0,
CORBA::Environment& IT_env=CORBA::IT_chooseDefaultEnv());

Parameters The status parameter specifies the exit status for the client application. If no
value is specified, an exit status of 0 (zero), indicating successful termination, is
used by default.

Description The exit() function terminates a client application. A value can be specified to
indicate the exit status for the termination. If any transactions are in progress
when the exit() function is called, all outstanding transactions are aborted
before the client application is terminated. The standard exception
CORBA::SystemException may be thrown.
 148

Th e C l a s s e s C l i e n t , R e s t a r t , a n d S e r v e r
See Also “OrbixOTS::Client::init()” on page 149

OrbixOTS::Client::getDefaultTransactionPolicy()

Synopsis static TransactionPolicy
getDefaultTransactionPolicy();

Description The getDefaultTransactionPolicy() function gets the current default
TransactionPolicy.

Returns The current default TransactionPolicy.

Notes IONA-specific.

See Also “OrbixOTS::Client::setDefaultTransactionPolicy()” on page 150

“OrbixOTS::Client::setInterfaceTransactionPolicy()” on page 150

“OrbixOTS::Client::setObjectTransactionPolicy()” on page 151

OrbixOTS::Client::init()

Synopsis static void init(
CORBA::Environment& IT_env = CORBA::IT_chooseDefaultEnv())
throw (CORBA::SystemException);

Description The init() function initializes the client application and the underlying services.
A fatal error is generated if any errors occur during the initialization of the
underlying components. The standard exception CORBA::SystemException may
be thrown.

See Also “OrbixOTS::Client::exit()” on page 148

OrbixOTS::Client::IT_create()

Synopsis void Client_ptr IT_create()
throw (CORBA::SystemException)
149

O r b i x O T S P r o g r am m e r ’ s a n d A dm in i s t r a t o r ’ s G u i d e
Description Creates an instance of a Client pseudo-object. IT_create() should be used in
preference to the C++ operator new but only when there is no (suitable)
compliant way to obtain a pseudo-object reference. This will ensure memory
management consistency. IT_create() returns a pointer to a new Client
pseudo object.

OrbixOTS::Client::setDefaultTransactionPolicy()

Synopsis static TransactionPolicy
 setDefaultTransactionPolicy(TransactionPolicy policy);

Parameters The policy parameter specifies the current default TransactionPolicy.

Description The setDefaultTransactionPolicy() function sets the default
TransactionPolicy. The default transaction policy is TransactionRequired, in
which case both the client and server throw a TRANSACTION_REQUIRED
exception if an invocation on a transactional object is outside the scope of a
transaction. You may also choose to change the default transaction policy to
TransactionAllowed. In this case all transactional objects can process requests
outside the scope of a transaction. All newly-created objects take on the default
behaviour unless they implement an interface that has a particular policy
selected. In the case where the default is changed, TransactionRequired
semantics need to be explicitly set for individual interfaces of objects.

Returns The previous TransactionPolicy.

Notes IONA-specific.

See Also “OrbixOTS::Client::getDefaultTransactionPolicy()” on page 149

“OrbixOTS::Client::setInterfaceTransactionPolicy()” on page 150

“OrbixOTS::Client::setObjectTransactionPolicy()” on page 151

OrbixOTS::Client::setInterfaceTransactionPolicy()

Synopsis static void setInterfaceTransactionPolicy(
 const char *interface,
 TransactionPolicy policy = transactionRequired);
 150

Th e C l a s s e s C l i e n t , R e s t a r t , a n d S e r v e r
Parameters

Description The setInterfaceTransactionPolicy() function marks an interface as
transactional and specifies the transaction policy for this transactional interface.
Objects that support this interface are treated as transactional in this process
even if the object does not (or is not known to) implement the
CosTransactions::TransactionalObject CORBA interface. The interface
parameter is the CORBA repository identifier for the interface that is of the
form “IDL:X:1.0”.

Notes IONA-specific.

See Also “OrbixOTS::Client::getDefaultTransactionPolicy()” on page 149

“OrbixOTS::Client::setDefaultTransactionPolicy()” on page 150

“OrbixOTS::Client::setObjectTransactionPolicy()” on page 151

OrbixOTS::Client::setObjectTransactionPolicy()

Synopsis static void setObjectTransactionPolicy(
 CORBA::Object_ptr obj,
 TransactionPolicy policy = transactionRequired);

Parameters

Description The setObjectTransactionPolicy() function marks an object as transactional
and specifies the transaction policy for this transactional object. This object is
treated as transactional in this process even if the object does not (or is not
known to) implement the CosTransactions::TransactionalObject CORBA
interface.

Notes IONA-specific.

See Also “OrbixOTS::Client::getDefaultTransactionPolicy()” on page 149

interface The interface to treat as transactional.

policy The TransactionPolicy for this transactional interface.

obj The object to treat as transactional.

policy The TransactionPolicy for this transactional object.
151

O r b i x O T S P r o g r am m e r ’ s a n d A dm in i s t r a t o r ’ s G u i d e
“OrbixOTS::Client::setDefaultTransactionPolicy()” on page 150

“OrbixOTS::Client::setInterfaceTransactionPolicy()” on page 150

OrbixOTS::Restart Class
Synopsis class Restart : public CORBA::IT_PseudoIDL {

 public:
 Restart();
 virtual ~Restart();
 static Restart_ptr IT_create(CORBA::Environment& IT_env
 = CORBA::IT_chooseDefaultEnv());
 virtual void recovery();
 };

Description The Restart class is used to encapsulate a callback function registered for a
server. A recovery callback is a function that is invoked when the server for
which it is registered is restarted. Use the function
OrbixOTS::Server::recoverable()to register a recovery callback with a
server.

The Restart class recovery() function must be defined in a class derived from
the Restart class. The recovery() function you define must perform the work
required by the callback. Any data required by the callback can be encapsulated
in the class declaration of the derived class.

If recoverable objects are being used, an instance of the Restart class must be
registered for the server. The recovery() function defined for the Restart
instance must reregister any Resource objects that require recovery during the
restart of a server. (Resource objects are reregistered by using the associated
RecoveryCoordinator instance and the
RecoveryCoordinator::replay_completion() function provided.)

See Also “OrbixOTS::Server Class” on page 153

“OrbixOTS::Server::recoverable()” on page 165
 152

Th e C l a s s e s C l i e n t , R e s t a r t , a n d S e r v e r
OrbixOTS::Restart::IT_create()

Synopsis static Restart_ptr IT_create(
CORBA::Environment& IT_env = CORBA::IT_chooseDefaultEnv());

Description Creates an instance of a Restart pseudo-object. IT_create() should be used in
preference to the C++ operator new but only when there is no (suitable)
compliant way to obtain a pseudo-object reference. This will ensure memory
management consistency. IT_create() returns a pointer to a new Restart
pseudo object.

OrbixOTS::Restart::recovery()

Synopsis virtual void recovery();

Description A pure virtual operation that is invoked during restart processing on objects
passed to the operation recoverable(). Classes inheriting from Restart must
define this operation.

See Also “OrbixOTS::Server::recoverable()” on page 165

OrbixOTS::Server Class
Synopsis The Server interface is more complex than the Client or Restart interfaces

since it is used to initialize recoverable OrbixOTS servers requiring a logging
facility and it also provides functions to integrate XA-compliant resource
managers. The following attributes, types, and functions are provided:

serverName An attribute that specifies the name of the
server. This only needs to be specified for
persistent (manually launched) servers. The
value is the same that one would normally be
passed to CORBA::BOA::impl_is_ready().

logDevice An attribute that specifies the path for the
transaction log used for recoverable servers.
The path may refer to either an ordinary file or
a raw disk partition.
153

O r b i x O T S P r o g r am m e r ’ s a n d A dm in i s t r a t o r ’ s G u i d e
restartFile An attribute that specifies the path for the
restart file that contains information about the
log device being used (if any).

mirrorRestartFile An attribute that specifies the path for the
mirror restart file that contains information
about the log device being used (if any).

logServer An attribute that specifies the name of another
recoverable OrbixOTS server which maintains
the transaction log for this server.

register_xa_rm() Registers a XA-compliant resource manager.
The parameters specify the XA switch
structure, the strings passed to xa_open()and
xa_close() calls and an indication of whether
the XA library is thread aware. The return
value is an identifier for the registered resource
manager.

recoverable() Registers the server as recoverable and
specifies an object to be invoked during
recovery processing.

init() Initializes the OrbixOTS server and underlying
Encina components. The initialization is done
based on the values of the five attributes
described in the preceding paragraphs. If any of
the attributes are used, they must be initialized
(non-null and not the empty string) before
calling init(). Recovery processing is initiated
during init() and any restart objects
registered with the recoverable() operation
are invoked at this time. The init() operation
is provided to allow recovery processing to be
done before impl_is_ready() is called. If
init() is not called, the initialization and
recovery processing are done when
impl_is_ready() is called.

get_transaction_factory() Used to obtain a reference to the local
transaction factory.
 154

Th e C l a s s e s C l i e n t , R e s t a r t , a n d S e r v e r
There are two types of OrbixOTS servers: recoverable and non-recoverable. A
recoverable server is any server that manages its own recoverable data using the
CosTransactions Resource interface, integrates with an XA-compliant
resource manager (RM), or acts as a transaction coordinator. A non-recoverable
server just explicitly propagates transaction contexts and object references. A
server is made recoverable by calling one or both of the operations
recoverable() or register_xa_rm(). The recoverable() operation takes a
reference to an object which is invoked when recovery processing is initiated.
The operation register_xa_rm() is used to register an XA-compliant resource
manager.

get_lockset_factory() Used to obtain a reference to the local lockset
factory.

ConcurrencyMode An enumerated type that specifies the
concurrency mode servicing requests (passed
to impl_is_ready()). There are three values:
concurrent means that all requests are
processed concurrently (using a thread pool);
serializeRequests means that only one
request is be serviced at a time;
serializeRequestsAndTransactions means
that only one request is serviced at a time and
only one transaction is serviced at a time.

impl_is_ready() Used to indicate that the server is ready to
service requests. This operation should be
called instead of the operation
CORBA::BOA::impl_is_ready(). If the
init() operation was not previously called,
then the initialization as described for the
init() operation is performed. The
parameter passed specifies the concurrency
mode as described in the section on the
ConcurrencyMode type.

shutdown() Shuts down the OTS.

exit() Terminates the OrbixOTS server. The status
value passed is returned to the execution
environment.
155

O r b i x O T S P r o g r am m e r ’ s a n d A dm in i s t r a t o r ’ s G u i d e
The five attributes are used to control the transaction log associated with a
recoverable server. Setting these attributes must be done before the init()
method is invoked. Setting an attribute after the init() method is called has no
effect.

The serverName attribute is used to specify the name of the Orbix server (the
value that would normally be passed to CORBA::BOA::impl_is_ready(). This
attribute must be set for persistent servers. If set for automatically activated
servers, it must match the name under which the server is registered.

The remaining four attributes are used to provide information about the
transaction log used for recoverable servers. When using a local log, the path to
the device (which may be an ordinary file or raw disk partition) is specified with
the logDevice attribute. Information about the log is maintained in two restart
files the paths for which are specified in the attributes restartFile and
mirrorRestartFile. The first time a log is used, the logDevice attribute must
be specified; in subsequent uses this attribute may be omitted. A server may use
the transaction log of another OrbixOTS server on the same host. This is done
by specifying the name of the server in the logServer attribute. If this is done,
none of the other three attributes may be specified.

CORBA class Server : public CORBA::IT_PseudoIDL {
public:

Server();
virtual ~Server();
static Server_ptr IT_create(

CORBA::Environment& IT_env = CORBA::IT_chooseDefaultEnv());
void serverName(const char* serverName,

CORBA::Environment& IT_env = CORBA::IT_chooseDefaultEnv())
throw (CORBA::SystemException);

char* serverName(
CORBA::Environment& IT_env = CORBA::IT_chooseDefaultEnv())
throw (CORBA::SystemException);

void logDevice(const char* logDevice,
CORBA::Environment& IT_env = CORBA::IT_chooseDefaultEnv())
throw (CORBA::SystemException);

char* logDevice(
CORBA::Environment& IT_env = CORBA::IT_chooseDefaultEnv())
throw (CORBA::SystemException);

void restartFile(const char* restartFile,
CORBA::Environment& IT_env = CORBA::IT_chooseDefaultEnv())
throw (CORBA::SystemException);
 156

Th e C l a s s e s C l i e n t , R e s t a r t , a n d S e r v e r
char* restartFile(
CORBA::Environment& IT_env = CORBA::IT_chooseDefaultEnv())
throw (CORBA::SystemException);

void mirrorRestartFile(const char* mirrorRestartFile,
CORBA::Environment& IT_env = CORBA::IT_chooseDefaultEnv())
throw (CORBA::SystemException);

char* mirrorRestartFile(
CORBA::Environment& IT_env = CORBA::IT_chooseDefaultEnv())
throw (CORBA::SystemException);

void logServer(const char* logServer,
CORBA::Environment& IT_env = CORBA::IT_chooseDefaultEnv())
throw (CORBA::SystemException);

char* logServer(
CORBA::Environment& IT_env = CORBA::IT_chooseDefaultEnv())
throw (CORBA::SystemException);

CORBA::Long register_xa_rm(const xa_switch_t* xasw,
 const char* openString,
 const char* closeString,
 const CORBA::Boolean isThreadAware)

 throw (CORBA::SystemException);
void recoverable(Restart_ptr restart,

CORBA::Environment& IT_env = CORBA::IT_chooseDefaultEnv());
void init(

CORBA::Environment& IT_env = CORBA::IT_chooseDefaultEnv())
throw (CORBA::SystemException);

CosTransactions::transactionFactory_ptr
get_transaction_factory();

CosConcurrencyControl::LockSetFactory_ptr
get_lockset_factory();

enum ConcurrencyMode {
concurrent,
serializeRequests,
serializeRequestsAndTransactions

};

void impl_is_ready(const ConcurrencyMode mode =
serializeRequestsAndTransactions);

void exit(const long status,
CORBA::Environment& IT_env = CORBA::IT_chooseDefaultEnv());

};

IONA enum TransactionPolicy {
157

O r b i x O T S P r o g r am m e r ’ s a n d A dm in i s t r a t o r ’ s G u i d e
 transactionRequired,
 transactionAllowed,
 };

static void setObjectTransactionPolicy(
 CORBA::Object_ptr obj,
 TransactionPolicy policy = transactionRequired);
static void setInterfaceTransactionPolicy(
 const char *interface,
 TransactionPolicy policy = transactionRequired);
static TransactionPolicy
 setDefaultTransactionPolicy(TransactionPolicy policy);
static TransactionPolicy
 getDefaultTransactionPolicy();

Description The OrbixOTS::Server class represents a server application. An instance of this
class can be used to initialize and terminate a server application, register
resource managers and recovery services with a server, and cause a server to
start listening for requests.

Only one instance of the OrbixOTS::Server class is permitted per process.
Creating more than one instance in a server causes a fatal error.

Constructor Server();

This constructor creates a Server object.

Destructors virtual ~Server();

This destructor destroys a Server object and frees any memory that was
allocated for it.

Class Members
OrbixOTS::Server::ConcurrencyMode enumeration
OrbixOTS::Server::exit();
OrbixOTS::Server::getDefaultTransactionPolicy();
OrbixOTS::Server::get_lockset_factory();
OrbixOTS::Server::get_transaction_factory();
OrbixOTS::Server::impl_is_ready();
OrbixOTS::Server::init();
OrbixOTS::Server::IT_create();
OrbixOTS::Server::logDevice();
OrbixOTS::Server::logServer();
OrbixOTS::Server::mirrorRestartFile();
OrbixOTS::Server::recover();
 158

Th e C l a s s e s C l i e n t , R e s t a r t , a n d S e r v e r
OrbixOTS::Server::recoverable();
OrbixOTS::Server::register_xa_rm();
OrbixOTS::Server::restartFile();
OrbixOTS::Server::serverName();
OrbixOTS::Server::setDefaultTransactionPolicy()
OrbixOTS::Server::setInterfaceTransactionPolicy()
OrbixOTS::Server::setObjectTransactionPolicy()
OrbixOTS::Client::shutdown()

See Also “OrbixOTS::Client Class” on page 147

OrbixOTS::Server::ConcurrencyMode Enumeration

Synopsis enum ConcurrencyMode {concurrent, serializeRequests,
serializeRequestsAndTransactions

};

Constants concurrent

This indicates that requests and transactions are concurrent and that
there is no restriction on server access. A pool of threads is created to
handle requests. This is the default concurrency mode.

serializeRequests

This indicates that requests are not concurrent but handled one at a time
at the server.

serializeRequestsAndTransactions

All requests and transactions are serialized so only one request and only
one transaction may be processed by a server at any one time. Once a
request for a transaction is processed by a server, no requests for other
transactions may be processed until the first transaction completes. This
mode is only available when used with implicit context propagation (that
is, for invocations on objects supporting the TransactionalObject
interface.)

Description The ConcurrencyMode enumerated type defines the concurrency modes
supported by an OrbixOTS server. A value of this type is passed to the
operation impl_is_ready(). If requests are serialized, only one request is
allowed to be executing actively within the server. Requests from other
159

O r b i x O T S P r o g r am m e r ’ s a n d A dm in i s t r a t o r ’ s G u i d e
transactions are blocked until the active request returns. The interface
parameter is the full CORBA interface identifier for the interface. That is, for an
interface called “X” the identifier should be of the form “IDL:X:1.0”.

See Also “OrbixOTS::Server::impl_is_ready()” on page 161

OrbixOTS::Server::shutdown()

Synopsis static void shutdown()
throw (CORBA::SystemException);

Description Shuts down the OTS and rolls back all outstanding transactions.

See Also “OrbixOTS::Server::exit()” on page 160

OrbixOTS::Server::exit()

Synopsis void exit(const long status,
CORBA::Environment& IT_env=CORBA::IT_chooseDefaultEnv()););

Parameters The status parameter specifies the exit status for the server application.

Description The exit() function terminates a server and exits. The server is shut down
forcibly, and neither the OrbixOTS::Server::impl_is_ready() function called
in the main thread nor the exit() function returns. Any outstanding
transactions are aborted. A value can be specified to indicate the exit status.

See Also “OrbixOTS::Server::impl_is_ready()” on page 161

OrbixOTS::Server::getDefaultTransactionPolicy()

Synopsis static TransactionPolicy getDefaultTransactionPolicy();

Description The getDefaultTransactionPolicy() function gets the current default
TransactionPolicy.

Returns The current default TransactionPolicy.

Notes IONA-specific.

See Also “OrbixOTS::Server::setDefaultTransactionPolicy()” on page 168
 160

Th e C l a s s e s C l i e n t , R e s t a r t , a n d S e r v e r
“OrbixOTS::Server::setInterfaceTransactionPolicy()” on page 168

“OrbixOTS::Server::setObjectTransactionPolicy()” on page 169

OrbixOTS::Server::get_transaction_factory()

Synopsis static CosTransactions::TransactionsFactory_ptr
get_transaction_factory();

Description Returns a reference to the local transaction factory.

Returns The current default TransactionPolicy.

Notes IONA-specific.

OrbixOTS::Server::get_lockset_factory()

Synopsis static CosConcurrencyControl::LockSetFactory_ptr
get_lockset_factory();

Description Returns a reference to the local transaction factory.

Returns The current default TransactionPolicy.

Notes IONA-specific.

OrbixOTS::Server::impl_is_ready()

Synopsis void impl_is_ready(CORBA::ULong timeout, const ConcurrencyMode
mode = serializeRequestsAndTransactions)

Parameters The parameter timeout specifies the timeout in milliseconds that is passed
down to the CORBA.Orbix.impl_is_ready() call.

Description The impl_is_ready() function causes a server to begin accepting requests from
clients. This function also initializes OrbixOTS components and XA-compliant
resource managers, and it registers exported objects and interfaces with
underlying services if initialization was not performed previously with the
OrbixOTS::Server::init() function.

This is an alternative to CORBA::Orbix.impl_is_ready() to prepare an
OrbixOTS server to receive invocations.
161

O r b i x O T S P r o g r am m e r ’ s a n d A dm in i s t r a t o r ’ s G u i d e
The concurrency mode to be supported by the server can be specified with the
mode parameter. The concurrency mode determines whether transactions are
serialized at the server. By default, both are serialized. See the
OrbixOTS::Server::ConcurrencyMode enumeration type for more
information.

The default thread pool size (the number of threads available to handle
concurrent requests) is 5. You can override this by specifying a value for the
ENCINA_TPOOL_SIZE environment variable.

Note that calling the Server::impl_is_ready() function is optional. The
application can call the Orbix impl_is_ready() function directly, but no thread
pool is created to handle concurrent requests for thread-aware servers.
Server::impl_is_ready() automatically calls the Orbix impl_is_ready()
function. The Server::impl_is_ready() function blocks until
CORBA::Orbix.impl_is_ready() returns. If the timeout parameter is specified
this timeout is passes to CORBA.Orbix.impl_is_ready(). Otherwise the
default Orbix timeout of CORBA::Orbix.DEFAULT_TIMEOUT is passed. This
default timeout value can be changed through the configuration variable
OrbixOTS.OTS_ORBIX_LISTEN_TIMEOUT, specified in milliseconds. This is true
for both automatically and persistently launched servers.

Any exceptions thrown by Orbix impl_is_ready() are not caught by the
Server::impl_is_ready() function.

See Also “OrbixOTS::Server::ConcurrencyMode Enumeration” on page 159

“OrbixOTS::Server::exit()” on page 160

“OrbixOTS::Server::init()” on page 162

OrbixOTS::Server::init()

Synopsis void init(
CORBA::Environment& IT_env = CORBA::IT_chooseDefaultEnv())
throw (CORBA::SystemException);

Description The init() function initializes OrbixOTS components and XA-compliant
resource managers. The init() function is optional and makes it possible to
perform application-specific initialization after the underlying services are
 162

Th e C l a s s e s C l i e n t , R e s t a r t , a n d S e r v e r
initialized but before the server begins listening. After the init() function is
called, transactions can be created and outgoing transactional requests can be
made.

The values of the attributes are used to perform this initialization (only
attributes that are non-null and are not the empty string are used). If the server
has been registered as recoverable using the recoverable() operation, the
recovery() operation is invoked on the restart object passed to
recoverable() (only if the reference is non-null).

The standard exception CORBA::SystemException may be thrown.

See Also “OrbixOTS::Server::impl_is_ready()” on page 161

Server class constructor

OrbixOTS::Server::IT_create()

Synopsis static Server_ptr IT_create(
CORBA::Environment& IT_env = CORBA::IT_chooseDefaultEnv());

Description Creates an instance of a Server pseudo-object. IT_create() should be used in
preference to the C++ operator new but only when there is no (suitable)
compliant way to obtain a pseudo-object reference. This will ensure memory
management consistency. IT_create() returns a pointer to a new Server
pseudo object.

OrbixOTS::Server::logDevice()

Synopsis void logDevice(const char* logDevice,
CORBA::Environment& IT_env = CORBA::IT_chooseDefaultEnv())
throw (CORBA::SystemException);

char* logDevice(
CORBA::Environment& IT_env = CORBA::IT_chooseDefaultEnv())
throw (CORBA::SystemException);

Description These functions set and get the value of the log device path.
163

O r b i x O T S P r o g r am m e r ’ s a n d A dm in i s t r a t o r ’ s G u i d e
When setting the path, it must be done before OrbixOTS::Server::init() is
called, and the logDevice parameter must refer to an existing ordinary file or
raw disk partition which should be of non-zero length (the recommended size is
8Mbytes).

If the logDevice attribute was not previously set, a call to get the value returns
an empty string.

The standard exception CORBA::SystemException may be thrown.

See Also “OrbixOTS::Server::init()” on page 162

OrbixOTS::Server::logServer()

Synopsis void logServer(const char* logServer,
CORBA::Environment& IT_env = CORBA::IT_chooseDefaultEnv())
throw (CORBA::SystemException);

char* logServer(
CORBA::Environment& IT_env = CORBA::IT_chooseDefaultEnv())
throw (CORBA::SystemException);

Description Sets or gets the value of the log server name.

When setting the name, it must be done before OrbixOTS::Server::init() is
called.

If the logServer attribute was not previously set, a call to get the value returns
an empty string.

The standard exception CORBA::SystemException may be thrown.

See Also “OrbixOTS::Server::init()” on page 162

OrbixOTS::Server::mirrorRestartFile()

Synopsis void restartFile(const char* restartFile,
CORBA::Environment& IT_env = CORBA::IT_chooseDefaultEnv())
throw (CORBA::SystemException);

char* restartFile(
CORBA::Environment& IT_env = CORBA::IT_chooseDefaultEnv())
throw (CORBA::SystemException);
 164

Th e C l a s s e s C l i e n t , R e s t a r t , a n d S e r v e r
Description Sets or gets the value of the mirror restart file path attribute of the Server
pseudo-object.

When setting the mirror restart file path, it must be done before
OrbixOTS::Server::init() is called. Setting this value requires that the
function restartFile() must also be called to set the restart file path. For cold
starts, the file specified in the path must not exist; for re-starts the file must
exist.

If the mirror restart file path attribute was not previously set, a call to get the
value returns an empty string.

The standard exception CORBA::SystemException may be thrown.

See Also “OrbixOTS::Server::init()” on page 162

“OrbixOTS::Server::restartFile()” on page 167

OrbixOTS::Server::recoverable()

Synopsis void recoverable(Restart_ptr restart,
CORBA::Environment& IT_env = CORBA::IT_chooseDefaultEnv());

Parameters The restart parameter specifies a reference to a callback object to be called
during server restart. It is an instance of a subclass of the Restart class.

Description The recoverable() function makes a server recoverable by registering the
appropriate recovery services. Recovery services must be registered before the
server is initialized with either of the functions OrbixOTS::Server::init() or
OrbixOTS::Server::impl_is_ready().

An instance of a class derived from the OrbixOTS::Restart class must be
passed as the parameter. The derived class must define a callback function
(invoked when the server restarts) that recreates any resources that the server
requires or exports.

If the application server calls the OrbixOTS::Server::register_xa_rm()
function, it does not need to call the recoverable() function to make a server
recoverable because the server becomes recoverable automatically. See the
OrbixOTS::Server::register_xa_rm() function for information on registering
XA-compliant resource managers.

See Also “OrbixOTS::Server::init()” on page 162
165

O r b i x O T S P r o g r am m e r ’ s a n d A dm in i s t r a t o r ’ s G u i d e
“OrbixOTS::Server::impl_is_ready()” on page 161

“OrbixOTS::Server::register_xa_rm()” on page 166

“OrbixOTS::Restart Class” on page 152

OrbixOTS::Server::register_xa_rm()

Synopsis CORBA::Long register_xa_rm(const xa_switch_t* xaSwitch,
 const char* openString,
 const char* closeString,
 const CORBA::Boolean isThreadAware)

throw (CORBA::SystemException);

Parameters

Description The register_xa_rm() function registers and opens an XA-compliant resource
manager for an OrbixOTS server. The function returns the identifier assigned to
the registered resource manager. This also has the effect of registering the
server as a recoverable server. An identifier for the resource manager is
returned. If used, this function must be called before
OrbixOTS::Server::init() is called.

The standard exception CORBA::SystemException may be thrown.

See Also “OrbixOTS::Server::init()” on page 162

“OrbixOTS::Server::impl_is_ready()” on page 161

xaSwitch Specifies the XA switch structure used by the resource
manager. Refer to the resource manager documentation for
more information.

openString Specifies a string of information that is specific to the
resource manager and passed in xa_open() calls.

closeString Specifies the string containing information specific to the
resource manager and passed in xa_close() calls.

isThreadAware Specifies whether the resource manager’s XA library is
thread aware or not. A value of 1 (true) means the XA
library can handle multiple threads. A value of 0 (false)
means the XA library cannot handle multiple threads.
 166

Th e C l a s s e s C l i e n t , R e s t a r t , a n d S e r v e r
OrbixOTS::Server::restartFile()

Synopsis void restartFile(const char* restartFile,
CORBA::Environment& IT_env = CORBA::IT_chooseDefaultEnv())
throw (CORBA::SystemException);

char* restartFile(
CORBA::Environment& IT_env = CORBA::IT_chooseDefaultEnv())
throw (CORBA::SystemException);

Description Sets or gets the value of the restart file path attribute of the Server pseudo-
object.

For cold starts, the file specified in the path must not exist; for re-starts, the file
must exist. Calling this function requires that the function
mirrorRestartFile() must also be called to set the mirror restart file path.
When setting the restart file path, it must be done before
OrbixOTS::Server::init() is called.

If the restartFile attribute was not previously set, a call to get the value
returns an empty string.

The standard exception CORBA::SystemException may be thrown.

See Also “OrbixOTS::Server::init()” on page 162

“OrbixOTS::Server::mirrorRestartFile()” on page 164

OrbixOTS::Server::serverName()

Synopsis void serverName(const char* serverName,
CORBA::Environment& IT_env = CORBA::IT_chooseDefaultEnv())
throw (CORBA::SystemException);

char* serverName(
CORBA::Environment& IT_env = CORBA::IT_chooseDefaultEnv())
throw (CORBA::SystemException);

Description Sets or gets the value of the server name attribute of the Server pseudo-object.

When setting the server name, it must be done before the function
OrbixOTS::Server::init() is called. The value used should be the same name
that would normally be passed to CORBA::BOA::impl_is_ready(). The server
name is only necessary for manually launched servers and must be exactly the
server name with which the server was registered.
167

O r b i x O T S P r o g r am m e r ’ s a n d A dm in i s t r a t o r ’ s G u i d e
If the serverName attribute was not previously set, a call to get the value returns
an empty string.

The standard exception CORBA::SystemException may be thrown.

See Also “OrbixOTS::Server::init()” on page 162

OrbixOTS::Server::setDefaultTransactionPolicy()

Synopsis static TransactionPolicy
 setDefaultTransactionPolicy(TransactionPolicy policy);

Parameters The policy parameter specifies the current default TransactionPolicy.

Description The setDefaultTransactionPolicy() function sets the default
TransactionPolicy. The default transaction policy is TransactionRequired, in
which case both the client and server throw a TRANSACTION_REQUIRED
exception if an invocation on a transactional object is outside the scope of a
transaction. You may also choose to change the default transaction policy to
TransactionAllowed. In this case all transactional objects can process requests
outside the scope of a transaction. All newly-created objects take on the default
behaviour unless they implement an interface that has a particular policy
selected. In the case where the default is changed, TransactionRequired
semantics need to be explicitly set for individual interfaces of objects.

Returns The previous TransactionPolicy.

Notes IONA-specific.

See Also “OrbixOTS::Server::getDefaultTransactionPolicy()” on page 160

“OrbixOTS::Server::setInterfaceTransactionPolicy()” on page 168

“OrbixOTS::Server::setObjectTransactionPolicy()” on page 169

OrbixOTS::Server::setInterfaceTransactionPolicy()

Synopsis static void setInterfaceTransactionPolicy(
const char *interface,

TransactionPolicy policy = transactionRequired);
 168

Th e C l a s s e s C l i e n t , R e s t a r t , a n d S e r v e r
Parameters

Description The setInterfaceTransactionPolicy() function marks an interface as
transactional and specifies the transaction policy for this transactional interface.
Objects that support this interface are treated as transactional in this process
even if the object does not (or is not known to) implement the
CosTransactions::TransactionalObject CORBA interface. The interface
parameter is the CORBA repository identifier for the interface that is of the
form “IDL:X:1.0”.

Notes IONA-specific.

See Also “OrbixOTS::Server::getDefaultTransactionPolicy()” on page 160

“OrbixOTS::Server::setDefaultTransactionPolicy()” on page 168

“OrbixOTS::Server::setObjectTransactionPolicy()” on page 169

OrbixOTS::Server::setObjectTransactionPolicy()

Synopsis static void setObjectTransactionPolicy(
CORBA::Object_ptr obj,

TransactionPolicy policy = transactionRequired);

Parameters

Description The setObjectTransactionPolicy() function marks an object as transactional
and specifies the transaction policy for this transactional object. This object is
treated as transactional in this process even if the object does not (or is not
known to) implement the CosTransactions::TransactionalObject CORBA
interface.

Notes IONA-specific.

See Also “OrbixOTS::Server::getDefaultTransactionPolicy()” on page 160

interface The interface to treat as transactional.

policy The TransactionPolicy for this transactional interface.

obj The object to treat as transactional.

policy The TransactionPolicy for this transactional object.
169

O r b i x O T S P r o g r am m e r ’ s a n d A dm in i s t r a t o r ’ s G u i d e
“OrbixOTS::Server::setInterfaceTransactionPolicy()” on page 168

“OrbixOTS::Server::setInterfaceTransactionPolicy()” on page 168
 170

 11
CosTransactions Module

This chapter describes the C++ class implementations of the
CosTransactions interfaces. The implementation of OrbixOTS
supports the full OMG specification of the CosTransactions module.
This contains interfaces that include support for defining
transactional interfaces and recoverable resources.

Introduction
The Object Management Group’s Object Transaction Service (OMG OTS)
defines interfaces that integrate transactions into the distributed object
paradigm. The OMG OTS interface allows developers to manage transactions
under two different models of transaction propagation: implicit and explicit:

• In the implicit model, the transaction context is associated with the client
thread; when client requests are made on transactional objects, the
transaction context associated with the thread is propagated to the
object implicitly.

• In the explicit model, the transaction context must be passed explicitly
when client requests are made on transactional objects in order to
propagate the transaction context to the object.

Java implementations for the CosTransactions interfaces are described in
Chapter 13, “Java Classes”.
171

O r b i x O T S P r o g r am m e r ’ s a n d A dm in i s t r a t o r ’ s G u i d e
Keep the following in mind:

• Applications must include the header file OrbixOTS.hh.

• All of the OTS classes are nested within the CosTransactions class.
Therefore, you must prefix CosTransactions to the OTS class and
function names when using them in your application.

• All of the OTS class functions define one additional final parameter of the
type CORBA::Environment for C++ compilers that do not support
exception handling. If your compiler supports exceptions, use the
parameter’s default value.

• All of the OTS class functions can throw the CORBA::SystemException
exception if an object request broker (ORB) error occurs.

Overview of Classes

The OMG OTS classes provide the following functionality:

• Defining transactional interfaces in the CORBA environment:

TransactionalObject

• Managing transactions under the implicit model:

Current

• Managing transactions under the explicit model:

TransactionFactory
Control
Coordinator
Terminator

• Managing recoverable resources in the CORBA environment:

RecoveryCoordinator
Resource
SubtransactionAwareResource
Synchronization

• Reporting system errors:

HeuristicCommit
HeuristicHazard
HeuristicMixed
HeuristicRollback
 172

C o s T r a n s a c t i o n s M od u l e
Inactive
InvalidControl
INVALID_TRANSACTION
NoTransaction
NotPrepared
NotSubtransaction
SubtransactionsUnavailable
TRANSACTION_REQUIRED
TRANSACTION_ROLLEDBACK
Unavailable

General Data Types

OrbixOTS defines enumerated data types to represent the status of a
transaction object during two-phase commit and to indicate a participant’s vote
on the outcome of a transaction.

Status Enumeration Type

Synopsis enum Status{
StatusActive,
StatusMarkedRollback,
StatusPrepared,
StatusCommitted,
StatusRolledBack,
StatusUnknown,
StatusNoTransaction,
StatusPreparing,
StatusCommitting,
StatusRollingBack

};

Description The Status enumerated type defines values that are used to indicate the status
of a transaction. Status values are used in both the implicit and explicit models of
transaction demarcation defined by the Object Transaction Service (OTS). The
Current::get_status() function can be called to return the transaction status
if the implicit model is used. The Coordinator::get_status() function can be
called to return the transaction status if the explicit model is used.
173

O r b i x O T S P r o g r am m e r ’ s a n d A dm in i s t r a t o r ’ s G u i d e
Constants

See Also “Coordinator::get_status()” on page 185

“Current::get_status()” on page 197

Vote Enumeration Type

Synopsis enum Vote{
VoteCommit,
VoteRollback,
VoteReadOnly

};

Constants

StatusActive Indicates that processing of a transaction is still in
progress.

StatusMarkedRollback Indicates that a transaction is marked to be rolled
back.

StatusPrepared Indicates that a transaction has been prepared but
not completed.

StatusCommitted Indicates that a transaction has been committed and
the effects of the transaction have been made
permanent.

StatusRolledBack Indicates that a transaction has been rolled back.

StatusUnknown Indicates that the status of a transaction is unknown.

StatusNoTransaction Indicates that a transaction does not exist in the
current transaction context.

StatusPreparing Indicates that a transaction is preparing to commit.

StatusCommitting Indicates that a transaction is in the process of
committing.

StatusRollingBack Indicates that a transaction is in the process of
rolling back.

VoteCommit Specifies the value used to indicate a vote to commit a
transaction.
 174

C o s T r a n s a c t i o n s M od u l e
Description The Vote enumerated type defines values for the voting status of transaction
participants. The participants in a transaction each vote on the outcome of a
transaction during the two-phase commit process. In the prepare phase, a
Resource object can vote whether to commit or abort a transaction. If a
Resource has not modified any data as part of the transaction, it can vote
VoteReadOnly to indicate that its participation does not affect the outcome of
the transaction.

See Also “CosTransactions::Resource Class” on page 202

General Exceptions

Errors are handled in OrbixOTS by using exceptions. Exceptions provide a way
of returning error information back through multiple levels of procedure or
function calls, propagating this information until a function or procedure is
reached that can respond appropriately to the error.

Each of the following exceptions are implemented as classes. The exceptions are
shown here in two tables: one for the OrbixOTS exceptions and another for the
system exceptions.

VoteRollback Specifies the value used to indicate a vote to abort (rollback)
a transaction.

VoteReadOnly Specifies the value used to indicate no vote on the outcome
of a transaction.

Exception Description

HeuristicCommit This exception is thrown to report that a heuristic
decision was made by one or more participants in a
transaction and that all updates have been committed.
See Also:

Resource class

Table 11.1: OrbixOTS Exceptions
175

O r b i x O T S P r o g r am m e r ’ s a n d A dm in i s t r a t o r ’ s G u i d e
HeuristicHazard This exception is thrown to report that a heuristic
decision has possibly been made by one or more
participants in a transaction and the outcome of all
participants in the transaction is unknown. See Also:

Current::commit()
Resource class
Terminator::commit()

HeuristicMixed This exception is thrown to report that a heuristic
decision was made by one or more participants in a
transaction and that some updates have been
committed and others rolled back. See Also:

Current::commit()
Resource class
Terminator::commit()

HeuristicRollback This exception is thrown to report that a heuristic
decision was made by one or more participants in a
transaction and that all updates have been rolled
back. See Also:

Resource class

Inactive This exception is thrown when a transactional
operation is requested for a transaction, but that
transaction is already prepared. See Also:

Coordinator::create_subtransaction()
Coordinator::register_resource()
Coordinator::register_subtran_aware()
Coordinator::rollback_only()

InvalidControl This exception is thrown when an invalid Control
object is used in an attempt to resume a suspended
transaction. See Also:

Control class
Current::resume()

Exception Description

Table 11.1: OrbixOTS Exceptions
 176

C o s T r a n s a c t i o n s M od u l e
NotPrepared This exception is thrown when an operation (such as
a commit()) is requested for a resource, but that
resource is not prepared. See Also:

RecoveryCoordinator::replay_completion()
Resource class

NoTransaction This exception is thrown when an operation is
requested for the current transaction, but no
transaction is associated with the client thread. See
Also:

Current::commit()
Current::rollback()
Current::rollback_only()

NotSubtransaction This exception is thrown when an operation that
requires a subtransaction is requested for a
transaction that is not a subtransaction. See Also:

Control::get_parent()
Coordinator::register_subtran_aware()

SubtransactionsUnavailable This exception is thrown when an attempt is made to
create a subtransaction, but the parent transaction is
already prepared. See Also:

Coordinator::create_subtransaction()
Current::begin()

Unavailable This exception is thrown when a Terminator or
Coordinator object cannot be provided by a
Control object due to environment restrictions. See
Also:

Control::get_coordinator()
Control::get_terminator()

Exception Description

Table 11.1: OrbixOTS Exceptions
177

O r b i x O T S P r o g r am m e r ’ s a n d A dm in i s t r a t o r ’ s G u i d e
The following table shows the system exceptions that can be thrown:

CosTransactions::Control Class
Synopsis class Control {

public:
Terminator_ptr get_terminator();
Coordinator_ptr get_coordinator();
CORBA::Long id();
Control_ptr get_parent();
Control_ptr get_top_level();

};
typedef Control *Control_ptr;
class Control_var;

Description The Control class enables explicit control of a factory-created transaction; the
factory creates a transaction and returns a Control instance associated with the
transaction. The Control object provides access to the Coordinator and
Terminator objects used to manage and complete the transaction.

A Control object can be used to propagate a transaction context explicitly. By
passing a Control object as an argument in a request, the transaction context
can be propagated. The TransactionFactory::create() function can be used

Exception Description

INVALID_TRANSACTION This exception is thrown when the transaction context is
invalid for a request.

TRANSACTION_REQUIRED This exception is thrown when a null transaction context
is associated with the client thread, and a transactional
operation is requested.

TRANSACTION_ROLLEDBACK This exception is thrown when a transactional operation
(such as a commit()) is requested for a transaction that
has been rolled back or marked for rollback. See Also:

Current::commit()
Terminator::commit()

Table 11.2: System Exceptions
 178

C o s T r a n s a c t i o n s M od u l e
to create a transaction and return the Control object associated with it. This
class is nested within the CosTransactions class. The full name for the class is
CosTransactions::Control.

A Control_ptr type holds a reference to a Control object. OrbixOTS also
provides a Control_var helper class. Both the Control_ptr and Control_var
types hold and manage a reference to a Control object.

Class Members
Control::get_coordinator()
Control::get_parent()
Control::get_terminator()
Control::get_top_level
Control::id()

See Also “CosTransactions::Coordinator Class” on page 182

“Current::get_control()” on page 197

“Coordinator::get_status()” on page 185

“CosTransactions::Terminator Class” on page 209

“TransactionFactory::create()” on page 212

“NoTransaction” on page 177

“NotSubtransaction” on page 177

Control::get_coordinator()

Synopsis Coordinator_ptr get_coordinator()
throw(CORBA::SystemException, Unavailable);

Description The get_coordinator() member function returns the Coordinator object for
the transaction with which the Control object is associated. The returned
Coordinator object can be used to determine the status of the transaction, the
relationship between the associated transaction and other transactions, to
create subtransactions, and so on.

The get_coordinator() function throws the Unavailable exception if the
Coordinator associated with the Control object is not available.

The Coordinator class is nested within the CosTransactions class. The full
name for the function is CosTransactions::Control::get_coordinator().
179

O r b i x O T S P r o g r am m e r ’ s a n d A dm in i s t r a t o r ’ s G u i d e
See Also “CosTransactions::Coordinator Class” on page 182

“Unavailable” on page 177

Control::get_parent()

Synopsis Control_ptr get_parent()
throw(CORBA::SystemException, NotSubtransaction);

Description The get_parent() member function returns the Control object for the parent
of the transaction with which the Control object is associated. If the associated
transaction is not a subtransaction, the NotSubtransaction exception is
thrown.

Notes This function is specific to OrbixOTS and is not a standard CORBA function.

The Control class is nested within the CosTransactions class. The full name
for the function is CosTransactions::Control::get_parent().

See Also “NotSubtransaction” on page 177

Control::get_terminator()

Synopsis Terminator_ptr get_terminator()
throw(CORBA::SystemException, Unavailable);

Description The get_terminator() member function returns the Terminator object for the
transaction with which the Control object is associated. The returned
Terminator object can be used to either commit or roll back the transaction.

The get_terminator() function throws the Unavailable exception if the
Terminator associated with the Control object is not available.

The Terminator class is nested within the CosTransactions class. The full
name for the function is CosTransactions::Control::get_terminator().

See Also “CosTransactions::Terminator Class” on page 209

“Unavailable” on page 177
 180

C o s T r a n s a c t i o n s M od u l e
Control::get_top_level()

Synopsis Control_ptr get_top_level()
throw(CORBA::SystemException, NotSubtransaction);

Description The get_top_level() member function returns the Control object for the
top-level ancestor of the transaction with which the Control object is
associated. If the associated transaction is not a subtransaction, the
NotSubtransaction exception is thrown.

Notes This function is specific to OrbixOTS and is not a standard CORBA function.

The Control class is nested within the CosTransactions class. The full name
for the function is CosTransactions::Control::get_top_level().

See Also “NotSubtransaction” on page 177

Control::id()

Synopsis CORBA::Long id()
throw(CORBA::SystemException);

Description The id() member function returns the transaction identifier for the transaction
with which the Control object is associated.

Notes This function is specific to OrbixOTS and is not a standard CORBA function.

The id() function is an OrbixOTS extension to the OMG OTS interface. The
return value can be used to display the identity of the transaction associated with
the Control object.

The Control class is nested within the CosTransactions class. The full name
for the function is CosTransactions::Control::id().

See Also “CosTransactions::Control Class” on page 178
181

O r b i x O T S P r o g r am m e r ’ s a n d A dm in i s t r a t o r ’ s G u i d e
CosTransactions::Coordinator Class
Synopsis class Coordinator {

public:
CORBA::Long id();
char *get_transaction_name();
Status get_status();
Status get_parent_status();
Status get_top_level_status();
CORBA::Boolean is_same_transaction(Coordinator_ptr);
CORBA::Boolean is_related_transaction(Coordinator_ptr);
CORBA::Boolean is_ancestor_transaction(Coordinator_ptr);
CORBA::Boolean is_descendant_transaction(Coordinator_ptr);
CORBA::Boolean is_top_level_transaction();
unsigned long hash_transaction();
unsigned long hash_top_level_tran();
RecoveryCoordinator register_resource(Resource);
void register_subtran_aware(SubtransactionAwareResource);
Control_ptr create_subtransaction();
void rollback_only();
PropagationContext* get_txcontext()

};
typedef Coordinator *Coordinator_ptr;
class Coordinator_var;

Description The Coordinator class enables explicit control of a factory-created transaction;
the factory creates a transaction and returns a Control instance associated with
the transaction. The Control::get_coordinator() function returns the
Coordinator object used to manage the transaction.

The operations defined by the Coordinator class can be used by the participants
in a transaction to determine the status of the transaction, determine the
relationship of the transaction to other transactions, mark the transaction for
rollback, and create subtransactions.

The Coordinator class also defines operations for registering resources as
participants in a transaction and registering subtransaction-aware resources with
a subtransaction.

This class is nested within the CosTransactions class. The full name for the
class is CosTransactions::Coordinator.
 182

C o s T r a n s a c t i o n s M od u l e
A Coordinator_ptr type holds a reference to a Coordinator object.
OrbixOTS also provides a Coordinator_var helper class. Both the
Coordinator_ptr and Coordinator_var types hold and manage a reference to
a Coordinator object.

Class Members
Coordinator::create_subtransaction()
Coordinator::get_parent_status()
Coordinator::get_status()
Coordinator::get_top_level_status()
Coordinator::get_transaction_name()
Coordinator::get_txcontext()
Coordinator::hash_top_level_tran()
Coordinator::hash_transaction()
Coordinator::is_ancestor_transaction()
Coordinator::is_descendant_transaction()
Coordinator::is_related_transaction()
Coordinator::is_same_transaction()
Coordinator::is_top_level_transaction()
Coordinator::register_resource()
Coordinator::register_subtran_aware()
Coordinator::rollback_only()

See Also “CosTransactions::Control Class” on page 178

“Control::get_coordinator()” on page 179

“CosTransactions::Terminator Class” on page 209

Coordinator::create_subtransaction()

Synopsis Control_ptr create_subtransaction()
throw(CORBA::SystemException, Inactive,

SubtransactionUnavailable);

Description The create_subtransaction() member function creates a new subtransaction
for the transaction associated with the Coordinator object. A subtransaction is
one that is embedded within another transaction; the transaction within which
the subtransaction is embedded is referred to as its parent. A transaction that
has no parent is a top-level transaction. A subtransaction executes within the
scope of its parent transaction and can be used to isolate failures; if a
subtransaction fails, only the subtransaction is rolled back. If a subtransaction
183

O r b i x O T S P r o g r am m e r ’ s a n d A dm in i s t r a t o r ’ s G u i d e
commits, the effects of the commit are not permanent until the parent
transaction commits. If the parent transaction rolls back, the subtransaction is
also rolled back.

If the parent transaction is already rolled back when create_subtransaction()
is called, the SubtransactionsUnavailable exception is thrown.

The create_subtransaction() function throws the Inactive exception if the
transaction is already prepared.

The Coordinator class is nested within the CosTransactions class. The full
name for the function is
CosTransactions::Coordinator::create_subtransaction().

Return Values The create_subtransaction() function returns the Control object
associated with the new subtransaction.

See Also “CosTransactions::Control Class” on page 178

“Inactive” on page 176

“SubtransactionsUnavailable” on page 177

Coordinator::get_parent_status()

Synopsis Status get_parent_status()
throw(CORBA::SystemException);

Description The get_parent_status() member function returns the status of the parent of
the transaction associated with the Coordinator object. For more information,
see the reference page for the function
Coordinator::create_subtransaction().

The Coordinator class is nested within the CosTransactions class. The full
name for the function is
CosTransactions::Coordinator::get_parent_status().
 184

C o s T r a n s a c t i o n s M od u l e
Return Values The status returned indicates which phase of processing the transaction is in. See
the reference page for the Status type for information about the possible status
values. If the transaction associated with the Coordinator object is a
subtransaction, the status of its parent transaction is returned. If there is no
parent transaction, the status of the transaction associated with the
Coordinator object itself is returned.

See Also “Coordinator::create_subtransaction()” on page 183

“Coordinator::get_status()” on page 185

“Coordinator::get_top_level_status()” on page 185

“Status Enumeration Type” on page 173

Coordinator::get_status()

Synopsis Status get_status()
throw(CORBA::SystemException);

Description The get_status() member function returns the status of the transaction
associated with the Coordinator object. The status returned indicates which
phase of processing the transaction is in. See the reference page for the Status
type for information about the possible status values.

The Coordinator class is nested within the CosTransactions class. The full
name for the function is CosTransactions::Coordinator::get_status().

See Also “Coordinator::get_parent_status()” on page 184

“Coordinator::get_top_level_status()” on page 185

“Status Enumeration Type” on page 173

Coordinator::get_top_level_status()

Synopsis Status get_top_level_status()
throw(CORBA::SystemException);

Description The get_top_level_status() member function returns the status of the top-
level ancestor of the transaction associated with the Coordinator object. See
the reference page for the Coordinator::create_subtransaction() function
for more information.
185

O r b i x O T S P r o g r am m e r ’ s a n d A dm in i s t r a t o r ’ s G u i d e
The status returned indicates which phase of processing the transaction is in. See
the reference page for the Status type for information about the possible status
values. If the transaction associated with the Coordinator object is the top-level
transaction, its status is returned.

The Coordinator class is nested within the CosTransactions class. The full
name for the function is
CosTransactions::Coordinator::get_top_level_status().

See Also “Coordinator::create_subtransaction()” on page 183

“Coordinator::get_status()” on page 185

“Coordinator::get_parent_status()” on page 184

“Status Enumeration Type” on page 173

Coordinator::get_transaction_name()

Synopsis char *get_transaction_name();

Description The get_transaction_name() member function returns the name of the
transaction associated with the Coordinator object.

Notes The Coordinator class is nested within the CosTransactions class. The full
name for the function is
CosTransactions::Coordinator::get_transaction_name().

Coordinator::get_txcontext()

Synopsis PropagationContext* Coordinator::get_txcontext()
throw (CORBA::SystemException, Unavailable);

Description Returns the propagation context object which is used to export the current
transaction to a new transaction service domain. The exception Unavailable is
raised if the propagation context is unavailable.

See Also “Unavailable” on page 177

“TransactionFactory::recreate()” on page 213
 186

C o s T r a n s a c t i o n s M od u l e
Coordinator::hash_top_level_tran()

Synopsis unsigned long hash_top_level_tran()
throw(CORBA::SystemException);

Description The hash_top_level_tran() member function returns a hash code for the top-
level ancestor of the transaction associated with the Coordinator object. If the
transaction associated with the Coordinator object is the top-level transaction,
its hash code is returned. See the reference page for the
Coordinator::create_subtransaction() function for more information. The
returned hash code is typically used as an index into a table of Coordinator
objects. The low-order bits of the hash code can be used to hash into a table
with a size that is a power of two.

The Coordinator class is nested within the CosTransactions class. The full
name for the function is
CosTransactions::Coordinator::hash_top_level_tran().

See Also “Coordinator::create_subtransaction()” on page 183

“Coordinator::hash_transaction()” on page 187

Coordinator::hash_transaction()

Synopsis unsigned long hash_transaction()
throw(CORBA::SystemException);

Description The hash_transaction() member function returns a hash code for the
transaction associated with the Coordinator object.

The returned hash code is typically used as an index into a table of Coordinator
objects. The low-order bits of the hash code can be used to hash into a table
with a size that is a power of two.

The Coordinator class is nested within the CosTransactions class. The full
name for the function is
CosTransactions::Coordinator::hash_transaction().

See Also “Coordinator::hash_top_level_tran()” on page 187
187

O r b i x O T S P r o g r am m e r ’ s a n d A dm in i s t r a t o r ’ s G u i d e
Coordinator::is_ancestor_transaction()

Synopsis CORBA::Boolean is_ancestor_transaction(
Coordinator_ptr tc)
throw(CORBA::SystemException);

Parameters The tc parameter specifies the coordinator of another transaction to compare
with the Coordinator object.

Description The is_ancestor_transaction() member function determines whether the
transaction associated with the Coordinator object is an ancestor of the
transaction associated with the coordinator specified in the tc parameter. See
the reference page for the Coordinator::create_subtransaction() function
for more information.

The is_ancestor_transaction() function returns a value of type
CORBA::Boolean.

The Coordinator class is nested within the CosTransactions class. The full
name for the function is
CosTransactions::Coordinator::is_ancestor_transaction().

Return Values The is_ancestor_transaction() function returns true if the transaction is an
ancestor or if the two transactions are the same; otherwise, the function returns
false.

See Also “Coordinator::is_descendant_transaction()” on page 188

“Coordinator::is_related_transaction()” on page 189

“Coordinator::is_same_transaction()” on page 190

“Coordinator::create_subtransaction()” on page 183

Coordinator::is_descendant_transaction()

Synopsis CORBA::Boolean is_descendant_transaction(Coordinator_ptr tc)
throw(CORBA::SystemException);

Parameters The tc parameter specifies the coordinator of another transaction to compare
with the Coordinator object.
 188

C o s T r a n s a c t i o n s M od u l e
Description The is_descendant_transaction() member function determines whether the
transaction associated with the Coordinator object is a descendant of the
transaction associated with the coordinator specified in the tc parameter. See
the reference page for the Coordinator::create_subtransaction() function
for more information.

The is_descendant_transaction() function returns a value of type
CORBA::Boolean.

The Coordinator class is nested within the CosTransactions class. The full
name is CosTransactions::Coordinator::is_descendant_transaction().

Return Values The is_descendant_transaction() function returns true if the transaction is a
descendant or if the two transactions are the same; otherwise, the function
returns false.

See Also “Coordinator::is_descendant_transaction()” on page 188

“Coordinator::is_related_transaction()” on page 189

“Coordinator::is_same_transaction()” on page 190

“Coordinator::is_top_level_transaction()” on page 191

“Coordinator::create_subtransaction()” on page 183

Coordinator::is_related_transaction()

Synopsis CORBA::Boolean is_related_transaction(Coordinator_ptr tc)
throw(CORBA::SystemException);

Parameters The tc parameter specifies the coordinator of another transaction to compare
with the Coordinator object.

Description The is_related_transaction() member function determines whether the
transaction associated with the Coordinator object and the transaction
associated with the coordinator specified in the tc parameter have a common
ancestor. See the reference page for the
Coordinator::create_subtransaction() function for more information.

The is_related_transaction() function returns a value of type
CORBA::Boolean.
189

O r b i x O T S P r o g r am m e r ’ s a n d A dm in i s t r a t o r ’ s G u i d e
The Coordinator class is nested within the CosTransactions class. The full
name for the function is
CosTransactions::Coordinator::is_related_transaction().

Return Values The is_related_transaction() function returns true if both transactions are
descendants of the same transaction; otherwise, the function returns false.

See Also “Coordinator::is_descendant_transaction()” on page 188

“Coordinator::is_ancestor_transaction()” on page 188

“Coordinator::is_same_transaction()” on page 190

“Coordinator::is_top_level_transaction()” on page 191

“Coordinator::create_subtransaction()” on page 183

Coordinator::is_same_transaction()

Synopsis CORBA::Boolean is_same_transaction(
Coordinator_ptr tc)
throw(CORBA::SystemException);

Parameters The tc parameter specifies the coordinator of another transaction to compare
with the Coordinator object.

Description The is_same_transaction() member function determines whether the
transaction associated with the Coordinator object and the transaction
associated with the coordinator specified in the tc parameter are the same
transaction.

The is_same_transaction() function returns a value of type CORBA::Boolean.

The Coordinator class is nested within the CosTransactions class. The full
name for the function is
CosTransactions::Coordinator::is_same_transaction().

Return Values The is_same_transaction() function returns true if the transactions
associated with the two Coordinator objects are the same transaction;
otherwise, the function returns false.

See Also “Coordinator::is_descendant_transaction()” on page 188

“Coordinator::is_related_transaction()” on page 189

“Coordinator::is_ancestor_transaction()” on page 188
 190

C o s T r a n s a c t i o n s M od u l e
“Coordinator::is_top_level_transaction()” on page 191

Coordinator::is_top_level_transaction()

Synopsis CORBA::Boolean is_top_level_transaction()
throw(CORBA::SystemException);

Description The is_top_level_transaction() member function determines whether the
transaction associated with a Coordinator object is a top-level transaction. See
the reference page for the Coordinator::create_subtransaction() function
for more information.

The is_top_level_transaction() function returns a value of type
CORBA::Boolean.

The Coordinator class is nested within the CosTransactions class. The full
name for the function is
CosTransactions::Coordinator::is_top_level_transaction().

Return Values The is_top_level_transaction() function returns true if the transaction is a
top-level transaction; otherwise, the function returns false.

See Also “Coordinator::is_descendant_transaction()” on page 188

“Coordinator::is_related_transaction()” on page 189

“Coordinator::is_same_transaction()” on page 190

“Coordinator::is_ancestor_transaction()” on page 188

“Coordinator::create_subtransaction()” on page 183

Coordinator::register_resource()

Synopsis RecoveryCoordinator register_resource(
Resource resource)
throw(CORBA::SystemException, Inactive);

Parameters The resource parameter specifies the resource to register as a participant.
191

O r b i x O T S P r o g r am m e r ’ s a n d A dm in i s t r a t o r ’ s G u i d e
Description The register_resource() member function registers a specified resource as a
participant in the transaction associated with a Coordinator object. When the
transaction ends, the registered resource must commit or roll back changes
made as part of the transaction. Only server applications can register resources.
See the reference page for the Resource class for more information.

The register_resource() function throws the Inactive exception if the
transaction is prepared. It throws the CORBA::TRANSACTION_ROLLEDBACK
exception if the transaction is marked for rollback only.

Return Values The register_resource() function returns a RecoveryCoordinator object
that the registered Resource object can use during recovery.

Notes The Coordinator class is nested within the CosTransactions class. The full
name for the function is
CosTransactions::Coordinator::register_resource().

See Also “Inactive” on page 176

“CosTransactions::RecoveryCoordinator Class” on page 201

“CosTransactions::Resource Class” on page 202

Coordinator::register_subtran_aware()

Synopsis void register_subtran_aware(
SubtransactionAwareResource resource)
throw(CORBA::SystemException, NotSubtransaction, Inactive);

Parameters The resource parameter specifies the resource to register.

Description The register_subtran_aware() member function registers a specified
resource with the subtransaction associated with a Coordinator object. The
resource is registered with the subtransaction only, not as a participant in the
top-level transaction. (The Coordinator::register_resource() function can
be used to register the resource as a participant in the top-level transaction.)
Only server applications can register resources.

When the transaction ends, the registered resource must commit or roll back
changes made as part of the subtransaction. See the reference page for the
SubtransactionAwareResource class for more information.
 192

C o s T r a n s a c t i o n s M od u l e
The register_subtran_aware() function throws the NotSubtransaction
exception if the transaction associated with the Coordinator object is not a
subtransaction. It throws the Inactive exception if the subtransaction or any
ancestor of the subtransaction has ended. It throws the
CORBA::TRANSACTION_ROLLEDBACK exception if the transaction is marked for
rollback only.

Notes The Coordinator class is nested within the CosTransactions class. The full
name for the function is
CosTransactions::Coordinator::register_subtran_aware().

See Also “Inactive” on page 176

“CosTransactions::RecoveryCoordinator Class” on page 201

“CosTransactions::SubtransactionAwareResource Class” on page 205

Coordinator::register_synchronization()

Synopsis void register_synchronization(Synchronization sync);
throw(CORBA::SystemException, Inactive);

Parameters The sync parameter specifies the synchronization object to register.

Description The register_synchronization() member function registers a specified
synchronization object for the transaction associated with a Coordinator object.
See the reference page for the Synchronization class for more information.

The register_synchronization() function throws the Inactive exception if
the transaction is already prepared. It throws the
CORBA::TRANSACTION_ROLLEDBACK exception if the transaction is marked for
rollback only.

Notes The Coordinator class is nested within the CosTransactions class. The full
name for the function is
CosTransactions::Coordinator::register_synchronization().

See Also “Inactive” on page 176

“CosTransactions::RecoveryCoordinator Class” on page 201

“CosTransactions::Synchronization Class” on page 207
193

O r b i x O T S P r o g r am m e r ’ s a n d A dm in i s t r a t o r ’ s G u i d e
Coordinator::rollback_only()

Synopsis void rollback_only()
throw(CORBA::SystemException, Inactive);

Description The rollback_only() member function marks the transaction associated with
the Coordinator object so that the only possible outcome for the transaction is
to roll back. The transaction is not rolled back until the participant that created
the transaction either commits or aborts the transaction.

OrbixOTS allows the Terminator::rollback() function to be called instead of
rollback_only(). Calling Terminator::rollback() rolls back the transaction
immediately, preventing unnecessary work from being done between the time
the transaction is marked for rollback and the time the transaction is actually
rolled back.

The rollback_only() function throws the Inactive exception if the
transaction is already prepared.

The Coordinator class is nested within the CosTransactions class. The full
name for the function is CosTransactions::Coordinator::rollback_only().

See Also “Inactive” on page 176

“Terminator::rollback()” on page 210

CosTransactions::Current Class
Synopsis class Current {

public:
static Current_ptr IT_Create();
static void begin();
static void commit(CORBA::Boolean);
static void rollback();
static void rollback_only();
static Status get_status();
static char *get_transaction_name();
static void set_timeout(unsigned long);
static Control_ptr get_control();
static Control_ptr suspend();
static void resume(Control_ptr);

};
typedef Current *Current_ptr;
 194

C o s T r a n s a c t i o n s M od u l e
class Current_var;

Description The Current class represents a transaction that is associated with the calling
thread; the thread defines the transaction context. Transaction context is
propagated implicitly when the client issues requests.

This class defines member functions for beginning, committing, and aborting a
transaction using the implicit model of transaction control. It also defines
member functions for suspending and resuming a transaction and retrieving
information about a transaction.

A Current_ptr type holds a reference to a Current object.

This class is nested within the CosTransactions class. The full name for the
class is CosTransactions::Current.

The Current class conforms to the Orbix approach for defining pseudo objects.
The class provides a static function called IT_create() that can be used to
create Current objects instead of using the C++ new function. The class also
provides static functions for duplicating and releasing object references called
_duplicate() and _release().

OrbixOTS also provides a Current_var helper class. Both the Current_ptr and
Current_var types hold and manage a reference to a Current object. Refer to
the Orbix documentation for more information on the use of pseudo objects
and object reference types.

Class Members
Current::begin()
Current::commit()
Current::get_control()
Current::get_status()
Current::get_transaction_name()
Current::IT_Create()
Current::resume()
Current::rollback()
Current::rollback_only()
Current::set_timeout()
Current::suspend()

See Also “CosTransactions::Control Class” on page 178

“Status Enumeration Type” on page 173
195

O r b i x O T S P r o g r am m e r ’ s a n d A dm in i s t r a t o r ’ s G u i d e
Current::begin()

Synopsis static void begin()
throw(CORBA::SystemException,SubtransactionsUnavailable);

Description The begin() member function creates a new transaction and modifies the
transaction context of the calling thread to associate the thread with the new
transaction. If a parent transaction is associated with the calling thread but is
already rolled back, the SubtransactionsUnavailable exception is thrown.

The Current class is nested within the CosTransactions class. The full name
for the function is CosTransactions::Current::begin().

See Also “Current::commit()” on page 196

“Current::rollback()” on page 199

“Current::rollback_only()” on page 199

“SubtransactionsUnavailable” on page 177

Current::commit()

Synopsis static void commit(CORBA::Boolean report_heuristics)
throw(CORBA::SystemException,

NoTransaction,
HeuristicHazard,
TRANSACTION_ROLLEDBACK);

Parameters The report_heuristics parameter specifies whether heuristic decisions should
be reported for the transaction associated with the calling thread.

Description The commit() member function attempts to commit the transaction associated
with the calling thread.

If no transaction is associated with the calling thread, the NoTransaction
exception is thrown. If the report_heuristics parameter is true, the
HeuristicMixed exception is thrown when a heuristic decision has caused
inconsistent outcomes and the HeuristicHazard exception is thrown when a
heuristic decision has possibly caused inconsistent outcomes.

If all the transaction participants do not commit, the
CORBA::TRANSACTION_ROLLEDBACK system exception is thrown.
 196

C o s T r a n s a c t i o n s M od u l e
The commit() function takes a value of type CORBA::Boolean as its first
argument.

The Current class is nested within the CosTransactions class. The full name
for the function is CosTransactions::Current::commit().

See Also “Current::begin()” on page 196

“Current::rollback()” on page 199

“Current::rollback_only()” on page 199

“HeuristicHazard” on page 176

“NoTransaction” on page 177

“TRANSACTION_ROLLEDBACK” on page 178

Current::get_control()

Synopsis static Control_ptr get_control()
throw(CORBA::SystemException);

Description The get_control() member function returns the Control object for the
transaction associated with the calling thread. If no transaction is associated with
the calling thread, a null object reference is returned.

The Current class is nested within the CosTransactions class. The full name
for the function is CosTransactions::Current::get_control().

See Also “Current::resume()” on page 198

Current::get_status()

Synopsis static Status get_status()
throw(CORBA::SystemException);

Description The get_status() member function returns the status of the transaction
associated with the calling thread. If no transaction is associated with the calling
thread, the StatusNoTransaction value is returned.

The status returned indicates the processing phase of the transaction. See the
reference page for the Status type for information about the possible status
values.
197

O r b i x O T S P r o g r am m e r ’ s a n d A dm in i s t r a t o r ’ s G u i d e
The Current class is nested within the CosTransactions class. The full name
for the function is CosTransactions::Current::get_status().

See Also “Status Enumeration Type” on page 173

Current::get_transaction_name()

Synopsis static char *get_transaction_name();

Description The get_transaction_name() member function returns the name of the
transaction associated with the calling thread. If no transaction is associated with
the calling thread, a null string is returned.

See Also “CosTransactions::Current Class” on page 194

Current::IT_Create()

Synopsis static Current_ptr IT_create()

Description Creates an instance of a Current pseudo-object. It is recommended that
IT_create() should be used in preference to the C++ operator new but only
when there is no (suitable) compliant way to obtain a pseudo-object reference.
Use of IT_create() in preference to new will ensure memory management
consistency.

See Also “CosTransactions::Current Class” on page 194

Current::resume()

Synopsis static void resume(Control_ptr which)
throw(CORBA::SystemException, InvalidControl);

Parameters The which parameter specifies a Control object that represents the transaction
context associated with the calling thread.

Description The resume() member function resumes the suspended transaction identified by
the which parameter and associated with the calling thread. If the value of the
which parameter is a null object reference, the calling thread disassociates from
the transaction. If a non-null parameter is invalid, the InvalidControl exception
is thrown.
 198

C o s T r a n s a c t i o n s M od u l e
The Current class is nested within the CosTransactions class. The full name
for the function is CosTransactions::Current::resume().

See Also “CosTransactions::Current Class” on page 194

“Current::get_control()” on page 197

“Current::suspend()” on page 201

“InvalidControl” on page 176

Current::rollback()

Synopsis static void rollback()
throw(CORBA::SystemException, NoTransaction);

Description The rollback() member function rolls back the transaction associated with the
calling thread. If the transaction was started with the Current::begin()
function, the transaction context for the thread is restored to its state before
the transaction was started; otherwise, the transaction context is set to null.

If no transaction is associated with the calling thread, the NoTransaction
exception is thrown.

The Current class is nested within the CosTransactions class. The full name
for the function is CosTransactions::Current::rollback().

See Also “CosTransactions::Current Class” on page 194

“Current::begin()” on page 196

“Current::rollback_only()” on page 199

“NoTransaction” on page 177

Current::rollback_only()

Synopsis static void rollback_only()
throw(CORBA::SystemException, NoTransaction);

Description The rollback_only() member function marks the transaction associated with
the calling thread for rollback. The transaction is modified so that the only
possible outcome is to roll back the transaction. Any participant in the
199

O r b i x O T S P r o g r am m e r ’ s a n d A dm in i s t r a t o r ’ s G u i d e
transaction can mark the transaction for rollback. The transaction is not rolled
back until the participant that created the transaction either commits or aborts
the transaction.

OrbixOTS allows the Current::rollback() function to be called instead of
rollback_only(). Calling Current::rollback() rolls back the transaction
immediately, preventing unnecessary work from being done between the time
the transaction is marked for rollback and the time the transaction is actually
rolled back.

If no transaction is associated with the calling thread, the NoTransaction
exception is thrown.

The Current class is nested within the CosTransactions class. The full name
for the function is CosTransactions::Current::rollback_only().

See Also “CosTransactions::Current Class” on page 194

“Current::rollback()” on page 199

“NoTransaction” on page 177

Current::set_timeout()

Synopsis static void set_timeout(unsigned long seconds)
throw(CORBA::SystemException);

Parameters The seconds parameter specifies the number of seconds that the transaction
waits for completion before rolling back.

Description The set_timeout() member function sets a timeout period for the transaction
associated with the calling thread. The timeout affects only those transactions
begun with the Current::begin() function after the timeout is set. The
seconds parameter sets the number of seconds from the time the transaction is
begun that it waits for completion before being rolled back; if the seconds
parameter is zero, no timeout is set for the transaction.

The Current class is nested within the CosTransactions class. The full name
for the function is CosTransactions::Current::set_timeout().

See Also “CosTransactions::Current Class” on page 194
 200

C o s T r a n s a c t i o n s M od u l e
Current::suspend()

Synopsis static Control_ptr suspend()
throw(CORBA::SystemException);

Description The suspend() member function suspends the transaction associated with the
calling thread. An identifier for the suspended transaction is returned by the
function. This identifier can be passed to the Current::resume() function to
resume the suspended transaction.

The Current class is nested within the CosTransactions class. The full name
for the function is CosTransactions::Current::suspend().

See Also “CosTransactions::Current Class” on page 194

“Current::resume()” on page 198

CosTransactions::RecoveryCoordinator Class
Synopsis class RecoveryCoordinator {

public:
Status replay_completion(Resource_ptr);

};
typedef RecoveryCoordinator *RecoveryCoordinator_ptr;
class RecoveryCoordinator_var;

Description The RecoveryCoordinator class enables a recoverable object to control the
recovery process for an associated resource. A RecoveryCoordinator object
can be obtained for a recoverable object via the Coordinator object associated
with the recoverable object. The Coordinator::register_resource()
function returns a RecoveryCoordinator object.

Notes This class is nested within the CosTransactions class. The full name for the
class is CosTransactions::RecoveryCoordinator.

OrbixOTS provides a RecoveryCoordinator_ptr type and a
RecoveryCoordinator_var helper class. The RecoveryCoordinator_ptr and
RecoveryCoordinator_var types hold and manage a reference to the
RecoveryCoordinator object.

Class Members
RecoveryCoordinator::replay_completion()

See Also “CosTransactions::Resource Class” on page 202
201

O r b i x O T S P r o g r am m e r ’ s a n d A dm in i s t r a t o r ’ s G u i d e
“Status Enumeration Type” on page 173

RecoveryCoordinator::replay_completion()

Synopsis Status replay_completion(Resource_ptr resource)
throw(CORBA::SystemException, NotPrepared);

Parameters The resource parameter specifies the resource associated with the recovery
coordinator.

Description The replay_completion() member function notifies the recovery coordinator
that the commit() or rollback() operations have not been performed for the
associated resource. Notifying the coordinator that the resource has not
completed causes completion to be retried, which is useful in certain failure
cases. The function returns the current status of the transaction.

This function can be called only for a resource that is prepared. If the resource is
not in the prepared state, the NotPrepared exception is thrown.

See Also “CosTransactions::Resource Class” on page 202

“Status Enumeration Type” on page 173

“CosTransactions::RecoveryCoordinator Class” on page 201

“NotPrepared” on page 177

CosTransactions::Resource Class
Synopsis class Resource {

public:
virtual Vote prepare();
virtual void rollback();
virtual void commit();
virtual void commit_one_phase();
virtual void forget();

};
typedef Resource *Resource_ptr;
class Resource_var;
 202

C o s T r a n s a c t i o n s M od u l e
Description The Resource class represents a recoverable resource, that is, a transaction
participant that manages data subject to change within a transaction. The
Resource class specifies the protocol that must be defined for a recoverable
resource. Interfaces that inherit from this class must implement each of the
member functions to manage the data appropriately for the recoverable object
based on the outcome of the transaction. These functions are invoked by the
Transaction Service to execute two-phase commit; the requirements of these
functions are described in the following sectons.

To become a participant in a transaction, a Resource object must be registered
with that transaction. The Coordinator::register_resource() function can
be used to register a resource for the transaction associated with the
Coordinator object.

A locking mechanism can be used to coordinate access to shared resources. The
Object Concurrency Control Service (OCCS) provides classes that enable
multiple clients to access a resource without creating inconsistencies in the
resource’s data. See the reference page for the CosConcurrencyControl class
for more information.

This class is nested within the CosTransactions class. The full name for the
class is CosTransactions::Resource. OrbixOTS provides a Resource_ptr
type and a Resource_var helper class. The Resource_ptr and Resource_var
types hold and manage a reference to the Resource object.

Two-phase Commit

The two-phase commit requires both a prepare() and a commit() function.

A prepare() function must be defined to vote on the outcome of the
transaction with which the resource is registered. The transaction service
invokes this function as the first phase of a two-phase commit; the return value
controls the second phase:

• Returns VoteReadOnly if the resource’s data is not modified by the
transaction. The transaction service does not invoke any other functions
on the resource, and the resource can forget all knowledge of the
transaction.

• Returns VoteCommit if the resource’s data is written to stable storage by
the transaction and the transaction is prepared. Based on the outcome of
other participants in the transaction, the transaction service calls either
203

O r b i x O T S P r o g r am m e r ’ s a n d A dm in i s t r a t o r ’ s G u i d e
commit() or rollback() for the resource. The resource should store a
reference to the RecoveryCoordinator object in stable storage to
support recovery of the resource.

• Returns VoteRollback for all other situations. The transaction service
calls the rollback() function for the resource, and the resource can
forget all knowledge of the transaction.

A commit() function must be defined to commit all changes made to the
resource as part of the transaction. If the forget() function has already been
called, no changes need to be committed. If the resource has not been prepared,
the NotPrepared exception must be thrown.

Use the heuristic outcome exceptions to report heuristic decisions related to
the resource. The resource must remember heuristic outcomes until the
forget() function is called, so that the same outcome can be returned if the
transaction service calls commit() again.

One-phase Commit

A commit_one_phase() function must be defined to commit all changes made to
the resource as part of the transaction. The transaction service may invoke this
function if the resource is the only participant in the transaction. Unlike the
commit() function, the commit_one_phase() function does not require that the
resource be prepared first. Use the heuristic outcome exceptions to report
heuristic decisions related to the resource. The resource must remember
heuristic outcomes until the forget() function is called, so that the same
outcome can be returned if the transaction service calls commit_one_phase()
again.

Rollback Transaction

A rollback() function must be defined to undo all changes made to the
resource as part of the transaction. If the forget() function has been called, no
changes need to be undone. Use the heuristic outcome exceptions to report
heuristic decisions related to the resource. The resource must remember
heuristic outcomes until the forget() function is called, so that the same
outcome can be returned if the transaction service calls rollback() again.
 204

C o s T r a n s a c t i o n s M od u l e
Forget Transaction

A forget() function must be defined to cause the resource to forget all
knowledge of the transaction. The transaction service invokes this function if the
resource throws a heuristic outcome exception in response to the commit() or
rollback() function.

See Also “CosTransactions::Synchronization Class” on page 207

“CosTransactions::RecoveryCoordinator Class” on page 201

“Vote Enumeration Type” on page 174

CosTransactions::SubtransactionAwareResour
ce Class
Synopsis class SubtransactionAwareResource : Resource {

public:
virtual void commit_subtransaction(Coordinator);
virtual void rollback_subtransaction();

};
typedef SubtransactionAwareResource *SubtransactionAwareResource_ptr;
class SubtransactionAwareResource_var;

Description The SubtransactionAwareResource class represents a recoverable resource
that makes use of nested transactions. This specialised resource object allows
the resource to be notified when a subtransaction for which it is registered
either commits or rolls back.

The SubtransactionAwareResource class specifies the protocol that must be
defined for this type of recoverable resource. Interfaces that inherit from this
class must implement each of the member functions to manage the recoverable
object’s data appropriately based on the outcome of the subtransaction. These
functions are invoked by the transaction service; the requirements of these
functions are described below.

The Coordinator::register_subtran_aware() function can be used to
register a resource with the subtransaction associated with the Coordinator
object. The resource can also register with the top-level transaction by using the
Coordinator::register_resource() function as well; in this case, the
205

O r b i x O T S P r o g r am m e r ’ s a n d A dm in i s t r a t o r ’ s G u i d e
protocol for the Resource class must be defined in addition to the protocol for
SubtransactionAwareResource. See the reference page for the Resource class
for more information.

Commit Subtransaction
A commit_subtransaction() function must be defined to commit all changes
made to the resource as part of the subtransaction. If an ancestor transaction
rolls back, the subtransaction’s changes are rolled back. The transaction service
invokes this function if the resource is registered with a subtransaction and it is
committed.

The function must be defined to take a Coordinator object as its only
argument. When the transaction service invokes this function, it passes the
Coordinator object associated with the parent transaction.

Rollback Subtransaction
A rollback_subtransaction() function must be defined to undo all changes
made to the resource as part of the subtransaction. The transaction service
invokes this function if the resource is registered with a subtransaction and it is
rolled back.

Notes This class is nested within the CosTransactions class. The full name for the
class is CosTransactions::SubtransactionAwareResource.

OrbixOTS provides a SubtransactionAwareResource_ptr type and a
SubtransactionAwareResource_var helper class. The
SubtransactionAwareResource_ptr and SubtransactionAwareResource_var
types hold and manage a reference to the SubtransactionAwareResource
object.

See Also “CosTransactions::Coordinator Class” on page 182

“CosTransactions::Resource Class” on page 202

“Status Enumeration Type” on page 173
 206

C o s T r a n s a c t i o n s M od u l e
CosTransactions::Synchronization Class
Synopsis class Synchronization : TransactionalObject {

public:
virtual void before_completion();
virtual void after_completion(Status);

};

Description The Synchronization class represents a non-recoverable object that maintains
transient state data and is dependent on a recoverable object to ensure that the
data is persistent. To make data persistent, a synchronization object moves its
data to one or more Resource objects registered with the same transaction
before the transaction completes.

The Synchronization class specifies a protocol that must be defined for this
type of object. A synchronization object must be implemented as a class derived
from the Synchronization class. The derived class must implement each of the
member functions to ensure that the data maintained by the nonrecoverable
object is made recoverable. The transaction service invokes these functions
before and after the registered resources commit; the specific requirements of
these functions are described in the following sections.

The Coordinator::register_synchronization() function can be used to
register a synchronization object with the transaction associated with the
Coordinator object.

Before Completion

A before_completion() function must be defined to move the synchronization
object’s data to a recoverable object. The transaction service invokes this
function prior to the prepare phase of the transaction. The function is invoked
only if the synchronization object is registered with a transaction and the
transaction attempts to commit.

The only exceptions this function can throw are CORBA::SystemException
exceptions. Throwing other exceptions can cause the transaction to be marked
for rollback only.
207

O r b i x O T S P r o g r am m e r ’ s a n d A dm in i s t r a t o r ’ s G u i d e
After Completion

An after_completion() function must be defined to do any necessary
processing required by the synchronization object; for example, the function
could be used to release locks held by the transaction. The transaction service
invokes this function after the outcome of the transaction is complete. The
function is invoked only if the synchronization object is registered with a
transaction and the transaction has either committed or rolled back.

The function must be defined to take a Status value as its only argument. When
the transaction service invokes this function, it passes the status of the
transaction with which the synchronization object is registered.

The only exceptions this function can throw are CORBA::SystemException
exceptions. Any exceptions that are thrown have no effect on the commitment
of the transaction.

Notes This class is nested within the CosTransactions class. The full name for the
class is CosTransactions::Synchronization.

OrbixOTS provides a Synchronization_ptr type and a Synchronization_var
helper class. The Synchronization_ptr and Synchronization_var types hold
and manage a reference to the Synchronization object. Refer to the Orbix
documentation for more information on the use of object reference types.

 See Also “CosTransactions::Coordinator Class” on page 182

“Coordinator::register_synchronization()” on page 193

“CosTransactions::Resource Class” on page 202

“Status Enumeration Type” on page 173
 208

C o s T r a n s a c t i o n s M od u l e
CosTransactions::Terminator Class
Synopsis class Terminator {

public:
void commit(CORBA::Boolean);
void rollback();

};
typedef Terminator *Terminator_ptr;
class Terminator_var;

Description The Terminator class enables explicit termination of a factory-created
transaction. The transaction with which the Terminator object is associated can
be either committed or rolled back. The Control::get_terminator() function
can be used to return the Terminator object associated with a transaction. A
Terminator_ptr type holds a reference to a Terminator object.

This class is nested within the CosTransactions class. The full name for the
class is CosTransactions::Terminator.

OrbixOTS also provides a Terminator_var helper class. Both the
Terminator_ptr and Terminator_var types hold and manage a reference to a
Terminator object.

Class Members
Terminator::commit()
Terminator::rollback()

See Also “CosTransactions::Coordinator Class” on page 182

“Control::get_terminator()” on page 180

“CosTransactions::Control Class” on page 178

“Status Enumeration Type” on page 173

Terminator::commit()

Synopsis void commit(CORBA::Boolean report_heuristics)
throw(CORBA::SystemException,

HeuristicHazard,
TRANSACTION_ROLLEDBACK);

Parameters The report_heuristics parameter specifies whether heuristic decisions should
be reported for the commit.
209

O r b i x O T S P r o g r am m e r ’ s a n d A dm in i s t r a t o r ’ s G u i d e
Description The commit() member function attempts to commit the transaction associated
with the Terminator object. If the report_heuristics parameter is true, the
HeuristicHazard exception is thrown when the participants report that a
heuristic decision has possibly been made.

The commit() function takes a value of type CORBA::Boolean as its first
argument.

If the transaction has been marked as rollback-only, or if all participants in the
transaction do not agree to commit, the transaction is rolled back and the
CORBA::TRANSACTION_ROLLEDBACK system exception is thrown.

The commit() function takes a value of type CORBA::Boolean as its first
argument.

The Terminator class is nested within the CosTransactions class. The full
name for the function is CosTransactions::Terminator::commit().

See Also “CosTransactions::Coordinator Class” on page 182

“HeuristicHazard” on page 176

“CosTransactions::Terminator Class” on page 209

“Terminator::rollback()” on page 210

“CosTransactions::Control Class” on page 178

“TRANSACTION_ROLLEDBACK” on page 178

Terminator::rollback()

Synopsis void rollback();

Description The rollback() member function rolls back the transaction associated with the
Terminator object.

See Also Coordinator class

Terminator class
Terminator::commit()
 210

C o s T r a n s a c t i o n s M od u l e
CosTransactions::TransactionalObject Base
Class
Synopsis class TransactionalObject {};

typedef TransactionalObject *TransactionalObject_ptr;
class TransactionalObject_var;

Description The TransactionalObject class is the base class for all transactional objects. If
an object’s interface is derived from this class, the object behaves transactionally.
Requests to a transactional object propagate the transaction context of the
current thread to the object; that is, the requested operation is executed within
the scope of the transaction. If a request is sent to a transactional object and
there is no current transaction, the CORBA::TRANSACTION_REQUIRED exception
is thrown. If a request is sent to a transactional object and the current
transaction has already rolled back, the CORBA::TRANSACTION_ROLLEDBACK
exception is thrown.

Notes This class is nested within the CosTransactions class. The full name for the
class is CosTransactions::TransactionalObject.

OrbixOTS also provides a TransactionalObject_ptr type and a
TransactionalObject_var helper class. The TransactionalObject_ptr and
TransactionalObject_var types hold and manage a reference to a
TransactionalObject object.

See Also “CosTransactions::Control Class” on page 178

“CosTransactions::Current Class” on page 194
211

O r b i x O T S P r o g r am m e r ’ s a n d A dm in i s t r a t o r ’ s G u i d e
CosTransactions::TransactionFactory Class
Synopsis class TransactionFactory {

public:
Control_ptr create(unsigned long timeout);
Control_ptr recreate(const PropagationContext& ctx);

};
typedef TransactionFactory *TransactionFactory_ptr;
class TransactionFactory_var;

Description The TransactionFactory class represents a transaction factory that allows the
originator of transactions to begin a new transaction for use with the explicit
model of transaction demarcation. Servers provide a default instance of this
class. Clients can bind to the default instance by using the standard binding
mechanism for the object request broker.

Notes This class is nested within the CosTransactions class. The full name for the
class is CosTransactions::TransactionFactory.

OrbixOTS also provides a TransactionFactory_ptr type and a
TransactionFactory_var helper class. The TransactionFactory_ptr and
TransactionFactory_var types hold and manage a reference to a
TransactionFactory object.

Class Members
TransactionFactory::create()
TransactionFactory::recreate();

See Also “CosTransactions::Control Class” on page 178

TransactionFactory::create()

Synopsis Control_ptr create(unsigned long timeout)
throw(CORBA::SystemException);

Parameters The timeout parameter specifies the number of seconds that the transaction
waits to complete before rolling back. If the timeout parameter is zero, no
timeout is set for the transaction.
 212

C o s T r a n s a c t i o n s M od u l e
Description The create() member function creates a new top-level transaction for use with
the explicit model of transaction demarcation. A Control object is returned for
the transaction. The Control object can be used to propagate the transaction
context. See the reference page for the Control class for more information.

See Also “CosTransactions::TransactionFactory Class” on page 212

“CosTransactions::Control Class” on page 178

TransactionFactory::recreate()

Synopsis Control_ptr TransactionFactory::recreate(
const PropagationContext& ctx);

Description Creates a new representation for an existing transaction defined in the
propagation context ctx. This is used to import a transaction from another
domain. The function returns a control object for the new transaction
representation.

See Also “Coordinator::get_txcontext()” on page 186
213

O r b i x O T S P r o g r am m e r ’ s a n d A dm in i s t r a t o r ’ s G u i d e
 214

 12
Concurrency Control Classes

The Object Management Group Object Concurrency Control Service
(OMG OCCS) consists of classes used to mediate concurrent access
to resources. It enables multiple clients to coordinate their access to
shared resources.

Introduction
The OCCS is used in C++ applications where the database or other resource
does not have its own object concurrency control. A client use the OCCS in
one of two ways:

• It can obtain locks on behalf of a transaction. In this case, the client
typically drops all locks after the transaction completes.

• It can obtain locks on behalf of the current thread, which must be
executing outside the scope of a transaction. The client must drop locks
individually.

The OCCS is only available for C++ servers and client C++ applications must
include the OrbixOTS.hh header file.
215

O r b i x O T S P r o g r am m e r ’ s a n d A dm in i s t r a t o r ’ s G u i d e
Lock Sets

A lock set is a collection of locks associated with a single resource. Lock sets are
represented by:

• CosConcurrencyControl::LockSet objects, for nontransactional clients
and clients using the implicit transactional model.

• CosConcurrencyControl::TransactionalLockSet objects, for clients
using the explicit transactional model.

Clients must associate lock sets with resources. That is, the client must define
and maintain the mapping between lock sets and resources and consistently
using locking when accessing that resource. Lock sets are created by using
functions from the CosConcurrencyControl::LockSetFactory class.

Lock Modes
Locks can be obtained in specific modes that determine the degree of
concurrent access permitted to locked data. OCCS supports five lock modes,
defined by the CosConcurrencyControl::lock_mode data type: read, write,
upgrade, intention_read, and intention_write. The following table defines
the compatibility between the modes:

The shading indicates when locks conflict.

Requested Mode

Granted Mode IR R U IW W

Intention Read (IR)

Read (R)

Upgrade (U)

Intention Write (IW)

Write (W)

Table 12.1: Lock Compatibility
 216

C o n cu r r e n c y C o n t r o l C l a s s e s
Lock Duration

Locks held on behalf of a transaction are typically held until the transaction
commits or aborts, at which time the locks can be dropped using the
CosConcurrencyControl::LockCoordinator::drop_locks() function. This
function drops all locks held by the transaction. If a transactional client wants to
release one or more locks before the transaction completes, it can use the
CosConcurrencyControl::LockSet::unlock() or
CosConcurrencyControl::TransactionalLockSet::unlock() functions to do
so.

A lock coordinator manages the release of locks held by a transaction. Lock sets
that are related share the same lock coordinator. A client can determine the
coordinator by using the
CosConcurrencyControl::LockSet::get_coordinator() or
CosConcurrencyControl::TransactionalLockSet::get_coordinator()
function.

Locks held by threads outside of the scope of a transaction must be explicitly
dropped by using the CosConcurrencyControl::LockSet::unlock() function.

Overview of the Classes

The OCCS classes provide the following functionality:

• Defining lock sets:

CosConcurrencyControl::LockSet
CosConcurrencyControl::TransactionalLockSet

• Creating lock sets:

CosConcurrencyControl::LockSetFactory

• Dropping locks held by a transaction:

CosConcurrencyControl::LockCoordinator

Lock Mode Enumeration Data Type

Synopsis enum lock_mode {
read,
write,
upgrade,
217

O r b i x O T S P r o g r am m e r ’ s a n d A dm in i s t r a t o r ’ s G u i d e
intention_read,
intention_write

};

Description The lock_mode data type is used to specify the lock mode. Two of the lock
modes, intention_read and intention_write, are used to specify intention
locks. Intention locks are used when locking hierarchical resources and are
typically obtained on the root or ancestors of a desired resource. They provide
a way to minimise potential conflicts on lower-level resources without
needlessly using locks of coarser granularity.

Constants

See Also “CosConcurrencyControl Base Class” on page 219

“CosConcurrencyControl::LockSet Class” on page 221

“CosConcurrencyControl::TransactionalLockSet Class” on page 229

read Specifies a read lock. Other transactions can read the
locked data, but none can modify the data while a read
lock is held.

write Specifies a write lock. No other transaction can
simultaneously access the locked data while a write lock is
held.

upgrade Specifies an upgrade lock. An upgrade lock is a type of read
lock that is used if a transaction needs to read data that it
may subsequently need to write. An upgrade lock conflicts
with other upgrade locks held on behalf of other
transactions. If an upgrade lock is obtained successfully, it
indicates that no other upgrade lock is held on that data
and prevents any new upgrade locks from being obtained
on that data. This type of lock can be used to head off
potential deadlocks.

intention_read Specifies an intention read lock.

intention_write Specifies an intention write lock.
 218

C o n cu r r e n c y C o n t r o l C l a s s e s
CosConcurrencyControl Base Class
Synopsis class CosConcurrencyControl {

public:
enum lock_mode {

read, write, upgrade,
intention_read, intention_write

};
class LockNotHeld : public CORBA::UserException{...};
class LockCoordinator {...};
class LockSet {...};
class TransactionalLockSet {...};
class LockSetFactory {...};
typedef LockCoordinator* LockCoordinator_ptr;
typedef LockCoordinator* LockCoordinatorRef;
typedef LockSet* LockSet_ptr;
typedef TransactionalLockSet* TransactionalLockSet_ptr;

};

Description The CosConcurrencyControl class is the base class for Object Concurrency
Control Service (OCCS) classes. The Concurrency Control service enables
multiple clients to coordinate their access to shared resources. Locks can be
held on behalf of a transaction or on behalf of the current thread, which must be
executing outside of the scope of a transaction. Transactional clients can use
either the implicit or explicit transaction model. The class
CosConcurrencyControl::LockSet is used by Nontransactional clients and by
transactional clients using the implicit transaction model. The
CosConcurrencyControl::TransactionalLockSet is used by transactional
clients using the explicit transaction model.

The CosConcurrencyControl class contains the classes used for locking. It also
contains the CosConcurrencyControl::lock_mode data type and several
defined types used by OCCS classes.

Class Members
CosConcurrencyControl::LockCoordinator class
CosConcurrencyControl::LockSet class
CosConcurrencyControl::LockSetFactory class
CosConcurrencyControl::TransactionalLockSet class
CosConcurrencyControl::lock_mode
219

O r b i x O T S P r o g r am m e r ’ s a n d A dm in i s t r a t o r ’ s G u i d e
CosConcurrencyControl::LockCoordinator
Class
Synopsis class ConcurrencyControl::LockCoordinator {

public:
void drop_locks();

};

Description The LockCoordinator class represents a lock coordinator. A LockCoordinator
object is created for each transaction that creates
CosConcurrencyControl::LockSet or
CosConcurrencyControl::TransactionalLockSet objects.

Class Members
CosConcurrencyControl::LockCoordinator::drop_locks()

See Also “CosConcurrencyControl::LockSet Class” on page 221

“CosConcurrencyControl::TransactionalLockSet Class” on page 229

LockCoordinator::drop_locks()

Synopsis void drop_locks()
throw(CORBA::SystemException);

Description The drop_locks() function releases all locks held by a transaction. A client
must call this function after a transaction commits or aborts. For nested
transactions, this function must be called only when the nested transaction
aborts.

See Also “CosConcurrencyControl::LockCoordinator Class” on page 220

“LockSet::get_coordinator()” on page 225

“TransactionalLockSet::get_coordinator()” on page 233
 220

C o n cu r r e n c y C o n t r o l C l a s s e s
CosConcurrencyControl::LockSet Class
Synopsis class CosConcurrencyControl::LockSet {

public:
void lock(CosConcurrencyControl::lock_mode);
CORBA::Boolean try_lock(CosConcurrencyControl::lock_mode);
void unlock(CosConcurrencyControl::lock_mode);
void change_mode(

CosConcurrencyControl::lock_mode,
CosConcurrencyControl::lock_mode

);
CosConcurrencyControl::LockCoordintor_ptr get_coordinator(

CosTransactions::Coordinator_ptr
);

};

Description The LockSet class represents a lock set. A lock set is a collection of locks
associated with a single resource. Clients must associate a LockSet object with a
resource.

This LockSet class includes functions for acquiring and releasing locks, for
changing the lock mode of an existing lock, and for determining the lock
coordinator associated with a specific transaction.

LockSet objects can used by clients operating in the implicit transactional model.
Locks are called and released on behalf of the calling thread or transaction.
Clients using the explicit transactional model use TransactionalLockSet
objects. Transactional clients must release all locks when the transaction
commits or aborts by calling the
CosConcurrencyControl::LockCoordinator::drop_locks() function.
Transactional clients can also use the
CosConcurrencyControl::LockSet::unlock() function to release specific
locks.

LockSet objects can also be used nontransactionally. Clients use the
CosConcurrencyControl::LockSet::lock() function or the
CosConcurrencyControl::LockSet::try_lock() function to obtain a lock on
the resource associated with the LockSet object. Nontransactional clients must
drop locks explicitly by calling the
CosConcurrencyControl::LockSet::unlock() function.
221

O r b i x O T S P r o g r am m e r ’ s a n d A dm in i s t r a t o r ’ s G u i d e
Lock sets are created by using the CosConcurrencyControl::LockSetFactory
class. Functions of that class are used to create
CosConcurrencyControl::LockSet and
CosConcurrencyControl::TransactionalLockSet objects.

Class MembersCosConcurrencyControl::LockSet::change_mode
CosConcurrencyControl::LockSet::get_coordinator()
CosConcurrencyControl::LockSet::lock()
CosConcurrencyControl::LockSet::try_lock()
CosConcurrencyControl::LockSet::unlock()

See Also “Lock Modes” on page 216

“CosConcurrencyControl::LockSetFactory Class” on page 226

“CosConcurrencyControl::TransactionalLockSet Class” on page 229

LockSet::lock()

Synopsis void lock(CosConcurrencyControl::lock_mode mode)
throw(CORBA::SystemException);

Parameters The mode parameter specifies the lock mode for the acquired lock.

Description The lock() function acquires a lock in the specified mode. If a lock is held on
the same lock set in an incompatible mode by another client, the operation
blocks until the lock is acquired. If the call is on behalf of a transactional client
and the transaction is aborted while the call is blocked, the
CORBA::TRANSACTION_ROLLEDBACK exception is thrown.

This function takes one additional parameter of type CORBA::Environment for
C++ compilers that do not support exception handling. If your compiler
supports exceptions, use the parameter’s default value.

See Also “Lock Modes” on page 216

“CosConcurrencyControl::LockSet Class” on page 221

“CosConcurrencyControl::TransactionalLockSet Class” on page 229

“LockSet::try_lock()” on page 223

“LockSet::unlock()” on page 223
 222

C o n cu r r e n c y C o n t r o l C l a s s e s
LockSet::try_lock()

Synopsis CORBA::Boolean try_lock(CosConcurrencyControl::lock_mode mode)
throw(CORBA::SystemException);

Parameters The mode parameter specifies the lock mode for the acquired lock.

Description The try_lock() function attempts to acquire a lock in the specified mode. If a
lock is held on the same lock set in an incompatible mode by another client, the
function returns false to indicate that the lock can not be acquired. If the
function is called on behalf of a transactional client and the transaction is aborted
while the function is trying to acquire the lock, the
CORBA::TRANSACTION_ROLLEDBACK exception is thrown.

This function takes one additional parameter of type CORBA::Environment for
C++ compilers that do not support exception handling. If your compiler
supports exceptions, use the parameter’s default value.

See Also “Lock Modes” on page 216

“CosConcurrencyControl::LockSet Class” on page 221

“CosConcurrencyControl::TransactionalLockSet Class” on page 229

“LockSet::try_lock()” on page 223

“LockSet::unlock()” on page 223

LockSet::unlock()

Synopsis void unlock(CosConcurrencyControl::lock_mode mode)
throw(CORBA::SystemException,

CosConcurrencyControl::LockNotHeld);

Parameters The mode parameter specifies the lock mode for the dropped lock.

Description The unlock() function drops a single lock in the specified mode. (A client can
hold multiple locks in the same mode.) Transactional clients must release all
locks when the transaction commits or aborts by calling the
CosConcurrencyControl::LockCoordinator::drop_locks() function.
Nontransactional clients must drop locks explicitly by using the unlock()
function. Transactional clients can also use the unlock() function to release
specific locks.
223

O r b i x O T S P r o g r am m e r ’ s a n d A dm in i s t r a t o r ’ s G u i d e
If an application attempts to drop a lock that is not held, the
Cos:ConcurrencyControl::LockNotHeld exception is thrown.

This function takes one additional parameter of type CORBA::Environment for
C++ compilers that do not support exception handling. If your compiler
supports exceptions, use the parameter’s default value.

See Also “Lock Modes” on page 216

“CosConcurrencyControl::LockSet Class” on page 221

“CosConcurrencyControl::TransactionalLockSet Class” on page 229

“LockSet::try_lock()” on page 223

“LockSet::lock()” on page 222

LockSet::change_mode()

Synopsis void change_mode(
CosConcurrencyControl::lock_mode held_mode,
CosConcurrencyControl::lock_mode new_mode)

throw(CORBA::SystemException,
CosConcurrencyControl::LockNotHeld);

Parameters

Description The change_mode() function changes the mode of a single lock. If the new mode
conflicts with an existing lock mode held by an unrelated client, the function is
blocked until the new mode can be granted. If the call is on behalf of a
transactional client and the transaction is aborted while the call is blocked, the
CORBA::TRANSACTION_ROLLEDBACK exception is thrown. If an application tries
to change the mode of a lock that is not held, the
CosConcurrencyControl::LockNotHeld exception is thrown. This function
takes one additional parameter of type CORBA::Environment for C++
compilers that do not support exception handling. If your compiler supports
exceptions, use the parameter’s default value.

See Also “Lock Modes” on page 216

held_mode Specifies the current lock mode.

new_mode Specifies the new lock mode.
 224

C o n cu r r e n c y C o n t r o l C l a s s e s
“CosConcurrencyControl::LockSet Class” on page 221

“CosConcurrencyControl::TransactionalLockSet Class” on page 229

“LockSet::try_lock()” on page 223

“LockSet::lock()” on page 222

LockSet::get_coordinator()

Synopsis CosConcurrencyControl::LockCoordinator_ptr get_coordinator(
CosTransactions::Coordinator_ptr which)

throw(CORBA::SystemException);

Parameters The which parameter specifies the transaction for which the lock coordinator is
to be returned. To return the lock coordinator for the transaction implicitly
associated with the current thread, specify a value of
CosTransactions::Coordinator::_nil().

Description The get_coordinator() function returns the lock coordinator associated with
the specified transaction. This function takes one additional parameter of type
CORBA::Environment for C++ compilers that do not support exception
handling. If your compiler supports exceptions, use the parameter’s default
value.

See Also “CosTransactions::Coordinator Class” on page 182

“CosConcurrencyControl::LockCoordinator Class” on page 220

“CosConcurrencyControl::LockSet Class” on page 221

“CosConcurrencyControl::TransactionalLockSet Class” on page 229
225

O r b i x O T S P r o g r am m e r ’ s a n d A dm in i s t r a t o r ’ s G u i d e
CosConcurrencyControl::LockSetFactory
Class
Synopsis class ConcurrencyControl::LockSetFactory {

public:
CosConcurrencyControl::LockSet_ptr create();
CosConcurrencyControl::LockSet_ptr create_related(

CosConcurrencyControl::LockSet_ptr);
CosConcurrencyControl::TransactionalLockSet_ptr

create_transactional();
CosConcurrencyControl::TransactionalLockSet_ptr

create_transactional_related(
CosConcurrencyControl::TransactionalLockSet_ptr);

};

Description The LockSetFactory class represents a lock set factory. This class includes
functions that are used to create objects of the LockSet class and the
TransactionalLockSet class.

Class MembersCosConcurrencyControl::LockSetFactory::create()
CosConcurrencyControl::LockSetFactory::create_related()
CosConcurrencyControl::LockSetFactory::create_transactional()
CosConcurrencyControl::LockSetFactory::create_transactional_related()

See Also “CosConcurrencyControl::LockSet Class” on page 221

“CosConcurrencyControl::TransactionalLockSet Class” on page 229

LockSetFactory::create()

Synopsis CosConcurrencyControl::LockSet_ptr create()
throw(CORBA::SystemException);

Description The create() function creates a new object of the LockSet class and a lock
coordinator for that lock set. This function takes one additional parameter of
type CORBA::Environment for C++ compilers that do not support exception
handling. If your compiler supports exceptions, use the parameter’s default
value.

See Also “CosConcurrencyControl::LockSet Class” on page 221

“CosConcurrencyControl::LockSetFactory Class” on page 226
 226

C o n cu r r e n c y C o n t r o l C l a s s e s
“LockSetFactory::create_related()” on page 227

“LockSetFactory::create_transactional()” on page 227

LockSetFactory::create_related()

Synopsis CosConcurrencyControl::LockSet_ptr create_related(
CosConcurrencyControl::LockSet_ptr which)

throw(CORBA::SystemException);

Parameters The which parameter specifies an existing lock set to which the new lock set is
to be related.

Description The create_related() function creates a new object of the LockSet class
related to an existing lock set. Related lock sets drop their locks together. This
function takes one additional parameter of type CORBA::Environment for C++
compilers that do not support exception handling. If your compiler supports
exceptions, use the parameter’s default value.

WARNING: This function is currently not implemented. Attempting to call this
function results in an error.

See Also “CosConcurrencyControl::LockSet Class” on page 221

“CosConcurrencyControl::LockSetFactory Class” on page 226

“LockSetFactory::create()” on page 226

“LockSetFactory::create_transactional()” on page 227

LockSetFactory::create_transactional()

Synopsis CosConcurrencyControl::TransactionalLockSet_ptr
create_transactional()

throw(CORBA::SystemException);

Description The create_transactional() function creates a new object of the
TransactionalLockSet class and a lock coordinator for that lock set.
Transactional lock sets are used by clients using the explicit transactional model.
227

O r b i x O T S P r o g r am m e r ’ s a n d A dm in i s t r a t o r ’ s G u i d e
This function takes one additional parameter of type CORBA::Environment for
C++ compilers that do not support exception handling. If your compiler
supports exceptions, use the parameter’s default value.

See Also “CosConcurrencyControl::LockSet Class” on page 221

“CosConcurrencyControl::TransactionalLockSet Class” on page 229

“LockSetFactory::create()” on page 226

“LockSetFactory::create_transactional_related()” on page 228

LockSetFactory::create_transactional_related()

Synopsis CosConcurrencyControl::TransactionalLockSet_ptr
create_transactional_related(

CosConcurrencyControl::TransactionalLockSet_ptr which)
throw(CORBA::SystemException);

Parameters The which parameter specifies an existing transactional lock set to which the
new lock set is to be related.

Description The create_transactional_related() function creates a new object of the
TransactionalLockSet class related to an existing transactional lock set.
Related lock sets drop their locks together. Transactional lock sets are used by
clients using the explicit transactional model.

WARNING: This function is currently not implemented. Attempting to call this
function results in an error.

See Also “CosConcurrencyControl::TransactionalLockSet Class” on page 229

“CosConcurrencyControl::LockSetFactory Class” on page 226

“LockSetFactory::create_transactional()” on page 227
 228

C o n cu r r e n c y C o n t r o l C l a s s e s
CosConcurrencyControl::TransactionalLockSet
Class
Synopsis class ConcurrencyControl::TransactionalLockSet {

public:
void lock(

CosTransactions::Coordinator_ptr,
CosConcurrencyControl::lock_mode);

CORBA::Boolean try_lock(
CosTransactions::Coordinator_ptr,
CosConcurrencyControl::lock_mode);

void unlock(
CosTransactions::Coordinator_ptr,
CosConcurrencyControl::lock_mode);

void change_mode(
CosTransactions::Coordinator_ptr,
CosConcurrencyControl::lock_mode,
CosConcurrencyControl::lock_mode);

CosConcurrencyControl::LockCoordintor_ptr get_coordinator(
CosTransactions::Coordinator_ptr);

};

Description The TransactionalLockSet class represents a transactional lock set. A lock set
is a collection of locks associated with a single resource. Clients must associate a
TransactionalLockSet object with a resource. The TransactionalLockSet
class includes functions for acquiring and releasing locks, for changing the lock
mode of an existing lock, and for determining the lock coordinator associated
with a specific transaction.

Clients must release all locks when the transaction commits or aborts by using
the CosConcurrencyControl::LockCoordinator::drop_locks() function.

TransactionalLockSet objects can be used by clients that are using the explicit
transactions model. The operations provided in the interface operate identically
to those in the LockSet class. However, functions in the
TransactionalLockSet class take an additional parameter, which is used to
explicitly specify the transaction coordinator.

Lock sets are created by using the CosConcurrencyControl::LockSetFactory
class. Functions of this class are used to create
CosConcurrencyControl::LockSet and
CosConcurrencyControl::TransactionalLockSet objects.
229

O r b i x O T S P r o g r am m e r ’ s a n d A dm in i s t r a t o r ’ s G u i d e
Class MembersCosConcurrencyControl::TransactionalLockSet::change_mode()
CosConcurrencyControl::TransactionalLockSet::get_coordinator()
CosConcurrencyControl::TransactionalLockSet::lock()
CosConcurrencyControl::TransactionalLockSet::try_lock()

See Also “CosConcurrencyControl::LockSet Class” on page 221

“CosConcurrencyControl::LockSetFactory Class” on page 226

TransactionalLockSet::lock()

Synopsis void lock(
CosTransactions::Coordinator_ptr which,
CosConcurrencyControl::lock_mode mode)

throw(CORBA::SystemException);

Parameters

Description The lock() function acquires a lock in the specified mode on behalf of the
specified transaction. If a lock is held on the same lock set in an incompatible
mode by another client, the operation is blocked until the lock is acquired. If the
transaction is aborted, the CORBA::TRANSACTION_ROLLEDBACK exception is
thrown.

See Also “CosTransactions::Coordinator Class” on page 182

“Lock Modes” on page 216

“CosConcurrencyControl::LockSet Class” on page 221

“CosConcurrencyControl::TransactionalLockSet Class” on page 229

“TransactionalLockSet::try_lock()” on page 231

“TransactionalLockSet::unlock()” on page 231

which Specifies the coordinator for the transaction.

mode Specifies the lock mode for the acquired lock.
 230

C o n cu r r e n c y C o n t r o l C l a s s e s
TransactionalLockSet::try_lock()

Synopsis CORBA::Boolean try_lock(
CosTransactions::Coordinator_ptr which,
CosConcurrencyControl::lock_mode mode)

throw(CORBA::SystemException);

Parameters

Description The try_lock() function attempts to acquire a lock in the specified mode on
behalf of the specified transaction. If a lock is held on the same lock set in an
incompatible mode by another client, the function returns false to indicate that
the lock could not be acquired. If the transaction is aborted while the function is
trying the lock, theCORBA::TRANSACTION_ROLLEDBACK exception is thrown.

See Also “CosTransactions::Coordinator Class” on page 182

“Lock Modes” on page 216

“CosConcurrencyControl::LockSet Class” on page 221

“CosConcurrencyControl::TransactionalLockSet Class” on page 229

“TransactionalLockSet::lock()” on page 230

“TransactionalLockSet::unlock()” on page 231

TransactionalLockSet::unlock()

Synopsis void unlock(
CosTransactions::Coordinator_ptr which,
CosConcurrencyControl::lock_mode mode)

throw(CORBA::SystemException,
CosConcurrencyControl::LockNotHeld);

Parameters

which Specifies the coordinator for the transaction.

mode Specifies the lock mode for the acquired lock.

which Specifies the coordinator for the transaction.

mode Specifies the lock mode for the dropped lock.
231

O r b i x O T S P r o g r am m e r ’ s a n d A dm in i s t r a t o r ’ s G u i d e
Description The unlock() function drops a single lock in the specified mode on behalf of the
specified transaction. (A client can hold multiple locks in the same mode.) If an
application attempts to drop a lock that is not held, the
CosConcurrencyControl::LockNotHeld exception is thrown.

See Also “CosTransactions::Coordinator Class” on page 182

“Lock Modes” on page 216

“CosConcurrencyControl::LockSet Class” on page 221

“CosConcurrencyControl::TransactionalLockSet Class” on page 229

“TransactionalLockSet::try_lock()” on page 231

“TransactionalLockSet::lock()” on page 230

TransactionalLockSet::change_mode()

Synopsis void change_mode(
CosTransactions::Coordinator_ptr which,
CosConcurrencyControl::lock_mode held_mode,
CosConcurrencyControl::lock_mode new_mode)

throw(CORBA::SystemException,
CosConcurrencyControl::LockNotHeld);

Parameters

Description The change_mode() function changes the mode of a single lock held on behalf of
the specified transaction. If the new mode conflicts with an existing mode held
by an unrelated client, the function is blocked until the new mode can be
granted. If the call is blocked and the transaction is aborted, the
CORBA::TRANSACTION_ROLLEDBACK exception is thrown. The
Cos:ConcurrencyControl::LockNotHeld exception is thrown if an application
tries to change the lock mode of a lock that is not held.

See Also “CosTransactions::Coordinator Class” on page 182

“Lock Modes” on page 216

which Specifies the coordinator for the transaction.

held_mode Specifies the current lock mode.

new_mode Specifies the new lock mode.
 232

C o n cu r r e n c y C o n t r o l C l a s s e s
“CosConcurrencyControl::LockSet Class” on page 221

“CosConcurrencyControl::TransactionalLockSet Class” on page 229

“TransactionalLockSet::try_lock()” on page 231

“TransactionalLockSet::lock()” on page 230

TransactionalLockSet::get_coordinator()

Synopsis CosConcurrencyControl::LockCoordinator_ptr get_coordinator(
CosTransactions::Coordinator_ptr which)

throw(CORBA::SystemException);

Parameters The which parameter specifies the transaction for which the lock coordinator is
to be returned. To return the lock coordinator for the transaction implicitly
associated with the current thread, specify a value of
CosTransactions::Coordinator::_nil().

Description The get_coordinator() function returns the lock coordinator associated with
the specified transaction.

See Also “CosTransactions::Coordinator Class” on page 182

“CosConcurrencyControl::LockSet Class” on page 221

“CosConcurrencyControl::TransactionalLockSet Class” on page 229
233

 13
Java Classes

OrbixOTS provides a Java implementation of the CORBA OTS
interface. It supports the development of distributed transactional
applications using the Orbix Java Edition object request broker.

Introduction
The OrbixOTS Java classes consist of two main packages that contain the
standard and non-standard interfaces that make up the OTS implementation.
The standards based org.omg.CORBA.CosTransactions package contains the
Java mapping of the OMG OTS IDL interfaces as implemented by the Orbix Java
Edition IDL compiler. These interfaces are described in detail in the latter part of
this chapter.

The IE.Iona.OrbixWeb.CosTransactions package contains the OrbixOTS
implementation specific interfaces that are used for initializing and configuring
OTS client and server applications.

In order to reference these classes by name in your code, import the classes
using the standard syntax, bearing in mind that order is important:

import org.omg.CosTransactions.*;
import IE.Iona.OrbixWeb.CosTransacitons.*;

All OTS operations can throw CORBA::SystemExceptions if an object request
broker (ORB) errors occur.

C++ implementations for the CosTransactions interfaces are described in
Chapter 11, “CosTransactions Module” on page 171.
235

O r b i x O T S P r o g r am m e r ’ s a n d A dm in i s t r a t o r ’ s G u i d e
Overview of the Classes

Package IE.Iona.OrbixWeb.CosTransactions
The classes in this package provide the following functionality:

• Client: this class configures, initializes and terminates transactional
clients.

• Server: this class configures, initializes and terminates transactional
servers.

• TransactionPolicy: this class defines which OrbixOTS transaction
policies are supported.

Package org.omg.CosTransactions

The OMG OTS classes in this package provide the following functionality.

• Defining transactional interfaces in the CORBA environment:

TransactionalObject

• Managing transactions under the implicit model:

Current

• Managing transactions under the explicit model:

TransactionFactory
Control
Coordinator
Terminator

• Managing recoverable resources in the CORBA environment:

RecoveryCoordinator
Resource
SubtransactionAwareResource
Synchronization

• Reporting system errors:

HeuristicCommit
HeuristicHazard
HeuristicMixed
HeuristicRollback
Inactive
 236

J a v a C l a s s e s
InvalidControl
INVALID_TRANSACTION
NoTransaction
NotPrepared
NotSubtransaction
SubtransactionsUnavailable
TRANSACTION_REQUIRED
TRANSACTION_ROLLEDBACK
Unavailable

The OtsEnv, Client and Server Classes

Much functionality is shared by the Client and Server classes through a
common abstract base class called OtsEnv. This class cannot be instantiated and
so cannot be used directly by applications but its inherited members provide the
main body of configuration functionality.

OtsEnv Class
Synopsis public abstract class OtsEnv {

public void init();
public void exit(int status);
public void shutdown();
public void setDefaultFactory(orb.omg.CORBA.Object

remoteObject);
public void setInterfaceTransactionPolicy(java.lang.String i,

IE.Iona.OrbixWeb.CosTransactions.TransactionPolicy p);
public void setObjectTransactionPolicy(org.omg.CORBA.Object o,

IE.Iona.OrbixWeb.CosTransactions.TransactionPolicy p);
public IE.Iona.OrbixWeb.CosTransactions.TransactionPolicy

getDefaultTransactionPolicy();
public TransactionPolicy setDefaultTransactionPolicy(

IE.Iona.OrbixWeb.CosTransactions.TransactionPolicy.
TransactionPolicy policy);

public long setGCPeriod(long t);
}

237

O r b i x O T S P r o g r am m e r ’ s a n d A dm in i s t r a t o r ’ s G u i d e
Description The class IE.Iona.OrbixWeb.CosTransactions.OtsEnv is the super class of
both the Client and Server classes. This class provides implementation details
common to both the client and server. Because it is an abstract class it cannot be
instantiated, and only exists within a Client or Server instance.

OtsEnv.init()

Synopsis public void init();

Description The init() method initializes OrbixOTS components. This method must be
called at least once before an application can attempt transactional operations or
obtain the TransactionCurrent reference from
ORB.resolve_initial_references. It is responsible for installing the
appropriate interceptors for transaction propagation and for registering this
service with the current ORB.

OtsEnv.shutdown()

Synopsis public void shutdown();

Description The shutdown method shuts the OrbixOTS component down. Any outstanding
transactions are rolled back.

OtsEnv.exit()

Synopsis public void exit(int status);

Parameters The status parameter specifies the exit status for the client application.

Description The exit method shuts down the OrbixOTS component and terminates the
application by calling System.exit() with the indicated status. Any outstanding
transactions are rolled back.
 238

J a v a C l a s s e s
OtsEnv.setDefaultTransactionPolicy()

Synopsis public TransactionPolicy setDefaultTransactionPolicy(
IE.Iona.OrbixWeb.CosTransactions.TransactionPolicy policy);

Parameters The policy parameter specifies the current default TransactionPolicy.

Description The setDefaultTransactionPolicy() function sets the default
TransactionPolicy.

Returns The previous TransactionPolicy.

Notes IONA-specific.

See Also “Status Enumeration Class Type” on page 265

OtsEnv.getDefaultTransactionPolicy()

Synopsis public IE.Iona.OrbixWeb.CosTransactions.TransactionPolicy
getDefaultTransactionPolicy();

Description The getDefaultTransactionPolicy() function gets the current default
TransactionPolicy.

Returns The current default TransactionPolicy.

Notes IONA-specific.

See Also “TransactionFactory Class” on page 264

OtsEnv.setInterfaceTransactionPolicy()

Synopsis public void setInterfaceTransactionPolicy(java.lang.String i,
IE.Iona.OrbixWeb.CosTransactions.TransactionPolicy p);

Parameters

Description The setInterfaceTransactionPolicy() function marks an interface as
transactional and specifies the transaction policy for this transactional interface.
Objects that support this interface are treated as transactional in this process

i The interface to treat as transactional.

p The TransactionPolicy for this transactional interface.
239

O r b i x O T S P r o g r am m e r ’ s a n d A dm in i s t r a t o r ’ s G u i d e
even if the object does not (or is not known to) implement the
CosTransactions::TransactionalObject CORBA interface. The interface
parameter is the CORBA repository identifier for the interface that is of the
form “IDL:X:1.0”.

Notes IONA-specific.

See Also “Status Enumeration Class Type” on page 265

OtsEnv.setObjectTransactionPolicy()

Synopsis public void setObjectTransactionPolicy(org.omg.CORBA.Object o,
IE.Iona.OrbixWeb.CosTransactions.TransactionPolicy p);

Parameters

Description The setObjectTransactionPolicy() function marks an object as transactional
and specifies the transaction policy for this transactional object. This object is
treated as transactional in this process even if the object does not (or is not
known to) implement the CosTransactions::TransactionalObject CORBA
interface.

Notes IONA-specific.

See Also “Status Enumeration Class Type” on page 265

OtsEnv.setDefaultFactory()

Synopsis public void setDefaultFactory(orb.omg.CORBA.Object
remoteObject);

Parameters The remoteObject parameter specifies the remote TransactionFactory to
use. This object is usually a reference to a
CosTransactions.TransactionFactory object, but it can simply be a
reference to any object in an OrbixOTS C++ server. If the specified object is
not a TransactionFactory reference OrbixOTS uses the Orbix Java Edition

o The object to treat as transactional.

p The TransactionPolicy for this transactional object.
 240

J a v a C l a s s e s
bind mechanism to obtain a reference from the object’s server. This is possible
because each OrbixOTS C++ server supports the TransactionFactory
interface.

Description OrbixOTS automatically attempts to use the OrbixOTS standalone transaction
factory (otstf) as its default factory by resolving the default transaction factory
name from the Name Service. You can use this method to specify an alternative
default factory. OrbixOTS uses the default transaction factory to create
transactions. If the configuration variable
OrbixOTS.OTS_USE_DEFAULT_FACTORY is set to FALSE, OrbixOTS attempts to
create the transaction as part of the first transactional request. In other words it
uses the transaction factory on the target server. See “Use of otstf by OrbixOTS
for Java” on page 281.

OtsEnv.setGCPeriod()

Synopsis public long setGCPeriod(long t);

Parameters The parameter t specifies the garbage collection period in milliseconds.

Description This method sets the sweep period for the garbage collection thread. The
garbage collection thread releases references to dead threads and stale objects.
The period defaults to three minutes.
241

O r b i x O T S P r o g r am m e r ’ s a n d A dm in i s t r a t o r ’ s G u i d e
Client Class
Synopsis public class Client {

public static Client IT_Create();
public static Client IT_Create(org.omg.CORBA.ORB);

}

Description The class IE.Iona.OrbixWeb.CosTransactions.Client is used to instantiate
an OrbixOTS Java Client. It supports two methods that return an instance of
this class. An application that needs to use the Client OrbixOTS Java classes
must obtain a Client reference using one of the methods described below and
initialize it using the inherited init() method before attempting transactional
operations. The optional ORB parameter allows an application developer to
specify the ORB instance to use. If none is specified the default ORB,
_CORBA.Orbix is used.

See Also “OtsEnv Class” on page 237.

Client.IT_create()

Synopsis public static Client IT_create()

Description Creates an instance of a Client pseudo-object. This instance is associated with
the default ORB, _CORBA.Orbix.

Returns An instance of the Client class.

See Also Other IT_create constructor.

Client.IT_create()

Synopsis public static Client IT_create(org.omg.CORBA.ORB);

Description Creates an instance of a Client pseudo-object and specifies the ORB instance
to use. This allows an application to use multiple ORBs.

Returns A new instance of the Client class.

See Also Other IT_create constructor.
 242

J a v a C l a s s e s
Server Class
Synopsis class Server {

public:
static Server IT_create();
static Server IT_create(org.omg.CORBA.ORB);

};

Description The class IE.Iona.OrbixWeb.CosTransactions.Server is used to instantiate
an OrbixOTS Java Server. It supports two methods that return an instance of
this class. An application that needs to use the Server OrbixOTS Java classes
must obtain a Server reference using one of the methods described below and
initialize it using its inherited init() method before attempting transactional
operations. The optional ORB parameter allows an application developer to
specify the ORB instance to use. If none is specified the default ORB
_CORBA.Orbix is used.

See Also “OtsEnv Class” on page 237

Server.IT_create()

Synopsis public static Server IT_create()

Description Create a new Server object. This instance is associated with the default ORB.

Returns A new instance of the Server class.

See Also Other IT_create() method

Server.IT_create()

Synopsis public static Server IT_create(org.omg.CORBA.ORB)

Description Create a Server object instance and specify the ORB instance to use. This allows
an application to use multiple ORBs.

Returns A new instance of the Server class.

See Also Other IT_create() method
243

O r b i x O T S P r o g r am m e r ’ s a n d A dm in i s t r a t o r ’ s G u i d e
TransactionPolicy Class
Synopsis public final class TransactionPolicy {

public static final
TransactionPolicy TransactionRequired;

public static final
TransactionPolicy TransactionAllowed;

};

Description The class IE.Iona.OrbixWeb.CosTransactions.TransactionPolicy
encapsulates different transaction policies. The two policies supported are:

Current Class
Synopsis class Current {

public:
static Current IT_create();
static Current IT_create(OtsEvn env);
void begin();
void commit(boolean);
void rollback();
void rollback_only();
int get_status();
String get_transaction_name();
void set_timeout(int);
Control get_control();
Control suspend();
void resume(Control);

TransactionRequired All invocations on a transactional interface
must occur within the scope of a transaction.

TransactionAllowed All invocations on a transactional interface
can occur both within a transaction and
without a transaction. If the client is
associated with a transaction the
transaction’s context is propogated to the
server; otherwise no transaction context is
propogated.
 244

J a v a C l a s s e s
};

Description The class org.omg.CosTransactions.Current represents a transaction that is
associated with the calling thread; the thread defines the transaction context.
The transaction context is propagated implicitly when the client issues requests.

This class defines member functions for beginning, committing, and aborting a
transaction using the implicit model of transaction control. It also defines
member functions for suspending and resuming a transaction and for retrieving
information about a transaction.

Class Members
Current.begin()
Current.commit()
Current.get_control()
Current.get_status()
Current.get_transaction_name()
Current.IT_create()
Current.resume()
Current.rollback()
Current.rollback_only()
Current.set_timeout()
Current.suspend()

See Also “Control Class” on page 250

Current.begin()

Synopsis void begin()
throws SubtransactionsUnavailable, Inactive, SystemException;

Description The begin() function creates a new transaction and modifies the transaction
context of the calling thread to associate the thread with the new transaction. If
a transaction is already associated with the current thread, the begin function
starts a subtransaction.

If a transaction is associated with the calling thread but is already rolled back, the
SubtransactionsUnavailable exception is thrown.

See Also “Current.commit()” on page 246

“Current.rollback()” on page 248

“Current.rollback_only()” on page 248
245

O r b i x O T S P r o g r am m e r ’ s a n d A dm in i s t r a t o r ’ s G u i d e
Current.commit()

Synopsis void commit(boolean reportHeuristics)
throws NoTransaction, HeuristicMixed, HeuristicHazard,

 SystemException;

Parameters The reportHeuristics parameter specifies whether heuristic decisions should
be reported for the transaction associated with the calling thread.

Description The commit() member function attempts to commit the transaction associated
with the calling thread. If no transaction is associated with the calling thread, the
NoTransaction exception is thrown. If the reportHeuristics parameter is
true, an exception is thrown when a heuristic decision has possibly been made.

See Also “Current.begin()” on page 245

“Current.rollback()” on page 248

“Current.rollback_only()” on page 248

“HeuristicHazard” on page 267

“NoTransaction” on page 268

Current.get_control()

Synopsis Control get_control()
throws SystemException;

Description The get_control() member function returns a reference to the Control
object for the transaction associated with the calling thread. If no transaction is
associated with the calling thread, a null object reference is returned.

See Also “Current.resume()” on page 248

Current.get_status()

Synopsis Status get_status()
throws SystemException

Description The get_status() function returns the status of the transaction associated with
the calling thread. If no transaction is associated with the calling thread, the
Status.StatusNoTransaction value is returned.
 246

J a v a C l a s s e s
The status returned indicates the processing phase of the transaction. See the
reference page for Status for information about the possible status values.

See Also “Status Enumeration Class Type” on page 265

Current.get_transaction_name()

Synopsis String get_transaction_name()
throws SystemException

Description The get_transaction_name() function returns the name of the transaction
associated with the calling thread. If no transaction is associated with the calling
thread, a null string is returned.

Current.IT_create()

Synopsis public static Current IT_create();

Description This method returns an uninitialized instance of the TransactionsCurrent
pseudo object. This method call should be followed by a call to
Current.init(). It is recommended that you use the ORB method
resolve_initial_references("TransactionCurrent") in preference to this
method.

Current.IT_create()

Synopsis public static Current IT_create(OtsEnv env);

Description Creates an instance of the Current pseudo object. The env parameter specifies
the client of server instance to use. OtsEnv is the super class of both the Client
and Server classes. This is useful in the case of the use of multiple orbs.
ORB.resolve_initial_references() should be used in preference to this
method. The method is supported for backward compatibility only.
247

O r b i x O T S P r o g r am m e r ’ s a n d A dm in i s t r a t o r ’ s G u i d e
Current.resume()

Synopsis void resume(Control which)
throw InvalidControl, SystemException;

Parameters The which parameter specifies a Control object that represents the transaction
context associated with the calling thread.

Description The resume() function resumes the suspended transaction identified by the
which parameter and associated with the calling thread. If the value of the which
parameter is a null object reference, the calling thread disassociates from the
transaction. If a non-null parameter is invalid, the InvalidControl exception is
thrown.

See Also “Current.get_control()” on page 246

“Current.suspend()” on page 249

“InvalidControl” on page 268

Current.rollback()

Synopsis void rollback()
throws NoTransaction, SystemException;

Description The rollback() function rolls back the transaction associated with the calling
thread. If the transaction was started with the Current.begin() function, the
transaction context for the thread is restored to its state before the transaction
was started; otherwise, the transaction context is set to null.

If no transaction is associated with the calling thread, the NoTransaction
exception is thrown.

See Also “Current.begin()” on page 245

“Current.rollback_only()” on page 248

“NoTransaction” on page 268

Current.rollback_only()

Synopsis void rollback_only()
throw NoTransaction, Inactive, SystemException;
 248

J a v a C l a s s e s
Description The rollback_only() function marks the transaction associated with the calling
thread for rollback. The transaction is modified so that outcome must be that
the transaction is rolled back. Any participant in the transaction can mark the
transaction for rollback. The transaction is not rolled back until the participant
that created the transaction either commits or aborts the transaction.

If no transaction is associated with the calling thread, the NoTransaction
exception is thrown. If the transaction is already prepared, the Inactive
exception is thrown.

The Current.rollback() function can be called instead of rollback_only().
Calling Current.rollback() rolls back the transaction immediately, preventing
unnecessary work from being done between the time the transaction is marked
for rollback and the time the transaction is actually rolled back.

See Also “Current.rollback()” on page 248

“Inactive” on page 268

“NoTransaction” on page 268Current.rollback()

Current.set_timeout()

Synopsis static void set_timeout(int seconds)
throws SystemException;

Parameters The seconds parameter specifies the number of seconds that the transaction
waits for completion before rolling back.

Description The set_timeout() member function sets a timeout period for subsequent
transactions begun with the Current.begin() function. (Transactions already
underway are not affected.) The seconds parameter sets the number of seconds
from the time the transaction is begun that it waits for completion before being
rolled back; if the seconds parameter is set to zero, no timeout is set for the
transaction.

Current.suspend()

Synopsis Control suspend()
throws SystemException;
249

O r b i x O T S P r o g r am m e r ’ s a n d A dm in i s t r a t o r ’ s G u i d e
Description The suspend() member function suspends the transaction associated with the
calling thread. It returns the control object for the current transaction. This
control object can be passed to the Current.resume() function to resume the
suspended transaction. If there is no current transaction, this function returns a
null object reference.

See Also “Current.resume()” on page 248

Control Class
Synopsis public interface Control

 extends org.omg.CORBA.Object
{
 public org.omg.CosTransactions.Terminator get_terminator()
 throws org.omg.CosTransactions.Unavailable;
 public org.omg.CosTransactions.Coordinator get_coordinator()
 throws org.omg.CosTransactions.Unavailable;
 public org.omg.CosTransactions.Control get_parent()
 throws org.omg.CosTransactions.NotSubtransaction;
 public org.omg.CosTransactions.Control get_top_level()
 throws org.omg.CosTransactions.NotSubtransaction;
 public int id();
 public void id(int value);
}

Description The Control class enables explicit control of a factory-created transaction; the
factory creates a transaction and returns a Control instance associated with the
transaction. The Control object provides access to the Coordinator and
Terminator objects used to manage and complete the transaction. A Control
object can be used to propagate a transaction context explicitly.

Class Members
Control.get_coordinator()
Control.get_parent()
Control.get_terminator()
Control.get_top_level()
Control.id()
Control.id(int value)

See Also “Control Class” on page 250
“Coordinator Class” on page 253
“Terminator Class” on page 262
 250

J a v a C l a s s e s
Control.get_coordinator()

Synopsis _CoordinatorRef get_coordinator()
throws org.omg.CosTransactions.Unavailable;

Description The get_coordinator() function returns the Coordinator object for the
transaction with which the Control object is associated. The returned
Coordinator object can be used to determine the status of the transaction,
determine the relationship between the associated transaction and other
transactions, create subtransactions, and so on.

The get_coordinator() function throws the Unavailable exception if the
Coordinator associated with the Control object is not available.

See Also “Control Class” on page 250

“Coordinator Class” on page 253

“Unavailable” on page 269

Control.get_parent()

Synopsis _ControlRef get_parent()
throws org.omg.CosTransactions.NotSubtransaction;

Description Returns the Control object for the parent of the transaction with which the
Control object is associated. If the associated transaction is not a
subtransaction, the NotSubtransaction exception is thrown.

See Also “Control Class” on page 250

“NotSubtransaction” on page 268

Control.get_terminator()

Synopsis _TerminatorRef get_terminator()
throws org.omg.CosTransactions.Unavailable;

Description The get_terminator() function returns the Terminator object for the
transaction with which the Control object is associated. The returned
Terminator object can be used to either commit or roll back the transaction.
251

O r b i x O T S P r o g r am m e r ’ s a n d A dm in i s t r a t o r ’ s G u i d e
The get_terminator() function throws the Unavailable exception if the
Terminator associated with the Control object is not available.

See Also “Control Class” on page 250

“Terminator Class” on page 262

“Unavailable” on page 269

Control.get_top_level()

Synopsis _ControlRef get_top_level()
throws org.omg.CosTransactions.NotSubtransaction

Description The get_top_level() function returns the Control object for the top-level
ancestor of the transaction with which the Control object is associated. If the
associated transaction is not a subtransaction, the NotSubtransaction
exception is thrown.

See Also “Control Class” on page 250

“NotSubtransaction” on page 268

Control::id()

Synopsis public int id();

Description The id() member function returns the transaction identifier for the transaction
with which the Control object is associated.

Notes This function is specific to OrbixOTS and is not a standard CORBA function.

The id() function is an OrbixOTS extension to the OMG OTS interface. The
return value can be used to display the identity of the transaction associated with
the Control object.

See Also Other id constructor
 252

J a v a C l a s s e s
Control::id()

Synopsis public int id(int value);

Parameters The value parameter is the transaction identifier for the transaction with which
the Control object is associated.

Description The id() member function sets the transaction identifier for the transaction
with which the Control object is associated.

Notes This function is specific to OrbixOTS and is not a standard CORBA function.

The id() function is an OrbixOTS extension to the OMG OTS interface.

See Also Other id constructor

Coordinator Class
Synopsis public class Coordinator {

public int get_status();
public int get_parent_status();
public int get_top_level_status();
public boolean is_same_transaction(Coordinator tc);
public boolean is_related_transaction(Coordinator tc);
public boolean is_ancestor_transaction(Coordinator tc);
public boolean is_descendant_transaction(Coordinator tc);
public boolean is_top_level_transaction();
public int hash_transaction();
public int hash_top_level_tran();
public String get_transaction_name();
public _RecoveryCoordinatorRef

register_resource(_ResourceRef r);
public void register_synchronization(_SynchronizationRef sync);
public void

register_subtran_aware(_SubtransactionAwareResourceRef r);
public _ControlRef create_subtransaction();
public void rollback_only();
public _PropagationContextRef get_txcontext();

};
253

O r b i x O T S P r o g r am m e r ’ s a n d A dm in i s t r a t o r ’ s G u i d e
Description The Coordinator class enables explicit control of a factory-created transaction.
The factory creates a transaction and returns a Control instance associated with
the transaction. The Control.get_coordinator() function returns the
Coordinator object used to manage the transaction.

The operations defined by the Coordinator class can be used by the participants
in a transaction to determine the status of the transaction, determine the
relationship of the transaction to other transactions, mark the transaction for
rollback, and create subtransactions. The Coordinator class also defines
operations for registering resources as participants in a transaction and
registering subtransaction-aware resources with a subtransaction.

Class Members
Coordinator.create_subtransaction()
Coordinator.get_parent_status()
Coordinator.get_status()
Coordinator.get_top_level_status()
Coordinator.get_transaction_name()
Coordinator.get_txcontext();
Coordinator.hash_top_level_tran()
Coordinator.hash_transaction()
Coordinator.is_ancestor_transaction()
Coordinator.is_descendant_transaction()
Coordinator.is_related_transaction()
Coordinator.is_same_transaction()
Coordinator.is_top_level_transaction()
Coordinator.register_resource()
Coordinator.register_subtran_aware()
Coordinator.register_synchronization();
Coordinator.rollback_only()

See Also “Control Class” on page 250

“Terminator Class” on page 262

“Control.get_coordinator()” on page 251

Coordinator.create_subtransaction()

Synopsis org.omg.CosTransactions.Control create_subtransaction()
throws org.omg.CosTransactions.SubtransactionsUnavailable,
 org.omg.CosTransactions.Inactive;
 254

J a v a C l a s s e s
Description The create_subtransaction() member function creates a new subtransaction
for the transaction associated with the Coordinator object. A subtransaction is
one that is embedded within another transaction; the transaction within which
the subtransaction is embedded is referred to as its parent. A transaction that
has no parent is a top-level transaction.

A subtransaction executes within the scope of its parent transaction and can be
used to isolate failures; if a subtransaction fails, only the subtransaction is rolled
back. If a subtransaction commits, the effects of the commit are not permanent
until the parent transaction commits. If the parent transaction rolls back, the
subtransaction is also rolled back.

If the parent transaction is already rolled back when create_subtransaction()
is called, the SubtransactionsUnavailable exception is thrown. The
create_subtransaction() function throws the Inactive exception if the
transaction is already prepared.

Return Values The create_subtransaction() function returns the Control object associated
with the new subtransaction.

See Also “Control Class” on page 250

“Inactive” on page 268

“SubtransactionsUnavailable” on page 269

Coordinator.get_parent_status()

Synopsis public org.omg.CosTransactions.Status get_parent_status();

Description The get_parent_status() function returns the status of the parent of the
transaction associated with the Coordinator object. See the
Coordinator.create_subtransaction() function reference page for more
information.

Return Values The status returned indicates which phase of processing the transaction is in. If
the transaction associated with the Coordinator object is a subtransaction, the
status of its parent transaction is returned. If there is no parent transaction, the
status of the transaction associated with the Coordinator object itself is
returned.

See Also “Coordinator.create_subtransaction()” on page 254

“Coordinator.get_status()” on page 256
255

O r b i x O T S P r o g r am m e r ’ s a n d A dm in i s t r a t o r ’ s G u i d e
“Coordinator.get_top_level_status()” on page 256

“Status Enumeration Class Type” on page 265

Coordinator.get_status()

Synopsis public org.omg.CosTransactions.Status get_status();

Description The get_status() function returns the status of the transaction associated with
the Coordinator object. The status returned indicates which phase of
processing the transaction is in. See the reference page for the Status type for
information about the possible status values.

See Also “Coordinator.get_parent_status()” on page 255

“Coordinator.get_top_level_status()” on page 256

“Status Enumeration Class Type” on page 265

Coordinator.get_top_level_status()

Synopsis public org.omg.CosTransactions.Status get_top_level_status();

Description The get_top_level_status() function returns the status of the top-level
ancestor of the transaction associated with the Coordinator object. See the
reference page for the Coordinator.create_subtransaction() function for
more information.

The status returned indicates which phase of processing the transaction is in. See
the reference page for the Status type for information about the possible status
values. If the transaction associated with the Coordinator object is the top-level
transaction, its status is returned.

See Also “Coordinator.create_subtransaction()” on page 254

“Coordinator.get_status()” on page 256

“Coordinator.get_parent_status()” on page 255

“Status Enumeration Class Type” on page 265
 256

J a v a C l a s s e s
Coordinator.get_transaction_name()

Synopsis public String get_transaction_name();

Description The get_transaction_name() function returns the name of the transaction
associated with the Coordinator object.

Coordinator::get_txcontext()

Synopsis public org.omg.CosTransactions.PropagationContext get_txcontext()
 throws org.omg.CosTransactions.Unavailable;

Description Returns the propagation context object which is used to export the current
transaction to a new transaction service domain. The exception Unavailable is
raised if the propagation context is unavailable.

See Also “Coordinator.create_subtransaction()” on page 254

“Coordinator.get_status()” on page 256

“Coordinator.get_top_level_status()” on page 256

“Status Enumeration Class Type” on page 265

Unavailable exception

Coordinator.hash_top_level_tran()

Synopsis public int hash_top_level_tran();

Description The hash_top_level_tran() function returns a hash code for the top-level
ancestor of the transaction associated with the Coordinator object. If the
transaction associated with the Coordinator object is the top-level transaction,
its hash code is returned. See the reference page for the
Coordinator.create_subtransaction() function for more information.

The returned hash code is typically used as an index into a table of Coordinator
objects. The low-order bits of the hash code can be used to hash into a table
with a size that is a power of two.

See Also “Coordinator.create_subtransaction()” on page 254

“Coordinator.hash_transaction()” on page 258
257

O r b i x O T S P r o g r am m e r ’ s a n d A dm in i s t r a t o r ’ s G u i d e
Coordinator.hash_transaction()

Synopsis public int hash_transaction();

Description The hash_transaction() function returns a hash code for the transaction
associated with the Coordinator object.

The returned hash code is typically used as an index into a table of Coordinator
objects. The low-order bits of the hash code can be used to hash into a table
with a size that is a power of two.

See Also “Coordinator.hash_top_level_tran()” on page 257

Coordinator.is_ancestor_transaction()

Synopsis public boolean
 is_ancestor_transaction(org.omg.CosTransactions.Coordinator tc);

Parameters The tc parameter specifies the coordinator of another transaction to compare
with the Coordinator object.

Description The is_ancestor_transaction() function determines whether the transaction
associated with the Coordinator object is an ancestor of the transaction
associated with the coordinator specified in the tc parameter. See the reference
page for the Coordinator.create_subtransaction() function for more
information.

Return Values The is_ancestor_transaction() function returns true if the transaction is an
ancestor or if the two transactions are the same; otherwise, the function returns
false.

See Also “Coordinator.create_subtransaction()” on page 254

“Coordinator.is_descendant_transaction()” on page 259

“Coordinator.is_related_transaction()” on page 259

“Coordinator.is_same_transaction()” on page 260

“Coordinator.is_top_level_transaction()” on page 260

“Status Enumeration Class Type” on page 265
 258

J a v a C l a s s e s
Coordinator.is_descendant_transaction()

Synopsis boolean
is_descendant_transaction(org.omg.CosTransactions.Coordinator tc);

Parameters The tc parameter specifies the coordinator of another transaction to compare
with the Coordinator object.

Description The is_descendant_transaction() function determines whether the
transaction associated with the Coordinator object is a descendant of the
transaction associated with the coordinator specified in the tc parameter. See
the reference page for the Coordinator.create_subtransaction() function
for more information.

Return Values The is_descendant_transaction() function returns true if the transaction is
a descendant or if the two transactions are the same; otherwise, the function
returns false.

See Also “Coordinator.create_subtransaction()” on page 254

“Coordinator.is_ancestor_transaction()” on page 258

“Coordinator.is_related_transaction()” on page 259

“Coordinator.is_same_transaction()” on page 260

“Coordinator.is_top_level_transaction()” on page 260

“Status Enumeration Class Type” on page 265

Coordinator.is_related_transaction()

Synopsis boolean
 is_related_transaction(org.omg.CosTransactions.Coordinator tc);

Parameters The tc parameter specifies the coordinator of another transaction to compare
with the Coordinator object.

Description The is_related_transaction() function determines whether the transaction
associated with the Coordinator object and the transaction associated with the
coordinator specified in the tc parameter have a common ancestor. See the
reference page for the Coordinator.create_subtransaction() function for
more information.
259

O r b i x O T S P r o g r am m e r ’ s a n d A dm in i s t r a t o r ’ s G u i d e
Return Values The is_related_transaction() function returns true if both transactions are
descendants of the same transaction; otherwise, the function returns false.

See Also “Coordinator.create_subtransaction()” on page 254

“Coordinator.is_ancestor_transaction()” on page 258

“Coordinator.is_descendant_transaction()” on page 259

“Coordinator.is_same_transaction()” on page 260

“Coordinator.is_top_level_transaction()” on page 260

Coordinator.is_same_transaction()

Synopsis boolean
is_same_transaction(org.omg.CosTransactions.Coordinator tc);

Parameters The tc parameter specifies the coordinator of another transaction to compare
with the Coordinator object.

Description The is_same_transaction() function determines whether the transaction
associated with the Coordinator object and the transaction associated with the
coordinator specified in the tc parameter are the same transaction.

Return Values The is_same_transaction() function returns true if the transactions
associated with the two Coordinator objects are the same transaction;
otherwise, the function returns false.

See Also “Coordinator.is_ancestor_transaction()” on page 258

“Coordinator.is_related_transaction()” on page 259

“Coordinator.is_descendant_transaction()” on page 259

“Coordinator.is_top_level_transaction()” on page 260

Coordinator.is_top_level_transaction()

Synopsis boolean is_top_level_transaction();
 260

J a v a C l a s s e s
Description The is_top_level_transaction() function determines whether the
transaction associated with a Coordinator object is a top-level transaction. See
the reference page for the Coordinator.create_subtransaction() function
for more information.

Return Values The is_top_level_transaction() function returns true if the transaction is a
top-level transaction; otherwise, the function returns false.

See Also “Coordinator.create_subtransaction()” on page 254

“Coordinator.is_ancestor_transaction()” on page 258

“Coordinator.is_descendant_transaction()” on page 259

“Coordinator.is_same_transaction()” on page 260

Coordinator::register_synchronization()

Synopsis public void
 register_synchronization(org.omg.CosTransactions.Synchronization
 sync)
 throws org.omg.CosTransactions.Inactive;

Parameters The sync parameter specifies the synchronization object to register.

Description The register_synchronization() member function registers a specified
synchronization object for the transaction associated with a Coordinator object.
See the reference page for the Synchronization class for more information.

The register_synchronization() function throws the Inactive exception if
the transaction is already prepared. It throws the
CORBA::TRANSACTION_ROLLEDBACK exception if the transaction is marked for
rollback only.

See Also “Inactive” on page 268

Coordinator.rollback_only()

Synopsis public void rollback_only()
 throws org.omg.CosTransactions.Inactive;;
261

O r b i x O T S P r o g r am m e r ’ s a n d A dm in i s t r a t o r ’ s G u i d e
Description The rollback_only() function marks the transaction associated with the
Coordinator object so that the only possible outcome for the transaction is to
roll back. The transaction is not rolled back until the participant that created the
transaction either commits or aborts the transaction.

The rollback_only() function throws the Inactive exception if the
transaction is already prepared.

The Terminator.rollback() function can be called instead of
rollback_only(). Calling Terminator.rollback() rolls back the transaction
immediately, preventing unnecessary work from being done between the time
the transaction is marked for rollback and the time the transaction is actually
rolled back.

See Also “Inactive” on page 268

“Terminator.rollback()” on page 263

Terminator Class
Synopsis public class Terminator

implements COM.Transarc.CosTransactions._TerminatorRef {
public:

void commit(boolean);
void rollback();

};

Description The Terminator class enables explicit termination of a factory-created
transaction. The transaction with which the Terminator object is associated can
be either committed or rolled back. The Control.get_terminator() function
can be used to return the Terminator object associated with a transaction.

Class Members
Terminator.commit()
Terminator.rollback()

See Also “Control Class” on page 250

“Control.get_terminator()” on page 251

“Coordinator Class” on page 253
 262

J a v a C l a s s e s
Terminator.commit()

Synopsis void commit(boolean report_heuristics)
throws org.omg.CosTransactions.HeuristicMixed,

 org.omg.CosTransactions.HeuristicHazard;

Parameters The report_heuristics parameter specifies whether heuristic decisions are to
be reported for the commit.

Description The commit() member function attempts to commit the transaction associated
with the Terminator object. If the report_heuristics parameter is true, the
HeuristicHazard or HeuristicMixed exception is thrown when the
participants report that a heuristic decision has possibly been made.

See Also “Terminator Class” on page 262

“HeuristicHazard” on page 267

“HeuristicMixed” on page 267

“Coordinator Class” on page 253

“Terminator.rollback()” on page 263

Terminator.rollback()

Synopsis void rollback();

Description The rollback() member function rolls back the transaction associated with the
Terminator object.

See Also “Terminator Class” on page 262

“Coordinator Class” on page 253

“Terminator.commit()” on page 263
263

O r b i x O T S P r o g r am m e r ’ s a n d A dm in i s t r a t o r ’ s G u i d e
TransactionalObject Base Class
Synopsis class TransactionalObject {};

Description The TransactionalObject class is the base class for all transactional objects. If
an object’s interface is derived from this class, the object behaves transactionally.
Requests to a transactional object propagate the transaction context of the
current thread to the object; that is, the requested operation is executed within
the scope of the transaction. If a request is sent to a TransactionalObject and
there is no current transaction, the TRANSACTION_REQUIRED exception is
thrown.

See Also “Control Class” on page 250

“Terminator Class” on page 262

TransactionFactory Class
Synopsis public interface TransactionFactory

 extends org.omg.CORBA.Object {
public org.omg.CosTransactions.Control create(int);

};

Description The TransactionFactory class represents a transaction factory that allows the
originator of transactions to begin a new transaction for use with the explicit
model of transaction demarcation. OrbixOTS C++ Servers provide a default
instance of this class. Clients can bind to the default instance by using the
standard binding mechanism for the object request broker.

Class Members
TransactionFactory.create()

See Also “Control Class” on page 250

“TransactionFactory Class” on page 264

TransactionFactory.create()

Synopsis _ControlRef create(int time_out)
throws SystemException;
 264

J a v a C l a s s e s
Parameters The time_out parameter specifies the number of seconds that the transaction
waits to complete before rolling back.

Description The create() function creates a new top-level transaction for use with the
explicit model of transaction demarcation. A Control object is returned for the
transaction. The Control object can be used to propagate the transaction
context. See the reference page for the Control class for more information. The
time_out parameter sets the number of seconds that the transaction waits for
completion before being rolled back; if the time_out parameter is zero, no
timeout is set for the transaction.

See Also “Control Class” on page 250

“TransactionFactory Class” on page 264

Status Enumeration Class Type

Synopsis public class Status{
public static final status StatusActive
public static final status StatusMarkedRollback
public static final status StatusPrepared
public static final status StatusCommitted
public static final status StatusRolledBack
public static final status StatusUnknown
public static final status StatusNoTransaction
public static final status StatusPreparing
public static final status StatusCommitting
public static final status StatusRollingBack

};

Constants

StatusActive Indicates that processing of a transaction is still in
progress.

StatusMarkedRollback Indicates that a transaction is marked to be rolled
back.

StatusPrepared Indicates that a transaction has been prepared but
not completed.

StatusCommitted Indicates that a transaction has been committed and
the effects of the transaction have been made
permanent.
265

O r b i x O T S P r o g r am m e r ’ s a n d A dm in i s t r a t o r ’ s G u i d e
Description The Status class defines values that are used to indicate the status of a
transaction. Status values are used in both the implicit and explicit models of
transaction demarcation defined by the Object Transaction Service (OTS). The
Current.get_status() function can be called to return the transaction status if
the implicit model is used. The Coordinator.get_status() function can be
called to return the transaction status if the explicit model is used.

See Also “Coordinator.get_status()” on page 256

“Current.get_status()” on page 246

StatusRolledBack Indicates that a transaction has been rolled back.

StatusUnknown Indicates that the status of a transaction is unknown.

StatusNoTransaction Indicates that a transaction does not exist in the
current transaction context.

StatusPreparing Indicates that a transaction is preparing to commit.

StatusCommitting Indicates that a transaction is in the process of
committing.

StatusRollingBack Indicates that a transaction is in the process of
rolling back.
 266

J a v a C l a s s e s
Common Exceptions

Exceptions are defined as classes and have the following form:

package org.omg.CosTransactions;
class ExceptionName {};

The exceptions are shown here in two tables: one for the OrbixOTS exceptions
and another for the system exceptions:

Exception Description

HeuristicCommit This exception is thrown to report that a heuristic
decision was made by one or more participants in a
transaction and that all updates have been
committed.

HeuristicHazard This exception is thrown to report that a heuristic
decision has possibly been made by one or more
participants in a transaction and the outcome of all
participants in the transaction is unknown. See Also:

Current.commit()
Terminator.commit()

HeuristicMixed This exception is thrown to report that a heuristic
decision was made by one or more participants in a
transaction and that some updates have been
committed and others rolled back. See Also:

Current.commit()
Terminator.commit()

HeuristicRollback This exception is thrown to report that a heuristic
decision was made by one or more participants in a
transaction and that all updates have been rolled
back. See Also:

Current.commit()
Terminator.commit()

Table 13.1: OrbixOTS Exceptions for Java
267

O r b i x O T S P r o g r am m e r ’ s a n d A dm in i s t r a t o r ’ s G u i d e
Inactive This exception is thrown when a transactional
operation is requested for a transaction, but that
transaction is already prepared. See Also:

Coordinator.create_subtransaction()
Coordinator.register_resource()
Coordinator.register_subtran_aware()
Coordinator.rollback_only()

InvalidControl This exception is thrown when an invalid Control
object is used in an attempt to resume a suspended
transaction. See Also:

Control class
Current.resume()

NotPrepared This exception is thrown when an operation (such as
a commit) is requested for a resource, but that
resource is not prepared. See Also:

Current.commit()
Terminator.commit()

NoTransaction This exception is thrown when an operation is
requested for the current transaction, but no
transaction is associated with the client thread. See
Also:

Current.commit()
Current.rollback()
Current.rollback_only()

NotSubtransaction This exception is thrown when an operation that
requires a subtransaction is requested for a
transaction that is not a subtransaction. See Also:

Control.get_parent()

Exception Description

Table 13.1: OrbixOTS Exceptions for Java
 268

J a v a C l a s s e s
The following table shows the system exceptions that may be thrown:

SubtransactionsUnavailable This exception is thrown when an operation that is
intended for subtransactions only is requested, but
the transaction service does not support nested
transactions. This exception is also thrown if an
application attemps to create subtransaction after
the parent transaction is already prepared. See Also:

Coordinator.create_subtransaction()
Current.begin()

Unavailable This exception is thrown when a Terminator or
Coordinator object cannot be provided by a
Control object due to environment restrictions. See
Also:

Control.get_coordinator()
Control.get_terminator()

Exception Description

INVALID_TRANSACTION This exception is thrown when the transaction context is
invalid for a request.

TRANSACTION_REQUIRED This exception is thrown when a null transaction context
is associated with the client thread, and a transactional
operation is requested.

TRANSACTION_ROLLEDBACK This exception is thrown when a transactional operation
(such as a commit()) is requested for a transaction that
has been rolled back or marked for rollback. See Also:

Current::commit()
Terminator::commit()

Table 13.2: System Exceptions

Exception Description

Table 13.1: OrbixOTS Exceptions for Java
269

O r b i x O T S P r o g r am m e r ’ s a n d A dm in i s t r a t o r ’ s G u i d e
 270

 14
Threading Transactions

The TranPthread class allows you to create multiple threading in
transactions.

You can build concurrent transaction models using threads in OrbixOTS with
the TranPthread class. This class allows you to start threads that can either join
an existing transaction or run in an new top-level or nested transaction. For
more information, see “Threads and Transactions” on page 72.

TranPthread Class
Synopsis class TranPthread

{
public:

void
Create(

void* (*start_func)(void *),
void* arg,
int start_new_tran = 0

);
void
Background(

void* (*start_func)(void *),
void* arg,
int start_new_tran = 0

);
void*
Join();
271

O r b i x O T S P r o g r am m e r ’ s a n d A dm in i s t r a t o r ’ s G u i d e
};

Description The TranPthread class provides a means for programmer to create threads
which either participate in an existing transaction of run in a new top-level or
nested transaction.

Class Members
TranPthread::Create()
TranPthread::Background()
TranPthread::Join()

TranPthread::Create()

Synopsis void Create(void* (*start_func)(void*), void* arg, int
start_new_tran =0);

Parameters

Description TranPthread::Create() creates a new thread that starts execution at the
function pointed to by the start_func parameter. The argument to the function
is passed the value of the second paramter arg. The start_new_tran parameter
indicates whether a new transaction is to be created for the new thread. If this
parameter is zero, the thread joins the current transaction if any. If it is non-zero
then a new transaction is created for the thread. If the thread terminates
normally, the new transaction is committed. If the caller is already in a
transaction then a nested transaction is created for the new thread; otherwise a
top-level transaction is created. The Join() operation can be used to wait for
the thread to complete and to retrieve the return value of the thread’s start
function.

start_func A pointer to a function where the thread
starts.This function takes a single parameter
of type void* and also returns a value of
type void*.

arg This is the value that is passed to the
thread’s start function pointed to by
start_func.

 start_new_tran This indicates whether a new transaction is
to be created or not.
 272

T h r e a d i n g T r a n s a c t i o n s
See Also TranPthread::Background(), TranPthread::Join()

TranPthread::Background()

Synopsis void Background(void* (*start_func)(void*), void* arg,
int start_new_tran = 0);

Parameters

Description TranPthread::Background() creates a new detached thread that starts
execution at the function pointed to by the start_func parameter. The
argument to the function is passed the value of the second paramter arg. The
start_new_tran parameter indicates whether a new transaction is to be
created for the new thread. If this parameter is zero, the thread joins the
current transaction if any. If it is non-zero, a new transaction is created for the
thread.

When the thread terminates normally, the new transaction is committed. If the
caller is already in a transaction, a nested transaction is created for the new
thread; otherwise a top-level transaction is created.

Threads created using this operation are detached and the Join() operation
cannot be used.

See Also TranPthread::Create()

start_func A pointer to a function where the thread
starts.This function takes a single parameter
of type void* and also returns a value of
type void*.

arg This is the value that is passed to the
thread’s start function pointed to by
start_func.

 start_new_tran This indicates whether a new transaction is
to be created or not.
273

O r b i x O T S P r o g r am m e r ’ s a n d A dm in i s t r a t o r ’ s G u i d e
TranPthread::Join()

Synopsis void* Join();

Description Waits for the thread to complete and returns the return value of the thread’s
start function. The Join() operation can only be used for threads created using
the Create() operation.

See Also TranPthread::Create()
 274

Appendix A
The DTP Reference Model

The X/Open company has defined a standard for Distributed Transaction
Processing (DTP) systems called the DTP Reference Model. See Figure 14.1:

This model identifies the three components in a DTP scenario:

• The application (AP)

• The resource manager (RM)

• The transaction manager (TM)

The model also defines procedural interfaces between them: XA between
transaction managers and resource managers, and TX between the application
and the transaction manager.

The X/Open reference model is well established in industry. It specifies
programming language interfaces between three identified entities engaged in a
DTP system: the application, the resource manager and the transaction manager.

Figure 14.1: The DTP Reference Model

Application
(AP)

Transaction
Demarcation Calls

Transaction Manager
(TM)

Transactional
Remote Procedure

Resource Manager
(RM)

tx

txRPC

xa
ax
275

O r b i x O T S P r o g r am m e r ’ s a n d A dm in i s t r a t o r ’ s G u i d e
The application makes TX calls on the transaction manager to begin and
complete global transactions, and makes transactional remote procedure calls
(RPC) calls (using txRPC()) on resource managers in the context of the
transaction. The transaction manager and resource managers communicate via
the XA interface. In particular, this interface implements a two-phase commit
protocol, facilitating atomic committal of global transactions.

Transactions are identified by an XID. This is a data structure that uniquely
distinguishes the transaction in the system. Most functions in the reference
model take an XID as a parameter, and transactional RPC calls propagate the
XID implicitly.

In a typical scenario, some component of the application makes a tx_begin()
call on the transaction manager and the calling thread is associated with the
transaction. Subsequent txRPC() calls to resource managers carry knowledge of
the transaction with them. Resource managers interested in transaction
completion can be registered either statically or dynamically - that is, by the
transaction manager calling xa_start() on the resource manager, or by the
resource manager calling ax_reg() on the transaction manager. The transaction
manager takes care of generating an appropriate XID for the transaction. The
two-phase commit process is triggered by the application calling tx_commit()
on the transaction manager, which coordinates completion by calling
xa_prepare() and xa_commit() on each X/Open resource manager in turn.

An important point is that, with the exception of transactional RPC, these
interfaces are defined at the programming language level only. That is, in the
likely case that the entities communicating are distributed, the reference model
does not indicate how the invocations should propagate between address
spaces. X/Open compliant transaction managers and resource managers
generally provide C libraries implementing these interfaces for linking with the
relevant components, and use a variety of mechanisms to route, say, an
xa_commit() call to a DBMS server process.

A number of third party transaction manager vendors support the TX interface,
and most commercial database vendors provide an implementation of the XA
interface. Prominent examples include Transarc’s Encina, Oracle, Informix, and
SQL Server.
 276

Appendix B
The OrbixOTS Transaction Factory

This utility lets you develop Java applications without writing any C++
code.

The otstf utility is a standalone OrbixOTS server providing transaction and
transactional lock set factory implementations. The server supports concurrent
requests from multiple clients using the OrbixOTS configurable thread pools.

It is primarily intended for use with OrbixOTS for Java but it can be used any
OTS client or server that must create transactions. A primary benefit of the
utility is that it allows Java developers to write transactional Java applications
without writing any C++ code.

The utility is intended to be self-managing by default, but it allows flexibility
through the use of optional command line parameters.

Launching otstf
When launched persistently without parameters the server registers itself with
the Orbix daemon as a persistent server using the name
“OrbixOTS_TransactionFactory”. It creates a transaction log, restart file and
mirror restart file in the current directory using the names “OrbixOTS_TF.log”
and “OrbixOTS_TF.restart” and “OrbixOTS_TF.restartmirror”
respectively.

The server registers TransactionFactory and
TransactionalLockSetFactory references in the NameService in the root
context using the qualified names OrbixOTS.TransactionFactory and
OrbixOTS.LockFactory respectively. As a result once you start the server
persistently your transactional Java applications are able to use it.
277

O r b i x O T S P r o g r am m e r ’ s a n d A dm in i s t r a t o r ’ s G u i d e
Command-line Options
The following options allow you to override the default otstf behavior:

Command-line Option Effect

-f <LockSetFactory

name>

This option allows you to specify the name for the
transaction lock set factory in the NameService.
The name provides can be fully qualified in terms of
naming contexts where contexts are delimited by a
period (.). If the name includes naming contexts
then the naming contexts must already exist.

-h or ? Display help text.

-i <id> This option allows you to specify the group
identifier for this instance of the Transaction and
Lock factories in an OrbixNames load balancing
group. If this option is supplied then the -t and -f
options must identify valid OrbixNames load
balancing object groups. Using this option it is
possible to distribute the load of transaction
creation across a set of transaction factories.

-l <device|file>

-r <file>

-m <file>

These options allow you to specify an alternative
names for transaction log, restart and restart
mirror files respectively. The supplied names can
reference files created using the OrbixOTS
otsmklog utility.

Table 14.2: OrbixOTS Transaction Factory Command-line Options
 278

T h e O r b i x O T S T r a n s a c t i o n F a c t o r y
-s <name> This option allows you to specify an alternative
name for the otstf server. This name should be
registered with the Orbix daemon using the Orbix
putit command line tool or the Orbix
ServerManager GUI utility.

This name is also used to scope SSL configuration
information in the OrbixSSL configuration file.
Using OrbixSSL with otstf is described on
page 280.

-T <transaction
factory IOR file>

-L <transactional lock
set factory IOR file>

These options allow you to obtain the stringified
object reference of the transaction and
transactional lock set factories. In both cases you
must supply the name of a file to which the IORs
are written. Also the relevant factory will not be
registered with the NameService.

-t

<TransactionFactory

name>

This option allows you to specify the name for the
transaction factory in the Name Service. The name
provided can be fully qualified in terms of naming
contexts where contexts are delimited by a
period(.). If the name includes naming contexts then
the naming contexts must already exist.

When OrbixOTS for Java needs to locate the
default transaction factory it uses the OrbixOTS
configuration value
OrbixOTS.OTS_DEFAULT_TRANSACTION_FACTORY_N

S_NAME.

The default value for this variable matches the
default values used by otstf when registering itself
in the NameService. If you change this value using
the -t option then you must change the
OrbixOTS.OTS_DEFAULT_TRANSACTION_FACTORY_N

S_NAME configuration variable to allow applications
to continue finding the default transaction factory.

Command-line Option Effect

Table 14.2: OrbixOTS Transaction Factory Command-line Options
279

O r b i x O T S P r o g r am m e r ’ s a n d A dm in i s t r a t o r ’ s G u i d e
Using otstf with SSL

The otstf server supports SSL to allow it to operate in a secure environment.
The otstf server is built as an OrbixSSL server - please refer to the OrbixSSL
Programmer’s and Administrator’s Guide for general information on how to
administer SSL applications.

A configuration variable must be set to allow OrbixSSL to locate the certificate
file for otstf. The variable is called IT_CERTIFICATE_FILE and it must be set in
the OrbixSSL configuration file in the appropriate scope for the server. The fully
qualified scope is generated by appending the server’s name to the string
OrbixOTS.

Consider, for example, that the certificate for the otstf server is located in a file
called c:\iona\
config\repositories\certificates\services\orbixots\otstf.

In this case there should be a section in the OrbixSSL configuration file like this:

OrbixOTS specific configuration information
OrbixOTS {

OrbixOTS_TransacitonFactory {
IT_CERTIFICATE_FILE="c:\iona\

config\repositories\certificates\services\orbixots\otstf";
}
}

In the above example the default server name OrbixOTS_TransactionFactory
is used so the configuration scope is OrbixOTS.OrbixOTS_TransactionFactory.
If you use the ’-s’ option to specify an alternative server name for a secure otstf
server, there must be a corresponding configuration scope for that server name
in the OrbixSSL configuration file.

-v Display version information.

Command-line Option Effect

Table 14.2: OrbixOTS Transaction Factory Command-line Options
 280

T h e O r b i x O T S T r a n s a c t i o n F a c t o r y
OrbixSSL certificate files are usually password protected. In this case the server
must obtain the password from some source in order to use its certificate.
Generally, when SSL-enabled servers are launched automatically, OrbixSSL
contacts the key distribution manager (KDM) server to obtain the password for
the server’s certificate.

In order to lauch the otstf server automatically, you must first use the
OrbixSSL putkdm utility to record the otstf server certificate password in the
KDM database. For example:

putkdm OrbixOTS_TransactionFactory demopassword

If the server is launched persistently and SSL is enabled, the server prompts you
for a certificate password. When the password is correct the server continues,
or otherwise it exits with an appropriate error message.

Use of otstf by OrbixOTS for Java

The OrbixOTS Java classes do not create or coordinate transactions. They
therefore need to delegate these operations to a capable server. All recoverable
OrbixOTS C++ servers are capable of creating and coordinating transactions
because they each support a transaction factory object and maintain transaction
logs to track the state of distributed transactions. The otstf server is just a
specialization of such an OrbixOTS C++ recoverable server that has been
extended to export its factory object references to OrbixNames and for ease of
use.

The OrbixOTS Java classes use the otstf server to create and coordinate
transactions by default. They resolve the default transaction factory name from
the NameService. An application developer can specify an alternative default
transaction factory using the setDefaultFactory() operation or through the
OrbixOTS configuration value
OrbixOTS.OTS_DEFAULT_TRANSACTION_FACTORY_NS_NAME.

Using a remote transaction factory in this manner incurs the overhead of remote
invocations for transaction management so you must take care to minimize
remote operations. This is particularly important when many resources are
registered with a distribute transaction.

As an example, consider the scenario where a client invokes a transactional
operation on a C++ server that registers a CosTransactions::Resource:
281

O r b i x O T S P r o g r am m e r ’ s a n d A dm in i s t r a t o r ’ s G u i d e
1. The Java client first creates a transaction using the standalone transaction
factory (by default otstf) and propagates the transaction to the C++
server.

2. The server registers its resource with the transaction.

3. The client commits the transaction and the transaction coordinator (by
default the first recoverable server – in this case is the otstf server)
initiates two-phase commit (2PC) protocol.

4. Because the coordinator and resource are in different servers, remote
invocations will be necessary that may accentuate the 2PC overhead for
transaction completion.

To avoid this additional overhead the OrbixOTS classes provide a configurable
optimization that delays transaction creation until the transaction is first
propagated to a remote server. Before the remote operation an attempt will be
made to use a transaction factory on the remote server to create the
transaction. If this succeeds the performance benefit can be considerable.
Consider the above example again. In this case the C++ recoverable server is
responsible for coordination and it is co-located with the registered resources.
Thus there will be no remote invocation overhead during the 2PC protocol.

If the attempt to create the transaction on the remote server fails because, for
example, the server does not support the transaction factory interface, the
default transaction factory creates the transaction and the operation proceeds as
before. This optimization is off by default, but it can be enabled using the
OrbixOTS configuration value:

OrbixOTS.OTS_USE_DEFAULT_FACTORY="FALSE"

This optimization is only useful when the remote servers are recoverable
OrbixOTS C++ servers. The benefit is gained by minimizing the amount of
remote operations required to implement 2PC.

The example describes above is a very simple scenario. If, in your case, the
server that implements the most resources is not normally the first point of
contact for a transaction you can use the Client.setDefaultFactory()
operation to specify that server be used as the transaction factory. In this case
you should leave the OrbixOTS.OTS_USE_DEFAULT_FACTORY configuration
variable at it’s default TRUE value to ensure that your specified default factory is
always used.
 282

Appendix C
OrbixOTS Configuration Variables

All OrbixOTS configuration variables are contained in the
“OrbixOTS” configuration scope. This appendix describes these
values.

 Variable Use Value Default

OTS_ABORT_TIMEOUT The default timeout in
seconds for transactions
created without an explicit
timeout.

int 180

OTS_ADMIN_TPOOL_HWM Sets the high-water mark
for the number of threads
in the thread pool servicing
administration requests
sent by the otsadmin tool.
The number of threads can
never rise above this value.

int 10 x
OTS_ADMIN_TPOOL_L
WM

OTS_ADMIN_TPOOL_LWM Sets the low-water mark
for the number of threads
in the thread pool servicing
administration requests
sent by the otsadmin tool.

int 5

OTS_ALWAYS_RETURN_CO
NTEXT

Sets whether a propagation
context is always sent in
the reply message of a
transactional invocation.

bool FALSE

Table 14.3: OrbixOTS Configuration Variables
283

O r b i x O T S P r o g r am m e r ’ s a n d A dm in i s t r a t o r ’ s G u i d e
OTS_DEFAULT_TRANSACT
ION_ FACTORY_NS_NAME

The name used for the
default transaction factory
in the name service (used
by Java OTS clients and
servers).

string “OrbixOTS.Transac
tionFactory”

OTS_GC_PERIOD Sets the time in seconds
between cleaning up caches
used to store information
required by the OTS.

int 300

OTS_LISTEN_TIMEOUT Sets the timeout in
milliseconds for servers
calling the operation
OrbixOTS::Server::impl_is
_ready() with no timeout
parameter. If no value is set
the default Orbix

int n/a

OTS_LOG_TPOOL_HWM Sets the high-water mark
for the number of threads
in the thread pool servicing
remote log requests (used
by the
OrbixOTS::Server::logServ
er() operation).

int 10 x
OTS_LOG_TPOOL_LWM

OTS_LOG_TPOOL_LWM Sets the low-water mark
for the number of threads
in the thread pool servicing
remote log requests (used
by the
OrbixOTS::Server::logServ
er() operation). The
number of threads can
never rise above this value.

int 5

 Variable Use Value Default

Table 14.3: OrbixOTS Configuration Variables
 284

OTS_NO_ABORT_ON_USER
_

EXCEPTION

Whether raising a user
exception does not cause
the transaction to be rolled
back.

bool FALSE

OTS_NO_NICE_MESSAGES Determines whether the
user friendly interpretaion
of Encina Toolkit errors is
disabled.

bool FALSE

OTS_NO_OPTIMIZE_PROP
AGATION

Sets whether certain
optimizations dealing with
transaction context
propagation are disabled.

bool FALSE

OTS_NO_PING_DURING_B
IND

Sets whether to enable or
disable the Orbix ping-
during-bind feature (see the
Orbix operation
pingDuringBind() for more
details).

bool FALSE

OTS_OOB_SYNCHRONOUS Whether to disable the use
of the thread pool for
transaction protocol
requests (also known as
out-of-band or OOB
requests).

bool FALSE

 Variable Use Value Default

Table 14.3: OrbixOTS Configuration Variables
285

O r b i x O T S P r o g r am m e r ’ s a n d A dm in i s t r a t o r ’ s G u i d e
OTS_OOP_TPOOL_HWM Sets the low-water mark
for the number of threads
in the thread pool servicing
transaction protocol
requests (also known as
out-of-band or OOB
requests). The number of
threads can never rise
above this value.

int 10 x
OTS_OOP_TPOOL_LWM

OTS_OOP_TPOOL_LWM Sets the low-water mark
for the number of threads
in the thread pool servicing
transaction protocol
requests (also known as
out-of-band or OOB
requests).

int 5

OTS_ORBIX_DIAGNOSTIC
S

Sets the Orbix diagnostics
level using the
setDiagnostics () operation.

int 0

OTS_ORBIX_DISPATCH_Y
IELD

Whether a thread yields
before servicing a request
from the user request
thread pool.

bool FALSE

OTS_RECOVERY_RETRY_T
IMEOUT

Sets the time in seconds
between attempts to
complete Resource
transaction protocol after
failure.

int 180

OTS_SERVER_NAME Sets the default name of
the server to which
otsadmin commands are
directed.

string n/a

 Variable Use Value Default

Table 14.3: OrbixOTS Configuration Variables
 286

OTS_TPOOL_HWM Sets the high-water mark
for the number of threads
in the thread pool servicing
user requests. The number
of threads can never rise
above this value.

int 10 x OTS_TPOOL_LWM

OTS_TPOOL_LWM Sets the low-water mark
for the number of threads
in the thread pool servicing
user requests.

int 5

OTS_USE_DEFAULT_FACT
ORY

Controls whether the
default transaction factory
obtained from the name
service is used when
creating new transactions
for Java clients and servers.

bool TRUE

 Variable Use Value Default

Table 14.3: OrbixOTS Configuration Variables
287

O r b i x O T S P r o g r am m e r ’ s a n d A dm in i s t r a t o r ’ s G u i d e
 288

Index
Numerics
2PC Protocol participation 87
2PC two-phase commit 8
2PL two-phase-locking 110

A
abort tran command 18, 22
abort_complete transaction state 20
aborted transaction state 20
aborting transaction state 20
ACID properties 4
active transaction state 20
add mirror command 29
after_completion() operation 133
all-in-OrbixOTS programming style 64
AP, application 275
architecture of a Java application 53
atomic transaction 4
Audience xiii

B
Background(), in class TranPThread 273
before_abort transaction state 20
before_completion()

implementing 133
in class Synchronization 207

begin transaction in client 47
begin()

in C++ class Current 196
in Java class Current 245
usage 47

-binary option of otsadmin 32
BOA, Basic Object Adapter approach 41

C
cache data, synchronizing 132
change_mode()

in class LockSet 224
in class TransactionalLockSet 232

client
running Java 59
writing C++ 44
writing Java 58
Client class 147, 242
client, initialising C++ 44
commit current transaction 47
commit()

implementation 90
in C++ class Current 196
in C++ class Resource 204
in C++ class Terminator 209
in Java class Current 246
in Java class Terminator 263
usage 47

-commit, desired option of otsadmin 22
commit, two-phase 8
commit_complete transaction state 20
commit_one_phase()

implementation 90
in C++ class Resource 204

commit_subtransaction() 94
in C++ 206

committing transaction state 20
compiling and linking

client C++ 49
Java client/server 59
server C++ 48

completing transactions 22
components of OrbixOTS 9
concurrency

and cached data 134
and recoverable resources 96
and XA resource managers 126
modes 127

Concurrency Control Service 103
ConcurrencyMode enumeration 159
concurrent constant 159
concurrent transactions 72, 104
configuration file 283
consistent transaction 5
Control class

in C++ 178
conventions for document xv
Coordinator class

in C++ 182
in Java 253

CORBA::Environment additional parameter 172
289

O r b i x O T S P r o g r amme r ’ s a n d A dm i n i s t r a t o r ’ s G u i d e
CORBA::SystemException 172
CosConcurrencyControl base class 219
CosConcurrencyControl module 114
CosTransactions module 171
CosTransactions prefix 172
CosTransactions::Resource usage 84
create()

in C++ class TransactionFactory 212
in class LockSetFactory 226
in class TranPThread 73, 272
in Java class TransactionFactory 264

create_related(), in class LockSetFactory 227
create_subtransaction()

in C++ class Coordinator 183
in Java class Coordinator 254

create_transactional(), in class
LockSetFactory 227

create_transactional_related(), in class
LockSetFactory 228

Current class
in C++ 194
in Java 262

D
data log 83
data types, CosTransactions 173
database access, Oracle 42
database cursors 138
database, examining 51
direct context management 65
direct-explicit model 46
disk logs, raw 26
DIY, do-it-yourself programming style 64
document conventions xv
drop_locks(), in class LockCoordinator 220
DTP, distributed transaction processing 5, 275
dump component command 32
dump ringbuffer command 31
durable transaction 5

E
Encina 276
Encina_nodce 49
Encina_nodce library 49
ENCINA_SERVER_NAME environment

variable 18
ENCINA_TRACE environment variable 31
ENCINA_TRACE_VERBOSE environment

variable 31
 290
EncinaClientOrbix library 49
EncinaServerOrbix library 49
EncinaTraceBuffer.PID file 32
EncServer_nodce library 49
error parameters 172
examine the database 51
exception mechanism 40
exceptions

error parameters 172
in C++ 175
in Java 267

exit()
in class Client 148
in class Server 160
in Java class Client 238
usage in server 40

expand mirror command 28
expand vol command 28
explicit mode 67
explicit propagation 131
extending a log’s size 28

F
factory object 65
failure and recovery 91
-family option of otsadmin 22
-finish option of otsadmin 22
finished transaction state 20
force tran command 22
forget()

implementation 91
in C++ class Resource 205

G
get_control() 67

in C++ class Current 197
in Java class Current 246

get_coordinator()
in C++ class Control 179
in class LockSet 225
in class TransactionalLockSet 233
in Java class Control 251

get_parent()
in C++ class Control 180
in Java class Control 251

get_parent_status()
in C++ class Coordinator 184
in Java class Coordinator 255

get_status()

O r b i x O T S P r o g r amme r ’ s a n d A dm i n i s t r a t o r ’ s G u i d e
in C++ class Coordinator 185
in C++ class Current 197
in Java class Coordinator 256
in Java class Current 246

get_terminator()
in C++ class Control 180
in Java class Control 251

get_top_level()
in Java class Control 252

get_top_level_status()
in C++ class Coordinator 185
in Java class Coordinator 256

get_transaction_name()
in C++ class Coordinator 186
in C++ class Current 198
in Java class Coordinator 257
in Java class Current 247

get_txcontext()
in C++ class Coordinator 186, 257

getDefaultTransactionPolicy()
in class Client 149
in class Server 160, 161
in Java class Client 239

guide organisation xiii

H
hash_top_level_tran()

in C++ class Coordinator 187
in Java class Coordinator 257

hash_transaction()
in C++ class Coordinator 187
in Java class Coordinator 258

header file, OrbixOTS.hh 146
help command 18
heuristic outcomes 98
HeuristicCommit exception 175, 267
HeuristicHazard exception 176, 267
HeuristicMixed exception 176, 267
HeuristicRollback exception 176, 267
hierarchical locking 107
holding an OCCS lock 21

I
id()

in C++ class Control 181
in Java class Control 252, 253

IDL code 36, 55
IDL compiler 36, 55
IDL file 41
 291
IDL interfaces 141
IDL, interface definition language 36, 55
impl_is_ready()

in class CORBA::Orbix 40
in class Server 40, 161

implementing transactional classes 41
implicit mode 67
in Java 242
Inactive exception 176, 268
inactive transaction state 21
indirect context management 65
indirect-implicit model 46
Informix 276
init()

in class Client 149
in class Server 162
in Java class Client 238

init(), usage in client 45
init(), usage in server 39
initialising a client C++ 44
initialising a server 37
initialize OrbixOTS 39
intention_read lock mode 218
intention_write lock mode 218
introduction to OrbixOTS 3
INVALID_TRANSACTION exception 178, 269
InvalidControl exception 176, 268
is_ancestor_transaction()

in C++ class Coordinator 188
in Java class Coordinator 258

is_descendant_transaction()
in C++ class Coordinator 188
in Java class Coordinator 259

is_related_transaction()
in C++ class Coordinator 189
in Java class Coordinator 259

is_same_transaction()
in C++ class Coordinator 190
in Java class Coordinator 260

is_top_level_transaction()
in C++ class Coordinator 191
in Java class Coordinator 260

isolated transaction 5
IT_create()

in C++ class Current 198
in class Client 149
in class Restart 153
in class Server 163
in Java class Client 242
in Java class Current 247

O r b i x O T S P r o g r amme r ’ s a n d A dm i n i s t r a t o r ’ s G u i d e
in Java class Server 243

J
Java architecture in OrbixOTS 53
Java classes 144, 235, 271

and otstf 281
Java clients and servers 53
Java components 11
join(), in class TranPThread 73, 274

L
libraries for compiling 49
list tran command 18, 20
list vol command 26
listing logical volumes 26
Listing transactions in a server 20
local identifier 20
local server failure 92
lock compatibility 216
lock conflict 216
Lock Duration 217
Lock Modes 105, 216

intention-read 108
intention-write 108
read 106
upgrade 107
write 106

Lock Sets 104, 216
explicit 118
implicit 115

lock()
in class LockSet 222
in class TransactionalLockSet 230

lock_mode enumeration type 217
LockCoordinator class, in class

CosConcurrencyControl 220
Locks 104
locks and resource managers 126
LockSet class, in class

CosConcurrencyControl 115, 221
LockSetFactory class, in class

CosConcurrencyControl 226
log files

programming in servers 39
log files, creating for OrbixOTS 50
log size, extending 28
log, size of 24
logDevice attribute usage 82
logDevice() in class Server 163
 292
logging in OrbixOTS 23
logging tool 24
logical volume 26
logServer attribute usage 82
logServer() in class Server 164
logVol, logical volume 26

M
mirror

adding 29
removing 29
using 26
utility 24

mirrorRestartFile attribute usage 82
mirrorRestartFile() in class Server 164
multiple associations 128
multiple possession semantics 113
multi-threading transactions 72

N
nested transactions 66, 69, 93, 134, 205

comitting 94
rolling back 95

none transaction state 21
NotPrepared exception 177, 268
NoTransaction exception 177, 268
NotSubtransaction exception 177, 268

O
Object Transaction Service xiii
OCCS, Object Concurrency Control Service 9,

103
classes 215
holding locks 21
waiting for locks 21

OMG OTS, overview 12
OMG, Object Management Group 5
one-phase commit

in C++ class Resource 204
one-phase-commit (1PC) protocol 136
Oracle 276
Oracle tables, creating 50
ORB errors 172
Orbix daemon 39
Orbix Java Edition 11, 144
orbixmt library 49
OrbixOTS 160, 277

components 9
configuration file 283

O r b i x O T S P r o g r amme r ’ s a n d A dm i n i s t r a t o r ’ s G u i d e
initialization 39
introduction to 3
library 67

orbixots.cfg file 283
OrbixOTS.hh 38, 45, 146, 172, 215
OrbixOTS.idl 37, 56
OrbixOTS_tf.log 277
OrbixOTS_tf.restart 277
OrbixOTS_TransactionFactory 277
OrbixSSL

and otsadmin 23
and otstf 281
certificates 281

organisation of guide xiii
OTS, Object Transaction Service xiii, 5
otsadmin

abort tran command 18, 22
add mirror command 29
-binary option 32
-commitdesired option 22
dump component command 32
dump ringbuffer command 31
expand mirror command 28
expand vol command 28
-family option 22
-finish option 22
force tran command 22
help command 18
list tran command 18, 20
list vol command 26
-overwrite option 32
query mirror command 28
query trace command 30
query tran command 21
query vol command 27, 28, 29
quit command 18
remove mirror command 29
-server option 18
trace specification command 31

otsadmin, running the tool 18
otsmklog utility 24
otstf utility 277

command-line options 278
-overwrite option of otsadmin 32

P
physical volume 26
prepare()

implementation 87
in C++ class Resource 203
 293
prepared transaction state 21
preparing transaction state 21
present transaction state 21
programming styles 64

Q
query mirror command 28
query trace command 30
query tran command 21
query vol command 27, 28, 29
quit command 18

R
raw disk logs 26
read lock mode 218
recover()

in class Restart 153
recoverable objects 81
recoverable objects, requirements 97
recoverable resources

writing 81
writing server 39

recoverable servers 82
recoverable()

in class Server 165
usage 39

recovery after failure 91
RecoveryCoordinator class

in C++ 201
recreate()

in C++ class TransactionFactory 213
reference overview 141
register resources 39
register the server 50
register_resource()

in C++ class Coordinator 191
register_subtran_aware() 95

in C++ class Coordinator 192
register_synchronization()

in C++ class Coordinator 193
in Java class Coordinator 261

register_xa_rm() 123
in class Server 166
usage 39

remote server failure 92
remove mirror command 29
replay_completion(), in C++ class

RecoveryCoordinator 202
Resource class

O r b i x O T S P r o g r amme r ’ s a n d A dm i n i s t r a t o r ’ s G u i d e
in C++ 202
resource manager locks 126
resource objects 84

requirements 98
Restart class 152
restart files 39
restartFile attribute usage 82
restartFile(), in class Server 167
resume transaction 68
resume()

in C++ class Current 198
in Java class Current 248
usage 68

RM, resource manager 275
roll back current transaction 47
rollback()

implementation 89
in C++ class Current 199
in C++ class Resource 204
in C++ class Terminator 210
in Java class Current 248
in Java class Terminator 263
usage 47

rollback_only()
in C++ class Coordinator 194
in C++ class Current 199
in Java class Coordinator 261
in Java class Current 248

rollback_only(), usage 66
rollback_subtransaction() 95

in C++ 206
rolling-back transactions 22
run the client 50
run the server 50
running the application 50

S
serializability 110
serializeRequests 159
serializeRequestsAndTransactions 159
server

initialization 25
initializing 37
listening 40
making recoverable 39
running Java 58
writing 37
writing Java 56

Server class 153
in Java 243
 294
Server class, usage 39
-server option of otsadmin 18
serverName(), in class Server 167
set_timeout()

in C++ class Current 200
in Java class Current 249

setDefaultFactory()
in Java class Client 240, 241

setDefaultTransactionPolicy()
in class Client 150
in class Server 168
in Java class Client 239

setInterfaceTransactionPolicy()
in class Client 150
in class Server 168
in Java class Client 239

setObjectTransactionPolicy()
in class Client 151, 169
in Java class Client 240

single association 128
SQL 43
SQL Server 276
SSL

and otsadmin 23
use with otstf 280

Status enumeration type 173
in Java 265

StatusActive 174, 265
StatusCommitted 174, 265
StatusCommitting 174, 266
StatusMarkedRollback 174, 265
StatusNoTransaction 174, 266
StatusPrepared 174, 265
StatusPreparing 174, 266
StatusRolledBack 174, 266
StatusRollingBack 174, 266
StatusUnknown 174, 266
styles of programming transactions 64
SubtransactionAwareResource Class

in C++ 205
SubtransactionsUnavailable exception 177, 269
suspend a transaction 68
suspend()

in C++ class Current 201
in Java class Current 249
usage 68

Synchronization class
in C++ 207

synchronization object registration 133
system exceptions 172

O r b i x O T S P r o g r amme r ’ s a n d A dm i n i s t r a t o r ’ s G u i d e
T
terminate server 40
Terminator class

in C++ 209
in Java 262

ThreadLocal class
in Java 264

threads
using multiple 72

TIE approach 41
TM, transaction manager 275
TMXA_DIFFERENT_BQUAL_INDEPENDENT 1

35
TMXA_DIFFERENT_BQUAL_LINKED 135
TMXA_DIFFERENT_GTRID 135
TMXA_SAME_XID 135
trace

querying for settings 30
trace specification command 31
tracing

activating 31
dumping diagnostics 31

tracing clients and servers 30
TranPthread class 271

using 72
transaction factory utility 277
transaction manager 5
transaction names 78
Transaction originator 141
transaction relationship operations 76
TRANSACTION_REQUIRED exception 178, 269
TRANSACTION_ROLLEDBACK exception 178,

269
transactional classes, implementing 41
TransactionalLockSet class, in class

CosConcurrencyControl 229
TransactionalObject Base class

in Java 264
TransactionalObject class

in C++ 211
TransactionalObject class, usage 37, 56
TransactionFactory class 65

in C++ 212
in Java 264

TransactionLockSet class, in class
CosConcurrencyControl 118

transactions
activities 6
basics 4
end 66
 295
multi-threading 72
nested 72, 93
objects 36, 55
programming 46
resuming 68
states 20
status values 75
suspending 68

try_lock()
in class LockSet 223
in class TransactionalLockSet 231

try-catch mechanism 40
two-phase commit 8

in C++ class Resource 203
two-phase-locking 110
TX 5

U
Unavailable exception 177, 269
unknown transaction state 21
unlock()

in class LockSet 223
in class TransactionalLockSet 231

upgrade lock mode 218

V
volumes

listing 26
querying details 27
using 26

Vote enumeration type 174
VoteCommit 174, 203
VoteReadOnly 175, 203
VoteRollback 175, 204

W
waiting for an OCCS lock 21
write lock mode 218

X
X/Open 5, 275
XA 5, 45

advanced programming 121
overview 121
protocol functions 122
resource manager integration 123
switch 166

xa_switch_t structure 124

O r b i x O T S P r o g r am m e r ’ s a n d A dm in i s t r a t o r ’ s G u i d e
XA-compliant resources 39
 296

	Preface
	Audience
	Organization of this Guide
	Document Conventions

	Part I Introduction and Administration
	Introduction to OrbixOTS
	OrbixOTS Features
	Basics of Transactions
	Distributed Transaction Processing (DTP)
	What Happens During a Transaction
	A Two-Phase Commit
	The Components of OrbixOTS
	C++ Server Components
	C++ Client Components

	Java Components
	Overview of the OMG OTS
	The Object Transaction Service
	The Object Concurrency Control Service

	OrbixOTS Configuration and Administration
	Running the otsadmin Tool
	Administering Transactions
	Listing Transactions in a Server
	Rolling Back Transactions
	Completing Transactions

	otsadmin and SSL
	Logging in OrbixOTS
	Running the otsmklog Tool
	Server Initialization
	Raw Disk Logs
	Using Volumes and Mirrors
	Using Another Server’s Log

	Controlling Servers
	Tracing Clients and Servers
	Querying for Trace Settings
	Turning Tracing On
	Dumping Trace Diagnostics

	Part II Programming
	Getting Started Programming OrbixOTS
	Overview
	Specifying Transactional Classes
	Writing an OrbixOTS Server
	Initializing a Server
	Implementing Transactional Classes

	Writing an OrbixOTS Client
	Initializing a Client
	Doing a Transaction
	Terminating a Client

	Completing an Application
	Compiling and Linking a Server
	Compiling and Linking a Client
	Running the TransBank Application

	Programming with the Java Classes
	Architecture
	Specifying Transactional Classes
	Writing a Java Server
	Writing a Transactional Java Client
	Building and Running a Java Server/Client

	Part III Advanced Programming
	Controlling Transactions
	An Overview of Transaction Programming Models
	Using Direct Context Management
	Creating Transactions
	Ending Transactions

	Using Explicit Transaction Propagation
	Suspending and Resuming Transactions
	Nested Transactions
	Threads and Transactions
	Miscellaneous Operations
	Transaction Status
	Transaction Relationship Operations
	Transaction Names
	Hash Functions

	Writing a Recoverable Resource
	Introduction
	Recoverable Objects
	Recoverable Servers
	The Data Log

	Resource Objects
	Participating in the 2PC Protocol
	Failure and Recovery

	Nested Transactions
	The commit_subtransaction() Operation
	The rollback_subtransaction() Operation
	Registering SubtransactionAwareResource Objects

	Concurrency
	Requirements for Recoverable Objects
	Requirements for Resource Objects

	Heuristic Outcomes
	Resource Object Lifecycle

	Concurrency Control
	Locks and Lock Sets
	Implicit and Explicit Lock Sets
	Lock Modes
	Two-Phase Locking

	Multiple Possession Semantics
	Using the OCCS
	Lock Modes and Exceptions
	Implicit Lock Sets
	Explicit Lock Sets
	Creating Lock Set Objects
	Dropping Locks

	Advanced XA Programming
	Overview of XA
	Integrating an XA Resource Manager
	Concurrency Issues
	Resource Manager Locks
	Concurrency Modes
	Single Association versus Multiple Associations

	Explicit Propagation
	Synchronizing Cache Data
	The before_completion() Operation
	The after_completion() Operation
	Registering a Synchronization Object
	Concurrency Issues

	Nested Transactions
	Other Issues
	Resource Manager APIs
	Database Cursors

	Part IV Programmer’s Reference
	OrbixOTS Reference Overview
	Interfaces
	Java Classes

	The Classes Client, Restart, and Server
	OrbixOTS::Client Class
	OrbixOTS::Restart Class
	OrbixOTS::Server Class

	CosTransactions Module
	Introduction
	Overview of Classes
	General Data Types
	General Exceptions

	CosTransactions::Control Class
	CosTransactions::Coordinator Class
	CosTransactions::Current Class
	CosTransactions::RecoveryCoordinator Class
	CosTransactions::Resource Class
	CosTransactions::SubtransactionAwareResour ce Class
	CosTransactions::Synchronization Class
	CosTransactions::Terminator Class
	CosTransactions::TransactionalObject Base Class
	CosTransactions::TransactionFactory Class

	Concurrency Control Classes
	Introduction
	Overview of the Classes
	Lock Mode Enumeration Data Type

	CosConcurrencyControl Base Class
	CosConcurrencyControl::LockCoordinator Class
	CosConcurrencyControl::LockSet Class
	CosConcurrencyControl::LockSetFactory Class
	CosConcurrencyControl::TransactionalLockSet Class

	Java Classes
	Introduction
	Overview of the Classes
	The OtsEnv, Client and Server Classes

	OtsEnv Class
	Client Class
	Server Class
	TransactionPolicy Class
	Current Class
	Control Class
	Coordinator Class
	Terminator Class
	TransactionalObject Base Class
	TransactionFactory Class
	Status Enumeration Class Type
	Common Exceptions

	Threading Transactions
	TranPthread Class

	Appendix A The DTP Reference Model
	Appendix B The OrbixOTS Transaction Factory
	Launching otstf
	Command-line Options

	Appendix C OrbixOTS Configuration Variables
	Index

