
IONA Technologies PLC
November 2000

OrbixTalk Programmer’s 
Guide

orbixtalk33.book  Page 1  Monday, July 22, 2002  10:33 AM



Orbix is a Registered Trademark of IONA Technologies PLC.
While the information in this publication is believed to be accurate, IONA Technologies PLC makes no warranty of any kind 
to this material including, but not limited to, the implied warranties of merchantability and fitness for a particular purpose. 
IONA Technologies PLC shall not be liable for errors contained herein, or for incidental or consequential damages in 
connection with the furnishing, performance or use of this material.
Java is a trademark of Sun Microsystems, Inc.

COPYRIGHT NOTICE
No part of this publication may be reproduced, stored in a retrieval system or transmitted, in any form or by any means, 
photocopying, recording or otherwise, without prior written consent of IONA Technologies PLC. No third party intellectual 
property right liability is assumed with respect to the use of the information contained herein. IONA Technologies PLC 
assumes no responsibility for errors or omissions contained in this book. This publication and features described herein are 
subject to change without notice.

Copyright © 2000 IONA Technologies PLC. All rights reserved. 

All products or services mentioned in this manual are covered by the trademarks, service marks, or product names as 
designated by the companies who market those products.

M 2 5 1 5

orbixtalk33.book  Page 2  Monday, July 22, 2002  10:33 AM



Contents

orbixtalk33.book  Page 3  Monday, July 22, 2002  10:33 AM
 Preface 9
Audience 9
Roadmap 10
Document Conventions 12

Part I Introduction to OrbixTalk

Chapter 1   Introduction to OrbixTalk 3
Overview 3
Using OrbixTalk 4
Writing Applications Using OrbixTalk 6

Applications that Use the CORBA Event Service 7
Applications that use the OrbixTalk API Directly 8

Chapter 2   The OrbixTalk Reliable Multicast Protocol 9
Overview 9

User Datagram Protocol and Reliable Multicast Protocol 10
IP Multicast Addresses Details 11

Chapter 3   OrbixTalk MessageStore 13
Overview 13

Persistent Application Name 14
Temporary Supplier Application Name 14

Using the OrbixTalk MessageStore 15

Part II Developing OrbixTalk Applications

Chapter 4   How OrbixTalk Works 19
Overview 19

OrbixTalk Topic Names 20
3



Orb i x T a l k  P r o g r amme r ’ s  Gu i d e

orbixtalk33.book  Page 4  Monday, July 22, 2002  10:33 AM
Communication between Suppliers and Consumers 21
OrbixTalk Directory Enquiries Daemon 21
Sending Messages 22
Receiving Messages 22
OrbixTalk Transport Protocol Stack 24
OrbixTalk Raw Multicast Protocol (otmcp) 24
OrbixTalk Transport Implementation 25

Chapter 5   The CORBA Event Service 27
Communications using the CORBA Event Service 27
Initiating Event Communication 31

The Push Model 32
The Pull Model 33
Mixing the Push and Pull Models in a Single System 34

Types of Event Communication 35

Chapter 6   The Programming Interface to the Event Service 37
The Programming Interface for Untyped Events 38

Registration of Suppliers and Consumers with an Event Channel 38
Transfer of Untyped Events through an Event Channel 43
Event Channel Administration Interfaces 45

The Programming Interface for Typed Events 47
Registration of Suppliers and Consumers with a Typed Event Channel 48
Transfer of Typed Events Through an Event Channel 49
Typed Event Channel Administration Interfaces 51

Chapter 7   Programming with the Untyped Push Model 55
Overview of an Example Application 56
Developing an Untyped Push Supplier 56

Binding to an Event Channel 57
Obtaining a ProxyPushConsumer from an Event Channel 57
Connecting a PushSupplier Object to an Event Channel 58
Pushing Events to an Event Channel 59
The Push Supplier Application 60

Developing an Untyped Push Consumer 62
Obtaining a ProxyPushSupplier from an Event Channel 63
Connecting a PushConsumer Object to an Event Channel 63
Monitoring Incoming Operation Calls 65
 4



Con t e n t s

orbixtalk33.book  Page 5  Monday, July 22, 2002  10:33 AM
The Push Consumer Application 66

Chapter 8   Programming with the Typed Push Model 69
Overview of an Example Application 69
Developing a Typed Push Supplier 71

Obtaining a TypedProxyPushConsumer from an Event Channel 72
Connecting a PushSupplier Object to an Event Channel 73
Obtaining a Typed Push Consumer from a ProxyPushConsumer 74
Pushing Events to an Event Channel 75
A Typed Push Supplier Application 76

Developing a Typed Push Consumer 78
Obtaining a ProxyPushSupplier from an Event Channel 79
Connecting a TypedPushConsumer Object to an Event Channel 79
Monitoring Incoming Operation Calls 82
A Typed Push Consumer Application 83

Chapter 9   Programming with the Untyped Pull Model 85
Overview of an Example Application 86
Developing an Untyped Pull Consumer 86

Obtaining a ProxyPullSupplier from an Event Channel 87
Connecting a PullConsumer Object to an Event Channel 87
Pulling Events from an Event Channel 89
An Untyped Pull Consumer Application 90

Developing an Untyped Pull Supplier 92
Obtaining a ProxyPullConsumer from an Event Channel 92
Connecting a PullSupplier Object to an Event Channel 93
Monitoring Incoming Operation Calls 95
An Untyped Pull Supplier Application 96

Chapter 10   The OrbixTalk Events Library 99
The C++ Library Header Files 100
Event Channel Identifiers 100
Store and Forward Multicast 101
The Events Library and The OrbixTalk Daemon 101
Non-Multicast Event Channels 101

Chapter 11   OrbixTalk IIOP Gateway 103
Event Channel Identifiers 104
5



Orb i x T a l k  P r o g r amme r ’ s  Gu i d e

orbixtalk33.book  Page 6  Monday, July 22, 2002  10:33 AM
Store and Forward Multicast 105
The IIOP Gateway and The OrbixTalk Demon 105
Non-Multicast Event Channels 105
The IIOP Gateway Command Lines 106
Using The Channel Manager to Retrieve Event Channels 108

Part III Managing OrbixTalk

Chapter 12   Building and Running OrbixTalk Applications 113
Overview 113
UNIX Platforms 113
Microsoft Windows Platforms (WIN32) 114

Chapter 13   Daemons 117
Overview 117

Using the OrbixTalk Directory Enquiries Daemon (otd) 118
Fault Tolerance Support 119
NT Service Support 119
Daemon Support for UNIX 120
Using the OrbixTalk Directory Enquiries Daemon (otdsm) 121
Using the OrbixTalk MessageStore Daemon (otmsd) 121

Chapter 14   Fault Tolerance 123
Overview 123
Transition Diagrams 127

Summary of Phases 128
Types of Failure 128

Chapter 15   OrbixTalk System Exceptions 135
Overview 135
OrbixTalk API Exceptions 136
General Exceptions 141

Chapter 16   Tools 149
Overview 149
Using the State Log Analysis Tool (otdat) 149
 6



orbixtalk33.book  Page 7  Monday, July 22, 2002  10:33 AM
Dumping to the Standard Output (stdout) 150
Using the MessageStore File Compaction Tool (otadmin) 152
Using the Daemon Process Detection Tool (otpsd) 154

Chapter 17   Troubleshooting 155
Question: Orbix Compatibility 155
Question: Listeners on Different Subnets 155
Question: otd Daemons on Separate Subnets 156
Question: Reducing Network Traffic 156
Question: Are My Daemons Dead 158
Question: Compiling OrbixTalk Code 160
Question: otd Daemon Shutdown 161
Question: Communicating Across Subnets 161
Question: Talking to Different Machines 162
Question: Multiple OrbixTalk Systems 162

Part VI Appendices

Appendix A   Configuration Parameters167

Appendix B   IIOP Gateway Configuration Settings209

Appendix C   
CORBA Event Service: IDL Interfaces 213

Appendix D   Using the OrbixTalk API Directly219

Appendix E   OrbixTalk Class Reference255

 Index 269
7



Orb i x T a l k  P r o g r amme r ’ s  Gu i d e

orbixtalk33.book  Page 8  Monday, July 22, 2002  10:33 AM
 8



orbixtalk33.book  Page 9  Monday, July 22, 2002  10:33 AM
Preface
OrbixTalk provides a reliable multicast messaging system that supports an 
implementation of the Common Object Request Broker Architecture (CORBA) 
Event Service defined by the Object Management Group (OMG). OrbixTalk also 
provides a MessageStore to add persistent storage, on-demand playback and 
guaranteed delivery of messages. 

Any CORBA application can use the IIOP protocol to connect to the OrbixTalk 
Gateway in order to send multicast messages, or events. Any number of 
applications can supply these events, and are called suppliers. Any number of 
applications can receive these events, and are called consumers. Neither 
supplier nor consumer need be aware of each other’s existence.

Audience
This guide is aimed at programmers who are familiar with C++ programming 
and basic Orbix programming, as explained in the Orbix Programmer’s Guide 
C++ Edition. This guide provides information about writing user applications that 
use the CORBA Event Service. You can also use the OrbixTalk Application 
Programming Interface (API) directly.

Orbix documentation is periodically updated. New versions between releases 
are available at this site:

http://www.iona.com/docs/orbix/orbix33.html

If you need assistance with Orbix or any other IONA products, contact IONA 
at support@iona.com. Comments on IONA documentation can be sent to 
doc-feedback@iona.com.
9



Orb i x T a l k  P r o g r amme r ’ s  Gu i d e

orbixtalk33.book  Page 10  Monday, July 22, 2002  10:33 AM
Roadmap
This guide is organized as follows:

Part I Introduction to OrbixTalk 

Part I introduces OrbixTalk, the Reliable Multicast Protocol and the OrbixTalk 
MessageStore.

Part II Developing OrbixTalk Applications 
Part II provides the following information:

• How OrbixTalk works.

• How to write applications using the Event Service.

• How to use the IIOP Gateway so that any IIOP-compliant CORBA 
application can send multicast messages.

• How to use the C++ events library so that C++ applications can use 
multicast functionality directly.

Part III Managing OrbixTalk 
Part III provides information about:

• Useful tools.

• How to build and run OrbixTalk applications.

• Configuration parameters and how they affect each other.

• A list of system exceptions. 

• Daemons.

• Troubleshooting.
 10



P r e f a c e

orbixtalk33.book  Page 11  Monday, July 22, 2002  10:33 AM
Part VI Appendices
This manual includes the following appendices:

• Appendix A, “Configuration Parameters” describes the parameters used 
to configure OrbixTalk.

• Appendix C, “CORBA Event Service: IDL Interfaces” lists the IDL 
interfaces used by the CORBA Event Service.

• Appendix D, “Using the OrbixTalk API Directly” describes how to 
develop applications with the OrbixTalk API. It also shows you how to 
write applications that include the OrbixTalk MessageStore.

This appendix develops a demonstration program illustrating how 
OrbixTalk can be used to implement an auctioneer and bidders in an 
auction scenario.

• Appendix E, “OrbixTalk Class Reference” provides a reference to the 
classes used in the Orbixtalk API.
11



Orb i x T a l k  P r o g r amme r ’ s  Gu i d e

orbixtalk33.book  Page 12  Monday, July 22, 2002  10:33 AM
Document Conventions
This guide uses the following typographical conventions:  

This guide may use the following keying conventions: 

Constant width Constant width (courier font) in normal text represents 
portions of code and literal names of items such as 
classes, functions, variables, and data structures. For 
example, text might refer to the CORBA::Object class.

Constant width paragraphs represent code examples or 
information a system displays on the screen. For example:

#include <stdio.h>

Italic Italic words in normal text represent emphasis and new 
terms.

Italic words or characters in code and commands 
represent variable values you must supply, such as 
arguments to commands or path names for your 
particular system. For example:

cd /users/your_name

< > Some command examples may use angle brackets to 
represent variable values you must supply (this is an older 
convention).

...... 

Horizontal or vertical ellipses in format and syntax 
descriptions indicate that material has been eliminated to 
simplify a discussion.

[ ] Brackets enclose optional items in format and syntax 
descriptions.

{ } Braces enclose a list from which you must choose an 
item in format and syntax descriptions.

| A vertical bar separates items in a list of choices enclosed 
in { } (braces) in format and syntax descriptions.
 12



orbixtalk33.book  Page 1  Monday, July 22, 2002  10:33 AM
Part I
Introduction to OrbixTalk



orbixtalk33.book  Page 2  Monday, July 22, 2002  10:33 AM



orbixtalk33.book  Page 3  Monday, July 22, 2002  10:33 AM
 1
Introduction to OrbixTalk

This chapter introduces OrbixTalk—a decoupled, asynchronous 
messaging system based on a multicast transport service.

Overview
Traditional systems of inter-object communication have focused on a point-to-
point approach with one object communicating with one other object. In many 
situations, however, there is a requirement for a one-to-many or many-to-many 
form of communication between objects. 

IONA has implemented a messaging system known as OrbixTalk that provides a 
one-to-many or many-to-many form of communication. OrbixTalk enables 
objects and applications, running on different hosts within a subnet, to share 
information. OrbixTalk is a decoupled, asynchronous messaging system based on 
a multicast transport service. 

A messaging system is said to be decoupled when the application sending a 
message has no information about the objects receiving its message. This enables 
an application to send messages to a group whose members can be unspecified. 
In OrbixTalk, the applications sending messages and the applications receiving 
messages do not require any information about each other. This enables the 
members of a group to change dynamically without affecting the application 
sending the message; for example, a television channel does not need to know 
which televisions are switched on before broadcasting a program and televisions 
can be switched on and off without affecting the actual program signal.
3



Orb i x T a l k  P r o g r amme r ’ s  Gu i d e

orbixtalk33.book  Page 4  Monday, July 22, 2002  10:33 AM
OrbixTalk provides a reliable multicast transport service. The multicast transport 
service enables an application to send a single message to a group of objects 
therefore reducing the load on network resources. A messaging system based 
on a multicast transport service is efficient and easily scalable. For more 
information about the multicast transport service, refer to Chapter 2 “The 
OrbixTalk Reliable Multicast Protocol” on page 9.

This implementation of OrbixTalk is based on the Event Service defined by the 
Object Management Group (OMG), which extends the core Common Object 
Request Broker Architecture (CORBA) standard. The CORBA Event Service 
specifies how applications that require decoupled communication can be built. 
This guide discusses how to build applications with the Event Service in Part II 
Developing OrbixTalk Applications, “Part II Developing OrbixTalk Applications”.

OrbixTalk also provides a MessageStore to add persistent storage, on-demand 
playback and guaranteed delivery of messages. Applications send messages to the 
OrbixTalk MessageStore which stores the messages in a database and forwards 
them to applications waiting to receive these messages.

Using OrbixTalk
The following examples show how OrbixTalk can be used in different situations.

Scenario 1: A Stock Price Reporting System

• A ticker tape sends stock price information to the Stock Price Reporting 
System; for example, Reuters.

• Stock price information is sent to all services that have registered 
interest; for example, stock brokers, the Wall Street Journal, the Financial 
Times, Web reporting tools.
 4



I n t r o du c t i o n  t o  O r b i x T a l k

orbixtalk33.book  Page 5  Monday, July 22, 2002  10:33 AM
This scenario does not require persistence as previous stock prices are not 
required.

Scenario 2: Travel Agent

• Travel Agent receives updated schedules from the airlines at regular 
intervals.

• Tourist receives latest information about specific flights from the Travel 
Agent.

Figure 1.1: Stock Price Reporting System

Stock Price
Reporting System

Reuters Data Feed

Wall Street Broker

London Broker

Web
Reporting

Tool
5



Orb i x T a l k  P r o g r amme r ’ s  Gu i d e

orbixtalk33.book  Page 6  Monday, July 22, 2002  10:33 AM
There is a requirement for a persistent store of information so that travel agents 
can obtain information about flights past and present.

Writing Applications Using OrbixTalk
You can access the functionality of the OrbixTalk multicast messaging system by 
writing user applications that use the CORBA Event Service. You can also write 
user applications that use the OrbixTalk Application Programming Interface 
(API) directly, however, the Event Service approach is preferred.

Figure 1.2: A Travel Agent

Travel Agent

Aer Lingus

Delta

British
Airways

Tourist

Tourist

Persistent
Store
 6



I n t r o du c t i o n  t o  O r b i x T a l k

orbixtalk33.book  Page 7  Monday, July 22, 2002  10:33 AM
Figure 1.3 shows the overall architecture of OrbixTalk including applications 
using the OrbixTalk API directly, applications that use the CORBA Event 
Service, the OrbixTalk API and the OrbixTalk multicast transport service.

Applications that Use the CORBA Event Service

The CORBA Event Service, defined by the Object Management Group (OMG), 
specifies how applications that require decoupled communication semantics can 
be built. You create applications based on the concept of suppliers, consumers, 
and an event channel. Suppliers and consumers can implement push or pull 
semantics.

Figure 1.3: Overall Architecture of OrbixTalk

Application

CORBA Event 
Service

Application

OrbixTalk API

OrbixTalk multicast transport service
7



Orb i x T a l k  P r o g r amme r ’ s  Gu i d e

orbixtalk33.book  Page 8  Monday, July 22, 2002  10:33 AM
Applications that use the CORBA Event Service ‘plug in’ to the OrbixTalk API to 
access the functionality of the multicast messaging system. The OrbixTalk 
MessageStore is also available to provide persistence and playback of events. For 
more information, refer to “Part II Developing OrbixTalk Applications”.

Applications that use the OrbixTalk API Directly

OrbixTalk enables you to access the functionality of the multicast messaging 
system using the OrbixTalk API. You create applications based on the concept of 
talkers and listeners communicating on a topic. For more information, refer to 
Chapter D “Using the OrbixTalk API Directly” on page 219. However, the Event 
Service approach is preferred and should normally be used.
 8



orbixtalk33.book  Page 9  Monday, July 22, 2002  10:33 AM
 2
The OrbixTalk Reliable Multicast 
Protocol

This chapter introduces the Reliable Multicast Protocol used by the 
OrbixTalk messaging system.

Overview
There are three distinct ways to send messages over a network:

• Unicast

A message sent from one host specifies the address of a single destination 
host.

• Broadcast

Messages are sent from a single host to all other hosts in the network.

• Multicast

A single message is sent from a host to a set of hosts that belong to a 
specified multicast group. 

OrbixTalk provides a multicast transport service that can be accessed by 
applications and objects on the network. A multicast transport service enables a 
single host to send data to many destinations using a single call on the transport 
service. 
9



Orb i x T a l k  P r o g r amme r ’ s  Gu i d e

orbixtalk33.book  Page 10  Monday, July 22, 2002  10:33 AM
A set of hosts receiving messages on a particular IP multicast address is called a 
multicast group. A multicast group can span multiple networks. Hosts can join 
and leave multicast groups at any time. Adding hosts to a multicast group does 
not affect the messages sent on the network—a single message is sent regardless 
of the number of hosts in the multicast group. In this way, a multicast transport 
service reduces the load on network resources and is easily scalable.

User Datagram Protocol and Reliable Multicast Protocol

OrbixTalk uses the User Datagram Protocol (UDP) based IP multicast to share 
information between applications. By itself, this mechanism does not inform 
applications when information has been lost or arrives out of sequence. To 
provide reliability, OrbixTalk uses the OrbixTalk Reliable Multicast Protocol 
(otrmp). The OrbixTalk Reliable Multicast Protocol ensures that messages sent 
from a particular application are reliably delivered, in the correct sequence, to all 
applications in a multicast group. 

When messages larger than 1Kb are transmitted, OrbixTalk splits the messages 
into fragments before being sent. OrbixTalk allocates a sequence number to 
each fragment. The message fragments are stored in memory by the application 
sending the message then multicast to all applications waiting to receive this 
message. The applications receiving the message collect all the message 
fragments and reassemble them. When the last fragment of the message is 
received and all the fragments for that message have been accepted, the 
application checks that this is the next expected message. If it is the next 
expected message, the application passes the message onto the relevant object. 

The Reliable Multicast Protocol is a “negative acknowledge” protocol, that is, 
messages are not explicitly acknowledged. The application sending messages 
periodically sends out an information message to indicate the sequence number 
for the last message fragment it sent. If a gap is detected in the incoming message 
sequence numbers or the application receiving messages misses the last message 
fragment, it can request the message fragment a number of times before 
notifying the user software that it has lost some data. The number of times the 
application can request messages is set using the configuration variables. For 
more information, refer to Appendix A, “Configuration Parameters”.

An application sending messages stores messages, or message fragments, in a 
memory buffer for a short period of time so that it can resend messages if 
required. Old messages are deleted from the memory buffer as new messages 
 10



Th e  O r b i x T a l k  R e l i a b l e  Mu l t i c a s t  P r o t o c o l

orbixtalk33.book  Page 11  Monday, July 22, 2002  10:33 AM
are stored. The period of time that messages are stored is set using the 
configuration variables. For more information, refer to Appendix A, 
“Configuration Parameters”. If an application receiving messages fails, it can re-
request the last message sent when it restarts. However, this message may have 
been deleted from the memory buffer and, therefore, is not available when the 
application restarts. If this is a problem for a particular application, OrbixTalk 
MessageStore can be used to store messages persistently allowing an application 
receiving messages to request playback of any messages that have been missed. 
For more information, refer to Chapter 3 “OrbixTalk MessageStore” on 
page 13.

IP Multicast Addresses Details

An IP multicast address (Class D Internet address) consists of a 32-bit number; 
the high order 4 bits are 1110 which identify the Internet address as an IP 
multicast address; the remaining 28 bits contain the multicast group ID. Thus, IP 
multicast addresses are in the range 224.0.0.0 to 239.255.255.255. The range 
224.0.0.0 to 224.0.0.255 is normally reserved and is not used within 
OrbixTalk.

IP multicast addresses map to ethernet addresses in the range 
01:00:5e:00:00:00 to 01:00:5e:7f:ff:ff. In converting an IP multicast 
address to an ethernet address, only the first low-order 23 bits of the IP 
multicast address are used. There is an overlap of 32 IP multicast addresses to 
each ethernet address. Since the first 23 bits represent approximately 8 million 
addresses, OrbixTalk only uses addresses which do not overlap. 

In practice, there can be system-level limits to how many of these addresses can 
be used by a specific application. These limits include the number of groups that 
a process is allowed to join per socket and the number of sockets a process can 
have open. 
11



Orb i x T a l k  P r o g r amme r ’ s  Gu i d e

orbixtalk33.book  Page 12  Monday, July 22, 2002  10:33 AM
 12



orbixtalk33.book  Page 13  Monday, July 22, 2002  10:33 AM
 3
OrbixTalk MessageStore

This chapter introduces the OrbixTalk MessageStore and the Store 
and Forward Protocol (otsfp) that add persistent storage of messages 
and on-demand playback of these messages to the OrbixTalk 
multicast messaging system. 

The OrbixTalk MessageStore can be accessed from applications that use the 
OrbixTalk API directly or applications that use the CORBA Event Service.

Overview
The OrbixTalk MessageStore provides guaranteed delivery of messages using a 
Store and Forward Protocol (otsfp). Applications send messages to a process, 
the OrbixTalk MessageStore daemon (otmsd), specifying the otsfp protocol. 
The OrbixTalk MessageStore daemon stores the messages in a database and 
acknowledges receipt of the messages. The messages are then sent to the 
applications that have registered interest in these messages.

To enable the OrbixTalk MessageStore daemon to store messages, all 
applications must have a unique application name. There are two types of 
application name:

• Persistent application name

• Temporary application name
13



Orb i x T a l k  P r o g r amme r ’ s  Gu i d e

orbixtalk33.book  Page 14  Monday, July 22, 2002  10:33 AM
Persistent Application Name

All applications must have a unique application name which enables the 
OrbixTalk MessageStore daemon to store messages.

For a Supplier Application

Some supplier applications require that message sequence numbers are 
maintained between invocations. The OrbixTalk MessageStore daemon stores 
the message sequence numbers for messages which have been successfully sent 
from these applications and determines the next sequence number for a new 
message. Applications that require message sequence numbers to be stored are 
identified by a unique system-wide persistent application name which has the 
following format:

//part1/part2/part3/...

For example:

//Application/one

The persistent application name is set by calling setPersistentAppName.

For a Consumer Application
A consumer application requires its own state log to store message sequence 
numbers which have been successfully received from the OrbixTalk 
MessageStore daemon. If an application fails, it reads the state log at restart and 
determines the last message it received. This information is sent to the 
OrbixTalk MessageStore which replays any messages with later sequence 
numbers. All consumer applications must have a persistent application name.

Temporary Supplier Application Name

Some supplier applications using the Store and Forward Protocol (otsfp) do not 
need to maintain state between invocations; for example, an application sending 
updated prices may not need to keep a log of previous prices. These 
applications, therefore, do not require message sequence numbers to be stored 
between invocations. If a supplier application does not set the application name 
using setPersistentAppName, it uses a temporary supplier application name 
given by the OrbixTalk Directory Enquiries daemon. 
 14



O rb i x T a l k  Me s s a g e S t o r e

orbixtalk33.book  Page 15  Monday, July 22, 2002  10:33 AM
Using the OrbixTalk MessageStore
The process of sending, storing and receiving messages through the OrbixTalk 
MessageStore is as follows:

1. An application that uses a persistent application name sends a request to 
the OrbixTalk MessageStore to obtain the current state of its message 
store; that is, it requests the next message sequence number.

2. The application then sends messages to the OrbixTalk MessageStore 
daemon (otmsd) specifying the otsfp protocol.

3. The OrbixTalk MessageStore daemon stores the messages in a 
MessageStore database (duplicate messages are ignored). 

Messages are identified and stored using the Topic name, Application 
name and message sequence number. The OrbixTalk MessageStore 
daemon maintains the sequence numbers of messages received from all 
applications—there is no need for suppliers to maintain a state log.

4. When a message is stored, the OrbixTalk MessageStore daemon sends an 
acknowledgment to the application sending the message. 

The application tries to re-send messages if it does not receive an 
acknowledgment within a configurable time period. The number of times 
the application tries to re-send messages and the time period are set 
using configuration variables. For more information, refer to Appendix A, 
“Configuration Parameters”.

5. The OrbixTalk MessageStore daemon uses the otrmp protocol to 
forward messages to the group of applications that have registered 
interest in these messages. The OrbixTalk MessageStore daemon does 
not expect an acknowledgment from the applications receiving the 
messages. 

6. The OrbixTalk MessageStore daemon periodically sends a status message 
containing information about the last message sent on each topic. 

Each application receiving messages detects missing messages by finding 
gaps in the sequence numbers of messages received or by detecting a 
difference between the sequence numbers in its state log and the 
sequence numbers in the status message. If the application detects a 
missing message, it can request the OrbixTalk MessageStore to play back 
the message. The time interval for sending status messages is set using the 
15



Orb i x T a l k  P r o g r amme r ’ s  Gu i d e

orbixtalk33.book  Page 16  Monday, July 22, 2002  10:33 AM
configuration variables. For more information, refer to Appendix A, 
“Configuration Parameters”.

The OrbixTalk MessageStore also serves as an audit log and can be useful during 
debugging and testing.

Figure 3.1 illustrates the overall architecture of applications using OrbixTalk 
MessageStore.

Figure 3.1: Overall Architecture of the OrbixTalk MessageStore

MessageStore database

State 
Log

State 
Log

Application 
sending 

messages

Application 
receiving 
messages

Application 
receiving 
messages

OrbixTalk 
MessageStore

Application 
sending 

messages
 16



orbixtalk33.book  Page 17  Monday, July 22, 2002  10:33 AM
Part II
Developing OrbixTalk
Applications



orbixtalk33.book  Page 18  Monday, July 22, 2002  10:33 AM



orbixtalk33.book  Page 19  Monday, July 22, 2002  10:33 AM
 4
How OrbixTalk Works

This chapter describes how applications communicate using 
OrbixTalk.

Overview
OrbixTalk enables applications to communicate using messages. In OrbixTalk, 
applications sending messages and applications receiving messages are decoupled 
and communication is asynchronous. 

In OrbixTalk, applications sending messages are called suppliers and applications 
receiving messages are called consumers. (In previous versions of OrbixTalk 
these applications were called talkers and listeners respectively.) Any particular 
stream of messages is uni-directional, from one or more suppliers to one or 
more consumers. Thus, a single message stream can simultaneously have more 
than one supplier and more than one consumer. In general, M suppliers can issue 
messages via the same message stream to N consumers, without any of the 
suppliers and consumers having explicit knowledge of each other. One of the 
advantages of this approach is that new suppliers and consumers can be added 
easily. The supplier does not have to maintain a list of consumers.

In OrbixTalk, events are delivered to objects as messages. Events of particular 
types are identified by an OrbixTalk Topic Name and a consumer specifies 
events of interest by informing OrbixTalk about the relevant Topic Names. 

OrbixTalk implements this approach using the CORBA Event Service. Details of 
the Event Service are provided in Chapter 5“The CORBA Event Service”.
19



Orb i x T a l k  P r o g r amme r ’ s  Gu i d e

orbixtalk33.book  Page 20  Monday, July 22, 2002  10:33 AM
OrbixTalk Topic Names

OrbixTalk enables shared information to be organized into a hierarchical 
structure of topics. Each topic is identified by an OrbixTalk Topic Name. In this 
way, an application can determine the information it is interested in and inform 
OrbixTalk using the Topic Name.

An example of a Topic Name is:

"otrmp//iona/teleconf/10.00am"

The format of a Topic Name is similar to the Uniform Resource Locator (URL) 
used by the World Wide Web. The first part of the name identifies the 
communications protocol. In the example, otrmp is the OrbixTalk Reliable 
Multicast Protocol, part of OrbixTalk’s transport service. The OrbixTalk 
Reliable Multicast Protocol is OrbixTalk’s default protocol. To use the 
OrbixTalk MessageStore, the OrbixTalk Store and Forward Protocol (otsfp) 
must be specified. 

The rest of the name is hierarchically organized, allowing a great deal of flexibility 
in organizing the OrbixTalk name space. In the example, the Topic Name 
identifies a teleconference organized by IONA and held at 10.00 a.m. 

Using Wildcards with Topic Names

A consumer can listen on a wildcarded topic to register interest in all messages 
on a set of (possibly unknown) topics.

Consider the following list of topics:

otrmp//Stock/Iona/US
otrmp//Stock/Iona/Europe
otrmp//Stock/Sun/US
otrmp//Stock/Sun/Europe
otrmp//Stock/IBM/US
otrmp//Stock/IBM/Europe/East
otrmp//Stock/IBM/Europe/West

There are two ways that wildcards can be used to match topics:

1. Using an asterisk (*) as one or more of the name parts of a topic. The 
asterisk matches any name part in the same position. For example:

otrmp//Stock/*/US

This matches the following:
 20



How  O rb i x T a l k  Wo rk s

orbixtalk33.book  Page 21  Monday, July 22, 2002  10:33 AM
otrmp//Stock/Iona/US
otrmp//Stock/Sun/US
otrmp//Stock/IBM/US

2. Using a double asterisk (**) to match the remainder of a topic name. For 
example:

otrmp//Stock/IBM/**

This matches the following:

otrmp//Stock/IBM/US
otrmp//Stock/IBM/Europe/East
otrmp//Stock/IBM/Europe/West

Communication between Suppliers and 
Consumers

Suppliers and consumers communicate by sending and receiving messages on a 
specified Topic Name. The Topic Name is translated into an IP multicast address 
by the OrbixTalk Directory Enquiries daemon.

OrbixTalk Directory Enquiries Daemon

OrbixTalk uses meaningful hierarchical Topic Names to identify the information 
groups. The OrbixTalk Directory Enquiries daemon translates the Topic Names 
into IP multicast addresses. The OrbixTalk Directory Enquiries daemon is only 
contacted the first time a Topic Name is used by an application so it does not 
become a performance bottleneck. For more information about IP multicast 
addresses, see Chapter 2 “The OrbixTalk Reliable Multicast Protocol” on 
page 9.

There are two OrbixTalk Directory Enquiries daemons available: 

1. The basic OrbixTalk Directory Enquiries daemon (otd).

2. The Directory Enquiries daemon, otdsm enables you to view information 
about Topic and Application Names stored in the OrbixTalk Directory 
Enquiries daemon.
21



Orb i x T a l k  P r o g r amme r ’ s  Gu i d e

orbixtalk33.book  Page 22  Monday, July 22, 2002  10:33 AM
Sending Messages

To send messages on a Topic Name, the supplier application creates a proxy 
object and registers the proxy object as a supplier with the OrbixTalk Directory 
Enquiries daemon. Invocations are made on the proxy object and all 
communications via a proxy object use the OrbixTalk multicast transport 
service. In this way, suppliers are not linked to the consumer objects.

When a supplier application sends a message on a specific Topic Name, the 
supplier checks to see if the Topic Name has been translated into an IP multicast 
address. If not, a request is sent to the OrbixTalk Directory Enquiries daemon 
requesting the IP multicast address for the Topic Name. If the mapping between 
the Topic Name and IP multicast address exists, the OrbixTalk Directory 
Enquiries daemon returns the IP multicast address. If the mapping between the 
Topic Name and IP multicast address does not exist, the OrbixTalk Directory 
Enquiries daemon allocates a new IP multicast address. The supplier application 
then sends the message using the IP multicast address.

Receiving Messages

A consumer application requests information by specifying the Topic Name to 
OrbixTalk. The OrbixTalk Directory Enquiries daemon translates the Topic 
Name into an IP multicast address. Messages arriving on this IP multicast address 
are passed to consumers specifying the Topic Name. If there are multiple 
consumers listening on a Topic Name, all of them receive the same information. 
 22



How  O rb i x T a l k  Wo rk s

r

nts 

orbixtalk33.book  Page 23  Monday, July 22, 2002  10:33 AM
Figure 4.1 summarizes the communication between a supplier and a consumer 
via the OrbixTalk Directory Enquiries daemon and the OrbixTalk multicast 
transport service.  

Figure 4.1: OrbixTalk Architecture

message

Supplier

 

IP Address

OrbixTalk Multicast 
Transport Service

Consume

Orbix 
ProcessEve

Loop

OrbixTalk 
Directory 
Enquiries 
daemon

Topic Name Topic Name

IP Address

message
23



Orb i x T a l k  P r o g r amme r ’ s  Gu i d e

orbixtalk33.book  Page 24  Monday, July 22, 2002  10:33 AM
OrbixTalk Transport Protocol Stack

The OrbixTalk protocol stack provides three protocol levels as shown in 
Figure 4.2.

This section provides information about the OrbixTalk Raw Multicast Protocol 
(otmcp). 

For more information about the Store and Forward Protocol, refer to Chapter 3 
“OrbixTalk MessageStore” on page 13. For more information about the Reliable 
Multicast Protocol, refer to Chapter 2 “The OrbixTalk Reliable Multicast 
Protocol” on page 9.

OrbixTalk Raw Multicast Protocol (otmcp)

The OrbixTalk Raw Multicast Protocol is a thin layer on top of UDP/IP Multicast 
providing a light weight form of unreliable multicast. This layer supports the 
OrbixTalk message format but does not provide fragmentation, reassembly, 
sequencing, reliable transfer or ordering of packets. Applications using this layer 
must ensure that the method invocation fits into one OrbixTalk packet which is 
1280 bytes long, using a small number of parameters consisting of basic types or 
simple structs.

Figure 4.2: OrbixTalk Protocol Stack

 Store and Forward Protocol
(otsfp)

 Reliable Multicast Protocol
(otrmp)

 Raw Multicast Protocol
(otmcp)

 UDP/IP multicast

OrbixTalk 
Protocol 

Stack
 24



How  O rb i x T a l k  Wo rk s

orbixtalk33.book  Page 25  Monday, July 22, 2002  10:33 AM
For example, you could use this layer to provide a "heart beating" mechanism to 
implement a fault tolerant system: 

• Create a print server application that sends a heartbeat every 5 seconds 
on the otmcp topic otmcp//HeartBeat/PrintServer. 

• Create a monitoring application that receives messages on the otmcp 
topic otmcp//HeartBeat/PrintServer. 

If the monitoring application misses 5 heartbeats in a row it assumes that the 
print server application has died and launches another print server application to 
take over.

OrbixTalk Transport Implementation

The implementation of the OrbixTalk Transport is fully multi-threaded to 
achieve maximum performance for the OrbixTalk Transport protocol stack. An 
OrbixTalk Topic Name is mapped to an IP multicast address. For each IP 
multicast address used there is a corresponding socket set which handles 
incoming and outgoing message traffic on that IP multicast address. This socket 
set is handled by its own thread set to ensure that the socket traffic is efficiently 
serviced. This thread set includes a timer event loop thread to handle the timers 
specific to the socket set. OrbixTalk also provides a user timer events loop 
thread to implement asynchronous applications via OrbixTalk timer events. 
Using a Multi-Threaded OrbixTalk Transport protocol stack removes the need 
for you to drive the event loop thus ensuring a much more efficient protocol. For 
more information about the timer event loop and user timer events loop, refer 
to “OrbixTalk Timer Events” on page 230.
25



Orb i x T a l k  P r o g r amme r ’ s  Gu i d e

orbixtalk33.book  Page 26  Monday, July 22, 2002  10:33 AM
 26



orbixtalk33.book  Page 27  Monday, July 22, 2002  10:33 AM
 5
The CORBA Event Service

OrbixTalk is modeled on the CORBA Event Service. This specification 
defines a model of communication that allows an application to send 
an event that will be received by any number of objects. The model 
provides two approaches to initiating event communication. For each 
of these approaches, event communication can take two forms. This 
chapter introduces the terminology and concepts that are used 
throughout this guide.

OrbixTalk implements the CORBA Event Service specification to provide 
multicast messaging. This specification defines a model for communications 
between ORB applications that supplements the direct operation call system 
that client/server applications normally use.

This chapter introduces the basic concepts of the CORBA Event Service 
communications model. Later chapters will describe the programming interface 
in detail and show how to implement applications that use the CORBA Event 
Service for multicast messaging with OrbixTalk.

Communications using the CORBA Event 
Service

Figure 5.1 illustrates the standard CORBA model for communication between 
distributed applications. 
27



Orb i x T a l k  P r o g r amme r ’ s  Gu i d e

orbixtalk33.book  Page 28  Monday, July 22, 2002  10:33 AM
In this model, a client application calls an IDL operation on a specified object in a 
server. The client waits for the call to complete and then receives confirmation 
of the return status. For any operation call there is a single client and a single 
server, and each must be available for the call to succeed.

This simple, one-to-one communication model is fundamental to the CORBA 
architecture. However, some ORB applications need a more complex, indirect 
communication style. The CORBA Event Service defines a communication 
model that allows an application to send a message to objects in other 
applications without any knowledge about the objects that receive the message. 

The CORBA Event Service introduces the concept of events to CORBA 
communications. An event originates at an event supplier and is transferred to 
any number of event consumers. Suppliers and consumers are completely 
decoupled: a supplier has no knowledge of the number of consumers or their 
identities, and consumers have no knowledge of which supplier generated a 
given event.

Figure 5.1: CORBA Model for Basic Client/Server Communications

Server

1. Client invokes operation

2. Operation returns

Client

Target
Object
 28



Th e  CORBA  E v en t  S e r v i c e

orbixtalk33.book  Page 29  Monday, July 22, 2002  10:33 AM
In order to support this model, the CORBA Event Service introduces to 
CORBA a new architectural element, called an event channel. An event channel 
mediates the transfer of events between the suppliers and consumers as follows:

1. The event channel allows consumers to register interest in events, and 
stores this registration information.

2. The channel accepts incoming events from suppliers.

3. The channel forwards supplier-generated events to registered 
consumers.

Suppliers and consumers connect to the event channel and not directly to each 
other (Figure 5.2). From a supplier’s perspective, the event channel appears as a 
single consumer; from a consumer’s perspective, the event channel appears as a 
single supplier. In this way, the event channel decouples suppliers and 
consumers. 

Any number of suppliers can issue events to any number of consumers using a 
single event channel. There is no correlation between the number of suppliers 
and the number of consumers, and new suppliers and consumers can be easily 
added to the system. In addition, any supplier or consumer can connect to more 
than one event channel.

Figure 5.2: Suppliers and Consumers Communicating through an Event Channel

Event propagation

Event channel

Supplier

Supplier

Supplier

Consumer

Consumer

Consumer

Consumer
29



Orb i x T a l k  P r o g r amme r ’ s  Gu i d e

orbixtalk33.book  Page 30  Monday, July 22, 2002  10:33 AM
A typical example that uses an event-based communication model is that of a 
spreadsheet cell. Many documents may be linked to a spreadsheet cell and these 
documents need to be notified when the cell value changes. However, the 
spreadsheet software should not need knowledge of each document linked to 
the cell. When the cell value changes, the spreadsheet software should be able 
to issue an event which is automatically forwarded to each connected document.

CORBA defines the Event Service at a level above the ORB architecture. 
Suppliers, consumers and event channels may be implemented as ORB 
applications, while events are defined using standard IDL operation calls. 
Suppliers, consumers and event channels each implement clearly defined IDL 
interfaces that support the steps required to transfer events in a distributed 
system.

Figure 5.3 illustrates an example implementation of event propagation in a 
CORBA system. In this example, suppliers are implemented as CORBA clients; 
the event channel and consumers are implemented as CORBA servers. An event 
occurs when a supplier invokes a clearly defined IDL operation on an object in 
the event channel application. The event channel propagates the event by 
invoking a similar operation on objects in each of the consumer servers. To 
make this possible, the event channel application stores a reference to each of 
the consumer objects, for example, in an internal list.

Figure 5.3: An Example Implementation of Event Propagation

Event channel

Consumer

Consumer

Consumer

Supplier

1. Supplier calls operation
on event channel

2. Event channel calls operation
on each consumer
 30



Th e  CORBA  E v en t  S e r v i c e

orbixtalk33.book  Page 31  Monday, July 22, 2002  10:33 AM
This is not the only way in which the concept of events can map to a CORBA 
system. In particular, the CORBA Event Service identifies two approaches to 
initiating the propagation of events, and these affect the implementation 
architecture. “Initiating Event Communication” on page 31 addresses this topic 
in detail.

“Types of Event Communication” on page 35 discusses how events can map to 
IDL operation calls, and describes how you can associate data with an event 
using IDL operation parameters. 

Initiating Event Communication
CORBA specifies two approaches to initiating the transfer of events between 
suppliers and consumers. These approaches are called the Push model and the 
Pull model. In the Push model, suppliers initiate the transfer of events by sending 
those events to consumers. In the Pull model, consumers initiate the transfer of 
events by requesting those events from suppliers.

This section illustrates each approach in turn, and then describes how these 
models can be mixed in a single system.
31



Orb i x T a l k  P r o g r amme r ’ s  Gu i d e

orbixtalk33.book  Page 32  Monday, July 22, 2002  10:33 AM
The Push Model

In the Push model, a supplier generates events and actively passes them to a 
consumer. In this model, a consumer passively waits for events to arrive. 
Conceptually, suppliers in the Push model correspond to clients in normal 
CORBA applications, and consumers correspond to servers.

Figure 5.4 illustrates a Push model architecture in which push suppliers 
communicate with push consumers through an event channel.

In this architecture, a supplier initiates the transfer of an event by invoking an 
IDL operation on an object in the event channel. The event channel invokes a 
similar operation on an object in each consumer that has registered with the 
channel.

Figure 5.4: Push Model Suppliers and Consumers Communicating through an 
Event Channel
 32



Th e  CORBA  E v en t  S e r v i c e

orbixtalk33.book  Page 33  Monday, July 22, 2002  10:33 AM
The Pull Model

In the Pull model, a consumer actively requests that a supplier generate an event. 
In this model, the supplier waits for a pull request to arrive. When a pull request 
arrives, event data is generated by the supplier and returned to the pulling 
consumer. Conceptually, consumers in the Pull model correspond to clients in 
normal CORBA applications and suppliers correspond to servers.

Figure 5.5 illustrates a Pull model architecture in which pull consumers 
communicate with pull suppliers through an event channel.

In this architecture, a consumer initiates the transfer of an event by invoking an 
IDL operation on an object in the event channel application. The event channel 
then invokes a similar operation on an object in each supplier. The event data is 
returned from the supplier to the event channel and then from the channel to 
the consumer which initiated the transfer.

Figure 5.5: Pull Model Suppliers and Consumers Communicating through an 
Event Channel

Event propagation

Event channel

Pull supplier

Pull consumer

Pull consumer

Pull consumer

Pull consumer

Pull supplier

Pull supplier
33



Orb i x T a l k  P r o g r amme r ’ s  Gu i d e

orbixtalk33.book  Page 34  Monday, July 22, 2002  10:33 AM
Mixing the Push and Pull Models in a Single System

Because suppliers and consumers are completely decoupled by an event channel, 
the Push and Pull models can be mixed in a single system. For example, suppliers 
may connect to an event channel using the Push model, while consumers 
connect using the Pull model as shown in Figure 5.6.

In this case, both suppliers and consumers must participate in initiating event 
transfer. A supplier invokes an operation on an object in the event channel to 
transfer an event to the channel. A consumer then invokes another operation on 
an event channel object to transfer the event data from the channel. Unlike the 
case in which consumers connect using the Push model, the event channel takes 
no initiative in forwarding the event. The event channel stores events supplied by 
the push suppliers until some pull consumer requests an event, or until a push 
consumer connects to the event channel.

Figure 5.6: Push Model Suppliers and Pull Model Consumers in a Single System

Event propagation

Event channel

Push supplier

Pull consumer

Pull consumer

Pull consumer

Pull consumer

Push supplier

Push supplier
 34



Th e  CORBA  E v en t  S e r v i c e

orbixtalk33.book  Page 35  Monday, July 22, 2002  10:33 AM
Types of Event Communication
The CORBA Event Service maps an event to a successfully completed sequence 
of operation calls. The operations and the sequence of calls are clearly defined 
for both Push and Pull models, and data about an event can be passed as 
operation parameters or return values. This data is specific to each application 
and is generally not interpreted by implementations of the CORBA Event 
Service, such as OrbixTalk.

Event communication can take one of the two forms, typed or untyped.

Untyped Event Communication

In untyped event communication, an event is propagated by a series of 
generic push() or pull() operation calls. The push() operation takes a 
single parameter which stores the event data. The event data parameter 
is of type any, which allows any IDL defined data type to be passed 
between suppliers and consumers. The pull() operation has no 
parameters but transmits event data in its return value, which is also of 
type any. Clearly, in both cases, the supplier and consumer applications 
must agree about the contents of the any parameter and return value if 
this data is to be useful. 

Typed Event Communication

In typed event communication, a programmer defines application-specific 
IDL interfaces through which events are propagated. Rather than using 
push() and pull() operations and transmitting data using an any, a 
programmer defines an interface that suppliers and consumers use for the 
purpose of event communication. The operations defined on the 
interface may contain parameters defined in any suitable IDL data type. In 
the Push model, event communication is initiated simply by invoking 
operations defined on this interface. The Pull model is more complex 
because event communication is initiated by invoking operations on an 
interface that is specially constructed from the application-specific 
interface that the programmer defines. Event communication is initiated 
by invoking operations on the constructed interface.
35



Orb i x T a l k  P r o g r amme r ’ s  Gu i d e

orbixtalk33.book  Page 36  Monday, July 22, 2002  10:33 AM
The form that event communication takes is independent of the method of 
initiating event transfer. As a consequence, the Push model can be used to 
transmit typed events or untyped events, and the Pull model can be used to 
transmit typed or untyped events. 
 36



orbixtalk33.book  Page 37  Monday, July 22, 2002  10:33 AM
 6
The Programming Interface to the 
Event Service

The CORBA Event Service specification defines a set of interfaces 
that support the Push and Pull models of initiating the transfer of 
events in both typed and untyped format. This chapter gives details 
of these interfaces. The CORBA Event Service specification defines 
the roles of consumer, supplier and event channel by describing IDL 
interfaces that each must support. The operations on these 
interfaces allow consumers and suppliers to register with an event 
channel to enable the propagation of events. 

The CORBA Event Service includes IDL interfaces for both untyped and typed 
events in both the Push and Pull event models. This chapter describes in detail 
the IDL interfaces defined for the CORBA Event Service to support these 
models. 

You can find a complete listing of all interfaces relating to the CORBA Event 
Service in Appendix C, “CORBA Event Service: IDL Interfaces”.
37



Orb i x T a l k  P r o g r amme r ’ s  Gu i d e

orbixtalk33.book  Page 38  Monday, July 22, 2002  10:33 AM
The Programming Interface for Untyped Events
The CORBA Event Service for untyped events defines interfaces for suppliers, 
consumers and event channels. It also defines a number of administration 
interfaces that allow suppliers and consumers to register with an event channel 
to allow the transfer of events between them.

Registration of Suppliers and Consumers with an Event 
Channel

A supplier connects to an event channel to indicate that it wishes to transfer 
events to consumers through that channel. A consumer connects to an event 
channel to register its interest in any events supplied through that channel. 
When a supplier or consumer no longer wishes to send or receive events, the 
application may disconnect itself from the event channel. In some cases, the 
event channel may need to disconnect a supplier or consumer explicitly.

The CORBA Event Service defines a set of interfaces that supports untyped 
event transfer using the Push and Pull models. These interfaces are described in 
the remainder of this section. 

The Push Model for Untyped Events

Four IDL interfaces support connection to and disconnection from event 
channels using the Push model: 

PushSupplier
PushConsumer
ProxyPushConsumer
ProxyPushSupplier

The interfaces PushSupplier and ProxyPushConsumer allow suppliers to supply 
events to an event channel.

The interfaces PushConsumer and ProxyPushSupplier are specific to 
consumers, allowing them to receive events from an event channel.
 38



Th e  P r o g r amm in g  I n t e r f a c e  t o  t h e  E v e n t  S e r v i c e

orbixtalk33.book  Page 39  Monday, July 22, 2002  10:33 AM
These four interfaces are defined in IDL as follows:

// IDL
module CosEventComm {

exception Disconnected {
};

interface PushConsumer {
void push (in any data) raises (Disconnected);
void disconnect_push_consumer ();

};

interface PushSupplier {
void disconnect_push_supplier();

};
};

module CosEventChannelAdmin {
exception AlreadyConnected {
};

exception TypeError {
};

interface ProxyPushConsumer : CosEventComm::PushConsumer {
void connect_push_supplier (

in CosEventComm::PushSupplier push_supplier)
raises (AlreadyConnected);

};

interface ProxyPushSupplier : CosEventComm::PushSupplier {
void connect_push_consumer (

in CosEventComm::PushConsumer push_consumer)
raises (AlreadyConnected, TypeError);

};

...
};
39



Orb i x T a l k  P r o g r amme r ’ s  Gu i d e

orbixtalk33.book  Page 40  Monday, July 22, 2002  10:33 AM
Connecting a Supplier

A supplier initiates connection to an event channel by obtaining a reference to an 
object of type ProxyPushConsumer in the channel. The supplier application may 
wish to be notified if the event channel terminates the connection. If so, the 
supplier then invokes the operation connect_push_supplier() on that object, 
passing a reference to an object of type PushSupplier as an operation 
parameter. If the ProxyPushConsumer is already connected to a PushSupplier, 
connect_push_supplier() will raise the exception AlreadyConnected. 

Connecting a Consumer

A consumer first obtains a reference to a ProxyPushSupplier object 
implemented in the event channel. In order to register its interest in events from 
the channel, the consumer then invokes the operation 
connect_push_consumer() on the ProxyPushSupplier object. The consumer 
passes a reference to an object of type PushConsumer to the operation call.

If ProxyPushSupplier is already connected to a PushConsumer, 
connect_push_consumer() will raise the exception AlreadyConnected.

Figure 6.1: Push Supplier and Push Consumer Connecting to an Event Channel in the 
Untyped Model

Push Consumer

ProxyPushConsumer

ProxyPushSupplier

PushConsumer

connect_push_supplier() connect_push_consumer()

PushSupplier

Push Supplier Event Channel
 40



Th e  P r o g r amm in g  I n t e r f a c e  t o  t h e  E v e n t  S e r v i c e

orbixtalk33.book  Page 41  Monday, July 22, 2002  10:33 AM
Figure 6.1 illustrates how a supplier and consumer connect to an event channel. 
There are no dependencies between the connection of the supplier and the 
connection of the consumer.

The Pull Model for Untyped Events

A similar set of IDL interfaces supports connection to and disconnection from 
event channels in the Pull model. These interfaces are:

PullSupplier
PullConsumer
ProxyPullConsumer
ProxyPullSupplier

The interfaces PullConsumer and ProxyPullSupplier allow consumers to 
request events from an event channel. 

The interfaces PullSupplier and ProxyPullConsumer allow an event channel 
to request events from suppliers. 

The Pull model interfaces are defined in IDL as follows:

// IDL
module CosEventComm {

exception Disconnected {
};

interface PullSupplier {
any pull () raises (Disconnected);
any try_pull (out boolean has_event) raises (Disconnected);
void disconnect_pull_supplier();

};

interface PullConsumer {
void disconnect_pull_consumer ();

};
};

module CosEventChannelAdmin {
exception AlreadyConnected {
};

exception TypeError {
41



Orb i x T a l k  P r o g r amme r ’ s  Gu i d e

orbixtalk33.book  Page 42  Monday, July 22, 2002  10:33 AM
};

interface ProxyPullSupplier : CosEventComm::PullSupplier {
void connect_pull_consumer (

in CosEventComm::PullConsumer pull_consumer)
raises (AlreadyConnected);

};

interface ProxyPullConsumer : CosEventComm::PullConsumer {
void connect_pull_supplier (

in CosEventComm::PushSupplier pull_supplier)
raises (AlreadyConnected, TypeError);

};

...
};

Connecting a Consumer

In the Pull model, the transfer of events is initiated by consumers. A consumer 
initiates connection to an event channel by obtaining a reference to an object of 
type ProxyPullSupplier in the channel. The consumer application may wish to 
be notified if the event channel terminates the connection. If so, it invokes the 
operation connect_pull_consumer() on the ProxyPullSupplier object, 
passing a reference to an object of type PullConsumer as an operation 
parameter. If the ProxyPullSupplier is already connected to a PullConsumer, 
connect_pull_consumer() raises the exception AlreadyConnected.

Connecting a Supplier

To connect to an event channel, a pull supplier first obtains a reference to a 
ProxyPullConsumer object implemented in the event channel. The supplier then 
invokes the operation connect_pull_supplier() on the ProxyPullConsumer 
object, passing a reference to an object of type PullSupplier as the operation 
parameter. If the ProxyPullConsumer is already connected to a PullSupplier, 
connect_pull_supplier() raises the exception AlreadyConnected.
 42



Th e  P r o g r amm in g  I n t e r f a c e  t o  t h e  E v e n t  S e r v i c e

orbixtalk33.book  Page 43  Monday, July 22, 2002  10:33 AM
Transfer of Untyped Events through an Event Channel

The transfer of events from a supplier through an event channel to a consumer 
follows a simple pattern. Events originate at a supplier. In the Push model, a 
supplier pushes events into the event channel which in turn pushes the events to 
registered consumers. In the Pull model, consumers take the active role by 
requesting events from the event channel; the event channel, in turn, requests 
events from registered suppliers. Both methods of transfer are described for 
untyped events in the remainder of this section.

The Push Model

The supplier initiates event transfer by invoking the operation push() on a 
ProxyPushConsumer object in the event channel, passing the event data as a 
parameter of type any. The event channel then invokes a push() operation on 
the PushConsumer object in each registered consumer, again passing the event 
data as an operation parameter. Conceptually, this transfer is as shown in 
Figure 6.2.

Note that the supplier views the event channel as a single consumer and has no 
knowledge of the actual consumers. Likewise, the consumer views the event 
channel as a single supplier. In this way, the channel decouples the supplier and 
consumer.

Figure 6.2: Transfer of an Event through an Event Channel to a Consumer using the 
Untyped Push Model

Push Consumer

ProxyPushConsumer PushConsumer

push() push()

Push Supplier Event Channel
43



Orb i x T a l k  P r o g r amme r ’ s  Gu i d e

orbixtalk33.book  Page 44  Monday, July 22, 2002  10:33 AM
The Pull Model
The consumer initiates event transfer in the Pull model. The consumer initiates 
event transfer in one of two ways as described below.

• pull()

The consumer invokes the pull() operation on a ProxyPullSupplier 
object in the event channel. 

The event channel, if it does not already have an event, invokes a pull() 
operation on the PullSupplier object in each registered supplier. 

The pull() operation blocks until an event is available; the operation 
then returns the event data in its return value which is of type any. Thus, 
the consumer application blocks until the event channel can supply an 
event. The event channel, in turn, blocks until some supplier supplies an 
event to the channel. .

• try_pull() 

The consumer invokes the try_pull() operation on a 
ProxyPullSupplier object in the event channel. 

The event channel, in turn, invokes a try_pull() operation on the 
PullSupplier object in each registered supplier.

If no supplier has an event available, try_pull() sets its boolean 
has_event parameter to false and returns immediately. If an event is 
available from some supplier, try_pull() sets the has_event parameter 
to true and returns the event data in its return value which is of type any.

Figure 6.3: Transfer of an Event through an Event Channel to a Consumer using the 
Untyped Pull Model

Pull Consumer

ProxyPullSupplier

pull()/
try_pull()

pull()/
try_pull()

PullSupplier

Pull Supplier Event Channel
 44



Th e  P r o g r amm in g  I n t e r f a c e  t o  t h e  E v e n t  S e r v i c e

orbixtalk33.book  Page 45  Monday, July 22, 2002  10:33 AM
Conceptually, the transfer of an event using the Pull model is as shown in 
Figure 6.3

Note that, as in the Push model, the channel decouples suppliers and consumers. 
The consumer views the event channel as a single supplier and has no knowledge 
of the actual suppliers. Likewise, the supplier views the event channel as a single 
consumer. 

Event Channel Administration Interfaces

The CORBA Event Service specification defines a set of interfaces that support 
event channel administration. The role of these interfaces is to allow a supplier 
or consumer to make initial contact with an event channel and to provide a set 
of standardized operations so that a supplier may obtain a ProxyPushConsumer 
or ProxyPullConsumer and a consumer may obtain a ProxyPushSupplier or 
ProxyPullSupplier object reference.

Each event channel supports the interface EventChannel, which is defined as 
follows:

// IDL
module CosEventChannelAdmin {

...

interface EventChannel {
ConsumerAdmin for_consumers ();
SupplierAdmin for_suppliers ();
void destroy ();

};
};

If a supplier or consumer wishes to connect to an event channel, it must first 
obtain a reference to an EventChannel object in that channel. Typically, the 
event channel will publish a reference for this object, for example using the 
CORBA Naming Service.
45



Orb i x T a l k  P r o g r amme r ’ s  Gu i d e

orbixtalk33.book  Page 46  Monday, July 22, 2002  10:33 AM
A supplier then invokes the operation for_suppliers() on the EventChannel 
object. This operation returns a reference to an object of type SupplierAdmin, 
which is defined as follows:

// IDL
module CosEventChannelAdmin {

interface SupplierAdmin {
ProxyPushConsumer obtain_push_consumer ();
ProxyPullConsumer obtain_pull_consumer ();

};

...
};

To obtain a reference to a ProxyPushConsumer object in the event channel, the 
supplier invokes the operation obtain_push_consumer() on the 
SupplierAdmin object. At this point, the supplier is ready to connect to the 
channel and begin transferring events using the Push model.

The supplier invokes the operation obtain_pull_consumer() on the 
SupplierAdmin object if it wishes to obtain a ProxyPullConsumer. The supplier 
is then ready to connect to the channel and to transfer events using the Pull 
model.

Similarly, a consumer invokes the operation for_consumers() on an 
EventChannel object in order to obtain a reference to an object of type 
ConsumerAdmin, which is defined as follows:

// IDL
module CosEventChannelAdmin {

interface ConsumerAdmin {
ProxyPushSupplier obtain_push_supplier ();
ProxyPullSupplier obtain_pull_supplier ();

};

...
};

If the consumer is using the Push model, it then invokes the operation 
obtain_push_supplier() to obtain a reference to a ProxyPushSupplier. If 
the consumer is using the Pull model, it invokes the operation 
obtain_pull_supplier() to obtain a reference to a ProxyPullSupplier 
object in the event channel. 
 46



Th e  P r o g r amm in g  I n t e r f a c e  t o  t h e  E v e n t  S e r v i c e

orbixtalk33.book  Page 47  Monday, July 22, 2002  10:33 AM
The consumer is then free to register its interest in events propagated through 
the channel.

The Programming Interface for Typed Events
As described in “Types of Event Communication” on page 35, events can be 
communicated in untyped form or in typed form. As OrbixTalk supports the 
Push model for Typed events, this section describes the Push model only.

Using typed event communication, you can define application-specific IDL 
interfaces through which events can be propagated. You are not restricted to 
using the operation push() to transfer events, and you do not have to pack 
operation parameters into an IDL any. 

The operations you specify in your interfaces may define in parameters to allow 
suppliers to transmit event data. However, since event propagation is uni-
directional, these operations may not define inout or out parameters; they 
must have a void return value and may not have a raises clause. These 
restrictions are the same as the restrictions on oneway operations. However, 
you do not have to define the operations to be oneway.

The model for typed event communication closely follows the model for 
untyped events. Typed suppliers connect to a proxy consumer in the event 
channel and typed consumers connect to a proxy supplier. 

Suppliers and consumers must agree on the interface they will use to transfer 
events. To illustrate this, recall the example of the spreadsheet in 
“Communications using the CORBA Event Service” on page 27. Many 
documents can be linked to a spreadsheet cell and these need to be notified of 
changes to the cell value. The spreadsheet software notifies interested 
documents of a change to a cell value by generating an event that is forwarded to 
each connected document. An interface that supports notification of changes to 
a cell value might be defined as follows:

// IDL
interface SpreadsheetCell {

void value_changed (in float new_value);
...

};
47



Orb i x T a l k  P r o g r amme r ’ s  Gu i d e

orbixtalk33.book  Page 48  Monday, July 22, 2002  10:33 AM
In this example, documents that are linked to a cell are notified by the 
spreadsheet software which supplies the event 
SpreadsheetCell::value_changed() whenever the value of a cell changes. 
The interface SpreadsheetCell may define other operations that may be used 
to supply events to connected documents. 

Registration of Suppliers and Consumers with a Typed Event 
Channel

This section describes how suppliers and consumers register with an event 
channel in the typed model. The sequence of steps is very similar to that 
described for the untyped model.

The Typed Push Model 
Four IDL interfaces support connection to and disconnection from event 
channels using the typed Push model: 

PushSupplier
TypedPushConsumer
ProxyPushSupplier
TypedProxyPushConsumer

The interfaces PushSupplier and TypedProxyPushConsumer allow suppliers to 
supply events to an event channel. 

The interfaces TypedPushConsumer and ProxyPushSupplier allow consumers 
to receive events from an event channel.

PushSupplier and ProxyPushSupplier are as described for the untyped Push 
model in “Registration of Suppliers and Consumers with an Event Channel” on 
page 38. 

The interfaces TypedPushConsumer and TypedProxyPushConsumer inherit from 
their counterparts in the untyped Push model. They are defined as follows:

// IDL
module CosTypedEventComm {

interface TypedPushConsumer : CosEventComm::PushConsumer {
Object get_typed_consumer ();

};
};
 48



Th e  P r o g r amm in g  I n t e r f a c e  t o  t h e  E v e n t  S e r v i c e

orbixtalk33.book  Page 49  Monday, July 22, 2002  10:33 AM
module CosTypedEventChannelAdmin {
interface TypedProxyPushConsumer :

CosEventChannelAdmin::ProxyPushConsumer,
CosTypedEventComm::TypedPushConsumer {

};
};

A typed push supplier initiates connection to an event channel by obtaining a 
reference to a TypedProxyPushConsumer object in the event channel. The 
supplier invokes the operation connect_push_supplier() on the 
TypedProxyPushConsumer object, passing a reference to an object of type 
PushSupplier as an operation parameter. 

A typed push consumer obtains a reference to a ProxyPushSupplier object in 
the event channel and invokes the operation connect_push_consumer() on 
that object, passing an object of type TypedPushConsumer as the operation 
parameter. Figure 6.4 illustrates how a supplier and consumer connect to the 
event channel. 

Transfer of Typed Events Through an Event Channel 

Once connected to an event channel, suppliers initiate the transfer of typed 
events in the Push model.

Figure 6.4: Push Supplier and Push Consumer Connecting to an Event Channel using 
the Typed Model

Push Consumer

TypedProxyPushConsumer

ProxyPushSupplier

TypedPushConsumer

connect_push_supplier() connect_push_consumer()

PushSupplier

Push Supplier Event Channel
49



Orb i x T a l k  P r o g r amme r ’ s  Gu i d e

orbixtalk33.book  Page 50  Monday, July 22, 2002  10:33 AM
The Typed Push Model
At this point, the typed push supplier is connected to the event channel as 
described in “Registration of Suppliers and Consumers with a Typed Event 
Channel” on page 48; specifically, it is connected to a TypedProxyPushConsumer 
object in the event channel. 

The TypedProxyPushConsumer object is specific to the type of events supplied 
by the supplier; that is, the supplier and the event channel agree on the type of 
events supplied by the supplier and accepted by the channel. This agreement is 
reached when the TypedProxyPushConsumer object is set up using the event 
channel administration interfaces; these interfaces are described in “Typed Event 
Channel Administration Interfaces” on page 51. 

To set up the transfer of events into the channel, the supplier invokes the 
operation get_typed_consumer() on the TypedProxyPushConsumer object. 
The operation get_typed_consumer() returns an object reference that 
supports the interface for which the TypedProxyPushConsumer was created. In 
this example, this is the interface SpreadsheetCell. The return type from 
get_typed_consumer() is CORBA::Object. Therefore, the supplier must 
narrow this object reference to obtain a reference of the type for which it 
supplies events—in this case, SpreadsheetCell. 

Having obtained this object reference, the supplier supplies events to the event 
channel simply by invoking operations defined in interface SpreadsheetCell on 
the object reference returned by get_typed_consumer(). Data associated with 
the event, if any, is supplied using the operations’ in parameters. Conceptually, 
the transfer is as shown in Figure 6.5, where 
SpreadsheetCell::value_changed() events are generated by the supplier.

Figure 6.5: Transfer of an Event Through an Event Channel to a Consumer Using the 
Typed Push Model

Push Consumer

TypedProxyPushConsumer TypedPushConsumer

value_changed() value_changed()

Push Supplier Event Channel
 50



Th e  P r o g r amm in g  I n t e r f a c e  t o  t h e  E v e n t  S e r v i c e

orbixtalk33.book  Page 51  Monday, July 22, 2002  10:33 AM
Typed push suppliers send messages to consumers even though these suppliers 
do not know anything about the consumers that receive these messages. The 
flow of information is unidirectional—from suppliers to consumers. Therefore, 
data associated with an event can be sent by a supplier in an operation’s in 
parameters, but no data can be returned because no operation reply can be 
received by the supplier. Thus, operations invoked by the supplier may not have 
inout or out parameters; they must have a void return value; and they cannot 
have a raises clause. (These same restrictions apply to oneway operations in 
the standard CORBA model.)

Typed Event Channel Administration Interfaces

To support typed event communication, the CORBA Event Service specification 
provides a set of administration interfaces similar to those provided for the 
administration of untyped event channels. Where appropriate, these interfaces 
use IDL inheritance to indicate that they are specializations of corresponding 
interfaces in the untyped model. 

The interface to a typed event channel is described by the interface 
TypedEventChannel, which is defined as follows:

// IDL
module CosTypedEventChannelAdmin {

interface TypedEventChannel {
TypedConsumerAdmin for_consumers ();
TypedSupplierAdmin for_suppliers ();
void destroy ();

};

};

To connect to a typed event channel, a supplier or consumer must first obtain a 
reference to a TypedEventChannel object in that channel. As for the untyped 
model, the event channel will typically publish a reference for this object, for 
example, using the CORBA Naming Service.

A supplier then invokes the operation for_suppliers() on the 
TypedEventChannel object. This operation returns a reference to an object of 
type TypedSupplierAdmin, which is defined as follows:

// IDL
51



Orb i x T a l k  P r o g r amme r ’ s  Gu i d e

orbixtalk33.book  Page 52  Monday, July 22, 2002  10:33 AM
module CosTypedEventChannelAdmin {

exception InterfaceNotSupported {
};

exception NoSuchImplementation {
};

typedef string Key;

interface TypedSupplierAdmin :
CosEventChannelAdmin::SupplierAdmin {

TypedProxyPushConsumer obtain_typed_push_consumer (
in Key supported_interface)
raises (InterfaceNotSupported);

ProxyPullConsumer obtain_typed_pull_consumer (
in Key uses_interface)
raises (NoSuchImplementation);

};

...
};

The next step occurs when a push supplier invokes the operation 
obtain_typed_push_consumer() on the TypedSupplierAdmin object to obtain 
a reference to a TypedProxyPushConsumer object in the event channel. 

Once the supplier has a TypedSupplierAdmin object, it is ready to connect to 
the channel and begin transferring events.

Similarly, a consumer invokes the operation for_consumers() on an 
TypedEventChannel object to obtain a reference to an object of type 
TypedConsumerAdmin, which is defined as follows:

// IDL
module CosTypedEventChannelAdmin {

exception InterfaceNotSupported {
};

exception NoSuchImplementation {
};
 52



Th e  P r o g r amm in g  I n t e r f a c e  t o  t h e  E v e n t  S e r v i c e

orbixtalk33.book  Page 53  Monday, July 22, 2002  10:33 AM
typedef string Key;

interface TypedConsumerAdmin :
CosEventChannelAdmin::ConsumerAdmin {

ProxyPushSupplier
obtain_typed_push_supplier (

in Key uses_interface)
raises (NoSuchImplementation);

};
...

};

The push consumer invokes the operation obtain_typed_push_supplier() to 
obtain a reference to a ProxyPushSupplier. The consumer is then free to 
register its interest in events propagated through the channel.
53



Orb i x T a l k  P r o g r amme r ’ s  Gu i d e

orbixtalk33.book  Page 54  Monday, July 22, 2002  10:33 AM
 54



orbixtalk33.book  Page 55  Monday, July 22, 2002  10:33 AM
 7
Programming with the Untyped 
Push Model

To illustrate the Push model communicating untyped events, this 
chapter develops a simple application.

As described in Chapter 5, “The CORBA Event Service”, OrbixTalk allows you 
to develop Object Request Broker (ORB) applications that communicate using 
the CORBA Event Service communications model. From a programmer’s 
perspective, the event channel is the key element of a CORBA Event Service 
application. 

The OrbixTalk IIOP Gateway provides event channels for multicast suppliers 
and consumers. Any IIOP-compliant application, such as OrbixWeb, can 
therefore make use of multicast functionality.

You can also build C++ suppliers and consumers that use the multicast 
protocols directly by incorporating the colocated C++ library functions 
included with OrbixTalk. This subject is discussed in Chapter 10, “The 
OrbixTalk Events Library”.

This chapter describes an example ORB application that illustrates how you can 
use OrbixTalk to develop Push model suppliers and consumers that 
communicate untyped events through event channels implemented by the IIOP 
Gateway. 
55



Orb i x T a l k  P r o g r amme r ’ s  Gu i d e

orbixtalk33.book  Page 56  Monday, July 22, 2002  10:33 AM
Overview of an Example Application
The example described in this chapter consists of a push supplier and a push 
consumer, each of which connects to a single event channel. The supplier 
repeatedly pushes an event to the event channel and the data associated with 
each event takes the form of a string. The event channel propagates each event 
to the consumer, which simply displays the event data. This application is a 
simple example, but it illustrates a series of development tasks that apply to all 
OrbixTalk applications.

To develop an OrbixTalk application, you must implement the suppliers and 
consumers as normal ORB applications that communicate with the event 
channel through IDL interfaces. The applications specify which multicast 
protocol to use when binding to an event channel. The OrbixTalk IIOP Gateway 
implements the event channel. The IDL definitions for the CORBA Event Service 
are supplied with OrbixTalk.

This chapter describes the implementation of a supplier and consumer using 
Orbix for C++ as the development ORB. However, the OrbixTalk IIOP 
Gateway fully supports the CORBA Internet Inter-ORB Protocol (IIOP), so you 
may develop OrbixTalk applications using any IIOP-compatible ORB.

Developing an Untyped Push Supplier
As described in “Transfer of Untyped Events through an Event Channel” on 
page 43, a push supplier initiates the transfer of an event by pushing the event 
into an event channel. The event channel then takes responsibility for forwarding 
the event to each registered consumer.

This section describes how you can implement a push supplier as an Orbix 
application that communicates with a single event channel in an OrbixTalk 
server. This application acts as a client to several IDL interfaces implemented in 
the OrbixTalk event channel and acts as a server to the interface PushSupplier, 
which it implements.

These are the main programming steps in developing a push supplier:

1. Bind to an event channel in the IIOP Gateway.

2. Obtain a reference for a ProxyPushConsumer object from the event 
channel.
 56



P r o g r amm in g  w i t h  t h e  Un t yp ed  Pu s h  Mode l

orbixtalk33.book  Page 57  Monday, July 22, 2002  10:33 AM
“Obtaining a ProxyPushConsumer from an Event Channel” on page 57 
explains this step in detail.

3. Invoke the operation connect_push_supplier() on the 
ProxyPushConsumer object, to connect a PushSupplier implementation 
object to the event channel.

“Connecting a PushSupplier Object to an Event Channel” on page 58 
explains this step.

4. Invoke the push() operation on the ProxyPushConsumer object to 
initiate the transfer of each event.

“Pushing Events to an Event Channel” on page 59 explains this step.

“The Push Supplier Application” on page 60 shows how these steps fit into a full 
Push supplier application.

Binding to an Event Channel

In OrbixTalk, every event channel has an associated event channel identifier 
which can be used to retrieve the channel’s EventChannel object reference. 
Previously you could use the Orbix _bind() call to specify the channel identifier 
as the EventChannel object marker value, but _bind() is now deprecated for 
OrbixTalk Events Library. This means you can no longer bind to the event 
channel when your orbix application includes the OrbixTalk Events C++ 
Library. You must obtain a reference to the 
OrbixTalkAdmin::OTChannelManager object via the method 
getOTChannelManager on the new OTChannelManagerAdmin class. You can 
then get a reference to the event channel by invoking a method 
get_event_channel on the returned OTChannelManager object reference. (See 
“Using The Channel Manager to Retrieve Event Channels” on page 108 and “The 
OrbixTalkAdmin Module” on page 217 for more information.)

Obtaining a ProxyPushConsumer from an Event Channel

A push supplier needs to obtain a reference for a ProxyPushConsumer object in 
an event channel in order to transfer events to the channel for later distribution 
to consumers. The supplier transfers events by invoking the operation push() 
on the target ProxyPushConsumer object.
57



Orb i x T a l k  P r o g r amme r ’ s  Gu i d e

orbixtalk33.book  Page 58  Monday, July 22, 2002  10:33 AM
In order to obtain a ProxyPushConsumer object reference from an event 
channel, a supplier must implement the following programming steps:

1. Invoke the operation for_suppliers() on the EventChannel object, in 
order to obtain a SupplierAdmin object reference.

2. Invoke the operation obtain_push_consumer() on the SupplierAdmin 
object. This operation returns a ProxyPushConsumer object reference.

Connecting a PushSupplier Object to an Event Channel

When the supplier has retrieved the EventChannel object reference and used 
this to obtain a ProxyPushConsumer, the supplier needs to connect an 
implementation of the PushSupplier interface to the event channel. As 
described in “Registration of Suppliers and Consumers with an Event Channel” 
on page 38, this interface is defined as follows:

// IDL
module CosEventComm {

...

interface PushSupplier {
void disconnect_push_supplier ();

};
};

The role of this interface is to allow the event channel to disconnect the supplier 
by invoking the operation disconnect_push_supplier(). This may happen if 
the event channel closes down.

In our example, the supplier implements the PushSupplier interface by defining 
the class PushSupplier_i, for example as follows:

// C++
#include <CORBA.h>
#include <cosevents.hh>
#include <coseventsadmin.hh>
...

class PushSupplier_i
: public virtual CosEventComm::PushSupplierBOAImpl {

public:
unsigned char m_disconnected;
 58



P r o g r amm in g  w i t h  t h e  Un t yp ed  Pu s h  Mode l

orbixtalk33.book  Page 59  Monday, July 22, 2002  10:33 AM
PushSupplier_i () {
m_disconnected = 0;

}

void disconnect_push_supplier (
CORBA::Environment& env = CORBA::default_environment) {
m_disconnected = 1;

}
};

This class uses a simple flag mechanism to indicate the connection state of the 
supplier. The supplier connects an object of this type to an event channel by 
calling the operation connect_push_supplier() on the ProxyPushConsumer 
object.

Pushing Events to an Event Channel

The following code extract from the example supplier program is a simple 
demonstration of initiating the transfer of events:

// C++
while (!psImpl.m_disconnected) {

CORBA::Any a;
a <<= eventDataString;
ppcVar->push (a);

}

In this example, the supplier repeatedly pushes an event to the event channel by 
calling the operation push() on a ProxyPushConsumer object. The supplier 
represents the event data using a simple string, but this is not necessary in 
general. The operation push() takes a parameter of type any for the event data, 
so you may represent this data using any IDL type.

Note that our supplier stops sending events only when it receives an incoming 
disconnect_push_supplier() operation call from the event channel. As an 
alternative, the supplier could explicitly disconnect from the event channel by 
invoking the operation disconnect_push_consumer() on the event channel 
ProxyPushConsumer object.
59



Orb i x T a l k  P r o g r amme r ’ s  Gu i d e

orbixtalk33.book  Page 60  Monday, July 22, 2002  10:33 AM
The Push Supplier Application

The three main programming steps in the development of push supplier 
applications have been described in detail. 

The following source code illustrates how each of these steps fits in to the full 
push supplier application. 

// C++
#include <CORBA.h>
#include <cosevents.hh>
#include <coseventsadmin.hh>
...

int main(int argc, char** argv) {
char* eventDataString = "Hello World!";
CosEventChannelAdmin::EventChannel_var ecVar;
CosEventChannelAdmin::SupplierAdmin_var saVar;
CosEventChannelAdmin::ProxyPushConsumer_var ppcVar;
PushSupplier_i psImpl;
char *serverHost;

try {
//
// Step 1. Get a ProxyPushConsumer object reference.
//

// Obtain an event channel reference.
try {

ecVar = EventChannel::_bind ("otrmp//:ES",
serverHost);

}
catch (...) {

// Handle exception.
...
}

if (CORBA::is_nil (ecVar))
return 1;

// Obtain a supplier administration object.
saVar = ecVar->for_suppliers ();

// Obtain a proxy push consumer.
 60



P r o g r amm in g  w i t h  t h e  Un t yp ed  Pu s h  Mode l

orbixtalk33.book  Page 61  Monday, July 22, 2002  10:33 AM
ppcVar = saVar->obtain_push_consumer ();

//
// Step 2. Connect a push supplier implementation object.
//
ppcVar->connect_push_supplier (&psImpl);

//
// Step 3. Push events to the event channel.
//
while (!psImpl.m_disconnected) {

CORBA::Any a;
a <<= eventDataString;
ppcVar->push (a);
CORBA::Orbix.processNextEvent (1000);

}

// When finished, disconnect the consumer.
ppcVar->disconnect_push_consumer();

}
catch (...) {

// Handle exception
...
return 1;

}
return 0;

}

61



Orb i x T a l k  P r o g r amme r ’ s  Gu i d e

orbixtalk33.book  Page 62  Monday, July 22, 2002  10:33 AM
Developing an Untyped Push Consumer
A push consumer receives events from an event channel, with no knowledge of 
the suppliers from which those events originated. An event channel propagates 
an event to a push consumer by invoking the operation push() on a 
PushConsumer implementation object in the consumer application. As such, the 
main functionality of a push consumer is associated with registering a 
PushConsumer object with an event channel and receiving incoming operation 
calls on that object.

To develop a push consumer application, you must implement the following 
steps:

1. Obtain a reference for a ProxyPushSupplier object from the event 
channel.

“Obtaining a ProxyPushSupplier from an Event Channel” on page 63 
explains this step.

2. Connect a PushConsumer implementation object to the event channel, by 
invoking the operation connect_push_consumer() on the 
ProxyPushSupplier object.

“Connecting a PushConsumer Object to an Event Channel” on page 63 
explains this step.

3. Monitor incoming operation calls.

“Monitoring Incoming Operation Calls” on page 65 explains this step.

“The Push Consumer Application” on page 66 shows how these steps fit in to a 
full Push consumer application. 
 62



P r o g r amm in g  w i t h  t h e  Un t yp ed  Pu s h  Mode l

orbixtalk33.book  Page 63  Monday, July 22, 2002  10:33 AM
Obtaining a ProxyPushSupplier from an Event Channel

Each push consumer connected to an event channel receives every event raised 
by every supplier connected to the channel. However, consumers have no 
knowledge of the suppliers. Consumers simply connect to an object in the event 
channel which acts as a single source of events. 

This object is responsible for storing a PushConsumer object reference for each 
connected consumer and invoking the push() operation on each of these 
references when a supplier transmits an event. The event channel object which 
stores consumer references is of type ProxyPushSupplier. The first task in 
developing a push consumer application is to obtain a reference to this object.

There are three stages in obtaining a ProxyPushSupplier object reference:

1. Obtain a reference to an EventChannel object in the event channel.

2. Invoke the operation for_consumers() on the EventChannel object to 
obtain a ConsumerAdmin object reference.

3. Invoke the operation obtain_push_supplier() on the ConsumerAdmin 
object. This operation returns a ProxyPushSupplier object reference.

You can implement the first of these steps in exactly the manner described for 
push supplier applications in “Obtaining a ProxyPushConsumer from an Event 
Channel” on page 57. The remaining steps involve normal operation invocations.

Connecting a PushConsumer Object to an Event Channel

When a consumer has obtained a reference to the ProxyPushSupplier object 
in an event channel, the next step is to register a PushConsumer implementation 
object with the ProxyPushSupplier. The event channel uses the PushConsumer 
object to propagate events to the consumer.

As described in “Registration of Suppliers and Consumers with an Event 
Channel” on page 38, the CORBA Event Service specification defines the 
interface PushConsumer as follows:

// IDL
module CosEventComm {

interface PushConsumer {
oneway void push (in any data) raises (Disconnected);
void disconnect_push_consumer ();

};
63



Orb i x T a l k  P r o g r amme r ’ s  Gu i d e

orbixtalk33.book  Page 64  Monday, July 22, 2002  10:33 AM
...
};

When an event arrives at an event channel, the channel ProxyPushSupplier 
object invokes the operation push() on each connected consumer, passing the 
event data as an any parameter. The disconnect_push_consumer() operation 
allows an event channel to disconnect a consumer, for example if the channel 
closes down.

Our consumer uses the following example implementation of this interface:

// C++
class PushConsumer_i

: public virtual CosEventComm::PushConsumerBOAImpl {

public:
unsigned char m_disconnected;

PushConsumer_i(){
m_disconnected = 0;

}

virtual void disconnect_push_consumer (
CORBA::Environment& env = CORBA::default_environment){
m_disconnected = 1;

}

virtual void push (CORBA::Any& any,
CORBA::Environment& env = CORBA::default_environment){
char* msg;

if (a >>= msg)
cout << "Event received: event data = " << msg << endl;

else
cout <<

"Event received with unexpected event data type."
<< endl;

}
};
 64



P r o g r amm in g  w i t h  t h e  Un t yp ed  Pu s h  Mode l

orbixtalk33.book  Page 65  Monday, July 22, 2002  10:33 AM
This class includes a trivial implementation of the push() operation, through 
which the consumer receives events. In normal OrbixTalk applications, this 
operation requires a more complex implementation which reacts appropriately 
to incoming events. The exact requirements for implementing the push() 
operation are application specific.

Monitoring Incoming Operation Calls

The main role of the consumer is to receive events from the event channel in 
the form of IDL operation calls. Consequently, the consumer must monitor and 
process any incoming calls. The example Orbix consumer application does this 
by repeatedly calling processNextEvent() on the CORBA::Orbix object, as 
follows:

// C++
while (!pcImpl.m_disconnected) {

CORBA::Orbix.processNextEvent ();
}

The function processNextEvent() handles a single incoming operation call and 
then returns. 

If the consumer receives an invocation on the operation 
disconnect_push_consumer(), then the implementation of this operation sets 
the value pcImpl.m_disconnected to one and breaks the consumer’s event 
processing loop. Consequently, our consumer receives all events until the event 
channel explicitly forces it to disconnect. 

As an alternative, the consumer could explicitly disconnect itself from the event 
channel when it no longer wishes to receive events. The consumer does this by 
invoking disconnect_push_supplier() on the event channel 
ProxyPushSupplier object.
65



Orb i x T a l k  P r o g r amme r ’ s  Gu i d e

orbixtalk33.book  Page 66  Monday, July 22, 2002  10:33 AM
The Push Consumer Application

The three main programming steps in the development of push consumer 
applications have been described in detail. 

The following source code illustrates how each of these steps fits in to the full 
push consumer application. 

// C++
#include <CORBA.h>
#include <cosevents.hh>
#include <coseventsadmin.hh>
#include <PushConsumer_i.h>

int main(int argc, char** argv) {
CosEventChannelAdmin::EventChannel_var ecVar;
CosEventChannelAdmin::ConsumerAdmin_var caVar;
CosEventChannelAdmin::ProxyPushSupplier_var ppsVar;
PushConsumer_i pcImpl;
char *serverHost;

try {
//
// Step 1. Get a ProxyPushSupplier object reference.
//

// Obtain an event channel reference.
try {
ecVar = EventChannel::_bind ("otrmp//:ES",

serverHost);
}
catch (...) {

// Handle exception.
...

}
if (CORBA::is_nil (ecVar))

return 1;

// Obtain a consumer administration object.
caVar = ecVar->for_consumers ();

// Obtain a proxy push supplier.
ppsVar = caVar->obtain_push_supplier ();
 66



P r o g r amm in g  w i t h  t h e  Un t yp ed  Pu s h  Mode l

orbixtalk33.book  Page 67  Monday, July 22, 2002  10:33 AM
//
// Step 2. Connect a push consumer implementation object.
//
ppsVar->connect_push_consumer (&pcImpl);

//
// Step 3. Monitor incoming operation calls.
//
while (!pcImpl.m_disconnected) {

CORBA::Orbix.processNextEvent ();
}

// When finished, disconnect the supplier.
ppsVar->disconnect_push_supplier();

}
catch (...) {

// Handle exception.
...
return 1;

}
return 0;

}

67



Orb i x T a l k  P r o g r amme r ’ s  Gu i d e

orbixtalk33.book  Page 68  Monday, July 22, 2002  10:33 AM
 68



orbixtalk33.book  Page 69  Monday, July 22, 2002  10:33 AM
 8
Programming with the Typed Push 
Model

To illustrate the use of the Push model to transmit typed events, this 
chapter develops a simple example.

This chapter describes how to develop an ORB application using the CORBA 
Event Service typed communications model that allows programmers to define 
an application-specific IDL interface. Callers can invoke operations defined on 
this interface to push events into an event channel. The parameters defined on 
these operations can specify the IDL method names and data types to be used to 
pass data on each event so the programmer is not restricted to passing data in 
an any. 

As described in Chapter 6, “The Programming Interface to the Event Service”, 
typed push model suppliers and consumers communicate through event 
channels supplied by the IIOP Gateway. 

Overview of an Example Application
Consider a Stock Price application that reports the sales price of stock. The 
application that reports the sales price is a supplier of events. As well as 
reporting the price of stock, it may also generate events when the price of a 
particular stock exceeds a given threshold, when sales activity on the stock rises 
above a certain level, and so on. 
69



Orb i x T a l k  P r o g r amme r ’ s  Gu i d e

orbixtalk33.book  Page 70  Monday, July 22, 2002  10:33 AM
Many different applications might be interested in receiving the events generated 
by the Stock Price application. These applications are consumers of events. 
Consumers might include stock brokers, insider trading watchdogs, government 
departments, and so on.

A suitable interface, supported by consumers of events for a Stock Price 
application, might be defined as follows:

// IDL
interface StockPrice
{
oneway void quote(in float price);

};

Using this interface, a supplier application supplies events by invoking the 
quote() operation. The data associated with each event indicates the new price 
for the stock and takes the form of a float.

The simplified example that is described in this chapter consists of a typed push 
supplier and a push consumer, each of which connects to a single event channel. 
The supplier repeatedly pushes StockPrice::quote() events to the event 
channel. The event channel propagates each event to the consumer, which will 
simply display the event data. This application is simple, but it illustrates a series 
of development tasks that apply to all OrbixTalk applications using the typed 
push model.

Because event communication is unidirectional, operations defined on interface 
StockPrice must be oneway operations. Thus, the operation’s parameters must 
be in parameters; the return value must be void; and the operation cannot have 
a raises clause.

When developing an OrbixTalk application, you must implement the suppliers 
and consumers as normal ORB applications that communicate with the event 
channel through IDL interfaces. OrbixTalk fully implements the event channel, 
which is created in the OrbixTalk IIOP Gateway. The IDL definitions for the 
CORBA Event Service are supplied with OrbixTalk.

This chapter examines the implementation of a supplier and consumer using 
Orbix for C++ as the development ORB. However, the OrbixTalk IIOP 
Gateway supports the CORBA Internet Inter-ORB Protocol (IIOP), so you may 
develop OrbixTalk applications using any IIOP-compatible ORB.
 70



P r o g r amm in g  w i t h  t h e  T yp ed  Pu s h  Mode l

orbixtalk33.book  Page 71  Monday, July 22, 2002  10:33 AM
Developing a Typed Push Supplier
As described in Chapter 6, “The Programming Interface to the Event Service”, a 
push supplier initiates the transfer of an event by pushing the event into an event 
channel. The event channel then takes responsibility for forwarding the event to 
each registered consumer.

This section describes how you can implement a typed push supplier as an Orbix 
application that communicates with a single event channel in an OrbixTalk 
server. This application acts as a client to several IDL interfaces implemented in 
the OrbixTalk event channel and acts as a server to the interface PushSupplier, 
which it implements.

There are four main programming steps in developing a typed push supplier:

1. Obtain a reference for a TypedProxyPushConsumer object from the 
event channel.

“Obtaining a TypedProxyPushConsumer from an Event Channel” on 
page 72 explains this step in detail.

2. Invoke the operation connect_push_supplier() on the 
TypedProxyPushConsumer object, to connect a PushSupplier 
implementation object to the event channel.

“Connecting a PushSupplier Object to an Event Channel” on page 73 
explains this step.

3. Invoke the operation get_typed_consumer() on the 
TypedProxyPushConsumer object and narrow the returned 
CORBA::Object object reference to the appropriate application-specific 
type. “Obtaining a Typed Push Consumer from a ProxyPushConsumer” 
on page 74 explains this step.

4. Invoke an appropriate operation defined on the application-specific 
interface to initiate the transfer of each event.

“Pushing Events to an Event Channel” on page 75 explains this step.
71



Orb i x T a l k  P r o g r amme r ’ s  Gu i d e

orbixtalk33.book  Page 72  Monday, July 22, 2002  10:33 AM
Obtaining a TypedProxyPushConsumer from an Event 
Channel

A typed push supplier needs to obtain a reference for a 
TypedProxyPushConsumer object in an event channel in order to transfer events 
to the channel for later distribution to consumers. 

To obtain a TypedProxyPushConsumer object reference from an event channel, 
a supplier must implement the following programming steps:

1. Obtain a reference to a TypedEventChannel object in the event channel.

2. Invoke the operation for_suppliers() on the TypedEventChannel 
object, in order to obtain a TypedSupplierAdmin object reference.

3. Invoke the operation obtain_typed_push_consumer() on the 
TypedSupplierAdmin object, passing the name of the interface for which 
the typed consumer is required as a parameter to the operation. This 
operation returns a TypedProxyPushConsumer object reference.

These steps are defined in the CORBA Event Service specification and apply to 
all Event Service implementations. 

In OrbixTalk, every event channel has an associated event channel identifier 
which can be used to retrieve the channel’s TypedEventChannel object 
reference. When using the Orbix _bind() call, you can specify the channel 
identifier as the TypedEventChannel object marker value. For example:

// C++
TypedEventChannel_var channelVar;
char *serverHost;
...

try {
channelVar = TypedEventChannel::

_bind ("otrmp//:ES", serverHost);
}
catch (...) {

// Handle exception.
...

}

Note that the server name for the OrbixTalk server is ES.
 72



P r o g r amm in g  w i t h  t h e  T yp ed  Pu s h  Mode l

orbixtalk33.book  Page 73  Monday, July 22, 2002  10:33 AM
Connecting a PushSupplier Object to an Event Channel

When the supplier has retrieved the TypedEventChannel object reference and 
used this to obtain a TypedProxyPushConsumer, the supplier can connect an 
implementation of the PushSupplier interface to the event channel. As 
described in Chapter 6, “The Programming Interface to the Event Service”, this 
interface is defined as follows:

// IDL
module CosEventComm {

...

interface PushSupplier {
void disconnect_push_supplier ();

};
};

The role of this interface is to allow the event channel to disconnect the supplier 
by invoking the operation disconnect_push_supplier(). This may happen if 
the event channel closes down.

In our example, the supplier implements the PushSupplier interface by defining 
the class TypedPushSupplier_i, for example as follows:

// C++
#include <CORBA.h>
#include <cosevents.hh>
#include <coseventsadmin.hh>
...

class TypedPushSupplier_i
: public virtual CosEventComm::PushSupplierBOAImpl {

public:
unsigned char m_disconnected;

TypedPushSupplier_i () {
m_disconnected = 0;

}

73



Orb i x T a l k  P r o g r amme r ’ s  Gu i d e

orbixtalk33.book  Page 74  Monday, July 22, 2002  10:33 AM
void disconnect_push_supplier (
CORBA::Environment& env = CORBA::default_environment) {
m_disconnected = 1;

}
};

This class uses a simple flag mechanism to indicate the connection state of the 
supplier. The supplier connects an object of this type to an event channel by 
calling the operation connect_push_supplier() on the 
TypedProxyPushConsumer object.

Obtaining a Typed Push Consumer from a 
ProxyPushConsumer

To send typed events, the supplier must obtain a reference to an object in the 
event channel that supports the StockPrice interface. The supplier does this by 
invoking the operation get_typed_consumer() on the 
TypedProxyPushConsumer object it got from the event channel. 

// C++
CORBA::Object_var objVar;
...
objVar = tppcVar->get_typed_consumer();

get_typed_consumer() returns an object reference of type CORBA::Object. 
Therefore, the supplier must narrow this object reference to a reference of type 
StockPrice.

// C++
if (StockPriceVar = StockPrice::_narrow (objVar)) {

...
else // call to _narrow() failed.

The supplier will use this object reference to push events to the event channel.
 74



P r o g r amm in g  w i t h  t h e  T yp ed  Pu s h  Mode l

orbixtalk33.book  Page 75  Monday, July 22, 2002  10:33 AM
Pushing Events to an Event Channel

The following code extract from the example supplier program shows how the 
supplier initiates the transfer of events. 

// C++
while (!tpsImpl.m_disconnected) {

StockPriceVar->quote (24.60);
}

In this example, the supplier repeatedly pushes an event to the event channel by 
calling the operation quote() on a StockPrice object. The StockPrice object 
includes a TypedPushConsumer object that the supplier and consumer use to 
communicate typed events between them. The quote() operation takes one 
parameter of type float which contains the price of the stock item. 

Note that our supplier stops sending events only when it receives an incoming 
disconnect_push_supplier() operation call from the event channel. 

As an alternative, the supplier could explicitly disconnect from the event channel 
by invoking the operation disconnect_push_consumer() on the event channel 
TypedProxyPushConsumer object.
75



Orb i x T a l k  P r o g r amme r ’ s  Gu i d e

orbixtalk33.book  Page 76  Monday, July 22, 2002  10:33 AM
A Typed Push Supplier Application

The following source code implements a typed push supplier which supplies
StockPrice::quote() events. It illustrates how the four programming steps 
described in detail in the preceding subsections fit in to a typed push supplier 
application. 

// C++
#include <CORBA.h>
#include <cosevents.hh>
#include <coseventsadmin.hh>
#include "StockPrice_i.h"
...

int main(int argc, char** argv) {
CosTypedEventChannelAdmin::TypedEventChannel_var tecVar;
CosTypedEventChannelAdmin::TypedSupplierAdmin_var tsaVar;
CosTypedEventChannelAdmin::TypedProxyPushConsumer_var tppcVar;
CORBA::Object_var objVar;
TypedPushSupplier_i tpsImpl;
StockPrice_var StockPriceVar("IONAY", 24);
char *serverHost;

try {
//
// Step 1. Get a TypedProxyPushConsumer object reference.
//

// Obtain an typed event channel reference.
try {

tecVar = TypedEventChannel::
_bind ("otrmp//:ES", serverHost);

}
catch (...) {

// Handle exception.
...

}
if (CORBA::is_nil (tecVar))

return 1;

// Obtain a supplier administration object.
tsaVar = tecVar->for_suppliers ();
 76



P r o g r amm in g  w i t h  t h e  T yp ed  Pu s h  Mode l

orbixtalk33.book  Page 77  Monday, July 22, 2002  10:33 AM
// Obtain a typed proxy push consumer.
tppcVar = tsaVar->obtain_typed_push_consumer ("StockPrice");

//
// Step 2. Connect a push supplier implementation object.
//
tppcVar->connect_push_supplier (&tpsImpl);

//
// Step 3. Obtain a typed push consumer object reference.
//
objVar = tppcVar->get_typed_consumer();

if (StockPriceVar = StockPrice::_narrow (objVar)) {
//
// Step 4. Push events to the event channel.
//
while (!tpsImpl.m_disconnected) {

StockPriceVar->quote (24.60);
CORBA::Orbix.processNextEvent (1000);

}
} else cout << "Attempt to _narrow() failed." << endl;

// When finished, disconnect the consumer.
tppcVar->disconnect_push_consumer();

}
catch (...) {

// Handle exception
...
return 1;

}
return 0;

}

77



Orb i x T a l k  P r o g r amme r ’ s  Gu i d e

orbixtalk33.book  Page 78  Monday, July 22, 2002  10:33 AM
Developing a Typed Push Consumer
A typed push consumer receives events from an event channel, with no 
knowledge of the suppliers from which those events originated. The event 
channel, in turn, receives events from typed push suppliers in the form of 
operation invocations on the interface agreed between the suppliers and the 
event channel. An event channel propagates an event to a typed push consumer 
by invoking the operation on a TypedPushConsumer implementation object in 
the consumer application. As such, the main functionality of a typed push 
consumer is associated with registering a TypedPushConsumer object with an 
event channel and receiving incoming operation calls on that object.

To develop a typed push consumer application, you must implement the 
following steps:

1. Obtain a reference for a ProxyPushSupplier object from the event 
channel.

“Obtaining a ProxyPushSupplier from an Event Channel” on page 79 
explains this step.

2. Connect a TypedPushConsumer implementation object to the event 
channel, by invoking the operation connect_push_consumer() on the 
ProxyPushSupplier object, passing an object of type 
TypedPushConsumer as an operation parameter.

“Connecting a TypedPushConsumer Object to an Event Channel” on 
page 79 explains this step.

3. Monitor incoming operation calls.

“Monitoring Incoming Operation Calls” on page 82 explains this step.

“A Typed Push Consumer Application” on page 83 shows how these steps fit in 
to a full typed push consumer application.
 78



P r o g r amm in g  w i t h  t h e  T yp ed  Pu s h  Mode l

orbixtalk33.book  Page 79  Monday, July 22, 2002  10:33 AM
Obtaining a ProxyPushSupplier from an Event Channel

Each typed push consumer connected to an event channel receives every event 
raised by every supplier connected to the channel. However, consumers have no 
knowledge of the suppliers. Consumers simply connect to an object in the event 
channel which acts as a single source of events. 

The ProxyPushSupplier is responsible for storing the TypedPushConsumer 
object reference for a connected consumer and propagating the operation 
invocation it receives when a supplier transmits an event. The first task in 
developing a push consumer application is to obtain a reference to this object.

There are three stages in obtaining a ProxyPushSupplier object reference:

1. Obtain a reference to a TypedEventChannel object in the event channel.

2. Invoke the operation for_consumers() on the TypedEventChannel 
object, in order to obtain a TypedConsumerAdmin object reference.

3. Invoke the operation obtain_typed_push_supplier() on the 
TypedConsumerAdmin object and pass the name of the interface agreed 
between the event channel and the typed consumer as a parameter. This 
operation returns a ProxyPushSupplier object reference.

You may implement the first of these steps in exactly the manner described for 
typed push supplier applications in “Obtaining a TypedProxyPushConsumer 
from an Event Channel” on page 72. The remaining steps involve normal 
operation invocations.

Connecting a TypedPushConsumer Object to an Event 
Channel

When a typed consumer has obtained a reference to the ProxyPushSupplier 
object in an event channel, the next step is to register a TypedPushConsumer 
implementation object with the ProxyPushSupplier. The event channel checks 
that the Push consumer object registered can be narrowed to a 
TypedPushConsumer. After a brief time the event channel invokes 
get_typed_consumer() on the TypedPushConsumer object reference.
79



Orb i x T a l k  P r o g r amme r ’ s  Gu i d e

orbixtalk33.book  Page 80  Monday, July 22, 2002  10:33 AM
As described in Chapter 6, “The Programming Interface to the Event Service”, 
the CORBA Event Service specification defines the interface 
TypedPushConsumer as follows:

// IDL
module CosTypedEventComm {

interface TypedPushConsumer : CosEventComm::PushConsumer {
Object get_typed_consumer ();

};
...

};

When an event arrives at an event channel in the form of an invocation on any of 
the operations defined in the interface, the channel invokes the same operation 
on each connected consumer. The disconnect_push_consumer() operation 
allows an event channel to disconnect a consumer, for example, if the channel 
closes down. 

This is a example implementation of the agreed interface, StockPrice. When an 
object of this class is created, it in turn creates an object of class 
TypedPushConsumer_i. When the quote operation occurs, the stockprice 
object carries out an operation on the TypedPushConsumer:

//C++
class TypedPushConsumer_i;

class StockPrice_i : public StockPriceBOAImpl
{
public:
StockPrice_i (TypedPushConsumer_i* pCons);

~StockPrice_i();

virtual void quote
(
CORBA::Float price,
CORBA::Environment &

) throw (CORBA::SystemException);

private:
TypedPushConsumer_i* m_pCons;

};

This is an example implementation of the TypedPushConsumer interface:
 80



P r o g r amm in g  w i t h  t h e  T yp ed  Pu s h  Mode l

orbixtalk33.book  Page 81  Monday, July 22, 2002  10:33 AM
//C++
class TypedPushConsumer_i : public
CosTypedEventComm::TypedPushConsumerBOAImpl
{

CORBA(Boolean) m_bConnected;
StockPriceBOAImpl* m_pStockPrice;

TypedPushConsumer_i(unsigned int numMsgsToConsume ) :
m_bConnected(FALSE)

{
m_pStockPrice = new StockPrice_i(this);

}

~TypedPushConsumer_i()
{

CORBA::release(m_pStockPrice);
}

// We come here when there is an incoming typed push event from
some supplier
// via the StockPrice_i class quote method
//

void do_quote(float price )
{

m_quoteCount++;
cout << "[TypedPushConsumer: got a typed push (quote " <<

m_quoteCount<< " of : " << price << "]" << endl;
}

void push( const CORBA(any)& a,CORBA(Environment)&){
{

throw CORBA::NO_IMPLEMENT;
}

...
}

Because TypedPushConsumer inherits from PushConsumer, it must provide an 
implementation of the push() operation defined on interface PushConsumer. In 
this example, class StockPrice_i provides a null implementation of push(), 
which simply raises the standard CORBA exception CORBA::NO_IMPLEMENT. 
This restricts suppliers to using typed communication with this consumer.
81



Orb i x T a l k  P r o g r amme r ’ s  Gu i d e

orbixtalk33.book  Page 82  Monday, July 22, 2002  10:33 AM
Alternatively, class TypedPushconsumer_i could implement push() so that the 
consumer receives untyped as well as typed events.

Monitoring Incoming Operation Calls

The main role of the typed consumer is to receive events from the event 
channel in the form of IDL operation calls. Consequently, the consumer must 
monitor and process any incoming calls. The example Orbix consumer 
application does this by repeatedly calling processNextEvent() on the 
CORBA::Orbix object, as follows:

// C++
while (!StockPriceImpl.m_disconnected) {

CORBA::Orbix.processNextEvent ();
}

The function processNextEvent() handles a single incoming operation call and 
then returns. 

If the consumer receives an invocation on the operation 
disconnect_push_consumer(), then the implementation of this operation sets 
the value TypedPushConsumer_i.m_disconnected to one and breaks the 
consumer’s event processing loop. Consequently, our consumer receives all 
events until the event channel explicitly forces it to disconnect. 

As an alternative, the consumer could explicitly disconnect itself from the event 
channel when it no longer wishes to receive events. The consumer does this by 
invoking disconnect_push_supplier() on the event channel 
ProxyPushSupplier object.
 82



P r o g r amm in g  w i t h  t h e  T yp ed  Pu s h  Mode l

orbixtalk33.book  Page 83  Monday, July 22, 2002  10:33 AM
A Typed Push Consumer Application

The three main programming steps in the development of a typed push 
consumer applications have been described in detail. 

The following source code illustrates how each of these steps fits in to the full 
typed push supplier application. The application obtains a typed proxy push 
supplier for the interface StockPrice and then waits for events.

// C++
#include <CORBA.h>
#include <cosevents.hh>
#include <coseventsadmin.hh>
#include "TypedPushConsumer_i.h"
#include "StockPrice_i.h"

int main(int argc, char** argv) {
CosTypedEventChannelAdmin::TypedEventChannel_var tecVar;
CosTypedEventChannelAdmin::TypedConsumerAdmin_var tcaVar;
CosTypedEventChannelAdmin::ProxyPushSupplier_var ppsVar;
TypedPushConsumer_i TypedPushConsumerImpl;
char *serverHost

try {
//
// Step 1. Get a ProxyPushSupplier object reference.
//

// Obtain a typed event channel reference.
try {

tecVar = TypedEventChannel::_bind (
"otrmp//:ES", serverHost);

}
catch (...) {

// Handle exception.
...

}
if (CORBA::is_nil (tecVar))

return 1;

// Obtain a typed consumer administration object.
tcaVar = tecVar->for_consumers ();
83



Orb i x T a l k  P r o g r amme r ’ s  Gu i d e

orbixtalk33.book  Page 84  Monday, July 22, 2002  10:33 AM
// Obtain a typed proxy push supplier for
// the interface StockPrice.
ppsVar = tcaVar->obtain_typed_push_supplier ("StockPrice");

//
// Step 2. Connect a typed push consumer
// implementation object.
//
ppsVar->connect_push_consumer (&TypedPushConsumerImpl);

//
// Step 3. Monitor incoming operation calls.
//
while (!TypedPushConsumerImpl.m_disconnected) {

CORBA::Orbix.processNextEvent ();
}

// When finished, disconnect the supplier.
tppsVar->disconnect_push_supplier();

}
catch (...) {

// Handle exception.
...
return 1;

}
return 0;

}

 84



orbixtalk33.book  Page 85  Monday, July 22, 2002  10:33 AM
 9
Programming with the Untyped 
Pull Model

To illustrate the Pull model to transfer untyped events, this chapter 
develops a simple application. 

As described in Chapter 5, “The CORBA Event Service”, OrbixTalk allows you 
to develop Object Request Broker (ORB) applications that communicate using 
the CORBA Event Service communications model. From a programmer’s 
perspective, the event channel is the key element of a CORBA Event Service 
application. 

This chapter describes an example ORB application that illustrates how you can 
use OrbixTalk to develop pull model suppliers and consumers that communicate 
untyped events through event channels. 
85



Orb i x T a l k  P r o g r amme r ’ s  Gu i d e

orbixtalk33.book  Page 86  Monday, July 22, 2002  10:33 AM
Overview of an Example Application
The example described in this chapter consists of a pull supplier and a pull 
consumer, each of which connects to a single event channel. The consumer 
repeatedly pulls an event from the event channel. The data associated with each 
event takes the form of a string, and the consumer simply displays the data as it 
receives it. The event channel, in turn, pulls the data from a pull supplier. This 
application is straightforward, but it illustrates a series of development tasks that 
apply to all OrbixTalk applications.

When developing an OrbixTalk application, you must implement the suppliers 
and consumers as normal ORB applications that communicate with the event 
channel through IDL interfaces. The OrbixTalk IIOP Gateway implements the 
event channel. The IDL definitions for the CORBA Event Service are supplied 
with OrbixTalk.

This chapter examines the implementation of a supplier and consumer using 
Orbix for C++ as the development ORB. However, the OrbixTalk server fully 
supports the CORBA IIOP, so you may develop OrbixTalk applications using any 
IIOP-compatible ORB.

Developing an Untyped Pull Consumer
As described in “Transfer of Typed Events Through an Event Channel” on 
page 49, a pull consumer initiates the transfer of an event by requesting the 
event from the event channel. The event channel, if it does not already have an 
event to meet the request, requests an event from each registered supplier and 
then passes an event to the pull consumer. A pull consumer may poll for an 
event if it does not want to block while waiting for an event to become available.

To develop a pull consumer application, you must implement the following steps:

1. Obtain a ProxyPullSupplier object from the event channel.

2. Invoke the operation connect_pull_consumer() on the 
ProxyPullSupplier object, to connect a PullConsumer implementation 
object to the event channel.

3. Invoke try_pull() operations on the ProxyPullSupplier object to 
initiate the transfer of each event. (As an alternative you can also use the 
pull() operation. try_pull() is preferred however.)
 86



P r o g r amm in g  w i t h  t h e  Un t yp ed  Pu l l  Mod e l

orbixtalk33.book  Page 87  Monday, July 22, 2002  10:33 AM
Obtaining a ProxyPullSupplier from an Event Channel

A pull consumer connected to an event channel receives an event only when it 
explicitly requests one. The consumer has no knowledge of the suppliers; it 
simply connects to an object in the event channel that acts as a single source of 
events. 

This object is responsible for storing a PullSupplier object reference for each 
connected supplier and invoking a try_pull() or pull() operation on each of 
these object references when a consumer requests an event using try_pull()
or pull() respectively. The event channel object which stores supplier 
references is of type ProxyPullSupplier. The first task in developing a push 
consumer application is to obtain a reference to this object.

As illustrated in our example pull consumer application, a pull consumer obtains 
a reference to a ProxyPullSupplier by implementing the following steps:

1. Obtain a reference to an EventChannel object in the event channel.

2. Invoke the operation for_consumers() on the EventChannel object in 
order to obtain a ConsumerAdmin object.

3. Invoke the operation obtain_pull_supplier() on the ConsumerAdmin 
object. This operation returns a ProxyPullSupplier object reference.

You may implement the first of these steps exactly as described for push supplier 
applications in “Obtaining a ProxyPushConsumer from an Event Channel” on 
page 57. The remaining steps involve normal operation invocations.

Connecting a PullConsumer Object to an Event Channel

When the consumer has obtained a reference to a ProxyPullSupplier object 
from the event channel, it needs to connect an implementation of the 
PullConsumer interface to the event channel. As described in “The Pull Model 
for Untyped Events” on page 41, this interface is defined as follows:

// IDL
module CosEventComm {

...

interface PullConsumer {
void disconnect_pull_consumer ();

};
};
87



Orb i x T a l k  P r o g r amme r ’ s  Gu i d e

orbixtalk33.book  Page 88  Monday, July 22, 2002  10:33 AM
The purpose of this interface is to allow the event channel to disconnect the 
PullConsumer by invoking the operation disconnect_pull_consumer(). This 
may be necessary if the event channel closes down.

In our example, the consumer application implements the PullConsumer 
interface by defining the class PullConsumer_i and implementing it as follows:

#include <CORBA.h>
#include <cosevents.hh>
#include <coseventsadmin.hh>
...

class PullConsumer_i
: public virtual CosEventComm::PullConsumerBOAImpl {

public:
CORBA::Boolean m_disconnected;

PullConsumer_i () {
m_disconnected = 0;

}

void disconnect_pull_consumer (
CORBA::Environment& env = CORBA::default_environment) {
m_disconnected = 1;

}
};

Class PullConsumer_i uses a simple flag mechanism to indicate the connection 
state of the consumer. The consumer connects an object of this type to an event 
channel by calling the operation connect_pull_consumer() on the 
ProxyPullSupplier object.
 88



P r o g r amm in g  w i t h  t h e  Un t yp ed  Pu l l  Mod e l

orbixtalk33.book  Page 89  Monday, July 22, 2002  10:33 AM
Pulling Events from an Event Channel

The following code extract from the example consumer program shows a simple 
way of initiating the transfer of events using the try_pull() operation:

CORBA::Boolean got_event;
...
while (!pcImpl.m_disconnected) {

event = ppsVar->try_pull(got_event);
if (got_event) {

if (*event >>= eventDataString) {
cout << eventDataString << endl;
delete [] eventDataString;
delete event;

} else {
cout << "Error: Pulled bad data" << endl;

}
} else {

cout << "Event channel did not supply event" << endl;
}
CORBA::Orbix.processNextEvent (1000);

}

In this example, the consumer repeatedly pulls an event from the event channel 
using the try_pull() operation on a ProxyPullSupplier object in the channel. 
In this example, the event supplied in the any return value of the try_pull() 
operation is a string; in general, the type contained in this any is application 
dependent. 

The try_pull() operation pulls events without blocking. The pull() operation 
causes the consumer application to block until a event is supplied by the channel. 
If you are using a multi-thread safe ORB such as Orbix or OrbixWeb, you could 
also create an application thread dedicated to pulling events from the channel 
without blocking the consumer application. The following code extract 
illustrates the use of pull():

// C++
while (!pcImpl.m_disconnected) {

event = ppsVar->pull();
if (*event >>= eventDataString) {

cout << eventDataString << endl;
delete [] eventDataString;
delete event;
89



Orb i x T a l k  P r o g r amme r ’ s  Gu i d e

orbixtalk33.book  Page 90  Monday, July 22, 2002  10:33 AM
} else {
cout << "Error: Pulled bad data" << endl;

}
CORBA::Orbix.processNextEvent (1000);

}

The consumer stops pulling events only when it receives an incoming 
disconnect_pull_consumer() operation call from the event channel. 
Alternatively, the consumer could explicitly disconnect from the event channel 
by invoking the operation disconnect_pull_supplier() on the 
ProxyPullSupplier object in the event channel.

An Untyped Pull Consumer Application

The following source code illustrates the implementation of a simple pull 
consumer that pulls events using the try_pull() operation:

// C++
#include <CORBA.h>
#include <cosevents.hh>
#include <coseventsadmin.hh>
#include <PullConsumer_i.h>
...
int main(int argc, char** argv) {

CosEventChannelAdmin::EventChannel_var ecVar;
CosEventChannelAdmin::ConsumerAdmin_var caVar;
CosEventChannelAdmin::ProxyPullSupplier_var ppsVar;
CORBA::Any* event;
char* eventDataString;
PullConsumer_i pcImpl;
CORBA::Boolean got_event;
char *serverHost;

try
//
// Step 1. Get a ProxyPullSupplier object reference.
//

// Obtain an event channel reference.
try {

ecVar = EventChannel::_bind ("otrmp//:ES",
 90



P r o g r amm in g  w i t h  t h e  Un t yp ed  Pu l l  Mod e l

orbixtalk33.book  Page 91  Monday, July 22, 2002  10:33 AM
serverHost);
}
catch (...) {

// Handle exception.
...
}

if (CORBA::is_nil (ecVar))
return 1;

// Obtain a consumer administration object.
caVar = ecVar->for_consumers ();

// Obtain a proxy pull supplier.
ppsVar = saVar->obtain_pull_supplier ();

//
// Step 2. Connect a pull consumer implementation object.
//
ppsVar->connect_pull_consumer (&pcImpl);

//
// Step 3. Pull events from the event channel.
//
while (!pcImpl.m_disconnected) {

event = ppsVar->try_pull(got_event);
if (got_event){

if(*event >>= eventDataString){
cout << eventDataString << endl;
delete[] eventDataString;
delete event;

} else {
cout << "Error: Pulled bad data" << endl;

else {
cout << "Event channel did not supply event" << endl;

}
CORBA::Orbix.processNextEvent (1000);

}
}
catch (...) {

// Handle exception.
...
return 1;
91



Orb i x T a l k  P r o g r amme r ’ s  Gu i d e

orbixtalk33.book  Page 92  Monday, July 22, 2002  10:33 AM
}
return 0;

}

“Obtaining a ProxyPullSupplier from an Event Channel” on page 87, “Connecting 
a PullConsumer Object to an Event Channel” on page 87, and “Pulling Events 
from an Event Channel” on page 89 explain the details of each step in the 
implementation of a PullConsumer with reference to this source code.

Developing an Untyped Pull Supplier
A pull supplier supplies events on request to an event channel and has no 
knowledge of the consumers to which these events will be propagated. The 
event channel requests an event from a pull supplier in order to fulfil a request 
for an event by a pull consumer. An event channel requests an event by invoking 
the pull() or try_pull() operations on a PullSupplier object in the supplier 
application. A supplier application, therefore, must register a PullSupplier 
object with an event channel and receive incoming operation calls on that object.

To develop a pull supplier application, you must implement the following steps:

1. Obtain a reference for a ProxyPullConsumer in the event channel.

2. Connect a PullSupplier implementation object to the event channel by 
invoking the operation connect_pull_supplier() on the 
ProxyPullConsumer object.

3. Monitor incoming operation calls.

Obtaining a ProxyPullConsumer from an Event Channel

When a pull consumer requests an event, the event channel to which it is 
connected in turn requests an event from each connected pull supplier if it does 
not already have an event stored in the channel. The suppliers have no 
knowledge of the consumers requesting events; they simply connect to an object 
in the event channel.

This object is responsible for storing a PullSupplier object reference for each 
connected supplier, and invoking the pull() or try_pull() operation on each 
of these references when a consumer requests an event. The event channel 
 92



P r o g r amm in g  w i t h  t h e  Un t yp ed  Pu l l  Mod e l

orbixtalk33.book  Page 93  Monday, July 22, 2002  10:33 AM
object which stores supplier references is of type ProxyPullConsumer. The first 
task in developing a pull supplier application is to obtain a reference to this 
object. 

As illustrated in our example supplier source code, this reference is obtained by 
implementing the following steps:

1. Obtain a reference to an EventChannel object in the event channel.

2. Invoke the operation for_suppliers() on the EventChannel object in 
order to obtain a SupplierAdmin object.

3. Invoke the operation obtain_pull_consumer() on the SupplierAdmin 
object. This operation returns a ProxyPullConsumer object reference.

You may implement the first of these steps exactly as described for push supplier 
applications in “Obtaining a ProxyPushConsumer from an Event Channel” on 
page 57. The remaining steps involve normal operation invocations.

Connecting a PullSupplier Object to an Event Channel

When a supplier has obtained a reference to a ProxyPullConsumer object in an 
event channel, the next step is to register a PullSupplier implementation 
object with the ProxyPullConsumer. 

As described in “The Pull Model for Untyped Events” on page 41, the CORBA 
Event Service specification defines the interface PullSupplier as follows:

// IDL
module CosEventComm {

interface PullSupplier {
any pull () raises (Disconnected);
any try_pull (out boolean has_event) raises (Disconnected);
void disconnect_pull_supplier();

};
...

};

When a request for an event arrives at an event channel in the form of a pull() 
or try_pull() operation from a pull consumer, the channel 
ProxyPullConsumer object invokes a corresponding pull() or try_pull() 
operation on each connected supplier. 

The disconnect_pull_supplier() operation allows the event channel to 
disconnect a supplier, for example, if the event channel closes down.
93



Orb i x T a l k  P r o g r amme r ’ s  Gu i d e

orbixtalk33.book  Page 94  Monday, July 22, 2002  10:33 AM
Our example supplier implements this interface as follows:

// C++
class PullSupplier_i :

public virtual CosEventComm::PullSupplierBOAImpl {

protected:
unsigned char m_generate_event;

public:
CORBA::Boolean m_disconnected;

PullSupplier_i () {
m_disconnected = 0;
m_have_event = 0;

}

virtual void disconnect_pull_supplier (
CORBA::Environment& env = CORBA::default_environment){
m_disconnected = 1;

}

virtual CORBA::Any* pull (
CORBA::Environment& env = CORBA::default_environment){
CORBA::Any a;
char* eventDataString = "Hello World!";
if (!m_disconnected) {

a <<= eventDataString;
return a;

} else {
throw CosEventComm::Disconnected;
return 0;

}
}

virtual CORBA::Any* try_pull (
CORBA::Boolean& has_event,
CORBA::Environment& env = CORBA::default_environment){

// This trivial implementation of try_pull()
// supplies an event on every alternate call.
CORBA::Any a;
char* eventDataString = "Hello World!";
if (!m_disconnected) {
 94



P r o g r amm in g  w i t h  t h e  Un t yp ed  Pu l l  Mod e l

orbixtalk33.book  Page 95  Monday, July 22, 2002  10:33 AM
if (m_generate_event) {
a <<= eventDataString;
m_has_event = 1;
m_generate_event = 0;
return a;

}
else {

m_has_event = 0;
m_generate_event = 1;

}
}

} else {
throw CosEventComm::Disconnected;
return 0;

}
}

};

This class includes trivial implementations of the pull() and try_pull() 
operations which deal with requests for events. The exact requirements for 
implementing these operations are application specific; a real OrbixTalk 
application would probably require more complex implementations. 

Monitoring Incoming Operation Calls

A pull supplier application receives requests for events from an event channel in 
the form of pull() and try_pull() operation calls; the event channel may also 
disconnect the supplier by invoking the operation 
disconnect_pull_supplier(). The supplier must, therefore, monitor and 
process incoming operation calls. The example pull supplier application does this 
by repeatedly calling processNextEvent() on the CORBA::Orbix object, as 
follows:

while (!psImpl.m_disconnected) {
CORBA::Orbix.processNextEvent (1000);

}

The function processNextEvent() handles a single incoming operation call and 
then returns. This example uses a timeout value of 1000 milliseconds, but any 
finite value would be appropriate.
95



Orb i x T a l k  P r o g r amme r ’ s  Gu i d e

orbixtalk33.book  Page 96  Monday, July 22, 2002  10:33 AM
If the supplier receives a disconnect_pull_supplier() operation invocation, 
then the implementation of this operation sets the value 
psImpl.m_disconnected to one and breaks the supplier’s event processing 
loop. In this way, our supplier receives operation invocations until the event 
channel explicitly asks it to disconnect. A supplier could explicitly disconnect 
itself from the event channel when it no longer wants to supply events, by 
invoking the operation disconnect_pull_consumer() on the event channel 
ProxyPullConsumer object.

An Untyped Pull Supplier Application

The following code implements an example pull supplier:

// C++
#include <CORBA.h>
#include <cosevents.hh>
#include <coseventsadmin.hh>
#include <PullSupplier_i.h>

int main(int argc, char** argv) {
char *eventChannelName = "Channel_1"
CosEventChannelAdmin::EventChannel_var ecVar;
CosEventChannelAdmin::SupplierAdmin_var saVar;
CosEventChannelAdmin::ProxyPullConsumer_var ppcVar;
PullSupplier_i psImpl;

try {
//
// Step 1. Get a ProxyPullConsumer object reference.
//

// Obtain an event channel reference.
try {

ecVar = EventChannel::_bind ("otrmp//:ES",
serverHost);

}
catch (...) {

// Handle exception.
...
}

if (CORBA::is_nil (ecVar))
 96



P r o g r amm in g  w i t h  t h e  Un t yp ed  Pu l l  Mod e l

orbixtalk33.book  Page 97  Monday, July 22, 2002  10:33 AM
return 1;

// Obtain a supplier administration object.
saVar = ecVar->for_suppliers ();

// Obtain a proxy pull consumer.
ppcVar = saVar->obtain_pull_consumer ();

//
// Step 2. Connect a pull supplier implementation object.
//
ppcVar->connect_pull_supplier (&psImpl);

//
// Step 3. Monitor incoming operation calls.
//
while (!psImpl.m_disconnected) {

CORBA::Orbix.processNextEvent (1000);
}

}
catch (...) {

// Handle exception.
...
return 1;

}
return 0;

}

97



Orb i x T a l k  P r o g r amme r ’ s  Gu i d e

orbixtalk33.book  Page 98  Monday, July 22, 2002  10:33 AM
 98



orbixtalk33.book  Page 99  Monday, July 22, 2002  10:33 AM
 10
The OrbixTalk Events Library

The events library enables C++ applications to send multicast 
messages directly without the IIOP Gateway.

The OrbixTalk events library is an implementation of the CORBA Events 
Service specification. It provides a C++ library that can be included in any Orbix 
application so that it can use multicast functionality with the Event Service IDL, 
but without having to bind to an event channel provided by the IIOP Gateway.

The library provides each supplier or consumer with its own smart proxy. 
Supplier and consumer smart proxies can cooperate to produce an effective 
event channel, but multicast communication occurs directly. This 
implementation means that you can develop C++ suppler and consumer 
applications in the same way as those that use the IIOP Gateway as 
demonstrated in Chapter 7, “Programming with the Untyped Push Model” and 
the following chapters. The only differences are that:

• You must include the C++ library header files rather than IDL generated 
header files.

• You must bind to the event channel using different channel identifiers, 
and no server name. Alternatively, the 
OrbixTalkAdmin::ChannelManager interface can be used to manage 
event channels.
99



Orb i x T a l k  P r o g r amme r ’ s  Gu i d e

orbixtalk33.book  Page 100  Monday, July 22, 2002  10:33 AM
The C++ Library Header Files
There are two header files associated with the C++ library. These two files 
contain definitions and static declarations of smart proxy factories:

These smart proxy factories allocate a smart proxy object within the 
application’s address space when you call _bind(char* channelname, "") on 
one of these classes. 

Note that the equivalent header files used when binding to event channels 
provided by the IIOP Gateway are named coseventsadmin.hh and
orbixtalkadmin.hh.

The library allows multiple event channels within one application. It is designed 
to allow one or more suppliers to supply events to each event channel, and one 
or more consumers to consumer events from each event channel.

Event Channel Identifiers
Each event channel can use reliable multicast protocol (rmp), store and forward 
protocol (sfp), or basic multicast (mcp). An non-multicast event channel can be 
determined from the prefix of the event channel’s name. The following prefixes 
are recognized:

If no prefix is specified, an invalid name exception 
(OrbixTalkAdmin::InvalidName) is thrown. This differs from the IIOP 
Gateway.

coseventsadmin.h This provides smart proxy factories for 
CosEventChannelAdmin::EventChannel and 
CosTypedEventChannelAdmin::TypedEventChannel. 

orbixtalkadmin.h This provides smart proxy factories for 
OrbixTalkAdmin::ChannelManager.

otrmp// Reliable multicast.

otsfp// Store and forward multicast.

otmcp// Raw multicast (fire and forget).
 100



Th e  O r b i x T a l k  E v e n t s  L i b r a r y

orbixtalk33.book  Page 101  Monday, July 22, 2002  10:33 AM
For example, if you want to bind to an event channel using the C++ library, you 
can use this call:

_bind("otrmp//","")

Store and Forward Multicast
Store and Forward replay can be controlled using the 
OrbixTalkAdmin::ChannelManager interface.

The Events Library and The OrbixTalk Daemon
At start-up the application attempts to contact the OrbixTalk daemon (otd). 
When an event channel is created the application contacts the OrbixTalk 
daemon to obtain OrbixTalk topic information for that event channel. Queries 
on the OrbixTalk daemon from other applications and gateways for the same 
channel name are provided with the same topic information.

Non-Multicast Event Channels
These are not available in the OrbixTalk events library.
101



Orb i x T a l k  P r o g r amme r ’ s  Gu i d e

orbixtalk33.book  Page 102  Monday, July 22, 2002  10:33 AM
 102



orbixtalk33.book  Page 103  Monday, July 22, 2002  10:33 AM
 11
OrbixTalk IIOP Gateway

The OrbixTalk IIOP Gateway is a CORBA server. It provides event 
channels that allow any IIOP client such as OrbixWeb to 
communicate using multicast functionality.

The gateway provides multiple event channels including both typed and untyped 
channels. You can develop any IIOP conformant client as a supplier or consumer 
which can connect to a channel. The gateway allows one or more suppliers to 
supply events to each event channel, and one or more consumers to receive 
events from each event channel.

You can develop suppliers and consumers in the way described in Chapter 7, 
“Programming with the Untyped Push Model” and the following chapters. All 
you must do to use an event channel provided by the Gateway is:

• Include the header files coseventsadmin.hh and orbixtalkadmin.hh

where necessary.

• Use the appropriate channel identifier when binding to an event channel.
103



Orb i x T a l k  P r o g r amme r ’ s  Gu i d e

plier

orbixtalk33.book  Page 104  Monday, July 22, 2002  10:33 AM
.

Event Channel Identifiers
Each event channel can use reliable multicast protocol (rmp), store and forward 
protocol (sfp), or basic multicast (mcp). An non-multicast event channel may 
specified determined from the prefix of the event channel’s name. The following 
prefixes are recognized: 

Figure 11.1: OrbixTalk IIOP Gateway

otrmp// Reliable multicast.

otsfp// Store and forward multicast.

otmcp// Raw multicast (fire and forget).

(No Prefix) Non-multicast. (Use none of the above.)

Supplier

Orbixtalk Multicast 
Transport Service

Sup

Consume Consume

gateway 

gateway gateway

gateway 
Supplier

Consume
 104



Orb i x T a l k  I I OP  G a t eway

orbixtalk33.book  Page 105  Monday, July 22, 2002  10:33 AM
Store and Forward Multicast
Although the gateway supports more than one consumer, the full sfp 
functionality is only available to one consumer at a time. The application name is 
used by sfp requesting the replay of events from the message store. The 
application name can be set once (see “Using The Channel Manager to Retrieve 
Event Channels” on page 108). 

The IIOP Gateway and The OrbixTalk Demon
At start-up the event server attempts to contact the orbixTalk daemon (otd). If 
it cannot do so then it will not become available on the network.

When an event channel is created the event server checks to see if it is a 
multicast event channel. If it is the event server contacts the OrbixTalk daemon 
to obtain OrbixTalk topic information for that event channel. Queries on the 
OrbixTalk daemon from other event servers for the same channel name are 
provided with the same topic information.

The event server does not need to contact the OrbixTalk daemon for non-
multicast channels. It simply provides an internal mechanism for the event 
channel. This is the most significant difference between an event server licensed 
for Orbix, and one with an OrbixTalk license. If you are using Orbix only, 
multicast channels are not allowed, and the event server does not need to 
contact the OrbixTalk daemon, either at start-up or during creation of an event 
channel.

Non-Multicast Event Channels
When an event is supplied to a non-multicast event channel the event server 
buffers it internally as though it was to be multicast. Instead of transmitting the 
event, it is passed to the receive thread as though it had been received from the 
network. There may not be a receive thread if the event server has no 
connected consumers on that event channel. In that case the event is discarded.
105



Orb i x T a l k  P r o g r amme r ’ s  Gu i d e

orbixtalk33.book  Page 106  Monday, July 22, 2002  10:33 AM
The IIOP Gateway Command Lines
The gateway’s command line allow you to configure how it is launched. It takes 
the following form:

otgateway [option | channel id]

Where the option is one of the command-line parameters listed in Table 11.2.

Option Effect

untyped_channels Subsequent channel names are treated as 
untyped. This is the default.

typed_channels Subsequent channel names are treated as typed.

not_orbix_server Do not call CORBA::Orbix.setServerName() 
or CORBA::Orbix.impl_is_ready().

server_name The name passed to 
CORBA::Orbix.setServerName() and   
CORBA::Orbix.impl_is_ready(). Default is 
"ES".

srv_timeout Millisecond time passed to single call to 
processEvents(). Default is INFINITE.

default_tx_timeout Millisecond time passed to 
CORBA::Orbix.defaultTxTimeout(). Default 
is INFINITE.

use_transient_port CORBA::Orbix.useTransientPort(1) is called.

set_diagnostics Value of 0, 1, 2 or 3 passed to 
CORBA::Orbix.setDiagnostics(). Default is 
0.

robust Invocations to destroy on typed or untyped 
events channel will fail if any Proxies exist.

Table: 11.2: Gateway Command-line Options
 106



Orb i x T a l k  I I OP  G a t eway

orbixtalk33.book  Page 107  Monday, July 22, 2002  10:33 AM
always_try_pull_on_suppliers If a PullConsumer calls pull() on a 
ProxyPullSupplier then, by default, all 
ProxyPullConsumers call pull() on their 
connected PullSuppliers. If this parameter is 
set then ProxyPullConsumers call try_pull() 
on their connected PullSuppliers. Note that 
if a PullConsumer calls try_pull() on a 
ProxyPullSupplier then all 
ProxyPullConsumers will always call 
try_pull() on their connected 
PullSuppliers.

pull_prod_interval When a PullConsumer calls pull() on a 
ProxyPullSupplier, this parameter sets the 
interval between:

New ProxyPullConsumers calling pull() on 
their connected PullSuppliers.

All ProxyPullConsumers calling try_pull() on 
their connected PullSuppliers.

try_pull_duration When a PullConsumer calls try_pull() on a 
ProxyPullSupplier then this is the duration 
that try_pull() blocks, awaiting an event, 
before returning with has_event set to FALSE.

-nonames Do not place the name 
OrbixTalkAdminChannelManager in root 
context of Name Service. (Default places it in 
root context if Name Service is running.)

I or i OrbixTalkAdmin IOR is written to a file 
OrbixTalkAdmin.ref.

v Version information and opal version 
information/configuration.

Option Effect

Table: 11.2: Gateway Command-line Options
107



Orb i x T a l k  P r o g r amme r ’ s  Gu i d e

orbixtalk33.book  Page 108  Monday, July 22, 2002  10:33 AM
Using The Channel Manager to Retrieve Event 
Channels

The IIOP Gateway supports the standard COSEvents IDL interface as defined in 
the OMG CORBA specification. In addition, it provides an OrbixTalkAdmin 
module which enables you to obtain references to event channels, and specify 
the persistent application name for the gateway.

#include "coseventsadmin.idl"
module OrbixTalkAdmin
{

typedef string ChannelName;
exception InvalidName{ };
exception InvalidOption{ };
exception AlreadySet{ };

// Replay Type
//
//REPLAY_NONE - Do not replay messages (Default)
// REPLAY_ALL - Replay all messages
// REPLAY_RELATIVE - Replay n messages relative

to most recent
// REPLAY_ABSOLUTE - Replay messages starting

from n
// REPLAY_USE_EXISTING - Use the existing replay
mechanism for the channel

//
typedef unsigned short ReplayType;
typedef unsigned long ReplayValue;

const ReplayType REPLAY_NONE = 0;
const ReplayType REPLAY_ALL = REPLAY_NONE + 1;

? Usage information.

D Dump current configuration settings.

Option Effect

Table: 11.2: Gateway Command-line Options
 108



Orb i x T a l k  I I OP  G a t eway

orbixtalk33.book  Page 109  Monday, July 22, 2002  10:33 AM
const ReplayType REPLAY_RELATIVE = REPLAY_NONE +
2;
const ReplayType REPLAY_ABSOLUTE = REPLAY_NONE +
3;
const ReplayType REPLAY_USE_EXISTING = REPLAY_NONE
+ 6;

interface OTChannelManager
{

CosEventChannelAdmin::EventChannel
get_event_channel

(
in ChannelName channel_name,
inout ReplayType type,
inout ReplayValue value

) raises (InvalidName,InvalidOption);

CosTypedEventChannelAdmin::TypedEventChannel
get_typed_event_channel

(
in ChannelName channel_name,
inout ReplayType type,
inout ReplayValue value

) raises (InvalidName,InvalidOption);

// required for SFP
void set_app_name

(
in string name

) raises (InvalidName, AlreadySet);
};

};

Note: To replay the last message sent, set ReplayRelative to 1.

In order to use an event channel, you need to bind to the OTChannelManager 
object then call get_event_channel():

managerVar = OrbixTalkAdmin::OTChannelManager::_bind(":ES");
channelVar = managerVar->get_event_channel

("otrmp//Events",OrbixTalkAdmin::ReplayAll,0);
109



Orb i x T a l k  P r o g r amme r ’ s  Gu i d e

orbixtalk33.book  Page 110  Monday, July 22, 2002  10:33 AM
The replay parameters are ignored for topics not using the Store and Forward 
Protocol (otsfp). 

The executable file for the gateway is otgateway. You do not need to specify 
any parameters when you use the otgateway file with an Orbix daemon. 
Register the gateway with the Orbix daemon as a per-client server to ensure 
that each client process has access to its own gateway:

putit -per-client-pid ES <path>/otgateway -srv_timeout n

It is highly recommended that you register the gateway in like this, to avoid the 
otgateway becoming a bottleneck. The otgateway must be registered using the 
per-client-pid activation mode for otsfp listener applications. This is because 
each listener using the otsfp protocol has its own state log file. This statelog is 
used by OrbixTalk to determine the last message that was successfully received 
if a listener exits and restarts for any reason. The missed messages can then be 
replayed for the listener. As there is only one state log per process it is 
necessary for the orbixd to launch a separate gateway process for each client. 

During start-up the gateway attempts to call 
resolve_initial_references("NameService"). If this is successful then the 
OrbixEventsAdmin::ChannelManager and 
OrbixTalkAdmin::OTChannelManager object references are placed in the root 
CosNaming::NamingContext.
 110



orbixtalk33.book  Page 111  Monday, July 22, 2002  10:33 AM
Part III
Managing OrbixTalk



orbixtalk33.book  Page 112  Monday, July 22, 2002  10:33 AM



orbixtalk33.book  Page 113  Monday, July 22, 2002  10:33 AM
 12
Building and Running OrbixTalk 
Applications

This chapter lists the libraries required to build applications on 
different platforms using a multi-threaded environment.

Overview
Before running an application, ensure that one instance of the OrbixTalk 
Directory Enquiries daemon (otd or otdsm) is running on each subnet.

If the application uses the OrbixTalk MessageStore, ensure that one instance of 
the OrbixTalk Directory Enquiries daemon (otd or otdsm) and one instance of 
the OrbixTalk MessageStore daemon (otmsd) are running on each subnet. The 
OrbixTalk Directory Enquiries daemon should be started first.

UNIX Platforms
UNIX releases of OrbixTalk use different library names depending on the 
specific implementations (Solaris, HP-UX and so on). The library name is as 
follows:

libEventmt.a/sl/so Event Service library.
113



Orb i x T a l k  P r o g r amme r ’ s  Gu i d e

orbixtalk33.book  Page 114  Monday, July 22, 2002  10:33 AM
Where:

For example, applications running on HP-UX in a multi-threaded environment 
use the following library:

OrbixTalk applications must be linked with the Orbix library as OrbixTalk uses 
Orbix functionality. The Orbix libraries have a similar naming convention to 
OrbixTalk libraries. For example:

liborbixmt.a/so/sl

Refer to the demos in the demo directory and the generalized makefile, 
orbixtalk_xxx.mk, for the exact build requirements for your specific platform. 

Microsoft Windows Platforms (WIN32)
Microsoft WIN32 platforms, such as Windows NT, are primarily multi-threaded. 
This is the available library:

OrbixTalk applications must be linked with the Orbix library as OrbixTalk uses 
Orbix functionality. The available Orbix libraries include:

To build an OrbixTalk application, you must have the following in your VC++ 
project settings : 

mt Specifies a multi-threaded environment
(Single threaded is not supported).

sl Specifies a shared library for HP-UX.

so Specifies a shared library for Solaris.

a Specifies a shared library for AIX.

libEventmt.sl

ITOEI.LIB Dynamic multi-threaded Event Service console-based 
library.

ITMI.LIB Dynamic multi-threaded Orbix library.

ITMxxx.DLL (xxx depends on Orbix version).
 114



Bu i l d i n g  a nd  Runn i n g  O r b i x T a l k  App l i c a t i o n s

orbixtalk33.book  Page 115  Monday, July 22, 2002  10:33 AM
1. Add ORBIX_DLL and ORBIXTALK_DLL preprocessor definitions to 
General category of the C/C++ page. 

2. Set the run-time library to Multithreaded DLL in Code Generation 
category of the C/C++ page. 

3. Add the itmi.lib and itotmi.lib libraries to General category of 
Link page. 

4. Add the itoei.lib to General category of Link page. 
115



Orb i x T a l k  P r o g r amme r ’ s  Gu i d e

orbixtalk33.book  Page 116  Monday, July 22, 2002  10:33 AM
 116



orbixtalk33.book  Page 117  Monday, July 22, 2002  10:33 AM
 13
Daemons

This chapter provides information about the OrbixTalk Directory 
Enquiries daemons (otd and otdsm) and the OrbixTalk 
MessageStore daemon (otmsd).

Overview
OrbixTalk uses a number of daemons that provide services to all OrbixTalk 
applications. This chapter provides information about the following daemons:

• The OrbixTalk Directory Enquiries daemon (otd) provides mappings 
between topic names and multicast addresses for all OrbixTalk 
applications. The OrbixTalk Directory Enquiries daemon (otdsm) enables 
you to view information about topics and applications.

• The OrbixTalk MessageStore daemon (otmsd) acts as an intermediary in 
the Store and Forward protocol.

For information about configuration parameters relating to the OrbixTalk 
daemons, see Appendix A, “Configuration Parameters”. 

Note: The command line switches are common to all the daemons, and are 
explained in detail for the otd in the following section.
117



Orb i x T a l k  P r o g r amme r ’ s  Gu i d e

orbixtalk33.book  Page 118  Monday, July 22, 2002  10:33 AM
Using the OrbixTalk Directory Enquiries Daemon (otd)

The otd must be present in every OrbixTalk system. Applications contact the 
otd to get unique application identifiers, and to map between topic names and 
multicast addresses. The otd must execute before any other OrbixTalk 
application, or the MessageStore daemon.

Usage:

otd -v
otd -h
otd -?

otd [-s] [-d] [-F]
[-i] [-u] [-D] (NT only)
[-B] (UNIX platforms only)

Getting System Information

Use the -v switch to print version and configuration information to the standard 
output then exit. This includes the product code, build date and time, and the 
current settings for each of the configuration items as well as their name and a 
short description of each.

The -v switch is useful for checking your system configuration. IONA support 
generally requests the output of otd -v when you submit a query on OrbixTalk.

Getting Usage Information

Use the -h or -? switches to output information on the command line switches 
available for the otd.

Other Switches

-s Starts the daemon in slave mode for fault-tolerance/fail-over 
support.

-d Disables demotion of a slave mode daemon in the presence of a 
master mode daemon.

-F Executes the daemon as a foreground process.

-B Executes the daemon as a background process (UNIX platforms 
only).
 118



Daemon s

orbixtalk33.book  Page 119  Monday, July 22, 2002  10:33 AM
Security Considerations When Running the OrbixTalk 
Daemon (otd)
Unlike the Orbix Daemon (orbixd) where security must always be a major 
consideration, the otd is not responsible for actually starting any other 
processes. For this reason, security issues with the otd are of a different nature. 

As the otd usually have a number of users, the main issue with security is the 
potential shut-down of the daemon (either accidentally or intentionally) as this 
has potential to affect other users who are using the same otd. 

This is an issue that system administrators can address by giving the correct 
privileges to appropriate users. 

Fault Tolerance Support

OrbixTalk supports fault tolerance facilities which, if enabled, allow the 
OrbixTalk MessageStore daemon (otmsd) and the OrbixTalk Directory 
Enquiries daemon (otd/otdsm) pairs to be run simultaneously. 

For more information about fault tolerance, refer to Chapter 14, “Fault 
Tolerance”.

NT Service Support

OrbixTalk allows the otd to be run as a Windows NT service. The OrbixTalk 
daemon is installed as a service using the -i switch as follows:

otd -i

This command installs the OrbixTalk daemon as a service called OrbixTalk OTD. 
The OrbixTalk daemon can then be started, stopped and paused from the 
Services facility in the control panel.

-i Installs the daemon as a service (NT only).

-u Uninstalls the daemons as a service (NT only).

-D Installs a dual daemon service–master and slave (NT only).
119



Orb i x T a l k  P r o g r amme r ’ s  Gu i d e

orbixtalk33.book  Page 120  Monday, July 22, 2002  10:33 AM
Use the -D switch to install a dual OrbixTalk daemon service to support Fault 
Tolerance as follows:

otd -D

This command installs a master mode OrbixTalk daemon called OrbixTalk OTD

Master, and a slave mode OrbixTalk daemon called OrbixTalk OTD Slave.

The Orbix.cfg entry or environment variable IT_OT_DAEMON_BACKGROUND must 
be set to 1 before starting the OrbixTalk daemon from the Services menu in 
the control panel. Similarly, IT_LOG_SYSLOG should be set to 1 and 
IT_LOG_CONSOLE set to 0 to redirect output to a log file contained in the 
directory specified by IT_APP_STORE. For more information about these 
configuration parameters, refer to Appendix A, “Configuration Parameters”.

Once the OrbixTalk daemon is installed, modify the start-up to interact with the 
desktop as follows:

1. Double-click on each OrbixTalk daemon entry displayed to view the 
Allow Service to Interact with Desktop toggle button.

2. Click on the Allow Service to Interact with Desktop toggle button to 
start or stop the interaction. 

Use the -u switch to uninstall any of the OrbixTalk daemons as follows:

otd -u

This command uninstalls any of the following OrbixTalk daemons:

OrbixTalk OTD
OrbixTalk OTD Slave
OrbixTalk OTD Master

Daemon Support for UNIX

On UNIX platforms, the otd can be run as a background process that is 
completely disassociated from the controlling terminal. Set the 
IT_OT_DAEMON_BACKGROUND configuration parameter to 0 or 1 to determine the 
execution of the OrbixTalk daemon as follows:

0 (default) otd/otdsm runs in the foreground.

1 otd/otdsm runs as a background process 
that has no association with the terminal that 
executed the process.
 120



Daemon s

orbixtalk33.book  Page 121  Monday, July 22, 2002  10:33 AM
Use the -F command line switch to override the IT_OT_DAEMON_BACKGROUND 
configuration parameter. This causes the otd to run as a foreground process. 

Use the -B switch to force an OrbixTalk daemon to run in the background.

Using the OrbixTalk Directory Enquiries Daemon (otdsm)

Use the otdsm in place of the standard otd to observe the state of the system.

Usage:

otdsm

The otdsm supports all the command line switches used by the otd.

If fault tolerance is enabled for an otdsm, the -d switch is the enforced default. 
This switch disables demotion of the otdsm once it has become primary. The 
master-slave relationship is affected such that the master mode daemon will not 
automatically become primary in the presence of a slave mode daemon. Instead, 
the slave mode daemon will remain primary and the master mode daemon will 
hold off becoming primary until the Slave exits or fails.

Using the OrbixTalk MessageStore Daemon (otmsd)

The otmsd is required in systems that use the OrbixTalk Store and Forward 
protocol (otsfp). The otmsd acts as an intermediary process for 
communication, storing messages persistently to guarantee message delivery.

Usage:

otmsd

The otmsd supports all the command line switches used by the otd, including 
those related to fault tolerance, NT service and daemon support for UNIX.

For more information about the OrbixTalk MessageStore daemon (otmsd), refer 
to Chapter 3 “OrbixTalk MessageStore”.
121



Orb i x T a l k  P r o g r amme r ’ s  Gu i d e

orbixtalk33.book  Page 122  Monday, July 22, 2002  10:33 AM
 122



orbixtalk33.book  Page 123  Monday, July 22, 2002  10:33 AM
 14
Fault Tolerance

This chapter describes how to implement fault tolerance for 
OrbixTalk daemons and OrbixTalk applications.

Overview
OrbixTalk supports fault tolerance facilities which, if enabled, allows a pair of 
OrbixTalk MessageStore daemons (otmsd) and a pair of OrbixTalk Directory 
Enquiries daemons (otd/otdsm) to be run simultaneously. In the event of one 
daemon in either pair failing, the remaining daemon takes over. OrbixTalk-based 
applications also use inherent fault tolerant mechanisms, such as retry attempts 
to contact the daemons, to build an overall fault tolerant system.

Note: In this chapter, OrbixTalk daemon refers to the OrbixTalk Directory 
Enquiries daemon (otd), the Browsable Directory Enquiries daemon 
(otdsm) and the OrbixTalk MessageStore daemon (otmsd.). 
123



Orb i x T a l k  P r o g r amme r ’ s  Gu i d e

orbixtalk33.book  Page 124  Monday, July 22, 2002  10:33 AM
Figure 14.1 shows a recommended configuration for OrbixTalk with fault 
tolerance support enabled: 

A Redundant Array of Inexpensive Disks (RAID) provides a datastore that 
enables a disk in the RAID to be removed without incurring loss of data. A RAID 
in the system provides more reliability and ease of recovery. The configuration 
can be scaled from a dual SCSI port RAID down to a hard disk residing in a 
server. The only requirement for the datastore(s) is that each OrbixTalk 
daemon must have access. If performance is an issue, each OrbixTalk daemon 
must be able to access the datastore efficiently.

Both OrbixTalk daemons, comprising a fault tolerant pair, share the same 
datastore(s). OrbixTalk ensures that only the OrbixTalk daemon in primary 
phase is allowed to access the datastore at any given time.

Figure 14.1: OrbixTalk Configuration with Fault Tolerance Supported

OrbixTalk
Daemon

(PRIMARY)

Machine A Machine B

OrbixTalk
Daemon

(secondary)
Hearbeats

Software Fault Tolerance

Hardware Fault Tolerance

RAID Disk Array

Primary
Datastore

SCSI (port 2)SCSI (port 1)
 124



F a u l t  T o l e r a n c e

orbixtalk33.book  Page 125  Monday, July 22, 2002  10:33 AM
Figure 14.1 shows Machine A running the master mode OrbixTalk daemon in 
primary phase and Machine B running the slave mode OrbixTalk daemon in 
secondary phase. Each daemon is either in master or slave mode. Only one of 
each type (master or slave) is able to run on the same base multicast IP address 
and port number.

Machine A, running the master mode OrbixTalk daemon in primary phase, emits 
a periodic heartbeat ping (multicast network packet), to indicate it is healthy. 
OrbixTalk daemons ping at regular, configurable, intervals to allow their fault 
tolerant partner to detect them and know they are responding normally. 
Heartbeat pings contain information about whether the OrbixTalk daemon is in 
primary phase or secondary phase. Secondary phase heartbeat pings are emitted 
when an OrbixTalk daemon is in transitory phase. The Daemon Process 
Detection tool (otpsd) reports this information.

Machine B running the slave mode OrbixTalk daemon in secondary phase 
monitors the heartbeat ping. If a number of heartbeat pings are missed, the 
OrbixTalk daemon on machine B changes to primary phase. The number of 
heartbeat pings is configurable. In this event, the master mode OrbixTalk 
daemon has either exited, hung up or is in some other failed state (software 
failure). 

If the slave mode OrbixTalk daemon becomes primary then later detects that 
the master mode OrbixTalk daemon is present once more, the slave mode 
OrbixTalk daemon returns to secondary phase and enables the master mode 
OrbixTalk daemon to become primary. In this way, a slave mode OrbixTalk 
daemon remains a slave for backup/fail-over. 

By default, an OrbixTalk daemon starts in master mode. To start the OrbixTalk 
daemon in slave mode, use the -s switch.

Use the -d switch to ensure that a slave mode OrbixTalk daemon entering 
primary phase cannot return to secondary phase in the presence of the master 
mode OrbixTalk daemon. For example:

• Machine A is running the master mode OrbixTalk daemon. It has the 
necessary resources (CPU, memory, and so on) to support directory 
enquiries for the entire system. Machine B is running the slave mode 
OrbixTalk daemon providing support in case the master mode OrbixTalk 
daemon fails. 
125



Orb i x T a l k  P r o g r amme r ’ s  Gu i d e

orbixtalk33.book  Page 126  Monday, July 22, 2002  10:33 AM
• Both machines use a common RAID array to store messages for the 
daemon. Both daemons are run from scripts that restart the processes if 
they fail.

• If Machine A fails, the slave mode OrbixTalk daemon on Machine B is 
promoted to primary phase and takes over the processing as the master 
mode OrbixTalk daemon. 

When Machine A starts processing again, the daemon is restarted. One of 
the following occurs:

♦ The -d switch is not specified.

The OrbixTalk daemon on Machine B detects that the OrbixTalk 
daemon on Machine A has restarted and demotes itself to secondary 
phase. This is useful when Machine B does not fully support the 
processing required by the system or machine A is more suited to the 
task.

♦ The -d switch is specified.

If Machine B has the same resources as Machine A, then the system is 
not concerned which machine runs the master mode Orbixtalk 
daemon. In this case, the -d switch prevents the slave mode 
OrbixTalk daemon on Machine B from demoting itself when the 
OrbixTalk daemon on Machine A restarts. The OrbixTalk daemon 
that restarts on Machine A remains as a slave mode OrbixTalk 
daemon while the daemon on machine B serves the system. This 
means less delays in the system as no negotiation is required to 
determine which OrbixTalk daemon should be in primary phase.
 126



F a u l t  T o l e r a n c e

orbixtalk33.book  Page 127  Monday, July 22, 2002  10:33 AM
Transition Diagrams
Figure 14.2 shows the transition phases for the master mode and slave mode 
OrbixTalk daemons:

Figure 14.2: Transition Phases for Master and Slave Mode Daemons

Secondary Transitory Primary Killed (or
crashed)

Secondary Transitory Primary Killed (or
crashed)

MASTER MODE STATE
DIAGRAM

SLAVE MODE STATE
DIAGRAM

Demoted (due to hang/
Master Present)

Demoted (due to hang/
Master Present)

Demoted (due to hang)

Aborted
(no

demotion
allowed)
127



Orb i x T a l k  P r o g r amme r ’ s  Gu i d e

orbixtalk33.book  Page 128  Monday, July 22, 2002  10:33 AM
Summary of Phases

Secondary Phase

• Unresponsive to OrbixTalk talkers/listeners.

• Normally does not emit heartbeat pings unless required on response 
from otpsd or by another OrbixTalk daemon initializing.

Transitory (pre-primary) Phase

• Unresponsive to OrbixTalk talkers/listeners.

• Emits secondary phase heartbeat pings.

• Performs lock checks to detect another transitory or primary phase 
daemon before going to primary phase.

Primary Phase

• Responsive to OrbixTalk talkers/listeners.

• Constantly emits primary phase heartbeat pings so another OrbixTalk 
daemon can detect a failure.

• Performs lock checks to detect another transitory or primary phase 
daemon.

Types of Failure

Fault tolerance in OrbixTalk addresses three problem areas:

• The OrbixTalk daemon process dies due to a software failure.

• The host machine running the OrbixTalk daemon dies due to a hardware 
failure.

• The host machine running the OrbixTalk daemon cannot be reached due 
to a network failure.
 128



F a u l t  T o l e r a n c e

orbixtalk33.book  Page 129  Monday, July 22, 2002  10:33 AM
Software Failure
The slave mode OrbixTalk daemon monitors the activity of the master 
OrbixTalk daemon. When a software failure occurs in one of the OrbixTalk 
daemons and the master mode OrbixTalk daemon dies, the slave mode 
OrbixTalk daemon is promoted to primary phase.

A mechanism must be in place that re-launches the master mode OrbixTalk 
daemon on Machine A or the slave mode OrbixTalk daemon running on 
Machine B if it has failed. For example, a simple looping script (Windows NT/
UNIX) or adding an inittab entry with respawn as an action field (UNIX only). 

The OrbixTalk otpsd can be used to detect an OrbixTalk daemon that is 
hanging in primary or secondary phase; that is, a daemon that is no longer heart-
beating/pinging. This enables the existing process to be killed and restarted. 
OrbixTalk daemons respond to the otpsd in primary and secondary phase 
provided the -e switch is supplied to the otpsd tool to make the secondary 
daemon visible. A shell script (or Windows NT batch file) can be written to kill 
an OrbixTalk daemon that is hanging for long periods of time, but should enable 
OrbixTalk daemons to resolve the hang-up themselves by demotion or exit. 

Hang Detection

An environment that cannot guarantee responsiveness of OrbixTalk daemons 
(whether it be otd, otdsm or otmsd) at all times can lead to exits or demotions if 
the hang-ups are of sufficient length to allow a daemon to be half way toward 
changing phase from secondary to primary. An OrbixTalk daemon that is hanging 
occasionally prints a warning as follows:

...
May 27 16:07:09 otd: Warning: daemon was unresponsive for
approximately 3585 ms.
...

These warnings occur if the system is heavily loaded or the 
IT_FT_HEART_BEAT_INTERVAL and IT_MAX_FT_HEART_BEAT configuration 
parameters are set incorrectly. The OrbixTalk daemon in secondary phase can 
enter primary phase or an OrbixTalk daemon can detect hanging and enter 
transitory phase where lock checking begins. The OrbixTalk daemon in primary 
phase is detected and the OrbixTalk daemon in transitory phase is demoted or 
exits (depending on the presence of the -d switch).
129



Orb i x T a l k  P r o g r amme r ’ s  Gu i d e

orbixtalk33.book  Page 130  Monday, July 22, 2002  10:33 AM
For an OrbixTalk daemon to enter transitory phase due to another OrbixTalk 
daemon hanging, the duration of the hang needs to be greater than:

IT_FT_HEART_BEAT_INTERVAL x (IT_MAX_FT_HEART_BEAT - 1) ms
2

To reduce the possibility of hanging, set the IT_FT_HEART_BEAT_INTERVAL and 
IT_MAX_FT_HEART_BEAT configuration parameters in the Orbix.cfg file 
appropriately. For more information about the IT_FT_HEART_BEAT_INTERVAL 
and IT_MAX_FT_HEART_BEAT configuration parameters, refer to Appendix A, 
“Configuration Parameters”. Alternatively, a server with faster CPU(s), more 
memory or in a generally less loaded state can be required.

Hardware Failure

OrbixTalk supports recovery from hardware failure provided the master and 
slave OrbixTalk daemons are running on separate hosts. When an OrbixTalk 
daemon, running on host A, fails then the other OrbixTalk daemon, running on 
host B, takes the incoming requests/messages. 

Using a RAID unit to maintain a single datastore for each OrbixTalk daemon pair 
ensures that the system survives in the event of a single disk failure. 

Network or SCSI Cable/Port Failure
In the event of a failure between the RAID and either host (SCSI cable or port 
failure), the affected OrbixTalk daemon is unable to access the datastore. It is 
possible to configure certain types of RAIDs to use dual SCSI ports so that a 
separate data path connects each host, running an OrbixTalk daemon, to the 
RAID. 
 130



F a u l t  T o l e r a n c e

orbixtalk33.book  Page 131  Monday, July 22, 2002  10:33 AM
Situations where network failures arise are shown in Figure 14.3 and Figure 14.4.

A physical break at C has no effect on the OrbixTalk daemon. However, OT 
Application B cannot communicate with either Daemon 1 or Daemon 2. The 
OT Application B fails.

If there is a break at A or B, OT Application A and OT Application B still access 
either Daemon 1 or Daemon 2.

When a break at A occurs, the OrbixTalk daemon currently in the secondary 
phase becomes primary because it no longer receives heartbeat pings from the 
other OrbixTalk daemon; both OrbixTalk daemons are now primary. This is 
potentially dangerous and leads to both OrbixTalk daemons aborting.

Figure 14.3: Network Failures

ServerServer

Daemon 1

Computer

OT
Application

A

Daemon 2

Computer

OT
Application

B

X
A

X
B

X
C

131



Orb i x T a l k  P r o g r amme r ’ s  Gu i d e

orbixtalk33.book  Page 132  Monday, July 22, 2002  10:33 AM
A break at B can lead to more serious problems. OT Application A continues 
using Daemon 1 and OT Application B uses Daemon 2. A shared datastore is 
used. The datastore can become inconsistent as applications bind more topics, 
new applications on either side of the breakage are started or messages are sent 
to a MessageStore from either side of the breakage. To avoid these situations, 
place the OrbixTalk daemons at one end of the network with no OrbixTalk 
applications running on those servers as shown in Figure 14.4:

This is the safest solution and means total failure of applications rather than 
partial failure. OrbixTalk does not provide for recovery from all types of 
network failure but does safeguard against corruption of shared datastores. 
Placing the OrbixTalk daemons at the end of the network is recommended.

Figure 14.4: Recommended Configuration for OrbixTalk Daemons

ServerServer

Daemon 1 Daemon 2

X
A

X
C

Computer

OT
Application

B

Computer

OT
Application

A

 132



F a u l t  T o l e r a n c e

orbixtalk33.book  Page 133  Monday, July 22, 2002  10:33 AM
Lock Checking

In the event of a network failure, as shown in Figure 14.3 and Figure 14.4, 
OrbixTalk prevents the OrbixTalk daemon in secondary phase changing to 
primary phase. When an OrbixTalk daemon is in transitory or primary phase, 
the datastore uses a locking mechanism in the form of a dynamically changing 
lock file to enable an OrbixTalk daemon to recognize that an OrbixTalk daemon 
in primary phase is already active. 

Due to network delays or excessive loading, an OrbixTalk daemon can begin to 
transition into primary phase when another OrbixTalk daemon is already in 
primary phase. The OrbixTalk daemon in transitory phase is demoted or exits 
to avoid a critical fault being registered in the lock file (causing both OrbixTalk 
daemons to exit).

When two OrbixTalk daemons are in primary phase, a critical fault is registered 
within the lock file and both OrbixTalk daemon(s) exit. This ensures that 
datastores are guarded from network errors causing serious corruption but 
manual intervention to correct the problem is required. The lock file must be 
removed to allow each OrbixTalk daemon to restart once the network has been 
repaired (as a safety precaution). For information about the configuration 
parameters used by lock files, refer to Appendix A, “Configuration Parameters”.

Lock files exist after the OrbixTalk daemons have exited. Lock files only need to 
be removed when a network failure has occurred and the OrbixTalk daemon 
pair(s) cannot start. 
133



Orb i x T a l k  P r o g r amme r ’ s  Gu i d e

orbixtalk33.book  Page 134  Monday, July 22, 2002  10:33 AM
 134



orbixtalk33.book  Page 135  Monday, July 22, 2002  10:33 AM
 15
OrbixTalk System Exceptions

The OrbixTalk API generates exceptions when error or fault 
conditions arise. This chapter defines the range of exceptions that 
can be raised by OrbixTalk, and describes the conditions under which 
they are raised. 

A basic understanding of OrbixTalk concepts and OrbixTalk programming is 
assumed.

Overview
OrbixTalk uses the exception mechanism of C++ to indicate abnormal 
conditions. Fault or error conditions can arise because of a poorly configured 
system, a network fault, file system fault, or internal OrbixTalk error. The type 
of exceptions that can be produced by OrbixTalk need to be known in advance 
so that an OrbixTalk application can be designed to cope with them.

For example, the OrbixTalk::initialise() function can raise a 
COMM_FAILURE exception with one of two description messages:

Could not create OrbixTalk object
Could not create channel table
135



Orb i x T a l k  P r o g r amme r ’ s  Gu i d e

orbixtalk33.book  Page 136  Monday, July 22, 2002  10:33 AM
In general, COMM_FAILURE exceptions indicate a fatal error that cannot be 
recovered from within the OrbixTalk system. However, it is likely that 
exceptions found in a system during testing can be corrected through changes to 
the configuration parameters used for OrbixTalk, or by modifying the way in 
which the system is programmed.

OrbixTalk API Exceptions
This section describes the exceptions that are generated from specific functions 
in the OrbixTalk Application Programming Interface (API) and includes a short 
description of the reason for the exception.

OrbixTalk::addTimerEvent()
OrbixTalk::addTimerEvent
(
TimerEvent* pTimer,
CORBA(Environment)& rEnv = CORBA(default_environment)

)

Type COMM_FAILURE, PUBLISH_SUBSCRIBE (10098)

Description "OrbixTalk is not initialised"

This exception is generated when OrbixTalk::initialise() has not been 
called, or when OrbixTalk::terminate() has already been called.

Description "Could not add timer"

This exception is generated when the timer could not be added to the timer 
service of OrbixTalk. This indicates an internal error.

Type BAD_PARAM, NO_OBJ_NAME

This exception is generated when the TimerEvent* pTimer parameter does 
not point to a valid timer.

OrbixTalk::initialise
OrbixTalk::initialise
(
CORBA(Environment)& rEnv = CORBA(default_environment)

)

 136



O rb i x T a l k  S y s t em  E x c e p t i o n s

orbixtalk33.book  Page 137  Monday, July 22, 2002  10:33 AM
Type COMM_FAILURE, PUBLISH_SUBSCRIBE (10098)

Description "Could not create OrbixTalk object"

This exception is generated when OrbixTalk fails to initialise. This is the result of 
an internal error.

Description "Could not create channel table"

This indicates an internal OrbixTalk error.

OrbixTalk::isIdle()
OrbixTalk::isIdle
(
CORBA(Environment)& rEnv = CORBA(default_environment)

)

Type COMM_FAILURE, PUBLISH_SUBSCRIBE (10098)

Description "OrbixTalk is not initialised"

This exception is generated when OrbixTalk::initialise() has not been 
called, or when OrbixTalk::terminate() has already been called.

OrbixTalk::isRegistered()
OrbixTalk::isRegistered
(
CORBA(Object_ptr) pObject,
CORBA(Environment)& rEnv = CORBA(default_environment)

)

Type COMM_FAILURE, PUBLISH_SUBSCRIBE (10098)

Description "OrbixTalk is not initialised"

This exception is generated when OrbixTalk::initialise() has not been 
called, or when OrbixTalk::terminate() has already been called.

Type BAD_PARAM, NO_OBJ_NAME

This exception is generated when the CORBA::Object_ptr parameter does not 
specify a valid proxy object.
137



Orb i x T a l k  P r o g r amme r ’ s  Gu i d e

orbixtalk33.book  Page 138  Monday, July 22, 2002  10:33 AM
OrbixTalk::registerListener()
OrbixTalk::registerListener
(
CORBA(Object_ptr) pObject,
REPLAY_TYPE replayStore = REPLAY_ALL,
CORBA(Environment)& rEnv = CORBA(default_environment)

)

Type COMM_FAILURE, PUBLISH_SUBSCRIBE (10098)

Description "OrbixTalk is not initialised"

This exception is generated when OrbixTalk::initialise() has not been 
called, or when OrbixTalk::terminate() has already been called.

Description "Object is already registered"

This exception is generated when the CORBA::Object_ptr parameter is already 
registered as a talker or listener.

Type BAD_PARAM, NO_OBJ_NAME

This exception is generated when the Topic Name associated with the listener 
object is empty.

Type INV_OBJREF, IS_A_PROXY

This exception is generated when the CORBA::Object_ptr parameter does not 
specify a valid proxy object.

OrbixTalk::registerTalker()
OrbixTalk::registerTalker
(
CORBA(Object_ptr) pObject,
CORBA(Environment)& rEnv = CORBA(default_environment)

)

Type COMM_FAILURE, PUBLISH_SUBSCRIBE (10098)

Description "OrbixTalk is not initialised"

This exception is generated when OrbixTalk::initialise() has not been 
called, or when OrbixTalk::terminate() has already been called.

Description "Object is already registered"
 138



O rb i x T a l k  S y s t em  E x c e p t i o n s

orbixtalk33.book  Page 139  Monday, July 22, 2002  10:33 AM
This exception is generated when the CORBA::Object_ptr parameter is already 
registered as a talker or listener.

OrbixTalk::registerTalker()
OrbixTalk::registerTalker
(
const char* pServerName,
const char* pTypeName,
CORBA(Environment)& rEnv = CORBA(default_environment)

)

Type COMM_FAILURE, PUBLISH_SUBSCRIBE (10098)

Description "OrbixTalk is not initialised"

This exception is generated when OrbixTalk::initialise() has not been 
called, or when OrbixTalk::terminate() has already been called.

Description "Object is already registered"

This exception is generated when the CORBA::Object_ptr parameter has 
already been registered as a talker or listener.

Type BAD_PARAM, NO_OBJ_NAME

This exception is generated when the marker for the proxy object is not in the 
form of a valid Topic Name.

Type INV_OBJREF, IS_A_PROXY

This exception is generated when the CORBA::Object_ptr parameter does not 
specify a valid proxy object.

OrbixTalk::removeTimerEvent()
OrbixTalk::removeTimerEvent
(
TimerEvent* pTimer,
CORBA(Environment)& rEnv = CORBA(default_environment)

)

Type COMM_FAILURE, PUBLISH_SUBSCRIBE (10098)

Description "OrbixTalk is not initialised"
139



Orb i x T a l k  P r o g r amme r ’ s  Gu i d e

orbixtalk33.book  Page 140  Monday, July 22, 2002  10:33 AM
This exception is generated when OrbixTalk::initialise() has not been 
called, or when OrbixTalk::terminate() has already been called.

Description "Could not remove timer"

This exception is generated when the timer could not be removed from the 
timer service of OrbixTalk. This indicates an internal error.

Type BAD_PARAM, NO_OBJ_NAME

This exception is generated when the TimerEvent* pTimer parameter does 
not point to a valid timer.

OrbixTalk::setPersistentAppName()
OrbixTalk::setPersistentAppName
(
const char* pName,
CORBA(Environment)& rEnv = CORBA(default_environment)

)

Type COMM_FAILURE, PUBLISH_SUBSCRIBE (10098)

Description "OrbixTalk is not initialised"

This exception is generated when OrbixTalk::initialise() has not been 
called, or when OrbixTalk::terminate() has already been called.

Description "Failed to set application name"

This indicates that the persistent application name could not be set. It could be a 
result of an invalid application name being used, or the inability to create the 
necessary state files.

OrbixTalk::unregister()
OrbixTalk::unregister
(
CORBA(Object_ptr) pObject,
CORBA(Environment)& rEnv = CORBA(default_environment)

)

Type COMM_FAILURE, PUBLISH_SUBSCRIBE (10098)

Description "OrbixTalk is not initialised"
 140



O rb i x T a l k  S y s t em  E x c e p t i o n s

orbixtalk33.book  Page 141  Monday, July 22, 2002  10:33 AM
This exception is generated when OrbixTalk::initialise() has not been 
called, or when OrbixTalk::terminate() has already been called.

Description "Object is not registered"

This exception is generated when the object that is being unregistered is not 
registered as a talker or listener.

Type BAD_PARAM, NO_OBJ_NAME

This indicates an internal Orbix/OrbixTalk error.

General Exceptions
The following exceptions can be raised using the environment passed to 
CORBA::Orbix.processEvents() or CORBA::impl_is_ready(). Each 
exception is not related to a specific OrbixTalk API function.

Type COMM_FAILURE, PUBLISH_SUBSCRIBE (10098)

Description "Operation is not oneway"

This exception is generated when you attempt to invoke a method on an 
OrbixTalk proxy that is not oneway. For example, it is raised if you attempt to 
perform a two-way method invocation on the OrbixTalk proxy.

Description "Object not registered as talker"

This exception is generated when you attempt to invoke a method on an object 
that is not registered as a talker.

Description "1 - message too large"

This exception is generated when the contents of a message is greater than the 
limit set by the IT_MAX_MSG_SIZE_KB configuration parameter.

Description "3 - no such field"

This exception is generated by the otadmin tool on an internal error related to 
communication with the OrbixTalk Directory Enquiries daemon. This can 
indicate a mismatch between the versions of otadmin and otd/otdsm.

Description "4 - end of file prematurely reached"
141



Orb i x T a l k  P r o g r amme r ’ s  Gu i d e

orbixtalk33.book  Page 142  Monday, July 22, 2002  10:33 AM
This exception is generated by the OrbixTalk MessageStore daemon (otmsd) 
when disk error occurs on compaction or on adding records to the 
MessageStore.

Description "10 - bad name"

This exception is generated by the OrbixTalk tools when parsing command line 
arguments that are incorrect. On joining a multicast group with an invalid client, 
this indicates an internal error.

Description "12 - could not create socket"

This exception is generated when the system fails to create a multicast socket. 
This indicates an internal error, or can indicate that the process has run out of 
file descriptors. On UNIX platforms, the ulimit command can be used to 
increase the number of file descriptors available to a process.

Description "13 - setsockopt failure for SO_RCVBUF"

This indicates an internal error generated when the receive buffer could not be 
created for a socket.

Description "14 - setsockopt failure for SO_SNDBUF"

This indicates an internal error generated when the send buffer associated with a 
socket could not be created.

Description "15 - setsockopt failure for SO_REUSEADDR"

This exception is generated when the system fails to set reuse for a socket. This 
indicates an internal error.

Description "16 - could not bind socket"

This exception is generated when the system fails to bind a socket. This indicates 
an internal error.

Description "17 - name bind failure"

This exception is generated when the system fails to bind a Topic Name to the 
topic. This indicates an internal error.

Description "18 - setsockopt failure for IP_ADD_MEMBERSHIP"

This exception is generated when a setsockopt() call fails internally.

Description "19 - setsockopt failure for IP_DROP_MEMBERSHIP"

This exception is generated when a setsockopt() call fails internally.
 142



O rb i x T a l k  S y s t em  E x c e p t i o n s

orbixtalk33.book  Page 143  Monday, July 22, 2002  10:33 AM
Description "20 - sendto failed"

"21 - rcvfrom failed"

These exceptions are generated when network communication fails on a socket. 
This indicates either a network interface failure, or an internal error.

Description "23 - gethostname/gethostent failed"

This exception is generated when the gethostname() or gethostent() system 
call fails. This could indicate a badly configured operating system.

Description "25 - no such part"

This indicates an internal error for the OrbixTalk Directory Enquiries daemon. It 
indicates a problem with the internal memory structures.

Description "29 - data lost"

This exception is generated by a listener using the Reliable Multicast Protocol 
(otrmp) when the listener determines that data has been lost. To correct this 
problem, change the configuration parameters related to the reliability of the 
Reliable Multicast Protocol described in Appendix A, “Configuration 
Parameters”.

Description "30 - directory server is uncontactable"

This exception is generated when an application cannot contact the OrbixTalk 
Directory Enquiries daemon (otd). This can be because the otd is not running, 
or the configuration parameters are not consistent in the system, or there is a 
problem with network configuration.

Description "31 - opening log"

This exception is generated when the system fails to open a log file. This 
exception can arise when the parameter specifying the directory in which the log 
file should be used is incorrect, or points to a directory that does not have the 
correct access permissions.

Description "32 - log entry already exists"

This indicates an internal error that can be produced by the OrbixTalk 
Directory Enquiries daemon.

Description "34 - log seek failed"

This indicates an internal error relating to log files.

Description "35 - log read failed"
143



Orb i x T a l k  P r o g r amme r ’ s  Gu i d e

orbixtalk33.book  Page 144  Monday, July 22, 2002  10:33 AM
This indicates an internal error relating to log files.

Description "36 - log write failed"

This exception is generated by the OrbixTalk MessageStore daemon when an 
internal error occurs that relates to the databases used by the OrbixTalk 
MessageStore daemon.

Description "37 - log entry not found"

This exception is generated when the OrbixTalk MessageStore daemon fails to 
find information about a particular application or topic in its databases; that is, 
the information has been removed while a topic remains active.

Description "40 - not MessageStore group name"

This exception is generated by a talker using the Store and Forward Protocol 
(otsfp) specifying a bad MessageStore Topic Name. This can be corrected by 
modifying the configuration parameter IT_MS_TOPIC_NAME.

Description "44 - An OrbixTalk message using the Store and Forward Protocol has been 
rejected. (The OrbixTalk MessageStore daemon (otmsd) process can have 
failed)."

This exception is generated when the OrbixTalk MessageStore daemon (otmsd) 
cannot be contacted by a talker application when it attempts to send a message. 
This can be because the otmsd is not running, or the applications are using 
inconsistent configuration parameters, or there is a network problem.

Description "45 - Invalid argument supplied"

This exception is generated by the otadmin tool when an invalid argument is 
used, or by the OrbixTalk MessageStore daemon when an internal error occurs.

Description "46 - set time to live failed"

This exception is generated when the system call that modifies the time to live 
for UDP packets fails.

Description "47 - internal error - log index not found"

This indicates an internal error for the OrbixTalk Directory Enquiries daemon.

Description "49 - corrupt log frame"

This exception is generated when state log file entries have become corrupted.

Description "50 - invalid field type"
 144



O rb i x T a l k  S y s t em  E x c e p t i o n s

orbixtalk33.book  Page 145  Monday, July 22, 2002  10:33 AM
This indicates an internal error that can be produced by the OrbixTalk 
Directory Enquiries daemon and/or the OrbixTalk MessageStore daemon when 
decoding messages.

Description "51 - unexpected field type"

This indicates an internal error that can be produced by the OrbixTalk 
Directory Enquiries daemon and/or the OrbixTalk MessageStore daemon when 
decoding messages.

Description "52 - unsupported operation"

This is either an internal error on a topic, or an attempt to specify a replay type 
for a topic using the Reliable Multicast Protocol.

Description "53 - topic not bound"

This exception is generated when you attempt to send a message on a topic that 
has not been bound to a multicast address. This is either an internal error, or a 
problem with the application contacting the OrbixTalk Directory Enquiries 
daemon (otd). It can be corrected by ensuring that the OrbixTalk Directory 
Enquiries daemon can be contacted by the application.

Description "54 - message store not known"

This exception is generated when an application fails to contact the OrbixTalk 
MessageStore daemon. This can be the result of inconsistent configuration 
parameters, or a network failure.

Description "55 - attempt to re-use existing dir. enq. handler"

This indicates an internal error.

Description "58 - deletion failed"

This exception is generated by the OrbixTalk MessageStore daemon when it fails 
to delete an entry from the MessageStore. This indicates an internal failure.

Description "59 - initialisation failed"

This exception is generated by the OrbixTalk MessageStore daemon when it fails 
to initialise the MessageStore database. This could be a result of bad 
configuration parameters that specify the directories and names for the 
MessageStore files. It can be corrected by ensuring that these settings indicate 
directories that exist and have the correct access permissions, and that the 
filenames are correct.

Description "60 - backup failed"
145



Orb i x T a l k  P r o g r amme r ’ s  Gu i d e

orbixtalk33.book  Page 146  Monday, July 22, 2002  10:33 AM
This exception is generated by the OrbixTalk MessageStore daemon when a 
backup for compaction fails. This can indicate that the configuration parameter 
specifying the directory used for backups (IT_MS_COMPACT_BACKUP_DIR) is not 
set correctly.

Description "61 - message timed out"

This exception is generated by a talker application using the Store and Forward 
Protocol (otsfp) failing to contact the OrbixTalk MessageStore daemon 
(otmsd). See exception 54.

Description "62 - SFP data lost"

This exception is generated when the Store and Forward Protocol (otsfp) loses 
data. This error indicates a problem with the otsfp.

Description "63 - Out of memory"

This exception is generated when an application exhausts all available memory.

Description "64 - Internal error - Cannot wrap message"

This indicates an internal error relating to message construction.

Description "65 - Reached end of message"

This indicates an internal error relating to message receipt.

Description "66 - Attempt to listen on talk topic"

This indicates an internal error.

Description "67 - Attempt to talk on listen topic"

This indicates an internal error.

Description "68 - Failed to create thread"

This indicates an internal error.

Description "69 - Sub-system is already running"

This indicates an internal error.

Description "70 - System is not initialised"

This indicates an internal error.

Description "71 - Attempt to attach second 'phone to topic"

This indicates an internal error.
 146



O rb i x T a l k  S y s t em  E x c e p t i o n s

orbixtalk33.book  Page 147  Monday, July 22, 2002  10:33 AM
Description "72 - Invalid reference passed"

This indicates an internal error relating to messages.

Description "73 - Pending call"

This indicates an internal error generated for topics using the Store and Forward 
protocol (otsfp).

Description "77 - Duplicate message"

This indicates an internal protocol error.

Description "78 - Message out-of-sequence"

This indicates an internal protocol error.

Description "79 - Internal error"

This indicates an internal error for the OrbixTalk MessageStore daemon.

Description "80 - Failed backup"

This exception is generated by the OrbixTalk MessageStore daemon when it fails 
to backup the MessageStore prior to compaction.

Description "81 - General error"

This indicates an internal error for the OrbixTalk MessageStore daemon.

Description "85 - Prod received"

This indicates an internal protocol error.
147



Orb i x T a l k  P r o g r amme r ’ s  Gu i d e

orbixtalk33.book  Page 148  Monday, July 22, 2002  10:33 AM
 148



orbixtalk33.book  Page 149  Monday, July 22, 2002  10:33 AM
 16
Tools

This chapter provides information about the otdat, otadmin, and 
otpsd tools.

Overview
This chapter provides information about the following tools:

• The otdat tool enables you to view the consumer state logs and the 
MessageStore logs.

• The otadmin tool enables you to compact the MessageStore.

• The otpsd tool enables you to check which daemons are running.

Using the State Log Analysis Tool (otdat) 
The otdat tool enables you to analyze the contents of the state log files (.dat) 
produced by consumers and information stored by the MessageStore daemon. 
The otdat tool enables you to dump the contents of .dat files and the 
MessageStore to stdout in an ASCII format. You can specify precise filters for 
the MessageStore information.

Usage: 

otdat -v
otdat -h
149



Orb i x T a l k  P r o g r amme r ’ s  Gu i d e

.

orbixtalk33.book  Page 150  Monday, July 22, 2002  10:33 AM
otdat <filenames>

otdat -S|[-s msname] [-p mspath] [-c columnwidth]
[-l pagelength] [-a appnames] [-t topics]
[-e appseqnum] [-f topicseqnum] [-o TTSN|TAASN|TIME]
[-d dd/mm/yy:hh:mm-dd/mm/yy:hh:mm]
[-r columnOrder]

Note: The OrbixTalk Directory Enquiries daemon (otd/otdsm) must be 
running to use this tool.

Dumping to the Standard Output (stdout) 

To dump the contents of one or more consumer state logs, enter this command: 

otdat <filenames>

where <filenames> are the .dat files to be displayed. Only data files with 
OrbixTalk standard names are allowed, for example:

otdat OT-talk5-Talk.dat OT-talk8-Talk.dat

The syntax for dumping the contents of the MessageStore is as follows: 

otdat -S|[-s msname] [-p mspath] [-c columnwidth]
[-l pagelength] [-a appnames] [-t topics]
[-e appseqnum] [-f topicseqnum] [-o TTSN|TAASN|TIME]
[-d dd/mm/yy:hh:mm-dd/mm/yy:hh:mm]

Where: 

-S Specifies the MessageStore dump option and prompts otdat to 
use the default MessageStore specified in the configuration file. 

-s Specifies the MessageStore dump option and the name of the 
MessageStore.

-p Specifies the path to the MessageStore (used with the -s option)

-c Number of columns for output of application and topic names. 
Default is 30. 

-l Number of lines per page. A title is inserted at the top of each 
page. If this value is not specified then the output is continuous. 
 150



Too l s

 

orbixtalk33.book  Page 151  Monday, July 22, 2002  10:33 AM
-a Specifies ranges of application names or ID’s to view. Each range 
must be separated by a comma and have no white space. For 
example:

-a //OT/supplier5,//OT/supplier9,4EF-4FF

-t Specifies ranges of topic names or ID’s to view. Each range must 
be separated by a comma and have no white space. For example:

-t otsfp//OT/music/rock,CF4,otsfp//OT/music/jazz

-e Specifies ranges of application sequence numbers to view. Each 
range must be separated by a comma and have no white space. 
For example:

-e 1-FF,D56-DFF

-f Specifies ranges of topic sequence numbers to view. Each range 
must be separated by a comma and have no white space. For 
example:

-f F00-FFF,1-FF

-o Specifies an ordering for the output from the above filters: 

TTSN - TopicID-TopicSequenceNumber.

TAASN -TopicID- ApplicationID--Application SequenceNumber.

TIME -Time-TopicID (Default).

-d Specifies time ranges to dump. The ranges must be complete and
have no white space. For example:

-d 28/01/97:07:30-29/01/97:08:30,28/02/97:07:30-29/
02/97:08:30
151



Orb i x T a l k  P r o g r amme r ’ s  Gu i d e

 

orbixtalk33.book  Page 152  Monday, July 22, 2002  10:33 AM
All numeric ranges (except time) are specified in hexidecimal.

Using the MessageStore File Compaction Tool 
(otadmin) 

This utility allows the user to compact and/or back up the Message Store 
database. Compaction is achieved by copying all messages greater than the 
specified date and time to a copy database and on completion making that copy 
database live. The user can also specify the topic on which to talk to the Message 
Store.

Usage: 

otadmin -B|-d dd-mm-yyyy -t hh:mm|-o seconds
[-T MessageStoreTopic] [-y] [-N] [-r seconds][-i compact by topic]
|[-v]|[-h|-?]

Where:

-r Specifies the arrangement of the columns. For example: 

-r D:AI:T

Where:

A: Application

AI: Application ID

AS: Application Sequence Number

D: Datestamp

T: Topic

TI: Topic ID

TS: Topic Sequence Number

-B Only back up the Message Store (no compaction is performed).

-C Compact the Message Store (default).

-N Do not back up the Message Store for compaction. By default the
message store is backed up.
 152



Too l s

 

, 

 

 

 

orbixtalk33.book  Page 153  Monday, July 22, 2002  10:33 AM
-T Specifies the topic on which to talk to the Message Store. If the 
user does not specify a topic, a default will be obtained from the 
system configuration information.

-d Specifies a date where all messages prior to the date are removed
from the Message Store. This is used in conjunction with the -t 
option to pinpoint which messages to delete. The date is in the 
format dd-mm-yyyy, where dd is the numerical day of the month
mm is the numerical month of the year and yyyy is the year (for 
example, 01-10-1997).

-t In conjunction with the date, this specifies the exact time where 
messages prior to the time for the given date are deleted. The 
time is in the form hh:mm, where hh is the hour of the day (in 24
hour time) and mm is the minutes past the hour (for example, 
01:35, 23:12).

-o Alternative to using -d and -t. Remove all messages which are 
older than the number of seconds specified. This would normally
be used for testing purposes.

-y Specifies that user confirmation of the Compaction is not 
required. This is useful for cron entries.

-r Reschedule this request for the number of seconds specified. This
is only recommended for testing purposes (as all subsequent 
requests will be ignored).

-i Specify the topics that are compactable. If this is not specified all 
topics will be compactable. For example:

-i otsfp//IONA,otsfp//IBM

-v Outputs product code and version information and exits.

-h Outputs user Help information.

-? Outputs user Help information.
153



Orb i x T a l k  P r o g r amme r ’ s  Gu i d e

 

.

orbixtalk33.book  Page 154  Monday, July 22, 2002  10:33 AM
Using the Daemon Process Detection Tool 
(otpsd)

This utility detects any running daemons (otd and otmsd) which are using the 
specified Directory Enquiries IP address and port. These details are taken from 
the Orbix.cfg file by default (IT_DIRENQ_IPADDR and 
IT_DEFAULT_DIRENS_PORT respectively) but can be overridden if supplied on the 
command line. The default time spent monitoring for daemons before a report is 
generated is 5 seconds. The -t switch can be used to change this time-out value. 

Usage:

otpsd [-t nnn] [-a ipaddress] [-p portnumber]

Where:.

-e The default behavior for otpsd is to display the current Primary 
phase OrbixTalk Daemon along with the host ip address, 
hostname and OrbixTalk Daemon description (otd or otmsd). 
This switch changes otpsd's behaviour to display the active 
primary OrbixTalk Daemon and any secondary phase OrbixTalk 
Daemon (for example, a Slave Daemon currently in secondary 
phase). Extra information, including the version, mode, phase and
process identifier, is also displayed for each detected OrbixTalk 
Daemon.

-t Specifies a timeout, in seconds (nnn), during which otpsd waits 
for heartbeats from the otd and otmsd daemons.

-a Overrides the directory enquiries IP address specified in the 
Orbix.cfg file. This IP address is used for heartbeating (the 
means of detecting other daemons of the same kind for fault 
tolerance).

-p Specifies a port (nnn) to listen on for heartbeats (see -a option)
 154



orbixtalk33.book  Page 155  Monday, July 22, 2002  10:33 AM
 17
Troubleshooting

This chapter provides answers to frequently asked questions.

Question: Orbix Compatibility
Which version(s) of OrbixTalk is compatible with each version of Orbix?

Answer Please refer to the OrbixTalk 3.0 Release Notes for full details on this subject.

Question: Listeners on Different Subnets
OrbixTalk listeners on one subnet are not receiving messages sent by talkers on 
a different subnet. What do I have to do?

Answer When communicating between subnets, the OrbixTalk multicast packets need 
to go through routers. In this case, you must ensure that those routers support 
multicast packets and that the multicast support is enabled on those routers. 
(This is specific to the particular router and you will need to consult the router’s 
manual). 

If you are doing this, then you should also be aware that OrbixTalk packets have 
a built-in time-to-live (TTL). This defaults to two (hops), so if you are intending 
for your messages to go through more than two routers, you need to increase 
the IT_LIVE_TIME parameter in your Orbix.cfg file to reflect the size of your 
network. The best way to check whether this is working correctly is to start up 
an OrbixTalk Directory Enquiries daemon (otd/otdsm) on each machine that 
you wish to communicate between. If these are all on the same 
155



Orb i x T a l k  P r o g r amme r ’ s  Gu i d e

orbixtalk33.book  Page 156  Monday, July 22, 2002  10:33 AM
IT_DIRENQ_IPADDR and IT_DEFAULT_DIRENS_PORT, they should detect each 
other and all but the first to start will exit. If this does not happen, there is a 
problem with the network between the machines or with your configuration.

For more information about the IT_LIVE_TIME configuration parameter, refer 
to Appendix A, “Configuration Parameters”.

Question: otd Daemons on Separate Subnets
When we run OrbixTalk Directory Enquiries daemons (otd/otdsm) on two 
separate subnets, can they share the $ORBIXTALKHOME directory?

The reason for the question is we have the same disk mounted on machines on 
different subnets. We start the otd/otdsm from two machines on different 
subnets sharing the OrbixTalk installation and hence the .dat files. 

Answer There should (in theory) be no problem doing this. The log files should not be 
corrupted by having more than one otd/otdsm reading/writing from/to it. This is 
definitely not advisable though, because it would involve having at least one of 
the otd/otdsms accessing the log files over an NFS connection. This is going to 
create an unnecessary and undesirable change in performance.

These files are accessed (read/written to) very regularly in a normal OrbixTalk 
system, and it is highly desirable to minimize the disk access time.

It is recommended that you have each otd with a different IT_CONFIG_PATH 
pointing to a different Orbix.cfg file. In each of the Orbix.cfg files, the 
IT_OTD_STORE and IT_APP_STORE parameters should point to a local directory 
path.

(The same applies to IT_MS_STORE_DIR and IT_MS_COMPACT_BACKUP_DIR in 
OTSFP).

For more information, refer to the Appendix A, “Configuration Parameters”.

Question: Reducing Network Traffic
I've just had our network administrator complaining about the level of IP 
multicast packets being generated by my machine onto the network. Upon 
investigation we found that the traffic is being generated by the OrbixTalk 
 156



T r oub l e s h oo t i n g

orbixtalk33.book  Page 157  Monday, July 22, 2002  10:33 AM
Directory Enquiries daemon (otd/otdsm). We are running it "straight out of the 
box". Can you give me any pointers about what to do to reduce the amount of 
traffic that this daemon is generating?

Answer All OrbixTalk applications (including the otd/otdsm and otmsd) send out status 
messages as a part of the Reliable Multicast Protocol. You will notice these 
status messages, even when there are no messages being sent. The number and 
frequency of these messages can be configured easily. 

The time-to-live (TTL) for these messages can also be adjusted to reduce their 
range and effect. 

If your network administrator is concerned about extra traffic on a particular IP 
address or port, you can also configure the range of addresses that OrbixTalk 
uses. See the information about the IT_DIRENQ_IPADDR, 
IT_DIRENQ_IPADDR_RANGE and IT_DEFAULT_DIRENS_PORT configuration 
parameters in Appendix A, “Configuration Parameters”. 

Other configuration parameters which you may need to change are:

IT_DIRENQ_WILD_INTERVAL
IT_MAX_FT_HEART_BEAT
IT_INFO_INTERVAL
IT_INFO_COUNT
IT_NAK_RETRY
IT_NAK_RETRY_TIME
IT_FT_HEART_BEAT_INTERVAL

The following are only relevant for the Store and Forward Protocol (otsfp):

IT_MSG_MS_STATUS_INTERVAL
IT_MS_STATUS_RETRYS
IT_ACK_RETRY
IT_ACK_RETRY_TIME

For more information about the configuration parameters, refer to Appendix A, 
“Configuration Parameters”.
157



Orb i x T a l k  P r o g r amme r ’ s  Gu i d e

orbixtalk33.book  Page 158  Monday, July 22, 2002  10:33 AM
Question: Are My Daemons Dead
How can I tell if my OrbixTalk Directory Enquiries Daemon (otd) and/or 
MessageStore Daemon (otmsd) have died? 

Answer There are two ways of doing this. 

Method One: Exception Handling 
If any OrbixTalk talker or listener object attempts to contact either of these 
daemons but is unable to do so, an exception is raised. In general, if any 
OrbixTalk application is started without the otd running, you see the following 
exception raised (try it yourself by starting the rmpStockDemo talker without 
running the otd): 

10098-- Communication failure
- OrbixTalk error
Reason: 53 - topic not bound
[Completion status : COMPLETED_NO]

This exception is raised after maxRetries boot messages. maxRetries is the 
greater of the following two expressions: 

1) IT_FT_HEART_BEAT_INTERVAL * IT_MAX_FT_HEART_BEAT
/ IT_DIRENQ_INTERVAL

2) IT_DIRENQ_RETRYS

Also, if an OrbixTalk talker object attempts to talk on an OTSFP topic but is 
unable to contact an otmsd, the following exception is raised (you can try it 
yourself by starting an sfpStockDemo talker with an otd, but no otmsd): 

10098-- Communication failure
- OrbixTalk error
Reason: 54 - message store not known
[Completion status : COMPLETED_NO]

This exception is raised after IT_ACK_RETRY un-acknowledged resynchronization 
requests are sent by the talker object to the otmsd at an interval of 
IT_ACK_RETRY_TIME milliseconds. 

If your otmsd should die at some time after the talker object has begun talking, 
you will see the following exception the next time a talk is attempted (again, try 
it yourself by killing the otmsd while running the sfpStockDemo): 

10098-- Communication failure
 158



T r oub l e s h oo t i n g

orbixtalk33.book  Page 159  Monday, July 22, 2002  10:33 AM
- OrbixTalk error
Reason: 61 - message timed out
[Completion status : COMPLETED_NO]

As your OrbixTalk application cannot function in any meaningful capacity 
without the daemons, you must catch and act upon these exceptions. 

When you catch one of these exceptions, your application should attempt to 
restart the missing daemon(s) automatically by executing a shell command, or 
pass a meaningful error message on to the user. 

Method Two: The OrbixTalk Daemon Process Detection 
Tool (otpsd) 

The otpsd is a tool supplied with your OrbixTalk installation. 

You can use this tool to check whether the requisite daemons are available 
before attempting to register any OrbixTalk talker or listener objects. 

This tool can be run at any point in a shell command, and will output information 
in a format similar to the following: 

Identifying running daemons (IP Addr=225.0.0.0, Port=5000)...
Completed detection phase.
Detected the following daemons :
XXX.XXX.XXX.XXX myhost.iona.com otmsd
//OrbixTalk/MessageStore1
XXX.XXX.XXX.XXX myhost.iona.com otmsd
//OrbixTalk/MessageStore2
XXX.XXX.XXX.XXX myhost.iona.com otd

This indicates that within the OrbixTalk system, which is running on 
IT_DEFAULT_DIRENS_PORT = 5000 and IT_DIRENQ_IPADDR = 225.0.0.0, there 
are two MessageStore daemons and one Directory Enquiries Daemon running. 
One otmsd has IT_MS_TOPIC = //OrbixTalk/MessageStore1, and the other 
has IT_MS_TOPIC = //OrbixTalk/MessageStore2. 

Your application can parse the output from the otpsd tool to confirm that 
everything is running correctly before starting any talker or listener processes. 

A typical OrbixTalk system can incorporate a combination of these two 
approaches. 
159



Orb i x T a l k  P r o g r amme r ’ s  Gu i d e

orbixtalk33.book  Page 160  Monday, July 22, 2002  10:33 AM
Question: Slow Store and Forward System
Why does my Store and Forward (SFP) system run so slow?

Answer The Store and Forward Protocol (SFP) is always slower than a Reliable Multicast 
Protocol (RMP) or raw Multicast Protocol (MCP) system sending the same 
message. There are several reasons for this: 

• Messages must be written to disk.

• The message store process provides a single bottle-neck that all messages 
pass through. 

• Listener processes must maintain their state by writing it to disk. 

Given these points there are some basic things you can do to ensure that your 
system runs as fast as possible: 

• Ensure that the message store database is on a disk directly connected to 
the machine running the message store. Using a database on an NFS 
mounted disk can drastically reduce throughput; 25% throughput is 
typical. 

• Have a dedicated machine to support the message store process. If the 
message store is contending with other processes for disk write time and 
processor time it will suffer. Listeners are particularly bad for this 
because they do both. 

• Although an application can only use a single message store, there is no 
reason to limit your system to a single message store. If you can partition 
your system such that applications use distinct sets of topics, then 
consider using multiple message stores.

Question: Compiling OrbixTalk Code
When I compile my OrbixTalk code as a DLL, it doesn't seem to work. What am 
I doing wrong?

Answer This problem can occur if you use the "multithreaded" runtime library rather 
than the "multithreaded DLL" runtime library. You can set this option in 
Microsoft Developer using the Project Settings dialog, C/C++ Tab, Code 
Generation category. Alternatively, you can just specify /MD rather than /MT. 
 160



T r oub l e s h oo t i n g

orbixtalk33.book  Page 161  Monday, July 22, 2002  10:33 AM
Question: otd Daemon Shutdown
Why does my OrbixTalk Daemon (otd) shutdown immediately when I try to 
start it? 

Answer When I try to start the otd from the command line I get a message saying that its 
Starting as Secondary. But soon after I get a message saying Primary
already running. Exiting.... What is happening? 

This means that there is already an OrbixTalk daemon otd running on this IP 
multicast address range on this network. 

An OrbixTalk system corresponds to a range of IP multicast addresses on a 
network, and there can only be one otd running in each OrbixTalk system. All 
OrbixTalk applications in that system use the same OrbixTalk daemon. 

Question: Communicating Across Subnets
My listeners/talkers cannot communicate across subnets, even though I have 
routers that support multicast. Why?

Answer When communicating between subnets, your OrbixTalk Multicast packets must 
pass through routers. In this case, you must ensure that those routers support 
multicast packets (most do) and that the multicast support is enabled on those 
routers. (This is specific to the particular router and you will need to consult the 
router’s manual). 

If you are doing this, then you should also be aware that OrbixTalk packets have 
a built-in time-to-live (TTL). This defaults to two (hops) so if you intend your 
messages to go through more than two routers, then you must increase the 
IT_LIVE_TIME parameter in your iona.cfg file to reflect the size of your 
network.

The best way to check whether this is working correctly is to start an otd on 
each machine that you want to communicate. If these daemons are all on the 
same IT_DIRENQ_IPADDR and IT_DEFAULT_DIRENS_PORT, they should detect 
each other. All but the first to start will exit. 

If this does not happen, there is a problem with the network between the 
machines or with your configuration. 
161



Orb i x T a l k  P r o g r amme r ’ s  Gu i d e

orbixtalk33.book  Page 162  Monday, July 22, 2002  10:33 AM
Question: Talking to Different Machines
OrbixTalk works on one machine, but I cannot get it to talk to a different 
machine.

Answer This situation can occur, for example, when you install a listener on a PC and a 
talker on a Sun machine. 

• Set the IT_LOCAL_DOMAIN to null (that is, leave the rest of the line in your 
iona.cfg file blank.) 

• Check that the IT_DIRENQ_IPADDR, IT_DIRENQ_IPADDR_RANGE, 
IT_DEFAULT_DIRENS_PORT and IT_DIRENS_NAME parameters are the 
same on the Sun machine as on the PC. 

These points should allow your machines to communicate if they are on the 
same subnet. If not, ensure that any routers between the two subnets support 
multicast, and that this functionality is enabled.

If these settings are correct, you can test the system by attempting to start an 
otd on both machines. One otd should go primary and the other should exit. If 
not, your network may not be properly configured for Multicast. Try ifconfig
-a on Solaris to check your network interface. 

Question: Multiple OrbixTalk Systems
Can I have more than one OrbixTalk system running on my subnet? 

Answer Requirement:

This can arise, for example, if you have different developers working on 
OrbixTalk applications in parallel. They each want to have control over their 
own otd and need to ensure that other tests do not interfere with theirs. 

Solution:

It is possible to have more than one OrbixTalk system running on a single 
subnet, provided that the following precautions are taken: 

1. Each system must operate on a different (non-overlapping) IP Address 
range. You will probably already have noticed that if you start more than 
one otd, the second exits under normal circumstances. To achieve this, 
 162



T r oub l e s h oo t i n g

orbixtalk33.book  Page 163  Monday, July 22, 2002  10:33 AM
you must set the IT_DIRENQ_IPADDR and IT_DIRENQ_IPADDR_RANGE 
parameters in the orbixtalk3.cfg file used by each otd (pointed to by 
IT_CONFIG_PATH) so that there are no overlaps. 

IT_DIRENQ_IPADDR is the multicast IP address used to communicate with 
the otd. As long as each otd uses a different IP address, you can have 
multiple otds running in the subnet. 

IT_DIRENQ_IPADDR_RANGE usually corresponds to the maximum 
hardware limit for the machine in use.This is really the number of 
multicast groups that the ethernet card can join. If you want to run more 
than one OrbixTalk system on a single machine, you must divide this 
range to allow each system to have some access to these groups. 
163



Orb i x T a l k  P r o g r amme r ’ s  Gu i d e

orbixtalk33.book  Page 164  Monday, July 22, 2002  10:33 AM
2. Ensure that each system has unique values for the following configuration 
pairs: 

(IT_MS_STORE_DIR, IT_MS_STORE)
(IT_OTD_STORE, IT_OTD_APPLISTORE)
(IT_LINK_STORE, IT_OTD_LINKSTORE)
(IT_OTD_STORE, IT_OTD_TOPICSTORE)

If these pairs are not unique, more than one system can end up writing 
different IP addresses to the same set of statelogs. 

3. Be sure to clean up all the statelog .dat and .ndx files whenever you 
make changes to the configuration, particularly the IP address ranges. 
 164



orbixtalk33.book  Page 165  Monday, July 22, 2002  10:33 AM
Part VI
Appendices



orbixtalk33.book  Page 166  Monday, July 22, 2002  10:33 AM



orbixtalk33.book  Page 167  Monday, July 22, 2002  10:33 AM
Appendix A
Configuration Parameters

This appendix provides information about the general configuration 
parameters that are used with OrbixTalk.

Overview
This chapter provides the following:

• An alphabetical list of the general configuration parameters that are used 
with OrbixTalk. The configuration parameters used by the IIOP Gateway 
are detailed in Appendix B, “IIOP Gateway Configuration Settings”.

• Detailed information about each parameter and how the parameters 
affect each other. The parameters are divided into the following 
categories:

♦ Reliable Multicast Protocol.

♦ Store and Forward Protocol.

♦ Directory Enquiries daemon.

♦ Network. 

♦ General.
167



Orb i x T a l k  P r o g r amme r ’ s  Gu i d e

orbixtalk33.book  Page 168  Monday, July 22, 2002  10:33 AM
Alphabetical List of Configuration Parameters
The following table provides an alphabetical list of the configuration parameters 
for OrbixTalk.

Configuration Parameter Description

IT_ACK_RETRY Number of otsfp message transmission retries 
before reporting an exception.

Default Value: 3.

For more information, refer to “Store and Forward 
Protocol Configuration Parameters” on page 191.

IT_ACK_RETRY_TIME Time between successive otsfp message 
transmission retries.

Default Value: 5000 (ms).

For more information, refer to “Store and Forward 
Protocol Configuration Parameters” on page 191.

IT_APP_STORE The IT_APP_STORE parameter sets the directory in 
which OTSFP consumer application state logs are 
stored.

For example, when you run the sfpStock demo 
consumer, a file named stocksfp-listener-
Listen.dat is created in the directory that is 
pointed to by IT_APP_STORE. If you change this 
directory you do not change the directory where the 
otd stores its application information 
(AppliStore.* and TopicStore.*). If you want to 
change where these files are created, you should 
change the IT_OTD_STORE parameter. 

Default Value: . (current directory).

For more information, refer to “Directory Enquiries 
Daemon Configuration Parameters” on page 196.

Table 17.1: Configuration Parameters
 168



Con f i g u r a t i o n  P a r ame t e r s

orbixtalk33.book  Page 169  Monday, July 22, 2002  10:33 AM
IT_BASE_FRAG_WINDOW_SIZE Number of missing message fragments before 
message requests (NAKs) are sent to the originating 
supplier application.

Default Value: 10 (number of message fragments).

For more information, refer to “Reliable Multicast 
Protocol Configuration Parameters” on page 183.

IT_BATCH_SIZE Number of fragments per batch (see also 
IT_MIN_BATCH_INTERVAL)

Default value: 10.

For more information, refer to “Flow Control 
Mechanism Configuration Parameters” on page 189.

IT_DEFAULT_DIRENS_PORT Directory Enquiries port used for all 
communications with the otd process.

Default Value: 5000.

For more information, refer to “Directory Enquiries 
Daemon Configuration Parameters” on page 196.

Configuration Parameter Description

Table 17.1: Configuration Parameters
169



Orb i x T a l k  P r o g r amme r ’ s  Gu i d e

orbixtalk33.book  Page 170  Monday, July 22, 2002  10:33 AM
IT_DIRENQ_INTERVAL          Determines the time between attempts to connect 
to the otd (see IT_DIRENQ_RETRYS). 

Default Value: 5000 (ms).

The otd requires the exclusive use of two ports to 
operate properly. The port numbers used are set 
using the IT_DEFAULT_DIRENS_PORT parameter. The 
otd uses IT_DEFAULT_DIRENS_PORT and 
IT_DEFAULT_DIRENS_PORT + 1). If some other 
application is currently using one or more of the 
UDP ports required by the otd, you can see this 
error:

mmm dd hh:mm:ss otd: ERROR!: Failed to bind
to x.x.x.x:port#

mmm dd hh:mm:ss otd: ERROR!: FATAL error -
Failed to open socket, probably not enough
file descriptors

IT_DIRENQ_IPADDR Multicast IP Address used by OrbixTalk processes 
for all communications with the otd. 

Default Value: 225.0.0.0

For more information, refer to “Directory Enquiries 
Daemon Configuration Parameters” on page 196.

IT_DIRENQ_IPADDR_RANGE Determines the maximum number of addresses that 
the otd can allocate. 

Default Value: 10 for HPUX10.x; 31 for all other 
platforms.

For more information, refer to “Directory Enquiries 
Daemon Configuration Parameters” on page 196.

Configuration Parameter Description

Table 17.1: Configuration Parameters
 170



Con f i g u r a t i o n  P a r ame t e r s

orbixtalk33.book  Page 171  Monday, July 22, 2002  10:33 AM
IT_DIRENQ_RETRYS Determines the number of retries made to the otd 
before the connect attempt to the otd fails. 

Default Value: 6.

For more information, refer to “Directory Enquiries 
Daemon Configuration Parameters” on page 196.

IT_DIRENQ_WILD_INTERVAL Determines the interval between each PROD 
message.

Default Value: 18,000,000 (ms).

For more information, refer to “Directory Enquiries 
Daemon Configuration Parameters” on page 196.

IT_DIRENS_NAME Name used by all OrbixTalk processes to 
communicate with the otd.

Default Value: //OrbixTalk/DirectoryEnquiries

For more information, refer to “Directory Enquiries 
Daemon Configuration Parameters” on page 196.

IT_FRAG_ACCELERATE Determines when to decrease the current interval 
between transmission of each fragment.

Default Value: 1000 (ms).

For more information, refer to “Flow Control 
Mechanism Configuration Parameters” on page 189.

IT_FRAG_INTERVAL      Initial interval between message fragments (ms). 

Default Value: 50 (ms).

For more information, refer to “Flow Control 
Mechanism Configuration Parameters” on page 189.

Configuration Parameter Description

Table 17.1: Configuration Parameters
171



Orb i x T a l k  P r o g r amme r ’ s  Gu i d e

orbixtalk33.book  Page 172  Monday, July 22, 2002  10:33 AM
IT_FRAG_WARP_DRIVE Point at which the fragment transmission lower 
interval limit is decreased.

Default Value: 5.

For more information, refer to “Flow Control 
Mechanism Configuration Parameters” on page 189.

IT_FT_HEART_BEAT_INTERVAL The frequency at which otd and otmsd “ping” (in 
ms). 

Default Value: 1000 (ms).

Forced minimum of 250 ms.

For more information, refer to “Fault Tolerance 
Configuration Parameters” on page 204.

IT_INFO_COUNT The number of information messages that are sent 
after a pause in transmission of messages.

Default Value: 5.

For more information, refer to “Reliable Multicast 
Protocol Configuration Parameters” on page 183.

IT_INFO_INTERVAL The time between successive information messages 
for otrmp. 

Default Value: 2000 (ms).

For more information, refer to “Reliable Multicast 
Protocol Configuration Parameters” on page 183.

IT_LINK_STORE Directory containing the Directory Enquiries Link 
Store database.

Default value: . (current directory).

For more information, refer to “Directory Enquiries 
Daemon Configuration Parameters” on page 196.

Configuration Parameter Description

Table 17.1: Configuration Parameters
 172



Con f i g u r a t i o n  P a r ame t e r s

orbixtalk33.book  Page 173  Monday, July 22, 2002  10:33 AM
IT_LIVE_TIME Time to live for message fragments (packets) 
multicast on the network

Default Value: 2.

For more information, refer to “Network 
Configuration Parameters” on page 201.

IT_LOG_CONSOLE If the Console output flag is 1, OrbixTalk processes 
output text messages to the console.

Default Value: 1.

For more information, refer to “General 
Configuration Parameters” on page 202.

IT_LOG_FLAGS Sets individual logging output levels.

Default Value: ""

For more information, refer to “General 
Configuration Parameters” on page 202.

IT_LOG_LEVEL The system logging output level from 0 to 32. 

Default value: 0.

For more information, refer to “General 
Configuration Parameters” on page 202.

IT_LOG_SYSLOG If the SYSLOG output flag is 1, OrbixTalk processes 
output text messages to a file rather than the 
standard output.

Default Value: 0.

For more information, refer to “General 
Configuration Parameters” on page 202.

IT_LOG_TID Adds the thread ID to logging output when set to 1.

Default Value: 0.

Configuration Parameter Description

Table 17.1: Configuration Parameters
173



Orb i x T a l k  P r o g r amme r ’ s  Gu i d e

orbixtalk33.book  Page 174  Monday, July 22, 2002  10:33 AM
IT_MAX_ACK_KB Maximum size for outstanding information before an 
acknowledgement is received.

Default value: 1280 Kilobytes.

For more information, refer to “Store and Forward 
Protocol Configuration Parameters” on page 191.

IT_MAX_FRAG_INTERVAL Maximum interval between message fragments (ms). 

Default Value: 500 (ms).

For more information, refer to “Flow Control 
Mechanism Configuration Parameters” on page 189.

IT_MAX_FT_HEART_BEAT Number of heartbeats that are missed before the 
otd/otmsd determines that no other daemon is 
running and becomes primary.

Default Value: 6.

Forced to minimum of 10 if Fault Tolerance is 
enabled.

For more information, refer to “Fault Tolerance 
Configuration Parameters” on page 204.

Configuration Parameter Description

Table 17.1: Configuration Parameters
 174



Con f i g u r a t i o n  P a r ame t e r s

orbixtalk33.book  Page 175  Monday, July 22, 2002  10:33 AM
IT_MAX_MSG_SIZE_KB Maximum size of the messages that can be sent by 
your OrbixTalk application, in Kilobytes.

The size of the user data which can be sent is less 
than the value that is set in IT_MAX_MSG_SIZE_KB. 
The reason for this is that OrbixTalk adds some 
header information to each message. The amount of 
this header information varies depending upon the 
protocol being used, and the degree of fragmentation 
of the message. The header information is typically 
around 150 bytes per OTRMP message. 

Default value: 200 Kilobytes.

For more information, refer to “Reliable Multicast 
Protocol Configuration Parameters” on page 183.

IT_MAX_PEND_KB Size limit of the pending message queue.

Default Value: 1280 (Kilobytes)

For more information, refer to “Reliable Multicast 
Protocol Configuration Parameters” on page 183.

IT_MAX_RECV_KB The maximum number of Kilobytes queued at the 
receiver.

Default Value: 1280 (Kilobytes).

For more information, refer to “Reliable Multicast 
Protocol Configuration Parameters” on page 183.

IT_MAX_SENT_KB The maximum number of Kilobytes retained in the 
message queue.

Default Value: 1280 (Kilobytes).

For more information, refer to “Reliable Multicast 
Protocol Configuration Parameters” on page 183.

Configuration Parameter Description

Table 17.1: Configuration Parameters
175



Orb i x T a l k  P r o g r amme r ’ s  Gu i d e

orbixtalk33.book  Page 176  Monday, July 22, 2002  10:33 AM
IT_MAX_SENT_TIME The maximum length of time that message fragments 
are stored.

Default Value: 30000 (ms).

For more information, refer to “Reliable Multicast 
Protocol Configuration Parameters” on page 183.

IT_MC_INTERFACE Multicast Interface IP address. 

Default value: 0.0.0.0

For more information, refer to “Network 
Configuration Parameters” on page 201.

IT_MIN_BATCH_INTERVAL Minimum batch interval. 

Default value: 10.

For more information, refer to “Flow Control 
Mechanism Configuration Parameters” on page 189.

IT_MS_COMPACT_BACKUP_DIR Before compaction, the existing MessageStore is 
copied to this location.

Default Value: . (current directory).

For more information, refer to “Store and Forward 
Protocol Configuration Parameters” on page 191.

IT_MS_COMPACT_BATCH_SIZE Determines the number of Kilobytes to be copied at 
each interval (see IT_MS_COMPACT_INTERVAL).

Default Value: 300.

For more information, refer to “Store and Forward 
Protocol Configuration Parameters” on page 191.

IT_MS_COMPACT_INTERVAL Frequency of compaction operations. 

Default Value: 3000 (ms).

For more information, refer to “Store and Forward 
Protocol Configuration Parameters” on page 191.

Configuration Parameter Description

Table 17.1: Configuration Parameters
 176



Con f i g u r a t i o n  P a r ame t e r s

orbixtalk33.book  Page 177  Monday, July 22, 2002  10:33 AM
IT_MS_STATUS_RETRYS Number of status messages sent by the otmsd to 
listener applications.

Default Value: 3.

For more information, refer to “Store and Forward 
Protocol Configuration Parameters” on page 191.

IT_MS_STATUS_TOPIC_LIVE_SEC
S

If no messages are received within this time period, 
the topic is deleted.

Default Value: 900 (secs).

For more information, refer to “Store and Forward 
Protocol Configuration Parameters” on page 191.

IT_MS_STORE The MessageStore name used by otmsd to store its 
messages.

Default Value: MsgStore.

For more information, refer to “Store and Forward 
Protocol Configuration Parameters” on page 191.

IT_MS_STORE_DIR The MessageStore directory path. 

Default Value: . (current directory)

For more information, refer to “Store and Forward 
Protocol Configuration Parameters” on page 191.

IT_MS_TOPIC MessageStore topic used by otmsd and all Store and 
Forward (SFP) processes that communicate with 
otmsd.

Default Value: //OrbixTalk//MessageStore

For more information, refer to “Store and Forward 
Protocol Configuration Parameters” on page 191.

Configuration Parameter Description

Table 17.1: Configuration Parameters
177



Orb i x T a l k  P r o g r amme r ’ s  Gu i d e

orbixtalk33.book  Page 178  Monday, July 22, 2002  10:33 AM
IT_MSG_MS_STATUS_INTERVAL Time between transmission of status messages from 
the otmsd to listener applications. 

Default Value: 11,000 (ms).

For more information, refer to “Store and Forward 
Protocol Configuration Parameters” on page 191.

IT_NAK_RETRY           Maximum number of Negative Acknowledgements 
(NAKs) sent from a consumer application.

Default Value: 3.

For more information, refer to “Reliable Multicast 
Protocol Configuration Parameters” on page 183.

IT_NAK_RETRY_TIME Time interval between requests for a supplier 
application to resend a message.

Default Value: 1000 (ms).

For more information, refer to “Reliable Multicast 
Protocol Configuration Parameters” on page 183.

IT_OT_DAEMON_BACKGROUND Causes OrbixTalk daemons to start as background 
processes.

Default Value: 0

For more information, refer to Chapter 13 
“Daemons”.

IT_OT_FT_ENABLE Enables Fault Tolerance support in all OrbixTalk 
daemons.

Default Value: 0

For more information, refer to “General 
Configuration Parameters” on page 202.

Configuration Parameter Description

Table 17.1: Configuration Parameters
 178



Con f i g u r a t i o n  P a r ame t e r s

orbixtalk33.book  Page 179  Monday, July 22, 2002  10:33 AM
IT_OTD_APPLISTORE Holds Application Names used by OrbixTalk 
processes.

Default Value: AppliStore

For more information, refer to “Directory Enquiries 
Daemon Configuration Parameters” on page 196.

IT_OTD_LINKSTORE Stores associations between applications and the 
topics they are registered for talking/listening on.

Default value: LinkStore

For more information, refer to “Directory Enquiries 
Daemon Configuration Parameters” on page 196.

IT_OTD_STORE Directory path for the Application and Topic Stores 
(written to by the otd). 

Default Value: . (current directory)

For more information, refer to “Directory Enquiries 
Daemon Configuration Parameters” on page 196.

IT_OTD_TOPICSTORE Holds all the Topic Name-to-IP Address mappings.

Default Value: TopicStore

For more information, refer to “Directory Enquiries 
Daemon Configuration Parameters” on page 196.

IT_RECV_SOCKET_BUFF_SIZE Default recv Socket buffer size. 

Default Value: 65536 (bytes)

For more information, refer to “Network 
Configuration Parameters” on page 201.

Configuration Parameter Description

Table 17.1: Configuration Parameters
179



Orb i x T a l k  P r o g r amme r ’ s  Gu i d e

orbixtalk33.book  Page 180  Monday, July 22, 2002  10:33 AM
Detailed Information about the Configuration Parameters
This section describes the configuration parameters for OrbixTalk in more 
detail. OrbixTalk provides default values for all configurable elements; however, 
you may need to configure these values for your particular environment.

The OrbixTalk configuration variables are contained within a scoped 
configuration file called orbixtalk3.cfg. 

OrbixTalk variables can be modified using the Orbix Configuration Explorer. 
Please refer to the Orbix C++ Administrator’s Guide for details on using the 
Orbix Configuration Explorer.

All databases maintained by OrbixTalk applications consist of two files. The first 
is a file with a “.dat” extension which indicates it is a data file. The second file 
has a “.ndx” extension and is an index file to the “.dat” file. These files are 
maintained by the following OrbixTalk processes: the OrbixTalk Directory 

IT_SEND_FRAG_WINDOW_SIZE Number of message fragments determining when the 
rate of transmission of message fragments should be 
reduced. 

Default Value: 100 (number of message fragments).

For more information, refer to “Reliable Multicast 
Protocol Configuration Parameters” on page 183.

IT_SEND_SOCKET_BUFF_SIZE Default send Socket buffer size. 

Default Value: 65536 (bytes)

For more information, refer to “Network 
Configuration Parameters” on page 201.

IT_TALK_PEND_INTERVAL Interval between batches.

Default value: 50 (ms)

For more information, refer to “Flow Control 
Mechanism Configuration Parameters” on page 189.

Configuration Parameter Description

Table 17.1: Configuration Parameters
 180



Con f i g u r a t i o n  P a r ame t e r s

orbixtalk33.book  Page 181  Monday, July 22, 2002  10:33 AM
Enquiries daemon (otd/otdsm) and the OrbixTalk MessageStore daemon 
(otmsd). The state log files maintained by consumer applications using the Store 
and Forward Protocol (otsfp) do not have a “.ndx” file. 

The configuration parameters available in OrbixTalk are listed in the following 
categories:

• Reliable Multicast Protocol

• Store and Forward Protocol

• Directory Enquiries daemon

• Network

• General

Note: Some of the configuration parameters contain a warning. Modify these 
configuration variables with caution as they can adversely affect the 
communications between OrbixTalk processes.

Viewing Current Configuration Settings

To view a short description of each configuration parameter and its current 
setting, run the OrbixTalk Directory Enquiries daemon with the -v flag as 
follows:

otd -v

Setting Configuration Parameters

To modify the configuration parameters, do one of the following:

• Change the setting in the orbixtalk3.cfg file that is included within the 
file pointed to by the IT_IONA_CONFIG_FILE or IT_IONA_CONFIG_PATH. 

• Change the environment variable with the same name as the parameter.

For example, to modify the setting for the base IP multicast address 
(232.0.0.50), you can either add the following entry to the orbixtalk3.cfg
file:
181



Orb i x T a l k  P r o g r amme r ’ s  Gu i d e

orbixtalk33.book  Page 182  Monday, July 22, 2002  10:33 AM
IT_DIRENQ_IPADDR 232.0.0.50

or perform the following command at the shell prompt (the actual command 
depends on the shell being used): 

export IT_DIRENQ_IPADDR=232.0.0.50

Where a setting exists in the orbixtalk3.cfg file and as an environment 
variable, the environment variable value takes precedence over the setting in the 
configuration file.

Using Multiple Configuration Settings

In general, all applications in an OrbixTalk system communicate with one 
OrbixTalk Directory Enquiries daemon (otd) so that there is a consistent 
mapping between Topic Names and Topic IDs. This requires all applications to 
have the same settings for the parameters related to the OrbixTalk Directory 
Enquiries daemon.

When specific applications in an OrbixTalk system require different 
configuration settings to those used by other applications, you need to do one of 
the following:

• In the shell from which the specific applications are started, change the 
required configuration parameters using environment variables.

• Use multiple orbixtalk3.cfg files and change the IT_CONFIG_PATH 
environment variable to point to the appropriate directory. 

For example, when using the Store and Forward protocol, all communication 
between suppliers and consumers takes place through an intermediary 
process—the MessageStore.

Using Multiple MessageStore Daemons
An OrbixTalk system normally uses a single MessageStore daemon for all 
communication with the otsfp protocol. However, OrbixTalk can be configured 
to use multiple MessageStore daemons.

Each MessageStore daemon must use a separate MessageStore topic. However, 
there is only one configuration parameter to set the MessageStore topic in each 
orbixtalk3.cfg file. Therefore, each MessageStore daemon, and the set of 
applications that use that daemon, must use a separate orbixtalk3.cfg file. 
 182



Con f i g u r a t i o n  P a r ame t e r s

orbixtalk33.book  Page 183  Monday, July 22, 2002  10:33 AM
Create multiple orbixtalk3.cfg files, each with a different value for the 
IT_MS_TOPIC parameter, and change the IT_CONFIG_PATH environment variable 
in the shell from which each OrbixTalk application is started. 

For example, a system that uses two MessageStore daemons, one for the otsfp/
/A topic, and one for the otsfp//B topic, has two orbixtalk3.cfg files:

• orbixtalk3.cfg (A) which contains IT_MS_TOPIC //MessageStore/A 
and is placed in the /OrbixTalk/ConfigA directory.

• orbixtalk3.cfg (B) which contains IT_MS_TOPIC //MessageStore/B 
and is placed in the /OrbixTalk/ConfigB directory.

All other settings remain the same in these files.

There are two sets of processes in the system, one of which is interested only in 
topic otsfp//A, and the other only in topic otsfp//B.

A single OrbixTalk Directory Enquiries daemon is started from a shell with 
IT_CONFIG_PATH set to /OrbixTalk/ConfigA. The first MessageStore daemon 
is started from a shell with the IT_CONFIG_PATH environment variable set to /
OrbixTalk/ConfigA, and the other MessageStore daemon is started from a 
shell where IT_CONFIG_PATH is set to /OrbixTalk/ConfigB.

Processes that use the otsfp//A topic must be started from a shell that 
references the orbixtalk3.cfg (Config A) file, while processes using the
otsfp//B topic must be started from a shell that uses the orbixtalk3.cfg

(Config B) file. All processes use the same OrbixTalk Directory Enquiries 
daemon, but the two MessageStore daemons service only the topics used by 
those processes that access the same orbixtalk3.cfg as the specified 
MessageStore daemon.

Reliable Multicast Protocol Configuration Parameters

This section discusses the configuration parameters that affect the performance 
of the Reliable Multicast Protocol.

The OrbixTalk Reliable Multicast Protocol (otrmp) is used for communication 
between suppliers and consumers in an OrbixTalk system that does not use the 
MessageStore. It achieves reliability and scalability with a negative 
acknowledgement (NAK) scheme. Rather than each supplier ensuring that all 
183



Orb i x T a l k  P r o g r amme r ’ s  Gu i d e

orbixtalk33.book  Page 184  Monday, July 22, 2002  10:33 AM
messages are received by all consumers, it is the responsibility of individual 
consumers to ensure that each supplier sends it all the messages in which it is 
interested.

Messages sent by suppliers are divided into fragments. Each fragment is sent in 
sequence, and has an associated sequence number. Once a fragment has been 
sent by a supplier, it is added to a queue of sent fragments.

Consumers that receive fragments can determine if a fragment has been missed 
using the sequence numbers attached to each fragment. When a fragment is lost, 
a consumer sends a negative acknowledgement (NAK) to the supplier that sent 
the fragment, requesting that the fragment is re-sent. If the fragment remains in 
the supplier’s queue of sent fragments, the supplier re-sends the fragment. 

The Reliable Multicast Protocol uses two other mechanisms to achieve 
reliability:

• INFO messages.

INFO messages are sent by suppliers when there is a period of inactivity in 
sending messages. An INFO message is sent on each topic, specifying the 
sequence number of the most recently sent message fragment. 
Consumers that receive INFO messages use them to determine if any 
fragments have been lost. If a supplier stops sending messages, the 
consumers still need to determine if any fragments have been missed.

• Flow control applied to suppliers. 

If all suppliers send messages as quickly as possible, consumers are 
overwhelmed with the arrival of messages and are unable to process 
them. The flow control mechanism of the Reliable Multicast Protocol 
ensures that suppliers send messages at a rate no faster than consumers 
can receive them and attempts to keep this rate as high as possible.

Each message that is sent by a supplier is placed in a queue of pending 
messages before it is sent on the network. The flow control is applied to 
this queue, releasing fragments from the queue at a steady rate related to 
the number of NAKs received recently and the history of message 
transmission. 
 184



Con f i g u r a t i o n  P a r ame t e r s

orbixtalk33.book  Page 185  Monday, July 22, 2002  10:33 AM
Normally, a remote method invocation using OrbixTalk returns immediately 
because the communication is asynchronous. If the pending message queue is full 
because the user is attempting to send messages faster than the limits imposed 
by the flow control mechanism, the remote method invocation blocks until 
space in the pending message queue becomes available.

The Reliable Multicast Protocol imposes a limit on the size of a message that can 
be sent. The limit is set by the IT_MAX_MSG_SIZE_KB configuration parameter. If 
you attempt to send a message that exceeds this limit, an exception is raised, and 
the message is not sent.

INFO messages are sent at regular intervals by OrbixTalk applications for each 
topic on which messages are being sent. INFO messages ensure that listening 
applications (which can also be otd or otmsd) have not missed messages. The 
IT_INFO_INTERVAL configuration parameter specifies the interval in milliseconds 
between each INFO message.

This count determines the number of information messages that are sent by a 
supplier, for each topic, after a pause in the transmission of messages. Note that 
otrmp is used by otsfp so this parameter affects both protocols.

In combination with the IT_INFO_INTERVAL parameter, this parameter 
determines the period of time over which INFO messages are sent and, 
therefore, the maximum time of communication failure for which the otrmp 
protocol can be considered reliable.

When using the Reliable Multicast Protocol, consumers send negative 
acknowledgements (NAKs) to determine when a message fragment has not been 
received. If the message is not received by the consumer within a period of time 

IT_MAX_MSG_SIZE_KB Default value: 2560 Kilobytes

IT_INFO_INTERVAL Default value: 2000 (ms)

IT_INFO_COUNT Default value: 5

IT_NAK_RETRY Default value: 3

IT_NAK_RETRY_TIME Default value: 1000 (ms)
185



Orb i x T a l k  P r o g r amme r ’ s  Gu i d e

orbixtalk33.book  Page 186  Monday, July 22, 2002  10:33 AM
equal to IT_NAK_RETRY_TIME, the NAK is sent again. The IT_NAK_RETRY 
parameter specifies the number of times a NAK is sent by a consumer before it 
raises an exception to indicate communication failure.

If a fragment of a message fails to be received within the IT_NAK_RETRY_TIME 
interval, a message request is sent from the consumer application to the supplier 
application requesting that the message is resent.

Base fragment window size determines the size of the sliding window used to 
detect when message requests (NAKs) are required to be sent for missing 
fragments. If missing fragments exist outside this window, message requests 
(NAKs) are sent to the originating supplier application (which can also be otmsd).

In a high throughput situation, IT_BASE_FRAG_WINDOW_SIZE defines the 
number of fragments that can be received by a consumer before a retry is sent. 
This overrides IT_NAK_RETRY_TIME when fragments are received very quickly.

IT_SEND_FRAG_WINDOW_SIZE defines the size of the sliding window used by 
supplier applications and the OrbixTalk MessageStore daemon to detect when 
the rate of transmission of message fragments should be reduced. If any message 
requests (NAKs) are received outside this window, the flow control mechanism 
lowers the rate of transmission.

IT_SEND_FRAG_WINDOW_SIZE defines the maximum difference allowed between 
the most recent fragment sent by a supplier and one indicated in a NAK before 
flow control is applied.

IT_BASE_FRAG_WINDOW_SIZE Default value: 10 (number of message fragments)

WARNING: Modify this parameter with caution 
because changes can drastically affect performance 
of the protocols if not tuned to the environment.

IT_SEND_FRAG_WINDOW_SIZE Default value: 100 (number of message fragments)

WARNING: Modify this parameter with caution 
because changes can drastically affect performance 
of the protocols if not tuned to the environment.

IT_MAX_SENT_KB Default value:1280 Kilobytes

IT_MAX_SENT_TIME Default value: 30000 (ms)

IT_MAX_RECV_KB Default value:1280 Kilobytes
 186



Con f i g u r a t i o n  P a r ame t e r s

orbixtalk33.book  Page 187  Monday, July 22, 2002  10:33 AM
Talking applications retain the message fragments they have sent in case a 
consumer requests them to be resent. The IT_MAX_SENT_KB parameter sets the 
maximum number of Kilobytes of the queue of sent messages (consumer 
application or OrbixTalk MessageStore daemon). Fragments are stored in this 
buffer until contiguous regions are formed and can be copied to form all, or part, 
of a message. When fragments are frequently missed, this variable can be 
increased. However, the default value is sufficient in most circumstances.

The IT_MAX_SENT_TIME parameter specifies the amount of time for which they 
are retained for retries (performed on receipt of an RMP message request/NAK). 
This applies to supplier applications using otrmp/otsfp, including the OrbixTalk 
MessageStore daemon.

IT_MAX_SENT_KB specifies the upper limit to the sent message queue size in 
Kilobytes. Once the limit is reached, the oldest fragments are removed to make 
space as required for new message fragments to be added to the queue.

IT_MAX_SENT_TIME specifies the time in milliseconds that message fragments 
remain in the sent message queue. Once the time has expired, they are removed 
from the queue. 

When a consumer application is executing code other than the Orbix event 
loop, OrbixTalk messages arrive and are queued at the receiver. They are not 
dispatched to the appropriate user function until Orbix processes events in its 
event loop. The limit to the amount of data that is queued at a consumer is set 
by the IT_MAX_RECV_KB parameter, which specifies the size of the receiving 
queue in Kilobytes. 

In combination, the IT_MAX_SENT_KB, IT_MAX_SENT_TIME and IT_MAX_RECV_KB 
parameters affect the amount of time over which a supplier is guaranteed to 
have messages available to be resent to a consumer that requests them with a 
NAK. The following example shows a situation in which it is necessary to modify 
the parameters to achieve a maximum rate of reliable message delivery.

For example, an OrbixTalk system that consists of a single supplier, talking 128 
Kilobyte messages once every 5 seconds, and a single consumer that does not 
use a thread filter so each message is dispatched in a sequential manner.

The amount of time taken to process each message in user code can vary 
between 1 and 10 seconds, with the following probability: 

Time taken to process message Probability

         1 second 0.1
187



Orb i x T a l k  P r o g r amme r ’ s  Gu i d e

orbixtalk33.book  Page 188  Monday, July 22, 2002  10:33 AM
In this system, there is a probability that the incoming message queue will 
overflow, because of the distribution of processing times. This will result in the 
supplier being slowed down by the flow control mechanism. However, as the 
average rates of sending and receiving messages are equal, this can be minimized 
by increasing the queue size limit at the consumer.

The IT_MAX_PEND_KB configuration parameter sets the size limit of the pending 
message queue. Messages are added to the pending queue by a user invocation 
of a remote method or a push() operation. Messages are removed from the 
queue by the flow control mechanism as it sends message fragments. Once the 
queue becomes full, remote method invocations block until space becomes 
available in the queue.

Increase the size of this parameter when invocations are being made rapidly as 
queue becomes full in periods; for example, when large messages are sent or 
when the rate at which remote method invocations are made is variable. 

         5 seconds 0.8

         10 seconds 0.1

IT_MAX_PEND_KB Default value: 1280 Kilobytes
 188



Con f i g u r a t i o n  P a r ame t e r s

orbixtalk33.book  Page 189  Monday, July 22, 2002  10:33 AM
Flow Control Mechanism Configuration Parameters 

The IT_FRAG_INTERVAL parameter determines the initial fragment interval. The 
flow control mechanism can change this initial interval once transmission begins.

The IT_MAX_FRAG_INTERVAL parameter determines the maximum interval 
between message fragments (ms). The flow control mechanism will not exceed 
this value.

IT_TALK_PEND_INTERVAL Interval between batches.

Default value: 50 (ms)

IT_FRAG_INTERVAL Initial fragment interval (ms).

Default Value: 50 (ms)

IT_MAX_FRAG_INTERVAL Maximum fragment interval (ms).

Default Value: 500 (ms)

IT_FRAG_ACCELERATE Point at which to decrease interval.

Default Value: 1000 (ms)

WARNING: Modify this parameter with caution 
because changes can drastically affect performance of 
the protocols if not tuned to the environment.

IT_FRAG_WARP_DRIVE Point at which the fragment transmission lower 
interval limit is decreased.

Default Value: 5

WARNING: Modify this parameter with caution 
because changes can drastically affect performance of 
the protocols if not tuned to the environment.

IT_MIN_BATCH_INTERVAL Minimum batch interval.

Default value: 10

IT_BATCH_SIZE Number of fragments per batch.

Default value: 10
189



Orb i x T a l k  P r o g r amme r ’ s  Gu i d e

orbixtalk33.book  Page 190  Monday, July 22, 2002  10:33 AM
The IT_FRAG_ACCELERATE parameter determines when to decrease the current 
interval between the transmission of each fragment. If there are no message 
requests (NAKs) received in this time, the interval is decreased so that message 
fragments are output at a faster rate.

The IT_FRAG_WARP_DRIVE parameter controls the point at which the fragment 
transmission lower interval limit is decreased. During transmission, a lower limit 
is set on the interval between transmission of fragments depending on the rate 
at which consumers can receive messages. If the slowest consumer disappears 
the rate of transmission can be increased. This parameter determines how many 
times an attempt to increase the rate of transmission of message fragments is 
made before the interval between fragment transmission is further decreased. 
An increase in the rate of transmission of message fragments can only occur if no 
incoming message requests/NAKs are received in the mentioned period.

The IT_MIN_BATCH_INTERVAL parameter determines the time interval between 
batches of fragments.

Message fragments are taken from the pending message queue and sent on the 
network by the flow control mechanism. This set of parameters determines the 
way in which flow control is applied to message transmission. Flow control is 
applied on a per-topic basis, and activity on one topic does not affect the flow 
control applied to another.

Fragments are sent in batches, with a period of time between batches that limits 
the rate at which fragments are sent. The configuration parameters enable you 
to set: 

• limits to the rate of message transmission

• the rate at which the message transmission rate is modified (acceleration)

• the rate at which acceleration rate is modified

The period between batches varies between IT_MAX_FRAG_INTERVAL and 
IT_MIN_BATCH_INTERVAL starting from IT_FRAG_INTERVAL. When a consumer 
requests a slowdown, or sends a NAK for a very old fragment, the interval is 
increased to enable the consumer to catch up. If no NAKs or slowdown requests 
have been received during the interval specified by the IT_FRAG_ACCELERATE 
parameter, the interval is decreased.

Flow control can be turned off by setting IT_FRAG_INTERVAL, 
IT_MAX_FRAG_INTERVAL and IT_MIN_BATCH_INTERVAL to the same value.
 190



Con f i g u r a t i o n  P a r ame t e r s

orbixtalk33.book  Page 191  Monday, July 22, 2002  10:33 AM
Store and Forward Protocol Configuration Parameters 

The OrbixTalk MessageStore daemon (otmsd) acts as a supplier and consumer 
application. Some of the configuration parameters that modify low-level protocol 
parameters also affect the OrbixTalk MessageStore daemon as well as user-
defined supplier and consumer applications. However, the OrbixTalk Directory 
Enquiries daemon uses its own Directory Enquiries Protocol (DEP) so 
parameters that affect supplier and/or consumer applications generally have no 
affect on the OrbixTalk Directory Enquiries daemon.

Individual processes, such as the OrbixTalk Directory Enquiries daemon and the 
OrbixTalk MessageStore daemon, can be set up with their own environment and 
orbixtalk3.cfg file. This resolves such issues as sharing configuration 
parameters and environment variables

The MessageStore daemon (otmsd) maintains a disk-based database. The 
IT_MS_STORE configuration parameter specifies the name of the files used.

Two files are created for every database used; one file has a .dat extension, and 
the other file has a .ndx extension. For example, if IT_MS_STORE is set to 
MessageStore, the two files used have the names MessageStore.dat, and 
MessageStore.ndx.

These files are created and accessed in the directory specified by the 
IT_MS_STORE_DIR configuration parameter. This configuration parameter 
specifies a directory that exists, and that has read and write permission for the 
user ID under which the MessageStore daemon is executed. Modify the 
IT_MS_STORE_DIR parameter to change the message store directory. 

When using multiple MessageStore daemons in a single system, separate the 
database by specifying a different IT_MS_STORE_DIR parameter for each 
MessageStore daemon.

IT_MS_STORE Message store name.

Default Value: MsgStore

IT_MS_STORE_DIR Message store directory.

Default Value: . (current directory)

IT_MS_TOPIC Message Store topic.

Default Value: //OrbixTalk//MessageStore
191



Orb i x T a l k  P r o g r amme r ’ s  Gu i d e

orbixtalk33.book  Page 192  Monday, July 22, 2002  10:33 AM
When using the OrbixTalk Store and Forward Protocol (otsfp), suppliers send 
all messages to the MessageStore daemon on the MessageStore topic. The 
MessageStore daemon is responsible for forwarding these messages to 
consumers interested in them.

The IT_MS_TOPIC configuration parameter sets the name of the topic used by 
the MessageStore. It must be in a form similar to: 

//OrbixTalk/MessageStore

Note: You should not specify a protocol before the opening // of the Topic 
Name. Specifying an invalid Topic Name results in an error message being 
produced by the MessageStore daemon on startup.

An OrbixTalk system can use multiple MessageStore daemons by specifying a 
distinct MessageStore topic for each MessageStore daemon. The daemon with 
which an application communicates is determined by this parameter. There is no 
communication between the different MessageStore daemons.

To run separate OrbixTalk MessageStore daemons, each environment must 
have different values for IT_MS_TOPIC, IT_MS_STORE and IT_MS_STORE_DIR to 
ensure that each MessageStore is unique.

On performing compaction, the MessageStore creates a set of temporary files. 
The IT_MS_COMPACT_BACKUP_DIR parameter specifies the directory into which 
those files are placed during compaction. 

The OrbixTalk Store and Forward Protocol (otsfp) guarantees message 
delivery using the MessageStore daemon to forward messages to consumers. 
Suppliers send messages on user-defined topics to the MessageStore, which 
sends an acknowledgment to the supplier for each message received. The 
MessageStore daemon then stores the messages in a disk-based database before 
forwarding the messages onto the consumers.

IT_MS_COMPACT_BACKUP_DIR Default value: . (The directory from which the 
MessageStore process was started)

IT_MSG_MS_STATUS_INTERVAL Default value: 11000 (ms)
 192



Con f i g u r a t i o n  P a r ame t e r s

orbixtalk33.book  Page 193  Monday, July 22, 2002  10:33 AM
Guaranteed delivery is achieved through the use of STATUS messages, which are 
sent by the MessageStore to consumers similar to the INFO messages used by 
the Reliable Multicast Protocol (otrmp). Each STATUS message specifies the 
sequence number and application ID of the most recent message sent on each 
topic.

Consumers interested in a particular topic using the Store and Forward Protocol 
(otsfp) receive STATUS messages and are able to send replay requests for any 
messages that it has missed. The MessageStore records all messages in a disk-
based database, so the messages are always available to be replayed.

The IT_MSG_MS_STATUS_INTERVAL parameter specifies the time between 
transmission of status messages from the MessageStore to consumer 
applications. Status messages enable a consumer to determine if it must request 
replays from the MessageStore. A status message contains the last transmitted 
otsfp sequence number. 

In combination with IT_MS_STATUS_RETRYS, the IT_MSG_MS_STATUS_INTERVAL 
parameter represents the interval of communication failure over which the 
otsfp protocol maintains guaranteed delivery.

Note: It is important that the value of the IT_MSG_MS_STATUS_INTERVAL 
parameter is greater than the multiple of the Reliable Multicast Protocol 
INFO message interval (IT_INFO_INTERVAL) and INFO message count 
(IT_INFO_COUNT). 

The IT_MS_STATUS_RETRYS parameter specifies the number of times a STATUS 
message is sent by the MessageStore after applications stop sending messages on 
a topic. Continued activity on a topic (that is, messages being sent) results in 
further STATUS messages being sent.

IT_MS_STATUS_RETRYS Default value: 3

IT_MS_STATUS_TOPIC_LIVE_SECS Default value: 900 seconds (15 minutes)
193



Orb i x T a l k  P r o g r amme r ’ s  Gu i d e

orbixtalk33.book  Page 194  Monday, July 22, 2002  10:33 AM
If the MessageStore does not receive any new messages on a topic for the 
period of time specified by the IT_MS_STATUS_TOPIC_LIVE_SECS parameter, the 
topic is deleted. If, and when, traffic on the deleted topic continues, the topic is 
created and bound once more. This behavior conserves memory on infrequently 
used topics.

Status messages are sent by the MessageStore for each topic that it considers to 
be active. A topic becomes inactive if there is a period of inactivity greater than 
that specified in the IT_MS_STATUS_TOPIC_LIVE_SECS parameter.

Every message sent on an otsfp topic is received by the MessageStore, stored 
on a disk-based database and an acknowledgment message sent to the supplier. 
The IT_ACK_RETRY parameter specifies the number of times a message is re-sent 
to the MessageStore by a supplier before an exception is raised if an 
acknowledgment is not received.

The IT_ACK_RETRY_TIME parameter specifies the interval between successive 
re-sends of a message using the otsfp protocol. In combination with the 
IT_ACK_RETRY parameter, this sets a limit to the time over which the Store and 
Forward Protocol can handle communication failure without raising an 
exception.

There is a limit to the amount of information that is sent by a supplier before it 
expects an acknowledgment. The IT_MAX_ACK_KB parameter specifies the 
maximum size in Kilobytes for the amount of information that can be 
outstanding before an acknowledgment is received.

The otadmin tool is used to compact the MessageStore database. Compaction 
removes messages that do not need to be kept in the database. These are usually 
old messages. For more information about the otadmin tool, refer to 
Chapter 16, “Tools”.

IT_ACK_RETRY Default value: 3

IT_ACK_RETRY_TIME Default value: 11000 (ms)

IT_MAX_ACK_KB Default value: 1280 Kilobytes

IT_MS_COMPACT_INTERVAL Default value: 3000 ((ms))

IT_MS_COMPACT_BATCH_SIZE Default value: 300 
 194



Con f i g u r a t i o n  P a r ame t e r s

orbixtalk33.book  Page 195  Monday, July 22, 2002  10:33 AM
The IT_MS_COMPACT_INTERVAL parameter determines the frequency of 
compaction operations once a compaction is initiated by the otadmin tool. The 
compaction is performed in batches to improve concurrency/performance of the 
MessageStore while compaction is in progress. The MessageStore daemon 
compacts the database by copying the records that need to remain in the 
database to a new file, then replacing the old database file with the newly created 
file. The IT_MS_COMPACT_INTERVAL and IT_MS_COMPACT_BATCH_SIZE 
parameters affect the speed with which the compaction-by-copy operation is 
performed.

The IT_MS_COMPACT_INTERVAL specifies the period of time between compaction 
batches, while the IT_MS_COMPACT_BATCH_SIZE parameter specifies the 
approximate size in Kilobytes that is processed in each batch. It is important that 
the rate at which compaction is performed is always faster than the rate at which 
a MessageStore daemon is receiving messages. Otherwise the compaction never 
completes, as new database entries are added faster than they can be processed 
for compaction. 

In deciding on a suitable rate for compaction (taking into account the fact that 
the time spent processing entries for compaction is not spent in dealing with 
incoming messages and the forwarding of those messages), it should be noted 
that entries that are not copied into the new database are considered to have a 
processing cost of 128 bytes Entries that are copied are given a minimum 
processing cost of 3/4 of a Kilobyte, ensuring that the time taken for updating 
the key values for small entries is taken into account. The compaction algorithm 
also ensures that at least 3 seconds and no more than 6 seconds is used to 
process each batch, enabling the messageStore to process incoming messages. it 
is recommended that compaction is performed during quiet times, for example 
2am, to minimize the impact on messages using the Store and Forward Protocol 
(otsfp).

Using the default settings, the worst case compaction, that is all entries to be 
copied, takes place at 100 Kb/s. This should be sufficient to ensure that 
compaction always completes, except in a system where the Store and Forward 
Protocol (otsfp) is sending more than 100 Kb/s in total.
195



Orb i x T a l k  P r o g r amme r ’ s  Gu i d e

orbixtalk33.book  Page 196  Monday, July 22, 2002  10:33 AM
Directory Enquiries Daemon Configuration Parameters

This section discusses the configuration parameters that affect the performance 
of the Directory Enquiries daemon (otd/otdsm).

The OrbixTalk Directory Enquiries daemon (otd) maintains the following disk-
based databases:

• Topic Store

The Topic Store records the mappings between topic names and IP 
multicast addresses. The IT_OTD_TOPICSTORE parameter specifies the 
filename used for the log files of the Topic Store. As with the Message 
Store, two files are created for the Topic Store: one with a “.dat” 
extension, and the other with a “.ndx” extension. 

• Application Store 

The Application Store records mappings between application names and 
application IDs. The T_OTD_APPLISTORE parameter specifies the filename 
used for the log files of the Application Store.

• Link Store 

The Link Store records mappings between applications and the topics 
used by those applications. The IT_OTD_LINKSTORE parameter specifies 
the filename used for the log files of the Link Store.

IT_OTD_TOPICSTORE Topic Store name.

Default Value: TopicStore

IT_OTD_APPLISTORE Application Store name. 

Default Value: AppliStore

IT_OTD_LINKSTORE Link Store name.

Default value: LinkStore

IT_OTD_STORE Default value: . (current directory)

IT_APP_STORE Default value: . (current directory)

IT_LINK_STORE Default value: . (current directory)
 196



Con f i g u r a t i o n  P a r ame t e r s

orbixtalk33.book  Page 197  Monday, July 22, 2002  10:33 AM
The IT_OTD_STORE parameter specifies the Topic Store directory, the 
IT_APP_STORE specifies the Application Store directory, and the IT_LINK_STORE 
specifies the Link Store directory. Ensure the directories already exist and the 
user ID under which the OrbixTalk Directory Enquiries daemon is executed has 
permission to read and write to these directories. If the directory does not 
exist, or does not have the correct access permissions, the OrbixTalk Directory 
Enquiries daemon reports errors on startup. However, it continues to execute, 
resulting in later communication failure in the OrbixTalk system when the 
OrbixTalk Directory Enquiries daemon fails to map Topic Names to multicast 
addresses correctly. By default, all database files are placed in the directory from 
which the OrbixTalk Directory Enquiries daemons are started.

All OrbixTalk applications use a specific topic for communicating with the 
Directory Enquiries daemon. The IT_DIRENS_NAME configuration parameter 
specifies the topic used. It must be in a form similar to: 

//OrbixTalk/DirectoryEnquiries

Note: Do not specify a protocol before the opening // of the Topic Name.

Using OrbixTalk, all communication takes place using IP multicast addresses. The 
range of IP multicast addresses used by an OrbixTalk system is specified by these 
two parameters. The IT_DIRENQ_IPADDR parameter specifies the first IP address 
used in the system. It defaults to 225.0.0.0 and must be in a similar form, in the 
range 225.0.0.0 to 239.255.255.255. The OrbixTalk Directory Enquiries daemon 
allocates new multicast addresses to topics in an incremental fashion from this 
address. Many addresses in this range are reserved for specific use by 
organizations such as the Internet Assigned Numbers Authority (IANA). For the 
latest list please see the following: 

IT_DIRENS_NAME Default value: //OrbixTalk/DirectoryEnquiries

IT_DIRENQ_IPADDR Directory Enquiries IP address.

Default Value: 225.0.0.0

IT_DIRENQ_IPADDR_RANGE Directory Enquiries address range.

Default Value: 10 for HPUX10.x; 31 for all 
other platforms.
197



Orb i x T a l k  P r o g r amme r ’ s  Gu i d e

orbixtalk33.book  Page 198  Monday, July 22, 2002  10:33 AM
ftp://ftp.isi.edu/in-notes/iana/assignments/multicast-addresses

OrbixTalk is a development tool that can be used for an unlimited range of 
communications and data types. As such, the onus is on the developer and user 
to be aware of any issues that can arise as a result of their choice of IP Address 
range. 

The Directory Enquiries address range determines the maximum number of 
addresses that the OrbixTalk Directory Enquiries daemon can allocate. On 
some platforms, such as HPUX10.x, there is a hardware/software limitation on 
the number of multicast addresses that can be allocated. 

WARNING: There appears to be a problem with NT if you do all of the 
following: 

1. You change the second or third bytes of the base IP address 
(IT_DIRENQ_IPADDR) to be non-zero (such as 225.0.1.0 or 225.1.0.0) 

2. You set IT_DIRENQ_IPADDR_RANGE to be greater than 30. 

3. You have more than 32 topics. 

If this is the case, then OrbixTalk hangs when detaching from the 33rd and later 
topics, and the listeners do not receive messages on those topics. 

The IT_DIRENQ_IPADDR_RANGE parameter specifies the number of multicast 
addresses that can be assigned to the system. OrbixTalk multiplexes topics on a 
single IP address if more topics are created than the range of multicast addresses 
allows. 

Use the IT_DIRENQ_IPADDR_RANGE parameter when you want to run a number 
of OrbixTalk Directory Enquiries daemons in an environment. When used with 
IT_DIRENQ_IPADDR, it is possible to guarantee that the multiple OrbixTalk 
Directory Enquiries daemons never allocate the same (or overlapping) IP 
addresses.

Although there is no limit on the range that can be specified, all hardware 
imposes a limit on the number of multicast addresses that can be used on one 
host. The default value of the range of addresses is the upper limit for the type of 
host on which the OrbixTalk Directory Enquiries daemon is being used. These 
values are:
 198



Con f i g u r a t i o n  P a r ame t e r s

orbixtalk33.book  Page 199  Monday, July 22, 2002  10:33 AM
For an OrbixTalk system, you need to ensure that no more than the maximum 
number of multicast addresses are used on each host. This includes addresses 
used by programs other than those in the OrbixTalk system. There is a related 
side-effect of using many multicast addresses on UNIX hosts. Each address used 
is associated with a number of file descriptors for the ports used on the address. 
This can easily reach the limit imposed by the operating system on the maximum 
number of open file descriptors for each process. If the limit is reached, 
OrbixTalk processes fail to open the network connections required to support 
communication and subsequently the processes fail. The limit can be modified 
with the ulimit -n command, and should be set high enough so that each 
process does not run out of file descriptors.

You may need to install different OrbixTalk Directory Enquiries daemons to 
keep the work of programmers separate from other OrbixTalk environments. 
To run separate OrbixTalk Directory Enquiries daemons, each environment 
must have a different value for IT_DIRENQ_IPADDR and each 
IT_OTD_TOPICSTORE. The IT_OTD_STORE value must be unique.

OrbixTalk applications send requests to the OrbixTalk Directory Enquiries 
daemon when they start (to obtain an application ID), and when they register 
objects as a supplier or consumer on a new topic (to obtain the topic ID). Each 
request has an associated response that is sent by the OrbixTalk Directory 
Enquiries daemon, but because raw IP multicast is not reliable, it is possible that 
either the request or response can be lost by the network. All communication 
with the OrbixTalk Directory Enquiries daemon uses the Directory Enquiries 
Protocol (DEP), which adds a simple level of reliability. 

Host Default value of range of addresses

Windows 95/NT 31

 Solaris 31

 HP/UX 10

IT_DIRENQ_RETRYS Default value: 6

IT_DIRENQ_INTERVAL Default value: 5000 (ms)
199



Orb i x T a l k  P r o g r amme r ’ s  Gu i d e

orbixtalk33.book  Page 200  Monday, July 22, 2002  10:33 AM
The IT_DIRENQ_RETRYS parameter specifies the number of times a request is 
sent to the OrbixTalk Directory Enquiries daemon without a response before an 
exception is raised. When an OrbixTalk process is initialized, an attempt is made 
to establish a connection with the OrbixTalk Directory Enquiries daemon. This 
parameter determines the number of retries made to the OrbixTalk Directory 
Enquiries daemon before the connect attempt fails. 

The IT_DIRENQ_INTERVAL parameter specifies the interval between resends of a 
request to the OrbixTalk Directory Enquiries daemon before an exception is 
raised. The Directory Enquiries interval determines the time between attempts 
to connect to the OrbixTalk Directory Enquiries daemon (see 
IT_DIRENQ_RETRYS). These are Boot and Application Lookup requests as well as 
topic bind requests.

The default settings for the IT_DIRENQ_RETRYS and IT_DIRENQ_INTERVAL 
parameters are sufficient for a normal network. However, a heavily loaded 
network can require an increase in the values of either or both of these 
parameters to prevent applications from failing to communicate with the 
OrbixTalk Directory Enquiries daemon.

OrbixTalk applications that use wildcard topics send a PROD message to the 
OrbixTalk Directory Enquiries daemon (otd) at a relatively infrequent interval 
to inform the OrbixTalk Directory Enquiries daemon that the topic is still in use. 
Once the OrbixTalk Directory Enquiries daemon no longer hears PROD 
messages for a particular wildcard topic, the wildcarded topic is removed from 
the record of wildcard topics that is held in the OrbixTalk Directory Enquiries 
daemon. The IT_DIRENQ_WILD_INTERVAL parameter specifies the interval 
between each PROD message. There should be no reason to modify this 
parameter.

OrbixTalk uses two ports for communications. The IT_DEFAULT_DIRENS_PORT 
parameter specifies the first of the two port numbers. The second port always 
uses a port number that is one greater than the first. It is essential that the ports 
used by an OrbixTalk system are not used by any other process on the same 

IT_DIRENQ_WILD_INTERVAL Default value: 18000000 (ms) (5 hours)

IT_DEFAULT_DIRENS_PORT Default value: 5000
 200



Con f i g u r a t i o n  P a r ame t e r s

orbixtalk33.book  Page 201  Monday, July 22, 2002  10:33 AM
host. This parameter should be configured to set the port number to a value 
between 1024 and 65534 where it is known that the two ports are available for 
use.

Network Configuration Parameters

This section discusses the configuration parameters that affect the performance 
of the network.

For machines with more than one network interface, the multicast interface 
used by OrbixTalk is set using the IT_MC_INTERFACE parameter. When this 
parameter is set to the IP address of a network interface other than the default 
interface, OrbixTalk uses that interface for all network communication. So, for 
example, if you are using a machine with more then one network card, indicate 
which interface OrbixTalk applications should use. For example: 

IT_MC_INTERFACE 165.250.232.155

A single OrbixTalk application cannot use multiple interfaces. 

The IT_RECV_SOCKET_BUFF_SIZE parameter sets the buffer size used for 
receiving sockets.

The IT_SEND_SOCKET_BUFF_SIZE parameter sets the buffer size used for 
sending sockets.

IT_MC_INTERFACE Default value: 0.0.0.0 (specifies the default network 
interface)

IT_RECV_SOCKET_BUFF_SIZE Default value: 65536 (bytes)

IT_SEND_SOCKET_BUFF_SIZE Default value: 65536 (bytes)

IT_LIVE_TIME Default value: 2 (should be in the range 0 to 255).

Modify this parameter with caution as changes can 
affect network security depending on the 
configuration of network multicast routers.
201



Orb i x T a l k  P r o g r amme r ’ s  Gu i d e

orbixtalk33.book  Page 202  Monday, July 22, 2002  10:33 AM
All UDP packets, including those used for IP multicast, include a time-to-live 
(TTL) field that determines the extent to which each packet travels through a 
network. IP routers can be set to decrement the time-to-live (TTL) field of each 
packet, and forward only those packets with a TTL value that is greater than 
zero. In this way, a network can be arranged so that multicast packets only reach 
those points in the network that they are designed to reach. The IT_LIVE_TIME 
parameter specifies the TTL field for message fragments (packets) multicast on 
the network. This is dependent on the number of routers required to forward 
packets onto separate networks.

General Configuration Parameters

This section discusses general configuration parameters.

Logging information from OrbixTalk applications is useful in determining if there 
is a problem with OrbixTalk when your application appears to fail. 

The IT_LOG_LEVEL parameter specifies the level of logging output, from 0 (no 
output) to 32. The higher the number the more information is reported 
(including any previous levels):

0. User.

1. Events.

2. Errors.

3. Warnings.

IT_LOG_LEVEL Default value: 0 (no output). 

IT_LOG_CONSOLE Console output flag.

Default Value: 1 (output to console).

IT_LOG_SYSLOG SYSLOGD output flag.

Default Value: 0 (no output).

IT_LOG_FLAGS Logging output settings.

Default Value: "" (no output).

IT_LOG_TID Thread ID logging information.

Default Value: 0 (no thread ID).
 202



Con f i g u r a t i o n  P a r ame t e r s

orbixtalk33.book  Page 203  Monday, July 22, 2002  10:33 AM
4. Information.

5. Lower level events.

6. Internal Transport Interface.

7. Message delivery.

8. Store and Forward Protocol.

9. Reliable Multicast Protocol.

10. Directory Enquiries Protocol.

11. Database.

12. Message fragment.

13. Component.

14. Fault Tolerance.

15. Orbix integration.

16. -30. Unused.

32. Timer Events.

The logging output can be sent to the standard output using the 
IT_LOG_CONSOLE parameter, or to a file using the IT_LOG_SYSLOG parameter. 
These can be set to 0 (no output) or 1. When the IT_LOG_SYSLOG parameter is 
set to 1, every OrbixTalk application (including the daemons) logs all output to a 
file with a name in the following form:

<app name>.<YYMMDD>_<HH.MM.SS>.pid<NNN>.txt

where <app name> is the application name and <NNN> is the process ID. If the 
application name is of the form a/b/c for example, only the c part is used in the 
filename. The file is stored in the directory specified by the IT_APP_STORE 
configuration parameter.

Logging output can also be defined through the IT_LOG_FLAGS configuration 
parameter. This is a string valued parameter that can be set to a list of logging 
levels. Available debug logging flags are:

USR, EVT, ERR, WARN, INFO, EVD, ITF, DLV, SFP, EVD, RMP, DEP, DB,
FRAG, CPT, IMA, FT, TIM.

For example, IT_LOG_FLAGS can be set to WARN,INFO,DB to add those three 
logging levels to those already output because of the IT_LOG_LEVEL
configuration parameter.
203



Orb i x T a l k  P r o g r amme r ’ s  Gu i d e

orbixtalk33.book  Page 204  Monday, July 22, 2002  10:33 AM
The IT_LOG_TID parameter can be set to 1 to include thread identifier 
information in the logging output.

Set the IT_OT_DAEMON_BACKGROND parameter to 1 to cause the OrbixTalk 
daemons to start as background processes on UNIX platforms. This 
configuration parameter can be overridden using the -F flag on each of the 
daemons. Similarly, the -B switch on UNIX platforms overrides the parameter 
to run a daemon as a background process.

Fault Tolerance Configuration Parameters

The following configuration parameters are required for Fault Tolerance. It is 
recommended that all parameters are set within the orbixtalk3.cfg file, and 
the same orbixtalk3.cfg file is used for both OrbixTalk daemons; that is, both 
OrbixTalk daemons have the same IT_CONFIG_PATH parameter setting. This 
ensures that some parameters are identical for both OrbixTalk daemons in a 
fault tolerant pair.

Note: IT_OT_FT_ENABLE (default 0) must be set to 1 to enable Fault Tolerance 
in OrbixTalk daemons. Both OrbixTalk daemons comprising the fault 
tolerant pair must have this set, otherwise, unexpected behavior can 
result.

IT_OT_DAEMON_BACKGROUND Start OrbixTalk daemon as a background 
process.

Default Value: 0 (foreground)

IT_OT_FT_ENABLE Fault Tolerance support.

Default Value: 0 (no Fault Tolerance)

IT_FT_HEART_BEAT_INTERVAL Default Value: 1000 (ms) 

Forced minimum of 250 ms.

IT_MAX_FT_HEART_BEAT Default Value: 6.

Forced to minimum of 10 if Fault Tolerance 
is enabled.
 204



Con f i g u r a t i o n  P a r ame t e r s

orbixtalk33.book  Page 205  Monday, July 22, 2002  10:33 AM
The OrbixTalk Directory Enquiries daemon (otd)and OrbixTalk MessageStore 
daemon (otmsd)always start in secondary phase. In the secondary phase, the 
OrbixTalk daemon does not service requests from other processes, but listens 
for the heartbeat pings of other OrbixTalk daemons. When the OrbixTalk 
Directory Enquiries daemon or OrbixTalk MessageStore daemon detects that 
another otd or otmsd is running, it stays in secondary phase. If an OrbixTalk 
daemon in secondary phase does not receive any pings, it moves to the primary 
phase and begins to service requests.

An OrbixTalk Directory Enquiries daemon or an OrbixTalk MessageStore 
daemon in the secondary and primary phase sends heartbeat pings at an interval 
equal to IT_FT_HEART_BEAT_INTERVAL. An OrbixTalk Directory Enquiries 
daemon or an OrbixTalk MessageStore daemon in the secondary phase waits a 
multiple of IT_FT_HEART_BEAT_INTERVAL before going to the primary phase, 
where the multiple is specified by IT_MAX_FT_HEART_BEAT. 

The IT_FT_HEART_BEAT_INTERVAL parameter determines the frequency at 
which the OrbixTalk Directory Enquiries daemon and OrbixTalk MessageStore 
daemon “ping” (in milliseconds). When an OrbixTalk Directory Enquiries 
daemon or OrbixTalk MessageStore daemon initializes, pings are detected to 
determine if it should become primary. Currently, running two daemons of the 
same mode is not allowed; for example, running two Master mode OrbixTalk 
Directory Enquiries daemons is not allowed—the second daemon fails to start. 
Running a Master mode OrbixTalk Directory Enquiries daemon and a Slave 
mode OrbixTalk Directory Enquiries daemon is allowed.

The Daemon Process Detection Tool utility (otpsd) also uses these 
configuration parameters to listen for an OrbixTalk Directory Enquiries daemon 
or an OrbixTalk MessageStore daemon.

The greater the time taken to move into primary phase, the more tolerant the 
system becomes to hanging/unresponsive OrbixTalk daemons. The time taken 
by an OrbixTalk daemon to move into primary phase (primary delay) is 
considered in the following scenarios:

• Supplier Applications using the Store and Forward Protocol (SFP) 
—sending messages to the MessageStore daemon (otmsd).

• Applications using the Reliable Muliticast Protocol (RMP) or Store and 
Forward Protocol (SFP)—on start-up (application booting) or binding 
topics to multicast IP addresses.
205



Orb i x T a l k  P r o g r amme r ’ s  Gu i d e

orbixtalk33.book  Page 206  Monday, July 22, 2002  10:33 AM
Note: The IT_FT_HEART_BEAT_INTERVAL and IT_MAX_FT_HEART_BEAT 
parameters must be the same for both OrbixTalk daemons in a fault 
tolerant pair, otherwise fail-over cannot be guaranteed and datastores 
can be corrupted.

Lock files reside in the same directory as the datastore for each OrbixTalk 
daemon (otd/otdsm or otmsd). For the Directory Enquiries daemon (otd /
otdsm) this directory is set according to the value of the IT_OTD_STORE entry in 
the orbixtalk3.cfg file or environment variable. The lock file has a fixed name 
of OTD_FT.lck. The otmsd (MessageStore daemon) lock file resides in the 
directory specified by the IT_MS_STORE_DIR entry in the orbixtalk3.cfg file 
or environment variable with the (fixed) name of OTMSD_FT.lck.

Supplier Applications using SFP

When an OrbixTalk application sends a message using the Store and Forward 
protocol, an acknowledgment from the MessageStore daemon (otmsd) is 
expected within the time (in ms) specified by the IT_ACK_RETRY_TIME 
configuration parameter. If an acknowledgment is not received, the supplier 
application re-sends the message for the number of times specified by the 
IT_ACK_RETRY configuration parameter, at intervals specified by the 
IT_ACK_RETRY_TIME configuration parameter. The longest time an OrbixTalk 
MessageStore daemon is unavailable before the supplier application raises an 
exception is IT_ACK_RETRY_TIME multiplied by IT_ACK_RETRY. This is called 
the SFP retry period. If the primary delay is equal to N ms, then the SFP retry 
period must be greater than N. If they are equal and it takes N ms to become 
primary, there is a chance a message will be rejected.

IT_ACK_RETRY Default Value: 3 retries

IT_ACK_RETRY_TIME Default Value: 5000ms
 206



Con f i g u r a t i o n  P a r ame t e r s

orbixtalk33.book  Page 207  Monday, July 22, 2002  10:33 AM
Applications using RMP or SFP 

OrbixTalk applications send requests to the Directory Enquiries daemon (otd
or otdsm). If a request is not answered in the period of time (in ms) specified by 
the IT_DIRENQ_INTERVAL configuration parameter, another request is made. 
This process continues until the number of requests is greater than the number 
specified by the IT_DIRENQ_RETRYS configuration parameter. The total time a 
non-primary OrbixTalk Directory Enquiries daemon can be unavailable, before 
an OrbixTalk application raises an exception, is IT_DIRENQ_INTERVAL multiplied 
by IT_DIRENQ_RETRYS (OTD retry period). If the primary delay is equal to N 
ms, the OTD retry period must be greater than N. If they are equal and it takes 
N ms to become primary, there is a chance an exception will be raised by the 
OrbixTalk application.

IT_DIRENQ_RETRYS Default Value: 6 

IT_DIRENQ_INTERVAL Default Value: 5000 ms
207



Orb i x T a l k  P r o g r amme r ’ s  Gu i d e

orbixtalk33.book  Page 208  Monday, July 22, 2002  10:33 AM
 208



orbixtalk33.book  Page 209  Monday, July 22, 2002  10:33 AM
Appendix B
IIOP Gateway Configuration 
Settings

This appendix details the configuration file variables used by the 
OrbixTalk IIOP Gateway.The Gateway configuration variables are 
contained in the scope OrbixTalk.Gateway. You can adjust these 
settings with the Orbix configuration tool. 

Variable Effect

IT_EVENTS_NOT_ORBIX_SERVER When this variable is set to YES, then 
OrbixTalk does not call impl_is_ready(). 
Default is NO.. For example:

IT_EVENTS_NOT_ORBIX_SERVER = "NO";

IT_EVENTS_SERVER_NAME Server name used in call to 
impl_is_ready(). Default is ES. For 
example:

IT_EVENTS_SERVER_NAME = "ES";

IT_DEFAULT_TX_TIMEOUT Timeout value in milliseconds passed to 
defaultTxTimeout(). Default is infinite. For 
example:

IT_DEFAULT_TX_TIMEOUT = 60000;

IT_SERVER_TIMEOUT Timeout value in milliseconds passed to 
processEvents(). Default is infinite.

IT_SERVER_TIMEOUT = 60000;

Table B.1: Gateway Configuration Variables
209



Orb i x T a l k  P r o g r amme r ’ s  Gu i d e

orbixtalk33.book  Page 210  Monday, July 22, 2002  10:33 AM
IT_SET_DIAGNOSTICS Value passed to setDiagnostics(). Default is 
1. Valid values are 0, 1 and 2. For example:

IT_SET_DIAGNOSTICS = "0";

IT_USE_TRANSIENT_PORT When this variable is set to YES, OrbixTalk 
calls useTransientPort(1). Default is NO. 
For example:

IT_USE_TRANSIENT_PORT = "NO";

IT_WRITE_IOR When this variable is set to YE", 
OrbixEventsAdmin IOR is written to the file 
OrbixEventsAdmin.ref. Default is NO. For 
example:

IT_WRITE_IOR = "NO";

IT_EVENTS_PULL_PROD_TYPE When a PullConsumer executes a pull() on 
the ProxyPullSupplier provided by the 
event server, this variable determines whether 
to attempt pull() or try_pull() on any 
PullSuppliers connected. Default is PULL, 
and the alternative is TRY_PULL. For example:

IT_EVENTS_PULL_PROD_TYPE = "PULL";

IT_EVENTS_PULL_PROD_INTERVAL This value sets the interval in milliseconds 
between each attempted try-pull() or 
pull() on connected PullSuppliers. 
Default is 1000. For example:

IT_EVENTS_PULL_PROD_INTERVAL = "1000";

IT_EVENTS_TRY_PULL_DURATION Determines how long in milliseconds a 
PullConsumer waits for an event after 
executing a try_pull() on the 
ProxyPullSupplier provided by the event 
server. Default is 100. For example:

IT_EVENTS_TRY_PULL_DURATION = "100";

Variable Effect

Table B.1: Gateway Configuration Variables
 210



I I O P  G a t eway  C on f i g u r a t i o n  S e t t i n g s

orbixtalk33.book  Page 211  Monday, July 22, 2002  10:33 AM
IT_ROBUST_EVENT_CHANNELS When this variable is set to YES, event 
channels are not destroyed by calls to 
destroy() if Proxies exist. Default is NO. For 
example:

IT_ROBUST_EVENT_CHANNELS = "NO";

IT_INITIAL_UNTYPED_EVENT_CHANNELS This variable causes OrbixTalk to create 
untyped events channels created at start-up 
with the channel name provided. Default is "". 
For example:

IT_INITIAL_UNTYPED_EVENT_CHANNELS =
test_channel;

IT_INITIAL_TYPED_EVENT_CHANNELS This variable causes OrbixTalk to create typed 
events channels created at start-up with the 
channel name provided. Default is "". For 
example:

IT_INITIAL_TYPED_EVENT_CHANNELS =
test_channel;

Variable Effect

Table B.1: Gateway Configuration Variables
211



Orb i x T a l k  P r o g r amme r ’ s  Gu i d e

orbixtalk33.book  Page 212  Monday, July 22, 2002  10:33 AM
 212



orbixtalk33.book  Page 213  Monday, July 22, 2002  10:33 AM
Appendix C
CORBA Event Service: IDL 
Interfaces

This appendix lists the IDL interfaces for the CORBA Event Service.

The CosEventComm Module
// IDL
module CosEventComm {

exception Disconnected {
};

interface PushConsumer {
void push (in any data) raises (Disconnected);
void disconnect_push_consumer ();

};

interface PushSupplier {
void disconnect_push_supplier( );

};
interface PullSupplier {

any pull () raises (Disconnected);
any try_pull (out boolean has_event) raises (Disconnected);
void disconnect_pull_supplier();

};
213



Orb i x T a l k  P r o g r amme r ’ s  Gu i d e

orbixtalk33.book  Page 214  Monday, July 22, 2002  10:33 AM
interface PullConsumer {
void disconnect_pull_consumer ();

};
};

The CosEventChannelAdmin Module
// IDL
module CosEventChannelAdmin {

exception AlreadyConnected {
};

exception TypeError {
};

interface ProxyPushConsumer : CosEventComm::PushConsumer {
void connect_push_supplier (

in CosEventComm::PushSupplier push_supplier)
raises (AlreadyConnected);

};
interface ProxyPullSupplier : CosEventComm::PullSupplier {

void connect_pull_consumer (
in CosEventComm::PullConsumer pull_consumer)
raises (AlreadyConnected);

};

interface ProxyPullConsumer : CosEventComm::PullConsumer {
void connect_pull_supplier (

in CosEventComm::PushSupplier pull_supplier)
raises (AlreadyConnected, TypeError);

};

interface ProxyPushSupplier : CosEventComm::PushSupplier {
void connect_push_consumer (

in CosEventComm::PushConsumer push_consumer)
raises (AlreadyConnected, TypeError);

};
 214



CORBA  E v en t  S e r v i c e :  I D L  I n t e r f a c e s

orbixtalk33.book  Page 215  Monday, July 22, 2002  10:33 AM
interface ConsumerAdmin {
ProxyPushSupplier obtain_push_supplier ();
ProxyPullSupplier obtain_pull_supplier ();

};

interface SupplierAdmin {
ProxyPushConsumer obtain_push_consumer ();
ProxyPullConsumer obtain_pull_consumer ();

};

interface EventChannel {
ConsumerAdmin for_consumers ();
SupplierAdmin for_suppliers ();
void destroy ();

};
};

The CosTypedEventComm Module
// IDL
module CosTypedEventComm {

interface TypedPushConsumer : CosEventComm::PushConsumer {
Object get_typed_consumer ();

};

interface TypedPullSupplier : CosEventComm::PullSupplier {
Object get_typed_supplier ();

};
};
215



Orb i x T a l k  P r o g r amme r ’ s  Gu i d e

orbixtalk33.book  Page 216  Monday, July 22, 2002  10:33 AM
The CosTypedEventChannelAdmin Module
module CosTypedEventChannelAdmin {

exception InterfaceNotSupported {
};

exception NoSuchImplementation {
};

typedef string Key;

interface TypedProxyPushConsumer :
CosEventChannelAdmin::ProxyPushConsumer,
CosTypedEvemtComm::TypedPushConsumer {

};

interface TypedProxyPullSupplier :
CosEventChannelAdmin::ProxyPullSupplier,
CosTypedEventComm::TypedPullSupplier {

};

interface TypedSupplierAdmin :
CosEventChannelAdmin::SupplierAdmin {

TypedProxyPushConsumer obtain_typed_push_consumer (
in Key supported_interface)
raises (InterfaceNotSupported);

ProxyPullConsumer obtain_typed_pull_consumer (
in Key uses_interface)
raises (NoSuchImplementation);

};

interface TypedConsumerAdmin :
CosEventChannelAdmin::ConsumerAdmin {

TypedProxyPullSupplier obtain_typed_pull_supplier (
in Key supported_interface)
raises (InterfaceNotSupported);

ProxyPushSupplier obtain_typed_push_supplier (
in Key uses_interface)
raises (NoSuchImplementation);

};
 216



CORBA  E v en t  S e r v i c e :  I D L  I n t e r f a c e s

orbixtalk33.book  Page 217  Monday, July 22, 2002  10:33 AM
interface TypedEventChannel {
TypedConsumerAdmin for_consumers ();
TypedSupplierAdmin for_suppliers ();
void destroy ();

};
};

The OrbixTalkAdmin Module
module OrbixTalkAdmin
{
typedef string ChannelName;

exception InvalidName{ }; // The channel/application name
// supplied is illegal

exception InvalidOption{ }; // Invalid Replay Type/Value
// combination

exception AlreadySet{ }; // app name already set - SFP

// Replay Type
//
// REPLAY_NONE - Do not replay messages - Default
// REPLAY_ALL - Replay all messages
// REPLAY_RELATIVE - Replay n messages relative to most recent
// REPLAY_ABSOLUTE - Replay messages starting from n
// REPLAY_USE_EXISTING - Use the existing replay mechanism for

the channel
//
typedef unsigned short ReplayType;
typedef unsigned long ReplayValue;

const ReplayType REPLAY_NONE = 0;
const ReplayType REPLAY_ALL = REPLAY_NONE + 1;
const ReplayType REPLAY_RELATIVE = REPLAY_NONE + 2;
const ReplayType REPLAY_ABSOLUTE = REPLAY_NONE + 3;
const ReplayType REPLAY_USE_EXISTING = REPLAY_NONE + 6;

interface OTChannelManager
{
CosEventChannelAdmin::EventChannel get_event_channel
(

217



Orb i x T a l k  P r o g r amme r ’ s  Gu i d e

orbixtalk33.book  Page 218  Monday, July 22, 2002  10:33 AM
in ChannelName channel_name,
inout ReplayType type,
inout ReplayValue value

) raises (InvalidName,InvalidOption);

CosTypedEventChannelAdmin::TypedEventChannel
get_typed_event_channel

(
in ChannelName channel_name,
inout ReplayType type,
inout ReplayValue value

) raises (InvalidName,InvalidOption);

// required for SFP
//
void set_app_name
(
in string name

) raises (InvalidName, AlreadySet);
};

};
 218



orbixtalk33.book  Page 219  Monday, July 22, 2002  10:33 AM
Appendix D
Using the OrbixTalk API Directly

OrbixTalk suppliers and consumers are normally implemented with 
the event service. However, you can also write applications using the 
OrbixTalk API. 

In previous versions of OrbixTalk, you could develop multicast applications with 
the OrbixTalk API. It is now simpler and easier to use the interfaces provided by 
the Event Service as described in Part II Developing OrbixTalk Applications, 
“Part II Developing OrbixTalk Applications”. However, the OrbixTalk API is still 
available for you to use.

In discussing the OrbixTalk API, suppliers are referred to as talkers, and 
consumers are called listeners.

This appendix demonstrates how to use the OrbixTalk API. A simple financial 
application is developed where talkers quote stock prices and listeners listen for 
stock price quotes. This appendix also discusses how to use the Message Store, 
and describes the OrbixTalk API demonstration program, OTAuction.

A knowledge of basic Orbix programming, as explained in the Orbix 
Programmer’s Guide, is assumed. Appendix E, “OrbixTalk Class Reference” 
provides a reference to the OrbixTalk API.

Overview
There are three stages to developing an application using the OrbixTalk 
Application Programming Interface (API) directly:

1. Create an IDL interface. The IDL interface is compiled to check the 
specification and map the IDL interface into C++. The IDL interface is 
implemented in a C++ class as explained in the Orbix Programmer’s 
Guide.
219



Orb i x T a l k  P r o g r amme r ’ s  Gu i d e

orbixtalk33.book  Page 220  Monday, July 22, 2002  10:33 AM
2. Write a listener application that creates objects, registers these as 
listeners, and awaits messages relevant to the objects’ Topic Names. 

3. Write a talker application that creates proxy objects and registers these 
as talkers; operation invocations on these proxies are multicast to any 
listeners listening on the talkers’ Topic Names.

Creating an IDL Interface
To develop a simple financial application where talkers quote stock prices and 
listeners listen for stock price quotes, the relevant IDL interface is:

//IDL interface
interface stockPrice
{
oneway void quote (in float f);

};

A version of this example is available in your OrbixTalk installation. 

The quote() operation must be defined as IDL oneway since talkers can invoke 
only oneway operations because talkers and listeners are decoupled. 

Implement interface StockPrice using the C++ class StockPrice_i. In this 
example, the implementation of the quote() operation notifies changes to stock 
prices as shown below:

#include "Server.h"
#include <iostream.h>
void StockPrice_i::quote
(
float price,
CORBA(Environment)&

)
{
cout << "Stock: " << _marker () << " now at " << price << endl;

}

 220



U s i n g  t h e  O r b i x T a l k  AP I  D i r e c t l y

orbixtalk33.book  Page 221  Monday, July 22, 2002  10:33 AM
Creating a Listener Application
The listener application creates StockPrice objects, registers them as listeners, 
and waits to receive messages. The code is:

// C++
// OrbixTalk Listener.

#include "stock.hh"
#include "Server.h"
#include <iostream.h>

#include <stdlib.h>
#include <orbixTalk.h>

int main()
{
cout << endl << "OrbixTalk API Stock Price listener :";
cout << "(Uses the OrbixTalk RMP protocol)" << endl;
cout << endl << endl;

OrbixTalk* otalk;
stockPrice_ptr sunStk;
stockPrice_ptr ibmStk;
stockPrice_ptr ionaStk;

try
{
// Initialise OrbixTalk
//
otalk = OrbixTalk::initialise();

// Build various Listener objects
//
sunStk = new StockPrice_i("sun"); // "sun" == "otrmp//sun"
ibmStk = new StockPrice_i("ibm");
ionaStk = new StockPrice_i("iona");

// Register the listeners
//
otalk->registerListener(sunStk);
otalk->registerListener(ibmStk);
221



Orb i x T a l k  P r o g r amme r ’ s  Gu i d e

orbixtalk33.book  Page 222  Monday, July 22, 2002  10:33 AM
otalk->registerListener(ionaStk);

// Need to execute the event loop
// to process incoming events.
//
CORBA(Orbix).processEvents(60 * 1000);

otalk->unregister(ibmStk);
otalk->unregister(sunStk);
otalk->unregister(ionaStk);

CORBA(release)(ibmStk);
CORBA(release)(sunStk);
CORBA(release)(ionaStk);

}
catch (CORBA(SystemException) &sysEx)
{
cerr << "Unexpected system exception" << endl;
cerr << &sysEx;
if (otalk)
{
otalk->terminate(1);

}
exit(1);

}
catch (...)
{
cerr << "Unexpected exception " << endl;
if (otalk)
{
otalk->terminate(1);

}
exit(1);

}
if (otalk)
{
otalk->terminate();

}
cout << "--- Listener end..." << endl;
return 0;

}

 222



U s i n g  t h e  O r b i x T a l k  AP I  D i r e c t l y

orbixtalk33.book  Page 223  Monday, July 22, 2002  10:33 AM
The first step is to initialize OrbixTalk and obtain a reference to it by calling the 
function OrbixTalk::initialise(). 

The code then creates three objects. For each object, a marker is specified in the 
constructor's parameter. This marker is in the form of an OrbixTalk Topic 
Name:

<protocol>//<topic identifier>

where <protocol> is one of the following: 

otmcp (OrbixTalk Raw Multicast Protocol)
otrmp (OrbixTalk Reliable Multicast Protocol)
otsfp (OrbixTalk Store and Forward Protocol)

In the example code, the protocol is not specified as the default OrbixTalk 
Reliable Multicast Protocol (otrmp) is used:

sunStock = new StockPrice_i("sun");

If the marker is in the form of an OrbixTalk Topic Name, this topic is used in the 
subsequent call to OrbixTalk::registerListener(). If the application needs 
two different objects registered as listeners on the same topic, the constructor's 
parameter must specify both a marker and a server, and the server is used for 
the topic. For example: 

ionaStk = new StockPrice_i("Iona_SP:otrmp//iona");

When both a marker and server are specified in the constructor, you must 
qualify the protocol used in the Topic Name; "Iona_SP:iona" would be 
incorrect.

For each object, the call to OrbixTalk::registerListener() registers the 
object as a listener. The call also contacts the OrbixTalk Directory Enquiries 
daemon to obtain a multicast address corresponding to the topic that the 
listener is listening on. At this point, there are three listener objects listening on 
the topics — sun, ibm and iona.

The call to CORBA::Orbix.processEvents() indicates the application’s 
readiness to accept Orbix events — in this case, incoming messages. If this 
application is also to act as a server for normal (non-OrbixTalk) invocations on 
StockPrice or other objects, impl_is_ready() should be called (with a zero 
timeout). Because impl_is_ready() has not been called here, the Orbix 
daemon has no knowledge of this server. Instead, the Directory Enquiries 
223



Orb i x T a l k  P r o g r amme r ’ s  Gu i d e

orbixtalk33.book  Page 224  Monday, July 22, 2002  10:33 AM
daemon uses the mapping of Topic Names to IP multicast addresses to set up 
the initial connection. Subsequent invocations are directed via multicast to the 
appropriate object(s). 

Creating a Talker Application
The talker application creates three StockPrice proxy objects and registers 
them as talkers. The StockPrice proxy objects then send messages, quoting 
stock prices.

// C++
// Talker Application.

#include "stock.hh"
#include <iostream.h>
#include <stdlib.h>

#include <orbixTalk.h>

OrbixTalk_ptr otalk = 0;

// utility routine to register a Talker
// Note: This should be called from within a try/catch block.
//
stockPrice_ptr myRegisterTalker(const char *stk)
{
stockPrice_ptr pResult;

// Get a CORBA::Object proxy built for us
//
CORBA(Object_ptr) obj = otalk->registerTalker

(
stk,
stockPrice_IR

);

// Narrow it into a stockPrice (the narrow performs an implicit
// duplicate on obj).
//
pResult = stockPrice::_narrow(obj);
CORBA::release(obj);
 224



U s i n g  t h e  O r b i x T a l k  AP I  D i r e c t l y

orbixtalk33.book  Page 225  Monday, July 22, 2002  10:33 AM
return pResult;
}

// This timer gets plugged into the OrbixTalk message loop.
//
class stockTimer : public OrbixTalk::TimerEvent
{
char* m_stock_name;
unsigned long m_last_price;
stockPrice_ptr m_stock;

public:
stockTimer
(
char* stock_name,
unsigned int t,
stockPrice_ptr stock,
unsigned long start_price

) :
OrbixTalk::TimerEvent(t)

{
m_stock_name = new char[strlen(stock_name) + 1];
strcpy(m_stock_name, stock_name);
m_stock = stock;
m_last_price = start_price;

}

~stockTimer()
{
delete [] m_stock_name;

}

void fired()
{
try
{
cout << "Quoting " << m_stock_name << " @ " << m_last_price

<< endl;
m_stock->quote(m_last_price);
m_last_price = m_last_price + 10;
cout << "Done quote on " << m_stock_name << endl;
225



Orb i x T a l k  P r o g r amme r ’ s  Gu i d e

orbixtalk33.book  Page 226  Monday, July 22, 2002  10:33 AM
// Prime the timer again if we want to quote again
//
if (m_last_price < 10000)
{
otalk->addTimerEvent(this);

}
}
catch(CORBA(SystemException)& sysEx)
{
cerr << "Unexpected system exception" << endl;
cerr << &sysEx;
otalk->terminate(1);
exit(1);

}
catch(...)
{
cerr << "Unexpected exception" << endl;
otalk->terminate(1);
exit(1);

}
}

};

int main()
{
int result = 0;

cout << endl << "OrbixTalk API Stock Price talker :";
cout << "(Uses the OrbixTalk RMP protocol)" << endl;
cout << endl << endl;

try
{
// Initialise OrbixTalk
//
otalk = OrbixTalk::initialise();

stockPrice_ptr sunStk;
stockPrice_ptr ibmStk;
stockPrice_ptr ionaStk;

// Register the talker objects
//
 226



U s i n g  t h e  O r b i x T a l k  AP I  D i r e c t l y

orbixtalk33.book  Page 227  Monday, July 22, 2002  10:33 AM
sunStk = myRegisterTalker("sun"); // "sun" == "otrmp//sun"
ibmStk = myRegisterTalker("ibm");
ionaStk = myRegisterTalker("iona");

stockTimer* sunTimer = new stockTimer("Sun", 150, sunStk, 10);
stockTimer* ibmTimer = new stockTimer("IBM", 300, ibmStk, 20);
stockTimer* ionaTimer = new stockTimer

(
"Iona", 100,
ionaStk, 5

);

otalk->addTimerEvent(sunTimer);
otalk->addTimerEvent(ibmTimer);
otalk->addTimerEvent(ionaTimer);

// Wait for a minute
//
CORBA(Orbix).processEvents(60 * 1000);

// Delete the timers. This will remove them from
// the OrbixTalk timer service if they are in it.
//
delete sunTimer;
delete ibmTimer;
delete ionaTimer;

// Unregister the talker objects
//
otalk->unregister(ionaStk);
otalk->unregister(ibmStk);
otalk->unregister(sunStk);

}
catch(CORBA(SystemException) & sysEx)
{
cerr << "Unexpected system exception, exiting" << endl;
cerr << &sysEx;
result = 1;

}
catch(...)
{
cerr << "Unexpected exception " << endl;
result = 1;
227



Orb i x T a l k  P r o g r amme r ’ s  Gu i d e

orbixtalk33.book  Page 228  Monday, July 22, 2002  10:33 AM
}

// Terminate OrbixTalk
//
if (otalk)
{
otalk->terminate(result);

}

cout << endl << "Stock Talker end..." << endl << endl;

return result;
}

Initialize OrbixTalk by calling the function OrbixTalk::initialise().

Note: OrbixTalk::initialise() must be called before any other Orbix or 
OrbixTalk API call or remote invocation. 

The code then declares three proxy objects and registers them as talkers on the 
topics sun, ibm and iona. As before, these talkers use the default OrbixTalk 
Reliable Multicast Protocol (otrmp). The registerTalker() function returns 
an Orbix proxy object that must be narrowed to an object of the desired type. 
OrbixTalk::registerTalker() is declared as:

// C++
//
virtual CORBA(Object_ptr) registerTalker
(
const char* pServerName,
const char* pTypeName,
CORBA(Environment)& rEnv = CORBA(default_environment)

);

This version of OrbixTalk::registerTalker() is similar to Orbix _bind() as 
it accepts a marker:server pair and interface name and returns a proxy object. 
The pServerName parameter of this function specifies the Topic Name on which 
the talker will send messages. It is in the form of a marker:server pair, where 
either the marker or server part is optional. If a server name is specified, it must 
be in the form of a valid OrbixTalk Topic Name, with a protocol specified.
 228



U s i n g  t h e  O r b i x T a l k  AP I  D i r e c t l y

orbixtalk33.book  Page 229  Monday, July 22, 2002  10:33 AM
A version of registerTalker() that enables an existing object (proxy) to be 
registered as an OrbixTalk talker is also provided in class OrbixTalk. This might 
be used in conjunction with the Orbix Naming Service because it assumes that a 
proxy has already been created. 

The registerTalker() operations contact the Directory Enquiries daemon to 
register the Topic Name and map it to an IP multicast address.

Once a proxy is registered as an OrbixTalk talker, only oneway operations can 
be called on that proxy. An attempt to invoke a normal two-way operation raises 
a CORBA::COMM_FAILURE exception. In the example, the oneway operation 
quote() is invoked on the talker proxies. 

OrbixTalk Events
The OrbixTalk Reliable Multicast Protocol (otrmp) uses multiple threads within 
the OrbixTalk library. These threads are created on the call to 
OrbixTalk::initialise(), and terminated on the call to 
OrbixTalk::terminate().

On the talker side, these threads:

• Handle requests to resend message fragments.

• Time out old messages.

• Periodically send information messages.

On the listener side, these threads:

• Handle incoming messages.

To dispatch incoming messages so that application code is invoked when an 
OrbixTalk message arrives at a listener, the Orbix event loop must be 
processing events. Just as normal Orbix server applications initialize and enter 
the Orbix event loop by calling CORBA::Orbix.impl_is_ready() or 
CORBA::Orbix.processEvents(), OrbixTalk listener applications must enter 
the same event loop.

In the same manner as Orbix, OrbixTalk applications can process the event loop 
in a number of ways. Normally, listeners perform initialization steps and then 
enter the Orbix event loop using CORBA:Orbix.processEvents(). If an 
application needs to take greater control of the Orbix event loop, it can be 
229



Orb i x T a l k  P r o g r amme r ’ s  Gu i d e

orbixtalk33.book  Page 230  Monday, July 22, 2002  10:33 AM
written so that it enters the event loop for a period of time to process pending 
events before continuing with other work. An application can determine if there 
are events pending using CORBA:BOA:isEventPending().

An application can determine when the internal OrbixTalk threads are idle using 
OrbixTalk::isIdle(). However, there are very few instances where an 
application needs information on the internal processing of OrbixTalk.

On termination of an application, it is important that the OrbixTalk threads are 
idle so that it is known that all messages have been sent correctly. The 
OrbixTalk::terminate() function can be used to do this. For more 
information about OrbixTalk::terminate(), refer to “OrbixTalk Class” on 
page 219.

OrbixTalk Timer Events

This section describes how to insert a timed callback into the OrbixTalk timer 
service. OrbixTalk provides the class OrbixTalk::TimerEvent, which is an 
abstract base class that defines the interface for user timer events.

To create a user timer event, specify a subclass of the abstract base class 
OrbixTalk::TimerEvent which defines the interface for user timer events. You 
can then add one or more instances of the subclass to the OrbixTalk user timer 
events loop. 

In the following example, class StockPriceTimer implements a timer for the 
StockPrice application:

// C++
#include <orbixTalk.h>
...

class StockPriceTimer : public OrbixTalk::TimerEvent
{
char* m_stock_name;
unsigned long m_last_price;
StockPrice_ptr m_stock;

public:
StockPriceTimer
(
char* stock_name,
 230



U s i n g  t h e  O r b i x T a l k  AP I  D i r e c t l y

orbixtalk33.book  Page 231  Monday, July 22, 2002  10:33 AM
unsigned int t,
StockPrice_ptr stock,
unsigned long start_price

) :
OrbixTalk::TimerEvent(t)

{
m_stock_name = new char[strlen(stock_name) + 1];
strcpy(m_stock_name,stock_name);
m_stock = stock;
m_last_price = start_price;

}

~stockTimer()
{
delete[] m_stock_name;

}

void fired()
{
try
{
cout << "Quoting "

<< m_stock_name << " @ "
<< m_last_price << endl;

m_stock->quote(m_last_price);
m_last_price = m_last_price + 10;
cout << "Done quote on "

<< m_stock_name << endl;
} catch ... // Handle exceptions.

// Prime the timer again:
otalk->addTimerEvent(this);

}
};

The constructor of class CORBA::TimerEvent takes one parameter specifying, in 
milliseconds, the timeout for the event. The function fired() is called on the 
user timer event when the timeout expires. In this example, fired() is 
implemented so that it sends messages by invoking the quote() operation on a 
StockPrice object, then re-inserts the user timer event into the OrbixTalk timer 
service by calling OrbixTalk::addTimerEvent().
231



Orb i x T a l k  P r o g r amme r ’ s  Gu i d e

orbixtalk33.book  Page 232  Monday, July 22, 2002  10:33 AM
// C++
// Talker application.
...
OrbixTalk* otalk;
...
int main(int argc, char** argv)
{
...
StockPrice_var ionaStk;
StockPriceTimer* ionaTimer;
try
{
otalk = OrbixTalk::initialise();

// Register the talkers.
ionaStk = myRegisterTalker("otrmp//iona");
ionaTimer = new StockPriceTimer("IONA", 150, ionaStk, 10);
otalk->addTimerEvent(ionaTimer);

// Enter OrbixTalk event loop for one
// minute, then exit the application.
CORBA::Orbix.processEvents (60*1000);
delete ionaTimer;

} catch ... // Handle exceptions here.

otalk->terminate();

return 0;
}

The talker application creates an instance of StockPriceTimer and inserts it 
into the user timer events loop by calling addTimerEvent() on OrbixTalk. The 
application enters the OrbixTalk user timer events loop by calling 
CORBA::Orbix.processEvents(). 
 232



U s i n g  t h e  O r b i x T a l k  AP I  D i r e c t l y

orbixtalk33.book  Page 233  Monday, July 22, 2002  10:33 AM
Using MessageStore with the OrbixTalk API directly
This section modifies the example in Appendix D “Using the OrbixTalk API 
Directly” on page 219 to use the Store and Forward Protocol provided by the 
OrbixTalk MessageStore. 

The changes required to the example are minimal and are shown in bold text.

Creating a Listener Application

A listener application that uses the OrbixTalk MessageStore is coded as follows:

// C++
// OrbixTalk Listener.

#include "stock.hh"
#include "Server.h"
#include <iostream.h>

#include <stdlib.h>
#include <orbixTalk.h>

int main()
{
char* appName = "//stocksfp/listener";

cout << endl << "OrbixTalk API Stock Price listener :";
cout << "(Uses the OrbixTalk SFP protocol)" << endl;
cout << endl << endl;

OrbixTalk* otalk;
stockPrice_ptr sunStk;
stockPrice_ptr ibmStk;
stockPrice_ptr ionaStk;

try
{
// Initialise OrbixTalk
//
otalk = OrbixTalk::initialise();

// Set the persistent application name
233



Orb i x T a l k  P r o g r amme r ’ s  Gu i d e

orbixtalk33.book  Page 234  Monday, July 22, 2002  10:33 AM
//
otalk->setPersistentAppName(appName);

// Build various Listener objects
//
sunStk = new StockPrice_i("otsfp//sun");
ibmStk = new StockPrice_i("otsfp//ibm");
ionaStk = new StockPrice_i("otsfp//iona");

// Register the listeners
//
otalk->registerListener(sunStk, OrbixTalk::REPLAY_ALL);
otalk->registerListener(ibmStk, OrbixTalk::REPLAY_ALL);
otalk->registerListener(ionaStk, OrbixTalk::REPLAY_ALL);

// Need to execute the event loop
// to process incoming events.
//
CORBA(Orbix).processEvents(60 * 1000);

otalk->unregister(ibmStk);
otalk->unregister(sunStk);
otalk->unregister(ionaStk);

CORBA(release)(ibmStk);
CORBA(release)(sunStk);
CORBA(release)(ionaStk);

}
catch (CORBA(SystemException) &sysEx)
{
cerr << "Unexpected system exception" << endl;
cerr << &sysEx;
if (otalk)
{
otalk->terminate(1);

}
exit(1);

}
catch (...)
{
cerr << "Unexpected exception " << endl;
if (otalk)
{

 234



U s i n g  t h e  O r b i x T a l k  AP I  D i r e c t l y

orbixtalk33.book  Page 235  Monday, July 22, 2002  10:33 AM
otalk->terminate(1);
}
exit(1);

}
if (otalk)
{
otalk->terminate();

}

cout << "--- Listener end..." << endl;

return 0;
}

The listener must specify a unique and persistent application name by calling 
OrbixTalk::setPersistentAppName(). For more information about persistent 
application names, refer to “Persistent Application Name” on page 14. Each 
talker or listener using the OrbixTalk Store and Forward Protocol maintains a 
persistent state. The application name is used to find the location of the 
persistent state.

The listener specifies the protocol using the prefix otsfp (Store and Forward 
Protocol). By default, all stored messages are replayed, however you can choose 
the type of replay used for the listener. The second parameter of 
OrbixTalk::registerListener() specifies the replay type used for a topic 
using the Store and Forward Protocol (otsfp). The value is an 
OrbixTalk::REPLAY_TYPE and is one of the following:

REPLAY_NONE = 0 No replay.

REPLAY_ALL = 1 Replay all messages not yet heard.

REPLAY_LAST = 2 If messages are missed, replay the most recent 
message.
235



Orb i x T a l k  P r o g r amme r ’ s  Gu i d e

orbixtalk33.book  Page 236  Monday, July 22, 2002  10:33 AM
Creating a Talker Application

In a talker application, the application name identifies the talker’s persistent 
state. The application name is set using OrbixTalk::setPersistentAppName(). 
Persistent application names must be unique within an OrbixTalk system.

An invocation on an OrbixTalk object does not return until the OrbixTalk 
MessageStore saves the message to disk and the talker has received an 
acknowledgment from the OrbixTalk MessageStore.

Note: This example does not use timers in the event loop.

// C++
// Talker Application.

#include "stock.hh"
#include <iostream.h>

#include <stdlib.h>
#include <orbixTalk.h>

OrbixTalk_ptr otalk = 0;

// utility routine to register a Talker
// Note: This should be called from within a try/catch block.
//
stockPrice_ptr myRegisterTalker(const char *stk)
{
stockPrice_ptr pResult;

// Get a CORBA::Object proxy built for us
//
CORBA(Object_ptr) obj = otalk->registerTalker

(
stk,
stockPrice_IR

);

// Narrow it into a stockPrice (the narrow performs an implicit
// duplicate on obj).
//
pResult = stockPrice::_narrow(obj);
 236



U s i n g  t h e  O r b i x T a l k  AP I  D i r e c t l y

orbixtalk33.book  Page 237  Monday, July 22, 2002  10:33 AM
CORBA::release(obj);

return pResult;
}

// This timer gets plugged into the OrbixTalk message loop.
//
class stockTimer : public OrbixTalk::TimerEvent
{
char* m_stock_name;
unsigned long m_last_price;
stockPrice_ptr m_stock;

public:
stockTimer
(
char* stock_name,
unsigned int t,
stockPrice_ptr stock,
unsigned long start_price

) :
OrbixTalk::TimerEvent(t)

{
m_stock_name = new char[strlen(stock_name) + 1];
strcpy(m_stock_name, stock_name);
m_stock = stock;
m_last_price = start_price;

}

~stockTimer()
{
delete [] m_stock_name;

}

void fired()
{
try
{
cout << "Quoting " << m_stock_name << " @ " << m_last_price

<< endl;
m_stock->quote(m_last_price);
m_last_price = m_last_price + 10;
cout << "Done quote on " << m_stock_name << endl;
237



Orb i x T a l k  P r o g r amme r ’ s  Gu i d e

orbixtalk33.book  Page 238  Monday, July 22, 2002  10:33 AM
// Prime the timer again if we want to quote again
//
if (m_last_price < 1000)
{
otalk->addTimerEvent(this);

}
}
catch(CORBA(SystemException)& sysEx)
{
cerr << "Unexpected system exception" << endl;
cerr << &sysEx;
otalk->terminate(1);
exit(1);

}
catch(...)
{
cerr << "Unexpected exception" << endl;
otalk->terminate(1);
exit(1);

}
}

};

int main()
{
char* appName = "//stocksfp/talker1";
int result = 0;

cout << endl << "OrbixTalk API Stock Price talker :";
cout << "(Uses the OrbixTalk SFP protocol)" << endl;
cout << endl << endl;
try
{
// Initialise OrbixTalk
//
otalk = OrbixTalk::initialise();

// Set the persistent application name
//
otalk->setPersistentAppName(appName);

stockPrice_ptr sunStk;
 238



U s i n g  t h e  O r b i x T a l k  AP I  D i r e c t l y

orbixtalk33.book  Page 239  Monday, July 22, 2002  10:33 AM
stockPrice_ptr ibmStk;
stockPrice_ptr ionaStk;

// Register the talker objects
//
sunStk = myRegisterTalker("otsfp//sun");
ibmStk = myRegisterTalker("otsfp//ibm");
ionaStk = myRegisterTalker("otsfp//iona");

stockTimer* sunTimer = new stockTimer("Sun", 100, sunStk, 10);
stockTimer* ibmTimer = new stockTimer("IBM", 200, ibmStk, 20);
stockTimer* ionaTimer = new stockTimer

(
"Iona", 300,
ionaStk, 5

);

otalk->addTimerEvent(sunTimer);
otalk->addTimerEvent(ibmTimer);
otalk->addTimerEvent(ionaTimer);

// Wait for a minute
//
CORBA(Orbix).processEvents(60 * 1000);

// Delete the timers. This will remove them from
// the OrbixTalk timer service if they are in it.
//
delete sunTimer;
delete ibmTimer;
delete ionaTimer;

// Unregister the talker objects
//
otalk->unregister(ionaStk);
otalk->unregister(ibmStk);
otalk->unregister(sunStk);

}
catch(CORBA(SystemException) & sysEx)
{
cerr << "Unexpected system exception, exiting" << endl;
cerr << &sysEx;
result = 1;
239



Orb i x T a l k  P r o g r amme r ’ s  Gu i d e

orbixtalk33.book  Page 240  Monday, July 22, 2002  10:33 AM
}
catch(...)
{
cerr << "Unexpected exception " << endl;
result = 1;

}

// Terminate OrbixTalk
//
if (otalk)
{
otalk->terminate(result);

}

cout << endl << "Stock Talker end..." << endl << endl;

return result;
}

OrbixTalk Demonstration Program
The OTAuction demonstration program shows how the facilities provided by 
OrbixTalk can simplify the way in which a distributed application is designed and 
developed. It is assumed that the reader is familiar with basic Orbix and 
OrbixTalk programming.

Overview

The OTAuction system provides an example of a real-world auction of an item 
such as a painting. In general, there is a single auctioneer that has information 
about the painting, and where the auction will be held. The auctioneer has no 
knowledge of the bidders involved in the auction until the time at which the 
auction takes place. There is also a group of bidders who have seen the 
information about the painting, and know where the auction will be held. The 
auctioneer opens the auction, bidders make bids, the auctioneer informs the 
group of bidders of the current bidding value as the auction progresses, and 
eventually the auctioneer closes the auction, either selling the painting, or 
passing it in.
 240



U s i n g  t h e  O r b i x T a l k  AP I  D i r e c t l y

orbixtalk33.book  Page 241  Monday, July 22, 2002  10:33 AM
This scenario is well-suited to implementation using OrbixTalk because all the 
components involved are distinct and decoupled. Communication takes place 
asynchronously, with bidders making bids and the auctioneer responding to the 
group of bidders as a whole.

The OTAuction system can also be applied readily to other situations and 
problems as a design pattern. For example, a set of load-balancing servers can 
bid for the right to perform an action, with the bidding power of each server 
being inversely proportional to its current load. An auction is an efficient way of 
determining how to assign a resource when the objects to which the assignment 
can be made may not be known in advance.

The OTAuction system consists of two programs:

1. Auctioneer program

The auctioneer program describes the items that are available for auction 
and uses a number of Auctioneer_i objects to coordinate the bidding 
for the items. The system can be run with multiple Auctioneer_i 
objects.

2. Bidder program

The bidder program uses a number of Bidder_i objects to make bids on 
the items. The system can be run with multiple Bidder_i objects.

These programs are described in more detail in “OTAuction Components” on 
page 247.

The OTAuction system also demonstrates the following advanced features of 
OrbixTalk programming:

• Combined use of the Topic Names using the Store and Forward Protocol 
(otsfp) and Topic Names using the Reliable Multicast Protocol (otrmp) 
for talking and listening in one process.

• Management of persistent information using the OrbixTalk MessageStore.

• Using dynamic OrbixTalk Topic Names.

• Analogy between OrbixTalk topics and Orbix stringified object 
references.

• Using wildcarded OrbixTalk topics.

• Mapping derived or polymorphic IDL interfaces to the OrbixTalk Topic 
Name.
241



Orb i x T a l k  P r o g r amme r ’ s  Gu i d e

orbixtalk33.book  Page 242  Monday, July 22, 2002  10:33 AM
OTAuction System
The basic requirement for OTAuction is to enable a number of processes to bid 
for a set of items. The items to be auctioned are defined at runtime, and the 
Auctioneer_i objects responsible for coordinating the auction of the items 
have no knowledge of the Bidder_i objects that can make bids.

Creating the IDL Interfaces

The bidding process is defined in terms of the following IDL interfaces in the 
Auction.idl file:

• Auction interface

• Auctioneer interface

• Bidder interface

• Observer interface

The Auction Interface

Auction.idl

//The Auction interface

interface Auction
{
oneway void forAuction
(
in string itemName,
in string auctioneerTopic,
in string bidderTopic,
in string observerTopic,
in string bidderObserverTopic

);
};
 242



U s i n g  t h e  O r b i x T a l k  AP I  D i r e c t l y

orbixtalk33.book  Page 243  Monday, July 22, 2002  10:33 AM
The Auction interface defines the way in which information about the items 
available for auction is communicated between the auctioneer and the bidders 
or observers of an auction. Each message contains information relating to the 
auction of a single item, including:

• The name of the item.

• The topic on which bids can be made for the item.

• The topic on which the bidding is declared open and closed.

• The topic on which updates on the current bid are made.

• A topic to assist with a derived interface.

Bidders can be created and destroyed at any time. Therefore, this information 
needs to be preserved in much the same way that an auction catalogue 
preserves information on the items for auction. Messages sent to this interface 
should use the Store and Forward Protocol (otsfp).

The Auctioneer Interface

interface Auctioneer
{
oneway void bid
(
in float bidValue,
in string bidderName

);
};

The primary role of an auctioneer is to take bids on an item. No other 
communication from bidders to an auctioneer is required. Because there is a 
separate auctioneer for each item (to allow concurrent auctions to be managed 
by the same process easily), the only method required of the interface is the 
bid() method, which specifies the value of the bid, and the name of the bidder 
making it.

Because it is unlikely for bidders to be making bids while the auctioneer is doing 
other things, or is not available at all, the Auctioneer interface should use the 
Reliable Multicast Protocol.
243



Orb i x T a l k  P r o g r amme r ’ s  Gu i d e

orbixtalk33.book  Page 244  Monday, July 22, 2002  10:33 AM
The Observer and Bidder Interfaces

The auctioneer of an item makes two types of communication to the bidders:

• Informs bidders of the current value that has been bid for an item. 

• Opens and closes an auction for an item. 

Other components in the system can be interested in the bids being made on an 
item without needing to know when an auction starts and ends; these 
components are known as observers. 

There is a separate interface for each type of communication; an observer 
interface and a bidder:observer interface. However, since a bidder for an item 
needs to know both when the auction starts and ends and the current bid on the 
item, it uses both interfaces. The bidder interface is, therefore, a derived 
interface of the observer interface. Messages sent on both interfaces should use 
the Reliable Multicast Protocol (otrmp).

interface Observer
{
oneway void currentBid
(
in float bidValue,
in string bidderName

);
};

interface Bidder : Observer
{
oneway void auctionOpen();

oneway void auctionClose
(
in float bidValue,
in string bidderName

);
};

Derived or polymorphic interfaces map well to an OrbixTalk Topic Name. For 
example, if messages to the observer interface use the following Topic Name:

otrmp//Auction/Mahogany Desk/Bidder/Observer/Messages

then messages to the bidder interface could be sent on the Topic Name:
 244



U s i n g  t h e  O r b i x T a l k  AP I  D i r e c t l y

orbixtalk33.book  Page 245  Monday, July 22, 2002  10:33 AM
otrmp//Auction/Mahogany Desk/Bidder/Messages

so that an application using the bidder interface can receive messages sent 
specifically to the bidder interface, or to its base interface, observer, by 
listening on the following wildcard Topic Name:

otrmp//Auction/Mahogany Desk/Bidder/**

The bidderObserverTopic string in the Auction interface is used to specify the 
wildcard Topic Name on which an application, using the bidder interface, should 
listen to receive messages sent on the observer interface.

OTAuction Topic Names

The following classes of Topic Names are used in the OTAuction system:

• The Auction Topic Name

The Auction Topic Name is the topic on which information about the 
items available for auction is maintained. The Topic Name uses the Store 
and Forward Protocol (otsfp) so that the information is held 
persistently, and provided to any process that starts listening on the topic 
in the future; that is, the information is independent of time. There is one 
auction Topic Name per auction.

It has the form:

otsfp//<auction name>

where <auction name> is the name of the auction.

• The Auctioneer Topic Name

For each item that is auctioned, a Topic Name is required on which bids 
can be taken by the auctioneer. This is the auctioneer Topic Name. The 
auctioneer Topic Name uses the Reliable Multicast Protocol because bids 
do not need to be stored for future replay to the auctioneer.

It has the form:

otrmp//<auction name>/<item name>

where <item name> is the name of the item being auctioned on this 
Topic Name.

The <auction name> part is maintained because two separate auctions 
can exist for different items with the same item name.
245



Orb i x T a l k  P r o g r amme r ’ s  Gu i d e

orbixtalk33.book  Page 246  Monday, July 22, 2002  10:33 AM
• The Observer Topic Name

The auctioneer for each item needs to inform each observer about the 
current bid value on the item. This is the observer Topic Name. The 
observer Topic Name uses the Reliable Multicast Protocol because the 
information is dependent on time, and has the form:

otrmp//<auction name>/<item name>/bidding/bidder/
observer

• The Bidder Topic Name

The auctioneer also needs to inform bidders when the auction opens and 
closes. This is the bidder Topic which uses the Reliable Multicast Protocol 
(otrmp) because the information is dependent on time, and has the form:

otrmp//<auction name>/<item name>/bidding/bidder

• The BidderObserver Topic Name

Because bidders are also observers, and for ease of implementation 
reasons, a bidderobserver Topic Name is defined. It is a wildcard Topic 
Name that matches the bidder and observer Topic Name for a particular 
item. It has the form:

otrmp//<auction name>/<item name>/bidding/*

Both the Reliable Multicast Protocol and Store and Forward Protocol guarantee 
ordering of messages, so the message stream of each protocol contains ordering 
information, which is related to the time at which messages are sent. The 
Auction topic uses the Store and Forward Protocol because the information is 
not dependent on time and guaranteed message delivery is required.

Similarly, those topics that use the Reliable Multicast Protocol in this example 
transport information that is dependent on time; for example, a bid must be 
made before an auction is closed. Since OrbixTalk does not guarantee that 
messages sent on separate Topic Names arrive in the same order, only those on 
an individual Topic Name, some components in the system require further 
checks to ensure that messages are handled correctly depending on the time at 
which they are received.
 246



U s i n g  t h e  O r b i x T a l k  AP I  D i r e c t l y

orbixtalk33.book  Page 247  Monday, July 22, 2002  10:33 AM
OTAuction Components

Auctioneer Program

The Auctioneer program sends a single message to describe each item that is 
available for auction, and creates an Auctioneer_i object to handle the actual 
auction of the item. The Auctioneer_i objects implement the Auctioneer 
interface, and talk on the Observer and Bidder interfaces through the relevant 
topics.

Each item that is auctioned has a specified reserve price. On receipt of a bid 
message, an Auctioneer_i object checks if the value of the bid is greater than 
the previous greatest value. If so, and the bidding has reached the reserve price, 
the Auctioneer_i object resets a timer that is used to close the auction. If no 
more bids greater than the largest bid are received before the timer fires, the 
auction is closed by sending an auctionClose message on the Bidder interface.

Bidder Program

Each auctioneer process manages the auctioning of items in a single auction that 
is referenced by the auction Topic Name associated with the auction name. 
Bidders that want to participate in a particular auction listen on the relevant 
auction Topic Name to determine the items that are available. For each 
forAuction message received on the auction Topic Name, a bidder process 
creates a Bidder_i object to handle the bidding for that item.

In this implementation, each Bidder_i object has a bidLimit and a bidPause. 
The bidLimit represents the greatest amount that the Bidder_i object is 
prepared to bid for an item. The bidPause represents the amount of time the 
Bidder_i object waits before making another bid, after hearing of a competing 
bidder leading the bidding for the item.

Since each Bidder_i object is interested in the Bidder interface, including those 
messages sent on the Observer Topic Name, it receives messages on the 
bidderobserver wildcard Topic Name to get messages sent on both the 
observer and bidder Topic Names for a particular item.
247



Orb i x T a l k  P r o g r amme r ’ s  Gu i d e

orbixtalk33.book  Page 248  Monday, July 22, 2002  10:33 AM
Running the Auctioneer and Bidder Programs

A typical run of OTAuction requires a number of bidder processes and one or 
more auctioneer processes. Both the OrbixTalk Directory Enquiries daemon 
(otd/otdsm) and the OrbixTalk MessageStore daemon (otmsd) should be 
started and be primary processes before starting the bidder or auctioneer 
processes.

Both programs can be run without any arguments to print out information about 
the expected arguments. Running the bidder without arguments produces the 
following output:

Usage: bidder <auction name> <bidder name> <bid limit> <bid pause>

Running auctioneer without arguments produces the following output:

Usage: auctioneer <auction name>

Running the Auctioneer Program
Each auctioneer process auctions items in a single auction. The name of this 
auction is specified in the <auction name> argument to auctioneer. The 
program prompts for a number of items to be auctioned, the name and reserve 
price for each of the items. You can wait for all bidders to be ready for the 
auction before pressing ENTER to continue. From this point, no further 
interaction is required.
 248



U s i n g  t h e  O r b i x T a l k  AP I  D i r e c t l y

orbixtalk33.book  Page 249  Monday, July 22, 2002  10:33 AM
Running the Bidder Program
Each bidder process makes bids on items in a single auction. The auction in 
which the bidder participates is specified in the first parameter. The remaining 
parameters to bidder are:

Parameter Description

<bidder name> Every bidder in an auction requires a 
unique name to distinguish its bids from 
that of other bidders. This parameter is 
also used as the persistent application 
name required by OrbixTalk for a 
listener using the Store and Forward 
Protocol (otsfp), so must be in the form 
of a valid application name. For example:

//bidder/1

<bid limit> This parameter specifies the limit to the 
bids that the bidder makes for every item 
in the auction. It should have a value 
between 1 and the maximum integer 
value.

<bid pause> Before making a higher bid, each bidder 
waits a period of time after hearing of a 
competing bidder leading the bidding. 
This parameter specifies that time in 
milliseconds. It should be a value between 
1 and the maximum integer value. It is 
interesting to note that a bidder with a 
greater value for this parameter tends to 
win fewer auctions where its competing 
bidders have the same bid limit.

Table 17.2: Bidder Parameters
249



Orb i x T a l k  P r o g r amme r ’ s  Gu i d e

orbixtalk33.book  Page 250  Monday, July 22, 2002  10:33 AM
Typical Output for the OTAuction Demonstration Program

Running the OTAuction demonstration program produces output similar to the 
following:

Auctioneer output

bash-2.00$ ./auctioneer MyAuction
*** Initialising OrbixTalk ***
How many items are for auction? 2
Item name : Painting
Reserve price: 5.0
Item name : Desk
Reserve price: 17.0
All items are ready for auction. To begin the auctions,
press <enter>...
Opening auction for Painting on otrmp//MyAuction/Painting/
auctioneer
Opening auction for Desk on otrmp//MyAuction/Desk/auctioneer
Auction will begin now.
Received bid of 1 for Painting
This is the highest bid
Received bid of 1 for Painting
Received bid of 1 for Desk
This is the highest bid
Received bid of 1 for Desk
Received bid of 2 for Painting
This is the highest bid
Received bid of 2 for Desk
This is the highest bid
Received bid of 3 for Painting
This is the highest bid
Received bid of 3 for Desk
This is the highest bid
Received bid of 4 for Painting
This is the highest bid
Received bid of 4 for Desk
This is the highest bid
Received bid of 5 for Painting
This is the highest bid
Received bid of 5 for Desk
This is the highest bid
Received bid of 6 for Painting
 250



U s i n g  t h e  O r b i x T a l k  AP I  D i r e c t l y

orbixtalk33.book  Page 251  Monday, July 22, 2002  10:33 AM
This is the highest bid
We have reached reserve price
Received bid of 6 for Desk
This is the highest bid
Received bid of 7 for Painting
This is the highest bid
We have reached reserve price
Received bid of 7 for Desk
This is the highest bid
Received bid of 8 for Painting
This is the highest bid
We have reached reserve price
Received bid of 8 for Desk
This is the highest bid
Received bid of 9 for Painting
This is the highest bid
We have reached reserve price
Received bid of 9 for Desk
This is the highest bid
Received bid of 10 for Painting
This is the highest bid
We have reached reserve price
Received bid of 10 for Desk
This is the highest bid
Painting going 1 times...
Desk going 1 times...
Painting going 2 times...
Desk going 2 times...
Painting going 3 times...
Desk going 3 times...
Painting sold.
Painting was sold for 10 to //Bidder/2
Desk sold.
Desk was passed in
*** Terminating OrbixTalk ***

Bidder (1) output

bash-2.00$ ./bidder MyAuction //Bidder/1 10.0 500
*** Initialising OrbixTalk ***
Bidder is ready
New item available: Painting on topic
otrmp//MyAuction/Painting/auctioneer
251



Orb i x T a l k  P r o g r amme r ’ s  Gu i d e

orbixtalk33.book  Page 252  Monday, July 22, 2002  10:33 AM
New item available: Desk on topic otrmp//MyAuction/Desk/auctioneer
Bidding is open for Painting
Bidding is open for Desk
Bidding 1 for Painting
We hold the highest bid (1) on Painting
Bidding 1 for Desk
We hold the highest bid (1) on Desk
//Bidder/2 holds the highest bid (2) on Painting
//Bidder/2 holds the highest bid (2) on Desk
Bidding 3 for Painting
We hold the highest bid (3) on Painting
Bidding 3 for Desk
We hold the highest bid (3) on Desk
//Bidder/2 holds the highest bid (4) on Painting
//Bidder/2 holds the highest bid (4) on Desk
Bidding 5 for Painting
We hold the highest bid (5) on Painting
Bidding 5 for Desk
We hold the highest bid (5) on Desk
//Bidder/2 holds the highest bid (6) on Painting
//Bidder/2 holds the highest bid (6) on Desk
Bidding 7 for Painting
We hold the highest bid (7) on Painting
Bidding 7 for Desk
We hold the highest bid (7) on Desk
//Bidder/2 holds the highest bid (8) on Painting
//Bidder/2 holds the highest bid (8) on Desk
Bidding 9 for Painting
We hold the highest bid (9) on Painting
Bidding 9 for Desk
We hold the highest bid (9) on Desk
//Bidder/2 holds the highest bid (10) on Painting
That's too high for us.
//Bidder/2 holds the highest bid (10) on Desk
That's too high for us.
Bidding is open for Painting
//Bidder/2 holds the highest bid (10) on Painting
That's too high for us.
Bidding is open for Desk
//Bidder/2 holds the highest bid (10) on Desk
That's too high for us.
Bidding is open for Painting
//Bidder/2 holds the highest bid (10) on Painting
 252



U s i n g  t h e  O r b i x T a l k  AP I  D i r e c t l y

orbixtalk33.book  Page 253  Monday, July 22, 2002  10:33 AM
That's too high for us.
Bidding is open for Desk
//Bidder/2 holds the highest bid (10) on Desk
That's too high for us.
Bidding is open for Painting
//Bidder/2 holds the highest bid (10) on Painting
That's too high for us.
Bidding is open for Desk
//Bidder/2 holds the highest bid (10) on Desk
That's too high for us.
//Bidder/2 won the auction for Painting at 10
Nobody won the auction for Desk at 10
*** Terminating OrbixTalk ***

Bidder (2) output

bash-2.00$ ./bidder MyAuction //Bidder/2 10.0 500
*** Initialising OrbixTalk ***
Bidder is ready
New item available: Painting on topic
otrmp//MyAuction/Painting/auctioneer
New item available: Desk on topic otrmp//MyAuction/Desk/auctioneer
Bidding is open for Painting
Bidding is open for Desk
Bidding 1 for Painting
//Bidder/1 holds the highest bid (1) on Painting
Bidding 1 for Desk
//Bidder/1 holds the highest bid (1) on Desk
Bidding 2 for Painting
We hold the highest bid (2) on Painting
Bidding 2 for Desk
We hold the highest bid (2) on Desk
//Bidder/1 holds the highest bid (3) on Painting
//Bidder/1 holds the highest bid (3) on Desk
Bidding 4 for Painting
We hold the highest bid (4) on Painting
Bidding 4 for Desk
We hold the highest bid (4) on Desk
//Bidder/1 holds the highest bid (5) on Painting
//Bidder/1 holds the highest bid (5) on Desk
Bidding 6 for Painting
We hold the highest bid (6) on Painting
Bidding 6 for Desk
253



Orb i x T a l k  P r o g r amme r ’ s  Gu i d e

orbixtalk33.book  Page 254  Monday, July 22, 2002  10:33 AM
We hold the highest bid (6) on Desk
//Bidder/1 holds the highest bid (7) on Painting
//Bidder/1 holds the highest bid (7) on Desk
Bidding 8 for Painting
We hold the highest bid (8) on Painting
Bidding 8 for Desk
We hold the highest bid (8) on Desk
//Bidder/1 holds the highest bid (9) on Painting
//Bidder/1 holds the highest bid (9) on Desk
Bidding 10 for Painting
We hold the highest bid (10) on Painting
Bidding 10 for Desk
We hold the highest bid (10) on Desk
We hold the highest bid (10) on Painting
We hold the highest bid (10) on Desk
We hold the highest bid (10) on Painting
We hold the highest bid (10) on Desk
We hold the highest bid (10) on Painting
We hold the highest bid (10) on Desk
We won the auction for Painting at 10
Nobody won the auction for Desk at 10
*** Terminating OrbixTalk ***

The Source Code

The full source code for the OTAuction demo can be found in the OrbixTalk 
installation. The code includes many comments that assist your understanding of 
OrbixTalk programming in general and the specific situation for OTAuction.
 254



orbixtalk33.book  Page 255  Monday, July 22, 2002  10:33 AM
Appendix E
OrbixTalk Class Reference

This appendix introduces the OrbixTalk Classes. These are used in 
the OrbixTalk API.

Appendix D, “Using the OrbixTalk API Directly” describes how to develop 
OrbixTalk applications using the OrbixTalk API as an alternative to the Event 
Service. This appendix provides a reference to classes used in that API.

In discussing the OrbixTalk API, suppliers are referred to as talkers, and 
consumers are called listeners.

Overview
The OrbixTalk Classes provide the following additional OrbixTalk functions that 
can be included in applications using the OrbixTalk API directly:

• Class OrbixTalk defines the interface to OrbixTalk. It includes functions 
to initialize OrbixTalk and to register and unregister talkers and listeners.

• Class OrbixTalk::TimerEvent is an abstract base class which defines the 
interface for timer events. When a timer event is fired, a talker or 
listener application receives a call-back and can periodically regain control 
from the OrbixTalk event loop.

You can define a subclass of OrbixTalk::TimerEvent as a timed call-
back to be called from the OrbixTalk timer service.

OrbixTalk Class
Description Class OrbixTalk defines the user interface to OrbixTalk.

Synopsis // C++
255



Orb i x T a l k  P r o g r amme r ’ s  Gu i d e

orbixtalk33.book  Page 256  Monday, July 22, 2002  10:33 AM
//
class OrbixTalk
{
public:
enum REPLAY_TYPE
{
REPLAY_NONE = 0, // Do not replay messages
REPLAY_ALL = 1, // Replay all messages - Default
REPLAY_LAST = 2 // Replay last message missed

};
class TimerEvent
{
// See entry for OrbixTalk::TimerEvent

};
static OrbixTalk_ptr initialise
(
CORBA(Environment)& rEnv = CORBA(default_environment)

);
virtual void terminate
(
const unsigned char bImmediate = 0

);
virtual void registerListener
(
CORBA(Object_ptr) pObject,
REPLAY_TYPE replayStore = REPLAY_ALL,
CORBA(Environment)& rEnv = CORBA(default_environment)

);
virtual CORBA(Object_ptr) registerTalker
(
const char* pServerName,
const char* pTypeName,
CORBA(Environment)& rEnv = CORBA(default_environment)

);
virtual void registerTalker
(
CORBA(Object_ptr) pObject,
CORBA(Environment)& rEnv = CORBA(default_environment)

);
virtual void unregister
(
CORBA(Object_ptr) pObject,
CORBA(Environment)& rEnv = CORBA(default_environment)
 256



Orb i x T a l k  C l a s s  R e f e r e n c e

orbixtalk33.book  Page 257  Monday, July 22, 2002  10:33 AM
);
virtual unsigned char OrbixTalk::isRegistered
(
CORBA(Object_ptr) pObject,
CORBA(Environment)& rEnv = CORBA(default_environment)

);
virtual void setPersistentAppName
(
const char* pName,
CORBA(Environment)& rEnv = CORBA(default_environment)

);
virtual void setMyReqTransformer
(
CORBA(IT_reqTransformer)* pObject,
CORBA(Environment)& rEnv = CORBA(default_environment)

);
virtual CORBA(IT_reqTransformer)* getMyReqTransformer
(
CORBA(Environment)& rEnv

);
virtual unsigned char isIdle
(
CORBA(Environment)& rEnv = CORBA(default_environment)

);
virtual void addTimerEvent
(
TimerEvent* pTimer,
CORBA(Environment)& rEnv = CORBA(default_environment)

);
virtual void removeTimerEvent
(
TimerEvent* pTimer,
CORBA(Environment)& rEnv = CORBA(default_environment)

);
};

OrbixTalk::addTimerEvent()

Synopsis virtual void addTimerEvent
(
TimerEvent* pTimer,
257



Orb i x T a l k  P r o g r amme r ’ s  Gu i d e

orbixtalk33.book  Page 258  Monday, July 22, 2002  10:33 AM
CORBA(Environment)& rEnv = CORBA(default_environment)
);

Description Installs a timed call-back into the OrbixTalk timer service. When the timer 
expires, OrbixTalk::TimerEvent::fired() is called by the OrbixTalk timer service.

Parameters:

Notes: There is no guarantee that multiple timer events will not be fired simultaneously.

OrbixTalk specific.

See Also: OrbixTalk::TimerEvent
OrbixTalk::TimerEvent::fired()
OrbixTalk::removeTimerEvent()

OrbixTalk::isIdle()

Synopsis virtual unsigned char isIdle
(
CORBA(Environment)& rEnv = CORBA(default_environment)

);

Description Determines when internal OrbixTalk message queues are empty, and OrbixTalk 
has finished internal processing.

Notes OrbixTalk specific.

See Also: OrbixTalk::terminate()

OrbixTalk::isRegistered()

Synopsis virtual unsigned char OrbixTalk::isRegistered
(
CORBA(Object_ptr) pObject,
CORBA(Environment)& rEnv = CORBA(default_environment)

);

Description Tests whether pObject is registered as an OrbixTalk talker or listener.

pTimer A derived class of OrbixTalk::TimerEvent 
that implements a fired() method.
 258



Orb i x T a l k  C l a s s  R e f e r e n c e

orbixtalk33.book  Page 259  Monday, July 22, 2002  10:33 AM
Parameters

Notes OrbixTalk specific. 

See also: OrbixTalk::registerTalker()
OrbixTalk::registerListener()
OrbixTalk::unregister()

OrbixTalk::initialise()

Synopsis static OrbixTalk_ptr initialise
(
CORBA(Environment)& rEnv = CORBA(default_environment)

);

Description Initializes OrbixTalk. This function must be called by all OrbixTalk applications 
(including those that use the CORBA Event Service) before any interaction with 
Orbix or OrbixTalk.

Notes OrbixTalk specific. 

See Also OrbixTalk::terminate()

OrbixTalk::registerListener()

Synopsis virtual void registerListener
(
CORBA(Object_ptr) pObject,
REPLAY_TYPE replayStore = REPLAY_ALL,
CORBA(Environment)& rEnv = CORBA(default_environment)

);

Description Registers an existing Orbix proxy object as an OrbixTalk listener.

Parameters

pObject The OrbixTalk talker/listener to be tested.

pObject The Orbix object to be registered as a 
listener.
259



Orb i x T a l k  P r o g r amme r ’ s  Gu i d e

orbixtalk33.book  Page 260  Monday, July 22, 2002  10:33 AM
Notes OrbixTalk specific. 

OrbixTalk::registerTalker()

Synopsis virtual CORBA(Object_ptr) registerTalker
(
const char* pServerName,
const char* pTypeName,
CORBA(Environment)& rEnv = CORBA(default_environment)

);

Description Creates a proxy object for the IDL interface specified in pTypeName and 
registers it as an OrbixTalk talker on the topic specified in the pServerName 
argument.

Subsequent invocations on the proxy use the OrbixTalk transport layer. Only 
oneway operations can be invoked on the proxy.

relayStore For an otsfp protocol, determines how 
messages are replayed from the 
MessageStore:

REPLAY_NONE = 0 No replay.

REPLAY_ALL = 1 Replay all messages not yet 
heard.

REPLAY_LAST = 2 If messages are missed, 
replay the most recent.
 260



Orb i x T a l k  C l a s s  R e f e r e n c e

orbixtalk33.book  Page 261  Monday, July 22, 2002  10:33 AM
Parameters

Note: In the above examples, otrmp can be any valid OrbixTalk protocol type. 

Notes OrbixTalk specific. 

See Also OrbixTalk::unregister()
OrbixTalk::isRegistered()

OrbixTalk::registerTalker()

Synopsis virtual void registerTalker
(
CORBA(Object_ptr) pObject,
CORBA(Environment)& rEnv = CORBA(default_environment)

);

Description Registers an existing proxy object as an OrbixTalk talker. A typical use is to 
register a proxy created following a look-up using the Naming Service. 

Subsequent invocations on the proxy will use the OrbixTalk transport layer. 
Only oneway operations can be invoked on the proxy.

pServerName This parameter is in one of the following forms:

myMarker 

Object is created using the marker "myMarker", 
and registered on the otrmp//myMarker topic.

myMarker:otrmp//myTopic

Object is created using the marker "myMarker" 
and registered on the "otrmp//myTopic" topic.

otrmp//myTopic

Object is created using a marker supplied by 
Orbix, and registered on the "otrmp//
myTopic" topic.

pTypeName This parameter specifies the interface for 
which the proxy is created.
261



Orb i x T a l k  P r o g r amme r ’ s  Gu i d e

orbixtalk33.book  Page 262  Monday, July 22, 2002  10:33 AM
Parameters

Notes OrbixTalk specific. 

See Also OrbixTalk::unregister()
OrbixTalk::isRegistered()

OrbixTalk::removeTimerEvent()

Synopsis virtual void removeTimerEvent
(
TimerEvent* pTimer,
CORBA(Environment)& rEnv = CORBA(default_environment)

);

Description Removes an un-expired timer from the OrbixTalk timer service.

Parameters

Notes OrbixTalk specific. 

See also OrbixTalk::TimerEvent
OrbixTalk::addTimerEvent()

OrbixTalk::setPersistentAppName()

Synopsis virtual void setPersistentAppName
(
const char* pName,
CORBA(Environment)& rEnv = CORBA(default_environment)

);

Description All OrbixTalk listeners using the OrbixTalk Store and Forward Protocol must 
have a unique application name that is set using this function. Talkers using the 
otsfp can also set a persistent application name using this function, allowing them 
to maintain state across process invocations. 

pObject A pointer to an Orbix proxy object.

pTimer A pointer to an instance of an object derived 
from OrbixTalk::TimerEvent.
 262



Orb i x T a l k  C l a s s  R e f e r e n c e

orbixtalk33.book  Page 263  Monday, July 22, 2002  10:33 AM
Parameters

Notes This function must be called after OrbixTalk::initialise(), and before any 
talker or listeners are registered. The name should not change between 
invocations of the application.

OrbixTalk specific. 

OrbixTalk::setMyReqTransformer

Synopsis virtual void setMyReqTransformer
(
CORBA(IT_reqTransformer)* pObject,
CORBA(Environment)& rEnv =

CORBA(default_environment)
);

Description Registers an IT_reqTransformer object as the default transformation for 
requests leaving or entering the address space via the OrbixTalk transport.

Parameters

Notes The transformer object has the same type as the transformers used in Orbix. 
Tranformers set using this operation are specific to requests sent or received 
using the OrbixTalk transport. The transformer applies to all requests, 
regardless of whether the calling and target objects are co-located or not.

In OrbixTalk, all communication is connectionless, so the setRemoteHost() 
operation in the CORBA::IT_reqTransformer class is redundant. When using 
transformers, the data passed into the transformer does not need to be deleted 
if new data is put in its place.

pName The application name for the OrbixTalk 
talker or listener. This name should be in a 
format similar to that shown below:

//Part1/Part2/Part3

where any number of parts can be used in 
the name.

pObject A pointer to the transformer object.
263



Orb i x T a l k  P r o g r amme r ’ s  Gu i d e

orbixtalk33.book  Page 264  Monday, July 22, 2002  10:33 AM
For more information about using transformers, refer to the Orbix Programmer's 
Reference. 

See also getMyReqTransformer

OrbixTalk::getMyReqTransformer

Synopsis virtual CORBA(IT_reqTransformer)* getMyReqTransformer
(
CORBA(Environment)& rEnv

);

Description Returns a pointer to the IT_reqTransformer object that was registered using 
setMyReqTransformer. If no transformer has been registered, a null pointer is 
returned.

Notes For more information about using transformers, refer to the Orbix Programmer's 
Reference. 

See also setMyReqTransformer

OrbixTalk::terminate()

Synopsis virtual void terminate
(

const unsigned char bImmediate = 0
);

Description This function should be called before exiting an OrbixTalk application. It releases 
the resources associated with OrbixTalk and Orbix. 

This function can only be called from the main application thread. Calling this 
function from within a timer thread can cause unpredictable behavior. The 
recommended approach is to set a flag in the timer thread and catch this from 
the main application thread.
 264



Orb i x T a l k  C l a s s  R e f e r e n c e

orbixtalk33.book  Page 265  Monday, July 22, 2002  10:33 AM
Parameters

Notes OrbixTalk specific.

OrbixTalk::unregister()

Synopsis virtual void unregister
(
CORBA(Object_ptr) pObject,
CORBA(Environment)& rEnv = CORBA(default_environment)

);

Description Unregisters a talker or listener object, preventing a listener from having 
incoming messages dispatched to it, and a talker from making further 
invocations.

Parameters

Notes OrbixTalk specific. 

OrbixTalk::TimerEvent Class
Synopsis Class OrbixTalk::TimerEvent is an abstract base class that defines the 

interface for timed callbacks. The class is used by defining a subclass, 
implementing the fired() method within it, and inserting an instance of the 
subclass in the OrbixTalk timer service using the 
OrbixTalk::addTimerEvent() function.

bImmediate This parameter defaults to 0, for which the 
function will not return until OrbixTalk has 
finished internal processing, ensuring that 
pending messages are sent correctly, and 
that incoming messages are dispatched 
correctly. When set to 1, the function 
returns immediately.

pObject A pointer to an OrbixTalk talker or listener.
265



Orb i x T a l k  P r o g r amme r ’ s  Gu i d e

orbixtalk33.book  Page 266  Monday, July 22, 2002  10:33 AM
Orbix class OrbixTalk::TimerEvent
{
public:
virtual void fired() = 0;

protected:
virtual ~TimerEvent();
TimerEvent(const unsigned int timeout);
unsigned int setTimeout(const unsigned int timeout);
unsigned int getTimeout();

private:
unsigned int m_milliSecDelay;
void* m_dummy1;

}

Notes OrbixTalk specific. 

OrbixTalk::TimerEvent::TimerEvent()

Synopsis TimerEvent
(
const unsigned int timeout

);

Description Constructs an instance of an OrbixTalk::TimerEvent.

Parameters

Notes OrbixTalk::TimerEvent objects fire once. If an application requires a repeating 
timer, the timer should add itself to the OrbixTalk timer service in its fired()
method.

OrbixTalk specific. 

OrbixTalk::TimerEvent::fired()

Synopsis virtual void fired() = 0;

timeout Specifies the number of milliseconds after 
which the OrbixTalk timer service calls the 
fired() method of the TimerEvent.
 266



Orb i x T a l k  C l a s s  R e f e r e n c e

orbixtalk33.book  Page 267  Monday, July 22, 2002  10:33 AM
Description This function is called when the OrbixTalk::TimerEvent is fired by the 
OrbixTalk timer service.

Notes OrbixTalk::TimerEvent objects fire once. If an application requires a repeating 
timer, the timer should add itself to the OrbixTalk timer service in its fired()
method.

OrbixTalk specific. 

OrbixTalk::TimerEvent::getTimeout()

Synopsis unsigned int getTimeout();

Description Determines the timeout interval after which the timer would fire if inserted into 
the OrbixTalk timer service. This does not return the remaining interval, but the 
original interval specified in the constructor.

Notes OrbixTalk specific. 

OrbixTalk::TimerEvent::setTimeout()

Synopsis unsigned int setTimeout
(
const unsigned int timeout

);

Description Sets the interval after which the timer will fire.

Parameters

Notes If the timer is already in the OrbixTalk timer service, after calling this function, 
the timer fire after timeout milliseconds from the time the function is called. If 
the timer is not in the OrbixTalk timer service, when added it fires after timeout 
milliseconds from the time it is added.

OrbixTalk specific. 

timeout Specifies the timeout interval in milliseconds.
267



Orb i x T a l k  P r o g r amme r ’ s  Gu i d e

orbixtalk33.book  Page 268  Monday, July 22, 2002  10:33 AM
 268



orbixtalk33.book  Page 269  Monday, July 22, 2002  10:33 AM
Index
A
addTimerEvent() 257
administration

of event channels 45
of typed event channels 51

API 219
application name

persistent 13
temporary 13

applications
building and running 113
listener 221, 233
talker 224, 236
using the OrbixTalk API directly 219
writing 6, 219

architecture 23
audience 9

B
binding

to an event channel 72
building applications 113

C
channel manager 108
classes 255
command-line parameters 106
configuration file 209
configuration parameters

alphabetical list 168
detailed information 180
Directory Enquiries daemon 196
Flow Control Mechanism 189
general 202
network 201
Reliable Multicast Protocol 183
setting 181
Store and Forward Protocol 191

configuration settings
multiple 182
viewing 181

connecting consumers to event channels 63, 87
connecting suppliers to event channels 58, 93
connecting typed consumers to event channels 79
connecting typed suppliers to event channels 73
ConsumerAdmin 46, 63, 87

obtain_pull_supplier() 87
obtain_push_supplier() 46, 63

consumers
connecting to event channels 63, 87
disconnecting from event channels 89
introduction to 28
pull model

developing 86–89
push model

developing 62–65
receiving events 65
receiving typed events 82
typed

connecting to event channels 79
typed push model

developing 78–84
CORBA Event Service 4
CORBA Event Service. See Event Service
CosEventChannelAdmin 39, 41, 45
CosEventComm 39, 41
coseventsadmin.h 100
coseventsadmin.hh 103

D
Daemon Process Detection Tool (otpsd) 154
datastore 124
decoupled 3
demonstration 240
developing

pull consumers 86–89
pull suppliers 92–96
push consumers 62–65
push suppliers 56–61
typed push consumers 78–84
typed push suppliers 71–77

Directory Enquiries daemon 21, 180
configuration parameters 196

disconnecting
consumers from event channels 89
suppliers from event channels 59
typed suppliers from event channels 75
269



Orb i x T a l k  P r o g r amme r ’ s  Gu i d e

orbixtalk33.book  Page 270  Monday, July 22, 2002  10:33 AM
dumping to the Standard Output (stdout) 150

E
event channels

administration interfaces 45
introduction to 29
registering suppliers and consumers 38
transfer of events 43
typed administration interfaces 51

Event Service
overview 27–36
programming interface 37

Event Service library 113
EventChannel 45, 57, 63, 87, 93

for_consumers() 45, 63, 87
for_suppliers() 45, 57, 93

events
approaches to initiating 31

mixing push and pull models 34
pull model 33
push model 32

example application 30, 70
example pull model application 86
example push model application 56
introduction to 28
pulling from an event channel 89
pushing to a typed event channel 75
pushing to an event channel 59
receiving in consumers 65
receiving in typed consumers 82
relationship to operation calls 35
requesting from suppliers 95
transfer through an event channel 43
typed and untyped 35

events C++ library 99

F
Fault Tolerance

configuration parameters 204
datastore 124
Hang Detection 129
Hardware Failure 130
Lock Checking 133
lock checks 128
Network or SCSI Cable/Port Failure 130
primary phase 125
secondary phase 125
software failure 129
transition phases 127
 270
fired() 266
Flow Control Mechanism

Configuration Parameters 189
for_consumers() 45, 63, 79, 87
for_suppliers() 45, 57, 72, 93

G
general configuration parameters 202
getTimeout() 267

H
heartbeat ping 125

I
IDL interface

creating 220, 242
IDL interface to the Event Service 37
IIOP 103
IIOP Gateway 103

command-line parameters 106
INFO messages 184
initialise() 259
initiating event transfer 31

mixing push and pull models 34
pull model 33
push model 32

introduction 3
IP multicast address 10, 11
isIdle() 258
isRegistered() 258
IT_ACK_RETRY 168, 194
IT_ACK_RETRY_TIME 168, 194
IT_APP_STORE 168, 196
IT_BASE_FRAG_WINDOW_SIZE 169, 186
IT_BATCH_SIZE 169, 189
IT_DEFAULT_DIRENS_PORT 169, 200
IT_DIRENQ_INTERVAL 170, 199
IT_DIRENQ_IPADDR 170, 197
IT_DIRENQ_IPADDR_RANGE 170, 197
IT_DIRENQ_RETRYS 171, 199
IT_DIRENQ_WILD_INTERVAL 171, 200
IT_DIRENS_NAME 171, 197
IT_FRAG_ACCELERATE 171, 189
IT_FRAG_INTERVAL 171, 189
IT_FRAG_WARP_DRIVE 172, 189
IT_FT_HEART_BEAT_INTERVAL 172
IT_INFO_COUNT 172, 185
IT_INFO_INTERVAL 172, 185
IT_LINK_STORE 172, 196



I n d e x

orbixtalk33.book  Page 271  Monday, July 22, 2002  10:33 AM
IT_LIVE_TIME 173, 201
IT_LOG_CONSOLE 173, 202
IT_LOG_LEVEL 173, 202
IT_LOG_SYSLOG 173, 202
IT_MAX_ACK_KB 174, 194
IT_MAX_FRAG_INTERVAL 174, 189
IT_MAX_FT_HEART_BEAT 174
IT_MAX_MSG_SIZE_KB 175, 185
IT_MAX_PEND_KB 175, 188
IT_MAX_RECV_KB 175, 186
IT_MAX_SENT_KB 175, 186
IT_MAX_SENT_TIME 176, 186
IT_MC_INTERFACE 176, 201
IT_MIN_BATCH_INTERVAL 176, 189
IT_MS_COMPACT_BACKUP_DIR 176, 192
IT_MS_COMPACT_BATCH_SIZE 176, 194
IT_MS_COMPACT_INTERVAL 176, 194
IT_MS_STATUS_RETRYS 177, 193
IT_MS_STATUS_TOPIC_LIVE_SECS 177, 193
IT_MS_STORE 177, 191
IT_MS_STORE_DIR 177, 191
IT_MS_TOPIC 177, 191
IT_MSG_MS_STATUS_INTERVAL 178, 192
IT_NAK_RETRY 178, 185
IT_NAK_RETRY_TIME 178, 185
IT_OTD_APPLISTORE 179, 196
IT_OTD_LINKSTORE 179, 196
IT_OTD_STORE 179, 196
IT_OTD_TOPICSTORE 179, 196
IT_RECV_SOCKET_BUFF_SIZE 179, 201
IT_SEND_FRAG_WINDOW_SIZE 180, 186
IT_SEND_SOCKET_BUFF_SIZE 180, 201
IT_TALK_PEND_INTERVAL 180, 189

L
libraries

Event Service 113
Event Service console-based 114
Unix platforms 113
WIN32 114

library
C++ 99

listeners
creating 221, 233
receiving messages 22
registering 223
state log 14
using OrbixTalk MessageStore 233
M
makefile 114
Master mode OrbixTalk daemon 125
MessageStore daemon

multiple 182
MessageStore File Compaction Tool 

(otadmin) 152
MessageStore. See OrbixTalk MessageStore
multicast group 10
multicast transport 9
multicast transport service 4, 9
multi-threaded environment 114

N
network

configuration parameters 201

O
obtain_pull_consumer() 46, 93
obtain_pull_supplier() 46, 87
obtain_push_consumer() 46
obtain_push_supplier() 46, 63
obtain_typed_push_consumer() 51, 72
obtain_typed_push_supplier() 52, 79
OrbixTalk

API 219
API exceptions 136
architecture 23
classes 255
demonstration program 240
Events 229
examples 4
how it works 19
introduction 3
scenarios 4
system exceptions 135
writing applications 6

OrbixTalk daemon 101
OrbixTalk MessageStore 4, 13, 233

status message 15
OrbixTalk MessageStore daemon 15, 181

Configuration Parameters 191
OrbixTalk Timer Events 230
OrbixTalk Transport Protocol Stack 24
OrbixTalk::addTimerEvent() 257
OrbixTalk::initialise() 259
OrbixTalk::isIdle() 258
OrbixTalk::isRegistered() 258
OrbixTalk::registerListener() 259
271



Orb i x T a l k  P r o g r amme r ’ s  Gu i d e

orbixtalk33.book  Page 272  Monday, July 22, 2002  10:33 AM
OrbixTalk::registerTalker() 260
OrbixTalk::RemoveTimerEvent() 262
OrbixTalk::setPersistentAppName() 262
OrbixTalk::terminate() 229
OrbixTalk::TimerEvent::fired() 266
OrbixTalk::TimerEvent::getTimeout() 267
OrbixTalk::TimerEvent::setTimeout() 267
OrbixTalk::TimerEvent::TimerEvent() 266
OrbixTalk::unregister() 265
OrbixTalkAdmin 108
orbixtalkadmin.h 100
orbixtalkadmin.hh 103
otadmin. See MessageStore Compaction Tool
OTChannelManager 109
otd. See Directory Enquiries daemon
otdat. See State Log Analysis Tool
otdsm. See Directory Enquiries daemon
otgateway 110
otmcp. See Raw Multicast Protocol
otmsd. See OrbixTalk MessageStore daemon
otpsd. See Daemon Process Detection Tool
otrmp. See Reliable Multicast Protocol
otsfp. See Store and Forward Protocol

P
persistence 13
persistent application name 13, 235
protocols

Reliable Multicast Protocol 10
Store and Forward Protocol 13
User Datagram Protocol 10

ProxyPullConsumer 41
retrieving from event channels 92

ProxyPullSupplier 41
retrieving from event channels 87

ProxyPushConsumer 39
retrieving from event channels 57, 72

ProxyPushSupplier 39
retrieving from event channels 63, 79

pull model
for initiating events 33

pull() 89
PullConsumer 41

implementing in a consumer 88
implementing in consumers 88
try_pull() 92

PullSupplier 41, 93
implementing in suppliers 94

push model
for initiating events 32
 272
push() 59
PushConsumer 39, 63

implementing in consumers 64
PushSupplier 39

implementing in a typed supplier 73
implementing in suppliers 58

R
Raw Multicast Protocol 24
Redundant Array of Inexpensive Disks 

(RAID) 124
registering

listeners 223
talkers 228

registerListener() 259
registerTalker() 260
Reliable Multicast Protocol 9, 20, 183, 223, 228

achieving reliability 184
Configuration Parameters 183

RemoveTimerEvent() 262
RMP. See Reliable Multicast Protocol
roadmap 10

S
setPersistentAppName() 262
setTimeout() 267
Setting Configuration Parameters 181
SFP. See Store and Forward Protocol
Slave mode OrbixTalk daemon 125
State Log Analysis Tool (otdat) 149
status message 15
stdout. See Dumping to the Standard Output
Store and Forward Protocol 13, 181, 233
SupplierAdmin 46, 57, 93

obtain_pull_consumer() 46, 93
obtain_push_consumer() 46, 57, 58

suppliers
connecting to event channels 58, 93
disconnecting from event channels 59
introduction to 28
pull model

developing 92–96
push model

developing 56–61
receiving requests for events 95
typed

connecting to event channels 73
disconnecting from event channels 75

typed push model



I n d e x

orbixtalk33.book  Page 273  Monday, July 22, 2002  10:33 AM
developing 71–77
system exceptions 135

general 141
OrbixTalk API 136

T
talkers

creating 224, 236
registering 228
sending messages 22
using OrbixTalk MessageStore 236

temporary application name 13
terminate 229
TimerEvent() 266
tools 149

otadmin 152
otdat 149
otpsd 154

Topic Names 20
translating to IP multicast addresses 21

troubleshooting 155
try_pull() 92
typed consumers 78–84

connecting to event channels 79
receiving events 82

typed event channels
administration interfaces 51

typed events 35
typed suppliers

connecting to event channels 73
disconnecting from event channels 75

TypedConsumerAdmin 52, 79
obtain_typed_push_supplier() 52, 79

TypedEventChannel 72, 79
for_consumers() 79
for_suppliers() 72

TypedProxyPushConsumer
retrieving from event channels 72

TypedPushConsumer 80
TypedSupplierAdmin 51, 72

obtain_typed_push_consumer() 51, 72

U
UDP. See User Datagram Protocol
unregister() 265
untyped events 35
User Datagram Protocol 10
user timer event 230
user timer events loop 232
using multiple configuration settings 182
using multiple MessageStore daemons 182

V
viewing current configuration settings 181
273



Orb i x T a l k  P r o g r amme r ’ s  Gu i d e

orbixtalk33.book  Page 274  Monday, July 22, 2002  10:33 AM
 274


	Preface
	Audience
	Roadmap
	Document Conventions

	Part I Introduction to OrbixTalk
	Introduction to OrbixTalk
	Overview
	Using OrbixTalk
	Writing Applications Using OrbixTalk
	Applications that Use the CORBA Event Service
	Applications that use the OrbixTalk API Directly


	The OrbixTalk Reliable Multicast Protocol
	Overview
	User Datagram Protocol and Reliable Multicast Protocol
	IP Multicast Addresses Details


	OrbixTalk MessageStore
	Overview
	Persistent Application Name
	Temporary Supplier Application Name

	Using the OrbixTalk MessageStore

	Part II Developing OrbixTalk Applications
	How OrbixTalk Works
	Overview
	OrbixTalk Topic Names

	Communication between Suppliers and Consumers
	OrbixTalk Directory Enquiries Daemon
	Sending Messages
	Receiving Messages
	OrbixTalk Transport Protocol Stack
	OrbixTalk Raw Multicast Protocol (otmcp)
	OrbixTalk Transport Implementation


	The CORBA Event Service
	Communications using the CORBA Event Service
	Initiating Event Communication
	The Push Model
	The Pull Model
	Mixing the Push and Pull Models in a Single System

	Types of Event Communication

	The Programming Interface to the Event Service
	The Programming Interface for Untyped Events
	Registration of Suppliers and Consumers with an Event Channel
	Transfer of Untyped Events through an Event Channel
	Event Channel Administration Interfaces

	The Programming Interface for Typed Events
	Registration of Suppliers and Consumers with a Typed Event Channel
	Transfer of Typed Events Through an Event Channel
	Typed Event Channel Administration Interfaces


	Programming with the Untyped Push Model
	Overview of an Example Application
	Developing an Untyped Push Supplier
	Binding to an Event Channel
	Obtaining a ProxyPushConsumer from an Event Channel
	Connecting a PushSupplier Object to an Event Channel
	Pushing Events to an Event Channel
	The Push Supplier Application

	Developing an Untyped Push Consumer
	Obtaining a ProxyPushSupplier from an Event Channel
	Connecting a PushConsumer Object to an Event Channel
	Monitoring Incoming Operation Calls
	The Push Consumer Application


	Programming with the Typed Push Model
	Overview of an Example Application
	Developing a Typed Push Supplier
	Obtaining a TypedProxyPushConsumer from an Event Channel
	Connecting a PushSupplier Object to an Event Channel
	Obtaining a Typed Push Consumer from a ProxyPushConsumer
	Pushing Events to an Event Channel
	A Typed Push Supplier Application

	Developing a Typed Push Consumer
	Obtaining a ProxyPushSupplier from an Event Channel
	Connecting a TypedPushConsumer Object to an Event Channel
	Monitoring Incoming Operation Calls
	A Typed Push Consumer Application


	Programming with the Untyped Pull Model
	Overview of an Example Application
	Developing an Untyped Pull Consumer
	Obtaining a ProxyPullSupplier from an Event Channel
	Connecting a PullConsumer Object to an Event Channel
	Pulling Events from an Event Channel
	An Untyped Pull Consumer Application

	Developing an Untyped Pull Supplier
	Obtaining a ProxyPullConsumer from an Event Channel
	Connecting a PullSupplier Object to an Event Channel
	Monitoring Incoming Operation Calls
	An Untyped Pull Supplier Application


	The OrbixTalk Events Library
	The C++ Library Header Files
	Event Channel Identifiers
	Store and Forward Multicast
	The Events Library and The OrbixTalk Daemon
	Non-Multicast Event Channels

	OrbixTalk IIOP Gateway
	Event Channel Identifiers
	Store and Forward Multicast
	The IIOP Gateway and The OrbixTalk Demon
	Non-Multicast Event Channels
	The IIOP Gateway Command Lines
	Using The Channel Manager to Retrieve Event Channels

	Part III Managing OrbixTalk
	Building and Running OrbixTalk Applications
	Overview
	UNIX Platforms
	Microsoft Windows Platforms (WIN32)

	Daemons
	Overview
	Using the OrbixTalk Directory Enquiries Daemon (otd)
	Fault Tolerance Support
	NT Service Support
	Daemon Support for UNIX
	Using the OrbixTalk Directory Enquiries Daemon (otdsm)
	Using the OrbixTalk MessageStore Daemon (otmsd)


	Fault Tolerance
	Overview
	Transition Diagrams
	Summary of Phases
	Types of Failure


	OrbixTalk System Exceptions
	Overview
	OrbixTalk API Exceptions
	General Exceptions

	Tools
	Overview
	Using the State Log Analysis Tool (otdat)
	Dumping to the Standard Output (stdout)

	Using the MessageStore File Compaction Tool (otadmin)
	Using the Daemon Process Detection Tool (otpsd)

	Troubleshooting
	Question: Orbix Compatibility
	Question: Listeners on Different Subnets
	Question: otd Daemons on Separate Subnets
	Question: Reducing Network Traffic
	Question: Are My Daemons Dead
	Question: Compiling OrbixTalk Code
	Question: otd Daemon Shutdown
	Question: Communicating Across Subnets
	Question: Talking to Different Machines
	Question: Multiple OrbixTalk Systems

	Part VI Appendices
	Appendix A Configuration Parameters
	Appendix B IIOP Gateway Configuration Settings
	Appendix C CORBA Event Service: IDL Interfaces
	Appendix D Using the OrbixTalk API Directly
	Appendix E OrbixTalk Class Reference
	Index

