
IONA Technologies PLC
September 2000

Orbix Wonderwall
Administrator’s Guide

Orbix is a Registered Trademark of IONA Technologies PLC.
While the information in this publication is believed to be accurate, IONA Technologies PLC makes no warranty of any kind
to this material including, but not limited to, the implied warranties of merchantability and fitness for a particular purpose.
IONA Technologies PLC shall not be liable for errors contained herein, or for incidental or consequential damages in
connection with the furnishing, performance or use of this material.
Java is a trademark of Sun Microsystems, Inc.

COPYRIGHT NOTICE
No part of this publication may be reproduced, stored in a retrieval system or transmitted, in any form or by any means,
photocopying, recording or otherwise, without prior written consent of IONA Technologies PLC. No third party intellectual
property right liability is assumed with respect to the use of the information contained herein. IONA Technologies PLC
assumes no responsibility for errors or omissions contained in this book. This publication and features described herein are
subject to change without notice.

Copyright © 1991-2000 IONA Technologies PLC. All rights reserved.

All products or services mentioned in this manual are covered by the trademarks, service marks, or product names as
designated by the companies who market those products.

M 2 4 6 9

Contents
 Preface vii
Audience vii
Organisation of this Guide ix
Document Conventions xii

Chapter 1 An Introduction to Wonderwall 1
Internet Security Overview 1
Wonderwall and the Firewall 2
Wonderwall Features 3
Wonderwall and the IIOP Protocol 5

Chapter 2 Getting Started with Wonderwall 7
The Grid Application 8

The IDL Specification 9
The Orbix Java Client 10

The Configuration File 12
Basic Configuration and Ports 13
Object Specifiers 14
Access Control 15

Example iiopproxy.cf File 17
Factory Objects 18
HTTP Server 20
Logging Output 22

Chapter 3 IORs and IIOP 25
IOR Format 26

Orbix C++/Orbix Java Object Key Format 29
Representations of an IOR 30

Internet Inter-ORB Protocol (IIOP) 32
IIOP Message Formats 33

Request Message 34
Reply Message 36
CancelRequest Message 37
LocateRequest Message 37
iii

O rb i x Wond e rw a l l A dm in i s t r a t o r ’ s G u i d e
LocateReply Message 38
CloseConnection Message 38
MessageError Message 38

Chapter 4 Interoperability and Wonderwall Operational Details 39
Object References 39
Proxification 41

The Proxification Process 41
Non-Orbix Client 44
Non-Orbix Server 45
Connection Establishment 46

A Normal IIOP Connection 46
An IIOP Connection Through Wonderwall 47
A More Complicated Connection: Using Object Factories 48

Factory Objects and IORs 50
Implications for Developers 52

Chapter 5 Using Wonderwall with Orbix C++
and Orbix Java 55

Using Wonderwall with Orbix Java as an Intranet Request-Router 56
Using Wonderwall as a Firewall Proxy 58
Orbix Java Built-In Wonderwall Support 61

Configuring Orbix Java to Use Wonderwall 61
Configuring Orbix Java to Use HTTP Tunnelling 62

Deployment Scenarios 65
Scenario 1- Deploying OrbixNames Servers 65
Scenario 2 - Deploying Multiple OrbixNames Servers behind Wonderwall 69
Scenario 3 - A Sample Grid Applet 73
Scenario 4 - Deploying an Orbix Server behind Wonderwall 76

Chapter 6 SSL Enabled Wonderwall: Operational Details 81
Introduction 82
An Overview of SSL Security 82

Authentication in SSL 82
Privacy of SSL Communications 85
Integrity of SSL Communications 85

An Overview of OrbixSSL 86
OrbixSSL Essentials 87
 iv

Con t e n t s
Sample Bank Application Overview 89
Running the Application without SSL 90
Running the Application with SSL 92

Providing Certificates for the Servers 96
Using the OrbixSSL Configuration File 97
Specifying which Certificates to Accept 99

Initializing OrbixSSL 100
Initializing OrbixSSL Configuration 101
Making Private Keys Available to Servers 101
Making a Private Key Available to a Server Program 101
Making a Private Key Available to OrbixNames 103
Making a Private Key Available to the Orbix Daemon 103

Deploying an SSL-enabled Application in a Wonderwall Configuration 105
Daemon Configuration on Server Side 108
Client Configuration 108
Wonderwall Configuration 109

Wonderwall, Applets and SSL 113
Client Configuration 116

Signing the Applet 119
Signing an Applet Using Netscape’s Signing Tools 119
Signing an Applet Using Microsoft’s Signing Utilities 123

Chapter 7 The Wonderwall
Configuration Tool 129

The iiopproxy.cf File 130
Starting the Wonderwall Configuration Tool 130

GUI Configuration Tool Main Window 131
Object Specifier Window 132
Access Control List Window 134
Ports and Hostnames Window 136
SSL Window 137
Logging and Timeouts Window 138
Edit As Text Window 139

Chapter 8 The Wonderwall
Log Analysis Viewer 141

The Wonderwall iiopproxy Server 141
Starting the Wonderwall Log Analysis Viewer 142
v

O rb i x Wond e rw a l l A dm in i s t r a t o r ’ s G u i d e
Log Analysis Viewer Main Window 142
Filters 145
Timestamps 146

Chapter 9 Transformers 147
Transformer Architecture 148
Using Transformers 151

The Transformer IDL 151
Implementing Transformers 153
Configuration 155

Appendix A
iiopproxy and iortool 157

Appendix B
Configuration 165

Appendix C
Firewall Installation on UNIX 183

 Index 187
 vi

Preface
The Internet Inter-ORB Protocol (IIOP) was introduced as part of the Common
Object Request Broker Architecture (CORBA) 2.0 General Inter-ORB Protocol
(GIOP). IIOP facilitates the use of distributed CORBA objects over the Internet
or an intranet.

Typical Internet security involves the use of a firewall to restrict access to hosts
on a local network. Wonderwall is IONA Technologies’ implementation of the
firewall model. It addresses the security issues that arise when you allow clients
running on external networks to communicate with objects running on an
internal network.

This guide presents details of Wonderwall’s implementation of the firewall
model and addresses security issues arising from deploying CORBA clients on
external networks.

Orbix documentation is periodically updated. New versions between releases
are available at this site:

http://www.iona.com/docs/orbix/orbix33.html

If you need assistance with Orbix or any other IONA products, contact IONA
at support@iona.com. Comments on IONA documentation can be sent to
doc-feedback@iona.com.

Audience
This guide is aimed at system administrators who wish to set up a Wonderwall
environment and programmers who wish to develop Orbix and OrbixWeb
applications that communicate across network boundaries through Wonderwall.

This guide does not assume that the reader has any knowledge of firewall
security issues. This guide assumes that programmers have significant knowledge
of Orbix and OrbixWeb programming.

In addition to communications between Orbix, or OrbixWeb, applications,
Wonderwall supports communications between applications developed with
OrbixSSL. OrbixSSL allows Orbix and OrbixWeb applications to communicate
vii

http://www.iona.com/docs/orbix/orbix33.html

O rb i x Wond e rw a l l A dm in i s t r a t o r ’ s G u i d e
using Secure Sockets Layer (SSL) security. To use SSL with Wonderwall, you
must have an installed copy of OrbixSSL. When this guide describes SSL support
in Wonderwall, it assumes that you have OrbixSSL and the associated
documentation.
 viii

P r e f a c e
Organisation of this Guide
This guide contains the following chapters and appendices:

Chapter 1, “An Introduction to Wonderwall”
This chapter provides an overview of Internet security and describes how
Wonderwall was developed according to the firewall model.

Chapter 2, “Getting Started with Wonderwall”

This chapter explains how to get started with Wonderwall. It details how to set
up and configure Wonderwall.

Chapter 3, “IORs and IIOP”
This chapter discusses the Interoperable Object Reference (IOR), the
mechanism used to establish communication between clients and servers, and
the Internet Inter-ORB Protocol (IIOP) in detail, describing IOR formats and
IIOP message formats respectively.

Chapter 4 “Interoperability and Wonderwall Operational
Details”

This chapter discusses issues associated with interoperability. For example,
object references, proxification, connection establishment, factory objects, and
IORs. Wonderwall is fully interoperable.

Chapter 5 “Using Wonderwall with Orbix C++ and Orbix
Java”
OrbixWeb contains built-in support for Wonderwall. This chapter describes
how Wonderwall can be used with OrbixWeb as either an intranet request-
router or as a firewall proxy. It also details how to use Wonderwall as a firewall
technology for distributed Orbix applications.
ix

O rb i x Wond e rw a l l A dm in i s t r a t o r ’ s G u i d e
Chapter 6, “SSL Enabled Wonderwall: Operational
Details”
The primary role of Wonderwall in a security infrastructure is to provide a
firewall for IIOP traffic and it provides integrated support for SSL. This chapter
provides an overview of SSL and OrbixSSL. It provides an outline of how an
OrbixSSL-enabled application can be deployed in a Wonderwall scenario.

Chapter 7, “The Wonderwall Configuration Tool”
This chapter explains how to use the Wonderwall GUI Configuration Tool to
modify default security configuration settings for Wonderwall. It does this by
editing the iiopproxy.cf file which stores the configuration settings for your
Wonderwall installation.

Chapter 8, “The Wonderwall Log Analysis Viewer”

This chapter describes the Wonderwall Log Analysis Viewer which allows you to
view, edit, and modify log files via a graphical user interface.

Chapter 9, “Transformers”
Transformers allow encryption of messages prior to transmission via the TCP/IP
protocol. This chapter introduces transformers by describing how they can be
used with Wonderwall.

Appendix A, “iiopproxy and iortool”
This appendix describes the iiopproxy process which is responsible for
implementing the firewall, and the iortool utility which is responsible for
manipulating object references.

Appendix B, “Configuration”

This appendix describes the Wonderwall configuration file under the following
headings: basic settings, list of IORs, access control list, and SSL security.
 x

P r e f a c e
Appendix C, “Firewall Installation on UNIX”

This appendix describes the configuration steps involved in installing a firewall on
UNIX.
xi

O rb i x Wond e rw a l l A dm in i s t r a t o r ’ s G u i d e
Document Conventions
This document uses the following typographical and keying conventions:

This guide uses the following keying conventions:

Constant width Constant width words or characters represent source code
or system values you must use literally, such as commands,
options, and path names.

Italic Italic words in normal text represent emphasis and new
terms.

Italic words or characters in code and commands represent
variable values you must supply, such as arguments or
commands or path names for your particular system.

< > Some command examples use angle brackets to represent
variable values you must supply. For example,

<Wonderwall location>

...

.

.

.

Horizontal or vertical ellipses in format and syntax
descriptions indicate that material has been eliminated to
simplify a discussion.

[] Brackets enclose optional items in format and syntax
descriptions.

{ } Braces enclose a list from which you must choose an item in
format and syntax descriptions.

| A vertical bar separates items in a list of choices enclosed in
{ } (braces) in format and syntax descriptions.
 xii

 1
An Introduction to Wonderwall

Wonderwall, developed according to the firewall model, addresses
security issues arising from using CORBA over the Internet. This
chapter introduces Wonderwall—an object-oriented and flexible
approach to security.

Internet Security Overview
The Internet Inter-ORB Protocol (IIOP), a specialization of the CORBA General
Inter-ORB Protocol (GIOP), paves the way for using distributed CORBA objects
over the Internet. This opening up of the Internet, however, brings its own
problems and risks. There will always be a few users willing to exploit any
security loopholes to cause damage to your system. Some level of security is
necessary to keep these intrusions at bay. A typical approach to Internet
security is to use a firewall to restrict access to hosts on your local network. The
basic model is to direct all traffic to and from the internal network through a
single access point that can monitor and control every transmitted message.

There are firewalls currently available that restrict access to a local network in a
variety of ways—for example, access to certain hosts and certain commands can
be limited. However, in a distributed object environment such as CORBA, it is
important that security should have an object focus to it. Experience has shown
that it is bad practice to implement security which is too coarse-grained. Users
presented with a choice between two levels of security, one which is too
1

O rb i x Wond e rw a l l A dm in i s t r a t o r ’ s G u i d e
restrictive and another which is too permissive, will inevitably choose the
permissive level of security on occasion—and consequently a breach appears in
the network defences.

Wonderwall is developed according to the firewall model and addresses the
security issues arising from using CORBA over the Internet. It provides a
flexible, object-oriented approach to security allowing control of access to
individual objects even down to the level of individual operations on objects.

Wonderwall and the Firewall
Wonderwall is a firewall proxy server that is specifically designed to filter,
control, and log IIOP traffic between Orbix clients on the exterior (the
Internet), and Orbix servers on the interior (the intranet). As such, Wonderwall
monitors the IIOP requests and applies access control rules to determine
whether to permit or block the request.

A typical approach to building a firewall involves restricting Internet access to a
single IP port on a single host for each service. This host will be the only host
which is physically connected to the Internet and the restriction to using a single
well known IP port provides an additional safeguard.

A refinement of this model involves making the firewall host a dedicated, secure
host, known as a bastion host. The bastion host is dedicated exclusively to the
role of gateway to the Internet and its configuration can be hardened to make it
extra secure against unwanted incursions. This approach has the clear advantage
that much of the security effort can be focused on this one machine. For
example, many directories on the bastion host can be made read only to root
without inconveniencing anyone.

A typical approach to building firewall proxy servers for each of the Internet
services to be made available. Additionally, these proxy servers are usually
deployed on a bastion host. This is a host which is both connected to the
external network, the internet, and the internal network. Wonderwall follows
this pattern and implements an IIOP proxy server. The role of the server
process is to listen to incoming messages on the well-known IP port and to pass
on these messages to the internal network, after subjecting them to access
control rules. When any potentially hostile or forbidden messages are
encountered, these are blocked and not passed on to the internal network.
 2

An I n t r odu c t i o n t o Wonde rwa l l
Wonderwall Features
Traditional and typical firewall infrastructure, composed of packet filtering
routers and application level proxies, can be used for protecting distributed
CORBA application environments. However, the complexity of such
environments increase the potential security loopholes. Administration and
management overheads for the security policy would also increase. When using
traditional firewall mechanisms when applied to distributed CORBA
environments, Wonderwall can be used to establish an enclave of servers for
which it controls access.

In contrast, Wonderwall which adheres to the application proxy firewall model,
but at the same time uses message filtering techniques in the application of
security policy is a simple stand-alone process, which requires no special
privileges, forks or processes, and interacts with the bastion host in a simple
manner.

Wonderwall’s IIOP firewall proxy server has the following features which
contribute to strengthening the security of an internal network:

• The use of a bastion host is facilitated.

The model on which Wonderwall is built supports the use of a bastion
host as the basis of your firewall. You have only to install the Wonderwall
server on the bastion host and it will act as a liaison between the outside
world and your internal network. Alternatively, you can install
Wonderwall on a regular host if you prefer.

• Messages are filtered.

All messages arriving on the server’s well known port are filtered.
Wonderwall is not just a facility to monitor initial connections to CORBA
objects. For example, it will continue to monitor (and potentially block)
all messages which pass between an external client and the internal
CORBA object.

• Message filtering based on Request header.

A number of message types are defined for the IIOP protocol and any or
all of these can be blocked if necessary. The most important group of
incoming messages are the Request messages which are used to invoke
methods on CORBA objects. Wonderwall provides comprehensive
filtering of these messages based on the content of the Request message
3

O rb i x Wond e rw a l l A dm in i s t r a t o r ’ s G u i d e
header. This header provides all information needed to provide effective
filtering. For example, the identity of the target object and the intended
operation name. Request messages can be checked rapidly and passed to
the internal network with little performance overhead.

• Fine-grained control of security.

Wonderwall provides the kind of fine-grained control of security which is
needed for a distributed object environment. It allows you to control
access to individual objects and, moreover, to allow or deny access to
specific methods defined on that object. There are a number of other
criteria which can be checked as will be seen later.

• Message logging.

The logging facility of Wonderwall (which can be configured to focus on
particular kinds of events) is a powerful facility for tracing the history of
suspicious message exchanges. It is also broadly useful as a debugging and
monitoring facility.

• Blocks messages unless specifically allowed.

Wonderwall observes and promotes good security practice. For example,
its approach to filtering is that everything is forbidden unless it is
expressly allowed.

• Promotes simplicity of proxy server.

According to Wonderwall, a proxy server ought to behave simply and
predictably.

• Secure communications.

By means of its integrated SSL support, Wonderwall supports end to end
security between client and target servers.

• Authentication.

As part of the SSL infrastructure, Wonderwall can authenticate agents on
both sides of the firewall, that is, both clients and servers.

Chapter 2 “Getting Started with Wonderwall” explains how to set up and
configure Wonderwall which is also fully interoperable. For further information,
refer to Chapter 4, “Interoperability and Wonderwall Operational Details”.

Before learning how to use Wonderwall, however, it is necessary to have an
elementary understanding of the IIOP protocol itself.
 4

An I n t r odu c t i o n t o Wonde rwa l l
Wonderwall and the IIOP Protocol
The IIOP protocol specifies the way in which CORBA messages are encoded for
transmission. In particular, it specifies a universal format for the transmission of
operation invocations across the Internet. This makes it possible for clients of
one ORB to send operation invocations to any ORB across the Internet, and
also to correctly interpret any return values received.

When an IIOP client sends a message to a remote object, it requires an
Interoperable Object Reference (IOR) which stores the addressing information
for that object. For the IIOP protocol, an IOR will include the following
information:

• The name of the host on which the object resides.

• The port it listens to.

• Its object key (a string of bytes identifying the object).

When a CORBA client invokes on a target CORBA object, that is, it uses an
IOR, it does so using the IIOP protocol. This invocation opens a TCP connection
to the host and port contained in the IOR. The client’s ORB then sends and
receives IIOP messages over this connection. If multiple objects use the same
host and port, the client can use the same connection to communicate with the
other objects.

The IIOP model is based around two main message types: a Request and a Reply.
Clients send Requests, and servers send Replies. There is also a set of message
types used to handle unexpected error conditions or timeouts. Refer to ““Reply
Message” on page 36 for further information.

In the same way that a filtering router can filter packets based on the packet
header, Wonderwall filters incoming Requests based on the following
information gleaned from the message header:

• The object key of the object being invoked on, which is used to identify
the server it is destined for.

• The name of the operation being invoked.

• The IP address of the client.

• The message type.

• Any IOP Service Contexts.
5

O rb i x Wond e rw a l l A dm in i s t r a t o r ’ s G u i d e
• The principal of the client’s invoker.

Refer to “HTTP Server” on page 19 and Appendix A, “iiopproxy and iortool”
(page 157) for further details on the filtering mechanism and how it is specified.
The body of Request messages cannot be filtered without knowledge of the
Interface Definition Language (IDL) used to define the operations and
parameters for each object, so only the message header parameters can be used
in a filter.

In the present version of Wonderwall, any Reply messages which pass from the
internal server out to the client are not filtered.

The basic component of Wonderwall is the executable iiopproxy. This process
is intended to run on the bastion host listening for IIOP requests on a specified
TCP port. Any requests which arrive on this port from external hosts are
filtered so that access can be restricted to certain CORBA objects or operations
behind the firewall.

You can control the filtering of packets by editing the configuration file
iiopproxy.cf. This file allows you to specify a flexible set of rules for either
allowing or denying access to certain objects or operations.

Once a given request has been allowed through the firewall, the process
iiopproxy forwards it to the proper location on the internal network. The
iiopproxy does this by looking up its own database of IORs which include all
the externally accessible CORBA objects.

In the following chapter, “Getting Started with Wonderwall”, an example of a
configuration file is given and the database of IORs set up so that the firewall can
pass on requests to a couple of objects on the internal network.
 6

 2
Getting Started with Wonderwall

This chapter introduces basic security concepts by describing how to
set up and configure Wonderwall. To achieve this, it shows how to
deploy an application using Wonderwall.

To achieve this, we define an IDL interface implement a server using Orbix, and
develop an Orbix Java client.

The sample Orbix Java client developed talks to an Orbix Java or Orbix C++
server. An example configuration file is given and a database of IORs set up so
that Wonderwall can pass on requests to objects on the internal network.

Versions of the client application described in this chapter are located in the
grid demonstration directory of your Wonderwall installation.

Wonderwall is also fully interoperable. Issues associated with interoperability
are discussed in Chapter 4 “Interoperability and Wonderwall Operational
Details”.
7

O rb i x Wond e rw a l l A dm in i s t r a t o r ’ s G u i d e
The Grid Application
To illustrate Wonderwall in operation, a simple grid example is considered. This
example introduces a grid interface whereby a grid server and an Orbix Java
client communicate with each other via Wonderwall. It comprises the following
components:

• An Orbix Java Client.

This client invokes IDL operations in the server via CORBA IIOP
protocol.

• A grid server—that is, an Orbix C++/Orbix Java server.

This server processes client requests.

• Wonderwall.

The Wonderwall server acts as a liaison between the outside world and
the internal network ensuring that all communications using CORBA
over the Internet are secure.

Note: It is assumed that the client, Wonderwall, and server all run on the same
host. In a realistic situation these processes would run on three separate
hosts.

Figure 2.1: The Grid Application

Wonderwall
Orbix C++/

IIOP

Server

External Network

Internal Network

grid
Server

Orbix Java

IDL
 8

Ge t t i n g S t a r t e d w i t h Wonde rwa l l
The IDL Specification

The first step in writing the grid application is to define the interface to the
application objects using the standard CORBA Interface Definition Language
(IDL). IDL is a specification that developers use to ensure clients and servers can
communicate with each other. The interface (grid) to our grid example is
defined in IDL as follows:

//Grid.idl
// Definition of a 2-D grid.

interface grid {
// height of the grid
readonly attribute short height;

// width of the grid
readonly attribute short width;

// set the element [n,m] of the grid, to value:
void set(in short n, in short m, in long value);

// return element [n,m] of the grid:
long get(in short n, in short m);

};

This defines the interface for a two-dimensional grid of long integers whose size
is given by the height and width attributes. Two operations set() and get()
can be invoked to respectively modify or read a single element of the grid.

The details of implementing a grid object need not be considered here. It is
assumed that there is a grid server which implements at least one grid object.
Likewise, it is assumed there is a client that makes use of the object. Both server
and client use the IIOP protocol. In this example, the grid client represents an
external, possibly hostile, process that wishes to use objects in the server. The
grid server itself is to be protected by Wonderwall.
9

O rb i x Wond e rw a l l A dm in i s t r a t o r ’ s G u i d e
The Orbix Java Client

Once the grid interface has been implemented, an Orbix Java client application
can be written to access grid objects. A simple client binds to a grid server
using the Orbix _bind() mechanism to connect to an object behind
Wonderwall, and subsequently make invocations on that object.

These concepts are illustrated in the following code sample. The Orbix _bind()
call is used to connect to a grid object behind Wonderwall—invocations are
then made on that object.

// Java
package gridtest;

import IE.Iona.Orbix Java._CORBA;
import IE.Iona.Orbix Java.CORBA.SystemException;

public class Client {
...
public static void main(String args[]) {

_grid gRef = null;

try {
1 gRef = gridHelper._bind("grid1:GridSrv",

"Host");
}
catch (SystemException se) {

System.out.println(se.toString());
}
...

}
};
 10

Ge t t i n g S t a r t e d w i t h Wonde rwa l l
The code is explained as follows:

In order for the client to interact with a target object, it must first have an object
reference or IOR for that object. Typically in an Orbix environment, an IOR is
obtained either from the naming service using the _bind() call or via some
tertiary medium such as the file systems.

1. The _bind() call contacts the Wonderwall proxy and establishes an IIOP
connection. The first argument to _bind() is of the form
"marker:server", where marker is a string identifying the object within a
particular server. The second argument "host" specifies the host where
the Wonderwall proxy is running.

The _bind() call is used in this instance to obtain the object reference of the
target object. This generally involves the client contacting the daemon and being
redirected to the target. The_bind() call typically initiates a series of
interactions with the Orbix daemon associated with the target object, to obtain
a reference for the target object.

From the client perspective in a proxy scenario, the Wonderwall host is the
target host for the server object. Thus the _bind() call takes the Wonderwall
host as an argument. The client’s ORB initiates interaction with Wonderwall as if
it were talking to the daemon. Wonderwall looksup its IOR table for an Orbix
daemon reference. Then it applies its access control policy and passes on the
client ORB daemon request (which is either a locate_request or a
proprietary getIIOPDetails invocation). Thus all requests for the daemon
go through Wonderwall.

The more standard way of configuring such proxified environments is, to have a
proxified object reference for the naming service, configured into the client side
ORB. The client can then use the naming service to obtain references for server
objects. These in turn, can be automatically proxified by Wonderwall.

For non-Orbix Java clients or if, for some reason _bind() is not used, it is
necessary to understand the concepts underlying IORs and the process of
proxification of IORs. Refer to “Proxification” on page 41 for further information.

Orbix Java also supports a transparent Wonderwall connection mechanism using
the IT_IIOP_PROXY_PREFERRED and IT_HTTP_TUNNEL_PREFERRED and associated
configuration parameters. Refer to “Using Wonderwall with Orbix C++ and
Orbix Java” on page 55 for further information.
11

O rb i x Wond e rw a l l A dm in i s t r a t o r ’ s G u i d e
The Configuration File
Each installation of Wonderwall includes a configuration file that allows you to
specify how applications use Wonderwall security. At the heart of Wonderwall’s
operation is the Wonderwall security configuration file, iiopproxy.cf, which
specifies the security policy for your system.

Creating the Wonderwall configuration file iiopproxy.cf is the first stage in
setting up the firewall. During startup, the file iiopproxy.cf is read by the
firewall server iiopproxy. Subsequent changes made to iiopproxy.cf affects
new clients—any existing client sessions are not affected by the changes.

Note: The Wonderwall GUI Configuration Tool can also be used to create the
Wonderwall security configuration file. Refer to “The Wonderwall
Configuration Tool” on page 129 for further information.
 12

Ge t t i n g S t a r t e d w i t h Wonde rwa l l
For the grid example, a sample Wonderwall configuration file is detailed—refer
to “Example iiopproxy.cf File” on page 16. This sample Wonderwall
configuration file comprises the following sections:

• Basic Configuration and Ports.

• Object Specifiers.

• Access Control List.

A brief explanation for each line in each section is given. Full explanations of
fields, however, can be found in Appendix A on page 121.

Basic Configuration and Ports

In this section of the “Example iiopproxy.cf File” on page 16, lines beginning with
a ‘#’ character are comments. Trailing comments on a line are also allowed.
Further details include the following:

Line Explanation

port 1570 This port specifies that Wonderwall listens for
requests on TCP port 1570.

orbixd-iiop-port 1571 This port refers to the port where the Orbix
daemon listens for IIOP messages on the
internal network. It is essential to specify this
port number if you are going to be using the
Orbix daemon. Wonderwall needs to know
which port the Orbix daemon is listening on, in
order to interact with it.

domain your.domain.com This entry gives the DNS domain name of the
host where Wonderwall is running.

log requests replies This entry tells Wonderwall to log all IIOP
request and reply messages.

http-port and http-files These entries are used to configure the optional
HTTP server capability of Wonderwall. Refer to
“HTTP Server” on page 19 for further
information.
13

O rb i x Wond e rw a l l A dm in i s t r a t o r ’ s G u i d e
Object Specifiers

The next section of the “Example iiopproxy.cf File” on page 16 lists all of the
objects that might be made available through Wonderwall. The Wonderwall
proxy uses this list to construct an internal table of known objects. The general
form of these entries is as follows:

object tag [wildwildcardflags] object-specifier

This entry declares a tag which is used to refer to the specified object
throughout the configuration file. The optional wild field is used to refer to
categories of objects, rather than a single object, and is discussed in “List of IORs”
on page 170. The object-specifier can be specified in a number of ways (refer
to Appendix A).

At present, Wonderwall supports four different forms of object-specifier as
follows:

All of these forms of object-specifier are explained in detail in “Representations
of an IOR” on page 30 and “List of IORs” on page 170.

The bind format is the simplest specifier to use. This format requires that
Wonderwall is able to contact an Orbix C++ or Orbix Java daemon in order to
locate the server. If using a non-Orbix server, read Chapter 4 “Interoperability

Object-specifier Definition

bind An object-specifier beginning with the keyword "bind" is
used to specify the object using a pseudo-bind syntax
(which closely resembles the syntax of _bind() as used by
a regular Orbix Java client).

IOR: An object-specifier that begins with the characters "IOR:"
introduces an IOR coded as a standard CORBA stringified
object reference.

RXR: An object-specifier that begins with the characters "RXR:"
introduces an IOR encoded using the readable-hex-
representation.

/ An object-specifier that begins with a "/" or "\" is assumed
to be the absolute pathname of a file where the IOR is
stored (either in "IOR:" or "RXR:" format).
 14

Ge t t i n g S t a r t e d w i t h Wonde rwa l l
and Wonderwall Operational Details” and use one of the three other object-
specifiers. If using an Orbix C++ or Orbix Java server, it is possible to use the
bind format as given in the “Example iiopproxy.cf File” on page 16. For example:

object grid_1 bind("grid1:GridSrv","gridHost") interface grid

The pseudo bind function has a similar format to _bind in the Orbix Java client.
This example specifies an object with marker grid1, held by the server named
GridSrv, found on host gridHost. The trailing fields interface grid (which
must be present) specify that the object is of type grid.

The last entry of this section, allow-unlisted-objects on, gives you a
powerful mechanism for extending the list of known objects. When set to on
(the default setting), any time a client attempts to access an unlisted object,
Wonderwall automatically updates and adds the object reference to its table of
known objects. This considerably relieves the burden of administration required
for a minimal configuration of Wonderwall.

Note: Because an object is automatically listed in this way, this does not mean
that the client has permission to connect to the object. That is
determined by the Access Control List (ACL).

In some high security networks, the administrator can switch this option to off.

Access Control

Access control rules are applied to the filtered IIOP requests and they
determine whether that request should be passed or blocked. Access control
rules begin with keywords allow or deny. Whenever a request arrives at the
Wonderwall server, these rules are checked in sequence until a rule is found
which definitely denies access or definitely allows access to the target object.

In the example configuration file, iiopproxy.cf shown in Figure x.x, access
control rules are specified for the grid objects, grid_1 and grid_2,
allowing the specified operation on these objects. Additionally, access to
grid_2 is allowed from IP address, ipaddr 10.23.67.1 only. Access is
denied to all requests that contain service contexts.
15

O rb i x Wond e rw a l l A dm in i s t r a t o r ’ s G u i d e
The first rule given here is deny servicecontexts *. A service context is a
mechanism which allows extra information to be added to an IIOP request (or
reply) for use by the CORBA services. In keeping with the firewall philosophy
that anything not expressly permitted is denied, it is considered safer to forbid
all requests with a service context attached.

The next few rules have a form similar to the following:

allow object grid_1 op _get_height

This states that the request is allowed if it is to be invoked on object grid_1 and
the operation name is _get_height. The operation name _get_height derives
from the attribute name height. For every attribute, such as height, there are
two operation identifiers associated with it: _get_height and _set_height. If
the attribute is declared readonly, there will be only one operation,
_get_height.

The rules applying to the object grid_2 are specified in a slightly different way,
as follows:

allow object grid_2 ipaddr 10.23.67.1 op _get_height

This stipulates that if the request is to invoke on object grid_2 and the IP
address of the invoking host is 10.23.67.1 and the operation is _get_height, the
request is allowed.

The last line of the Access Control List is as follows:

allow object grid_2 ipaddr 10.23.67.1 op set log

This specifies that the operation set is allowed on object grid_2 when the host
has an IP address 10.23.67.1. In addition, the final keyword log specifies that all
such requests should be logged (in this example, the logging is superfluous since
all incoming and outgoing requests and replies are logged anyway).

It is important to understand how Wonderwall parses the Access Control List.
It starts at the beginning of the list, reading each rule in sequence, until it finds a
rule which unambiguously allows or denies a request. Wonderwall then stops
and does not read any more rules. This approach makes it easy to predict how
Wonderwall interprets the Access Control List.

A non-intuitive side effect of this algorithm is that it is permissible to have
contradictory rules. The resolution of any conflict is simple: the first rule takes
precedence.
 16

Ge t t i n g S t a r t e d w i t h Wonde rwa l l
Example iiopproxy.cf File
##

A sample Wonderwall configuration file.
port 1570
orbixd-iiop-port 1571 # Use the Orbix IIOP port.
domain your.domain.com
log requests replies
http-port 0
http-files /
##
Database of Objects.
object grid_1 bind("grid1:GridSrv","gridHost") interface grid
object grid_2 bind("grid2:GridSrv","gridHost") interface grid
allow-unlisted-objects on
##
On to the access control list!
Disallow any IOP Service Contexts, at least until we need
them... who knows what could be put in here?
#
deny servicecontexts *
Allow general access to grid_1,
except for the "set" operation.
#
allow object grid_1 op _get_height
allow object grid_1 op _get_width
allow object grid_1 op get
Allow access to grid_2 from our link to a semi-trusted
network, but log any "set" operations.
#
allow object grid_2 ipaddr 10.23.67.1 op _get_height
allow object grid_2 ipaddr 10.23.67.1 op _get_width
allow object grid_2 ipaddr 10.23.67.1 op get
allow object grid_2 ipaddr 10.23.67.1 op set log
File ends here -- if the message has not matched a rule
until now, it will be denied automatically.
##
17

O rb i x Wond e rw a l l A dm in i s t r a t o r ’ s G u i d e
Factory Objects
One of the interesting features of CORBA is that it allows you to pass back and
forth object references inside Request or Reply messages, where they might
appear either as parameters or return values. This provides a powerful
mechanism for clients to obtain references to new objects. The term Factory
Interface is applied to any interface which can create a new object and return a
reference to this object. Individual instances of a Factory Interface are known as
Factory Objects.

Consider the following example of a Factory Interface:

// IDL
typedef string MarkerString;

interface GridFactory {
// Make an object of type ‘grid’
// and return the object’s marker.
MarkerString makeGrid();

};

This particular interface, because it returns an Orbix marker instead of an
Interoperable Object Reference, is an Orbix specific example of a Factory. The
marker gives an Orbix Java client enough information to find the object using the
pseudo _bind() mechanism.

The existence of Factory Objects poses special problems for the Wonderwall
administrator. Object level security is based on the idea that a finite number of
objects are listed and it is known whether they can safely be accessed from
outside. A Wonderwall administrator must consider not only whether the
Factory Object is safe, but also whether objects created by the Factory can be
considered safe. This also applies to the related idea of Finder Objects, which do
not actually create new objects, but could return object references not listed in
the Wonderwall configuration.

Nevertheless, there are compelling reasons for making use of both Factory and
Finder objects. Consider, for example, accessing a database through a firewall
that represents its records in the form of CORBA objects. Because the number
of objects is likely to be considerable, it would be impractical to list them all in
the Wonderwall configuration file. A Finder object is a more practical way of
providing access to the records.
 18

Ge t t i n g S t a r t e d w i t h Wonde rwa l l
Assume that there is a given Factory Object, such as GridFactory, which needs
to be used through the firewall. This implies that Wonderwall must provide a
means of accessing both the Factory Object and objects created by that Factory.

Wonderwall provides the following form of entry in the configuration file for
specifying Factories1:

server tag object-specifier

The server keyword is used to define a tag which refers to all of the objects on a
particular server. The object given by the object-specifier refers to an object
which can be used to make the initial connection to the server. Usually this will
be the factory object. For example, the GridFactory object can be listed as
follows:

server gridFactory \
bind(":FactorySrv", "gridHost") interface

GridFactory

The tag gridFactory can now be used to refer to all objects on the FactorySrv
server, irrespective of marker, or interface name. Therefore a line such as the
following in the Access Control List can be used to give away access to all
objects on that server:

allow object gridFactory

Note: Because the object type of the tag gridFactory is wildcarded, it is legal
to specify a rule such as the following:
allow object gridFactory operation _get_height

The operation _get_height does not appear in the interface GridFactory, only
in interface grid. The appearance of interface GridFactory, in the previous
object specifier, is just a placeholder. Any operation at all, from any interface, can
be specified in a rule with a server tag.

1. This is equivalent to the following construction:
object tag wild marker,ifmarker object-specifier
The server keyword is provided as a convenience for defining Factory objects (refer to
Appendix B).
19

O rb i x Wond e rw a l l A dm in i s t r a t o r ’ s G u i d e
Note: Wonderwall's support for factories is dependent on using Orbix C++ or
Orbix Java objects, as it needs to understand the object key format. For
more details on the object key format, refer to “Orbix C++/Orbix Java
Object Key Format” on page 29.

HTTP Server
The Wonderwall proxy normally listens for all IIOP messages on a single
dedicated port. It monitors this port and redistributes IIOP Request messages to
servers behind the firewall.

However, an IIOP port is not yet a standard feature of most firewalls. Until this
port becomes established in client-side firewalls, it will be necessary to use HTTP
tunnelling to smuggle IIOP messages through the HTTP port.

This approach requires a HTTP server. A HTTP server is required to recognise
that some HTTP messages can contain data which is meant to be interpreted as
an IIOP message. For this reason, the Wonderwall proxy has had the full
functionality of a HTTP server added to it.

This functionality of Wonderwall is illustrated in Figure 2.2 on page 20. The
process iiopproxy is capable of listening on two ports: one of these is a
dedicated IIOP port and the other is a HTTP port (usually port 80).
 20

Ge t t i n g S t a r t e d w i t h Wonde rwa l l
Figure 2.2: Internal Architecture of the Wonderwall Proxy Server

When iiopproxy listens on the HTTP port, it functions as a full-function HTTP
server. Any normal HTTP requests that arrive cause it to search a designated
directory, and return a copy of the requested Web page (if it can be found).
However, this HTTP server also has the intelligence to recognise when a
tunnelled IIOP message arrives via HTTP. In such a case, it extracts the IIOP
message and passes it on to the IIOP gateway.

It does not matter to the gateway whether an IIOP message arrives through the
dedicated port or by way of HTTP. The message is still subject to the same
filtering mechanism regulated by the configuration file, as described in “The
Configuration File” on page 12.

IIOP port HTTP port

Message Filter

Internal Network

HTTP Server
21

O rb i x Wond e rw a l l A dm in i s t r a t o r ’ s G u i d e
The configuration of the HTTP server only requires two parameters to be set in
the configuration file. These are as follows:

http-port port
http-files directory

The http-port is used to set the port where the iiopproxy listens for HTTP
requests. The keyword http-files is used to specify the directory where files
can be retrieved to service ordinary HTTP requests.

If you specify http-port 0, then HTTP functionality is not enabled and
iiopproxy listens only on the dedicated IIOP port for ordinary IIOP messages.

Logging Output
The log from the Wonderwall server iiopproxy is sent by default to the
standard output. Typically, the user redirects this output to a log file. It is
possible to specify what goes into the log file by editing the configuration file and
Wonderwall is very flexible in this respect. In the “Example iiopproxy.cf File” on
page 16, the line log requests replies ensures that all IIOP requests and
replies passing in or out through Wonderwall are logged. The log essentially
records all the information available in the request or reply headers.

The logged output, when an IIOP message is forwarded, generally takes the
following format:

forwarded:<client> -> <servername>: [Message v1.x:<size>
bytes: Request <request id>, op [ObjectKey "<object
key>"]::[<operation>] from "<principal>", respond?

<response expected>]

forwarded: <client> <- <servername>: [Message v1.x: <size>
bytes: Reply <request id>, reply status <reply
status>]
 22

Ge t t i n g S t a r t e d w i t h Wonde rwa l l
Consider a sample log output generated by a client invoking on the grid via
Wonderwall:

IIOP connection opened: [ultra:64023]
starting server for activated object "grid"
forwarded: [ultra:64023] -> [grid]: [Message v1.0, 82 bytes:

Request 0, op [ObjectKey
"RXR::%5cultra.dublin.iona.ie:grid:0::IR:grid_"]
::[_get_height] from "RXR:jmason", respond? y]

forwarded: [ultra:64023] <- [grid]: [Message v1.0, 14 bytes:
Reply 0, reply status NO_EXCEPTION]

The logging facility also allows the full request and reply bodies to be logged. The
rules for the Access Control List also let you dictate that requests or replies be
logged only in specific circumstances. For full details of the logging options
available, refer to Appendix A.
23

O rb i x Wond e rw a l l A dm in i s t r a t o r ’ s G u i d e
 24

 3
IORs and IIOP

Wonderwall provides firewall security for applications that
communicate using the IIOP protocol. An understanding of the IIOP
protocol, as detailed in this chapter, is therefore indispensable for
the proper use of Wonderwall and highlights the issues that affect
security. The CORBA interoperability specification defines both the
mechanism by which clients establish communication with a server,
and the details of message formats and data coding.

The following issues are addressed in this chapter:

• IOR: The key concept which CORBA uses to enable clients to connect to
servers is the Interoperable Object Reference (IOR) as discussed in “IOR
Format” on page 26.

• IIOP: The message formats and data coding are discussed in “Internet
Inter-ORB Protocol (IIOP)” on page 32.

In terms of security implications for the client side, IIOP is not another Java. It
does not download executables onto the client machine and it is quite benign. It
provides a protocol that enables a client to contact a remote server and call
remote functions on this server. Data can pass between client and server, in the
form of parameters, but nothing is sent by the server to be executed on the
client side.
25

O rb i x Wond e rw a l l A dm in i s t r a t o r ’ s G u i d e
The server, on the other hand, is in need of some protection because it allows
clients to remotely invoke operations that run on the server’s host. Wonderwall
provides protection for servers which might expose security loopholes and it
also restricts access to certain operations that the server does not wish to make
available to remote clients.

IOR Format
To identify objects in a distributed object system, CORBA uses the concept of
an object reference. Once an application has an object reference, it has all the
information it needs to connect to the object and make remote invocations on
the object’s methods.

The notion of an object reference is an abstract one. To the application CORBA
programmer it can be represented simply as a C++ pointer. Individual ORB
vendors can have their own proprietary representation of an object reference.

However, as part of the infrastructure for an interoperability protocol, CORBA
also specifies a universal format for object references known as the
Interoperable Object Reference (IOR). This enables the information about an
object reference to be either stored or communicated directly to clients in a
form which is universally understood. All ORB vendors are required to support
this form of object reference.

The information encoded in an IOR (as used in conjunction with the TCP/IP
protocol) consists of the following pieces of information:

• The type of the object.

The type of the object is equivalent to the name of the IDL interface
which is used to define the object. For example, in “The IDL
Specification” on page 9, an IDL interface is defined for objects of type
grid.

• The host where the object can be found.

• The port number of the server for that object.

The host and port together give us the connection information required
to contact the server.

• An object key (a string of bytes identifying the object).

The object key is used by the server itself to locate the object.
 26

I O R s a nd I I O P
Figure 3.1 outlines the format of an IOR in great detail giving a schematic view of
the information held in an IOR. The upper part of Figure 3.1 shows the overall
format of an IOR as follows:

• It begins with the string type_id which gives the type of the object,

equivalent to the name of the interface defining the object1.

• A sequence of profiles preceded by a profile_count follows. Two
profiles are shown preceded by a profile_count of 2.

A profile contains essentially all the information which is needed to find
an object. The facility to specify more than one profile in an IOR is a
useful feature which allows future extensions to the use of IORs. For
example, an IOR can specify a number of possible locations for an object.
If a client does not succeed in connecting to the location specified in the
first profile, the client can try the next profile in the sequence instead.
Wonderwall supports the use of IORs with multiple profiles.

Figure 3.1: The Format of an Interoperable Object Reference and Profile

1. To be precise this field holds the RepositoryId for the type of object.

type_id profile_count

protocol version host port object_key

"IDL:Account:1.0" 2 profile profile

reserved"Fred"1571"host.com"0
27

O rb i x Wond e rw a l l A dm in i s t r a t o r ’ s G u i d e
The lower part of Figure 3.1 on page 27 shows the details contained in a single
profile as follows:

• The connection information stored in a profile is specific to a particular
underlying protocol. For this reason the first field is a protocol_tag. In
this example, the tag value is zero to indicate a TCP/IP transport
protocol.

• This is followed by the Version field which consists of a major and a
minor version number.

• The next two fields provide the host and IP port needed to establish
communication with the remote server.

• The object_key is a field which is used by the remote server to locate
the object being accessed. There can also be additional fields at the end
but these are currently not used and are reserved for future expansions
to the protocol.

It may seem surprising that the format of an object_key is not specified
by CORBA. However, this fact does not affect interoperability nor make
the IOR any less portable. The object_key is used only by the server to
identify the object referred to. The client needs to have a copy of the
object_key but does not need to interpret it in any way. As far as the
client is concerned, the key is just an opaque code (in fact, a sequence of
bytes) which it passes to a server in order to identify an object. The
server, which originally assigned the object_key, then makes active use
of the key to find the object.

This outline of an IOR is only intended to be schematic although it does include
all essential information which is supplied in a typical IOR. The formal
specification of an IOR is given in terms of IDL data types. For the complete
specification of an IOR, refer to the CORBA interoperability specification.
 28

I O R s a nd I I O P
Orbix C++/Orbix Java Object Key Format

Orbix C++ and Orbix Java object keys in IORs have the same format as Orbix-
protocol object references. They take the following the form:

:\host:serverName:marker:IR_host:IR_Server:interfaceMarker

These fields are defined as follows:

host The host name of the target object.

serverName The name of the target object’s server as registered in the
Implementation Repository and also as specified to
CORBA::BOA::impl_is_ready(),
CORBA::BOA::object_is_ready() or set by
setServerName().

For a local object in a server, this is that server’s name (if
known)—otherwise it is the process’ identifier.

The server name is known if the server is launched by
Orbix, if the server is launched manually and the server
name is passed to impl_is_ready(), or if the server name
has been set by CORBA::ORB::setServerName().

marker The object’s marker name. This is either chosen by the
application or is a string of digits chosen by Orbix.

IR_host The name of a host running an Interface Repository that
stores the target object’s IDL definition. This field is
typically blank.

IR_server The string IR or IFR, depending on the version of Orbix
C++ or Orbix Java in use.

interfaceMarker The target object’s interface. If called on a proxy, this
cannot be the object’s true (most derived) interface—it
may be a base interface.
29

O rb i x Wond e rw a l l A dm in i s t r a t o r ’ s G u i d e
Representations of an IOR

A portable representation of an IOR is a basic requirement. Typically, an IOR is
created by the server which supports the corresponding object. The IOR is then
publicised in order to make it available to prospective client processes. Once a
client obtains a copy of the IOR it will then be able to connect to the object.

To assist publication of an IOR, it must be possible to convert it to a string
format which is not subject to any conversions when communicated from place
to place. For this reason, CORBA specifies a standard string format for IORs.
The following is an example of such a string:

IOR:000000000000000d49444c3a677269643a312e3000000
00000000001000000000000004c0001000000000015756c74
72612e6475626c696e2e696f6e612e6965000009630000002
83a5c756c7472612e6475626c696e2e696f6e612e69653a67
7269643a303a3a49523a67726964003a

It consists of the characters IOR: followed by a series of hexadecimal numbers.
Every byte of the original IOR is translated into a two-digit hexadecimal number.
This standard string format is simple and resistant to corruption, however,
interpreting the content of the IOR is difficult.

A typical IOR is not really as opaque as this. To make IORs more
comprehensible, Wonderwall can use its own format known as the Readable
Hex Representation (RXR). The RXR format is a hybrid format which mixes
plain ASCII characters with hexadecimal numbers. As an example, consider the
RXR representation of the preceding object reference:

RXR:_______%0dIDL:grid:1.0_______%01_______L_%01_
____%15ultra.dublin.iona.ie__%09c___(:%5cultra.du
blin.iona.ie:grid:0::IR:grid_:

The RXR format is provided in order to provide readable logging messages and a
convenient way to specify strings of octets. It incorporates concepts from the
URL encoding for HTTP (RFC 1738). RXR format strings are written as follows:

RXR:<version><string>

The 4-character upper-case string RXR: must be present at the start. The
<version> specifier is optional and can be omitted. If it is present, it takes the
form %vX where the X character encodes a format identification character
ranging from 0 to 9, a to z, and A to Z. If this version specifier is not present,
version 0 is assumed. This document describes RXR format version 0.
 30

I O R s a nd I I O P
Each octet of the octet string is stored, in order, in the <string> specifier.
Octets must be encoded if they have no printable representation in the US-
ASCII coded character set, if the use of the corresponding character is unsafe, or
if the corresponding character is reserved for some other interpretation within
this representation format.

The octets which must be encoded are as follows (the values are specified in
hexadecimal, and ranges are inclusive): any octet from 00 to 20, octets 22, 23,
25, 27, and 3B, octets between 5B and 60, octets from 7B to FF. Here is an
annotated list of ostensibly-printable octets deemed unsafe:

The encoding methods are as follows:

• For non-NUL (hex 00) octets, a ‘%’ (percent) character is stored in the
string, followed by the high-order nibble of the octet encoded in
hexadecimal, followed by the low-order nibble encoded in the same way.

• The character ‘_’(underscore) is used to encode a NUL (hex 00)
character. An example RXR encoded IOR from OrbixNames is as
follows:

RXR:_______%20IDL:CosNaming/NamingContext:1.0
____%01_______W_%01_____%10192.122.221.136_a%eb__
___7:%5cultra.dublin.iona.ie:NS:::IR:CosNaming%5f
NamingContext_

Octet value Special use

% Used to signify octet-encoding.

_ Used to signify null-encoding.

; Can be used as a comment.

’ "(space) Can be used as a string delimiter.

‘ [] | { } ~ \ ^ Can be corrupted by gateways or shells.
31

O rb i x Wond e rw a l l A dm in i s t r a t o r ’ s G u i d e
Internet Inter-ORB Protocol (IIOP)
The IIOP protocol is a special case of the General Inter-ORB Protocol (GIOP).
The GIOP specification provides a general framework for protocols to be built
on top of specific transport layers. The IIOP protocol is the specialisation of
GIOP which is built on top of TCP/IP.

Many aspects of IIOP discussed in this section apply equally to any GIOP
protocol, but no attempt is made to distinguish the different elements of the
specification here.

In general, the IIOP specification has three main elements:

• Transport management requirements.

The transport management requirements give a high level view of the
semantics of setting up and ending connections. The roles of client and
server and the respective functions of each are outlined at this level. The
protocol described is connection oriented with well-defined roles for
client and server.

• Definition of CDR coding.

The second element of the IIOP specification is the Common Data
Representation (CDR). This transfer syntax specifies a coding for all IDL
types: including basic types, structured types, object references (in the
form of IORs), and pseudo-object types such as TypeCodes. The CDR
coding translates IDL types into a series of bytes to make up an octet
stream (the CORBA name for a raw memory buffer).

A feature of CDR is its ability to deal with the different kinds of byte
ordering required by different hardware types: both big-endian and little-
endian byte ordering is supported. The convention adopted is that the
sender of a message sends data using its native byte ordering (and sets a
flag in the message header to indicate the ordering used). The receiver of
a message is obliged to detect the byte ordering used and carry out any
conversion, if it is required. The advantage of this convention is that when
both sender and receiver use the same byte ordering, no conversion is
required resulting in considerable gain in efficiency.

• IIOP message formats.

The third element of the IIOP specification is the message format. This is
discussed in the following section, “IIOP Message Formats”.
 32

I O R s a nd I I O P
IIOP Message Formats
The IIOP protocol defines seven types of message format. The messages allow
clients to pass invocations to servers and receive replies which can be either
normal or indicate some error status. Some additional messages are available to
help manage the connection.

The two most important message formats are the Request and Reply message
formats. An operation which has been declared in the IDL interface for an object
is invoked by a client using a Request message. The client usually waits for a
Reply message from the server (unless the operation has been declared to be
oneway) which normally contains a return value, or possibly an error condition.

The other five messages are all concerned with managing some aspect of the
connection and their roles are discussed in the following sections.

Typically, IIOP messages fit into one of three formats as follows:

1. A GIOP message header only.

2. A GIOP message header followed by a message header specific to the
message type.

3. A GIOP message header followed by a specific message header and
message body.

In all cases, a message begins with a GIOP header. The form of the GIOP
message header is illustrated in Figure 3.2 as follows:

Figure 3.2: The Format of a GIOP Message and Message Header

Message header Message body

GIOP Message size

message_type

flags
minor

major

GIOP header
33

O rb i x Wond e rw a l l A dm in i s t r a t o r ’ s G u i d e
The fields in the header can be described as follows:

• The four characters “GIOP” serve to identify the protocol.

• The GIOP version number (major and minor) is used to create the
message.

• A flag byte is currently only used to indicate the byte ordering.

• An integer is used to indicate the message type.

• The message size (excluding the GIOP header itself).

This summarises all information which is sent to the GIOP header. For a formal
specification of the exact header format, consult the CORBA specification.

To use Wonderwall effectively, the following sections sufficiently describe the
purpose and usage of the different IIOP message formats. For complete details of
the message formats, however, consult the CORBA specification.

Request Message

A Request message allows a client application to invoke an operation on a
remote server. The message contains all the information which is needed for the
invocation including the identity of the object, the operation name, and any
parameters associated with the operation. Because a Request message is
designed specifically to invoke operations which have been declared in an IDL
interface, the message format is designed to support all of the syntax which can
appear in an IDL operation definition.

The message consists of a Request header followed by a Request body. An
outline of the Request header is shown in Figure 3.3 on page 35. It consists of
the following fields:

• The service_contexts field allows service specific context information
to be passed along with a Request. Intended for use in conjunction with

the CORBA services to carry extra information along with the Request2,
the service contexts are not needed in the core specification of CORBA.

2. This field is used by the Transaction Service, for example.
 34

I O R s a nd I I O P
• The request_id field is used to uniquely identify a Request emanating
from a client so that the client can later match a received Reply with its
corresponding Request (the corresponding Reply is tagged with the same
request_id).

• The response_expected flag is used to indicate whether the Request is
oneway or not. A normal Request has response_expected set equal to
TRUE.

• The next field is an array of three bytes reserved for future use.

• The object_key field is used at the server end to identify the object
which is being invoked.

• The operation field is simply a string giving the name of the operation
being invoked.

• The requesting_principal field identifies the user making the request.
That is, it is simply the user name of the person running the client.

Figure 3.3: The Format of a Request Message Header

Figure 3.3 illustrates all of the information available in the Request header. The
Request header is of particular importance to the operation of Wonderwall
because Wonderwall carries out its filtering based upon the contents of the
Request header. Appendix A on page 157 verifies all rules for filtering requests
based on the contents of this header.

GIOP header

requesting_principal

operation

service_contexts object_key

reserved

response_expected

request_id
35

O rb i x Wond e rw a l l A dm in i s t r a t o r ’ s G u i d e
The Request also has an associated Request body. The body of the Request
consists essentially of a list of the operation parameters followed by any context
strings for the operation.3 It is possible for the body of the Request to be
empty—for example, if the Request was made for an operation which took no
parameters and omitted a context clause.

Because filtering done by Wonderwall is based entirely on the Request header,
there is no need for it to parse, or alter in any way, the Request body. This fact
simplifies the filtering process significantly—ensuring the simple and efficient
filtering and forwarding of request messages.

Reply Message

A Reply message is normally sent by a server in response to a client Request
message. The Reply message consists of a GIOP header followed by a Reply
header and a Reply body. The usual intent of a Reply message is to pass back a
return value for an operation and to indicate the completion status for the
operation.

The Reply header does not pass as much information as a Request header and
typically consists of the following three fields:

1. The service_context field which is similar to the service context
described in connection with a Request message.

2. The request_id field which is used to match this Reply to the client
Request which gave rise to it. That is, all Replies are paired off with their
corresponding Request and the request_id is a unique (per client)
identifier used to match Request and Reply.

3. The reply_status field is used to indicate whether this is a normal Reply
or if some error condition occurred in the server.

3. These context strings have nothing to do with service contexts. They are effectively middleware
environment parameters and they will only be passed if a context clause appears at the end of an
operation definition in IDL.
 36

I O R s a nd I I O P
The reply_status is used to toggle between a number of different Reply types
so that a Reply message is almost like four messages rolled into one. The
possible values for reply_status are as follows:

The Reply is routinely used by the Orbix daemon to dynamically allocate a port
to a server process which has been automatically forked by the daemon.

CancelRequest Message

A CancelRequest message is sent by the client to the server to indicate that the
client is no longer interested in receiving a Reply to a particular message.
However, it is not an error if the server sends the Reply anyway.

LocateRequest Message

A LocateRequest message can be sent from client to server to probe for the
location of a remote object. It is advantageous to send this message before
sending a large Request on a connection which has just been opened.

NO_EXCEPTION This is the normal Reply type. The body of this Reply
type contains any return, out, or inout parameters
which have been declared in the IDL for the
operation.

USER_EXCEPTION This status indicates that a user exception has been
raised in the server. The body of this Reply type
contains the details of the user exception.

SYSTEM_EXCEPTION This status indicates that a system exception
occurred. The body of the Reply indicates the kind of
system exception raised.

LOCATION_FORWARD This is a special kind of Reply which a server can use
to let a client know that it does not hold the object to
which the Request refers. The body of a
LOCATION_FORWARD reply contains a new IOR for the
object. The client can use the new IOR to resend the
Request to the new location (this is done
transparently as part of the IIOP protocol).
37

O rb i x Wond e rw a l l A dm in i s t r a t o r ’ s G u i d e
LocateReply Message

A LocateReply message is sent from server to client in response to a
LocateRequest message. There are three kinds of LocateReply message which
the server can send as follows:

1. The UNKNOWN_OBJECT response indicates that the server does not hold
the object and neither does it know where to find it.

2. The OBJECT_HERE response indicates that the server holds the object and
communication can proceed as normal.

3. The OBJECT_FORWARD response indicates that the server does not hold
the object but it does know of a forwarding location for the object. In this
case, and in this case only, the LocateReply message has a body. This
LocateReply body contains the new IOR.

CloseConnection Message

A CloseConnection message is sent by the server to the client to tell the client
that it intends to close the connection.

MessageError Message

A MessageError message can be sent by either the client or the server. It is used
within the IIOP protocol to indicate that the last message received was either
corrupted or incorrectly formatted in some way. It consists only of a GIOP
header with the message type set to MessageError.
 38

 4
Interoperability and Wonderwall
Operational Details

The IIOP protocol was introduced to facilitate interoperability
between ORBs supplied by different vendors. For the most part, the
use of this protocol is transparent to the user—the main difference
is that your ORB is able to talk to many different ORBs, as a result
of sharing a common protocol.

Object References
One aspect of IIOP which the user should be aware of is that the information
required to make an initial connection to an ORB must be passed around by
some means other than using the IIOP protocol. A connection is established
between client and remote server with the help of an Interoperable Object
Reference (IOR), which details the location of the object and the information
needed to connect to the server.

There are two main formats of an IOR as follows:

1. An encoded IOR format is used to transmit IORs inside an IIOP message.

2. A stringified IOR format is used to communicate an IOR by any
convenient means—refer to “Representations of an IOR” on page 30 for
further information.
39

O rb i x Wond e rw a l l A dm in i s t r a t o r ’ s G u i d e
This stringified IOR is typically given to a client to allow it to bootstrap
the initial connection to a server. Subsequent IORs can be obtained from
the server via the IIOP protocol itself.

Normally the server, which holds the object, creates an IOR for the object and
makes this public in some way. The four main ways in which an IOR can be made
known to a client are as follows:

1. The server can create a stringified IOR and write this IOR to a file in a
well-known location which is accessible to the client.

2. The server can register the IOR with the CORBA Naming Service. The
Naming Service, as detailed in the CORBA specification, is basically a
database that associates names with object references. (A client requires
just a single bootstrap reference to the Naming Server in order to access
all of the IORs stored there.)

3. An IOR can be sent inside an IIOP message. This applies to any IDL
operation which features an interface name as a parameter or return
type.

4. The Orbix-specific bind mechanism (used for an Orbix C++ or Orbix
Java client talking to an Orbix C++ or Orbix Java server) can be used.
The client initially makes contact with the Orbix daemon and the daemon
helps the client to determine the IOR of the required object. In such a
case, the client does not need an IOR to get started—bind provides an
alternative bootstrap mechanism.

Of these four methods, the first two provide the most general interoperable
way of bootstrapping initial connections.

Wonderwall is based on the use of two IORs for each object: the real IOR and
the proxified IOR. The real IOR is used by servers operating behind the firewall.
The proxified version of the IOR is publicised and made generally available
outside the firewall. This is detailed in the following sections.
 40

I n t e r o p e r ab i l i t y a n d Wond e rw a l l O p e r a t i o n a l D e t a i l s
Proxification
As a general convention on the Internet, frequently used servers are assigned to
a dedicated port. For example, most HTTP servers operate on port 80, most
Internet mail servers operate on port 25, and so on. Whenever contact with a
remote host is made, connection to a particular service by opening a socket on
its well known port can be established. Wonderwall fits this convention by
providing a single dedicated port for IIOP messages.

A port number is embedded directly into every IOR and can have any value. If a
large number of CORBA servers are active on a given host, then a large number
of ports may be in use for IIOP communications. From a CORBA perspective,
this makes sense, as each of these processes is a dedicated server carrying out a
specific sort of task.

From a firewall perspective, however, the use of multiple IIOP ports poses
difficulties. It is undesirable, from a security point of view, to allow the use of
multiple ports on the bastion host. Firewall practice is based on collating all
messages of a single protocol type, and passing them through a single port.

Wonderwall uses a single IIOP port on the bastion host. Any IORs which are
used remotely should point at the Wonderwall host and port. The IORs
generated by servers on the internal network feature a range of hosts and ports,
depending on where they were generated. These IORs are suitable for use on
the internal network since they allow direct IIOP connections to be established
behind the firewall. However, giving them away to users on the Internet is
undesirable—because they facilitate direct connections to internal hosts, and a
properly constructed firewall (in any case) would make them unusable across
the Internet.

It is thus necessary to modify the real IORs before making them available on the
Internet—a process referred to as the proxification of an IOR. The principle of
proxification is illustrated in Figure 4.1 and Figure 4.2 on page 42.

The Proxification Process

Looking at Figure 4.1 on page 42, when a client is communicating with Obj, it has
the illusion that the object lives on the Wonderwall server. The IOR which is
used to contact this object must have the host and port of server W (the
Wonderwall proxy server) embedded, along with the object_key for Obj.
41

O rb i x Wond e rw a l l A dm in i s t r a t o r ’ s G u i d e
Figure 4.1: Apparent Location of Object, in Wonderwall Proxy Server

In reality, the object lives behind the firewall and is located on server S in the
internal network (see Figure 4.2). The real IOR for this object has the host and
port of server S embedded in it, along with the object_key for Obj.
Wonderwall acts as a proxy for this server, forwarding any messages it receives
from the client (subject to filtering by the Access Control List).

Figure 4.2: Actual Location of Object, in Server S

W
Obj

host=W
port=W
key=Obj

C

C ObjW

S

host=S
port=S
key=Obj
 42

I n t e r o p e r ab i l i t y a n d Wond e rw a l l O p e r a t i o n a l D e t a i l s
The only difference between the real and the public IOR is the value of the
embedded host and port. The host and port embedded in the real IOR must be
changed. The resulting IOR is a proxified IOR.

Proxification can be carried out using the iortool utility which comes with
Wonderwall. First the real IOR for Obj on server S is written to a file, say
real.ref, in stringified form1. Then the real IOR is proxified with the following
command:

% iortool -ior -proxify \
-host wonderwall_host -port wonderwall_port \
real.ref > proxy.ref

This takes the IOR stored in file real.ref (which can either be in IOR or RXR
format) and replaces the current host and port embedded in the IOR by
wonderwall_host and wonderwall_port instead. The result of this proxification
process is written to the file proxy.ref in IOR format.

Note: The IOR format is the portable string representation, as defined by
CORBA.

1. Refer to “Representations of an IOR” on page 30 and consult your ORB programming guide for
instructions on how to generate a stringified version of the real IOR.
43

O rb i x Wond e rw a l l A dm in i s t r a t o r ’ s G u i d e
Non-Orbix Client
If using a non-Orbix client to connect to a server via Wonderwall, you do not
have the option of using the bind mechanism. The interoperable approach is
based on the use of proxified object references, as described in “Proxification”
on page 41. A proxified object reference is obtained (see “The Proxification
Process” on page 41) and this proxified reference is publicised using one of the
methods discussed in “Object References” on page 39. If the client has access to
this IOR in string format, a connection can be established to the server using
code similar to the following code sample. This sample assumes that the remote
object is of type grid:

// C++
main () {

...
char *proxifiedIOR;
CORBA::Object_var objVar;
...
// Read the proxified IOR into a string buffer
// pointed to by proxifiedIOR.
...
// Convert the string to an object reference.
objVar = CORBA::Orbix.string_to_object(proxifiedIOR);
...
// Assume that this is the proxified IOR for a
// grid object. Perform a _narrow()
grid_var myGridVar = grid::_narrow(objVar);
...

}

A reference myGridVar is obtained to the desired grid object.

Note: Error handling has been omitted from this example for clarity, but in a
real situation it is imperative to enclose the calls in a try/catch clause.

It is generally more difficult for a client to get a reference to its first object,
whether it is via a stringified object reference, as described in the preceding code
sample, or via the Name Server. If this first object is either a Finder or Factory
object, then subsequent object references can be obtained more easily.
 44

I n t e r o p e r ab i l i t y a n d Wond e rw a l l O p e r a t i o n a l D e t a i l s
Non-Orbix Server
For non-Orbix servers, the main restriction is that they are not able to respond
to the Orbix bind mechanism. This affects the Wonderwall proxy, because it is
the Wonderwall proxy which attempts to make direct connections with servers
behind the firewall. Wonderwall is not able to specify objects using the bind
syntax in its configuration file. For example, if you want to make an object
known to Wonderwall, the following line should not be included in your
configuration file:

object grid_1 bind("grid1:GridSrv","gridHost") interface grid

Instead, the following steps should be carried out:

• Obtain a copy of the real IOR for the object in CORBA string format—
consult your ORB programming guide for instructions on how to do this.
This IOR is needed if you want to generate a Proxified IOR for a non-
Orbix client.

• Copy this string to a file in a convenient location, for example, as follows:

/etc/iors/grid1.ref

• Make this object known to Wonderwall by including the appropriate line
in the configuration file as follows:

object grid_1 /etc/iors/grid1.ref

There are a few alternatives you can use for the object-specifier field—see “List of
IORs” on page 170. However, the approach outlined here is probably the most
convenient for the interoperable case.
45

O rb i x Wond e rw a l l A dm in i s t r a t o r ’ s G u i d e
Connection Establishment
This section explains some of the steps involved in establishing a connection
through Wonderwall. By involving the daemon in the process of connection
establishment, it is possible to have servers launched automatically. This means
that the server is contacted in a sequence of steps, beginning with an initial
connection to the daemon. It is for this reason that the configuration keyword
orbixd-iiop-port must be set equal to the value of the daemon port—
knowledge of this port is needed to facilitate communication with the daemon
process.

A Normal IIOP Connection

Figure 4.3: Establishing a Normal Connection

Figure 4.3 describes a normal IIOP connection as follows:

• Client C requests the IOR for server object S2—a Java applet could get
this from an applet tag. This contains the connection details of the
activation agent—for example, the Orbix daemon on the server’s host.

2. An Orbix Java client can use the bind mechanism as an alternative.

Orbix Daemon (D)

Client (C)

Server (S)

host=D
port=D
object key=S

(1a)

(1b)

(1c)

(1d)

(1e)

Request

Locate_Forward

Request
 46

I n t e r o p e r ab i l i t y a n d Wond e rw a l l O p e r a t i o n a l D e t a i l s
• (1a, b): C opens a TCP/IP connection to host D, port D.

• (1c): C sends the request message to D (the Orbix Daemon). D responds
with a LOCATION_FORWARD Reply message containing the real location of
S.

• (1d): C opens a TCP/IP connection to host S, port S.

• (1e): C sends the request message to S.

Note: This example assumes the use of a non-persistent server. Persistent
servers do not require the presence of an activation agent—for Orbix,
the Orbix daemon is an activation agent. In such a case, the IOR in the
first step would contain the connection details of S rather than D, and
the second and third steps would not be necessary.

An IIOP Connection Through Wonderwall

Figure 4.4: Establishing a Connection Through Wonderwall

Orbix Daemon (D)

Client (C)

Server (S)

(2a)

(2b)

(2c)

(2d)

(2e)

Request

Activation

Locate_Forward

(2f)

Wonderwall (W)

host=D
port=D
object key=S

h
p
o

Request

h
p
o

host=D
port=D
object key=S
47

O rb i x Wond e rw a l l A dm in i s t r a t o r ’ s G u i d e
Figure 4.4 on page 47 describes the process of establishing a typical IIOP
connection through Wonderwall as follows:

• Wonderwall W requests the IOR for server object S. This is copied into
the configuration file by the system administrator.

• (2a, b): Client C requests the proxified IOR for server object S using the
same method as described in “A Normal IIOP Connection” on page 46.

• (2c): C opens a TCP/IP connection to host W, port W, and sends the
request message to W.

• (2d): W reads the request, finds the IOR in its configuration that matches
the object key used in the request, and opens a connection to host D,
port D. An activation request is sent to the daemon, causing the server S
to startup. D responds to the activation request with the connection
details for S.

• (2e): W opens a connection to S using the details from D.

• (2f): W forwards the request message to S, forwards any replies back to
C, and so on until the connection closes.

Note: Again, this assumes the use of non-persistent servers. Persistent servers
use the connection details of S rather than D—in such a case, the fourth
step is skipped.

A More Complicated Connection: Using Object Factories

Figure 4.5 on page 49 describes a connection using object factories. Factory
objects are server objects which create objects to handle requests. Figure 4.5
also applies to servers which return IORs so that clients can bind to objects.

Wildcard flags used in Figure 4.5 indicate that an IOR in the Wonderwall
configuration file can be used to match in an approximate manner. Different
wildcard flags are required to support other situations. To reduce clutter in
Figure 4.5, the server-activation stage has been omitted.
 48

I n t e r o p e r ab i l i t y a n d Wond e rw a l l O p e r a t i o n a l D e t a i l s
Figure 4.5: Establishing a Connection to a New Object Through Wonderwall

Figure 4.5 describes the establishment of a connection to a new object (using
object factories) through Wonderwall as follows:

• (3a): Client C requests the proxified IOR for server object as described in
the previous examples.

• (3b): C opens a TCP/IP connection to host W, port W, and sends a
Request message to W.

• (3c): W reads the Request and examines the object key. Since no IOR in
its configuration exactly matches the object key, it runs through its list of
wildcard IORs. It finds the IOR that approximately matches, opens a
connection to host S, port S, and forwards the Request.

• (3d): S creates the object S2 and sends an IOR for it back to W which
forwards it on to C.

• (3e): C makes a second request and this time it invokes on object S2. W
reads the Request and examines the object key. Since S2 uses the same
host, port, interface, and server name, the wildcard IOR used in (3c)

Server (S)

Client (C)

(3a)

(3b)

(3c)

(3e)

Request

Request 2

Wonderwall (W)

Request

Request 2

(3d)

Created
Object (S2)

IOR for S2

host=D
port=D
object key=S

h
p
o
w

p

w
o

h
host=D
port=D
object key=S
wildcard=marker
49

O rb i x Wond e rw a l l A dm in i s t r a t o r ’ s G u i d e
matches this Request as well. A connection is opened to host S, port S
(the addressing information in this IOR), and the Request is passed to
object S2.

Note: Objects S and S2 might not share the same connection details. In such a
case, a separate wildcard IOR would be necessary listing the known
details of S2.

Factory Objects and IORs
Factory objects typically employ a method which is used to create a CORBA
object on the server to which an interoperable object reference is returned. For
example, a general version of a GridFactory could be defined as follows:

// IDL
interface GridFactory {

// Make an object of type ‘grid’
// and return an IOR.
grid makeGrid();

};

The makeGrid() operation returns an object reference to an object of type
grid. This type of interface, however, poses problems for the firewall.

Typically, the default behaviour of an operation such as makeGrid() is to
generate an object reference which points directly at the object on the server
itself. But this object reference is not useful on the Internet because it points at a
server on the internal network, behind the firewall. The operation of the firewall
is designed to prevent direct access to such internal servers.

A solution to this is to change the default behaviour of the server, so that any
object references it returns will refer to the Wonderwall host and port instead.
That is, the Factory object should generate proxified object references instead of
real object references. Refer to the programming manual for your ORB for
further information on this.
 50

I n t e r o p e r ab i l i t y a n d Wond e rw a l l O p e r a t i o n a l D e t a i l s
Another solution, one which is more interoperable and can be implemented
without change to either client or server code, is to use the proxify parameter
in the Access Control List. This causes Wonderwall to proxify object references
returned by the named operation.

To allow external access to objects generated by the Factory object, in addition
to implementing the GridFactory interface, you will need to add to the
Wonderwall configuration file. A typical approach is the following:

• Generate a real IOR for the GridFactory object and store it in a
convenient location. For example:

/etc/iors/GridFactory_real.ref

• Declare a tag in the Wonderwall configuration file which refers to all of
the objects on the same server as GridFactory. For example:

server GridFactory
/etc/iors/GridFactory_real.ref

• Use this tag in a rule to allow access to all objects in the GridFactory
server as follows:

allow object GridFactory

This configuration allows any proxified object references, generated by
GridFactory, to be used by the external network irrespective of marker or
interface type. Using the server keyword to generate a tag allows you to
regulate permissions, a server at a time. Currently, this form of wildcarding is
supported only for Orbix C++ and Orbix Java.

Factory Objects and the “Proxify” Parameter

Wonderwall supports automatic proxification of returned IORs as they pass
through the proxy. To proxify the IOR returned by the makeGrid operation, use
the proxify parameter in a rule as follows:

allow object GridFactory op makeGrid proxify
51

O rb i x Wond e rw a l l A dm in i s t r a t o r ’ s G u i d e
Implications for Developers
From a developer’s perspective, the use of Wonderwall has minimal impact.
Once the server is ready to be made available to the Internet, the IOR and the
list of required operations are passed on to the firewall administrator who
assesses the security of the server and updates the Wonderwall configuration
file. Alternatively, an Orbix C++ or Orbix Java server allows you to use the
bind form of an object-specifier in the configuration file (as explained in “List of
IORs” on page 170).

Generally, on the client side it is only necessary to ensure that the client receives
a copy of the proxified IOR so that it can establish an initial connection. In the
special case of an Orbix Java client, the procedure is simplified so that an Orbix
Java client transparently connects to the server via Wonderwall—if a direct
connection is blocked by a firewall.

Callbacks

A firewall unfriendly feature of the IIOP protocol is its use of dynamic port
assignment. Firewalls are based around the idea of ports, protocols and services
mapping to one another. For example, the SMTP protocol for Internet mail runs
on port 25; thus a connection from a client to a server on port 25 is used for
sending mail. Since IIOP dynamically creates and assigns ports, this no longer
applies so the usual paradigm of opening up a single port to support a particular
protocol cannot be assumed.

This is of particular relevance for callbacks. If the client’s site is not protected by
a firewall, the callback mechanism in the current IIOP specification is unlikely to
work successfully. This is because it relies on the server opening a TCP
connection to the client using a dynamically assigned port. If the client’s site is
protected by a firewall, this connection is blocked. The typical scenario of
opening a well-known port does not apply here.

In such a case, a possibility to consider is to extend the existing IIOP
specification to allow the callback to use the same connection as that used for
the initial incoming invocation from the client. Until this is standardised,
however, the above model will be restricted to the usual Internet client-driven
paradigm. In CORBA terminology this means that invocations can only be issued
 52

I n t e r o p e r ab i l i t y a n d Wond e rw a l l O p e r a t i o n a l D e t a i l s
from the client site to the backend service behind the firewall. Objects resident
in a client application/applet behind a firewall cannot act as CORBA servers
receiving requests from objects resident in the backend service.

Note: Although callbacks are not supported, the Requests can of course be two
way.

Orbix C++ and Orbix Java deals with this problem by extending IIOP to provide
bi-directional IIOP. With Orbix Java 3 or Orbix 2.3c and later, callbacks can be
delivered from server to client regardless of any firewalls between the two
ORBs.
53

O rb i x Wond e rw a l l A dm in i s t r a t o r ’ s G u i d e
 54

 5
Using Wonderwall with Orbix C++
and Orbix Java

Deploying distributed CORBA applications in Internet or intranet
environments, where inter domain interactions occur, raises a
requirement for screening and monitoring these interactions.
Wonderwall achieves this by providing a proxy service. Thus Orbix
C++ and Java servers can be protected against errant clients.
Additionally, Orbix Java clients and applets can avail of the inbuilt
support for Wonderwall to navigate enterprise firewalls to avail of
CORBA services.

Because Orbix Java contains built-in support for Wonderwall, Wonderwall can
be used as either:

• A simple intranet request-routing server—which passes IIOP messages
from your applet, via the web server, to the target server.

• A full-blown firewall proxy—which can filter, control, and log your IIOP
traffic.

The remainder of this chapter discusses using Wonderwall as a firewall
technology for distributed Orbix applications.
55

O rb i x Wond e rw a l l A dm in i s t r a t o r ’ s G u i d e
Using Wonderwall with Orbix Java as an
Intranet Request-Router

If you simply wish to provide a way for your Orbix Java applets to contact
servers which reside on hosts other than the one your web server is running on,
and you do not have any reservations about security issues, then Wonderwall
provides this capability as an intranet request-router for IIOP. The file
intranet.cf is provided for this configuration. The Wonderwall command line
is as follows:

iiopproxy -config intranet.cf

This mode of operation requires no configuration, apart from setting your
daemon port and domain name. Using Wonderwall, any server can be connected
to and any operation can be called.

Sample intranet.cf
###
WonderWall configuration file -- demonstration version.
Copyright (c) 1996-2000 IONA Technologies PLC. All rights # #
reserved.
intranet.cf
This is the simple, no-security option -- it allows Orbix Java
clients to connect to _any_ server through it. It is useful for
intranet environment, where the main criterion is getting around
the web browser security restrictions.

There's no need to specify servers in this file, the Orbix ##
client-side classes use Wonderwall transparently.

Blank lines and lines beginning with "#" are ignored.

You do not need to change these values to use the Wonderwall,
although you may want to customise them for your own needs. For
example, the default port
for HTTP is port 80, but to use this the Wonderwall needs to run
as the "root" user.
#
port 15700
http-port 8000
 56

U s i n g Wonde rwa l l w i t h O r b i x C++ a nd O r b i x J a v a
Change this to reflect the location of your Orbix Java applets...
HTTP documents are searched for in this directory and its # #
subdirectories.
#
http-files <root_directory_for_http_files>

You need to set this to your DNS domain.
#
domain your.domain.here.com

You need to make sure this matches whatever you're using with
Orbix or Orbix Java, in the common.cfg file or Orbix Java.cfg
file.
#
orbixd-iiop-port 1571

log requests replies

These three lines will turn off the security restrictions,
allowing any server to be contacted.
#
strict-host-matching off
allow-unlisted-objects on
allow

Clients interacting with target servers which reside inside Wonderwall, need to
obtain IORs which have been proxified. Otherwise, the client’s invocation will
not successfully route through Wonderwall.
57

O rb i x Wond e rw a l l A dm in i s t r a t o r ’ s G u i d e
Using Wonderwall as a Firewall Proxy
To run Wonderwall in a traditional secure mode, use the file secure.cf as an
example of the configuration you should use. This mode of operation requires
that the target objects and operations be listed in the configuration file. For
further details, refer to Appendix B, “Configuration”, which provides a guide to
using Wonderwall’s access control lists and object specifiers. In secure.cf
there are three basic categories of statements:

• iiopproxy configuration

• object specifiers

• access control rules

Sample secure.cf
###
WonderWall configuration file -- demonstration version.
Copyright (c) 1996-2000 IONA Technologies PLC. All rights # #
reserved.
secure.cf
#
This file provides the high-security, firewall proxy mode of #
operation.
It must be updated with any servers you wish to use.
#
DO NOT USE THIS FILE IN A PRODUCTION ENVIRONMENT WITHOUT CHECKING
IT FIRST!
#
port 1570

By default, HTTP service is disabled. To enable it, put in a port
number here, and uncomment and edit the "http-files" parameter
to reflect where your HTTP documents are kept. The standard HTTP
port is 80.

http-port 0
http-files <root_directory_for_http_files>

Make sure to fill in your DNS domain here.
#

 58

U s i n g Wonde rwa l l w i t h O r b i x C++ a nd O r b i x J a v a
domain your.domain.here.com

You need to make sure this matches whatever you're using with
Orbix or Orbix Java, in the Orbix.cfg file.
#
orbixd-iiop-port 1571

log requests replies
###

deny # THIS LINE STOPS ALL TRAFFIC -- REMOVE BEFORE USE

Allow clients to talk to the Orbix daemon, and get server impl
details
(which is required to support the _bind() call). If you plan only
to use IORs for connecting, then strip this out.
#
#object orbixd bind (":IT_daemon", "grid_svr_host") interface # #
IT_daemon
#allow object orbixd op getIIOPDetails

allow access to the grid demo server, and the operations # # #
available there.
#
#object grid bind (":grid", "grid_svr_host") interface grid
#allow objectgrid op _IT_PING# The Orbix "ping object" operation
#allow objectgrid op _get_width
#allow objectgrid op _get_height
#allow objectgrid op get
#allow objectgrid op set

anything unmatched by end-of-file is automatically denied # #
anyway.

In secure.cf, Wonderwall is configured in vanilla IIOP proxy mode. It listens
on port 1570 for IIOP traffic. All IIOP requests received on this port are subject
to the access control rules, which determine whether or not they are passed on
to the target server. Other configuration statements indicate that the http
59

O rb i x Wond e rw a l l A dm in i s t r a t o r ’ s G u i d e
services of Wonderwall are disabled, that is, the http-port is set to zero which
disables the http server. There is a placeholder for the domain relevant to
Wonderwall’s deployment.

The daemon port behind the firewall is specified as 1571. Thus, Wonderwall can
manufacture the IT_daemons IOR using this port. Logging is turned on to record
the headers from requests and replies. This sample configuration file specifies
the ultimate firewall in which all IIOP traffic destined for port 1570 is blocked as
specified by the deny rule. At the end of the configuration file, examples of
object specifiers and access control rules are provided but are commented out.

Two object specifiers are given; one for the Orbix daemon and one for the
grid server objects, as per the following statements:

object orbixd bind(“:IT_daemon”, “grid_svr_host”)
interface IT_daemon

object grid bind(“:grid”, “grid_svr_host”)
interface grid

Associated with these objects are the access rules which allow the operation
getIIOPDetails on the daemon and the operations _get, _set,
_get_height, _get_width, and _IT_PING on the grid objects. The
relevance of placing an object specifier in the configuration file is that it identifies
the set of object references for which Wonderwall allows access as defined by
the security policy in the access control rules.

When the bind syntax is used, Wonderwall probes for the object to determine
that it is a valid object. This occurs during Wonderwall’s initialization, when it
processes its configuration file. This also occurs for each new client connection.
Wonderwall reloads its configuration file at this time and creates an individual
IOR table for that client connection. Wonderwall generates an IOR for the
target object using the information in the bind statement and using the port of
the Orbix daemon. Hence, the significance of the orbixd-iiop-port setting
in the Wonderwall configuration file.

The host information and interface information for the synthesized IOR is
obtained from the bind statement. This initiates Wonderwall’s interaction with
the Orbix daemon to establish the true IOR for the object. Wonderwall then
sends a ‘ping’ message to verify that the object truely exists and is available. If it
is, the IOR is added to the IOR table.
 60

U s i n g Wonde rwa l l w i t h O r b i x C++ a nd O r b i x J a v a
Orbix Java Built-In Wonderwall Support
Orbix Java provides automatic built-in support for Wonderwall at the client-side.
This allows Orbix Java to transparently attempt to connect to any IIOP servers
via Wonderwall if a connection attempt fails using the default direct socket
connection mechanism. It also means that Wonderwall can be used to:

• Provide HTTP tunnelling for Orbix Java applets.

• Provide automatic intranet routing capability for Orbix Java applets, in
order to avoid browser security restrictions.

• Use Orbix Java applications and applets with Wonderwall, with no code
changes.

Configuring Orbix Java to Use Wonderwall

In order for Orbix Java to use Wonderwall, it must be configured with the
Wonderwall location details. The following configuration parameters are used
for this purpose:

Orbix Java.IT_IIOP_PROXY_HOST
Orbix Java.IT_IIOP_PROXY_PORT

The IT_IIOP_PROXY_HOST parameter should contain the name of the host on
which Wonderwall is running. The IIOP_PROXY_PORT parameter should contain
its IIOP port. These parameters can be set using any of the supported
configuration mechanisms. For further information, refer to the release notes of
the Orbix Java version you are using. For example, a fragment of a HTML file
which uses applet parameters is as follows:

<applet code=GridApplet.class height=300 width=400>
<param name="Orbix Java.IT_IIOP_PROXY_HOST"

value="wwall.iona.com">
<param name="Orbix Java.IT_IIOP_PROXY_PORT" value="1570">

</applet>
61

O rb i x Wond e rw a l l A dm in i s t r a t o r ’ s G u i d e
Configuring Orbix Java to Use HTTP Tunnelling

HTTP tunnelling is a mechanism for traversing client-side firewalls. Each IIOP
Request message is encoded in HTTP base-64 encoding, and a HTTP form query
is sent to Wonderwall, containing the IIOP message as query data. The IIOP
Reply is then sent as a HTTP response.

Using HTTP tunnelling allows your applets to be used behind a client’s firewall,
even when a direct connection (or even a DNS lookup of Wonderwall’s
hostname) is impossible. Additionally, it provides a mechanism whereby Orbix
Java applets can over come some sandbox restrictions, and provide access to
CORBA servers which execute on a host other than that of the servering web
server, for example Wonderwall.

In order to use HTTP tunnelling, you must use the new ORB.init() API call to
initialise Orbix Java. The ORB.init() function must be called by all clients and
servers in a CORBA system before they can make use of the underlying ORB.
For further information, refer to the Orbix Programmer’s Guide Java Edition and
the release notes of the Orbix Java version you are using.

This allows Orbix Java to retrieve the codebase from which the applet was
loaded. The codebase tag specifies an applet in the location from which the
applet is downloaded. If there is no codebase specified, then the web server that
has served the applet’s HTML files is contacted, and the applet class is requested
from the same base location as the HTML file. The codebase is then used to find
Wonderwall’s interface for HTTP tunnelling. This is a pseudo-CGI-script called /
cgi-bin/tunnel. For further information on what the codebase is used for in
Java, refer to the following URL: http://www.javasoft.com/.

Note: Although Wonderwall supports HTTPS tunnelling, currently the only
protocol value supported in Orbix Java for HTTP tunnelling is http.
Nonetheless, Wonderwall can also serve html pages and applets over
HTTPS.
 62

U s i n g Wonde rwa l l w i t h O r b i x C++ a nd O r b i x J a v a
Because an untrusted Java applet is only permitted to connect to the server
named in the codebase parameter, Wonderwall should be used as the web
server which provides the applet’s classes. However, it is permissible to provide
your main web site’s HTML and images from another web server, such as
Apache, IIS or Netscape, and simply refer to the Wonderwall web server in the
applet tag, as follows:

[in the file http://www.iona.com/demo.html]

<applet code=GridApplet.class
codebase=http://wwall.iona.com/GridApplet/classes
height=300 width=400>

</applet>

With this setup, your HTML and images are loaded from the main web site
(www.iona.com) and your applet code is loaded from wwall.iona.com—as a
result, the applet can open connections to that host. For greater efficiency, it is
advisable to make a ZIP, JAR, and/or CAB file containing the classes used by your
applet and store them on the Wonderwall site as well. Regardless of whether
you are using Wonderwall, this is generally a very good idea.

It is also feasible to provide a Wonderwall setup to support HTTP tunnelling on
the same machine as the real HTTP server, by using a different port number
from the default port 80. However, bear in mind that some sites can only
support HTTP traffic on port 80, the standard port, so this may restrict your
applets’ potential audience.

You should ensure that the applet’s classes are available in the directory you
named in the codebase URL. In the previous example, this would be
GridApplet/classes. This directory path is relative to the directory named in
the Wonderwall configuration file’s http-files parameter.

If you want an application to use HTTP tunnelling, or would prefer to override
an applet’s HTTP tunnelling setup, three more configuration parameters are
provided:

Orbix Java.IT_HTTP_TUNNEL_HOST
Orbix Java.IT_HTTP_TUNNEL_PORT
Orbix Java.IT_HTTP_TUNNEL_PROTO

The IT_HTTP_TUNNEL_HOST parameter should contain the name of the host on
which Wonderwall is running. The IT_HTTP_TUNNEL_PORT parameter should
contain its HTTP port. The IT_HTTP_TUNNEL_PROTO parameter should contain
the protocol used.
63

O rb i x Wond e rw a l l A dm in i s t r a t o r ’ s G u i d e
Note: Currently, the only protocol value supported for HTTP tunnelling is http.

Wonderwall supports HTTP 1.1 and HTTP 1.0’s Keep-Alive extension. This
means that TCP connections between the client and Wonderwall (or between a
HTTP proxy and Wonderwall) will be kept alive. That is, more than one HTTP
request can be sent across them. This greatly increases the efficiency of HTTP.

Additionally, the connection preference of the client should be specified by
setting the Orbix Java property IT_HTTP_TUNNEL_PREFERRED (either in
the Orbix Java.cfg file or programmatically using setConfigItem.)

Alternatively, if the client wishes to communicate via Wonderwall using IIOP,
then setting the property IT_IIOP_PROXY_PREFERRED is used. It should be
noted that Orbix Java’s default connection order, that is, when the client has not
explicitly set the above properties, is to try the IIOP proxy first and then to
attempt HTTP tunnel. Also, note that IIOP proxying takes precedence over
HTTP tunnelling. Thus, if IT_IIOP_PROXY_PREFERRED is set, this overrides
tunnelling.
 64

U s i n g Wonde rwa l l w i t h O r b i x C++ a nd O r b i x J a v a
Deployment Scenarios
In this section, we look at a number of scenarios for deploying Wonderwall with
Name Servers.

Scenario 1- Deploying OrbixNames Servers

Figure 5.1: Deploying OrbixNames Server

This scenario depicts the deployment of an OrbixNames server behind
Wonderwall, with a client outside the firewall having access to it. If it is required
to deploy an OrbixNames server behind Wonderwall and permit it to be used
by clients outside the firewall, then it is necessary to:

1. Obtain an object reference for the initial_naming_context or root
context of the naming service.

2. Proxify this object reference.
65

O rb i x Wond e rw a l l A dm in i s t r a t o r ’ s G u i d e
3. Configure this object reference into the client side orb so that it can be
obtained by a resolve_initial_references invocation of the
client's orb.

4. Make the naming service object reference known to Wonderwall.

5. Specify the access policy

To get the naming service IOR, run the OrbixNames server with the -I option,
for example, ns -I nsior.ref. The name server writes out the IOR to the
file nsior.ref. Proxify the IOR with the iortool.

To configure the proxified IOR into the client side orb, it is necessary to update
various Orbix configuration files. It is recommended that the
orbixnames3.cfg is not used at the client side. Add an entry in the
common.cfg for both the C++ orb and Java orb as follows:

Common {
Services {

NameService = "IOR:proxified-ior ";
};

};

Orbix Java {
IT_INITIAL_REFERENCES = "NameService

IOR:proxified-ior";
};

If the initial reference entry for Orbix Java is made in the common.cfg, then it
should not be duplicated in the Orbix Java.cfg file.

There are some restrictions relating to proxification that you should be aware of
when using OrbixNames in a Wonderwall scenario. Wonderwall only proxifies
referenced objects which are the return values of an operation. It does not
proxify object references in the following cases:

1. Object references returned as out parameters.

2. Object references which are contained within structured types, for
example, a structure or a sequence either in return types or as out
parameters.
 66

U s i n g Wonde rwa l l w i t h O r b i x C++ a nd O r b i x J a v a
##

WonderWall configuration file - deploying orbixnames
behind a firewall

#

port 15000

http-port 0

http-files /

proxy-ior-file F:\Iona\Wonderwall\bin\wwall.ior

domain your.domain.com

log requests replies

log-to-syslog no

dynamic update of the connections IOR table; # # #
especially needed when

factory object and factory methods are involved

allow-unlisted-objects on

This is required to use bind() and transformers.

orbixd-iiop-port 1670

Allow sufficient time for the server to start

server-open-timeout 600

object orbixd bind (":IT_daemon", "amirza")
interface IT_daemon

allow object orbixd

##

Rule For NamingService - these are quite liberal in
that we are
67

O rb i x Wond e rw a l l A dm in i s t r a t o r ’ s G u i d e
to allow all operation on the NamingContext # # #
interface.

##

server ns <path-to-orbixnames-ior-file>/nsior.ref

allow object ns proxify

alternatively the naming service could be made read
only only

allowing resolve operations

##

Rule for bank server

##

server bankserver <path to bank server
ior>\bankserver.ior

allow object bankserver

allow object bankserver op _IT_PING

allow object bankserver op _start_server

allow object bankserver

deny
 68

U s i n g Wonde rwa l l w i t h O r b i x C++ a nd O r b i x J a v a
Scenario 2 - Deploying Multiple OrbixNames Servers behind
Wonderwall

An example of a required specification:

1. One name service is running on host name_server_host1. The server
staff is registered with the daemon as IT_Demo/Names/staff. The
server staff contains a number of objects of type person. Each object is
registered with the name service.

2. A second name service is running on host name_server_host2. The
server staff is registered with the daemon as IT_Demo/Names/staff.
The server staff contains a number of objects of type person. Each
object is registered with the name service.

Both of the name services are independent and keep their data in their own
corresponding repositories.

Wonderwall is running on a bastion host ww_firewall.

The clients are running on NT boxes. They may or may not have an Orbix
daemon running.

Configuration Steps

On host name_server_host1:
1. Start the name service manually using the command to generate an IOR

for the naming service running on name_server_host1 as follows:

ns -I ns1_ior.ref

2. Copy the file ns1_ior.ref to the Wonderwall host ww_firewall and
the client host.

On host name_server_host2:
1. Start the name service manually using the command to generate an IOR

for the naming service running on name_server_host2 as follows:

ns -I ns2_ior.ref
69

O rb i x Wond e rw a l l A dm in i s t r a t o r ’ s G u i d e
2. Copy the file ns2_ior.ref to the Wonderwall host ww_firewall and
the client host.

It is assumed that the Orbix daemon is running on both hosts, that the staff
servers are registered using the putit command and the server is running.

On the Wonderwall host ww_firewall:

It is assumed that Wonderwall is installed, licensed and can be started using the
following command:

iiopproxy -config iiopproxy.cf

Additional tools, such as, iortool are included with the Wonderwall installation.

Proxification of Name Service IORs
Proxify the name service IORs using the following command:

iortool -ior -proxify -host ww_firewall -port
16000 ns1_ior.ref > ns1_proxified_ior.ref

and

iortool -ior -proxify -host ww_firewall -port
16000 ns2_ior.ref > ns2_proxified_ior.ref

To verify that proxification has completed correctly, that is, in the files
ns1_proxified_ior.ref and ns2_proxified_ior.ref, check that the
Wonderwall host and port replaces the name service host and port.

IORs can be viewed using the following commands:

iortool -long ns1_ior.ref

or

iortool -long ns2_ior.ref

Wonderwall Configuration File Settings
In the Wonderwall configuration file, add the following settings:

• Set the orbix-iiop-port to the chosen port for the Orbix daemon on
different hosts.
 70

U s i n g Wonde rwa l l w i t h O r b i x C++ a nd O r b i x J a v a
• Set the allow-unlisted-objects variable to on. This provides for
dynamic update of Wonderwall’s IOR table with object references
retrieved from the naming service. These object references are subject to
appropriate access control upon subsequent use by the Orbix client.

allow-unlisted-objects on

Object Specifiers
In the Wonderwall configuration file, specify the objects to be controlled:

object ORBIXD_1 bind (:IT_daemon,
name_server_host1) interface IT_daemon

server NS_1 <IOR for name service on name_server_host1,
that is, as in the file ns1_ior.ref>

object ORBIXD_2 bind (:IT_daemon,
name_server_host2) interface IT_daemon

server NS_2 <IOR for name service on name_server_host2,
that is, as in the file ns2_ior.ref>

Access Control Rules

In the Wonderwall configuration file, specify ACL entries to allow access to the
naming services running on hosts name_server_host1 and name_server_host2:

allow object ORBIXD_1 proxify
allow object NS_1 proxify

allow object ORBIXD_2 proxify
allow object NS_2 proxify

The proxify statement in the above rule ensures that any IOR returned by an
operation on the Orbix daemons and on the naming service has its host and port
of the target object replaced with that of the host and port of Wonderwall.

Specify ACL entries for accessing specific objects registered in the name services
using either the bind rule or IORs.
71

O rb i x Wond e rw a l l A dm in i s t r a t o r ’ s G u i d e
object person_1 wild marker bind (:IT_Demo/
Names/staff, name_server_host1) interface person

allow object person_1

Similarly,

object person_2 wild marker bind (:IT_Demo/
Names/staff, name_server_host2) interface person

allow object person_2

These steps are repeated for all objects in the name services, ensuring that the /
deny rule is applied. Setting strict_host_matching to off allows
Wonderwall to perform DNS lookup for host IP addresses.

Details of all keywords and command syntax are provided in Appendix B.

Client Side Configuration
1. Edit iona.cfg

Remove the entry line for the naming service, that is, orbixnames3.cfg.

2. Edit common.cfg

Add the "services" scope inside the "common" scope. In the services
scope, add one or more name services. The application policy determines
whether clients are allowed to use all the name services running on
different hosts or only a selected name service. It is assumed, in this
example, that clients are allowed to access both naming services, that is,
the name service on name_server_host1 and the name service on
name_server_host2. Proxified IORs for name services are used so to
imply that both of them are running on the Wonderwall host
ww_firewall.

Common {
. . Usual entries in common.cfg

Services {
NameService1="<Proxified IOR for NS on
name_server_host1,

ns1_proxified_ior.ref>";
 72

U s i n g Wonde rwa l l w i t h O r b i x C++ a nd O r b i x J a v a
NameService2="<Proxified IOR for NS on
name_server_host2,

ns2_proxified_ior.ref>";
};

};

If clients are restricted to a specific naming service, then a proxified IOR
for that particular name service is added to the common.cfg file. As
clients can be on different hosts, each host should be configured
accordingly.

3. Edit the client code

When invoking resolve_initial_references for the name service,
a specific naming service name should be used, for example,

....
CORBA::Object_var obj =
orb->resolve_initial_references("NameService1");

or

CORBA::Object_var obj =
orb->resolve_initial_references("NameService2");
...

Scenario 3 - A Sample Grid Applet

A sample configuration is shown for a grid applet demo. In this configuration
Wonderwall listens for IIOP requests on port 16000 and service http requests
on port 16001.

Two objects are specified; namely that of the Orbix daemon and test1, which is
the grid server object. All operations are permitted on the Orbix daemon.
This is necessary should the client wish to invoke a _bind() call on a target
object via Wonderwall. The list of operations for the grid object are given,
together with the esoteric _IT_PING, which is proprietary to all Orbix objects
and is used during the location and activation interactions.

All other operations or IIOP requests are denied via the deny rule.

Grid Applet Demo

[Wonderwall setup for wwallGridHttp demo]####
73

O rb i x Wond e rw a l l A dm in i s t r a t o r ’ s G u i d e
port 16000

http-port 16001

orbixd-iiop-port 1570

http-files ..\..\

domain dublin.iona.ie

log requests replies

allow-unlisted-objects on

object orbixd bind(":IT_daemon", "grid-server-
host") interface IT_daemon

object test1 bind(":wwallGridHttp", "grid-server-
host") interface grid

allow object orbixd

allow object test1 op _IT_PING

allow object test1 op _get_height

allow object test1 op _get_width

allow object test1 op get

allow object test1 op set

deny

In an applet scenario, the applet is downloaded from the web server. The applet
has a number of connection options. It can make direct calls on CORBA objects,
it can interact through Wonderwall using IIOP
(IT_IIOP_PROXY_PREFERRED), or it can interact through Wonderwall
using HTTP tunnelling (IT_HTTP_TUNNEL_PREFERRED). In this example, the
applet is using http tunnelling of IIOP to interact with the target server objects.

public class GridApplet extends Applet {
// main display panel
GridEvents gridEvents

public void init () {
 74

U s i n g Wonde rwa l l w i t h O r b i x C++ a nd O r b i x J a v a
1 ORB.init (this, null);

// setting these here is easier than in the HTML file.
// However the HOST, PORT ones are set in the HTML because
// it's easier for the build process to do it there; the
// build process needs to do it for the demos in order to
// provide better automatic demo running.

2 _CORBA.Orbix.setConfigItem ("Orbix
Java.IT_HTTP_TUNNEL_PREFERRED", "true");
_CORBA.Orbix.setConfigItem ("Orbix
Java.IT_HTTP_TUNNEL_PROTO", "http");
_CORBA.Orbix.setConfigItem ("Orbix
Java.IT_HTTP_TUNNEL_PORT", "16001");
_CORBA.Orbix.setConfigItem ("Orbix
Java.IT_HTTP_TUNNEL_HOST", "ww-host");
gridEvents = new GridEvents ();

// add panel to applet
this.add (gridEvents);
}
}

public class GridEvents extends GridPanel {
// grid proxy object
public grid gRef;

// some other methods

public void bindObject () {
String tmp;
String markerServer;
String hostName;

// get server name from text field
if ((tmp = nameField.getText ()) == null)
markerServer = "";
else
markerServer = ":" + tmp;

// get host name from text field
hostName = hostField.getText ();
75

O rb i x Wond e rw a l l A dm in i s t r a t o r ’ s G u i d e
// bind to server object
try {

3 gRef = gridHelper.bind (markerServer, hostName);
}
catch (SystemException se) {
displayMsg ("Connect failed.\n" + "Unexpected exception:\n"
+ se.toString ());
return;
}

displayMsg ("Connect succeeded.");
}

}; // class GridEvents

1. Applets initialisation ORB.init is called to initialise the ORB and permits
the correct downloading of the applets classes for a specified codebase.

2. Set the communication preference to use tunnelling

3. The GridEvents object in the applet uses bind to obtain a reference to the
target server object.

Scenario 4 - Deploying an Orbix Server behind Wonderwall

The following example examines Wonderwall deployed in the bank server
scenario. The bank server manages an Account object, allowing clients to
create different types of account objects, and supports the IDL. Below is the
setup necessary for the IDL demo.

[Wonderwall setup for idl_demo demo]

port 16000
orbixd-iiop-port 1570
domain your.domain.com
log requests replies
allow-unlisted-objects on

object orbixd bind(“:IT_daemon”, “bank_svr_host”)
interface IT_daemon

allow object orbixd proxify
 76

U s i n g Wonde rwa l l w i t h O r b i x C++ a nd O r b i x J a v a
object test1 wild marker,ifmarker
e:\iona\Wonderwall\demo\configs\wwall-real.ref

allow object test1 op _IT_PING

bank operations

allow object test1 op newAccount proxify
allow object test1 op newCurrentAccount proxify
allow object test1 op deleteAccount
allow object test1 op getAIB
allow object test1 op getCollegeGreenAIB

account operations
allow object test1 op _get_balance
allow object test1 op makeLodgement
allow object test1 op makeWithdrawal

currentAccount operations
allow object test1 op _get_overdraftLimit

deny

The IDL code necessary for the Account demo.

//IDL
// a simple description of a bank account
//
interface account {

readonly attribute float balance;
void makeLodgement (in float f);
void makeWithdrawal (in float f);

};

//
// a simple description of a bank current account
//
interface currentAccount : account {

readonly attribute float overdraftLimit;
};
77

O rb i x Wond e rw a l l A dm in i s t r a t o r ’ s G u i d e
//
// a bank simply manufactures accounts
//
// bank::reject is raised if a duplicate account
name
// is found
//
interface bank {

exception reject {string reason;};
account newAccount (in string name) raises

(reject);
currentAccount newCurrentAccount (in string

name, in float limit) raises (reject);
void deleteAccount (in account a);

};

From a Wonderwall perspective, the bank server operations return object
references. If these object references are to be validly used by the client, they
must be proxified. That is, the location information contained in the IORs cannot
be exposed beyond the firewall. Instead, it is necessary that the location details
in the IOR are substituted with those of Wonderwall. This consists of
manipulating the IOR profiles and exchanging the host and port of the target
object with Wonderwall’s host and port. This is the role of the 'proxify' keyword
in the allow rules. As this test scenario contains a number of factory objects and
factory methods, the allow-unlisted-objects rule is turned on. This
facilitates the update of Wonderwall's IOR table for a particular client
connection.

The Object specifier for the 'test1' object is of interest. It should be noted that
test1 is a local tag relevant to Wonderwall. It does not signify a name for the
target object in the server. The object specifier wild cards on marker (object
key) and on interface marker. It is necessary, in this instance, to permit access to
all objects in the target bank server as per the access control rules.

Thus by specifying allow_unlisted_objects on and using the proxify option in
the allow rules, clients can dynamically obtain proxified object references to
target objects and use them via Wonderwall.

To highlight the proxification process, it is informative to look at the sample
IORs generated, as shown below.
 78

U s i n g Wonde rwa l l w i t h O r b i x C++ a nd O r b i x J a v a
The identity of the target object is, in fact, specified in the file wwall-
real.ref, which contains the following:

IOR {

Type ID: "IDL:bank:1.0"

Number of Profiles: 2

Profile 0 (TAG_INTERNET_IOP) {

IIOP Version: 1.0

Host: "bank-server-host.dublin.iona.ie"

Port: 1570

Object Key: "RXR::%5cproxify-server-
host.dublin.iona.ie:proxify:0::IFR:bank_"

}

Profile 1 (TAG_MULTIPLE_COMPONENTS) {

TaggedComponent 0 (OMG range) (TAG_ORB_TYPE) {

Component Body: "RXR:%01_%88_0%5fTI"

}

}

}

Note: The type of the interface in the type id is that of bank.

The proxified version of the above IOR substitutes Wonderwall’s host and port
for the target server object's host and port. In the above case, the port of the
target object is that of the daemon host and port. This effectively creates a
persistent IOR, as the daemon's port is constant for a particular installation.

Thus, whenever a target object is to be located, the request is sent to the
daemon initially, which responds with a LOCATION_FORWARD in the response
and the IOR of the target object in the body of the reply. Additionally, note that
the proxification of the IOR has added a third profile to the IOR, which
conforms to IIOP version 1.1.

IOR {

Type ID: "IDL:bank:1.0"

Number of Profiles:3
79

O rb i x Wond e rw a l l A dm in i s t r a t o r ’ s G u i d e
Profile 0 (TAG_INTERNET_IOP) {

IIOP Version: 1.0

Host: "wonderwall-host.dublin.iona.ie"

Port: 16000

Object Key: "RXR::%5cbank-server-
host.dublin.iona.ie:proxify:0::IFR:bank_"

}

Profile 1 (TAG_MULTIPLE_COMPONENTS) {

TaggedComponent 0 (OMG range) (TAG_ORB_TYPE) {

Component Body: "RXR:%01_%88_0%5fTI"

}

}

Profile 2 (TAG_INTERNET_IOP) {

IIOP Version: 1.1

Host: "wonderwall-host.dublin.iona.ie"

Port: 16000

Object Key: "RXR::%5cbank-server-
host.dublin.iona.ie:proxify:0::IFR:bank_"

}

}

 80

 6
SSL Enabled Wonderwall:
Operational Details

The primary role of Wonderwall in a security infrastructure is to
provide a firewall for IIOP traffic. Additionally, the demand for more
complete security solutions for enterprise CORBA applications brings
with it the requirement for authentication and secure
communications, as exhibited by the use of SSL.

To satisfy this demand, and in keeping with the Orbix security strategy,
Wonderwall provides integrated support for SSL. Thus secure CORBA
interactions via Wonderwall can be assured. This chapter provides an overview
of SSL and OrbixSSL. It provides an outline of how an OrbixSSL-enabled
application can be deployed in a Wonderwall scenario.
81

O rb i x Wond e rw a l l A dm in i s t r a t o r ’ s G u i d e
Introduction
Distributed CORBA applications can include Internet enabled or ready
components. Such enterprise applications span multiple domains in their
execution, and this execution includes inter domain interactions. Such
interactions must be assured in terms of authenticity, confidentiality and
integrity. Therefore, there is an ever increasing requirement to employ SSL
technology to support these requirements. Orbix and Wonderwall provides
integrated support for SSL. OrbixSSL integrates Orbix with the Secure Sockets
Layer (SSL), thus providing secure CORBA interactions over insecure networks.

An Overview of SSL Security
SSL provides authentication, privacy, and integrity for communications across
TCP/IP connections. Authentication allows an application to verify the identity of
another application with which it communicates. Privacy ensures that data
transmitted between applications can not be eavesdropped on or understood by
a third party. Integrity allows applications to detect if data was modified during
transmission.

Authentication in SSL

SSL uses Rivest Shamir Adleman (RSA) public key cryptography for
authentication. In public key cryptography, each application has an associated
public key and private key. Data encrypted with the public key can be decrypted
only with the private key. Data encrypted with the private key can be decrypted
only with the public key.

Public key cryptography allows an application to prove its identity by encoding
data with its private key. As no other application has access to this key, the
encoded data must derive from the true application. Any application can check
the content of the encoded data by decoding it with the application’s public key.
 82

S S L E n a b l e d Wonde rwa l l : O p e r a t i o n a l D e t a i l s
The SSL Handshake Protocol

Consider the example of two applications, a client and a server. The client
connects to the server and wishes to send some confidential data. Before
sending application data, the client must ensure that it is connected to the
required server and not to an impostor.

When the client connects to the server, it confirms the server identity using the
SSL handshake protocol. A simplified explanation of how the client executes this
handshake in order to authenticate the server is as follows:

1. The client initiates the SSL handshake by sending the initial SSL handshake
message to the server.

2. The server responds by sending its certificate to the client. This certificate
verifies the server's identity and contains its public key.

3. The client extracts the public key from the certificate and encrypts a
symmetric encryption algorithm session key with the extracted public
key.

4. The server uses its private key to decrypt the encrypted session key
which it will use to encrypt and decrypt application data passing to and
from the client. The client will also use the shared session key to encrypt
and decrypt messages passing to and from the server.

For a complete description of the SSL handshake, refer to the Netscape
Communications SSL V3.0 specification, available from www.netscape.com.

The SSL protocol permits a special optimized handshake in which a previously
established session can be resumed. This has the advantage of not needing
expensive public key computations. The SSL handshake also facilitates the
negotiation of ciphers to be used in a connection.

The SSL protocol also allows the server to authenticate the client. Client
authentication, which is supported by OrbixSSL, is optional in SSL
communications.

As any application can have a public and private key pair, the transfer of the
public key must be accompanied by additional information that proves the key is
associated with the true server and not some other application. For this reason,
the key is transmitted as part of a certificate.
83

O rb i x Wond e rw a l l A dm in i s t r a t o r ’ s G u i d e
Certificates in SSL Authentication

The public key is transmitted as part of a certificate. A certificate is used to
ensure that the public key submitted is in fact the public key which belongs to
the submitter. For the certificate to be acceptable to the client, it must have
been digitally signed by a certification authority (CA) that the client explicitly
trusts.

The International Telecommunications Union (ITU) recommendation X.509
defines a standard format for certificates. SSL authentication uses X.509
certificates to transfer information about an application’s public key.

An X.509 certificate includes the following data:

• The name of the entity identified by the certificate.

• The public key of the entity.

• The name of the certification authority that issued the certificate.

The role of a certificate is to match an entity name to a public key. A CA is a
trusted authority that verifies the validity of the combination of entity name and
public key in a certificate. You must specify trusted CAs in order to use
OrbixSSL.

According to the SSL protocol, it is unnecessary for applications to have access
to all certificates. Generally, each application only needs to access its own
certificate and the corresponding issuing certificates. Clients and servers supply
their certificates to applications that they want to contact during the SSL
handshake. The nature of the SSL handshake is such that there is nothing
insecure in receiving the certificate from an as yet untrusted peer. The certificate
will be checked to make sure that it has been digitally signed by a trusted CA and
the peer will have to prove its identity during the handshake.
 84

S S L E n a b l e d Wonde rwa l l : O p e r a t i o n a l D e t a i l s
Privacy of SSL Communications

When a client authenticates a server, confidential data sent by the client can be
encoded by the server’s public key. It is only the actual server application that is
able to decode this data, using the corresponding private key.

Immediately after authentication, an SSL client application sends an encoded data
value to the server. This unique session encoded value is a key to a symmetric
cryptographic algorithm.

A symmetric cryptographic algorithm is an algorithm in which a single key is used
to encode and decode data. Once the server has received such a key from the
client, all subsequent communications between the applications can be encoded
using the agreed symmetric cryptographic algorithm. This feature strengthens
SSL security.

Examples of symmetric cryptographic algorithms used to maintain privacy in SSL
communications are the Data Encryption Standard (DES) and RC4.

Integrity of SSL Communications

The authentication and privacy features of SSL ensure that applications can
exchange confidential data that cannot be understood by an intermediary.
However, these features do not protect against the modification of encrypted
messages transmitted between applications.

To detect if an application has received data modified by an intermediary, SSL
adds a message authentication code (MAC) to each message. This code is
computed by applying a function to the message content and the secret key used
in the symmetric cryptographic algorithm.

An intermediary cannot compute the MAC for a message without knowing the
secret key used to encrypt it. If the message is corrupted or modified during
transmission, the message content does not match the MAC. SSL automatically
detects this error and rejects corrupted messages.
85

O rb i x Wond e rw a l l A dm in i s t r a t o r ’ s G u i d e
An Overview of OrbixSSL
Secure Sockets Layer (SSL) provides data security for applications that
communicate across networks. SSL is a transport layer security protocol layered
between the application protocols and TCP/IP.

Orbix applications communicate using the CORBA standard Internet Inter-ORB
Protocol (IIOP) or IONA Technologies’ proprietary Orbix protocol. These
application-level protocols are layered above the transport-level protocol
TCP/IP. OrbixSSL applications communicate using IIOP or the Orbix protocol
layered above SSL. Figure 6.1 on page 87 illustrates how the SSL protocol layer
integrates with Orbix communications.

All OrbixSSL components, including the Orbix daemon and Orbix utilities, and
all OrbixSSL applications can communicate using SSL. OrbixSSL imposes few
requirements on administrators and programmers who wish to support SSL
communications in Orbix applications.
 86

S S L E n a b l e d Wonde rwa l l : O p e r a t i o n a l D e t a i l s
Figure 6.1: The Role of SSL in Orbix Client/Server Communications

OrbixSSL administrators use a single configuration file to configure a high-level
security policy for a distributed system. OrbixSSL programmers develop
standard Orbix applications that automatically communicate using SSL. The
details of the SSL protocol are hidden, but programmers can use the OrbixSSL
application programming interface (API) to customize SSL communications.

OrbixSSL Essentials
OrbixSSL provides SSL security for communications between components of
your CORBA applications. This chapter shows you how to SSL enable an
existing application.
87

O rb i x Wond e rw a l l A dm in i s t r a t o r ’ s G u i d e
Using OrbixSSL, your CORBA applications benefit from the authentication,
privacy, and integrity of SSL communications. When you create an OrbixSSL
application, you must supply the information necessary to complete the
authentication process. OrbixSSL then ensures the privacy and integrity of your
communications without any intervention from you.

The SSL handshake enables components of your OrbixSSL application to
authenticate each other. To ensure every SSL handshake completes successfully,
each authenticated component must be able to access its certificate and private
key.

There are two ways to provide this information to OrbixSSL applications.
Administrators can use the OrbixSSL configuration file. Programmers can use
the OrbixSSL application programming interface (API). This section
demonstrates the use of basic administration and some essential programming,
with respect to SSL securing your application.
 88

S S L E n a b l e d Wonde rwa l l : O p e r a t i o n a l D e t a i l s
Sample Bank Application Overview
The Orbix demos directory contains several demonstration programs, including
a basic banking application, located in the banksimple subdirectory. In this
application, an Orbix server creates a single object that implements the IDL
interface Bank.

The server uses OrbixNames to associate a name with the Bank object. To
begin communicating with the server, a client gets a reference to the Bank object
from OrbixNames.

The client uses the Bank object to create Account objects. An Account object
allows a client to manipulate a single bank account; for example, to query the
balance of the account or deposit money in the account.

The IDL definitions for this application are as follows:

module BankSimple {
typedef float CashAmount;

interface Account;

interface Bank {
Account create_account (in string name);
Account find_account (in string name);

};

interface Account {
readonly attribute string name;
readonly attribute CashAmount balance;
void deposit (in CashAmount amount);
void withdraw (in CashAmount amount);

};
};
89

O rb i x Wond e rw a l l A dm in i s t r a t o r ’ s G u i d e
Running the Application without SSL

Without SSL, this application runs as follows:

1. The bankserver gets an object reference for the ‘root context’ in the
name server. This is achieved either by a _bind() call on the
NamingContext call or by the standard mechanism of a
resolve_initial_references() call.

2. The bankserver binds a name to a Bank object in the name service.

3. The client gets a reference for the name service.

4. The client resolves a name for the Bank object within the name service
and retrieves the appropriate object reference.

5. The client ‘narrows’ the object reference to that of the Bank object. The
client can now invoke operations on the object, for example the

operation create_account(). 1

6. The factory method create_account() returns a reference to the
Account object. The client can then invoke operations on the Account
object.

Examining an IOR from such interactions, shows that it is composed of a number
of profiles. Each of these profiles provide contact details for the object:

• The host and port of the server

• End point within the server, that is, the object key.

This series of interactions are shown in Figure 6.2.

1. Interaction 5 may have a level of indirection depending on whether the Bank object reference
contains the Orbixd host and port or the transient port of the server. For an object reference
associated with a name binding in the naming service, the former is the most likely case.
 90

S S L E n a b l e d Wonde rwa l l : O p e r a t i o n a l D e t a i l s
Figure 6.2: Running the Banking Application

S e r v e r H o s t

C lie n t H o s t

C lie n t

O rb ix D aem on

S e r ve r

O rb ixN am es

1

2

3

4

5

6

91

O rb i x Wond e rw a l l A dm in i s t r a t o r ’ s G u i d e
Running the Application with SSL

When using SSL, each component of the application that acts as a server must be
able to prove its identity. On first contact with another component, a server
must be able to supply its certificate and encrypt messages with its private key. In
this example, there are three servers: the bank server, the Orbix daemon, and
the OrbixNames server.

With SSL, the application runs as shown in Figure 6.3:

1. The server gets a reference to OrbixNames. Implicitly, the server
contacts the Orbix daemon.

The Orbix daemon supplies its certificate to the server. The server uses
this certificate to check the identity of the daemon.

2. The server uses OrbixNames to associate a name with the Bank object.

OrbixNames supplies its certificate to the server. The server checks the
identity of OrbixNames.

3. The client gets a reference to OrbixNames. Implicitly, the client contacts
the Orbix daemon.

The Orbix daemon supplies its certificate to the client. The client checks
the identity of the Orbix daemon.

4. The client uses OrbixNames to get a reference to the Bank object.

OrbixNames supplies its certificate to the client. The client checks the
identity of OrbixNames.

5. The client calls operation create_account() on the Bank object.
Implicitly, the client contacts the Orbix daemon over the secure
connection that is already established. The client then contacts the
server.

The server supplies its certificate to the client. The client checks the
identity of the server.

The server processes the call to create_account() and returns a
reference to an Account object.

6. The client calls operations on the Account object over a secure
connection.

With SSL security, the identity of the servers can be verified and assured and the
interaction among the components can take place over a secure transport.
 92

S S L E n a b l e d Wonde rwa l l : O p e r a t i o n a l D e t a i l s
To run this example, you must:

1. Provide each server with access to its certificate.

2. For each component that acts as a client, provide information about
which certificates to accept.

3. Add OrbixSSL initialization code to the client and server programs.

4. Provide each server with access to its private key.

Steps1 and 2 are accomplished using OrbixSSL administration, while steps 3 and
4 require application code modification.

Examining an IOR for an SSL enabled Bank object and comparing it with a vanilla
IOR - it can be seen that there is an additional profile which identifies the
contact details which should be used for secure communications with the object.

Figure 6.3: Running the Banking Application with SSL Security

S e r ve r H o s t

C lie n t H o s t

O rb ix D a em o n

S e r ve r

O rb ixN am es

1

2

3

4

5

6

D aem on
C e r tific a te

D aem on
C e r tific a te

O rb ixN am es
C e r t ifca te

O rb ixN am es
C e r tifca te

S e r ve r C e r tifc a te
C lien t
93

O rb i x Wond e rw a l l A dm in i s t r a t o r ’ s G u i d e
Example IOR for an SSL Enabled Application

IOR {

Type ID: "IDL:BankSimple/
Account:1.0"

Number of Profiles: 3

Profile 0 (TAG_INTERNET_IOP) {

IIOP Version: 1.0

Host: "bankserver-host.some-
domain.com"

Port: 1670

Object Key: "RXR::%5cbankserver-
host.some-domain.com:BankServer:0::IFR:bank_"

}

Profile 1 (TAG_INTERNET_IOP) {

IIOP Version: 1.1

Host: " bankserver-host.some-
domain.com "

Port: 1670

Object Key: "RXR::%5cbankserver-
host.some-domain.com:BankServer:0::IFR:bank_"

}

Profile 2 (TAG_MULTIPLE_COMPONENTS) {

TaggedComponent 0 (OMG range)
(TAG_SSL_SEC_TRANS) {

SSL Target Supports: 126

SSL Target Requires: 126
 94

S S L E n a b l e d Wonde rwa l l : O p e r a t i o n a l D e t a i l s
SSL Port: 4776

}

}

}

Example IOR for a Non-SSL Enabled Application

IOR {

Type ID: "IDL:BankSimple/
Account:1.0"

Number of Profiles: 1

Profile 0 (TAG_INTERNET_IOP) {

IIOP Version: 1.0

Host: "bankserver-host.some-
domain.com"

Port: 1670

Object Key: "RXR::%5cbankserver-
host.some-domain.com:BankServer:0::IFR:bank_"

}

}

95

O rb i x Wond e rw a l l A dm in i s t r a t o r ’ s G u i d e
Providing Certificates for the Servers
In the banking application, the servers use demonstration certificates installed
with OrbixSSL. Each certificate has a corresponding file in the OrbixSSL
certificates directory. The certificates for the banking application are shown
in Table 6.1.

The orbix certificate is a general demonstration certificate for use with standard
Orbix servers. The secure_bank_server certificate is a demonstration
certificate specific to the bank server. Each of the demonstration certificates is
signed by the OrbixSSL demonstration certificate authority (CA), called
demo_ca_1.

WARNING: These certificates are completely insecure. Use them for
OrbixSSL demonstration programs only. Do not use them in a
deployed system. In a deployed system, you must create your own
customized certificates for components of your application. The
certificates for a deployed system should be signed by a CA that
you can trust. Never trust the CA demo_ca_1. The process of
creating and signing certificates is described in detail in the
Managing Certificates chapter of the OrbixSSL C++ Programmer’s
and Administrator’s Guide.

Server Certificate File

Bank demos/secure_bank_server

OrbixNames services/orbix_names

Orbix daemon services/orbix

Table 6.1: Demonstration Certificates Used by the Banking Application
 96

S S L E n a b l e d Wonde rwa l l : O p e r a t i o n a l D e t a i l s
Using the OrbixSSL Configuration File

The OrbixSSL configuration file, orbixssl.cfg, enables you to specify how
your applications use SSL. By default, this application is located in the config
directory of your installation.

The OrbixSSL configuration file assigns values to OrbixSSL configuration
variables. To enable SSL security, ensure that the configuration file includes the
following setting:

OrbixSSL {
IT_DISABLE_SSL = "FALSE";

};

If the value OrbixSSL.IT_DISABLE_SSL is set to TRUE, your system does not use
SSL security.

Configuring All OrbixSSL Programs
Two OrbixSSL configuration variables allow a server to access its certificate:

• IT_CERTIFICATE_PATH specifies the directory in which the certificate file
is stored in the file system.

• IT_CERTIFICATE_FILE specifies the name of the server’s certificate file.
Usually, you specify that this file is stored relative to the
IT_CERTIFICATE_PATH directory.

The OrbixSSL configuration file uses the standard Orbix configuration syntax. By
default, the variable IT_CERTIFICATE_PATH is set to the location of the
OrbixSSL certificates directory, in the configuration scope OrbixSSL, for
example:

OrbixSSL {
IT_CERTIFICATE_PATH =

"/opt/iona/OrbixSSL/certificates";
};

Variables set in the OrbixSSL configuration scope apply to all OrbixSSL
applications, although you can override the values later in the configuration file.
97

O rb i x Wond e rw a l l A dm in i s t r a t o r ’ s G u i d e
Configuring a Single Program

To set the value of IT_CERTIFICATE_FILE for the banking server, append the
following text to the file orbixssl.cfg on the server host:

Finance {
BankingSystem {

IT_CERTIFICATE_FILE =
OrbixSSL.IT_CERTIFICATE_PATH +
"demos/secure_bank_server";

};
};

The configuration scope Finance.BankingSystem is a custom scope for use by
the banking server. You can create any number of custom scopes for your
applications in orbixssl.cfg.

“Initializing OrbixSSL Configuration” on page 101 describes how you associate a
specific configuration scope with an OrbixSSL program. The program then uses
the settings defined in that scope. If a variable is not defined in the program
scope, the program reads the variable setting from the scope OrbixSSL.

Configuring OrbixNames
To set the value of IT_CERTIFICATE_FILE for the OrbixNames server, append
the following text to the file orbixssl.cfg on the server host:

OrbixNames {
Server {

IT_SECURITY_POLICY = "SECURE";
IT_CERTIFICATE_FILE =

OrbixSSL.IT_CERTIFICATE_PATH +
"services/orbix_names";

};
};
 98

S S L E n a b l e d Wonde rwa l l : O p e r a t i o n a l D e t a i l s
Configuring the Orbix Daemon

To set the value of IT_CERTIFICATE_FILE for the Orbix daemon, append the
following text to the file orbixssl.cfg on the server host:

Orbix {
orbixd {

IT_CERTIFICATE_FILE =
OrbixSSL.IT_CERTIFICATE_PATH +
"services/orbix";

};
};

Specifying which Certificates to Accept

Every certificate is signed by a CA. When a client receives a certificate from a
server, the client checks that the certificate is signed by a trusted CA. If the
client trusts the CA, it accepts the certificate and connects to the server,
otherwise it rejects the certificate.

When running an OrbixSSL application, you must specify a list of CAs that the
application should trust. To do this, you first concatenate the certificate files for
each trusted CA into a single file. You then use the OrbixSSL configuration
variable IT_CA_LIST_FILE to specify the name and location of this file.

The banking example uses the insecure OrbixSSL demonstration CA,
demo_ca_1. The CA certificate list file, which initially contains only the
demo_ca_1 certificate, is located in the OrbixSSL ca_listsdirectory.

To specify that components of the banking example should accept certificates
signed by demo_ca_1, add the following text to orbixssl.cfg on both the client
and server hosts:

OrbixSSL {
IT_CA_LIST_FILE = "OrbixSSL directory/
ca_lists/demo_ca_list_1";

};

Replace OrbixSSL directory with the actual location of your OrbixSSL installation.
99

O rb i x Wond e rw a l l A dm in i s t r a t o r ’ s G u i d e
Initializing OrbixSSL
An OrbixSSL program initializes OrbixSSL using the OrbixSSL API. To get access
to the OrbixSSL API, include the file IT_SSL.h in your programs:

#include <IT_SSL.h>

The OrbixSSL API contains a single initialization function that your OrbixSSL
programs can call. This function is IT_SSL::init() and is defined as follows:

class IT_SSL {
public:

virtual int init();
};

To call this function, use the globally available object OrbixSSL. For example, to
initialize OrbixSSL in the banking client program, add the following code to the
file client.cxx:

#include <IT_SSL.h>
...

int main (int argc, char *argv[]) {
try {

if (OrbixSSL.init() != IT_SSL_SUCCESS) {
cout << "OrbixSSL initialization failed."

<< endl;
return 1;

}
...

}
...

}

To initialize OrbixSSL in the banking server program, add the same code to the
file server.cxx.

For OrbixSSL initialization to succeed, you must call the function
IT_SSL::init() before your OrbixSSL program attempts to make any Orbix
function calls. This includes calls to Orbix API functions that implicitly make
remote calls, such as CORBA::ORB::impl_is_ready().
 100

S S L E n a b l e d Wonde rwa l l : O p e r a t i o n a l D e t a i l s
Initializing OrbixSSL Configuration

As described in “Using the OrbixSSL Configuration File” on page 97, the
example server uses the configuration scope Finance.BankingSystem. To
specify that the server uses this scope, add the following code to server.cxx:

#include <IT_SSL.h>
...

int main (int argc, char *argv[]) {
try {

// Call IT_SSL::init().
...

// Initialize configuration scope.
if (OrbixSSL.initScope(
"Finance.BankingSystem") != IT_SSL_SUCCESS)

return 1;
}
...

}

The OrbixSSL function IT_SSL::initScope() associates a custom scope in the
OrbixSSL configuration file with you program.

Making Private Keys Available to Servers

By default, OrbixSSL expects the private key associated with a certificate to be
appended to the certificate file. OrbixSSL expects the private key to be stored in
encrypted Privacy Enhanced Mail (PEM) format; for example, all the OrbixSSL
demonstration certificates have appended private keys in this format.

When a private key is encrypted in this way, you can access it only using a
corresponding pass phrase. Specifying this private key pass phrase is a very
important part of making a private key available to a server program.

Making a Private Key Available to a Server Program

The banking server uses the certificate file secure_bank_server in the
OrbixSSL certificates/demos directory. This file has the associated private
key appended, as expected by OrbixSSL.
101

O rb i x Wond e rw a l l A dm in i s t r a t o r ’ s G u i d e
When you run the server, it must supply its private key pass phrase to OrbixSSL.
This allows OrbixSSL to read the private key and the server to encrypt data with
this key, which is a critical part of SSL authentication.

The OrbixSSL API includes a single function that allows you to specify the pass
phrase for your server. In the C++ API, this function is defined as:

class IT_SSL {
public:

virtual int
setPrivateKeyPassword (char* password);

...
};

In the banking example, you can complete the server application by calling this
function. To do this, add this function call to the server file server.cxx as
follows:

#include <IT_SSL.h>
...

int main (int argc, char *argv[]) {
try {

if (OrbixSSL.init() != IT_SSL_SUCCESS) {
cout << "OrbixSSL initialization failed."

<< endl;
return 1;

}
if (OrbixSSL.setPrivateKeyPassword

("demopassword") != IT_SSL_SUCCESS) {
cout << "Private key pass phrase error."

<< endl;
return 1;

}
}
...

}

In this example, the pass phrase is hard coded in the server program. In fact, this
is insecure and useful only for demonstration purposes. In a deployed system,
you must provide a secure mechanism for retrieving the server pass phrase.
There are two fundamental approaches to this problem in OrbixSSL: an
administrative approach, described in the Managing Pass Phrases chapter of the
 102

S S L E n a b l e d Wonde rwa l l : O p e r a t i o n a l D e t a i l s
OrbixSSL C++ Programmer’s and Administrator’s Guide and a programmatic
approach, described in the Programming with OrbixSSL chapter of the OrbixSSL
C++ Programmer’s and Administrator’s Guide.

Making a Private Key Available to OrbixNames

Unlike an OrbixSSL server program, OrbixNames requires that the private key
associated with a certificate is available in a separate file. The private key can also
be appended to the certificate file, but OrbixNames ignores this appended key.

The OrbixNames demonstration certificate is associated with the private key file
orbix_names.jpk in the OrbixSSL certificates/services directory. To
specify this, add the following text to the OrbixSSL configuration file:

OrbixNames {
Server {

IT_PRIVATEKEY_FILE =
OrbixSSL.IT_CERTIFICATE_PATH +
"services/orbix_names.jpk";

};
};

This text assumes that you have already assigned the value of
IT_CERTIFICATE_PATH in the OrbixSSL scope.

When you run the OrbixNames server, it requests that you input the pass
phrase for its private key. Using the demonstration certificate, the pass phrase is
demopassword.

Making a Private Key Available to the Orbix Daemon

As described in “Configuring the Orbix Daemon” on page 99, you can use the
OrbixSSL configuration file to specify which certificate the Orbix daemon uses.
When you run the Orbix daemon, it automatically uses the private key pass
phrase associated with the demonstration certificate orbix. This pass phrase,
demopassword, is established when you install OrbixSSL.

If you configure the daemon to use a different certificate, you must update the
daemon executable with the pass phrase for the corresponding private key. To
run the example described in this chapter, it is not necessary to do this.
103

O rb i x Wond e rw a l l A dm in i s t r a t o r ’ s G u i d e
To update the daemon, use the OrbixSSL update command. For example, on
UNIX use the following command:

update orbixd "passphrase" 0

On Windows, use the following command:

update orbixd.exe "passphrase" 0
 104

S S L E n a b l e d Wonde rwa l l : O p e r a t i o n a l D e t a i l s
Deploying an SSL-enabled Application in a
Wonderwall Configuration

This section outlines the basic configuration changes required for an SSL-enabled
application in a Wonderwall environment. A number of configurations are
possible when Wonderwall is introduced into your application environment,
which fall into two broad categories; fully secure and semi secure.

The fully secure scenario as shown in Figure 6.4, has all the components of the
application communicating using SSL. That is to say, there is end to end security
between the client and the target servers. For semi-secure configuration, there
is end to end security between the client and Wonderwall, while the application
servers behind the firewall run insecurely.

Figure 6.4: A Fully Secure Banking Application

Figure 6.4 details the certificate exchanges and authentication among the various
components for a Wonderwall enabled scenario. The following exchanges and
authentication takes place:
105

O rb i x Wond e rw a l l A dm in i s t r a t o r ’ s G u i d e
1. The Orbix daemon authenticates itself with the bank server.

2. The OrbixNames server authenticates itself with the bank server.

3. The Orbix daemon authenticates itself with Wonderwall.

4. The bank server authenticates itself with Wonderwall.

5. The OrbixNames server authenticates itself with Wonderwall.

6. Wonderwall authenticates itself with the bank client.

In a semi secure scenario, a number of additional possibilities exist. For example,
all the servers behind the firewall run insecurely or only some of them run
insecurely. The main difference with a Wonderwall deployment, is that, from the
client perspective, it is authenticating Wonderwall during its connection
establishment and Wonderwall must provide a certificate. Additionally, any
object references that the client uses are proxified. Therefore, the client does
not interact directly with any of the servers in this scenario but rather with
Wonderwall, who then forwards the interaction to the relevant server as
appropriate. This is because Wonderwall is an iiopproxy and acts as an
intermediary between the client and any of the servers the client wishes to
invoke.

The impact of this is most noticeable when using the naming service. The client
side Orbix must be configured appropriately to pick up a proxified version of the
naming service’s root context. When the client obtains the root context or
initial naming context of the naming service, for example, by means of a
resolve_initial_reference() call, the IOR retrieve is a proxified IOR.
See Chapter 5, “Scenario 1- Deploying OrbixNames Servers” on page 65 for
more details.

As an initial example, consider a ‘semi-secure’ scenario. In this instance, secure
communications occur between the client and the Wonderwall, while insecure
communications take place beyond the firewall. This is shown in Figure 6.x.

When Wonderwall is involved in any security scenario, all IIOP traffic passes
through it. Wonderwall filters the IIOP requests and applies the security policy
defined by the access control rules. Thus in the bank example, none of the
servers inside the firewall are directly accessible by the client. Therefore, the
client communicates directly with Wonderwall only. In order for the client to
make successful contact with these servers, a relevant object specifier should be
present in Wonderwall’s configuration file. This makes the relevant set of target
objects known to Wonderwall, for which access is controlled.
 106

S S L E n a b l e d Wonde rwa l l : O p e r a t i o n a l D e t a i l s
Figures 6.5 shows how Wonderwall intervenes in the interaction between the
client and target servers.

Figure 6.5: A Partially Secure Configuration

The client obtains a reference for the root context in the name service, it
resolves this to obtain a reference for the bankserver object and it interacts with
this object to create an account.

These series of interactions are:

1. The resolve_initial_reference() call is on the ORB and this
returns a proxified IOR for the root context which has been configured
into the ORB.

2. The invocation of ‘resolve’ on this NamingContext object initiates a flurry
of SSL activity, in which the client authenticates Wonderwall.
107

O rb i x Wond e rw a l l A dm in i s t r a t o r ’ s G u i d e
3. Wonderwall supplies its certificate and public key, and an SSL connection
is established over which IIOP traffic flows. Wonderwall receives an IIOP
request message containing the ‘resolve’ call. Wonderwall looks up its
IOR table, searching for the root context IOR. It finds it and applies the
access control rules.

4. The resolve request is further processed by Wonderwall contacting the
daemon and obtaining a redirect to the name service.

5. Wonderwall sends the resolve to the Name Server and gets back the IOR
for the name binding. This IOR is proxified.

6. Wonderwall returns the response with the proxified IOR to the client.

In this scenario, the main difference between this and the non-Wonderwall
scenario, is that SSL pertains only to the client to Wonderwall connection and it
is Wonderwall that the client authenticates. For a more secure mode of
operation, it is most likely that Wonderwall should authenticate the client also.
This is done by setting ssl_authenticate_client to on.

All other communication behind the firewall takes place insecurely.

Refer to the chapter on “Managing Certificates” in the OrbixSSL Programmer’s
and Administrator’s Guide for further details on certificate administration.

Daemon Configuration on Server Side

As the servers inside the firewall are running in secure or in non-SSL mode, it is
necessary to set the Orbix daemon security policy to ‘semi-secure’ in the
OrbixSSL.cfg file. Additionally, it is necessary to obtain an IOR for the bank
server and make this available to Wonderwall in the configuration file using an
object specifier rule, using the IOR, or bind syntax for an object specifier. If it is
necessary to configure the servers in secure mode, additional settings are
required in the SSL configuration file. For information on configuring the server,
see “Using the OrbixSSL Configuration File” on page 97.

Client Configuration

The client should be configured and initialized as required by OrbixSSL, see
“Using the OrbixSSL Configuration File” on page 97 for more information. Note
that the Name Service IOR is a proxified IOR. The name service is executing
 108

S S L E n a b l e d Wonde rwa l l : O p e r a t i o n a l D e t a i l s
from behind the firewall. The client’s ORB needs to be configured with an IOR
for the naming service in order to satisfy a
resolve_initial_reference(“NameService”).

The exposure of the real IOR for the name service is not possible in a firewall
scenario. Thus, the IOR of the name service must be proxified before it can be
configured into the client side ORB. Thus, obtain the name service IOR as usual
with the following command:

ns -I nsior.ref

Then proxify this IOR with the command:

iortool -ior -proxify - sslport <ww-ssl-port>
-host <wonderwall-host> -
port <wonderwall-host> nsior.ref nsior-
proxified.ref

Executing the following command, verifies that the proxification has occurred.

iortool -long nsior-proxified.ref

The client’s ORB is configured to pick up this IOR by means of an entry in the
common.cfg file.

common {
......
services {

NameService=”IOR:.......”;
};

};

The IOR in this instance is that which is obtained by the proxification process.

Wonderwall Configuration

port 16000

http-port 0

http-files <path-to-wwall-ior-file>

proxy-ior-file F:\Iona\Wonderwall\bin\sslGrid\wwall.ior

domain foo.bar.com

log requests replies
109

O rb i x Wond e rw a l l A dm in i s t r a t o r ’ s G u i d e
log-to-syslog no

allow-unlisted-objects on

orbix daemon port

orbixd-iiop-port 1670

10 minutes, takes a LONG time for an SSL server to start

server-open-timeout 600

ssl-library F:\Iona\Wonderwall\bin\iiopproxy301_ssl.dll

ssl-port 17000

https-port 16005

ssl-ca-file F:\Iona\Wonderwall\bin\bank-server\demo_ca_1

ssl-cert-file F:\Iona\Wonderwall\bin\bank-server\wonderwall

ssl-key-file F:\Iona\Wonderwall\bin\bank-
server\wonderwall.pk

name service configuration

ssl-authenticate-clients yes

ssl-authenticate-servers no

ssl-invocation-policy secure-accept secure-connect
insecure-connect insecure-accept

ssl-session-caching client server

object orbixd bind (":IT_daemon", "bank-server-host")
interface IT_daemon

allow object orbixd
 110

S S L E n a b l e d Wonde rwa l l : O p e r a t i o n a l D e t a i l s
##

Rule for SSLbankserver

##

server bank-object

<path-to-bank-server-ior>

allow object test1

allow object bank-object op _IT_PING

allow object bank-object op _start_server

allow object bank-object op _get_height

allow object bank-object op _get_width

allow object bank-object op get

allow object bank-object op set

server NS <path-to ns-ior> ns-ior.ref

allow NS resolve proxify

deny

Edit the iiopproxy.cf file as follows:

• Set ssl-port to an un-used port.

• Set ssl-library parameter to the correct libiiopproxy_301 library
file.

• Set ssl-cert-file to a correct X.509 certificate file.

• Set ssl-key-file to a correct PEM file.

• Set ssl-ca-file to a correct (trusted) Certificate Authority file that is
also used by the Server.

• Set ssl-ca-directory to the location where the Certificate Authority
file resides.

• Set ssl-authenticate-clients to on.

• Set ssl-invocation-policy to secure-accept insecure-accept

secure-connect insecure-connectthat allows connections of all types.
111

O rb i x Wond e rw a l l A dm in i s t r a t o r ’ s G u i d e
• Run wwupdate using the correct password and library location.
 112

S S L E n a b l e d Wonde rwa l l : O p e r a t i o n a l D e t a i l s
Wonderwall, Applets and SSL
Enterprise distributed applications, when they are deployed over the Internet or
over a corporate intranet invariably have applet components in then. These
mobile pieces of code can add increased dynamics to web based transactions.
Thus, when integrated with CORBA they can increase the richness of the
service access available to the web application.

Applets, however, when executed in a browser, do so in a constrained or
restricted environment. These restrictions are an integral part of a Java
environment security model, as supported by the language and the security
manager (of the browser). Some of these restrictions are mitigated with the
evolution of the Java security model. Nonetheless, they are still very relevant for
a wide range of present day deployment scenarios.

Therefore, for the context of these presentations, where a CORBA enabled
applet is deployed in an enterprise setting, Wonderwall together with Orbix
Java's intergrated Wonderwall support, provide a set of facilities for reducing the
applet's execution environment restrictions. This opens up a range of
possibilities for such web based distributed applications, yet it does not
compromise the security of the client or target server installations.

The main restrictions that a downloaded applet is subjected to are:

• No access to the local file system.

• No ability to launch programs.

• Not permitted to read or update system properties.

• Cannot instantiate certain classes, for example, ClassLoader,
SecurityManager, SocketImplFactory.

• Can only open connection to the serving host.

• Cannot accept incoming connections or act as a server.

Some of these restrictions can be diluted when an applet is signed. Nonetheless,
even when some or all these restriction are removed, most notably those
relating to network communications, an enterprise still needs to protect its
assets through the deployment of various security mechanisms. In the case of
Internet deployment, the use of firewalls is most prevalent.
113

O rb i x Wond e rw a l l A dm in i s t r a t o r ’ s G u i d e
Wonderwall and Orbix Java with their integrated support for HTTP tunnelling
provide a mechanism for navigating firewalls and opening up the range of
CORBA services available to CORBA-enabled applets. The security of a
Wonderwall deployment can be increased further with the use of SSL at the
Wonderwall end and the OrbixSSL enabling of the client. This ensures
confidentiality and integrity of network communications.

In a general scenario with an Orbix Java-enabled applet, it initializes the ORB and
the OrbixSSL runtime during its initialization. In order for the applet to do
meaningful work it needs to obtain object references for target objects with
which it wishes to interact. This can be done using the OrbixNames naming
service, or the Orbix bind mechanism or via some other mechanism.

The Wonderwall configuration file for this SSL-enabled applet is very similar to
that used for SSL application deployment. In this instance, HTTP services are
disabled. IIOP and IIOP/SSL traffic occur on port 16000 and 17000 respectively.
allow-unlisted-object is switched on to facilitate dynamic update of the
IOR table for a client connection. Wonderwall's SSL module is enabled by setting
the configuration item ssl-library.

This selection initiates Wonderwall attempt to load the DLL or the shared
object of Wonderwall’s SSL module. The locations of the certification authority's
certificate file, Wonderwall's certificate file and key file are also specified. Clients
are authenticated in this configuration, while servers behind the firewall are not;
they run insecurely and are trusted. The object specifier rules and the access
control rules are similar to the vanilla IIOP access rules. One point to note with
this applet example, is that, HTTP tunnelling is not being used. In this scenario,
the applet is downloaded and makes IIOP/SSL invocations through Wonderwall.

Note: It is desired to have secure communications between the client and
Wonderwall. To achieve this in a tunnelled scenario, it would be
necessary to tunnel over HTTPS. This is not a supported option in Orbix
Java. Wonderwall, however, can serve html pages and Java applets over
HTTPS.
 114

S S L E n a b l e d Wonde rwa l l : O p e r a t i o n a l D e t a i l s
port 16000

http-port 0

http-files /

proxy-ior-file F:\Iona\Wonderwall\bin\sslGrid\wwall.ior

domain foo.bar.com

log requests replies

log-to-syslog no

allow-unlisted-objects on

orbix daemon port

orbixd-iiop-port 1670

10 minutes, takes a LONG time for an SSL server to start

server-open-timeout 600

ssl-library F:\Iona\Wonderwall\bin\iiopproxy301_ssl.dll

ssl-port 17000

https-port 16005

ssl-ca-file F:\Iona\Wonderwall\bin\sslGrid\demo_ca_1

ssl-cert-file F:\Iona\Wonderwall\bin\sslGrid\wonderwall

ssl-key-file F:\Iona\Wonderwall\bin\sslGrid\wonderwall.pk

ssl-authenticate-clientsyes

ssl-authenticate-serversno

ssl-invocation-policy secure-accept secure-connect
insecure-connect insecure-accept

ssl-session-caching client server
115

O rb i x Wond e rw a l l A dm in i s t r a t o r ’ s G u i d e
object orbixd bind (":IT_daemon", "grid-demo-host")
interface IT_daemon

allow object orbixd

##

Rule for wwsslAppletGrid

##

server grid-object
F:\IONA\ORBIXSSL\demos\wwsslGridApplet\java\server.ior

allow object test1

allow object grid-object op _IT_PING

allow object grid-object op _start_server

allow object grid-object op _get_height

allow object grid-object op _get_width

allow object grid-object op get

allow object grid-object op set

deny

Client Configuration

From the client perspective, a number of programming and administrative
actions need to be carried out. These preparatory steps include:

• SSL-enabling the applet and setting the appropriate Orbix Java properties
to ensure successful interaction through Wonderwall.

• Building, packaging and signing the applet.

• Deploying the applet on the web server.

The applet needs to be configured with respect to Orbix Java to interact via the
iiopproxy in Wonderwall. This can be achieved programmatically with
setConfigItem and administratively via property settings in the Orbix
Java.cfg files, as shown:
 116

S S L E n a b l e d Wonde rwa l l : O p e r a t i o n a l D e t a i l s
// from within the applet code in the init method the /////
// programmed setting would be as follows

try {

System.err.println("calling orb init");

ORB.init(this, null);

_CORBA.Orbix.setConfigItem ("IT_BIND_USING_IIOP", "true"
);

_CORBA.Orbix.setConfigItem ("IT_IIOP_PROXY_PREFERRED",
"true");

_CORBA.Orbix.setConfigItem ("IT_IIOP_PROXY_HOST",
"wonderwall-host");

_CORBA.Orbix.setConfigItem ("IT_IIOP_PROXY_PORT",
"16000");

_CORBA.Orbix.setConfigItem ("IT_SSL_IIOP_LISTEN PORT",
"17000");

_CORBA.Orbix.setConfigItem ("IT_HTTP_TUNNEL_PROTO", "");

_CORBA.Orbix.setConfigItem ("IT_HTTP_TUNNEL_HOST", "");

_CORBA.Orbix.setConfigItem ("IT_HTTP_TUNNEL_PORT", "0");

_CORBA.Orbix.setConfigItem ("IT_HTTP_TUNNEL_PREFERRED",
"false");

// Applet wishing to use the browser’s provided classes //

_CORBA.Orbix.setConfigItem ("IT_HTTP_USE_BUILTIN",
"false");

}

catch (INITIALIZE ex) {

System.err.println ("failed to initialize: "+ex);

117

O rb i x Wond e rw a l l A dm in i s t r a t o r ’ s G u i d e
Administratively the Orbix Java configuration file Orbix Java.cfg that is
downloaded has the following settings:

#Orbix Java.cfg setting for WonderWall interactions

IT_HTTP_TUNNEL_PORT="0";

IT_HTTP_TUNNEL_HOST="";

IT_HTTP_TUNNEL_PREFERRED="false";

IT_HTTP_TUNNEL_PROTO="";

IT_IIOP_PROXY_HOST="wonderwall-host";

IT_IIOP_PROXY_PORT="16000";

IT_IIOP_PROXY_PREFERRED="true";

#Security

IT_SSL_IIOP_LISTEN_PORT="17000";

The variable IT_SSL_IIOP_LISTEN_PORT should be set to “0" in the
Orbix Java3.cfg file, that is, in the <IONA_ROOT>\configs directory
at the client site (not the downloaded Orbix Java.cfg), so that it is a
different file that is loaded in the web server classes directory.

Edit iona.cfg file in the web_documents\classes directory. Change
cfg_dir value to ".\". This allows the web client to import the configuration
files. Do not include the orbixnames3.cfg in this file.

The web server needs to be set up for the applets deployment. It is possible to
use the HTTP server facilities of Wonderwall to serve up the applet.

For applet deployment, do the following:

1. Create a classes directory in the web documents directory.

2. Place Applet.html, X509.cacert in the web documents directory.

3. Place the following files in the classes directory:

i. Classes.jar

ii.demo_ca_1.der

iii.demo_privkey.de
 118

S S L E n a b l e d Wonde rwa l l : O p e r a t i o n a l D e t a i l s
iv.demo_server_1.der

v. iona.cfg

vi. orbixssl.cfg

vii.ErrorMsgs

viii.ErrorMsgs.java

ix.Common.cfg

x. Orbix3.cfg

xi.Orbixnames3.cfg

xii.Orbix Java3.cfg

Ensure that the web server is able to export x509.cacert type of certificates
as MIME Type.

Signing the Applet
There are a number of ways to sign the applet, and these depend mainly on the
browser being used. This section provides two examples of signing applet code
using:

1. Netscape's signing tools.

2. Microsoft's JDK signing utilities.

Signing an Applet Using Netscape’s Signing Tools

The general outline of this procedure is as follows:

1. Create a CA (Certificate Authority) for use within Netscape's browser
and sign an applet with it using Netscape's signing tools.

2. Import the generated CA certificate into a browser from a web server.

Pre-requisites for this task are:

1. Download Netscape's signing tool (signtool.exe) from

http://developer.netscape.com/software/signedobj/
jarpack.html

2. Ensure the signtool.exe is on your PATH.
119

O rb i x Wond e rw a l l A dm in i s t r a t o r ’ s G u i d e
3. We recommend that you use Netscape 4.05 (or later). Also, from the
"Communicator" menu, open your browser's Java Console to check that
the Java version is 1.1.4 (or later).

Communicator can be updated by following Netscape's "smart update
procedure" at

http://www.netscape.com/downloadsu1.html.

Creating a Browser CA and Signed Applet
1. Copy the following directory into ./classes, while maintaining the

directory structure:

[Main Orbix Java
directory]\classes\wwsslGridAppletDemo

2. Unzip the following jar files to the ./classes directory

[OTM root directory]\lib\Orbix Java.jar

[OTM root directory]\lib\orbixssl.jar

 ..\MSSecurity.jar (contained in the parent directory) in the
order given. The unzip application may request whether it should
overwrite files or not . You should allow it to overwrite the files
generated by unzipping Orbix Java.jar by the respective
overlapping files generated by unzipping OrbixSSL.jar.

You should now find the following directories under the ./classes
directory:

 com

IE

javax

org

wwsslGridAppletDemo

uk

Netscape

3. Set an arbitrary password on your Netscape database. This ensures
security to the Netscape database and is set as follows:
 120

S S L E n a b l e d Wonde rwa l l : O p e r a t i o n a l D e t a i l s
From the "Communicator" menu, choose "Security info", then
"Passwords" and finally "Change Password", to launch the dialog to set
your password.

4. In a console and from the current directory, generate test keys and a
signing certificate (CA) with the following command:

signtool -G <Name of Certificate Authority> -d
<Netscape user Dir>

For example, on Win32:

signtool -G "IONA Test Certificate" -d "C:\Program
Files\Netscape\Users\<user_name>"

For example, on UNIX:

signtool -G "IONA TestCertificate" -d "/home/
<user_name>/.netscape"

Signtool requests the following pieces of information (sample answers
are shown here):

 Certificate common name: IONA Test Certificate

 Organization: Iona Technologies

 Organization Unit: Engineering Project

 State/Province: Dublin

 Country: IE

 Username: Acme

 Email address: acme@acme.com

This step produces a file in c:\appsign named x509.cacert; this is
the certificate that the browser imports.

5. Shutdown your web-browsers before proceeding with this step. You now
sign the jar with the CA, by running the following from the console. (As
before, you'll need to change the argument to -d.)

For example, on Win32:

signtool -d "C:\Program
Files\Netscape\Users\<user_name>" -k

"IONA Test Certificate" -Z classes.jar .\classes
121

O rb i x Wond e rw a l l A dm in i s t r a t o r ’ s G u i d e
For example, on UNIX:

signtool -d "/home/<user_name>/.netscape/" -k

"IONATestCertificate" -Z classes.jar ./classes

6. Running the following commands checks the validity of the newly created
classes.jar file. (Again, edit the argument to -d)

signtool -d "C:\Program
Files\Netscape\Users\<user_name>" -w classes.jar

signtool -d "C:\Program
Files\Netscape\Users\<user_name>" -v classes.jar

You now have a CA that can be used within a browser (x509.cert) and an
applet that is signed by the CA ./classes/classes.jar.

Instructions for importing a CA into the Browser

Netscape Communicator needs to import the test CA certificate
x509.cacert from the web server and add it as a CA that it trusts.

Once the browser has accepted a certificate, it trusts applets signed by the CA
concerned (such as our signed applet) and grants them privileges they request
on your computer. The following steps are required :

1. Ensure your web server can export the CA file extension as type MIME.
For some web servers this is automatic. For apache (1.3b7 tested) the
file :

 <Apache_root>\Apache\conf\mime.types

must contain the line application/x-x509-ca-cert cacert.

For other web-server software, you or your webmaster may have to
associate this MIME-type with the file extension .cacert.

2. The applet (applet.html) shipped has been formatted to import the
certificate when you click on the link "Click here to import the
certificate". However, you must also configure Netscape to invoke the
import certificate wizard when x509.cert extension is clicked on.

To do this make sure that Navigator has a MIME type of

application/x-x509-ca-cert (in Preferences, in the Navigator/
Applications panel). If it does not, create one with this information, for
example, for Windows:

 Description of type: Internet Security Certificate
 122

S S L E n a b l e d Wonde rwa l l : O p e r a t i o n a l D e t a i l s
 File extension: CER CRT DER CACERT

 MIME type: application/x-x509-ca-cert

 Application to use: C:\WINNT\system32\rundll32.exe
c:\winnt\system32\inetcpl.cpl,SiteCert_RunFromCmd
Line %1

3. When you click on the link specified in applet.html, you see the
import wizard, which guides you through the steps for accepting the CA
as one of your trusted CAs in your browser. Accept the certificate and
verify that it exists as one of your signers via the security icon on your
navigator menu bar.

Note: Whenever you need to reload your applet into the browser, you should
ensure that it loaded via the web server and not the cache in the
browser. Delete history (edit->preferences) and cache (edit-
>preferences->advanced->cache) and restart your browser. This is the
safest option.

Signing an Applet Using Microsoft’s Signing Utilities

Prerequisite software tools and actions for this signing task include:

Microsoft's SDK-Java product includes a set of signing utilities.

SDK-Java can be downloaded from:

http://www.microsoft.com/java/download.htm.

Once installed, the signing utilities can be found in the following directory:

[Main SDK-Java directory]\Bin\PackSign

Make sure that the directory containing these files is in your PATH.

To sign the applet, do the following:

1. Copy the following directory into ./classes, while maintaining the
directory structure:

[Main Orbix Java
directory]\classes\sslGridAppletDemo

2. Unzip the following jar files into the ./classes directory
123

O rb i x Wond e rw a l l A dm in i s t r a t o r ’ s G u i d e
[Main Orbix directory]\lib\Orbix Java.jar

[Main Orbix directory]\lib\orbixssl.jar
..\MSsecurity.jar (contained in the parent directory) in the
order given.

The following directories can now be found under the ./classes
directory:

com

IE

javax

org

sslGridAppletDemo

uk

3. On a DOS console, with the necessary additions made to PATH, change
directory to signingMS. Open cabdir.bat in a text-editor and set
the values for the CERT_FILE and KEY_FILE variables to point to
Cert.spc and Mykey.pvk respectively. Run cabdir.bat from the
command-line as follows:

 cabdir classes sslapplet

The general syntax for running cabdir.bat is:

cabdir [directory] [applet_name]

4. Place the following files on your web-server, at the location where you
normally store HTML files for your website.

applet.html

classes\

classes\classes.cab

classes\demo_ca_1.der

classes\demo_privkey.der

classes\demo_server_1.der

Applet.html can be found in the parent directory. Only the
classes.jar file needs to be copied to the webserver.

Your Microsoft browser when loading the applet from the webserver
picks up automatically the newly signed jar file.
 124

S S L E n a b l e d Wonde rwa l l : O p e r a t i o n a l D e t a i l s
SSL Enabled Applet Code Example

Within the applet code itself, it is necessary to perform a number of operations,
as alluded to previously. The init method of the applet might be programmed
as follows, in the case where the Orbix Java Wonderwall properties are set in
the Orbix Java.cfg file:

public void init ()
{

PolicyEngine.assertPermission (
PermissionID.SYSTEM);

try
{

1 ORB.init(this, null);
}
catch (INITIALIZE ex)
{

System.err.println ("failed to initialize:
"+ex);

}
try
{

2 downloadCertData();
}

catch (Exception ex)
{

System.err.println ("Exception
downloading cert data");

System.err.println ("Do you have the
certificates available on");

System.err.println ("the web server?"
);

System.err.println (ex);
ex.printStackTrace();
return;

}

3 if (initSSL() == false)
{

System.err.println ("Failed to
initialise SSL");

return;
}

125

O rb i x Wond e rw a l l A dm in i s t r a t o r ’ s G u i d e
4 gridEvents = new GridEvents ();
this.add (gridEvents);

PolicyEngine.revertPermission (
PermissionID.SYSTEM);

}

1. The applet initialises the ORB.

2. Downloads the SSL certificate information.

3. Initialises the OrbixSSL runtime.

4. Processes end user interactions and invokes the target servers. An
additional consideration with this interaction, is that, if the applet is only
ever going to communicate via Wonderwall, then the download of the
SSL certificate information is not necessary.

Initialising the OrbixSSL runtime, performs the following operations:

private boolean initSSL()
{

if (caCertData == null || certData == null
|| keyData == null)

return false;
1 IT_SSL ssl = IT_SSL.init();

try
{

2 IT_X509Cert caCert = new IT_X509Cert (caCertData);
3 IT_X509Cert certChain[] = new IT_X509Cert[2];

certChain[0] = new IT_X509Cert (certData
);

certChain[1] = caCert;
4 ssl.setApplicationCertChain (certChain);
5 ssl.setRSAPrivateKeyFromDer (keyData);

6 ssl.addTrustedCert (caCert);
}
catch (Exception ex)
{

System.err.println ("Got exception during
SSL initialisation");

ex.printStackTrace();
 126

S S L E n a b l e d Wonde rwa l l : O p e r a t i o n a l D e t a i l s
return false;
}
return true;

}

1. Initialise OrbixSSL and obtain a reference to the ssl runtime object.

2. Allocate an X509 certificate object.

3. Create a certificate chain.

4. Initialise and store the applications certificate and the certification
authority's certificate in the chain

5. Specify the applications private key.

6. Add a certificate to the list of Certification Authority certificates
(certificates issued by the owner of one of the trusted certificate
authority, and is acceptable to the application).
127

O rb i x Wond e rw a l l A dm in i s t r a t o r ’ s G u i d e
 128

 7
The Wonderwall
Configuration Tool

The Wonderwall Configuration Tool allows you to change the default
security configuration settings for Wonderwall using a graphical user
interface. The Configuration Tool edits the iiopproxy.cf file which
stores the configuration settings for your Wonderwall installation.
This chapter describes how to use the Wonderwall Configuration
Tool.

Default security configuration settings may need to be changed for a variety or
reasons, including:

• Enabling or disabling parts of Wonderwall functionality.

• Altering the use of specific port numbers.

The Wonderwall Configuration Tool can be used to make these configuration
changes.
129

O rb i x Wond e rw a l l A dm in i s t r a t o r ’ s G u i d e
The iiopproxy.cf File
The iiopproxy.cf file holds configuration information for Wonderwall. It is
located in the Wonderwall installation directory. A default iiopproxy.cf file is
created by the installation process. For further information on the
iiopproxy.cf file, refer to “The Configuration File” on page 12.

Starting the Wonderwall Configuration Tool
There are two ways to start the Wonderwall GUI Configuration Tool.

• To start the GUI Configuration Tool from the command line, enter the
following:
wwconfig

• To start the GUI Configuration Tool from the Windows Start menu:

xiii.Select the Windows Programs menu

xiv.Select the Wonderwall sub-menu.

xv. Select the Edit Configuration File from the options displayed.

When the GUI Configuration Tool is invoked, it automatically loads its settings
from the default location.

The GUI Configuration Tool startup window is shown in Figure 7.1 on page 131.
 130

T h e Wonde rwa l l C on f i g u r a t i o n T o o l
GUI Configuration Tool Main Window

The GUI Configuration Tool main startup window consists of a number of tabs,
each containing configuration information for different areas of Wonderwall
functionality. To load a configuration file, select File<Symbol>ÆOpen Config
File.

To access the options in a specific tab, select that tab. The Objects tab deals
with all the objects which might be made available through Wonderwall. The
Access Control tab deals with the access control list which either denies
access or allows access to the target object. The Ports and Hostnames tab
deals with the ports and hostnames on which Wonderwall listens and runs,
respectively.

Figure 7.1: Orbix Wonderwall Configuration Tool
131

O rb i x Wond e rw a l l A dm in i s t r a t o r ’ s G u i d e
Object Specifier Window

The Objects window allows you to select or specify an object which can be
made available through Wonderwall. To make an object available, select an
object from the list of objects displayed or enter the Object Name and
Object Type in the corresponding text fields.

After you select the object, select the Edit button. This allows you to load the
object’s IOR using the Edit window (Figure 7.3 on page 133). Wonderwall
supports four different forms of object-specifier—refer to “Object Specifiers”
on page 14 for further information.

Figure 7.2: Orbix Wonderwall Object Specifier Window
 132

T h e Wonde rwa l l C on f i g u r a t i o n T o o l
For further information on object specifiers, refer to “Representations of an
IOR” on page 30 and “List of IORs” on page 170.

Figure 7.3: Loading IORs
133

O rb i x Wond e rw a l l A dm in i s t r a t o r ’ s G u i d e
Access Control List Window

The Access Control window lists all the access control list entries which
ultimately control access to servers, objects and clients, in order of importance.
To change the order of the allow and deny rules, select the Move Rule Up
and Move Rule Down buttons.

From this window it is also possible to add a new rule, remove a rule from the
list, and edit an existing rule. For example, Figure 7.5 on page 135 displays ACL
rule number one which is as follows:

Allow IIOP message if the target object matches orbixd.

Figure 7.4: Orbix Wonderwall Access Control List Window
 134

T h e Wonde rwa l l C on f i g u r a t i o n T o o l
Note that (unused) here means that the setting is not used to determine
whether access is allowed or denied.

For further information on access control lists, refer to “Access Control” on
page 15 and page 173.

Figure 7.5: The Orbix Wonderwall Edit Rule Window
135

O rb i x Wond e rw a l l A dm in i s t r a t o r ’ s G u i d e
Ports and Hostnames Window

The ports available to launched servers can be modified in the Ports and
Hostnames window of the GUI Configuration Tool. It is generally only
necessary to change default settings if there is a clash with ports used by an
existing system, or if a directory needs to be specified to enable HTTP service.

Parameters set in this window must map directly to existing configuration
parameters.

Ports must be specified—everything else is optional.

Figure 7.6: Orbix Wonderwall Ports and Hostnames Window
 136

T h e Wonde rwa l l C on f i g u r a t i o n T o o l
SSL Window

OrbixSSL allows Orbix applications to communicate using Secure Sockets Layer
(SSL) security. These applications use SSL as a protocol layer below IIOP. Orbix
Wonderwall allows you to filter SSL communications between external and
internal applications. To configure SSL filtering, use the SSL window.

For a description of the Wonderwall SSL configuration settings, refer to
Appendix B, “Configuration”. For detailed information about how OrbixSSL
programs use SSL security, refer to the OrbixSSL documentation.

Figure 7.7: The Orbix Wonderwall SSL Window
137

O rb i x Wond e rw a l l A dm in i s t r a t o r ’ s G u i d e
Logging and Timeouts Window

The Logging and Timeouts window allows you to customise all logging and
timeouts for your system.

Figure 7.8: Orbix Wonderwall Logging and Timeouts Window
 138

T h e Wonde rwa l l C on f i g u r a t i o n T o o l
Edit As Text Window

The configuration file can be edited by hand from the Edit As Text window.

Figure 7.9: Orbix Wonderwall Edit as Text Window
139

O rb i x Wond e rw a l l A dm in i s t r a t o r ’ s G u i d e
 140

 8
The Wonderwall
Log Analysis Viewer

The Wonderwall Log Analysis Viewer allows you to view log files using
a graphical user interface. This chapter describes how to use the Log
Analysis Viewer and provides descriptions of options available.

The Wonderwall iiopproxy Server
The log from the Wonderwall server iiopproxy is sent by default to the
standard error file descriptor, stderr. Using the iiopproxy process which
implements Wonderwall, this output is typically redirected to a specified named
log file with the -log logfile switch. For further information on iiopproxy,
refer to Appendix A.

It is possible to specify exactly what goes into the log file by editing the
configuration file, iiopproxy.cf. For further information, refer to “The
Configuration File” on page 12.
141

O rb i x Wond e rw a l l A dm in i s t r a t o r ’ s G u i d e
Starting the Wonderwall Log Analysis Viewer
There are two ways to start the Wonderwall Log Analysis Viewer.

• To start the Wonderwall Log Analysis Viewer from the command line,
enter the following command:
wwlogviewer

• To start the Wonderwall Log Analysis Viewer from the Windows Start
menu, do the following:

i. Select the Windows Programs menu.

ii. Select the Wonderwall sub-menu.

iii. Select View Wonderwall Log from the options displayed.

When the Log Analysis Viewer is invoked, it automatically loads its settings from
the default location.

Log Analysis Viewer Main Window

The Log Analysis Viewer main startup window consists of a number of menus
each containing information for different areas of log analysis—see Figure 8.1 on
page 143.

Menu Description

File To load a log file, select File<Symbol>ÆOpen Log File.
All sessions in the log file are loaded by default—see
Figure 8.2 on page 144.

View To view a log file in segments, select
View<Symbol>ÆShow Session— select a session, then
select View Session. The name of the current session is
displayed in the title bar.

Filters This menu allows you to open, save, and edit filter sets—see
Figure 8.3 on page 145.

Timestamps This menu allows you to switch on/off the following options:
timestamps, thread ID, process ID, and log message type—
see Figure 8.4 on page 146.

Recent This menu displays the most recent logs opened.
 142

Th e Wond e rw a l l L o g An a l y s i s V i ewe r
Figure 8.1: Wonderwall Log Analysis Viewer Startup Window
143

O rb i x Wond e rw a l l A dm in i s t r a t o r ’ s G u i d e
Figure 8.2: Loaded Log File
 144

Th e Wond e rw a l l L o g An a l y s i s V i ewe r
Filters

All the filters defined are listed in the Edit Filter Set window. From this
window, you can define how you want each filter to appear in the log file. For
example, Figure 8.3 defines an IORs(stringified) filter containing a regular
expression of the string pattern. IOR:\S+ is the regular expression of the string
pattern to search for. If a line matches this filter, it highlights the words (that is,
show the words in...) in the log file.

Figure 8.3: The Edit Filter Set Window
145

O rb i x Wond e rw a l l A dm in i s t r a t o r ’ s G u i d e
Timestamps

The following options may be switched on/off from the Timestamps menu:

Figure 8.4: Timestamps Options

Timestamps Selecting Timestamps On displays the date and time of the
log. For example: [1998/03/27 12:40:49]

Microseconds Selecting Microseconds On displays microseconds. For
example: [.000150]

Thread ID Selecting Thread ID On displays the thread ID number. For
example: [thread 240]

Process ID Selecting Process ID On displays, for example: [pid 1972]

Log Message
Type

Selecting Log Message Type On displays the Log message
type. For example: [warning]
 146

 9
Transformers

Several internal layers of Orbix separate a simple remote
invocation—as seen by application level programming—from the
final construction and transmission of a message via TCP/IP. In doing
so, Orbix offers the user a chance to customise its behaviour by
providing hooks at a number of levels. For example:

• When an Orbix operation is called on the client side, it can be
intercepted straight away using a Smart Proxy to customise its behaviour.

• Orbix provides another hook in the form of Filter objects which can
inspect (and modify) a Request object.

• Finally, after the full contents of a Request have been marshalled into a
raw buffer, Orbix provides access to the buffer via a mechanism known
as a Transformer.

Transformers are useful for a number of reasons. One of the main uses of a
transformer is to allow encryption of the message prior to transmission via the
TCP/IP protocol. This provides the user with an added level of security which is
desirable in many situations. If your site has a policy of encrypting all messages
prior to transmission, you will find that the support provided by Wonderwall for
transformers allows you to insert a firewall with no disruption to the encryption
process.
147

O rb i x Wond e rw a l l A dm in i s t r a t o r ’ s G u i d e
Transformer Architecture
Figure 9.1 provides an outline of a typical Transformer setup in the absence of a
Wonderwall firewall.

Figure 9.1: Encrypted Link Using Integral Transformer

• The shaded blocks shown at the edge of the client process C and server
process S represent the transformers at either end of the connection.

• The heavily shaded line connecting client and server is used to represent
the transmission of an encrypted IIOP message.

Note: The transformers in this figure are not implemented as CORBA objects.
These transformers are referred to here as integral transformers—since
they are built into the client or server process.

Consider the problem of interposing a firewall proxy between this client and
server. The firewall cannot deal directly with encrypted messages, nor can it
properly monitor and filter messages while they are in encrypted form. In
Figure 9.1, decryption is carried out by the server’s integral transformer.
Logically, however, the point at which decryption occurs is just before the
packet passes through Wonderwall.

Wonderwall offers two alternative solutions which enable you to insert the
firewall even when encryption is being used—Figure 9.2 on page 149 and
Figure 9.3 on page 150 both provide an outline of a typical transformer setup in
the presence of a Wonderwall firewall. Both of these solutions are based on the
definition of external transformers which Wonderwall uses to encrypt and decrypt
messages. In contrast to integral transformers, these transformers are
implemented as CORBA objects.

C Obj

S

 148

T r a n s f o rme r s
The first solution is shown schematically in Figure 9.2 where a single client
transformer TC is implemented to handle encrypted messages arriving from
remote clients. This model may be appropriate when the main perceived risk to
security is the external network.

Figure 9.2: Encrypted Link Using Wonderwall

• When an encrypted Request message arrives from the client,
Wonderwall first sends the message out to the external, client
transformer TC.

• The transformer returns a decrypted message (indicated by a thin line) to
Wonderwall. The Wonderwall proxy is then able to monitor and filter
this Request message as normal and if allowed by the Access Control List,
the Request is forwarded to the Server S.

• When the server responds to the client with a Reply message, the
reverse procedure is followed.

The unencrypted message is sent from server to Wonderwall, which
might log the message, then passed to the client transformer TC for
encryption, then relayed by Wonderwall back to the client in encrypted
form.

In this case, the messages which circulate on the internal network are left
in unencrypted form. Wonderwall provides a single point of decryption
and encryption for all messages entering and leaving the internal network.

TC

W Obj

S

C

149

O rb i x Wond e rw a l l A dm in i s t r a t o r ’ s G u i d e
Figure 9.3: Wonderwall Inserted Into Encrypted Link

In Figure 9.3, Wonderwall offers an alternative solution enabling you to insert
the firewall even when encryption is being used. In this model, encypted
messages are circulated on both the internal and external networks. The
advantage of deploying Wonderwall in this way is that the firewall can be
inserted where an encrypted link already exists. No disruption is caused and the
server needs no modification. This requires the use of two external
transformers: the first transformer is the client transformer TC which exchanges
encrypted messages with the client, and the second transformer is the server
transformer TS which exchanges encrypted messages with the server.
Sandwiched between these two transformers is the monitoring and filtering
portion of Wonderwall performing all its operations on unencrypted messages.

TC

Obj

S

W

TS

C

 150

T r a n s f o rme r s
Using Transformers
The external transformers, which Wonderwall uses, are defined as CORBA
objects. They are not built into the Wonderwall server process. You are free to
implement these transformer objects (both client and server transformer) in
whatever way you like. Wonderwall defines an IDL interface for the transformer
objects which you must use when writing your implementation. Wonderwall can
be configured so that it automatically calls your transformer objects as needed.
This is explained in the following sections.

The Transformer IDL

The external transformers used by Wonderwall, both client TC and server TS,
are instances of the CORBA interface IT_WonderwallReqTransformer. The IDL
interface is illustrated as follows:

// IDL
//
// Wonderwall client/server Transformer interface:

typedef sequence<octet> iiopMessage;

interface IT_WonderwallReqTransformer {

exception TransformFailedException {
string reason;
iiopMessage message;

};

void transform (inout iiopMessage data,
in string host,
in boolean sending)

raises (TransformFailedException);

void transform_exception (inout iiopMessage data,
in string host,
in boolean sending)

raises (TransformFailedException);
};
151

O rb i x Wond e rw a l l A dm in i s t r a t o r ’ s G u i d e
This interface features a single operation transform() which is called whenever
Wonderwall needs a message to be transformed. The first argument
iiopMessage is the message to be transformed. An iiopMessage is declared to
be of type sequence<octet> which is the data type that CORBA typically uses
for buffers of bytes. It is perfectly permissible to pass back a transformed buffer
which is a different size to the one received from Wonderwall. The next
argument is the host which sent the Request (or is about to receive the Reply).
The argument sending is used to indicate whether encryption or decryption is
required. When a message is sent out of Wonderwall, this flag is true, and
encryption is required. When a message is sent inwards, this flag is false, and
decryption is required.

There is a single exception TransformFailedException which can be raised by
the transformer implementation to abort the message. The user can decide
under what circumstances the exception is raised. In a client transformer,
Wonderwall reacts to this exception by sending the message buffer included in
the exception body back to the client. This way the integral transformer in the
client application or applet can handle this message as an indication that the
Wonderwall client transformer has failed.

Note: A TransformFailedException should not be thrown during the bind()
or narrow() negotiation process, as the client ORB will not know how
to handle the exception until communication with the server (via
Wonderwall) is established.

If a server transformer throws a failure exception, a MessageError error
message will be sent to the server.

The transform_exception operation is used to transform exceptions sent by
Wonderwall to the client, if it becomes necessary for one to be raised during the
course of operation. Exceptions from server to client are handled using the
normal transform operation.
 152

T r a n s f o rme r s
Implementing Transformers

The implementation of both client and server transformers is flexible. Apart
from keeping to the rule that you should encrypt and decrypt messages when
Wonderwall expects, you have complete freedom in implementing the
transformers. The transformers can be implemented in any convenient language
for which a CORBA mapping exists. They can be implemented in a standalone
server, or built into some existing server on the internal network.

The following code sample outlines the skeleton of a client transformer:

// IDL
package wwallXformerBoth;

import IE.Iona.Orbix Java.CORBA.* ;
import java.util.Random;
Import IE.Iona.Orbix Java.Features.IT.ReqTransformer;

public class TransformerImpl extends
_IT_reqTransformerImplBase {

public boolean transform
(iiopMessageHolder data, String host, boolean is_send)

{
if (is_send) {

//
// Implement an algorithm to encrypt ‘data’
//
...

}
else {

//
// Implement an algorithm to decrypt ‘data’
//
...

}
return true ;

}

153

O rb i x Wond e rw a l l A dm in i s t r a t o r ’ s G u i d e
public boolean transform_exception
(iiopMessageHolder data, String host, boolean is_send)

{
if (is_send) {

//
// Implement an algorithm to encrypt ‘data’
//
...

}
else {

//
// Implement an algorithm to decrypt ‘data’
//
...

}
return true ;

}
}

Note: The encryption algorithm is allowed to change the size of the sequence
buffer and return a transformed sequence of a different length. If you
wish to do this, you should reallocate the size of the sequence buffer
before completing the transformation.
 154

T r a n s f o rme r s
Configuration

Configuring Wonderwall to use either a client transformer, or a client and
server transformer is quite straightforward. Once a client and server
transformer have been implemented, insert two lines, for example, as follows
into the configuration file (typically called iiopproxy.cf):

###
Configure client and server Transformers...
#
client-transformer \

bind (":myServer", "internalHostA") \
interface IT_WonderwallReqTransformer

server-transformer \
bind (":myServer", "internalHostA") \
interface IT_WonderwallReqTransformer

This setup is appropriate when both a client and server transformer object have
been implemented in server myServer, on host internalHostA. If you do not
wish to use the Orbix bind mechanism, you can substitute any form of object-
specifier (as described in “List of IORs” on page 170).

Note: Since the encrypted Requests are sent from the transformer servers to
Wonderwall in unencrypted form, care should be taken that these
connections cannot be intercepted. For example, the transformer server
could be run on the Wonderwall machine itself. As long as the firewall
protects the transformer, this is safe.
155

O rb i x Wond e rw a l l A dm in i s t r a t o r ’ s G u i d e
 156

Appendix A
iiopproxy and iortool

Orbix Wonderwall is shipped with two binary files: iiopproxy and iortool.
The iiopproxy file implements the firewall itself, while iortool is a useful utility
for manipulating object references. Both of these commands each have a
number of options as detailed in this appendix.

The iiopproxy Process
The command iiopproxy is usually run as a daemon process to monitor both
the dedicated IIOP port and the HTTP port on the bastion host. It is the key
component of the Wonderwall and combines the functionality of the IIOP
gateway with a full HTTP server.

The iiopproxy is generally launched automatically using the inetd(8) on UNIX
(for further information, refer to Appendix C) and remains permanently active,
monitoring the designated ports, until it is explicitly killed.

Syntax of iiopproxy

The syntax of iiopproxy is as follows:

iiopproxy [options]
157

O rb i x Wond e rw a l l A dm in i s t r a t o r ’ s G u i d e
The options supported can consist of one or more of the following switches
(these can be set using the GUI in the GUI version of Wonderwall):

-config file Specifies the pathname of the Wonderwall configuration
file (refer to Appendix B on page 165). This should be an
absolute pathname when iiopproxy is run as a daemon
process.

-debug n The debug level can be set to three values: 0, 1 or 2. The
value 0 means no diagnostics, 1 means minimal
diagnostics, and 2 means high diagnostics. The default is 1.

-fork Causes the proxy to run in a forking mode, creating a
subprocess for each new connection from a client. This
was the default behaviour in Wonderwall 1.1—the
default behaviour now is to use multiple threads in one
process.

-fg This debugging option means do not fork when a new
connection arrives. Its usefulness is limited unless you are
debugging—and it may cause trouble. This option is only
available on UNIX.

-help Give usage information on these command switches.

-httpport port Specifies the port to listen on for HTTP requests. This
can also be specified in the Wonderwall configuration
file—but the value specified by -httpport takes
precedence.

-inetd Specifies that the iiopproxy is running from inetd(8) as
a daemon process. This causes the inetd process to
listen to the ports on behalf of Wonderwall. When this
flag is not specified, Wonderwall listens on these ports
itself. Wonderwall uses the current user ID as an
identification when binding to servers. Hence the servers
must be registered using putit, and chmodit'ed so that
the user running Wonderwall has invoke and launch
rights to the servers. This option is only available on
UNIX.

-log logfile Sends the log output into the named file, rather than to
stderr, the standard error file descriptor.
 158

App en d i x A
Using iiopproxy

When testing Wonderwall, the iiopproxy can typically be run from the
command line, as follows:

iiopproxy -debug 2 -config iiopproxy.cf -log iiop.log

where the configuration file is called iiopproxy.cf and the output is logged to
the file iiop.log. When running iiopproxy from inetd(8), you would typically
use a command line similar to the following on UNIX:

iiopproxy -inetd -config /etc/iiopproxy.cf

The inetd mode is only available on UNIX.

Wonderwall sends its output to the system log by default.

For recommendations on how to set up the iiopproxy to run as a daemon
process from inetd(8), refer to Appendix C.

-port port Specifies the dedicated IIOP port for Wonderwall. This
can also be specified in the Wonderwall configuration
file—but the value specified by -port takes precedence.

-user username Runs as a specified user. If Wonderwall needs to use a
privileged port (that is, one under 1024), this switch
should be used because it is safer to run as a normal,
unprivileged user once the port is acquired. Wonderwall
uses the current user ID as an identification when binding
to servers. See the -inetd switch. On Windows NT, this
option only affects the user ID used to bind to servers.

-v Print version information for iiopproxy.
159

O rb i x Wond e rw a l l A dm in i s t r a t o r ’ s G u i d e
The iortool Utility
Wonderwall requires a certain amount of manipulation and use of IORs. In
particular, the administrator of the Wonderwall needs to maintain a database of
objects both in their original form (for use behind the firewall) and in their
proxified form (for use by remote clients). To make this task easier, Wonderwall
is shipped with the iortool utility which helps in the reading and editing of
IORs.

The iortool utility is a general purpose tool which allows you to view, edit, and
create IORs. It can be used with IORs generated by any ORB. Some of its
features, however, are specific to Orbix.

Syntax of iortool

The syntax of the iortool utility is as follows:

iortool {-ior | -rxr | -view | -long | -xlong} iorfile
iortool {-ior | -rxr | -view | -long | -xlong} \

[-proxify [-host host] [-port port] [-sslport port] iorfile
iortool {-ior | -rxr | -view | -long | -xlong} -manual

The iortool utility is mainly used for the following:

• To view the IOR which is stored in iorfile.

• To edit the IOR in iorfile.

• To create a new IOR where the user is prompted for input at each stage
in the creation of the IOR.

For further information, refer to “Using the iortool Utility” on page 162.
 160

App en d i x A
The options supported by the iortool utility are as follows:

-host host Used, in conjunction with the -proxifyoption, to specify
the new proxy host which is embedded in the IOR. If this
option is not specified, the host in the IOR is left unchanged.

-ior Specifies that the IOR should be printed in CORBA standard
stringified format.

-long Specifies that the IOR should be printed in a long readable
format.

-manual Used to create an IOR interactively. The iortool proceeds
to create a new IOR and the user is prompted along the way
to provide all of the information needed.

-port port Used, in conjunction with the -proxifyoption, to specify
the new proxy port number which is embedded in the IOR. If
this option is not specified, the port in the IOR is left
unchanged.

-proxify Used to specify that the iortool is being used to edit the
IOR in iorfile. This option is intended to be followed by either
-h host or -p port, or both. It allows the user to easily
create a proxified IOR from the given iorfile—by specifying
both the proxy host (using -host host) and the proxy port
(using -port port).

-rxr Specifies that the IOR should be printed in (Wonderwall
specific) a readable hex representation RXR format.

-sslport port Used, in conjunction with the -proxifyoption, to specify
the new Secure Sockets Layer (SSL) port number which is
embedded in the IOR. This port number is used when
communicating with the object using SSL.

-view Specifies that the IOR should be printed in a one-line
readable format.

-xlong Specifies that the IOR should be printed in a very long
readable format, with the object key and any unrecognised
components dumped using the traditional hex dump format
instead of RXR format.
161

O rb i x Wond e rw a l l A dm in i s t r a t o r ’ s G u i d e
Using the iortool Utility

One way of using the iortool utility is as a tool for translating IORs between
different formats. There are five output formats which can be selected using one
of the following flags: -ior, -rxr, -long,-xlong or -view.

For example, given an IOR stored in the gridiiop.ref file of the Wonderwall
tmp directory, it can be printed out in the standard IIOP stringified format using
the -ior flag as follows:

iortool -ior /tmp/gridiiop.ref
IOR:000000000000000d49444c3a677269643a312e3000000
00000000001000000000000004c0001000000000015756c74
72612e6475626c696e2e696f6e612e6965000009630000002
83a5c756c7472612e6475626c696e2e696f6e612e69653a67
7269643a303a3a49523a67

The -rxr option writes out the IOR in readable hex format RXR (refer to
“Representations of an IOR” on page 30 for full details of this format). The RXR
format is specific to the Wonderwall. An example of RXR format is as follows:

iortool -rxr /tmp/gridiiop.ref
RXR:_______%0dIDL:grid:1.0_______%01_______L_%01_
____%15ultra.dublin.iona.ie__%09c___(:%5cultra.du
blin.iona.ie:grid:0::IR:grid_

The -view option writes the IOR in human readable format. This option can
only be used to parse Orbix IORs. For example:

iortool -view /tmp/gridiiop.ref
[IOR: type “IDL:grid:1.0”: [IIOP1.0
host=ultra.dublin.iona.ie port=2403 \ [ObjectKey
“RXR::%5cultra.dublin.iona.ie:grid:0::IR:grid_:”]]]

Another way of using an IOR is to edit an existing IOR. This is done via the
-proxify option (in addition to the output format specifier which is either -

ior, -rxr or -view) which is used in conjunction with the -host and -port
options.
 162

App en d i x A
For example:

iortool -x -h host.iona.com -p 1570 -i /tmp/
gridiiop.ref
IOR:000000000000000d49444c3a677269643a312e3000000
000000000010000000000000048000100000000001270726f
7879686f73742e696f6e612e6965000622000000283a5c756
c7472612e6475626c696e2e696f6e612e69653a677269643a
303a3a49523a6772696400

The new IOR has the specified host and port number embedded in it. These
become the host and port which the client attempts to connect to when it uses
the new IOR.

Finally the -manual option can be used to create an IOR from scratch. For
example, if you enter the following command:

iortool -manual -ior

you are prompted to enter each of the requisite fields of an IOR (as specified by
the IIOP standard). The resulting IOR is written to the standard output as an
IIOP stringified IOR, as specified by the -ior option.

Note: This is not the standard way of producing IORs. It is recommended that
novice users avoid this option altogether.
163

O rb i x Wond e rw a l l A dm in i s t r a t o r ’ s G u i d e
 164

165

Appendix B
Configuration

Each installation of Wonderwall includes a configuration file that allows you to
specify how applications use Wonderwall security. At the heart of the
Wonderwall configuration is its configuration file iiopproxy.cf which specifies
the security policy for your system.

The first stage in setting up the Wonderwall firewall, is creating the Wonderwall
configuration file iiopproxy.cf. This file is read by the firewall server iioproxy
during startup. Subsequent changes made to iiopproxy.cf affects new
clients—any existing client sessions are not affected by the changes.

The iiopproxy.cf file takes the format of a standard UNIX configuration file—
it is read line-by-line, anything between a ‘#’ (number sign) and the end of a line
is ignored as a comment, and entries can be continued onto the next line using
the ‘\’ (backslash) character. The configuration entries are also case-sensitive. A
sample configuration file can be found in “Example iiopproxy.cf File” on page 17.

It is convenient to divide the contents of the configuration file into four parts as
follows:

• Basic Settings.

• List of IORs.

• Access Control List.

• SSL security.

This appendix provides a complete description of all configuration settings.

O rb i x Wond e rw a l l A dm in i s t r a t o r ’ s G u i d e

 166

Basic Settings
activated-port-range lo hi

The TCP/IP port range (inclusive) that an internal server can use. The default
lower range is 1024, and the default upper bound is 65535. If you wish to tighten
security, you can restrict the port range to whatever is used in the Orbix
configuration files, for example, common.cfg files in the
IT_DAEMON_SERVER_BASE parameter.

alias-hosts {hostname} [{hostname2}...]

This configuration parameter allows multiple aliases for Wonderwall’s hostname
to be listed. If Wonderwall receives an invocation for an object on these hosts,
or receives a HTTP message directed for one of these hosts, it recognises it as
referring to itself. The default value is the real hostname (and any aliases it may
have in DNS).

allow-binary-principals boolean

If the value of boolean is on, then principals (usernames attached to incoming
IIOP requests) are sanitised by Wonderwall for server activation purposes, and
any non-username characters cause the principal to be replaced with the string
iiopproxy. Non-username characters are alphanumeric characters, plus the
characters _, -, +, =, . and ,.

domain dns - domain

The DNS domain name used for Wonderwall’s hostname should be specified
here.

hostname hostname

Specifies the hostname (or IP address) of the machine that Wonderwall is
running on. If this is specified on a machine with multiple IP interfaces,
Wonderwall binds to the interface with that hostname. If it is left unset, the
hostname is determined automatically.

App en d i x B

167

http-files directory

Sets the directory under which the Wonderwall proxy searches for files when
behaving as a HTTP server. The files are fetched in response to HTTP requests
incoming on the port specified by http-port. If this parameter is not set, no files
can be retrieved through the HTTP server (although HTTP tunnelling will still be
possible).

http-idiosyncrasy user-agent idiosyncrasy [...]

Unfortunately, the HTTP support built into the browser’s Java runtime is not
always bug-free. As a result, Wonderwall may need to be informed of bugs
present in certain versions.

The user-agent string indicates the value used by the Java runtime to identify that
particular browser, and is usually (but not always) in the format BrowserName/
version; for example, JDK/1.1. Simple glob-style pattern matching can be used
here, so JDK/* matches all versions of the JDK.

The idiosyncrasy parameters use the following keywords:

http-keepalive-timeout timeout

Specifies how long, in seconds, Wonderwall should wait for a new message to
arrive from a HTTP 1.1 connection before closing it down, requiring the client
to reconnect. The default value is 600 seconds.

http-port httpport

Sets the port number which Wonderwall uses to receive HTTP requests and
HTTP tunnelled IIOP messages. Typically, this port is set to the standard value
80. If it is set to 0, the HTTP server capability of Wonderwall is disabled.

Keyword Description

none No idiosyncrasies; full HTTP 1.0 or HTTP 1.1
compliance.

newline-after-post Expect to see a redundant newline after every HTTP
post operation. Most JDK 1.0.2-derived Java runtimes
do this.

no-keepalive Inhibit the use of HTTP Keep-Alive even if the
browser says it supports it.

O rb i x Wond e rw a l l A dm in i s t r a t o r ’ s G u i d e

 168

iiop-idle-timeout timeout

Specifies how long, in seconds, Wonderwall should wait for a new message to
arrive from a client connection before closing it down, requiring the client to
reconnect. The default value is 3 hours.

listener-sleep-timeout time_value

Specifies a quiescent period for the main listener thread, during which time
Wonderwall does not accept new incoming connections. This is a tuning
parameter for Wonderwall when operating under heavy loads and it provides
Wonderwall with the facility to reclaim released resources from previous
connections which have now terminated. The time value is specified in
milliseconds; default zero milliseconds, with the recommended value between
50-100 milliseconds when used.

log [requests] [replies] [request-bodies] [reply-bodies]

Specifies what additional messages should be sent to the system log file.

log-to-syslog [on|off]

Specifies whether the UNIX syslog(3) daemon should receive a copy of any log
messages produced by the Wonderwall. This is enabled by default. (This is
applicable only on UNIX.)

log-facility facility

Specifies the name of the UNIX syslog(3) facility which Wonderwall should log
its output to. The facility parameter should be set to the name of the facility
without the leading LOG_ prefix, in lowercase. For example, to cause
Wonderwall to log using the LOG_DAEMON facility, use log-facility daemon
(This is applicable only on UNIX.)

Flag Information logged

requests Headers of messages sent by client.

replies Headers of messages sent by server.

request-bodies Contents of all request messages.

reply-bodies Contents of all reply messages.

App en d i x B

169

masquerade-as-host {hostname}

If this entry is present, Wonderwall will masquerade as a different hostname.
This can be useful if NAT firewalls are used to protect Wonderwall itself. The
default setting involves using the real hostname.

orbixd-iiop-port port

If you are using Wonderwall with Orbix C++ or Orbix Java servers on the
internal network, and you wish to use the bind form of object-specifier in
the Wonderwall configuration file, then it is necessary to specify this port. The
port is set to the port which the Orbix daemon uses, on the internal network,
to receive IIOP messages. (In the default configuration, this port is 1571. It can
also be set explicitly via the environment variable s, in the environment in which
the Orbix daemon process runs.)

ping-as-user {username}

This parameter allows a username to be specified so that Wonderwall pings any
activated servers as a different user. The default value is the username that
Wonderwall is running under.

ping-during-bind [on|off]

This configuration parameter determines whether Wonderwall should ping the
Orbix C++/Orbix Java servers listed in its configuration file—when the bind
object syntax is used. If this value is switched off, Wonderwall reads its
configuration file more quickly. The default value is on.

port port-number

This allows you to specify which port-number Wonderwall listens on. This
value can also be specified using the -port command-line parameter when
starting the proxy.

pseudo-orbixd boolean

This option only needs to be set if Wonderwall receives messages from certain
older versions of Orbix Java clients. It specifies whether Wonderwall should
emulate specific aspects of an Orbix daemon (orbixd) in order to allow clients
to connect to Wonderwall-protected servers using bind(). The value of
boolean can be set to either on or off. The default setting is off.

O rb i x Wond e rw a l l A dm in i s t r a t o r ’ s G u i d e

 170

server-open-timeout timeout

Specifies how long, in seconds, Wonderwall should retry connecting to a server
which has been activated by its orbixd. The default value is 15 seconds.

strict-host-matching boolean

If the value of boolean is on, hostnames are matched using string comparisons
(this is the default). If it is off, hostnames are matched using DNS name
resolution.

List of IORs
allow-unlisted-objects boolean

If the value of boolean is on, it allows Wonderwall to dynamically update, and
add to its internal table of known objects. For example, if a client attempts to
connect to an unknown IOR (not registered using object, server or
persistent-object), Wonderwall will automatically add this IOR to its internal
list of known objects, assuming boolean is on. The default value of boolean is
off.

Note: Just because an IOR is automatically added to this list, does not mean that
the client is necessarily granted access. All messages must still be filtered
by the Access Control List, in the usual way.

object tag [wild wildcardflags] object-specifier

This entry is used to define a tag which is used throughout the configuration file
to refer to an object or group of objects. An entry is made in a runtime table
which records all objects known to Wonderwall.

At present Wonderwall supports four different forms of object-specifier:

• An object-specifier beginning with the keyword “bind” is used to specify
the object using a pseudo-bind syntax. This closely resembles the syntax
of _bind() as used by a regular Orbix Java client. For further information,
refer to “Object Specifiers” on page 14.

App en d i x B

171

• An object-specifier beginning with the characters “IOR:” introduces an
IOR coded as a standard CORBA stringified object reference. For further
information, refer to “IOR Format” on page 26.

• An object-specifier beginning with the characters “RXR:” introduces an
IOR encoded using the readable-hex-representation. This is explained in
detail in “IOR Format” on page 26.

• An object-specifier that begins with a “/” is assumed to be the absolute
pathname of a file where the IOR is stored (either in “IOR:” or “RXR:”
format).

If the wild parameter is specified, any attempts to match this object with a
request from the Internet ignores that aspect of the object key. Since this
requires examination of the object key, it is not interoperable and depends on
support in the Wonderwall code for the server ORB vendor’s object key
format. Currently, Orbix C++ and Orbix Java are supported. The supported
parameters for wild are as follows:

The object entry is suitable for listing an IOR whether the respective server is
activated or persistent. When an object is listed as an object entry,
Wonderwall uses the facilities provided by the IIOP protocol to check the host
and port where the server is currently located. Wonderwall uses this new host
and port information to forward messages to the server.

This ensures that Wonderwall functions correctly with activated servers. In
Orbix, for example, such servers are started automatically and have host and
port assigned by the Orbix daemon process. When Wonderwall contacts the
daemon via IIOP, it will be told the current host and port of the particular
server.

Wildcard flag Effect

host Ignore the hostname used in the object key.

server Ignore the server name used in the object key.

marker Ignore the object marker used in the object key.

ifmarker Ignore the interface marker used in the object key.

O rb i x Wond e rw a l l A dm in i s t r a t o r ’ s G u i d e

 172

persistent-object symbol [wildwildcardflags] ior

The persistent-object entry can only be used when the object is in a
persistent server. It is almost identical to the object entry. The only difference
is that, in this case, Wonderwall assumes the listed ior specifies a direct
connection to the server. A precautionary message, to determine the actual host
and port, is not sent in advance of the real request. The advantage is a gain in
efficiency when used in conjunction with persistent servers.

App en d i x B

173

server tag object-specifier

This is exactly equivalent to the entry:

object tag wild marker ifmarker object-specifier

It generates a tag which can be used to refer to all of the objects common to a
particular server (hence the name). It is provided as a standalone keyword
because it is useful for tagging Factory objects (refer to “Factory Objects” on
page 18).

client-transformer object-specifier

Specifies the object which implements an external client transformer for
Wonderwall. A client transformer is not used unless this line is present in the
configuration file (refer to “Configuration” on page 155).

server-transformer object-specifier

Specifies the object which implements an external server transformer for
Wonderwall. A server transformer is not used unless this line is present in the
configuration file (refer to “Configuration” on page 155).

use-ipaddr-in-iors boolean

Specifies whether IORs created by Wonderwall should contain the host's IP
address or its hostname. This should be set to true if the hostname Wonderwall
is running on is not resolvable using DNS to hosts outside Wonderwall's
domain.

Access Control List
The most important part of the configuration is the Access Control List (ACL).
This specifies which operations can be accessed on which objects, along with
extra conditions and flags.

The ACL is read from the first rule encountered to the last, and is processed by
the ACL testing code in that order. This means that you can specify broad filters
first, to remove potentially dangerous or unknown features such as Service
Contexts, and then go on to allow specific operations on objects after that.

There is no limit to the number of rules in the ACL. If no rules match the
message, it is blocked.

O rb i x Wond e rw a l l A dm in i s t r a t o r ’ s G u i d e

 174

Each line is treated as one rule. Longer rules can be continued onto consecutive
lines using the ‘\’ (backslash) character.

allow [keyword [parameter]] [keyword [parameter]] ...

This entry allows any request which matches the given rule. Each specified
keyword on the line must correspond to the rule to match (sometimes a
keyword also has an associated parameter). If a keyword is not specified on a
rule line, that aspect of the message is ignored for purposes of the ACL match.

deny [keyword [parameter]] [keyword [parameter]] ...

This entry denies any request which matches the given rule. Each specified
keyword on the line must correspond to the rule to match (sometimes a
keyword also has an associated parameter). If a keyword is not specified on a
rule line, that aspect of the message is ignored for purposes of the ACL match.

Keywords Used in Rules

The following keywords only appear as parameters to the allow or deny rules:

...ipaddr ipaddress[/mask]

Match if the client IP address equals the given ipaddress. The optional mask
parameter specifies a bit-wise mask. Only these bits are used to compare the IP
addresses.

Some common masks are:

255.255.255.255 all bits (this is the default).

255.255.255.0 class C bits.

255.255.0.0 class B bits.

255.0.0.0 class A bits.

Note: This option should not be relied upon to provide security since the client
IP address can be faked.

App en d i x B

175

...attachclientcert

This keyword is used only to filter clients that connect to Wonderwall using
Secure Sockets Layer (SSL) security. If this keyword appears in a rule,
Wonderwall passes a secure client’s certificate chain to the server. Refer to “SSL
Configuration Options” on page 178 for more information.

...log

If this keyword appears in a rule which successfully matches, the message header
details are written to the system log. This would be redundant if you had log
requests set in your configuration file as the header would be logged anyway.

...msgtype type

Match on message types. This type can be one of the following: Request, Reply,
CancelRequest, LocateRequest, LocateReply, CloseConnection or
MessageError. Refer to “Internet Inter-ORB Protocol (IIOP)” on page 32 for
more details on IIOP message types.

...object symbol

Match if the object being accessed is identified by symbol (this rule only applies
to incoming Requests). The symbol must have already been declared in an earlier
object or persistent-object entry.

...object-host hostname

Match if the object being accessed is located on the host identified by hostname.

...op operation

Match if the operation in a Request is the same as the operation string
operation (this rule only applies to incoming requests).

...principal p

Match if the principal sending a request message is the same as the readable-
hex-representation byte string p (refer to “IIOP Message Formats” on page 33
for further information on this format).

This parameter does not provide any security as principals are very easy to forge.

O rb i x Wond e rw a l l A dm in i s t r a t o r ’ s G u i d e

 176

...[not] secureclient

If the keyword secureclient appears in a rule, Wonderwall rejects clients that
do not connect using SSL security. If not secureclient is specified,
Wonderwall rejects clients that connect using SSL.

...servicecontexts sclist

Match if the incoming request uses one or more IOP Service Contexts and if one
or more of the Service Context IDs used is listed in the sclist parameter. IOP
Service Contexts are a mechanism which, according to the IIOP specification,
allows “service-specific context information” to be passed along with requests
and replies. In keeping with the firewall philosophy of “anything not expressly
permitted is denied”, it is suggested that these are filtered out until a future stage
when they become necessary at which point each can be enabled on a specific
basis.

The format of the sclist parameter is as follows:

• Each Context ID is represented as a positive integer. These integer IDs
are assigned by the Object Management Group to uniquely denote a
particular type of Service Context.

• Multiple Context IDs can be listed, separated by ‘,’ (comma) characters.

• A range of Context IDs can be matched by listing the start ID, a ‘-’ (dash)
character, and the end ID.

• The string all is used to match one or more Context IDs, and the string
max is used to denote the upper bound of the Context ID range.

For example:

deny servicecontexts 1-3,5,7,9-20
deny servicecontexts 0-5,7-max # all except 6
deny servicecontexts all # one or more Service Contexts

Note: If a rule allowing specific service contexts is followed by a wildcard deny
rule, the effect is non-intuitive. A request containing both permitted and
denied service contexts would be forwarded, as it would hit the allow
rule first. Caution is advised here.

App en d i x B

177

...unlisted-object

Match if the object being accessed is an unlisted object. That is, if it has been
dynamically specified as a target by the client-side ORB.

...proxify

Proxify the returned object reference produced by this operation.

SSL Security
OrbixSSL enables secure communications between Orbix C++, or Orbix Java,
applications using Secure Sockets Layer (SSL) security. SSL is a transport layer
security protocol layered between application protocols and TCP/IP. OrbixSSL
applications communicate using the IIOP layered above SSL.

SSL provides authentication, privacy, and integrity for communications across
TCP/IP connections. Authentication allows an application to verify the identity of
another application with which it communicates. Privacy ensures that data
transmitted between applications can not be eavesdropped on or understood by
an intermediary. Integrity allows applications to detect whether data was
modified during transmission.

SSL uses Rivest Shamir Adleman (RSA) public key cryptography for
authentication. In public key cryptography, each application has an associated
public key and private key. Data encrypted with the public key can be decrypted
only with the private key. Data encrypted with the private key can be decrypted
only with the public key.

Public key cryptography allows an application to prove its identity by encoding
data with its private key. As no other application has access to this key, the
encoded data must derive from the true application. Any application can confirm
the content of the encoded data by decoding it with the application’s public key.

Consider the example of two applications, a client and a server. The client
connects to the server and wishes to send some confidential data. Before
sending application data, the client must ensure that it is connected to the
required server and not to an impostor.

O rb i x Wond e rw a l l A dm in i s t r a t o r ’ s G u i d e

 178

When the client connects to the server, it confirms the server identity using the
SSL handshake protocol. A simplified explanation of how the client executes this
handshake in order to authenticate the server is as follows:

1. The client initiates the SSL handshake by sending the initial SSL handshake
message to the server.

2. The server responds by sending its certificate to the client. This certificate
verifies the server's identity and contains its public key.

3. The client extracts the public key from the certificate and encrypts a
symmetric encryption algorithm session key with the extracted public
key.

4. The server uses its private key to decrypt the encrypted session key
which it uses to encrypt and decrypt application data passing to and from
the client. The client also uses the shared session key to encrypt and
decrypt messages passing to and from the server.

For a complete description of the SSL handshake, refer to the Netscape
Communications SSL V3.0 specification.

Once a connection has been established between two OrbixSSL programs,
subsequent communications are encrypted using a symmetric cryptographic
algorithm to ensure privacy. A message authentication code (MAC) is applied to
each message to ensure its integrity.

SSL-enabled Wonderwall allows to establish secure connections with
Wonderwall. Wonderwall can also establish secure connections with servers on
the internal network. Wonderwall also provides support for HTTP tunnelling
through secure HTTPS connections.

SSL Configuration Options

Wonderwall supports the following configuration options:

ssl-port portnumber

This configuration parameter specifies the port number for incoming IIOP/SSL
messages.

App en d i x B

179

https-port portnumber

This configuration parameter specifies the port number for incoming HTTPS
messages.

ssl-library library

To use Wonderwall in SSL-enabled mode, you must set this parameter to the
fully qualified file name of the Wonderwall SSL library. On UNIX, this library is
called libiiopproxy_ssl. On Windows, the file name depends on the version
of Wonderwall you are using, for example the Wonderwall 3.0.1 library is
iiopproxy_301.dll.

ssl-cert-file filename

When a client connects to Wonderwall using SSL, Wonderwall must prove its
identity to the client. To do this, Wonderwall must have an associated X.509
certificate. This configuration variable specifies the fully qualified file name of
Wonderwall’s certificate file. Refer to the OrbixSSL documentation for more
information about certificates.

ssl-key-file filename

In addition to an X.509 certificate, Wonderwall must have an associated private
key. This key is stored in encrypted privacy enhanced mail (PEM) format and can
be appended to the Wonderwall certificate file or stored in a separate file. If the
key is stored in a separate file, use this parameter to specify the fully qualified file
name.

ssl-ca-file filename

When Wonderwall connects to a secure server on the internal network, it must
authenticate the server. During authentication, Wonderwall receives a
certificate from the server. It then checks that this certificate is signed by a
trusted certificate authority (CA). To do this, Wonderwall must have access to a
file that contains the CA certificate. Use this variable to specify the name of this
file.

ssl-ca-directory directory

Use this parameter to specify the directory in which the CA file is stored.

O rb i x Wond e rw a l l A dm in i s t r a t o r ’ s G u i d e

 180

ssl-authenticate-clients boolean

This boolean variable defaults to on, to indicate that Wonderwall should check
the identity of clients that contact it. For client authentication to succeed, the
client must be able to supply a certificate signed by a CA in the Wonderwall CA
file. When client authentication is enabled, zero-length certificate chains are
rejected unless you set ssl-allow-empty-chains.

The variable ssl-authenticate-clients must be set to on if Wonderwall
passes client certificates to servers. Refer to the ACL keyword
attachcertchain for more information.

ssl-invocation-policy policy

This variable specifies what types of communications Wonderwall supports. It
can take a combination of the following values:

ssl-session-caching cache_option

This variable specifies whether or not Wonderwall uses SSL session caching to
reuse information from previous connections and optimize reconnections. It
take a combination of the following values:

secure-accept Wonderwall accepts connections from secure clients.

insecure-accept Wonderwall accepts connections from insecure
clients.

secure-connect Wonderwall can connect to secure servers.

insecure-connect Wonderwall can connect to insecure servers. If you
set both secure-connect and insecure-connect,
Wonderwall attempts to connect to a server securely
first. If this fails, it connects insecurely.

client Wonderwall caches sessions that are created when secure clients
connect.

server Wonderwall caches sessions that are created when it connects to
secure servers.

off Wonderwall does not use session caching.

App en d i x B

181

ssl-cache-flush-rate rate

When Wonderwall caches sessions, it stores the sessions in an internal table. To
stop this table from growing indefinitely, Wonderwall flushes it occasionally.
Wonderwall maintains a counter that it increments by one each time it
establishes a secure connection with a client or server. When this counter
reaches the value specified by rate, redundant information is flushed from the
table. The default value is 1000.

ssl-client-ciphers ciphersuites

This variable allows you to specify which ciphers should be used for SSL
encryption when communicating with clients. A cipher suite is a combination of
the following SSL settings:

• Specification of the key exchange algorithm.

RSA certificates are useful for key exchanges as RSA is a widely used
public-key algorithm that can be used for either encryption or digital
signing.

• Specification of the cipher to be used.

Permitted ciphers are taken from the following list: RC2, RC4, DES,
3DES_EDE, CBC.

• Specification of the hash algorithm to be used.

Permitted hashes include MD5 and SHA.

The variable ssl-client-ciphers takes a list of ciphersuites. The available
values are:

SSLV3_RSA_WITH_RC4_128_SHA
SSLV3_RSA_WITH_RC4_128_MD5
SSLV3_RSA_WITH_3DES_EDE_CBC_SHA
SSLV3_RSA_WITH_DES_CBC_SHA
SSLV3_RSA_EXPORT_WITH_DES40_CBC_SHA
SSLV3_RSA_EXPORT_WITH_RC2_CBC_40_MD5
SSLV3_RSA_EXPORT_WITH_RC4_40_MD5
SSLV3_EDH_RSA_DES_CBC_SHA
SSLV3_EDH_DSS_DES_CBC_SHA
SSLV3_EXP_EDH_RSA_DES_CBC
SSLV3_EXP_EDH_DSS_DES_CBC_SHA
SSLV3_EDH_RSA_DES_CBC3_SHA

O rb i x Wond e rw a l l A dm in i s t r a t o r ’ s G u i d e

 182

SSLV3_EDH_DSS_DES_CBC3_SHA
SSLV3_RSA_WITH_NULL_MD5
SSLV3_RSA_WITH_NULL_SHA

Wonderwall attempts to use the ciphersuites in the order in which you specify
them. The default ciphers are:

SSLV3_RSA_WITH_RC4_128_SHA
SSLV3_RSA_WITH_RC4_128_MD5
SSLV3_RSA_WITH_3DES_EDE_CBC_SHA
SSLV3_RSA_WITH_DES_CBC_SHA
SSLV3_RSA_EXPORT_WITH_DES40_CBC_SHA
SSLV3_RSA_EXPORT_WITH_RC2_CBC_40_MD5
SSLV3_RSA_EXPORT_WITH_RC4_40_MD5

ssl-server-ciphers ciphersuites

This variable specifies the ciphersuites that should be used when connecting to
secure servers. The possible values are the same as those for
ssl-client-ciphers.

ssl-attach-client-cert boolean

If required, Wonderwall can pass a client’s certificate chain through to an
internal server. To do this, Wonderwall uses the IIOP service context
mechanism. The certificate chain is passed in a FORWARD_IDENTITY service
context in the first IIOP request sent to the server. An additional service
context may also be added for the purposes of padding.

To check the contents of the client certificate chain, a server programmer must
implement a suitable service context handler to extract the service context
information. The service context identifier for the FORWARD_IDENTITY context is
8, the identifier for the padding context is 0x49545F33.

ssl-allow-empty-chains boolean

When ssl-authenticate-clients is set, a connection attempt from a client
with an empty certificate chain is rejected. Setting ssl-allow-empty-chains to
on allows Wonderwall to accept such connections.

Appendix C
Firewall Installation on UNIX

In this configuration, it is assumed that the installer wants as much control as
possible over the Wonderwall setup.

To install Wonderwall:

• Copy the iiopproxy executable into whatever directory is used to store
the binaries of your firewall proxies.

• Copy the iiopproxy.cf configuration file into the /etc directory or
whatever directory you feel is appropriate.

• It is recommended that you create a directory to store the IORs used by
the configuration file.

For example, a sub-directory of the directory where the configuration file
is stored can be used:

/etc/iors

• Set up the starting mechanism for the Wonderwall process.

You can do this before editing the configuration file since the
configuration which comes with the distribution blocks all messages by
default.

• Decide whether to run the Wonderwall from inetd(8) or as a
standalone process.

For most purposes, running Wonderwall from inetd is sufficient, but if
you expect your cross-firewall IIOP usage to be particularly heavy, you
can run it standalone.

• Pick a port to run Wonderwall on.

For example, you can use the official Orbix daemon port 1570.
183

O rb i x Wond e rw a l l A dm in i s t r a t o r ’ s G u i d e
Setting Permissions
The IIOP proxy needs to be able to perform the following system interactions:

• It must be able to read its configuration file and any IORs specified
therein.

• If not running from inetd, it must be able to bind to the port.

The IIOP proxy does not need to be able to open or write to any area of the file
system, nor does it need to execute commands. On a normal UNIX system, the
standard user nobody should be appropriate for these purposes.

External IIOP clients need to be able to contact Wonderwall on port 1570/tcp
(or whatever port is used in the configuration file). They also need to be able to
open and use connections to the internal hosts named in the configuration file in
order to contact Orbix daemons and servers running on these hosts.

Note: If the persistent-object keyword is used throughout the configuration
file instead of the object keyword, the Orbix daemon does not need to
be accessible.

In order to resolve the names of client hosts, it is preferable for Wonderwall to
be able to contact external DNS servers (port 53/udp). However, if this is not
possible, the hostnames of connecting clients are not logged and no bad side
effects occur. Information from external DNS servers is not used in any
security-critical context.
 184

App en d i x C
Setting up the Proxy From inetd
To run the proxy from inetd:

• Add the following line to /etc/inetd.conf:

iiop stream tcp nowait nobody /usr/local/etc/
iiopproxy iiopproxy -inetd -config /etc/
iiopproxy.cf

Note: This line should not contain a line-break, there is no white space before
or after this line, and you may need to change the paths if the
Wonderwall binary and/or configuration file is installed in a different
location.

• Add the following line to /etc/services (the white space between iiop
and 1570 should be a tab):

iiop 1570/tcp

To cause inetd(8) to read its configuration again, find its process ID using ps
and kill -1 it. Do this on Solaris 2.x or other SVR4-based systems as follows:

% ps -ef | grep inetd
root 117 1 0 09:18:38 ? 0:00 /usr/sbin/inetd -s

The PID is the second argument.

% kill -1 117

Setting up the Proxy to Run Standalone
If you choose to run Wonderwall standalone, things are easier. Run the
iiopproxy binary and it starts listening for new connections on whatever port is
specified in the configuration file. In order to ensure it has started when the
machine boots, you need to add its invocation to the system boot scripts.
185

O rb i x Wond e rw a l l A dm in i s t r a t o r ’ s G u i d e
 186

Index
A
access control list 15, 165

keywords
allow 15
attachclientcert 175
deny 15
ipaddr 174
log 175
msgtype 175
object 175, 177
op 175
principal 175
secureclient 176
servicecontexts 176

rules
allow 174
deny 174

activated servers 166
allow, ACL rule 174
an OrbixWeb client 10
asymmetric cryptography 83
attachclientcert, ACL keyword 175
authentication 82

B
basic configuration and ports 13
bastion hosts 2
bind 14, 170

C
CA 84

demonstration CAs 96
list file 99
specifying trusted CAs 99

callbacks 52
CancelRequest message 37
CDR 32
certificates 83, 84

demonstration 96
Certification Authority. See CA
CloseConnection message 38
configuration 165

access control list 15, 173
basic configuration, ports 13
basic settings 166
object-specifiers 14
rules

http-port 167
port 169
pseudo-orbixd 169

tool 25
configuration file 12, 97
configuration parameters, OrbixWeb 61
configuration tool 25

access control list window 134
edit as text window 139
iiopproxy.cf file 130
invoking 130
logging and timeouts window 138
object specifier window 132
ports and hostnames window 136
startup window 131

configuring 98
connection establishment 46
cryptography

asymmetric 83
RSA. See RSA cryptography
symmetric 83, 85

D
daemon, Orbix 103
Data Encryption Standard 85
demonstration CAs 96
demonstration certificates 96
deny, ACL rule 174
DES 85

E
encrypted link using integral transformer 148
encrypted link using Wonderwall 149
example application 8
187

O rb i x Wonde rwa l l A dm i n i s t r a t o r ’ s G u i d e
F
factory objects 18, 50

IORs 50
proxify parameter 51

features of Wonderwall 3
file, configuration 97
filtering 2
firewall installation

on UNIX 183
setting permissions 184
setting proxy from inetd 185
setting proxy standalone 185

firewall proxy 58
firewalls 2

G
getting started 7, 18

an OrbixWeb client 10
example application 8
HTTP server 20
IDL specification 9
logging output 22
the Grid application 8

GIOP 2
GUI configuration tool 25

access control list window 134
edit as text window 139
iiopproxy.cf file 130
invokingl 130
logging and timeouts window 138
object specifier window 132
ports and hostnames window 136
start up window 131

H
handshake, SSL 83, 88
hashes 181
HTTP server 20
HTTP tunnelling 62
http-port, configuration rule 167
https-port, SSL configuration option 179

I
IDL specification 9
IIOP 2, 5, 25, 32, 86

GIOP message and header 33
message formats 33

CancelRequest 37
CloseConnection 38
 188
LocateReply 38
LocateRequest 37
MessageError 38
Reply 36

Request message 34
request message header 35

IIOP connection through Wonderwall 47
iiopproxy 6

syntax 157
the process 157
using 159

iiopproxy.cf 6, 12, 165
iiopproxy.cf file 17
implementing transformers 153
inetd 185
init() 100
initializing SSL support 100
integrity 85
International Telecommunications Union 84
Internet Inter-ORB Protocol. See IIOP
internet security 1
interoperability 129

non-Orbix client 44
non-Orbix server 45
object references 129
proxification 41

intranet request-router 56
IOR 5, 14, 170

creating 163
editing 162
format 26
format and profile 27
Orbix/OrbixWeb object key format 29
representing 30
rules

object 170
persistent-object 172

viewing 162
wildcards 170

IOR format 26
IOR format and profile 27
IORs 50
iortool

syntax 160
the utility 160
using 162

ipaddr, ACL keyword 174
IT_CA_LIST_FILE 99
IT_CERTIFICATE_FILE 97
IT_CERTIFICATE_PATH 97

I n d e x
IT_PRIVATEKEY_FILE 103
IT_SSL 100

init() 100
setPrivateKeyPassword() 102

IT_SSL.h 100
ITU 84

K
key exchange algorithm 181
keys

private 83, 101
public 83

keys, private 103
keywords

allow 15
attachclientcert 175
deny 15
ipaddr 174
log 175
msgtype 175
object 175, 177
op 175
principal 175
secureclient 176
servicecontexts 176

L
LocateReply message 38
LocateRequest message 37
log analysis viewer

filters 145
iiopproxy server 39
invoking 142
loaded log file 144
startup window 142
timestamps 146

log, ACL keyword 175
logging output 22

M
MAC 85
message authentication code 85
message formats 33

CancelRequest 37
CloseConnection 38
LocateReply 38
LocateRequest 37
MessageError 38
Reply 36
Request 34
MessageError message 38
msgtype, ACL keyword 175

N
non-Orbix client 44
non-Orbix server 45
normal IIOP connection 46

O
object factories 48
object keys 5, 26
object references 129
object, ACL keyword 175, 177
object, IOR rule 170
object-specifiers 14

bind 14, 170
IOR 14, 170
RXR 14, 170

op, ACL keyword 175
Orbix daemon 103
OrbixNames 98, 103
orbixssl.cfg 97
OrbixWeb 147

configuration parameters 61
configuring 61, 62

P
PEM 101
persistent-object, IOR rule 172
port, configuration rule 169
principal, ACL keyword 175
principals 5
privacy 85
private keys 83, 101, 103
profile_count 26
profiles 26
protocol, SSL handshake 83
protocol_tag 26
proxification process 41
proxify parameter 51
proxy servers 2
pseudo-orbixd, configuration rule 169
public keys 83

R
RC4 85
Reply message 5, 36
representing an IOR 30
189

O rb i x Wonde rwa l l A dm i n i s t r a t o r ’ s G u i d e
Request message 5, 34
Request messages 2
Rivest Shamir Adleman cryptography. See RSA

cryptography
RSA certificates 181
RSA cryptography 82
RXR 14, 170
RXR format 30, 162

S
Secure Sockets Layer. See SSL
secureclient, ACL keyword 176
security 2
service contexts 5
servicecontexts, ACL keyword 176
setPrivateKeyPassword() 102
SSL 137, 165, 175, 176, 177–182

authentication 82
configuration options

https-port 179
ssl-allow-empty-chains 182
ssl-attach-client-cert 182
ssl-authenticate-clients 180
ssl-cache-flush-rate 181
ssl-ca-directory 179
ssl-ca-file 179
ssl-cert-file 179
ssl-client-ciphers 181
ssl-invocation-policy 180
ssl-key-file 179
ssl-library 179
ssl-port 178
ssl-server-ciphers 182
ssl-session-caching 180

handshake 83, 88
initializing 100
integrity 85
privacy 85

ssl-allow-empty-chains, SSL configuration
option 182

ssl-attach-client-cert, SSL configuration
option 182

ssl-authenticate-clients, SSL configuration
option 180

ssl-cache-flush-rate, SSL configuration option 181
ssl-ca-directory, SSL configuration option 179
ssl-ca-file, SSL configuration option 179
ssl-cert-file, SSL configuration option 179
ssl-client-ciphers, SSL configuration option 181
ssl-invocation-policy, SSL configuration
 190
option 180
ssl-key-file, SSL configuration option 179
ssl-library, SSL configuration option 179
ssl-port, SSL configuration option 178
ssl-server-ciphers, SSL configuration option 182
ssl-session-caching, SSL configuration option 180
starting Wonderwall 7
symmetric cryptography 85

T
TCP/IP 86
the Grid application 8
transformer architecture 148
transformer IDL 151
transformers 141

architecture 148
IDL 151
implementing 153
using 151

trusted CAs 99
type_id 26

U
using transformers 151
using Wonderwall and OrbixWeb 147

W
wildcards 48
wildcards, IOR rule 170
Wonderwall

an OrbixWeb client 10
configuration 165

access control list 15, 173
basic configuration, ports 13
basic settings 166
example iiopproxy.cf file 17
object-specifiers 14

configuration file 12
configuration tool 25
connection establishment 46
establishing a connection via 47
example application 8
example iiopproxy.cf file 17
factory objects 18
features 3
firewall 2
getting started 7

factory objects 18
HTTP server 20

I n d e x
logging output 22
IDL specification 9
implementing transformers 153
interoperability 129
log analysis viewer 39
logging output 22
normal IIOP connection 46
proxification 41
the Grid application 8
transformer architecture 148
transformer IDL 151
transformers 141
using 147
using transformers 151
using Wonderwall

as a firewall proxy 58
as an Intranet request-router 56

using Wonderwall and OrbixWeb 147

X
X.509 84

certificates. See certificates
191

O rb i x Wond e rw a l l A dm in i s t r a t o r ’ s G u i d e
 192

	Preface vii
	Chapter 1 An Introduction to Wonderwall 1
	Chapter 2 Getting Started with Wonderwall 7
	Chapter 3 IORs and IIOP 25
	Chapter 4 Interoperability and Wonderwall Operational Details 39
	Chapter 5 Using Wonderwall with Orbix C++ and Orbix Java 55
	Chapter 6 SSL Enabled Wonderwall: Operational Details 81
	Chapter 7 The Wonderwall Configuration Tool 129
	Chapter 8 The Wonderwall Log Analysis Viewer 141
	Chapter 9 Transformers 147
	Appendix A iiopproxy and iortool 157
	Appendix B Configuration 165
	Appendix C Firewall Installation on UNIX 183
	Index 187

	Preface
	Audience
	Organisation of this Guide
	Chapter�1, “An Introduction to Wonderwall”
	Chapter�2, “Getting Started with Wonderwall”
	Chapter�3, “IORs and IIOP”
	Chapter�4 “Interoperability and Wonderwall Operational Details”
	Chapter�5 “Using Wonderwall with Orbix C++ and Orbix Java”
	Chapter�6, “SSL Enabled Wonderwall: Operational Details”
	Chapter�7, “The Wonderwall Configuration Tool”
	Chapter�8, “The Wonderwall Log Analysis Viewer”
	Chapter�9, “Transformers”
	Appendix�A, “iiopproxy and iortool”
	Appendix�B, “Configuration”
	Appendix�C, “Firewall Installation on UNIX”

	Document Conventions
	Constant width
	Constant width words or characters represent source code or system values you must use literally,...
	Italic
	Italic words in normal text represent emphasis and new terms.
	Italic words or characters in code and commands represent variable values you must supply, such a...
	< >
	Some command examples use angle brackets to represent variable values you must supply. For example,
	<Wonderwall location>

	Horizontal or vertical ellipses in format and syntax descriptions indicate that material has been...
	[]
	Brackets enclose optional items in format and syntax descriptions.
	{ }
	Braces enclose a list from which you must choose an item in format and syntax descriptions.
	|
	A vertical bar separates items in a list of choices enclosed in { } (braces) in format and syntax...

	1
	An Introduction to Wonderwall
	Wonderwall, developed according to the firewall model, addresses security issues arising from usi...
	Internet Security Overview
	Wonderwall and the Firewall
	Wonderwall Features
	Wonderwall and the IIOP Protocol

	2
	Getting Started with Wonderwall
	This chapter introduces basic security concepts by describing how to set up and configure Wonderw...
	To achieve this, we define an IDL interface implement a server using Orbix, and develop an Orbix ...
	The sample Orbix Java client developed talks to an Orbix Java or Orbix C++ server. An example con...
	Versions of the client application described in this chapter are located in the grid demonstratio...
	Wonderwall is also fully interoperable. Issues associated with interoperability are discussed in ...

	The Grid Application
	To illustrate Wonderwall in operation, a simple grid example is considered. This example introduc...
	Figure 2.1: The Grid Application

	The IDL Specification
	The first step in writing the grid application is to define the interface to the application obje...
	This defines the interface for a two-dimensional grid of long integers whose size is given by the...
	The details of implementing a grid object need not be considered here. It is assumed that there i...

	The Orbix Java Client
	Once the grid interface has been implemented, an Orbix Java client application can be written to ...
	These concepts are illustrated in the following code sample. The Orbix _bind() call is used to co...
	The code is explained as follows:
	In order for the client to interact with a target object, it must first have an object reference ...
	The _bind() call is used in this instance to obtain the object reference of the target object. Th...
	From the client perspective in a proxy scenario, the Wonderwall host is the target host for the s...
	The more standard way of configuring such proxified environments is, to have a proxified object r...
	For non-Orbix Java clients or if, for some reason _bind() is not used, it is necessary to underst...
	Orbix Java also supports a transparent Wonderwall connection mechanism using the IT_IIOP_PROXY_PR...

	The Configuration File
	Each installation of Wonderwall includes a configuration file that allows you to specify how appl...
	Creating the Wonderwall configuration file iiopproxy.cf is the first stage in setting up the fire...
	For the grid example, a sample Wonderwall configuration file is detailed—refer to “Example iioppr...
	A brief explanation for each line in each section is given. Full explanations of fields, however,...
	Basic Configuration and Ports
	In this section of the “Example iiopproxy.cf File” on page�16, lines beginning with a ‘#’ charact...
	Line
	Explanation
	port 1570
	This port specifies that Wonderwall listens for requests on TCP port 1570.
	orbixd-iiop-port 1571
	This port refers to the port where the Orbix daemon listens for IIOP messages on the internal net...
	domain your.domain.com
	This entry gives the DNS domain name of the host where Wonderwall is running.
	log requests replies
	This entry tells Wonderwall to log all IIOP request and reply messages.
	http-port and http-files
	These entries are used to configure the optional HTTP server capability of Wonderwall. Refer to “...

	Object Specifiers
	The next section of the “Example iiopproxy.cf File” on page�16 lists all of the objects that migh...
	This entry declares a tag which is used to refer to the specified object throughout the configura...
	At present, Wonderwall supports four different forms of object-specifier as follows:
	Object-specifier
	Definition
	bind
	An object-specifier beginning with the keyword "bind" is used to specify the object using a pseud...
	IOR:
	An object-specifier that begins with the characters "IOR:" introduces an IOR coded as a standard ...
	RXR:
	An object-specifier that begins with the characters "RXR:" introduces an IOR encoded using the re...
	/
	An object-specifier that begins with a "/" or "\" is assumed to be the absolute pathname of a fil...

	All of these forms of object-specifier are explained in detail in “Representations of an IOR” on ...
	The bind format is the simplest specifier to use. This format requires that Wonderwall is able to...
	The pseudo bind function has a similar format to _bind in the Orbix Java client. This example spe...
	The last entry of this section, allow-unlisted-objects on, gives you a powerful mechanism for ext...
	In some high security networks, the administrator can switch this option to off.

	Access Control
	Access control rules are applied to the filtered IIOP requests and they determine whether that re...
	In the example configuration file, iiopproxy.cf shown in Figure x.x, access control rules are spe...
	The first rule given here is deny servicecontexts *. A service context is a mechanism which allow...
	The next few rules have a form similar to the following:
	This states that the request is allowed if it is to be invoked on object grid_1 and the operation...
	The rules applying to the object grid_2 are specified in a slightly different way, as follows:
	This stipulates that if the request is to invoke on object grid_2 and the IP address of the invok...
	The last line of the Access Control List is as follows:
	This specifies that the operation set is allowed on object grid_2 when the host has an IP address...
	It is important to understand how Wonderwall parses the Access Control List. It starts at the beg...
	A non-intuitive side effect of this algorithm is that it is permissible to have contradictory rul...

	Example iiopproxy.cf File
	##

	Factory Objects
	One of the interesting features of CORBA is that it allows you to pass back and forth object refe...
	Consider the following example of a Factory Interface:
	This particular interface, because it returns an Orbix marker instead of an Interoperable Object ...
	The existence of Factory Objects poses special problems for the Wonderwall administrator. Object ...
	Nevertheless, there are compelling reasons for making use of both Factory and Finder objects. Con...
	Assume that there is a given Factory Object, such as GridFactory, which needs to be used through ...
	Wonderwall provides the following form of entry in the configuration file for specifying Factories:
	The server keyword is used to define a tag which refers to all of the objects on a particular ser...
	The tag gridFactory can now be used to refer to all objects on the FactorySrv server, irrespectiv...
	The operation _get_height does not appear in the interface GridFactory, only in interface grid. T...

	HTTP Server
	The Wonderwall proxy normally listens for all IIOP messages on a single dedicated port. It monito...
	However, an IIOP port is not yet a standard feature of most firewalls. Until this port becomes es...
	This approach requires a HTTP server. A HTTP server is required to recognise that some HTTP messa...
	This functionality of Wonderwall is illustrated in Figure�2.2 on page�20. The process iiopproxy i...
	Figure 2.2: Internal Architecture of the Wonderwall Proxy Server

	When iiopproxy listens on the HTTP port, it functions as a full-function HTTP server. Any normal ...
	It does not matter to the gateway whether an IIOP message arrives through the dedicated port or b...
	The configuration of the HTTP server only requires two parameters to be set in the configuration ...
	The http-port is used to set the port where the iiopproxy listens for HTTP requests. The keyword ...
	If you specify http-port 0, then HTTP functionality is not enabled and iiopproxy listens only on ...

	Logging Output
	The log from the Wonderwall server iiopproxy is sent by default to the standard output. Typically...
	The logged output, when an IIOP message is forwarded, generally takes the following format:
	Consider a sample log output generated by a client invoking on the grid via Wonderwall:
	The logging facility also allows the full request and reply bodies to be logged. The rules for th...

	3
	IORs and IIOP
	Wonderwall provides firewall security for applications that communicate using the IIOP protocol. ...
	The following issues are addressed in this chapter:
	In terms of security implications for the client side, IIOP is not another Java. It does not down...
	The server, on the other hand, is in need of some protection because it allows clients to remotel...

	IOR Format
	To identify objects in a distributed object system, CORBA uses the concept of an object reference...
	The notion of an object reference is an abstract one. To the application CORBA programmer it can ...
	However, as part of the infrastructure for an interoperability protocol, CORBA also specifies a u...
	The information encoded in an IOR (as used in conjunction with the TCP/IP protocol) consists of t...
	Figure�3.1 outlines the format of an IOR in great detail giving a schematic view of the informati...
	Figure 3.1: The Format of an Interoperable Object Reference and Profile

	The lower part of Figure�3.1 on page�27 shows the details contained in a single profile as follows:
	This outline of an IOR is only intended to be schematic although it does include all essential in...

	Orbix C++/Orbix Java Object Key Format
	Orbix C++ and Orbix Java object keys in IORs have the same format as Orbix- protocol object refer...
	These fields are defined as follows:
	The host name of the target object.
	The name of the target object’s server as registered in the Implementation Repository and also as...
	For a local object in a server, this is that server’s name (if known)—otherwise it is the process...
	The server name is known if the server is launched by Orbix, if the server is launched manually a...
	The object’s marker name. This is either chosen by the application or is a string of digits chose...
	The name of a host running an Interface Repository that stores the target object’s IDL definition...
	The string IR or IFR, depending on the version of Orbix C++ or Orbix Java in use.
	The target object’s interface. If called on a proxy, this cannot be the object’s true (most deriv...

	Representations of an IOR
	A portable representation of an IOR is a basic requirement. Typically, an IOR is created by the s...
	To assist publication of an IOR, it must be possible to convert it to a string format which is no...
	It consists of the characters IOR: followed by a series of hexadecimal numbers. Every byte of the...
	A typical IOR is not really as opaque as this. To make IORs more comprehensible, Wonderwall can u...
	The RXR format is provided in order to provide readable logging messages and a convenient way to ...
	The 4-character upper-case string RXR: must be present at the start. The <version> specifier is o...
	Each octet of the octet string is stored, in order, in the <string> specifier. Octets must be enc...
	The octets which must be encoded are as follows (the values are specified in hexadecimal, and ran...
	Octet value
	Special use
	%
	Used to signify octet-encoding.
	_
	Used to signify null-encoding.
	# ;
	Can be used as a comment.
	’ "(space)
	Can be used as a string delimiter.
	‘ [] | { } ~ \ ^
	Can be corrupted by gateways or shells.

	The encoding methods are as follows:
	Internet Inter-ORB Protocol (IIOP)
	The IIOP protocol is a special case of the General Inter-ORB Protocol (GIOP). The GIOP specificat...
	Many aspects of IIOP discussed in this section apply equally to any GIOP protocol, but no attempt...
	In general, the IIOP specification has three main elements:

	IIOP Message Formats
	The IIOP protocol defines seven types of message format. The messages allow clients to pass invoc...
	The two most important message formats are the Request and Reply message formats. An operation wh...
	The other five messages are all concerned with managing some aspect of the connection and their r...
	Typically, IIOP messages fit into one of three formats as follows:
	In all cases, a message begins with a GIOP header. The form of the GIOP message header is illustr...
	Figure 3.2: The Format of a GIOP Message and Message Header

	The fields in the header can be described as follows:
	This summarises all information which is sent to the GIOP header. For a formal specification of t...
	To use Wonderwall effectively, the following sections sufficiently describe the purpose and usage...

	Request Message
	A Request message allows a client application to invoke an operation on a remote server. The mess...
	The message consists of a Request header followed by a Request body. An outline of the Request he...
	Figure 3.3: The Format of a Request Message Header

	Figure�3.3 illustrates all of the information available in the Request header. The Request header...
	The Request also has an associated Request body. The body of the Request consists essentially of ...
	Because filtering done by Wonderwall is based entirely on the Request header, there is no need fo...

	Reply Message
	A Reply message is normally sent by a server in response to a client Request message. The Reply m...
	The Reply header does not pass as much information as a Request header and typically consists of ...
	The reply_status is used to toggle between a number of different Reply types so that a Reply mess...
	NO_EXCEPTION
	This is the normal Reply type. The body of this Reply type contains any return, out, or inout par...
	USER_EXCEPTION
	This status indicates that a user exception has been raised in the server. The body of this Reply...
	SYSTEM_EXCEPTION
	This status indicates that a system exception occurred. The body of the Reply indicates the kind ...
	LOCATION_FORWARD
	This is a special kind of Reply which a server can use to let a client know that it does not hold...

	The Reply is routinely used by the Orbix daemon to dynamically allocate a port to a server proces...

	CancelRequest Message
	A CancelRequest message is sent by the client to the server to indicate that the client is no lon...

	LocateRequest Message
	A LocateRequest message can be sent from client to server to probe for the location of a remote o...

	LocateReply Message
	A LocateReply message is sent from server to client in response to a LocateRequest message. There...

	CloseConnection Message
	A CloseConnection message is sent by the server to the client to tell the client that it intends ...

	MessageError Message
	A MessageError message can be sent by either the client or the server. It is used within the IIOP...
	4
	Interoperability and Wonderwall Operational Details
	The IIOP protocol was introduced to facilitate interoperability between ORBs supplied by differen...
	Object References
	One aspect of IIOP which the user should be aware of is that the information required to make an ...
	There are two main formats of an IOR as follows:
	Normally the server, which holds the object, creates an IOR for the object and makes this public ...
	Of these four methods, the first two provide the most general interoperable way of bootstrapping ...
	Wonderwall is based on the use of two IORs for each object: the real IOR and the proxified IOR. T...

	Proxification
	As a general convention on the Internet, frequently used servers are assigned to a dedicated port...
	A port number is embedded directly into every IOR and can have any value. If a large number of CO...
	From a firewall perspective, however, the use of multiple IIOP ports poses difficulties. It is un...
	Wonderwall uses a single IIOP port on the bastion host. Any IORs which are used remotely should p...
	It is thus necessary to modify the real IORs before making them available on the Internet—a proce...
	The Proxification Process
	Looking at Figure�4.1 on page�42, when a client is communicating with Obj, it has the illusion th...
	Figure 4.1: Apparent Location of Object, in Wonderwall Proxy Server

	In reality, the object lives behind the firewall and is located on server S in the internal netwo...
	Figure 4.2: Actual Location of Object, in Server S

	The only difference between the real and the public IOR is the value of the embedded host and por...
	Proxification can be carried out using the iortool utility which comes with Wonderwall. First the...
	This takes the IOR stored in file real.ref (which can either be in IOR or RXR format) and replace...

	Non-Orbix Client
	If using a non-Orbix client to connect to a server via Wonderwall, you do not have the option of ...
	A reference myGridVar is obtained to the desired grid object.
	It is generally more difficult for a client to get a reference to its first object, whether it is...

	Non-Orbix Server
	For non-Orbix servers, the main restriction is that they are not able to respond to the Orbix bin...
	Instead, the following steps should be carried out:
	There are a few alternatives you can use for the object-specifier field—see “List of IORs” on pag...

	Connection Establishment
	This section explains some of the steps involved in establishing a connection through Wonderwall....
	A Normal IIOP Connection
	Figure 4.3: Establishing a Normal Connection
	Figure�4.3 describes a normal IIOP connection as follows:

	An IIOP Connection Through Wonderwall
	Figure 4.4: Establishing a Connection Through Wonderwall
	Figure�4.4 on page�47 describes the process of establishing a typical IIOP connection through Won...

	A More Complicated Connection: Using Object Factories
	Figure�4.5 on page�49 describes a connection using object factories. Factory objects are server o...
	Wildcard flags used in Figure�4.5 indicate that an IOR in the Wonderwall configuration file can b...
	Figure 4.5: Establishing a Connection to a New Object Through Wonderwall

	Figure�4.5 describes the establishment of a connection to a new object (using object factories) t...

	Factory Objects and IORs
	Factory objects typically employ a method which is used to create a CORBA object on the server to...
	The makeGrid() operation returns an object reference to an object of type grid. This type of inte...
	Typically, the default behaviour of an operation such as makeGrid() is to generate an object refe...
	A solution to this is to change the default behaviour of the server, so that any object reference...
	Another solution, one which is more interoperable and can be implemented without change to either...
	To allow external access to objects generated by the Factory object, in addition to implementing ...
	This configuration allows any proxified object references, generated by GridFactory, to be used b...
	Factory Objects and the “Proxify” Parameter
	Wonderwall supports automatic proxification of returned IORs as they pass through the proxy. To p...

	Implications for Developers
	From a developer’s perspective, the use of Wonderwall has minimal impact. Once the server is read...
	Generally, on the client side it is only necessary to ensure that the client receives a copy of t...
	Callbacks
	A firewall unfriendly feature of the IIOP protocol is its use of dynamic port assignment. Firewal...
	This is of particular relevance for callbacks. If the client’s site is not protected by a firewal...
	In such a case, a possibility to consider is to extend the existing IIOP specification to allow t...
	Orbix C++ and Orbix Java deals with this problem by extending IIOP to provide bi-directional IIOP...

	Using Wonderwall with Orbix C++ and Orbix Java
	Using Wonderwall with Orbix Java as an Intranet Request-Router
	Using Wonderwall as a Firewall Proxy
	Orbix Java Built-In Wonderwall Support
	Configuring Orbix Java to Use Wonderwall
	Configuring Orbix Java to Use HTTP Tunnelling

	Deployment Scenarios
	Scenario 1- Deploying OrbixNames Servers
	Scenario 2 - Deploying Multiple OrbixNames Servers behind Wonderwall
	Scenario 3 - A Sample Grid Applet
	Scenario 4 - Deploying an Orbix Server behind Wonderwall
	6
	SSL Enabled Wonderwall: Operational Details
	The primary role of Wonderwall in a security infrastructure is to provide a firewall for IIOP tra...
	Introduction
	An Overview of SSL Security
	Authentication in SSL
	The SSL Handshake Protocol
	Certificates in SSL Authentication

	Privacy of SSL Communications
	Integrity of SSL Communications

	An Overview of OrbixSSL
	Figure 6.1: The Role of SSL in Orbix Client/Server Communications

	OrbixSSL Essentials
	Sample Bank Application Overview
	Running the Application without SSL
	Figure 6.2: Running the Banking Application

	Running the Application with SSL
	Figure 6.3: Running the Banking Application with SSL Security
	Example IOR for an SSL Enabled Application
	Example IOR for a Non-SSL Enabled Application

	Providing Certificates for the Servers
	Server
	Certificate File
	Bank
	demos/secure_bank_server
	OrbixNames
	services/orbix_names
	Orbix daemon
	services/orbix
	Table 6.1: Demonstration Certificates Used by the Banking Application

	Using the OrbixSSL Configuration File
	Configuring All OrbixSSL Programs
	Configuring a Single Program
	Configuring OrbixNames
	Configuring the Orbix Daemon

	Specifying which Certificates to Accept

	Initializing OrbixSSL
	Initializing OrbixSSL Configuration
	Making Private Keys Available to Servers
	Making a Private Key Available to a Server Program
	Making a Private Key Available to OrbixNames
	Making a Private Key Available to the Orbix Daemon

	Deploying an SSL-enabled Application in a Wonderwall Configuration
	Figure 6.4: A Fully Secure Banking Application
	Figure 6.5: A Partially Secure Configuration
	Daemon Configuration on Server Side
	Client Configuration
	Wonderwall Configuration

	Wonderwall, Applets and SSL
	Client Configuration

	Signing the Applet
	Signing an Applet Using Netscape’s Signing Tools
	Creating a Browser CA and Signed Applet
	Instructions for importing a CA into the Browser

	Signing an Applet Using Microsoft’s Signing Utilities
	SSL Enabled Applet Code Example

	7
	The Wonderwall Configuration Tool
	The Wonderwall Configuration Tool allows you to change the default security configuration setting...
	Default security configuration settings may need to be changed for a variety or reasons, including:
	The Wonderwall Configuration Tool can be used to make these configuration changes.

	The iiopproxy.cf File
	The iiopproxy.cf file holds configuration information for Wonderwall. It is located in the Wonder...

	Starting the Wonderwall Configuration Tool
	There are two ways to start the Wonderwall GUI Configuration Tool.
	When the GUI Configuration Tool is invoked, it automatically loads its settings from the default ...
	The GUI Configuration Tool startup window is shown in Figure�7.1 on page�131.
	GUI Configuration Tool Main Window
	The GUI Configuration Tool main startup window consists of a number of tabs, each containing conf...
	Figure 7.1: Orbix Wonderwall Configuration Tool

	To access the options in a specific tab, select that tab. The Objects tab deals with all the obje...

	Object Specifier Window
	The Objects window allows you to select or specify an object which can be made available through ...
	Figure 7.2: Orbix Wonderwall Object Specifier Window

	After you select the object, select the Edit button. This allows you to load the object’s IOR usi...
	Figure 7.3: Loading IORs

	For further information on object specifiers, refer to “Representations of an IOR” on page�30 and...

	Access Control List Window
	The Access Control window lists all the access control list entries which ultimately control acce...
	Figure 7.4: Orbix Wonderwall Access Control List Window

	From this window it is also possible to add a new rule, remove a rule from the list, and edit an ...
	Figure 7.5: The Orbix Wonderwall Edit Rule Window

	Note that (unused) here means that the setting is not used to determine whether access is allowed...
	For further information on access control lists, refer to “Access Control” on page�15 and page�173.

	Ports and Hostnames Window
	The ports available to launched servers can be modified in the Ports and Hostnames window of the ...
	Parameters set in this window must map directly to existing configuration parameters.
	Ports must be specified—everything else is optional.
	Figure 7.6: Orbix Wonderwall Ports and Hostnames Window

	SSL Window
	OrbixSSL allows Orbix applications to communicate using Secure Sockets Layer (SSL) security. Thes...
	Figure 7.7: The Orbix Wonderwall SSL Window

	For a description of the Wonderwall SSL configuration settings, refer to Appendix�B, “Configurati...

	Logging and Timeouts Window
	The Logging and Timeouts window allows you to customise all logging and timeouts for your system.
	Figure 7.8: Orbix Wonderwall Logging and Timeouts Window

	Edit As Text Window
	The configuration file can be edited by hand from the Edit As Text window.
	Figure 7.9: Orbix Wonderwall Edit as Text Window

	8
	The Wonderwall Log Analysis Viewer
	The Wonderwall Log Analysis Viewer allows you to view log files using a graphical user interface....
	The Wonderwall iiopproxy Server
	The log from the Wonderwall server iiopproxy is sent by default to the standard error file descri...
	It is possible to specify exactly what goes into the log file by editing the configuration file, ...

	Starting the Wonderwall Log Analysis Viewer
	There are two ways to start the Wonderwall Log Analysis Viewer.
	When the Log Analysis Viewer is invoked, it automatically loads its settings from the default loc...

	Log Analysis Viewer Main Window
	The Log Analysis Viewer main startup window consists of a number of menus each containing informa...
	Menu
	Description

	File
	To load a log file, select File<Symbol>ÆOpen Log File. All sessions in the log file are loaded by...
	View
	To view a log file in segments, select View<Symbol>ÆShow Session— select a session, then select V...
	Filters
	This menu allows you to open, save, and edit filter sets—see Figure�8.3 on page�145.
	Timestamps
	This menu allows you to switch on/off the following options: timestamps, thread ID, process ID, a...
	Recent
	This menu displays the most recent logs opened.
	Figure 8.1: Wonderwall Log Analysis Viewer Startup Window
	Figure 8.2: Loaded Log File

	Filters
	All the filters defined are listed in the Edit Filter Set window. From this window, you can defin...
	Figure 8.3: The Edit Filter Set Window

	Timestamps
	The following options may be switched on/off from the Timestamps menu:
	Timestamps
	Selecting Timestamps On displays the date and time of the log. For example: [1998/03/27 12:40:49]
	Microseconds
	Selecting Microseconds On displays microseconds. For example: [.000150]
	Thread ID
	Selecting Thread ID On displays the thread ID number. For example: [thread 240]
	Process ID
	Selecting Process ID On displays, for example: [pid 1972]
	Log Message Type
	Selecting Log Message Type On displays the Log message type. For example: [warning]
	Figure 8.4: Timestamps Options

	9
	Transformers
	Several internal layers of Orbix separate a simple remote invocation—as seen by application level...
	Transformers are useful for a number of reasons. One of the main uses of a transformer is to allo...

	Transformer Architecture
	Figure�9.1 provides an outline of a typical Transformer setup in the absence of a Wonderwall fire...
	Figure 9.1: Encrypted Link Using Integral Transformer

	Consider the problem of interposing a firewall proxy between this client and server. The firewall...
	Wonderwall offers two alternative solutions which enable you to insert the firewall even when enc...
	The first solution is shown schematically in Figure�9.2 where a single client transformer TC is i...
	Figure 9.2: Encrypted Link Using Wonderwall
	Figure 9.3: Wonderwall Inserted Into Encrypted Link

	In Figure�9.3, Wonderwall offers an alternative solution enabling you to insert the firewall even...

	Using Transformers
	The external transformers, which Wonderwall uses, are defined as CORBA objects. They are not buil...
	The Transformer IDL
	The external transformers used by Wonderwall, both client TC and server TS, are instances of the ...
	This interface features a single operation transform() which is called whenever Wonderwall needs ...
	There is a single exception TransformFailedException which can be raised by the transformer imple...
	If a server transformer throws a failure exception, a MessageError error message will be sent to ...
	The transform_exception operation is used to transform exceptions sent by Wonderwall to the clien...

	Implementing Transformers
	The implementation of both client and server transformers is flexible. Apart from keeping to the ...
	The following code sample outlines the skeleton of a client transformer:

	Configuration
	Configuring Wonderwall to use either a client transformer, or a client and server transformer is ...
	This setup is appropriate when both a client and server transformer object have been implemented ...

	Appendix A iiopproxy and iortool
	The iiopproxy Process
	Syntax of iiopproxy
	-config file
	Specifies the pathname of the Wonderwall configuration file (refer to Appendix�B on page�165). Th...
	-debug n
	The debug level can be set to three values: 0, 1 or 2. The value 0 means no diagnostics, 1 means ...
	-fork
	Causes the proxy to run in a forking mode, creating a subprocess for each new connection from a c...
	-fg
	This debugging option means do not fork when a new connection arrives. Its usefulness is limited ...
	-help
	Give usage information on these command switches.
	-httpport port
	Specifies the port to listen on for HTTP requests. This can also be specified in the Wonderwall c...
	-inetd
	Specifies that the iiopproxy is running from inetd(8) as a daemon process. This causes the inetd ...
	-log logfile
	Sends the log output into the named file, rather than to stderr, the standard error file descriptor.
	-port port
	Specifies the dedicated IIOP port for Wonderwall. This can also be specified in the Wonderwall co...
	-user username
	Runs as a specified user. If Wonderwall needs to use a privileged port (that is, one under 1024),...
	-v
	Print version information for iiopproxy.

	Using iiopproxy

	The iortool Utility
	Syntax of iortool
	-host host
	Used, in conjunction with the -proxify option, to specify the new proxy host which is embedded in...
	-ior
	Specifies that the IOR should be printed in CORBA standard stringified format.
	-long
	Specifies that the IOR should be printed in a long readable format.
	-manual
	Used to create an IOR interactively. The iortool proceeds to create a new IOR and the user is pro...
	-port port
	Used, in conjunction with the -proxify option, to specify the new proxy port number which is embe...
	-proxify
	Used to specify that the iortool is being used to edit the IOR in iorfile. This option is intende...
	-rxr
	Specifies that the IOR should be printed in (Wonderwall specific) a readable hex representation R...
	-sslport port
	Used, in conjunction with the -proxify option, to specify the new Secure Sockets Layer (SSL) port...
	-view
	Specifies that the IOR should be printed in a one-line readable format.
	-xlong
	Specifies that the IOR should be printed in a very long readable format, with the object key and ...

	Using the iortool Utility

	Appendix B Configuration
	Appendix C Firewall Installation on UNIX
	Setting Permissions
	Setting up the Proxy From inetd
	Setting up the Proxy to Run Standalone
	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	K
	L
	M
	N
	O
	P
	R
	S
	T
	U
	W
	X

