
Orbix Mainframe 6.3.1

Management User’s Guide

ii

Micro Focus
The Lawn
22-30 Old Bath Road
Newbury, Berkshire RG14 1QN
UK
https://www.microfocus.com

© Copyright 2021 Micro Focus or one of its affiliates.

MICRO FOCUS, the Micro Focus logo and Orbix are trademarks or
registered trademarks of Micro Focus or one of its affiliates.

All other marks are the property of their respective owners.

2021-03-18

https://www.microfocus.com

Contents

List of Figures v

Preface vii

Part 1 Administrator’s Guide

Chapter 1 Introduction to Orbix Management 1
Orbix Management Tools 2
Orbix Management Tools 3
Administrator Web Console 6
Orbix Management Service 8
Orbix Configuration Explorer 9
Orbix Configuration Authority 11
Orbix Management Tasks 12

Chapter 2 Managing Orbix Mainframe Services and Events 15
Introduction 17
Orbix Mainframe Instrumentation 18
Management Configuration 19
Monitoring Orbix Services on z/OS 21
Managing Events in the Web Console 22

Starting the Events Console 23
Viewing the Events Console 24
Viewing the Event Log 26

Chapter 3 Enterprise Performance Logging 29
Introduction 30
Configuring Performance Logging 31
Logging Message Formats 37
Remote Performance Logging 41
Configuring Remote Performance Logging 44
iii

CONTENTS
Part 2 Programmer’s Guide

Chapter 4 Introduction to Application Management 51
Introduction to the Orbix Management Tools 52
Introduction to Java Management Extensions 54
Introduction to the Orbix Management API 57
Overview of Management Programming Tasks 59

Chapter 5 Instrumenting CORBA C++ Applications 63
Step 1—Identifying Tasks to be Managed 64
Step 2—Defining your MBeans 68
Step 3—Implementing your MBeans 74
Step 4—Initializing the Management Plugin 88
Step 5—Creating your MBeans 90
Step 6—Connecting MBeans Together 92

Appendix A MBean Document Type Definition 97
The MBean Document Type Definition File 98

Glossary 101

Index 107
 iv

List of Figures

Figure 1: Management Overview 4

Figure 2: Administrator Web Console 6

Figure 3: Administrator Architecture 7

Figure 4: Orbix Configuration Explorer 9

Figure 5: Orbix Configuration Authority 11

Figure 6: Orbix Management Tools Integration with z/OS 17

Figure 7: Events Button 23

Figure 8: Events Console 23

Figure 9: Refresh Button 24

Figure 10: Example of an EventLog Panel 26

Figure 11: Setting the Log Filters for the IT_MFA Plug-in 27

Figure 12: Example of Logged Event for IMS Adapter in the Log Viewer 28

Figure 13: Remote Logging Framework 42

Figure 14: Management Overview 53

Figure 15: JMX Management and Orbix 55

Figure 16: Example Parent–Child Relationship 58

Figure 17: Instrumented Plugin in Administrator Web Console 65

Figure 18: Instrumented Plugin Application Overview 67

Figure 19: Instrumented Plugin Custom Exception 83

Figure 20: Instrumented Plugin Process MBean 92

Figure 21: Instrumented Plugin Child MBean 95
v

LIST OF FIGURES
 vi

Preface
Orbix Mainframe provides full integration with the Orbix management
infrastructure, which provides support for enterprise-level management
across different platform and programming language environments. The
Orbix management tools, integrated with the Orbix Adaptive Runtime
Technology, enable seamless management of distributed enterprise
applications.

Audience Part 1 is aimed at z/OS systems programmers managing distributed
enterprise applications.

Part 2 is aimed at z/OS application programmers writing distributed
enterprise applications in C++ who wish to enable their applications for
management by Orbix management tools. It assumes a prior knowledge of
C++.

Organization of this guide This guide is divided as follows:

Part 1, “Administrator’s Guide”

This part is aimed at z/OS systems programmers. First it introduces Orbix
enterprise management in general, and the tools used to manage distributed
applications. Then it describes how to manage Orbix Mainframe services
and monitor events.
vii

PREFACE
Part 2, “Programmer’s Guide”

This part is aimed at z/OS application programmers writing distributed
enterprise applications in C++ who wish to enable their applications for
management by Orbix management tools. It explains how to enable CORBA
C++ applications for management, and display them in the Orbix
management tools.

Related documentation The Orbix Mainframe library includes the following related documentation:

• CORBA Administrator’s Guide

• CORBA Configuration Reference

• CORBA Programmer’s Guide, C++ Edition

The Management User’s Guide in the Orbix library can also be referred to
for more details.

The latest updates to the Orbix Mainframe documentation can be found at
https://www.microfocus.com/documentation/orbix/.

Additional resources The Knowledge Base contains helpful articles, written by experts, about
Orbix Mainframe, and other products:

https://community.microfocus.com/t5/Orbix/ct-p/Orbix

If you need help with Orbix Mainframe or any other products, contact
technical support:

https://www.microfocus.com/en-us/support/

Typographical conventions This guide uses the following typographical conventions:

Constant width Constant width (courier font) in normal text represents
portions of code and literal names of items such as
classes, functions, variables, and data structures. For
example, text might refer to the CORBA::Object class.

Constant width paragraphs represent code examples
or information a system displays on the screen. For
example:

#include <stdio.h>
 viii

https://community.microfocus.com/t5/Orbix/ct-p/Orbix
https://www.microfocus.com/en-us/support/
https://www.microfocus.com/documentation/orbix/

PREFACE
Keying conventions This guide may use the following keying conventions:

Italic Italic words in normal text represent emphasis and
new terms.

Italic words or characters in code and commands
represent variable values you must supply, such as
arguments to commands or path names for your
particular system. For example:

% cd /users/your_name

Note: Some command examples may use angle
brackets to represent variable values you must supply.
This is an older convention that is replaced with italic
words or characters.

No prompt When a command’s format is the same for multiple
platforms, a prompt is not used.

% A percent sign represents the UNIX command shell
prompt for a command that does not require root
privileges.

A number sign represents the UNIX command shell
prompt for a command that requires root privileges.

> The notation > represents the DOS, Windows NT,
Windows 95, or Windows 98 command prompt.

...

.

.

.

Horizontal or vertical ellipses in format and syntax
descriptions indicate that material has been
eliminated to simplify a discussion.

[] Brackets enclose optional items in format and syntax
descriptions.

{ } Braces enclose a list from which you must choose an
item in format and syntax descriptions.

| A vertical bar separates items in a list of choices
enclosed in { } (braces) in format and syntax
descriptions.
ix

PREFACE
 x

Part 1
Administrator’s Guide

In this part This part contains the following chapter:

Introduction to Orbix Management page 1

Managing Orbix Mainframe Services and Events page 15

CHAPTER 1

Introduction to
Orbix Management
The Orbix management tools are a set of tools that enable you
to manage component-based distributed enterprise
applications. This chapter introduces the Orbix management
tools and outlines typical administration tasks.

In this chapter This chapter contains the following sections:

Orbix Management Tools page 2

Orbix Management Tools page 3

Administrator Web Console page 6

Orbix Management Service page 8

Orbix Configuration Explorer page 9

Orbix Configuration Authority page 11

Orbix Management Tasks page 12
1

CHAPTER 1 | Introduction to Orbix Management
Orbix Management Tools

Overview The Orbix management tools enable you to manage and configure
component-based distributed enterprise applications. They are integrated
with the Orbix Adaptive Runtime Technology (ART). This enables them to
provide seamless management of Orbix and any applications developed
using it.

Orbix management tools are not aimed solely at any specific technology (for
example, CORBA or Web services), but provide a generic management
paradigm that enable the application to be managed without the
administrator requiring knowledge of the technology used to create that
application.

Scope of Orbix management tools Orbix management tools enable you to manage and configure distributed
applications that have been developed using Orbix and Orbix Mainframe.
For detailed information about the Orbix product range, see the web site:

https://www.microfocus.com/en-us/products/orbix/overview

Assumptions Orbix management tools do not assume that you are familiar Orbix or Orbix
Mainframe. What is required is a basic understanding of distributed
applications, regardless of whether they are based on CORBA or Web
services. In fact, you can use Orbix management tools to manage any C++
system that has been enabled for management.
 2

https://www.microfocus.com/en-us/products/orbix/overview

Orbix Management Tools
Orbix Management Tools

Overview Orbix management tools include the following main components:

• “Administrator Web Console”.

• “Orbix Management Service”

• “Orbix Configuration Explorer”.

• “Orbix Configuration Authority”.

Administrator Web Console The Administrator Web Console provides a web browser interface to the
Orbix management tools. It enables you to manage applications and
application events from anywhere, without the need for download or
installation. It communicates with the management service using HTTP
(Hypertext Transfer Protocol), as illustrated in Figure 1.

Orbix Management Service The Orbix Management Service is the central point of contact for accessing
management information in a domain. A domain is an abstract group of
managed server processes within a physical location. The management
service is accessed by both the Administrator Web Console and the Orbix
Configuration Explorer.

Orbix Configuration Explorer The Orbix Configuration Explorer is a Java graphical user interface (GUI)
that enables you to manage your configuration settings. It communicates
with your Configuration Repository (CFR) or configuration file using IIOP
(Internet Inter-ORB Protocol).

Note: The Orbix Configuration Explorer is introduced here for the sake of
completeness, but it is not supported with Orbix Mainframe.

Note: Managed applications can be written in C++. The same
management service process (iona_services.management) can be used by
CORBA C++ applications.
3

CHAPTER 1 | Introduction to Orbix Management
Note: The Orbix Configuration Explorer is not supported with Orbix
Mainframe. You must manually browse your Orbix Mainframe
configuration file.

Figure 1: Management Overview
 4

Orbix Management Tools
Orbix Configuration Authority The Orbix Configuration Authority provides a web browser interface to
descriptive information about all Orbix configuration settings. You can
browse and search for information about Orbix configuration variables in
your CFR or configuration file.

Additional features Application programmers can add instructions to their code to monitor
specific components in their system. This is known as adding management
instrumentation.

Adding management
instrumentation

Orbix products provide default instrumentation that publishes core
information to the management service for any application built using these
products.

However, programmers might also wish to add custom instrumentation to
an application to suit their needs. Orbix, therefore, enables full
instrumentation of server code. For information on how to write
instrumentation code, see “Programmer’s Guide” on page 49.
5

CHAPTER 1 | Introduction to Orbix Management
Administrator Web Console

Overview The Administrator Web Console provides a standard web browser interface
to explore and manage distributed applications. The Administrator Web
Console uses HTML and JavaScript to create a standard explorer view to
represent the data.

Figure 2 shows an example Administrator Web Console interface.

Multiple applications and
domains

You can use one instance of the Administrator Web Console to manage
multiple applications in a single domain. You also can use multiple
instances of the web console to manage multiple domains from a single
machine. This is shown in Figure 3.

Figure 2: Administrator Web Console
 6

Administrator Web Console
Interaction with the management
service

Each Orbix management service makes management data available using a
special URL. The management service is the central point of contact for
management information in each domain. It publishes information about all
managed servers within its domain.

Management architecture Figure 3 gives an overview of the management architecture. Each
Administrator Web Console interacts with one management service only.
This means that each console can administer the managed servers in one of
the two domains only.

Multiple instances of the web console can interact with the same
management service through the same HTTP port.

Figure 3: Administrator Architecture
7

CHAPTER 1 | Introduction to Orbix Management
Orbix Management Service

Overview The Orbix management service is the central point of contact for accessing
management information in a domain. The management service acts as a
buffer between managed applications and management tools.

Management information The management service maintains key state information, reducing the need
to constantly access the managed applications, and thereby improving
performance.

The management service stores and publishes information about all
managed servers within its domain. It exposes attributes, operations, and
events for all managed servers in a domain. The management service also
stores information about user roles and passwords for each user in a
domain.

Note: Each domain can have only one management service.

Key features Key features provided by the management service are:

• Centralized repository for all management information.

• Centralized collection of event logging information.

• Persistent storage of event log and agent information.

• Load management gateway plugins (for example, an SNMP plugin).

• Capability to terminate server processes.
 8

Orbix Configuration Explorer
Orbix Configuration Explorer

Overview The Orbix Configuration Explorer is an intuitive Java GUI that enables you to
view, modify, and search for configuration settings.

In Figure 4, the Contents pane on the left shows the configuration scopes
and namespaces displayed for a domain named my-domain. The Details
pane on the right displays the configuration variables and their values.
Clicking on a icon on the left displays its associated variables on the right.

Figure 4: Orbix Configuration Explorer
9

CHAPTER 1 | Introduction to Orbix Management
Multiple Domains You can use a single instance of the Orbix Configuration Explorer to manage
configuration of multiple domains, both locally and on remote host
machines. The Orbix Configuration Explorer communicates with CFRs in any
domains that it can contact. It can also read file-based domains where they
are locally visible.

Note: Because the CFR is not supported with Orbix Mainframe, and the
Configuration Explorer is run off-host, there is currently no way for the
Configuration Explorer to interact with an Orbix Mainframe configuration
domain. Therefore, you must manually browse the configuration file
located in HLQ.DOMAINS in your Orbix Mainframe installation.
 10

Orbix Configuration Authority
Orbix Configuration Authority

Overview The Orbix Configuration Authority displays text descriptions of all Orbix
configuration settings. Its web browser interface enables you to navigate to
and search for configuration information, as shown in Figure 5.

The navigation tree, on the left of the screen displays a hierarchical list of
configuration namespaces and variables. The details pane, on the right,
displays information about the configuration variables associated with the
selected node on the tree.

The Search box located at the top left of the screen enables you to search
for information about configuration variables containing a specified text
string.

Figure 5: Orbix Configuration Authority
11

CHAPTER 1 | Introduction to Orbix Management
Orbix Management Tasks

Overview Typical Orbix management tasks that you can perform include:

• “Managing domains”.

• “Managing servers”.

• “Monitoring events”.

• “Managing configuration settings”.

• “Getting started”

This section gives a quick overview of these tasks, and shows where you
can find further information in this book.

Managing domains Typical domain management tasks include:

• Viewing domains.

• Monitoring domain status (whether it is running or stopped).

For more details of how to manage domains, using the Administrator Web
Console, see the Management User’s Guide at
https://supportline.microfocus.com/documentation/books/Orbix/639/manag
ement_user_guide_639.pdf.

Managing servers Typical server management tasks include:

• Viewing servers.

• Monitoring server status (whether it is running or inactive).

• Controlling servers (shutting down, setting attributes, and invoking
operations).

For more details of how to manage servers, using the Administrator Web
Console, see the Management User’s Guide at
https://supportline.microfocus.com/documentation/books/Orbix/639/manag
ement_user_guide_639.pdf.
 12

https://supportline.microfocus.com/documentation/books/Orbix/639/management_user_guide_639.pdf
https://supportline.microfocus.com/documentation/books/Orbix/639/management_user_guide_639.pdf
https://supportline.microfocus.com/documentation/books/Orbix/639/management_user_guide_639.pdf

Orbix Management Tasks
Monitoring events Typical event management tasks include:

• Selecting a domain in which to manage events.

• Viewing full details of an event.

• Setting event viewing options. For example, you can set the number of
events viewed, set the kind of events viewed.

For more details of how to manage events, using the Administrator Web
Console, see the Management User’s Guide at
https://supportline.microfocus.com/documentation/books/Orbix/639/manag
ement_user_guide_639.pdf.

Managing configuration settings Typical configuration management tasks include:

• Loading up a domain.

• Viewing configuration settings.

• Searching your configuration.

• Finding text descriptions of configuration variables.

For more details of how to find text descriptions of configuration variables
using the Orbix Configuration Authority and manage configuration settings
for the management service, see the Management User’s Guide at
https://supportline.microfocus.com/documentation/books/Orbix/639/manag
ement_user_guide_639.pdf.

Getting started For details of how to get started with the Administrator Web Console, see
the Management User’s Guide at
https://supportline.microfocus.com/documentation/books/Orbix/639/manag
ement_user_guide_639.pdf.
13

https://supportline.microfocus.com/documentation/books/Orbix/639/management_user_guide_639.pdf
https://supportline.microfocus.com/documentation/books/Orbix/639/management_user_guide_639.pdf
https://supportline.microfocus.com/documentation/books/Orbix/639/management_user_guide_639.pdf
https://supportline.microfocus.com/documentation/books/Orbix/639/management_user_guide_639.pdf

CHAPTER 1 | Introduction to Orbix Management
 14

CHAPTER 2

Managing Orbix
Mainframe
Services and
Events
Orbix Mainframe provides full integration with the Orbix
Management infrastructure. This allows Orbix servers running
on the mainframe to be monitored from a centralized location,
using Orbix Administrator. This chapter provides details on
Orbix Mainframe instrumentation and the configuration items
involved in managing Orbix Mainframe services. It also
explains how to use the Administrator Web Console to monitor
events.

In this chapter This chapter discusses the following topics:

Introduction page 17

Orbix Mainframe Instrumentation page 18

Management Configuration page 19
15

CHAPTER 2 | Managing Orbix Mainframe Services and Events
Monitoring Orbix Services on z/OS page 21

Managing Events in the Web Console page 22
 16

Introduction
Introduction

Overview This section provides an introductory overview of how Orbix management
tools components are used in the management of Orbix services running on
z/OS.

Graphical overview Figure 6provides a graphical overview of how Orbix management tools
components such as the Administrator Web Console and Orbix Management
Service are used in the management of Orbix services on z/OS.

As shown in Figure 6, the Web Console and Management Service run
off-host and communicate with each other over HTTP. The Management
Service and the services running on z/OS communicate with each other over
IIOP.

C++ and Java management Orbix Mainframe fully supports the C++ Management runtime and C++
Management APIs for developing instrumentation capabilities within your
Orbix applications. However, Orbix Mainframe does not include the Java
Management Service component. Instead, the Java Management Service
must be deployed in an off-host Orbix domain, and must be contactable by
the Orbix Mainframe environment.

Figure 6: Orbix Management Tools Integration with z/OS
17

CHAPTER 2 | Managing Orbix Mainframe Services and Events
Orbix Mainframe Instrumentation

Overview This section outlines the components involved in Orbix Mainframe
instrumentation. It discusses the following topics:

• “Instrumentation components”.

• “Instrumentation demonstration”.

Instrumentation components Orbix Mainframe instrumentation consists of:

• Default core instrumentation—all Orbix applications can be configured
to expose ORB instrumentation statistics.

• Naming Service—the Orbix Naming Service supports instrumentation
specific to management of, for example, naming contexts and load
balancing.

• C++ custom development—the Orbix C++ Management API allows
you to develop customized instrumentation for your own Orbix
applications.

For more details on adding management instrumentation to an application,
see “Programmer’s Guide” on page 49.

Instrumentation demonstration An instrumentation demonstration is provided in the UNIX System Services
component of your Orbix Mainframe installation, as follows (where
install_dir represents the full path to your Orbix Mainframe installation on
UNIX System Services):

install_dir/asp/Version/demos/corba/pdk/instrumented_plugin
This instrumentation demonstration illustrates how to use the main
Management APIs and how to write your own Generic Service application.
You can use an ORB plug-in approach to build the Management code, to
instrument existing services such as the CICS and IMS server adapters.
 18

Management Configuration
Management Configuration

Overview This section provides details of the steps involved in configuring the
management of Orbix services on z/OS. It also describes each of the
associated configuration items that need to be set on the mainframe host. It
discusses the following topics:

• “Domain interaction”

• “Configuration steps”

Domain interaction This section assumes that an off-host Orbix domain is available and has
been configured to enable management. It is also assumed that the Orbix
Mainframe domain is compatible with this off-host Orbix domain, and that
communication between them has already been verified. For example, if the
off-host domain has been configured to be fully secure, the Orbix Mainframe
domain must be deployed with a TLS domain. Before you attempt to run
any managed services on z/OS, you should first confirm that the off-host
locator and the other off-host services can be contacted successfully (for
example, by using the itadmin or ORXADMIN tool from z/OS).

Configuration steps The steps to enable the management of Orbix services on z/OS are:

1. Add the Management Service initial reference configuration settings to
the Orbix Mainframe configuration file at the global scope, as follows:

The IOR settings can be obtained from the off-host configuration
domain.

2. Enable ORB instrumentation by adding the following configuration
setting to the configuration scope for the relevant server:

initial_references:IT_MgmtService:reference = "IOR:000…";
initial_references:IT_MgmtServiceUser:reference =

"IOR:000…";
initial_references:IT_MgmtServiceSec:reference = "IOR:000…";

plugins:orb:is_managed = "true";
19

CHAPTER 2 | Managing Orbix Mainframe Services and Events
3. Ensure that each service has a unique server ID across your entire
management domain by adding the following configuration item to the
configuration scope for the appropriate server:

4. Enable instrumentation of the Naming Service by adding the following
configuration settings to the iona_services.naming configuration
scope:

5. If you are interested in viewing the event log from the management
console, you must configure the managed service to log events to a file.
For example:

plugins:it_mgmt:managed_server_id:name = "…"

Note: By default, the ORB name of the relevant server is used as the
ID for a particular service. For example, to specify a unique server
name for the locator service, you can choose to set the preceding
variable to "iona_services.locator.mainframe_host", where
mainframe_host is the local TCP/IP hostname.

plugins:orb:is_managed = "true";
plugins:naming:is_managed = "true";
plugins:it_mgmt:managed_server_id:name =

"iona_services.naming.mainframe_bost";

plugins:local_log_stream:filename =
"/opt/microfocus/var/logs/imsa.log";
 20

Monitoring Orbix Services on z/OS
Monitoring Orbix Services on z/OS

Overview This section outlines the steps to monitor Orbix services on z/OS.

Steps The steps to monitor Orbix services on z/OS are:

• Ensure that the Orbix off-host services are running. This includes the
Management Service.

• Start the Orbix Mainframe managed services. On starting, these
services attempt to register themselves with the off-host Management
Service.

• Start the Web Console. After the various services have been
successfully deployed, you can use the Web Console to contact the
Management Service, to monitor the state of each of the various
services.

Note: If a managed server is unable to contact the off-host
Management Service, it starts and continues to run without issuing a
warning message. If there is a communication problem, for example,
the managed server does not appear in the Management console.

Note: For more details on using the off-host Web Console and the
off-host Management Service refer to the Management User’s Guide at
https://supportline.microfocus.com/documentation/books/Orbix/639/mana
gement_user_guide_639.pdf.
21

https://supportline.microfocus.com/documentation/books/Orbix/639/management_user_guide_639.pdf
https://supportline.microfocus.com/documentation/books/Orbix/639/management_user_guide_639.pdf

CHAPTER 2 | Managing Orbix Mainframe Services and Events
Managing Events in the Web Console

Overview This chapter explains how to use the Administrator Web Console to monitor
events. It explains how to start its Events Console, and view events for a
domain.

The Administrator Web Console’s Events Console enables you to view events
generated by managed servers. The events console shows an up-to-date list
of events in reverse chronological order. You can customize the severity of
events and apply filters to selectively view events.

In this section This section discusses the following topics:

Starting the Events Console page 23

Viewing the Events Console page 24

Viewing the Event Log page 26
 22

Managing Events in the Web Console
Starting the Events Console

Overview This subsection explains how to start the Administrator Web Console’s
Events Console.

Using the Events Button To start the Events Console, click the Events button in the Administrator
Web Console toolbar, as shown in Figure 7.

If an events console is already open, subsequent clicks on this button bring
the web console to the foreground.

Example Events Console An example Events Console started from the web console is shown in
Figure 8. The events are shown in a list starting with the most recent event
at the top.

Figure 7: Events Button

Figure 8: Events Console
23

CHAPTER 2 | Managing Orbix Mainframe Services and Events
Viewing the Events Console

Overview This section explains how to use the Administrator Web Console’s Events
Console. It includes the following:

• “Viewing Events in a Domain”.

• “Refreshing the Event List”.

• “Setting the Number of Events Displayed”.

• “Setting the Event Threshold”.

• “Information Displayed in the Event List”.

• “Viewing Full Details of an Event”.

• “Filtering Events”.

Viewing Events in a Domain Events are always shown on a per-domain basis. To view events from a
different domain, start a web console connecting to the domain's
management service and launch the events console from there. For more
details of prerequisites to starting the web console, see the Management
User’s Guide at
https://supportline.microfocus.com/documentation/books/Orbix/639/manag
ement_user_guide_639.pdf.

Refreshing the Event List The event display shows an up-to-date list of events when first started. The
display is not updated automatically. To refresh the display, click the
Refresh button in the toolbar, as shown in Figure 24.

Setting the Number of Events
Displayed

To set the maximum number of events being retrieved from the
management server, click the drop-down box at the Display Events field at
the top of the console.

Figure 9: Refresh Button
 24

https://supportline.microfocus.com/documentation/books/Orbix/639/management_user_guide_639.pdf
https://supportline.microfocus.com/documentation/books/Orbix/639/management_user_guide_639.pdf

Managing Events in the Web Console
Setting the Event Threshold The Threshold setting specifies the lowest severity of events that you want
to include in the displayed list. There are four severities:

• Critical
• Error
• Warning
• Info
The highest event severity is Critical and the lowest is Info.
To set the events threshold, click the Threshold drop-down box at the top
left of the console.

Information Displayed in the
Event List

The event list shows the following summary information about each event:

• Date and time of the event.

• Severity of the event.

• Agent that created the event.

• Name of the event.

Viewing Full Details of an Event To get comprehensive details of a particular event, simply click the event in
the event list.

Filtering Events You can also customize the severity of events and apply filters to selectively
view events by modifying shared filters for a domain. For more information,
see the section on Management Service Configuration in the Management
User’s Guide at
https://supportline.microfocus.com/documentation/books/Orbix/639/manag
ement_user_guide_639.pdf.
25

https://supportline.microfocus.com/documentation/books/Orbix/639/management_user_guide_639.pdf
https://supportline.microfocus.com/documentation/books/Orbix/639/management_user_guide_639.pdf

CHAPTER 2 | Managing Orbix Mainframe Services and Events
Viewing the Event Log

Overview This section explains how to open and view the Administrator Web
Console’s event log for a particular server.

Opening the event log To open the event log for a particular server, click the option under
that server name on the left display panel of your management service
browser. This opens an EventLog panel for the server similar to that shown
in Figure 10.

Note: To view the event log for the IMS or CICS server adapter, the
plugins:local_log_stream:filename configuration item must be set in
the adapter’s configuration scope.

Figure 10: Example of an EventLog Panel
 26

Managing Events in the Web Console
Setting the log filters You can use the Filters field to determine the level of logging information
that is to be generated for a particular plug-in. For example, Figure 11
shows a filters setting of "IT_MFA=INFO_HI+WARN+ERROR+FATAL", to generate
logging information for CICS or IMS server adapter events.

To save a setting in the Filters field, click Set. If you want to override any
changes and return to the prior settings, click Reset.

Figure 11: Setting the Log Filters for the IT_MFA Plug-in

Note: The Reset button can only override settings that have not already
been saved via the Set button.
27

CHAPTER 2 | Managing Orbix Mainframe Services and Events
Opening the log viewer Click the button on the Event Log to open the Log Viewer panel. This
displays all the logged events for the plug-in(s) that you specified when
setting the log filters.

Figure 12 shows an example of a logged event for an IMS server adapter
contacted by the simple client demonstration supplied with your Orbix
Mainframe installation.

As shown in Figure 12, the following information is displayed for each
logged event:

• The date and time of the event.

• The subsystem it relates to.

• The level of event (that is, Information, Warning, or Error).

• Details of the event.

Navigating the log viewer It might not be possible for all event details to be displayed on one screen.
To see details of more events, click the Prev and Next links on the Log
Viewer as appropriate. If you click the Back to Details link, this reopens the
Event Log panel.

Figure 12: Example of Logged Event for IMS Adapter in the Log Viewer
 28

CHAPTER 3

Enterprise
Performance
Logging
Micro Focus’s performance logging plugins enable Orbix to
integrate effectively with Enterprise Management Systems
(EMS).

In this chapter This chapter contains the following sections:

Introduction page 30

Configuring Performance Logging page 31

Logging Message Formats page 37

Remote Performance Logging page 41

Configuring Remote Performance Logging page 44
29

CHAPTER 3 | Enterprise Performance Logging
Introduction

Overview Performance logging plugins enable Orbix to integrate effectively with
Enterprise Management Systems (EMS). The performance logging plugins
can also be used in isolation or as part of a custom-made solution.

Enterprise Management Systems enable system administrators and
production operators to monitor enterprise-critical applications from a single
management console. This enables them to quickly recognize the root cause
of problems that may occur, and take remedial action (for example, if a
machine is running out of disk space).

Performance logging When performance logging is configured, you can see how each Orbix server
is responding to load. The performance logging plugins log this data to file or
syslog. Your EMS can read the performance data from these logs, and use
it to initiate appropriate actions, (for example, issue a restart to a server that
has become unresponsive, or start a new replica for an overloaded cluster).
 30

Configuring Performance Logging
Configuring Performance Logging

Overview This section explains how to manually configure performance logging. This
section includes the following:

• “Performance logging plugins”.

• “Monitoring Orbix requests”.

• “Logging to a file or syslog”.

• “Configuring a server ID”.

• “Configuring a client ID”.

• “Monitoring the Orbix work queue”.

• “Configuring the CICS adapter to use performance logging”.

Performance logging plugins The performance logging component consists of three plugins:

Table 1: Performance logging plugins

Plugin Description

Response time logger Monitors response times of requests as they
pass through the Orbix binding chains. This
can be used to collect response times for
CORBA, RMI-IIOP or HTTP calls.

Request counter Performs the same function for Artix as the
Response time logger does for Orbix.

Response time
collector

Periodically harvests data from the response
time logger and request counter plugins and
logs the results.

MBean monitor Periodically harvests statistics associated with
MBean attributes (for example, monitoring the
length of the ORB work queue).
31

CHAPTER 3 | Enterprise Performance Logging
Monitoring Orbix requests You can use performance logging to monitor both Orbix server and client
requests.

Monitoring server requests

To monitor Orbix server requests, perform the following configuration steps:

1. Add it_response_time_logger to the servlet binding list for the server
you wish to instrument. For example:

2. Add it_response_time_logger to the server binding list for the server.
For example:

3. Add it_response_time_logger to the orb_plugins list for the server.
For example:

binding:servlet_binding_list= [
 "it_response_time_logger + it_servlet_context + it_character_encoding
 + it_locale + it_naming_context + it_exception_mapping + it_http_sessions
 + it_web_security + it_servlet_filters + it_web_redirector + it_web_app_activator "
];

binding:server_binding_list=[
 "it_response_time_logger+it_naming_context+CSI+j2eecsi+OTS+it_security_role_mapping",
 "it_response_time_logger+it_naming_context+OTS+it_security_role_mapping",
 "it_response_time_logger+it_naming_context + CSI+j2eecsi+it_security_role_mapping",
 "it_response_time_logger+it_naming_context+it_security_role_mapping",
 "it_response_time_logger+it_naming_context", "it_response_time_logger"
];

orb_plugins=[
 "it_servlet_binding_manager", "it_servlet_context",
 "it_http_sessions", "it_servlet_filters", "http",
 "it_servlet_dispatch", "it_exception_mapping", "it_naming_context",
 "it_web_security", "it_web_app_activator",
 "it_default_servlet_binding", "it_security_service", "it_character_encoding",
 "it_locale", "it_classloader_servlet","it_classloader_mapping",
 "it_web_redirector", "it_deployer",
 "it_response_time_logger"
];
 32

Configuring Performance Logging
Monitoring client requests

To monitor Orbix client requests, add it_response_time_logger to the
client binding list for the server. For example:

Logging to a file or syslog You can configure the collector plugin to log data either to a file or to
syslog.

C++ configuration

The following example configuration for a C++ application results in
performance data being logged to
/var/log/my_app/perf_logs/treasury_app.log every 90 seconds:

If you do not specify the response time period, it defaults to 60 seconds.

Logging to a syslog daemon

You can configure the collector to log to a syslog daemon or Windows event
log, as follows:

The syslog_appid enables you to specify your application name that is
prepended to all syslog messages. If you do not specify this, it defaults to
iona.

binding:client_binding_list = [
"it_response_time_logger+DemoOS+OTS+POA_Coloc","it_response_time_logger+DemoOS+POA_Coloc",
"it_response_time_logger+OTS+POA_Coloc", "it_response_time_logger+POA_Coloc",

"it_response_time_logger+DemoOS+OTS+GIOP+IIOP", "it_response_time_logger+DemoOS+GIOP+IIOP",
"it_response_time_logger+OTS+GIOP+IIOP", "it_response_time_logger+GIOP+IIOP",
"it_response_time_logger"

];

plugins:it_response_time_collector:period = "90";
plugins:it_response_time_collector:filename =
"/var/log/my_app/perf_logs/treasury_app.log";

Note: You may only log data to a file in z/OS UNIX System Services.

plugins:it_response_time_collector:system_logging_enabled =
"true";

plugins:it_response_time_collector:syslog_appID = "treasury";
33

CHAPTER 3 | Enterprise Performance Logging
Configuring a server ID You can configure a server ID that will be reported in your log messages.
This server ID is particularly useful in the case where the server is a replica
that forms part of a cluster.

In a cluster, the server ID enables management tools to recognize log
messages from different replica instances. You can configure a server ID as
follows:

This setting is optional; and if omitted, the server ID defaults to the ORB
name of the server. In a cluster, each replica must have this value set to a
unique value to enable sensible analysis of the generated performance logs.

Configuring a client ID You can also configure a client ID that will be reported in your log messages.
Specify this using the client-id configuration variable, for example:

This setting enables management tools to recognize log messages from
client applications. This setting is optional; and if omitted, it is assumed that
that a server is being monitored.

Monitoring the Orbix work queue The it_mbean_monitoring plug-in enables you to periodically harvest
statistics associated with MBean attributes. This plug-in can be used to
monitor the work queue MBean associated with a particular ORB. Work
queues are used to control the flow incoming requests.

To monitor an ORB work queue MBean, perform the following steps:

1. Add it_mbean_monitoring to the orb_plugins list of the ORB whose
work queue you wish to monitor.

2. When it_mbean_monitoring is on your orb_plugins list, you can
enable monitoring of the ORB work queue using the following variable:

plugins:it_response_time_collector:server-id = "Locator-1";

plugins:it_response_time_collector:client-id = "my_client_app";

orb_plugins = ["local_log_stream", "iiop_profile", "giop",
"iiop", "it_mbean_monitoring"];

plugins:it_mbean_monitoring:workqueue = "true";
 34

Configuring Performance Logging
3. The MBean attributes that are monitored by the plug-in are sampled
periodically. The sampling interval is specified in milliseconds using
the following variable:

4. The response time collector plug-in is used to periodically log the
MBean data. You must specify the following variables for the collector:

C++ applications

For more information, see also “MBean log message formats” on page 39.

Configuring the CICS adapter to
use performance logging

To enable the CICS server adapter to use performance logging, perform the
following configuration steps:

1. Add it_response_time_logger to the ORB plugins list for the adapter.
For example:

2. Add it_response_time_logger to the server binding list for the
adapter. For example:

plugins:it_mbean_monitoring:sampling_period = "100";

plugins:it_response_time_collector:period = "10";

plugins:it_response_time_collector:filename = "testing_mbeans.log";

orb_plugins = ["…", "it_response_time_logger"];

Note: Ensure that you have a management license available.

binding:server_binding_list = ["it_response_time_logger",
""];

Note: In this case, the "" at the end of the server binding list is
required.
35

CHAPTER 3 | Enterprise Performance Logging
3. Add the following configuration items to the iona_services.cicsa
scope:

The following is an example of output from the performance log where a
nested sequences client, a simple client, an mfa list and an mfa resolve
have been run against the CICS adapter:

update the log every 30 seconds
plugins:it_response_time_collector:period = "30";
the id of the server for the log output
plugins:it_response_time_collector:server-id = "ORXCICSA";
location of the log
plugins:it_response_time_collector:filename =

"/home/fred/mycicsperf.log";

2006-10-18 10:08:22 server=ORXCICSA status=starting_up
2006-10-18 10:08:22 server=ORXCICSA status=running
2006-10-18 10:08:52 server=ORXCICSA status=running
2006-10-18 10:09:22 server=ORXCICSA status=running
2006-10-18 10:09:22 server=ORXCICSA [operation=test_bounded] count=1 avg=110 max=110 min=110

int=30001 oph=119
2006-10-18 10:09:22 server=ORXCICSA [operation=test_unbounded] count=1 avg=809 max=809 min=809

int=30001 oph=119
2006-10-18 10:09:52 server=ORXCICSA status=running
2006-10-18 10:09:52 server=ORXCICSA [operation=call_me] count=1 avg=793 max=793 min=793

int=29998 oph=120
2006-10-18 10:10:22 server=ORXCICSA status=running
2006-10-18 10:10:22 server=ORXCICSA [operation=_get_currentMappings] count=1 avg=0 max=0 min=0

int=30000 oph=120
2006-10-18 10:10:52 server=ORXCICSA status=running
2006-10-18 10:11:22 server=ORXCICSA status=running
2006-10-18 10:11:52 server=ORXCICSA status=running
2006-10-18 10:12:22 server=ORXCICSA status=running
2006-10-18 10:12:22 server=ORXCICSA [operation=resolve] count=1 avg=0 max=0 min=0 int=29999

oph=120
2006-10-18 10:12:52 server=ORXCICSA status=running
2006-10-18 10:12:57 server=ORXCICSA status=shutdown_started
2006-10-18 10:12:57 server=ORXCICSA status=shutdown_complete
 36

Logging Message Formats
Logging Message Formats

Overview This section describes the logging message formats used by Orbix and
related products. It includes the following:

• “Orbix log message format”.

• “Artix log message format”.

• “MBean log message formats”.

• “Simple life cycle message formats”.

Orbix log message format Performance data is logged in a well-defined format. For Orbix applications,
this format is as follows:

YYYY-MM-DD HH:MM:SS server=serverID [operation=name] count=n
avg=n max=n min=n int=n oph=n

Table 2: Orbix log message format arguments

Argument Description

server The server ID of the process that is logging the
message.

operation The name of the operation for CORBA invocations or
the URI for requests on servlets.

count The number of operations of invoked (IIOP).

or

The number of times this operation or URI was
logged during the last interval (HTTP).

avg The average response time (milliseconds) for this
operation or URI during the last interval.

max The longest response time (milliseconds) for this
operation or URI during the last interval.

min The shortest response time (milliseconds) for this
operation or URI during the last interval.
37

CHAPTER 3 | Enterprise Performance Logging
Artix log message format The format for Artix log messages is as follows:

The combination of namespace, service and port above denote a unique
Artix endpoint. The description for the remainder of the fields are the same
as for Orbix messages.

int The number of milliseconds taken to gather the
statistics in this log file.

oph Operations per hour.

Table 2: Orbix log message format arguments

Argument Description

YYYY-MM-DD HH:MM:SS server=serverID [namespace=nnn service=sss
port=ppp operation=name] count=n avg=n max=n min=n int=n
oph=n

Table 3: Artix log message format arguments

Argument Description

server The server ID of the process that is logging the
message.

namespace An Artix namespace.

service An Artix service.

port An Artix port.
 38

Logging Message Formats
MBean log message formats The format for the mbean monitoring log message is as follows:

12004-09-23 15:24:17,093 monitored_object=full-object-name-for-mbean
object_alias=user-friendly-name count=n avg=n max=n min=n period=n

Table 4: MBean log message format arguments

monitored_object The MBean being monitored (for example,
DefaultDomain:type=AutoWorkqueue,orb=_it_orb
_id_1,name=Workqueue_1).

object_alias A user-friendly name for MBean being monitored
(for example,
test.management.logging_mbeans.ORBWorkQueue).

count The number of times the MBean attribute has been
sampled during this logging period.

avg The average value for the attribute being
monitored.

max The maximum value for the attribute being
monitored.

min The minimum value for the attribute being
monitored.

period The sampling interval specified in milliseconds.
39

CHAPTER 3 | Enterprise Performance Logging
Simple life cycle message formats The server also logs simple life cycle messages. All servers share the
following common format.

YYYY-MM-DD HH:MM:SS server=serverID status=current_status

Table 5: Simple life cycle message format arguments

Argument Description

server The server ID of the process that is logging the
message.

status A text string describing the last known status of
the server (for example, starting_up, running,
shutting_down).
 40

Remote Performance Logging
Remote Performance Logging

Overview The performance logging plug-ins can be configured to log data to a local file
or to a remote endpoint. Depending on your specific architecture, it might
not always be desirable or feasible to deploy the required management tools
on a particular platform (for example, on z/OS). In this case, it would not be
appropriate to persist the performance logging data to a local file, because
there would be no local application to consume it.

In some situations, NFS or a similar file sharing mechanism might be used
to persist data across your distributed system. However, security and
performance concerns often prevent the use of such protocols. In such
cases, Orbix provides a remote logging facility for the purposes of sending
logging data to a remote endpoint where the data can be persisted and
subsequently consumed by an application that is native to that remote
system.

Components of a remote logging
framework

The components of a remote logging framework are as follows:

• The performance logging collector plug-in runs in a deployed
application on the source host. This is the host that sends its logging
data to a remote endpoint. The collector is configured to harvest the
required performance logging data and to write this data to a remote
CORBA endpoint (instead of, for example, to a local file on the source
host).

• The remote logger daemon is an Orbix application that is deployed on
the remote target host. It loads the remote log receiver servant, which
is accepts the performance logging data from the source applications
and logs this data to a local file on the target host.

• The EMS component (for example, a Tivoli or BMC Patrol agent) runs
on the remote target host. It consumes the data from the file and
propagates the performance information to the centralized region
manager.

Note: Remote logging is only supported in the C++ version of the
performance logging collector plug-in.
41

CHAPTER 3 | Enterprise Performance Logging
Figure 13 shows how remote logging works.

Figure 13: Remote Logging Framework
 42

Remote Performance Logging
Deploying a remote logger
daemon

As explained in “Components of a remote logging framework” on page 41,
the remote logger daemon loads the remote log receiver servant, which
accepts the performance logging data from the source application(s), and
logs this data to a local file on the target host. You may deploy the remote
logger plug-in in any Orbix application. The remote logger plug-in should be
deployed in a standalone container whose sole purpose is to log data from
one or more source applications. The local file on the remote host can then
be consumed by the EMS agent running on that host, or used as part of
some custom-made solution.

Points to note The following points should be noted:

• IIOP is used for the data communication between the collector and the
remote logger daemon. This adds very low overhead to the logging
payload, because it uses a binary protocol on the wire (CDR).

• To secure the message transfer, IIOP/TLS can be used for data
communication between the collector and the remote logger daemon.

• The timestamps embedded in the remote logging data are localized to
the specific source system on which the monitored application is
running. You must ensure that the system clocks on all participating
systems are synchronized to an acceptable level, as governed by your
EMS or your custom-made solution.
43

CHAPTER 3 | Enterprise Performance Logging
Configuring Remote Performance Logging

Overview This section explains how to configure remote logging, which enables you to
send logging data to a remote endpoint on another host rather than to a
local file.

Configuring the remote logger
daemon

To configure the remote logger daemon that runs on the remote target host,
add the following configuration scope and settings to your Orbix
configuration domain:

…
remote_logger_daemon
{

orb_plugins = ["local_log_stream", "remote_log_receiver"];
event_log:filters = ["IT_MGMT_LOGGING=*"];

plugins:remote_log_receiver:log_filename =
"/var/logs/remote_perflogs.txt";

plugins:remote_log_receiver:ior_filename =
"/var/publish/logger_ref.txt";

plugins:remote_log_receiver:iiop:addr_list = ["host:port"];
plugins:remote_log_receiver:prerequisite_plugins =

["iiop_profile", "giop", "iiop"];
};
…

Note: You can add this configuration scope directly to your configuration
file, or create a separate configuration file that includes your existing
configuration file.
 44

Configuring Remote Performance Logging
Remote logging configuration settings

The settings for the remote_log_receiver plug-in are explained as follows:

TLS security

If you are using TLS security:

• Ensure that you replace the plugins:remote_log_receiver:iiop:
addr_list configuration item with plugins:remote_log_receiver:
iiop_tls:addr_list.

• Ensure that the plugins:remote_log_receiver:prerequisite_
plugins configuration item lists iiop_tls rather than iiop.

plugins:remote_log_receiver:
log_filename

This is the local file on the remote host
to which all logs are directed.

plugins:remote_log_receiver:
ior_filename

When the remote logger daemon is
started, it writes a stringified
Interoperable Object Reference (IOR) to
the file specified by this configuration
item. This IOR may be subsequently
made available to the source
applications that are acting as clients of
the remote logger. However, this is not
required if the source applications use a
corbaloc URL rather than an IOR to
contact the remote logger.

plugins:remote_log_receiver:
iiop:addr_list

This specifies the hostname or IP
address of the host on which the remote
logger is running, and the port that it
uses to listen for logging requests.

plugins:remote_log_receiver:
prerequisite_plugins

This must specify the IIOP plug-ins that
the remote logger needs for
communication with the source host(s).
45

CHAPTER 3 | Enterprise Performance Logging
Configuring a deployed
application on the source host

You must also configure your deployed application to use performance
logging with the remote logger capability. For the purposes of illustration, it
describes the steps that are required to configure an Orbix Mainframe
application.

Configuration steps

To enable a deployed application (for example, on z/OS) to use performance
logging with the remote logger capability:

1. Ensure that the remote logger daemon has been configured correctly
and deployed on the target host, as described in “Configuring the
remote logger daemon” on page 44.

2. Open the configuration domain for your deployed application. By
default, this is orbixhlq.DOMAINS(FILEDOMA) for Orbix Mainframe
applications.

3. Go to the appropriate configuration scope for your application.

4. Add it_response_time_logger to the end of the ORB plug-ins list
setting. Also, ensure that IIOP is enabled for the application, for
example:

5. Add it_response_time_logger to the server binding list for the
application. For example:

orb_plugins = ["local_log_stream", "iiop_profile", "giop",
 "iiop", …, "it_response_time_logger"];

Note: Ensure that you have a management license available.

binding:server_binding_list =
["SOAP+it_response_time_logger",

 "it_response_time_logger"];
 46

Configuring Remote Performance Logging
6. Add the following collector plug-in configuration variables:

Example output

The following is example output from the performance log on the remote file
system where a number of different operations have been run against the
application:

update the log every 30 seconds
plugins:it_response_time_collector:period = "30";

the id of the server for the log output
plugins:it_response_time_collector:server-id = "server-id";

the remote endpoint details:
plugins:it_response_time_collector:remote_logging_enabled =

"true";
initial_references:IT_PerfLoggingReceiver:reference =

"corbaloc:iiop:1.2@remote_host:1234/IT_PerfLoggingReceiver ";

Note: Ensure that the server-id value is replaced with the actual server
ID for the log output (for example, cics-server-adapter-1).

2006-10-18 10:08:22 server=cics-server-adapter-1 status=starting_up
2006-10-18 10:08:22 server=cics-server-adapter-1 status=running
2006-10-18 10:08:52 server=cics-server-adapter-1 status=running
2006-10-18 10:09:22 server=cics-server-adapter-1 status=running
2006-10-18 10:09:22 server=cics-server-adapter-1 [operation=test_bounded] count=1 avg=110

max=110 min=110
int=30001 oph=119
2006-10-18 10:09:22 server=cics-server-adapter-1 [operation=test_unbounded] count=1 avg=809

max=809 min=809
int=30001 oph=119
2006-10-18 10:09:52 server=cics-server-adapter-1 status=running
2006-10-18 10:09:52 server=cics-server-adapter-1 [operation=call_me] count=1 avg=793 max=793

min=793
int=29998 oph=120
2006-10-18 10:10:22 server=cics-server-adapter-1 status=running
2006-10-18 10:10:22 server=cics-server-adapter-1 [operation=_get_currentMappings] count=1 avg=0

max=0 min=0
int=30000 oph=120
2006-10-18 10:10:52 server=cics-server-adapter-1 status=running
2006-10-18 10:11:22 server=cics-server-adapter-1 status=running
2006-10-18 10:11:52 server=cics-server-adapter-1 status=running
2006-10-18 10:12:22 server=cics-server-adapter-1 status=running
47

CHAPTER 3 | Enterprise Performance Logging
2006-10-18 10:12:22 server=cics-server-adapter-1 [operation=resolve] count=1 avg=0 max=0 min=0
int=29999 oph=120

2006-10-18 10:12:52 server=cics-server-adapter-1 status=running
2006-10-18 10:12:57 server=cics-server-adapter-1 status=shutdown_started
2006-10-18 10:12:57 server=cics-server-adapter-1 status=shutdown_complete
 48

Part 2
Programmer’s Guide

In this part This part contains the following chapters:

Introduction to Application Management page 51

Instrumenting CORBA C++ Applications page 63

MBean Document Type Definition page 97

CHAPTER 4

Introduction to
Application
Management
This chapter gives an overview of Orbix enterprise application
management. It introduces the Orbix management tools,
Oracle’s Java Management Extensions API, and Micro
Focus’s Orbix Management API. It also provides an overview
of management programming tasks.

In this chapter This chapter contains the following sections:

Introduction to the Orbix Management Tools page 52

Introduction to Java Management Extensions page 54

Introduction to the Orbix Management API page 57

Overview of Management Programming Tasks page 59
51

CHAPTER 4 | Introduction to Application Management
Introduction to the Orbix Management Tools

Overview The Orbix management tools enable administrators to configure, monitor
and control distributed applications at runtime. Orbix provides seamless
management across the Orbix product , or any applications developed using
those products, across different platform and programming language
environments. The Orbix management tools include the following main
components:

• “Administrator Web Console”.

• “Orbix Management Service”.

• “Orbix Configuration Explorer”.

• “Orbix Configuration Authority”.

Administrator Web Console The Administrator Web Console provides a web browser interface to the
Orbix management tools. It enables you to manage applications and
application events from anywhere, without the need for download or
installation. It communicates with the management service using HTTP
(Hypertext Transfer Protocol), as illustrated in Figure 14.

Orbix Management Service The Orbix Management Service is the central point of contact for accessing
management information in a domain. A domain is an abstract group of
managed server processes within a physical location. The management
service is accessed by both the Administrator Web Console and the Orbix
Configuration Explorer.

Orbix Configuration Explorer The Orbix Configuration Explorer is a Java graphical user interface (GUI)
that enables you to manage your configuration settings. It communicates
with your Configuration Repository (CFR) or configuration file, using IIOP
(Internet Inter-ORB Protocol).

Note: Managed z/OS applications can be written in C++. CORBA C++
applications use the management service process,
iona_services.management.
 52

Introduction to the Orbix Management Tools
Figure 14 shows how the Orbix management tools interact with managed
applications to provide management capabilities.

Orbix Configuration Authority The Orbix Configuration Authority provides a web browser interface to
descriptive information about all Orbix configuration settings. You can
browse and search for information about Orbix configuration variables in
your CFR or configuration file.

Further information For detailed information about using the Orbix management tools, see the
Management User’s Guide.

Figure 14: Management Overview
53

CHAPTER 4 | Introduction to Application Management
Introduction to Java Management Extensions

Overview Java Management Extensions (JMX) is a standards-based API from Oracle
that provides a framework for adding enterprise management capabilities to
user applications. This section explains the main JMX concepts and shows
how JMX and Orbix interact to provide enterprise management for Java
applications. This includes both J2EE and CORBA Java servers.

This section includes the following:

• “MBeans”.

• “The MBean server”.

• “Management instrumentation”.

• “Standard and Dynamic MBeans”.

• “Further information”.

MBeans The concept of an MBean (a managed bean) is central to JMX. An MBean is
simply an object with associated attributes and operations. It acts as a
handle to your application object, and enables the object to be managed.

For example, a Car MBean object, with an associated speed attribute, and
start() and stop() operations, is used to represent a car application
object, with corresponding attributes and operations. Application developers
can express their application objects as a series of related MBeans. This
enables administrators to manage these application objects using an
administration console (for example, the Orbix management tools).

The MBean server All the MBeans created by developers are managed and controlled by a
MBean server, which is provided by JMX. All MBeans that are created must
be registered with an MBean server so that they can be accessed by
management applications, such as Orbix.

Figure 15 shows a Java example of the JMX components at work. It shows
how these components interact with Orbix to provide management
capability for your application.
 54

Introduction to Java Management Extensions
For simplicity, this diagram only shows one MBean. An application might
have multiple MBeans representing the application objects that you wish to
manage. In addition, new instrumentation code is not solely confined to the
MBean. You will need to add some new code to your sever implementation
(for example, to enable your server to contact the management service).

Management instrumentation Adding JMX management code to your application is also known as adding
management instrumentation or instrumenting your existing application.
These standard management terms are used throughout this book.

Figure 15 shows the new management instrumentation code as an MBean.
MBeans must be added to your application to enable it for management.

Figure 15: JMX Management and Orbix
55

CHAPTER 4 | Introduction to Application Management
Standard and Dynamic MBeans The MBeans discussed so far in this chapter are referred to as standard
MBeans. These are ideally suited to straightforward management scenarios
where the structure of managed data is well defined and unlikely to change
often. JMX specifies another category of MBeans called dynamic MBeans.
These are designed for when the structure of the managed data is likely to
change regularly during the lifetime of the application.

Implementing dynamic MBeans is more complex than for standard MBeans.
If your management solution needs to provide integration with existing and
future management protocols and platforms, using dynamic MBeans could
make it more difficult to achieve this goal. The examples cited in this book
use standard MBeans only.

Further information For more information about JMX, see Oracle’s JMX Instrumentation and
Agent Specification, and Reference Implementation Javadoc. These
documents are available online at:

https://www.oracle.com/java/technologies/javase/javamanagement.html

For information on how to integrate the Orbix management tools with other
general purpose management applications (for example, HP OpenviewTM or
CA UniCenterTM), see the "SNMP Integration" chapter in the Management
User’s Guide.
 56

https://www.oracle.com/java/technologies/javase/javamanagement.html

Introduction to the Orbix Management API
Introduction to the Orbix Management API

Overview JMX does not specify how MBeans communicate at the network protocol
level. Micro Focus’s Orbix Management API is used to enable network
communications for MBeans. This API also enables you to specify
relationships between MBeans, and display MBeans in the Orbix
management tools. This section includes the following:

• “The IIOP Adaptor”.

• “Defining MBean relationships”.

• “C++ Instrumentation”.

The IIOP Adaptor The Orbix Management API enables network communication between the
MBean server and the management service over IIOP (Internet Inter-ORB
Protocol). This is performed using an IIOP adapter, which is contained in
the ORB plugin for the management service.

Figure 15 shows a J2EE example of this IIOP communication. This
cross-platform API also enables communication for CORBA Java and C++
servers.

Defining MBean relationships The Orbix Management API also enables you to specify hierarchical parent–
child relationships between MBeans. For example, you might want to show
relationships between your application server and its lower-level processes.
These relationships can then be displayed in the Administrator Web
Console.

Figure 16 shows example parent–child relationships displayed in the left
pane of the Administrator Web Console.
57

CHAPTER 4 | Introduction to Application Management

C++ Instrumentation The concept of an MBean is a Java term that comes from JMX. The C++
version of the Orbix Management API uses the generic concept of a
Managed Entity instead of an MBean. A C++ Managed Entity is
functionally equivalent to the Java MBean. It acts as a handle to your
application object, and enables the object to be managed.

The C++ version of the Orbix Management API is defined in IDL (Interface
Definition Language).

For more details of the Orbix Management API, see the Orbix Management
IDLdoc.

Figure 16: Example Parent–Child Relationship
 58

Overview of Management Programming Tasks
Overview of Management Programming Tasks

Overview This section gives an overview of the typical management programming
tasks. These include the following:

• “Identifying tasks to be managed”.

• “Writing your MBeans”.

• “Registering your MBeans with the MBean server”.

• “Unregistering your MBeans”.

• “Defining relationships between MBeans”.

These tasks are explained in more detail in “Instrumenting CORBA C++
Applications” on page 63.

Identifying tasks to be managed Before adding any management code to an application, you must decide on
the application tasks that you wish the administrator to manage.

Deciding which tasks should be managed varies from application to
application. This depends on the nature of the application, and on the type
of runtime administration that is required. Typical managed tasks include
monitoring the status of an application (for example, whether it is active or
inactive), and controlling its operation (for example, starting or stopping the
application).

Writing your MBeans When you have decided which parts of your application need to be
managed, you can define and implement MBeans to satisfy your
management objectives. Each MBean object must implement an interface
ending with the term MBean (for example, CarMBean).
To expose its attributes, an MBean interface must declare a number of get
and set operations. If get operations are declared only, the MBean attributes
are read-only. If set operations are declared, the MBean attributes are
writable.
59

CHAPTER 4 | Introduction to Application Management
Registering your MBeans with the
MBean server

Registering application MBeans with the MBean server enables them to be
monitored and controlled by the Orbix management tools. Choosing when to
register or expose your MBeans varies from application to application.
However, there are two stages when all applications create and register
MBeans:

During application initialization. During any application initialization
sequence, a set of objects is created that represents the core functionality of
the application. After these objects are created, MBeans should also be
created and registered, to enable basic management of that application.

During normal application runtime. During normal application runtime,
new objects are created as a result of internal or external events (for
example, an internal timer, or a request from a client). When new objects
are created, corresponding MBeans can be created and registered, to enable
management of these new application components. For example, in a bank
example when a new account is created, a new account MBean would be
also be created and registered with the MBean server.

Unregistering your MBeans You might wish to unregister an MBean in response to an administrator’s
interaction with the system. For example, if a bank teller session is closed, it
would be appropriate to unregister a corresponding session MBean. This
ensures that the MBean will no longer be displayed as part of the
application that is being managed.

Defining relationships between
MBeans

You can use the Orbix Management API to define parent–child relationships
between MBeans. These relationships are then displayed in the
Administrator Web Console, as shown in Figure 16 on page 58.

Parent-child relationships are no longer displayed in the console when the
MBean is unregistered by the application (for example, if a bank account is
closed).
 60

Overview of Management Programming Tasks
Instrumentation demonstration An instrumentation demonstration is provided in the UNIX System Services
component of your Orbix Mainframe installation, as follows (where
install_dir represents the full path to your Orbix Mainframe installation on
UNIX System Services):

This instrumentation demonstration illustrates how to use the main
Management APIs and how to write your own Generic Service application.
You can use an ORB plug-in approach to build the Management code, to
instrument existing services such as the CICS and IMS server adapters.

install_dir/asp/Version/demos/corba/pdk/instrumented_plugin
61

CHAPTER 4 | Introduction to Application Management
 62

CHAPTER 5

Instrumenting
CORBA C++
Applications
This chapter explains how to use the Orbix C++ Management
API to enable an existing CORBA C++ application for
management. It uses the CORBA instrumented_plugin demo
as an example.

In this chapter This chapter contains the following sections:

Step 1—Identifying Tasks to be Managed page 64

Step 2—Defining your MBeans page 68

Step 3—Implementing your MBeans page 74

Step 4—Initializing the Management Plugin page 88

Step 5—Creating your MBeans page 90

Step 6—Connecting MBeans Together page 92
63

CHAPTER 5 | Instrumenting CORBA C++ Applications
Step 1—Identifying Tasks to be Managed

Overview Before adding management code to an application, you must decide on the
tasks in your application that you wish to be managed by a system
administrator. Only then should you start thinking about adding
management instrumentation code to your existing application. This section
includes the following:

• “Existing functionality”.

• “New management tasks”.

• “Planning your programming steps”.

• “Location of the management code”.

Existing functionality The instrumented_plugin example adds management capability to an
existing CORBA C++ application. This is a simple "Hello World"
application, where the client application reads the server’s object reference
from a file.

For details of how to run the instrumented plugin application, see the
README_CXX.txt file in the following Orbix directory:

<install-dir>/asp/Version/demos/corba/pdk/instrumented_plugin

New management tasks The new management instrumentation code added to instrumented_plugin
application enables administrators to perform the following additional tasks:

• Monitor the status of the Hello server (active or inactive).

• Monitor the number of times that the client reads the server’s object
reference.

• Set a hello text message.

• Invoke a weather forecast with specified text values.

• Shutdown the Hello server.

Administrators can perform these tasks using the Administrator Web
Console, shown in Figure 17.
 64

Step 1—Identifying Tasks to be Managed

Planning your programming steps When you have identified your management tasks, you should think
carefully about how exactly you wish to add the new management code to
your existing application. For example, how much of the new code you will
add to existing files, and how much will be in new files.

In the instrumented_plugin example, the instrumentation code is part of
the service and is initialized when the service is initialized. For larger
applications, you might wish to keep new instrumentation files in a separate
directory.

Figure 17: Instrumented Plugin in Administrator Web Console
65

CHAPTER 5 | Instrumenting CORBA C++ Applications
This chapter explains how Orbix C++ management code was added to the
instrumented_plugin application, and shows the standard programming
steps. For example, defining and implementing your MBeans, and defining
relationships between MBeans.

Location of the management code You should first decide where you wish to store your new management
code. All source code for the instrumented_plugin application is stored in
the following directory:

<install-dir>/asp/Version/demos/corba/pdk/instrumented_plugin/
The management code for the CORBA C++ server is stored in the following
directory:

.../instrumented_plugin/cxx_server
The following files are discussed in detail in this chapter

• hello_mbean.h
• hello_mbean.cxx
• hello_world_impl.cxx

For larger applications, it is advised that you to store your management code
in a separate management directory. This will make your application more
modular, and easier to understand.

Instrumented plugin overview Figure 18 shows the main components of the instrumented_plugin
application. In this simple example, there is only one C++ MBean, the
HelloBean.
Most of the key management programming tasks in this example are
performed in the HelloWorld server implementation
(hello_world_impl.cxx). For example, management initialization, creating
the MBean, and displaying MBeans in the navigation tree of the console.
The server implementation interacts with the MBean implementation to
perform these tasks.

Note: When instrumenting CORBA C++ servers, you do not need to
make any changes to the CORBA IDL. You can enable your application for
management simply by adding new MBean instrumentation code to your
CORBA C++ implementation files.
 66

Step 1—Identifying Tasks to be Managed
Figure 18: Instrumented Plugin Application Overview

HelloWorld
Client

HelloWorld
Server

HelloMBean

Instrumented Plugin C++ Application

IONA Administrator

HelloWorld
plugin
67

CHAPTER 5 | Instrumenting CORBA C++ Applications
Step 2—Defining your MBeans

Overview When you have planned which parts of your application need to be
managed, you can then define MBeans to satisfy your management
objectives. This section shows how to define an example MBean header file
for the instrumented_plugin application. This section includes the
following:

• “Managed Entities and MBeans”.

• “Rules for MBean declarations”.

• “Example MBean declaration”.

• “Example private description”.

• “Further information”.

Managed Entities and MBeans The C++ version of the Orbix Management API is based around the concept
of a Managed Entity. This is similar to the JMX MBeans that are used by
Java Programmers. A managed entity acts as a handle to your application
object, and enables the object to be managed. The terms managed entity
and MBean are used interchangeably in this document.

The Orbix C++ Management API is defined in CORBA IDL (Interface
Definition Language). For full details of the Orbix Management API, see the
Orbix Management IDLdoc.

Rules for MBean declarations The following rules apply for C++ MBeans:

• Each MBean object must implement the declaration defined for it in a
C++ header file (in this example, hello_mbean.h).

• The following two operations must be declared and implemented:

♦ get_mgmt_attribute()
♦ set_mgmt_attribute()
(although their implementation may be empty). These are the only two
operations for getting and setting all MBean attributes. The name of
the attribute is passed as a parameter, and the operation determines
whether to get or set the attribute.
 68

Step 2—Defining your MBeans
• The invoke_method() operation must also be declared and
implemented (although its implementation may be empty).

You must declare all these methods in the MBean header file, and then
implement them in the corresponding MBean implementation file (in this
example, hello_mbean.cxx).

Example MBean declaration The header file for the instrumented_plugin application is hello_mbean.h.
It includes the following Hello MBean declaration:

Example 1: Hello MBean Declaration

#ifndef _HELLO_MBEAN_H_
#define _HELLO_MBEAN_H_

#include <omg/orb.hh>
#include <orbix_pdk/instrumentation.hh>
#include <orbix/corba.hh>
#include <it_dsa/string.h>
#include <it_dsa/list.h>
#include <it_ts/mutex.h>

class HelloWorldImpl;

class HelloMBean :
1 public virtual IT_Mgmt::ManagedEntity,

 public virtual IT_CORBA::RefCountedLocalObject {

 public:

 HelloMBean (
 HelloWorldImpl * orb_info,
 const char * name
);

 virtual ~HelloMBean();

2 IT_Mgmt::ManagedEntityIdentifier managed_entity_id()
 IT_THROW_DECL((CORBA::SystemException));

3 char* entity_type() IT_THROW_DECL((CORBA::SystemException));
69

CHAPTER 5 | Instrumenting CORBA C++ Applications
This hello_mbean.h code example is described as follows:

1. The HelloMBean class implements the IT_Mgmt::ManagedEntity IDL
interface. All entities that need to be managed must derive from this
interface. The C++ implementation of the IT_Mgmt::ManagedEntity
IDL interface is equivalent to a Java MBean.

2. The IT_Mgmt::ManagedEntityIdentifier managed_entity_id()
operation is used to uniquely identify the managed entity.

3. The entity_type() operation returns a string indicating the type.
This demo uses HelloMBean, which is the C++ classname. The
naming service, for example, uses NamingMBean.

4 CORBA::Any* get_mgmt_attribute(const char* key)
 IT_THROW_DECL((CORBA::SystemException,
 IT_Mgmt::AttributeUnknown));

 void set_mgmt_attribute(
 const char* key, const CORBA::Any & new_value)
 IT_THROW_DECL((CORBA::SystemException,
 IT_Mgmt::AttributeUnknown, IT_Mgmt::AttributeReadOnly,
 IT_Mgmt::AttributeValueInvalid));

 CORBA::Any* invoke_method (const char* method_name,
 const IT_Mgmt::ArgumentSeq& in_parameters,
 IT_Mgmt::ArgumentSeq_out out_parameters)
 IT_THROW_DECL((CORBA::SystemException,
 IT_Mgmt::MethodUnknown, IT_Mgmt::InvocationFailed));

5 IT_Mgmt::ManagedEntityDescription get_description()
 IT_THROW_DECL((CORBA::SystemException));

 struct HelloParam
 {
 const char *name;
 const char *type;
 const char *description;
 };

 typedef IT_List<HelloParam> HelloParamList;
.
.
.

Example 1: Hello MBean Declaration
 70

Step 2—Defining your MBeans
4. The get_mgmt_attribute(), set_mgmt_attribute(), and
invoke_method() operations all use the CORBA::Any type to access
managed entity attributes and operations.

The CORBA::Any type enables you to specify values that can express
any IDL type. For detailed information about the CORBA::Any type, see
the CORBA Programmer’s Guide (C++ version).

5. The get_description() operation returns an XML description of the
managed entity. This is used to display information about the managed
entity in the Administrator Web Console. This is described in more
detail in the next topic.

Example private description The hello_mbean.h file also includes the following privately declared
information:

Example 2: HelloMBean Private Declaration

private:

1 struct HelloAttribute
 {
 const char * name;
 const char * type;
 const char * description;
 IT_Bool access;
 };
 typedef IT_List<HelloAttribute> HelloAttributeList;

 struct HelloOperation
 {
 const char * name;
 const char * return_type;
 const char * description;
 HelloParamList params;
 };

 typedef IT_List<HelloOperation> HelloOperationList;

 void initialize_attributes();

 void initialize_operations();

 IT_String get_attributes_XML() const;
71

CHAPTER 5 | Instrumenting CORBA C++ Applications
 IT_String get_attribute_XML(HelloAttribute att) const;

 IT_String get_operations_XML() const;

 IT_String get_operation_XML(HelloOperation op) const;

 IT_String get_param_XML(HelloParam param) const;

2 IT_Bool validate_create_forecast_parameters(
 const IT_Mgmt::ArgumentSeq& in_parameters)
 throw (IT_Mgmt::InvocationFailed);

 void throw_wrong_num_parameters()
 throw (IT_Mgmt::InvocationFailed);

 void throw_invalid_parameter(const char *param_name)
 throw (IT_Mgmt::InvocationFailed);

 void throw_bad_temp_range(const char *paramName,
 CORBA::Short minVal, CORBA::Short maxVal)
 throw (IT_Mgmt::InvocationFailed);

 void throw_max_must_be_greater_than_min()
 throw (IT_Mgmt::InvocationFailed);

 HelloAttributeList m_attribute_list;
 HelloOperationList m_operation_list;
 IT_String m_identity;
 IT_String m_domain;
 IT_String m_class_name;
 IT_String m_type;
 IT_String m_name;
 IT_Mutex m_mutex;

 // Attribute names
 const char* m_hit_count_name;
 const char* m_children_name;
 const char* m_message_name;

 // Operation names
 const char* m_create_forecast_name;

 HelloWorldImpl* m_hello;
};

Example 2: HelloMBean Private Declaration
 72

Step 2—Defining your MBeans
1. This privately declared information is used to display descriptions of
managed attributes and operations in the Administrator Web Console.
For example, the initialize_attributes() function uses a
HelloAttribute structure to define a single attribute. An instance of
this attribute and anything else that you declare are pushed on to a a
list. This list is then processed by get_attributes_XML() and by
get_attribute_XML() to generate the description for display in the
Administrator Web Console.

2. These operations all throw IT_Mgmt management exceptions. You also
can specify custom management exceptions. For more information, see
“Throw the managed exceptions” on page 82.

Further information C++ Managed entities are similar to the JMX MBeans that are used by Java
Programmers. For information about Java MBeans see:

https://docs.oracle.com/javase/tutorial/jmx/mbeans/index.html
73

https://docs.oracle.com/javase/tutorial/jmx/mbeans/index.html

CHAPTER 5 | Instrumenting CORBA C++ Applications
Step 3—Implementing your MBeans

Overview After defining your MBean interfaces, you must provide an MBean
implementation. MBean implementation objects interact with the
application they are designed to manage, enabling monitoring and control.

For example, this section shows the interaction between an MBean
(HelloMBean) and the CORBA server implementation object
(HelloWorldImpl). This section shows example code extracts from the
MBean implementation file (hello_mbean.cxx). It includes the following
steps:

1. “Write the MBean constructor and destructor”.

2. “Get the managed entity ID and entity type”.

3. “Get the managed attributes”.

4. “Set the managed attributes”

5. “Invoke the managed operations”.

6. “Throw the managed exceptions”.

7. “Get the MBean description”.

Write the MBean constructor and
destructor

The HelloMBean constructor and destructor are shown in the following
extract from hello_mbean.cxx:

Example 3: MBean Constructor and Destructor

1 HelloMBean::HelloMBean (
 HelloWorldImpl * hello, const char *name) : m_hello(0)
{
 assert(hello != 0);
 hello->_add_ref();
 m_hello = hello;
 m_domain = m_hello->get_domain_name();
 m_class_name = "com.iona.hello.HelloMBean";
 m_type = "HelloMBean";
 m_name = "HelloService";
 74

Step 3—Implementing your MBeans
This code extract is explained as follows:

1. The HelloMBean() constructor specifies all the key information used to
identify the MBean, and display it in the Administrator Web Console.
For example, this includes its domain name, a Java-style class name
(com.iona.hello.HelloMBean), and a managed entity ID. For
information about registering MBeans as managed entities, see
“Creating an example MBean” on page 90.

2. The HelloMBean() destructor. For information about unregistering
MBeans as managed entities, see “Removing your MBeans” on
page 91.

Get the managed entity ID and
entity type

The managed entity ID and type uniquely identify the managed entity. The
following code extract shows how to obtain the managed entity ID and its
type:

 m_identity = "DefaultDomain";
 //m_identity = m_domain.c_str();
 m_identity += ":type=HelloMBean,name=";
 m_identity += name;
 initialize_attributes();
 initialize_operations();
}

2 HelloMBean::~HelloMBean()
{
 m_hello->_remove_ref();
}

Example 3: MBean Constructor and Destructor

Example 4: Managed Entity ID and Type

1 IT_Mgmt::ManagedEntityIdentifier HelloMBean::managed_entity_id()
IT_THROW_DECL((CORBA::SystemException))

{
 return CORBA::string_dup(m_identity.c_str());
}

2 char* HelloMBean::entity_type()
 IT_THROW_DECL((CORBA::SystemException))
{
 return CORBA::string_dup(m_type.c_str());
}

75

CHAPTER 5 | Instrumenting CORBA C++ Applications
This code extract is explained as follows:

1. The ID returned by managed_entity_id() is a string that includes the
domain, type, and name, at minimum. These are the keys that are
looked up in the MBean by the management service. The actual values
are decided by the developer.

This example uses the DefaultDomain for the first string (the domain).
You can specify your own domain name instead. The rest of the name
value pairs follow, and are separated by commas, for example:

"DefaultDomain:type=HelloMBean,name=HelloService"

2. The entity_type() operation returns a string indicating the type of the
managed entity. The entity type is formatted in a dotted Java-style
notation, which can be used by the Administrator Web Console to
display icons for an MBean. For example, this demo uses the
com.iona.hello.HelloMBean type.

Get the managed attributes The following code extract shows how to get managed MBean attributes:

Note: The domain name part of the managed entity ID is not related
to an Orbix configuration or location domain. It is a namespace for
managed entities only. For example, in a banking application your
IDs might use a BankingApp domain.

Example 5: Getting Managed Attributes

1 CORBA::Any* HelloMBean::get_mgmt_attribute(const char* key)
IT_THROW_DECL((CORBA::SystemException,
IT_Mgmt::AttributeUnknown))

 {
2 CORBA::Any_var retval = new CORBA::Any;

 if (strcmp(key, m_hit_count_name) == 0)
 {
 IT_Locker<IT_Mutex> lock(m_mutex);
 *retval <<= m_hello->total_hits();
 return retval._retn();
 }

3 else if (strcmp(key, m_children_name) == 0)
 {
 IT_Locker<IT_Mutex> lock(m_mutex);
 HelloWorldImpl::HelloWorldList children =
 m_hello->get_children();
 76

Step 3—Implementing your MBeans
This code extract is explained as follows:

1. The get_mgmt_attribute() operation is the only operation used for
getting all MBean attributes. The name of the attribute is passed in
and the operation determines whether to get the attribute.

2. The CORBA::Any type enables you to specify values that can express
any IDL type. For details of managed attribute types, see “Permitted
types” on page 78. For detailed information about the CORBA::Any
type, see the CORBA Programmer’s Guide, C++.

3. This get_mgmt_attribute() implementation supports complex
attribute types by also getting the attributes of child MBeans.

In the instrumented_plugin example, the children attribute of the
Hello MBean gets a list of references to child MBeans.

 CORBA::AnySeq children_seq(children.size());
 children_seq.length(children.size());
 HelloWorldImpl::HelloWorldList::iterator iter =
 children.begin();

 for (int i = 0; i < children.size();i++, iter++)
 {
 IT_Mgmt::ManagedEntity_var mbean = (*iter)->get_mbean();
 children_seq[i] <<= mbean.in();
 }
 *retval <<= children_seq;
 return retval._retn();
 }

 else if (strcmp(key, m_message_name) == 0)
 {
 IT_Locker<IT_Mutex> lock(m_mutex);
 CORBA::String_var message = m_hello->get_message();
 *retval <<= message.in();
 return retval._retn();
 }
 else
 {
 throw new IT_Mgmt::AttributeUnknown();
 }
}

Example 5: Getting Managed Attributes
77

CHAPTER 5 | Instrumenting CORBA C++ Applications
For example, in Figure 17 on page 65, the Children attribute and its
child MBeans (hello3 and hello2) are displayed in the Administrator
Web Console.

Permitted types The following basic types are permitted for managed
attributes:

CORBA::Short
CORBA::Long
CORBA::LongLong
CORBA::Float
CORBA::Double
CORBA::Boolean
CORBA::Octet
CORBA::String,
CORBA::WString.
In addition, you can use ManagedEntity references to connect one Managed
Entity and another. These will be displayed as hyperlinks on the web
console. Finally, you can use CORBA::AnySeq to create lists of any of the
permitted types already listed.

Set the managed attributes The following code extract shows how to set managed MBean attributes:

Example 6: Setting Managed Attributes

1 void HelloMBean::set_mgmt_attribute(const char* key,
 const CORBA::Any & new_value

IT_THROW_DECL((CORBA::SystemException,
 IT_Mgmt::AttributeUnknown, IT_Mgmt::AttributeReadOnly,

IT_Mgmt::AttributeValueInvalid))
 {
 if (strcmp(key, m_message_name) == 0)
 {
 CORBA::TypeCode_var tc(new_value.type());
 CORBA::TCKind kind = tc->kind();

 if (kind != CORBA::tk_string)
 {
 throw new IT_Mgmt::AttributeValueInvalid();
 }
 const char *new_message;
 new_value >>= new_message;
 78

Step 3—Implementing your MBeans
This code extract is explained as follows:

1. The set_mgmt_attribute() operation is the only operation used for
setting all MBean attributes. The name of the attribute is passed in and
the operation determines whether to set the attribute.

The CORBA::Any type enables you to specify values that can express
any IDL type. For detailed information about the CORBA::Any type, see
the CORBA Programmer’s Guide, C++.

2. The set_message() function enables you to set the text message for
the hello greeting that is returned by the Hello object. For example,
Figure 17 on page 65, shows an example text greeting for the Message
attribute in the Administrator Web Console.

2 m_hello->set_message(new_message);
 }
 else if (strcmp(key, m_hit_count_name) == 0)
 {
 throw new IT_Mgmt::AttributeReadOnly();
 }
 else if (strcmp(key, m_children_name) == 0)
 {
 throw new IT_Mgmt::AttributeReadOnly();
 }
 else
 {
 throw new IT_Mgmt::AttributeUnknown();
 }
}

Example 6: Setting Managed Attributes
79

CHAPTER 5 | Instrumenting CORBA C++ Applications
Invoke the managed operations The following code extract shows how to invoke MBean operations:

Example 7: Invoke Operations

1 CORBA::Any* HelloMBean::invoke_method(const char* method_name,
 const IT_Mgmt::ArgumentSeq& in_parameters,
 IT_Mgmt::ArgumentSeq_out out_parameters)
 IT_THROW_DECL((CORBA::SystemException,IT_Mgmt::MethodUnknown
 IT_Mgmt::InvocationFailed))
 {
 CORBA::Any_var retval = new CORBA::Any;
 if (strcmp(method_name,m_create_forecast_name) == 0)
 {
 IT_Locker<IT_Mutex> lock(m_mutex);

 out_parameters = new IT_Mgmt::ArgumentSeq(0);
 out_parameters->length(0);

 CORBA::String_var forecast;
 CORBA::Short min_temp, max_temp;
 const char *prospect;

 if (in_parameters.length() != 3)
 {
 throw_wrong_num_parameters();
 }

2 validate_create_forecast_parameters(in_parameters);

 in_parameters[0].value >>= min_temp;
 if (min_temp < COLDEST_MIN_TEMP || min_temp >
 HOTTEST_MAX_TEMP)
 {
 throw_bad_temp_range("minimumTemperature",
 COLDEST_MIN_TEMP,HOTTEST_MAX_TEMP);
 }

 in_parameters[1].value >>= max_temp;
 if (max_temp < COLDEST_MIN_TEMP || max_temp >
 HOTTEST_MAX_TEMP)
 {
 throw_bad_temp_range("maxmimumTemperature",
 COLDEST_MIN_TEMP, HOTTEST_MAX_TEMP);
 }
 80

Step 3—Implementing your MBeans
This code extract is explained as follows:

1. The invoke_method() operation is the only operation used for invoking
all MBean operations. The name of the operation is passed in and the
invoke_method() operation determines whether to invoke the
operation.

The CORBA::Any type enables you to specify values that can express
any IDL type. For detailed information about the CORBA::Any type, see
the CORBA Programmer’s Guide, C++.

2. In this example, the validate_create_forecast_parameters()
function checks that the weather forecast values entered are of the
correct type (short or string). The rest of the code checks that the
temperature values entered do not fall outside the range of the
predeclared const values:

 in_parameters[2].value >>= prospect;
 if (max_temp < min_temp)
 {
 throw_max_must_be_greater_than_min();
 }

3 m_hello->set_forecast_parameters(
 min_temp,
 max_temp,
 prospect
);

 forecast = m_hello->get_forecast();
 *retval <<= forecast.in();
 return retval._retn();
 }
 else
 {
 throw new IT_Mgmt::MethodUnknown();
 }
}

Example 7: Invoke Operations

static const CORBA::Short COLDEST_MIN_TEMP = -100;
static const CORBA::Short HOTTEST_MAX_TEMP = 150;
81

CHAPTER 5 | Instrumenting CORBA C++ Applications
3. The set_forecast_parameters() and get_forecast() functions
enable you to create and invoke your own weather forecast. Figure 17
on page 65, shows example parameter values for the CreateForecast
operation in the Administrator Web Console. This operation takes the
following parameters:

♦ min_temp (short)
♦ max_temp (short)
♦ prospect (string)

Throw the managed exceptions Before throwing management exceptions, you must first declare them in
your MBean implementation file, for example:

The following code shows two example functions that are used to throw
management exceptions:

static const char *BAD_TEMP_RANGE_EX =
 "com.iona.demo.pdk.instrumentedplugin.BadTempRange";
static const char *MAX_MUST_BE_GREATER_THAN_MIN_EX =
 "com.iona.demo.pdk.instrumentedplugin.MaxMustBeGreaterThanMin";
static const char *INVALID_PARAM_EX_PARAM_NAME = "paramName";
static const char *BAD_TEMP_RANGE_EX_PARAM_NAME = "paramName";
static const char *BAD_TEMP_RANGE_EX_MIN_VAL = "minVal";
static const char *BAD_TEMP_RANGE_EX_MAX_VAL = "maxVal";

Example 8: Throwing Management Exceptions

void HelloMBean::throw_bad_temp_range(
 const char *paramName,
 CORBA::Short minVal,
 CORBA::Short maxVal) throw (IT_Mgmt::InvocationFailed)
{
 IT_Mgmt::InvocationFailed ex;
 IT_Mgmt::InvocationError err;
 IT_Mgmt::PropertySeq_var properties = new
 IT_Mgmt::PropertySeq(3);
 properties->length(3);
 properties[0].name = BAD_TEMP_RANGE_EX_PARAM_NAME;
 properties[0].value <<= paramName;
 properties[1].name = BAD_TEMP_RANGE_EX_MIN_VAL;
 properties[1].value <<= minVal;
 properties[2].name = BAD_TEMP_RANGE_EX_MAX_VAL;
 properties[2].value <<= maxVal;
 82

Step 3—Implementing your MBeans
Custom exception messages You can specify custom messages using the
exception-ia.properties file, which is located in the following off-host
directory:

install-dir/conf/domains/default-domain/resources
For example, the entry in this file for the throw_bad_temp_range() operation
is as follows:

 err.id = (const char *) BAD_TEMP_RANGE_EX;
 err.error_params = properties;
 ex.error_details = err;

 throw IT_Mgmt::InvocationFailed(ex);
}

void HelloMBean::throw_max_must_be_greater_than_min()
 throw (IT_Mgmt::InvocationFailed)
{
 IT_Mgmt::InvocationFailed ex;
 IT_Mgmt::InvocationError err;

 err.id = (const char *) MAX_MUST_BE_GREATER_THAN_MIN_EX;
 ex.error_details = err;

 throw IT_Mgmt::InvocationFailed(ex);
}

Example 8: Throwing Management Exceptions

com.iona.demo.pdk.instrumentedplugin.BadTempRange=Bad
temperature range entered for parameter %paramName%. The
temperature must be between %minVal% and %maxVal%.

Figure 19: Instrumented Plugin Custom Exception
83

CHAPTER 5 | Instrumenting CORBA C++ Applications
Get the MBean description The following code shows how the MBean descriptions are obtained for
display in the Administrator Web Console:

Example 9: Getting the MBean Description

1 IT_Mgmt::ManagedEntityDescription HelloMBean::get_description()
IT_THROW_DECL((CORBA::SystemException))

{
 IT_String xml_str =
 "<?xml version=\"1.0\"?>"
 "<?rum_dtd version=\"1.0\" ?>"
 "<mbean>"
 "<class_name>";
 xml_str += m_class_name;
 xml_str +=
 "</class_name>"
 "<domain>";
 xml_str += m_domain;
 xml_str +=
 "</domain>"
 "<type>";
 xml_str += m_type;
 xml_str +=
 "</type>"
 "<identity>";
 xml_str += m_identity;
 xml_str +=
 "</identity>"
 "<description>";
 xml_str += "Hello Service";
 xml_str +=
 "</description>";
 xml_str += get_attributes_XML();
 xml_str += get_operations_XML();
 xml_str += "</mbean>";

 return CORBA::string_dup(xml_str.c_str());
}

2 void HelloMBean::initialize_attributes()
{
 m_hit_count_name = "TotalHelloCalls";

 HelloAttribute total_hits =
 {
 84

Step 3—Implementing your MBeans
 m_hit_count_name, "long",
 "The total number of successful calls to
 HelloWorld::request_number() "
 "since the Hello Service started",
 IT_FALSE
 };
 m_attribute_list.push_back(total_hits);

 m_children_name = "Children";

 HelloAttribute children =
 {
 m_children_name, "list",
 "The list of children of this MBean",
 IT_FALSE
 };

 m_attribute_list.push_back(children);

 m_message_name = "Message";

 HelloAttribute message =
 {
 m_message_name, "string",
 "Message that this object emits",
 IT_TRUE
 };

 m_attribute_list.push_back(message);
}

3 IT_String HelloMBean::get_attributes_XML() const
{
 IT_String xml_str("");

 HelloAttributeList::const_iterator iter =
 m_attribute_list.begin();
 while (iter != m_attribute_list.end())
 {
 xml_str += get_attribute_XML(*iter);
 iter++;
 }
 return xml_str;
}

Example 9: Getting the MBean Description
85

CHAPTER 5 | Instrumenting CORBA C++ Applications
This code extract is explained as follows:

1. The get_description() operation returns an XML string description of
the managed entity, which is displayed by the Orbix management
tools. This description normally includes the managed entity’s
attributes and operations (with parameters and return types). This
string must be exact in order to parse correctly. This code example
includes the class_name, domain and type attributes in the
description.

2. The rest of the functions are local to this particular implementation,
and are not defined in IDL. The initialize_attributes() function
uses a locally-defined structure (HelloAttribute) to define a single

IT_String HelloMBean::get_attribute_XML
 (HelloAttribute att) const
{
 IT_String xml_str =
 "<managed_attribute>"
 "<name>";
 xml_str += att.name;
 xml_str +=
 "</name>"
 "<type>";
 xml_str += att.type;
 xml_str +=
 "</type>"
 "<description>";
 xml_str += att.description;
 xml_str +=
 "</description>"
 "<property>"
 "<name>Access</name>"
 "<value>";
 xml_str += att.access ? "ReadWrite" : "Read";
 xml_str +=
 "</value>"
 "</property>"
 "</managed_attribute>";
 return xml_str;
}
.
.
.

Example 9: Getting the MBean Description
 86

Step 3—Implementing your MBeans
attribute. HelloAttribute is declared in hello_mbean.h. An instance
of this attribute and anything else that you declare are pushed on to a
list, including child MBeans.

3. The HelloAttributeList is then processed by get_attributes_XML()
and by get_attribute_XML() to generate the description for display in
the Administrator Web Console.

There are similar functions for displaying the operations and their
parameters in the console (get_operation_XML(),
get_operations_XML() and get_param_XML()).

For full details of the mbean.dtd file used to display the XML string
description, see Appendix A on page 97.
87

CHAPTER 5 | Instrumenting CORBA C++ Applications
Step 4—Initializing the Management Plugin

Overview After defining and implementing your MBeans, you should then initialize the
the management plugin in your server implementation. The
instrumented_plugin example adds the additional instrumentation code to
the existing server implementation file.

Alternatively, for a larger application, you could create a separate
instrumentation class, which is called by your server implementation.

Example management
initialization

The following code extract is also from the server implementation file
(hello_world_impl.cxx). It shows how the management plugin is
initialized in the instrumented_plugin application:

Example 10:Management initialization

void HelloWorldImpl::initialize_management() IT_THROW_DECL(())
 {

1 if (!m_config->get_string("domain_name", m_domain_name))
 {
 cerr << "Couldn't get domain_name from config" << endl;
 m_domain_name = "<unknown domain>";
 }
 try
 {
 CORBA::Object_var obj;
 CORBA::String_var process_object_name;

2 obj = m_orb->resolve_initial_references("IT_Instrumentation");
 IT_Mgmt::Instrumentation_var instrument;
 instrument = IT_Mgmt::Instrumentation::_narrow(obj);

 if (CORBA::is_nil(instrument))
 {
 throw IT_String("Instrumentation reference is nil");
 }
.
.
.

 88

Step 4—Initializing the Management Plugin
This hello_world_impl.cxx code extract is described as follows:

1. The get_string() operation obtains the managed entity domain
name. For more information, see “Get the managed entity ID and entity
type” on page 75.

2. Like any other Orbix service, the management service must be
initialized by your server implementation. The
resolve_initial_references() operation obtains a reference to the
management instrumentation interface, IT_Instrumentation. This is
then narrowed to the IT_Mgmt::Instrumentation type.

A managed entity must be registered with the instrumentation interface
to be displayed in the Administrator Web Console.
89

CHAPTER 5 | Instrumenting CORBA C++ Applications
Step 5—Creating your MBeans

Overview After initializing the management service plugin, you can then create your
MBeans in your server implementation. This section includes the following:

• “Creating an example MBean”.

• “Removing your MBeans”.

Creating an example MBean The following is a continuation of the example in the last section, taken from
the server implementation file. It shows how the MBean is created for the
instrumented_plugin application:

Example 11:Creating an MBean

void HelloWorldImpl::initialize_management()
 IT_THROW_DECL(())
{
 .
 .
 .
 // Create and register the Hello MBean
 IT_Mgmt::ManagedEntity_var hello_mbean_ref;

 1 hello_mbean_ref = m_hello_mbean_servant =
 new HelloMBean(this,m_name.in());
 instrument->new_entity(hello_mbean_ref);

 if (m_is_parent)
 {

 2 //Get the Process ObjectName
 process_object_name = instrument->get_process_object_name();

3 // Add the MBean as a child of the Process MBean.
 instrument->create_parent_child_relationship(
 process_object_name,
 hello_mbean_ref->managed_entity_id()
);
 }
.
.
}

 90

Step 5—Creating your MBeans
This hello_world_impl.cxx code extract is described as follows:

1. You must create the MBean using the new() method, and register it as
a managed entity using the new_entity() operation.

2. This gets the string that specifies the process object. The process
object is displayed as the parent of the HelloMBean in the navigation
tree of the Administrator Web Console. For more information about the
process name, see “The Process MBean” on page 92.

3. This creates a parent-child relationship between your MBean and the
Process MBean. The create_parent_child_relationship()
operation takes two parameters:

♦ The parent MBean name (in this case, the Process MBean).

♦ The child MBean name (in this case, a reference to the
HelloMBean).

Creating a parent-child relationship adds the MBean to the navigation
tree of the console.

Removing your MBeans You might wish to remove an MBean in response to an administrator’s
interaction with the system. For example, in a banking application, if an
account is deleted from the bank, it would be appropriate to remove the
corresponding MBean for the account.

Removing an MBean unregisters it as a managed entity. This ensures that
the MBean will no longer be displayed as part of the managed application.

To remove an MBean, use the remove_entity() operation. When the
account’s MBean has been removed, it is no longer displayed in the
Administrator Web Console. The remove_entity() operation takes the
managed entity name as a parameter.

The instrumented_plugin application is a simple example that does not
remove any MBeans.

Further information For full details of the Orbix Management API, see the Orbix Management
IDLdoc.
91

CHAPTER 5 | Instrumenting CORBA C++ Applications
Step 6—Connecting MBeans Together

Overview Applications are displayed in the Administrator Web Console as a series of
related or connected MBeans, which can be monitored by administrators.
This section explains how to connect your application MBeans together.

The Process MBean The management service plugin creates a Process MBean when it is first
loaded. A Process MBean is the default starting point in the console for
navigation within a managed process. In the instrumented_plugin
application, the HelloMBean is a child of the Process MBean.

Figure 20 shows the Process MBean for the instrumented_plugin
application. The Process MBean has associated default attributes, displayed
in the details pane (for example, process type, time running, hostname, and
so on).

Figure 20: Instrumented Plugin Process MBean
 92

Step 6—Connecting MBeans Together
Creating parent–child
relationships

Use the create_parent_child_relationship() operation to connect two
MBeans together. This enables MBeans to appear as children of others in
the navigation tree on the left of the console.

“Creating an example MBean” on page 90 shows how to use this operation
to add your application MBean as a child of the Process MBean. In
Example 12, the add_child() function shows how to add further child
MBeans created by your application to the navigation tree.

Example 12:Creating Child MBeans

void HelloWorldImpl::add_child(HelloWorldImpl *child)
 IT_THROW_DECL(())
{
 // Lock mutex
 try
 {

1 CORBA::Object_var obj;
 obj = m_orb->resolve_initial_references("IT_Instrumentation");
 IT_Mgmt::Instrumentation_var instrument;
 instrument = IT_Mgmt::Instrumentation::_narrow(obj);

 if (CORBA::is_nil(instrument))
 {
 throw IT_String("Instrumentation reference is nil");
 }

 CORBA::String_var my_name, child_name;

2 my_name = m_hello_mbean_servant->managed_entity_id();

 IT_Mgmt::ManagedEntity_var childMBean = child->get_mbean();

 child_name = childMBean->managed_entity_id();

3 instrument->create_parent_child_relationship(
 my_name.in(),
 child_name.in()
);

93

CHAPTER 5 | Instrumenting CORBA C++ Applications
This hello_world_impl.cxx code extract is described as follows:

1. The resolve_initial_references() operation obtains a reference to
the management instrumentation interface, IT_Instrumentation. This
is then narrowed to the IT_Mgmt::Instrumentation type. All managed
entities must be registered with the instrumentation interface to be
displayed in the Administrator Web Console.

2. The managed_entity_id() operation is used to uniquely identify the
managed entity.

3. The create_parent_child_relationship() operation takes the parent
MBean and the child MBean as parameters.

4. This adds the child MBean to the list of MBeans. These steps add the
child MBean to the tree for display in console. For example, Figure 21
shows a child MBean for the instrumented_plugin application (in this
example, hello3).

4 m_children.push_front(child);
 }
 catch(IT_Mgmt::ManagementBindFailed& ex)
 {
 cerr << "Management bind failed: " << ex << endl;
 m_is_managed = IT_FALSE;
 }
 .
 .
 .
}

Example 12:Creating Child MBeans
 94

Step 6—Connecting MBeans Together

Figure 21: Instrumented Plugin Child MBean
95

CHAPTER 5 | Instrumenting CORBA C++ Applications
 96

APPENDIX A

MBean Document
Type Definition
This appendix lists the contents of the mbean.dtd file used to
generate the display of the Administrator Web Console.

In this appendix This appendix contains the following section:

The MBean Document Type Definition File page 98
97

CHAPTER A | MBean Document Type Definition
The MBean Document Type Definition File

Overview The mbean.dtd file used to generate the XML used in the display of the
Administrator Web Console. For example, the get_description() operation
returns an XML string description of the managed entity, which is then
displayed by the console. This description normally includes the managed
entity’s attributes and operations (with parameters and return types).

mbean.dtd contents The contents of the mbean.dtd file is as follows:

<!-- MBean is the top level element -->
<!ELEMENT mbean (class_name, domain, identity, agent_id,

description, notification_listener*, notification_filter*,
notification_broadcaster*, constructor*, operation*,
managed_attribute*)>

<!-- IMMEDIATE MBEAN PROPERTIES -->
<!ELEMENT class_name (#PCDATA)>
<!ELEMENT domain (#PCDATA)>
<!ELEMENT identity (#PCDATA)>
<!ELEMENT agent_id (#PCDATA)>

<!-- COMMON ELEMENT TYPES -->

<!-- type = void | byte| char | double | float | long | longlong
| short | boolean | string | list | ref | UNSUPPORTED -->

<!ELEMENT type (#PCDATA)>

<!ELEMENT name (#PCDATA)>
<!ELEMENT description (#PCDATA)>
<!ELEMENT param (name, type, description)>

<!-- NOTIFICATION details - note no recipients are shown for the
broadcasts -->

<!ELEMENT notification_listener EMPTY>
<!ELEMENT notification_filter EMPTY>
<!ELEMENT notification_broadcaster EMPTY>
 98

The MBean Document Type Definition File
<!-- CONSTRUCTORS -->
<!ELEMENT constructor (name, description, param*)>

<!-- OPERATIONS -->
<!ELEMENT operation (name, type, description, param*)>

<!-- MANAGED ATTRIBUTES -->
<!ELEMENT managed_attribute (name, type, description,

property*)>

<!-- PROPERTIES -->
<!-- name = Access -->
<!ELEMENT property (name, value)>
<!-- value = ReadWrite | ReadOnly | INACCESSIBLE -->
<!ELEMENT value (#PCDATA)>
99

CHAPTER A | MBean Document Type Definition
 100

Glossary
Administration
All aspects of installing, configuring, deploying, monitoring, and managing a
system.

Application Server
A software platform that provides the services and infrastructure required to
develop and deploy middle-tier applications. Middle-tier applications perform
the business logic necessary to provide web clients with access to enterprise
information systems. In a multi-tier architecture, an application server sits
beside a web server or between a web server and enterprise information
systems. Application servers provide the middleware for enterprise systems.

CORBA
Common Object Request Broker Architecture. An open standard that enables
objects to communicate with one another regardless of what programming
language they are written in, or what operating system they run on.

Configuration
A specific arrangement of system elements and settings.

Controlling
The process of modifying the behavior of running software components,
without stopping them.

Details Pane
The display pane on the right hand side of the Administrator Web Console
user interface.

Deployment
The process of distributing a configuration or system element into an
environment.

Domain
An abstract grouping of managed server processes and hosts within a physical
location. Processes within a domain share the same configuration and
distributed application infrastructure. A domain is equivalent to an Orbix
configuration domain.
101

CHAPTER B |
EJB
Enterprise Java Beans. Oracle's architecture for the development and
deployment of reusable, object-oriented, middle-tier components. EJBs can
be either session beans or entity beans. EJB enables the implementation of
a multi-tier, distributed object architecture. See
https://www.oracle.com/java/technologies/javaee/enterprise-javabe
ans-technology.html

Event
An occurrence of interest, which is emitted from a managed entity.

Host
Generic term used to describe a computer, which runs parts of a distributed
application.

Installation
The placement of software on a computer. Installation does not include
Configuration unless a default configuration is supplied.

Instrumentation
Code instructions that monitor specific components in a system (for example,
instructions that output logging information on screen.) When an application
contains instrumentation code, it can be managed using a management tool
such as the Orbix management tools.

Invocation
A request issued on an already active software component.

JRE
Java Runtime Environment. A subset of the Java Development Kit required
to run Java programs. The JRE consists of the Java Virtual Machine, the Java
platform core classes and supporting files. It does not include the compiler or
debugger.

JMX
Java Management Extensions. Oracle’s standard for distributed management
solutions. JMX provides tools for building distributed, Web-based solutions
for managing devices, applications and service-driven networks.
 102

https://www.oracle.com/java/technologies/javaee/enterprise-javabeans-technology.html

Managed Application
An abstract description of a distributed application, which does not rely on
the physical layout of its components.

Managed Entity
A generic manageable component (C++ or Java). Managed entities include
managed domains, servers, containers, modules, and beans.

A managed entity acts as a handle to your application object, and enables
the object to be managed. The terms managed entity and MBean are used
interchangeably in this document.

Managed Server
A set of replicated managed processes. A managed process is a physical
process which contains an ORB and which has loaded the management
plugin. The managed server can be an EJB application server, CORBA server,
or any other instrumented server that can be managed by the Orbix
management tools.

Managed Process.
A physical process which contains an ORB and which has loaded the
management plugin.

Management
To direct or control the use of a system or component. Sometimes used in a
more general way meaning the same as Administration.

MBean
A JMX term used to describe a generic manageable object.

An MBean acts as a handle to your application object, and enables the
object to be managed. The terms managed entity and MBean are used
interchangeably in this document.

Monitoring
Observing characteristics of running instances of software components.
Monitoring does not change a system.

Navigation Tree
The tree on the left hand side of the Administrator Web Console.
103

CHAPTER B |
Node
A node represents a host machine on which the product is installed. The
management service and managed servers are deployed on nodes.

ORB
CORBA Object Request Broker. This is the key component in the CORBA
architecture model. It acts as the middleware between clients and servers.

Process
This is the operating system execution environment in which system and
application programs execute. A Java Virtual Machine (JVM) is a special type
of process that runs Java programs. A process that is not running Java
programs is referred to as a standard or C++ process.

Process MBean
The is the first-level MBean that is exposed for management of an application.
It is the starting point for navigation through an application in the
Administrator Web Console

Resource
This represents shared data or services provided by a server. Examples of
J2EE resources include JDBC, JNDI, JMS, JCA, and so on. Examples of
CORBA resources include naming service, implementation repository, trading
service, notification service, etc.

Server
This is a collection of one or more processes on the same or different nodes
that execute the same programs. The processes in a server are tightly coupled,
and provide equivalent service. This means that the calling client does not
care which process ends up servicing the request.

Runtime Administration, Runtime Management
Encompasses the running, monitoring, controlling and stopping of software
components.
 104

SNMP
Simple Network Management Protocol. The Internet standard protocol
developed to manage nodes on an IP network. It can be used to manage and
monitor all sorts of devices (for example, computers, routers, and hubs)

Starting
The process of activating an instance of a deployed software component.

Stopping
The process of deactivating a running instance of a software component.

Web Services
Web services are XML-based information exchange systems that use the
Internet for direct application-to-application interaction. These systems can
include programs, objects, messages, or documents.

Web Services Container
A Web services container provides an environment for deploying and running
Web services. A Web services container is typically deployed and runs in an
application server.

XML
Extensible Markup Language. XML is a simpler but restricted form of Standard
General Markup Language (SGML). The markup describes the meaning of the
text. XML enables the separation of content from data. XML was created so
that richly structured documents could be used over the web. See
http://www.w3.org/XML/
105

http://www.w3.org/XML/

CHAPTER B |
 106

Index

A
Administrator Web Console

components 3
overview 6

architecture
Administrator Web Console 7

B
binding:server_binding_list 46

C
C++ configuration 33
CFR 52
client-id 34
collector 41
CORBA, definition 101
create_parent_child_relationship() operation 91
custom exception messages 83

D
domains

definition 3, 101
introduction 52

dynamic MBeans 56

E
EJB, definition 102
EMS, definition 30
Enterprise Management Systems 30
entity_type() operation 70

G
get_attributes_XML() function 73
get_description() operation 71
get_forecast() function 82
get_mgmt_attribute() operation 68
get_string() operation 89

H
HelloAttributeList 87
HelloMBean() constructor 75
HelloMBean() destructor 75
HelloMBean class 70
HelloWorldImpl object 74

I
iBank example 66
IIOP 3, 52
initialize_attributes() function 73
instrumentation, definition 5, 102
instrumented_plugin example 64
Interoperable Object Reference 45
invoke_method() operation 69
iona_services.management process 52
IOR 45
IT_Mgmt::Instrumentation type 89
it_response_time_logger 32, 33, 35, 46

J
JMX

definition 102
introduction 54

L
life cycle message formats 40
logging collector 41
logging message formats 37

M
Managed Entity 58
managed_entity_id() operation 70
management instrumentation

programming steps 55
management service

overview 3
management service, overview 52
mbean.dtd file 87
MBean monitor 31
MBeans

dynamic 56
implementing 74
introduction 54
Process MBean 92, 104
107

INDEX
standard 56
unregistering 60

MBeans, definition 103
MBean server

introduction 54

N
new_entity() operation 91

O
ORB, definition 104
Orbix Configuration Authority 53
Orbix Configuration Explorer 52
Orbix management tools

Administrator Web Console 52
Orbix Management Service 52
overview 52

orb_plugins 32

P
performance logging 30
performance logging collector 41
permitted attribute types, C++ 78
plugins:it_response_time_collector:client-id 34
plugins:it_response_time_collector:filename 33
plugins:it_response_time_collector:period 33
plugins:it_response_time_collector:server-id 34
plugins:it_response_time_collector:syslog_appID 33
plugins:it_response_time_collector:system_logging_e

nabled 33
plugins:remote_log_receiver:iiop

addr_list 45
plugins:remote_log_receiver:ior_filename 45
plugins:remote_log_receiver:log_filename 45
plugins:remote_log_receiver:prerequisite_plugins 45
Process MBean 92, 104
programming steps

for management instrumentation 55

R
remote logger daemon 41
remote logging 41
remote_log_receiver 45
remove_entity() operation 91
Request counter 31
resolve_initial_references() operation 89
Response time collector 31
 108
Response time logger 31
running 40

S
server_binding_list 32
server-id 34
server ID, configuring 34
servlet_binding_list 32
set_forecast_parameters() function 82
set_message() function 79
set_mgmt_attribute() operation 68
shutting_down 40
SNMP, definition 105
standard MBeans 56
starting_up 40

V
validate_create_forecast_parameters() function 81

W
Web Services, definition 105

X
XML, definition 105

Z
z/OS 41

	List of Figures
	Preface
	Administrator’s Guide
	Introduction to Orbix Management
	Orbix Management Tools
	Orbix Management Tools
	Administrator Web Console
	Orbix Management Service
	Orbix Configuration Explorer
	Orbix Configuration Authority
	Orbix Management Tasks

	Managing Orbix Mainframe Services and Events
	Introduction
	Orbix Mainframe Instrumentation
	Management Configuration
	Monitoring Orbix Services on z/OS
	Managing Events in the Web Console
	Starting the Events Console
	Viewing the Events Console
	Viewing the Event Log

	Enterprise Performance Logging
	Introduction
	Configuring Performance Logging
	Logging Message Formats
	Remote Performance Logging
	Configuring Remote Performance Logging

	Programmer’s Guide
	Introduction to Application Management
	Introduction to the Orbix Management Tools
	Introduction to Java Management Extensions
	Introduction to the Orbix Management API
	Overview of Management Programming Tasks

	Instrumenting CORBA C++ Applications
	Step 1—Identifying Tasks to be Managed
	Step 2—Defining your MBeans
	Step 3—Implementing your MBeans
	Step 4—Initializing the Management Plugin
	Step 5—Creating your MBeans
	Step 6—Connecting MBeans Together

	MBean Document Type Definition
	The MBean Document Type Definition File

	Glossary
	Index

